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Abstract

In real-world scenarios, walking/running speed is one
of the most common covariate factors that can affect the
performance of gait recognition systems. By assuming the
effect caused by the speed changes (from the query walker-
s/runners) are intra-class variations that the training data
(i.e., gallery) fails to capture, overfitting to the less repre-
sentative training data may be the main problem that de-
grades the performance. In this work, we employ a general
model based on random subspace method to solve this prob-
lem. More specifically, for query gaits in unknown speed-
s, we try to reduce the generalization errors by combin-
ing a large number of weak classifiers. We evaluate our
method on two benchmark databases, i.e., Infrared CASIA-
C dataset and Treadmill OU-ISIR-A dataset. For the cross-
speed walking/running gait recognition experiments, nearly
perfect results are achieved, significantly higher than oth-
er state-of-the-art algorithms. We also study the unknown-
speed runner identification solely using the walking gait
gallery, and the encouraging experimental results suggest
the effectiveness of our method in such cross-mode gait
recognition tasks.

1. Introduction
Gait is a behavior biometric trait, and human identifi-

cation based on gait has gained considerable attentions in
recent years since: 1) it can be applied at a distance with-
out the cooperation from subjects; 2) it works well with low
resolution videos, which are desirable properties in foren-
sic applications. However, for vision-based gait recogni-
tion systems, covariate factors may affect the performance,
e.g., camera viewpoint, carrying condition, clothing, shoe,
speed, etc. These factors are extensively studied by the
previous literatures [4–6, 12, 13, 21, 23, 29], and great per-
formance improvements are made against these covariate
factors. Out of these covariates, walking/running speed is

deemed as one of the most common factors in real-world
scenarios, and this is our motivation in this paper to present
a robust walking/running speed-invariant gait recognition
framework.

Current walking speed-invariant gait recognition meth-
ods fall into two categories [12]: 1) transformation-based
and, 2) feature-based. The first category is to transfor-
m the features from different speeds into a common one
before matching. In [20], Tanawongsuwa and Bobick de-
veloped a stride normalization procedure to map gait se-
quences across speeds. In [22], by claiming that the effect
of speed changes is similar to camera viewpoint changes
to some extent, Tsuji et al. applied the view transformation
model concept [14] to walking speed-invariant gait recog-
nition. The second category is to employ (relatively) walk-
ing speed-invariant features. In [13], Liu and Sarkar de-
veloped a Hidden Markov Model (HMM)-based time nor-
malized gait feature, which suggests certain insensitiveness
against walking speed changes. To combat walking speed
changes, the feature template Head and Torso Image (HTI)
was proposed by removing the unstable leg parts (due to
speed changes) from silhouettes [15]. In [16, 18], Tan et al.
defined gait signatures through projecting the silhouette into
different directions, and these signatures lead to reasonable
results in cross-speed walking gait recognition experiments.
In [10], an adaptive weighting technique named Weight-
ed Binary Pattern (WBP) was employed on the rescaled
Gait Energy Image (GEI [6]), and it has competitive per-
formance in the cross-speed walking gait recognition tasks.
More recently, methods based on Procrustes Shape Analy-
sis (PSA) [11, 12] have shown great potentials in handling
the large changes of walking speed. Kusakunniran et al.
proposed Higher-order derivative Shape Configuration (H-
SC) to extract speed-invariant gait features from the PSA
descriptors [11]. They further extended the HSC frame-
work using a Differential Composition Model (DCM) by
adaptively assigning weights to different body parts [12].
Compared with HSC, the introduction of DCM delivers sig-
nificant performance improvements (against large walking



speed changes), yet this adaptive weight assigning scheme
instead faces two limitations: 1) it is sensitive to unknown
speed scenarios that the pre-training set fails to cover; 2) it
is highly correlated to the degree of speed changes, and ex-
ternal information is required (e.g. video frame-rate) when
the absolute walking speed is not available [12]. Neverthe-
less, these feature-based methods can achieve reasonable
performance in some gait recognition scenarios under the
influences of walking speed changes.

