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Abstract. We study a new space, R(X), of real-valued continuous functions on the space
X of sequences of zeros and ones. We show exactly when the Ruelle operator theorem
holds for such functions. Any g-function in R(X) has a unique g-measure and powers of
the corresponding transfer operator converge. We also show Bow (X, T) # W(X, T) and
relate this to the existence of bounded measurable coboundaries, which are not continuous
coboundaries, for the shift on the space of bi-sequences of zeros and ones.

0. Introduction
We study a family of continuous functions on the space, X = []3°{0, 1}, of sequences
x = (x,)§° of zeros and ones. This family, R(X), is well behaved with respect to
the Ruelle operator theorem (also called the Ruelle-Perron—Frobenius theorem). This
theorem concerns the Ruelle transfer operator £, on the Banach space C(X) of real-
valued continuous functions on X. With suitable assumptions on ¢ € C(X) there is
a number A > 0 and some & € C(X) with & > 0 and L,h = Ah, some probability
measure v on X with ,C:ZU = Av, and, for all f € C(X), Eg f/A" converges, in the sup
norm on C(X), to ( [f dv)h. Also 1y, = hv turns out to be the unique equilibrium
state of ¢ with respect to the shift transformation 7 on X. When ¢ is in our space
R(X) C C(X) we obtain necessary and sufficient conditions for the existence of such
an eigenfunction #, and we show that the existence of & forces the rest of the Ruelle
operator theorem to hold. Moreover, if ¢ € R(X) and an eigenfunction s exist, then
g =eh/AhoT € R(X) and also logg € R(X). This allows us to reduce the study of
certain ¢ € R(X) to that of g-functions in R(X). The space R(X) includes the functions
studied by Hofbauer [Ho]. These include examples of functions of the type devised by
Fisher, without unique equilibrium states [Fi].

In §1 we define our space R(X) and obtain necessary and sufficient conditions for a
function ¢ € R(X) to be in the space Bow(X, T'), necessary and sufficient conditions for
¢ € R(X) tobein W(X, T), and necessary and sufficient conditions for ¢ € R(X) to be
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a coboundary. The spaces Bow(X, T'), W(X, T) and Cob(X, T') are important in the study
of transfer operators and equilibrium states. We give examples from R(X) of functions
in Bow(X, T') but not in W(X, T'). This type of example can be modified to show that
Bow(X, T)\W (X, T) is non-empty for any non-trivial subshift of finite type 7 : X — X.

In §2 we study those members of R(X) which are g-functions for the shift 7. Each
such g has a unique g-measure, which we describe. Also if £ denotes the transfer operator
of log g, then, for all f € C(X), £"f converges uniformly on X to a constant u(f) as
n — oo. This result had been proved for a smaller class than R(X) as part of the thesis of
Hulse [Hu].

In §3 we investigate the Ruelle operator theorem for ¢ € R(X). In Theorem 3.1 we
obtain necessary and sufficient conditions for the existence of a positive eigenfunction for
Ly. These turn out to be necessary and sufficient for the whole of the conclusion of the
Ruelle operator theorem. If ¢ € R(X)NBow(X, T) the necessary and sufficient conditions
hold. We give examples of ¢ € R(X) where these conditions do not hold.

In §4 we use R(X) to obtain a class of continuous functions on the two-sided shift space
X = {0, 1}# which are bounded measurable coboundaries but not continuous coboundaries
for the shift S on X.

We now explain our notation and terminology. Let X = [[;°{0, 1} be the full one-
sided shift space with symbols O and 1 and let 7T : X — X denote the one-sided
shift transformation. Points of X are sequences x = (x,);° of zeros and ones. The
topology on X is the direct product of the discrete topology on {0,1}. If i > 0,
j = land ag,...,aj—1 € {0,1} then ;[ap...a;_1]i+j—1 or ;[ag...a;_1] denote the
set {x = (x,,)go | xk4i = ak,0 < k < j — 1}. Such a set is called a cylinder set based at
coordinate i. All cylinder sets are finite unions of cylinder sets based at coordinate zero,
and these form a basis for the topology. Note that T olao . . caj—1] = ilao...aj—1].
A metric on X with this topology is given by: if x # y,d(x,y) = 1/(j + 1) if j is the
smallest non-negative integer with x; # y;.

If j > 1and ag,...,aj—1 € {0,1} then, if x € X, ag...aj_1x denotes the point
z = (z))° of X with z; = a@; for0 < i < j—1landzy; = x; fori > 0. If j > 1
then 0/ x is the point z = (z,,)8O withz; =0,0 <i < j—1,andzj4; = x; fori > 0.
The point 0= is the sequence with all entries zero and if j > 1 and ao, ..., a;—1 € {0, 1}
then agp . ..a;—10% is the point z = (z,) withz, = a,,0 <n < j —1,and z;4; = 0 for
i >0.Ifj > landap,...,aj—1 € {0, 1} then (ap...a;—1)> is the point z = (z,)g° with
Zmj+i = a; for0 <i < j —1and m > 0. Such points are exactly the points z € X with
Tiz=z.

Let C(X) denote the Banach space of all real-valued continuous functions on X,
equipped with the supremum norm. Continuity properties of a function f : X — R
can often be expressed using the sequence of numbers {v, (f)}{° defined by

v (f) =sup{f(x) — f(y) [ x,y € Xandx; = y; forO <i <n —1}.

For example f € C(X) if and only if v,,(f) — 0.

We let M(X) denote the space of all probability measures on the Borel subsets of
X, equipped with the weak*-topology, and let M (X, T') denote the non-empty subset of
T -invariant members of M (X). We say that t € M (X) has support X if 7(U) > 0 for
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every non-empty open set U. If ¢ € C(X) we let P(T, ¢) denote the pressure of 7 at
¢ (see [W1]), and let T,,¢ be the function Z?;ol @ o T'. The Ruelle operator of ¢ € C(X)
will be denoted by £, : C(X) — C(X), so that (L, f)(x) = Y e?") f(y) where the sum
isoverall y € T~'x. Hence (L, f)(x) = O £(0x) + 1% f(1x).

The dual operator Ej; always has an eigenmeasure in M (X), i.e. there exist v € M (X)
and A > 0 with Ej;v = Av (see [W2)]).

We consider two spaces of functions which are important in studying equilibrium states.
These spaces can be defined for a general continuous transformation 7 : X — X of a
compact metric space. We say that ¢ € C(X) belongs to Bow(X, T) if there exist § > 0,
C > 0 with the property that whenever n > 1 and x, y € X satisfy d(T'x, T'y) < & for
all0 <i <n—1then |(Tp)(x) — (T,9)(¥)| < C (see [Bow, W4, W5, W6]). We say
that ¢ € C(X) belongs to W(X, T) if for all ¢ > 0 there exists § > 0 with the property
that whenever n > 1 and x, y € X satisfy d(Tix, Tiy) < dforall0 <i <n—1 then
[(T0)(x) — (The)(y)| < € (see [Bou, W5, W6]). Clearly W(X, T) C Bow(X, T). For
the one-sided shift 7 : X — X on the space X = [[;°{0, 1}, which we are studying
in this paper, we have ¢ € Bow(X, T) if and only if ¢ € C(X) and there exists p > 0
with sup,,~ | Va4 p(T¢) < oo. This latter condition is equivalent to sup,,~.| v, (T,¢) < o0.
Also ¢ € W(X, T) if and only if sup,~ | Vn+p(The) — 0 as p — oo. -

In [W3] the author showed that, for a topologically mixing subshift of finite type, if
¢ € W(X, T) then the Ruelle operator theorem holds (that is, there exist . > 0, v € M (X)),
and h € C(X) with & > 0 and fhdv = 1 such that Ly,h = Ah, E;v = M\v and, for all

fecX),
ﬁn
(“’{—n)mzh(x)/fdv,

where — denotes uniform convergence on X), ¢ has a unique equilibrium state w,
and (T, j4,) has a Bernoulli natural extension. Here py, = hv, and p,, is the unique
g-measure for the g-function g(x) = e?Wh(x)/Ah(Tx). In [W4], the author considered
these questions for ¢ € Bow(X, T') and proved a weakened version of the Ruelle operator
theorem. Each ¢ € Bow(X, T) has a unique equilibrium state w, and (T, 1t,) has a
Bernoulli natural extension [W6].

