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Abstract. We study a new space, R(X), of real-valued continuous functions on the space
X of sequences of zeros and ones. We show exactly when the Ruelle operator theorem
holds for such functions. Any g-function in R(X) has a unique g-measure and powers of
the corresponding transfer operator converge. We also show Bow(X, T ) �= W(X, T ) and
relate this to the existence of bounded measurable coboundaries, which are not continuous
coboundaries, for the shift on the space of bi-sequences of zeros and ones.

0. Introduction
We study a family of continuous functions on the space, X = ∏∞

0 {0, 1}, of sequences
x = (xn)

∞
0 of zeros and ones. This family, R(X), is well behaved with respect to

the Ruelle operator theorem (also called the Ruelle–Perron–Frobenius theorem). This
theorem concerns the Ruelle transfer operator Lϕ on the Banach space C(X) of real-
valued continuous functions on X. With suitable assumptions on ϕ ∈ C(X) there is
a number λ > 0 and some h ∈ C(X) with h > 0 and Lϕh = λh, some probability
measure ν on X with L∗

ϕν = λν, and, for all f ∈ C(X), Ln
ϕf/λn converges, in the sup

norm on C(X), to
( ∫

f dν
)
h. Also µϕ = hν turns out to be the unique equilibrium

state of ϕ with respect to the shift transformation T on X. When ϕ is in our space
R(X) ⊂ C(X) we obtain necessary and sufficient conditions for the existence of such
an eigenfunction h, and we show that the existence of h forces the rest of the Ruelle
operator theorem to hold. Moreover, if ϕ ∈ R(X) and an eigenfunction h exist, then
g = eϕh/λh ◦ T ∈ R(X) and also log g ∈ R(X). This allows us to reduce the study of
certain ϕ ∈ R(X) to that of g-functions in R(X). The space R(X) includes the functions
studied by Hofbauer [Ho]. These include examples of functions of the type devised by
Fisher, without unique equilibrium states [Fi].

In §1 we define our space R(X) and obtain necessary and sufficient conditions for a
function ϕ ∈ R(X) to be in the space Bow(X, T ), necessary and sufficient conditions for
ϕ ∈ R(X) to be in W(X, T ), and necessary and sufficient conditions for ϕ ∈ R(X) to be
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a coboundary. The spaces Bow(X, T ), W(X, T ) and Cob(X, T ) are important in the study
of transfer operators and equilibrium states. We give examples from R(X) of functions
in Bow(X, T ) but not in W(X, T ). This type of example can be modified to show that
Bow(X, T )\W(X, T ) is non-empty for any non-trivial subshift of finite type T : X → X.

In §2 we study those members of R(X) which are g-functions for the shift T . Each
such g has a unique g-measure, which we describe. Also if L denotes the transfer operator
of log g, then, for all f ∈ C(X), Lnf converges uniformly on X to a constant µ(f ) as
n → ∞. This result had been proved for a smaller class than R(X) as part of the thesis of
Hulse [Hu].

In §3 we investigate the Ruelle operator theorem for ϕ ∈ R(X). In Theorem 3.1 we
obtain necessary and sufficient conditions for the existence of a positive eigenfunction for
Lϕ . These turn out to be necessary and sufficient for the whole of the conclusion of the
Ruelle operator theorem. If ϕ ∈ R(X)∩Bow(X, T ) the necessary and sufficient conditions
hold. We give examples of ϕ ∈ R(X) where these conditions do not hold.

In §4 we use R(X) to obtain a class of continuous functions on the two-sided shift space
X̂ = {0, 1}Z which are bounded measurable coboundaries but not continuous coboundaries
for the shift S on X̂.

We now explain our notation and terminology. Let X = ∏∞
0 {0, 1} be the full one-

sided shift space with symbols 0 and 1 and let T : X → X denote the one-sided
shift transformation. Points of X are sequences x = (xn)

∞
0 of zeros and ones. The

topology on X is the direct product of the discrete topology on {0, 1}. If i ≥ 0,
j ≥ 1 and a0, . . . , aj−1 ∈ {0, 1} then i [a0 . . . aj−1]i+j−1 or i[a0 . . . aj−1] denote the
set {x = (xn)

∞
0 | xk+i = ak, 0 ≤ k ≤ j − 1}. Such a set is called a cylinder set based at

coordinate i. All cylinder sets are finite unions of cylinder sets based at coordinate zero,
and these form a basis for the topology. Note that T −i

0[a0 . . . aj−1] = i[a0 . . . aj−1].
A metric on X with this topology is given by: if x �= y, d(x, y) = 1/(j + 1) if j is the
smallest non-negative integer with xj �= yj .

If j ≥ 1 and a0, . . . , aj−1 ∈ {0, 1} then, if x ∈ X, a0 . . . aj−1x denotes the point
z = (zn)

∞
0 of X with zi = ai for 0 ≤ i ≤ j − 1 and zi+j = xi for i ≥ 0. If j ≥ 1

then 0j x is the point z = (zn)
∞
0 with zi = 0, 0 ≤ i ≤ j − 1, and zj+i = xi for i ≥ 0.

The point 0∞ is the sequence with all entries zero and if j ≥ 1 and a0, . . . , aj−1 ∈ {0, 1}
then a0 . . . aj−10∞ is the point z = (zn) with zn = an, 0 ≤ n ≤ j − 1, and zj+i = 0 for
i ≥ 0. If j ≥ 1 and a0, . . . , aj−1 ∈ {0, 1} then (a0 . . . aj−1)

∞ is the point z = (zn)
∞
0 with

zmj+i = ai for 0 ≤ i ≤ j − 1 and m ≥ 0. Such points are exactly the points z ∈ X with
T j z = z.

Let C(X) denote the Banach space of all real-valued continuous functions on X,
equipped with the supremum norm. Continuity properties of a function f : X → R

can often be expressed using the sequence of numbers {vn(f )}∞1 defined by

vn(f ) = sup{f (x) − f (y) | x, y ∈ X and xi = yi for 0 ≤ i ≤ n − 1}.
For example f ∈ C(X) if and only if vn(f ) → 0.

We let M(X) denote the space of all probability measures on the Borel subsets of
X, equipped with the weak*-topology, and let M(X, T ) denote the non-empty subset of
T -invariant members of M(X). We say that τ ∈ M(X) has support X if τ (U) > 0 for
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every non-empty open set U . If ϕ ∈ C(X) we let P(T , ϕ) denote the pressure of T at
ϕ (see [W1]), and let Tnϕ be the function

∑n−1
i=0 ϕ ◦ T i . The Ruelle operator of ϕ ∈ C(X)

will be denoted by Lϕ : C(X) → C(X), so that (Lϕf )(x) = ∑
eϕ(y)f (y) where the sum

is over all y ∈ T −1x. Hence (Lϕf )(x) = eϕ(0x)f (0x) + eϕ(1x)f (1x).
The dual operator L∗

ϕ always has an eigenmeasure in M(X), i.e. there exist ν ∈ M(X)

and λ > 0 with L∗
ϕν = λν (see [W2]).

We consider two spaces of functions which are important in studying equilibrium states.
These spaces can be defined for a general continuous transformation T : X → X of a
compact metric space. We say that ϕ ∈ C(X) belongs to Bow(X, T ) if there exist δ > 0,
C > 0 with the property that whenever n ≥ 1 and x, y ∈ X satisfy d(T ix, T iy) < δ for
all 0 ≤ i ≤ n − 1 then |(Tnϕ)(x) − (Tnϕ)(y)| ≤ C (see [Bow, W4, W5, W6]). We say
that ϕ ∈ C(X) belongs to W(X, T ) if for all ε > 0 there exists δ > 0 with the property
that whenever n ≥ 1 and x, y ∈ X satisfy d(T ix, T iy) < δ for all 0 ≤ i ≤ n − 1 then
|(Tnϕ)(x) − (Tnϕ)(y)| < ε (see [Bou, W5, W6]). Clearly W(X, T ) ⊂ Bow(X, T ). For
the one-sided shift T : X → X on the space X = ∏∞

0 {0, 1}, which we are studying
in this paper, we have ϕ ∈ Bow(X, T ) if and only if ϕ ∈ C(X) and there exists p ≥ 0
with supn≥1 vn+p(Tnϕ) < ∞. This latter condition is equivalent to supn≥1 vn(Tnϕ) < ∞.
Also ϕ ∈ W(X, T ) if and only if supn≥1 vn+p(Tnϕ) → 0 as p → ∞.

In [W3] the author showed that, for a topologically mixing subshift of finite type, if
ϕ ∈ W(X, T ) then the Ruelle operator theorem holds (that is, there exist λ > 0, ν ∈ M(X),
and h ∈ C(X) with h > 0 and

∫
h dν = 1 such that Lϕh = λh, L∗

ϕν = λν and, for all
f ∈ C(X),

(Ln
ϕf )(x)

λn
→h(x)

∫
f dν,

where → denotes uniform convergence on X), ϕ has a unique equilibrium state µϕ

and (T , µϕ) has a Bernoulli natural extension. Here µϕ = hν, and µϕ is the unique
g-measure for the g-function g(x) = eϕ(x)h(x)/λh(Tx). In [W4], the author considered
these questions for ϕ ∈ Bow(X, T ) and proved a weakened version of the Ruelle operator
theorem. Each ϕ ∈ Bow(X, T ) has a unique equilibrium state µϕ and (T , µϕ) has a
Bernoulli natural extension [W6].

We shall also use the space of continuous coboundaries. If T : X → X is
any continuous transformation of a compact metric space then the space of continuous
coboundaries for T is Cob(X, T ) = {f ∈ C(X) | ∃l ∈ C(X) with f = l ◦ T − l}.
Such a function l is called a cobounding function for f . We have Cob(X, T ) ⊂ W(X, T ).
Coboundaries are important in the study of equilibrium states.

1. The space R(X)

We now define the space R(X) of functions on X = ∏∞
n=0{0, 1}. A function ϕ ∈ C(X) is

in the space R(X) if it is defined in the following way: there are four convergent sequences
of real numbers (an)

∞
2 → a, (bn)

∞
1 → b, (cn)

∞
2 → c, (dn)

∞
1 → d and for all z ∈ X, for

all p ≥ 2, for all q ≥ 1, ϕ(0p1z) = ap, ϕ(01q0z) = bq , ϕ(1p0z) = cp, ϕ(10q1z) = dq ,
ϕ(0∞) = a, ϕ(01∞) = b, ϕ(1∞) = c and ϕ(10∞) = d . So at a point with initial symbol
0 the value of ϕ is ap if the initial block of zeros has length p ≥ 2, but if the initial zero is
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immediately followed by a block of ones of length q ≥ 1 the value of ϕ is bq . Similarly if
the initial symbol is 1.

