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Accuracy of buffered-force QM/MM simulations of silica
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We report comparisons between energy-based quantum mechanics/molecular mechanics (QM/MM)
and buffered force-based QM/MM simulations in silica. Local quantities—such as density of states,
charges, forces, and geometries—calculated with both QM/MM approaches are compared to the
results of full QM simulations. We find the length scale over which forces computed using a finite QM
region converge to reference values obtained in full quantum-mechanical calculations is ~10 A rather
than the ~5 A previously reported for covalent materials such as silicon. Electrostatic embedding of
the QM region in the surrounding classical point charges gives only a minor contribution to the force
convergence. While the energy-based approach provides accurate results in geometry optimizations
of point defects, we find that the removal of large force errors at the QM/MM boundary provided
by the buffered force-based scheme is necessary for accurate constrained geometry optimizations
where Si—O bonds are elongated and for finite-temperature molecular dynamics simulations of
crack propagation. Moreover, the buffered approach allows for more flexibility, since special-purpose
QM/MM coupling terms that link QM and MM atoms are not required and the region that is treated
at the QM level can be adaptively redefined during the course of a dynamical simulation. © 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4907786]
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. INTRODUCTION

Chemically accurate descriptions of atomic-scale pro-
cesses that can be used to inform the design of improved
materials or processes are of ever-increasing demand. First
principles methods such as density functional theory (DFT)
have made huge contributions to our understanding of many
of these processes.! However, today’s supercomputers are
restricted to modeling systems containing typically at most
hundreds of atoms with currently available DFT tools, at least
for dynamical simulations. Progress to date has mostly been
made by focusing on materials properties which converge
quickly with respect to system size. This is not always possible,
as there are many problems where there is a tight, two-way
“chemomechanical” coupling of local chemistry and long-
range interaction, either elastic or electrostatic.>> The long-
range nature of these forces means that the behavior of a small
region, where a chemical process (e.g., breaking of a bond)
takes place, can be influenced by the concerted behavior of
very many atoms far away (e.g., the stress field driving a crack).
Moreover, the reverse is also often true, with changes in the
small region having direct consequences for the—potentially
very many—atoms in the large region.

Materials failure problems are a prominent example of
elastically coupled multiscale systems. Here, the coupling
is indirect, and far exceeds the range of the individual
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interactions between pairs of atoms. The need to represent
the large stress gradients associated with, for example, grains
in nanostructured metals,* dislocation cores,” or crack tips®
and their tight dynamical coupling with local chemistry
necessitates the description of bond breaking reactions in
systems containing 10°-107 atoms. Electrostatic coupling,
where long-range Coulomb interactions are insufficiently
screened to be neglected, is common in biochemical systems®’
but can also be important for polar solid-state materials such
as silica and other oxides.®

The combined requirement of accuracy and efficiency can
sometimes be met using classical reactive interatomic poten-
tials (see, e.g., Refs. 9—11). However, in general, their trans-
ferability in chemically complex material systems is limited.
In these cases, a quantum-mechanical description must be
retained, at least in a localized region of the system, and
hybrid quantum mechanics/molecular mechanics (QM/MM)
schemes’ offer a solution. Most QM/MM approaches can be
classified according to whether they combine QM and MM
Hamiltonians by mixing energies or forces (schematically
illustrated in Fig. 1). On the one hand, energy-mixing ap-
proaches, whether based on an additive, subtractive, or local-
energy-mixing approach naturally conserve energy, provided
that forces are correctly computed. Conversely, force-mixing
approaches that combine MM forces in the MM region with
QM forces in the QM region may conserve neither energy

©2015 AIP Publishing LLC
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FIG. 1. Schematic representations of (a) energy-mixing and (b) force-mixing QM/MM approaches, with QM regions shown in black and MM regions in light
gray. In the buffered force mixing approach (c), the QM region (black) is augmented by a buffer region (dark gray) which is then passivated to form the cluster
used for QM force calculations. MM and QM forces are then assembled to give momentum-conserving forces for all atoms.

nor momentum. The conservation of momentum can be easily
addressed by adjusting the forces so that they sum to zero (as
explained in Sec. II).> On the other hand, force-mixing ap-
proaches are better suited to tackle two main issues in QM/MM
simulations: (i) the “seamless coupling” of the two models and
(i) the “adaptivity” of the QM region. The latter denotes the
possibility for atoms to enter and exit the QM region during a
dynamical simulation. This is a desirable feature of a QM/MM
scheme, as the QM region can in turn move and thus follow the
motion of, for instance, a defect in a crystal.

Obtaining seamless coupling of QM and MM models
requires a good mechanical matching between the models
(e.g., ensuring the lattice and elastic constants are precisely
aligned), as well as the elimination of the edge effects due
to the artificial QM/MM boundary introduced by partitioning
the system.!? The latter depends on the details of the scheme.
Force-mixing approaches have the distinct advantage that, pro-
vided that the MM and QM forces are correct, there are in
principle no edge effects. Correct QM forces can be obtained
by introducing a “buffer” region (Fig. 1(c)) which is added
to the QM core region and then chemically passivated (for
instance with H atoms for covalent solids) before carrying
out each QM calculation.!3!* The size of the buffer should be
chosen so that the forces in the core region are identical to those
that would be obtained in a full QM calculation of the entire
system. However, in practice, this can lead to unaffordably
large QM clusters. The forces obtained in the QM calculation
for the buffer region are then discarded and replaced with the
MM forces on the same atoms. Provided that the QM core
region has been adequately chosen (i.e., all parts of the system
for which the MM model is inadequate are included in the
QM core region), the MM forces can be expected to be more
reliable than the QM ones in the buffer region, as they are
not affected by the proximity of the QM/MM boundary. Con-
versely, for energy-mixing approaches, it is difficult to entirely
eliminate edge effects. Here, the QM/MM interaction energy
must typically be carefully tuned to lessen the effect of any
broken covalent bonds crossing the QM/MM boundary, which
relies on a delicate cancellation of errors to work correctly.'
As a result, achieving adaptivity of the QM region in conven-
tional QM/MM methods is a challenging task. Recently, force-
based schemes'® as well as energy-based methods that rely on
the partitioning of a transition region between QM core and