We shall also use the space of continuous coboundaries. If 7 : X — X is
any continuous transformation of a compact metric space then the space of continuous
coboundaries for 7 is Cob(X,T) = {f € C(X) | Al € C(X) with f = [o T —1}.
Such a function / is called a cobounding function for f. We have Cob(X, T) C W(X, T).
Coboundaries are important in the study of equilibrium states.

1. The space R(X)

We now define the space R(X) of functions on X = ]_[flozo{O, 1}. A function ¢ € C(X) is
in the space R(X) if it is defined in the following way: there are four convergent sequences
of real numbers (a,)5° — a, (bn)}° — b, (cn)3° — ¢, (dy)]° — d and forall z € X, for
all p > 2, forallg > 1, (0712) = ap, ¢(0190z) = by, ¢(170z) = cp, p(10712) = dg,
©(0%°) = a, p(01%°) = b, p(1°°) = c and (10*°) = d. So at a point with initial symbol
0 the value of ¢ is a,, if the initial block of zeros has length p > 2, but if the initial zero is
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immediately followed by a block of ones of length ¢ > 1 the value of ¢ is b,. Similarly if
the initial symbol is 1.

The space R(X) is a vector subspace of C(X) and ¢ € R(X) if and only if ¢¥ € R(X).

We now characterize the spaces R(X) N Bow(X, T) and R(X) N W(X, T) and show
that they differ.

THEOREM 1.1. Let ¢ € R(X) be defined by the sequences (ap)3° — a, (bg){° — b,

(cp)gO — c, (ciq)fO — d as above. Then we have the following:

(i) ¢ e€Bow(X,T)ifandonlyif Y oo ,(an —a) and Y v »(cp — ¢) both have bounded
sequences of partial sums;

(i) @eW(X,T)ifandonlyif Y o2 s(an —a) and Y oo, (ca — ¢) are both convergent;

(iii) ¢ € Cob(X, T) ifand only ifby +dy = 0and, forall p > 2, by +di+ 3.0 _,ci =0
anddy + b1 + Y0, a; =0.

When these conditions hold the cobounding function k € C(X) has the form k((091z)) =

a9 >1,2€ X, k((1902)) = B4, q = 1, z € X, k(0®) = a, k(1°°) = B where ag — «,

By — B-

Note that when the equations in (iii) hold then ) ;2 a; converges so a = 0. Similarly
¢ = 0 when the equations in (iii) hold.

Note that the conditions for ¢ € Bow(X,T) and ¢ € W(X, T) do not involve the
sequences (b,,)cl>o and (dn)fo. In the condition in (iii) once by is chosen then (b;);2, and
(dj)i';l are determined in terms of by, (a,)5° and (c,)5°.

We prove Theorem 1.1 using the following lemma.

LEMMA 1.2. Let ¢ € R(X) be defined by the sequences (ap)5° — a, (by)]7° — b,
(cp)5° — cand (dy){° — d as in Theorem 1.1. Then we have the following.

(i) Forn=>2,

vy (@) = sup{max(a,; — Gnts, buyr—1 — bn+s—la Cn+t — Cntss

dpyi—1 —dpys—1): 5,1 > 0}
Hence if
Co = sup(max(|aj — al. |bj_1 — bl. |c; — cl, |dj_1 —d]): j = n)
then C,, < vp(p) < 2Cy.

@ii) Forn,N =2,

VatrN (The) = max( sup [(@i+1 + -+ aitn) —(@j+1+ -+ ajin)l,
i,j=N

sup (di+i — di+j + (@iv1 + -+ - + aivk)

i,j>N, 1<k<n—1

—(@jt1+---+aj0l,

CAMBRIDGE JOURMNALS

http://journals.cambridge.org Downloaded: 11 May 2009 IP address: 137.205.202.8



http://journals.cambridge.org

Space of functions for Ruelle operator theorem 1327

sup (b; — bj), sup [(cig1 + -+ Citn) — (Cjg1 + -+ Cjtn)l,
i,j=N i, j=N

sup [(bivi — bryj + (civ1 + -+ -+ Cigk)
i,j>N, 1<k<n—1

—(cjt1+ -+ i)l sup (di — dj)>.
i,j>=N

Hence if Dy = supi)ij(di —d;j), By = supi)ij(bi —bj)and

Ay n = maX(BN, Dy, sup |@iy1+ -+ aiwk) — kal,

i>N, 1<k<n

sup  (J(cig1 + -+ Citr) — kCl))

i>N, 1<k<n

then forn, N > 2
Ay N — Dy — By < Vpyn(Thp) <2A, v + Dy + By.

Proof. (i) Letn > 2 andletx, y € X have (xq, ..., xXn—1) = Vo, ..., Yn—1)-

Suppose xg = yg = 0.

If x, y € o[071] for some p > 2 then ¢(x) = ¢(y), and if x, y € 9[0190] for some g > 1
then p(x) = ¢(y).

If x € 9[0""*1] for some ¢t > 0 and y € o[0"™ 1] for some s > 0 then ¢ (x) — ¢(y) =
Qi — Ans. If x € o[0" 1] for some ¢ > 0 and y = 0% then ¢ (x) — ¢(y) = anis — a.

If x€o[01""1%70] for some r > 0 and ye€o[01"7'*50] for some s > O then
9(¥) = 9(¥) = buri—1 — buss—1. I x €0[01""1H0] and y = (01%°) then p(x) — ¢(y) =
bn+t71 —b.

When xo = yp = 1 we get similar results and hence the expression in (i). The inequality
involving C, follows from the triangle inequality.

(ii) Letn, N > 2. Letx, y € X have (xg, ..., Xp4N—1) = (Y0, - - - » Yn+N—1)-

Consider the case x,—1 = 0 = y,_1; the case when x,_1 = 1 = y,_ is handled in a
similar way. Consider firstly when (x,—1, x,) = (0,0) = (yu—1, Yn)-

Suppose (xq, ..., x5—1) = 0" If x €[0"1] for some i > N and y € o[0"T/1] for
some j > N then

(Th)(x) — (Th9) () = (an4i + -+ +a14i) — @ngj + -+ ai4)).
If x € o[0"1"1] for some i > N and y = (0°°) then
(Thp)(x) — (Th)(y) = (an+i + - - - + a1+i) — na.

If x € o[0"1 1] for some 1 <i < N — 1 then y € o[0T 1] and (T,¢) (x) = (T,,0)(y).

Suppose x, = 1 for some 0 < r < n — 2, so that X € n_1-k[10¥t71] for some
l <k<n-—1andi > 1or 7" 1 kx = (10®). If x €,_1_x[10¥1] for some
l<k<n-—1landl <i < N — 1 then yen_l_k[lok“l] and (T,,¢)(x) = (T,¢)(y).
If x€,_i_x[10¥1] for some 1 < k < n — 1 and some i > N — 1 then either
y € n_1-k[10T71] for some j > N — 1 and then

(Th)(x) — (T,9)(¥) = dpri — dirj + (@i +- -+ aryi) — (@grj + - - +aiy ),
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or T"~1=ky = (10%°) and then
(Thp)(x) — (Tne)(¥) = diti + (@k+i + -+ +a1+i) —d — (n — Da.

If 7"~1=Fx = (10%°) then either y € ,_1_;[10¥*71] for some j > N — 1 and then
(L) (x) = (Tap)(y) =d + (n — D)a — diyj — (ar+j + -+ + ar4j),

orx =y.

Now consider when (x,—1,x,) = (0,1). Either x €,_1[01?0] for some i > 1, or
7" 1x = (01°). Suppose x € ,_1[01/0] for some i > 1. If i < N then ye,_1[010]
and (T,,¢)(x) = (T,9)(y). If i > N then either y € ,_1[01/0] for some j > N and then
(Thp)(x) — (Th@)(y) = bi — bj, or T" 'y = (01%) and then (7,,¢)(x) — (Tn9)(y) =
bi —b. If T"1x = (01%) then either y €,-1[01/0] for some j > N and then
(Thp)(x) — (Thp)(y) =b —bj,ory = x.

The corresponding reasoning can be used when x,_1 = 1 = y,_; and we get the
equality in (ii). The inequalities follow from the triangle inequality. O

Proof of Theorem 1.1. Parts (i) and (ii) follow from Lemma 1.2(ii), since ¢ € Bow(X, T)
means Sup,.i Vu+n(T,90) < oo for some N > 2 and ¢ € W(X,T) means
Sup,,> 1 V,,+N_(Tn<p) — 0as N — oo.

