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SUMMARY 

"Smile-consistent" no-arbitrage stochastic volatility models take today's op­

tion prices as given, and they let them to evolve stochastically in such a way as 

to preclude arbitrage. This allows standard options to be priced correctly, and 

enables exotic options to be valued and hedged relative to them. We study how 

to model the dynamics of implied volatilities, since this is a necessary prerequisite 

for the implementation of these models. First, we investigate the number and 

shape of shocks that move implied volatility smiles, by applying Principal Com­

ponents Analysis. The technique is applied to two different metrics: the strike, 

and the moneyness. Three distinct criteria are used to determine the number of 

components to retain. Subsequently, we construct a "Procrustes" type rotation 

in order to interpret them. Second, we use the same methodology to identify the 

number and shape of shocks that move implied volatility surfaces. In both cases, 

we find that the number of shocks is the same (two), in both metrics. Their in­

terpretation is a shift for the first one, and a Z-shaped for the second. The results 

have implications for both option pricing and hedging, and for the economics of 

option pricing. Finally, we propose a new and general method for constructing a 

"smile-consistent" no-arbitrage stochastic volatility model: the simulation of the 

implied risk-neutral distribution. An algorithm for the simulation is developed 

when the first two moments change over time. It can be implemented easily, and 

it is based on the idea of mixture of distributions. It can also be generalized to 

cases where more complicated forms for the mixture are assumed. 
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Chapter 1 

Introduction 

The growing literature on "smile consistent" no-arbitrage stochastic volatility 

models (Dupire [59], [61], Derman and Kani [54], Ledoit and Santa-Clara [106]) 

has been motivated by the need to price and hedge vanilla and exotic options 

consistently. The first objective of this thesis is to model the dynamics of im­

plied volatility and smiles, since this IS a prerequisite for the implementation of 

these models. The second objective, is to provide a new and general method for 

developing a "smile consistent" stochastic volatility model. 

The Black-Scholes model [20] is widely used to price and hedge standard and 

exotic options. Its popularity among practitioners arises from its tractability. 

However, the empirical evidence (see among others Gemmill [73], Jackwerth and 

Rubinstein [94], Rubinstein ([125], [126]), Derman and Kani [54]) contradicts 

its prediction of a constant implied volatility. Implied volatilities vary across: 

(a) different strikes for options at the same point in time with the same time­

to-expiration (smiles or skews), (b) different times-to-expiration for options at 

the same point in time and the same strike price (term structure), (c) different 

points in time for options with the same expiration date and the same ratio of 

strike price to the underlying asset price (dynamics of implied volatilities). These 

results suggest that the implied volatilities of options with different strikes and 

expirations, form a two-dimensional surface which has certain dynamics. 

The evolution of the implied volatility surface undermines the use of the Black-
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Scholes formula as a model for the correct pricing and hedging of standard, and 

especially, of exotic options (see for example, Davydov and Linetsky [48]). In or­

der to cope with this issue, a number of option pricing models have been proposed 

which give rise to smiles or skews, and to a term structure of implied volatili­

ties, roughly similar to what is observed empirically. These models provide for 

stochastic volatility (see Hull and White [90], Johnson and Shanno [101], Scott 

[131], Wiggins [147)), or jump models (see Bates [10] Merton [113)), or both (see 

Bates [11], [12], Scott [132]). However, none of these models fit observed implied 

volatility patterns well (see Clewlow and Xu [36], Das and Sundaram [47], Taylor 

and Xu [141]). 

These problems have led to the recent literature on "smile consistent" no­

arbitrage stochastic volatility models. Rather than specifying the underlying 

asset's process in advance, they use the European market option prices to infer 

information about the underlying asset process. They do this by taking today's 

standard option prices as given, and letting them evolve stochastically in such a 

way as to preclude arbitrage. This ensures the correct pricing of standard options, 

and is relevant to the pricing of exotic options (see Carr, Ellis, and Gupta [31], 

Davydov and Linetsky [48], Derman, Ergener, and Kani [50)). 

In order to implement this type of models, we need to understand the dy­

namics of the implied volatility surface. In this study, we first investigate the 

dynamics of implied volatility smiles, and then we investigate those of the more 

complex implied volatility surface. We answer the three questions related to this: 

(1) how many factors are needed to explain the dynamics of the implied volatil­

ity smiles and surfaces?, (2) what do these factors look like?, and (3) how are 

these factors correlated with the innovation in the underlying asset's process? 

The results from the implied volatility smiles analysis, are used as a check of the 

robustness of those from the surface analysis. 

The technique that we use in order to answer the three questions is Principal 

Components Analysis (PCA). It is applied to the changes in implied volatilities 

over time. The changes in implied volatilities are indexed in two different ways 

18 



(metrics): the strike level, and the moneyness level. This is because a determin­

istic volatility model predicts that the dynamics of implied volatilities should be 

measured under the strike metric (Derman, Kani and Zou [51]). On the other 

hand, if a stochastic volatility model is the correct model, then the moneyness 

metric is appropriate (Taylor and Xu [140], [141]). In addition, we group the 

data in distinct ranges of days to expiry, so as to control for the time to expiry; 

various models (such as Stein [137]), and studies (Bates and Clewlow [16], Hsieh 

[89], and Taylor and Xu [149]) have documented that the variation of the implied 

volatilities is a function of the time to expiry. The dynamics of individual smiles 

are analyzed by applying peA separately to the expiry buckets. We then ana­

lyze the dynamics of the whole implied volatility surface by pooling the buckets 

together, and applying the PCA to the whole data set. 

The empirical results are reported for daily data on futures options on the 

Standard and Poor 500 index from the Chicago Mercantile Exchange for the 

years 1992-95. First, we screen the data carefully for any errors and noise. Then, 

we use a variety of criteria, in order to decide on the number of shocks which 

drive the implied volatilities dynamics. Two factors are identified. These explain 

on average 53% of the variance of the implied volatility surface in the strike 

metric, and 60% of the variance in the moneyness metric. Subsequently, we 

construct a "Procrustes" rotation, in order to interpret the retained components. 

The first factor is interpreted as a parallel shift, and the second has a Z-shape. 

The results are similar in both the smile, and the surface analysis, under both 

metrics. Moreover, they are remarkably consistent across years. We conclude 

that to implement a "smile-consistent" no-arbitrage stochastic volatility model 

for the pricing and hedging of futures options on the S&P 500, we need three 

factors. One is required for the underlying asset, and two more for the implied 

volatility. 

Finally, we propose a new and general method for constructing a "smile­

consistent" no-arbitrage stochastic volatility model. The method simulates the 

evolution through time of the implied risk-neutral distribution, starting from 
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today's implied distribution. The simulation of the implied distribution is a 

natural tool for option pricing and hedging within this framework of models, 

because of the relation of the mean of the risk-neutral distribution with the 

current asset price. However, even though the way to extract the risk-neutral 

distribution from European option prices has been studied extensively (see for a 

survey Bahra [5], and Mayhew [111]), no research, to our knowledge, has been 

undertaken on its simulation, so far. 

We present the method for the simulation, when the first two moments of 

the distribution change over time. It is constructed by considering a mixture 

of distributions as a model for today's implied distribution. Then, a mapping 

between today's and tomorrow's cumulative probability, for a given asset value, 

is established. Our algorithm can be implemented easily, and it can be extended 

to the cases where complex forms for the mixture are assumed. It can be used 

for pricing purposes and for assessing the performance of hedges. On the other 

hand, it can not be used for the valuation of American type products. 

The thesis is organized as follows. We first review the developing literature on 

"smile-consistent" no-arbitrage stochastic volatility models, in Chapter 2. The 

historical development of this literature is narrated, and we provide a taxonomy 

of the various models. The main ideas behind them are highlighted, and their 

advantages and limitations are outlined. Practical issues in implementing the 

models are also discussed. The data, and the criteria we use to reduce the noise, 

are described in Chapter 3. In Chapters 4 and 5, we analyze the dynamics 

of implied volatility smiles, and surfaces, respectively. The simulation of the 

implied risk-neutral distribution is presented in Chapter 6. Chapter 7 concludes, 

and suggests issues for future research. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Exotic options are often hedged with European options. This hedging strategy is 

called static replication (see Carr, Ellis, and Gupta [31], Derman, Ergener, and 

Kani [50]). To improve the hedging performance, exotic and standard options 

need to be valued consistently. This is done by first assuming a stochastic process 

which describes the underlying asset price dynamics. The process is calibrated 

to the observed market prices of exchange-traded options. Then, the resulting 

(implied) process is used to price over the counter options. The need to price and 

hedge exotic options consistently with the prices of standard European options 

has led to the quite recent literature of "smile-consistent" no-arbitrage models. 

The aim of this chapter is to survey concisely this developing literature which is 

of particular importance to both academics and practitioners. 

The behavior of implied volatilities derived from inverting Black-Scholes [20] 

(BS) model, questions the validity of the model. The empirical evidence shows 

(see among others Derman and Kani [54], Rubinstein [125], [126] and for an ex­

tensive literature survey Mayhew [110]) that implied volatilities vary across differ­

ent strikes (smiles or skews), and different times-to-expiration (term structure), 

while the BS model does not predict any such variation. These results suggest 

that implied volatilities could be viewed as a two-dimensional non-flat surface. 

21 



In addition, the functional form of this surface changes over time (Gemmill [73], 

Jackwerth and Rubinstein [94]). 

The non-flat implied volatility surface is roughly explained by either stochas­

tic volatility (see Hull and White [90], Johnson and Shanno [101], Scott [131]' 

Wiggins [147]), or jump models (see Bates [10] Merton [113]), or both (see Bates 

[11], [12], Scott [132]). The approach taken by these models consists of speci­

fying the parameters of the processes for the underlying traded and non-traded 

securities (stochastic volatility and, or jump). The market price ofrisk of the non­

traded sources of risk has also to be specified 1• Then, option prices are derived 

as a function of the parameters of the processes and the prices of the underlying 

securities. 

However, these models do not fit observed implied volatility patterns well (see 

Clewlow and Xu [36], Das and Sundaram [47], Taylor and Xu [141]), making it 

difficult to use them in practice to price and hedge exotic options. These problems 

have motivated the recent literature on "smile consistent" no-arbitrage models. 

"Smile-consistent" models reverse the approach taken by the conventional sto­

chastic volatility, or jump models. The prices of standard European options are 

taken as given, and they are used to infer information about the underlying price 

processes. 

In this chapter, we survey the "smile-consistent" no-arbitrage literature by 

classifying the two stages through which it has been developed. First, deter­

ministic volatility models which fit the observed European option prices were 

introduced (Andersen [2], Andreasen [4], Barle and Cakici [7], Derman and Kani 

[49], Derman, Kani and Chriss [53], Dupire [60], [62], Jackwerth [96], Rubinstein 

[126]). Next, stochastic volatility models were provided which allowed for smile­

consistent option pricing under the no-arbitrage evolution of the volatility surface 

(Britten-Jones and Neuberger [27], Derman and Kani [54], Dupire [59], [61], [63], 

IThe market price of risk is specified by invoking equilibrium arguments. In this sense these 
models allow for equilibrium, and not for arbitrage pricing. For an intuitive, clarification of the 
difference between equilibrium and arbitrage pricing, see Dupire [61]. 
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Ledoit and Santa-Clara [106]). The second class of models is more general and it 

nests the first class. The various models are developed in continuous, or discrete 

time, or both. We describe them by commenting on the key ideas behind them 

and we outline their advantages and limitations. Furthermore, some practical 

issues in implementing these models are addressed. 

The remainder of the chapter is structured as follows. In the second and 

third section, we discuss the smile consistent deterministic volatility models in 

continuous and discrete time, respectively. We compare them, and we discuss 

some practical issues in implementing them. The empirical results from the re­

search on the validity of the smile-consistent no-arbitrage deterministic volatility 

models are presented in section four. Section five describes the smile-consistent 

no-arbitrage stochastic volatility models, and brings together the different de­

finitions of the key concept of the forward variance. The investigation of the 

dynamics of volatilities, as a prerequisite for the implementation of this class of 

models, is also pointed out. The last section concludes. 

2.2 Smile Consistent Deterministic Volatility 

Models in Continuous Time 

Option prices calculated from the BS model deviate from the market option 

prices, especially after the market crash on October 19, 1987. An alternative way 

of stating this is by describing the stylized characteristics of implied volatilities 

(see for instance Jackwerth and Rubinstein [94], Rubinstein [126]). Depending 

on the underlying asset and the sample period under scrutiny, implied volatilities 

have a term structure which is upward, or downward sloping (Derman and Kani 

[49]). In addition, in contrast to the BS prediction of a constant implied volatility 

across strikes, there is an implied volatility bias; they vary across strikes giving 

rise to smiles, or skews. Black [18] finds that implied volatilities decline as the 

strike price goes down; Macbeth and Merville [108] find that call options implied 

volatilities tend to be higher when the strike price declines. Rubinstein [125] finds 
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that the implied volatility bias changes direction depending on the sample period 

under scrutiny. Shastri and Wethyavivorn [133] find an implied volatility smile 

(see also Bates [12] for an extensive survey). 

A simple way of explaining the implied volatility skew which appears in Index 

and Futures options markets (Bates [14]), is by resorting to standard determin­

istic volatility models (see Cox [41], Cox and Ross [42], Emanuel and MacBeth 

[65], MacBeth and Merville [109]) which allow for an inverse relationship between 

the price of the underlying security, and the variance of the rate of return. These 

models specify exogenously the instantaneous volatility a as a deterministic func­

tion of the price of the underlying asset St and time t, Le. 

(2.1) 

In contrast to standard deterministic volatility models, smile consistent deter­

ministic volatility models do not specify a(St, t) in advance, but endogenously 

from the European option prices. Therefore, they preserve the "pricing by no­

arbitrage" property of the BS model, and the option's payoff can be synthesized 

from a portfolio of existing assets, Le. the markets are complete (see Dothan [57], 

and for a concise description Sundaram [139]). In addition, they provide us with 

a method for specifying a(St, t) from the market option prices, Le. they deliver 

to us an implied process. 

The knowledge of the process allows for the pricing and hedging of path­

dependent options (Monte-Carlo methods) and American options (by dynamic 

programming). The hedging will be effective throughout the life of the option if 

the asset price behaves according to the inferred process. 

2.2.1 Theoretical Justifications for "Smile-Consistent" 

Deterministic Volatility Models 

There are three ways, to our knowledge, of explaining the systematic relationship 

of volatility with the underlying asset. A first informal approach is the one 
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suggested by Derman, Kani and Zou [51]. They call a(St, t) as the local volatility. 

It is the volatility which prevails at the asset level St at time t. They think of the 

implied volatility as an average of local volatilities across the state space (rather 

than the time domain). Assuming that the local volatility varies linearly with the 

asset price, they show that the local volatility varies with the asset level about 

twice as rapidly, as implied volatility varies with the strike. Therefore, according 

to them, the smile can be explained by the variation of local volatility with the 

asset price and time, and other effects such as stochastic volatility and jumps are 

less important. 

The second approach, uses the negative correlation between a(St, t) and the 

asset price which was first observed by Black [18]. This negative relationship 

can be explained either as a leverage effect (Christie [33]), or by the portfolio 

insurance strategies that investors use (Grossman and Zhou [77]). The idea be­

hind Christie's model is that as the asset price increases, the riskiness of the 

outstanding debt of a levered firm decreases, and hence the volatility declines. 

The intuition in Grossman and Zhou is that the use of an insurance strategy 

increases the sensitivity of an individual risk aversion to changes in his wealth. 

As a result, when the price falls, the risk aversion of the agents increases and this 

increases volatility. Similarly, when the price rises, their risk aversion decreases, . 
and this decreases volatility. 

The third approach, invokes Platen and Schweizer [129] model's which is sim­

ilar in spirit to Grossman and Zhou's. They start from a microeconomic equilib­

rium model, where part of the demand for the underlying asset is induced by a 

hedging strategy. The limit of their model is a deterministic volatility diffusion, 

where the volatility coefficient is derived endogenously from assumptions about 

agents' trading behavior. 

2.2.2 Dupire (1993 and 1994) 

Let C(K, T) be a European call option of exercise (strike) price K and maturity 

T. Assume that the continuum of all (C(K, T))K,T are traded and that their 
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prices today are consistent with no arbitrage. Breeden and Litzenberger [25] have 

shown that the observed European call option prices deliver to us the conditional 

terminal risk-neutral density as a function of K, i.e. 

<P (K) = -r(T-t) fPC(K, T) 
T e 8K2 (2.2) 

where <PT(K) is the terminal risk-neutral density of ST conditional on the infor­

mation at current time t, and r is the interest rate. In general, the converse is not 

true. From the terminal implied risk-neutral density we can not recover uniquely 

the asset process which generates today's option prices (see Dupire [60], Melick 

and Thomas [112]). However, Dupire proves that there is an exception. Under 

some technical regularity conditions, we can recover a unique diffusion process 

from the terminal risk-neutral implied density, if we restrict ourselves to risk­

neutral deterministic volatility diffusions (see Dupire [60], [62]). This is proved 

by means of the forward Kolmogorov equation. Given the process 

dx = a(x, t)dt + b(x, t)dW (2.3) 

the forward Kolmogorov equation is given by 

(2.4) 

where f(x, T) = <PT(X). In other words, in general the forward Kolmogorov 

equation is used for deriving conditional densities (or distributions) starting from 

a given process2 • However, in our case we cope with the converse problem: f is 

known and b is the unknown. 

Restricting ourselves to risk-neutral densities {and assuming without loss of 

2Por a further discussion on the forward Kolmogorov equation and its use, see Cox and 
Miller [40]. 
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generality that the interest rate is zero) equation (2.4) becomes3 

1 82(b21) 8f 
2 8x2 - aT 

(2.5) 

As f can be written as ~:~ (x denotes the strike price), he shows that (Dupire 

[60]) 

Both derivatives are positive by arbitrage. Hence4 , 

b(x, T) = 
28C(x, T) 

aT 

(2.6) 

(2.7) 

Combining equations (2.1) and (2.3), we obtain the instantaneous volatility by 

a(S, T) = b(S~ T). 

The forward equation (2.6) presents the option pricing problem in a different 

way than the BS partial differential equation (PDE) does. It turns the option 

pricing problem into a problem in strikes and maturities with fixed spot and 

time, rather than in a problem in spot and time with fixed strike and maturity. 

Andreasen [4] shows that in general, the forward equations for the option prices 

imply a duality: the problem of pricing and hedging of European options can be 

solved in a dual economy, where the spot is the strike, the strike is the spot, the 

call is the put, the interest rate is the dividend yield, and the dividend yield is 

the interest rate. However, the BS PDE applies to any contingent claim, while 

3By restricting himself to the risk-neutral environment, he has one equation (the forward 
equation) and one unknown (the instantaneous volatility). Otherwise, he would have two 
unknowns, the drift and the instantaneous volatility and he would not be able to determine 
uniquely the instantaneous volatility. 

4 Equation (2.7) holds for every system of call prices, provided that the time derivative of 
the European call vanishes as the strike goes to infinity and a slow growth condition is satisfied 
(see Dupire [60]). For instance, the BS model for a European call on a no dividend asset with 
interest rate equal to zero, satisfies (2.7) (see Bick and Reisman [22]). Bick and Reisman also 
derive equation (2.7), independently. However, they make no distinction between the concept 
of local and implied volatility. 
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equation (2.6) holds only because the intrinsic value of a call happens to be the 

second integral of a Dirac function. 

2.3 Smile Consistent Deterministic Volatility 

Models in Discrete Time 

The implementation of a smile-consistent deterministic volatility model, for pric­

ing and hedging purposes, is done in a discrete time framework. The tools used are 

either binomial, or trinomial implied trees, or implicit finite difference schemes. 

The former discretizes the asset price process, while the latter discretizes the BS 

type fundamental PDE (see Geske and Shastri [75]). 

Binomial (or trinomial) trees are built from the known prices of European 

options. Such trees are called implied trees because they are consistent with 

or implied by the volatility smile. Their continuous time limit is a deterministic 

volatility process (see Nelson and Ramaswamy [115]). In the standard Cox, Ross, 

Rubinstein [43] (CRR) tree the size ofthe upper and down move of the underlying 

asset, and the respective probabilities of such moves are constant (because they 

depend on the volatility which is assumed to be constant). This is not any longer 

the case with implied trees. 

In general, in order to construct a tree we need to know the way that the 

underlying asset price evolves and the transition probabilities corresponding to 

the links of the tree. The traditional way of calculating these two, is byestab­

lishing conditions under which a sequence of processes converges in distribution 

to the given diffusion (Nelson and Ramaswamy [115])5. In the case of implied 

trees, there is also the additional constraint that they must correctly reproduce 

the volatility smile. Once the tree has been built, backward induction (see Cox, 

Ross, Rubinstein [43]) is applied for the evaluation of the option. Alternatively, 

the constructed tree delivers the local volatility surface which can be used for the 

liFor example, for the lognormal diffusion (1) we match the first two moments of the contin­
uous process and of the discretised process (see Cox, Ross, Rubinstein [43]). 
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pricing and hedging of options via Monte Carlo simulation (see Derman, Kani, 

and Zou [51], and Zou and Derman [150]). 

There are three different approaches to the construction of implied trees. 

First, binomial implied trees are constructed by using both backward and for­

ward induction (Derman and Kani [49], Barle and Cakici [7])6. They fit implied 

volatilities in both the maturity and strike dimension. Second, binomial implied 

trees are constructed by using only backward induction. They fit either the strike 

dependence of implied volatilities (Rubinstein [126]), or both the strike and the 

term dependence (Jackwerth [96]). Third, trinomial trees are built by using si­

multaneously forward and backward induction (Dupire [60], [62], Derman, Kani 

and Chriss [53]). They fit both the strike and the term structure of implied volatil­

ities. Their main difference with implied binomial trees is that the state space is 

fixed in advance, and the construction of the tree is reduced to the calculation of 

transition probabilities. 

Finally, implicit finite difference schemes (Andersen [2], Andreasen [4]) are 

proposed in order to solve some of the problems encountered with implied trees. 

2.3.1 Derman and Kani (1994) 

Derman and Kani [49] build a recombining binomial implied tree by using forward 

and backward induction simultaneously. 

Their tree has uniformly spaced levels which are !1t apart. In order to con­

struct it, they assume that they have already implied the tree's nodes and the 

transition probabilities out to level n. The known price at node i and level n Si,n 

can evolve into an "up" node with price Si+l,n+b or into a "down" node with 

6Backward and forward induction are the discrete analogues of the Kolmogorov backward 
and forward equations, respectively. The binomial backward equation states that the price 
at any period n is the discounted value of the average of the prices at the two up and down 
nodes in the next period n + 1. The binomial forward is the "dual" or the "adjoint" of the 
binomial backward equation. It states that the price of an Arrow-Debreu primitive security of 
any maturity (n + 1) is the average of the discounted at the previous two up and down nodes 
of the Arrow-Debreu security of maturity n (for a further description and application of the 
technique in the context of interest rate models see Hull and White [92]. lamshidian [97]. and 
Rebonato [122]). 
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price Si,n+! at level (n + 1). The (unknown) probability of making a transition 

into the "up" node is denoted by Pi. The aim is to determine the nodes of the 

(n + l)th level at time tn+l and the corresponding transition probabilities. In 

total, there are 2n + 1 parameters that define the transition from the n to the 

(n + 1) level of the tree. These parameters are the n + 1 stock prices Si,n+1! and 

the n transition probabilities Pi. Derman and Kani determine them by using the 

smile. 

They find the distribution of Si,n+! and the transition probabilities Pi by using 

the theoretical values of n forwards and n European options, all expiring at time 

tn+!' They require that these theoretical values match the (interpolated) market 

values. This provides 2n equations for these 2n + 1, parameters and it ensures 

that they fit today's smile. They use the one remaining degree of freedom to 

make the centre of their tree to coincide with the centre of the standard eRR 
tree that has constant local volatility7. 

The above can be expressed formally as follows: The martingale condition 

delivers the forward price Fi,n of the stock as 

(2.8) 

Let C(Si,n, tn+!) and P(Si,n, tn+d, respectively, be the known market values 

for a European call and put, struck today at K = Si,n and expiring at tn+!' The 

values of each of these calls and puts are known from interpolating the smile 

curve implied from options expiring at time tn+!' The theoretical binomial value 

of a European call struck at K and expiring at tn+! in a complete market is given 

by: 

n 

C(K, tn+!) = e-rt.t L {Qn,jPj + Qn,j+! (1 - PHd} max(S;+! - K,O) (2.9) 
j=1 

7For a different choice of the" centrering condition", the constructed tree would have been 
different. However, in the continuous time limit, where there are an infinite nwnber of nodes 
at each time step, the choice of the "centrering condition" is.not important (see Derman, Kani 
and Chriss [53]). 
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where the sum is taken over all nodes j at the (n+ 1) level and Qn,j is the price of 

an Arrow-Debreu security expiring at tn+l' From equations (2.8) and (2.9) they 

get that: 

(2.10) 

(2.11) 

where Ec = Ej=i+l Qj,n(Fj,n - Si,n)' The Arrow-Debreu prices Qi,n have been 

calculated by applying forward induction. 

For all the nodes above the centre of the tree we can find iteratively Si+l,n+1 

and Pi, from equations (2.10) and (2.11) if we know Si,n+1 at one initial node. 

"Centering conditions" are imposed so that to calculate Si,n+1' If the number 

of nodes at the (n + l)th level is odd they choose the central node Si,n+1 (for 
n 

i = 2' + 1) to be today's spot price, as in the eRR tree. If the number of nodes 

at the (n + 1 )th level is even, they start instead by identifying as initial Si,n+1 

and Si,n, the nodes just below and above the center of the level (Le. i = n; 1). 

This is done by making the average of the natural logarithms of the two central 

nodes' stock prices equal to the logarithm of today's spot price. Substituting this 

condition in equation (2.10) gives the formula for the upper of the two central 

nodes for even levels 

(2.12) 

for i = ~ + 1. Once we have this initial node's stock, we can continue to fix 
2 

higher nodes from equation (2.10). 

Similarly, the asset value for the nodes below the central node at level n , are 

calculated by using known put pricesB• The analogous formula that determines 

IlNon-synchronous trading and the bid-ask bounce create noise in the observed option prices 
(see Harvey and Whaley [81J, and Roll [124J, respectively). By using out-of-the money calls 
and puts, they minimize the effect of noisy option prices on the construction of their tree. This 
is because the delta for these options is low. 
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a lower stock price from a known upper one is 

(2.13) 

where Ep = E~::l Qj,n(Si,n - Fj,n)' 

Applying equations (2.10), (2.11) and (2.13) for every level and for small 

enough time steps between successive levels, completes the construction of the 

tree. These equations reveal the idea behind the "implied trees" methodology. 

From the current option prices, we can back out a discrete approximation to the 

risk-neutral stock process, and the risk-neutral transition probabilities. 

The advantage of Derman and Kani's algorithm is that it provides the asset 

price evolution, and the transition probabilities by capturing both the term and 

the strike structure of implied volatilities (they interpolate across option prices 

for each time level). On the other hand, Bade and Cakici [7] find that Derman 

and Kani's algorithm fails to reproduce the smile accurately if the interest rate is 

high. In the next section, we demonstrate how Barle and Cakici extend Derman's 

and Kani's algorithm. 

2.3.2 Barle and Cakici (1995) 

In order to ensure that transition probabilities remain in the interval [0,1]' Der­

man and Kani require that Fi,n < Si+l,n+l < Fi+l,n' If the stock price Si+l,n+l 

violates this inequality, then they override the option price that produced it. The 

missing stock price is replaced by the one which keeps In Si+l,n+l - In Si,n+l = 

In Si+l,n -In Si,n' However, Barle and Cakici [7] note that Derman and Kani's al­

gorithm fails to reproduce the smile accurately when the interest rate is high. The 

reason is that with higher interest rate, negative probabilities are more frequently 

encountered, leading to overriding the corresponding option prices. Hence, the 

constructed tree does not fully incorporate the information from the smile. In 

order to correct for this problem they propose three modifications to Derman and 

Kani's method. 
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First, they choose the option to be struck at K = Fi,n' Second, rather than 

fixing the center of the tree at the current stock price, they allow it to follow 

the evolution of the mean of the risk-neutral distribution by setting it to Sertn+l. 

Third, when there is a missing stock price due to the violation of the arbitrage 

d't' th S Fin + Fi+1n Bid e ki ., d'fi' con 1 lOn, ey set i+l,n+1 = ' 2 '. ar e an a Cl s mo 1 catIOns are 

equivalent to working with the futures rather than the spot price. In a standard 

binomial tree this trick guarantees non-negative transition probabilities (see Hull 

[91]). 

Even though, their modified method fits the smile accurately for very high 

interest rates (e,g, r = 40%), it fails to do so for increasing interest rates and 

smile slope. Negative probabilities occur even with this modification. "These 

weaknesses are a consequence of the strict requirements that continuous diffusion 

can be modelled as a binomial process and on a recombining tree" , as they state 

in their conclusions. 

2.3.3 Rubinstein (1994) 

Rubinstein [126] constructs an implied binomial tree which has T levels, by using 

only backward and not forward induction. In this sense his tree is an extension 

of the eRR tree. The key input to his algorithm is the terminal total (nodal, as 

opposed to the one period) risk-neutral implied probabilities of the underlying 

asset. He extracts them from the observed prices of European options which 

mature at time T, by using a nonlinear minimization method9 • 

His method consists of establishing a prior guess of the terminal risk-neutral 

distribution; his guess is the log-normal one. Then, the implied posterior risk­

neutral probabilities are those which are, in the least-squares sense, closest to 

the 10gnormal1O • The minimization is performed subject to some constraints, 

9In general, there is a number of approaches for estimating risk-neutral functions from option 
prices, For a survey of these methods see Bahra [5], and Mayhew [111], 

10 Jackwerth and Rubinstein [94] examine alternative specifications of the minimization crite­
rion using historically observed option prices, All of the specifications, including the quadratic 
one, produce similar posterior distributions (for near-the-money) which seem to be independent 
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The probabilities must add up to one and be non-negative. Moreover, they are 

calculated so that the present value of the underlying assets and all the European 

options calculated with these probabilities to fall between their respective bid and 

ask prices. 

In order to proceed further, he imposes a number of assumptions: (a) bino­

mial evolution of the asset price, (b) recombining nodes, (c) ending nodal values 

organized from lowest to highest, (d) constant interest rate, and (e) all paths 

leading to the same ending node have the same risk-neutral probability. Then, 

the tree is constructed through four very simple steps. 

1. For every node j, calculate the terminal path probabilities corresponding 

to the T level, from the terminal nodal probabilities. 

2. From the path probabilities of the T level, calculate the path probabilities 

for the T - 1 level. 

3. From the path probabilities of the T - 1 level, calculate the transition 

probabilities of a transition from level T - 1 to level T. 

4. Uses the transition probabilities to calculate the return for the jth node at 

the T - 1 level. 

This exercise is repeated for every time level and completes the construction of 

the tree. Then, the value and the hedging parameters of any derivative instrument 

maturing with or before the European options can be calculated. However, the 

constructed tree fits only the European options with maturity T (in the sense that 

the model price falls within the bid and ask observed prices). This is because 

it uses as input only the options maturing at the T level. It does not capture 

the term structure of implied volatilities something which can be considered as a 

limitation of the technique. 

of the assumed prior distribution. 
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2.3.4 Jackwerth (1997) 

Rubinstein's implied binomial tree fits only the European options which expire 

at the terminal level of the tree. On the other hand, Derman and Kani's model 

fits intermediate maturity options, but the construction of the tree depends on 

the chosen interpolation and extrapolation method. Moreover, negative transi­

tion probabilities are frequently encountered. As a solution to these problems, 

Jackwerth [96] develops a generalized implied binomial tree. It is 'generalized' in 

the sense that the simplicity of Rubinstein's implied binomial tree is preserved, 

but it relaxes the assumption that all the paths which lead up to the same ending 

node are equally probable. This allows him to fit intermediate maturity Euro­

pean option prices. In addition, the transition probabilities are constrained by 

construction to lie within 0 and 1, as it was the case with Rubinstein's implied 

tree. 

Let i = 0,1, ... ,n be the time step, and j = 0,1, ... ,i, be the nodes at each 

time step starting with the lowest stock price at the bottom of the step. In order 

to fit the intermediate maturity options, Jackwerth works with nodal, rather 

than path probabilities, and he uses a weight function Wi,j which has a particular 

interpretation. Wi,; can be interpreted as the portion of nodal probability at 

the upper node going into the preceding node at the previous time step (down 

weight). For a standard binomial tree, Wi,j = i (linear function). In a generalized 

implied binomial tree, Wi,j is an arbitrary function; it is determined so that to 

fit the intermediate maturity options. Jackwerth reports that concave weight 

functions explain the observed European index on the S&P 500 option prices 

better than either linear, or convex weight functions. A concave weight function 

implies that a path going first down and then coming up, is more likely to be 

taken than a path going first up and then coming down. 

Given the nodal probabilities and stock prices at time i, he can solve for the 

nodal probability and stock price at the preceding node in three steps: 

1 Pnodal - (1 ) pnodal + pnodal 
. i-I,; - - Wi,j i,j Wi,j+l i,;+! 
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pnodal 
2 P. i,j+1 . P = i-I,j = Wi,j+I pnodal 

i-I,j 

3. Si-l,j = [(1 - ~-l,j)Si,j + ~-1,jSi,j+1]/(r/8), 
where rand 8 are the interest rate and dividend yield per step, and p is the 

transition probability. Note, that as long as the weights are between 0 and 1, the 

transition probabilities will also be between 0 and 1. 

Jackwerth's technique recognizes that the evolution of nodal probabilities 

throughout any tree (standard, or implied binomial or trinomial tree) is gov­

erned by a transition probability weight. Changing the functional form for this 

weight, changes the nodal probabilities, i.e. changes the transition probabilities 

and the local volatilities. By implying the functional form of this weight from 

European option prices, one can change the nodal probabilities so that to price 

shorter term options consistently with the shorter and longer term European 

option prices. 

