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Abstract

Bayesian nonparametric modelling has been widely applied to statistics

and econometrics due to the various simulation methods that have been devel-

oped and in particular of Markov Chain Monte Carlo (MCMC) techniques.

This thesis develops novel Bayesian nonparametric ordinal-response mod-

els and proposes efficient MCMC algorithms to estimate them.

In chapter 21, we set up a model for inference on panel ordered data and

apply it to sovereign credit ratings. In chapter 3, a model for ordinal-valued time

series data is considered and is used to examine contagion across stock markets.

Using real and simulated data, we show that the proposed models provide a

great deal of flexibility in modelling and overcome the standard weakness of

Bayesian methods due to the usual parametric assumptions.

1Chapter 2 is under revision for the Journal of Applied Econometrics.
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Chapter 1

Introduction

Chapter 1 is an overall introduction to the thesis and in addition presents all the

necessary tools and notations that will be used in the following two chapters.

Chapter 2 is an essay on panel data Microeconometrics while chapter 3 is an

essay on Time series Econometrics.

The motivation of chapter 2 is based on a very simple observation; that

sovereign credit ratings tend to be persistent over time. Put differently, coun-

tries tend to keep the same rating over time unless positive or negative socio-

economic or political changes occur.

In the literature on the determinants of sovereign credit ratings, re-

searchers have applied linear and ordered probit models to examine which fac-

tors drive the formulation of the rating agencies’ decisions and the empirical

evidence shows that a number of macroeconomic/socio-political variables affect

ratings.

Due to the persistent behaviour of ratings, the literature has proposed dy-

namic panel linear models with random effects; see for example Eliasson (2002)

and Celasun and Harms (2011). These models incorporate a single one-period
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lagged rating variable the estimated coefficient of which measures the ratings’

persistence or the strength of the “true state dependence”. These models also

control for unobserved characteristics of the sovereigns (latent heterogeneity),

therefore, accounting for the “spurious state dependence”. Depending on the

time period, the explanatory variables and the econometric techniques that

have been used, the coefficient on the lagged creditworthiness was found to be

between 0.3 and 0.9, indicating the existence of some sort of ratings’ inertia.

However, since ratings are, by nature, a qualitative discrete (ordinal)

measure, linear regression models are inappropriate from an econometric point

of view. What is more, panel ordered probit models with random effects that

have been applied control only for “spurious state dependence”, ignoring the

dynamics of the ratings captured by the “true state dependence”. Consequently,

these models fail to measure inertia and hence can yield severely biased estima-

tion results. Our main contribution, in chapter 2, is that, we disentangle the two

possible sources of ratings’ inertia (the true state dependence and the spurious

state dependence) in the context of an ordered probit model, using data from

Moody’s for a panel of 62 countries covering the period 2000-2011. This model

controls for rating history via a lagged feedback of the previous period’s rating

outcome and latent heterogeneity via a sovereign-specific random effect. We

name this nonlinear model, dynamic panel ordered probit model with random

effects.

Another deficiency of the existing literature is the normality assumption

of the latent heterogeneity distribution. A parametric distributional assumption

for the random effects terms may fail to capture the full extend of the unob-

served heterogeneity. This can be a potential source of model misspecification,

leading to the spurious conclusion that ratings exhibit significant true state

2



dependence. The second contribution of chapter 2 is that the random effects

distribution is flexibly modelled as an infinite mixture of Gaussian distributions.

This approach ensures robust results.

Modelling the dynamic feedback through lagged dummies that corre-

spond to the rating categories in the last year in lieu of a one-period lagged

latent dependent variable constitutes the third contribution of chapter 2. The

assumption that the effect of the state variable is the same at all rating grades

dominates the literature but is quite restrictive and thus it is relaxed.

The proposed model has computational challenges. The likelihood func-

tion is intractable due to its high dimensionality and due to the non-parametric

structure being imposed on the random effects. Therefore, for parameter es-

timation we resort to Markov Chain Monte Carlo methods and develop an

efficient algorithm. From a theoretical point of view, the proposed posterior

methodology itself advances the Bayesian literature of dynamic ordered probit

models.

In the context of the proposed model, we also examine whether ratings

were procyclical or sticky in the pre-crisis period (2000-2008) and at the time of

the crisis (2009-2011) of the Eurozone. Ratings are defined as being procycli-

cal when rating agencies downgrade countries more than the macroeconomic

fundamentals would justify during the crisis and when they create wrong ex-

pectations by assigning higher than deserved ratings in the run up to the crisis.

The issue of procyclicality of the ratings is controversial and the literature on

past crises displays no definitive results. The case of the European debt crisis

has been inadequately investigated in that respect and in chapter 2 we attempt

to fill this gap.

Chapter 3 extends the Bayesian semiparametric literature on univariate

3



stochastic volatility models with continuous (non-discrete) responses to stochas-

tic volatility models with discrete responses. In particular, we set up a semi-

parametric time-varying parameter regression model with stochastic volatility

for ordinal-valued time series data and use it to analyze contagion across stock

markets.

The literature on stochastic volatility (SV) models, due to Taylor (1986),

has questioned the normality assumption of the conditional returns distribution

(Gallant et al., 1997; Mahieu and Schotman, 1998). To allow for more flexible

distributions for the return innovation, researchers have used mixtures of nor-

mals (Mahieu and Schotman, 1998), Student-t distributions (Jacquier et al.,

2004), scale mixtures of Normals (Abanto-Valle et al., 2010) as well as infi-

nite mixtures of normal distributions (Jensen and Maheu, 2010; Delatola and

Griffin, 2011).

In the context of stochastic volatility models with ordinal responses,

though, only Gaussian and Student-t distributed disturbances have been consid-

ered (Müller and Czado, 2009). In Chapter 3, we focus on this class of discrete

choice models and propose a nonparametric modelling approach for the error

distribution of the latent dependent variable, using an infinite mixture of nor-

mal distributions. The resulting semiparametric model is able to capture the

asymmetries (kurtosis, skewness, multimodality) of financial time series which

is not true of the equivalent parametric models.

Our semiparametric model specification is enriched with additional flex-

ibility by assuming both fixed and time-varying coefficients; the parameter-

driven dynamics are modelled using a (parametric) state space approach.

A parametric version of the semiparametric ordinal-response SV model

with time-varying parameters is also considered for comparison purposes. For

4



the estimation of the proposed (parametric and semiparametric) models, effi-

cient Markov Chain Monte Carlo (MCMC) algorithms are designed.

The two models are quite flexible specifications as they can easily be re-

duced to a variety of other well-known econometric models such as the ordered

probit model with/without time-varying parameters and the time-varying pa-

rameter regression model with stochastic volatility.

Using the proposed time series models, we turn our empirical attention

to stock market contagion. Bae et al. (2003), in his seminal paper, proposed a

definition of a stock market crash as one that occurs when a daily return in a

stock market lies below the 5th quantile of the empirical distribution of returns.

This case is known as (negative) return exceedance. A negative coexceedance

occurs when two or more countries experience a crash (or equivalently a negative

exceedance) on the same day.

Researchers have distinguished between contagion and interdependence

as two potential channels of negative coexceedances (Forbes and Rigobon, 2002).

According to Forbes and Rigobon (2002), during tranquil time periods a high

comovement is justified by interdependence; that is, by strong linkages (bank-

ing/trading/geographical) across the markets. If there is a substantial increase

in the comovement after a shock, this is defined as contagion. Otherwise, any

continued high level of comovement (after a shock) is due to economic funda-

mentals (interdependence). Hence, contagion is the dependence of stock prices

across different markets, during a crisis period, that can not be explained by

interdependence. This definition of contagion requires the identification of peri-

ods of stock mark crashes (shocks) and the definition of Bae et al. (2003) serves

this purpose.

There is no unanimity from the research results about whether negative

5



return coexceedances occur due to contagion or interdependence or both. In

chapter 3, we re-examine this issue after taking into account conditional het-

eroscedasticity, volatility clustering and heavy-tailedness that characterize the

raw daily stock market returns.

So far, no studies in the extant literature have incorporated in their

analysis these features of financial time series. Our proposed models, though,

incorporate stochastic volatility, which accounts for the stylized facts observed

in the returns of stocks, and are used to analyze the relative importance of

interdependence and contagion in explaining local, regional and global stock

market crashes, as defined by Markwat et al. (2009).

Our proposed models also allow the parameters to vary over time. In

this way, we can identify how the effects of interdependence and contagion

on crash likelihood change in periods of distress. This information would be

interesting for policy makers and investors. Policy makers could predict better

and therefore avert future crashes by designing suitable macroeconomic polices

while investors could achieve a better portfolio.

1.1 Background

Since the analysis in both chapters 2 and 3 is conducted in a Bayesian frame-

work, I outline briefly in this section some Bayesian tools that will be used in

those chapters. Specifically, in subsection 1.1.1 we introduce some basic con-

cepts of Bayesian inference while in subsection 1.1.2 we describe some Markov

chain Monte Carlo (MCMC) simulation methods. Subsection 1.1.3 provides

a motivation for using Bayesian nonparametric methods while subsection 1.1.4

highlights the main statistical properties of a nonparametric Bayesian prior, the

6



Dirichlet process prior.

1.1.1 Bayesian inference

In order to conduct Bayesian analysis we first have to specify a probability

model for the data that we want to analyze. Suppose that we collect some

observed data y = (y1, ..., yn) and that p(y|θ) is the conditional density of y

given a k−dimensional vector of unknown parameters θ = (θ1, ..., θk). p(y|θ)

is known as the likelihood function. Once the data model has been chosen, we

need to define a prior distribution for θ. This distribution, denoted by p(θ),

reflects our uncertainty about θ prior to seeing the data y. The goal is to make

inference about θ given the data y. Therefore, the conditional distribution

p(θ|y), known as the posterior distribution of θ, is of fundamental interest in

Bayesian statistics and is calculated by applying the Baye’s rule

p(θ|y) = p(θ)×p(y|θ)
p(y)

,

where p(y) =
∫
p(θ)× p(y|θ)dθ is the the normalizing constant (also known as

marginal likelihood).

Descriptive measures related to the posterior distribution are the poste-

rior mean

E(θ|y) =
∫ +∞
−∞ θp(θ|y)dθ

and posterior variance

V ar(θ|y) =
∫ +∞
−∞ (θ − E(θ|y))2p(θ|y)dθ.

In order to make a prediction about a future unobserved data point yn+1,

after the data y have been observed, we can calculate the posterior predictive

7



distribution of yn+1. This distribution can be computed as

p(yn+1|y) =
∫
p(yn+1|θ)p(θ|y)dθ.

Another concept which is useful in Bayesian inference is related to cred-

ible regions.

Definition: Credible regions

A 100× (1− a)% credible region for θ is a subset C of the parameter space Ω

such that

1− a ≡ P (θ ∈ C|y) =
∫
C
p(θ|y)dθ, 0 < a < 1.

This definition states that the probability that θ lies in C given the data

is 1−a. The “smallest” credible region C that has posterior probability content

of 1− a is called highest posterior density (HPD) region for θ.

Definition: HPD region

Let C ⊂ Ω satisfying,

(i) P (θ ∈ C|y) = 1− a,

(ii) for all θ1 ∈ C and θ2 /∈ C, p(θ1|y) ≥ p(θ2|y).

Then, C is defined to be the HPD region of content 1 − a for θ. I use 95%

HPD intervals throughout my thesis to examine the statistical significance of

individual regression coefficients. So, the terminology “significance”, which is

used in the empirical sections of chapters 2 and 3, indicates whether or not a

95% HPD interval includes zero.

8



1.1.2 Markov Chain Monte Carlo simulation methods

Nowadays, Monte Carlo simulation methods based on Markov chains for sam-

pling from high dimensional nonstandard probability distributions are very pop-

ular in statistics and econometrics. The idea behind the MCMC methods is

rather simple; in order to sample draws (which are correlated) from the distri-

bution of interest (target distribution), we construct a suitable Markov chain

which is then simulated many times. This Markov chain has the property

that its invariant distribution is the target distribution. This subsection de-

scribes Markov chains that can be constructed by the Gibbs sampler and the

Metropolis-Hasting algorithm.

The Gibbs sampler

The Gibbs sampling algorithm (see for example Chib (2001)) is an MCMC

method that helps simulate intractable joint distributions by breaking them

down to lower dimensional distributions which are generally easy to sample

from.

Suppose that p(θ|y) has an unknown distribution. We can still sample

from it by employing the Gibbs sampler which samples from the conditional

distribution of each parameter θp, p = 1, ..., k, in θ, given y and all the other

parameters of θ, denoted by θ\p = (θ1, ..., θp−1, θp+1, ..., θk); that is, from (the

full conditional distribution) p(θp|θ\p,y). During this process, the most updated

values for the conditioning parameters are used. The Gibbs sampler works as

follows:

1) Define an arbitrary starting value θ(0) = (θ
(0)
1 , ..., θ

(0)
k ) and set i=0.

2) Given θ(i) = (θ
(i)
1 , ..., θ

(i)
k ),

9



generate θ
(i+1)
1 from p(θ1|θ(i)

\1 ,y)

generate θ
(i+1)
2 from p(θ2|θ(i)

\2 ,y)

generate θ
(i+1)
3 from p(θ3|θ(i)

\3 ,y)

...

generate θ
(i+1)
k from p(θk|θ(i)

\k ,y)

where θ
(i)
\p = (θ

(i+1)
1 , ..., θ

(i+1)
p−1 , θ

(i)
p+1, ..., θ

(i)
k ), for p = 1, ..., k.

3) Set i = i+ 1 and go to step 2.

Having obtained these draws, one can, then, conduct posterior inference.

The Metropolis-Hasting algorithm

In some problems, even the full conditional distributions in the Gibbs sampler

are nonstandard. The Metropolis-Hasting (M-H) algorithm (see for example

Chib and Greenberg (1995)) is another MCMC method which is designed to

sample from distributions that do not have closed forms.

The logic behind the M-H method is to generate a proposal value from

a proposal density (or candidate generating density) and then accept or reject

this value according to a probability of move.

To be more specific, suppose that the posterior p(θ|y) from which we

want to generate a simulated sample, is broken down into the Gibbs condi-

tionals p(θp|θ\p,y), p = 1, ..., k which are unknown distributions. In this case,

the M-H algorithm can be used1. The sampling scheme of the M-H method is

summarized as follows:

1) Initialize θ(0) and set i = 0.

1To be more specific, this is a Metropolis-within-Gibbs sampler.
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2) Given θ(i) = (θ
(i)
1 , ..., θ

(i)
k ) (the current state of the chain), generate a candi-

date value θ∗p, based on θ
(i)
p , by using the proposal density q(θ

(i)
p , θ∗p). The value

θ∗p is accepted as a current value (θ
(i+1)
p = θ∗p) with probability

α(θ
(i)
p , θ∗p) = min

(
p(θ∗p |θ

(i)
\p ,y)×q(θ∗p ,θ

(i)
p )

p(θ
(i)
p |θ

(i)
\p ,y)×q(θ(i)p ,θ∗p)

, 1

)
.

Otherwise, set θ
(i+1)
p = θp

(i). Repeat for p = 1, ..., k.

3) Set i = i+ 1 and go to step 2.

The normalizing constant of the target density is not required to be

known since it is canceled out in the construction of the acceptance probability.

Furthermore, there are many ways to choose the proposal density q(θ
(i)
p , θ∗p).

In the following chapters, we apply the so-called independence M-H algorithm

(Hastings, 1970) according to which the proposed value θ∗p is independent of the

current value θ
(i)
p , that is, q(θ

(i)
p , θ∗p) = q2(θ∗p).

1.1.3 Bayesian nonparametrics

Parametric models are models with a finite number of parameters. Nonparamet-

ric models are models whose parameter space has infinite dimension. Bayesian

models with infinitely many parameters offer a great deal of flexibility and over-

come the standard weakness of Bayesian methods due to the usual parametric

assumptions.

Suppose that we observe some data yi ∼ G, i = 1, ..., N , which are inde-

pendent draws from a distribution G. A Bayesian parametric approach places

a prior over G that belongs to some parametric family. If we lack parametric

knowledge of G we should choose a prior for G with wide support, typically the

support being the collection of distributions on the real line. One such prior is

the Dirichlet process prior.
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Before presenting the statistical properties of the Dirichlet process, I give

the definition of the Dirichlet distribution.

Definition: Dirichlet distribution

Let Z be an n-dimensional continuous random variable Z = (Z1, ..., Zn) such

that Z1, Z2, ..., Zn > 0 and
∑n

i=1 Zi = 1. The random variable Z will fol-

low the Dirichlet distribution, denoted by Dir(α1, ..., αn), with parameters

α1, ..., αn > 0, if its density is

fZ(z1, z2, ..., zn) =
Γ(α1 + ...+ αn)

Γ(α1)Γ(α2)...Γ(αn)

n∏
i=1

zαi−1
i , z1, z2, ..., zn > 0,

n∑
i=1

zi = 1

where Γ is the gamma function. The beta distribution is the Dirichlet distribu-

tion with n=2.

The Dirichlet distribution is a conjugate prior for the probability vector,

say p, of the multinomial distribution, Mult(p). The Dirichlet process is the

infinite-dimensional generalization of the Dirichlet distribution.

1.1.4 The Dirichlet Process

The Dirichlet process (DP) was introduced by Ferguson (1973) and it is widely

used as a prior for random probability measures in Bayesian nonparametrics

literature.

Consider a probability space Ω and a finite measurable partition of it

{B1, ..., Bl}. A random probability distribution G is said to follow a Dirichlet

process with parameters a and G0 if the random vector (G(B1), ..., (G(Bl)) is

finite-dimensional Dirichlet distributed for all possible partitions; that is, if

(G(B1), ..., G(Bl)) ∼ Dir(aG0(B1), ...., aG0(Bl))

12



where G(Bk) and G0(Bk) for k = 1, ..., l are the probabilities of the partition Bk

under G and G0 respectively. The distribution Dir is the Dirichlet distribution.

The Dirichlet Process prior is denoted as DP (a,G0) and we write G ∼

DP (a,G0). The distribution G0, which is a parametric distribution, is called

base distribution and it defines the “location” of the DP ; it can be also con-

sidered as our prior guess about G. The parameter a is called concentration

parameter and it is a positive scalar quantity. It determines the strength of our

prior belief regarding the stochastic deviation of G from G0.

The reason for the success and popularity of the DP as a prior is its

theoretical properties. A basic property is the clustering property. To be more

specific, suppose that the sample (ϑ1, ϑ2..., ϑN) is simulated from G with G ∼

DP (a,G0). Blackwell and MacQueen (1973) proved that this sample can be

directly drawn from its marginal distribution. By integrating out G the joint

distribution of these draws is known and can be described by a Pólya-urn process

p(ϑ1, ..., ϑN) =
N∏
i=1

p(ϑi|ϑ1, ..., ϑi−1)

=

∫ N∏
i=1

p(ϑi|ϑ1, ..., ϑi−1, G)p(G|ϑ1, ..., ϑi−1)dG

= G0(ϑ1)
N∏
i=2

{
a

a+i−1
G0(ϑi) + 1

a+i−1

∑i−1
j=1 δϑj(ϑi)

}
(1.1.4.1)

where δϑj(ϑi) represents a unit point mass at ϑi = ϑj.

The intuition behind (1.1.4.1) is rather simple. The first draw ϑ1 is

always sampled from the base measure G0. Each next draw ϑi conditional on

the previous values is either a fresh value from G0 with probability a/(a+ i−1)

or is assigned to an existing value ϑj, j = 1, ..., i−1 with probability 1/(a+i−1).

13



According to (1.1.4.1) the concentration parameter a determines the

number of clusters in (ϑ1, ..., ϑN). For larger values of a, the realizations G

are closer to G0; the probability that ϑi is one of the existing values is very

small. For smaller values of a the probability mass of G is concentrated on

a few atoms; in this case, we see few unique values in (ϑ1, ..., ϑN), and the

realization of G resembles a finite mixture model.

Figure 1.1 displays how relationship (1.1.4.1) works. For low values of the

precision parameter (a = 10), each of the 50 plotted samples of 2000 samples

of ϑ fluctuates widely around their baseline distribution (G0 = N(0, 1)). As a

increases (a = 100) the plots become smoother and tend to be more centred

around G0.

Due to the clustering property of the DP there will be ties in the sample.

At this point we must make clear that we assume that G0 is a continuous

distribution. In this way, all the ties in the sample are caused only by the

clustering behaviour of the DP (and not on having matching draws from G0, as

would be the case if it was discrete). As a result, the N draws will reduce with

non-zero probability to M unique values (clusters), (ϑ∗1, ..., ϑ
∗
M), 1 ≤M ≤ N .

By using the ϑ∗’s, the conditional distribution of ϑi given ϑ1, ..., ϑi−1

becomes

ϑi|ϑ1, ..., ϑi−1, G0 ∼ a
a+i−1

G0(ϑi)+
1

a+i−1

∑M(i)

m=1 n
(i)
m δϑ∗(i)m

(ϑi) (1.1.4.2)

where (ϑ
∗(i)
1 , ..., ϑ

∗(i)
M(i)) are the distinct values in (ϑ1, ϑ2..., ϑi−1). The term n

(i)
m

represents the number of already drawn values ϑl, l < i that are associated

with the cluster ϑ
∗(i)
m ,m = 1, ...,M (i) where M (i) is the number of clusters in

(ϑ1, ϑ2..., ϑi−1) and
∑M(i)

m=1 n
(i)
m = i − 1. The probability that ϑi is assigned to

one of the existing clusters ϑ
∗(i)
m is equal to n

(i)
m /(a+ i− 1).
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Furthermore, expressions (1.1.4.1) and (1.1.4.2) show the exhangeability

of the draws: the conditional distribution of ϑi has the same form for any i2.

As a result, one can easily sample from a DP using this representation which

forms the basis for the posterior computation of DP models.

Various techniques have been developed to fit models that use DP. One

such method is the Pólya-urn Gibbs sampling which is based on the updated

version of the Pólya-urn scheme (1.1.4.1) or (1.1.4.2); see Escobar and West

(1995) and MacEachern and Müller (1998). These methods are called marginal

methods, since the DP is integrated out. In this way, we do not need to generate

samples directly from the infinite dimensional G.

A mathematically equivalent expression to the Pólya-urn process is the

so-called Chinese Restaurant Process (CRP); see Pitman (1995). It is generated

by assigning observations to clusters according to some latent indicator variables

ψi with probabilities

P (ψi = m|ψ1, ..., ψi−1) =


n
(i)
m

a+i−1
if m = 1, ...,M (i)

a
a+i−1

if m = M (i) + 1
(1.1.4.3)

The CRP is based on a simple metaphor. Imagine a restaurant with

countably infinite many tables. Each table represents a cluster (ϑ∗) and the

number of the customers sitting at a table represents the size of this cluster.

Also, the seating capacity of each table is unlimited. Suppose that these tables

are labelled with some numbers m = 1, 2, ... such that if ψi = m, ϑi = ϑ∗m; In

2Because of the exchangeability of the sample (ϑ1, ..., ϑN ), the value ϑi, i = 1, ..., N can

be treated as the last value ϑN so that the prior conditional of ϑi given θ(i) is given by

ϑi|θ(i), G0 ∼ a
a+N−1G0(ϑi) + 1

a+N−1
∑M(i)

m=1 n
(i)
m δ

ϑ
∗(i)
m

(ϑi)

where θ(i) denotes the vector of the random parameters ϑ of all the individuals with
ϑi removed, that is θ(i) = (ϑ1, ..., ϑi−1, ϑi+1, ..., ϑN )′. This general Pólya-urn representation
will be used in the posterior analysis of the next chapters.
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other words, customer i sits at table m. Customers arrive sequentially. The first

customer sits at the first table. The i-th customer will sit at an already occupied

table m = 1, 2, ...M (i), with probability proportional to n
(i)
m , the number of

customers sitting at table m, where n
(i)
m =

∑i−1
j=1 1(ψj = m) ; otherwise the i-th

customer will sit at an unoccupied table with probability proportional to a. In

this way, the partition of the observations takes place. The cluster assignments

are also exchangeable; the joint probability p(ψ1, ..., ψN) does not change with

a change in the ordering of the data points.

The simulation of the ϑ’s under the CRP has the following structure:

Initially, set ψ1 = 1 and ϑ1 = ϑ∗1, where ϑ∗1 ∼ G0. For each i > 1, define M (i)

to be the number of already formulated clusters. Then, draw the membership

variables from the probabilities given in (1.1.4.3). Conditional on ψ1, ..., ψi−1, if

ψi = m, set ϑi = ϑ
∗(i)
m for m = 1, 2, ...M (i); otherwise, set ψi = m = M (i) +1 (the

total number of clusters increases by one), simulate ϑ∗m ∼ G0 and set ϑi = ϑ∗m.

