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Abstract 

Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) 

displays its advances in obtaining high resolving power, high mass accuracy, and 

coupling with many different tandem mass spectrometry (MS/MS) techniques. In 

this thesis, the superior performance of FTICR MS was demonstrated by several 

different applications. The peak separation limit of the 12 T solariX FTICR 

instrument was challenged by measuring the isotopic fine structures of several 

17O enriched amyloid-β (Aβ) peptides (Chapter 2 and 3). A resolving power as 

high as 6 M was achieved at m/z 880, and peaks were assigned with mass 

uncertainty less than 70 ppb.  The accurate measurement of 17O labelling ratio is 

of value for estimating atomic distances by NMR experiments. Furthermore high 

mass accuracy and high resolution are proved vital for the confident assignment 

of peaks in a polymeric mixture due to the sample complexity and coexistence of 

different adducts (Chapter 4). On the other hand, one or more of the MS/MS 

techniques, collisionally activated dissociation (CAD), electron induced 

dissociation (EID), electron capture dissociation (ECD), and infrared multiphoton 

dissociation (IRMPD), were used to characterize the structures of chlorophyll-a 

(Chapter 6), pheophytin-a (Chapter 7), and d-α-tocopheryl polyethylene glycol 

succinate (TPGS), repectively, and diagnostic fragments are useful for their 

structural identification in the future. IRMPD was particularly efficient in 

fragmenting chlorophyll-a and pheophytin-a compared to EID and CAD. Based 

on the fragmentation pattern of TPGS attached with two different adducts (Li+, 

Na+, K+, Ag+, and H+), investigating the influence of adducts in ECD and CAD 

processes are of benefit for understanding the fragmentation mechanisms when 

cation adducts are involved (Chapter 5). In an on-going project, FTICR also 

displays the capability to study intact proteins above 30 kDa (Chapter 8). 
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Chapter 1 Introduction 
 

  Mass spectrometry (MS), has become a universal tool in daily analytical 

work as it brings many possibilities to research and shows great potential in 

solving analytical problems.  Many exciting breakthroughs in the MS field has 

expanded the limits of the technique and greatly expanded the applications in 

many fields. 

  Although a mass spectrometer with a resolving power less than 10,000 is 

accepted in most daily analysis, many scientific challenges still demand far 

better mass spectrometry instruments, particularly for the separation and 

identification of complex mixtures, understanding macromolecules, and 

characterizing of molecular structures; moreover, some of these studies can 

only be accomplished by high performance mass spectrometry. Fourier 

transform ion cyclotron resonance (FTICR) mass spectrometer is widely 

recognized as the highest performance MS instrument,
1
 not only because of 

the outstanding resolving power and mass accuracy, but also the 

extraordinary flexibility to couple with many tandem mass spectrometry 

(MS/MS) techniques on one instrument, and FTICR MS has shown great 

potential and displayed impressive performance in solving challenging 

analytical problems.  

  The current thesis focuses on applying the high performance features of 

FTICR MS, in terms of high resolving power, high mass accuracy, and flexible 

fragmentation ability, in the study of several important real samples to 

demonstrate the significance of high performance mass spectrometry in 
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practice. This chapter (chapter one) includes three parts. The first part (1.1) is 

a general introduction of mass spectrometry, including ionization methods 

(1.1.1), tandem mass spectrometry techniques (1.1.2), and mass analyzers, 

in particular the fundamental of FTICR MS (1.1.3). In the second part (1.2), 

the important features of FTICR MS are discussed in detail (1.2.1), and 

followed by a brief summary of the advanced applications of FTICR MS in 

recent years (1.2.2).  Finally, an overview content of the thesis is listed in the 

third part (1.3). 

1.1 Mass spectrometry 

1.1.1  Ionization methods 

  Mass spectrometry measures the mass to charge ratio (m/z) of ions in the 

gas phase. In the early stage, electron impact (EI) was the most frequently 

used method to ionize molecules, and it is still the most important ionization 

source in gas chromatography-mass spectrometry, but it only shows high 

efficiency for ionizing molecules of high volatility and of small molecular 

weight, which greatly limits the application. In 1980s’, the development of two 

ionization techniques, electrospray ionization (ESI)
2
 and matrix-assisted laser 

desorption ionization (MALDI),
3,4

 enormously improved the ionization of large 

molecules and enriched the application of mass spectrometry, bringing bio-

molecular analysis into a new era. Different from EI, both ESI and MALDI are 

so called soft ionization methods, where intact molecules are ionized without 

producing extensive fragments, which is of great interest for many modern 

mass spectrometric studies.  
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           Electrospray ionization (ESI) 

  In ESI, analytes in solution are directly converted into the gas phase ions, 

and analyzed. This revolutionary technique has a simple ionization process 

and facilitates the mass spectrometric investigation of a wide range of 

molecules. In 2002, John Fenn was awarded the Nobel prize in chemistry for 

his contributions in the discovery of the ESI source.
2
  

  In ESI, samples in solution are usually pumped through a capillary with a 

flow rate of 0.1 – 10 μL/min, and a high voltage (several kilovolts) is applied 

between the capillary and the inlet (orifice) of a mass spectrometer to provide 

the electric field gradient.
5
 When the high voltage is applied on the capillary, a 

Taylor cone will be formed at the tip of the capillary due to the accumulation 

of charges on the surface of the sample solution, and which will further 

generate micrometre-sized droplets rich in charges.
6
 These highly charged 

droplets will be evaporated, often assisted by heating and a counter flow of 

drying gas (N2), and eventually turned into single ions suitable for the 

detection of the mass to charge ratio.
7
  

  Several mechanisms have been proposed for the formation of the gas 

phase ions, including the ion evaporation mode (IEM), the charged residue 

model (CRM), and the chain ejection model (CEM).
7,8

 The IRM is widely 

accepted for molecules of low molecular weight, and it suggests that during 

solvent evaporation the charge density of a droplet will increase gradually, 

due to the Columbic repulsion among charges in the droplet.
9
 When the 

barrier of surface tension is matched by the Columbic repulsion (the Rayleigh 

limit),
10

 the ejection of small ions from the droplet surface could happen 
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successively. The CRM
11

 proposed that large globular species embedded in a 

droplet with solvent will eventually shrink into a single ion when the solvent 

totally evaporates and dries out. The CEM is very similar to IEM, but 

particularly relevant to polymer chains that are disordered, partially 

hydrophobic, and capable of binding excess charge carriers.
7
 

  As mentioned previously, the surface tension is a crucial factor 

influencing the efficiency of ionization; hence the choice of the solvent 

composition for ESI is important. Depending on different applications, various 

solvent systems could be selected, while the most common solvent for 

positive ESI experiments is a mixture of 50:50 methanol/acetonitrile and water, 

with a small amount of acid added to promote protonation. 

  Nano-electrospray (nESI) is a variety of ESI.
12

 Instead of using a capillary 

of a diameter around 100 µm, nESI uses capillaries of a much smaller size tip 

(typically 1-5 µm), generating a flow rate of ~1 nL/min with solvent flow 

“pumped” only by capillary action, and the Taylor cone and plume become 

invisible because the droplets are in the 100 nm diameter range. In addition to 

using much smaller amount of samples, comparing to the traditional ESI 

source, nESI could improve the desolvation and ionization efficiency because 

droplets of smaller size are formed. 

  According to the proposed process of ion formation in ESI, it is rational 

that multiply-charged ions are usually produced and the same type of 

molecules could carry different numbers of charges or even different category 

of charge carriers, such as protons and sodium cations, showing peaks of 

different m/z on the mass spectrum. Even though, to some extent, multiple 
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charging makes the mass spectrum relatively complicated, this feature is of 

great benefit for analyzing molecules of high molecular weight.     

Matrix-assisted laser desorption ionization (MALDI) 

 The MALDI source was first developed by Prof. Franz Hillenkamp and 

Prof. Michael Karas in 1985,
13

  and quickly became one of the most important 

ionization methods. In contrast to ESI, MALDI yields singly-charged ions in 

most cases so that the data interpretation is relatively easier, but may 

produce ions at very high m/z (≥10,000) which could be problematic for most 

modern mass analyzers. However, because MALDI is a pulsed ionization 

technique, it is particularly compatible with time-of-flight instruments (details 

will be discussed in section 1.1.3), which is also a mass analyzer suitable for 

analyzing big molecules.   

  In a MALDI experiment, the analyte is mixed with a selected matrix in a 

ratio of 1:50-1:5000 (analyte to matrix), and then is dried on a stainless steel 

MALDI target; afterwards, the target covered with crystal sample spots is 

inserted into the instrument and a laser, typically ultraviolet lasers of 337 nm 

(N2) or 355 nm (Nd:YAG), will shoot on the pre-dried solid sample spot 

causing ionization.  The process of how analyte ionization occurs in MALDI is 

still not fully understood, and one proposed mechanism is that analytes and 

matrixes are first evaporated by laser radiation generating ionized matrix ions 

and neutral analyte vapour, and then followed by proton transfer from the 

matrix ions to the analyte molecules forming ionized analytes.  Karas and his 

colleagues recently experimentally demonstrated the presence of both the 

gas phase protonation and the Lucky Survivor pathways in MALDI.
14

 The 
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latter model, Lucky Survivor, suggests that the precharged analytes preserve 

the charges from solution, but are fully or partially neutralized by the 

corresponding counterions assisted by the protonated matrix molecules in 

ionization, generating singly-charged analytes.
14

 

  In addition to generating relatively simple mass spectra, several 

advantages make MALDI an extensively used source, for example, a higher 

tolerance for salt than ESI. Moreover, a wide variety of samples and a large 

range of masses can be effectively ionized using MALDI with a proper 

selection of the matrix.  

1.1.2  Tandem mass spectrometry (MS/MS) techniques 

  To generate structural information, molecular dissociation is a crucial 

reaction in mass spectrometry. Various tandem mass spectrometry (MS/MS) 

techniques have been developed to break ions apart yielding fragment ions. 

Collisonally activated dissociation (CAD) 

  The most important fragmentation technique so far is CAD (also known 

as collisionally induced dissociation, CID),
15,16

 which has been extensively 

applied in the structural characterization of proteins/peptides,
17

 polymers,
18

 

and many other molecules.
19

  In CAD, the target ions are accelerated and 

collide with neutral species, such as Ar, N2, or He, to increase the internal 

energy to dissociate.  There are two kinds of CAD regimes depending on the 

energy used in accelerating target molecules: the low-energy CAD (1-100 eV) 

and the high-energy CAD (> 1 keV). In this thesis, the acronym ‘CAD’ 

normally refers to low-energy CAD.   
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  Low-energy CAD is readily compatible with tandem quadrupoles and ion 

trapping instruments, and is the most common MS/MS technique.  For low-

energy CAD, the excitation is mostly vibrational and multiple collisions are 

dominant.
20

 The internal energy gained in collisions is distributed randomly 

through the molecule, causing fragmentation via the lowest energy 

dissociation channel. In addition to bond cleavages, rearrangement is also 

possible and could be promoted by thermodynamically favourable structures.  

The optimization of the pressure and selection of the neutral gas can both 

have important impact on the fragmentation. CAD plays an important role in 

the structural study of peptides and proteins, where b- and y- type ions 

cleaving from the amide bond (CO-NH) are the main fragments (Figure 1.1). 

21,22
  

 

Figure 1.1 Nomenclature for fragment ions used in mass spectrometry 

 

  The low-energy CAD also occurs in the interface region of the ESI source 

and is known as in source CAD or nozzle/skimmer CAD,
23-26

 which is 

particularly useful to get rid of the noncovalent binding adducts when studying 

intact big molecules.
24,25

 Since there is no prior isolation, all of the ions could 
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be excited and fragmentation is feasible for labile compounds, but if extensive 

fragmentation occurs, it can be difficult or impossible to associate a particular 

fragment with a particular precursor.   

   In order to perform CAD in an ion cyclotron resonance cell (ICR cell, 

details see section 1.1.3), neutral gas has to be leak in, and ions trapped in 

the cell will be excited and undergo collisions. Depending on the frequency of 

the excitation waveform used, both on-resonance
27

 and off-resonance
28

 CAD 

can be implemented on FTICR instruments. Traditional on-resonance CAD 

has inherent disadvantages due to ion losses and low energy transfer 

efficiency. Two variations of on-resonance techniques have been 

demonstrated more efficient are: multiply excitation collision activation (MECA) 

by using low amplitude on-resonance excitation
29,30

 and very low energy 

(VLE)
31

 collision activation by periodically 180˚ phase shifting of the excitation 

waveform. Using sustained off-resonance irradiation (SORI) CAD,
28

 ions are 

accelerated and decelerated by an excitation waveform with a frequency 

close to the cyclotron frequency of the targeted molecule, and the internal 

energy is accumulated.  The efficiency of MECA, VLE, SORI, and traditional 

on-resonance CAD methods to fragment large multiply-charged ions were 

compared, and SORI technique is best in producing fragments with high 

efficiency and best resolution.
32

 However, with the development of hybrid-

FTICR instruments, such as quadrupole-FTICR or linear ion trap-FTICR, 

more efficient CAD process could be achieved by collisions in front of the ion 

cyclotron cell.    

 Instead of introducing neutral gas, surface-induced dissociation (SID) is a 

MS/MS method where ions collide with a solid surface,
33,34

 and it shows 



9 
 

promising results for big molecules.
35

 In practice, several experimental factors, 

such as surface composition, incidence angle, and collision energy, can have 

great effect on the fragmentation efficiency.
36

  In addition to the expertise 

needed in tuning, modification is often required for most instruments to be 

compatible with a SID source, which restricts its application.   

Infrared multiphoton dissociation (IRMPD) 

  IRMPD
37

 is another ‘slow heating’ method
38

 and has been primarily 

implemented in FTICR instruments, but has recently been also implemented 

on ion trap and orbitrap instruments.
39,40

 Typically, target ions are activated by 

a low-power (< 100 W) CO2 laser (10.6 µm) for tens to hundreds of 

milliseconds.  During the IRMPD process, ions absorb multiple photons from 

the IR radiation sequentially to enable vibrational excitation and produce 

fragments.
41

 Though similar fragmentation pathways with those from CAD are 

likely to occur in IRMPD, IRMPD displays advantages in investigating the 

lowest energy pathways and has been used in the study of 

peptides/proteins,
22,39,42

 oligosaccharide,
43-45

 lipid,
46

 and some other small 

molecules.
46-51

 

Electron-based fragmentation techniques 

Electron capture dissociation (ECD) results were initially observed in an 

ultraviolet photon dissociation experiment,
52

 and the ECD technique was 

further developed by McLafferty’s group.
53-56

 In ECD, multiply-charged ions 

are irradiated by low energy (0.1 – 3 eV) electrons, and then, fragmentation 

follows electron capture (Scheme 1.1). Different from the fragmentation 

methods described above, the ECD activation process is very fast
57

 and the 
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ion excitation falls into the region of electronic excitation.
58

 So far, ECD has 

been most successfully implemented in FTICR MS instruments, which are 

widely commercially available.  

[M+nH]
n+

 + e
-
slow (0.1 – 3 eV)                     [M+nH]

(n-1)+▪
 + fragments 

Scheme 1.1 Electron capture dissociation (ECD) process 

 

   Because of the complementary role of ECD in producing fragments, 

additional structural information could be formed, and it is emerging as one of 

the most important MS/MS techniques, which is extensively employed in the 

structural characterization of proteins and peptides. ECD generally produces 

more extensive backbone cleavages than CAD, and retains labile groups, 

thus, providing more sequence information.
53,54,56,59

 Instead of breaking the 

amide bond of proteins/peptides, ECD usually cleaves the N-Cα (NH-CHR) 

bond and produces c and z∙ fragments (Figure 1.1), and it is worthy to note 

that the disulfide bonds will be cleaved preferentially in ECD over the 

backbone.  Several ECD mechanisms have been proposed. One of the early 

propositions is the ‘hot-hydrogen’ model,
54,60

 which is also called the Cornell 

mechanism.  In the ‘hot hydrogen’ model, the electron capture happens at the 

protonated group, such as N-terminus and basic side chains, followed by the 

neutralization of the charge and a hydrogen migration from the electron 

capture site to a carbonyl oxygen of an adjacent amide bond, resulting in the 

dissociation of the N-Cα bond.
54

 The hydrogen transfer in the ‘hot hydrogen’ 

process is not always feasible according to theoretical calculations,
61,62

 and 

another mechanism, the ‘amide super base’ mechanism (Utah-Washington 
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mechanism), has become more attractive.
61,63,64

 In the later model, the 

electron is captured by the carbonyl oxygen, forming an anion radical, which 

can exothermically abstract a proton from the nearby group and induce bond 

cleavages.   

  One advantage of ECD over CAD and the other ‘slow heating’ MS/MS 

techniques in studying biomolecules is that it generates far fewer side-chain 

cleavages. Information like posttranslational modifications (PTMs) is more 

likely to be traced. ECD is thus becoming one of the most useful tools in top-

down proteomics, in particular to identify and locate PTMs. Whereas, 

sometimes, using ECD to fragment proteins could be problematic due to the 

folding structure and intramolecular noncovalent interactions, pre-unfolding 

strategies such as irradiating with IR laser (IR-ECD),
65

 or colliding with 

background gas
25

 can be helpful, and these strategies are so-called 

activated-ion ECD (AI-ECD) in general.
65,66

  

  Upon increasing the electron energy to 5 - 7 eV, both electronic excitation 

and vibrational excitation could happen and induce dissociation, which is 

named hot ECD.
58,67

 For proteins or peptides, hot ECD can yield c/z∙, b/y 

fragments, as well as some secondary fragmentation. Though spectra 

interpretation is normally more complicated compared to low energy ECD, the 

sequence coverage is likely to be improved by using hot ECD, and some side 

chain cleavages may provide useful structural information, such as 

distinguishing leucine from isoleucine.
67

   

[M+nH]
n+

 + e
-
fast (5 - 7 eV)                     [M+nH]

(n-1)+▪
 + fragments 

Scheme 1.2 Hot electron capture dissociation (hot ECD) process 
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Electron induced dissociation (EID) 

  Though ECD was found as a valuable complementary MS/MS technique 

in producing fragments, it is not suitable for singly-charged ions due to 

neutralization and can have poor fragmentation efficiency on species with a 

low charge state.  This limitation, however, can be overcome by utilizing high 

energy electrons (10-25 eV), and several terms have been used for this 

concept, including electronic excitation dissociation (EED)
68

 introduced by 

Roman Zubarev and electron induced dissociation (EID),
69

 where the latter 

term is more widely accepted.  One difference between these terms is that 

the presence of the radical dication ([M+H]
2+▪

) has been reported in EED, but 

it is not necessary in EID.
69,70

 Moreover, Zubarev’s group reported another 

technique, electron ionization dissociation,
71

 which uses electrons of an 

energy higher than the ionization threshold of the cation (typically above 15 

eV) to produce hydrogen deficient species, generating both odd-electron and 

even-electron fragmentation.  

[M+H]
+
 + e

-
 fast                    [M+H]

2+▪
 + 2e

- 
slow 

[M+H]
2+▪

 + e
-
 slow                    [M+H]

+
 + fragments 

Scheme 1.3 Electron induced dissociation (EID) process 

 

  Dating back to 1980s, Cody and Freiser first reported an electron-based 

fragmentation method referred to electron-induced excitation of ions from 

organics (EIEIO),
72,73

 in which the singly-charged parent ions were irradiated 

by electrons to generate fragments, but whether electron capture was 
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involved is not clear.  Though the early research did not define the level of the 

electron energy carefully, choosing the electron energy and the irradiation 

time were proved to be crucial.  Later on, in most of the EID experiments, 

neutralization is found to be the dominant process when the electron energy 

is lower than 10 eV,
70,74

 in contrast, fragmentation becomes feasible by 

increasing electron energy to 10-25 eV. In addition to CAD, EID is 

demonstrated to be of particular interest in the structural characterization of 

many singly- or doubly- charged molecules.
48,75-79

     

  There are also some electron-based fragmentation methods specific for 

negative ions, including electron detached dissociation (EDD), and negative 

electron capture dissociation (NECD), which are not discussed herein.  

  ECD has mostly been implemented on FTICR MS instruments, and the 

development of electron transfer dissociation (ETD)
80

 enabled more mass 

spectrometers access to ECD-like dissociation providing a comprehensive 

MS/MS method.
81-83

 Since a binding energy has to be crossed when an 

electron leaves the anion, in compared to ECD, a slightly lower energy (~0.6 

eV) is released in ETD after electron transfer, so that some different 

fragmentation patterns might be produced.
84

 

 

[M+nH]
n+

 + A
-▪
                    [M+nH]

(n-1)+▪
 + A + fragments 

Scheme 1.4 Electron transfer dissociation (ETD) process 
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The essential difference between ‘slow heating’ dissociation methods and 

electron-based dissociation methods is the time-scale of ion activation and 

whether odd-electron fragmentation is involved.  In ‘slow heating’ methods, 

ions are normally activated or irradiated in a time-scale of microseconds to 

seconds,
85

 and energy accumulated in the activation can be redistributed 

through molecular vibration. In contrast, electron capture or transfer is a 

crucial step in electron-based MS/MS methods, and radical ions are formed 

and dissociated. The ‘stabilization time’ of a positive ion capturing an electron 

is of the order 10
-16

-10
-15

 s.
57

 This time-scale is faster than vibrational motion 

of a molecule, 10
-12

-10
-14

 s, and electronic excitation is induced. However, it 

has to be noted that even though the electron activation process seems very 

fast, the rate of successive dissociation processes may highly depend on the 

structure of a molecule.  For example, computational calculation shows that 

the rate of peptide ketyl radicals dissociation is above 10
5
 s

-1 
if there is no 

hydrogen bonding, but the cleavage of hydrogen bonds is the rate-

determining step.
62

  

So far, most investigations of fragmentation mechanisms focus on the 

dissociation of peptides. For ‘slow heating’ methods, the ‘mobile proton’ 

model is widely accepted,
86-88

 where protons migrate along the peptide 

backbones induce adjacent bond cleavages. As discussed above, two 

mechanisms are proposed for ECD. The recent calculation (‘Utah-

Washington mechanism’) suggests that an electron is guided to SS σ* or 

amide π* though a Rydberg orbital centred on a positively charged site, 

causing fragmentation.
89

  In addition, another mechanism, the free radical 

reaction cascade, evoked by the observation of multiple bond cleavages from 
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doubly-charged cyclic peptides, is intriguing.
59

 The unexpected amino acid 

losses, from doubly-charged cyclic peptides, suggested that the Cα radical 

can migrate and promote multiple backbone cleavages, and thus, extensive 

secondary fragmentation argues that free radical rearrangements generally 

follow the formation of the Cα radical. In brief, the even-electron fragmentation 

(CAD, IRMPD, etc) and odd-electron fragmentation (ECD, ETD, EID, etc) are 

two complementary strategies and are likely inducing fragments through 

different mechanisms, but more solid experimental study is necessary to 

deeply understand the mechanisms proposed for any particular molecules.   

1.1.3  Mass analyzers 

Quadrupole 

The quadrupole analyzer (Figure 1.2) is undoubtedly one of the most 

important mass analyzers, and can be used for ion selection, ion scanning, 

and ion focusing (the letter can also be achieved with multipoles).  In addition 

to these features, quadrupoles also have advantages such as high sensitivity, 

low acceleration voltage, and low cost.
90

 Resolving power ~1000 and mass 

accuracy ~100 ppm are achievable for modern quadrupole instruments. 
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Figure 1.2 The scheme of a quadrupole, adapted from 
http://www.files.chem.vt.edu/chem-ed/ms/quadrupo.html 

 

  A quadrupole is composed of four parallel cylindrical or hyperbolical rods 

(Figure 1.2), and opposite pairs of rods are connected together and a voltage 

is implied consisting of a DC voltage (U) and a RF voltage (V). The total 

voltage (φ) on each rod will be: 

                ,                                                               Equation (1.1) 

ω is the RF frequency Ions injected into the quadrupole along the axial 

direction (z direction in Figure 1.2) will be repelled or attracted by the rods 

with the same sign or the rods with the opposite sign, respectively. Since the 

sign of the potential on the two pairs of rods switches periodically, the route of 

ions will be zigzag (ion oscillation), so that only those ions having stable 

motions in both x and y directions can pass through successfully and be 

http://www.files.chem.vt.edu/chem-ed/ms/quadrupo.html
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detected. The stability of ion motion can be determined by the Mathieu 

equation, which involves two values, a and q: 

  
   

   
   

,                                                                               Equation (1.2) 

  
   

   
   

,                                                                               Equation (1.3) 

where r0 is the half distance between two opposing rods. A stability diagram 

with a versus q can be plotted and is particularly useful in designing the 

voltage scheme including U and V in practice. Figure 1.3 shows one stable 

region of the best interest for normal quadrupole experiments. Since the RF 

frequency, ω, and r0 are generally constants, values of a and q are directly 

related to the voltages (U and V) and the m/z. 

 

 

Figure 1.3  A stable region of the Matthieu stability diagram 
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Fourier transform ion cyclotron resonance mass spectrometry (FTICR 

MS) 

  Comisarow and Marshall introduced the Fourier transform into the ion 

cyclotron resonance (ICR) experiment in 1974.
91

 Since then, FTICR MS has 

been extensively investigated and applied, and several distinct features of 

FTICR have made it an unrivalled mass spectrometry technique. In a FTICR 

MS experiment, ions confined in a ICR cell (Figure 1.4) by an electric filed 

and magnetic field will rotate circularly in the x/y plane and oscillate in the z 

direction (Figure 1.5);
92

 the m/z of an ion could then be determined by 

measuring its cyclotron frequency. This process is discussed in detail below.       
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Figure 1.4 Several ICR cell geometries: (a) cubic cell, (b) cylindrical cell, and 
(c) infinity cell 
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Figure 1.5 Three ion motions in the ICR cell: cyclotron motion, magnetron 
motion, and trapping motion (Bruker Daltonics) 

 

Ion cyclotron motion 

  The superconducting magnet is most commonly used in providing a 

spatially uniform magnetic field B in the z-axis (axial) of an ICR cell (Figure 

1.4). Ideally, without the electric field and collisions, the charged particles in 

the cell will simply undergo circular rotation in the x/y plane (the plane 

perpendicular to B) driven by an inward Lorentz force. If the ion has a velocity 

of vxy in the x/y plane rotating with a circle of radius, r, then it should be 

described by Equation (1.4): 

 
   

 

 
      .                                                                         Equation (1.4) 

Because the angular velocity ωc and the velocity vxy can be converted by  

       .                                                                             Equation (1.5) 

Replacing of vxy by ωc in Equation(1.4) will have 
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 ,                                                                                  Equation (1.6) 

and the cyclotron frequency of the ion, fc 

   
  

   
 .                                                                                 Equation (1.7) 

(fc in Hz; q in C; B in tesla; m in kg) 

As     , Equation (1.7) indicates that, under a stable magnetic field, the 

cyclotron frequency of an ion is directly related to its m/z regardless of its 

position and velocity, which is a big advantage of FTICR MS and greatly 

facilitates ultra-high resolution (≥ 1M) detection. 

Trapping motion  

  As mentioned above, the Lorentz force confines ions in the x/y plane; 

however, without restraints in the z direction, ions could still be lost easily due 

to the axial velocity (z-axis). To solve the problem, an electric well is 

introduced by applying a small voltage on two trapping plates, mounted on 

both sides of the ICR cell either perpendicular to the z-axis (like Figure 1.4 a/c) 

or like in Figure1.4b, which will leave ions oscillating back and forth along the 

z direction and can effectively prevent most of the ions escaping from the ICR 

cell.  The angular frequency of the ion’s trapping motion, ωz, is described as: 

   √
     

   
 ,                                                                           Equation (1.8) 

in which α is the trapping scale factor depending on the geometry of the cell 

and a is the distance between two trapping plates.
1
 

 



22 
 

Magnetron motion  

  Introduction of the trapping potential also creates an outward-directed 

electric force (
     

  
) opposite to the inward-directed Lorentz force which 

pushes ions away from the centre of the cell, so instead of Equation (1.4), the 

force on the ion in the x/y plane becomes: 

          
     

  
,                                                              Equation (1.9) 

and solving this quadratic equation in ω, will result in a reduction of the 

cyclotron frequency of the ion, ω+, and another motion called magnetron 

motion having a frequency of ω-: 

   
  

 
 √ 

  

 
   

  
 

 
,                                                        Equation (1.10) 

   
  

 
 √ 

  

 
   

  
 

 
,                                                        Equation (1.11) 

where ωc and ωz are the unperturbed cyclotron frequency and the trapping 

frequency as defined above. In general, the cyclotron frequency is in the 

range of hundreds of kHz to MHz; the magnetron frequency (1-100 Hz) is 

usually much smaller than the cyclotron frequency, and the trapping 

frequency is typically a few kHz (less than 10 kHz). For example, at 12 T, with 

a trapping voltage of 1 V, an ion of m/z 1000 in an infinity cell (a = 5 cm) will 

have a reduced cyclotron frequency of 191.0 kHz, a magnetron frequency of 

15.1 Hz, and a trapping frequency of 2.4 kHz. Hence, the magnetron motion 

and trapping motion can be ignored in most occasions. 
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Excitation and detection 

  Ions trapped in the cell usually have a small amount of kinetic energy 

(less than 1 eV),
93

 so the initial radii of ions (a few micrometres) are typically 

much smaller than the radius of the cell (a few centimetres).  Thus, excitation 

is required to increase the radius of the ion, to generate a detectable signal. 

Since the cyclotron radius is proportional to the vxy of the ion when the 

cyclotron frequency is relatively constant, a spatially uniform electric field 

oscillating sinusoidally with time can be used for acceleration, and ions of the 

same frequency with the excitation frequency will be accelerated to a larger 

orbit becoming detectable. The post-excitation radius is decided by the 

duration of the excitation, Texcite, the peak to peak voltage difference between 

the two excitation plates, Vp-p, the distance between the two plates, d, and the 

magnetic field, B.  

  
           

   
                                                                           Equation (1.12) 

Therefore, as long as the duration and the magnitude of the excitation are 

consistent, all of the ions can be excited to the same orbit without 

discrimination. Additionally, the initially randomly positioned ions with the 

same m/z are synchronized and become coherent after the excitation. The 

excited ion packets of individual m/z value will oscillate with the same 

cyclotron radius but different velocities; thus, these packets could be 

separated eventually and be detected. The non-destructive detection is 

realized by tracking the ion image current
94

 induced by the moving ions, and a 

time domain will be recorded which could be further applied on Fourier 

transform to generate the frequency spectrum and eventually the mass 
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spectrum. A scheme in Figure 1.6 illustrates how a FTICR mass spectrum is 

generated from the image current.  

 

 

Figure 1.6 FTICR MS data process a) the raw time domain signal (transient); 
b) frequency spectrum; c) mass spectrum 
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The broadband excitation (a wide range of m/z) is usually achieved by 

frequency-sweep excitation (Chirp),
95

 or stored waveform inverse Fourier 

transform (SWIFT) excitation,
96

 where the latter one has a more uniform 

excitation power across the desired excitation range, and, ideally, ions 

through the selected m/z range will be excited to the same radius 

successively. In addition, excitation could also be used to select ions of a 

single m/z value by ejecting all other ions, and the selected ions can be 

subsequently excited and fragmented.  

The time domain signal is a function of time which could be described as 

Equation (1.13).  

                                                                                   Equation (1.13) 

 is the damping constant, ω is the frequency, and Φ is the phase angle.  

By applying Fourier transform, Equation (1.14), on the time domain signal 

in Figure 1.6a, the corresponding frequency spectrum (Figure 1.6b) is 

generated and will be further calibrated to a mass spectrum (Figure 1.6c) by 

applying a calibration equation between the observed frequency and m/z.
97

 

     ∫           

  
                                                                                Equation (1.14) 

The frequency domain is composed of two components differing by 90
○ 

in 

phase, absorption (A(ω)) and dispersion (D(ω)) (Figure 1.7), which are the 

projections of f(ω) in the real and imaginary axes. The absorption spectrum 

and the dispersion spectrum contain both positive and negative peaks, so in 

practice, the absolute value magnitude spectrum (M(ω)) is generally used in 

FT-MS field.    
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     √                                                                  Equation (1.15)
 

 

 

Figure 1.7 A peak in a FTICR frequency spectrum displayed in dispersion 
mode (D(ω)), absorption mode  (A(ω)), and magnitude mode (M(ω))

98
 

 

Figure 1.7 shows the peak in magnitude mode is broader than the peak in 

absorption mode. Although the resolution difference also depends on the 

peak shape, spectra in absorption mode typically have a higher resolution, 

approximately 1.7-2 times, than the ones in magnitude mode. In order to 

display mass spectra in absorption mode, a phase correction is necessary. 

Three problems, however, make the phase correction complicated: 1) 
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different m/z accumulates different phase because ions are excited 

sequentially; 2) the time delay between excitation and detection allows 

additional phase accumulation; 3) to find the correct phase angle for peaks 

having a phase shift beyond 2.
98,99

 Recently, O’Connor’s group developed a 

method to find the right phase angle for each peak in a wide range of m/z by 

applying quadratic least square fitting, and this method has been successfully 

implemented for many different spectra obtained from different FTICR 

instruments.
100-104

       

Though FTICR MS has advantages to obtain ultra-high resolution, 

Equation (1.16) displays that the length of time domain transient depends on 

the data set and the highest frequency in practice.  

T=D/S                                                                                      Equation (1.16) 

Where T is the length of the trainsient, D is the number of data points, and S 

is the sampling frequency (at least 2 times of the highest frequency), 

respectively. The relationship between resolution and the length of the 

transient will be discussed in section 1.2.1, and T is proportional to the 

resolving power. Therefore, when D is constant, lowering the sampling 

frequency will allow a longer transient, which can be realized by using 

heterodyne (narrowband) detection. Heterodyne detection is done by mixing 

f(t) with a reference signal. Based on the trigonometric product-to-sum 

formula (cosω1*cosω2=[cos(ω1+ω2)+cos(ω1ω2)]/2), by choosing a frequency 

of interest (ω1) and a reference frequency (ω2), (ω1- ω2) could be used to 

recover the information of ω1 and ω2 with a low sampling frequency as shown 

in Figure 1.8.   
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Figure 1.8 A diagram shows the principle of heterodyne detection by 

choosing a reference frequency f2=2ω2 which is close to the signal 

frequency, f1= 2ω1, and (f1 f2) is finally detected.
93,98,99

 Adapted from Qi, Y.; 
O'Connor, P.B. Data processing in Fourier transform ion cyclotron resonance 
mass spectrometry, Mass Spectrom. Rev. 2014, 33, 333-352.

99
 

 

Apodization 

After Fourier transform, the lineshape of peaks in a frequency/mass 

spectrum depends on the transient length, T, and the damping constant, .  

The peak shape shows as a sinc function when T ˂˂ , while if the time 

domain signal damps much faster than the acquisition time, T ˃˃ , a 

Lorentzian peak shape appears to fit better.
98

 In practice, the peak shape is 

quite often a combination of sinc function and Lorentizan function. Sometimes 

the wiggles from the sinc function peak shape could distort the detection of 

some small peaks adjacent to big peaks; so, to solve this problem, an 

additionally function can be multiplied with the time domain signal before 
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Fourier transform, which is called apodization. A large variety of functions 

could be useful for presenting mass spectra, such as Gaussian and 

Hamming.
105

 Apodization is useful to smooth the peak shape but at a cost of 

resolution, which could also smooth out real peak spacing, so special 

attention has to be taken to apply apodiztion.     

Harmonics  

Some artifacts could also be detected and displayed as peaks in the mass 

spectrum. One important category of artifacts is harmonics, which have 

frequencies equal to n (n=1, 2, 3, …) times ω (the frequency of a real peak). 

Since harmonics peaks appear at a higher frequency and lower m/z in 

comparison to the real peak, harmonics peaks have a higher resolving power 

than the corresponding real peak (the resolving power is inversely 

proportional to m/z), but they could also complicate the mass spectrum. Odd-

harmonics (3ω, 5ω, 7ω, …) are typically detected due to the saturation of the 

amplifier or overloading to analogy-to-digital converter, while the even-

harmonics are mostly produced by misalignment of the ICR cell with the 

magnetic field, misbalance of the detector amplifiers, or large magnetron 

radius.
99,106

 

The key component of a FTICR MS instrument is the ICR cell, where all of 

the above events are performed. So far a large variety of cell geometries 

have been developed; cubic cell
107

 and cylindrical cell
108

 are the two most 

basic designs (Figure1.4). Lots of progresses have been achieved to reach a 

more perfect quadrupolar electrostatic trapping potential and a spatially 

uniform excitation potential.
108-111
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1.2 Three important features of FTICR MS and the applications 

  FTICR mass spectrometry is a sophisticated state-of-art technique, and 

notably, three advantages make it unrivalled, which are high resolution, high 

mass accuracy, and wide accessibility to different MS/MS methods.  Even 

though having the highest performance, FTICR is not yet as widely available 

as many of the other instruments due to the  cost and requirement for delicate 

tuning; however, the three features or one of them could be necessary in 

some applications. Moreover, high resolution and high mass accuracy are 

always crucial to improve the confidence of the result and to achieve high 

quality of MS data, which are further demonstrated through this thesis.   

1.2.1  High resolution 

 In general, the resolution of a peak at one m/z in a FTICR mass spectrum 

depends on the separation of the ion packets of different m/z values in the 

cell, coherence of the ions of the same m/z value, and stability of the ion 

frequency during detection; in FTICR, high resolution is achieved by 

improving all of these aspects.  

  First, the initial cyclotron velocity of an ion can be derived from Equation 

(1.5) and (1.6): 

    
    

 
                                                                              Equation (1.17) 

so, at 12 T, an ion of m/z 1000 orbiting at a radius of 5 mm will have an 

instantaneous cyclotron velocity of 60,000 m/s; additionally, the velocity can 

be further increased after the excitation due to a larger cyclotron radius. 

Moreover, in a FTICR instrument, ions can stay relative stable in the cell for 
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seconds or even tens of seconds before collapse, which greatly facilitates a 

high resolution.  Therefore, a mass spectrum is obtained from ions, which 

have, typically, travelled hundreds of kilometres in the cell. In comparison with 

another type of high performance mass analyzer, Time-of-flight (TOF), which 

has a flight tube at most several metres long, the superior capability of FTICR 

in providing high resolution is obvious.  

  On the other hand, in order to achieve a high resolution, each ion packet 

should orbit coherently without interfering with closely-spaced ion packets. 

Moreover, it is also crucial that the three frequencies (trapping frequency, 

magnetron frequency, and cyclotron frequency) of the ions of the same m/z 

keep consistent. The ion coherence is first realized by excitation; during the 

period of detection, the magnetic field, electric field, and the pressure in the 

cell become vital for a stable ion packet and a constant ion frequency. The 

superconducting magnet extensively used in FTICR MS is usually very stable, 

so that frequency drift caused by the magnetic field can be generally ignored. 

To minimize the collisions between neutral particles and the analytes, which 

is another adverse aspect can distort the resolution, the cell is kept in ultra-

high vacuum (≤ 10
-10

 mbar). In comparison, generating a homogeneous 

electric field in the cell is most problematic, which becomes the key factor 

limiting the performance of a FTICR mass spectrometer, because it is hard to 

have both uniform excitation potential and uniform trapping potential through 

the cell; however, designs have been developed to obtain a desired electric 

field.
108-110

 Moreover, collisions with neutral ions still occur. Then it is 

reasonable that the time domain signal damps with time in practice. Thus, 

potentially, the longer the ions are kept with a stable cyclotron motion (Tacq), 
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the higher resolution will be, where the theoretical resolving power (R) could 

be roughly estimated by Equation (1.18):
93

 

    
       

  
                                                                             Equation (1.18) 

In a mass spectrum, the resolving power of one specific peak is calculated 

from m/Δm50%, where m is the m/z value and Δm50% is the full peak width at 

half maximum height (FWHM). 

1.2.2  High mass accuracy 

  To some extent, mass accuracy is related to the resolution, because low 

mass accuracy due to frequency shift may often be accompanied by a low 

resolution. In a FTICR experiment, the experimental m/z value, however, 

depends more heavily on the cell parameters and the ion population in the 

cell.  For example, it is shown clearly in Equation (1.10) that the reduced 

cyclotron frequency of an ion varies according to the trapping voltage in the 

cell. Fortunately, calibration,
112

 in particular internal calibration, could lessen 

the impacts from instrument tuning and the number of ions in the cell, 

improving the mass accuracy. Lower than 5 ppm (part per million) mass 

accuracy is commonly obtained by external calibration,
113

 and internal 

calibration could further improve the accuracy to sub-ppm. 

  Due to the Coulomb force between ions, one side effect of charged 

particles orbiting in a confined small space deteriorating both resolution and 

mass accuracy is called the space-charge effect,
113-117

 which is particularly 

severe for ions having similar frequencies and is very sensitive to the ion 
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number.  Where ions of similar masses merge into one ion packet and show 

as one peak in a mass spectrum is known as peak coalescence.
118,119

 

  Another merit of FTICR over other mass analyzers is that the mass 

detection in FTICR is independent of the kinetic energy of the ions according 

to Equation (1.7) and Equation (1.10), which is a big advantage in obtaining 

high resolution and high mass accuracy. 

  The mass accuracy of peaks in a mass spectrum is quite often calculated 

in part per million unit (ppm) using the following equation.
120

 

                    
                                            

                
 

1.2.3  Flexible MS/MS   

  In section 1.2, several most important fragmentation techniques are 

summarized. Because some of those MS/MS methods produce cleavages by 

different mechanisms, complementary structural information could be 

obtained by using different methods. Therefore, in practice, combining 

structural information from different MS/MS methods has many benefits. One 

advantage of FTICR is its capability to apply with a large variety of 

fragmentation techniques, such as CAD, IRMPD, ECD, and ETD, which 

makes FTICR MS/MS a superior technique in structural characterization.  As 

noted above, ions can be trapped in an ICR cell stably for seconds, which 

enables the ions to be irradiated by lasers or electrons for a certain length of 

period to produce fragmentation.   
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1.2.4  The 12 T solariX FTICR MS instrument 

The Bruker 12 T solariX FTICR MS instrument used for most of the work in 

this thesis has the configuration in 9, which is a hybrid mass spectrometer 

consisting of a quadrupole (Q) and a hexapole (collision cell) in front of the 

ICR infinity cell. Ions of a selected range of m/z can be isolated in the 

quadrupole before being sent into the cell and then accumulated or/and 

fragmented with the neutral gas (CAD) in the collision cell. Though in cell 

isolation and SORI CAD are also possible, the isolation is improved by 

introducing the quadrupole and CAD in the collision cell is more efficient than 

CAD in the ICR cell. Moreover, coupling a quadrupole to a FTICR mass 

analyzer makes multiply tandem mass spectrometry (MS
n
) experiments more 

versatile.  An electron gun and an infrared laser mounted at the end of the 

instrument are used for the electron-based fragmentation and IRMPD 

experiments, respectively. A wide variety of ionization sources including 

electrospray, nano-electrospray, and MALDI are accessible in our lab. 

 

Figure 1.9 Schematic of the 12 T solariX FTICR mass spectrometer (Bruker 
Daltonics) 
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1.2.5  The important applications of FTICR MS and MS/MS 

The purpose of this section is to summarize some recent advances in 

using FTICR to pursue the ultimate ability of MS, and in particular to highlight 

the applications in obtaining fine structures, characterizing the structure of 

both big and small molecules, analyzing complex mixtures, as well as one of 

the most hot topics, top-down proteomics. 