Compared with walking gait recognition, there are only
a few works on running gait recognition [8, 24–27], which
is claimed to be more potent (than walking gait recognition)
[8,26,27]. However, the effect of the running speed has not
been studied in these existing works. For the cross-mode
gait recognition (e.g., to identify an unknown runner solely
using the walking gallery), Yam et al. [26] reported there
is a unique mapping between the walking and the running
gait patterns for each subject. Yet they also claimed that
the generic mapping across the population does not exist,
since walking/running is highly individual-related. Based
on their approach [26], it is unlikely for the unknown run-
ner identification given only the walking gait gallery, which
may restrict the gait recognition applications when only the
walking gait gallery is available, since criminals often es-
cape by running away.

Our objective is not only to solve the cross-speed gait
recognition in a fixed-mode manner, but also to study the
effect of the cross-mode gait recognition. In this work, we
present a classifier ensemble framework based on Random
Subspace Method (RSM) [7] to solve the cross-speed gait
recognition problems in a fixed-mode or cross-mode man-
ner. The rationale behind is that we can deem the unstable
dynamic features (under unknown walking/running speeds)
are the intra-class variations the gallery data fails to capture,
and in this case overfitting to the less representative train-
ing data (i.e., gallery) may hamper the performance. This
problem can be solved by using a general model, and in
this work by combining a large number of weak classifier-
s which have different generalization powers, the general-
ization errors (caused by unknown walking/running speeds)
can be reduced [7].

The rest of this paper is organized as follows: section
2 demonstrates properties of speed changes. We present
the RSM framework in section 3. In section 4, we evaluate
the robustness of our method on CASIA-C dataset and OU-
ISIR-A dataset and section 5 concludes this paper.

2. Problem statement
GEI is a popular feature template and it is widely used in

recent gait recognition algorithms due to simplicity and ef-
fectiveness [4–6,10]. GEI is the average silhouette over one
gait cycle, which encodes a number of binary silhouettes in-
to a grayscale one, and it has two main advantages: 1) the

Figure 1. GEI samples from the OU-ISIR-A and CASIA-C
datasets. Top row: GEIs from OU-ISIR-A dataset with walking
speed ranges from 2km/h to 7km/h (from left to right with 1k-
m/h interval); middle row: GEI samples from OU-ISIR-A dataset
with running speed ranges from 8km/h to 10 km/h (from left to
right with 1km/h interval); bottom row: from CASIA-C dataset,
the GEIs with slow/normal/fast walking speed, and a GEI sample
with a bag (from left to right).

segmentation noises can be smoothed; 2) the computational
cost can be significantly reduced [6]. Several GEI samples
from the OU-ISIR-A [22] and CASIA-C [15] datasets are
illustrated in Fig .1.

In real-world scenarios, speed is one of the most com-
mon covariate factors. In recent years several methods were
proposed to solve the cross-speed (walking) gait recogni-
tion, yet most of them are not applicable when the speed
changes are large. The only work DCM [12] that can solve
the problem of large walking speed changes faces two main
limitations, i.e., lack of generalization to unseen speeds,
and the requirement of external information [12]. To build
a robust system with higher performance and less limita-
tions, in this section we summarize the characteristics of
speed changes by using the GEI examples from OU-ISIR-
A dataset and CASIA-C dataset. Fig. 1 illustrates the effect
on GEIs with respect to different speeds, from which we
can observe:

1. For the fixed-mode gait recognition (walking only or
running only), the static parts are relatively indepen-
dent of walking/running speed changes.

2. For the cross-mode gait recognition, from the visual
effect, there still may be some similar patterns between
fast walking and running, e.g., head, neck, and hip.

These observations are consistent with the claims in [22],
i.e., although the dynamic gait features can be significantly
affected by the speed changes, the static features can be rel-
atively stable. In this case, the covariate speed has the sim-
ilar properties with some covariates like carrying condition
or certain types of clothing, which only affect part of the



human silhouette. It indicates the possibility of using cer-
tain carrying-condition-invariant or clothing-invariant gait
recognition concept to solve the problems caused by differ-
ent walking/running speeds.