Each drawG fromDP (a,G0) can be considered as an infinite dimensional

model. In particular, Sethuraman (1994) provided a constructive definition of

the DP, the so-called stick-breaking process (SBP) of the DP. The SBP is a

sampling scheme for the DP. He proved that if G ∼ DP (a,G0), it equivalently

holds that

G =
∑∞

h=1 πhδϑ∗∗h , ϑ
∗∗
h

iid∼ G0, (1.1.4.4)

πh = Vh

h−1∏
k=1

(1− Vk), Vh
iid∼ Beta(1, a)

where δϑ∗∗h is a degenerate distribution with all its mass at the atom ϑ∗∗h
3. The

atoms {ϑ∗∗h }
∞
h=1 are drawn from G0, while the sequence {Vh}∞h=1 forms a collec-

3Notationally, ϑ∗∗h represents the h-th of the atoms in the SBP and ϑ∗m represents the m-th
of the clusters in the sample of N individuals.

16



tion of iid beta distributed random variables. As can be seen from (1.1.4.4), G

is an infinite weighted average of point masses δϑ∗∗h .

The stick-breaking terminology arises because of the way of the construc-

tion of the random weights {πh}∞h=1: A unit length stick is broken infinitely many

times. The first piece broken off has length V1 and it is assigned to the atom

ϑ∗∗1 . Then, the proportion left to be allocated to the rest atoms is 1 − V1. A

proportion V2 of 1−V1 is broken off and is subsequently assigned to ϑ∗∗2 , leaving

a remainder (1−V1)(1−V2) and so on. In other words, the length of each piece

is equal to the weight π and is determined by the beta distribution and by the

value of the precision parameter.

Another important implication of (1.1.4.4) is the discreteness of the reali-

sations from the DP; the DP samples discrete distributionsG (with infinite num-

ber of atoms) with probability one. This discreteness creates ties in the sample

(ϑ1, ..., ϑN), a result which is verified by (1.1.4.1), (1.1.4.2) and (1.1.4.3). De-

pending on the magnitude of a the population distribution G can either mimic

the baseline distribution or a finite mixture model with few atoms.

In Figure 1.2, we illustrate the behaviour of the SBP by plotting two

random draws from DP (a,G0) where G0 = N(0, 1) for a = 2 and a = 15. In

order to draw the samples from this particular DP we draw values of Vh from

the beta distribution until the sum of probabilities is almost one. Then, we

sample the corresponding atoms from the base distribution.

Of 1000 atoms that were generated, almost all probability, for a = 2,

was allocated to the first 15 atoms while for a = 15 to the first 60 atoms (left

hand side of Figure 1.2). Thus, Figure 1.2 verifies the fact that as a increases,

it is expected smaller probability weights to be allocated to more atoms. The

evolution of the stick-breaking weights is also illustrated in the right hand side
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of Figure 1.2.

In cases of continuous data, and in order to overcome the discreteness

of the realizations of the DP, the use of mixtures of DPs has been proposed

(Lo, 1984). The idea is to assume that some continuous data ω1, ..., ωN follow a

distribution f(ωi|θi, λ), where (some of) the parameters (in this case, θi) follow

a distribution G ∼ DP ; that is,

ωi|θi, λ ∼ f(ωi|θi, λ), i = 1, .., N

θi ∼ G, λ ∼ π(λ)

G ∼ DP (a,G0).

This popular model is called the Dirichlet process mixture (DPM) model.

We denote by λ any additional parameters in the distribution of the data, if

present. These parameters are given a parametric prior π(λ).
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Figure 1.1: Fifty plotted samples of 2000 values of ϑ, each drawn from G using
the Pólya-urn process. We assume a standard normal baseline measure and two
different values of the precision parameter (a=10, a=100). The bold line is the
CDF of N(0,1).
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Figure 1.2: On the right hand side two samples from a DP prior are obtained
for two different values of the precision parameter (a=2, a=15). The centering
distribution is the N(0,1). The left hand side displays the evolution of the
masses.
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Chapter 2

State dependence and stickiness

of sovereign credit ratings:

Evidence from a panel of

countries 2000-2011

2.1 Introduction

On August 5, 2011 Standard and Poor’s (S&P) downgraded, for the first time in

history, the US debt from AAA to AA+. Two years later, on February 13, 2013

the United Kingdom lost its Aaa rating, which it had had since the 1970s, as

Moody’s downgraded the UK economy by one notch, to Aa1. Recently, on July

13, 2012 Italy’s government bond rating fell by two notches (from A3 to Baa2)

forcing the Italian Industry Minister Corrado Passera to declare that “ The

downgrade of Italy by ratings agency Moody’s is unjustified and misleading.”

Also, Fitch, on May 13, 2013 upgraded Greece to B- from “restricted default”
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CCC after three years (since 2010) of continuous downgrade.

The 2008 financial crisis swiftly evolved into a situation of global eco-

nomic turmoil, which had severe consequences for many countries within Eu-

rope. Greece is currently struggling not to default on its debt while several

other countries (Ireland, Portugal, Spain, Cyprus) have also resorted to auster-

ity measures in an attempt to address their fiscal problems.

The government of any country could potentially default on its public

debt. The three largest rating agencies, Moody’s, Standard & Poor’s and Fitch,

assign credit ratings to sovereigns using a gamut of quantitative and qualitative

variables. These ratings aim at signalling the level of sovereigns’ default risk

which depends on the payment capacity and willingness of the governments to

service their debt on time.

Nowadays, rating scores dominate international financial markets and

are of importance for both governments and international investors. Investors

seek favourable rated securities while the cost of external borrowing for national

governments, which are the largest bond issuers, depends on the rating of their

creditworthiness.

Although the risk ratings are available in the public domain, the rating

process is obscure and difficult to identify by the external observer. The reason

is that the weights attached to the quantified variables by the agencies are

unknown while the qualitative variables (i.e., socio-political factors) are subject

to the analysts’ discretionary judgement.

A large body of research has been developed to examine what drives the

formulation of sovereign ratings. The present chapter focuses on the literature

of sovereign credit ratings and analyses the following empirical question: could

time dependence in sovereign ratings (apparent persistence of current ratings
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on past ratings) arise due to agents’ previous rating decisions or country-related

unobserved components that are correlated over time or both?

The first case is referred to as “true state dependence” and it implies

that past sovereign rating choices of the agencies have a direct impact on their

current rating decisions. If previous ratings are significant predictors of the

current ratings (the validity of this claim will be examined in our analysis), then

two sovereigns which are currently identical will be upgraded (or downgraded)

in the current year with different probabilities depending on their ratings in

the previous year. This type of persistence is behavioural and constitutes one

potential linkage of intertemporal dependence.

The second case is known as “spurious state dependence” and it implies

that the source of rating persistence is entirely caused by latent heterogeneity;

that is, by sovereign-specific unobserved permanent effects. In this case, the

inertia in ratings is not influenced by the last period’s rating decisions of the

agencies. This type of persistence is intrinsic and if not properly accounted for,

can be mistaken for true state dependence.

We construct a nonlinear panel data model to address the issue of true

versus spurious state dependence. In particular, we use random effects to control

for latent differences in the characteristics of sovereigns (spurious dependence)

as well as lagged dummies for each rating category in the previous period to

accommodate dependence on past rating information (true state dependence).

Because of the ordinal nature of ratings, an ordered probit (OP) is considered to

be the most appropriate model choice. We name the resulting model a dynamic

panel ordered probit model with random effects1.

An inherent problem in our model is the endogeneity of the rating de-

1For the case of a dynamic Tobit model with random effects see Li and Zheng (2008).
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cisions in the initial period (initial conditions problem). That is to say, this

amounts to reasonably assuming that the first observed rating choices of the

agencies in the sample depend upon sovereign-related latent permanent factors.

The hypothesis of exogenous initial values tends to overestimate state persis-

tence (Fotouhi, 2005) and generally leads to biased and inconsistent estimates.

To avoid such complications we apply Wooldridge’s (2005) method that allows

for endogenous initial state variables as well as for possible correlation between

the latent heterogeneity and explanatory variables.

To ensure robustness of our results against possible misspecification of

the heterogeneity distribution, we assume a nonparametric structure. To this

end, we exploit a nonparametric prior, the Dirichlet process (DP) prior. DPs

(Ferguson, 1973) are a powerful tool for constructing priors for unknown distri-

butions and are widely used in modern Bayesian nonparametric modelling.

Our model formulation entails estimation difficulties due to the intractabil-

ity of the full likelihood function under the nonparametric assumption for the

latent heterogeneity. As such, we resort to MCMC techniques and develop an

efficient algorithm for the posterior estimation of all parameters of interest. The

algorithm delivers mostly closed form Gibbs conditionals in the posterior anal-

ysis, thus simplifying the inference procedure. As by-products of the sampler

output, we calculate the average partial effects and the predictive performance

of our model.

So far, no attempt has been made to disentangle, in a nonlinear set-

ting, the effect of past rating history from the effect of latent heterogeneity

on the probability distribution of current ratings. In this chapter, though, our

modelling strategy, which is new to the extant empirical literature on the deter-

minants of sovereign debt ratings, accounts for both latent heterogeneity effects
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(spurious dependence) and dynamic effects (state dependence) in an OP model

setting.

From an econometric point of view, researchers have applied two basic

models in the literature on the determinants of sovereign credit ratings: linear

regression models (Cantor and Packer, 1996; Celasun and Harms, 2011) and

ordered probit models (Bissoondoyal-Bheenick et al., 2006; Afonso et al., 2011).

Linear regression techniques constitute an inadequate approach as ratings are,

by nature, a qualitative discrete (ordinal) measure. Ordered probit models that

have been used in the literature, tend to control only for sovereign heterogene-

ity, thus failing to measure inertia via the inclusion of a firm’s previous rating

choices as a covariate. This can be a potential source of model misspecifica-

tion. It is also important to mention that the relevant literature assumes a

normal distribution for the latent heterogeneity term. However, a parametric

distributional assumption may not capture the full extend of the unobserved

heterogeneity, leading to the spurious conclusion that ratings exhibit true state

dependence. The Dirichlet process that we exploit in this chapter accounts for

this problem by allowing flexible structures for the heterogeneity distribution.

Existing models capture the dynamic behaviour of ratings through a

single one-period lagged rating variable. In the present work, though, we model

the dynamic feedback of sovereign credit ratings in a more flexible way; that is,

through lagged dummies that correspond to the rating categories in the previous

year.

Accounting for the two types of ratings’ persistence (true and spurious

state dependence), we also turn our empirical attention to the long-lasting de-

bate over the role of rating agencies in predicting and deepening macroeconomic

crises. Rating agencies should assign sovereign debt ratings unaffected by the
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business cycle in the sense that agencies should see “through the cycle” and

thus should not assign high ratings to a country enjoying macroeconomic pros-

perity if that performance is expected to expire. Similarly, agencies need not

downgrade a country as long as better times are anticipated.

However, several times in the past, rating agencies have been accused of

downgrading unduly sovereigns in bad times and upgrading them excessively in

good times, thus exacerbating the boom-bust cycle. For instance, Ferri et al.

(1999) concluded that rating agencies exacerbated the East Asian crisis of 1997

by downgrading too late and too much Indonesia, Korea, Malaysia and Thai-

land. In other words, ratings were procyclical. Ratings are defined as being

procyclical when rating agencies downgrade countries more than the macroe-

conomic fundamentals would justify during the crisis and create wrong expec-

tations by assigning higher than deserved ratings in the run up to the crisis.

Other studies (Mora, 2006), though, found that ratings were sticky in the Asian

crisis. With respect to the so-called PIGS countries (Portugal, Ireland, Greece,

Spain), Gärtner et al. (2011) supported that they have been excessively down-

graded during the European sovereign debt crisis.

The issue of procyclicality of ratings is of importance as countries whose

ratings covary with the business cycle can experience extreme volatility in the

cost of borrowing from financial markets, seeing the influx of international funds

to them to evaporate. The case of the European debt crisis has been inade-

quately investigated in that respect and in this chapter we attempt to fill this

gap.

Using data on foreign currency ratings from the largest rating agency,

Moody’s, for a panel of 62 countries covering the period 2000 to 2011, we exam-

ine, in the context of our proposed model, whether rating agencies’ behaviour
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was sticky or procyclical in the pre-crisis period (2000-2008) and at the time of

the crisis (2009-2011) of the Eurozone. For comparison purposes we report the

empirical results of our model and three alternative ordered probit models, two

of which have been used previously to analyse rating agencies’ decisions.

The structure of this chapter is organized as follows. In section 2.2 we

outline our econometric approach while in section 2.3 we describe our dataset.

Section 2.4 sets up our model. In section 2.5 we derive the posterior algorithm,

the efficiency of which is assessed by a simulation study and in section 2.6 we

carry out our empirical analysis and discuss the results. Section 2.7 concludes.

2.2 Modelling background

In the literature on the determinants of sovereign debt ratings, the research

papers differ in the credit rating data they use (cross-sectional/panel) and in

the modelling specification they apply [linear versus ordered probit models,

dynamic (lagged creditworthiness) versus static models and models with or

without latent heterogeneity].

We categorize the models in the corresponding literature according to

the following cases:

1) cross-sectional linear/ordered probit regression models (Cantor and

Packer, 1996; Bissoondoyal-Bheenick et al., 2006)

2) panel linear/ordered probit models without latent heterogeneity and

dynamics (Hu et al., 2002; Borio and Packer, 2004).

3) panel linear models with dynamics (one lagged value of ratings) and

without latent heterogeneity (Monfort and Mulder, 2000; Mulder and Perrelli,

2001).
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4) panel linear/ordered probit models with latent heterogeneity and with-

out dynamics (Depken et al., 2006; Afonso et al., 2011).

5) panel linear models with latent heterogeneity and dynamics (Eliasson,

2002; Celasun and Harms, 2011).

In this chapter, we extend this empirical literature by setting up a panel

ordered probit model that allows for state dependence and latent heterogeneity,

with the latter having a nonparametric structure.

To begin with, we introduce intertemporal dependence in the ordinal-

response variable in two ways, after controlling for independent covariates. The

first source of persistence stems from behavioural effects; past sovereign ratings

have an impact on the agencies’ current rating decisions directly. This situation

captures the notion of “true state dependence”. It is included in our regression

in the form of lagged dummies that represent the rating grades in the previous

period.

The second source of dependence is attributed to unobserved hetero-

geneity which is country specific and time-invariant. This type of dependence

is represented in the model through a random effect, denoted by ϕi in equation

(2.4.1), with i indexing cross-section units (sovereigns).

The assumption of zero correlation between unobserved heterogeneity

and the regressors is overly restrictive. The empirical literature on ratings pro-

vides ample evidence on this (Afonso et al., 2011; Celasun and Harms, 2011).

When there is such a correlation the estimators suffer from bias and incon-

sistency. Thus, following Mundlak (1978) we parameterize the random effects

specification to be a function of the mean (over time) of the time-varying ex-

ogenous covariates.

More importantly, in the presence of ϕi the inclusion of the previous state
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(dynamics of first order) requires some assumptions about the generation of the

initial rating yi1 for every country i. This is referred to as the initial values

problem. Generally, when the first available observation in the sample does

not coincide with the true start of the process and/or the errors are serially

correlated, then yi1 will be endogenous and correlated with ϕi. Both these

conditions hold in our empirical application as the rating process started prior

to the sampling period and the composite error term (ϕi + idiosyncratic random

shock) is autocorrelated due to the presence of ϕi. Even if we observe the entire

history of the ratings, the exogeneity assumption of yi1 would still be very

strong.

Addressing the initial conditions problem is important in order to avoid

misleading results (Fotouhi, 2005). To this end, we follow the method of

Wooldridge (2005) who considered the joint distribution of observations after

the initial period conditional on the initial value. This method requires defin-

ing the conditional distribution of the unobserved heterogeneity given the initial

value and means of exogenous covariates over time, in order to integrate out

the random effects. As a result, our random effects specification combines three

parts: Mundlak’s model (1981), the initial value of the ordinal outcome and an

error term.

As Wooldridge (2005) acknowledges, his method is sensitive to potentially

misspecified assumptions about the auxiliary random effects distribution. We

address this by letting the distribution of random effects be unspecified. In

that respect, we impose a nonparametric prior on it, the Dirichlet process (DP)

prior, to guarantee that the findings for ratings inertia are robust to various

forms of heterogeneity.
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2.3 Data description

Ratings on external debt incurred by governments (borrowers) are a driving

force in the international bond markets. To this end, in estimating our empir-

ical model, we exploit a data set of ratings on sovereigns’ financial obligations

denominated in foreign currency with maturity time over one year.

In particular, we use annual long term foreign currency sovereign credit

ratings, published by Moody’s at 31st of December of each year for a panel of 62

(developed and developing) countries2. Our rating database covers the period

2000 to 2011.

Moody’s assigns a country one of the 21 rating notations, with the lowest

being C and the highest being Aaa. Table 2.1 reports the rating levels that

Moody’s uses along with their corresponding interpretation. Of the 62 countries

rated by Moody’s, 36 countries remained above Ba1 (the speculative grade

threshold) throughout the period 2000-2011, while 12 countries were below the

Ba1 ceiling during the same time period. As expected, the majority of the

countries with ratings steadily above Ba1 were developed countries.

We transform the qualitative rating grades into numeric values in order

to conduct empirical regression analysis. Because of the ordinal ranking of

ratings, we choose 7 numeric categories of creditworthiness (Table 2.1) to avoid

having 21 dummies representing all the rating categories, in addition to several

macroeconomic explanatory variables, combined with a relatively small data

2The countries included in our sample are: Argentina, Australia, Austria, Belgium, Brazil,
Bulgaria, Canada, China, Colombia, Costa Rica, Cyprus, Czech Republic, Denmark, Do-
minican Republic, El Salvador, Fiji Islands, Finland, France, Germany, Greece, Honduras,
Hungary, Iceland, Indonesia, Ireland, Israel, Italy, Japan, Jordan, Korea, Latvia, Lithua-
nia, Luxembourg, Malaysia, Malta, Mauritius, Mexico, Moldova, Morocco, Netherlands, New
Zealand, Norway, Pakistan, Panama, Paraguay, Peru, Philippines, Poland, Portugal, Roma-
nia, Russia, Saudi Arabia, Singapore, Slovenia, South Africa, Spain, Sweden, Switzerland,
Thailand, Tunisia, United Kingdom, Venezuela.

30



set. Furthermore, with this transformation of ratings we avoid having rating

categories that were assigned very few observations. Therefore, in our analysis

Caa ratings or below are assigned a value of “1”, B ratings a value of “2” and

so on up to Aaa ratings which are assigned a value of “7”. In this way, higher

values are associated with better ratings.

Table 2.2 shows the number of ratings by year and category. According

to Moody’s, 220 observations (out of 744 overall) reflect government bonds

with increasingly speculative characteristics (Ba and below), while there are

199 annual observations of the highest bond quality (Aaa). Note also that most

of the ratings fall in categories Baa and Aaa.

Drawing on previous studies (see section 2.2), a total of 6 variables, for

which there were no missing data, were used: GDP growth (GDPg), inflation

(Infl), unemployment (Un), current account balance (Cab), government balance

(Gb) and government debt (GD)3.

As the correlation matrix in Table 2.3 shows, inflation and unemployment

have the highest correlation with the rating variable (Ra) of Moody’s (−0.5008

and −0.3598 respectively). By contrast, government debt appears to have the

smallest correlation (0.0912) with the rating variable of Moody’s. Information

concerning the data sources is provided in Table 2.4.

The European crisis began to unfold in 2009. In total, there were 17

rating changes from Moody’s between January 2009 and December 2011. A

complete list of the rating history for the debt-stricken countries4 prior (2000-

3These covariates have been extensively used in previous studies (Cantor and Parker, 1996,
Eliasson, 2002, Afonso, 2003, Bissoondoyal-Bheenick et al., 2006, Afonso et al., 2011) and have
been found to be important determinants of ratings. Table 2.5 summarizes the findings from
a range of papers in terms of the types of covariates that have been used in past ordered
probit related studies, pointing towards the interest of researchers to identify what drives the
formulation of sovereign credit ratings in the context of discrete choice models.

4Portugal, Greece, Ireland and Spain; the so-called PIGS countries.
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2008) and during the European debt crisis (2009-2011) is provided in Table 2.6,

which breaks down the sovereign ratings by month/year, country and rating

agency (Moody’s).

As Table 2.6 reports, all the rating changes after 2008 were only down-

grades. First of all, there were very few downgrades late in 2009 (July-December).

In fact, in 2009 we had 2 downgrades for Ireland and Greece which were down-

graded by 1 notch.

During 2010, we had 6 downgrades where the PIGS countries found them-

selves in lower rating grades but in most of the cases they were still above the

speculative grade; only Greece was downgraded to Ba1 (a rating below the

speculative grade) in June 2010. The peak of downgrades was reached in 2011

during which Portugal, Ireland and Greece were downgraded from the invest-

ment grade to the speculative grade. Furthermore, during the period 31st of

December-July 2011, Portugal was downgraded by 9 notches, Ireland by 10

notches, Greece by 15 notches and Spain by 2 notches.

2.4 Our econometric set up

Consider the latent continuous variable y∗it that has the following dynamic spec-

ification

y∗it = x ′itβ+r ′it−1γ+ϕi+ εit, i = 1, ..., N , t = 2, 3, ..., T (2.4.1)

where xit=(x1,it, .., xk,it)
′ is a vector of strictly exogenous covariates. The id-

iosyncratic error term εit is i.i.d normally distributed, εit ∼ N(0, σ2
ε ) and is

assumed to be uncorrelated with the design matrix5 time-constant random ef-

5At this point, we must make clear that the interpretation of true state dependence is
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fect ϕi.

The variable y∗it is a latent term. What we observe, though, is an ordinal

categorical response yit that takes on J values, yit ∈ {1, ..., J}. The variable yit

is connected to y∗it according to the following mapping mechanism

yit = j⇔ ζj−1 < y∗it ≤ ζj, 1 ≤ j ≤ J. (2.4.2)

In other words, the probability that an individual i at time t belongs

to category j equals the probability that y∗it lies between a particular interval

defined by two threshold parameters (cutpoints) ζj−1, ζj, 1 ≤ j ≤ J. So, y∗it

varies between unknown boundaries.

The term rit−1 is the state dependent variable that contains J − 1 dum-

mies r
(j)
it−1 = 1(yit−1 = j) indicating if individual i reports response j =

1, ..., J − 1 at time t− 1.

To guarantee positive signs for all the probabilities we require ζ0 < ζ1 <

· · · < ζJ−1 < ζJ . In addition, one can impose the identification restrictions

ζ0 = −∞, ζJ = +∞ and σ2
ε = 1. The latter is a scale constraint that fixes the

error variance to one, leading to the OP model. Furthermore, we set ζ1 = 0,

which is a location constraint as the cutpoints play the role of the intercept.

Albert and Chib (1993) generated the parameters ζ’s conditional on the

latent data. Yet, subsequent studies have shown that this sampling scheme

produces a high autocorrelation in the Gibbs draws for the cutpoints, slowing

the mixing of the chain.

conditional on the choice of variables included in xit. Our data set consists of 6 macroeconomic
variables (see section 2.3). As we mentioned in footnote 3, several other explanatory variables
have been found to be valid determinants of ratings in previous studies but these variables
were not included in our model. So, the empirical results for the coefficient vector γ can be
biased due to the omission of other relevant variables. It is also worth mentioning that we
used 2 additional variables (political stability and regulatory quality) for robustness check
but the results did not change.
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Cowles (1996) developed a more efficient method. In particular, he sam-

pled the cutpoints and the latent data in one block by first updating the cut-

points marginalized over the latent variable, using a Metropolis-Hastings step

and then updating the latent variable given the cutpoints and the rest of the

parameters. Nandram and Chen (1996), in turn, parametrized the model and

improved upon Cowles method by generating the (parametrized) cutpoints not

one at a time, as Cowles (1996) did, but jointly.

According to Chen and Dey (2000), though, the Dirichlet proposal dis-

tribution used by Nandram and Chen (1996) within a Metropolis-Hastings step

does not work well when the cell counts are unbalanced. Thus, Chen and Dey

(2000) proposed another more general way to facilitate the simulation of ζ’s.

Their approach is based on transforming the threshold points as follows

ζ∗j = log
(
ζj−ζj−1

1−ζj

)
, j = 2, .., J − 2.

where ζ∗(2,J−2)= (ζ∗2 , ..., ζ
∗
J−2)′. This parametrization removes the ordering con-

straint in the cutpoints allowing for normal priors to be placed upon them.