Fine structure 

  For most atoms in nature, in addition to the most abundant isotope of 

each element (primarily 
12

C, 
14

N, 
16

O, and 
1
H for organic compounds), the 

remaining isotopes (e.g., 
13

C, 
15

N, 
17

O, 
2
H) are present in a lower or minor 

abundance.  Thus, in a mass spectrum, every monoisotopic assignment is 

accompanied with various possible isotopic combinations, positioned 

approximately 1 Da apart (defined as A, A+1, A+2, …).
121

  Except for carbon-

12, no other elemental atom has an exact whole number mass value, so each 

isotopic peak holds its specific accurate mass (H: 1.007825, 
14

N: 14.003074, 

16
O: 15.994915).  Therefore, apart from the monoisotopic peak (A), every 

isotopic cluster (A+1, A+2, …) consists of several peaks, where each of them 

represents the simple sum of every individual isotopic atom and its integer 

quantity.  These species differ from each other by typically a few mDa, and 

the resolved peaks are termed the isotopic fine structure.
121

  In principle, all of 

the fine structures can be separated if the resolution is sufficiently high 

(typically requiring resolving power of 1-5 M at m/z 1000 depending on the 

isotope), but it remains a challenging task for most modern mass 
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spectrometers, and there will always be an upper mass limit beyond which 

the isotopic fine structure cannot be resolved.  

  As each of the isotopic clusters contains multiple peaks representing all 

the possible combinations, such as the A+2 peak may either include two 
13

C 

atoms or two 
2
H atoms or one 

34
S, the complexity of the fine structure will 

increase dramatically with the molecular weight and the increase in variety of 

atoms in the elemental composition.  Moreover, peak coalescence is more 

likely to occur for big molecules.
118,119

  So far, most of the ultra-high resolution 

isotopic fine structure separations have been achieved using FTICR MS on 

molecules smaller than 1500 Da,
122-128

 and are particularly focused on the 

determination of the elemental composition.
103,121,124,125,129-131

 Two closely- 

spaced peptides (monoisotopic mass ~904) having a mass difference of 

0.000 45 Da, less than the weight of one electron, were separated under a 

resolving power of ~3.3 M by a 9.4 T FTICR instrument with a large-diameter 

Penning trap.
122

 This achievement reveals the limitations of present 

proteomics research carried out on mass spectrometers with resolving power 

less than 10,000, where multiple peptides having similar masses could be 

assigned incorrectly, and demonstrates the possibility of more confident 

analysis using higher resolution MS.   

Although fine separation is difficult for big molecules (>10 kDa) under 

present technical conditions, utilizing isotope depletion has proved to be an 

effective strategy to simplify the isotopic pattern.  The isotopic fine structure of 

a isotopic 
13

C, 
15

N doubly depleted tumour suppressor protein, p16 (15.8 kDa), 

was detected without peak coalescence by Shi et al. using a 9.4 T FTICR 

instrument, which enabled the number of sulfur atoms to be counted solely 
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from the abundance of the resolved 
34

S peak.
121

  To our knowledge, this 

protein (p16) is so far the biggest molecule published when the isotopic fine 

structure has been resolved by mass spectrometry, where an average 

experimental mass resolving power of 8.0 M was reached using heterodyne 

mode detection.  To avoid frequency shift and obtain a better signal-to-noise 

ratio, several spectra were aligned before frequency domain coaddition.   

Even though it is almost always challenging to detect the fine structure of a 

molecule, ultra-high resolution becomes more feasible with the development 

of new techniques in recent years.  With decent tuning, LTQ-Orbitrap also 

showed its capability for small molecule isotopic distribution analysis.
124

  At 7 

T, the recently released dynamically harmonized ion cyclotron resonance cell 

succeeded in measuring the isotopic fine structures of reserpine (MW: 608 Da) 

and substance P (MW: 1347 Da),
123

  with a resolving power of ~4.0 M and 

with mass error less than 200 ppb, which promises new capabilities. Most 

recently, using the same type of cell and a 4.7 T magnet, the fine structure of 

substance P was obtained with a resolving power of 12 M at m/z 675.
132

 

Undoubtedly, the ability to detect molecular isotopic fine structure by ultra-

high resolution mass spectrometry greatly extends the understanding of 

molecules and provides more possibilities for scientific research.   

Complex mixtures  

  The high resolution and high mass accuracy of FTICR MS also make 

compounds identification in complex samples feasible.  The compositions of a 

variety of complex organic mixtures have been investigated by FTICR MS, 

and several most extraordinary achievements in this area are bottom-up 
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proteomics, petroleomics, imaging mass spectrometry (IMS), and polymer 

analysis. 

Bottom-up proteomics 

  In bottom-up proteomics, digested peptides are more readily detected 

and sequenced by MS compared to intact proteins in top-down approach, but 

the complexity can increase dramatically, where tens of thousands of 

peptides with a large dynamic range (ratio of the highest abundance species 

to the lowest abundance species) may have to be analyzed in one spectrum 

or in a few spectra.  Both high resolution and high mass accuracy are 

essential in this case.  To provide high confidence to a proteomics study, a 

maximum mass deviation of ~100 ppb is required for the identification of small 

tryptic peptides.
133

 Working on collagen digests, the collagen peptide 

deamination was monitored using FTICR MS, where the mass difference of 

the 
12

C peak of the deamidated peptide and the 
13

C-substituted peak of the 

non-deamidated form is 19 mDa.
134

 To improve the confidence of bottom-up 

analysis, incorporating with accurate mass measurement of FTICR MS can 

also provide more sequence information. The PTMs of a pilin protein, PilE 

(~17 kD), was fully characterized by using high resolution FTICR MS and 

quadrupole TOF MS/MS, where multiple modifications including 

glycerophosphorylation, disulfide bond, deamidation, N-terminal methylation, 

and glycosylation were identified.
135,136

 

Petroleomics 

  Within a dynamic range around 10,000, petroleum including crude oils 

and coals is recognized as an extremely compositionally complex organic 
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mixture,
137

 which makes its MS analysis a hugely challenging task even with 

an ultra-high performance instrument.  Understanding these extreme samples 

highly depends on the performance of the instrument, where resolution, 

sensitivity, and dynamic range are all necessary.  So far, tens of thousands of 

species with mass measurement accuracy in the ppb range can be identified 

in a single mass spectrum.
138

  Utilizing a 14.5 T FTICR mass spectrometer, 

up to 50,000 peaks from a Middle Eastern light crude oil sample were 

resolved across a 340 < m/z < 1500 range, where 35 resolved elemental 

compositions presented in a single Da.
139

  Later on, with a resolving power of 

more than 1.3 M, 244 components in the same single nominal mass can be 

resolved.
140

 Incorporating FTICR mass spectrometry with liquid 

chromatography (LC) enables analysis of petroleum heavy ends.
140-142

  By 

analyzing the fractionated heavy crude oil samples, about twice as many 

compounds were obtained in comparison with unfractionated ones.
142

   

Synthetic polymers  

  Though MALDI-TOF is still the most important MS strategy used in 

studying synthetic polymers, following advances in polymer science, a higher 

performance mass analyzer could be of particular interest for some 

challenging problems. With increasing complexity and diversity of structures 

of polymers, different MS/MS techniques may be required in the structural 

characterization. FTICR MS and MS/MS is emerging as an alternative and 

valuable tool in polymer research,
143-146

  to determine the mass distribution 

and absolute molar masses,
147

 end-groups and polymerization 

mechanisms,
148

 structures and compositions.
55,145

 Combining LC-ion trap (IT) 

/MS and FTICR MS/MS, the end-group study of methacrylic polymers was 
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investigated, where the remarkable mass accuracy and resolution of a FTICR 

MS instrument demonstrated its utility in studying complex synthetic polymer 

systems.
148

  By using FTICR MS with both ECD and CAD, Kaczorowska and 

Cooper reported the structural characterization of polyphosphoesters, and 

their MS/MS degradation pathways were discussed.
149

  Most recently, a 

better understanding of the composition and variability of two commonly used 

polymeric excipients, Gelucire 44/14 and polysorbate 80, between batches 

were achieved aided by the high mass accuracy of FTICR MS.
144

 

Imaging mass spectrometry (IMS) 

  High-resolution IMS is another fascinating breakthrough drawing widely 

attention in MS field in the past decade, as it provides new insights of 

changes in molecular level in tissues and pathologies.  The driving force of 

the rise of IMS research is the potential to discover new diagnostic/prognostic 

biomarkers and its capability to simultaneously trace the spatial distributions 

of various molecules of interest in tissues without labels.
150

  Though MALDI-

TOF has become a routine technique in MS imaging study, the promising 

ability of FTICR in compound identification has been shown in many research 

areas, including drugs, metabolites, peptides, and proteins.
151-154

  A better 

performance mass analyzer can significantly improve the spatial definition.   

Metabolomics 

  Beyond the mixtures discussed above, a high performance mass 

spectrometer is also mandatory in the analysis of many other complex 

samples, e.g. biofluids, because of the complexity and the isobaric 

(compounds with the same nominal mass but different exact mass) 
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interference, and non-targeted metabolomics is one of the challenging 

subjects.
155-157

 Assisted by the high mass accuracy and high resolution of 

FTICR MS, the elemental composition of a molecule could be determined. 

Moreover, if the isotopic fine structures can be resolved, matching the isotopic 

peaks in the fine structure with the theoretical simulation is particularly useful 

for unambiguous assignment.
126,158,159

 MS/MS is also available to provide 

structural information. Using LC-FTICR MS,
 32

S-containing metabolites in 

onion bulbs were assigned by the theoretical mass difference between 
32

S-

monoisotopic ions and their 
34

S counterparts, and then the carbon number 

and elemental composition can be identified by comparing 
12

C- and 
13

C-

based MS and MS/MS spectra.
130

 Introducing isotopically-labelled standard is 

also useful for quantitative metabolomics studies.
159

 Additionally, the 

development of comprehensive metabolomics database further improves the 

metabolomics study by MS.
160,161

  

Tandem mass spectrometry in structural characterization of small 

molecules 

  When analyzing unknown compounds without regular patterns like 

proteins/peptides using MS, there are two most important requirements in 

selecting a mass spectrometer. The first one is mass accuracy which is also a 

major index to assess a mass spectrometer; it is proven to be vital for the 

identification of unknown compounds and providing a reliable result. If intent 

to find the detail structural information, an effective MS/MS method is 

undoubtedly significant. As discussed in section 1.1.2, contemporary MS/MS 

can be achieved in numerous ways such as CAD, ECD, EDD, EID, and 

IRMPD. High performance FTICR mass spectrometry, which is available with 
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almost all of these MS/MS events, serves itself as a key tool in structural 

elucidation of small molecules.   

  Even though some MS/MS methods are more popular and ubiquitous 

than the others, none of them is universal.  Thus, for different types of 

compounds or even an individual compound, a combination of different 

MS/MS strategies is often required to provide abundant structural information.  

CAD and IRMPD can be readily implemented on both singly and multiply-

charged compounds.  In contrast, the other popular fragmentation technique, 

ECD, only behaves efficiently on multiply-charged ions.
162

  Fortunately, EID 

has been demonstrated to be a complementary MS/MS method in obtaining 

structural information for both singly- and multiply-charged species,
70,78,79

  

which is particular beneficial in pharmaceutical research and metabolism 

study. Structures of a series of singly-charged organic molecules of 

pharmaceutical interest were characterized by EID as well as CAD, and EID 

was proved to provide a much greater depth of information.
78

  Among 33 

molecules employed in this study, much more product ions were generated 

from EID tandem MS/MS compared to CAD, with very little overlap between 

these two techniques.
78

  Later on the achievement of rapid EID in LC time-

scale further highlighted its ability in analyzing complex real-world samples.
75

  

In Wills’ work on polyketides, two isomers, lasalocid A and iso-lasalocid A, 

were distinguished with sub-ppm accuracy aiding by a FTICR CAD/EID MS
3 

experiment.
163

  

  With the advances of MS/MS techniques, in addition to protein/peptide 

analysis, applications in oligosaccharides,
19,164,165

 lipid,
166

 nucleotide,
167

  etc. 

have developed enormously; some of the research has been reviewed 
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recently elsewhere.
168-171

  One similar character between these categories of 

compounds is that the analysis strategy of any specific molecule in each 

group may be easily implemented to a series of analogues of different 

modification/decoration; however, none of the investigations would be 

feasible without a high performance instrument.  The large diversity and some 

polymorphic structural features of oligosaccharides and lipids made their 

characterization historical challenges. To fully characterize oligosaccharides, 

including the sequence of oligomeric chain, linkage and branching information, 

a mass spectrometer with high resolution, high mass accuracy, and effective 

MS/MS access is necessary.
170

 The traditional low-energy CAD of 

oligosaccharides produce mostly glycosidic fragments, whereas cross-ring 

cleavages are generally absent.
19

  Comparatively, another ‘slow-heating’ 

method, IRMPD, was suggested to provide more sequence information.
19,43

  

Meanwhile, electron-based MS/MS techniques, electron activated 

dissociation with vary energy level (ECD at low energies, hot-ECD at 

intermediate energies, and electronic excitation dissociation at high energies), 

ETD, EDD, have shown great promises in yielding structural information 

including linkage and branching detail.
164,165

   

Top-down mass spectrometry analysis 

  A significant iconic achievement of the high performance MS is the top-

down approach for protein analysis, originated from McLafferty’s group in 

1999.
172

  Although the bottom-up strategy is still more widely applied,
173

 it is 

limited by the lack of ability to provide full scan view of the targeted protein as 

only a small fraction of the tryptic peptides is normally detected. Without prior 

digestion, top-down MS enables the whole protein been analyzed directly, 
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where intact protein ions can also be further isolated and fragmented 

subsequently to yield the information of both molecular and fragment ions, 

providing an extensive molecular connectivity information.
172-176

  To date, top-

down MS has been employed in a wide range of research, in particular 

characterizing various modifications,
177-185

 identification and quantification 

proteomics,
186-189

 as well as understanding intact proteins within 

complexes.
190-192

  

  Proteins are converted to mature form through a completed sequence of 

post-translational processing and ‘decoration’ events.
193

  The original and also 

one of the most essential roles of top-down MS is to study the primary 

structure of proteins, including amino acid sequencing, isoform identification, 

PTMs and protein-ligand binding site. Flexible MS/MS approaches are 

particularly useful to achieve these goals, so high performance MS, such as 

FTICR, is usually necessary in top-down research. The sequence 

polymorphisms of intact proteins from human saliva were studied using a 

FTICR mass spectrometer,
188,194

 and some isoforms arising from single 

nucleotide polymorphisms (SNPs) were identified.  Seven human salivary 

cystatin variants (~14 kDa), including S, S1, S2, SA, SN, C, and D, were 

assigned from the masses of precursor and product ions at a tolerance of 10 

ppm.
194

  The structural diversity of some abundant salivary proteins was 

further investigated by combining different fragmentation modes, CAD, 

IRMPD, and ECD. Seventeen major proteins were analyzed, and two 

isoforms of protein II-2 of a mass difference less than 1 Da were determined 

unambiguously.
188

  Four new sequence variants of PDC-109 from bovine 

seminal plasma were identified by top-down FTICR MS in addition to the 
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previously known variants.
195

  FTICR armed with ECD also succeeded in 

precisely mapping the positions of five disulfide bonds in human salivary α-

amylase (~ 56 kDa) using top-down strategy in conjugation with complete and 

partial reduction by tris (2-carboxyethyl) phosphine.
191

  A truncation of N-

terminal 15 amino acid residues and the formation of pyroglutamic acid at the 

new N-terminal were identified in the protein. 

 Incorporated with ECD in particular, top-down strategy has special 

advantages in locating the covalent PTMs as well as the labile noncovalent 

protein-ligand binding sites, by preferentially cleaving the protein 

backbone.
56,196,197

  This methodology was recently applied for mapping the 

modification of platinum anticancer drugs on calmodulin
178

 and also used to 

track the location of a hexapeptide binding ligand on the p53-inhibitor protein 

anterior gradient-2.
198

  A factor that decides whether noncovalent protein-

ligand binding will survive in tandem MS is the relative stability of the gas 

phase complexes.  By coupling a FTICR MS with CAD and ECD MS/MS, the 

native state ATP-protein binding complexes were explored.
184,199

  The result 

suggested that the higher charged complexes generated by supercharging 

agents produced more fragments that retain the ligand, which can facilitate 

ligand binding research in the future. Despite the low stoichiometry of some 

variants, Kelleher’s group has dedicated effort to the comprehensive study of 

PTMs of histone proteins from cell lysate in the past years.
185,200-202

  Various 

histone family members with different degree of modifications including 

phosphorylation, methylation, and acetylation were separated and precisely 

identified.  Thus, the PTMs relevant biological activities of these histone 

isoforms has been discussed further.
203
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The impact of high performance mass spectrometry on the analysis of 

intact proteins and protein assemblies is dramatic. The efficiency of 

macromolecule analysis has been significantly improved during last decade, 

though it is still challenging for proteins larger than 100 kDa. Until now, there 

were only a few proteins exceeding 100 kDa been baseline unit mass 

resolved. With a substantial redesigned 9.4 T FTICR mass spectrometer, a 

20 s time-domain signal with resolving power of ~420,000 has been achieved 

for an intact 147.7 kDa monoclonal antibody (mAb), where the highest 

magnitude isotopic peak differs from the predicted value by -1 Da.
204

  In the 

past few years, Michael Gross’s group made exciting progress in using native 

ESI and ECD FTICR MS to study intact protein complexes.
205,206

 The 

remarkable performance of this approach was tested by three protein 

assemblies larger than MDa, yeast alcohol dehydrogenase (147 kDa), 

concanavalin A (103 kDa), and a photosynthetic protein complex (FMO 140 

kDa),
205-207

 and paved its way for more tough challenges.  In this approach, 

not only the noncovalent metal-binding sites and assembly stoichiometry 

information could be obtained, but also more significantly, the flexible regions 

which can be fragmented and sequenced by MS/MS (ECD or activated-ion 

ECD in this case) correlated well with the data from X-ray crystallography.  

Most recently, Li in Loo’s group reported isotopic resolution of a 158 kDa 

protein complex, tetrameric aldolase, with an average absolute deviation of 

0.36 ppm, which is the largest molecule isotopically resolved to date, and 

partially sequencing was realized by native top-down ECD.
208
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Two-dimensional FTICR MS (2D FTICR MS) 

One distinct capability of FTICR MS is to implement two-dimensional mass 

spectrometry, where ions will be detected and fragmented without isolation in 

the ICR cell, so that a 2D mass spectrum contains the information of all of the 

ions detected in MS and their fragments. Potentially, 2D FTICR MS has 

advantages in providing more information of complex mixtures, because 

species of low abundance are fragmented without discrimination, and the ion 

loss during isolation is also minimized. The crucial part for the final success of 

2D MS analysis is to change the pulse sequence to control the speed and the 

position of ions in the cell. Figure 1.10 shows a typical pulse sequence of a 

2D FTICR MS experiment.
209,210

 In the excitation pulse (P1), all of the ions in 

the cell will be excited to the same radius, and after spinning for a period of t1, 

the ions could be de-excited by another pulse (P2). The ions which have 

returned to the center of the cell can be fragmented efficiently and detected 

successively. Therefore, by manipulate the time t1, all ions will be fragmented 

and detected sequentially. In-cell CAD, IRMPD, and ECD are all available 

fragmentation methods compatible in 2D experiments.
210-214

  

 

Figure 1.10 Pulse sequence for a two-dimensional FTICR MS 
experiment.

209,210
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1.3 Content of the thesis 

  The thrust of the thesis is to utilize the advantages, in particular three 

advanced features, high resolution, high mass accuracy, and flexible tandem 

mass spectrometry techniques, of FTICR MS to investigate some molecules 

of great interest in science and/or industry.  

  In the second chapter, the separation limit of a 12 T solariX FTICR 

instrument is challenged by measuring the isotopic fine structures of two 
17

O 

enriched amyloid-β (Aβ) peptides, Ac-Aβ16-22-NH2 ( MW : 894.498124 Da) and 

Aβ11-25 (MW: 1757.885869 Da). In the third chapter, Aβ37-42 peptides labelled 

with either 
17

O on Gly38 (GG38(
17

O)VVIA, MW: 515.315166 Da) or 
15

N on 

Val39 (GGV39(
15

N)VIA, MW: 515.307984 Da) are analyzed with ultra-high 

resolution, so that the ratio of 
17

O could be estimated by the isotopic fine 

structure to assist the NMR data interpretation.  In the fourth chapter, all of 

the three advanced features of FTICR MS are utilized to provide a confident 

analysis of the composition of TPGS samples and the structure of the TPGS 

molecule, a widely used polymeric excipient in the drug industry. Following on 

observations from the MS/MS experiments of TPGS attached with different 

metallic adducts in Chapter 4, the competitive influence of several popular 

adducts on the fragmentation of TPGS is studied, and some trends are 

summarized, which is useful for understanding the mechanisms of CAD and 

ECD processes. Aided by the availability to different fragmentation techniques 

of FTICR MS, the MS/MS fragmentation, including CAD, EID, and IRMPD, of 

chlorophyll-a and its Mg
2+ 

depleted species, pheophytin-a, are investigated 

respectively in Chapter 6 and 7. In an on-going project, a top-down MS 

strategy is used to study a protein of a molecular weight of 35 kDa, p65 
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(C1526H2419N456O460S13), and FTICR MS displays the ability to analyze big 

molecules (≥ 30 kDa). Chapter 9 is the conclusions and future work.  
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Chapter 2 Utilizing isotopic fine structure 

mass spectrometry to understand 
17

O 

labelled amyloid peptides 
 

2.1 Introduction 

2.1.1 Techniques to measure the isotopic abundance of elements 

Isotope ratio measurements are a very important field directly related to the 

fundamentals of atomic physics. Back to 1913, J. J. Thomson first 

demonstrated the presence of isotopes of elements by showing that neon is 

composed of two isotopes, 
20

Ne and 
22

Ne,
215

 and which experiment is also 

recognized as the first example of mass spectrometry.  Over the years, mass 

spectrometry has developed enormously, and becomes a routine technique 

used for a vast amount of applications. Even though the isotope ratio 

measurement is no longer the most hot-topic in the mass spectrometry field, it 

still has irreplaceable importance for a number of different applications, such 

as monitoring the isotope variation in nature and tracing experiments using 

enriched isotopes.
216

 So far, two predominant techniques used for the precise 

isotope ratio measurement are isotope ratio mass spectrometry (IRMS) and 

inductively coupled plasma mass spectrometry (ICP-MS).
217

  

Traditionally, magnetic sector analyzers are used in IRMS, and are quite 

often coupled with a gas chromatography (GC) -combustion interface, known 

as GC-C-IRMS.  GC-C-IRMS is in particular useful for accurately measuring 

the isotopic abundance of 
2
H, 

13
C, 

15
N, and 

18
O in small organic molecules. 

GC-C-IRMS is able to determine the ratio of 
13

C/
12

C with a precision of 0.03% 

on average;
218

 a similar level of precision could be achieved for 
2
H/H, 

15
N/

14
N, 



51 
 

and 
18

O/
16

O, but which is more challenging due to very low abundance of 
2
H, 

15
N, and 

18
O in nature. In practice, small and volatile molecules, such as 

amino acids or small metabolites are more suitable for IRMS experiments; 

otherwise, derivatization will be needed. Moreover, a reference is necessary 

to ensure a high precision.  On the other hand, ICP-MS mainly focuses on 

determining the isotopic abundance of chemical elements in inorganic 

compounds, where the precision can be pushed to be as low as 0.005%.
216,219

  

Most recently, a spectroscopy technique called cavity ring-down spectroscopy 

(CRDS) emerges as an alternative choice of IRMS for isotopic analysis of 

small organic molecules. CRDS has displayed promising roles in 

characterizing the isotopic abundance of 
2
H, 

13
C, 

17
O and 

18
O.

220-222
  Although 

the precision of CRDS is inferior to GC-C-IRMS, CRDS instruments cost less 

and are more compact.
222

 

Using high resolution isotopic fine structures to determine the isotope ratio 

has been available for a long time, but it is not extensively applied due to two 

main reasons. One reason is the limited accessibility to high performance 

mass spectrometers and expertise of tuning, and the other is the low natural 

abundance of many isotopes. To measure the subtle difference in the isotopic 

abundance precisely is challenging for most modern mass spectrometers.  

However, the ultra-high resolution isotopic fine structure of molecules has 

been demonstrated to be of great interest in determining the elemental 

composition of molecules less than 1500 Da,
103,121-131

 where most of which 

were achieved using FTICR MS. Isotopic fine structures have also been used 

in monitoring the hydrogen/deuterium exchange of a peptide by the 

unambiguous separation of the 
2
H- and 

13
C- substituted peaks.

128
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2.1.2 Utilizing isotopic fine structure mass spectrometry to aid the 

interpretation of NMR data of 
17

O labelled amyloid beta peptides 

The well-known amyloid beta (Aβ) peptides are the major components of 

the amyloid plaque filaments associated with Alzheimer’s disease.
223-225

  

Different polymorphs of amyloid fibrils and, in particular, the aggregation of Aβ 

peptides (oligomers) are key toxic species implicated in Alzheimer’s 

disease.
225,226

 Most importantly, different inter- and/or intra- molecular 

hydrogen bonding is recognized as a key factor in influencing the structural 

variety.
227,228

  Recently, a novel solid-state NMR strategy that applied the 

REAPDOR methodology was demonstrated
229

 and succeeded in assigning 

the specific 
17

O ···H–
15

N
 
 hydrogen bonding in Aβ peptides.

230
  By measuring 

the 
15

N–
17

O dipolar coupling between the carbonyl oxygen and the amide 

nitrogen atoms, illustrated as C=
17

O ···H–
15

N, the distance between the nuclei 

can be determined and the result could be correlated with the presence of 

intra- and /or inter- molecular interactions due to hydrogen bonding.  The 

15
N{

17
O}REAPDOR method has the advantage of measuring the shorter 

nitrogen-oxygen distances as opposed to longer indirect carbon-carbon or 

carbon-nitrogen distances in traditional 
13

C–
13

C or 
13

C–
15

N NMR methods.
230-

232
  Molecules labelled with 

15
N and 

17
O are necessary for this measurement 

because of their low natural abundances (0.37% for 
15

N and 0.04% for 
17

O, 

see Table 2.1), and the enrichment ratio will be crucial for the interpretation of 

the NMR coupling constant and interatomic distances.  Although there are a 

few accurate methods to determine 
17

O/
18

O enrichment values,
220,221,233

 in this 

experiment, the important value is the 
17

O enrichment of one specific oxygen 

atom within an otherwise normal peptide.  Most methods one could consider 
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to accurately determine this value would require chemistry such as acid 

hydrolysis or enzymatic digestion to cleave the peptide into individual amino 

acids and afterwards measure the 
17

O enrichment of the individual amino acid, 

but such strategies run a strong risk of scrambling the 
17

O labelling position 

and thus invalidating the measured 
17

O enrichment information, and such 

methods generally will also dilute the signal by inclusion of the oxygen atoms 

from other unlabelled amino acids. 

Table 2.1 Isotopic masses and natural abundance of H, C, N, and O
234,235

 

Isotope Mass (Da) Natural abundance 

1
H 1.007825 99.99% 

2
H 2.014102 0.01% 

12
C 12.000000 98.93% 

13
C 13.003355 1.07% 

14
N 14.003074 99.63% 

15
N 15.000109 0.37% 

16
O 15.994915 99.76% 

17
O 16.999132 0.04% 

18
O 17.999160 0.21% 

 

  The two samples studied in this chapter are Ac-Aβ16-22-NH2 (N-acety-

KLV18(
17

O)FF20(
15

N)AE-NH2, abbreviated as Aβ16-22 hereafter) and Aβ11-25 

(EVHHQKLV18(
17

O)FFA21(U-
13

C, 
15

N)EDVG).  Since 
15

N is labelled (> 99%) 

on Phe20 for Aβ16-22 or on Ala21 for Aβ11-25, and similarly 
13

C is labelled (> 

99%) on Ala21 for Aβ11-25, the formulae of the two peptides are written as 

C45H67O10N8
15

N (MW: 894.498124 Da) and C78
13

C3H119O23N20
15

N (MW: 

1757.885869 Da), respectively.  In order to calculate the ratio of 
17

O labelling, 
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the two peaks corresponding to 
13

C-substituted and 
17

O-substituted peptides 

in the A+1 cluster (second isotopic cluster) must be fully resolved for both 

peptides, where the mass difference (Δm) between 
13

C
16

O and 
12

C
17

O is 

0.000863 Da.  Theoretically, for a singly-charged Aβ16-22, baseline separation 

of the two closely-spaced species, 
13

C- and 
17

O- substituted peaks, requires a 

resolving power of approximately 3.0 M (3m/Δm corresponding to the 

approximate baseline separation of two closely-spaced peaks), and the 

resolving power required for Aβ11-25 is higher ( ~ 6.0 M) because of its higher 

mass. 

2.1.3 Content of the chapter 

  In this chapter, the isotopic fine structures of 
17

O enriched Aβ16-22 and 

Aβ11-25 were measured, and the 
13

C-substituted and the 
17

O-substituted peaks 

were baseline-resolved by a 12 T solariX FTICR MS instrument with average 

resolving power ≥5.0 M.  The results enable the ratio of 
17

O enrichment to be 

estimated with 2.1% and 5.2% uncertainties for the Aβ16-22 and Aβ11-25, 

respectively, according to the detection of the 
13

C-species in the same 

peptide, which is crucial for interpreting the relationship between the 

experimental NMR signal and the inter/intra-atomic distance of interest.  

Additionly, the position of the 
17

O labelling was located based on the 

fragmentation information generated by CAD.  

2.2  Experimental section 

2.2.1 Chemicals  

The synthesis and preparation of Ac-Aβ16-22-NH2 (N-acety-KLV18(
17

O)FF20 

(
15

N)AE-NH2) and Aβ11-25 (EVHHQKLV18(
17

O)FFA21(U-
13

C, 
15

N)EDVG) were 
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described in detail elsewhere.
230

  For mass spectrometry experiments, the 

peptide samples were dissolved in 50:50 acetonitrile (VWR Co., Radnor, PA, 

USA) /water with 1% of formic acid (Sigma-Aldrich Co., St. Louis, MO, USA) 

to a concentration of ~1 µM.  Water was purified by a Millipore Direct-Q 

purification system (Merck Millipore, MA, USA).  ESI tuning mix was 

purchased from Agilent Technologies (Product No: A182611, Agilent 

Technologies, USA) and was stored in 4˚C fridge.   

2.2.2 Mass spectrometry experiments   

All mass spectrometry experiments were carried out on a Bruker 12 T 

solariX FTICR mass spectrometer (Bruker Daltonik, GmbH, Bremen, 

Germany) with a custom nano-electrospray ion source.  ~5-10 µL of sample 

was loaded into a glass capillary tip with a stainless steel wire inside to form 

the electrical connection.
179

  Nano-electrospray ionization was generated by 

applying a voltage of 600-1200 V between the spraying needle and inlet 

capillary tip of the instrument.  To remove undesired ions, the monoisotopic 

peak (A, m/z 895.505401 for singly-charged Aβ16-22 and m/z 879.950210 for 

doubly-charged Aβ11-25) and several isotopic peak clusters of interest (A+1, 

A+2, and A+3) were isolated using a quadrupole with an isolation window of 

±7 Da, where the central m/z and the width of the window were optimized to 

ensure a good isolation.  The embedded 
13

C isotope distribution was used to 

evaluate the isolation.  After accumulated in the collision cell for typically 1-20 

milliseconds, those ions were cooled for 0.01 s in the collision cell before 

being sent to the ICR infinity cell.
110

  The front and end trapping voltages were 

set at 1.55 and 1.57 V or 1.75 and 1.77 V for the detection of Aβ16-22 or Aβ11-25. 

The ion population in the cell was maintained as low as possible to reduce 
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peak coalescence and ion-ion interactions as a precondition for detection at 

sufficiently high resolution to separate the isotopic fine structure peaks, so the 

intensity of the base peak is usually kept at around 4×10
6
 /scan.  To enable a 

long transient, all of the ultra-high resolution spectra were detected in 

heterodyne mode,
236

 with a sampling frequency of 7-15 kHz and using 256 k 

or 128 k data points.  The transient coherence was monitored to choose the 

optimal transient length.  

 For CAD experiments, the isolated parent ions using the quadrupole were 

then transferred to the collision cell for fragmentation using a collisional 

energy of 20-27 V, and fragments were detected in the ICR cell.  Up to 20 

scans were averaged for CAD experiments to achieve a desirable S/N and 

spectrum quality.  Otherwise, all of the ultra-high resolution spectra were 

acquired as one scan and were presented in magnitude mode unless 

otherwise noted.  For comparison, some spectra were manually phased to 

absorption mode using a previously reported method.
102

  The resolving power 

is calculated from m/Δm50%. Unapodized spectra were used in order to 

monitor the true separation of closely-spaced peaks, because apodization 

may smooth out the real peak spacing particularly when the two peaks are 

not fully resolved. All of the spectra were processed by DataAnalysis 4.0 

software (Bruker Daltonik, GmbH, Bremen, Germany). The theoretical 

isotopic distribution was simulated either by IsoPro3.0
237

 (oxygen enriched) or 

DataAnalysis (natural abundance) using a resolving power similar to the 

experimental result. The simulation of oxygen enriched molecules was 

achieved by modifying the isotopic abundance of one atom in the IsoPro data 

base. Take Aβ16-22 (C45H68O10N8
15

N) as an example, if assuming that one of 
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the oxygen atoms (O) is enriched and contains 40% 
16

O, 50% 
17

O, and 10% 

18
O, the simulation can be done by using the elemental composition: 

C45H68O9O
N8N

, where O has 40% 
16

O, 50% 
17

O, and 10% 
18

O, and N has 

100% 
15

N. 

In this research, the ion accumulation time, cooling time, and cell 

parameters are vital for the final success of obtaining a ultra-high resolution.  

Particularly, it is interesting that a relatively high trapping voltage (1 - 2 V) 

combined with a low excitation power (35.0 - 55.5 Vpp) was most effective in 

detecting isotopic fine structures in practice, which is contradictory to some 

previous ultra-high resolution studies carried out on FTICR instuments with 

different ICR cell geometries. For example, trapping voltages lower than 0.5 V 

during the detection were used in Marshall’s work.
121,122  

Using a lower 

trapping voltage is of benefit to inhibit the space-charge effect by allowing the 

ions to spread out, thereby minimizing the effects of peak coalescence
238

 and 

peak broadening.
239

 However, the electric and magnetic field are both more 

homogenious in the center of the ICR cell, furthermore, a lower cyclotron 

radius means a lower spin-speed of the ion, minimizing ion collisions and thus 

retaining ion coherence longer. Regardless, it is crucial to control the ion 

number in the cell. The discrepancy between current research and previous 

reports is likely due to the use of different ICR cell geometries, and the Infinity 

cell
110

 appears to have a smaller ‘sweet spot’ with low electric field 

inhomogeneity compared to an open cylindrical cell.
 
Further observation

 
will 

be discussed in detail in 2.3.1. 
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2.3 Results and discussions 

2.3.1 Aβ16-22 (C45H67O10N8
15

N) partialy labelled with 
17

O 

  Figure 2.1 shows the high resolution fine structure of the singly-

protonated Aβ16-22 (C45H68O10N8
15

N, MW: 895.505401 Da) including the 

baseline-resolved 
13

C-substituted (C44
13

CH68O10N8
15

N) and 
17

O-substituted 

(C45H68O9
17

ON8
15

N) peaks in the A+1 cluster.  The m/z values of the peaks in 

Figure 2.1 are listed in Table 2.2 with the monoisotopic peak at m/z 

895.505401 as the internal lock mass, and the overall mass uncertainty is ±29 

ppb.  In comparison, the theoretical mass spectrum of the corresponding 

Aβ16-22 peptides with natural abundance oxygen is plotted in Figure 2.1 as a 

blue dashed line above the experimental spectrum. With an average 

experimental resolving power (abbreviated as R.P.) of ~4.94 M shown in 

Figure 2.1, the two peaks in the A+1 cluster are clearly resolved and a 

0.000805 Da experimental mass difference is measured which is 57 µDa 

different from the theoretical value (0.000862 Da).  The time-domain transient 

length is 37.9 s. Although only a single transient was acquired, the 

experimental mass value was determined into the 5
th
 digit past the decimal 

(0.01 ppm), remaining mass errors could be due to various factors, e.g. 

inhomogeneous electric and magnetic field, space-charge effect, and non-

zero vacuum.   
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Figure 2.1 An ultra high resolution FTICR mass spectrum of the singly-

protonated Aβ16-22 (C45H68O10N8
15

N) in black, and the simulated spectra of 

Aβ16-22 with natural abundance oxygen (the dashed blue line) and using the 

calculated ratio, 
16

O:
 17

O:
 18

O = 34.4: 55.5 :10.1 (the red line). The peak list is 

in Table 2.2   

Table 2.2 The mass list of proposed peaks in Figure 2.1 

Isotope 
difference 

Formula 
Resolving 
power/M 

Theoretical 
m/z 

Experimental 
m/z 

Error 
/ppm 

  C45H68N8
15NO10 5.66 895.505401 895.505401 ---- 

13C C44
13CH68N81

15NO10 3.89 896.508756 896.508757 0.001 
17O C45H68N8

15N O9
17O 5.65 896.509618 896.509561 -0.064 

18O C45H68N8
15NO9

18O 2.63 897.509647 897.509649 0.002 
13C2 C43

13C2H68N8
15NO10 7.76 897.512110 897.512148 0.042 

13C 17O C44
13CH68N8

15NO9
17O 4.04 897.512972 897.513005 0.037 

 
Average of the 
absolute value 

4.94 
  

0.029 

 STDEV 
   

0.042 

 The peak used as the lock mass 
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The unambiguous sub-ppm assignment of the 
13

C- (C44
13

CH68O10N8
15

N) 

and 
17

O- (C45H68O9
17

ON8
15

N) substituted species is further demonstrated by a 

spectrum averaged from a 10-scan acquisition (Figure 2.2), indicating that 

errors caused by space charge and other field inhomogeneities are lower 

than the peak width of an individual scan.   

 

 

Figure 2.2 The comparison of two mass spectra of singly protonated Aβ16-22 

with different aquisition scans (10 scans and 1 scan) but the same resolving 

power (~2.0 M). 

 

If the detection of the A+1 cluster with R.P. from 500,000 to 5,000,000 is 

tracked (shown in Figure 2.3), the identification of these two peaks becomes 

even more unambiguous.  At a resolving power of 3 M, the fine structure is 
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already baseline-resolved, which agrees with the theoretical estimate that the 

baseline separation of the 
13

C and 
17

O species requires a R.P. of ~3 M 

(3m/Δm).  On the other hand, at a R.P. of 500,000 (Figure 2.3e), which is still 

generally not achievable by other types of modern mass spectrometers, the 

peaks adjacent are completely overlapped.  
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Figure 2.3 The separation of A+1 cluster of the singly-protonated Aβ16-22 

(C45H68O10N8
15

N) with resolving power (R.P.) from 0.5 M to 5.0 M. The peaks 

labelled as 
13

C and 
17

O are the 
13

C- (C44
13

CH68O10N8
15

N, m/z 896.508756) 

and 
17

O- (C45H68O9
17

ON8
15

N, m/z 896.509618) substituted species, 

respectively 
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  Aided by the fine separation, the ratio of 
17

O abundance is able to be 

calculated by: 

                
          

  (       )    (       )            
  ,                       Equation (2.1) 

where I (
12

C
16

O), I (
12

C
17

O), and I (
12

C
18

O) are the ion intensity of 
12

C
 16

O-,
 

12
C 

17
O-, and 

12
C

 18
O- substituted peaks.  To minimize the influence of signal 

fluctuation, the results from six runs are averaged (see the Appendix A Table 

A.1), where the experimental ratios of the 
12

C
 16

O-,
 
the

 12
C 

17
O-, and the 

12
C

 

18
O- peaks are 34.4 ± 2.3%, 55.5 ± 2.2%, and 10.1 ± 1.3%, respectively (for 

these x ± Δx%, Δx% is defined as one standard deviation of the uncertainty in 

the calibration).  In contrast, for the corresponding natural abundance oxygen 

Aβ species, these numbers are 97.6%, 0.4%, and 2% correspondingly.  

Therefore, in addition to 
17

O labelling, 
18

O is also simultaneously detected to 

be about 8% enrichment for the Aβ16-22 peptide.  It is noted that, to estimate 

the accuracy and reliability of the result, the experimental ratio of 
13

C was 

compared with the theoretical value. The consistency of these two numbers, 

31.9% (experimental ratio of 
13

C calculated according to Equation A1 in             

Table A.2) and 32.6% (theoretical ratio of 
13

C), boosts the confidence of the 

result, and the uncertainty of the experiment is calculated from  
           

     
 

           (Table 2.4). The simulated spectrum generated by using the 

calculated ratio (
16

O:
 17

O:
 18

O = 34.4: 55.5 :10.1) is displayed on the top of 

Figure 2.1 in red, which matches well with the experimental spectrum on the 

bottom (black).  Additionally, the abundance of each isotope is also calculated 

according to the peak area by equations A4-A7 in Table A.2, similar results 

are obtained (Table A.1 in the Appendix A).  Since the calculation using the 
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peak area has a relatively higher standard deviation, Equation 1 utilizing the 

peak intensity is used.  To double check the result, switching 
12

C to 
13

C, the 

ratio of 
17

O enrichment is calculated by equation A8 in Table A.2, and a 

similar value is observed (data is not shown). 

  Due to protonation and multiple isotopic labelling, although unlikely, it is 

possible that the monoisotopic peak is mis-assigned without sufficient mass 

accuracy, which could result in mis-assignment of the fine structure peaks.  

To further check the peak assignment, a calibration standard, ESI tuning mix, 

was ionized together with the peptide analyte using a dual nano-electrospray 

setup (Figure A.1 in Appendix A) to calibrate the spectrum internally, rather 

than using a peak from the peptide as the lock mass.  The result is shown in 

Figure 2.4 (peak list is available in Table A.3), and the mass of the 

monoisotopic peak at m/z 895.50539 differs from the assumed formula 

C45H68O10N8
15

N (m/z 895.50540) by 0.01 ppm.  For example, if the 
15

N and 

17
O labelling on the Aβ16-22 peptide was not clear, the errors for two possible 

formulae, C45H67O10N7
15

N2 (m/z 895.49461) or C45H68O9
17

ON9 (m/z 

895.51258), would be 12.05 ppm and 8.01 ppm, respectively.  Hence, based 

on the high mass accuracy result, the single 
15

N labelling on the Aβ16-22 is also 

determined to be > 99% because the natural abundance species 

(C45H68O10N9) can be barely detected.  As the dual nano-electrospray 

experiment is carried out in broadband mode having relatively lower mass 

resolution (~ 300,000), most of the peaks in the isotopic fine structure cannot 

be resolved, and the peak merging could also distort the mass accuracy, such 

as the 2.98 ppm error of the peak at m/z 897.51029 in Table A.3, which was 
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caused by the merging of peaks for C44
13

CH68N8
15

NO9
17

O and 

C43
13

C2H68N8
15

NO10. 

