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Summary

Motivated by problems in the theory of renormalisation of dynamical
systems, we study the properties of Markov families and fractals defined by
embedded trees. Our main results concern the classification of C*+ struc-
tures. Two topologically equivalent Markov families are C*t* conjugate if
they converge together rapidly enough. This result implies that the attrac-
tors of two systems at the accumulation point of periodic doubling are C%1!
conjugate. We also introduce and study the limit set of an exponential de-
termined Markov family.
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Chapter 1

Introduction.

Our main goal is the study of Markov families and the respective fractal par-
titions. We obtain results on convergence and smoothness. Some important
applications of our work is the existence of smooth conjugacies for circle maps
and for quadratic foldings in the frontier of chaos, which shows the rigidity
of these systems.

We start our discussion by considering a number of examples of Cantor
sets and fractal partitions generated by dynamical systems and some pro-
totypical rigidity and smooth conjugacy results in section 1.1. Firstly, we
give some information on the route to chaos through period-doubling. We
discuss the universality properties and their understanding using renormal-
isation in section 1.2. We prove a rigidity result on the C?*+1! smoothness
of the conjugacy between quadratic foldings with the Feigenbaum order in
scction 1.2.11. Our result on smoothness extends to any analytic quadratic
foldings infinitely renormalisable and topologically conjugated. Secondly, we
give a short survey on circle maps in section 1.3. We prove a general theo-
rem on smooth structures which will have applications for the case of critical
circle maps in chapter 2. Using the results on smoothness between Markov
families, we describe how to obtain C'® smoothness of the conjugacies be-
tween analytic diffeomorphisms of the circle with the same periodic rotation
number in chapter 3. Our future aim is to generalise this proof to analytic
diffeomorphisms of the circle with the same diophantine rotation number.

The study of the problems above is strongly associated with the under-
standing of Markov families. In chapter 3, we prove some general results on
smoothness and convergence of Markov families. We define some geomet-
ric properties which imply their smoothness and vice-versa. We prove the
existence and the degree of smooth conjugacics between convergent Markov
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families topologically conjugated.

In chapter 4, we define and prove the existence of limit sets for Markov
families consisting of two-sided Markov families. We prove the exponential
convergence to them under some geometric assumptions. We give appli-
cations to diffeomorphisms of the circle, critical circle maps and quadratic
foldings. This will allow us to understand better the horseshoe picture for
critical circle maps, which we will describe later.

For two-sided Markov families, we study in chapter 5 the C'* self-similarities
in the blown-up of small intervals in their domain. We obtain a strong rigidity
result in the smoothness of conjugacies between two-sided Markov families.

1.1 Cantor sets.

The middle-third Cantor set is a well known example of a binary Cantor set.
A slightly more general construction of a Cantor set C' is the following. Let
I =10,1)], Iy = [0,e] and I; = [b,1] where a < b. Construct the Cantor
set C deleting intervals of various lengths. The intervals obtained in the
n-induction step are called the n-cylinders . We index them by the the finite
words €y ...€,-1 Of Os and 1s in such a way that the n-cylinder indexed by
€0 . ..En-20 lies to the left of the n-cylinder indexed by ¢p...£,-21 and both
are contained in the n —1-cylinder indexed by €g...€,_2. Thus to each finite
word €g...€y-1 Of Os and 1s we will associate an interval I,,. ., _,, such that

Izo...en_1 = Izo...en_w U Geo...c,...l U Ieo...e.._ll

where the gap G.,...,_, is the open interval between I,,. ., .0 and I, .,_,1-
Thus the Cantor set is constructed inductively by deleting the gaps. We
assume that the ratios |Gi|/|Ii| and |I,. c,_,|/|eq..c_,| are bounded away
from 0, i.e. the Cantor set C has bounded geometry. It is given by

C= ﬂ U Ieo...e,,..l-

n>0¢€0.€n—1

Then there exists 0 < v < g < 1 and constants ¢,d such that c™ <
Lg.onoy < dp™.

Let ¥ = {0,1}%2¢ denote the set of infinite right-handed words eoey .. . in
3. We endow it with the product topology. The mapping 1 : £ — R defined

by
i(6051 . -) = ﬂ Ir:o...cn_l

n>0



gives an embedding of ¥ into RR.

Very often the set C' = i(X) will be an invariant set of a hyperbolic
dynamical system. For example, there is a map o defined on £ above by

0'(6051...) =£€1€9....

This induces a map ¢’ on C = i(X) which is a candidate for a hyperbolic
system. Thus we can ask when does there exist a C'*# mapping f : R = R
such that flgc =o'.

1.1.1 Cookie-cutters.

Suppose that I, and I; are two disjoint closed subintervals of I containing
the end-points of I = [—1,1]. A cookie-cutteris a C'** map F: [,Ul; — I
such that |dF|>A>1and F(lp) = F(L)=1.1If

An={ze€l:FizeLUL,j=0,...,n—-1}
then A, consists of 2" disjoint closed subintervals. The intervals
Lg.e_,={z€l:Fize I.;,0 <j <n}
and the gaps between them are the n-cylinders of the Cantor set C
C = Nusohn={z €1: Fiz € [,UIL, for all j > 0}.

To each infinite right-handed word g = €o€; ... we associate the point i(g) =
Nn>0leq,.ony+ 1f dFF > 0 this agrees with the coding in section 1.1.

1.1.2  Scaling trees.

A tree T consists of a set of vertices of the form Vi = UJ,5¢ Tn, where each T,
is a finite sct, together with a directed graph on these vertices such that each
t € T,, n > 1, has a unique edge leaving it. This edge joins ¢ (the daughter)
to m(t) € Tn-1 (its mother).

Given such a tree T' we define the limit set or set of ends Ly as the set of
all sequences t = #pt; ... such that m(t;1,) = ¢; for all £ > 0. We endow Lr

with the metric d where

d(3031 voe ,tgtl .o .) =27"



ifs;=t;for0<i<n—1ands, #t,.

To a binary Cantor set C we associate the abstract tree T' = T¢ whose n-
vertex set T, contains both the symbols &g...€,-1 and g.,...,_, corresponding
respectively to the intervals I,,. .., and G,,...,_, and whose edges connect
them to their mother ¢g...€,.;. Moreover, there is an ordering <, on the
n-vertices induced by the ordering of the corresponding subintervals on the
real line. This ordering satisfies the compatibility condition m(J) <, m(K)
implies J <n41 K, for all vertices J and K.

The binary Cantor set defines a mapping or : UpenTy — (0,1) by or(¢) =
[T}/ | Im(y| and or(g:) = |Gel/|L|- Clearly or has to satisfy the condition
Seor(t) =1 where the sum is over all the vertices with the same mother.

Clearly such a map o7 : T — (0,1) completely defines the binary Cantor
set.

Definition 1 A map o7 : T — (0,1) as above is called a scaling tree.

Notation. If f and g are functions of a variable z with domain A, then
we write O(f(z)) = O(g(z)) with constant d if

o @)
< @)

for all z € A. Often we will drop the reference to d. Thus if a, and b, are
sequences then O(e,) = O(b,) means a,/b, and b,/a, are bounded away
from 0 independently of n. The notation f(z) = O(g(z)) mecans the same

thing as O(f(z)) = O(g(z))-

Similarly, f(z) < O(g(z)) with constant d means |f(z)/g(z)| < d for all
T €A.

<d

Definition 2 The scaling tree o7 has §-scale determination if and only if

O'T(So...en_l) 8
- l < O IE()...!‘"-
e I LA

and

aT(gEO-uen—l) B
—" —1| < O G:o...cn._x
laT(gﬂ---fn-l) l - (l I )

for all the vertices of T, where 3 lies between 0 and 1.



Definition 3 (i) A map s : M — N is a-Holder continuous, where o lies
between 0 and 1, if and only if there is a constant ¢ > 0 such that for all

z,y € M, |[s(z) — s(y)ll < cllz —y|*

(ii) A map s is Holder continuous if and only if there is some o > 0 such
that the map s is a-Holder continuous. If @ = 1 then the map s is Lipschitz. -

(iii) A map s is C'* smooth if and only if there is some a > 0 such that
the derivative ds is a-Holder continuous.

(iv) A map s is C*#~ smooth if and only if for all a between 0 and S
the derivative ds is a-Ilolder continuous.

Theorem 1 The map o/ on C = () has a C'*#” extension to the reals if
and only if the scaling tree or has B-scale determination.

Let or and o+ be two scaling trees corresponding to different binary
Cantor sets C and D.

Definition 4 The scaling tree or ahd o are f3-scale equivalent if and only
if o7(t) € oo (t)(1 £c|L1]°) and o7 (g:) € or(g:)(1 £c|G|P) for all the vertices
in T, where 8 lies between 0 and 1 and ¢ is some constant in R+,

Define the homeomorphism h : C — D which sends the extreme points
of all the n-cylinders of C in the extreme points of the n-cylinders of D
preserving their order, for all n € N.

Theorem 2 The homeomorphism h : C — D has a C'*#” extension to the
reals if and only if the scaling trees o and o1/ are B-scale equivalent.

The theorems above were proved by Sullivan [28] for the case of C'*
extensions. Rand and Pinto [17] generalised it for more general scaling trees
than the ones generated by binary Cantor sets and got C'+#” differentiability.

The construction of the binary Cantor set is the simplest non-trivial ex-
ample of a scaling tree. We shall be interested in scaling trces such as this
where the analogue of the Cantor set C' is generated in one way or another
by a dynamical system.



1.1.3 Scaling function

The definition of scaling function and the results below are due to a previous
work of Sullivan [28]. These results are corollaries of the theorems in the
previous section.

We introduce the dual £* of £. This is the set L* of all left infinite words
...&...€0 where g = 0 or 1 for all ¢ € Z<o. We endow it with the product

topology.

Definition 5 The scaling function o : £* — R is defined by o(...&;...€) =
limy_o0 o7(&5 - - - €0)-

Theorem 3 Sullivan. A bounded geometry Cantor set C is generated by a
cookie-cutter if and only if the scaling function exists and is Iolder continu-

ous.

Two Cantor sets C and D are in the same C'* equivalence class if and
only if the map h : C — D which sends the extreme points of the n-cylinders
of C to the extreme points of the n-cylinders of D keeping their order has a
C* extension to the reals.

Theorem 4 Sullivan. The scaling function is a complete invariant for each
C!'* equivalence class of Cantor sets with Holder scaling function.

1.2 Feigenbaum period-doubling.

Feigenbaum period-doubling is one of the most common and well-known

routes to chaos. There are a lot of experiments in different areas which con-
firm this phenomenon. One of the most amazing properties is the existence of
universal quantitative properties which are independent of the experiments.
To analyse and discuss these properties we introduce the concepts of renor-
malisation and Markov families. Excellent recent work in the proof of the
rigidity conjecture is due to Sullivan [30]. He proves that the stable man-
ifold contains all quadratic foldings with the Feigenbaum order. Previous
relevant work are due to Feigenbaum, Collet, Tresser, Lanford, Rand and
other mathematicians and physicists. Our main result is the proof of the
C*M smoothness between analytic quadratic foldings with the Feigenbaum



order. Our results on smoothness extend to any analytic quadratic folding in
the frontier of chaos. The smoothness of the conjugacy is given in terms of a
balance between the speed of convergence of the respective Markov families
and the scaling structures of their cylinders.

1.2.1 Feigenbaum ordering of the interval.

We say that a sequence of points z;, ¢ = 0,1,... in the interval [z, zo] has
the Feigenbaum ordering if for 0 < ¢ < 27!, z;,4n and 743201 lie between
x; and z;y4n-1 and are ordered so that z; — z;yon-1 and T;42n — ;4301 have
the same sign.

1.2.2 C? families of quadratic foldings.

A quadratic folding of the interval I = [—1,1] is a C*Lipschitz mapping
f:I — I with Df >0 (resp. Df < 0) on [—1,0) (resp, (0,1]) and such
that in some neighbourhood of 0 there is a C1tEipschitz coordinate system z
in which f(z) = —z% + f(0). Given such a mapping f let z; = f*+1(0).

A C? family is a 1-parameter family f, in C*(LI), 4 € (a,f3), which is
continuous in the C? topology. It is full on (a, 8) if f,(1) — 1 (resp. — —1)
as p — at (resp. p — B~). For example, 1 — pz? is full on (0,2).

Definition 6 (a) f is superstable if 0 is in a p-cycle of f. (b)f is 1-filling if
f(I) = I. f is p-filling if there exist p disjoint closed sub-intervals Iy,...,/,
such that f is a homeomorphism from [ to Ij4; for 1 < j < p, f(I,) C I
and g = ffp, is such that g(I) = I, (i.e. with respect to Iy, g is 1-filling).

Theorem 5 If f, is a full C*-family on (a,ﬂ), then there exists a < a; <
a2 < ... < By < By < B such that 1. f,, is 2° -superstable, 2. f5, is 2'-filling,
and 3. v = lim; e a;=limi fi.

Sce proof in Rand [21].

Define (f,)+*(0) = z;. The sequence of points z; has the Feigenbaum
ordering. These dcfine a scaling tree in which the n-cylinders are the closed
intervals J; , between z; and zi49n, 0 < ¢ < 2%, Moreover, the Cantor sct

C] = N> U?:;l Jin
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defined by this scaling tree is the attractor of f in the sense that every orbit
is either eventually periodic or else converges to Cj.

1.2.3 Examples of universality.

We give a heuristic introduction to the I'eigenbaum conjectures. Consider
the 1-parameter family f, =1 — pz? 0 < p < 2, discussed in the previous
section. Recall the meaning of the parameter values a;, §; of theorem above.
Using a pocket calculator one finds

,Bn - ﬂn—l

lim = lim ————= = § = 4.669...
R0 (ypiy — Q. n-—vooﬁ'”_l_ﬂn

Qn — On-1

and using something a bit more powerful, it appears that there exists A =
—.3995... such that if aw = lim,—e ap.
T —n £2™ \n
4 = Jim A
exists and is an analytic function of z?. Moreover, if one takes any other 1-
parameter family one gets the same experimental values for § and A and, up to

a scale change, the same function 1. This is an example of universality. The
Feigenbaum conjectures are developed from the renormalisation operator.

1.2.4 Renormalisation.

Let f be a quadratic folding and a = a(f) = —f(1), b = b(f) = f(a). Let
D(R) denote the set of f’s such that (i) @ > 0 (ii) b > a and (iii) f(b) < a.
For f € D(R) define the renormalisation Rf of f by

Rf(z) = a™ ! f*(az). (1.1)

1.2.5 TFeigenbaum conjectures.

The explanation (essentially proposed by Feigenbaum [6] and [7] and indepen-
dently by Collet and Tresser [4] goes as follows: Consider the renormalisation
operator defined on some suitable subspace of D(RR) consisting of analytic
functions. Assume that the following facts are true.

Conjecture 1. The renormalisation operator R has a fixed point f, with
the property that df.(0) = 0 and d2f,(0) # 0.



Conjecture 2. The only element of the spectrum of dR(f,) outside the
disk |z] < 1 is a single eigenvalue § = 4.669.... The rest of the spectrum is
contained in a disk of radius strictly less than 1.

Conjecture 3. The unstable manifold of f, intersects and is transverse
to the submanifolds ¥, and A, of bifurcation and superstable maps defined
as

Tn = {f : forsomepina2® —cycleof f, df*"(p) = —1 and &®f*" (p)+3d*f*"(p) # 0}
An={f: f¥(0) =0and f™(0) #0 for 0 < m < 2"}.
These imply:

1. Since Rf. = f., the map f, satisfies the Cvitanovic-Feigenbaum equa-
tion

fiAz) = M(z).
2. R*f — f, as n — oo implies there exists 8 > 0 such that
AT (W) — B7Y(f.(Be))

uniformly in z as n — oo.

3. Conjecture 2 implies that, with respect to R, f. is a saddle point with
a l-parameter dimensional unstable manifold W* and a stable manifold W*
of codimension one. W* defines a universal 1-parameter family of maps f, ,.
For a 1-parameter family f, near f, with fo € W* one has

A" 3;_,. oA* = 71f, ,0f

for some 8 > 0.

4. Obviously, R(X,) C Z,-; and R(A,) C A,_;. Thus, conjecture 3
implies that the £, and A, accumulate on W* exponentially fast with the
distances from W* decreasing like 6™ (to prove this one one uses the fact
that R can be linearised along the unstable direction). If f, is a 1-parameter
family near f,, and transverse to W? with say f; € W* then f,;, € A; and
therefore - —a

lim =6
100 (ipy Qe
if oo = limy o0 @,. In the same fashion, if g, denotes the parameter value

at which a 2* — 2™*! period-doubling occurs then

lim £ He
100 [1i41 — Hoo
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where foo = liMp oo fln = Qoo
This explains where the simpler universal quantities §, A and ¢ come

from.

Lanford [12] gives a proof of conjectures 1 and 2. His proof makes essential
use of rigorous computer-generated estimates. Sullivan [30] proves that the
stable manifold contains all quadratic foldings with the Feigenbaum order.

1.2.6 Lanford’s theorem.

Let Q denote the unit disc |2] < 1 in C and let £ denote the real Banach
space of continuous A : @ — C which are holomorphic on 2, take real values

at real points and, if A(z) = Y50 @n2", then [[h]| = 3,50 |as]| < co. Let A
denote the set of maps of the form

f(z) =1—=22h((* —1)/2.5)

where h € L. By identification with £, A may be regarded as a real Banach
space.

Theorem 6 Lanford. There is a polynomial fu,prex which is very nearly a
fixed point g of R. If V denotes the ball ||f — fapprox|] < .01, then

(i) Ry is well defined and C*°.
(ii) For f € V, dR(f) is a compact operator.
(iii) R has a unique fixed point g in V.

(iv) The spectrum of dR(g) consists of a simple real eigenvalue
§ > 1 and a countable set of eigenvalues contained strictly inside
the circle 2| = 7 for some 0 < 7 < 1.

As a consequence g has a 1-dimensional unstable manifold W¥(g) and a
1-codimensional stable manifold W*(g) and if f € W?(g) then there exists a
constant ¢ depending only upon f such that ||R"f — g|| < er™.

In fact, it is known that 7 is determined by the eigenvector which is
tangent to the onc-parameter family of coordinate changes given by z —
z + tz?. llowever, this eigenvalue can be removed by replacing the scale
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change in (1) by a transformation of the form z — az + bz? and using two
normalisations to fix @ and b. Then 7 is determined by the smaller eigenvalue
which is approximately 0.13 which generically gives the rate at which the
slope at the fixed point of R" f approaches that of g as n — co. We use the
value of this eigenvalue to prove theorem 11.

1.2.7 Global rigidity conjecture for period-doubling.

The global rigidity conjecture states that if f and g are quadratic foldings
as above with the Feigenbaum ordering then there is a C'** diffeomorphism
h : R — Rsuch that 2(Cy) = C; and hof = goh on Cy. As we shall see, this
is essentially equivalent to the conjecture that under repeated renormalisation
any such quadratic folding converges to the Ieigenbaum fixed point. This is
a quadratic folding f which satisfies the functional equations

f=af0a (1.2)
where a = f%(0)/f(0) = z1/zo.

Moreover, we prove in chapter 4 that the global rigidity conjecture is
equivalent to the conjecture that the scaling tree t¢, corresponding to Cy
has the 1 + a-scale property for some a > 0 or equivalently that there is a
cookie-cutter which has Cy as its maximal invariant set C and has the same
scaling function as the one corresponding to the Feigenbaum-Cvitanovic fixed
point. To see that this is reasonable note that if f is the Feigenbaum fixed
point then it follows immediately from (1.2) that Cy is the maximal invariant

set of the cookie-cutter.

- a'lx if z € [$1,$3]
¥ a~1f(z) if z € [z2,70)

The global rigidity conjecture is proved in the important recent paper
(30] by Sullivan.

Theorem 7 Sullivan. The stable manifold contains all quadratic foldings
with the Feigenbaum order.

Using the results of Lanford and Sullivan, Rand and independently Sul-
livan proved that

Theorem 8 Any two analytic quadratic foldings with the Feigenbaum order
are C'* conjugated.
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The prove of theorem 8 relies in the existence and exponential convergence
of Markov families corresponding to these quadratic foldings.

1.2.8 Markov families.
Topological Markov families

A topological Markov family F is a family of mappings F,, with either n =
0,1,...orn € Z and a in a finite set S, which satisfy the following conditions.

(i) For each n and a € Sy, I, is a homeomorphism of the closed
interval I7 into R.

(ii) I? contains in its interior a closed interval C} with following prop-
erties.

o intC?NintCy =0 ifa #b.
o If £ € CP and F,(z) € C;*! then F,(C?) contains CJ+!.

o If b € Sy, there exists a € S, such that F,(C?) contains
Cptl.

We regard the F, , as defining a single mapping F, on C", where C" is
the smallest interval containing Uses, C2.

Ck+te Markov families

A C*** Markov family F satisfies the following conditions in addition.

(i) F,, = F,|I" is a C¥*> diffeomorphism of I7 into R.
(ii) |F.(z)] > 1 for all z € I" and all n in some norm on R.
Bounded and boundedly extended Markov families
A CFt* Markov family F is said to be bounded if
@) [*I1/11°, Ie™1/1C°, [1z1/112] and |CZ|/|C?] is bounded away from
0 and oo where C™ is the smallest closed interval containing
UaGSn C:;

(i) for all n and all a € S, the C** norm of F,, = F,|I? on I? is
bounded independently of n and a; and
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(iii) There exists A > 1 such that |F.(z)] > A for all z € I"™ and all n.

A point z € C" is captured if for allm > n, F,_j0---0 F,(z) € C™. The
set of all captured points is denoted by A™ = A™(F).

Let £™ denote the set of infinite right-handed words ¢ = € €p41 ... such
that (i) ¢; € S; and (ii) there exists z € C™ with the property that

Fp_y0---0Fy(z) €C™

for all m > n. We call these words admissible. If ¢ = €nény1... € [Ip>a Sp
let g|p denote the finite word €, ...€n4p-1 of length p. Let I} denote the
set of finite words g|p where ¢ € ¥"*. We denote by o and m the mappings
oLy — Eptl and m: B} — X3, given by

O'(En vae €n+p—l) = Ep4lerEngp-1
m(en ves €n+p—]) = En e €n+p_.2.

Ife = €n6n41-.. € L™ then we denote by C., ... (resp. I,,....) the closed
interval consisting of all z € C'"™ such that for alln < j < m,
Fjo---oF(z) € CJF (vesp. IIF1).
By A.,.., we denote the intersection of A® with C,, ... and by C., .., the
smallest closed interval containing A.,..c.. Note that if each interval C7 is
replaced by the subinterval C} in the definition of A™ then one obtains the
same set A™ of captured points.

We therefore assume henceforth that C* = C7.

Suppose that J is a closed set contained in the interior of an interval
I and let J denote the smallest closed interval containing J. Then I —J
consists of two intervals. The interval to the right (resp. left) of J is denoted

by R(J,I) (resp. L(J,I)).

Definition. A C*t* Markov family F is boundedly extended if there exists
61,82 > 0 such that, for all n and all a € S,,, the intervals I on which F, is

defined and C*** are such that

|R(CS, 1) |L(Ce, 17)]

) < ;. 1.3)
2] I (

6 <

Definition. If F' and G are two topological Markov familics then we say that
they are topologically conjugated if for all n there exists a homeomorphism

hn i A*(F) = A"(G) such that G, 0 by = hnyq 0 Fy on A™(F).
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In such a case we call the family A = (h,) the conjugacy. The major
result of this paper is the derivation of natural necessary conditions for the
h, to be C"*? or to have a C"*? extension to R. Without loss of generality,
we will restrict to the case where the homeomorphisms preserve the order of
the real line.

1.2.9 Rand’s theorem.

Let I and G be two C'*" Markov families topologically conjugated. We
will impose the following condition on the pairs of families F' and G that we

consider.

Condition A. There exists ¢ > 0 and 0 < 7 < 1 such that for all n and all

€ € Sn,
”Fn.e - Gn.s”CHv(I;-) Secr™

Condition B. There exists ¢ > 0 and 0 < v < 1 such that for all n € Z>¢ and
all contact words ¢,t’' € &,

n . JCEI)]|CE(G)]

1—-ca” < <1l+4c”.
ICHG) |CR(F)]

Theorem 9 Rand. Suppose that the bounded and boundedly extended
C**" Markov families F' and G are topologically conjugate and satisfy Con-
ditions A and B . Then the conjugacy kb = (h,) is C**? smooth for some

B €0,1).

1.2.10 C™P conjugacy between Markov families.

Let F and G be two C**? Markov families topologically conjugated. We
will impose the following condition on the pairs of families F' and G that we
consider. It involves the positive function g(n).

Condition A(g). For all n and all € € S,

Fae = Grellcotr sy < g(n +1).

By I™, I?, I, C™, C™ and C}* we denote the intervals and cylinders I™(F),
MF), I}(F), C*MF), C}(F) and C}(F) for F'. We denote the corresponding
intervals and cylinders for G, by J*, J2, J*, D*, D} and D}.
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If € € Sn, let A, denote the affine map which sends C? onto D? pre-
serving orientation. We regard A, . as having domain I?. If ¢ is the word
Eo . .en E E?‘l-’-l deﬁne

_ -1 -1 . Jn 0
K, = GO,eo 0-:-0 Gn—l,en_l . Jcn — Jis
. JO
Ei = Faqe, 0085, :1 — I:,.v and

Li = KioAne, oE,:I? — J2.

Now we formulate a condition that controls the behaviour at contact
points. Let t = €p...€,-1 and t' =¢5...€!_, be in contact i.e. such that C,
and Cy meet in a point. Let m > 0 be minimal such that tjm = t//m and
t|(m + 1) # t'|(m + 1). In this case, let e, denote

ey = max {|dE(z)|,|dE, .
o = o (UE()], KE()])

Then we impose the following condition on all such pairs ¢, ¢

Condition B(g). For all such t and ¢’ and all 0 < k < s,
”Lamg - La’"t'”C" S g(n)e{:;}t)yam(t,)

on Idmt n Iamtl.

It is not difficult to see that condition B(g) is satisfied, for appropriate g,
by those Markov maps arising from renormalisation structures with contact
points such as those for diffeomorphism of the circle and cubic critical circle

maps.

Theorem 10 (= theorem 20) Rand and Pinto. Suppose that the bounded
and boundedly extended C**” Markov families F' and G are topologically
conjugate and satisfy Conditions A(g) and B(g). Let e(n) = maxexo |[dE:||.
Then the conjugacy b = (hn) is C™*# with 8 € [0,1) such that r 4+ 3 < s if
the function f given by

f(n) = maxe(n)™**~g(n)

is such that 332, f(5) < oo.

Remark. Suppose that F' and G satisfy the hypotheses of theorem 10.
Then, by boundedness, there exist constants dy,d; > 0 and g, A € (0,1) such
that for all t € £8,

dip™ < |dE| < d A"
Thus g(n)/f(n) < cul*P~D" and, in particular, g(n) is exponentially de-
creasing. If g(n) < ct™ then, by theorem 10, the condition 7/A™+#~! < 1 is
sufficient for the conjugacy to be C™*4,
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1.2.11 Global C?*1! rigidity for period-doubling.

Let f be a quadratic folding with the Feigenbaum order. The family Fy of
Markov maps F), corresponding to the renormalisation f, = R"f of f is

L) 2 e [£(0), £40)
Fal=) { (F(0)ul) = € [F(0), £u(0)]

The family of Markov maps F, define the same scaling tree in I as the one
induced by the orbit of the critical point of f.

Theorem 11 (= theorem 21) Rand and Pinto. Suppose that f and g are
real analytic quadratic foldings with the Feigenbaum ordering. Then the
canonical homeomorphism & : Ay — A, has a C**!! extension to the real

line.

1.3 Circle maps.

Our study of the circle maps follows the same lines as the study of the Feigen-
baum period-doubling. It has applications to the study of the quantitative
universal behaviour of the bifurcation from a quasi-periodic flow to a chaotic
or turbulent state with two sharp incomensurate frequencies. It is related to
the understanding of the break down of invariant curves in families of invert-
ible analytic maps of the annulus. See Ostlund et al [15] and Feigenbaum et
al [8]. For diffeomorphisms of the circle an excellent work is due to Denjoy,
Arnol’d, Herman, Yoccoz. They prove that analytic diffeomorphisms of the
circle with the same diophantine rotation number are C* conjugated. Us-
ing the results on smoothness between Markov families, we describe how to
obtain C* conjugacies between analytic diffeomorphisms of the circle with
the same periodic rotation number. Our future aim is to give an alternative
proof of the result due to Denjoy, Arnol’d, Herman, Yoccoz. Recent work for
critical circle maps is due to Rand, Lanford, Mestel and others. We prove
a general theorem on smooth structures which will have applications for the

case of critical circle maps.

1.3.1 Definition.

A continuous map of the circle T = R/Z lifts to a map f of the universal
cover R of T into itsclf such that f(z + 1) = f(z) + 1. This map f is only
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unique up to addition of an integer; to enforce uniqueness we demand that
0 < f(0) < 1. If the original circle map is C", 0 < r < w, the lift fis C".
The set of such lifts is denoted D"

IfreRand f € DP the rotation number of (f,z) is defined to be
o(f,2) = lim inf n"(f"(a) — 2).

In general the limit does not exist and p(f, z) is independent of = (Arnold [1]).
The number p(f) obtained is called the rotation number of f. It depends
continuously upon f in the C%topology.

1.3.2 Two parameter family of circle maps.

Now to bring out some important aspects of the circle maps, consider the
prototypical 2-parameter family

fuw =2+ v —(p/27)sin2rz.

If |¢] <1 then f,, is a homeomorphism; it is a diffeomorphism if x| < 1.
If 4 = 0 then f,, is the rotation R, so p(fo,) = v and the dependence of p
upon v is trivial. This is not the case if 4 # 0. To see this fix 0 < |p] < 1 and
let f, denote f,,. Let p/q be a rational number expressed in lowest order

terms and
Lqs={v: fi(z) =z + p for some z}

If v € I, f, has a periodic orbit of period q (a q-cycle) and p(f,) = p/q.
If =0, I, is a point. Otherwise, I/, is a closed interval.

Consequently, p(f,) is constant upon the countably infinite set of intervals
I, and irrational elsewhere. To see how the intervals I/, vary as u changes
consider the so-called Arnold tongues:

Ape = {(p,v) : f1,(2) = = + p for some z}.

Notice how fast they taper off as g — 0. Arnold proved that as 4 — 0 the
Lebesgue measure of the union of the I/, converges to 0, even being an open
dense set. Moreover as g T 1, they fill more and more of the line and it is
conjectured that the union of the I/, has full Lebesgue measure on p = 1
and its complement has Iausdor{f dimension approximately equal to .87. It
is conjectured that this properties are universal for families of circle maps.
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1.3.3 Rotation number.

If the rotation number w is an irrational in (0, 1), its rational approximations
Pn/qn are defined inductively by setting po = 0 and ¢o = 1, and requiring
that ¢, is the smallest positive integer such that |g,w — ps| < |gn-1w — pn-1].
These are the rational numbers obtained by truncation the continued fraction

expansion w = 1/(a; + 1/(az +...)) = [a1,az,...] of w as follows:
| e/ @ = [a1y. .y ak, aryq = 00
Then pi and g, satisfy the recursion relations

Pk+1 = QkPk + Pk-1y Qk+1 = Ak Gk + Gk-1.

If w is equal to the golden mean (/5 —1)/2 then a; = 1 for all k¥ > 1. Thus
the rational approximates of the golden number are the ratios of Fibonacci

numbers.

If 3 > 0, the rotation number w satisfics a Diophantine condition of order

B if there is a constant ¢ > 0 such that jw — p/q] > ¢/¢q*** for all p/q € Q.
Define Cj the set of all irrational rotation numbers w satisfying a Diophantine

condition of order S.

The rotation numbers w in the sets Co, NgsoCi, Up>oCsy R\ (Q U
(Up>0Cp)) are called, respectively of constant type, Roth type, Diophantine,

Liouville.

1.3.4 Critical circle maps.

A critical circle map g is a circle map with a single critical point 0 which is
cubic.

Let p,/q. be the nth rational approximant of the rotation number w of the
critical circle map g. Consider the orbit ¢g"(0),n € Zyq. This partitions the
interval [@ — 1, ] into ¢, +1 closed intervals, where a = g(0). Let T, denote
the set of such intervals and let T be the tree whose vertex set is UpsoTn
and such that the mother of v € T}, is the interval in Th_y which contains v.
Thus T is defined by the cylinder structure. The vertices t,,s, € T,, are in
contact if t, Ns, # 0. If toty... € Ly then i(toty...) = Np>ots defines an
embedding of T' with contact points (see section 1.3.5). B

Of course, any map which is topologically conjugate to g, i.e. with the
some rotation number, generates the tree 7" but a different embedding. The
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question of determining whether two such mappings are smoothly conjugate
boils down to showing that these embeddings determine the same smooth
structure on L. It is conjectured based in renormalisation analysis of critical
circle maps that the differentiability of the conjugacy between critical circle
maps with the same diophantine rotation number is generally between one
and two. Therefore, we can use the following results on smooth structures
on embedded trees to obtain computer estimates for the differentiability of
the conjugacy between critical circle maps with the same rotation number.