Moreover, their approach suggests an alternative way to identify the scale of

the latent variable. Instead of setting σ2
ε = 1, Chen and Dey left σ2

ε unrestricted

setting ζJ−1 = 1 in addition to having ζ0 = −∞, ζ1 = 0, ζJ = +∞. Throughout

the chapter we apply this scale constraint.

In order to account for the initial conditions problem, as well as possible

correlation between ϕi and the regressors xit, we parameterize, as mentioned in

section 2.2, ϕi according to Wooldridge’s approach (2005). In particular, the

model for the latent heterogeneity is defined as follows:

ϕi = r ′i1h1+x ′i h2+ui. (2.4.3)
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Hence, ϕi is a function of 1) xi , the within-individual average of the

time-varying covariates (Mundlack’s specification), 2) ri1, a set of indicators

that describe all the possible choices of the initial time period6 (t = 1) and

3) an error term, ui. Furthermore, the term ui is assumed to be uncorrelated

with the covariates and the initial values. It is also worth noting that if xit

contains time-constant regressors, these regressors should be excluded from xi

for identification reasons.

We also assume independent priors over the set of parameters (δ,h1,h2, ζ(2,J−2),σ
2
ε )

where δ = (β′,γ ′)′ and ζ(2,J−2)= (ζ2, ..., ζJ−2)′. Thus, we suppose that the prior

information for these parameters is given by the following set of distributions

h1∼ NJ−1( h̃1, H̃1), h2∼ N( h̃2, H̃2), σ−2
ε ∼G( e1

2
, f1

2
)

where G is the gamma density. For the restricted cutpoints we assume a normal

prior, that is, ζ∗(2,J−2) ∼ N(µζ∗ ,Σζ∗) and for the parameter vector δ we assume

a uniform prior distribution with very large bounds, that is, δ ∼ U(−g, g),

where g = 10000.

In the frequentist literature ui is considered to follow a parametric distri-

bution, usually a N(0, σ2
u). However, the model is sensitive to misspecification

regarding the distributional assumptions of ui. In our hierarchical setting we

let ui have a semiparametric structure which is based on the Dirichlet Process

(DP).

In particular, we assume that the error term ui has the following DPM

model

ui|ϑi ∼ N(µi, σ
2
i ), ϑi = (µi, σ

2
i ), i = 1..., N

ϑi
iid∼ G

6We remind that ri1 will contain J-1 dummies, similar to rit−1, to avoid the dummy
variable trap.
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G|a,G0 ∼ DP (a,G0) (2.4.4)

G0 = N(µi;µ0, τ0σ
2
i )IG(σ2

i ;
e0
2
, f0

2
)

a ∼ G(c, d).

According to the above DPM model, the ui are conditionally independent

and Gaussian distributed with means µi and variances σ2
i . The ϑi = (µi,σ

2
i ) are

drawn from some unknown prior random distribution G. To characterize the

uncertainty about G we use a Dirichlet process prior, i.e., G is sampled from

DP (a,G0).

For the purposes of this study, the precision parameter a is sampled from

the prior gamma distribution G(c, d) that has mean c/d and variance c/d2. The

baseline prior distribution G0 is specified as a conjugate normal-inverse gamma,

G0 = N(µi;µ0, τ0σ
2
i )IG(σ2

i ;
e0
2
, f0

2
), where the inverse gamma density for σ2

i has

mean (f0
2

)/( e0
2
− 1) for e0

2
> 1 and variance (f0

2
)2/[( e0

2
− 1)2( e0

2
− 2)] for e0

2
> 2.

The marginal distribution f(ui) is a infinite mixture model. The mixture

model arises from the convolution of the Gaussian kernel with the mixing dis-

tribution G which, in turn, is modelled nonparametrically with a flexible DP. In

this way, expression (2.4.4) produces a large class of error distributions allowing

for skewness and multimodality.

2.5 Posterior analysis

2.5.1 The algorithm

In this subsection we present a simulation methodology for sampling from the

proposed model of section 2.4.

Our algorithm contains two parts. Part I updates the latent variables
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ϕi, y
∗
it and the parameters h1,h2, σ

2
ε , ζ

∗
(2,J−2), δ. Given the updated values

of φi, h1 and h2, the parameters ui are deterministically updated. Part II

updates the precision parameter a, the discrete values θ∗i = (µ∗i , σ
∗2
i ) in {ϑi}

and the allocation parameters ψi of the θi to these clusters, ψi = m⇔ θi = θ∗m.

The computational details of this section are given in Appendix A. The

code was written in MATLAB.

The likelihood function for an individual i is given by

Li = p(yi2, ..., yiT |r ′i1, δ, {x′it}t>1, ϕi, σ
2
ε , {ζj}J−2

j=2 ) =

T∏
t=2

J∏
j=1

P (yit = j|r ′it−1, δ,x
′
it, ϕi, σ

2
ε , ζj−1, ζj)

1(yit=j)

where P (yit = j|r ′it−1, δ,x
′
it, ϕi, σ

2
ε , ζj−1, ζj) = P (ζj−1 < y ∗it ≤ ζj)

=Φ(
ζj−w ′

itδ−ϕi
σε

)−Φ(
ζj−1−w ′

itδ−ϕi
σε

).

T is the number of time periods, J is the number of ordinal choices (cate-

gories) and 1(yit = j) is an indicator function that equals one if yit = j and zero

otherwise. The function Φ is the standard Gaussian cdf while w′it = (x′it, r
′
it−1).

Define also, y∗ = {y∗it}i≥1,t>1 and y∗
i = {y∗it}t>1.

PART I

Posterior sampling of {ϕi}

The random effects ϕi, i = 1, ..., N are generated from

ϕi|{y∗it }t>1, {w′it}t>1, ϑi,h1,h2, σ
2
ε , δ ∼ N(D0d0, D0)

where D0 =
(

1
σ2
i

+ T−1
σ2
ε

)−1

, d0 =

T∑
t=2

(y∗it − w ′
itδ)

σ2
ε

+
r ′i1h1+x ′i h2+µi

σ2
i

.
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Posterior sampling of h1,h2

Updating the parameter vector h1 requires sampling from

h1|{ϕi}, {ϑi},h2, h̃1, H̃1 ∼ N(D1d1, D1)

where D1 = (H̃1

−1
+

N∑
i=1

ri1r ′i1
σ2
i

)−1, d1 = (H̃1

−1
h̃1 +

N∑
i=1

ri1(ϕi−x ′i h2−µi)
σ2
i

)

and updating h2 requires sampling from

h2|{ϕi}, {ϑi},h1, h̃2, H̃2 ∼ N(D2d2, D2)

where D2 = (H̃2

−1
+

N∑
i=1

xi x
′
i

σ2
i

)−1, d2 = (H̃2

−1
h̃2 +

N∑
i=1

xi (ϕi−r ′i1h1−µi)
σ2
i

).

Posterior sampling of δ, σ2
ε in one block

a) First, sample σ2
ε marginalized over δ from

σ−2
ε |e1, f1, {ϕi}, {w′it}i≥1,t>1, {y∗it }i≥1,t>1 ∼ G( e1

2
, f1

2
)

where e1 = e1 +N(T − 1)− k − J + 1, f1 = f1 +
N∑
i=1

T∑
t=2

(y ∗it −w ′
it δ̂ − ϕi)2

and δ̂ = (
N∑
i=1

T∑
t=2

witw
′
it)
−1 × [

N∑
i=1

T∑
t=2

wit(y
∗
it − ϕi)].

b) Second, sample δ from its full posterior distribution:

δ|σ2
ε ,{ϕi}, {w′it}i≥1,t>1, {y∗it }i≥1,t>1 ∼ N(δ̂, ( 1

σ2
ε

N∑
i=1

T∑
t=2

witw
′
it)
−1 ).

Posterior sampling of ζ∗(2,J−2) and y∗ in one block

a) Draw from the posterior kernel of the cutpoints ζ∗(2,J−2) marginally of the la-
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tent variable y∗it . This kernel has a nonstandard density, hence, we sample from

it by employing a proposal density (multivariate t density) which is evaluated

within a Metropolis-Hastings (M-H) step. We then calculate ζj, j = 2, .., J − 2

from ζj =
ζj−1+exp ζ∗j

1+exp ζ∗j
.

b) Draw the latent dependent variable y∗it , i = 1, ..., N, t = 2, ..., T from the

truncated normal

y∗it |yit = j,w′it, δ, ϕi, σ
2
ε ∼N(w ′

itδ + ϕi, σ
2
ε )1(ζj−1 < y∗it ≤ ζj).

Posterior sampling of ui

The error term ui is calculated from ui = ϕi − r ′i1h1 − x ′i h2, i = 1, ..., N.

PART II

Posterior sampling of {ψi} and {ϑ∗m}

The parameter ϑi of the latent error term ui is assumed to follow an unknown

distribution which is a random discrete realization drawn from a DP prior (see

section 2.4). The conditional prior distribution of ϑi given θ(i) and G0 is

ϑi|θ(i), G0 ∼ a
a+N−1

G0(ϑi)+
1

a+N−1

N∑
η=1,η 6=i

δϑη(ϑi). (2.5.1.1)

where θ(i) denotes the vector of the random parameters θ of all the individuals

with ϑi removed; that is, θ(i) = (ϑ1, ..., ϑi−1, ϑi+1, ..., ϑN)′.

Due to the discreteness of the DP some of the values ϑi of different

individuals will be equal. Let θ∗ = (ϑ∗1, ..., ϑ
∗
M)′, M ≤ N be the set of unique

values that corresponds to the complete vector θ = (ϑ1, ..., ϑN)′. Each ϑ∗m, m =

1, ...,M represents a cluster location. Furthermore, define ψ = (ψ1, . . . , ψN)′ to

be the latent indicator variables such that ψi = m when ϑi = ϑ∗m. The vector
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θ(i) will contain M (i) clusters, that is, θ∗(i) = (ϑ
∗(i)
1 , ..., ϑ

∗(i)
M(i))

′ where M (i) is the

number of unique values in θ(i). The number of elements in θ(i) that take the

distinct value ϑ
∗(i)
m will be n

(i)
m =

∑
j1(ψj = m, j 6= i), m = 1, ...,M (i).

The conditional posterior for ϑi is the updated version (Bayes’ rule) of

(2.5.1.1). Thus,

p
(
ϑi|θ(i), ui, G0

)
∝ p(ui|ϑi)p(ϑi|θ(i), G0).

After grouping together the individuals with the same distinct value, the

posterior takes the explicit form

p
(
ϑi|θ(i), ui, G0

)
∝ qi0p(ϑi|ui, µ0, τ0, e0, f0)+

M(i)∑
m=1

qimδϑ∗(i)m
(ϑi) (2.5.1.2)

where p(ϑi|ui, µ0, τ0, e0, f0) is the posterior density of ϑi under the prior G0.

Hence,

ϑi = (µi, σ
2
i )|ui, µ0, τ0, e0, f0 ∼ N(µi|µ0, τ0σ

2
i )IG(σ2

i | e02 ,
f0
2

)

where µ0 = µ0+τ0ui
1+τ0

, τ0 = τ0
1+τ0

,

e0 = e0 + 1, f0 = f0 + (ui−µ0)2

τ0+1
.

The weights qi0 and qim in (2.5.1.2) are defined respectively as

qi0 ∝ a
∫
f(ui|ϑi)dG0(ϑi) , qim ∝ n

(i)
m f(ui|ϑ∗(i)m ).

The constant of proportionality7 is the same for both expressions and is

such that qi0 +
∑M(i)

m=1 qim = 1. These weights are explained in Appendix A.

7The normalising constant is c = a
∫
f(ui|ϑi)dG0(ϑi) +

M(i)∑
m=1

n
(i)
m f(ui|ϑ∗(i)m ).
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In our proposed algorithm, we do not update the ϑi’s from the expres-

sion (2.5.1.2); instead, we simulate the discrete values θ∗i = (µ∗i , σ
∗2
i ) and the

allocation parameters ψi-knowing the ψ’s and θ∗’s is equivalent to knowing the

θ’s- in order to improve mixing (MacEachern, 1994).

We sample each ψi according to the probabilities

P (ψi = m|θ∗(i), ψ(i), n
(i)
m ) ∝

 qim if m = 1, ...,M (i)

qi0 if m = M (i)+1 (2.5.1.3)

where ψ(i) = ψ\{ψi}. The logic behind (2.5.1.3) is the following: ψi can take a

new value (M (i)+1) with posterior probability proportional to qi0. In this case,

set ϑi=ϑ
∗
M(i)+1

and sample ϑ∗
M(i)+1

from p(ϑi|ui, µ0, τ0, e0, f0); otherwise assign

ϑi to an existing cluster ϑ
∗(i)
m , m = 1, ...,M (i).

West et al. (1994) and MacEachern (1994) underlined a problem associ-

ated with the DPs. The discreteness of the DP reduces the mixing performance

of the produced Markov chain, making convergence to the posterior a slow

process; in other words, the set θ∗ rarely changes after many iterations. This

problem is rectified by resampling the ϑ∗m, m = 1, ...,M .

Let Fm = {i : ϑi = ϑ∗m} be the set of individuals sharing the parameter

ϑ∗m. Then, given the current location of the clusters, each ϑ∗m is sampled from

the baseline posterior as follows

ϑ∗m = (µ∗m, σ
∗2
m )|{ui }i∈Fm , µ0, τ0, e0, f0 ∼ N(µ∗m|µm, τmσ∗2m )IG(σ∗2m | em2 ,

fm
2

)

where µm =
µ0+τ0

∑
i∈Fm

ui

1+τ0nm
, τm = τ0

1+τ0nm
,

em = e0 + nm, fm = f0 +

nm( 1
nm

∑
i∈Fm

ui−µ0)2

1+τ0nm
+
∑
i∈Fm

(ui − 1
nm

∑
i∈Fm

ui)
2.
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Posterior sampling of a

Following Escobar and West (1995) we sample the concentration parameter a

using a data augmentation scheme: sample ξ from ξ|a,N∼ Beta(a+1, N) where

ξ is a latent variable. Then, sample a from a mixture of two gammas; that is,

a|ξ, c, d,M∼ πξG(c+M,d− log(ξ))+

(1− πξ)G(c+M − 1, d− log(ξ))

with the mixture weight πξ satisfying πξ/(1− πξ) = (c+M − 1)/N(d− log(ξ)).

2.5.2 Predictive power and average partial effects

One can use the posterior sample to test the predictive performance of the

model. Let y={yit : i = 1, . . . , N, t = 1, . . . , T} be the vector of available data.

Suppose that we use the values ys={yit : i = 1, . . . , N, t = s, . . . , T}, s > 1,

to assess the predictive power of our model, given the data y−s={yit : i =

1, . . . , N, t = 1, . . . , s − 1}. Of course, ys is not used in deriving the posterior

distributions of the parameters in the model. Define also ws = {wit : i =

1, . . . , N, t = s, . . . , T}.

The predictive power of a model is defined as

1
N×(T−s+1)

∑N
i=1

∑T
t=s p(yit|y−s,ws)

where the out-of-sample predictive posterior density

p(yit|y−s,ws) =
∫
p(yit|y−s,ws , δ, ϕi, σ

2
ε , ζj−1, ζj)×

dp(δ, ϕi, σ
2
ε , ζj−1, ζj|y−s,ws) (2.5.2.1)

is evaluated at the observed yit.

Quantity (2.5.2.1) can be directly estimated within the MCMC code from
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p̂(yit|y−s,ws)= 1
M

∑M
m=1p(yit|y−s,ws,δ(m), ϕ

(m)
i , σ

2(m)
ε , ζ

(m)
j−1, ζ

(m)
j )

where δ(m), ϕ
(m)
i , σ

2(m)
ε , ζ

(m)
j−1 and ζ

(m)
j are posterior draws, obtained from the

sampler and M is the number of iterations after the burn-in period.

Model comparison could also be performed using the Deviance informa-

tion criterior (DIC) proposed by Spiegelhalter et al. (2002) and cross-validation

methods 8.

The DIC method compares models based on both how well they fit the

data and on the model complexity, as measured by the effective number of

parameters. The DIC is based on the deviance which is defined as -2 times

the log-likelihood function, that is, D(Θ) = −2 log f(y|Θ) where Θ denotes

the vector of all parameters in the model. Model complexity is measured by

the effective number of model parameters and is defined as pD = D(Θ)−D(Θ)

where D(Θ) = −2EΘ[log f(y|Θ)|y] is the posterior mean deviance and D(Θ) =

−2 log f(y|Θ) where log f(y|Θ) is the log-likelihood evaluated at Θ, the pos-

terior mean of Θ. The DIC is defined as DIC = D(Θ) + pD = 2D(Θ)−D(Θ).

The smaller the DIC, the better the model fit. Therefore, a model with smaller

DIC is preferred. Using MCMC samples of the parameters, Θ(1), ...,Θ(M), the

expression D(Θ) can be estimated by −2
∑M

m=1 log f(y|Θ(m))/M where Θ(m)

is the value of Θ at iteration m = 1, ...,M .

The deviance for our model is

D(Θ) = −2 log f(y|Θ)

= −2
N∑
i=1

T∑
t=2

log

[
Φ(
ζj −w ′

itδ − ϕi
σε

)− Φ(
ζj−1 −w ′

itδ − ϕi
σε

)

]
.

8Kottas et al. (2005) applied the cross-validation comparison method in modelling, semi-
parametrically, multivariate ordinal data. See also Gu et al. (2009).
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Regarding the cross-validation method, we could have used the leave-

one-out cross-validation, in which each observation yit is in turn left out of

the sample, and the average of the posterior probabilities f(yit|y−it), where

y−it = y \ {yit}, is calculated. Based on this criterion, the larger this average of

these probabilities, the better the model.

In order to apply the cross-validation method, for each model we need

to calculate the conditional likelihoods f(yit|y−it), i = 1, 2, . . . , N, t = 2, . . . , T ,

where y−it = y \ {yit}. In order to calculate f(yit|y−it), we apply the method of

Gelfand and Dey (1994) and Gelfand (1996). More specifically,

f̂(yit|y−it) =

(
1

M

M∑
m=1

(
f(yit|y−it,Θ(m))

)−1

)−1

,

where M is the number of posterior samples and Θ(m) denotes the vector of all

parameters in the model at the m-th posterior sample.

Then, the average over all observations

1

NT

N∑
i=1

T∑
t=2

f̂(yit|y−it)

is calculated for each model. Obviously, the higher the value of this average,

the better the model fits the data.

For the case of the model described above,

f(yit|y−it,Θ(m)) = P (yit = j|y−it,Θ(m))

= P (ζ
(m)
j−1 < y

∗(m)
it ≤ ζ

(m)
j )

= Φ(
ζ

(m)
j −w ′

itδ
(m) − ϕ(m)

i

σ
(m)
ε

)− Φ(
ζ

(m)
j−1 −w ′

itδ
(m) − ϕ(m)

i

σ
(m)
ε

)
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In nonlinear models, the direct interpretation of the coefficients may be

ambiguous. In this case, partial effects can be obtained, as a by-product of

our sampler, to estimate the effect of a covariate change on the probability of

y equalling an ordered value. In particular, we calculate the partial effects at

every observation and then average these individual partial effects.

Assuming that xk,it is a continuous regressor (without interaction terms

involved), we define the partial effect (pe) of xk,it on the probability of yit being

equal to j, after marginalizing out all the unknown parameters, as

E(pekitj|w,y) =
∫ (∂P (yit=j|wit,δ,ϕi,σ

2
ε ,ζj−1,ζj)

∂xk,it

)
dp(δ, ϕi, σ

2
ε , ζj−1, ζj|w,y)

where

∂P (yit=j|wit,δ,ϕi,σ
2
ε ,ζj−1,ζj)

∂xk,it
=
(
φ(

ζj−1−w ′
itδ−ϕi

σε
)− φ(

ζj−w ′
itδ−ϕi
σε

)
)
βk
σε
, (2.5.2.2)

and φ denotes the standard normal density. Notice that the expectation is

taken with respect to (δ, ϕi, σ
2
ε , ζj−1, ζj), from their posterior distributions.

The average partial effect is

1
N×T

∑N
i=1

∑T
t=1E(pekitj|w,y). (2.5.2.3)

Using draws from the MCMC chain, expression (2.5.2.3) is estimated by

taking the average of (2.5.2.2) over all i = 1, ..., N , t = 1, ..., T and over all

iterations.

If xk,it is discrete, the partial effect of a change of xk,it from zero to one

on the probability of yit being equal to j is equal to the difference between the

probability that yit = j when xk,it = 1 and the probability that yit = j when

xk,it = 0; namely,

∆j(xk,it) =
[
Φ(

ζj−(w ′
itδ−xk,itβk)−βk−ϕi

σε
)− Φ(

ζj−1−(w ′
itδ−xk,itβk)−βk−ϕi

σε
)
]
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−
[
Φ(

ζj−(w ′
itδ−xk,itβk)−ϕi

σε
)− Φ(

ζj−1−(w ′
itδ−xk,itβk)−ϕi
σε

)
]
.

2.5.3 A simulation study

To evaluate the performance of the proposed algorithm we conduct some sim-

ulation experiments. Specifically, we set N = 63, T = 14, J = 7, k = 1.

The true parameter values are defined as follows9

β = 3,γ = (4, 2, 2, 1,−5, 5), h1 = (3, 4, 7,−1, 5,−4),

h2 = −3, σ2
ε = 0.2, ζ2 = 0.2, ζ3 = 0.4, ζ4 = 0.6, ζ5 = 0.9.

Each xit is generated independently from a normal N(3, 1). We also

assume the following prior distributions

σ−2
ε ∼ G(4.2/2, 6.5/2), h1 ∼ N(0, I6×6), h2 ∼ N(0, 0.8)

µi ∼ N(0, 0.4× σ2
i ), σ

2
i ∼ IG(4.2/2, 0.5/2)

where I6×6 is a 6× 6 identity matrix.

We examine 2 cases:

1) The error term ui is generated from a normal N(0, 1).

2) The error term ui is generated from a mixture of a gamma and a normal,

ui ∼ 0.5G(1, 2) + 0.5N(−3, 0.5).

We saved 240000 draws after discarding the first 60000 samples, while

the acceptance rate was set around 75% for the independence M-H step for the

cutpoints.

9It is worth mentioning that we also used noninformative priors and the accuracy of
the simulation results was fine. Furthermore, in our simulation study we also tried as (more
sensible) alternative true parameter values, those values we found in our empirical application.
Even in this case, the simulation results were still satisfactory.
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Table 2.7 reports the simulation results of our semiparametric model

and a fully parametric dynamic panel random effects OP model, in which the

error distribution of ui is normal N(µu, σ
2
u) with priors µu ∼ N(0, 0.8) and

σ2
u ∼ IG(4.2/2, 0.5/2).

For case 1, both the semiparametric and the fully parametric models

produce quite accurate results, given the small sample size. For case 2, the fully

parametric model has significant bias of some of the parameters (γ1, γ5, h11,

h12, h13, h15, h2). Additionally, we notice that the standard deviations for the

parameters of the vector h1 are larger for the fully parametric model compared

to those for the semiparametric model. Given the small sample size (N =

63), the semiparametric model performs well overall, producing more accurate

results than the parametric model, especially when the normality assumption

of the disturbance terms ui does not hold.

We also calculated the true average partial effects for xit for both models

for cases 1 (Table 2.8) and 2 (Table 2.9). The posterior means of the average

partial effects are close to their true values for both models. The semiparametric

model, though, leads to smaller standard errors in case 1 and to slightly smaller

biases in both cases.

Furthermore, we quantified the predictive ability of the two competing

models for both cases. In particular, we used an additional two time series

observations for each of the 63 series of y’s, using the same data generating

process. Under normality assumption (case 1) the parametric model has better

predictive ability (0.5578) than the semiparametric one (0.5397). However, this

is not the case when we assume a non-normal distribution for the random effects:

for case 2, the semiparametric model produces a larger predictive power (0.4928)

compared to the parametric one (0.4704). Leaving out more observations for
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assessing the predictability of the two models, we noticed that both models have

similar predictive performance in case 1, while in case 2 the semiparametric

model has still larger predictive power than the parametric one.

2.6 Empirical results

2.6.1 Determinants of sovereign ratings

Table 2.10 reports the regression results for Moody’s. We present the results

using our proposed model (model 4), which is a semiparametric dynamic panel

ordered probit model with random effects, and for comparison purposes the

results from three alternative ordered probit models. The first model (model

1) is a simple parametric ordered probit model where we assume that εit ∼

N(µε, σ
2
ε ) with µε ∼ N(0, 0.8) and σ2

ε ∼ IG(4.2/2, 0.5/2)10. The second model

(model 2), which is also fully parametric, considers latent heterogeneity but

ignores dynamics, taking also into account possible correlations between the

random effect and the covariates. So, the random effects are modelled according

to Mundlak’s specification; that is, ϕi = x ′i + ui where ui ∼ N(µu, σ
2
u) with

priors µu ∼ N(0, 0.8) and σ2
u ∼ IG(4.2/2, 0.5/2)11. The third model (model 3)

is the same as our proposed model, but instead of using lagged dummies for

each rating score, we use a single one-period lagged ordinal dependent variable.

