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Permutation methods can provide exact control of false positives and allow the use of non-standard statistics,
making only weak assumptions about the data. With the availability of fast and inexpensive computing, their
main limitation would be some lack of flexibility to work with arbitrary experimental designs. In this paper we
report on results on approximate permutation methods that are more flexible with respect to the experimental
design and nuisance variables, and conduct detailed simulations to identify the best method for settings that are
typical for imaging research scenarios. We present a generic framework for permutation inference for complex
general linear models (GLMs) when the errors are exchangeable and/or have a symmetric distribution, and
show that, even in the presence of nuisance effects, these permutation inferences are powerful while providing
excellent control of false positives in a wide range of common and relevant imaging research scenarios. We also
demonstrate how the inference on GLM parameters, originally intended for independent data, can be used in
certain special but useful cases in which independence is violated. Detailed examples of common neuroimaging
applications are provided, as well as a complete algorithm – the “randomise” algorithm – for permutation infer-
ence with the GLM.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
Introduction

The field of neuroimaging has continuously expanded to encompass
an ever growing variety of experimentalmethods, each of themproduc-
ing images that have different physical and biological properties, aswell
as different information content. Despite the variety, most of the strate-
gies for statistical analysis can be formulated as a general linear model
(GLM) (Christensen, 2002; Scheffé, 1959; Searle, 1971). The common
strategy is to construct a plausible explanatory model for the observed
data, estimate the parameters of this model, and compute a suitable
statistic for hypothesis testing on some or all of these parameters. The
rejection or acceptance of a hypothesis depends on the probability of
finding, due to chance alone, a statistic at least as extreme as the one
observed. If the distribution of the statistic under the null hypothesis
is known, such probability can be ascertained directly. In order to be
valid, these parametric tests rely on a number of assumptions under
which such distribution arises and can be recovered asymptotically.
l MRI of the Brain, University of
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Strategies that may be used when these assumptions are not guaran-
teed to be met include the use of non-parametric tests.

Permutation tests are a class of non-parametric methods. They were
pioneered by Fisher (1935a) and Pitman (1937a,b, 1938). Fisher dem-
onstrated that the null hypothesis could be tested simply by observing,
after permuting observations, how often the difference between means
would exceed the difference found without permutation, and that for
such test, no normality would be required. Pitman provided the first
complete mathematical framework for permutation methods, although
similar ideas, based on actually repeating an experiment many times
with the experimental conditions being permuted, can be found even
earlier (Peirce and Jastrow, 1884). Important theoretical and practical
advances have been ongoing in the past decades (Edgington, 1995;
Good, 2002, 2005; Kempthorne, 1955; Lehmann and Stein, 1949;
Pearson, 1937; Pesarin and Salmaso, 2010; Scheffé, 1943; Westfall and
Troendle, 2008), and usage only became practical after the availability
sufficient computing power (Efron, 1979).

In neuroimaging, permutation methods were first proposed by Blair
et al. (1994) for electroencephalography, and later by Holmes et al.
(1996) for positron-emission tomography, with the objective of allowing
inferences while taking into account the multiplicity of tests. These early
permutation approaches already accounted for the spatial smoothness of
the image data. Arndt et al. (1996) proposed a permutation scheme for
der the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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testing the omnibus hypothesis of whether two sets of images would dif-
fer. Structuralmagnetic resonance imaging (MRI) datawere considered by
Bullmore et al. (1999), who developed methods for omnibus, voxel and
cluster-mass inference, controlling the expected number of false
positives.

Single subject experiments from functional magnetic resonance im-
aging (FMRI) presents a challenge to permutation methods, as serial au-
tocorrelation in the time series violates the fundamental assumption
needed for permutation, that of exchangeability (discussed below).
Even though some early work did not fully account for autocorrelation
(Belmonte and Yurgelun-Todd, 2001), other methods that accommo-
dated the temporally correlated nature of the FMRI signal and noise
were developed (Brammer et al., 1997; Breakspear et al., 2004;
Bullmore et al., 1996, 2001; Laird et al., 2004; Locascio et al., 1997).
Some of these methods use a single reference distribution constructed
by pooling permutation statistics over space from a small number of
randompermutations, under the (untenable and often invalid) assump-
tion of spatial homogeneity of distributions.

Nichols and Holmes (2002) provided a practical description of
permutation methods for PET and multi-subject FMRI studies, but noted
the challenges posed by nuisance variables. Permutation inference is
grounded on exchangeability under the null hypothesis, that data can
be permuted (exchanged) without affecting its joint distribution. How-
ever, if a nuisance effect is present in themodel, the data cannot be con-
sidered exchangeable even under the null hypothesis. For example, if
onewanted to test for sex differences while controlling for the linear ef-
fect of age, the null hypothesis is “male mean equals female mean”,
while allowing age differences; the problem is that, even when there
is no sex effect, a possible age effect may be present, e.g., younger and
older individuals being different, then the data are not directly ex-
changeable under this null hypothesis. Another case where this arises
is in factorial experiments, where one factor is to be tested in the pres-
ence of another, orwhere their interaction is to be tested in the presence
of main effects of either or both. Although permutation strategies for
factorial experiments in neuroimaging were considered by Suckling
and Bullmore (2004), a more complete general framework to account
for nuisance variables is still missing.

In this paperwe review the statistical literature for the GLMwith arbi-
trary designs and contrasts, emphasising useful aspects, yet that have
not been considered for neuroimaging, unify this diverse set of results
into a single permutation strategy and a single generalised statistic, pres-
ent implementation strategies for efficient computation and provide a
complete algorithm, conduct detailed simulations and evaluations in
various settings, and identify certain methods that generally outper-
forms others.Wewill not consider intrasubject (timeseries) FMRI data, fo-
cusing instead onmodelling data with independent observations or sets
of non-independent observations from independent subjects. We give
examples of applications to common designs and discuss how these
methods, originally intended for independent data, can in special cases
be extended, e.g., to repeated measurements and longitudinal designs.

Theory

Model and notation

At each spatial point (voxel, vertex or face) of an image representa-
tion of the brain, a general linear model (Searle, 1971) can be formulat-
ed and expressed as:

Y ¼ Mψþ ϵ ð1Þ

where Y is the N × 1 vector of observed data,1 M is the full-rank N × r
design matrix that includes all effects of interest as well as all modelled
1 While we focus on univariate data, the general principles presented can be applied to
multivariate linear models.
nuisance effects, ψ is the r × 1 vector of r regression coefficients, and ϵ is
the N × 1 vector of random errors. In permutation tests, the errors
are not assumed to follow a normal distribution, although some distri-
butional assumptions are needed, as detailed below. Estimates for the
regression coefficients can be computed as ψ̂ ¼ MþY, where the super-
script (+) denotes the Moore–Penrose pseudo-inverse. Our interest is
to test the null hypothesis that an arbitrary combination (contrast) of
some or all of these parameters is equal to zero, i.e., H0 : C′ψ = 0,
where C is a r × s full-rank matrix of s contrasts, 1 ≤ s ≤ r.

For the discussion that follows, it is useful to consider a transforma-
tion of the model in Eq. (1) into a partitioned one:

Y ¼ Xβ þ Zγ þ ϵ ð2Þ

whereX is thematrixwith regressors of interest, Z is thematrixwith nui-
sance regressors, and β and γ are the vectors of regression coefficients.
Even though such partitioning is not unique, it can be defined in terms
of the contrast C in a way that inference on β is equivalent to inference
on C′ψ, as described in Appendix A. As the partitioning depends on C, if
more than one contrast is tested, X and Z change for each of them.

As the models expressed in Eqs. (1) and (2) are equivalent, their re-
siduals are the same and can be obtained as ϵ̂ ¼ RMY, where RM = I −
HM is the residual-formingmatrix,HM =MM+ is the projection (“hat”)
matrix, and I is the N × N identity matrix. The residuals due to the
nuisance alone are ϵ̂Z ¼ RZY, whereRZ= I−HZ, andHZ=ZZ+. For per-
mutation methods, an important detail of the linear model is the non-
independence of residuals, even when errors ϵ are independent and
have constant variance, a fact that contributes to render these methods
approximately exact. For example, in that setting E Var ϵ̂ZÞÞ ¼ RZ≠Iðð .
The commonly used F statistic can be computed as (Christensen, 2002):

F ¼
ψ̂′C C′ M′M

� �−1
C

� �−1
C′ψ̂

rank Cð Þ =
ϵ̂′ ϵ̂

N−rank Mð Þ

¼
β̂′ X′X
� �

β̂

rank Cð Þ =
ϵ̂′ ϵ̂

N−rank Xð Þ−rank Zð Þ :

ð3Þ

When rank Cð Þ ¼ 1; β̂ is a scalar and the Student's t statistic can be

expressed as a function of F as t ¼ sign β̂
� � ffiffiffiffi

F
p

.

Choice of the statistic
In non-parametric settingswe are not constrained to the F or t statis-

tics and, in principle, any statistic where large values reflect evidence
against the null hypothesis could be used. This includes regression coef-
ficients or descriptive statistics, such as differences between medians,
trimmed means or ranks of observations (Ernst, 2004). However, the
statistic should be chosen such that it does not depend on the scale of
measurement or on any unknown parameter. The regression coeffi-
cients, for instance, whose variance depends both on the error variance
and on the collinearity of that regressor with the others, are not in prac-
tice a good choice, as certain permutation schemes alter the collinearity
among regressors (Kennedy and Cade, 1996). Specifically with respect
to brain imaging, the correction formultiple testing (discussed later) re-
quires that the statistic has a distribution that is spatially homogeneous,
something that regression coefficients cannot provide. In parametric
settings, statistics that are independent of any unknown parameters
are called pivotal statistics. Statistics that are pivotal or asymptotically
pivotal are appropriate and facilitate the equivalence of the tests across
the brain, and their advantages are well established for related non-
parametric methods (Hall and Wilson, 1991; Westfall and Young,
1993). Examples of such pivotal statistics include the Student's t, the F
ratio, the Pearson's correlation coefficient (often known as r), the coef-
ficient of determination (R2), as well as most other statistics used to
construct confidence intervals and to compute p-values in parametric
tests. We will return to the matter of pivotality when discussing
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Fig. 1. Examples of a permutation matrix (a), of a sign flippingmatrix (b), and of a matrix
that does permutation and sign flipping (c). Pre-multiplication by a permutation matrix
shuffles the order of the data, whereas by a sign flipping matrix changes the sign of a
random subset of data points.
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exchangeability blocks, and the choice of an appropriate statistic for
these cases.

p-Values
Regardless of the choice of the test statistic, p-values offer a common

measure of evidence against the null hypothesis. For a certain test statis-
tic T, which can be any of those discussed above, and a particular ob-
served value T0 of this statistic after the experiment has been
conducted, the p-value is the probability of observing, by chance, a
test statistic equal or larger than the one computed with the observed
values, i.e., P(T ≥ T0|H0). Although here we only consider one-sided
tests, where evidence against H0 corresponds to larger values of T0,
two-sided or negative-valued tests and their p-values can be similarly
defined. In parametric settings, under a number of assumptions, the p-
values can be obtained by referring to the theoretical distribution of
the chosen statistic (such as the F distribution), either through a
known formula, or using tabulated values. In non-parametric settings,
these assumptions are avoided. Instead, the data are randomly shuffled,
many times, in amanner consistentwith the null hypothesis. Themodel
is fitted repeatedly once for every shuffle, and for each fit a new realisa-
tion of the statistic, Tj⁎, is computed, being j a permutation index. An em-
pirical distribution of T⁎ under the null hypothesis is constructed, and

from this null distribution a p-value is computed as 1
J∑ j I T⁎

j ≥T0

� �
,

where J is the number of shufflings performed, and I(∙) is the indicator
function. From this it can be seen that the non-parametric p-values
are discrete, with each possible p-value being a multiple of 1/J. It is im-
portant to note that the permutation distribution should include the ob-
served statistic without permutation (Edgington, 1969; Phipson and
Smyth, 2010), and thus the smallest possible p-value is 1/J, not zero.

