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Summary

Motivated by problems in the theory of renorrnalisation of dynamical
systems, we study the properties of Markov families and fractals defined by
embedded trees. Our main results concern the classification of c+: struc-
tures. Two topologically equivalent Markov families are c+: conjugate if
they converge together rapidly enough. This result implies that the attrac-
tors of two systems at the accumulation point of periodic doubling are C2.11

conjugate. We also introduce and study the limit set of an exponential de-
termined Markov family.
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Chapter 1

Introduction.

Our main goal is the study of Markov families and the respective fractal par-
titions. We obtain results on convergence and smoothness. Some important
applications of our work is the existence of smooth conjugacies for circle maps
and for quadratic foldings in the frontier of chaos, which shows the rigidity
of these systems.

We start our discussion by considering a number of examples of Cantor
sets and fractal partitions generated by dynamical systems and some pro-
totypical rigidity and smooth conjugacy results in section 1.1. Firstly, we
give some information on the route to chaos through period-doubling. We
discuss the universality properties and their understanding using renorrnal-
isa.tion in section 1.2. \Ve prove a rigidity result on the CH.11 smoothness
of the conjugacy between quadratic foldings with the Feigenbaum order in
section 1.2.11. Our result on smoothness extends to any analytic quadratic
foldings infinitely renormalisable and topologically conjugated. Secondly, we
give a short survey on circle maps in section 1.3. We prove a general theo-
rem on smooth structures which will have applications for the case of critical
circle maps in chapter 2. Using the results on smoothness between Markov
families, we describe how to obtain Coo smoothness of the conjugacies be-
tween analytic diffeomorphisms of the circle with the same periodic rotation
number in chapter 3. Our future aim is to generalise this proof to analytic
diffeomorphisms of the circle with the same diophantine rotation number.

The study of the problems above is strongly associated with the under-
standing of Markov families. In chapter 3, we prove some general results on
smoothness and convergence of Markov families. \Ve define some geomet-
ric properties which imply their smoothness and vice-versa. We prove the
existence and the degree of smooth conjugacies between convergent Markov

1
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families topologically conjugated.

In chapter 4, we define and prove the existence of limit sets for Markov
families consisting of two-sided Markov families. We prove the exponential
convergence to them under some geometric assumptions. \Ve give appli-
cations to diffeomorphisms of the circle, critical circle maps and quadratic
foldings. This will allow us to understand better the horseshoe picture for
critical circle maps, which we will describe later.

For two-sided Markov families, we study in chapter 5 the C1+ self-similarities
in the blown-up of small intervals in their domain. We obtain a strong rigidity
result in the smoothness of conjugacies between two-sided Markov families.

1.1 Cantor sets.

The middle-third Cantor set is a well known example of a binary Cantor set.
A slightly more general construction of a Cantor set C is the following. Let
I = [0,1], 10 = [0, a] and II = [b,I] where a < b. Construct the Cantor
set C deleting intervals of various lengths. The intervals obtained in the
n-induction step are called the n-cylinders . We index them by the the finite
words eo ... en-l of Os and Is in such a way that the n-cylinder indexed by
eo ... en-20 lies to the left of the n-cylinder indexed by eo ... en-21 and both
are contained in the n -I-cylinder indexed by eo ... en-2. Thus to each finite
word eo ... en-l of Os and Is we will associate an interval I~o...~n_" such that

where the gap G~o...en_l is the open interval between Ieo".en_,o and I~o...en_,l'
Thus the Cantor set is constructed inductively by deleting the gaps. 'rVe
assume that the ratios IGt IIlId and II~o...en_' II II~o...~n_21 are bounded away
from 0, i.e. the Cantor set C has bounded geometry. It is given by

c = n u t.;...en_,·
n2::0 eo···en_l

Then there exists 0 < II < /1 < 1 and constants c, d such that ct/" <
Ieo ...en_l < du",

Let E = {O,1}z~o denote the set of infinite right-handed ioords COCI ••• in
E. VIc endow it with the product topology. The mapping i :E -+ It defined
by

i(COCl ••• ) = n I~o...en_l
n~O
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gives an embedding of E into R.

Very often the set C = iCE) will be an invariant set of a hyperbolic
dynamical system. For example, there is a map a defined on E above by

This induces a map a' on C = iCE) which is a candidate for a hyperbolic
system. Thus we can ask when does there exist a C1+f3 mapping f :R -+ R
such that fie = a',

1.1.1 Cookie-cutters.

Suppose that 10 and II are two disjoint closed subintervals of I containing
the end-points of 1= [-1,1]. A cookie-cutter is a C1+o map F: 10UII -+ I
such that IdFI > ,\ > 1 and F(/o) = F(Id = I. If

An = {x El: FixE 10 U III j = 0, ... , n - I}

then An consists of 2n disjoint closed subintervals. The intervals

and the gaps between them are the n-cylinders of the Cantor set C

C = nn2:oAn = {x El: Fix E 10 U/I! for all j ~OJ.

To each infinite right-handed word, = COCl ••• we associate the point i(,) =
nn~oI~o,...,~n_l' If dF > 0 this agrees with the coding in section 1.1.

1.1.2 Scaling trees.

A tree T consists of a set of vertices of the form VT = Un>O Tn, where each Tn
is a finite set, together with a directed graph on these vertices such that each
t E Tn, n ~ 1, has a unique edge leaving it. This edge joins t (the daughter)
to met) E Tn-1 (its mother).

Given such a tree T we define the limit set or set of etuls LT as the set of
all sequences t.= tott ... such that m(tHt) = ti for all i > O. We endow LT
with the metric d where

d(SOSl ••• , tOtl ... ) = 2-n
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if Si = t, for 0 < i :::;n - 1 and Sn =f tn·

To a binary Cantor set C we associate the abstract tree T = Ta whose n-
vertex set Tn contains both the symbols co ... Cn-l and g(;0 ••.(;n-2 corresponding
respectively to the intervals 1(;0 ...£n_1 and G(;0 ...(;n_2 and whose edges connect
them to their mother co •.• Cn-2' Moreover, there is an ordering $n on the
n-vertices induced by the ordering of the corresponding subintervals on the
real line. This ordering satisfies the compatibility condition m(J) -c, m(I()
implies J <n+ 1 J(, for all vertices J and J(.

The binary Cantor set defines a mapping O"T : UneNTn -t (0,1) by O"T( t) =
Ild/llm(t)1 and 0"1'(gt) = IGd/lld. Clearly O"T has to satisfy the condition
Lt O"T(t) = 1where the sum is over all the vertices with the same mother.

Clearly such a map O"T : T -t (0,1) completely defines the binary Cantor
set.

Definition 1 A map O"T : T -t (0,1) as above is called a scaling tree.

Notation. If f and 9 are functions of a variable x with domain ~, then
we write O(J(x)) = O(g(x)) with constant d if

d-1 < If(x}l < d
Ig{x)l

for all x E ~. Often we will drop the reference to d. Thus if an and bn arc
sequences then O(an) = O(bn) means an/bn and bn/an are bounded away
from 0 independently of n. The notation f(x) = O(g(x)) means the same
thing as O(f(x)) = O(g(x)).

Similarly, f(x) :::;O(g(x)) with constant d means If(x)/g(x)1 < d for all
x E~.

Definition 2 The scaling tree ar has f3-scale determination if and only if

a.nd
(T(geo t:n-t) _ 11S O( IG,;o ... (;n_1 111)
O"T(gq t:,,_I)

for all the vertices of T, where f3 lies between 0 and 1.
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Definition 3 (i) A map s : .AI -+ N is a-Holder continuous, where a lies
between 0 and 1, if and only if there is a constant c > 0 such that for all
X,y E .AI, Ils(x) - s(y)11 ~ cllx _ ylla.

(ii) A map s is Holder continuous if and only if there is some a > 0 such
that the map s is a-Holder continuous. If a = 1 then the map s is Lipschitz.

(iii) A map s is CH smooth if and only if there is some a > 0 such that
the derivative ds is a- Holder continuous.

(iv) A map s is Cltrr smooth if and only if for all a between 0 and {3
the derivative ds is a-Holder continuous.

Theorem 1 The map a' on C = i(E) has a C1+{3- extension to the reals if
and only if the scaling tree UT has {3-scale determination.

Let UT and UT' be two scaling trees corresponding to different binary
Cantor sets C and D.

Definition 4 The scaling tree UT and UT' are {3-scale equivalent if and only
if UT(t) E uT,(t)(l ±clltl.8) and UT(gt) E uT,(gt)(l ±cIGtl13) for all the vertices
in T, where {3lies between 0 and 1 and c is some constant in R+.

Define the homeomorphism h : C -+ D which sends the extreme points
of all the n-cylinders of C in the extreme points of the n-cylinders of D
preserving their order, for all n E N.

Theorem 2 The homeomorphism h : C -+ D has a C1+{3- extension to the
reals if and only if the scaling trees UT and UT' are {3-scale equivalent.

The theorems above were proved by Sullivan [28] for the case of C1+
extensions. Rand and Pinto [17] generalised it for more general scaling trees
than the ones generated by binary Cantor sets and got C1+.8- differentiability.

The construction of the binary Cantor set is the simplest non-trivial ex-
ample of a scalin q tree. "Vc shall be interested in scaling trees such as this
where the analogue of the Cantor set C is generated in one way or another
by a dynamical system.



6

1.1.3 Scaling function

The definition of scaling function and the results below are due to a previous
work of Sullivan [28]. These results are corollaries of the theorems in the
previous section.

vVe introduce the dual 1:* of 1:. This is the set 1:* of all left infinite uiords
... e, ... co where e, = 0 or 1 for all i E Z$o, We endow it with the product
topology.

Definition 5 The scaling function U : 1:* -+ R is defined by a( ... e, ... co) =
limi--+<x>UT (Ci ... co).

Theorem 3 Sullivan. A bounded geometry Cantor set C is generated by a
cookie-cutter if and only if the scaling function exists and is Holder continu-
ous.

Two Cantor sets C and D are in the same C1+ equivalence class if and
only if the map h :C -+ D which sends the extreme points of the n-cylinders
of C to the extreme points of the n-cylinders of D keeping their order has a
C1+ extension to the reals.

Theorem 4 Sullivan. The scaling function is a complete invariant for each
C1+ equivalence class of Cantor sets with Holder scaling function.

1.2 Feigenbaum period-doubling.

Feigenbaum period-doubling is one of the most common and well-known
routes to chaos. There are a lot of experiments in different areas which con-
firm this phenomenon. One of the most amazing properties is the existence of
universal quantitative properties which are independent of the experiments.
To analyse and discuss these properties we introduce the concepts of renor-
malisation and Markov families. Excellent recent work in the proof of the
rigidity conjecture is due to Sullivan [30]. He proves that the stable man-
ifold contains all quadratic foldings with the Feigenbaum order. Previous
relevant work are due to Feigenbaum, Collet, Tresser, Lanford, Rand and
other mathematicians and physicists. Our main result is the proof of the
C2.11 smoothness between analytic quadratic foldings with the Feigenbaum
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order. Our results on smoothness extend to any analytic quadratic folding in
the frontier of chaos. The smoothness of the conjugacy is given in terms of a
balance between the speed of convergence of the respective Markov families
and the scaling structures of their cylinders.

1.2.1 Feigenba urn ordering of the interval.

"Ve say that a sequence of points Xi, i = 0,1, ... in the interval [Xl, xo] has
the Feigenbaum ordering if for 0 ::; i < 2n-l, Xi+2" and Xi+3.2,,-1 lie between
Xi and Xi+2n-1 and are ordered so that Xi - Xi+2n-1 and Xi+2n - Xi+3.2n-1 have
the same sign.

1.2.2 C2 farnilles of quadratic foldings.

A quadratic folding of the interval I = [-1,1] is a Cl+Lip.tchitz mapping
f : I -+ I with D f > 0 (resp. D f < 0) on [-1,0) (resp, (0,1]) and such
that in some neighbourhood of 0 there is a Cl+Lipschitz coordinate system X

in which f(x) = _x2 + f(O). Given such a mapping f let Xi = p+1(O).

A C2 family is a l-parameter family fl-' in C2(I,I), Jl E (0:, (3), which is
continuous in the C2 topology. It is full on (0:, (3) if fl-'(l) -+ 1 (resp. -+ -1)
as p. -+ 0+ (resp. p. -+ (3-). For example, 1 - p.X2 is full on (0,2).

Definition 6 (a) f is superstable if 0 is in a p-cycle of f. (b)f is I-filling if
f(1) = I. f is p-filling if there exist p disjoint closed sub-intervals Ill' .. , Ip
such that f is a homeomorphism from t, to Ii+1 for 1S j < p, f(Jp) c II
and g = It'll is such that g(11) = II (Le. with respect to It, g is l-filling).

Theorem 5 If fl-' is a full C2-family on (0:, P), then there exists 0 < 01 <
02 < ... < /32 < /31 < P such that 1. fa, is 2i -superstable, 2. fp, is 2i-filling,
and 3. "y = limi_oo oi=limi_oo Pi.

See proof in Rand [21].

Define (J.y)i+1(O) = Xi. The sequence of points Xi has the Feigenbaum
ordering. These define a scaling tree in which the n-cylinders arc the closed
intervals Ji,n between Xi and Xi+2n, 0 ::; i < 2n. Moreover, the Cantor set
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defined by this scaling tree is the attractor of I in the sense that every orbit
is either eventually periodic or else converges to CJ•

1.2.3 Examples of universality.

Vie give a heuristic introduction to the Feigenbaum conjectures. Consider
the I-parameter family II-' = 1 - JlX2, 0 < Jl ~ 2, discussed in the previous
section. Recall the meaning of the parameter values Cii, (3i of theorem above.
Using a pocket calculator one finds

1· Cin - Cin-l = li (3n - (3n-l = c - 4 6691m 1m 0 -. • ••
n .....oo Cin+l - an . n-oo (3n+l - (3n

and using something a bit more powerful, it appears that there exists A =
-.3995 ... such that if aoo = limn_oo Cin•

exists and is an analytic function of x2. Moreover, if one takes any other 1-
parameter family one gets the same experimental values for 8 and A and, up to
a scale change, the same function t/J. This is an example of universality. The
Feigenbaum conjectures are developed from the renormalisation operator.

1.2.4 Renor malisat ion,

Let I be a quadratic folding and a = a(f) = -1(1), b= b(f) = I(a). Let
D(R) denote the set of I's such that (i) a > 0 (ii) b > a and (iii) I(b) ~ a.
For I E D( R) define the renormalisation RI of I by

(1.1)

1.2.5 Fclgcnbaum conjectures.

The explanation (essentially proposed by Feigenbaum [6] and [7] and indepen-
dently by Collet and Tressel' [4] goes as follows: Consider the renormalisation
operator defined on some suitable subspace of D(R) consisting of analytic
functions. Assume that the following facts are true.

Conjecture 1. The renorrnalisation operator R has a fixed point I.with
the property that <1/.(0) == 0 and d2I.(0) 7- o.
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Conjecture 2. The only element of the spectrum of dR(J ..) outside the
disk Izl < 1 is a single eigenvalue 8 = 4.669 .... The rest of the spectrum is
contained in a disk of radius strictly less than 1.

Conjecture 3. The unstable manifold of f ..intersects and is transverse
to the submanifolds L;n and An of bifurcation and superstable maps defined
as

L;n = {f : for some p in a 2n - cycle of f, df2" (p) = -1 and d3 I" (p )+3d2 I" (p) =f a}

An = {f: In(o) = 0 and fm(o) t- 0 for 0 < m < 2n}.
These imply:

1. Since R]; = f .., the map f ..satisfies the Cvitanovic-Feigenbaum equa-
tion

f;().x) = ).f.(x).

2. Rn f --+ f ..as n -e+ 00 implies there exists f3 > 0 such that

). -n r:().nx) --+ (3-1 (J..({3x))

uniformly in x as n --+ 00.

3. Conjecture 2 implies that, with respect to R, f. is a saddle point with
a 1-parameter dimensional unstable manifold }VU and a stable manifold }V"
of codimension one. }VU defines a universa11-parameter family of maps f•.w
For a I-parameter family fl-' near f. with fo E ~V"one has

\=r: \n f3-1f, f3A us:» 0 A --+ ••J.' 0

for some (3 > O.

4. Obviously, R(En) C En-1 and R(An) C An-I' Thus, conjecture 3
implies that the En and An accumulate on W" exponentially fast with the
distances from ~V" decreasing like S:" (to prove this one one uses the fact
that R can be linearised along the unstable direction). If fJ.' is a I-pararneter
family near f •• J.' and transverse to rV" with say fa E VV" then fOti E Ai and
therefore

1· O'i - 0'00 cim =u
i-oo O'i+I - 0'00

if 0'00 = limn_oo an' In the same fashion, if Itn denotes the parameter value
at which a 2n --+ 2n+l period-doubling occurs then

1· Pi - poo c1m =u
i-oo /Li+! - /Loo
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where /loo = limn ......oo /In = aoo•

This explains where the simpler universal quantities 0, ,\ and t/J come
from.

Lanford [12] gives a proof of conjectures 1 and 2. His proof makes essential
use of rigorous computer-generated estimates. Sullivan [30] proves that the
stable manifold contains all quadratic foldings with the Feigenbaum order.

1.2.6 Lanford's thco re m,

Let n denote the unit disc Izl < 1 in C and let C denote the real Banach
space of continuous h : n -+ C which are holomorphic on 0, take real values
at real points and, if h(z) = Ln>o anzn, then IIhll = Ln>o Ian I < 00. Let A
denote the set of maps of the form -

J(z) = 1- z2h«z2 -1)/2.5)

where h E C. By identification with C, A may be regarded as a real Banach
space.

Theorem 6 Lanford. There is a polynomial Japprox which is very nearly a
fixed point g of R. If V denotes the ball III - Iapproxll < .01, then

(i) R,v is well defined and Coo.

(ii) For J E V, dR(f) is a compact operator.

(iii) R has a unique fixed point g in V.

(iv) The spectrum of dR(g) consists of a simple real eigenvalue
8 > 1 and a countable set of eigenvalues contained strictly inside
the circle Iz I = r for some 0 < r < 1.

As a consequence g has a I-dimensional unstable manifold vVU(g) and a
I-codimensional stable manifold W8(g) and if J E ~V8(g) then there exists a
constant c depending only upon I such that IIRIlI - gil < ern.

In fact, it is known that r is determined by the eigenvector which is
tangent to the one-parameter family of coordinate changes given by x -+
x + tx2• However, this eigenvalue can be removed by replacing the scale
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change in (1) by a transformation of the form x -t ax + b.1:2and using two
normalisations to fix a and b. Then T is determined by the smaller eigenvalue
which is approximately 0.13 which generically gives the rate at which the
slope at the fixed point of H" f approaches that of g as n -t 00. ''Ne use the
value of this eigenvalue to prove theorem 11.

1.2.1 Global rigidity conjecture for period-doubling.

The global rigidity conjecture states that if f and 9 are quadratic foldings
as above with the Feigenbaum ordering then there is a C1+0 diffeomorphism
h :R -t R such that h(CJ) = Cg and hof = goh on CJ• As we shall see, this
is essentially equivalent to the conjecture that under repeated renormalisation
any such quadratic folding converges to the Feigenbaum fixed point. This is
a quadratic folding f which satisfies the functional equations

f = a-1f2 o e (1.2)

where a = F(O)/ f(O) = xdxo.

Moreover, we prove in chapter 4 that the global rigidity conjecture is
equivalent to the conjecture that the scaling tree te, corresponding to CJ
has the 1+ a-scale property for some a > 0 or equivalently that there is a
cookie-cutter which has CJ as its maximal invariant set C and has the same
scaling function as the one corresponding to the Feigenbaum-Cvitanovic fixed
point. To see that this is reasonable note that if f is the Feigenbaum fixed
point then it follows immediately from (1.2) that CJ is the maximal invariant
set of the cookie-cutter.

{
a-Ix

x -t a-If(x)
if x E [XbX3]
if x E [X2,XO]

The global rigidity conjecture is proved in the important recent paper
[30] by Sullivan.

Theorem 7 Sullivan. The stable manifold contains all quadratic foldings
with the Feigenbaum order.

Using the results of Lanford and Sullivan, Rand and independently Sul-
livan proved that

Theorem 8 Any two analytic quadratic foldings with the Feigenbaum order
are CH conjugated.
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The prove of theorem 8 relies in the existence and exponential convergence
of Markov families corresponding to these quadratic foldings.

1.2.8 Markov farnilies,

Topological Markov families

A topological Markov family F is a family of mappings Fn,a with either n =
0,1, ... or n E Z and a in a finite set Sn which satisfy the following conditions.

(i) For each n and a E Sn, Fn,a is a homeomorphism of the closed
interval I: into R.

(ii) r: contains in its interior a closed interval C: with following prop-
erties.

• intC: n intCb = 0 if a -:f b.

• If x E C: and Fn(x) E C;-+l then Fn(C:) contains ci».
• If b E Sn+h there exists a E Sn such that Fn(C:) containser:b •

\Ve regard the Fn,a as defining a single mapping Fn on C", where C" is
the smallest interval containing UaESn C:.

c+: Markov families

A cHa Markov family F satisfies the following conditions in addition.

(i) Fn,a = FnII: is a CHa diffeomorphism of I: into R.

(ii) IF~(x)1 > 1 for all x E In and all n in some norm on R.

Bounded and boundedly extended Markov families

A c+: Markov family F is said to be bounded if

(i) Irl/llol, ICnl/ICol, II:I/II~I and IC:I/IC~I is bounded away from
o and 00 where C" is the smallest closed interval containing
UaESn cz,

(ii) for all n and all a E Sn the c=- norm of Fu,a = Fn II~l on I: is
bounded independently of nand ai and
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(iii) There exists A > 1 such that IF~(x)1 >;\ for all x E In and all n.

A point x E en is captured if for all m > n, Fm-I 0'" 0Fn(x) E cm. The
set of all captured points is denoted by An = An(F).

Let ~n denote the set of infinite right-handed words, = CnCn+I ••• such
that (i) Cj E Sj and (ii) there exists x E en with the property that

I-~-I 0'" 0 Fn(x) E e;:,.
for all m > n. \Ve call these words admissible. If §. = CnCn+1 .•• E np~n Sp
let §.Ip denote the finite word Cn ••. Cn+p-l of length p. Let~; denote the
set of finite words §.Ip where §. E ~n. We denote by er and m the mappings
er • ~n -+ ~n+I and m . ~n -+ ~n given by• p p-l • P p-l

er(Cn",Cn+p-l) - Cn+l···Cn+p-l

rn(Cn ••• cn+p-d = Cn··· Cn+p-2.

If '-= CnCn+l .•• E ~n then we denote by Genoo.em(resp. Ien ...em) the closed
interval consisting of all x E cm such that for all n :::;j < rn,

Fs o- .. 0 F. (x) E eH1 (resp Ii+!)J n ej+1 • ei+1 •

By Aen ...em we denote the intersection of An with eenoo.em and by 6en...em the
smallest closed interval containing Aenoo.em' Note that if each interval e:; is
replaced by the subinterval 6:; in the definition of An then one obtains the
same set An of captured points.

We therefore assume henceforth that e: = 6:.
Suppose that J is a closed set contained in the interior of an interval

I and let j denote the smallest closed interval containing J. Then I - j
consists of two intervals. The interval to the right (resp. left) of J is denoted
by R(J, I) (resp. L(J, I)).

Definition. A c+: Markov family F is boundedly extended if there exists
01102 > 0 such that, for all n and all a E Sn, the intervals 1';: on which F; is
defined and CHat are such that

(1.3)

Definition. If F and G are two topological Markov families then we say that
they are topologically conjugated if for all n there exists a homeomorphism
li; : An(F) -+ An(G) such that Gn 0 h'1 = hn+1 0 Fn on An(F).
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In such a case we call the family !J. = (hn) the conjugacy. The major
result of this paper is the derivation of natural necessary conditions for the
hn to be cr+{J or to have a cr+/J extension to R. Without loss of generality,
we will restrict to the case where the homeomorphisms preserve the order of
the real line.

1.2.9 Rand's theorem.

Let F and G be two Cl+'"I Markov families topologically conjugated. We
will impose the following condition on the pairs of families F and G that we
consider.

Condition A. There exists c > 0 and 0 < T < 1 such that for all n and all
e E Sn,

Condition B. There exists c > 0 and 0 < II < 1 such that for all n E Z>o and
all contact words t, t' E En -

1 - ct/" < ICf(F)IICMG)1 < 1+ n
ICr(G)IIC~(F)1 et/ •

Theorem 9 Rand. Suppose that the bounded and boundedly extended
C5+'"I Markov families F and G are topologically conjugate and satisfy Con-
ditions A and B . Then the conjugacy !J. = (hn) is C1+/J smooth for some
(3 E [0,1).

1.2.10 cr+{3 conjugacy between Markov families.

Let P and G be two C3+'1 Markov families topologically conjugated. \Ve
will impose the following condition on the pairs of families F and G that we
consider. It involves the positive function g(n).

Condition A (g). For all n and all e E Sn,

Dy 1", I:, I~, c=, C: and C;l we denote the intervals and cylinders /"(P),
I:(F), I;(F), c-ir; C:(F) and C;(F) for F. \Ve denote the corresponding
intervals and cylinders for c; by In, J;:, Jr, tr, D: and D~.
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If e E Sn, let An,! denote the affine map which sends Cr; onto Dr; pre-
serving orientation. We regard An,! as having domain 1';. If t is the word
co· .. Cn E E~+l define

1.( a-I c:' In JOl' t O,~o0 ••• 0 n-l,t"n_l: !n -. t,

Et Fn-I.~n_l 0 ••• 0 Fo.~o: I~ -. r:n, and
L, - Kt 0 An.!n 0 Et : I~ -. ~.

Now we formulate a condition that controls the behaviour at contact
points. Let t = co ... Cn-l and t' = c~ ••• c~_l be in contact i.e. such that C,
and Ct' meet in a point. Let m > ° be minimal such that tim = t'lm and
tl(m + 1) -:f t'l(m + 1). In this case, let et,t' denote

et.t' = max {ldEt(x)l,ldEt'{x)l}.
:rEI, nI"

Then we impose the following condition on all such pairs t, t'

Condition E(g). For all such t and t' and all ° ~ k ~ s,

IILumt - Lumt' lick ~ g( n )e;;;;~t).um(t')

It is not difficult to see that condition B(g) is satisfied, for appropriate g,
by those Markov maps arising from renormalisation structures with contact
points such as those for diffeomorphism of the circle and cubic critical circle
maps.

Theorem 10 t= theorem 20) Rand and Pinto. Suppose that the bounded
and boundedly extended C6h Markov families F and G are topologically
conjugate and satisfy Conditions A(g) and B(g). Let e(n) = maxtEE~ IIdEdl.
Then the conjugacy 11. = (hn) is cr+fJ with (J E [0,1) such that r + (J ~ s if
the function 1 given by

/(n) = max e(nr+fJ-1g(n)
tEE~

is such that E~o l(j) < 00.

Remark. Suppose that F and G satisfy the hypotheses of theorem 10.
Then, by boundcdness, there exist constants db d2 > ° and ft, >. E (0,1) such
that for all t E E~,

dI/-l-n < IdEL! < d2>.-n
Thus g(n)J I(n) ~ C/-l(r+fJ-l)n and, in particular, g(n) is exponentially de-
creasing. If g( n) < et" then, by theorem 10, the condition T J >.r+(3-1 < 1 is
sufficient for the conjugacy to be c+e.



16

1.2.11 Global C2+.11 rigidity for period-doubling.

Let i be a quadratic folding with the Feigenbaum order. The family Ff of
Markov maps Fn corresponding to the renormalisation in = R" f of f is

The family of Markov maps Fn define the same scaling tree in I as the one
induced by the orbit of the critical point of f.

Theorem 11 t= theorem 21) Rand and Pinto. Suppose that f and 9 are
real analytic quadratic foldings with the Feigenbaum ordering. Then the
canonical homeomorphism h : A I -+ Ag has a C2+·11 extension to the real
line.

1.3 Circle rnaps,

Our study of the circle maps follows the same lines as the study of the Feigen-
baum period-doubling. It has applications to the study of the quantitative
universal behaviour of the bifurcation from a quasi-periodic flow to a chaotic
or turbulent state with two sharp incomensurate frequencies. It is related to
the understanding of the break down of invariant curves in families of invert-
ible analytic maps of the annulus. See Ostlund et al [15] and Feigenbaum et
al [8]. For diffeomorphisms of the circle an excellent work is due to Denjoy,
Arnol'd, Herman, Yoccoz. They prove that analytic diffeomorphisms of the
circle with the same diophantine rotation number are Coo conjugated. Us-
ing the results on smoothness between Markov families, we describe how to
obtain Coo conjugacies between analytic diffeomorphisms of the circle with
the same periodic rotation number. Our future aim is to give an alternative
proof of the result due to Denjoy, Arnol'd, Herman, Yoccoz. Recent work for
critical circle maps is due to Rand, Lanford, Mestel and others. We prove
a general theorem on smooth structures which will have applications for the
case of critica.l circle maps.

1.3.1 Definition.

A continuous map of the circle T = R/Z lifts to a map f of the universal
cover R of T into itself such that f(x + 1) = f(x) + 1. This map f is only
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unique up to addition of an integer; to enforce uniqueness we demand that
o $ 1(0) < 1. If the original circle map is er, 0 $ r $ w, the lift 1 is cr.
The set of such lifts is denoted Dr.

If x E R and I E n° the rotation number of (J, x) is defined to be

In general the limit does not exist and p(J, x) is independent of x (Arnold [1]).
The number p(J) obtained is called the rotation number of f. It depends
continuously upon 1 in the CO-topology.

1.3.2 Two parameter family of circle maps.

Now to bring out some important aspects of the circle maps, consider the
prototypical 2-parameter family

I~,II = X + II - (p/27r) sin 211'x.

If Illl ~ 1 then I~,II is a homeomorphism; it is a diffeomorphism if Ipi < 1.
If p = 0 then I~,II is the rotation RII so P(JO,II)= II and the dependence of p
upon II is trivial. This is not the case if p =f O. To see this fix 0 < Ipi < 1 and
let III denote I~,II' Let p / q be a rational number expressed in lowest order
terms and

lp,q = {II : I~(x) = x + p for some x}
If II E lp/q, III has a periodic orbit of period q (a q-cycle) and P(JII) = p/q.
If Jl = 0, Ip/q is a point. Otherwise, Ip/q is a closed interval.

Consequently, p(Jv) is constant upon the count ably infinite set of intervals
lp/q and irrational elsewhere. To see how the intervals lp/q vary as p changes
consider the so-called Arnold tongues:

Ap/q = {(p, II) : IZ,II(x) = x + p for some x}.

Notice how fast they taper off as p -+ O. Arnold proved that as p. -+ 0 the
Lebesgue measure of the union of the lp/q converges to 0, even being an open
dense set. Moreover as Jl iI, they fill more and more of the line and it is
conjectured that the union of the Ip/q has full Lebesgue measure on p = 1
and its complement has Hausdorff dimension approximately equal to .87. It
is conjectured that this properties are universal for families of circle maps.
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1.3.3 Rotation nurnb er.

If the rotation number w is an irrational in (0,1), its rational approximations
Pn/qn are defined inductively by setting Po = 0 and qo = 1, and requiring
that qn is the smallest positive integer such that Iqnw - Pnl < Iqn-Iw - Pn-ll.
These are the rational numbers obtained by truncation the continued fraction
expansion w = 1/(al + 1/(a2 + ... )) = [all az, ... J of w as follows:

Then Pk and qk satisfy the recursion relations

If w is equal to the golden mean (v5 - 1)/2 then ak = 1 for all k ~ 1. Thus
the rational approximates of the golden number are the ratios of Fibonacci
numbers.

If f3 ~ 0, the rotation number w satisfies a Diophantine condition of order
f3 if there is a constant c > 0 such that Iw - p/ql ~ c/q2+f3 for all plq E Q.
Define Cp the set of all irrational rotation numbers w satisfying a Diophantine
condition of order f3.

The rotation numbers w in the. sets Co, nf3>ocf3, Uf3>oCf3, R \ (Q U
(Up?:oCp)) are called, respectively of constant type, Roth type, Diophantine,
Liouville.

1.3.4 Critical circle maps.

A critical circle map 9 is a circle map with a single critical point 0 which is
cubic.

Let Pnlqll be the nth rational approximant of the rotation number w of the
critical circle map g. Consider the orbit gn(o), n E Z>o. This partitions the
interval [a -1, a) into qn + 1 closed intervals, where a- g(O). Let Tn denote
the set of such intervals and let T be the tree whose vertex set is Un>O Tn
and such that the mother of v E T; is the interval in Tn-1 which contains v.
Thus T is defined by the cylinder structure. The vertices tn, Sn E Tn are in
contact if t; n Sn =f 0. If tOtl ... E LT then i(totl ... ) = nn>O tn defines an
embedding of T with contact points (sec section 1.3.5). -

Of course, any map which is topologically conjugate to g, i.e. with the
some rotation number, generates the tree T but a different embedding. The
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question of determining whether two such mappings are smoothly conjugate
boils down to showing that these embeddings determine the same smooth
structure on LT. It is conjectured based in renormalisation analysis of critical
circle maps that the differentiability of the conjugacy between critical circle
maps with the same diophantine rotation number is generally between one
and two. Therefore, we can use the following results on smooth structures
on embedded trees to obtain computer estimates for the differentiability of
the conjugacy between critical circle maps with the same rotation number.

