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Abstract

This thesis develops a general pfocedure for the calculation of
longitudinal magnetoconductivities in the high field quanfum regime,
assuming a transport equation of Boltzmann form. Earlier work has been
extended, both in the treatment of .the scattering problem, and in the

generality of the solution to the Boltzmann equation,

Potential scattering in a magnetic field is treated via a quasi
one-dimensional Schrodinger equation, giving a'simple physical picture
of the scattering process. The § function scatterer is briefly mentioned,
while scattering by a cylindrical square well is treated in detail.
Green's Function methods for the solution of the scattering equations are
developed, and general features of the theory, in particular resonant

bound states, are noted.

Transport theory is developed from the Kubo formula by resolvent
methods, to derive the Boltzmann equation with transition rates given
either by the Born approximation or the t-matrix element. A general
solution of the Boltzmann equation valid for elastic scattering is
derived, involving multiple 'relaxation times' obtained by the inversion
of a relaxation matrix. Time dependent relaxation is also treated and
shown to involve multiple decay constants related to, but not identical
with, the above 'relaxation times'. Regimes in which simple or
approximate inversions of the relaxation matrix apply are investigated, in

particular the quantum limit and isotropic scattering.

The above theory is applied to an analysis of the electron-hole-
droplet (EHD) magnetoresonance of germanium. The practicability of the
relaxation matrix method is shown, and accurate analytical approximations
to the solution obtained. The experimentally observed features are
explained by the analysis, which shows how accurate estimates of the
droplet radius may be obtained from the data. Further resonances are
predicted which, if observed, will reinforce these estimates. Certain
features of the analysis also suggest that the strength of EHD's as-

scattering potentials is less than has been previously assumed.
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CHAPTER 1

Introduction

The object of this thesis is to investigate and clarify certain
problems gncountered in the calculation of the transport properties of
solids in high magnetic fields, in particular the longitudinal
magnetoconductivity of seﬁicbnductors. The work has stemmed from an
attempt to carry out an apparently straightforward longitudinal
magnetoconductivity calculation for germanfum, under conditions where
Boltzmann transport could be assumed. It was found that the usual
assumptions leading to a simple 'relaxation time' solution of the
Boltzmann equation were not valid, and a more complex procedure had to be
developed. Latef consideration of the scattering potential involved led
to a general study of quantum mechanical scattering in a magnetic field,

an area which seems to have been hitherto neglected.

Quantum theory has always had a particularly important role in the
description of magnetic effecté, as the discreteness introduced into the
quantisation scheme by a high magnetic field can give rise to clearly
observable and classically inexplicable éhenomena. Examples are the
deHaas-van Alphen effect in the magnetic susceptibility, the corresponding
Shubnikov-deHaas effect in magnetoresistance, and the more recent
magnetophonon effect. Here, we shall restfict our attention.to transport

phenomena.

The formal theory of quantum transport is now well developed, having
proceeded from the early heuristic quantum Boltzmann equation of Pauli
(1928) to the later more rfgorous work of van Hove (1955), Kohn and
Luttinger (1957) and Kubo (1957). This and subsequent work has shown that

in many situations quantum mechanical analogues of *he classical Boltzmann



equation and electron distribution function are valid descriptions of
the transport process. This is particularly true of longitudinal
magnetoéonductivity, and in almost all of the subsequent work we shall

assume that Boltzmann transport is valid.

Even though a quantum Boltzmann equation exists, however, two major
difficulties remain to be overcome before the conductivity may be
evaluated. The first of these is to evaluate the transition‘rates between
quantum states appearing in the equation. As will be shown, these are
almos; invariably}calculated in the Born approximation, as a general
formalism for treating scattering in a magnetic field seems to have been
lacking until recently. The work of Ohtaka and Kondo (1977) on the
Friedel oscillations and sum rule in a magnetic field has goné some way to

filling this gap, and we shall attempt to extend their work to the dynamic

problem of scattering.

The second difficulty is the form of the solution of the Boltzmann
equation, in particular the nature of the perturbation to the electron
distribution function cauﬁed by the applied electric fiéld. In certain
cases this perturbation can be described in terms of a single barameter,
the relaxation time, so called because it is also the decay constant of an
exponential relaxation back to equilibrium when the perturbing field is
switched off. This solution is by no means!always valid, however, and we
have been forced to develop a description in terms of a finite small
number of parameters.A Closer investigation has shown that these are no
longer true ‘relaxation times' in the former sense, but we have also been
able to find the true decay constants of the relaxation process. Our

solution is restricted to elastic scattering, the inelastic problem being

much more difficult.



.VWEth_thesé tools available to us, it is posgfble to return to our
original magnetoconductivity calculation. fhis is concerned wifh é’
resonant effect in the longitudinal magnetoresistance of germanium,
observed by Eaves, Markiéwicz and Furneaux (1976). In their experiment
the scattgring was almost exclusively by electron-hole droplets, created
in large numbers by intense photo-excitation (see Pokrovsky, 1972). As
fhe droplets were presumed to act as sharp edged scattering potentials of
uniform size, a resonance of the droplet potential Fourier transform with
the wave vectors of electrons at the top of Landau sub-zones in the
magnetic quantisation scheme seemed possible. We have béen able to verify
that this is indeed so, and have investfgated the conductivity curve in

some detail using the methods previously developed.

The structure of the thesis is broadly as outlined above. After this
introduction, Chapter 2 introduces the two magnetic quantisation schémes
and sets of basis states which are used thfoughout the following work.
§2.1 treats the states of free electrons, both in Landau géuge and
axisymmetric gauge. Required transformation coefficients between the two
systems are alsq obtained. §2.2 deals with.éleétrbn states in germanium in
a magnetic field, bringing out in particular_;he important effect‘of the

anisotropy of the conduction band valleys in that material.

Chapter 3 deals with scattering theory in magnetic fields. An
introductory section in §3.1is followed by §3.2,which sets up the formalism
involved in solving the scattering problem. A particular separation of
the basic Schrddinger equation leads to a physically appealing quasi-one-
dimensional description of the scatéering process, in terms of a countably -

infinite set of coupled one-dimensional differential equations. §3.3 details
methods of approximate solution of these equations, mainly in terms of

Green's function theory. Several special cases, including the possible
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existence of resonant bound states, are considered. Finally §3.4 treats
scattering by a cylindrical square well potential, a relatively simple
case which makes it possible to demonstrate some general features of the

theory.

Chapter L is concerned with transport theory. After‘another
introduétory section, 84.2 sketches the development of quantum transpart
equations, starting from the Kubo formula and using resoivent methods;

§4.3 deals with the Boltzmann approximation to the prece ding theory, and
also takes the resolvent theory to the next stage of approximation, leading
to a Bo]tzmann equation with t-matrix transition rates. §4.4 is devoted to
the solution of the Boltzmann equation for elastic scattering, in terms of
a relaxation matrix ;nd multiple ‘relaxation times'. Time dependent
relaxation (via elastic scattering processes) is investigated in §4.5, and
the status of the new 'relaxation times' in relation to the true decay
constants of the relaxation process is made clear. The concludiﬁg §4.6
discusses different regimes in which simple or approximate solutions of the
relaxation matrix equations are applicable, in particular, the quantum limit
and isotropic scattering.

Chapter 5 presents in detail the calculation of the electron-hole
droplet magnetoresonénce in germanium. Again after the introduction, §5.2
reviews the experimental and theoretical work on electron-hole droplets in
germanium, while §5.3 discusses other aspects of this particular transport
calculation and settles on parameter values and approximations to be used.
The actual calculation is described in §5.4, in which several mathematical
approximations and simplifications are employed before arriving at curves
of conductivity against magnetic field. The anisotropy of the germanium

conduction band valleys is seen to have a quantitatively significant effect

-4 -



on the results obtained. §5.5 briefly describes a purely numerical
calculation of the same magnetoresonance and gompares the results both

with the exberimental work and with the more analytical calculation
previously described. The results are discussed in greater detail in §5.6,
and some features afe noted which suggest that droplet scattering potentials
are weaker than previously éséumed. Some recommendations a§ to tﬁe direction
of future experimental and theoretical work on the magnetoresonance are made.
The thesis as a whole is summarised in Chapter 6, which also indicates more

general possibilities for future work in this area.



CHAPTER 2

Electron States in a Magnetic Field

2.1 Free electron states

This chapter will give a brief resume of the quantum theory of
electrons in a uniform magnetic field, and will note properties of the

states which will be of use later.

The classical Hamiltonian of a particle of charge q in a magnetic

field described by a vector potential A is (see, e.g., Goldstein (1950)).

H :(lI_—qA)Z/Zme + q¢ ' (2.1.1)

where the canonical momentum Il conjugate to the position vector r is

I-= mei+QA 7’ | (2.1.2)

ana ¢ is the electrostatic potential. When ¢ is zero (no electric field),
q = -e for an electron, and A is chosen such that V.A = 0 (Coulomb gauge),
the Schrodinger equation in the co-ordinate representation is obtained by
replacing the canonical momentum JI by ~ihV in the classical Hamiltonian,

so that we have

(- tn2/2m )V (ief/m )A.7 + (e2/2m )A%)¥ = e¥ (2.1.3)

as the equation for stationary states with energy e.

In classical theory the motion is invariant under 'changes of gauge'
in which A is altered by the addition of an irrotational vector field,
and it is interesting to see the corresponding effect in quantum mechanics.
If W] is a wave function satisfying the Schrodinger equation in the gauge

A= ﬂJa and Wz is such a wave function in the gauge A = AZ’ then WZ may

-6 -



be obtained from“}’I by the transformation

‘PZ(L) = e(ie/ﬁ)f"lz(l')\},1 (.':.) . ' (2.1.4)

where f1z(£) is any scalar field satisfying

Vhi2 =B By | (2.1.5)

Since A, - 52 is irrotational we are assured that such a function exists,

2

1

and since V.A = 0 it must Satisfy Laplace's equation: V 0. Since f

Fi2 ®
will be real we have IYIZI = |\l’2|2 everywhere, so that all observable

quantities are unchanged by the gauge transformation, as we require, We
note, however, that if other quantum members apart from € are needed to .

specify the states in the two gauges, the transformed state will not in

general be an eigenstate for those other numbers.

Henceforward we assume a magnetic field in the z direction so that in

cartesians

B = (0,0,8) (2.1.6)

-

In the Landau gauge

A = (0,Bx,0) - (2.1.7)
the Schrodinger equation becomes

- (%/2m )v?¥0- (iem/m_)B3¥°/2y + (e2/2m)B2x%¥° = e¥° (2.1.8)

We now introduce the cyclotron frequency

w, = eB/me (2.1.9)



and the Landau length

2 = (K/eB)? | , (2.1.10)

ik

whence, writing the wave function ¥° = ¢(x)e'kyye 2%, we have

- (2/2m_)9%¢/0x7 + imewc?(x+22ky)2¢ = (i Bam) e (2.0001)

where the cyclotron orbit centre is given by x = lzky. This equation is
immediately recognisable as that for a simple harmonic oscillator of
natural frequency w, centred on x = -lzk;, for which we know the energy
eigenvalues and eigenfunctions. There are thus three quantum numbers: the
Landau band number N, and the y and z wave numbers ky and kz respectively.
N takes integral values from 0 to o, while in a box of side L kz takes the
values t2mn/L, where n is any positive integer, and ky takes the same

values restricted by |22ky]<L/2. The energy is given by
e = (N+1)fiw, + fi%k_2/2m - (2.1.12)
c 2 e .1

so that there are Lzlbnlz different’ states with the same values of £,N and
kz. The corresponding normalised wave function is

o _ =1 2 ik ik_z
¥ Nkykz =L ¢N(x+£ ky)e ern p3 (2.1.13)

where the oscillator wave function ¢N(x) is
N -3 -x2/202 (2.1.14)
¢N(x) = (2'N!'2/m) “e HN(x/z)

and HN(x) is the unnormalised Hermite polynomial of order N defined by

2 2
o) = (Ve dVa(e™) | (2.1.15)



The ¢N defined.in this way obey the orthonormality condition

fm¢N(x)¢M(X)dx = &um ‘ : (2.1.16)

We see, therefore, that the motion in the z direction is identical to
that of a free'particle in one dimension, but that in the x-y plane is
quantised, corresponding in some sense to the classical bounded motion in
cyclotron orbits. This picture was first obtéined by Landau (1930). We
may interpret the x-y part of the above wave function as representing an
ensemble of cyclotron orbits of energy (N+§)ﬁw; with their centres
uniformly distributed along the line x = -22ky (Johnson and Lippmann, 1949).
With kz fixed, we can check that there are the same number of energy
eigenstates between € and ¢ + ﬁmc as for a free particle in two dimensions,
but now théy all have the same energy instead of being distributed over
the interval; With the kz dependence included, the density of states has

singularities at each multiple of ﬁwc, and is

o(e) = 20(v2m /4n 2 %M E (e- (N+4)u ) 20 (e~ (N+1)fu ) (2.1.17)
N=0 |

where 6 is a Heaviside function and the factor 2 accounts for spin
‘degeneracy. The resulting energy-momentum diagram, togéther>with the
density of states, is plotted in Fig. 2.1, which shows the familiar Landau
band structure. From here on we shall conventionally call the region

(N+i)ﬁwc<e<(N+3ﬁgﬁmc 'Landau sub-zone N', or simply 'zone N'.

In §3 on scattering theory we shall be concerned with an axisymmetric
problem in which the z component of angular momentum is a natural quantum
number. Here the natural gauge is also axisymmetric; in cylindrical polars

we have

A = (O,Bp/Z,O) (2.1.]8)



[
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Fig 2.1 : Landau energy/momentum band‘scheme and energy density of

states for free electrons in a magnetic field



corresponding to (-By/2,Bx/2,0) in cartesians. We shall not go through
the derivation of the eigenstateé here, but merely present the results
(cf Kubo, Miyake-and Haéhitsume, 1965). The quantum numbers afe now

N and k? egactly a# before, aﬁd the z component of angular momentum m.
This takes integral values from -N to +‘w. The energy is also as before,

given by (2.1.12), but the wave function.is now

¥, = (2mL) 3N (p)e M Tk,2 (2.1.19)
r4 . ) . ' :

where the radial wave function ¢E satisfies the equation

D"(p}o = (N+})fiw o | | (2.1.20)
where the differential operator DT{p} is

D"{e} = '(ﬁzlzme){p-ld/dp{pd/dp}-mzﬁz]-imﬁmc + meQCZpZ/S (2.1.21)
The solution to this equation is

" 2,,,2
oy (0) = 47 (n2/ (nem|) 1) e /M 02 002y Iml/2) Il (02/202) (2.1.22)

where n=N + (m=-|m|) and lel(r) is the unnormalised associated Laguerre

| polyﬁomial

Lytr) = (N!)"e'r’"d"/dr"(e;'rN*") (2.1.23)
The ¢: defined in this way oﬁéy the orthonormality condition

[0y 0oy (p)dp = gy, | (2.1.24)

In this picture the bounded motion in the x-y plane is much more
explicit, as the radial parts of the wave functions go to zero at

infinity. In fact each state corresponds to an ensemble of cyclotron

- 10 -



orbits of energy (N+§)ﬁwc, with their centres uniformly distributed on

the circle
p = 2(2m+1)} (Johnson and Lippmann, 1949)

The two sets of states do not transform into each other under
(2.1.4), and so we must calculate the transformation coefficients between
the two representations. We shall also require the matrix elements of
plane waves between the Landau states, and it is convenient to work out

-‘ ° . . eij.- l‘ 1 ] ]
these first. The quantity we need is thus <N,ky,k4 '—IN .ky .kz >,
Assuming that the components of g take only values 2mn/L like ky and kz,

the integrations are straightforward apart from the use of the result
-u? ' N N'=N,  N'-N ' ‘
{Zdue Hy(utaH, (usb) = 27 /aNtb™ L\ 7V (-2ab) (2.1.25)

for N'>N. We eventually have

ig.Feyt _
<N,ky,kz|e—‘i IN ok > = 8 o8 Gyne (a29yrkyrk)

y Sy 9y Y’

kz’kz'+qz
(2.1.26)

where for N'>N

”,

Gyt oy rkyok ) = AT (R (ia,mq ) v2)Y N N (1Pak/2)

-22q2/4 -i22q (k +k_,)/2 |
e x\y y (2.1.27)

X e

in which we introduce the magnitude of the component of q in the x-y plane,
= (qx2+qyz)i. The squared matrix element is thus
ig.r.
|<N,ky,kz,|e-3._ IN*,k "k >| k K4 6k k ) FNN'(Q /2)
y oy y
(2.1.28)

-‘l‘l-



where for N'2N
Fyge () = ey oM N8 Ny 2 | (2.1.29)

The §'s appearing in the above formulae are Kronecker symbols, and for

N'<N we merely interchange N and N' on the right hand side.

Finally, we require the transfbrmation coefficients between the:
different types of state. |In féct we shall want to transform symmetric
states defined relative to the origin X, Y, Z (Corresponding to the
gauge (-B(y-Y)/2,B(x-X)/2,0) in cartesians) to states in the Landau
gauge. Thus state Yl is given by (2.1.19) withp replaced by -

Pyy = ((X‘X)2+(y-Y)2)% and z replaced by z-Z; this state will be written
INl’m’klz>cy]:X,Y,Z . In the Landau gauge this state will transform to

>X,Y,Z
z Landau

I,N',m’k_l e(ieB/Zﬁ)(-xy+xY-Xy).|N,

’m’k}z>cyI:X,Y,Z (2.1.30)

With the state now in the same gauge, we can find its matrix element with
the Landau state |N,ky,kz>. The details of this are tedious and are

given in Appendix 1; here we merely quote the result (cf Kubo et al.,

1965).

2
' X,Y,Z _ =i (Yk_+Zk_+xY/2 ©)
<N’ky’kz'N'm’kz'>Landau - 5NN'szkz.e y 2 X

-

x (1) "(2na?/1) B, (xe2%k ) (2.1.31)

-]2-



‘2.2 Conduction electrons in germanium

In principle the derivation of the energy states in a crystal subject
to a uniform magnetic field is an even more complex problem than thét~of
calculation of band structure in zero field. Fortunately, however, an
extremely simple approximation enables us to go over from the band
structure in zero field with very jitt]e difficulty. Guided by the
observation that the Hamiltonian for a free electron in a magnetic field
is obtained by repiacing its momentum P by II-qA in the energy, we postdlate
that the same is true whenvthe energy is given by a band structure
calcuiation, and the momentum P is the crystal moment um fik. Thus if

the energy-momentum vrelationship in the crystal in zero field is
e = E,(fik) - o (2.2.1)
we postulate that the 'classical'’ Hamiltonian in a magnetic field Is
H = E, (I+eA) (2.2.2)
and that the Schrodinger equation is
. * * '
Eo(-lﬁV+qﬁ)W = ey - (2.2.3)

This is known as the effective mass approximafion (Peierls, 1933;
Luttinger, 1951) and it can be shown that it is equivalent to neglectipg
transitions between bands caused by the magnetic field. Harper (1955) has
shown that it is a good approximation in a band which is not overlapped by
other bands, as is the case in the germanium conduction band. We shall use

it without question from here on.

The lowest part of the conduction band of germanium consists of four

prolate spheroidal valleys with their longitudinal axes in the {1y}

_13-



directions in Evspace (Dreséelhaus, Kip‘and Kittel, 1955), as shown in
Fig. 2.2. In 85 we-shall be interested in an experimental situation in
which the magnetic field is along a {100} direction; hence we shall
choose a co-ordinate system in which this‘corfesponds to the kz axis.
Assuming for the moment that the valley is centred on the origin of k

space, the zero field energy-momentum relation is then
o2 2 2 - . 2 2 2
Eofﬁh) = itk /th +f (kycosO szInO) /th +f (kysin0+kzcose) 2m,
(2.2.4)

where m, and m, are respectively the transverse and longitudinal effective
masses in the valley. The y axis has been chosen so that the longitudinal
axis of the ellipsofd lies in the y-z plane, and © is the angle between

this axis and the z axis. The geometry of this arrangement, and a typical

semi-classical cyclotron orbit in k space, are shown in Fig. 2.3.

Replacing fik by -ifiv + eA, where A is the Landau gauge (2:1.7), we
write the wave function as W* = ¢*(x)eikyyeikzz, and obtain the Schrodinger

equation

-ﬁ2/2mt d2¢*/dx2 + ((ﬁky+e8x)cose-ﬁkzsin®)2¢*/2mt +
‘ ; 2 * - } e
+ ((ﬁky+eBx)sine¥ﬁkzcosO) ) /2m2 = € - (2.2.5)

Grouping the terms in x to form a perfect square, this may be put In the

canonical form

A2/2m d20"/x® + imw 220XV 20" = (e-e,)g" (2.2.6)

-11.-
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(141

Fig. 2.2 : Geometry of the conduction band valleys

of germanium

AR,

Fig. 2.3 : Geometry of the co-ordinate system for a
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o

where the new cyclotron frequency wc" is given by

2 2.2, 2 . 2 | | |
w, ~ = e’B (cos O/mt+51n O/mz)/mt (2.2.7)

o
ki

and energy of motion in the z direction, €, » is

*

2,2 2 2 -1 :
€, = if kz (mtsin O+m£cos 9) (2.2.8)

We may therefore define an effective kinetic mass m, by

_ . 2 : 2 A
m, = msin 0+ mzcos 0 » (2.2.9)

and an effective cyclotron mass by

e o Feos20/m asinZasm )E < : |
m_=m (cos O/mt+san O/ml) z mt(ml/mz) (2.2.10)
in terms of which w_ = eB/m_and ¢ s 2k 2/2m . The energies are then
c c z - 2 z
given by
] . ) 3 .
€= (N+i)ﬁwc + 1 kz /Zmz (2.2.11)

as before. To simplify the expression for the wave function we introduce

the new length

* 1 ¥ 3 o
2 = (f/eB)*(m /m )% = L(m /m ) (2.2.12)
* ' * *
The wave function ¢ Iis then given by Oy (x+X") where
2,,,%2
% -1 -

oy () = @Weetvm) TR Ty (0" (2.2.13)
and the motion is centred on -x* given by

* 2

X" = 2% - a2k 2 (2.2.14)
Y Z
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where a is

o = (ml'mt)/(httan9+m2cot6) = (ml-mt)sfnZO/Zmz (2.2.15)

The quantity a is a useful measure of the effect of the anisotropy of the
valley and its tilt relative to the field, since a is zero if mp = m, or

if ©=0 or n/2.

* . .
The appearance of the kz term in X slightly complicates the evaluation
of the squared matrix element (2.1.26) between the new states, but we

eventually obtain

%2 %2
§ Fune (2 “q
ky,ky,+qy kz,kz,+qz NN L

|<Nkykz|elﬂ'5|N'ky.kz.>|*2 =6 /2)

(2.2.16)

where the function F is as defined previously in (2.1.27) and qi is given by

*2

2
a, )

2 qxz + (z/z*)"(qy- aq, (2.2.17)
which reduces to q‘z in the isotopic case discussed previously. The above
analysis is an adaptation of that by Miller and Omar (1961), also for
germanium. Slater (1967) discusses the most general possible ellipsoidal
valley with three different principal effective masses, which was treated
first by Shockley (1953). To construct an equivalént to the state (2.1.19)
In the axisymmetric gauge (2.1.18) would be considerably more complicated

in this case, and we do not attempt to do so here.

Another factor we have so far neglected is that the ellipsoids do not
have their origins et (0,0,0) ; they are in fact the L-points_&L given by
the intersection of the {111} axes with the Brillouin zone edge. The

correct energy-momentum relation is therefore

- 16 -



e = |, (fk-fik ) _ (2.2.18)
where Eo is the same function as that defined in (2.2.4). This change
presents no difficulty, as we see that it can be interpreted as a change

of géuge from A to A - (ﬁ/e)EL. Using the transformation (2.1.4) the

correct wave function is therefore

. *
ﬁz  : LI LI (2.2.19)
yz Yy z

¥

So long as we are not interested in transitions between different valleys

this extra factor plays no part in the calculation of matrix elements.

It remains to calculate the various parameters derived above for the
case of germanium, when my~ 1.5 m, and m, = 0.082 me (Dresselhaus EE.El;Q
1955; Levinger and Frankl, 1961), and the angle 6 between a {100} and a

{11} axis is cds-1(1//3) = 54.7°. Then
m, = 0.581 me m. = 0.135 Mo (2.2.20)

a=1.22 = tan 50.7° 2" = 1.28¢
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CHAPTER 3

Scattering Theory in a Magnetic Field

- 3.1 Introduction

In this chapter we shall discuss the quantum mechanical theory of
potential scattering in the presence of a uniform magnetic field. When
the scattering potentials are axisymmetric about the magneti; field
direction it will be shown that the Schrodinger equation is separable
into an infinite set of coupled second order ordinary differential equations
for quantities which behave like wave functions in a one-dimensiénal
scattefing problem. The transition rates from one ffee staté to énother
brought ébout by the scattering prbcess are readily obtaiﬁable#ffom the
solution to.these eﬁuations. We shall then go on to considef approximate
methods of solution of the differential equatibns, which wili be
illustrated by an application to scattering by‘potential wells whiéﬁlafe

cylindrical in shape.

When classifying the energy eigenstates of any system a natqral
distinﬁtion exists between those of negative energy (bound states) and
those of positive energy (free states). The theory of perturbétlons to
these states thus falls also into two distinct parts; the perturbation of
the free states being described by the theory of scattering. As one would
expect, such an important aspect of the application of quantum mechanics to
real systems and experimentally observable quantities has been studiedlin
great detail. The early work on scattering by atoms and molecules
emphasised the more intuitively understandable co-ordinate representation
of thé scattering process in which different angular momentum components
of the incoming wave function are phase shifted by differing amounts in the
scattering . A complete survey of this éspect of scattering theory
has been made by Mott and Massey (1949). A cornerstone of the early work,

and much of that since, is the Born approximation in which the transition
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rates due to the scattering are found by taking matrix elements of the
potential between the free states. The expression for the transition

rate w., from initial state i to final state f caused by the potential

fi
V is known as the Fermi Golden Rule (Fermi 1950)

wep = /RS (e -e,) |<f|v]i>|? | (3.1.1)

The adveﬁt of high energy nuclear physics necessitated a more general,
rigorous, and abstract approéch to scattering theofy, which was graduaily
developed by Schwinger (1947), kohn (1948), Lippmann and $c6wingerw(1950)
and'Géll-Mann and Goldberger (1953). The scattering from initial to finél
states was now described by the écattering operator, or § matrix which
contained all observable information on the scattering. Lippmaﬁn and
Schwinger (1950) derived a variational principle %or a scattering state
wave function ¥' obeying steady boundary conditions on the flux of in-going
‘and out-going particles at infinity, and also gave expressions for the
exact transition rates bet@een asymptotically free states. These were
expressed as matrix elements of the potential between the state W? and the
final free state f, but to symmetrise the expression a new operator; the
transition matrix t*, was Introduced to act on the free, unperturbed

states such that
<FIVIYD> = <f[ef]i> | | (3.1.2)

where the exact expression for the transition rate in elastic scattering

becomes

wep = 2m/M8(egme ) |<F|e*|i>]? - (3.1.3)
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"Gell-Mann and Goldberger (1953) showed that the time-dependent picture
of scattering could be cast into this more abstract time independent
form. Extensive treatises on these methods are to be found in the books

by Roman (1965) and Rodberg and Thaler (1967).