 

 

Figure 2.4 A dual nano-electrospray mass spectrum of the Aβ16-22 sample 

with tuning mix as the internal calibrant, and peaks with asterisk are the 

peaks used in calibration. The spectrum on the top is the simulation of Aβ16-22 

of natural abundance oxygen  

 

  One key feature of a mass spectrometer is the ability to fragment ions of 

interest and generate structural information.  Herein, CAD is applied to 

determine the 
17

O labelled site. In this case, it is known that
17

O labelled valine 

was used in the synthesis of Ac-Aβ16-22-NH2 (N-acety-KLV18(
17

O)FF20(
15

N)AE-

NH2), and which is consistent with the CAD result in Figure 2.5 (peak list is in         

Table A.4).  The isotopic distributions of the b2 and b3 ions clearly 

demonstrate that 
17

O labelling is on the carbonyl oxygen of the valine, 
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because the difference between those two fragments is the valine amino acid 

residue, C5H9ON.  Therefore, MS/MS approaches are proved useful to verify 

the stable isotope labelling site, and could be even more valuable if the 

labelling position is unknown.  

 

 

Figure 2.5 A CAD spectrum of the singly-charged Aβ16-22. Insets on the top 

are the expanded regions of b2 and b3 ions (black) with the corresponding 

simulated spectra with natural abundance oxygen (blue) and using the 

calculated ratio, 
16

O:
 17

O:
 18

O = 34.4: 55.5 :10.1 (red) 

 

  Additionally, the influence of ion population on the separation of closely-

spaced peaks was studied, and peak coalescence was observed at a higher 

ion population (Figure 2.6).  Peak coalescence is believed to be due to the 
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Coulomb repulsion between closely-spaced orbiting packets of ions, resulting 

in the merging of those two individual packets of ions, so that only one peak 

appears in the mass spectrum rather than two peaks.
119,122,238,240

  Peak 

coalescence occurs on ions of similar m/z and can be exaggerated by 

increasing ion population.  Even though having very similar resolution, in 

Figure 2.6a, the 
13

C and 
17

O peaks in the A+1 isotopic cluster start showing 

up distinctly, while with approximately double the ion population, these two 

peaks are not separated at all in Figure 2.6b.  This explains why the number 

of ions in the cell is minimized in the experiment.   
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Figure 2.6 The comparison of two mass spectra of Aβ16-22 with different ion 

populations showing peak coalescence; at higher ion populations (b), the two 

peaks in the A+1 cluster, 
13

C and 
17

O substituted species, cannot be resolved 

despite having similar resolving power with (a) 

 

2.3.2 Aβ11-25  (C78
13

C3H119O23N20
15

N) partialy labelled with 
17

O 

  With increasing molecular weight, the complexity of elemental 

composition and the difficulty of isotopic fine structure measurement will 

increase dramatically.  Moreover, the tendency for peak coalescence will 

grow as well.
119,241

  In this section, the Aβ11-25 ions are investigated as a more 

challenging isotopic fine structure measurement, since its molecular weight 
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(MW: 1757.885869 Da) is almost twice as much as that of Aβ16-22 (MW: 

894.498124 Da).  

  The doubly-charged Aβ11-25 ions are selected, having the monoisotopic 

peak at m/z 879.950210 (C78
13

C3H121O23N20
15

N).  The Δm between those two 

peaks of interest, the 
13

C peak (C77
13

C4H121O23N20
15

N) and the 
17

O peak 

(C78
13

C3H121O22
17

O N20
15

N), is still the same (0.000862 Da), but Δm/z is half, 

or is 0.000431 in this case.  Since a theoretical resolving power ≥ 6.0 M is 

required, despite a R.P. of ~ 8.0 M which has been achieved on bovine 

ubiquitin (8.6 kDa) using a 9.4 T home-built FTICR mass spectrometer in 

Marshall’s group,
121

 this task is undoubtedly pushing the current limits.  Figure 

2.7 shows the ultra-high resolution fine structure detection of the Aβ11-25 with 

an average R.P. of 5.95 M and the corresponding peak list is summarized in 

Table 2.3.  The resolution varies depending on the peak intensity and peak 

shape, and several peaks in the isotopic clusters have R.P. as high as 7.0 M.  

Additionally, using the monoisotopic peak as the internal lock mass, the 

average mass error for the 9 peaks observed in the isotopic clusters is 27 ppb 

(Table 2.3), and the ratio of 
17

O enrichment is also estimated by the result.  

The experimental results are 27.9 %, 56.8%, and 15.3% of the 
12

C
 16

O-,
 12

C 

17
O-, and 

12
C

 18
O- substituted peaks, respectively, which are slightly different 

from the values obtained for the Aβ16-22. Similarly, the accuracy of those 

values is checked by the experimental and theoretical ratios of 
13

C, and the 

two numbers are 45.8% and 48.2%, so there might be around 5.2% 

uncertainty for the experimental values.   
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Figure 2.7 An ultra high resolution FTICR mass spectrum of the doubly-

charged Aβ11-25 (C78
13

C3H121O23N20
15

N) in black, and the simulated spectra of 

Aβ11-25 with natural abundance oxygen (the dashed blue line) and using the 

calculated ratio, 
16

O:
 17

O:
 18

O = 27.9: 56.8:15.3 (the red line). The peak list is 

in Table 2.3   
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Table 2.3 The mass list of proposed peaks in Figure 2.7 

Isotope 
difference 

Formula 
Resolving 
power /M 

Theoretical 
m/z 

Experimental 
m/z 

Error/ppm 

12C C79
13C2H121O23N20

15N 6.22 879.448533 879.448550 0.019 

 C78
13C3H121O23N20

15N 7.20 879.950211 879.950210 ---- 
13C C77

13C4H121O23N20
15N 5.34 880.451888 880.451925 0.042 

17O C78
13C3H121O22N20

15N17O 7.18 880.452319 880.452298 -0.024 
15N17O C78

13C3H121O22N19
15N2

17O 7.01 880.950837 880.950818 -0.022 
18O C78

13C3H121O22N20
15N18O 6.48 880.952334 880.952327 -0.008 

13C2 C76
13C5H121O23N20

15N 4.67 880.953566 880.953550 -0.018 
13C 17O C77

13C4H121O22N20
15N17O 3.57 880.953997 880.953961 -0.041 

2H17O C78
13C3H120

2HO22N20
15N17O 5.96 880.955458 880.955475 0.019 

13C2
17O C76

13C5H121O22N20
15N17O 5.85 881.455674 881.455631 -0.049 

 
Average of the absolute 

value 
5.95 

  
0.027 

 STDEV 
   

0.014 

 The peak used as the lock mass 
 

Finally, the 
17

O labelling is also located on the valine residue by the CAD 

result shown in Figure 2.8 and Table A.6 in Appendix A.  
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Figure 2.8 A CAD spectrum of the Aβ11-25. Insets on the top are the expanded 

regions of b7 and b8 ions. Peaks labelled with asterisk are the isotopic 

distribution of b7 ion. 

 

  The previously reported phase correction method can increase the 

resolving power of FTICR mass spectra by converting the traditional 

magnitude mode to absorption mode.
102,104

  For comparison, the spectrum in 

Figure 2.7 is phased to absorption mode
104

 to check its influence on this 

narrowband (heterodyne mode) result.  The phased spectrum is shown in 

Figure 2.9 and the peak list is in Table A.7.  According to the result, an overall 

R.P. of 9.36 M was reached, which represents a 57% increase over that of 
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the magnitude mode (R.P. of 5.95 M in average).  As the R.P. in the 

magnitude mode is already sufficient for separation (peaks in A+1 cluster) in 

this case, the peak separation is not heavily affected, and this is why most of 

the spectra in this thesis are kept in magnitude mode as the raw data 

generated from the instrument also makes the comparison with previous 

research more consistent.  However, the result unambiguously demonstrated 

that absorption mode could be of great benefit for improving the resolution for 

narrowband FTICR mass spectra. 

 

 

Figure 2.9 The absorption mode mass spectrum of the Aβ11-25 spectrum in 

Figure 2.7. Insets are the absorption- (bottom) and magnitude- (top) mode 

spectra of the expanded regions of A+1 and A+2 clusters, respectively 
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2.3.3 Fmoc-valine  

Finally, the oxygen labelling ratio of the Fmoc-valine sample (C20H21NO4, 

MW: 339.147058 Da, the structure is shown in Figure 2.10) used in 

synthesising the two peptides was measured and is estimated to have 27.3 ± 

0.9%, 59.4 ± 0.4%, and 13.3± 0.8% for 
16

O,
 17

O, and 
18

O, respectively (Figure 

2.11 and Table A.8).  Although the same 
17

O labelled valine was used in the 

synthesis of both of the peptides, because the 
17

O labelling on the two oxygen 

atoms of the carboxyl group could be exchanged back to 
16

O during storage 

or reaction due to the ubiquitous present of 
16

O in solution or atmosphere, the 

17
O labelling value in the peptide products and the original amino acid used in 

the synthesis may not be exactly the same. Table 2.4 summarized the 

abundance of 
13

C,
 16

O, 
17

O,
 
and 

18
O in the Fmoc-valine, Aβ16-22, and Aβ11-25, 

respectively, showing that the experimental ratios are consistent between the 

Fmoc-valine and the two peptides within the tolerance of the experimental 

uncertainty.  

 

 
 

Figure 2.10 The structure of the Fmoc-valine with two
 
oxygen atoms on the 

valine labelled 
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Figure 2.11 A FTICR mass spectrum of the Fmoc-valine labelled with 
17

O 

and 
18

O; peaks labelled with 
17

O, 
18

O,
 17

O2, 
17

O
13

C
 
,
 
and 

17
O

18
O are

 
the 

corresponding
 17

O-substituted (m/z 341.158457), 
18

O-substituted (m/z 

342.158507),
 17

O2-substituted (m/z 342.162668),
 17

O
13

C-substituted (m/z 

342.161883), and  
17

O
18

O-substituted (m/z 343.162733) species, respectively.  

The relative abundance of each oxygen isotope was calculated in Table A.8 

 

Table 2.4 The abundance of 
13

C,
 16

O, 
17

O,
 
and 

18
O in the Fmoc-valine, Aβ16-22, 

and Aβ11-25 

O 
labelled 
samples 

The ratio of 13C/% The 
experimental 
uncertainty/% 

The experimental ratio/% 

Theoretical Experimental 16O 17O 18O 

Fmoc-
Valine 

17.8 17.3 -0.3 27.3±0.9 59.4±0.4 13.3±0.8 

Aβ16-22 32.7 31.9 -2.1 34.4±2.3 55.5±2.2 10.1±1.3 
Aβ11-25 45.8 48.2 +5.2 27.9±1.8 56.8±2.2 15.3±0.7 

 The uncertainty of the experiment is calculated 

from 
                                                          

                                  

 For these x ± Δx%, Δx% is defined as one standard deviation of the 
uncertainty of the results from six runs (Fmoc-valine and Aβ16-22), or three 
runs for Aβ11-25. 

The experimental ratios are calculated by Equation A1 and equations in             

Table A.2 
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2.4 Conclusions 

  To meet the demand of 
17

O related NMR research, the ratios of 
17

O 

enrichment of two Aβ peptides, Ac-Aβ16-22-NH2 (MW: 894.498124 Da) and 

Aβ11-25 (MW: 1757.885869 Da), were quantified by their mass spectrometry 

isotopic fine structures in this study.  Ultra-high resolving power ~ 6.0 M was 

achieved in a commercial 12 T FTICR mass spectrometer. A further 57% 

resolution increase was observed using absorption mode.  The baseline 

separation of the 
13

C and 
17

O peaks and the isolation of whole isotopes of 

each peptide enable the calculation.  Each resolved peak in the isotopic fine 

structure was compared with the theoretical simulation and was identified with 

mass uncertainty less than 70 ppb, where the overall average error was 27 

ppb.  CAD was utilized to determine the 
17

O labelled site.  This research 

expanded the application of isotopic fine structure mass spectrometry and 

demonstrated the unrivalled high resolution and high mass accuracy of 

FTICR instruments; additionally, this research also challenged the resolution 

limit of the 12 T FTICR mass spectrometer with an Infinity cell.   
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Chapter 3 Utilizing isotopic fine 

structures to understand the Aβ37-42 

(GG38(
17

O)VVIA) and Aβ37-42 

(GGV39(
15

N)VIA) mixture 
 

 

3.1 Introduction 

 For the interest of NMR research, the isotopic fine structures of Aβ16-22 and 

Aβ11-25 labelled with 
17

O and 
15

N were obtained by ultra-high resolution in 

Chapter 2.  In this chapter, a mixture including two Aβ peptides, Aβ37-42 

partially labelled with 
17

O on Gly38 (GG38(
17

O)VVIA) and Aβ37-42 (
15

N) fully 

labelled with
 15

N on Val39 (GGV39(
15

N)VIA), is involved in measuring the ratio 

of 
17
O in the Aβ37-42.  To be specific, the main components of the Aβ37-42 

mixture are Aβ37-42 (
15

N) with
 15

N labelled (≥ 99%) on Val39 (C23H42N5O7
15

N, 

MW: 515.30853 Da), Aβ37-42 (C23H42N6O6
17

O, MW: 515.31572 Da) with X% 

labelled 
17

O on Gly38, and the rest, approximately 1-X%, Aβ37-42 with 

unlabelled 
16

O (C23H42N6O7, MW: 514.31150 Da) which should also include a 

small portion of Aβ37-42 (
18

O) (natural abundance) in theory, where ‘X’ is the 

number to be detected.  Theoretically, to fully resolve the singly protonated 

Aβ37-42 (
15

N) at m/z 516.315809 and 
17

O-substituted Aβ37-42 peak at m/z 

516.322991 only requires a resolving power of ~220,000, while the 

challenging task is to fully separate the 
13

C-substituted peak of Aβ37-42 at m/z 

516.322129 and the 
17

O-substituted Aβ37-42 at m/z 516.322991 which requires 

a resolving power of 1.8 M.  Because several peaks closely-spaced are 

present, in practice, an even higher resolving power is necessary to ensure a 
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good separation.  Moreover, without a decent separation, peak tailing and/or 

peak coalescence would distort the peak intensity and the measurement. 

3.2 Experimental section 

3.2.1 Chemicals  

Aβ37-42 samples were dissolved in acetonitrile/water 50:50 with 0.1% of 

trifluoroacetic acid (Sigma-Aldrich Co., St. Louis, MO, USA) to a 

concentration of ~1 µM. PEG400 was prepared in 50:50 acetonitrile/water, 

and Fmoc-glycine was in 50:50 acetonitrile/water with 0.1% of formic acid . 

3.2.2 Mass spectrometry experiments   

All mass spectrometry experiments were carried out on a Bruker 12 T 

solariX FTICR mass spectrometer (Bruker Daltonik, GmbH, Bremen, 

Germany) with a custom nano-electrospray ion source.  The front and end 

trapping voltages were set at 1.30 and 1.20 V for the detection of Aβ37-42, 

where heterodyne mode was used with a sampling frequency of 15 kHz and 

256 k data points.  Fmoc-glycine was detected in broadband mode using 16 

M data points, and the spectrum of Fmoc-glycine was averaged from 10 

scans.  

3.3 Results and discussions 

3.3.1 Isotopic fine structure measurement of Aβ37-42 mixtures 

The peaks of interest are isolated in the quadrupole in front of the infinity 

ICR cell to remove undesired.   With a resolving power of ~ 3.5 M, a mass 

spectrum of the mixture is shown in Figure 3.1, where the fine structures of 

the two Aβ37-42 peptides are well resolved and the corresponding peaks are 

listed in Table 3.1.  In the expanded A+1 region, three peaks representing the 
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monoisotopic peak of Aβ37-42(
15

N) (shown as 
15

N in Figure 3.1), the 
13

C-

substituted peak of Aβ37-42 (shown as 
13

C in Figure 3.1), and the 
17

O-

substituted peak of Aβ37-42 (shown as 
17

O in Figure 3.1), respectively, are 

detected and separated unambiguously.  The experimental mass difference 

between the 
13

C peak and the 
17

O peak is 0.84 mDa, which agrees with the 

theoretical value, 0.86 mDa.  

 

Figure 3.1 An ultra high resolution FTICR mass spectrum of the singly-

protonated Aβ37-42 (C23H42N6O7) in black, and the simulated spectra of Aβ16-22 

with natural abundance oxygen (the dashed blue line) and using the 

calculated ratio, 
16

O:
 17

O= 39.5: 60.5 (the red line). The peak list is in Table 

3.1 
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Table 3.1 The mass list of proposed peaks in Figure 3.1 

Formula 
Resolving 

power /Million 
Theoretical 

m/z 
Experimental 

m/z 
Error 
/ppm 

C23H43N6O7 3.2 515.318774 
 

------ 

C23H43N5
15NO7 3.3 516.315809 516.315800 -0.02 

C22
13CH43N6O7 2.3 516.322129 516.322143 0.03 

C23H43N6O6
17O 3.3 516.322991 516.322979 -0.02 

C22
13CH43N5

15NO7 3.4 517.319164 517.319183 0.04 

C23H43N5
15NO6

17O 4.8 517.320026 517.320087 0.12 

C22
13CH43N6O6

17O 3.6 517.326346 517.326374 0.05 

C21
13C2H43N6O7 4.3 517.325484 517.325489 0.01 

Average of the absolute 
value 

3.5 
  

0.04 

STDEV 
   

0.05 

 The peak used as the lock mass 

 

The peak assignment and the low overall mass error, 40 ppb, in Table 3.1 

are all based on assuming that the peak detected at around m/z 515.318 is 

the monoisotopic peak of Aβ37-42 (m/z 515.318177). The assumption, however, 

could be misleading due to limited knowlege of the mixture and the peak at 

around m/z 515.318; therefore, in order to double check the assignment, a 

calibration standard, polyethylene glycol with an average mass of 400 Da, is 

employed to calibrate the spectrum internally (Figure 3.2).  Using the 

homemade dual nano-electrospray setup, the analyte and the calibration 

standard are ionized at the same time using two different capillaries, rather 

than mixing the two together.  The result in Figure 3.2 is generated at a 

resolving power of 0.87 M using broadband detection, and an average mass 

accuracy of the assigned peaks is about 80 ppb (Table B.3), including a peak, 

C22
13

CH43N6O7, has a mass error of 430 ppb due to the interference of the 

peak closely-spaced without sufficient resolution.   
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Figure 3.2 A dual nano-electrospray mass spectrum of the Aβ37-42 sample 

using PEG400 as the internal calibrant. Peaks with black asterisk and the 

peak labelled with red asterisk are the calibrants and the monoisotopic peak 

of Aβ37-42, respectively. The spectrum on the top in red is the simulation using 

natural abundance oxygen. The peak list is in Table B.3 

 

As the two peptides contain peaks of very similar m/z values and cyclotron 

frequencies, in the ultra-high resolution experiments, the number of ions in 

the cell was kept as low as possible to minimize the influence of space 

charge,
114-116,242

 so that, potentially, the influence of peak coalescence could 

be effectively inhibited.  Aided by the fine separation in Figure 3.1, the ratio of 

17
O abundance in Aβ37-42 is able to be calculated by Equation (3.1). It has to 
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be noted that the 
18

O component is missing in the calculation compared to the 

Equation (2.1) in last chapter because no peaks correlated to 
18

O substituted 

species are observed in Figure 3.1, which suggests 
18
O is depleted in Aβ37-42. 

                 
       

  (    )    (    )
 ,                                              Equation (3.1) 

where I (
16

O) and I (
17
O) are the intensity of the monoisotopic peak of Aβ37-42 

and the corresponding 
17

O-substituted peak, respectively.  To minimize the 

influence of signal fluctuation, the results from five runs are averaged (see the    

Table B.1), and the experimental ratios of the 
16

O and 
17

O are 39.5± 1.7%, 

and 60.5± 1.7%.  Similarly, to check the accuracy of this measurement, the 

experimental ratio of 
13
C in Aβ37-42, 20.3%, is compared to the theoretical 

value, 19.9%, and the uncertainty of the experiment is calculated by 

 
           

     
          , which allows estimation of the uncertainty in 

measurement of the isotopic fine structure to be ~ 2.0%.     

Additionally, the relative ratio of the three composites in the mixture, 
15

N 

labelled Aβ37-42 (
15

N) (GGV39(
15

N)VIA), 
17

O labelled Aβ37-42 (GG38(
17

O)VVIA), 

and Aβ37-42 (GGVVIA), is obtained.  The ratio of Aβ37-42, 
17

O labelled Aβ37-42, 

and  
15

N labelled Aβ37-42 (
15

N) averaged from five spectra is 1.00:1.88:1.54; if 

subtracting the natural 
15

N component (2.2% in total) attributed to Aβ37-42 

(GGVVIA) in the Aβ37-42 (
15

N) monoisotopic peak, the ratio becomes 

1.00:1.86:1.54.  

3.3.2 Isotopic fine structure measurement of 
17

O labelled Fmoc-glycine 

   Moreover, the isotopic fine structure of the 
17

O labelled Fmoc-glycine 

(C17H15NO2
17

O2, MW: 299.1085 Da) used in synthesising the GG38(
17

O)VVIA 
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peptide is also detected (Figure 3.3, Table B.5) to determine the 
17

O 

abundance.  Because the two oxygen atoms in the carboxyl group of glycine 

should be equivalent and are both labelled with 
17

O, the average abundance 

of the 
17

O on one oxygen atom could be estimated using the following 

equation:  

17
O abundance  

             (       )

                         (       )
 ,                              Equation (3.2) 

 
I (

16
O

16
O), I (

17
O

16
O), and I (

17
O

17
O) are the peak intensity of 

16
O

16
O -,

 17
O

16
O 

-, and 
17

O
17

O -substituted Fmoc-glycine peaks (Figure 3.3).  After peptide 

synthesis, only one of the two labelled oxygen atoms is retained in the 

peptide product.  The 
17

O abundance is estimated to be 58.7± 0.5% 

(averaged from five runs, Table B.4) in the Fmoc-glycine with an uncertainty 

of 0.6% estimated from the detection of the 
13

C-species; this value is 

consistent with the corresponding ratio in GG38(
17

O)VVIA (60.5± 1.7% 

averaged from five runs) if the experimental uncertainty is counted.  The 

simulation spectrum in Figure 3.3 in red using a ratio of 
16

O:
17

O:
18

O = 

41.299:58.700:0.001 matches well with the spectrum detected thus the 

results also show that there is a depletion of 
18

O in the Fmoc-glycine.  If the 

18
O atom has natural abundance in the Fmoc-glycine, there would be a small 

peak of about half the height of the 
13

C
17

O peak at m/z 300.111630 in Figure 

3.3.  Even though the mass difference between the 
13

C-substituted and the 

17
O-substituted peaks is always the same, Δm=0.86 mDa, comparatively, 

resolving the isotopic fine structure of amino acids is more feasible than 

distinguishing the isotopic fine structure of peptide because the frequency 

difference (Δω) is larger for smaller molecules. Moreover, the presence of 
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several peptides of similar masses in a mixture could further increase the 

difficulty of the fine separation in practice. 

 

Figure 3.3 A FTICR mass spectrum of the Fmoc-glycine labelled with 
17

O; 

peaks labelled with 
13

C,
 17

O, 
17

O
13

C,
 
and

 17
O2 are

 
the corresponding

 13
C-

substituted, 
17

O -substituted,
 17

O
13

C -substituted,
 
and 

17
O2-substituted species 

respectively. The spectra in red are the simultion of Fmoc-glycine using the 

ratio 
16

O:
17

O:
18

O = 41.299:58.700:0.001. The peak list is in Table B.5 

 

3.4 Conclusions 

In conclusion, aided by the fine separation of peaks from 
15

N labelled Aβ37-

42(
15

N) (GGV39(
15

N)VIA), 
17

O labelled Aβ37-42(
17

O) (GG38(
17

O)VVIA), and Aβ37-

42 (GGVVIA), in particular the well resolved 
13

C-substituted peak of Aβ37-42 at 

m/z 516.32213 and the 
17

O-substituted peak of Aβ37-42 at m/z 516.32299 with 
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a resolving power of ~3.5 M, the 
17

O labelling ratio is estimated to be 60.5% 

with an uncertainty of ~2% according to the detection of the 
13

C-species in the 

same peptide.  The characterization of isotopic labelling of one atom in a 

peptide mixture without any extra separation/chemistry is of great benefit for 

some applications.  Though the precision of the measurement in this report is 

still not comparable with some traditional techniques, such as isotope ratio 

mass spectrometry (~0.03%),
218

 a calibration reference is not necessary for 

the current method, and this method does not require combustion or pyrolysis 

and also enables multi-element detection at the same time.   The strategy can 

be easily adapted to qualitatively and quantitively distinguish a species from 

its isotope labelled counterparts.  
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Chapter 4 D-α-tocopheryl polyethylene 

glycol 1000 succinate: A view from FTICR 

MS and tandem MS
1
 

 

4.1 Introduction  

4.1.1 Methods to characterize synthetic polymers  

Apart from mass spectrometry, several analytical methods have been 

traditionally applied for the characterization of the molar mass of synthetic                                                                                                                                                                                                                                                                  

polymers, which are briefly summarized in the next paragraph. Table 4.1 

shows several important terms in determining the molar mass of synthetic 

polymers. 

 

Table 4.1 The statistics of Mn, Mw, PD, and n 

Mn 
Number average 
molecular weight 

   
∑         

∑    
⁄  

Mw 
Weight average 
molecular weight 

   ∑          ∑       

 

⁄

 

 

 

PD Polydispersity Mw/Mn 

N 
Number of the repeat 

unit 
  

              
            

⁄  

Mi: mass of the molecule of repeat unit=i 

Ii: the ion intensity of the molecule of repeat unit=i 

MEndgroup: mass of the end group 

MRepeatunit:mass of the repeat unit 

 

1
This chapter has been partially adapted with permission from Wei, J.; Bristow, A.W.T.; McBride, E.; Kilgour, 

D.P.A.; O'Connor, P.B. D-α-tocopheryl polyethylene glycol 1000 succinate: A view from FTICR MS and tandem 
MS, Anal. Chem., 2014, 86 (3), pp 1567–1574. Copyright 2014 American Chemical Society. Bristow, A.W.T. 
and McBride, E. supplied the TPGS samples. Wei, J. did all of the experiments and drafted the manuscript 
under the supervision of O'Connor P. B.. 
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Light scattering is one of the most extensively used methods, which 

measures the molar mass according to the radius of gyration, but this method 

is limited by the requirement of a consistent and sterile background 

solution.
143,243

 Comparatively, the light scattering experiment is time 

consuming, and it is not suitable for small molecules because of the low 

scattering strength.  Because the viscosity of a polymer solution is directly 

related to the molar mass of the solute, viscometry is another useful 

technique in polymer research. However, a calibration using molecular weight 

standards is required for viscometry experiments, and the accuracy of the 

measurement can be affected by various factors, such as the presence of 

copolymers and broad molecular weight distribution.
143

  The most popular 

technique used currently is size exclusion chromatography (SEC). In SEC 

experiments, the larger molecules elute earlier from the column than the ones 

of smaller size, so that all of the analytes are separated by size. SEC is 

relatively simple and robust; along with advanced SEC data process systems, 

it is a routine analytical method in polymer research.  Infrared (IR) and 

ultraviolet (UV) are both useful detectors that can be combined with SEC to 

determine the functional groups. Two main limitations of current SEC 

techniques are how to obtain a calibration curve with high accuracy and how 

to achieve a high resolution separation in a short time, additionally, analysis 

of complex polymers is still challenging. Nuclear magnetic resonance (NMR) 

has been demonstrated to be a very effective method to estimate the Mn by 

measuring the ratio of protons on the end-groups to protons on the polymer 

chain. One advantage of NMR over the former methods is that it is able to 

provide some structural details of the polymer. The estimation of Mn, however, 
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is based on a complete understanding of the monomer and end-groups of the 

polymer; moreover, it is difficult for NMR to deal with a complex mixture.   

By measuring the m/z, modern mass spectrometry is a valuable tool to 

determine the molecular weight distribution, end groups and modifications, 

compositions of complex polymers, and even to obtain structural information.  

MS is a fast and robust method with high sensitivity, and which is also of high 

accuracy.  Even though MALDI-TOF instruments incorporate many features 

beneficial for studying synthetic polymers, such as high mass range, good 

resolution, and generating relatively simple mass spectrum, FTICR MS has 

special interest for some applications. 

Using high performance mass spectrometry for the study of synthetic 

polymers has grown sharply in the past decade following advances in 

polymerization methods.  Especially with increasing complexity and diversity 

of structures, many polymeric materials are now requiring advanced structural 

investigations. A high performance mass spectrometry combined with MS/MS 

technique is a valuable tool in the study of polymer structures since it has 

been successfully used in obtaining structural information for many categories 

of compounds.  Utilizing MS/MS in the structural characterization of synthetic 

polymers, however, is still underdeveloped, due to difficulties involved in 

fragmenting diverse, and often stable, polymer bonds between monomer 

units
145

 and distinct data analysis strategies associated with different polymer 

classes. 
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4.1.2 D-α-tocopheryl polyethylene glycol 1000 succinate  

D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) (chemical 

structure shown in Figure 4.1a) is an amphiphilic polymer frequently used in 

drug formulations, and was approved as a water-soluble alternative of vitamin 

E.
244

  TPGS contains a lipophilic head, the tocopheryl moiety, also known as 

vitamin E, and a polar polyethylene glycol (PEG, Mn 1000) tail, which are 

connected by a succinate diester linker. As a non-ionic surfactant, TPGS has 

drawn special attention in the drug industry as an emulsifier, stabilizer, and 

absorption/permeation enhancer, and it is also a drug solubilizer approved by 

the FDA.
245,246

  It was reported that TPGS is readily absorbed in the 

gastrointestinal tracts and can increase the oral bioavailability of some anti-

cancer drugs by inhibiting P-glycoprotein.
247

  Another special interest of TPGS 

in drug delivery is to form TPGS based nanoparticles,
245

 micelles, or 

liposomes.
248

   

 

Figure 4.1  a): Structure of TPGS; b): Structure of Di-TPGS 
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  TPGS is readily available from a wide range of suppliers and manufactures.  

In the literature, in addition to TPGS, several components including free PEG, 

Di-TPGS, and α-tocopheryl are reported to be present in some TPGS 

samples.
249-251

  The main techniques currently used for the study of TPGS are 

NMR, FTIR, UV, and chromatography,
250,252,253

 but most of these methods 

struggle to provide an overview of component composition of a mixture, and 

are particularly challenging for structural characterization of low abundant 

components.  Combining high performance liquid chromatography (HPLC) 

with mass spectrometry can provide some composition information; however, 

most of the literature has only focused on the information extracted from 

molecular mass values, without doing specific analysis of structural details 

using tandem mass spectrometry due to the limited performance of the mass 

spectrometer.  

4.1.3 Content of the chapter 

  Differing compositions of the TPGS samples between batches are 

believed to result in variable performance of the formulated product.  In this 

chapter, a high performance method using a FTICR mass spectrometer to 

study the composition and structure of TPGS was established, which could be 

used as a complementary tool in addition to those traditional techniques 

popular in polymer study.  Utilizing FTICR MS with CAD and ECD/EID, 

MS/MS behaviours of TPGS under different fragmentation methods and 

adducts, particularly the influence of different metallic-cations (Li
+
, Na

+
, Ag

+
), 

are discussed.  
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4.2 Experimental section 

4.2.1 Chemicals  

TPGS samples provided by AstraZeneca were dissolved in 50:50 

methanol/water or 100% acetonitrile in a concentration of ~1 µM before use. 

For different experiments, sodium sulfate, lithium chloride, or silver nitrate, 

(Fisher Scientific UK limited, UK) were added to a final concentration of 1 mM 

or 0.1% for formic acid (Sigma-Aldrich Co., St. Louis, MO, USA).   

4.2.2 Mass spectrometry experiments  

 All mass spectrometry experiments were carried out on a Bruker 12 T 

solariX FTICR mass spectrometer (Bruker Daltonik, GmbH, Bremen, 

Germany) with an electrospray source and a homemade nano-electrospray 

ion source.  For CAD, the parent ions were isolated in the quadrupole and 

then transferred to the collision cell for fragmentation using a collision energy 

which was optimized for each sample to provide an even spread of fragments, 

and fragments were finally detected in the ICR infinity cell.
110

  In the ECD/EID 

experiment, the isolated ions were accumulated externally in the collision cell 

and then transferred to the ICR cell.  Trapped ions were then irradiated with 

electrons from a 1.5 A heated hollow cathode, and the bias voltages used for 

ECD and EID experiments were ~ 2 V and 12 V, respectively.  For the 

ECD/ECD MS
3
 experiment, fragment ions of interest from ECD MS/MS were 

isolated in the ICR cell, and then activated with another ECD pulse.  To 

achieve a desirable S/N and quality spectrum, up to 200 scans were 

averaged.  All spectra were phased to absorption mode
102,254

 and processed 

by DataAnalysis 4.0 software.  
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4.3 Results and discussions 

4.3.1 Full MS overview  

  For the initial study, the mass distribution of the TPGS sample was 

investigated by nano-electrospray FTICR MS, and the spectrum is shown in 

Figure 4.3.  Several groups with different charge states are present.  With the 

help of high mass accuracy, the formulae of these groups are assigned to 

free PEG and TPGS with different adduct combinations (Na
+
, NH4

+
, H

+
) and 

charge states.  Proposed formulae are summarized in the Table C.1. An 

overall mass accuracy around 0.4 ppm is achieved, and the mass accuracy is 

generally better for peaks with higher S/N and lower m/z.  The high resolution 

data available from the FTICR MS is particularly useful for assigning some of 

the closely-spaced species.  For example, in the case of the expanded inset 

in Figure 4.2, these two groups of peaks (~20 mDa apart separated by a 

resolving power of 370,000) are assigned to TPGS with different adducts, 

[M+2Na+H]
3+

, vs [M+3H]
3+ 

with different PEG units.   
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Figure 4.2 The full mass overview of TPGS sample. Detailed peak 
assignment is available in the Table C.1 

 

 As all of these formulae are proposed solely based on experimental m/z 

value and restricted by the elemental composition of TPGS, ECD MS/MS is 

implemented with several pre-assigned groups, [M+3Na]
3+

,  [M+2Na+H]
3+

, 

[M+2Na+NH4]
3+

, and [M+3H]
3+

, in order to check the assignments.  

  For the sodiated ions, after analyzing the ECD spectra of [M+2Na+H]
3+

, 

[M+2Na+NH4]
3+

, and [M+3Na]
3+

, the proposed formulae are consistent with 

the ECD results, where peaks losing H/NH4/Na from the molecular ions 

respectively, are detected (Figure 4.3).  Interestingly, the [M+2Na+H]
3+

 and 

[M+2Na+NH4]
3+ 

precursor ions
 
readily lose H and NH4 respectively from the 

charge-reduced radical cation to form [M+2Na]
2+

.  The same two precursors 

can lose Na to form [M+Na+H]
2+

 and [M+Na+NH4]
2+

, but this fragmentation 

channel is less favorable, so these fragments are not abundant (Figure 4.3). 
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Furthermore, almost all fragments from all three precursors are sodiated 

species.  For alkali metal adducts, previous research using CAD showed that 

smaller adduct ions such as Na
+
, were more strongly bond to PEG backbone 

than bigger adduct ions, such as K
+
 or Cs

+
.
253

  In these ECD spectra, the 

increased loss of H
+
/ NH4

+
 is more favourable compared to loss of Na

+
, but 

the previous research did not do the comparison for CAD, and additionally 

related research is discussed in Chapter 5.  Looking into the fragments, most 

of them are from the same cleavage but with different numbers of PEG units, 

and the three precursors have very similar cleavage patterns.  The 

interpretation of ECD fragments of [M+3Na]
3+

 will be discussed in detail in the 

next section, 4.3.2. 

 

 

Figure 4.3 ECD spectra of several pre-assigned groups: a) [M+2Na+H]
3+

, b) 

[M+2Na+NH4]
3+

, and c) [M+3Na]
3+
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  In contrast to the sodiated precursors discussed above, the ECD result of 

[M+3H]
3+

 shows a difference.  On the spectrum of [M+3H]
3+

, a peak losing a 

proton or hydrogen only is not observed, but α-tocopheryl ([C29H49O2H]
+
 at 

m/z 430.38053) is present as the most abundant fragment under ECD. (see 

Figure 4.4)  Comparing the results, the sodium cation is more likely to attach 

to the PEG group, while the proton seems to stay in the tocopheryl region. 

 

 

Figure 4.4 A ECD spectrum of [M+3H]
3+

; the fragment indicating α-tocopheryl 

is highlighted 

 

  Intriguingly, in practice, it was found that the detection of Di-TPGS 

(structure shown in Figure 4.1b) can be greatly influenced by the solution 

used for ionization.  As discussed above, only free PEG and TPGS appeared 

in the TPGS sample analyzed using methanol and water (50:50 V:V) as the 

solution, which is a routine solution used for electrospray.  However, when 

switching the solution to 100% methanol or pure acetonitrile, in addition to the 

change of charge distributions of each series, Di-TPGS is also detected.  
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Figure 4.5 is the mass spectrum of the TPGS sample generated by using 

acetonitrile with saturated Na2SO4 as the solution.  Aided by the peak 

assignment of Figure 4.2 and consistent high mass accuracy (see Table C.2), 

the peaks in Figure 4.5 are easily defined as PEG, TPGS, and Di-TPGS with 

different adducts and charge states, where the corresponding peak list can be 

found in Table C.2.  Even though there are still some NH4
+
 and proton 

adducts, most of the abundant series in Figure 4.5 are sodiated.  Actually, the 

ratio of organic solvent to water in the solution was also evaluated and pure 

methanol or acetonitrile was demonstrated to be the most suitable solution in 

the composition study of TPGS samples.  In addition to a better solubility in 

pure organic solvent of Di-TPGS, using different percentage of organic 

solvent might also affect the ionization mechanism of Di-TPGS during spray.  

Comparing the structures of TPGS and Di-TPGS in the solution containing 

water, Di-TPGS could be much more folded than TPGS, since it has two long 

hydrophobic tails on both sides of its structure. Thus, during 

electrospray/nano-electrospray under this condition, while the chain ejection 

model (CEM) may be a more accurate model for TPGS ion formation, 

charged residue model (CRM) appears to be more suitable for Di-TPGS.
7
  

Therefore, the lower CRM ion formation rate could inhibit the signal intensity 

of the folded Di-TPGS.  On the other hand, once the solution is switched to 

pure organic solvent, the flexible Di-TPGS would have the same ionization 

mechanism as TPGS become detectable.  
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Figure 4.5 The full mass overview of TPGS sample in ACN with Na2SO4. 

Detailed peak assignment is available in Table C.2 

 

4.3.2 MS/MS of [TPGS+nNa]
n+ 

   

  For pharmaceutical applications, in addition to consistent composition 

between batches, a consistent structure is also essential.  Use of FTICR MS 

high quality data to determine the composition of TPGS is discussed above.  

In this section, both CAD and electron-based fragmentation techniques 

(ECD/EID) are applied to investigate the fragments of TPGS.  As sodium is a 

ubiquitous adduct for a PEGylated polymer, [TPGS+3Na]
3+

, [TPGS+2Na]
2+

, 

and [TPGS+Na]
+ 

are selected respectively in this study.  TPGS with 27 PEG 

units, having a formula of C87H162O32Nan (n=1, 2, 3) is selected for further 

fragmentation, based on peak intensity. 
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  CAD spectra of TPGS with different numbers of sodium adducts, 

[M+3Na]
3+

, [M+2Na]
2+

, and [M+Na]
+
, are presented in Figure 4.6.  The first 

interesting result is that no fragment ions in the m/z range of 98 – 2000 are 

detected for the singly sodiated precursor, [M+Na]
+
, even at higher 

fragmentation collision energy.  It is worth noting that the fragmentation of 

such species would be difficult using MALDI MS/MS since only singly-

charged ions would be generated; however, MALDI ionization is still the most 

commonly used ionization method for polymer study where the singly-

charged ions provide for a simple mass distribution.
255

  Fortunately, with 2 or 

3 sodium adducts, many cleavages are produced. (Figure 4.6b-c)  Utilizing 

accurate mass, the elemental formulae of most fragments can be assigned, 

and peak assignments with an average of 0.3 ppm mass uncertainty are 

available in the Table C.3.  For sodiated species, loss of the entire tocopheryl 

succinate ester (position ‘f’) and a cross-ring cleavage (position ‘a’) are more 

common.  The cross-ring cleavage in position ‘a’ is intriguing, particularly as it 

is also the most abundant fragment in both [M+3Na]
3+

 and [M+2Na]
2+ 

CAD 

spectra.  The intensity of this peak is likely driven by the thermodynamic 

stability of a larger conjugated structure as in Scheme 4.1.  A similar situation 

was reported in the work with chlorophyll-a (6.3.2),
48

 where a frequent 2H 

abstraction leading to a larger conjugated structure was observed.  
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Figure 4.6 CAD results of [TPGS+nNa]
n+ 

(C87H162O32Nan ) n=1, 2, 3, and the 

collision energies used are: a) 50 V, b) 46 V, and c) 35 V. Detailed peak 

assignment is available in Table C.3 

 

 

Scheme 4.1 Proposed structure of the fragment from cleavage at position ‘a’ 

in CAD 
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  In the ECD and EID results, similarly, no fragment ions were detected on 

the EID spectrum of [M+Na]
+
, and more fragments are produced from the 

higher charge-state precursors (Figure 4.7).  As discussed in 1.1.2, by 

utilizing a relatively higher energy, EID has demonstrated its complementary 

role in obtaining structural information of many singly-charged 

molecules.
70,78,79,163

  However, to our knowledge, there are few literature 

reports about using EID to investigate synthetic polymers.
143

  Unfortunately, in 

this case, EID did not generate fragments.  For higher charged precursors, 

more charge carriers and the Coulombic repulsion between the charges 

apparently contribute to the abundant fragment ions in the MS/MS spectra.  