Permutations and exchangeability

Perhaps the most important aspect of permutation tests is the man-
ner in which data are shuffled under the null hypothesis. It is the null
hypothesis, together with assumptions about exchangeability, which
determines the permutation strategy. Let the j-th permutation be
expressed by Pj, a N × N permutation matrix, a matrix that has all ele-
ments being either 0 or 1, each row and column having exactly one 1
(Fig. 1a). Pre-multiplication of a matrix by Pj permutes its rows. We de-
note P ¼ P j

� �
the set of all permutation matrices under consideration,

indexed by the subscript j. We similarly define a sign flipping matrix Sj,
a N × N diagonal matrix whose non-zero elements consist only of +1
or −1 (Fig. 1b). Pre-multiplication of a matrix by Sj implements a set
of sign flips for each row. Likewise, S ¼ S j

� �
denotes the set of all sign

flipping matrices under consideration. We consider also both schemes
together, whereB j ¼ P j′S j″ implements sign flips followed by permuta-

tion; the set of all possible such transformations is denoted as B = {Bj}.
Throughout the paper, we use generic terms as shuffling or rearrange-
ment whenever the distinction between permutation, sign flipping
or combined permutation with sign flipping is not pertinent. Finally,

let β̂
�
j and Tj⁎, respectively, be the estimated regression coefficients

and the computed statistic for the shuffling j.
The essential assumption of permutationmethods is that, for a given

set of variables, their joint probability distribution does not change if they
are rearranged. This can be expressed in terms of exchangeable errors or
independent and symmetric errors, each of these weakening different
assumptions when compared to parametric methods.

Exchangeable errors (EE) is the traditional permutation requirement
(Good, 2005). The formal statement is that, for any permutation P j∈P,
ϵdP jϵ, where the symbol d denotes equality of distributions. In other
words, the errors are considered exchangeable if their joint distribution
is invariant with respect to permutation. Exchangeability is similar to,
yet more general than, independence, as exchangeable errors can have
all-equal and homogeneous dependence. Relative to the common
parametric assumptions of independent, normally and identically dis-
tributed (iid) errors, EE relaxes two aspects. First, normality is no longer
assumed, although identical distributions are required. Second, the
independence assumption isweakened slightly to allow exchangeability
when the observations are not independent, but their joint distribution
ismaintained after permutation.While exchangeability is a general con-
dition that applies to any distribution, we note that the multivariate
normal distribution is indeed exchangeable if all off-diagonal elements
of the covariance matrix are identical to each other (not necessarily
equal to zero) and all the diagonal elements are also identical to each
other. In parametric settings, such dependence structure is often re-
ferred to as compound symmetry.

Independent and symmetric errors (ISE) can be considered for
measurements that arise, for instance, from differences between two
groups if the variances are not assumed to be the same. The formal
statement for permutation under ISE is that for any sign flipping matrix
S j∈S; ϵd S jϵ, that is, the joint distribution of the error terms is invariant
with respect to sign flipping. Relative to the parametric assumptions of
independent, normally and identically distributed errors, ISE relaxes
normality, although symmetry (i.e., non-skewness) of distributions is

image of Fig.�1


Table 2
A number of methods are available to obtain parameter estimates and construct a
reference distribution in the presence of nuisance variables.

Method Model

Draper–Stonemana Y = PXβ + Zγ + ϵ
Still–Whiteb PRZY = Xβ + ϵ
Freedman–Lanec (PRZ + HZ)Y = Xβ + Zγ + ϵ
Manlyd PY = Xβ + Zγ + ϵ
ter Braake (PRM + HM)Y = Xβ + Zγ + ϵ
Kennedyf PRZY = RZXβ + ϵ
Huh–Jhung PQ′RZY = Q′RZXβ + ϵ
Smithh Y = PRZXβ + Zγ + ϵ
Parametrici Y = Xβ + Zγ +ϵ, ϵ ∼ N(0, σ2I)

a Draper and Stoneman (1966). Thismethodwas called “Shuffle Z” by (Kennedy, 1995),
and using the same notation adopted here, it would be called “Shuffle X”.

b Gail et al. (1988); Levin and Robbins (1983); Still and White (1981). Still and White
considered the special ANOVA case in which Z are the main effects and X the interaction.
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required. Independence is also required to allow sign flipping of one
observation without perturbing others.

The choice between EE and ISE depends on the knowledge of, or as-
sumptions about, the error terms. Although the EE does not require sym-
metry for the distribution of the error terms, it requires that the
variances and covariances of the error terms are all equal, or have a
structure that is compatible with the definition of exchangeability
blocks (discussed below). While the ISE assumption has yet more strin-
gent requirements, if both EE and ISE are plausible and available for a
givenmodel, permutations and sign flippings can be performed togeth-
er, increasing the number of possible rearrangements, a feature particu-
larly useful for studieswith small sample sizes. The formal statement for
shuffling under both EE and ISE is that, as with the previous cases, for any
matrix B j∈β;ϵdB jϵ, that is, the joint distribution of the error terms re-
mains unchanged under both permutation and sign flipping. A summa-
ry of the properties discussed thus far and somebenefits of permutation
methods are shown in Table 1.

There are yet other important aspects related to exchangeability. The
experimental design may dictate blocks of observations that are jointly
exchangeable, allowing data to be permuted within block or, alterna-
tively, that the blocks may themselves be exchangeable as a whole.
This is the case, for instance, for designs that involve multiple observa-
tions from each subject. While permutation methods generally do not
easily dealwith non-independent data, the definition of these exchange-
ability blocks (EB) allows these special cases of well structured depen-
dence to be accommodated. Even though the EBs determine how
the data shufflings are performed, they should not be confused with
variance groups (VG), i.e., groups of observations that are known or
assumed to have similar variances, which can be pooled for estimation
and computation of the statistic. Variance groups need to be compatible
with, yet not necessarily identical to, the exchangeability blocks, as
discussed in Restricted exchangeability.

Unrestricted exchangeability
In the absence of nuisance variables, themodel reduces toY=Xβ+ ϵ,

and under the null hypothesisH0 : β=0, the data are pure error, Y= ϵ.
Thus the EE or ISE assumptions on the error (presented above) justify
freely permuting or sign flipping the data under H0. It is equivalent,
however, to alter the design instead of the data. For example, for a
nuisance-free design,

PY ¼ Xβ þ ϵ⇔Y ¼ P′Xβ þ P′ϵ ð4Þ

since permutation matrices P are orthogonal; the same holds for sign
flipping matrices S. This is an important computational consideration
as altering the design is much less burdensome than altering the
Table 1
Compared with parametric methods, permutation tests relax a number of assumptions
and can be used in a wider variety of situations. Some of these assumptions can be
further relaxed with the definition of exchangeability blocks.

Assumptions EE ISE Parametric

With respect to the dependence structure between error terms:
Independent ✓ ✓ ✓

Non-independent, exchangeable ✓ ✗ ✗

Non-independent, non-exchangeable ✗ ✗ ✗

With respect to the distributions of the error terms:
Normal, identical ✓ ✓ ✓

Symmetrical, identical ✓ ✓ ✗

Symmetrical, non-identical ✗ ✓ ✗

Skewed, identical ✓ ✗ ✗

Skewed, non-identical ✗ ✗ ✗

✓Can be useddirectly if the assumptions regarding dependence structure and distribution
of the error terms are both met.
✗Cannot be used directly, or can be used in particular cases.
image data. The errors ϵ are not observed and thus never directly al-
tered; going forwardwewill suppress any notation indicating permuta-
tion or sign flipping of the errors.

In the presence of nuisance variables (Eq. 2), however, the problem
is more complex. If the nuisance coefficients γ were somehow known,
an exact permutation test would be available:

Y−Zγ ¼ PXβ þ ϵ: ð5Þ

The perfectly adjusted data Y − Zγ are then pure error under H0

and inference could proceed as above. In practice, the nuisance coeffi-
cients have to be estimated and the adjusted data will not behave as ϵ.
An obvious solution would be to use the nuisance-only residuals ϵ̂Z as
the adjusted data. However, as noted above, residuals induce
dependence and any EE or ISE assumptions on ϵ will not be conveyed to
ϵ̂Z.

A number of approaches have been proposed to produce approxi-
mate p-values in these cases (Beaton, 1978; Brown and Maritz, 1982;
Draper and Stoneman, 1966; Edgington, 1995; Freedman and Lane,
1983; Gail et al., 1988; Huh and Jhun, 2001; Jung et al., 2006;
Kennedy, 1995; Kherad-Pajouh and Renaud, 2010; Levin and Robbins,
1983; Manly, 2007; Oja, 1987; Still and White, 1981; ter Braak, 1992;
Welch, 1990). We present these methods in a common notation with
detailed annotation in Table 2. While a number of authors have made
comparisons between some of these methods (Anderson and
Legendre, 1999; Anderson and Robinson, 2001; Anderson and ter
Braak, 2003; Dekker et al., 2007; Gonzalez and Manly, 1998; Kennedy,
1995; Kennedy and Cade, 1996; Nichols et al., 2008; O'Gorman, 2005;
c Freedman and Lane (1983).
d Manly (1986); Manly (2007).
e ter Braak (1992). The null distribution for this method considers β̂

�
j ¼ β̂, i.e., the

permutation happens under the alternative hypothesis, rather than the null.
f Kennedy (1995); Kennedy and Cade (1996). This method was referred to as

“Residualize both Y and Z” in the original publication, and using the same notation
adopted here, it would be called “Residualize both Y and X”.

g Huh and Jhun (2001); Jung et al. (2006); Kherad-Pajouh and Renaud (2010).Q is a N′×
N′ matrix, where N′ is the rank of RZ. Q is computed through Schur decomposition of RZ,
such that RZ = QQ′ and IN′�N′ ¼ Q ′Q . For this method, P is N′ × N′. From the methods
in the table, this is the only that cannot be used directly under restricted exchangeability,
as the block structure is not preserved.

h The Smith method consists of orthogonalization of Xwith respect to Z. In the permu-
tation and multiple regression literature, this method was suggested by a referee of
O'Gorman (2005), and later presented by Nichols et al. (2008) and discussed by Ridgway
(2009).

i The parametric method does not use permutations, being instead based on distribu-
tional assumptions.
For all themethods, the left side of the equations contains the data (regressand), the right
side the regressors and error terms. The unpermutedmodels can be obtained by replacing
P for I. Even for the unpermuted models, and even if X and Z are orthogonal, not all these
methods produce the same error terms ϵ. This is the case, for instance, of the Kennedy and
Huh–Jhunmethods. Under orthogonality between X and Z, some regression methods are
equivalent to each other.
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Ridgway, 2009), they often only approached particular cases, did not
consider the possibility of permutation of blocks of observations, did
not use full matrix notation as more common in neuroimaging litera-
ture, and often did not consider implementation complexities due to
the large size of imaging datasets. In this section we focus on the Freed-
man–Lane and the Smith methods, which, as we show in Permutation
strategies, produce the best results in terms of control over error rates
and power.

The Freedman–Lane procedure (Freedman and Lane, 1983) can be
performed through the following steps:

1. Regress Y against the full model that contains both the effects of
interest and the nuisance variables, i.e. Y = Xβ + Zγ + ϵ. Use the
estimated parameters β̂ to compute the statistic of interest, and call
this statistic T0.

2. RegressY against a reducedmodel that contains only the nuisance ef-
fects, i.e. Y= Zγ+ ϵZ, obtaining estimated parameters γ̂ and estimat-
ed residuals ϵ̂Z.