Therefore, model 3 is a less flexible model specification than model 4 as it

assumes that the effect of the state variable is the same at all rating grades.

According to model 1, which has the smallest predictive power (0.2518),

all the explanatory variables but the government debt are significant12. The

10Due to this prior, we do not need to include an intercept in model 1.
11Due to this prior, we do not need to include an intercept in model 2.
12We remind that the terminology “significant”, which is used throughout section 2.6,
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government debt variable, though, is an important factor of ratings’ formulation

in the other specifications.

The inclusion of random effects in model 2 improves its predictability

(0.3928) over model 1. The highly significant latent differences in the charac-

teristics of sovereigns highlight a high degree of persistence in ratings’ determi-

nation that can not be explained by the covariates. GDP growth and current

account balance are insignificant predictors, whereas the other short-run vari-

ables are significant. With respect to the long-run covariates, only the mean

GDP growth, mean inflation and mean current account balance are valid deter-

minants of rating grades. Some researchers interpret the effects of these mean

variables as ”long-run effects”. Yet, one has to be cautious as it is not possible

to disentangle the long run effect on ratings from the correlation between the

mean variables and the random effects.

Model 3, which incorporates dynamics and Wooldridge’s specification,

has better predictive performance (0.6166) than model 2, and has significant

coefficient estimates for all the short-run covariates. In model 3, from the set

of the mean variables, only the mean unemployment (which is insignificant in

model 2) is found to have an effect on ratings.

Both models 3 and 4 deliver the same results in terms of the significance

of the short-run and long-run covariates. We also re-estimated model 4 without

the mean variables (model 4a) and without the initial ratings (model 4b). All

the short-run macroeconomic variables (in models 4a and 4b) remain significant

and have the same sign as in models 3 and 4; see Table 2.10. Furthermore,

mean inflation and mean GDP growth are statistically significant in model 4b,

whereas these two covariates are insignificant in models 3 and 4. The out-of-

indicates whether or not a 95% HPD interval contains zero; see also section 1.1.1.
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sample predictive power of model 4a is larger than that of model 3 and 4, while

model 4b has the largest predictive ability of all models of Table 2.1013.

Figure 2.1 plots the estimated posterior error density of ui obtained from

model 4. There is evidence of non-normality in the data, a fact that rewards

the usage of our semiparametric approach.

2.6.2 Evidence of state dependence

The source of ratings’ persistence in model 2, captured by the random effects,

may be misleading as it could arise due to the true state dependence. To

identify whether persistence is due to the spurious state dependence or true

state dependence or both, we turn our attention to models 3 and 4 in which

the state dependent variable is included as an additional covariate; model 3

uses the rating category a country is allocated to in the previous period while

model 4 incorporates lagged dummies for each of the possible rating categories

a country is assigned to in the previous period.

In model 3, the lagged rating variable measuring the true state depen-

dence effect is statistically significant after controlling for unobserved hetero-

geneity. The positive sign (0.121), which is small in magnitude14, implies that a

sovereign that has experienced a downgrade (upgrade) in the current period is

less likely to have experienced an upgrade (downgrade) in the previous period.

13The fully parametric version of model 4 produced similar results to these of model 4. In
this parametric model, the error term of Wooldridge’s (2005) auxiliary regression is assumed
to have a normal distribution.

14In the context of a dynamic error-correction model, Monfort and Mulder (2000) and
Mulder and Perrelli (2001) concluded that ratings tend to be persistent over time as the
coefficient on the last year’s rating category was close to one. Celasun and Harms (2011),
who set up a dynamic linear model with random effects, found that the coefficient on the
lagged creditworthiness varies between 0.35 and 0.65. Their findings were based on a sample
of 65 developing countries covering the period 1980-2005. Eliasson (2001), using a similar
model for 38 countries and data spanning the years 1990-1999, obtained a coefficient close to
one.
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In nonlinear models, though, the direct interpretation of the estimated parame-

ters may be ambiguous. Since we are more interested in the effects of the state

variable on the probability of the agencies’ rating choices, we have calculated

its average partial effects in Table 2.11 (column 1).

According to column 1 of Table 2.11, the size of the average partial effects

for the lagged rating variable is small across all rating categories. The sign of

these effects is negative for the first four rating categories (≤ Caa, B,Ba, Baa)

and becomes positive and increasing in magnitude as we climb from the fifth

category (A) towards the highest one (Aaa). Therefore, previous ratings have a

positive effect on the probability of Moody’s opting for A, Aa and Aaa (in the

current period) and a negative effect on the probability of Moody’s assigning

Baa as well as ratings below the speculative grade (in the current period).

Furthermore, given the previous rating, Moody’s has a higher probability of

choosing Aaa than Aa or A and Aa than A. Similarly, given the previous

rating, it is more probable for Moody’s to choose in the current period Ba than

Baa. Also, the decrease in probability is larger for the first rating group than

for the second one, which entails that Moody’s is more likely to assign a country

B than ≤ Caa in the current period.

We also examined four variations15 of model 3 in order to check how

the results on the lagged dependent variable, the main variable of interest in

model 3, change. First, we dropped the mean variables and re-estimated the

model (model 3a). Second, we estimated model 3 in a fully parametric context

with and without the mean variables (models 3b1 and 3b2 respectively16), with

the error term of Wooldridge’s specification following a Gaussian distribution.

15These regression results are not shown.
16For models 3b1 and 3b2 we assume that ui ∼ N(µu, σ

2
u) with priors µu ∼ N(0, 0.8) and

σ2
u ∼ IG(4.2/2, 0.5/2). Due to this prior, we do not need to include an intercept.
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Third, we ignored latent heterogeneity and controlled only for dynamics (model

3c17).

The coefficient of the lagged creditworthiness is still positive and signifi-

cant in all versions of model 3; 0.132, 0.122, 0.133 and 0.203 in models 3a, 3b1,

3b2 and 3c respectively. Treating the initial observation as exogenous, as model

3c does, tends to overestimate the true state dependence, a result which is in

line with the relevant econometric theory (Fotouhi, 2005). Table 2.11 reports

the average partial effects of the lagged rating, obtained from the four variants

of model 3 (columns 2, 3, 4 and 5). The pattern (sign and size) of these effects

is similar to that of column 1, with the magnitude of the average partial effects

(in absolute value) being the largest in model 3c, which ignores latent hetero-

geneity. Therefore, the conclusions of model 3 regarding the behaviour of the

state dependence are robust to its alternative specifications.

In addition, the results for model 3 (Table 2.10) indicate that the rating

decisions are strongly conditioned on the initial ratings, as the coefficient on

the Ratings1(single) variable is significant and positively correlated (0.080) with

the random effects φi. The coefficient of the initial period observations in the

alternative models 3a (0.081), 3b1 (0.808) and 3b2 (0.083) is of the same sign

and still significant. Hence, the assumption of exogenous initial conditions of

model 3c is rejected18

17For model 3c we assume that εit ∼ N(µε, σ
2
ε ) with µε ∼ N(0, 0.8) and σ2

ε ∼
IG(4.2/2, 0.5/2). Due to this prior, we do not need to include an intercept.

18We tested this hypothesis by constructing the 95% HPD interval for the coefficient of
the Ratings1(single) variable for each of the models 3a, 3b1 and 3b2 and found that zero
was not included in that interval. Hypothesis testing could also be conducted using posterior
odds. To give an intuition, suppose that for a single regression coefficient β we want to test
the null hypothesis H0 : β = 0 against the alternative hypothesis H1 : β 6= 0. If p(H0)
and P (H1) are the prior probabilities on H0 and H1 respectively, their respective posterior
probabilities, after observing some data y are p(H0|y) and p(H1|y). The posterior odds are
p(H0|y)
p(H1|y) = p(H0)

p(H1)
× p(y|H0)

p(y|H1)
. So, the posterior odds are equal to the prior odds p(H0)

p(H1)
multiplied

by the ratio of marginal likelihoods (also known as Bayes factors) p(y|H0)
p(y|H1)

. By default, if
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Model 3 assumes that the effect of the state variable is the same at all

rating grades. To have a more detailed picture of the behaviour of the state

dependence by rating classification, we replace the single one-period lagged

rating variable with dummies indicating if Moody’s reported a response j=1,...,7

in the previous period. This provides a more flexible model set-up. The fourth

rating category (Baa) is used as a baseline rating in models 4, 4a and 4b of

Table 2.10.

All the previous time period rating variables (lagged dummies) in the last

three columns of Table 2.10 are highly significant. Therefore, past ratings are

important determinants of the current ratings and can predict rating changes

over time. The first three lagged dummies have negative sign, whereas the last

three lagged dummies exhibit a positive effect. A negative coefficient means

that a country with this rating in the previous period is expected to have a

rating lower than Baa in the current period. Specifically, countries with Ba

ratings or below in the previous period are expected to have ratings below Baa

and countries with ratings A, Aa or Aaa in the previous period are predicted to

have rating above Baa. Furthermore, the effect of the lagged dummies increases

as we climb towards the Aaa rating. This implies that countries that have been

assigned a higher rating in the previous period have a higher probability of

being assigned a rating above Baa in the current period.

The average partial effects of the lagged dummies for model 4 are pre-

sented in Table 2.12 (columns 2-6). According to this table, Moody’s tends to

choose the same rating over time, albeit this tendency is weak. For instance,

Moody’s probability of staying in Aa (the sixth rating category) increases by

p(H0|y) > p(H1|y), H0 is accepted. The Deviance Information Criterion (DIC) proposed by
Spiegelhalter et al., (2002) is also another alternative method which can be used for Bayesian
hypothesis testing.
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14.26% if its previous rating choice was also Aa. This increase is the largest;

that is, the probability of Moody’s choosing Aa in the current period if it has

already chosen any other rating group in the previous period increases always

by less than 14.26% or even decreases. Similar analysis holds for the rest of the

rating choices. Also, state dependence appears to be the strongest for the Aaa

rating (0.4200) and the least strong for the A rating (0.1062). In Table 2.12,

from the set of average partial effects corresponding to the pairs (APE(yt = i),

Rai(t−1) ) for i = 1, 2, 3, 5, 6, 7, the (positive) average partial effects decrease

monotonically as we move from the first rating group to the third one, attain

their minimum value at the fifth rating category and then increase monoton-

ically again as we climb towards the highest rating choice. These results are

robust to models 4a (Table 2.13, columns 2-6) and 4b (Table 2.14). We also ob-

serve that the average partial effects corresponding to the pairs (APE(yt = i),

Rai(t−1) ) for i = 1, 2, 3, 5, 6, 7 increase in size as we move from model 4 to model

4a and then to model 4b, which has the highest predictability.

There is also indication of having the initial values problem, as the set

of initial rating choices contains at least one significant dummy; in model 4

the dummies Ratings1(6) and Ratings6(7) are both significant, while in model

4a only Ratings1(6) is significant. The effect of the initial rating is similar to

that of the lagged rating. For instance, with respect to model 4, if Moody’s

has chosen Aa or Aaa initially, its probability of choosing the same score in

later periods increases by 8.22% and 51.5% respectively (Table 2.12, last two

columns). Similar analysis holds for model 4a (Table 2.13, last column).

The fully parametric version of model 419 suggests that there are per-

sistent rating choices not only due to previous rating decisions but also due

19Results not shown.
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to (statistically significant) unobserved heterogeneity. Thus, the Wooldridge

model provides evidence that there is both latent heterogeneity and state de-

pendence.

Based on the findings of models 4, 4a and 4b, that control for both ran-

dom effects and dynamics, we conclude that current choices are weakly affected

by previous rating choices. Furthermore, the lagged ratings dominate initial

rating decisions: when controlling for dynamics, most of the initial rating vari-

ables are insignificant, whereas when dropped the predictive power of the model

increases (4b has the highest predictability).

It is also worth noting that the inclusion of latent heterogeneity and

dynamics improves the predictability of the model. On the other hand, the

particular representation of true state dependence (lagged ratings or lagged

dummies representing the ratings) makes less difference (compare the out-of-

sample predictive performance of models 3 and 4).

2.6.3 Sticky or procyclical sovereign credit ratings?

Ratings exhibit procyclical behaviour if prior to the crisis the actual ratings

exceed the model-predicted ratings and during the crisis the assigned ratings

are lower than the predicted ratings. In this case, ratings agencies exacerbate

the boom-bust cycle.

To examine this issue, we used the models of Table 2.10 to calculate

what is the probability of generating ratings lower, equal and greater than the

actual ratings before (2000-2008) and during (2009-2011) the crisis. In practice,

this is equivalent to conducting in-sample predictive analysis. The results are

presented in Table 2.15.

According to model 1, which has the smallest predictability, it is more
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probable (by 41.13%) to have predicted ratings higher than the assigned rat-

ings than have predicted rating lower than the actual ratings (with probability

34.82%) in the run up to the crisis. Therefore, prior to crisis the actual rat-

ings did not increase as much as the fundamentals of the economy would justify.

During the crisis, the probability of observing predicted ratings below the actual

ratings (46.65%) is greater than the probability of observing predicted ratings

above the actual ratings (24.02%). In other words, Moody’s did not down-

graded excessively the countries in the period 2009-2011. Therefore, based on

the findings of model 1, there is evidence of stickiness.

The rest of the models also support the absence of ratings’ procyclicality

throughout the period in question; in the run up to the crisis as well as during

the crisis, there is an almost equal probability of observing predicted ratings

below and above actual ratings.

In particular, according to model 2, during 2000-2008, predicted ratings

mostly matched actual ratings (compare the probability of 16.51% with that of

16.52%). During the period 2009- 2011, the probability of observing predicted

ratings greater than actual ratings (12.78%) is only marginally higher than the

probability of observing predicted ratings greater than actual ratings (14.58%).

Also, the probabilities P (y < yobs) and P (y > yobs) are approximately equal to

12% before the crisis in models 3,4, 4a and 4b and approximately equal to 11%

during the crisis in models 3,4, 4a and 4b.

2.7 Conclusion

This chapter proposes a dynamic panel ordered probit model with random ef-

fects in order to analyse what drives the formulation of sovereign credit ratings.
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Our model includes previous rating choices as explanatory variables to control

for true state dependence, which is one possible explanation for the observed

persistence in ratings. Our proposed specification also incorporates a sovereign-

specific time-invariant random term to capture spurious state dependence, the

second potential source of ratings inertia. To avoid producing spurious conclu-

sions about the role of state dependence in the determination of sovereign risk

ratings we impose a nonparametric prior, the Dirichlet process prior, on the

auxiliary random effects distribution.

Due to the intractability and the curse of dimensionality of the likelihood

function of our semiparametric model we resort to advanced simulation tools.

Therefore, a Markov chain Monte Carlo sampler is developed, the efficiency

of which is verified via a simulation study. Additional simulation exercises

demonstrate the superiority of the semiparametric model against that of a fully

parametric random effects dynamic ordered probit model, in terms of estimation

accuracy and predictive performance.

In our empirical study, we find evidence of true state dependence, as a

determinant in the process of ratings’ formulation, after taking into account a

number of covariates. The same result holds even after controlling for unob-

served components which are statistically significant. However, current rating

decisions are weakly affected by previous rating choices.

We also examined whether ratings were sticky or procyclical before and

during the Eurozone crisis. Our analysis supports the existence of stickiness in

the behaviour of ratings.
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Table 2.1: Rating classifications of sovereigns’ debt obligations

Description (Moody’s) Moody’s Numerical transformation

Investment grade

Highest likelihood of sovereign Aaa 7
debt-servicing capacity

Very high likelihood of sovereign Aa1 6
debt-servicing capacity Aa2 6

Aa3 6

High likelihood of sovereign A1 5
debt-servicing capacity A2 5

A3 5

Moderate likelihood of sovereign Baa1 4
debt-servicing capacity Baa2 4

Baa3 4

Speculative grade

Substantial credit risk Ba1 3
Ba2 3
Ba3 3

High credit risk B1 2
B2 2
B3 2

Very high credit risk Caa1 1
Caa2 1
Caa3 1

Default is imminent Ca 1
(not necessarily inevitable)

Default C 1

Notes: For a more detailed description see Moody’s (2011).
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Table 2.2: Frequency of ratings by year and category
Year ≤ Caa B Ba Baa A Aa Aaa Total
2000 1 11 9 12 7 11 11 62
2001 3 7 11 12 7 10 12 62
2002 2 8 10 9 10 5 18 62
2003 4 5 10 9 11 5 18 62
2004 3 6 10 8 12 4 19 62
2005 2 7 10 7 13 4 19 62
2006 2 7 8 9 13 4 19 62
2007 2 6 9 9 13 4 19 62
2008 1 7 9 10 12 5 18 62
2009 1 7 9 12 10 7 16 62
2010 1 7 8 14 8 9 15 62
2011 1 8 8 16 10 4 15 62
Total 23 86 111 127 126 72 199 744

Table 2.3: Correlation matrix
GDPg Infl Un Cab Gb GD Ra (Moody’s)

GDPg 1

Infl 0.0785 1

Un -0.0571 0.1462 1

Cab 0.0078 -0.0794 -0.1449 1

Gb 0.2941 -0.0155 -0.2282 0.4383 1

GD -0.2426 -0.1836 0.0441 0.0942 -0.2877 1

Ra (Moody’s) -0.1900 -0.5008 -0.3598 0.2318 0.1982 0.0912 1
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Table 2.5: Some previous OP-related studies on ratings’ determination

Authors Data Covariates20

Cross-sectional data, 3, 16, 23, 24, 25, 26, 27, 28, 29
Mellios 86 countries,

and Paget-Blanc (2006) Time period: 2003,
Moody’s, S&P, Fitch

Unbalanced panel data, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
Afonso et al., (2011) 58-66 countries, 13, 14, 15

Time period: 1995-2005,
Moody’s, S&P, Fitch

Cross sectional data, 1, 3, 16, 17, 18, 19, 20, 21, 22
Butler 86 countries,

and Fauver (2006) Time period: 2004,
Institutional Investor, Moody’s, S&P

Cross sectional data, 0, 3, 5, 34, 42, 43, 44
Bissoondoyal- 77-94 countries,

Bheenick et al.,(2006) Time period:2001
Moody’s, S&P, Fitch

panel data, 1, 3, 4, 5, 9, 23, 45, 46
Bissoondoyal- 95 countries,

Bheenick (2005) Time period: 1995-1999,
Moody’s, S&P

Unbalanced panel data, 1, 2, 3, 4, 5, 7, 16, 28, 30, 34, 35,
Depken et al. (2007) 40-57 countries, 36, 37, 38, 39, 40, 41

Time period: 1995-2003,
S&P

panel data,, 3, 10, 30, 31, 32, 33
Hu et al., (2002) 71 countries,

Time period: 1981-1998,
S&P

17These variables are related to the determination of long term foreign currency
ratings:0 =GDP, 1 =GDP per capita, 2 =GDP growth, 3 =inflation rate, 4=fiscal balance
(% of GDP), 5 =current account balance (% of GDP ), 6 =external debt-to-exports ratio,
7 =indicator for EU countries, 8=indicator for default history since 1980, 9 = government
debt (% of GDP), 10= reserves-to-imports ratio, 11=government effectiveness, 12=unem-
ployment, 13= ”years since last default”, 14=indicator for ”Latin America and Caribbean”,
15=indicator for ”industrial countries, 16= indicator for default (1975-2004), 17= indica-
tor for default (1995-2004), 18=underdevelopment index, 19=dummy for emerging markets,
20=legal environmental composite, 21=legal origin dummies, 22=foreign debt-to-GDP ratio,
23=Real exchange rates, 24=gross domestic savings (% of GDP), 25=External Debt (% of
Current External Receipts), 26= GNI (% of Power Purchase Parity), 27=trade dependency ,
28=corruption index, 29=government revenue (% of GDP), 30=indicator for “previous year
of default”, 31=Debt to GNP ratio, 32=debt service-to-exports ratio, 33=indicator for non-
industrial countries, 34=trade openness (sum of exports and imports as a share of GDP),
35=population, 36=ethnolinguistic fractionalization, 37=latitude, 38=democracy index, 39=
dummies for legal origin, 40=oil production (thousands of barrels per day), 41=dummies
for exchange rate regimes, 42=foreign direct investments-to-GDP ratio, 43=mobiles, 44=real
interest rates, 45=foreign reserves, 46=net exports-to-GDP ratio
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Table 2.6: Sovereign rating history of the PIGS countries prior and during the
European debt crisis

Portugal Ireland Greece Spain

Year Moody’s Moody’s Moody’s Moody’s

2000 (31 December) Aa2 Aaa A2 Aa2
2001 (31 December) Aa2 Aaa A2 Aaa (↑)
2002 (31 December) Aa2 Aaa A1 (↑) Aaa
2003 (31 December) Aa2 Aaa A1 Aaa
2004 (31 December) Aa2 Aaa A1 Aaa
2005 (31 December) Aa2 Aaa A1 Aaa
2006 (31 December) Aa2 Aaa A1 Aaa
2007 (31 December) Aa2 Aaa A1 Aaa
2008 (31 December) Aa2 Aaa A1 Aaa

2009 (July) Aa1 (↓)
2009 (December) A2 (↓)

2010 (April) A3 (↓)
2010 (June) Ba1 (↓)
2010 (July) A1 (↓) Aa2 (↓)

2010 (September) Aa1 (↓)
2010 (December) Baa1 (↓)

2011 (March) A3 (↓) B1 (↓) Aa2 (↓)
2011 (April) Baa1 (↓) Baa3 (↓)
2011 (June) Caa1(↓)
2011 (July) Ba2 (↓) Ba1 (↓) Ca (↓)

Source: www.moodys.com
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Table 2.7: Simulation results
Error distribution N(0, 1) Non-normal

Model Semiparametric Parametric Semiparametric Parametric

true values Mean Stdev Mean Stdev Mean Stdev Mean Stdev

β = 3 2.5440 0.2710 3.0447 0.3025 3.3712 0.3566 4.0811 0.4811

γ1 = 4 3.6359 0.4365 4.4156 0.4970 4.3129 0.4831 5.1220 0.6125

γ2 = 2 1.8219 0.3415 2.1073 0.3722 1.9576 0.4352 2.4176 0.5123

γ3 = 2 2.2148 0.3823 2.6512 0.4324 1.4943 0.6997 1.7716 0.8734

γ4 = 1 0.7910 0.4145 1.0838 0.4564 0.3565 0.8173 0.2620 0.9971

γ5 = −5 -4.0538 0.4715 -4.8036 0.5224 -5.8501 0.8533 -6.9822 1.1073

γ6 = 5 4.5542 0.5906 5.4453 0.6612 4.5114 0.7444 5.8855 1.0114

h11 = 3 2.8961 0.5221 3.5448 0.8321 2.8849 0.5823 5.8939 2.5724

h12 = 4 3.3768 0.5504 3.9500 0.8529 4.4118 0.6637 6.1853 2.5859

h13 = 7 6.2125 0.7316 6.4411 1.0621 7.9120 1.0927 9.4741 2.7328

h14 = −1 -1.0515 0.4594 -1.4501 0.7735 -1.4114 0.4722 -0.2154 2.4922

h15 = 5 4.1320 0.5530 4.4734 0.8733 5.6362 0.8410 6.6713 2.5815

h16 = −4 -4.0236 0.61733 -4.8004 0.9059 -4.1317 0.6454 -3.4849 2.5245

h2 = −3 -2.3853 0.3852 -2.6213 0.4074 -3.8753 0.5706 -6.1756 0.9851

σ2
ε = 0.2 0.1631 0.0491 0.1751 0.0523 0.2753 0.0804 0.3291 0.1021

ζ2 = 0.2 0.1578 0.0461 0.1531 0.0451 0.2174 0.0508 0.2006 0.05423

ζ3 = 0.4 0.4501 0.0613 0.4424 0.0620 0.3513 0.0647 0.3345 0.0620

ζ4 = 0.6 0.6312 0.0577 0.6285 0.0586 0.4812 0.0661 0.4727 0.06665

ζ5 = 0.9 0.9665 0.02283 0.9671 0.0222 0.8611 0.0406 0.8607 0.0409

Pred. power 0.5394 0.5572 0.4921 0.4701
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Table 2.8: Simulation results: Average partial effects