1.3.5 Smooth structures on embedded trees

A tree T consists of a set of vertices of the form Vp = J,507T%, where each
T, is a finite set, together with a directed graph on these vertices such that
each t € Ty, n > 1, has a unique edge leaving it. Given such a tree T' we
define the limit set or set of ends Lt as the set of all sequences t = tot;...
such that m(¢;4,) =¢; for all 2 > 0.

If t = toty... € L7 then by tjn we denote the finite word #,...¢,_;. Let
Ly denote the set of 3 € Lt such that s|n = t|n. This is called a n-cylinder
of the tree. If L is an open subset of Ly containing Lj,andi: L - Ra
continuous mapping, then we denote by Cj,; the smallest closed interval in
R which contains i(Lyy,). This is also called a n-cylinder. Note that both
Ly}, and Cyj,; are determined by t,_;. Therefore we shall often write these

as Lq,_, and Cy,_, ;. Say that s ~ tif i(s) = i(t).

We shall only be interested in mappings ¢ which respect the cylinder
structure of Lt in the following way. We demand that if s|n # {|n then

intCyjn i n intCyni = 0.

Clearly, the mapping ¢ : L — R induces a mapping L/ ~ — RR which we
also denote by 1.

Definition 7 (= Definition 13) Such a pair (2, L) is a chart of Ly if L is an
open set of Lt with respect to the metric d and the induced mapi: L/ ~— R
is an embedding.

Two charts (i, L) and (j, K') are compatible if the equivalence relation ~
corresponding to ¢ agrees with that of j on L K. They are C'** compatible
if they are compatible and the mapping 7 04! from (LN K) to j(LNK)
has a C'** extension to a neighbourhood of i(L K) in R.
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Definition 8 (= Definition 14) A C'** structure on Lt is a maximal set of
C'*e compatible charts which cover Lr. A C'**~ structure is a maximal set
of charts covering Lt which are C'*# compatible for all 0 < 8 < a.

Obviously, a finite set of C'** compatible charts which cover Lz defines
a C'** structure on Ly. A mapping h : Lt — Ly is smooth if its repre-
sentatives in local charts are smooth in the following sense: if ¢ € L and
h(t) € L' where (i,L) and (¢, L’) are charts in the structure then ¢’ o A 04™!
has a smooth extension to a neighbourhood of i(¢) in R. Similarly, we define
smooth maps between different spaces.

We shall mostly be concerned with situations where either (i) the smooth
structure is defined by a single chart or (ii) the structure is defined by a single

embedding of L1/ ~ into the circle T1.

If S is a C'** structure on L and ¢ is a chart of S then we have that
s|n and t|n are adjacent if there is no u € L1 such that C,; lies between
Cin,i and Cyjn;i and that they are in contact if Cyjn i Cyni # 0. Note that
these conditions are independent of the choice of the chart 7 of § which
contains Ly, and Ly, in its domain. It does however depend upon S so
we only use this terminology when we have a specific structure in mind. If
sjn = 80...8n-1 and tjn = t5...t,_1 then we say that s,_; and t,_; are
adjacent (resp. in contact) if s|n and t|n are.

Definition 9 (= Definition 15) Two C'** structures S and 7 on Lt are (1+
«)-equivalent if the identity is a C'**-diffeomorphism when it is considered
as a map from Lt with one structure to Lt with the other. They are (14+a7)-
equivalent if the identity is a C'*P-diffeomorphism for all 0 < 8 < e.

The scaling tree.
Gaps.

Fix a C't“ structure S on Lp. If s and ¢ are adjacent but not in contact then
there is a gap between ¢(L,) and i(L,). We will add a symbol g,¢ = gs,, to T,
to stand for this gap if m(s) = m(t). For the chart (i, L) we let G,; denote
the smallest closed interval containing the gap. Let T, denote the set T, with
all the gap symbols g, adjoined. Let Vr = Un>1 Ty. If m?(s) = mP(t) then

Ga,t,t = G-t (3)mP=1(2),i-

Primary atlas.
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Suppose that S is a C'** structure on Ly. Then clearly there exists
N > 0 such that if Ty = {t;,...,t;}, then there are charts (¢;,U;) of S,
7

1 £ j < g, such that the open subset U; contains the N-cylinder L,;. We
call such a system of charts a primary N-atlas.

Scaling tree.

Fix such a primary N-atlas T = {(¢;,U;)};=1,.4 To each s,t € T,
n > N, we associate the following intervals in R (see figure 3(a), (b) and

(c)):

e Ci7 and G,';,z: Cyz is the interval Cy;; where j is such that m™(t) =¢;
for some r > 1. Similarly, G,z is the gap G,,;, if s and ¢ are non-
contact adjacent points with m(s) = m(?).

o Cy11, Cioz and Dy, 1: If £, 8 €T, are adjacent and in contact, define
P,,1 = P,41 as the common point between the closed sets C;r and
C,1. Decfine the closed sets Cy,,1 and C,; 1, respectively, as the sets
obtained from C, 7 and from C, 1, by rescaling them by the factor 1/2,
keeping the points P,z and P,z fixed. Define Dy 7 = Cy,7UCs.1
If t,s € T, are adjacent but not in contact, define P,,7 and P,.r,
respectively as the common points of the closed sets C;z and C,z with
the gap G;,1. Define the closed sets Ci,7 and C, .1, respectively,
as the sets obtained from Cy7 and from C, 7z, by rescaling them by
the factors 6,/2, é,/2, and flipping them into the gap G,,r, keeping
the points P,z and P,,r fixed. Here 8 = |Gy, 1|/|Crr-1¢)z| and
8s = |G1,51]/|Crmr-1(s),z] where p € N is such that mP=!(t) # m?~!(s)
and mP(t) = mP(s). -

o E,1: Let t1,51 € Thyr be the adjacent vertices such that Gy, i =
Gt',,{. Deﬁne E¢1,,1' = Ct,a,l' \Cghahf.

(1 + a)-equivalence.

Now suppose, that in addition to the structure & and its primary atlas
Z, we have another structure 7 and a primary Nj-atlas J for it. Redefine
N = max(Ny,N). To each t € T,,, n > N, we associate the following

numbers.

o the scaling tree o7(t) :

ICe x| |Gys.7]
r(f) = —m—— d §) =
o1(t) Cozl 72(ges) [Cmty 2]
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This defines a function

or: |J Tn = [0,1].
n>N

The fact that it is undefined for small n does not matter.

i o7(t)
O'I(t)

Ut:tl—

e A Ifte T, lett; < - < tp, be the elements of 7,, with the same
mother as t. Between these there may be gaps represented by symbols
of the form g,,,_ t,..,,- Denote these gap symbols by gi,...,g,. Let

P q
A= Z V‘:'IC‘:'»II + Z Vy,‘le,‘JI
=1

i=1
o v, If s,t € T, are in contact,

Cezl |Casl
|Cazl |Ce7]

Vet = ,1 -

o e, If s,t € T, are adjacent but not in contact,

’Ga,t,Il

_TatIl o0
2,0’",’_1(’)'1_' {l t.Tl ICtl»II}

st = |Esuz| =
where p € N is such that mP~!(t) # m?~!(s) and mP(t) = mP(s) and
t1, 81 € Th41 are the adjacent vertices such that Gy, ,, 7 = Gy, 1.

We use the following notation: if f and g are functions of a variable z
with domain A, then we write O(f(z)) = O(g(z)) with constant d if

[f(=)]

o) <4

d! <

for all z € A. Often we will drop the reference to d.

Thus if a, and b, are sequences then O(a,) = O(b,) means a,/b, and
bn/a, are bounded away from 0 independently of n. The notation f(z) =
O(g(z)) means the same thing as O(f(z)) = O(g¢(z)).

Similarly, f(z) € O(g(z)) with constant d means |f(z)/g(z)| < d for all
r €A,
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Scale equivalence.

We say that two such primary atlases 7 and J are (1 + a)-scale equivalent
if for all € such that 0 <& < a <1 there exists a function f = f, : Zyo - R
with the following properties:

(i) T2, f(n) £ O(f(g)), for all g € Zyo;
(ii) for all t € Tn, v, < f(n) and A, < f(n);

i) for all s € T, a.djacent to ¢ but not in contact with it, if m(s) =
Y
(t)? 1
Atet,s(.l' ? ' ”tet_,:,r <_ f(n)

while if m(s) # m(¢) then

Vtet—,:,I < f(n).

Contact equivalence.

We say that two such primary atlases 7 and J are (1+ a)-contact equivalent
if for all € such that 0 < & < a < 1 there exists a function f, : Z5o = R

with the following properties:

(i) Tazo fe(n) < oo;
(i) for all s,t € T, n > N such that s and ¢ are in contact,

< fe(n).

Vst
ID t.s,TIE

The definitions of scale equivalence and contact equivalence do not at
first sight appear to be symmetric in I and J. However, from theorem 12, it
follows that Z and J define equivalent C'**” structures and this implies that
O(|Cz]) = O(|Ct,7|). Therefore, if we exchange T and J in the definitions
we have that the definitions are verified for the same a.

Definition 10 (= Definition 18) We say that two such primary atlases T
and J are (1 + a)-equivalent (T & J) if they are (1 + «)-scale equivalent
and (1 4 a)-contact equivalent.
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Theorems.

Theorem 12 (= Theorem 17) Rand and Pinto. Let S and T be Cl*«
structures on L and let I (resp. J) be a primary atlas for S (resp. 7). A
sufficient condition for § and 7 to be C'** -equivalent is that T & 7.

Theorem 13 (= Theorem 18) Rand and Pinto. Let S, T, T and J be asin
theorem 12 and suppose that S and 7 are C'+*” equivalent. Then Z X J if
for all € sucH that 0 < € <« there exists B such that 0 < e < 8 < v < a and
there exists a function g = gg. : Z5o — R with the following properties:

(i) Zazg9(n) < O(g(a), for all g € Zyo;
(ii) for all t € Ty, |Cm(yz)? < 9(n);

(iii) for all ¢;,¢; € T,, which are adjacent but not in contact, if
m(t,) = m(t;) then

|Etht2ll'llfe < g(”)?
while if m(¢;) # m(t;) then

Conier).rf®

< g{n);
IE'tlythIIe g( )’

(iv) for all t;,t; € Ty, which are in contact we have that

IDh »iz.Tlﬁ_c < g(n)

These conditions hold for some of the most interesting problems. In this
case theorem 12 and theorem 13 give a necessary and sufficient condition for

(1 + a)-equivalence.

1.3.6 Universality of circle maps.

We give a critical and non-critical example of universality as motivation for
the renormalisation analysis.
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Golden diffeomorphisms.

Fix |u] < 1 and let f, = f,,., so that f, is a diffeomorphism. Let v, be the
value of v such that p(f,) = 0 is the golden mean and v, = p,/q, be the nth
rational approximant of v. By the theory of Herman [9] and Yoccoz [31],

(i) If f = f, then f7(0) — p,, decreases as a"™ where a = —0.
(i1) a="(f(a"z) — p,) converges, up to a scale change, to z — z+40.

(iii) limp—oo(¥n = Vn-1)/(Vnt1 — Va) = 6 where § = —0~2.

Golden critical circle maps.

A golden critical circle map is a critical circle map with the rotation number
equal to the golden mean.

Experimental work indicates the following facts.

(i) if }:‘):7 fv is golden then f?*(0) — p, decreases as a™ where a =
—§0-527....

(ii) a=™(f9"(a™z) — p.) converges to an analytic function ¢ of z° as
n — 0o

(iii) If v™ is as above with g = 1 then limg oo (Vn = Vn-1)/ (Vn41—Va) =
§ where § = —0~ %164,

(iv) If voo = lim;—eo ¥n there is a neighbourhood U of (1,v4) such
that if (g,v) € U then p(f,,) = 0 if and only if v = v,(x) and
gt < 1 where the function v, is C*® on g # 1 and C?at u=1.
If 4 < 1 then f,,(,) is analytically conjugate to the rotation Ry,
while if g = 1 then it is C'*-conjugate to Rj.

Any two parameter family which satisfies these conditions, perhaps after a
change of coordinates in the phase and/or parameter space, is in the golden
mean class. Numerical studies show that there are many families in this

universality class.
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1.3.7 Renormalisation analysis.

Notation. We introduce the following notation.

(i) The set § is relatively compact open subset of C.
(ii) The set B, is the domain 27|Im(z)] < Inr in C.

(iii) A(Q) is the real Banach space (with sup norm) of continuous
functions f : B, — C which are holomorphic on B,, take real

values at real points, and satisfy f(z + 1) = f(z) + 1.

(iv) D, : the real Banach space (with supremum norm) of continuous
functions f : B, — C which are holomorphic on B,, take real
values at real points, and satisfy f(z + 1) = f(z) + 1.

Fix v = .563. Let §; and §2; be respectively small neighbourhoods in C
of the real segments [v — 1,0] and [0, v] such that aQ; C Q; and a2, C 04,
for all a € [-0.78,-0.77]. Consider the set of commuting pairs (,7) €
A(£;) x A(§23) such that

(i) the closure of 3(—afl;) is contained in ; for all a € [-0.78,-0.77];
(i) n(0) <0 <9(0) <1

(iii) d?p(0) = 0, d(n(0)) # 0 # dn(¥(0)) and d?*p(n(0)) # 0 #
d*n(¥(0)). |

(iv) d(¥(n) —n($))(0) =0 for 0 < i< 3.

A pair (¥,7) is said to be cubic critical if it also satisfies d(0) = 0 and
d®(0) # 0. This implies dn(0) = 0 = d?7(0) = d*¢(0) and &°y(0) # 0.

To see the circle map structure consider ¢ and 7 restricted to R. Each pair
(1, n) satisfying the conditions above and such that 1 and  are monotone
determines a mapping f = fy of the interval I, = [7(0),%(0)] to itself
in the following way: f(z) is defined to be ¥(z) if z € [5(0),0] and p(z) if
z € [0,1(0)]. This can be regarded as a mapping of the circle Sy , obtained
by identifying the end-points of Iy, to itself since f((0)) = ¥(5(0)) =
7(1(0)) = f(¥(0)). Moreover, the monotone condition can be dropped if
the identification to obtain the circle is defined on neighbourhoods of the
end-points. Finally, although the circle mapping defined by f is clearly not
necessarily analytic in the standard structure on Sy, if (1,7) satisfies ¢ o
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-1

n = 1 ot on a neighbourhood of 0, and g = ¥ on~" is well defined and
a homeomorphism near 7(0) then by glueing the circle with g one obtains
an analytic structure in which f is analytic. This corresponds to letting the
dynamics determine the glueing, as explained in Rand [24].

If f = fym let f denote b™' - f 0 b where b = ¥(0) — 5(0). Let F be
the lift of f to the universal cover R with the property that 0 < F(0) < 1.
If f= fynis an homeomorphism, the rotation number p(3,n) of (¥,7) is
defined to be the rotation number of f. Then 0 < p(3,7) < 1.

Let f bein D,, for some r > 1 and (¥,9) = (f, f —1). If p(f) lies strictly
between the rational approximates p,/q. and p,41/¢n4+1 obtained by truncat-
ing the continued fraction expansion of p(f), then define the renormalisation
transformation R" as follows.

(¢mnn)=R"(1/),77) (an Y. faoan,a; a, fn+1 0an)

where f, = f™ — p,, an = fa(0) — fa41(0). By Rand [21], we have the
following equality for the rotation number, where ] means the characteristic

of a number.

p(R(,m)) = (p(R(%,1)))~" = [p(R (b, )] .
If (1, 7) is cubic critical then so is R*(%,n). If p(3,7) is equal to the golden-

mean, then
R($,n)=a"'-($,90n)0a

where a = n(0) — ¥(n(0)). By Jonker [10], (¥,7) = (z + v,z + v — 1),
where « is equal to the golden-mean, is a hyperbolic fixed point of R with a

1-dimensional unstable manifold with associated eigenvalue —y~2

1.3.8 Markov families

Let f be a circle map. Let (%,7) be the corresponding pair of maps and
(¥my M) = R™(3, 7). Define the corresponding Markov family Fy = (Fn)mezs,

by:

Fo= a1l (2) if z € IT* for some j =0,...,n—1
" e () s eI

where IJm = ["prn—"—lnm(o)v¢:1-j_177m¢m(0)] for j = 0,...,n -1, I7" =
[ 1 (0), ¥ (0)], am = —|I5*| and 1/(n + 1) < p(1hms Pm) < 1/n.
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1.3.9 Diffeomorphisms of the circle.

Let f be a homeomorphism of the circle. The map f has rational rotation
number p(f) = p/q if and only if there is z € II! such that fI(z) = z + p.
Therefore, the class of homeomorphisms of the circle with rotation number
p(f) = p/q conjugated to the rotation map R(z) = z + p/q is of infinite
codimension.

Denjoy proved that a diffeomorphism of the circle f € C? with irrational
rotation number p(f) = « is topologically conjugated to the rotation map

R(z)=z+ .

Denjoy constructed some examples of diffeomorphism of the circle f €
C' with irrational rotation number p(f) = « which are not topologically
conjugated to the rotation map R(z) =z + a.

The question of for which irrational rotation numbers the conjugacy maps
are smooth arise.

Arnol’d showed the existence of a diffeomorphism of the circle f € C¥
with irrational rotation number p(f) = a which are not absolutely contin-
uously conjugated to the rotation map R(z) = = + a. This construction is
based on the existence of small denominators. This leads to the study of the
diophantine properties of the rotation number.

1.3.10 Arnol'd,Herman,Yoccoz theorem.

A local theorem is due to Arnol’d. Arnol’d [2] proved the existence of a C*
conjugacy for diffeomorphisms of the circle f € C* with rotation number of
diophantine type sufficiently close in the C* topology to the rotation map
with the same rotation number.

Herman [9] proved for the global case, that the set A of rotation numbers
for which the diffeomorphisms of the circle f € C* are C* conjugated has
full Lebesgue measure. The set of rotation numbers A that he proved the
theorem is contained in the set of all Roth rotation numbers. He showed that
the biggest set A should be contained in the set of all diophantine rotation

numbers.

Theorem 14 Yoccoz. Let f € CF be a diffeomorphism of the circle with
rotation number p € Cp, where 8 > 0and & > 3. If k£ > 25 + 1 then there
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exist a conjugacy h € C*~1-8-¢ for all ¢ > 0 between f and the rotation map
R,(z) =z 4+ p.

Corollary 1 Under the same hypotheses for f and p as above, if f € C®
(respectively f € C¥) then h € C* (respectively h € C¥).

Yoccoz [31] proved that A contains the set of all diophantine rotation
numbers. He has recently completely characterised the degree of smoothness
between circle maps with the same rotation number.

By Jonker [10], if f is an analytic diffeomorphism whose rotation number
p(f) is the golden-mean, then the speed of convergence of the renormalisation
of f can be made arbitrarily fast in the analytic norm, by replacing the
renormalisation

R(¢,n)=a" (4, on)oa
where a = 7(0) — 1(5(0)), by
R(y,n) = pl(¥,¥on)opy,

where A(,n) = pyn is a bounded affine map and py, : R —» R is a
polynomial. The affine map A is chosen in such away that we get rid of the
biggest eigenvalues of the stable manifold of the renormalisation operator R;.

Using the developed analytic tools in the formalism of Markov families to
determine the differentiability of the conjugacy between two Markov families
F, and G, topologically conjugated, we get us a corollary that two analytic
diffeomorphisms with golden-mean rotation number are C*° conjugated. The
proof also works for analytic diffeomorphisms with the same rotation number
of periodic type. We conjecture that it also works for any rotation number

of constant type.

1.4 Symbolic dynamics and renormalisation.

In a number of cases the renormalisations R™f of a dynamical system f are
conjectured to converge to a horseshoe A of R as n goes to infinity. Exam-
ples of systems to which these ideas apply include diffeomorphisms and cubic
critical maps of the circle, quadratic foldings with kneading invariants of con-
stant type, the boundary of Seigel domains and KAM and critical invariant
circles in area-preserving and dissipative twist maps. Such an horseshoe pic-
ture for critical circle maps is described in Lanford [11] and for quadratic
unfoldings is described in Rand [26]. Let us briefly consider this.
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1.4.1 Critical circle maps.

Let f be the lift of a cubic critical map of the circle with rotation number
p = p(f) € (0,1). To p we associate the sequence p(f) = pop1 ... of posi-
tive integers which define the continued fraction of p. To f we associate the
commuting pair (¥4,77) = (f, f —1). Let R be the renormalisation transfor-
mation as defined in section 1.3.7. Then, p(R(%, 7)) = p(, 1)~ =[p(¥, 7).
For all p = pop ..., define 0™(p) = pnpat1.... Then, p(R*(¥,7n)) = o™(p).
The conjecture is that in the space of such pairs there exists a set A and a
homeomorphism Q : (Z50)% — A such that

(i) p(Q(--p-1P0p1--.)) = popr ...
(ii) If p(f) = popr... and ... p_2p_1 is an arbitrary sequence then

IB*(f) = Q™ (oM

converges to 0 as n tends to infinity. If p(f) has bounded entries
then this convergence is exponentially fast.

(iii) R(A) = A.

(iv) If Ay is the image under Q of {1,...,N}% C (Z50)Z then Ay
is a hyperbolic set for B with 1-dimensional unstable manifolds
and 1-codimensional stable manifolds.

1.4.2 Quadratic foldings with kneading invariants of
constant type.

Let f be an analytic quadratic folding of the interval I = [-1,1]. The
dynamics of f is even largely determined by its kneading invariant vy which
is defined in the following way. If z € I let 0,.(z) be 1, —1 or 0 according
as f"(z) is orientation preserving at x, reversing or fi(z) = 0 for some
0 <j < n. Let 0(z) = 0o(z)01(z)... € {~1,0,1}N. By Rand [26], then
the map r — ¢(z) is monotone and the limit vy = lim,_o- (z) exists in
the product topology on {~1,0,1}N. The sequence vy is called the kneading
invariant of f. We analyze the subset S of those f of infinite depth. If f € S
then there exists n > 0 and a subinterval J of I such that f*|J is conjugate
to a clement of S. The best known examples of maps f of infinite depth are
those corresponding to the accumulation point of period-doubling. I'or these
there is an interval J containing 0 such that f2|J is conjugate to f.
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For n odd or equal to 2, we define the renormalisation operator R, on D,
by
R.(f)=a' -f"oa,

where a = 1/f"(c) and D, consists of analytic quadratic foldings such that
R,(f) is a quadratic folding. By Rand [26], the kneading invariant v; de-
termines if f belongs or not to D,. Define the renormalisation sequence
a=aa;...of fo = fif fi = Ry, (fi-1), foralli > 0 and o™(a) = ans1Gng2.- ..
Define the operator R on D = U,»3D, by R|D, = R,.. We conjecture that
one has horizontal and vertical strips and a similar picture to that for critical
circle maps because the operator I acts on kneading invariants in much the
same way as the corresponding transformation there acted on rotation num-
bers. Moreover, we conjecture that the stable manifolds H,, ¢ = aja,...,
a; > 2, will consist of those f whose nonwandering set consists of an infinite
number of hyperbolic repellors and a minimal attractor A whose dynamics
are described in Jonker [10]. In particular, it follows from the renormalisa-
tion that A can be described as follows: There exists a decreasing sequence
of closed intervals J,,, m > 0, with Jy = I and such that if /,, = ag...amn_;
then f'»|J, is unimodal map and if Jp,; = f*J,, for i = 0,...,0, — 1 then
A= anl(U,'Jm_,').

1.4.3 Limit set.

We reinterpret these pictures in terms of Markov families. We define the (1+
a)-determination condition for a Markov family. To this (1 + a)-determined
Markov family F, we associate its limit set M which is essentially the set of
Markov families which are limit points of the sequence

F

=Ty

= (FuiFogt1 )

of Markov families. There is a bi-Lipschitz map F : @ — M for an appro-
priate symbol space (2.

Let f be a cubic critical map of the circle with p(f) = pop; ... and F the
corresponding Markov family as defined in section 1.3.8. Let M = Mg, In
this case {2 is the set of accumulation points of the sequence (¢™(p(f)))n>0
so that Q2 C (Z0)? and we conjecture that

Foipy = F(p(£))-

If f is an analytic folding map with renormalisation sequence @ = ayaz...
and F is the corresponding Markov family. Let M = Mg. In this case @ is
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the set of accumulation points of the sequence (6™(a))a>o 50 that @ C (Z50)?
and we conjecture that

Foiy = F(e(f))-

1.4.4 (1+ a)-determination.

Let F be a topological Markov farr}ily. Sa.Ly F; ~ F; if there are orientation
preserving homeomorphisms A : C' — C7 and &' : C**! — C7*! such that
h(Ci) = Ciforalla € S;, M'(Ci**) = Cit! for all a € Siyy and h'oF; = Fjoh.

We can always choose the S; such that S; N S; = @ or S; = S; and such

that S; = S; is equivalent to F; ~ F;. We always assume that the labelling
S; has this property.

We say that j ~ k if and only if Fjiq ~ Fi4q, forall0 < g<nandj < k.

The Markov family is adapted if whenever S; = S; then If = I, for all
a € S;. In the following, we always consider that the Markov family F is
adapted.

For all m,n > 0 and t € £ we denote C}* by C, since the dependence
upon m is determined by t, whenever it will not be confusing. If there is a
gap G,v between C; and Cy we introduce a symbol g, = gy, and denote

by f)nm the set consisting of these new symbols together with X7'. When we
say that a statement is valid for all ¢ € &7, we mean that it is valid for all ¢

and g, in X7
We denote by J and m the mappings J : £}, — £ and m: 5L — 5,
given by

J(tO"-tn—l) = tl ---tn—l and J(gt,tl) = gJ(t),J(tl),
m(to...tne1) =to...taey  and  m(gee) = m(t).
Define the scaling tree o, = 0, ¢ Unzlf)::' — R by

onlt) = AL

ICm]

Forall j X kandallt € 5! and ¢t € £ and all 0 < i < n, define

pre = |1 — a:ﬁ)| and A, = > (nelCLY).

ok(t) (ediim(t)=m(t)}
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(iv) For all j &~ k and all contact words t,s € E{ and t,s € £¥ and all
0 £1 < n define .
- G| 1Ca
Bt = I AN CF I
IC:I I t I

Definition 11 (= Definition 22) A topological Markov family F is (1 +a)-
scale determined if and only if it possesses the (1 + a)-scale property and for
all € such that 0 < € < a < 1 there exists a function g = g. : Zyo — R with
the following properties:

(i) X2, 9(q) < O(g(m)), for all m > 0.

g=m

(ii) For all j ~ k, let u = min{j,k}. For all a € S},

Ca Iy
:—5-;-'[ €1+g(u) and -II-I—J-II- € 1+ g(u).

(iii) Forall 0 <i <nandall t € £,

B < g(u +1).

If s,t € © are not in contact and m(s) # m(t) then
pt|Eea |7 < g(u +1)
while if m(s) = m(t) then
|Ees|" Ot Ay + || ™% e < g(u + ).
Definition 12 (= Definition 23) A topological Markov family F' is (1 + «a)-

contact determined if it possesses the (1 4+ a)-contact property and for all €
such that 0 < € < a < 1 there exists a function g = g, : Zyo — R with the

following properties:

(i) £2m9(q) < O(g(m)), for all m > 0.

(ii) Forallj ~k,let u = min{j,k}. Forall0 <i<nandt,s € xi
are in contact, then

ﬂt,a
IDt.s‘Ie

< g(u+1).
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1.4.5 The symbolic set.

We define the symbolic set ! which indexes the set of topological Markov
maps in the limit of the Markov family F. Let S = {5}, Let Q C S%
denote the set of all bi-infinite sequences s = ...8_1808;... such that for
all s; € S and n € Z and all m > n there exists a sequence j; — oo such
that s, ...sn is the index sequence corresponding to the sequence of Markov
maps Fj; ... Fjtm-n, i. € Snpk = Sj4x for 0 <k <m —n. Define the map
o:Q — Q by o(s) = 2z, where z; = s;4y, for all 1 € Z.

In chapter 4, we prove the existence of a bi-Lipschitz map F: @ — Mp,
where M is essentially the set of limit points of the sequence

F = (Fn'-Fn'-+1...)

4n;

of Markov families. The elements F(s) = F£ = (Fyn(s))nez in Mp are two-
sided Markov families with associated scaling functions gyn(y) : U1>02;’"(5) —
R.

1.4.6 The scaling function.

Let A~ denote the set of all ¥ = ... 7_,7-; with the following property. There
iss € Q such that 7_, € s_,, foralln > 0. Denote 7_,...7_; by T|n. Define
Ay = {r € A= : 7, € 5,}. Define Ay(y) as the set of all gz with the following

property. T, T € A,, Groart, € i‘l’-‘&) and 7—; = 7/, for all i > 1. Let
A,_ =A, U Ages)-
The scaling function s; = sp, : A; — R is given by
55(r) = lim 05-n(y(TIn) and sy(gr,rr) = Hm og=n(y)(g7pn71n)-
Let the map g : Zyo — R be as in the definition of (1 + a)-scale deter-
mination of (Fi)myo. Define the metric in A, as follows.
d(7,P)=gn+1) and  d(grr,gyy) =g(n+1)

if Tln = ¥|n and T_(n41) # Y= (n41). Moreover, 7.3 = -1 and 7L, = ¢.,. If
necessary, interchange 7.1 and 77,. Otherwise, the distance is g(1).

Lemma 1 (= Lemma 29) The scaling function s, is well-defined and it is
Lipschitz with respect to the metric d in A,.
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Lemma 2 (= Lemma 30) Let F and G be two (1 + a)-determined Markov
families topologically conjugated. Let F'¢ and G2 be two limit Markov families
corresponding to F and G respectively.

(i) If F'* and G* are (1 + «)-conjugated then the scaling functions sggm(y)
and $g,om(s) are equal, for all m € Z.

(ii) Let F'* and G* have bounded geometry. If, for all m € Z, the scaling
functions sp,em(s) and sgom(s) are equal, then F2 and G2 are C'* conjugated.

1.4.7 Convergence of the Markov family F to its w-
limit set Mp.

Define the map f, : N — R* by
fs() = max{|Cy|: t € Zfor t € Y and S;j... 841 = so. . 8-1)
Define the map r., : N x N — R* by

res(d,1) = (gen ()"0 4 (£,(1)

where u = min{j,{}, € < €' < " < a and the map g.» is defined in (1 + a)-
scale determination.

We suppose the following uniformity condition over the map r ,n(,). This
is true, if for all t € ¥ and all m > 0 the length of the intervals |Cy| and
ger(n) decrease exponential fast to zero, when n tends to infinity.

Condition U: There is v, between 0 and 1 such that r, ,n(,)(j, 1) < O(vZ),
forallj >1>0andalln € Z.

We prove the following theorem on convergence of the Markov family F
to its w-limit set M.

Theorem 15 (= Theorem 22) Let F be a bounded Markov family which
is (1 + a)-scale determined and (1 + «)-contact determined. For all » € Z,
let 7. on(y) be the function as defined above. For all j,I > 0, such that
Sj...Sj+(..1 =8p...8n4l-1 and all0 <e < o

|1F5 - Fa"(z)”CH'(KJUK""(l)) < O,(r,'an(a)(j, ).
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1.4.8 Application to diffeomorphisms of the circle.

Let f be a diffeomorphism of the circle with constant rotation number and F
the associated Markov family to f as defined in section 1.3.7. Suppose that
F is (1 4+ a)-determined. The symbolic sequence of the Markov family F is
given by the continued fraction expansion of the rotation number p = p; ...
of f. Define o™ (p) = v, where 9; = ppm4i, for all ¢ > —m and ¢; is arbitrary
for ¢ < —m. Endow the set H = {0,...,N}z, for some large N > 0, with
the product of the discrete topologies. Define the symbolic set 1y as the
set of 8 € H such that there is a converging subsequence of (¢™(p))m>o-
There is a bi-Lipschitz map F : @y — Mj, where M; is the limit set of
f consisting of two-sided Markov families. By the bi-Lipschitz map F, the
symbolic dynamics in §y are carried on to the limit set M;. The Markov
family F converges to My as proven in theorem 15. Stark [27] proves that if
f is a C?**¢ diffeomorphism of the circle whose rotation number is of constant
type then the renormalisation of f converges in the C? norm to the line of
the rotations of the circle. By this fact and by theorem 15, the set M,
just depends upon the rotation number of f. Moreover, as the map F is bi-
Lipschitz then the symbolic set £ just depends upon the rotation number

of f.
Similar applications are given in chapter 4 to critical circle maps and
quadratic foldings with infinite depth.

1.4.9 Two-sided Markov families.

The w-limit set of Markov family consists of two-sided Markov families. In
chapter 5, we study C't self-similarities in the blown-up of small intervals
in the domains of a two-sided Markov family F. We prove that if two C**$
two-sided Markov families F and G are C'* conjugated then they are C*+6
conjugated. This result opposes to the difficulty in getting higher smoothness
in one-sided Markov families. In that case a balance between the speed of
convergence of the Markov families and the scaling structure of their cylinders

is needed.