The space R(X) is a vector subspace of C(X) and ϕ ∈ R(X) if and only if eϕ ∈ R(X).

We now characterize the spaces R(X) ∩ Bow(X, T ) and R(X) ∩ W(X, T ) and show
that they differ.

THEOREM 1.1. Let ϕ ∈ R(X) be defined by the sequences (ap)∞2 → a, (bq)∞1 → b,
(cp)∞2 → c, (dq)∞1 → d as above. Then we have the following:

(i) ϕ ∈ Bow(X, T ) if and only if
∑∞

n=2(an − a) and
∑∞

n=2(cn − c) both have bounded
sequences of partial sums;

(ii) ϕ ∈ W(X, T ) if and only if
∑∞

n=2(an − a) and
∑∞

n=2(cn − c) are both convergent;
(iii) ϕ ∈ Cob(X, T ) if and only if b1 + d1 = 0 and, for all p ≥ 2, bp + d1 +∑p

i=2 ci = 0
and dq + b1 + ∑p

i=2 ai = 0.

When these conditions hold the cobounding function k ∈ C(X) has the form k((0q1z)) =
αq , q ≥ 1, z ∈ X, k((1q0z)) = βq , q ≥ 1, z ∈ X, k(0∞) = α, k(1∞) = β where αq → α,
βq → β.

Note that when the equations in (iii) hold then
∑∞

i=2 ai converges so a = 0. Similarly
c = 0 when the equations in (iii) hold.

Note that the conditions for ϕ ∈ Bow(X, T ) and ϕ ∈ W(X, T ) do not involve the
sequences (bn)

∞
1 and (dn)

∞
1 . In the condition in (iii) once b1 is chosen then (bi)

∞
i=2 and

(dj )
∞
j=1 are determined in terms of b1, (an)

∞
2 and (cn)

∞
2 .

We prove Theorem 1.1 using the following lemma.

LEMMA 1.2. Let ϕ ∈ R(X) be defined by the sequences (ap)∞2 → a, (bq)∞1 → b,
(cp)∞2 → c and (dq)∞1 → d as in Theorem 1.1. Then we have the following.

(i) For n ≥ 2,

vn(ϕ) = sup{max(an+t − an+s , bn+t−1 − bn+s−1, cn+t − cn+s ,

dn+t−1 − dn+s−1) : s, t ≥ 0}.

Hence if

Cn = sup{max(|aj − a|, |bj−1 − b|, |cj − c|, |dj−1 − d|) : j ≥ n}

then Cn ≤ vn(ϕ) ≤ 2Cn.
(ii) For n,N ≥ 2,

vn+N(Tnϕ) = max

(
sup

i,j≥N

[(ai+1 + · · · + ai+n) − (aj+1 + · · · + aj+n)],

sup
i,j≥N, 1≤k≤n−1

[dk+i − dk+j + (ai+1 + · · · + ai+k)

− (aj+1 + · · · + aj+k)],
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sup
i,j≥N

(bi − bj ), sup
i,j≥N

[(ci+1 + · · · + ci+n) − (cj+1 + · · · + cj+n)],

sup
i,j≥N, 1≤k≤n−1

[bk+i − bk+j + (ci+1 + · · · + ci+k)

− (cj+1 + · · · + cj+k)], sup
i,j≥N

(di − dj )

)
.

Hence if DN = supi,j≥N(di − dj ), BN = supi,j≥N(bi − bj ) and

An,N = max

(
BN,DN, sup

i≥N, 1≤k≤n

|(ai+1 + · · · + ai+k) − ka|,

sup
i≥N, 1≤k≤n

(|(ci+1 + · · · + ci+k) − kc|)
)

then for n,N ≥ 2

An,N − DN − BN ≤ vn+N(Tnϕ) ≤ 2An,N + DN + BN.

Proof. (i) Let n ≥ 2 and let x, y ∈ X have (x0, . . . , xn−1) = (y0, . . . , yn−1).
Suppose x0 = y0 = 0.
If x, y ∈ 0[0p1] for some p ≥ 2 then ϕ(x) = ϕ(y), and if x, y ∈ 0[01q0] for some q ≥ 1

then ϕ(x) = ϕ(y).
If x ∈ 0[0n+t1] for some t ≥ 0 and y ∈ 0[0n+s1] for some s ≥ 0 then ϕ(x) − ϕ(y) =

an+t − an+s . If x ∈ 0[0n+t1] for some t ≥ 0 and y = 0∞ then ϕ(x) − ϕ(y) = an+t − a.
If x ∈ 0[01n−1+t0] for some t ≥ 0 and y ∈ 0[01n−1+s0] for some s ≥ 0 then

ϕ(x) − ϕ(y) = bn+t−1 − bn+s−1. If x ∈ 0[01n−1+t0] and y = (01∞) then ϕ(x) − ϕ(y) =
bn+t−1 − b.

When x0 = y0 = 1 we get similar results and hence the expression in (i). The inequality
involving Cn follows from the triangle inequality.

(ii) Let n,N ≥ 2. Let x, y ∈ X have (x0, . . . , xn+N−1) = (y0, . . . , yn+N−1).
Consider the case xn−1 = 0 = yn−1; the case when xn−1 = 1 = yn−1 is handled in a

similar way. Consider firstly when (xn−1, xn) = (0, 0) = (yn−1, yn).
Suppose (x0, . . . , xn−1) = 0n. If x ∈ 0[0n+i1] for some i ≥ N and y ∈ 0[0n+j 1] for

some j ≥ N then

(Tnϕ)(x) − (Tnϕ)(y) = (an+i + · · · + a1+i ) − (an+j + · · · + a1+j ).

If x ∈ 0[0n+i1] for some i ≥ N and y = (0∞) then

(Tnϕ)(x) − (Tnϕ)(y) = (an+i + · · · + a1+i) − na.

If x ∈ 0[0n+i1] for some 1 ≤ i ≤ N − 1 then y ∈ 0[0n+i1] and (Tnϕ)(x) = (Tnϕ)(y).
Suppose xr = 1 for some 0 ≤ r ≤ n − 2, so that x ∈ n−1−k[10k+i1] for some

1 ≤ k ≤ n − 1 and i ≥ 1 or T n−1−kx = (10∞). If x ∈ n−1−k[10k+i1] for some
1 ≤ k ≤ n − 1 and 1 ≤ i ≤ N − 1 then y ∈ n−1−k[10k+i1] and (Tnϕ)(x) = (Tnϕ)(y).
If x ∈ n−1−k[10k+i1] for some 1 ≤ k ≤ n − 1 and some i > N − 1 then either
y ∈ n−1−k[10k+j1] for some j > N − 1 and then

(Tnϕ)(x) − (Tnϕ)(y) = dk+i − dk+j + (ak+i + · · · + a1+i ) − (ak+j + · · · + a1+j ),
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or T n−1−ky = (10∞) and then

(Tnϕ)(x) − (Tnϕ)(y) = dk+i + (ak+i + · · · + a1+i ) − d − (n − 1)a.

If T n−1−kx = (10∞) then either y ∈ n−1−k[10k+j1] for some j > N − 1 and then

(Tnϕ)(x) − (Tnϕ)(y) = d + (n − 1)a − dk+j − (ak+j + · · · + a1+j ),

or x = y.
Now consider when (xn−1, xn) = (0, 1). Either x ∈ n−1[01i0] for some i ≥ 1, or

T n−1x = (01∞). Suppose x ∈ n−1[01i0] for some i ≥ 1. If i < N then y ∈ n−1[01i0]
and (Tnϕ)(x) = (Tnϕ)(y). If i ≥ N then either y ∈ n−1[01j0] for some j ≥ N and then
(Tnϕ)(x) − (Tnϕ)(y) = bi − bj , or T n−1y = (01∞) and then (Tnϕ)(x) − (Tnϕ)(y) =
bi − b. If T n−1x = (01∞) then either y ∈ n−1[01j0] for some j ≥ N and then
(Tnϕ)(x) − (Tnϕ)(y) = b − bj , or y = x.

The corresponding reasoning can be used when xn−1 = 1 = yn−1 and we get the
equality in (ii). The inequalities follow from the triangle inequality. �

Proof of Theorem 1.1. Parts (i) and (ii) follow from Lemma 1.2(ii), since ϕ ∈ Bow(X, T )

means supn≥1 vn+N(Tnϕ) < ∞ for some N ≥ 2 and ϕ ∈ W(X, T ) means
supn≥1 vn+N(Tnϕ) → 0 as N → ∞.

We turn to the proof of part (iii). Suppose ϕ ∈ Cob(X, T ). If T n(x) = x then
Tnϕ(x) = 0. If we let x = (01)∞ then ϕ((01)∞) + ϕ((10)∞) = 0 so b1 + d1 = 0.
Let p ≥ 2 and let x = (0p1)∞. Since T p+1(x) = x we have (Tp+1ϕ)(x) = 0.
Hence ap + ap−1 + · · · + a2 + b1 + dp = 0. Similarly, taking x = (1p0)∞ gives
cp + cp−1 + · · · + c2 + d1 + bp = 0. Hence we get the equations in (iii).

Now suppose the equations in (iii) hold and we show ϕ ∈ Cob(X, T ). We have a = 0
= c. Let α1 be any real number. Define αp for p ≥ 2 by αp = α1−∑p

i=2 ai = α1+b1+dp,
and define βq , q ≥ 1, by βq = α1 + bq . Then αp → α1 + b1 + d and βq → α1 + b.

Define k : X → R by k((0q1z)) = αq , q ≥ 1, z ∈ X, k((1q0z)) = βq , k(0∞) =
α1 + b1 + d , k(1∞) = α1 + b. Then k ∈ C(X) and we show that k(T x) − k(x) = ϕ(x),
x ∈ X.