3. Compute a set of permuted data Yj
∗. This is done by pre-multiplying

the residuals from the reduced model produced in the previous
step, ϵ̂Z, by a permutation matrix, Pj, then adding back the estimated
nuisance effects, i.e. Y�

j ¼ P jϵ̂Z þ Zγ̂.
4. Regress the permuted data Yj

∗ against the full model, i.e. Yj
∗ = Xβ +

Zγ+ ϵ, and use the estimated β̂
�
j to compute the statistic of interest.

Call this statistic Tj∗.
5. Repeat Steps 2–4many times to build the reference distribution of T⁎

under the null hypothesis.
6. Count howmany times Tj∗ was found to be equal to or larger than T0,

and divide the count by the number of permutations; the result is the
p-value.

For Steps 2 and 3, it is not necessary to actually fit the reducedmodel
at each point in the image. The permuted dataset can equivalently be
obtained as Yj

∗=(PjRZ+HZ)Y, which is particularly efficient for neuro-
imaging applications in the typical case of a single design matrix for all
image points, as the term PjRZ + HZ is then constant throughout the
image and so, needs to be computed just once. Moreover, the addition
of nuisance variables back in Step 3 is not strictly necessary, and the
model can be expressed simply as PjRZY= Xβ+ Zγ + ϵ, implying that
the permutations can actually be performed just by permuting the rows
of the residual-forming matrix RZ. The Freedman–Lane strategy is the
one used in the randomise algorithm, discussed in Appendix B.

The rationale for this permutationmethod is that, if the null hypoth-
esis is true, then β = 0, and so the residuals from the reduced model
with only nuisance variables, ϵZ, should not be different than the resid-
uals from the full model, ϵ, and can, therefore, be used to create the
reference distribution from which p-values can be obtained.

The Smith procedure consists of orthogonalising the regressors of
interest with respect to the nuisance variables. This is done by pre-
multiplication of X by the residual forming matrix due to Z, i.e., RZ,
then permuting this orthogonalised version of the regressors of interest.
The nuisance regressors remain in the model.2

For both the Freedman–Lane and the Smith procedures, if the er-
rors are independent and symmetric (ISE), the permutation matrices
Pj can be replaced for sign flipping matrices Sj. If both EE and ISE are
considered appropriate, then permutation and sign flipping can be
used concomitantly.
2 We name this method after Smith because, although orthogonalisation is a well
knownprocedure, it does not seem to have been proposed by anyone to address the issues
with permutation methods with the GLM until Smith and others presented it in a confer-
ence poster (Nichols et al., 2008). We also use the eponym to keep it consistent with
Ridgway (2009),and to keep the convention of calling the methods by the earliest author
that we could identify as the proponent for eachmethod, even though thismethod seems
to have been proposed by an anonymous referee of O'Gorman (2005).
Restricted exchangeability
Someexperimental designs involvemultiple observations from each

subject, or the subjectsmay come fromgroups thatmay possess charac-
teristics that may render their distributions not perfectly comparable.
Both situations violate exchangeability. However, when the depen-
dence between observations has a block structure, this structure can
be taken into account when permuting the model, restricting the set
of all otherwise possible permutations to only those that respect the re-
lationship between observations (Pesarin, 2001); observations that are
exchangeable only in some subsets of all possible permutations are said
weakly exchangeable (Good, 2002). The EE and ISE assumptions are then
asserted at the level of these exchangeability blocks, rather than for each
observation individually. The experimental hypothesis and the study
design determine how the EBs should be formed and how the permuta-
tion or sign flipping matrices should be constructed. Except Huh–Jhun,
the other methods in Table 2 can be applied at the block level as in
the unrestricted case.

Within-block exchangeability.Observations that share the same depen-
dence structure, either assumed or known in advance, can be used to
define EBs such that EE are asserted with respect to these blocks only,
and the empirical distribution is constructed by permuting exclu-
sively within block, as shown in Fig. 2. Once the blocks have been
defined, the regression of nuisance variables and the construction of
the reference distribution can follow strategies as Freedman–Lane
or Smith, as above. The ISE, when applicable, is transparent to this kind
of block structure, so that the sign flips occur as under unrestricted
exchangeability. For within-block exchangeability, in general each EB

corresponds to a VG for the computation of the test statistic. See
Appendix C for examples.

Whole-block exchangeability. Certain experimental hypotheses may
require the comparison of sets of observations to be treated as a
whole, being not exchangeable within set. Exchangeability blocks can
be constructed such that each include, in a consistent order, all the
observations pertaining to a given set and, differently than in within-
block exchangeability, here each block is exchanged with the others
on their entirety, while maintaining the order of observations within
block unaltered. For ISE, the signs are flipped for all observations within
block at once. Variance groups are not constructed one per block;
instead, each VG encompasses one or more observations per block, all
in the same order, e.g., one VG with the first observation of each block,
0 0 0
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0

00 0

0 0 0

0 −1
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Block 30 0 0

0 0 0 0
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Fig. 2. Left: Example of a permutation matrix that shuffles data within block only. The
blocks are not required to be of the same size. The elements outside the diagonal blocks
are always equal to zero, such that data cannot be swapped across blocks. Right: Example
of a sign flipping matrix. Differently than within-block permutation matrices, here sign
flipping matrices are transparent to the definitions of the blocks, such that the block def-
initions do not need to be taken into account, albeit their corresponding variance groups
are considered when computing the statistic.
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another with the second of each block and so on. Consequently, all
blocks must be of the same size, and all with their observations ordered
consistently, either for EE or for ISE. Examples of permutation and sign
flipping matrices for whole block permutation are shown in Fig. 3. See
Appendix C for examples.

Variance groups mismatching exchangeability blocks. While variance
groups can be defined implicitly, as above, according to whether
within- or whole-block permutation is to be performed, this is not
compulsory. In some cases the EBs are defined based on the non-
independence between observations, even if the variances across all
observations can still be assumed to be identical. See Appendix C for
an example using a paired t-test.

Choice of the configuration of exchangeability blocks. The choice between
whole-block and within-block is based on assumptions, or on knowl-
edge about the non-independence between the error terms, as well as
on the need to effectively break, at each permutation, the relationship
between the data and the regressors of interest. Whole-block can be
considered whenever the relationship within subsets of observations,
all of the same size, is not identical, but follows a pattern that repeats it-
self at each subset. Within-block exchangeability can be considered
when the relationship between all observations within a subset is iden-
tical, even if the subsets are not of the same size, or the relationship itself
is not the same for all of them. Whole-block and within-block are
straightforward ways to determine the set of valid permutations, but
are not the only possibility to determine them, nor are mutually exclu-
sive. Whole-block and within-block can be mixed with each other in
various levels of increasing complexity.

Choice of the statistic with exchangeability blocks. All the permutation
strategies discussed in the previous section can be used with virtually
any statistic, the choice resting on particular applications, and constitut-
ing a separate topic. The presence of restrictions on exchangeability and
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Fig. 3. (a) Example of a permutation matrix that shuffles whole blocks of data. The
blocks need to be of the same size. (b) Example of a sign flipping matrix that changes
the signs of the blocks as a whole. Both matrices can be constructed by the Kronecker
product (represented by the symbol ⊗) of a permutation or a sign flipping matrix (with
size determined by the number of blocks) and an identity matrix (with size determined
by the number of observations per block).
variance groups reduces the choices available, though. The statistics F
and t, described in Model and notation, are pivotal and follow known
distributions when, among other assumptions, the error terms for all
observations are identically distributed. Under these assumptions, all
the errors terms can be pooled to compute the residual sum of squares
(the term ϵ̂′ ϵ̂ in Eq. (3)) and so, the variance of the parameter estimates.
This forms the basis for parametric inference, and is also useful for non-
parametric tests. However, the presence of EBs can be incompatible
with the equality of distributions across all observations, with the unde-
sired consequence that pivotality is lost, as shown in the Results. Al-
though these statistics can still be used with permutation methods in
general, the lack of pivotality for imaging applications can cause prob-
lems for correction of multiple testing. When exchangeability blocks
and associated variance groups are present, a suitable statistic can be
computed as:

G ¼
ψ̂′C C′ M′WM

� �−1
C

� �−1
C′ψ̂

Λ � rank Cð Þ ð6Þ

whereW is aN× N diagonal weightingmatrix that has elementsWnn ¼
∑n′∈gn

Rn′n′

ϵ̂′gn ϵ̂gn
, where gn represents the variance group to which the n-th ob-

servation belongs, Rn′n′ is the n′-th diagonal element of the residual
forming matrix, and ϵ̂gn is the vector of residuals associated with the
same VG.3 In other words, each diagonal element of W is the reciprocal
of the estimated variance for their corresponding group. This variance
estimator is equivalent to the one proposed by Horn et al. (1975). The
remaining term in Eq. (6) is given by (Welch, 1951):

Λ ¼ 1þ 2 s−1ð Þ
s sþ 2ð Þ

X
g

1X
n∈g

Rnn

1−

X
n∈g

Wnn

trace Wð Þ

0
@

1
A2

ð7Þ

wheres ¼rank(C) as before. The statisticGprovides a generalisation of a
number of well known statistical tests, some of them summarised in
Table 3. When there is only one VG, variance estimates can be pooled
across all observations, resulting in Λ = 1 and so, G = F. If W = V−1,
the inverse of the true covariance matrix, G is the statistic for an F-test
in a weighted least squares model (WLS) (Christensen, 2002). If there
are multiple variance groups, G is equivalent to the v2 statistic for the
problemof testing themeans for these groups under no homoscedastic-
ity assumption, i.e., when the variances cannot be assumed to be all
equal (Welch, 1951).4 If, despite heteroscedasticity, Λ is replaced by 1,
G is equivalent to the James' statistic for the same problem (James,

1951). When rank(C) = 1, and if there are more than one VG, sign β̂
� �

ffiffiffiffi
G

p
is the well-known v statistic for the Behrens–Fisher problem

(Aspin and Welch, 1949; Fisher, 1935b); with only one VG present, the
same expression produces the Student's t statistic, as shown earlier. If
the definition of the blocks and variance groups is respected, all these
particular cases produce pivotal statistics, and the generalisation pro-
vided by G allows straightforward implementation.

Number of permutations

For a study with N observations, the maximum number of possible
permutations is N!, and the maximum number of possible sign flips is
2N. However, in the presence of B exchangeability blocks that are
3 Note that, for clarity, G is defined in Eq. (6) as a function of M, ψ and C in the
unpartitioned model. With the partitioning described in the Appendix A, each of these
variables is replaced by their equivalents in the partitioned, full model, i.e., [X Z], [β′ γ′]′
and [Is × s 0s × (r − s)]′ respectively.

4 If the errors are independent and normally distributed, yet not necessarily with equal
variances (i.e., Λ≠ 1), parametric p-values for G can be approximated by referring to the
F-distribution with degrees of freedom v1 = s and v2 = 2(s − 1)/3/(Λ − 1).

image of Fig.�3


Table 3
The statistic G provides a generalisation for a number of well known statistical tests.

rank(C) = 1 rank(C) N 1

Homoscedastic errors,
unrestricted exchangeability

Square of Student's t F-ratio

Homoscedastic within VG,
restricted exchangeability

Square of Aspin–Welch v Welch's v2

387A.M. Winkler et al. / NeuroImage 92 (2014) 381–397
exchangeable as a whole, the maximum number of possible permuta-
tions drops to no more than B!, and the maximum number of sign
flips to 2B. For designs where data is only exchangeable within-block,
the maximum number of possible permutations is ∏ b = 1

B Nb!, where
Nb is the number of observations for the b-th block, and the maximum
number of sign flips continues to be 2N.

However, the actual number of possible rearrangements may be
smaller depending on the null hypothesis, the permutation strategy,
or other aspects of the study design. If there are discrete covariates, or
if there are ties among continuous regressors, many permutations
may not alter the model at all. The maximum number of permutations
can be calculated generically from the design matrix observing the
number of repeated rows among the regressors of interest for the
Freedman–Lane and most other methods, or in M for the ter Braak
and Manly methods. The maximum number of possible permutations
or sign flips, for different restrictions on exchangeability, is shown in
Table 4.