Error distribution Normal

Model semiparametric parametric

True av. partial effects Mean Stdev Mean Stdev

APEβ1(yt = 1) = −0.2166 -0.1971 0.4900 -0.2023 0.5432

APEβ1(yt = 2) = 0.0019 -0.0060 0.1175 -0.0008 0.1203

APEβ1(yt = 3) = 0.0068 -0.0063 0.2135 -0.0070 0.2244

APEβ1(yt = 4) = 0.0066 -0.0002 0.1348 0.0004 0.1428

APEβ1(yt = 5) = 0.0022 0.0056 0.2446 0.0120 0.2615

APEβ1(yt = 6) = −0.0029 0.0019 0.0239 0.0025 0.0215

APEβ1(yt = 7) = 0.2020 0.2012 0.4845 0.2122 0.5413

Table 2.9: Simulation results: Average partial effects

Error distribution Non-Normal

Model semiparametric parametric

True av. partial effects Mean Stdev Mean Stdev

APEβ1(yt = 1) = −0.2372 -0.2261 0.5319 -0.2368 0.5713

APEβ1(yt = 2) = 0.0027 0.0013 0.1310 0.0001 0.1141

APEβ1(yt = 3) = 0.0049 0.0016 0.0765 0.0016 0.0716

APEβ1(yt = 4) = 0.0060 0.0021 0.0769 0.0018 0.0734

APEβ1(yt = 5) = 0.0047 0.0060 0.2313 0.0109 0.2224

APEβ1(yt = 6) = 0.0018 0.0005 0.0875 0.0030 0.0829

APEβ1(yt = 7) = 0.2173 0.2126 0.4821 0.2165 0.5063
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Table 2.10: Ratings 1-7. Panel ordered probit models
model 1 model 2 model 3 model 4 model 4a model 4b

GDP growth -0.0231* 0.0008 0.0044* 0.0045* 0.0049* 0.0049*
(0.0035) (0.0014) (0.0014) (0.0014) (0.0015) (0.0015)

Inflation -0.0344* -0.0044* -0.0035* -0.0032* -0.0030* -0.0028*
(0.0024) (0.0011) (0.0012) (0.0012) (0.0012) (0.0013)

Unemployment -0.0222* -0.0192* -0.0115* -0.0113* -0.0090* -0.0101*
(0.0028) (0.0024) (0.0026) (0.0026) (0.0023) (0.0027)

Current account balance 0.0052* 0.0021 0.0028* 0.0030* 0.0027* 0.0032*
(0.0018) (0.0011) (0.0011) (0.0011) (0.0011) (0.0012)

Government Balance 0.01459* -0.0043* -0.0043* -0.0047* -0.0040* -0.0047*
(0.0033) (0.0016) (0.0016) (0.0017) (0.0016) (0.0017)

Government Debt -0.0002 -0.0033* -0.0027* -0.0027* -0.0023* -0.0024*
(0.0004) (0.0003) (0.0004) (0.0004) (0.0003) (0.0004)

single lagged rating 0.1214*
(0.0121)

Ratings1(t− 1) -0.3572* -0.3734* -0.3975*
(0.0510) (0.0517) (0.0514)

Ratings2(t− 1) -0.2724* -0.2838* -0.3076*
(0.0358) (0.0360) (0.0353)

Ratings3(t− 1) -0.1385* -0.1457* -0.1651*
(0.0279) (0.0279) (0.0272)

Ratings5(t− 1) 0.1172* 0.1275* 0.1361*
(0.0229) (0.0233) (0.0230)

Ratings6(t− 1) 0.2220* 0.2394* 0.2869*
(0.0362) (0.0391) (0.0358)

Ratings7(t− 1) 0.3962* 0.4155* 0.4960*
(0.0461) (0.0517) (0.0463)

mean GDP growth -0.1183* -0.0135 0.0008 -0.0287*
(0.0235) (0.0126) (0.0147) (0.0136)

mean inflation -0.0522* -0.0017 -0.0001 -0.0142*
(0.0099) (0.0065) (0.0085) (0.0059)

mean unemployment 0.0114 0.0121* 0.0149* 0.0100
(0.0095) (0.0055) (0.0060) (0.0056)

mean Current account balance 0.0186* 0.0024 0.0004 0.0038
(0.0077) (0.0043) (0.0049) (0.0044)

mean Government Balance 0.0043 0.0062 0.0080 0.0069
(0.0148) (0.0082) (0.0095) (0.0085)

mean Government Debt -0.0002 0.0014 0.0020 0.0016
(0.0015) (0.0009) (0.0010) (0.000)
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Table 2.10: Continued. Ratings 1-7. Panel ordered probit models
model 1 model 2 model 3 model 4 model 4a model 4b

Ratings1 (single) 0.0807*
(0.0234)

Ratings1(1) -0.1321 -0.1115
(0.2207) (0.2256)

Ratings2(1) -0.1399 -0.1171
(0.1024) (0.0639)

Ratings3(1) -0.0696 -0.0434
(0.0880) (0.0656)

Ratings5(1) 0.0995 0.0843
(0.0875) (0.0694)

Ratings6(1) 0.2161* 0.2352*
(0.0874) (0.0706)

Ratings7(1) 0.3919* 0.0609
(0.1222) (0.2156)

error variance of εit 0.0914* 0.0067* 0.0051* 0.0053* 0.0054* 0.0055*
(0.0071) (0.0005) (0.0004) (0.0004) (0.0004) (0.0005)

mean of εit 1.1961*
(0.0401)

cutpoint 1 0.3238* 0.2478* 0.2217* 0.2119* 0.2105* 0.2121*
(0.0244) (0.0203) (0.0185) (0.0188) (0.0191) (0.0190)

cutpoint 2 0.5343* 0.4548* 0.4426* 0.4352* 0.4340* 0.4352*
(0.0210) (0.0195) (0.0183) (0.0203) (0.0209) (0.0206)

cutpoint 3 0.7143* 0.6489* 0.6482* 0.6431* 0.6406* 0.6475*
(0.0171) (0.0177) (0.0174) (0.0196) (0.0199) (0.0195)

cutpoint 4 0.8881* 0.8425* 0.8514* 0.8455* 0.8439* 0.8482*
(0.0119) (0.0154) (0.0150) (0.0165) (0.0168) (0.0164)

mean of ui 1.6305*
(0.1455)

error variance of ui 0.0691*
(0.0151)

No of Obs 744 744 744 744 744 744
Pred. power 0.2518 0.3928 0.6166 0.5971 0.6335 0.6488

*Significant based on 95% HPD intervals; Standard errors in parentheses
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Table 2.11: Empirical results: Average partial effects for the lagged rating
model 3 model 3a model 3b1 model 3b2 model 3c

APE(yt = 1) -0.0328 -0.0355 -0.0319 -0.0364 -0.0408

(0.0031) (0.0035) (0.0028) (0.0025) (0.0022)

APE(yt = 2) -0.0405 -0.0411 -0.0408 -0.0411 -0.0421

(0.0035) (0.0038) (0.0034) (0.0033) (0.0027)

APE(yt = 3) -0.0169 -0.0178 -0.0167 -0.0175 -0.0300

(0.0017) (0.0014) (0.0006) (0.0009) (0.0012)

APE(yt = 4) -0.0123 -0.0145 -0.0113 -0.0143 -0.0173

(0.0011) (0.0015) (0.0008) (0.0007) (0.0019)

APE(yt = 5) 0.0150 0.0146 0.0154 0.0149 0.0159

(0.0019) (0.0021) (0.0020) (0.0008) (0.0018)

APE(yt = 6) 0.0242 0.0278 0.0281 0.0278 0.0320

(0.0011) (0.0016) (0.0014) (0.0012) (0.0022)

APE(yt = 7) 0.0632 0.0666 0.0573 0.0666 0.1114

(0.0041) (0.0045) (0.0043) (0.0042) (0.0019)

Table 2.12: Empirical results: Average partial effects (model 4)

Ra1(t−1) Ra2(t−1) Ra3(t−1) Ra5(t−1) Ra6(t−1) Ra7(t−1) Ra6(1) Ra7(1)

APE(yt = 1) 0.2134 0.0647 0.0560 -0.0248 -0.0350 -0.0393 -0.0333 -0.0443

(0.0134) (0.0201) (0.0106) (0.1980) (0.0162) (0.0193) (0.0123) (0.0144)

APE(yt = 2) 0.0670 0.1892 -0.0192 -0.0392 -0.0677 -0.0931 -0.0658 -0.0936

(0.0241) (0.0013) (0.0044) (0.0145) (0.0291) (0.0491) (0.0556) (0.0343)

APE(yt = 3) 0.0195 0.0122 0.1312 -0.0241 -0.0491 -0.1045 -0.0528 -0.1191

(0.0095) (0.0055) (0.0013) (0.0167) (0.0250) (0.0042) (0.0412) (0.0078)

APE(yt = 4) -0.0447 -0.0510 -0.0403 -0.0619 -0.0550 -0.0752 -0.0451 -0.1065

(0.0234) (0.0207) (0.0106) (0.0492) (0.0136) (0.0493) (0.0231) (0.0045)

APE(yt = 5) -0.0789 -0.0797 -0.0506 0.1062 -0.0257 -0.1106 -0.0427 -0.1099

(0.0645) (0.0208) (0.0204) (0.0011) (0.0180) (0.0041) (0.0038) (0.0013)

APE(yt = 6) -0.0220 -0.0103 -0.0164 -0.0059 0.1426 0.0027 0.0822 -0.0417

(0.0211) (0.0097) (0.0033) (0.0074) (0.0052) (0.0025) (0.0367) (0.0243)

APE(yt = 7) -0.1542 -0.1251 -0.0607 0.0497 0.0900 0.4200 0.1574 0.5151

(0.0031) (0.0017) (0.0406) (0.0298) (0.0450) (0.0115) (0.0013) (0.0078)
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Table 2.13: Empirical results: Average partial effects (model 4a)
Ra1(t−1) Ra2(t−1) Ra3(t−1) Ra5(t−1) Ra6(t−1) Ra7(t−1) Ra6(1)

APE(yt = 1) 0.2247 0.0681 0.0593 -0.0263 -0.0357 -0.0391 -0.0352

(0.0132) (0.0101) (0.0102) (0.1970) (0.0161) (0.0191) (0.0121)

APE(yt = 2) 0.0707 0.1957 -0.0230 -0.0416 -0.0708 -0.0953 -0.0716

(0.0240) (0.0012) (0.0041) (0.0121) (0.0256) (0.0490) (0.0543)

APE(yt = 3) 0.0183 0.0148 0.1413 -0.0272 -0.0526 -0.1089 -0.0570

(0.0093) (0.0051) (0.0011) (0.0161) (0.0234) (0.0041) (0.0409)

APE(yt = 4) -0.0506 -0.0577 -0.0446 -0.0687 -0.0621 -0.0856 -0.0514

(0.0232) (0.0202) (0.0103) (0.0434) (0.0131) (0.0471) (0.0222)

APE(yt = 5) -0.0633 -0.0759 -0.0529 0.1184 -0.0237 -0.1386 -0.0468

(0.0641) (0.0201) (0.0202) (0.0009) (0.0179) (0.0040) (0.0023)

APE(yt = 6) 0.0025 0.0112 -0.0107 -0.0079 0.1471 -0.0224 0.0878

(0.0210) (0.0095) (0.0031) (0.0071) (0.0043) (0.0014) (0.0345)

APE(yt = 7) -0.2023 -0.1563 -0.0694 0.0533 0.0979 0.4899 0.1742

(0.0030) (0.0013) (0.0404) (0.0291) (0.0422) (0.0108) (0.0010)

Table 2.14: Empirical results: Average partial effects (model 4b)
Ra1(t−1) Ra2(t−1) Ra3(t−1) Ra5(t−1) Ra6(t−1) Ra7(t−1)

APE(yt = 1) 0.2426 0.0817 0.0682 -0.0277 -0.0377 -0.0397

(0.0112) (0.0099) (0.0100) (0.1943) (0.0160) (0.0189)

APE(yt = 2) 0.0717 0.2016 -0.0289 -0.0459 -0.0814 -0.0991

(0.0235) (0.0011) (0.0036) (0.0112) (0.0253) (0.0476)

APE(yt = 3) 0.0154 0.0228 0.1622 -0.0310 -0.0730 -0.1312

(0.0091) (0.0041) (0.0012) (0.0123) (0.0232) (0.0023)

APE(yt = 4) -0.0523 -0.0720 -0.0500 -0.0749 -0.0853 -0.1538

(0.0213) (0.0196) (0.0121) (0.0422) (0.0123) (0.0471)

APE(yt = 5) -0.0355 -0.0620 -0.0606 0.1316 -0.0189 -0.1886

(0.0636) (0.0193) (0.0223) (0.0014) (0.0171) (0.0022)

APE(yt = 6) 0.0037 0.0304 0.0030 -0.0109 0.1522 -0.0045

(0.0208) (0.0093) (0.0032) (0.0023) (0.0042) (0.0010)

APE(yt = 7) -0.2456 -0.2026 -0.0939 0.0588 0.1440 0.6169

(0.0023) (0.0011) (0.0403) (0.0290) (0.0410) (0.0109)
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Table 2.15: Empirical results: Ratings’ behaviour before and during the crisis
Before the crisis During the crisis

Model P (y < yobs) P (y = yobs) P (y > yobs) P (y < yobs) P (y = yobs) P (y > yobs)

Model 1 34.82% 24.05% 41.13% 46.65% 29.33% 24.02 %

Model 2 16.51% 66.97% 16.52% 14.58% 72.64% 12.78%

Model 3 11.93% 76.53% 11.54% 10.96% 78.24% 10.80%

Model 4 12.2% 76.01% 11.79% 11.15% 78.12% 10.73%

Model 4a 12.16% 76.13% 11.71% 11.2% 78.16% 10.64%

Model 4b 12.21% 75.87% 11.92% 11.34% 77.89% 10.77%
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Estimated error density

Figure 2.1: The estimated posterior error density of u obtained from our pro-
posed model for the empirical data.
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Chapter 3

Bayesian inference for

ordinal-response state space

mixed models with stochastic

volatility

3.1 Introduction

Time series data with ordinal responses are commonly analyzed in the context

of cumulative link models1 (Agresti, 2002) which are a powerful class of models

that describe the relationship between an ordinal-response variable and some

explanatory variables. Such ordinal regression models have been widely applied

to time series data in many research areas such as finance (Monokroussos, 2011),

medicine (Müller and Czado, 2005) and sports (Jacklin, 2005).

In modelling ordinal-valued time series data, the choice of the inverse link

1Cumulative link models are also known as generalized linear models with a cumulative
link function.
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function F (for the cumulative probabilities) is a critical issue as different choices

for F lead to different cumulative models. When F is the standard normal c.d.f,

the model is called the ordinal probit model, considered by Albert and Chib

(1993). From a Bayesian perspective, though, few studies have examined flexible

generalizations of ordered probit models. Exceptions include Chen and Dey

(2000), who considered a specific class of scale mixtures of normal distributions,

Kottas et al. (2005), who used an infinite mixture of Gaussians, exploiting the

DP prior and Ansari and Iyengar (2006) who assumed a scale mixture of the

normal distribution with the positive scale variable assigned a DP prior.

It is also well documented that ignoring conditional heteroscedasticity

in ordinal-response models leads to biased and inconsistent estimates (Yatchew

and Griliches, 1985). Therefore, it is important to allow for time-varying con-

ditional variances in these kind of models, especially when analyzing discrete

transaction prices (such as stock price changes) or discretely changing inter-

est rates (such as the bank prime rate and the Federal Reserve discount rate).

In the context of ordered probit models, researchers have accounted for het-

eroscedastic errors in various ways; Dueker (1999) assumed Markov-switching

heteroscedasticity, Müller and Czado (2009) considered a stochastic volatility

model while Yang and Parwada (2012) adopted a GARCH model. The first two

papers made use of Bayesian estimation methods.

Another issue related to cumulative models is the potential time-dependent

nature of the coefficients of the covariates. In many empirical applications it is

too restrictive to assume constant coefficients. One way to introduce parameter-

driven dynamics is by using a state space approach. State space models for or-

dered categorical data (Fahrmeir, 1992; Chaubert et al., 2008) serve this purpose

as they incorporate transition equations that model the stochastic evolution of
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parameters.

In this chapter, we integrate the divergent strands of the literatures on

ordered probit models, conditional heteroscedasticity, state space models and

Bayesian nonparametrics into a general framework.

To this end, we propose a new class of parametric state space models

with stochastic volatility2 for ordinal data where the measurement equation

involves both time-varying and deterministic coefficients and where the inverse

link function is a normal c.d.f. For parameter transitions, we assume a random

walk process. We name this parametric model ordinal-response state space

mixed model with stochastic volatility (OSSMM-SV model).

Furthermore, we deviate from the normality assumption and examine

a semiparametric variation of the OSSMM-SV (denoted as the S-OSSMM-SV

model) model, using the DP prior, to capture uncertainties with respect to the

error distribution of the latent dependent variable. The simulation study in

this chapter shows that misspecified parametric distributional assumptions can

severely bias some of the parameters of the OSSMM-SV model whereas the S-

OSSMM-SV model is able to deliver robust results which continues to perform

well compared to the OSSMM-SV model even when the error term does follow

a Gaussian distribution.

The two proposed models (OSSMM-SV and S-OSSMM-SV), which are

estimated with efficient MCMC algorithms, allow for both time-varying means

and variances. They also are quite flexible specifications in that they can easily

be reduced to other known models by making simple additional assumptions.

For instance, the S-OSSMM-SV model can easily be reduced to the semipara-

metric SV model with continuous (non-discrete) responses considered by Jensen

2For an extensive review of the SV model see Platanioti et al. (2005).
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and Maheu (2010). The time-varying parameter regression model with stochas-

tic volatility (TVP-SV model) could be regarded as another special case of the

OSSMM-SV model. Several empirical Bayesian applications have employed the

TVP-SV model to inflation forecasting (Stock and Watson, 2007), to exchange

rates (Sekine, 2006), to monetary policy activism (Sekine and Teranishi, 2008)

and to banking sector integration (Nakajima and Teranishi, 2009).

Furthermore, the proposed models encompass the ordinal-response stochas-

tic volatility model of Müller and Czado (2009) who considered Gaussian and

Student-t distributed errors while the MCMC updating schemes of this chap-

ter can be readily modified to handle other censoring mechanisms, such as the

Bayesian censored SV model of Hsieh and Yang (2009) who analyzed stock and

future return series censored by price limits.

It is also worth noting that binary state space mixed models with pro-

bit link have been considered by Czado and Song (2008) who carried out an

MCMC estimation. Abanto-Valle and Dey (2013) extended the model of Czado

and Song (2008) using certain scale mixtures of Gaussians for the inverse link

function and estimate their model with an efficient MCMC method.

We illustrate our proposed methods using daily stock returns in order to

examine what drives the occurrence of local, regional and global stock market

crashes, as defined by Markwat et al. (2009).

The chapter is structured as follows. In section 3.2 we set up the OSSMM-

SV model and the semiparametric version of it. In section 3.3 we design MCMC

algorithms for the proposed models and in section 3.4 we conduct simulation

experiments. In section 3.5 we carry out our empirical analysis. Section 3.6

concludes.
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3.2 Econometric set up

3.2.1 The parametric model

Consider the following latent time-varying parameter regression model with

stochastic volatility

y∗t = x′tβ + z′tαt + εt, εt ∼ N(µ, γ exp(ht)), t = 1, ..., T,

αt+1 = αt+ut, ut ∼ N(0,Σ), t = 1, ..., T, (3.2.1.1)

ht+1 = φht + ηt, |φ| < 1, ηt ∼ N(0, σ2
η), t = 1, ..., T.

The variable y∗t is unobservable. What we observe, though, is a time

series of ordinal responses {yt, t = 1, ..., T} where each yt takes on any one

of the J ordered values in the range 1, ..., J such that P (yt = j) = ptj for

j = 1, ..., J and
∑J

j=1 ptj = 1, t = 1, ..., T .

The latent variable y∗t and the observed variable yt are connected by

yt = j⇔ ζj−1 < y∗t ≤ ζj, 1 ≤ j ≤ J. (3.2.1.2)

The relationship (3.2.1.2) implies that yt is observed in category j if y∗t

lies in the interval demarcated by the cutpoints ζj−1 and ζj. In order to ensure

that the cumulative distribution function for yt is properly defined, we require

that ζj > ζj−1, ∀j, with ζ0 = −∞ and ζJ = +∞.

The first equation of model (3.2.1.1) contains two types of coefficients; the

constant coefficient vector, β, of dimension k× 1 and time-varying coefficients,

αt, of dimension p× 1. xt and zt are the design matrices which do not include

an intercept while ht is the stochastic volatility.
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The second equation of model (3.2.1.1) is a random walk process which

is initialized with α1 ∼ N(0,Σ1) where N(·, ·) denotes the normal distribution.

The initial state error variance Σ1 is assumed to be known.

We also assume that both the error terms εt and ηt are independent for all

t. The error term εt follows a normal distribution with mean µ and time-varying

variance σ2
t = γ exp(ht). The dynamics of the log volatility ht = log(σ2

t /γ) is

described by the third equation of model (3.2.1.1) and is a stationary -AR(1)-

stochastic process, (|φ| < 1), with unconditional mean 0 and variance σ2
η/(1−

φ2); the parameter φ is the persistence volatility that measures the degree of

autocorrelation in ht and ση is interpreted as the volatility of the log-volatility.

Also, the inclusion of the positive constant scaling factor γ > 0 avoids the need

to include an intercept in the model of stochastic volatilities.

The model, given by (3.2.1.1) and (3.2.1.2) is the ordinal-response state

space mixed model with stochastic volatility (OSSMM-SV model).

To uniquely identify the parameters of the OSSMM-SV model, some

restrictions have to be placed upon it. In particular, for the identification of

the location of the model, one can either eliminate the intercept from the latent

regression of y∗t by setting µ = 0 or equivalently allow for an intercept (in

which case µ 6= 0) but set ζ1 = 0. Here, we choose the second scheme of

location constraint as it facilitates the posterior sampling.

An additional restriction is necessary for the identification of the scale of

the OSSMM-SV model (scale constraint). We follow Chen and Dey (2000) who

left the error variance unconstrained but fixed another cutpoint in addition to

having ζ0 = −∞, ζ1 = 0, ζJ = +∞. In this work, we set ζJ−1 = 1. We also

transform the threshold points as follows

ζ∗j = log
(
ζj−ζj−1

1−ζj

)
, j = 2, .., J−2. (3.2.1.3)

75



with ζ∗(2,J−2)= (ζ∗2 , ..., ζ
∗
J−2)′. This parameterization, due to Chen and Dey

(2000), is an efficient way of simulating the ζj’s
3.

We assume the following priors over the set of parameters (β, σ2
η,Σ, γ, µ)

β ∼ N(β0,B), σ2
η ∼ IG(va/2, vβ/2), Σ ∼ IW (δ,∆−1),

γ ∼ IG(vγ1/2, vγ2/2), µ ∼ N(µ̄, σ̄2)

where IW and IG denote the Inverse-Wishart distribution and the inverse

gamma distribution respectively. For the transformed cutpoints, we assume

a normal distribution, that is, ζ∗(2,J−2) ∼ N(µζ∗ ,Σζ∗). The construction of the

prior of φ is more complicated and is explained in section 3.3.

3.2.2 A semiparametric extension

To ensure robustness of our results against possible misspecifications about

the error distribution of the latent regression for y∗t , we let it have unspecified

functional form based on the Dirichlet Process. Therefore, in this subsection,

we extend semiparametrically the OSSMM-SV model, described in subsection

3.2.1, by assuming that the error term εt has the following DPM model.

εt|ϑt, ht ∼ N(µt, λ
2
t exp(ht)), ϑt = (µt, λ

2
t ), t = 1..., T

ϑt
iid∼ G

G|a,G0 ∼ DP (a,G0) (3.2.2.1)

G0 = N(µt;µ0, τ0λ
2
t )IG(λ2

t ;
e0
2
, f0

2
)

a ∼ G(c, d).

3For a description of a variety of sampling schemes for the cutpoints see Jeliazkov et al.
(2008) and Hasegawa (2009).
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According to model (3.2.2.1), the εt are conditionally independent and

Gaussian distributed with means µt and variances λ2
t exp(ht). The ϑt = (µt,λ

2
t )

is sampled from the unknown distribution G which, in turn, follows a Dirichlet

process prior.

For the baseline prior distribution G0 we assume a conjugate normal-

inverse gamma, G0 = N(µt;µ0, τ0λ
2
t )IG(λ2

t ;
e0
2
, f0

2
) while a gamma prior distri-

bution G(c, d) is placed upon a. The hyperparameters (c, d, µ0, τ0, e0, f0) are

assumed to be known.

The OSSMM-SV model combined with the DPM model of (3.2.2.1) pro-

duces the semiparametric OSSMM-SV model (S-OSSMM-SV model4).