Even though it generates fewer fragments than CAD, ECD does show 

different bond cleavage patterns.  In contrast to cleavages ‘a’ and ‘f’ being 

dominated in CAD, cleavages next to the two carbonyl groups, at positions ‘d’ 

and ‘e’, produce the most intense fragments in ECD of [M+3Na]
3+

 and 

[M+2Na]
2+

.  In terms of structural identification of TPGS, cleavages from 

positions ‘a’, ‘f’, ‘d’ and ‘e’ from CAD and ECD, provide useful, intense, 

diagnostic fragments.  
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Figure 4.7 a): EID spectrum of [TPGS+Na]
+ 

; b) and c) are ECD spectra of 

[TPGS+2Na]
2+ 

and [TPGS+3Na]
3+

, respectively. Detailed peak assignment is 

available in the Table C.4 

 

4.3.3 ECD/ECD MS
3
  

   In the ECD spectrum of [M+3Na]
3+

 (Figure 4.7c), in addition to losing one 

sodium and two sodium cations, the charge-reduced species, [M+3Na]
2+●

, is 

detected.  Regarding data analysis, apart from the restrictions of the formula 

of TPGS, the balance between elemental compositions, and the degree of 

unsaturation, one problem which makes the interpretation of these ECD 

results more complicated is that a singly-charged fragment can have either 1, 

2, or 3 sodium adducts, and a doubly-charged ion may have 2 or 3 sodium 

adducts, because of charge reduction by electron capture.  The high mass 
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accuracy is of great benefit in most situations, but tandem mass spectrometry 

is still useful for distinguishing some subtle features.  Take the most abundant 

fragment, the doubly-charged ion at m/z 643.33935, as an example, the two 

most possible formulae are [C57H108O28Na2]
2+ 

(1.9 ppm) and [C55H109O28Na3]
2+ 

(0.04 ppm).  If the doubly-charged fragment has two sodium adducts, the 

formula may indicate a cleavage from the aromatic ring in the α-tocopheryl 

part, with a loss of two PEG units.  However, as the average mass accuracy 

for the ECD result is around 0.5 ppm (Table C.4), the formula with 3 sodium 

adducts seems more reasonable which implies a cleavage from position ‘d’ 

and with a loss of one PEG unit (C2H4O). To check this assignment, 

ECD/ECD MS
3 
is employed on the fragment ion at m/z 643.33935.  Following 

ECD MS/MS of [TPGS+3Na]
3+

, all other peaks except the one of interest, m/z 

643.33935, are ejected from the cell, and then another ECD pulse is applied 

to the remaining ions. ECD/ECD MS
3 
process is shown in Figure 4.8.  Several 

fragments are produced in Figure 4.8c, and the most useful one is the peak at 

m/z 1229.64615 with a formula of C52H104O27Na3 (-0.72 ppm), which shows a 

cleavage from position ‘e’ and with a loss of one PEG unit.  The MS
3
 result 

clearly proves that the doubly-charged peak at m/z 643.33935 is from a 

cleavage at position ‘d’, with a loss of one PEG unit.  Further scrutinizing of 

the ECD spectrum of [M+3Na]
3+

, revealed a peak at m/z 665.35239 

[C57H113O29Na3]
3+ 
(0.13 ppm) representing a direct cleavage from position ‘d’ 

without losing any PEG unit, which has much lower intensity than the peak at 

m/z 643.33935 (Figure 4.9).  Interestingly, in the ECD spectrum of TPGS with 

2 sodium adducts, [TPGS+2Na]
2+

, the peak at m/z 1307.71559 

[C57H113O29Na2]
+
 which is from a direct cleavage at position ‘d’ without losing 
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any PEG unit is the most abundant fragment.  Losing one PEG unit is 

favourable in the ECD process of [TPGS+3Na]
3+

 but not for [TPGS+2Na]
2+

, 

which is likely because of different structural conformations of TPGS with 

different numbers of sodium adducts.  A loss of one PEG unit (C2H4O) from 

the molecular ion of [TPGS+3Na]
3+

 is detected, though the intensity is low 

(Figure C.1). 

 

 

Figure 4.8 a): ECD spectrum of [M+3Na]
3+

 as Figure 4.7c; b): In cell isolation 

of the doubly-charged fragment at m/z 643.3394; c): ECD/ECD MS
3
 spectrum 

of isolated peaks. Detailed peak assignment is available in Table C.5 
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Figure 4.9 Zooming in peaks at m/z 665.352386 and m/z 643.339353 in the 

ECD spectrum of [TPGS+3Na]
3+

 in Figure 4.7c 

 

4.3.4 MS
2
 with different metallic-cation adducts 

  It was reported that different ionization cations can cause complementary 

fragmentation patterns for multiply-charged polymers,
145

 so the influence of 

several metallic-cationzing agents are investigated. Apart from sodium, 

lithium and silver are chosen for this study, since lithium is the most reactive 

metal and the smallest alkali metal, while silver typically bonds to a π bonded 

region.  Ag
+
 is also known to be of beneficial for ionizing and fragmenting 

polystyrene because of a possible binding to phenyl rings,
256,257

 which might 

be applicable for the chromanol ring in the tocopheryl region.  Additionally, it 

was reported that Li and Ag cationization are facile methods for generating 

low energy CAD spectra of polyglycols.
258

  

  CAD and ECD results of [M+3Na]
3+

, [M+3Li]
3+

, and [M+3Ag]
3+ 

are compared 

in Scheme 4.2.  TPGS with lithium cation adducts produces similar cleavages 
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to the one with sodium adduct in both CAD and ECD.  Comparatively, TPGS 

with silver adducts also yields some similar cleavages in the CAD experiment, 

with more fragments in the tocopheryl side (positions ‘i’ and ‘j’).  In the ECD 

spectrum of [TPGS+3Ag]
3+

, no cleavages from the TPGS are generated 

except for loss of the Ag
+ 

cation (see Figure C.2), though Ag has higher 

electron affinity than Li or Na.  Additionally, one of the Ag
+
 cations is likely to 

attach to the aromatic region via cation-π interaction.  Since the ECD MS/MS 

spectrum only involved partial neutralization and loss of Ag
+
 cation (Figure 

C.2), capture of the electron to neutralize the silver atom followed by loss of 

the resulting Ag
●  

adduct is a likely pathway.
 
 In addition, since Na

+ 
is a 

common contaminant for polymers, in terms of structural characterization in 

practice, diagnostic peaks from CAD and ECD of [TPGS+3Na]
3+

/ 

[TPGS+2Na]
2+

 are preferred for simplicity.  
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Scheme 4.2 CAD and ECD results of [TPGS+3Na]
3+

,
 
[TPGS+3Li]

3+
,
 
and 

[TPGS+3Ag]
3+

 

 

4.3.5 Variation of TPGS samples 

Following the compositional and structural study using FTICR MS and 

MS/MS, the variety of four batches of TPGS samples from 2 different 

manufacturers (A and B) is investigated, where the four batches are labelled 

as A1, A2, B1, and B2, respectively.  According to the mass spectrum of each 

batch (see Figure 4.10), the number average molecular weight (Mn), weight 

average molecular weight (Mw), repeat unit (n) (Table 4.1), and the relative 

intensity of TPGS, Di-TPGS and PEG (TPGS%, Di-TPGS %, and PEG%) can 
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be calculated and are summarized in Table 4.2. Table 4.2 shows that the 

polymerization extent of TPGS for the four samples is similar, with a repeat 

unit of 22±1 (n).  Moreover, the CAD and ECD spectra of [TPGS27+2Na]
2+ 

from the four samples (Figure 4.11 and Figure 4.12) are almost identical 

which argues for similar structures of TPGS between batches.  Even though 

consistent structures of TPGS and similar compositions (TPGS, PEG, and Di-

TPGS) between the four batches are observed, compared to batches B1 and 

B2, A1 and A2 contain more TPGS and less PEG based on the relative 

intensity of each series.   

 

 

Figure 4.10 ESI-FTICR mass spectra of four batches of TPGS samples 
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Figure 4.11 CAD spectra of four batches of TPGS samples 

 

Figure 4.12 ECD spectra of four batches of TPGS samples 
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 Table 4.2 The comparison of four batches of TPGS samples from two manufacturers, first measurement 

 

Batch 
TPGS Di-TPGS PEG 

TPGS % DiTPGS% PEG% 
Mn Mw n Mn Mw n Mn Mw n 

A1 1461.751 1484.335 21.2 2039.141 2051.342 22.6 905.938 924.673 20.2 90.8 2.7 6.4 
A2 1505.268 1529.107 22.1 1951.339 1955.496 20.6 955.860 981.010 21.3 89.4 3.0 7.6 
B1 1502.263 1524.667 22.1 2046.761 2057.954 22.8 953.236 977.835 21.2 81.4 4.9 13.7 
B2 1520.241 1544.232 22.5 2094.985 2105.985 23.9 957.883 978.756 21.3 84.9 2.8 12.2 

A1 heated 
to 50°C 

1452.677 1477.918 20.9 1938.189 1942.591 20.3 926.427 951.560 20.6 90.5 1.6 7.9 

A2 heated 
to 50°C 

1492.326 1519.476 21.9 1959.893 1964.136 20.8 956.344 982.313 21.3 89.3 1.6 9.1 

A1 melted 1448.261 1473.253 20.8 2037.845 2051.533 22.6 921.633 945.845 20.5 91.0 1.6 7.3 

A2 melted 1490.515 1517.504 21.8 2066.633 2079.366 23.3 961.141 989.038 21.4 91.2 2.6 6.2 
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The batch to batch investigation is repeated using the same experimental 

condition, and results are summarized in Table 4.3.  Compared to the data 

from the first measurement in Table 4.2, the polymerization extent of each 

component is slightly different by approximately one monomer unit in the 

second measurement. For example, the repeat unit of TPGS is 21±1 (n) for 

all of four batches in the second measurement, where n = 22±1 in the first 

measurement. On the other hand, although the values of the relative intensity 

of TPGS, Di-TPGS and PEG in Table 4.3 are not exactly the same with those 

corresponding numbers in Table 4.2, the trend is the same by showing that 

batches A1 and A2 contain more TPGS and less PEG than batches B1 and 

B2, with batch A1 having the most TPGS and batch B1 of the least amount of 

TPGS. The fluctuation of the experimental values between two 

measurements could result from the inhomogeneity of the sample, sample 

preparation, ionization efficiency, and the total ion numbers in the cell during 

MS detection. Moreover, accurate quantification is always challenging in 

mass spectrometry, in particular for samples as complex as a polymer 

mixture. To minimize the fluctuation, all of the measurements should use 

consistent experimental conditions and instrument settings. Carefully 

controlling the total ion number in the cell, such as introducing the automatic 

gain control (AGC) system, and using averaging values from multiple 

measurements could also be helpful. Because the data analysis was done 

manually, which is time consuming, using software specially designed to 

handle with high resolution MS data from complex polymers will not only 

increase the efficiency, but may also improve the consistency of the data.   
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Table 4.3 The comparison of four batches of TPGS samples from two manufacturers, second measurement 

 

Batch 
TPGS Di-TPGS PEG 

TPGS % DiTPGS% PEG% 
Mn Mw n Mn Mw n Mn Mw n 

A1 1424.495 1447.824 20.3 2059.541 2070.365 23.1 878.480 904.019 19.5 91.3 2.6 6.1 
A2 1465.787 1490.478 21.2 2110.296 2057.954 24.2 925.456 950.705 20.6 86.8 2.6 10.7 
B1 1488.978 1510.992 21.8 2068.166 2074.722 23.3 914.35 937.792 20.4 77.1 4.3 18.6 
B2 1489.684 1508.906 21.8 2117.571 2128.128 24.4 934.170 954.180 20.8 79.4 2.6 17.9 

A1 heated 
to 50°C 

1428.393 1451.726 20.4 2069.459 2086.451 23.3 905.574 927.426 20.2 88.2 2.3 9.5 

A2 heated 
to 50°C 

1467.92 1492.91 21.3 2078.627 2093.237 23.5 938.076 960.881 20.9 85.7 2.0 12.4 

A1 melted 1427.071 1449.809 20.4 2026.927 2042.473 22.4 914.256 938.992 20.4 83.5 1.7 14.8 

A2 melted 1462.848 1487.792 21.2 2082.895 2097.447 23.6 937.932 960.594 20.9 88.2 2.6 9.2 
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In the drug industry, the stability of drug excipients is a crucial issue 

directly relevant to the stability of a drug product and the shelf time.  To 

investigate the stability of TPGS, samples A1 and A2 are processed under 

circumstances which mimic biology processed by melting the samples in a 

warm water bath (37˚C) and which mimic the extreme ambient environment 

by exposing the samples to 50˚C/ambient humidity for four weeks. The MS 

data of the processed samples are summarized in Table 4.2, Table 4.3, and 

Figure C.3.  All of the samples listed in the same table are measured on the 

same day. According to the results, it looks like some subtle changes have 

occurred to those samples heated to 50˚C because the relative ratio of free 

PEG increases by 1.5%-3.5%, and this trend is consistent between two 

measurements in Table 4.2 and Table 4.3.  In theory, if TPGS or Di-TPGS is 

decomposed, in addition to free PEG, tocopheryl succinate and/or free 

tocopherol should be generated at the same time. Peaks indicating tocopheryl 

succinate or free tocopherol, however, are not observed in the MS spectra, 

which could due to the low abundance and low ionization efficiency of the two 

compounds. 

 In contrast, for samples melted in water bath, results are not consistent 

between the two batches.  ‘A1 melted’ shows an increase in the amount of 

free PEG but the observation from ‘A2 melted’ is opposite. The two 

measurements of ‘A1 melted’ differ a lot in values. One possibility is that the 

sample is not very homogeneous, because solid-like TPGS samples are not 

likely to flow evenly during the mimic experiments. Moreover, as discussed 

above, the experimental uncertainty is relatively big due to several factors, so 

other complementary quantification analysis is necessary to accurately 
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determine the changes between standard samples and the processed 

samples.  

4.4 Conclusions 

  FTICR MS and MS/MS were demonstrated as a valuable tool in the 

compositional study and structural characterization of TPGS samples, which 

can be used as a complementary tool for traditional spectroscopic techniques 

in TPGS research.  The results show that high mass accuracy and high 

resolution are of great benefit in elemental formulae assignment and in 

obtaining detail structural information.  Some diagnostic fragments from CAD 

and ECD MS/MS of [TPGS+3Na]
3+

 and [TPGS+2Na]
2+

 can be used for the 

identification of the TPGS structure in the future.  Interestingly, no fragment 

ions were detected from the [TPGS+Na]
+
 precursor under both CAD and EID.  

By utilizing ECD/ECD MS
3
, more confident supplementary structural 

information can be achieved.  Varying solution conditions were shown to 

affect the compositional study of TPGS samples, indicating that the solvent 

selection could be particularly important for the mass spectrometry study of 

some polymers.  Different metallic-cation adducts can strongly influence the 

fragmentation pattern of TPGS, with the silver adduct providing particularly 

interesting results.  In addition to the methodology study, the MS and MS/MS 

results from four batches of TPGS samples from two manufacturers were 

compared.  This method can be applied for the rapid compositional and 

structural investigation of many other polymeric compounds.   
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Chapter 5 The competitive influence of 

Li
+
, Na

+
, K

+
, Ag

+
, and H

+
 on the 

fragmentation of TPGS
2
 

 

5.1 Introduction 

5.1.1 Investigation of the influence of metallic adduction on the 

fragmentation of polymers 

  Interest in using MS and MS/MS for the study of synthetic polymers has 

grown sharply in the past decade due to development of raw polymeric 

products and advances in mass spectrometers.  In practice, it can be difficult 

to ionize or fragment many industrial polymers, and salt doping is becoming 

one of the most effective solutions, which has been widely investigated.
259-266

  

Additionally, inducing metallic adducts to improve the fragmentation efficiency 

in MS/MS has been frequently applied for many types of molecules, such as 

olaigosaccharides,
165,267-269

 and peptides/proteins.
270-274

 

The choice of adducts, and metallic ions in particular, can have a great 

impact on the ionization
259-261

 and fragmentation.
275-277

 By facilitating the 

ionization, silver ions are frequently used as a cationizing agent for polymers 

like polystyrene because of a possible binding with the phenyl ring.
258,259,276

  

Ag
+
 cationization is also very effective for generating MS spectra of 

polyglycols and can improve fragmentation in CAD.
258

  The most important 

class of adducts in polymer research is the alkali metal because of the 

2
This chapter has been partially adapted from Wei, J.; Bristow, A.W.T.; O’Connor, P. The competitive influence 

of Li
+
, Na

+
, K

+
, Ag

+
 and H

+
 on the fragmentation of a PEGylated polymeric excipient, accepted. Copyright 2014 

Springer. Bristow, A.W.T. provided the TPGS samples. Wei, J. did all of the experiments and drafted the 
manuscript under the supervision of O'Connor P. B.. 



115 
 

ubiquitous usage of sodium/potassium salt in polymer synthesis
278,279

 and the 

evidence of improving the ionization and fragmentation efficiency of some 

polymers.
258,280

  In the presence of binary mixtures of NaCl and another salt 

(LiCl, KCl, CsCl, or NH4Cl), the selectivity between poly(propylene glycol) and 

the cations were found in the order of NH4
+≈ K

+
˃Na

+≈ Cs
+
˃ Li

+
, though the 

solvent, counter ions, and the conformation are also significant.
261

  In terms of 

the fragmentation, most literature studies were conducted by CAD, and some 

trends were monitored.  The binding strength of polyethylene glycol (PEG) 

with alkali metals has been investigated experimentally and theoretically. 

253,260,281
  Using a quadrupole ion trap mass spectrometer, the relative affinity 

of Na
+
, K

+
, and Cs

+
 to PEG was characterized by CAD experiments, and it 

was found that the larger adduct was lost more easily,
253

 which was 

complemented by other studies carried out on different instruments and 

polymers.
143,145,260

  Furthermore, the binding energy between alkali cations 

and PEG was determined to be decreasing in the order of Li
+
˃Na

+
˃ K

+
˃Cs

+ 

using the electronic structure calculation based on density functional theory, 

and this order is in agreement with experimental results.
253,281

  The calculation 

also indicates that the binding energy of the cation is not significantly affected 

by the polymerization degree (n) when n ˃10.  Additionally, it is believed that 

smaller alkali ions with stronger interaction with the oligomer provide more 

structural information in CAD.
145,258,282

   

  Comparatively, there are fewer studies focused on the influence of the 

adduct on the fragmentation of polymers using electron-based fragmentation 

methods.   Because electron-based fragmentation methods are not as widely 

available as CAD, rules for fragmentation of synthetic polymers in electron-
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based fragmentation methods are not as well understood as they are for 

biopolymers.  In the past decade, it was demonstrated that ECD or ETD can 

provide complementary structural information of different polymers,
81,149,283

 

though there are also some exceptional cases.
145,284

  Understanding of the 

influence of different adducts on electron-based fragmentation process can 

be, therefore, useful in extraction structural information from ECD spectra and 

valuable in selecting adducts in practice.  In Smith and Mosely’s recent 

work,
143

 they studied the CAD, ECD, and hot-ECD behaviours of doubly-

charged PEG with the presence of two different charge carriers among Na
+
, 

K
+
, and Li

+
.  A dissociation order, Na

+
 ˃ K

+
 ˃ Li

+
 (loss of Na

 
is

 
preferred), 

different from the binding strength deduced from CAD experiments, was 

observed in ECD and hot-ECD experiments and suggests that the reduction 

potential (also known as the redox potential, the standard reduction potential 

of a cation is measured in solution using a hydrogen electrode as a reference 

and reflects the tendency of a species to capture an electron) of the ion may 

play an important role in the electron-based dissociation process, such that 

the ions with higher reduction potential are lost more easily.
143

  In addition to 

reduction potential, second ionization energy,
270

 charge density,
271

 

recombination energy
165,274

 and the electronic configuration
285

 of the 

cationizing metal ion were also suggested as factors that might be relevant to 

the ECD process. In general, for most of the molecules investigated by 

electron-based fragmentation techniques, introducing the smaller alkali metal 

ion usually produces more abundant fragments.
78,143,163,165

 The role of the 

metal ion in electron-based fragmentation process, however, is still far from 

clear.  
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5.1.2 Content of the chapter 

  In Chapter 4, the fragmentation of TPGS was investigated by both CAD 

and ECD, and TPGS with three silver cations showed different ECD 

behaviour in contrast to the precursors with 3Li
+
 or 3Na

+
 ions.  The principal 

thrust of the research in this chapter was to discuss the influence of metal ion 

adducts in CAD and, particularly, in ECD processes according to the 

observations from the fragmentation of TPGS.  Several widely used metallic 

ions (Li
+
, Na

+
, K

+
, Ag

+
) were selected and also compared with proton 

adduction.  To estimate the impact of each adduct, doubly-charged TPGS27 

(27 is the degree of polymerization, structure shown in Figure 5.1) ions in the 

presence of two different charge carriers (Li
+
, Na

+
, K

+
, Ag

+
, H

+
) are used in 

most of the experiments.  

 

Figure 5.1 Structure of TPGS27 (27 is the degree of polymerization) 
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5.2  Experimental section 

5.2.1 Chemicals  

TPGS samples (ISOCHEM, Vert-Le-Petit, France) were dissolved in 50:50 

methanol:water to a concentration of ~1 µM before use.  For different 

experiments, sodium nitrate, lithium nitrate, potassium nitrate, and silver 

nitrate, (Fisher Scientific UK limited, UK) were added to a final concentration 

of 1 mM or 0.1 mM depending on the experiment. 0.2% of formic acid (Sigma-

Aldrich Co., St. Louis, MO, USA) was used for the protonation.  Water was 

purified by a Millipore Direct-Q purification system.   

5.2.2 Mass spectrometry experiments.   

All mass spectrometry experiments were carried out on a Bruker 12 T 

solariX FTICR mass spectrometer (Bruker Daltonik, GmbH, Bremen, 

Germany) with a homemade nano-electrospray ion source. For CAD, the 

parent ions were isolated in the quadrupole and then transferred to the 

collision cell for fragmentation using a collision energy from 9 to 46 V (in 

general, 11 ± 2 V for precursors with one/two protons, and 42 ± 4 V for all of 

the other precursors) which was optimized for each sample to provide an 

even spread of fragments, and fragments were finally detected in the ICR 

infinity cell.
110

  In the ECD experiment, the isolated ions were accumulated 

externally in the collision cell and then transferred to the ICR cell.  Trapped 

ions were then irradiated with electrons from a 1.5 A heated hollow cathode; 

the bias voltage used for ECD experiments was ~ 2 V and the pulse length 

was around 0.1 s.  To achieve a desirable S/N, up to 20 scans were averaged.     
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5.3 Results and discussions 

5.3.1 The influence of the metallic adduct on the fragmentation of 

TPGS in CAD 

  The CAD results of [M+2Li]
2+

, [M+2Na]
2+

, [M+2K]
2+

, and [M+2Ag]
2+ 

displayed in Figure 5.2 and summarized in Scheme 5.1, show that diagnostic 

fragments cleaved at positions ‘a’, ‘f’, ‘d’ and ‘c’ are detected for TPGS with 

2Li
+
, 2Na

+
, or 2Ag

+
, but not for [M+2K]

2+
.  The cross-ring cleavage in position 

‘a’ is the most favourable fragmentation channel as it gives the most intense 

fragment in the CAD spectra of [M+2Li]
2+

, [M+2Na]
2+

,
 
and [M+2Ag]

2+ 
(Figure 

5.2).  The high intensity of this peak is likely driven by the thermodynamic 

stability of a larger conjugated structure as suggested in Scheme 4.1.  The 

ready cleavage at position ‘f’ indicates that the connection between the long 

PEG chain and the tocopheryl succinate is relatively labile, producing another 

abundant fragment.  With regard to the intensities of peaks from cleavages at 

‘d’ and ‘c’, higher abundance is found in the [M+2Ag]
2+ 

spectrum and very low 

fragmentation abundance is observed in the [M+2Na]
2+ 

spectrum.  

Additionally, losing one charge carrier is an important channel for [M+2Na]
2+

, 

and in particular for [M+2K]
2+

, but not for [M+2Li]
2+

 and [M+2Ag]
2+

.  
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Figure 5.2 CAD spectra of a): [TPGS+2Li]
2+

, b): [TPGS+2Na]
2+

,
 

c): 

[TPGS+2K]
2+,

 

and d): [TPGS+2Ag]
2+

. 
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Scheme 5.1 CAD and ECD results of [TPGS+2Li]
2+

, [TPGS+2Na]
2+

,
 

[TPGS+2K]
2+

,
 
and [TPGS+2Ag]

2+ 

 

  When combining two different metallic cations, some relative influence 

information for the various adducts can be determined, and this information is 

summarized according to the CAD spectra of [M+X1+X2]
2+

 (where X1 and X2 

refer to Li
+
, Na

+
, K

+
, or Ag

+
, and X1≠X2) (Figure 5.3).  First, precursors having 

a silver cation, such as [M+Ag+Li]
2+

 and [M+Ag+Na]
2+

, produce abundant 

fragments from cleavages at ‘a’, ‘f’, ‘d’ and ‘c’; however, none of the 

fragments is detected for [M+K+Ag]
2+

.  Moreover, there is also a scarcity of 

fragments from cleavages at either ‘a’, ‘f’, ‘d’ or ‘c’ in the [M+K+Na]
2+

 and 

[M+K+Li]
2+ 

 CAD spectra (Figure 5.3b and f).  Though one doubly-charged 
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peak at m/z 822.5389 is detected in the [M+K+Li]
2+ 

spectrum, it might be 

preceded  by a rearrangement and is assigned to C84H158O27KLi (Table D.2).  

The result indicates that the silver cation adduct could improve the 

fragmentation of TPGS in CAD, while, on the contrary, the presence of K
+
 

inhibits the fragmentation significantly even when accompanying with a Ag
+ 

cation.   

 

Figure 5.3 CAD spectra of a): [TPGS+Li+Na]
2+

, b): [TPGS+K+Li]
2+

, c): 

[TPGS+Li+Ag]
2+

, d): [TPGS+Na+Ag]
2+

,
 

e): [TPGS+K+Ag]
2+

, and f): 

[TPGS+K+Na]
2+
. ‘nPEG’ in the figure refers to loss of nC2H4O units 
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  The ready loss of K
+
 from all of the precursors suggests that K

+
 has a 

very weak binding with the TPGS.  On the other hand, a very strong binding 

between TPGS and Li
+
 /Ag

+
 is also demonstrated by the CAD results, since 

detachment from the precursors was not found for either Li
+
 or Ag

+
.  Without 

losing of any charge carrier from [M+Ag+Li]
2+

 (Figure 5.3c), it is hard to judge 

the competitive binding strength between the Li
+
 and Ag

+
 adducts.  According 

to the CAD results of [M+Na+Li]
2+

, [M+Na+K]
2+

, and [M+Na+Ag]
2+

, the affinity 

of Na
+ 

is determined to be weaker than Li
+
 and Ag

+
 but stronger than K

+
.  

Hence, the binding strength of the metallic cations to the TPGS is in the order 

of Ag
+≈Li

+
˃Na

+
˃K

+
. The result is in agreement with the investigations carried 

out between PEG/PEG methyl ether and Li
+
, Na

+
, or K

+
.
143,253

 The 

improvement of fragmentation by the Ag
+
 cation shown in Figure 5.3c-d is 

likely because of a strong ion-dipole binding to the oxygen in the PEG region 

as well as a strong interaction with the ester group (d-π interaction) next to 

the big π bond region, whereas the lack of fragmentation whenever K
+
 is 

involved might be because that loss of K
+
 is the energy release channel and 

the remained internal energy gained in the collision process is not enough for 

proceeding any backbone cleavages.  In some spectra, a few low intensity 

peaks cannot be identified which might be from rearrangements. 

5.3.2 The influence of the metallic adduct on the fragmentation of 

TPGS in ECD 

 For TPGS attached with alkali metal ions, [M+2Li]
2+

, [M+2Na]
2+

, and 

[M+2K]
2+

, ECD shows different cleavages from the CAD results, and ECD 

spectra are in Figure 5.4 and the cleavages are summarized in Scheme 5.1b.  

Cleavages at positions ‘e’ and ‘d’ are detected, with the cleavage at ‘d’ as the 
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dominating channel (Figure 5.4a-c).  For [M+2Ag]
2+

, the only fragment 

detected indicates a cleavage at position ‘c’, otherwise, loss of the Ag
+ 

cation 

is the only other peak observed (Figure 5.4d).   

 

Figure 5.4 ECD spectra of a) [TPGS+2Li]
2+

, b) [TPGS+2Na]
2+

, c) 

[TPGS+2K]
2+

, and d) [TPGS+2Ag]
2+

 

The ECD results of TPGS with two different charge carriers also give some 

trends.  When both of the adducts are alkali metal ions among Na
+
, K

+
, and 

Li
+
, fragments cleaving at positions ‘d’ and ‘e’ are produced (Figure 5.5a-b, f).  

In contrast, whenever Ag
+
 is present (Figure 5.5c-e), the fragment pattern 

closely resembles the ECD of [M +2Ag]
2+

 from Figure 4d with only an 

observed cleavage at position c. In addition to the different fragmentation 

patterns compared with the CAD results, the charge carrier is lost in a very 
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different order, Ag
+
 ˃ Na

+
 ˃ K

+
 ≥ Li

+
 (Ag

+ 
is lost

 
most easily), which can be 

seen in Figure 5.5.  Loss of the Ag
+ 

cation always gives the most intense peak 

if exists.  The sodium cation is lost more easily than K
+
 and Li

+
; this was also 

observed in Smith’s ECD and hot-ECD experiments on the PEG methyl 

ether,
143

 and this order does not follow the binding strength found from the 

CAD experiments.
281

  In comparison, the lithium adduct and potassium adduct 

are the most difficult to detach; however, since a tiny peak indicating [M +Li]
+
 

is detected on the ECD spectrum of [M +Li+K]
2+

, it suggests that K
+
 might be 

relatively more labile than Li
+
 in the ECD process.  This trend, Ag

+
 ˃ Na

+
 ˃ K

+
 

≥ Li
+
 (Ag

+ 
is lost

 
most easily), follows the decreasing reduction potential of 

each ion (0.8 V (Ag
+
) ˃ -2.71 V (Na

+
) ˃ -2.93 V (K

+
) ˃ -3.05 V (Li

+
)).

286
  Thus, 

the ion having a higher reduction potential has a higher tendency to be 

reduced and lost in ECD.  The very similar low standard reduction potential 

values of K
+
 and Li

+
 explains the ECD spectrum of [M +Li+K]

2+ 
in Figure 5.5b 

where only a tiny peak indicating loss of K
+
 is observed.  
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Figure 5.5 ECD spectra of a) [TPGS+Li+Na]
2+

, b) [TPGS+K+Li]
2+

, c) 

[TPGS+Li+Ag]
2+

, d) [TPGS+Na+Ag]
2+

,
 

e) [TPGS+K+Ag]
2+

, and f) 

[TPGS+K+Na]
2+

 

 

  According to the ECD results, for all of the precursors, there are two 

possible pathways after the electron is captured by the cation.  Take 

[M+Ag+X]
2+ 

as an example, one channel is the neutralization and loss of the 

Ag
+
 cation; the resulting Ag

●  
adduct is readily lost before leading to any 

fragmentation.  The other pathway is that the Ag
+
 attached to the ester group 

next to the chromanol ring captures one electron competitively and the 

resulting radical induced a direct α-cleavage at position ‘c’.  For the Ag
+
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adduct, the first pathway of losing the Ag
+
 cation seems much more prevalent 

than the second one, so the fragment from cleavage at ‘c’ has a very low 

intensity.  On the contrary, for alkali metal ions, the second pathway is much 

favourable, inducing cleavage at position ‘d’.  Moreover, whenever the Ag
+
 

cation is a charge carrier, fragments detected are solely from cleavage at ‘c’ 

and loss of Ag
+
, which argues that the Ag

+ 
cation is dominant in generating 

fragments in ECD compared to Na
+
, K

+
, or Li

+
, and also demonstrates that the 

reduction potential of the metallic ion might be a crucial factor in influencing 

fragmentation during the ECD process.  Therefore, when selecting the 

metallic adduct in an ECD experiment, the ion with a high reduction potential 

may be more effective in capturing electrons, but may also be readily lost 

before leading to any fragmentation. 

In the ECD spectra of TPGS with alkali metal adducts (Figure 5.4a-c), 

though cleavage at position ‘d’ always generates abundant fragments, some 

subtle differences are observed.  For [M+2Na]
2+

, and [M+2K]
2+

, a direct 

cleavage at position ‘d’ without loss of PEG units is the most intense peak; 

while, for [M+2Li]
2+
, a cleavage at ‘d’ with loss of one PEG unit produces the 

most abundant fragment (Table D.3).  A similar result was observed for TPGS 

with 3 or 2 sodium adducts as described in section 4.3.3, where the loss of 

one PEG unit is detected for [TPGS+3Na]
3+

, but not for [TPGS+2Na]
2+

, which 

is likely due to different conformations of the two precursors.
146

  In the ECD 

spectra of the precursors with Li
+
 as a charge carrier, [M +Li+Na]

2+
 and [M 

+Li+K]
2+

 (Figure 5a-b), the peak with 26 PEG units (losing one PEG unit) has 

higher or equivalent intensity in comparison with the other peak with 27 PEG 

units, while for [M+Na+K]
2+

 (Figure 5.5f), the peak with 27 PEG units from the 
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direct cleavage at ‘d’ is more intense.  In contrast to the silver cation, all three 

alkali metal ions, Li
+
 Na

+
, and K

+
, have very similar physical and chemical 

properties, so the fragmentation patterns are similar; however, precursors 

with different alkali metal ions may show some subtle differences in inducing 

fragmentation, such as the relative intensity of each fragment in this case.  

5.3.3 In comparison with protonation  

  Even though, for synthetic polymers, protonation is quite often not as 

effective as the metal cationization, protons are still one of the most important 

adducts.  It is worth noting that though formic acid is added to improve the 

protonation of TPGS, the intensity of the [M+2H]
2+ 

peak is very low, because 

Na
+ 

and NH4
+ 

are still the main adducts.  Herein, the influence of protonation 

on the fragmentation of TPGS is investigated by CAD and ECD experiments 

carried on [M+H+X]
2+

 (X is one of the ions from H
+
, Li

+
, Na

+
, K

+
, Ag

+
), and 

some distinct results are observed.     

  Comparing the CAD results in Figure 5.2 and Figure 5.3 to Figure 5.6I, 

Figure 5.6I shows that more abundant product ions and different diagnostic 

fragments are produced by precursors with one or two protons, such as 

[M+2H]
2+

, [M+H+Li]
2+

, [M +H+Na]
2+

, [M+H+K]
2+

, and [M+H+Ag]
2+

.  Cleavages 

at ‘e’, ‘h’, and ‘c’ generate some high intensity peaks, and extensively loss of 

PEG units is common.  The cross-ring cleavage at position ‘a’ is not observed 

at all.  In Figure 5.6I, almost all of the singly-charged ions are due to the loss 

of one proton, so based on the CAD experiments, the binding strength for all 

of the five charge carriers investigated follows the order Ag
+
 ≈ Li

+
 ˃Na

+
˃ K

+ 

˃H
+
.  This order suggests that the affinity of the adduct ion for the precursor is 
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not only linked to its size.  Instead, except for the proton, for the several metal 

ions (Figure 5.2 and Figure 5.3), it looks like the one binding stronger with the 

precursor ion has the potential to generate more structural information.  One 

hypothesis that may explain these results
258

 is that the internal energy 

acquired during CAD is partially lost with the loss of the adduct ion, and thus 

insufficient surplus energy remains for additional fragmentation.   Two rational 

explanations of the abundant CAD spectra of protonated precursors are that: 

first, the collision voltage used for extensively fragments the precursors with 

one/two protons is around 11 V, compared to ~42 V used to fragment the 

precursors without protons, suggesting that protonated species have much 

more labile structures; second, proton migration could induce fragmentation 

as it does in proteins.
87,287
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Figure 5.6 CAD and ECD spectra of [M+2H]
2+

, [M+H+Li]
2+

, [M +H+Na]
2+

, 

[M+H+K]
2+

, and [M+H+Ag]
2+
. ‘nPEG’ in the figure refers to loss of nC2H4O 

units. 

 

The ECD results of the precursors binding with one proton/two protons in 

Figure 5.6II also show differences, where no fragments of high abundance 

are detected.  In the ECD spectrum of [M+2H]
2+

 (Figure 5.6II a), a small 

fragment at m/z 430.3805 ([C29H50O2]
+
), is assigned to the protonated 

tocopheryl labelled as cleavage ‘g’, which is not detected for any of the other 

precursors.  Extensive loss of PEG units (C2H4O) with the cleavage at ‘e’ or ‘f’ 

is observed.  The other precursors with two different charge carriers yield 

some product ions of low intensity from cleavage at ‘f’ with different numbers 

of PEG units.  One important observation is that the detachment of the proton 
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in the ECD experiments follows the order, Ag
+
 ˃H

+
˃Na

+
˃ K

+≥ Li
+
, where the 

ion with the higher standard reduction potential is lost more easily.  The 

results in Figure 5.6II b-d seem also in agreement with the proposal that the 

ion with a high reduction potential plays a dominant role in generating 

fragments, but could be lost easily.  The fragment cleavage at position ‘c’ 

from [M+H+Ag]
2+

 is not observed in Figure 5.6IIe, which might be due to the 

high reduction potential of Ag
+
 and H

+
, therefore, both of the two charge 

carriers could be detached easily without yielding any fragmentation.   

5.4 Conclusions  

  The influence of several adducts, H
+
, Li

+
, Na

+
, K

+
, and Ag

+
, on the 

fragmentation of a PEGylated polymer, TPGS27, in CAD and ECD was 

investigated.  The binding strength of those charge carriers was determined in 

the order of Ag
+ ≈  Li

+
 ˃Na

+
˃ K

+ 
˃H

+
.  Different adducts influence the 

fragmentation patterns of TPGS, with protonated species producing very 

different fragments in particular.   In ECD, a different order of losing the 

charge carrier was observed, which follows Ag
+
 ˃H

+
˃Na

+
˃ K

+≥ Li
+ 

(Ag
+
 is 

detached most easily), and this order is in agreement with the decreasing 

reduction potential of each ion (0.8 V (Ag
+
) ˃ 0 V (H

+
)  -2.71 V (Na

+
) ˃ -2.93 V 

(K
+
) ˃ -3.05 V (Li

+
)).

286
   In addition, Ag

+ 
shows dominant role in producing the 

fragmentation in cases where two different charge carries are present, 

suggesting that the reduction potential of the charge carrier could significantly 

affect the ECD fragmentation. Distinct fragmentation behaviours of protonated 

precursors in CAD are likely due to the high mobility of protons. 
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Chapter 6 Structural characterization of 

chlorophyll-a
3
  

 

6.1 Introduction 

6.1.1 General characters of chlorophylls 

Chlorophylls are omnipresent from algae to higher plants.  They serve 

as crucial electron and energy transfer intermediates in photosynthesis.  

Particularly, most of these functions depend on its special structure, a large 

asymmetric ‘π-electron box’.
288

  Chemically, chlorophylls are unstable in both 

acid and base, easily oxidize under light,
289

 and have a tendency for 

aggregation and interaction with molecules in their environment,
290

 all of 

which increase the difficulty of study. Improved analytical methods for  

structural determination are needed to understand the challenges of 

chlorophyll aggregation,
291

 the structural modification of chlorophylls and 

catabolites, as well as its applications in  energy research.
292

  In the last 20 

years, one of the tough challenges drawing attention is chlorophyll 

degradation, which has remained an enigma.
293

  

6.1.2 MS analysis of chlorophylls and porphyrin derivatives 

During the last several decades, MS has been used to obtain 

fragmentation information of many molecules, where MS/MS techniques are 

 

3
This chapter has been partially adapted with permission from Wei, J.; Li, H.; Barrow, M.; O’Connor, P. 

Structural Characterization of Chlorophyll-a by High Resolution Tandem Mass Spectrometry, J. Am. Soc. Mass. 
Spectrom. 2013, 24, 753-760. Copyright 2014 Springer. Wei, J. performed all of the experiments with the help of 
Li, H. and Barrow, M.. Wei, J. drafted the manuscript with the help of O'Connor P. B.. All of the work was done 
under the supervision of O'Connor P. B.. 
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especially useful for structural breakdown elucidation.
78,79,294,295

  Various MS 

techniques, e.g. LC-fast atom bombardment (FAB)
296

/ESI MS,
297

 LC-

atmospheric pressure chemical ionization (APCI) MS,
298,299

 and MALDI MS,
300

 

have proven to be very useful for the identification of chlorophylls and their 

derivatives.  However, to our knowledge there are only a few publications 

focusing on the MS/MS behaviour of chlorophylls. Several significant 

publications from the early 1990s reported interesting cascade fragmentations 

of chlorophyll-a (structure is shown in Figure 6.1), which were attributed to the 

consistent loss of aliphatic side groups or cleavages from ring IV and V, using 

252
Cf plasma desorption,

301,302
 FAB,

303
 and laser photoionization mass 

spectrometry.
304

  However, due to limited resolution and mass accuracy, most 

of the product ions cannot be separated and identified unambiguously.  In the 

published research, either hard ionization conditions or high-energy 

CAD
300,301,303

 were used and generated extensive fragmentation.  Motivated 

by these factors and the numerous MS/MS techniques available with FTICR 

mass spectrometers, an improved fragmentation characterization method can 

be established for chlorophyll research.  

 

Figure 6.1 Structure of chlorophyll-a 



134 
 

CAD has been used to elucidate the structures of porphyrin pyrrole,
305

 

octaethylporphyrin and its complexes.
306

  On the other hand, based on the 

conjugated structure of porphyrin like compounds, electron-based MS/MS can 

likely lead to fragmentation in a well-regulated way, which may aid 

understanding of the degradation mechanism.  Kaczorowska and Cooper
76

 

described the EID behaviour of octaethylporphyrin (OEP) and its iron (III) 

complex, and found that the α- and β- cleavages generate the most abundant 

fragments.  Even though having a similar porphyrin structure to chlorophylls, 

different central metal ion and side groups of these two compounds may act 

differently during MS/MS.  Electron capture induced dissociation has been 

applied to protoporphyrin IX ions by Nielsen and his colleagues.
307

  Though 

few fragments were observed, protoporphyrin ions showed high efficiency in 

electron capture, where [M + H]
-
 is formed by capture of two electrons.  

6.1.3 Content of the chapter 

Using chlorophyll-a as a representative type of chlorophylls, this study 

has not only provided new fragmentation information by EID, CAD, and 

IRMPD using a high resolution FTICR mass spectrometer but also 

demonstrated the favourable cleavage sites of chlorophyll-a and differences 

between three MS/MS techniques.  The formulae and likely structures of the 

characteristic fragment ions are proposed as well.  

6.2 Experimental section  

6.2.1 Chemicals 

  Chlorophyll-a from spinach was purchased from Sigma-Aldrich, 

Gillingham, U.K..  Acetone was obtained from Acros organics (New Jersey, 
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USA).  For mass spectrometric analysis, chlorophyll-a was dissolved in 

acetone/water (7:3) to a final concentration of ~1 µM. ESI tuning mix (Product 

No: A182611, Agilent Technologies, USA) was diluted 200 times in 50:50  

methanol/water with 1% formic acid before use. 

6.2.2 Mass spectrometry experiments 

 All mass spectrometry experiments were carried on a Bruker 12 T solariX 

FTICR mass spectrometer (Bruker Daltonik, GmbH, Bremen, Germany) with 

a homemade nano-electrospray ion source; an infrared laser was used for 

IRMPD experiments.  A 4 M data point time-domain transient was acquired 

using a broadband sweep excitation providing a m/z range from 200 to 2500 

and a theoretical resolving power of 530,000 at m/z 400.  To achieve a 

desirable S/N and spectral quality, up to 200 scans were averaged on all 

MS/MS experiments.  For CAD, using argon as the collision gas, the parent 

ions were isolated (with a 3-5 Da window) in the first quadrupole (Q1) and 

then fragmented in a collision cell; fragments were finally detected in the ICR 

infinity cell.
110

  The collision energy was optimized from 15 to 65 V, and 22 V 

was selected for the final analysis.  In the EID experiment, the isolated ions 

were accumulated externally in the collision cell for 3 s and then transferred to 

the ICR cell.  Trapped ions were irradiated with electrons from a 1.7 A heated 

hollow cathode under optimized bias voltage and pulse length (12.2 eV, 0.096 

s).  IRMPD experiments were carried out in the ICR cell by exposing ions to a 

CO2 laser beam (75 W, ~10.6 µm) with varying laser power (15%-30%) and 

duration (0.5-1 s).  ESI tuning mix was run before every experiment to 

calibrate the instrument externally.  All spectra were processed by Data 

Analysis software manually. By external calibration, the elemental 
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composition of most peaks can be identified within a mass error of 3 ppm 

using the Smartformula function in DataAnalysis.  

