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Abstract

One of the major sources of information on physiological and pathophys-
iological effects in pre-clinical oncology studies is the xenografted tumour
animal model. However, measurement of tumour volume over time poten-
tially masks a range of biological changes that the xenograft is undergoing.
In this paper a mechanistic model of tumour growth in xenografts is pre-
sented that can be used to investigate the mode of drug action with respect
to phenotypic changes. The model encapsulates key histological biomarkers
and spatial constraints. The unknown model parameters are first shown to
be uniquely identifiable from the proposed experimental studies, and then
estimated from the resulting data using the anti-cancer agent docetaxel.

Keywords: Biomedical systems, structural identifiability, parameter
estimation, xenograft tumour models, tumour growth models, cytotoxic
agents

1. Introduction

Quantitative pharmacology techniques are used to understand the vari-
ous steps between dosing a drug and changes to the pathophysiology of the
disease (“efficacy”). Pre-clinically, in oncology, one of the major sources of
information on physiological and pathophysiological effects is the xenografted
tumour animal model, in which a human tumour is implanted into a host
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animal. Such models are now being supplemented by the primary tumour
tissue explant animal model. Measurement of tumour volume over time po-
tentially masks a range of biological changes that the xenograft is undergoing
as a result of tumour cell biology, host animal and anti-cancer agent effects.
Application of different modelling approaches are therefore required to de-
code these signals. Thus in this paper a mechanistic model of tumour growth
in xenografts is presented that can be used to investigate the mode of drug
action with respect to phenotypic changes.

Currently there are two principal approaches for modelling tumour growth:
Empirical models that seek to represent data from tumour growth studies
without attempting to elucidate the mechanisms involved [1]; and mechanis-
tic models that attempt to reproduce tumour growth data [2]. The mecha-
nistic tumour modelling literature contains many models that are so mech-
anistically complete that they are too complex for parameter identification
and hence for robust prediction. However, even relatively complex mecha-
nistic models have limitations resulting from simplifying assumptions. For
example, models that acknowledge spatial and rheostatic effects typically as-
sume that tumours are spherical and homogeneous. In order to cope with the
challenges of modelling tumour growth in a heterogeneous environment some
authors have adopted more computational approaches like cellular automata
[3].

The approach adopted in this paper is to combine simple empirical models
with focused mechanistic modelling of pathways important for elucidating
the steps between dosing and efficacy, which will combine the computational
benefits of empirical modelling with the knowledge/understanding benefits
of mechanistic modelling. A model for solid tumour growth is proposed
and considered with respect to treatment with docetaxel, a semisynthetic
taxane analogue, which is a mitotic spindle poison that promotes microtubule
assembly and inhibits depolymerisation to free tubulin [4, 5].

Few tumour growth modelling studies consider the problem of structural
identifiability that relates to the uniqueness of model parameters with respect
to model simulations that are to be compared with experimental data [6].
For example, it may be possible for different combinations of parameters to
give rise to identical simulations and thus identical fits to data, but entirely
different predictions of unmeasured variables. This property has important
implications for elucidating the exact effect a drug is having on the tumour
biology and for the interpretation of combination data.

There are a number of well-established techniques for performing a struc-

2



η(t)=
cP(t)+IC50

cP(t)

Kpe

dose

PK PD Tumour Growth

qP qT

Kpt

Ktp

cP(t) = qP(t) / Vp

TS

Rt

Proliferating

Cells

Necrotic

Cells

Hypoxic

Cells

Vp

Vh

Vn

Figure 1: Schematic of full model for cytotoxicity of docetaxel comprising agent pharma-
cokinetics (PK) and pharmacodynamics (PD), coupled with tumour growth dynamics.

tural identifiability analysis for linear systems (see, for example, the tutorial
paper by Godfrey and DiStefano III [7] and other works in the same vol-
ume). In comparison, greater care has to be taken over choice of approach
for nonlinear systems since the form of any inputs to the system generally
limits applicable techniques. For systems with a single impulsive input, such
as a bolus injection of drug, perhaps the conceptually simplest approach is
the Taylor series approach [8]. This approach considers uniqueness of the pa-
rameters with respect to the uniqueness of the coefficients of a Taylor series
expansion (generally about t = 0) of the output. More recently there has
been considerable effort applying techniques based on differential algebra [9–
11]. A related algebraic approach to determine a canonical output equation
for a rational system, the uniqueness of which can then be used to determine
identifiability of the parameters, will be applied in this paper [12].

2. Combined Model of Cytotoxic Effect

A model of the effect of docetaxel, a cytotoxic agent typically used in the
treatment of breast, ovarian, prostrate and non-small cell lung carcinomas,
in xenografted tumour animals comprises sub-models of the agent’s pharma-
cokinetics and pharmacodynamics, coupled with a suitable tumour growth
model (see, for example, Figure 1).