1.3.5 Smoot h structures 011 emb edded trees

A tree T consists of a set of vertices of the form VT = Un>O Tn, where each
Tn is a finite set, together with a directed graph on these ~ertices such that
each t E Tn, n ~ 1, has a unique edge leaving it. Given such a tree T we
define the limit set or set of ends LT as the set of all sequences t: = totl ...
such that m( ti+1) = t, for all i~O.

If t: = totl ..• E LT then by fin we denote the finite word to ... tn-I' Let
Lfln denote the set of §.E LT such that §.In= tin. This is called an-cylinder
of the tree. If L is an open subset of LT containing Llln and i :L _. R a
continuous mapping, then we denote by C11n,ithe smallest closed interval in
R which contains i(L1In). This is also called a n-cylinder. Note that both
L.tln and C.tln,i are determined by tn-I' Therefore we shall often write these
as Ltn_1 and Ctn_1,i. Say that.§. '" t: if i(.§.) = i(I).

We shall only be interested in mappings i which respect the cylinder
structure of LT in the following way. We demand that if ~In =f. fin then

intC!ln,i n intC.tln,i = 0.

Clearly, the mapping i :L _. R induces a mapping L/ tv _. R which we
also denote by i.

Definition 7 (= Definition 13) Such a pair (i, L) is a chart of LT if L is an
open set of LT with respect to the metric d and the induced map i :L/ rv_' R
is an embedding.

Two charts (i,L) and (j,K) are compatible if the equivalence relation I'V

corresponding to i agrees with that of j on L nK. They are CHo compatible
if they arc compatible and the mapping j 0 i-I from i(L n K) to j(L n K)
has a CHa extension to a neighbourhood of i(L nK) in R.
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Definition 8 (= Definition 14) A GHa structure on LT is a maximal set of
GHa compatible charts which cover LT. A G1+a- structure is a maximal set
of charts covering LT which are Gl+f3 compatible for all 0 < f3 < a.

Obviously, a finite set of GHa compatible charts which cover LT defines
a GHa structure on LT. A mapping h : LT -+ LT is smooth if its repre-
sentatives in local charts are smooth in the following sense: if t. ELand
ha) ELf where (i, L) and (if, Lf) are charts in the structure then if 0 h 0 i-I
has a smooth extension to a neighbourhood of i(t) in R. Similarly, we define
smooth maps between different spaces.

'Weshall mostly be concerned with situations where either (i) the smooth
structure is defined by a single chart or (ii) the structure is defined by a single
embedding of LT / '" into the circle TI.

If S is a GHa structure on LT and i is a chart of S then we have that
~Inand lin are adjacent if there is no !! E LT such that GJ!,i lies between
G!ln,i and Gfln,iand that they are in contact if G!ln,i nGfln,i:f 0. Note that
these conditions are independent of the choice of the chart i of S which
contains L!ln and L!ln in its domain. It does however depend upon S so
we only use this terminology when we have a specific structure in mind. If
~In= So ••• Sn-l and tin = to··· tn-1 then we say that Sn-l and tn-1 are
adjacent (resp. in contact) if ~Inand tin are.

Definition 9 (= Definition 15) Two G1+a structures Sand T on LT are {1+
a)-equivalent if the identity is a G1+a-diffeomorphism when it is considered
as a map from LT with one structure to LT with the other. They are (l+a-)-
equivalent if the identity is a GH.o-diffeomorphism for all 0 < (3 < a.

The scaling tree.

Gaps.

Fix a GHa structure S on LT. If sand t are adjacent but not in contact then
there is a gap between i(L.) and i(Lt). "Vewill add a symbol g." = gf" to Tn
to stand for this gap if m(s) = m(t). For the chart (i, L) we let G.,t,i denote
the smallest closed interval containing the gap. Let T; denote the set Tn with
all the gap symbols g"t adjoined. Let VT = Un~l r; If mP(s) = mP(t) then
G.,f,i = GmP-l(a),mP-1(f),i.

Primary atlas.
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Suppose that S is a C1+O' structure on LT, Then clearly there exists
N ~ 0 such that if TN = {tll ... ,tq}, then there are charts (ij,Ui) of S,
1 :::;j :::;q, such that the open subset u, contains the N-cylinder Ltj. We
call such a system of charts a primary N -atlas.

Scaling tree.

Fix such a primary N-atlas I = {(ij! Uj)}i=I, ...,q' To each s, t E Tn,
n ~ N, we associate the following intervals in R (see figure 3(a), (b) and
(c)) .

• Ct~ and G"t,r: Ct,r is the interval Ct,ij where j is such that mr(t) = tj
for some r ~ 1. Similarly, G"t,r is the gap G"t,ij if sand tare non-
contact adjacent points with m(s) = m(t) .

• C"t,r, Ct",r and Dt",r: If t, s E Tn, are adjacent and in contact, define
Pt",r = PII,t,I as the common point between the closed sets Cui and
C"r. Define the closed sets Ct,II,I and CII,t~' respectively, as the sets
obtained from Ct,r and from C"I, by rescaling them by the factor 1/2,
keeping the points Pt",r and P"t,I fixed. Define Dt",I = Ct",I UC"t,I
If t, s E T; are adjacent but not in contact, define Pt",I and Pas,
respectively as the common points of the closed sets Ct~ and C"I with
the gap Gt,II,I. Define the closed sets Ct,,~ and C.,t,r, respectively,
as the sets obtained from Ct,I and from C"I, by rescaling them by
the factors 8';2, 8,/2, and flipping them into the gap Gt",I, keeping
the points Pt,.,I and P.,t,I fixed. Here 8t = IGt",II/ICmP-l(t)~1 and
8. = IGt,.,rl/ICmp-l(,),II where pEN is such that mP-I(t) i: mP-l(s)
and mP(t) = mP(s) .

• Et",z: Let tt, SI E Tn+! be the adjacent vertices such that Gtl ,'lIi =
Gt,8,i' Define Et",I = Ct,8,T \ Ctl"l,T'

(1 + a)-equivalence.

Now suppose, that in addition to the structure S and its primary atlas
I, wc have another structure T and a primary NI-atlas :T for it. Redefine
N = max{Nl, N). To each t E Tn, n > N, we associate the following
numbers .

• the scaling tree O'I(t) :

O'I(t) = ICt,II
10m(t),ZI

and () IGt",II
O'z gt" = IC Im(t),T
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This defines a function

«x : U i; --+ [0,1].
n>N

The fact that it is undefined for small n does not matter.

lit = 1_ a.1{t)
aI(t) .

• At: If t E r; let tl < ... < tp be the elements of Tn with the same
mother as t. Between these there may be gaps represented by symbols
of the form gtmn ,tmn+l' Denote these gap symbols by 91, ... ,9q. Let

p q

At = L IIti ICti,z1 +L IIgi IGgi,II
j=l j=1

• lIa,t: If s, t E Tn are in contact,

u, t = 11 - 'Ct,T"Ca..111
' IC"TIICt,.11

• e"t: If s, t E Tn are adjacent but not in contact,

where pEN is such that mP-let) =f mP-l{s) and mP{t) = mP{s) and
tll SI E Tn+! are the adjacent vertices such that Gt1,81,I = Gt,s,I'

We use the following notation: if f and 9 are functions of a variable x
with domain ~, then we write O(J(x)) = O(g(x)) with constant d if

d-1 < I/{x)1 < d
Ig(x)1

for all x E fl. Often we will drop the reference to d.

Thus if an and bn are sequences then O(an) = O(bn) means an/bn and
bn/an are bounded away from 0 independently of n. The notation I(x) =
O(g(x)) means the same thing as O(J(x)) = O(g(x)).

Simila.rly, I(x) ~ O(g(x)) with constant d means I/(x)/g(x)1 < d for all
x E~.
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Scale equivalence.

We say that two such primary atlases T and J are (1 + a)-scale equivalent
if for all c such that 0 ~ e < a < 1 there exists a function f = f~: Z>o -+ R
with the following properties: -

(i) L:~=qf(n) ~ O(J(q)), for all q E Z;::o;

(ii) for all t E r; Vt ~ f(n) and At ~ f(n);

(iii) for all s E Tn adjacent to t but not in contact with it, if m( s) =
m(t),

A -(1+~) + -e < f( )tet,,,,z Vtet,a,z _ n
while if m(s) f:. m(t) then

Contact equivalence.

We say that two such primary atlases I and J are (1+a)-contact equivalent
if for all e such that 0 < e < a < 1 there exists a function f~: Z;::o -+ R
with the following properties:

(ii) for all s, t E Tn, n > N such that sand t are in contact,

The definitions of scale equivalence and contact equivalence do not at
first sight appear to be symmetric in I and.1. However, from theorem 12, it
follows that I and J define equivalent C1+a- structures and this implies that
O(IC,,11) = O(IC

"
.1I). Therefore, if we exchange T and J in the definitions

we have that the definitions are verified for the same a.

Definition 10 t= Definition 18) "Ve say that two such primary atlases I
and .1 are (1 + a)-equivalent (I ~ .1) if they are (1 + a)-scale equivalent
and (1 + a)-contact equivalent.
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Theorems.

Theorem 12 t= Theorem 17) Rand and Pinto. Let Sand T be G1+o-
structures on LT and let I (resp. .1) be a primary atlas for S (resp. T). A
sufficient condition for Sand T to be G1+O'

- -equivalent is that I Z .1.

Theorem 13 i= Theorem 18) Rand and Pinto. Let S, T, I and .1 be as in
theorem 12 and suppose that Sand Tare G1+O'- equivalent. Then I ::!.- J if
for all e sucll that 0 < e < I there exists f3 such that 0 < e < f3 < I ~a and
there exists a function 9 = gfJ,~: Z~o -+ R with the following properties:

(i) E~=qg(n) s O(g(q)), for all q E Z~oj

(ii) for all t E Tn, IGm(t).IlfJ < g(n)j

(iii) for all ill i2 E Tn, which are adjacent but not in contact, if
m(td = m(l2) then

while if m(td i- m(t2) then

ICm(tl),IlfJ < g(n)'
IEtl,tl,II~ ,

(iv) for all tt, t2 E Tn, which are in contact we have that

IDtlhII/3-~ < g(n).

These conditions hold for some of the most interesting problems. In this
case theorem 12 and theorem 13 give a necessary and sufficient condition for
(1 + a)-equivalence.

1.3.6 Universality of circle maps.

We give a critical and non-critical example of universality as motivation for
the renormalisation analysis.



25

Golden diffeomorphisms.

Fix IJlI < 1 and let Iv = IJ1.,v, so that Iv is a diffeomorphism. Let 11. be the
value of 11 such that p(fv) = 0 is the golden mean and lin = Pn/ 'l» be the nth
rational approximant of 11. By the theory of Herman [9] and Yoccoz [31],

(i) If I = III then rn(O) - P« decreases as an where a = -0.
(ii) a-n(rn(anx)-Pn) converges, up to a scale change, to x --+ x+O.

(iii) limn .....oo(lIn -lIn-1)/(lIn+1 - lin) = fJ where fJ = _0-2•

Golden critical circle maps.

A golden critical circle map is a critical circle map with the rotation number
equal to the golden mean.

Experimental work indicates the following facts.

(i) if I = Iv is golden then rn(O) - Pn decreases as an where a =
_()O.521 ..••

(ii) a-n(fqn(anx) - Pn) converges to an analytic function tP of x3 as
n --+ 00

(iii) If lin is as above with Jl = 1 then limn-+oo(lIn -lIn-l)/(lIn+1 -lin) =
fJ where fJ = _0-2.164 ....

(iv) If 1100 = limn-+oolin there is a neighbourhood U of (1,1100) such
that if (Jl, 11) E U then p(fJ1.,v) = ()if and only if 11 = 1I.(ll) and
JL ~ 1 where the function 11. is Coo on Jl t- 1 and C2 at Il = 1.
If Jl < 1 then IV.(/J) is analytically conjugate to the rotation Ro,
while if Jl = 1 then it is C1+-conjugate to Ro.

Any two parameter family which satisfies these conditions, perhaps after a
change of coordinates in the phase and/or parameter space, is in the golden
mean class. Numerical studies show that there are many families in this
universality class.
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1.3.1 Renormalisation analysis.

Notation. "Weintroduce the following notation.

(i) The set n is relatively compact open subset of C.

(ii) The set B; is the domain 27rllm(z)1 < lnr in C.

(iii) A(n) is the real Banach space (with sup norm) of continuous
functions J : Br -+ C which are holomorphic on Br, take real
values at real points, and satisfy J(x + 1) = J(x) + 1.

(iv) D, : the real Banach space (with supremum norm) of continuous
functions J : B; -+ C which are holomorphic on Br, take real
values at real points, and satisfy J(x + 1) = J{x) + 1.

Fix II = .563. Let nl and n2 be respectively small neighbourhoods in C
of the real segments [11- 1,0] and [0, II] such that aIll C n2 and aIT2 c n.,
for all a E [-0.78, -0.77]. Consider the set of commuting pairs (¢,17) E
A(nl) x A(n2) such that

(i) the closure of ¢( -anI) is contained in n2 for all a E [-0.78, -0.77];

(ii) 17(0)< 0 < ¢(O) < 1;

(iii) dlt/;(O) = 0, dt/;(71(O)) i: 0 i: d71(t/;(O)) and d2t/;(71(0)) i: 0 i:
d271(t/;(0)).

(iv) i(,p(17) -71(t/;))(0) = 0 for 0 5 i5 3.

A pair (t/;,17) is said to be cubic critical if it also satisfies d,p(O) = 0 and
d3,p(0) # O. This implies dll(O) = 0 = dl71(O) = dl,p(O) and cP77(O) -:/: o.

To see the circle map structure consider ,p and 71restricted to R. Each pair
(,p, 77)satisfying the conditions above and such that ,p and 17are monotone
determines a mapping J = J"',lI of the interval J"',lI = [1)(0), t/;(O)] to itself
in the following way: J(x) is defined to be t/;(x) if x E [1](0),0] and 71(X) if
x E [0, t/;(O)]. This can be regarded as a mapping of the circle S"',lI obtained
by identifying the end-points of J"',lI to itself since J{77{O)) = t/J(17(0)) =
71(,p(0)) = J(,p(O)). Moreover, the monotone condition can be dropped if
the identification to obtain the circle is defined on neighbourhoods of the
end-points. Finally, although the circle mapping defined by J is clearly not
necessarily analytic in the standard structure on S""f}l if (¢, 17) satisfies ¢ 0



27

"7 = TJ0 'I/J on a neighbourhood of 0, and g = 'I/J 0 TJ-1 is well defined and
a homeomorphism near TJ(O) then by glueing the circle with g one obtains
an analytic structure in which f is analytic. This corresponds to letting the
dynamics determine the glueing, as explained in Rand [24].

If f = /"','(11 let j denote b-I . fob where b = 'I/J(O) - TJ(O). Let 1be
the lift of f to the universal cover R with the property that 0 =57(0) < 1.
If 1 = 1"',77 is an homeomorphism, th: rotation number p(tP,TJ) of (tP,TJ) is
defined to be the rotation number of f. Then 0 < p( tP, "7) < 1.

Let f be in Dr, for some r > 1 and (tP, TJ) = (/, / - 1). If p(J) lies strictly
between the rational approximates Pnl qn and Pn+II qn+l obtained by truncat-
ing the continued fraction expansion of p(J), then define the renormalisation
transformation R" as follows.

where /n = rn - Pn, an = /n(O) - fn+I(O). By Rand [21], we have the
following equality for the rotation number, where 0 means the characteristic
of a number.

p(R(tP,TJ)) = (p(R(tP,TJ))tI - [p(R(tP,1]))]-l.

If (tP, TJ) is cubic critical then so is Rn(tP, TJ). If p(tP, TJ) is equal to the golden-
mean, then

R(tP, TJ) = a-I. (tP, tP 0 TJ) 0 a
where a = TJ(O) -'l/J(TJ(O)). By Jonker [10], ('I/J,TJ) = (x + "x +, - 1),
where, is equal to the golden-mean, is a hyperbolic fixed point of R with a
I-dimensional unstable manifold with associated eigenvalue _,-2.

1.3.8 Markov families

Let f be a circle map. Let (tP, TJ) be the corresponding pair of maps and
(tPm,1]m) = Rm(tP, TJ). Define the corresponding Markov family FI = (Fm)mEZ~o
by:

F. _ { a;;/tP!n(x) if x E Ii for some j = 0, ... , n - 1
m - a-I.I,n-lTJ (x) x Elmm 'Pm m v- n

where Ii = [tP~-j-lTJm(O), tP~-j-l"7mtPm(O)] for j = 0, ... , n - 1, I;:' -
[4)~1-171m(0), tPm(O)], am = -lIon I and I/(n + 1) =5 P(TJm, tPm) < lin.
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1.3.9 Dlffeornor-p hisrns of the circle.

Let f be a homeomorphism of the circle. The map f has rational rotation
number p(J) = p/q if and only if there is x E ITI such that r(x) = x + p.
Therefore, the class of homeomorphisms of the circle with rotation number
p(J) = p/q conjugated to the rotation map R(x) = x + p/q is of infinite
codimension.

Denjoy proved that a diffeomorphism of the circle f E C2 with irrational
rotation number p(J) = a is topologically conjugated to the rotation map
R(x) = x + a.

Denjoy constructed some examples of diffeomorphism of the circle f E
Cl with irrational rotation number p(J) = a which are not topologically
conjugated to the rotation map R(x) = x + a.

The question of for which irrational rotation numbers the conjugacy maps
are smooth arise.

Arnol'd showed the existence of a diffeomorphism of the circle f E CW
with irrational rotation number p(J) = a which are not absolutely contin-
uously conjugated to the rotation map R(x) = x + a. This construction is
based on the existence of small denominators. This leads to the study of the
diophantine properties of the rotation number.

1.3.10 Ar-noltd.Her man.Yoccoz theorem.

A local theorem is due to Arnol'd. Arnol'd [2] proved the existence of a Coo
conjugacy for diffeomorphisms of the circle f E Coo with rotation number of
diophantine type sufficiently close in the Coo topology to the rotation map
with the same rotation number.

Herman [9] proved for the global case, that the set A of rotation numbers
for which the diffeomorphisms of the circle f E Coo arc Coo conjugated has
full Lebesgue measure. The set of rotation numbers A that he proved the
theorem is contained in the set of all Roth rotation numbers. He showed that
the biggest set A should be contained in the set of all diophantine rotation
numbers.

Theorem 14 Yoccoz. Let f E C" be a diffeomorphism of the circle with
rotation number p E Cr]' where j3 2:: 0 and k 2:: 3. If k > 2(3+ 1 then there
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exist a conjugacy h E Ck-1-/3-e for all e > 0 between f and the rotation map
Rp{x)=x+p.

Corollary 1 Under the same hypotheses for f and p as above, if f E Coo
(respectively f E CW) then h E C<X> (respectively h E CW).

Yoccoz [31] proved that A contains the set of all diophantine rotation
numbers. He has recently completely characterised the degree of smoothness
between circle maps with the same rotation number.

By Jonker [lOJ, if f is an analytic diffeomorphism whose rotation number
p(J) is the golden-mean, then the speed of convergence of the renormalisation
of f can be made arbitrarily fast in the analytic norm, by replacing the
renormalisation

R( tP, 'T]) = a-I (tP, tP 0 'T]) 0 a

where a = 7](0) - tP(7](O)), by

R( tP, 7])= p~,;(tP, tP 0 'T]) 0 PI/J,'1

where A("p, 'T]) = P1/J,'1 is a bounded affine map and P1/J,'1 : R -+ R is a
polynomial. The affine map A is chosen in such away that we get rid of the
biggest eigenvalues of the stable manifold of the renormalisation operator RI'

Using the developed analytic tools in the formalism of Markov families to
determine the differentiability of the conjugacy between two Markov families
Fn and Gn topologically conjugated, we get us a corollary that two analytic
diffeomorphisms with golden-mean rotation number are Coo conjugated. The
proof also works for analytic diffeomorphisms with the same rotation number
of periodic type. 'We conjecture that it also works for any rotation number
of constant type.

1.4 Symbolic dynamics and renorrnalisat.ion.

In a number of cases the renormalisations Rn f of a dynamical system fare
conjectured to converge to a horseshoe A of R as n goes to infinity. Exam-
ples of systems to which these ideas apply include diffeomorphisms and cubic
critical maps of the circle, quadratic foldings with kneading invariants of con-
stant type, the boundary of Seigel domains and KAM and critical invariant
circles in area-preserving and dissipative twist maps. Such an horseshoe pic-
ture for critical circle maps is described in Lanford [11] and for quadratic
unfoldings is described ill Rand [26]. Let us briefly consider this.
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1.4.1 Critical circle rnaps,

Let f be the lift of a cubic critical map of the circle with rotation number
p = p(l) E (0, I). To p we associate the sequence p(J) = POPl ... of posi-
tive integers which define the continued fraction of p. To f we associate the
commuting pair ("h, 771) = (I, f - I). Let R be the renormalisation transfor-
mation as defined in section 1.3.7. Then, p(R(t/J, 7])) = p(t/J, 7]tl_[p(t/J, 7])-1].
For all p = poPt ... , define an(p) = PnPn+1 .... Then, p(Rn(t/J,7]» = an(p).
The conjecture is that in the space of such pairs there exists a set A and a
homeomorphism Q : (Z~o)z -+ A such that

(i) p(Q("·P-lPOPt )) = POPl .. ··

(ii) If p(I) = POPl and ... P-2P-l is an arbitrary sequence then

converges to 0 as n tends to infinity. If p(l) has bounded entries
then this convergence is exponentially fast.

(iii) R(A) = A.

(iv) If AN is the image under Q of {I, ... , N}Z C (Z>o)z then AN
is a hyperbolic set for R with l-dimensional unstable manifolds
and I-codimensional stable manifolds.

1.4.2 Quadratic foldings with kneading invariants of
constant type.

Let f be an analytic quadratic folding of the interval I = [-1,1]. The
dynamics of f is even largely determined by its kneading invariant vI which
is defined in the following way. If x E I let On (x) be 1, -lor 0 according
as fn(x) is orientation preserving at x, reversing or Ji(x) = 0 for some° ~ j < n. Let Q(x) = OO(X)Ol(X) ... E {-I,O,l}N. By Rand [26], then
the map x -+ Q(x) is monotone and the limit vI = limx-+o-Q(x) exists in
the product topology on {-1,0, l}N. The sequence VI is called the kneading
invariant of f. We analyze the subset S of those f of infinite depth. If f E S
then there exists n > ° and a subinterval J of I such that In IJ is conjugate
to a clement of S. The best known examples of maps f of infinite depth are
those corresponding to the accumulation point of period-doubling. For these
there is an interval] containing 0 such that PI] is conjugate to f.
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For n odd or equal to 2, we define the renormalisation operator Rn on 1Jn
by

Rn(J) = a-I. jn 0 a,
where a = 1/ jn (c) and Vn consists of analytic quadratic foldings such that
Rn(J) is a quadratic folding. By Rand [26], the kneading invariant VJ de-
termines if j belongs or not to Vn• Define the renormalisation sequence
!!= ala2'" of 10 = I if Ii = Rai(Ji-d, for all i> ° and un(!!) = an+1an+2....
Define the operator R on V = Un;::2Vn by RI1Jn = Rn. We conjecture that
one has horizontal and vertical strips and a similar picture to that for critical
circle maps because the operator R acts on kneading invariants in much the
same way as the corresponding transformation there acted on rotation num-
bers. Moreover, we conjecture that the stable manifolds H!J..' !! = ala2""

a; 2: 2, will consist of those j whose nonwandering set consists of an infinite
number of hyperbolic repellors and a minimal attractor A whose dynamics
are described in Jonker [10]. In particular, it follows from the renorrnalisa-
tion that A can be described as follows: There exists a decreasing sequence
of closed intervals Jm, m ~ 0, with Jo = I and such that if 1m= ao ... am-I
then JIm IJm is unimodal map and if Jm,i = r Jm for i = 0, ... ,1m - 1 then
A = nm;::l(UJm,i).

1.4.3 Limit set.

"Ve reinterpret these pictures in terms of Markov families. We define the (1+
a)-determination condition for a Markov family. To this (1 + a)-determined
Markov family Fn we associate its limit set M which is essentially the set of
Markov families which are limit points of the sequence

of Markov families. There is a hi-Lipschitz map :F: n -. M for an appro-
priate symbol space n.

Let I be a cubic critical map of the circle with p(J) = POPl ••• and F the
corresponding Markov family as defined in section 1.3.8. Let M = MF. In
this case n is the set of accumulation points of the sequence (un (p(J)) )n;::O
so that n C (Z;::o)Z and we conjecture that

FQ(J) = :F(p(J)).

If j is an analytic folding map with renormalisaiion sequence q, = ala2.' •

and F is the corresponding Markov family. Let I\,{ = MF• In this case n is
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the set of accumulation points of the sequence (an(Q.))n~o so that n c (Z2:o)Z
and we conjecture that

FQ(J) = F(p(J)).

1.4.4 (1+ Q)-deterInination.

Let F be a topological Markov family. Say Pi '" Fj if there are orientation
preserving homeomorphisms h : Ci --+ oi and h' : Ci+! --+ Ci+1 such that
h(C~) = Ci for all a E Si, h'(C~+I) = ct+! for all a E Si+1 and h'oFi = Fjoh.

'rVe can always choose the Si such that Si n Si = 0 or Si = Si and such
that Si = Sj is equivalent to F; '" Fj. We always assume that the labelling
Si has this property.

We say that j .!!, k if and only if Fj+q '" Fk+q, for all 0 ::; q < nand j < k.

The Markov family is adapted if whenever Si = Sj then I~ = It, for all
a E Si. In the following, we always consider that the Markov family F is
adapted.

For all rn, n ;:::0 and t E E~ we denote C;n by Ct since the dependence
upon m is determined by t, whenever it will not be confusing. If there is a
gap Ct.t, between C, and Ct' we introduce a symbol gt.t' = gt'.t and denote
by t: the set consisting of these new sJ:mbols together with E:. When we
say that a statement is valid for all t E ~:, we mean that it is valid for all t
and gt.t' in t:.

We denote by J and m the mappings J : t~-+ t~~\and m : t~-+ t~_l
given by

J(to tn-.) = tt ... tn-1
m(tO tn-I) = to.·· tn-2

and J(gt,tl) = gJ(t),J(t'),
and m(gt,t') = m(t).

Define the scaling tree am = or; :Un2:It~ --+ R by

For all j .!!, k and all t E tt and t E t: and all 0 ::; i ::;11, define
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(iv) For allj ~ k and all contact words t,s E Et and t,s E E7 and all
o ::; i ::;n define

Definition 11 t= Definition 22) A topological Markov family F is (1 +a)-
scale determined if and only if it possesses the (1 + a)-scale property and for
all e such that 0 ::; e < a < 1 there exists a function 9 = gE : Z~o -+ R with
the following properties:

(i) E~mg(q) < O(g(m)), for all m >0.

(ii) For all j ~ k, let u = min{j, k}. For all a E Sj,

le:1 El ±g(u) and II! I El ±g(u).
IC~I 1nl

(iii) For all 0 s i s n and all tEEt,
Pt < g(u + i).

If s, tEEt are not in contact and m(s) =I m(t) then

Pt IEt,.I-e < g( u + i)

while if rn(s) = m(t) then

IEt"I-(1+t) At + lEt" I-ePt < g(u + i).

Definition 12 (= Definition 23) A topological Markov family F is (1 +a)-
contact determined if it possesses the (1 + a)-contact property and for all e
such that 0 ::; e < a < 1 there exists a function 9 = Ye : Z~o -+ R with the
following properties:

(i) E~mg(q) < O(g(m)), for all m ~ o.
(ii) For all j t: k, let u = min {j, k}. For all 0 s is nand t, s E Ef
are in contact, then

Pt,. (+ .)
ID It < 9 u z.

t.s
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1.4.5 The symbolic set.

"Ve define the symbolic set n which indexes the set of topological Markov
maps in the limit of the Markov family F. Let S == {Sd~o. Let n c SZ
denote the set of all hi-infinite sequences 2. == ••• 8_lSOSl •.• such that for
all Si E Sand n E Z and all m 2: n there exists a sequence ji -+ 00 such
that Sn ••• Sm is the index sequence corresponding to the sequence of Markov
maps Fi; ... Fji+m-n, i. e. Sn+k == Sj;+k for 0 ~ k ::5 m - n. Define the map
U : n -+ n by O-C~.)== ~, where z; == Sj+l, for all i E Z.

In chapter 4, we prove the existence of a hi-Lipschitz map F: n -+ MF,
where MF is essentially the set of limit points of the sequence

of Markov families. The elements F(§..) == F§.. == (Fun(!»)nEZ in MF are two-
sided Markov families with associated scaling functions Uun(!,) : U/>oE~n(!,) -+

R.

1.4.6 The scaling function.

Let A-denote the set of all T == ••• r-2Ll with the following property. There
is 2. E n such that r -n E S_n, for all n > O. Denote r.s; ... Ll by Tin. Define
A§..= {r E A- : r« E sn}. Define Ag(!,) as the set of all gr,T' with the following

=' - A u-1(!) d Iproperty. T, rEA§.., gT-l,T!..l E El an T-i = T_;' for all i > 1. Let
AI. = A§..U Ag(,!).

The scaling junction s!, == SF,! : A!, -+ R is given by

s,,(r) == lim Uu-n(,,'(Tln) and SS(gTT') == lim Uu-n(sl(grlnT'ln)'_ n-+oo 2..J - t n-+oo :!.J I

Let the map g : Z>o -+ R he as in the definition of (1 + a)-scale deter-
mination of (Fm)m~o, -Define the metric in A! as follows.

d("f,¢) == g(n + 1) and d(gT,T"g.p,.p') == g(n + 1)

if "fIn = ¢In and r-(n+l) =f ¢-(n+l)' Moreover, T-I = ¢-l and r~l = 'I/J'-l' If
necessary, interchange LI and r~l' Otherwise, the distance is g(I).

Lemma 1 t= Lemma 29) The scaling function s! is well-defined and it is
Lipschitz with respect to the metric d in A!.
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Lemma 2 (= Lemma 30) Let F and G be two (1 + a)-determined Markov
families topologically conjugated. Let F~and G~ be two limit Markov families
corresponding to F and G respectively.

(i) If F~ and G~ are (1 + a)-conjugated then the scaling functions SF,qm(~

and SG,qm(~J are equal, for all m E Z.

(ii) Let F~ and G~have bounded geometry. If, for all m E Z, the scaling
functions SF,qm(~ and SG,qm(~) are equal, then F~ and G~ are C1+ conjugated.

1.4.7 Convergence of the Markov family F to its w-

lirnit set MF.

Define the map f~:N -+ R + by

f~(l) = max{ICtl : t E Ef or tEEt and Sj ... Sj+l-l = So··. sI-d.

Define the map re ~ : N X N -+ R+ by
'-

where u = min{j, I}, e < e' < e" < 0' and the map ge" is defined in (1 + 0')-

scale determination.

We suppose the following uniformity condition over the map re,qn(~). This
is true, if for all t E E~ and all m > 0 the length of the intervals ICt I and
gc/(n) decrease exponential fast to zero, when n tends to infinity.

Condition U:There is v, between 0 and 1 such that rC,qn(!)(j, I) ~ O(v;I),
for all j ~ I > 0 and all n E Z .

.....Ve prove the following theorem on convergence of the Markov family F
to its w-lirnit set M.

Theorem 15 i= Theorem 22) Let F be a bounded Markov family which
is (1 + a)-scale determined and (1 + a)-contact determined. For all nEZ,
let re,lTn(~ be the function as defined above. For all j,l > 0, such that
Sj ... Sj+l-l = Sn ••• Sn+l-l and all 0 < e < 0'
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1.4.8 Application to diffeomorphisms of the circle.

Let f be a diffeomorphism of the circle with constant rotation number and F
the associated Markov family to f as defined in section 1.3.7. Suppose that
F is (1 + a)-determined. The symbolic sequence of the Markov family F is
given by the continued fraction expansion of the rotation number P = Pl'"

of f. Define am(p) = .,p, where 'lA = Pm+i, for all i > -m and .,pi is arbitrary
for i :5 -m. Endow the set 1{ = {O, ... , N}z, for some large N > 0, with
the product of the discrete topologies. Define the symbolic set nf as the
set of 0 E 1{ such that there is a converging subsequence of (am(p))m>O'
There is a bi-Lipschitz map :F : nf -+ Mf, where Mf is the limit set of
f consisting of two-sided Markov families. By the bi-Lipschitz map :F, the
symbolic dynamics in nf are carried on to the limit set Mf. The Markov
family F converges to Mf as proven in theorem 15. Stark [27] proves that if
f is a C2+e diffeomorphism of the circle whose rotation number is of constant
type then the renormalisation of f converges in the C2 norm to the line of
the rotations of the circle. By this fact and by theorem 15, the set Mj

just depends upon the rotation number of f. Moreover, as the map :F is bi-
Lipschitz then the symbolic set Of just depends upon the rotation number
of f.