Even considering the restrictions dictated by the study design, the
number of possible shufflings tends to be very large, even for samples
of moderate size, and grows very rapidly as observations are included.
When the number of possible rearrangements is large, not all of them
need to be performed for the test to be valid (Chung and Fraser, 1958;
Dwass, 1957), and the resulting procedure will be approximately
exact (Edgington, 1969). The number can be chosen according to the
availability of computational resources and considerations about
power and precision. The smallest p-value that can be obtained con-
tinues to be 1/J, where J is the number of permutations performed.
The precision of permutation p-values may be determined considering
the confidence interval around the significance level.

To efficiently avoid permutations that do not change the design ma-
trix, the Algorithm “L” (Knuth, 2005) can be used. This algorithm is sim-
ple and has the benefit of generating only permutations that are unique,
Table 4
Maximum number of unique permutations considering exchangeability blocks.

Exchangeability EE ISE

Unrestricted N! 2N

Unrestricted, repeated rows N! ∏
M

m¼1

1
Nm!

2N

Within-block ∏
B

b¼1
Nb ! 2N

Within-block, repeated rows ∏
B

b¼1
Nb ! ∏

Mjb

m¼1

1
Nmjb !

2N

Whole-block B! 2B

Whole-block, repeated blocks B! ∏
eM
em¼1

1
Nem!

2B

B Number of exchangeability blocks (EB).
M Number of distinct rows in X.
M|b Number of distinct rows in X within the b-th block.eM Number of distinct blocks of rows in X.
N Number of observations.
Nb Number of observations in the b-th block.
Nm Number of times each of theM distinct rows occurs in X.
Nm|b Number of times each of them-th unique row occurs within the b-th block.
Nem Number of times each of the eM distinct blocks occurs in X.
i.e., in the presence of repeated elements, it correctly avoids synony-
mous permutations. This is appropriate when enumerating all possible
permutations. However, the algorithm produces sequentially permuta-
tions that are in lexicographic order. Although this can be advantageous
in other settings, here this behaviour can be problematic when running
only a subset of P, and has the potential to bias the results. For imaging
applications, where there aremany points (voxels, vertices, faces) being
analysed, it is in general computationally less expensive to shufflemany
times a sequence of values and store these permuted sequences, than
actually fit the permuted model for all points. As a consequence, the
problem with lexicographically ordered permutations can be solved
by generating all the possible permutations, and randomly drawing J el-
ements from P to do the actual shufflings of the model, or generating
random permutations and checking for duplicates. Alternatively, the
procedure can be conducted without attention to repeated permuta-
tions using simple shuffling of the data. This strategy is known as condi-
tional Monte Carlo (CMC) (Pesarin and Salmaso, 2010; Trotter and Tukey,
1956), as each of the random realisations is conditional on the available
observed data.

Sign flipping matrices, on the other hand, can be listed using a
numeral system with radix 2, and the sign flipped models can be
performedwithout the need to enumerate all possible flips or to appeal
to CMC. The simplest strategy is to use the digits 0 and 1 of the binary
numeral system, treating 0 as −1 when assembling the matrix. In a
binary system, each sign flipping matrix is also its own numerical
identifier, such that avoiding repeated signflippings is trivial. The binary
representation can be converted to and from radix 10 if needed, e.g., to
allow easier human readability.

For within-block exchangeability, permutation matrices can be con-
structedwithin-block, then concatenated along their diagonal to assem-
ble Pj, which also has a block structure. The elements outside the blocks
are filled with zeros as needed (Fig. 2). The block definitions can be
ignored for sign flipping matrices for designs where ISE is asserted
within-block. For whole-block exchangeability, permutation and sign
flippingmatrices can be generated by treating each block as an element,
and the final Pj or Sj are then assembled via Kronecker multiplication by
an identity matrix of the same size as the blocks (Fig. 3).

Multiple testing

Differently than with parametric methods, correction for multiple
testing using permutation does not require the introduction of more as-
sumptions. For familywise error rate correction (FWER), the method was
described by Holmes et al. (1996). As the statistics Tj∗ are calculated for
each shuffling to build the reference distribution at each point, themax-
imum value of Tj∗ across the image, Tjmax, is also recorded for each rear-
rangement, and its empirical distribution is obtained. For each test in
the image, an FWER-corrected p-value can then be obtained by comput-
ing the proportion of Tjmax that is above T0 for each test. A single FWER

threshold can also be applied to the statistical map of T0 values using
the distribution of Tjmax. The same strategy can be used for statistics
that combine spatial extent of signals, such as cluster extent or mass
(Bullmore et al., 1999), threshold-free cluster enhancement (TFCE)
(Smith and Nichols, 2009) and others (Marroquin et al., 2011). For
these spatial statistics, the effect of lack of pivotality can be mitigated
by non-stationarity correction (Hayasaka et al., 2004; Salimi-Khorshidi
et al., 2011).

The p-values under the null hypothesis are uniformly distributed in
the interval [0,1]. As a consequence, the p-values themselves are pivotal
quantities and, in principle, could be used formultiple testing correction
as above. The distribution ofminimump-value, pjmin, instead of Tjmax, can
be used. Due to thediscreteness of thep-values, this approach, however,
entails some computational difficulties thatmay cause considerable loss
of power (Pantazis et al., 2005). Correction based on false-discovery rate
(FDR) can be used once the uncorrected p-values have been obtained for
each point in the image. Either a single FDR threshold can be applied to
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the map of uncorrected p-values (Benjamini and Hochberg, 1995;
Genovese et al., 2002) or an FDR-adjusted p-value can be calculated at
each point (Yekutieli and Benjamini, 1999).
Evaluation methods

Choice of the statistic

We conducted extensive simulations to study the behaviour of the
common F statistic (Eq. 3) as well as of the generalised G statistic
(Eq. 6), proposed here for use in neuroimaging, in various scenarios of
balanced and unbalanced designs and variances for the variance groups.
Someof themost representative of these scenarios are shown in Table 5.
The main objective of the simulations was to assess whether these sta-
tistics would retain their distributions when the variances are not equal
for each sample. Within each scenario, 3 or 5 different configurations
of simulated varianceswere tested, pairwise, for the equality of distribu-
tions using the two-sample Kolmogorov–Smirnov test (KS) (Press et al.,
1992), with a significance level α= 0.05, corrected for multiple testing
within each scenario using the Bonferroni correction, as these tests are
independent.

For each variance configuration, 1000 voxels containing normally
distributed random noise, with zero expected mean, were simulated
and tested for the null hypothesis of no difference between the means
of the groups. The empirical distribution of the statistic for each config-
uration was obtained by pooling the results for the simulated voxels,
then compared with the KS test. The process was repeated 1000 times,
and the number of times in which the distributions were found to
be significantly different from the others in the same scenario was
Table 5
The eight different simulation scenarios, each with its own same sample sizes and
different variances. The distributions of the statistic (F or G) for each pair of variance
configuration within scenario were compared using the KS test. The letters in the last col-
umn (marked with a star, ⋆) indicate the variance configurations represented in the
pairwise comparisons shown in Fig. 4 and results shown in Table 6.

Simulation scenario Sample sizes for each VG Variances for each VG ⋆

1 8, 4 5, 1 (a)
1.2, 1 (b)
1, 1 (c)
1, 1.2 (d)
1, 5 (e)

2 20, 5 5, 1 (a)
1.2, 1 (b)
1, 1 (c)
1, 1.2 (d)
1, 5 (e)

3 80, 30 5, 1 (a)
1.2, 1 (b)
1, 1 (c)
1, 1.2 (d)
1, 5 (e)

4 40, 30, 20, 10 15, 10, 5, 1 (a)
3.6, 2.4, 1.2, 1 (b)
1, 1, 1, 1 (c)
1, 1.2, 2.4, 3.6 (d)
1, 5, 10, 15 (e)

5 4, 4 1, 1 (a)
1, 1.2 (b)
1, 5 (c)

6 20, 20 1, 1 (a)
1, 1.2 (b)
1, 5 (c)

7 4, 4, 4, 4 1, 1, 1, 1 (a)
1, 1.2, 2.4, 3.6 (b)
1, 5, 10, 15 (c)

8 20, 20, 20, 20 1, 1, 1, 1 (a)
1, 1.2, 2.4, 3.6 (b)
1, 5, 10, 15 (c)
recorded. Confidence intervals (95%) were computed using the Wilson
method (Wilson, 1927).

By comparing the distributions of the same statistic obtained
in different variance settings, this evaluation strategy mimics what
is observed when the variances for each voxel varies across space
in the same imaging experiment, e.g., (a), (b) and (c) in Table 5 could
be different voxels in the same image. The statistic must be robust
to these differences and retain its distributional properties, even if
assessed non-parametrically, otherwise FWER using the distribution of
the maximum statistic is compromised. The same applies to multiple
testing that combines more than one imaging modality.

In addition, the same scenarios and variance configurations were
used to assess the proportion of error type I and the power of the F
and G statistics. To assess power, a simulated signal was added to each
of the groups; for the scenarios with two groups, the true ψwas defined
as [0 -1]′, whereas for the scenarios with four groups, it was defined
as [0 -0.33 -0.67 -1]′. In either case, the null hypothesis was that the
group means were all equal. Significance values were computed using
1000 permutations, with α = 0.05, and 95% confidence intervals were
calculated using the Wilson method.
Permutation strategies

Wecompared the 10methods described in Table 2 simulating differ-
ent regression scenarios. The design considered one regressor of inter-
est, x1, and two regressors of no interest, z1 and z2, z2 being a column-
vector of just ones (intercept). The simulation scenarios considered
different sample sizes, N = {12, 24, 48, 96}; different combinations
for continuous and categorical x1 and z1; different degrees of correlation
between x1 and z1, ρ = {0, 0.8}; different sizes for the regressor of
interest, β1 = {0, 0.5}; and different distributions for the error terms,

ϵ, as normal (μ = 0, σ2 = 1), uniform −
ffiffiffi
3

p
;þ

ffiffiffi
3

ph i� �
, exponential

(λ=1)andWeibull (λ=1, k= 1/3). The coefficients for thefirst regres-
sor of no interest and for the intercept were kept constant as γ1 = 0.5
and γ2 = 1 respectively, and the distributions of the errors were shifted
or scaled as needed to have expected zero mean and expected unit
variance.

The continuous regressors were constructed as a linear trend rang-
ing from−1 to +1 for x1, and the square of this trend, mean-centred,
for z1. For this symmetric range around zero for x1, this procedure
causes x1 and z1 to be orthogonal and uncorrelated. For the discrete
regressors, a vector of N/2 ones and N/2 negative ones was used, the
first N/2 values being only +1 and the remaining −1 for x1, whereas
for z1, the first and last N/4 were −1 and the N/2 middle values were
+1. This procedure also causes x1 and z1 to be orthogonal and uncorre-
lated. For each different configuration, 1000 simulated vectors Y were
constructed as Y = [x1 z1 z2][β1 γ1 γ2]′ + ϵ.

Correlation was introduced in the regression models through
Cholesky decomposition of the desired correlation matrix K, such
that K = L′L, then defining the regressors by multiplication by L,
i.e., [x1ρ z1ρ] = [x1 z1]L. The unpartitioned design matrix was con-
structed as M = [x1ρz1ρz2]. A contrast C = [1 0 0]′ was defined to
test the null hypothesis H ¼0 : C′ψ = β1 = 0. This contrast tests only
the first column of the design matrix, so partitioning M = [X Z] using
the scheme shown in Appendix A might seem unnecessary. However,
wewanted to test also the effect of non-orthogonality between columns
of the design matrix for the different permutation methods, with and
without themore involved partitioning scheme shown in the Appendix.
Using a single variance configuration across all observations in each
simulation, modelling a single variance group, and with rank(C) = 1,
the statistic used was the Student's t (Table 3), a particular case of the
G statistic. Permutation, sign flipping, and permutation with sign flip-
ping were tested. Up to 1000 permutations and/or sign flippings were
performed using CMC, being less when the maximum possible number
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of shufflings was not large enough. In these cases, all the permutations
and/or sign flippings were performed exhaustively.