2.3.5 Trinomial Trees 

Implied trinomial trees are proposed as a solution to the problem of not-acceptable 

transition probabilities occurring in Derman and Kani's implied binomial tree. 

Moreover, trinomial trees provide a much better approximation to the continuous 

time process than the binomial tree for the same number of steps. This is because 

there are three possible future movements over each time rather than two (see 

Clewlow and Strickland [35]). 

Trinomial trees have more parameters than binomial trees. The constraints 

remain the same, i.e. matching the moments of the continuous process and of the 

discretized process, and matching the model's forward and option prices with the 

market's. Inevitably, in order to match the parameters with the constraints that 

we have, we have to select the state space in advance (see Derman, Kani, and 

Chriss [53]). Then, the transition probabilities between the nodes can be easily 

calculated from the constraints. The "freedom" to fix the state space, enables us 

to come up with acceptable transition probabilities. On the other hand, we need 
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to be careful choosing the state space so that to fit the current smile. 

Derman, Kani and Chriss [53] discuss the issue of constructing the state space 

when volatility varies significantly with time to expiration and strike, producing a 

skew. In such a case, the nodal spacing has to change significantly with time and 

stock level. The method that they propose for constructing the state space, con­

sists of two steps. In the first step, they assume that interest rates and dividends 

are zero, and they build the state space which corresponds to a trinomial tree 

with constant volatility (this is also suggested by Dupire [60], [62]). Then, they 

modify the time spacing and subsequently the nodal spacing so that to capture 

the basic term and skew structures of local volatility in the market. In the second 

step, if there are any forward price violations in any of the nodes, they multiply 

all node prices by the growth factor er (r-6)ti. This is equivalent to working with 

the futures price, rather than the asset price (as Barle and Cakici [7] proposed), 

and it will remove all forward price violations. 

Having set the state space in advance, the problem of the construction of the 

implied tree is reduced to the calculation of consistent with the smile transition 

probabilities (implied transition probabilities). Dupire [61], [62] sketches a way 

for calculating them. His technique can be summarized as follows. The state 

prices (Arrow-Debreu prices) are implied by the market prices of European calls 

and puts (implied Arrow-Debreu prices). Then, the implied transition probabil­

ities are calculated from fitting the smile by using simultaneously backward and 

forward induction. 

To make Dupire's description concrete, assume that we observe the market 

prices of European calls and puts for any strike and maturity. Then, the theo­

retical price of a European call with strike price K and maturity date nD.t, in a 

complete market is given by 

n 

C(nD.t, K) = E Qn,,; max(Sn,; - K,O) (2.14) 
;=-n 

By taking C(nD.t, K) as observed from the market, we have to invert somehow 
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equation (2.14), so that to get Qn,; (implied state prices). Assume that we wish 

to compute the implied state prices for time step n. We start at the top node n 

at time step n. The price of a European call with strike price Sn,n-l and maturity 

date nAt is 

(2.15) 

which can be rearranged to give the state price at node (n, n). We can compute 

the state prices for the nodes down to the middle of the tree in a similar way, i.e. 

for node (n, k) we compute Qn,k by choosing K = Sn,k-l' 

We then compute the state prices for the lower half of the tree by starting from 

the bottom node of the tree and using puts. This is repeated for every time step 

in the tree and completes the calculation of Qn,,; for every (n,j). Notice that for 

the, consistent with the smile, evaluation of European options we do not need the 

transition risk-neutral probabilities, but only the implied state prices. However, 

transition probabilities are necessary for the evaluation of more complex options. 

We are going to show how to calculate them by using the already derived implied 

state prices. 

Imagine that we are at node (n,j) and we have computed the transition prob­

abilities and the state prices for all nodes above (n, j). We want to calculate the 

transition probabilities PUn,; ,Pmn,; ,Pdn,i from node (n,j) to the upward, middle, 

and downward node at the next time level n + 1. We have three unknowns, and 

therefore we need three equations. The three equations are given by 

(a) the forward induction of the state prices: 

(2.16) 

(b) the backward induction for the price of the asset: 

(2.17) 
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( c) the forward price of a one period bond: 

1 = (Pdn,; + Pmn,j + PUn,; ) (2.18) 

The first equation can be rearranged to give PUn,j directly. We then solve the 

second and third equations for Pm . and Pd . • The above procedure is repeated 
nt' nt' 

for every time step in the tree. Transition probabilities are calculated by using si­

multaneously forward and backward induction. Hence, the constructed trinomial 

tree fits the observed smile. 

Derman, Kani and Chriss [53] use equations which are very similar to the ones 

that Derman and Kani [49] use for the construction of their implied binomial tree. 

They calculate the transition probabilities from the known option prices, asset 

prices and Arrow Debreu prices. These equations have been derived by applying 

backward and forward induction in a way which is similar to the one that Dupire 

sketched. 

2.3.6 Implicit Finite Difference Schemes 

Andersen [2], and Andreasen [4] construct implicit and semi-implicit (Crack­

Nicolson) schemes, which are consistent with the equity option volatility smile. 

They employ these schemes so that to overcome the problem of negative tran­

sition probabilities that may be encountered with binomial and trinomial trees. 

Avoiding negative transition probabilities is feasible within implicit finite differ­

ence schemes because these schemes have better properties, in terms of stability 

and convergence, than binomial and trinomial trees (see Clewlow and Strick­

land [35]. Andersen also shows that stability is equivalent to having acceptable 

probabilities). This is expected because the negative probabilities arise in the 

binomial and trinomial tree from pushing the asset price process into a certain 

kind of evolution. On the other hand, the implicit schemes discretize the BS type 

fundamental PDE (see Geske and Shastri [75]). 

Andersen incorporates the forward induction technique into the implicit finite 
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scheme. This enables him to estimate the risk-neutral distribution from a set of 

option prices. Then, he backs out the local volatilities from the risk-neutral 

densities of the different maturities by solving a constrained quadratic problem. 

Andreasen, contrary to Andersen, directly extracts the local volatilities from 

the input implied volatilities. He achieves this by deriving an explicit formula 

that relates the surface of implied volatilities to the surface of local volatilities. 

Moreover, in addition to Dupire's forward equation that the option price satisfies, 

he derives forward equations that the" Greek" hedging ratios (Le. delta, gamma, 

vega, theta) must satisfy, as well. 

2.4 Testing the Validity of the Deterministic 

Volatility Assumption 

Smile consistent deterministic volatility models have theoretical and practical ad­

vantages. They are a simple extension of the BS model preserving its arbitrage 

pricing property. In addition, they achieve a cross-sectional fit of the observed for 

the different strikes and maturities option prices. Finally, they are easy to imple­

ment. However, the validity of the deterministic volatility assumption has to be 

investigated empirically, before concluding that these models are appropriate for 

option pricing and hedging purposes. We are aware of three papers which address 

this issue: Dumas, Fleming and Whaley's [58], Jackwerth and Rubinstein's [95], 

and Buraschi and Jackwerth[28] 11. 

Dumas, Fleming and Whaley [58] assess the stability of the deterministic 

volatility function for the S&P 500 Index, by examining how well it predicts future 

option prices. They estimate, every week, various specifications of the volatility 

function. Their estimation is performed by minimizing the sum of squared devi­

ations of theoretical option prices from the observed market option prices. Then, 

they examine the price deviations from theoretical values one week later. The 

11 Related empirical studies by Bates [14], and Bakshi, Cao, and Chen [6] compare different 
option models, without looking explicitly at smile-consistent deterministic volatility models. 
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deterministic volatility model can always fit the cross-section of observed option 

prices, as long as the volatility function is complex enough. However, their out­

of-sample results indicate that the instantaneous volatility function is not stable 

over time. 

Jackwerth and Rubinstein [95] compare the out-of-sample empirical perfor­

mance of alternative models, including Jackwerth's [96] generalized implied bi­

nomial tree, in terms of the pricing and hedging errors. They find that both 

generalized binomial trees and stochastic volatility models outperform the BS 

model. However, the size of the standard deviation of the pricing errors makes it 

difficult to conclude whether generalized binomial trees are better, or worse than 

stochastic volatility models. 

Buraschi and Jackwerth [28] rather than exploring the empirical performance 

of deterministic volatility models being based on the size in dollars of the pricing 

and hedging errors, they provide a general statistical test of deterministic volatil­

ity models versus stochastic volatility ones. They test directly the implication 

of deterministic volatility models that options are redundant securities. Their 

null hypothesis is that the payoff of any asset can be replicated with a dynamic 

trading strategy that involves two primitive assets, such as the underlying asset. 

They construct their tests from the properties of the implied risk-neutral density. 

Their tests reject the null hypothesis. The results suggest that the returns of the 

in-and out-of-the-money options are needed for spanning purposes. This finding 

is even stronger in the postcrash period. 

The above-mentioned empirical studies indicate that the instantaneous volatil­

ity is not a deterministic function of the asset price and of time. Therefore, the 

asset price does not behave according to the inferred, from the implied deter­

ministic volatility models, process. In this case the hedging will not be effective. 

As a solution to this Dupire [60] proposes a method of hedging which is robust, 

no matter what the dynamics of the asset price look like. He hedges a claim 

against movements in the volatility by using a portfolio of European options. 

This portfolio is rebalanced periodically, so that a change in the volatility surface 
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will change the value of both the targeted claim and of the portfolio by the same 

amount. Bates [15] also provides a simple non-parametric method for inferring 

the deltas and gammas from the implied volatility patterns. His method is based 

on the assumption that the underlying asset price follows a stochastic process 

with constant returns to scale, so that option prices are homogeneous of degree 

one in the underlying asset price and strike. 

Despite these suggestions, the empirical evidence (Gemmill [73], Jackwerth 

and Rubinstein [94]) implies that deterministic volatility models have to recali­

brated every day, so that to fit the smile. Therefore, they do not offer a unified 

theory of volatility which can be used for the pricing and hedging of exotic op­

tions. Smile-consistent stochastic volatility models have been developed in order 

to provide such a theory. 

2.5 Smile Consistent No Arbitrage Stochastic 

Volatility Models 

The development of the stochastic volatility literature is similar to the evolution 

of the interest-rate literature. In the latter, there was a transition from equilib­

rium considerations (e.g. Vasicek [144], Cox, Ingersoll, Ross [45]) to arbitrage 

arguments (e.g. Ho and Lee [86], Heath, Jarrow, Morton [84], (HJM)) (for a 

survey of the continuous time interest rate literature, see Strickland [138]). In 

that context, the aim is not to explain the yield curve, but taking it for granted 

and along with evolution assumptions to obtain arbitrage prices for derivative 

securities. In the stochastic volatility literature, first models which start by as­

suming a stochastic process for the evolution of the instantaneous volatility were 

introduced. Then, models which start from today's European option prices and 

achieve option pricing and hedging of more complicated claims under a consistent 

with no-arbitrage evolution of the volatility surface, were developed. 
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2.5.1 Dupire (1992) 

Dupire's [59] approach is similar to HJM's. He starts from today's European 

option prices, and he derives the process of the instantaneous volatility" endoge­

nously" from the process of the "forward" volatility (see below for his definition 

of forward volatility). 

Let the financial instrument iT delivering i(ST) at time T. Without loss of 

generality, he assumes the interest rate to be zero at all times and he also assumes 

the absence of any arbitrage opportunities in the market. Let (0, I, It, P), be a 

filtered probability space, where (It) is a right continuous filtration, and P is 

the objective probability measure. Let now PT be the P-equivalent probability 

measure. Then, the value at time 0 of iT is given by (see Dothan [57]) 

(2.19) 

where <PT(ST) has been extracted from the known prices of European call options 

(equation (2.2)) and the expectation is taken with respect to PT (risk-neutral 

measure). Hence, in order to price any instrument, we have to get the risk­

neutral process of the underlying asset. In order to get the risk-neutral process 

for the spot he assumes that 

(2.20) 

where WI is a P-Brownian motion adapted to Ft and J-Lt and at can be measurable 

processes themselves adapted to Ft. By defining dWI t = dWI t + J-Lt dt , Dupire • • at 
gets 

(2.21) 

where WI is a Brownian motion under PT , obtained by Girsanov's theorem (see 

Oksendal [117] for a description of Girsanov's theorem). Equation (2.21) is the 

risk-neutral process for the Spot. We can use it to price options by Monte­

Carlo simulation (see Boyle [24]). However, in order to price options consistently 
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with the market, the process for instantaneous volatility (1t must incorporate 

information from today's option prices. Moreover, it should respect the evolution 

of the implied volatility surface. For pricing purposes, we need the risk-neutral 

process for such an evolution of the volatility (this point is explained in Hull [91]). 

Then, we will be able to plug it into equation (2.21) and achieve smile-consistent 

pricing. 

Applying Ito's lemma to lnSt, using equation (2.20), integrating the result 

between Tl and T2, and rearranging terms we get 

(2.22) 

The left hand side (LHS) of equation (2.22) can be thought of as being the 

payoff at time T2 of a forward contract which is traded at time t. Assuming 

that T2 - Tl = c, Dupire defines as VT this forward contract which delivers the 

instantaneous variance to be observed at time T12. By interpreting the stochastic 

integral on the right hand side of equation (2.22) as the gain or loss from a self 

financing strategy, results in the integral to vanish13• Let LT be a claim delivering 

the logarithm of ST at time T (log-contract). Its price at time 0 iS14 

LT(O) = EPr[lnST I 10] (2.23) 

So, the payoff of a contract traded on the future volatility, is equal to the 

payoff of a self-financing strategy of buying and selling today's log-contracts of 

maturities Tl and Tl + c. Then, their prices must be the same, if no arbitrage is 

to exist. By dividing both sides by c, and taking the limits, so that c --+ 0, we 

12The assumption of the existence of a forward contract which is traded on volatility is not 
unrealistic. Over-the-counter futures and options contracts on foreign-currency and interest­
rate volatility indexes, are currently being developed by a number of investment banking firms 
in the U.S. and Europe (see Gruenbichler and Longstaff [78]). 

13For the definition of a self-financing strategy, see Dothan [57]. 
14Notice that in order to price the log-contract consistently with the market, we need the 

implied risk-neutral density function. This explains why Dupire needs to take the observed 
option prices as granted. 
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get by arbitrage pricing that the value of the forward contract VT at any time 

t < T is 

(2.24) 

This is the point where Dupire defines implicitly as VT(t) the instantaneous for­

ward variance (IFV) to be observed at time T. The IFV VT(t), is defined as the 

value at time t of a forward contract which will deliver the instantaneous variance 

to be observed at some time T in the future15 • 

From the values (LT(O))T, we can deduce the initial instantaneous forward 

variance curve as 

(2.25) 

Next, he models the forward variance which automatically ensures compat­

ibility with (LT(O))t as equation (2.25) shows. Consequently, this will ensure 

compatibility with the current volatility surface, as equation (2.23) shows. lIe 

makes among other possible choices, the assumption that VT(t) is lognormal i.e. 

dVT(t) 
VT(t) = adt + bdW2,t (2.26) 

where a and b are constant or a deterministic function of time and W2 is another 

Brownian motion adapted to Ft , possibly correlated with WI. Defining dW2,t = 
dW2,t + ~dt, equation (2.26) can be rewritten as 

dVT(t) = bdW: 
VT(t) 2,t 

(2.27) 

where W2 is a Brownian motion under Q2, the P-equivalent probability measure 

obtained by Girsanov's theorem. Equation (2.27) is the risk-neutral process for 

15Notice that by definition, VT(t) = VT(t, St). This is because 

VT(t) = EQ~[-2(lnST+t -lnST) I Itl = 

EQ~[-2(lnST+t -lnST)] 

since the increments of a Brownian motion are orthogonal and this holds true for the increments 
of any function of the Brownian motion. 
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the instantaneous forward variance. Using equation (2.27), he derives the risk­

neutral process for the instantaneous volatility. That is 

dat = (~8In vt(O) _ b
2 
)dt + £dW

2 
t 

at 2 8t 8 2 ' 
(2.28) 

Equation (2.28) is probably the most important contribution of this paper. 

The first term of the drift of equation (2.28) can be estimated from the prices of 

the log-contracts, as equation (2.25) shows, and the second term can be estimated 

from the initial forward volatility surface. Therefore, the drift of (2.28) ensures 

consistency with the initial (implied) volatility term structure. In addition, W2,t 

moves stochastically the volatility surface. In this way he hopes that his model 

will fit better the smile every dayI6. Solving equation (2.28) and plugging it into 

equation (2.21) delivers the risk-neutral process for the spot. 

As a final step, he assumes that the filtration associated with WI and W2 

conveys the same information, and therefore is the same. This is a reasonable 

assumption because the filtration associated with WI is used for the pricing of the 

log-contract; the log-contract is used for the construction of the forward variance 

and hence of W2 • Define Q (through Girsanov's Theorem) as the P-equivalent 

measure, under which WI and W2 are Q-Brownian motions. Then, the price at 

time t, h(t) of an instrument h that delivers at time T a payoff h(8T ), is 

(2.29) 

where Ft is the natural augmented filtration associated with WI and W2• The 

expectation in equation (2.29) can be evaluated consistently with the smile by 

"joint" Monte Carlo (see Boyle [24]) ofthe risk-neutral process of the spot (equa­

tion (2.21)) and of the instant~eous volatility (equation (2.28)). Monte Carlo 

simulation allows us also to compute the hedging parameters through a small 

16This is analogous to the form of the drift of the short-term interest rate that Heath, Jarrow, 
and Morton [84] derived by starting from the process for the instantaneous forward variance. 
That drift depends among other things and on the initial instantaneous forward rate which 
reflects the current yield curve. 
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shift of the paths. 

To summarize, Dupire starts by assuming that European Calls of all strikes 

and maturities are traded, and that their market prices are consistent with no 

arbitrage. From these prices, he deduces the arbitrage price LT(t) of contingent 

claims (log-contract) that promise lnST at date T (the log-contract is not traded 

in the listed market, but it can be approximated by a combination of standard 

listed options (see Derman et al. [52]). These prices LT(t) permit to synthesize 

the value of a forward market on the instantaneous variances to be observed at 

any maturity, as equation (2.24) ShowS17• Next, he assumes one factor model for 

the forward variance and he derives the risk neutral process for the instantaneous 

variance. Using the risk-neutral processes for the spot and the instantaneous 

volatility, he obtains arbitrage free prices that do not depend on any risk premia, 

nor on a volatility drift. They do depend on the term structure of the IFV, on the 

correlation between spot and IFV, and on the volatility of the latter, as equation 

(2.21) combined with equation (2.28) show. 

A limitation of the model is that it recognizes the strike and term struc­

ture of implied volatilities for only the current time, and not for future times, 

as the volatility surface evolves stochastically. The two dimensional information 

(CK,T(O))K,T has been compacted at each time into a 1-dimensional (LT(O))T in 

the process. Equivalently stated, only the first moment of the asset price distri­

bution has been used for the construction of the forward variance, as equation 

(2.24) combined with equation (2.23) shows. 

2.5.2 The Definition of the Forward Variance Revisited 

Even though Dupire [59] introduced the idea of the forward variance (some people 

call it local), a formal treatment of the forward volatility concept was not done 

17Neuberger [116] shows that the log-contract is very useful in order to hedge against volatil­
ity. He does this by delta-hedging log-contracts on futures. Then, he regresses the percentage 
hedging error on the squared outcome volatility, and he gets a correlation coefficient of 99.99%. 
That is to say that by trading a portfolio of log-contracts, we can replicate (and therefore 
eliminate) the variance. 
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until 1996 in Kani, Derman and Kamal's [103] paper. There, they assume that 

the risk-neutral index evolution is governed by the following equation 

(2.30) 

where rt is the riskless rate of return at time t, assumed to be a determinis­

tic function of time, 8 is a continuous compounded dividend yield, and crt is 

the instantaneous index volatility at time t, assumed to follow some unspecified 

stochastic process. 

The forward (local) variance crk,T' corresponding to level K, and maturity T, 

is defined as the conditional expectation of the instantaneous variance of index 

return at the future time T, contingent on index level ST being equal to K, i.e. 

(2.31) 

where the expectation has been taken with respect to the risk-neutral measure 

and the subscript t indicates that the expectation is based on information at time 

t. 

The local volatility UK,T, is defined as the square root of the local variance, 

crK,T = (crk,T)!' Hence, the local volatility is defined as the forecast (estimate) 

of index volatility at a particular future time and market level, so that to make 

current option prices fair. It is worth noting that the concept of the local volatility 

is different to the concept of the implied volatility EK,T which can be thought of 

as the market's estimate of the expected average future index volatility during 

the life of the option18 • 

Note, that in the case where the instantaneous index volatility is assumed to 

18The statement that implied volatilities are the estimates of the (expected) average future 
index volatility is rather loose. It can be proved formally only for the case that (a) we are in a 
Hull-White world of stochastic volatility, and (b) we deal with at-the-money options. To make 
things more concrete, Hull and White [90) show that when the volatility risk is not priced and 
the correlation between the underlying asset and the volatility is zero, then the price P of an 
option is given by 

P = J BS(Vt)h(Vt I It)dV = E[BS(Vt) I It) 
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be deterministic as a function of the index level and time (deterministic volatility 

case) i.e. aT = a(ST, T), equation (2.31) becomes 

(2.32) 

Equation (2.32) shows that the forward variance equals the instantaneous vari­

ance, when the latter is assumed to be deterministic. That is to say that the 

smile-consistent stochastic volatility case, nests the deterministic volatility one. 

In this case we are left with a static local volatility surface, whose shape remains 

unchanged as time evolves since the right hand side is independent of t and S. 

This is analogous to the result that in a deterministic interest rates economy, the 

forward rates do not change over time (see Rebonato [122]). 

Derman and Kani [54] show that if the asset price evolves according to equa­

tion (2.30), then the forward variance is given by 

(2.33) 

Equation (2.33) shows that the local volatility can be locked in by trading 

portfolios of currently available options. Hence, it can be thought as the market 

price of volatility we can lock in today, in order to obtain volatility exposure 

over some specific range of future times and market levels. Local volatility is 

the volatility analog of the forward rate. The forward rate is the future rate 

prevailing in a time interval, so that the current yields to maturity are justified, 

and it can be locked in by trading current bond portfolios19. 

- 1 JT - -where BS(.) is the BS pricing formula, V = -T Vsds. h(vt I It) is the density of Vt 
-t t 

conditional on the the information set at time t It, and T is the expiration date of the option. 
Moreover, Cox and Rubinstein [441 show that the BS formula is approximately a linear function 
of the standard deviation for at-the-money options, so that E[BS(Vt) I It] = BS[E(vt) I It]. 

19Dupire [63] has also derived equation (2.33) independently, for the case that r = 6 = O. He 
defines the forward variance VK,T{SO, to) as the price of a forward contract VK,T introduced 
at time to. The difference with his earlier definition (Dupire [59]) is that the contract will 
exchange at time T, the instantaneous variance observed at time T V{ST, T), against an agreed 
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The existence of the risk neutral measure is used for the expectation definition 

of local volatility, and it also allows for an alternative definition of the local 

volatility. In order to show this, Derman, Kamal and Kani [52] assume that under 

the risk neutral measure, the local volatility evolves according to the following 

process 
dakT - "'. -. 
~ = aK,Tdt + (3K,TdZt + L.,.; 'l9k-,TdW; 

K,T i 

(2.34) 

where the instantaneous volatility at is equal to the instantaneous local volatility 

at time t and level St, i.e. at = as,t(t, S). Notice also that al,T depends on the 

shock of the asset process, i.e. the stochastic variations of the local volatility 

surface may depend on the prevailing level. 

Let PK,T = P(t, St, K, T) be the total probability that the index level at time 

T arrives at ST = K given that the stock price at time t is S. Both the stock 

price and volatility are assumed to evolve stochastically. Knowing that under the 

risk neutral measure PK,T evolves as a martingale, i.e. 

they show that 

dPKT - '" . -. p = ¢K,TdZt + L.,.;XA-,TdWi 
K,T i 

dakT - '" i -. 
-2-'- = (3 K,TdZt + L.,.; {) K,TdW: 
aK,T i 

(2.35) 

(2.36) 

where ~ = dZt - ¢K,Tdt and dWl = dWi - Xk,Tdt are the Brownian motions 

with respect to the new measures. In other words, under these measures, the lo­

cal variance is a martingale. They call the new measure the K -level, T -maturity 

forward risk-adjusted measure. Letting Ef,T(.) to denote expectations with re­

spect to this measure, conditional on the information at time t, equation (2.31) 

can be rewritten as 

2 EK,T( 2) aKT = t aT , (2.37) 

Hence, in the K - T forward risk-adjusted measure, the local variance ak,T 

at time to amount VK,T(SO, to) if and only if ST = K. If ST =f K, no exchange takes place. His 
definition is an alternative way of interpreting equation (2.31). 
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is the conditional expectation of the future instantaneous variance uf2°. 

2.5.3 Derman and Kani (1998) 

Derman and Kani [54] use the concept of local volatility, as this is defined by Kani, 

Derman and Kamal [103], to present a method for option pricing and hedging 

based on it. They follow a methodology similar to Dupire's [59], by starting from 

the initial set of index option prices and their associated local volatility surface. 

They assume that the asset price and the forward volatility evolve according to 

equations (2.30) and (2.34), respectively. 

The drift coefficients aK,T(t, S) in equation (2.34) must satisfy mild measur­

ability and integrability conditions, as the factor volatility '!9kT' Moreover, they , 

must also be restricted in such a way, so that the stochastic theory described 

by equations (2.30) and (2.34), precludes any arbitrage opportunities among the 

standard options, forwards and their underlying stock. This is similar to the HJM 

approach, where the drift of the instantaneous forward rate had to be constrained 

by a no-arbitrage condition, so that forward rates to evolve in a no-arbitrage fash-

ion. 

In order to derive this no-arbitrage restriction, they work with the total tran­

sition probability PK,T(t, 8)21. They show that the drift functions aK,T(t, S) have 

to satisfy the following no-arbitrage condition 

n . 1 
- - ~ '!9K,T(t, S){ P(t, S, T, K) (2.38) 

rT roo i ' , '2 8
2 

(r" , r' i it io '!9K',T'(t,8)P(t,S,T,K)K 8K'2 P ,K,T,K)dKd -II} 

where the quantities IIi denote the market prices of risk associated with the 

volatility risk factors Wi, i = 1, ... , n and WO = Z. The double integral of 

20This is analogous to the relationship between the forward and the future short rate. The 
forward rate IT is the T-maturity forward risk-adjusted expectation of the future short rate at 
time T (see Jamshidian [98]). 

21Working with total transition probabilities is equivalent to working with option prices, as 
equation (2.2) shows. 
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equation (2.38) reflects the two dimensional dependence of the local volatility on 

K and T, and it makes the continuous time implementation of their model very 

difficult. Therefore, they prefer implementing their model in discrete time by 

building a trinomial stochastic implied tree. 

A stochastic implied trinomial tree is an extension of the implied trinomial 

tree. The local volatilities and the transition probabilities which correspond to 

the future nodes, vary stochastically as time elapses and the index level moves. 

The stochastic tree is the output of an algorithm which combines a standard 

trinomial implied tree and Monte Carlo simulation. Four steps are necessary 

for the construction of the stochastic tree. First an implied trinomial tree, like 

Derman, Kani and Chriss's [53] is built. This provides the initial inputs to the 

algorithm. Second, the extracted from the implied trinomial tree initial local 

volatility surface is perturbed. This is done by simulating a discretized version 

of equation (2.34) which can be written as 

n 

~a~,n(i,j) = a~,n(i, j)[am,n(i,j)~ti + L 19!n,n(i, j)~wiJ (2.39) 
1=0 

where (i, j) corresponds to the node (ti' Sj), describing the current location of 

the stock at the ith step of the simulation. (n, m) labels the future node (tn, 8m ) 

corresponding to the future time and level (T, K). The evolution of the local 

volatility surface has to be consistent with no-arbitrage. This is achieved by 

determining the drift parameters am,n(i,j) from a "martingale condition" (the 

volatility parameters 'l9m,n( i, j) are pre-specified by applying for example Principal 

Components Analysis). This condition is that the total probabilities P m,n (i, j) 

of arriving at the future node (n,m) from the (fixed) initial node (i,j) must be 

jointly martingales for all future nodes (n, m). Once am,n(i,j) are determined by 

P m,n (i, j) a random vector (~Wp, ~ tt:1 , •.. , ~ tt:n ) is drawn from the distribution 

of the increments of Wi at time ti. This vector is used to arrive at new values 

for all future local volatilities a!,n (i + 1, j). 

In the third step, the a!,n (i+ 1, j) are used for the calculation of the one period 
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transition probabilities. These probabilities describe the transition from node 

(i, j) to the up, middle and down nodes at time ti+!. The transition probabilities 

are calculated from the condition that they must add up to one, and from the 

conditions which match the first two moments of the discretized process with 

those of the continuous process. In the fourth step, a new location Sj for the 

asset price at time t i+!, is determined. This is done by comparing the random 

draw to the calculated from the third step one period transition probabilities. 

The third and fourth steps establish the dependence of the evolution of the asset 

price on the evolution of the local volatilities. 

Therefore, the key idea for the construction of the stochastic tree, is to per­

turb the local volatility surface, so that to exclude arbitrage. Once one of the 

possible positions of the surface is determined, the stochastic volatility problem 

is reduced to a deterministic one. Then, the consistent with the new surface, 

asset price can be traced. Notice that since the state space is fixed for every 

step of the simulation, it may be the case that large simulated local volatilities 

produce unacceptable transition probabilities at certain nodes. In this case, the 

unacceptable probabilities are overwritten and current option prices may not be 

fitted exactly, as discussed in Derman and Kani [49], and Derman, Kani and 

Chriss [53]. However, Derman and Kani find that for their stochastic implied 

tree the overwriting is rarely encountered. 

In general, the stochastic implied tree model is a very promising one, and 

future research should (a) explore the empirical performance of the model, and 

(b) investigate the number and the nature of the shocks appearing in the local 

volatility process. 

2.5.4 Extracting the Local Volatility Surface 

The local volatility surface implied from today's option prices is necessary for 

initializing Derman and Kani's algorithm. They extract it by building an implied 

trinomial tree. In this section we are going to present alternative methods for 

inferring the local volatilities. 
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Equation (2.33) shows that in principle, we can extract the local volatilities 

from the option prices. This requires a smooth surface of option prices, so that the 

partial derivatives appearing in equation (2.33) to be evaluated. In other words, 

we need to interpolate between the observed strikes and maturities option prices, 

and to extrapolate beyond them. However, it is always easier to interpolate in 

the space of implied volatilities, rather in the space of option prices, because the 

former is smoother than the latter. One way that this can be carried out is by 

using Shimko's [135] method. The method can be described as follows: 

1. Convert the observed option prices to implied volatilities. 

2. Use a least squares regression to estimate a quadratic volatility smile. 

3. Convert the estimated implied volatilities back into option prices. 

To be more precise, Shimko's method is an estimation, rather than an in­

terpolation and the estimated function of option prices does not necessarily go 

through the original prices. Hence, the extracted local volatilities may not be 

consistent with today's smile. 

Andersen [2] and Andreasen [4] interpolate and extrapolate in the space of 

implied volatilities, as well, by using a different method from Shimko's. Andersen 

derives the local volatility surface by using the implicit finite difference scheme 

that we have already described. Andreasen derives a formula which explicitly ex­

presses the local volatilities in terms of the strike and maturity partial derivatives 

of implied volatilities. Then, he approximates these derivatives by performing a 

bicubic spline procedure, so that to achieve smoothness in both directions of the 

implied volatility surface. 

Derman, Kani and Zou [51], and Zou and Derman [150] point out that the 

calculation of the second derivative is very sensitive to the interpolation method 

(see also Andreasen [4]). Rather than interpolating, they recognize the prop­

erty that the second derivative of a European call option with respect to the 

strike price is a probability density function, and they approximate it with an 

Edgeworth expansion. This is similar to Rubinstein [128], who approximates the 

expiration-date risk neutral distribution by means of an Edgeworth expansion in 
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a discrete-space framework, assuming that the investor knows its skewness and 

kurtosis. The idea behind an Edgeworth expansion is that the probability distri­

bution function can be expressed in terms of another known distribution plus its 

derivatives, provided that all moments of both distributions exist (it is similar 

to the Taylor expansion for analytical functions)22. This expansion extracts the 

asset risk-neutral probability distribution from prices of options that expire at a 

fixed time. The time derivative is calculated by interpolating the volatility term 

structure between options' expiration dates by means of a cubic spline. How­

ever, it is not certain that even their method is robust because the Edgeworth 

expansion does not always represent a proper probability density function; there 

are many intervals for which it could take negative values (see Johnson and Kotz 

[100]). 

2.5.5 Britten-Jones and Neuberger (1998) 

A limitation of Derman and Kani's [54] algorithm is that it is quite computer 

intensive. As a solution to this, Britten-Jones and Neuberger [27] provide a 

trinomial lattice procedure which is simple and fast. Their aim remains the 

same: smile consistent arbitrage pricing under stochastic volatility. In order to 

construct their trinomial tree they establish a sufficient and necessary condition 

for a process to be consistent with a set of initial option prices. 

To make the above more concrete, let time t = 0, h, 2h, ... , T. They define a 

grid consisting of nodes of time-price events (t, K) where K = {k : k = Soui , i = 

0, +1, +2, ... , +T/h}, and u > 1. The single risky underlying asset has initial 

price So, and can move on this grid. Moreover, define 

A k t = 1 (1 + u)(C(t + h, k) - C(t, k)) 
( , ) - h C(t, ku) - (1 + u)C(t, k) + uC(t, k/u) 

22 Jarrow and Rudd [99] were the first to apply the Edgeworth expansion method to the 
problem of option valuation. 
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and 

(k ) 
= C(t, ku) - (1 + u)C(t, k) + uC(t, k/u) 

7r ,t - k(u-l) 

Their first proposition states that the terminal probability that the asset price 

takes the value k, is given by 

PreSt = k) = 7r(k, t) 

for 0 ~ t ~ T, k E K. Their second proposition states that if the transition 

probability for a continuous martingale process is given by 

Pr[St+h =f St I St = k] = h)"(K, t) 

then this is a sufficient and necessary condition for this process to fit today's 

option prices. FUrthermore, they show that their second proposition is equivalent 

to extracting the local volatility from equation (2.33). 