3.3 Posterior analysis

3.3.1 The MCMC algorithm for the S-OSSMM-SV model

In this subsection we present an MCMC algorithm for sampling from the S-

OSSMM-SV model. Appendix B provides the computational details of this

algorithm.

Define

y = (y1, ..., yT ), y∗ = (y∗1, ..., y
∗
T ), α = (α1, ...,αT ),

h = (h1, ..., hT ), θ = (ϑ1, ..., ϑT ), ϑt = (µt, λ
2
t ).

The likelihood function of the semiparametric model is given by

L = p(y|β,α,θ,h, ζ(2,J−2)) =
T∏
t=1

J∏
j=1

P (yt = j|β,αt, ϑt, ht, ζj−1, ζj)
1(yt=j)

where

P (yt = j|β,αt, ϑt, ht, ζj−1, ζj)= Φ(
ζj−x′tβ−z′tαt−µt
λt exp(ht/2)

)− Φ(
ζj−1−x′tβ−z′tαt−µt

λt exp(ht/2)
)

4In this model, the term γ is subsumed into λ2t .
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with 1(yt = j) being an indicator function that equals one if yt = j and zero

otherwise. Φ is the standard Gaussian c.d.f.

Our MCMC scheme5 consists of updating all the parameters of the model

by cycling through the following steps

Posterior sampling of β

Update β by sampling from

β|B,β0,α,h,y
∗,θ ∼ N(D0d0, D0)

where

D0 =

(
B−1 +

T∑
t=1

xtx′t
exp(ht)λ2t

)−1

, d0 = B−1β0 +
T∑
t=1

xt(y∗t−z′tαt−µt)
exp(ht)λ2t

.

Posterior sampling of Σ

Update Σ by sampling from

Σ|δ,∆,α ∼IW

(
δ + T − 1,

(
∆ +

T−1∑
t=1

(αt+1 −αt)(αt+1 −αt)
′
)−1

)
.

Posterior sampling of σ2
η

Update σ2
η by sampling from

σ2
η|va, vβ, φ,h ∼IG

va+T
2
,

vβ+h12(1−φ2)+

T−1∑
t=1

(ht+1− φht)2

2

 .

Posterior sampling of α

Apply the simulation smoother of De Jong and Shephard (1995) to the following

state space model

5The code was written in MATLAB.
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ỹt
∗ = z′tαt + exp(ht/2)λtεt, εt ∼ N(0, 1), t = 1, ..., T,

(3.3.1.1)

αt+1 = αt + ut, ut ∼ N(0,Σ), t = 1, ..., T,

where ỹt
∗ = y∗t − x′tβ − µt.

Posterior sampling of h

Apply the “Block-sampler” of Shephard and Pitt (1997) and Watanabe and

Omori (2004) to the following state space model

y?t = exp(ht/2)εt, εt ∼ N(0, 1), t = 1, ..., T,

(3.3.1.2)

ht+1 = φht + ηt, |φ| < 1, ηt ∼ N(0, σ2
η), t = 1, ..., T,

with cov(εt, ηt) = 0, where y?t =
y∗t−x′tβ−z′tαt−µt

λt
.

Posterior sampling of φ

Sample from the posterior p(φ|σ2
η,h) using a Metropolis-Hasting algorithm.

Posterior sampling of ζ∗(2,J−2) and y∗ in one block

To improve the mixing of the proposed MCMC algorithm, we sample y∗ and

ζ∗(2,J−2) in one block as follows.

a) First, we sample the transformed cutpoints ζ∗(2,J−2), marginalized over the

latent variables y∗, using a Metropolis-Hasting algorithm. We, then, calculate

the cutpoints ζj, from ζj =
ζj−1+exp ζ∗j

1+exp ζ∗j
, j = 2, .., J − 2.

b) Given the updated ζj’s, we sample the latent dependent variable y∗t , t =
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1, ..., T from

y∗t |yt = j,β,αt, ϑt, ht, ζj−1, ζj ∼TN(ζj−1,ζj ](x
′
tβ + z′tαt + µt, λ

2
t exp(ht))

where TN is the truncated normal distribution with support defined by the

threshold parameters ζj−1 and ζj.

Posterior sampling of εt

The error terms εt are deterministically updated, given the updated values of

y∗t , αt and β. So, we calculate εt from εt = y∗t − x′tβ − z′tαt, t = 1, ..., T .

Posterior sampling of {ψt} and {ϑ∗m}

Since ϑt = (µt, λ
2
t )

iid∼ G, with G being a random discrete distribution gener-

ated from a DP prior (see section 3.2.2), the vector θ will contain ties. Let

θ∗ = (ϑ∗1, ..., ϑ
∗
M)′, M ≤ T be the set of unique values from θ. As is now a

standard procedure in this type of models, instead of simulating the parame-

ter vector θ, we sample the vector of unique values θ∗ and the vector of the

latent indicator variables ψ = (ψ1, . . . , ψT )′ where ψt = m when ϑt = ϑ∗m,

m = 1, ...,M . This reparametrisation (knowing the ψ’s and ϑ∗’s is equivalent

to knowing the θ) improves mixing (MacEachern, 1994).

To simplify notation, the vector θ(t) denotes all the elements of θ with ϑt

removed. Additionally, θ(t) will containM (t) clusters, that is, θ∗(t) = (ϑ
∗(t)
1 , ..., ϑ

∗(t)
M(t))

′

where M (t) is the number of unique values in θ(t). The number of elements in

θ(t) that take the distinct value ϑ
∗(t)
m will be n

(t)
m =

∑
j1(ψj = m, j 6= t),

m = 1, ...,M (t).

The sampler for updating {ψt} and {ϑ∗m} consists of two steps.
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Step 1: Sample each ψt according to the probabilities

P (ψt = m|θ∗(t), ψ(t), n
(t)
m , ht) ∝

 qtm if m = 1, ...,M (t)

qt0 if m = M (t)+1 (3.3.1.3)

where ψ(t) = ψ\{ψt} and the weights qt0 and qtm in (3.3.1.3) are defined respec-

tively as

qt0 ∝ a
∫
f(εt|ht, ϑt)dG0(ϑt), qtm ∝ n

(t)
m f(εt|ht, ϑ∗(t)m ).

From (3.3.1.3), ψt can take the value m where m = 1, ...,M (t) with

posterior probability proportional to qtm. In this case ϑt, t = 1, ..., T , is as-

signed to an existing cluster ϑ
∗(t)
m , m = 1, ...,M (t). The term qtm is proportional

to n
(t)
m times the normal distribution of εt evaluated at ϑ

∗(t)
m ; that is, qtm ∝

n
(t)
m exp(−1

2

(
εt − µ∗(t)m

)2

/ exp(ht)λ
∗2,(t)
m ).

Also from (3.3.1.3), ψt can take a new value (M (t)+1) with posterior

probability proportional to qt0. In this case, we set ϑt=ϑ
∗
M(t)+1

and sample

ϑ∗
M(t)+1

from the posterior baseline distribution p(ϑt|εt, ht, µ0, τ0, e0, f0); namely,

ϑt = (µt, λ
2
t )|εt, ht, µ0, τ0, e0, f0 ∼ N(µt|µ0, τ0λ

2
t )IG(λ2

t | e02 ,
f0
2

)

where µ0 = µ0+exp(−ht)τ0εt
1+exp(−ht)τ0 , τ0 = τ0

1+exp(−ht)τ0

e0 = e0 + 1, f0 = f0 + (εt−µ0)2

τ0+exp(ht)
.

The term qt0 is proportional to the precision parameter a times the

marginal density of the latent error term εt. This marginal density follows

by integrating over the ϑt, under the baseline prior G0. So, the two dimensional

integral
∫ ∫

f(εt|ht, µt, λ2
t )p(µt, λ

2
t )dµtdλ

2
t is equal to the Student-t distribu-
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tion qt(εt|µ0, (exp(ht) + τ0)f0/e0, e0), where µ0 is the mean, e0 is the degrees of

freedom and the remaining term (exp(ht) + τ0)f0/e0 is the scale factor.

The constant of proportionality6 is the same for both expressions qt0 and

qtm and is such that qt0 +
∑M(t)

m qtm = 1.

Step 2:

Sample ϑ∗m, m = 1, ...,M from the following baseline posterior

ϑ∗m = (µ∗m, λ
∗2
m )|{εt}t∈Fm , {ht}t∈Fm , µ0, τ0, e0, f0 ∼ N(µ∗m|µm, τmλ∗2m )IG(λ∗2m | em2 ,

fm
2

)

where µm =
µ0+τ0

∑
t∈Fm

εt exp(−ht)

1+τ0
∑

t∈Fm
exp(−ht) , τm = τ0

1+τ0
∑

t∈Fm
exp(−ht)

em = e0 + nm, fm = f0 + (ε̃t−µ0)2

τ0+
∑

t∈Fm
exp(ht)

+
∑
t∈Fm

[exp(−ht/2)(εt − ε̃t)]2

ε̃t =

∑
t∈Fm

εt exp(−ht)∑
t∈Fm

exp(−ht)

and Fm = {t : ϑt = ϑ∗m} is the set of time series observations sharing the

parameter ϑ∗m.

Posterior sampling of a

To sample from the posterior of the concentration parameter a, p(a|M), we ap-

ply the two-step approach of Escobar and West (1995). In particular, we, first,

sample the latent random variable ξ from p(ξ|a,M)∼ Beta(a+1, T ) and then we

sample a from a mixture of two gammas, p(a|ξ,M)∼ πξG(c+M,d−log(ξ))+(1−

πξ)G(c+M − 1, d− log(ξ)) where πξ/(1− πξ) = (c+M − 1)/T (d− log(ξ)).

6The normalizing constant is c = a
∫
f(εt|ht, ϑt)dG0(ϑt) +

M(t)∑
m=1

n
(t)
m f(εt|ht, ϑ∗(t)m ).
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3.3.2 The MCMC algorithm for the OSSMM-SV model

For the OSSMM-SV model, the full conditional distributions of Σ, σ2
η and φ

are the same as those of subsection 3.3.1. Additionally, one has to specify the

following conditional posterior distributions:

Posterior sampling of γ

Update γ by sampling7 from

γ|vγ1 , vγ2 ,β,α,h, µ,y∗ ∼ IG
(
vγ1+T

2
,
vγ2+

∑T
t=1(y∗t−x′tβ−z′tαt−µ)2

2 exp(ht)

)
.

Posterior sampling of β

Update β by sampling from

β|B,β0,α,h, γ, µ,y
∗ ∼ N(D0d0, D0)

where

D0 =

(
B−1 +

T∑
t=1

xtx′t
γ exp(ht)

)−1

, d0 = B−1β0 +
T∑
t=1

xt(y∗t−z′tαt−µ)

γ exp(ht)
.

Posterior sampling of µ

Update µ by sampling from

µ|y∗,α,h,β, µ̄, σ̄2 ∼ N(D1d1, D1)

where

D1 = [(σ̄2)−1 + γ−1
∑T

t=1 exp(−ht)]−1

d1 = µ̄
σ̄2 + γ−1

∑T
t=1(y∗t − x′tβ − z′tαt) exp(−ht).

Posterior sampling of α

7The functional form of this posterior distribution follows in the same way as the functional
form of the posterior distribution of σ2

η.
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Apply the simulation smoother of De Jong and Shephard (1995) to the following

state space model

ỹt
∗ = z′tαt + γ1/2 exp(ht/2)εt, εt ∼ N(0, 1), t = 1, ..., T,

αt+1 = αt + ut, ut ∼ N(0,Σ), t = 1, ..., T,

where ỹt
∗ = y∗t − x′tβ − µ.

Posterior sampling of h

Apply the “Block-sampler” of Shephard and Pitt (1997) and Watanabe and

Omori (2004) to the following state space model

y?t = exp(ht/2)εt, εt ∼ N(0, 1), t = 1, ..., T,

ht+1 = φht + ηt, |φ| < 1, ηt ∼ N(0, σ2
η), t = 1, ..., T,

with cov(εt, ηt) = 0, where y?t = (y∗t − x′tβ − z′tαt − µ)/
√
γ.

Posterior sampling of ζ∗(2,J−2) and y∗ in one block

We sample the untransformed cutpoints ζ(2,J−2) as in the S-OSSMM-SV model.

Then, we update the latent dependent variable y∗t , t = 1, ..., T from the follow-

ing truncated normal

y∗t |yt = j,β,αt, ht, γ, µ, ζj−1, ζj ∼TN(ζj−1,ζj ](x
′
tβ + z′tαt + µ, γ exp(ht)).

84



3.3.3 Posterior predictive density of the error term and

average partial effects

With respect to the S-OSSMM-SV one can obtain, as a by-product of the pos-

terior sample, the out-of-sample posterior predictive distribution for the (one-

step ahead) error term εT+1 conditional on the data ΩT = (y,XT ,ZT ) where

XT = (x1, ...,xT ) and ZT = (z1, ..., zT ) which is given by

f(εT+1|ΩT ) =
∫
f(εT+1|θ, hT+1, a)π(θ, hT+1, a|ΩT )dθdhT+1da. (3.3.3.1)

The distribution of εT+1 conditional on θ, hT+1 and a can be expressed

as follows

f(εT+1|θ, hT+1, a) =
∫
f(εT+1|ϑT+1, hT+1)p(ϑT+1|θ, a)dϑT+1 (3.3.3.2)

where f(εT+1|ϑT+1, hT+1) denotes the density of a N(µT+1, λ
2
T+1 exp(hT+1)) dis-

tribution and

ϑT+1|θ, a ∼ a
a+T

G0(ϑT+1) + 1
a+T

T∑
η=1

δϑη(ϑT+1)

with δϑj(ϑi) representing a unit point mass at ϑi = ϑj.

Therefore, expression (3.3.3.2) equals

f(εT+1|θ, hT+1, a) = a
a+T

qt(εT+1|µ0, (exp(hT+1) + τ0)f0/e0, e0)

+ 1
a+T

∑M
m=1 nmN(εT+1|µ∗m, exp(hT+1)λ∗2m )

where qt is the Student-t distribution8.

8In Appendix C we define some of the probability distributions, including the Student-t
distribution, that we use throughout this thesis.

85



Using the Monte Carlo method, expression (3.3.3.1) is approximated by

the following quantity

f̂(εT+1|ΩT ) = 1
N

∑N
i=1 f(εT+1|θ(i), h

(i)
T+1, a

(i)) (3.3.3.3)

where θ(i) and a(i) are simulated samples of θ and a respectively and h
(i)
T+1

is a posterior draw generated from N(φ(i)h
(i)
T , σ

2(i)
η ). N is the number of itera-

tions after the burn-in period. Note that the estimator in (3.3.3.3) is defined

for a particular εT+1 value. Practically, we estimate the density at a grid of

possible εT+1 values.

Another posterior quantity of interest is the average partial effects. In

ordinal regression models, the direct interpretation of the coefficients may be

ambiguous. In this case, partial effects are used to estimate the effect of a

covariate change on the probability of y equaling an ordered value. The partial

effect of a continuous regressor xtk (without interaction terms involved) on the

probability of yt being equal to j, is defined for the S-OSSMM-SV model as

E(pektj|XT ,ZT ,y) =
∫ (∂p(yt=j|xt,zt,β,αt,ϑt,ht,ζj ,ζj−1)

∂xtk

)
×

dp(β,αt, ϑt, ht, ζj, ζj−1)|XT ,ZT ,y). (3.3.3.4)

where

∂p(yt=j|xt,zt,β,αt,ϑt,ht,ζj ,ζj−1)

∂xtk
=(

φ(
ζj−1−x′tβ−z′tαt−µt

λt exp(ht/2)
)− φ(

ζj−x′tβ−z′tαt−µt
λt exp(ht/2)

)
)

βk
λt exp(ht/2)

and φ denotes the standard normal density9.

9For the OSSMM-SV, we have(
φ(

ζj−1−x′tβ−z
′
tαt−µ

γ1/2 exp(ht/2)
)− φ(

ζj−x′tβ−z
′
tαt−µ

γ1/2 exp(ht/2)
)
)

βk

γ1/2 exp(ht/2)
.
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The average partial effect is,

1
T

∑T
t=1E(pektj|XT ,ZT ,y).

Using posterior draws from the MCMC chain, expression (3.3.3.4) is es-

timated from

Ê(pektj|XT ,ZT ,y) = 1
N

∑N
i=1

∂p(yt=j|xt,zt,β(i),α
(i)
t ,ϑ

(i)
t ,h

(i)
t ,ζ

(i)
j ,ζ

(i)
j−1)

∂xtk

where N is the number of iterations (after the burn-in period). Hence, the

average partial effect is approximated by

1
T

∑T
t=1 Ê(pektj|XT ,ZT ,y).

If xtk is a dummy (a discrete variable), the partial effect, for the S-

OSSMM-SV model10, of a change of xtk from zero to one on the probability of

yt being equal to j is equal to the difference between the probability that yt = j

when xtk = 1 and the probability that yt = j when xtk = 0; namely,

∆j(xtk) =
[
Φ(

ζj−(x′tβ−xtkβk)−z′tαt−βk−µt
λt exp(ht/2)

)− Φ(
ζj−1−(x′tβ−xtkβk)−z′tαt−βk−µt

λt exp(ht/2)
)
]

−
[
Φ(

ζj−(x′tβ−xtkβk)−z′tαt−µt
λt exp(ht/2)

)− Φ(
ζj−1−(x′tβ−xtkβk)−z′tαt−µt

λt exp(ht/2)
)
]
.

The quantity ∆j(xtk) can again be calculated during the estimation of

the parameters of the model.

10For the OSSMM-SV, the partial effect is

∆j(xtk) =
[
Φ(

ζj−(x′tβ−xtkβk)−z′tαt−µ−βk

γ1/2 exp(ht/2)
)− Φ(

ζj−1−(x′tβ−xtkβk)−z′tαt−µ−βk

γ1/2 exp(ht/2)
)
]

−
[
Φ(

ζj−(x′tβ−xtkβk)−z′tαt−µ
γ1/2 exp(ht/2)

)− Φ(
ζj−1−(x′tβ−xtkβk)−z′tαt−µ

γ1/2 exp(ht/2)
)
]
.
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3.4 Simulation exercises

In this section we evaluate the efficiency of the proposed MCMC algorithms for

the S-OSSMM-SV model and the OSSMM-SV model.

We generated T=2600 data points11 from both models setting J = 7

(number of ordinal choices), k = 2 (number of fixed coefficients) and p = 2

(number of time-varying coefficients) and assuming also the following set of

true parameter values

β = (1, 0.8)′,Σ = diag(0.01, 0.01), φ = 0.8,α1 = (−1, 2)′,γ = 1,

σ2
η = 0.01, ζ2 = 0.2, ζ3 = 0.4, ζ4 = 0.6, ζ5 = 0.8.

where diag is a diagonal matrix. The elements of xt = (x1t, x2t)
′ and zt =

(z1t, z2t)
′ for t = 1, ..., T are generated respectively as xjt ∼ 2U(0, 1) and

zit ∼ U(0, 1) for j, i = 1, 2 where U(a, b) is the uniform distribution defined

on the domain (a, b). We plotted the simulated state variables α1t and α2t in

Figure 3.1 and the simulated exp(ht) in Figure 3.2.

Furthermore, we assume the following prior distributions

β ∼ N(0, 20× I),α1 ∼ N(0, 20× I2×2), σ2
η ∼ IG(3, 0.03), µ ∼ N(0, 100),

(φ+ 1)/2 ∼ Beta(12, 2), Σ ∼ IW (1, 20× I2×2), γ ∼ IG(4, 0.04),

µt ∼ N(0, 4× λ2
t ), λ

2
t ∼ IG(5/2, 5/2)

where I2×2 is a 2× 2 identity matrix.

Regarding the generation of the true innovations for the latent regression

of y∗t , we examine two cases:

11T is approximately equal to the size of our empirical data set.
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1) Student-t innovations; that is, εt = 1+exp(ht/2)εt, εt ∼ St(0, 1, 8)

where St(0, 1, 8) is the Student-t density with mean 0, variance 1 and 8 degrees

of freedom.

2) Normal innovations; that is, εt = exp(ht/2)εt, where εt ∼ N(0, 1).

After discarding the first 50000 draws we run the sampler 150000 times

saving every 6th draw to reduce autocorrelation in the MCMC sample. In total,

25000 thinned draws were used for inference. Table 3.1 reports the posterior

estimates of the mean and standard deviation for all the parameters of the

S-OSSMM-SV model and the OSSMM-SV model.

For case 1, the OSSMM-SV model has significant bias of some of the

parameters (β1, β2, Σ11, µ, γ). The S-OSSMM-SV model performs better over-

all, producing posterior means closer to the true values and smaller posterior

standard deviations for all the parameters compared to the OSSMM-SV model.

The sample autocorrelations (Figure 3.3) for the semiparametric model decay

quickly verifying the fast mixing of the algorithm.

In Figure 3.4, the posterior means of α1t, obtained from the S-OSSMM-

SV model, follow closely the path of the true values of α1t while for the paramet-

ric model the corresponding posterior means diverge, at some points of time,

from the true states of α1t (Figure 3.5). In either model, almost all the true

values of α1t fall inside the two standard deviation bands. The posterior means

of α2t, obtained from the parametric model, do not trace well the movement

of the true states of α2t many of which fall outside the two standard deviation

bands (Figure 3.5). This is not the case for the semiparametric model; the

corresponding posterior means trace satisfactory the true path of α2t (Figure

3.4). Notice also that for α1t and α2t, the intervals in Figure 3.5 (parametric

model) are wider than the corresponding intervals in Figure 3.4 (semiparametric
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model).

Since the posterior mean of φ is larger in the semiparametric model and

the posterior mean of σ2
η is smaller in the semiparametric model, we expect the

estimated volatilities to be smoother in the S-OSSMM-SV than in the OSSMM-

SV model. This can be seen in Figures 3.6 and 3.7 that plot the posterior

means of exp(ht) for the semiparametric and parametric model respectively.

The OSSMM-SV introduces extra spikes; the volatilities are smoother in the

S-OSSMM-SV.

In Figure 3.8, we plotted the true and the estimated out-of-sample pos-

terior predictive distribution of the error term εt obtained from the semipara-

metric model. The S-OSSMM-SV is able to mimic well 12 the heavy tails of the

Student-t distribution while the OSSMM-SV model fails to do so (Figure 3.9).

Therefore, the semiparametric model adapts better under the non-normality

assumption than the parametric one.

For the case of normal innovations (case 2), the parametric model does

marginally better than the semiparametric in terms of the estimation accuracy

of the parameters (Table 3.1). This is expected as the parametric model is now

the correct model. In Table 3.2, we report the true and the estimated average

partial effects13 of x1t. As can be seen from Table 3.2, the true values are close

to the estimated values for both models, albeit, the semiparametric model leads

to smaller standard deviations.

12It is important to mention that we can’t really expect to be able to estimate the residual
density very well in latent variable models and it’s much easier to estimate it accurately based
on continuous data. The main reason for this behaviour is lack of sufficient information in
the data about the link function (link function estimation problem). Put differently, we have
very limited information in the data about the residual density on the latent variable level.

13For the case of Student-t innovations, it is much more difficult to calculate the true
average partial effects.
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3.5 An empirical illustration

We illustrate our proposed methods with a data set on stock market contagion.

To be more specific, in this chapter, we focus on the literature that defines

an extreme daily return (exceedance) in a stock market as one that lies be-

low (above) the 5th (95th) quantile of the empirical distribution of returns.

This approach of detecting substantial return shocks was put forward by Bae

et al. (2003) to explain the number of joint realizations of extreme returns (co-

exceedances) in Latin America and Asia. See also Christiansen and Ranaldo

(2009) and Markwat et al. (2009).

The destabilizing consequences of a volatile comovement in a set of fi-

nancial stock markets calls for immediate policy action-regulations to safeguard

economic stability in the problematic markets. Therefore, analyzing the drivers

of simultaneous extreme return days within and across regions is crucial in de-

signing such policies. A complication when examining the importance of the

determinants of return coexceedances is that their effects may change over time.

No studies, so far, have attempted to model the potential time-varying nature

of these determinants.

Furthermore, it is well known that conditional heteroscedasticity is one of

the main characteristics of stock return series (Hausman et al., 1992; Bollerslev

et al., 1992). Other stylized facts of stock return distributions are volatility

clustering and heavy-tailedness. The stochastic volatility (SV) model, due to

Taylor (1986), is able to capture these empirically-observed characteristics of the

returns. However, research papers related to the empirical literature in question

have considered only homoscedastic errors, systematically ignoring conditional

heteroscedasticity.

The proposed models of this chapter address the issues of conditional het-
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eroscedasticity and parametric variation over time and are used to re-examine

what drives the probability of occurrence of local, regional and global stock

market crashes as defined by Markwat et al. (2009).