Similar applications are given in chapter 4 to critical circle maps and
quadratic foldings with infinite depth.

1.4.9 Two-sided Markov families.

The w-limit set of Markov family consists of two-sided Markov families. In
chapter 5, we study CH self-similarities in the blown-up of small intervals
in the domains of a two-sided Markov family F. We prove that if two CHS
two-sided Markov families F and G are C1+ conjugated then they are CHS

conjugated. This result opposes to the difficulty in getting higher smoothness
in one-sided Markov families. In that case a balance between the speed of
convergence of the Markov families and the scaling structure of their cylinders
is needed.

Let F = (Fm)mez and G = (Gm)mEZ be CHS weakly bounded two-sided
Markov families, where 8 E (0,1] and k > 0.

A Markov family F is weakly bounded if there are constants band e, such
that, IdFml > e > 1 and IIFmIlCk+6 :5 b, for all m E Z.

Let h = (hm)mEZ be a topological conjugacy between F and G.
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The conjugacy h has the unif01'mity properisj if it satisfies the following
conditions.

(i) There is a sequence of points Xm E CFm such that Fm and hm are
smooth at Xm, Fm(xm) = Xm+I and Idhm(xm)1 > All> 0, for all
m < O.

(ii) Moreover, there is a continuous function e such that c(O) = 0 and
for all m < 0,

Theorem 16 t= Theorem 27) If h is a topological conjugacy between F and
G with the uniformity property then there is a CHS conjugacy r = (rm)mEZ
between F and G.

Corollary 2 (= Corollary 18) Let F and G be CHS constant Markov
families. Let the map h be a topological conjugacy between F and G. Let
X be a periodic point of F, such that F is smooth at x. If h satisfies the
uniformity property at X then there is a CHS conjugacy between F and G.



Chapter 2

A Classification of C1+0:
Structures on Embedded
Trees.
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A CLASSIFICATION OF C1+a STRUCTURES ON EMDEDDED
TREES.

A. A. Pinto and D. A. Rand
Arbeitsgruppe Theoretische Okologie,

Forschungszentrum Jlilich, D-5170, FRG 1.

Abstract

We classify the GHa structures on embedded trees. This extends
the results of Sullivan [6] on embeddings of the binary tree to trees
with arbitrary topology and to embeddings without bounded geometry
and with contact points. Such an extension is needed, for example, for
applications to the smooth conjugacy and renorrnalisation problems
for circle maps with Diophantine rotation number.

2.1 Introd uct ion,

Although they have more general application, the results proved in this pa-
per are mainly motivated by problems concerning the existence of smooth
conjugacies in dynamical systems, and particularly, the newly discovered phe-
nomenon of rigidity of certain infinitely renormalisable dynamical systems.
It is often possible to determine classes C of smooth mappings I :M -+ AJ
such that (i) if lEe then I possesses in a natural fashion an invariant
set A, such that (ii) if I, gEe then there exists a natural homeomorphism
h : A, -+ Ag which conjugates the dynamics of I on AJ to those of 9 on
Ag (Le. on A" go h = hoI). The question then arises of whether or not
this conjugacy h is smooth in the sense that it has an extension to a smooth
diffeomorphism of the manifold A! which contains A, and Ag•

In general, such smoothness is very rare: in some sense, it is usually of in-
finite codimension. However, the theory of renormalisation has revealed the
remarkable fact that many critical systems (and some non-critical ones) are
rigid in the sense that, whenever it is possible, then h is smooth. This theory
covers both classical examples such as the Arnol'd-Herman- Yoccoz theorem
for diffeomorphisms of the circle and the Kolmogorov-Arnol'd-Moser theorem

1Permanent address: Nonlinear Systems Laboratory, Mathematics Institute,
University of Warwick, Coventry CV4 7AL, UK.
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for invariant tori which concern non-critical behaviour, and more recent dis-
coveries concerning critical behaviour such as the universality of the Feigen-
baum period-doubling attractor, the structure of critical circle mappings and
the breakdown of critical invariant circles.

For the Arnol'd-Herman- Yoccoz theorem, one takes for C the set of smooth
(say COO) diffeomorphisms of the circle M = SI whose rotation number
is a given Diophantine irrational number p. In this case, Af = M and
the existence of the conjugacy h follows from the relatively easy Denjoy's
theorem. The Arnol'd-Herman- Yoccoz theorem states that these conjugacies
h are, in fact, Coo; the main step in the proof being to show that they are
C1+a for some a > O.

The case of the Feigenbaum period-doubling attractor appears somewhat
differently. For this one takes for C the set of quadratic folding maps of
the interval at the so-called accumulation point of period-doubling. Such a
mapping 1E C has an invariant attracting Cantor set AI for which there is
a canonical labelling given by a homeomorphism if : X = {D, l}z~o -+ Af.
Thus, if i.s E C, there is a natural conjugacy h = igoi,I : AI -+ Ag. Recently
Sullivan has proved in [8] that if1E C2 then the successive renormalisations
R"1 converge exponentially fast to a fixed point of R. It follows from this
that the conjugacy h is always CHa for analytic systems ([6],[4]). Moreover,
if f is sufficiently smooth and the rate of convergence is taken into account,
then it can be shown that, for period-doubling, the conjugacy is CH.U. This
is a corollary of a unified theory for smooth conjugacies for critical and non-
critical systems in terms of rapid convergence of renormalisation ([1]).

The embedding i = if : X = {D, 1}Z~o -+ R of the metric space X induces
a smooth structure on X in the following sense. A smooth function on X is a
function f :X -+ R such that the function 10 i-I: i(X) -+ R has a smooth
extension to R. This definition can clearly be generalised and localised by
considering localised embeddings as charts on X. The definition makes sense
even though X does not have a manifold structure - it is a fractal. 'rVe
say that two such structures are equivalent if the charts of one are smooth
functions in the other. In the case that we are considering, the structures
determined by if and ig are equivalent if, and only if, h is CHao Thus we are
lead to the problem of classifying the smooth structures on X = {D, 1}z~o.

The case of diffeomorphisms of the circle does not immediately fit into
this scheme of things because, in this case, X = SI and, as is well-known,
SI possesses a unique smooth structure. However, this ignores the fact that,
from our point of view, X has a richer structure since it is marked by the
orbits of the diffeomorphism. The orbit segment {Jix}J;~;OI partitions the
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circle into qn - 1 segments, and this partition must be respected by our
conjugacies.

It turns out that it is most convenient to formalise this in terms of trees
in the following way. We use the number theory of the rotation number p to
choose the qn' Then we regard the segments of the partition by {Ii x }j~~1as
the vertices of the tree T at level n. Each of these is connected by an edge to
the vertex at level n - 1corresponding to the segment that contains it. The
way in which these segments sit in SI determines a smooth structure on the
tree T as described in the next section.

Such a tree also exists in the case of the Feigenbaum period-doubling at-
tractor and is determined by the orbit segments {Ii c};:ot of the critical
point c. The analogue of the segments at level n are the 2n intervals Lro,,,,,,,._l
which are defined as the smallest intervals containing the sets iI( J"'O...T,._I)
where

JTO",,,,,._1 = {TO'Tt' ••• EX = {O, l}Z~o : Tl' = t; if i< n}.

Thus in this case, the vertex corresponding to [TO ... ".,. is connected by an edge
to [TO",,,,,.-I'

Wewill therefore define the notion of a GHa structure on a tree and prove
necessary and sufficient conditions for two structures to be equivalent. For
the case of the binary Cantor set (as in the Feigenbaum period-doubling
attractor above) this was already done by Sullivan under the assumption
of bounded geometry. Our results extend his in a number of directions,
including the following:

(i) The topological structure of our trees are much more general than
the binary tree implicit in his work.

(ii) We drop the condition of bounded geometry and thus allow for
trees with unbounded branching such as that involved for typi-
cal Diophantine irrational rotation numbers and typical infinitely
renormalisable kneading sequences of quadratic foldings.

(iii) 'vVeinclude the case where the intervals corresponding to the ver-
tices of the tree do not have gaps between them. This is the
situation for circle mappings.
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2.1.1 Smooth structures on embedded trees

A tree T consists of a set of vertices of the form VT = Un>O Tn, where each Tn
is a finite set, together with a directed graph on these vertices such that each
t E Tn, n 2: 1, has a unique edge leaving it. This edge joins t (the daughter)
to met) E Tn-l (its mother). We inductively define mP(t) to be the mother
of mP-let). Using this notation, t is a descendant of mP(t) and mP(t) is the
p-ancestor of t.

Given such a tree T we define the limit set or set of ends LT as the set of
all sequences t: = tOtl .. '. such that m(ti+d = t, for all i 2: O. \Ve endow LT
with the metric d where

d(SOSl ••• , totl ... ) = 2-n

if s, = tj for 0 :5 i :5 n - 1 and Sn =f tn·

If t.= tot I ••. E LT then by tin we denote the finite word to ... tn-I. Let
L11n denote the set of §. E LT such that §.In= tin. This is called an-cylinder
of the tree. If L is an open subset of LT containing Ltln and i :L ~ R a
continuous mapping, then we denote by Gtln,i the smallest closed interval in
R which contains i(L.tln). This is also called a n-cylinder. Note that both
L.tln and G.tln,iare determined by tn-I. Therefore we shall often write these
as Ltn_1 and Ctn_I,i. Say that §. '" 1if i(s) = i(t).

\Ve shall only be interested in mappings iwhich respect the cylinder struc-
ture of LT in the following way. We demand that if ~In =f tin then

intG!ln,i n intG.t!n,i= 0.

Clearly, the mapping i :L ~ R induces a mapping L] '" ~ R which we
also denote by i.

Definition 13 Such a pair (i, L) is a chart of LT if L is an open set of
LT with respect to the metric d and the induced map i :LI "'~ R is an
embedding.

Two charts (i, L) and (j, K) are compatible if the equivalence relation '"
corresponding to i agrees with that of j on L nK. They are GHa compatible
if they are compatible and the mapping j 0 i-I from i(L nK) to j(L nJ<)
has a GHa extension to a neighbourhood of i(Lnf() in R.
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Definition 14 A CHa structure on LT is a maximal set of CHa compatible
charts which cover LT. A CHo- structure is a maximal set of charts covering
LT which are CHf3 compatible for all 0 < (3 < a.

Obviously, a finite set of GHa compatible charts which cover LT defines
a GHa structure on LT. A mapping h : LT -+ LT is smooth if its repre-
sentatives in local charts are smooth in the following sense: if 1 ELand
h(!) E Lf where (i, L) and (if, Lf) are charts in the structure then if 0 h 0 i-I

has a smooth extension to a neighbourhood of i(l) in R. Similarly, we define
smooth maps between different spaces.

We shall mostly be concerned with situations where either (i) the smooth
structure is defined by a single chart or (H) the structure is defined by a single
embedding of LT / f'V into the circle Tl.

If S is a GHa structure on LT and i is a chart of S then we have that
§.In and tin are adjacent if there is no 1! E LT such that G~ln,i lies between
C.~ln,i and GLln,i and that they are in contact if G!ln,i n GLln,i =I- 0. Note that
these conditions are independent of the choice of the chart i of S which
contains L!ln and L11n in its domain. It does however depend upon S so
we only use this terminology when we have a specific structure in mind. If
§.In = So ••• Sn-l and tin = to··. tn-1 then we say that Sn-l and tn-I are
adjacent (resp. in contact) if §.In and tin are.

Definition 15 Two GHa structures Sand T on LT are (1 + a)-equivalent
if the identity is a CHa-diffeomorphism when it is considered as a map from
LT with one structure to LT with the other. They are (1 + a-)-equivalent if
the identity is a CHf3-diffeomorphism for all 0 < (3 < a.

Example 1. Standard binary Cantor set.

• • • • • • • •• • • • • • • •• • • • •• • •
Figure 1.
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Consider the bina.ry tree T shown in figure 1. vVe can index the vertices of
the tree by the finite words co ... Cn-l of Os and Is in such a way that the
mother of the vertex t = co ... Cn is m( t) = co ... Cn-l and so that co ... Cn-I 0
lies to the left of co •.. cn-Il. Now to each vertex t = co ... Cn-I associate a
closed interval It so that It C Im(t), I~o...~n_l0 is to the left of I~O...~n_ll and

where Ceo ...~n_l is an open interval between I~o...~n_l0 and I~o...~n_1I' We as-
sume that the ratios lCd/lIt! are bounded away from O. Then the lengths of
the intervals I~o...~n_l go to 0 exponentially fast as n --+ 00 and therefore

C = n u t;...~n_l
n~O~O ...~n-l

is a Cantor set.

Let ~ = {O,1}z~o denote the set of infinite right-handed words COC! ••• of
Os and Is. Clearly, LT can be identified with ~ since each t = tot! .•. E LT
can be identified with a word COC! ••• in ~. The mapping i :~--+ R defined
by

i(COCl ••• ) = n I~O'..~n_l
n~O

gives an embedding of LT into R. This is the simplest non-trivial example
of an embedded tree. We shall be interested in embedded trees such as this
where the analogue of the Cantor set C is generated in one way or another
by a dynamical system.

Very often the set C = i(LT) will be an invariant set of a hyperbolic
dynamical system. For example, there is a map er defined on LT above by

This induces a map 0" on C = i(LT) which is a candidate for a hyperbolic
system. Using our results it is easy to give necessary and sufficient conditions
for this map to be smooth in the sense that it has a CHa extension to R as
a Markov map such as that shown in figure 2 (see [2]).
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Figure 2.

In the above case the equivalence relation", is trivial and there are no
contact points. But now consider the case where the tree is embedded in
this way but where the gaps Gt are empty. In this case i maps LT onto an
interval but is not an embedding because it is not injective. The equivalence
relation r- on LT is non-trivial: it identifies the points co ... cnl000 ... and
co ... cn0111 .... Thus h is injective on all but a countable set. The space
LT / '" is homeomorphic to an interval. However note that LT has much
more structure than an interval because of the points marked by the cylinder
structure. In particular, there are uncountably many smooth structures on
LT, but only one on the interval.

We could regard the vertex set of T as Un>O Tn where Tn is the set of
intervals Ieo ...en_l and the edge relation of T is inclusion. In such a case, we
say that T is defined by the cylinder structure.

Rotations of the circle.

This is another example with contact points. Consider the rotation Ror(x) =
x + a where a is an irrational number such that ° < a < 1, represented as
the discontinuous mapping

R _ { x + a x E [a -1,0]
at - x + a-I x E [0, a]

Let Pn/ qn be the nth rational approximant of a. Consider the orbit Rat(O), ... ,
R(qn-1)or(O). This partitions the interval [a -1, a] into s« closed intervals. Let
Tn denote the set of such intervals and let T be the tree whose vertex set
is Un>O Tn and such that the mother of v E Tn is the interval in Tn-l which
contains v. Thus T is again defined by the cylinder structure. If tOtl ... E LT
then i(lotl ... ) = nn~Otn defines an embedding of T with contact points.



46

Of course, any map which is topologically conjugate to Ra would generate
the tree T but a different embedding. The question of determining whether
two such mappings are smoothly conjugate boils down to showing that these
embeddings determine the same smooth structure on LT. The approach used
in the theory of renormalisation is to show that this tree T can be generated
by a Markov family (Fn)nez>o as defined in [4]. This Markov family and its
convergence properties determine the cHa structure on LT as is proved in
[1].

2.1.2 The scaling tree
Gaps.

Fix a CHa structure S on LT. If sand t are adjacent but not in contact then
there is a gap between i(L.) and i(Lt). We will add a symbol 9s,t = 91,s to Tn
to stand for this gap if m(s) = met). For the chart (i, L) we let G. t i denote
the smallest closed interval containing the gap. Let t: denote the set Tn with
all the gap symbols 9.,t adjoined. Let VT = Un~l t; If mP(s) = mP(t) then
G.,t,i = Gml'-1(8),ml'-1(t),i.

Primary atlas.

Suppose that S is a CHa structure on LT' Then clearly there exists N > 0
such that if TN = {tt, ... , tq}, then there are charts (ii, Ui) of S, 1~ j ~q,
such that the open subset Ui contains the N-cylinder Ltj. We call such a
system of charts a primary N -atlas.

Scaling tree.

Fix such a primary N-atlas I = {(ij,Ui)}i=l ....,q. To each s, t E 1'n, n ~ N,
we associate the following intervals in R (see figure 3(a), (b) and (c)) .

• Ccx and G"t.I: Ct,I is the interval Ct,ij where j is such that mr(t) = tj
for some r ~ 1. Similarly, Gs,t•I is the gap G.,t,ij if sand tare non-
contact adjacent points with m(s) = met) .

• C.,t;£, Ct,.,I and Dt.s.I: If t, s E Tn, are adjacent and in contact, define
Pt",I = P.,t,I as the common point between the closed sets Ct,I and
C"I' Define the closed sets Ct ••.I and C.,t;!, respectively, as the sets
obtained from Ct,I and from C"I, by rescaling them by the factor 1/2,
keeping the points Pt,s,I and P"t,I fixed. Define Dt,.,I = Ct,•.I UC.,t,I
If t, s E Tn, are adjacent but not in contact, define pt•lJ;! and P.,t.T,
respectively as the common points of the closed sets Ct•T and C"T with
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the gap Ct,s,I. Define the closed sets Ct,s,T and Cs,t,T, respectively,
as the sets obtained from Ct,T and from CIJ,T, by rescaling them by
the factors 8,f2, 8,,/2, and flipping them into the gap Ct,s,T, keeping
the points Pt,s,r and Pa,t,r fixed. Here s, = ICt,s,r 1/ ICmP-l (t),T I and
8a = ICt,a,TI/ICmP-I(s),TI where pEN is such that mP-1(t) =J mP-l(s)
and mP(t) = mP(s) .

• Et,8,r: Let tI, SI E Tn+! be the adjacent vertices such that Gtl,SI,i
Ct,a,i' Define Et,a,r = Ct,s,T \ Ctl,SI,T'

Cs Ps,t Pt s QI r
~ ~

s.t et,s
Cs,t G,s

PIs,t

Ils
(a) (b)

Et.s~
•Ii t-I __ G.....J __

t:.tl'sl
.:_,

(c)

Figure 3.

(1+ a)-equivalence.

Now suppose, that in addition to the structure S and its primary atlas
I, we have another structure T and a primary Nratlas J for it. Redefine
N = max(Nb N). To each t E Tn, n > N, we associate the following
numbers .

• the scaling tree (Tr( t) :

ICt,TI
(Tr(t) = Ie Im(t),T

and () IGt,s,T I
ai gt,1J = Ie'" Im(t),T
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This defines a function

ur: U i: -+ [0,1].
n>N

The fact that it is undefined for small n does not matter .

• V,:

Vt = 11 - u.:r(t) I.
ur(t)

• At: If t E Tn, let tl < ... < tp be the elements of Tn with the same
mother as t. Between these there may be gaps represented by symbols
of the form gtmn ,tmn+l' Denote these gap symbols by g1, ... ,gq' Let

p q

At =L IIti ICti,x1 +L IIgi IGgi,rl
j=1 j=1

• 1I."t: If s, t E Tn are in contact,

• e.,t: If s, t E Tn are adjacent but not in contact,

e.,t = IE.,t,zl = 2
l
ciG."t,zl I {ICt,zl- ICt1,zl}mp-1(.,),I

where pEN is such that mP-let) =f mP-l(s) and mP(t) = mP(s) and
tt,81 E Tn+! are the adjacent vertices such that Gtlo•1,Z = Gt,s,I'

Throughout the paper we use the following notation: if f and 9 are func-
tions of a variable x with domain 6., then we write Ox(J(x)) = Ox (g(x ))
with constant d if

d-1 < Il(x)1 < d
Ig(x)1

for all x E 6.. Often we will drop the reference to d.

If it is obvious which variable x is involved then we use the notation
O(J(x)) instead. Thus if an and bn are sequences then O(an) = O(bn)
means an/bn and bn/an are bounded away from 0 independently of n. The
notation I(x) = O(g(x)) means the same thing as O(f(x)) = O(9(X)).

Similarly, I(x) ~ O(g(x)) with constant d means I/(x)/g(x)1 < d for all
x E 6..
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Definition 16 We say that two such primary atlases I and :1 are (1 +a)-
scale equivalent if for all e such that 0 < e < a < 1 there exists a function
f = fe : Z2:o -+ R with the following properties:

(i) E~=q fen) ~ O(J(q)), for all q E Z2:0;

(ii) for all t E Tn, Vt ~ fen);

(iii) for all s E Tn adjacent to t but not in contact with it, if
m(s) = met),

A -(He) -e < f( )tet,lI,I + Vtet,B,I _ n
while if m(s) of met) then

Definition 17 We say that two such primary atlases I and :1 are (1 + a)-
contact equivalent if for all e such that 0 ~ e < a < 1 there exists a function
Ie : Z2:o -+ R with the following properties:

(ii) for all s, t E Tn, n > N such that sand t are in contact,

V. t ( )ID ' le < le n .
t,.,I

Definitions 16 and 17 do not at first sight appear to be symmetric in I
and .1. However, from theorem 17, it follows that I and :1 define equivalent
OHa- structures and this implies that Ot(IOt,I1) = Ot(IOt,.1I). Therefore,
if we exchange I and :r in the definitions we have that the definitions are
verified for the same a.

Definition 18 We say that two such primary atlases I and :1 are (1 + a)-
equivalent (I ~ :1) if they are (1 + a)-scale equivalent and (1 + a)-contact
equivalent.

The main theorem that we prove in this paper is

Theorem 17 Let Sand T be OHa structures on LT and let I (resp. :1)
be a primary atlas for S (resp. T). A sufficient condition for Sand T to be
01+a- -equivalent is that I s: :1.
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Theorem 18 Let S, T, I and .:T be as in theorem 17 and suppose that S
and Tare C1+",- equivalent. Then I ~ .:T if for all s such that 0 < e < 'Y
there exists f3 such that 0 < e < f3 < 'Y ~ a and there exists a function
9 = gp,1!:: Z~o -+ R with the following properties:

(i) E~qg(n) ~ O(g(q)), for all q E Z~oj

(ii) for all t E t.; ICm(t),zI,o < g(n)j

(iii) for all t1, t2 E Tn, which are adjacent but not in contact, if
m(td = m(t2) then

ICm(tl ),Z IHP ()
IE IHI!: < 9 n ,tl,t2,Z

while if m(td # m(t2) then

ICm(tl),zIP < g(n)'
IEtl,t2,zl& '

(iv) for all tI, t2 E Tn, which are in contact we have that

IDtl.t2,zl,o-1!: < g(n).

These conditions hold for some of the most interesting problems. In this
case theorem 17 and theorem 18 give a necessary and sufficient condition for
(1 + a)-equivalence.

2.1.3 Example: Cylinder structures with bounded ge-
ometry

Definition 19 A structure S has bounded geometryiffor some primary atlas
I, O'z(t) is bounded away from 0 i.e. there exist 8 such that O'I(t) > 8
for all t E t: n > N. Recall that O'z(t) = ICt,zI/ICm(t),zl and O'z(gt,,) =
IGt,6,zI/ICm(t),zl

Therefore, bounded geometry implies that for all t E i; and all n > N,
we have that O'z( t) < 1 - 8. Clearly, for bounded geometry, there exists
o < A < J.l < 1 and c, d > 0 such that for all n ~ 0 and all t E T«,
CAn < ICt,zl < dlLn

\Ve introduce a new simpler definition of scale equivalence for a primary
atlas I with bounded geometry.
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Definition 20 We say that two such primary atlases with bounded geome-
try I and .:1 are (1 + a)-scale equivalent if for all e such that 0 < c < a < 1,
there exists a function f = fe : Z~o -+ R with the following properties:

(i) E~q fen) s O(f(q)), for all q E Z~o;

(ii) for all t E r; lit ~ fen);

(iii) if S E Tn adjacent to t but not in contact with it, then

Lemma 3 For systems with bounded geometry the two definition of (1+a)-
scale equivalence are equivalent.

With bounded geometry, theorems 17 and 18 combine to give a simple
necessary and sufficient condition for (1 + a)-equivalence.

Theorem 19 Let Sand T be GHa structures on LT and let I (resp . .:1)
be a primary atlas with bounded geometry for S (resp. T) then Sand T
are C1+a- -equivalent if and only if I ~ .:1.

Definition 21 (i) S is a C1+ structure on LT if and only if S is aCHe
structure for some e > O.

(ii) The structures Sand Tare C1+-equivalent if and only if they are
C1+e-equivalent for some c > O.

Corollary For bounded geometry, a necessary and sufficient condition for S
to be C1+ equivalent to T is that there is ,\ E (0,1) such that for all t E t;
lit ~ 0('\ n) and if s is in contact with t then lit,s < 0('\ ").

Proof of lemma 3. For all t E Tn, we have that

At ~ I max {II" : m(s) = met)} ~ lfe(n),

where I is the maximum length of an N-cylinder.

For all s E T; adjacent to t but not in contact with it, we have by definition
of IEt,,,,rl and bounded geometry that there is a constant c such that

et,s,r = IEt,s,rl > clCf,rl > c8ICm(t),rl· (2.1)
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Then, if m(s) = met),

< max {lla : m(s) = met)} ICt,Ilc-(l+e)ICt,rl-(l+e)
+ max {II., : m(s) = met)} c-eICt,rl-e

< c-(l+e) max {II. : m(s) = met)} ICt,rl-e ~ c-(1+e) fe(n)j

This proves that definition 20 implies definition 16. The other implication is
straightforward. •

Proof of theorem 19. By theorem 17 and lemma 3, I Z .1is a sufficient
condition for the atlas Sand T to be CI+a- -equivalent, \Ve now prove that
it is also necessary.

For all t E t: ICm(t),rla < ca(1 - 6)na, where Ca is determined by the
maximum length of the N-cylinders of the atlas I. Thus, for all adjacent
tt, t2 E T; which are not in contact, if m(tt) = m(t2) then by equation 2.1,

ICm(td,rlI+a < O(IC la-e) < 0((1 _ 6)n(a-e»)
IE It+e - m(t.),I -tl,t2,r

where the constants depend only upon e and a-e. If m(tl) # m(t2) then

ICm(tt},rl
a < O(IC la-e) < 0((1 _ 6)n(a-e»)

I
E le - m(tt},r -tl,t2,r

where again the constants depend only upon e and a-e.

For all tl, t2 E Tn which are in contact we have that

Therefore, by theorem 18, I ~.1 is also a necessary condition for the atlas
Sand T to be CI+a- -equivalent. I

2.2 Proof of theorem 17.

It is sufficient to prove the theorem locally at each point t: E LT. Let i :Uo -+
R he a chart in I and j :Va -+ R be a chart in .1with t: E u; n Va. Then it
suffices to show that for some open subsets U and V of Uon Va containing t:
the mapping j 0i-I: i(U) -+ j(V) has a C1+a- extension to R. If this is the
case for all such 1. then the result holds globally. Clearly, we can restrict to
the case where
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(i) the smallest closed interval I containing i(U) is a cylinder et,i for
some t E TNo where No > N or else is the union of two adjacent
cylinders of this form which are in contact and

(ii) where the smallest closed interval J containing j(V) consists of
the corresponding cylinders for j.

Now let In (resp. In) be the set of end-points of the cylinders et,i (resp.
et,i)where t E r; n 2: No and c., cl (resp. c., C J). Then j 0 i-I maps
In onto In and is a homeomorphism of the closure r:>o of Un>No In onto the
closure Joo of Un~No In. We will construct a sequence of Coo mappings L«
such that

(i) Ln agrees with j 0 i-Ion UNo<i<n Ii,

(ii) Ln is a Cauchy sequence in the space of CI+f3 functions on I for
all (J < a and therefore converges to a C1+0- function Loo on I.

Then the mapping Loo gives the required smooth extension of j 0 i-I and
proves the theorem.

The rest of this section consists of the construction of the mappings Ln :
I -+ J and the proof that they converge to a smooth diffeomorphism. We
use extensively the fact that for each n 2:: No, I is the union of cylinder sets
of the form Ct,i and GlJ,t,i where s, t E Tn.

2.2.1 A reflne ment of the (1+ a)-equivalence prop-
erty.

Lemma 4 ICt,III ICt,.1I is bounded away from 0 and 00 i.e. ICt,II/ICt,.11 =
Ot(I).

Proof. For all n 2: N and all t E Tn, define Q(t) = In(ICt,II/ICt,.1l). By the
(1 + 0' )-scale equivalence

IQ(m(t)) - Q(t)1 ~ O(Vt) ~ O(f(n)).

Therefore, for all t = totl ... ELT, IQ(tN) - Q(tn)1 ~ O(f(N)). As the set
'TN is finite, IQ(tn)1 is bounded above independently of n and tn. B
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Corollary. If t E Tn, n ~ N,

IIGt,jl _ IGm(t),.711 < O(Vt).
IGt,II IGm(t),II-

(2.2)

If s, t E Tn are adjacent but not in contact and m( s) = m( t) then

(2.3)

If they are in contact then

IIGt,.7I_IG.,,.711 < O( )
IG I IG I - Vt,.,·t,I ."I

(2.4)

Proof. This follows directly from the definition of Vt, Vg!., and Vt,., and the
boundedness of IGt,I II IGt,.rI· I

2.2.2 The map Lt.

For all n > N and all t E T; define the affine map L, as follows:

) IGt,jl( )Lt(x = -IG I x - Pt,."I + r..»,t,I

where s is a vertex adjacent to t. The definition of the map L, is independent
of the adjacent vertex s considered because it is an affine map.

Lemma 5 (i) For k equal to 0 and 1 and for all n > N and all pairs of
contact vertices t, s E Tn which are in contact

(2.5)

in the domain Dt,.,,I'

(ii) For all vertices t E Ti; and all n > N,

(2.6)

in the domain Gt,I. For all adjacent vertices sand t not in contact, if m(s) =
met) then .

(2.7)
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in the domain Et,B,I' Otherwise

(2.8)

in the domain Et,B,I' Moreover,

(2.9)

in the domains Gt,I and Et,.,I'

Proof. Firstly we prove (i). By the corollary to lemma 4 of section 2.2.1 and
since Lt(Pt",I) = L,(P"t,I) = Pu.: = P/J,t,.:T and Ix - Pt,/J,II ~ O(IDt,s,II),

I () ( )1 IGt,.:T I IG".:TIII I (t; x - L. x = -IG I - -IG I x - Pt,iJ,I s 0 Vt,BIDt,s,II)t,I /J,I
(2.10)

and
IdLt - dL/J1 = IGt,.:T11_ IIG/J,.:TIIs O(Vt,,).

IGt,I Gs,I
This proves part (i).

Let tl, ••• , tp denote the vertices in Tn with the same mother as t ordered
so that Gtj;I lies to the left of Gtj+I,I. Then t = tl for some I such that
1 ::; I::; p. Let s E T; be an adjacent vertex to il such that m(s) =I m(t).

Since Ltl (Ph ,.,x) = Lm(t)( Pm(t),m(s),I) = Ptl,.,.:T = P m(t),m(s),.:T, by the corol-
lary to lemma 4,

IGtis I IGm(t),.:T I
IGtl,x1 IGm(t),II

< O( Vtl IGtl ,I I),
for x E Gt,I and if sand t are not in contact then

for x E Et1,.,x. Therefore, IPtl,t2,.:T - Lm(t)(PtlhI)1 ~ O(VtlIGtl,II). If there
is a gap 9tlh between the vertices tl and t2 define the map L911012 at Gt1hI
in the following way:
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By the corollary to lemma 4

Therefore,

By induction,

Lm(t)( Pt"t'_III) I
1-1 11

~ O(L v.: ICtmlII + L IIgrim.lim+1 IGtimltim+lIII),
m=1 m=1

where 11 is the number of gaps between il and tl. Therefore, if x E Ct,I
or x E Et,IlII where s is an adjacent non-contact vertex of t with the same
mother as t, then

ILt(X) - Lm(t)(x)1 < O(At).

This proves inequalities (2.6), (2.7) and (2.8). Moreover, inequality (2.9)
follows because

IdL - dL I = IICtl.11 - ICm(t)I.111 < O( )
t met) Ie I Ie I - lit·t,I m(t),I

by the corollary to lemma 4. •
2.2.3 The definition of the contact and gap maps.

Lemma 6 For all E ;:::° there exists a Coo map </> : [0, E] -+ [0, 1] such that
4> = ° on [0,6/3], </> = 1 on [26/3,1] and 11</>llcl:+o ~ CkS-(kta), where Ck

depends only upon k E Z~o and not on a E (0,1] or E.