Consider now a martingale process in which the probability of stock price 

moves depends not only on time and the stock price, but also on the volatility 

state Z, where z = 1,2, ... , N. Z is assumed to evolve as a time homogeneous 

Markov process with transition matrix P = Pjk, where Pr[Zt+h = j I Zt = 

k, Ft ] = Pjk. The transition probabilities are chosen exogenously to reflect the 

type of volatility behavior we think appropriate. Define then the asset transition 

probabilities as 

Pr[St+h =f St I St = k, Zt = z] = h)"(k, z, t) 

We need to calculate )"(k, z, t) in order to apply the backward induction for option 

pricing and hedging (recall that we do not have to worry about the determination 

of the state space, because it is set exogenously in a trinomial tree). In order to 

ensure that the model's option prices fit the market option prices, )"(k, z, t) has 

to be calculated consistently with the European option market prices, i.e. their 
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second proposition has to be satisfied. They show that the proposition holds true 

if the >.(k, z, t) satisfy 

N 

>.(k, t)7r(k, t) = L A(k, z, t)7r(k, z, t) (2.40) 
z=1 

where 7r(k, z, t) = Pr(St = k and Zt = z) is the joint probability of a partic­

ular stock price and volatility state. Notice that the left-hand-side of equation 

(2.40) can be calculated from today's option prices, while the right-hand side is 

unobserved. 

They calculate 7r(k, z, t) by using the forward Kolmogorov equation. Then, in 

order to calculate >.(k, z, t) they assume that 

>.(k, z, t) = q(t, k)v(z) 

This is a separability assumption, where the function v(z) is chosen exogenously. 

The form of the volatility process is defined by the transition probabilities Pjk, and 

the v(z) function which serves for moving local volatilities in a parallel fashion. 

Then, 

( k) 
_ >.(k, t)7r(k, t) 

q t, - -;:N~~~--'-"":""--
L z=l v(z)7r(k, Z, t) 

This completes the calculation of >.(k, z, t). 

Britten-Jones and Neuberger's model provides a simple and fast implementable 

algorithm for smile-consistent pricing under stochastic volatility. It does not have 

to specify a priori any process for the forward volatility. On the other hand, 

the separability assumption is crucial for the development of the algorithm, and 

its implications should be explored further. Finally, the determination of the 

transition probabilities pjk and of the v(z) function may pose problems to the 

practitioner. 
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2.5.6 Ledoit and Santa-Clara (1998) 

In general, option pricing and hedging can be done by Monte Carlo simulation 

if we have the risk-neutral processes for the underlying (traded and non-traded) 

assets. In Derman and Kani's model [54] this was not possible because of the very 

complicated no-arbitrage condition that the drift of the local volatility process 

had to satisfy. Ledoit and Santa- Clara's [106] model overcomes this problem by 

modeling implied rather than local volatilities. 

They start from the observed at time t implied volatilities Vet, T, X) corre­

sponding to an option with time to maturity T = s - t, and moneyness X = ~, 
and they allow them to evolve stochastically. In order to simulate jointly the 

processes for the underlying asset and the implied volatility, they establish a re­

lationship between the stock's instantaneous volatility at and the implied volatil­

ity V. Under the assumption that the stock price evolves according to equation 

(2.30), they show that the Black-Scholes implied volatility of an at-the-money 

call option converges to the stock price volatility when the time to maturity goes 

to zero, i.e. at = Vet, 0, 1). Then, they deduce the dynamics of implied volatil­

ities and of the call option price, by applying Ito's lemma on Vet, T, X) and 

C(t, St, V). The evolution of the call option prices has to preclude any arbitrage 

opportunities, i.e. call option prices have to evolve as martingales. Imposing this 

martingale constraint they get the risk-neutral process for the implied volatility, 

i.e. 

dV(t, 0,1) = [aV1(t, 0, l)(r - q - ~ Vet, 0,1)2) - 8;;1 (t, 0, l)V(t, 0,1)2 

8V 8V 1 
+2 aT (t, 0,1) - 8X (t, 0, l)V(t, 0, l)(aVI (t, 0,1) + 2 Vet, 0,1)) 

182V 2 -2 8X2 (t, 0, l)V(t, 0,1) ]dt 

+V(t, 0, l)aVl(t, 0, 1)dW1,t + Vet, 0, 1)av2(t, 0, 1)dW2,t (2.41) 

where aVl, aV2 are the volatilities of the implied volatilities. 
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Even though the risk-neutral process for the implied volatility seems to be 

relatively simple for a continuous time implementation, there are three issues that 

needs to be addressed in order to implement their model. First, they assume that 

the implied volatility process is driven by two shocks. This is an issue that it 

has to be explored empirically. Second, the coefficients OVl(t, 0,1) and OV2(t, 0,1) 

have to be estimated for every t, so that to be used in every step of the simulation. 

Third, in order to calculate the partial derivatives which appear in equation 

(2.41), we have to interpolate the estimated volatilities of implied volatilities and 

the implied volatilities themselves, across moneyness and the time to maturity. 

Given that the functional form of the implied volatility surface and (probably of 

the shocks, as well) changes unpredictably over time, the choice of an appropriate 

interpolation scheme is a difficult task. 

2.6 Concluding Remarks 

This chapter has reviewed the fast developing literature of smile consistent mod­

els. We have recognized the two classes of models which constitute this literature, 

so far. This allows several issues and models to be presented, compared and dis­

cussed. We classify the various smile consistent models in deterministic, and 

stochastic volatility ones. We remind that the former is nested within the lat­

ter, and we bring together the several definitions of the key concept of forward 

volatility. 

Both classes of models start from the observed European option prices, but 

they differ on the assumption about how the underlying asset evolves. Part of the 

popularity of deterministic volatility models, can be explained by their theoreti­

cal and practical advantages. They preserve the Black-Scholes arbitrage-pricing 

property and they are tractable enough for implementation purposes. However, 

the empirical evidence undermines the deterministic volatility assumption. On 

the other hand, stochastic volatility models allow for the evolution of the (implied 

or forward) volatility surface, so that to preclude any arbitrage opportunities. 

59 



FUrther empirical work needs to be done to explore the out-of-sample pric­

ing and hedging performance of implied stochastic volatility models, as this is 

compared to the deterministic volatility one. It is very probable that a jump 

component should be included (see Das and Sundaram [47]), and researchers 

should look at how to develop a smile-consistent stochastic volatility-jump model 

(see also Section 7.2). 
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Chapter 3 

Description and Screening of the 

Data Set 

3.1 Introduction 

In this Chapter, we first describe the data set that we will use in our study. Then, 

implied volatilities are calculated, and a range of screening criteria is applied to 

reduce the noise in our estimates. The data are daily closing prices on futures 

options on the Standard and Poor 500 Index, traded in the Chicago Mercan­

tile Exchange for the years 1992-95. Implied volatilities are calculated by the 

Barone-Adesi, Whaley quadratic approximation. Given that implied volatilities 

are notorious for the measurement errors in their calculation due to the non­

synchronous trading and the bid-ask spreads, we apply a variety of screening 

criteria, in order to reduce the noise. We find that the screening is satisfactory. 

3.2 The Data Set 

We use daily data on futures options on the Standard and Poor Index (S&P 

500) from the Chicago Mercantile Exchange (CME) for the years 1992-95. CME 

introduced futures on the S&P 500 Stock Index in 1982. The S&P 500 is a 

capitalization-weighted index of the 500 listed firms. Each component stock's 
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price is multiplied by the number of common shares outstanding and the resulting 

market values are totalled. The total value is then calculated relative to the 

baseline period (1941-43=10) to derive the index value. This index has long been 

the benchmark by which professionals measure portfolio performance, since the 

market value of the 500 firms is equal to about 80% of the value of all stocks 

listed on the New York Stock Exchange. 

The primary source database for this study is the transaction report "Stats 

Database", compiled daily by CME. This database contains the following daily 

information for each option traded: the date, the style (call or put), the options 

and futures expiration month, the exercise price, the number of contracts traded, 

the opening, closing, low and high future's and option's price, the opening, clos­

ing, low and high bid-ask future's and option's price, and the settlement price. 

We extract from this, for the purposes of our study, the closing options and 

futures prices. 

The futures contracts have maturities every March, June, September and 

December. Their last trading day is the business day prior to the third Friday of 

the contract month. Options for long dated expiries, (up to a year) are traded 

with expiries of March, June, September, December. For the intermediate "serial 

months" , just short dated options, (up to three months) are traded. For the serial 

months expiry options, the underlying instrument is the futures with the nearest 

expiry, e.g. for option expiring in 9302, the underlying instrument is the futures 

expiring in 9303. The last day of trading for the long expiry options is the same 

day as the underlying futures contract. We calculate the days to maturity by 

taking into account these specifications. 

3.3 The Calculation of Implied Volatilities 

Futures options prices on the S&P 500 are functions of five parameters (for the 

option valuation purposes of a futures option, the cost of carry is zero): the 

futures price F, the exercise price of the option K, the time to expiration of the 
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option T, the riskless rate of interest T, and the standard deviation of the future's 

price u, that is 

C = f(F, K, T, T, u) (3.1) 

P = g(F, K, T, T, u) (3.2) 

where C, (P) represents the theoretical prices of a futures call (put) option. 

The calculation of the calls and puts implied volatilities Uimp,c and Uimp,p, is 

obtained by equating the observed (market) calls and puts prices eM and PM with 

the model (theoretical) prices, and inverting equations (3.1) and (3.2) Le. l : 

(3.3) 

(3.4) 

Equations (3.3) and (3.4) indicate that the calculation of calls and puts im­

plied volatilities is subject to some sources of errors. These can occur because of 

(a) the mis-specification of the functions f and g, and (b) measurement errors in 

T, P, and the market option prices. 

The specification of the functions f and 9 is correct as long as the theoretical 

model that we use to calculate the implied volatilities, is the same with the one 

that the market uses to value the options. Given that the S&P 500 futures options 

are American-style options, we need to use a model which explicitly takes into 

account the early exercise premium. Therefore, for the calculation of implied 

volatilities we use the algorithm of Barone-Adesi, Whaley [8] (BAW)2 3. 

IThis method of calculation represents a general method known as calibration. In contrast 
to estimation, calibration is not based on any statistical theory. It just fits the market prices to 
the model prices, so as to back out some of the parameters of the model under consideration. 

20ther researchers have used binomial, or finite-difference methods for the calculation of 
(1imp' For example Diz and Finucane [55] use the binomial American approximation of Cox, 
Ross, Rubinstein [43]. Canina and Figlewski [30], and Harvey and Whaley [82] use a modifi­
cation of Cox, Ross, Rubinstein for discrete paid dividends. However, Barone-Adesi, Whaley 
find that their approximation is accurate, and considerably more efficient than finite-difference 
or binomial methods. 

3Notice that there is an inevitable inconsistency here because we aim to investigate the 
dynamics of stochastic implied volatilities by using implied volatilities extracted from a model 

63 



Since option values are non-linear functions of volatility, we have to use an 

iterative algorithm for the calculation of implied volatilities. The algorithm that 

we use is the Newton-Raphson (NR) iterative method (see Chapra and Canale 

[32]). The iterations are performed through the following formula 

where 

f(x) - f(xo) 
x = Xo + f'( ) I x X=Xo 

(3.5) 

x is the implied volatility and Xo is the initial guess for the implied volatility, 

f(x) is the market option price, f(xo) is the BAW option price evaluated at 

Xo, and J' (x) Ix=xois the first derivative of the model with respect to the volatility 

evaluated at x = Xo. 

We let maximum 100 iterations for the method to converge (by convergence 

we mean f(x) - f(xo ) < 0.00001). If it does not converge within 100 iterations, 

then we set the implied volatility equal to zero. This is because NR is a method 

which converges very quickly. If the convergence has not occurred within 100 

iterations, then our model does not support the observed market option price, 

and therefore those prices should be excluded4 • 

Another issue is whether the interest rate should be selected from 'freasury 

bills, commercial paper, or Eurodollars. However, it seems that there is a small 

impact on the estimation of implied volatilities from using the wrong interest 

rate (see Bates [12]). We are using London Euro-Currency interest rates (middle­

rates) on the US dollar, obtained from Datastream to proxy for the riskfree rate, 

as Clewlow and Xu [37] do5 • 

The London Euro-Currency interest rates were chosen because they consist of 

which assumes constant variance. However, "examining volatilities inferred under the Black­
Scholes model is a reasonable and informative initial diagnostic of volatility dynamics" , as Bates 
[121 notes. 

4In most of the cases that no convergence had occured, we had violation of the lower arbitrage 
boundary conditions. Therefore, those market option prices could not be supported, not only 
by BAW model, but by no model. 

5Middle rates are the midpoints between the bid and offered rate. We use middle rates 
because they are a kind of an "average" of the offer and the bid rate. 
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the maximum number of different maturities that we could use, in order to make 

the interest rates used in the calculation of implied volatilities, as accurate as 

possible. Daily interest ~ates for 7-days, one-month, three months, six months, 

and one year were used, while for the other maturities were obtained by linear 

interpolation6 • In this way we use a comparable-maturity to the option yield. 

In order to do the interpolation we convert the interest rates to continuously 

compounded by using the formula 

365 rl * n 
r2 = -In(l+--) 

n 360 
(3.6) 

where rl is the rate for a period n 7 , r2 is the resulting continuously com­

pounded rate, 360 is the days in a year according to the convention for the US 

dollar, and 365 is the days in a year. 

3.4 Screening the Data 

In this section, we describe how we screen our data. In the first stage, the raw 

data are screened for data errors. In a second stage, we exclude data likely to 

introduce errors into our volatility estimates. 

3.4.1 Screening the raw Data 

We eliminate data where the option price is less than, or equal to its intrinsic 

value. Otherwise, a riskless arbitrage could arises. We also exclude options having 

6The linear interpolation is done as follows: let rt be the interest rate for tEA where 
A = ( 7 days, 1 month, 3 months, 6 months, 1 year) and let r be the required time to maturity 
where a < r < b, with a, b E A and a, b consecutive elements of A. Then the interpolated rate 

R(r) which corresponds to time to maturity r is R(r) = ro + (r - ~)(rb - ro) 
-a 

In order that the options and interest rate data sets have the same days, we excluded from 
the interest rates data sets the redundant days. 

7The Datastream Interest Rate convention is that 1 month interest rate, for example, means 
that if we lend money we are going to get it back after 30 days. The meaning for the other 
maturities' interest rates is analogous. 

SIt should be the case that we have already taken into account the violation of the arbitrage 
boundary conditions in the routine which calculated the implied volatilities. 
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a price of less than 10 cents (see Clewlow and Xu [37], and Xu and Taylor [149]). 

This is because for options with prices smaller than 10 cents, transaction costs 

including the bid-ask spread, and liquidity premia are large relative to the option 

price. Finally, we eliminate short term options with less than 10 days to maturity. 

This is because as the time to maturity gets shorter, vega becomes smaller for 

most strikes for these options, and consequently implied volatilities become very 

sensitive to small errors in the option price9 • In addition, Day and Lewis [46] 

find that significant increases in implied volatility occur during the week prior to 

maturity. 

3.4.2 Screening Implied Volatilities 

One of the sources of measurement errors in the calculation of (limp is the non­

synchronous trading. Non-synchroneity means that the option market does not 

close at the same time with the underlying asset's market. Harvey and Wha­

ley [81] find that in the presence of non-synchroneity, spurious negative serial 

correlation is induced in the volatility changes if closing option prices are usedlO. 

Another source of noise in the calculation of implied volatilities is the bid­

ask spread on both the option and the underlying asset. The bid-ask spread 

effect refers to the fact that either the option's or the underlying asset's (or both) 

closing price, is quoted at a bid, or an ask level. Roll [124] shows that the bid-ask 

spread produces significant spurious negative first-order serial covariance in price 

90ther researchers have used different cut-off points. For example, Canina and Figlewski 
[30] eliminate options with less than 7 and more than 127 days to maturity. Harvey and Whaley 
[80] eliminate options with less than 21 days to maturity. Our choice is not crucial because we 
deal with the noisy data with additional constraints that we describe later. 

lOEven if the option and the underlying asset's markets close at the same time, the non­
synchroneity effect can occur due to a reported option price which is based on a stale futures 
price. Let Ctl be the options price based on Ftl at time tt. The calculated true implied volatility 
would be a. Non-synchronous reporting might have a stale Ctl matched with a later up-to-date 
Fta (t2 > tt). If the market went up (Fta > Ftl ), Ct! is too low and we would calculate an 
implied volatility too low, as well (lower than a). The next day, when both markets open, we 
are going to have synchronous data and the implied volatility will go up to the correct level. 
The error in the calculation of the implied volatility is greater for ITM options where the error 
in Ctl is bigger by an amount ~ x ~Ftj ~ is the delta of an option, and ~Ft is the movement 
in the futures price. 
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changes seriesll . 

The trading hours for the S&P 500 Index and for the S&P 500 futures Options 

are 8.30 am. till 3.15 p.m. (Chicago time). Even though, the closing times 

for the option's and the underlying asset's market coincide, deep in-the money 

(ITM) , and out-of the money (OTM) options are rather illiquid and they trade 

less frequently than those nearer to the-money. Consequently, for these options 

non-synchroneity, and bid-ask spreads is a larger problem. 

A common way of eliminating noisy data is to exclude deep ITM, and OTM 

options. However, the way that the range of the OTM and the ITM options to 

be eliminated is chosen, differs between researchers and seems to be somewhat 

subjective12 . This may have as a consequence that either a significant amount of 

noise still remains in the data, or that valuable information has been lost. 

We use criteria which minimize this trade-off. We construct our smiles by 

using OTM puts for low strikes, and OTM calls for the high ones (see also Ka­

mal and Derman [102], and Zou and Derman [150]). The data on ITM calls and 

puts are not used because they have high deltas; their prices and their implied 

volatilities are therefore very sensitive to the non-synchroneity problem. Pro­

vided the put-call parity relationship holds (there is a simple arbitrage if it does 

not), puts and calls must have identical implied volatilities (in the absence of 

measurement error problems). Our procedure reduces the effects of errors due to 

non-synchronous data, without introducing any sources of bias. 

11 If the recorded option price comes from a transaction executed at the market's ask price, it 
will appear to be relatively expensive and its implied volatility will be high. If the option price 
was the bid, implied volatility will be lower. Similarly, if the contemporaneous underlying asset 
price which is used in the calculation of implied volatility comes from a trade at the market's 
ask price, a call will appear to be deeper in-the-money than it really is. Hence, the implied 
volatility will be artificially increased. 

12Canina and Figlewski [30J eliminate options that are more than 20 points in or out-of-the 
money. Rubinstein [125J, and Sheikh [134J eliminate options with a ratio (S/K) less than 0.75 
(S denotes the asset price). Xu and Taylor [149] eliminate options when K < 0.8S, or K > 1.2S. 
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~c ~O'imp V 

0.05 -+ 00 0 
0.05 0.05 1 
0.05 0.025 2 
0.05 0.0125 4 
0.05 0.00625 8 
0.05 0.003125 16 

Table 3.1: Upper bound in the Error in Implied Volatilities, set by Different 
Values of Vega. 

3.4.3 The Vega Constraint 

Finally, we decided to exclude implied volatilities calculated from options having 

a vega less than eight (vega constraint) 13 • For a given measurement error 6.C 

in the option price (e.g. arising from the bid-ask spread), the resulting error in 

the implied volatility 6.J imp is approximately 6.J imp = 6.:. Hence, to constrain 

6.Jimp, vega has to be greater than a certain cut-off point. Table 3.1 shows the 

upper bound of error in the calculated implied volatilities, that is set by several 

values of the vega constraint. The calculations are done by assuming that the 

measurement error in the option prices is 0.05. Clearly, the constraint on 6.Jimp 

is tighter as vega increases. 

The advantages of the vega-constraint over the constraint on ~ that other 

researchers have used so far, are that (a) the cut-off point is not determined 

arbitrarily, but it has a sensible reasoning, and (b) the vega-constraint takes 

explicitly into account the days to expiry of the option, while the ratio ~ does 

not. 

The choice of the vega cut-off point is not obvious because there is a trade-off 

between accuracy, and the number of observations that we exclude. Figure 3.1 

shows the variation of vega against the strike, for a European option with 10, 50, 

and 200 days to expiry, when the futures price is 420, the volatility is 13%, and 

the interest rate is 4.167%. As vega increases, we constrain the errors 6.Jimp, but 

l3The vega V of an option is defined as Vega = aac . 
O'imp 
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we exclude a larger amount of data, especially in the shorter expiries. 
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Figure 3.1: Variation of Vega as a function of Strike, for European Option with 

10, 50, and 200 days to maturity. 

The choice of eight for the cutoff was made after checking the number of 

observations that we exclude, and the amount of noise in the remaining data, for 

different cut-off points. Tables 3.2, and 3.3 show the percentage of observations 

that we exclude over the years 1992-95, from call and put contracts, respectively, 

maturing in May and September. The second column shows the percentage 

of observations excluded after eliminating the ITM options and after applying 

the screening criteria described in Section 3.4.1. The remaining columns show 

the additional percentage of observations excluded for each vega cut-off point14. 

Setting the vega constraint to eight retains a satisfactory number of observations 

(52%-30% of the observations for calls, and 90-50% of the observations for puts). 

14Without loss of accuracy, we use the vega for European-style futures options, as calculated 
from Black's [19] model, i.e. 

(3.7) 

..fo F r+-r 
where n(x) is the normal density function of a random variable x, and d1 = In( -)+ .) (v 

K a r 
is the same for calls and puts). This is because the early exercise privilege of American futures 
options contributes significantly to the value of only ITM futures options (Whaley [146]). 
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Call Other Criteria and ITM v=l v=2 v=4 v=8 v = 16 
9205 45.01% 0% 0% 0.2% 3.46% 9.78% 
9209 46.95% 0% 0% 0% 0.51% 2.58% 
9305 48.86% 0% 0% 2.28% 9.61% 10.88% 
9309 56.29% 0% 0% 0% 4.78% 4.78% 
9405 52.19% 0% 0% 1.29% 6.7% 11.86% 
9409 48.63% 0% 0% 0.11% 4.11% 9.19% 
9505 62.64% 0% 0% 0.22% 2.46% 5.26% 
9509 68.73% 0% 0% 0.05% 0.58% 1.3% 

Table 3.2: Percentage of Excluded Observations for Call Contracts after elimi­
nating the ITM options, applying the Different Screening Criteria and imposing 
the Vega Constraint for Different Vega Cut-off Points. 

Put Other Criteria and ITM v=l v=2 v=4 v=8 v= 16 
9205 34.27% 0% 0.99% 3.98% 9.94% 21.36% 
9209 28.98% 0% 0.55% 1.84% 4.65% 9.97% 
9305 44.22% 0% 0.02% 3.11% 10.36% 21.45% 
9309 32.37% 0% 1.87% 3.66% 8.32% 15.96% 
9405 46.84% 0% 0% 1.22% 3.68% 10.48% 
9409 44.76% 0% 0.34% 0.91% 2.85% 5.69% 
9505 37.09% 0% 3.94% 8.25% 17.04% 27.86% 
9509 6.73% 0% 0.66% 1.37% 2.7% 4.7% 

Table 3.3: Percentage of Excluded Observations for Put Contracts after elimi­
nating the ITM options, applying the Different Screening Criteria and imposing 
the Vega Constraint for Different Vega Cut-off Points. 
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In order to check whether the retained data are noisy, we consider the implied 

volatilities of option contracts within the interval 30-27 days to expiry15. If the 

data are clean, then the implied volatilities for each strike should not differ a lot 

over such a short time interval, i.e. the standard deviation of implied volatilities 

for each strike should be small. 

For each strike, we calculate the average and the standard deviation of these 

four implied volatilities. Then, we plot the average and plus, minus one standard 

deviation. We call these graphs the" accuracy graphs". We construct such graphs 

for all the years, for both the call and put contracts maturing in the May and 

September. Figure 3.2 shows such a graph for a call contract which matures in 

September 1993 (9309). We can see that the implied volatilities of ITM calls have 

very big standard deviations, i.e. they are very noisy, as expected. 
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Figure 3.2: Raw Implied Volatilities for a Call Contract with Maturity 9309. 

Then, we construct similar graphs when we impose only the vega constraint, 

for v = 1,2,4,8,16 (notice that the various graphs are drawn to different scales). 

Figure 3.3 shows the screened implied volatilities of a call contract which 

matures in 9309 when we have imposed on it the vega constraint with a value of 

15We choose this range of days to maturity, because options are actively traded within it. 
Hence, we have information for a wide range of strikes, something which enables us to check 
the amount of noise in our data. 
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8. We can see that , compared to Figure 3.2, the effect of the vega constraint is 

to trim the extreme strikes, i.e. the deep ITM and OTM calls. However, the big 

amount of noise for the ITM calls remains, and therefore the elimination of them 

needs to be carried out, as already explained. 
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Figure 3.3: Screened Implied Volatilities Only with the Vega Constraint for 

v=8, for a Call Contract with Maturity 9309. 
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Figure 3.4: Screened Implied Volatilities Only with the Vega Constraint v= 16, 

for a Call Contract with Maturity 9309. 

Figure 3.4 shows the screened implied volatilities of a call contract which 

matures in 9309 when we have imposed only the vega constraint, with a value 
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of 16. There is of course a further reduction of noise, but given the amount of 

information that we exclude as vega increases (see Table 3.2), and given that the 

noise for ITM calls remains, we choose the cutoff point for our vega constraint to 

be 8. 
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Figure 3.5: Screened Implied Volatilities for a Call Contract with Maturity 9309. 

Figure 3.5 shows what the screened implied volatilities of a call contract with 

maturity 9309 look like, when we have screened the raw data, we have eliminated 

the ITM calls, and we have imposed the vega constraint with a value of 8. We 

can see that the amount of noise has been decreased considerably, compared to 

Figure 3.2. 

0.33 
0.31 

0.29 

0.27 
0.25 

III 0.23 
'00.21 
::.: 0.19 
c. E 0.17 
.- 0.15 

0.13 
0.11 

0.09 
0.07 
0.05 

370 390 400 410 420 430 440 450 460 475 500 
strike 

73 

-+- AVERAGE 

---- PLUSSTDEV 
MINUSSTDEV 



Figure 3.6: Raw Implied Volatilities of a Put Contract with Maturity 9309. 
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Figure 3.7: Screened Implied Volatilities Only with the Vega Constraint for 

v=8, of a Put Contract with Maturity 9309. 
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Figure 3.8: Screened Implied. Volatilities of a Put Contract with Maturity 9309. 

Similarly, we have constructed accuracy graphs for a put contract which ma­

tures in 9309. Figure 3.6 shows that the ITM raw implied volatilities are very 

noisy. Figure 3.7 reveals that the imposition of the vega constraint with a value 

of 8 trims the OTM puts, but it does not reduce the noise for the ITM puts. 

Therefore, the elimination of the ITM puts is necessary. Figure 3.8 shows that 
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the put implied volatilities of the put contract do not exhibit noise after applying 

all the screening criteria. 

Our screening procedure ensures that our data are sufficiently smoothed, so 

as to get reliable results from our subsequent analysis. ;rhis is confirmed by 

Figure 3.9 where we show the recovered from OTM calls and OTM puts implied 

volatility skew. 
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Figure 3.9: Recovered Smile from OTM Calls and OTM Puts with Maturity 

9309. 

3.5 Summary 

We use closing prices on futures options on the S&P 500 for the years 1992-

95. Our goal is to investigate the dynamics of their implied volatilities. To 

achieve this, we need to exclude the noise in the data, without losing any valuable 

information. We dealt with the possible sources of measurement errors, and noise 

by applying a range of criteria. We checked their efficacy, and we found that they 

are successful in delivering credible data to work with. 
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Chapter 4 

The Dynamics of Smiles 

4.1 Introduction 

The developing literature on "smile consistent" no-arbitrage stochastic volatility 

models (Dupire [59], [61], Derman and Kani [54], Ledoit and Santa-Clara [106]) 

has been motivated by the need to price and hedge exotic options consistently 

with the prices of standard European options. The objective of this chapter is 

to investigate the dynamics of implied volatility smiles, since this is a necessary 

prerequisite for the implementation of these models. 

In recent years considerable interest has focused on the behavior of the implied 

volatilities of options contracts, derived from inverting Black-Scholes [20] (BS) 

model. The empirical evidence shows (see Rubinstein ([125], [126]), Derman and 

Kani [54]) that implied volatilities vary across different strikes (smiles or skews), 

and different times-to-expiration (term structure) for options at the same point 

in time. In addition, implied volatilities also vary, in a stochastic way, across 

different points in time for a given option (Dumas, Fleming, and Whaley [58], 

Gemmill [73], Jackwerth and Rubinstein [94]). These results suggest that implied 

volatilities could be viewed as a two-dimensional surface which evolves over time. 

A number of option pricing models have been proposed which give rise to 

smiles or skews, and to a term structure of implied volatilities, roughly similar to 

what is observed empirically. However, none of these models fits observed implied 
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volatility patterns well, making it difficult to use them in practice to price and 

hedge exotic options (see Section 2.1). These problems have led to the recent 

literature on "smile consistent" no-arbitrage stochastic volatility models. 

This "evolutionary" approach is similar to the Heath, Jarrow, Morton (HJM, 

[84]), and Ho and Lee [86] methodology for stochastic interest rates, and was 

originally inspired by it (Dupire [59], [61]). The models take today's option prices 

(or equivalently the implied volatility surface) as given and they let them evolve 

stochastically in such a way as to preclude arbitrage. This allows for correct 

pricing of standard options and is relevant to the pricing of exotic options. For 

example, Derman and Kani [54] start from today's option prices and postulate 

a stochastic process for the forward volatility. They then find the no-arbitrage 

condition that its drift must satisfy. Ledoit and Santa-Clara [106] propose a 

model where the implied rather than the local volatilities are used to obtain 

a simpler than Derman and Kani's no-arbitrage condition that the drift of the 

implied volatility process must satisfy. 

Practical implementation of this class of models requires us to understand the 

dynamics of the implied volatility smile, and surface. In this chapter, we explore 

the three questions related to the former: (1) how many factors are needed to 

explain the dynamics of the volatility smile? (2) what do these factors look like? 

and (3) how are these factors correlated with the innovation in the underlying 

asset's process? 

In order to answer these questions we apply Principal Components Analysis 

(PCA) to the first differences of implied volatilities, as these are measured in two 

different metrics: the strike metric and the moneyness metric. 

After considering a variety of criteria, we find two components driving the 

dynamics of implied volatility smiles, in both metrics. We construct a Procrustes 

rotation method, so as to obtain a simple interpretation for them. The first ro­

tated component is interpreted as a shift, and the second has a Z-shape. The two 

components explain between 56% and 85% of the variance of implied volatilities 

in the strike metric, and between 65% to 92% of the variance in the moneyness 
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metric. 

This chapter consists of eight sections. In the second section, we describe 

the PCA technique, including why it was chosen, and how it will be applied to 

analyze the data. In the third and fourth section we apply PCA on the strike 

and the moneyness metric. In the fifth section we check whether the technique is 

robust to the presence of any serial correlation in the data. Section six compares 

the results obtained from the analysis in the two metrics. In section seven, we 

calculate the correlations between the changes of the principal components and 

the underlying asset price. Concluding remarks are presented in the last Section. 

4.2 Principal Components Analysis and Implied 

Volatilities 

4.2.1 Description of the Principal Components Analysis 

In this section, we outline the Principal Components Analysis (PCA) methodol­

ogy used in this (and the next) chapter. PCA is used to explain the systematic 

behavior of observed variables, by means of a smaller set of unobserved latent ran­

dom variables. Its purpose is to transform p correlated variables to an orthogonal 

set which reproduces the original variance-covariance structure. 

We apply PCA to decompose the variance-covariance structure of first dif­

ferences of implied volatilities. To achieve this, we measure the daily differences 

of implied volatilities across different strikes (or different levels of moneyness) 

and different ranges of days to expiry (expiry buckets). For example, one of our 

variables provides a time series of the first differences of implied volatilities which 

correspond to a moneyness level of (-1.5%) and expiry range 10-30. Typically, for 

each expiry bucket we have 7-10 levels of strike (moneyness) in each year, with 

100-225 observations for each level. 

In general, denote time by t = 1, ... , T and let p be the number of variables. 

Such a variable is a T x 1 vector x. The purpose of the PCA is to construct 
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Principal Components (PCs hereafter) as linear combinations of the vectors x, 

orthogonal to each other, which reproduce the original variance-covariance struc­

ture. The first PC explains most of the overall variance of the p variables (maxi­

mization problem). The second PC explains the most of the remaining variance of 

the p variables, and so on. The coefficients with which these linear combinations 

are formed are called the loadings. In matrix notation 

Z=XP (4.1) 

where X is a (T x p) matrix, Z is a (T x p) matrix of PCs, and P is a (p x p) 

matrix of loadings. The first order condition of this maximization problem results 

to 

(X'X - lI)P = 0 (4.2) 

where ii are the Lagrange multipliers. From equation (4.2) it is evident that the 

PCA is simply the calculation of the eigenvalues Ii and the eigenvectors P of the 

variance-covariance matrix S = X'X. Furthermore, the variance of the ith PC is 

given by the ith eigenvalue, and the sum of the variances of the PCs equals the 

sum of the variances of the X variables. 

Equation (4.1) delivers Z as a (T x p) matrix whose columns consist of unstan­

dardized components. Standardizing them to unit length we get a new matrix Z* 

which is Z*= ZL -!= XPL -! where now Z*'Z*= I and L is a (pxp) diagonal ma­

trix having on the diagonal the eigenvalues ii. Hence, X = Z*(PL -!)-1= Z*L!P' 

Z*A' . = I.e. 