If x ∈ 0[0p1] with p ≥ 2 then k(T x) − k(x) = αp−1 − αp = ap = ϕ(x). If x ∈ 0[01q0]
with q ≥ 1 then k(Tx) − k(x) = βq − α1 = bq = ϕ(x).

For x = (0∞), ϕ(0∞) = a = 0 = k(T x) − k(x). When x = (01∞), k(T x) − k(x) =
α1 + b − α1 = b = ϕ(x).

If x ∈ 0[1p0] with p ≥ 2 then k(Tx) − k(x) = βp−1 − βp = bp−1 − bp = cp = ϕ(x).
If x ∈ 0[10q1] with q ≥ 2 then k(Tx) − k(x) = αq − β1 = α1 − β1 − ∑q

i=2 ai =
α1 − β1 + dq + b1 = dq = ϕ(x) by the definition of β1. If x ∈ 0[10q1] with q = 1 then
k(T x) − k(x) = α1 − β1 = −b1 = d1 = ϕ(x). When x = (1∞), ϕ(x) = c = 0 =
k(T x) − k(x), and when x = (10∞), k(T x) − k(x) = α1 + b1 + d − β1 = d = ϕ(x) by
the definition of β1. Hence k is a cobounding function for ϕ.

The difference k1−k2 of any two cobounding functions for ϕ is a T -invariant continuous
function. Since T is topologically transitive, k1 − k2 is a constant, so any cobounding
function has the form given. �

COROLLARY 1.3. We have W(X, T ) �= Bow(X, T ).
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Proof. Using Theorem 1.1 we can get examples of ϕ ∈ Bow(X, T )\W(X, T ). Let∑∞
n=2 an be a divergent series with a bounded sequence of partial sums and with an → 0.

For example we could take an = sin(
√

n + 1) − sin
√

n. So if we take ϕ ∈ R(X) to
correspond to (an)

∞
2 as above, a = 0, all cn = 0, c = 0, and (bn), (dn) to be any convergent

sequences (say bn = 0 = dn for all n), then ϕ ∈ Bow(X, T ). Clearly ϕ /∈ W(X, T ) by
Theorem 1.1. �

We could choose
∑∞

n=2(an − a) and
∑∞

n=2(cn − c) to be any series with bounded
sequences of partial sums and (bn)

∞
1 and (dn)

∞
1 to be any convergent sequences. Then

the corresponding ϕ ∈ R(T ) belongs to Bow(X, T )\W(X, T ) as long as one of the above
series is not convergent.

The specific example we gave above was an example of the type studied by
Hofbauer [Ho]. These are given by a sequence (an)

∞
0 with an → a and we put

bq = b = a1, for all q ≥ 1, and cp = dq = a0 = c = d , for all p ≥ 2, q ≥ 1. Hence
ϕ(0k1z) = ak for k ≥ 0, z ∈ X and ϕ(0∞) = a. For these functions ϕ ∈ Bow(X, T )

if and only if
∑∞

n=0(an − a) has a bounded sequence of partial sums and ϕ ∈ W(X, T )

if and only if
∑∞

n=0(an − a) converges. (The condition ϕ ∈ Bow(X, T ) is the same
as ϕ having a homogeneous measure in the sense of [Ho], so the condition above for
ϕ ∈ Bow(X, T ) corrects the theorem of [Ho, p. 230] (see [W4]).) For such a function
vn(ϕ) = supi,j≥n(ai − aj ), n ≥ 2, and supi≥n |an − a| ≤ vn(ϕ) ≤ 2 supi≥n |an − a| by
Lemma 1.2. Note that, for all f ∈ C(X), vn(f ) ≥ 0 and vn(f ) ↘ 0. Given any sequence
(un)

∞
1 with un ≥ 0 and un ↘ 0 we can get ϕ of the above type with vn(ϕ) = un for all

n ≥ 1 by taking an = un, n ≥ 1 and a0 = 0.
For functions of this Hofbauer type we have

∑∞
n=1(vn(ϕ))t < ∞ if and only if∑∞

n=1(supi≥n|ai − a|)t < ∞ so we can get for each t > 0 a function ϕ ∈ W(X, T )

with
∑∞

n=1(vn(ϕ))t = ∞ as follows. Let an = (−1)n+1/n1/t , n ≥ 1. Then an → 0,
so a = 0, and vn(ϕ) = supi≥n|ai | = 1/n1/t . Hence

∑∞
n=1(vn(ϕ))t = ∞. We have that∑∞

n=1 an is convergent by the Leibnitz alternating series test, so ϕ ∈ W(X, T ). This shows
that the classes studied in [JO] do not include all of W(X, T ).

The conditions for ϕ ∈ R(X) to belong to Bow(X, T ) or W(X, T ) do not involve (bq)∞1
and (dq)∞1 , whereas vn(ϕ) does involve these sequences.

2. The g-functions in R(X)

A g-function for T : X → X is a continuous g : X → (0, 1) satisfying
∑

y∈T −1x g(y) =
1 for all x ∈ X. We can write this condition as g(0x) + g(1x) = 1 for all
x ∈ X.

Let G(X, T ) denote the set of all g-functions for T . If g ∈ G(X, T ) we can define
the continuous operator L : C(X) → C(X) by (Lf )(x) = ∑

y∈T −1x g(y)f (y). Then
L1 = 1, ‖L‖ = 1, and LUT f = f for all f ∈ C(X) where UT f = f ◦ T . We write
Llog g instead of L to indicate which g is being used, and this fits in with the notation for
the Ruelle operator. We say that µ ∈ M(X) is a g-measure if L∗µ = µ. Such a measure
always belongs to M(X, T ), and µ is a g-measure if and only if µ is an equilibrium state
for log g (see [L, W2]). Since P(T , log g) = 0 for g ∈ G(X, T ), this condition becomes
hµ(T ) + ∫

log g dµ = 0. All g-measures have support X (see [W2]).
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We shall see in §3 that g ∈ G(X, T ) ∩ R(X) arises naturally from the Ruelle operator
theorem applied to certain functions in R(X).

Note that if g ∈ G(X, T ) then g ∈ R(X) if and only if log g ∈ R(X).

We have g ∈ G(X, T ) ∩ R(X) if and only if there are sequences (γp)∞2 → γ and
(δp)∞2 → δ for which some c ∈ (0, 1) exists with c ≤ γp, δp ≤ 1 − c for all p ≥ 2,
and g(0p1z) = γp, g(1p0z) = δp, for all p ≥ 2, z ∈ X, g(01q0z) = 1 − δq+1,
g(10q1z) = 1 − γq+1 for all q ≥ 1, z ∈ X, g(0∞) = γ , g(1∞) = δ, g(10∞) = 1 − γ , and
g(01∞) = 1 − δ.

From Theorem 1.1 we have the following result.

THEOREM 2.1. Let g ∈ G(X, T )∩R(X) be given in terms of (γp)∞2 and (δp)∞2 as above.
Then the following hold:

(i) log g ∈ Bow(X, T ) if and only if there exists A > 1 with A−1 ≤ γ2 · · · γ1+n/γ
n ≤ A

and A−1 ≤ δ2 · · · δ1+n/δ
n ≤ A for all n ≥ 1;

(ii) log g ∈W(X, T ) if and only if
∑∞

n=2 log(γn/γ ) and
∑∞

n=2 log(δn/δ) are both
convergent.

We can get examples of g ∈ R(X) with log g ∈ Bow(X, T )\W(X, T ) as follows. Let∑∞
i=2 ai be a non-convergent series with ai → 0, |ai | ≤ 1 for all i, and having a bounded

sequence of partial sums. Such an example was given in §1. Choose γ ∈ (0, e−1) and
put γp = γ eap , p ≥ 2. Then γp → γ , γ e−1 ≤ γp ≤ γ e < 1, for all p ≥ 2. Since
log(γp/γ ) = ap the series

∑∞
p=2 log(γp/γ ) is not convergent but has a bounded sequence

of partial sums. We could choose a similar example for (δp)∞2 or we could put δp = 1/2
for all p ≥ 2 and then log g ∈ Bow(X, T )\W(X, T ) by Theorem 2.1.

In the proof of the next theorem we often use the following. If g ∈ G(X, T ), µ is a
g-measure and 0[a0, . . . , an] is a cylinder set starting at coordinate 0, then

µ(0[a0, . . . , an]) =
∫

X0[a0,...,an] dµ =
∫

LnX0[a0,...,an] dµ

=
∫

g(a0 . . . anx)g(a1 . . . anx) · · ·g(anx) dµ(x).

Note that since µ ∈ M(X, T ) we have µ(0[a0, . . . , an]) = µ(k[a0, . . . , an]) for all
k ≥ 0, so we can write µ([a0, . . . , an]) unambiguously.

We now show that each g ∈ G(X, T ) ∩ R(X) has a unique g-measure and we describe
this measure.

THEOREM 2.2. Let g ∈ G(X, T )∩R(X) be defined by (γp)∞2 and (δp)∞2 as above. There
is a unique g-measure µ which is given as follows.

For k ≥ 2 let 
k = ∑∞
i=0 γk · · · γk+i and �k = ∑∞

i=0 δk · · · δk+i . Then µ([0, 1]) =
µ([1, 0]) = 1/(
2 + �2 + 2), µ([0, 0]) = 
2/(
2 + �2 + 2), and µ([1, 1]) =
�2/(
2 + �2 + 2). For k ≥ 3, µ([0k]) = γ2 · · · γk−1
k/(
2 + �2 + 2) and
µ([1k]) = δ2 · · · δk−1�k/(
2 + �2 + 2). For r ≥ 1 and ki, li ≥ 1 for 1 ≤ i ≤ r ,
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µ([0k11l10k2 . . . 0kr 1lr ]) = ik1dl1ck2 · · · ckr flr /(
2 + �2 + 2) where

ik =
{

1 if k = 1,

γk · · · γ2 if k ≥ 2,
ck =

{
1 − γ2 if k = 1,

(1 − γk+1)γk · · · γ2 if k ≥ 2,

dl =
{

1 − δ2 if l = 1,

(1 − δl+1)δl · · · δ2 if l ≥ 2,
fl =

{
1 if l = 1,

δl · · · δ2 if l ≥ 2,

and µ([0k11l10k2 . . . 1lr−10kr ]) = ik1dl1ck2 · · · dlr−1 ikr /(
2 + �2 + 2). The µ-measure of
blocks with initial entry 1 are given by the corresponding expressions.