Error type I was computed using α=0.05 for configurations that used
β1 = 0. The other configurations were used to examine power. As previ-
ously, confidence intervals (95%)were estimatedusing theWilsonmethod.

Results

Choice of the statistic

Fig. 4 shows heatmaps with the results of the pairwise comparisons
between variance configurations, within each of the simulation
Fig. 4. Heatmaps for the comparison of the distributions obtained under different variance sett
results for the pairwise F statistic, and above, for the G statistic. The percentages refer to the frac
found different than for another in the same simulation scenario. Each variance setting is ind
indicate robustness of the statistic to heteroscedasticity. Confidence intervals (95%) are shown
scenarios presented in Table 5, using either F or G statistic. For unbal-
anced scenarios with only two samples (simulation scenarios 1 to 3),
and with modest variance differences between groups (configurations
b to d), the F statistic often retained its distributional properties, albeit
less often than the G statistic. For large variance differences, however,
this relative stability was lost for F, but not for G (a and e). Moreover,
the inclusion of more groups (scenario 4), with unequal sample sizes,
caused the distribution of the F statistic to be much more sensitive to
heteroscedasticity, such that almost always the KS test identified differ-
ent distributions across different variance configurations. TheG statistic,
on the other hand, remained robust to heteroscedasticity even in these
cases. As one of our reviewers highlighted, a variance ratio of 15:1 (as
ings for identical sample sizes. In each map, the cells below the main diagonal contain the
tion of the 1000 tests in which the distribution of the statistic for one variance setting was
icated by letters (a–e), corresponding to the same letters in Table 5. Smaller percentages
in parenthesis.

image of Fig.�4


Table 6
Proportion of error type I and power (%) for the statistics F andG in the various simulation scenarios and variance configurations shown in Table 5. Confidence intervals (95%) are shown in
parenthesis.

Simulation scenario ⋆ Proportion of error type I Power

F G F G

1 (a) 5.9 (4.6–7.5) 6.1 (4.8–7.8) 20.1 (17.7–22.7) 23.8 (21.3–26.5)
(b) 4.9 (3.7–6.4) 5.3 (4.1–6.9) 28.3 (25.6–31.2) 31.9 (29.1–34.9)
(c) 4.7 (3.6–6.2) 4.5 (3.4–6.0) 29.3 (26.6–32.2) 32.6 (29.8–35.6)
(d) 4.9 (3.7–6.4) 4.6 (3.5–6.1) 29.9 (27.1–32.8) 32.0 (29.2–35.0)
(e) 3.9 (2.9–5.3) 4.1 (3.0–5.5) 14.0 (12.0–16.3) 14.1 (12.1–16.4)

2 (a) 6.7 (5.3–8.4) 6.6 (5.2–8.3) 29.1 (26.4–32.0) 38.3 (35.3–41.4)
(b) 5.0 (3.8–6.5) 4.6 (3.5–6.1) 42.4 (39.4–45.5) 48.8 (45.7–51.9)
(c) 5.0 (3.8–6.5) 5.8 (4.5–7.4) 44.6 (41.6–47.7) 48.9 (45.8–52.0)
(d) 6.1 (4.8–7.8) 6.2 (4.9–7.9) 42.3 (39.3–45.4) 46.7 (43.6–49.8)
(e) 5.9 (4.6–7.5) 6.2 (4.9–7.9) 19.5 (17.2–22.1) 19.0 (16.7–21.6)

3 (a) 5.2 (4.0–6.8) 5.0 (3.8–6.5) 90.4 (88.4–92.1) 92.3 (90.5–93.8)
(b) 4.9 (3.7–6.4) 5.1 (3.9–6.6) 99.7 (99.1–99.9) 99.8 (99.3–100)
(c) 6.3 (5.0–8.0) 6.2 (4.9–7.9) 99.8 (99.3–100) 99.8 (99.3–100)
(d) 4.4 (3.3–5.9) 4.4 (3.3–5.9) 99.6 (99.0–99.8) 99.6 (99.0–99.8)
(e) 4.4 (3.3–5.9) 4.4 (3.3–5.9) 72.9 (70.1–75.6) 72.9 (70.1–75.6)

4 (a) 6.4 (5.0–8.1) 5.7 (4.4–7.3) 10.2 (8.5–12.2) 19.4 (17.1–22.0)
(b) 5.3 (4.1–6.9) 5.6 (4.3–7.2) 37.8 (34.9–40.9) 45.6 (42.5–48.7)
(c) 5.7 (4.4–7.3) 4.9 (3.7–6.4) 72.2 (69.3–74.9) 74.9 (72.1–77.5)
(d) 3.1 (2.2–4.4) 3.7 (2.7–5.1) 34.6 (31.7–37.6) 44.6 (41.6–47.7)
(e) 4.5 (3.4–6.0) 4.2 (3.1–5.6) 9.7 (8.0–11.7) 15.7 (13.6–18.1)

5 (a) 4.3 (3.2–5.7) 4.3 (3.2–5.7) 29.9 (27.1–32.8) 29.9 (27.1–32.8)
(b) 4.3 (3.2–5.7) 4.3 (3.2–5.7) 30.6 (27.8–33.5) 30.6 (27.8–33.5)
(c) 6.9 (5.5–8.6) 6.9 (5.5–8.6) 14.5 (12.5–16.8) 14.5 (12.5–16.8)

6 (a) 3.3 (2.4–4.6) 3.3 (2.4–4.6) 92.6 (90.8–94.1) 92.6 (90.8–94.1)
(b) 4.4 (3.3–5.9) 4.4 (3.3–5.9) 90.5 (88.5–92.2) 90.5 (88.5–92.2)
(c) 4.4 (3.3–5.9) 4.4 (3.3–5.9) 53.7 (50.6–56.8) 53.7 (50.6–56.8)

7 (a) 5.6 (4.3–7.2) 5.5 (4.3–7.1) 11.0 (9.2–13.1) 8.8 (7.2–10.7)
(b) 5.2 (4.0–6.8) 4.4 (3.3–5.9) 6.5 (5.1–8.2) 7.8 (6.3–9.6)
(c) 5.7 (4.4–7.3) 4.8 (3.6–6.3) 5.8 (4.5–7.4) 6.9 (5.5–8.6)

8 (a) 4.6 (3.5–6.1) 4.5 (3.4–6.0) 78.7 (76.1–81.1) 78.1 (75.4–80.6)
(b) 4.6 (3.5–6.1) 5.6 (4.3–7.2) 40.7 (37.7–43.8) 45.5 (42.4–48.6)
(c) 4.7 (3.6–6.2) 4.8 (3.6–6.3) 11.6 (9.8–13.7) 19.3 (17.0–21.9)
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used in Scenarios 4, 7 and 8) may seem somewhat extreme, but given
the many thousands, often millions, of voxels in an image, it is not un-
reasonable to suspect that such large variance differences may exist
across at least some of them.

In balanced designs, either with two (simulation scenarios 5 and 6)
ormore (scenarios 7 and8) groups, the F statistic had a better behaviour
than in unbalanced cases. For two samples of the same size, there is no
difference between F and G: both have identical values and produce the
same permutation p-values.5 For more than two groups, the G statistic
behaved consistently better than F, particularly for large variance
differences.

These results suggest that the G statistic is more appropriate under
heteroscedasticity, with balanced or unbalanced designs, as it preserves
its distributional properties, indicating more adequacy for use with
neuroimaging. The F statistic, on the other hand, does not preserve
pivotality but can, nonetheless, be used under heteroscedasticity
when the groups have the same size.

With respect to error type I, both F and G resulted in similar
amount of false positives when assessed non-parametrically. The G
yielded generally higher power than F, particularly in the presence
of heteroscedasticity and with unequal sample sizes. These results are
presented in Table 6.
5 Parametric p-values for these two statistics, however, differ. If computed, parametric
p-values would have to consider that the degrees of freedom for the G statistic are not
the same as for F; see footnote 4.
Permutation strategies

The different simulation parameters allowed 1536 different regres-
sion scenarios, being 768without signal and 768with signal; a summa-
ry is shown in Table 7, and someof themost representative in Table 8. In
“well behaved” scenarios, i.e., large number of observations, orthogonal
regressors and normally distributed errors, all methods tended to
behave generally well, with adequate control over type I error and fairly
similar power. However, performance differences between the permu-
tation strategies shown in Table 2 became more noticeable as the
sample sizes were decreased and skewed errors were introduced.

Some of the methods are identical to each other in certain circum-
stances. If X and Z are orthogonal, Draper–Stoneman and Smith are
equivalent. Likewise under orthogonality, Still–White produces identi-
cal regression coefficients as Freedman–Lane, although the statistic
will only be the same if the loss in degrees of freedom due to Z is
taken into account, something not always possible when the data
has already been residualised and no information about the original
nuisance variables is available. Nonetheless, the two methods remain
asymptotically equivalent as the number of observations diverges
from the number of nuisance regressors.
Sample size
Increasing the sample size had the effect of approaching the error

rate closer to the nominal level α = 0.05 for all methods in virtually
all parameter configurations. For small samples, most methods were
slightly conservative, whereas Still–White and Kennedy were anti-
conservative and often invalid, particularly if the distributions of the
errors were skewed.



Table 7
A summary of the results for the 1536 simulationswith different parameters. The amount
of error type I is calculated for the 768 simulations without signal (β1 = 0). Confidence
intervals (CI) at 95%were computed around the nominal level α= 0.05, and the observed
amount of errors for each regression scenario and for each method was compared
with this interval. Methods that mostly remain within the CI are the most appropriate.
Methods that frequently produce results below the interval are conservative; those
above are invalid. Power was calculated for the remaining 768 simulations, which
contained signal (β1 = 0.5).

Method Proportion of error type I Average
power

Within CI Below CI Above CI

Draper–Stoneman 86.33% 8.20% 5.47% 72.96%
Still–White 67.84% 14.58% 17.58% 71.82%
Freedman–Lane 88.67% 8.46% 2.86% 73.09%
ter Braak 83.59% 11.07% 5.34% 73.38%
Kennedy 77.60% 1.04% 21.35% 74.81%
Manly 73.31% 15.89% 10.81% 73.38%
Smith 89.32% 7.81% 2.86% 72.90%
Huh–Jhun 85.81% 9.24% 4.95% 71.62%
Parametric 77.47% 14.84% 7.68% 72.73%
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Continuous or categorical regressors of interest
For all methods, using continuous or categorical regressors of inter-

est did not produce remarkable differences in the observed proportions
of type I error, except if the distribution of the errors was skewed and
sign flipping was used (in violation of assumptions), in which case
Manly and Huh–Jhun methods showed erratic control over the amount
of errors.
Continuous or categorical nuisance regressors
The presence of continuous or categorical nuisance variables did not

substantially interfere with either control over error type I or power, for
any of the methods, except in the presence of correlated regressors.
Table 8
Proportion of error type I (for a= 0.05), for some representative of the 768 simulation scenario
tistic in the absence of EB (so, equivalent to the F statistic). Confidence intervals (95%) are sho

Simulation parameters Proportion of error type I (%)