MM regions, and on bookkeeping potential terms for energy
conservation,'>!® have been used for this purpose in aqueous
solutions. The buffered-force QM/MM method allows a mov-
ing QM region to be followed, providing a straightforward
solution to the adaptivity problem in both solid systems” and
aqueous solutions.!” Finally, if there is significant electrostatic
interaction between QM and MM regions, the QM calculation
should be performed in the electrostatic environment provided
by the MM region. Typically this is done by adding classical
point charges as an external potential in the self-consistent
electronic minimization of each QM calculation.®'®!° Care
must be taken to avoid electron spill out.?°

Buffered QM/MM approaches have been applied to many
materials problems, mostly so far where the coupling is elastic
rather than electrostatic,? as in the case of crack propagation
in silicon crystals.®!3?12* The same approach has been used
to simulate water, where electrostatic embedding is crucial, but
no covalent bond needs to be broken when partitioning the sys-
tem in a QM and a MM region.'” To the best of our knowledge,
only energy-based QM/MM approaches?>*® have been applied
to polar materials such as silica, where both cut covalent bonds
at the QM/MM boundary and electrostatic embedding need to
be dealt with. In the latter case, attention has mostly focused
on electronic properties or equilibrium geometry of defects
rather than on mechanical properties. An accurate description
of equilibrium geometric properties is typically easier to obtain
than ensemble observables such as free energy differences,
which are themselves a function of the forces used to propagate
a dynamical simulation.?

Since buffered-force QM/MM (bf-QM/MM hereafter) has
been shown to provide an improved description of free en-
ergy observables in comparison to conventional energy-based
QM/MM (conv-QM/MM) in non-polar materials” as well as
in polar liquids,!” we want to assess the accuracy of the bf-
QM/MM approach in silica, an ubiquitous material in techno-
logical application and a prototypical example of a polar solid.
A successful application of bf-QM/MM to silica would enable
QM/MM dynamical simulations with an adaptive QM region.
These could provide an improved understanding of materials
failure processes in silica and of other processes where the
description of silica in contact with liquids is relevant. Exam-
ples are stress-corrosion cracking?’ and the adsorption of mole-
cules on silica surfaces, when both the full molecular structure
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and local chemical reactions such as proton transfers need to
be modeled simultaneously.?®

In this paper, we compare the accuracy of conv-QM/MM
and bf-QM/MM on a number of silica model systems. The goal
of hybrid simulations is to produce the same observables as if
the entire system were modeled at the QM level. As a conse-
quence, full QM results are used to validate the QM/MM re-
sults and the size of the test systems is limited by the maximum
number of atoms that can be treated at the reference QM level.
The rest of the paper is organized in the following way. The
simulation methods are described in Sec. II. Next, we present
a series of tests for the convergence of the bf-QM/MM forces to
the full QM forces as a function of the buffer size for different
silica systems (Sec. III). In Sec. IV, existing results for conv-
QM/MM geometry optimizations of an oxygen vacancy in
quartz are compared to bf-QM/MM results. Similar tests are
presented for constrained geometry optimizations, where Si—O
bonds in bulk quartz and on an amorphous silica surface are
quasi-statically elongated (Sec. V). These simulations can be
used to calculate potential energy barriers, and if they were
extended to finite temperature, free energy barriers. Finally,
in Sec. VI, the accuracy of conv-QM/MM and bf-QM/MM in
molecular dynamics (MD) simulations of crack propagation in
quartz is compared.

Il. SIMULATION METHODS
A. QM and MM methods

Reference conv-QM/MM simulations are performed us-
ing the approach described by Zipoli et al.® The QUICKSTEP
scheme,” as implemented in the CP2K package,’® is used
to perform embedded and full QM calculations at the DFT
level. The QUICKSTEP approach uses Gaussian-type orbitals
for the expansion of the Kohn-Sham orbitals and a plane-
wave representation of the charge density. We use the PBE
approximation to the exchange-correlation potential,*! a plane-
wave cutoff of 280 Ry, PBE-optimized GTH pseudopoten-
tials,?? and the corresponding double-zeta valence polarization
(DZVP) basis set.® A vacuum of at least 12 A  between
QM atoms and their periodic images is used throughout, and
electrostatic interactions between periodic images of the QM
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cluster are decoupled and recoupled with the periodic images
of the full MM system. 19 For the MM Hamiltonian, we use the
potential of van Beest, Kramer, and van Santen (BKS).>* The
extension of the BKS potential from Hassanali et al. > which
was devised for amorphous silica surfaces in contact with
water, is used to describe amorphous silica with hydroxylated
surfaces. Here, in the absence of water, the three-body Si—-O-H
term is replaced by an harmonic angle term. All bf-QM/MM
simulations are performed using the QUIP code® as a “driver”
for the CP2K package, although this functionality has been
very recently implemented directly in the CP2K and AMBER
codes.’” Geometry optimization simulations are performed
with the Fast Inertial Relaxation Engine (FIRE),*® which only
requires forces for the minimization procedure.