X = Z*A' (4.3) 

where 

(4.4) 

When both variables and components are standardized to unit length, the 

elements of A' are correlations between the variables and PCs, and they are called 

correlation loadings (see Basilevsky [9] for more details). If we retain r < p PCs 
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then 

(4.5) 

where €(r) is a (T x p) matrix of residuals and the other matrices are defined 

as before having r rather than p columns. The percentage of variance of x 

which is explained by the retained PCs (communality of x) is calculated from 

the correlation loadings. After retaining r < p components, we look at equation 

(4.5) to examine the size of the communalities, and the meaning of the retained 

components. 

PCA is a natural and parsimonious technique to identify the number, and the 

interpretation of stochastic shocks that move the implied volatilities. It enables us 

to simplify the complex dynamics of the volatility surface, by identifying its most 

important components, without imposing any prior structure. This contrasts, for 

example, with the alternative regression analysis approach of estimating a specific 

function of time and moneyness (see Taylor and Xu [141]). peA is preferred to 

factor analysis, for our analysis, because of its variance maximization property 

(for a comparison of the two techniques see Wilson [148]). Efficient market con­

siderations suggest that serial correlation effects in implied volatility innovations 

are likely to be weak, and we seek to understand the nature of contemporane­

ous shocks across the whole volatility structure. Thus, vector autoregressions 

(Hamilton [79]) are not suitable for our study. 

4.2.2 The Metrics 

We investigate the dynamics of implied volatilities by performing PCA on the first 

differences of implied volatilities. Over short time horizons, implied volatilities 

can be viewed as forward volatilities, and therefore we expect them to follow 

approximately a random walk. Derman and Kani [54] for example, show that 

forward volatilities are martingales under the appropriate measure. If this was 

not the case, then it would be possible to attain large profits by trading volatility-
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i.e. there would be gross violations of market efficiency. Therefore, they are non­

stationary and they need to be differenced once, because PCA is misleading when 

applied to non-stationary variables (Frachot, Jansi and Lacoste [68])1. 

The variables x of changes of implied volatilities to which we apply the peA 

will be indexed in two different ways (metrics): ( a) the strike level (strike metric), 
K-Ft, 

and (b) the moneyness level * 100 (moneyness metric). For a fixed day, 
Ft 

the smiles (or skews) are going to look the same in both the strike and moneyness 

metric. However, the dynamics of implied volatilities will be different across the 

two metrics (see Section 4.7, Proposition 1). 

The strike metric is chosen because the arguments of Derman, Kani and Zou 

[51] (see Section 2.2.1) suggest that it is a natural metric to examine the dynamics 

of deterministic volatility models. This is because the variation of local volatilities 

with the underlying asset price, implies a variation of the implied volatility with 

the strike price. However, we need to bear in mind that their arguments assume 

implicitly an instantaneous change in the asset price. This is not the case in 

the framework of our analysis since we deal with changes in the underlying asset 

over yearly periods. This may pose difficulties in comparing the results obtained 

from applying the PCA for each year separately. This is due to the fact that the 

options which are traded over the years are not the same; since the futures price 

is drifting upwards, many options are becoming far away from the money and 

new options with higher strikes have to be introduced. 

The moneyness metric is chosen because there are theoretical reasons (see 

Heynen [85], Taylor and Xu [140] and [141]) suggesting that the dynamics of 

smiles are a function of moneyness. Heynen [85] shows this by deriving necessary 

conditions for the implied volatilities of options with different exercise prices and 

1 We confirmed the non-stationarity of implied volatilities by testing for unit roots using 
different specifications of the augmented Dickey-Fuller test (Greene [76]). The null hypothesis 
of a unit root was accepted. Our results do not conflict with the results of Poterba and Summers 
[119] and Hsieh [88] who find that over long periods, a time series of implieds with fixed expiry, 
e.g. three months (rather than a time series of implieds with fixed expiry date, as in our case) 
is mean reverting. 
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the same time to maturity, to exhibit a V-shaped pattern2• Taylor and Xu show 

that implied volatilities are approximately a quadratic function of moneyness 

when volatility is stochastic, volatility risk is not priced, and asset price and 

volatility differentials are correlated (see Taylor and Xu [141]), or uncorrelated 

(see Taylor and Xu [140]). Moreover, Taylor and Xu's approach implies that the 

moneyness metric is the appropriate metric for the investigation of the dynamics 

of a stochastic volatility model. If a deterministic volatility model is the true 

model, then we expect to find "small" variation of implied volatilities in the 

strike metric, and "significant" variation in the moneyness metric. The reverse 

will happen if a stochastic volatility model is the correct model3• 

4.2.3 The Determination of the Expiry Buckets 

Next, we group the data into different buckets for distinct ranges of days to 

expiry. We need to control for the time to expiry because we expect the implied 

volatilities of the shorter dated options to vary more than those of the longer 

dated ones. This is a feature of various models (such as Stein [137]) and earlier 

empirical studies e.g. Bates and Clewlow [16], Hsieh [89], and Taylor and Xu 

[149]4 5. 

The expiry buckets were chosen, so as to cope with two constraints: (a) getting 

2Heynen concludes that the only pricing density functions that generate the smile pattern 
are those that are higher peaked than the lognormal density function. This result contrasts 
the usual conception that pricing density functions that have fatter tails than the lognormal 
distribution, should generate a U-shaped implied volatility pattern. In addition, it shows that 
we can get a clear smile picture even when a limited range of strikes is available, and we have 
no information about the precise shape of the tails of the risk-neutral distribution. 

3However, we need to point out that we do not have a yardstick to measure the magnitude 
of the variation of the empirical implied volatilities in either metric. To do that, we should 
compare the variation of empirical implieds with the simulated, from a deterministic, or a 
stochastic volatility model, implieds in both metrics. 

4Stein shows that under the assumption that volatility follows a mean-reverting process with 
a constant long-run mean, and a constant coefficient of mean reversion, shorter expiry implied 
volatilities are more volatile than longer expiry ones. 

5There are two other possible methods for accommodating the effect of the time to expiry 
on the variance of changes in implied volatilities. We could interpolate to get series for fixed 
expiries, or we could use a parametric model which uses the expiry date as an explanatory 
variable. We prefer grouping the data into buckets because the expiries in our data are too 
thinly spaced, and because we do not want to impose any prior structure. 
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a sufficient amount of data for each range in order to perform the PCA, and (b) 

treating the missing observations that occur due to the screening criteria that we 

have applied. 

Two broad strategies are often adopted when data are randomly missing: 

(a) deletion, i.e. delete the missing cases and get estimates for them from the 

complete sample and (b) estimation e.g. replace the missing values with the 

means of the variables6 • We do not replace the missing values, because this may 

bias the results from our analysis. Instead, we are going to apply listwise deletion 

i.e. we will delete the whole day for which at least the observation for one variable 

is missing7. Listwise deletion is applied after taking the first differences, so as 

differences in implieds are I-day differences. 

Table 4.1 shows the number of variables, and of observations, after applying 

the listwise deletion, for several candidate expiry buckets in year 1992. We expect 

that in the other years more observations will fall in these expiry buckets because 

the liquidity of the option markets increases. Since we would like to have expiry 

buckets as fine as possible, we fix six intervals of days to expiry: 30-10, 60-30, 

90-60, 150-90, 240-150 and 360-240 daysB. The dynamics of individual smiles are 

analyzed by applying PCA separately to the expiry buckets. Then, in Chapter 

5 we analyze the dynamics of the whole implied volatility surface by pooling the 

buckets together, and performing the PCA on the whole data set. 

To summarize, in our framework, each variable x is a time series collection of 

differences in implied volatilities for a given strike (moneyness) level, and within 

a certain expiry range. The first PC is the linear combination of these variables 

6The literature on treating missing observations is vast, but as Anderson et at. [3] note "The 
only real cure for missing data is to not have any". 

7Listwise deletion is one of the three methods which belong to the category of the so-called 
zero-order methods. The other two are (a) pairwise deletion of individuals for covariance 
calculations for whom one variable in the pair is missing, and (b) replacing missing values by 
mean values of the variables. 

BIn some cases, for a given variable there are two contracts traded on the same day, which 
fall in the same expiry bucket, but they have different days to expiry. For example, in the range 
60-30 there is one contract with 30 days to maturity, and another one with 59. We keep the 
contract which ensures that our variable is a time series, i.e. if in the previous day there was a 
contract with 31 days to expiry, we keep the 30 days to expiry contract. 
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Expiry Buckets 30-10 60-30 90-60 120-90 150-90 240-150 270-150 
No of Variables 8 12 9 18 16 11 11 
No of Obs. 100 206 121 78 161 215 210 

Table 4.1: Determining the Expiry Buckets: Checking the Number of Variables 
and Observations for Different Candidate Expiry Buckets in 1992. 

which contributes the most to explaining the overall variance of the changes in 

the implied volatility surface. The second PC is the linear combination (of the 

same variables) orthogonal to the previous one, which explains the most of the 

remaining variance, and so on. 

4.3 peA on the Strike Metric 

4.3.1 Choosing the Strike Variables 

The application of listwise deletion, creates a trade-off between the number of 

variables on which we perform the PCA, and the total number of observations. 

For each year, we choose the variables within a given expiry range so as to get (a) 

a sufficient number of strikes (say not less than 7 ideally) i.e. a wide range of the 

smiles9
, (b) a sufficient amount of observations (say no less than 100), and (c) a 

satisfactory correlation between them; if the covariance matrix of the variables is 

diagonal, then there is no gain from the PCA (see Basilevsky [9]). 

Table 4.2 shows the number of variables on which we are going to perform the 

PCA, the number of observations (after the listwise deletion), and the Kaiser­

Meyer-Olkin (KMO) measure of the correlations between the variableslO
• This 

9Exercise prices are set at either 5.00 or 10.00 points intervals depending on the contract 
month (see CME regulations at http://www.productive.com/folio.p). 

laThe KMO measure is an index which compares the magnitudes of the observed correlation 
coefficients to the magnitudes of the partial correlation coefficients. It is computed as 

KMO = L Fi#i r?i 2 

L Li#i rij + L Li#j aii 

where r ij is the correlation coefficient between variables i and j, and aij is the partial correlation 
coefficient between variables i and j. The K MO measure is close to 1 if the sum of partial 
correlations is close to zero, i.e. the correlations between pairs of variables can be only explained 
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information is reported across expiries and years. 

We can see that in general we have a quite wide range of strikes (7-18) , the 

number of observations is bigger than 100, and the KMO coefficients are between 

0.70, and 0.9011 . 

4.3.2 Some Descriptives for the chosen Variables 

Figures 4.1-4.4 show the means of the implied volatilities for the levels of the 

strike variables that we have chosen over the expiry buckets and years. The 

average implied volatility in year 1992, varies from 0.2 to 0.12 across the different 

expiries. In 1993, it varies from 0.18 to 0.09, and in 1994 from 0.2 to 0.09. In 

1995, it ranges from 0.2 to 0.12. Figures 4.5- 4.8 show the standard deviations 

of the first differences of implied volatilities of the chosen strike levels. It is not 

clear that the shorter expiry options implied volatilities are more volatile than 

the longer ones. 

0.25 
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III --30·10 Cii 
> 0.15 --60-30 
.!! . 90-60 
:§. 
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-- 150-90 
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0.05 

strike 

Figure 4.1: Smile Analysis on the Strike Metric: Average Implied Volatilities 

(levels) in 1992. 

by the other variables. In the SPSS manual [136], measures in the 0.90's are characterized as 
marvelous, in the 0.80's as meritorious, in the 0.70's as middling, in the 0.60's as mediocre, in 
the 0.50's as miserable, and below 0.50 as unacceptable. 

11 The fact that correlations are highy, is not only encouraging for the application of the PCA, 
but it is also supportive for the selection of a linear PCA model. When there are nonlinearities, 
a set of highly related random variables can exhibit low correlation, unless nonlinearities are 
taken explicitly into account. See Basilevsky [9], page 162. 
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Range Year Number of Variables Number of Observations KMO 
30-10 92 8 100 0.87841 

93 7 114 0.85267 
94 8 107 0.84658 
95 8 61 0.8449 

60-30 92 12 206 0.83963 
93 11 219 0.81259 
94 13 206 0.74957 
95 6 141 0.88004 

90-60 92 9 121 0.79977 
93 9 149 0.7913 
94 7 174 0.73537 
95 7 92 0.6993 

150-90 92 16 161 0.90531 
93 14 168 0.84778 
94 18 167 0.87356 
95 12 142 0.86919 

240-150 92 11 215 0.91266 
93 12 208 0.90134 
94 12 237 0.90269 
95 9 203 0.76594 

360-240 92 6 212 0.80947 
93 8 134 0.88847 
94 8 135 0.87225 
95 5 117 0.71903 

Table 4.2: Smile Analysis on the Strike Metric: Number of Variables, Number of 
Observations, and the KMO measure. 
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Figure 4.2: Smile Analysis on the Strike Metric: Average Implied Volatilities 

(levels) in 1993. 
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Figure 4.3: Smile Analysis on the Strike Metric: Average Implied Volatilities 

(levels) in 1994. 
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Figure 4.4: Smile Analysis on the Strike Metric: Average Implied Volatilities 

(levels) in 1995. 
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Figure 4.5: Smile Analysis on the Strike Metric: Standard Deviation of Implied 

Volatilities (in differences) in 1992_ 
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Figure 4.7: Smile Analysis on the Strike Metric: Standard Deviation of Implied 

Volatilities (in differences) in 1994. 
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Figure 4.8: Smile Analysis on the Strike Metric: Standard Deviation of Implied 

Volatilities (in differences) in 1995. 

4.3.3 Number of Retained Principal Components and a 

First Interpretation 

Testing for Normality 

In this section, we decide on the number of Components to be retained. Earlier 

researchers have used a variety of rules of thumb to determine the number of 

components to be retained. For example, they keep the components which have 
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eigenvalues bigger than the mean of all the eigenvalues (mean eigenvalue rule of 

thumb), or they keep the components which explain 90% of the total variance12 . 

As Basilevsky [9] notes "such practice is statistically arbitrary, and seems to be 

prompted more by intuitive concepts of practicality and " parsimony" , than by 

probabilistic requirements of sample-population inference." 

We determine the number of components to be retained by looking at a variety 

of criteria in an even handed way. First, we apply Velicer's [145] non-parametric 

criterion. Next, working with components retained under this criterion, we look 

at the communalities. Finally, we look at the interpretation of the PCs. 

We now explain why we have to resort to a non-parametric test like Velicer's. 

The formal tests that are usually employed look at the eigenvalues, and at the 

loadings. They test the equality of all the eigenvalues, and subsets of the eigen­

values, or alternatively they look at the residuals of the PC model. In order to 

interpret the shape of the components, researchers have developed tests for the 

entire eigenvector and for elements of the eigenvector13 . However, all of these 

tests are based on the assumption that the variables are multivariate normaly 

distributed. We check whether this assumption is supported by our data. It suf­

fices to test for univariate normality. If at least one variable from the whole set 

of variables is not normally distributed, then the whole set is not multivariately 

normal. This holds because multivariate normality implies univariate normality. 

We test for univariate normality by using the Bera-Jarque test (BJ) (see 

Harvey [83]), and quantile-quantile (Q-Q) plots14. The idea behind the BJ test 

12Litterman and Scheinkman [107] apply peA to the yield curve, and they retain three 
components because these are explaining about 98% of the total variance. However, as Jackson 
[93] (page 44) notes "this procedure is not recommended. There is nothing sacred about any 
fixed proportion". For a description and discussion of the several rules of thumb, see Jackson 
[93]. 

13For a review of these tests see Basilevsky [9]. 
14The idea behind a Q-Q plot is the following: let 9X(X) be the empiri-

cal density function of a variable X. We want to test whether it is the 
same as the normal density function fx(x). The probability mass that X 
accumulates under the points i and q for the two densities respectively, is: 
P(X ~ i) = J~oo g(x)dx, and P(X ~ q) = J~oo f(x)dx. P(X ~ i) has been calculated by 
ranking the data and using a formula for the calculation of the probability (for the different 
formulae, see SPSS manual [136]). We require that the accumulated probabilities under the 
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is that the empirical distribution is compared to the normal one, by comparing 

the skewness {31 to zero and its kurtosis {32 to three. When the observations are 

normally and independently distributed with constant mean and variance, the 

test statistic is distributed as chi-squared with two degrees of freedom, and it is 

given by the expression 

(4.6) 

where n is the sample size, b1 is the sample estimator of {31, and b2 is the sam­

ple estimator of {32. These are the standardized third and fourth moments of 

the observations Yt about the mean, namely ..;7h = &;3 Ef=l (Yt - 1])3 In, and 

b2 = &;4 E~=l (Yt - 1])4/n , where the standardization is done with the sample 

estimator of the standard deviation & y. 

Table 4.3 shows the results from the BJ test. The null hypothesis of univariate 

normality is rejected in all the expiries; the only exception is in the range 30-10 in 

year 1995. We accompany the BJ test's results with Q-Q plots. This is because 

the BJ test assumes that observations are distributed independently. The Q­

Q plots agree with the BJ test's results in all the cases, apart from the range 

30-10 in year 199515 • This is depicted in Figure 4.9 where the departure from 

the 45 degrees line is evident16 • Therefore, we conclude that we need to use a 

non-parametric test. 

two points are the same. Then, if the two densities are the same, it has to be i = q. Hence, we 
solve the equation P(X :::; i) = f~oo f{x)dx for q . The Q-Q plot is a plot of q against i. If the 
empirical density is the normal one, then the Q-Q plot will be a 45 degrees line. 

15This discrepancy between the two tests may be attributed to the erratic behaviour of the 
BJ test when the sample size is small (less than 100) (see Harvey [83]). It is also known that 
failing to reject normality under the BJ test, does not necessarily confirm it because the test is 
only a test of symmetry and kurtosis (see Greene [76]). 

16The probabilities accumulated for the emirical density are calculated by using Rankit's 
r-l 

method (see SPSS manual [136]), i.e. __ 2; n is the number of observations, and r is the rank, 
n 

ranging from to 1 to n. 
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Range Year Variable n Skewness Ex. Kurtosis Test Value 
30-10 92 415 1 137 0.463 1.068 11.4058 

93 450 1 146 0.733 0.029 13.0791 
94 465 1 143 0.613 2.569 48.2794 
95 540 1 81 -0.361 0.49 2.5697 

60-30 92 400 1 238 -0.536 4.258 191.1908 
93 425 1 235 0.766 3.432 138.3136 
94 465 1 232 -0.079 3.908 147.8751 
95 520 1 180 -1.055 5.322 245.8184 

90-60 92 450 1 179 0.481 1.603 26.0673 
93 420 1 188 0.753 4.699 190.7310 
94 420 1 191 0.552 2.719 68.5354 
95 490 1 159 -0.309 10.101 678.4803 

150-90 92 390 1 168 0.089 1.471 15.3687 
93 410 1 168 0.647 1.512 27.7241 
94 480 1 167 -0.219 3.333 78.6343 
95 480 1 165 -0.229 2.474 43.5218 

240-150 92 400 1 245 0.692 6.158 406.6635 
93 440 1 244 0.435 7.694 609.5378 
94 440 1 242 0.286 4.607 217.3123 
95 475 1 238 0.684 2.519 81.4831 

360-240 92 400 1 244 0.187 4.493 206.6571 
93 440 1 208 0.614 3.327 108.9999 
94 440 1 204 0.459 3.053 86.39 
95 530 1 172 0.566 1.123 18.2216 

Table 4.3: Smile Analysis on the Strike Metric: Bera-Jarque Test for Univariate 
Normality. X-I denotes the differenced once implied volatilities corresponding to 
strike level X. 
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Figure 4.9: Smile Analysis on the Strike Metric: Q-Q Plot for the First 

Differences of Implied Volatilities in the 30-10 expiry, for the strike 540 for 1995. 

Velicer's Criterion 

Velicer [145] proposes a non-parametric method for selecting 

nontrivial PCs, i.e. components which have not arisen as a result of random 

sampling, measurement error, or individual variationl7
. His method is based on 

the partial correlations of the residuals of the PCs model, after r < p components 

have been extracted. The criterion can be described as follows: Basilevsky [9] 

shows (theorem 3.13, page 132) that X'X = AA'. Hence, the variance-covariance 

matrix of the residuals C(r) in equation (4.5) is given by 

(4.7) 

Let D = diag(e~r)e(r»). Then, R *= D-!e(r)e(r)D-! is the matrix of partial cor­

relations of the residuals18 . If rtj represents the ith row, jth column element of 

17The only non-parametric tests for choosing the number of retained components, are Velicer's 
test and the cross-validation method [64]. However, there is no evidence of which one of the 
two performs better (see Jackson [93]). 

18We deal with partial correlations because we have kept out of the analysis p-r components. 
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R*, then the Velicer statistic is given by 

(4.8) 

and lies in the interval 0 to 1. The behavior of Ir is that it is decreasing until "a 

number r* and then it increases again. 

Velicer suggests that r = r* should be the number of components to be 

retained. This is because as long as Ir is declining, there is still space for the 

additional components to capture part of the covariance of the residuals. The 

formula of the partial correlation between the residuals shows that Ir decreases 

if the partial covariances are declining faster than the residual variances. Hence, 

Velicer's procedure will terminate when, on the average, additional PCs would 

explain more of the residual variances than their covariances. 

Table 4.4 shows the number of components retained under Velicer's criterion, 

and under the mean eigenvalue rule of thumb19• It also shows the percentage of 

the variance explained by the first three components. These results come from 

estimating the PCs separately for six distinct expiry ranges, and in four distinct 

one year periods. We can see that under Velicer's criterion, we should keep 

either one, or two PCs20 • This is more conservative than the eigenvalue rule of 

thumb which in most expiries retains one or two more PCs than Velicer's. This 

is consistent with Zwick and Velicer's [93] results. Using simulated data, they 

conclude that the mean eigenvalue rule generally retains too many components, 

comparing to Velicer's criterion. Note that 10 > II, showing that at least one 

component can be extracted21 . 

19Krzanowski [1051 performed Monte Carlo simulations and he finds that the mean eigenvalue 
test tends to keep the same amount of components as the cross validation method. However, 
in a discussion that we had with him, he said that before reaching a definite conclusion, more 
research needs to be carried out on it. Therefore, we continue treating the mean-eigenvalue 
rule as an ad-hoc procedure. 

20These results do not change, even if we apply Velicer's criterion to a smaller number of 
variables. 

21 Reddon [1231 evaluates the type-I error (reject the null while it is true) rates of this criterion. 
He considers that the null hypothesis of Velicer's criterion is the reduction in dimensionality. 
Then, he carries out simulations using data generated from populations having unit variances 

94 



Range Year fa fl f2 f3 r* l 1st PC 2nd PC 
30-10 92 0.2863 0.2835 0.2843 0.2847 1 2 57.60 16.70 

93 0.3156 0.3131 0.3138 0.3143 1 1 61.30 16.30 
94 0.2586 0.2557 0.2563 0.2569 1 2 55.90 14.00 
95 0.3125 0.3074 0.3088 0.3096 1 1 60.00 17.30 

60-30 92 0.1383 0.1377 0.1377 0.1377 2 3 39.30 18.20 
93 0.1210 0.1205 0.1204 0.1204 2 2 34.90 24.00 
94 0.0999 0.0995 0.0994 0.0994 2 3 28.00 23.40 
95 0.3323 0.3297 0.3304 0.3310 1 1 64.40 11.40 

90-60 92 0.1736 0.1718 0.1720 0.1723 1 2 46.40 15.80 
93 0.1529 0.1516 0.1516 0.1518 2 2 43.20 18.80 
94 0.1266 0.1253 0.1252 0.1254 2 2 36.90 17.70 
95 0.1044 0.1024 0.1022 0.1027 2 2 39.20 21.10 

150-90 92 0.2296 0.2283 0.2285 0.2286 1 4 50.30 8.60 
93 0.1528 0.1519 0.1519 0.1520 2 3 41.20 14.70 
94 0.1845 0.1835 0.1835 0.1836 2 4 44.00 14.00 
95 0.1910 0.1896 0.1898 0.1900 1 2 46.60 15.50 

240-150 92 0.3452 0.3441 0.3442 0.3444 1 2 61.80 9.70 
93 0.3063 0.3053 0.3054 0.3055 1 2 58.10 12.10 
94 0.2886 0.2877 0.2878 0.2879 1 2 56.70 10.80 
95 0.1551 0.1543 0.1544 0.1545 1 2 42.30 21.40 

360-240 92 0.3177 0.3168 0.3169 0.3172 1 2 61.90 18.70 
93 0.3712 0.3696 0.3698 0.3701 1 2 64.90 13.20 
94 0.4062 0.4054 0.4053 0.4055 2 2 66.30 18.50 
95 0.2234 0.2217 0.2222 0.2226 1 2 56.30 20.10 

Table 4.4: Smile Analysis on the Strike Metric: r* = number of components 
retained under Velicer's criterion (minimum fO, ... ,f3), 1= number of components 
retained under rule of thumb, with percentage variance explained by components 
1-3. 
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The first component explains between 28% and 66% of the variance, depending 

on which year and which expiry we consider. The second component explains 

between 10% and 24%. The two components combined together, explain between 

56% and 85% of the variance22 • The highest proportions are explained for the 

shortest and longest expiry options. 

Communalities 

We now look at the communalities that the retained, according to Velicer's crite­

rion, PCs explain. We would like the number of retained components to explain 

a; sufficient amount of the variability of each one of the variables. In Appendix 

A, we show in Tables A.I and A.2, the communalities (expressed in percentage 

terms) explained by retaining one and two PCs for year 1994. 

Table A.I shows that keeping one PC, as Velicer's criterion does in most of 

the ranges, results in low communalities for the middle strikes. Table A.2 shows 

that the inclusion of the 2nd PC improves the communalities. This picture is 

repeated in the other years and ranges where Velicer's criterion retains one PC. 

The addition of the second PC is necessary for the improvement of the explained 

communalities {we do not report the results for the other years because of space 

limi tations)23 . 

and zero covariances. He finds that Velicer's test makes excessive type-I errors in the cases 
where the number of observations does not exceed two times the number of variables. As the 
number of observations increases beyond two times the number of variables, the type-I error 
rates rapidly becomes zero. Since the number of observations that we use is far more than twice 
the number of variables, the results from comparing fo and It are reliable. 

22These results are very different from those found in the interest rate literature. Litterman 
and Scheinkman [107J find that on average the first PC explained 89.5% of the total variance, 
the second PC explained 8.5% and the third 2%. In total, the three retained PCs explained 
98.4% on average, across the different yield maturities. 

23We also looked at the communalities explained by three PCs. The inclusion of the third 
PC does not increase the explained communalities, significantly. 
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Interpretation of the Components 

Next, we look at the interpretation of the first three PCs. If the third PC appears 

to be just noise, then we prefer to reject it24. 

The interpretation of the principal components can be achieved by looking at 

the correlation loadings A' (see equation (4.3)). The first three columns of A' 

show how the first three PCs, respectively, affect the implied volatilities. Figures 

4.10-4.15, show the correlation loadings of the first PC, for each expiry over the 

different years. For the sake of clarity, we have interpolated across the missing 

variables in these graphs. 

The figures show that the first PC in the expiry range 30-10 is like a parallel 

shift with a slight attenuation at the edges, in every year25 . In the range 60-30, 

it still moves the implied volatilities to the same direction in all the years, but 

1992 and 1994. For all the other ranges, it has a mixture of both negative and 

positive correlation loadings in the years 1992, 1993, and 1994, while it is a shift 

in 1995. 

24Wilson [148] also acts similarly in a study of the number of shocks which affect the term 
structure of interest rates. Even though the third PC explains 8-10% of the total variance of 
the changes of yields, he decides not to retain it because it is just noise. 

25We use the terminology "shift" and " slope" for the interpretation of the PCs, as Litterman 
and Scheinkman [107] have already established. By "shift" they mean that the PC moves 
the implied volatilities of all the strikes (moneyness) to the same direction. By "slope" they 
mean that the PC moves the low strikes implied volatilities upwards, and the high strikes ones 
downwards (or vice versa). 

97 



0.9 

en 0.8 

~~ C) 
c 0.7 :c 
CO 0.6 ,g --92 

c 0.5 
0 

:;::: 
0.4 co a; 
0.3 "-

"-

--- 93 
94 

~ 

0 
0.2 u 

0.1 

0 

~I 
strike 

Figure 4.10: Smile Analysis on the Strike Metric: Interpretation of the First PC 

for 30-10. 
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Figure 4.11: Smile Analysis on the Strike Metric: Interpretation of the First PC 

for 60-30. 
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Figure 4.12: Smile Analysis on the Strike Metric: Interpretation of the First PC 

for 90-60. 
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Figure 4.14: Smile Analysis on the Strike Metric: Interpretation of the First PC 
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Figure 4.15: Smile Analysis on the Strike Metric: Interpretation of the First PC 

for 360-240. 

Figures 4.16-4.21 show the correlation loadings of the second PC for each 

expiry over the years. The graphs show that the second PC has the interpretation 

of a slope (it is like a Z-shape, i.e. a slope with attenuation at the edges) in the 

expiry range 30-10 in every year. In the range 60-30 the same is true with the 

exception of year 1994. In the other ranges, we see a triangular shape with 
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negative correlation loadings at the edges in the years 1992, 1993, and 1994. 

However, in all the expiries, the second PC seems to have the slope interpretation 

in the year 1995. 
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Figure 4.16: Smile Analysis on the Strike Metric: Interpretation of the Second 

PC for 30-10. 
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Figure 4.17: Smile Analysis on the Strike Metric: Interpretation of the Second 

PC for 60-30. 
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Figure 4.18: Smile Analysis on the Strike Metric: Interpretation of the Second 

PC for 90-60. 
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Figure 4.19: Smile Analysis on the Strike Metric: Interpretation of the Second 

PC for 150-90. 
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Figure 4.20: Smile Analysis on the Strike Metric: Interpretation of the Second 

PC for 240-150. 
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Figure 4.21: Smile Analysis on the Strike Metric: Interpretation of the Second 

PC for 360-240. 

In Figures 4.22-4.27, we show the correlation loadings of the third PC, for each 

expiry over the years. The graphs reveal that for all the years and ranges, the 

third PC does not have a typical pattern. It is just noise, as already predicted 

by Velicer's criterion, and the explained communalities. Therefore, under the 

variety of criteria that we have applied, we can only identify two shocks driving 

the implied volatility smiles of the S&P 500 Futures Options in the Strike Metric. 
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Figure 4.22: Smile Analysis on the Strike Metric: Interpretation of the Third 

PC for 30-10. 
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Figure 4.23: Smile Analysis on the Strike Metric: Interpretation of the Third 

PC for 60-30. 
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Figure 4.24: Smile Analysis on the Strike Metric: Interpretation of the Third 

PC for 90-60. 
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Figure 4.25: Smile Analysis on the Strike Metric: Interpretation of the Third 

PC for 150-90. 
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Figure 4.26: Smile Analysis on the Strike Metric: Interpretation of the Third 

PC for 240-150. 
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Figure 4.27: Smile Analysis on the Strike Metric: Interpretation of the Third 

PC for 360-240. 

Although the first and second PC have a simple and consistent interpretation 

in some years for the ranges 30-10 and 60-30, and over all the expiries in 1995, 

we would like this to be the case for the other ranges and years, as well. In order 

to obtain a better interpretation, we will utilize a rotation method, explained in 

the next section. 
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4.3.4 The Rotation Method 

The Idea of a Rotation 

We use a rotation technique, so as to achieve a simple and consistent interpre­

tation of the PCs. This is a common procedure followed by researchers in the 

context of PCA, when the interpretation of the PCs is not straightforward. In 

this section, first we describe the idea of a rotation. Then, we construct an 

appropriate for the purposes of our study rotation, and we apply it. 

The way that the first two components are affecting the implied volatilities 

can be revealed by inverting equation (4.1), i.e. 

x=zp' (4.9) 

We get P' by inverting equation (4.4), so that 

p'= L-tA' {4.1O} 

The interpretation of the first and second PCs is obtained then from the first and 

second row of P' . 

Rotating the r retained orthogonal PCs to a new orhtogonal position, is equiv­

alent to multiplying the eigenvectors and the PCs, by an r x r orthogonal matrix 

T {which we will call from now on the transformation matrix} and its inverse 

T-126. Then, equation (4.9) becomes 

(4.11) 

where 

( 4.12) 

(4.13) 

26For example, if we want to rotate two axes, i.e. we have kept two components, then 
T = [COSO -sinO] 

sinO cosO . 
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Equations (4.12), and (4.13) deliver the new rotated PCs and eigenvectors, 

respectively. The rotated components still explain the same total amount of vari­

ance, as the unrotated ones, but the total variance may have been re-distributed 

between the two. Moreover, as a property of the orthogonal rotation (rotation 

which maintains the axes at right angles), the rotated eigenvectors remain orthog­

onal, but the rotated principal components do not (see Basilevsky [9], Theorem 

5.2, page 259). 

In order to apply a rotation, there are three issues that need to be resolved. 

First, the rotated PCs are not invariant with respect to a change in their number. 

Hence, it is necessary to have decided first how many components we are going to 

retain. Second, rotation of the eigenvectors P (and corresponding unstandardized 

PCs), will not yield the same results as rotating the correlation loadings A' (and 

standardized components). For reasons that are explained in Appendix B, we are 

going to use the P eigenvectors (loadings) by extracting them from the already 

calculated correlation loadings by means of equation (4.10). Finally, the matrix 

T is not unique, since an infinite number of orthogonal rotations is possible. An 

additional criterion has to be introduced to fix the location of the axes, i.e. to fix 

the angle {). In order to determine {) we have to think what shape of components 

we would like to get. We would like the first PC to be as close to a parallel shift, 

as possible (as in the 30-10 expiry), and the second to be a slope. This is also 

consistent with the intuition coming from the Taylor series expansion of order 

one27 • 

The most popular criterion for determining {), is the varimax criterion. This 

criterion minimizes the number of variables that have high loadings on a com­

ponent. However, it is well suited for giving clusters, so it cannot give to us the 

interpretation that we are looking for. Figure 4.28 shows the result from applying 

varimax rotation to the loadings of the first two PCs in the 60-30 expiry bucket, in 

year 1992. We can see that even though the second PC has a slope character, the 

27 Any well-behaved function can be approximated by a Taylor series expansion of first order, 
where the zero order expansion is the level, and the first order expansion is the slope. 
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first one does not have the parallel shift interpretation. Other rotation methods, 

such as the quartimax, and the oblique, can not give us the desired interpretation 

either (for a description of these methods, see Jackson [93].) Consequently, we 

decide to use a "Procrustes" type rotation. 
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Figure 4.28: Smile Analysis on the Strike Metric: Rotated Correlation Loadings 

Obtained from Varimax Rotation, in the 60-30 Expiry, in Year 1992. 