We turn to the proof of part (iii). Suppose ¢ € Cob(X,T). If T"(x) = x then
T,o(x) = 0. If we let x = (01)* then ¢((01)*°) 4+ ¢((10)>*°) = 0 so by +d; = 0.
Let p > 2 and let x = (0”1)®. Since TPt (x) = x we have (Tpr19)(x) = 0.
Hence ap, +ap—1 + -+ + a2 + by + d, = 0. Similarly, taking x = (170)* gives
¢p+cp_1+---+c2+di +bp =0. Hence we get the equations in (iii).

Now suppose the equations in (iii) hold and we show ¢ € Cob(X, T)). We have a = 0
= c. Letaj be any real number. Define ), for p > 2by a), = —Zf’zz a; = aj+bi+dp,
and define B8;,q > 1,by By = a1 + b,y. Thenap, — a1 + by +d and B; — a1 +b.

Define k : X — R by k((0912)) = oy, ¢ = 1,z € X, k((1902)) = B4, k(0®) =
a1 + b1 +d,k(1%°) = a; + b. Then k € C(X) and we show that k(Tx) — k(x) = ¢(x),
x € X.

If x €o[071] with p > 2 then k(Tx) —k(x) = ap_1 —ap =a, = @(x). If x €[0190]
with g > 1 then k(Tx) — k(x) = B4 — a1 = by = ¢(x).

For x = (0%°), ¢(0®°) =a = 0 = k(Tx) — k(x). When x = (01%°), k(Tx) — k(x) =
a1 +b—a1 =b=¢pkx).

If x €o[170] with p > 2 then k(Tx) — k(x) = Bp—1 — Bp =bp—1 —bp = cp = @(x).
If x €9[1071] with ¢ > 2 then k(Tx) — k(x) = ay — 1 = a1 — B1 — Z?zz a;, =
a) — p1 +dy + b1 = d; = ¢(x) by the definition of ;. If x € 9[1071] with g = 1 then
k(Tx) —k(x) = a1 — B1 = —b; = di = ¢(x). Whenx = (1), ¢p(x) = c =0 =
k(Tx) — k(x), and when x = (10%°), k(Tx) —k(x) = a1 + b1 +d — By =d = ¢(x) by
the definition of 1. Hence k is a cobounding function for ¢.

The difference k| —k> of any two cobounding functions for ¢ is a T'-invariant continuous
function. Since T is topologically transitive, k; — k> is a constant, so any cobounding
function has the form given. a

COROLLARY 1.3. We have W(X, T) # Bow(X, T).
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Proof. Using Theorem 1.1 we can get examples of ¢ € Bow(X, T)\W(X,T). Let
Y2, ay be a divergent series with a bounded sequence of partial sums and with a, — 0.
For example we could take a, = sin(v/n + 1) — sin/n. So if we take ¢ € R(X) to
correspond to (a,)5° as above,a = 0, all¢, = 0, ¢ = 0, and (b;), (d,) to be any convergent
sequences (say b, = 0 = d,, for all n), then ¢ € Bow(X, T). Clearly ¢ ¢ W(X, T) by
Theorem 1.1. O

We could choose > 02 ,(a, — a) and Y ,2,(c, — ¢) to be any series with bounded
sequences of partial sums and (bn)‘l>O and (d,,)‘fo to be any convergent sequences. Then
the corresponding ¢ € R(T') belongs to Bow(X, T)\W (X, T) as long as one of the above
series is not convergent.

The specific example we gave above was an example of the type studied by
Hofbauer [Ho]. These are given by a sequence (an)f)>O with a, — a and we put
by =b=ay,forallq > l,andcp =dy; =a9g=c=d,forall p > 2,q > 1. Hence
(p(Oklz) = aqap fork > 0,z € X and ¢(0®°) = a. For these functions ¢ € Bow(X, T)
if and only if ) ,(an — a) has a bounded sequence of partial sums and ¢ € W(X, T)
if and only if Z;.,O:o(an — a) converges. (The condition ¢ € Bow(X, T) is the same
as ¢ having a homogeneous measure in the sense of [Ho], so the condition above for
¢ € Bow(X, T) corrects the theorem of [Ho, p. 230] (see [W4]).) For such a function
v, (@) = supi)jzn(ai —aj),n > 2, and sup;., lan —a| < vu(p) < 2sup;-, la, — a| by
Lemma 1.2. Note that, for all f € C(X), v,(f) > 0 and v, (f) \, 0. Given any sequence
(u,,)‘fo with u, > 0 and u, N\, 0 we can get ¢ of the above type with v, (p) = u, for all
n > 1 by taking @, = u,,n > 1 and qp = 0.

For functions of this Hofbauer type we have Zflozl(vn(go))’ < oo if and only if
Z;’;l(supi>n|a,~ — al)’ < oo so we can get for each ¢ > 0 a function ¢ € W(X, T)
with Y- (v, (¢))! = oo as follows. Let a, = (—1)"*!'/n'/", n > 1. Thena, — 0,
soa = 0, and v, (¢) = sup;~,la;| = 1/n'/!. Hence 3 02, (va(p))" = oo. We have that
Y2 | an is convergent by the Leibnitz alternating series test, so ¢ € W(X, T'). This shows
that the classes studied in [JO] do not include all of W (X, T).

The conditions for ¢ € R(X) to belong to Bow(X, T') or W(X, T) do not involve (bg){°
and (d,){°, whereas v, (¢) does involve these sequences.

2. The g-functions in R(X)

A g-function for T : X — X is a continuous g : X — (0, 1) satisfying Z},ET—IX g(y) =
1 for all x € X. We can write this condition as g(0x) 4+ g(1x) = 1 for all
x € X.

Let G(X, T) denote the set of all g-functions for T'. If g € G(X, T) we can define
the continuous operator £ : C(X) — C(X) by (Lf)(x) = ZyeT’lx g(»)f(y). Then
L1 =1Ll =1,and LUr f = f forall f € C(X) where Ur f = f o T. We write
Liog ¢ instead of L to indicate which g is being used, and this fits in with the notation for
the Ruelle operator. We say that u € M (X) is a g-measure if £L*u = w. Such a measure
always belongs to M (X, T'), and u is a g-measure if and only if u is an equilibrium state
for log g (see [L, W2]). Since P(T,logg) = 0 for g € G(X, T), this condition becomes
hu(T) + f log g dp = 0. All g-measures have support X (see [W2]).
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We shall see in §3 that g € G(X, T) N R(X) arises naturally from the Ruelle operator
theorem applied to certain functions in R(X).

Note that if g € G(X, T) then g € R(X) if and only if log g € R(X).

We have ¢ € G(X,T) N R(X) if and only if there are sequences (y,)5° — ¥ and
(8,,)3o — & for which some ¢ € (0, 1) exists with ¢ < yp, 6, < 1 —cforall p > 2,
and g(071z) = yp, g(170z) = 8, forall p > 2,z € X, g(0190z) = 1 — 8441,
g(1091z) =1 —yyqi forallg > 1,z € X, g(0°) =y, g(1*°) =6,8(10°) =1 -y, and
g(01®°) =1-3.

From Theorem 1.1 we have the following result.

THEOREM 2.1. Let g € G(X, T)NR(X) be given in terms of (y,)5° and (6,)3° as above.

Then the following hold:

(i) logg € Bow(X, T) ifand only if there exists A > 1 with A~ < yp -y /Yy < A
and A=V < 8y 814, /8" < Aforalln > 1;

(i) loggeW(X,T) if and only if > oo, log(ya/y) and Y oo, l0g(8,/8) are both
convergent.

We can get examples of g € R(X) with logg € Bow(X, T)\W(X, T) as follows. Let
Z?iz a; be a non-convergent series with a; — 0, |a;| < 1 for all i, and having a bounded
sequence of partial sums. Such an example was given in §1. Choose y € (0, e~ !) and
put y, = ye“, p > 2. Then y, — vy, ye ! < yp < ve < 1,forall p > 2. Since
log(yp/y) = a, the series Z;OZZ log(yp/y) is not convergent but has a bounded sequence
of partial sums. We could choose a similar example for (6,)5° or we could put §, = 1/2
for all p > 2 and then log g € Bow(X, T)\W (X, T) by Theorem 2.1.

In the proof of the next theorem we often use the following. If ¢ € G(X,T), n is a
g-measure and o[ao, . . . , a,] is a cylinder set starting at coordinate 0, then

=/g(ao...anx)g(a1 coeanx) - ganx) dp(x).

Note that since u € M(X,T) we have u(plao, ..., a,]) = wu(lao, ..., a,]) for all
k > 0, so we can write i ([ao, - . ., a,]) unambiguously.