The proof of this lemma is very simple. Find such a function </>0 for the
case S = 1 and then deduce the general case by letting </>(x) = <Po(E-1x) ••

If sand t are adjacent vertices in Tn we use lemma 6 to choose functions
<Pt" on Gtl"I and .,p~,t = .,pt" on Dt,Il,I with the following properties.
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(i) cPt.• == 0 (resp. '1fJt" == 0) on the left-hand third of Et .••I (resp.
Dt.s•I) and cPt•• == 1 (resp. '1fJt.• == 1) on the right- hand third of
Et .•.I (resp. D,.•.I)

(ii)
(2.11)

and
(2.12)

for all reals p between 0 and 2 and where the constants are inde-
pendent of all the data.

Extend cPt•• to all of the gap Gt .••I as a smooth map by taking it as constant
outside Et.s.I. We call the cPt.• gap maps and the '1fJt" contact maps.

Note that, for all n, m > N and all non-contact adjacent vertices tt, SI E T;
and t2,S2 E Tm, such that {sbtd f:. {S2,t2} the domains of the gap maps
where they are different from 0 or 1 do not overlap. For all n > N and all
contact adjacent vertices t3,S3 E Tn and t4,84 E Tn, such that {83,t3} f:.
{S4, t4} the domains of the contact maps do not overlap. Moreover, they do
not overlap with any domain of any gap map cPt2.S2' where t2,82 E T m and
m ::;n.

2.2.4 ThemapLn:I~J.

Construction of Ln on cylinders Ct,I in I

For all n > No and all vertices t E Tn, define the map Ln on Ct,I C I as
follows. For all vertices Si in contact with t, Ln = L, on Ct.I \ UiCt.Si,x. If 8
is in contact with t and S is on the left of t then define Ln on Ct",I by

Ln == '1fJt.• Lt + (1 - ¢t.,)L,.

If 8 is on the right of t then define Ln on Ct.s.I by

Ln = '1fJt./tL/t + (1 - '1fJt.• )Lt•

Extension of Ln to the gaps Gt",x in I

For all n > No and all non-contact adjacent vertices t, s E Tn, suppose that
Ct,I is on the left of C,.I. Define the map Ln on Et.s,I, by

LnIEI .•.x = Lm(t)cPt., + Lt(1 - cPt.,).
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Define the map Ln on Ea,t,r, by

Ln IE•.t.7 = Lm(,,)(1 - ¢",t) + L.¢",t.

Finally, in Gt,.;I \ (Et,,,.r U E.,t,r) define i; = Ln-I•
This construction builds an infinitely differentiable map Ln which is defined

on the closed interval I and which maps I diffeomorphically onto J.

2.2.5 The sequence of rriaps (Ln)n>No converge in the
C1+, norrn.

The space of GI+t: maps on Iwith the GI+t: norm is a Banach space. In this
section we prove that the sequence (Ln)n>No is a Cauchy sequence in this
space and therefore converges. First we prove the following lemma.

Lemma 7 Suppose t E Tn and n > No. Then in the three subsets Cci \
U.Gt,.,r, Dt,a,r and Gt,/J,r,

The constants of the inequality only depend upon I and :T.

Proof. We break the proof down into 3 cases corresponding to behaviour in
the three subsets Ct,T \ U"Gt,a,T, Dt",r, and Gt,a,T'

(i) For Gt,T \ UaGt,,,,T where s is in contact with t. By lemma 5

IILn - Ln_IIlClte - liLt - Lm(t) IIc1te
< 0 (max(At, Vt)) ~ O(Jt:(n)) < O(Jt:(n - 1))

(ii) For Dt,a,T' Suppose s is on the left of t.

Ln - Lt = tPt,,,Lt + (1 - tPt,,,)L,, - Lt = (1 - tPt,,,)(L,, - Lt)

in Ct,.,r. Therefore, by inequality (2.5) of lemma 5 and inequality (2.12) we
have that in Ct,II,r,

Moreover, by lemma 5 and inequality (2.I2),
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and

IldLn dLtllc· < IId1/Jt,,,IIc·IIL,, - Ltllco
+ IId1/Jt,,,IIco ilL" - Ltllc. + II1/Jt,,,IIc. IIdL" - dLt IIco

< O(vt,,,IDt,a,II-~)

Therefore,

in Ct,,,;r.

If m(s) =f m(t) then by lemma 5 and the last inequality

IILn - Ln-1 IIcl+. < IILn - Ltllcl+. + liLt - Lm(t) IIcl+.
+ IILm(t) - Ln-1 IIcl+.

< 0 (vt'8IDt,",II-~) + 0 (max(At, vd)

+0 (Vm(t),m(a) IDm(t),m{,,),II-~)
< 0 (J~(n - 1)) ,

If m(s) = m(t) then Lm(t) = Ln-1 or

IILm(t) - Ln-1llcl+. ::; O(vm(t),zIDm(t),z,II-~) < O(J~(n -1)),

where z is a contact vertex of m(t). Therefore, in Gt",I,

Moreover, a similar argument to that used for CIJ,t,I, shows that in Dt,IJ,I,

(iii) For Gt,IJ,I. Suppose that Gt,T is on the right of C"I. By definition of the
domains of the gap maps Ln = Ln-1 in the gap Gtl"T except in the extended
intervals Et,,,.T and Ea,t,T' Therefore, in Et,Il,T,

Ln - Ln-1 - Lm(t)(¢t" -1) + Lt(1- ¢t,,)
= (Lt - Lm(t»)(1 - ¢t,,)

If m(t) = m(s), by lemma 5 and equation (2.11)
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IIdLn - dLn_tllCo < ILt - Lm(t) Ild<pt!+ IdLt - dLm(t) 111 - <Pt!
< 0 (AtIs.,,I I-I) + O(Vt}

and

IldLn - dLn-1llC-
< liLt - Lm(t) Ile-lldcPt Ileo + liLt - Lm(t) Ileo Ild<ptlie-

+ IldLt -dLm(t)lIeolll- <Ptlle-
< 0 (vtlEt,,,,II1-e-l) + 0 (AtIEt,",II-(I+e») + 0 (vtIEt,",II-e)
< 0 (AdEt,s,xI-(l+e») + 0 (vdEt,s,II-e)

Similarly, in Es,t,x,

If met) =f m(s), by lemma 5 and equation (2.11)

IILn - Ln-1lleo ~ ILt - Lm(t)111 - <Pt!~ O(vt!Et,s,II),

IIdLn - dLn-1lleo < ILt - Lm(t) IId<pt! + IdLt - dLm(t) 111 - <Pt!
< O(Vt)

and

IIdLn - dLn-1 lie- < liLt - Lm(t) lIe-lId<pt! leo
+ liLt - Lm(t) lIeo IId<pt lie-
+ IIdLt - dLm(t) lIeo 111 - <Pt!le-

< O(vt!E",t,II-e)

the constant of the last inequality depending upon e. I

Lemma 8 The sequence of maps (Ln)n>No is a Cauchy sequence in the
domain I with respect to the CHe norm. In fact, IILn - Ln-1IleH- S
OUe(n -1)).

Proof. For all vertices t E Tn, define Pt as the middle point of Ocx and for
all non-contact vertices t, s E Tn, define Qt" as the extreme point which is
common to Et,s,x and Em(t),m(s),x. Then
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For all x, y E I, if the closed interval between x and y is contained in the union
of two of the domains of the form Ct;r or Cgt.•a then denoting dLn - dLn_1
by B«,

IBn(Y) - Bn(x)1 ~ OUe(n _ 1».
Iy - xle

Otherwise, take Prc (resp. Py) to be the nearest point of the form P, or Qt.s
to x (resp. y) in the closed interval between x and y. Let us consider the
case that Pc = P, and Py = Ps. If En again denotes dLn - dLn-l!

IBn(Y) - Bn(x)1
Iy - xle

< IBn(Y) - Bn(Py)I IBn(Py)1
Iy - pyle + ICs,Ile +

+ IBn(Px)1 + IBn(Px) - Bn(x)1
ICt,I le IPx - X le

< O(fe(n -1» + O(vsICs.II-e)
+ O(VdCt,II-e) + OUe(n -1»

< OUe(n-l».

Similarly, for the other cases. Therefore, IILn - Ln-illcl+. ~ OUe(n - 1»
and Ln is a Cauchy sequence since L:~=M fen) ~ OU(An), for any A1 > No .

•
2.2.6 The conjugacy map Loo.

Since the sequence (Ln)n~No is a Cauchy sequence in C1+e(I), it converges
to a function Loo E C1+e.

Lemma 9 The map Loo is a C1+O'- diffeomorphism of I onto J which extends
i-I 0j.

Proof. By lemma 4, for all t E Tn ICt,.1I/ICt,II is bounded away from 0 and
00 and by the hypotheses of (1 + a)-scale equivalence, and (1 + a)-contact
equivalence if s, t E Tn are adjacent, (i) Ate~:,I -+ 0, (ii) Vt -+ 0 as n -+ 00

and (iii) V"t -+ 0 depending if s is in contact with t or not and if they have
the same mother. Thus there exists Cl > 0, 0 < C < cl and Ni > 0 such that
if n ~ NI then for all s, t E Tn,

Cl < ICm(t),.1I/ICm(t),rl, O(AdEt,s,II-1 + Vt) < C and O(Vt,,) < c.

'We break down the proof into four parts corresponding to the sets Ct,I \
Ct,,,,r, Dt,s,r, Et,s,r and Gt",I \ Et,s,r.
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(i) In Ct,I \ Ct,8,I' dLt = ICt,.1I/ICt,II > Cl'

(ii) In Dt,8,I' Suppose that s is on the left of t. Then, in Dt,8,T,

IdLn I - l7/lt,sdLt + d7/lt,sLt + (1 - ¢t,s)dLs - d¢t,sLs I
> IdLsl-ld7/lt,,,(Lt - L,,) + 7/lt,,(dLt - dL,)1
> ICt,.1I/ICt,II- O(Vt,,) > Cl - e; > 0,

(iii) In Et,s;r. Suppose t is on the left of s. Then, in Et,s,T,

IdLnl - ItPt,sdLt + dtPt"Lt + (1 - tPt,s)dLm(t) - dtPt,sLm(t)1
> IdLm(t)I-ldtPt,s(Lt - Lm(t») + ¢>t,s(dLt - dLm(t»)1
> ICm(t),.1I/ICm(t),TI- O(AtlEt,8,II-1 + v,) > cl - C > 0,

(iv) In Gt,8,I \ Et,8,T. In different subsets of this set, the map Ln = Ln-i
for some j EN. We suppose by induction that Ln-i > el - e > O. For that
take No = max{No,Nd.

Therefore, IdLn I > el - e > 0 in I for all n > No which implies that
ILoo 1 ;:::: Cl - C > O.

By construction, Ln(Ct;r) = Ct,.1 for all t E Tm, No ~ m < n, and therefore
Loo equals i-I 0j on the closure of Un~No In.

As Loo(Ct,I) = Ct,.J', for all vertices t E T; and all n > No, then Loo is a
CHa conjugacy between the charts i and j. I

2.3 Proof of theorem 2.

Suppose that the structures Sand Tare CH,o-equivalent and are given
respectively by the primary atlases I and.1. This equivalence means that the
identity is a Cl+,o diffeomorphism between the two structures. Thus, if (i, U)
is a chart of I and Cm(z),T C U then there exists a C1+/3 diffeomorphism h :
R -4 R such that h( Cm(z),T) = Cm(z),.1 and h( Ct;r) = Ct,.J' for all descendents
t ofm(z).

By the mean value theorem, there are points u, v E Cm(t),T such that

Idh(u)1 = ICm(t),.1I/ICm(t),II and Idh(v)1 = ICt,.1I/ICt,II·



63

Moreover, since h is Cl+l1, we have that, Idh( u) - dh( v) I ~ O( ICm(t},!1!3).
Therefore,

ICt,.11 ICm(t},TI 0(10 111) ( ())Vt = 1- IC I IC I ~ m(t},T ~ 0 911,€n .m(t},.1 t,T

By a similar argument,

IGt,8,.11 ICm(t),rl 0(10 113) O( ())Vg", = 1- IC I IG I ~ m(t},T < 911,€n .m(t},.1 t,8,T

Therefore,
p q

At < O{ICm(t),TI!3(L: ICti,TI + L: IGtin,tin+l,1I))
,=1 n=l

< O{ICm(t),II1+I1)::; O(gl1,e(n)).

where tb ... , tp are all the vertices with the same mother as t and 9tin,tin+l'
with 1< n ~ q, are the respective gaps between them. By the hypotheses of
theorem 2, if m{t} = m(s), then

AdEt",rI-(l+t) + VdEt",Irt s O(ICm(t},Tll+13IEt",1I-(l+€»)
+ O(ICm(t},1II1IEt,.,!I-t) s O(gl1,t(n)).

If m(t) =I m(s) then

vdEt,.,II-t s O(ICm(t),rII1IEt",II-t) < O(gp,t(n)).

Thus, the conditions of definition 4 are verified if for ft{n) one takes c9!3,t(n)
where c > 0 is some constant. Therefore, the atlases I and.J are (l+i)-scale
equivalent.

If sand t are in contact then, by the mean value theorem, there exists
u E C.,I and v E Ct,I such that

Idh(u)1 = IC',.1I/IC,,11 and Idh(v}1 = ICt,.1I1ICt,1I.

Since the map h is C1+P,

Therefore,
ICt,.1IIC"TI (I 111)

vg1" = 1 - -IC I-IC I ~ 0 Dt,.,1".1 t,I
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and
Vgr,. < Q( ID I{J-~) < Q( (n))

ID I~- t •.s.T - g{J.~ .
t,.s,I

The last inequality follows from the hypotheses of the theorem.

Thus, taking f~(n) = cg{J,~(n), the conditions of definition 5 are verified.
Therefore, the atlases T and.:r are (l+i)-contact equivalent. This completes
the proof that T and .J are (1 + i)-equivalent. •
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Global phase space universality, smooth conjugacies
and renormalisation: 2. The Ck+a case using rapid

convergence of Markov families.

A. A. Pinto and D. A. Rand 1

Arbeitsgruppe Theoretische Okology, Forschungszentrum Jjilich,
D 5170 Jillich, FRG.

Abstract

We prove that the speed of convergence of two Markov families
determines the smoothness of the conjugacy between them. One of
the applications of this result that we give is that the attractors of any
two quadratic foldings at the Feigenbaum accumulation point of period
doubling are CH.11conjugate. Our main result provides the basis for a
complete unification of renormalisation and smooth conjugacy results
which includes both the classical theorems and more recent results
about critical systems.

3.1 Introduction.

In [7] the notion of a Markov family was used to prove that exponentially fast
convergence under renormalisation of two dynamical systems with bounded
geometry implies that their limit sets are CHQ conjugated. In fact, in a
number of cases, such as diffeomorphisms of the circle and quadratic foldings
at the accumulation point of period doubling; these conjugacies are actually
smoother. In this paper we prove a general theorem for Markov families
which gives this extra smoothness in terms of a balance between the speed
of convergence of the two Markov families and the scaling structure of their
cylinders. In renormalisation problems, these are given by the speed of con-
vergence of the renormalisation and the scaling structure of the critical orbits
of the dynamical system. A simple corollary of this theorem (theorem 2) is
that the conjugacies between the limit sets of quadratic foldings at the ac-
cumulation point of period doubling are C2+.11• For diffeomorphisms of the
circle of constant type, the fact that the exponential rate of the convergence
of the renormalisation can be made arbitrarily large by using a nearly lin-
ear high order polynomial diffeomorphism instead of a linear rescaling in the

1Permanent address: Nonlinear Systems Laboratory, Mathematics Institute, University
of Warwick, Coventry CV4 7AL, UK.
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renormalisation transformation, allows one to deduce Coo conjugacies as a
corollary of theorem 1. This result shows that Markov families are a consid-
erably more powerful tool than Feigenbaum-Sullivan scaling function ([8]).
This scaling function is a complete invariant of the CH structure, but by its
nature is incapable of detecting extra smoothness. On the other hand, our
results show that Markov families determines the extra smoothness. More-
over, this result provides a unification of renormalisation and classical smooth
conjugacy results. The general principle is that two infinitely renormalisable
systems with bounded geometry are cr+fJ conjugated with 0 S; r S; 00 and
o S; f3 < 1 if for all 0 < S S; r + f3 there exists a polynomial renormalisation
in which the speed on convergence dominates the (S - 1)th power of the rate
at which the smallest geometrical scale goes to zero. An open problem is to
replace the condition of bounded geometry by a weaker condition as done in
[4] so that problems of non-constant type can be handled.

The observation that the faster speed of convergence implied a CH con-
jugacy for period doubling first arose in discussions with Rafael de la Llave
in 1987.

3.1.1 Markov families.
Topological Markov families

A topological Markov family F is a family of mappings Fn,,,, with either
n = 0,1, ... or n E Z and a in a finite set Bn, which satisfy the following
condi tions.

(i) For each n and a E Sn, Fn,,, is a homeomorphism of the closed
interval I: into R.- ._

(ii) I: contains in its interior a closed interval C: with following prop-
erties.

• intC: nintC; = 0 if a ~ b.
• If x E C: and Fn(x) E Cb+! then Fn(C:) contains Cb+!.
• If b E Sn+1t there exists a E s; such that Fn(C:) contains
Cn+1b •

"Ve regard the Fn,a as defining a single mapping E; on C" = UaES" C:.

c+- Markov families

A cHa Marko» family F satisfies the following conditions in addition.
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(iv) Fn.a. = FnII: is a c+: diffeomorphism of I: into R.

(v) IF~(x)1 > 1 for all x E In and all n in some norm on R.

Bounded and boundedly extended Markov families

A CHa Markov family F is said to be bounded if

(iv) Irl/lJOI, ICnI/ICOI, II:I/I~I and le:l/le~1 is bounded away from
o and 00, where O" is the smallest closed interval containing
UaES .. e:i

(v) for all n and all a E Sn the eHa norm of Fn.a. = F; II: on r:: is
bounded independently of n and a; and

(vi) there exists .\ > 1 such that IF~(x)1 > A for all x E 1" and all n.

A point x E en is captured if for all m > n, Fm-1 0,,, 0Fn(x) E cm. The
set of all captured points in en is denoted by An = An{F).

Let En denote the set of infinite right-handed words" = enen+! ... such
that (i) e, E Sj and (ii) there exists x E C" with the property that

Fm-1 0'" 0 Fn(x).E e;:,.
for all m > n. \Ve call these words admissible. If" = en en+! ... E np?;n Sp
let 'Ip denote the finite word en ... en+p-l of length p. Let E; denote the
set of finite words 'Ip where" E En. \Ve denote by a and m the mappings
a . En -+ En+! and m . En -+ En given by• P p-l • P p-l

q(en ••• en+p-l) - en+i·· .-;en+p-l

m{e" ... en+p-l) - en'" en+p-2.

If" = enen+1 ••• E En then we denote by ee,. ...em Crespo Ie .....em) the closed
interval consisting of all x E cm such that for all n :5 j < m,

Fj o ... oFn(x) E et; (resp.I:i+1)'

Dy Ae,....em we denote the intersection of An with Ce,. ...em and by Oe ..... em the
smallest closed interval containing Ae,. ...em' Note that if each interval C: is
replaced by the subinterval 0: in the definition of An then one obtains the
same set An of captured points.

\Ve therefore assume henceforth that e:; = t:.
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Suppose that J is a closed set contained in the interior of an interval I and
let j denote the smallest closed interval containing J. Then 1-j consists of
two intervals. The interval to the right (resp. left) of J is denoted by R( J, I)
(resp. L(J, I)).
Definition. A Ck+a Markov family F is boundedly extended if there exists
OlJ 02 > 0 such that, for all n and all a E Sn, the intervals r:; on which F; is
defined and GHa are such that

(3.1)

All the Markov families of this paper are assumed to have this property.

Definition. If F and G are two topological Markov families then we say that
they are topologically conjugated if for all n there exists a homeomorphism
hn : AR(F) -+ AR(G) such that Gn 0 hn = hn+1 0 Fn on AR(F).

In such a case we call the family !J.= (hn) the conjugacy. The major result
of this paper is the derivation of natural necessary conditions for the hn to
be Cr+fJ or to have a Cr+fJ extension to R. Without loss of generality, we
will restrict to the case where the homeomorphisms preserve the order of the
real line.

Conditions A(g) and BCg).

Let G be a C'+'Y Markov family which is topologically conjugate to F. vVe
will impose the following condition on the pairs of families F and G that we
consider. It involves the positive function g(n).

Condition A (g). For all n and all e E SR'
._-_ ~-

By r,I::, I:, en, e: and er we denote the intervals and cylinders reF),
I:(F), I:(F), CR(F), C:(F) and Cf(F) for F. We denote the corresponding
intervals and cylinders for Gn by In, J:;, Jr, D", DZ and D;.

If e E Sn, let An,e denote the affinemap which sends C: onto n: preserving
orientation. VYeregard AR,e as having domain I:. If t is the word eo ••• en E
E~+1 define

Kt G-1 G-1 )n.J?- O,co0 ••• 0 n-l,cn_l: en -+ t'

Et - Fn-t,en_l 0 ••• 0 Fo,eo : r; -+ I':,., and

Lt - Kt 0 An,en 0 Et : I~ -+ J?
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Now we formulate a condition that controls the behaviour at contact points.
Let t = co ••• Cn-l and t' = c~ ••• C~_l be in contact i.e. such that Ct and Ct'

meet in a point. Let m> 0 be minimal such that tim = t'lm and tl(m+ 1) 'f
t'l(m+ 1). In this case, let et,t' denote maxzEI, nI" {ldEt(x)l, IdEtl(x)!}. Then
we impose the following condition on all such pairs t, t'

Condition Brg}. For all such t and t' and all 0 < k ~ s,

IIL~mt - L~mt'llc"< g(n)e!;~t).am(t')

It is not difficult to see that condition B(g) is satisfied, for appropriate g,
by those Markov maps arising from renormalisation structures with contact
points such as those for diffeomorphism of the circle and cubic critical circle
maps.

Theorem 20 Suppose that the bounded and boundedly extended CIJ+"1 Mar-
kov families F and G are topologically conjugate and satisfy Conditions A(g)
and B(g). Let e(n) = maxtE!:~ IldEtll. Then the conjugacy h = (hn) is cr+fJ
with f3 E [0,1) such that r + f3 :::; s, if the function J given by

f(n) = e(nr+fJ-1g(n)

is such that L:~o f(j) < 00.

Remark. Suppose that F and G satisfy the hypotheses of theorem 20.
Then, by boundedness, there exist constants dt, d2 > 0 and A,I' E (0,1) such
that for all t E E~, '.. .-

dl)' -n < IdEd < d21'-n
Thus g(n)/ f(n) ~ c).(r+,o-l)n and, in particular, g(n) is exponentially de-
creasing. If g(n} < er" then, by theorem 1, the condition T/l'r+,o-1 < 1 is
sufficient for the conjugacy to be c+«.

3.1.2 Gl~bal C2 rigidity for period-doubling.

We say that a sequence of points Xi i = 0,1, ... in the interval [x}, xo] has
the Feigenbaum ordering if for 0 ~ i < 2"-1, xi+2,,-1 and Xi+3.2,,-t lie between
Xi and Xi+2,,-l and are ordered so that Xi - Xi+2,,-l and Xi+2" - Xi+3.2" have
the same sign. The inductive construction of such a sequence is illustrated
in figure 1.
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Xl

x3 x2

xS x7 ~ ~
• •• •• •

Figure 1.

A quadratic folding of the interval I = [-1,1] is a C1+Lipachitz mapping
I : I -+ I with I' > 0 (resp. I' < 0) on [-1,0] [resp, [0,1]) and such that
in some neighbourhood of 0 there is a CI+Lipachitz coordinate system X in
which I(x) = x2 + f(O). Given such a mapping I let Xi = Ji+l(O). Suppose
that the Xi have the Feigenbaum ordering. Let Ji,n. denote the closed interval
between Xi and Xi+2", 0 < i < 2n. The Cantor set

2n-l

AJ = n U s.;
n~l i=O

is the attractor of I in the sense that every orbit is either eventually periodic
or else converges to A,.

Theorem 21 Suppose that I and 9 are real analytic quadratic foldings with
the Feigenbaum ordering. Then the canonical homeomorphism h : AJ -+ Ag
has a CH.1l extension to the real line.

Proof. Let n denote the unit disk Izl < 1 in C and let c denote the
real Banach space of continuous h: n -+ C-wIiich are holomorphic on D,
take real values at real points and are such that, if h( z) = Ln>o anzn then
Ilhll = En~olanl< 00. Let A denote the set of maps of the form

I(z) = 1 - z2h((z2 - 1)/2.5)

where h E E, By identification with L, A may be regarded as a real Banach
space.

The doubling operator

TU) = a-I. 12 0 a (3.2)

where a = aU) = f(l) is well-defined on the open subset VeT) consisting of
those I E A such that, if a = aU) and b = f(a) then a < 0, b > -a and
feb) ~ -a.
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Lanford [1] and [2] has found a polynomial lapproz which is very nearly a
fixed point of T. Using computer-assisted estimates he then shows that if V
denotes the ball III - lapproz II< .01, then

1. TIV is well-defined and Coo;

2. for I E V, dT(I) is a compact operator; and

3. T has a unique fixed point 9 in V.

Moreover, using his computer assisted proof, it is easy to show that (Mestel
[3]): 4. the spectrum of dT(g) consists of a simple real eigenvalue 6 > 1, the
eigenvalue '\0 = a ~ 0.3995 corresponding to quadratic coordinate changes
(see below) and a countable set of eigenvalues contained strictly inside the
circle Izl = a for some 0 < a < 0.13.

If T : C -+ C is holomorphic on a neighbourhood of 0 in C let .,pT denote
the infinitesimal coordinate change given by

dtI'T = - (id + tTtl 0 go (id + tT).
dt t=o

It is easy to check that if a-I. T 0 a = amT then .,pT is an eigenvector of dT
with eigenvalue am.

'Ve are interested in the eigenvector .,po = .,pTOcorresponding to To(X) =
x2• This has eigenvalue '\0 = a. Let E be the finite-dimensional spectral
projection in l, of dT associated with the eigenvalue '\0. Then for f E .A
near g, the equation

tPr(f) = E(I - g2 ._
has a unique solution with T(I) a monomial of degree 2.

Now, tPT(f) is an infinitesimal coordinate change corresponding to projec-
tion of f into El,. Define

(3.3)

0:(1) = (id + T(I))-I 0 f 0 (id + T(I))).

Then
0:(1) = f - .,pr(/) + 0(11 - gI2). (3.4)

One can regard 0:(1) as the result of factoring out from f - 9 the quadratic
coordinate transformations in El, corresponding to deviations from f = g.
Therefore, consider the transformation

T1(f) = o:(T(f)) = (id + T(Tf))-l 0 (T(f)) 0 (id + T(T(I)).
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By (3.3) and (3.4) this has derivative

dT1(J) = do(T(!)) . dT(J) = dT(J) - tPr(dT(I» = (id - E)dT(J)

Thus the spectrum of dT1(g) consists of the simple real eigenvalue S > 1, and
a countable set of eigenvalues contained strictly inside the circle Iz I = a for
some 0 < (T < .13.

The associated coordinate transformations (id + r(T(J)) are nonlinear
functions of I. On the other hand, if

S(J) = B-1 0 T(J) 0 B.

where B = El = id + r(dT(g) . (I - g)) then dS(J) = dT1(J) and the
associated coordinate transformations B are bounded affine in I.

Clearly the stable manifolds of Sand T are equal. Therefore we have
deduced that if I E WT(g) and In = S"] then there exists a constant c
depending only upon I such that Illn - gil < ron < c(0.13)n.

To I E ~VT(g) we associate the Markov family

_ { Bin1(x) if x E 10 = [/~(O),/~(O)l
Gn(x) - Bi..1(Jn(x)) if x Ell = [/;(O),/n(O)].

Let F be the corresponding Markov family for the fixed point g. Then F and
G satisfy condition A(g) with g(n) = c(0.13)n for some constant c. Condition
B(g) is trivial in this case as there are no contact points. Moreover, since
Gn is independent of n, if t E E~ then IdEd < a-2n because IdGn I < a2•

Therefore, by theorem 1, the homeomorphism h : 1\J -+ I\g has a Cr+fJ

extension to R for all rand f3 such that

In a < In .13.
r + f3 ~ 21n a + 1 - 21n .3995 + 1 < 2.11.

This proves the theorem under the assumption that lEV. The general
result follows from Sullivan's theorem ([10]) which says that if I satisfies the
hypotheses of the theorem then Tn(J) E WT(g) for some n > O. I

3.2 Proof of theorem 1.

In this section we reduce the proof of theorem 1 to the two main propositions
2 and 3.

Notation

Throughout the paper we use the following notation:
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1. If f and 9 are functions of a variable x with domain ~, then we write
f(x) = Oll(g(x» with constant d if, for all x E ~,

d-1 < II(x)1 < d
Ig(x)1

and if the constant d depends only upon the variables y. Often we will
drop the reference to d. In many cases the constant d will depend upon
the Markov families F and G of theorem 1, but, in this context, these
are fixed and this dependence is never explicitly mentioned.
Thus if an and bn are sequences then an = O(bn) means an/bn and
bn/ an are bounded away from 0 independently of n.

2. Similarly, f(x) < Oig(x» with constant d means If(x}/g(x}1 < d for
all x E ~.

3. We also use the notation of interval arithmetic for some inequalities
where:

• if I and J are intervals then 1+ J, I.J and 1/ J have the obvious
meaning as intervals,

• if I = {x} then we often denote I by x, and
• I±e denotes the interval consisting of those x such that Ix - y I< e
for all y E I.

Thus <p(n) E 1 ± O(vn} means that there exists a constant c > 0
depending only upon the families Fn and Gn such that for all n ~ 0,
1- cv" < <p(n) < 1+ cu", ....... _

Proof of theorem 1

Let the Markov families F and G be as in the statement of theorem 20.
As above, if e E Sn, let An.e denote the affine map which sends I: onto J:.
If ee' E E~ let

Then
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3.2.1 Gaps

If s, t E I;~ we say that sand t are adjacent if there is no t' E I;~ such that
Ct, lies between C. and Ct. In this case we say that t and t' and C~ and C~
are in contact if C.n C, ::f 0. If they are not in contact then there is a gap
between them. We denote this gap by G•.t or Gt ••• If m(s} = met) then Gt ••

is called an n-gap.

3.2.2 Definitions of the closed sets Gt,s, Dt,s and Et,s,

To each s, t E I;~, we associate the following intervals in R (see figure 2(a),
(b) and (c)) .

• C•.h Ct .• and Dt.,: If t, s E E~, are adjacent and in contact, define
Pt .• = ps,t as the common point between the closed sets C, and C•. Let
the closed interval C,.• denote the closed interval in C, of length SICtl
which contains P,.• where, using lemma 15, S is chosen independently
of t so that C,.• C It n I.. Define D, .• = Ct.•UC,.t. If t, S E E~ are
adjacent but not in contact, define P; .• as the common point of Ct and
the gap O,.•. There is e > 0 such that IGt.•1 > clCtl, for all s, t E E~
and all n. Moreover, there is SI > 0 such that if Ix - Pt .•I < SllCt I then
x E Ie. Let 0 < S< min{c, Sd and St = SICtl/3. Define the closed sets
Ct. as.

O,.•= {x E Gt .• : Ix - Pt.•I ~ St}.
Then Ct,. nC•.t = 0, ICt.• 1 = O(ICtl) and C,.• CIt .

• Et .•: Let tl, SI E E~+l be the adjacent vertices such that Gtll'l = Gt".
Define Et .• = Ct., \ Ct1"1' Clearly, Et" C It. By the choice of St in the
definition of Ch IEt,,1 = O(ICtl).
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Cs Ps,t Pt s etI r
~ ~

s.t et,s
Cs,t <;,s

p
,s,t

1\s
(a) (b)

Et,s~
I•i, I-__ <;....11__

t· t, ' 5,
~

(c)

Figure 2.

3.2.3 The definition of the contact and gap rnap s,

Lemma 10 For all 8 ~ 0 there exists a Goo map <P : [0,8] -+ [0,1] such
that 4> = 0 on [0,8/3], ¢>= 1 on [28/3,S] and 114>lIck+a ~ Ck8-(k+a) where Ck
depends only upon k E Z?;O and not on fr E (0,1] or 8.

The proof of this lemma is very simple. Find such a function 4>0 for the
case S = 1 and then deduce the general case by letting ¢>(x) = ¢>o(8-1x). I

If sand t are adjacent in ~~ we use lemma 10 to choose functions <Pt,8 on
Ct,. and .,p.,t = .,pt,. on Dt,. with the following properties.

(i) <Pt,. = 0 (resp . .,pt,. = 0) on the left-hand third of Et,,, (resp. Dt,,,)
and <Pt,. = 1 (resp. 'l/Jt,!I = 1) on the right-hand third of Et,!I (resp.
Dt,.)
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(ii) lI<pt.• IlCi+a ~ O( IEt .• I-.l:-O) and lI~t...llci+a < Q( IDt ...I-.l:-O), for
all integers 0 ~ k < s and all 0 < a < 1 such that k + a < s + /
and where the constants are independent of all the data.