The Construction of the Procrustes Rotation 

The idea behind "Procrustes" type rotation is the following: suppose that there 

are two (p x r) matrices, A and B. We need to find an (r x r) transformation 

matrix T which will best transform A into B (target matrix)28. For the purposes 

of our study, we choose T, so that the loadings on the first rotated PC are as 

fiat, as possible. We accomplish this by using a regression to find the orthogonal 

rotation which minimizes the least squares distance between the loadings of the 

first PC, and a vector of constants. The construction of our Procrustes type 

rotation is described in Appendix B. 

28For more details on the Procrustes rotation, see Jackson [93]. The name of the rotation 
has been inspired by the Greek mythology. When Thesus was cleaning up Greece's highways of 
criminals, one of those he terminated was Procrustes, the Stretcher. Procrustes had an iron bed 
on which he tied any traveller who fell into his hands. If the victim was shorter than the bed, 
he or she was stretched out to fit; if too long, Procrustes lopped off whatever was necessary. 
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Year 30-10 60-30 90-60 150-90 240-150 360-240 
92 3.26 50.32 85.47 64.41 85.38 6.89 
93 3.93 20.50 60.51 38.80 80.74 53.16 
94 0.61 80.80 42.65 60.99 56.64 52.01 
95 2.93 0.59 25.90 8.04 1.38 31.33 

Table 4.5: Smile Analysis on the Strike Metric: Angle of the Procrustes Type of 
Rotation (Angles are Measured in Degrees). 

Application of the Procrustes Rotation 

We now discuss the results from applying our Procrustes rotation. Table 4.5 

shows the angle f) that our rotation method has used, i.e. the extent to which we 

have moved the cartesian co-ordinates of the original components. 

We see that in the range 30-10 there is virtually no rotation in all the years, so 

the shift shape is preserved. In all the other ranges we can see that we have rotated 

significantly. The results for the first rotated PC, for the different expiries, appear 

in Figures 4.29-4.34, while the results for the second rotated PC appear in Figures 

4.35-4.40. These graphs have been produced by working with unstandardized 

variables29 • 

The first rotated PC in the expiries 30-10 (as expected), 60-30, and 90-60, can 

be interpreted as a shift in all the years. In the expiries 150-90, and especially for 

240-150, and 360-240 it has both positive and negative loadings in all the years, 

apart from 1995. The figures also show that the magnitude of the first PC is 

bigger for the longer expiries. The second rotated PC has a Z-shape, in all the 

expiries, and years30 • Its magnitude, remains the same over the expiries. 

29 As we have already explained, the construction of our rotation method requires the rotation 
of the loadings and not of the correlation loadings. It does not require to unstandardize the 
variables.We do so, so as to see the rotated PCs, without imposing any standardization (the 
standardization of the variables does not affect the shape of the PCs, but only the scale). 

30We can always flip over the Z-shape of the second PC. This can be done by taking the 
appropriate sign from equations (B.12),(B.13), and respecting equation (B.14). 
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Figure 4.29: Smile Analysis on the Strike Metric: Interpretation of the First 

Rotated PC for 30-10. 
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Figure 4.30: Smile Analysis on the Strike Metric: Interpretation of the First 

Rotated PC for 60-30. 
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Figure 4.31: Smile Analysis on the Strike Metric: Interpretation of the First 

Rotated PC for 90-60. 
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Figure 4.32: Smile Analysis on the Strike Metric: Interpretation of the First 

Rotated PC for 150-90. 
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Figure 4.33: Smile Analysis on the Strike Metric: Interpretation of the First 

Rotated PC for 240-150. 
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Figure 4.34: Smile Analysis on the Strike Metric: Interpretation of the First 

Rotated PC for 360-240. 
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Figure 4.35: Smile Analysis on the Strike Metric: Interpretation of the Second 

Rotated PC for 30-10. 
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Figure 4.36: Smile Analysis on the Strike Metric: Interpretation of the Second 

Rotated PC for 60-30. 
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Figure 4.37: Smile Analysis on the Strike Metric: Interpretation of the Second 

Rotated PC for 90-60. 
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Figure 4.38: Smile Analysis on the Strike Metric: Interpretation of the Second 

Rotated PC for 150-90. 
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Figure 4.39: Smile Analysis on the Strike Metric: Interpretation of the Second 

Rotated PC for 240-150. 
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Figure 4.40: Smile Analysis on the Strike Metric: Interpretation of the Second 

Rotated PC for 360-240. 

Table 4.6 shows the percentage of variance that the first and second rotated 

PCs explain (as well as the percentage for the original first component )31 . We 

31 The calculation of the percentage of the variance that the rotated components explain, is 
done by using equations (B.9), (B. IO) , and the property that Var( zi ) = ii. Notice that al and 
b1 are the standardized coefficients. 
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Range Year Unrot. 1st PC 1st PC 2nd PC Cumulative 
30-10 92 57.60% 57.5% 16.9% 74.4% 

93 61.30% 61.1% 16.6% 77.7% 
94 55.90% 55.9% 14% 69.9% 
95 60.00% 59.9% 17.4% 77.3% 
Average 58.70% 58.6% 16.2% 74.8% 

60-30 92 39.30% 26.8% 30.7% 57.4% 
93 34.90% 33.6% 25.4% 59% 
94 28.00% 23.5% 27.9% 51.4% 
95 64.40% 64.4% 11.4% 75.8% 
Average 41.65% 37.1% 23.9% 60.9% 

90-60 92 46.40% 16% 46.2% 62.2% 
93 43.20% 24.7% 37.2% 61.9% 
94 36.90% 28.1% 26.5% 54.6% 
95 39.20% 35.7% 24.6% 60.3% 
Average 41.43% 26.1% 33.6% 59.8% 

150-90 92 50.30% 16.4% 42.5% 58.9% 
93 41.20% 30.8% 25.1% 55.9% 
94 44.00% 43% 15% 58% 
95 46.60% 46% 16.1% 62.1% 
Average 45.53% 34.1% 24.7% 58.7% 

240-150 92 61.80% 59.5% 12.1% 71.6% 
93 58.10% 13.3% 56.9% 70.2% 
94 56.70% 24.7% 42.9% 67.6% 
95 42.30% 42.2% 21.4% 63.7% 
Average 54.73% 34.9% 33.3% 68.3% 

360-240 92 61.90% 61.3% 19.4% 80.7% 
93 64.90% 31.8% 46.3% 78.1% 
94 66.30% 36.6% 48.2% 84.8% 
95 56.30% 46.5% 29.9% 76.4% 
Average 62.35% 44.1% 36% 80% 

Table 4.6: Smile Analysis on the Strike Metric: Percentage of Variance Explained 
by the U nrotated first PC and by the Rotated pes. 
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Year 30-10, 60-30, 90-60, 150-90 240-150, 360-240 
92 1.2% 2.4% 
93 1.1% 2.2% 
94 1.1% 2.2% 
95 1.1% 2% 

Table 4.7: Minimum Step-Size for the Moneyness Metric. 

find that the parallel shock of the first component dominates in the expiries 30-

10, 240-150, and 360-240. In the other ranges, it is the Z-shaped shock which 

explains more of the cumulative variance in many years. 

4.4 peA on the Moneyness Metric 

4.4.1 Construction of the Moneyness Metric 

To construct our variables, we first choose a grid of moneyness points for them. 

We measure implied volatilities at different s, fixed, Ki ~ Ft % levels for i = 
1,2, ... s. This involves interpolation across the implied volatilities for these fixed 

variables, since Ft is always changingl2• 

In choosing this grid we need to be careful not to make it too fine. If we 

allowed two different grid points to fall between adjacent strikes, they would 

both be interpolated from the same two data points. This would produce spurious 

dependence which would distort our results. We have therefore chosen moneyness 

levels which are slightly coarser than the coarsest spacing of the strikes. 

Table 4.7 shows the minimum distance that the moneyness levels should be 

apart (minimum step-size), for the different expiries over the years. This has 

been calculated as t:l.K x 100, where t:l.K = KHI - K i , for i = 1,2, ... ,8 - 1, 
F min 

and Fmin is the minimum futures price for each year (recall that t:l.K is either 

5, or 10). Ideally, we would like the spacing to be as coarse, as possible, so as 

to avoid any effect from noisy data, which may have remained in our data sets, 

3
2We use linear interpolation instead of some other interpolation scheme, e.g. cubic spline, 

because we have screened the data for any noise. Hence, there are no abrupt changes in the 
data, and consequently cubic spline interpolation is not necessary (see Chapra and Canale [32]). 
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despite the screening. However, there is a trade-off between the spacing, and the 

number of variables to which we will apply the PCA. Hence, we have to check 

out how many variables we get for a given step-size. 

Next, the range of moneyness variables (e.g. -18% up to 4%) that we apply 

the PCA to is determined, so as to get the maximum number of observations. For 

every day, we find the minimum and maximum moneyness, and we do distribution 

graphs for them. Subsequently, the range that we choose, is set by taking the 

right hand tail from the distribution of the minimum moneyness and by taking 

the left hand tail from the distribution of the maximum moneyness. 

Table 4.8 shows the final choice of grid for each expiry range (chosen step size) 

between the moneyness levels. We also report the number of variables available 

on which to perform the PCA, the number of observations (after the listwise 

deletion), and the KMO measure of correlation between the variables. 

We can see that (a) we have a sufficiently wide range of moneyness variables 

with a step-size which is greater than the coarsest spacing of the strikes; we set 

the spacing to 1.5%, for all the years in the ranges 30-10, 60-30, 90-60 and 150-

90, so as to have consistency across the years in the same expiry. In the range 

240-150 we set the spacing to 2.5%. In the range 360-240 we set the spacing to 

its lower bound, so as to maximize the number of variables, (b) in general, the 

number of observations does not fall below 100, and (c) the KMO coefficients 

are between 0.70 and 0.90. (a), (b), and (c) make the application of the PCA 

feasible33 • 

4.4.2 Some Descriptives for the Chosen variables 

Figures 4.41-4.44 show the average implied volatilities of the levels of the mon­

eyness variables that we have chosen for the application of the PCA. Figures 

33Since we have set fixed moneyness levels, the peA could be applied to the whole sample 
from 1992-95, as well (rather than just to the separate years). However, we prefer to perform 
the technique on each year separately, so as to be consistent with the way that it was applied to 
the strike metric (where the analysis of the whole sample is not possible, since we have different 
strikes for each year). Moreover, the examination of the dynamics of implied volatilities for 
distinct years offers a more in-depth investigation of the issue. 

119 



Range Step Year Number of Variables Number of Obs. KMO 
30-10 1.5% 92 7 111 0.87241 

93 7 93 0.88451 
94 7 111 0.89955 
95 7 113 0.87486 

60-30 1.5% 92 10 205 0.81014 
93 9 226 0.81702 
94 10 194 0.88138 
95 9 220 0.81545 

90-60 1.5% 92 8 106 0.77715 
93 7 116 0.71837 
94 10 119 0.85393 
95 8 118 0.72414 

150-90 1.5% 92 10 161 0.82847 
93 10 120 0.82835 
94 9 147 0.86238 
95 9 108 0.83825 

240-150 2.5% 92 8 220 0.87038 
93 10 221 0.914 
94 8 224 0.87067 
95 9 192 0.8541 

360-240 2.4% 92 7 99 0.84789 
93 5 104 0.80401 
94 6 102 0.83461 
95 5 57 0.79815 

360-240 2.4% 92 7 99 0.84789 
2.2% 93 5 113 0.81593 
2.2% 94 7 101 0.88693 
2% 95 6 67 0.88729 

Table 4.8: Smile Analysis on the Moneyness Metric: Number of Variables, Num­
ber of Observations, Chosen Step-Size, and the KMO measure. 
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4.45-4.48 show the standard deviations of the first differences of the chosen vari­

ables. The information is reported across the expiry buckets for every year. The 

average implied volatility in year 1992 ranges from 0.19 to 0.12. In 1993 it varies 

from 0.16 to 0.09, and in 1994 from 0.19 to 0.09. Finally, in 1995 it lies in the 

interval 0.18-0.09. Again, we can see that the standard deviations in the shorter 

expiries, are not more volatile than those in the longer expiries. 
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Figure 4.45: Smile Analysis on the Moneyness Metric: Standard Deviation of 

Implied Volatilities (in differences) in 1992. 
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Figure 4.46: Smile Analysis on the Moneyness Metric: Standard Deviation of 

Implied Volatilities (in differences) in 1993. 
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Figure 4.48: Smile Analysis on the Moneyness Metric: Standard Deviation of 

Implied Volatilities (in differences) in 1995. 

4.4.3 Number of Retained Principal Components and a 

First Interpretation 

In this section, we check first for multivariate normality of the moneyness vari­

ables. We conclude that we can not use any parametric tests for deciding on the 

number of components to retain. Then, we apply three criteria to decide how 

many components to retain, just as we did for the strike metric. 

Testing for Normality 

We test for multivariate normality, by applying the BJ test. Table 4.9 shows the 

results from the test. The null hypothesis of univariate normality is rejected in 

all the cases; the only exception is in the range 30-10 days to expiry, in 1995. 

Since acceptance of normality when using this test does not confirm it, we look 

at the Q-Q plot for this case. Figure 4.49 shows that the differences of implied 

volatilities for the variable -1.5% are not normally distributed. 
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Range Year Variable n Skewness Ex. Kurtosis Test Value 
30-10 92 PO.015 1 151 -0.014 1.579 15.6916 

93 NO.015 1 146 -0.019 2.055 25.6989 
94 PO.015 1 147 0.737 2.822 62.0852 
95 NO.015 1 149 0.267 0.441 2.9777 

60-30 92 NO.015 1 238 -0.134 1.639 27.3516 
93 NO.015 1 235 0.101 3.403 113.7910 
94 PO.045 1 215 0.143 4.053 147.8896 
95 PO.O 1 229 0 5.993 342.6990 

90-60 92 PO.O 1 159 0.473 3.894 106.3853 
93 PO.015 1 183 -0.24 3.468 93.4629 
94 PO.03 1 188 -0.85 7.072 414.4083 
95 PO.O 1 170 0.527 2.204 42.2771 

150-90 92 NO.045 1 168 0.377 1.663 23.3386 
93 NO.015 1 168 -0.012 2.047 29.3355 
94 PO.015 1 167 0.164 10.979 839.4953 
95 NO.06 1 146 0.038 4.956 149.4536 

240-150 92 PO.O 1 245 0.011 1.529 23.8704 
93 PO.O 1 242 -0.343 1.831 38.5502 
94 PO.O 1 240 0.302 2.15 49.8732 
95 PO.O 1 203 -0.086 3.381 96.9388 

360-240 92 NO.048 1 184 0.133 2.935 66.5849 
93 PO.O 1 164 0.001 3.534 85.3426 
94 NO. 11 1 176 0.819 3.534 111.2628 
95 NO.08 1 166 0.797 2.153 49.6357 

Table 4.9: Smile Analysis on the Moneyness Metric: Bera-Jarque Test for Uni­
variate Normality. P{N) X-I denotes the differenced once implied volatilities 
corresponding to plus (minus) moneyness level X. 
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Differences of Implied Volatilities of Moneyness -1.5%, in the range 30-10 for 

1995. 

Hence, in all the ranges and for all the years, the null hypothesis of univariate 

and therefore of multivariate normality is rejected. Consequently, just as in the 

strike metric, we can not use any parametric tests for determining the number of 

components to be retained. Therefore, we have to use again the non-parametric 

Velicer's criterion. 

Velieer's Criterion 

Table 4.10 shows the number of components retained under Velicer's criterion, 

and under the mean eigenvalue rule of thumb in the moneyness metric. It also 

shows the percentage of the variance explained by the first three components. 

These results are reported for the six separate expiry buckets and over the four 

one year periods. We can see that under Velicer's criterion we should retain 

either one or two PCs. This is more conservative than the mean eigenvalue rule 

of thumb which in some expiries retains one more PC than Velicer's. Note that 

fo > fl showing that at least one component can be extracted. 

The first component explains between 40% and 86% of the variance, depending 
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on the year and the expiry range under consideration. The second component 

explains between 7% and 31%. The two components combined, explain between 

65% and 92% of the variance. This is 50/0-12% bigger than the amount of the 

variance explained by the two components in the strike metric. The highest 

proportions are explained for the shortest and longest expiry options, just as 

with the strike metric. 

Communalities 

We next look at the communalities that the retained, according to Velicer's cri­

terion, PCs explain. In Appendix C, in Tables C.1 and C.2, we present the 

communalities (expressed in percentage terms) explained by retaining one and 

two PCs, respectively, for the year 1994. 

In general, the explained by the two PCs communalities, are bigger than what 

they were in the strike metric. We can see that in the ranges 150-90 and 240-150, 

where Velicer's criterion keeps one PC, there are some cases where the explained 

by one PC communalities are rather low. Adding the second PC increases sig­

nificantly the communalities (e.g. in the 240-150 range for the ATM implied 

volatility, there is an increase from 5.49% to 72.87%). The results are similar for 

the other years; in the ranges where Velicer's criterion keeps one PC we should 

add and the second. Hence, according to the explained communalities, we should 

retain two PCs on the moneyness metric. 

Interpretation of the Components 

We now look at the interpretation of the PCs. Figures 4.50-4.55 show the cor­

relation loadings of the first PC on the moneyness variables that we apply the 

PCA to, for each expiry bucket over the different years. These figures show that 

in the range 30-10, the first PC is like a parallel shift with a slight attenuation 

at the edges. In the range 60-30, it has positive correlation loadings in all the 

years, but 1992. In the other ranges, it has a mixture of positive and negative 
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Range Year fa fl f2 f3 r* 1 1st PC 2nd PC 
30-10 1992 0.4818 0.4792 0.4801 0.4807 1 1 73.30 11.00 

1993 0.5521 0.5491 0.5500 0.5508 1 1 77.80 8.10 
1994 0.6959 0.6936 0.6946 0.6949 1 1 85.70 6.40 
1995 0.4764 0.4735 0.4745 0.4752 1 1 73.00 11.10 

60-30 1992 0.1816 0.1812 0.1810 0.1811 2 2 39.60 30.30 
1993 0.2065 0.2058 0.2058 0.2059 2 2 44.60 28.70 
1994 0.2761 0.2747 0.2751 0.2753 1 2 53.60 22.90 
1995 0.2189 0.2183 0.2183 0.2185 2 2 47.60 25.50 

90-60 1992 0.2291 0.2276 0.2274 0.2278 2 2 48.80 27.30 
1993 0.2164 0.2133 0.2132 0.2137 2 2 46.80 30.60 
1994 0.2168 0.2153 0.2152 0.2154 2 2 44.20 29.60 
1995 0.1395 0.1383 0.1381 0.1384 2 2 39.70 25.50 

150-90 1992 0.2326 0.2313 0.2316 0.2317 1 2 51.50 16.80 
1993 0.1989 0.1969 0.1972 0.1975 1 2 48.10 16.90 
1994 0.2578 0.2560 0.2563 0.2565 1 2 54.20 18.00 
1995 0.2008 0.1985 0.1988 0.1991 1 2 48.80 18.10 

240-150 1992 0.4314 0.4302 0.4303 0.4307 1 1 69.20 11.90 
1993 0.4334 0.4322 0.4324 0.4327 1 2 68.70 10.40 
1994 0.3595 0.3585 0.3588 0.3590 1 2 63.40 16.90 
1995 0.3224 0.3211 0.3213 0.3215 1 2 60.70 12.80 

360-240 1992 0.5668 0.5653 0.5657 0.5663 1 1 77.90 14.10 
1993 0.4933 0.4917 0.4922 0.4928 1 1 75.10 16.90 
1994 0.6852 0.6826 0.6839 0.6844 1 1 85.10 7.80 
1995 0.5932 0.5874 0.5894 0.5911 1 1 80.90 6.80 

Table 4.10: Principal Components in the Smile Analysis on the Moneyness Met­
ric: r* = number of components retained under Velicer's criterion (minimum 
fO, ... f3), 1 = number of components retained under rule of thumb with percentage 
variance explained by components 1-3. 
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correlation loadings in all the years34 • 
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Figure 4.50: Smile Analysis on the Moneyness Metric: Interpretation of the 

First PC for 30-10. 
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Figure 4.51: Smile Analysis on the Moneyness Metric: Interpretation of the 

First PC for 60-30. 

34In some of the graphs, we have reversed the sign of the correlation loadings of the first PC, 
so as to have a consistent exhibition. TillS does not affect the scaling, nor the orthogonality 
property of the correlation loadings. Moreover, whether we reverse the sign or not, does not 
change the results from our Procrustes rotation. 
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Figure 4.52: Smile Analysis on the Moneyness Metric: Interpretation of the 

First PC for 90-60. 
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Figure 4.53: Smile Analysis on the Moneyness Metric: Interpretation of the 

First PC for 150-90. 
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Figure 4.54: Smile Analysis on the Moneyness Metric: Interpretation of the 

First PC for 240-150. 
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Figure 4.55: Smile Analysis on the Moneyness Metric: Interpretation of the 

First PC for 360-240. 

Figures 4.56-4.61, show the correlation loadings of the second PC for each 

expiry over the different years. In the 30-10 and 60-30 expiry ranges, the second 

PC has a Z-shape for all years. However, in the range 90-60 it has positive 

correlation loadings in 1993, and a mixture of both positive and negative loadings 

in the other years. In the range 150-90, it has positive correlation loadings in 
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all the years, but 1994. In the range 240-150 the shape is triangular, with big 

correlation loadings for the ATM options. Finally, in the range 360-240 it has 

positive correlation loadings for all the years, but 1993. 
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Figure 4.56: Smile Analysis on the Moneyness Metric: Interpretation of the 

Second PC for 30-10. 
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Figure 4.57: Smile Analysis on the Moneyness Metric: Interpretation of the 

Second PC for 60-30. 
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Figure 4.58: Smile Analysis on the Moneyness Metric: Interpretation of the 

Second PC for 90-60. 
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Figure 4.59: Smile Analysis on the Moneyness Metric: Interpretation of the 

Second PC for 150-90. 
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Figure 4.60: Smile Analysis on the Moneyness Metric: Interpretation of the 

Second PC for 240-150. 
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Figure 4.61: Smile Analysis on the Moneyness Metric: Interpretation of the 

Second PC for 360-240. 

Figures 4.62-4.67 show the correlation loadings of the third PC for each expiry 

over the different years. The figures reveal that the third PC has a systematic 

pattern in some expiry ranges (e.g. 30-10 and 240-150), i.e. it increases the 

implied volatilities in the low and high strikes, and it decreases them in the 

middle strikes. On the other hand, in some other ranges (e.g. in the range 60-

30 in year 1994, in the 90-60 in 1994 and 1995, or in the range 150-90) is just 
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noise. Given that Velicer's criterion retains at most two PCs, and the explained 

communalities by the first two PCs are satisfactory, we judge that the number of 

components to be retained in the moneyness metric is two. Thus, the number of 

components that we retain in the moneyness metric, is the same as the number 

that we retain in the strike metric. 
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Figure 4.62: Smile Analysis on the Moneyness Metric: Interpretation of the 

Third PC for 30-10. 
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Figure 4.63: Smile Analysis on the Moneyness Metric: Interpretation of the 

Third PC for 60-30. 
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Figure 4.64: Smile Analysis on the Moneyness Metric: Interpretation of the 

Third PC for 90-60. 
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Figure 4.65: Smile Analysis on the Moneyness Metric: Interpretation of the 

Third PC for 150-90. 
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Figure 4.66: Smile Analysis on the Moneyness Metric: Interpretation of the 

Third PC for 240-150. 
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Figure 4.67: Smile Analysis on the Moneyness Metric: Interpretation of the 

Third PC for 360-240. 

However, even if we were able to get the shift and slope interpretation for the 

ranges 30-10 and 60-30, we would like to get this neat interpretation for the other 

ranges, as well. Hence, we will perform again our" Procrustes" type rotation. 
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Year 30-10 60-30 90-60 150-90 240-150 360-240 
92 1.12 38.54 39.72 72.57 64.98 83.70 
93 0.7 6.95 64.73 73.00 72.20 40.34 
94 0.14 3.33 41.13 48.45 85.40 62.34 
95 1.53 21.08 48.41 60.44 59.57 68.46 

Table 4.11: Smile Analysis on the Moneyness Metric: Angle of the Procrustes 
Type of Rotation (Angles are Measured in Degrees). 

4.4.4 The Rotation Method 

Table 4.11 shows the angle that the" Procrustes" type of rotation has achieved. 

We can see that in the ranges 30-10 and 60-30, we have not rotated much, in 

contrast to the other ranges. It is worth recalling that in the first two ranges, the 

unrotated first two PCs had a shift and a Z-shape interpretation, respectively. 

Hence, rotation in these ranges was not necessary. 

Figures 4.68-4.73, and 4.74-4.79, show the results for the first and second 

PCs, respectively, for the different expiry buckets. The first rotated PC provides 

positive loadings for all the expiries and years with the single exception in the 

240-150 range, in 1992. In the range 30-10, the parallel shift with the attenuation 

at the edges has been maintained. In the range 60-30 there are positive loadings 

in every year, with a much smoother shape than the unrotated ones. Again the 

shape indicates movement which is close to parallel. In the ranges 90-60, 150-

90, and 360-240, there are positive loadings in every year. In the range 240-150 

we see much greater attenuation for extreme moneyness, giving rise to a more 

triangular shape. This shape is also evident for one or two years in the adjacent 

expiry ranges. In addition, the figures show that the magnitude of the first PC 

attenuates with expiry. This is especially clear for the 30-10 and 60-30 expiries, 

but rather less so for the others, presumably because of less liquidity in these 

expiries. 
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Figure 4.68: Smile Analysis on the Moneyness Metric: Interpretation of the 

First Rotated PC for 30-10. 
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Figure 4.69: Smile Analysis on the Moneyness Metric: Interpretation of the 

First Rotated PC for 60-30. 

139 



0.0045 ..,.-----------------------..., 

0.004 

0.0035 

en 0.003 
Cl .= 0.0025 

-g 0.002 
.2 

0.0015 

0.001 

0.0005 

0 ... , 
(l) 
0 
0 
c: 

-~. 7 
~ . 

... , ... ... , , 
L{) CD L{) ,... CD 0 
0 0 0 0 0 c: c: c: 

;' ~, ~, 
... , ... , ... , ~, 

... 
L{)I C\I L{) L{) 

0 C\I C\I 0 0 C\I 'It 
0 0 0 0 0 0 
0 c: 0 0 0 0 ~ 0 c: c: c: c: a. a. 

moneyness 

-92 
-- 93 

94 
...... 95 

Figure 4.70: Smile Analysis on the Moneneyness Metric: Interpretation of the 

First Rotated PC for 90-60. 
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Figure 4.71: Smile Analysis on the Moneyness Metric: Interpretation of the 

First Rotated PC for 150-90. 
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Figure 4.72: Smile Analysis on the Moneyness Metric: Interpretation of the 

First Rotated PC for 240-150. 
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Figure 4.73: Smile Analysis on the Moneyness Metric: Interpretation of the 

First Rotated PC for 360-240. 

The second rotated PC consistently produces a Z-shaped profile of loadings. 

This component does not show the clear attenuation with expiry that we find for 

the first component. Although its magnitude is greatest for the shortest expiry 

range, it changes rather little over the longer expiries. 
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Figure 4.74: Smile Analysis on the Moneyness Metric: Interpretation of the 

Second Rotated PC for 30-10. 
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Figure 4.75: Smile Analysis on the Moneyness Metric: Interpretation of the 

Second Rotated PC for 60-30. 
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Figure 4,76: Smile Analysis on the Moneyness Metric: Interpretation of the 

Second Rotated PC for 90-60, 
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Figure 4,77: Smile Analysis on the Moneyness Metric: Interpretation of the 

Second Rotated PC for 150-90. 
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Figure 4.78: Smile Analysis on the Moneyness Metric: Interpretation of the 

Second Rotated PC for 240-150. 
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Figure 4.79: Smile Analysis on the Moneyness Metric: Interpretation of the 

Second Rotated PC for 360-240. 

Table 4.12 shows the percentage of the variance that the first and second 

rotated PCs explain (as well as the percentage for the original first component) 

on the moneyness metric. We find that the parallel shock of the first component 

dominates in the shorter expiries of 30-10 and 60-30, while the Z-shaped shock 

explains more of the variance in the longer ones of 150-90, 240-150 and 360-240. 
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Range Year Unrot. 1st PC 1st PC 2nd PC Cumulative 
30-10 1992 73.30% 73.30% 11.10% 84.40% 

1993 77.80% 77.80% 8.10% 85.80% 
1994 85.70% 85.70% 6.40% 92.10% 
1995 73.00% 73.00% 11.10% 84.10% 
average 77.45% 77.50% 9.20% 86.60% 

60-30 1992 39.60% 36.00% 33.90% 69.90% 
1993 44.60% 44.40% 28.90% 73.30% 
1994 53.60% 53.20% 23.30% 76.50% 
1995 47.60% 44.70% 28.30% 73.10% 
average 46.35% 44.60% 28.60% 73.20% 

90-60 1992 48.80% 40.00% 36.10% 76.10% 
1993 46.80% 33.50% 43.90% 77.40% 
1994 44.20% 37.90% 35.90% 73.90% 
1995 39.70% 31.80% 33.50% 65.20% 
average 44.88% 35.80% 37.40% 73.20% 

150-90 1992 51.50% 19.90% 48.40% 68.30% 
1993 48.10% 19.60% 45.40% 65.00% 
1994 54.20% 34.00% 38.30% 72.30% 
1995 48.80% 25.50% 41.30% 66.90% 
average 50.65% 24.80% 43.40% 68.10% 

240-150 1992 69.20% 22.20% 59.00% 81.20% 
1993 68.70% 15.80% 63.20% 79.00% 
1994 63.40% 17.20% 63.10% 80.30% 
1995 60.70% 25.10% 48.40% 73.50% 
average 65.50% 20.10% 58.40% 78.50% 

360-240 1992 77.90% 14.90% 77.10% 92.00% 
1993 75.10% 50.70% 41.30% 92.00% 
1994 85.10% 24.50% 68.50% 92.90% 
1995 80.90% 16.80% 70.90% 87.70% 
average 79.75% 26.70% 64.50% 91.20% 

Table 4.12: Smile Analysis on the Moneyness Metric: Percentage of Variance 
Explained by the Unrotated first PC and by the Rotated PCs. 
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4.5 Serial Correlation and the use of the 

Differences 

At this point we should examine the appropriateness of having chosen to work 

with first differences in implied volatilities. Performing peA on the changes of 

implied volatilities was motivated by the idea that implied volatilities should 

be close to a random walk. The empirical literature on the serial correlation 

of the first differences of implied volatilities is slightly mixed. On the one hand, 

Brenner and Galai [26] find that the daily average at-the-money implied volatility 

is autocorrelated, but the first differences of it are not, as we would expect. 

On the other hand, negative serial correlation in the first differences of implied 

volatilities is likely to arise through non-synchronous data (as Harvey and Whaley 

[81] suggest) and from "bid-ask bounce" (see Roll [124]). 

Even though we have been careful to minimize the sources of measurement 

error in our data, serial correlation effects could hamper the efficiency of the peA. 

We investigated this by applying the following alternative method of filtering out 

the serial correlation: 

Let Crt be the observed implied volatility which is measured with noise, and at 

be the true implied volatility. Then, at = at + Ut, where Ut is the measurement 

error. Moreover, assume that at = </>at-l +Ct, where Ct are the white noise distur­

bances. The above two equations are equivalent to an ARMA(l,l) process (see 

Harvey [83]), i.e. at = </>at-l + 'TIt -{)1]t-l, where 1]t are white noise disturbances. 

We estimated this model and then we applied peA to 1]t, for several subsets of 

our data. After correcting for the serial correlation in this way, we obtained re­

sults from the peA which were very similar to those already reported. Hence, we 

can conclude that peA is reasonably robust to the fairly minor serial correlation 

present in our data set. We have preferred in the main body of the study to work 

with the original first differences of implied volatilities. 
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4.6 Comparing the Results from the Two 

Metrics 

In this section, we summarize how the results of the PCA differ between the two 

metrics. The number of variables that the PCA was applied to, the number of 

observations, and the correlations between the variables, are bigger for the strike 

metric. The assumption of multivariate normality was rejected for both metrics, 

somethi~g which necessitated the use of a non-parametric test for the number 

of PCs to be retained. This is Velicer's criterion, which retained either one or 

two PCs in both metrics, depending on the expiry that we looked at. Looking 

at another two criteria, we decided to keep two PCs in both metrics. Under the 

moneyness metric, the two retained PCs explained more of the total variance. 

They also had higher communalities than in the strike metric. 

However, only in the shortest expiries the retained PCs had a simple inter-
I 

pretation. Hence, a rotation had to be done. We chose a "Procrustes" type of 

rotation, so as the loadings of the first PC to be as fiat, as possible. In the strike 

metric, the rotation brought up the shift interpretation for the first PC in the 

ranges 30-10, 60-30, and 90-60. In the remaining buckets the first rotated PC 

had both positive and negative loadings. The second rotated PC had a Z-shape 

interpretation in all the expiries. In the moneyness metric, the rotation presented 

the first PC as being a parallel shift in the range 30-10. In the range 60-30, its 

shape was not far away from indicating a parallel shift, as well. In the remaining 

ranges, the rotated first PC had positive loadings (shift interpretation). On the 

other hand, the rotated second PC had a distinct Z-shape in all the ranges. The 

results about the interpretation of the unrotated and rotated PCs are presented 

in Tables 4.13 and 4.14, respectively. 