Since it was primarily concerned with nuclear scattering, the above
work made little mention of the effect a uniform magnetic field has on
the scatterfng process, although the different nature of the asymptétic
free states hakes this an interesting problem. For a long time much of
the theoretical work which necessitated a calculation of transition rates
in a majnetic field went ﬁo further than the Born approximation; examples
in transport theory are the papers of Adams and Holstein (1959), Argyres
(1959), Efros (1965), Dubinskaya (1969) and Eaves, Markiewicz and Furneaux
(1977).

Early attempts at approximate solutions to the Schrodinger equation in
a magnetic field made use of the adiabatic approximation of Schiff and
Snyder (1939), in whichthe motion within a single Landau band was described
by a one-dimensional Schrédinger equation with afpotential averaged over
the radial part of the wave function, and inter Landau band transitions
were forbidden. Though discussed with tefetenée to scattering by Kubo,
Miyake and Hashitsume (1965), the major application was to the stuay of
bound states in the problem>of‘magnetic freezeout by Yafet, Keyes and Adams
(1956), followed by many authors of whom just a few are Mansfield (1970),
Miyake (1973) and Jog and Wallace (1978). Fenton and Haering (1967) used
the same approximation in the discussion of the Mott transition in a magnetic
field, while Elliott and Loudon (1959) and Altarelli and Lipari (1974) have

applied it to the study Qf exciton states in a magnetic field.
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. One case in which-the exact scattering problem may besolved exactly
(or ét least subject to approximations of a milder nature) is that of
scattering from a potential which is very small in comparison with the
magnetic Landau length &. Kahn (1960), Skobov (1960) and Bychkov (1961)
apprbached this problem via an approximation to the Green's function in
the magnetic field which was further discussed by Kubo et al (1965). A
feature of this study was that a diveréence appeared in the exact

treatment of scattering by a § function, and the approximation is necessary

to cut off the number of Landau levels involved.

The logical next step is the formulation and solution of the exact
equations describing scattering from general potentials in a magnetic
field. Until recently we believed that no such work existed, but after the
théory described in this chapter was essentially complete our attention was
drawn to the excellent paper of Ohtaka and Kondo (1977). This treats the
problem of the Friedel oscillations and sum rule in a magnetic field, and
proceeds by methods very similar to ours. The theory is treated in the
abstract notation of the S and t matrices, and formally obtains
expressions for the change in the density of states introduced by
impurities in terms of the phase shifts of eigenvectors of the S matrix.
The actual overlap with the content of this chapter is quite small, but we
have naturally benefitted from anappreciation of their penetrating

theoretical analysis of the problem.

In §3.2 we write the Schrddinger equation in separated form as an
infinite set of coupled differential equations, and discuss the physical
interpretation of the formalism. We also discuss the results which may be
expected for a certain class of potentials, and briefly treat scattering

by a § function potential in the light of our methods. Section §3.3 deals
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with appro;imate methéds of solution of the infinite set of equations,
which are very similar to the Born series of zero magnetic field theory.
The problems of strong scattering within Landau bands, strong scattering
between Landau bands, resonant and bound states are discussed. Finally
§3.4 discusses the relatively simple problem of scattering by a cylindrical

potential to illustrate some features of the theory.
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3.2 Exact Scattering Formalism

We shall now formally solve the problem of the elastic scattering
of an electron in the'presence of a uniform magnetic field, for the case
when the scattering is described by a potential which is axially
symmetric about the.magnetic field direction. The Schrodinger equation

is
(p-eM¥/2m ¥ () - e¥(r) = ~V(D)¥(r) CGaa

The axial symmetry of the scatterer aboﬁt the magnetic field axis
lead; to conservation of angular homentum about that axis, so it is
appropriate to work in the axially symmetric gauge A = A(p) in a
cyliﬁdfical polar co-ordinate scheme centred on the symmetry axis of the
scatterer. The angular momentum m about the field axis is then a good
quantum number for the free basis states (2.1.19), and is also conserved .
throughout the collision. The solution of the scattering problem will thus
consist asymptotically of an incoming free state and several outgoing free
states, all with the same value of m, but with N and kz changed by the
;ollision. Hence we may separate out the dependence of the wave function
on the axial co-ordinate ¢, so that the Schridinger equation (3.2.1) reduces

to

{D"(e}y ™ (p,2) - ﬁz/Zmeazlazzwm(p,z) - e™(p,z2)}e” ™ = ~V(p,2)u"(p,2) e

(3.2.2)

where D™{p} iﬁ the differential operator in p defined in (2.1.21). Guided
by the knowledge that far away from the potential ¥ must consist of free

Landau states, we write Y™ in the separated form

o) = § BN (3.2.3)
N=0 '

-23-
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where r = 02/222 and the ¢$ are the associated!Laguerre functions
previously derived in connection with the free Landau states (2.1.22).
These functions form a complete set on {o0,»} and satisfy eqn. (2.1.20).

With the wave function written in this form the Schrodinger equation
further reduces to

(=]

!

I (00 e Rz, ) e (1) = TV, )

(3.2.4)

We can now use the orthonormality property (2.1.24) of the ﬁz to extract
a differential equation for f:, by multiplying (3.2.4) by 2mp and
integrating from o to ® in p:

P

-2/2m i (2) = (e=(WsD)Tw ) N(2) = T-VT (2) €7 (2) (3.2.5)
- M=0

Viu(2) = £2ﬂpdo¢:(r)V(p.z)¢:(r) (3.2.6)

Were it not for the off-diagonal coupling terms VﬂM’ (3.2.5) would bg
a simple one dimensional Schrodinger equation describing motion in the z
direction confined to a single Landau band. The couplfng terms give rise
fo inter-Landau.band transitions and also resonances with virtual bound

states, as will be shown below.

Eqn (3.2.5) is incomplete without a discussion of the boundary
conditions imposed on it to produce the desired scattering behaviour. |If
the potential falls off rapidly enough as |z|+», the asymptotic behaviour

of the f: will be that of free wave functions

fﬁ(z)lzT:mg*‘knz ky = (2o /A (e-(np) M)t e>(mp)fe,  (3.2.7a)

fﬁ(z) - eikNZ

zl:co

x
1}

V= A DR e el (3.2.70)
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For convenience we shafl henceforward follow Ohtaka and Kondo (1977) and
say that we have an open channel (0C) when the wave function is
asymptotically wavelike as in (3.2.7a), and that the channel is closed
(CC) when the wéve function is asympototically exponential as in (3.2.7b).
Then the general scattering problem will take place at an energy € such
that the first few channefs are open, up to a maximum value P, and all the

rest are closed.

If we want to calculate the scattering out of the free state lN,m,+kN>
(wheré N is an 0C), we have to take boundary conditions on ¥ such that as
z+-oY consists of the incoﬁing free state IN,m,+kN> and several outgoing
free states IM,m,-k,> (where Mare 0C's), and as z»+= ) consists of outgoing
free states lM,m,+kM>. The appropriate boundary conditions on the f: to
achieve this are tabulated below.

sme ;LR miky2Z -3 +ik, 2
fh . z L RNNe N+ L “e N

NN -1 +ik, z
z=4+o : L T:Ne N

e - -3m -ik,z

_ 2= : L RMNe M

fun ' (M 0C,%N) (3.2.8)
Z=40 3 L-iT‘;Ne“kMz

2=~

L.J“RnNekMz
MN (M cc)

- -} ~k z
Z=+40 L T:Ne M

The solutions in the 0Cs consist only of outgoing travelling waves
apart from channel N, which has its incoming wave normalised in a box of
length L. The solutions in the CCs decay exponentially to zero as |z|+w.

The f's have acquired an extra index to show which is the incoming state.
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The situation .is illustrated schematically in Fig. 3.1.

Taking eqn. (3.2.3) for wm; we see that asymptotically the full

wave function has been decomposed into free Landau states as desired

o o
Nme-kM(I) + wNm+kN(£)

+

Ymek (1) > (3.2.9)

Ri
Zz4+o ZTﬁ b4

The wave function ¥ has been given a + superscript to indicate that
it is the outgoing solution which would be obtained by using the causal
Green's function for the scattering problem (see Roman 1965). Essentially,
this means that if we formed a wave packet from ¥* states it would have the
desired behaviour df approaching the scatterer as a single wave backet from
z=-w; t=-=, and being scattered into several outgoing wave packets as

t>~+o(Gell-Mann and Goldberger, 1953). This is illustrated in Fig. 3.2.

We may now obtain the elements of the scattering operator or t matrix
introduced by Lippmann and Schwinger (1950}, in terms of which the exact
transition rate from one state to another is expressed. The expression for

the t-matrix element is

' + 3 _,O* S
<M,m, 2k, [ €7 [N,m,+k > = [d rwnmtkM(L)v(;)wNm+kN(r) (3.2.10)

The integrations in p and ¢ are simply performed to give

<M,m,tkM|t+|N,m,+k >

\ L-fidzé¥ikMz£'§oV2N.(z)fm (2)} (3.2.11)

N'N

By refering to the Schridinger equation (3.2.5) the quantity in

brackets may be re-expressed as a differential operator acting on f:N(z),
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Na=|

N=O N=O

Fig. 3.2 : Schematic of the scattering of an axially symmetric wave

packet in the N = 1 channel



after which we may use Green's theorem in one dimension to convert the

integral to an evaluation of surface terms at zs=iw, From these we

obtain
<M,m,-k, |t*|N,m,+k > = (162 /m LR “(all oCs)
UM R M e RMN
+ ; 2
<M,m,+k [ t7[N,m, k> = (i kM/meL)T:N (0Cs ,M#N) (3.2.12)
+ ‘ - [kl Y
<Nym, ko[£ [Nym 4> = (%K /m LYTR - 1)

-At this point it is appropriate to discuss the form and physical
interpretation of the separated Schrodinger eqn. (3.2.5). |If the
off-diagonal coupling terms are ignored we have the adiabatic approximation
of Schiff and Snyder.(1939). where the potential seen by an electron is
taken to be an average of the full potential over the radial part of the

wave function:

V:N(Z) = IprdoI¢m(r)|2v(p.z) (3.2.13)
(o]

The simplest case occurrs when the potential V(r) is of finite range and
flat bottomed, so that for each z V is some constant V° for p<R(z) and zero

for p>R(z), whence

Vo (@) = Vo({R(Z)ZTTDM:(r)Ide By, IM (R(2)) (3.2.14)

Clearly I:N(R) so defined is zero for small R and unity for large R, changing
most rapidly where pléz(r)|2 is iargest. Taking N=0 as an example, the
maximum of plég(r)lz occurrs at p=2(2m+1)§, so that for values of z such
that R(Z)<<2(2m+l)% we have Vgo(z)mo, and when R(z)>>2(2m+l)i VZO(Z)MVO.

Thus for a potential whose maximum radius is Rmax it will be possible to
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ignore collisions with m much greater than Riax/zzz as-far as 0-0
scatterihg is concerned, beéause of the-sma]lness of Vgo' Fpr
'N>0»pI¢:(r)|2 has more than one turning point, and for large N an analytic
formula for thé positions of the peaks is not available. However, We can
say that; for fixed N, the region of maximum contribution will be around

p = lm%, and for fixed m a region around p = iN* i§ important. This is
illustrated in Fig. 3.3 where I:N(R) is plotted for low values of m and N.
The net effect is that for finite ranged, flat bottomed potenfials only a
finite number of N and m values are significant in the diagonal elements

of V.

The form of VEN as a fun;tion of z depends crucially on the shape of
the potential. ,Th; simplest case of all is a cylindrical potential with
its axis along the field direction, for which all.the elemenfs of V are
constant along the length of the poteﬁtial; and zero outside its range.
This model will be investigated in §3.4. For the spherical square well,

in which we shall be interested later, Vm does not have such a simple form.

NN
However, if the radius a of the sphere is much larger than the Landau
length 2,then for small N and m V:N(z) will be approximately a square well
of depth V_ and length 2a. This is shown in Fig. 3.4 where VEN(z) is

plotted for the first few N values.

It is less easy to make general statements about potentials which

extend to infinity. In this case VEN is given by

Vin(2) = [2molgn(r) | 2V(p,2)dp (3.2.15)
o

For the region where |2] is much'larger than the radius at which
D|¢:(r)l2 is maximum, we may approximate V(p,z) by V(o,z), so that

asymptotically VEN(z)mv(o,z). Thus, for example, the elements of V for an
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Fig. 3.3 The diagonal potential integrals IKI'N(R)
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‘unscreened coulomb potential will fall off as 1/]|z|. |In this case the

asymptotic form of the function fz(z) is not e"sz, as before, but

eii(sz+al°g z), as may be shown by using the WKB approximation. There

is also a difficultyAin deciding how many m and M values are needed, since
although the magnitude of V:N(Z) still decreases as m and N increase, the
range of z over which it is still a sign}ficantvbroportion of its maximum
value is increased. This-is directly analagous'to the situation when the
magnetic field is zero, for thch the scattering cross section is known to
be infinite (see, e.g., Mott and Massey, 1969). A discussion of the

potential matrix elements and resulting wavefunctions in the adiabatic

approximation is given by Elliott and Loudon (1969).

We can deduce the behaviour of the off-diagonal elements of V in a

similar manner. For a flat bottomed potential we now have

VP (2) = VO£R‘Z’znp NN BV M RG)) (3.2.16)

Now I:M(R) will tend to zero for large as well as small R, because of the
orthogonality (2.1.24) of the radial wave functiohs. Between these two

asymptotic regions it will be maximum at a point determined by m, N and M,
and may be negative in some regions. in Fig. 3.5 we plot some of these

functions for certain low values of m, N and M.

Returning to the example of a spherical square well, if a >4 and m
is small the only places where the coupling IOI(Z) is significant are around
12| =a, it being very small both outside and inside these points. If m is
increased to O(az), corresponding to grazing incidence on the sphere, the
coupling is significant over the whole range |z|<a. This is illustrated in
Fig. 3.6 where an(z) is plotted for a spherical square well. Thus it
appears that the inter-channel scéttering is dominated by m values

-

corresponding in some sense to grazing incidence, while the intra channel
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scattering is strongest for lesser values of m.

An intéresting phenomenon is the occurrencé of resonances below the
bottom'of Landau bands with N>0. In many‘cases V:N(Z) will be a
potential well which, if considered as a potential for a one-dimensional
problem, would have one or more bound states. When we consider the full
set of coupled equations (3.2.5) there will no longer be a true bound
state at these positi?e energies, but if the couplings VEM(Z) to the open
channels M are all small a resonant effect dﬁe to a 'nearly bound' state

will occurr. This will be discussed further in §3.3 and §3.4 below.

We now return briefly to the more general properties of the Schrodinger
equation (3.2.5). The analogy with the one-dimeﬁsional Schrodinger equation
is so strong that it is a relatively simple task to generalise some
important results in that theory to apply here. Firstly we have the

property of conservation of particles
2 2 '
kN =sz(IRMN| + ITMN' ) (3.2.17)
ocC
in which the incoming particle flux in channel N equals the outgoing flux
summed over all the open channels, Secondly, time reversal symmetry applies

<M,m,kM|t+|N,m,k > =‘<N,m,-kNlt+lM,m,-kM> (3.2.18)

N
and finally, if V(p,z) = V(p,-z)we also have inversion symmetry

ot +
<Mym, k|t |N,m,kN> = <M,m,-kM|t |N,m,ka> (3.2.19)

An elegant proof of these results is given in Appendix 2, in which we
generalise the methods given by Messiah (1964) in order to develop a

Wronskian theorem for sets of coupled equations such as (3.2.5).
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anally, we shall briefly discuss the exact scattering problem
- when V(r) is a negative three dimensional § function potential:

Vir) = -V°63(£) = Lt -V (Zﬂaz)-le-p /2a §(z) (3.2.20)
a+o °

The § integral for the potential matrix elements may be performed to give

V() = v g (08N (0)8(2) = -2 Ay 8 6(a) | (3.2.21)

so that scattering only takes place for states with zero angular momentum.
The Schrodinger equation is

[- -}

-(ﬁz/zme)f:“- (e- (Ned) o PO - z'zvonz £25(2) (3.2.22)

0

The asymptotic equations (3.2.8) now give the exact form for the f's in the
"two regions z<o and z>0. At z=o f:(z) is continuous, and the matching
condition on the derivatives is given by integrating (3.2.22) through a

small region containing z=o.

-(R%/2m ) (£330 = 2y ] €2 (0) (3.2.23)

We then find that all the t-matrix elements of (3.2.12) are equal to a

single constant t, given by the implicit equation '

= _ 2 - 2y (v .1 -1
t (VL2 (1 = (m LR )t(.ozckM + czck" )} (3.2.24)

which is easily solved to give:

t= (/20 s (v A2 G Ik e Ty (3.2.25)
ocC cC

s e - ~ . .
This is very similar to the expressions obtained by Kahn (1960),

Bychkov (1961), and more recently by Gerhardts and Hajdu (1971). Also as
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in their results, it suffers from a divergence of the gékT; term in the
denominator. Thé conclusion must be that the exact scattering is zero

for a true 3-D&function potential. If the potential is of a finife size
a<<% |, however, the integral for VhN is no longer of such a simple form,

and we must rather write VﬂN(z) = -E-ZVENG(z). For low values of M, N and
m the wave functions ¢:(r) are smooth in comparison to the poteﬁtial, and
VﬂN(zj is given.by (3.2.19) as before. Fér very large values of M, N or m,
however, the potential is smoother'than the wave function and the quéntities
V:N become small. The solution of the Schr3dinger equation (3.3.20) is then
no longer obtainable in analytic form, but may be approximated as follows.
For m=0 we suppose that for M, N larger than some cut-off value No
(determined by £/a, and much greater than P, the highest 0C) the Vo

MN
neglected, whereas for N, MN the t-matrix elements are all equal. This

may be

leads to

e -+ (v A2 Tk 48 ') (3.2.26)
. ’ oc cc<No

Where there is now no divergence. This is similar to the aforementioned
results, but differs in that we have cut off the summation at M=N° rather

than M=P, giving an additional real part in the denominator of t.
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3.3 Approximate Methods

The infinite set of coupled differential equations (3.2.5) is in
practice impossible to solve analytically, and we must therefore develop
approximation schemes which make the problem tractable. Our aim will be
to derive expressions forvthe t-matrix elements which approximate closely

the exact formula (3.2.10).

The simplest, and hence most uséful, approximation for the t-matrix
element is to replace the exact solution y* by the corresponding free
wave fyﬁction y© in the integral of (3.2.10). This is the familiar Born
Approximation, which has been exhaustively discussed elsewhere (cf Mott
and Massey, 1950), and which is almost invariably used in transport
problems of the type'we shall be discussing (see, e.g., Argyres (1959),

Eaves et al (1977). This procedure gives for the t-matrix element

V(r)¥°

= fq3,.40%
<M,m,ikM|t|N,m, + kN>BA = fd ry MmtkM

Nm+ky (3.3.1)

The accuracy of the above expression depends on our being able to neglect
the scattered paft of the wave function ¥¥ in comparison with the
unperturbed part ¥°. Hence an estimate of the size of the scattered part
of the wave function is necessary to determine the validity of the Born
Approximation; such an estimate will be generated by the Green's function

analysis which follows.

We seek Green's functions for the solution of the scattering Schrédinger

equation

-b2/am 8 () - (e (T ) EN(2) = - VT (2) €7 (2) (3.3.2)
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If we regard the left hand side of this equation as the homogeneous
part, then the appropriate Green's function for scattering boundary

conditions is easily obtained by solving

- (272992027 e52,2") - (- ()R )G (e52,2") = s(z=2")

(3.3.3)
with the boundary condition:
GE°+(€;Z,Z') a e'klel (Open channel) (3.3.4a)
. zl_)m
e-kle| (Closed channel)  (3.3..4b)
The appropriate solutions are
‘ -l
6" (e32,2') = ime/ﬁszeikle 2| (Open channel) (3.3.53)
N ? ?
- -yl
me/ﬁZkN e kN|Z 2! | (Closed channel)  (3.3.5b)

that is; a purely outgoing wave for an open channel, and an exponentially
decaying solution for a closed channel. We can now use the right hand
side of (3.3.2) as an inhomogenous part to derive the following integral

equation for the f:(z):

) = ) () - Jez Gy (52, 2)T (=)@ (3.3.6)

where f:o is a solution of the homogeneous part of the equation. If the
scattering potential is in some sense a small perturbation to the set of
equations, we can use (3.3.6) as a basis for iteration. Thus if we wish
to solve the problem of scattering from the state |Nm+k > to some other
open channel, the zeroth order approximation will be an unperturbed

. m i
travelling wave fNéo) = e'sz in the N channel only. Iterating once, we
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obtain the first order approximation

fﬂél) = eikN? - }odz'Gzo+(e;z.z')V‘SN(Z')eiszl

(3.3.7)
m(l) -  pmot, ik, z!
fuy = -{dz Gy (eiz,z )V:N(z )e N

When z is large \&N(z') is significantly different from zero only for

2'<z, and hence (3.3.5a) may be used to derive the asymptotic expression

m(l) = =im_/fk fe Tkyz Vm (2 )e'sz dz* e'kn? (3.3.8)
MN e M

Zr o
This asymptotic expressfon for the wave function yields the first order

approximation to the t-matrix element on using (3.2.12):

3 o
<MmkM|t|Nmk S = [dor¥y V(r)‘vNmkN #N (3.3.9)

Thus we have formally derived the Born Approximation of (3.3.1) as the
first order term in a perturbation scheme based on the Green's function
for free propagation in the magnetic field. Inside the potentiai we may
use (3.3.7) to show that the first order corréction to the wave function
is of order VEN (E:--(N+{;)1’iu)‘_')-1 in channel N and V‘;N/(N-M)ﬁwC in the other
channels. As far as propagation within a channel is concerned the Born
Approximation therefore works well for high energies or shallow, short-
ranged potentials. For inter?channel scattering the coupling must be

small or the inter-channel energy large.
Continued iteration of (3.3.6) leads to the Born series for £,

f?&(z) = f:él)(z) + fm(Z)( ) + fm(3)(2) + (M#N) | (3.3.10)
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" where
fzbSZ) (Z) = ('1)2}0fdz"dZ'G:°+(z,Z'.); VmM'( |)Gm0+(z ’z”)v'n (Z")e
| -e M'=0
(3.3.11)

~1f the gnefgy is high enough or tHe potential shallow enough that
the Born series converges, it will génerally be acceptable to use the:
simple Born Approximation in describing the scattering. One may, however,
foresee circumstances in which the Born series converges slowly if at all.
We will distinguish two cases worthy of special attention, the first being

when the difficulty is caused by a sub-set of terms of the form

{V +VMM2+VM 3+ . .} (strong'intfa-channel.scattering). and the second
b .6 |
being when a sub-set of terms of the form {VMN+VMN+VMN+ . « .} causes

trouble (strong inter-channel scattering).

When strong intra-channel scattering is present convergence may be
improved by treating propagation within each channel exactly with respect
to the diagonal part of the potential. The new Green's function for this

|

exact propagation is obtained by solving

-ﬁ2/2me32/322G:+(€;z,z‘) - [e-(N+§)ﬁmc-V$N(zﬂG:+(e;z,z') = &z-2')

(3.3.12)

subject to the same outgoing wave boundary conditions (3.3.4) as before.
The free propagator Go may be used to derive an integral equation for the

full propagator (3:
Gﬂ+(e;Z.zi) = G:°+(e;2.2') - fG:°+(e;z.z“)VgN(2“)Gz+(€;2”sz)d2"

(3.3.13)
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This equation may be formally iterated to derive the usual Born expansion

for (G:
6" = 6 - GV G + BTV G VG - - | (3.3.14)

showing that the use of G+ amounts to a resummation of the slowly

convergent terms in the previous Born series.

It is also necessary to obtain an improved zero'th order approximation
to the wave function fNN by again taking VNN into account exactly and

solving

m(o);l

A2/ " (2) - [e-uepa, - Gl @ 0 33.19)

subject, naturally, to appropriate scattering boundary conditions. The

Born series for f;N is of the same form (3.3.10) as before, but now

@ s G e WV T @ ) (3316

. (&) = COZJE(eza® Vi (@G i Wiy () 11 (2 b

(3.3.17)

The convergence of the resummed Born series now depends only on the
inter-channel matrix elements of V, which may be small in situations of
interest. The price to be paid for this improved convergence is the

(o)

introduction of the functions G* and f for which analytical expressions

may no longer be obtainable. The WKB approximation is not adequate to

(o)

provide approximate expreﬁsions for G+ and f , as it ignores backscattering
by the potential. The Bremmer series (Bremmer, ), however, of which
the WKB approximation is the first term, does take the backscattering into

account and should give appropriate approximations for (' and f(O)o while
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if necessary powerful methods of numerical integration are available
for differential equations such as (3.3.12) and (3.3.15). We shall

not pursue these difficulties further here.

A further problem which may arise in a closed channel is that of
divergence of the exact propagator G+ at certain energies due to the
presence of a bound state of the diagonal element of the potential. This
divergence may only be removed by coupling to channels which are open at
the'séme energy. Thus in calculating the effect of a closed channel on
the séatterfng between the open channels at or near a bound state energy
‘for the closed channel, it is necessary to solve simultaneously the
Schrodinger equations (3.3.2) for these three channels, though coupling
terms to other channels may be ignored to lowest order. This situation

is investigated in the next section for a simple cylindrical potential.