RSM is an effective framework to enhance the general-
ization accuracy [7]. Each base classifier is generated by
randomly sampling on the original feature set, before the
final classifier combination, e.g., through majority voting.
The RSM concept was recently introduced to gait recogni-
tion area by Guan et al. [4] and the experimental result-
s in [3–5] suggest that the RSM framework is robust to
a broad range of covariates like shoe, (small changes in)
camera viewpoint, carrying condition [4], clothing [5], and
covariates caused by the extremely low frame-rate videos
(e.g.,1fps) [3]. In this work, by assuming the covariate
speed may have a similar effect of carrying condition, or
certain type of clothing that only deforms part of the sil-
houette, the RSM concept is employed in this work and our
main contributions are:

1. Since the covariate speed only affects part of human
silhouette, we claim it has some similar properties
with carrying condition or certain types of clothing,
and thus borrow the corresponding RSM concept to
address this issue. For the fixed-mode gait recogni-
tion tasks, the nearly perfect experimental results on
the CASIA-C and OU-ISIR-A datasets conform to our
claim.

2. We also study the cross-mode gait recognition. Based
on our RSM framework, it is possible to identify a run-
ner solely using a walking gait gallery, which is a sig-
nificantly contribution to the real-world surveillance
applications.

3. Speed-invariant gait recognition system
Gabor-filtered GEI (referred to as Gabor-GEI) has been

demonstrated to be an effective feature template for human
gait recognition [21, 23]. Given a GEI sample, Gabor func-
tions from five scales and eight orientations are employed
to generate the Gabor-GEI feature template. For compu-
tational efficiency, similar to [23], we use the subsampled
Gabor-GEI in this paper. More details about Gabor-GEI
can be found at [21]. In the rest of this section, we intro-
duce the RSM framework used for the speed-invariant gait
recognition system.

3.1. Feature extraction using RSM

Due to high dimensionality of Gabor-GEI, we use the
two-dimensional Principle Component Analysis (2DPCA)
[28] to decorrelate the feature space (in column direction).
The reasons of using 2DPCA, instead of conventional PCA
are two-fold: 1) 2DPCA has a much lower time complexi-
ty [28]; 2) the input feature of 2DPCA is based on matrix,
which may preserve the data structure to some extent, and

empirical results shows that 2DPCA normally outperform-
s the conventional PCA in face recognition [28] and gait
recognition [29].

Given n Gabor-GEI samples Ii(i = 1, . . . , n) in the
gallery, the scatter matrix S can be estimated by using:

S =
1

n

n∑
i=1

(Ii − µ)T (Ii − µ), (1)

where µ = 1
n

∑n
i=1 Ii. The eigenvectors of S can be com-

puted, and the eigenvectors with zero eigenvalues are re-
moved, while the rest are retained as candidates to construct
the random subspaces. A total number of L random spaces
are generated, and the corresponding transition matrices
R1, ..., RL can be formed by randomly selecting N eigen-
vectors from the eigenvector candidates. Each Gabor-GEI
can be projected into L subspaces, and the coefficients for
a certain subspace are the feature descriptors corresponding
to certain areas of whole Gabor-GEI, and such areas (i.e.,
feature dimensions) are less sensitive to other affected areas
(caused by the covariates like speed) in this subspace.

For each subspace, to achieve the optimal class sep-
arability, two-dimensional Linear Discriminant Analysis
(2DLDA) is adopted (in row direction) to project the co-
efficients of the gallery samples into the canonical space.
For the kth subspace, there is a transition matrix W max-
imizing the ratio of the between-class scatter matrix Sk

b to
the within-class scatter matrix Sk

w, i.e.,

argmax
W

trace((WTSk
wW )−1(WTSk

bW )). (2)

For the kth subspace, letW k andRk be the canonical space
transition matrix and eigenspace transition matrix, then the
feature extraction can be performed for theL subspaces giv-
en Rk and W k, (k = 1, . . . , L). For example, a gait se-
quence with np Gabor-GEIs It(t = 1, . . . , np) can be pro-
jected into np features matrices Y k

t :

Y k
t =W k(ItR

k) (t = 1, . . . , np). (3)

The new feature descriptors for each gait sequence can be
extracted using (3), before the classification is performed in
the kth subspace.