B. QM/MM coupling

We consider two alternative ways to chemically saturate
the dangling bonds that are artificially created when the QM
region is carved out of the system. The simplest approach is
to build neutral clusters by selection of QM regions consisting
of complete SiOy tetrahedra. These are chemically passivated
by replacing [-Si—O]-Si bonds crossing the QM/MM bound-
ary with [-Si—OJ]-H (where square brackets denote the atoms
inside the QM region). We refer here to this approach as
cluster embedding (CE) (Fig. 2(a)). When additional classical
electrostatic forces between QM and MM atoms are added to
the QM forces, the approach is also referred to as mechanical
embedding.*®

However, potentially long-range electrostatic forces in
polar materials can influence the electronic structure in the
QM region. As a consequence, it can be useful to include
the electrostatic field of the MM region directly in the QM
calculation. If the CE strategy outlined above were followed,
the H passivation atoms would be located very close to the
embedding charges arising from the Si atoms just outside the
QM region, which could cause electron spill out. Zipoli et al.®
suggested an alternative termination strategy that addresses
this issues by replacing the boundary O atoms with a special
O* boundary species with an extra electron to saturate the
valence, and a corresponding increase in ionic charge to retain
overall (QM + MM) charge neutrality. The combination of this

FIG. 2. (a) Illustration of different
QM/MM embedding schemes: CE and
EE, where the O* are represented by
gray spheres. See text for full details
of the two schemes. (b) The PDOS on
a Si atom in a bulk quartz-sample at
1000 K is calculated with CE and EE
for a QM region of 7 A and compared
to the full QM result. Here, E,, is the
valence-band maximum.
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passivation scheme and the external electrostatic environment
provided by the MM point charges is denoted by electrostatic
embedding (EE).

We first test the CE and EE approaches by comparing the
projected density of states (PDOS) obtained with both embed-
ding strategies with those of a reference full QM calculation
for a quartz sample thermalized at 1000 K. The PDOS on a
Si atom located at the center of a spherical QM region (with a
7 A radius) is plotted in Fig. 2. The general structure of the
QM PDOS is qualitatively reproduced by both the CE and
EE QM/MM calculations, although the simple CE reproduces
more accurately the PDOS structure between —10 eV and
-5eV.

We next move to an amorphous silica surface system,
where we use the Mulliken population analysis to check how
the charge density at the center and near the boundary of the
QM region is reproduced by a QM/MM calculation compared
to a reference QM calculation. For conv-QM/MM with the
EE approach, MM charges are used as embedding charges for
the QM calculation. This ensures overall charge neutrality of
the combined QM/MM system. Depending on which silica
potential is used, the MM charges span a wide range (e.g.,
oxygen charges are —0.45 e and —1.2 e for the CHARMM
water contact angle (CWCA) *’ and BKS** force fields, respec-
tively). We note that, since these different charges may be
well suited to reproduce particular properties they have been
fit to (i.e., the water contact angle on a silica surface or the
structural bulk properties of quartz in the above examples), the
choice of the MM potential introduces some arbitrariness in the
choice of embedding charges used for a conv-QM/MM calcu-
lation. In the bf-QM/MM case, we focus on the calculation
of accurate QM and MM forces rather than on the definition
of a total QM/MM energy. As a consequence, the QM and
MM calculations can be carried out independently and it is
not necessary to use the MM charges as embedding charges
in the EE of the QM region. In fact, the embedding charges
can in principle be tuned in order to improve the accuracy of
the QM force calculation, provided that the charge neutrality
in the latter is ensured. To test this, we compare EE results
using two choices of embedding charges: (i) the average QM
Mulliken charges in the MM region, as determined from the
reference QM calculation on the full systems; (ii) the charges
of the BKS MM potential. Here, we note that there is only one
free parameter, since go = —1/2¢gs; and gy = 1/4¢gs; must be
enforced to ensure charge neutrality of both bulk SiO; and OH-
terminated SiO; slabs or clusters. The average Mulliken gs; in
the full QM calculations varies from 1.10 e to 1.28 e depending
on the silica system (bulk or surface), and is in good agreement
with previously published results.*!

We find that the embedding scheme has little influence
on atoms located at the center of the QM region, where the
maximum deviation from the QM reference charge value is
for all three schemes below 0.002 e for the bulk and 0.02 e
for the amorphous surface. The average Mulliken charge er-
rors are summarized in Table I for oxygen atoms located at
the boundary of the QM region. Here, the EE with Mulliken
embedding charges performs best in reproducing the Mulliken
charge in both bulk quartz and the amorphous silica surface.
This embedding approach will be used throughout this paper,
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TABLE 1. Average Mulliken charge error (in units of electron charge) with
respect to full QM results for different embedding strategies on oxygen atoms
located at the boundary of the QM region.

EE EE
CE BKS charges ~ Mulliken charges
Bulk quartz 0.089 +£0.011  0.129 + 0.009 0.057 + 0.004
(170 QM atoms)
a-Si0; surface 0.072 +£0.023  0.138 + 0.033 0.044 + 0.026
(100 QM atoms)

particularly because long-range electrostatic interactions are
likely to be especially important to correctly describe the inter-
action between silica surfaces and polar liquids envisaged as a
future application of this work.”®

As mentioned in Sec. I, an important difference between
energy-based and force-mixing QM/MM approaches is that,
while the former methods are normally energy conserving,
force-mixing approaches may conserve neither energy nor mo-
mentum. In bf-QM/MM MD simulations, we use a simple way
to enforce momentum conservation. The sum of all atomic
forces, which is generally nonzero, is divided by the number
of atoms. This small quantity is then subtracted to each atomic
force, thus restoring momentum conservation.