Finally, we mention the case where strong inter-chaﬁnél scattering is
presént, soithat the interaction between some channels must be taken into
account exactly; such may bevthe case for two channels near grazing
incidence, for example. The Green's function now becomes off diagonal in
the channel number, so that instead of (3.3.6) we have the integral |

equation

fy (2) = e () - idz‘S'G:;.(é;z,z‘)ﬁVE.M(z')f?(z') (3.3.18)

1 and N2 are strongly coupled the off diagonal elements

of the matrix GNN' are zero apart from (§

If only channels N

and (3 , and the diagonal
NINZ NZNI X

elements apart from Nl and N2 are just the same és the GN previously
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derived frdm (3.3;12). Within the NI’NZ submatrix we have

/2m 92026 (e52,2") - (e- (N) i V0 (2)) G (e32,2') +

* V'SN-GZ‘;(e;z,z') = §(z-2") (3.3.19)

-ﬁz/zmeazlazzG:TN(e;z,z') - (e-(N'+i)ﬁwc -Vﬂ,N.(z»GnTN(e;i,z') +

+
+ V‘SINGRN(E;Z)Z') =0

where (N,N') = (N],Nz) or (NZ’NI)' If neceﬁsary simultaneous solution

m(o)
N

(3.3.18) then leads to a Born series which includes the interaction between

must also be used for the zero'th order solution f lteration of

channels Nl and N2 exactly. The extension to a larger number of strongly

coupled channels is obvious, but unwieldy.
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3.4 Cylindrical Square Well Potentials

Ve now.illustrate‘some féatures of the preceding theory by
considering the case where the potential is flat bottomed, of depth V,
and is cylindrical in shape with the axis of the cylinder lying along
the directfon of the magnetic field. For a cylinder of length 2% we

have:
Vi (2 = Vi (zle) and VI (2) = 0 ([2]>2) (3.4.1)

where the constants Vm

MN depend on the radius a of the cylinder and the

magnetic field strength. The Schrodinger equation (3.2.5) becomes:

“w2/2m f7(2) - (- (e V) EN(2) = T V0 60(2), fzlet  (3.4.2)
MAN

~ﬁ2/2mef:|(|2) - (e- (N+i)ﬁwc) f:(Z)

"
(=]

» lz]>2

Clearly the asymptotic behaviour (3.2.8) is exact for the whole region
|z[>2; and it remains to find the f: inside the potential. The Green's
function methods of §3.3 are readily applicable here, as simplé analytical

expressions are obtainable for G+ and f(o)

by standard methods such as are
illustrated by Schiff (1968). However, a more elegant approach is possible

due to the constancy of the coefficients in the Schrodinger equation.
We look for a solution in |z|<® of the form:

fu(2) = ACTE (Ke) o (3.4.3)

for some constant K, where choice of cos or sin gives an even or odd solution

respectively. The form of the even solution is illustrated schematically in

Fig. 3.7.
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Substitution into (3.4.2) yields:

(-62k%7am - (e- (M) Fu V) A +M§NvﬂMAM = 0 (3.4.4)

or
(KPHAY = k%A | (3.4.5)

where the matrix {Kz} has the elements:

KDy = Ky = 20/B2 (N B 4V -e) (3.4.6)
{|<24}NM = K:M = 2me/ﬁzv;‘M ' (3.4.6)

We have thus transformed the problem into one of finding the

2

eigenvalues K® and the eigenvectofs {A} of the infinite matrix {Kz}. Since

{K?} is real and symmetric, its eigenvectors will also be real. We assume

without proof that there is a largest eigenvalue Kg so that the eigenvalues

2 2 2
O’ K]’ K2, ¢« o

corresponding eigenvectors as {A°}, {Al}, {Az}, .+« . . wWith A: chosen to

may be labelled in decreasing order as K . and the

. . . . 2\ . . 2 _ 2
be 1. The notation is convenient, for, if {K°} is diagonal, Ky = KNN and
Ax = GNM‘ (We also take this as our justification for the assertion that
the eigenvalues may be ordered in the above manner, even when {K?} is

non-diagonal).

We now solve for even and odd wave functions on (0,x), assuming that
channels 0 to P are open at the given energy, and that the incoming wave is
in channel N. We expand the wave function in terms of the eigenvectors, so

that . -
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7 (2) = L-izo(A:cosKLzYILég) |z|<2 (3.4.7)

£ (2)

-1,.(E) ik -ik
MN L J"{Qb(m)e' Mlzl + Syye : le|}|z|>2

Here ah(s) is the amount of the L'th eigenvector which is excited; hence
‘the L sum is over eigenvalues rather than channel numbers. Also

NI | _ 2%, _ 3 . .
KL = (KL) and kM = (2me/ﬁ Yi(e (N+i)ﬁwc) » with the convention that K_
and kM always have positive real or imaginary parts. (Note that this is
so that we may treat closed and open channels alike, whereas in §3.2 we

treated them separately, as in (3.2.7)). The superscript E indicates that

the even cos function has been chosen; for the odd function sin is used.

The function f and its first derivative must be continuous across

z = %, whence we obtain the matching conditions:

6NMe-'kN£ + Qéz)eikMz =y A:cosKLl.a:(E) (3.4.8)
L=0

e =ik 2 (E) Tk fy_ v AL, L(E)

ik ( Sy N+ Qye M )= LZOAMS|nKL£.KLaN

Eliminating the Q's, we obtain a matrix equation for the a's:

v aL . . L -
_LEOAM(COSKLQ-l(KL/kM)snnKLl)aN(E) = 8yy2e Tyt (3.4.9)
This may be re-expressed as
oy = 3a®hy s 2o MY (3.4.10)
L

Here the mat}ix {A(E)} is definéd by {A(E)}ML= Ah(cosKLl-i(KL/kM)sinKLl),
(

£). ., .
{aN } is the column vector of eigenvector coefficients for scattering

-ikN2

from the N channel and {GLNe } is a column vector which is non-zero
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only in its N'th row. Using the Cramer formula for {A(E)}-1 we obtain:

ay S = 0 MN2e N LAY 11711 AT (3.4.11)

where {AE(N L)} is the matrix obtained by deleting the N'th row and the
?

L'th column from {AE}. Therefore, from (3.&.8), the Q's are given by:

Qﬁ:) =4} A;(cosKLz + i(KL/kM)sinKLz)(-1L+N||A E Ile-i(kM+kN)2.2/||AE||
L=0 | (N,L)
(3.4.12)
or.
afy) = & o ”‘HB(N NIINT (3.5.13)

where {B%N,M)} is the matrix obtained by replacing the N'th row of (A%}

with (A;(cosK

Ll + i(KL/kM)sinKLl)).

Similarly, the odd solutions are given by

Q(o) o1 (kytk )zllB(N M)II/IIA I . (3.4.14)

. ) o L

h th h ] _ . .

where the matrix {A”} has elements {A"}, AM(SanL2+|(KL/kM)cosKLR) and
{B?N M)} is the matrix obtained by replacing the N'th row of {A°} with

Ah(SinKL -i(KL/kM)cosKLR).

From the form of the wave function in |z|>2 (3.4.7), we see that the
required asymptotic conditions (3.2.8) are obtained by subtracting the

even and odd wave functions, and hence

Twy = +@QE - ol

or: , (3.4.15)
43(5) (0)
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We have therefore arrived at a formal solution to the exact scattering
problem for this potential. Difficulties still remain, however, as all
the matrices {A}, {B} and {Kz} are infinite, and the eigenvalues of

{K?} still have to be found.

Letdsbegin by evaluating the solution when {K?} is diagonal,
corresponding to completelyvdecoupled channels. Then {A} is also diagonal,
and hence llB(N M)|| = 0 from the definition of {B}, unless N = M. It

. ’

follows readily that ||A]| and ||B|| then only differ in one factor, so that

(;) = 5. e 2k (cosK 2+|(K WANMEILL NS

MN
(cosKNNl |(KNN/kN)sunK 2)

and " (3.4.16)

(o) _ -2ik 2 , . .
QMN = §,\¢ N (snnKNNQ-l(KNN/kN)cosKNNl)
(sinK £+|(KNN/kN)cosKNN2)

NN
whence T and R are readily obtained. This result may, of course, be obtained

by much simpler methods in this special case.

Next we consider the case when the off-diagonal inter-channel coupling
terms in {K?} are small, so that its eigenvalues are perturbed only a little
2 K2
from KNN' NN

||{K2} - Kz{l}ll = 0 to first order in small quantities, ignoring all terms

We therefore write Kﬁ + 6 and solve the equation

of the form (K /(KNN KMM))Z and higher order. To this order of approximation:

=0 A= kB 022 = VoL (N-m) B 4V, V) (3.4.17)

Thus the first order theory is valid if the coupling potentials are small

compared with the cyclotron energy.
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Substituting into eqns (3.4.14 and 15) we find that the intra
channél sc;ttering terms QQN are unchanged to first ordér, as we would
expect from the formrof the Green's function expansion (3.3.16). The
inter-channel scatteriﬁg terms QMN are now first order, and may be
evaluated by picking out the first order terms in llB(N,M)II' The

expression for the even term is

(e) _ , =i(k +k )2 2
N ie M N KMN/ZkM X

MM~ NN w K & (3.4.18)
M£-|(KMM/kM)smKMM2)

x {(K )-lsin(KMM-HmN)E + (KooK ) " Vsin(k

(cosK

O
NN -n(KNN/kN)sanNNz)(cosK

M

These terms may also be obtained by evaluating the first order term (3.3.16)

of the Green's function expansion.

We now investigate the effect of resonances, which haQe only been
briefly mentioned before. A resonance occurrs at values of the energy ¢
such that, if there were no coupling between channels, a bound state would
be possible in one of the closed channels R. The condition for an even bound

state under such circumstances is (see Schiff 1968)

(cosKRRz-i(KRR/kR)sinKRRz) =0 - (3.4.19)

(Bearing in mind that kg is positive imaginary). We see from (3.4.16) that
this is precisely the condition for (g) to diverge to zeroth order, as its
denominator becomes zero. Since this factor appears also in {A(E)},
][A(E)I[ = 0 to zeroth order at this energy, and hence in the neighbourhood
of the resonance ||A(E)||and ||B(E)||must be evaluated to second order in

(g)

small terms, as the first order terms of ||A ||are identically zero, and

E . .
those of ||B( )||vanish at the resonance. The expressions obtained for
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(£) ,og ol®)

NN are complex, but the denominator is fairly simple, and is

N
(cosKRRz-KKRR/kR)5|nKRR2) +
T y . . . , 4
+ ) _QEBBZ-. (cosKLLl |(kLL/kR)S|nKLL2)(cosKRRQ |(KRR/kL)S|nKRR2)
L:g KRR-KLL (cosKLLl-l(KLL/kL)sunKLLl)

(3.4.20)

At the resonance the lowest order terms in numerator and denominator vanish,
so that the QMN suddenly become of zeroth order in the coupling potential,
givfng rise to a iarge peak in the inter-channel scattering. The width of
this peak is most easily estimated by finding the imaginary parf of ;he

energy of the decaying stationary state which gives rise to the resonance;

this we shall now do.

We suppose that for the decoupled channel a resonance occurrs at energy

€ We shall therefore seek a stationary state for the complete coupled

system of equations (3.4.5) at energy €q + A-iT where A and T are small and
real. The quantity A gives a slight 'level shift' of the resonance energy

due to the coupling, while if T is positive the time dependence of the state

has factor e-rt/ﬁ, showing a decay with time.

The wave numbers k and K are
therefore slightly perturbed, giving

oy :(ik§+(me/ﬁ2k:)r) oc
' (3.4.21)
ky t(k§+i(me/ﬁ2k§)r) cc

where kﬁ = (2me/ﬁ2)i|eR+A-(M+i)ﬁmcl* is real and positive, and with similar
expressions for the K's. The boundary conditions on the solution (3.4.7)
must be modified by the removal of the incoming wave in the N channel, which

is not required for the quasi-bound state. The asymptotic behaviour of the
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wave function is therefore

..R 2,R
fM(z) = L-%Q(:)e'kM?e*’(rme/ﬁ kM)z oc
(3.4.22)

. 2R
I(Fme/ﬁ kM)z cc

R
L-%Q(;)e-kMz.e

fu(2)
We have thus shown explicitly that the decay of the state takes place
via a small incoming flux of probability in the closed channels escaping in the
outgoing waves of the open channels. The increase in amplitude as |z]
increases in the OC's reflects the past time when the whole wave function was

larger; when coupled with the time dependence we have in an open channel

g i R Cvr. e2.R
Fu(z,t) = L J*’Q(:f‘)e'(“nz ept/f) o(z-ve)Im /A%y (3.4.23)

showing that the amplitude of the wave function at a point travelling with
the velocity v = ﬁk:/me of the wave remains constant. The form of the even

resonant bound state is illustrated schematically in Fig. 3.8.

When this form for the wave function is inserted into the matching

conditions (3.4.8) we obtain the equation {A(E)}(a) = 0 for the coefficients

of the eigenvectors of {Kz} in the bound state. For non-trivial solutions
we must therefore have IIA(E)II = 0. To zeroth order in the coupling
potential this is satisfied, as we are perturbing about the energy €r for
which the resonance condition ‘3.&.19) is satisfied. By demanding that
||A(E)|| = 0 also to first order in the coupling potenti;ls we may obtain
expressions for A and I'. After some manibulation we obtain the imaginary

part of the energy

2,2 .2 E 4 . 2
=+ KRRKR . 0KRM (cosKMMg (KMM/kR)sinKMMQ)
20,2 v (KE_-K2 )2(cos®K,. 0+(KZ /Kk© inK, 2
mg (ko + 9k +2KRR) (Kgp=Ki) (cos Ky, 2+ (K /ky)  sin“Kg,2) Ky

R
| (3.4.24)
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where kR now stands for a real éuantity. It is important to note two
speciai features of the above expression, _Firétly, it is positive
definife, so that the quasi-bound state does decay with time as we have
assumed. Secondlf, the decay rate is governed only by the couplings ko
the open channels, as Qe would expect in a first order theory. This

expression for T may now be used as a measure of the width of the resonant

peak in the scattering rates.

Finally, we must briefly mention the situation when two or more

channels are so strongly coupled that the zeroth order approximation

‘ K: ﬂ:KﬁN Is not good enough. In this case the correct zeroth order

approximation is to use the eigenvalues and eigenvectors of the sub-matrices
of {K2} containing only the strongly coupled channels. There will then be

extra terms present in the evaluation of (), if either of the channels is
: . ;

strongly coupled, due to the presence of zeroth order off-diagonal terms in

NM

the determinants. Needless to say, the expressions obtained will be very

complex, and we shall not attempt to derive them here.
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CHAPTER 4

Transport Theory in a Magnetic Field

4.1 Introduction

In this chapter we shall concern ourselves with the quantum
mechanical theory of transport processes, and in particular that part
of the theory from which expressions for the longitudinal
magnetoconductivity of a semiconductor may be obtained. Having derived
a Boltzmann-1like tranéport équation for a distribution function, we shall
investigate the circumstances in which ; separate 'relaxation time' exists
for the carriers in each Landau sub-band of the energy-level spectfum.
Such a solution is Qseful when the scattering mechanisms are elastic, and
the magnetic field of such a strength that only a sméll number of
sub-bands, but more than one, are occupied. We shall show that the
transport equation then reduces to a-finite matrix equation for the
‘relaxation times} one for each sub-band occupied at the givén-energy. The
'relaxation matrix' appearing in this equation is found to have a structure
which enables us to make certain general statements about ;he expression
for the conductivity, and about the process of relaxation back to

equilibrium on removing the field.

Historically, the observation of Shubnikov and de Haas (1930) of
oscillations in the magnetoresistance of bismuth crystals, inversely
periodic in the field strength, was one of thg earliest for which an
explanation in terms of classical transport was not feasible. Peierls (1933)
gave an explanation in terms of the semi-discrete nature of the energy
spectrum produced by quantisation of the cyclotron orbit motion of the

electrons, previously described by Landau (1930). Interest in quantum
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magnetic effects was further stimulated by the observation of a non-zero
- transverse magnetoresistance ihicertain hateriéls, which contradicted
classical theory. |In a very early calculation Titeica (1935)‘
interpreted the transverse transport as a hopping of the cyclotron-orbit
centres, ;hough a divergence was obtained. This problem was overcome by
Davydov and Pomeranchuk  (1940), but a rigorous quantum mechanical theory
of transport processes, whether in magnetic fiélds or not, was still
lacking. All work was still based on a quantum transport equation due
to Pauli (1928); derived heuristically by analogy with the classical
Boltzmann equation. A clear exposition of the 'semi-classical! appfoach

to transport is by Butcher (1973). \

One of the earliest satisfactory derivations of a quantum mechanical
equivalent to the Boltzmann equation was given by Van Hove (1955).' He
used a property called diagonal singularity to decouple the equation for
the diagonal elements of the density matrix (which is in some ways
analagous to thé classical distribution function; see Fano (1957)) from the
off-diagonal parts, leaving a tfansport equation for an object interpretable
as a carrier distribution function. .A similar analysis for scattering by
randomly distributed static impuritieé was given by Kohn and Luttinger
(1957), and later refined by the inclusion of more exact scattering rates
(19;8). Subsequently Chester and Thellung (1959) used methods similar to
Van Hove's to derive a transport equation when scattering was by lattice

vibrations.

Meanwhile Kubo (1957) adopted a different approach, deriving an
exact expression for transport coefficients from a theory of linear response
to an applied field. The final expression, a Laplace transform of a current

autocorrelation function, still included all many-body effects exactly, and
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approximate methods of analysis ﬁad to be found. Greenwood (1958),
Edwards (1958) and Langer (1960) intrqduced Green's function and diagram
methods from field theory, and succeeded in making a link with the
transport equation theories. A more sophisticated picture in terms of
re-norma]jsed transport equations for quasl-particles gradually emerged;
progress was reviewed by Chester (1963), who showed the formal équivalence
of the two aﬁproaéhes. Further work relating the Kubo formula - Green's
function approach to the Kohn-Luttinger transport equations was carried
out by Moore (1967) and Scott and Moore (1972), working to higher order

in impurity density and scattering amplitude.

Returning to magneto-transport calculations, an early study of
longi tudinal magneforesistance was made by Argyres aﬁd Adams (1956). Here
the transport equation'was taken over from classical theory and scattering
was by acoustic phonons in the extreme quantum limit (EQL) where only one
Landau sub-band is occupied. Subsequently Argyres (1958) derived the
transport equation by methods related to those of Van Hove, and was able
to extend his analysis to allow for the occupation of several Landau
sub-bands, due to §pecial features of the acoustic phonon scattering whicﬁ
allowed a relaxation time solution. The transverse magnetoresistance
effect was analysed by Adams and Holstein (1959), Argyres and Rcth (1959)
and Argyres (1959), using transport equation methods in the EQL with
scattering by various mechanisms including acoustic phonons and ionised
impurities. The work of Argyres was later extended to a more genéral form
(1960, 1963) while Kahn (1960) and Bychkov (1961) refined the treatment of

scattering by very small impurities.

In parallel to the transport equation work, the 'Kubo formula' approach

was used in the theory of the transverse magnetoconductivity by Kubo,
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Hashitgume and Hasegawa (1959). This method was also applied by

Gurevich and Firsov (1961), to scattering by acoustic and optic phonons.
An elegant diagrammatic analysis of Kubo formulae for magnetotransport
coefficients was made by Lodder and Van Zuylen (1970). Here some of

fhe difficulties of Green's function calcﬁlations were by-passed by
working %nstead with super-resol?ents; further progress was made by
Lodder (1974), who obtained a re-normalised transport equation. The same
methods were used to analyse the magnetophonon effect by Barker (1973a),

who also derived a high-electric-field Boltzmann transport equation (1976).

Several reviews of these developments exist, of which we cite Kahn
and frederikse (1959), Dresden (1961), Adams and Keyes (1962), Roth and
Argyres (1966) and Landwehr (1967) as presentations of the transport
equation approach. The 'Kubo formula' methods are extensively covered in
the review of Kubo, Miyake and Hashitsume (1965). Relaxation time methods

(in the absence of a magnetic field) are reviewed by Conwell (1967).

!

Application of quantum magneto-trénsbort theory has been very wide,
and we shall merely note a few papers on the longitudinal effect which are
of particular interest to us. Gurevich and Firsov (1965) and Efros (1965)
treated systems in which the scattering mechanisms (optic phonons and
ionised impurities'respectively)precluded the use of the simple_relaxation
time of Argyres. Instead, a solution was proposed in which a separate
'relaxation time' was associated with each Landau sub-band. The resulting
matrix equation was only solved in the simplest circumstances, however.
Dubinskaya (1969) extended the work on ionised impurity scattering and
‘solved the matrix equations in a more general magnetoconductivity
calculation. The necessity of the multiple 'relaxation time' solution was

again noted by Rohlfing and Pokrovsky (1974), but use of the simple single
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'Argyres relaxation time' continued, even when not valid (see, e.g.,
Wallace and Gupta 1972, Serre and Leroux-Hugon 1974, Eaves, Markiewicz
and Furneaux 1976, 1977). The multfple'relaxation time/relaxation
hatrix theory was set out in its most explicit form by Barker and Bridges
(1977), who used it to analyse magnetoconductivity in Ge in the presenée

of scattering by electron-hole-drops (See §5).

In §4.2 we summarise the derfvation of transport equations from the
Kubo formula, following closely the methods of Lodder and Van Zuylen
(1970) and Barker (1973a), and expanding the averaged super-resolvent in
terms of a self—energy Quper-operator. This expansion is evaluated to
lowest order in §4.3, obtaining a Boltzmann transport equation with Born
approximation trans{tion rates. We then expand the self-energy to higher
order in an attempt to derive the transport equation of Luttinger and
Kohn (1958), in which exact transition rates appear; we find, however,
that the approximatfon does not follow consistently from the super-
resolvent approach. In §4.4 we analyse the Boltzmann equation when elastic
scattering only is present, and obtain the aforementioned 'multiple
relaxation time' solution by inverting a 'relaxation matrix'. The process
of time-dependent relaxation back to equilibrium is treated in §4.5, the
positive definiteness of the decay constants (and hence also the
magnetoconductivity) being shown. Finally §4.6 discusses certain situations
in which an approximate inversion of the relaxation matrix Is possible

immediately.
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4.2 The Derivation of Quantum Transport Equations

In a large system in which many microscopic quantum states corréspond
to the same macroscopic thermodynamicstate, macroscopic quantities such
as total chrent must be expressed as averages over an ensemble of
identicél»systems. Such an ensemble and its evolution are described by
a density matrix p(t) (Fano 1957) and its equation of motion, the

Liouville equation:
.

ifidp/ot = {)q,p} (4.2.1)

where#%’is the Hamiltonian operator for the complete system. Macroscopic
quantities are obtained by taking the trace of the relevant operator with

the density matrix, so that for the current:
<J(t)> = TdJo(t)) (4.2.2)

Kubo (1957) has shown how first order perturbation theory, applied to
the Liouville equation when a small electric field is present, may be used
.to obtain the Linear response of the density matrix to the field, and hence

~the conductivity expressed in the well known formula

o =Q

oo B _
o = 8L Jdt fave SYPregguto o B0J, (<11, (4.2.3)

S0+ 0 o

Here po(ﬂ) is the equilibrium density matrix for the grand canonical
ensemble, given in terms of the partition function 7, the chemical potential

H, and the number operator)( for the electrons by:

o @ = 771e Hrd kT (4.2.4)

The letters T.L. indicate that the thermodynamic limit Q,N+», N/Qfixed, is

taken before the limit S+0+. If the limits are not taken inthis order one
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is effectively considering a completely isolated, finite system for
which the Poincaré (1820) recurrence theorem applies and for which,
therefore, the D.C. conductivity is infinite (Bocchieri and Loinger

1357).

It is of some convenience, in dealing with operaiors such as Ju(t)
in the Heisenberg representation, to introduce the Liouville super
operator fori% used in this context by Lodder and Van Zuylen (1973), and

defined by

Ga: A - - (5.2.5)

N
in any representation;& is a fourth rank object which is a linear operator

on the set of quantum mechanical operators; thus

'&A} ij = k%i{']jszkz (10.2.6)

For super operators of the commutator generating type the elements are of
the form

A

H'ijksz =yfik552 -H’ljéik (4.2.7)

With this compact notation the Heisenberg representation forJV

becomes

Ju(t) ei”t/ﬁdue‘i;(t/ﬁ = Jue'i;'(t/ﬁ (4.2.8)

So that we have

L b -
Oy T LfdefavTey e iRy gy i), (4.2.9)
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It is now possible to perform the t integration, and also to eliminate
the y integration by the method of Lodder and Van Zuylen (1270), to
obtain

-1
o =@ 'Le Lt - irazak Trid Ro_ Gi-J.x) (4.2.10)
BV . s*o+ k*o v wroT ==

where the resolvent super operator defined by
A .
R= Gkis)! | (4.2.11)
has been introduced.

At this stage the expression for g is still exact. However,s& and J
are many-body operators for the complete interacting system of electrons
and crystal lattice, which is infinite in the T.L. From this point on
approximations have to be made in order to obtain a formula which is capable

of being evaluated.

Firstly, we eliminate the many body nature of the trace operation by
neglecting electrbn-electron interactions, both direct (as in the
electrostatic forces) and mediated by the lattice or scatterers (as in
Cooper pair formation). In this approximation the density matrix factorises
into separate parts for the electrons and the scattering system (Lodder and
Van Zuylen, 1970). The trace over the electron system may be reduced to a
single-electron trace by using the commut;tion relations for the set of

fermion operators for the electrons, and hence

-1 . o]
o, = @ Lt Lt -ifd/ak_<tr(J RFO(H +U-J. k) }> (4.2.12)
Hv S ko v u e Y ¥ s,T.L.
Here f© is the Fermi-Dirac function given by f°(g) = (e(e'u)/kt+l)-l, le

and || are respectively the second quantised Hamiltonian for a single
electron in the crystal lattice (and static magnetic field), and the

potential of interaction with the scattering mechanisms. The bracket
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< denotes the trace, or average, over all configurations of the

>

s,T.L.
scattering system in the thermodynamic limit. |f the anticommutation
of the electron operators is ignored we obtain (4.2.12) with the

-e/kT

modification that fo(e) = e , the Maxwell distribution; we shall use

this as an approximation when the electron system is non-degenerate.

The scattering interaction |] appears in the distribution function £©
for the equilibrium state, in the super resolvent ﬁ = (ﬂe+ﬁs+ﬁ-is)-], and
also possibly in the current operator J. The averaging over the scatterer
configuration should take all these dependencies into account
simulfaneously in any expansion of (4.2.12) in powers of the interaction.
For example, Barker (1376) has shown that the terms in |j from f°, the
‘initial state corrélations', play an important part in the description of
conduction in systems where the electrons are localised. In evaluating the
transverse magnetoconductivity (Kubo et al 1965, Barker 1273) the
transverse current operators are in fact directly proportional to |J. However,
we shall restrict our attention to the evaluation of the longitudinal
magnetocondd;tivity in a non-localised system, in which case Barker (1973)
has shown that initial state correlations may be neglected. In a basis
which simultaneously diagonalises Jz and He we have

-1 . B1 O
0,, =8 Lt |ﬁ<tr{JzRsz (He)}>s,T.L. (4.2.13)
s+0+
This may be interpreted as saying that the perturbation to the one electron
distribution function produced by the field is given by the diagonal part
'
of iﬁ<§szo (He) >s »T.L.

perturbed distribution function by expanding the resolvent ﬁ.

We must now derive a transport equation for this

A return to Green's function formalism is possible here by obtaining

A .
Ras a convolution integral, due to Barker
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(A-is)7"a = (211) "V fdz! (H=2") " A(H-2'415) ! (4.2.14)

{Thfs is proved byiFourier transorming the relation
e-iSteﬂtA = e-iSte-HtAthL Luttinger and Kohh (1958) then write the Green's
functions (H-z')-I in terms of the t matrix for the complete scattering
system, and expand in terms of t ma;rices for clusters of scattering
centres. |If only terms due to scattering off single centres are retained

in this expansion,on averaging a Boltzmann equation for the perturbed

' .
distribution function f per unit electric field is obtained:

-e3f%(e,) /0k,, = §I2wNSB(€A-€A.)[t(ek)xx.lz(f;,-f;) (4.2.15)

We do not adopt this approach here, however, but instead follow Lodder
and Van Zuylen (1970) in assuming that the averaged super resolvent may be

. . ' N
expressed in terms of a self energy super operator L:
AAA._] .AAA' -1
<(Hg#H +U-is) >s,T.L. = (HetHg-Z-is) (4.2.16)

An expréssion for 3 is obtained by expanding the LHS of (4.2.16) as a power
" series in ﬁ, taking the T.L. and performing the scatterer average, after
which a resummation may be carried out to give an expansion for £ in powers
of the scatterer density. In our investigations we shall consider only a
low density of scatterers, and hence we shall retain only the single

* L] . ' A
scattering centre terms in the expansion of L.
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The required terms of the single-centre series are

Bos = N<0l, R0, - O Rl RO+ - - 0 >, 10 (4.2.17)

A
where Ui

G(ﬁ'B;) and the average is over the scatterer location Bi’
assumed uniform over the volume 6f the crystal. Ns is the total number of
scatterers iﬁ the crystal; as the averaging brings in an Q! term, Ess
is proportibnal to the scatterer density. |t is important to notice that
the averaged resolvent <§> appears in the expansién of ﬁss; hence the

pair of equatiohs (4.2.16 and 17) are implicit for <§> and fss' Lodder and
Van Zuylen have also given an expansion for g when more than.one scattering

A

mechanism is present; in the low density approximation, however, Zss is

just the sum of the single site series for each mechanism individually.