Proof. Since a g-measure has no atoms

µ([0, 1]) =
∞∑
i=0

µ([011+i0]) = (1 − δ2)µ([10]) + (1 − δ3)δ2µ([10]) + · · · = µ([10]).

Also µ([00]) = ∑∞
i=0 µ([02+i1]) = 
2µ([01]) and, similarly, µ([11]) = �2µ([01]).

Since µ([00]) + µ([01]) + µ([10]) + µ([11]) = 1 we have µ([01]) = 1/(
2 + �2 + 2)

and we get the expressions for µ([00]) and µ([11]).
Now let k ≥ 3. Then

µ([0k]) =
∞∑
i=0

µ([0k+i1]) =
∞∑
i=0

γk+i · · · γ2µ([01]) = γ2 · · · γk−1
k


2 + �2 + 2
.

We get the corresponding expressions for µ([1k]).
To prove the expression for µ([0k11l10k2 . . . 0kr 1lr ]) we use induction on r . Consider

the case r = 1. We study µ([0k1l]). If k = 1 = l we know that the stated expression is
true. Let k = 1 and l ≥ 2. Then

µ([01l]) =
∞∑
i=0

µ([01l+i0]) =
∞∑
i=0

(1 − δl+i+1)δl+i · · · δ2µ([10]) = δl · · · δ2µ([10]).

Now let k ≥ 2, l = 1. Then µ([0k1]) = γk · · · γ2µ([01]). Now if k, l ≥ 2,

µ([0k1l]) =
∞∑
i=0

µ([0k1l+i0]) = γk · · · γ2

∞∑
i=0

(1 − δl+i+1)δl+i · · · δ2µ([10])
= γk · · · γ2δl · · · δ2µ([10]).

Hence the statement holds for r = 1.
Now assume that the stated equalities hold for the natural number r and we shall show

that they hold for r + 1.
Let ki, li ≥ 1 be given for 1 ≤ i ≤ r + 1. If k1, l1 ≥ 2 then

µ([0k11l10k2 . . . 0kr+11lr+1])
= γk1 · · · γ2(1 − δl1+1)δl1 · · · δ2(1 − γk2+1)µ([0k21l2 . . . 0kr+11lr+1])

and the required result follows by the induction assumption.
If k1 ≥ 2 and l1 = 1 then

µ([0k11l10k2 . . . 0kr+11lr+1]) = γk1 · · · γ2(1 − δ2)(1 − γk2+1)µ([0k21l2 . . . 0kr+11lr+1])
and the required result follows by the induction assumption.
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If k1 = 1 and l1 ≥ 2 then

µ([0k11l10k2 . . . 0kr+11lr+1]) = (1 − δl1+1)δl1 · · · δ2(1 − γk2+1)µ([0k21l2 . . . 0kr+11lr+1])
and the required result follows by the induction assumption.

If k1 = 1 = l1 then

µ([010k2 . . . 0kr+11lr+1]) = (1 − δ2)(1 − γk2+1)µ([0k21l2 . . . 0kr+1 1lr+1])
and the required result follows by the induction assumption.

The formula for µ([0k11l10k2 . . . 1lr−10kr ]) can be proved by induction in a similar
way. �

COROLLARY 2.3. For g ∈ G(X, T ) ∩ R(X) the unique g-measure µ is reversible, i.e.

µ([a0, a1, . . . , an−1]) = µ([an−1, an−2, . . . , a0])
for all a0, a1, . . . , an−1 ∈ {0, 1}, n ≥ 1.

We can state this in terms of the natural extension µ̂ of µ to the two-sided shift space
X̂ = ∏∞

−∞{0, 1}. The measure µ̂ is determined by requiring that µ̂(l[a0, a1, . . . , an]) =
µ(0[a0, a1, . . . , an]) for all l ∈ Z, n ≥ 0, a0, a1, . . . , an ∈ {0, 1}. Here

(l[a0, a1, . . . , an]) = {(xi)
∞−∞ ∈ X̂ | xk+l = ak 0 ≤ k ≤ n}.

If � : X̂ → X̂ is the reversal map, defined by

�(. . . , x−2, x−1,
∗
x0, x1, x2, . . . ) = (. . . , x2, x1,

∗
x0, x−1, x−2, . . . )

then Corollary 2.3 means that µ̂ ◦ � = µ̂. Here ∗ indicates the entry in the 0th position.
We now show that if g ∈ G(X, T ) ∩ R(X) then, for all f ∈ C(X),Ln

log gf → ∫
f dµ,

where µ is the unique g-measure. This has been proved in the cases when δp = δ for all
p ≥ 2 by Hulse [Hu]. Here the symbol → denotes that the convergence is uniform on X.

THEOREM 2.4. Let g ∈ G(X, T ) ∩ R(X). For every f ∈ C(X) there exists c(f ) ∈ R

with Ln
log g → c(f ). In fact, c(f ) = ∫

f dµ where µ is the unique g-measure.

Proof. We write L instead of Llog g. Let g be defined using the sequences (γn)
∞
2

and (δn)
∞
2 . Since linear combinations of characteristic functions of cylinders based

at coordinate zero, X0[w0,w1,...,wk−1], are dense in C(X), it suffices to consider f =
X0[w0,w1,...,wk−1], where w = (w0, w1, . . . ) ∈ X.

Fix w ∈ X and k ≥ 1 and let f = X0[w0,w1,...,wk−1]. For n ≥ 1

(Ln+kf )(x) =
∑

z∈T −(n+k)x

g(z)g(Tz) · · · g(T n+k−1z)f (z)

=
∑

y0,...,yn−1

[g(y0 . . . yn−1x) · · ·g(yn−1x)

× g(w0 . . . wk−1y0 . . . yn−1x) · · ·g(wk−1y0 . . . yn−1x)].
We first show that it suffices to consider only the two cases w0 = w1 = · · · = wk−1.
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Assume that wk−1 = 0. If w0 = w1 = · · · = wk−1 = 0 then we need not consider
further. So let wi = 1 for some i < k − 1, and choose i < k − 1 so that wi = 1 and
wi+1 = 0 = wi+2 = · · · = wk−1. Hence

[w0, w1, . . . , wk−1] = [w0, w1, . . . , wi−110k−i−1].
If 0 ≤ j < i then, by the definition of g, g(wj . . . wi . . . wk−1y0 . . . yn−1x) does not
depend on (y0 . . . yn−1x). Hence

∏i−1
j=0 g(wj . . . wk−1y0 . . . yn−1x) = C, a constant.

Then,

(Ln+kf )(x) = C

[ ∑
y0,...,yn−1

g(y0 . . . yn−1x) · · ·g(yn−1x)

× g(10k−i−1y0 . . . yn−1x) · · ·g(0y0 . . . yn−1x)

]
.

But g(10k−i−1y0 . . . yn−1x) = 1 − g(0k−iy0 . . . yn−1x) so

(Ln+kf )(x) = C[(Ln+k−i−1X[0k−i−1])(x) − (Ln+k−iX[0k−i ])(x)].
So when wk−1 = 0 it suffices to consider (Ln+k−i−1X[0k−i−1])(x) and (Ln+k−iX[0k−i ])(x).

Now assume that wk−1 = 1. The corresponding argument shows that the convergence
of (Ln+kf )(x) depends on that of (Ln+k−i−1X[1k−i−1])(x) and (Ln+k−iX[1k−i ])(x).

So we only need to consider the cases when f = X
0[0k] and f = X

0[1k].
So now assume that f = X

0[0k]. The case when f = X
0[1k] follows by symmetry.

Let l ≥ 1, and we now show that Lnf is constant on 0[0l1]. Let x ∈ 0[0l1]. Then

(Lnf )(x) =
∑

y0,...,yn−1

g(y0 . . . yn−1x) · · ·g(yn−1x)f (y0 . . . yn−1x).

If n + l < k then (y0 . . . yn−1x) /∈0 [0k] so (Lnf )(x) = 0.
If k ≤ n then f (y0 . . . yn−1x) = 1 if and only if y0 = 0 = · · · = yk−1 and then

(Lnf )(x) = ∑
yk,...,yn−1

g(0kyk . . . yn−1x) · · ·g(yn−1x) which is constant on 0[0l1].
If n < k ≤ n+ l then f (y0 . . . yn−1x) = 1 if and only if y0 = 0 = · · · = yn−1 and then

(Lnf )(x) = γn+l . . . γ1+l .

Hence (Lnf ) is constant on 0[0l1] and we denote this value by (Lnf )([0l1]).
Again let l ≥ 1 and we now show that Lnf is constant on 0[1l0]:
(Lnf )(x) =

∑
y0,...,yn−1

g(y0 . . . yn−1x)g(y1 . . . yn−1x) · · ·g(yn−1x)f (y0 . . . yn−1x).

If n < k then f (y0 . . . yn−1x) = 0 so (Lnf )(x) = 0.
If n = k then f (y0 . . . yn−1x) = 1 if and only if y0 = 0 = · · · = yn−1 so

(Lnf )(x) = γk . . . γ2(1 − δl+1).

If k < n then f (y0 . . . yn−1x) = 1 if and only if y0 = 0 = · · · = yk−1 so
(Lnf )(x) = ∑

yk,...,yn−1
g(0kyk . . . yn−1x) · · ·g(yn−1x) which is constant on 0[1l0].