N x1 z1 ρ ϵ EE ISE D–S S–W F–L tB

12 C C 0 ✗ N ✓ ✗ 4.9 (3.7–6.4) 5.3 (4.1–6.9) 5.1 (3.9–6.6) 5.3 (4.1–6
12 C C 0 ✗ U ✓ ✓ 5.3 (4.1–6.9) 6.9 (5.5–8.6) 5.1 (3.9–6.6) 5.2 (4.0–6
12 C C 0 ✗ W ✓ ✗ 5.9 (4.6–7.5) 6.5 (5.1–8.2) 5.2 (4.0–6.8) 5.4 (4.2–7
12 C C 0 ✗ E ✓ ✓ 5.3 (4.1–6.9) 6.9 (5.5–8.6) 5.1 (3.9–6.6) 4.7 (3.6–6
12 C C 0.8 ✗ N ✓ ✗ 4.4 (3.3–5.9) 3.6 (2.6–4.9) 5.1 (3.9–6.6) 5.2 (4.0–6
12 C C 0.8 ✗ W ✓ ✗ 1.5 (0.9–2.5) 1.2 (0.7–2.1) 4.8 (3.6–6.3) 5.2 (4.0–6
12 C C 0.8 ✗ N ✓ ✓ 5.5 (4.2–7.1) 5.4 (4.2–7.0) 4.9 (3.7–6.4) 5.4 (4.2–7
12 C C 0.8 ✓ N ✓ ✓ 5.1 (3.9–6.6) 7.2 (5.8–9.0) 5.4 (4.2–7.0) 4.3 (3.2–5
12 C D 0 ✗ W ✓ ✗ 5.6 (4.3–7.2) 6.8 (5.4–8.5) 5.4 (4.2–7.0) 4.7 (3.6–6
12 C D 0 ✗ N ✓ ✗ 3.9 (2.9–5.3) 4.9 (3.7–6.4) 3.9 (2.9–5.3) 4.0 (3.0–5
12 C D 0 ✗ W ✗ ✓ 2.9 (2.0–4.1) 4.3 (3.2–5.7) 2.6 (1.8–3.8) 2.8 (1.9–4
12 D D 0 ✗ W ✓ ✗ 3.2 (2.3–4.5) 4.6 (3.5–6.1) 2.2 (1.5–3.3) 2.0 (1.3–3
24 C C 0.8 ✗ N ✓ ✗ 4.4 (3.3–5.9) 3.5 (2.5–4.8) 4.3 (3.2–5.7) 4.4 (3.3–5
24 D D 0 ✗ N ✓ ✗ 5.0 (3.8–6.5) 5.4 (4.2–7.0) 5.1 (3.9–6.6) 5.1 (3.9–6
24 D D 0 ✗ U ✓ ✗ 6.2 (4.9–7.9) 6.6 (5.2–8.3) 6.3 (5.0–8.0) 5.9 (4.6–7
24 D D 0.8 ✗ U ✓ ✗ 4.9 (3.7–6.4) 1.8 (1.1–2.8) 5.1 (3.9–6.6) 4.8 (3.6–6
48 C C 0 ✗ N ✗ ✓ 4.9 (3.7–6.4) 5.4 (4.2–7.0) 5.0 (3.8–6.5) 5.6 (4.3–7
48 C C 0.8 ✓ U ✓ ✗ 5.1 (3.9–6.6) 5.4 (4.2–7.0) 5.0 (3.8–6.5) 5.7 (4.4–7
48 C C 0.8 ✓ N ✓ ✗ 4.6 (3.5–6.1) 4.8 (3.6–6.3) 4.7 (3.6–6.2) 4.7 (3.6–6
48 C D 0 ✗ E ✗ ✓ 5.4 (4.2–7.0) 5.7 (4.4–7.3) 5.1 (3.9–6.6) 5.5 (4.2–7
48 C D 0.8 ✗ E ✓ ✗ 5.5 (4.2–7.1) 0.3 (0.1–0.9) 5.0 (3.8–6.5) 5.0 (3.8–6
96 C C 0 ✗ N ✓ ✓ 5.1 (3.9–6.6) 5.3 (4.1–6.9) 5.1 (3.9–6.6) 4.9 (3.7–6
96 C C 0.8 ✗ N ✗ ✓ 5.0 (3.8–6.5) 3.6 (2.6–4.9) 5.0 (3.8–6.5) 4.8 (3.6–6
96 D C 0 ✗ W ✓ ✗ 4.9 (3.7–6.4) 5.2 (4.0–6.8) 4.7 (3.6–6.2) 4.8 (3.6–6

N: number of observations; x1 and z1: regressors of interest and of no interest, respective
model partitioned or not (using the scheme of Beckmann et al. (2001), shown in Appendi
exponential (E) or Weibull (W); EE: errors treated as exchangeable; ISE: errors treated as inde
(D–S), Still–White (S–W), Freedman–Lane (F–L), ter Braak (tB), Kennedy (K), Manly (M), Huh
Degree of non-orthogonality and partitioning
All methods provided relatively adequate control over error type I

in the presence of a correlated nuisance regressor, except Still–
White (conservative) and Kennedy (inflated rates). The partitioning
scheme mitigated the conservativeness of the former, and the anti-
conservativeness of the latter.
Distribution of the errors
Different distributions did not substantially improve orworsen error

rates when using permutation alone. Still–White and Kennedy tended
to fail to control error type I in virtually all situations. Sign flipping
alone, when used with asymmetric distributions (in violation of as-
sumptions), required larger samples to allow approximately exact con-
trol over the amount of error type I. In these cases, and with small
samples, the methods Draper–Stoneman, Manly and Huh–Jhun tended
to display erratic behaviour, with extremes of conservativeness and
anticonservativeness depending on the other simulation parameters.
The same happened with the parametric method. Freedman–Lane and
Smith methods, on the other hand, tended to have a relatively constant
and somewhat conservative behaviour in these situations. Permutation
combined with sign flipping generally alleviated these issues where
they were observed.

From all the methods, the Freedman–Lane and Smith were those
that performed better in most cases, and with their 95% confidence
interval covering the desired error level of 0.05 more often than
any of the other methods. The Still–White and Kennedy methods
did not generally control the error type I for most of the simulation
parameters, particularly for smaller sample sizes. On the other
hand, with a few exceptions, the Freedman–Lane and the Smith
methods effectively controlled the error rates in most cases, even
with skewed errors and sign flipping, being, at worst, conservative
or only slightly above the nominal level. All methods were, overall,
s that did not have signal, using the different permutation methods, and with G as the sta-
wn in parenthesis.

K M S H–J P

.9) 5.3 (4.1–6.9) 5.0 (3.8–6.5) 4.9 (3.7–6.4) 4.7 (3.6–6.2) 4.4 (3.3–5.9)

.8) 6.9 (5.5–8.6) 5.8 (4.5–7.4) 5.3 (4.1–6.9) 5.2 (4.0–6.8) 4.6 (3.5–6.1)

.0) 6.5 (5.1–8.2) 5.0 (3.8–6.5) 5.9 (4.6–7.5) 5.4 (4.2–7.0) 8.3 (6.7–10.2)

.2) 6.9 (5.5–8.6) 5.0 (3.8–6.5) 5.3 (4.1–6.9) 4.8 (3.6–6.3) 5.7 (4.4–7.3)

.8) 5.8 (4.5–7.4) 4.8 (3.6–6.3) 5.1 (3.9–6.6) 4.4 (3.3–5.9) 4.4 (3.3–5.9)

.8) 6.5 (5.1–8.2) 4.9 (3.7–6.4) 5.8 (4.5–7.4) 5.8 (4.5–7.4) 8.5 (6.9–10.4)

.0) 7.5 (6.0–9.3) 4.8 (3.6–6.3) 4.8 (3.6–6.3) 5.8 (4.5–7.4) 4.6 (3.5–6.1)

.7) 7.2 (5.8–9.0) 5.2 (4.0–6.8) 5.1 (3.9–6.6) 4.6 (3.5–6.1) 4.6 (3.5–6.1)

.2) 6.8 (5.4–8.5) 4.0 (3.0–5.4) 5.6 (4.3–7.2) 3.7 (2.7–5.1) 8.9 (7.3–10.8)

.4) 4.9 (3.7–6.4) 4.3 (3.2–5.7) 3.9 (2.9–5.3) 4.2 (3.1–5.6) 3.7 (2.7–5.1)

.0) 4.3 (3.2–5.7) 14.1 (12.1–16.4) 2.9 (2.0–4.1) 16.4 (14.2–18.8) 9.0 (7.4–10.9)

.1) 4.6 (3.5–6.1) 3.8 (2.8–5.2) 3.2 (2.3–4.5) 2.6 (1.8–3.8) 0.5 (0.2–1.2)

.9) 4.9 (3.7–6.4) 4.4 (3.3–5.9) 4.3 (3.2–5.7) 4.5 (3.4–6.0) 4.4 (3.3–5.9)

.6) 5.4 (4.2–7.0) 4.9 (3.7–6.4) 5.0 (3.8–6.5) 4.5 (3.4–6.0) 5.0 (3.8–6.5)

.5) 6.6 (5.2–8.3) 5.5 (4.2–7.1) 6.2 (4.9–7.9) 5.9 (4.6–7.5) 5.8 (4.5–7.4)

.3) 5.4 (4.2–7.0) 5.1 (3.9–6.6) 5.2 (4.0–6.8) 5.7 (4.4–7.3) 5.4 (4.2–7.0)

.2) 5.4 (4.2–7.0) 3.8 (2.8–5.2) 4.9 (3.7–6.4) 6.0 (4.7–7.6) 5.0 (3.8–6.5)

.3) 5.4 (4.2–7.0) 5.2 (4.0–6.8) 5.1 (3.9–6.6) 5.6 (4.3–7.2) 5.6 (4.3–7.2)

.2) 4.8 (3.6–6.3) 4.6 (3.5–6.1) 4.6 (3.5–6.1) 4.4 (3.3–5.9) 4.5 (3.4–6.0)

.1) 5.7 (4.4–7.3) 9.2 (7.6–11.2) 5.4 (4.2–7.0) 4.3 (3.2–5.7) 5.1 (3.9–6.6)

.5) 5.0 (3.8–6.5) 4.9 (3.7–6.4) 5.0 (3.8–6.5) 5.0 (3.8–6.5) 4.9 (3.7–6.4)

.4) 5.3 (4.1–6.9) 4.6 (3.5–6.1) 5.1 (3.9–6.6) 5.3 (4.1–6.9) 4.9 (3.7–6.4)

.3) 5.2 (4.0–6.8) 4.4 (3.3–5.9) 5.1 (3.9–6.6) 5.2 (4.0–6.8) 4.9 (3.7–6.4)

.3) 5.2 (4.0–6.8) 4.5 (3.4–6.0) 4.9 (3.7–6.4) 3.9 (2.9–5.3) 3.6 (2.6–4.9)

ly, being either continuous (C) or discrete (D). ρ: correlation between x1 and z1; :
x A"); ϵ: distribution of the simulated errors, which can be normal (N ), uniform (U),
pendent and symmetric. The methods are the same shown in Table 2: Draper–Stoneman
–Jhun (H–J), Smith (S) and parametric (P), the last not using permutations.

Unlabelled image
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similarly powerful, with only marginal differences among those that
were on average valid.

Discussion

Criteria to accept or reject a hypothesis should, ideally, be power-
ful to detect true effects, and insensitive to nuisance factors (Box and
Andersen, 1955). A compromise between these features is often
present and, in neuroimaging applications, this compromise gains
new contours. First, different imaging modalities do not follow nec-
essarily the same set of assumptions regarding distributions under
the null or the covariance between tests across the brain, with the
consequence that both false positives and false negatives can arise
when parametric tests are used haphazardly. Second, in neuroimag-
ing it is necessary to address the multiple testing problem. Paramet-
ric methods require an even larger set of assumptions to deal with
this problem, amplifying the risk of errors when these supernumer-
ary assumptions are not met. Third, under non-random sampling, as
is common in case–control studies, the very presence of the features
under investigation may compromise the assumptions on which
parametric tests depend. For all these reasons, parametric methods
are more likely to fail as candidates to provide a general statistical
framework for the current variety of imaging modalities for research
applications, where not only the assumptions may not be met, but
also where robustness may be seen as a key factor. Permutation
methods are a viable alternative, flexible enough to accommodate
several experimental needs. Further to all this, our simulations
showed similar and sometimes higher power compared to the para-
metric approach.