Interference terms are of a higher order.

To recap, we now have

o=0alerld 0t} (4.2.18)

where the perturbation to the density matrix, p' is given by

Vs Lt iR <Rl £©' N N TR s I E
p -s-l;<t)+'ﬁ <R>J, 7 (H) -sk§+'ﬁ(He+Hs PCIDNRAS (R (4.2.19)

Barker (1973) has shown how to convert this equation to a more familiar

form. Expanding,

S 197" = @197 & Figefi 19 7S B L i

. (4.2.20)
which may substituted into (4.2.19) to obtain

R O a1 ' I IR R L I
0 -Sh;+{aﬁ(ﬂe+Hs is)7'J 0 (H) + (H+H,-is)7'2_ o'} (4.2.21)
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A LA
We recall that, in a representation diagonalising He and Hs’ the elements

A
of H will be

HAU\)¢ - H)\\)Guﬁ - Héud)\\) - (EA-Eu)Gk\)Gué (ll.2.22)
Thus ﬂ is-'diagonal' in the super operator sense, and hence the elements

of its inverse are readily found:

(ﬁ-is)" (eA-eu-is)-IG 8 (4.2.23)

Auvg - AvCug

We see from (L4.2.18) that, since Jz has also been diagonalised, only the
diagonal elements of p' are requfred. From (4.2.21 and 23) these are

Le s HR, 0 (e)+i B o1 ) (4.2.24)

Pyy =
AA S+0+

It is clear that the only way of preventing a divergence in p' as the lihit
is taken is for a cancéllation of the terms insidé the bracket to take
place. This is not unexpected, as the DC response of a system without
scattering is>infinite. It is only relaxed to a finite value by the

collision processes manifested in the ﬁssp' term. We must therefore have
£,/ (e,) - 1R o)., =0 (4.2.26)
2\ A ssP /an F e

This equation is already beginning to approach the classic Boltzmann
form, as a split has been made into a driving term dependent on the
equilibrium distribution function only, and a collision term involving the

scattering potentials and the perturbation to the distribution function.

In general the second term in this equation contains contributions
from the off-diagonal terms of p' as well as the diagonal ones which we are

taking to define the distribution function. However, Barker (1973), has
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‘shown via an expansion in diagonal and off-diagonal parts that the
off-diagonal terms may be neglected in a low-density expression. (If

the system were isotropic this approximation would be exact, as one can

A

AApv = zkluu
simplifying feature is not present). Equation (4.2.25) then involves only

then show that 8 In a magnetic field, however, this

uv’
the diagonal part of p', which will henceforward be called the perturbéd‘

electron distribution function f1:

o' _ e A 1 » _
-ﬁJZAf (EA) '§|ZAAA'A'f}\' =0 - (4.2.26)

In terms of f! the conductivity is obtained from (4.2.18) as

o, =Q-I§Jzkf1' | | |  (h.2.27)
It will be the work of theunekt séction to obtafﬁ suigable approximate

expressions for the selfwenergy Ess so that (4.2.26) may be solved for the

distribution function and hence the conductivity evaluated. It will

become apparent that, in a suitable approximation, the collision operator

T produces the familiar scattering in and scattering out terms of the

Boltzmann equation.
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4.3 The Boltzmann Transport Equation

’ A
The low density, single scattering centre approximation for X is

>
)
>
>
>

= N<=07 + 0,<Ro0, i<R>ﬁi<§>ﬁi .o (L.3.1)

S,T.L.

A

& iyl
HomL g mis) (4.3.2)

il
~——
>
+

<R>

We would e*pect that the above approximation scheme is formally equivalent.
to the self consistent t-matrix approximation (STMA) of conventional Green's
function théory (Gerhardts & Hajdu, 1971, Scott and Moore, 1972), though it
has ﬁot yet been found possible to demonstrate tﬁis equivalence. For the
purposes of our later calculation it will prove to be sufficient to neglect
all forms of collisionrbroadening and derive the conventional Boltzmanﬁ o
transport equation, firstly with transition rates given by the Bdrn

approximation, and secondly with exact rates given by t-matrix elements.

Lodder and Van 2Zuylen (1970) and Barker (1973) have shown that when U
represents the electron-phonon interaction, the lowest order approximatioh

A
to L is given by
(2) _ ANA AA A oA
) = N <UR 0> = N DR +H _-15)710> o W3y

since the first term vanishes (there must be a change in phonon number).

By replacing <§> by ﬁo we have explicitly discafded all collision broadening
terms. The scatterer Hamiltonian H is now EN ﬁw , and the scatterer
average replaces Ng’ the occupation number operator fqr phonons with wave

N (eﬁw /kT_ )-1

vector g, by its average N given by the Bose-Einstein

distribution. After some manlpulatlon we arrive at

8@ 1 1
N U Ul R SR YO (4.3.4)
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where the transition rates Pyy from state A to state A' are given by

20 (3 o |
'pxx. = §2ﬂ/ﬁ|c(q)] [N +1)8(e, =€+ ) +
CREATION (h.3.5)

5 ig.r 2
+ NQG(EA'-eA-ﬁwg)}|<A|e 9-L 5]
ANNIHILATION

When substituted into (4.2.27) we obtain

o' _ 1. 1
Infle) = 10yt Py (4.3.6)

which is identical in form to the Boltzmann equation of classical transport
theory. The flux of particles driven into a given state by the electric
field is equated to the flux out due to point collisions, in this case with

phonons.

We shall now illustrate how the gain-loss structure of (4.3.4) arises

2(2)

by a more detailed derivation of L when the scattering is by randomly
distributed impurity potentials. In this case Ns<0i> is not identically

zero, but its diagonal (AX,A'A') elements are, and so we need only evaluate
4 A ) A A -
) = N CRP>, = v 3RO -0 (R -1 MB(em) (4.3.7)

As the effect of the electron scatterer interaction on the scatterers is
being neglected, HS is a constant and hence ﬁs contributes zero in the

resolvent. The (AA,A'A') element of the integrand is therefore
Ev(uxuclv ka Au)(S -EV ) (qul vA! UA'V uxl)

z”xu S U S0 T Yol T DY

Eu - €y -is vex-ev-is CA"SA'is eA-eA,-is
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2 - - 2 -
= 8Ll 1% 1 i _ I [V -; - - _l +is}

Using the result Lt {1 - 1 } = 27mi6(x) we obtain
S*0+ X=iS  x+is
A2 = (N /) [11a3R2mi8, . TIu; 128(e -e.) = |Uyy,|26(ey€,))
L - - s — ANTES T A P T! AM! A TA
AAX'A u
s>o+
(4.3.8)
and hence the expected gain-loss structure
§(2) 1 : 1 1
) foo= =] {pyuafae = paefil (4.3.9)
X NN X X AT P .
where the transition rates Py are given by
P = URINUy [ B8(e e ) = by, (4.3.10)

In other words, the transition rate from state A to state X' is-an average
over the rate given by the Fermi Golden Rule, or Born Approximation. At

this point we note that, if more than one scattering mechanism fis present,
the transition rates Pya in the low-density approximation are simply sums

over the transition rates for the separate processes.

Before proceeding to a solution of the Boltz%ann equaf!oﬁ (h;3.6) we
shall give some consideration to the case when the scatiering\potentials are
strong, so that the lowest order approximation (4.3.3) for £ is no longer a
good one. In this case we really need the STMA of Scott and Mooré (1972),
but we shall not proceed to this degree of sophistication here. More naively,
one might expect a better approximation to be obtainable by replacing the
Fermi Golden Rule of (4.3.10) by the exact transition rate given by the

t-matrix element. Luttinger and Kohn (1958) have obtained this result via
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Green's function theory; we now demonstrate the equivalent result in

the resolvent expansion.

By analogy with Green's function theory, we take
T—eU+lmJJ-UK) RU + . ..=?G-u&J (4.3.11)

as our next approximation to z. Only the diagonal (AA "o " elements of

T are required; in a representation
A A A . _lA
Taaar = Uyl Uyg(eyegmis) Tgn
v T

s 8

'UAA' ! + Uk'u A +

T c oy
+ ZUA\)(E € +|5) ? )\'A' + ngéx')\'(EA-ed—'S) Ubu

= -U,,,8

YURTURSTI

e ¥

o+ 2 2 o=
+ EUA“ v ED Ty # ETxé)\.A.Gﬁé(eA)u¢u (4.3.12)

We have here introduced the free Green's functions GOi(e) = (e-Hetis)-i.
The above implicit equation for the (Ap,A'A!') elements of?ﬁs strongly

suggestive of the ordfnary operator equation for the t-matrix:
+ - : ~0 + IR I PR ot ’ ’

In fact, the above suggests a basis for the iterative solution of (4.3.12).

We write

?Au)\')\' = -t (E ))\A' uAt +t (ER)A'H ' U x)‘uk‘)\' (4.3.14)



which, when substituted into (4.3.12) gives -

o+ + '
-t (€ )AA' Uk' -(UAAI + EUAV V(Eu)t (eu)vk')suk
+t (EA)A.U(SAA' = "'(leu + gt (EA)A'¢G¢¢(€)\)U¢U)6AA' (l’-3~15)
‘ , ‘ - + o~
iU | AA'GA A (e e (ega)yn, = ey 3506y (630050,

o+
+§UAvav(eu)xvuA At z*x¢x A'G¢¢(€ )U

Equality is satisfied above and below the dotted line separately, so that
-the iower part is an implicit equation for x; This iteraﬁion may be
continued indefinitely, at each stage proceeding to the next order by
replacing U in the implicit equation by tYor t7. The expansion eventually '

obtained begins as

t-(el)x.usxk. -t (e RIVEESY
' ?Aux'k‘ = +t'(e )AA'GA'X'(Ep)t-(EA')A'u i t+(ek')AA'G;:A'(Ek)t-(ex)glu
1 t+(8¢)lx.GitA(E;)t-(ek.)xnéGg;(éx)t-(ek)éu- Ce e (13.16)

wé have thus expressed ? as a series in t-mgtrix rather than potgntial
matrix elements. We now approximate ? by%téking bnly the‘firﬁt two sets of
tefms in this series, which we shall cali f(z). The expression required
for the transport equation (4.2.27) is thus

(z) N 1
;.Txxx phar = 10 ()t (), ) fy o+

+ ka.{t (et (' = E et E©hnt 4307
€3 EA.+IS €A'€At'i5
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We can now use the Optical Theorem (see, e.g., Rodberg and Thaler (1967),

which states that

t7(e) = t7(e) = 2mit™(e)s(e-H ) t* (e) ' (4.3.18)
and hence that

{t-(el)-t+(€A)}AA = Zﬂiglt-(EA)Axat+(€A)A|A6(CA-€A|) =

- 2ni§.|t+(€A)AA.|25(eA-€A.) | (4.3.19)

The second term of (4.3.17) may be rearranged as

(SA'EAo) {t+(€X)AA't-(ek')l'l-t+(€ll)kl't-(EX)X'A} =
((gy-gy 1) %4s?) ‘ ‘

- iS {t+(€) 't-(e |) ] + t+(€ |) |t-(€ ) ] }
[Teoe, 057 A A A A A ATA

=f{t+(€k)xx' t-(el')k')\-t.’.(ek')lk't-(ek)k')\}- 27”6(5)\-8)\') I t+(€)\))\>\| |2

€\TEy
(4.3.20)

as the limit s»o+ is taken.

At the moment we are unable to interpret the significance of the
principal part term in (4.3.20), although it is possible that it represents
a re-normalisation of the current operators, ‘as found in the STMA by Scott
and Moore (1972). For the preseni we shall assume that it may be Ignored,

whence we have, on averaging over R:

Z Tiii-x' e 'iﬁ§.{p;k f;.-plx.fi} - (4.3.21)°
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where the transition rates are now given by

T +, 2

Paxs =‘(2n/ﬁ)Ns<|t (EA)AA'I >8(ey=€54) (4.3.22)
as required.

The approach via super-resolvent theory has made it clear, however,
that thns is not such a natural approxumatlon as at first appears. Even
though we have replaced the implicit equation (4.3.1) by the explicit
(4.3.11), and have neglected all terms of order higher than two in the
t-mat;ix,‘we‘still have to ignore the principal part integral of (4.3.20)
in order to obtain the required structure. A more detailed analysis of the

resolvent t-matrix expansion is clearly necessary, but we shall not attempt

it here.

It remains to perform the scatterer average over R for the matrix

' elements in (4.3.10 and 22). In the Born approximation it is advantageous

to express U as a Fourier series:

u(c-g) = Jo 'u(g)e'9-(rB) (4.3.23)
q
ulg) = [ffddrru(e)ei9-E!

where the summation in g is over a set of points uniformly distributed with
density /813 in q space. When U(r) is spherically symmetric U(g) = u(|q]),

while for axial symmetry U(g) = U(q,,q,). The average of the matrix

element over R is

| <|”Ax'|2> = Q-IIIIQEBXEP-ZU(Q)U(9')<A|eig°£|k'><k'|e'gar|k>ei(9"9)‘B
, [*]

=725 u(g) || <rle' 9 E[r,>]|? (4.3.24)
q
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since the R |ntegrat|on produces a Kronecker § in (g'-g). One of the
Q's in the above expressnon cancels with the density factor in the g
summation, and the other combines with the N, in (4.3.10) to produce a

scattefing rate proportional to the density of scatterers.

~ To average the t-matrix elements in (4.3.22) we must transform to the
(N;m,kz) representation centred on R, as ;he mefhods of 83 produce the
matrix elements in this representation. The averaging then amounts to an
average over the transformation coefficients. Using the expression (2.1.31)
for these, we have (see Kubo et al, 1965)

+1. - |q Y lq z
<Nkykz|t IN,ky+qy,kz+qz> % /L x

2\, 2, .2 .
(X+2 ky)¢N,+m(X+R ky+2 qy) <Nmkz(3)|t [N mk_+q_ (R)> (4.3.25)

X Onem
whence, on averaging over R,
2
<|t>‘)\.l>=

= bnzghﬂ-‘{m|£¢N+m(X')¢N.+m(X'+22(ky.'ky))<Nmkz|t+|N'mkz,?|2dX':
' (4.3.26)

The transition rate is again proportional to the density of scatterers.

Referring to (2.1.28) for |<A|eig'c |A'>|2 we see that both of these
transition rates depend on the quantum number ky only through thead{ffé}ence
ky.-ky in the quantum numbers between the states. ThIS fundamental
feaiure arises from the translatnonal invariance of the scattering system;

and is of vital |mportance to the solutlon of the Boltzmann equation derived

in the next section.
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4.4 Relaxation Time Solutions of the Boltzmann Equation

We now have to solve the Boltzmann equation

I f° (eA) = oyt i (b.h1)

for the perturbed distribution function f’A.‘ The exact dependence of the
transition rates Pyron the particular potential involved is not important
to the type of solution we shall discuss, but two features are vital.
Firstly, we shall require the scattering to be elastic, so that the
summation over A' includes only states with the same energy as A(In the
case of phonon scattering this means that we must be able to ignore ﬁmg

in oomparison with other characteristic energies of the system),

Henceforth, therefore, we shall assume that Py may be written

§(ey-e (u.urz)

P T @00 Av)

Secondly, as we have already noted ka. depends on the quantum numbers
k* and k y' in the Landau gauge only through their difference ky'-ky' This
is a rather weaker symmetry than for the case of spherically symmetric
scatterers in zero magnetic field, when wkk. is a function of |k-k'| only.
In this latter case it is usual (see, e.g, Conwell, 1967) to postulate a
solution for (k.h.i) of the form

flo==J,, 2 (e )1(e,) (4.4.3)
k zk k' 'k o
where 1 is assumed to depend on € alone. On substituting back into (4.4.1),

remembering that the soattering is elastic, we obtain

- 1 .
(e,) zwkk.(l K / k Y6(g mep0) N
Tk =TT (b.4.4)

Zu(lkek! 1) (1! /i )86, =€, 1)
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If the band of states is spherically symmetric the surface (ek. = ek)
is a sphere of radius |k|, and hence only the projection of k' on k
contributes to the summation in the ky¢/ky term. This projection is cosf.k

where 6 is the angle between k and k'; hence

r_'r(ek) z E'w(lg-b'|)(1-cose)6(|_k_|-|5'|) |ak/3e - .. (L.4.5)
The essential feature of the above expression for T is that it is
independent of the state k which appears in the summation, and hencé'

dependent qnly on the energy € Thus the assumption that T is a function
of energy alone is self consi;:ent, and the solution (4.4.3) igévalid in
this case. The quantity T has the dimension of time, and if thé electric
field were suddenl; removed the perturbed distribution function would
relax béck to zero exponentiaily in time with time constant T; hence T is
coventionally called the relaxation time. Further, the expression for T
is clearly‘positive definite, so that the current flows in the same
direction as the appfied’field (See Conwell, 1967 and‘Butcher, 1974, for

reviews of relaxation time methods).

Ahalagously, in a magnetic field we might postulate that

) = -lef°' (ey)T(g,)

(4.4.6)
-1 _ - -
T = iiﬁ)\)\.(l kz'/kz)é(e)\ exl)

We shall call this the 'Argyres formula', as it is introduced explicitly

in his 1958 paper. Argyres in faét applied this formula only to cases

when only one Landau band was occupied or when the scattering was 'isotropic!
in that Wy, Was a constént‘(Arnges'f958, 1960). In more geheral cases we

find that the above expression for 1 depends, not solely on the energy
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€y but also on the Landau band number N of tHe‘state A. Hence the
postulate that T given by (4.4.6) is a function of energy alone is
not self-consistent for general elastic scattering mechanisms, and

this form of solution is not possible in such cases.

We therefore generalise (4.4.6) and postulate (following Gurevich

and FirSOV,.1965)
flk k= ~J.F (g)1y(ey) (4.4.7)
Yy z : : ,
in which each Landau sub-band is assigned a separate relaxation time.

Substituting into the Boltzmann equation, remembering again that the

summation is only over states of the same energy, we have

VA CN i.“xx'{szo'(ex)TN(ex) AL COLMCOILICECNY

—
1]

or i.wll'{TN(Ek) - TN'(EA)kz'/kz}G(EA'EA') (4.4.8)
The restriction €y1 Ty in (4.4.8) means that only a finite number of
sub-bands contribute to the 'sum, since any state A' which contfibqte;
must have (N'+&)ﬁwc<ek. Similarly, for a given sub-band only two values

of kz, are allowed, determined by

ki = t(2mzﬁ2)%(ex-(N'+i)ﬁwc)i31k Thus (4.4.8) becomes

Nt
p - |
' leZOkz.ki,wkk'{TN(ek) - ‘rN'(e)‘)k'z/kz}| akz'/aelL/Zn x
2''y
x 8]k, |- (2n /KD (e, (N 41w ) ) (h.4.9)
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where the factor 2 accounts for spin degeneracy, and L/27 is the density
of points in the k'z sum. We see that this can be written in matrix

form as

(1} = R () - R™M()r(e) )= {R(e)}{r(e)} i)

where {1} and {1t} are column vectors, and the P+1 x P+1 matrices {ROUT

and {R } derive from the scattering out and scattering in terms, glven by

P

ouT, - 2
RN (e) = GNN.MZGnZL/ﬁ m{] WrsMk_ 4k fkyt 1 ) Mk ;_k:/kM} (4.4.11)
=0 kg Y M L y' M
vy
N _ - o .
e (€) = (m L/ n){z Wy, N.ky.+k /kN E “A;N'ky.-kN.’kN} (4.4.12)
. Y y' e

Ar!
numbers only through their difference, the ky dependence in the above

Since the transition rates w depend on the ky and ky. quantum

summation vanishes, and we may write

2 ~ N |
(m L/f ")'E Unk k3N tky, = e (K 2hy) - (h.b.13)
y* y N N

Using the detailed balance relation Wy 1= W and time reversal symmetry

we may show that wNN'(kN,kN') = wNN,(-k ’- NTY Hence any possible

- dependence of ROUT and Rl on the sign of ky may be eliminated, and ROUT
and R'N may be written
RTe) = 6 gk"(w (kg ok ) B (kg oKy )) (h.b.14)
Run: (€) = NN' LM RN +H (k> ky e
N =1
Ne (8 = k(e Gk o) =g ok ) , (4.4.15)
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‘The essential featuré here is that, since kN and kN‘ depend only
on N,N' and e; the elements of ROUT and RIN also dependyéniy on N,N' and
€. Thﬁs’the form for f1 postulafed in (4.4.7) in wh%ch T debeﬁds only on
Nand e is consistent with the solution for T oEtained froﬁ kh.h;1o), and

is therefore a valid solution of the Boltzmann equation.

The matrix {R(e)} will henceforth be called the relaxation matrix at
energy €. |ts order, and hence the number of separate relaxation times
Ty» is the number P(e)+1 of Landau sub-bands which include states of
energi €, and is given by (e/ﬁwc)-isP<(e/ﬁwc)+}. Hence the order of {R}
and the number of-relaxati;n times increase by one as each new‘Léndau sub-

zone is entered. (Note that the highest band number involved is P).

Finally, we may now work out the expression for the longitudinal
1
magnetoconductivity derived from the perturbed distribution function f

of (4.4.7). From (4.2.28) we have

= o1 !
0,, =9 §szfx (L.4.16)

which therefore now becomes

-1 . ' '
ozz = ZQNk E ezkzth/mi(_fo (ENkZ))TN(ENkZ) : o F - (h.l’¢17)
Y 2

Combined with

£y

{r(e)} = (R(e)} (1} | (4.4.18)

where {R} is the relaxation matrix defined above, we have a formula for

O,y which is capable of direct evaluation.
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4.5 Time Dependent Relaxation in a Magnetic Field

Ve must now discuss some important general properties of the
relaxation time solutiéns of (4.4.18), and in particular of the expression
(4.4.17) for ozz; Firstly, we must assure ourselves that the exbfes;}on
obtained .for O,z is positive definite, as otherwise we could have the
current produted by the field flowing counter to the direction of the
field! Intuitively, it appears that we have to prove that all the
relaxation times TN(e) must be positive définite, but, surprisingly, we ‘

will find that this cannot be guaranteed.

A closely related problem is that of the time dependeﬁt reI;xétion of
a perturbed distribution back to equilibrium on removal‘of;the pérturbing
force. We must investigate the nature and time-scale of the relaxation
process, and\verify that tHe perturbation does indeed decay away. In
order to dofthis,’We shall assume without proof that the‘ééuation describing

the time developmént.of f in the absence of any ele¢t§i¢ fieid is
af\ /3t = iprAfopAXfx} : ‘ (4.5.1)

corresponding to the steady state Boltzmann equation (L.4.1). We may expect
this eqUatioh to be‘valid in a low density system'fof which the time
constants)of the relaxation of f are much longer than the collision -

duration (Kohn and Luttinger, 1957).

Using the same assumption of elastic scattering as in §4.4, we may

poStulate a solution of‘the:form‘

- ~w(e,)t '
kaykz - szN(SA)¢ A o - (h5.2)

which decays exponentially in time with time constant w'1, and which depends

only on the band number and the energy.

- 75 -



By a process identical to that used in 84.4 we obtain, on summing

(4.5.1) over ky and kz,
wf&(e) = {R(e)}fN(e) ‘ S | (4.5.3)

where {R(e)} is exactly the same relaxation matrix as in (4.4.10). This,
however, is an eigenvalue equation, with its P+1 solutions,w' determined

by:
[IR(e) = w]|] =0 (4.5.4)

The structure of {R} fortunately allows us to draw some general

conclusions about its eigenvalues wi. We first define the two matrices

4

“QNI = y!NNl(kN’tkNl) (b'S'S)

and note that, by the time reversal and detailed balance relations, w+ and
W are positive definite and symmetric. Then from (4.4.14) and (4.4.15)

we see that {R} is of the form
{RY = (D HHSH (4.5.6)

where {D(k-l)} is a diagonal, positive definite matrix defined by
Dwi (k1) = 6 ko] (4.5.7)
NN! NN'TN! tee
and {S} is the symmetric matrix given by

' P
Syne = GNN'ﬁzéw;M+wr:M)kN/kM - oy Wiy ) (.5.8)

For a matrix {R} of this form it is easily shown (see Appendix 4)

that the eigenvalues mi are all real, and that the eigenVectors f'
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corresponding to them may be made orthonormal in the sense
L foflk, = 8., (4.5.9)
Further, all the w' are positive definite if and only if {S} is positive

definite.- That {S} is indeed positive definite is readily shown, for

from (4.5.8)

2 - -
z aS,.a zas TWE +Wo Yk, sk = T aga, (W W)
N,M NYNM™M N N M NM TNM” "N M N, M N"M PTNM TINM
= T (LG /i) Ba - (k) Fa )22
N,M
(4.5.10)

+ Wl (ki) Fage k) 2212721

Since N+ and w- are positive definite, the above expression is positive for

an arbitrarynon-zero vector a, as required.

We recall that the w' are the decay constants of the time dependent
relaxation described by (4.5.2). Hence any pefturbation to the

e . 1 ) . ,
distribution function of.the form kaykz = ksz(eNkZ) will decay to zero as:

1
Nk _k
y z

f N(eNk
z

(t) = Zkzxif )e-w'(eNkz)t (4.5.11)

i

where the coefficient xi of the eigenvector i in x is given by

i i
x = Ix, f k
N NN

N (4.5.12)

It is thus seen that the general form of relaxive decay of the electron
distribution function in a magnetic field (via elastic scattering processes)

is exponential in time. At a single energy, such as would be the case in a
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highfy degenerate material, the number of time constants involved is
finite, but in general gréater than one. Conditions necessary t&.
observe such multiple decay constant effects in a time resolved
expefiment with pUlsed electric'fields would be ﬁwc>>kT and P(sF)>‘l.
The dominaﬁt scattering mechanisms would also have to be of a type such

that the ' were well separated from each other.

We can now see that the true 'relaxation times'of the system are the
set of values (m')-I, rather than the Ty previously defined. However,
returning now to these, we may solve equation (4.4.18) by usihg the

spectral resolution of {R}, namely (see Appendix 4)

{R"}NN, - iz(wi)-if:‘f:‘,kN . (4.5.13)

The»T

N May now be eaéily found:

o RHD = 2D s | (4.5.14)
| ' _

It is interesting to note that, although the wi are all positive, there is
nothing in the above expression to guarantee that Ty will always be
positive. We have already_seen that this would have no unphysical effect
in the time dependent relaxation; we must verify also that the

conductivity remains positive.