Let I = (Fin)mez and G = (Gm)mez be C¥*® weakly bounded two-sided
Markov families, where § € (0,1] and £ > 0.

A Markov family F is weakly bounded if there are constants b and e, such
that, [dF,| > e > 1 and ||Fp||cr+s < b, for all m € Z.

Let A = (hn)mez be a topological conjugacy between F and G.
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The conjugacy h has the uniformity property if it satisfies the following
conditions.

(i) There is a sequence of points z,, € CF= such that F, and &,, are
smooth at Z,,, Fr(zp) = T4 and [dh,(z,)] > M; > 0, for all
m < 0.

(ii) Moreover, there is a continuous function € such that ¢(0) = 0 and

forallm <0,
hm m _hm m
l (ZZ ) -y (y ) - dhm(mm)l S e(max{lym - ‘T"‘I’ |2m - xml})

Theorem 16 (= Theorem 27) If h is a topological conjugacy between F and
G with the uniformity property then there is a C**+® conjugacy r = (Tm)mez
between F and G.

Corollary 2 (= Corollary 18) Let F and G be C**% constant Markov
families. Let the map h be a topological conjugacy between F' and G. Let
z be a periodic point of F, such that F' is smooth at z. If h satisfies the
uniformity property at z then there is a C¥*® conjugacy between F' and G.
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A CLASSIFICATION OF C'*® STRUCTURES ON EMBEDDED
TREES.

A. A. Pinto and D. A. Rand
Arbeitsgruppe Theoretische Okologie,
Forschungszentrum Jilich, D-5170, FRG 1.

Abstract

We classify the C1t structures on embedded trees. This extends
the results of Sullivan [G] on embeddings of the binary tree to trees
with arbitrary topology and to embeddings without bounded geometry
and with contact points. Such an extension is needed, for example, for
applications to the smooth conjugacy and renormalisation problems
for circle maps with Diophantine rotation number.

2.1 Introduction.

Although they have more general application, the results proved in this pa-
per are mainly motivated by problems concerning the existence of smooth
conjugacies in dynamical systems, and particularly, the newly discovered phe-
nomenon of rigidity of certain infinitely renormalisable dynamical systems.
It is often possible to determine classes C of smooth mappings f: M — M
such that (i) if f € C then f possesses in a natural fashion an invariant
set Ay such that (ii) if f,g € C then there exists a natural homeomorphism
h : Ay — A, which conjugates the dynamics of f on Ay to those of g on
A, (i.e. on Ay, goh = ho f). The question then arises of whether or not
this conjugacy h is smooth in the sense that it has an extension to a smooth
diffeomorphism of the manifold M which contains Ay and A,.

In general, such smoothness is very rare: in some sense, it is usually of in-
finite codimension. However, the theory of renormalisation has revealed the
remarkable fact that many critical systems (and some non-critical ones) are
rigid in the sense that, whenever it is possible, then A is smooth. This theory
covers both classical examples such as the Arnol’d-Herman-Yoccoz theorem
for diffeomorphisms of the circle and the Kolmogorov-Arnol’d-Moser theorem

!Permanent address: Nonlinear Systems Laboratory, Mathematics Institute,
University of Warwick, Coventry CV4 7AL, UK.
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for invariant tori which concern non-critical behaviour, and more recent dis-
coveries concerning critical behaviour such as the universality of the Feigen-
baum period-doubling attractor, the structure of critical circle mappings and
the breakdown of critical invariant circles.

For the Arnol’d-Herman-Yoccoz theorem, one takes for C the set of smooth
(say C*°) diffeomorphisms of the circle M = S' whose rotation number
is a given Diophantine irrational number p. In this case, Ay = M and
the existence of the conjugacy h follows from the relatively easy Denjoy’s
theorem. The Arnol’d-Herman-Yoccoz theorem states that these conjugacies
h are, in fact, C*; the main step in the proof being to show that they are
C*te for some a > 0.

The case of the Feigenbaum period-doubling attractor appears somewhat
differently. For this one takes for C the set of quadratic folding maps of
the interval at the so-called accumulation point of period-doubling. Such a
mapping f € C has an invariant attracting Cantor set Ay for which there is
a canonical labelling given by a homeomorphism 4, : X = {0,1}%20 — A,.
Thus, if f,g € C, there is a natural conjugacy h = z'goi;1 :Ay — A,. Recently
Sullivan has proved in [§] that if f € C? then the successive renormalisations
R*f converge exponentially fast to a fixed point of R. It follows from this
that the conjugacy h is always C'** for analytic systems ([6],[4]). Moreover,
if f is sufficiently smooth and the rate of convergence is taken into account,
then it can be shown that, for period-doubling, the conjugacy is C?*1!, This
is a corollary of a unified theory for smooth conjugacies for critical and non-
critical systems in terms of rapid convergence of renormalisation ([1]).

The embedding i = i; : X = {0, 1}%20 — R of the metric space X induces
a smooth structure on X in the following sense. A smooth function on X is a
function f : X — R such that the function foi™!:i(X) — R has a smooth
extension to R. This definition can clearly be generalised and localised by
considering localised embeddings as charts on X. The definition makes sense
even though X does not have a manifold structure - it is a fractal. We
say that two such structures are equivalent if the charts of one are smooth
functions in the other. In the case that we are considering, the structures
determined by iy and i, are equivalent if, and only if, h is C'**. Thus we are
lead to the problem of classifying the smooth structures on X = {0, 1}ZZ°.

The case of diffeomorphisms of the circle does not immediately fit into
this scheme of things because, in this case, X = S! and, as is well-known,
S! possesses a unique smooth structure. However, this ignores the fact that,
from our point of view, X has a richer structure since it is marked by the
orbits of the diffcomorphism. The orbit segment {f"x}g;_‘_f,l partitions the
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circle into g, — 1 segments, and this partition must be respected by our

conjugacies.

It turns out that it is most convenient to formalise this in terms of trees
in the following way. We use the number theory of the rotation number p to
choose the g,. Then we regard the segments of the partition by {ffx};'-;gl as
the vertices of the tree T' at level n. Each of these is connected by an edge to
the vertex at level n — 1 corresponding to the segment that contains it. The
way in which these segments sit in S determines a smooth structure on the
tree T as described in the next section.

Such a tree also exists in the case of the Feigenbaum period-doubling at-
tractor and is determined by the orbit segments { fjc}f-;;l of the critical
point c. The analogue of the segments at level n are the 2" intervals I, ,_,
which are defined as the smallest intervals containing the sets i;(Jy,..5,_,)

where
Iroitnoy = {01’ €EX = {0,1}%20: 1/ =77 if i< n}.

Thus in this case, the vertex corresponding to I, . is connected by an edge
to Iny..crn_y -

We will therefore define the notion of a C*** structure on a tree and prove
necessary and sufficient conditions for two structures to be equivalent. For
the case of the binary Cantor set (as in the Feigenbaum period-doubling
attractor above) this was already done by Sullivan under the assumption
of bounded gcometry. Our results extend his in a number of directions,

including the following:

(i) The topological structure of our trees are much more general than
the binary tree implicit in his work.

(ii) We drop the condition of bounded geometry and thus allow for
trees with unbounded branching such as that involved for typi-
cal Diophantine irrational rotation numbers and typical infinitely
renormalisable kneading sequences of quadratic foldings.

(iii) We include the case where the intervals corresponding to the ver-
tices of the tree do not have gaps between them. This is the

situation for circle mappings.
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2.1.1 Smooth structures on embedded trees

A tree T consists of a set of vertices of the form V3 = J, 5o Ty, where each T,
is a finite set, together with a directed graph on these vertices such that each
t € T,, n 2 1, has a unique edge leaving it. This edge joins t (the daughter)
to m(t) € Ta-1 (its mother). We inductively define m?(¢) to be the mother
of mP~1(t). Using this notation, ¢ is a descendant of mP(t) and mP(t) is the
p-ancestor of t.

Given such a tree T we define the limit set or set of ends Lt as the set of
all sequences t = tot; ... such that m(t;;;) = ¢; for all £ > 0. We endow Ly
with the metric d where

d(SOSl sy totl ve .) =2""

ifs; =t;for0<i<n-—1ands,#t,.

If t = tot;... € Lt then by t|n we denote the finite word ¢4...¢,-;. Let
Ly, denote the set of s € Lt such that sln = {|n. This is called a n-cylinder
of the tree. If L is an open subset of Ly containing Ly, andi: L - R a
continuous mapping, then we denote by Cy,,; the smallest closed interval in
R which contains i(Ly,). This is also called a n-cylinder. Note that both
Ly and Cy,; are determined by t,-1. Therefore we shall often write these

as L,,_, and C,,_, ;. Say that g8 ~ t if i(3) = i(2).

We shall only be interested in mappings ¢ which respect the cylinder struc-
ture of Lt in the following way. We demand that if s|n # {|n then

inthln.i ﬂ intC’gn,; = 0.

Clearly, the mapping ¢ : L — R induces a mapping L/ ~ — R which we
also denote by 1.

Definition 13 Such a pair (¢,L) is a chart of Ly if L is an open set of
L1 with respect to the metric d and the induced map i : L/ ~— R is an

embedding.

Two charts (¢, L) and (j, K) are compatible if the equivalence relation ~
corresponding to ¢ agrees with that of j on LN K. They are C*** compatible
if they are compatible and the mapping j 0:~! from (LN K) to j(LNK)
has a C'** extension to a neighbourhood of (LN K) in R.
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Definition 14 A C'** structure on Ly is a maximal set of C1** compatible
charts which cover Ly. A C1+*~ structure is a maximal set of charts covering
Lt which are C'*# compatible for all 0 < 8 < a.

Obviously, a finite set of C'** compatible charts which cover Lz defines
a C'*e structure on Lr. A mapping h : Lt — Lp is smooth if its repre-
sentatives in local charts are smooth in the following sense: if ¢ € L and
k(1) € L' where (i,L) and (¢, L') are charts in the structure then 7 o h o ¢™?
has a smooth extension to a neighbourhood of i(%) in R. Similarly, we define
smooth maps between different spaces.

We shall mostly be concerned with situations where either (i) the smooth
structure is defined by a single chart or (ii) the structure is defined by a single
embedding of L7/ ~ into the circle T,

If Sis a C1** structure on Lt and ¢ is a chart of § then we have that
s|n and t|n are adjacent if there is no u € Ly such that Cy,; lies between
Cyjn,i and Cyn and that they are in contact if Cyni N Cyjni # 0. Note that
these conditions are independent of the choice of the chart i of & which
contains Ly, and Ly, in its domain. It does however depend upon S so
we only use this terminology when we have a specific structure in mind. If
sln = sg...8p-1 and tjn = t5...¢,; then we say that s,_, and ¢,_, are
adjacent (resp. in contact) if sjn and t|n are.

Definition 15 Two C'** structures § and 7 on Ly are (1 + a)-equivalent
if the identity is a C'*°-diffeomorphism when it is considered as a map from
L1 with one structure to Ly with the other. They are (1 + a™)-equivalent if
the identity is a C'*A-diffeomorphism for all 0 < 8 < a.

Example 1. Standard binary Cantor set.

Figure 1.
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Consider the binary tree T shown in figure 1. We can index the vertices of
the tree by the finite words €g...€,-; of Os and 1s in such a way that the
mother of the vertex t = €g...€, is m(t) = €p...€4-1 and so that £g...€,-10
lies to the left of €g...€,-11. Now to each vertex t = eg...€,—1 associate a
closed interval I; so that I; C Iy, Le..e,_y0 i8 to the left of I,,..._,1 and

Izo...e,._l - Ieo...e,,-lo U Geg...c,._; U Ieo...sn_ll

where G.,..¢,,_, is an open interval between I, ., _,0 and I, .,._,1. We as-
sume that the ratios |G;|/|l;| are bounded away from 0. Then the lengths of
the intervals I,,. .,_, go to 0 exponentially fast as n — oo and therefore

C = ﬂ U Ieo...en_x

n>0&0..En-1

is a Cantor set.

Let £ = {0, 1}220 denote the set of infinite right-handed words €g¢; ... of
0s and 1s. Clearly, Lt can be identified with ¥ since each t = tyt;... € Lt
can be identified with a word o€y ... in . The mapping 7 : ¥ — R defined

by
i(eoer..) = ) Leguens
n>0
gives an embedding of Ly into R. This is the simplest non-trivial example
of an embedded tree. We shall be interested in embedded trees such as this
where the analogue of the Cantor set C is generated in one way or another

by a dynamical system.

Very often the set C = i(L7) will be an invariant set of a hyperbolic
dynamical system. For example, there is a map o defined on L1 above by

o(eger...) = €162+

This induces a map o’ on C = i(Ly) which is a candidate for a hyperbolic
system. Using our results it is easy to give necessary and sufficient conditions
for this map to be smooth in the sense that it has a C*** extension to R as
a Markov map such as that shown in figure 2 (see [2]).
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Figure 2.

In the above case the equivalence relation ~ is trivial and there are no
contact points. But now consider the case where the tree is embedded in
this way but where the gaps G¢ are empty. In this case ¢ maps Lz onto an
interval but is not an embedding because it is not injective. The equivalence
relation ~ on L is non-trivial: it identifies the points €;...€,1000... and
€o...€,0111.... Thus h is injective on all but a countable set. The space
Lt/ ~ is homeomorphic to an interval. However note that Ly has much
more structure than an interval because of the points marked by the cylinder
structure. In particular, there are uncountably many smooth structures on
L, but only one on the interval.

We could regard the vertex set of T' as U,»o T where T, is the set of
intervals I.,...,_, and the edge relation of T is inclusion. In such a case, we

say that T is defined by the cylinder structure.

Rotations of the circle.

This is another example with contact points. Consider the rotation R,(z) =
z + a where a is an irrational number such that 0 < a < 1, represented as

the discontinuous mapping

polzte z € [a—1,0]
*“lz+a-1 z€0,q]

Let p,/q, be the nth rational approximant of . Consider the orbit R,(0),...,
R(g,-1)a(0). This partitions the interval [a ~1, o] into ¢, closed intervals. Let
T, denote the set of such intervals and let T be the tree whose vertex set
is Un>o T and such that the mother of v € T}, is the interval in T,.; which
contains v. Thus T is again defined by the cylinder structure. If tgty ... € L7
then i(lot; ...) = Nuyots defines an embedding of T with contact points.
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Of course, any map which is topologically conjugate to R, would generate
the tree T" but a different embedding. The question of determining whether
two such mappings are smoothly conjugate boils down to showing that these
embeddings determine the same smooth structure on Ly. The approach used
in the theory of renormalisation is to show that this tree T' can be generated
by a Markov family (Fy),ez,, as defined in [4]. This Markov family and its
convergence properties determine the C¥+* structure on L7 as is proved in

[1).

2.1.2 The scaling tree
Gaps.

Fix a C1*° structure S on Lr. If s and t are adjacent but not in contact then
there is a gap between i(L,) and i(L,). We will add a symbol g,; = g;, to Ty,
to stand for this gap if m(s) = m(t). For the chart (¢, L) we let G, denote
the smallest closed interval containing the gap. Let T), denote the set T, with
all the gap symbols g,; adjoined. Let Ve = Un>1 T.. If mP(s) = mP(t) then
G,,g,, = Gmp—l(,),mp—l(t),,

Primary atlas.

Suppose that S is a C1** structure on L. Then clearly there exists N > 0
such that if Tw = {t1,...,%}, then there are charts (¢;,U;) of $,1 < j < g,
such that the open subset U; contains the N-cylinder L;;. We call such a
system of charts a primary N-atlas.

Scaling tree.

Fix such a primary N-atlas T = {(i;, U;)};=1,..- To each s,t € Ty, n > N,
we associate the following intervals in R (see figure 3(a), (b ) and (c))

e Cir and G, 1: Cy 1 is the interval Cy;; where j is such that m"(t) = ¢;
for some r > 1. Similarly, G, r is the gap G,, if s and ¢ are non-
contact adjacent points with m(s) = m(t).

o Co11,Cis1 and Dy, 1: If t,5 € T, are adjacent and in contact, define
P,,r = P,;7 as the common point between the closed sets Cyr and
C,r. Define the closed sets Cy, 7 and C, 7, respectively, as the sets
obtained from C;r and from C, 1, by rescaling them by the factor 1/2,
keeping the points P, 1 and P, fixed. Define Dy,7 = Cs7UC, 1
If t,s € Ty, are adjacent but not in contact, define P,,7 and P,:1,
respectively as the common points of the closed sets Cy 7 and C, 1 with
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the gap Gy,z. Define the closed sets C,,7 and C, 1, respectively,
as the sets obtained from C;r and from C, 7z, by rescaling them by
the factors 6,/2, 6,/2, and flipping them into the gap G, 7z, keeping
the points P, 7 and Py, 1 fixed. Iere & = |Gi,47|/|Comr-1(s) 7| and
8, = |Gr,s1]/|Cmp-1(s),z| Where p € N is such that mP=1(¢) 5 m?=1(s)
and mP(t) = mP(s). .

o E,,1: Let t;,81 € Thy1 be the adjacent vertices such that Gty sy,i =
Gt,,,,‘. Deﬁne Eg','I = Ct',’f \ Ctl,sl‘l"

Pls,t Cs,t Gs
D

t
(2 (b)

Cs Ct

. §
:tl'sl
=
(©
Figure 3.

(1 + a)-equivalence.

Now suppose, that in addition to the structure § and its primary atlas
Z, we have another structure 7 and a primary Nj-atlas J for it. Redefine
N = max(N;,N). To each t € T,, n > N, we associate the following

numbers.

o the scaling tree oz(t) :

IC. 1| | IGrsrxl
t — e d . = 29y
7z(t) |Con(e).z] and - oz(gu.) |Crm(o),1]
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This defines a function

or: |J Tn = [0,1].
n>N

The fact that it is undefined for small n does not matter.

® Uyl

O';r(t)

e Ap Ifte T lett; < - < t, be the elements of T, with the same
mother as t. Between these there may be gaps represented by symbols
of the form gi,,, tm,4,- Denote these gap symbols by g1,...,g,. Let

P q
A= E vt [Cri 2| + Vg |G, 1
1=1 i=1
o v, If s,t €T, are in contact,
Vet = ’1 - J—Ct'—I”C"JI
st —
ICJ.Tl ICt.JI

o e, If s,t €T, are adjacent but not in contact,

IGa,t,II

Cir| = |C,
2|CmP'1(a),1'| {l i,T' I tl.II}

Cst = |Ec.t,I| =
where p € N is such that m?~1(t) # m?~!(s) and m?(t) = m?(s) and
t1,81 € Tny1 are the adjacent vertices such that Gy, ,, 1 = Gy, 7.

Throughout the paper we use the following notation: if f and g are func-
tions of a variable z with domain A, then we write O.(f(z)) = O,(g(z))
with constant d if

d—l < ,f(z)l <d

lg(=)]

for all z € A. Often we will drop the reference to d.

If it is obvious which variable z is involved then we use the notation
O(f(z)) instead. Thus if a, and b, are sequences then O(a,) = O(b,)

means a,/b, and b,/a, are bounded away from 0 independently of n. The
notation f(r) = O(g(z)) means the same thing as O(f(z)) = O(y(z)).

Similarly, f(z) < O(¢(z)) with constant d means |f(z)/g(z)| < d for all
T € A.
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Definition 16 We say that two such primary atlases T and J are (1 + a)-
scale equivalent if for all € such that 0 < ¢ < a < 1 there exists a function
f = fe: Z>0 — R with the following properties:

(i) X5 f(n) < O(f(9)), for all ¢ € Zo;
(i) for all t € Ty, v, < f(n);

(iii) for all s € T, adjacent to ¢ but not in contact with it, if
m(s) = m(t), .
Aeef,,(;‘) +wneg,r < f(n)

while if m(s) # m(t) then
we, 1 < f(n).

Definition 17 We say that two such primary atlases T and J are (1 + «)-
contact equivalent if for all € such that 0 £ € < a < 1 there exists a function

fe : Zyo — R with the following properties:
(i) 3o fe(n) < oo;

(ii) for all s,t € T,, n > N such that s and t are in contact,

< fe(n).

Va,t

lDtr"yzle

Definitions 16 and 17 do not at first sight appear to be symmetric in 7
and J. However, from theorem 17, it follows that T and J define equivalent
C'**” structures and this implies that O,(|Ciz]) = O((|C:,7]). Therefore,
if we exchange 7 and J in the definitions we have that the definitions are

verified for the same a.

Definition 18 We say that two such primary atlases 7 and J are (1 + a)- |
equivalent (T &~ J) if they are (1 + a)-scale equivalent and (1 + «)-contact
equivalent.

The main theorem that we prove in this paper is
Theorem 17 Let S and T be C*** structures on Lt and let T (resp. J)

be a primary atlas for § (resp. 7). A suflicient condition for S and 7 to be
C'*o .equivalent is that Z < J.
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Theorem 18 Let S, 7, I and J be as in theorem 17 and suppose that S
and T are C'*°” equivalent. Then T < J if for all € such that 0 < £ < 5
there exists # such that 0 < € < # < v £ « and there exists a function
g = gpe : Z>o — R with the following properties:

(i) oL, 9(n) < O(g(q)), for all ¢ € Zyo;
(i) for all t € T, [Cuyz)® < g(n);
(iii) for all t;,t, € Ty, which are adjacent but not in contact, if
m(ty) = m(t;) then
[Cone) 2|7
IEthtg,IIH" < g(n))
while if m(¢;) # m(t;) then

|Come) 2P

< g(n);
IEtllt2vIle g( )

(iv) for all t;,t; € Ty, which are in contact we have that

|Duy anz|P¢ < g(n).

These conditions hold for some of the most interesting problems. In this
case theorem 17 and theorem 18 give a necessary and sufficient condition for

(1 4+ a)-equivalence.

2.1.3 Example: Cylinder structures with bounded ge-
ometry

Definition 19 A structure S has bounded geometryif for some primary atlas
Z, oz(t) is bounded away from 0 i.e. there exist § such that oz(t) > 6
for all t € T,, n > N. Recall that o7(t) = |Ct.21/|Comy),z] and oz(g:,s) =
1Grazl/|Cmo2l

Therefore, bounded geometry implies that for all ¢ € T, and all n > N,
we have that o7(t) < 1 — 6. Clearly, for bounded geometry, there exists
0 < A< pu <1 andecd > 0such that for all n > 0 and all t € T,

A" < |Cyz| < dp®

We introduce a new simpler definition of scale equivalence for a primary
atlas Z with bounded geometry.
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Definition 20 We say that two such primary atlases with bounded gecome-
try Z and J are (1 + «a)-scale equivalent if for all € such that 0 e < a < 1,
there exists a function f = f, : Z5o — R with the following properties:

(i) £, f(n) < O(f(q)), for all ¢ € Zyo;

(i) for all t € Ty, vy < f(n);

(iii) if s € T,, adjacent to ¢ but not in contact with it, then
vi|Coz|™* < f(n).

Lemma 3 For systems with bounded geometry the two definition of (1 4 «)-
scale equivalence are equivalent.

With bounded geometry, theorems 17 and 18 combine to give a simple
necessary and sufficient condition for (1 + a)-equivalence.

Theorem 19 Let S and T be C'* structures on Lz and let T (resp. J)
be a primary atlas with bounded geometry for S (resp. 7) then S and T
are C1*%" _equivalent if and only if T < J.

Definition 21 (i) § is a C'* structure on Lr if and only if S is a C'**
structure for some £ > 0.

(ii) The structures S and T are C'*-equivalent if and only if they are
C'**-equivalent for some ¢ > 0.

Corollary For bounded geometry, a necessary and sufficient condition for &
to be C'* equivalent to 7 is that there is A € (0,1) such that for all t € T,,
vy < O(A") and if s is in contact with ¢ then v, < O(A").

Proof of lemma 3. Forallt € T,,, we have that
Ay < lmax {y, : m(s) = m(t)} < If.(n),

where [ is the maximum length of an N-cylinder.

For all s € T, adjacent to t but not in contact with it, we have by definition
of |E;,z| and bounded geometry that there is a constant ¢ such that

€T = lEt,s.II > CICI.II > C5ICm(t),1|. (2.1)
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Then, if m(s) = m(t),

)=
Ate;a(,llﬂ) + uver
< max {v, : m(s) = m(t)} |Cez|c”F|C, 1|7 FO
+ max {v, : m(s) = m(t)} ¢ ¢|Ce1|™*
M max {v, 1 m(s) = m(t)}|Coz|™* < O+, (n);
This proves that definition 20 implies definition 16. The other implication is
straightforward. m

IN

Proof of theorem 19. By theorem 17 and lemma 3, Z ~ J is a sufficient
condition for the atlas S and 7 to be C'* -equivalent. We now prove that
it is also necessary.

For all t € T,, [Cm@).z]* < cafl — )™, where ¢, is determined by the
maximum length of the N-cylinders of the atlas Z. Thus, for all adjacent
t1,12 € T, which are not in contact, if m(¢;) = m(t;) then by equation 2.1,

[Conun) 2|+ -
, < 0O(|C., a-€) < O 1_611(0-:)
IEtl,tz,I|l+¢ (I (tl)»II ) —_ (( ) )
where the constants depend only upon € and a —¢. If m(¢;) # m(¢;) then
2l < 0(1Cpal) < O((1 - -9
lEtlv121I|
where again the constants depend only upon € and o —e¢.

For all ¢;,t; € T, which are in contact we have that
Dl < O = 51~

Therefore, by theorem 18, T X J is also a necessary condition for the atlas
S and T to be C'**" -equivalent. o

2.2 Proof of theorem 17.

It is sufficient to prove the theorem locally at each point ¢ € L. Let 2 : Uy —
R be a chart in 7 and j: V; — R be a chart in J with ¢t € Uy N V. Then it
suffices to show that for some open subsets U and V of Uy NV, containing ¢
the mapping joi~! : {(U) — 7(V) has a C'*°” extension to R. If this is the
case for all such £ then the result holds globally. Clearly, we can restrict to
the case where
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(i) the smallest closed interval I containing ¢(U) is a cylinder Cy; for
some t € Ty, where Ny > N or else is the union of two adjacent
cylinders of this form which are in contact and

(i1) where the smallest closed interval J containing j(V) consists of
the corresponding cylinders for j.

Now let I" (resp. J") be the set of end-points of the cylinders C;; (resp.
C.;) where t € T,, n > Ny and Cy; C I (resp. Cy; C J). Then j oi™! maps
I"* onto J" and is a homeomorphism of the closure I*® of U,>n, I" onto the
closure J* of U,>n, J". We will construct a sequence of C* mappings Ln

such that

(i) L, agrees with j 0i™! on Un,<jcn Iy

(i) L, is a Cauchy sequence in the space of C**# functions on I for
all B < a and therefore converges to a C'**~ function Lo, on L

-1

Then the mapping L., gives the required smooth extension of j o¢:™" and

proves the theorem.

The rest of this section consists of the construction of the mappings L,
I — J and the proof that they converge to a smooth diffeomorphism. We
use extensively the fact that for each n > Ny, I is the union of cylinder sets
of the form C;; and G,; where s,t € T;,.

2.2.1 A refinement of the (1 + a)-equivalence prop-
erty.

Lemma 4 |Ctz]/|Ct.7] is bounded away from 0 and co ie. |Ciz|/|Ct7| =
0,(1).

Proof. For all n > N and all t € T}, define Q(t) = In(|C,z|/|C:,7])- By the
(1 + a)-scale equivalence

[R(m(t)) = Q)] £ O(w) < O(f(n))-

Therefore, for all £ = tot1... € L1,|Q(tn) — Q(t:)| < O(f(N)). As the set
T is finite, |Q(t,)] is bounded above independently of n and ¢,.
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Corollary. If t € T,, n > N,

ICra|l  |Cmsl
[Ctz]l  |Cmy,1

< O(w). (2.2)

If s,t € T,, are adjacent but not in contact and m(s) = m(?) then

IGrs 7l 1Cm).7
Tl T < O(v,,.,). 2.3
Ceazl ~ Lol = L) (2:3)
If they are in contact then
[Cerl _ 1Css]
’ _ y S O .). 4
Cezl ~ 1Curl] = O1%) 24)

Proof. This follows directly from the definition of v, v, , and v, and the

boundedness of |Cyz|/|Ct,7]-

2.2.2 The map L;.

For all n > N and all t € T,, define the afline map L, as follows:

C
Li( ) |Ict JII (:l: Pf,a,f) + Pt.s.Jv

where s is a vertex adjacent to t. The definition of the map L, is independent
of the adjacent vertex s considered because it is an affine map.

Lemma 5 (i) For k equal to 0 and 1 and for all n > N and all pairs of
contact vertices ¢,s € T, which are in contact

”Lt - LJHC" < O(Vt.let.a,Ill-k) (2'5)
in the domain D, 1.
(i) For all vertices t € T}, and all n > N,
1Lt = Lum(gllco < O(Ar) (2.6)

in the domain Cy 1. For all adjacent vertices s and ¢ not in contact, if m(s) =

m(t) then
1Le = Lmglee < O(A) (2.7)
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in the domain E;,7. Otherwise
1L = L lloe < O(v1|Er,o 1) (2.8)

in the domain F;,7. Moreover,
[ldLy — dLpwylleco < O(wy) (2.9)

in the domains Cy 1 and E;, 1.

Proof. Firstly we prove (i). By the corollary to lemma 4 of section 2.2.1 and
since Ly(Pys1) = Ly(Pat1) = Piog = Pot,7 and |z — P, 1| < O(|Dy s 1}),

C C,,
|L¢($) - L,(IE)I IIIC:ZII - Ilca ZII I.’l} -1 tu’JI < C (Vt,SILt.S,TI) (210)
and I I | l
CtJ Ca J
- —_ Y — ! <
AL =L = |52 = 10| S Oa)

This proves part (i).

Let t,,...,t, denote the vertices in T, with the same mother as ¢t ordered
so that Cy, 7 lies to the left of Cy,, 7. Then ¢ = #; for some ! such that
1 <1< p. Let s €T, be an adjacent vertex to t; such that m(s) # m(t).

Since Ly, (P ,s7) = Ln(t)(Pm(t)im(s),7) = Pr1 0,7 = Pm(t),m(s).7» by the corol-
lary to lemma 4,

ICh7|l  1Cmy).7]
L T)— Lm T = - - - P s
l h( ) (‘)( )I |Ct1,I| ICm(t),II lx i, .Tl

< O(Vtx ICHJI)’

for z € Cyz and if s and t are not in contact then
ILtl(x) - Lﬂ(x)l < O(th |Eths.1|)a

for z € Ey, ,7. Therefore, |Py 1,7 = Lm(t)(Puy2,7)] < O(vy |Cyy 2]). If there
is a gap gy, 1, between the vertices ¢; and ¢, define the map L, ,, at Gy, 1,1

in the following way:
thllt2yJ|

Ly, 1, (2) = m(x = Pyu1)+ Pong
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By the corollary to lemma 4

Gungl _ |Cm.al
L - Lm = I t1,t2,7 _ m(t),J
| glx.lz(x) (t)(x)l thlth,Il ICm(t),II

+ Lty (Pry t2,1) = Lin(t)( Pty 2.7)]
< O(Vh ICtl Il + Vg e Ith,iz.Il)'

I:II - Ph .tz.Il

Therefore,
lPiz.h.J - Lm(t)(Pimt: ,I)I < O(Vil ICHJI + Vgty .1 IGlx,tz'Il)'
By induction,
|Pthtl—ln-7 - Lm(t)(Ptlltl—l 7I)l

-1 h
S O( E V‘m ICtm)Il + Z Vg!"m,l"m+l IGtimvtim+ltzl)7

m=1 m=1

where l; is the number of gaps between t; and t;. Therefore, if z € Cz1
or z € F;,1 where s is an adjacent non-contact vertex of ¢ with the same

mother as ¢, then

|Le(z) = Ly (z)] < O(A,).
This proves inequalities (2.6), (2.7) and (2.8). Moreover, inequality (2.9)
follows because

ICe.7]  |Cme), 7]
ALy — dLpgy| = |20 I < 0(w).
4L © ICezl  |Cmyal ()

by the corollary to lemma 4. u

2.2.3 The definition of the contact and gap maps.

Lemma 6 For all § > 0 there exists a C* map ¢ : [0,8] — [0,1] such that
¢ = 0 on [0,6/3), ¢ = 1 on [26/3,1] and ||¢||lcr+a < c:6~(+), where ¢
depends only upon k € Z5o and not on a € (0,1] or é.

The proof of this lemma is very simple. Find such a function ¢ for the
case § =1 and then deduce the general case by letting ¢(z) = ¢o(67'z). H

If s and ¢ are adjacent vertices in T, we use lemma 6 to choose functions
$1s on Gy o7 and P, = 9y, o0 D, , 1 with the following properties.
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(i) ¢:, = 0 (resp. ¥, = 0) on the left-hand third of E;,r (resp.
D,,z) and ¢;, = 1 (resp. ¥y, = 1) on the right-hand third of
Eis1 (resp. Di,1)

(if)

l|$e.sllce < O(|Ersz]7?) (2.11)
and

[esllor < O(1D4s1]77), (2.12)
for all reals p between 0 and 2 and where the constants are inde-
pendent of all the data.