Hence (Lnf ) is constant on 0[1l0] and we denote this value by (Lnf )([1l0]).
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We now show that if x0 = 0 then for all n ≥ 1

(Ln+kf )(x) =
( n∏

i=1

g(0ix)

)
[(Lnf )(0nx) − (Lnf )([10])] + (Ln+k−1f )([10])

+
n−1∑
i=1

(n−i∏
j=1

g(0j x)

)
[(Lk+i−1f )([10]) − (Lk+if )([10])], (1)

where the final term is absent if n = 1.
We use induction on n. When n = 1 the right side of (1) becomes

g(0x)[(Lkf )(0x) − (Lkf )([10])] + (Lkf )([10])
= g(0x)(Lkf )(0x) + g(1x)(Lkf )(1x),

which equals (L1+kf )(x). Hence (1) holds for n = 1.
Assume that (1) holds for n − 1 and we shall prove it for n. Let x0 = 0. Then

(Ln+kf )(x) = g(0x)(Ln+k−1f )(0x) + g(1x)(Ln+k−1f )(1x)

= g(0x)[(Ln+k−1f )(0x) − (Ln+k−1f )([10])] + (Ln+k−1f )([10])

= g(0x)

[(n−1∏
i=1

g(0i+1x)

)
{(Lkf )(0nx) − (Lkf )([10])} + (Ln+k−2f )([10])

+
n−2∑
i=1

(n−1−i∏
j=1

g(0j+1x)

)
{(Lk+i−1f )([10]) − (Lk+if )([10])}

− (Ln+k−1f )([10])
]

+ (Ln+k−1f )([10])

using the induction assumption. Hence

(Ln+kf )(x) =
( n∏

i=1

g(0ix)

)
[(Lkf )(0nx) − (Lkf )([10])] + (Ln+k−1f )([10])

+
n−1∑
i=1

(n−i∏
j=1

g(0j x)

)
[(Lk+i−1f )([10]) − (Lk+if )([10])].

Hence (1) holds for all n ≥ 1 and all x ∈ 0[0].
We next show that if x0 = 1 then for all n ≥ 1

(Ln+kf )(x) =
( n∏

i=1

g(1ix)

)
[(Lkf )(1nx) − (Lkf )([01])] + (Ln+k−1f )([01])

+
n−1∑
i=1

(n−i∏
j=1

g(1j x)

)
[(Lk+i−1f )([01]) − (Lk+if )([01])], (2)

where the last term is absent if n = 1.
We use induction on n. When n = 1 the right side of (2) becomes

g(1x)[(Lkf )(1x) − (Lkf )([01])] + (Lkf )([01])
= g(1x)(Lkf )(1x) + g(0x)(Lkf )(0x),
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which equals (L1+kf )(x) and so (2) holds for n = 1.

Assume that (2) holds for n − 1 and we shall prove it for n. Let x0 = 1. Then

(Ln+kf )(x) = g(1x)(Ln+k−1f )(1x) + (1 − g(1x))(Ln+k−1f )(0x)

= g(1x)[(Ln+k−1f )(1x) − (Ln+k−1f )([01])] + (Ln+k−1f )([01])

= g(1x)

[(n−1∏
i=1

g(1i+1x)

)
{(Lkf )(1nx) − (Lkf )([01])} + (Ln+k−2f )([01])

+
n−2∑
i=1

(n−1−i∏
j=1

g(1j+1x)

)
{(Lk+i−1f )([01]) − (Lk+if )([01])}

− (Ln+k−1f )([01])
]

+ (Ln+k−1f )([01])

using the induction assumption. Hence

(Ln+kf )(x) =
( n∏

i=1

g(1ix)

)
[(Lkf )(1nx) − (Lkf )([01])] + (Ln+k−1f )([01])

+
n−1∑
i=1

(n−i∏
j=1

g(1j x)

)
[(Lk+i−1f )([01]) − (Lk+if )([01])].

Hence (2) holds for all n ≥ 1 and all x ∈ 0[1].
We use (1) to show that if (Lnf )([10]) → c(f ) then (Lnf )(x) → c(f ) uniformly for

x ∈ 0[0]. Assume that (Lnf )([10]) → c(f ).

By (1) we have

(Ln+kf )(x) − (Ln+k−1f )([10])

=
( n∏

i=1

g(0ix)

)
[(Lkf )(0nx) − (Lkf )([10])]

+
n−1∑
i=1

(n−i∏
j=1

g(0j x)

)
[(Lk+i−1f )([10]) − (Lk+if )([10])].

Note that
∣∣(∏n

j=1 g(0j x)
)[(Lkf )(0nx) − (Lkf )([10])]∣∣ ≤ 2(sup g)n → 0 as n → ∞.

Given ε > 0 choose N so that
∑∞

i=N(sup g)i < ε and so that n ≥ N implies
|(Ln+k−1f )([10]) − (Ln+kf )([10])| < ε.

For all n ≥ 2N∣∣∣∣n−1∑
i=1

(n−i∏
j=1

g(0j x)

)
[(Lk+i−1f )([10]) − (Lk+if )([10])]

∣∣∣∣
≤ 2

N∑
i=1

(sup g)n−i + ε

n−1∑
i=N+1

(sup g)n−i
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≤ 2
∞∑

q=N

(sup g)q + ε

∞∑
p=1

(sup g)p

< ε

(
2 +

∞∑
p=1

(sup g)p
)

.

Therefore |(Ln+kf )(x) − (Ln+k−1f )([10])| → 0 as n → ∞, uniformly on 0[0].
Similarly (2) implies that if (Ln+k−1f )([01]) converges then(Ln+kf )(x) converges to

the same limit uniformly for x ∈ 0[1].
So consider (Ln+kf )([10]).
By (2) we have

(Ln+kf )([10])

=
( n∏

i=1

g(1i+10)

)
[(Lkf )([1n+10]) − (Lkf )([01])] + (Ln+k−1f )([01])

+
n−1∑
i=1

(n−i∏
j=1

g(11+j 0)

)
[(Lk+i−1f )([01]) − (Lk+if )([01])]

=
( n∏

i=1

γi+1

)
[(Lkf )([1n+10]) − (Lkf )([01])] + (Ln+k−1f )([01])

+
n−1∑
i=1

(n−i∏
j=1

γj+1

)
[(Lk+i−1f )([01]) − (Lk+if )([01])]

=
(n+1∏

j=2

γj

)
(Lkf )([1n+10]) +

n−2∑
i=0

(Lk+if )([01])
(n−i∏

j=2

γj

)
(1 − γn+1−i )

+ (Lk+n−1f )([01])(1 − γ2).

Similarly, using (1) we have

(Ln+kf )([01]) =
(n+1∏

j=2

δj

)
(Lkf )([0n+11]) +

n−2∑
i=0

(Lk+if )([10])
(n−i∏

j=2

δj

)
(1 − δn+1−i )

+ (Lk+n−1f )([10])(1 − δ2).

For n ≥ 0 put un = (Ln+kf )([01]) and vn = (Ln+kf )([10]). Then

vn = βn + α1un−1 + α2un−2 + · · · + αnu0 for n ≥ 1,

where βn = (∏n+1
j=2 γj

)
(Lkf )([1n+10]) > 0 for n ≥ 1, α1 = 1 − γ2 > 0 and for n ≥ 2,

αn = (∏n
j=2 γj

)
(1 − γn+1).

Note that
∑∞

n=1 αn = 1 and 0 < βn ≤ (supj γj )
n−1 so

∑
βn < ∞.

If we let α′
n = 1 − δ2, α′

n = (∏n
j=2 δj

)
(1 − δn+1) for n ≥ 2, and β ′

n =(∏n+1
j=2 δj

)
(Lkf )([0n+11]) > 0 then

un = β ′
n + α′

1vn−1 + · · · + α′
nv0 for n ≥ 1.
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If we put β0 = v0, α0 = 0 and if we let A(s) = ∑∞
n=0 αns

n, B(s) = ∑∞
n=0 βns

n,
U(s) = ∑∞

n=0 uns
n, V (s) = ∑∞

n=0 vns
n then we have V (s) = B(s) + A(s)U(s). Note

that A(1) = ∑∞
n=0 αn = 1 and B(1) = ∑∞

n=0 βn < ∞.
Similarly U(s) = B ′(s) + A′(s)V (s) where β ′

0 = u0, α′
0 = 0, A′(s) = ∑∞

n=0 α′
ns

n and
B ′(s) = ∑∞

n=0 β ′
ns

n.
Then we have

U(s) = B ′(s) + A′(s)[B(s) + A(s)U(s)]
= (B ′(s) + A′(s)B(s)) + A′(s)A(s)U(s).

This gives a renewal equation for (un) of the form

un = bn + a0un + a1un−1 + · · · + anu0 for n ≥ 0,

where bn is the coefficient of sn in B ′(s) + A′(s)B(s) and an is the coefficient of sn

in A′(s)A(s). Hence
∑∞

n=0 bn = B ′(1) + A′(1)B(1) = B ′(1) < ∞ and
∑∞

n=0 an =
A′(1)A(1) = 1 so by the renewal theorem [Fe, p. 291] we have un → ∑∞

i=0 bi/
∑∞

i=0 iai .
Similarly

V (s) = (B(s) + A(s)B ′(s)) + A(s)A′(s)V (s)

so
vn = b′

n + a0vn + a1vn−1 + · · · + anv0 for n ≥ 0,

where b′
n is the coefficient of sn in B(s) + A(s)B ′(s). Hence

∞∑
i=0

b′
i = B(1) + A(1)B ′(1) = B(1) + B ′(1) =

∞∑
i=0

bi

and the renewal theorem gives vn → ∑∞
i=0 bi/

∑∞
i=0 iai .

Hence (Ln+kf )([01]) and (Ln+kf )([10]) converge to the same limit, c(f ), so
(Ln+kf )(x) converges uniformly to c(f ). Therefore (Lnf )(x) converges uniformly
to c(f ).

If µ is a g-measure then integrating Lnf → c(f ) with respect to µ gives c(f ) =∫
f dµ for all f ∈ C(X). This gives another way of showing that there is a unique

g-measure. �

The convergence Lnf → ∫
f dµ gives several properties of µ. One is that T is an

exact endomorphism with respect to µ (i.e. all sets in the σ -algebra
⋂∞

n=0 T −nB(X) have
µ-measure 0 or 1, where B(X) is the σ -algebra of Borel subsets of X) [W3].

One can obtain examples of g-functions with Lnf converging uniformly to a constant
but log g /∈ Bow(X, T ) as follows. Let γ, δ ∈ (0, 1) and for p ≥ 2 put γp = pγ/(p + 1),
δp = δ. The corresponding g is in R(X) so we get the convergence by Theorem 2.4.
However log g /∈ Bow(X, T ) by Theorem 2.1 since γ2 · · · γ1+n/γ

n = 2/(n + 2).

3. Ruelle operator theorem for functions in R(X)

In this section we investigate exactly when ϕ ∈ R(X) satisfies the Ruelle operator theorem
for T : X → X.
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For ϕ ∈ C(X) the Ruelle operator Lϕ : C(X) → C(X) is defined by

(Lϕf )(x) =
∑

y∈T −1x

eϕ(y)f (y) = eϕ(0x)f (0x) + eϕ(1x)f (1x).