‘We now show that each g € G(X, T) N R(X) has a unique g-measure and we describe
this measure.

THEOREM 2.2. Let g € G(X, T)NR(X) be defined by (yp,)5° and (6,,)5° as above. There
is a unique g-measure | which is given as follows.

Fork > 2let T, = Z?io Vi Vi and A = Z[Oi() Ok - -+ Ok+i- Then n([0,1]) =
u(1,0) = 1/T2 + Az + 2), u([0,0]) = Tp/(T2 + Az + 2), and u([1,1]) =
Ay/(Ty + Ao 4+ 2). Fork > 3, w(0) = 2 m—1Tk/(T2 + Az + 2) and
(15 = 82+ 81/ (T2 + Ay +2). Forr = land ki,li > 1for1 <i <,
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w ([0 1hok2 0k 1)) = ig,dyycky - - - ek, fi, /(T2 + Ag + 2) where

= 1 ifk =1, o — 11—y ifk=1,
Yioove ifk=2, A= ve+Dve---v2 ifk=2
dy = , fi= f
(A= 841)8--- 82 ifl =2, S8 ifl =2,

and p([0F1180k2 . 1b—-10k]) = i diChy -+ - di, ik, /(T2 + Ax + 2). The p-measure of
blocks with initial entry 1 are given by the corresponding expressions.

Proof. Since a g-measure has no atoms

o0

(0, 1) =Y~ p([01'+0]) = (1 = 82)p([10]) + (1 — 83)82([10]) + - - - = p([10]).
i=0
Also w([00]) = Z?io ,u,([()2+i1]) = T ([01]) and, similarly, w([11]) = Au([01]).
Since w([00]) + w([01]) + w([10]) + w([11]) = 1 we have u([01]) = 1/(T'2 + A2 + 2)
and we get the expressions for @ ([00]) and p([11]).
Now let k > 3. Then

2 Vk—1T%k

k1y — S k+i _ = I R 4 St e
([0 ])_,;H([O 1])—§Vk+z yau(01) = T

We get the corresponding expressions for ([1€]).

To prove the expression for ,u([Ok‘ 1hoke ... ok ll']) we use induction on r. Consider
the case r = 1. We study w([0¥1/]). If k = 1 = [ we know that the stated expression is
true. Let k = 1 and/ > 2. Then

p(01') =Y~ u (017701 = D (1 = 814i )81+ - - S24([10]) = & - - - ([ 10]).
i=0 i=0

Nowletk > 2,1 = 1. Then u([Okl]) =y ---y2u([01]). Now if k, 1 > 2,

p(0 1) = D (010D =y 2 ) (1 = 144 1)814 - -~ S2e([10])
i=0 P
=Yk Y2081+ B2 ([10]).

Hence the statement holds for r = 1.

Now assume that the stated equalities hold for the natural number r and we shall show
that they hold for r + 1.

Letk;,l; > 1begivenfor1 <i <r+ 1.If ky,Il; > 2 then

M([Okl 1hok2 ok 11r+1])
=y, -2 (1= 8141081 - 82(1 — Y ) ([0F2172 L OFr+1 1117

and the required result follows by the induction assumption.
If ky > 2and /] = 1 then

,u([Ok‘ lllokz . _Okrﬂ 11r+1]) =Yk - (1 —8)(1 — Vk2+])M([Okzllz . 'Okr+] ]lr+l])

and the required result follows by the induction assumption.
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If ki, = 1and/; > 2 then
u([0M1110%2 0b 1)) = (1= 8, 11)8), -+ 82(1 = yrp ) (072172 0Fr+1 1l

and the required result follows by the induction assumption.
If ky =1 =1 then

p([010% ... 08 +1141]) = (1 = 82)(1 — yrp 1) (102172 . 01 P

and the required result follows by the induction assumption.
The formula for w([0¥11410%2 ... 1%-10%]) can be proved by induction in a similar
way. |

COROLLARY 2.3. For g € G(X, T) N R(X) the unique g-measure |4 is reversible, i.e.

lu‘([a07 a] ERLIENLIE] anfl]) = M([anfls an72s LR ) aO])
forall ap,ay,...,an—1 € {0,1}, n > 1.
We can state this in terms of the natural extension f of u to the two-sided shift space
X = [1%,,{0, 1}. The measure {2 is determined by requiring that [i(;[ao, ai, ..., ay]) =
ulao, ai,...,ay]) foralll € Z,n >0, ap, ay, ...,a, € {0, 1}. Here
Glao.ar, ..., an)) = ()% € X | xx41 =ax 0 <k < n).

If d : X — X is the reversal map, defined by
* *
D .., x 2, X1, %0, X1, X2, ...) = (..., X2, X1, X0, X1, X—2,...)

then Corollary 2.3 means that (i o ® = [i. Here * indicates the entry in the Oth position.
We now show thatif g € G(X, T) N R(X) then, for all f € C(X), E{‘oggfi f fdu,
where p is the unique g-measure. This has been proved in the cases when §, = 6 for all

p > 2 by Hulse [Hu]. Here the symbol — denotes that the convergence is uniform on X.

THEOREM 2.4. Let g € G(X,T) N R(X). Forevery f € C(X) there exists c(f) € R

with E{’ogg = c(f). Infact, c(f) = f f du where p is the unique g-measure.

Proof. We write L instead of Ljogq. Let g be defined using the sequences (y;)5°
and (8,)3°. Since linear combinations of characteristic functions of cylinders based
at coordinate zero, Xy w,..,w;_;]» are dense in C(X), it suffices to consider f =
Xotwo,wy ..., w11 Where w = (wo, wi, ...) € X.

Fixw € X and k > 1 and let f = Xj[wg,wy,...,wy_]- FOrn > 1

.....

LHrH@ = Y g@eg) eI 1) f(2)

zeT (k)

= Y (800 yu-1X) - g(a1x)

Y055 Yn—1
X g(Wo ... Wk—1Y0 ... Yn—1X) -+ &(Wk=1Y0 - - . Yn—1X)].

We first show that it suffices to consider only the two cases wyp = w; = - -+ = Wk—_1-
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Assume that wy_1 = 0. If wg = w; = -+ = wi_; = 0 then we need not consider
further. So let w; = 1 for some i < k — 1, and choose i < k — 1 so that w; = 1 and
wi+1 =0=w;j12 =--- = wi—1. Hence

—i—1
[wo, w1, ..., wk—1] = [wo, wi, ..., w1 10£7T=1],

If 0 < j < i then, by the deﬁnition of g, g(wj...w;j...wk=1Y0...Ys—1x) does not
depend on (yg...y,—1x). Hence ]_['1_:10 gwj...wk—1y0...Yyn—1x) = C, a constant.
Then,

(E"+"f)(x)=C[ Y 8G0 e ya1X) - g (a1 X)

Y05+ Yn—1

x g(10°"yg. . yu_1x) -+ g(0yp ... ynlx)].

But g(10F"1yg .. y,_1x) =1 — g(0"yy... y,_1x) so
(L)) = CIL" ™ Koo (0) = (L7 g ()]

So when wi_; = 0 it suffices to consider (£ T4—i~1 Xjg-i-17) (x) and (Lntk=i Ko=) (x).
Now assume that wi_1; = 1. The corresponding argument shows that the convergence
of (L"** f)(x) depends on that of (L™~ X i—i—1)) (x) and (L7 Xy pii)) (x).
So we only need to consider the cases when f = X ¢ and f = & 14}
So now assume that f* = & |gx}. The case when f = X [« follows by symmetry.
Let [ > 1, and we now show that £ f is constant on o[0'1]. Let x € o[0'1]. Then

L HE = > 800 yn1X) - gGn1X) f(30. .. Yo1X).

Ifn+1 < kthen (yo...yn—1x) ¢o [0¥] so (L™ f)(x) = 0.

If Kk < nthen f(yo...yn—1x) = lifand only if ygo = 0 = --- = yx—_1 and then
L"HE) =2, &0y ya_1x) - - g(ya—1x) which is constant on o[0'1].
Ifn <k <n+Ilthen f(yy...yp—1x) = lifandonlyif yo =0 =--- = y,_1 and then

(L"f)X) = Vntl -+ V14
Hence (£ f) is constant on ¢[0'1] and we denote this value by (L' f )([0'1]).
Again let/ > 1 and we now show that £ f is constant on o[1/0]:

L HE =D 800 Y1081 Yuo1%) - g¥n—1X) f (V0 - - Yu—1X).
Y05--+5Yn—1

Ifn < kthen f(yg...yp—1x) =0so0 (L"f)(x) =0.