Extend ¢, to all of the gap G, , 1 as a smooth map by taking it as constant
outside E;,1. We call the ¢;, gap maps and the ;, contact maps.

Note that, for all n,m > N and all non-contact adjacent vertices ¢, s; € T,

and ty,s; € Tpy, such that {s;,t;} # {s2,t2} the domains of the gap maps
where they are different from 0 or 1 do not overlap. For all n > N and all
contact adjacent vertices t3,s3 € T, and t4,84 € T,, such that {ss,#3} #
{s4,t4} the domains of the contact maps do not overlap. Moreover, they do
not overlap with any domain of any gap map ¢, ,,, where t5,s; € T}, and
m<n.

2.24 Themap L,:I—J.
Constfuction of L, on cylinders Cy7 in I

For all n > Ny and all vertices ¢ € T,, define the map L, on C;7 C I as
follows. For all vertices s; in contact with ¢, L, = L, on Cy 1z \ U;C,, 7. If s
is in contact with ¢ and s is on the left of ¢ then define L, on C, 1 by

Ln = ")bt.s[/t + (1 - ¢t.s)La'
If s is on the right of ¢ then define L, on C;,1 by
Ln = d)t,aLa + (1 - d)t,a)Lt-

Extension of L, to the gaps Gy,7 in I

For all n > N, and all non-contact adjacent vertices ¢, s € T, suppose that
Ci 1 is on the left of C,r. Define the map L, on F;,1, by

LolE,,7 = Lintybts + Le(1 — 1)
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Define the map L, on E,, 1, by
LnIE,.g,z - Lm(.s)(1 - ¢s,t) + La¢s,t-
Finally, in Gys1 \ (Et,s7 U Esp7) define L, = Ln_;.

This construction builds an infinitely differentiable map L, which is defined
on the closed interval I and which maps I diffeomorphically onto J.

2.2.5 The sequence of maps (Ly,)nsn, converge in the
C'*¢ norm.

The space of C'** maps on I with the C'*¢ norm is a Banach space. In this
section we prove that the sequence (Ln)n>n, is a Cauchy sequence in this
space and therefore converges. First we prove the following lemma.

Lemma 7 Suppose t € T,, and n > N,. Then in the three subsets Cir \
UaCt,o,I’ Dt,a,I and Gt,a,T}

[[Ln = Ln-1flcr+« £ O(fe(n —1)).
The constants of the inequality only depend upon 7 and J.

Proof. We break the proof down into 3 cases corresponding to behaviour in
the three subsets Cy 7 \ UsCt 5,1y Dis,1, and G, 7.

(i) For Cyz \ UsCi,s1 where s is in contact with t. By lemma 5

|Ln = Ln-illcste = |[Le = Lmgyllcr+e
< O(max(A, ) < O(fe(n)) < O(fe(n - 1))
(ii) For D,,z. Suppose s is on the left of £.

Lo—Li=th.Li+ (1 - ¢'t,a)Ls ~ L= (1 - ¢t,s)(Ls —L,)

in Cy, 1. Therefore, by incquality (2.5) of lemma 5 and inequality (2.12) we
have that in Ci, 1,

ILn - Ltl .<_ Il - "/)t..s”La - Ltl S O(Vt,alDt,a,Il)-
Moreover, by lemma 5 and inequality (2.12),
|dLn — dLy| < |dipesl| Ly — Lif + |th1,6||dLs — dL¢| < O(v1,,)



and
Ly = dLlloe < llddealleellLe = Lilloo
+ [ld¥tsllcol|Ls = Lillce + llsbeslloelldL,s — dLy]|co
< O(Vt,.s'Dt,a,Il‘e)
Therefore,
[|{Ln — Lillcr+e £ O(vs,4| Dyt oz]™¢)
in Ct,a,I-

If m(s) # m(t) then by lemma 5 and the last inequality

”Ln - Ln—1”C’+‘ < ”Ln - Lt”C‘*‘ + ”Lt - Lm(t)”C“"
+ ”Lm(t) - Ln—l”C”“
O (vaD1uz1™) + O (max(Ay, 1))

+0 (Vm(t),m(s) IDm(t),m(s),:rl")
o (ft(n - 1)) ’

IN

IN

in Cg,,J.
If m(s) = m(t) then Ly = Ln-y or

[[Lm(y = Ln-1llc1+e £ O(Wm@) 2| Dy 2z|™) < O(fe(n — 1)),
where z is a contact vertex of m(t). Therefore, in C;, 1,

[1Ln = Ln-tllor+e £ O(fe(n —1)).

Moreover, a similar argument to that used for C,; 1, shows that in D;, 1,

ILn = La-iller+e < O(fe(n - 1))
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(iii) For G4 1. Suppose that Cyz is on the right of C, 1. By definition of the
domains of the gap maps L, = L,_, in the gap G,z except in the extended

intervals E, ,7 and F, 7. Therefore, in E,, 1,

Ly =Lnot = Ly (des — 1)+ Li(1 = ¢1,)
= (Lt = Lm(t))(1 = ¢1s)

If m(t) = m(s), by lemma 5 and equation (2.11)
[ = La-illeo < [Le = Lingy]|1 — ¢ < O(A),
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”dLn - dLn—l“C° ILt had Lm(t)”dQStl + Id[/g -_ dLm(t)Hl - ¢¢I

<
< 0 (AtlEt,a,Il-l) + O (v)

and
ldLn — dLn_ilce
ILe = Ly llce [lddellco + 1Lt ~ Ly llco|ldélce
+ |ldLy — dLmy]lco|[l = dellce
O (n|Eepz™7) + O (A Eez|~0+9) + O (] B z|°)
< O(AJE,1I79) + O (v|Eeaz|™)

IA

IA

Similarly, in E, 1,
1Ln = Lacallorse < O (AdEeuz|"049) + O (v B, z|7%)

If m(t) # m(s), by lemma 5 and equation (2.11)
[[£n = Ln-allee < |Le = Lmo||1 — ¢e| £ O(]Ey 1),

”dLn - dLn-l ”co __<_ IL‘ - Lm(t)”d¢t| + lst - dLm(t)Hl - ¢¢'
S O(Vt)
and
[dLn = dLn-sllee < [|Le = Ly [loe lld el |co
+ [ILe = Loy llco|ld | |ce
+ |ldLe = dLmgy l[co||1 = &ilc-
< O(w|Esez]™)
the constant of the last inequality depending upon e.

Lemma 8 The sequence of maps (Ln)n>n, is a Cauchy sequence in the
domain I with respect to the C'*¢ norm. In fact, ||L, — Ln_i|jci+e <

o(fc(n - 1))

Proof. For all vertices t € T;,, define P as the middle point of Cyz and for
all non-contact vertices t,s € T,, define @, as the extreme point which is

common to Ey,1 and En(t)m(s)z- Then
(dL, = dL,_,)(P)]| £ O(v) and |(dL, —dL,_1)(Q:,)| = 0.
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For all z,y € 1, if the closed interval between z and y is contained in the union
of two of the domains of the form Cyr or C,,, r then denoting dL, — dL,_,

by B.,,
|Bn(|y) =Bl < of(n 1))
y—zlt 7" |

Otherwise, take P, (resp. P,) to be the nearest point of the form P, or Q,,
to = (resp. y) in the closed interval between z and y. Let us consider the
case that P, = P, and P, = P,. If B, again denotes dL, — dL,_;,

[Ba(y) = Ba(2)l _ [Ba(y) = Ba(P)| | |Bn(P)

ly - zf* - ly — Byl Cozl
|Bu(Pe)| | |Ba(P:) = Bu(z)|
+ +
ICezle Pz — <l

< O(fe(n —1)) + O(vs|Csz| ™)
+ O(w|Cez|™*) + O(fe(n - 1))
< O(fe(n-1)).
Similarly, for the other cases. Therefore, ||L, — Ly-1||ci+e < O(fc(n — 1))
and L, is a Cauchy sequence since 372 5, f(n) < O(f(M)), for any M > N,.
- |

2.2.6 The conjugacy map L.

Since the sequence (Ln)n>n, is a Cauchy sequence in C**¢(I), it converges
to a function L., € C'*e.

Lemma 9 The map L, isa C'**" diffeomorphism of I onto J which extends
i"loj.

Proof. By lemma 4, for all t € T,, |Cy 7|/|Ct 1] is bounded away from 0 and
oo and by the hypotheses of (1 4+ a)-scale equivalence, and (1 + «)-contact
equivalence if s,¢ € Ty are adjacent, (i) Aiej,r — 0, (ii) ¥, — 0 as n — o
and (iii) vs¢ — 0 depending if s is in contact with ¢ or not and if they have
the same mother. Thus there exists €; > 0,0 < € < €; and N} > 0 such that
if n > Nj then for all s,t € T,

&1 < [Cn71/ICmoy 2y O(AEraz|™ 4 1) < € and O(uy,) <e.

We break down the proof into four parts corresponding to the sets Cyz \
Ct,s,Ia Dt,s,l') Et,a,I' and Gt,a,l' \ Et.s,l'-
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(i) In Cyz \ Cisz. dL; = |Cy 7|/|Ciz] > €1.
(ii) In Dy, 1. Suppose that s is on the left of t. Then, in D,, 1,

|dLﬂ| I‘l,bt’,st + dz;bt,sLt + (1 - ¢t,,)dL, - d"/)t,aLal
ldL,| — |dipe,e(Le — L,) + tb¢,s(dLs — dL,)]|

ICeal/ICez] — O(v1) > €1 —€ >0,

v Iv |

(iii) In E,, 7. Suppose t is on the left of s. Then, in E,, r,

l¢t,ast + d¢t,3Lt + (1 - ¢t,s)dLm(t) - d¢t,3Lm(t)|
|dLm(t)I - ldqst,a(Lt - Lm(t)) + ¢t,c(st - dLm(t))l
ICrn() 7/ ICrm(yz] — OCAE s 2] + 1) > 1 —€ > 0,

|dL]

AVARAVAR||

(iv) In Gys1 \ Ets,r. In different subsets of this set, the map L, = L,_;
for some j € N. We suppose by induction that L,_; > e; — ¢ > 0. For that
take NO = maX{No,Nl}.

Therefore, |dL,| > ¢y —¢ > 0 in I for all n > N, which implies that
ILOOI > € -f€>0.

By construction, Ln(Ciz) = Ce.z forall t € T, No < m < n, and therefore

Lo equals i™! 0 j on the closure of U5y, I".

As Loo(Ci1) = Ci.7, for all vertices t € T,, and all n > N,, then L, is a
C't* conjugacy between the charts ¢ and j. B

2.3 Proof of theorem 2.

Suppose that the structures S and 7 are C'*P-equivalent and are given
respectively by the primary atlases 7 and J. This equivalence means that the
identity is a C'+# diffeomorphism between the two structures. Thus, if (¢,U)
is a chart of Z and Cin(z),z C U then there exists a C'*# diffeomorphism 2 :
R — R such that A(Ch(z)z) = Cim(s),7 and h(Ciz) = Cy 7 for all descendents
t of m(z).

By the mean value theorem, there are points u,v € Cpn(y),r such that

[dh ()] = |Cm(y,7|/|Cmnyz] and [dh(v)| = |C;.7]/|Ce1]-
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Moreover, since h is C'*#, we have that, |dh(u) — dh(v)| < O(|CmqryzlP)-
Therefore,

ICi7l |Crm).1l

< O(ICnwal’) < O(gpe(n)).
Comy7] 1Cez] (ICm.zl’) < O(gp.(n))

Vl=1_

By a similar argument,

_ |Gisg] [Cmy.1l
|Crm(t). 7| |G 51l

< O(|Cm1l”) < Ogp(n)).

Vgt,u = 1
Therefore,

P q
A £ O(ICri1l’ (U [Cuzl + 22 [Grip tinsnz))

=1 n=1

< O(ICm(nz]**) < O(gpe(n)).

where ty,...,1, are all the vertices with the same mother as ¢ and gy;_ . ..,
with 1 < n < g, are the respective gaps between them. By the hypotheses of
theorem 2, if m(t) = m(s), then

AE 2" + w|Euzl™® < O(ICmyz] P | Bz 0+9)
+ O(Cm1lP|Eaz]™) < O(gp.e(n)).

If m(t) # m(s) then
vt| 1|7 £ O(ICmi) 1| Erazl™) < O(gp.e(n)).

Thus, the conditions of definition 4 are verified if for f,(n) one takes cgg.(n)
where ¢ > 0 is some constant. Therefore, the atlases 7 and J are (147)-scale
equivalent.

If s and ¢ are in contact then, by the mean value theorem, there exists
u € C,1 and v € Cy 7 such that

|dh(u)| = |Cs,71/|Cs,z] and |dh(v)| = |Cy7|/|C:zl.
Since the map h is C1*#,

|dh(z) = dh(v)] < O((ICe1] +1Cuz])?) < O(IDyezl?).

Therefore,

ICe. 7| 1Cs 1] 8
- — < O(|D,,
ICO,JI lct,l'l - (I ¢, -II )

Vyt,; = 1
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and

V t,s —E
—i'—e' < O(| D01/ < O(gp,e(n)).
lDt.:.Tl

The last inequality follows from the hypotheses of the theorem.

Thus, taking f.(n) = cgge(n), the conditions of definition 5 are verified.
Therefore, the atlases T and J are (1++)-contact equivalent. This completes
the proof that Z and J are (1 + v)-equivalent. o
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Global phase space universality, smooth conjugacies
and renormalisation: 2. The C*+* case using rapid
convergence of Markov families.

A. A. Pinto and D. A. Rand!
Arbeitsgruppe Theoretische Okology, Forschungszentrum Jilich,
D 5170 Jilich, FRG.

Abstract

We prove that the speed of convergence of two Markov families
determines the smoothness of the conjugacy between them. One of
the applications of this result that we give is that the attractors of any
two quadratic foldings at the Feigenbaum accumulation point of period
doubling are C?+!! conjugate. Our main result provides the basis for a
complete unification of renormalisation and smooth conjugacy results
which includes both the classical theorems and more recent results

about critical systems.

3.1 Introduction.

In [7] the notion of a Markov family was used to prove that exponentially fast
convergence under renormalisation of two dynamical systems with bounded
geometry implies that their limit sets are C'** conjugated. In fact, in a
number of cases, such as diffeomorphisms of the circle and quadratic foldings
at the accumulation point of period doubling; these conjugacies are actually
smoother. In this paper we prove a general theorem for Markov families
which gives this extra smoothness in terms of a balance between the speed
of convergence of the two Markov families and the scaling structure of their
cylinders. In renormalisation problems, these are given by the speed of con-
vergence of the renormalisation and the scaling structure of the critical orbits
of the dynamical system. A simple corollary of this theorem (theorem 2) is
that the conjugacies between the limit sets of quadratic foldings at the ac-
cumulation point of period doubling are C**!!, For diffeomorphisms of the
circle of constant type, the fact that the exponential rate of the convergence
of the renormalisation can be made arbitrarily large by using a nearly lin-
ear high order polynomial diffeomorphism instead of a linear rescaling in the

! Permanent address: Nonlinear Systems Laboratory, Mathematics Institute, University
of Warwick, Coventry CV4 TAL, UK.
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renormalisation transformation, allows one to deduce C* conjugacies as a
corollary of theorem 1. This result shows that Markov families are a consid-
erably more powerful tool than Feigenbaum-Sullivan scaling function ([8]).
This scaling function is a complete invariant of the C'* structure, but by its
nature is incapable of detecting extra smoothness. On the other hand, our
results show that Markov families determines the extra smoothness. More-
over, this result provides a unification of renormalisation and classical smooth
conjugacy results. The general principle is that two infinitely renormalisable
systems with bounded geometry are C™+# conjugated with 0 < r < oo and
0<B<1lifforall 0 <é <r+ f there exists a polynomial renormalisation
in which the speed on convergence dominates the (§ — 1)*" power of the rate
at which the smallest geometrical scale goes to zero. An open problem is to
replace the condition of bounded geometry by a weaker condition as done in
[4] so that problems of non-constant type can be handled.

The observation that the faster speed of convergence implied a C** con-
jugacy for period doubling first arose in discussions with Rafael de la Llave

in 1987.

3.1.1 Markov families.

Topological Markov families

A topological Markov family F is a family of mappings F,,, with either
n=0,1,...or n € Z and a in a finite set S, which satisfy the following
conditions.

(i) For each n and a € S,, Fua is a homeomorphism of the closed
interval I? into R. -

(ii) I? contains in its interior a closed interval C7 with following prop-
erties.

o intCrNintCy =0 if a # b.
e If z € C? and F,(z) € C;*! then F,(C?) contains CJ+.
o If b € Sp41, there exists @ € Sy such that F,(C}) contains

Cptt.
We regard the F, 4 as defining a single mapping F;, on C" = U,es, C3-
C*ta Markov families

A CFto Markov family F satisfies the following conditions in addition.
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(iv) F,. = F,|I? is a C*¥** diffeomorphism of I} into R.
(v) |Fi(z)] > 1 for all z € I* and all n in some norm on R.

Bounded and boundedly extended Markov families
A C*t* Markov family F is said to be bounded if

(iv) [/ ICm/IC®), 1Z1/ 1] and |C21/|CZ] is bounded away from
0 and oo, where C" is the smallest closed interval containing

UGESﬂ C:;

(v) for all n and all @ € S, the C*t® norm of F,.=F,|[I?on Iis
bounded independently of n and q; and

(vi) there exists A > 1 such that |Fy(z)| > A for all z € I™ and all n.

A point z € C" is captured if for all m > n, Fr_y0.-- 0 Fy(z) € C™. The
set of all captured points in C" is denoted by A" = A"(F).

Let ©" denote the set of infinite right-handed words ¢ = €,6441... such
that (i) ¢; € S; and (ii) there exists £ € C" with the property that

Fp10--0F(z)eC,

for all m > n. We call these words admissible. If £ = €p€n41... € [I,5n Sp
let £lp denote the finite word €,...€n4p-1 Of length p. Let L7 denote the
set of finite words g|p where g € X*. We denote by ¢ and m the mappings
o:Ep — 3 and m: £} — I, given by

O'(En vee €n+p-l) = Epn41 - €ntp-1
m(€n .o Entp-1) = En...Enppz.

If £ = €n€ny1 ... € L" then we denote by C.,...., (resp. I.,.....) the closed
interval consisting of all z € C™ such that for alln < j <m,

J+1

Fjo---0F,(z) €C} (resp. Itjm )

By A.,... We denote the intersection of A" with C,, ..., and by C., ... the
smallest closed interval contajning A.,..c.. Note that if each interval C7} is
replaced by the subinterval C2 in the definition of A" then one obtains the
same set A" of captured points.

We therefore assume henceforth that C2 = Cp.
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Suppose that Jis a closed set contained in the interior of an interval I and
let J denote the smallest closed interval containing J. Then I —J consists of
two intervals. The interval to the right (resp. left) of J is denoted by R(J,I)
(resp. L(J,1I)).

Definition. A C**> Markov family F is boundedly ertended if there exists
61,62 > 0 such that, for all n and all a € Sy, the intervals I7 on which F, is
defined and C*** are such that

|R(Ca, I 1L(Cq, 13)]
hi< SRS SRR <G (3.1)

All the Markov families of this paper are assumed to have this property.

Definition. If F and G are two topological Markov families then we say that
they are topologically conjugated if for all n there exists a homeomorphism

b, : A"(F) = A"(G) such that G, 0 hy = hpyy 0 F,, on A™(F).

In such a case we call the family & = (h,) the conjugacy. The major result
of this paper is the derivation of natural necessary conditions for the k, to
be C™+P or to have a C™*# extension to R. Without loss of generality, we
will restrict to the case where the homeomorphisms preserve the order of the

real line. ,
Conditions A(g) and B(g).

Let G be a C**Y Markov family which is topologically conjugate to F'. We
will impose the following condition on the pairs of families F' and G that we
consider. It involves the positive function g(n).

Condition A(g). For all n and all e € S,

oy s
-

||Fre = Gnellestramy < g(n +1).

By I*, I, I?, C™, C* and C} we denote the intervals and cylinders I"(F),
IMF), I}(F), C*(F), C}(F) and C}(F) for F. We denote the corresponding
intervals and cylinders for G, by J*, J?, J*, D*, D? and D}.

Ife € S,, let A, denote the affine map which sends C7 onto D7 preserving
orientation. We regard A, . as having domain I7. If t is the word €g++-En €

%2, define

— -1 n
](l - 0.60 OGn -1,6n-1 ‘]en - ‘]?’

Ey = Faeny0°20F0,: I? - I:,,v and
Li = KioAn, oE : I} — J).
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Now we formulate a condition that controls the behaviour at contact points.
Lett =€g...6p-1 and t' = €5...€),_; bein contacti.e. such that Cy and Cy
meet in a point. Let m > 0 be minimal such that tjm = t'|m and t|(m+1) #
t’|(m+1). In this case, let e, denote max_¢, Ol {|dE«(z)|, |dEyu(x)|}. Then
we impose the following condition on all such pairs t,t’

Condition B(g). For all sucht and t’and all 0 < k < s,
Lome = Lompllox < 9(")65;}:),”(:')

on Iom¢ (N pmy.

It is not difficult to see that condition B(g) is satisfied, for appropriate g,
by those Markov maps arising from renormalisation structures with contact
points such as those for diffeomorphism of the circle and cubic critical circle

maps.

Theorem 20 Suppose that the bounded and boundedly extended C**” Mar-
kov families F and G are topologically conjugate and satisfy Conditions A(g)
and B(g). Let e(n) = max,exg ||dE¢||. Then the conjugacy h = (k,) is C+#
with B € [0,1) such that r 4 8 < s, if the function f given by

f(n) = e(n)™*""g(n)

is such that 72, f(j) < oo.

Remark. Suppose that F and G satisfy the hypotheses of theorem 20.
Then, by boundedness, there exist constants dy,d; > 0 and A, € (0,1) such
that for all t € L2, -
dl/\-n < IdE;I < dg[l—n

Thus g(n)/f(n) < cAU+A-U1 and, in particular, g(n) is exponentially de-
creasing. If g(n) < cr™ then, by theorem 1, the condition 7/u™+#-1 < 1 is
sufficient for the conjugacy to be C+4,

3.1.2 Global C? rigidity for period-doubling.

We say that a sequence of points z; ¢ = 0,1,... in the interval [z,, o] has
the Feigenbaum orderingif for 0 <4 < 2"71, z;,5n-1 and z;,340-1 lie between
z; and zi4on-1 and are ordered so that z; — x;43n-1 and ziy2n — Tig432n have
the same sign. The inductive construction of such a sequence is illustrated

in figure 1.
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Xl xO

3 X2

X5 X7 X§ X4

Figure 1.

A quadratic folding of the interval I = [—1,1] is a C'tLiPschitz mapping
f:I— I with f' > 0 (resp. f' < 0)on [-1,0] (resp, [0,1]) and such that
in some neighbourhood of 0 there is a C'*LP*chitz coordinate system z in
which f(z) = z? + f(0). Given such a mapping f let z; = f**1(0). Suppose
that the z; have the Feigenbaum ordering. Let J;, denote the closed interval
between z; and z;4qn, 0 < ¢ £ 2". The Cantor set

2n-1

Ar=11 U Jin

n>1 i=0

is the attractor of f in the sense that every orbit is either eventually periodic
or else converges to Ay.

Theorem 21 Suppose that f and g are real analytic quadratic foldings with
the Feigenbaum ordering. Then the canonical homeomorphism h: Ay — A,
has a C?*+1! extension to the real line.

Proof. Let Q denote the unit disk |2] < 1 in C and let £ denote the
real Banach space of continuous h: 0 — C~which are holomorphic on 0,
take real values at real points and are such that, if A(z) = ¥,50a.2" then
[|R]] = ano laa] < 0o. Let A denote the set of maps of the form

f(2) =1=2%h((z2 - 1)/2.5)
where h € L. By identification with £, A may be regarded as a real Banach
space.
The doubling operator
T(fy=a'-f’oa (3.2)

where a = a(f) = f(1) is well-defined on the open subset D(T) consisting of
those f € A such that, if a = a(f) and b = f(a) then a < 0, b > —a and

f(b) £ —a.
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Lanford [1} and [2] has found a polynomial f,,,,,. which is very nearly a
fixed point of T'. Using computer-assisted estimates he then shows that if V
denotes the ball ||f — fo,proz|] < .01, then

1. T}V is well-defined and C*;
2. for f € V, dT(f) is a compact operator; and
3. T has a unique fixed point g in V.

Moreover, using his computer assisted proof, it is easy to show that (Mestel
[3]): 4. the spectrum of dT'(g) consists of a simple real eigenvalue § > 1, the
eigenvalue Ao = a ~ 0.3995 corresponding to quadratic coordinate changes
(see below) and a countable set of eigenvalues contained strictly inside the
circle |z| = o for some 0 < o < 0.13.

If 7: C — C is holomorphic on a neighbourhood of 0 in C let 1, denote
the infinitesimal coordinate change given by

Py = % (id+tr) "t ogo(id+tr).
t=0

It is easy to check that if a™! - 7 0 @ = a™r then %, is an eigenvector of dT
with eigenvalue a™. ’

We are interested in the eigenvector 1y = t,, corresponding to 7o(z) =
z2. This has eigenvalue \g = a. Let E be the finite-dimensional spectral
projection in £ of dT associated with the eigenvalue )g. Then for f € A

near g, the equation
Yrn=E(f~-g) _ (3.3)
has a unique solution with 7(f) a monomial of degree 2.

Now, t,(s) is an infinitesimal coordinate change corresponding to projec-
tion of f into EL. Define

a(f) = ({d+7(f)) " o f o (id + 7(f))).

Then
a(f) = f = ¥w(ny + O(If = gI?)- (3.4)

One can regard o f) as the result of factoring out from f — g the quadratic
coordinate transformations in EL corresponding to deviations from f = g.
Therefore, consider the transformation

Ty(f) = o(T(f)) = (id + 7(T)) ™" o (T(f)) o (id + 7(T(f)).
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By (3.3) and (3.4) this has derivative
dTy(f) = da(T(f)) - dT(f) = dT(f) = Yrar(sy) = (id — E)dT(f)
Thus the spectrum of d7T(g) consists of the simple real eigenvalue § > 1, and

a countable set of eigenvalues contained strictly inside the circle |z| = o for
some 0 < 0 < .13.

The associated coordinate transformations (id + 7(T'(f)) are nonlinear
functions of f. On the other hand, if

S(f) = B o T(f) 0 B.

where B = By = id + 7(dT(g) - (f — g)) then dS(f) = dTy(f) and the
associated coordinate transformations B are bounded affine in f.

Clearly the stable manifolds of S and T are equal. Therefore we have
deduced that if f € Wi(g) and f, = S™f then there exists a constant ¢
depending only upon f such that ||f, — g]] < co™ < ¢(0.13)".

To f € Wj(g) we associate the Markov family

Galz) = { Brl(z)  if z € Io=[f3(0), f(0)]
" By (fa(2)) if z € Iy = [£3(0), fa(0)].
Let F be the corresponding Markov family for the fixed point g. Then F and
G satisfy condition A(g) with g(n) = ¢(0.13)" for some constant ¢. Condition
B(g) is trivial in this case as there are no contact points. Moreover, since
G, is independent of n, if t € £ then [dE,| < a~?" because |dG,| < a%
Therefore, by theorem 1, the homeomorphism & : Ay — A, has a C™+#
extension to R for all r and 3 such that

Ineo In.13
& — K e "
r+p8< na +1< 51n.3995 +1<2.11.

This proves the theorem under the assumption that f € V. The general
result follows from Sullivan’s theorem ([10]) which says that if f satisfies the
hypotheses of the theorem then T"(f) € W{(g) for some n > 0. . |

3.2 Proof of theorem »1.

In this section we reduce the proof of theorem 1 to the two main propositions

2 and 3.
Notation

Throughout the paper we use the following notation:
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1. If f and g are functions of a variable z with domain A, then we write
f(z) = O,(g(z)) with constant d if, for all z € A,

@)
RN T

and if the constant d depends only upon the variables y. Often we will
drop the reference to d. In many cases the constant d will depend upon
the Markov families F' and G of theorem 1, but, in this context, these
are fixed and this dependence is never explicitly mentioned.

Thus if a, and b, are sequences then a, = O(b,) means a,/b, and
b./a, are bounded away from 0 independently of n.

2. Similarly, f(z) < O,(g(z)) with constant d means |f(z)/g(z)| < d for
all z € A.

3. We also use the notation of interval arithmetic for some inequalities
where:

o if I and J are intervals then I 4+ J, I.J and I/J have the obvious

meaning as intervals,
o if I = {z} then we often denote I by z, and

o I+e denotes the interval consisting of those z such that [t —y| < ¢
forally € I.

Thus ¢(n) € 1 & O(v") means that there exists a constant ¢ > 0
depending only upon the families F,, and G, such that for all n > 0,
l1—-cv < ¢(n) <1l+cvm.

- ™

Proof of theorem 1

Let the Markov families F and G be as in the statement of theorem 20.
As above, if € € S,, let A, . denote the affine map which sends I onto J7.

If e’ € £ let

— -1 « Jn
I(n,e,t’ = Gn,e ° An+l.€' ° Fﬂ.G . Ies’ - ‘]enc'

Then
Lt = c’m(t) o I(n-l,en_,cn o Em(t)-
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3.2.1 Gaps

If s,t € £2 we say that s and t are adjacent if there is no ¢/ € £2 such that
Cy lies between C, and C;. In this case we say that ¢t and ¢’ and C° and C?
are in contact if C,C; # 0. If they are not in contact then there is a gap
between them. We denote this gap by G, or G;,. If m(s) = m(t) then G,,
is called an n-gap.

3.2.2 Definitions of the closed sets C;;, D;, and E,,.

To each s,t € L2, we associate the following intervals in R (see figure 2(a),

(b) and (c)).

¢ C,y, Ci, and Dy,: If t,s € T2, are adjacent and in contact, define
P., = P, as the common point between the closed sets Cy and C,. Let
the closed interval C;, denote the closed interval in C; of length §|C|
which contains P,, where, using lemma 15, § is chosen independently
of t so that C,, C I, NI,. Define Dy, = C;,UC,,. If t,s € X2 are
adjacent but not in contact, define P, as the common point of C; and
the gap Gi,. There is € > 0 such that |Gy,| > €|Cy], for all s,t € X9
and all n. Moreover, there is 6; > 0 such that if |z — P, ,| < 6;|Cy| then
z € I;. Let 0 < § < min{e,8;} and & = §|C;|/3. Define the closed sets
Ct_, as

Cg'. = {.’C € Gt,s : IJ: - H,tl S 6!} .
Then C;, NC,;¢ = 8, |Ci,| = O(|Ct|) and Cy, C I

o E,: Let t;,s1 € T2, be the adjacent vertices such that Gy,,, = G-
Define E;, = Ct, \ Ct,s,. Clearly, Ey, C I,. By the choice of §; in the
definition of Cy, |Evs| = O(|Ci])-



17

|
Gt G

1 I-—- ———*l
Pls,t Cs,t q,s
D

T
(a) ®

G G

.;_m
i)n

g §
S T S
:Cix'sl
—
©
Figure 2.

3.2.3 The definition of the contact and gap maps.

Lemma 10 For all § > 0 there exists a C* map ¢ : [0,6] — [0,1] such
that ¢ = 0 on [0,6/3], = 1 on [26/3,6] and ||¢||ck+a < cx6~*+*) where ¢
depends only upon k € Zyo and not on a € (0,1] or 8.

The proof of this lemma is very simple. Find such a function ¢q for the
case § =1 and then deduce the general case by letting ¢(z) = ¢o(612).

If s and ¢ are adjacent in £9 we use lemma 10 to choose functions ¢, on
G., and v, = 1, on Dy, with the following properties.

(i) s =0 (resp. 3¢, = 0) on the left-hand third of E,, (vesp. D;,,)
and ¢, =1 (resp. 91, = 1) on the right-hand third of E,, (resp.
Dt,a)
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(ii) Héallorsa < O(IE,[757%) and [[r.llcrsa < O(|Dy,|7*~), for
all integers 0 <k <sandall0 <a <1lsuchthatk+a<s+v
and where the constants are independent of all the data.

By lemma 15, |Ey,| = O(JdE,|™") = O(|[dEny|™) and |D,.| = O(e;}).
Therefore,
[eallorss < O(eft®) and [l$rallorsa < O(IES ). (3.5)
for all integers 0 < k <sandall0 < a<lsuchthat k+a <s+19.

Extend ¢, to all of the gap G, as a smooth map by taking it as constant
outside E;,. We call the ¢;, gap maps and the ¢, contact maps.

Note that, for all n,m > N and all non-contact adjacent vertices ¢;,s, € £°

and t3,s; € Ty, such that {s;,t;} # {s2,2} the domains of the gap maps
where they are different from 0 or 1 do not overlap. For all n > N and all

contact adjacent vertices t3,s3 € L2 and t4,s4 € L2 such that {s;,t3} #
{s4,t4} the domains of the contact maps do not overlap. Moreover, they do

not overlap with any domain of any gap map ¢4,,,, where #;,s; € T;, and
m<n.