Substituting into (4.4.17), and replacing the k, summation by an energy

Iintegral

- ne2/m_fde (02 () zh (T £l )? (4.5.15)
g,, = ne ﬁnzf e(-p- (e )?(w NN .5.
o) i N=0
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where the normalised equilibrium distribution function po is defined

so that
[de250%(ey, ) = 1 (4.5.16)
r4

o N

and the nu@ber density of electrons is n. For a Maxwel1-Bol tzmann or
: : : .
 Fermi Dirac distribution function -p° (g) is positive, and hence the

above expression for o is positive definite as it should be.
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L.6 Approximate Inversions of the Relaxation Matrix

We shall now discuss several‘regimes where the inversion.of the
relaxation matrix in (4.4.18) may be simplified or approximated. Firstly,
we may now compare the exéct solution of the Boltzmann equation Qith that
given by the Argyres formula (4.4.6). The column vector of exact

relaxation times is given by

t@) = RUOHD w6

whereas the Argyres formula may easi]y be shown to be equivalent to

(1)} = {REIH} (4.6.2)

Except under the special circumstances discussed below, these two equations
for the relaxation times produce different results, and as previously

mentioned the solution (4.4.6 ) is then not self consistent.

There are two special situations in which the solutions to (4.6.1)
and (4.6.2) coincide, so that the matrix inversion in (4.6.1) may be
avoided. Firstly, in the Quantum Limit, when the magnetic field is so
high that only the lowest Landau sub-band is occupied, we have P=0 and
hence {R} is just a number. This simple case has been extensively
studied (see, e.g., Argyres 1958, 1960, Bychkov, 1961), and presents no

difficulty in the evaluation of the single relaxation time To(e) involved,

Secondly, for certain types of potential {R(€)} may be diagonal for
all values of the energy, in which case (4.6.1) and (4.6.2) are identical.
The off-diagonal part of {R} is due to the scattering in terms, and from

(4.4.15) the condition for these to vanish is

War (kyoks) = W (k) (4.6.3)
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This is satisfied for a s;attering potentiél which is of such a small
extent relative to the magnetic length that it hay be considered to be
a § function, for in this case U(q) = ady (where a is a chafacteristic
length) and <Nnky|t|[N'mky,>= &t (see §3.2). ‘It then follows from

the expressions(h.3.2b) and (4.3.26) that

Wy (kyotkys) = W = bmngm 2%/63 (a30/2m0%)?

(4.6.4)

by 12,.3
or ln_m_2 |t]€/n
depending on whether the Born approximation or the t matrix is used. The
single relaxation time T(c) is then given by
-] P -1 . :
T (e) =24 ¢ Ky () (4.6.5)
M=0

This solution is well known (see, e.g., Argyres 1958), and is important
because it also describes scattering by acoustic phonons at high
temperature. In this case the electron-phonon coupling coefficient |C(q)|2

in (4.3.5) combines with ﬁq to produce a term independent of q, giving the

same isotropic scattering behaviour.

Use of the Argyres formula when the scattering mechanisms are not
isotropic can lead to serious errors in the evaluation of the conductivity.
Using the notation of §4.5 in the solution of (4.6.2) we have

-1 P

T = k;1 §

AN ) o{ng(1+kN/kM) - Wy (1 -k /) } (4.6.6)

Away from the bottom of the band the q vector for a transition which changes
the sign of the z momentum is much larger than that for one in which the

sign is unaltered. For many potentials the Fourier transform falls off
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fairly rapidly witth so that, away from the bottom of the band, W+

is much larger than ¥ . ‘Given this situation, it is obvious that for
some bands the inverse Qf thé Argyres relaxation time given by (4.6.6)
can go through zero and become negative. This will result in a
non-integrable singularity in the formula (4.4.17) for 0,0 and a region
in which d(e)his negative. We have demonstrated this éffect for a
specific potential in §5, thus emphasising the necessity of using the

correct form (4.6.1) for the relaxation times.

Very near the bottom of each Landau sub-band it is always
possible to simplify the matrix inversion in (4.6.1), and this was the
regime in which such an equation was originally solved by Efros (1965).
Near the bottom of ;ub band P kP<<kN for all other bands N<P, and the

approximate solutions of (4.4.10) are

-1

U | |
-k (2 zo<wPN-w;N)) - (4.6.7)

N
V. k-1(w- W) ' | N<P
N p MontWpy :

Since for any finite ranged potential W;N - w;ﬁ»o as kﬁ,o, we have the

simple solution

Ty ~ kP/ZwPN (4.6.8)

so that the relaxation times all drop to zero at the bottom of each Landau
sub-band, as for isotropic scattering. |In this limit there is no

distinction between the Argyres formula and the matrix inversion.

When two scattering mechanisms X and Y are present the relaxation

matrix becomes the sum of the two matrices {RX} and {RY}. If we suppose
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that mechanism X is-dominant, then {RY} can be regarded as a small

perturbation, in which case an approximate solution of (4.6.1) is
trr = RY 0y - RO TTRMRM ) (4.6.9)

If the réléxation timesvrx have already been obtained,
s - 4.6.10
() = {1} - R R M) (4-6.10)

and in the simpleét case when X is an isotropic scattering mechanism

{t} = 7,1} - Ti{RY}{x} (4.6.11)

In this case the Argyres formula again agrees with the exact result.

Finally, we mention the zero magnetic field limit of the relaxation
matrix solution. |sotropic scattering is easily dealt with ; from (4.6.5)
we have

-1 NN 2, %o 3
T (e) = 2W Tk, (e) = WK /2m ) ¥ T (e-(M+i)fin) (4.6.12)
M=0 Z M:=0

As the field becomes small and ﬁwc+0 the summation over M can be converted

to an integral

1" (e)

e/fw
W2 2m) [ (e (med) o ) Ha
0

(4W/w VIR ) /e (4.6.13)

On substituting from (4.6.4) we obtain

- ]
1™ e) = ng(2m ) |adu| 2/ (h.6.14)
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in agreement with the usual result (see, e.g. Butcher lS?h). The
smoothing introducea by replacing the sum over M by an integral

removes fhe characteristic singularities in T-l at the bottom.of each
Landau sub-band. As ﬁwc+0, N-»c0 sucH.that £ = (N+i)ﬁwC remains constant,
the singulér part.of T-l becomes confined to a proportion N-‘ of the
energy ranée.k Thus }he characteristic magnetic field structure of the

" relaxation time spectrum disappears as soon as N-lﬁmc = (ﬁmc)zle

becomes of the same order as the collision broadening in the system.

For the general case when the matrix {R(e)} ié non-diagonal, the
low field limit is much mofe difficult to obtain. Equation (4.4.10) now
becomes an integral equation:

P P |
1= vN;e) JROUTINN ;) ant = JRYVONLNT se) T (NY )N (4.6.15)
0 o
Obtaining the low field limit of the kernels ROUT and R|N is non trivial,
and the details, for a spherically symmetric scatterer in the Born
approximatibn, are relegated to Appendix 3. The main difference from the
isotropic case considered above is that it is not now sufficient to obtain
the low field limit of the energy densi;y of states, as T(M;e) may vary
for different values of N at the same energy. It is necessary to go
further and obtain low field limits for the state wave functions in order

OUT. We essentially show that, in the low

to evaluate the kernels R|N and R
field limit, the infinite N summation over Landau states is identical,
with suitable changes of variable, to a spherical integral over zero

magnetic field plane wave states. Having evaluated the kernels, we find

that a solution in which T(N;e) is independent of N is self consistent and
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that

T Ne) = (e - ns/znzﬁz(mz/ze)i’[fdzk'|v(5'-5|2(1-cose)(z,_z,,15)

where the integral is over the surface of a sphere of radius (ZnEs/ﬁz)%.

This again agfees with the usual result in the absence of a magnetic

field.
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- CHAPTER §

The Electron-Hole-Droplet Magnetoresonance in Germanium

5.1 Introduction

In'tﬁié chapter we shall present a detaiied account of a theoretical
s tudy of 5 resonant efiect in the longitudinal magnetoresistance of
germanium, which was discovered'experimeﬁtaliy by Eaves, Markiewicz and
Furneaux (1976). Their experiments Qere carried out on a sample of
ultra-pure crystalline germanium at a temperature of 2°K under conditions
of strong photo-excitation by radiation from a mercury arc lamp. These |
conditions are known to favour the production of electron-hole droplets
(EHDs) ; small sphericai volumes of strongly interacting excitons in a
vcondensed liquid-like phase in which individual particles are no longer
distinguished (See §5.2). A large number of these EHDs was indeed
produced in the samples of Eaves et al; as could be detected by the

emission of a characteristic radiation due to recombination of electrons

and holes,

On measurihg the longitudinal magnetoresistance in a magnetic field
parallel to a {100} axis, the curve of Fig. 5.1 was obtained. The marked
oscillations of the curve were found to be closély periodic in Bi, as
illustrated by the dashed lines in Fig. 5.1 which are spaced‘at regular

intervals of 0.0124T% in BY.

It was postulated by Eaves et al that the oscillatory effect was
caused by the presence of the EHDs, acting as scattering potentials for
the conduction electrons in the form of spherical square wells, The

Fourier transform of such a potential, which appears in the matrix elements

- 86 -



(e1s3y o ¢

‘e 312 saae3 jo Aioayl Aseludswa|d wouay paurelqo aAasn) (g
.*m uit *hcu_c.o J0 s|easaiu) ae|nbaa e sy)ead yiim aAund (ejuawiaadxy (e

(9461 xneauany pue zdmalyael *saAel)
x ol 38 uorieloxa- 0uoca Buodis Japun wnjuewsab aund es3|n 4o} saAund asuelsisasolaubey

50,0 00

€00 To0

1°S

| }
| 1

@\ | _, !




for scattering (See §4.3), has an oscillatory structure with a period

. T/a in wave-vector space, where a is the radius of the well. We must
therefore expect any rélaxation time (See §4.4) to be oscillatory. It
also follows from the analysis of 84.4 that the relaxation times have

an overal!i;awtooth structure, in which they drop to zero at the bottom
of each new Lahdau zone, due to the infinite density of states for
scattering, and rise to a maximum at the top of each zone (See Fig. 5.2).
The major contribution to the longitudinal-magnetoconductivity thus comes

from energies just below the top of each Landau zone.

L

If we consider just the innermost Landau band in each zoné, then-the
momentum transfer q, for écattering just below the top of the P=N zone
is q = 2k, = 2/2/% = 2(2e/ﬁ)iB%. When this value of q is inserted in the
scattering matrix elements, the periodic nature of the Fourier transform
will give a higher or a lower value, depending on the precise value of B%.
Effectively, the relaxation time T just below the fop of a Landau zone

will oscillate as B!f varies, with period
a8t = (n/2a) (F/2¢)} (5.1.1)

By our previous argument, we may expect this oscillation to be reflected
in the overall magnetoconductivity, which should have a component with

the same periodic behaviour in Bi.

It is thus seen that the periodicity of the magnetoresistance
oscillations can be used as a measurement of the radius of the EHDs, by
analysis of the period (5.1.1). Droplet radii have been measured by many
different techniques, with 5 spread of values in the range 2-10 yum
(See §5.2), and yet another method is not amiss. In practice, however,
we first have to take account of the detailed band structure of germanium,

in which the anisotropy of the conduction band valleys leads to separate
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values of the cyclotron mass wk and the kinetic mass m, (See §2). When

this is taken into account the period of the oscillations becomes

8% = (n/2a) (R /2em) ¥ (5.1.2)

which leads to an estimate of 1.1 um for the droplet radius (Eaves et al

1977) .

A similar resonant effect in the magnetoresistance of InSb doped with
NiSb was reported by Nicholas,»Stradling and Eaves (1976), Nicholas and
.Strad{ing (1979). Here the NiSb was known_to be present in the form of
long rod-1ike cylindrical inclusions in the bulk material, and a similar
interpretation in terms of a hard cylindrical potential gave a radius of

~1 um.

The experimental curve of Eaves et al was also compared with a
theoretical calculation (curve (b) in Fig. 5.1) based on evaluation of a
single relaxation time by the 'Argyres fomula'. In the light of our
analysis of §4.4 we do not believe this approach to be tenable in this
problem, and indeed our work indicates that it may run fnto serious
difficulties. Instead, we base our calculation on the relaxation matrix -
multiple relaxation time theory developed in §4.4, as summarised by Barker

and Bridges (1977).

In §5.2 we present the experimental evidence for the existence of
EHDs, and, once established, their properties. Other aspects of the
transport problem are discussed in §5.3, where we give the values we have

used for all parameters, and our reasons for adopting them.
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§5.4 présents the calculation in detail, and shows how various
approximations allow simple analytic formulae to be derived for the
conductivity. In §5.5 we present the results of an eérlier numerical
calculation of the magnetoconductivity and compare it with the theory of
§S.L and Qifhlthe experimental work of Eaves et él. Finally in §5.6 we
discuss p}oblems raised by the calculation and—comparison with experiment,
and conclude that the éfféctive EHD scaﬁtéring potential cannot be as
strong as has been assumed. We also indicate some areas which would repay

more detailed investigation in the future.
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5.2 Electron-Hole-Droplets in Germanium

It has long been kﬁown that a single electron-hole pair may exist
in a crystélline solid in a state of close spatial association, forming
a hydrogen-like ‘molecule’ bound together by thé Coulomb attraction of
the oppos{tg]y charged electron and hole at an energy lying slightly
below the bottom of the conduction band. These elementary excitations
are known as excitons, and an extensive review of their theory has béen
made by Kncx (1963).‘ McLean (1961) has reviewed their properties in

germanium and silicon.

A characteristic indication of the presence of excitons in semiconductors
is the emission of radiation as a sharp peak in the infra-red when the
electron drops back }nto the valence band to annihilate the hole; the
lifetime of the exciton against this process may, however, be as long as
8 ps in an indirect gap semiconductor such as germanium (Pbkrovsky,

Kaminsky and Svistunova 1970a).

With intense photo-excitation one can thus produce a high density of
long-lived excitons of large radius (~0.018 ym in Ge, Rice, 1974), and
there was at first some controversy as to the expected effects of an
attractive interaction between them. .Haynes (1266) interpreted a new peak
in the recombination radiation (RR) spectrum of excitons in silicon to be
due to the formation of an excitonic molecule or bi-exciton, while Asnin,
Rogachev and Ryvkin (1968) interpreted a jumpwise increase in conductivity
in germanium as a Mott transition to metallic conduction. Keldysh (1968)
discussed the various possibilities and suggested that at low enough
temperature the excitons might condense into a dense liquid-like state in
which individual electron-hole pairs were no longer distinct; this came to

be known as the electron-hole liquid (EHL).
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- These rémarks stimulated an intense period of expérimental
ihvestigatioﬁ into the condensed stéte, mainly in Ge. Thé first report
was by Pokrovsky and Svistunova (1969, 1970a and b) who detected a new
peak in the RR at hoK, L.,6 meV below the mainrfree exciton peak at
714 mev, which disappeared on raising the temperature. From their data
they were. able to deduce a lifetime for e-h pairs in the liquid of
™20 As, a density of e-h pairs in the condensed phasé of>néb2 X ‘I023m-3
and work functions for ele;trons and holes against removal from the liquid
of ¢ v3.3 meV and ¢ 2.5 meV respectively (See Fig. 5-3). It was soon
recognised that the EHL existed in small droplets, and Bagaev, Galkina,
Gogolin and Keldysh (1969) demonstrated the movement of these elgctron—
hole droplets (EHD) towards regions of greater deformation of the crystal
sample, interpreted as being due to a reduction of the binding energy of
the droplet particles uﬁder stress, which was detected by’'a shift in ;he
RR.peak. Vavilov, iayats and Murzin (1969) measured scattering by EHDs
at a frequency in the far IR postulated to be that of the plasma
135-

1) and deduced values of p ’as

oscillations of the EHL (2 x 10 c

A2 X 1023mf3, and the radius a of the droplet as m10-20 um. Yet another
method of detection of the EHDs in Ge was that of Asnin, Rogachev and
Sablina (1970), who detected large current pulses in a p-n junction at
4.2°K, disappearing above 6°K, whicH were interpreted as being due to the
annihilation of complete droplets. A similar experiment was later |
performed by Benoit a la Guillaume, Voos, Salvan, Laurant and Bonnot (1971).
Ben oit a la Guillaume, Voos and Salvan (1971, 1972)'5150 estimated the |

27 from a spatial resolution of the

diffusion constant of EHDs as 0.015 m
RR from the cloud of droplets, and estimated the formation time for a
dropletcontaininguIOGe-h pairs to be n0.5 us, with a lifetime of L0 ps.

The most conclusive evidence up to this point for the existence of EHL in
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in the form of small droplets was the observation by Pokrovsky and
Svistunova (1971) of classical Rayleigh scattering of light by the
droplet cloud. By altering the excitation power they were able to

measure variations in the radius of the EHDs from 3.8 um at an excitation

rate of 1 8 X 102h 3

ZQ 3

L5 x 10 . A schematic representation of some of these

to 8.8 um at the higher excitation rate of

experiments appears in Fig. 5.4. A review of the experimental data thus

far was made by Pokrovsky (1972).

At this point theoretical investigations of the e-h liquid phase
began to appear in an attempt to predict the ground state energy andv
carrier concentratiqn. Combeséot ana Nozieres (1972) carried out a
calculation in the RPA for Ge and Si, arriving at a binding enérgy per e-h
pair in Ge of 6.1 meV which, on consideration of the exciton binding
energy of 3.6 meV, gave a work function of ¢ex = 2.5 meV against removal of
an exciton from the droplet. They also found very close agreement with the
experimental value of nc =2 x 1023m.3 for the carrier density. Brinkman,
Rice, Anderson and Chui (1972) carried out a similar, though less accurate
calculation. These results could soon Se compared, with fair agreement,
with the experimental data of Hensel, Phillips and Rice (1973 : Cyclotron
resonance), Thomas, Phillips, Rice and Hensel (1973 : R R Lineshape) and
Sibel'din, Bagaev, Tsvetkdv and Penin (1973>: Light scattering). Of
interest from the point of view of magnetic effects was the observation by
Bagaev, Gaikina, Penin, Stopachinsky and Churaeva (1972) of oscillations
in the RR intensity with magnetic field, interpreted as a Shubnikov-deHaas
type oscillation due to the changing Fermi level of the electrons in the
droplet. The oscillations were periodic in B"l and consistent with a
carrier density of 2 x 1023 3. This followed earlier work by Alekseev,
Bagaev, Galkina, Gogolin, Penin, Semenov and Stopachinsky (1970) which gave

evidence for an increase of the binding energy of the EHL with magnetic
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fields up to 100 kG. A theoretical treatment by Bdttner (1974) was
in.agreement with this finding. Estimates of droplet radius continued

to get smaller (Voos, Shaklee and Worlock, 1974 : a A2 um from light
scattering; Prieur, Etienne, Sander, Benoit at la Guillaume and Voos,

1976 : a "2 um from‘resonant absorption of ultrasound), though very large
drops up ;o'l-mm across could be produced in potential wells caused by
applied stress (Jeffries, Markiewicz and Wolfe, 1974 and 1976). Droplets
were reported to carry electric charges of the order of -100e by

Pokrovsky and Svistunova (1974), which was explained theoretically by Rice
(1974a) in terms of the difference between the work functions fdr electrons
and holes in the drop. Later experimental work by Nakamura (1977) gavev

the charge as “-400e.

At this point the volume of experimental and theoretical work on EHDs
had become so large that we shall henceforth.refer only to that which is
of partiéular interest to us. Fﬁr a wider coverage there are reviews by
Voos (1974), Hensel, Phillips and Thomas (1977) (both experimental) and
Rice (1974b, 1977) (both theoretical) as well as the sessions on EHDs in
the proceedings of the 12th and 13th International Conferences on the
Physics of Semiconductors at Stuttgarf and Rome respectively, which deal

with exciton condensation in many other materials besides Ge.

Grossman, Shaklee and Voos (1977) measured the dependence of droplet
radius on temperature and excitation level by detection of current pulses
in a p-n junction, and found variations from 2.9 ym to 10 um, while Rose,
Shore and Rice (1978) reported that their data on infrared absorption and
scattering by EHDs were consistent with the very small (compared with
previous estimates) radius of 1 ym. Work on the effect of magnetic fields

continued, with Wolfe, Furneaux and Markiewicz (1276) observing flattening
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of a large strain-confined EHD barallef to the applied magnetic field,
which they interpreted as being due to the deflection of recombination
currents inside the drop. Gavrilenko, Kononenko, Mandel'shtam; Murzin

and Saunin (1977) observed a similar effect in cyclotron resonance
experimen;s on small droplets, in which they were able to show that the
effective.mégses and resonance behaviour of electrons actually inside the
droplets were not greatly altered from normal values. Again the flattening
was parallel to the field, so that the droplets became oblate spheroids
with principle radius ratios of up to 1.7 at 2T, at which field the radius
paral}el fo the field was estiﬁated to be 1.1 ym. Finally, there was the
measurement of én oscillatory effect in the magnetoresistance of a sample
containing EHDs by Eaves, Markiewicz and Furneaux (1976, 1977) discussed
already in §5.1. A-similar exﬁériment has been performed by Vitins,
Aggarwal and Lax (1978), obtaining the same oscillatory effect, but of a

different period corresponding to a smaller droplet size.
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5.3 Discussion of the transport problem

We now discuss the probiem of transport in the Ge electron-hole
droplet system in greater detail, and introduce some of the approximations
involved in the numerical calculation. For a lengthy review of previous
experimehté-andvtheoretical calculations of transport properties in Ge

we refer to the work of Paige (1963).

The crystalline Ge on which the experiments of Eaves et al (1976) were
performed is such an extensively studied and well understood material that
we may confidently use data appearing in the literature as sources for
band structure and lattice scattering parameters. Germanium (See, e.g.,
Kittell 1971) is a group IV semiconductor with an indirect band gap of
0.74 eV at 2°K. The valence band consists of one heavy hole and two light
hole valleys of masses 0.3me and 0.014me respectively. The bottom of the
conduction band may be regarded as consisting of four ellipsoidal valleys,_
their long axes pointing in the {111}directions, and with longitudinal
and transverseeffective masses of 1.59me and0.082me respectively
(Dresselhaus et al 1955, Levinger and'Frankl, 1961). We expect the effective

mass approximation (Luttinger and Kohn, 1955) to be valid in the magnetic

field, as the bands are non overlapping (Harper, 1955).

A magnetic field in a {100} direction is equally inclined to each of
these valleys (Fig. 5.5), and hence the cyclotron mass m. and the kinetic
mass m_ are the same for each. These have been derived already in §2.2;
the values are m, = O.l35me, m, = 0.581me. The separation of the Landau
bands in energy is fw, or ﬁeB/mC, which is approximately BmeV when B is
measured in tesla. At 2°K a spread of S5kT above the bottom of the
conduction band is equivalent to about 1meV, so the number of Landau bands

occupied at a given field is of the order of 1/B. Thus at the field used
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t al (0.01 - 0.05T) over 20 Landau bands will be occupied,

by Eaves
the quantum limit regime being for B greater than 1T. With>so many
bands occupied it is.pertinent to consider whether the Landau band
structure will in fact be resolved, or whether it will be broadened out

t al report wCTNIOO from cyclotron

by scattering procesges. Eaves
resonanqé éxperiments on their material, which is consistent with é well
resolve& structure (Kubo et al, 1965). We shall return to this‘point
when the EHD scattering has been calculated. A further indication of the
scales involved is that the Landau length % is (ﬁ/eB)i which is roughly

0.0ZSB-i um,

In the ultra pure Ge used by Eaves et al the doping level is
extremeiy Tow (NA-NDm1017m-3),'and at 2°K thermal activation is also very
small, so that the conduction band valleys are populated exclusively as
a result of photo excitation by the intense illumination. Eaves reports
a density Ne of 1020m-3 for free carriers not bound into EHDs or excitons,
which is far too high to arise from the other mechanisms. Since the
relaxation time of these carriers is long, they may be expected to

thermalise (Barker and Hearn, 1973), and so we assume a Maxwell-8oltzmann

equilibrium carrier distribution function in the conduction band.

We shall choose to ignore any possible contribution te the conduction
process made by the holes, following Eaves et al. As they po{nt out, the
complex nature of the Landau band scheme for holes would make a proper
analysis‘difficult, and in any case the Fourier transform inBwhich we
shall use would separate electron and hole contributions due to their
different anisotropy ratios. A Significant‘hole contribution seems likely,
however, as their masses and number density are of the same order of

magni tude as for the électrons. We shall return to this point in our

concluding discussion.
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We now consider the scattering mechanisms expected to be present
in Ge of this purity at 2°K. Measurements of the mobility of electrons

(Fukai, Kawamuta, Sekido and Imai, 1964) and holes (Ottaviani, Canali,

%

Nava and Mayer, 1973) in such material show a T 2 dependence
characteristic of scattering dominated by acoustic phonons. Impurity
scattering may therefore be safely ignored; the only other scatterers are

the EHDs themselves.

We use the usual deformation potential approximation to descrfbe the
phonon scattering (Bardeen and Shockley, 1950; Herring and Vogt, 1956;
Ziman, 1963), in which the electron-phonon interaction coupling constant
is Dzﬁq2/2pﬂwq. Here D is the deformation potential, p is the density,

R is the material volume, and the acoustic phonon frequency mq Is sq where
s is the souna velocity, q is the;phonon wave number. These parameters
are readily available for Ge (Kirkpatrick, 1973)_and are:’

D = 11.bkev, p = 5329 kgm-3 and s = 5490 ms-1.

At high temperatures this interaction is effectively isotropic, as
the above coupling coefficient combines with an occupancy factor
(2ﬁ&+l) = coth(ﬁwq/ZkT) ~ 2kT/ﬁwq to produce an interaction which is
.independent of q. This fact has been used, among others, by Argyres
(1958, 1959) to obtain an analytic expression for the longitudinal
magnetoconductivity outside the quantum limit regime. This approximation
is not applicable here, however, fof considering a typical phonon transition
across the top of the first Landau sub-zone (for which q = 21-1(2mz/mc)*)
we.find ﬁmq/kT is approximately 4.8 Bi. This is not sufficiently small,
.for the fields which are of interest to us, for the approximation

coth(‘hwq/ZkT)k 2kT/‘ﬁwq to be tenable.

A measure of the degree to which the inelasticity of the phonon

scattering is important is the value of the ratio mq/u)C for a phonon assisted
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transifion across the top of the first Landau sub zone. This is

’ abproximately O.97B-i, so that the energy of the phonons involved in
transitions across the Landau bands is comparable with the energy
separation of the bands, apart from at the very highest fields. It
therefore'seems that any calculation which takes phonon scattering into
account tsrféctly must be ineléstic, precluding the use of the relaxation
matrix theory developed in §4. As our main interest is in the EHD
scattering, however, we shall proceed with an elastic calculation of the
phonon contribution until it appears that we may drop it altogether. The

poin£ will be discussed further in §5.6.

We now come to the scattering by the EHDs themselves. Eaves et al
have taken these té be perfectly spherical in shape, with a well defined
radiu§ a of 1.1 uym deduced from their magnetoresistance data. There is
reason to doubt that the shape is in fact perfectly spherical, as Wolfe
et al (1976) and Gavrilenko et al (1977) have reported a flattening of
EHDs parallel to the magnetic»field. Distortion of the EHDs into
oblate spheroids would not qualitatively change the nature of the

resonance, however, and ease of calculation justifies an assumption that

they are spherical.