C. Silica model systems

In Secs. ITI-VI, the accuracy of conv-QM/MM and bf-
QM/MM is compared on a number of silica model systems. In
Sec. II, we assess the accuracy of bf~-QM/MM forces on three
silica systems: (a) a bulk quartz sample, where atomic posi-
tions were previously randomly perturbed; (b) an hydroxylated
amorphous silica slab; (c) an hydroxylated amorphous silica
slab in contact with water. We choose system sizes of about 10°
atoms in order to be able to perform the full QM reference force
evaluation. The bulk quartz sample consists of a cubic quartz
cell containing about 2600 atoms, where we initially slightly
randomized the atomic positions and then thermalized the
system in the NVT ensemble for about 100 fs at a temperature
of 1000 K. To do this, we used a short-ranged version of the
polarizable potential for silica first developed by Tangney and
Scandolo.'**? The amorphous slab contains about 1400 atoms
and was obtained following the procedure described in Ref. 43.
To produce the silica/water interface, the vacuum of about 22 A
between the slab’s top and bottom surfaces was filled with 840
randomly positioned water molecules. While keeping the silica
surface fixed, the water was thermalized for 400 fs at 400 K.

The quartz system used for the oxygen vacancy (Sec. [V)
and bond elongation (Sec. V) simulations is a 1350-atom 5 X 3
x 5 supercell of the 18-atom a-quartz orthorhombic cell. The
optimal QM lattice constants (a = 4.872 A and ¢/a = 1.102)
were determined with a cell optimization on the 3 x3x 3
supercell of the 9-atom @-quartz trigonal unit cell. For the
crack propagation simulations described in Sec. VI, we use
a 768-atom «@-quartz crack slab with dimensions 54 x 32
x 4.84 A3, periodic along the crack front and the crack propa-
gation direction. The slab contains a penny-shaped nanoscale
seed crack opening on the (0001) basal cleavage plane and
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an initial uniaxial strain of 26.8% is applied in the vertical
direction.

lll. ACCURACY OF BF-QM/MM FORCES

To assess quantitatively the effectiveness of the bf-
QM/MM approach, the accuracy of the atomic forces in the
QM region has to be tested as a function of the size of the
buffer (i.e., the distance between the edge of the QM core
region and the artificial QM/MM boundary). In other words,
we want to know if and how rapidly the forces calculated with
the bf-QM/MM method converge to the atomic forces obtained
by means of a full QM calculation. To reach a compromise
between accuracy and computational cost of the simulation,
the practical target is to operate with a buffer radius that
allows the difference between bf-QM/MM forces and full QM
reference forces to be lower than 0.1 eV/A, as this is the
typical accuracy of DFT forces for the material systems under
investigation. Previous accuracy tests were performed on a
number of Si and Si/H systems,“‘*’45 as well as on water.!”
As shown in Fig. 3 for Si and in Ref. 17 for water, a buffer
region size of 5-7 A is sufficient to reach the 0.1 eV/A force-
accuracy target for these systems.

We perform similar force-accuracy tests on different sil-
icon oxide model systems. Namely, we consider the systems
described in Sec. II: (a) a bulk quartz sample, where atomic
positions were previously randomly perturbed (Fig. 4(a)); (b)
a hydroxylated amorphous silica slab (Fig. 4(b)); (c) a hydrox-
ylated amorphous silica slab in contact with water (Fig. 4(c)).
The average magnitude of the DFT atomic forces on the three
test systems is of the order of 1 eV/A. As for the Si and Si/H
cases mentioned above, we select a set of atoms for each of the
test systems and calculate the forces for each of these atoms by
growing spherical QM regions of increasing size around them.
In this case, the QM core consists of a single atom and therefore
the buffer size and the radius of the QM region coincide. This
is equivalent to testing the accuracy of the forces on atoms
located at the boundary of a QM core region of any size.** The
atomic forces evaluated in this way for various buffer sizes and

} Bulk Si
_ 0.4 } Si(001) surface |
o : .
2
— 0.3r
g
€8
0.2}
TN ]

2 4 6 8§ 10 12 14 16
Buffer radius [A]

FIG. 3. Difference between forces calculated using a finite cluster and forces
calculated with a full periodic QM calculation as a function of the buffer
radius. The test systems are bulk silicon and its (001) surface. Only CE is
used here and clusters are chemically terminated with H atoms. Small dots
represent force errors on different Si atoms, while solid lines show the average
error. The dashed horizontal line shows the target accuracy of 0.1 eV/A.
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the two different embedding schemes described earlier are then
compared to the forces calculated on the same atoms by means
of a full QM calculation.

In Fig. 4, the force errors (i.e., the difference between the
bf-QM/MM forces and the target QM ones) for the single test
atoms and the average force error are plotted as a function of
the buffer region size for the three test systems. The test atoms
are silicon atoms (i.e., centers of silica tetrahedra) for the quartz
case (Fig. 4(a)), and oxygen atoms belonging to surface silanol
groups for the amorphous silica slabs (Figs. 4(b) and 4(c)). In
the case of the silica slab in contact with water, only complete
water molecules are included in the QM regions (i.e., no water
covalent bond is cut). In general, we note that the mean force
error decreases with increasing buffer sizes. As in the afore-
mentioned Si and H,O cases, significant force errors are found
for small buffer radii (~2 A). The different magnitude of the
force errors in the three systems correspond to different values
of the average force magnitude on test atoms for the three
systems (labelled on the graphs in Figs. 4(a)-4(c)), with smaller
errors obtained for smaller values of the average force. Average
force errors smaller than 0.2 eV/A can only be obtained for
buffer sizes of about 8 A, while buffer sizes of 12 A are needed
to achieve force errors lower than 0.1 eV/A. This shows that
larger buffer radii than in the Si and H,O cases are needed to
achieve reasonably accurate force evaluations, resulting in a
larger computational cost. However, the bf-QM/MM approach
helps to systematically improve the accuracy of QM/MM force
calculations and the use of a buffer region is apparently more
crucial than the details of the embedding scheme used. As
shown in Fig. 4, EE plays a minor role in the accuracy of the
QM/MM calculations. While EE yields smaller force errors for
all values of the buffer radius in the bulk quartz case, for which
the method has been designed and tested so far,®® it only
becomes slightly more accurate than CE for large radius values
in the silica slab cases. This might be due to the EE only taking
into account fixed point charges; further tests including higher
order multipoles or variable charges would be of interest (e.g.,
including electrostatic response up to dipole order has been
shown to significantly improve the accuracy of force fields for
silica*?).