We consider two potential sources of simultaneous market crashes; in-

terdependence and contagion (Forbes and Rigobon, 2002). Interdependence

is defined as comovement of markets resulting from economic fundamentals

(banking/trading/geographical linkages across markets) while contagion is the

dependence that remains after controlling for interdependence.

In the following subsection, we describe the data set and in particular

the variables that control for interdependence and contagion.

3.5.1 Covariates and variable definitions

We identify local, regional and global stock market crashes, using daily data14

on log-returns for the developed regions of Europe (as a whole) and the U.S

and emerging markets in the developing regions of Asia15 and Latin America16

(LA). The daily returns, all expressed in U.S dollars, cover the period between

1st of July, 1996 until 30th of July, 2007.

Due to the qualitative discrete (ordinal) measure of the crash categories,

our time-series ordinal dependent variable records one of the following four crash

types in each day: 0 for no crash, 1 for local crash, 2 for regional crash, 3 for

global crash.

The country and regional stock market indices for the emerging markets

were obtained from the International Finance Corporation’s Emerging Markets

14We use the same data set as Markwat et al. (2009) to facilitate the comparison of our
results with theirs.

15The emerging markets in Asia are Korea, India, Philippines, Thailand, Taiwan Malaysia.
16The emerging markets in Latin America are Chile, Brazil, Argentina, Mexico, Colombia,

and Venezuela.
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Data Base (EMDB) while for Europe and U.S, the MSCI Global Equity Indices

were used.

To proceed with our empirical analysis, we first have to define when

local/regional/global crashes occur (Markwat et al., 2009). Following Bae et al.

(2003), an extreme stock return drop (or a negative exceedance or a crash) in a

country occurs when the daily return lies below the 5th quantile of the empirical

distribution of the returns over the whole sample period. We defined a local

crash17 to have occurred, when one to three of the individual stock markets

in either LA or Asia have had a daily return below the 5th percentile while

the regional stock market index did not experience an outcome below the 5th

percentile. A regional crash for LA, U.S, Europe and Asia occurs when the

daily return of the corresponding regional stock market index lies below the

5th quantile of the empirical return distribution. For LA and Asia, a regional

crash is also recorded when at least four countries in the region crash; in this

way, we capture regional crashes in LA or Asia that are triggered by crashes of

small countries. We define a global crash as one that takes place when we have

at least two regional crashes, at least one of which is in either U.S or Europe.

Because the trading of stocks takes place in different hours across regions, we

also define a global crash as one that occurs when a (regional) crash in Europe

or U.S on day t is followed by a (regional) crash in Asia18 on the following day

(t+ 1).

Based on the above definitions, we record 616 local crashes, 271 regional

crashes and 142 global crashes in the whole sample. Furthermore, there were

1810 days where no crash occurred.

17We do not examine local crashes in Europe, which is treated as a whole, due to the high
degree of stock market integration in Western Europe.

18The relevant literature (Cumperayot et al., 2006) has documented the existence of
spillovers from the the U.S stock market to Asian markets.
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In terms of the covariates of the model, first of all, we include crash

dummies that record the type of crash which occurred in the previous day and

these dummies control for contagion. To capture interdependence, we include

the following determinants19 of the crash probabilities: the average exchange

rate returns (against the U.S dollar) in Asia and LA (“Currency LA”, “Cur-

rency Asia”)20, the 3-month interbank interest rates in each of the four regions

(“Interest rates LA”, “Interest rates Asia”, “Interest rates U.S”, “Interest rates

Europe”), the daily returns on bond portfolios in each region (“Bond returns

LA”, “Bond returns Asia”, “Bond returns U.S”, “Bond returns Europe”) while

we construct two variables that measure the number of extreme events in the

bond and currency markets in the last 5 days across the regions21 (“Extreme

Currency events”, “Extreme Bond events”).

3.5.2 Interdependence or contagion?

There has been a long debate over the relative importance of interdependence

and contagion as potential channels through which stock market crashes prop-

agate from one financial market to another (Connolly and Wang, 2003; Fazio,

2007).

In order to re-examine the importance of interdependence and contagion

in explaining the crash probabilities, after controlling for heteroscedasticity, we

estimated the OSSMM-SV model and the S-OSSMM-SV model but with all

the parameters being time-constant (models 1 and 2 respectively). Table 3.3

19These determinants are also one-period lagged as we want to see if they can predict stock
market crashes.

20We follow Bae et al. (2003) who found that only “Currency LA” and “Currency Asia”
were statistically significant.

21An extreme event in the bond market occurs when an observation lies below the 5th
quantile of the empirical bond return distribution while extreme depreciations of a currency
are those above the 95th of the empirical currency return distribution.
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presents the results.

According to Table 3.3, “Bond returns U.S”, “Bond returns Europe” and

“Bond returns Asia” are statistically insignificant variables in both models. The

“Bond returns LA” variable is statistically significant, and has the same sign in

models 1 and 2. The negative sign on “Bond returns LA” is the expected one

and it implies that a stock market crash follows a drop in Latin America’s bond

returns in the previous day; a decrease in bond returns in a developing region

may signal lack of creditworthiness which could increase the borrowing cost for

the government and thus the likelihood of a crash, as happened in the crisis of

Argentina in 2001.

“Extreme Currency events” is a significant determinant of crash proba-

bility and has a positive effect on it; more depreciations decrease the value of

the stock return index, triggering also capital outflow. The variable “Extreme

Bond events” plays no role in the occurrence of stock market crashes.

The crash dummies are all significant across models 1 and 2. Further-

more, the “Interest rates Asia” variable is significant in model 2 but not in

model 1. The rest of the interest rates variables do not influence the crash

probabilities.

Our empirical results (on the significance and sign of coefficients) are

in agreement with those of Markwat et al. (2009); except the variable “Bond

returns U.S” which Markwat et al. (2009) found to be significant. Our analysis

showed that after controlling for conditional heteroscedasticity, the occurrence

of local, regional and global stock market crashes is attributed mainly to con-

tagion; from the set of variables measuring the effect of interdependence only

“Bond returns LA” and “Extreme Currency events” were significant in both

models 1 and 2.
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As far as the rest parameters are concerned, the posterior mean and

standard deviation of σ2
η are smaller under model 2. Specifically, the posterior

estimate of σ2
η in model 2 is 0.0150 while in model 1 is 0.0159. Similarly, the

standard deviation of σ2
η is 0.0042 and 0.0034 in models 1 and 2 respectively.

This is expected since the parametric model (model 1) increases the value of σ2
η

to compensate for the excess kurtosis which is found in the data.

In model 2, the AR parameter φ is estimated at 0.9753 with a tight

standard deviation (0.0084). By comparison, in model 1, the posterior estimate

of φ is smaller (0.9596) and its posterior standard deviation is larger (0.0146).

In Figure 3.10, we have plotted the posterior means of the conditional

variance of y∗t for models 1 and 2; it is obvious that the parametric model

increases the variance22.

We have also plotted the out-of-sample posterior predictive density of

the error term εt for both models (Figure 3.11). Clearly, the predictive den-

sity obtained from model 2 is different from that obtained from model 1; the

distribution for model 2 (semiparametric model) has sharper peak and fatter

tails than that for model 1 (parametric model). The stock returns exhibit a

leptokurtic behaviour which can not be captured by the parametric model.

The SV model we used to analyze the market stress allowed for ordinal

responses rather than for continuous responses. Had we applied standard SV

models, we would expect more “volatile volatility” given the resulting values

of φ and σ2
η. Yet, the displayed volatility in Figure 3.10 is less noisy and more

persistent.

22In Figure 3.10, a stock market crash is displayed as a spike. We observe larger variances
in late 1998 (Russian crisis), in 2001-2002 (Argentinian crisis) and in early 2007 (the U.S
sub-prime mortgage crisis).
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3.5.3 Analyzing the behaviour of contagion

All the lagged dummies, indicating if there was a local, regional or global crash23

in the previous day, are highly significant in models 1 and 2 of Table 3.3.

Therefore, past stock market crashes are important determinants of the cur-

rent crashes.

Furthermore, all the crash dummies have positive sign which means that

a crash type which occurred in the previous day increases the crash likelihood in

the current day. We also observe that the effect of the crash dummies increases

as we move towards the most severe crash type (global crash). This implies

that the more severe the crash is in the previous day, the higher the probability

of the occurrence of a crash is in the current day.

Since we are interested in the effect of the dummies on the likelihood

of observing local, regional or global crashes, we have calculated the average

partial effects in Tables 3.4 (for model 1) and 3.5 (for model 2).

According to Table 3.5, local crashes tend to be followed by local crashes.

For instance, the probability of observing a local (regional, global crash) in the

current day when a local (regional, global) crash occurred in the previous day

increases by 3.86% ( 5.02%, 12.56%); global crashes generate consecutive global

crashes with higher probability24. These results can also be observed for model

1 (Table 3.4).

Furthermore, there is evidence of a domino-style contagion as local crashes

turn into regional crashes and regional crashes turn into global crashes with pos-

itive probability (Tables 3.4 and 3.5). In particular, according to the results of

23The first crash severity level (no crash) is used as a baseline crash type in both models 1
and 2.

24Markwat et al. (2009), though, found that it is the local crashes that generate consecutive
local crashes with higher probability.
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Table 3.5, a local crash increases the probability of a consecutive local, regional

and global crash by 3.86%, 2.51% and 2.22% respectively. After a regional

crash, the likelihood of a consecutive local, regional and global crash increases

by 6.45%, 5.02% and 4.44% respectively. A global crash in the previous day

increases the local, regional and global crash probability, in the current day, by

8.48%, 11.52% and 12.56% respectively 25.

Table 3.4, which refers to the average partial effects obtained from the

parametric model (model 1), tells a different story in terms of the pattern

of average partial effects for local and regional crashes. Specifically, a local

(regional) crash today increases the probability of triggering a local, regional

and global crash tomorrow by 3.44% (5.52%), 2.34% (4.44%) and 2.90% (5.68%)

respectively.

3.5.4 Time-varying determinants of crash likelihood

Time-constant regression coefficients means that the importance of interdepen-

dence and contagion is confined to be the same across tranquil and crisis periods,

as we have assumed so far. We relax this assumption, which is restrictive, by

letting the parameters vary across time according to a random walk process.

To this end, we estimated the S-OSSMM-SV model26 but with all the

parameters being time-varying. Figures 3.12-3.15 present the posterior means

of the time-varying coefficients along with the one standard deviation bands.

The first feature that we observe from Figures 3.12-3.15 is that the coef-

ficients on the variables “Currency LA”, “Currency Asia”, “Bond returns LA”,

25A different pattern of the average partial effects for global crashes is supported by Mark-
wat et al. (2009); a global crash in the previous day increases the local, regional and global
crash probability, in the current day, by 30%, 19% and 13% respectively.

26We report the results only for the semiparametric model since they do not change sub-
stantially when we use the parametric one.
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“Bond returns Asia”, “Bond returns U.S” and “Bond returns Europe” exhibit

substantial variation. “Bond returns U.S” has a positive effect on the stock

market crash probabilities all the years in question while “Bond returns Eu-

rope” has a positive one in the year 2007 only. The positive sign on “Bond

returns U.S” implies that an increase in U.S bond returns increases the prob-

ability of a stock market crash. The intuition is that such an increase in U.S

bond returns reflects financial turmoil in the rest world, in which case investors

seek U.S government bonds that are safer. On the contrary, the bond market

of Europe does not appear to be a safe heaven.

The coefficients on the remaining variables vary less over time. The

local dummy, the regional dummy and the global dummy affect negatively the

probability of a crash as none of the coefficients on the crash dummies attains

positive sign over the period July 1996-July 2007.

3.6 Conclusions

In this chapter, we set up an ordered probit time-varying parameter regres-

sion model with stochastic volatility. We also deviated from the normality as-

sumption that characterizes the proposed ordered probit model and presented a

semiparametric extension of it using a nonparametric prior, the Dirichlet process

prior. For the estimation of both models, we developed efficient MCMC algo-

rithms. Our simulation study showed that the semiparametric model produces

less biased estimates than the parametric one when the normality assumption

is not the case which also behaves satisfactory under the normality case.

In terms of our empirical application, the proposed models were used to

re-examine what affects the probability of observing local, regional and global
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stock market crashes. After controlling for conditional heteroscedasticity, we

found that contagion matters more than interdependence in explaining the crash

probabilities. There is also strong evidence of a domino-style contagion in both

models (parametric and semiparametric). These results are also supported by

the relevant literature. We also allowed for time-varying parameters in order

to see how the effect of these determinants (contagion and interdependence)

changes across time. We found that they display variation over time which can

be substantial in some cases.

100



0 500 1000 1500 2000 2500
-5

-4

-3

-2

-1

0

1

2


1t

0 500 1000 1500 2000 2500
-4

-2

0

2

4

6


2t

Figure 3.1: Path of the simulated α.
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Figure 3.3: Simulated data. Autocorrelation plots for the S-OSSMM-SV model;
case 1.
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Figure 3.4: Simulated data. Path of the estimated α1t and α2t for the S-
OSSMM-SV model; case 1. True path (black), posterior mean (blue), two
standard deviation bands (red)
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Figure 3.5: Simulated data. Path of the estimated α1t and α2t for the OSSMM-
SV model; case 1. True path (black), posterior mean (blue), two standard
deviation bands (red)
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model; case 1. Posterior mean (blue), one standard deviation bands (red)
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Figure 3.8: Simulated data. True and
estimated out-of-sample posterior pre-
dictive density of εt obtained from the
S-OSSMM-SV model; case 1
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Figure 3.9: Simulated data. True and
estimated out-of-sample posterior pre-
dictive density of εt obtained from the
OSSMM-SV model; case 1
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Figure 3.10: Empirical results. Evolution of the posterior means of the
conditional variance of y∗t obtained from models 1 and 2.
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Figure 3.11: Empirical results. The out-of-sample posterior predictive
error density of εt obtained from models 1 and 2.
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Figure 3.12: Empirical results. Path of the estimated time-varying parameters:
Currency LA (α1t), Currency Asia (α2t), Bond returns LA (α3t), Bond returns
Asia (α4t). Posterior means (blue line); one standard deviation bands (red lines).
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Figure 3.13: Empirical results. Path of the estimated time-varying parameters:
Bond returns U.S (α5t), Bond returns Europe (α6t), Interest rates LA (α7t),
Interest rates Asia (α8t). Posterior means (blue line); one standard deviation
bands (red lines).
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Figure 3.14: Empirical results. Path of the estimated time-varying parameters:
Interest rates U.S (α9t), Interest rates Europe (α10t), Extreme currency events
(α11t), Extreme Bond events (α12t). Posterior means (blue line); one standard
deviation bands (red lines).
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Figure 3.15: Empirical results. Path of the estimated time-varying parameters:
Local Dummy (α13t), Regional Dummy (α14t), Global Dummy (α15t). Posterior
means (blue line); one standard deviation bands (red lines).
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Table 3.1: Simulated data: Estimation results
Error distribution Student-t Normal

Model OSSMM-SV S-OSSMM-SV OSSMM-SV S-OSSMM-SV

True values Mean Stdev Mean Stdev Mean Stdev Mean Stdev

β1 = 1 0.8185 0.2137 1.0924 0.1033 1.0884 0.0747 1.1124 0.0768

β2 = 0.8 1.0509 0.1762 0.8652 0.0810 0.7841 0.0560 0.7806 0.0569

Σ11 = 0.01 0.0415 0.0183 0.0164 0.0047 0.0165 0.0043 0.0168 0.0046

Σ22 = 0.01 0.0094 0.0039 0.0079 0.0023 0.0081 0.0023 0.0083 0.0022

µ = 1∗ 0.7088 0.2358 -0.0376 0.1140

γ = 1 1.6339 0.2379 0.9525 0.0795

φ = 0.8 0.7447 0.0679 0.7667 0.0669 0.7479 0.0691 0.7460 0.0678

σ2
η = 0.01 0.0128 0.0029 0.0121 0.0027 0.0113 0.0018 0.0114 0.0015

ζ2 = 0.2 0.1815 0.0335 0.1847 0.0329 0.2111 0.0186 0.2099 0.0184

ζ3 = 0.4 0.3293 0.0384 0.3340 0.0384 0.3717 0.0212 0.3706 0.0213

ζ4 = 0.6 0.5534 0.0378 0.5582 0.0373 0.5811 0.0207 0.5803 0.0210

ζ5 = 0.8 0.7893 0.0284 0.7918 0.0283 0.7531 0.0180 0.7527 0.0179

*For the case of normal innovations, the true mean (µ) of εt is 0.

110



Table 3.2: Simulated data: Average partial effects

Error distribution Normal

Model OSSMM-SV S-OSSMM-SV

True av. partial effects Mean Stdev Mean Stdev

APEβ1(yt = 1) = −0.1763 -0.1877 0.1540 -0.1885 0.1534

APEβ1(yt = 2) = −0.0150 -0.0165 0.0309 -0.0159 0.0300

APEβ1(yt = 3) = −0.0132 -0.0113 0.0247 -0.0109 0.0241

APEβ1(yt = 4) = −0.0109 -0.0124 0.0336 -0.0121 0.0328

APEβ1(yt = 5) = −0.0081 -0.0080 0.0288 -0.0078 0.0281

APEβ1(yt = 6) = −0.0049 -0.0073 0.0427 -0.0073 0.0415

APEβ1(yt = 7) = 0.2283 0.2432 0.1495 0.2426 0.1487

Table 3.3: Empirical results

Model 1 Model 2

Mean Stdev Mean Stdev

Extreme Currency events 0.0783* 0.0351 0.0670* 0.0300

Extreme Bond events 0.0395 0.0333 0.0338 0.0285

Local Dummy 0.2118* 0.0625 0.1771* 0.0524

Regional Dummy 0.3622* 0.0967 0.3098 * 0.0798

Global Dummy 0.7098* 0.1525 0.6282* 0.1262

Currency LA -1.2365 3.1125 -1.3069 2.8656

Currency Asia 1.4775 3.3099 1.7330 3.0941

Bond returns LA -8.5214* 2.8264 -8.7800* 2.6607

Bond returns Asia -0.9025 3.6825 -1.0758 3.5248

Bond returns U.S 3.5625 3.7759 4.2785 3.5575

Bond returns Europe -1.7325 2.5782 -1.5351 2.3282

Interest rates LA 0.0010 0.0097 0.0008 0.0080

Interest rates Asia 0.0295 0.0161 0.0263* 0.0132

Interest rates U.S 0.0788 0.2352 0.0388 0.2064

Interest rates Europe 0.0038 0.0306 0.0102 0.0283

*Significant based on 95% HPD intervals
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Table 3.3: continued. Empirical results
Model 1 Model 2

Mean Stdev Mean Stdev
µ -1.0263 0.8582
γ 0.7574* 0.2647
φ 0.9596* 0.0146 0.9753* 0.0084
σ2
η 0.0159* 0.0042 0.0150* 0.0034
ζ2 0.5639* 0.0432 0.5350* 0.0448
*Significant based on 95% HPD intervals

Table 3.4: Empirical results: Average partial effects (model 1)

Local Dummy Regional Dummy Global Dummy

APE(yt = 0) -0.0868 -0.1564 -0.3130

APE(yt = 1) 0.0344 0.0552 0.0725

APE(yt = 2) 0.0234 0.0444 0.0922

APE(yt = 3) 0.0290 0.0568 0.1483

Table 3.5: Empirical results: Average partial effects (model 2)

Local Dummy Regional Dummy Global Dummy

APE(yt = 0) -0.0860 -0.1591 -0.3256

APE(yt = 1) 0.0386 0.0645 0.0848

APE(yt = 2) 0.0251 0.0502 0.1152

APE(yt = 3) 0.0222 0.0444 0.1256
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Chapter 4

Concluding remarks and Future

research

This thesis focused on discrete choice models with an emphasis on ordinal-

response models. The models were estimated by Bayesian methods using MCMC

while the econometric analysis was conducted in a parametric and a semipara-

metric context.

In chapter 2, we used a dynamic panel ordered probit model with ran-

dom effects to analyze the observed persistence in the annual long-term foreign

currency sovereign ratings assigned by Moody’s to a set of 62 countries over the

period 2000-2011. We distinguished between the effect of past rating history

(state dependence) and the effect of latent heterogeneity (spurious dependence)

on the probability distribution of current ratings. We found that both these

sources of ratings persistence are significant after controlling for a number of

explanatory variables; albeit state dependence is weak, i.e., current rating deci-

sions are weakly affected by previous rating choices. We also looked at the 2008

European financial crisis and differentiated between before and during the cri-
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sis period. We found that, although, there is some evidence of assigning better

ratings before the crisis, there is almost equal probability of observing predicted

ratings below and above actual ratings during the crisis period. Hence, we can

not support the claim that rating agencies exacerbated the boom-bust cycle by

downgrading too much the countries.

The analysis of chapter 2 can be extended in terms of both the empirical

and modelling strategy. Here, we will raise some issues that will be addressed

in a future research paper.

First of all, chapter 2 controlled for a set of country-level variables derived

from the literature; GDP growth, inflation, unemployment, current account

balance, government balance and government debt. The coefficients on these

variables were mostly as expected. However, as evidenced in the shutdown of

the U.S government on October 1, 2013, political factors also play an important

role; on a note of October 1, 20131, S&P implied that it will downgrade U.S

if there is not to be a U.S Congress agreement on the issue of a debt ceiling.

Therefore, another variable that we should control for is related to the political

stability of the countries.

Furthermore, there are 21 rating categories in Moody’s rating. Chapter

2 reduced this to 7 categories to avoid over-parameterisation of the model and

to avoid the issues of sparsity of observations in some categories. However, this

categorization eliminates the fine tuning that is essential during the rating pro-

cess. Also, with our current rating classifications of sovereigns’ debt obligations

(7 rating choices), we may not be able to observe two notch downgrades and

upgrades, which may be important. For example, if a country is moving from

Ba1 to Ba3, this is a two notch downgrade. However, the country is still in cat-

1http : //www.fitchratings.com/gws/en/fitchwire/fitchwirearticle/US − Debt −
Ceiling?prid = 803756
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egory 3 and therefore, the model treats this as if there was not a change in the

rating. On the other hand, if a country moves only one notch but from Ba3 to

B1, then this change is considered by the model. We can run the analysis using

the ratings criteria as it is (21 rating grades), at least for robustness purposes.

In addition, the change between speculative (Ba1) to investment grade (Baa3)

and vice versa is one of the most important changes in the rating of a country.

This change cannot also be captured properly by using seven (7) categories of

creditworthiness.

Chapter 2 also looked at the pre-crisis and during the crisis period by

considering the 2000-2008 as before the crisis and the 2009-2011 as the crisis

period. For some researchers the crisis started in 2007. In this case, the year

2008 should not be in the before crisis period. So, we could change the periods

as 2000-2006 as the pre-crisis and 2007-2011 as the crisis period. We must

also be cautious about the effects of the crisis on the rating decisions as this

represents only one crisis period and therefore cannot be generalized to other

financial crises. Ideally, we can extend the analysis before the 2000 period so

as to consider the Asian crisis of 1997-1998 or the Russian crisis of 1998 and

observe if similar findings hold for these periods.

In chapter 2, we examined two potential sources of ratings’ persistence

(latent heterogeneity and previous rating’s decisions). A third source of rat-

ings’ inertia could be due to serial correlation in the error term εit; a case

which was not considered in this chapter as the disturbances were assumed to

be contemporaneously and serially uncorrelated. Yet, the countries examined

have been operating in an economic environment affected by common economic

factors/conditions which likely affected their economic situation, their financial

solvency and thereby their ratings obtained from Moodys. What is more, the
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cross-country heterogeneity has been time-invariant. Time-varying random ef-

fects would account for unobserved autocorrelation in the data due to left-out

time-varying country-specific control variables. For instance, ratings should

reflect country-specific risk which is likely to be time-varying. As a result of

the joint restrictions that the country effects are fixed over time and that the

idiosyncratic period-and-country random shocks are not autocorrelated, the dy-

namic effects might be picked up by the lagged dummy variables in a spurious

way. We need to check these restrictions by testing them and/or relax them in

a way or another.

In chapter 3, we proposed an ordered probit model with stochastic volatil-

ity and time-varying parameters to re-examine what affects the probability of

observing local, regional and global stock market crashes. Also, to capture

asymmetries of stock returns, we deviated from the normality assumption that

characterizes the proposed ordered probit model and assumed a nonparamertic

structure for the error distribution of the latent dependent variable. For model

estimation, we devised efficient MCMC algorithms. After controlling for con-

ditional heteroscedasticity, our empirical results regarding the importance of

interdependence and the contagion behaviour were similar to that of Markwat

et al. (2009). When we allowed the coefficients to change over time, we found

that they display time variation which can be large in some cases; an aspect

that has been ignored.