3.2. Classification

Assume there are c classes of gait sequences in the
gallery, each with nj(j = 1, . . . , c) features matrices. For
the kth subspace, each class can be represented by its cen-
troid Gk

j (j = 1, . . . , c). Similar to the set-to-set distance
defined in [6], for a probe gait sequence P k with np feature
matrices Y k

t (t = 1, . . . , np), the dissimilarity between P k

and a certain class Gk
j can be measured by the average of



- # subject fn fs fq fb
Gait Curves [2] 153 91 65 70 26

NDDP [19] 153 98 84 84 16
ODP [16] 153 98 80 80 16
WPSR [1] 153 93 83 85 20
HTI [15] 46 94 85 88 51
HDP [18] 153 98 84 88 36
AEI [29] 153 89 89 90 80

Pseudoshape [17] 153 98 91 94 25
WBP [10] 153 99 86 90 81
HSC [11] 50 98 92 92 -
DCM [12] 120 97 92 93 -

without RSM 153 100 97 97 71
RSM (our method) 153 100±0.00 99.7±0.24 99.6±0.14 96.2±0.86

Table 1. Algorithms comparison in terms of CCR(%) on the CASIA-C dataset. fn, fs, and fq denote the speed types of the three probe sets
(i.e., normal, slow, and fast); fb is the bag-carrying probe set; the speed type of the gallery set is fn (i.e., normal).

the distances between each feature matrix and Gk
j , i.e.,

D(P k, Gk
j ) =

1

np

np∑
t=1

‖Y k
t −Gk

j ‖, (4)

where D(·) denotes the set-to-set distance for two gait se-
quences. The gait sequence P k is then labeled the same as
Gk

m if
D(P k, Gk

m) = mincj=1D(P k, Gk
j ). (5)

As there are L subspaces/classifiers, the final classification
is achieved by majority voting from the L labeling results.

4. Experiments
To evaluate the robustness of our method, two bench-

mark datasets are used in our experiments, i.e., CASIA-
C [15] and OU-ISIR-A [22]. The CASIA-C dataset was
collected at night environment using infrared cameras, with
a large number of subjects (153) in three different speed-
s (i.e., slow/normal/fast walking) and a carrying condition.
The OU-ISIR-A dataset was collected on a treadmill with
a large range of speeds (from 2km/h to10km/h) in terms of
walking or running for 34 subjects. In this section, three
experiments are designed as follows:

1. Cross-speed walker identification on the CASIA-C
dataset.

2. In the fixed-mode manner, cross-speed walker/runner
identification on the OU-ISIR-A dataset.

3. In the cross-mode manner, cross-speed runner identifi-
cation (solely using walking gallery) on the OU-ISIR-
A dataset.

There are two main parameters in our method, i.e., ran-
dom subspace/base classifier number (L) and random sub-
space dimension (N ). In [7], it was claim that the accuracy
does not decrease with respect to the increasing number of

classifiers, and we empirically set L = 1000. For the ran-
dom subspace dimension N , following [5], we set N = 5.
In this paper, we use the Correct Classification Rate (CCR)
to evaluate the performance. Considering the random na-
ture of our method, we run each experiments 10 times, with
the mean CCR (with the standard deviation) reported as the
result. To demonstrate the effectiveness of RSM, we also
implement conventional Gabor-GEI+2DPCA+2DLDA (re-
ferred to as without RSM) for comparison in the three ex-
periments. Specifically, we set 2DPCA preserves 99% of
the variance, while 2DLDA same as the proposed one.