2.1. Pharmacokinetic-Pharmacodynamic Model

The pharmacokinetics (PK) of docetaxel in mice is generally observed to
be biphasic in nature with widely different half-lifes for the distribution and
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elimination phases [4, 13]. However, the PK in humans in typically modelled
using a three-compartment model [14]. Therefore, a linear two-compartment
model is assumed for docetaxel PK (as illustrated in the ‘PK’ sub-model
in Figure 1) following intravenous bolus administration. The corresponding
model equations are given by:

q̇P (t) = − (Kpe +Kpt) qP (t) +KtpqT (t)

q̇T (t) = KptqP (t)−KtpqT (t)
(1)

where qP and qT denote the quantities of drug per kilogram body weight
in plasma and tissue, respectively. The plasma drug concentration, cP , is
therefore given by

cP (t) = qP (t)/vp (2)

where vp denotes the mean plasma volume of distribution per kilogram animal
body weight. Prior to administration of drug both variables are 0 and the
bolus injection is modelled via an instantaneous addition of the dose to the
plasma compartment.

The pharmacodynamics (PD) of the agent (as illustrated in the ‘PD’ sub-
model in Figure 1) are modelled in a similar manner to Jumbe et al. [15] using
the following Michaelis-Menten nonlinear term:

η(t) =
cP (t)

IC50 + cP (t)
(3)

where 0 ≤ η(t) ≤ 1 is the efficacy of the agent and IC50 is the concentra-
tion of drug giving 50% efficacy. Friberg et al. [16] used a similar nonlinear
PD component in a human PK-PD model for docetaxel that successfully
described chemotherapy-induced myelosuppression. It should also be noted
that a linear PD component was also considered and was similarly able to
characteristise myelosuppression.

The combined PK-PD model is coupled to a tumour growth model via
the efficacy, η, which will be applied to the rate constant for a cytotoxic term
applied to proliferating cells.

2.2. Tumour Growth Model

In the absence of chemotherapeutic agent the tumour is modelled as an
expanding sphere consisting of a proliferating shell surrounding a hypoxic
and necrotic core (see the ‘Tumour Growth’ sub-model in Figure 1). Since

4



this shell represents the part of the tumour with adequate oxygen supply
exponential growth is assumed. The purpose of the basic tumour model
is to represent the observed exponential followed by linear growth [1] in a
mechanistic manner rather than employing logistic-type growth (such as done
by Ribba et al. [2]). Hypoxic cells can also be assumed to proliferate [2], in
which case the proliferation rate constant for hypoxic cells, kP , is non-zero.
The system equations are given by the following:

V̇t(t) = kGVp(t) + kPVh(t)− kDNVn(t)

V̇n(t) = kNVh(t)− kDNVn(t)

Ṫs(t) = kAVh(t)

(4)

for the following volumes (mm3): Vt, the total tumour volume, Vn the necrotic
part of the tumour core, Vh the hypoxic part of the core, Vp the proliferating
(non-hypoxic) part of the shell; and Ts denotes the thickness (mm) of the
proliferating shell. The growth rate constant for proliferating cells is kG, the
destruction rate constant for necrotic cells is kDN and the rate constant for
transfer from hypoxic to necrotic states is kN . The term kAVh represents an-
giogenesis driven by the hypoxic tumour volume, which results in an increase
in the profilerating shell thickness.

If Vc denotes the total core volume then the following additional equations
complete the system description:

Vt =
4

3
πR3

t , Vc =

{

0 Rt < Ts

4
3
π(Rt − Ts)

3 Rt ≥ Ts

Vh =

{

0 Vc < Vn

Vc − Vn Vc ≥ Vn

, Vp = Vt − Vh − Vn

(5)

where Rt denotes the radius (mm) of the tumour.
In order to consider pharmacodynamic experiments the tumour growth

model (4)–(5) must be extended to include the effect of the agent under
investigation. Typically agents have one or more of the following effects:

AP An anti-proliferative effect can be included by replacing the growth pa-
rameter, kG, by a drug-mediated term, uAPkG, where 0 ≤ uAP ≤ 1
represents the effect of the drug. If the agent has an effect beyond the
perfused shell then a similar modification of the hypoxic proliferation
parameter, kP , can also be included.

5



AA An anti-angiogenesis effect can be included as an inhibition term, in
which the angiogenesis parameter, kA, is replaced by a drug-mediated
term, uAAikA (0 ≤ uAAi ≤ 1); and/or a disruption term, in which an ad-
ditional drug-induced term, −uAAdTs, is included in the final equation
in (4).

CT To include a cytotoxic effect, such as that of docetaxel, the basic tumour
model (4) must be extended to include an apoptotic class of cells in the
perfused shell.

2.3. Growth Model with Cytotoxicity

In the presence of a cytotoxic agent the system equations (4) are extended
to give the following:

V̇t(t) = kGVp(t) + kPVh(t)− kDNVn(t)− kDAVa(t)

V̇n(t) = kNVh(t)− kDNVn(t)

Ṫs(t) = kAVh(t)

V̇a(t) = η(t)kKVp(t)− kDAVa(t)

V̇ac(t) = φA(t)− kDAVac(t)

(6)

where Va is the total volume of apoptotic cells (and Vac the volume in the
core), η is the efficacy of the agent (from the PK-PD model), kK is the kill
rate constant for the initiation of apoptosis by the agent and kDA is the de-
struction rate constant for apoptotic cells. The term φA denotes the rate
of change of apoptotic volume distribution across the shell/core boundary.
Since docetaxel is a mitotic spindle poison it is assumed only to act on pro-
liferating cells and, for simplicity, only such cells in the adequately perfused
shell (Vp).