In general, the rotated PCs more frequently have an intuitive interpretation 

in the moneyness metric than in the strike metric. The fact that smiles are driven 

by two shocks, suggests that implied volatility smiles have non-trivial dynamics 

that can only be captured by a complex stochastic volatility model. This is 
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Metric Interpretation of the U nrotated PCs 
Strike 1st PC Shift in 30-10, and 60-30 (two years) 

Z-shape in the remaining ranges, and years 
2nd PC Z-shape in 30-10, 60-30, and for 1995 in all the ranges 

Triangular shape in the remaining ranges and years 
3rd PC Noise 

Moneyness 1st PC Shift in 30-10, and 60-30 
Z-shape in the remaining ranges 

2nd PC Z-shape in 30-10, and 60-30 
Shift in the other ranges (Triangular shape in the last two) 

3rd PC Mostly Noise 

Table 4.13: Smile Analysis: Summarized Results for the Interpretation of the 
Unrotated PCs in both Metrics. 

Metric Interpretation of the Rotated PCs 
Strike 1st PC Shift in 30-10, 60-30, and 90-60 

Both positive and negative loadings in the other ranges 
2nd PC Z-shape 

Moneyness 1st PC Shift in all the ranges and years 
2nd PC Z-shape 

Table 4.14: Smile Analysis: Summarized Results for the Interpretation of the 
Rotated PCs in both Metrics. 
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consistent with the results of Buraschi and Jackwerth [28], and Dumas, Fleming 

and Whaley [58]. 

4.7 Correlations between the Futures Price and 

the Principal Components 

So far, we have found simple parameterizations of the dynamics of the implied 

volatility smiles. In this section, we investigate the correlations between the per­

centage changes in the futures price and the changes of the principal components 

in each expiry bucket. Knowledge of these is necessary in order to complete the 

specification of the process for the evolution of implied volatilities (see Hull [91]). 

Table 4.15 presents the correlations between the proportional changes of the 

futures price (Ft+l - Ft) with the changes of each one of the first two rotated 
Ft 

principal components, for both the strike and moneyness metric3
(i. The correla-

tions are measured by the Pearson correlation coefficient Tp. Pearson's coefficient 

is calculated by the following expression: 

(4.14) 

where i = 1,2, ... , n, n is the number of observations, and X, Yare the averages 

of the two variables X, Y respectively. The values of Pearson's coefficient range 

from -1 to + 1, where the absolute value of the correlation coefficient indicates 

the strength of the relationship between the variables, with larger absolute val­

ues indicating stronger relationships. The sign of the coefficient indicates the 

direction of the relationship. To cope with the missing observations, Tp has been 

calculated by excluding cases pairwise, i.e. we exclude from the analysis cases 

with missing values for either, or both, of the pair of variables. 

35Given that the rotated components deliver a clear interpretation, we use those in order to 
calculate the correlations. We calculate the rotated components from equation (4.12). Since 
SPSS uses standardized components Z*, we have to calculate first the unstandardized compo­
nents Z. This is done by using the relationship Z*= ZL -'. 
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Since the correlations have been calculated from a specific sample, we test 

whether or not they are significantly different from zero. We use a two-tailed 

significance level; the null hypothesis is that the correlation coefficient is equal to 

zero, and the alternative is that the coefficient is different from zero. For the two­

sided tests, acceptance of the alternative hypothesis occurs when Irpl ;:::critical 

value which corresponds to the significance level. One asterisk is displayed when 

the correlation is significant at 5% significance level, and two asterisks are dis­

played when the correlation is significant at 10% significance level36. 

The first rotated PC is positively correlated with the underlying in the strike 

metric; the only exceptions are in the range 150-90 in year 1994, and in the ranges 

240-150, and 360-240 for the year 1992. On the other hand, the correlations are 

negative in the moneyness metric; the only exceptions occur in the range 360-

240 for the years 1993, 1994, and 1995. The correlations for the rotated second 

PC in most of the cases, are positive in the strike and moneyness metric. The 

exceptions appear in the strike metric in the range 240-150 for the year 1995, 

and in the range 360-240 for the year 1992. We investigated the scatterplots for 

the anomalous correlations and found that although there were some outliers, 

removing them did not affect the sign of the correlation (though in some cases it 

became insignificantly different from zero). 

The negative sign of correlation for the first rotated PC can be interpreted as 

a leverage effect (see Christie [33]), or in general it can be said that it is consis­

tent with the well-known fact that implied volatilities are negatively correlated 

with the market index returns (see Franks and Schwartz [69], Rubinstein [126], 

Schmalensee and Trippi [130])37. The positive sign of correlation for the second 

36Testing for the significance of the values of the PeBIson coefficient, is based on the assump­
tion that X and Y, are jointly normally distributed (see Clarke and Cooke [34]). We have also 
calculated the correlations by using the SpeBIman correlation coefficient. This is a nonpBIa­
metric version of the PeBIson coefficient, and captures non-lineBI association. However, the 
results for both coefficients were very similar, in terms of significance, size, and sign. Therefore, 
we report only the Pearson's results. 

37There is a caveat, since this is a sign of the correlation of the asset's price with the first PC; 
not of the correlation coefficient between the asset and the volatility process. The correlation 
between the two processes is a function of the strike (moneyness YBIiable) and of the time to 
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Range 1992 1993 1994 1995 
30-10 Strike b.PC1 0.04 -0.06 -0.18 -0.01 

b.PC2 0.38** 0.34** 0.48** 0.00 
Moneyness b.PC1 -0.40** -0.52** -0.65** -0.42** 

b.PC2 0.12 0.01 0.05 -0.06 

60-30 Strike b.PC1 0.23** 0.11 -0.10 0.19* 
b.PC2 0.31** 0.31 ** 0.36** 0.06 

Moneyness b.PC1 -0.35** -0.38** -0.58·* -0.41·* 
b.PC2 0.24·* 0.22·* 0.25·* 0.11 

90-60 Strike b.PC1 -0.15 0.20· 0.10 0.29** 
b.PC2 0.32** 0.27·* 0.39** 0.15 

Moneyness b.PC1 -0.36** -0.49** -0.49** -0.37** 
6.PC2 0.25* 0.17 0.33** 0.37** 

150-90 Strike b.PC1 0.30** 0.23** -0.35** 0.28·* 
6.PC2 0.36·* 0.36· 0.24** 0.28·* 

Moneyness b.PC1 -0.28** -0.31** -0.19* -0.32*· 
b.PC2 0.33·* 0.26** 0.37** 0.16 

240-150 Strike b.PC1 -0.31·· 0.12 0.30** 0.34** 
b.PC2 0.15* 0.38*· 0.38** -0.17* 

Moneyness b.PC1 0.08 0.04 -0.28** 0.08 
b.PC2 0.28** 0.36** 0.37** 0.38** 

360-240 Strike b.PC1 -0.38** 0.33** 0.33** 0.05 
b.PC2 0.04 0.40** 0.41** 0.27** 

Moneyness b.PC1 -0.45** 0.33** 0.14 0.27* 
6.PC2 0.31·* 0.35** 0.47** 0.52** 

Table 4.15: Smile Analysis: Correlations between Percentage Changes of the 
Futures Price with Changes of the Rotated PCs on the Strike and Moneyness 
Metric. 
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rotated PC implies that when the asset price falls (rises), the twist in the volatil­

ity smile decreases (increases), i.e. the high strike implied volatilities increase less 

(more) than the low strikes ones. 

The following proposition shows that the sign of the correlation changes as we 

change metrics, when some conditions are met. This confirms that the dynamics 

of implied volatilities depend on the metrics that we consider. 

Proposition 1 The correlation in the moneyness metric will be negative if 

, COVstrike 
O"t+1 < - Var(t1F) 

and positive if the inequality is reversed. 0";+1 is the first derivative of the smile 

evaluated at a point K, and COVstrike is the covariance in the strike metric. 

Proof. Since the correlation has the same sign as the covariance, the problem is 

reduced to looking at the covariance between 1lO"t = O"t+1 - O"t and 1lF under both 

metrics. The covariance in the strike metric is COVstrike = Cov(t1O"t(K), t1F). 

Then, in the moneyness metric, for a given moneyness level we have Covmon = 
Cov[O"t+l(K + 1lF) - O"t(K), ~F]. Expanding O"t+1(K + t1F) as a Taylor series 

of order one around a point K we get: Covmon = Cov[O"t+1(K) + ~FO";+1 -

O"t(K), ~F] = COVstrike + 0";+1 Var(t1F). 

Therefore, whether the correlation sign is going to alter as we change metrics, 

depends on the slope of the skew, the point around which we do the expansion, 

and the variance of ~F . 

• 
Finally, the magnitude of the correlations varies randomly over years and over 

expiries. This is similar to the findings of Clewlow and Xu [37]; It is not surprising 

because we expect the correlation to be a stochastic process, since the variance 

is a stochastic process, as well (see Engle and Mezrich [66]). 

maturity and therefore its sign and value may, or may not be the same as, Pl and P2. However, 
the fact that the second rotated PC has both positive and negative loadings, implies that its 
impact to the average implied volatility is almost zero. Hence, the sign of the correlation for 
the first PC determines the sign of the overall correlation for the average implied volatility. 
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4.8 Conclusions 

In this chapter we have investigated the dynamics of implied volatility smiles. We 

applied Principal Components Analysis (peA) to the first differences of implied 

volatilities for six fixed ranges of days to expiry for the years 1992-1995. In 

particular, we answered three questions: what is the number of shocks that drive 

the smiles, what is their interpretation and what is their correlation with changes 

in the underlying asset. This is the first step in order to understand the dynamics 

of the more complex implied volatility surface. 

We applied PCA under two metrics: the strike and the moneyness. This is be­

cause there are theoretical reasons which suggest that each metric may be relevant 

for our study. After considering three criteria (Velicer's criterion, communalities, 

interpretation), we found that two components could be reliably extracted. We 

constructed a Procrustes rotation, so as to obtain a clean interpretation of them. 

The first rotated component can be interpreted as a parallel shift, and the second 

as a Z-shape twist. These results were similar for both metrics. The two compo­

nents explained between 56% and 85% of the variance in the strike metric, and 

between 65% to 92% in the moneyness metric. 

Finally, we looked at the correlations between the changes of the futures price 

and each one of the first two rotated PCs in the strike and the moneyness metric. 

We found that the correlation for the first rotated PC is positive in the strike 

metric, and negative in the moneyness metric. The correlation for the second 

rotated PC is positive in both metrics. 

The results from the smile analysis suggest that implied volatility smiles have 

non-trivial dynamics that can only be captured by a complex stochastic volatility 

model. This confirms the findings of other authors, e.g. Buraschi and Jackwerth 

[28] and Dumas, Fleming and Whaley [58], that deterministic volatility models 

are not capable of representing the dynamics of the volatility surface. Moreover, 

the smile analysis is a necessary step before examining the dynamics of the more 

complex volatility surface (Jackwerth and Rubinstein [95]). The results from the 
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analysis of separate smiles, can be used as a check of the robustness of the results 

that we will get from applying the peA to the whole implied volatility surface. 

This will be done in the next chapter. 
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Chapter 5 

The Dynamics of Implied 

Volatility Surfaces 

5.1 Introduction 

In this Chapter, we extend the analysis of the previous chapter in order to model 

the entire volatility surface rather than a single volatility smile (skew) at a timel. 

By doing so, we incorporate the effect of the term-structure on the dynamics 

of implied volatilities. It may be the case that short and long-term implieds 

are driven by different shocks (see Xu and Taylor [149]). This could result in 

a different number (and possibly shape) of shocks driving the whole implied 

volatility surface from those driving individual smiles. 

Just as the previous Chapter, the investigation of the dynamics of the implied 

volatility surface is also motivated by the already described literature on smile­

consistent stochastic volatility no-arbitrage models (see Chapter 2 and Section 

4.1). However, the result~ from this Chapter allow us to hedge portfolios of 

options with different expiries which are subject to the same shock (rather than 

different shocks, as it was the case in Chapter 4). 

IThis also parallels work on implementing the HJM term structure model where Litterman 
and Scheinkman [107] and others, have applied Principal Components Analysis to analyze 
innovations in the yield curve. 
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We are able to identify two factors which explain about 60% of the variance. 

The first factor is interpreted as an essentially parallel shift and the second as a 

Z-shaped twist. Our results are remarkably consistent across years. To imple­

ment a "smile-consistent" no-arbitrage stochastic volatility model for the pricing 

and hedging of futures options we need three factors. One is required for the 

underlying asset, and the two more for the implied volatility. A related paper 

by Kamal and Derman [102] has also investigated the same issue. They have 

used a different data set and a somewhat different methodology; their results are 

markedly different from ours. We comment further on the differences between 

the two studies in the concluding section of the chapter. 

The Chapter is structured in Six Sections. In the second, and third section 

we apply Principal Components Analysis to the strike and moneyness metric. 

We decide on how many components we should retain. Then, we interpret them 

by rotating them, so as to get a clean and consistent across years interpretation. 

In the fourth section, we compare the results from the two metrics. In the fifth 

section, we calculate the correlations between the changes of the principal compo­

nents and the underlying asset price, under the two metrics. In the sixth section, 

we present concluding remarks and implications. 

5.2 peA on the Strike Metric 

5.2.1 Determining the Expiry Buckets 

In order to look into the dynamics of implied volatilities as a surface for a given 

year (surface analysis), we first choose the expiry buckets, and then the strike 

(moneyness) levels for each bucket. Finally, all the variables are brought together 

to perform the PCA. However, the original expiry buckets, used in the analysis 

of the dynamics of individual smiles, gave rise to a problem with this pooled 

analysis. Their spacing was too fine, so that we had insufficient dates with data 

points in every expiry range. Therefore, we redefine the new expiry buckets to 
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Year Number of Variables Number of Observations KMO 
92 26 182 0.89402 
93 26 198 0.87585 
94 32 187 0.89416 
95 20 103 0.77463 

Table 5.1: Surface Analysis on the Strike Metric: Number of Variables, Number 
of Observations and the KMO measure. The numbers have been calculated across 
poth strikes and expiries. 

Year Variable n Skewness Ex. Kurtosis Test Value P-value 
92 4209.1 1 247 0.336 5.323 296.255 0.0000 
93 4409.1 1 251 -0.898 7.067 556.0498 0.0000 
94 4409.1 1 245 0.269 6.419 423.5744 0.0000 
95 5101.9 1 235 0.458 3.925 159.0625 0.0000 

Table 5.2: Surface Analysis on the Strike Metric: Bera-Jarque Test for Univariate 
Normality. XA.B-1 denotes the differenced once implied volatilities corresponding 
to strike level X, in the range B-Aj B,A are the first digits of the three ranges 
that we examine. 

90-10, 180-90 and 270-180 days to expiry. Table 5.1 shows that these intervals 

give us a satisfactory number of observations (not less than 100), they permit us 

to measure smiles across a wide range (not less than 20 variables), and they have 

a high KMO coefficient, once they are pooled together. 

5.2.2 Number of Retained Principal Components and a 

First Interpretation 

Testing for Normality 

Next, we check the null hypothesis of univariate normality by using the BJ test. 

Table 5.2 shows that the null is rejected. Consequently, we can not use the tests 

which are based on the assumption of multivariate normality, in order to decide 

on the number of components to retain. 
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Year fo f1 f2 f3 r* l 1st PC 2nd PC 
92 0.18141 0.18070 0.18069 0.18080 2 6 42.5% 12.9% 
93 0.14154 0.14097 0.14091 0.14096 2 5 37.5% 12.7% 
94 0.05127 0.05112 0.05116 0.05117 1 6 40.8% 9.8% 
95 0.12350 0.12288 0.12255 0.12265 2 5 29.9% 23.7% 
average 37.6% 14.7% 

Table 5.3: Surface Analysis on the Strike Metric: r* = number of components 
retained under Velicer's criterion (minimum £O, ... ,f3), 1 = number of components 
retained under rule of thumb with percentage of variance explained by compo­
nents 1-3. 

Velicer's Criterion 

We decide on the number of PCs to be retained, by applying the variety of 

criteria that we used in the smile analysis (Velicer's criterion, communalities 

and interpretation). In Table 5.3 we show the results from applying Velicer's 

criterion and the mean eigenvalue rule of thumb. We also show the percentage 

of the variance explained by each one of the first three PCs. We can see that 

Velicer's criterion keeps one PC in year 1994, and two PCs in the other years. 

The reduction in the dimensionality of the variables is legitimate, since fo > II. 
The mean eigenvalue rule of thumb retains too many PCs. This shows why we 

should not rely on such ad-hoc rules (see Jackson [93]). The average, across the 

years, explained by the two components variance is 52.5%. 

Communalities 

Table D.l, (Appendix D) shows the communalities explained by the first three 

(rather than two) PCs in year 1994. This is because there are certain cases that 

two retained PCs seem to perform poorly in terms of the explained communalities, 

e.g. in the range 90-10 for the strikes 435, 440, 465, and 470; therefore, one could 

argue that the inclusion of the third PC should be considered. 

However, it is not clear that adding the third PC in these cases, improves 

substantially the explained communalities. In some cases the explained commu­

nality is only marginally improved, (e.g. for the variable 465 in the range 90-10), 
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and in some others there is a significant increase (e.g. for the variable 440 in 

90-10). In general, retaining the third PC does not seem to be necessary for the 

vast majority of the variables. This is true for the other years, as well. 

Interpretation of the Components 

Figures 5.1-5.3 show the correlation loadings of the first PC. This has a Z-shape 

in all the ranges, apart from 90-10 in the years 1994, and 1995. 
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Figure 5.1: Surface Analysis on the Strike Metric: Interpretation of the First 

PC for 90-10. 
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Figure 5.2: Surface Analysis on the Strike Metric: Interpretation of the First 

PC for 180-90. 
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Figure 5.3: Surface Analysis on the Strike Metric: Interpretation of the First 

PC for 270· 180. 

Figures 5.4-5.6 show the interpretation of the second PC. In the range 90-10, 

it has a shift interpretation. In the longer expiry ranges, it has a triangular shape 

for the years 1992, 1993 and 1994, and a Z-shape in the year 1995. It is worth 

noting that this triangular shape was also apparent in the smile analysis in the 

strike metric for the expiries with more than 90 days. This similarity should not 

surprise US; we can think of the pooled expiries as some kind of average of the 

individual ones. 
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Figure 5.4: Surface Analysis on the Strike Metric: Interpretation of the Second 

PC for 90-10. 
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Figure 5.6: Surface Analysis on the Strike Metric: Interpretation of the Second 

PC for 270-180. 

Figures 5.7-5.9 show that the third PC is just noise. Hence, all the criteria 

that we have applied suggest that two PCs are adequate in explaining the implied 

volatility surface dynamics, in the strike metric. 
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Figure 5.7: Surface Analysis on the Strike Metric: Interpretation of the Third 

PC for 90-10. 
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Figure 5.8: Surface Analysis on the Strike Metric: Interpretation of the Third 

PC for 180-90. 
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Figure 5.9: Surface Analysis on the Strike Metric: Interpretation of the Third 

PC for 270-180. 

Next, we compare (roughly) the amount of variance explained by the retained 

PCs in each year, in the smile and the surface analysis2
. In order to do this, we 

compute from Table 4.4 for each year, the average, across the separate expiries, 

2This is not an exact comparison, since the ranges for the separate expiries in the Smile 
analysis, are not the same as the ranges that we use for the Surface analysis. 
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Year 1st PC 2nd PC Cumulative 
92 52.8% 14.61% 67.41% 
93 50.6% 16.51% 67.11% 
94 47.96% 16.4% 64.36% 
95 51.46% 17.8% 69.26% 
average 50.7% 16.33% 67.03% 

Table 5.4: Constructed "Pooled" Variance explained by the retained PCs. 

explained variance. In that way, we construct a "pooled" variance for each year 

(we will call this the constructed "pooled" variance in contrast to the actual 

"pooled" variance that we find from applying the PCA to the implied volatility 

surface). 

The constructed "pooled" variance is shown in Table 5.4. Comparing Tables 

5.3, and 5.4 we can see that for the first PC the constructed" pooled" variance is 

bigger than the actual. We would not expect to be the same, since the constructed 

"pooled" variance can not be measured just by a simple average; a weighted 

average, whose weights are unknown, has to be used, instead. For the second 

PC, the constructed and actual variances are quite similar. lIenee, it seems that 

a simple average is a satisfactory measure for the constructed "pooled" variance 

for the second PC. 

5.2.3 Interpretation of the Rotated Components 

Given that the shapes of the retained two PCs are not consistent across years 

and expiries, we apply our "Procrustes" type rotation. Figures 5.10-5.12 show 

the shape of the first rotated PC across the individual expiries3• We can see that 

in the range 90-10, it has a shift interpretation in the years 1992, 1993 and 1995. 

In the year 1994 it has a shift interpretation for all, but the extreme strikes. In 

the other two ranges, the first PC has a triangular shape in every year (it has 

3 Alternatively, rather than showing the cross-sections of loadings for each expiry range, we 
could have plotted the estimated PCs across both strike levels and expiries for each year. The 
two ways of plotting the results reveal the same information. We prefer the cross-sectional way 
because we can not plot a proper surface of loadings with only three expiry ranges. 
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been flipped over for the year 1994)4. In general, the shape of the first rotated 

PC is very similar to that of the second unrotated PC. The size of its effect is 

bigger for the shorter expiries. Figures 5.13-5.15 show the shape of the second 

rotated PC. In the range 90-10, has a Z-shape in 1992, and it is a shift in the 

other years. In the other two ranges it has a Z-shape. The magnitude of the 

second PC is greatest for the longer expiries. 
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Figure 5.10: Surface Analysis on the Strike Metric: Interpretation of the First 

Rotated PC for 90-10. 
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4Notice that in contrast to the smile analysis, we can not reverse the sign of the first PC in 
a separate expiry bucket. 
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Figure 5.11: Surface Analysis on the Strike Metric: Interpretation of the First 

Rotated PC for 180-90. 
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Figure 5.12: Surface Analysis on the Strike Metric: Interpretation of the First 

Rotated PC for 270-180. 
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Figure 5.13: Surface Analysis on the Strike Metric: Interpretation of the Second 

Rotated PC for 90-10. 
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Figure 5.14: Surface Analysis on the Strike Metric: Interpretation of the Second 

Rotated PC for 180-90. 
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Figure 5.15: Surface Analysis on the Strike Metric: Interpretation of the Second 

Rotated PC for 270-180. 

In Table 5.5 we show the percentage of the variance explained by each one 

of the two rotated PCs, and the cumulative explained variance (as well as the 

percentage for the original first component). We can see that the first rotated 

PC explains less amount of variance than the second rotated one. 
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Year Unrot. 1st PC 1st PC 2nd PC Cumulative 
92 52.8% 13.4% 42% 55.4% 
93 50.6% 17.3% 33% 50.3% 
94 47.96% 11.5% 39% 50.5% 
95 51.46% 28.4% 25.2% 53.6% 
Average 50.7% 17.6% 34.8% 52.5% 

Table 5.5: Surface Analysis on the Strike Metric: Percentage of Variance Ex­
plained by the Unrotated first PC and by the Rotated PCs. 

Year 90-10 180-90 270-180 
92 Minimum 1.18% 2.377% 2.377% 

Chosen 1.2% 2.4% 2.4% 

93 Minimum 1.147% 2.295% 2.295% 
Chosen 1.2% 2.3% 2.3% 

94 Minimum 1.073% 2.146% 2.146% 
Chosen 1.2% 2.2% 2.2% 

95 Minimum 1.083% 2.16% 2.16% 
Chosen 1.2% 2.2% 2.2% 

Table 5.6: Surface Analysis on the Moneyness Metric: Minimum and Chosen 
Step-Size for the Moneyness Metric. 

5.3 peA on the Moneyness Metric 

5.3.1 Preliminary Descriptives 

The moneyness metric in the surface analysis, is constructed just as in the smile 

analysis. The spacing between the moneyness levels has to be set so as to avoid 

inducing any spurious correlation between the interpolated implied volatilities 

(minimum step size). The final choice for the step-size (chosen step-size) was 

made after considering the number of variables on which we would perform the 

peA (see Section 4.4.1). Table 5.6 shows the minimum and chosen step-size 

between the moneyness levels. The range of moneyness varies from -18% up to 

6%, depending on the year that we look at. 

Table 5.7 shows the number of variables, the number of observations, and the 

KMO for the surface analysis on the moneyness metric. These make us to expect 
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Year Number of Variables Number of Observations KMO 
92 24 125 0.85493 
93 23 108 0.85693 
94 25 129 0.86127 
95 25 105 0.83056 

Table 5.7: Surface Analysis on the Moneyness Metric: Number of Variables and 
Observations and the KMO measure. The numbers have been calculated across 
both strikes and expiries. 

Year Variable n Skewness Ex. Kurtosis Test Value P-value 
92 N4.8 1 1 207 0.237 3.247 92.8713 0.0000 
93 P2.4 9 1 243 0.261 4.178 176.1297 0.0000 
94 P2.2 1 1 237 -0.059 5.161 263.1672 0.0000 
95 N15.4 2 1 195 0.523 3.424 104.1454 0.0000 

Table 5.8: Surface Analysis on the Moneyness Metric: Bera-Jarque Test for Uni­
variate Normality. P (N) X-A-1 denotes the differenced once implied volatilities 
corresponding to plus (minus) moneyness level X for the expiry range with upper 
limit A. 

reliable results from the peA. 

5.3.2 Number of Retained Principal Components and a 

First Interpretation 

Testing for Normality 

Just as we did in the strike metric, we apply once more the BJ test, so that to 

see whether or not multivariate normality holds. Table 5.8 shows that the null 

hypothesis of univariate normality is rejected for all the years. 

Velicer's Criterion 

In Table 5.9 we show the results from applying Velicer's criterion and the mean 

eigenvalue rule of thumb. We also show the percentage of the variance explained 

by each one of the first three PCs. We can see that in every year, the criterion 

keeps two PCs, while the reduction in the dimensionality of the variables is le­

gitimate, since 10 > II. The mean eigenvalue rule of thumb retains again too 
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Year fo fl f2 f3 r* 1 1st PC 2nd PC 
92 0.18474 0.18384 0.18362 0.1838 2 4 38.6% 22.7% 
93 0.17218 0.17141 0.17109 0.17132 2 4 34.5% 26.7% 
94 0.1894 0.18842 0.1884 0.18851 2 6 40.6% 19.2% 
95 0.17256 0.17127 0.17116 0.17136 2 4 39.2% 18.3% 
average 38.2% 21.7% 

Table 5.9: Surface Analysis on the Moneyness Metric: r* = the number of com­
ponents retained under Velicer's criterion (minimum of £0, ... ,£3), I = number of 
components retained under rule of thumb with percentage of variance explained 
by components 1-3. 

many PCs. The two PCs explain on average, across the years, 60% of the total 

variance. Compared to the strike metric (see Table 5.3), the cumulative variance 

is bigger in the moneyness metric with the difference ranging from 4% up to 10%. 

This difference is stemming from the higher amount of variance explained by the 

second PC in the moneyness metric. 

Communalities 

Table E.l (Appendix E) shows that the explained by the first two PCs commu­

nalities in year 1994, are satisfactory. The exceptions are for the at-the-money 

variables in the ranges 180-90 and 270-180. In these ranges, the explained by the 

two PCs communalities were low (only 4.71% and 1.23%, respectively). However, 

even if we add the third PC, the explained communalities would have risen only 

to 17.82% and 4.02%, respectively. There is a similar pattern for the other years, 

as well. Therefore, the communalities criterion suggests that we should keep two 

PCs in the surface analysis in the moneyness metric. 

Interpretation of the Components 

Figures 5.16-5.18, and 5.19-5.21 show the interpretation of the first and second 

PCs in the moneyness metric. We can see that the PCs do not have a consistent 

shape across years and expiries. The first PC has a Z-shape in the range 90-10 for 

the years 1992 and 1993. However, in the same range, it has a shift interpretation 

for the years 1994 and 1995. In the ranges 180-90 and 270-180, it has a Z-shape 
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in 1992 and 1993, but it has been flipped over in 1994 and 1995. 
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Figure 5.16: Surface Analysis on the Moneyness Metric: Interpretation of the 

First PC for 90-10. 
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Figure 5.17: Surface Analysis on the Moneyness Metric: Interpretation of the 

First PC for 180-90. 
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Figure 5.18: Surface Analysis on the Moneyness Metric: Interpretati<;m of the 

First PC for 270-180. 

The second PC, in general, has a shift interpretation across years and all the 

ranges. The exceptions occur in the range 90-10 for the year 1995, and in the 

range 270-180 for 1994. 
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Figure 5.19: Surface Analysis on the Moneyness Metric: Interpretation of the 

Second PC for 90-10. 
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Figure 5.20: Surface Analysis on the Moneyness Metric: Interpretation of the 

Second PC for 180-90. 
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Figure 5.21: Surface Analysis on the Moneyness Metric: Interpretation of the 

Second PC for 270-180. 

Figures 5.22-5.24 reveal that the shape of the third PC across the years and 

expiries is noise. Hence, all the criteria that we applied, suggest that two PCs are 

adequate in explaining the implied volatility surface dynamics in the moneyness 

metric, just as in the strike metric. 
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Figure 5.22: Surface Analysis on the Moneyness Metric: Interpretation of the 

Third PC for 90-10. 
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Figure 5.23: Surface Analysis on the Moneyness Metric: Interpretation of the 

Third PC for 180-90. 
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Year 1st PC 2nd PC Cumulative 
92 60.05% 18.56% 78.61% 
93 60.18% 18.6% 78.78% 
94 64.36% 16.93% 81.29% 
95 58.3% 16.63% 74.93% 
average 60.72% 17.68% 78.4% 

Table 5.10: Constructed "Pooled" variance explained by the retained PCs. 
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Figure 5.24: Surface Analysis on the Moneyness Metric: Interpretation of the 

Third PC for 270-180. 

Table 5.10 shows the constructed "pooled" variance in the moneyness metric. 

We can see that, as it was the case in the strike metric, the actual "pooled" 

variance is less than the constructed "pooled" variance for the first PC (see 

Table 5.9). On the other hand, the actual and constructed "pooled" variances 

are similar for the second PC. 

5.3.3 Interpretation of the Rotated Components 

Given that the shape of the two retained PCs does not have a consistent interpre­

tation, we will apply our rotation method. Figures 5.25-5.27 show the shape of 

the first rotated PC. The first PC moves the implied volatility surface consistently 

across ranges and across years, and its shape 'approaches' the shift interpreta-
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tion. The figures also show that the effect of the shift component attenuates with 

expiry. 
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Figure 5.25: Surface Analysis on the Moneyness Metric: Interpretation of the 

First Rotated PC for 90-10. 
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Figure 5.26: Surface Analysis on the Moneyness Metric: Interpretation of the 

First Rotated PC for 180-90. 
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Figure 5.27: Surface Analysis on the Moneyness Metric: Interpretation of the 

First Rotated PC for 270-180. 

Figures 5.28-5.30 reveal the shape of the rotated second PC. The second PC, 

in general, has a Z-shape across ranges and years (even though it has a shift 

interpretation in the range 90-10 in the years 1993, 1994 and 1995) . There is not 

much sign of attenuation with expiry. 
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Figure 5.28: Surface Analysis on the Moneyness Metric: Interpretation of the 

Second Rotated PC for 90-10. 
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Figure 5.29: Surface Analysis on the Moneyness Metric: Interpretation of the 

Second Rotated PC for 180-90. 
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Figure 5.30: Surface Analysis on the Moneyness Metric: Interpretation of the 

Second Rotated PC for 270-180. 

Our analysis shows that the implementation of a" smile-consistent" no-arbitrage 

stochastic volatility model suggests the need for three factors. One is required 

for the underlying asset, and two more for the implied volatility. The loadings of 

the two PCs may be useful for volatility risk management, even though we do not 

know whether they will be stable (in fact, they exhibit some variability over the 
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Year Unrot. 1st PC 1st PC 2nd PC Cumulative 
92 38.6% 22.7% 38.6% 61.4% 
93 34.5% 26.9% 34.3% 61.2% 
94 40.6% 19.5% 40.4% 59.5% 
95 39.2% 18.4% 39.2% 57.5% 
Average 38.2% 21.8% 38.1% 60% 

Table 5.11: Surface Analysis on the Moneyness Metric: Percentage of Variance 
Explained by the Unrotated First PC and by the Rotated PCs. 

years). With this type of factor model, the definition of vega can be generalized 

to the sensitivities to each one of the volatility shocks. 

Table 5.11 shows the percentage of the variance explained by the rotated first 

and second PCs. \Ve find that after the rotation, it is not the shift which has the 

dominant effect on the implied volatility surface, but the second PC. 

5.4 Comparing the Results from the Two 

Metrics 

In this section, we compare the results of the PCA to the implied volatility surface 

between the two metrics. The number of variables that the PCA was applied to, 

the number of observations after the listwise deletion, and the KMO coefficients, 

were bigger for the strike metric, apart from year 1995. The assumption of 

multivariate normality was rejected for both metrics. This required the use of 

Velicer's criterion in order to decide on the number of PCs to retain. After 

considering three criteria, we decided that we should retain two PCs. In Table 

5.12 we show the general interpretation of the unrotated PCs in both metricsj 

their interpretation was not consistent across expiries, and years. 

The average, across the years, variance that the unrotated PCs explained in 

both metrics is shown in Table 5.13. We can see that the PCs in the moneyness 

metric explained more of the variance than in the strike metric. This is similar 

to what we found in the smile analysis. 

Table 5.14 shows the general interpretation of the rotated PCs in both metrics. 
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Metric 
Strike 1st PC Z-shape, Noisy in 1994 for 90-10 

2nd PC Shift, Noisy in 1994 
3rd PC Noise 

Moneyness 1st PC Z-shape for 1992, and 1993. Shift in 90-10 for 1994, 1995 
Z-shape for the other ranges 

2nd PC Shift 
3rd PC Noise 

Table 5.12: Summarized Results for the Interpretation of the Unrotated PCs in 
the Surface Analysis in both Metrics. 