IV. QM/MM GEOMETRY OPTIMIZATION
OF A NEUTRAL OXYGEN VACANCY IN QUARTZ

As a first test simulation of a silica system, we calculate
the relaxed geometry of a neutral oxygen vacancy in bulk a-
quartz with bf-QM/MM and conv-QM/MM (details about the
model system are provided in Sec. II and Figs. 5(a) and 5(b)).
We then compare the results of the QM/MM simulations with
the full QM geometry. This example is of particular interest
because: (i) the reference conv-QM/MM technique® provides
accurate results on this model system despite the generally
large force errors in the vicinity of the QM/MM boundary (see
Fig. 4) and (ii) the QM and MM models are not elastically
matched (i.e., they yield different elastic constants). The main
motivation of this test is to check whether bf-QM/MM can be
used to improve the accuracy of the conv-QM/MM geometry
optimization. For this reason, we do not make any attempt in
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FIG. 4. Absolute error in a bf-QM/MM calculation with respect to a full QM force calculation as a function of the buffer size. The test systems are (a) thermalized
alpha-quartz, (b) a hydroxylated amorphous silica slab, and (c) the same slab in contact with water. Red and green dots represent force errors on individual atoms
for CE and EE, respectively. The solid lines show the average force error. The dashed black line indicates the target force error of 0.1 eV/A.

this work to elastically match the QM and MM models. This
leads to intrinsic errors in the atomic positions in the QM region
but does not affect the goal of this test.

We relax the atomic positions for different sizes of the QM
and of the buffer regions. In Table II, we report relative errors
with respect to the full QM geometry in the Si—Si bond length
at the vacancy site (Fig. 5(c)), as well as in the Si—O bond
lengths and Si—O-Si angles in the QM region. We consider
conv-QM/MM simulations with 12, 50, and 169 atoms QM
regions centered on the vacancy site.*® For the two smaller QM
regions, we also perform bf-QM/MM simulations with buffer
sizes of 3.6 and 5.7 A.

In general, errors in the Si—Si and Si—O bond lengths
are very small even for conv-QM/MM with the smallest QM
region. The errors on the Si—-O-Si angles are larger and prob-
ably due to the elastic mismatch between the QM and the
MM models. Increasing the buffer size during the bf-QM/MM
calculation systematically decreases the magnitude of the
errors. For calculations with the same computational cost (e.g.,
conv-QM/MM with a 50-atom QM region and bf-QM/MM
with 12-atom QM region and 3.6 A buffer), no relevant
difference is observed. The Si—O bond length distributions
calculated in a 44-atom area centered on the vacancy (corre-
sponding to the QM core region in the bf-QM/MM calculation)
with the MM, QM, conv-QM/MM, and bf-QM/MM methods
is shown in the histograms of Fig. 5(d). The different peaks
of the MM and QM distributions show the effect of the elastic
mismatch between the two models. While the conv-QM/MM

distributions are quite broad, the peaks obtained by bf-QM/MM
are less broad and closer to the full QM result. However, in
this case, the accuracy of the conv-QM/MM is satisfactory
and the missing elastic matching between the QM and MM
models seems to be more relevant than spurious effects at the
QM/MM boundary. This might be due to the displacement field
generated by the vacancy being short-ranged and therefore not
affected by the boundary of the relatively small QM region.
We note that the conv-QM/MM scheme needs a special-
purpose potential energy function that suitably describes the
coupling between the QM and MM regions. The choice of
this potential depends on the particular choice of the Hamil-
tonians and on the system under investigation. In the QM/MM
formulation of Zipoli et al.,® a short-ranged two-body potential
with the BKS analytical form was specifically parametrized to
describe the interaction between O* atoms in the QM region
and their first Si neighbors in the MM region. This “link-
ing” potential was used for all conv-QM/MM calculations
described below, except where otherwise stated. If this two-
body term is replaced by the original BKS two-body term,
the QM and MM regions detach during geometry optimiza-
tion. However, the addition of a stiff harmonic two-body term
(V = k(r — ro)* with k = 34.7 eV/A? and ry = 1.59 A) to the
original BKS term between O* pseudoatoms and MM-Si atoms
prevents the detachment of the QM and MM regions and yields
geometries that are as accurate as those obtained with the O*—Si
term devised in Ref. 8. Using the bf-QM/MM scheme does
not imply any additional computational cost with respect to

(d)

03 | QM

02f | MM
| ’_l_rLI—‘J—|_L|—‘
0.0 1

FIG. 5. Geometry optimization of the neutral vacancy
in @-quartz (a) (Si atoms: gray; O atoms: red). The QM
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region in conv-QM/MM and bf-QM/MM simulations is
centered on the Si-Si bond located at the vacancy (b)
(QM atoms: green; buffer atoms: red; MM atoms: blue).
The O*-terminated 50-atom cluster used for the conv-
QM/MM calculation is shown in panel (c). The Si-O
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bond-length distributions in a 44-atom area centered on
the vacancy for the QM, MM, conv-QM/MM, and bf-
QM/MM schemes are reported in panel (d).
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TABLE II. Si-Si bond length in the neutral vacancy in a-quartz and average errors on Si—O distances and
Si—O-Si angles for different QM/MM schemes and computational costs. Values denoted by (%) are obtained with
a potential term for the QM/MM linking that consists of the sum of the original BKS potential and a harmonic
potential (see text for details). Values denoted by () are taken from Ref. 8.