To complete the system description the additional equations (5) are mod-
ified to account for the apoptotic volume to give the following:

Vt =
4

3
πR3

t , Vc =

{

0 Rt < Ts

4
3
π(Rt − Ts)

3 Rt ≥ Ts

Vh =

{

0 Vc < Vn + Vac

Vc − Vn − Vac Vc ≥ Vn + Vac

,

and Vp = Vt − Vh − Vn − Va.

(7)
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The apoptotic volume transfer rate, φA, is dependent on whether the core is
increasing (flow from shell to core) or shrinking (flow from core to shell). If
φ denotes the rate of volume change from shell to core then it is given by:

φ(t) = V̇c(t) + kDN (Vc(t)− Vac(t)) + kDAVac(t)− kPVh(t). (8)

It can be seen that φ incorporates terms relating to the growth of the core,
replacement of removed necrotic (in the core) and apoptotic cells, and pro-
liferation of hypoxic cells within the core. If φ is positive then there is net
flow of cells from the shell to the core, and vice-versa when it is negative.
Therefore, assuming homogeneous mixing of cells in the core and shell, the
apoptotic flow rate, φA, is given by:

φA(t) =

{

Va(t)−Vac(t)
Vp(t)+Va(t)−Vac(t)

φ(t) φ(t) ≥ 0
Vac(t)

Vh(t)+Vac(t)
φ(t) φ(t) < 0

(9)

where in the latter expression if Vac = 0 then φA = 0.

3. Structural Identifiability

Suppose that p ∈ Ω ⊂ R
m denotes a vector comprising the unknown

parameters in the model (as an ordered list), which belongs to an open set
of admissible vectors, Ω. The output of the model, which corresponds to
the function of the model variables that will be compared with experimental
data, depends on the choice of p ∈ Ω and so is denoted y(t, p).

Two parameter vectors, p, p ∈ Ω, are indistinguishable, written p ∼ p, if
they give rise to identical outputs:

y(t, p) = y(t, p) for all t ≥ 0.

For generic p ∈ Ω, the parameter pi is locally identifiable if there is a neigh-
bourhood, N , of p such that

p ∈ N, p ∼ p implies that pi = pi.

In particular, if N = Ω in the above definition then pi is globally identifiable,
otherwise it is nonuniquely (locally) identifiable. Notice that, for a given
output, a locally identifiable parameter can take any of a distinct (countable)
set of values. If there does not exist a suitable neighbourhood N then pi is
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unidentifiable and, for a given output, can take an (uncountably) infinite set
of values.

A parameterised model is structurally globally identifiable (SGI) if all pa-
rameters are globally identifiable; it is structurally locally identifiable (SLI)
if all parameters are locally identifiable and at least one is nonuniquely iden-
tifiable; and the model is structurally unidentifiable (SU) if at least one pa-
rameter is unidentifiable.

Suppose that a Taylor series expansion of the output about t = 0 is taken
to give

y(t, p) = y(0, p) + ẏ(0, p)t+ · · ·+ y(k)(0, p)
tk

k!
+ . . .

where y(k)(0, p) = limt→0
dky
dtk

(t, p). For a given output the coefficients of the
Taylor series expansion are unique and can therefore be used to determine
the uniqueness of the unknown parameters [8]. More explicitly, if p, p ∈ Ω
are indistinguishable then

y(0, p) = y(0, p), y(k)(0, p) = y(k)(0, p) for all k > 0. (10)

If a finite number of coefficients ensures that p = p then the model is SGI.
Otherwise it is necessary to establish dependence between coefficients so that
an upper bound on the number sufficient to characterise structural identifi-
ability.

Alternatively, following the approach taken by Evans et al. [12], an output
equation can be derived for the model, which only involves the output and its
derivatives up to order n (the number of model variables). Then (following a
similar approach as Denis-Vidal et al. [17]) any indistinguishable parameter
vector, p, must also satisfy the same equation with p replaced by p and a
polynomial of the following form can be generated:

l
∑

k=1

ck(p, p)Ψk(y(t, p), ẏ(t, p), . . . , y
(n−1)(t, p)) = 0

for all t ≥ 0, where Ψk(y(t, p), ẏ(t, p), . . . , y
(n−1)(t, p)) are monomials in y(t, p)

and its derivatives. Moreover, the φk(·) are linearly independent and so it
must be the case that

ck(p, p) = 0 k = 1, . . . , l.
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In addition, the initial conditions for the output equation are equal for p and
p and so the relationship between p and p can be determined. If the only
solution is p = p then the model is SGI, if there is a set of distinct solutions
then the model is SLI and it is SU otherwise.

3.1. Pharmacokinetic Model

For the Pharmacokinetic Model in (1) the vector of unknown parameters,
p, is given by

p =
(

Kpe Kpt Ktp vP
)T

.

The experimental data to be used for parameter estimation were obtained
following an intravenous bolus administration of drug followed by measure-
ment of the plasma concentration. With respect to this experiment the initial
conditions are given by:

qP (0) = d and qT (0) = 0

where d denotes the known dose, and the model output is given by

y(t, p) = cP (t, p) = qP (t, p)/vP .