If n = k then f(yo...yp—1x) = lifand only if yo = 0 = -+ = y,—1 so
L"Hx) = vk ... v2(1 = 8141).
If kK < nthen f(yo...yp—1x) = lifandonlyif yo = 0 = --- = y_1 so

.....

Hence (L f) is constant on ¢[1/0] and we denote this value by (L' f y([100).
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‘We now show that if xo = O then foralln > 1

(L)) = (]"[ g(ofx>)[(£"f>(0”x> — (L A1+ (L™ (o1
i=1

n—1 /n—i
Z( g(ij))[(E"“‘lf)([lO]) — (L f)(1oD), (1)
1

i=1 \j=
where the final term is absent if n = 1.
We use induction on n. When n = 1 the right side of (1) becomes

g(0x)[(LF £)(0x) — (LF £H (101 + (L£X £H(L101)
= g(0x)(L* £)(0x) + g(1x)(LF fH(1x),

which equals (L% £)(x). Hence (1) holds for n = 1.
Assume that (1) holds for n — 1 and we shall prove it for n. Let x9 = 0. Then

(L") (x) = g(0x) (L1 £)(0x) + g (1) (L1 ) (1x)
= g(O0)[(L"1 £)(0x) — (L= Hyion] + £ =1 Fyon

n—1
= g(0x>[(]"[ g(of“x)){(ﬁkf)(onx) — (LXNHAIOD} 4 (£"H72 Fy([10])
i=1

n—=2 m—1—i
+Z< I g(of“x)){(ﬁ”"‘f)([l()D — (L5 f)(10n)

i=1 "\ j=I
— (E"”“lf)([lo])} + (L (o)

using the induction assumption. Hence

(LX) = (]"[ g(ofx>>[(£kf>(0"x) — (L HAIODT+ (L1 p)(10])
i=1

Z(]‘[ g(ij))[(E"“‘f)([lO]) — (L5 f)(10D)].

1
i=1 Vj=1
Hence (1) holds for all » > 1 and all x € ¢[0].
‘We next show that if xg = 1 then foralln > 1

(L)) = (]‘[ g(l"x>>[<£kf><1"x> — (L HAOIDT+ (L1 ) ([01])
i=1

n—1 ,n—i
+ Z(]‘[ g(lf'x))[(ﬁk“—lf)([OU) — (LT )01, )

i=1 \j=I
where the last term is absent if n = 1.
We use induction on n. When n = 1 the right side of (2) becomes

g(LO[(LF fH(1x) — (L HA01DT + (X (011
= g(1x)(LF £)(1x) + g(0x)(LX £)(0x),
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which equals (L% £)(x) and so (2) holds forn = 1.
Assume that (2) holds for n — 1 and we shall prove it for n. Let xo = 1. Then

(L) (x) = g(L) (L") (1x) + (1 — g(1)) (L £y (0x)
= g(LO)[(L" P H)(1x) — (£ Hoin] + (£ Fyot)

n—1
= g(lx)[(]‘[ g(l"“x)){(ﬁkf)(l"x) — (LXNHAOIDY + (£"H72 F)([01])

n—-2 n—1—
+Z< I g(lf“x)){(ﬁ”’ HAOL]) = (L5 (011}

i=1 " j=1

— (ﬁ"*k—lfx[ou)} + (L1 (o))

using the induction assumption. Hence
L) = (]‘[ g(lix)>[(£"f)(1”x) — (LFHA0IDI + (L (o1
i=1

n—1 ,n—i
+Z<]‘[g(1fx>) (L1 F)(I01D) — (L5 £)([01D)].

i=1 \j=

Hence (2) holds forall n > 1 and all x € g[1].

We use (1) to show that if (L £)([10]) — c(f) then (L" f)(x) — c(f) uniformly for
x €9[0]. Assume that (£" f)([10]) — c(f).

By (1) we have
(L £ ) — (L (o)
= (H g(Oix)>[(£kf)(0”x) — (L* Fy(qon]

+Z<]‘[g(01x)> (L5 (10D — (L5 ) (1on).

Note that |([Tj-; g(07x))[(L* £)(0"x) — (L* £)([10])]] < 2(sup )" — O as n — oo.
Given € > 0 choose N so that ) ;2 (sup g)! < € and so that n > N implies
(L1 F)AI0D — (L HA10D] < e
Foralln > 2N

n—1 ,n—i

(1"[ g(ofx>>[<£k+"—1f><[101> — (L ) (10D]

i=1

2Z(supg>" ‘te Z (supg)"™

i=N+1
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o0 o0
<2 (supg)? +€ ) (supg)”
q=N

p=l1
o0

<el2+ Z(supg)p).
p=1

Therefore [(L"F £)(x) — (L1 £)([10])| = 0 as n — oo, uniformly on ¢[0].
Similarly (2) implies that if (£"*=1 £)([01]) converges then(L"*¥ £)(x) converges to
the same limit uniformly for x € o[1].
So consider (£"* £)([10]).
By (2) we have

(L' f)on
= (]‘[ g(l”‘O))[(Ekf)([l"*‘O]) — (LFHA0IDI + (L (o1

+Z(l_[g<1”’0>) [T )([01]) — (L5 F)(o1D)]

i=1 \j=

= (]‘[ yi+1)[<£kf><[1"+101> — (L*HA0INT + (£ f)(o1))

1 n—i
+Z(]"[ ml)[(ﬁk*' Haon) — (£ £yo1n]

i=1 \j=

n+1 —
(1"[ y,> «ck Harrtton + Z(ﬁ"*' f)([OI])(]_[ y,-)(l — Vut1-i)
j=2

j=2
+ (LA 01D A = ).

Similarly, using (1) we have

n+1 n—2 n—i
L o1 = (]"[ sj)(ﬁkfx[on“l]) + Z(ﬁ“"f)([lop(]"[ aj>(1 — Sppi—1)
j=2 i=0 j=2

+ (L on( - 82).
Forn > 0 putu, = (L"+"f)([01]) and v, = (£n+kf)([10])_ Then
Up = Bn +oqp—1 +ooup2+ - +agug forn>1,

where 8, = (]_[;H’% yj)(ﬁkf)([l'”‘lO]) >0forn > 1,01 =1—y, > 0andforn > 2,

O = (n?ﬁ Vj)(l Yn+1)-
Note that 3 | @, = 1and 0 < B, < (sup; y)"lso Y By < oo
If welet o), = 1 — 68, o = (]_[;;28]')(1 — 8yg1) for n > 2, and B, =

(T35 8,) (L5 £)([0"+!1]) > O then

Un =,3n +0l1Un—1 +~-~+ot;1v0 forn > 1.
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If we put Bo = vo, 2o = 0 and if we let A(s) = > oo gans™, B(s) = Y vy Bus”s
U(s) = Y o2 guns™, V(s) = > o2, vns" then we have V(s) = B(s) + A(s)U(s). Note
that A(1) = 32 g = L and B(1) = 320, B < 0.

Similarly U (s) = B'(s) + A’(s)V (s) where B = uo, oy = 0, A'(s) = Yool oos™ and
B'(s) = > 020 Brs™.

Then we have

U(s) = B'(s) + A'(9)[B(s) + A(s)U (s)]
= (B'(s) + A'(s)B(s)) + A'(s) A()U (s).

This gives a renewal equation for (u,) of the form
Uy, = by + aouy +ayup—1 +---+agug forn >0,

where b, is the coefficient of s in B’(s) + A’(s)B(s) and a, is the coefficient of s”"
in A’(s)A(s). Hence Y 7 qb, = B'(1) + A(1)B(1) = B'(1) < oo and Y ;2 ga, =
A’(1)A(1) = 1 so by the renewal theorem [Fe, p. 291] we have u, — Y rogbi/ > 1oy iai.
Similarly
V(s) = (B(s) + A(s)B'(5)) + A(s)A'(s)V (5)

SO
vy = b), +aovy + ajvp—1 + - +ayvg forn >0,

where b), is the coefficient of s” in B(s) + A(s)B’(s). Hence

> b =B+ AMB (1) =B+ B 1) = b
= i=0

and the renewal theorem gives v, — > 10 bi/ > 72 ia;.

Hence (£"1* £)([01]) and (L' £)([10]) converge to the same limit, c(f), so
(L' £)(x) converges uniformly to ¢(f). Therefore (L£" f)(x) converges uniformly
to c(f).