The size and distribution of the droplet radii are more controversial,
and various estimates in the range 1 - 10 um exist (Voos 1974, Pokrovsky
et al 1974, Prieur et al 1976). We shall assume that all droplets have

the same radius for ease of calculation, and use the value 1.1 ym deduced

EHD

by Eaves et al. They also report the number density n of the droplets

to be 1016m-3, and we shall use this value.

Finally, we must consider the depth V of the potential the EHD presents
to a scattering electron. Eaves et al have taken a figure of LmeV, derived

from previous estimates of the work function against escape of an electron
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from tﬁe droplet (see,'e.g., Pokrovsky, 1972’; These figures are not
particularly accurate, however, so no greaf significance shoqld be
attached to this particulér value. lndéed, the representation of this
obviously complex scéttering process by a simple square well potential
needs cé}éful consideraéion, and we shall discuss it in more detail
later. .For the moment we shall assume that the procedure is valid, and
that the scattering matrix elements may be calculated in the Born

approximation.
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5.4 Calculation of the Longitudinal Magnetoconductivity

fn this section we shall carry out the complete calculation of the
Iongitudinél magnetoconductivity of ultra-pure germanium, where scattering
is by acoustic phonons and electron-hole droplets. As this calculation is
long and cpmplex, we shall split it into several sub-sections. After an
initial summary of the prece ding work we shall consider the evaluation of
the averaged transition rates which appear in the relaxation matrix. A
sub-section on approximafion of these transition rétgs is followed by one
dealing with the assembly and inversion of the relaxation matrix. The
next sub-section deals with the calculation of the magnetoconductivity
itself, for EHD scattering alone, while another discusses various
approximations to the conductivity for pure phonon scattering. Finally
there is a summary and discussion of the numerical approximations made in

various parts of the calculation.
The longitudinal magnetoconductivity, from (4.4.17), is

o, (8) = Q-]lo.Z.Ekykz(ezkzzﬁz/mzz) (- SORLLCY (5.4.1)

The factor 2 is for spin, and the 4 for the number of conduction band
valleys. The equilibrium distribution function () is equal to ne"ei/kT
where n is chosen so that the total number of excited carriers,

4.2.% f°(e), is equal to Qn,, where n_ is the observed number density.

Nk k
Y'Y After performing the integrations necessary to determine n and

substituting in (5.4.1), we obtain

oo - P(e)

o..(B) = n el [ 2 )¥sinh(fw_s2kT) fdee /5T § ket (e)  (5.4.2)

y &4 e —_— Cc N=0 N'N
m, kT lmm_kT ihwc

in the classical form 'neezr/m'. P(e)+1 is the number of Landau bands with
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states of energy €, and the P+1 relaxation times T are determined by

sqlving the matrix equation (b.h.fo)
{R(e)Ht(e)} = {1} (5.4.3)

The elements of the (P+1)x(P+1) square relaxation matrix {R}are given by

P-
Ryy: (€) = aNN.MZOkM‘<wNM<kN.kM)+wNM(kN.-kM)) -

-1
= kN (wNNI(kN’kNI) wNNI(kN'-kNI)) (5""'“)
where W is given in terms of the transition rates w between Landau states by

. _ 2
‘qNNl(kz’kzl) -- (mzL/ﬁ ")kzlme k ;le |k , ‘ (5'1.'5)
y Y? z

The NNN‘ are thus averaged transition rates, retaining only their dependence

on Landau band number and longitudinal momentum change.

Transition Rates

The transition rates are derived from the transport theory of §4.3, and
are the sum of the rates due to the two scattering mechanisms; the acoustic

ph . EHD

phonons and the electron-hole drops. Thus w=w" + w , and hence

W= wph + wEHD.

The transition rate wph due to acoustic phonon scattering is derived

from (4.3.5), assuming that the scattering is elastic:

WPt = zm/ﬁ{(zﬁqn)|c(q)|2|<Nkykz|e‘9"-'|n'kykz'>[2 (5.4.6)
q

The coupling coefficient for the electron-phonon interaction is

|C(9)|2 = Dth/Zps . _ (5.4.7)
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and the average number of phonons in mode g is Ng = (eﬁsq/kT-l)-l.

The transition rate wEHD due to EHD scattering is derived in the Born

“approximation from (4.3.9) to (4.3.24); it is

mEHD‘=.v2ﬂQ/ﬁZnEHDlU(q)|2|<Nkykz|eiq'£|N'ky,kz.>|2 | (5.4.8)

9
Here U(g)'is the spatial Fourier transformof the EHD potential; since the
square well is spherically symmetric, it depends only on q = |g], and an

integration yields
u(q) = bﬂV(sinqa-qacosqa)/q3 (5.4.9)
where the radius is-a and the well depth is V.

The matrix elements of plane waves e'9°L petween the Landau states are

given in (2.2.16); they are

ig. 2
|<Nkykz|e'g [|N'ky,kz,>| = 6(ky,ky,+qy)6(kz,kz,+qz)FNN,(u*)(S.h.lO)

ot

% %2 *2 * ¥ *2 2 x4 2
where u = £ °q,%/2, & = l(mc/mt) »and g7 =q + (2/727) (qy-aqz) from

(2.2.17), where a = (ml-mt)sinzelmz. The function F from (2.1.29) is

Fuge (W) = (N et "Ny |2 (NSN) (5.4.11)

The § terms in (5.4.10) are Kroneckers, and hence the integral for || is

reduced to

EHD
W

*
NN' )

2 EHD, 2
(k,ok,0) = (2m /hm ﬁ3)£!=lk L dq,dq """ |ula) | “Fyy. (v
b4 zZ Z

(5.4.12)

with a very similar expression for wph'
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The averaged transition rates are now exprgssed as .integrals over
the qqu momentum plane, within which the areas of maximum contribution
to the integral are determined by two factors. The nature of the
scattering mechanism manifests itself in the lU(q)]2 term, while the
overlap of:the basis Landau wave functions is taken into account by
FNN.(Q*); It is in this second term that any anisotropy in the underlying

band structure becomes extremely important.

‘The effect of anisotfdpy is most easily seen by studying the semi-
classical picture of scattering between electron orbits in k space,
illustrated for the isotropic and anisotropic cases in Figs. 5.6 and 5.7.
respecti?ely. Here the only possible elastic transitions are those with
g vectors linking péints on electron orbits of the same energy. !t may
readily be seen that for transition§ involving a large transfer of
z-momentum (Figs. 5.6a, 5.7a) the magnitude of the g vector required is
much greater in the anisotropic case because of the need for it to point
roughly along the constant energy ellipsoid. In fact, the vectors

- required for a transition of given q, will be clustered around

q, =0, qy = aqzxqztane in the anisotropic case, whereas most will
contribute around q, = qy =0 in an isotropic band. This means that for a

scattering mechanism whose effect falls off sharply with increasing q,
scattering will be greatly reduced in materials with anisotropic band
structure, as has been noted by Miller and Omar (1961) with regard to

ionised impurity scattering in Ge.

Quantum mechanically the effect is simplest in 0-0 scattering where
Foo (U*) = eV, The u argument makes this function greatest around
9% =0, g, =aq, and it is only in the isotropic case when a = 0 that this

Y
maximum occurrs for the least possible value of q.
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For transitions between higher Landau bands the semi-classical
picture is illustrated in Figs. 5.6 and 5.7b, c, d and it may be seen
that in certain cases (d) a shorter transition in g space is possible in
the anisotropic band. The higher order FNN' are more complicated
£ . o * . . *max - -

unctlons-gf u*, having maxima at values Uynt 0 and hence giving
maximum contributions to scattering on ellipses in the qqu plane, as

shown in Fig. 5.8. 1In the isotropic case the maximum contribution would

occur on circles centred on (0,0).

Since the scattering potential terms in the transition rate integrals
are independent of direction in the qqu plane, it is advantagepps to
change 'to polar COfordinates and perform the angular integration, thus
reducing the effect of the overlapiof Landau states to a single angular
?)

averaged function of u = lz(qx2+qy /2:

Es - 2n .
Faye (U5Q,) = (2m) 1édchNN,{(sz"‘/xz)2{ucos,2¢+(sz/sf‘)l’(./usim:;-mQZ/./z)z}}
(5.4.13)

Here the dimensionless parameter Qz = qu has been introduced, and the
argument of FNN' is just u in the new co-ordinate system. In an isotropic
band £ = 2* and a = 0 (see §2), whence F:N,(U,QZ) reduces simply to

Fyne (W) -

The transition rate integrals are now

(mz/wﬁ3£2)fdu(Dzﬁq/Zps)coth(ﬁsq/ZkT)F:N,(u,Qz)
o

WER s (koK)
(5.4.14)

EHD ®
NNN'(kz’kz') = (2m2/4n2ﬁ3)[dU{nEHDlU(q)|2}F:N'(U'QZ) (5.4.15)

(o]
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where QZ'= flk,=k, |

-'We méy reduce the integrals to completely dimensionless variables
by multiplying all momenta by 2 so that.Q = lg and K = 2k, and bringing

in one paréwetef for the phonon energies:

¢PP= ns/akT o 0.758} : . (5.4.16)
and one for the droplet radii:

R = a/2 p 438 | . (5.4.17)

Here we have shown how each varies numerically with magnetic field B,

measured in tesla.

Changing the variable of integration to [g[ = Q given by u = }(QZ-Qi),

the averaged transition rates become

(m_0%/27R ) faog Zeoth(CPU/2)Fyy, (u,0,)  (5.4.18)

wNN'(kz’kz')

Qz
WE:?(kz,k;,) = (16nm y2nEfD “/ﬁ3)deQ 5(5|nRQ-RQcosRQ) Frye (450,)
Qz 2
(5.4.19)
where in each case the value of Q' is |K =K .| We note that the integral

in the latter expression is sharply cut off at the lower end Q= Q » and
hence will oscillate in magnitude as this initial point corresponds to a
peak or trough in the oscillatory component (sinRQ-RQcosRQ)z. It is this

oscillation which gives rise to the magnetoresonance.

It is of interest to note that the constants in front of the two
integrals above, which give the relative strengths of the two scattering

2 EHDl7ps/ﬁ.

processes, have the dimensionless ratio EHD : phonon of 32ﬂ (v/D)
This is numerically approximately equal to 0.298-7/2 when the magnetic
field B is in Tesla, showing that phonon scattering becomes increasingly

important at higher magnetic fields. This is because the larger g vectors
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involved in interband tfansitions at higher field§ favour phonon
scattering, as the coupling increases with q rather than falling off
sharply as it does for the EHDs. It thefefore appears that phonon
scattering will be negligible.for fields around 0.01T, while there will
still beia:difference of two orders of magnitude at 8 = 0.025T. We may
not, howevér; discdunt the possibility that the integrals themselves,
though dimensionless, afe very different in magnitude. In fact we.shall
find that this is the case, and that phonon sﬁattering'fs mofe‘important

than the above argument would indicate.

Evaluation of the Transition Rates

in evaluating ihe transition rate integrals it is necessary to bear
constantly in mind the variation of F* and F with Q and Qz' In Fig. 5.9
we plot some of these functions for low N,N' values, and it can be seen
how the maxima of F* move outwards with incréasing Qz. Most important is
the behaviour at values of Qz corresponding to transitions across the top
of a Landau sub-zone, since these give the greatest contribution to the
conductivity. In Ge the value Qo of Qz corresponding to a transition across

the top of zone 0 is Qo = 2/2mz/mc n 5.94.

The integral for WEHD commences with RQ = RQz' For all values of the
field which we consider this will be much greater than 1 in the parts of the
zone which contribute most to o, and we henceforth neglect the sinRQ term

_in comparison with RQcosRQ. The remaining coszRQ term may then be split, to

express NEHD as a sum of an oscillating and a non-oscillating part:

WERD = (Bnm_vZnfH0g2a2/n3) (g7 + JE0%¢(q )) (5.4.20)

NN' NN!
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where

% _ © -3 % .
JNN'(QZ) = QIdQQ FNN'(U’QZ) | (5.4,21)
2 : .
and
%5 % =3 * .
JNNIC(QZ) = QIdQQ COSZRQFNNI (u’QZ) (5.14.22)
. Q,

We have not been able to evaluate these integrals analytically.
However, an approximation may be obtained for J" by returning to a Qny
integration and expanding Q-h in a Taylor series about Qx =0, Qy = aQZ.

The details of this are tedious, and are in'Appendix 5; the result is that

o n0.16207" & o.a71 (NS (5.4.23)
NN' ’\J . z . z . .

in Ge, the first coefficient being (l+a2)-2. In an isotropic band the

corresponding integral is

-4

It ¥ Q.+ h(N+N'+1)Q;6 ‘ (5.4.24)

*

showing the reduction of J by a factor of about 6 purely due to the
anisotropy of the Ge band. These approximations have been checked by
numerical integration and are adequate for low N,N' in the first few

Landau zones as illustrated in Fig. 5.10.

The phonon integral may be similarly approximated, the result being

WoRe v (m_02/2m°23ps) 1,580 coth(0.79¢P ) (5.4.24)
in Ge and
(n,02/218%83ps)Q coth (0.5¢PTq,) (5.4.25)
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Fig. 5.10 The scattering integrals J,(Q,) for germanium.
Dotted curves give the first two terms of the

approximate expansion.



in an isotropic band. We note that, since the phonon scattering
increases with q, its effect is increased by the anisotropy, though

not by such a large factor.

We may now compare the strengths of the two scattering mechanisms
directly.A‘]gnoring for the moment the oscillating part of WEHD, and

taking only the first term in the approximation, we find

-7 ;
WEHP/WPP & 0.0158 2 %tanh(0.79¢P",) (5.4.27)

2
Evaluaped at the top of sub-zone 0 where Qz = Q,o = 5,94, thisratio is
QB for B = 0.01, and 20.0003 for B = 0.25. In an isotropic band these
figures are increased by a factor of }10. This strongly decreasing
dependence on B means that EHD scatfering only dominates at low field values
of 0.01-0.04T, and explains Eaves' observation of the disabpearance of the
EHD oscillations at Higher fields. It also means that we must be careful
in extrapolating results calculated at high fields (which are more tractable
due to the lower band numbers involved) for comparison with experimental
data taken at low fields. |t is‘cleér that the phonon scattering, though

dominant at high fields, is of little relevance in this comparison, and we

shall feel free to discard it when necessary.

We now return to the oscillating part of the EHD integral. Since
R is large, and hence the oscillation is rapid, we may expect the major
contribution to this integral to come from the surface termat Q = Qz‘

Integrating once by parts and retaining only this surface term, we have

Jae % 'Q;3F:N.(u(QZ).Qz)sinZRQZ/ZR = ‘Q;3FNN.(u:)sin2RQz/2R

(5.4.28)
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where u: = %(la/z*)zQi %-O.QSAQi in Ge. In an isotropic band the

corresponding result is

Jone n Q5 %Fy e (0)sin2RQ /2R = -6,,,Q;sin2RQ, /2R (5.4.29)

though this is clearly only valid when N = N'.

For scattering across the inmost Landau band at the top of a sub-

, * .
zone we have QZ = Qo’ and hence u, = 16.0. For this type of scattering
(which is the most important, as it produces the basic magnetoresonance)

EHD
a

we may. compare the oscillatory and non-oscillatory parts of i s

*osc , ¥
Jn M g 18.3F (16.0)/R (5.4.30)

7

For B = 0.017 the ratio is 5.8x10- for 0-0 scattering, but is increaséd
to 0.25 for 4-4 scattering.The oscillatorypart of the EHD scattering is
.markedly reduced by the aniSotropy for the lowest Landau band, but is
affected hardly at all for some higher bands. At very higH fields where
the higher Landau bands are not occupied the oscillatory part of the
scattering rate is so small that it would not be observable in the final
conductivity. Thfs is not true, however, at the experimental values of
B (0.01-0.05T), where up to 40 Landau bands may be populated. It is

interesting that the only.field-dependent term in (5.4.30) is R-]GB-i,

the other factors being purely geometrical.

Inversion of the Relaxation Matrix

We now have all the information needed to assemble the relaxation
matrix {R} and evaluate the vector {t} of relaxation times for any desired
energy. {R} is a summation of terms due to phonon scattering and the
steady and oscillatory parts of the EHD scattering. For reasons which will

become apparent we shall henceforth discard the phonon contribution, so
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that we shall calculate the conductivity in the presence of EHD's only.
Certainly the phonons have little effect on the oscillations to be
expected (at least in our elastic scattering apprdximation) and in any
case the EHD scattering is dominant at low fields, as already noted. We
shall also’fegard the oscillatory part of {R} as a small perturbation to
the steady EHD scattering. The equation for the relaxation times becomes
(R® + RO5CHa) = (1) (5.4.31)

where {R®} is the steady and {R°®“} the oscillating part of {R}. This has
the approximate solution

g1} = (RETO) + REHROSCHR®Y 1Y = (%) + (<%} (5.4.31a)
osc

where {1t~ ~MWill be a linear combination of oscillatory terms containing

factors sinZR(Q\where Qz is the appropriate dimensionless g vector for

transition between ﬁarticular pairs of Landéu bands. The postulated origin
of the magﬁetoresistance oscillatiéns is the 'beating' of these oscillatory
components of 1 with the top of each Landau sub-zone, and in particdlar the

component due to transition across the inmost band, for which Qz = Qo;

EH 2_EHD

% = (13/8m v?n 23a2) which is

: 19 3
numerically approximately 1,03x10 125%

Defining the new constant t
and has the dimensions of a time,

the steady part {RS} of the relaxation matrix may be written

(R = (B0 " xHD(K)} (5.4.32)

Here {D(K)} is defined to be the diagonal matrix with elements K  along
the diagonal, and hencé the dimensionless matrix {X} is szmmetric, with its

elements given by

P & *
Xy = GNN'MZO{JNM(IKN+KMI) + Jm Ry Ky 1) 3/ KKy

(5.4.33)
+ Uy (Rt 1) = Jige KKy o D 7KKy
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With this notation the steady part {1°} of the relaxation time
' . " EHD,.s ' . . Sy . .
vector is t- {T°}, where the dimensionless vector {T°} is the solution

of
(XHD() HT®} =(1} or{XHKT®} = {1} (5.4.34)

where {KTs} is a column vector with elements KNT;.

The solution of (5.4.34) for {kT®} turns out to be particularly
simple. An important property of {X}, apart from its symmetry, is that
its row sums, given by |
P

3205, K+, D 7KKy (5.4.35)

3
X =
M=o "M M=o

are very small at energies near thé top of a sub-zone. In this case the
smallést K is KP = 2.97 which, given the inverse fourth power in J*,
makes the row sum of order 10'“. Now it may be shown (see Appendix 6)
that for such a matrix the approximate solution of (5.4.34) is that the
KNT; are all equal to each other, taking the value of the inverse of the

average row sum of {X} . We therefore have, to a very good approximation,

s _ * =
KyTy = (P+1)/gQMJ,M(||<N+KM|)/KNKM = Yp(K) | (5.4.36)

where YP(K) is dimensionless, depending only on the order (P+1) of the
relaxation matrix and on the position within the (P+l)th sub-zone,

indicated by K.

It is important to note that Y, is completely independent of magnetic
field; it is determined solely by the set of values K, occurring at a
point in Landau sub-zone P determined by one parameter K. Whatever the
magnetic field there will still be one point in sub-zone P with the same

set of values KN and hence the same value YP' This implies that the
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shape of the complete steady relaxation time spectrum is the same for
all values of the magnetic field. Once the YP(K) have been calculated,
all that is needed to determine the spectrum exactly are the values of

EHD

the scaling factors t (time scale) and hwc (energy scale).

This great simplification may be made because the J:M do not
contain any terms directly dependent on magnetic field. This is not true
of the J*gac, which contain the field dependent parameter R; hence the
importance of splitting off the oscillatory part of {R} to be considered
separately. At first sight the parameter Cph in the phonon transition
rates would appear to precludé simplification similar to the above, as
it occurrs in the factor coth(0.79CthZ). Simplification may be achieved,
however, if : (1) the argument of coth is large enough that it is
approximately | independent of B (2) the argument is so small that the
coth term is approximately the inverse of its argument, in which case Cph
may be taken into the constant multiplying {R}. Unfortunately the
experimental regime falls between these two extremes. In any case the
dependence on B in the multiplying factors in front of the relaxation
matrices is different for the EHDs and the phonons, so that the two can
certainly not be combined in a simple way. Regime (1) for the phonons
corresponds to high temperature and low fields, and has already been
mentioned in §4.6 because of its simple solution. Regime (2) corresponds

to high fields and very low temperatures, and will be treated briefly

later.

It remains to choose a suitable parameter K to describe the position
of a particular value of energy within a sub-zone. In Landau sub-zone P

with (P+i)ﬁmc<e<(P+3/2)ﬂwc we shall define K by

K = {(e/ﬁwc)-(m)}* (5.4.37)
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which ranges from 0 at the bottom of the sub-zone to | at the top.

In terms of K, the KN are
Ky = (2 /m ) ¥ (K2t o 2,97 (k%ep-n)? (5.4.38)

We note'th'at‘KP o K, which means that the important oscillation sinhRKP
due to P-P intra-band transitions is particularly simple to investigate

using this parameter.

The values of the YP(K) are plotted in Fig. 5.11, It is found that
they all vary to a good approximation as the sixth power of K, the

coefficient YP of K6 increasing roughly linearlyrfor small N>0. In

particular Yo(K) N 3.I3xthK6, so that

s _ EHD -8 1
.=t Yo(K)/Ko &~ 1.09x10

3 5, -
s K82 2 0.510¢ 28

(5.4.39)

where € is measured in eV from the bottom of the sub-zone, and B is in

4

: 5
Tesla. We note that at the top of sub-zone O,wcro Ao 1.42x10 Blz, a fact

we shall comment on later.

For the phonons we define tph = 2nﬁ2£2ps/l.58m202 N h.72x10-]08-1,
and hencé
R’ = (PP D (k) (5.4.40)

For suitable values of B and T (which will be discussed later) the coth

factor in the phonon transition rate is approximately 1, and the elements

of {Xph} are

|KN-KN.|)/KNKN,

P
ph _ - -
Xant = GNNEEO(IKN+KMl+IKN Kyl 17K Ky + ([Ky#Kyo |

(5.4.41)
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The elements of {KTph} obtained by inverting this matrix are no longer
equal, as the row sums of {Xph} are not small enough. The values of

the Tph are plotted in Fig. 5.12,

Evaluation of the EHD Conductivity
In eQaﬁuating c,, from (5.4.2) it is convenient to split it into
a sum of éontributions from each Landau sub-zone, rather than each Landau

sub-band as implied in that expression. We therefore write

[+ -]

0,, = onop where % is the contribution from the energy range

(P+i)hmc<e<(P+%§ )ﬁwc. In each sub-zone the variable of integration is
changed to K, in terms of which € = ﬂwc(K2+P+&). We also introduce the

new dimensionless ratio B = ﬁwc/kT r 9.90 B/T, and obtain

- 1 a2 P
op = (ne?tE*/m ) (28%/m ¥ sinn(er2) 8P Bfakke ™ JioT, (5.4.42)
o N=0

Using the results of the previous sub-section for the steady part of op,
6

we have NggNTN N (P+l)Yp(K) and YP(K) v YPK , whence the integral may be

performed analytically. The resulting expression for U:z' the steady

part of the total conductivity, is

o = (n e2t"0/m ) (218%) 7H(1-e7P) (3-6° (3+38+ %28%418%))

2z e

. €O -B

x Y Y (P+1)eP 4 (5.4.43)
p=0 P

The values of this‘expressign are plotted for a wide range of values of

B in Fig. 5.13. : '

" The Quantum Limit (QL) occurrs when B is so large that only the
lowest sub-zone is occupied. The value of B required to make B equal to
5 is about 1 Tesla at the 2°K temperature used experimentally by Eaves

et al. However, slightly higher values of B are required before 0;2 reaches

- 14 -



Jtwi] @ ) av MO|
| @4n3ed n 3 Mol 3yl ur (M)
; P ) yqt S
yd Sw)3l uojliexe|als uouoyqd ¢
—.m .m_-._

- Sle




wn juewsab Joy >u_>wuu:ncououocmms QH3 243 jo 1aed Apeais ayy €1°G 614

- O

~0%

-0%
dﬂu

- 05

diWrt 413 MK
~ d3Llndwed :  Didoy1os!
~ : - ABG3HL 1 WNINVLYEY

~ .

——

an

0%




its simplestlimiting form, which from (5.4.43) is

s
zz B+ou

o 3, (n, et E“D/m ) (21g°) "2 (5.4.44)

EHD

Given the dependence of t and B on B and T, we see that this varies

- .S,
as B 1 and 'T 72

The oscillatory part of the conductivity comes from the ZKNT:Sc term

in (5.4.42). Defining the dimensionless symmetric matrix {X°°¢} in the
obvious way, and noting that {R® y! EHD{D(K.])}{\( 17! where DK )

is the diagonal matrix with diagonal elements KNj, we have

{TOSC} _

e21P(10%¢) = FPD (KT 1) S HD (O HDK ) HREY )

(5.4.45)

Now {D(K)HD(K™")} =(I}, the identity matrix, and {X°} '{1} = {KT%} =
= {l}{Xs}-1 as an identity in row or column vectors. Therefore the

summation involved in op may be simplified:

- P
NXOKNTOSC = DEOHI™= (00T = T T T

(5.4.46)

Using the expression for the elements {Xosc}'correspondlng to (5.4.33) and

collecting like terms together, we have
§ KT %5 = 3 § {K T34k, TS)20705C (¢ 4k ) +
Neo NN N, M=0 N'N MM YNM PTNTTM

+ Ky Ta KT EISC (Ko, 1) 1Ky (5.4.47)

From our previous approximate solution for the steady part of the

relaxation time, the second term in the above expression is zero, and it
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reduces to

P
osc 2
KN n 2Yp (07 ]

*osc
(K +K,) /K, K - (5.54.48)
NZo N, e NTOMT/ONTM

Jum
oNM

oscC

* -
In our approximation the J have factors which are sine functions

of their é}ébments; however, as‘the relationship between K and the
argument ;f J*osg is in general non-linear, the shape of each oscillatory
component as a function of K is cémplex. To obtain the oscillatory part
of Ops each oscillatory term is integr;ted ffom 0 to 1l with Ke-BK?.
Siqce the period of the oscillations is short and the integral is sharply
cut off at the upper limit, we again make the approximation that the
surface term in an integration by parts is dominant. For each oscillatory
component the variabie of integration must be changed from K to (KN+KM)’
afteriwhich the surface term is

2

}ZK T°S°Ke'BK2dK v § e BK 2Ky, (K) 2, (uh) cos2R (K +K ) dK/d (K, +K
JLONIN Ny oo P NM Uz COSER RN Y N""M
?

K=1

2 3
LR KNKM(KN+KM)
(5.4.49)

where u: = O.hSh(KN+KM)2. In fact our approximation here is not so good
as previously, as the derivative of YP(K)2 is large, making the next term
in the integration by parts of a similar magnitude to the first (unless

R is very large). The above expression should give a qualitative
description of the oscillation, however. Since dKN/dK = (2mz/mc)K/KN.

the derivative may be evaluated, whence

1
osc _,,2 . - P K=1
TN ke85 ak 3, (ms2m.) (e B2 /08 T [Exnlu;)cos2RikyrK,)
N M= (KN+KM)“
(5.4.50)

As a proportion of Op this falls off rapidly with increasing magnetic

field because of the additional e'B/R2 factor.
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At the top of the zone the value of K is (P+1-N)i(2mz/mc)%.