6.3 Results and discussions 

      The protonated molecular ion [M + H]
+ 

(C55H73O5N4Mg m/z 893.5425) was 

isolated and fragmented by CAD, IRMPD, and EID respectively.  The spectra 

induced by all three MS/MS techniques are shown in Figure 6.2.  Under CAD 

conditions, few fragments were generated, and their identification will be 

discussed later.  More peaks would appear if the collision energy of CAD 

were increased, but the intensity of fragments in higher m/z ranges, e.g. 

614.2, diminishes sharply as well (Figure E.1).  Since some secondary 

fragmentation may be induced during this process, 22 V was chosen as the 

collision energy in the final experiment where the molecular ion still can be 

observed.  In comparison, the EID and IRMPD spectra are much more 

abundant with extensive fragmentations in the lower m/z range.  

 

Figure 6.2 Fragmentation of singly-charged chlorophyll-a under conditions of 

(a) optimized CAD 22 V; (b) IRMPD with pulse length of 0.9 s and 30% pulse 

power; (c) EID 12.2 V for 0.096 s 
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6.3.1 Loss of the phytyl group 

The peak around m/z 614/615, which is the loss of the phytyl group from 

the molecular ion, was named chlorophyllide-a (C35H34O5N4Mg) and can be 

used as the diagnostic peak of chlorophyll-a.
300,308

  Interestingly, with the help 

of FTICR MS, two peaks, one at m/z 614.2374 (C35H34O5N4Mg) and another 

peak at m/z 615.2452 corresponding to C35H35O5N4Mg, adjacent to the 
13

C 

isotopic peak of m/z 614.2374, were both detected unambiguously by all 

three MS/MS methods when the peaks near m/z 614.2 were examined 

closely (see Figure 6.3, inset spectra were phased
104

).  The peak at m/z 

614.2374 ([M - phytyl + H]
+•

) is most likely formed by cleavage between the 

phytyl and ester oxygen.  At the same time, one hydrogen migrates from the 

phytyl chain to the main structure, leading to the peak at m/z 615.2452 ([M - 

phytyl + 2H]
+
).  With a resolution of ~200,000, the peak at m/z 615.2452 

(C35H35O5N4Mg) can be separated from m/z 615.2408 (
13

CC34H34O5N4Mg), 

which agrees with the speculation in Chait and Field’s original work.
302

  

Overall, the esterifying phytyl linkage is quite weak and easily broken.  

Normally, generating even-electron fragments from an even-electron 

molecular ion is highly preferred and thus recognized as the major case.
309

  

Comparing the results in Figure 6.3, the relative intensity of [M - phytyl + 2H]
+
 

is always higher than [M - phytyl + H]
+• 

in CAD and IRMPD spectra which  

agrees with this prediction.  However, a contrary result is presented in the EID 

spectrum below due to a different mechanism.  
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Figure 6.3 Expanded m/z region of 614-619 in Figure 6.2 (a) CAD; (b) 

IRMPD; (c) EID; (d) and (e) are simulations of C35H34O5N4Mg and 

C35H35O5N4Mg, respectively. Inset on the left is the further zooming of m/z 

region of 615.2-615.3   

6.3.2 Cleavages from long aliphatic chains 

According to the molecular composition predicted from the exact mass 

value, a series of fragments are proposed from cleavages of the two aliphatic 

side chains (side chains in sites C-17 and C-29  are named chain A and chain 

B hereafter, which are highlighted in Scheme 6.1), and summarized in                                 

Table 6.1.  
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Scheme 6.1 Labelling the proposed cleavages sites of chain A and B in ring 

IV&V 

 

 Apart from the cluster around m/z 614.2, the other two high intensity 

peaks at m/z 583.2190 and m/z 555.2241 generated by all three methods are 

assigned to the loss of the phytyl group and CH3O/CH3COO of the B chain 

respectively.  Moreover, a range of peaks, which are also proposed from the 

cleavages from chain A and B, are identified. These peaks have a relatively 

higher intensity as well in EID and IRMPD spectra (Relative intensity can be 

found in Table E.1). The presence of this series suggests that the spatial 

positions of chain A and chain B may allow interaction, where cyclization 

could occur between the two cleavages sites due to their proximity.   
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                                Table 6.1  Summary of fragments proposed cleavages from Chain A & B 

Proposed 
formula 

Theoretical 
mass 

EID 
ion (m/z) 
Internally 
calibrated 

Error 
(ppm) 

CAD 
ion (m/z) 
Internally 
calibrated 

Error 
(ppm) 

IRMPD 
ion (m/z) 
Internally 
calibrated 

Error 
(ppm) 

Proposed 
cleavage 

C35H35O5N4Mg 615.2452 615.2453 0.16 615.2454 0.32 615.2456 0.65 a 
C35H34O5N4Mg* 614.2374 614.2374 --- 614.2374 --- 614.2374 --- a- H• 
C34H31O4N4Mg* 583.2190 583.2190 --- 583.2193 --- 583.2191 --- ag 
C34H30O4N4Mg 582.2112 582.2112 0 582.2114 0.34 582.2113 0.17 ag - H• 

C33H31O3N4Mg 555.2241 555.2240 -0.18 555.2242 0.18 555.2243 0.36 af 

C33H31O2N4Mg 539.2292 539.2292 0 539.2290 -0.37 539.2294 0.37 bf/cg 
C33H30O2N4Mg 538.2214 538.2213 -0.19   538.2216 0.37 bf/cg - H• 
C32H29ON4Mg 509.2186 509.2184 -0.39   509.2189 0.59 cf - H2 
C31H25O2N4Mg 509.1822 509.1823 0.20     eg - H2 
C32H28ON4Mg 508.2108 508.2108 0   508.2110 0.39 cf - H2 - H• 
C31H27ON4Mg 495.2030 495.2030 0   495.2035 1.01 df - H2 
C30H25ON4Mg* 481.1873 481.1873 --- 481.1873 --- 481.1878 --- ef - H2 

Average   0.03  0.12  0.33  

SD (σ)   0.17  0.29  0.47  
                                       * Peaks used as internal calibrants 
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Cleavage preference among the different bonds of side chain A and B 

are summarized on the basis of the fragments detected and their relative 

intensity (Table 6.1 and Table E.1).  Comparatively, cleavages from sites ‘a’, 

‘f’, ‘e’, are preferred (Scheme 6.1).  As described, site ‘a’ between the ester 

group and phytyl chain is most fragile.  Sites ‘e’ and ‘f’ which are adjacent to 

the conjugated macrocyclic ring also contribute to several intense peaks.  

This order generally follows the bond strength information provided by crystal 

x-ray experiments of chlorophyllide-a dihydrate.
310

  Additionally, loss of H2 

was detected almost universally.  This loss is most likely from C-17 and C-18 

of ring IV (Figure 6.1), leading to a larger conjugated structure which is 

thermodynamically favourable. 

Though similar peaks were formed with EID, IRMPD, and CAD, more 

radical ions were generated by EID after detailed assignment of the 

fragments described above (Figure 6.3 and Figure 6.4).  As expected, 

cleavages leading to radical ions are more common during EID than CAD and 

IRMPD, due to the combination of vibrational excitation and electronic 

excitation.
70

  However, odd-electron fragments are also observed in IRMPD, 

and at very low abundance in CAD as well.  Figure 6.5 shows the abundance 

change of several odd-electron species with increasing the laser power in 

IRMPD.  Although the relative abundance of these species is still quite low 

compared to their abundance in EID, it increases with increase in laser 

influence.  The observation of these unusual odd-electron species in CAD 

and IRMPD spectra of chlorophyll-a may be related to a structural property of 

the macrocyclic ring, as a similar phenomenon was observed in 

octaethylporphyrin using low energy CAD in Rosario’s work.
306

  Additionally, 
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considering the discovery of ECD was because of an UV photodissociation 

experiment, where secondary electrons were emitted by UV photons and lead 

to fragmentation.
60

   In the IRMPD experiment, it is unlikely that secondary 

electrons are formed by IR photons, but the intensity of EID-like odd-electron 

fragments suggests otherwise, and the overall intensity of all fragments is 10 

times higher in the IRMPD spectrum than in the EID spectrum.  Further 

experimental and computational investigations are necessary to understand 

the results.  

 

Figure 6.4 From left to right are expansions of m/z regions 582-586, 538-541 

and 508-511 (a) CAD; (b) IRMPD; (c) EID; d-f are the corresponding 

simulations of the elemental compositions in the highlight regions respectively 
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Figure 6.5 Plotting of intensity changes of several radical ions according to 

the laser power in IRMPD 

 

Two low intensity peaks at m/z 833.5215 (C53H69O3N4Mg) and m/z 

541.2085 (C32H29O3N4Mg) (Table E.2), repeated in the EID and IRMPD 

spectra, are interesting.  The peak at m/z 833.5215 seems to be the only 

product ion detected between m/z 614 and m/z 893 from chlorophyll-a.  As 

proposed, this peak can be assigned to the facile losses of side chain B and 

one H atom from C-29 from the protonated molecular ion.
311

  In addition, 

losses of chain A and the H atom from C-18, resulting in a double bond 

between C-17 and C-18, is speculated to generate the peak at m/z 541.2085.  

Otherwise, no extensive cleavage within the phytyl chain was detected in 

these experiments.  As an unidentified doubly-charged impurity, which has a 

similar m/z (893.7459) with chlorophyll-a, was isolated together with our 

target ion; several fragments were induced from it as well.  However, based 
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on the charge state and accurate mass value, most of the peaks from the 

impurity can be distinguished.  

In addition to fragments from the cleavages of two long side chains, 

several peaks that are probably from cleavages of ring V or rearrangements 

are present (Table E.2).  In particular, the high intensity peak at m/z 455.2081 

(C29H27N4Mg) (Figure E.2), whose formula suggests all five oxygen atoms are 

lost from the molecular ion, along with its elemental composition further 

implying that ring V is probably cleaved.  

6.3.3 Extensive cleavages 

As extensive fragmentation from chlorophyll-a was induced by EID and 

IRMPD (Figure 6.6), losses of small side groups successively, such as -CH3, -

C2H5 etc., are most likely the reason for regular patterns in the lower mass 

range.  Detailed analysis of these patterns showed that two different groups 

of peaks were detected in every pattern.  One series retains an oxygen atom 

in the structure which is proposed to be the one from the keto group in ring V, 

while the other series has no oxygen.  The mass difference between the two 

groups is the difference between CH4 and O, which is about 36.4 mDa.  

Additionally, according to the relative abundance of these two group peaks, it 

seems the oxygen atom (or the whole keto group) in ring V is more easily lost 

in the IRMPD experiment than during EID. Interestingly, the peak at m/z 

455.2081 (C29H27N4Mg) with a very high intensity in the IRMPD spectrum is 

also consistent with this phenomenon. As a light harvesting pigment, 

chlorophyll-a absorbs strongly in the IR region
312

 which is important for 

photosynthesis.
288

  The infrared absorption spectra of chlorophyll-a
313,314
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show a strong series of absorption bands from 5-12 µm which overlaps with 

the wavelength range of CO2 laser (around 10.6 µm).  This may be the reason 

why more extensive fragmentation was generated by IRMPD than by CAD, as 

well as why it showed different preference for cleavage from ring V compared 

to EID.  It is worth mention that EID was reported to produce far more 

fragments of glycosaminoglycans than IRMPD in Wolff’s work.
79

  To contrast, 

the abundant IRMPD spectrum of chlorophyll-a is clearly a different situation.  

Thus, it is safe to propose that, in addition to the dominating influence of 

different mechanisms between MS/MS methods, the efficiency of 

fragmentation also depends a lot on the character of parent ions. 

 

Figure 6.6 (I–V) Representative expanded spectra of several lower m/z 

regions (a) IRMPD; (b) EID; (c) and (d) are the corresponding simulations of 

the elemental compositions in the highlight regions respectively 
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Finally, looking into the spectra III–V in Figure 6.6, the whole pattern in 

EID is clearly shifting to lower mass regions by several Daltons compared to 

the same ranges in IRMPD. These whole number differences can be 

accounted for by a series of H
•
 losses from the porphyrin ring.  As this 

phenomenon only appears obviously in the lower m/z range, the H
•
 loss from 

the main ring seems less favourable than aliphatic chain cleavages.  

6.4 Conclusions 

To explore the structural stability of chlorophyll-a and provide bond 

cleavage information for its degradation research, high resolution MS/MS was 

used.  Apart from traditional MS/MS techniques, CAD and IRMPD, the 

recently developed EID method, is also employed in this study.  Generally, 

similar patterns of peaks are obtained in the higher m/z range in all three 

spectra, and extensive fragmentation of chlorophyll-a is produced by EID and 

IRMPD.  Under low collision voltages, CAD can only provide limited 

information. EID generates many more cleavages including many radical ions, 

and loss of H
•
 from the macrocyclic ring.  The extensive cleavage of EID is 

likely due to a different fragmentation mechanism and the strong absorption in 

IR region of chlorophyll-a can likely explain the abundant IRMPD fragments. 

Utilizing the high resolution and mass accuracy provided by the FTICR 

mass spectrometer, most of the fragments can be identified.  Some of them, 

such as two groups close to each other in the lower m/z range, are reported 

unambiguously for the first time.  The high mass accuracy allows calculation 

of exact elemental compositions for these fragments which also allows bond 

cleavage preference to be proposed.  The ester linkage is the weakest link 
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leading to abundant fragment ions, followed by loss of the two aliphatic side 

chains, especially at sites ‘f’ and ‘e’ in Scheme 6.1.  Extensive cleavages of 

small side groups of chlorophyll-a are generated by EID and IRMPD.  

Particularly, ring V seems more unstable in IRMPD.  Loss of H2 from ring IV 

suggests that cleavage leading to increased conjugation is energetically 

favourable in MS/MS processes.  

Overall, the MS/MS experiments using the FTICR mass spectrometer, 

in particular EID and IRMPD, provided abundant structural information of 

chlorophyll-a.  This experiment can be easily applied for other porphyrin-like 

compounds and their metal complexes. More techniques, particularly 

computational, are required to provide a complete understanding of the 

cleavage site and mechanism channels.   
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Chapter 7 Structural characterization of 

pheophytin-a  

7.1 Background 

Porphyrins are recognized as the pigments of life. Due to the big 

conjugated structures and biological significance, porphyrins and 

metalloporphyrins have many applications in research and industry.
315,316

  

The MS/MS behaviour of chlorophyll-a was studied in the last chapter, and 

some interesting results were obtained. A recent study reported that the first 

step of the degradation of chlorophyll-a is loss of the central Mg
2+

 ion, 

generating pheophytin-a (structure in Figure 7.1),
317

 which compound also 

serves as an important intermediate in the photosystems. In order to fully 

understand the chlorophyll degradation, an effective strategy to identify the 

relevant metabolites is of significant importance.  
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Figure 7.1 Structure of pheophytin-a. Chain A, Chain B, and phytyl group are 

illustrated. 

 One of the crucial features of chlorophylls is the functional versatility that a 

single compound can be involved in several diverse photosynthesis 

processes and performs different functions.
308

  Moreover, the structural 

versatility is another character of porphyrins and chlorophylls, where, based 

on the macrocycle ring, derivatives may have different central metal ions 

or/and side chains. Some derivatives of chlorophylls are listed in Figure 7.2. 

To further investigate the fragmentation pattern of pheophytin-a using MS/MS 

is of benefit for the study of porphyrin related molecules. By comparing the 

MS/MS results of chlorophyll-a and pheophytin-a, the influence of subtraction 

of the Mg
2+

 ion on fragmentation will be determined, and some structural 

information may show the stability of the pigment macrocycle without a 

central metal ion.  
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Figure 7.2 List of the structural formulae of several derivatives of porphyrin 

and chlorophylls. Red boxes highlight the regions of difference among each 

structure.  

 

7.2 Experimental section 

Pheophytin-a is produced by dissolving chlorophyll-a in 50:50 

methanol/water with 1% formic acid. 

The collision energy was optimized from 0-70 V for the CAD 

experiments, and 32 V was used.  In the EID experiment, trapped ions were 

irradiated with electrons from a 1.5 A heated hollow cathode under optimized 
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bias voltage and pulse length (19.5 eV, 0.2 s).  IRMPD experiments were 

carried out in the ICR cell by exposing ions to a CO2 laser beam (75 W, ~10.6 

µm) with varying laser power (20%-80%) and duration (0.1-0.7 s).   

7.3 Results and discussions  

In solution, the central Mg
2+ 

ion in chlorophyll-a is labile and could 

dissociate easily in acid environment, replaced by two H
+
 and generating 

pheophytin-a. Figure 7.3 shows the spectra of chlorophyll-a in methanol/water 

without (top) and with formic acid (bottom) respectively. Almost all of the 

chlorophyll-a molecules turn into pheophytin-a when 1% formic acid is added 

in the solution (Figure 7.3b), and it greatly facilitates applying following 

MS/MS experiments. Having an elemental composition of C55H72O5N4Mg, 

chlorophyll-a is of a molecular weight of 892.53531 Da, and pheophytin-a has 

a formular of C55H74O5N4 and a mass of  870.56592 Da.  
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Figure 7.3 MS spectra of chlorophyll-a in a) 50/50 (V/V) methanol/water and 

b) 50/50 (V/V) methanol/water with 1% Formic acid 

 

For chlorophyll-a, three MS/MS methods produced some similar 

fragments, but extensive fragmentation was only observed in the EID and 

IRMPD experiments. In terms of fragmentation efficiency or abundance of 

fragments, IRMPD yielded fragments of ~10 times intensity compared to 

fragments in EID spectrum, and which was proposed to be due to the red 

absorption of chlorophyll-a. In comparison, the MS/MS experiments of 

pheophytin-a show some similar results, but differences also exist. Singly 

protonated pheophytin-a, at m/z 871.57320, is used for the MS/MS study, and 

the CAD, EID and IRMPD spectra of pheophytin-a are shown in Figure 7.4. 
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Figure 7.4 a) CAD, b) IRMPD, c) EID MS/MS spectra of singly-charged 

pheophytin-a 

 

7.3.1 CAD spectra of pheophytin-a 

In the CAD spectrum of pheophytin-a in Figure 7.4a, in addition to the 

precursor, two more peaks of high intensity are detected at m/z 593.2756 and 

m/z 533.2545, which are also two of the most abundant fragments in the EID 

and IRMPD spectra. The fragment at m/z 593.2756 is assigned from a 

cleavage between the phytyl and ester oxygen along with one hydrogen atom 

migrating from the phytyl chain to the main structure, which is likely realized 

through a six member ring rearrangement as illustrated in Scheme 7.1. The 

peak at m/z 533.2545 could be induced by a similar rearrangement but from 
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the γ-hydrogen at C-17 (Scheme 7.1); however this m/z can also arise from 

loss of the phytyl chain and the side chain in ring V, so both mechanisms may 

exist in practice. The high abundance of these two fragments in all three 

MS/MS spectra in Figure 7.4 shows that the even-electron γ-hydrogen 

rearrangement is a prevalent channel in this case.  

 

 

Scheme 7.1 Proposed mechanisms for the formation of peaks at m/z 

593.2756 and m/z 533.2545  
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Meanwhile, a peak from the direct cleavage between the phytyl and the 

ester oxygen is detected, which differs from the peak at m/z 593.2756 by one 

hydrogen atom. With a resolving power of ~500,000 at m/z 593 in the 

experiment, the 
13

C-substituted peak of C35H36O5N4 is distinguished from the 

C35H37O5N4 peak by a mass difference of 4.5 mDa (Figure 7.5). The 

coexistence of the odd-electron species at m/z 592.2680 and the even-

electron species at m/z 593.2756 from loss of the phytyl group was also 

observed for chlorophyll-a in Figure 6.3, but the relative intensity of the two 

species is different between chlorophyll-a and pheophytin-a.  For pheophytin-

a, ratios of the intensity of the peak at m/z 592.2680 and the peak at m/z 

593.2756 in EID, IRMPD, and CAD are 45%, 2%, and 33%, respectively, 

while for chlorophyll-a, the corresponding values are 200%, 42%, and 25%. 

The odd-electron species seems more abundant in the MS/MS spectra of 

chlorophyll-a, which suggests the structure is more tolerant to free radicals in 

the present of the Mg
2+

 ion.  
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Figure 7.5 The expanded regions from m/z 591-596 in Figure 7.4 a) CAD, b) 

IRMPD, c) EID MS/MS spectra of singly-charged pheophytin-a 

 

In addition, another abundant fragment (C34H31O4N4Mg, m/z 583.2190) in 

the m/z region above 500 detected for chlorophyll-a in Figure 6.2 from loss of 

phytyl group and a -CH3O is almost absent in the MS/MS spectra of 

pheophytin-a.  Though a peak at m/z 561.2496 (C34H33O4N4) corresponding 

to the cleavage of phytyl group and a -CH3O is observed in Figure 7.4, the 

intensity is lower than most of the other peaks (Table F.1). Moreover, the only 

other fragment detected under current CAD condition is a small peak at m/z 

533.2545. 

7.3.2 IRMPD spectra of pheophytin-a 

Figure 7.4b is the IRMPD result of pheophytin-a, where much more peaks 

are present in the region of m/z 280-520 compared to the CAD and EID 
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spectra in Figure 7.4a and c.  The abundant IRMPD spectrum of pheophytin-a 

resembles the IRMPD spectrum of chlorophyll-a in Figure 6.2b with extensive 

cleavages from side groups and ring V observed.  According to some 

fragments detected in m/z lower than 350 shown in Figure 7.6c, it seems that 

even more extensive cleavages possibly from pyrrole groups are produced by 

pheophytin-a, because there are only three nitrogen atoms left in these 

fragments. The smallest mass assigned in Figure 7.6 has a formula of 

C19H12N3, and even smaller fragments can be produced by increasing laser 

power and/or pulse length (Figure 7.7b).  As shown in Figure 7.2, the chlorin 

ring, the basic macrocycle ring without any side chains/groups, has an 

elemental composition of C20H16N4 (MW: 312.1375 Da).  Therefore, the 

fragments in low m/z in the IRMPD spectrum are likely from cross-ring 

cleavages from the chlorin ring.  In contrast to pheophytin-a, no fragments 

from cleavages of the chlorin ring were observed from the MS/MS, including 

EID, IRMPD, and CAD, spectra of chlorophyll-a.   A comparison of the IRMPD 

spectra of chlorophyll-a and pheophytin-a exposed to the same laser power 

and pulse length in Figure 7.7 shows that much more fragments smaller than 

m/z 300 are produced by pheophytin-a, but no fragments are detected for 

chlorophyll-a. An investigation on the influence of the central Mg
2+

 ion on the 

structures of chlorophylls reveals that removal of the metal ion increases the 

flexibility of the macrocycle.
308

  The IRMPD results in Figure 7.7 also suggest 

that the macrocycle of pheophytin-a in the absence of the central Mg
2+

 ion is 

more fragile compared to chlorophyll-a.    
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Figure 7.6 Extensive fragmentation of pheophytin-a in IRMPD spectrum (70% 

laser power and 0.2 s pulse length). Peaks assignment is in Table F.1 
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Figure 7.7 IRMPD spectra of a): chlorophyll-a and b): pheophytin-a with 70% 

laser power and 0.5 s pulse length. Insets in the square are expanded regions 

from m/z 100-350. Peaks with asterisk are harmonics or noise 

 

Based on the MS/MS results in Chapter 6 and this chapter, IRMPD is 

demonstrated to be the most effective method in fragmenting both 
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chlorophyll-a and pheophytin-a by producing most abundant and extensive 

fragments.  Even though, due to extensive side chain cleavages and the 

symmetrical structure of the chlorin ring, it is still difficult to assign all of the 

fragments in the low m/z region to the exact side group loss, IRMPD displays 

the potential to be a useful technique in studying the structures of porphyrin 

like components.  Additionally, inducing isotopic labelling, such as 
2
H, 

13
C, or 

18
O, would be a useful strategy to nail down the detail assignment of the 

fragments in the MS/MS spectrum, assisting the interpretation of the 

fragmentation channels.  Comparing the fragmentation of chlorophyll-a or 

pheophytin-a to the fragmentation of some derivatives such as chlorophyll-b 

(Figure 7.2) or pheophytin-b, where only one or two substitutes are different, 

could also help understanding the fragmentation mechanisms.     

One of the most likely reasons that  IRMPD is effective in fragmenting 

chlorophyll-a and pheopytin-a is that both of the two molecules have strong 

absorptions in the region around 10.1 µm due to the vinyl C-H (at C-3) 

bending vibration,
313

 where the CO2 laser used in the IRMPD experiments 

has a wavelength band centred at ~10.6 µm, so that strong infrared 

absorption during the laser irradiation could happen.  Additionally, because 

the experimental pulse length of the IRMPD process is in the range of several 

hundred milliseconds, it is possible that this time scale allows fragments 

having a strong absorption of the CO2 laser to absorb IR photons 

successively and yield secondary fragmentation. In contrast, for CAD 

experiments, the internal energy of molecules accumulated during the 

collision process is released after fragmentation and the fragments can hardly 

gain sufficient energy for further fragmentation. This hypothesis could explain 
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the CAD and IRMPD spectra in Figure 7.4a and Figure 7.4b that much fewer 

fragments are detected in the CAD spectrum in low m/z. Moreover, increasing 

the collision energy in CAD (from 32 V to 62 V shown in Figure F.1) causes 

more peaks in the low m/z to appear, but the intensity of the fragments in the 

high m/z ranges drops significantly. The changes of peak intensity in high m/z 

and low m/z when ramping up the collision energy also indicate secondary 

fragmentation may be induced in CAD under higher collision energy and 

during IRMPD.  

Another hypothesis to explain the abundant IRMPD spectrum is based on 

the observation of ubiquitous odd-elecron fragements produced from both 

chlorophyll-a and pheophytin-a, where the unique macrocyclic structure 

displays a good tolerance to radicals particularly in the presence of the central 

Mg
2+

. Therefore, followed by the formation of those radical ions, secondary 

fragmentation induced by free radical rearrangements is also possible.
59,318

 In 

addition, radical-driven dissociation has been extensively investigated in 

recent years.
318

 However, the fact that odd-electron species were generated 

by protonated chlorophyll-a and pheophytin-a ions in IRMPD and CAD in the 

first place is interesting. Though the formation of odd-electron fragments from 

even-electron precursors does not follow the ‘even electron rule’,
319

 

exceptions have been observed in low energy CAD experiments.
320-324

 In 

particular, almost all of the molecules that have been reported to violate this 

rule contain an aromatic ring or a big conjugated structure, and computational 

studies showed that the stabilization of the radical can facilitate the formation 

the odd-electron fragments.
321,324

 In this case, the macrocycle of a large 
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conjugated structure is very likely the most important reason for the formation 

of the odd-electron species.  

7.3.3 EID spectra of pheophytin-a 

In the EID spectrum of pheophytin-a (Figure 7.4c), the most abundant 

fragment is an odd-electron species at m/z 312.1356 with an elemental 

composition of C19H19O4H. The formula suggests that there is no nitrogen 

atoms left in the structure, but it still has four oxygen atoms and 10 DBE, 

which indicates multiply bonds cleavages from ring III and ring IV (Figure 7.1) 

and also a cleavage in the phytyl chain. The cross-ring cleavage from the 

macrocycle along with eliminating two nitrogen atoms from pyrrole groups, 

which was not observed from CAD and IRMPD, is also unexpected in EID 

because more than four bonds have to be cleaved to form this fragment.  

Rearrangement is likely involved for the formation of C19H19O4H, but the exact 

mechanism is not clear. Further EID/SORI-CAD MS
3 
did not provide any more 

information on this fragment. 

Some small fragments are also produced and detected in the EID 

spectrum. The one at m/z 519.2385 having an elemental formula of 

C32H31O3N4 is proposed from loss of the chain A and a hydrogen atom at C-18, 

yielding a double bond between C-17 and C-18, which leads a larger 

conjugated structure.  Some other small ions are likely from the extensive 

cleavages from Chain A and B, and ring V (Table F.1).  

7.4 Conclusions 



 
163 

 

For pheophytin-a, some similar fragments of high abundance from the 

cleavage of the phytyl group were detected from all three MS/MS methods, 

CAD, EID, and IRMPD. Most abundant and extensive fragments were 

observed in the IRMPD spectrum, which is also the case for chlorophyll-a. 

EID of pheophytin-a shows differences from that of chlorophyll-a, where the 

most intense peak detected for pheophytin-a has no nitrogen atoms left 

indicating multiply bonds cleavages from the macrocycle.  On the other hand, 

the EID spectrum of chlorophyll-a resembles its IRMPD spectrum. The 

difference could only because of the central Mg
2+

 ion. CAD is not as effective 

as IRMPD in generating extensive fragmentation for both molecules. Odd-

electron species are observed from both chlorophyll-a and pheophytin-a in 

CAD, IRMPD, and EID, so the unique macrocycle structure has the capability 

to stablize radicles. In some extent, the abundant IRMPD spectra could be 

explained by the strong absorption of the two molecules in the CO2 laser 

wavelength range. Fragments from cleavages of the pyrrole groups suggest 

that the chlorin ring of pheophytin-a is much more labile than the macrocyle 

with the central Mg
2+

 ion in chlorophyll-a.  Nevertheless, IRMPD shows great 

potential in studying the structures of porphyrin like molecules.   
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Chapter 8 Top-down analysis of p65 

proteins 

8.1 Introduction 

8.1.1 Protein phosphorylation 

Protein phosphorylation in eukaryotic cells, mostly occurring on serine, 

threonine, and tyrosine residues (Scheme 8.1), is recognized as a crucial 

character of signal transduction and is one of the most biological relevant 

post-translational modifications (PTMs) in proteins.
325,326

 It is very effective at 

integrating information from various incoming signals by modifying amino acid 

residues of the target protein to influence the corresponding aspect of 

transcription functions.
327,328

 At any given point, over 30% of proteins in a 

eukaryotic cell are undergoing phosphorylation, which can either modulate 

their structures or activities.
325

 Until now only less than 2% of protein 

phosphorylation has been identified among an approximate 100,000 potential 

phosphorylation sites in the human proteome due to the lack of reliable and 

sensitive high throughput technologies.
329

 Moreover, the biased distribution of 

phosphorylation ratio makes it even harder to locate the phosphorylation site 

comprehensively.  
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Scheme 8.1 Diagram shows the phosphorylation of serine, threonine, and 

tyrosine 

 

Several most popular analytical strategies used for phosphorylation 

analysis are 
32

P-labelling and phosphopeptide mapping, edman sequencing, 

and mass spectrometry.
325

 Although 
32

P-labelling is the most sensitive 

method, it requires large amount of radioactivity and has difficulties in locating 

the phosphorylated sites, which makes this method less advantageous than 

MS. In contrast, the MS/MS strategies improve the possibility of fully 

sequence coverage of the protein interested. Based on the sensitivity and 

sophisticated fragmentation techniques, MS shows great potential in PTMs 

characterization, in particular, the top-down MS becomes an important 

complementary method to bottom-up MS with higher efficiency. In practice, 

the biased distribution of phosphorylation ratio and the low stoichiometry of 

protein phosphorylation, however, make it challenging to locate the 
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phosphorylation site comprehensively. Therefore, enrichment is often 

necessary in phosphorylation analysis, and a variety of techniques is 

available and has been summarized elsewhere.
329-331

   

8.1.2 Significance of p65/RelA 

Nuclear factor-κB (NF-κB) is a protein complex that is vital for the 

regulation of inflammation, immune responses, and cell proliferation, 

apoptosis.
332-335

 NF-κB has also been shown to play a crucial role in many 

diseases like cancer, asthma, sepsis.
336,337

 In mammals, NF-κB comprises by 

five family members, NF-κB1 (p105/p50), NF-κB2 (p100/p52), RelA (p65), 

RelB and c-Rel, and these proteins can form various homo-/hetero-dimers 

according to their different functions in respond to specific biological 

activities.
333

 Among all of the dimeric complexes, the p65:p50 heterodimer 

was the first form of NF-κB members identified and is also the most abundant 

one in lots of cell types.
338,332

 Even though each NF-κB protein has specific 

roles in cell regulation, only p65 was found to be essential for survival,
339,340

 

and the phosphorylation of the p65 subunit caused by various stimulations 

has also been assigned to change the activity of NF-κB transcription.
334

 In 

addition, it seems that p65 phosphorylation varies a lot depending on the 

stimulus, however which has not yet been fully characterized.
327

 Until now, 

more than 10 possible phosphorylation sites have been reported on the p65 

subunit alone including Ser205, Ser238, Thr 254, Ser276, Ser281, Ser311, 

Ser337, Ser435, Ser 468, Thr505, Ser529, and Ser536, many of which can 

be stimulated by different enzymes.
341,342

 These modifications can then 

stimulate NF-κB translocation to the nucleus and are related to transcriptional 

activities.
341

 In respond to lipopolysaccharide (LPS) and tumour necrosis 
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factor (TNF)-α, likely other inducers as well, p65 is phosphorylated at the 

highly conserved Ser-276 residue by the catalytic subunit of protein kinase A 

(PKAc) leading to a positively regulation of the transactivation potential of 

p65.
327,343

 Ser-311 is another residue that is targeted for phosphorylation in 

TNF-α stimulated cells.
344

 P65 can also be induciblely phosphorylated at Thr-

254 which will interrupt its recognization with NF-κB inhibitor α (IκBα) and 

leaves NF-κB localization to the nucleus;
345

 at Ser-529 by casein kinase II 

(CKII); at Ser-468, Ser-536 by IκB kinase β (IKKβ) and glycogen synthase 

kinase 3 (GSK3).
341

 Phosphorylation at Ser-536 in macrophages can 

stilmulate p65 degradation and promotes resolution of inflammation.
346

 Due to 

the complexity and variety, to fully characterize p65 phosphorylation still has a 

long way to go, while establishing a reliable and effective strategy to locate 

the phosphorylation sites would be a big step. 

8.1.3 Top-down mass spectrometry in studying protein 

phosphorylation 

Top-down mass spectrometry has become a powerful technology for 

analyzing proteomics and characterizing PTMs. For the phosphorylation 

modification specifically, a molecular mass will show an apparent 80 Da 

(HPO3 79.97 Da or mutiplies) shift due to the covalent connection with 

phosphoric acids.  

Zubarev and McLafferty have firstly reported the characterization of 

phosphorylated peptide and phosphoprotein using top-down ECD MS,
53,347

 

where the modification is remained in ECD process and can be located. 

Cardiac troponin I (cTnI) is an important regulatory protein in cardiac muscle, 

and its phosphorylation plays a key role in modulating cardiac function, which 
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has been studied systematically by Ge and her coworkers.
181,348-351

  Five sites 

of cTnI, Ser22/Ser23, Ser42/Ser44, and Thr143, are liable to be 

phosphorylated under the regulation of protein kinase A (PKA) and protein 

kinase C (PKC).
348

 With the help of high resolution top-down MS, Ge and her 

colleagues have unambiguously identified that Ser22/23 as the only two sites 

phosphorylated in wild-type mouse,
348

 swine,
350

 and human,
83,351

 which is 

significant for the clinical biomarker discovery. 

8.1.4 Aims of the project 

Generally, the main challenges of analyzing PTMs of intact proteins are to 

separate and identify the isoforms and isotopes with high resolution and mass 

accuracy, and to obtain a high sequence coverage by MS/MS.  The target of 

the project is to study the phosphorylation state of p65 stimulated by enzymes 

using FTICR MS and MS/MS, correlating the results with physiological 

importance.  

8.2 Experimental section 

8.2.1 Sample preparation 

The p65 protein was expressed in E. coli system and then separated by 

SDS PAGE. IKKβ was induced in cell culture to stimulate phosphorylation. 

The protein stock solution contains 500 mM NaCl, 1 mM EDTA, and 2 mM 

dithiothreitol (DTT). All protein samples were washed with 100 mM 

ammonium acetate solution using centrifugal filters (10-30 kDa molecular 

weight cut off, Millipore, Ireland) to remove salts before MS experiments and 

were dissolved in acetonitrile/water/fomic acid (50:50:1%) to a concentration 

of ~1-5 µM.  
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8.2.2 Mass spectrometry experiments  

All mass spectrometry experiments were carried on a Bruker 12 T solariX 

FTICR mass spectrometer (Bruker Daltonik, GmbH, Bremen, Germany) with 

a homemade nano-electrospray ion source. A 5-10 V in source dissociation 

was employed to improve the S/N and ions were cooled in the collision cell for 

0.5-3 s before transferred to the ICR cell. For MS/MS experiments, ions of 

interest were isolated with a 15-30 Da window. The collisional energy in CAD 

was ~22 V. In the ECD experiment, ions were irradiated with electrons from a 

1.5 A heated hollow cathode, and the bias voltages and pulse length were 

tuned to produce most electron captures. Up to 200 scans were averaged. 

8.3 Results and disscusions 

8.3.1 MS analysis 

 The protein sample is a segment of p65 proteins from amino acid 12 to 

317, which has more than 30 potential phosphorylation sites including 19 

Serine, 9 Tyrosine, and 16 Threonine. First, non-phosphorylated p65 is 

analyzed by MS to determine its molecular weight and purity. The charge 

distribution of p65 is displayed in Figure 8.1a, and a measured molecular 

mass, 35073.03973 Da is obtained (Figure 8.1b).  The theoretical molecular 

weight of p65 from aa 12-317, is 34930.25133 Da (C1526H2418N456O460S13), 

which is 142.78840 Da less than the experimental value. According to the 

mass difference, modifications/decorations or mutations are likely occurred to 

the p65 sample.  In order to check the sequence and particularly to map the 

PTMs sites using the top-down approach in the future, a fully understanding 
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of the amino acid sequence is necessary, so MS/MS methods are applied to 

fragment p65. 

 

Figure 8.1 a): a nano-ESI spectrum of p65 sample showing its charge 

distribution; b): deconvolution spectrum of a) 

 

8.3.2  MS/MS sequencing  

Figure 8.2 is the CAD spectrum of [M+30H]
30+

. Many peaks are observed, 

but only a few peaks of low abundance could be assigned to b/y fragments as 

labelled in the figure, which are summarized in Table G.1.  If those 

unassigned peaks in Figure 8.2 are due to modifications/mutations of p65 or 

side chain losses, some regular patterns or consistent mass differences 

would be digged out by comparing the experimental masses to the theoretical 

masses of b/y fragments.  No useful clues, however, have been found to 
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identify those intense peaks in CAD spectrum.  Eight peaks likely from the N-

terminal, b3-b6, are observed, but each of the ‘b’ ion is either ~144.04 Da or 

~126.03 Da heavier than the corresponding theoretical mass value. Based on 

the accurate mass difference of the several b ions in the CAD spectrum, it is 

clear that 144.04 differs from 126.03 by a mass of H2O. The rest several 

peaks assigned are y ions from the C-terminal of low abundance. Otherwise, 

no other ions could be assigned.  
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Figure 8.2 CAD results of the p65 ions, [M+30H]
30+

, and the amino acid 

sequence of p65 showing b/y ions from cleavages from amide bonds in the 

backbone. Sites labelled with ‘’ or ‘!’ are the detected ‘b’ ions either ~144.04 

Da or ~126.03 Da heavier than the corresponding theoretical mass value. 

 

Figure 8.3 shows an ECD spectrum of [M+30H]
30+

, where at least three 

electrons were captured by the precursor ions. However, apart from charge-

reduced species, no other fragments were assigned. Strategies like IR-ECD 

are also implied, but, unfortunately, also failed to produce useable fragments.  
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Figure 8.3 ECD results of p65 ions, [M+30H]
30+

. Charge-reduced species, 

[M+30H]
29+, [M+30H]

28+, and [M+30H]
27+ etc., are detected showing 

electron capture  

 

The fragmentation information extracted from the CAD result so far 

suggested there is a modification/mutation having a mass of ~144.04 Da in 

the N-terminal from aa 12-14 of the p65 protein.  According to the MS 

measurement, the observed MW of the protein is about 142.79 Da heavier 

than the theoretical mass. It is possible that the molecular mass difference is 

because of a 144.04 Da modification in the N-terminal in the protein, but more 

sequence information has to be obtained. In addition, those unknown high 

intensity peaks in the CAD spectrum are confusing and holding back the 

conclusion.  

8.3.3 Phosphorylation investigation by MS 
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Even though to locate the PTMs sites by top-down analysis seems not 

possible at this stage, the mass spectrum of phosphorylated p65 is generated 

to check the status of phosphorylation stimulated by IKKβ.  In comparison 

with the MS result of non-phosphorylated p65, phosphorylated peaks that are 

about 80 Da heavier than the corresponding non-phosphorylated ones are 

present in Figure 8.4a.  Though the abundance of the phosphorylated p65 is 

low, it shows that the IKKβ does have influence on the phosphorylation of p65; 

however, further MS/MS investigation will be required to locate the 

phosphorylation site.  

 

 

Figure 8.4 MS spectra of a): phosphorylated p65 stimulated by Ikkβ and b): 

non-phosphorylated p65 

8.4 Conclusions 



 
175 

 

   A standard experimental protocol to study intact proteins using FTICR MS 

was built up. The molecular weight of a segment of p65 proteins from aa12-

317 was measured, and the phosphorylation of p65 stimulated by IKKβ was 

studied by MS. The difference between theoretical MW and the experimental 

MW is about 142.79 Da. A modification/mutation having a mass of ~144.04 

Da, suggesting a formula of C6H8O4 (MW: 144.04223 Da), in the N-terminal 

from aa 12-14 was detected by the MS/MS results. Because limited 

fragments were obtained from the CAD and ECD experiments, the sequence 

of the protein cannot be fully understood, and it is not valid to study the 

phosphorylation position of modified p65 at this moment.  

  To improve the understanding of the protein sequence, introducing a 

middle down strategy could be one choice by digesting the protein to several 

smaller segments, which will reduce the molecular weight of the analyte and 

should greatly facilitate the MS and MS/MS investigation. On the other hand, 

by carefully tuning, IRMPD and IR-ECD MS/MS might provide more 

fragmentation information. 
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Chapter 9 Conclusions and future work 
 

9.1 Conclusions 

The advanced performance of FTICR MS, in particular high resolution, 

high mass accuracy, and flexible tandem mass spectrometry capability, has 

been demonstrated by a number of applications in the thesis, including the 

isotopic fine structure measurement of Aβ peptides (Chapters 2 and 3), the 

compositional and structural investigation of a polymeric mixture (Chapter 4), 

the characterization of the fragmentation of chlorophyll-a and pheophytin-a 

(Chapter 6 and 7), and a little bit of top-down proteomics (Chapter 8).  