Metric AvVar IstPC AvVar 2ndPC Cumulative 
Strike 37.6% 14.7% 52.5% 
Moneyness 38.2% 21.7% 60% 

Table 5.13: Summary of the Average Variance that the Retained Unrotated PCs 
explain in the Surface Analysis in both Metrics. 

The rotated first PC corresponded to a shift, and the second corresponded to a 

Z-shaped twist. It is worth recognizing that the interpretation of the first rotated 

PC was very close to the original second PC. Moreover, after the rotation it was 

not the first PC which explained most of the variation of the implied volatility 

surface, but the second one. Finally, considering the size of the effect of the 

rotated PCs across the expiries, the first PC affected more the shorter range 

implied volatilities in both metrics. On the other hand, the second PC affected 

more the longer ranges' implied volatilities, in both metrics. 

Metric 
Strike 1st PC Shift; For 180-90, 270-180 the shift has a triangular shape 

2nd PC Z-shape 
Moneyness 1st PC Shift 

2nd PC Z-shape, shift for 1993, 1994, 1995 in 90-10 

Table 5.14: Summarized Results for the Interpretation of the Rotated PCs in the 
Surface Analysis in both Metrics. 
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5.5 Correlations of the Changes of the Futures 

Price with the Changes of the PCs under 

the Two Metrics 

We calculate the correlations between the percentage changes of the futures price 

and the changes of the rotated PCs, by using the futures price from each expiry 

range and the common "pooled" PC. The correlations are calculated with the 

Pearson coefficient. One asterisk is displayed when the coefficient is significant 

at 5% significance level, and two asterisks are displayed when the coefficient is 

significant at 10% significance level. 

In Table 5.15 we show the correlations between the percentage changes of the 

futures price and the changes of each one of the first two rotated PCs for both 

the strike and moneyness metric. In the strike metric, the correlation is positive 

for both the PCs (even though the correlation for the first PC is insignificant for 

year 1992). In the moneyness metric, the correlation for the first PC is negative 

(leverage effect), while for the second PC is positive, apart from year 1993. We 

investigated the scatterplots in order to explain the change of sign in the calcu­

lated correlations for year 1993. Although there were some outliers, removing 

them did not affect the sign of the correlation. The sign of the correlations in the 

moneyness metric, is the same for both the smile and the surface analysis (see 

Table 4.15). 

Moreover, the magnitude of the correlations varies randomly over years. The 

instability of the correlations poses problems for the implementation of models 

such as Ledoit and Santa-Clara's [106]. 

5.6 Conclusions 

In this Chapter, we have investigated the dynamics of implied volatilities sur­

faces of the S&P 500 Futures Options by applying Principal Components Analy-
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Range 92 93 94 95 
90-10 Strike b.PCl 0.13 0.09 -0.11 0.26** 

b.PC2 0040** 0.33** 0.06 0.24* 
Moneyness b.PCl -0.28** -0.36** -0.56** -0.29** 

b.PC2 0.35** -0.32** 0.16 0.26* 

180-90 Strike b.PCl 0.11 0.14 0.26** 0.26* 
b.PC2 0041** 0.36** 0.38** 0.26* 

Moneyness b.PCl -0.29** -0.27** 0.03 -0.29** 
b.PC2 0.35** -0.43** 0.27** 0.26* 

270-180 Strike b.PCl 0.11 0.15* 0.26** 0.23* 
b.PC2 0.41** 0.37** 0.36** 0.26** 

Moneyness b.PC1 -0.27** -0.28** 0.06 -0.31** 
b.PC2 0.35** -0.45** 0.27** 0.27** 

Table 5.15: Surface Analysis: Correlations between Changes of the Futures Price 
with Changes of the Rotated PCs on the Strike and Moneyness Metric. 

sis (PCA). This provides important insights into the behavior of traded option 

prices, and it is a prerequisite for the future development of models to realistically 

portray the dynamics of implied volatility surfaces. 

The PCA was performed on the first differences of implied volatilities mea­

sured under the strike and the moneyness metric. After considering three criteria 

(Velicer's criterion, communalities, interpretation), we found that two compo­

nents could be reliably extracted. We next applied a novel form of " Procrustes" 

rotation to the components, so as to obtain a clear interpretation for them. The 

first component can be interpreted as a parallel shift, and the second as a Z-shaped 

twist. These results were in most cases very consistent for the four separate years 

1992, 1993, 1994 and 1995. On average, the two factors explained 53% and 60% 

of the surface variation in the strike and moneyness metric, respectively. 

Our results have further implications. First, running PCA analysis both on 

individual volatility smiles and on the whole volatility surface gave consistent 

results on both the number of factors (two) and their interpretation. In this 

respect, the term structure of implied volatilities does not affect the dynamics of 

implieds. However, we have to bear in mind that the magnitude of shocks may 
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differ between the individual smiles and the surface. The fact that we had to 

use different expiry ranges for the smile and the surface analysis does not allow 

us to draw a definite conclusion on the effect of the maturity dimension on the 

dynamics of implied volatilities. 

Second, the results again confirm the findings of other authors, e.g. Buraschi 

and Jackwerth [28], and Dumas, Fleming and Whaley [58], that deterministic 

volatility models are not capable of representing the dynamics of the volatility 

surface. Third, our results are in contrast with Kamal and Derman's [102]. They 

analyze the dynamics of implied volatilities of over the counter (OTC) S&P 500 

and Nikkei 225 Index options. They find that three PCs explain about 95% of 

the variance of the volatility surface. Their interpretation is a level of volatilities 

for the first PC, a term structure of volatilities for the second PC and a skew for 

the third. Their results suggest that a four factor model for pricing and hedg­

ing options under a stochastic volatility "smile consistent no-arbitrage pricing" 

type model is an appropriate one. Our work, identifies a model with one less 

factor, but cautions that the factor structure has higher dimensionality since it 

explains only 60% of the surface variation5• Despite considerable care and effort 

to eliminate the main sources of measurement error in the traded market data 

and to minimize its effects, the market futures option data seem to exhibit a nois­

ier volatility structure than that estimated from the quotations for OTC index 

options provided by Goldman and Sachs traders. Portfolios of options modelled 

as riskless under a three or four factor models, may in fact exhibit substantial 

market risk. 

Finally, just as Fung and Hsieh [70] and Tompkins [143] have shown that 

the typical smile structure depends on the particular underlying asset, it seems 

certain that the dynamics of the volatility surface must also be specific to the 

51t is worth noting that our model has similarities to that used recently in a time series 
analysis of index returns by Gallant, Chien and Tauchen [711. Using daily data on close-to­
close price movements and the high/low spread, they find that a model with two stochastic 
volatility shocks plus the underlying asset component, fits the data very well, and in particular 
it mimics the long-memory feature of volatility. 
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choice of asset6• The proper test of all such models lies in out-of-sample hedging 

analysis. This is well beyond the scope of the current study, but deserves to 

become a topic for future research. 

6For example, short maturity options on indices display an implied volatility skew, while 
options on foreign currency exhibit an implied volatility smile. 
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Chapter 6 

A New Method for Simulating 

the Evolution of the Implied 

Distribution 

6.1 Introduction 

There are two approaches that can be taken for the construction of an option 

pricing model. The first approach specifies the process for the underlying asset 

in advance, and then the model is developed. The simplest example of this 

approach is the Black-Scholes [20] model, which assumes a lognormal diffusion 

with constant volatility for the underlying. Richer processes which include either 

stochastic volatility (see among others Hull and White [90], Johnson and Shanno 

[101], Scott [131]), or jumps (see Bates [10] Merton [113]), or both (see Bates [11], 

[12], Scott [132]), can give rise to implied volatility patterns which are somewhat 

similar to the ones observed. However, none of these models fully explains the 

empirically observed implied volatilities (see Das and Sundaram [47], Taylor and 

Xu [141]). 

The second approach reverses the option pricing problem. Rather than speci­

fying the asset process exogenously, it starts from the observed European option 

185 



prices and it implies the process from them (implied process). There are two 

streams of literature falling within this approach. The first stream, extracts a 

deterministic volatility implied process (see Derman and Kani [49], Dupire [60], 

[62], Jackwerth [96], Rubinstein [126]). The second, derives a no-arbitrage sto­

chastic volatility implied process (see Britten-Jones and Neuberger [27], Derman 

and Kani [54], Ledoit and Santa-Clara [106]). 

The deterministic volatility implied process ensures an exact fit of the current 

observed smile, but is not able to account for its stochastic evolution (see Dumas, 

Fleming, and Whaley [58], and Buraschi and Jackwerth [28]). This drawback can 

be dealt with a stochastic volatility implied process; its evolution should be in a 

no-arbitrage fashion, so that option pricing to be feasible. 

Derman and Kani combine an implied trinomial tree (see Derman, Kani, 

and Chriss [53] for the construction of such a tree) with Monte-Carlo simula­

tion by starting from today's local volatilities. Ledoit and Santa-Clara, start 

from today's implied volatilities and they derive the risk-neutral implied volatility 

process; Britten-Jones and Neuberger construct a trinomial tree under stochastic 

volatility which is consistent with today's option prices. These models are very 

promising, but their implementation is subject to some theoretical and practical 

limitations. Derman and Kani's model is very computer intensive. Britten-Jones 

and Neuberger's is based on the assumption that the asset's transition proba­

bilities can be decomposed, in a multiplicative way, into two other functions; in 

Ledoit's and Santa-Clara's, the implementation is very sensitive to the chosen 

interpolation method for the implied volatility surface. 

In this chapter, we propose a new and general method for constructing smile­

consistent stochastic volatility models. Rather than simulating the evolution of 

implied, or local volatilities, we simulate the evolution of the implied risk-neutral 

distribution through time. The simulation starts from today's implied distrib­

ution, and proceeds in an arbitrage free way. This type of approach provides 

a natural tool for risk assessment and for applications in pricing and hedging. 

However, even though the way to extract the risk-neutral distribution from Eu-
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ropean option prices has been studied extensively (see for a survey Bahra [5], and 

Mayhew [111]), we are not aware of any research so far, on its simulation. 

In principle, we can calculate the option price by integrating the payoff of the 

option over the risk-neutral distribution. Hence, the simulation of the implied dis­

tribution enables us to generate price paths for the options having the same expiry 

simultaneously. In addition, the technique can be used to examine the behavior 

of hedges. For example, a riskless hedge is constructed by using a deterministic 

volatility model. Then, its performance can be investigated under a stochastic 

volatility scenario generated by our model. The technique can also be used for 

economic policy purposes. Since the implied distributions reveal the expectations 

of risk-neutral agents, their evolution shows how these expectations change over 

time. Hence, provided that the subjective and the risk-neutral distributions do 

not differ a lot, issues like the credibility of economic policy announcements can 

be addressed (see Bahra [5]). On the other hand, the proposed algorithm can not 

be used for valuing simultaneously options with different expiries and American 

type products, as is the case with the conventional Monte Carlo simulation. 

Our method uses the theory of mixture of distributions, and it can be im­

plemented easily. Using mixture of distributions has the advantage that the 

simulated probabilities evolve as martingales, i.e. the model does not allow any 

arbitrage opportunities. Once the form of the mixtures has been specified, the 

only input that the algorithm requires is the current implied distribution. 

The algorithm is developed in two stages. First, the implied distribution 

changes due to shocks to its mean. Second, the implied distribution changes be­

cause of shocks to the variance. The two shocks are assumed to be orthogonal, and 

therefore they can be studied separately. The simulation of the evolution of the 

implied distribution can be performed by applying them sequentially. Moreover, 

the algorithm can be extended to cases where more complicated assumptions for 

the mixture are considered. 

The rest of the paper is structured as follows. In the second section, we ex­

plain why the simulation of the implied distribution is relevant for option pricing. 
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In the third section, we describe briefly the idea of mixture of distributions, and 

we present the main steps for the construction of the algorithm. In the fourth 

and fifth section, we present the algorithm for the simulation of the implied dis­

tribution when its mean and variance change, respectively. Numerical examples 

are presented. The sixth section concludes, and it addresses issues for further 

research. 

6.2 Simulation of Implied Distributions and 

Option Pricing 

There are two analogies between the conventional Monte Carlo simulation, and 

the simulation of the implied distribution. In the Monte Carlo simulation, for 

each simulation run we generate a path for the asset price St, until we reach the 

maturity T of the option. In the simulation of the implied distribution, a path for 

the evolution of the whole distribution is created, until we reach t = T, where the 

distribution degenerates to a single point ST. The probability density function 

(PDF) enables us to value options for every strike, and its mean provides the 

value of St (and hence its path). In both cases, we require some thousands of 

simulation runs to obtain a credible estimate of the option price. 

Denote by 1r't(ST) the risk-neutral probability, as formed at current time t, that 

the asset price ST will be reached at time T (t < T). 1r't (ST) can be extracted 

from the market call option prices C maturing at time T, which are observed at 

time t. The way to do this comes from the well-known relationship 

8
2
C = -r(T-t)j (K) 

8K2 e T 
(6.1) 

established by Breeden and Litzenberger [25], where K is the strike price, r is 

the interest rate, and fT(K) is the risk neutral PDF. Assuming that we observe 

option prices for a continuum of strikes, we can calculate the probabilities for 

reaching every ST. 
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The simulation of the implied density, can reveal to us the path of the asset 

price. This is because the current asset price St is proportional to the expected 

value of ST (martingale property of the implied distribution). The expectation 

is conditional on the information at time t, and it is formed with respect to the 

risk-neutral probability measure 7rt(ST) (see Dothan [57]). Hence, 

St = e-r(T-t) E;(ST) (6.2) 

If we knew what the implied risk neutral probability 7rt+1 (ST) would be in the 

next time step t + 1 for VST , then we would be able to calculate the asset price 

St+11 as equation (6.2) shows. In this way we would have in front of us a path of 

the asset price for all times n for t < n < T. 

In fact, the implied density at t + 1 is unobserved at time tj Today's known 

implied density is perturbed due to a number of shocks which affect its moments; 

as a result, the next time step implied density emerges. Hence, the simulation of 

the implied distribution is a multivariate problem since it should take into account 

these shocks. In the next sections, we perturb the initial implied density by 

assuming that orthogonal shocks affect its mean and variance. The orthogonality 

assumption is necessary, so as to convert the multivariate problem to a simpler 

univariate one, and to examine the effect of the shocks, separately. The shocks 

which are orthogonal, can be applied sequentially, and the multivariate problem 

becomes a sequence of multivariate ones. The shock on the mean is the shock on 

the asset price, and we expect to shift the PDF to the left, or to the right; the 

shock on the variance should shrink the PDF, as we approach the maturity T. 

6.3 Partitions, Mixtures, and the Simulation of 

the Implied Distribution 

In this section, we explain first briefly the concept of the mixture of distributions 

(for more details on the mixture of distributions, see Timmerington, Smith, and 
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Makov [142]). Then, we present, in a general context, the algorithm with which 

we can perturb the implied distribution, when one of its moments changes. A 

mixture of distributions is assumed for the construction of the algorithm. 

6.3.1 Partitions and Mixtures 

Let IO(ST) be the PDF of the asset price ST, as viewed from time a (i.e. con­

ditional on the information at time 0), and It(ST) be the PDF of ST, as viewed 

from a later time t. The evolution of the initial PDF IO(ST) to It(ST) can 

be regarded as a partition of IO(ST)' IO(ST) consists of infinite many different 

slices; one of them is the realized It (ST ) 1• This is a result from the law of it­

erated expectations. More specifically, Pr[ST ::; s I hj = E[lsT:::;s I Ikj, and 

Pr[ST ::; S I Itl = E[lsT:::;s I It], where k < t, and the information set Ik CIt. 

Then, from the law of iterated expectations (see Oksendal [117]) we get that 

Hence, the original PDF at time k, evolves to a distribution on date t, conditional 

on the information at the subsequent date t. The set of possible conditional 

distributions has to be constrained so that the original distribution is seen as a 

mixture over the possible subsequent conditional ones. Figure 6.1 shows how the 

original PDF is partitioned in two possible slices. One of them is going to be the 

subsequent conditional PDF (once its area is normalized to one). 

1 The area of each slice does not integrate up to one, since it is a subset of the original 
distribution. Therefore, it has to be scaled so that a proper PDF to be defined. 
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Figure 6.1: Partitioning of the Original Distribution in two possible realizations. 

A mixed distribution is generated from two PDFs. One distribution, called 

the structural distribution, has a parameter which itself is distributed according to 

a second distribution, called the mixing distribution. The structural distribution 

of a variable X is assumed to have a density g(X I B), where B is a parameter 

which varies across subsets of X. In our context, B will be one of the moments of 

the distribution. It is assumed that the distribution of the variable B is specified 

by a second distribution, a mixing density k(B). The resulting distribution for 

X is the mixture of the density functions g(X I B) and k(B). This observed, or 

mixed density is defined by 

m(X) = J g(X I B)k(B)dB (6.3) 

Equation (6.3) defines a continuous mixture. Similarly, a discrete mixture can be 

defined as 
n 

m(X) = 2:g(X I Bi )k(Bi ) (6.4) 
i = l 

Equations (6.3), and (6.4) are also satisfied by the cumulative density functions 

(CDF) M(X), G(. I B), and K(B) (we denote with capital cases a CDF, and with 

lower cases a PDF, hereafter). 
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6.3.2 Simulating the Implied Distribution 

The General Approach 

We can relate now the concept of a mixture to the one of a partition by regarding 

m(X) as a model for fO(ST)2. In order to apply this model so that we can simulate 

the evolution of fO(ST) into ft(ST), we need to establish a mapping between our 

model variable X, and the actual variable ST. In the next section, we describe 

how we use the distributions of m(X), and fO(ST) to accomplish this. 

The Details 

We assume a mixture of distributions, so as to construct the algorithm which 

simulates the evolution of the implied distribution. The mixture is used as a 

model for today's implied PDF3• The simulation is performed by mixing over one 

of the moments of the PDF. To simplify the analysis, we simulate the implied 

distribution over only two time steps. 

Let FO-
1 be the inverse function of the CDF Fo, as viewed from time 0, i.e. 

(6.5) 

where P is the cumulative probability, i.e. P = Pr[ST ::; S I 10] = J; fO(ST )dST. 

Similarly, the inverse of the cumulative distribution as viewed from time t F:-1, 

2k(B) is the area (less than one) of one of the possible slices of m(X). It is chosen once the 
corresponding value of B has been realized. The structural distribution g(X I B) is ft(ST); it 
is the slice given by k(B), but its area has been normalized to one. The mixing density k(B) 
provides the weights with which the !teST) are averaged. 

3Mixtures of distributions have long been used in the finance literature to explain the ob­
served significant skewness, and kurtosis in the distribution of rates of returns (see Blattberg 
and Gonedes [21], Kon [104], and Praetz [120]). The motivation for using a mixture of distrib­
utions comes from the empirical evidence that daily returns deviate from normality more than 
monthly ones (see among others Blattberg and Gonedes [21], and Fama [67]). The mixture 
of distributions gives rise to a fat-tailed unconditional distribution with a finite variance, and 
finite higher moments. Since all moments are finite, the Central Limit theorem applies, and 
long-horizon returns will tend to be closer to the normal distribution than short-horizon returns 
(see Campbell, Lo, and Mackinlay [29]). Our work can be viewed as a generalization of this 
literature to enable us to work with an arbitrary initial pricing kernel. 
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is defined as 

~-l : Q --+ Sr (6.6) 

where Q = Pr[Sr $ s I It] = J; ft(Sr)dSr 4
• 

The aim is to obtain the next time step inverse function ~-l.when one of the 

moments of today's PDF changes. We only know FOI, as this is implied from the 

European option prices. However, we can derive ~-l, by establishing a mapping 

from Q to P (Q --+ P). Then, since we know what Fo looks like, we can calculate 

the corresponding asset value Sr from the cumulative probability P. Now we 

know Q --+ Sr. The mapping (Q --+ Sr) is established via four steps. 

1. We assume a mixture distribution 

}.,l(Xr ) = Pr[Xr $ x] = J G(Xr I B)K(B)dB (6.7) 

with CDFs G(. I B), and K(())5. 

The mixing is done over B which can be the mean, or the variance, or the 

skewness, etc. We use the mixture M(X) as a model for today's implied distri­

bution, i.e. }"l(X) = P, and G(Xr I B) as a model for the new distribution. We 

have a great deal of flexibility in the choice of the CDFs G(. I B), and K(B) to 

provide the kind of stochastic evolution we seek. The main requirement for com­

putational purposes is that G(. I ()) and G-I(. I B) can be calculated reasonably 

efficient. 

2. For any given probability level Q E (0,1) and a given B, we calculate Xr 

by inverting the CDF G(. I B) for every Q, i.e. 

Xr = G-I(Q I B) (6.8) 

3. From the calculated Xr , we calculate M(Xr) from equation (6.7). Since 

4We prefer using the inverse function of a CDF rather than that of a PDF. This enables us 
to work in the interval [0,1], rather than in the interval [-00, +00]. 

5 Alternatively, the mixture can be discrete for the sake of tractability in the numerical 
implementation. 
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M(XT ) = P, the mapping Q -+ P is established. 

4. Since M(XT ) is only a model which may not represent accurately to­

day's implied CDF, we make the pairs S and X equivalent through the relation 

M(XT) = P(ST)' So, we can scale S from X as S = P - l[M(XT)] (or the less 

interesting case, X from S as X = M-l[P(S)]). By doing this, we incorporate in 

our method the information from today's implied distribution. In order to invert 

P(ST) we need to approximate P-1(ST) with a CDF whose inverse function has 

an analytic formula (see Section 6.3.3). 

The whole procedure can be repeated, as described, for any probability values 

Q are needed. Figure 6.2 shows how the mapping Q -+ ST is established via the 

four steps; it shows, for a given value of (), the transition from Q to XT , then 

from X T to M(XT), and eventually from X T to the actual level ST' 

I ..... ~ l 
. ~ .. r ., . , . 

[ ~ .. [ ....... i~""'·""·."""i ~ 
6.a O,OCIOO +---... -~~----=---' 

Figure 6.2: Establishing the Mapping from Q to ST, using the mixture of 

distributions M(X). 

The process for establishing Q -+ P is a legitimate because it ensures that 

the date T risk-neutral distribution for ST is a martingale, and hence so are all 

securities which are priced by it, e.g. options and the underlying asset. Figure 

6.3 shows the martingale property of the implied distribution assuming that () 
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can take only two values, Le. P(ST) = 7rlQ(ST I (h) + 7r2Q(ST I (2), where ST 

takes a discrete distribution. 

Figure 6.3: Martingale Property of the Implied Distribution. 

The following theorem proves that the algorithm simulates the CDF so that 

it is a martingale. 

Theorem 1 The established mapping Q -+ ST ensures that the simulated implied 

cumulative distribution function evolves as a martingale, i. e. 

f Q(8T I O)K(O)dO = P(ST) 

(martingale property). 

Proof. f Q(8T I O)K(O)dO = f G(XT I O)K(O)dO = M(XT) = P(ST)' The last 

equality follows because XT is chosen so as M(XT) = P(ST)' 

• 
The established mapping Q -+ ST, simulates the CDF. The following proposi­

tion shows how we can simulate the PDF, i.e. perturb lo(ST) to It(ST), by using 

Q-+P. 

Proposition 2 The PDF for the underlying asset at the maturity of the option 

It (ST ), as viewed from time t, is given b1l 

(6.9) 

6 The evolution of fo(ST) to ft(ST) can be regarded as a change of measure, and the ratio 

~~ can be interpreted as the Radon-Nikodym derivative. 
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Proof. The mapping Q -+ P, implies that Q = Q(P). In addition, P = P(S). 

Hence, Q = Q(P(S)). Differentiating Q with respect to S, we have 

which can be written as 

• 

dQ dQdP 
dS = dPdS 

(6.10) 

Proposition 3 The PDF !t(ST) calculated from equation (6.9), integrates up to 

one, i.e. 

Proof. Using equations (6.9) and (6.10) we have that 

J!"~ !t(ST)dS = J!"~ fO(ST)~~dS = J~: !O(ST) fO(~T) ~~dS = J~:dQ = 

1. 

• 
It is worth noting that the mapping Q -+ P depends on the postulated mixture 

given by equation (6.7). For a different mixture, the mappings Q -+ X, X -+ 

M(X), and M(X) -+ ST, described by Steps 1-4 would have been different. The 

analytic (or numerical calculation) of the derivative ~~ depends on the assumed 

mixture of distributions, as well. In general, the analytic expression for the 

derivative is 
dQ 

dQ dX g(XT I 8) 
dP = dP = m(XT) (6.11) 

dX 

In sections 6.4 and 6.5, we study the simulation of the evolution of the implied 

distribution when either the mean, or the variance changes. Imposing shocks only 

on the first two moments should make the simulated evolution of the implied dis­

tribution to be close to the empirical one. This is because the observed skewness 

may be explained by shifts in the mean, and the observed fat tails are consistent 

with shifts in the variance (see Kon [104]). However, the algorithm can be easily 
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generalized to other cases, by choosing more complicated assumptions for the 

mixture. 

6.3.3 Inverting the Initial Implied Distribution 

We approximate p-I (ST) by using the Ramberg distribution [121]. This is be­

cause it is defined analytically in terms of the inverse of the PDF, given that 

we have pre-specified its first four moments. Moreover, it is a four parameter 

distribution, which includes a wide variety of curve shapes. Hence, it is useful 

for the representation of data when the underlying model is unknown. All these 

characteristics make it ideal for Monte Carlo simulation purposes7• Its percentile 

function is8 

(6.12) 

where 0 ~ P ~ 1, is the cumulative probability, Al is a location parameter, A2 

is a scale parameter and A3 and A4 are shape parameters. The values for the AI, 

and A2 parameters, are given in tables (see Ramberg et al. [121]) for a variable 

with a mean of zero and a variance of one. To calculate them for a variable with 

mean J-t and variance (]', we use 

The values of A3, and A4 correspond to values of skewness and kurtosis, and they 

are given by tables, as well. The PDF corresponding to equation (6.12) is given 

by 

(6.13) 

7 Other rich classes of distributions defined in terms of the PDF (e.g. the Generalized Beta-2 
distribution [23]) are less suitable for the purposes of our study. 

8The percentile function is the inverse of the CDF, i.e. R(P) : P -+ S. 
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In order to plot the density for given >\}, A2, A3, A4, we need to evaluate equations 

(6.12) and (6.13) for values of P ranging from zero to one. Then, f(R(P)) is 

plotted on the y-axis versus R( P) on the x-axis. 

6.4 Simulating Changes in the Asset Price 

In this section, we present the algorithm for the simulation of the PDF when 

its mean changes. This corresponds to changes in the asset price. We provide a 

numerical example, and we check the numerical accuracy of our procedure. 

6.4.1 The Algorithm 

In order to study how the PDF changes when the mean changes (keeping all the 

other moments fixed), we assume that the model variable X follows a standard 

Brownian motion Wt, i.e. X t = Wt • This implies that X is distributed normally9. 

Imagine that we stand at time 0, and the terminal time is T = 1. From the 

properties of the standard Brownian motion process, the model's asset price as 

viewed from time 0, OXI' is normally distributed with mean zero, and variance 

one, i.e. 

OXI ,...., N(O, 1) (6.14) 

The asset price as viewed from time t, is normally distributed with mean J-Lt, and 

variance 1 - t, Le. IO 

(6.15) 

9In fact, the observed implied distributions do not differ a lot from the normal one. Corrado 
and Su [39] examine the skewness and kurtosis in the implied distribution of stock options. 
They find that the implied skewness and kurtosis are -0.55 and 4.92, respectively, on average 
across their samples. Gemmill and Saflekos [74] investigate the implied skewness and kurtosis 
of FTSE 100 options. They find an average, across years, skewness and kurtosis of -0.26 and 
4.54. Similar results are also obtained by Jackwerth and Rubinstein [94]. 

10 Equation (6.15) shows that the statement that we allow only for a change in the mean of 
the distribution, keeping all the other moments fixed, is not strictly true. There is a change in 
the variance, as well, due to the passage of time. 
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J-Lt is normally distributed with zero mean and variance t, Le. 

J-Lt f'J N(O, t) (6.16) 

This is because under the equivalent martingale measure, the relative asset price 

at time t isll 

(6.17) 

and J-Lt is one of the possible realizations of the Brownian Motion as viewed from 

time 0 for the time interval [0, t]. Then, Q -+ ST is defined through the four steps 

of the generic procedure that we have already described. 

1. Equations (6.14), (6.15), and (6.16) make us to choose the mixture 

P(ST) = M(XT) = 10
00 

N(XT lilt, 1 - t)N(J-Lt 10, t)dll 

as a model for the implied distribution at time 012 • 

2. Since J-Lt I'V N(O, t), we define the mapping 

(6.18) 

(6.19) 

where R = Pr[J-Lt :5 Il], and N- 1(R I 0, t) is the inverse of the normal CDF when 

a value for the probability mass R accumulated under Il, is drawn. 

For a given drawing from the random variable R (Le. for a given value of Ilt), 

we get by inverting the normal CDF in relationship (6.15) that 

II We use the bank account as numeraire (see Geman, Karoui, and Rochet [72]). 
12This is because if a variable X "" N(O, 1), and p. '" N(O, t), then 

M(X) = J N(X I JL, 1 - t)N(JL I 0, t)dJL 

(6.20) 

This follows from the properties of the convolution of the PDFs of two normally distributed 
variables. 
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Equation (6.20) is applied for every Q, with Q E [0,1]. 

3. We calculate M(XT ) as 

M(XT) = N(XT 10,1) 

Since M(XT) = P(ST), this establishes the mapping Q ~ P, Le. 

P = N[N-I(Q I p't' 1 - t) I 0,1] 

4. We scale ST from X, as ST = P-I[M(XT)]. 

(6.21) 

(6.22) 

ft(ST) is calculated from equation (6.9). The derivative ~~ is calculated 

analytically by using equation (6.11), and our assumed mixture, Le.13 

dQ n(XT I Jlt, 1 - t) 
- = ---'-~::-::-'--:---.:--,-

dP n(XT I 0,1) 

6.4.2 A Numerical Example 

In this section, we provide a numerical example of the simulation of an implied 

distribution, when the mean changes. The simulation is performed by using the 

mapping Q to P obtained from our postulated mixture, given by equation (6.18). 

The mapping has been established for t = 0.2. First, we calculate fO(ST) via 

the Ramberg PDF, by making an assumption about the values of its first four 

moments. Then, we perturb fO(ST), by using equation (6.9), in order to see what 

it looks like 0.2 units of time later. 

Figure 6.4 shows the mapping from Q to P, for random drawings R= 0.001, 

0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, and 0.999, Le. for 

several values of Jlt, when t = 0.2. 

13We have also calculated the derivative numerically, by using several numerical schemes (see 
Chapra and Canale [32]). However, the simulated PDFs were not smooth enough, because of 
the numerical errors. 
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Figure 6.4: Mapping from Q to P when the Mean changes, for t=0.2. 

The mapping shows that for the small values of R, It (ST) is shifted to the 

left of the initial 10 (ST) , while for high values of R, It(ST) is shifted to the right. 

This is because for a given Q, R increases with P. An incr ase in R, incr ases /l1.. 

This shifts Ft(Sr) to the right, since f-Lt is its mean. Therefore, the values that 

ST can take are higher, and consequently the probability mass P accumulated 

under them is larger, i.e. 

Furthermore, the increase in P as R increases will be bigger, the bigger t is. This 

is because the variance of the distribution from which /l1. is drawn, increases when 

t increases. Hence, bigger shifts in the PDF are expected to happen. Therefore, 

for a given Q, an increase in R will produce a bigger increase in P, than with 

smaller t. 

Another feature of the figures is that for a given R, P is increasing in Q. This 

is because increasing Q, increases ST, and therefore P incr ases, as well. 

For our numerical example, we assume that the mean of the initial implied 

PDF is 340, its variance is 2500, its skewness is 1, and its kurtosis is 4.2. From 

the tables of the Ramberg distribution, these values correspond to ),1 = - 0.787, 
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A2 = 0.1142, A3 = 0.0212, and A4 = 0.1244. Then, we adjust AI , and A2 for the 

mean and variance. 

Figures 6.5,6.6, and 6.7 show !O(ST), and !t(ST) , for R = 0.01,0.5, and 0.95, 

respectively. The figures show that as R increases, the new density shifts to the 

right. This reflects the property of the mapping that we have already explained, 

i.e. that P increases with R , for a given Q. 

0.0200 

0.0180 

0.0160 

0.0140 

0.0120 

0.0100 

0.0080 

0.0060 

0.0040 

0.0020 

0.0000 
100.00 200.00 300.00 400.00 500.00 600.00 

Figure 6.5: Initial and New PDF for R= O.Ol. 
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Figure 6.6: Initial and New PDF for R= O.S. 
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Figure 6.7: Initial and New PDF for R= 0.95. 

6.4.3 Checking the Accuracy of the Transformation 

The mapping Q -+ P, has been established for discrete values of Q and P, while 

the assumed mixture given by equation (6.18) is a continuous one. This may incur 

numerical errors in our simulation procedure. In this section we check for this by 

assuming that ST rv N(O , 1). Using Q -+ P , we calculate !O(ST) by means of the 

Ramberg distribution14. Then, we calculate ! t(ST) by means of equation (6.9). 

Finally, we compare !t(ST) with the normal PDF when ST rv N(pt, 1 - t). The 

comparison is shown in Figures 6.8, 6.9, and 6.10, for the cases that R = 0.01, 

0.5, and 0.95, respectively. 

14The values of the Ramberg parameters when the Ramberg PDF converges to the normal 
are Al = 0, A2 = 0.1975, A3 = 0.1349, and )..4 = 0.1349 (recall that the skewness and the 
kurtosis of the normal PDF are zero, and three, respectively). 

203 



0.500000 

0.450000 

0.400000 

0.350000 

0.300000 

0.250000 

0.200000 

0.150000 

0.100000 

0.050000 

0.000000 
-6.00 -4.00 -2.00 0.00 2.00 4.00 

Figure 6.8: Comparison between the Ramberg-Normal and the Normal PDFs 

for R= O.Ol. 