If p ∈ Ω is any parameter vector such that p ∼ p then consideration of
the first four Taylor series coefficients, that is (10) for k = 1, . . . , 3, shows
that p = p. Since all parameters are globally identifiable the model is SGI.
An example of the analysis performed in the symbolic computation system
Mathematica is provided in Appendix A.1.)

3.2. Tumour Growth Model

Analysis of the tumour growth model (4) is complicated by the conditional
equations in (5). To overcome these complications the model is considered
in distinct phases. A structural identifiability analysis is performed for the
model in the absence of angiogenesis (i.e., kA = 0 so that Ts(t) = tS, a
constant) since only tumour volume data are available whereas one would
expect to require further biomarker data to validate the full model. The
model output corresponding to the experiment is

y(t, p) = Vt(t, p).

Without loss of generality analysis of the identifiability of the model in each
phase will be done with respect to (different) initial conditions corresponding
to the first time point in the respective phase.
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Phase I (Rt < tS): In this phase Vh = Vc = 0, Vp = Vt − Vn and the
model is linear. The initial conditions are unknown and given by

Vt(0) = vT0 and Vn(0) = vN0

so that the vector of unknown parameters is given by

p =
(

kG kDN vT0 vN0

)T
.

Using the approach of Evans et al. [12] (illustrated using Maple in Appendix
A.2) the output equation is found to be

ÿ(t, p) + (kDN − kG) ẏ(t, p)− kDNkGy(t, p) = 0

and then kDN and kG determined to be globally identifiable. From consider-
ation of the initial conditions for the output equation (y(0, p), ẏ(0, p)) it is
found that vT0 and vN0 are also globally identifiable. Thus in this phase the
reduced model is SGI.

Phase II (Rt ≥ tS, Vc < Vn): In this phase Vh = 0, Vp = Vt − Vn and
Vc(t) =

4
3
πRt(t)

3. The system equations are identical to Phase I and so the
model is also SGI in this phase.

Phase III (Rt ≥ tS, Vc ≥ Vn): This phase involves the most general dy-
namics and is the only phase for this model in which the important parameter
tS appears. The initial conditions are unknown and given by

Vt(0) = vT0 and Vn(0) = vN0

so that the vector of unknown parameters is given by

p =
(

kG kP kDN kN tS vT0 vN0

)T
.

Determination of the lengthy output equation (consisting of 239 terms) fol-
lowed by consideration of a parameter vector p such that p ∼ p enables the
following relations between p and p to be found: Either p = p or

kG = kG, tS = tS, kP = kP , kDN = kN − kP ,

kN = kP + kDN , vT0 = vT0, vN0 =
vN0(kP + kDN)

kN
.

Therefore, kG, tS, kP and vT0 are globally identifiable, while kDN , kN and
vN0 are nonuniquely (locally) identifiable. Hence in this phase the model is
SLI.
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If the experiment corresponds to dynamics in Phase III only then the
model is SLI, but if the dynamics includes Phase I and/or Phase II then,
since kDN is globally identifiable in these phases, the model becomes SGI.
The control data used for parameter estimation in the next section includes
Phase I and III dynamics and so the model is SGI.

3.3. Growth Model with Cytotoxicity

The tumour growth model with a cytotoxic agent included (6) has sim-
ilar complications to the drug-free case, which arise from the conditional
equations in (7). However, it can be seen from the experimental data to
be considered during parameter estimation that the dynamics remain in the
exponential growth phase at administration of agent and immediately follow-
ing. Thus the structural identifiability analysis is only considered for Phase
I when Rt < tS. Since control tumour growth data are available covering
enough phases to ensure that the model (4) is SGI the analysis is performed
in the case when all parameters from (4) are uniquely determined.

Without loss of generality (via a transformation of the time variable)
suppose that the agent is applied at t = 0. Since the agent is administered in
Phase I and there is no apoptotic cells prior to administration the unknown
initial condition is given by

Vt(0) = vT0 Vn(0) = vN0 and Va(0) = 0.

Note that in Phase I there is no core (Vc = 0), or hypoxic cells (Vh = 0) and
so Vp = Vt − Vn − Va. Therefore the model in Phase I is governed entirely by
the variables Vt, Vn and Va.

The vector of unknown parameters is given by

p =
(

kDA kK IC50 vT0 vN0

)T

with output given by
y(t, p) = Vt(t, p).

Since the input to the tumour model is the drug plasma concentration, which
is the impulse response of a two-compartment linear model, in order to ap-
ply the approach of Evans et al. [12] the output equation of a five-state
model would be needed, which results in increased computational burden
even though only three new parameters (and two initial conditions) have
been added.
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To remove the need for additional computational burden resulting from
inclusion of the pharmacokinetic submodel, the drug plasma concentration
can be treated as a known input to the tumour model. The input-output
equation for the tumour model can then be generated using the methods of
Forsman [18] to yield the following relationship:

(u(t) + ic50)
2

[

y(3)(t) + (kDA + kDN − kG) ÿ(t)

+ (kDA(kDN − kG)− kDNkG) ẏ(t)− kDAkGkDNy(t)

]

+ kK (u(t) + ic50) (kDA + kG) (ẏ(t) + kDNy(t))u(t)

+ kKic50 (kDA + kG) y(t)u̇(t) = 0

where y(t) = y(t, p) and u(t) = cP (t). However, since u(t) is not an arbitrary
input but the response from a linear model, it is not straightforward to de-
termine whether the coefficients of this equation are necessary and sufficient
to characterise the uniqueness of the parameters.