N

Thus it can be seen that while the same N-M transition in different

Landau sub-zones will give rise to different values of KN+KM|K=1’ the
same value of K +K may be obtained from a sub-zone L bands higher in

N' M

the transition N+L+M+L. Thus the 0-0 transition in sub-zone 0 gives

rise to tﬁé séme 'frequency' in o,, as the 1-1 transition in sub-zone

1, the 2-2 transition in sub-zone 2, etc. For this 'fundamental frequency'
Ky = Kﬁ(Zmz/mc)i, giving rise to a cos{hR(ZmZ/mc)i} term. Since

R=23g = a(eB/fﬂi the argument of the cosine is ha(ZemZ/mcﬁ)iB*, which
means lhat this term in the conductivity is periodic in Bi, with

fundamental period

b = (1/2a) (fin J2em ) (5.4.51)

as first postulated by Eaves et al (1976), and verified numerically by
Barker and Bridges (1978). Now, however, we may also give an expression
for the magnitude of the component of this frequency, and of all the
other frequency ﬁomponents présént, Combining (5.4.50) with (5.4.42),

the magnitude of the fundamental frequency component is

ZtEHD

(et 0/m ) (83/2mE (1-e78) (m s2m. ) 3/6AR2P£;§FPP(16. o)e‘("”)?

(5.4.52)

The ratio of this component to the steady part of o is plotted in Fig. 5.14

for a range of values of B.

The other oscillation frequencies present in OZZ(B) are found by

considering all the possible values of (KN+ for higher sub-zones.

K [ k=1
Clearly these values are (/§+1+/T:T)(2mz/mc)i where S and T are
non-negative integers. If S > T only sub-zones P 2> S contribute such

terms, which give rise to a component in ozz(B) periodic in Bi with
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period

A

5T = ZAOO/(/§+I+/T+1) (5.4.53) -

the magnitude of the frequency component being

(n e2tEH0m ) (83/2m) E)i-7) (m_s2m )3 /4R«

Fogur porer 00T e PP T ™ (s.0.50)

©o
x 1
P=S-1

The ratios of thesé components to the steady part are also plotted in Fig. 5.14

This completes our calculation of the EHD magnetoresonance in germanium,
.but before going on to discuss the phonons we ﬁhall briefly mention the
corresponding results in a material of isotropic band structure, as these
may be compared with data we have computed numerically. It will>be seen
from a comparison of (5.4.23) and (5.4.24) that J:" and JNM differ by a

factor of approximately 6, and hence the Y  calculated for an isotropic

P
material are approximately Y. of their values in Ge. The values of m,

EHD 2nd B) are also changed, the result being

and m. (involved also in t
that the steady part of the conductivity in the i§otropic mater!al is
approximately 0.058 of that for Ge at 0.135 times the magnetic field. The
oscillatory part of g differs also in that the FNM factors in (5.4.52) and
(5.4.54) are replaced by SyM (in our crude approximation), so that all
oscillations due to inter-band transitions disappear. This replacement

leads to a marked increase in the comparitive size of the oscillations

over that for Ge, as is illustrated in Fig. 5.14.

The Acoustic Phonon Conductivity

There are essentially four regimes which we shall mention with regard

to acoustic phonon scattering : high or very low temperatures in combination
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with either a high magnetic field (QL) or.a lower field for which
several Landau bands are occupied. " The high or low temperature
approximation consists of replacing coth(0.79CthZ) in (5.4.25)
either by (0.79Cth,Z)-1 or by 1 respectively, while the QL occurrs
when 6nly¢op¢.Landau band is populated. We may assume that the QL

occurrs'Wheh B > 5; we remember that B N 9.90B/T.

In the QL the highest value of QI we need to consider is twice
thaf corresponding to an energy of about SkT; we may show ;hat this
value is 2(2mz/mc)%(5/8)i. Hence the Eaximum value of (0.79CthZ).
bearing in mind that Cph N I.SBi/T, is approximately S.Of*. For the
high tempefafure approximation to be valid this.must be less than about
0.2, so that T is grééter than 600°K. For the low temperature
approximation it must be greater than about 3, so that T is less than

about 3°K. In either case B must be greater than 0.5T to ensure that

B >5.

Outside the QL the highesthalue of Qz occurring is Qoaé 5.94, and
hence the maximum value of (0.79CthZ) is approximately 7.0h8i/T. For
the high temperature approximation this must be less than 0.2. |If
T 3 600°K this will be true for any value of B which is nonQL, otherwise
B must be less than 8x10-bT2. For the low temperature approximation the

expression must be greater than 3. If T is g 3°K this can occur for
0.'16T2 < B < 0.5T, while for T » 3°K no léw temperature approximation Is
possiblé. -The position of the four regimes in the B-T planeis shown in
Fig. 5.15. We note that for T = 2°K the low temperature approximation
appliesfor B » 0.67 Tesla, while the high temperature approximation

applies for B g 0.0064 Tesla; thus neither applies to the experimental

regime of Eaves et al.
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In the high temperature approximation NE: is constant,
independent of N,M and Qé and equal to (O.79tphcph)']. From the work
of §4.6 it follows that the relaxation times at any energy are all the
same and equal to O.QOtpthh(MgoK;‘)-]. We shall not pursue this
further excgpf in the QL where To = l.l?tphcth. The integral

corresponding to (5.4.42) for o__ may then be performed, and we have
2z

052 > 3;h8cph(nee2tp“/mz)(ZnB)'* (5.4.55)
Broo
T3600°K

varying as B-l and Ti.

The low temperature approximation has already been mentioned in
- (5.4.41). In the QL Tgh is constant and equal to Y%, so that again the

integral for c,, may be performed:

> 0.27(n_e?tP/m. ) (5.4.56)

varying as B-l and independent of temperature.

The Validity of the Numerical Approximations

We will conclude this section with a brief discussion of the validity
of the essentially mathematical approximations we have made in several
places in order to arrive at an analytical expression for 0,50 leaving

discussion of the physical approximations until later.

We first approximated NEHD by neglecting the sinRQ term in the
Fourier transform of the potential; this is a large R approximation and

*
is valid down to B < 0.01 Tesla. Next, the exact integral for J |is
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replaced by the approximation (5.4.23); this is a large Qz approximation
valid for the important values of Qz for N,M at least up to 4, though

it becomes poorer as N and M increase (sge Fig. 5.10). The

appfoximation (5;&.28) for J*osc is much poorer; it works well for low
values °f'92! but by the top of the Landau zone may underestimate the

true value Ey'as much as a factor of 10. Numerica] integration found

no simple dependence of J*osc on the two parameters R and Qz’ however,

and so (5.4.28) was accepted for want of something better. The
approximation involved in inverting the.relaxation matrix for the EHDs

is very good indeed in the upper part of each zone, where it differs from
the exact inversion by less than 0.2%; it is inadequate in the lower

half, but this does not matter. Finally, the functional dependence of

the YP on K is well represented by K6 in the upper part of the zone, again
deteriorating in the lower hal f (see fig. 5.11). We may therefore conclude
that (5.4.43) gives a true picture of the steady part of the conductivity
so long as only the first few Landau zones are occupiéd. but that the
expressions (5.4.52 and 54) for the magnitude of the oscillatory components

may be underestimates by a factor of 10 or more.

The only approximation we have made in the phonon calculation (apart
from those already discussed) is to replace the exact integral for Nph
by (5.4.25). This has been found to be accurate for all values of Q, for

N,M up to at least k.
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5.5 Comparison with Numerical Calculation and Experiment

This section consists of two parts; firstly, a comparison of the
approximate analytic formulae of the previous section with a purely
numerical evaluation of the conductivity, and, secondly, a comparison

with the experimental results and theory of Eaves et al (1976).

In Qiew of the many mathematiﬁal approximations made in the previous
section in order that analytical formulae cpuld be produced, it is
desirable to check the final expressions (5.4.43) and (5.4.54) against a
more direct numerical evaluation of the conduc;ivity in which the only
approximations are those of numerical analysis. Such a calculation has
been performed by Barker and Bridges (1978) u;ing electron wave-functions
for an isotropic material, but retaining the correct Ge values of mz and
m. at all other points, This calculation included phonon scattering, but -
for certain values of 8 the conductivity due to EHD scattering only is
available; these values should be approximately 0.162 times the value for
the steady part of o given by (5.4.43), as discussed in the previous
section. The magnitudes of the oscillatory components may be compared with

the upper curves of Fig. 5.14.

In Fig. 5.16 the relaxation times computed in the first two sub-zones
for two particular values of the magnetic field are compared with those
calculated from (5.4.39). It will be seen that there is some discrepancy,
probably due to the fact that the Yp for the isotropic case are not
exactly 0.162 times those for Ge as we have assumed. The ratios of the
relaxation times at the top of the sub-zone are exactly as predicted

(1/V2 : 1 for zone 1, 1/V/3 : 1/V2 : 1 for zone 2).
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Since fhe splitting of the relaxation timesis somarked,it is to be
expected that ;ny attempt to invert the relaxation matrix approximately
by use of the 'Argyres formula' T;I = 5' N will fail. In fact it does
so spectacularly, as may be seen in Fig. 5.17 where such a procedure has
been adoﬁtéd. Thé singular behaviour and negative values'obtained for T

are physiEally unacceptable, and show the danger of this approximate

method for calculation when the scattering is not isotropic.

In Fig. 5.18 we plot relaxation times for pure phonon scattering for
the same two values of magnetic field. Firstly we note the much smaller
splitting; in fact the 'Argyres formula' is a good approximation here.
Clearly we are much-nearer in character to the high-temperature regime
than to the low-temperature limit plotfed in Fig. 5.12. Secondly, the
actual values of the relaxation times show that, for the isot;opic material,
phonon scattering Is negligible at the lower fiéld value (which is typical
of the ‘experimental work). This factor is eroded from both sides on going
over to a Ge calculation, however, as this increases the phonon scattering
and reduces the EHD scattering. The effect of combining EHD and phonon
scattering of approximately equal strength is shown in Fig. 5.19, which
also shows what happens when the phonons become the dominant mechanism
(by reducing the depth of the EHD potential well). ‘Clearly the simplifying
assumptions as to the general shape of the relaxation time/energy spectrum,
made in the previous section, break down when both scattering mechanisms
are equaf19 important. Fortunately this does not seem to be the case at the

lower magnetic fields.

The values of the overall conductivity from the first three sub-zones
have been plotted on Fig. 5.13. It may be seen that the comparison with

the analytical formula is good, the difference again being a factor of about
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Fig. 5.19 Nuherically computed relaxation times for mixed EHD
and phonon scattering in an isotropic band material,

for varying strength of EHD scattering



0.8 for the same reason as causes the aifference in relaxation times.
The calculated structure of the oscillatory component of 30/38 is shown
in Fig. 5.20 and the magnitude of the fundamental frequency component as
a fraction of overall calculated conductivity is plotted on Fig. 5.14
for compa;iébn with the analytical value. It can be seen that the
analyticai formula underestimates the size of the oscillation for the

lower values of magnetic field, as previously suggested.

The calculated oscillatory components of 30/3B8 for the first three.
sub-zones separately are Fourier analysed in Fig. 5.21, the transform being
in the variable Zn/'WAoo. The function plotted is the modulus of the
Fourier transform, ar Fourier power spectrum. The overall structure of the
peak§ is invery good agreement with that predicted by.the analysis of §5.4.
The main peak at the fundamental frequency is'present in all sub-zones, and
is sharp, indicating a nearly pure harmonic variation as predicted. The
subsidiary peaks in the higher sub-zones also occur in exactly the right
positions, and the low frequency components with multiplying factor
(KNTN-KMTM)2 are absent as expected. The ratio of the subsidiary peaks
to the fundamental is not easy to estimate accurately (due to the noise
from transforming over a finite interval) and is in any case only an average
over the field range of the calculation, but it is not inconsistent with
the predicted value. The only inconsistent feature is the presence of
subsidiary peaks due to inter band transitions. (Those of period
28 /(1+v2), 2A°/(l+/3), etc) which should not be present in an isotropic
material if approximation (5.4.29) for Joscis accurate, Clearly it is not,
and an accurate analytical formula for o in an isotropic material would

have to take this into account.
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Fig. 5.21 Fourier transforms in BJ" of the numerically computed

" zonal contributions to 90/38B
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' The.comparison‘with'experimental work must unfortunately be indirect
and qualitative. We have been unable to extend either the analytical
formulae of §5.4 or the numerical calculation to the lower ranges of
magnetic field. In the case of the analytical formulae this is because
severalbdfjthe approximations used begin to break down; most notably
(5.4.23) %or J* which becomes increasingly poorer for the higher values
of N which must be included at lower fields; The variation of Yp with K
is thus no longer K6. In the case of the numerical calculation, the
increasing number of matrix elements and length of'matrfx inversion as

higher sub-zones are brought in eventually make the computer time involved

too long for it to be feasible.

In this situation the only comparison with the experimental work that
can be in any way quantitative is to plot the Fourier transforms of the
oscfllatory components alongside each other. This has been done in Fig. 5.22.
The main peak of the experimental data is seen to be fairly sharp, though
broader than the theoretical one; we shall discuss possible reasons for
this later. The value of the droplet radius in the numerical calculation
was chosen so that the fundamental period would be that observed
experimentally, and therefore it is not surprising that the peaks fall
above each other. It is noticeable tha; the subsidiary peak stfucture due
to higher order transitions is either not resolved or absent altogether in
the experimental curve, although at lower field values it should in féct be
more promiﬁent. Even more unexpected is the prominent structure on the
low frequency side of the main peak in the experimental transform. This
is definitely not a feature of the non-oscillatory background (which has
been subtracted from both sets of data before transorming), although it is
not obvious in the untransformed data. We shall speculate as to possible

origins for this structure in the following discussion.
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The only other information we have about the experimental data is
that the osciilations disappeafed above B = 0.06T and their amplitude
was approximate[y 1% of the overall conductivity at the point where they
were strongest. The fall off with increasing B has been explained in the
the prevfods section; it is due to extra’e-B factors in the magnitude of
the osciliéto}y components. The amplitude of 1% of background is higher
than would be obtained by extrapolating Fig. 5.14, but this was already
believed to underestimate the ;ize 6f the oscillation, and so is consistent
with the experimental data. We may summarise, therefore, by saying that
the aéreement of our computed and theoretically derived results with

experiment is reasonably good, though various points will be discussed in

greater depth in the next section,
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5.6 Discussion and Conclusions

In this section we shall discuss the previous theoretical study
with regard to the various approximations we have made, the comparison
of the calculated results with the experimental data, and possible
improvemehtg_which might be made in future calculations. For convenience
we shall spiif this into sub-sections : Comparison with experiment,
Approximate treatment of the EHD's, Other approximations, Self-consistency

of the transport theory, Conclusions.

Comparison with experiment

Referring to Fig. 5.22 we see that areas of agreement with experiment
may be summarised as: the oscillation of the magnetoconductivity; periodic
in B*, with a fairly'sharp peak in the Fourier power spectrum. Areas of
disagreement are: the broader fundamental peak, the lack of subsidiary
peaks at higher frequencies, and the prominent structure on the low
frequency side of the fundamental peak. We shall see below that a broader
peak in the power spectrum may easily arise, due either go a variation in
droplet radii or a slight softeﬁing of the sharp edge of the potential
well; indeed, it is surprising that the experimental peak is as sharp as
it is. The complete absence of the higher frequency subsidiary peaks is
harder to account for, and detracts from the usefulness of our more
detailed calculation. Contrary to our previous speculation (Barker and
Bridges 1978), this cannot happen due to the overlap of many closely
spaced peaks, as the frequencies obtained from (5.4.53) are well separated,
apart from a small number of coincidences. It is more likely that the
peaks are broadened beyond detection by either of the two methods
mengioned above, or by collision broadening (which tends‘to affect higher

Landau bands more than the lower ones; see Kubo et al 1965). We note
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that in a similar size-magnetoresonance experiment in which scattering
was by cylindrical potentials, the'higher order resonances have been
observed in the Fourier transform of the conductivity (Nicholas and

Stradling, 1979).

The Yé;? prominent low frequency structure in Fig. 5}22 we can only
postulate‘as being due to hole conduction, although Eaves et al (1976)
disregard.this as being small. It woqld be extremely difficult to perform
an exact calculation of the hole conductivity, as the detailed shape of
thé hole bands is very complex, especia]iy near the‘band edge (Dresselhaus
et al 1955, Kittel 1971). However, the overall shape of the hole valleys
is considerably more isotropic than those in the conduction band, and we
might hope for an apbroximate picture in which an m, and an m. could be
defined for holes and would be approximately equal. Then, since the ratio
(mc/mz)* appears in the period of the magnetoconductivity osqillations,
any peak in the Fourier power spectrum which is due to holes would be
separated from that due to electrons because of the different anisotropy
ratios, the positions of the peéks Ae:Ah being in the ratio 1:0.48,
Returning to Fig. 5.22, it may be seen that the low frequency structure
Is thus in the correct position for hole conduction to be a plausible

explanation of its origin.

The experimentally observed disappearance of the oscillations with
increasing magnetic field is easily explained, as three separate factors
contribute to it., Firstly, the phonon scattering becomes increasingly
dominant at higher fields, so that the EHD oscillations become

B terms in the

proportionately smaller. Secondly, there are extra e
oscillatory part of the EHD conductivity which make it proportionally

smaller than the steady part as the field Increases. Finally, as the
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quantum limit is approached the coefficient of the oscillatory part
in the lowest sub-zone becomes dominant, and this is very small as

previously noted.

Approximate treatment of the EHDs

In our' theoretical model we have assumed that the EHDs may be regarded
as potentfai §catterers in ;he form of spherical square wells,whose radius
ahd depth are the same for each drop. The validity of this model needs to
be considered very carefully, as it is fundamental to the calculation we
have performed. The most important simplification we have made i§ to
regard.the droplet of electron-hole liquid, a very complex system physically,
as a single simple potential scatterer as far as electrons in the conduction
band are concerned. "The justification for this is the observed work
function for electrons, against removal from the EHL, of a few meV
(Pokrovsky and Svistunova 1969, 1970a, b). We assume that an electron
enters the drop, gains kinetic energy due to the lower background potential
of the EHL in which it travels, but does not interact with it in any other
way before leaving the droplet again. We also assume that the magnetic
field inside thé drop is the same as that outside, so that the scattering
potential is an addition to the magnetic field in the electron Hamil;onian,

rather than a replacement of it.

The above picture ignores the possibility that the electron might be
scattered while it is within the droplet, either by an individual particle
or by exciting a bulk mode of oscillation of the EHL. Clearly neither of
these two scattering processes need be elastic, and both might well lead
to temporary or permanent capture of the incident‘electron. In the case
of permanent capture later scattering would also be affected by the Coulo mb

repulsion of the additional charge present. There is experimental evidence

-129-



that EHDs carry quite substantial electric charges of the order of a

few hundred times e (Pokrovsky and Svistunova, 1974; Nakamura, 1977), so
that this is clearly an important effect. Without a much more detailed
knowledge of the nature of the EH liquid/plasma, however, we do not feel
capable of_éyaluating the importance of either of these two mechanisms.
Suffice it io‘say that, while they must contribute to the scattering, the
experimentally observed oscillations are good evidence for the présence

-of an overall effective potential well.

The penetration of the magnetic field into the EHD would again be
very difficult to treat precisely. It is our belief, however, that since
the plasma is composed of neutral harticles, and the magnétic field is in
principle static, peﬁetration of the field will occur , with only small
local distortion around the edge of the drob. As we have previously
mentioned thereis experimental evidence for flattening of EHDs parallel to
the axis of a strong magnetic field, but scattering by a spheroidal
potential would be qualitatively little different from scattering by the

ﬁerfect spheres of our model,

The sharp edged square well potential of our model is obviously an
idealisation, as we would expect it to attain its full depth over a
distance at least as large as an exciton. Since this Is approximately
0.018 ym, the radius of an EHD is indefinite to within about 1%. Further,
we should a)low for the possibility that not all the EHDs are the same

size; indeed, there seems to be no obvious reason why they should be.

A distribution of droplet radii is easily allowed for by replacing
the Fourier transform of the droplet potential in (5.4.9) by a function

averaged over the radius distribution. Assuming a gaussian distribution of
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droplet radii centred on ao,-width Y, we would have

<|U(q)|>2 = [da exp(-(a-ao)Z/ZY)(161r2V2N'21Tq6)(sinqa-qacosqa)2

(5.6.1)
On evaluatiﬁg this integral we find that the dominant term is
IU(q,ao)lze;p(-Zqzyz), so that the original Fourier transform is modulated
by a gaussian damping of width Y-l. At the top of the lowest sub-zone q
is 2(2mz/mc)%.£-1, and hence the damping factor is
exp(-16mz/mc(yl2)2)x exp(-l.3x1058(y/a°)2). It is obvious that the radius
distribution must be very sharp in comparison with a, for damping to be
avoided. For Y/ao = 1% and B = 0.04T the damping factor is 0.59, and

rapidly becomes smaller for higher fields. The effect of a soft potential

edge could be treated almost identically, with a similar effect.

It therefore seems that the very existence of the magnetoconductivity
oscillations is strong evidence in favour of a sharp distribution of
droplet radii and a sharp edged potential. This Is surprising, as there
seems to be no reason for the drbplets all to be the same size. Barker
(private discussion) has suggested that the EHDs giving rise to the
oscillation have only just nucleated, at constant size and near the surface
of the sample, while older, partially evaporated EHDs are deeper in the
sample and possibly beyond the penetration of the magnetic field. This is

still an open question, however,

Other Approximations

We have made two other approximations in our treatment of the
conduction band electrons of the Ge sample. The first of these is to use -
the effective mass approximation, combined with plane wave rather than
Bloch states. Apart from the most precise work this is almost universally

used in Ge calculations, and has been shown to work well; we shall discuss
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it no further.

More importantly, we have ighored the inelasticity of the phonon
contribution to the scattering, although our argument of 85.3 gives no
justification fof this. 1In an inelastic calculation electron states
will bevffﬁked by phonon transitions to states of different energy,
determinea by'drawing straight lines of gfadient #1fis on the Landau level
scheme. The distribution function f may still be written in terms of a
relaxation time and independent of ky’ but the T's can no longer be
determined by inverting a finite matrix. States of energy € are linked
by phonon transitions to states of higher and higher energy, in an
infinite hferarchy which is only cut off by the increasingly small product
of phonon interaction matrﬁx elements or the fall off in‘the equilibrium
distribution function. In view of the small contribution of phonon
scaftering in comparison with the EHDs, the most likely result of a
calculation takfng this inelasticity into account would seem to be a
slight broadening of the peak in the Fourier power spectrum; this awaits

a more careful study.

Self consistency of the transport theory

For our calculation of the conductivity to be valid, the conditions
necessary for the use of our scattering and transport approximations must
be fulfilled. In particular, we must check that the conditions for use

of the Born approximation are satisfied and secondly that collision

broadening effects will be small.

A measure of the importance of collision broadening is the value of
wcr‘at the top of a sub-zone (see Kubo et al, 1965); for the effect to ’

be negligible this must be much larger than 1. The factor determining

the validity of the Born approximation is the ratio of the electron
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wavelengths inside and outside the potential (kN/KNN in the notation
of §3); this must approach 1. A condition which will be sufficient in

our case is that V/ﬁmc should be small.

For the parameters of our problem, and measuring B in tesla and V
in meVv, the value of w.T at the top of zone 0 is 2. 27xlOsB 2/V , and

of V/ﬁu)C is V/B. Substltutlng in the values V = lmeV and B = 0.04T used

experimentally, we obtain w.T = L.54 and V/ﬁwC 100. Both of the above

conditions are therefore clearly violated!

Faced with this difficulty, there appear to be two courses of action
open to us. Firstly, we may attempt to improve on the two deficient
aspects of our calculation, by treating the scattering more exactly with
the methods §3, and by performing a collision broadened transport
calculation. This is unlikely to give results in agreement with the
experimental work, however, as may be readily shown. The effect of using
exact 5cattefing matri* elements in place of the Born approximation may
be seen by comparison with the analagous problem of one dimensional
scattering by a square well potential. The scattering matrix elements for
reflection have been plotted in Fig. 5.23; it is seen that for energies
less than the depth of potential the oscillations of the reflection
coefficient are very irregular. |If this irregularity carries over into the
3D problem the relaxation times would no longer have the regular oscillatory

structure necessary to produce the periodicity in the magnetoconductivity.

The effect of collision broadening, so long as it is not too large,
is to smooth off the sharp peaks in the overall sawtooth structure of the
rel;xation time spectrum, as may be Seen in the work of Kubo et al (1965).
The appearance of oscillations in the magnetoconductivity, however, depends

on a sharp cut off at the top of each Landau sub-zone; the effect of any
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smoothing would be to drastically reduce the magnitude of the oscillation,

again in disagreement with the experimental observations.

The second method of approach is to look for reasons for altering
the parameter V to a much smaller value which would satisfy the conditions
for appro%?ﬁé;ion. We find one immediately in the remarks made previously
about eleétron capture, and the observations of large electric charges on
EHDs. These tally with the fact that a potential of size 1 um and depth
bmeV should have a very large number of bound states. In one dimension a
square well has approximately 2/n(sza2/252)ibound states (see, e.g., Schiff
1968), which gives about 150 for the above parameters. In 3D we would
expect the number to be much larger. |If a large number of these states are
occupied by electrons the potential would no longer be a square well, but
would be filled in to some degree in the middle, and have a Coulomb shape
outside the radius of the EHD. The exact potential shape would have to be
calculated by a self consistent, Hartree type, method. Starting from a
sharp, deep square well, however, one would expect a sharp and quite deep
step to remain at the original position of the potential edge, the result
being a hollow shell potential of the sort shown in Fig. 5.24. This is
a much weaker potential than the original, giving more favourable
conditions for the Born approxjmafion and small collision broadening, while
retaining the oscillatory structure of the Fourier transform which is the
source of the magnetoresonance. The infinife Coulomb tail could cause
difficulties in calculation, and clearly screening effects would have to
be considered; the phonon part of the scattering would also be much more

’

important than before.

We would expect, however, that while the steady part of the

magnetoconductivity would be greatly changed, the structure of the oscillatory
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components would be qualitatively unaltered.

Conclusions

In summary, our magnetoconduétivity‘ calculation has provided strong
evidencg in.favour of the original explanation by Eavgs et al (1976) of
the magneéb}ésonance phenomenon observed by them. We have shown that a
more deta{led transport calculation than they performed does indeed give

3

rise to an oscillation with the same ﬁtriking B* periodicity as was
observed. We have also proved the usefulness of the relaxation matrix
formalism in this context, without which a relaxation time description of
the transport is not feasible. It has been shown that the introduction
of a matrix inversion néed not necessarily complicate the analysis unduly;

the simplifying features present here would apply also for certain other

types of scattering.