To say the Ruelle operator theorem holds for ϕ means that there exist λ ∈ R, λ > 0,

h ∈ C(X), h > 0, v ∈ M(X) with Lϕh = λh and L∗
ϕv = λv, and if we normalize h so

that v(h) = 1 then for all f ∈ C(X),

Ln
ϕf

λn
→ v(f )h.

We shall give necessary and sufficient conditions for ϕ ∈ R(X) to satisfy the Ruelle
operator theorem. This turns out to be equivalent to the existence of a positive
eigenfunction h. When these conditions hold then

g = eϕh

λh ◦ T
∈ G(X, T ) ∩ R(X),

and since
ϕ − log g = log λ + log h ◦ T − log h

the unique equilibrium state for ϕ is the unique g-measure for g. Also λ is given as the
solution to an equation.

THEOREM 3.1. Let ϕ ∈ R(X) be defined by the sequences (ap)∞2 → a, (bq)∞1 → b,
(cp)∞2 → c and (dq)∞1 → d as in §1. The following statements are pairwise equivalent.
(i) There exists h ∈ C(X), h > 0, and a real number λ > 0 with Lϕh = λh.
(ii) We have

1

e2 max(a,c)

[
ed1 +

∞∑
j=1

ed1+j
ea2+···+a1+j

ej max(a,c)

][
eb1 +

∞∑
j=1

eb1+j
ec2+···+c1+j

ej max(a,c)

]
> 1,

where the left side could be ∞.
(iii) There exists h ∈ C(X), h > 0, and a real number λ > 0 with Lϕh = λh and h has

the following form: there exist sequences (αq)∞1 and (βq)∞1 with αq → α, βq → β,
h(0q1z) = αq , q ≥ 1, h(1q0w) = βq , q ≥ 1, h(0∞) = α and h(1∞) = β.

(iv) There exists h ∈ C(X), h > 0, λ > 0 with Lϕh = λh and there exists v ∈ M(X)

with L∗
ϕv = λv and, for all f ∈ C(X), (Ln

ϕf )(x)/λn →h(x)v(f ) as n → ∞.

When ϕ satisfies the statements above and h is given in (iii) then g = eϕh/λh ◦ T is a
g-function for T and g ∈ R(X). Hence ϕ has a unique equilibrium state which is the
unique g-measure.

Note that (iv) says that the Ruelle operator theorem holds for ϕ.
We shall use the following lemmas in the proof of Theorem 3.1. We use the notation

from Theorem 3.1.

LEMMA 3.2. The power series
∑∞

j=1 ed1+j ea2+···+a1+j xj has radius of convergence e−a .

Proof. We have
n
√

ed1+nea2+···+a1+n → ea since d1+n/n → 0 and (a2 + · · · + a1+n/n)

→ a. �
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LEMMA 3.3. Let ϕ ∈ R(X). We can find ρ > max(ea, ec) with

ρ−2
[
ed1 +

∞∑
j=1

ed1+j
ea2+···+a1+j

ρj

][
eb1 +

∞∑
j=1

eb1+j
ec2+···+c1+j

ρj

]
< 1.

Proof. Let

F(ρ) =
[
ed1 +

∞∑
j=1

ed1+j
ea2+···+a1+j

ρj

][
eb1 +

∞∑
j=1

eb1+j
ec2+···+c1+j

ρj

]
.

By Lemma 3.2 if ρ0 > max(ea, ec) then F(ρ) < ∞. But ρ > ρ0 implies that
F(ρ) < F(ρ0) so ρ−2F(ρ) < ρ−2F(ρ0) < 1 for large enough ρ. �

LEMMA 3.4. Statement (ii) in Theorem 3.1 is equivalent to the existence of λ >

max(ea, ec) with

1

λ2

[
ed1 +

∞∑
j=1

ed1+j
ea2+···+a1+j

λj

][
eb1 +

∞∑
j=1

eb1+j
ec2+···+c1+j

λj

]
= 1.

Proof. Let G(ρ) = ρ−2F(ρ), where F is defined in the proof of Lemma 3.3. By
Lemma 3.3 there is ρ0 > max(ea, ec) with G(ρ0) < 1.

If statement (ii) holds then G(max(ea, ec)) > 1. If G(max(ea, ec)) < ∞ then on the
interval [max(ea, ec), ρ0] G is continuous and, by the intermediate value theorem, there is
some λ ∈ (max(ea, ec), ρ0) with G(λ) = 1.

Suppose G(max(ea, ec)) = ∞. By Lemma 3.2, G(ρ) < ∞ for all ρ > max(ea, ec). If
G(ρ) ≤ 1 for all ρ > max(ea, ec) then, for all J ≥ 1,

ρ−2
[
ed1 +

J∑
j=1

ed1+j
ea2+···+a1+j

ρj

][
eb1 +

J∑
j=1

eb1+j
ec2+···+c1+j

ρj

]
≤ 1

for all ρ > max(ea, ec). Then

e−2 max(a,c)

[
ed1 +

J∑
j=1

ed1+j
ea2+···+a1+j

ej max(a,c)

][
eb1 +

J∑
j=1

eb1+j
ec2+···+c1+j

ej max(a,c)

]
≤ 1

for all J ≥ 1 so G(max(ea, ec)) ≤ 1, a contradiction. So we can choose ρ1 ∈
(max(ea, ec), ρ0) with 1 < G(ρ1) < ∞ and the intermediate value theorem, applied
to G restricted to [ρ1, ρ0], gives some λ ∈ (ρ1, ρ0) with G(λ) = 1.

If there exists λ > max(ea, ec) with G(λ) = 1 then G(max(ea, ec)) > G(λ) = 1 so
statement (ii) of Theorem 3.1 holds. �

We now turn to the proof of the theorem.

Proof of Theorem 3.1. (i) ⇒ (ii) Let h ∈ C(X), h > 0, and let λ > 0 satisfy Lϕh = λh.
We shall show that

1 ≤ 1

λ2

[
ed1 +

∞∑
j=1

ed1+j
ea2+···+a1+j

λj

][
eb1 +

∞∑
j=1

eb1+j
ec2+···+c1+j

λj

]
and λ > max(ea, ec).
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We have eϕ(0x)h(0x) + eϕ(1x)h(1x) = λh(x). Put x = (0q+j 1z), q ≥ 1, j ≥ 0, z ∈ X

to get
eaq+j+1h(0q+j+11z) + edq+j h(10q+j 1z) = λh(0q+j 1z).

Multiply this equation by eaq+1+···+aq+j /λj if j ≥ 1, and by 1 if j = 0, and sum over j

from 0 to n to get

eaq+1+···+aq+n+1

λn
h(0q+n+11z) + edqh(10q1z)

+
n∑

j=1

edq+j
eaq+1+···+aq+j

λj
h(10q+j 1z) = λh(0q1z).

The right side of this equation is independent of n and both terms on the left side are
non-negative. Therefore

∞∑
j=1

edj+q
eaq+1+···+aq+j

λj
h(10q+j 1z) < ∞

and since inf h > 0 we have
∞∑

j=1

edj+q
eaq+1+···+aq+j

λj
< ∞.

Hence eaq+1+···+aq+j /λj → 0 as j → ∞. Therefore

edqh(10q1z) +
∞∑

j=1

edq+j
eaq+1+···+aq+j

λj
h(10q+j1z) = λh(0q1z), (3)

q ≥ 1, z ∈ X.
By Lemma 3.2 we have λ ≥ ea . From (Lϕh)(x) = λh(x) with x = 0∞ we have

eah(0∞) + edh(10∞) = λh(0∞), so ea < λ since h > 0. Similarly we have

ebq h(01q0w) +
∞∑

j=1

ebq+j
ecq+1+···+cq+j

λj
h(01q+j 0w) = λh(1q0w) (4)

and λ > ec.
By (3) and (4) with q = 1 we have

λ2h(01z)h(10w) =
[
ed1h(101z) +

∞∑
j=1

ed1+j
ea2+···+a1+j

λj
h(101+j1z)

]

×
[
eb1h(010w) +

∞∑
j=1

eb1+j
ec2+···+c1+j

λj
h(011+j0w)

]
.

Choose z,w so that h(01z) = supy∈X h(01y) and h(10w) = supx∈X h(10x). Then

λ2 ≤
[
ed1 +

∞∑
j=1

ed1+j
ea2+···+a1+j

λj

][
eb1 +

∞∑
j=1

eb1+j
ec2+···+c1+j

λj

]
.

Since λ > max(ea, ec) this implies (ii).
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(ii) ⇒ (iii) By Lemma 3.4 choose λ > max(ea, ec) with

1

λ2

[
ed1 +

∞∑
j=1

ed1+j
ea2+···+a1+j

λj

][
eb1 +

∞∑
j=1

eb1+j
ec2+···+c1+j

λj

]
= 1.

Let α > 0 and define β by

β = αeb(λ − ea)

ed(λ − ec)λ

[
ed1 +

∞∑
j=1

ed1+j
ea2+···+a1+j

λj

]
.

For q ≥ 1 define αq and βq by

αq = α(λ − ea)

λed

[
edq +

∞∑
j=1

edq+j
eaq+1+···+aq+j

λj

]
,

βq = β(λ − ec)

λeb

[
ebq +

∞∑
j=1

ebq+j
ecq+1+···+cq+j

λj

]
.

We show that αq → α as q → ∞. Let

uq =
∞∑

j=1

edq+j
eaq+1+···+aq+j

λj

which is finite since λ > ea . Since an → a we have an < a + ε for n sufficiently large, so
for q sufficiently large

uq ≤ esup(dn)
∞∑

j=1

(
ea+ε

λ

)j

.

Hence ū = lim supn→∞(un) < ∞ and since uq = (eaq+1/λ)[edq+1 + uq+1] we have
ū = (ea/λ)[ed + ū] so that ū = ea+d/(λ − ea).