From the first five coefficients of the Taylor Series Approach, that is (10)
for k = 1, . . . , 5, two possible solutions can be found for an indistinguishable
parameter vector p. However, one of these solutions for p does not reduce the
sixth coefficient to 0. Therefore it can be concluded that the only solution is
the first one, which is p = p, and so the additional parameters for the model
including cytotoxic agent is SGI.

4. Parameter Estimation

The models were applied to experimental data in order to determine rel-
evant unknown parameters and rate constants. In each case the model was
implemented in Facsimile for Windows (MCPA Software, UK), which em-
ploys a robust predictor-corrector ODE solver able to accomodate highly stiff
systems and a hybrid parameter fitting method combining features from the
Newton-Raphson, Steepest descent and Marquardt methods (VA05 routine
from Harwell Subroutine Library). Parameter estimation is performed with
respect to the minimisation of the residual sum of squares (RSS) given by

RSS =
N
∑

j=1

(Dj − y(tj, p))
2

σ2
j

(11)
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where y(tj, p) is the model output at sampling time tj (j = 1, . . . , N), Dj is
the corresponding data point and σj the standard error. Estimation in Fac-

simile is actually performed with respect to internal parameters, P , that are
the natural logarithms of the model parameters. During the fitting process
the singular values of the sensitivity matrix of the residuals with respect to
the parameters are used to detect parameters that are not well determined
(NWD) by the data (where the singular value is less than 0.357

√

RSS/d,
for d degrees of freedom). Once detected the values of such parameters are
fixed and then treated as unknown in subsequent analyses. The standard
deviation of the natural logarithm (SDLN) of each of the remaining fitted
parameters, P0, is estimated from the variance-covariance matrix of P − P0

using a Singular Value Decomposition of the sensitivity matrix [19]. Assum-
ing a normal distribution for the natural logarithms of the well-determined
parameters, the 5% and 95% confidence limits are estimated for each.

In order to provide a more global parameter search, optimisation of the
initial estimates for the parameters (i.e., those initial estimates that give rise
to the fits in Facsimile with lowest residual sum of squares) was performed
using the Genetic Algorithm solver in the Matlab (R2011a) Global Opti-
mization Toolbox (The MathWorks, Inc). Default settings were used together
with a population size of 100, tournament selection involving 4 individuals
and a uniform (random) initial population between the limits. Therefore,
the following approach was adopted to perform the parameter estimation:

1. For positive vectors a, b ∈ R
m let X = {x ∈ R

m : ai ≤ xi ≤ bi} and
define a function Ψ : X −→ R

+ as follows:

• Ψ(x) is the RSS obtained when performing parameter fitting in
Facsimile using 10xi as the initial estimate for parameter pi.

2. Apply the Genetic Algorithm solver in the Matlab Global Optimiza-
tion Toolbox to determine x∗ (ai ≤ x∗

i ≤ bi) that minimises Ψ.

3. For x∗ (and other vectors returning an RSS within 1% of the minimum)
perform iterative parameter fitting in Facsimile to refine the estimate
for p∗ (where p∗i = 10x

∗

i ).

The above procedure is repeated with narrowing bounds ai and bi; for ex-
ample, when fitting the pharmacokinetic model initial bounds were set at
ai = −6 and bi = 6 (for all i) and then refined through further iterations.
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Table 1: Parameter estimates for pharmacokinetic model. SDLN is the estimated standard
deviation of the natural logarithm of the parameter. If parameter estimates are log-
normally distributed then corresponding 5% and 95% confidence limits are provided.

Value SDLN 5% 95%
Kpe (h

−1) 0.382 0.49 0.169 0.860
Kpt (h

−1) 0.523 0.80 0.140 1.950
Ktp (h−1) 0.196 0.48 0.090 0.430
vP (l/kg) 1.30 0.57 0.508 3.323

4.1. Pharmacokinetic model

Data were provided from a preclinical oncology study at AstraZeneca for
the plasma concentration for four mice over a period of 24 hours following
intravenous administration of 24.75 µmol per kilogram (body weight) of do-
cetaxel. Blood samples were taken at times 1, 2, 4, 6 and 24 hours after
administration. The model was fit to the mean of the plasma concentrations
at each time point with the standard errors for the data used as the weights,
σj, for the sum of squares. One of the individual mouse plasma concentration
time series exhibited a second peak at 4 minutes of almost equal magnitude
to the first peak, which resulted in a skew of the respective mean and poor
estimation of the apparent plasma volume, vP . Since the data did not sup-
port a detailed analysis of the pharmacokinetics and possible “double peak”
phenomenum the second peak was omitted from the calculation of the mean
for fitting.