4.1. Cross-speed walker identification on the
CASIA-C dataset

The CASIA-C dataset contains three different walking
speeds and one carrying condition, i.e., slow walking (fs),
normal walking (fn), fast walking (fq), and carrying a bag
(fb). All the 153 subjects are used in our experiments. For
each subject, there are two sequences of fs, four sequences
of fn, two sequences of fq, and two sequences of fb. We
use three fn sequences as the gallery set, and the rest se-
quences are used as the probes. This is the dataset can be
used to evaluate the algorithms against the (small) walk-
ing speed changes and carrying condition. We compare our
method with other classical methods, i.e., Gait Curves [2],
Normalized Dual-Diagonal Projections (NDDP) [19], Or-
thogonal Diagonal Projections (ODP) [16], Wavelet Packet
Silhouette Representation (WPSR) [1], HTI [15], Horizon-
tal Direction Projection (HDP) [18], Active Energy Image
(AEI) [29], Pseudoshape [17], WBP [10], HSC [11], D-
CM [12], and the method without RSM. The corresponding
experimental results in terms of CCR are reported in Table
1, and the CCRs of our method are nearly 100% in all the
three tasks with probe sets in different speeds (i.e., fn, fs,
and fq), significantly higher than other state-of-the-art algo-
rithms.



Figure 2. Algorithms comparison in terms of CCR (%) in the two
pre-designed experiments [22] with small (i.e., Set A) and large
(i.e., Set B) speed changes.

However, in this dataset, since the walking speed
changes are relatively small, the appearance of the silhou-
ettes is less affected (see Fig.1). In this case, most of the al-
gorithms can achieve competitive performance. For robust-
ness evaluation, we also conduct experiments on probe fb,
which involves relatively large intra-class variations. In this
case, the performance of most algorithms decrease signif-
icantly. Our method consistently yields high performance,
with a mean CCR of 96.2%, significantly higher than oth-
er methods and the one without using the RSM framework.
These experimental results suggest the robustness and effec-
tiveness of the RSM framework, which can nearly perfectly
solve this gait recognition problem under the influences of
(small) walking speed changes.

4.2. Cross-speed walker/runner identification in the
fixed-mode on the OU-ISIR-A dataset

Compared with the CASIA-C dataset, the OU-ISIR-A
dataset contains less number of subjects but broader range

HH
HHHG

P
2km/h 3km/h 4km/h 5km/h 6km/h 7km/h

2km/h 100 100 88 80 80 84
3km/h 100 100 100 88 84 80
4km/h 88 96 100 92 92 84
5km/h 96 96 96 96 100 96
6km/h 84 84 96 96 100 100
7km/h 84 88 84 96 100 100

Table 2. The CCR(%) distribution of DCM [12] in the cross-speed
walking gait recognition. G/P denotes Gallery/Probe.

HHH
HHG
P

2km/h 3km/h 4km/h 5km/h 6km/h 7km/h

2km/h 100 96 96 96 100 84
3km/h 100 100 96 100 100 84
4km/h 100 100 100 100 100 84
5km/h 92 96 100 100 100 96
6km/h 92 92 96 100 100 100
7km/h 88 84 72 92 100 100

Table 3. The CCR(%) distribution of the method without RSM
in the cross-speed walking gait recognition. G/P denotes
Gallery/Probe.

of walking/running speeds. There are six different walking
speeds from 2km/h to 7km/h with 1km/h interval, and three
different running speeds from 8km/h to 10km/h with 1km/h
interval.

For cross-speed walking gait recognition, Tsuji et al. de-
signed two gait recognition tasks [22] for algorithms eval-
uation given small and large walking speed changes. In
both scenarios, we compare our results with other clas-
sical methods, i.e., HMM-based time normalized (HMM)
[13], Stride Normalization (SN) [20], Speed Transforma-
tion Model (STM) [22], HSC [11], and DCM [12]. Note
that the results of methods HMM and SN are based on
25 and 24 subjects respectively from other datasets, while
STM, HSC, DCM and our method are based on 25 subjects
on the OU-ISIR-A dataset. Equivalent scenarios of speed
changes are also selected for fair comparison. For small
speed changes (i.e., Set A), the result of HMM is based on
the speed change between 3.3km/h and 4.5km/h while re-
sults of STM, HSC, DCM, and our method are based on the
speed change between 3km/h and 4km/h. For large speed
changes (i.e., Set B), the result of SN is based on the speed
change between 2.5km/h and 5.8km/h while the results of
STM, HSC, DCM, and our method are based on the speed
change between 2km/h and 6km/h. The results are report-
ed in Fig. 2, and our method significantly outperforms the
second best method DCM in both tasks.