If u is a g-measure then integrating L£" f — c(f) with respect to u gives c(f) =
[ fdupforall f € C(X). This gives another way of showing that there is a unique
g-measure. O

The convergence L" f — [ f du gives several properties of . One is that T is an
exact endomorphism with respect to u (i.e. all sets in the o-algebra (), 7" B(X) have
u-measure 0 or 1, where B(X) is the o-algebra of Borel subsets of X) [W3].

One can obtain examples of g-functions with £" f converging uniformly to a constant
butlog g ¢ Bow(X, T') as follows. Let y, 8 € (0,1) and for p > 2 puty, = py/(p+ 1),
8, = 8. The corresponding g is in R(X) so we get the convergence by Theorem 2.4.
However log g ¢ Bow(X, T') by Theorem 2.1 since y3 - - - y14,/y" = 2/(n + 2).

3. Ruelle operator theorem for functions in R(X)
In this section we investigate exactly when ¢ € R(X) satisfies the Ruelle operator theorem
forT : X — X.
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For ¢ € C(X) the Ruelle operator £, : C(X) — C(X) is defined by
LoHx) = Y D fy) =@ f0x) + e f(1x).
yeT~lx

To say the Ruelle operator theorem holds for ¢ means that there exist A € R, A > 0,
heCX),h>0veMX)with Loh = Lh and E;v = Mv, and if we normalize % so
that v(h) = 1 then for all f € C(X),

n

Anf = v()h.

We shall give necessary and sufficient conditions for ¢ € R(X) to satisfy the Ruelle

operator theorem. This turns out to be equivalent to the existence of a positive
eigenfunction . When these conditions hold then

e*h
MoT

g = € G(X,T)N R(X),
and since
—logg =logh+loghoT —logh

the unique equilibrium state for ¢ is the unique g-measure for g. Also X is given as the
solution to an equation.

THEOREM 3.1. Let ¢ € R(X) be defined by the sequences (ap)5° — a, (by){° — b,
(cp)s® — cand (dy)}° — d asin §1. The following statements are pairwise equivalent.
(i)  There exists h € C(X), h > 0, and a real number A > 0 with L,h = Ah.

(il)) We have

az+ tagyj cz+ ey

1
d d b b
2max(a c)[ 1—{-26 a e]max(a c) :||: 1+Ze a e]max(a c) ] 1

Jj=1 j=1

where the left side could be co.

(iii) There exists h € C(X), h > 0, and a real number A > 0 with L,h = Lh and h has
the following form: there exist sequences (ctg)7° and (B4){° withag — a, By — B,
h(0912) = ag, g = 1, h(190w) = B4, g > 1, h(0®°) = o and h(1*°) = B.

(iv) There exists h € C(X), h > 0, A > 0 with L,h = Ah and there exists v € M(X)
with E(’;v = Mv and, forall f € C(X), (ng)(x)/)»”zh(x)v(f) asn — oo.

When ¢ satisfies the statements above and £ is given in (iii) then g = e¢h/Aho T is a
g-function for T and g € R(X). Hence ¢ has a unique equilibrium state which is the
unique g-measure.

Note that (iv) says that the Ruelle operator theorem holds for ¢.

We shall use the following lemmas in the proof of Theorem 3.1. We use the notation
from Theorem 3.1.

LEMMA 3.2. The power series Zioz] elivi ettt I has radius of convergence e .

Proof. We have +editneat+ain — ¢4 since dyyp,/n — 0 and (a2 + - -+ + ay1n/n)

— a. d
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LEMMA 3.3. Let ¢ € R(X). We can find p > max(e?, e°) with

az+ tantj
2[ dy +Zedl+] ][ by +Zeb1+]

Proof. Let

d e e +a]+’ b b
F(,o):[ 1+Zel+/ i||: 1+Zel+/

By Lemma 3.2 if pp > max(e?, e) then F(p) < oco. But p > pg implies that
F(p) < F(po) so p‘zF(p) < p‘zF(,oo) < 1 for large enough p. O

cz+ 1y
] < 1.

62"1‘ +Cl+/ :|

LEMMA 3.4. Statement (ii) in Theorem 3.1 is equivalent to the existence of ). >
max(e?, e) with

a2+ +al+/
|: d 4 Zed‘+/ i||: b 4 ZebH—/

Proof. Let G(p) = p~2F(p), where F is defined in the proof of Lemma 3.3. By
Lemma 3.3 there is pp > max(e?, ) with G(pp) < 1.

If statement (ii) holds then G (max(e?, ¢€)) > 1. If G(max(e?, e)) < oo then on the
interval [max(e?, ), po] G is continuous and, by the intermediate value theorem, there is
some A € (max(e?, e°), pp) with G(L) = 1.

Suppose G (max(e?, e€)) = co. By Lemma 3.2, G(p) < oo for all p > max(e?, ). If
G(p) < 1 forall p > max(e?, e°) then, forall J > 1,

az+ tantj
[ diy Zedlﬂ } [ by Z Ghre €T

for all p > max(e?, ). Then

et taiy eC2t Tty
o—2max(@o)| diy; € L] ot biy; € ! <1
+ e + e
ej max(a,c) 61 max(a,c)
Jj=

62+ +Cl+/ }

C2+ +C]+]

for all / > 1 so G(max(e“, e)) < 1, a contradiction. So we can choose p; €
(max(e?, e“), pp) with 1 < G(p;) < oo and the intermediate value theorem, applied
to G restricted to [p1, pol, gives some A € (p1, po) with G(1) = 1.

If there exists A > max(e?, e¢) with G(1) = 1 then G(max(e?, ¢€)) > G(L) = 1 so
statement (ii) of Theorem 3.1 holds. O

We now turn to the proof of the theorem.

Proof of Theorem 3.1. (i) = (ii) Leth € C(X), h > 0, and let A > 0 satisfy L,h = Ah.
We shall show that

a2+ +al+/
1<_[dl+zedl+, ][b1+zeb1+,

and A > max(e?, e).

62+ +C]+/}
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We have e? @)1 (0x) + e*IDh(1x) = Ah(x). Putx = (09171z2),g > 1,j >0,z € X
to get
e“atit (09 2) + e%atin (10977 12) = AR (091 17).
Multiply this equation by e%+1++d+j /3J if j > 1, and by 1 if j = 0, and sum over j
from O to n to get
eaq+l+”'+aq+n+l

m R0 12) + e%ah(1071z)

"q+1+ tag+

+Ze (A0 h(loqﬂlz) = Ah(0712).

The right side of this equation is independent of n and both terms on the left side are
non-negative. Therefore

0O g+
Zedwkijh(loqﬂlz) < o0

and since inf 7 > 0 we have

aq+l+ Fagtj

E it 0.

Hence e+ %%+j /)J — 0 as j — oo. Therefore

o aq+1+ +a g+
edqh(qulz)—i—Zedqﬂih(mq“lz) = Ah(071z), (3)
— A
]_
qg>1,z€eX.
By Lemma 3.2 we have 1 > ¢“. From (L,h)(x) = Ah(x) with x = 0% we have
e“h(0°) 4+ e?h(10%°) = Ah(0%°), so e® < A since h > 0. Similarly we have

i eCa+1tFCqtj
P h(0170w) + Zeb‘“f kijh(01Q+JOw) = Ah(190w) 4)
j=1
and A > e“.
By (3) and (4) with ¢ = 1 we have

o0 az+ +aiyj
A2h(012)h(10w) = [ed‘h(101z) + Zedw 7;1(10“1147,)}
j=1 A

& cz+ et
X [eblh(OlOw) + Zebw Aih(m ]+]Ow):|
j=1
Choose z, w so that 2(01z) = sup,cx h(0ly) and h(10w) = sup, .y h(10x). Then

a2+ a4
I:d'+Zed‘+/ ]][bl+Zeb1+/

Since A > max(e?, €°) this implies (ii).

(,2+ +C1+] }
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(i) = (iii) By Lemma 3.4 choose A > max(e?, ) with

et taiy; eCattCiy
Az[d]J“ZedW M b]+zeb'+’ }:1'
Let ¢ > 0 and define 8 by
b a e tta
e ()\. — e ) di d 2 I+
— + e H—/
B = ed()» ec)x|: Z

For g > 1 define o, and 8, by

A —
R

g, = BO= [ebq L Zebqﬂw]

reb g i

3

e%q+1TTag+j ]

We show that a; — « as ¢ — oo. Let

Q+J
Ug = E e

which is finite since A > ¢“. Since a, — a we have a,, < a + € for n sufficiently large, so

for g sufficiently large
a+e
g < ) Z( )

Hence u = limsup,_, ., (#,) < oo and since u, = (e%+1 /0 [+t + ug+1] we have
i = (e*/M)[e? +ii] so that it = €T /(A — €9).