The three unknown rate constants and the apparent volume for plasma
were estimated using these averaged data (see Table 1). The fitted model re-
sponse is shown with the corresponding experimental data in Figure 2. There
is a reasonable visual correspondence between model and data in Figure 2.
Due to the sparseness of the sampling for the data all of the parameters
have estimated standard deviations of their natural logarithms (SDLN)—a
measure of the accuracy of estimation—above 0.48. From the estimated cor-
relation matrix there is seen to be strong correlation between Kpe and Kpt

(0.93), Kpe and vP (-0.99), Kpt and vP (-0.95), and moderate correlation be-
tween Kpt and Ktp (0.77). It is worth noting that the purpose here is not
to determine robust estimates for the model parameters but to predict the
average plasma concentration time course in a population of mice, since it
is this latter response that is necessary in order to determine the docetaxel
pharmacodynamics.
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Figure 2: Fitted two compartment pharmacokinetic model response (solid line) together
with corresponding experimental data (squares) and corresponding single compartment fit
(dashed line). Error bars indicate plus/minus one standard error (calculated from data).
Single circle point corresponds to second peak data value that was omitted from averaged
data used in fitting.

In Figure 2 a corresponding one compartment fit is provided for compar-
ison and to confirm the multi-phasic nature of docetaxel murine PK. The
fit suggests a terminal half-life of 9.5 h, which is only slightly higher than
that observed by Bradshaw-Pierce et al. [5] (8.6 h) for comparable doses
(20 mg/kg) in mice. The large apparent plasma volume, compared to a
physical volume of around 0.06 l/kg [20], suggests high protein binding that
is supported by the literature [4, 13] (76–89% and above 84%, respectively).

4.2. Tumour Model

Data were provided for tumour growth in twelve xenografted mice both in
the presence and absence of docetaxel (i.e., 12 animals in both the control and
drug groups). Data were collected from 648 hours after tumour implant until
720 hours after implant in the control arm of the study. In the drug arm data
were again collected from 648 hours after tumour implant until 1224 hours
after implant, with a single dose of 24.75 µmol per kilogram (body weight)
of docetaxel administered intravenously 672 hours after tumour implant. In
the control group one animal was removed from the study from a time of 648
hours after tumour implant (at time 1296 h) and a further four animals at
720 hours after implant (time 1368 h). It can be seen in Figure 3 that animal
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Table 2: Parameter estimates for tumour growth model with no angiogenesis (I No hypoxic
proliferation; II With hypoxic proliferation). Estimated SDLNs given in brackets.

I II
kG (h−1) 2.52×10−3 (0.08) 2.52×10−3 (0.08)
kP (h−1) 0 1.11×10−3 (NWD)
kDN (h−1) 5.27×10+3 (NWD) 5.26×10+3 (NWD)
kN (h−1) 2.11×10+4 (NWD) 2.10×10+4 (NWD)
kA (h−1) 0 0
kDA (h−1) 1.65×10−3 (0.18) 1.65×10−3 (0.18)
kK (h−1) 1.64×10−2 (0.10) 1.64×10−2 (0.10)
IC50 (µM) 7.23×10−5 (NWD) 7.23×10−5 (NWD)
Rt(0) (mm) 4.25×10−1 (0.01) 4.25×10−1 (0.01)
tS (mm) 6.28×10−1 (0.02) 6.28×10−1 (0.02)

Vn(0) (mm3) 3.35×10−2 (NWD) 3.35×10−2 (NWD)
RSS 9.8860 9.8860

dropout from the study results in apparently strange dynamics towards the
end of the control group experiment. In the drug cohort, one animal was
removed from the study from a time of 1152 hours after tumour implant (time
1800 h). To enable the most robust estimation of growth parameters both the
control and drug versions of the tumour model were fit simultaneously with
appropriate parameters common to both. The fitted model response is shown
with the corresponding experimental data in Figure 3 while the estimates for
the unknown parameters are provided in Table 2. Since the model in the
absence of angiogenesis was found to be structurally globally identifiable this
version of the model was fit to the data, both with the assumption that
hypoxic cells profilerate (kP 6= 0) and without this assumption (kP = 0).

Both the control and drug-effect responses capture the essential dynamics
in Figure 3, but some care must be exercised when interpreting the latter
time points for the control cases due to loss of subjects from the study. For
the drug-effect data it can be seen that the latter time points also exhibit
the greatest variability in responses and hence corresponding standard errors.
The two versions of the tumour model fit equally well, both in terms of visual
fit to data, residual sum of squares (RSS) and estimated SDLNs. Comparison
of the two model fits suggests that true discrimination between them requires
histology data to improve sensitivity of parameter estimates and fits. It
is noticeable from the estimated correlation matrix for the well-determined
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Figure 3: Fitted tumour growth model (I: kA = kP = 0) response in the absence of agent
(dashed line) and in presence of agent (solid line) together with corresponding experimental
data (circles and squares, respectively). Error bars indicate plus/minus one standard error
(calculated from the data).

parameters (those in Table 2 with a numerical SDLN) that the growth rate
constant parameter, kG, is highly correlated with kDA (-0.75) and kK (0.96)
for both fits. Therefore it appears that the tumour growth aspects of the
model and data are dominating the fitting process. In addition, the well-
determined parameters that relate to the effect of the agent, kDA and kK ,
are also highly correlated (-0.82).

A graphical investigation of the residuals from the fits are shown in Fig-
ure 4. A plot of the residuals from the fits versus model prediction (Fig-
ure 4(a)) does not seem to indicate any systematic errors, while a plot of
residual ri+1 versus ri (Figure 4(b)) does not seem to indicate autocorrelation
between residuals. Finally a normal probability plot (Figure 4(c)) provides
evidence that the residuals are normally distributed providing partial justifi-
cation for the least squares approach to parameter fitting used in this paper.
Results for the model that includes hypoxic proliferation are comparable.