By lemma 15, lEt .• 1 = O(ldEd-1) = O(ldEm(t)I-1) and IDt ...1 = O(e~1).
Therefore,

lI~t.•IlCi+a < O(e:.!O) and lI<pt.• IlCi+a < O(ldEtlk+O). (3.5)

for all integers 0 ~ k < s and all 0 ~ a < 1 such that k +a < s + /.
Extend <Pt •• to all of the gap Gt •• as a smooth map by taking it as constant

outside Et, •. We call the <Pt •• gap maps and the ~t .• contact maps.

Note that, for all n,m > N and all non-contact adjacent vertices tll 81 E E~
and t2,82 E Tm such that {SIl tt} f {52, t2} the domains of the gap maps
where they are different from 0 or 1 do not overlap. For all n ~ N and all
contact adjacent vertices t3,53 E E~ and t4,84 E E~ such that {83, t3} f
{84, t4} the domains of the contact maps do not overlap. Moreover, they do
not overlap with any domain of any gap map <Ptl •.tl where i2,82 E Tm and
m:5 n.

3.2.4 The map hn : CO -+ nO.
Construction of h", on cylinders C, in Co.

Lef b« be the affine map that sends Co onto DO. For all n > 0 and all vertices
t E EO, define the map h" on C, C Co as follows. For all words s, in contact

", . .-
with i, define h", = Lt on Ct C UCt.,j' If 8 is in contact with t and 8 is on
the right of t then

h",(x) = tPt.,(x)Lt(x) + (1 - tPt.,(x))L,(x)
for all x E Ct... If s is on the left of t then

h",(x) = tPt.,(x)L ..(x) + (1 - ~t,,(x))Lt(x)
for all x E Ct.,.

Extension of h", to the gaps Gt •• in Co.

Suppose that t, s E E~ are adjacent but not in contact. Moreover, suppose
that C, is on the left of C,. Define the map h", on Et,. by

h",IE1 •• = <Pt., • Lm(t) + (1 - <Pt,,) • Lt.
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Define the map h" on E s,t by

h" IE•.t = (1 - 4>,.t) . Lm(,) + 4>.,t • L,.
Finally, in c.,\ (Et,. U E.,c) define i; = hn-I'

Note that if c, = Cm(t) then on O, U Et,., hn = h,,-I' This construc-
tion builds an infinitely differentiable map h" which is defined on the closed
interval Co and which maps Co diffeomorphically onto DO.

3.2.5 The sequence of maps (hn) converges in the
Cr+fJ norm.

The space of cr+/J maps on the interval CO with the cr+/J norm is a Banach
space. In this section we prove that the sequence (hn) is a Cauchy sequence
in this space and therefore converges. Firstly, we prove the following lemma.

Lemma 11 Suppose t E E~+l and n > No. Let AI be one of the three
subsets Dt,,, G, .• and C, \ U,Ct •• where the union is over all those vertices
in contact with t. Then, if rand /3 satisfy the conditions of theorem 1 and
o s 8 </3,

"h,,+! - hnller+6(M) < O(g(n)e(ny+5-1).
The constants of the inequality only depend upon F and G.

Proof. We break the proof down into 3 cases corresponding to behaviour in
the three subsets Ct \ U.Ct,., Dt •• and Gt" • .._ .....

(i) For AI = C, \ U,Ct •• where s runs over all those vertices in contact with
t. By proposition 2,

IIh,,+! - h" "er+l - liLt - Lm(t) "er+,
< Or+6(g(n)ldEm(t)lr+5-1)

(ii) For AI = D, .•. Suppose s is on t~e left of t. Then

h,,+! - Lt = .,pt.•Lt + (I - .,pt••)L, - Lt = (I - .,pt.• )(L. - Lt)

in Ct .•. Therefore, by proposition 3 and inequality (3.5) we have that in Ct,"

If

IdKhn+! - dKLcI < Eadi(1 - .,pc,.)lIdK-1(L. - Lt)1
1=0

::; O(g(n + I)e~.;l)
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for all 0 < k ~ r + 1. The a, ;:::0 are bounded independently of 1 and n.
Moreover, by proposition 3 and inequality (3.5),

r
Illf"hn+! - If"Lellc' < Ladi(l - tP,.• )lIc'IIIf"-'(L. - Lt)lIco

1=0
r

+E adi(l - tPt.• )llco IIdr-I(L. - Lt)lIc'
1=0

< Or+6(g(n + 1)e~.~6-1).

Therefore,

in Ct.•.
If rn(s) =f rn(t) then

h" - Lm(t) = (1 - tPm(t).m(.»(Lm(.) - Lm(t». ~ O(g(n)e:,~~)~~(.»

by lemma 2 and the last inequality. Thus

IIhn+! - hnllcrH ~ IIhn+! - Ldlcrt6 + liLt - Lm(t)lIclr+.
+ IILm(t) - hn IIcr+,

~ 0 (g(n)e(nyH-l),

in Ct.,.
If rn(s) = met) then Lm(t) = h" or there is a z in contact with met) such

that b« = tPm(t).zLm(t) + (1 - tPm(t),z)Lz• In this case,
- __ -

Therefore, in Ct,.,

A similar argument to that used for C,.t gives the same bounds for Dc.,.

(iii) For Al = Gt.,. Suppose that C, is on the right of C,. By definition of the
domains of the gap maps hn.+! = hn. in the gap G, .• except in the extended
intervals Et" and E,.t. In Et .•,

hntl - hn - Lm(t)(<pt .• -1) + Lt(l - ifJt.,)
- (Lt - Lm(t»(l - <Pt.,).
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By proposition 2 and inequality (3.5),

k

IIhn+l - hnllClr < Eadi(L, - Lm(t»)IIdk-/(1 - ¢t)1
1=0

< Ok(g(n)ldEm(t)lk-1)

for all k = 0, ... ,r + 1 and the al > 0 are bounded independently of 1 and n.
Also,

r

IId'"hn+1 - d'"hnllc6 ~ Eadld'(Lt - Lm(t»)lIc61Idk-/(1 - <pt)lIco
1=0

r

+ Eadli(Lt - Lm(t»)IIcolldk-/(l - <pt)lIc6
1=0

< Or+6(g(n)ldEm(t)rH-1).

Similarly, in E s,h

Lemma 12 (hn)n>N is a Cauchy sequence in the domain Co with respect to
the cr+/3 norm.

Proof. Since Co is the union of the sets Al of the form Dt." G,.• and
C, \ U.Ct •• where s, t E E~ it follows that

by the previous lemma. It therefore remains to prove that, if Hn = hn+t - hn'
then there is c > 0 such that for all x, y E Co, Idr lln(y)-dr lln(x)l < ely-xiII.

Assume without lose of generality that x < y. If the interval [x, y] is
contained. in the union of three or less intervals of the form Dt." Ct .• and
C, \ U.Ct •• where s, t E E~ then

by lemma 11.

Therefore, suppose that this is not the case. Then [x, y] contains a cylinder
O, in its interior for some t E E~.,Let it, i2 E E~be such that Gtl (resp. Gt,)

is the leftmost (resp. rightmost) cylinder of this form which is contained in
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[x, y] and does not contain x (resp. y) in its interior. Let P» (resp. PII) be
the left-hand (resp. right-hand) endpoint of C'l (resp. C(2). Then

Id'" lln(Y) - d'"Hn(x)1 <
Iy - xlP

Id'" lln(Y) - dr Iln(PII)I + Id'" lin (PII)I
Iy - xlP

+ Id'" lin (pz)I + Id'"Hn(pz) - d'" Ifn(x) I
Iy - xlP

< Id'"Hn(Y) - dr Hn(PII)I + Idr Hn(PII)I
Iy - PiliP IC,I13

+ Idr Hn(pz)I + Idr Iln(x) - dr lIn (pz)I
ICt IP Ix - pz IP

The first and last terms are bounded by O(g(n)e(ny+P-l by lemma II.
Moreover, by lemma 11 Idr Hn(pz)I ~ g(n)e(nY-l. Therefore,

Thus,

Consequently, ifm > n then IIhm-hn IIcru(co) ~ O(E'?:n f(j». Therefore
hm is a Cauchy sequence in the c+! norm. This completes the proof of the
lemma. •

3.2.6 The map hoo is a Cr+{3 diffeomorphism .
.... ~-

Since, by lemma 12, the sequence b; is a Cauchy sequence in cr+p(cO), it
converges to a map 1,,00 E cr+P(cO).

Lemma 13 There exists a Cr+p diffeomorphism hoo of Co onto DO which
for all ~ E EO and all n > 0 maps C!.ln onto Drln.

;

Proof. By lemma 16, there exists c > 0 such that for all t E E~, IDtlflCd >
c.

\Ve consider separately the four sets Cc \ c.; o.: e., and o.,\ E" •.

(i) In c, \ c;..u; = IDtlliCtl > e.
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(ii) In D,.•. Suppose that s is on the left of t. Then by proposition 3 and
inequality 3.5, in D,.•,

Idhnl - ItPt.•dLt + dtPt.•Lc + (1 - tPc.•)dL. - dtPt.•L.1
> IdL.I-ldtPc .•(L, - L.) + tPc.•(dLc - dL.)1
> ID,I/ICd - O(g(n)) > e - O(g(n)).

(iii) In Et... Suppose t is on the left of s. Then by proposition 2 and
inequality 3.5, in Et .• ,

Idhn I - l,pc••dL, + d,pt .•Lt + (1 - ,pc.•)dLm(t) - d,pt.,Lm(t) I
> IdLm(t) I -ld,pt .•(L, - Lm(t») + ,pt.•(u; - dLm(t») I
> IDm(t)I/ICm(t)l- O(g(n)) > e - O(g(n)) > o.

(iv) In Gt.• \ Et.,. For each x E Gt., \ Et." dhn(x) = dhn-Ax) for some
j > o.

Therefore there exists p ~ 0 and Si, ti E E~j' 1 :::;i < p such that hoo
~s a cr+fJ diffeomorphism outside of G = Ur=lG,;.tj. If G,j.t; = [ai, b;] then
hoo(ai) < hoo(bi). Therefore, there exists a Cr+fJ diffeomorphism hoo such
that hoo = hoo outside G.

By construction, hn(C,) = D, for all t E E~, m ~ n. Therefore hoo(C,) =
hoo(et) = o, for all t E E~and all n ~ o.

If x E en let y E Co be such that Fn-1 0·'·0 Fo(y) = z; Define h~(x) =
Gn-1 0 ••• 0 Go 0 hooey). Then, since hoo is Cr+fJ then so is h~. Moreover,
hn (An(F)) = A"(G) since this is true for n = 0, and Gn 0 h~ = h~+l 0 F"00 . ._

on An(F). ... •

This completes the proof of theorem 1. It remains to prove propositions 2
and 3.

3.3 Preliminaries.

Lemma 14 If for each n Aln is an interval contained in Fn•en (In) nGn.en(Jn)
then

Proof. This follows from the fact that on the appropriate domains the
mapping / -+ /-1 is smooth. a
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Lemma 15 Suppose that F is a bounded and boundedly extended Markov
family.

(a) There exists ,,\E (0,1) such that, if t E E~, then 1J1l1 ~ o(,,\n).

(b) IdEt(Y)llIdEt(x)I is bounded away from 0 and 00 independently of t
and X,Y E J1l.

(c) IIfl = 0(ldEt(x)I-1)j lCd,IR(Ct,!,)I, IL(Ct'!t)I, ICt,.I, lEt,. I= O(II?!);
and IDt,.1 = O(e~:).

Proof. The proof of (a) foIIowsdirectly from the bounded ness of F.

Next we prove (b). If t E E~+l1

IdEt(y)I n-l
In IdEt(x)1 = [; log IdFj,ci(Emn-i(t)(y»I-In IdFj,c;{Emn-i(t) (x»1

where Emn(t) denote the identity map. But Emn-i(t)(x) and Emn-i(t)(Y) are
in I;i"(:)' Therefore, d(Emn-i(t)(Y), Emn-i(t) (Y» < c,,\-j where c is a constant
independent of nand t. Let

D ItPFj,t:il= sup .
j~O IdFj,t:i 1

Then D < 00 and
IdE (Y)I n-l .

log IdE:(x)1 < ~ etn:«.

which is therefore bounded away from 00. By symmetry it is bounded away
from -00. -_ -

Part (c) follows directly from (b) because Et(C~) = C;:., Et(I~) = I:.a and
Et(R(A~, I~» = R(A:n,I:.a). Therefore, by the mean value theorem, there
exists x,y E J1l such that II?I = IdEt(x)I-1II:nI and

IR(A?,!?)1 = IdEt(y) I-IIR(A:n, 1;',.)1

I

Lemma 16 (a) ID~I/ICfl= 0(1). (b) IdLd = 0(1).

Proof. Since F and G are bounded there exists c, d > 0 and Il,"\ E (0,1)
such that for all t E E~

ClAn < II?I < o».
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Moreover, as noted above, g(n) < O(Tn) for some T E (0,1). Therefore, (a)
follows directly from the results of [7].

Moreover, if x,y E I~ then IdLt(y)l/ldLt(x)1 = 0(1) by lemma 15 and the
definition of Lt. But Le(I?) = ft. Therefore, by the mean value theorem,
there exists X E I~ such that IdLt(x)1 = IJ?I/II?I. Combining these results
we deduce that IdLt(x)1 = 0(1). I

Lemma 11 Suppose H" is a sequence of CHI local diffeomorphisms such
that H(n) = Hn 0'" 0 HI is well-defined. Then

le-I n-I
dk In dH(n) = L: L: dk-iln dHi+!(H(i») . (dH(i»)k-1

1=0 i=O

.E;(dln su», ... diin dH(i»)

where H(O) denotes the identity map and Elk = ENXl!"" Xl) is a polynomial
of order 1 with coefficients which are independent of nand i and which
satisfies the following conditions

(i) E~ = 1, EZ = ° and E;(xd = Xl'

(ii) For 1= 0, ... , k - 1,

E,k':ll(Xb' •• , Xl+!) = Et+! (XIt ••. , XIH)
+(k - I)XIE;(Xh'" , Xl) + F,Ie(Xb" ., XIH)'

(iii) EtH (Xl! .•• , XlH) is a sum of monomials of the form

such that ail il + ... + aiiij :5 1+ 1 and ail + ... + aii < k for all
1= O,... ,k -2;

(iv) (k -/)XIE,k(XlJ"" X,) is a sum of monomials of the form

such that l+ailil + ... +aiiij ::; 1+1 and l+ai, + ... +aij < k+1
for all I = 1, ... , k - 1.
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(v) Fl(xb"" XIH) is a sum of monomials of the form

such that, ail it + ... + (aim - 1)im + ... + ai, ij + im + 1 :::;I + 1
and ail + ... + aij + 1 < k + 1 for alii = 1,... , k - 1. Moreover,
Ft = 0 and Et:/(xt, ... ,XIH) is a sum of monomials of the form

such that ail it + ... + ai}ii :::;1+ 1 and ail + ... + ai, < k + 1 for
alII = 0, ... , k - 1.

Proof. The proof which is by induction on k is omitted because it is straight-
forward. •

Lemma 18 Let G be bounded and boundedly extended C'+-YMarkov fam-
ilies as above. For all ~ E EO and all 0 :5 j < n define the map G~n : J:" ~
J! byej ...en

Gin G-I G-Ii. = j,ej 0 ••• 0 n-t,'n_l'

Let G~,n denote the identity map.

Then for all x, y E JO,
dGi,n(y)

[In ~ I < clx - yiPdG£n(x} -
where {J = "I if s = 1, or (J = 1 if s > 1 and the constant c does not depend
upon i, n and g,

Moreover,

Proof of lemma 18. By boundedness of G, by the medium value theorem
and as IdG~ll < A < 1, for all m ~ O. Then, for all x, y E J':,., there is
i E In , such that

:&,11 en

dG!'"(y)
lin dGt" (x) I <

n

E (lIn IdGi-\.ei_l 0Gt(y)I-ln IdGi:\Ci_l0 Gt(x)ID
i=j+l .

n

< Cl E IG~n(y) - G~"(x)V~
i=;+l

n

:5 Cl E (dG~n (Z~,II»P Iy - x IP
i=jH

< clx - yiP < C3,
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where the constant C3 does not depend of i, nand ,. Therefore,

Lemma 19 Let G be bounded and boundedly extended C·+'Y Markov fam-
ilies as above. Then the norm I[In dG!,n IIc. of the map In dG!,n is bounded
independently of i, nand " for all k .: 0, ... ,s - 1. -

Proof of lemma 19. The case k = 0, it is proved by lemma 18. For
k > 1, we will prove by induction in k that d" In dG~n is bounded in the Co
norm independent of i, nand ,.

Case k = 1. By lemma 18 and as k > 2,

dG~,n(y)
[In Jon( )I~clx-YI.dGi x

Therefore, d In dG~n is bounded in the Co norm independent of i, nand ,.

Induction step. By induction hypotheses, we suppose that the following
maps dIn dGt, ... , die-lIn dG~n are bounded in the Co norm independent
of i, nand ,. Vle will prove that die In dG~·n is bounded in the Co norm
independent of i, n and ~. -

By lemma. 17

le-I n

_ " " «die-lIn dG-;-1 0 0 Gi,n)L.J L.J I-l.c._l C
I=oi=j+l -

(dG~n)"-IEf(dln d.9~n, ... , d'In dG~n»

where the coefficients of the polynomial Er are independent of i, nand ,", for
all k E {l, ... ,s -I}.

As the Markov family G is bounded then the first k + l-derivatives of
the map Gi-\Ci_l are bounded independent of i and IdGi-1l,ci_ll > b-1 > O.
Therefore,

Idle-II dG-l .. Gi,nl < bn i-l.Ci_l0 C _ r,It

for alII = 0, ... , k - 1, i = i + 1, ... , n and all 0 ~ i < n.

As the Markov family G is bounded then IdG~:i I< A < 1 and

I ~ (dGi,n)Ie-11 < {_I_)Ie_1 < b
o ~ l.. - 1 _ ,\ - k,It
1=)+1

(3.6)

(3.7)
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for alII = 0, ... , k -1, i = i + 1,... ,n and all 0 =5 i < n.

The induction hypotheses implies

IEt(din dG~n, , dlln dG~n)1 =5 bk,,,

for all I = 0, ... , k - 1, i = i + 1, , n and all 0 5 i < n.

By lemma 17 and equations (3.6), (3.7) and (3.8)

k-l 1
Idk In DG~n I5L bk,l( 1_ ,\)k-l < bit .•

1=0

(3.8)

Lemma 20 Let G be bounded and boundedly extended C·+'Y Markov fam-
ilies as above. Then Illn dKt 11c,-1 is bounded independently of t.

Proof of lemma 20. By definition Kt = G~,n.Therefore, lemma 20
fol1ows by lemma 19.

Lemma 21 For all t = co ••• Cn E E~+1 and 1 < k < s,

and

Proof. We firstly prove (i)k by induction on k. Consider the case k = 1.
Since EJ = 1, El = 0 and _ .-

n-l
In dEt = LIn dFi,ei(Emn-i(t»),

i=O

n-l
IdIn dEd < L Idln dPi,ci(Emn-i(t»)lldEmn-i(t)l·

i=O

But IdPi,ti I > 1 and Id2Pi,ei I is bounded above. Therefore, Idln dFj,c; I is
bounded above. Thus,

n-l
Id In dEd < Cl L IdEm"-i(t) I

i=O
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for some constant Cl. However, there exists d :» 0 and 0 < A < 1 such that
Id(Fn-1,t:n_l 0 ••• 0 Fi,t:JI-1 < d).n-i. Consequently,

Idln dEd s O(ldEd). (3.9)

'Ye now consider the case k = 2. Since E5 = 1 and E~ = 0,

1 n-1

IcflndEd < L L IdlndFi,t:i(Emn-i(t»)I'ldEmn-i(t)12-1
1=0 i=O

'IEl( dIn dEmn-i(t), ..• , i In dEmn-i(t») I.

Moreover, since Id In dFi,t:i I is bounded above and

it follows that
1 n-1

Id2IndEd < E E O(ldEmn-i(t)12-I)O(ldEmn-i(t) I')
1=0 i=O
n

< L O(ldEmn-i(t)12)
i=l

n

< O(ldEd2) EO(ld(Fn-1,t:n_l 0 ... 0 Fi,~JI-2)
i=l

Now, as inductive hypothesis assume (i), for 1::;I < k we prove that this
implies (ih+l' vVeprove that (ih implies (ihH" By lemma 17, ail il + ... +
aijij ~ 1 for alII = 1, ... , k. Moreover, by (ih and lemma 17,

Et+1( dIn dEmn-i(t), .•• , i In dEmn-i(t)}
::; Ok(ldEmn-i(t) Illilil + ...+l1iiii) $ eh(ldEmn-i(t) I')

where 0 < I < k, Therefore,

Idk+1In dEt I
k n-l

< EEldIn dFi,t:i(Emn-i(t»)I IdEmn-i(t)Ik+1-1
1=0 i=O

IEt+1 (d In dEmn-i(t), •.• , at In dEmn-i(t») I
k n-l

< E E O(ldEmn-i(tdk+1-I)O(ldEmn-i(t) II)
1=0 i=O
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n

< I: O( IdEmn-i(t) Ik+1)
i=1

n

< O(ldEdk+l) I: O(ld(Fn-1,cn_l 0 ••• 0 Fi,cJI-(k+1»
i=1

This completes the proof of (i). We now prove (ii) by induction in k. The
case k = 1 follows from

As inductive hypotheses assume that (ii)r holds for 1 ~ I < k. \Ve then
deduce (ii)k. By differentiation,

k

Idk+1Et I - II: ciiE,dk+1-i In ss, I
i=1
k

< I: O(ldEtlildEtlk+1-i)
i=1

where the Ci are constants.

Thus,

I

Proof. By lemma. 21, we have that IdmiEtlni = O(ldEelmini). Thus,

j .II I~i Edni s O(ldEdE:.o mini).
i=o

By differentiation,
j

d(II lifni Et Ini)
i=O

j j

< O(I:nkld"'l+l Eclldmr.Ed-I(ll Id"'i Edni)
k=O i=O

j .
< I: O(ldE,I(mr.+1)-m1+E:.o mini)

k=O

< O(ldEdI+L:t.omini) .•
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3.4 Proposition 1

Before proceeding with proposition 1, we introduce some auxiliary notation
that will be of great use throughout the proof of theorem 1.

1. Given a function S and integers aa, ... , al > 0 define SI10 ... 111 to be the
function defined in the following way: Let Tl = Sill, and for 0 < m < 1
inductively define Tm+1 = Sill-m. dTm• Let SI10...111 = 11+1'

2. Given a function S as above and constants Al1o ••• al, for all integers k,l >
o define

Xl,k(S) = E Aao ... a,SI1O ... Il,'
IlO+···+IlI=k

3. Many of the functions that we encounter are of the form Xk,l(S) and we
will often use the notation without explicitly mentioning the coefficients
Allo •••Il,·

Proposition 1 For all t = co ..• Cn-l E E~

(i) IIAn-l,Cn_l - idllc'(l:"-~l) :5 O(g(n»

(ii) III(n-l,cn-lcn - idllc'(l:"-~l'n) ::; O(g(n»

(iii) IldlndI<n-I,Cn_1Cnllc.-l([:',._1'n) < O(g(n».

In each case the constants of the inequality depend only upon s and the
Markov families F and G. .__ --

Proof. Let A, 1(, F and G denote respectively An-l,cn_P J(nllcn_1Cn,Fn,cn
and Gn,cn' To prove part (i) we show

(3.10)

and
(3.11)

Equation (3.11) follows immediately since A is affine and equation (3.10)
follows directly from the the fact that c;:.:~=oz: ± O(g( n».

'Ve now prove part (ii) of the lemma in four steps.

Step 1. 11I<_idIICO([!'''-~l.n)s O(g(n)).



92

Since A = id+.,p where l.,pl < O(g(n)) and F = G+¢> where 14>1 50(g(n»,

K(x) - x = G-1(G(x) + 4>(x)+ t/J(G(x) + 4>(x» - x

and therefore

11K- idllco(M) < IIdG-IllcO(M)II4> + t/J(G+ 4»llcO(M)
~ O(g(n» (3.12)

where M = I:"-_~~nsince IIdG-III is bounded independently of n.

Note that, by equation (3.12),

since eo is bounded independently of n for 0 :5 k < s.

Step 2. 11K- idllcl(I;'~l'") 5 O(g(n».

Firstly, note that

dG(x) cfG(z)
[In dG(I«x)) I < I dG(z) IIx - K(x)! < O(g(n)) (3.14)

by step 1. But, using dG-1(A(F» = dG(K)-l,

dA(F)· dF dF dG
dI< = dG(K) E dG(K) (1 ± O(g(n») C dG(J<) (1 ± O(g(n»).

Thus, by equation (3.14), IdI< - 11 = O(g(n).) ~nd step 2 follows.

Step 9. 11K- idlbl(1:"-~l'n) < O(g(n».

By the hypotheses of the theorem IdG(I<)1 > 1and cfG is bounded inde-
pendently of n. Therefore using equations (3.12), (3.13) and (3.14)

Idl}" I= Idl F· dG(K) - dlG(K) . dF· dK dAI O( ( »
\ (dG(I<»)2 < 9 n .

..

Let At and A2 denote the following functions:

Al = ~G(K) . dF . dI< and A2 = d2F . dG(K).
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We use the auxiliary definitions which were introduced at the beginning of
this section. Step 4 is proved by induction on k = 1, ... ,s. The case k = 1
was proved in steps 1, 2 and 3. The inductive hypothesis is:

IIA2 - AIllcJr-1 ~ c/cg( n) and 11K - idllcJr+1 < dkg( n) (15k)
where the constants Ck and dk only depend upon k and the Markov families
F and G. We prove (I5H1)'

The kth derivative dk Al of Al is of the following form:

E aI1/2/3d'1+2G(I() . d'2+! F· X/3+!./1 (dK) (16)
It+/2+/3=k

where Ih 12, 13 E Z>O, a/l/20 = 1 and a/l/2/3 > O.Moreover, dk A2 is of the form

Eal1/2/3d/l+2 F • d'2+l G(K) • X/3.12(dK n.enen+1) (17)
It.

where the sum is over all the set A consisting of those 11712, 13 E Z>o such
that 11 + 12 + 13 = k and where 13 = 0 if 12 = O. By the inductive hypotheses,
11K -idllcJr+1 $ dHIg(n). As XI3./2(dK) and X/3+1.IJ(dK) are polynomials in
dK E 1 ± O(g(n)) and e«,... ,dI3+lK E ±O(g(n» and 13 $ k, then

X13.12(dJ<) $ 1± O(g(n)) and Xla+1.h (dJ<) < 1 ± O(g(n»

and, as al1/20 = 1,
IdkA2 - dkAd s I E d'l+2F· d'2+lG(J(). (1 ± O(g(n)))

11+/2=k
- E d'l+2G(J<). d'2+l F· (1± O(g(n»)I.

11+/2=k
Using the fact that Id'GI and Id'FI are bounded for 0 < I < s and equation
(3.13) we deduce -

IdkA2 - dkAll < E I (dI1+2G ± O(g(n») .d'2+1G(I(). (1 ± O(g(n»)
11+/2=k

_d'd2G(J() • (dI2+!G ± O(g(n») • (1 ± O(g(n»))1
< E 1d'I+2G. dI2+1G(K) - d/l+2G(J<) • d'2+IGI + O(g(n))

'1+/2=k
~ O(g(n».

If D = dG(K) then by (15k), Idj Bl is uniformly bounded for all j < k
independently of nand t. If A = A2 - Al then d2K = AI E2 whence dH2 K
is a sum of terms of the form

/c+!IIcfj Sj/ Bk+2
j=I
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where Sj= A or B, ij ~ 0, Ej!: ij = k and for somej, Sj= A. Since IdiAI =
O(g(n» for 0 $ i < k this means that each term is ::; O(n). Therefore,

which proves part (ii).

Let us prove, for all k = 1, ... , s - 1

(18)

By part (ii), Idin dI<1 = IJl I</dI<1 $ O(g(n)). The map dk In dK is a sum
of terms of the form

le

IIdt;Sj/(d]()"
j=l

where S, = d2I< or dJ(, ij ~ 0, Ej!:ij = k -1 and for some i.Sj= d2I<.
Since by part (ii) lid2](1 = O(g(n» for 0 < i < s - 2 this means that each
term is $ O(n). Therefore,

which completes the proof of the proposition. •
Lemma 22 For all t E E~+land 1 $1 + k < s,

XI,Ie(dAn-1,cn_l (Ec)dEc) S O(ldEtl/+k) and XI,Ie(dEt) < O(ldEd'+k) .
.... ._

Proof. The map dAn-1,tn_l is a constant map. Therefore, the proof follows
from repeated applications of corollary 3. •

Lemma 23 Let S= Sn and S' = S~ be maps such that

for all 0 S i < s, Then,

for all 1 < 1+ k < s.
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Proof. First, we note that the map Xl,k(S) is equal to

k

Xl,k(S) = L Bio...i" II dii(SQi)
l' i=O

(20)

where r is the set of jo ••. jk such that i. < i, E7=oji = k, E7=0 ai = 1,
k + I < s and the constants Bio ...i" are bounded independent of n.

For all j ;:::1and b + j < s

i-I
di(Sb) = diS· SI1-1 + LCbo ...bi-l II(cfS)bi

I' i=O
(21)

where r is the set of all bo ••• bi-1 such that E{;;~bi= band E1:J(i+ 1)bi =
b + j, bi > 0 for all i = 0, ... , k - 1 and there is i > 0 such that b, > 0 and
the constants Cbo"'bi-1 are bounded independently of n.

By equation (19),

(is ± OJ(e(n)i+1g(n)))bi E (is)bi ± Obi,i(e(n)bi(i+l)g(n)). (22)

In equation (21), E1:~(i+ 1)bj = b + j and by equation (19) and (22)

di«S')b) = (diS) ± OJ(e(n)(i+1)g(n))) • (Sb-l ± Ob(e(n)(b-l)g(n)))
i-I

+ECbt ...bi-t II(diS)bi ± Obi,i(e(n)b;(i+1)g(n)))
l' i=O

E es. Sb-l ± Ob,i(e(n)i+I+b-lg(n))

+ECbt ...bj-t (U(iSti ± ObJ(e(n)E1;~bi(i+l)g(n)))
l' 1=0

E di(Sb) ± Ob,i(e(n)b+ig(n)).

In equation (20), Ef=ojj + ai = k + 1and by equation (19) and (23)

k

Xl,k(S') E E Bio ...j" II (dii(SQi) ± OQi,ii(e(nti+iig(n)))
l' i=O

E XI,k(S) ± o.. (e(n)E~=oQi+j;g(n))
E Xl,k(S) ± O"k(e(n)'+kg(n)))'11
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Lemma 24 For all t E E~+1' define the maps dE = dEm(tj, I< = I(n-l,~n_l~n'
A = An-l,~n_l~n' S' = S~ = dI«E)dE and S = S...= dA(E)dE. Then

IlxI,k(S') - XI,k(S)llco s OI,k(dE'+k).

for all 1 ~ I + k < s.

Proof. For all 0 < i< s, the map diS' is equal to
i

~S' = Lc,d1+lI«E). Xl+l,i-l(dE),
1=0

where the constants Cl are bounded independently of n.

By lemma 22, IXI+1,i-l(dE)I ~ Oi(ldEli+1) and by proposition 1,

dH//(E} E dI+IA(E) ± V,(g(n)).

Moreover, IdA - 11 < V(e(n)i+!) and Id'+! A I= 0, for I > O.

Therefore, liSIVi(ldEIi+1) and
i

d'S' E L Cl (dl+IA(E) . Xl+l,i-l(dE) ± Oi(ldEli+1g(n)))
1=0

E diS ± Oi(ldEli+1g(n)).

By lemma 23 we obtain the result. I

3.5 First main proposition •.

Proposition 2 For all t = eo ••• e,.. E E~+!, n ~ 0 and all 0 < k < r + 1,

liLt - Lm(t)IIC.(J!!) < Ok(ldEm(t)l
k
-
1g(n)).

Moreover, for all 0 s 6 s (3

liLt - Lm(t)lIcr+6(m ::; Ok(ldEm(t)r+6-1g(n)). (24)

(23)

Proof. The proof is by induction on k. Firstly we consider the case k = O.