Similarly u = liminfy, 00 (un) = €/ — e?) so uy — €+ /(h — e%) and @y — «.

Similarly g, — B.

Define h : X — Rby h(0912) = a4, g > 1,z € X, h(190z2) = B4, q > 1,z € X,
h(0*®°) = and h(1*°) = B. Then h > 0 and h € C(X).

We shall now show that (Lyh)(x) = Ah(x).

Note that 81 = a(h — e%)/e? since

edq+1ttagt;

g = ,B(X—e )|: b1 +Z€b1+j et +C1+/]
_BO—e) A
= eb [edl + Z?il edl+jea2+m+al+j/)\,j]
a(h —e%)
= o

by the definitions of A and S.
When x = 0%,

(L,h)(0%°) = e?CIR0%) + 10 R(10°) = e®a + e 1 = ha = Ah(0).
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Note that, forg > 1, e+l + et B1 = lay, since

ed A

_ el e%q+1
)»O[q — M[edq 4+ — " { g1 + Ze gt+j —

efq+2t g1+ }]

= Bre 4 e“rtlay .
Now when x = (091z),q > 1,z € X,
(Loh)(0712) = e“atla, g + el ) = ray = Ah(0712).

Similarly (Lyh)(x) = Ah(x) whenx = 1% and x = (190w), ¢ > 1, w € X.

(iii) = (iv) Let & be as in (iii) and put g = e?h/Ah o T. Then g € G(X, T) N R(X).

By Theorem 2.4, (Eloggf)(x) — w(f) for all f € C(X) where p is the unique
g-measure. Hence for all f € C(X)

(L))
}\Vl

Let v(f) = u(f/h) and we have E(’;v = Av.

Clearly (iv) implies (i).
This completes the proof of Theorem 3.1 a

= h)u(f/h).

COROLLARY 3.5. Let ¢ € R(X) satisfy the statements in Theorem 3.1. There is only one
number A > 0 that satisfies statement (i) and it is that number A > max(e?, e) satisfying

a2+ +ay+j

1
N S Y

We have . = ePT9). The function h satisfying statement (i) is unique up to scalar
multiples. There is a unique v € M (X) with E;v = \v.

C2+ +C]+] }

Proof. In the proof of Theorem 3.1 we showed that the number A given above
satisfies Loh = Ah for a certain continuous 2 > 0, and that, for all f e C(X),
(ng)(x)/)»" = h(x)v(f). If also L,/ = 7! for some number t > 0 and some / € C(X)
with [ > 0 then (t/A)"I(x) = h(x)v(l). Since h(x)v(l) > 0 we have T = X and [(x) =
hix)v(D). If o € M(X) satisfies E;a = )\o then integrating (Ezf)(x)/knzh(x)v(f)
with respect to o gives o (f) = o (h)v(f) forall f € C(X). Putting f = 1 giveso (h) =1

and o = v.
Since (1/n) log(ﬁgl)(x)zP(T, @) (see [W4, Theorem 1.3]) we have P(T, ) =
log X. O

We now show that if ¢ € R(X) N Bow(X, T') then the Ruelle operator theorem holds
for ¢.

COROLLARY 3.6. Let ¢ € R(X) NBow(X, T). Then statement (ii) of Theorem 3.1 holds
so there exists h € C(X), h > 0 with Loh = Ah, where )\ = eP X0 and v € M(X) with
E(’;v = Av and, forall f € C(X), (£$f)(x)/)»”2h(x)v(f).

The measure | given by u(f) = v(hf) is the unique equilibrium state for ¢.

CAMBRIDGE JOURMNALS

http://journals.cambridge.org Downloaded: 11 May 2009 IP address: 137.205.202.8



http://journals.cambridge.org

Space of functions for Ruelle operator theorem 1343

Proof. From Theorem 1.1 there exists K > 0 so that
laz+---+aiyj—jal <K and [+ - -+c1yj—jo| <K

for all j > 1. Therefore e Ke% < e®@t+a1+j and e~ K¢ < 2t T4 forall j > 1.
Hence

62+ +Cl+/

1 d] 4 et taly b] by
- i i
2max(a c) + Z ettt el max(a,c) + Z et el max(a,c)
Jj=1 Jj=1

mfd, emfb, © e J K ¢ J
= 2max(a c) [1 +e Z(emax(a c)) :||:1 te Zl<emax(a,c)) :| = 0.
Jj=
Hence statement (ii) of Theorem 3.1 holds. O

COROLLARY 3.7. Let ¢ € R(X) be defined using the sequences (a,)3°, (by)(°, (cp)5°
and (dy)$° as in §1. If (ap)5°, (by)S°, (cp)5° and (dy)5° satisfy

et taiy eCattCiy
Zedm ! Zebm ! > o2max(a.c)
ej max(a,c) ej max(a,c)
Jj=1 j=1
then for all choices of b1 and dy an eigenfunction h > 0 exists. If

az+ tajyj cz+ 1y

Zedlﬂ ZebH < eZmax(a c)
61 max(a,c) 61 max(a,c)

Jj= Jj=

then for some choices of by and dy an eigenfunction h > 0 exists and for the other choices
of b and dy no positive eigenfunction exists.

Note that one or both of the sums above could be co. This is the case when ¢ €
Bow(X, T).

Proof. Statement (ii) of Theorem 3.1 says

[t + Stlle” + Sp] > &2 m (@), ®)
where
et taiy eCat - tCiy
1 1
S1 = Ze -H eJ max(a,c) and  $> = Ze -H eJ max(a,c) °
Jj= Jj=

If §1 55 > e2max(@.0) thep (5) is true for all choices of by and dj.
If $18; < e2Max(@.¢) then (5) holds for some choices of by and d; and fails for other
choices. O

The following result deals with the class of functions studied by Hofbauer [Ho]. He
studied the case when a = 0.

THEOREM 3.8. Let (an)g° be a convergent sequence of real numbers with (a,) — a, and
let ¢ € C(X) be defined by (0¥1z) = ay fork > 0, z € X and ¢(0°) = a. Then there

exist h € C(X) with h > 0 and L,h = Ah for some real number A > 0 if and only if
Z' 0€ etotart+ai—(i+ha - 1
=
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When this holds » = e T-%) > max(a, ay) and is given by

O pdotai+-ta;
Z = 1.
When 32 edotart—tai=tDa o 1 the unique equilibrium state for ¢ is the unique
g-measure for the g-function given by: g(0190z) = 1 — e®™ /), forallg > 1, 7 € X,
and g(0P1z) = D, /(1 + D)) for p > 2, z € X where

Dp _ i edpttapti
i=0

’

Aitl
8(0%°) = e/x and g(01%°) = 1 — e /.
When 32 edotart+ai=(+Da 5 | ye have, for all f € C(X),

7(%;1)@) - h()v(f)

where v is the unique member of M (X) with E;v = \v.

Proof. In the notation of Theorem 3.1 b, = b =aj forallg > landcp =c=d;, =d =
ap forall p > 2, g > 1. Statement (ii) of Theorem 3.1 becomes

edotai O parttdly J
e2max(a,a0) |:1 + 2 el max(a,ag) ] |: + Z(emax(a a0)> ] > 1.
]=

If agp > a the second series diverges to oo so the above inequality holds.
If agp < a the above inequality becomes

ela

O parttary 1
1 — et—a

edotai —2a [1 + Z
j=1

This is equivalent to

ed0—a +ea0+a172a + ieao+a1+a2+---+a1+j7(2+j)a - 1.
j=1
Therefore, by Theorem 3.1, a positive continuous eigenfunction £ exists for £, if and
only if
o0
Zeao-i-----i-ai—(i-‘rl)a - 1.
i=0

When this condition holds Corollary 3.5 shows that 1 = ¢?7-¢) > max(e?, %) and

0 +tayy
e_“o - Z e®2 | al+j o A _
A2 — AJ (A — e%)

j=

The last equation becomes

%0 edotai O pdottary

A A +. A2+
j=l1
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From the proof of Theorem 3.1 the eigenfunction, £, for L, has the following form. Let
a>0.Letg=a(l —e%)/e®. Forqg > 1leta; = (a(rA—e?)/M)[1+ Dyi1]land B; = B.