For robustness evaluation, we also compare our method
with DCM and the method without RSM in all the cross-
speed matching scenarios, and the corresponding results are



HHH
HHG
P

2km/h 3km/h 4km/h 5km/h 6km/h 7km/h

2km/h 100±0.00 100±0.00 100±0.00 97.6±2.07 97.6±2.80 94±2.83

3km/h 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 98.4±2.07

4km/h 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 90.4±2.80

5km/h 92.8±1.69 96.4±1.26 100±0.00 100±0.00 100±0.00 96±0.00

6km/h 92±0.00 94.4±2.07 100±0.00 100±0.00 100±0.00 100±0.00

7km/h 92±0.00 94±2.11 94.8±1.93 100±0.00 100±0.00 100±0.00

Table 4. The CCR(%) distribution of RSM (our method) in the cross-speed walking gait recognition. G/P denotes Gallery/Probe.

H
HHHHG

P
8km/h 9km/h 10km/h

8km/h 100 96 96
9km/h 96 100 100

10km/h 96 100 100

Table 5. The CCR(%) distribution of the method without RSM
in the cross-speed running gait recognition. G/P denotes
Gallery/Probe.

H
HHHHG

P
8km/h 9km/h 10km/h

8km/h 100±0.00 96±0.00 100±0.00

9km/h 97.2±1.93 100±0.00 100±0.00

10km/h 99.2±1.69 100±0.00 100±0.00

Table 6. The CCR(%) distribution of RSM (our method) in the
cross-speed running gait recognition. G/P denotes Gallery/Probe.

reported in Table 2-4. Out of the total 36 tasks including d-
ifferent levels of walking speed changes, the performance
of our method is generally better than the other two, espe-
cially when speed changes are large (e.g., between 2km/h
and 7km/h). It is also worth mentioning that our method
does not have the two limitations of DCM, i.e., lack of gen-
eralization to unseen speeds, and the requirement of exter-
nal information. Generally, our method delivers significant
improvements in terms of both performance and generaliza-
tion, which indicates the effectiveness of the RSM concept
in solving the cross-speed walking gait recognition tasks.

Based on the 25 subjects, we also apply our method and
the one without RSM to the cross-speed running gait recog-
nition tasks. The recognition accuracies for these two meth-
ods are illustrated in Table 5-6. Both methods can achieve
high performance, since in this dataset the running speed
range is 8km/h-10km/h and the corresponding intra-class
variations are small (see Fig. 1). From the experimental
results on CASIA-C and fixed-mode OU-ISIR-A datasets,
we can see that when the intra-class variations are relatively
small, although method without RSM is generally less ef-
fective than our method, it can still yield very competitive
performance.

Table 7 lists the average CCRs of our method in the

- walking running
average 98.07 99.16

Table 7. The general average CCR(%) of RSM (our method) in the
cross-speed walking (Table 4) and running (Table 6) gait recogni-
tion.

fixed-mode gait recognition tasks, i.e., 98.07% average C-
CR (corresponding to Table 4) for walker identification, and
99.16% average CCR (corresponding to Table 6) for runner
identification. The nearly perfect performance suggests the
effectiveness of the RSM framework in speed-invariant gait
recognition. It is also worth noting that the average iden-
tification rate of runner is slightly higher than walker, and
this observation is consistent with claims in [8, 26, 27]. In
the context of fixed-mode gait recognition, the explanations
of this phenomenon are two-fold: 1) the running subjects
may have smaller inter-class similarities than the walking
subjects [26, 27]; 2) the running subjects may also have s-
maller intra-class variations which contribute positively to
recognition, since normally in real-world scenarios (at least
in this dataset), running tends to have smaller speed range
(e.g., 8km/h-10km/h) than walking (e.g., 2km/h-7km/h). N-
evertheless, for the fixed-mode gait recognition, our method
can achieve nearly perfect performance.