QM core QM radius Cost dsi-si Errors w.r.t. QM (%)
Method (atoms) (A) (atoms) (A) dsi_si dsi_o asi—-0-Si
QM 1349 1349 2.39
conv-QM/MM 12 4.7 12 2.36 1.4 1.1 7.5
50 7.3 50 2.36 1.3 1.5 7.2
(%) 50 7.3 50 2.37 1.0 1.6 6.2
169 9.9 169 2.34 2.0 1.0 6.1
(@) 9-54 9-54 2.35-2.40
Buffer radius
bf-QM/MM 12 3.6 50 2.34 2.2 0.8 7.4
12 5.7 169 2.38 0.4 0.7 6.6
44 3.6 169 2.37 1.1 0.4 54
44 5.7 375 2.40 0.2 0.3 4.4

the conv-QM/MM scheme at the same level of accuracy and
has the advantage of not requiring the parametrization of this
coupling term.

V. QUASI-STATIC SIMULATIONS
OF BOND ELONGATION

After the comparison of the two QM/MM approaches
on systems with relaxed atomic positions, we perform a se-
ries of geometry optimization tests whereby the length of a
Si—O bond located at the center of the QM region is con-
strained. Following the approach used by Bernstein et al. for
Si,” we relax the atomic positions for increasing values of the

constrained Si—O bond length and measure the force on the
constraint. This is an interesting test because, if the Si—O bond
length is a representative reaction coordinate, the forces on
the constraint can be integrated along the minimum energy
path (MEP) and provide a potential energy barrier even when
a total energy is not defined, as in the bf-QM/MM case. The
approach can also be extended to calculate free energy barriers
by performing ensemble averaging of the constraint forces
during finite temperature MD simulations. In this way, we
perform two series of tests on two model systems: bulk a-
quartz and a hydroxylated amorphous SiO, surface. In the first
series of tests, we use the conv-QM/MM scheme to measure
the constraint force on the atomic positions obtained by means
of a full-QM calculation. This test is similar to those presented

4.5
4.0
<
> 35
30 FIG. 6. (a) Constraint forces along a
QM Si-O bond in bulk a-quartz (b) as
25 * conv-QM/MM 13 QM a function of bond elongation. Here,
* conv-QM/MM 51 QM conv-QM/MM force calculations are
20 ® conv-QM/MM 170 QM performed on the full-QM geometries.
01 02 si-%3e|ongatigﬁd[ Al 0> 0.6 In panel (c), the integrated energies
as along the path are plotted. For the full
55l * QM (d) //k*ﬂ\\‘ QM calculatioq, as a reference, we alsp
* conv-QM/MM 13 QM a0 T, plot the potential energy calculated di-
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in Sec. IIT and provides information on how far the QM/MM
boundary must be from the constrained bond in order not to
affect the accuracy of the force calculation. Once a QM region
size that ensures an accurate constraint force calculation is
determined, we perform independent conv-QM/MM and bf-
QM/MM constrained geometry optimization simulations with
the same computational cost and compare the evolution of the
force during bond elongation to the full-QM case.

The results for the a-quartz case are summarized in Fig. 6.
The force acting on the constraint is plotted as a function of the
bond elongation in Fig. 6(a). Here, the QM forces are compared
to the conv-QM/MM forces calculated on the atomic positions
obtained with the full QM calculations. Three different sizes of
the QM region, which is approximately centered on the con-
strained bond (Fig. 6(b)), are considered. The error between
conv-QM/MM and full QM forces decreases for increasing
QM region sizes. A QM region composed of 170 atoms (i.e., a
distance between constrained bond and the QM/MM bound-
ary of about 10 A) is necessary to correctly reproduce the
QM forces (within an absolute average error of 0.04 eV/A,
cyan line). This is consistent with the buffer size suggested
by the tests in Sec. III. Smaller QM regions, consisting of 13
and 51 atoms (with radii 47 A and 7.3 A respectively),
are too small and yield average errors of 0.31 eV/A and
0.80 eV/A, respectively. Similar considerations apply to the
results of the force integration along the reaction path plotted in
Fig. 6(c). Here, the accuracy of the force integration procedure
can be assessed by comparing the QM energies as obtained by

Si-O elongation [A]

force integration (black line) with the direct QM total energies
(black dashed line). The 170-atom QM region, which accu-
rately reproduces the QM forces on the QM geometries, is then
used to carry out independent conv-QM/MM and bf-QM/MM
quasi-static bond-elongation simulations. For comparison, one
conv-QM/MM and two bf-QM/MM simulations with the same
computational cost (i.e., 170 QM atoms) are performed for
two different sizes of the buffer region, and compared to the
full QM results. The constraint force as a function of the Si—O
elongation is plotted in Fig. 6(d) for the four different calcu-
lations. The conv-QM/MM forces (red line in Fig. 6(d)) are
affected by an average error of 0.32 eV/A. The average force
error decreases for the bf-QM/MM: the erroris 0.12 eV/A, fora
13-atom QM regionand a 5.7 A buffer (green line in Fig. 6(d))
and 0.03 eV/A, for a 45-atom QM region and a 3.6 A buffer
(blue line in Fig. 6(d)). This shows that, although a 170-QM-
atom conv-QM/MM simulation is able to accurately reproduce
the forces at the center of the QM region (Fig. 6(a)), using
forces on QM atoms close to the QM/MM boundary to perform
the geometry optimization can lead to considerable errors with
respect to the full QM result: here equivalent to an error of
about 0.2 eV in the integrated energy difference. More accurate
results can be obtained at the same computational cost using
the bf-QM/MM scheme, where the QM forces on atoms in the
buffer region are replaced by the MM forces. However, the bf-
QM/MM method can accurately reproduce the QM results only
if the size of the QM core region is large enough (45 atoms
here).
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The same simulations are also performed on an amor-
phous silica slab with hydroxylated surfaces. In this case, the
constraint is applied to a Si—O bond that involves an OH-
terminated Si atom and an O atom of a surface siloxane group
(Fig. 7(a)). As described in the quartz case above, we first
perform a series of QM geometry optimization simulations for
increasing lengths of the constrained bond. Upon elongation
of the Si—O bond, a H atom of a nearby silanol group reorients
towards the O atom to form a hydrogen bond (snapshots are
shown in Fig. 7(a)). Also in this case, conv-QM/MM calcula-
tions with a QM region larger than 100 atoms are necessary to
reproduce the force evolution on the QM positions, Fig. 7(b).
This corresponds to a QM region radius of about 12 A, which
is once again consistent with the results described in Sec. II1.
It is important to note that the smallest QM region used here
is large enough to include the silanol group involved in the
H-bond formation. As in the quartz system, the constrained
geometry optimization simulations are then repeated using the
conv-QM/MM scheme with a 100-atom QM region and the bf-
QM/MM scheme with a 25-atom QM region and a 4.7 A buffer
region (for a total computational cost of 100 QM atoms). The
constraint forces, the Mulliken charges on the O atom of the
constrained Si—O bond and the energy profiles obtained by
force integration are plotted in Figs. 7(c)-7(e) as a function
of the Si—O bond elongation. The aforementioned formation
of a hydrogen bond is characterized by a sudden decrease of
the constraint force and of the oxygen’s Mulliken charge. This
happens at an elongation of about 0.15 A for the QM case
(black lines). The bf-QM/MM scheme is able to reproduce
the constraint forces and the H-bond forms at about 0.05 A
elongation (green lines). For the conv-QM/MM method (red
line), this happens at a larger elongation (0.5 A), resulting in
higher constraint forces up to that point.