In Chapter 2 and 3, to estimate the 
17
O labelling ratio in several Aβ 

peptides, their isotopic fine structures were obtained. High resolving power is 

vital for the measurement because the mass difference between 
13

C- and 

17
O-substited species is about 0.86 mDa. Three peptides, Aβ16-22 (MW: 

894.498124 Da), Aβ11-25 (MW: 1757.885869 Da), and Aβ37-42 (MW: 515.30855 

Da), were analyzed with ultra-high resolving power, 5.0 M, 6.0 M, and 3.5 M, 

respectively. Without adding any standard control, the uncertainty of the 
17

O 

labelling ratio measurement in each peptide could be calculated according to 

the difference between the theoretical and experimental ratio of 
13

C in the 

same peptide, which is ~2.0% for small peptides, Aβ16-22 and Aβ37-42, and ~5.2% 

for Aβ11-25. The results will be helpful in interpretating the NMR signal to 

estimate the distance between atoms. In addition to 
17

O labelling, all of the 

three peptides are also labelled with 
15

N or/and 
13

C, so it is crucial to assign 

each isotopic peak correctly using high mass accuracy. Dual nano-

electrospray experiments were introduced to internally calibrate the spectra 
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by a standard (HPmix or PEG400 depending on the mass range), and less 

than 0.1 ppm errors were obtained. MS/MS methods are particularly valuable 

to determine the isotopic labelling position. Isotope labelled counterparts have 

similar chemical and physical properties, which are very difficult to be 

separated using traditional techniques, however, could be qualitatively and 

quantitatively distinguished by FTICR MS without any extra 

separation/chemistry. 

In chapter 4, the composition of TPGS samples, a PEGylated drug 

excipient, was studied, because differing compositions of TPGS between 

batches could result in variable performance of the formulated product. In 

addition to TPGS, Di-TPGS and free PEG were also detected. The coexistent 

of different polymeric components and different adducts such as H
+
, NH

4+
, 

and Na
+
, arises the complexity of the spectra, so that a high resolving power 

(450,000 at m/z 500) and  high mass accuracy (˂ 1 ppm) are important to 

assign peaks with high confidence. For TPGS samples, the ionization solution 

condition was shown to be a very crucial factor influencing the peaks 

observed in the MS spectrum, indicating that the solvent selection can be 

particularly important for the compositional study of some polymers by MS. 

On the other hand, the fragmentation pattern of TPGS was investigated using 

different MS/MS methods and with different adducts. Diagnostic fragments 

from CAD and ECD MS/MS can be used for the identification of the TPGS 

structure in the future, where ECD and CAD show different preferences in 

bond cleavages. In addition to the methodology study, based on the MS and 

MS/MS results of TPGS samples from different suppliers, it was found that 

the composition of each TPGS sample and the structure of TPGS in each 
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sample were the same; however, the relative intensity of free PEG and TPGS 

shows differences between samples from two suppliers. FTICR MS 

demonstrated the promising role in studying complex mixtures, and FTICR 

MS/MS is a valuable structural characterization tool for polymers 

complementary to traditional spectroscopy techniques. 

Cationization is a hot-topic in MS/MS field, as introducing different cations 

usually gives different fragments, and there are also cases that fragmentation 

patterns were fully changed by simply using different adducts.
285

 To 

understand the role of adducts in MS/MS processes is always of great 

interest. In Chapter 4, silver adducted TPGS showed different ECD behaviour 

in contrast to the precursors with Li
+
 or Na

+
 ions, so the influence of several 

adduct ions on the fragmentation processes of CAD and ECD was further 

studied in Chapter 5. Li
+
, Na

+
, K

+
, Ag

+
, and H

+
 were chosen for this study, and 

the competitive influence of each ion was investigated by fragmenting TPGS 

attached with two different cations, [M+X1+X2]
2+

 (X1 and X2 refer to Li
+
, Na

+
, 

K
+
, Ag

+
, H

+
). The observation in CAD experiments agrees with previous 

research carried on other molecules that the dissociation of ionic adducts 

from the precursor is most likely depending on the binding strength, and, to 

some extent, ions binding stronger increase fragmentation. While during ECD, 

the charge carriers are lost in an order which appears to correlate with the 

relative reduction potential of the ions, which suggests that the reduction 

potential of the charge carrier is an important factor influencing the 

fragmentation pattern. The ion with a high reduction potential seems to be 

more effective in capturing electrons; however, it may also be lost easily 

before leading to any fragmentation.  The trends observed from TPGS are of 
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benefit for selecting adducts in MS/MS investigations and may facilitate the 

understanding of the ECD results when cationization is involved.   

Porphyrins include a large category of compounds that play important roles 

in life, where chlorophylls are the ones significant in plants. In contrast to the 

biosynthesis of chlorophylls, the biodegradation process is less well 

understood. One of the key steps on the way to unveil the enigma is to 

identify the metabolites in degradation; therefore, an efficient structural 

characterization strategy accessible to species of low concentration would be 

significant. In Chapter 6 and 7, chlorophyll-a and the corresponding Mg-

depleted species, pheophytin-a, were exposed to three different MS/MS 

methods, CAD, EID, and IRMPD, respectively to investigate the 

fragmentation efficiency of the two analogues.  Again, the importance of high 

mass accuracy and high resolution were demonstrated in peak assignment. 

For both molecules, most abundant and extensive fragments were observed 

from IRMPD, which technique shows great potential in studying the structures 

of porphyrin like molecules. On the other hand, the EID spectrum of 

chlorophyll-a resembles its IRMPD spectrum, but EID results of pheophytin-a 

show differences. In comparison, the macrocycle of pheophytin-a having no 

central Mg
2+

 ion is more fragile compared to chlorophyll-a because fragments 

from cleavages of the pyrrole groups were only observed from pheophytin-a.  

Moreover, the unique macrocyclic structure shows tolerence to radicles, and 

odd-electron species were detected from all three MS/MS methods.  

In an on-going project, a segment of protein p65 having a mass of ca 35 

kDa was explored using the top-down approach. FTICR MS displayed 

capabilities in dealing with big molecules; along with MS/MS, the molecular 
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weight and some information of the sequence were obtained. Even though it 

is not feasible to locate the phosphorylation site of phosphorylated p65 so far 

since only a few sequential fragments were assigned from CAD and ECD, 

MS/MS definitely has the potential to be used in studying PTMs. A 

modification of ~144.04 Da, suggesting a formula of C6H8O4 (MW: 144.04223 

Da), in the N-terminal from aa 12-14 was detected by MS/MS. Sample 

preparation was found particularly crucial to the success of the MS detection 

of big proteins. For FTICR MS, the ion capacity and detection sensitivity of an 

ICR cell is limited, which means good signal could only be approached with 

right amount of ions in the cell.  As proteins tend to present with different 

charge states and attach with different adducts, all of these could dilute the 

signal of target ions disturbing the detection. Moreover, the present of 

modifications and wide isotopic distribution will further exacerbate the signal.  

9.2 Future work 

Using isotopic fine structure to measure the isotope ratio of an element in a 

molecule has distinct advantages and shows as a promising complementary 

strategy.  In our experiments, the uncertainty of the measurement is 

approximately 0.5% for molecules smaller than 300 Da, and the error is 

bigger for large molecules.  Because the ion population in the cell was 

minimized in practice, a small change of ion number during detection may 

have big influence on the isotope ratio measurement. In theory, the precision 

could be improved by signal average, but the peak shift between scans can 

kill the resolution or lead to split peaks.  To avoid frequency shift and obtain a 

better S/N, one solution has been used in Marshall’s group is to align spectra 

before frequency-domain coaddition,
121

 hence, the experimental S/N and 
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precision could be further improved.  Enhancement of the S/N may also assist 

the detection of low abundance isotopes.  

One limitation of the current method is the mass of the analyte, where the 

isotopic fine structure measurement becomes very challenging for molecules 

bigger than 1500 Da. In FTICR, resolution is inversely proportional to m/z 

(section 1.2.1), so the difficulty of isotopic fine structure measurement 

increases with mass. Moreover, peak coalescence effect is more severe for 

big molecules.
240,241

  So far, the best resolving power achieved by our 12 T 

solariX FTICR MS instrument is ~ 6.0 M at m/z 880 to detect the fine structure 

of doubly-charged Aβ11-25. For example, to resolve the
13

C- and 
17

O- 

substituted peaks of Aβ1-42 (MW: 4514 Da) in the baseline will require a 

resolving power of ~15.0 M, which is currently unapproachable by our 

instrument.  However, a resolving power of ~12.0 M at m/z 675 has been 

reported on a 4.7 T magnet using a dynamically harmonized ICR cell 

recently.
132

 Therefore, new cell designs provide a promising future for fine 

separation in MS. Additionally, on the contrary to peak coalescence effect, the 

resolving power is proportional to the magnetic field; thus the detection of 

isotopic fine structure would be more feasible and practical by using higher 

magnetic field.  

Compositional analysis of complex mixtures is a big advantage of high 

performance MS.  Coupling with MS/MS techniques could provide information 

in another dimension. Though it is difficult to accurately quantify each 

component in a polymeric mixture solely by MS results, the changes of 

relative intensity of each component can be monitored. To compare the batch 

to batch data obtained by FTICR MS with results from other traditional 
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methods, such as HPLC or size exclusion chromatography (SEC), will be 

useful. Intoducing techniques to control the number of ions in the ICR cell 

such as automatic gain control (AGC) may also improve the consistence 

between experiments. Additionally, coupling nano-HPLC with FTICR MS 

would be a choice for the further analysis of TPGS samples of interest.   

In Chapter 5, the reduction potential of the adduct ion was demonstrated 

as a crucial factor influencing ECD MS/MS behaviours.  In order to check the 

applicable of the rules observed from TPGS, more molecules should be 

studied systematically. In the meantime, introducing more singly-charged ions 

will be of benefit for drawing a final conclusion. On the other hand, 

computational calculation may also be helpful in understanding the 

fragmentation channels when using different metal ions.  

Precursors of a higher charge state are always beneficial for ECD 

experiments, so using divalent or trivalent metal ions is one of the strategies 

to increase the charges of analytes. Alkaline earth metals and lanthanides are 

two series most frequently used. Thus, it may be of interest to explore the 

fragmentation pattern of TPGS binding with different divalent/trivalent metal 

ions.  

According to the MS/MS results of chlorophyll-a and pheophytin-a, 

compared to CAD and EID, IRMPD yielded the most abundant and extensive 

fragments for both molecules, but it is still difficult to assign all of the 

fragments in the low m/z region to the exact side group loss due to extended 

side chain cleavages and the symmetric structure of the macrocyle. One of 

the experiments may be helpful to nail down the detail assignment is to 
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induce isotopic labelling, such as 
2
H, 

13
C, or 

18
O, in specific positions, which 

should be useful to trace the fragments.  Comparing the fragmentation of 

chlorophyll-a/pheophytin-a to the fragmentation of some derivatives such as 

chlorophyll-b/pheophytin-b, where only one or two substitutes are different, 

could be another valuable experiment to implement to understand the 

fragmentation channels.  Moreover, by investigating the MS/MS behaviour of 

molecules with different central metal ions should show the influence of the 

central metal ion on fragmentation.   

  In the on-going project in Chapter 8, the most important task is to improve 

the sequence coverage of the protein by tandem MS/MS. First, by carefully 

tuning, IRMPD MS/MS is worth trying. Second, though DTT was added in the 

protein stock solution, to make sure disulfide bonds were not formed, capping 

cysteine residues by alkylation will be necessary in the future experiments. 

Last but not least, introducing middle down strategy might be helpful in 

sequencing the protein by easing the MS and MS/MS investigation.  
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Appendix A. (Supporting information for Chapter 2) 
 

   Figure A.1 The dual nano-electrospray setup 
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Figure A.2 The intensity change of ions at m/z 896.6 with different 
excitation power in percentage (top) or Vpp (bottom) 
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Table A.1 The calculation of the abundance of the 13C, 16O, 17O, and 18O in Aβ16-22 

 

Area: Normalized peak area; Intensity: Normalized peak intensity; R.P: Resolving power;  

R(I17O), R(I13C), R(I18O) and R(I16O): The ratio of 17O 13C, 18O and 16O abundance calculated by the peak intensity using Equations 1, A-1, 
A-2 and A-3 in Table A-2 

R(A17O), R(A13C), R(A18O) and R(I16O): The ratio of 17O 13C, 18O and 16O abundance calculated by the peak area using Equations A-4, A-
5, A-6 and A-7 in Table A-2 

 

 

 A A+1 (
13

C 
16

O) A+1 (
17

O 
12

C) A+2 (
18

O
12

C) A+2 (
13

C 
17

O) A+3 (
13

C 
18

O) 
13

C-substitute 

12

C
 17

O-
substitute 

12

C
18

O-
substitute 

12

C
16

O-
substitute 

run Area 
Intensit

y 
R.P
./M 

Are
a 

Intensit
y 

R.P
./M 

Area 
Intensit

y 
R.P
./M 

Are
a 

Intensit
y 

R.P
./M 

Are
a 

Intensit
y 

R.P
./M 

Area Intensity 
R.P
./M 

R(A
13

C
) 

R(I
13

C) R(A
17

O) R(I
17

O) R(A
18

O) R(I
18

O) 
R(A

16
O

) 
R(I

16
O) 

1 0.726 0.578 4.0 
0.2
84 

0.310 5.5 1.000 1.000 4.9 
0.2
19 

0.207 4.8 
0.5
79 

0.410 4.1 0.096 0.083 4.0 0.281 0.349 0.514 0.560 0.113 0.116 0.373 0.324 

2 0.825 0.579 3.9 
0.4
42 

0.379 4.9 1.000 1.000 5.4 
0.1
60 

0.161 3.8 
0.4
72 

0.391 3.3 0.087 0.069 3.9 0.349 0.380 0.504 0.575 0.081 0.093 0.416 0.333 

3 0.537 0.569 5.7 
0.3
29 

0.283 3.9 1.000 1.000 5.7 
0.2
07 

0.152 2.6 
0.4
26 

0.391 4.0 0.065 0.097 5.9 0.380 0.332 0.573 0.581 0.119 0.088 0.308 0.330 

4 0.783 0.703 5.7 
0.3
83 

0.247 2.5 1.000 1.000 5.2 
0.1
87 

0.164 4.5 
0.4
84 

0.381 4.8 0.077 0.090 6.6 0.328 0.260 0.507 0.536 0.095 0.088 0.397 0.377 

5 0.760 0.700 4.7 
0.2
95 

0.265 3.6 1.000 1.000 4.8 
0.2
59 

0.204 4.9 
0.5
38 

0.454 5.2 0.056 0.101 6.4 0.280 0.274 0.495 0.525 0.128 0.107 0.376 0.368 

6 0.787 0.595 4.2 
0.2
35 

0.277 4.3 1.000 1.000 4.2 
0.2
45 

0.206 3.9 
0.4
84 

0.381 3.6 0.095 0.104 4.3 0.230 0.317 0.492 0.555 0.121 0.115 0.387 0.330 

averag
e                   

0.308 0.319 0.514 0.555 0.109 0.101 0.376 0.344 

SD 
                  

0.055 0.045 0.030 0.022 0.018 0.013 0.037 0.023 
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            Table A.2 The statistics of the abundance of 17O, 18O, and 13C 

 
Equation 

R(I13C)                   
          

                       
                   Equation (A-1) 

R(I18O)                
          

                                   
   Equation (A-2) 

R(I16O)                
          

                                   
   Equation (A-3) 

R(A17O)                
          

                                   
   Equation (A-4) 

R(A13C)                   
         

                     
                   Equation (A-5) 

R(A18O) 

               
          

                                  
      Equation (A-

6) 

R(A16O)                
          

                                  
   Equation (A-7) 

R(I17O13C)                
          

                                 
   Equation (A-8) 

 I (12C16O), I (12C17O), I (12C18O), and I (13C16O) are the peak intensity of 12C 16O-, 
12C 17O-, 12C 18O-, and 13C16O- substituted peaks 

 A (12C16O), A(12C17O), A (12C18O), and A (13C16O) are the peak area of 12C 16O-, 
12C 17O-, 12C 18O-, and 13C16O- substituted peaks 
 

 

 

 



 
S212 

 

Table A.3 The mass list of proposed peaks in Figure 2.4 

Formula Theoretical m/z 
Experimental 

m/z 
Error/ppm 

C45H68N8
15NO

10
 895.50540 895.50539 -0.01 

C45H68N8
15N17OO9 896.50962 896.50944 -0.20 

C45H68N8
15N18OO9 897.50965 897.50920 -0.49 

C44H68N8
15NO9

17O13C 897.51297 897.51029 -2.98 

C
12

H
19

F
12

N
3
O

6
P

3
 622.02896 622.02896 --- 

C
18

H
19

F
24

N
3
O

6
P

3
 922.0098 922.00981 --- 

C
24

H
19

F
36

N
3
O

6
P

3
 1221.99064 1221.99060 --- 

C
30

H
19

F
48

N
3
O

6
P

3
 1521.97149 1521.97150 --- 

 Peaks from Tuning mix and used as calibrants 
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        Table A.4 The mass list of peaks on the CAD spectrum of the Aβ16-22 
in Figure 2.5 

ions 
Theoretical 

m/z 
Experimental 

m/z 
ppm 

M-NH3 878.47890 878.47855 -0.40 

M-NH3-H2O 860.46834 860.46828 -0.07 

M-CONH3 850.48394 850.48403 0.11 

M-NH3-2H2O 842.45772 842.45787 0.18 

M-CO-NH3-H2O 832.47337 832.47348 0.13 

M-CO-2NH3 833.45694 833.45742 0.58 
M-C3H8N2O 807.44174 807.44205 0.38 

M-C3H10N2O2 789.43117 789.43114 -0.04 
M-C5H12N2O 779.41044 779.41073 0.37 
M-C6H14N2O 765.39479 765.39509 0.39 
M-C5H14N2O2 761.39987 761.40019 0.42 

b6 749.43626 749.43662 0.48 
y5 678.39913 678.39963 0.74 
b4 530.33370 530.33426 1.06 
b3 383.26528 383.26572 1.15 
b2 284.19686 284.19710 0.84 

b6-H2O 731.42569 731.42609 0.55 
b5-H2O 660.38858 660.38905 0.71 
b4-H2O 512.32313 512.32365 1.01 
b3-H2O 365.25471 365.25513 1.15 
b2-H2O 266.18630 266.18657 1.01 

a6 721.44134 721.44177 0.60 
a5 650.40423 650.40470 0.72 
a3 355.27037 355.27079 1.18 

a6-NH3 704.41479 704.41515 0.51 
a5-NH3 633.37768 633.37822 0.85 
a4-NH3 485.31223 485.31278 1.13 
a3-NH3 338.24382 338.24420 1.12 

y6 725.39985 725.40034 0.68 
y5 612.31579 612.31636 0.93 
y4 513.24738 513.24794 1.09 
y3 366.17897 366.17942 1.23 

y6-NH3 708.37335 708.37376 0.58 
y5-NH3 595.28929 595.28978 0.82 
y4-NH3 496.22088 496.22137 0.99 
y3-NH3 349.15247 349.15284 1.06 

y6-NH3-H2O 690.36366 690.36322 -0.64 
y5-NH3-H2O 577.27870 577.27924 0.94 

C38H51N5O8
15N 720.37332 720.37374 0.58 

C34H43N5O7
15N 648.31581 648.31627 0.71 

C33H49N6O7 641.36572 641.36621 0.76 
C32H42N4O7

15N 609.30491 609.30543 0.85 
C30H46N5O5 556.34935 556.34987 0.93 

C31H44N4O4
15N 551.33582 551.33633 0.93 

C29H39N3O4
15N 508.29359 508.29415 1.10 

C24H40N5O6 494.29731 494.29785 1.09 
C28H39N3O3

15N 480.29962 480.29923 -0.81 
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C27H35N3O3
15N 480.26232 480.26285 1.10 

C26H33N3O4
15N 466.24667 466.24718 1.09 

C23H40N5O5 466.30240 466.30291 1.09 
C25H39N4O3 443.30167 443.30218 1.15 

C25H35N3O3
15N 438.25175 438.25225 1.14 

C25H30N2O3
15N 421.22510 421.22567 1.35 

C19H31N4O5 395.22890 395.22935 1.14 
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               Table A.5 The calculation of the abundance of the 13C, 16O, 17O, and 18O in Aβ11-25 

 

 

 

 

 

 

R(I17O), R(I13C), R(I18O) and R(I16O): The ratio of 17O 13C, 18O and 16O abundance calculated by the peak intensity using Equations 1, A-1, 
A-2 andA-3 in Table A-2 

 A 
A+1 (13C 

16O) 
A+1 (17O 

12C) 
A+2 (13C 

17O) 
A+2 

(18O12C) 

13

C-
substitute 

12

C
 17

O-
substitute 

12

C
18

O-
substitute 

12

C
16

O-
substitute 

run Intensity Intensity Intensity Intensity Intensity R(I13C) R(I17O) R(I18O) R(I16O) 

1 0.449 0.470 1.000 0.761 0.246 0.511 0.590 0.145 0.265 

2 0.549 0.510 1.000 0.857 0.282 0.481 0.546 0.154 0.300 

3 0.481 0.397 1.000 0.709 0.282 0.452 0.567 0.160 0.273 

average 
     

0.482 0.568 0.153 0.279 

SD 
     

0.029 0.022 0.007 0.018 
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    Table A.6 The mass list of peaks on the CAD spectrum of the Aβ11-25 in 
Figure 2.8 

Charge 
state 

ions Theoretical m/z Experimental m/z ppm 

2 M 879.95021 
  

2 M-H2O 870.94493 870.94494 0.01 

2 M-2H2O 861.93965 861.93976 0.13 
2 b14 842.43418 842.43422 0.05 
2 b13 792.89997 792.90007 0.13 
2 b12 735.38650 735.38664 0.18 
2 b11 670.86521 670.86541 0.30 
1 b11 1340.72314 1340.72238 -0.57 
1 b10 1265.67893 1265.67848 -0.36 
1 b9 1118.61052 1118.61024 -0.25 
1 b8 971.54211 971.54201 -0.10 
1 b7 872.47370 872.47371 0.01 
1 b6 759.38964 759.38975 0.15 
1 b5 631.29468 631.29485 0.27 
1 b4 503.23610 503.23632 0.44 
1 b3 366.17719 366.17741 0.60 
2 b14-H2O 833.42890 833.42895 0.06 
2 b13-H2O 783.89469 783.89478 0.11 
2 b12-H2O 726.38122 726.38135 0.18 
2 b11-H2O 661.85993 661.86013 0.31 
1 b11-H2O 1322.71258 1322.71206 -0.39 
1 b10-H2O 1247.66836 1247.66779 -0.46 
1 b9-H2O 1100.59995 1100.59967 -0.26 
1 b8-H2O 953.53154 953.53147 -0.08 
1 b7-H2O 854.46313 854.46316 0.03 
1 b6-H2O 741.37907 741.37918 0.15 
1 b5-H2O 613.28411 613.2843 0.30 
1 b4-H2O 485.22553 485.22578 0.51 
1 b3-H2O 348.16662 348.16689 0.76 
2 y14 815.42890 815.42896 0.08 
2 y13 765.89469 765.89473 0.05 
2 y12 697.36524 697.36531 0.11 
1 y12 1393.72319 1393.7226 -0.43 
1 y11 1256.66428 1256.66398 -0.24 
1 y10 1128.60570 1128.60553 -0.15 
1 y9 1000.51074 1000.51154 0.80 
1 y8 887.42668 887.42675 0.07 
1 y7 788.35827 788.35838 0.13 
1 y6 641.28986 641.29004 0.27 
1 y5 494.22145 494.22169 0.48 
1 y4 419.17724 419.17751 0.64 
1 y11-H2O 1238.65372 1238.65332 -0.32 
1 y4-H2O 401.16668 401.16696 0.71 
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        Table A.7 The mass list of proposed peaks in Figure 2.9 

Formula R. P /M 
Theoretical 

m/z 
Experimental 

m/z 
Error/ppm 

C
79

13

C
2
H

121
O

23
N

20

15

N 12.49 879.448533 879.448541 0.009 

C
78

13

C
3
H

121
O

23
N

20

15

N 10.40 879.950211 879.950211 ----- 

C
77

13

C
4
H

121
O

23
N

20

15

N 9.70 880.451888 880.451933 0.051 

C
78

13

C
3
H

121
O

22
N

20

15

N
17

O 8.18 880.452319 880.452284 -0.040 

C
78

13

C
3
H

121
O

22
N

19

15

N
2

17

O 11.07 880.950837 880.950842 0.006 

C
78

13

C
3
H

121
O

22
N

20

15

N
2

18

O 9.85 880.952334 880.952337 0.003 

C
76

13

C
5
H

121
O

23
N

20

15

N 8.37 880.953566 880.953565 -0.001 

C
77

13

C
4
H

121
O

22
N

20

15

N
17

O 7.31 880.953997 880.953952 -0.051 

C
78

13

CH
120

2

HO
22

N
20

15

N
17

O 6.47 880.955458 880.95544 -0.020 

C
76

13

C
5
H

121
O

22
N

20

15

N
17

O 9.74 881.455674 881.455621 -0.060 

Average of the absolute 
value 

9.36 
  

0.027 

SD 
   

0.024 

 The peak used as lock mass 
   R.P.: resolving power 
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Table A.8 The calculation of the abundance of the 13C, 16O, 17O, and 18O in Fmoc-valine 
 

Intensity: Normalized peak intensity;  

 The ratio of 13C abundance: R(I13C) 
          

                       
    ;  

 The ratio of 17O abundance: R(I17O)  
             (       )            

                                     (       )          
    ;  

 The ratio of 18O abundance: R(I18O)  
                       

                                     (       )          
      ;       

 The ratio of 16O abundance: R(I16O)   
                                 

                                     (       )          
      ;         

 
 
 
 

 A (
16

O) A+1 (
17

O) 
A+2 

(
13

C
17

O) 
A+2 (

18
O) 

A+2 

(
17

O2) 
A+3(

18
O

17
O) 

13

C-
substitute 

17

O-
substitute 

18

O-
substitute 

16

O-
substitute 

run Intensity Intensity Intensity Intensity Intensity Intensity R(I
13

C) R(I
17

O) R(I
18

O) R(I
16

O) 

1 0.176 1.000 0.164 0.182 0.903 0.585 0.141 0.596 0.135 0.270 

2 0.185 1.000 0.187 0.226 0.948 0.495 0.158 0.594 0.126 0.280 

3 0.232 1.000 0.285 0.246 1.081 0.634 0.222 0.594 0.138 0.268 

4 0.205 1.000 0.193 0.233 0.995 0.479 0.162 0.596 0.122 0.282 

5 0.179 1.000 0.241 0.263 1.064 0.636 0.194 0.599 0.143 0.258 

6 0.185 1.000 0.193 0.223 0.910 0.549 0.162 0.588 0.135 0.278 

average 
  

 
 

 
 

0.173 0.594 0.133 0.272 

SD 
  

 
 

 
 

0.030 0.004 0.008 0.009 
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Appendix B. (Supporting information for Chapter 3) 
 

   Table B.1 The calculation of the abundance of the 13C, 16O, and 17O in Aβ37-42 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Area: Normalized peak area; Intensity: Normalized peak intensity; R.P: Resolving power;  

R(I17O), R(I13C), and R(I16O): The ratio of 17O 13C, and 16O abundance calculated by the peak intensity using Equations 1, B-1, B-2 in 
Table B-2 

R(A17O), R(A13C), and R(I16O): The ratio of 17O 13C, and 16O abundance calculated by the peak area using Equations B-3, B-4, B-5 in 
Table B-2 

 

 A A+1 (
13

C 
16

O) A+1 (
17

O 
12

C) 
13

C-substitute 
12

C
 17

O-substitute 
12

C
16

O-substitute 

run Area Intensity 
R.P.
/M 

Area Intensity 
R.P.
/M 

Area Intensity 
R.P.
/M 

R(A
13

C) R(I
13

C) R(A
17

O) R(I
17

O) R(A
16

O) R(I
16

O) 

1 1.000 1.000 3.4 0.177 0.289 4.6 1.643 1.567 2.9 0.150 0.224 0.622 0.610 0.378 0.390 

2 1.000 1.000 2.7 0.301 0.288 2.8 1.466 1.382 2.9 0.231 0.224 0.594 0.580 0.406 0.420 

3 1.000 1.000 3.2 0.364 0.267 2.3 1.745 1.632 3.3 0.267 0.211 0.636 0.620 0.364 0.380 

4 1.000 1.000 3.2 0.154 0.212 3.2 1.331 1.471 2.8 0.134 0.175 0.571 0.595 0.429 0.405 

5 1.000 1.000 2.9 0.183 0.220 2.6 1.583 1.632 2.7 0.155 0.180 0.613 0.620 0.387 0.380 

averag
e          

0.187 0.203 0.607 0.605 0.393 0.395 

SD 
         

0.058 0.024 0.025 0.017 0.025 0.017 
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Table B.2 The statistics of the abundance of 17O, 13C, and the mass 
accuracy 

 Equation 

R(I13C)                   
          

                       
                   Equation (B-1) 

R(I16O)                
          

                        
                 Equation (B-2) 

R(A17O)                
          

                       
                  Equation (B-3) 

R(A13C)                   
         

                     
                   Equation (B-4) 

R(A16O)                
          

                      
                   Equation (B-5) 

 I (12C16O), I (12C17O), and I (13C16O) are the peak intensity of 12C 16O-, 12C 17O-, 
and 13C16O- substituted peaks 

 A (12C16O), A(12C17O), and A (13C16O) are the peak area of 12C 16O-, 12C 17O-, 
and 13C16O- substituted peaks 
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Table B.3 The mass list of proposed peaks in Figure 3.2 

Formula 
Resolving 

power/million 

Theoretical 

m/z 

Experimental 

m/z 
Error/ppm 

C23H43N6O7 0.86 515.318774 515.31876 -0.03 

C23H43N5
15NO7 0.88 516.315809 516.315804 -0.01 

C22
13CH43N6O7 1.07 516.322129 516.321907 -0.43 

C23H43N6O6
17O 0.85 516.322991 516.322987 -0.01 

C22
13CH43N5

15NO7 0.84 517.319164 517.319165 0.00 

C22
^3CH43N6

17OO6 0.86 517.326346 517.326349 0.01 

C18H38O10Na 0.93 437.235719 437.235718 --- 

C20H42O11Na 0.89 481.261933 481.261934 --- 

C22H46O12Na 0.87 525.288148 525.288132 --- 

C24H50O13Na 0.69 569.314363 569.314368 --- 

Average of the absolute 

value 
0.87 

  
0.08 

STDEV 
   

0.02 

 The peaks used as calibrants 
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Table B.4 The calculation of the abundance of the 13C, 16O, and 17O in 
Fmoc-glycine 

 

R(I17O), R(I13C): The ratio of 17O and 13Cabundance calculated by the peak 

intensity using Equations 1and B-1in Table B-2 

 

 

 

 

 

 

 

 

 

 A 
A+1 (13C 

16O) 
A+1 (17O 

12C) 
A+2 (17O 

17O) 

13

C-
substitute 

12

C
 17

O-
substitute 

Run Intensity Intensity Intensity Intensity R(I13C) R(I17O) 

1 1.000 0.187 2.976 1.971 0.157 0.582 

2 1.000 0.175 2.913 2.046 0.149 0.588 

3 1.000 0.168 2.873 1.994 0.144 0.585 

4 1.000 0.201 3.095 2.170 0.167 0.593 

5 1.000 0.197 3.124 2.120 0.164 0.590 

average 
    

0.156 0.587 

SD 
    

0.010 0.005 
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Figure B.1 The structure of the 17O labelled Fmoc-glycine 
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Table B.5 The mass list of proposed peaks in Figure 3.3 

Formula 
Resolving 

power/million 
Theoretical 

m/z 
Experimental m/z Error/ppm 

 C17H16NO4 2.7 298.107384 298.107380 ---- 

C16
13CH16NO4 2.1 299.110739 299.110733 -0.02 

C17H16NO3
17O 2.6 299.111601 299.111598 -0.01 

C16
13CH16NO3

17O 2.7 300.114956 300.114954 -0.01 

C17H16NO2
17O2 2.6 300.115818 300.115818 0.00 

C15
13C2H16NO3

17O 3.1 301.118311 301.118319 0.03 

C16
13CH16NO2

17O2 2.8 301.119173 301.119179 0.02 

Average of the absolute value 2.6 
  

0.01 

STDEV 
   

0.02 
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Appendix C. (Supporting information for Chapter 4) 
 

Figure C.1 Zooming in peaks losing one PEG unit from the precursor on 
the ECD spectrum of [TPGS+3Na]3+ 
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    Figure C.2 A ECD spectrum of [TPGS27+3Ag]3+ 
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Figure C.3 Mass spectra of four batches of processed TPGS samples: A1 
heated and A2 heated are A1 and A2 exposed to 50˚C for 1 month; A1 
melted and A2 melted are A1 and A2 melted in warm water bath (37˚C) 
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    Table C.1 Mass list of proposed peaks in Figure 4.2 

Mass list of free PEG (H (C2H4O)nNam) m=1, 2, 3 

PEG repeat unit, 
n 

Theoretical 
m/z (1+) 

Experimental 
m/z (1+) 

Error 
(ppm) 

Theoretical 
m/z (2+) 

Experimental 
m/z (2+) 

Error 
(ppm) 

Theoretical 
m/z (3+) 

Experimental 
m/z (3+) 

Error 
(ppm) 

13 613.34058 613.34059 -0.02 
      

14 657.36679 657.36657 0.34 
      

15 701.39301 701.3928 0.30 
      

16 745.41922 745.41949 -0.36 
      

17 789.44544 789.44498 0.58 406.21733 406.21716 0.42 
   

18 833.47165 833.47151 0.17 428.23043 428.23029 0.35 
   

19 877.49787 877.4981 -0.26 450.24354 450.24352 0.06 
   

20 921.52408 921.52412 -0.04 472.25665 472.25658 0.15 
   

21 
   

494.26976 494.26982 -0.12 
   

22 
   

516.28286 516.28292 -0.10 
   

23 
   

538.29597 538.29601 -0.06 
   

24 
   

560.30908 560.30909 -0.01 
   

25 
   

582.32219 582.321944 0.42 
   

26 
   

604.33529 604.33528 0.03 410.55345 410.55315 0.74 

27 
   

626.34840 626.34815 0.41 425.22886 425.22854 0.75 

28 
   

648.36151 648.36161 -0.15 439.90425 439.90401 0.58 

29 
   

670.37462 670.37467 -0.07 
   

Average of 
absolute value  

 0.26 
  

0.14 
  

0.69 

SD 
  

0.18 
  

0.17 
  

0.1 

Mass list of [TPGS+mNa]
m+ 

(H (C2H4O)n C33H53O5Nam) )  m=1, 2, 3 

PEG repeat 
unit, n 

Theoretical m/z 
(1+) 

Experimental 
m/z (1+) 

Error 
(ppm) 

Theoretical 
m/z (2+) 

Experimental 
m/z (2+) 

Error 
(ppm) 

Theoretical 
m/z (3+) 

Experimental 
m/z (3+) 

Error 
(ppm) 

15 1213.77957 1213.7795 0.06       

16 1257.80578 1257.80661 -0.66 640.39750 640.39726 0.38    

17 1301.83200 1301.83328 -0.98 *662.41061 ------ ------    
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18 1345.85821 1345.8584 -0.14 684.42371 684.42367 0.07    

19 *1389.8844 ------ ------ 706.43682 706.43696 -0.19    

20 1433.91064 1433.91407 -2.39 728.44993 728.45005 -0.16    

21 1477.93686 1477.93823 0.93 750.46304 750.46302 0.03 507.97177 507.97184 -0.15 

22    772.47615 772.47629 -0.18 *522.64717 ------ ------ 

23    794.48925 794.48941 -0.19 537.32258 537.32264 -0.12 

24    816.50236 816.502222 0.17 551.99798 551.99804 -0.1 

25    838.51547 838.51549 -0.02 566.67339 566.67336 0.05 

26    860.52857 860.52853 0.06 581.34879 581.34880 -0.02 

27    882.54168 882.54173 -0.05 596.02420 596.02429 -0.15 

28    904.55479 904.55477 0.03 610.69960 610.69949 0.18 

29    926.56790 926.56757 0.36 625.37501 625.37496 0.07 

30    *948.58101 ------ ------ 640.05041 640.05037 0.06 

31    970.59412 970.59367 0.46 654.72582 654.72587 -0.07 

32       669.40122 669.40108 0.22 

33       684.07663 684.07672 -0.14 

34       698.75203 698.75222 -0.27 

35       713.42744 713.42764 -0.29 

Average of 
absolute value 

  0.44   0.17   0.13 

Standard 
deviation 

  0.85   0.13   0.08 

Mass list of [TPGS+2Na+H]
3+ 

(H (C2H4O)n C33H53O5Na2H )  and  [TPGS+Na+H]
2+

( H (C2H4O)n C33H53O5NaH ) 

PEG repeat unit, 
n 

Theoretical 
m/z (1+) 

Experimental 
m/z (1+) 

Error 
(ppm) 

Theoretical 
m/z (2+) 

Experimental 
m/z (2+) 

Error 
(ppm) 

Theoretical 
m/z (3+) 

Experimental 
m/z (3+) 

Error 
(ppm) 

18    673.43275 673.43305 -0.17    

19    695.44585 695.44606 -0.05    

20    717.45896 717.45939 -0.28    

21    739.47207 739.47232 -0.03    

22    761.48518 761.48562 -0.20 515.31986 515.31990 -0.18 

23    783.49828 783.49843 0.11 529.99526 529.99523 -0.02 
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24    805.51139 805.51122 0.21 544.67067 544.67066 0.01 

25    827.52450 827.52498 -0.23 559.34607 559.34612 0.00 

26    849.53761 849.53790 -0.05 574.02148 574.02130 0.34 

27    871.55071 871.55079 0.18 588.69688 588.69675 0.23 

28    893.56382 893.56401 0.02 603.37229 603.37266 0.01 

29       618.04769 618.04746 0.38 

30       632.72310 632.72317 0.01 

31       647.39850 647.39832 0.28 

32       662.07391 662.07366 0.37 

33       676.74931 676.74956 -0.09 

Average of 
absolute value 

     0.14   0.16 

SD      0.17   0.19 

Mass list of [TPGS+2Na+NH4]
3+ 

(H (C2H4O)n C33H53O5Na2NH4 ) 

PEG repeat unit, 
n 

Theoretical 
m/z (1+) 

Experimental 
m/z (1+) 

Error 
(ppm) 

Theoretical 
m/z (2+) 

Experimental 
m/z (2+) 

Error 
(ppm) 

Theoretical 
m/z (3+) 

Experimental 
m/z (3+) 

Error 
(ppm) 

24       550.34618 550.34629 -0.14 

25       565.02159 565.02157 0.10 

26       579.69699 579.69703 0.02 

27       594.37240 594.37215 0.45 

28       609.04780 609.04765 0.26 

29       623.72321 623.72315 0.10 

30       638.39861 638.39875 -0.01 

31       653.07402 653.07393 0.26 

32       667.74942 667.74941 0.15 

33       550.34618 550.34629 -0.14 

Average of 
absolute value 

        0.17 

SD         0.16 

Mass list of [TPGS+3H]
3+ 

(H (C2H4O)n C33H53O5H3) 

PEG repeat unit,       Theoretical Experimental Error 
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n m/z (3+) m/z (3+) (ppm) 

23       515.34063 515.34061 -0.58 

24       530.01604 530.01582 -0.20 

25       544.69144 544.69155 -0.81 

26       559.36685 559.36688 -0.65 

27       574.04225 574.04207 -0.28 

28       588.71766 588.71740 -0.16 

29       603.39306 603.39278 -0.11 

30       618.06847 618.06815 -0.06 

31       632.74387 632.74391 -0.63 

32       647.41928 647.41923 -0.50 

Average of 
absolute value 

        0.20 

SD         0.21 

* Peaks used as internal calibrants 
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       Table C.2 Mass list of proposed peaks in Figure 4.5 

Mass list of free PEG (H (C2H4O)nNam) m=1, 2, 3 

PEG repeat unit, 
n 

Theoretical 
m/z (1+) 

Experimental 
m/z (1+) 

Error 
(ppm) 

Theoretical 
m/z (2+) 

Experimental 
m/z (2+) 

Error 
(ppm) 

Theoretical 
m/z (3+) 

Experimental 
m/z (3+) 

Error 
(ppm) 

15 701.39301 701.39286 -0.21 
      

16 745.41922 745.41905 -0.23 
      

17 789.44544 789.44527 -0.22 406.21733 384.20428 0.15 
   

18 833.47165 833.4714 -0.31 428.23043 406.21734 -0.03 
   

19 877.49787 877.49762 -0.28 450.24354 428.2304 0.09 
   

20 921.52408 921.52376 -0.35 472.25665 450.24351 0.08 
   

21 965.550300 965.54997 -0.34 494.26976 472.25662 0.07 
   

22 1009.57652 1009.57618 -0.33 516.28286 494.26969 0.14 
   

23 1053.60273 1053.60236 -0.35 538.29597 516.28278 0.17 
   

24 1097.62895 1097.62857 -0.34 560.30908 538.2959 0.14 
   

25 1141.65516 1141.65481 -0.31 582.32219 560.30898 0.18 
   

26 
   

604.33529 582.32212 0.12    

27 
   

626.34840 604.33519 0.18    

28 
   

648.36151      

29 
   

670.37462      

Average of 
absolute value  

 0.27 
  

0.17    

SD 
  

0.05 
  

0.03    

Mass list of [TPGS+mNa]
m+ 

(H (C2H4O)n C33H53O5Nam) m=1, 2, 3 

PEG repeat unit, 
n 

Theoretical 
m/z (1+) 

Experimental 
m/z (1+) 

Error 
(ppm) 

Theoretical 
m/z (2+) 

Experimental 
m/z (2+) 

Error 
(ppm) 

Theoretical 
m/z (3+) 

Experimental 
m/z (3+) 

Error 
(ppm) 

8 905.59606 905.59579 0.30       

9 949.62228 949.62207 0.22       

10 993.64849 993.64808 0.42       

11 1037.67471 1037.67427 0.42       

12 1081.70092 1081.70057 0.33       

13 1125.72714 1125.72665 0.43 574.35818 574.35803 0.26    

14 1169.75335 1169.75296 0.34 596.37129 596.37113 0.26    

15 1213.77957 1213.77906 0.42 618.38439 618.38427 0.20    

16 1257.80578 1257.80532 0.37 640.39750 640.39736 0.22    

17 1301.83200 1301.83147 0.41 662.41061 662.41046 0.23    
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18 1345.85821 1345.85772 0.37 684.42371 684.42357 0.21    