Let A, K, E and C denote respectively A"'-1,(n_U /(,..-I,(n-l(,., Em(t) and
/(m(t). Dy lemma 16 the product

dC(I«E)) . d/(E) . dE = dLe
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is bounded independently of nand t. Moreover, IdKI is bounded by propo-
sition 1. Therefore,

IdC{K{E»)1 = O{ldEI-1). (25)

For all X E I?,
IL,{x) - Lm(,){x)1 = IC{K{y» - C(A(Y»I

where y = E(x) E I:"-_~~n. But, by proposition 1, IK(y) - A(y)1 ~ O(g(n»,
for all y E I:n-_~en.Thus by the mean value theorem and equation (25),

IL,(x) - Lm(t){x)1 < IdC(z)IIK(y) - A(y)1
s O«ldEI-1g(n»)

where z E Jen_len. This proves the lemma for k = o.
Now consider the case k = 1. By lemma 20, dIn dC $ 0(1) and by

equation (25)
I<fCI = IdClldln dCI s O(ldEI-1) (26)

By proposition 1, equation (26) and (25)

IdLt(x) - dLm(t) (x) I < IdC(I«E(x»)· dK(E(x») . dE(x)
-dC{A{E(x »»dA(y)dE(x) I

< IdC(I«y»· (1 ± O(g(n») - dC{A)(y)1
·ldA(y)I·ldE(x)1

< (ld2C(z)l·II«y) - A(y»1 + IdC{K(y»IO(g{n»)
·ldA(y)I·ldE(x)l

< O(g(n» (27)

where y = E(x).

Now we prove the case k = 2. By differentiation,

where

R = IdL,· dlndC(K(E» . dI«E) - dLm(t)· dlndC(A(E». dA(E)I,

s= IdlndI<{E)IIdLtI and T= IdLt-dLm(t)I·ldIndEI.

Thus,

IR(x)! < IdL,(x)I·ld2In dCI·II«y) - A(y)l· d](E) + O(g(n»
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since IdLt - dLm(t)(X)1 < O(g(n» by equation (27) and dK(y) = dA(y)(1 +
O(g(n))) by proposition 1 and because by lemma 16 and 20 dLm(t), dlndG
and dA are bounded. But Icf In dCI is bounded independently of t and, by
proposition 1, IK(y) - A(y)1 < O(g(n)). Thus, IR(x)1 ~ O(g(n».

Furthermore,

IS(x)1 ~ IdIn dK(y)I'ldLtl ~ O(g(n))

by proposition 1 and lemma 16. Finally,

IT(x)1 < Idln dE(x)I'ldLt(x) - dLm(t)(x)l ~ IdEI· O(g(n»

by lemma 21 and equation (27). Therefore,

'Ve now complete the proof of the proposition by induction. As inductive
hypothesis assume that

for i = 0, ... , k - 1 and where the constant of the inequality depends only
upon i. 'Ve prove it for i = k and k ~ r - 1.

A straightforward calculation gives that

dk+2Lt - dk+2Lm(t) = '" ( R + b S )LJ al11l13 111113 1t1213111213
11+l2+13=k
+ E Chl/1I11:z

11+l2=k -~.

RI112/3 - J'1+1 L, . J'2+lln dG(J«E» • XI3+1,/2 (dJ«E) • dE)
_dI1+l Lm(t) • J'2+1ln dG(A(E» • XI3+1,/2(dA(E)dE)

S/1/213 - d/1+1Lt' dl2+lln dK(E) • X/3+lh(dE)

and

By lemma 2,1:

IXI3+t,/2(dJ«E) • dE) - XI3+1h(dA(E)dE)1 ~ Or{ldEI12+/3+lg(n» (29)
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and, since cF+121n dC is bounded by lemma 20,

Id':Z+!ln dC((K(E») - d'2+! In dC((A(E)))1 < O(K(E) - A(E)) ~ O(g(n))
(30)

by proposition 1. Moreover, by the inductive hypothesis (28k),

(31)

Since

Rhhl3 - dll+! Le . al2+!ln dC(K(E)) . (Xi3+!h (dK(E) . dE)
-XI3+!h(dA(E)· dE)) + XI3+!,12(dA(E) . dE)
. [(all+! In dC(K(E)) - d12+11n dC(A(E))) . atl+! Le

+ d'2+!ln dC(A(E)) • (atl+! Le - d'1+ILm(t»)]

it follows immediately from equation (29), (30) and (31) and by lemma 20
and lemma 22, that

(32)

To bound S/11:Z/3'by lemma 22,

and by proposition 1,

d1+l, In dK < O(g( n)) ..... ._
It follows that

IS"12'31S Id"+! Ltl'ld'2+!ln dK(E)I'lxI3+!h(dE)1 s O(ldEI/l+l3+!g(n)).

Moreover,

1111121< Idl,+! Lm(t) - atl+! Ltl'latl+11n dEl < O(g(n) IdEI1+/l+/2)
..

by the inductive hypothesis since Idll+! In dEl < O(ldEj12+1) by lemma 21.

Putting this together gives

Idk+2Lm(t) - dk+'l Ltl < O(ldElk+!g(n)).

Therefore, we proved equation (23). Let us prove equation (24).
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For all x, y E I?, by lemma 15 Ix - yl ~ 0(ldEI-1). Define the map
U = L; -Lm(t). By equation (23) and medium value theorem, there is Z E I?
such that

IdrU(x) - ~U(Y)I < Idr+1U(z)llx _ Y11-51x _ yI5

< O(ldErH-lg(n))lx _ YI5 .•

Corollary 4 For all t = ej ... ej+" E E!+l, n ~ 0 and all 0 ~ k < r + I,

liLt - Lm(t)IIC"(1!} ~ Ok(ldEm(t)lk-1g(n + j)).

Proof of corollary 4. The proof follows in the same way as the proof of
proposition 2. •

3.6 Second main proposition.

Proposition 3 If t, t' E I;~ are in contact and 0 ~ k s r + 1 then

liLt - Ltllic" ~ O(e~.;lg(n))

on It n Itl where the constant of the inequality depends only upon k and the
Markov families F and G.

Proof. Let us suppose that tim = t'lm and t(m + 1) =f t'(m + 1). Then, the
map L, = Ctlm+1 OL"m(t) oEtlm+1 and Ltl = Ctllm+1 OL"m(t/) oEt'lm+1' Let C,
L, L' and E denote respectively Ctlm+h LlTmt!_L_"mtl and Etlm+1 = Et/lm+1'

The proof of the lemma for k = 0, 1 and 2 follows directly from the follow-
ing facts.

(i) By lemma 16, IdLI = 0(1) and IdLd = 0(1) i.e. is bounded from 0 and
00 independently of t.

(ii) From this and by lemma 15, it follows that IdC(L(E(x)))1 = 0(ldE(x)I-1),
for all x E [tim'

(iii) By lemma 20, IdIn dCI s 0(1),

Id2CI = IdlndCI·ldCI = O(ldC!)

(iv) By condition B(g), for S = 0,1,2 ilL - L'lIcf ~ O(e~;'(t).lTm(t/)g(n)).
Moreover, le"m(t}."m(t')dEI < O(e(n)). By lemma 21, IdindEI ~ O(dE).
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We now prove (33k) by induction on k for 2 ::; k < r + 1. The inductive
hypothesis is

for i= 0, ... , k - 1.

The derivative dk Lt has the following form.

E a/l/2/3 d/l+! u .dla+!ln dC(L(E)) . X/3+!./a(dL(E)· dE)

+ E bI1/2/3il+!Lt·i2+!lndL(E)·X/3+!h(dE)
It+Ia+/3=k-2

+ E C/1/2il+! i, .i2+!ln dE,
II+Ia=k-2

where the constants a/1/2/3, b/l/2/3 and C/I/2 are bounded. The derivative ei;
can be represented similarly.

Thus,

IIdkLt - dkLt·1I < E (a/1/2/3R11/2/3 + b/11213S111213)
II+I2+13=k-2

+ E c/1/2T,1/2
II+/a=k-2

where

RII/2/3 - il+1 Lt' i2+11ndC(L(E» • X/3+!h(dL(E)dE)
-atl+! Lt' • i2+11n dC(L'(E» • X13+!h (dL'(E)dE),

SII1213 = dldlLt·i2+1lndL(E)·XI3+!.12(dE)
-dll +1Lt' • i2+!ln di'(E) • XI3+1.12 (dE)

and

The fact that

with the constant of the inequality only depending upon lit 12 and 13 follows
from the following facts.

(i) By proposition 2, the maps dll +1Lt and dll +1Lt' are bounded above. More-
over, by induction hypotheses (34k),

latl+! L, - il+1 Le"! ~ O(e(n)12g(n».
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(ii) By lemma 20, the maps d12+I In de and d12+2In de are bounded above.
Moreover, by condition B(g)

li2+1In dC(L(E)) - d12+I In de(L'(E)! < li2+2In dCII(L(E)) - (L'(E))I
< O( e;!(t),O'm(t/)g( n)).

(iii) Since by proposition 2, d!Lt' is bounded for i = 1, ... ,13 and by lemma
22,

By lemma 26,

IX13+1h(dL 0 EdE) - X13+1h(dL' 0 EdE) I< O(e~~ttI3+1g(n)).

Moreover, it easily follows from the following facts that

with the constant of the inequality only depending upon III 12 and 13,

(i) By fact (i) above.

(ii) By lemma 25, Id1d1lndL'I s O(e~~t~~) is bounded. Moreover,

Idl2+1ln dL - dll+I In dL'1 < O( e!~t~~g(n )).

(iii) By lemma 22,

Finally, the bound

T s Oll+1h+1(e~:f:;:171m(t,)g(n)).

with the constant of the inequality only dependent upon il and i2, follows
from the following facts.

(i) Dy fact (i) above.

(ii) By lemma 21,

To complete the proof of proposition 3, we prove bellow lemma 25 and 26.

I
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Lemma 25 With the notation of the previous proposition, if L = Lum(t)
and L' = Lum(t') then

1d'lndL -d'lndL'I:5 Ol(e~m(t),um(t,)g(n))

for all 1 < I < k and 2 < k :5 r. Moreover, lid In dL'lIcr-3 is bounded.

Proof. The map d'in dL' is a sum of terms of the form
,
II ii Sj/(dL')'
j=l

where Sj = d}L' or dL', ij ~ 0, E~;,~ij = 1-1 and for some j, Sj = d2L'.

By corollary 4, the maps diL are bounded for all i = 1, ... , r and by lemma
16, O((dL)') = 0(1). Therefore, d'ln dL' is bounded.

By condition B(g),

n}=l diiSj E n~=l dijTj ± O(g(n)e~m(t),um(t'»
(dL')1 (dL)' ± O(g(n)eum(t),um(t'»)

where 1'; = d}L if Sj = d}L', otherwise T,= dL. By lemma 16, O((dL)l) =
0(1). Therefore,

Id1ln L' - d1ln LI :5 Ok(g(n)e~m(t),um(t'»

which completes the proof of the lemma. •
Lemma 26 With the notation of the proposition 3, let S' = S~ = dL'(E)dE
and S = S" = dL( E)dE. Then

IIxI3+1,11(S') - Xl3 +I ,11(S)lIco < OI3+1,lt(e(n)13+l1+1).

Proof. Denote 13+ 1 by I and 11 by k. The map diS' is equal to

i

diS' = Ed1dI+lj./(E). XI+l,i-/(dE),
1=0

where the constants d, are bounded independently of n.

By lemma 22, IX1+l,i-l(dE)1 :5 OJ(!dEli+1). By condition B(g),

dI+1L'(E) E dt+1L(E) ± OI(e~m(I),um(.,)g(n)).



104

i
d's' E L:d1 (d1+1L(E). Xl+l,i-l(dE) ± Oi(e(n)i+lg(n»)

1=0

E d'S ± Oi(e(n)i+Ig(n».

By lemma 22 and corollary 4, IJiSI < Oi(e(n)i+I). Therefore, by lemma 23
we obtain the result. •
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Chapter 4

Symbolic Dynamics and
Renormalisation.

Let F be a topological Markov family. Say Ii - Fj if there are orientation
preserving homeomorphisms h : Ci ~ t» and h' : Ci+! ~ cj+! such that
h(C!) = ct for all a E Si, h'(C!+l) = C~+! for all a E Si+! and h'oIi = Pjoh.

'Ve can always choose the Si such that Si n Si = 0 or Si = Sj and such
that Si = Sj is equivalent to Pi - Fj• \Ve always assume that the labelling
Si has this property.

We say that j ,!!, k if and only if FHq - Fk+q, for all 0 ::; q < nand j < k.

The Markov family is adapted if whenever Si = Sj then I! = 11, for all
a E Si.

In this chapter, we always consider that tne '1-farkov family F is adapted.

For all rn, n > 0 and tEE:' we denote Ct by C, since the dependence
upon rn is determined by t, whenever it will not be confusing. If there is a
gap Gt,,' between Ct and Gt, we introduce a symbol 91,t' = 9t',t and denote
by E~ the set consisting of these new symbols together with E:,. When we
say that a statement is valid for all t E E~, we mean that it is valid for all t
and 91,t' in E:,.

'Ve denote by J and m the mappings J : t~-+ E~~..\ and m : E~__.t~_l
given by

J(to tn-I) = tl ... tn-1

m(to tn-I) = to.·. tn-2

and J(9I,I') = 9J(t),J(I'),

and m(gt,,') = m(t).
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Define the scaling tree a.« = (JPm : Un~d~~-+ R by

( ) ICd
Clm t = le I'met)

For all j ,!!, k and all t E tt and t E t: and all 0 ::; i < n, define

Ilt = 11 - Clj(t) I and At = L (Ilt,IC:'I).
Clk(t) {t'Et::m(t')=m(t)}

107

(iv) For all j ::.. k and all contact words t, s E Ef and t, s E Ef and all
o < i ~ n define

4.1 Scale and contact determination.

Definition 22 A topological Markov family F is (1 + a)-scale determined
if and only if it possesses the (1+ a)-scale property and for all e such that
o ~ e < et < 1 there exists a function 9 = gc : Z~o -+ R with the following
properties:

(i) E~m g(q) < O(g(m», for all m > O.

(ii) For all j ::..k, let u = min{j, n}. For all a E Sj,

IC:I E 1 ±g(u) and II:r; 1 ±g(u).
IC~I 1nl

(iii) For all 0 ~ i < n and all t E tf,
Ilt < g(u + i).

If s,t E Ej are not in contact and m(s) =f m(t) then

IltIEt.•r:< g(u + i)

while if m(s) = m(t) then

IEt.•I-(1+c)At + IEt.•I-c Ilt < g( u + i).



108

Definition 23 A topological Markov family F is (1 +a)-contact determined
if it possesses the (1 + a)-contact property and for all e such that 0 ~ e <
a < 1 there exists a function 9 = ge : Z~o -+ R with the following properties:

(i) I:~m g(q) < O(g(m)), for all m 2:': o.

(ii) For all j ;!.; k, let u = min{j, n}. For all 0 ~ i < nand t, 8 E E1
are in contact, then

jlt,8 ( .)
IDt,sl.:: < g u + t •

Proposition 4 If F is a topological Markov family which is (1 + a)-scale
determined and (1 + a)-contact determined then there is a C1+a- Markov
family G with the following properties:

(i) Gm = r; in Km = Km(F).

(ii) For all j ~ k, let u = min{j, n}. Then there exist C1+a- diffeomor-
phisms h : Cj -+ c- and h' : c=: -+ Ck+I such that

Gj 0 h = h' 0 Gk

in the set C~ = UtEE~ cl . Moreover,'

IIh - idllcl+'(c~) < Oe(g(u)) and IIh' - idllc1+'(c~) ~ Oe(g(u))
for all 0 < e < a.

\Ve always assume that the topological Markov family F is (1 + a)-scale
determined and (1 + a)-contact determined in the following sections of this
chapter.

4.2 The symbolic set.

We define the symbolic set n which indexes the set of topological Markov
maps in the limit of the Markov family F. Let S = {Si}i=,o' Let n c SZ
denote the set of all bi-infinite sequences g = ... 8-18081,,' such that for
all Si E Sand n E Z and all m 2:': 11. there exists a sequence i -+ 00 such
that SR' •• Sm is the index sequence corresponding to the sequence of Markov
maps Fj; ••. Fj;+m-nI i. e. 8n+k = Sj;+k for 0 ~ k < m - n.

Fix:! = ... 8-1S081 ••• E n. Two sequences ji, ni -+ 00, when i -+ 00, are
called limiting if Sj; ••• Sj;+ni-l = So .•• Sn;-I'
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4.3 The limit Markov farnily F!!.

Lemma 27 Fix ~ E n. Let ii, ni be limit sequences and Uj = min{jj, nd.

(i) The scaling tree (J'!.: Un>of:~ -+ R is well defined by

leiil
(J'!.(t) =E~IC): I

met)

and it is independent of the limit sequence.

(ii) For all t E tf,

Fix.l1 E n. Let ii,nj be limit sequences. Define Cl.. to be the limit of c«
in the sense that the extreme points of c» converge to the extreme points
of e!, when i tends to infinity. For all n > 0, let E~ denote the set of words
t = to ... tn-1 such that tj E Si, for all 0 < i< n. Let ii, n, be limit sequences.
Let i be large enough such that nj ;:;:n. Define er by the limit of eli in the
sense that the extreme points of er converge to the extreme points of Cf,
when i tends to infinity. Define I!. = Iii and I£- = I1i, for all a E Si;' Let
gt,t' E t~if gt,t' E t~.For all t', til E E; such that m(t') = m(t"), C~ is on the
left of C~, if and only if Cp is on the left of Ct/~,Define J(!. = nn>O Utet!. Ct

• n
and 1<,= J(1..nc; for all t E E~.

Lemma 28 For all t E E~, the intervals ef "are well defined and are inde-
pendent of the limit sequences ii,nj -+ 00. Moreover,

C!Cli E 1± g(Uj)

Define the map (J' : n -+ n such that u(~) = Q, where Vi = Si+h for all
i E Z. The map a" is the composition of n maps a,

Definition 24 The map F! : J(! -+ J(0'('v is defined by F!.(I<r) = J(~t~,
for all t E E~ and all n > O. In the same way, the map FO'm(!,) : J(um(!,) -+

mfl(_' (O'm(!,) O'm+l(!,) mc-,
J(O' iJ is defined by Fum Cl) I( t ) = K J(t) , for all t E E~ !..I, all n > 0
and all m E Z.
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Proposition 5 Each map Fcrm(!,) has a C1+a- extension to ]Um(!J and 0"8 :

Un>ot~ -+ R is the respective scaling function. We also denote the C1+;;-
extension by Fum(Ll' These extensions form a C1+a- Markov family F!. =
(Fum(!,) )meZ,

Define the map f!. : N -+ R + by

f!.(l) = max{ICtl : t E Er or t E E{ and Sj ... Sj+l-l = So ... sI-d.
Define the map re II : N x N -+ R+ by

'-

where u = min{j, I}, e < e' < e" < a and the map ge" is defined in (1 + a)-
scale determination.

Let F and G be two C1+e Markov families. If Fi '" o, and 1[' = I':i, for
all a E SF, = SGi' define the map fa = Fita-Gj,a in I[i. For all set M C I{',
define

For all set N C IFi, define the norm

Define

Theorem 22 Let F be a bounded Markov family which is (1 + a)-scale
determined and (1 + a)-contact determined. For all nEZ, let re,un(~ be
the function as defined above. For all i,I > 0, such that Sj ... Sj+l-l -

Sn' •• Sn+i-l and all 0 < e < a

where Cc is some constant which only depends upon c.

We are going to suppose in what follows the following uniformity condition
over the map rCtUn(!,). This is true, if for all tEE: and all m > 0 the length
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ofthe intervals ICd and g,An) decrease exponential fast to zero, when n tends
to infini ty.

Condition U:There is v, between 0 and 1 such that rc,u" (!J(j, 1) < 0(11;/),
for all j > I> 0 and all n E Z.

Let F = (Fn)n~o and G = (Gn)n~O be two CH' Markov families.

Define the distance between F and G by

00

d,(F, G) =L lI!i1dc(Fi, Gi).

i=O

Corollary 5 Let F be a Markov family which is (l+a)-scale determined and
(l+a)-contact determined and such that the maps r"u"W satisfy condition U.
For all j > I > 0, such that Sj ••• Sj+I-1 = Sn ••• 8n+1-1 consider the Markov
families F(j) and tu) given respectively by F!j) = FHm and t!j) = Fum+"(!).
Then

if the Markov families are regarded as indexed by m ~ o.

4.4 The scaling function.

Let A- denote the set of all T = ... T-2T_l with the following property. There
is §_ E n such that T_n E 8_n, for all n > o. Denote T_n ••• T-l by Tin. Define
A!.= {T E A- : Tn E 8n}. Define Ag(ll as the set of all g."", with the following

- =' T ~C7W cl-'- '~II· 1 L tproperty. T, T E /\.1.' gT_t.T~l E ,u_l an T-i = T-i' lor a ,> . e

A!. = A!. UAg(ll.

The scaling function SI. = SF,!, : A!, -+ R is given by

Let (Fm)m~o be (1 + a)-scale determined and the map g : Z~o -+ R as in
that definition. Define the metric in AI.. as follows.

if Tin = 1Fln and T_{n+l) ::f 1P-{n+1). Moreover, T-l = 1P-l and T~l = 1P~I· If
necessary, interchange T-l and T~l. Otherwise, the distance is g(I).
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Lemma 29 The scaling function sI.. is well-defined and it is Lipschitz with
respect to the metric d in Al.'

Lemma 30 Let F and G be two (1+a)-determined Markov families topolog-
ically conjugated. Let F!. and G! be two limit Markov families corresponding
to F and G respectively.

(i) If FI.. and GL are (1+a)-equivalent then the scaling functions SF,t1m(v and
sG,t1m(v are equal, for all m E Z.

(ii) Let F!. and G! have bounded geometry. If, for all m E Z, the scaling
functions SF,t1m(~ and sG,t1mW are equal, then F!. and G! are C1+ conjugated.

4.5 The w-limit set of a Markov family F

On n we put the metric dn = dn,r:, defined by
+00

dnA~,Z:) = E lI!ilh'(Si, ri),
i=-oo

Definition 25 The w-limit space M = MF,r: of the Markov family F is
defined as the set of all Markov families F! as defined in proposition 5, i.e.
M = {F!: ~ EO}. Define the metric dM = dM,r: on M by

+00
dM,r:(F!., Ft) = E lI!ildr:(Fl1iW, Fui(r»'

i=-oo
-'''_ .......

Corollary 6 The map :F: n -+ M defined by :F(~) = FI. is bi-Lipschitz.

4.5.1 Periodic Markov families

Corollary 7 Let F be a p-periodic bounded Markov family which is 1+ 0:-

scale determined and 1+ a-contact determined. Then there exists a unique
limit family FI.which is topologically conjugated to F. Moreover, for all e E
(0, a) there is a function 9 = s, :Z~o -+ R such that E~=qg(n) < Or:(g(q»
and

IlFm - Fum(vllcl+'(KmUK~m(~) < Or:(g(m».

Moreover, The set M is equal to M = {Ft1;(!l : j = 0, ... ,p -1}.
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4.5.2 Affine branched Iirnit Markov families.

A Markov family F is affine branched (resp. polynomial branched) if and only
if all the maps Fm have an affine Crespopolynomial) branch Fm.'Ym : e;.. -+
em+! such that Fm.'Ym (e;..) = em+1• For renormalisations of unimodal maps
and circle maps the respective Markov families are affine, or polynomial to
increase the velocity of convergence. In both cases the limit Markov families
will be affine branched.

Lemma 31 If F!. is an affine branched Markov family then it is completely
determined by the scaling functions Sqm(.t), for all m E Z.

Corollary 8 The Markov family F!. is the unique element of its (1 + a)-
equivalence class of limit affine branched Markov families.

4.6 Applications.

It is conjectured a horseshoe picture for several dynamical systems. The
points of the horseshoe are maps or families of maps and the operation is
the renormalisation. Some examples of dynamical systems with these fea-
tures are the diffeomorphisms of the circle, critical circle maps and quadratic
foldings. The horseshoe picture is stated in Lanford [11] for quadratic circle
maps and in Rand [26]for quadratic foldings. This picture gives us a better
understanding of the renormalisation operator in these maps and their re-
spective universal properties as mentioned in chapter 1. In this chapter, the
tool that we use for the study of this phenomena are Markov families with
(1 + a)-determination property associated to these dynamical systems. We
prove convergence to a M-limit set consisting of two-sided Markov families.
\Ve define a bi-Lipschitz map:F: n -+ M, from a symbolic set n to M. The
set n is a subset of the set 'H = {O,... ,N}z, where N E N. Let (1 : 1t -+ 'H
be the shift operation defined by u( <p) = TJ, where TJj = <Pi+h for all i E Z. A
horseshoe picture is clear in the set 1t with the shift operation. The set n is
the w-limit set of an orbit in 'H. Thebi-Lipschitz map :F has the important
property to carry the dynamics from the symbolic set n to the M-limit set
of two sided Markov families.
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4.6.1 Diffeomorphism of the circle.

Let f be a diffeomorphism of the circle with constant rotation number and
F the associated Markov family to f as defined in chapter 1. Suppose that
F is (1 + a)-determined. The symbolic sequence of the Markov family F is
given by the continued fraction expansion of the rotation number P = PI ...
of f. Define O'm(p) = ?/J, where ?/Ji = pm+i, for all i ~-m and ?/Ji is arbitrary
for i < -m. Endow the set 'H with the product of the discrete topologies.
Define the symbolic set 0, as the set of 0 E 1l such that there is a converging
subsequence of (O'm(P))m>O. By corollary 6, there is a bi-Lipschitz map F:
OJ -+ MJ, where MJ is the limit set of f consisting of two-sided Markov
families. By the bi-Lipschitz map F, the symbolic dynamics in OJ are carried
on to the limit set MJ. The Markov family F converges to MJ as proven
in corollary 5. Stark [21) proves that if f is a CH' diffeomorphism of the
circle whose rotation number is of constant type then the renormalisation of
f converges in the C2 norm to the line of the rotations of the circle. By this
fact and by theorem 22, the set M, just depends upon the rotation number
of f. Moreover, as the map F is bi-Lipschitz then the symbolic set 0, just
depends upon the rotation number of f.

4.6.2 Critical circle maps;

Let f be a critical circle map and F the associated Markov family with (1+0)-
determination as defined in chapter 1. The symbolic sequence of the Markov
family F is given by the continued fraction expansion of the rotation number
P = PI • •.• In the same way, as in the section on diffeomorphisms of the circle,
we define the symbolic set 0, and by corollary- 6., there is a bi-Lipschitz map
F: 0, -+ M" where M, is the limit set of f consisting of two-sided Markov
families. By the hi-Lipschitz map:F, the symbolic dynamics on OJ are carried
on to the limit set MI. The Markov family F converges to A-t, in the sense
of corollary 5. Let us assume that two Markov families F and G with the
same rotation number converge exponentially fast to each other in a CHc
norm. This assumption, by Jonker [la), is verified for critical circle maps with
periodic rotation number, in some open neighbourhood of analytic functions
of xlxl', and e > 0 small. By the assumption above and hy theorem 22 the
set MJ just depends upon the rotation number of f. Moreover, as the map
F is bi-Lipschtiz then the symbolic set OJ just depends upon the rotation
number of f.
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4.6.3 Quadratic foldings.

There is a similar application for quadratic foldings of the interval, when
we use sequences of different renormalisation operators. The renormalisation
operator Rn : 'Dn --+ 'D is defined by Rn(J) = a-I j" 0 a, where a = j"(O)
and the set 'D" consists of all quadratic folding maps such that Rn (J) is a
quadratic folding map. Let j be an infinitely renormalisable quadratic folding
with renormalisation sequence 11 = ata2 .... The symbolic sequence of the
associated Markov family F is completely determined by the renormalisation
sequence g_. Suppose that F is (1 + a)-determined. Define um(g_) = Q, where
bi = am+i, for all i > -m and b; is arbitrary, for all i < -m. Define
the symbolic set OJ as the set of 0 E 1-{. such that there is a converging
subsequence (Um(g_))m>O. By corollary 6, there is a bi-Lipschitz map F :
OJ --+ M,. By the bi-Lipschitz map F, the symbolic dynamics on 0, are
carried on to the limit set M,. The Markov family F converges to MJ as
proven in corollary 5. We suppose that two Markov families F and G with
the same renormalisation sequence converge exponentially fast to each other
in a C1+~norm. In this case, by theorem 22, the set MJ just depends on the
renormalisation sequence of j. Moreover, as the map F is bi-Lipschtiz then
the symbolic set 0, just depends on the renormalisation sequence of j. Let
j have renormalisation sequence 22 .... Then, by Sullivan [30], the set M,
just depends on the renormalisation sequence of j.

4.7 Proofs.

Proof of proposition 4. Let T(j) = Um~ITJ!~be the tree such that T!j)
is the set of m-cylinders and m-gaps in the domain of the map Fj and such
that if I E T!j) then m(I) is the cylinder such that I C m(I).

Consider the finite tree T~j)= Ut <m<nT!j). If j ,!!, k then the embeddings
t~j) and t~k) have the same topological structure. We can define the map
Lm : I(T(j)) --+ I(T(k») as in the section 2.4 of chapter 1, for m = 0, ... , n
where I(T(j)) = Ii and I(T(k») = r.

Let j ~k and u = min {j, n}. Then by definition 2, the map f~of lemma
6 of chapter 1 is fc(m) = g(m + u). Then, by lemma 6 of chapter 1,

IILm- Lm-lllclt~ < O(fc(m -1)) = O(g(u +m-I))

for m < n. Moreover, by condition (ii) of definition 2

IILo - idllclt. ~ O(g( u)).
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Therefore,
IILn - idllc1+C < O(g(u»

where the constants of the inequality only depend upon c. Define h = Ln.
Moreover, by a similarly construction we obtain h'. •

Notation. We introduce the following notation, with respect to the maps
F!..

(i) For all t E t~and all n > 1, define

(ii) For all s, tEE; and all n > 1 such that sand t are in contact,
define

(iii) For all tEE; and all n > 1, define

AT = E ZIt' ICt, ,.

{t'Et~:m(t')=m(t)}

Proof of lemma 21. Let jj, nj be limit sequences and define Uj= minUj, nil.
For all t E f;~and n > 0, let i be large enough, such that ni ~ n. By condi-
tion (ii) of (1 + a)-scale determination, for all q ~ p > 0,

Uj.,(t) E Ujp(t)(1 ± g(uIJ + m».

Therefore, the sequence (Uj;(t»i>O converges and by definition, the limit is
ut(t). Moreover,

U,(t)
~( ) El ± g(Ui + m).Uj; t

Let Ii,mi be another limit sequences and define Vi= min{/i' mi,ji, nil. For
all t E t~and n ~ 0, let i be large enough, such that mi > n. By condition
(ii) of (I + a)-scale determination, for all q > p > 0,

Therefore, the sequence (Ut;{t»i>O converges to the same limit u.(t). •
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Proof of lemma 28. Let i.;ni be limit sequences and define Ui = min{ji, nil.
For alii E 1;1. and n ~ 0, let i be large enough, such that nj > n. By condition
(ii) of (1 + a)-scale determination, for all q > P > 0,

n

IC~;nI - ICi; III Uj;(tl/)
1=1

n

E IC!I(l ±g(Ui)) II (ul.(1I1)(1 ±g(Uj + 1))). C ICflnl(l ±Cg(Ui)).
1=1

For some constant C> O. Therefore, limi_oo IC,,;nl= ICH,"- Moreover,

ICfjnI (
IC); lEI ±g Ui),.

lin
(1)

Proof of proposition 5. We prove that FL = (Fqm(!l)meZ has (1+a)-scale
property and (1 + a)-contact property. By corollary 9, this proves that F!.
has a CHa- smooth extension. We use the fact that the Markov family F
has (1 + a)-scale property and (1 + a)-contact property. We will verify the
(1 + a)-scale property and (1 + a)-contact property for all t E E~and all
n ~ O. In the same way, they are verified for all t E t~m(,!), all n ~ 0 and all
m E Z. By definition 24 and by lemma 27 and 28, Uqm(.!) : Un>oE~m(,!) -+ R
is the scaling function corresponding to Fqm(,!).

Let us prove that the Markov family F!. has (1 + a)-scale property.

Let ii, nj be limit sequences and Uj = min {ij, f'l.i}. For all n > 0 and all
t E E~,let i be large enough, such that ni > n. By lemma 27, u,l(t) E
Uj;(t)(l ±g(Uj + n -1)). Therefore,

a..(t) Ui;(t) ( '.. ('-
Uq(!l(J(t)) E Ujj(J(t)) 1 ± cg Ui+ n - 1))

for some constant c. By the equation above and since the Markov family F
has (1 + a)-scale property,

'I u.(t) I <
IIi = 1- Uq(,!)(J(t)) I Ujj(t) I Uj;(t) (

1 - Uj;(J(t)) + CUi;(J(t))g Uj + n - 1)

< Vt; + ell + v,; Ig(Uj + n - 1) =::; cg(n) (2)

where c is some constant.

For all t, t' E 1;~ adjacent but not in contact, by condition (ii) of lemma
28 and by the construction of the sets E~t' and Et.;", then

(3)
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for some constant c. By equation (3), for 8 = e or 8 = 1+ e

where the constant c depends only upon e.

By equations (2) and (4) and since the Markov family F has (1 + a)-scale
property, for i large enough,

lIflEtt,l-e < (lit + cg( Uj» IEf.it,j-e (1+ cg( Uj»
s lIdEf.ic,l-e + cIE!.ic,l-eg(ui) s cg(n)

where the constant c depends only upon e.