Permutation tests

Permutation tests require very few assumptions about the data and,
therefore, can be applied in awider variety of situations than parametric
tests. Moreover, only a few of the most common parametric assump-
tions need to hold for non-parametric tests to be valid. The assumptions
that are eschewed include, for instance, the need of normality for the
error terms, the need of homoscedasticity and the need of random sam-
pling. With a very basic knowledge of sample properties or of the study
design, errors can be treated as exchangeable (EE) and/or independent
and symmetric (ISE) and inferences that otherwise would not be possi-
ble with parametric methods become feasible. Furthermore, permuta-
tion tests permit the use of the very same regression and hypothesis
testing framework, even with disparate imaging modalities, without
the need to verify the validity of parametric assumptions for each of
them. The ISE can be an alternative to EE when the errors themselves
can be considered exchangeable, but the design is not affected by per-
mutations, as for one-sample tests. And if the assumptions for EE and
ISE are both met, permutation and sign flipping can both be performed
to construct the empirical distribution.

The justification for permutation tests has, moreover, more solid
foundations than their parametric counterparts. While the validity of
parametric tests relies on random sampling, permutation tests have
their justification on the idea of random allocation of experimental
units, with no reference to any underlying population (Edgington,
1995; Manly, 2007). This aspect has a key importance in biomedical re-
search — including neuroimaging — where only a small minority of
studies effectively use randompopulation sampling. Most experimental
studies need to use the subjects that are available in a given area, and
who accept to participate (e.g. patients of a hospital or students of a uni-
versity near where the MRI equipment is installed). True random sam-
pling is rarely achieved in real applications because, often and for
different reasons, selection criteria are not truly unbiased (Ludbrook
and Dudley, 1998; Pesarin and Salmaso, 2010). Non-parametric
methods allow valid inferences to be performed in these scenarios.
Pivotal statistics

In addition, permutation methods have the remarkable feature of
allowing the use of non-standard statistics, or for which closed
mathematical forms have not been derived, even asymptotically.
Statistics that can be used include, for instance, those based on
ranks of observations (Brunner and Munzel, 2000; Rorden et al.,
2007), derived from regression methods other than least squares
(Cade and Richards, 1996) or that are robust to outliers (Sen, 1968;
Theil, 1950). For imaging applications, statistics that can be consid-
ered include the pseudo-t statistic after variance smoothing
(Holmes et al., 1996), the mass of connected voxels (Bullmore
et al., 1999), threshold-free cluster enhancement (TFCE) (Smith and
Nichols, 2009), as well as cases inwhich the distribution of the statis-
tic may lie in a gradient between distributions, each of them with
known analytical forms (Winkler et al., 2012). The only requirement,
in the context of neuroimaging, is that these statistics retain their
distributional properties irrespective to unknown parameters.

Indeed, a large part of the voluminous literature on statistical
tests when the errors cannot be assumed to be homoscedastic is con-
cerned with the identification of the asymptotic distribution of the
statistics, its analytical form, and the consequences of experimental
scenarios that include unbalancedness and/or small samples. This is
true even considering that in parametric settings, the statistics are
invariably chosen such that their sampling distribution is indepen-
dent of underlying and unknown population parameters. Permuta-
tion tests render all these issues irrelevant, as the asymptotic
properties of the distributions do not need to be ascertained. For im-
aging, all that is needed is that the distribution remains invariant to
unknown population parameters, i.e., the statistic needs to be pivot-
al. Parameters of the distribution proper do not need to be known,
nor the distribution needs to be characterised analytically. The pro-
posed statistic G, being a generalisation over various tests that have
their niche applications in parametric settings, is appropriate for
use with the general linear model and with a permutation frame-
work, for being pivotal and easily implementable using simple ma-
trix operations. Moreover, as the simulations showed, this statistic
is not less powerful than the commonly used F statistic.

Permutation strategies

From the different permutation strategies presented in Table 2, the
Freedman–Lane and the Smith methods provided the most adequate
control of type I error across the various simulation scenarios. This is
in line with the study by Anderson and Legendre (1999), who found
that the Freedman–Lane method is the most accurate and powerful in
various different models. The Smith method was a somewhat positive
surprise, not only for the overall very good performance in our simula-
tions, but also because this method has not been extensively evaluated
in previous literature, is computationally simple, and has an intuitive
appeal.

Welch (1990) commented that the Freedman–Lane procedure
would violate the ancillarity principle, as the permutation procedure
would destroy the relationship between X and Z, even if these are
orthogonal. Notwithstanding, even with ancillarity violated, this
and other methods perform satisfactorily well as shown by the
simulations.

Freedman and Lane (1983) described their method as having a
“non-stochastic” interpretation, and so, that the computed p-value
would be a descriptive statistic. On the contrary, we share the same
view expressed by Anderson and Legendre (1999), that the rationale
for the test and the procedure effectively produces a p-value that can
be interpreted as a true probability for the underlying model.

Regarding differences between the methods, and even though for
this study we did not evaluate the effect of extremely strong signals or
of outliers, it is worth commenting that previous research have shown
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that the Freedman–Lane method is relatively robust to the presence of
extreme outliers, whereas the ter Braak tends to become more conser-
vative in these cases (Anderson and Legendre, 1999). The ter Braak
method, however, was shown to be more robust to extremely strong
signals in the data, situations inwhich signalmay “leak” into the permu-
tation distribution with the Freedman–Lane method (Salimi-Khorshidi
et al., 2011).

It should be noted that the Still–White method, as implemented for
these simulations, used the model containing only the regressors of in-
terestwhen computing the statistic as shown in Table 2. It is done in this
way to emulate what probably is its more common use, i.e., rearrange
the data that has already been residualised from nuisance, and when
the nuisance regressors are no longer available. Had the full model
been used when computing the statistic, it is possible that this method
might have performed somewhat similarly as Freedman–Lane, specially
for larger samples. Moreover, neither the original publication (Still and
White, 1981), nor a related method published shortly after (Levin and
Robbins, 1983), specify how the degrees of freedom should be treated
when computing the statistic in a generic formulation as we present
here.

With respect to non-independent measurements, these are ad-
dressed by means of treating the observations as weakly exchange-
able (Good, 2002), that is, allowing only the permutations that
respect the covariance structure of the data and maintain its joint
distribution intact. Not all null hypotheses can be addressed in this
way, however, as the restricted set of permutations may not suffi-
ciently disrupt the relationship between the regressors of interest
and the observed data without appealing to sign flipping, and even
so, only if the ISE assumptions are met. The use of a restricted set of
permutations, that is, a subset of all otherwise possible permuta-
tions, allows various studies involving non-independent measure-
ments to be adequately analysed (Good, 2005; Manly, 2007).
However, it should be emphasised that not all designs that include
repeated measurements can be trivially analysed, and if the study
is not adequately planned, it may become impossible to draw conclu-
sions using permutation methods— albeit the same may likely apply
to parametric tests. We note that using permutations that respect the
data structure, without the need to explicitly model it, is a great
benefit of the methods as proposed.

Finally, although non-parametric methods are generally considered
less powerful than their parametric counterparts, we found in the simu-
lations performed thatmost of the permutationmethods are not substan-
tially less powerful than the parametricmethod, and sometimes are even
more powerful, even when the assumptions of the latter are met. With
the availability of computing power and reliable software implementa-
tion, there is almost no reason for not using these permutation methods.

Conclusion

We presented a generic framework that allows permutation infer-
ence using the general linear model with complex experimental de-
signs, and which depends only on the weak requirements of
exchangeable or independent and symmetric errors, which define
permutations, sign flippings, or both. Structured dependence between
observations is addressed through the definition of exchangeability
blocks. We also proposed a statistic that is robust to heteroscedasticity,
can be used for multiple-testing correction, and can be implemented
easily with matrix operations. Based on evaluations, we recommend
the Freedman–Lane and the Smith methods to construct the empirical
distribution, and use Freedman–Lane in the randomise algorithm
(Appendix B).
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Appendix A. Model partitioning

The permutation methods discussed in this paper require that the
design matrix M is partitioned into effects of interest and nuisance
effects. Such partitioning is not unique, and schemes can be as simple
as separating apart the columns of M as [X Z], with ψ = [β′ γ′]
(Guttman, 1982). More involved strategies can, however, be devised
to obtain some practical benefits. One such partitioning is to define
X = MDC(C′DC)−1 and Z = MDCv(Cv′DCv)−1, where D = (M′M)−1,
Cv = Cu − C(C′DC)−1C′DCu, and Cu has r − rank(C) columns that
span the null space of C, such that [C Cu] is a r × r invertible,
full-rank matrix (Beckmann et al., 2001; Smith et al., 2007). This

partitioning has a number of features: β̂ ¼ C′ψ̂, dCov β̂
� �

¼ C′dCov ψ̂
� �

C, i.e., estimates and variances of β for inference on the partitioned
model correspond exactly to the same inference on the original model,
X is orthogonal to Z, and span(X) ∪ span(Z) = span(M), i.e., the
partitioned model spans the same space as the original. This is the
partitioning strategy used in this paper, and used in randomise (see
Appendix B).

Another partitioning scheme, derived by Ridgway (2009),
defines X = M(C+)′ and Z = M − MCC+. As with the previous
strategy, the parameters of interest in the partitioned model are
equal to the contrast of the original parameters. A full column rank
nuisance partition can be obtained from the singular value decompo-
sition (SVD) of Z, which will also provide orthonormal columns for
the nuisance partition. Orthogonality between regressors of interest
and nuisance can be obtained by redefining the regressors of interest
as RZX.
Appendix B. The randomise algorithm

Algorithm 1 describes a procedure for permutation inference on
contrasts of the GLM parameter estimates using the Freedman–Lane
method. Modifications for other methods are trivial. For this algo-
rithm, consider Y as a four-dimensional array, being the first three
dimensions for space and the last for an observation index. A vari-
able v = [x, y, z] is used to specify the point position in space, so
that the vector of N different observations per point is represented
as Y[v]. A set C of contrasts is specified, as well as the unpartitioned
design matrix M. Indicator variables are used to specify whether
the errors should be treated as exchangeable (EE = TRUE), indepen-
dent and symmetric (ISE = TRUE), or both, which allows for
permutations to happen together with sign flipping. A positive inte-
ger J is specified as the number permutations to be performed.
Optionally, a N × 1 vector b is provided to indicate the B exchange-
ability blocks that group the observations, along with an indicator
variable PB that informs whether blocks should be permuted as a
whole (PB = TRUE), or if permutations should happen within block
only (PB = FALSE). The specification of b and PB obviate the need to
specify the variance groups, as these can be defined implicitly for
within or whole-block permutation when the pivotal statistic is
computed.
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Algorithm 1. The randomise algorithm

Coding of the design matrix, exchangeability blocks and variance groups for Example 1.
Under unrestricted exchangeability, all subjects are assigned to a single block, and with
identical variances, all to a single variance group. The regressor m1 codes for the overall
mean, whereas m2 codes for handedness.