19 1389.8844 1389.88384 0.43 706.43682 706.43667 0.22    

20 1433.91064 1433.90999 0.46 728.44993 728.44978 0.21    

21 1477.93686 1477.93610 0.51 750.46304 750.46287 0.23 507.97177 507.97171 0.11 

22 1521.96308 1521.96216 0.60 772.47615 772.47597 0.23 522.64717 522.6471 0.14 

23 1565.98929 1565.98839 0.58 794.48925 794.48906 0.24 537.32258 537.32254 0.07 

24 1610.01551 1610.01451 0.62 816.50236 816.50216 0.25 551.99798 551.99789 0.16 

25 1654.04172 1654.04057 0.70 838.51547 838.51523 0.29 566.67339 566.67333 0.10 

26 1698.06794 1698.06731 0.37 860.52857 860.52832 0.30 581.34879 581.34862 0.29 

27 1742.09415 1742.09365 0.29 882.54168 882.54141 0.31 596.02420 596.02407 0.21 

28 1786.12037 1786.11893 0.80 904.55479 904.55448 0.34 610.69960 610.69949 0.18 

29 1830.14658 1830.14638 0.11 926.56790 926.56757 0.36 625.37501 625.37487 0.22 

30    948.58101 948.58067 0.36 640.05041 640.05033 0.13 

31    970.59412 970.59376 0.37 654.72582 654.7256 0.33 

32    992.60722 992.60688 0.34 669.40122 669.40107 0.23 

33    1014.62033 1014.61995 0.37    

34    1036.63344 1036.633 0.42    

Average of 
absolute value 

  0.40   0.27   0.18 

SD   0.16   0.09   0.08 

Mass list of [TPGS+Na+NH4]
2+ 

(H (C2H4O)n C33H53O5Na NH4 )  and  [TPGS+NH4]
+
( H (C2H4O)n C33H53O5NH4) 

PEG repeat unit, 
n 

Theoretical 
m/z (1+) 

Experimental 
m/z (1+) 

Error 
(ppm) 

Theoretical 
m/z (2+) 

Experimental 
m/z (2+) 

Error 
(ppm) 

Theoretical 
m/z (3+) 

Experimental 
m/z (3+) 

Error 
(ppm) 

12 1120.77174 1120.7714 0.31       

13 1164.79796 1164.79755 0.35       

14 1208.82417 1208.82371 0.38       

15 1252.85039 1252.85004 0.28 615.90670 615.90652 -0.29    

16 1296.87660 1296.87616 0.34 637.91981 637.9196 -0.32    

17 1340.90282 1340.90232 0.37 659.93291 659.93274 -0.26    

18 1384.92903 1384.92852 0.37 681.94602 681.94585 -0.25    

19 1428.95525 1428.95448 0.54 703.95913 703.95898 -0.21    

20 1472.98146 1472.98063 0.57 725.97224 725.97207 -0.23    

21 1517.00768 1517.00658 0.72 747.98534 747.98517 -0.23    

22 1561.03389 1561.03303 0.55 769.99845 769.99824 -0.27    

23 1605.06011 1605.05937 0.46 792.01156 792.01139 -0.21    

24    814.02467 814.02446 -0.25    
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25    836.03777 836.03751 -0.31    

26    858.05088 858.05059 -0.34    

27    880.06399 880.06374 -0.28    

28    902.07710 902.07676 -0.37    

29    924.09020 924.08988 -0.35    

30    946.10331 946.10285 -0.49    

31    968.11642 968.1161 -0.33    

32    990.12953 990.12916 -0.37    

33    1012.14263 1012.1426 -0.08    

Average of 
absolute value 

  0.43   0.29    

SD   0.13   0.08    

Mass list of [TPGS+Na+H]
2+ 

(H (C2H4O)n C33H53O5NaH) 

PEG repeat unit, 
n 

Theoretical 
m/z (1+) 

Experimental 
m/z (1+) 

Error 
(ppm) 

Theoretical 
m/z (2+) 

Experimental 
m/z (2+) 

Error 
(ppm) 

Theoretical 
m/z (3+) 

Experimental 
m/z (3+) 

Error 
(ppm) 

18    673.43275 673.43253 0.32    

19    695.44585 695.44567 0.26    

20    717.45896 717.45886 0.14    

21    739.47207 739.47182 0.34    

22    761.48518 761.48503 0.19    

23    783.49828 783.49805 0.30    

24    805.51139 805.51112 0.34    

25    827.52450 827.52426 0.29    

26    849.53761 849.53736 0.29    

27    871.55071 871.55041 0.35    

28    893.56382 893.56341 0.46    

29    915.57693 915.57675 0.19    

Average of 
absolute value 

     0.29    

SD      0.08    

Mass list of [Di-TPGS+2Na]
2+ 

(H (C2H4O)n C66H106O9Na2) and [Di-TPGS+Na+NH4]
2+

( H (C2H4O)n C66H106O9NaNH4) 

    [Di-TPGS+2Na]
2+

 [Di-TPGS+Na+NH4]
2+

 

PEG repeat unit, 
n 

   
Theoretical 

m/z (2+) 
Experimental 

m/z (2+) 
Error 
(ppm) 

Theoretical 
m/z (2+) 

Experimental 
m/z (2+) 

Error 
(ppm) 

17    918.60418 918.60337 0.88    

18    940.61729 940.61685 0.47    
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19    962.63040 962.62971 0.71 982.16551 982.16510 0.42 

20    984.64350 984.64288 0.63 1004.17862 1004.17810 0.52 

21    1006.65661 1006.65596 0.65 1026.19173 1026.19124 0.48 

22    1028.66972 1028.66903 0.67 1048.20484 1048.20446 0.36 

23    1050.68283 1050.68216 0.63 1070.21794 1070.21757 0.35 

24    1072.69593 1072.69524 0.65 1092.23105 1092.23068 0.34 

25    1094.70904 1094.70836 0.62 1114.24416 1114.24378 0.34 

26    1116.72215 1116.72138 0.69 1136.25727 1136.25689 0.33 

27    1138.73526 1138.73456 0.61    

28    1160.74836 1160.74767 0.60    

29    1182.76147 1182.76072 0.63    

30    1204.77458 1204.77386 0.60    

31    1226.78769 1226.7873 0.31    

Average of 
absolute value 

     0.62   0.39 

SD      0.12   0.07 
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Table C.3 Proposed formulae of peaks on CAD spectra of 
[TPGS+3Na]3+ and [TPGS+2Na]2+ in Figure 4.6 

Proposed formulae of peaks on CAD spectrum of [TPGS+3Na]
3+ 

(C87H162O32Na3 ) in Figure 
4.6c 

Proposed 
cleavage 

site 
Proposed Formula Theoretical m/z 

Experimental 
m/z  

Error (ppm) 
Charge 

state 

 
C87H162O32Na 1742.09414 1742.09469 0.31 1+ 

 
*C87H162O32Na2 882.54168 

  
2+ 

 
C87H162O32Na3 596.02420 

  
3+ 

a C68H124O32Na 1475.79679 1475.79739 0.41 1+ 

a C64H116O30Na 1387.74436 1387.74489 0.38 1+ 

a C62H112O29Na 1343.71815 1343.71758 -0.42 1+ 

a C60H108O28Na 1299.69193 1299.69165 -0.22 1+ 

a C58H104O27Na 1255.66572 1255.66503 -0.55 1+ 

a C68H124O32Na2 749.39301 749.39286 -0.20 2+ 

a C64H116O30Na2 705.36679 705.36648 -0.44 2+ 

C20H38 C67H124O32Na 1463.79679 1463.79680 0.00 1+ 

C20H38 C67H124O32Na2 743.39301 743.39265 -0.48 2+ 

b C58H114O31Na 1329.72363 1329.72380 0.13 1+ 

b C58H114O31Na2 676.35642 676.35599 -0.63 2+ 

b C58H112O31Na 1327.70798 1327.70728 -0.53 1+ 

b C58H112O31Na2 675.34860 675.34860 0.00 2+ 

c C58H112O30Na 1311.71306 1311.71376 0.53 1+ 

c C58H112O30Na2 667.35114 667.35083 -0.47 2+ 

d C57H112O29Na 1283.71815 1283.71890 0.58 1+ 

d C57H112O29Na2 653.35369 653.35362 -0.10 2+ 

e C54H110O28Na 1229.70758 1229.70750 -0.07 1+ 

e C52H106O27Na 1185.68137 1185.68118 -0.16 1+ 

e C50H102O26Na 1141.65515 1141.65540 0.22 1+ 

e C48H98O25Na 1097.62894 1097.62913 0.18 1+ 

e C46H94O24Na 1053.60272 1053.60298 0.25 1+ 

e C44H90O23Na 1009.57651 1009.57686 0.35 1+ 

e C42H86O22Na 965.55029 965.55050 0.22 1+ 

e C40H82O21Na 921.52408 921.52455 0.52 1+ 

e C38H78O20Na 877.49786 877.49839 0.60 1+ 

e C36H74O19Na 833.47165 833.47163 -0.02 1+ 

e C34H70O18Na 789.44543 789.44513 -0.38 1+ 
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e C32H66O17Na 745.41922 745.41919 -0.03 1+ 

e C30H62O16Na 701.39300 701.39271 -0.41 1+ 

e C28H58O15Na 657.36679 657.36634 -0.68 1+ 

e C26H54O15Na 613.34057 613.34020 -0.60 1+ 

e C24H50O13Na 569.31436 569.31444 0.15 1+ 

e C22H46O12Na 525.28814 525.28795 -0.36 1+ 

e C20H42O11Na 481.26193 481.26177 -0.32 1+ 

e C54H110O28Na2 626.34840 626.34812 -0.45 2+ 

e C52H106O27Na2 604.33523 604.33502 -0.34 2+ 

e C48H98O25Na2 560.30888 560.30877 -0.19 2+ 

e C46H94O24Na2 538.29570 538.29560 -0.19 2+ 

e C54H108O28Na 1227.69193 1227.69236 0.35 1+ 

e C52H104O27Na 1183.66572 1183.66572 0.00 1+ 

e C50H100O26Na 1139.63950 1139.63961 0.10 1+ 

e C48H96O25Na 1095.61329 1095.61355 0.24 1+ 

e C46H92O24Na 1051.58707 1051.58725 0.17 1+ 

e C44H88O23Na 1007.56086 1007.56077 -0.08 1+ 

e C42H84O22Na 963.53464 963.53473 0.09 1+ 

e C40H80O21Na 919.50843 919.50861 0.20 1+ 

e C38H76O20Na 875.48221 875.48211 -0.11 1+ 

e C36H72O19Na 831.45600 831.45593 -0.08 1+ 

e C34H68O18Na 787.42978 787.42971 -0.09 1+ 

e C32H64O17Na 743.40357 743.40317 -0.53 1+ 

e C30H60O16Na 699.37735 699.37693 -0.60 1+ 

e C28H56O15Na 655.35114 655.35078 -0.54 1+ 

e C26H52O15Na 611.32492 611.32454 -0.62 1+ 

e C24H48O13Na 567.29871 567.29840 -0.54 1+ 

e C22H44O12Na 523.27249 523.27214 -0.67 1+ 

e C20H40O11Na 479.24628 479.24611 -0.34 1+ 

e C18H36O10Na 435.22006 435.22001 -0.11 1+ 

e C54H108O28Na2 625.34058 625.34032 -0.41 2+ 

e C52H104O27Na2 603.32740 603.32707 -0.55 2+ 

e C50H100O26Na2 581.31423 581.31416 -0.12 2+ 

e C48H96O25Na2 559.30105 559.30100 -0.09 2+ 

e C46H92O24Na2 537.28788 537.28791 0.06 2+ 

e C44H88O23Na2 515.27470 515.27478 0.15 2+ 
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e C42H84O22Na2 493.26153 493.26170 0.35 2+ 

e C40H80O21Na2 471.24835 471.24859 0.50 2+ 

f C54H108O27Na 1211.69702 1211.69740 0.31 1+ 

f C52H104O26Na 1167.67081 1167.67100 0.17 1+ 

f C50H100O25Na 1123.64459 1123.64471 0.11 1+ 

f C48H96O24Na 1079.61838 1079.61856 0.17 1+ 

f C46H92O23Na 1035.59216 1035.59241 0.24 1+ 

f C44H88O22Na 991.56595 991.56589 -0.06 1+ 

f C42H84O21Na 947.53973 947.53983 0.11 1+ 

f C40H80O20Na 903.51352 903.51380 0.32 1+ 

f C38H76O19Na 859.48730 859.48701 -0.34 1+ 

f C36H72O18Na 815.46109 815.46095 -0.17 1+ 

f C34H68O17Na 771.43487 771.43484 -0.04 1+ 

f C32H64O16Na 727.40866 727.40846 -0.27 1+ 

f C30H60O15Na 683.38244 683.38217 -0.40 1+ 

f C28H56O14Na 639.35623 639.35598 -0.38 1+ 

f C54H108O27Na2 617.34312 617.34281 -0.50 2+ 

f C52H104O26Na2 595.33001 595.33044 0.72 2+ 

f C50H100O25Na2 573.31691 573.31699 0.15 2+ 

f C48H96O24Na2 551.30380 551.30349 -0.56 2+ 

f C46H92O23Na2 529.29069 529.29050 -0.36 2+ 

f C44H88O22Na2 507.27758 507.27732 -0.52 2+ 

f C42H84O21Na2 485.26448 485.26431 -0.34 2+ 

f C40H80O20Na2 463.25137 463.25128 -0.19 2+ 

f C38H76O19Na2 441.23826 441.23816 -0.23 2+ 

f C36H72O18Na2 419.22515 419.22509 -0.15 2+ 

g C28H56O13Na 623.36129 623.36099 -0.47 1+ 

g C26H52O12Na 579.33507 579.33489 -0.31 1+ 

g C24H48O11Na 535.30886 535.30853 -0.61 1+ 

g C22H44O10Na 491.28264 491.28238 -0.53 1+ 

g C20H40O9Na 447.25643 447.25633 -0.21 1+ 

g C18H36O8Na 403.23021 403.23036 0.37 1+ 

h C83H154O30Na 1654.04171 1654.04120 -0.31 1+ 

h C82H150O29Na 1610.01550 1610.01661 0.69 1+ 

h C61H110O19Na 1169.75335 1169.75369 0.29 1+ 

h C57H106O18Na 1125.72714 1125.72759 0.40 1+ 
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h C55H102O17Na 1081.70092 1081.70156 0.59 1+ 

h C54H98O16Na 1037.67471 1037.67490 0.19 1+ 

h C52H94O15Na 993.64849 993.64878 0.29 1+ 

Average of 
absolute 

value 
   0.32 

 

 

SD    0.19 
 

 

Proposed formulae of peaks on CAD spectrum of [TPGS+2Na]
2+ 

(C87H162O32Na2) in Figure 
4.6b 

Proposed 
cleavage 

site 
Proposed Formula Theoretical m/z 

Experimental 
m/z 

Error (ppm) 
Charge 

state 

 *C87H162O32Na2 882.54168    

 C87H162O32Na 1742.09414 1742.09512 -0.56  

a C68H124O32Na 1475.79679 1475.79760 -0.55 1+ 

a C68H124O32Na2 749.39301 749.39263 0.50 2+ 

b C58H114O31Na2 676.35642 676.35588 0.79 2+ 

b C58H112O31Na2 675.34860 675.34875 -0.22 2+ 

c C58H112O30Na 1311.71306 1311.71516 -1.60 1+ 

c C58H112O30Na2 667.35114 667.35032 1.23 2+ 

d C57H112O29Na2 653.35369 653.35257 1.6 2+ 

e C54H108O28Na 1227.69193 1227.69334 -1.15 1+ 

e C52H104O27Na 1183.66572 1183.66691 -1.01 1+ 

e C50H100O26Na 1139.63950 1139.64038 -0.77 1+ 

e C48H96O25Na 1095.61329 1095.61272 0.52 1+ 

e C46H92O24Na 1051.58707 1051.58652 0.52 1+ 

e C44H88O23Na 1007.56086 1007.56064 0.21 1+ 

e C42H84O22Na 963.53464 963.53495 -0.32 1+ 

e C40H80O21Na 919.50843 919.50819 0.26 1+ 

e C38H76O20Na 875.48221 875.48225 -0.05 1+ 

e C36H72O19Na 831.45600 831.45607 -0.09 1+ 

e C34H68O18Na 787.42978 787.42945 0.42 1+ 

e C30H60O16Na 699.37735 699.37714 0.30 1+ 

e C26H52O15Na 611.32492 611.32462 0.49 1+ 

e C24H48O13Na 567.29871 567.29833 0.66 1+ 

e C22H44O12Na 523.27249 523.27217 0.61 1+ 

e C54H108O28Na2 625.34058 625.34011 0.75 2+ 

f C54H108O27Na 1211.69702 1211.69737 -0.29 1+ 

f C52H104O26Na 1167.67081 1167.67148 -0.58 1+ 
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f C50H100O25Na 1123.64459 1123.64465 -0.05 1+ 

f C48H96O24Na 1079.61838 1079.61856 -0.17 1+ 

f C46H92O23Na 1035.59216 1035.59218 -0.02 1+ 

f C44H88O22Na 991.56595 991.56618 -0.24 1+ 

f C42H84O21Na 947.53973 947.53985 -0.13 1+ 

f C40H80O20Na 903.51352 903.51350 0.02 1+ 

f C38H76O19Na 859.48730 859.48739 -0.10 1+ 

f C36H72O18Na 815.46109 815.46079 0.36 1+ 

f C32H64O16Na 727.40866 727.40827 0.53 1+ 

f C30H60O15Na 683.38244 683.38185 0.86 1+ 

f C28H56O14Na 639.35623 639.35579 0.68 1+ 

f C54H108O27Na2 617.34312 617.34264 0.78 2+ 

f C52H104O26Na2 595.33001 595.32946 0.93 2+ 

f C50H100O25Na2 573.31691 573.31632 1.02 2+ 

f C48H96O24Na2 551.30380 551.30333 0.85 2+ 

f C46H92O23Na2 529.29069 529.29016 1.00 2+ 

f C44H88O22Na2 507.27758 507.27702 1.11 2+ 

f C40H80O20Na2 463.25137 463.25120 0.36 2+ 

Average of 
absolute 

value 
   0.55 

 

 

SD    0.38 
 

 

* Peaks used as internal calibrants 
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Table C.4 Proposed formulae of peaks on ECD spectra of [TPGS+3Na]3+ 

and [TPGS+2Na]2+  in Figure 4.7 

Proposed formulae of peaks on ECD spectrum of [TPGS+3Na]
3+ 

(C87H162O32Na3 ) in Figure 
4.7c 

Proposed 
cleavage site 

Proposed 
Formula 

Theoretical 
m/z  

Experimental 
m/z  

Error 
(ppm) 

Charge 
state 

 
*C87H162O32Na 1742.09414 1742.09413 

 
1+ 

 
*C87H162O32Na2 882.54168 882.54148 

 
2+ 

 
*C87H162O32Na3 596.02420 596.0242 

 
3+ 

 
*C87H162O32Na3 894.03657 894.03677 

 
2+ 

d C57H113O29Na2 1307.71574 1307.71546 0.22 1+ 

d C57H113O29Na3 665.35248 665.35239 0.14 1+ 

d C55H109O28Na3 643.33938 643.33935 0.04 2+ 

d C55H109O28Na2 1263.68953 1263.68965 -0.10 1+ 

d C53H105O27Na2 1219.66331 1219.66298 0.27 1+ 

e C53H105O27Na3 621.32627 621.3263 -0.05 2+ 

e C54H109O28Na2 1251.68953 1251.68964 -0.09 1+ 

e C54H109O28Na3 637.33937 637.33922 0.24 2+ 

e C52H104O27Na3 1229.64526 1229.64543 -0.14 1+ 

e C50H100O26Na3 1185.61904 1185.61971 -0.56 1+ 

f C54H108O28Na3 1273.67147 1273.67227 -0.63 1+ 

f C54H109O27Na2 1235.69461 1235.69382 0.64 1+ 

f C52H105O26Na2 1191.66840 1191.66785 0.46 1+ 

f C50H101O25Na2 1147.64218 1147.64196 0.20 1+ 

f C48H97O24Na2 1103.61597 1103.6154 0.52 1+ 

f C46H93O23Na2 1059.58975 1059.59054 -0.74 1+ 

f C52H103O26Na2 1189.65275 1189.65388 -0.95 1+ 

f C50H99O25Na2 1145.62653 1145.62507 1.28 1+ 

f C48H95O24Na2 1101.60032 1101.60035 -0.03 1+ 

f C44H87O22Na2 1013.54789 1013.54752 0.36 1+ 

f C42H83O21Na2 969.52167 969.52145 0.23 1+ 

f C40H79O20Na2 925.49546 925.49509 0.40 1+ 

f C38H75O19Na2 881.46924 881.46861 0.72 1+ 

f C36H71O18Na2 837.44303 837.44247 0.67 1+ 

f C34H68O17Na 771.43487 771.43447 0.52 1+ 

f C32H64O16Na 727.40866 727.40828 0.52 1+ 

f C30H60O15Na 683.38244 683.38272 -0.41 1+ 

f C28H56O14Na 639.35623 639.35628 -0.09 1+ 

f C26H52O13Na 595.33001 595.33018 -0.29 1+ 
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f C24H48O12Na 551.30380 551.30392 -0.23 1+ 

f C22H44O11Na 507.27758 507.27802 -0.87 1+ 

f C20H40O10Na 463.25137 463.25199 -1.35 1+ 

f C18H36O9Na 419.22515 419.22575 -1.43 1+ 

f C16H32O8Na 375.19894 375.19909 -0.41 1+ 

f C14H28O7Na 331.17272 331.17292 -0.60 1+ 

g C30H60O14Na 667.38753 667.38758 -0.08 1+ 

g C28H56O13Na 623.36131 623.36151 -0.32 1+ 

g C26H52O12Na 579.33510 579.33561 -0.88 1+ 

g C24H48O11Na 535.30888 535.30913 -0.46 1+ 

g C22H44O10Na 491.28267 491.28322 -1.12 1+ 

g C20H40O9Na 447.25645 447.257 -1.22 1+ 

g C18H36O8Na 403.23024 403.23079 -1.37 1+ 

h C85H157O31Na3 871.51955 871.51899 0.64 2+ 

h C83H153O30Na3 849.50644 849.50666 -0.26 2+ 

h C81H149O29Na3 827.49333 827.49325 0.10 2+ 

h C79H145O28Na3 805.48023 805.48019 0.05 2+ 

h C77H141O27Na3 783.46712 783.467 0.15 2+ 

h C75H137O26Na2 1499.91880 1499.919 -0.13 1+ 

h C73H133O25Na2 1455.89259 1455.89346 -0.60 1+ 

h C71H129O24Na2 1411.86637 1411.8661 0.19 1+ 

h C69H125O23Na2 1367.84016 1367.84028 -0.09 1+ 

h C67H121O22Na2 1323.81394 1323.8144 -0.35 1+ 

h C65H117O21Na2 1279.78773 1279.78807 -0.27 1+ 

h C63H113O20Na2 1235.76151 1235.762 -0.40 1+ 

h C61H109O19Na2 1191.73530 1191.7353 0.00 1+ 

Average of 
absolute value    

0.46 
 

SD 
   

0.38 
 

Proposed formulae of peaks on ECD spectrum of [TPGS+2Na]
2+ 

(C87H162O32Na2) in Figure 
4.7b 

Proposed 
cleavage site 

Proposed 
Formula 

Theoretical 
m/z 

Experimental 
m/z 

Error 
(ppm) 

Charge 
state 

 
*C87H162O32Na2 882.54168 882.54168  2+ 

 
C87H162O32Na 1742.09414 1742.09467 -0.30 1+ 

 
C87H162O32Na2 1765.08391 1765.08406 -0.08 1+ 

d C57H113O29Na2 1307.71574 1307.71582 -0.05 1+ 

d C55H109O28Na2 1263.68953 1263.68976 -0.18 1+ 

d C53H105O27Na2 1219.66331 1219.66369 -0.30 1+ 

e C54H109O28Na2 1251.68953 1251.68984 -0.24 1+ 

f C54H109O27Na2 1235.69461 1235.69465 -0.02 1+ 
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Average of 
absolute value 

   0.17  

SD    0.12  

* Peaks used as internal calibrants 
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Table C.5 Proposed formulae of peaks on ECD/ECD MS
3
 spectrum of peak 

at m/z 643.3394 in Figure 4.8c 

Proposed 

cleavage 

site 

Proposed 

Formula 
Theoretical m/z  Experimental m/z  

Error 

(ppm) 

Charge 

state 

d C55H109O28Na2 1263.68953 1263.69066 -0.89 1+ 

f C50H101O25Na2 1147.64218 1147.64253 -0.30 1+ 

e C52H104O27Na3 1229.64526 1229.64615 -0.72 1+ 
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              Table C.6 The statistics of TPGS%, Di-TPGS%, and PEG% 

TPGS% Relative intensity of TPGS 

                           
                                        ⁄  

Di-TPGS% Relative intensity of Di-TPGS 

                             
                                        ⁄  

PEG% Relative intensity of PEG 

                          
                                        ⁄  
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Appendix D. (Supporting information for Chapter 5) 
 

Table D.1 Mass list of proposed peaks on the CAD spectra of 
[TPGS+2Li]2+ , [TPGS+2Na]2+, [TPGS+2K]2+ and [TPGS+2Ag]2+ in Figure 
5.2 

Proposed formulae of peaks on CAD spectra of [TPGS+2Li]
2+ 

in Figure 5.2a 

Charge 
state 

Proposed Formula Theoretical m/z 
Experimental 

m/z 
Error 
(ppm) 

Proposed 
cleavage site 

2 C87H162O32Li2 866.56808 866.56792 0.18 M 

2 C68H124O32Li2 733.41924 733.4189 0.46 a 

2 C54H108O27Li2 601.36935 601.36884 0.84 f 

2 C52H104O26Li2 579.35624 579.35582 0.72 f 

2 C50H100O25Li2 557.34313 557.34271 0.76 f 

2 C48H96O24Li2 535.33002 535.32956 0.87 f 

2 C46H92O23Li2 513.31692 513.31619 1.42 f 

2 C58H112O30Li2 651.37749 651.3767 1.21 c 

2 C57H112O29Li2 637.38003 637.37952 0.80 d 

2 C65H118O21Li2 624.42374 624.42323 0.81 ?? 

average    0.81  

SD    0.34  

Proposed formulae of peaks on CAD spectra of [TPGS+2Na]
2+

 in Figure 5.2b 

Charge state Proposed Formula Theoretical m/z Experimental m/z 
Error 
(ppm) 

Proposed 
cleavage 

site 

1 C87H162O32Na2 882.54168 882.54259 1.03 M 

1 C87H162O32Na 1742.09414 1742.09904 2.81 M-Na 

1 C68H124O32Na 1475.79679 1475.80083 2.73 a 

2 C68H124O32Na2 749.39301 749.3936 0.78 a 

1 C54H108O27Na 1211.69702 1211.69935 1.92 f 

1 C52H104O26Na 1167.67081 1167.67302 1.89 f 

1 C50H100O25Na 1123.64459 1123.64676 1.93 f 

1 C48H96O24Na 1079.61838 1079.62027 1.75 f 

1 C46H92O23Na 1035.59216 1035.59388 1.66 f 

1 C44H88O22Na 991.56595 991.56755 1.61 f 

2 C54H108O27Na2 617.34312 617.34335 0.37 f 

2 C52H104O26Na2 595.33001 595.33042 0.68 f 

2 C58H112O30Na2 667.35114 667.35147 0.493 d 
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2 C57H112O29Na2 653.35369 653.35452 1.27 c 

average    1.60  

SD    0.76  

Proposed formulae of peaks on CAD spectra of [TPGS+2K]
2+ 

 in Figure 5.2c 

Charge state Proposed Formula Theoretical m/z Experimental m/z 
Error 
(ppm) 

Proposed 
cleavage 

site 

2 C87H162O32K2 898.51562 898.51506 -0.62 M 

1 C87H162O32K 1758.06808 1758.07041 -1.33 M-K 

1 C79H146O28K 1493.91079 1493.91163 -0.56 ?? 

1 C75H138O26K 1491.77073 1491.77171 -0.66 ?? 

average    -0.79  

SD    0.36  

Proposed formulae of peaks on CAD spectra of [TPGS+2Ag]
2+ 

 in Figure 5.2d 

Charge state Proposed Formula Theoretical m/z Experimental m/z 
Error 
(ppm) 

Proposed 
cleavage 

site 

2 C87H162O32Ag2 966.45701 966.45605 0.99 M 

2 C68H124O32Ag2 833.30833 833.30801 0.38 a 

2 C58H112O30Ag2 751.26647 751.26594 0.71 c 

2 c57H112O29Ag2 737.26901 737.26842 0.80 d 

2 C54H108O27Ag2 701.25844 701.25790 0.77 f 

2 C52H104O26Ag2 679.24533 679.24471 0.92 f 

2 C50H100O25Ag2 657.23223 657.23142 1.22 f 

2 C48H96O24Ag2 635.21912 635.21838 1.16 f 

2 C46H92O23Ag2 613.20601 613.20547 0.88 f 

2 C44H88O22Ag2 591.19290 591.19220 1.19 f 

2   879.90406  ??? 

average    0.90  

SD    0.26  
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Table D.2 Mass list of proposed peaks on the CAD spectra of 
[TPGS+Li+Na]2+ , [TPGS+K+Li]2+, [TPGS+Li+Ag]2+, [TPGS+Na+Ag]2+, 

[TPGS+K+Ag]2+, and [TPGS+K+Na]2+   in Figure 5.3 

Proposed formulae of peaks on CAD spectra of [TPGS+Li+Na]
2+ 

 in Figure5.3a 

Charge state Proposed Formula 
Theoretical 

m/z 
Experimental 

m/z 
Error 
(ppm) 

Proposed 
cleavage 

site 

2 C87H162O32NaLi 874.55480 874.55576 1.09 M 

1 C87H162O32Li 1726.12038 1726.12321 1.63 M-Na 

1 C68H124O32Li 1459.82317 1459.82397 0.54 a 

1 C54H108O27Li 1195.72337 1195.72464 1.06 f 

1 C52H104O26Li 1151.69715 1151.69815 0.86 f 

1 C50H100O25Li 1107.67093 1107.67209 1.04 f 

2 C68H124O32LiNa 741.40619 741.40675 0.75 a 

2 C58H112O30LiNa 659.36432 659.36499 1.01 c 

2 C57H112O29LiNa 654.36686 654.36696 0.15 d 

2 C54H108O27LiNa 609.35629 609.35635 0.09 f 

2 C52H104O26LiNa 587.34318 587.34354 0.61 f 

2 C50H100O25LiNa 565.33008 565.33050 0.74 f 

2 C48H96O24LiNa 543.31697 543.31699 0.03 f 

2 C83H154O30LiNa 830.52867 830.52961 1.13 M-2C2H4O 

average    0.77  

SD    0.45  

Proposed formulae of peaks on CAD spectra of [TPGS+Li+K]
2+ 

 in Figure 5.3b 

Charge 
state 

Proposed 
Formula 

Theoretical m/z 
Experimental 

m/z 
Error 
(ppm) 

Proposed 
cleavage 

site 

2 C87H162O32KLi 882.54177 882.54119 -0.66 M 

1 C87H162O32Li 1726.12039 1726.11915 -0.72 M-K 

2 C84H158O27KLi 822.53892 822.54019 1.54 ??? 

average    0.06  

SD    1.28  

Proposed formulae of peaks on CAD spectra of [TPGS+Li+Ag]
2+ 

 in Figure 5.3c 

Charge 
state 

Proposed Formula 
Theoretical 

m/z 
Experimental m/z 

Error 
(ppm) 

Proposed 
cleavage 

site 

2 C87H162O32LiAg 916.51246 916.51199 -0.51 M 

2 C68H124O32AgLi 783.36386 783.36366 -0.26 a 

1 C54H108O27Li 1195.72337 1195.72366 0.24 f 

2 C58H112O30AgLi 701.32192 701.32183 -0.13 c 
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2 C57H112O29AgLi 687.32446 687.32430 -0.23 d 

2 C54H108O27AgLi 651.31390 651.31371 -0.29 f 

2 C52H104O26AgLi 629.30079 629.30059 -0.32 f 

2 C50H100O25AgLi 607.28768 607.28717 -0.84 f 

2 C48H96O24AgLi 585.27458 585.27419 -0.66 f 

2 C46H92O23AgLi 563.26147 563.26119 -0.49 f 

2 C44H88O22AgLi 541.24836 541.24741 -1.76 f 

2 C83H154O30AgLi 872.48633 872.48605 -0.32 M-2C2H4O 

2 C81H150O29AgLi 850.47322 850.47311 -0.13 M-3C2H4O 

2 C73H134O25AgLi 762.42079 762.42064 -0.20 M-7 C2H4O 

2 C78H149O29Li 778.51668 778.51536 -1.70 ?? 

1 C34H68O17Li 755.46111 755.46110 -0.01 e 

1 C21H42O4Ag 465.21285 465.21263 -0.47 ?? 

1  444.23878   ?? 

average    -0.48  

SD    0.53  

Proposed formulae of peaks on CAD spectra of [TPGS+Na+Ag]
2+ 

 in Figure 5.3d 

Charge 
state 

Proposed Formula 
Theoretical 

m/z 
Experimental m/z 

Error 
(ppm) 

Proposed 
cleavage 

site 

2 C87H162O32NaAg 924.49934 924.50074 1.51 M 

1 C87H162O32Ag 1826.00947 1826.01225 1.52 M-Na 

1 C68H124O32Ag 1559.71212 1559.71538 2.09 a 

1 C54H108O27Ag 1295.61234 1295.61387 1.18 f 

1 C52H104O26Ag 1251.58613 1251.58828 1.72 f 

1 C50H100O25Ag 1207.55991 1207.56209 1.81 f 

1 C48H96O24Ag 1163.53370 1163.53577 1.78 f 

1 C46H92O23Ag 1119.50748 1119.50859 0.99 f 

1 C44H88O22Ag 1075.48127 1075.48235 1.01 f 

1 C42H84O21Ag 1031.45505 1031.45624 1.15 f 

1 C40H80O20Ag 987.42884 987.43040 1.58 f 

1 C38H76O19Ag 943.40262 943.40385 1.30 f 

1 C36H72O18Ag 899.37641 899.37724 0.93 f 

1 C34H68O17Ag 855.35019 855.35108 1.04 f 

1 C32H64O16Ag 811.32398 811.32465 0.83 f 

2 C68H124O32AgNa 791.35067 791.35078 0.14 a 

1 C58H112O30Ag 1395.62839 1395.63008 1.21 c 
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1 C57H112O29Ag 1367.63347 1367.63691 2.52 d 

2 C54H108O27AgNa 659.30078 659.30176 1.49 f 

2 C58H112O30AgNa 709.30880 709.30945 0.92 c 

2 C57H112O29AgNa 695.31135 695.31191 0.81 d 

1 C52H106O27Ag 1185.68137 1185.68329 1.62 e 

1 C50H102O26Ag 1141.65515 1141.65605 0.79 e 

1 C48H98O25Ag 1097.62894 1097.63015 1.11 e 

1 C46H94O24Ag 1053.60272 1053.60389 1.11 e 

1 C44H90O23Ag 1009.57651 1009.57804 1.52 e 

1 C42H86O22Ag 965.55029 965.55153 1.28 e 

1 C40H82O21Ag 921.52408 921.52513 1.14 e 

1 C38H78O20Ag 877.49786 877.49881 1.08 e 

1 C36H74O19Ag 833.47165 833.47219 0.65 e 

average    1.26  

SD    
0.47 

 
 

Proposed formulae of peaks on CAD spectra of [TPGS+K+Ag]
2+ 

 in Figure 5.3e 

Charge 
state 

Proposed Formula 
Theoretical 

m/z 
Experimental m/z 

Error 
(ppm) 

Proposed 
cleavage 

site 

2 C87H162O32AgK 932.48631 932.48507 -1.33 M 

1 C87H162O32Ag 1826.00947 1826.00394 -3.03 M-K 

1 C79H148O28Ag 1651.92026 1651.91681 -2.09 ?? 

average    -2.15  

SD    0.85  

Proposed formulae of peaks on CAD spectra of [TPGS+K+Na]
2+ 

 in Figure 5.3f 

Charge 
state 

Proposed Formula 
Theoretical 

m/z 
Experimental m/z 

Error 
(ppm) 

Proposed 
cleavage 

site 

2 C87H162O32NaK 890.52865 890.52833 -0.35 M 

1 C87H162O32Na 1742.09414 1742.09537 0.70 M-K 
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Table D.3 Mass list of proposed peaks on the ECD spectra of 
[TPGS+2Li]2+ , [TPGS+2Na]2+, [TPGS+2K]2+ and [TPGS+2Ag]2+ in Figure 
5.4 

Proposed formulae of peaks on ECD spectra of [TPGS+2Li]
2+ 

in Figure 5.4a 

Charge 
state 

Proposed 
Formula 

Theoretical m/z Experimental m/z Error (ppm) 
Proposed 
cleavage 

site 

2 C87H162O32Li2 866.56808 866.56772 -0.42 M 

1 C55H109O28Li2 1231.74222 1231.74113 -0.89 d- C2H4O 

1 C53H105O27Li2 1187.71600 1187.71491 -0.91 d-2C2H4O 

1 C54H109O28Li2 1219.74221 1219.74111 -0.90 e 

1 C56H107O29Li2 1257.72126 1257.72043 -0.66 c-C2H6O 

average    -0.75  

SD    0.21  

Proposed formulae of peaks on ECD spectra of [TPGS+2Na]
2+ 

in Figure 5.4b 

Charge 
state 

Proposed 
Formula 

Theoretical m/z Experimental m/z Error (ppm) 
Proposed 
cleavage 

site 

2+ C87H162O32Na2 882.54168 882.54158 -0.11 M 

1+ C87H162O32Na 1742.09414 1742.09456 0.24 M-Ag 

1+ C87H162O32Na2 1765.08391 1765.08422 0.17 M 

1+ C57H113O29Na2 1307.71574 1307.71559 -0.11 d 

1+ C55H109O28Na2 1263.68953 1263.68959 0.04 d- C2H4O 

1+ C53H105O27Na2 1219.66331 1219.66362 0.25 d-2C2H4O 

1+ C54H109O28Na2 1251.68953 1251.68985 0.25 e 

average    0.10  

SD    0.16  

Proposed formulae of peaks on ECD spectra of [TPGS+2K]
2+ 

in Figure 5.4c 

Charge 
state 

Proposed 
Formula 

Theoretical m/z Experimental m/z Error (ppm) 
Proposed 
cleavage 

site 

2 C87H162O32K2 898.51562 898.51517 -0.50 M 

1 C87H162O32K 1758.06808 1758.07027 1.25 M-K 

1 C57H113O29K2 1339.66362 1339.66426 0.48 d 

1 C55H109O28K2 1295.63740 1295.63796 0.43 d- C2H4O 

1 C53H105O27K2 1251.61119 1251.61174 0.44 d-2C2H4O 

average    0.42  

SD    0.62  

Proposed formulae of peaks on ECD spectra of [TPGS+2Ag]
2+ 

in Figure 5.4d 

Charge 
state 

Proposed 
Formula 

Theoretical m/z Experimental m/z Error (ppm) 
Proposed 
cleavage 
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site 

2 C87H162O32Ag2 966.45701 966.45671 -0.31 M 

1 C87H162O32Ag 1826.00947 1826.00803 -0.79 M-Ag 

1 C58H113O30Ag2 1503.54131 1503.54123 -0.05 c 

average    -0.38  

SD    0.38  
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Table D.4 Mass list of proposed peaks on the ECD spectra of 
[TPGS+Li+Na]2+ , [TPGS+K+Li]2+, [TPGS+Li+Ag]2+, [TPGS+Na+Ag]2+, 

[TPGS+K+Ag]2+, and [TPGS+K+Na]2+  in Figure 5.5 

Proposed formulae of peaks on ECD spectra of [TPGS+Li+Na]
2+ 

in Figure 5.5a 

Charge 
state 

Proposed 
Formula 

Theoretical m/z Experimental m/z Error (ppm) 
Proposed 
cleavage 

site 

2 C87H162O32NaLi 874.55480 874.55462 -0.20 M 

1 C87H162O32Li 1726.12038 1726.12042 0.02 M-Na 

1 C57H113O29NaLi 1291.7421 1291.74186 -0.18 d 

1 C55H109O28NaLi 1247.71588 1247.715620 -0.20 d- C2H4O 

1 C53H105O27NaLi 1203.68966 1203.68937 -0.24 d-2C2H4O 

1 C54H109O28LiNa 1235.71588 1235.7157 -0.14 e 

average    -0.16  

SD    0.09  

Proposed formulae of peaks on ECD spectra of [TPGS+Li+K]
2+ 

in Figure 5.5b 

Charge 
state 

Proposed 
Formula 

Theoretical m/z Experimental m/z Error (ppm) 
Proposed 
cleavage 

site 

2 C87H162O32KLi 898.51562 898.51589 0.30 M 

1 C87H162O32Li 1726.12039 1726.12273 1.36 M-K 

1 C57H113O29KLi 1307.71604 1307.71636 0.24 d 

1 C55H109O28KLi 1263.68982 1263.69009 0.21 d- C2H4O 

1 C53H105O27KLi 1219.66360 1219.66393 0.27 d-2C2H4O 

1 C54H109O28KLi 1251.68982 1251.69036 0.43 e 

average    0.47  

SD    0.44  

Proposed formulae of peaks on ECD spectra of [TPGS+Li+Ag]
2+ 

in Figure 5.5c 

Charge 
state 

Proposed 
Formula 

Theoretical m/z Experimental m/z Error (ppm) 
Proposed 
cleavage 

site 

2 C87H162O32LiAg 916.51246 916.51309 0.69 M 

1 C87H162O32Li 1726.12038 1726.11910 0.74 M-Ag 

1 C58H113O30LiAg 1403.65234 1403.65092 1.01 c 

average    0.81  

SD    0.17  

Proposed formulae of peaks on ECD spectra of [TPGS+Na+Ag]
2+ 

in Figure 5.5d 

Charge 
state 

Proposed 
Formula 

Theoretical m/z Experimental m/z Error (ppm) 
Proposed 
cleavage 

site 

2 C87H162O32NaAg 924.49934 924.49775 -1.72 M 
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1 C87H162O32Na 1742.09414 1742.09136 -1.60 M-Ag 

1 C58H113O30NaAg 1419.62598 1419.62329 -1.89 c 

average    -1.74  

SD    0.15  

Proposed formulae of peaks on ECD spectra of [TPGS+K+Ag]
2+ 

in Figure 5.5e 

Charge 
state 

Proposed 
Formula 

Theoretical m/z Experimental m/z Error (ppm) 
Proposed 
cleavage 

site 

2 C87H162O32KAg 932.48631 932.48540 0.98 M 

1 C87H162O32K 1758.06808 1758.06506 1.72 M-Ag 

1 C58H113O30KAg 932.48631 932.48540 0.98 c 

average    1.22  

SD    0.43  

Proposed formulae of peaks on ECD spectra of [TPGS+K+Na]
2+ 

in Figure 5.5f 

Charge 
state 

Proposed 
Formula 

Theoretical m/z Experimental m/z Error (ppm) 
Proposed 
cleavage 

site 

2 C87H162O32NaK 890.52865 890.52798 -0.75 M 

1 C87H162O32K 1758.06808 1758.07102 1.67 M-Na 

1 C57H113O29KNa 1323.68968 1323.69030 0.47 d 

1 C55H109O28KNa 1279.66347 1279.66382 0.27 d- C2H4O 

1 C53H105O27KNa 1235.63725 1235.63751 0.21 d-2C2H4O 

average    0.37  

SD    0.86  
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Table D.5 Mass list of proposed peaks on the CAD spectra of [M+2H]2+, 
[M+H+Li]2+, [M +H+Na]2+, [M+H+K]2+, and [M+H+Ag]2+in Figure 5.6I 

Proposed formulae of peaks on CAD spectra of [TPGS+2H]
2+ 

in Figure 5.6Ia 

Charge 
state 

Proposed 
Formula 

Theoretical 
m/z 

Experimenta
l m/z 

Error 
(ppm) 