VI. FINITE TEMPERATURE QM/MM MD SIMULATIONS
OF CRACK PROPAGATION IN QUARTZ

We have shown in Sec. III that substantial force errors
arise at finite temperatures when using energy-based QM/MM
approaches in materials systems such as silica, and this is likely
to have adverse consequences for the accuracy of dynamical
simulations. Here, we consider a non-equilibrium case where
the trajectory followed by a simulation is particularly sensitive
to the accuracy of the forces used: brittle crack propagation.
Accurate fracture simulations must describe bond-breaking
reactions in systems containing of the order of 10° atoms,
which can often only be accomplished using QM/MM ap-
proaches.

To investigate the suitability of the two QM/MM ap-
proaches considered here to describe bond-breaking processes
at a crack tip, we select a much smaller model system, which
allows direct comparison to a reference QM simulation (details
are provided in Sec. II and in Fig. 8(a), left panel). While there
is a strong case for using adaptive bf-QM/MM for these kinds
of problems to allow a moving QM region which tracks the tip
of a moving crack,® here we fix the set of QM atoms to allow
comparison with energy-based approaches where the QM
region cannot be changed during the course of a simulation.

J. Chem. Phys. 142, 064116 (2015)
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FIG. 8. (a) Bond breaking at the crack tip in a strained a-quartz slab. Left
panel: initial relaxed QM geometry (red, gray, and white spheres represent
O, Si, and H atoms, respectively). Right panel: snapshot of the crack tip just
after bond breaking (brown and gray spheres are two-fold and four-fold coor-
dinated atoms, respectively; green spheres are three-fold coordinated atoms,
while blue spheres are atoms with one bond). (b) bf-QM/MM force errors
with respect to the full QM forces for one representative system configuration.
Here, different colors refer to QM forces in the QM-core region, QM forces
in the buffer region, and classical forces in the buffer region. The vertical
dashed lines show the average radius of the QM-core and buffer regions.
In panel (c), the force errors as a function of buffer radius are averaged
over several configurations. Here, conv-QM/MM errors with no short-range
QM/MM boundary linking potential are shown as comparison. The error
bar for the conv-QM/MM measured on the full QM region (including QM
boundary atoms; red dot) extends up to 4.8 eV/A and is not fully shown.

After an initial geometry relaxation, with an initial uni-
axial strain of 26.8% in the vertical direction, we carry out
finite-temperature MD simulations with random initial veloc-
ities sampled from a Maxwell-Boltzmann distribution at a
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temperature of 300 K, first with the reference QM Hamiltonian
and later with the conv-QM/MM and bf-QM/MM approaches.
Atoms in the top and bottom rows of the slab are fixed, and an
uniaxial strain increasing at a rate of 10~%fs is imposed dur-
ing the 700-fs-long simulations. We note that the large initial
strain, high strain rate, and small system size used here do not
allow direct comparison with experimental fracture toughness
measurements, but nevertheless permit comparisons between
different modeling approaches. In contrast to the constrained
minimizations reported above, the forces near the QM bound-
ary are not zero during dynamics, so we expect that systematic
errors there may lead to more severe consequences.

The system quickly equilibrates to half the initial temper-
ature (Fig. 9(a), upper panel, green line) as expected by the
equipartition theorem, and then remains relatively constant
despite the heat produced by the work done by the moving
boundaries (note that, to allow comparison of trajectories, no
thermostats were applied in any of the simulations described
here). Fig. 9(a) also shows the length of the Si—O bond imme-
diately in front of the crack tip (lower panel, green line),
which breaks when the strain reaches 33%, leading via a crack
advance step to the configuration illustrated in Fig. 9(c).

We next look at the accuracy of the forces obtained with
the bf-QM/MM approach for a configuration just before the
first bond-breaking event in the reference QM trajectory. It is
clear from Fig. 8, which shows the force errors as a function of
the distance from the crack tip, that the method gives accurate
forces (blue circles) for atoms more than about 6.5 A inside the
QM/MM boundary (vertical dashed line). This corresponds to
the average radius of the QM core region in the bf-QM/MM
calculation. The error in the QM forces increases as one moves
closer to the QM/MM boundary (magenta circles). We note
that no additional QM/MM linking potential term is used in
the bf-QM/MM calculation. This allows us to show that in a
bf-QM/MM simulation if QM forces in the buffer (i.e., between
the two vertical dashed lines) were not discarded, they would
be affected by a very large error. This is why in bf-QM/MM
simulations only QM forces on atoms that are sufficiently far
away from the boundary (blue circles) are used. QM forces
in the buffer region are replaced with the MM forces (cyan
circles), which are in this case closer to the reference QM
forces, providing of course that the size of the QM region is
chosen appropriately.