Fits of the full model, including angiogenesis, both with and without
proliferation of hypoxic cells are comparable in terms of RSS with the ver-
sions excluding angiogenesis. However, analysis of the identifiability of these
models is still a subject of investigation.
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Figure 4: Analysis of weighted residuals for fitted tumour growth model (I: kA = kP = 0)
where in (a) and (b) ‘x’ denote residuals from control case and ‘+’ from drug case.
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4.3. Sensitivity to PK fits

The nested nature of the full model, in the sense that the tumour model
fits depend on the predicted output of the fitted PK model, means that the
behaviour of the fitted model depends on the robustness of the PK model fits.
To assess the impact of the uncertainty of the PK model fits on the observed
behaviour of the full model a simulation study was performed. In this study
2000 random parameter vectors for the PK model were generated where
it was assumed that the fitted values represent the means and the SDLNs
the standard deviations of corresponding lognormal distributions. The PK
model was simulated for each of the 2000 parameter vectors and only those
vectors producing an output within one standard error (calculated from the
data) of each of the experimental data points was retained (52 in total; see
Figure 5(a)).

The full model was simulated with the fitted values from Table 2 (with
kA = kP = 0) and the PK model parameters taking those from the 52
sets generated previously. The simulated output of the model is shown in
Figure 5(b). These results show that as time progresses the uncertainty
in the PK model fits results is quite widely varying behaviour for the full
model. Considering Figure 5(a) it is seen that it is in the early stages where
the greatest variability is seen, which suggests that the full tumour fits are
relatively sensitive to these early kinetics. Although more frequent samples,
with some earlier in the experiment, might improve the robustness of the
PK model fits it should be noted that docetaxel PK exhibits wide inter-
subject variability. A population approach, using nonlinear mixed effects,
might provide a more robust approach. It is perhaps also worth noting that
a number of the parameters in the full model were not well determined by
the data and so it is not clear whether the sensitivity of the model with
respect to the drug plasma concentration is a true feature of the model.
Estimation problems could be improved for the full model using data that
include histology information.

5. Conclusions

A tumour growth model has been considered that includes the effect
of a cytotoxic agent. The model can be readily extended to include other
pharmacodynamic effects such as anti-angiogenic and anti-proliferative ones.
The intravenous pharmacokinetics of docetaxel were modelled using a linear
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Figure 5: An analysis of the sensitivity of the tumour volume prediction of the fitted full
model (I: kA = kP = 0) with respect to the uncertainty of the PK model fits. Experimental
data (with error bars indicating plus/minus one standard error) are also shown as grey
points.

two-compartment model, while the pharmacodynamic effects were modelled
using a simple Michaelis-Menten type Imax equation.

The tumour growth model includes important histological biomarkers and
essential spatial characteristics in a relatively simple mechanistic manner.
Thus the model attempts to strike an important balance between applicabil-
ity to data and predictive capacity.

The pharmacokinetic model was determined to be structurally globally
identifiable, while the drug-free tumour growth model, in the absence of
angiogenesis, was shown to be structurally globally identifiable provided data
are available for both the exponential growth phase (Rt < tS) and continued
growth phase (Rt ≥ tS). For the drug-effect tumour growth model, provided
the growth parameters are known to be uniquely determined then exponential
growth phase data are sufficient to uniquely determine the additional drug-
related parameters.

The models were found to give good fits to experimental data from intra-
venous pharmacokinetic studies, xenografted tumour growth and drug-effect
xenografted tumour growth studies. In order to maximise the applicability of
the full model proposed in this paper further studies are necessary in which
additional biomarker data are collected.
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Appendix A. Example structural identifiability analyses

Due to the symbolic nature of a structural identifiability analysis, and the
computational complexities that can arise from such an analysis, a computer
algebra system such as Maple (Waterloo Maple Inc) or Mathematica

(Wolfram Research) is an invaluable tool. To illustrate the use of different
symbolic software to perform a structural identifiability analysis Mathe-

matica is employed to implement the Taylor series approach and Maple

to implement the algebraic approach of Evans et al. [12]. All analyses were
performed using Maple (version 16.01) or Mathematica (version 8.01) on
a dual core (2 × 2.66 GHz) Windows XP PC with 4 GB memory.

Appendix A.1. Taylor series approach: PK model

The first stage in applying the Taylor series approach to perform a struc-
tural identifiability analysis is to define the system equations in Mathemat-

ica:

qP’[t_] := -(Kpe + Kpt) qP[t] + Ktp qT[t]

qT’[t_] := Kpt qP[t] - Ktp qT[t]

cP[t_] := qP[t] / vP

with corresponding initial conditions:

qP[0] = d ; qT[0] = 0 ;

The next stage is to determine a list, coeffs, of a number of the Taylor series
coefficients (in this case the first four):

y1 = D[y[t], t];

coeffs = y[t], y1 /. t -> 0;

y2 = D[y1, t];

coeffs = Union[coeffs, y2 /. t -> 0];

y3 = D[y2, t];

coeffs = Union[coeffs, y3 /. t -> 0];

Since the first coefficient (y(0, p) = d) is a known constant (the dose, d) it
is omitted from the computation. The code above successively differentiates
the output (using the D[ , ] operator) and sets t = 0 (via the substitution
/. t -> 0).