Experimental 
m/z 

Internally 
calibrated 

Erro
r 

(pp
m) 

Propos
ed 

cleava
ge site 

2 C87H162O32H2 860.55974 860.55873 -1.17 860.55969 --- M 

1 C81H149O29H2 1588.03356 1588.03513 0.99 1588.0334 --- 
M-3 

C2H4O 

1 C79H145O28H2 1544.00735 1544.00855 0.78 1544.00708 
-

0.17 
M-4 

C2H4O 

1 C77H141O27H2 1499.98113 1499.98181 0.45 1499.98059 
-

0.36 
M-5 

C2H4O 

1 C75H137O26H2 1455.95492 1455.95566 0.51 1455.95468 
-

0.16 
M-6 

C2H4O 

1 C73H133O25H2 1411.92870 1411.92895 0.18 1411.92819 
-

0.36 
M-7 

C2H4O 

1 C71H129O24H2 1367.90249 1367.90304 0.41 1367.9025 0.01 
M-8 

C2H4O 

1 C69H125O23H2 1323.87627 1323.87683 0.42 1323.87649 0.17 
M-9 

C2H4O 

1 C67H121O22H2 1279.85006 1279.85087 0.64 1279.85071 0.51 
M-10 

C2H4O 

1 C49H85O12 865.60355 865.60259 -1.11 865.60353 
-

0.02 

h + 
8C2H4

O 

1 C47H81O11 821.57734 821.57650 -1.02 821.57751 0.21 
h + 

7C2H4

O 

1 C45H77O10 777.55112 777.55007 -1.35 777.55111 
-

0.01 

h + 
6C2H4

O 

1 C43H73O9 733.52491 733.52390 -1.37 733.52497 0.09 
h + 

5C2H4

O 

1 C41H69O8 689.49836 689.49771 -0.94 689.49879 0.62 
h + 

4C2H4

O 

1 C39H65O7 645.47215 645.47142 -1.12 645.4725 0.55 
h + 3 

C2H4O 

1 C37H61O6 601.44593 601.44522 -1.18 601.44629 0.60 
h + 

2C2H4

O 

1 C35H57O5 557.42005 557.41901 -1.87 557.42005 --- 
h + 

C2H4O 

2 C58H112O30H2 645.36920 645.36867 -0.82 645.36918 
-

0.03 
c 

1 C54H111O28 1207.72564 1207.72570 0.05 1207.72581 --- e 

1 C52H106O27H 1163.69942 1163.69921 -0.18 1163.69947 0.04 e 

1 C50H102O26H 
1119.67320 1119.67259 -0.55 1119.67299 -

0.19 
e 

1 C48H98O25H 1075.64699 1075.64655 -0.41 1075.64708 0.08 e 
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1 C46H94O24H 1031.62077 1031.62027 -0.49 1031.62091 0.13 e 

1 C44H90O23H 987.59456 987.59385 -0.72 987.5946 0.04 e 

1 C42H86O22H 943.56834 943.56762 -0.77 943.56845 0.11 e 

1 C40H82O21H 899.54213 899.54151 -0.69 899.54242 0.32 e 

1 C38H78O20H 855.51591 855.51504 -1.02 855.51601 0.11 e 

1 C36H74O19H 811.48970 811.48879 -1.12 811.48981 0.14 e 

1 C34H70O18H 767.46348 767.46257 -1.19 767.46362 0.18 e 

1 C32H66O17H 723.43727 723.43627 -1.38 723.43735 0.11 e 

1 C46H93O23 1013.61022 1013.60936 -0.85 1013.61004 
-

0.18 
f 

1 C44H88O22H 969.58401 969.58339 -0.63 969.58417 0.17 f 

1 C42H84O21H 925.55779 925.55707 -0.78 925.55793 0.15 f 

1 C40H80O20H 881.53158 881.53100 -0.65 881.53193 0.40 f 

1 C38H76O19H 837.50536 837.50436 -1.19 837.50535 
-

0.01 
f 

1 C36H72O18H 793.47915 793.47821 -1.18 793.47924 0.12 f 

1 C32H64O16H 749.45293 749.45198 -1.27 749.45304 0.15 f 

1 C30H60O15H 705.42672 705.42576 -1.35 705.42684 0.18 f 

1 C28H56O14H 661.40050 661.39945 -1.59 661.40053 0.05 f 

average    -0.6  0.11  

SD    0.83  0.27  

Proposed formulae of peaks on CAD spectra of [TPGS+Li+H]
2+ 

in Figure 5.6Ib 

Charge 
state 

Proposed 
Formula 

Theoretical 
m/z 

Experiment
al m/z 

Error 
(ppm) 

Experimental 
m/z 

Internally 
calibrated 

Erro
r 

(pp
m) 

Propos
ed 

cleava
ge site 

2 C87H162O32HLi 863.56383 863.56306 -0.89 863.56384 --- M 

1 C81H149O29HLi 1594.04173 
1594.0446

9 
1.86 1594.04175 --- 

M-3 
C2H4O 

1 C79H145O28HLi 1550.01552 
1550.0178

4 
1.50 1550.01566 0.09 

M-4 
C2H4O 

1 C77H141O27HLi 1505.98930 
1505.9918

5 
1.69 1505.98979 0.33 

M-5 
C2H4O 

1 C75H137O26HLi 1461.96309 
1461.9652

7 
1.49 1461.96319 0.07 

M-6 
C2H4O 

1 C73H133O25HLi 1417.93687 
1417.9383

9 
1.07 1417.93701 0.10 

M-7 
C2H4O 

1 C71H129O24HLi 1373.91066 
1373.9119

4 
0.94 1373.91064 

-
0.01 

M-8 
C2H4O 

1 C69H125O23HLi 1329.88444 
1329.8853

2 
0.66 1329.88447 0.02 

M-9 
C2H4O 
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1 C67H121O22HLi 1285.85823 
1285.8588

9 
0.52 1285.85835 0.10 

M-10 
C2H4O 

1 C65H117O21HLi 1241.83201 
1241.8323

5 
0.27 1241.83198 

-
0.02 

M-11 
C2H4O 

1 C63H113O20HLi 1197.80580 
1197.8061

4 
0.29 1197.80585 0.05 

M-12 
C2H4O 

1 C52H105O27LiH 1169.70771 
1169.7078

6 
0.13 1169.70769 --- e 

1 C50H101O26LiH 1125.68150 
1125.6817

1 
0.19 1125.68157 0.07 e 

1 C48H97O25LiH 1081.65528 
1081.6551

1 
-0.16 1081.65532 0.04 e 

1 C46H93O24LiH 1037.62907 
1037.6286

9 
-0.36 1037.62901 

-
0.05 

e 

1 C44H89O23LiH 993.60285 993.60232 -0.53 993.60278 
-

0.07 
e 

1 C42H85O22LiH 949.57664 949.57598 -0.69 949.57659 
-

0.05 
e 

1 C40H81O21LiH 905.55042 905.54967 -0.83 905.55036 
-

0.07 
e 

1 C38H77O20LiH 861.52421 861.52337 -0.97 861.52423 0.03 e 

1 C36H73O19LiH 817.49799 817.49701 -1.20 817.4979 
-

0.11 
e 

1 C34H69O18LiH 773.47178 773.47079 -1.27 773.47173 
-

0.06 
e 

1 C30H61O16LiH 729.44556 729.44451 -1.44 729.44549 
-

0.10 
e 

2 C58H113O30Li 648.37335 648.37262 -1.13 648.37328 
-

0.11 
c 

1 C41H69O8 689.49836 689.49770 -0.96 689.49876 0.58 
h +4 

C2H4O 

1 C37H61O6 601.44627 601.44516 -1.84 601.44633 0.11 
h + 

2C2H4

O 

1 C35H57O5 557.42005 557.41892 -2.03 557.42005 --- 
h + 

C2H4O 

averag
e 

   -0.14  0.04  

SD    1.12  0.15  

Proposed formulae of peaks on CAD spectra of [TPGS+H+Na]
2+ 

in Figure 5.6Ic 

Char
ge 

state 

Proposed 
Formula 

Theoretical 
m/z 

Experimental 
m/z 

Error 
(ppm) 

Experimental 
m/z 

Internally 
calibrated 

Erro
r 

(pp
m) 

Propos
ed 

cleava
ge site 

2 C87H162O32NaH 871.55071 871.55042 -0.33 871.55074 --- M 

1 C81H149O29HNa 1610.01550 1610.01927 2.34 1610.01559 --- 
M-3 

C2H4O 

1 C79H145O28HNa 1565.98929 1565.99264 2.14 1565.98929 0.00 
M-4 

C2H4O 

1 C77H141O27HNa 1521.96307 1521.96609 1.98 1521.96308 0.01 
M-5 

C2H4O 

1 C75H137O26HNa 1477.93686 1477.93968 1.91 1477.93698 0.08 
M-6 

C2H4O 

1 C73H133O25HNa 1433.91064 1433.91307 1.69 1433.91068 0.03 
M-7 

C2H4O 

1 C71H129O24HNa 1389.88443 1389.88653 1.51 1389.88444 0.01 
M-8 

C2H4O 

1 C69H125O23HNa 1345.85821 1345.86002 1.34 1345.8582 
-

0.01 
M-9 

C2H4O 
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1 C67H121O22HNa 1301.83200 1301.83354 1.19 1301.83199 0.00 
M-10 

C2H4O 

1 C65H117O21HNa 1257.80578 1257.80705 1.01 1257.80575 
-

0.02 
M-11 

C2H4O 

1 C63H113O20HNa 1213.77957 1213.78066 0.90 1213.77959 0.02 
M-12 

C2H4O 

1 C61H109O19HNa 1169.75335 1169.75413 0.67 1169.75329 
-

0.05 
M-13 

C2H4O 

1 C59H105O18HNa 1125.72714 1125.72773 0.53 1125.72709 
-

0.04 
M-14 

C2H4O 

1 C52H105O27NaH 1185.68137 1185.68219 0.69 1185.68127 --- e 

1 C50H101O26NaH 1141.65516 1141.65576 0.53 1141.65505 
-

0.09 
e 

1 C48H97O25NaH 1097.62894 1097.62934 0.36 1097.62883 
-

0.10 
e 

1 C46H93O24NaH 1053.60273 1053.60294 0.20 1053.60263 
-

0.09 
e 

1 C44H89O23NaH 1009.57651 1009.57659 0.08 1009.57651 0.00 e 

1 C42H85O22NaH 965.55030 965.55019 -0.11 965.55022 
-

0.08 
e 

1 C40H81O21NaH 921.52408 921.52386 -0.24 921.52403 
-

0.05 
e 

1 C38H77O20NaH 877.49787 877.49749 -0.43 877.4978 
-

0.07 
e 

1 C36H73O19NaH 833.47165 833.47118 -0.56 833.4716 
-

0.06 
e 

1 C34H69O18NaH 789.44544 789.44485 -0.74 789.44538 
-

0.07 
e 

1 C30H61O16NaH 745.41922 745.41853 -0.93 745.41916 
-

0.08 
e 

1 C28H57O15NaH 701.39301 701.39227 -1.05 701.39298 
-

0.04 
e 

2 C58H113O30Na 656.36017 656.35961 0.85 656.36014 
-

0.05 
c 

1 C41H69O8 689.49836 689.49795 -0.59 689.49868 0.46 
h +4 

C2H4O 

1 C37H61O6 601.44627 601.44544 -1.37 601.44628 0.02 
h + 

2C2H4

O 

1 C35H57O5 557.42005 557.41917 -1.58 557.42005 --- 
h + 

C2H4O 

1 C85H153O30Na 838.51667 838.51499 -2.00 838.5154 
-

1.51 
?? 

1 C58H113O30Na 656.36017 656.35961 0.85 656.36014 
-

0.05 
?? 

1   855.51548  855.51585 0.03 ??? 

avera
ge 

   0.35  
-

0.06 
 

SD    1.14  0.30  

Proposed formulae of peaks on CAD spectra of [TPGS+H+K]
2+ 

in Figure 5.6Id 

Char
ge 

state 

Proposed 
Formula 

Theoretical 
m/z 

Experimental 
m/z 

Error 
(ppm) 

Experimental 
m/z 

Internally 
calibrated 

Erro
r 

(pp
m) 

Propos
ed 

cleava
ge site 

2 C87H162O32HK 879.53768 879.53895 1.44 879.53770 --- M 

1 C54H109O28KH 1245.68152 1245.68576 3.40 1245.68145 --- e 

1 C52H105O27KH 1201.65531 1201.65921 3.25 1201.655343 0.03 e 
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1 C50H101O26KH 1113.60288 1113.60585 2.67 1113.60279 
-

0.08 
e 

1 C48H97O25KH 1069.57666 1069.57935 2.51 1069.57669 0.03 e 

1 C46H93O24KH 1025.55045 1025.55278 2.27 1025.55042 
-

0.03 
e 

1 C44H89O23KH 981.52423 981.52618 1.98 981.52423 0.00 e 

1 C42H85O22KH 937.49802 937.49962 1.71 937.49794 
-

0.08 
e 

1 C40H81O21KH 893.47180 893.47325 1.62 893.4718 0.00 e 

1 C38H77O20KH 849.44559 849.44671 1.32 849.44548 
-

0.13 
e 

1 C36H73O19KH 805.41937 805.42015 0.97 805.41932 
-

0.06 
e 

2 C58H113O30K 664.34714 664.34726 0.18 664.34719 0.08 c 

1 C41H69O8 689.49836 689.49895 0.86 689.49877 0.59 
h + 4 

C2H4O 

1 C37H61O6 601.44627 601.44607 -0.32 601.44627 --- 
h + 

2C2H4

O 

1 C35H57O5 557.42005 557.41977 -0.50 557.42013 0.14 
h + 

C2H4O 

1 C81H149O29HK 1625.98944 1625.98844 -0.62 1625.98957 0.08 
M-3 

C2H4O 

1 C79H145O28HK 1581.96323 1581.97155 5.26 1581.96329 --- 
M-4 

C2H4O 

1 C77H141O27HK 1537.93701 1537.9447 5.00 1537.93701 0.00 
M-5 

C2H4O 

1 C75H137O26HK 1493.91080 1493.91788 4.74 1493.91076 
-

0.02 
M-6 

C2H4O 

1 C73H133O25HK 1449.88458 1449.89131 4.64 1449.88473 0.10 
M-7 

C2H4O 

1 C71H129O24HK 1405.85837 1405.86455 4.40 1405.85849 0.09 
M-8 

C2H4O 

1 C69H125O23HK 1361.83215 1361.83762 4.02 1361.83207 
-

0.06 
M-9 

C2H4O 

1 C67H121O22HK 1317.80594 1317.81133 4.09 1317.80626 0.25 
M-10 

C2H4O 

1 C65H117O21HK 1273.77972 1273.78451 3.76 1273.77949 
-

0.18 
M-11 

C2H4O 

avera
ge 

   2.44  0.04  

SD    1.82  0.16  

Proposed formulae of peaks on CAD spectra of [TPGS+H+Ag]
2+ 

in Figure 5.6Ie 

Char
ge 

state 

Proposed 
Formula 

Theoretical 
m/z 

Experimental 
m/z 

Error 
(ppm) 

Experimental 
m/z 

Internally 
calibrated 

Error 
(ppm

) 

Propo
sed 

cleav
age 
site 

2 C87H162O32HAg 913.50837 913.50793 -0.48 913.50837 --- M 

1 C54H109O28AgH 1313.62291 1313.62381 0.69 1313.62293 --- e 

1 C52H105O27AgH 1269.59669 1269.59705 0.28 1269.59677 0.06 e 

1 C50H101O26AgH 1225.57048 1225.57137 0.73 1225.57079 0.25 e 

1 C48H97O25AgH 1181.54426 1181.54421 -0.04 1181.54431 0.04 e 

1 C46H93O24AgH 1137.51805 1137.5179 -0.13 1137.51791 -0.12 e 
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1 C44H89O23AgH 1093.49183 1093.49153 -0.28 1093.49176 -0.07 e 

1 C42H85O22AgH 1049.46562 1049.4653 -0.30 1049.46558 -0.04 e 

1 C40H81O21AgH 1005.43940 1005.43902 -0.38 1005.4394 0.00 e 

1 C38H77O20AgH 961.41319 961.41259 -0.62 961.41319 0.00 e 

2 C58H113O30Ag 698.31783 698.31698 -1.22 698.31779 -0.06 c 

1 C41H69O8 689.49836 689.49773 -0.91 689.4987 0.49 
h + 4 
C2H4

O 

1 C37H61O6 601.44627 601.44523 -1.72 557.42005 --- 
h + 

2C2H4

O 

1 C35H57O5 557.42005 557.41911 -1.69 601.44625 -0.02 
h + 

C2H4

O 

1 C81H149O29HAg 1693.93082 1693.9328 1.17 1693.9308 --- 
M-3 
C2H4

O 

1 C79H145O28HAg 1649.90461 1649.90764 1.84 1649.90493 0.20 
M-4 
C2H4

O 

1 C77H141O27HAg 1605.87839 1605.88024 1.15 1605.87886 0.29 
M-5 
C2H4

O 

1 C75H137O26HAg 1561.85218 1561.8542 1.30 1561.85226 0.05 
M-6 
C2H4

O 

1 C73H133O25HAg 1517.82596 1517.82769 1.14 1517.82613 0.11 
M-7 
C2H4

O 

1 C71H129O24HAg 1473.79975 1473.80143 1.14 1473.79986 0.08 
M-8 
C2H4

O 

1 C69H125O23HAg 1429.77353 1429.77489 0.95 1429.77385 0.22 
M-9 
C2H4

O 

1 C67H121O22HAg 1385.74732 1385.74828 0.70 1385.74741 0.07 
M-10 
C2H4

O 

1 C65H117O21HAg 1341.72110 1341.72192 0.61 1341.72111 0.01 
M-11 
C2H4

O 

1 C63H113O20HAg 1297.69489 1297.69536 0.37 1297.69516 0.21 
M-12 
C2H4

O 

1 C61H109O19HAg 1253.66867 1253.66886 0.15 1253.66878 0.09 
M-13 
C2H4

O 

avera
ge 

   0.18  0.09  

SD    0.95  0.14  

 Peaks used as calibrants 
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Table D.6 Mass list of proposed peaks on the ECD spectra of [M+2H]2+, 
[M+H+Li]2+, [M +H+Na]2+, [M+H+K]2+, and [M+H+Ag]2+in Figure 5.6II 

Proposed formulae of peaks on ECD spectra of [TPGS+2H]
2+ 

in Figure 5.6IIa 

Charge 
state 

Proposed 
Formula 

Theoretica
l m/z 

Experimental 
m/z 

Error 
(ppm) 

Experimenta
l m/z 

Internally 
calibrated 

Erro
r 

(pp
m) 

Propos
ed 

cleavag
e site 

2 
C87H162O32

H2 
860.55974 860.55851 -1.43 860.55967 --- M 

1 
C87H162O32

H 

1720.1122
0 

1720.11354 0.78 1720.11211 --- M-H 

1 C52H107O27 
1163.6994

2 
1163.69863 -0.68 1163.69938 

-
0.03 

e 

1 C50H103O26 
1119.6732

1 
1119.67267 -0.48 1119.67351 0.27 e 

1 C48H99O25 
1075.6469

9 
1075.64633 -0.61 1075.64708 0.08 e 

1 C46H95O24 
1031.6207

8 
1031.61985 -0.90 1031.62091 --- e 

1 C44H91O23 987.59456 987.59354 -1.03 987.59466 0.10 e 

1 C42H87O22 943.56835 943.56718 -1.23 943.56839 0.05 e 

1 C40H83O21 899.54213 899.54111 -1.13 899.54234 0.23 e 

1 C38H79O20 855.51592 855.51486 -1.23 855.51581 
-

0.12 
e 

1 C36H75O19 811.48970 811.48858 -1.38 811.48991 0.26 e 

1 C34H71O18 767.46349 767.46228 -1.57 767.46363 0.19 e 

1 C32H64O16H 705.42672 705.42557 -1.62 705.42641 
-

0.43 
f 

1 C30H60O15H 661.40050 661.39921 -1.95 661.40062 0.18 f 

1 C28H56O14H 617.37429 617.37312 -1.89 617.37428 
-

0.01 
f 

1 C26H52O13H 573.34807 573.34704 -1.80 573.34786 
-

0.37 
f 

1 C24H48O12H 529.32186 529.32058 -2.41 529.32213 0.52 f 

1 C22H44O11H 485.29564 485.29474 -2.92 485.29516 
-

0.99 
f 

1 C20H40O10H 441.26943 441.26874 -2.82 441.26969 0.60 f 

1 C29H50O2 430.38053 430.37960 -2.16 430.38053 --- g 

1 C58H113O29 
1273.7362

0 
1273.73581 -0.31 1273.73638 0.14 c? 

average    -1.37  0.04  

SD    0.87  0.37  

Proposed formulae of peaks on ECD spectra of [TPGS+Li+H]
2+ 

in Figure 5.6IIb 

Charge 
state 

Proposed 
Formula 

Theoretical 
m/z 

Experiment
al m/z 

Error 
(ppm) 

Experimental 
m/z 

Internally 
calibrated 

Err
or 

(pp
m) 

Propos
ed 

cleava
ge site 

2 C87H162O32HLi 863.56383 863.56287 -1.11 863.56385 --- M 

1 C87H162O32Li 
1726.1203

8 
1726.12375 1.95 1726.1204 --- M-H 
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1 C52H104O26Li 
1151.6971

5 
1151.69689 -0.23 1151.69712 --- f 

1 C50H100O25Li 
1107.6709

4 
1107.67076 -0.16 1107.67114 

0.1
9 

f 

1 C48H96O24Li 
1063.6447

2 
1063.64430 -0.39 1063.64483 

0.1
0 

f 

1 C46H92O23Li 
1019.6185

1 
1019.61805 -0.45 1019.61871 

0.2
0 

f 

1 C44H88O22Li 975.59229 975.59196 -0.34 975.59273 
0.4
5 

f 

1 C42H84O21Li 931.56608 931.56515 -0.99 931.56602 
-

0.0
6 

f 

1 C40H80O20Li 887.53986 887.53886 -1.13 887.5398 
-

0.0
7 

f 

1 C38H76O19Li 843.51365 843.51260 -1.24 843.5136 
-

0.0
5 

f 

1 C36H72O18Li 799.48743 799.48647 -1.20 799.48752 
0.1
1 

f 

1 C32H64O16Li 755.46122 755.46013 -1.44 755.46121 --- f 

1 C58H114O30Li 
1297.7550

7 
1297.75593 0.66 1297.75551 

0.3
4 

c 

1 C54H110O28Li 
1213.7339

3 
1213.73418 0.21 1213.73415 

0.1
8 

e 

1 C86H161LiO30 
1681.1229

0 
1681.12617 1.95 1681.1232 

0.1
8 

?? 

average    -0.26  
0.1
4 

 

SD    0.07  
0.1
6 

 

Proposed formulae of peaks on ECD spectra of [TPGS+H+Na]
2+ 

in Figure 5.6IIc 

Charge 
state 

Proposed 
Formula 

Theoretical 
m/z 

Experiment
al m/z 

Error 
(ppm) 

Experiment
al m/z 

Internally 
calibrated 

Error 
(ppm

) 

Propos
ed 

cleava
ge site 

2 
C87H162O32Na

H 
871.55071 871.54986 -0.98 871.5507 --- M 

1 C87H162O32Na 1742.09414 
1742.0974

8 
1.91 1742.09414 --- M-H 

1 C52H104O26Na 1167.67080 
1167.6709

9 
0.16 1167.67079 --- f 

1 C50H100O25Na 1123.64459 
1123.6442

6 
-0.29 1123.6445 -0.08 f 

1 C48H96O24Na 1079.61837 
1079.6183

1 
-0.06 1079.6185 0.12 f 

1 C46H92O23Na 1035.59216 
1035.5918

3 
-0.31 1035.5923 0.14 f 

1 C44H88O22Na 991.56594 991.56553 -0.41 991.56611 0.17 f 

1 C42H84O21Na 947.53973 947.53930 -0.45 947.5399 0.18 f 

1 C40H80O20Na 903.51351 903.51299 -0.58 903.51352 --- f 

average    -0.11  0.11  

SD    0.82  0.11  

Proposed formulae of peaks on ECD spectra of [TPGS+H+K]
2+ 

in Figure 5.6IId 

Charge 
state 

Proposed 
Formula 

Theoretical 
m/z 

Experiment
al m/z 

Error 
(ppm) 

  
Propos

ed 
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cleavag
e site 

2 C87H162O32HK 879.53768 879.53729 -0.44   M 

1 C87H162O32K 1758.06808 
1758.0693

1 
0.70   M-H 

1 C48H96O24Na 1095.59231 
1095.5914

8 
-0.76   f 

1 C46H92O23Na 1051.5661 
1051.5664

8 
0.37   f 

1 C44H88O22Na 1007.53988 
1007.5418

7 
1.98   f 

1 C42H84O21Na 963.513665 963.51399 0.34   f 

average    0.37    

SD    0.96    

Proposed formulae of peaks on ECD spectra of [TPGS+Ag+H]
2+ 

in Figure 5.6IIe 

Charge 
state 

Proposed 
Formula 

Theoretical 
m/z 

Experimental 
m/z 

Error 
(ppm) 

  

Propos
ed 

cleavag
e site 

2 
C87H162O32HA

g 
913.50837 913.50866 0.32   M 

1 C87H162O32H 1720.11220 1720.11513 1.70   M-Ag 

1 C87H162O32Ag 1826.00947 1826.01296 1.91   M-Li 

average    1.31    

SD    0.86    

 Peaks used as calibrants 

 

 

 

 

 

 

 

 

 

 

 



 
S264 

 

Appendix E.  (Supporting information for Chapter 6) 

 

Figure E.1 CAD spectra of chlorophyll-a under different collision energies 
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Figure E.2 The expansion of peaks at m/z 455.2081, m/z 541.2085 and 
m/z 833.5215  
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Table E.1 Peak list of Figure 6.2 

Proposed formula Theoretical mass Charge state 

EID CAD IRMPD 

m/z 
relative 

intensity % 
m/z 

relative 
intensity % 

m/z 
relative 

intensity % 

C55H73O5N4Mg* 893.5426 1 893.5426 100 893.5426 18.29 893.5426 27.00 

C53H69O3N4Mg 833.5215 1 833.5215 0.20 833.5216 2.47 833.5208 1.50 

unidentified 
 

1 739.5932 0.25 739.5932 0.06 739.5933 0.79 

unidentified 
 

2 
    

728.6087 0.88 

unidentified 
 

2 
    

714.5935 1.40 

unidentified 
 

1 
  

666.5567 0.80 
  

unknown 
 

----- 
  

619.2037 15.56 619.2037 22.98 

C35H35O5N4Mg 615.2452 1 615.2453 4.73 615.2454 100 615.2456 68.13 

C35H34O5N4Mg* 614.2374 1 614.2374 9.35 614.2374 24.48 614.2374 28.38 

C34H33O4N4Mg 601.2296 1 
  

601.2294 1.79 
  

C34H31O4N4Mg* 583.2190 1 583.2190 6.70 583.2193 25.04 583.2191 80.30 

C34H30O4N4Mg 582.2112 1 582.2112 2.15 582.2114 0.65 582.2113 2.26 

C33H31O3N4Mg 555.2241 1 555.2240 10.12 555.2242 14.40 555.2243 100.00 

unidentified 
 

2 
  

549.4544 6.99 549.4544 39.20 

C32H29O3N4Mg 541.2085 1 541.2084 0.23 
  

541.2085 1.93 

C33H31O2N4Mg 539.2292 1 539.2292 0.48 539.2290 2.12 539.2294 19.50 

C33H30O2N4Mg 538.2214 1 538.2213 0.97 
  

538.2216 0.45 

unidentified 
 

2 
  

535.4388 7.33 535.4387 23.13 
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C32H31O2N4Mg 527.2292 1 527.2292 0.92 
  

527.2294 15.78 

C31H28O2N4Mg 512.2057 1 512.2057 0.19 
  

512.2058 6.66 

C32H30ON4Mg 510.2265 1 510.2266 0.08 
  

510.2268 2.30 

C32H29ON4Mg 509.2186 1 509.2184 0.18 
  

509.2189 3.23 

C31H25O2N4Mg 509.1822 1 509.1823 0.36 
    

C32H28ON4Mg 508.2108 1 508.2108 0.83 
  

508.2110 0.33 

C31H30ON4Mg 498.2265 1 498.2264 0.59 
  

498.2267 10.83 

C30H26O2N4Mg 498.1901 1 498.1903 0.21 
  

498.1903 6.77 

C31H27ON4Mg 495.2030 1 495.2030 0.23 
  

495.2035 1.87 

C30H26ON4Mg 482.1952 1 482.1953 0.74 
  

482.1952 6.72 

C31H29N4Mg 481.2237 1 
    

481.2237 1.85 

C30H25ON4Mg* 481.1873 1 481.1873 4.37 481.1872 0.81 481.1878 1.92 

C29H26ON4Mg 470.1952 1 
    

470.1952 1.81 

C30H28N4Mg 468.2159 1 
    

468.216 1.00 

C30H27N4Mg 467.2081 1 467.2081 0.16 
  

467.2081 1.41 

C29H23ON4Mg 467.1717 1 467.1717 0.94 
  

467.1718 0.53 

C30H26N4Mg 466.2002 1 466.2005 0.06 
  

466.2004 0.45 

C29H22ON4Mg 466.1639 1 466.1638 0.28 
  

466.1638 0.27 

C30H25N4Mg 465.1924 1 
    

465.1924 0.29 

C29H21ON4Mg 465.1560 1 465.1560 0.17 
  

465.1561 0.21 

C29H27N4  455.2081 1 455.2081 1.82 
  

455.2087 15.36 
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C29H26N4Mg 454.2002 1 454.2003 0.20 
  

454.2003 3.96 

C29H25N4Mg 453.1924 1 453.1924 0.42 
  

453.1924 4.30 

C28H21ON4Mg 453.156 1 453.156 0.71 
  

453.1561 2.83 

C29H24N4Mg 452.1846 1 452.1847 0.10 
  

452.1845 4.64 

C28H20ON4Mg 452.1482 1 452.1483 0.33 
    

C29H23N4Mg 451.1768 1 451.1766 0.10 
    

C28H19ON4Mg 451.1404 1 451.1404 0.33 
    

C28H25N4Mg 441.1924 1 441.1925 0.16 
    

C28H24N4Mg 440.1846 1 440.1847 0.16 
  

440.1846 1.16 

C28H23N4Mg 439.1768 1 439.1767 0.44 
  

439.1768 0.61 

C27H19ON4Mg 439.1404 1 439.1404 0.11 
    

C28H22N4Mg 438.1689 1 438.1689 0.29 
  

438.1689 0.71 

C27H18ON4Mg 438.1326 1 438.1327 0.09 
    

C28H21N4Mg 437.1611 1 437.1611 0.27 
  

437.161 0.35 

C27H17ON4Mg 437.1247 1 437.1247 0.20 
    

C28H20N4Mg 436.1533 1 436.1532 0.12 
    

C27H16ON4Mg 436.1169 1 436.1169 0.09 
    

C28H19N4Mg 435.1455 1 435.1455 0.12 
    

C27H22N4Mg 426.1689 1 426.169 0.13 
  

426.1688 3.98 

C27H21N4Mg 425.1611 1 425.1611 0.38 
  

425.1610 6.07 

C27H20N4Mg 424.1533 1 424.1533 0.26 
  

424.1532 1.36 
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C27H19N4Mg 423.1455 1 423.1455 0.39 
  

423.1453 0.52 

C27H18N4Mg 422.1376 1 422.1375 0.23 
    

C27H17N4Mg 421.1298 1 421.1298 0.19 
    

C27H16N4Mg 420.1220 1 420.1222 0.09 
    

C26H19N4Mg 411.1455 1 411.1455 0.14 
  

411.1453 2.92 

C26H18N4Mg 410.1376 1 410.1377 0.19 
  

410.1375 0.34 

C26H17N4Mg 409.1298 1 409.1299 0.27 
  

409.1297 0.24 

C26H16N4Mg 408.1220 1 408.1220 0.18 
    

C26H15N4Mg 407.1142 1 407.1141 0.17 
    

C26H14N4Mg 406.1063 1 406.1064 0.16 
    

unidentified 

 

1 399.2957 0.12 399.2954 0.76 399.2954 1.76 

unidentified 
 

2 

  
385.2784 0.89 385.2785 1.66 

C27H18ON4Mg 438.1326 1 438.1327 0.09 
    

C28H21N4Mg 437.1611 1 437.1611 0.27 
  

437.161 0.35 

C27H17ON4Mg 437.1247 1 437.1247 0.20 
    

C28H20N4Mg 436.1533 1 436.1532 0.12 
    

C27H16ON4Mg 436.1169 1 436.1169 0.09 
    

C28H19N4Mg 435.1455 1 435.1455 0.12 
    

C27H22N4Mg 426.1689 1 426.169 0.13 
  

426.1688 3.98 

C27H21N4Mg 425.1611 1 425.1611 0.38 
  

425.1610 6.07 

C27H20N4Mg 424.1533 1 424.1533 0.26 
  

424.1532 1.36 

C27H19N4Mg 423.1455 1 423.1455 0.39 
  

423.1453 0.52 
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C27H18N4Mg 422.1376 1 422.1375 0.23 
    

C27H17N4Mg 421.1298 1 421.1298 0.19 
    

C27H16N4Mg 420.1220 1 420.1222 0.09 
    

C26H19N4Mg 411.1455 1 411.1455 0.14 
  

411.1453 2.92 

C26H18N4Mg 410.1376 1 410.1377 0.19 
  

410.1375 0.34 

C26H17N4Mg 409.1298 1 409.1299 0.27 
  

409.1297 0.24 

C26H16N4Mg 408.1220 1 408.1220 0.18 
    

C26H15N4Mg 407.1142 1 407.1141 0.17 
    

C26H14N4Mg 406.1063 1 406.1064 0.16 
    

unidentified 

 

1 399.2957 0.12 399.2954 0.76 399.2954 1.76 

unidentified 
 

2 

  
385.2784 0.89 385.2785 1.66 

         

* Peaks used as internal calibrants 
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Table E.2 Summary of several higher intensity fragments 

Proposed 

formula 
Theoretical 

mass 

EID 

ion (m/z) 
Externally 
calibrated 

Error 
(ppm) 

EID 

ion (m/z) 
Internally 
calibrated 

Error (ppm) 

IRMPD 

ion (m/z) 
Externally 
calibrated 

Error (ppm) 

IRMPD 

ion (m/z) 
Internally 
calibrated 

Error (ppm) 

C
32

H
31

O
2
N

4
Mg 527.2292 527.2297 -0.95 527.2292 0 527.2301 -1.71 527.2294 -0.38 

C
31

H
30

ON
4
Mg 498.2265 498.2268 -0.60 498.2264 0.20 498.2273 -1.61 498.2267 -0.40 

C
30

H
26

O
2
N

4
Mg 498.1901 498.1903 -0.40 498.1899 0.40 498.1913 -2.41 498.1903 -0.40 

C
31

H
29

N
4
Mg 481.2237      481.2249 -2.49 481.2237 0.00 

C
29

H
27

N
4
Mg* 455.2081 455.2083 -0.44 455.2081 --- 455.2091 -2.20 455.2087 --- 

Average 
 

 -0.60  0.3  -2.08  -0.30 

SD (σ)   0.25  0.14  0.41  0.20 

      * Peak used as internal calibrant 
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Appendix F. (Supporting information for Chapter 7) 
 

Table F.1 Peak list of Figure 7.4 

Proposed 
formula 

Theoretical 
mass 

 EID  CAD  IRMPD 

m/z Error 
relative 

intensity % 
m/z Error 

relative 
intensity % 

m/z Error 
relative 

intensity % 

C55H75O5N4* 871.5732 871.57322  36.03 871.57222 -1.12 17 871.57309  65.70 

C35H37O5N4 593.27585 593.27583 0.03 8.9 593.27563 -0.37 100 593.27587 0.03 85.07 

C35H36O5N4* 592.26802 592.26796 0.10 1.85 592.26781 -0.35 30.15 592.26801  2.53 

C34H33O4N4 561.24963 561.24971 0.14 0.52 561.24839 -2.21 2.18 561.24965 0.04 5.45 

C34H32O4N4 560.24181 
   

   560.24181 0.00 0.49 

C33H33N4O3 533.25471 533.25467 0.08 7.69 533.25452 -0.36 74.3 533.25467 -0.08 100.00 

C33H31O2N4 515.24414       515.2441 -0.08 1.33 

C32H31O3N4 519.23907 519.23874 0.64 0.89       

C33H33O2N4 517.2598       517.25973 -0.14 3.92 

C32H32O2N4 504.25198       504.25193 -0.10 6.66 

C32H31O2N4 503.24415 
      

503.24425 0.20 0.99 

C32H33ON4 489.26489 
      

489.26485 -0.08 3.66 
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C32H32ON4 488.25706 
      

488.25703 -0.06 8.17 

C31H29O2N4 489.2285 
      

489.22851 0.02 3.07 

C32H31ON4 487.24924 
      

487.24918 -0.12 2.94 

C31H32ON4 476.25706 
      

476.25704 -0.04 15.04 

C31H29ON4 473.23359 
      

473.23356 -0.06 10.09 

C30H29ON4 461.23359 461.23349 0.22 0.73 
   

461.23358 -0.02 38.18 

C30H28ON4 460.22576 460.22592 -0.35 0.62 
   

460.22577 0.02 6.41 

C30H27ON4 459.21794 
      

459.2179 -0.09 2.75 

C31H33N4 461.26997 
      

461.26996 -0.02 2.65 

C31H31N4 459.25432 
      

459.25431 -0.02 1.64 

C29H28ON4 448.22576 
      

448.22569 -0.16 5.72 

C29H27ON4 447.21794 
      

447.21786 -0.18 2.43 

C29H25ON4 445.20229 
      

445.20226 -0.07 3.79 

C29H26ON4 446.21011 
      

446.21016 0.11 1.96 

C30H29N4 445.23867 
      

445.23869 0.04 2.92 

C29H24ON4 444.19446 
      

444.19442 -0.09 1.05 

C29H23ON4 443.18664 
      

443.18679 0.34 0.67 
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C30H28N4 444.23085 
      

444.23083 -0.05 1.12 

C29H29N4* 433.23867 433.23884 -0.39 0.86 
   

433.23868  25.58 

C28H25ON4 433.20229 
      

433.20231 0.05 4.62 

C29H28N4 432.23085 
      

432.23088 0.07 1.51 

C28H24ON4 432.19446 
      

432.1944 -0.14 1.49 

C29H27N4 431.22302 
      

431.22304 0.05 3.42 

C28H23ON4 431.18664 
      

431.18662 -0.05 3.12 

C28H26N4 418.2152 
      

418.2151 -0.24 5.56 

C28H25N4 417.20737 
      

417.20734 -0.07 7.11 

C27H21N4O 417.17099 
      

417.17082 -0.41 1.05 

C28H24N4 416.19955 
      

416.19952 -0.07 2.11 

C27H19N4O 415.15534 
      

415.15509 -0.60 0.70 

C27H24N4 404.19955 
      

404.19948 -0.17 4.85 

C27H23N4 403.19172 
      

403.19168 -0.10 13.62 

C27H22N4 402.18391 
      

402.1839 -0.02 2.88 

C27H21N4 401.17607 
      

401.17585 -0.55 0.62 

C26H17N4O 401.13969 
      

401.13973 0.10 0.50 
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C26H21N4 389.17607 
      

389.17593 -0.36 6.49 

C26H23N4 391.19172 
      

391.19179 0.18 1.25 

C26H20N4 388.16825 
      

388.16787 -0.98 4.80 

C26H19N4* 387.16042 
      

387.16042  4.29 

C25H19N4 375.16042 
      

375.16028 -0.37 1.04 

C25H17N4 373.14477 
      

373.14442 -0.94 3.37 

C25H18N4 374.1526 
      

374.15232 -0.75 2.15 

C26H18N3 372.14952 
      

372.14947 -0.13 0.65 

C25H16N4 372.13695 
      

372.1367 -0.67 0.97 

C25H17N3 371.1417 
      

371.14162 -0.22 0.63 

C25H18N3 360.14952 
      

360.14896 -1.55 0.53 

C24H15N4 359.12912 
      

359.12876 -1.00 0.86 

C24H16N3 346.13387 
      

346.13353 -0.98 0.57 

C21H41O3 341.30502 
      

341.30471 -0.91 1.24 

C23H18N3 337.15735 
      

337.15674 -1.81 0.51 

C23H18N3 336.14952 
      

336.14916 -1.07 0.59 

C22H18N3 324.14952 
      

324.14919 -1.02 0.68 
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C22H16N3 322.13387 
      

322.13353 -1.06 0.85 

C19H19O4H 312.13561 312.13561 0.00 100 
   

   

C21H18N3 312.14952 
      

312.14925 -0.86 0.70 

C21H17N3 311.1417 
      

311.14136 -1.09 0.78 

C21H16N3 310.13387 
      

310.13359 -0.90 0.81 

C23H20N 310.15903 
   

 
 

 

310.15889 -0.45 0.38 

C21H15N3 309.12605 
   

 
 

 

309.12567 -1.23 0.58 

C21H14N3 308.11822 
   

 
 

 

308.11743 -2.56 0.43 

C20H16N3 298.13387 
   

 
 

 

298.13314 -2.45 0.76 

C19H20O3 296.1407 296.1407 0.00 3.19 
   

   

C20H14N3 296.11822 
      

296.11789 -1.11 0.68 

C19H14N3 284.11822 
      

284.11806 -0.56 0.36 

C16H14O3 254.09375 254.09374 0.04 9.8 
   

   

C19H25 253.19508 253.19505 0.12 0.67 
   

   

C16H13O3 253.08592 253.08591 -0.04 0.95 
   

   

average   0.03  
 0.74  

  0.41 

SD   0.10  
 0.81  

  0.56 

* Peaks used as internal calibrants
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Figure F.1 CAD spectra of pheophytin-a under different collision energies 
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Figure F.2 IRMPD spectra of pheophytin-a of different pulse length a) 0.5 

s and b) 0.2 s. Insets in the square are expanded regions from m/z 100-

350. Peaks with asterisk are harmonics or noise 
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Appendix G. (Supporting information for Chapter 8) 
 

Table G.1 Peak assignment in the CAD spectrum of p65 in Figure 8.2 

Charge state ions Theoretical m/z Experimental m/z Error/ppm 

1 b3+126.03 424.16917 424.17786 20.48 

1 b4+126.03 552.22775 552.23347 10.36 

1 b5+126.03 623.26486 623.26988 8.05 

1 b6+126.03 710.29689 710.29904 3.02 

1 b3+144.04 442.17974 442.18815 19.03 

1 b4+144.04 570.23832 570.24373 9.49 

1 b5+144.04 641.27543 641.27924 5.95 

1 b6+144.04 728.30746 728.30907 2.22 

3 y17 710.07349 710.06316 -14.55 

4 y23 737.91453 737.90389 -14.42 

4 y24 766.67126 766.65796 -17.35 

5 y26 656.75339 656.74239 -16.75 

5 y28 699.16933 699.15795 -16.28 

5 y30 754.39881 754.38601 -16.97 
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