Similarly u = lim infn→∞(un) = ea+d/(λ − ea) so uq → ea+d/(λ − ea) and αq → α.
Similarly βq → β.
Define h : X → R by h(0q1z) = αq , q ≥ 1, z ∈ X, h(1q0z) = βq , q ≥ 1, z ∈ X,

h(0∞) = α and h(1∞) = β. Then h > 0 and h ∈ C(X).
We shall now show that (Lϕh)(x) = λh(x).
Note that β1 = α(λ − ea)/ed since

β1 = β(λ − ec)

λeb

[
eb1 +

∞∑
j=1

eb1+j
ec2+···+c1+j

λj

]
= β(λ − ec)

eb

λ

[ed1 + ∑∞
j=1 ed1+j ea2+···+a1+j /λj ]

= α(λ − ea)

ed

by the definitions of λ and β.
When x = 0∞,

(Lϕh)(0∞) = eϕ(0∞)h(0∞) + eϕ(10∞)h(10∞) = eaα + edβ1 = λα = λh(0∞).
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Note that, for q ≥ 1, eaq+1αq+1 + edq β1 = λαq , since

λαq = α(λ − ea)

ed

[
edq + eaq+1

λ

{
edq+1 +

∞∑
j=1

edq+1+j
eaq+2+···+aq+1+j

λj

}]
= β1e

dq + eaq+1αq+1.

Now when x = (0q1z), q ≥ 1, z ∈ X,

(Lϕh)(0q1z) = eaq+1αq+1 + edqβ1 = λαq = λh(0q1z).

Similarly (Lϕh)(x) = λh(x) when x = 1∞ and x = (1q0w), q ≥ 1, w ∈ X.
(iii) ⇒ (iv) Let h be as in (iii) and put g = eϕh/λh ◦ T . Then g ∈ G(X, T ) ∩ R(X).
By Theorem 2.4, (Ln

log gf )(x) → µ(f ) for all f ∈ C(X) where µ is the unique
g-measure. Hence for all f ∈ C(X)

(Ln
ϕf )(x)

λn
→ h(x)µ(f/h).

Let v(f ) = µ(f/h) and we have L∗
ϕv = λv.

Clearly (iv) implies (i).
This completes the proof of Theorem 3.1 �

COROLLARY 3.5. Let ϕ ∈ R(X) satisfy the statements in Theorem 3.1. There is only one
number λ > 0 that satisfies statement (i) and it is that number λ > max(ea, ec) satisfying

1

λ2

[
ed1 +

∞∑
j=1

ed1+j
ea2+···+a1+j

λj

][
eb1 +

∞∑
j=1

eb1+j
ec2+···+c1+j

λj

]
= 1.

We have λ = eP(T ,ϕ). The function h satisfying statement (i) is unique up to scalar
multiples. There is a unique v ∈ M(X) with L∗

ϕv = λv.

Proof. In the proof of Theorem 3.1 we showed that the number λ given above
satisfies Lϕh = λh for a certain continuous h > 0, and that, for all f ∈ C(X),
(Ln

ϕf )(x)/λn →h(x)v(f ). If also Lϕl = τ l for some number τ > 0 and some l ∈ C(X)

with l > 0 then (τ/λ)nl(x) →h(x)v(l). Since h(x)v(l) > 0 we have τ = λ and l(x) =
h(x)v(l). If σ ∈ M(X) satisfies L∗

ϕσ = λσ then integrating (Ln
ϕf )(x)/λn → h(x)v(f )

with respect to σ gives σ(f ) = σ(h)v(f ) for all f ∈ C(X). Putting f = 1 gives σ(h) = 1
and σ = v.

Since (1/n) log(Ln
ϕ1)(x) →P(T , ϕ) (see [W4, Theorem 1.3]) we have P(T , ϕ) =

log λ. �

We now show that if ϕ ∈ R(X) ∩ Bow(X, T ) then the Ruelle operator theorem holds
for ϕ.

COROLLARY 3.6. Let ϕ ∈ R(X) ∩ Bow(X, T ). Then statement (ii) of Theorem 3.1 holds
so there exists h ∈ C(X), h > 0 with Lϕh = λh, where λ = eP(X,ϕ), and v ∈ M(X) with
L∗

ϕv = λv and, for all f ∈ C(X), (Ln
ϕf )(x)/λn → h(x)v(f ).

The measure µ given by µ(f ) = v(hf ) is the unique equilibrium state for ϕ.
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Proof. From Theorem 1.1 there exists K > 0 so that

|a2 + · · · + a1+j − ja| ≤ K and |c2 + · · · + c1+j − jc| ≤ K

for all j ≥ 1. Therefore e−Keaj ≤ ea2+···+a1+j and e−Kecj ≤ ec2+···+c1+j for all j ≥ 1.
Hence

1

e2 max(a,c)

[
ed1 +

∞∑
j=1

ed1+j
ea2+···+a1+j

ej max(a,c)

][
eb1 +

∞∑
j=1

eb1+j
ec2+···+c1+j

ej max(a,c)

]

≥ einfdi einfbi

e2 max(a,c)

[
1 + e−K

∞∑
j=1

(
ea

emax(a,c)

)j][
1 + e−K

∞∑
j=1

(
ec

emax(a,c)

)j]
= ∞.

Hence statement (ii) of Theorem 3.1 holds. �

COROLLARY 3.7. Let ϕ ∈ R(X) be defined using the sequences (ap)∞2 , (bq)∞1 , (cp)∞2
and (dq)∞1 as in §1. If (ap)∞2 , (bq)∞2 , (cp)∞2 and (dq)∞2 satisfy[ ∞∑

j=1

ed1+j
ea2+···+a1+j

ej max(a,c)

][ ∞∑
j=1

eb1+j
ec2+···+c1+j

ej max(a,c)

]
≥ e2 max(a,c),

then for all choices of b1 and d1 an eigenfunction h > 0 exists. If[ ∞∑
j=1

ed1+j
ea2+···+a1+j

ej max(a,c)

][ ∞∑
j=1

eb1+j
ec2+···+c1+j

ej max(a,c)

]
< e2 max(a,c),

then for some choices of b1 and d1 an eigenfunction h > 0 exists and for the other choices
of b1 and d1 no positive eigenfunction exists.

Note that one or both of the sums above could be ∞. This is the case when ϕ ∈
Bow(X, T ).

Proof. Statement (ii) of Theorem 3.1 says

[ed1 + S1][eb1 + S2] > e2 max(a,c), (5)

where

S1 =
∞∑

j=1

ed1+j
ea2+···+a1+j

ej max(a,c)
and S2 =

∞∑
j=1

eb1+j
ec2+···+c1+j

ej max(a,c)
.

If S1S2 ≥ e2 max(a,c) then (5) is true for all choices of b1 and d1.
If S1S2 < e2 max(a,c) then (5) holds for some choices of b1 and d1 and fails for other

choices. �

The following result deals with the class of functions studied by Hofbauer [Ho]. He
studied the case when a = 0.

THEOREM 3.8. Let (an)
∞
0 be a convergent sequence of real numbers with (an) → a, and

let ϕ ∈ C(X) be defined by ϕ(0k1z) = ak for k ≥ 0, z ∈ X and ϕ(0∞) = a. Then there
exist h ∈ C(X) with h > 0 and Lϕh = λh for some real number λ > 0 if and only if∑∞

i=0 ea0+a1+···+ai−(i+1)a > 1.
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When this holds λ = eP(T ,ϕ) > max(a, a0) and is given by

∞∑
j=0

ea0+a1+···+aj

λ1+j
= 1.

When
∑∞

i=0 ea0+a1+···+ai−(i+1)a > 1 the unique equilibrium state for ϕ is the unique
g-measure for the g-function given by: g(01q0z) = 1 − ea0/λ, for all q ≥ 1, z ∈ X,
and g(0p1z) = Dp/(1 + Dp) for p ≥ 2, z ∈ X where

Dp =
∞∑
i=0

eap+···+ap+i

λi+1
,

g(0∞) = ea/λ and g(01∞) = 1 − ea0/λ.
When

∑∞
i=0 ea0+a1+···+ai−(i+1)a > 1 we have, for all f ∈ C(X),

(Ln
ϕf )(x)

λn
→ h(x)v(f )

where v is the unique member of M(X) with L∗
ϕv = λv.

Proof. In the notation of Theorem 3.1 bq = b = a1 for all q ≥ 1 and cp = c = dq = d =
a0 for all p ≥ 2, q ≥ 1. Statement (ii) of Theorem 3.1 becomes

ea0+a1

e2 max(a,a0)

[
1 +

∞∑
j=1

ea2+···+a1+j

ej max(a,a0)

][
1 +

∞∑
j=1

(
ea0

emax(a,a0)

)j]
> 1.

If a0 ≥ a the second series diverges to ∞ so the above inequality holds.
If a0 < a the above inequality becomes

ea0+a1−2a

[
1 +

∞∑
j=1

ea2+···+a1+j

eja

]
1

1 − ea0−a
> 1.

This is equivalent to

ea0−a + ea0+a1−2a +
∞∑

j=1

ea0+a1+a2+···+a1+j −(2+j)a > 1.

Therefore, by Theorem 3.1, a positive continuous eigenfunction h exists for Lϕ if and
only if

∞∑
i=0

ea0+···+ai−(i+1)a > 1.

When this condition holds Corollary 3.5 shows that λ = eP(T ,ϕ) > max(ea, ea0) and

ea0

λ2

[
1 +

∞∑
j=1

ea2+···+a1+j

λj

]
ea1

[
λ

(λ − ea)

]
= 1.

The last equation becomes

ea0

λ
+ ea0+a1

λ
+

∞∑
j=1

ea0+···+a1+j

λ2+j
= 1.
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From the proof of Theorem 3.1 the eigenfunction, h, for Lϕ has the following form. Let
α > 0. Let β = α(λ − ea)/ea0 . For q ≥ 1 let αq = (α(λ− ea)/λ)[1 +Dq+1] and βq = β.

Then h(0q1z) = αq , h(1q0z) = β, q ≥ 1, z ∈ X, and h(0∞) = α and h(1∞) = β.
Then the corresponding g-function is g = eϕh/λh ◦ T so g(0p1z) = eapαp/λαp−1 =
Dp/(1 + Dp) for all p ≥ 2, z ∈ X, g(01q0z) = ea1α1/λβ for all q ≥ 1, z ∈ X,
g(1p0z) = a0/λ for all p ≥ 2, z ∈ X, and g(10q1z) = 1/(1 + Dq+1) for all
q ≥ 1, z ∈ X. �

We can get functions of Hofbauer type for which Lϕ has no continuous eigenfunction
h > 0 as follows. Suppose a1, a2, . . . satisfy an → a and

∑∞
j=1 ea1+···+aj −ja < ∞.