3.2.4 The map A, :C° — D°
Construction of k, on cylinders C; in C°.

Lef ko be the affine map that sends C° onto D°. For all n > 0 and all vertices
t € £, define the map k, on Cy C C° as follows. For all words s; in contact
with ¢, define A, = L; on Cy C UC,,,. If s i3 in contact with ¢ and s is on

the right of ¢ then _
ha(z) = Pr,s(z) Le(2) + (1 = $1,(2)) Lo ()
for all z € Cy,. If s is on the left of ¢ then
hn(z) = ¥1,s(2) Ls(2) + (1 = Y0(2)) Li(2)
for all z € Cy,.

Extension of h, to the gaps G, in C°.

" Suppose that t,s € L2 are adjacent but not in contact. Moreover, suppose
that Cy is on the left of C,. Define the map h, on E;, by

halge, = Gt Lingy + (1 — f1,5) L.
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Define the map h, on E,; by
hn IEn.c = (1 - ¢'.¢) * LM(a) + ¢c.t - L,.
Finally, in G¢, \ (Ei, U E,,) define hn = h,_;.

Note that if C; = Cpy) then on Cy U Ey,, hy = h,_;. This construc-
tion builds an infinitely differentiable map &, which is defined on the closed
interval C° and which maps C° diffeomorphically onto D,

3.2.5 The sequence of maps (h,) converges in the
C™*# norm.

The space of C™t? maps on the interval C°® with the C™*# norm is a Banach
space. In this section we prove that the sequence (k,) is a Cauchy sequence
in this space and therefore converges. Firstly, we prove the following lemma.

Lemma 11 Suppose t € £2,, and n > N,. Let M be one of the three
subsets D;,, G, and C; \ U,C;, where the union is over all those vertices
in contact with t. Then, if r and 3 satisfy the conditions of theorem 1 and

0<6<54,
[1Bnt1 = hallorssan) < O(g(n)e(n)™7).

The constants of the inequality only depend upon F and G.

Proof. We break the proof down into 3 cases corresponding to behaviour in
the three subsets Cy \ U,Ci4y Dt and Gy,

(i) For M = Ci\U,C}, where s runs over all those vertices in contact with
t. By proposition 2,

B g

1Lt = Ly llor+s

lhn41 = Rallcres =
< Op45(9(n)|dEmy|*1)

(ii) For M = D,,. Suppose s is on the left of ¢{. Then
hn+l - Lt = ¢’t.nLt + (1 - zl)t,n)La - Lt = (1 - ¢¢,a)(Lo - Lt)
in C;,. Therefore, by proposition 3 and inequality (3.5) we have that in Cy,,,

k
|d* kg —d* Ly < Y aild' (1 =) lld (L, = L)

=0

< Og(n+1)ef3")
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forall 0 < k < r+ 1. The a; > 0 are bounded independently of ! and n.
Moreover, by proposition 3 and inequality (3.5),

d hngr = d Lellos < Do aild' (1= Yua)lles |l (L, = Ly)||co
=0
+3_ald'(1 = pua)lles (147~ (Ly = L) |os
=0
< Onps(g(n +1)eft® ).

Therefore,

hass = Lelerss < O(g(n + 1)ef+é-1)

in Ct,.-
If m(s) # m(t) then
hn — Lm(g) = (1 - wm(t),m(:))(Lm(n) - Lm(t))' < O(g(n)e:n'*(f);l(,))
by lemma 2 and the last inequality. Thus

[Jhast = hnllgres < |[hasr = Lellers + ||Le = Lingsy|]oree
+ |[Lm(t) = hnllcr+s

< O (slneny 1),

in C"'l

If m(s) = m(t) then Ly = hn or there is a z in contact with m(t) such
that b, = Ym(t).e Lm(e) + (1- z/)m(g),,)L,. In this case,

-

Ly = hallorss < Orps(g(n)erds).
Therefore, in Ci,,
Hhnt1 = Ballcrss < Orps(g(n)e(n) +5-1).

A similar argument to that used for C, gives the same bounds for D,,.

(iii) For M = G,,. Suppose that C; is on the right of C,. By definition of the
domains of the gap maps h, 41 = h, in the gap G;, except in the extended
intervals Ey, and E, . In Ey,,

hn+| - hn = Lm(t)(¢t,l - 1) + Lt(l - ¢t.s)
= ([/t - Lm(t))(l - ¢t,a)-
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By proposition 2 and inequality (3.5),

k
Hhnt1 = Ballex < Do ai|d'(Le = Lugy)||d*'(1 = ¢4)]

=0

< Ow(g(n)ldEmy 1)

forall k=0,...,7+1 and the a; > 0 are bounded independently of | and n.
Also,

ld o1 — dhalles < D ailld'(Le = Lugy)les||d* (1 = ¢e)llco

1=0

+ Y alld' (L = Lmgo)lleolId*(1 = g0)]fos

=0

Or45(g(r)|dEmy[+*1).

IA

Similarly, in E,,

|Ant1 — hollcres < Or+6(9(")ldEm(i) I'”-l)-

Lemma 12 (h,).>n is 2 Cauchy sequence in the domain C° with respect to
the C™*? norm.

Proof. Since C° is the union of the sets M of the form D,,, G:, and
Ce\ U,C:, where s,t € X9 it follows that

int1 = kallerice) < sup likntr = hallrgan) < Olg(n)e(n)™)
by the previous lemma. It therefore remains to prove that, if H, = hnyy —ha,
then there is ¢ > 0 such that for all z,y € C°, |d"H,,(y)—d" H,(z)| < cly—z|°.

Assume without lose of generality that z < y. If the interval [z,y] is
contained in the union of three or less intervals of the form D;,, Gy, and

Ci¢\ U,C;, where s,t € EJ then
|d" H,(y) — d"Hoa(z)] < O(g(n)e(n) 2Ny — z|°

by lemma 11.

Therefore, suppose that this is not the case. Then [z,y] contains a cylinder
Cy in its interior for some ¢ € X2, Let ¢;,¢, € £2 be such that Cy, (resp. Cy,)
is the leftmost (resp. rightmost) cylinder of this form which is contained in
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[z,y] and does not contain z (resp. y) in its interior. Let p, (resp. p,) be
the left-hand (resp. right-hand) endpoint of Cy, (resp. Cy,). Then

|d"H,(y) — d"Ha(2)] < |d"Ha(y) — d"Ho(p,)| + |d" Ha(py )|
ly —=z|? - ly — z|f
4 T Hn(pe)| + " Ha(p:) — d" I (2)]
ly — =z|°
|[d"Ha(y) — d"Ha(p,)| | 1d"Ha(py)
ly —pyl? ICe|?

+ Idan(pz‘)l + Idrlfn(z) - d'H,,(p,)]
[Ce}? |z —p:|? '

The first and last terms are bounded by O(g(n)e(n)"+#-! by lemma 11.
Moreover, by lemma 11 |d" H,.(p:)| < g(n)e(n) 1. Therefore,

d"H,(p: r48-1
ol <o (gmetny+a).

Thus,
ld"Ha(y) —d" Hu(2)| < O (g(n)e(n)"*’ﬂ'l) ly — :z:]ﬂ.

Consequently, if m > n then ||hm ~hallcr+scoy < O(TT,, f(7)). Therefore
k. is a Cauchy sequence in the C™+# norm. This completes the proof of the

lemma. -

3.2.6 The map Ay is a C™P diffeomorphism.

"o

Since, by lemma 12, the sequence h, is a Cauchy sequence in C™#(C?), it
converges to a map ke, € CTA(C?).

Lemma 13 There exists a C™*? diffeomorphism ko, of C° onto D® which
for all ¢ € £° and all n > 0 maps C;j, onto Dyj,.

Proof. By lemma 16, there exists € 5 0 such that for all t € X0 %, 1D/ ICe) >
E.

We consider separately the four sets C¢ \ Cy,, Dty Ets and G, \ Ey .
()Iﬂ Cg\Ct, dLg ID¢|/|C¢|>€
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(ii) In D,,. Suppose that s is on the left of t. Then by proposition 3 and
inequality 3.5, in Dy,,

|dha) = |eadLle+deaLe+ (1 —y,)dL, — dipy, L,|
> |dL,| = |d.(Le = L,) + ¥, (dL, — dL,)|
> |Di|/|Ce| = O(g(n)) > € — O(g(n)).

(iii) In Ey,. Suppose t is on the left of s. Then by proposition 2 and
inequality 3.5, in Ey,,
ldhnl '¢t,ast <+ d¢t,aLt + (1 - ¢(,a)dLm(t) - d¢t.aLm(t)l
{dLm@)| = |dde,s(Le = L)) + ¢¢4(dLy — dLng)l
[Dm) [/ IComy| — O(g(n)) > € — O(g(n)) > 0.

vV Iv 1

(iv) In Gt \ Et,s. For each z € G, \ Eys, dhy(2) = dh,_j(z) for some
j>0.

Therefore there exists p > 0 and s;,¢; € L3, 1 < ¢ < p such that hoo
is a C"*# diffeomorphism outside of G = UZ_,G,.«.. If G, = [a;, ;] then
hoo(@i) < hoo(bi). Therefore, there exists a C"*# diffeomorphism k,, such
that ho = hoo outside G.

_ By construction, h,(C;) = D, for all t € £}, m < n. Therefore h(C,) =
hoo(C:) = D; for all t € £2 and all n > 0.

If z € C™ let y € C° be such that F,_y 0+ 0 Fy(y) = z. Define AhZ (z) =
Gn-10+++0 G 0 ho(y). Then, since ko is C™*# then so is k2. Moreover,
b2 (A"(F)) = A™(G) since this is true for n = 0, and G, o A% = h3}' o F,
on A*(F). =T H

This completes the proof of theorem 1. It remains to prove propositions 2
and 3.

3.3 Preliminaries.

Lemma 14 If for each n M, is an interval contained in F,, ., (I") N Gn . (J")
then

”Fn-;el.. - G;,lc..”C'+1(M'.+1) < 0(9("’))
Proof. This follows from the fact that on the appropriate domains the
mapping f — f~!is smooth. B
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Lemma 15 Suppose that F' is a bounded and boundedly extended Markov
family.

(2) There exists A € (0,1) such that, if t € 2, then |I?| < O(A").
(b) |[dE:(y)}/|dE:(z)| is bounded away from 0 and co independently of ¢
and z,y € I?.

(c) 1P| = O(ldE()|™"); |Ciels |R(C Iy [L(Cey 1), [Cra s | B = O(II7]);
and |Dy,| = O(e,",,l).

Proof. The proof of (a) follows directly from the boundedness of F.
Next we prove (b). If t € £9,,

dE(y
in B2 5 og 4, (Bastg )] = 0 4Fss Bt )
[dE(z)] ;=
where Enn() denote the identity map. But E, u-,(,)(:c) and E‘mn-,(,)(y) are
in I:,(f Therefore, d(Emn-i(5)(¥), Emn-iiy(y)) < €A™ J where ¢ is a constant
independent of n and ¢. Let
| Fe;
D = sup —=222-
ng ldEh‘Jl

Then D < oo and

l t(y)l -i,
log IdE'( ZD/\

which is therefore bounded away from oo. By symmetry it is bounded away
from —oo. -

Part (c) follows directly from (b) because E(C7) = C2,, E,(I7) = I, and
E(R(A%,I?)) = R(A?,,I7). Therefore, by the mean value theorem, there
exists z,y € I? such that |I?] = |[dEy(z)|!|I} | and

IR(AS, D) = [dE()|7' [R(AC,, I2,)]

-

Lemma 16 (a) |[D?)/|C?| = O(1). (b) |dL| = O(1).

Proof. Since F and G are bounded there exists ¢,d > 0 and s, € (0,1)

such that for all t € 9
cp” < |I7] < dA™.
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Moreover, as noted above, g(n) < O(r") for some 7 € (0,1). Therefore, (a)
follows directly from the results of [7].

Moreover, if z,y € I? then |dL.(y)|/|[dLi(z)| = O(1) by lemma 15 and the
definition of L;. But L,(I?) = J?. Therefore, by the mean value theorem,
there exists z € I such that |[dL,(z)| = |J?|/|I7|- Combining these results
we deduce that |dL,(z)| = O(1). H

Lemma 17 Suppose H, is a sequence of C**! local diffeomorphisms such
that H(™ = H, 0-.. 0 H; is well-defined. Then

k-1n-1

dlndH™ = Y Y d*ndH (HO) - (dHO)*

1=0 =0

Ef(dIndH®,...d' IndHY)

where H(®) denotes the identity map and Ef = Ef(zy,...,z;) is a polynomial
of order ! with coefficients which are independent of n and ¢ and which
satisfies the following conditions
(i) Ef =1, Ef =0 and E}(z;) = 1.
(i) For I =0,...,k—1, |
Ezkfll(xho ey Tip1) = Elk+1($1, ooy Tig1)

+(k - I)-TlElk(zh ey T1) + Flk(zh cees T4n)s

(iii) EF,(z1,...,T141) is a sum of monomials of the form

aiy x?n,

b,-,m,',.:l:,-l eee Ty,

such that a;, ¢y +...+a;;i; S+ 1and a;y +... 4+ a;; <k for all
l=0,...,k—-2;

(iv) (k — )z Ef(z1,...,21) is a sum of monomials of the form
b;,,,,;ja:lz?:‘ cee T

such that 14+a;, 01 +...+a;1; < [+1and 1+a;,+...4a; <k+1
foralll=1,...,k—1.
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(v) FF(z1,---,%141) is a sum of monomials of the form
b;,.. ,,zmz . .:c:-’,';'"‘_l ...:z:?;":c,‘mﬂ
such that, a8y + ...+ (i, = 1)im + ...+ aif;+ i, +1 <141
and a;; +...+a;+1<k+1for alll=1,...,k — 1. Moreover,
Ff=0and E’,"f,l(xl, ...y Z141) is a sum of monomials of the form
ai;

.
b.,_,‘,,.x,-‘ ....’E"J,

such that a;i; +...+a;i; <1+ 1 and @y, +...4a; <k+1for
alll=0,...,k—-1.

Proof. The proof which is by induction on k is omitted because it is straight-

forward. -]
Lemma 18 Let G be bounded and boundedly extended C*+* Markov fam-
ilies as above. For all £ € £% and all 0 < j < n define the map GI™ : J* —
Ji o by i

goectn

n-ln.1"®

(;in =:(;;;i . ()(;—
Let G™" denote the identity map.

Then for all z,y € J°,

Jvﬂ(y)
dGi™(z)
where B =7y if s=1,0r f=1if s > 1 and the constant ¢ does not depend

|In | <clz —y)?

upon j, n and €.
Moreover,

dGin(y) € exp(e)dGin(z).

Proof of lemma 18. By boundedness of G, by the medium value theorem
and as |dG;!l < A < 1, for all m 2> 0. Then, for all z,y € J7,, there is
zt, €J0 such that

dGi™(y) _ in .
G,,n(x)l < Ezl(llﬂldG;-u._,OG W =In|dG,, | 0 G (2)]])
i=j

< a Z G (y) ~ G (=)

i=5+1

a 3 (G (2, ) ly — 2l

i=j+1

|In

IA

IA

cle —yl’ < c3,
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where the constant c3 does not depend of j, n and . Therefore,

dGI™(y) € exp(xes)dGi™(z).;

Lemma 19 Let G be bounded and boundedly extended C*+* Markov fam-
ilies as above. Then the norm ||IndG¥ "Hck of the map In dG” " is bounded
independently of j, n and ¢, forall k =0,...,s = 1.

Proof of lemma 19. The case k = 0, it is proved by lemma 18. For
k > 1, we will prove by induction in k that d*In dG#" is bounded in the C°
norm independent of j, n and ¢.

Case k = 1. By lemma 18 and as k > 2,

dGi™(y)
dGL"(z)

Therefore, d1IndGJ™ is bounded in the C° norm independent of j, n and ¢.

|In | < clz —yl.

Induction step. By induction hypotheses, we suppose that the following
maps dIndG", ..., d*~1ln dG}" are bounded in the C° norm independent

of ¢, n and ¢, We wxll prove that d"ln dG}™ is bounded in the C° norm
independent of 7, n and g. :

By lemma 17

k-1 =n
d*IndGi® = 3 Y ((d"'lndGih,,_, o GiM)
= 1=0 i=j+1 -

(dG;_-ﬂ)k-:E"‘(dln dgén’ ...,d'In dG;_'"))
where the coeflicients of the polynomial E] are independent of ¢, n and ¢, for
all k€ {1,...,s = 1}.

As the Markov family G is bounded then the first k + 1-derivatives of
the map G7};.,_, are bounded independent of i and |[dG7},,_,| > b~! > 0.
Therefore,

|d*-11n dG2

i-1.; 1

G'"I < by, (3.6)
foralll=0,....,k—=1,i=7+4+1,...,nandall0 < j < n.
As the Markov family G is bounded then |[dGil| < A <1 and

l E (@G < (7= A)k ' < by, (3.7)

i=j+1
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foralll=0,...,k—-1,i=3j+1,...,nand all0 < j < n.
The induction hypotheses implies
|EF(dIndGi™,...,d' IndG{M)| < by, (3.8)
foralll=0,...,k=1,t=j+1,...,nand all0 < j < n.
By lemma 17 and equations (3.6), (3.7) and (3.8)

k-1
|d¥In DGI™| < 3 by y( .
- =0 1- /\

)k—l S bk-

Lemma 20 Let G be bounded and boundedly extended C**”" Markov fam-
ilies as above. Then ||In dK}||cs-1 is bounded independently of t.

Proof of lemma 20. By definition K; = G}™. Therefore, lemma 20
follows by lemma 19.

Lemma 21 Forallt =¢p...6 € L), and 1 S k < s,

(), |ldIndE|jcs-1 < Ox(|dE.[F)

and

(i), |ldEilcx < Ok(JdE|**Y).

Proof. We firstly prove (i)x by induction on k. Consider the case k = 1.

Since E} =1, E} =0 and - -
n=-1
In dE¢ = E In dﬂ',‘(Emn-i(t)),
i=0
n-1
Id]n dEgI S E ldln dﬁ}'q (Emn—l'(t))”dEmn_.'(t)l_
=0

But |dF;,,| > 1 and |d*F;.,| is bounded above. Therefore, |[dIndF;,,]| is
bounded above. Thus,

n-1

ldndE| < 1Y |dBmnmiy)

=0

n-1 -1
< AldB(Y [d(Factns 04vr 0 Fia)(Emnig)] )
1=0
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for some constant ¢;. However, there exists d > 0 and 0 < A < 1 such that
|d(Fr-t,6a_3 ©-+-0 Fie,)|"? < dA"~%. Consequently,

|dla dE,| < O(|dE:|). (3.9)

We now consider the case k = 2. Since E2 =1 and E? =0,

n-1

1
I(P ln dEtI S E Z Id ln dﬂ#i(Em"—‘(f))l . ldEmn—.‘(t) Iz-l

=0 =0

|E}NdIndEpn-i¢t)y- ., d' IndE i) -
Moreover, since |dIndF;.,| is bounded above and
[Ef(dln dEm"".(t))l = Id In dEm""'.(t)I S O(IdEm""'(t) D,

it follows that
1 n-1

ld2 In dEtl < ’z: z(:) O(ldEm"_‘(t)Iz-l)o(ldEm"_‘(t)ll)
=0 1=

Z O(IdEm"—"(t) |2)

i=1

O(AE) Y O(d(Facrns 0. 0 Fi)|?)

=1

IA

AN

< O(E]).

Now, as inductive hypothesis assume (i), for 1 <1 < k we prove that this
implies (i)x4+1. We prove that (i); implies (i)k41. By lemma 17, a;,4; +... +
ai;i; <lforalll =1,...,k Moreover, by (i)s and lemma 17,

Ef*(dIndEpn-i(g)y. -+ d' IndEpa-i(y)
< Ok(ldEm"—"(t) Ia-‘,u+...+a-‘,-t;‘) < Ok(ldEm"—"(t) Il)

where 0 < I < k. Therefore,
[d**! IndE,|

k n-1
_<_ E Z Id ln dF’,",i(Emn--‘(t))lldEmn-i(t)lk+1_l
{=01=0
|EFY(dIndE =iy - - -y &' In dEpnigyy)]
k n-1
< 35 O(dEmn-igy N O(dEmn-igy ')

=0 =0
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< ZO(ldE,,.n--ml"“)

< O(IdE,|"+1)Z O(ld(Fr-t,6n_y 0 +..0 Fip,)|"*D)
i=1

< O(JdE ).

This completes the proof of (i). We now prove (ii) by induction in k. The
case k = 1 follows from

|d2E,| = |[dE.||dIndE,| < O(|dE, ).

As inductive hypotheses assume that (ii); holds for 1 < 1 < k. We then
deduce (ii)¢. By differentiation,

k
[d*HE| = |Y adEd**'IndE,|

i=1

k
< S O(JdEJ|dE,[F+1-)
=1

< O(E )

where the ¢; are constants.

Thus,
ldE:|lor < Ok(JdE[**).

Corollary 3 d([T |d™ E/|") < 0([dE',|1+Z.,° min)
Proof. By lemma 21, we have that [d™ E,|" = O(]dE;|™™). Thus,

j J
[L1d™E " < O(|dE, [&imo™m),

+=0
By differentiation,
d(Hld"" (") < O(Enkld'"““E' lld'""Etl"(Hld'"EI"')

=0 =
< Y O(E [ -mat Thagmins
k=0

< O(dE[+Lhomm) py
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3.4 Proposition 1

Before proceeding with proposition 1, we introduce some auxiliary notation
that will be of great use throughout the proof of theorem 1.

1. Given a function S and integers ao,...,a; > 0 define S, 4, to be the
function defined in the following way: Let T} = §%, and for 0 <m <1
inductively define T4y = S%-m - dT. Let Soy. 0, = T141-

2. Given a function S as above and constants A,,. ,,, for all integers k,! >

0 define
Xl.k(s) = Z Aao...alsao...al-
ao+...+a;=k

3. Many of the functions that we encounter are of the form x,(S) and we
will often use the notation without explicitly mentioning the coefficients

Aao @y

Proposition 1 Forallt =¢g...6q-1 € L),
() l1ntencs = idllorzpy < Ola(m)
(Zl) III{H-1,¢n-1¢n - id”C'(n‘:-‘x'n) S O(g(n))
(i) ld1n dKn-reseallomigr,_...y < Olg(n).

In each case the constants of the inequality depend only upon s and the

Markov families F' and G. S

Proof. Let A, K, F and G denote respectively An-1.e,_,s Knyen_yens Frien
and G,.,. To prove part (i) we show

14 = idllgrzamsy < Olg(m) (3.10)
and :
d*A=0forallk>2 (3.11)
Equation (3.11) follows immediately since A is affine and equation (3.10)
follows directly from the the fact that C27! = D}~1 4 O(g(n)).

€n-1

We now prove part (ii) of the lemma in four steps.

Step 1. [|K-id|lgogp-, < O(g(n)).

Z1en)
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Since A = id+ where [¢| < O(g(n)) and F = G+ ¢ where |¢| < O(g(n)),
K(z) —z = G7(G(z) + ¢(z) + $(G(z) + ¢(z)) — =
and therefore

IK —idllcory < WG ooy lld + (G + é)llcoan
< O(g(n)) (3.12)

where M = I?71, since ||dG~!|| is bounded independently of n.
Note that, by equation (3.12),
l*G(K) = d*Gllgop=1 .., qanct, .y S Olo(n)) (3.13)

tn—1fn cn_xcn)

since d*G is bounded independently of n for 0 < k < s.
Step 2. ”I{ _ id”c](l:ln-l"") _<_ O(g(n)).

Firstly, note that

dG(z) l<|d7G(;z)
TIGK () = 4G (z)

by step 1. But, using dG~'(A(F)) = dG(K)™1,

I llz - K(=)| £ O(g(n)) (3.14)

_dA(F)-dF _ dF
K ==26m) " € Cw

Thus, by equation (3.14), [dK — 1| = O(g(n)) and step 2 follows.
Step 3. ||K —id|lcaggp-1 , y < Olg(n))-

By the hypotheses of the theorem |[dG(K)| > 1 and d*G is bounded inde-
pendently of n. Therefore using equations (3.12), (3.13) and (3.14)

£F - dG(K) - @G(K) - dF - dK
(dG(K))?

(1 0(g(n) € 757775 (1 £ Oa(m)-

dA| < Olg(n)).

K| = |

Let A, and A, denote the following functions:

Ay = d*G(K) - dF - dK and A, = d*F - dG(K).

Step 4. ||K —id||cr+r < Ok(g(n)) and ||A2 — Aillcr-1 < Ox(g(n)).
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We use the auxiliary definitions which were introduced at the beginning of
this section. Step 4 is proved by induction on k =1,...,s. Thecase k =1
was proved in steps 1, 2 and 3. The inductive hypothesis is:

142 = Arllors < cig(n) and 1K —idlloss S dig(n)  (15)

where the constants ¢, and d; only depend upon k and the Markov families
F and G. We prove (15541).

The kth derivative d*A; of A, is of the following form:
E alx’z’adlx+2G(I{) * derF * X341, (dl() (16)
Li+latla=k
where I1,12,13 € Z>0, ay1,0 = 1 and ay1,1; > 0. Moreover, d* A, is of the form

Z ahlzlad’”.?F . dlz'HG(K) * Xls la (d](n,,n,”“) (17)
A

where the sum is over all the set A consisting of those lj,13,13 € Z5q such
that I, + I, + I3 = k and where I3 = 0 if [; = 0. By the inductive hypotheses,
[|K —id||cr+s < dipr9(n). As x15,1,(dK) and x1y41,, (dK) are polynomials in
dK €1 £ O(g(n)) and &K, ...,d"*' K € £O(g(n)) and I3 < k, then

Xt (dK) S 1£0(g(n)) and xis41(dK) < 14 O(g(n))
and, as a0 = 1,
ld*A; —d*Ay] < | Y d"PRF.4PPIG(K) - (1 £ O(g(n)))
li+la=k
- ) d"G(K)-d"F - (14 O(g(n)))l.
i +l=k
Using the fact that |d'G| and |d'F| are bounded for 0 <! < s and equation
(3.13) we deduce
(54~ 41| S 3 [ (d4HG £ O(g(n)) - d*HG(K) - (1 £ O(g(n))
Li+la=k
—d"G(K) - (d"*'G £ O(g(n))) - (1 £ O(g(n)))|
Y |d"H2G - d"HG(K) - d"PG(K) - TG+ O(g(n))
h+la=k

< O(yg(n))-

If B = dG(K) then by (154), |d?B| is uniformly bounded for all j < &
independently of n and ¢. If A = A; — A then d*K = A/B? whence d**?K
is a sum of terms of the form '

k41
[1 45318+

i=1

IA
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where S; = Aor B,i; > 0, Ti] i; = k and for some j, S; = A. Since |d'A| =

O(g(n)) for 0 < i < k this means that each term is < O(n). Therefore,
[d**?* K| < Ox(g(n))
which proves part (ii).
Let us prove, forallk=1,...,8 -1
|d* ln dK| < Ok(g(r)). (18)

By part (ii), |dIndK| = |d*K/dK| < O(g(n)). The map d*IndK is a sum
of terms of the form

f[ d'iS;/(dK)*

Jj=1
where S; = d?K or dK, i; 20, "ii; = k — 1 and for some j, S; = d*K.
Since by part (ii) |d'd?K| = O(g(n)) for 0 < ¢ < s — 2 this means that each
term is < O(n). Therefore,
|a*1n K| < Ok(g(n))

which completes the proof of the proposition. |

Lemma 22 Forallt € £%,, and 1 <1+ k<3,

X1k (dAnmt,enr (E)AE) < O(dE[**) and xi4(dE;) < O(E,['*%).

Proof. The map dA,-1.,_, is a constant ma:p. Therefore, the proof follows
from repeated applications of corollary 3. 2|

Lemma 23 Let S = S, and S’ = S), be maps such that
IS - S'lloi < Ole(n)*'g(n)) and [|S|les < Oi(e(n)™*')  (19)
for all 0 <t < s. Then,
[Ix14(S") = X14(S)llco < Ora(e(n)™*).

forall1 <l+k<s.
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Proof. First, we note that the map x;x(S) is equal to

X1, k S) E BJo Ik H dJ'(Sa' (20)

=0

where T is the set of jo...jr such that 5; < i, Y5 75 = k, T oa = |,
k + 1 < s and the constants B;,_;, are bounded independent of n.

Forallj >1landb+j<s

j~1

(5% =d'S - S+ Y Chyuty_y [[(d'S)" (21)
r =0

where I" is the set of all by...b;_; such that E{;l b; = b and Zf:__fg(i +1)b; =
b+j,b >0foralli=0,...,k—1 and there is i > 0 such that ; > 0 and
the constants Cbo,,,g,j_, are bounded independently of n.

By equation (19),

(@'S £ O,(e(n)*g(n)))" € (d'5)% £ O i(e(n)*Hg(n)).  (22)

In equation (21), ©42a(i + 1)b = b+ j and by equation (19) and (22)
#(S)) = (#5)£0, (e(n)°+”g<n)>) (8°71 £ Ou(e(m)*~Vg(n))

+3 ot T ((@S)" & Oui(e(m6¥0g(n))

1=0

€ 47881 £ O, ;(e(n) ¥ 1g(n))
+3 ot (’I—I(d'S)*- £ O3 (e(n)Zico X+ g (n )))

1=0

€ d’(5") + Oy j(e(n)**g(n)).
In equation (20), =% i + a; = k + [ and by equation (19) and (23)

xix(S) € 3B ,.H(df- 5%) & Opi(e(n)"*ig(n))

1=0

& x1x(8) £ Ou (e(mTiomitiog(n))
€ x14(5) £ Ore(e(n)**g(n))) 1
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Lemma 24 Forallt € £, ,, define the maps dE = dE (1), K = Kn-1,0_yen,
A= Aptensens S' =5, = dK(E)dE and S = S, = dA(E)dE. Then
Ixix(S') = x1k(S)llce < Ou(dE™).

foralll <l+k<s.
Proof. For all 0 < ¢ < s, the map d'S’ is equal to

d'S = E CldH'II((E) - Xt+1,i-1(dE),

1=0
where the constants ¢; are bounded independently of n.
By lemma 22, |x141,:-1(dE)| < O;(|dE|"*!) and by proposition 1,
d"MK(E) € d'YA(E) £ Oy(g(n)).
Moreover, |[dA — 1| £ O(e(n)*?) and |d*1A] =0, for I > 0.
Therefore, |d'S|O;(|dE|*!) and

&S’ € Y a(d"A(E)  xupi-i(dE) £ O(IdE[+1g(n)))
1=0
€ d'S+ O(|dE[*g(n)).
By lemma 23 we obtain the result. N
3.5 First main proposition.

Proposition 2 Forallt =¢p...6, €X3,;,n >0and all0 <k <r+1,

[|Le = Lmgllcr ey < Ok(|[dEmey|*g(n)). (23)
Moreover, forall0 <6< S
|Le = Ly llor+e(9y < Or(|dEmey| ¥ g(n)). (24)

Proof. The proof is by induction on k. Firstly we consider the case k = 0.

Let A, K, E and C denote respectively A, 1.._,y Kn-1,cn_1ens Em(t) and
K. By lemma 16 the product

dC(K(E)) - dK(E) - dE = dL,
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is bounded independently of n and t. Moreover, |dK| is bounded by propo-
sition 1. Therefore,

[dC(X(E)))| = O(|4E[™). (25)
For all z € I,
IL(z) = Lm(e)(z)| = |C(K () — C(A(v))|
where y = E(z) € I*~1, . But, by proposition 1, |K(y) — A(y)] £ O(g(n)),

€n—1&n

for all y € I77%, . Thus by the mean value theorem and equation (25),

|Li(z) = Lmy(z)] < [dC(2)||K(y) — A(v)
< O((ldE|'g(n)))
where z € J,,_,¢,.. This proves the lemma for k = 0.

Now consider the case k = 1. By lemma 20, dIndC < O(1) and by

equation (25)
|d*C| = |dC||dIndC| £ O(|dE|™) (26)

By proposition 1, equation (26) and (25)

|dL(z) = dLmgy(z)] < |dC(K(E(2))) - dK(E(x))) - dE(z)
~dC(A(E(2))))dA(y)dE(z)|
< dC(K(y)) - (1 £ O(g(n))) - dC(A)(y)|
|dA®)] - [4E(=)]
< (I°C(2)] 1K (y) = AW+ [dC(K (v))|O(g(n))
|dA@)| - [4E(=)|
< O(g(n)) - (27)
where y = E(z).
Now we prove the case k = 2. By differentiation,

[d?Ly = d*Lyny| < R|AE| + S|dE|+ T

where
R = |dL;-dIndC(K(E)) - dK(E) Z dLnqy - dIndC(A(E)) - dA(E)),
S = |dIndK(E)||ldL,| and T = |dL; —dLpyy|-|dIndE]|.