If p =
(

Kpe, Kpt, Ktp, vP
)T

denotes a parameter vector with identical out-
put then it must give rise to identical Taylor series coefficients. Therefore
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the next stage of the analysis is to set up equations, eqns, that equate co-
efficients of the Taylor series expansions of the outputs for p and p (coeffs
and coeffsPbar, respectively):

coeffsPbar = coeffs /. {Kpe->Kpeb,Kpt->Kptb,Ktp->Ktpb,vP->vPb};
eqns = coeffs - coeffsPbar ;

soln = Simplify[Solve[eqns == 0, { Kpeb, Kptb, Ktpb, vPb }]]

The list of solutions, soln, returned by Mathematica is a list of relations
that must hold between the components of the two parameter vectors p and
p. In particular, if these relations force p = p then the model is structural
globally identifiable. This situation is the case for this analysis where Math-

ematica returns the following list for soln:

{ { Kpeb -> Kpe, Kptb -> Kpt, Ktpb -> Ktp, vPb -> vP } }

It should be noted that if these relations do not force p = p then further
coefficients of the Taylor series must be considered (if computationally possi-
ble) or it must be established that enough coefficients have been considered
so that further coefficients will not yield any additional information.

Appendix A.2. Algebraic approach: Tumour growth (Phase I)

To implement the algebraic approach of Evans et al. [12] a slightly mod-
ified and updated version of the function outptEqn1 (here implemented as
iorel) and related subfunctions must be defined:

lieDer := proc (H, F, vars)

local V:

V := map( (a, b) -> diff(b, a) , vars, H):

DotProduct(Vector(F), Vector(V), conjugate = false)

end:

listLieDer := proc (H, F, k)

local L, i, tmp, N, vars:

L := [y[0]-H]: tmp := H :

N := nops(F);

vars := [seq(x[t], t = 1 .. N)];

for i to k do

tmp := lieDer(tmp, F, vars);

L := [op(L), y[i]-tmp]
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od;

end:

xlistLieDer := proc (H, F, k, uvars)

local L, i, f, h, tmp, N, var, vars, duvars:

N := nops(F);

f := F; h := H;

for var in uvars do

f := subs(var = var[0], f);

h := subs(var = var[0], h);

od;

duvars := [];

vars := [seq(x[t], t = 1 .. N)];

for var in uvars do

vars := [op(vars), seq(var[i], i = 0 .. 10)];

duvars := [op(duvars), seq(var[i], i = 1 .. 11)];

od;

f := [op(f), op(duvars)];

L := [y[0]-h]; tmp := h;

i := 1;

for i to k do

tmp := lieDer(tmp, f, vars);

L := [op(L), y[i]-tmp];

od;

end:

iorel := proc (f, h, uvars)

local n, L;

n := nops(f);

if _params[’uvars’] = NULL then

L := listLieDer(h, f, n)

else

L := xlistLieDer(h, f, n, uvars)

fi;

L := map(expand, numer(L));

UnivariatePolynomial(y[n], L, [seq(x[t], t = 1 .. n), y[n]])

end:
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The command iorel determines the input/output equation using the sub-
command listLieDer (or xlistLieDer in the case with inputs) that creates
a list of the first n Lie derivatives of the output function along the vector field
defined by the right-hand side of the system equations (calculated using the
subfunction lieDer). Since the above functions use short command names
the LinearAlgebra and Groebner packages must be loaded first. Once these
packages and the above functions have been defined in Maple then the sys-
tem equations can also be defined (though note that components of the state
are denoted by x) and the output equation, outptEqn, determined:

F := [k[G]*(x[1]-x[2])-k[DN]*x[2], -k[DN]*x[2]]:

H := x[1]:

outptEqn := iorel(F, H)

The next stage in the analysis is to create a list of the coefficients of the
output equation:

uA := {coeffs(collect(outptEqn,[y[0],y[1],y[2]],’distributed’),
[y[0], y[1], y[2]]) }

In a similar fashion to the Taylor series approach an alternative parameter
vector is defined (by adding a ‘b’ after the K, or v, of the parameter name)
that has the same output and a corresponding list of coefficients constructed:

B := eval(uA, [k[G] = kb[G], k[DN] = kb[DN]])

Since these coefficients (uA and uB) correspond to the same output they
must be equal. Therefore, equations equating these coefficients are created
and solved as follows:

eqns := convert(uA, list) - convert(uB, list):

solve(eqns, [kb[G], kb[DN]])

This result shows that the parameters kG and kDN are identical for any
parameter vectors with identical behaviour (they are globally identifiable).
To complete the analysis it only remains to consider uniqueness of the initial
conditions of the output equation (y(0, p) and ẏ(0, p)):

ics := [ v[T0] - vb[T0], k[G]*(v[T0] - vb[T0]) - k[DN]*vb[T0]

- k[G]*(vb[T0] - vb[T0]) + k[DN]*vb[T0]]:

solve(ics, [vb[T0], vb[N0]])

The result shows that the initial conditions are also unique for a given output
(i.e., globally identifiable). In more complicated examples it is often more
useful to solve the coefficients and initial conditions simultaneously.
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