For all t, t' E E~ adjacent but not in contact, with met) = met'), define
B} = {r E E~: mer) = met)} which is equal to Bti = {r E E~: mer) =
met)}. By equations (1), (2) and (4)

lEt., 1-(1+<)At - lEt., r(1+<) • (~V;-ICfl)
< IE{,i,,j-(He)(l + cIE!,i,,j-(l+e)g(ui»

. (~(lIr(l + cg(ui»IC!;I(l + C9(Ui»))
8:'

< IE!,it,I-(He)At + Clg( Ui)

where the constant Cl depends only upon the cardinal of B} and e. Moreover,
as the Markov family F has (1 + a)-scale property, for i large enough

IE!. I-(He) A!. < lEi; 1-(1+t)A + c IEit 1-(1+e)g(u·) < cg(n)t,t' t - '," t 1 t,t' I _ ,

where the constant c depends only upon e.

Therefore, the Markov family F!. has (1+ a)-scale property. Let us prove
that the Markov family F!. has (1 + a)-contact property.

For all contact words i, t' E E~, by equation (1) and by the construction
f h C• d ci:o t e sets ;:t' an t,'t"

for some constant c. Therefore,

(5)
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for some constant c which only depends upon €.

By equations (1) and (5)

IC!.,I-c ICfIIC~[~)1Ictt,l-cvtt'::; ttt IC!.IICC7(vl
t' J(t)

ICijllCij I
< ICf.;t,j-c.(1 + eg(uj))' IC~jlld~t')1. (1 + eg(uj))

t' J(t)

< Ictit/l-cvt
t
t'(l + eg( Ui»

where the constant c depends only upon €.

Moreover, as the Markov family F has (1+a)-contact property, for i large
enough

where the constant c depends only upon €.

Therefore, the Markov family F! has (1 + a)-contact property. I

Proof of theorem 22. Take two sequences i..Ii -+ 00 when i -+ 00 with
the following properties. Denote Uj = min{jj, Ii} and u = Uo and suppose
that Ui+1 > Uj, io = i and 10 = 1. Moreover, Sii'" Sjj+lj-t = Sn ••• Sn+lj-t.
As in proposition 4, define the map hi; : I(T(;;) -+ I(T(j;+tl) and the map
h' r, : I(TUj+1» -+ I(TUj+d1». Define the map H : I(TU» -+ I(T(C7ft(!l) and
), +1

the map lI' : I(TU+1» -+ I(T(l7ft (!l) by

H = Jim hj; 0 ••• 0 hjo and H' = Iim h)'r , 0 ••• 0 h)'.. ,
'-00 '-00 ' 0'_

Take e' and e", such that 0 < e < e' < elf < a. The two sets of CHell
functions defined on I(T(i) and on I(T(j+l», with the respect to the CH'"
norm are Banach spaces. Therefore, by proposition 4, the maps Hand H'
are well defined and

IIH -idllc1+cll ::; e~/(g~lI(u)y"-c' and IIH' -idllc1+.' ::; ce,(ge,,(u))'''-e'. (6)

Denote 9 = (g,1I y"-". Define the map F4 : I(T(l7ft(!l» -+ I(T(C7ft+1(!l» by
Fa = H' FjH-t• Therefore, Fuft(!) = Fa in the set J<;"(v. By equation (6),
IIFollcl+., ::; Cc" Define CrW = UtEE;ft(,!)CrW• We prove in two parts that,



120

In the first part, we prove that

liFo - FjIlCI+C(I""Cil) < Ce,(g(U)y'-e.

In the second part, we prove that

IlFcr"W - FOllcltc(c;"Cil) :5 Cc'(fcr" (!J(1))c'-e •

Part one. liFo - Fjllct+C(/""Cil) :5 ce,(g(u))e'-c.

By definition, DFo = DH'(FjIl-l)DFj(Il-l)DIl-l. By equation (6),
IDIl-il < cc,g(u) and IDH' -11 < ce,g(u). Therefore,

IDFo I _ IDH' 0 (FjH-l)DFj 0 Il-l DH-l
1DFj DFj

DF.· 0 H-l
< I bp,. 111 + ce,g(u)I.

J

By hypotheses liD Fj IIc.' < Cc' and IDFj I is bounded from zero. Thus,

DFj 0 H-l c'
I DF. I :5 1± ce,(g(u» .

J

Therefore,
(7)

For all x E I:"(v and all a E Sn, define e as one of the extreme points of
the interval I:"(v. As the Markov family F is adapted, then Fa(e) = Fj(e).
Therefore, by equation (7) _ ._

IFO(x) - }j(x)1 = 11Z:(DFO(y) - D}j(y))dyl < ce,(g(u)Y'·

Define the map B : p,"W -+ Icr"t1(v by B = DFa - DFj• For all x, y E
Icr"(!l, if Ix - yl :5 g(u) then

IB(x) - B(y)1 <
Ix -ylc

IDFa(~) - DFa(y)1 + ID}j(x) - DFj(y)1
Ix _ylc

< cc,lx - ylc'-e < cc,(g(u)Y'-c.

If Ix - yl > g(u), then by equation (7)

IB(x) - B(y)1 < IB(x)1 + IB(y)1 < cc,(g(u)(-c.
Ix - ylc - Ix - ylC -
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Therefore, Ilpa - P; IIC1+'(I""(L» < ccl(g( U))e'-c. Similarly, we do the same
calculations in the set lk with the map p/) = 11'-1 F(1"(!Jll. We obtain, IIF/) -
F(1"{!JllcH'{IIo) s ce,(g(u)Y'-c.

Part two. IIFcrft(!J - Fa IIcl+.(C,""(~) < cc,(f(1"(v(l) )C'-c.

The map Fa and Fqn{v coincide in the extreme points of the cylinders
e:"(ll, for all t E Er"{ll. By the medium value theorem, there is x', z" E
e:"{ll, such that DFv"(ll(x') = DFa(x"). Therefore, for all x E erell,

IDF(1n(!J(x) - DFa(x)1
< IDF(1ft(~)(x) - DFvft(v(x') I+ IDFv"(ll(x') - DFa(x")I

+IDFa(x") - DFa(x)1
< Cc,lx - x'( + cc1lx" - x(
:5 ce/Ie:"(v ( < Ce' (f(1ft(v (1)y',

(1"(v (1"(VFor all x E et and all t E E, , define e as one of the extreme points of
the interval er». Thus, F(1ft(L)(e) = Fa(e) and

Define the map E : e(1"(v -+ ccr"+t(v by E = DFq"(L) - DFa. For all
X,y E cr(ll, if Ix - yl < fcr"(L)(I) then

< IDF(1"(v(x) - DF(1"(v(y)l + IDFa(x) - DFa(y)1
Ix _yle

< cellx - yIC'-C :5 cC1(f(1:(;j"(l))C'-I:.

If Ix - yl > fcrn{ll(l), then.

IE(x) - E(y)1
Ix _yle

IE(x) - E(y)1 < IE(x)1 + IE(y)1 < c'( I" (1))el-l:.
I Ie - I Ie - C J(1 (vx-y x-y

Therefore, IIF(1"(v - FallcH.(c;ft(~) ~ cc,(f(1"(v(l))C'-c. Similarly, we do the

same calculations with the map F/) = H,-l F""(llH in Cf = UteE~Ct. We
obtain IIF; - FbllcH'(ct) :5 cl:,(J(1"{~)(l))c'-e.

Therefore,
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Proof of corollary 5. By theorem 22 and condition U,

de{Fj+m, Fum+n{v) ~ cerc,um+n(!J(j +m, 1-m) < cev;{I-m),

for all m = 0, ... , 1 - 1. For m ~ 1,

Therefore,
1-1 00

d (FU) tU») < C ~ vmv2(/-m) + ~ vm < C vi.e , _ e L...J e e L...J e - Ii: e:
m=O m=1

Proof oflemma 29. For all 0 < n < m and aU7',g","f'E Al.' by (I +a)-scale
property of the Markov family F,

0'CT-m(!l(Tim)
0'CT-n(!l(Tin)

_ if O'CT-Ci+1)(!l{TI{i.+1))
i=n O'CT-i{!l{Tlz)
m+l

E II(1± VT!{i+l»)
i=n

m+l
C 1± E cg{i + 1) c 1± cg{n + 1).

i=n

Therefore, sL(T) is well defined and

(8)

Similarly, S~(gr,'f') is well defined and
'..._

(9)

For all T,.,p E Al.' by equation (8) if Tin = .,pIn and rn+! f:. .,pn+l then
sL{T) - siif) E O'rn(!l{l"ln}(l ± cg(n + 1))

-O':-n(!l(.,pln)(l ± cg(n + 1))
C ±cg(n+l}Ccd(r,.,p}.

Similarly, by equation (9), for all gr,T', ~:; E A!., such that Tin = .,pIn or
-,-I

Tin = .,p In,
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Moreover, for all grT', 1/J E A,, -

Proof of lemma 30. Let us prove condition (i). By the definition of (1+0)-
scale conjugacy, for all .".EA!.,

O"F,u-n(!l(T'ln) E 1± g(n).
O"G,u-nw(rln)

Therefore, by equation (8) and (9) sF,!.(r) = sG,!(r). In the same way,
SF,um(!)(T') = SG,um(~(T'), for all m E Z.

Condition (ii) is proved in theorem 3 of CH Self-similarities and invariants
in Markov partitions. •

Proof of corollary 6. Let ~,z:. E O. If

S-(n-l) ••• So·· . Sm-l = r -(n-l) ••• ro ... rm-},

S-n =f r -n and Sm =F rm then by definition of ~ and z:. there is j such that
Sj+1c = S-(n-l)+Ic = r -(n-l)+k for all k = 0, ... ,m + n - 2 and j > m + n - 2.
By theorem 22 and condition U,

dc(Fu-c"-l)+"(~' F(J-(n-l)+"(r)

s de(F(J-cn-l)+"(~, Fj+lc) + de (Fj+lc, F(J-Cn-l)+kW)
< C l/2(m+n-2-k)_ c e •

Therefore, by definition of dM,c and dn"
.~ ._

m-I
dM,e(F!., Fr.) < Cc( L: IIrilll;(m-l-i) + II: + II;'

i=-(n-l)

< Ce(lI: + II;') < c,do,,(~,z:.).

On the other hand, by definition of dM,,, dn" and d"

dnA:!, z) ~ Cc (l/: + II;') ..
< c,(l/:d,(F(Jn(v' F(Jn(r) + lI;'d,(Fum(v' F(Jm(r))

< c,dM,,(F!., Fr.) .•

Proof of corollary 7. Define the function 9 : Z>o -+ R as in (1 + a)-scale
determination and (1 + a)-contact determination of the Markov family F.
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By theorem 22 and as the Markov families F and pI. have the same sequence
of indexes, we obtain corollary 7. I

Proof of lemma 31. As pI. is an affine Markov family then by definition
of the scaling function, for all t E t~m(!l,

Proof of corollary 8. By condition (i) of lemma 30 and by lemma 31. •

4.8 Scale and contact properties.

Let F be a topological Markov family (Fm)mER: where n = Z or R: = Z>o.
We introduce the following notation. -

(i) For all t E t::" all n > 1 and all mEn define

(ii) For all s, tEE::', all n > 1 and all mEn such that sand tare
in contact define

"__ ._
(iii) For all tEE::', all n > 1 and all mEn define

Br' = it' E E::': m(t') = m(t)} and At = Ev",C;!,I·
B;"

Definition 26 A topological Markov family F has the (l+a)-scale property,
if for all e such that 0 < e < a < 1 and all mEn there exist a function
9 = gc : Z~o -+ R with the following"properties:

(i) E~=q9 < O(g(q)), for all q > 1;

(ii) II:IIII.i(~)ll and IC:I/IC.1(~)ll are bounded from zero and in-
finity for all a E ti.
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(iii) for all t E t: and all n > 1, lit < g(n);

(iv) for all t' E ~:' adjacent to t but not in contact with it, if
met') = met), then

AtIE~,,-(HC) + IItIE~d-C ~ g(n),

while if met') =f met), then

IIdE~"-' s g(n).

Definition 27 A topological Markov family F has the (1+a)-contact prop-
erty if for all e such that 0 < e < a < 1 and all mEn there exist a function
9 = g, : Z~o -+ R with the following properties:

(i) Ln>lg(n) < 00;

(ii) for all t, t' EE: and all n > 1 such that t and t' are in contact,

Definition 28 A topological Markov family (Fm)men has the (1 + a)-pro-
perty if and only if it has the (1+ a)-scale property and (1+ a)-contact
property.

A CI+cr- Markov family G is weakly bounded, if for all 0 < e < a, there is
a constant b > 0 such that,

for all mEn.

Corollary 9 A topological Markov familyF with the (1 + a)-property de-
fines a CI+cr- weakly bounded Markov family G such that, Fm = Gm in
J(m = J(m(Fm)' for all mEn.

Proof of corollary 9. By the (1 + a)-property and by theorem 1 of
chapter 1, there are CI+cr- maps G, : Cr -+ C'J(~l, for all t E Er such that
Gt = Fm in I<f'. Define Gm = Gt in Cr·
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Corollary 10 Let F be a weakly bounded C1+o- Markov family. Then it
has the (1 + ,Bd-property, if for all e such that 0 < e < PIt there exists P
such that 0 < e < P < ,B1 ~ a and for all mEn there exist functions
9 = gp,e : Z~o --+ R with the following properties:

(i) E~=qg(n) < O(g(q)), for all q E Z~o;

(ii) for all t E E:a and all n > 1, ler'l.e < g(n + 1);

(iii) for all non-contact adjacent words i; t' E ~:a, if m(t) = m(t')
then

IC"'I1+p
IE~dl+C< g(n),

while if m(t) =f m(t') then

(iv) for all contact words t, t' E E:a, IDn,jP-c < g(n).

Proof of 10. By theorem 2 of chapter 1.

More generally, we can consider families of functions g", for each mEn,
in the definitions 26 and 27 and in corollary 10. In this case we lose the
weakly bounded condition in the Markov family F in corollary 9 and 10.

"_ .....

4.9 Scale and contact equivalence.

Let F and G be GHo Markov families (Fm)me'R and (Gm)mE'R where R: = Z
or n = Z~o. Let F and G be topologically conjugated. We introduce the
following notation.

;

(i) For all t E E~'"and t E t~"', all n > 1 and all mEn define

_ 11 O"F",(t) I'It - - O"a",(t) •
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(ii) For all t, s E E~m and t, s E E~'", all n > 1 and all mER such
that t and s are in contact define

(iii) For all t E E~m, all n > 1 and all m E 'R. define

At=

Definition 29 The Markov families F and G are (1 + a)-scale equivalent,
if for all e such that 0 < e < a < 1 and all m E 'R. there exist functions
9 = ge : Z~o -+ R with the following properties:

(i) L~=q9 < O(g(q», for all q> 1;

(ii) IC!'m1/IC~mI and II!'" I/II~'" I are bounded from zero and in-
finity, for all a E t:.
(iii) For all t E t~mand all n > I, then 1]t :5 g(n);

(iv) for all t' E E~m adjacent to t but not in contact with it, if
met') = met), then

AdE~71-(1+~) + '7dE:'I~I" < g(n),

while if met') ":f met), then
"_ -

Definition 30 The Markov families F and G are (1+ a)-contact equivalent
if for all e such that 0 :5 e < Q < 1 and all m E 'R. there exist functions
9 = ge : Z>o -+ R with the following properties:

(i) Ln>1 g(n) < 00;

(ii) For all t, t' E E~m and all n > 1 such that t and t' are in
contact,
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Definition 31 The Markov families F and G are (1 + a)-equivalent if and
only if they are (1 + a )-scale equivalent and (1 + a)-contact equivalent.

Let F and G be Markov families. They are Ct+cr- conjugated, if for all
o < e < a, hm is a ct+e diffeomorphism and Fmhm = hm+1Gm in KGm, for
all m E 'R. Moreover, the conjugacy (hm)'R. is bounded, if for all 0 < e < a,
there is a constant be > 0 such that "hm "CH' < be.

Corollary 11 Let F and G be Markov families. If they are (l+a)-equivalent
then they are CHcr- bounded conjugated.

Proof of corollary 11. By the definition of (1 + a)-equivalence and by
theorem 1 of chapter 1.

Corollary 12 Let F and G be Markov families Ct+cr- conjugated. Then
they are (1 +Pl)-equivalent, if for all e such that 0 < e < /311 there exists /3
such that 0 < e < /3 < /31 < a and there exist a function 9 = g/3,e : Z~o -+ R
with the following properties:

(i) E~=qg(n) < O(g(q)), for all q E Z~o;

(ii) for all t e t:m and all n > 1, ICrm 1/3 < g(n + 1);

(iii) for all non-contact adjacent words t, t' e E:m, if m(t) = m(t')
then

IcrmlH/J .
IEC~IHe < genT,

while if m(t) =f m(t') then

IC[mll3
IEft~ le < g(n),

(iv) for all contact words t,t'·e E~m, IC~~I/J-c < g(n).

Proof of corollary 12. By theorem 2 of chapter 1.

More generally, we can consider families of functions gm for each m e 'R,
in the definitions 29 and 30 and in corollary 12. In this case we lose the
bounded condition in the conjugacy h in corollary 11 and 12.



Chapter 5

Two-sided Markov Families

5.1 C1+ Self-similarities and invariants in
Markov Partitions.

5.1.1 Notation.

Let F be a eH two-sided bounded Markov family, i.e. there is small e > 0
such that F is a CHe bounded Markov family, For all i E Z, the scaling tree
O'i = O'F; : UI~ltf -+ R is defined by

, _ len
O'.(t) - lei I'

met)

The Markov family F has bounded geomeii'y'if there is 5 > 0 such that
O'i(t) > 5, for all t E E~, all n EN and all i E Z.

5.1.2 Scale and contact properties.

Definition 32 (i) The Markov family F has the scale property if and only
if there is 0 < v < 1 and c > 0, such that for all word t E t~,all m E Z and
all nE N

In O'm{t) 1 n
- cu < O'm+J(J(t)) < + CII ,

129
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(ii) The Markov family F has contact property if and only if there is 0 < v < 1
and c > 0 such that for all contact words t, s E E~, all m E Z and all n E N

In IC;n I ICic~ll n
- et/ < IcmHI ICm I < 1+ cu •

J(t) •

Theorem 23 Let F be a topological Markov family with bounded geometry.
F has scale property and contact property if and only if there is a CH
bounded Markov family G such that Fm = Gm in Km = Km(Fm).

5.1.3 c1+ conj ugacies between Markov families.

Let F and G be two CH bounded Markov families and topologically con-
jugated. Therefore, t~ = E;m = t~m. A CH conjugacy h = (hm)mez
between F and G is bounded if there is small c > 0 and some constant b > 0,
such that for all m E Z,

Definition 33 (i) The Markov families F and G are scale equivalent if and
only if there is 0 < 1/ < 1 and c > 0, such that for all t E E~,all m E Z and
all nE N

(ii) The Markov families F and G are contact equivalent if and only if there
is 0 < v < 1 and c > 0 such that for all contact words t, s E E~, all m E Z
and all nE N

Theorem 24 Let F and G be two C1+ bounded Markov families topolog-
ically conjugated. They are scale equivalent and contact equivalent if and
only if there is a C1+ bounded conjugacy between them.

5.1.4 The scaling family s of a two-sided Markov fam-
ily F.

Definition 34 (i) tU = ... eleO is a backward path of the Markov map Fm
if and only if w la = Cn-l ••• eo E E~-". The dual EZ' of Em is the set of all
backward paths w of the Markov map Fm.
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(ii) The scaling function Sm : E:;' -+ R is defined by

Denote by S the scaling family s = (sm)meZ.

Theorem 25 Let F and G be two e1+ bounded Markov families topologi-
caly conjugated. They have the same scaling family s if and only if they are
e1+ bounded conjugated.

Corollary 13 Let F and G be two eHS bounded Markov families topolog-
ically conjugated. They have the same scaling family s if and only if they
are eHS bounded conjugated.

5.1.5 Existence and exponential convergence to re-
normalisation limit Markov families.

Definition 35 (i) For all m E Z and Wm E E:;', let B": and B":" be
intervals with the following properties. Their length is bounded away from
zero and infinity. The interval Bm,O is equal to cm. B": is the limit of Bm,,,,,
when n tends to infinity. In the sense that the extreme points of the interval
Bm,,, converge exponentially fast to the extreme points of B'",

(ii) For all Wm E E:;', denote mm In by wm,,, and e:;: by C":": Define the
map Am,,, : Bm,,, -+ cm,,, as the affine map that sends Bm,,, onto C":", The
map Fm,,, : cm,,, -+ cm is defined by Fm,,, = Fm-1 0 ••• 0 Fm-".

(iii) For all m E Z and Wm E E:;', define the ';'fh-~normalisation Markov map
R'" = R~ F: Bm,,, --+ Bm+l,,, by

m Wrn

Let R" = (R:!a)mez. By construction, the Markov families F and R'" are
.. .. R;:. R" m " R"topologically conjugated. For all t E Ej = E, ,denote et m by Bt ' ,J( m

R" b Qm"by Qm,n and Kt m Ye'.. ;

For all i E Z, define the scaling tree 1]i,,, = (J'R~ : UI~lEf --+ R by

IB:,nl
1]i,n(t) = IB"n I'

met)

By definition, 1]i,,,,(t) = (J'i-n(Wi,,,t).
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Lemma 32 (i) The scaling tree "7m : U/~d~i -+ R is well defined by

1lm(t) = lim "7m "(t).n.....oo •

(ii) For all t E ti, there exist d > 0 and 0 < II< 1 such that

1lm(t) E 1± dvlv".
77m."(t)

Lemma 33 For all t E ti, the sequence of intervals B;",n converge to an
interval Br'.

For all t E ~m, define Qr = n/~oB.m, Qm = U!eI:mQr and Q = (Qm)meZ.
Define the renormalisation limit map R~ = RWm : Qm -+ Qm+! by R~(Qr') =
Q7(t1• Let R~ = (R~)mez. -

Lemma 34 The scaling function "7i : U/>lEf -+ R is equal to the scaling
function (fR'i'O : U/>ltf -+ R, defined by -. -

Theorem 26 The renormalisation limit map R~ is a C1+ bounded Markov
family. The Markov family R~ is C1+ bounded conjugated to Rn by the
conjugacy hn = (hm•n : B": -+ Bm'")meZ, Moreover, there is 0 < v < 1 and
a. constant c such that "_ -

Corollary 14 The sets Qm,,, are C1+ self-similar in the sense that there is a
C1+ diffeomorphism hm•n from Qm into Qm.n which converges exponentially
fast to the identity map in the C1+ norm when n tends to infinity.

Definition 36 A CH class of Mark~v families is the set of all C1+ bounded
Markov families (Fm)mez, C1+ bounded conjugated betwee~ them.

Corollary 15 The renormalisation limit Markov families (R~)mez are com-
plete invariants of their C1+ class. We assume that the intervals B": are the
same independent of the element of the C1+ class.
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5.1.6 Constant Markov families.

A constant Markov family G is a Markov family (Gm)meZ such that Gm = G
for all m E Z. Then, E = Em.

Corollary 16 Let F be a C1+ bounded Markov family. F is C1+ bounded
conjugated to a C1+ constant Markov family if and only if there is one renor-
malisation limit constant Markov family (~mF)mez, The renormalisation
limit Markov families (R~mF)mez are constant Markov families, if Wp = Wq

and EFp = EF, for all p, q E Z.

Let F be a C1+ constant Markov family. Let tEE be such that there is
wEE. with the property that fink = wink' Define the n~h renormalisation
constant Markov family at t by KJ.1r = R~", for all k ~ O. The C1+ conju-
gacy family (hn ..h>o between ~ and R~1r converge exponentially fast to the
identity in E with-respect to the C1+ norm, when k tends to infinity.

For all tEE, let wEE. and (nkh~o be a sequence such that link = wink'
Define the renormalisation limit set at t: as the set of all renormalisation limit
constant Markov families R~.

For all p-periodic words t: =tl ... tptl'" E E there is w, E E. such that
llpm + I = wdpm + I, for all m > 0 and I = 0, ... ,p - 1. Therefore, the
renormalisation limit set at 1has a maximum of p different elements:

{R~ : I = 0, ... ,p - I} .

._ -
5.1.7 Affine Markov families.

An affine Markov family (Gm)meZ is a Markov family such that Gm is a union
of affine maps, for all m E Z.

Corollary 11 Let F be a C1+ bounded Markov family and G a C1+ bounded
affine Markov family. Assume that Cam = Bam = BF",. Then, F and G
are C1+ bounded conjugated, if and only if one (all) renormalisation limit
Markov families (R~mF)mez are equal to the Markov family G.

This implies that two different affine constant Markov families are not C1+
conj ugated.



134

II the constant Markov family F is CH bounded conjugated to an affine
Markov family G then the renormalisation limit set, for all t E EF is equal
to {G}.

5.1.8 Proof of theorem 23 and 24.

Proof of theorem 23. By a simple application of corollary of theorem 3 in
chapter 1, there are CH maps G'[' : Ct' -+ CJ(~l, for all t E El' such that
G'[' = Fm in ](r" = J(t'(Fm). Define Gm = G'[' in Ct' = C;n(Fm). •
Proof of theorem 24. By a simple application of corollary of theorem 3 in
chapter 1. I

5.1.9 Proof of theorem 25 and 26.

Proof of lemma 32. By definition, 77m,n(t) = O'm-n(wm,nt). By theorem 23,
the Markov family F has seale property. Therefore, for all words t E Er and
1>1

O'm-n-l(Wm n+1t) 1± / n--~-.:..' ..:.,-;-.;..E CIIII •
O'm-n(Wm,nt)

Thus, for all p, q > AI and AI > 0

O'm-n-p(Wm,n+pt) E 1± dll/IIM•

O'm-n-q(wm,n+qt)

By bounded geometry, there is 6 such that. O'~_-n-,( wm,n+,t) > 6 > 0 and
by equation (1), the sequence (O'm-n(Wm,nt»n~o converges exponentially fast.
Therefore the limit 77m(t) is well defined, which verifies condition (i). More-
over, condition (ii) is verified by equation 1 and condition (i). I

Proof of lemma 33. For all! E Em, by lemma 32

(1)

I I

IBwl = JL~IB1itl = Ji~ IEm,nl II '1m,nCtli)= IBml II 11m (tli).
,i=1 i=l

Proof of lemma 34. By lemma. 33 and lemma 32.
•
I

Lemma 35 Let F be a. topological Markov family with bounded geometry.
Then F is a. C1+ bounded Markov family if and only if for all Wm E E~ and
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all m E Z - or equivalently there exist w~, ... ,w!;: such that C~I~ U ... U
C~:ll = UcEI:m-1 C~-l - the following conditions are verified.

Wm 1 1

(i) For all t E tr, there exist d » 0 and 0 < v < 1,

'lm(t) E 1± dv'vn•
'lm.n(t )

(ii) For all contact words t, sEEr, there exist d > 0 and 0 < v < 1

Proof of lemma 35. \Ve will prove that if F is a CH bounded Markov
family then the two conditions of lemma 35 are verified.

Condition (i) is proved by lemma 32.

Let us prove condition (ii). By lemma 33, for all contact words t, sEEr,

IBm.n+PI IB;n I
(IBr,n+PI )p:!o converges to IBr I'

For all t E Er, denote C::;:t by c;",n. As the Markov family F has contact
property, for all contact words t, sEEr,

IC;,,·nI Ic;",n+I I , n
IC;",n+1I Ic~,n lEI ± et/ v •

Therefore, ..... -
Ic;",n Ilc_;n,n+I Ilcm,n Ilcm,n+11

- ICm,n IICm,n+1llc;n,n Ilc;",n+11
IC;n·nI IC;',n+1I , n

- IC;",n+1I Ic;n,n lEI ± cu v .

Thus, for all p, q > AI and Al ~ 1

IB;",n I IB;"n+11
IB;n,n+11 IB;",nl

IBr,n+91IB;,·n+PI , M

IBr.n+PIIB:.n+'l1 E 1± dv v .

This proves condition (ii).

Let us prove the other implication.
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By condition (i), for all words t E Er,
O"m-l(Wm,lt) 7]m,l(t) "1m(t)-O"m(t) 7]m(t) 'lm,o(t)

E (1± d,i+1)(1 ± dll') c 1± ell',

for some constant e > o. Thus, the Markov family F has scale property.

By condition (ii), for all contact words t, sEEr,

Icm
-
1 I lemlWm,1' ,

leml ICm-l It Wm,1'

IB;"·11 IB;" I IB;" I IB;"'OI
IBr I IB:·11IB;n'O liB: I

E (1 ± dll'+1)(1 ± dll') C 1± ell',

Thus, the Markov family F has contact property.

Therefore, by theorem 23, F is a CH bounded Markov family. •

Lemma 36 The family of maps Rn. and ROOare CH bounded Markov fam-
ilies.

Proof of lemma 36. Let us prove that R" and Roo have scale property. By
definition of scale property of the Markov family F and by condition (i) of
lemma 35, for all t E~r,

'lm(t) 7]m(t) O"m(t) 7]m+l,O(J(t»
'lm.O(t) O"m+1(J(t» "1m+1(J(t»

E (1± dll')(l ± ClI'-l )(1 ± dll'-l) C 1± eIlI',

for some constant el > o. Moreover, .....-

7]m.n(t) 7]m(t) 7]m+1(J(t»
'lm(t) 'lm+l(J(t» 7]m+l,n(J(t»

E (1 ± dll'+n.)(l ± elll'-l)(l ± dll'-Hn.) C 1± e211',
7]rn+l.n(J(t»

for some constant e2 > o.
Let us prove that Rn. and Roo have contact property. The Markov family

F has contact property and by condition (ii) of lemma 35, for all contact
words t,s E ~r,

IB:" I IBj(;)1I
IBJ(~ll IB:I

IBrl IB;".ol IC:"I ICj(~)lIIB;(tl,OI IBj(~)ll
- IB;n,ol IB:I le.1(~ll le:1 IBJ(~il IB~;)I,61
E (1 ±di)(l ±clI')(l ±dll'-I) Cl ±elll'.
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Moreover,

IB;n,nl IBJ(tll IB;n1 IBJ(~)lIIB:;C~)l,nl IB;"I
IBi I IB;C~l,nIIB;C~ll IB;' I IBJ(~)ll IB;",nI

E (1 ± dv'+n)(l ± elv')(l ± dv'+n-l) C 1 .± e2v'.

As the Markov family F has bounded geometry, there is 8 > 0, such that,
for all t E Ei,

'7m,n(t) = O'm-n(wm,nt) > O.
By condition (i) of lemma. 32,

'7m(t) > (1 - dv'lIn)O'm_n(wm,nt) > (1 - dv1vn)8.

Therefore, 77m(t) > O.

Finally, by theorem 23 we proved the lemma. I
Proof of theorem 25. By condition (i) of lemma 32, for all word t E ti,
all m E Z and all I E N, 77Fm{t) and 77Gm{t) are defined and by hypotheses of
the theorem,

77Fm{t) = Ji.~O'Fm_n(Wm,nt) = Ji.~O"Gm_n(wm,nt) = 77Gm(t).

By condition (ii) of lemma. 32,

O"Fm?~ El ±CIV' and O"Gm(t) El ±C2V',
77Fm t 77Gm(t)

for some constants Cl, C2 > O. Therefore, .... -

O"Fm(t) 1± '
()
E cu,

O"Gm t

Thus, the the Markov families F and G are scale equivalent.

Suppose BFm = BGm• For all tEEm and m E Z,

I i I

IB~ml= IBFml II77Fm(tli) = IBGml II77Gm(tli) = IBff,ml·
i=l i=l

By condition (ii) of lemma. 35, for all contact words t, s E Ei,

IcFm IIBFmI . IC,Gm IIBf}m I ,
, ___!_ E 1± dv' and ~ E 1 ± dIBfmIICfm I . IBfm IICfm I v .
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Therefore,
Icrm IICfm I I
ICfmlIC[ml E 1± ct/,

Thus, the Markov families F and G are contact equivalent. Finally, by
theorem 24, F and G are C1+ bounded conjugated.

If F and G are C1+ bounded conjugated, then by theorem 24, for all
w E E:n and all m E Z,

O"Fm_n(wln) E 1± cu",
O"Gm_n (win)

Therefore, SFm(W) = sGm(w). I
Proof of corollary 13. By theorem 25, the family of conjugacies satisfy
the unformity hypotheses of the theorem in the section in CHS conjugacy
between backward Markov families. •

Proof of theorem 26. By lemma 36, the renormalisation limit Roo is a
C1+ bounded Markov family.

We will use the results of chapter 1to prove the existence of the conjugacy
li", First, we define a map gc(n,/) that we will use in the proof.