Thus,
|R(z)] < |dLy(z)| - |d° IndC| - [K(y) — A(y)| - dK(E) + O(g(n))
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since |dL; — dLmy(z)] < O(g(n)) by equation (27) and dK(y) = dA(y)(1 +
O(g(n))) by proposition 1 and because by lemma 16 and 20 dL ), dIndC
and dA are bounded. But |d?IndC| is bounded independently of ¢ and, by
proposition 1, |K(y) — A(y)| < O(g(n)). Thus, |R(z)| < O(g(n)).

Furthermore,
1S(z)] < |dIndK(y)| - |dL.] < O(g(n))
by proposition 1 and lemma 16. Finally,
IT(z)| < |[dIndE(z)] - [dLo(z) — dLm((2)| < |dE] - O(g(n))
by lemma 21 and equation (27). Therefore,
|d*Le — d* L] < O(|dElg(n)).

We now complete the proof of the proposition by induction. As inductive
hypothesis assume that

”d“’ng _ d{+2Lm(t)”C° < O(ldElng(n)) (28k)

fort = 0,...,k —1 and where the constant of the inequality depends only
upon ¢. We prove it fori =k and k <r—1.

A straightforward calculation gives that

k+2 k+2 —
&Ly —d Lm(‘) - Z (all’ﬂ: R’x’a’a + b’x’z’ashlzls)
lLi+la+la=k

+ E ChlzT;x_Lz
h+la=k -

where the constants aj,1,1,, by,1,1, and cy,y, are bounded and

Ryny, = d"*'L;-d**'IndC(K(E))- xty414(dK(E) - dE)
~d"*' Ly - "+ In dC(A(E)) - x1,.41,,(dA(E)dE)
Suity = d"F'Ly-d** 1 IndK(E) - x1,41,(dE)

and
ﬂxlz - (dll+lL¢ - d'l+le(t)) . d,2+l ln dEo

By lemma 24
Xty 41,5 (AK (E) - dE) = Xty 41, (dA(E)dE)| € O,([dE[*¥1¥1g(n))  (29)
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and, since d**"2IndC is bounded by lemma 20,

|d*+! In dC((K(E))) — d"**! In dC((A(E)))| < O(K(E) — A(E)) < O(g(n))
(30)
by proposition 1. Moreover, by the inductive hypothesis (28;),

|d3+1 Ly = d"+ L] < O(JAE["+1g(n)). (31)

Since

Ry, = d"*'L,-d"*'IndC(K(E)) - (x13414,(dK(E) - dE)
"X's-HJz(dA(E) ‘ dE)) + Xiz+1,0, (dA(E) * dE)
- [(d%*1 1n dC(K(E)) — d"*'n dC(A(E))) - d"#1 L,

+ d**1 10 dC(A(E)) - (d”“L, _ d"“Lm(z))]

it follows immediately from equation (29), (30) and (31) and by lemma 20
and lemma 22, that

IR’xUsI < O(IdElll+'2+’3+lg(n))' (32)

To bound S),4,1,, by lemma 22,
Xls+1,lz(dE) < O(IdEllz'Hs'H)

and by proposition 1,
d"*" IndK < O(g(n)).

>~

It follows that
ISunts| S [d"HLy| - |d** IndK(E)| - [xty41,4,(dE)| < O(|E|2 ¥+ g(n)).

Moreover, _
ITin] € |4 Ly — & Ly| - |47 In dE| < O(g(n)|dE[1+1+4)
by the inductive hypothesis since ld';“ IndE| < O(|dE|**') by lemma 21.
Putting this together gives
|[d*4? Lingey — d***Lo| < O(|dE[**1g(n)).

Therefore, we proved equation (23). Let us prove equation (24).
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For all z,y € I?, by lemma 15 |z — y| < O(|dE|"?). Define the map
U = Ly — L. By equation (23) and medium value theorem, there is z € I?

such that
|d"U(z) - d'U(y)| ldH Uz -y ~°le —y|f

<
< O(JE[*'g(n))|z -y’

Corollary 4 Forallt =¢;...€j4n € E;’;+1, n>0andall0<k<r+1,
Lt = Lmgollor zy < Ok(ldEmey[* 9(n + j))-

Proof of corollary 4. The proof follows in the same way as the proof of
proposition 2. :

3.6 Second main proposition.

Proposition 3 If t,t’ € £° are in contact and 0 <k < r+1 then
ILe = Loflex < O(efztg(n)) (33:)

on Iy I where the constant of the inequality depends only upon k and the
Markov families F' and G.

Proof. Let us suppose that tjm = t'/m and t(m +1) # t'(m +1). Then, the
map L‘ = Ct|m+1 (o] Ld"'(i) OEtlm+l and L‘I = Ct'lm+1 [o} La"'(t') oEl'Im-{-l' Let C’
L, L' and E denote respectively Cijm+1y Lomt, Lomy and Eypmyr = Egjmy1-

The proof of the lemma for k = 0,1 and 2 follows directly from the follow-
ing facts.

(i) By lemma 16, |[dL| = O(1) and |[dL| = O(1) i.e. is bounded from 0 and
oo independently of ¢.

(ii) From this and by lemma 15, it follows that |[dC(L(E(z)))| = O(|dE(z)|™?),
for all z € Ijm. .

(iii) By lemma 20, |[d1ndC| < O(1),
|d’C| = |dIndC]|- |dC] = O(|dC|)

(iv) By condition B(g), for § = 0,1,2 ||L — L'||cs < O(C,m, omny9(n))-
Moreover, |egm(t)om(t)dE| £ O(e(n)). By lemma 21, |[dIndE]| < (9((5
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We now prove (33;) by induction on k for 2 < k < r 4+ 1. The inductive
hypothesis is
ILe = Lollo: < O(e3tg(n)) (34x)
fori=0,...,k—1.
The derivative d*L, has the following form.

> anyy, 4Ly d"ndC(L(E)) - xt541,,(dL(E) - dE)
i+l +la=k=-2
+ E blllzlsdllHLt -d**n dL(E) * X411 (dE)
lhtlo+la=k=2

+ > eypd"tL,-d*t IndE,
Uh+la=k=-2

where the constants a;,,1,, biy1,1; and ci,1, are bounded. The derivative d* Ly
can be represented similarly.

Thus,
k k
”d Ly—d Lt’” < Z (ah’z'sRhlzh + bh’z’aslxlzla)
L1+l 4l3=k=2
+ Z 011127}113
Lh+l=k=2
where

Rhlz(a = dh.HL! . dl?+1 In dC(L(E)) * XI;+1,12(dL(E)dE)
—d"*' Ly - d**' IndC(L'(E)) - x*+"2(dL'(E)dE),

Sunty = d"*'Ly-d* IndL(E) - x1,41,,(dE)
—d" 1Ly - d* ' IndL(E) - X1y41,,(dE)

and

Tip, = d"*'Ly - d"*' IndE — d"*1Ly . d2*! In dE.

The fact that -
1
lRlxlz’aI < 0(,8‘:; 2+ 3+lg(n))

with the constant of the inequality only depending upon I3, I and I3 follows
from the following facts.

(i) By proposition 2, the maps d"*!L, and d"*! L, are bounded above. More-
over, by induction hypotheses (34x),

|4 ¥ L, — d"* Lo| < O(e(n)2g(n)).
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(ii) By lemma 20, the maps d”?*!IndC and d'*+2In dC are bounded above.
Moreover, by condition B(g)

|d"* 1n dC(L(E)) — d"*' In dC(L'(E))| |d+* In dCJ|(L(E)) - (L'(E))|

<
< 0(8;-1(:)@'"(:')9(”))-

(iii) Since by proposition 2, d'Ly is bounded for i = 1,...,/; and by lemma

22,
Xt+14;(dLe(E) - dE) < O(elf2+1),

By lemma 26,
Xts41,:(dL 0 EAE) = X1,415,(dL' 0 EAE)| < O(epF 1 g(n)).
Moreover, it easily follows from the following facts that
|Sutats | S O(eld+0 1 g(n))
with the constant of the inequality only depending upon l;,1; and /5.
(i) By fact (i) above.
(ii) By lemma 25, |d"*! IndL’| < O(e}?.) is bounded. Moreover,

[d*+1 IndL — d"* IndL’| < O g(n)).

tLt'm

(i) By lemma 22, |
[Xis+12(dE)| S On sy (JE[24541).

Finally, the bound
T < Oy s1m1(edyhomn9(n).

with the constant of the inequality only dependent upon !; and I, follows
from the following facts.
(1) By fact (i) above.
(ii) By lemma 21,
[d?*! IndE| < O(|dE|**?).

To complete the proof of proposition 3, we prove bellow lemma 25 and 26.
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Lemma 25 With the notation of the previous proposition, if L = Lym(,
and L' = L,m(yy then

|d'IndL — d'1a dL') < O(ehmy omn9(n))

forall1 £l <k and 2 <k < r. Moreover, ||dIndL/||c--2 is bounded.

Proof. The map d'lndL’ is a sum of terms of the form
|
IT 4% S;/(dL")
Jj=1

where S; = d?L' or dL', i; 20, =it} i; = I — 1 and for some j, S; =d*L".
By corollary 4, the maps d'L are bounded for all i = 1,...,r and by lemma
16, O((dL)") = O(1). Therefore, d'IndL’ is bounded.
By condition B(g),

[y d5; _ Ty @975 £ O(g(n)elmy ymier)

i=1

dLy (dL) £ O(g(n)eamomien)

where Tj = d’L if S; = d?L’, otherwise T; = dL. By lemma 16, O((dL)') =
O(1). Therefore,

|d'InL'—d'InL] < Ow(9(n)egm ) omery)
which completes the proof of the lemma. N
Lemma 26 With the notation of the proposition 3, let S = S, =dL'(E)dE
and § =S, =dL(E)dE. Then

xts 411 (S") = Xt 41,1, (S)llee < Oty (e(n)s*142),
Proof. Denote I3 + 1 by [ and !; by k. The map d'S’ is equal to

d'S' =Y did"™L(E) « x141,-1(dE),
=0
where the constants d; are bounded independently of n.

By lemma 22, [xi+1,i-1(dE)| < O;(JdE|*!). By condition B(g),
d"ML'(E) € @ L(E) £ O(ehmy om(s)9(n))-
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As e;myom(s|dE| < e(n) and by the results above,

¢S € 3 di (d™L(E) - xisniildE)  Oule(n)*g(n)))
=0

€ d'S & Oi(e(n)+g(n)).

By lemma 22 and corollary 4, |d'S| < Oi(e(n)*!). Therefore, by lemma 23
we obtain the result. N

Acknowledgements

We are grateful to Raphael de la Llave for early discussions on this work.
We thank the Foundation Calouste Gulbenkian and INVOTAN JNICT for
their financial support of A. A. Pinto and to the Wolfson Foundation and
the UK Science and Engineering Research Council for their financial support
of D. A. Rand. This work was started during a visit to the IHES. We thank
them for their hospitality. We also benefited greatly from the hospitality of
the Arbeitsgruppe Theoretische Okologie of the Forschungszentrum Jilich
where the paper was written.



Bibliography

[1] O. Lanford, A numerical study of the likelihood of phase locking. In
Physica 14D 403-408.

[2] O.E. Lanford, A computer-assisted proof of the Feigenbaum conjectures.
In Bull. Am. Math. Soc. 6 427-434.

(3] B. D. Mestel, Computer assisted proof of universality for cubic critical
maps of the circle with golden mean rotation number. In Ph.D. Thesis

Warwick University.

[4] A. A. Pinto and D. A. Rand, A classification of C'+* structures on em-
bedded trees. Warwick Preprint.

[5] A.Pinto and D. A. Rand, Convergence of renormalisation, Markov fami-
lies and rigidity of dynamical systems: A unification of smooth conjugacy
and universality results. In preparation.

[6] D. A. Rand, Universality and renormalisation in dynamical systems. In
New Directions in Dynamical Systems (ed. T. Bedford and J. Swift) pp.

1-56, (1988), CUP

[7] D A Rand, Global phase space universality, smooth conjugacies and
renormalisation; 1. The C'** case. Nonlinearity 1 (1988) 181-202.

(8] D. Sullivan, Differentiable structures on fractal-like sets determined by
intrinsic scaling functions on dual Cantor sets. In Nonlinear evolution
and chaotic phenomena. (eds. G. Gallavotti and P. Zweifel), Plenum,

New York, 1988.

[9] D. Sullivan, Quasiconformal homeomorphisms in dynamics, topology and
geometry. Preprint 1987

[10] D. Sullivan, On the structure of infinitely many dynamical systems
nested inside or outside a given one. To appear in the AMS volume ccle-
brating the Centenary of the American Mathematical Society, 1990.

105



Chapter 4

Symbolic Dynamics and
Renormalisation.

Let F be a topological Markov family. Say F; ~ Fj if there are orientation
preserving homeomorphisms & : C* — C7 and &' : C**! — C7*1 such that
h(Ci) = Ciforalla € S;, h'(Ci*') = Ci*' for all a € Si4y and K’ o F; = Fjoh.

We can always choose the S; such that S;NS; = @ or S; = S; and such
that S; = S; is equivalent to F; ~ Fj. We always assume that the labelling
S; has this property. :

We say that j ~ k if and only if Fj4q ~ Fiyq, forall0 < g <nand j < k.

The Markov family is adapted if whenever S; = S; then I} = I, for all
a € S;.

In this chapter, we always consider that the Markov family F is adapted.

For all m,n > 0 and t € £ we denote C;* by C; since the dependence
upon m is determined by ¢, whenever it will not be confusing. If there is a
gap_ G between C; and Cy we introduce a symbol g, = gy and denote

by 2”‘ the set consxstmg of these new symbols together with L. When we
say that a statement is valid for all ¢ € Y™, we mean that it is vahd for all ¢

and gy ¢ in 2
We denote by J and m the mappings J : & — £HL and m: 8L — B!,
given by

J(to...tn_l) = t] "'tn—l a.nd J(gg'y) = gJ(t),J(t’)’
m(to.-otn—]) = tO-”tn—Z a.nd m(g,'t:) = m(t),

106
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Define the scaling tree o, = 0F,, : U,,ZIZA):‘ — R by
IC|

on(t) = ————

[Criol
Forall j X kand all t € 3 andte“éfc and all 0 £ ¢ < n, define

o;(t .
== wmd = ¥ (ulci
k {retim(t)=m(1)}

(iv) For all j ~ k and all contact words t,s € ¥/ and t,s € £ and all
0 <1t < ndefine )
T
* ICI) ICF|

4.1 Scale and contact determination.

Definition 22 A topological Markov family F is (1 + a)-scale determined
if and only if it possesses the (1 + a)-scale property and for all € such that
0 < € < a < 1 there exists a function g = g, : Zyo — R with the following
properties:

(i) £32.9(g) < O(g(m)), for all m > 0.

(ii) For all j &k, let u = min{f,n}. For all a € §;,

-

Ck I*
}—C%r:- €1+g(u) and -II—I;TFE 1+£g(u).

(iii) Forall0<i: <n and allt € f:f,

pe < g(u+1).

If 5,t € £} are not in contact and m(s) # m(t) then
pe|Era|™ < g(u+1)
while if m(s) = m(t) then
Eal "0 A+ By < g+ ).
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Definition 23 A topological Markov family F is (1+ «)-contact determined
if it possesses the (1 + a)-contact property and for all € such that 0 < ¢ <
a < 1 there exists a function g = g. : Z5o — R with the following properties:
(i) Zezm9(g) < O(g(m)), for all m > 0.
(ii) Forall j ~ k,let u = min{j,n}. Forall0 <i <nandt,s € %I
are in contact, then

/‘t,a

Dot < g(u +1).

Proposition 4 If F is a topological Markov family which is (1 + a)-scale
determined and (1 + a)-contact determined then there is a C'**~ Markov
family G with the following properties:

(i) G = Fp in K, = K, (F).

(ii) For all j ~ k, let u = min{j,n}. Then there exist C'**~ diffeomor-
phisms &k : C? — C* and &' : C7+! — C**1 such that

GJ' oh= h' (o] Gk
in the set Ci = Utezi',ctj' Moreover, -
|Ih — id“clw(cg; < Oc(g(u)) and ||A'— z‘d”cwc(cg;) < Oc(g(u))

forall0 <e < a.

We always assume that the topological Markov family F is (1 + a)-scale
determined and (1 4+ @)-contact determined in the following sections of this

chapter.

4.2 The symbolic set.

We define the symbolic set @ which indexes the set of topological Markov
maps in the limit of the Markov family F. Let & = {S5;}2,. Let Q@ C S%
denote the set of all bi-infinite sequences 8 = ...s_1505;... such that for
all 5; € S and n € Z and all m > n there exists a sequence 1 — oo such
that s,...s,, is the index sequence corresponding to the sequence of Markov

maps Fj; ... Fjipmon, i. € Spgr = Sjipp for 0 <k <m —n.

Fix s =...8_15081... € Q. Two sequences j;,n; — oo, when ¢ — oo, are
called limiting if Sj; ... Sji4ni=1 = S0+ .. Sn;=1.
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4.3 The limit Markov family F.

Lemma 27 Fix s € Q. Let j;, n; be limit sequences and u; = min{j;,n;}.
(i) The scaling tree o, : Ups02% — R is well defined by

ICj‘I
oy(t) = lim
- i—o0 Icm(t)l

and it is independent of the limit sequence.
(i) For all t € £,

0’:( )
7 () €1£g(u; +1).

Fix s € Q. Let j;,n; be limit sequences. Define C* to be the limit of C’
in the sense that the extreme points of C% converge to the extreme points
of C%, when i tends to infinity. For all n > 0, let X2 denote the set of words
t=15...t,~1 such that t; € s;, for all 0 < ¢ < n. Let j;, n; be limit sequences.
Let i be large enough such that n; > n. Define C{ by the limit of C}" in the
sense that the extreme points of C;* converge to the extreme points of o
when 1 tends to mﬁmty Define I+ = I’ and I = IJi, for all a € S},. Let
gep € L2if g, ¢ € £¥i. For @ll t’,t" € 2 such that m(t') = m(t"), C5 is on the
left of C if and only if CJ/ is on the left of Cji. Define K% = Ny50 Ugese Ct

and Ki = K*NCy, for all t € X2.

Lemma 28 For all ¢ € T%, the intervals Cfare well defined and are inde-
pendent of the limit sequences j,-,n.- — 00, Moreover,

C’ Elig(u)

Define the map o : @ — Q such that o(s) = v, where v; = s;41, for all
¢ € Z. The map o™ is the composition of n maps o.

Definition 24 The map F, : K2 — K°® is defined by Fy(K}) = K_‘;(%),
for all t € £2 and all n > 0. In the same way, the map Fymy : K7 —
Ko™ is defined by Fymy(I7™@) = K35y @, for all t € £77@, alln > 0
and all m € Z. _
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Proposition 3 Each map Fym(y) has a C'*°” extension to J°7® and o, :
Un>oXt — R is the respective scaling function. We also denote the C1+~
extension by Fym(,). These extensions form a C'**~ Markov family F2 =

(Fd"'(g_))MEZ‘

Define the map f, : N — Rt by
fo) =max{|C/]:t € Zfort € i and S;...Sjp1-1 = So... 511}

Define the map r, , : N x N — R+ by

res(ds ) = (gen(u)) "= 4 (£, (1))~

where u = min{j,l}, € < ¢’ < £" < @ and the map g, is defined in (1 + a)-
scale determination.

Let F and G be two C1*¢ Markov families. If F; ~ G; and IF = I, for
all a € Sr; = Sg;, define the map f, = F;, —G;, in IF%. Forallset M C I,
define
|dfa(z) — dfaly)]

|z —yl| <

llfalle:+«any = max {Ifa(z)] + ldfa(2)] + }-

For all set N C IFi, define the norm

I1F: = Gillersewn = max [l fellosse vmrss)-

Defi
cane 1 if F; % G
s :) == - ' J.
d.(F;, G;) [|F; - Gj”cm(lf‘) otherwise.

Theorem 22 Let F' be a bounded Markov family which is (1 4 a)-scale
determined and (1 + a)-contact determined. For all n € Z, let r,gn(y) be
the function as defined above. For all 5,1 > 0, such that S;...S;y -y =
Sp..Spyi-1 andall0 < e <

[|1Fj = Fon(g)llcr+e(rivkenw) € Oc(reon(s)(5,1))

where ¢, is some constant which only depends upon €.

We are going to suppose in what follows the following uniformity condition
over the map r, on(y). This is true, if for all ¢t € E7* and all m > 0 the length
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of the intervals |Cy| and g.:(n) decrease exponential fast to zero, when n tends
to infinity.

Condition U: There is v, between 0 and 1 such that r, ,»(,(5,1) < OZ),
forallj > 1> 0andalln € Z.

Let F = (Fu)as0 and G = (Ghn)n>0 be two C'+¢ Markov families.
Define the distance between F and G by

4(F,G) = Y vlld(F, G).

=0

Corollary 5 Let F be a Markov family which is (14 a)-scale determined and
(1+a)-contact determined and such that the maps r, on(,) satisfy condition U.
For all j > 1> 0, such that S;...Sj41-1 = 8a... 84411 consider the Markov
families F) and FU) given respectively by FY) = F;,,, and F{) = Fymin(y).
Then

d(FO, FO)) < e}

if the Markov families are regarded as indexed by m > 0.

4.4 The scaling function.

Let A~ denote the set of all ¥ = ... 7_57_1 with the following property. There
Eg_ € Q such that 7_, € s_,, for all n > 0. Denote 7_,...7-; by T|n. Define
Ay = {r € A" : 7, €5,}. Define Kg(g as the set of all gz with the following

property. 7,7 € A, Grart, € )3‘:.(11) and"7_; = 7;, for all £ > 1. Let
A, = X_,_ U Xy(e)‘

The scaling function s, = sp, : A, = R is given by
85(7) = lim 0,-n(y(TIn) and s,(grsr) = im oy-n(y(grin7In)-
Let (Frn)mso be (1 + a)-scale determined and the map g : Zyo — R asin
that definition. Define the metric in A, as follows.
d(T,;Z.) =g(n+1) and d(grsgpw) =g(n+1)

if 7|n = P|n and T-(n41) # ¥-(a41). Moreover, 7y = 1h_; and =9, If
necessary, interchange 7y and 77,. Otherwise, the distance is g(1).
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Lemma 29 The scaling function s, is well-defined and it is Lipschitz with
respect to the metric d in A,.

Lemma 30 Let F and G be two (1+a)-determined Markov families topolog-
ically conjugated. Let F2 and G2 be two limit Markov families corresponding
to F and G respectively.

(i) If F* and G* are (1 + a)-equivalent then the scaling functions sg,m(y) and
8G,om(s) are equal, for all m € Z.

(ii) Let F= and G* have bounded geometry. If, for all m € Z, the scaling
functions $pom(,) and sg om(s) are equal, then F2 and G*are C'* conjugated.
o™ (2) o™ (2) g

4.5 The w-limit set of a Markov family F

On Q we put the metric dq = dq,, defined by
400

dae(s,r) = Y. vlilé(si,m),

f=—00

where §(s;, ;) = 0if s; = r; or 8(s;,1;) =1 if s; # .

Definition 25 The w-limit space M = Mg, of the Markov family F is
defined as the set of all Markov families F2 as defined in proposition 5, i.e.
M = {F%: 3 € Q). Define the metric dpy = dar,. on M by

+00 .
die(F4FR) = 3 vl (Foiw, Foity)-

I==00
- -

Corollary 6 The map F : @ — M defined by F(s) = F% is bi-Lipschitz.

4.5.1 Periodic Markov families

Corollary 7 Let F be a p-periodic bounded Markov family which is 1 + a-
scale determined and 1 + a-contact determined. Then there exists a unique
limit family F, which is topologically conjugated to F'. Moreover, for all € €
(0, ) there is a function g = g, : Zyo — R such that 32 g(n) < O.(9(q))
and

1Fn = Fomiallgrse (i, uxemo)y S Ocg(m)).

Moreover, The set M is equal to M = {F""(i) :7=0,...,p—1}
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4.5.2 Afline branched limit Markov families.

A Markov family F'is affine branched (resp. polynomial branched) if and only
if all the maps Fy, have an affine (resp. polynomial ) branch F,,,, : C7* —

C™+! such that F, . (C™ ) = C™*1, For renormalisations of unimodal maps
and circle maps the respective Markov families are affine, or polynomial to
increase the velocity of convergence. In both cases the limit Markov families

will be affine branched.

Lemma 31 If Ftis an affine branched Markov family then it is completely
determined by the scaling functions s,m(,), for all m € Z.

Corollary 8 The Markov family F* is the unique element of its (1 + a)-
equivalence class of limit affine branched Markov families.

4.6 Applications.

It is conjectured a horseshoe picture for several dynamical systems. The
points of the horseshoe are maps or families of maps and the operation is
the renormalisation. Some examples of dynamical systems with these fea-
tures are the diffeomorphisms of the circle, critical circle maps and quadratic
foldings. The horseshoe picture is stated in Lanford [11] for quadratic circle
maps and in Rand [26] for quadratic foldings. This picture gives us a better
understanding of the renormalisation operator in these maps and their re-
spective universal properties as mentioned in chapter 1. In this chapter, the
tool that we use for the study of this phenomiena are Markov families with
(1 4+ a)-determination property associated to these dynamical systems. We
prove convergence to a M-limit set consisting of two-sided Markov families.
We define a bi-Lipschitz map F : @ — M, from a symbolic set Q to M. The
set 0 is a subset of the set H = {0,.. N}z where NEN. Leto : H—H
be the shift operation defined by a(¢) =1, where 7; = ¢;41, forall: € Z. A
horseshoe picture is clear in the set H with the shift operation. The set 0 is
the w-limit set of an orbit in H. The bi-Lipschitz map F has the important
property to carry the dynamics from the symbolic set 0 to the M limit set
of two sided Markov families.
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4.6.1 Diffeomorphism of the circle.

Let f be a diffeomorphism of the circle with constant rotation number and
F the associated Markov family to f as defined in chapter 1. Suppose that
F is (1 + a)-determined. The symbolic sequence of the Markov family F is
given by the continued fraction expansion of the rotation number p = p;...
of f. Define o™ (p) = ¢, where ¢; = pp4;, for all i > —m and 4; is arbitrary
for ¢ < —m. Endow the set H with the product of the discrete topologies.
Define the symbolic set {2y as the set of § € H such that there is a converging
subsequence of (¢™(p))mso. By corollary 6, there is a bi-Lipschitz map F :
1y — My, where My is the limit set of f consisting of two-sided Markov
families. By the bi-Lipschitz map F, the symbolic dynamics in §2; are carried
on to the limit set M;. The Markov family F' converges to M/ as proven
in corollary 5. Stark [27] proves that if f is a C**¢ diffeomorphism of the
circle whose rotation number is of constant type then the renormalisation of
f converges in the C? norm to the line of the rotations of the circle. By this
fact and by theorem 22, the set M/ just depends upon the rotation number
of f. Moreover, as the map F is bi-Lipschitz then the symbolic set s just
depends upon the rotation number of f.

4.6.2 Critical circle maps.

Let f be a critical circle map and F the associated Markov family with (14+a)-
determination as defined in chapter 1. The symbolic sequence of the Markov
family F is given by the continued fraction expansion of the rotation number
p = p1.... Inthesame way, as in the section on diffeomorphisms of the circle,
we define the symbolic set Q; and by corollary, 6, there is a bi-Lipschitz map
F :Qp — Mj, where My is the limit set of f consisting of two-sided Markov
families. By the bi-Lipschitz map F, the symbolic dynamics on Q; are carried
on to the limit set M. The Markov family F' converges to M, in the sense
of corollary 5. Let us assume that two Markov families F and G with the
same rotation number converge exponentially fast to each other in a C't¢
norm. This assumption, by Jonker [10), is verified for critical circle maps with
periodic rotation number, in some open neighbourhood of analytic functions
of z|z|¢, and € > 0 small. By the assumption above and by theorem 22 the
set M just depends upon the rotation number of f. Moreover, as the map
F is bi-Lipschtiz then the symbolic set Q; just depends upon the rotation

number of f.
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4.6.3 Quadratic foldings.

There is a similar application for quadratic foldings of the interval, when
we use sequences of different renormalisation operators. The renormalisation
operator R, : D, — D is defined by R,.(f) = a™'f" oa, where a = f*(0)
and the set D, consists of all quadratic folding maps such that R,(f) is a
quadratic folding map. Let f be an infinitely renormalisable quadratic folding
with renormalisation sequence @ = a;a;.... The symbolic sequence of the
associated Markov family F is completely determined by the renormalisation
sequence g. Suppose that F is (1 + a)-determined. Define 0™(a) = b, where
b; = am4i, for all ¢ > —m and b; is arbitrary, for all ¢ < —m. Define
the symbolic set €y as the set of § € H such that there is a converging
subsequence (0™(a))m>o0. By corollary 6, there is a bi-Lipschitz map F :
Qy — M;. By the bi-Lipschitz map F, the symbolic dynamics on Qy are
carried on to the limit set M;. The Markov family F' converges to My as
proven in corollary 5. We suppose that two Markov families F' and G with
the same renormalisation sequence converge exponentially fast to each other
in a C**¢ norm. In this case, by theorem 22, the set M/ just depends on the
renormalisation sequence of f. Moreover, as the map F is bi-Lipschtiz then
the symbolic set {2y just depends on the renormalisation sequence of f. Let
f have renormalisation sequence 22.... Then, by Sullivan [30], the set M;
just depends on the renormalisation sequence of f.

4.7 Proofs.

Proof of proposition 4. Let TV = Up»TY) be the tree such that T.¢)
is the set of m-cylinders and m-gaps in the domain of the map F; and such
that if I € T{) then m(JI) is the cylinder such that I C m(I).

Consider the finite tree T4) = U;¢men ). If § & k then the embeddings
T6) and ) have the same topological structure. We can define the map
L : J(TW) — L(T™) as in the section 2.4 of chapter 1, for m = 0,...,n
where I(T0)) = I’ and I(T®) = I*.

Let § ~ k and u = min{j,n}. Then by definition 2, the map f, of lemma
6 of chapter 1 is f,(m) = g(m + u). Then, by lemma 6 of chapter 1,

[|ILm = Limn-1llci+e £ O(fe(m — 1)) = O(g(u + m — 1))
for m < n. Moreover, by condition (ii) of definition 2

|Lo = id||c14e < O(g(u)).
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Therefore,

[|Ln = id|lc1+¢ < O(g(u))

where the constants of the inequality only depend upon €. Define b = L,.
Moreover, by a similarly construction we obtain A’. |

Notation. We introduce the following notation, with respect to the maps
Fz,

(i) For all t € £2 and all n > 1, define

s o4(t)
vp = |1 -
O
(i) For all s,t € X2 and all n > 1 such that s and ¢ are in contact,
define . s
| ICi| IC}(J)”.
' IC5] 1CT]

(iii) For all ¢ € X% and all n > 1, define

Af= > ver|Cul.
{t'eL&:m(t)=m(t)}

Proof of lemma 27. Let j;, n; be limit sequences and define u; = min{j;,n;}.
Forallt € E’ and n > 0, let ¢ be large enough, such that n; > n. By condi-
tion (ii) of (1 + a)-scale determination, for all ¢ > p > 0,

75e(t) € 75, ()(1 £ g(up + m)).

Therefore, the sequence (;;(t))i>o converges and by definition, the limit is
04(t). Moreover,
da(t)

a5 (1)

Let I;,m; be another limit sequences and define v; = min{l;, m;, ;,n;}. For
all t € X2 and n 2 0, let ¢ be large ehough, such that m; > n. By condition
(i) of (1 + a)-scale determination, for all ¢ > p > 0,

7;,(t) € oy, (t)(1 £ g(vi + m)).

El:!:g(u,-{-m)

Therefore, the sequence (oy,(t));s0 converges to the same limit o,(t). |
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Proof of lemma 28. Let j;,n; be limit sequences and define u; = min{j;,n;}.
Forallt € ¥2and n > 0, let ¢ be large enough, such that n; > n. By condition
(ii) of (1 + a)-scale determination, for all ¢ > p > 0,

IC1 = 1C* [T el
I=1

€ 1CH(1 £ g(u) TT (ou(tD)(1 £ g(u; +1))) - € [CEI(1 % cg(ws)).

=1

For some constant ¢ > 0. Therefore, lim;_.c |C; ,"I = |C; _|nl Moreover,

I t[nl
€1 +xg(u;

Gl € kst 1)
Proof of proposition 5. We prove that F2 = (Fym(,))mez has (14 a)-scale
property and (1 + a)-contact property. By corollary 9, this proves that F2
has a C'**~ smooth extension. We use the fact that the Markov family F
has (1 + a)-scale property and (1 + a)-contact property. We will verify the
(1 + a)-scale property and (1 + a)-contact property for all ¢ € E’ and all
n > 0. In the same way, they are verified for all t € 2""'(-) all n > 0 and all
m € Z. By definition 24 and by lemma 27 and 28, g,m(,) : ,,>02 ™ S5 R
is the scaling function corresponding to F,m(s).

Let us prove that the Markov family F'* has (1 + a)-scale property.