4.3. Cross-mode runner identification on the OU-
ISIR-A dataset

In real-world scenarios, it is also desirable for the cross-
mode gait recognition, especially for the runner identifica-
tion, when only the walking gallery is available. Although
Yam et al. [26] claimed that cross-mode gait recognition is
unlikely due to lack of generic mapping between walking
and running across the population, encouraging identifica-
tion rates are still achieved by our method on the 25 subjects
in the OU-ISIR-A dataset, as shown in Fig. 4. To evalu-
ate the effectiveness of RSM, we also conduct the cross-
mode gait recognition experiments using method without
RSM and the corresponding performance are reported in
Fig. 3. From which we can see that the general perfor-
mance of method without RSM is significantly worse than
the one based on the RSM framework. Although experi-



Figure 3. The CCR (%) distribution of the method without RSM
in cross-mode gait recognition, i.e., to identify unknown runners
given the gallery of walkers.

mental results suggest when the intra-class variations (of the
probes) are small, method without RSM can yield reason-
able performance, its performance drops significantly when
the intra-class variations are large. In this case, the train-
ing data ”dynamically” become less representative when the
intra-class variations become large. To combat overfitting
to the less representative training data, the RSM framework
combines a large number of weak classifiers and it achieves
encouraging performance in these challenging cross-mode
gait recognition tasks.

Based on the RSM framework, for the query running
gaits in different speeds, matching to the gallery sets with
fast walkers (e.g., in 7km/h) tends to deliver better perfor-
mance. Generally, for cross-mode gait recognition, the i-
dentification rate is higher when the speed difference is s-
maller, since there may be more effective features in the
common space between (faster) walking and (slower) run-
ning. For example, for runner identification in 8km/h, the
mean identification rate using a 7km/h walking gallery is
81.6%, and it is significantly higher than using a 3km/h
walking gallery with a mean CCR of 52.8%, as shown in
Fig. 4. For real-world applications, the results in Fig. 4
suggest that when the running gallery is unavailable, a faster
walking gallery is more suitable for runner identification.

4.4. Discussion

For the fixed-mode gait recognition, our RSM frame-
work can perfectly solve the speed changes problem. How-
ever, for the challenging cross-mode gait recognition, when
the speed differences (between running probe and walking
gallery) are large, the performance of our method is unsat-
isfactory. In this case, the intra-class variations for a sub-
ject become extremely large when we deem running and

Figure 4. The mean CCR (%) distribution of RSM (our method)
in cross-mode gait recognition, i.e., to identify unknown runners
given the gallery of walkers.

walking are the same modality, and it is an open question
to achieve satisfactory performance under extremely large
intra-class variations for unimodal systems [9]. Neverthe-
less, in real-world applications, it is possible to reduce such
speed differences by using the faster walking gait gallery,
e.g., with a walking speed of 7km/h, which has nearly per-
fect performance in walker identification and competitive
performance in runner identification.

5. Conclusions
In this paper, we present a classifier ensemble method

based on RSM concept to solve the cross-speed gait recog-
nition problems in a fixed-mode or cross-mode manner. For
fixed-mode gait recognition, compared with the previous
cross-speed walker identification algorithms, our method
delivers a significant improvement in terms of performance
and generalization. Our method also achieves nearly per-
fect accuracies in the cross-speed runner identification. D-
ifferent from fixed-mode, the cross-mode gait recognition
is challenging due to the significant differences between
walking and running. We study the cross-speed runner i-
dentification solely using the walking gallery. The exper-
imental results suggest that a faster walking gallery (e.g.
7km/h) is suitable for both the cross-speed runner identi-
fication and the cross-speed walker identification. In the
further we will investigate how to adaptively prune the re-
dundant weak classifiers to further boost the performance in
the challenging cross-mode gait recognition tasks.
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