By bounded geometry, there is 8 > 0 such that for all word t E Er, all
m E Z and alII E N,

B';'< cfi (2)
where the constant c is equal to the maximum length of the intervals B'"; for
all m E Z. Take e > 0, such that v8-c = fl for some 0 < fl < 1. By equation
(2), for all t E Er, all m E Z and all I E N, -,_ ._

v'-- < cvl(O/re < efl' (3)IBrie •

Define ge( n, I) = efl' t/",

Let T(m) = U/>lr,(m) be the tree such that T,cm) is the set of I-cylinders
and I-gaps in the-domain of the Markov map R: and such that if I E r,U)
then m(I) is the cylinder such that J C m(/). Let T(m,,,) = U/>1T,(m,,,) be
the tree such that T,(m,n) is the set of I-cylinders and I-gaps in the domain of
the Markov map R~ and such that if I E r,U) then m(/) is the cylinder such
that le m(/).

By construction of the Markov families Roo and R", the embeddings T(m)
and T(m,,,) have the same topological structure. We define the map L, :
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I(T(m» -+ I(T(m,n» as in the section 2.4 of chapter 1, where I(T(m» = B":
and I(T(m,n» = B'":",

In chapter 1, take in definition 8 and 5

(4)

for all I >0. By theorem 3 and lemma 6 in chapter 1 and lemma 35 and
equation (3) and (4),

By condition (i) of definition 35, IILo - id IlcH' ~ cv", Therefore,

Define the map hm,n = Loo. •

Proof of corollary 14. It is an immediate consequence of theorem 26. I

Proof of corollary 15. Let us prove that the Markov family ROOF is a
complete invariant of its C1+ equivalence class. If the Markov family G is
CH bounded conjugated to the Markov family F, then by condition (i) of
lemma 35 and theorem 24, for all t E Er,all lEN and all m E Z

1]Om(t) O'om_n(wm,nt) 1]Fm,n(t)
1]Om,,,(t) O'Fm_"(wm,nt) 1]Fm(t)

E 1± 3dll'lI"'.

Therefore, 77Gm(t) = 7]Fm(t). As by hypotheses, Bam = BFm then RooF =
RooG. If the Markov families G and F are not C1+ bounded conjugated then
(RooG)mez and (ROO F)mez are not C1+ bounded conjugated, otherwise, we
obtain a contradiction by theorem 26. I

Proof of corollary 16. Let F be' C1+ bounded conjugated to a constant
Markov family G. For all m E Z, take BFm = Bam. Then, by corollary
15 they have the same renormalisation limit Markov families, i.e. R~mF =
R'itmG, for all m E Z and Wm E I::'. As G is a CH constant Markov
family then (RwmG)mez is a CH constant Markov family when Wp = Wq and
no,. = Ba', for all p, q E Z. Therefore, (RIDm F)mez is a. a CH constant
Markov family when wp = Wq and BF,. = BF" for all p, q E Z.

If (Ri5mF)meZ is a C1+ constant Markov family then by theorem 26, F is
CH bounded conjugated to it. •
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Proof of corollary 17. As Gm is a union of affine maps and Carn = Bam for
all m E Z, then all the renormalisation limit Markov families RnG coincide
with G. As for all m E Z, Bam = BFm and F is C1+ bounded conjugated to
G, then by corollary 15, RooG = RooF.

If ~G = ~ F then by theorem 26, F is C1+ bounded conjugated to G .

•
5.2 Ck+6 conjugacy between two-sided Mar-

kov families,

5.2.1 Introduction.

The w-limit set of Markov family consists of two-sided Markov families. Let
F and G be Ck+S two-sided Markov families. In this section, we prove that if
they are C1+ conjugated then they are Ck+S conjugated. This result opposes
to the difficulty in getting higher smoothness in one-sided Markov families. In
that case a balance between the speed of convergence of the Markov families
and the scaling structure of their cylinders is needed.

Let F = (Fm)mez and G = (Gm)meZ be Ck+S weakly bounded two-sided
Markov families, where 6 E (0,1] and k » 0.

A Markov family F is weakly bounded if there are constants band e, such
that, IdFm I > e > 1 and IIFm lle-« < b, for all m E Z.

Let h = (hm)mez be a topological conjugac! ~etween F and G.

The conjugacy h has the unifonnity property if it satisfies the following
conditions.

(i) There is a sequence of points Xm E CFm such that Fm and hm are
smooth at Xm, Fm(xm) = Xm+1 and Idhm(xm)1 > Ml > 0, for all
m < O.

(ii) Moreover, there is a continuous 'function e such that E(O) = ° and
for all m < 0,
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Theorem 27 If h is a topological conjugacy between F and G with the
uniformity property then there is a eHS conjugacy r = (rm)meZ between F
and G.

Corollary 18 Let F and G be Ck+S constant Markov families. Let the map
h be a topological conjugacy between F and G. Let x be a periodic point
of F, such that F is smooth at z: If h satisfies the uniformity property at x
then there is a eHS conjugacy between F and G.

5.2.2 Proof of theorem 27.

Proof of theorem 27. \Ve will prove in two parts that there is a eHS

diffeomorphism ro = s from eFo into c» which sends J(Fo onto J(Go. In
the first part, we prove that there is a sequence of maps Sn converging in the
eo norm to ho in the set J(Fo. In the second part, we prove that there is a
subsequence of maps (Sn)neZ~o converging to a ek+S map s, in some ek+e
norm.

By the same argument, there are eHS diffeomorphisms rm : eF.,. -+ eG.,.
which sends J(F.,. onto J(G.,., for all m < O. For all m ~ 0, choose a word
v E E~. Define the map Fo,m : e[o -+ eF.,. by Fo,m = Fm-1 0 ••• 0 Fo and
the map Fa:! : eF.,. -+ eto as the inverse map of Fo,m' Define the map
rm : eF.,. -+ CG.,. by rm = Fo,m 0 soFa:!.

First part. Choose the wordw E E~such that Xn E e~~n. Denote e~~n by An
and egl;n by Bn. Define the map F:~ : An-I -+ An (resp. G:~: Bn_1 -+ Bn)
as the inverse map of F:« : An -+ An-I [resp .•O-n : Bn -+ Bn-d. Define
the maps In : An -+ CFo and s« : B; -+ c» by

In = F_I 0 ••• 0 F_n and gn = G_I 0 ••• 0 G-n.

Moreover, define 1;1 : CPo -+ An as the inverse map of In and g;1 : eGo -+
Bn as the inverse map of gn'

Define the affine map Ln : An -+ Bn by Ln(An) = Bn. Denote Ln(x) =
'7nX + b«. By the uniformity property,

(5)

Define the sequence of maps BR : eFo -+ eGo by
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for all n > O. By definition, ha = g" 0 h-n 0/;;1 in J(Fo.

For all yE J(Fo, let s« E An be such that v« = l;l(y). By the mean value
theorem, there is Zn E An, such that,

By definition of the maps h-n and Ln, h-n(An) = Ln(An). Thus, there is a
point in E An such that h_,,(tn) = L,,(in)' By the uniformity property,

h_,,(Yn) - ~-,,(tn) = s, E dh_n(xn) ± c(IAnl). (7)
Yn - n

By equation (5) and (7) and definition of the map Ln,

Ih-n(Yn) - L,,(Yn)1 - Ih-,,(Yn) - h_n(in) - T/n(Y" - in)1
- 11- ~: IIh-n(Yn) - h_,,(tn)1

< 11- dh_,,(xn) ± t(IAnl) liB I (8)
dh_n(xn) ± t(IAn I) n •

By the mean value theorem, there is Un E Bn, such that,

(9)

By lemma 38,
Id(gn)(Zn)I < exp(c3)ld(gn)(un)l·

By equation (9) and (10),

Id(gn)(zn)IIBnl < exp(c3)ICGol·

(10)

(11)
"_ ._

By the uniformity property, Idh-n{xn)1 > Ml > O. Therefore, by equation
(6), (8) and (11),

ISn(Y) - ho(Y)1 < Id(gn)(zn)IIBnlll _ dh_,,(xn} ±c(IAnDI
dh_n{xn} ± e(IAnl}

< ()ICGolll- dh_n(xn) ±t(lAnDIexp C3 • dh_n(xn)±tClAnl)'

Thus, ISn(Y) - ho(Y)1 tends to zero when n tends to infinity. Therefore, the
sequence of maps (sn)n2!O converges in the Co norm to ho in J(Fo.

Second part. By the compact embedding lemma to prove the second part
it is equivalent to prove by induction in the degree of smoothness r that
Iisn Iler+, :5 bn for all r = 1,2, ... , k.
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Case r = 1. First, we prove that Idsn I is bounded and then that it is bounded
in the c5-Holder norm, independent of n ~ o.

By the mean value theorem, there is On E CFo and tPn E CGo such that,

For all y E CFo, by lemma 38 and the last two equalities,

Id ()I 1 d(J;1 )(y) 1< 1 (2) d(J;l )(On) I
Sn Y - 7]nd(g;l)(SnY) - 7]nexp C3 d(g;l)(tPn)

7]n ICGo I
< exp(2c3) 7]n ICFo I <eo exp(2c3),

for some constant eo > o. Therefore, ds.; is bounded independently of n > o.
Let us prove that the map ds; is bounded in the c5-Holder norm. By the

equation above, by lemma 38 and the mean value theorem, for all X, y E CFo,
there is ZZ,II E GFo,

_ In Id(g;I)(Sn(Y» d(f;l)(x) TIn1
d(g;l)(Sn(X» d(f;l)(y) TIn

< c(lsn(X) - Sn(Y)16 + Ix _ y16)
< clds,,(zz,II)16Ix - yl6 + clx _ yl6
< c(l + eo exp(2c3c5»Ix _ Y16.

Thus,

for some constant Cl > O. Therefore,
-,_

We proved that there is a. constant b1 > 0, such that

Induction step. The induction hypotheses is that lis" IIeiti < bj, for all
j = 1, ... t r. Let us prove the case r + 1.

For all y E CFo,

d2s" = (dIndJ;l)dsn - (dlndg;;l oSn)(dsn)2.
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Therefore, by induction in r

dr+1 Sn = Lr+2( dIn dl;;t, ... , cl" Indl;;\
dIn dg;l, ... , cl" In dg;t, dsn, ••• , cl"sn)

where Lr+2 is a polinomial of order r + 2 with coefficients independent of n.

By lemma 39 and by induction hypotheses, the variables in the equation
above are bounded and are a-Holder continuous with constants independent
of n. Thus, dr+1 Sn is bounded and it is a-Holder continuous with constant
independent of n. I

Lemma 37 Let F be a CHS weakly bounded Markov family. Then, for all
r E {I, ... , k - I},

r-l n-l

cl" Indl;;! - l:L:((cl"-'In dF:(~+1)0 Ii-I)
'=0 i=O

(d/i-1 )r-l E,( dIn d/.-1, ••• , d'ln d/,-l»

where Er is a polinomial of order 1 and the coefficients are independent of
n, i > O. For i = 0, we define the map /,-1 equal to the identity map.

Proof of lemma 37. We will prove it by induction in the degree of smooth-
ness r.

Case r = 1. By differentiation,

n-!

Indl;;l =L IndF:(~+l)0/,-1.
i=O "._ ._

Therefore,
n-l

dIn«: = L:(dIn dF:(~+1) 0 1i-1)d/i-I•
i=O

Thus, the formula is valid for r = 1, with EJ = 1.

Induction step. Let us suppose by induction hypothesis that the formula is
valid for r and let us prove that it is valid for r + 1. First, we differentiate
separately the three terms of the formula in lemma 37.

The derivative of the first term is
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The derivative of the second term is

The derivative of the third term is

dEl( dIn dli-1, ••• ,i In dl,-l) = F,"{dln d/i-1, ••• , d'+1ln dli-1),

where Ft has degree I and coefficients independent of i and n. \Ve define the
polinomial

The polinomial G/+1 has degree 1+1 and the coefficients are independent of
i and n. Therefore,

,-In-l

d'+1In dl;1 - E E«d'+1-1IndF:(~+1)o/i-1)
1=0 i=O

(d/i-t y+1-1El( dIn d/i-t, ... , at Iner»
r-l n-l

+EE((d'-llndF:(~+1) 0 Ii-I)
1=0 i=O

(dlt1 Y-'G/+1(dIn d/i-1, ••• , d'+1In dfi-t )).

Replacing 1+ 1 by I in the second term, we have

E~+1(Xl' ••. ' Xl+t} = E~(Xl"." Xl) = 1.

define E; = o. For 1= {1, •.. ,r}, Er+1(Xl, ..• ,Xl) is equal to._ ...

Lemma 38 Let F be a Ck+6 weakly bounded Markov family. Then, for all
x,yECFo,

where f3 = 8 if k = 1, or f3 = 1 if k >i 1. Moreover,

Proof of lemma 38. As the Markov family F is weakly bounded and by
the medium value theorem and as IdFm I> e > 1, for all x, y E CFo, there is
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n-l

< E(lln IdF:(~+l) 0 li-1(y)l-in IdF:(~+l) O/i-l(X)!!)
i=O
n-l n-I

~ Cl E I/i-l(y) - li-l (x)!'O < Cl E(d/i-l(Z~,y))PIY - xlP
i=O i=O

< clx - yiP < C3,

for some constant C3 > O. Therefore,

Lemma 39 Let F be a Ck+S weakly bounded Markov family. Then,

IIIn df;I IIc"-HI < bk•

Proof of lemma 39. The case k = 1, it is proved by lemma 38. For k ~ 2,
we will prove by induction in r that dr In dl;1 is bounded in the Co norm
independent of n, for all r = 1, ... , k - 1. After, we prove that dk-1ln df;;l
is c5-Hoider continuous with constant independent of n.

Case r = 1. By lemma 38 and as k > 2,

dl;l(y)
[In dl;l(x) I< clx - yl·

Therefore, dIn dl;l is bounded in the Co norm independent of n.

Induction step. By induction hypotheses, we suppose that the maps dIn dl;l,
... , ar-1ln df;;l are bounded in the Co norm independent of n. 'Ve will prove
that dr In dl;;l is bounded in the Co norm independent of n.

By lemma 31,
r-l n-I

d"Indf;;1 - E E«d"-IIndF:(~+I) o/i-I)
1=0 i=O

(dli-l )r-I Er( dIn d/i-l, ... ,d' In dli-l))
where the coefficients of the polinornial Er are independent of nand i, for
all r E {l, ... ,k -I}.

As the Markov family F is weakly bounded, IdF:(~+l) I > b-l > 0 and
because the first r+ l-derivatives of the map F:(~+I)are bounded independent
of i

(12)
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for all I = 0, ... , r - 1, i = 0, ... ,n - 1 and n EN.

As the Markov family F is weakly bounded, IdF:ll < e-1 < 1. Therefore,

(13)

for all I = 0, ... ,r -1, i = 0, ... ,n -1 and n EN.

The induction hypotheses implies

IE[(dln d/i-I, ... ,i In d/i-I)I :5 br." (14)

for alII = 0, ... , r -1, i= 0,... ,n -1 and n EN.

By lemma 37 and equations (12), (13) and (14),

Id' In d/;ll < ~ brA1 1-I )'-' < s..
'=0 - e

Let us prove that the map dk-1ln d/;l is 6-Holder continuous with Holder
constant independent of n. The map dk-1-'ln dF:(~+l) is 6-Holder continuous
for I = 0 and it is Lipschitz for I = 1, ... , k - 2. As the Markov family F is
weakly bounded, the 6-Holder (resp. Lipschitz) constant is independent of
i> 0, i.e.

IIdk-1-'In dF:(~+1)"ClorCLiP,c"i'.~ c,

for some constant c > o. Thus, the map dk-1-'ln F:(~+1) 0 fi-1 is Lipschitz
if I > 0 or 6-Holder continuous if I = o. As the Markov family F is weakly
bounded, Idf:ll < (e-I)i < 1. Therefore, the Lipschitz (resp. 6-Holder)
constant of the map dk-I-1 In F:(~+1) 0 fi-1 converges exponentially fast to
zero, when i tends to infinity.

The map (dfi-I )(k-l-/) is Lipschitz where the Lipschitz constant converges
exponentially fast to zero, when i tends to infinity because it has bounded
nonlinearity and it is exponentially contracting.

The map
E;-I (dIn dfi-~' ••. ,d'ln dfi-1)

is Lipschitz with constant independent of i because it is a I-product of maps
bounded in the Cl norm independently of i as proved by induction.

Therefore, the map

(dk-1-'ln dF-l. 0 j,;-l)(df;-l)k-l-I Ek-l(dln df.-1 i In df;-l)-(1+1) • Js I '.It , ••• , '.I,
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is a product of 6-Holder and Lipschitz maps with constants bounded indepen-
dent of i = 0, ... , nand n E N. The map (dfi-1 )k-l-1 converges exponentially
fast to zero in the CLip.chit6 norm when i tends to infinity. Therefore, the
product of the three maps above is 6-Holder continuous where the 6-Holder
constant converges exponentially fast to zero, when i tends to infinity. There-
fore, the map dk-1ln df;l is 6-Holder continuous. •

Lemma 40 Compact embedding lemma. Let (fn)n>O be a sequence of cHa
smooth functions In defined in an interval I = Ta,c], where k > 0 and
er E (0,1]. If IIlnllCI:+a :5 b, for all n > 0, then there is a subsequence (fnJi>O
converging to a CHa smooth function I in the CHa- norm. -

The map f is bounded in the c+: norm, if for all 0 < s < a, f is
bounded in the CHe norm.

Corollary 19 The set of all functions f E CHa defined in an interval I
such that 1I/IIc"+a :5 b is a compact set with respect to the norm cHt:k-e for
all small e > O.

Definition 37 A subset of a topological space is called conditionally com-
pact if its closure is compact in its relative topology.

Theorem 28 Arzela-Ascoli. If S is compact set then a set in the space of
continuous functions with domain S is conditionally compact if and only if
it is bounded and equicontinuous.

Proof of the compact embedding lemma. Likely not original. As the
sequence of maps In is bounded in the Cktanofm, then

Idkln(x) - dkln(Y)1 :5 blx _ yla,

for all n ~ O. Therefore, (dkln)n~o is an equicontinuous family of functions.
By the Arzela-Ascoli theorem, there is a subsequence (dkfnJi~O converging
to a function h in the Co norm. In other words, there is a sequence (1i)i~O
converging to zero, such that,

Idklni ..:. hi < i..
As the function h is continuous, then it is integrable. Let us show that the
sequence (d"-m/ni)i~O converges to m-times the integral of h in the Co norm,

. for all m E {l, .•• ,k}.

Idk-m In; - r... r hi :5 I r... r(d" In; - h) I < Ii Ie - a 1m•la la .i: lta
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Therefore, the sequence (fn; ) ..~o converges to k-times the integral of h in the
C" norm.

Let us prove that the sub-sequence (In;)''>o converges in the CH,; norm
to k-times the integral of h, for all e < a.-Define the map H = HmJ =
diefnm - d"fnr As the sub-sequence (lnJ ..~o is contained in a Banach space
with respect to the CH,; Dorm, we have to prove that

IH(y) - H(x)!
Iy -xl'

tends to zero when j tends to infinity, for all m ;:::j.

If Ix - yl > lj,

IH(y) - H(x)1 < IH(y)1 + IH(x)1 < 41j < 4(1.)1-,;.
Iy-xll: -Iy-xll: ly-xll:-(lj)l:- J

If Ix - yl :5 lj,

IH(y) - H(x)!
Iy -xl,;

< Idlefnm(x) - diefnm(y)1 + Idlefnj(x) - dlefnj(y)1
Iy _xl,;

< 2bly - xlOt < 2b(1.)Ot-e
Iy - xiI: - J

Therefore, the sequence of functions (lni )">0 converge to a function f in the
CH' norm. -

The function f is CIe+Ot smooth, because

Idle/(x) _dle/(y)1 < Idle/(x) -dle/n,(x31~ Idlefn,(x) -dle/ni(y)1
+Idle/n,(y) - dief(y)1

< 21j + clx _ ylOt

and as the sequence (h)iEN tends to zero when i tends to infinity, we obtain
that Idlef(x)-dlef(y)1 < clx _yIOt. •
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5.3 The existence of a Markov map and ex-
ponential convergence to the Feigenbaum-
Cvitanovic fixed point of period doubling.

5.3.1 Introduction.

Lanford [11] proved the existence of a fixed point 9 of the renormalisation
operator R and the existence of a stable manifold with codimension one in
some analytic space. Rand [22] and Sullivan [28] proved independently that
two maps in the stable manifold are CH conjugated. This easily implies
that, if I is in the stable manifold then I has the Feigenbaum order and
there is a CH Markov map F with the following property.

(15)

"Vegive a simple proof of the convergence of the renormalisation R"] of I
to a fixed point 9 of the renormalisation operator. For that, we assume that
the map I has the Feigenbaum order and the existence of a CH Markov
map F with the property of equation (15). This means that if I is CH
conjugated to the renormalisation fixed point, then it converges to it. This
is the converse of the result of Rand and Sullivan. Sullivan [30] proves a
much more general result that RnI of I convergences to the renormalisation
fixed point, just under the assumption that I has the Feigenbaum order.
This excellent result relies in the use of a lot of machinery from complexes
analysis and one dimensional dynamics.

........
5.3.2 Theorem 30.

Let f E C2 be a quadratic fold map of the interval I = [-1, I}. Let V be
the set of all folding maps. The renormalisation operator R(J) = a-1/2 0 a,
where a = aU) = 1(1) is well defined on an open subset VCR) consisting of
those I E V such that, if a = aU) and b = I( a), then a < 0, b > -a and
I(b) s a.

Let F be a CH Markov map with the following property.

The Markov map F defines a cylinder partition in 1. Denote the n-cylinder
containing 0 by Cn = C~n' where we denote by lin E E~ the corresponding
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word, for all n > O.Moreover, define Kn = en nK and CC as the smallest
interval containing K. Define the inverse map of F" : en -+ CC by F':" :
CC -+ en.

Lemma 41 The map pn : en -+ en has the property that in the set Kn,

Lemma 41 was proved in Sullivan [28}. Define the set

Define en as the smallest interval containing K", Define a sequence of linear
maps an : R -+ R by O'n(O) = 0 and O'n(P"(O)) =r:(0). Define the map
Pn : CC -+ R by P« = 0'1 ••• a.F":", The map P« is a diffeomorphism from
J( onto x-.
Recall that the CH norm of a map f in a domain AI is defined by

If(x) - f(Y)1IIfllcH(M) = max{lf(x)l, Idf(x)I,+ I I : X,Y E .M},x-yO

for some 0' E (0,1].

Lemma 42 If f has the Feigenbaum order and the Markov map F is CH
smooth then the sequence of maps (Pn)n>O converge exponentially fast to a
diffeomorphism P : CC -+ R in the CH norm .

... -
Define the set [(00 by

Let Coo be the smallest interval containing K'", As the maps P and P»
are CH diffeomorphism, then the map hn : Coo -+ R defined by Pnp-1 is
a CH diffeomorphism. The map hn is a CH conjugacy between the map
pIp-I: ](00 -+ 1(00 and In = Rn/: K" -+ K",

Theorem 29 The conjugacies hn converge exponentially fast to the identity
map in the CH norm, when n tends to infinity.
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Theorem 30 Let f be a C2 fold map with the Feigenbaum order. Let F be
a C1+ Markov map verifying equation 15. Let the map d(Jr' f) be bounded
in the C1+ norm, for all n ;;:: O. Then H"] converges exponentially fast to
pfp-l in 1(00 with respect to the CH norm, when n tends to infinity.

Corollary 20 The renormalisation limit map Roof: 1(00 -+ 1(00 is equal to
pfp-l : 1(00 -+ J(OO.

Define the Markov family (Gn)n~O

{
bx x E [b2, b4]

Gn(x) = bfn(x) x E [b3, bd

where bi = (fn)i(O), for all i = 1, ... ,4 and b = (b2)-I.

The family of Markov maps Gn define the same cylinder partition in CC
as the Markov map F. Define the Markov map Foo : Coo -+ Coo by

G (x) = { ax x E [a2,a4]
n a(pfp-l)(x) xe[a3,al]

Corollary 21 The sequence of Markov maps Gn converges exponentially
fast to the Markov map Foo in K'" with respect to the Cl~ norm.

Theorem 31 The renormalisation limit map. Roof: 1(00 -+ K'" is a fixed
point of the renormalisation operator, i.e. satisfies the Feigenbaum-Cvitanovic
equation, R(g) = g.

Theorem 32 The fixed point map Roof: J(OO -+ ](00 is completely deter-
mined by the scaling function of the Markov map F and the extreme points
of J(OO.

Proof of lemma 41. \Ve represent symbolically w = Coel... E 1( by
E~o Ei2i, where e, is 1 or 0, depending if 0 E C~ior not. In this symbolic
representation few) = w + 1, F(w) = [w/2] and F-1(w) = 2w + 1 where 0
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means the characteristic of a number. Thus,
00

P"f2"F-"(w) = F"f2"F-"(Eei2i)
i=O

n-I 00

- F" I" (2: 2i + 2nE ei2i)
i=O i=O

00

_ F"(2" -1 + 2n LCi2i + 2")
i=O

00

- [(2n - 1+ 2nLci2i + 2n)/2"]
i=O

00

- 2:ei2i+1=w+l=/(w) .•
i=O

Proof of lemma 42. Define the map Pn,m = an 0 ••• oam of-(m-n+I), where
n < m. Note that p« = PI,n 'We prove this lemma in three parts. \Ve do not
distinguish between different constants c.

First part. The sequence of maps (Pn)">O converges exponentially fast in the
Co norm.

By the mean value theorem, there is tn E Cn, such that:

dP(tn)(f2"(0) - 0) = p(f2"(O)) - F(O) = /2"-1 (0) - O.

Therefore, Q"(x) = dF(tn)x, for all X ER.

For all x E Ci-h there is x~ E Cj-h such that dF-l(xD.(x -0) = F-I(X)-
F-1(0) = F-l(X). By the inverse function theorem there is Xi E Cj such
that dF-l(xD = l/dF(xj}. Thus F-l(x) = xldF(xi) and F-(m-n+1)(x) =
x] nz, dF(xj). Therefore,

m dF(tj)
Pn.m(X) = ;IT dF( .)X'1=" X,

As the points tj and Xi are in Ci and dF has the same sign for all x in Cl
and it is a -Holder continuous,

lIn IdF(ti}l-ln IdF(X;)II < cldF(t;) - dF(Xj)1
~ clti - xdQ < clCd"

for all i > O. By bounded geometry, there is p. between 0 and 1 such that
ICnl ~ CI'". Thus, by last paragraph,

lin It~::f;:~IIs c t.ICil" < clC" I"< c(l'n)".



154

By the inequality above and as dF(ti) has the same sign as dF(Xi),

Thus,

() _ (lIm dF(ti» I IOt[ ]Pn,m X - X - i=n dF(Xi) -1 X E±c Cn Cn-1•

Therefore, for all y E CC, there is x E Cn-1 such that

Pm(Y) - Pn-l(Y) = dF(t.)dF(t2) ... dF(tn-1)·(Pn,m(x) - x)
E cICnIOt[I] E c(p.Ott·

Therefore, the sequence P» converges in the Co norm, when n tends to infinity.

Second part. Let us prove that the sequence (dpn)n>o converges in the Co
norm. Define xi = F-i(x). Thus,

By the same argument as in part 1,

lImdF(ti) IC lOt
i=n dF(xi) E 1± c n

Therefore,

Thus, the sequence dPn converges uniformly in the Co norm, when n tends
to infinity. In the same way,

Therefore, apn is bounded away from zero, independent of n.

We will use that

(16)

in the proof of theorem 30.
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Third part. Define the map H = Hm,,, : CC -+ R by H = dPm - dp,,-l' Let
us prove that

IH(x) - H(y))1
Ix -yl~

tends exponentially fast to zero, when n tends to infinity, where e < a and
m > n. This is a consequence of the exponential convergence in part 2.

First, we prove that Idp"-l(X) - dpn-l(y)1 < elx - yl"'. By the same argu-
ment as in part one and because F is an expanding map,

dp"_l(X) _ nrr-l dF(yi) 1± I _ I'"
()- .E ex y.

dpn-l y i=l dF(x')
(17)

As dP,,-1 converges exponentially fast to dp,

Denote 11 = JI."'. If Ix - y I > 11",

Ill(x) - H(y)) I < IIH(x)1 + IH(y)l < ClI" < c(lIl-e)".
Ix - yle - Ix - ylC - (IIn)~ -

If Ix - y I< lin,

< Ildpm(x) - dpm(y)l + Idpn-l(x) - dpn-1(y)I
Ix-ylC

~ 2elx - YI'" <? ( "")"
I I - _c ". •X _ye .__

Therefore, the sequence of maps (Pn)n>O converge exponentially fast to a map
P in the C1+ norm. As the maps Jp" are bounded away from zero, the map
p is a C1+ diffeomorphism. I

IH(x) - H(Y))1
Ix _ylC

Proof of theorem 29. Similarly to lemma 42.

Proof of theorem 30. By definition, in the set CC,
•

t R" t. j2n -1 -1J"= JICC=al··.an an ••• allcc•

Moreover, by lemma 41, in the set 1(",
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The last map has a CH extension to CC but the last equality may not be true
in this extension. For all x E /(00, define y = p-I(x) and x" = Pn (y) E K",
Denote, pfp-I by 9 and Pnfp~1 by gn. Thus, fn(xn) = gn(Xn).

We will prove that fn converges exponentially fast to 9 in /(00, with respect
to the C1+ norm. \Ve prove it in three parts.

First part. Let us prove Ifn(x) - g(x)1 < fIll". As all the points x" E K"
are accumulation points in K" and fn(xn) = 9n(Xn) then d/n(xn) = dgn(xn).
Therefore, there is a constant c > 0,

For all x E ](00,

Ifn(x) - g(x)I < Ifn(x) - fn(xn)1 + Ifn(xn) - g(x}1
~ Id/n(z)lIx - xnl + Ign(xn) - g(x}1

The first term is less than ct/" because Id/n(z)I < c and by first part of
lemma 42, there is yE C, such that, Ix - xnl = Ip(y) - Pn(Y)1 < ci/",

The second term is less than cvn because by first part of lemma 42,

Ign(Xn) - g(x)l ~ IPnf(y) - pf(y)1 ~ cv".

Therefore, Ifn (x) - g( x) I< cv",
Second part. Let us prove that Idfn(x) - dg(x)1 < c(1I0)". \Ve have that,

Idf,,(x) - dg(x)1
< Id/n(x) - d/n(xn)I + Id/n(xn) - ~~)I
< Id/n(x) - d/n(x,,) I+ Idgn(Xn) - dg(x)1
< Id/n(x) - dln(xn)I

Id (I( » dlf( ) d -I( )lldPnU(Y)) .dp~l(Xn) 11+ p y • y. p X dp(f(y».dp-l(x) - •

The first term is less than c(VO)", because by hypothesis and by the first
part of lemma 42,

Let us prove that the second term is less than cv", As Idf(y)1 < c and pis
a diffeomorphism onto its image,

Idp(f(y»dF(y)dp-l(x)1 s c.
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By equations 16 and 17 of lemma 42,

dpn(f(y» dp;l(xn) dp;l(x) E 1± n

dp(f(y» dp;l(X) dp-l(x) CII •

Therefore, IdIn(x) - dg(x)l $ c(IIQ)n.

Third part. Define the map H = dIn - dg and 1= 11£1. Let us prove that,

IH(x) - H(z»1 < c{"'(Q-It)"
Ix-zlc -

where e < a. This is a consequence of the exponential convergence in part
2.
If Ix - z I> 1",

IH(x) - H(z»1 < IH(x)1 + IH(z)1 < 2C"'fn < c( l-c)n
Ix - Z lit - Ix - z Ie - be)n - 1

If Ix - zl < 1" then

'H(x) -lI(z»' <
Ix - zle

,dIn(x) - dIn(z)I + Idg(x) - dg(z)1
Ix - zle

< clx - zlo < c{"'(Q-e)n.
'x-zllt -

Therefore, IIIn - gllcl+(KOO) $ cbo-e)n, for all n > O. •
Proof of corollary 20. By theorem 30, the maps R"1 converge exponen-
tially fast to pjp-l in /(00 with respect to the. G..H norm. Therefore,

Roo [vc= = pIpiiJoo .•

Proof of corollary 21. Similarly to the proof of theorem 30. •
Proof oC theorem 31. Similarly to the proof of lemma 42, we have that
PnP-1 : CC -+ R is equal to at ••• an •.. F-l ... F-n converges exponen-
tially fast to (dF(O))-lp in CC with respect to the C1+ norm.

By lemma 41, in set 1(",

(RnI)' I' -t P-1IF -1IK" = P« PnIK" = Pn PnIK" •

Similarly to the proof of theorem 30, we obtain that (R''' J)jKeo converges
exponentially fast to (dF(O))-lp/p-ldF(O)IKoo, when n tends to infinity.
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As the limit of (RnJ)fKoo is unique and by corollary 20,

Proof of theorem 32. The Markov map Polo and Pare GH conjugated.
Therefore, they define the same scaling function by theorem 25. The Markov
map Polo has an affine branch, with the fixed point 0 contained in its domain.
Let I E E;oo be such that 0 E Grin. Therefore, For all t E E~oo and all n > 0,
O"Foo(t) = limm_c>ot(Ilnt) = O"F(It). a
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