Let ji,ni be limit sequences and u; = min{j;,n;}. For all n > 0 and all
t € 32, let i be large enough, such that n; > n. By lemma 27, o,(t) €
a;,(t)(1 £ g(u; + n = 1)). Therefore,
o,(t) a;i(t)
= € 1+cg(u; +n —
70 € 7 stuctn=1)
for some constant c. By the equation above and since the Markov family F
has (1 + a)-scale property,
o,(t) o; () ;. (1)
S 1-—- Ji + ¢ Ji
PR ¥10) M 710) I #T0)
< v+l +vlg(u; +n—1) < cg(n) (2)

g(ui+n—1)

vi=|1-

where ¢ is some constant.

For all ¢,t' € T4 adjacent but not in contact, by condition (ii) of lemma
28 and by the construction of the sets E;y and Ej,, then

|EL| € 1B (1 £ cg(u)), (3)
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for some constant ¢, By equation (3),for§ =coré=1+¢
ELe1™8 € |EE (1 £ cg(ui))™® € EJI75(1 £ eg(w)), (4)
where the constant ¢ depends only upon e.

By equations (2) and (4) and since the Markov family F has (1 + a)-scale
property, for ¢ large enough,

VEER ™ < (v eg(u))| B[ (1 + cg(w))
S B + el Bl g(uw:) < cg(n)

where the constant ¢ depends only upon e.

For all ¢,¢' € If adjacent but not in contact, with m(t) = m(t'), define
={rels: m(r) = m(t)} which is equal to Bj = {r € ¥4 : m(r) =
(t)} By equations (1), (2) and (4)

|BL 094 = [BE 1049 (Ev IC’)

S ABST O + o EL 704 g(ws)

. (E (e (1 + egu)ICE|(1 + cg(u.-)))

B
< |ER T4, + cig(w)

where the constant ¢; depends only upon the cardinal of By and €. Moreover,
as the Markov family F has (1 + a)-scale property, for ¢ large enough

Efa | AF < BRI A+ 6| EJL T g(w) < cg(n),
where the constant ¢ depends only upon e.

Therefore, the Markov family F% has (1 + a)-scale property. Let us prove
that the Markov family F2 has (1 4 a)-contact property.

For all contact words t,t' € I2, by equation (1) and by the construction

lCt vl € IC{"",[(I + cg(U.'))
for some constant ¢. Therefore,

[Cul™ € ICH | (1 £ cg(ws)) (5)
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for some constant ¢ which only depends upon e.

By equations (1) and (5)

leaienll

ICE'M_‘V:',L' < | ttl-!
ICal |c3®)

lct | | J(t’)I

GGy T oot

< tt’I_e (1 + cg(ui)) -
< | tt’l V(1 + cg(wi))

where the constant ¢ depends only upon €.

Moreover, as the Markov family F has (1 + a)-contact property, for ¢ large
enough _
IClul™ viw < ICTu™ veer(1 + cg(wi)) < cg(n)
where the constant ¢ depends only upon e.
Therefore, the Markov family F2 has (1 4+ a)-contact property. |

Proof of theorem 22. Take two sequences j;,l; = oo when i — oo with
the following properties. Denote u; = min{j;,[;} and u = u¢ and suppose
that ujp1 > u;, jo = J and lp = I. Moreover, S;;...S;+4=1 = Sn ... Sntli-1-
As in proposition 4, define the map A;, : I(T1)) — I(TUi+1)) and the map
b I(TUHD) — [(TU+1+1). Define the map H : I(TW) — Y(T¢"d) and
the map H': I(TU+1) — [(TC"*' (D) by

H=limhjo...ohj, and H = limh} o...0h].

1— 00 l-#OO

-

Take ¢’ and ¢”, such that 0 < € < ¢’ < €” < a. The two sets of C1+¢"

functions defined on I(T¥)) and on I(TG+Y), with the respect to the C'+¢”
norm are Banach spaces. Therefore, by proposition 4, the maps H and H’

are well defined and
1 = idllesn < colgen(w)*"~ and (' =idllgrse < colgen(u))=. (6)

Denote g = (ge)*"~". Define the mhap F@ : I(T("(®)) — Y(T("*'(2)) by
Fe = H'F;H. Therefore, F en(s) = F* in the set K "9 By equation (6),

1F lorser < co. Define C; U:ez’"(-) C; "®, We prove in two parts that,

”Fa"(.-.’.) - F‘J'“cuc(c""(t)) < Ccrc,a"(g)(j’ I)°
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In the first part, we prove that
||F* — FJ’”CH«(P"(D) < Cz'(g(“))z'—z-
In the second part, we prove that

”Fa"(!_) d Fa”ch(C'"'(L)) S Cc’(fa"(g)(l))"-"

Part one. [[F* — Fjllciserontwy < cer(g(u))* e

By definition, DF* = DH'(F;H ')DF;(H-')DH"'. By equation (6),
|DH — 1| < cog(u) and |[DH' — 1] < crg(u). Therefore,

lDF"I _ lDH' o (F;H™')DF; oH“DH"I
DF;' DF;
DF; o H™?
< l—_D—F,-—”l + cog(u)]-
By hypotheses ||DF;||ce < ¢ and |DF;] is bounded from zero. Thus,
DE, o }I-1 '
—_— ] < ’ €.
PE—1 < 1 celo(v)
Therefore, '
|DF* — DFj| < ce(g(u))*. (7)

For all z € I? "2 and all a € s, define e as one of the extreme points of
the interval 19", As the Markov family F is adapted, then F°(e) = Fj(e).
Therefore, by equation (7)

- ™

|F*(2) = Fy(@)| = | [ (DF*(y) ~ DFy{))dy| < ce(g(u))".

Define the map B : I°"® — [°"*'(9 by B = DF* — DF;. For all 7,y €
1°°@,if |z — y| < g(u) then

|B(z) - B(y)| |DF(z) = DF*(y)| + |DF;(z) — DF;(y)|
|z —yl* e =yl
< cole —yl"" S calg(u)

IA

If |z — y| = g(u), then by equation (7)

|B(z) — B(y)| . |B(z)| +|B(y)]
|z -yl ‘ |z -yl

< Cc’(g(u))tl-"
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Therefore, ||F* — Fillorsegemwy < ce(g(u))¢~¢. Similarly, we do the same
calculations in the set I* with the map F® = II"’F,..(L)H. We obtain, ||F® —

Fongg)llere(ryy < cor(g(u))**.
Part two. ”Fa"(g - FOHC”,(C""(Q) < Cc’(fa"(g)(l))d-"
The map F*® and F,n(, coincide in the extreme points of the cylinders

C’,’n(’), for all t € 2;’"(”. By the medium value theorem, there is z/,z" €
22 such that DFyn(g(z') = DF?(z"). Therefore, for all z € cre,

|DFyn(y)(z) — DF*(z)]

< |DFyny)(z) = DFon(y(2')| + |DFony(2') — DF*(2")]
+|DF*(z") = DF*(z)|
colz = 2| + colz” - z|

c|C7 I < col famin (D)

IAN IN

Forall z € C:n(g and all t € 2;"‘(5), define e as one of the extreme points of
the interval C{" . Thus, Fyn(g(e) = F?(e) and

|Fonie(2) = F*(2)] = | [ (DFunig(y) = DF*(0))dy| £ co(fomio ()"

Define the map E : C°"(8 - "M by E = DF,n(,) — DF*®. For all
2,y € C] @, if |z — y| < fom((l) then

|E(z) = E()| . |DFons)(2) — DFony(y)| + |DF?(z) — DF(y)|
P o= oF
< colz—y|*7* < c,:(f,:(i)(l))‘ <.

If |z — y| = fon(s(l), then

|E(z) - E()| . |E(=)+1E()I
le—-ylc = le-yl

< d(foria ()"

Therefore, ||Fyn(g) — F“Hc,,,,(c‘an(g) < cer(fon(s)(1))*"¢. Similarly, we do the
same calculations with the map F® = H"1F,n(yH in C} = UeesCr. We
obtain [|F} = Fllgsse(opy < ce(fomn (D).

Therefore,

”FU"(:!) - Fj”C”'(C""wuc"‘) < Cerz.a"(_:_)(ji R
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Proof of corollary 5. By theorem 22 and condition U,

d (F3+m,Fam+n(-)) <e ‘am+n(-)(J +m, I_m) < .V’ 2(’ M)

foralm=0,...,1 = 1. Form > |,
de(Fjpms Fomingy) <1

Therefore,

d (F(J) F(J)) <ec z ymyR-m) Z vt <evlm

m=0

Proof of lemma 29. Forall0 <n <mand all 7, gz € A,, by (1+a)-scale
property of the Markov family F,

To-m(y)(TIm) "ﬁ' T,~+1)(»)(TI(i +1))

ad-n(_,_)(?'ln) - i=n da-i(g(?li)
m+1
€ JI(£vmuey)

i=n

m+1
C 1+ cg(i+1)Cltcg(n+1).

i=n

Therefore, s,(7) is. well defined and

e Eegln+1) (®)
Similarly, s;(g;y) is well defined and .-
(977) €1%cg(n+1). (9)

o'a""(g)(g?lnﬁ"ln)
For all 7,% € A,, by equation (8) if F|n = ¥|n and 141 # Yup1 then
35(7) =@ € Genia(TIn)(1 £egln +1))

~Gg=n()(Fn)(1 £ cg(n + 1))
C zcg(n+1) Ccd(r,¥).

Similarly, by equation (9), for all 77,955 € Ay, such that 7|n = Pln or

Tin = ¥n, ;
su(g7) = o5 < caln +1) < cd(r, P).
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Moreover, for all gz 5,9 € A,

8:(g77) — 8:(¥)] €2 < cd(g75,9) R

Proof of lemma 30. Let us prove condition (i). By the definition of (1+a)-
scale conjugacy, for all 7 € A,,

OF,0-n(s)(T|n)

om0 € 1+ g(n).

Therefore, by equation (8) and (9) sr,(T) = s¢s(7). In the same way,
SF',m(‘,_)(T') = sG,a"‘(g)(?)) for allm € Z.

Condition (ii) is proved in theorem 3 of C1* Self-similarities and invariants
in Markov partitions. n

Proof of corollary 6. Let s,r € 2. If
3—(11-1) cee80cs e Sma1 = r—(n-—l) veaTOeee -1,

S-n # r-n and s, # rn, then by definition of 3 and r there is j such that
Sitk = S—(n-1)tk =T-(n-1)4k forallk=0,.... m+n—-2and j>m+n-2.
By theorem 22 and condition U,

: d¢(Fa-(n—l)+k(£), Fa;(n—l)+k(1))
S de(Fpmtn-vytry)s Fign) + de(Fpny Fomtn-nrary))

< C‘V‘2(m+n—2-k).

Therefore, by definition of das, and dq .

. ™

du(FE FE) < ef Z ul"uf(m‘l")+uf+u;"

i=—(n-1)

< e (vP+17) < cedaels,1).

On the other hand, by definition of dp, dg. and d,,

cc(”:‘ + V:n) ’
Ce(Vede(For(s), Fon(p)) + v de(Fom(g), Fom(z)))
cedm (F% Fo)

da.(s,r

INIA A

Proof of corollary 7. Define the function g : Zyo — R as in (1 + a)-scale
determination and (1 + a)-contact determination of the Markov family I
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By theorem 22 and as the Markov families F' and F2 have the same sequence
of indexes, we obtain corollary 7. |

Proof of lemma 31. As F*is an affine Markov family then by definition
of the scaling function, for all ¢ € £2™(8),

Iam(@)(t) = Sgminy) (- - Ym-1t) W

Proof of corollary 8. By condition (i) of lemma 30 and by lemma 31. g

4.8 Scale and contact properties.

Let F be a topological Markov family (Fm)mE’R; where R = Z or R = Zyo.
We introduce the following notation.

(i) Forallt € £7, all n > 1 and all m € R define

_ om(t)
=h-s oo

(ii) For all s,t € Z7, alln > 1 and all m € R such that s and ¢ are
in contact define

o | ﬁ#”
CrlICHs

V"t = ll

(iii) Forallt€ L7, alln>1and allm € R define
Br={'er:m{t')=m(t)} and A = Zwle |

Definition 26 A topological Markov family F has the (14 a)-scale property,
if for all € such that 0 < & < @ < 1 and all m € R there exist a function
g = g : Z>o — R with the following properties:

() T2,9 < 0(9(9)), for all ¢ > 1;

@) 1 an‘d IC1/1C5&'| are bounded from zero and in-

finity for all a € XT.
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(iii) for allt € £™ and all n > 1, ¥ < g(n);

(iv) for all ' € I adjacent to ¢t but not in contact with it, if
m(t') = m(t), then

AET 704 4 | B~ < g(n),
while if m(t') # m(t), then
Ve gm,g'l—t < g(n).
Definition 27 A topological Markov family F has the (1 + a)-contact prop-
erty if for all € such that 0 < e < a <1 and all m € R there exist a function
g = g : Z>o — R with the following properties:
(i) Tus19(n) < oo;

(ii) for all2,t’ € £ and all n > 1 such that ¢ and ¢’ are in contact,

Ve
—_— < gin).
ID;n"'Ig g( )

Definition 28 A topological Markov family (F,)mer has the (1 + a)-pro-
perty if and only if it has the (1 + a)-scale property and (1 + a)-contact

property.
A C'te” Markov family G is weakly bounded, if for all 0 < € < a, there is

a constant b > 0 such that,
IGmllcr+e < b,

forallm € R.

Corollary 9 A topological Markov family F with the (1 4+ a)-property de-
fines a C'**~ weakly bounded Markov family G such that, F, = G, in
K™ = K™(Fy,), for all m € R.

Proof of corollary 9. By the (1 + a)-property and by theorem 1 of
chapter 1, there are C'**” maps G : C* — C_','Ej;l, for all t € I such that
G, = F,, in K*. Define G,, = G, in C{*.
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Corollary 10 Let F be a weakly bounded C'**~ Markov family. Then it

has the (1 + p;)-property, if for all € such that 0 < & < fi, there exists 3
such that 0 < ¢ < B8 < 1 € «a and for all m € R there exist functions

g = ga. : Z>0 — R with the following properties:

(i) 3%, 9(n) < O(g(q)), for all g € Z>o;
(i) forall t € £™ and all n > 1, |C* P < g(n + 1);

(11111) for all non-contact adjacent words t,t' € 7, if m(t) = m(t')
then IcmlH—ﬂ
B <

while if m(t) # m(t') then
Icr e

|Eey 1 <sn);

(iv) for all contact words ¢,t' € 7, D% 1P~ < g(n).

Proof of 10. By theorem 2 of chapter 1.

More generally, we can consider families of functions g¢,, for each m € R,
in the definitions 26 and 27 and in corollary 10. In this case we lose the
weakly bounded condition in the Markov family F' in corollary 9 and 10.

T

4.9 Scale and contact equivalence.

Let F and G be C'** Markov families (Fin)mer and (Gm)mer where R = Z
or R = Z3o. Let F and G be topologically conjugated. We introduce the

following notation.

(i) Forallt € £ and t € £, all n > 1 and all m € R define

Upm(t)l

"=l e
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(ii) For all t,s € £fm and t,s € £, all n > 1 and all m € R such
that ¢ and s are in contact define

ICE=11Cem "

(iii) For allt € &= all n > 1 and all m € R define

Ag = Z ﬂ¢1105m I.

trelim.m(t)=m(1)

Definition 29 The Markov families F' and G are (1 + a)-scale equivalent,
if for all € such that 0 < e < a < 1 and all m € R there exist functions
g = ge : Z>o — R with the following properties:

(i) 92,9 < O(g9(q)), for all ¢ > 1;

(i) |CF~|/|CE| and |IFm|/]ISm| are bounded from zero and in-
finity, for all @ € 7.

(iii) For all t € $Fn and all n > 1, then 7, < g(n);

(iv) for all ' € TF~ adjacent to t but not in contact with it, if
m(t') = m(t), then

ANEF2 7049 Ly |EF2 ¢ < g(n),

while if m(t') # m(t), then L

B |7 < g(n).

Definition 30 The Markov families F and G are (1 4 a)-contact equivalent
if for all € such that 0 < ¢ < a < 1 and all m € R there exist functions
g = g : Z>o — R with the following properties:

(1) Zns19(n) < 005

(i) For all t,t' € Zf and all n > 1 such that ¢ and ¢ are in

contact, e
1t

IpigF <"
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Definition 31 The Markov families F and G are (1 + a)-equivalent if and
only if they are (1 + a)-scale equivalent and (1 + a)-contact equivalent.

Let F and G be Markov families. They are C't*” conjugated, if for all
0 <e<a, hyis a C1*¢ diffeomorphism and Fiphpm = b1 G in K€m, for
all m € R. Moreover, the conjugacy (hm)r is bounded, if for all 0 < ¢ < q,
there is a constant b, > 0 such that ||k, ]|ct+e < ..

Corollary 11 Let F and G be Markov families. If they are (14+a)-equivalent
then they are C'**” bounded conjugated.

Proof of corollary 11. By the definition of (1 + a)-equivalence and by
theorem 1 of chapter 1.

Corollary 12 Let F and G be Markov families C'**~ conjugated. Then
they are (1 + ) )-equivalent, if for all € such that 0 < € < i, there exists 8
such that 0 <€ < B < By < a and there exist a function g = g5, : Z5o = R
with the following properties: B

(i) i 9(n) < O(g(q)), for all g € Zyq;
(i) for all t € £F~ and all n > 1, |CFm |8 < g(n + 1);

(iii) for all non-contact adjacent words t,¢' € T, if m(t) = m(t')

then (CEmt42
I—E'p;]m < g(n},
10
while if m(t) # m(t') then
ol
:Et ml|¢ < g(n),
L0

(iv) for all contact words ¢,1''€ £5, |G 1P-¢ < g(n).

Proof of eorollary 12. By theorem 2 of chapter 1.

More generally, we can consider families of functions g,, for each m € R,
in the definitions 29 and 30 and in corollary 12. In this case we lose the
bounded condition in the conjugacy h in corollary 11 and 12.



Chapter 5

Two-sided Markov Families

5.1 C!t Self-similarities and invariants in
Markov Partitions.

5.1.1 Notation.

Let F be a C'* two-sided bounded Markov family, i.e. there is small € > 0
such that F is a C'** bounded Markov family. For all i € Z, the scaling tree
0; = 0F, : Up15; — R is defined by

0','(t) = ——Igﬂ—-

Gl

The Markov family F has bounded geometfy if there is § > 0 such that
oi(t) > 6, forallt € X}, alln € Nandalli € Z.

5.1.2 Scale and contact properties.

Definition 32 (i) The Markov family F has the scale property if and only
if there is 0 < v < 1 and ¢ > 0, such that for all word t € £, all m € Z and

allneN
Im(t)

———<1l+a”
Im41(J(t))

l—-ca™ <

129
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(ii) The Markov family F has contact propertyif and only if thereis0 < v < 1
and ¢ > 0 such that for all contact words t,s € X7, allm € Zand alln € N
Icr) 1CTa

l-c" < ol (2)

<l+4am.
(t) I IC?I

Theorem 23 Let F be a topological Markov family with bounded geometry.
F has scale property and contact property if and only if there is a C'*
bounded Markov family G such that F, = G in Ky = K (Frr).

5.1.3 C'* conjugacies between Markov families.

Let F and G be two C'* bounded Markov families and topologically con-
jugated. Therefore, Z"‘ = EF"' = EG"‘ A C' conjugacy b = (hm)mez
between F and G is bounded if there is small € > 0 and some constant b > 0,

such that for all m € Z,
Hhmllcr4ecmy < b.

Definition 33 (i) The Markov families F' and G are scale equivalent if and
only if thereis0 < v <1 and ¢ > 0, such that for all t € £™, all m € Z and

allneN
Gen (1)

Fm(t)

(ii) The Markov families F' and G are contact equivaleﬁt if and only if there
is 0 < v <1 and ¢ > 0 such that for all contact words t,s € £™, allm € Z

andalln €N o
ICom[IC~ ™
ICem IICG |

l1—c’ < <1+ c”,

l-a” < —=p— <l+cv".

Theorem 24 Let F and G be two C'* bounded Markov families topolog-
ically conjugated. They are scale equivalent and contact equivalent if and
only if there is a C'* bounded conjugacy between them.

5.1.4 The scaling fami]y's of a two-sided Markov fam-
ily F.

Definition 34 (i) @ = ...£160 is a backward path of the Markov map Fr,
if and only if w|n = €a-1...€0 € E7~". The dual 7 of I™ is the set of all

backward paths @ of the Markov map F,.
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(i1) The scaling function s,, : Z™ — R is defined by
3m(W) = lim opm_n(w|n).

Denote by s the scaling family s = (81)mez-

Theorem 25 Let F and G be two C'* bounded Markov families topologi-
caly conjugated. They have the same scaling family s if and only if they are
C't bounded conjugated.

Corollary 13 Let F and G be two C** bounded Markov families topolog-
ically conjugated. They have the same scaling family s if and only if they
are C¥*% bounded conjugated.

5.1.5 Existence and exponential convergence to re-
normalisation limit Markov families.

Definition 35 (i) For all m € Z and W,, € X7, let B™ and B™" be
intervals with the following properties. Their length is bounded away from
zero and infinity. The interval B™? is equal to C™. B™ is the limit of B™",
when n tends to infinity. In the sense that the extreme points of the interval
B™" converge exponentially fast to the extreme points of B™.

(ii) For all w,, € £, denote Wy,|n by w,,,, and Con by C™". Define the
map Apn t B™" — C™" as the affine map that sends B™" onto C™". The
map Fp,, : C™" — C™ is defined by F, , = F,,_10...0 F,_,.

(iii) For all m € Z and w,, € ET*, define the ri’"‘:‘renormalisatz'on Markov map
R: =Ry F:B™" — B™!" by

Ry=A ) 0 F a0 FmoFpnoAnn,.
Let R* = (R} )mez. By construction, the Markov families F' and R" are

topologically conJugated For allteIp = ):3,’1""‘, denote CM™ by B™", KRn
byQ""‘andK,"‘byQ ‘

For all { € Z, define the scaling tree n;, = ogn : U,?_lﬁ;' — R by

|B.”

nt',n(t) e
|Bonty|

By definition, 7;2(t) = gi_n{wint).
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Lemma 32 (i) The scaling tree n, : Uy, fj;" — R is well defined by
m(t) = ,}Lngo Nmn(t).

(i) For all t € £, there exist d > 0 and 0 < » < 1 such that

Um(t) !
€lXd/'v",
Tlm.n(t)

Lemma 33 For all t € &, the sequence of intervals B/™™ converge to an
interval B*.

For all £ € £™, define Qf = Nizo B, @™ = U= Q" and Q@ = (Q™)mez.
Define the renormalisation limit map R} = R® : Q™ — Q™% by RX(Qp) =

Q7h- Let B = (R%)mez-

Lemma 34 The scaling function #; : U;Zlflf — R is equal to the scaling
function ope Us1X] — R, defined by

|B,'|
w(t) = —=4_,
UR"- (t) = 5; (z)l

Theorem 26 The renormalisation limit map R* is a C'* bounded Markov
family. The Markov family R* is C'* bounded conjugated to R™ by the
conjugacy A" = (hmn : B™ — B™"),.cz. Moreover, thereis 0 < » < 1 and
a constant ¢ such that -

hmm = Id|lcr gy < ™.

Corollary 14 The sets Q™" are C* self-similar in the sense that there is a
C't diffeomorphism hp n from Q™ into @™™ which converges exponentially
fast to the identity map in the C'* norm when n tends to infinity.

Definition 36 A C'* class of Markov families is the set of all C'* bounded
Markov families (Fis)mez, C't bounded conjugated between them.

Corollary 15 The renormalisation limit Markov families (R ) ez are com-
plete invariants of their C'* class. We assume that the intervals B™ are the
same independent of the element of the C'* class.
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5.1.6 Constant Markov families.

A constant Markov family G is a Markov family (G )mez such that G, = G
for all m € Z. Then, ¥ = Z™.

Corollary 16 Let F be a C'* bounded Markov family. F is C'* bounded
conjugated to a C'* constant Markov family if and only if there is one renor-
malisation limit constant Markov family (R F)mez. The renormalisation
limit Markov families (R F)mez are constant Markov families, if @, = w7,
and BF» = BFe for all p,q € Z.

Let F be a C'* constant Markov family. Let ¢ € ¥ be such that there is
w € X, with the property that t|ng = W|ni. Define the nih renormalisation
constant Markov family at t by R* = R}, for all k > 0. The C'* conju-
gacy family (hn, )k>o between R and Rj* converge exponentially fast to the
identity in B with respect to the C'* norm, when k tends to infinity.

Forallt € I, let @ € E. and (ns)i>0 be a sequence such that t|ny = Win,.
Define the renormalisation limit set at ¢ as the set of all renormalisation limit
constant Markov families R3.

For all p-periodic words £ =t ...8,t;... € L there is W; € X, such that
tlpm + 1 = W|pm + 1, for all m > 0 and ! = 0,...,p — 1. Therefore, the
renormalisation limit set at £ has a maximum of p different elements:

{Rg :1=0,...,p—1}.

.'i-

5.1.7 Affine Markov families.

An affine Markov family (G m)mez is a Markov family such that Gy, is a union
of affine maps, for all m € Z.

Corollary 17 Let F be a C'* bounded Markov family and G a C** bounded
affine Markov family. Assume that'C®» = B®m = BFm, Then, F and G
are C'* bounded conjugated, if and only if one (all) renormalisation limit
Markov families (Rg, F)mez are equal to the Markov family G.

This implies that two different affine constant Markov families are not C'*
conjugated.
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If the constant Markov family F is C'* bounded conjugated to an affine
Markov family G then the renormalisation limit set, for all t € EF is equal
to {G}.

5.1.8 Proof of theorem 23 and 24.

Proof of theorem 23. By a simple application of corollary of theorem 3 in
chapter 1, there are C'* maps G : C* — C’}"f)’, for all t € P, such that

G = F, in K = K*(Fn). Deﬁne G =Gy in C* = C{*(F,). - |
Proof of theorem 24. By a simple application of corollary of theorem 3 in
chapter 1.

5.1.9 Proof of theorem 25 and 26.

Proof of lemma 32. By definition, g, n(t) = Om—n(Wm nt). By theorem 23,
the Markov family F has scale property. Therefore, for all words ¢ € E”‘ and

1>1
Omen-1 (wm,n+1t)

I n
o (Ont) €ltcv™.
Thus, for all p,g > M and M >0
Tm=n=p(Wmnts!) €l+d/WM. (1)

Omen-g(Wm,ntqt)

By bounded geometry, there is § such that om—n-p(Wmn+pt) > 6 > 0 and

by equation (1), the sequence (0'm—n(Wmnt))n>0 converges exponentially fast.
Therefore the limit n,,(t) is well defined, which verifies condition (i). More-

over, condition (i) is verified by equation 1 and condition (i).

Proof of lemma 33. For all £ € ™, by lemma 32

|Bgil = Jim |By™| = lim lenlI]l:’lmn(tl i) = IB'"IH'rm(tI)

Proof of lemma 34. By lemma 33 and lemma 32.

Lemma 35 Let F be a topological Markov family with bounded geometry.
Then F is a C'* bounded Markov family if and only if for all @,, € £ and
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all m € Z - or equivalently there exist WL, ..., @™ such that C’L","ll U...uU
C'_,,:ll1 = U,egm- CI-! - the following conditions are verified.

(i) For all t € £, there exist d >0 and 0 < v < 1,

Um(t) ! n
‘,,(t) €Elxdv'v

(ii) For all contact words t,s € XJ*, there exist d > 0 and 0 < v < 1

|B:™"| 1B

L N e N ET 17
|Br| 1B

Proof of lemma 35. We will prove that if F is a C1* bounded Markov
family then the two conditions of lemma 35 are verified.

Condition (i) is proved by lemma 32.

Let us prove condition (7). By lemma 33, for all contact words ¢,s € IJ",

1B7|
1Br|

| Bm.n+p|

( B n+,|)p>o converges to

For all t € L}*, denote Cy.. 7 by C;™™. As the Markov family F has contact
property, for all contact words t,s € IJ*,

cr)_jormt)

— —— €l
[ce ] 1Ce
Therefore, -
[BPe| |BpmH] o [opnl[Cpet o (o)
|Bm n+l| |B;71.ﬂ| lCm,nl ICm,n+1| IC‘m'nI Ictm,n‘l-ll
CPmLICE™ Iy
—— e € 1k v™,
lce e
Thus, for all p,g > M and M >1
Bm.n+q Bmmtp
Il ll! IEIZ!:dV’VM.

lB;ﬂ.nﬂ’I IB;n.rH-qI
This proves condition (it).

Let us prove the other implication.
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By condition (7), for all words t € f)}",

am-l(wm,lt) = nm.l(t) 77"l(t)
om(t) ?m(t) Mm,0(t)

€ (1xd")(1+d/)c1 e,
for some constant e > 0. Thus, the Markov family F has scale property.
By condition (i7), for all contact words ¢,s € £,

ICicsl _ICPl _ 1B™M 1B 1Br| (B
(S I (O |BeL 1B BR8]
€ 1xd/'?)(1xd')clte,

Thus, the Markov family F' has contact property.
Therefore, by theorem 23, F is a C't bounded Markov family. |

Lemma 36 The family of maps R® and R* are C'* bounded Markov fam-
ilies.

Proof of lemma 36. Let us prove that R™ and R have scale property. By
definition of scale property of the Markov family F and by condition (i) of
lemma 35, for all t € Z,

Mm (1) — Mm(t)  om(t)  Dmi10(J(2))
mm+1(J(t)) Mm,0(t) Om41(J (1)) Nms1(J(2))
€ 1xd/)1xc/'N1xd/ ) Cltel,

for some constant e; > 0. Moreover, ~

Tnt) . Omn(®) W) #ma(J(2))
Mm+1,0(J (1)) Mm(t) Nm41(J(2)) Tm41,0(J(2))
€ (1£d"*)(1 e )1 £dv'"1H") C 1 £e,

for some constant e; > 0.

Let us prove that R and R* have contact property. The Markov family
F has contact property and by condition (ii) of lemma 35, for all contact
words t,s € I[*,

+1,0
Br{ BES1 _ 1Bp Bre) jop] IRSIBES ] 1B
B3 | 1B 1B 1Bl ICTR' ICe L 1BRy'| 1850 |

€ 1+ )Q+te)1 £ ) ClEed
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Moreover,

+l' ' 1
1Br) 1Bl _ 1B 1Bt 1Br) 1B 1Biey "l 1By

85 BrT ~ IBTT By 1B 1BeT [Brh 1B

€ (1£d"*™)(1Lte)12dv ) ClLer.

As the Markov family F has bounded geometry, there is é > 0, such that,
forallt € I,
r'm'n(t) = o'm-n(wm,nt) > 5.

By condition (i) of lemma 32,
T (t) > (1 = dV'v™)0man(Wimat) > (1 — dv'v™)8.
Therefore, 7, (t) 2 6.

Finally, by theorem 23 we proved the lemma. H

Proof of theorem 25. By condition (i) of lemma 32, for all word ¢t € £,
allm € Z and alll € N, 5, (t) and 7g,,(t) are defined and by hypotheses of
the theorem,

nFm(t) = n]iongo O’Fm—n(wm,nt) = nli‘ngo aGm-n(wm.nt) = 77(.‘I'm (t)'

By condition (ii) of lemma 32,

aF"‘(t)El:!:clu and G’"()Elzl:cw,

NFa(t) 16w (1)
for some constants ¢y, c; > 0. Therefore, -
t
UF"'( ) el
7Ga(t)

Thus, the the Markov families F' and G are scale equivalent.
Suppose BF» = B9, For allt € £™ and m € Z,
l et = BF"'lI]l:qpm tl‘) = BGM'HUGm(tI ) = lBtll l-
i= =1
By condition (ii) of lemma 35, for all contact words ¢,s € I*,

OFIBE] ¢ 1 4 g apa 100111

el+d/.
1B ICF~] |BE~11CSn]
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Therefore,

e~ 168

[cém11cH]
Thus, the Markov families F' and G are contact equivalent. Finally, by
theorem 24, F and G are C'* bounded conjugated.

€Elxcv

If F and G are C'* bounded conjugated, then by theorem 24, for all
wWEX™ and allm € Z,

OF,,..(Tn)

€1l+c”.
OG- (T|N)

Therefore, sg,, (@) = sg,, (D). u
Proof of corollary 13. By theorem 25, the family of conjugacies satisfy

the unformity hypotheses of the theorem in the section in C*t® conjugacy
between backward Markov families. u

Proof of theorem 26. By lemma 36, the renormalisation limit R® is a
C'* bounded Markov family.

We will use the results of chapter 1 to prove the existence of the conjugacy
h™. First, we define a map g.(n,[) that we will use in the proof.
p

By bounded geometry, there is § > 0 such that for all word ¢t € i;", all
meZandallleN,
B < c8 (2)

where the constant ¢ is equal to the maximum length of the intervals B™, for
all m € Z. Take € > 0, such that ¥6~¢ = g for some 0 < 8 < 1. By equation
(2), forallt € P, allme€Z and all I€N,

iy
1B |

< a8 < cpl. (3)

Define ge(n,1) = cplvn.