From the experimental point of view the usefulness of this resonance
phenomenon is that it can provide a potentially very accurate measurement
of the EHD radius. More indirectly, it is also evidence of a very narrow
distribution of droplet radii, and for the action of the EHDs as scatterers
in the manner described. Some unexplained features remain, however, and
it seems to us that further experimental investigation is required. The
two most important points are the lack of higher frequency resonances of
the type we have predicted theoretically, and the question of the hole
contributions to the conductivity., Further experiments should, if possible,
be conducted ét lower temperatures in order to remove the unwanted phonon
scattering, and should be designed with an ultimate Fourier transform in
Bi in mind. Higher field work is not required, however, as we have shown

this would make the oscillations undetectable.
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Our theoretical work on this system could be extended in several
areas. There would be no fundamental difficulty in carrying the present
calculation to lower magnetic fields, in which case a direct comparison
with experimental work would be possible. We have also shown that the
effect of a Hollow shell potential for the EHDs.should be investigated,
though a_%o}e careful study of_the EHDs themselves would first be needed.
Uﬁfortunately this system does not seem to readily lend itself to a more
exact analysis of the scattering by the methods of §3. The basic
difficulty is the Vefy large size of the potential, which means that a
very large number of different angular momentum values contribute to each
t matrix element. This problem would be less severe with a hollow shell

potential, however,andfurther investigation along these lines might also |

prove fruitful.
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CHAPTER 6

Summar

Our aim in the work described in this thesis has been to develop a
sound and'géneral basis for the calculation of longitudinal
magngtocondﬁctivities'in the high field quantum regime. We havé extended
earlier work in this field by a more careful treatment of potential
scattering in a magnetic field, applicable in principle to potentials of
arbitrary size and shape. We have also developed a more general solution
of the Boltzmann eduation which enables any elastic scattering mechanism
to be treated exactly, even when more than one Landau level is occupied.
Finally, we have applied the above theoretical methods to a detailed study
of the electron-hole-drop size magnetoresonance in germanium, enabling a

more detailed interpretation of experimental data than hitherto.

The theory of potential scattering in a magnetic field has been treated
in detail in §3. A particular separation of the Schrodinger equation has
been chosen which leads to a quési one-dimensional picture of the scattering,
in which one dimensional equations for scattering in a finite numbér of
channels are coupled by potentials which are radial transforms of the original
three-dimensional potential. The picture thus obtained is physically
appealing and readily interpretable in termsof asemi-classical picture of

the scattering process.

General properties of particle conservation and time reversal symmetry
have been shown to apply to our scattering equations, an elegant proof
being made possible by a simple extension of the Wronskian theorem for the
true one dimensional problem. We have also shown that resonant bound states
of the potential below the bottom of many Landau sub-bands are a general

feature of the theory. These seem to us to be of particular interest, as
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they should be present for almost all scattering potentials. It is not
at present clear, however, whether these resonant states can manifest

their presence in any directly observable manner.

We have developed Green's Function methods for the solution of thé
scatteriﬁg:équations for general potentials, which reproduce the Born
series.fér weak scattering, and which can also be resummed in order to give
convergence when dealing with a strong potential. These methods have been
applied to scattering potentials in the form of cylindrical square wells;
to our knowledge the first time that any extended potential has been
treated beyond the Born approximation in a magnetfc field.. As well as
obtaining scattering matrix elements for the potential,vwe have also found
the explicit analytfcal form of a typical resonant 'bound' state wave
function, and given a simple physical explanation of the nature of its
.decay. Scattering by S8-function potentials has also been.briefly treated,
obtaining results in general agreement with previous work, although certain

modifications are introduced.

We would like now to extend this work to cover scattering by more
realistic extended potentials, in particular ionised impurities. These
will clearly be difficult to deal with analytfca!ly, but it is to be hoped
that a numerical evaluation of the resummed Green's Functions would not be
prohibitively difficult. Unfortunately, however, the electron-hole-
droplet scattering potentials used in our later transport calculation
appear to be very difficult to treat beyond the Born approximation because
of their extremely large size. On a lighter note, it is our ambitidn to
animate a scattering wave packet on a computer VDU; the results should be

visually very appealing!
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The transport theory developed in §4 is directed speéifically
towards the calculation of longitudinal magnetoconductivities from.a
Boltzmann equation; Starting from the Kubo formula and using the
resolvent super operator method of analysis for its conciseness and
elegance,-thg Boltzmahn equation with transition rates in‘the Born
approximation has been derived. Existing resolvent theory has also been
extended to higher order in the scattering, enabling a Boltzmann equation
with t-matrix scattering rates to be derived, and the;efore enabling the

preceding scattering theory to be used in transport calculations.

Having obtained a Boltzmann transport equation, we have described a
general method of solution, applicasle to any elastic scattering
mechanism even when several Landau bands are occupied. We have shown that
in génefal it is impossible to define a single relaxation time for
scattering at a particular energy (as is often assumed), but that a
solution in terms of a finite small number of such times is always possible,
their number being given by the number of occupied Landau sub-bands at the
energy in question. The times are obtained from a finite number of
simultaneous equations, solved by inverting a ‘relaxation matrix'. By an
analysis of the time dependént relaxive decay of perturbations to the
eiectron distribution function we have shown that the new pérameters are
not in fact the true relaxation times of the system, but their relationship
to these has been shown. We have als§ been able to give a general proof of
the positive definiteness of the true decay constants of the system and
also of the conductivity; it is Interesting that the new 'relaxation times'
appearing in the conductivity need not be positive definite, though they
usually will be. In addition to the exact formalism we have discussed a
number of situations in which a simple inversion of the relaxation matrix.
is possible; these are the only cases which were previously soluble. We
have also shown how the newformalism goes over to the zero magnetic field

solution in the limit of low magnetic field; an interesting and non-trivial
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exercise,

There is now much scope for the application of the above relaxation
matrix theory to other elastic scatteringlmechanisms, of which the most
important wquld appear to be the ionised impurity. This problem is
compiicaféd;“however, by the need to determine the form of the screening
of the CoJlomS potential in a magnetic field before scattering matrix
elements can be worked out. This is an unsolved problem as yet, though
an approach on the lines of the scattering theor} of §3 may be feasible.
The time dependent relaxive decay is also an érea which would repay
further investigation, especially in experimental work. It would be
extremely interesting to see if a time resolution of the response to a
pulsed'electric field can reveal the multiple decay constant nature of the

relaxation process.

Finally, we have devoted §5 to a detailed investigation of a problem
of particular interest and importance, the electron-hole-drop magnetoresonance
in germanium. This phenomenon is useful, both as a measure of the droplet
radius, and also as a probe of the scattering interaction between the drops
and free electrons. We have shown the necessity of using the relaxation
matrix téchnique in this problem, and have been able to obtain good
analytical approximations to the solution in spite of its apparent
complexity. The results of our analysis have verified the original
interpretation of the observed magnetoresistance oscillation, and we have
also shown»how a more detailed Fourier analysis of the conductivity/magnetic
‘field curve should reveal further structure related to the droplet radius.
Cer;ainvdifficulties remain with the self-consistency of the theory as
applied to this particular problem, and we believe these indicate that the
true scattering potential Is less strong and deep than that which we have

~—

used as a model. We have indicated that the potential is more likely to
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be in the form of a hollow shell, still with a sharp spherical step,

but also possibly with a Coulomb tail. The logical next step from our
present work is to carry out a calculation baéed on such a potential;

the details of this would be complex and probably require numerical
technnques, but the principles should be exactly as before. Another
possible extension of the present calculation would be to incorporate the
exact scattering theory of §3, though we have given reasons for our bellef
that a different model for the potential wouldirender this wunnecessary.
Neither of these modifications will produce any startling qualitative
changes in the predicted conductivity/field curve, however, and the
calculation already performed provides a sound basis for the understanding

of this particular phenomenon.
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APPENDIX 1

The Transformation Coefficient

From (2.1.28) we have

1

: 1 -—
<'N’ky’kle ’m’kz'>Landau -

Iy L-I¢N(x+22k )e-lkyye-lkzzel(-xy+xY-Xy) «
Box y

x

(ZnL)-i¢$(p)e-im¢eikz'(z-z)dxdydz (A.1.1)

where p = ((x-X)2 + (y-Y)z)i, pcosg = (x=X), psing = (y-Y). Assuming

2 _ q2+q2, we have

a L w702 oty 02
m > 0, and defining q = (x=x)/72°, q, = (y=Y)/2%, q; x*dy

dh (o) = (=106, (a,0q,,0,0) (A.1.2)

where M = N'+m and GNM is defined in (2.1.25). From (2.1.24) this is

equivalent to

2 w L
¢:'(p) = (-1)"e* qx.qy/fiéN.(x.+22qy)equx By (x')dx!
m_i (x=X) (y-¥) /203% | ix' (y-v) /22 Dt
= (=1)"e igﬂ.(x +x-X)e dN'+M(x )dx
(A.1.3)

Substituting this into the integral of (A.1.1), the terms in y may be
collected together and integrated

L/2

J dy

ei(-zzky-x+x')y/z2
-L/2

= 219.25in(x'-X-Il.zky)l./Zfl,z.(x'-X-!Z.zky)-1

(A.1.4)
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When the limit L»>= is taken we may replace this part of the integral
- (A.1.1) by the & function 2n226(x'-x-£2ky). We may now perform the

x' and z integrals in (A.1.1), leaving

P
=& -ik.)Z 2 2
I=26 e z-¥I9x¢N(x+£ ky)dN.(x+£ ky) x

2 _.
x e iXy/2s e |kyY

2,1} 2 | '
(-1 (2me /1) %6, X427k ) (A.1.5)

Then the orthonormality property (2.1.16) of the @é's gives our final

result-
2
_ =ilk Y+k_Z+XY/225) _am.o 02,1} 2
I = GNlekzkz'e Y 4 ( 1) (2'"'2, /L) ¢SN+M(X+2 ky) (A.1.6)

A similar calculation for m < o shows that (A.1.6) is valid in this case

also.
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APPENDIX 2

The Wronskian Theorem

We here develop the equivalent of the Wronskian theorem (see
Messiah, 196&) for the infinite set of coupled equations (3.2.5). Let
f, and iz be infinite dimensional vector functions of z. We define

the Wronskian of £4 and 12 to be

'
W, fyi2) = £.F, - £,.F Z (fm on " Finfan’ (A2.1)

We shall assume throughout that IJ and iz are well behaved functions of
z and all infinite sums are convergent. Now let £4 and iz obey the

infinite set of coupled differential equations on (-«,»)
fl+E .f. =0 or iy * z F =0
1 1°=1 iN M=0 INM ™
(A2.2)

L] - -
B+Efp=0 or oyt MEOFZNMFZM =

where the matrices El(z) and Ez(z) are both real and symmetric. Then

the rate of change of the Wronskian is

Wi .f,) =f.6 _ ff,=fE-E).f, (A2.3)

In particular, if E, =F, then N(fq,ja) is a constant. Note also that

this result is independent of any boundary conditions imposed on_fl and

£,

We now note that the Schrodinger equation (3.2.5) is a member of
the class (A2.2), and hence the Wronskian theorem (A2.3) applies to its

sqlutions. Let jqbe the solution of (3.2.5) given asymptotically by
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eqns. (3.2.8), and Let jz ='£?, which also satisfies (3.2.5) since

E is real.

=

43?

égh
.I

8
I

2:L"{ong|RMN|2 ~ky} (A2.4)

R . 2
W(fysFys+=) = -2iL gckanml

By (A2.3) these are equal, so that we have the number conservation result

gckM(IRnnlz * ITthz) - i‘N (A2.5)

To prove time reversal symmetry for the R's (i.e. for collisions in which
the sign of kZ is changed) f4 is as before and iz is given asymptotically

by eqns. (3.2.8) with N changed to N!

-2iL"(kNRNN,-kN.RN.N)

=
Jz’-'..‘
igh
‘I
&
i

(A2.6)
W(Eyofy54) = 0
We therefore have from (A2.3)
kNRNN' = kN'RN'N (A2.7)

which is equivalent to time reversal symmetry of the t matrix elements,

using (3.2.12).

To prove this symmetry for the T's jz is taken to be the function

iN'- with asymptotic behaviour at oo
zZ = = L.J"TNN,_e-'kNz
™ (oc's) (A2.8)
7 = oo L-QRNN.-e+|sz +6NN.L-ie-|sz

- 145 -



with onious behaviour for the CC's. The Wronskian is then

o =1
w(_f.N’_tN'-’-oo) = -2iL kNTNN"
(A2.9)
' : o =1
W(iN,_f_Nu‘_;"'“) = -2|L kNITNIN
+ The Wronskian theorem then gives
knTane- = ke Ty (r2.10)

which is the required time-reversal symmetry.

Finally, although the inversion symmetry (3.2.19) is obvious if V(p,z)=
V(p,-2z),we may-prove'it formally by the above méthods. Let j4 be fN
as before, andi2 be IN- defined by (A2.8) above. Then it Is easily
shown that i3 defined by i3(z)== iz(-z) satisfies the equation

f3+Ef3=0 (A2.11)

where=E3(z) = E](-z). But now if V(p,2z) = V(p,-z), then 53 = El' and so
the Wronskian of -f-l and j3 must be constant on (-w,0), At +eothe
Wronskian is zero, and so it must be zero everywhere, in which case it is

easy to show that j4 =‘£3. We therefore have

Tun- = Tun

(A2.12)

Run- = Ruy

which is the inversion property required.
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APPENDIX 3

The Low Field Limit of the Relaxation Time

The first requirement is to obtain the low field limit of the
Landau stayés. Since, for given values of € and kz’ N diverges as the
field drops to zero, the orbital part of the energy is better described

by the new variable €,, given by

€ = (N+})ﬂmc = e-ﬁzki/Zme (A3.1)

Only the x part of the Landau state is not of plane wave form, but in
the limit of low field this may be obtained from the WKB approximation

so that

2> = lglkykz> = (/2/L2/h)eikzzeikyycos(kx(x)x+¢(X))/(kx(x))%

(A3.2)

where

k (x) = (Zmel/hz-(x/22+ky)2)i (A3.3)

This applies so long as kx(x) is real; outside this range of x the wave
function vanishes. The x part of |A> is thus a simple harmonic
oscillator wave function with a very large value of N, as illustrated in
Fig. A3.1. ¢(x) is a phase correction factor which varies slowly with

x, and which will henceforth be ignored.

The scattering out term of the Boltzmann equation involves

evaluating

§f [V 1A0>12 2 8(eymey,) (A3.4)
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where the <>S bracket denotes summation and averaging over scatterer

position 5A= (x,Y,2). It is easily shown that

AV ar> = (2nL2z2/kx/kx.)“e'Z(kz-'kz)ew(ky.-ky) x

te Xkt k0 (k) + X (Kgutk )V(k )} (A3.5)

+ complex conjugate

where g] = (kx.-kx, ky.-ky -k ) and k ,= (k ,+k " ky'-ky’kz'-kz)' and
V(g) is the spatial Fourier transform of the scattering potential, which
we shail assume to be spherically symmetric. We have assumed that kx

and k_, are effectively constant over the extent of the potential, so that
kx equals its value at the centre of the potential:

= (ange, /- (x/2%ek ) D) (A3.6)

and similarly for kx"

On forming |<A|V|A'>|2we obtain 16 terms, four of which are
independent of X. It is not difficult to show that these are the only

terms which contribute when the averaging over X is performed
ik (X)X

The others
all contain factors of the form e where, as may be seen in (A3.6),

k(X) varies very slowly with X as lzbecomes large; hence the cscillatory
nature of the factor means that its integral with any slowly varying
function of k(X) goes to zero in the limit 22w, The terms which are

left therefore sum to

lalvias]? = rfitetiok )TV + T 1) (A3.7)

which is to be summed over |A*> and averaged over R.
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The Y and Z averages are trivial. The X average is restricted
by -ky-KLsX/zzs-ky+kL where k, is defined as (Zme*/ﬁz)&; this is so
that kx as defined by (A3.6) is real, and hence the non-zero part of
the wave function is being used. For similar reasons kyl is restricted
by -ky.-kl sX/lzs-ky.+k' . It is therefore permissible to use the two

changes of.vériable defined by:

kyo = ki sing-x/2? x/2% = k,sind-k

We then have
‘ﬂ/ T, .
’ Y- _ -1 24 302 02 40y 2 |~ 2
< |[<AVIA> T > = [(fw ) def(L/2m)dk n /Le 80 Jdo[da{|V (k)| “+|V(k,) |}
=T, =7
2, 4

(A3.8)

‘ where 5] = (kl cosg-k,cos6, k} sing-k, sinb, kz.-kz) and similarly for gz.

The factors l/kx, l/kx. appearing in the WKB approximation have therefore

corrected for our integrating linearly in ky’ instead of around the circle
2 2 _ 2

kx + ky 1» a@s would have been natural in the absence of the field.

It is easily seen that the two V terms may be combined by extending
the 4 integration to the range (-m,m); then, however, the ¢ integration
is clearly independent of 8. The 8 integral may therefore be performed,

to give,

Kl
< |<a|v[ar>|? > = (ns/8n3)[(ﬁzlme)detjdkz[d¢[V(5])|2 (A3.9)
-7

We note that, since k, may be written k'-k, ﬁ(g,) = U(k'-k) = <k|v|k'>

=1

- The expression (A3.9) therefore shows explicitly how the summation

over Landau states in (A3.4) goes over to an integral over all space (in
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cylindrical polars) of matrix elements be tween plane wave states |k5.
The scattering in terms may be treaied‘similarly on assuming that
T(e,,e) is independent of €,. The extra k,./k, factor in this case
gives rise to the cosf part of the familiar formula (4.6.16), after the

further substitution el = esinze.
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APPENDIX &4

Matrix Theory

We wish to find general properties of matrices {R} which may be

written ih‘the form
(R = {D(k'l)}{S} | (Ab. 1)

where {D(k" )} is the diagonal matrix with elements & ;] and {S} is

NN'!

real, symmetric and positive definite. The properties of the eigenvalues

and eigenvectors are particularly important; the eigenvalue equation for

{R} is

zRNM M ; | : | (Ah.2)
which, by (A4.1) is equivalent to

ASNﬁf; = w'kyfy : (Ab.3)
and, by the symmetry of {S}, algo to

IR = wjy ) (A4.4)
We therefore have

= Jeb = v ¢
é SNM w=o zk Ly = szfoM
’

from which we may deduce that either m' = wj or that the eigenvectors

£, ¢, are orthogonal in the sense that Zkaéf;

shows that the mi are real. By taking appropriate linear combinations

0. A similar argument

we may arrange that the eigenvectors fom an orthonormal set, such that
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el _ AL,
gkaNfN = sij (AL4.5)

Now, any vector may be exprgssed in terms of the eigenvectors’fi,
using the transform pair:
= Za fN N | aé = gaNfa : - (A4.6)
In particular
Ruw = ;R;f;km | R& - ARNMfa - wjfi (A%.7)
Thus

i
X fo ky (AL.8)

This is known as the spectral representation of {R} (see Bickley &
Thompson, 1964), in which all the elements are expressed in terms of the
eigenvalues and eigenvectors. Since {R} is not symmetric, the additional

factor k is introduced.

The spectral representation is extremely useful for calculating
powers of {R}, for it follows from the orthonormality property of the

eigenvectors that any integral power is given by

Z( foMkM (A4.9)

immediately in its own spectral representation. Of particular interest

is the inverse:

(R’ Z( ) 'fN MEM (A4.10)

i
We may also use this representation to show that all the w are
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positive definite. We note that the spectral representation of {S} is
/

Suv = 1o kyFaFuky (Ak.11)
.

Pre and post-multiplying by the arbitary vector a of (AL.6), we have

NZMaNS&AaM = Zwi(ai)2 (A4.12)
1

Since {S} is positive definite, the RHS of (Ak.12) must be positive definite
for all non zero vectors a. This is only possible if all the w' are

positive definite.
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APPENDIX 5

%
The Approximation of JNM

From.(5.4.13) and (5.4.21) we have

Sy = 2m7YJ dQXdon'.“FNM{(z*/z)ZQi/z + (z/z*)z(qy-aqz)z/Z}(As.n

Since FNM is the more complex function of its argument, we change

. ok _ * )
variables to P = (2 /Z)Qx, PY = (/4% )(Qy Qz), so that the integral
becomes

I = (2n)-lffddePyQ-hFNM(}(P§+P$)) (A5.2)

Al

where Q= {(2/2*)2P§ + (zPyl2*+an)2+Q§}%. We now expand Q-u in a

double Taylor series about P = 0, Py = 0; at which point Q = Qz(1+a2)i5Qi=

Y = Q;“{1+Q;2{z/z*)zp§+(z*/z)Zp§+z(z*/z)Pyan}}'z

= Q' 02qi2 b+ 3t -l

We are here assuming that Qz is large enough that this expansion
converges throughout the region for which FNM is largest; this
assumption breaks down as Q, approaches zero. Taking only terms up to

degree two in Px and Py’ we have

-4 -k

'y Q- Qe mag e, - Gl - 20t e

- 120,20 %a%p2) (A5.3)
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Defining the integrals:

In = [Jdp 0P Fyy (3(p5s02))

I = J1eP,aP P Fyy (2 (P1420)) = 0 (A5.4)

IXX

wn = J1dp ap PIFL G (PLPT)) = [fdp cp PAE (3(P2+P2))

we have

I v (14ad) 218,000 (1402) 311208 /) 26/ (1ea) -2 () 2200 ) 10

e

(A5.5)

Changing variables in the integrals to P. and 6 given by P = Prcose,

Py = Prsine, and then defining u = P|2_/2, we have

Igy = 27JFpy(u) du
° (A5.6)

27 o .
I:; = £ 2c0526d6£dﬁg(u)d6 = 2“£UFNM(u)du

Standard properties of associatedlLaguerre polynomials (see, e.g., Jackson,
1941) may be used to show that I:M = 27 and I:: = 2m(N+M+1). We therefore

*
have, after substituting in the Ge values of 2,2 and a from §2.2,

4

J % 0-16207% + 0.471 (Nwe1)Q® (A5.7)
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APPENDIX 6

The Inversion of Matrices of Small Row Sum

We shall give an approximate evaluation of the vector {X}-1{l}

where {X} is a PxP symmetric matrix whose row (and column) sums are

small compéred with the individual elements of {X}. We first note

that the determinant of {X} is unchanged if we replace the Nt

with the sum of all the rows, and then the Mt

all the columns. This gives

1IXI =

To first order in 8's, therefore,

[1X]] = (6]+62+ . .

S I M
f21 ?2

: Sx-1

8, by . e §M_](é1+c o 8)8y
: 6N+1

Xpl Gp xpp

h
row

h column with the sum of

. . +6p)YNM , any N, M

(A6.1)

(R6.2)

where YNM is the cofactor of XNM' It is clear, therefore, that all the

cofactors must be the same, to zeroth order in §'s. But we have

Xhh = TIXT Yy = 6o o o ) Vol = (50 -
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Gp)

-1

(A6.3)



Therefore all the elements of {X}.1 are the same, and

o'y = R +<sp)“ (A6.4)
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APPENDIX 7

Table of Constants and Parameter Values

Universal Constants

i o Planck's Constant 1.05 x 10-34Js
my »;“ Electron Mass _ 9.11 x 10-3lKg
e Electron charge 1.16 x 107'%¢
k Boltzmann's Constant 1.38 x 1072371

Physical Parameters of Germanium

mo Longitudinal valley mass,

conduction band 1.59 x me
m, Transverse valley mass,

conduction band 0.082 x m,
0 Density 5,320 kg m >
s Velocity of sound 5,490 ms.1
D Deformation potential,

conduction band ' 11.4 eV

Parameter values assumed in fitting experimental data

T Temperature 2°K
\" Depth of electron-hole-

droplet potential : 4 mev
a Electron-hole-droplet

radius 1.1 um
nEHD Nuﬁber density of electron-

hole-droplets 1016 m“3
Ne "Number density of free

20 -3

carriers 10 m
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Parameters used in computational analysis

L

m
Cc

L%

EHD

tPh

00

Landau length’ (ﬁ'/eB)ir = 0.0256.8-5um

Cyclotron mass (B along

-]58-

{]00}) 0.135 m,
; .kinetic mass (B along
| {100}) ' 0.581 m,
Cyclotron frequency (eB/mc) = 1.3 x 10'%8 s-
Landau length in ellipsoidal
valley (B along {100}) 1.28 ¢
Gradient of orbit-centre |
‘line (B along {100}) 1.22
Dimensionless wave vectors Q,K=2%q,%k
Droplet radius/Landau length a/f = 43Bi
Phonon constant ' fis/2kT = 0.7SBJ‘f
Dimensionless momentum
transfer for transition
across the top of the first
Landau sub-zone in Ge (8mz/mc)ir = 5,94
Dimensionless EHD relaxation | ‘
time 7378102 Bn v? = 1.03 x 107125
Dimensionless phonon
relaxation timer Zﬂﬁzlzps/l.SBszZ = 4,72 x IO.WB.l
Dimensionless Landau band |
energy fiw /KT = 9.908/T
Period of fundamental
oscillation, In B* (n/2a)(ﬁmc/2emz)i = 0.0IthT*



APPENDIX 8

Notation and Abbreviations

Magnetic States and Quantum Numbers

Q,L L ' Quantization volume and side length

N ;:: , Landau band number

P(c) Highest Landau band number occupied at a given energy
g,ky Wave numbers of electron states

kN Wave numbers in Landau band N at a given energy
KN,KZEQkN,RkZ Dimensionless wave numbers.

m Angular moﬁentum about z axis

o N'th harmonic oscillator wave function (2.1.14)

HN N;th Hermite polynomial (2.1.15)

¢z Radial wave function in axisymmetric gauge (2.1.22)
L: Associated Legendre polynomial (2.1.23)

FNN' - Matrix element of plane wave between Landau states (2.1.29)

¥° Free state full wave function

Y+ Scattering state full wave function

f:(z) Longitudinal part of separated wave function

V:M(z) Radial transform of scattering potential betweeﬁ free states
(3.2.6) |

R:M'TzM - Reflection and transmission coefficients for scattering
(3.2.8)

G:°+ Free propagator/causal Green's Function in Landau channel N

GS+ Full propagator/causal Green's Function in Landau channel N
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Transport Theory

A

g(zss)
p(p°)
£ (f°)
Ns(ns)_

Parr (@)

Ty}
{R(e)}
P(e)

T, (€)

Liouville of commutator generating super operators for
Hamiltonians (4.2.5)

Resolvent super operator

Small positive imaginary part given to energy to ensure
causality

Scattering part of Liouville operator

Self energy super operator (single-slté)

Density matrix (equilibrium)

Electron distribution function (equilibrium)

Number of scatterers (density)

Transition rates between states (without energy preserving
8function)

Matrix of transition rates summed over ky (4.4.13)
Relaxation matrix at a given energy (4.4.14 and 15)
Highest Landau band number at a given energy |
'Relaxation time' in Landau band N at a given energy

(4.4.7 and 10)

Germanium Magnetoconductivity Calculation

*
FNM

I Uae*)

Angular averaged value of F, ingermanium (5.4.13)
_ NM

Steady part of dimensionless integral for | (oscillating parf)
(5.4.21 and 22)
Dimensionless relaxation time (5.4.34)

Dimensionless value of KNTN (Approximately independent of N)

(5.4.36)
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Abbreviations

QL

TL

oc
cc

EHD

Quantum Limit: significant occupation of only one

rLandau band

Thermodynamic Limit: Q -+ w,Ns -+ m,NéQ = ng, constant
Open channel: Landau band in which free propagation is
possiblé at given energy

Closed channel: Landau band inwhich propagation is not
éossible atAgiven energy

Electron-hole droplet: droplet of electron-hole 'liquid*
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