Coded data (Y) EB VG Model (M)

m1 m2

Subject 1 1 1 1 h1
Subject 2 1 1 1 h2
Subject 3 1 1 1 h3
Subject 4 1 1 1 h4
Subject 5 1 1 1 h5
Subject 6 1 1 1 h6
Subject 7 1 1 1 h7
Subject 8 1 1 1 h8
Subject 9 1 1 1 h9
Subject 10 1 1 1 h10
Subject 11 1 1 1 h11
Subject 12 1 1 1 h12
Contrast 1 (C1′) +1 0
Contrast 2 (C2′) −1 0
6 Available for download at http://www.fmrib.ox.ac.uk/fsl.
In the algorithm, the statistics T for each point (voxel, vertex, face)
are stored in the array T, whereas the counters are stored in the arrays
U and F. The design matrix as well as the contrasts can be specific for
each image point (voxelwise, vertexwise, facewise), and there is no
challenge other than implementation. It is possible to omit the for-
loop between lines 57 and 61, and instead store the distribution of the
largest statistic as a vector of size J, which is then used to assess
significance. The code runs faster, but it would be slightly less clear to
present. In programming languages that offer good matrix manipula-
tion capabilities, e.g. Octave, MATLAB or R, the for-loops that iterate for
each point v can be replaced by matrix operations that are executed
all in a single step. In the FMRIB Software Library (FSL),6 a fast implemen-
tation, in C++, of the randomise algorithm is available.

Appendix C. Worked examples

The examples below serve to illustrate the permutation aspects
discussed in the paper, all with tiny samples, N = 12 only, so that the
design matrices can be shown in their full extent. While permutation
tests in general remain valid evenwith such small samples, these exam-
ples are by nomeans to be understood as a recommendation for sample
sizes. There are many reasonswhy larger samples aremore appropriate
(see Button et al. (2013) for a recent review), and inwhat concerns per-
mutation methods, larger samples allow smaller p-values, improve the
variance estimates for each VG (which are embodied in the weighting
matrix under restricted exchangeability), and allow finer control over
the familywise error rate. For each example, the relevant contrasts are
also shown.

Example 1. Mean effect

Consider a multi-subject FMRI study to investigate the BOLD

response associated with a novel experimental task. After the first-
level analysis (within subject), maps of contrasts of parameter
estimates for each subject are used in a second level analysis. The
regressor for the effect of interest (the mean effect) is simply a col-
umn of ones; nuisance variables, such as handedness, can be included
in the model. Permutations of the data or of the design matrix do not
change the model with respect to the regressor of interest. However,
by treating the errors as symmetric, instead of permutation, the signs
of the ones in the design matrix, or of each datapoint, can be flipped
randomly to create the empirical distribution from which inference
can be performed. The procedure can be performed as in either the
Freedman–Lane or Smith methods (Table 9).

Example 2. Multiple regression

Consider the analysis of a study that compares patients and con-
trols with respect to brain cortical thickness, and that recruiting pro-
cess ensured that all selected subjects are exchangeable. Elder

http://www.fmrib.ox.ac.uk/fsl)


Table 10
Coding for Example 2. Under unrestricted exchangeability, all subjects are assigned to a
single block. The regressors m1 and m2 code for the experimental groups, m3 and m4

for age and sex.

Coded data (Y) EB VG Model (M)

m1 m2 m3 m4

Subject 1 1 1 1 0 a1 s1
Subject 2 1 1 1 0 a2 s2
Subject 3 1 1 1 0 a3 s3
Subject 4 1 1 1 0 a4 s4
Subject 5 1 1 1 0 a5 s5
Subject 6 1 1 1 0 a6 s6
Subject 7 1 1 0 1 a7 s7
Subject 8 1 1 0 1 a8 s8
Subject 9 1 1 0 1 a9 s9
Subject 10 1 1 0 1 a10 s10
Subject 11 1 1 0 1 a11 s11
Subject 12 1 1 0 1 a12 s12
Contrast 1 (C1′) +1 −1 0 0
Contrast 2 (C2′) −1 +1 0 0

Table 12
Coding of the design matrix and exchangeability blocks for Example 4. As the group
variances cannot be assumed to be the same, each group constitutes an EB and VG; sign
flippings happen within block. The regressors m1 and m2 code for the experimental
groups, m3 andm4 for age and sex.

Coded data (Y) EB VG Model (M)

m1 m2 m3 m4

Subject 1 1 1 1 0 a1 s1
Subject 2 1 1 1 0 a2 s2
Subject 3 1 1 1 0 a3 s3
Subject 4 1 1 1 0 a4 s4
Subject 5 1 1 1 0 a5 s5
Subject 6 1 1 1 0 a6 s6
Subject 7 2 2 0 1 a7 s7
Subject 8 2 2 0 1 a8 s8
Subject 9 2 2 0 1 a9 s9
Subject 10 2 2 0 1 a10 s10
Subject 11 2 2 0 1 a11 s11
Subject 12 2 2 0 1 a12 s12
Contrast 1 (C1′) +1 −1 0 0
Contrast 2 (C2′) −1 +1 0 0
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subjects may, however, have thinner cortices, regardless of the diag-
nosis. To control for the confounding effect of age, it is included in the
design as a nuisance regressor. Sex is also included. The permutation
strategy follows the Freedman–Lane or Smith methods, with the
residuals of the reduced model being permuted under unrestricted
exchangeability (Table 10).

Example 3. Paired t-test

Consider a study to investigate the effect of the use of a certain anal-
gesic in the magnitude of the BOLD response associated with painful
stimulation. In this example, the response after the treatment is com-
pared with the response before the treatment, i.e., each subject is their
own control. The experimental design is the “paired t-test”. One EB is de-
fined per subject, as the observations are not exchangeable freely across
subjects, andmust remain together in all permutations. In this example,
in the absence of evidence on the contrary, the variance was assumed
to be homogeneous across all observations, such that only one VG,
encompassing all, was defined (Table 11). If instead of just two, there
weremore observations per subject being compared, the same strategy,
with the necessary modifications to the design matrix, could be applied
only under the assumption of compound symmetry, something clearly
invalid for most studies, albeit not for all. Some designs with repeated
measurements can, however, bypass this need altogether, as shown in
Example 6.
Table 11
Coding of the design matrix exchangeability blocks and variance groups for Example 3.
Observations are exchangeable only within subject, and variance can be estimated
considering all observations as a single group. The regressor m1 codes for treatment,
whereasm2 to m7 code for subject-specific mean.

Coded data (Y) EB VG Model (M)

m1 m2 m3 m4 m5 m6 m7

Subj. 1, obs. 1 1 1 +1 1 0 0 0 0 0
Subj. 2, obs. 1 2 1 +1 0 1 0 0 0 0
Subj. 3, obs. 1 3 1 +1 0 0 1 0 0 0
Subj. 4, obs. 1 4 1 +1 0 0 0 1 0 0
Subj. 5, obs. 1 5 1 +1 0 0 0 0 1 0
Subj. 6, obs. 1 6 1 +1 0 0 0 0 0 1
Subj. 1, obs. 2 1 1 −1 1 0 0 0 0 0
Subj. 2, obs. 2 2 1 −1 0 1 0 0 0 0
Subj. 3, obs. 2 3 1 −1 0 0 1 0 0 0
Subj. 4, obs. 2 4 1 −1 0 0 0 1 0 0
Subj. 5, obs. 2 5 1 −1 0 0 0 0 1 0
Subj. 6, obs. 2 6 1 −1 0 0 0 0 0 1
Contrast 1 (C1′) +1 0 0 0 0 0 0
Contrast 2 (C2′) −1 0 0 0 0 0 0
Example 4. Unequal group variances

Consider a study using FMRI to compare whether the BOLD response
associated with a certain cognitive task would differ among subjects
with autistic spectrum disorder (ASD) and control subjects, while taking
into account differences in age and sex. In this hypothetical example,
the cognitive task is known to produce more erratic signal changes in
the patient group than in controls. Therefore, variances cannot be
assumed to be homogeneous with respect to the group assignment of
subjects. This is an example of the classical Behrens–Fisher problem.
To accommodate heteroscedasticity, two permutation blocks are
defined according to the group of subjects. Under the assumption of
independent and symmetric errors, the problem is solved by means of
random sign flipping (Pesarin, 1995), using the well known Welch's v
statistic, a particular case of the statistic G shown in Eq. (6) (Table 12).

Example 5. Variance as a confound

Consider a study using FMRI to compare whether a given medication
wouldmodify the BOLD response associatedwith a certain attention task.
The subjects are allocated in two groups, one receiving the drug, the
other not. In this hypothetical example, the task is known to produce
very robust and, on average, similar responses for male and female sub-
jects, although it is also known that males tend to display more erratic
signal changes, either very strong or very weak, regardless of the drug.
Table 13
Coding for Example 5. The different variances restrict exchangeability for within same sex
only, and twoexchangeability blocks are defined, for shufflingwithin block. The regressors
m1 and m2 code for group (patients and controls), whereas m3 codes for sex.

Coded data (Y) EB VG Model (M)

m1 m2 m3

Subject 1 1 1 1 0 1
Subject 2 1 1 1 0 1
Subject 3 1 1 1 0 1
Subject 4 2 2 1 0 −1
Subject 5 2 2 1 0 −1
Subject 6 2 2 1 0 −1
Subject 7 1 1 0 1 1
Subject 8 1 1 0 1 1
Subject 9 1 1 0 1 1
Subject 10 2 2 0 1 −1
Subject 11 2 2 0 1 −1
Subject 12 2 2 0 1 −1
Contrast 1 (C1′) 1 −1 0
Contrast 2 (C2′) −1 1 0



Table 14
Coding of the design matrix, exchangeability blocks and variance groups for Example 6.
Shufflings happen for the blocks as a whole, and variances are not assumed to be the
same across all timepoints.

Coded data (Y) EB VG Model (M)

m1 m2 m3 m4 m5 m6

Subject 1, Timepoint 1 1 1 a11 0 1 0 0 0
Subject 1, Timepoint 2 1 2 a12 0 1 0 0 0
Subject 1, Timepoint 3 1 3 a13 0 1 0 0 0
Subject 2, Timepoint 1 2 1 a21 0 0 1 0 0
Subject 2, Timepoint 2 2 2 a22 0 0 1 0 0
Subject 2, Timepoint 3 2 3 a23 0 0 1 0 0
Subject 3, Timepoint 1 3 1 0 a31 0 0 1 0
Subject 3, Timepoint 2 3 2 0 a32 0 0 1 0
Subject 3, Timepoint 3 3 3 0 a33 0 0 1 0
Subject 4, Timepoint 1 4 1 0 a41 0 0 0 1
Subject 4, Timepoint 2 4 2 0 a42 0 0 0 1
Subject 4, Timepoint 3 4 3 0 a43 0 0 0 1
Contrast 1 (C1′) 1 −1 0 0 0 0
Contrast 2 (C2′) −1 1 0 0 0 0
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Therefore, variances cannot be assumed to be homogeneous with re-
spect to the sex of the subjects. To accommodate heteroscedasticity,
two permutation blocks are defined according to sex, and each permu-
tationmatrix is constructed such that permutations only happenwithin
each of these blocks (Table 13).

Example 6. Longitudinal study

Consider a study to evaluate whether fractional anisoptropy (FA)
would mature differently between boys and girls during middle child-
hood. Each child recruited to the study is examined three times, at the
ages of 9, 10 and 11 years, and none of them are related in any known
way. Permutation of observations within child cannot be considered,
as the null hypothesis is not that FA itself would be zero, nor that there
would be no changes in the value of FA along the three yearly observa-
tions, but that there would be no difference in potential changes be-
tween the two groups; the permutations must, therefore, always keep
in the same order the three observations.Moreover, with three observa-
tions, it might be untenable to suppose that the joint distribution be-
tween the first and second observations would be the same as for
between the first and third, even though it might be the same as for
the second and third; if these three pairwise joint distributions cannot
be assumed tobe the same, this precludeswithin-block exchangeability.
Instead, blocks are defined as one per subject, each encompassing all the
three observations, and permutation of each block as a whole is per-
formed. It is still necessary, however, that the covariance structurewith-
in block (subject) is the same for all blocks, preserving exchangeability.
If the variances cannot be assumed to be identical along time, one vari-
ance group can be defined per time point, otherwise all are assigned to
the same VG (as in Example 3). If there are nuisance variables to be con-
sidered (some measurements of nutritional status, for instance), these
can be included in the model and the procedure is performed using
the same Freedman–Lane or Smith strategies (Table 14).
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