Let T(™) = U1>1T( ™ be the tree such that T, (m) is the set of I-cylinders
and [-gaps in the domain of the Markov map R°'° and such that if I € T(")
then m([) is the cylmder such that T C m(I). Let T(™™) = Ul>,T,( ™) be
the tree such that T ™") is the set of l-cylinders and [-gaps in the domain of
the Markov map R” and such that if I € T\”) then m(I) is the cylinder such
that I ¢ m(I).

By construction of the Markov families R* and R", the embeddings (™)
and T(™") have the same topological structure. We define the map I; :
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I(T(™) — I(T(™) as in the section 2.4 of chapter 1, where I(T(™) = B™
and I(T(™n)) = Bmn,

In chapter 1, take in definition 8 and 5
f(l) = 9e(n, 1) = Cﬂlun’ (4)

for all I > 0. By theorem 3 and lemma 6 in chapter 1 and lemma 35 and
equation (3) and (4),

ILi41 = Lillca+e < cB'v™.
By condition (i) of definition 35, ||Lo — id]|c1+¢ < cv™. Therefore,
1Leo — idllgrse < cu™.
Define the map k., n = Lo o

Proof of corollary 14. It is an immediate consequence of theorem 26.

Proof of corollary 15. Let us prove that the Markov family R®F is a
complete invariant of its C'* equivalence class. If the Markov family G is
C'* bounded conjugated to the Markov family F, then by condition (i) of
lemma 35 and theorem 24, for all ¢t € Sr,allleNandallme Z

N6m(t) _  M16m(t) 0Gm_n(Wmnt) 1Fma(?)
NFa(t) 1Gmn(t) OFnn(Wmnt) 1F.(2)
€ 1+3d/v™.

Therefore, ng,,(t) = 7F,(t). As by hypotheses, B = Bfm then R®F =
R*G. If the Markov families G and F are not C'* bounded conjugated then
(R®G)mez and (R®F) ez are not C'* bounded conjugated, otherwise, we
obtain a contradiction by theorem 26. u

Proof of corollary 16. Let F be C'* bounded conjugated to a constant
Markov family G. For all m € Z, take B¥» = BSm, Then, by corollary
15 they have the same renormalisation limit Markov families, i.e. RY F =
RZ G, for all m € Z and W, € E7. As G is a C'* constant Markov
family then (RS G)mez is a C't constant Markov family when @, = @, and
BC = BY, for all p,q € Z. Therefore, (R2 F)mez is a a C'* constant
Markov family when @, = @, and B = B, for all p,q € Z.

If (RE, F)mez is a C'* constant Markov family then by theorem 26, F is
C'* bounded conjugated to it.
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Proof of corollary 17. As G,, is a union of affine maps and C®™ = BS%~ for
all m € Z, then all the renormalisation limit Markov families R"G coincide
with G. As for all m € Z, B6™ = B and F is C'* bounded conjugated to
G, then by corollary 15, R*G = R*®F.

If R*G = R®F then by theorem 26, F is C'* bounded conjugated to G.
|

5.2 C**% conjugacy between two-sided Mar-
kov families.

5.2.1 Introduction.

The w-limit set of Markov family consists of two-sided Markov families. Let
F and G be C**¢ two-sided Markov families. In this section, we prove that if
they are C'* conjugated then they are C*¥+¢ conjugated. This result opposes
to the difficulty in getting higher smoothness in one-sided Markov families. In
that case a balance between the speed of convergence of the Markov families
and the scaling structure of their cylinders is needed.

Let F = (F)mez and G = (G )mez be C*+® weakly bounded two-sided
Markov families, where § € (0,1] and k > 0.

A Markov family F is weakly bounded if there are constants b and e, such
that, |dF.| > e>1 and ||F||cr+s < b, for all m € Z.

Let h = (hm)mez be a topological conjugacy between F and G.

The conjugacy h has the uniformily property if it satisfies the following
conditions.

(i) There is a sequence of points z,, € C* such that F,, and k., are
smooth at Ty, Fia(zm) = Zm41 and |dh,(z,)] > M; > 0, for all
m < 0.

(i) Moreover, there is a continuous function ¢ such that £(0) = 0 and
for allm <0,

hm(Zm) - hm(ym)

Zm — Ym

—dhpn(zn)| < e(max{]zm = Znl, [Ym — 2ml})-
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Theorem 27 If h is a topological conjugacy between F and G with the
uniformity property then there is a C¥*¢ conjugacy r = (r,,)mez between F
and G.

Corollary 18 Let F and G be C*+5 constant Markov families. Let the map
h be a topological conjugacy between F' and G. Let z be a periodic point
of F, such that F is smooth at z. If h satisfies the uniformity property at z
then there is a C*¥*® conjugacy between F and G.

5.2.2 Proof of theorem 27.

Proof of theorem 27. We will prove in two parts that there is a C¥*¢
diffeomorphism ry = s from CP into C% which sends KF° onto K%, In
the first part, we prove that there is a sequence of maps s, converging in the
C?° norm to ko in the set K%, In the second part, we prove that there is a
subsequence of maps (sa)nez,, converging to a C**® map s, in some C*t¢
norm.

By the same argument, there are C**4 diffeomorphisms rp, : CFm — CCm
which sends K™ onto J{®=, for all m < 0. For all m > 0, choose a word
v € £%. Define the map Fo : CPo — CFm by Fypn = Fney0...0 Fp and
the map Fg : CF» — CI* as the inverse map of Fy,,. Define the map
Tm : CFm — COm by rp, = Fym 080 F5 L.

First part. Choose the word @ € X2 such that z, € CTUF-];". Denote c;’];" by As
and CZ-" by B,. Define the map Foli A,y — A, (resp. G2} : B,_; = B,)

Uin

as the inverse map of F_, : Ay — An-y (resp. G, : By — B,_;). Define
the maps f, : An = C™ and g, : B, = C® by

fa=F_10...0F_, and g, =G_.jo0...0G_,.

Moreover, define ;! : CP — A, as the inverse map of f, and g7!: C% —
Ba as the inverse map of g,.
Define the affine map L, : A, — B, by L,(A,) = B,. Denote L,(z) =
7n2 + b,. By the uniformity property,
Tn € dh_n(2a) £ €(|An]). ()

Define the sequence of maps s, : Cf — CG by

— -1
81‘ —gnLn n
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for all n > 0. By definition, hg = g, 0 h_, 0 7} in K*°,

For all y € K™, let y, € A, be such that y, = f7!(y). By the mean value
theorem, there is z, € A,, such that,

[3a(¥) = ho(¥)] < 1d(9n)(za )| La(¥n) = han(ya)l- (6)

By definition of the maps h_, and L,, h_,(A,) = L,(A,). Thus, there is a
point ¢, € A, such that h_,(t,) = L,(t,). By the uniformity property,

h_,,(y;) - f-n(tn) = d, € dh_n(z.) £ £(|An]). (7)

By equation (5) and (7) and definition of the map L,,
Ih-ﬂ(yﬂ) - L"(yﬂ)l = Ih-ﬂ(yﬂ) - h—n(tn) - ﬂn(yn - tn)'
n
It = F-lh=n(yn) = hon(ts)]
dh_n(zn) £([An])

< - .
SR e ) L ®)
By the mean value theorem, there is u, € B,, such that,
d(gn)(un)l|Bal = [C]. ©)
By lemma 38,
|d(gn)(2a)] < exp(es)[d(gn)(ua)l- (10)
By equation (9) and (10),
|d(9)(za)l|Bal < exp(es)IC®]. (11)

~ ™

By the uniformity property, |dh_n(zn)| > My > 0. Therefore, by equation
(6), (8) and (11),
dh_n(zn) L e(|An])
- < -
lsﬂ(y) hO(y)l - Id(gn)(zﬂ)”Bﬂ”]' dh_n(l'n) + 5(|Anl)l

dh_,(z,) + €(|An l)l
dh_n(zn) £ €(|Aa])"

Thus, |sa(y) — ho(y)] tends to zero when n tends to infinity. Therefore, the
sequence of maps (8,)n30 converges in the C° norm to ko in K%,

< exp(ca)lCG° 1 -

Second part. By the compact embedding lemma to prove the second part
it is equivalent to prove by induction in the degree of smoothness r that

l|sallcrts < by, forall 7 =1,2,..., k.
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Case r = 1. First, we prove that |ds,|is bounded and then that it is bounded
in the 6-Holder norm, independent of n > 0.

By the mean value theorem, there is 6, € C™ and v, € C° such that,
(£ EMICT| = |Aal and  |d(g7")(¥a)l|C°] = |Bal.

For all y € C*, by lemma 38 and the last two equalities,

UG L A0
ldsa(y)] = lnnd(g )(s,.y)l <l p(2C3) d(g 1)(1)[,")'
CGo
< exp(2c3)17" ||CF 'l < egexp(2¢3),

for some constant ¢g > 0. Therefore, ds, is bounded independently of n > 0.

Let us prove that the map ds, is bounded in the §-Holder norm. By the
equation above, by lemma 38 and the mean value theorem, for all z,y € C*?,
there is z,, € CP,

) g A0 0)) U ) 1
dsa(y) d(g71)(sa(2)) d(fT1)(¥) 7a
< c(lsa(z) = sa(@) + |2 — yIf)
< cldsa(zzg) )z =y + cjz — y)*
< oL+ coexp(2¢38))c -y,
Thus, ds.(2)
SplT 5
ds,.(y) € 1 i:cllz —yl‘,
for some constant ¢; > 0. Therefore, h
ds,(z)

|dsn(z) — dsa(y)| = |dsa(y )”d ) — 1] £ coexp(2¢3)e|z — y[°.

We proved that there is a constant b; > 0, such that
[[snllcr+s < b
Induction step. The induction hypotheses is that [|s,||cs+s < b;, for all
j=1,...,r. Let us prove the case r + 1. .
For ally € C™,
d?s, = (dIndf;)ds, — (dIndg;? 0 s,)(ds,)%
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Therefore, by induction in r

d¥s, = Lyodhd,...,d ndfo,
dlndg; ,...,d'lndg;l,ds,,,...,d'sn)

where L,42 is a polinomial of order r 4+ 2 with coefficients independent of n.

By lemma 39 and by induction hypotheses, the variables in the equation
above are bounded and are §-Hélder continuous with constants independent
of n. Thus, d"*1s, is bounded and it is §-Holder continuous with constant
independent of n. |

Lemma 37 Let F be a C** weakly bounded Markov family. Then, for all
re{l,...,k—1},

r-1n-1

dhndf7' = Y > (' IndF 0 f7h)

1=0 =0

(Y- E(dIndf Y, .. d' Indf )
where EJ is a polinomial of order I and the coefficients are independent of
n,i > 0. For i = 0, we define the map f;"! equal to the identity map.

Proof of lemma 37. We will prove it by induction in the degree of smooth-
ness r.

Case r = 1, By differentiation,
Indf;! = E IndF-} S+ © o fiL.
=0

Therefore,

n~-1
dindf7' = Y (dIndF 4,y 0 fT)df

1=0
Thus, the formula is valid for r = 1, with E} = 1.

Induction step. Let us suppose by induction hypothesis that the formula is
valid for r and let us prove that it is valid for r + 1. First, we differentiate
separately the three terms of the formula in lemma 37.

The derivative of the first term is

d(d " IndFZf 0 f71) = (@ IndFoly,y 0 71



145

The derivative of the second term is
d((df71)") = (r = O(df7) ! (dlndf7).
The derivative of the third term is
dE[(dIndf7Y,...,d' Indf) = Ff(dlndf,...,d*  Indf?),

where F[ has degree | and coefficients independent of i and n. We define the
polinomial

Gl(T1ye ey zipn) = F (21,000 s 24) + (r = D2 E (24,. .., 7).

The polinomial G7,; has degree [+ 1 and the coefficients are independent of
¢ and n. Therefore,

r~ln-1

dHindf;t = 33 (@ IndFg 0 £77)

1=0 i=0
@7y Ef(dndf Y., d' IndfY))

r—-1n-1

+ g }:0(((1'*' IndF=,py 0 f71)
(df,.“)"—"’G,'“(dln df,. .., d* Indf™)).
Replacing [+ 1 by ! in the second term, we have
E;tYzyyee.y2ig1) = Ej(z1y...,31) = 1.

define Ef = 0. For I = {1,...,r}, E{*}(zy,... 121) is equal to

Fl(z1y.c0yz)+ (r =14+ l)zlE,_l(xl,...,:c;_l) + E/(z1,...,71) &

Lemma 38 Let F be a C¥* weakly bounded Markov family. Then, for all
my € )
~1(y ,
<clz -
where f=6ifk=1,0or =1 1f k > 1. Moreover,

df () € exp(Ees)df, (z).

Proof of lemma 38. As the Markov family F is weakly bounded and by
the medium value theorem and as |dF,,| > e > 1, for all z,y € C®, there is
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Zry € Ch,

d -1 n-1
o AT S YOI e MY Ol

n-1 n-1
< a ‘_[,0 7)) - (@) <a };(df'.-°l(2=.y))ﬁly ~z|’

< c|z: - ylﬁ < C3,
for some constant ¢3 > 0. Therefore,

df (y) € exp(tes)df (z) |

Lemma 39 Let F be a C*+% weakly bounded Markov family. Then,
o df,7 [ler-148 < by

Proof of lemma 39. The case k = 1, it is proved by lemma 38. For k > 2,
we will prove by induction in r that d"Indf;! is bounded in the C° norm
independent of n, for all r = 1,...,k — 1. After, we prove that d*~!Indf !
is §-Holder continuous with constant independent of n.

Case r = 1. By lemma 38 and as k > 2,

-1
lIn (‘g lgy;| < cle -y

Therefore, dIndf,;?! is bounded in the C° norm independent of n.

Induction step. By induction hypotheses, we suppose that the maps dIn df;!,
., d""1Indf;! are bounded in the C° norm independent of n. We will prove
that d"Indf;! is bounded in the C° norm independent of n.

By lemma 37,
r-l1n-1
Tlndft = 3 (@' mdF 0 f7Y)
1=0 =0

(&) Ef(dndf...,d' lndf))

where the coefficients of the polmomxal E] are independent of n and i, for
allre{l,...,k =1}

As the Markov family F' is weakly bounded, |[dF ;] > 67' > 0 and
because the first r+ 1-derivatives of the map F__(' +1) are bounded independent

of ¢
|~ IndF 40y 0 71 < by (12)
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foralll=0,...,r~1,i=0,...,n—1and n € N.
As the Markov family F is weakly bounded, |[dF=}| < e~! < 1. Therefore,

n-1
S < (o) S by (13)

foralll=0,...,7~1,i=0,...,n—1and n € N.
The induction hypotheses implies
|E{(dIndf,...,d' Indf")| £ b, (14)
foralll=0,...,r=1,¢=0,...,n—1and n € N.
By lemma 37 and equations (12), (13) and (14),

r—1 1

a7 Indf < 30 b )t <.
1=0

—e-1

Let us prove that the map d*~!Indf;! is 6-Holder continuous with Holder
constant independent of n. The map d*~'~'IndF~} +1) is 6-Hélder continuous
for Il = 0 and it is Lipschitz for I = 1,...,k — 2. ks the Markov family F is
weakly bounded, the §-Holder (resp. Lipschitz) constant is independent of
1 2>0,i.e. :

”dk’l_' In dF:(l'-+l)“CJa,.cLiplchiu <g

for some constant ¢ > 0. Thus, the map d*~1-!In F-—(li+1) o f71 is Lipschitz
if I > 0 or §-Hélder continuous if I = 0. As the Markov family F is weakly
bounded, |df=}| < (e7!)’ < 1. Therefore, the Lipschitz (resp. &-Hélder)

$
constant of the map d*~1~!In F_"(l,- +1) © f1 converges exponentially fast to

zero, when 1 tends to infinity.

The map (df;!)*=1-1) is Lipschitz where the Lipschitz constant converges
exponentially fast to zero, when ¢ tends to infinity because it has bounded
nonlinearity and it is exponentially contracting.

The map
EF'(dIndf7},...,d' Indf?)

is Lipschitz with constant independent of i because it is a I-product of maps
bounded in the C! norm independently of ¢ as proved by induction.

Therefore, the map
&V ndFoL o [T E  (dIndfY, L L d In df?
(i+1) :
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is a product of §-Holder and Lipschitz maps with constants bounded indepen-
dentofi = 0,...,n and n € N. The map (df;"!)*~1~! converges exponentially
fast to zero in the CLP*cht* norm when i tends to infinity. Therefore, the
product of the three maps above is §-Holder continuous where the 6-Holder
constant converges exponentially fast to zero, when ¢ tends to infinity. There-
fore, the map d*~'Indf;? is 6-Holder continuous. B

Lemma 40 Compact embedding lemma. Let (f,)a>0 be a sequence of CF+
smooth functions f, defined in an interval I = [a,c], where & > 0 and
a € (0,1]. If || fallcx+a < b, for all n > 0, then there is a subsequence (fy;)izo
converging to a C*+* smooth function f in the C¥+*” norm.

The map f is bounded in the C¥**” norm, if for all 0 < £ < @, f is
bounded in the C¥+¢ norm.

Corollary 19 The set of all functions f € C*** defined in an interval I
such that ||f]|cs+e < b is a compact set with respect to the norm C*+*=¢ for

all small € > 0.

Definition 37 A subset of a topological space is called conditionally com-
pact if its closure is compact in its relative topology.

Theorem 28 Arzela-Ascoli. If S is compact set then a set in the space of
continuous functions with domain S is conditionally compact if and only if
it is bounded and equicontinuous.

Proof of the compact embedding lemma. Likely not original. As the
sequence of maps f, is bounded in the C¥+* nofm, then

ldkfn(z) - dkfn(y)l < blz - yla,

for all n > 0. Therefore, (d* f4)n>0 is an equicontinuous family of functions.
By the Arzela-Ascoli theorem, there is a subsequence (d*f,,)iso converging
to a function A in the C® norm. In other words, there is a sequence (I;)i>o
converging to zero, such that,

@ fo; = B < .

As the function A is continuous, then it is integrable. Let us show that the
sequence (d*~™ f,. )i>o0 converges to m-times the integral of & in the C° norm,

forallm e {1,...,k}.
|d'=-"'f,.,.—/¢’.../:h|5|\/:.../:(d*f,,,. ~B)| < kle—a|™

14
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Therefore, the sequence ( fy;)iso converges to k-times the integral of h in the
C* norm.

Let us prove that the sub-sequence (fy,)i>0 converges in the C**¢ norm
to k-times the integral of h, for all € < a. Define the map H = H,; =
d* f,.. — d"f,‘j. As the sub-sequence (f,;)i>0 is contained in a Banach space
with respect to the C*¥*¢ norm, we have to prove that

|H(y) = H(z)|
ly — z[*

tends to zero when j tends to infinity, for all m > ;.

If ]:r: - y| > I_,',
|H(y) = H(z)| _ |H(y) |, |H(=z)] _ 45 Nl-e
ook S ly—af Tly—el gy S T
Ifle-yl <,
|H(y) = H(z)| |d* fo(2) = & o, ()] + 18" o, (z) — d* f; (0)]
ly =zt~ ly —zI°
2bly — z'a Na=—¢
= |y—azf < 24(%;)

Therefore, the sequence of functions (fa;)i>o0 converge to a function f in the
C*t¢ norm.

The function f is C*t* smooth, because
ld* f(z) = d* f(y)] < |d*f(z) = d* fua(2)| F 18" Fus(2) — d* fui(¥)]
+|d* fai(y) — d* £ ()
< 2 +4clz -y

and as the sequence (I;);eN tends to zero when ¢ tends to infinity, we obtain
that |[d*f(z) — d*f(y)| £ c|z — y|* a
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5.3 The existence of a Markov map and ex-
ponential convergence to the Feigenbaum-
Cvitanovic fixed point of period doubling.

5.3.1 Introduction.

Lanford [11] proved the existence of a fixed point g of the renormalisation
operator R and the existence of a stable manifold with codimension one in
some analytic space. Rand [22] and Sullivan [28] proved independently that
two maps in the stable manifold are C'* conjugated. This easily implies
that, if f is in the stable manifold then f has the Feigenbaum order and
there is a C'* Markov map F with the following property.

ﬂ;ZOF"’(I) = {f‘(O),t € Zzo}. (15)

We give a simple proof of the convergence of the renormalisation R"f of f
to a fixed point g of the renormalisation operator. For that, we assume that
the map f has the Feigenbaum order and the existence of a C'* Markov
map F with the property of equation (15). This means that if f is C'*
conjugated to the renormalisation fixed point, then it converges to it. This
‘is the converse of the result of Rand and Sullivan. Sullivan [30] proves a
much more general result that R"f of f convergences to the renormalisation
fixed point, just under the assumption that f has the Feigenbaum order.
This excellent result relies in the use of a lot of machinery from complexes
analysis and one dimensional dynamics.

5.3.2 Theorem 30.

Let f € C? be a quadratic fold map of the interval I = [~1,1]. Let D be
the set of all folding maps. The renormalisation operator R(f) = a~'f? o q,
where a = a(f) = f(1) is well defined on an open subset D(R) consisting of
those f € D such that, if a = a(f) and b = f(a), then ¢ < 0, b > —a and

f(b) L a. .
Let F be a C'* Markov map with the following property.

K= 1{0 = n;ZOF-i(I) = {f'(O),Z € ZZO}-

The Markov map F defines a cylinder partition in I. Denote the n-cylinder
containing 0 by C, = C7j},, where we denote by 1|n € I, the corresponding
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word, for all n > 0. Moreover, define K, = C, N K and CC as the smallest
interval containing K. Define the inverse map of F* : C, — CC by F~":

CC — C,.

Lemma 41 The map f?" : C,, — C, has the property that in the set K,

f2" — F—ann

Lemma 41 was proved in Sullivan [28]. Define the set

K" =T{(R"f)(0):1 € NJ.

Define C" as the smallest interval containing K™. Define a sequence of linear
maps @, : R = R by a,(0) = 0 and a,(f**(0)) = f2"7'(0). Define the map
pn: CC — R by p, = ay...a,F~", The map p, is a diffeomorphism from
K onto K™.

Recall that the C'* norm of a map f in a domain M is defined by

HOES ()],

I llesen = max{lf ()} | ()] +=2=

for some a € (0,1).

Lemma 42 If f has the Feigenbaum order and the Markov map F is C'*
smooth then the sequence of maps (p,),s0 converge exponentially fast to a
diffeomorphism p: CC — R in the C'* norm.

-

Define the set K* by
K= ={(pfp~')'(0) : 1 > 0}.

Let C*® be the smallest interval containing K*. As the maps p and p,
are C'* diffeomorphism, then the map h, : C*® — R defined by p,p~! is
a C't diffeomorphism. The map k, is a C!'t conjugacy between the map
pfpl: K® = K® and f, = R*"f : K™ =+ K™,

Theorem 29 The conjugacies k, converge exponentially fast to the identity
map in the C'* norm, when n tends to infinity.
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Theorem 30 Let f be a C? fold map with the Feigenbaum order. Let F be
a C'* Markov map verifying equation 15. Let the map d(R"f) be bounded

in the C'* norm, for all n > 0. Then R"f converges exponentially fast to

pfp~! in K with respect to the C'* norm, when n tends to infinity.

Corollary 20 The renormalisation limit map R®f : K*® — K* is equal to
pfp~t: K® — K>,

Define the Markov family (Gn)n30

TE [bg,bd
Ca(z) = { bfa(z) z € [bs, 1]

where b; = (f,)'(0), for all i =1,...,4 and b = (§,)"1.

The family of Markov maps G, define the same cylinder partition in CC
as the Markov map F. Define the Markov map F, : C® — C* by

T € [az,a4]
Cn(2) = { olpfo™)(z) = € [anra]

where a; = (pfp~1)(0), forall i = 1,...,4 and a = (a;)"".

Corollary 21 The sequence of Markov maps G, converges exponentially
fast to the Markov map F,, in X with respect to the C'* norm.

Theorem 31 The renormalisation limit map R®f : K* — K* is a fixed
point of the renormahsatlon operator, i.e. satisfies the Felgenbaum-thanowc

equation, R(g) =

Theorem 32 The fixed point map R®f : K® — K is completely deter-
mined by the scaling function of the Markov map F and the extreme points

of K.

Proof of lemma 41. We represent symbolically w = ee;... € K by
T2, 2%, where ¢; is 1 or 0, depending if 0 € C2 or not. In this symbolic
representation f(w) = w+ 1, F(w) = [w/2] and F- (w) = 2w + 1 where {]
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means the characteristic of a number. Thus,

an2"F—n(,w) — F"f”F""(ieﬂ‘)
1=0
n-1

= F“f’"(22'+2"ze :2°)

1=0 1=0

= F(2"-1+2") 2 +27)

i=0

= [("-1+2" i &2’ +2")/2")

i=0

f:e;?' +l=w+1= f(w)pg

Proof of lemma 42. Define the map p,m = an0...0a, 0 F~(m="+1) where
n < m. Note that p, = p1,» We prove this lernma in three parts. We do not

distinguish between different constants c.

First part. The sequence of maps (p, )x>0 converges exponentially fast in the
C° norm.

By the mean value theorem, there is ¢, € Cy, such that:
dF(t)(f*"(0) = 0) = F(f¥"(0)) = F(0) = /" (0) - 0.
Therefore, a,(z) = dF(t,)z, for all z € R.

For all z € C;_,, there is z} € Ci_y, such that dF~(z!).(z = 0) = F~(z) -
F-1(0) = F~Y(z). By the inverse function theorem there is z; € C; such
that dF-Y(z!) = 1/dF(z;). Thus F~Y(z) = z/dF(z;) and F-(*-"t)(z) =
z/ 1%, dF(z;). Therefore,

_ 1y dF(t)
Pun() = I 7Rz

As the points ¢; and z; are in C; and dF has the same sign for all z in C
and it is a -Holder continuous,
|In|[dF(t;)] = In [dF(x;)]] < c|dF(t;) —dF(z;)
< clti —zi|" L c|Cif”

for all { > 0. By bounded geometry, there is u between 0 and 1 such that
|Cn| < ep™. Thus, by last paragraph,

In lﬂjg((t))ll.ﬁcilcel" <clCal” < (™)

i=n
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By the inequality above and as dF(t;) has the same sign as dF(z;),

dF(t;) o
HdF( €1+ c|Cal™

=n

Thus,
pam(s) = 2 = ([] 5% = 1)z € £lCo[Cusl

t=n

Therefore, for all y € CC, there is z € C,,_; such that

Pm(y) —pno1(y) = dF(t1)dF(t;)...dF(tn-1)-(Pam(z) — T)
€ c|Cal?ld) € c(u®)".
Therefore, the sequence p,, converges in the C° norm, when n tends to infinity.

Second part. Let us prove that the sequence (dps)aso converges in the C°
norm. Define z* = F~*(z). Thus,

"t dF(t) dF(t:)

dpn- '—III dF( ') a'nd dpm( ) H dF(.’E
By the same argument as in part 1,
dF(t;) o
E‘dF( 5) € 1 % ¢|Ch]

Therefore,

dpm(2) = dpu-r(z) = (I_:I: jﬁ((;))) (U jﬁ(:,-)) )

€ (1£c|Ch]*)(&e|Cal") € e(n%)"

Thus, the sequence dp, converges uniformly in the C° norm, when n tends
to infinity. In the same way,

dpl(z) = dp3ly(2) € c(u®)".
Therefore, dp, is bounded away from zero, independent of n.

We will use that

dpm(z) m dF(t) ayn
Tute) ~ L, TFary € 1) (16)

in the proof of theorem 30.
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Third part. Define the map H = H,, ,: CC — R by H = dp,, — dpn_,. Let

us prove that
|H(=z) — H(y))|
lz -yl
tends exponentially fast to zero, when n tends to infinity, where ¢ < a and
m > n. This is a consequence of the exponential convergence in part 2.

First, we prove that |dp,_,(z) — dpa-1(y)| < ¢z — y|*. By the same argu-
ment as in part one and because F is an expanding map,

dpn-1(z) _ 2 dF(y) o
dnpaw"Lanﬂ)elidz yl* (17)

As dp,-1 converges exponentially fast to dp,

1dpn-1(2) = dpn-a(y)] < ldpn_l(y)n% ~1) < e —y|".

Denote v = u®. If [z — y| > v",
() = )| | H@I+ @] o e,

lz -yl lz—=ylc T ()~
If [z —-y|<v?,
[H(z) - H(y))| Ildpm () = dpm (y)] + dPa-1(2) = dpa-1(y)]
|z -yl - [z -yl
S 2CIZ’ - y‘a -<- ‘_)c(y“'—')“.

|z -yl -

Therefore, the sequence of maps (p,)a>0 converge exponentially fast to a map
p in the C'* norm. As the maps dp, are bounded away from zero, the map

p is a C'* diffeomorphism. |
Proof of theorem 29. Similarly to lemma 42. -]
Proof of theorem 30. By definition, in the set CC,

o= R"ficc = v fUat ...al"éc.
Moreover, by lemma 41, in the set K™,

LIS | 2 N-n n_ -1 -1
ay...anff o] e O pn = Q1O F fixFle, e O
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The last map has a C'* extension to CC but the last equality may not be true
in this extension. For all z € K, define y = p~¥(z) and z, = p.(y) € K™
Denote, pfp~! by g and pnfp;! by gn. Thus, fu(zn) = ga(zs).

We will prove that f, converges exponentially fast to g in K, with respect
to the C'* norm. We prove it in three parts.

First part. Let us prove |f.(z) — g(z)| < e1v™. As all the points z, € K™
are accumulation points in K" and f,(z,) = gn(zs) then df,(zn) = dgna(zn).
Therefore, there is a constant ¢ > 0,

ldfa(z)| < ldfa(1)] = |dga(1)] < .
For alll z € K,

Ifn(z) —g(.‘r)l < lfn('t) —fn(rn)l + 'fn(zn) _g(‘r)l
< |dfa(2)llz = zal + lga(2n) — 9(2)|

The first term is less than cv™ because |df,(z)| < ¢ and by first part of
lemma 42, there is y € C, such that, |z — z,| = |p(y) — pa(¥)| L ™.

The second term is less than cv™ because by first part of lemma 42,

|9n(zn) = 9(2)| < IPaf(¥) = PS(¥)] < ™.

Therefore, |fa(z) — g(z)| < cv™.
Second part. Let us prove that |df.(z) — dg(z)| < ¢(v*)?. We have that,
|dfa(z) = dg(=)]
< |dfa(z) = dfa(zn)| + [dfa(za) — dg(2)]
< |dfa(z) = dfalza)| + |dgn(za) ~ dg(z)|
<

41(2) = i) )
Hap () - 4 (3) -y~ | e Pt gy

The first term is less than ¢(v*)", because by hypothesis and by the first
part of lemma 42,

|dfa(z) = dfa(zn)] < clz = 2a|" S e[p(y) = Pa(Y)|* = ™

Let us prove that the second term is less than cv™. As |df(y)| < cand pis
a diffcomorphism onto its image,

ldp(f(y))dF(y)dp~'(z)| < <.



157

By equations 16 and 17 of lemma 42,

dpa(f(v)) dp3)(2a) dp7 () )
dp(f(y)) dp7i(z) dp~'(z) €lLca

Therefore, |df,(z) — dg(z)| < c(v*)™.
Third part. Define the map H = df, — dg and 4 = v®. Let us prove that,
|H(z) — H(z))]

2= < ey

where € < a. This is a consequence of the exponential convergence in part
2.

If [z - 2| 27",
1) = HE)| _ @) +1HG) _ 2o

le—zc = Je-2t T ()

S C(’)’l —e)n

If |t — 2| <" then
|H(z) = H(z))| _ |dfalz) —dfu(2)] + |dg(z) — dg(2)]

|z — z]¢ - |z — z|¢
clz - z|* -
< < (-t 3 n.
S TF S c(v"™%)
Therefore, [|fa = gllci+(k=) < c(77~*)", for all n > 0. - |

Proof of corollary 20. By theorem 30, the maps R"f converge exponen-
tially fast to pfp~! in K* with respect to the C** norm. Therefore,

R*fik= = pfpjx--H

Proof of corollary 21. Similarly to the proof of theorem 30. B

Proof of theorem 31. Similarly to the proof of lemma 42, we have that
poF~1:CC — Risequal to ay...a,... F-1...F—n converges exponen-
tially fast to (dF(0))~'p in CC with respect to the C't norm.

By lemma 41, in set K™,
(Rnf)lzl\"' = pﬂfzp;l,;(n = pﬂF—lpr;;(n’

Similarly to the proof of theorem 30, we obtain that (R"f)ls~ converges
exponentially fast to (dF(0))~'pfp~'dF(0) ke, when n tends to infinity.
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As the limit of (R"f)?,. is unique and by corollary 20,
|K

(R™f)jke = (dF(0))'R® fdF(0) k.1

Proof of theorem 32. The Markov map F, and F are C'* conjugated.
Therefore, they define the same scaling function by theorem 25. The Markov
map F,, has an affine branch, with the fixed point 0 contained in its domain.
Let T € £f* be such that 0 € Cy},. Therefore, For all ¢ € £F and all n > 0,

or,(t) = limy, o t(I|nt) = op(1t). ,
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