The average force error on QM region atoms for conv-
QM/MM (red dot, zero buffer, also in this case no additional
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QM/MM linking potential term is used for comparison) and
bf-QM/MM is plotted in Fig. 8(c), for configurations taken
from 16 snapshots of the reference QM trajectory (starting at
a strain of 32.23%). The bf-QM/MM force errors are plotted
for both BKS (blue circles) and Mulliken charge EE (green
circles). As before, we find that using the average Mulliken
charges of a reference QM calculation for the EE leads to
slightly more accurate forces. While the MM forces can be
systematically improved (e.g, by using a different classical
potential'?), the large force errors near the boundary of the
QM region are a general consequence of the truncated QM
calculation. One can imagine finding the best possible short-
range potential that properly links the QM and MM regions,
as reported above for the conv-QM/MM geometry optimiza-
tions. In this spirit, we discard the boundary atoms from our
force-error analysis and show the remaining average force-
error (magenta circles). However, in general, unlike in the
vacancy geometry optimization, it is extremely challenging
to fit these linking functions once-and-for-all in such a way
that they remain valid throughout a MD simulation and are
able to reliably reproduce the non-zero QM forces on the QM
boundary atoms. Instead, the buffer allows us to simply discard
these generally inaccurate forces.

To demonstrate this, we re-ran the fracture dynamics with
the trad- and bf-QM/MM methods exactly as described above.
For the bf-QM/MM, we use a buffer size of 5.8 A (i.e., the
buffer/MM boundary is about 12 A away from the crack
tip). As in the geometry optimization simulations presented
in Sec. IV, the QM/MM linking function of Ref. 8 is used
in the conv-QM/MM simulations. In both simulations, the
temperature quickly equilibrates to half the initial tempera-
ture (Fig. 9(a), upper panel) as before. In the bf-QM/MM
simulation, the subsequent dynamical evolution is very similar
to the reference QM case, with the same Si—O bond at the
crack-tip breaking at a very similar strain. The final geome-
tries in Figs. 9(c) and 9(e), and the bond length evolution in
Fig. 9(a) show excellent agreement. In the conv-QM/MM case,
however, we observe detachment of the QM and MM regions
when the strain reaches ~29%. This results in exothermic bond
breaking leading to a large temperature rise (Fig. 9(a)), and
occurs both with the QM/MM linking function of Ref. 8 and
with an alternative harmonic link function (see Sec. IV). By
constraining the QM-MM linking bonds, this detachment can
of course be prevented, but the trajectory evolution does not
then follow that of the reference QM calculation. A similar

FIG. 9. (a) Evolution of tempera-
ture (top) and breaking-bond distance
d(Si-O) as a function of the applied
strain in the crack propagation simula-
tions. Snapshots of the simulations at
t=0 and t=569 fs (shortly after the
bond-breaking event): full QM simula-
tion ((b) and (c¢)) and bf-QM/MM sim-
ulation ((d) and (e)). In panel (b), the
color code refers to the atomic species,
1 while in panels (c) and (e), atoms are
colored according to their coordination
(see Fig. 8). In panel (d), green, red, and
blue spheres represent QM, buffer, and
MM atoms, respectively.
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detachment of the QM and MM regions occurs with a larger
QM region, corresponding to the same computational cost as
the bf-QM/MM simulation (i.e., a QM region including both
the QM core and buffer atoms in Fig. 9(c)). We speculate
that the large force errors near the boundary and the fixed
parametrization of the QM/MM linking term contribute to this
incorrect response.

VIl. CONCLUSIONS

We have reported a series of tests which taken together
demonstrate that the adaptive buffered force mixing approach
can be applied to perform accurate QM/MM calculations in
silica. We find that QM forces remain local properties despite
the long-range nature of electrostatic interactions but that the
length scale is significantly longer than that found for covalent
materials. This leads to a requirement for buffer regions with
widths of ~10 A rather than ~5 A commonly used for silicon
and water. In some cases, electrostatic embedding with the MM
point charges as additional contributions to the QM Hamilto-
nian somewhat improves the convergence of forces evaluated
using a finite QM region to the values that would be obtained
in a full QM calculation, especially if the embedding charges
are chosen to reproduce the correct QM electronic structure
(measured here by Mulliken population analysis). However,
we show that the contribution of electrostatic embedding (as
opposed to simple cluster embedding) to the accuracy of the
bf-QM/MM forces is less relevant than the contribution of
the buffer region. A more complex electrostatic embedding
scheme, such as including higher order multipole moments,
might improve this.

The selection of whether it is most efficient to use conven-
tional or adaptive buffered QM/MM depends on the phys-
ical problem of interest. For the geometry optimization of the
oxygen vacancy, for which the conv-QM/MM scheme was
previously tested, we found that the incorrect forces which are
invariably present near to the boundary of a conv-QM/MM do
not have a significant influence on the geometry obtained at the
potential energy minimum. For quasi-static bond-elongation
simulations and MD simulations of crack propagation, where
the force errors due to the QM/MM boundary are more impor-
tant, using the buffered approach, which gives accurate forces
everywhere, leads to results in much closer agreement with
those obtained in reference full QM calculations. Moreover,
using the buffered-force approach allows for more flexibility as
dedicated potential energy terms that link QM and MM atoms
are not required and the region which is treated at the QM level
can be redefined during the course of a simulation.
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