Then h(091z) = a4, h(190z) = B, q > 1,z € X, and h(0*°) = o and h(1*°) = B.
Then the corresponding g-function is g = e?h/Ah o T so g(0P1z) = e o, /rap_1 =
D,/(1+ D) foral p > 2,z € X, g(0190z) = e“ay/AB forall g > 1,z € X,
g(1P0z) = ag/x forall p > 2, z € X, and g(1091z) = 1/(1 4 Dy41) for all
qg>1,z€eX. O

We can get functions of Hofbauer type for which £, has no continuous eigenfunction
h > 0 as follows. Suppose ay,ay, ... satisfy a, — a and Zjoz] ettaj—ja o g
Then choose ag so that

o0
ea0d<1 + Zea1+"'+a./ja> <1.
j=1
Examples are given by choosing s > 1 and, forn > 1,

n
an :Sl()g m .

1

00
1+ Z et taj—ja —

s

Then
j=1 i=1

4. Coboundaries for the two-sided shift

We can use the space R(X) to obtain examples of functions on the two-sided shift
space X = ]_[3000{0, 1} which are not continuous coboundaries, with respect to the shift
S: X - X , but are bounded measurable coboundaries. Points of X are bisequences
X = (x,)%% of zeros and ones and the homomorphism § is defined by S* = (y,)%%
where y, = x,41 foralln € Z.

Let Cob(X,S) = {F € C(X) | 3H € C(X) with F = H o S — H} be the space of
continuous coboundaries, and let CobBM()A(, S)={F e C()A() | AH X — R which is
bounded and Borel measurable with FF = H o S — H} be the space of bounded measurable
coboundaries. If ¥ = HS — H then H is called a cobounding function for F. Similarly we
can define Cob(X, T') and Cobgm(X, T).

We have Cob(X, S) C Cobgm(X, S) and Cob(X,T) C Cobgm(X, T), and for the
one-sided shift 7 : X — X Quas [Q] has shown that Cob(X, T) = Cobpm(X, T) but
Cob(X, S) # Cobgm (X, S).

We show how we can use ¢ € R(X) N (Bow(X, T)\W(X, T)) to get members of
Cobgm(X, S)\Cob(X, S).

We use the following well-known characterization of the members of Cobppm (X, T') for
a continuous transformation 7 : X — X of a compact metric space (see [KH, p. 102]
where sup should be replaced by lim sup or lim inf).

THEOREM 4.1. Let T be a continuous transformation of a compact metric space X.
Let f € C(X). Then f € Cobpm(X,T) if and only if there exists K > 0 such
that (T, f)(x)| < K for all x € X, for all n > 1. When this condition holds

[(x) = =lim sup,_, ., (T, f)(x) is a cobounding function.

CAMBRIDGE JOURMNALS

http://journals.cambridge.org Downloaded: 11 May 2009 IP address: 137.205.202.8



http://journals.cambridge.org

1346 P. Walters

We now return to the shift maps 7 : X — X and S : X - X.

LEMMA 4.2. Let ¢ € R(X), letn > 1 and choose x; € {0,1} for0 <i <n — 1. Then
(Thp)((x0 . .. xn—1)>) = (Th@)((Xp—1 . .. X0)™).

Proof. Let ¢ be defined by the sequences (a,)5°, (by)$°, (cp)3° and (dy){° asin §1. Let

1 ifk=1, 1 ifl=1,
A = and C; =
arap—1...ax ifk > 2, cci—y...co ifl > 2.
Let xo = 0.
Ifxo...x,—1 = 0F1h . 0F1F withk;, [; > 1,1 <i <r, then
(Tho)((x0 . .. x4—1)*°) = Ak, by, C1ydy, . .. Cpdy,
and

(Th@) ((xp—1 ...x0)>°) = Crydp, Ak, - .- Ax, by,

so the result holds.
Ifxg...x0—1 = 0F1 1l 0k 140k +1 then

(Th@)((x0 - - . xp—1)°) = A, b1, Ciydy - - . Clodiy 1ky Oy sy - - - A4

and
(Th @) ((xp—1...x0)>) = Ak, b1, Cl, - . Ay 4k, Ok 4y - - - A ks>

so the result holds. Similar calculations deal with the cases when xg = 1. O

Let ® : X — X be the reversal map of X, defined by ®(X) = y where y, = x_, for
alln € Z. Letw : X — X be the natural projection, given by 7 ((x,)%,,) = (x;)5°.

THEOREM 4.3. Let ¢ € R(X). Then the following hold:
(i) ¢ eBow(X,T)ifandonlyif¢pom —¢@om o ® € Cobgm(X, S);
i) eWX,T) ifandonlyszpon—goonod)eCob(}A(,S).

Proof. Let ¢ € R(X).

(i) Let ¢ € R(X) N Bow(X, T"). We want to find a constant K so that |S,(p o — ¢ o
To®)(x)| <K foralln>1,x € X, and then we can use Theorem 4.1.

Let C be the constant occurring in the Bowen condition so that if x, y € X, n > 1, and
xi =i, 0 =i =n—1, then [(T,p)(x) — (Thp)(y)| = C.

Let X = (x;)®, € X. Letn > 1. Then we have

Sp(@om —gomo®)(X) = (Thp)(xox1x2...) — (Tne) (XpXp—1 ... X1X0X-1X—2...)
= (Tup) (xox1x2 . ..) — (Tup) ((x0 . . . Xp—1)>)
+ (Tup) ((x0 - - - X2—1)™) — (Tn®) ((Xn—1 - . . X0)*)
+ (The) ((n—1 - .. %0)%) = (The) (Xn—1 ... X1X0X—1X-2...)

S0 |Sp(pomr —pomo®)(X)| < 2C by Lemma4.2. Hence por —pomo® € CobBM(}A(, S)
by Theorem 4.1.
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Now let pom —@pomod € CobBM()A(, S). Then there exists K such that
ISp(pomr —pomod®(@R)| < Kforalln > 1,5 € X. Let x,y € X and
xi = ¥,0 <i <n-—1. Choose yj = 0 = x; forall j < 0toform* = (x;,)%
and y = ()%, € X. Then we have

(The)(x) — (Th0) () = (The)(x) — (Tn@)(Xp—1 ... X1X0X—1X—2...)
+ (1) (xp—1 ... x1%0x-1x—2...) — (T)(y)
=S, (gomr —@pomo®)(x)— S, (pomr —pomo D).

Hence |(T,¢)(x) — (T,9)(¥)| < 2K, and ¢ € Bow(X, T).
(i) Letp € R(X) N W(X, T). Since

(Sn(p om0 @)(X) = (Trg) (XnXp—1 ... X1X0X—1X-2...)

we have p or 0 ® € W(X, T) so there exists ¢+ € C(X) suchthatpomr o ® — ¢ om €
Cob(X, S) (see [Bou]). By (i) p ot — @ o7 o ® € Cobpm(X, S) sopomr —gpom €
CobBM()A(, S). By Theorem 4.1 applied to S and T we have ¢ — ¢ € Cobpm(X, T), so
¢ — @4+ € Cob(X, T)by [Q]. Hencepomro® —pom € Cob(X, S).

Now let pomr —pomod = FS — F where F € C()A(). We show that
sup,~q Va+N (T,9) — 0as N — oo.

Letn > land N > landletx = (x))3°, y = (y;)) € X have x; = y;,0 < j <
n+N—1. Letx; =0=y; foralli < —1toobtain ¥ = (x;)°_and J = (y,)%, € X.
Then

(Thp)(x) — (Tn)(y)
=Sy(pomr —@pomo®)(X) — S (pomr —pomod)(P)
=F(§"x) — F(x) — F(§"y) + F()
= F(-~-;n~-~xn+N—1xn+N-~-) - F(~-~;n-~-yn+N—1yn+N~-~)

k %
—[F(..x0. .. Xp4N=1Xn4N ---) — F(C .0 o . YntN=1Yn4N - . )]
SVN(F) + Varn (F) < 2vn(F).

Hence sup,»| Vot N (Thp) < 2vN(F)sop € W(X, T).
This completes the proof of Theorem 4.3. a

We can get members of CobBM()A(, S)\Cob(X, S) as follows.

COROLLARY 4.4. Let ¢ € R(X). Then ¢ € Bow(X,T)\W(X,T) if and only if
pom —@omo® e Cobpm(X, S)\Cob(X, §).

Examples of functions in R(X) N (Bow(X, T)\W(X, T)) are given in §1.
Results of this type, in a more general setting, will appear in another paper.
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