0.500000 

0.450000 

0.400000 

0.350000 

0.300000 

0.250000 

0.200000 

0.150000 

0.100000 

0.050000 

0.000000 
-4.00 -2.00 0.00 2.00 4.00 

Figure 6.9: Comparison between the Ramberg-Normal and the Normal PDFs 

for R=0.5. 
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Figure 6.10: Comparison between the Ramberg-Normal and the Normal PDFs 

for R= 0.95. 

It is obvious that the Ramberg-Normal and the Normal PDFs coincid , show­

ing that there is no numerical bias in our procedure. 

6.5 Simulation of the Implied Distribution when 

the Volatility Changes 

In this section, we develop the algorithm for the simulation of the PDF due to 

a change in its variance 0-2 . We show how we determine the evolution of the 

variance, and we present some numerical examples. 

6.5.1 The Algorithm 

We need to establish the mapping Q -t ST, in order to find F
t
-

1 , just as when the 

mean changes. However, now the mapping has to take into account the change 

in the variance; it is established through, the familiar by now, four steps. 

1. We introduce the effect of the variance by assuming that the initial implied 
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CDF can be represented by a discrete mixture M(XT ), Le. 

n 

M(XT) = Pr[XT ~ x] = 'LN(XT I O,{}i)K({}i) (6.23) 
i=1 

where (}i is the ith realization for the variance variable, K({}i) is the CDF for the 

variance, and N(XT I 0, (}i) is the normal CDF of XT conditional on (}i occurring. 

In order to simplify the notation, we set 7ri = K({}i). 

2. We postulate a PDF for the variance for some discrete values of {}, so as to 

calculate 7ri and (}i. Then, a {} is drawn from the distribution K({}), and we get 

for every Q. 

3. For the calculated from the second step XT, we compute M(XT). 

4. We calculate ST, since M(XT ) = P(ST), as BT = P-l[M(XT)]. 

Having established the mapping Q ~ BT , ft(Br) is calculated from equation 

(6.9), with the derivative being calculated from equations (6.11) and (6.23) as 

6.5.2 Calculating the Mean and the Variance of the 

Variance 

In a mixture of distributions with different variances, the kurtosis of the mixture 

depends directly on the variance of these variances. The choice of our mixture as 

a model for today's implied distribution, is constrained by the following equations 

(see Appendix F for the proof) 

E(X) = 0 (6.24) 

(6.25) 
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Skewness(X) = 0 (6.26) 

K(X) = 3(1 + (S~~~2) )2) (6.27) 

The factor 3 in equation (6.27) is the kurtosis of the next time step model distri­

bution, as represented by our conditional normal model. The abbreviation S.D. 

stands for the standard deviation15 • 

Since, the chosen mixture is a model for the observed distribution, we choose 

E(X2) = E[a2] = a;, where a; is the variance of the observed implied distribu­

tion16
• In addition, we choose the kurtosis of the mixture for X T (model) to be 

less than the kurtosis of the observed implied distribution for ST, K., Le. 

Kt[X] < Kt,. (6.28) 

Otherwise, we would be likely to generate conditional distributions for ST 

which have negative excess kurtosis. This would contradict the empirical evi­

dence which shows that implied volatility smiles are more pronounced for shorter 

maturity options (Taylor and Xu [141], Tompkins [143]), i.e. the kurtosis of the 

implied distribution increases as we approach the maturity of the option. 

The inequality in equation (6.28) implies that 

3(1 (S.D.(a2) )2) K. 
+ E{a2 ) < t,. 

which can be written as17 

(6.29) 

UiEquation (6.27) shows that the chosen mixture has excess kurtosis. It also shows that the 
bigger the volatility of volatility, the higher is the kurtosis of the mixture. 

16Since X is only a model for S, it would not have made a difference, if we had assumed that 
E[X2) = 1. In that case, we would have constrained the simulated evolution of the implied 
distribution via the choise of the standard deviation of the variance. 

17Hence, we express the standard deviation of the variance in terms of the kurtosis of the 
actual distribution. We have to restrict ourselves to implied distributions with positive kurtosis 
K., so as the square root to be defined. 
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6.5.3 Choosing a PDF for the Variance 

We assume that the variance is distributed lognormally. This ensures that it can 

not take negative values. The variance is distributed with mean a, and variance 

{32, i.e. 0"2 rv A(a,{32). Hence, Ina2 
rv N('IjJ,V2). Given that the lognormal 

distribution is the limit of the binomial distribution, as the time interval ot -+ 0 

(see Cox, Ross, Rubinstein [43]), we construct a binomial tree for the evolution 

of the variance. The tree has N time steps, which are 8t = ~ spaced apart. The 

terminal time step delivers to us the values of Oi with their associated probabilities 

In order to construct the tree, we choose the upward and downward movement 

factors for the evolution of 0"2, u, and d (u > 1, d < 1), in the same way as Cox, 

Ross and Rubinstein [43] do, i.e. u = ~, with u = eVv'li, and d = e-vv'li. 

Appendix G shows that 

vV8t= (6.30) 

Notice that the construction of the tree for the evolution of the variance, takes 

into account the information from the current implied PDF. 

The transition probabilities p, are calculated by requiring that E[a2] = a~, 

i.e. 

which simplifies to 

pua~ + (1 - p)da~ = a~ 

I-d 
p=-­

u-d 
(6.31) 

Once the tree has been constructed, we use the formula for the binomial 

distribution to calculate the probabilities 7ri for reaching the values Oi at the 

terminal level of the tree. This is 

, _ 2 _ ,_ N! i N-i 
7r, - Pr(a - 0,) - "(N _ ')'p (1 - p) z. z . 

(6.32) 
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()i 7T'i 

9266.95 0.02 
5487.04 0.1 
3248.92 0.26 
1923.71 0.34 
1139.05 0.22 
674.44 0.06 

Table 6.1: Values for the Variance with their associated Probabilities. 

for i = 0, .. . N. 

6.5.4 A Numerical Example 

We give a numerical example for the construction of the binomial variance tree. 

We assume that the first four moments of the initial implied distribution are 

E(S) = 340, Var(S) = 2500, Skewness=l, and Kurtosis=8. Hence, E[a2] = 
2500. Using equation (6.29), we find that S.D.(Var) < 3227.49. We choose 

S.D. (V ar) = 1600. The tree is constructed with five time steps (N = 5), and 

spacing 8t = 0.2. Hence, the time horizon is T = 1. From equation (6.30), we 

find vYM = 0.26. Then, U = 1.3, d = 0.769, and p = 0.435 (equation (6.31)). 

Figure 6.11 shows the constructed tree for the evolution of the variance. Table 

6.1 shows the values ()i with their associated probabilities 7T'i' 

9266.95 
7130.79 

5487.04 5487.04 
4222.20 4222.20 

3248.92 3248.92 3248.92 
2500 2500 2500 

1923.71 1923.71 1923.71 
1480.27 1480.27 

1139.05 1139.05 
876.48 

674.44 

Figure 6.11: Constructed Tree for the Evolution of the Variance. 

Figure 6.12 shows the mapping Q -+ P when the variance changes, for these 
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different values of (}i . We can see that for very high (}i the initial PDF accumulates 

less mass than the new simulated one, for the low values of the asset price, while 

it accumulates more mass for the high asset prices. On the other hand, for the 

low (}i the reverse happens. 
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Figure 6.12: Mapping from Q to P for the different values of fJi , when the 

Variance changes. 

Figures 6.13-6.18 show the original and the simulated ft(ST) across the (}i 

which are shown in Table 6.l. The pictures are consistent with the above dis­

c~ssed implications of the mapping Q -4 P. 
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Figure 6.13: Initial and New PDF when the variance is 9266.95. 
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Figure 6.14: Initial and New PDF when the variance is 5487.04. 
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Figure 6.15: Initial and New PDF when the variance is 3248.92. 
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Figure 6.16: Initial and New PDF when the variance is 1923.71. 
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Figure 6.17: Initial and New PDF when the variance is 1139.05. 
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Figure 6.18: Initial and New PDF when the variance is 674.44 

6.6 Conclusions and Issues for Further Research 

We have presented a new method for smile consistent option pricing und r sto­

chastic volatility: the simulation of the implied risk-neutral probability d nsity 

function (PDF). We have developed an algorithm for simulating the evolution 

of the implied PDF, by allowing for orthogonal shocks on its moments. The al­

gorithm relies upon a postulated mixture of distributions. The mixture is used 

as a model for today's implied distribution. Then, a mapping betwe n today's, 

and tomorrow's cumulative density function (CDF), for a given value of the asset 

price, is easily established. 

We have dealt with the cases that the mean, or the variance changes, by 

assuming tractable, for the numerical implementation, mixtures. Some numerical 

examples are presented. Three are the main advantages of our algorithm. First, 

the mapping can be established through some very simple calculations. Second, 

all that the algorithm takes as input is today's implied PDF, which we can easily 

extract from the European option prices. Third, the algorithm can be extended 

to cases where more complicated specifications of the mixture are assumed. 

These advantages make the simulation of the implied PDF a very promising 
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tool for option pricing. However, there is a number of issues that needs to be 

investigated by future research, in the context of our algorithm. First, in order to 

assess the performance of the algorithm, we need to test it empirically. Second, 

the performance of various specifications for the employed mixture should be 

examined, so that to develop the method into a fully operational tool. The 

dynamics of implied distributions should also be explored. This will facilitate the 

search for the mixture of distributions which will simulate the evolution of the 

distribution, so as to mimic the evolution of the empirical distribution. FUture 

research should also generalize the method to allow for correlation between the 

shocks of the asset price and the volatility. Finally, the performance of hedges 

(constructed by a deterministic volatility model) should be investigated via our 

algorithm (see Section 7.2). 
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Chapter 7 

Conclusions and Suggested 

Future Research 

7.1 Conclusions 

This study has contributed to the literature of "smile-consistent" no-arbitrage 

stochastic volatility models, in two ways. First, we have investigated the dy­

namics of implied volatilities of the S&P 500 Futures Options. This provides 

important insights into the evolution of traded option prices, and it is necessary 

for the implementation of such models. Second, we have presented a new method 

of simulating the evolution of the implied distribution. 

We have investigated the dynamics of implied volatilities by answering three 

questions: (1) how many factors are needed to explain the dynamics of the implied 

volatility smiles and surfaces?, (2) what do these factors look like?, and (3) how 

are these factors correlated with the innovation in the underlying asset's process? 

The technique that we have used is Principal Components Analysis (PCA). It has 

been applied to time series of first differences of implied volatilities, when these 

are indexed in two different metrics: the strike, and the moneyness level. To 

avoid contamination from noisy data, the raw data were screened for data errors, 

and we excluded data likely to introduce errors into our volatility estimates. 

In both metrics, two components are identified after examining a variety of 
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criteria. Next, we obtain a clear interpretation for them by constructing and 

applying to the retained components a Procrustes rotation. The first component 

can be interpreted as a parallel shift, and the second as a Z-shaped twist. The 

number of shocks and their interpretation, is the same for both the smile, and the 

surface analysis. In addition, the results were very consistent for the four separate 

years 1992, 1993, 1994, and 1995. Furthermore, for both the smile and the surface 

analysis, the first rotated PC is positively correlated with the underlying in the 

strike metric, and negatively correlated in the moneyness metric. The correlations 

for the rotated second PC are positive in both metrics. However, their magnitude 

varies randomly over the years. 

Our research shows that three factors are required for the implementation of 

a "smile-consistent" no-arbitrage stochastic volatility model. One is needed for 

the underlying asset, and two more for the implied volatility. This conclusion 

may apply only to Futures Options on the S&P 500. 

Finally, we have developed a new and general method for constructing a smile­

consistent" no-arbitrage stochastic volatility model. This is the simulation of the 

implied risk-neutral distribution. The algorithm is based on an assumed mixture 

of distributions, and it is presented for the cases that the first two moments 

change over time. It can be implemented easily, and it can also be generalized to 

the cases that more complicated forms of the mixture are considered. Once the 

mixture has been specified, the algorithm only requires as input today's implied 

distribution. Our method can be used for pricing purposes, and it can assess the 

behavior of hedges. On the other hand, it can not be used for American type 

products. 

7.2 Future Research 

Both empirical and theoretical work of academic and practical interest can flow 

from the ideas introduced in this dissertation. Kamal and Derman [102] analyzed 

the dynamics of the implied volatility surface of over the counter (OTC) Index 
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Options by answering the same three questions by using peA, as well. Their 

results suggest that a four factor stochastic vol~tility smile-consistent no-arbitrage 

model is an appropriate one. They find that three components explain about 95% 

of the variance of the volatility structure. Our work, identifies a model with one 

less factor which explains only about 53% (60%) of the surface variation in the 

strike (moneyness) metric. 

These differences could be attributed to either one (or all) of the following: 

(a) the market futures option data have a noisier volatility structure than that 

estimated from the quotations for OTC index options, (b) Kamal and Derman 

have indexed their variables with the delta (delta metric), (c) the dynamics of 

the volatility surface may simply depend on the choice of the underlying asset. 

This is analogous to the documented fact that the magnitude of observed implied 

volatility smiles, depends on the underlying asset (Fung and Hsieh [70], Tompkins 

[143]). Future research should apply peA to different data sets under different 

metrics, so as to solve these issues. We would expect that there should not be a 

difference in the results of the moneyness and the delta metric if the changes in 

the volatility are small and we control for the time to expiry (as we did by using 

expiry ranges). 

The results from the application of the peA under the strike and moneyness 

metrics, can be used to assess whether either the deterministic, or the stochastic 

volatility models (or both), are mis-specified. If a deterministic volatility model 

is the true model, then implieds should have a "small" variation in the strike 

metric, and a "large" variation in the moneyness metric. The reverse will happen 

if a stochastic volatility model is the correct description of the world. Simulat­

ing implied volatilities from different models, e.g. stochastic volatility, or jump 

diffusion models (or both), will provide a way to measure how small or large, the 

variation of the empirical implieds is in both metrics. 

Another empirical question is whether portfolios of options modelled as risk­

less under a three, or four factor model, exhibit substantial market risk. This 

can be answered by looking at the out-of-sample hedging performance of smile-
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consistent no-arbitrage stochastic volatility models. This brings up the next 

issue which is the extent to which this class of models really outperforms the 

"smile-consistent" no-arbitrage deterministic volatility models. The studies by 

Dumas, Fleming, and Whaley [58], and by Jackwerth and Rubinstein [95] are 

direct empirical tests of the out-of-sample effectiveness of deterministic volatility 

models. Dumas, Fleming and Whaley's results imply that the smile-consistent 

deterministic volatility models are mis-specified. Jackwerth and Rubinstein can 

not conclude whether stochastic volatility models provide a better description of 

the reality. However, these studies do not include the smile-consistent stochastic 

volatility models, so as to see whether the use of a more complex model is justi­

fied . Hence, a comparison of the out-of-sample pricing and hedging errors of the 

two types of models is necessary. 

Next, the method for the simulation of the implied distribution should be 

tested with options data, and compared with alternative models (deterministic 

and stochastic volatility) for option pricing and hedging. Our method assumes 

that the shocks which affect the moments of the distribution are orthogonal, and 

therefore they can be studied sequentially. An issue which has to be investigated is 

whether the order that the shocks are applied, is important (we would expect that 

for instantaneous shocks, it is not). Moreover, the robustness of the method when 

we deviate from our postulated mixture of distributions, needs to be checked. 

Using a different mixture as a model for today's implied distribution is going to 

alter the simulated evolution of the probability density function. It would be 

interesting to investigate the cases where the conditional distribution employed 

in the mixture is not normal, but some kind of fat-tailed distribution. Also, the 

construction and implementation of the method when the shocks are correlated, 

should be explored. 

A related topic to the implementation of our algorithm, is the study of the 

number of shocks which affect the implied distributions. This is both an empir­

ical and theoretical issue. It will be interesting to see whether the number of 

shocks that drive implied distributions are different from those which affect im-
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plied volatilities. Given that implied volatilities smiles (skews) reflect the shape 

of implied distributions, we would not expect to find significant differences. In 

addition, the empirical analysis of the dynamics of implied distributions will 

make apparent the kind of evolution that the simulated by our method distribu­

tion should mimic. This may facilitate the choice of the appropriate mixture of 

distributions. 

Furthermore, the method for the simulation of the implied distribution should 

be extended to the case where we deal with options having different expiries, 

simultaneously. Then issues like the performance of static hedges which have been 

constructed according to a deterministic volatility tree, can be addressed. If a 

deterministic volatility model is the correct model, then the replication of a barrier 

option for example, will be exact along the barrier and at the terminal time T. 

However, if a stochastic volatility model is the correct model, then hedging errors 

will be incurred. \Ve can examine the magnitude of these errors by simulating the 

asset price paths via a modification of our algorithm and calculating the value of 

the portfolio with which we want to hedge the barrier option. 

A statistical problem in the application of the peA, is the testing of the sig­

nificance of the (correlation) loadings of the principal components. Kamal and 

Derman [102] find factors which have a different interpretation from ours. How­

ever, the interpretation of the factors could be an artifact; it should be done after 

considering the statistical significance of the loadings. The existing tests assume a 

multivariate normal distribution (Basilevsky [9]). Given, that this distributional 

assumption is too restrictive, non-parametric tests should be developed. 

Since observed smiles can not be explained just by introducing a stochas­

tic volatility process, but a jump process should be included, as well (Das and 

Sundaram [47]), researchers should look at how to create a "smile-consistent" no­

arbitrage stochastic volatility-jump model. Pappalardo [118] provides a method 

to recover the volatility coefficient of a jump process from the prices of European 

options. His methodology is analogous to Dupire's [60], [62]. He assumes that the 

volatility is a deterministic function of the asset price and time, and he derives 
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the forward Kolmogorov equation for the jump process. He is able to reveal the 

implied volatility coefficient for certain distributions of the jump size. However, 

the problem of estimating the other parameters of the jump process, i.e. the 

probability that the jump occurs, and the parameters of the distribution for the 

jump size remains. 

Future research should also investigate whether implied volatility smiles can 

be explained by transaction costs. Jackwerth and Rubinstein [94] point out that a 

potential trading-cost theory of the smile needs to explain why, given the extreme 

shift in the option smile, these costs were apparently of much less importance 

before the 1987 crash than after. We are aware of only Constandinides [38] 

transaction costs model which implies that transaction costs can not account for 

the volatility smile. However, the extent to which implied volatility patterns are 

affected by transaction costs, should be explored further. 

A broader research topic which is promising is the measurement of the "de­

gree" of market incompleteness (Bertsimas, Kogan, Lo [17]). If the market is 

incomplete, then the payoff of a complex security (e.g. a contingent claim) can 

not be replicated exactly by a self-financing dynamic portfolio strategy of simpler 

securities. In that case, the price of the complex security is not unique, but it 

varies within some bounds (see for example, Hodges [87]). The less incomplete 

the market is, the tighter the bounds will be. This will enable us to have an idea 

of whether the complex security is " cheap" , or "dear". 
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Appendix A 

Explained Communalities in the 

Smile Analysis in the Strike 

Metric 

In this section, we show the communalities explained by one and two pes in the 

smile analysis in the strike metric. The results are reported across the separate 

expiry buckets for the year 19941 • 

1 X_I denotes the differenced once implied volatilities corresponding to the strike level X. 
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Variables 30-10 60-30 90-60 150-90 240-150 360-240 
400 1 64.83 46.98 55.82 
405 1 
410 1 52.93 60.38 69.84 
415 1 
420 1 54.55 52.77 51.98 70.97 91.46 
425 1 34.11 65.64 
430 1 45.59 65.68 75.32 91.71 
435 1 45.24 36.04 61.77 68.65 
440 1 61.93 26.05 36.38 56.43 75.72 90.37 
445 1 57.42 36.01 59.12 67.98 
450 1 59.06 0.8 12.12 39.35 48.18 83.04 
455 1 65.16 1.43 42.59 1.16 
460 1 57.41 3.14 42.58 0 0.71 3.21 
465 1 53.48 24.81 8.02 8.57 
470 1 47.9 31.81 4.47 0.98 7.53 2.22 
475 1 34.66 20.27 34.52 
480 1 35.10 21.82 54.41 59.68 
485 1 
490 1 46.99 70.07 
495 1 
500 1 63.48 73.77 86.37 
505 1 
510 1 58.92 73.4 82.05 

Table A.l: Smile Analysis on the Strike Metric: Communalities Explained by 
One Principal Component for 1994. 
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Variables 30-10 60-30 90-60 150-90 240-150 360-240 
400 1 65.16 52.23 56.46 
405 1 
410 1 59.45 61.01 96.64 
415 1 
420 1 61.41 54.84 55.79 71.53 91.46 
425 1 55.95 68.65 
430 1 59.01 65.74 77.12 91.74 
435 1 69.25 51.79 62.86 68.73 
440 1 67.74 34.57 36.38 58.76 78.01 90.45 
445 1 64.46 56.46 60.71 68.05 
450 1 63.74 42.35 56.69 47.55 53.04 85.15 
455 1 65.3 28.68 65.35 68.09 
460 1 58.55 46.76 54.28 65.56 74.32 77.48 
465 1 86.02 47.24 36.74 49.57 
470 1 84.44 70.24 40.27 49.85 49.83 72.52 
475 1 60.86 58.18 34.93 
480 1 52.69 59.27 54.46 61.11 
485 1 
490 1 51.22 71.22 
495 1 
500 1 64.31 74.13 86.82 
505 1 
510 1 59.18 74.59 83.08 

Table A.2: Smile Analysis on the Strike Metric: Communalities Explained by 
Two Principal Components for 1994. 
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Appendix B 

Construction of the Procrustes 

Rotation Method 

Denote by gl, g2, the (p xI) vectors of rotated loadings of the first and sec­

ond retained pes, respectively. Let the transformation matrix T = [al a2
]. 

bi b2 

Then, equation (4.13) delivers the rotated loadings as linear combinations of the 

unrotated ones, i.e. 

(B.l) 

(B.2) 

where Pi is the (p x 1) vector of loadings of each component, for i = 1,2. The 

inner product < gl, g2 > is given by 

(B.3) 
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Given that in the construction of the PCA the normalization constraint p'p = I 
has been imposed, we have that 

< PI, PI >=< P2, P2 >= 1 (Il4) 

Also we have that 

(Il5) 

(Basilevsky [9], theorem 3.1, page 103). Hence, from equations (0.4) and (Il5), 

equation (B.3) becomes 

(IlG) 

In the case of an orthogonal rotation, rotated eigenvectors remain orthogonal 

(Basilevsky [9])1. Thus, < gt, g2 >= 0, and from equation (Il6) we have that 

(D.7) 

The idea of a Procrustes type rotation is to choose the coefficients with which 

we form the linear combinations, so as to achieve a pre-defined interpretation. 

We choose them, so as to get the parallel shift for the first PCi our method d()('s 

not guarantee a priori the shape of the second PC. 

A natural way of getting the parallel shift character for the first PC, is to do an 

Ordinary Least Squares (OL8) regression of a vector of constants on Pl,P:.z. This 

regression will deliver to us al and bl . In addition, we standardize the obtained 

aI, and bI, i.e. ar = al and br = bl 
, so that ai2 + bi2 = 1. \\'c will 

J ai + bi J ai + bi 
explain in a while the reason for this standardization. 

In order to calculate a2 and b2 from equation (B.7), we need one more ('qua-

1 Notice that in order to do an orthogonal rotation in such a way, 80 as to k(l('p the resulting 
rotated eigenvectors orthogonal, we must not use the correlation loadings of the matrix A. This 
is because rotated correlation loadings are not orthogonal (see Dasilcvsky 191 thOOrl'lll 5.3). 
Consequently, we have to work with the original loadings which come from unstaJldrudiZl'<1 
components and/or variables. 
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tion. We get this equation by imposing the constraint that 

2 b2 - 1 a2 + 2- (0.8) 

The constraint given by equation (B.B) has not been chosen arbitrarily, but it 

ensures, combined with the standardization of al and b1, that the cumulative 

variance explained by the unrotated PCs equals the explained variance by the 

rotated PCs. 

Proposition 4 A sufficient condition that the cumulative variance of the UTlfT)­

tated pes is equal to this of the rotated is that ai2 + bi2 = 1 and a~ + b~ = 1. 

Proof. 

Let Zi, and Vi be the (T x 1) vectors of the unrotated and rotated rCs, 

respectively, for i = 1,2. Then, from equation (4.12) we have that 

( VI v,) = (ZI Z,) (:: :) = ( Zial +z,bI zIa, +z,~, ) 
Since, by the construction of the PCA, the unrotated PCs arc orthogonal, we 

get that the variance of Vi is given by 

(£l9) 

(0.10) 

Since Var(zi) = Ii, the cumulative variance of the unrotated PCs will equal the 

cumulative variance of the rotated PCs, if 

(0.11) 

Equation (B.ll) is true if ai2 + bi2 = 1 and a~ + b~ = 1. 

This completes the proof . 

• 
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Solving equations (B. 7) and (B.8) we get 

(IJ.12) 

(13.13) 

Note that a2, and b2 are chosen, so that the condition which results from equation 

(B.7), is respected, i.e. 

(0.1-1) 
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Appendix C 

Explained Communalities in tIle 

Smile Analysis in the Moneyness 

Metric 

In this section, we show the communalities explained by one and two res in 

the smile analysis in the moneyness metric. The results are reported across the 

separate expiry buckets for the year 19941• 

1 P (or N) X_I denotes the differenced once implied volatilities corresponding to the 1'1118 
(minus) moneyness level X. 
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Variables 30-10 60-30 90-60 150-90 240-150 360-240 
NO.I5 1 
NO.I25 1 
NO.ll 1 87.48 
NO.lO 1 58.75 
NO.09 1 36.22 57.98 71.35 
NO.088 1 88.71 
NO.075 1 32.04 77.06 72.00 71.79 
NO.072 1 
NO.066 1 89.73 
NO.06 1 78.31 39.24 68.84 70.31 
NO.05 1 74.72 
NO.048 1 
NO.045 1 86.50 61.18 76.83 74.81 
NO.044 1 ~9.57 
NO.03 1 91.82 68.52 57.97 68.02 
NO.025 1 69.05 
NO.024 1 
NO.022 1 88.2!J 
NO.015 1 90.85 74.44 67.43 60.86 
PO.O 1 86.82 68.57 26.97 12.96 5.49 
PO.015 1 87.19 51.11 5.44 28.91 
PO.024 1 
PO.025 1 78.00 
PO.03 1 78.44 50.53 2.81 28.74 
PO.045 1 54.43 1.08 
PO.048 1 
PO.05 1 75.52 
PO.066 1 76.45 
PO.072 1 
PO.075 1 73.70 
PO.088 1 75.57 

Table C.l: Communalities Explained by One Principal Component on the ~Ion­
eyness Metric for 1994. 
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Variables 30-10 60-30 90-60 150-90 240-150 360-240 
NO.15 1 
NO.125 1 
NO. 11 1 91.82 
NO.lO 1 72.27 
NO.09 1 65.81 60.49 71.37 
NO.088 1 93.67 
NO.075 1 74.23 77.88 72.48 77.79 
NO.072 1 
NO.066 1 92.85 
NO.06 1 91.76 65.77 70.39 72.64 
NO.05 1 81.32 
NO.048 1 
NO.045 1 91.96 78.26 78.88 76.70 
NO.044 1 91.62 
NO.03 1 92.43 71.26 70.20 75.14 
NO.025 1 81.58 
NO.024 1 
NO.022 1 88.82 
NO.015 1 91.97 74.59 67.60 64.86 
PO.O 1 88.63 78.98 34.93 49.80 72.87 
PO.015 1 94.38 89.22 91.41 83.88 
PO.024 1 
PO.025 1 87.57 
PO.03 1 93.36 86.36 93.67 83.49 
PO.045 1 80.63 93.08 
PO.048 1 
PO.05 1 86.93 
PO.066 1 95.58 
PO.072 1 
PO.075 1 81.95 
PO.088 1 96.07 

Table C.2: Communalities Explained by Two Principal Components on the ~fon­
eyness Metric for 1994. 
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Appendix D 

Explained Communalities in the 

Surface Analysis in the Strike 

Metric 

In this section, we show the communalities explained by the first three pes in 

the surface analysis in the strike metric. The results are reported for the years 

19941 • 

~ XB.A_l denotes the differenced once implied volatilities corresponding to the strike 1('\"('1 
X, III the range B-Aj B, A are the first digits of the three ranges that we examine. 
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Variables for 94 1 PC 2 PCs 3 PCs 
4001.9 1 43.28 43.38 43.56 
4002.1 1 61.49 61.89 62.09 
4101.9 1 58.35 58.96 59.01 
4102.1 1 72.09 73.08 74.04 
4201.9 1 52.36 54.76 54.77 
4202.1 1 73.96 74.74 75.66 
4301.9 1 52.90 54.25 56.24 
4302.1 1 80.62 81.18 82.07 
4359.10 1 5.36 9.9 41.46 
4401.9 1 52.9 55.8 60.28 
4402.1 1 78.32 78.66 78.8 
4409.10 1 9.16 9.21 60.76 
4459.10 1 5.4 48.1 70.05 
4501.9 1 30.98 31.88 32.4 
4502.1 1 64.56 64.61 64.95 
4509.10 1 0.58 45.39 68.21 
4559.10 1 0.19 56.92 57.68 
4601.9 1 1.5 28.38 58.63 
4602.1 1 2.08 23.45 49.52 
4609.10 1 4.2 55.49 55.51 
4659.10 1 2.05 7.3 11.47 
4701.9 1 11.59 20.11 31.99 
4702.1 1 2.34 6.8 18.88 
4709.10 1 0.8 29.79 30.27 
4801.9 1 59.53 60.35 60.38 
4802.1 1 62.19 62.63 62.9 
4901.9 1 59.92 61.18 61.6 
4902.1 1 72.97 73.94 76.24 
5002.1 1 79.64 79.64 80.05 
5009.10 1 65.13 65.48 66.2 
51101.9 1 63.77 63.9 64.39 
5102.1 1 75.47 75.65 77.26 

Table D.1: Surface Analysis on the Strike Metric: Communalities Explained by 
Three Principal Components for 1994. 
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Appendix E 

Explained Communalities in the 

Surface Analysis in the 

Moneyness Metric 

In this section, we show the communalities explained by the first two pes in the 

surface analysis in the moneyness metric. The results are reported for the years 

19941• 

Ip (or N) X.Y_A_l denotes the differenced once implied volatilities corresponding to the 
plus (or minus) moneyness level X. Y%, for the expiry range with upper limit A. 
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Variables for 94 1 PC 2 PCs 
N7.2 9 1 12.64 62.59 
N6.0 9 1 14.14 70.65 
N4.8 9 1 16.84 61.96 
N3.6 9 1 19.83 60.13 
N1.2 9 1 24.99 80.17 
PO.O 9 1 22.71 73.09 
P1.2 9 1 3.66 28.39 
P2.4 9 1 5.2 32.8 
P3.6 9 1 5.7 33.63 
N8.8 1 1 46.18 61.25 
N6.6 1 1 24.11 39.05 
N4.4 1 1 38.04 57.48 
N2.2 1 1 38.37 48.81 
PO.O 1 1 3.62 4.71 
P2.2 1 1 64.63 64.71 
Nll 2 1 67.76 76.2 
N8.8 2 1 74.35 85.9 
N6.6 2 1 73.73 83.6 
N4.4 2 1 68.78 76.88 
N2.2 2 1 70.44 74.47 
PO.O 2 1 0.954 1.225 
P2.2 2 1 0.8583 85.83 
P4.4 2 1 0.80494 80.49 
P6.6 2 1 0.77376 77.49 
P8.8 2 1 0.75193 75.22 

Table E.1: Surface Analysis on the Moneyness Metric: Communalities Explained 
by One and Two Principal Components for 1994. 

234 



Appendix F 

The Moments of a Mixture of 

(Normal) Distributions, Mixed 

across the Variance 

\Ve calculate the first four moments of the asset':; price distribution for a mixture 

of a general zero mea.n distributioll, mixed ncro."i.'i the variance, i.e. 

n 

m(X) = L 7rd(X 10,0.) 
.::&1 

where ul = Oi' The mean is 

E(X) - J Sm(X)dS = J X t 7rd(X I 0, O.)dX = .-1 
t7ri J XI(X I O,Oi)dS = t7ri ec(X) = 0 
i=1 i=1 

where the superscript C, denotes the expectation of the conditional distribution. 

The variance is 

Var(X) = E(X2) = J X2rn(X)dX = 

! X2 t 7rd(X 10, (Ji)dX = t 7ri / X 2/(X 10, O.)dX 
i=1 i=1 
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n n 

= L 7riFfJ (X2) = L 7r.Oi = E[172] (F.I) 
i=l i=l 

The skewness is 

Skewness{X) = E{X3) = J X3 m(X)dX = J X 3 L~1 7rd(X I O,O.)dX = 
[Var(X)]! [Var(X)]J . [Var(X)]J 

E~=l 7ri J X 31(X 10, Oi)dX _ E?=1 7ri£C(X3) _ 0 

[Var(X)]i - [Var(X)]i -
(F.2) 

The last step follows if EC(X3) = 0 (which is the case for a normal distribution). 

Using the definition of the Kurtosis and equation (F.I) we find that 

Kurtosis(X) 

J X4 E~l 7rd{X I O,Oi)dX 
(E[172])2 

Let the kurtosis of the conditional distribution be 

and rearranging gives 

\Ve also have that 

lIence, 

If the conditional distribution is normal, then K = 3. 
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Appendix G 

Constructing the Binomial Tree 

for the Evolution of the Variance 

\Ve calculate vVbt by using the properties of the lognormal distribution. The 

mean and the variance of the lognormal distribution arc given Ly (sec Aitdlison 

and Brown [I)) 

(G.I) 

(G.2) 

Rearranging expressions (G.l), and (G.2) we can calculate v 2, i.e. 

f32 
v2 = log('2 + I} 

Cl 
(G.3) 

Since u2 is distributed lognormally, Var( In oJ I ua) = v2T. Therdore, 

(GA) 

The standard deviation of In u} per step is 

(G.5) 
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From equations (GA), and (G.5) we get that 

1 S.D.{(2)2 
vJbi = N In[l + E(a'lp ] (G.G) 
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