Then choose a0 so that

ea0−a

(
1 +

∞∑
j=1

ea1+···+aj−ja
)

≤ 1.

Examples are given by choosing s > 1 and, for n ≥ 1,

an = s log

(
n

n + 1

)
.

Then

1 +
∞∑

j=1

ea1+···+aj −ja =
∞∑
i=1

1

is
.

4. Coboundaries for the two-sided shift
We can use the space R(X) to obtain examples of functions on the two-sided shift
space X̂ = ∏∞

−∞{0, 1} which are not continuous coboundaries, with respect to the shift

S : X̂ → X̂, but are bounded measurable coboundaries. Points of X̂ are bisequences
x̂ = (xn)

∞−∞ of zeros and ones and the homomorphism S is defined by Sx̂ = (yn)
∞−∞

where yn = xn+1 for all n ∈ Z.
Let Cob(X̂, S) = {F ∈ C(X̂) | ∃H ∈ C(X̂) with F = H ◦ S − H } be the space of

continuous coboundaries, and let CobBM(X̂, S) = {F ∈ C(X̂) | ∃H : X̂ → R which is
bounded and Borel measurable with F = H ◦ S −H } be the space of bounded measurable
coboundaries. If F = HS −H then H is called a cobounding function for F . Similarly we
can define Cob(X, T ) and CobBM(X, T ).

We have Cob(X̂, S) ⊂ CobBM(X̂, S) and Cob(X, T ) ⊂ CobBM(X, T ), and for the
one-sided shift T : X → X Quas [Q] has shown that Cob(X, T ) = CobBM(X, T ) but
Cob(X̂, S) �= CobBM(X̂, S).

We show how we can use ϕ ∈ R(X) ∩ (Bow(X, T )\W(X, T )) to get members of
CobBM(X̂, S)\Cob(X̂, S).

We use the following well-known characterization of the members of CobBM(X, T ) for
a continuous transformation T : X → X of a compact metric space (see [KH, p. 102]
where sup should be replaced by lim sup or lim inf).

THEOREM 4.1. Let T be a continuous transformation of a compact metric space X.
Let f ∈ C(X). Then f ∈ CobBM(X, T ) if and only if there exists K > 0 such
that |(Tnf )(x)| ≤ K for all x ∈ X, for all n ≥ 1. When this condition holds
l(x) = −lim supn→∞(Tnf )(x) is a cobounding function.
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We now return to the shift maps T : X → X and S : X̂ → X̂.

LEMMA 4.2. Let ϕ ∈ R(X), let n ≥ 1 and choose xi ∈ {0, 1} for 0 ≤ i ≤ n − 1. Then
(Tnϕ)((x0 . . . xn−1)

∞) = (Tnϕ)((xn−1 . . . x0)
∞).

Proof. Let ϕ be defined by the sequences (ap)∞2 , (bq)∞1 , (cp)∞2 and (dq)∞1 as in §1. Let

Ak =
{

1 if k = 1,

akak−1 . . . a2 if k ≥ 2,
and Cl =

{
1 if l = 1,

clcl−1 . . . c2 if l ≥ 2.

Let x0 = 0.
If x0 . . . xn−1 = 0k11l1 . . . 0kr 1lr with ki, li ≥ 1, 1 ≤ i ≤ r , then

(Tnϕ)((x0 . . . xn−1)
∞) = Ak1bl1Cl1dk2 . . . Clr dk1

and
(Tnϕ)((xn−1 . . . x0)

∞) = Cl1dkr−1Akr−1 . . . Ak1blr ,

so the result holds.
If x0 . . . xn−1 = 0k11l1 . . . 0kr 1lr 0kr+1 then

(Tnϕ)((x0 . . . xn−1)
∞) = Ak1bl1Cl1dk2 . . . Clr dk1+kr+1ak1+kr+1 . . . a1+k1

and
(Tnϕ)((xn−1 . . . x0)

∞) = Akr+1blr Clr . . . dk1+kr ak1+kr+1 . . . a1+kr+1,

so the result holds. Similar calculations deal with the cases when x0 = 1. �

Let � : X̂ → X̂ be the reversal map of X̂, defined by �(x̂) = ŷ where yn = x−n for
all n ∈ Z. Let π : X̂ → X be the natural projection, given by π((xn)

∞−∞) = (xj )
∞
0 .

THEOREM 4.3. Let ϕ ∈ R(X). Then the following hold:
(i) ϕ ∈ Bow(X, T ) if and only if ϕ ◦ π − ϕ ◦ π ◦ � ∈ CobBM(X̂, S);
(ii) ϕ ∈ W(X, T ) if and only if ϕ ◦ π − ϕ ◦ π ◦ � ∈ Cob(X̂, S).

Proof. Let ϕ ∈ R(X).
(i) Let ϕ ∈ R(X) ∩ Bow(X, T ). We want to find a constant K so that |Sn(ϕ ◦ π − ϕ ◦

π ◦ �)(x̂)| ≤ K for all n ≥ 1, x̂ ∈ X̂, and then we can use Theorem 4.1.
Let C be the constant occurring in the Bowen condition so that if x, y ∈ X, n ≥ 1, and

xi = yi, 0 ≤ i ≤ n − 1, then |(Tnϕ)(x) − (Tnϕ)(y)| ≤ C.
Let x̂ = (xj )

∞−∞ ∈ X̂. Let n ≥ 1. Then we have

Sn(ϕ ◦ π − ϕ ◦ π ◦ �)(x̂) = (Tnϕ)(x0x1x2 . . . ) − (Tnϕ)(xnxn−1 . . . x1x0x−1x−2 . . . )

= (Tnϕ)(x0x1x2 . . . ) − (Tnϕ)((x0 . . . xn−1)
∞)

+ (Tnϕ)((x0 . . . xn−1)
∞) − (Tnϕ)((xn−1 . . . x0)

∞)

+ (Tnϕ)((xn−1 . . . x0)
∞) − (Tnϕ)(xn−1 . . . x1x0x−1x−2 . . . )

so |Sn(ϕ◦π −ϕ◦π ◦�)(x̂)| ≤ 2C by Lemma 4.2. Hence ϕ◦π −ϕ◦π ◦� ∈ CobBM(X̂, S)

by Theorem 4.1.
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Now let ϕ ◦ π − ϕ ◦ π ◦ � ∈ CobBM(X̂, S). Then there exists K such that
|Sn(ϕ ◦ π − ϕ ◦ π ◦ �)(x̂)| ≤ K for all n ≥ 1, x̂ ∈ X̂. Let x, y ∈ X and
xi = yi, 0 ≤ i ≤ n − 1. Choose yj = 0 = xj for all j < 0 to form x̂ = (xi)

∞−∞
and ŷ = (yi)

∞−∞ ∈ X̂. Then we have

(Tnϕ)(x) − (Tnϕ)(y) = (Tnϕ)(x) − (Tnϕ)(xn−1 . . . x1x0x−1x−2 . . . )

+ (Tnϕ)(xn−1 . . . x1x0x−1x−2 . . . ) − (Tnϕ)(y)

= Sn(ϕ ◦ π − ϕ ◦ π ◦ �)(x̂) − Sn(ϕ ◦ π − ϕ ◦ π ◦ �)(ŷ).

Hence |(Tnϕ)(x) − (Tnϕ)(y)| ≤ 2K , and ϕ ∈ Bow(X, T ).
(ii) Let ϕ ∈ R(X) ∩ W(X, T ). Since

(Sn(ϕ ◦ π ◦ �))(x̂) = (Tnϕ)(xnxn−1 . . . x1x0x−1x−2 . . . )

we have ϕ ◦ π ◦ � ∈ W(X, T ) so there exists ϕ+ ∈ C(X) such that ϕ ◦ π ◦ � − ϕ+ ◦ π ∈
Cob(X̂, S) (see [Bou]). By (i) ϕ ◦ π − ϕ ◦ π ◦ � ∈ CobBM(X̂, S) so ϕ ◦ π − ϕ+ ◦ π ∈
CobBM(X̂, S). By Theorem 4.1 applied to S and T we have ϕ − ϕ+ ∈ CobBM(X, T ), so
ϕ − ϕ+ ∈ Cob(X, T ) by [Q]. Hence ϕ ◦ π ◦ � − ϕ ◦ π ∈ Cob(X̂, S).

Now let ϕ ◦ π − ϕ ◦ π ◦ � = FS − F where F ∈ C(X̂). We show that
supn≥1 vn+N(Tnϕ) → 0 as N → ∞.

Let n ≥ 1 and N ≥ 1 and let x = (xj )
∞
0 , y = (yj )

∞
0 ∈ X have xj = yj , 0 ≤ j ≤

n + N − 1. Let xi = 0 = yi for all i ≤ −1 to obtain x̂ = (xj )
∞
i−∞ and ŷ = (yj )

∞−∞ ∈ X̂.
Then

(Tnϕ)(x) − (Tnϕ)(y)

= Sn(ϕ ◦ π − ϕ ◦ π ◦ �)(x̂) − Sn(ϕ ◦ π − ϕ ◦ π ◦ �)(ŷ)

= F(Snx̂) − F(x̂) − F(Snŷ) + F(ŷ)

= F(. . .
∗
xn . . . xn+N−1xn+N . . . ) − F(. . .

∗
yn . . . yn+N−1yn+N . . . )

− [F(. . .
∗
x0 . . . xn+N−1xn+N . . . ) − F(. . .

∗
y0 . . . yn+N−1yn+N . . . )]

≤ vN(F ) + vn+N(F ) ≤ 2vN(F ).

Hence supn≥1 vn+N(Tnϕ) ≤ 2vN(F ) so ϕ ∈ W(X, T ).
This completes the proof of Theorem 4.3. �

We can get members of CobBM(X̂, S)\Cob(X, S) as follows.

COROLLARY 4.4. Let ϕ ∈ R(X). Then ϕ ∈ Bow(X, T )\W(X, T ) if and only if
ϕ ◦ π − ϕ ◦ π ◦ � ∈ CobBM(X̂, S)\Cob(X̂, S).

Examples of functions in R(X) ∩ (Bow(X, T )\W(X, T )) are given in §1.
Results of this type, in a more general setting, will appear in another paper.
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