In the analysis of chapter 3, the errors ut of the state equation were mul-

tivariate Normal distributed. One can deviate from this parametric assumption

and instead exploit a flexible structure, based on the Dirichlet process prior,

to capture the uncertainty about the transition disturbances. Therefore, the

parameter-driven dynamics can be modelled using a semiparametric state space
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framework. In other contexts, researchers have considered transition errors with

flexible structures in an attempt to construct robust state space models. Mein-

hold and Singpurwalla (1989) and Masreliez and Martin (1977) assumed multi-

variate t-distributions, Carter and Kohn (1994) used a finite mixture of normals,

while Ansari and Iyengar (2006) exploited a scale mixture of the multivariate

normal with the positive scale variable assigned a Dirichlet process prior.

Chapter 3 lacks also model comparison. Two models are entertained; a

parametric and a semiparametric. How would the two models compare in terms

of posterior odds and other Bayesian criteria for comparing models? These

questions are of importance and will be addressed in a future paper.

The proposed model of chapter 3 could potentially be applied to other

empirical literatures in economics, providing answers to more important empir-

ical questions than those addressed in chapter 3.
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Appendix A

Analytical derivation of the

MCMC algorithm for chapter 2

p(ϕi|•)

The Gibbs conditional distribution for the random effect ϕi can be computed

as

p(ϕi|{y∗it }t>1, {w′it}t>1, ϑi,h1,h2, σ
2
ε , δ) ∝ p(ϕi|h1,h2, µi, σ

2
i )×

T∏
t=2

p(y∗it |ϕi,w′it, δ, σ2
ε )

∝ exp
(
−1

2
(ϕi − r ′i1h1 − x ′i h2 − µi)2/σ2

i

)
×

exp

(
−1

2

T∑
t=2

( y∗it − w ′
itδ − ϕi)

2/σ2
ε

)
, i = 1, ..., N.

p(h1|•)

Based on Bayes Theorem, the posterior kernel of h1 is given by

p( h1|{ϕi}, {ϑi},h2, h̃1, H̃1) ∝ p(h1|h̃1, H̃1)
N∏
i=1

p(ϕi|h1,h2, µi, σ
2
i )

∝ exp
(
−1

2
(h1 − h̃1)′H̃1

−1
(h1 − h̃1)

)
×
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exp

(
−1

2

N∑
i=1

(ϕi − r ′i1h1 − x ′i h2 − µi)2/σ2
i

)
.

p(h2|•)

The posterior kernel of h2 is given by

p(h2|{ϕi}, {ϑi},h1, h̃2, H̃2) ∝ p(h2|h̃2, H̃2)
N∏
i=1

p(ϕi|h1,h2, µi, σ
2
i )

∝ exp
(
−1

2
(h2 − h̃2)′H̃2

−1
(h2 − h̃2)

)
×

exp

(
−1

2

N∑
i=1

(ϕi − r ′i1h1 − x ′i h2 − µi)2/σ2
i

)
.

Block sampling of σ−2
ε , δ

The joint posterior density of σ−2
ε and δ can be expressed as the product of a

marginal probability and a conditional probability,

p(σ−2
ε , δ|{y∗it }i≥1,t>1, {w′it}i≥1,t>1, {ϕi}, e1, f1) =

p(σ−2
ε |{y∗it }i≥1,t>1, {w′it}i≥1,t>1, {ϕi}, e1, f1)×

p(δ|{y∗it }i≥1,t>1, {w′it}i≥1,t>1, {ϕi}, σ−2
ε ).

To sample from the joint posterior p(σ−2
ε , δ|•) we have to sample first

from p(σ−2
ε |•) and then from p(δ|•) . The latter term is the full conditional

of δ while the former term is the marginal posterior of σ−2
ε , having integrated

out δ, which is proportional to

p(σ−2
ε |{y∗it }i≥1,t>1, {w′it}i≥1,t>1, {ϕi}, e1, f1) ∝ p(σ−2

ε |e1, f1)×

N∏
i=1

T∏
t=2

p(y∗it |w′it, ϕi, σ2
ε )
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∝ p(σ−2
ε |e1, f1)× Γ

where

Γ =
N∏
i=1

T∏
t=2

p(y∗it |w′it, ϕi, σ2
ε ) =

∫ [
p(δ)

N

×
∏
i=1

T∏
t=2

[p(y∗it |w′it, ϕi, σ2
ε , δ)

]
dδ .

To simplify our notation we set the term inside the integral equal to ∆

which, under the uniform prior for δ, is equal to

∆ = 1
2g
I(−g,g)(2π)−N(T−1)/2×(σ−2

ε )N(T−1)/2×exp

(
− 1

2σ2
ε

N∑
i=1

T∑
t=2

( ỹit
∗ −w ′

itδ)
2

)

where I(−g,g) is an indicator function that takes value 1 if a drawn δ lies in the

region (−g, g) and zero otherwise and ỹit
∗ = y∗it − ϕi. We can always write

(ỹ∗−wδ)′(ỹ∗−wδ) =(ỹ∗−wδ̂)′(ỹ∗−wδ̂)+(δ− δ̂)′w′w(δ− δ̂) where δ̂ is the

OLS estimator of δ, that is , δ̂ = (w′w)−1w′ỹ∗.

Hence, ∆ becomes

∆ = 1
2g
I(−g,g)

[
(2π)−N(T−1)/2 × (σ−2

ε )N(T−1)/2 × exp
(
− 1

2σ2
ε
(ỹ∗ −wδ̂)′(ỹ∗ −wδ̂)

)]
×
[
exp

(
− 1

2σ2
ε
(δ − δ̂)′w′w(δ − δ̂)

)]
.

The term inside the second set of square brackets is proportional to a

multivariate normal kernel of δ. The integral of this term with respect to δ is

equal to (σ−2
ε )(−k−J+1)/2(2π)(k+J−1)/2|w′w|1/2.

Consequently, it holds that

Γ = 1
2g
I(−g,g)(2π)−N(T−1)/2×(σ−2

ε )N(T−1)/2×(σ−2
ε )(−k−J+1)/2×(2π)(k+J−1)/2|w′w|1/2

× exp
(
− 1

2σ2
ε
(ỹ∗ −wδ̂)′(ỹ∗ −wδ̂)

)
.

Then, the marginal posterior of σ−2
ε takes the explicit form
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p(σ−2
ε |{y∗it }i≥1,t>1, {w′it}i≥1,t>1, {ϕi}, e1, f1) ∝

(1/σ2
ε )

(
e1+N(T−1)−k−J+1

2
−1)× exp

(
− 1

2σ2
ε
[f1 + (ỹ∗ −wδ̂)′(ỹ∗ −wδ̂)]

)

which is the kernel of the gamma density given in subsection 2.5.1.

The Gibbs conditional for δ is

p(δ|{y∗it }i≥1,t>1, {w′it}i≥1,t>1, {ϕi}, σ−2
ε ) ∝ p(δ)

N

×
∏
i=1

T∏
t=2

p(y∗it |w′it, ϕi, σ2
ε , δ)

∝ exp
(
− 1

2σ2
ε
(ỹ∗ −wδ̂)′(ỹ∗ −wδ̂)

)
× exp

(
− 1

2σ2
ε
(δ − δ̂)′w′w(δ − δ̂)

)

∝ exp
(
− 1

2σ2
ε
(δ − δ̂)′w′w(δ − δ̂)

)

which is the Gaussian kernel given in subsection 2.5.1.

p(ζ∗(2,J−2)|•)

We want to sample from the joint posterior

p(y∗, ζ∗(2,J−2)|y, δ, σ2
ε , {ϕi}) = p(ζ∗(2,J−2)|y, δ, σ2

ε , {ϕi})×

p(y∗|ζ∗(2,J−2),y, δ, σ
2
ε , {ϕi})

where y∗ = {y∗it}i≥1,t>1 and y is the whole vector of the observed dependent

variables. The conditional distribution of p(ζ∗(2,J−2)|y, δ, σ2
ε , {ϕi}) is

p(ζ∗(2,J−2)|y, δ, σ2
ε , {ϕi}) = p(ζ∗(2,J−2))p(ζ(2,J−2)|y, δ, σ2

ε , {ϕi})×
J−2∏
j=2

(1−ζj−1) exp ζ∗j
(1+exp ζ∗j )2

(A.1)

where the second term at the right hand side of the above expression is the full

conditional distribution of the cutpoints evaluated at ζj =
ζj−1+exp ζ∗j

1+exp ζ∗j
, that is,
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p(ζ(2,J−2)|y, δ, σ2
ε , {ϕi}) ∝

∏
it:yit=2,t>1

P (ζ1 < y∗it ≤ ζ2)× ...

...×
∏

it:yit=J−1,t>1

P (ζJ−2 < y ∗it ≤ ζJ−1).

The conditional distribution p(ζ∗(2,J−2)|y, δ, σ2
ε , {ϕi}) is derived from a transfor-

mation of variables from p(ζ(2,J−2)|y, δ,σ2
ε , {ϕi}). The Jacobian of this transfor-

mation is given by the last term of the right hand side expression of (A.1).

Instead of sampling directly from p(ζ(2,J−2)|y, δ, σ2
ε , {ϕi}) we sample from

the joint distribution p(ζ∗(2,J−2)|y, δ, σ2
ε , {ϕi}) using a Metropolis-Hastings step.

Specifically, at the l-th iteration we generate a value ζ
∗(p)
(2,J−2) from a multivariate

Student-t distribution

MV t(ζ
∗(p)
(2,J−2)| ̂ζ∗(2,J−2), cΣ̂ζ∗(2,J−2)

, v)

where ̂ζ∗(2,J−2) = arg max p(ζ∗(2,J−2)|y, δ, σ2
ε , {ϕi}) is defined to be the mode of

the right hand side of p(ζ∗(2,J−2)|•) and the term

Σ̂ζ∗(2,J−2)
=

[(
− ϑ2 log p(ζ∗(2,J−2)|•)

ϑζ∗(2,J−2)ϑζ
∗′
(2,J−2)

)
ζ∗(2,J−2)=

̂ζ∗(2,J−2)

]−1

is the inverse of the negative Hessian matrix of log p(ζ∗(2,J−2)|•), scaled by some

arbitrary number c> 0. The term v is the degrees of freedom and is specified

arbitrarily at the onset of the programming along with the scalar c and the other

priors. We use both c and v in order to achieve the desired M-H acceptance rate

by regulating the tail heaviness and the covariance matrix of the multivariate

Student-t proposal distribution. Notice that a very small v or a very large value

of c can lead to a very low acceptance rate.
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Given the proposed value ζ
∗(p)
(2,J−2) and the value ζ

∗(l−1)
(2,J−2) from the previous

iteration, ζ
∗(p)
(2,J−2) is accepted as a valid current value (ζ

∗(l)
(2,J−2) = ζ

∗(p)
(2,J−2)) with

probability

ap(ζ
∗(l−1)
(2,J−2), ζ

∗(p)
(2,J−2)) = min(

p(ζ
∗(p)
(2,J−2)

|y,δ,σ2
ε ,{ϕi}) MV t(ζ

∗(l−1)
(2,J−2)

|•)

p(ζ
∗(l−1)
(2,J−2)

|y,δ,σ2
ε ,{ϕi}) MV t(ζ

∗(p)
(2,J−2)

|•)
, 1).

Practically, the ap value is compared with a draw u from the uniform

U(0, 1). If ap > u, ζ
∗(p)
(2,J−2) is accepted at the l-th iteration; otherwise set

ζ
∗(l)
(2,J−2) = ζ

∗(l−1)
(2,J−2).

P (ψi = m|•)

The weights qi0 and qim are given respectively by

qi0 ∝ a
∫
f(ui|ϑi)dG0(ϑi) , qim ∝ n

(i)
m f(ui|ϑ∗(i)m ).

The term qi0 is proportional to the precision parameter a times the

marginal density of the latent error term ui. The marginal density follows

by integrating over ϑi, under the baseline prior G0. If we first integrate out

µi we have f(ui|σ2
i ) = N(ui|µ0, (1 + τ0)σ2

i ). By integrating out σ2
i as well, we

obtain a Student-t distribution. So, the two-dimensional integral is given by∫ ∫
f(ui|µi, σ2

i )p(µi, σ
2
i )dµidσ

2
i = qt(ui|µ0, (1 + τ0)f0/e0, e0) where µ0 is the

mean, e0 is the degrees of freedom and the remaining term (1 + τ0)f0/e0 is the

scale factor.

The term qim is proportional the normal distribution of ui evaluated at

ϑ
∗(i)
m , m = 1, ...,M (i). In other words, qim ∝ n

(i)
m exp(−1

2

(
ui − µ∗(i)m

)2

/σ
∗2,(i)
m ).

P (ϑ∗m = (µ∗m, σ
∗2
m ))|•)

The accelerating step implies generating draws for each ϑ∗m, m = 1, ...,M from
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p(µ∗m, σ
∗2
m |{ui }i∈Fm , µ0, τ0, e0, f0) ∝

N(µ∗m|µ0, τ0σ
∗2
m )IG(σ∗2m | e02 ,

f0
2

)
∏
i∈Fm

p(ui|µ∗m, σ∗2m )

∝ (σ∗2m )− (
e0
2

+1) exp(− f0
2σ∗2m

)×

(σ∗2m )−(nm+1
2

) exp

(
−1

2

[
(µ∗m−µ0)2

τ0σ∗2m
+

∑
i∈Fm

(ui−µ∗m)2

σ∗2m

])
. (A.2)

Using (A.2) and the identities∑
i∈Fm

(ui − µ∗m)2 = nm(µ∗m − 1
nm

∑
i∈Fm

ui)
2 +

∑
i∈Fm

(ui − 1
nm

∑
i∈Fm

ui)
2

and

τ−1
0 (µ∗m − µ0)2 + nm(µ∗m − 1

nm

∑
i∈Fm

ui)
2 =

(τ−1
0 +nm)(µ∗m−µnm)2 +τ−1

0 nm( 1
nm

∑
i∈Fm

ui−µ0)2/(τ−1
0 +nm)

where µnm = (τ−1
0 µ0 +

∑
i∈Fm

ui)/(τ
−1
0 + nm), we derive the posteriors of µ∗m and

σ∗2m given in subsection 2.6.1.

Furthermore, each new cluster is drawn from p(ϑi|ui, µ0, τ0, e0, f0) that

has the following joint posterior kernel:

p(µi, σ
2
i |ui, µ0, τ0, e0, f0) ∝ IG(σ2

i | e02 ,
f0
2

)N(µi|µ0, τ0σ
2
i )p(ui|µi, σ2

i )

∝ (σ2
i )
− (

e0
2

+1) exp(− f0
2σ2
i
)×

(σ2
i )
−( 1+1

2
) exp

(
−1

2

[
(ui−µi)2

σ2
i

+ (µi−µ0)2

τ0σ2
i

])
. (A.3)

Using (A.3) and the identity

τ−1
0 (µi − µ0)2 + (ui − µi)2 = (τ−1

0 + 1)(µi − µN)2 +τ−1
0 (ui − µ0)2/(τ−1

0 + 1)

where µN = (τ−1
0 µ0 + ui)/(τ

−1
0 + 1), we derive the posteriors of µi and σ2

i

given in subsection 2.6.1.
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Appendix B

Analytical derivation of the

MCMC algorithm for chapter 3

p(β|•) :

The posterior kernel of β is given by

p(β|B,β0,α,h,y
∗,θ) ∝ exp(−1

2
(β − β0)′B−1(β − β0))

×
T∏
t=1

exp(− 1
2 exp(ht)λ2t

(y∗t − x′tβ − z′tαt − µt)
2).

p(Σ|•) :

The posterior kernel of Σ is given by

p(Σ|δ,∆,α) ∝
T−1∏
t=1

|Σ|−1/2 exp(−1
2
(αt+1 −αt)

′Σ−1(αt+1 −αt))

× |Σ|−(δ+p+1)/2 exp(−1
2
tr (∆Σ−1)).

p(σ2
η|•) :

The posterior kernel of σ2
η is given by
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p(σ2
η|va, vβ, φ,h) ∝σ2−(va/2+1)

η exp(− vβ
2σ2
η
)× 1

(σ2
η)1/2

exp(− h12(1−φ2)
2σ2
η

)

×
T−1∏
t=1

1
(σ2
η)1/2

exp(− (ht+1− φht)2

2σ2
η

).

p(α|•) :

The state space model (3.3.1.1) can be rewritten as

ỹt
∗ = Ztαt + Gtet, t = 1, ..., T

αt+1 = Ttαt + Htet, t = 1, ..., T − 1 (B.1)

where Zt = z′t, Gt = (λt exp(ht/2), 0′p), Ht = (0p,Σ
1/2), H1 = (0p,Σ

1/2
1 ),

Tt = Ip, GtH
′
t = 0 and et ∼ N(0, Ip+1); Ip is an identity matrix of dimension

p× p and 0p is a zero vector of dimension p× 1.

To sample the state vector α from p(α|β,Σ,y∗,h,θ), we exploit the

simulation smoothing algorithm of De Jong and Shephard (1995). Define at =

E(αt|Ỹ∗t−1) and Pt = V ar(αt|Ỹ∗t−1), where Ỹ∗t−1 = {ỹ1
∗, ..., ỹ∗t−1}. We apply

the Kalman filter which is described by the following set of equations

νt = ỹt
∗ − Ztat, Ft = ZtPtZ

′
t + GtG

′
t, at+1 = Ttat+ Ktνt,

Kt = TtPtZ
′
tF
−1
t , Pt+1 = TtPtL

′
t + HtH

′
t, Lt = Tt −KtZt

that we run recursively for t = 1, ..., T. The Kalman filter is initialized with

a1 = 0 and P1 = H1H
′
1.

We, then, use the simulation smoother to sample υ = (υ0, ...,υt) from

p(υ|β,Σ,y∗,h,θ) where υt = Htet for t = 1, ..., T . To this end, we save the

quantities νt, Ft and Lt obtained from the Kalman filter and apply the following

simulation state smoother:

126



Setting %T = 0, UT = 0 and Λt = HtH
′
t, run the following equations for

t = T, ..., 2:

Ct = Λt −ΛtUtΛt, Vt = ΛtUtLt, ωt ∼ N(0,Ct), υt = Λt%t + ωt,

%t−1 = Z′tF
−1
t νt+L′t%t−V′tC

−1
t ωt, Ut−1 = Z′tF

−1
t Zt+L′tUtLt+V′tC

−1
t Vt.

For t = 1 (initial state), draw υ1=Λ1%1 + ω1, ω1 ∼ N(0,C1), C1 =

Λ1 −Λ1U1Λ1.

Having drawn υ, we use the state equation of the model (B.1) with Htet

replaced by υt to compute αt.

p(h|•) :

To sample from the joint posterior distribution p(h1, ..., hT |φ, σ2
η,α,β,θ,y

∗),

we divide the volatility vector (h1, ..., hT ) into K + 1 blocks (hkj−1+1, ..., hkj) for

j = 1, ..., K+1. The initial and the last stochastic knot are both known; that is,

k0 = 0 and kK+1 = T respectively. The remaining stochastic knots (k1, ..., kK)

change in every iteration and are determined by the following formula

kj = int {T (j + Uj)/(K + 2) } , j = 1, ..., K

where Uj is a draw from the uniform distribution U [0, 1] while “int” denotes

the operator that rounds the quantity inside the {} to the nearest integer.

To simplify notation, define kj−1 = t − 1 and kj = t + r, t ≥ 1, r ≥ 1,

t+ r ≤ T . In order to sample the block (ht, ..., ht+r) from the posterior

p(ht, ..., ht+r|ht−1, ht+r+1, φ, σ
2
η, y

?
t , ..., y

?
t+r)
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we, first, sample the corresponding block of state errors (ηt−1, ..., ηt+r−1) from

the posterior

p(ηt−1, ..., ηt+r−1|ht−1, ht+r+1, φ, σ
2
η, y

?
t , ..., y

?
t+r) (B.2)

and then obtain the posterior values (ht, ..., ht+r), using the volatility equation

in model (3.3.1.2).

For the last block of state errors, that is, when t+ r = T , the log of the

posterior density (B.2) can be written as1

log p(ηt−1, ..., ηt+r−1|ht−1, σ
2
η, y

?
t , ..., y

?
t+r)= const.+

∑t+r
s=t log p(y?s |hs)+∑t+r−1

s=t−1 log p(ηs|σ2
η).

= const.+
∑t+r

s=t

[
−hs

2
− y2?s

2
exp(−hs)

]
− 1

2σ2
η

∑t+r−1
s=t−1 η

2
s .

The logarithm of this posterior density is approximated by taking the

second order Taylor expansion of

l(hs) = log p(y?s |hs) = −hs
2
− y2?s

2
exp(−hs)

around hs = ĥs; namely,

log p(ηt−1, ..., ηt+r−1|ht−1, σ
2
η, y

?
t , ..., y

?
t+r) ≈

const.+
∑t+r

s=t

[
l(ĥs) + (hs − ĥs)l′(ĥs) + 1

2
(hs − ĥs)2l′′(ĥs)

]
− 1

2σ2
η

∑t+r−1
s=t−1 η

2
s .

= log g(ηt−1, ..., ηt+r−1)

where l′(ĥs) = dl(ĥs)
dhs

= 1
2

[
y2?
s exp(−ĥs)− 1

]

and l′′(ĥs) = d2l(ĥs)
dh2s

= − y2?s
2 exp(ĥs)

.

1Note that the term ht+r+1 is excluded in the condition.
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When t+ r < T , the log of the posterior density (B.2) can be written as

log p(ηt−1, ..., ηt+r−1|ht−1, ht+r+1, σ
2
η, φ, y

?
t , ..., y

?
t+r) =

const.+
∑t+r

s=t log p(y?s |hs)+
∑t+r−1

s=t−1 log p(ηs|φ, σ2
η) + log p(ht+r+1|ht+r, φ, σ2

η)

= const.+
∑t+r

s=t

[
−hs

2
− y2?s

2
exp(−hs)

]
+
∑t+r−1

s=t−1 log p(ηs|φ, σ2
η)

− 1
2σ2
η
(ht+r+1 − φht+r)2

where

log p(ηs|φ, σ2
η)


− 1

2σ2
η
η2
s if s > 0

−(1−φ2)η02

2σ2
η

if s = 0

Similarly to the case for t+ r < T , we have the following approximation,

log p(ηt−1, ..., ηt+r−1|ht−1, ht+r+1, σ
2
η, φ, y

?
t , ..., y

?
t+r) ≈

const.+
∑t+r

s=t

[
l(ĥs) + (hs − ĥs)l′(ĥs) + 1

2
(hs − ĥs)2l′′(ĥs)

]
+

∑t+r−1
s=t−1 log p(ηs|φ, σ2

η)− 1
2σ2
η
(ht+r+1 − φht+r)2.

= log g(ηt−1, ..., ηt+r−1).

The density g(ηt−1, ..., ηt+r−1) can be considered as the posterior density

of (ηt−1, ..., ηt+r−1) from the following linear Gaussian state space model

h?s = hs + ξs, ξs ∼ N(0, σ2?
s ), s = t, ..., t+ r

hs+1 = φhs + ηs, ηs ∼ N(0, σ2
η), s = t− 1, ..., t+ r− 1 (B.3)

with cov(ξs, ηs) = 0, where ηt−1 ∼ N(0, σ2
η) when t ≥ 2 and ηt−1 ∼ N(0, σ2

η/(1−
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φ2)) when t = 1. The quantities σ2?
s and h?s are defined as follows:

1) For s = t, t+ 1, ..., t+ r − 1 and s = t+ r = T

σ2?
s = − 1

l′′(ĥs)
and h?s = ĥs + σ2?

s l
′(ĥs).

2) For s = t+ r < T ,

σ2?
s = 1

−l′′(ĥs)+φ2/σ2
η

and h?s = σ2?
s {l′(ĥs)− l′′(ĥs)ĥs + φht+r+1/σ

2
η}.

Case 2 is due to Watanabe and Omori (2004).

In order to sample (ηt−1, ..., ηt+r−1) from the posterior g, we apply the

simulation smoother of De Jong and Shephard (1995) to model (B.3). But

since g is an approximation of p(ηt−1, ..., ηt+r−1|•), the Acceptance-Rejection

method for sampling from (B.2) is inapplicable. To sample from (B.2), Shephard

and Pitt (1997) used, instead, the Metropolis-Hasting Acceptance-Rejection

method, proposed by Tierney (1994). This method is also explained by Chib

and Greenberg (1995).

We also calculate (ĥt, ..., ĥt+r) as the posterior mode. This mode is ob-

tained as follows: Choose a starting value of (ĥt, ..., ĥt+r) and calculate (σ2?
t , ..., σ

2?
t+r)

and (h?t , ..., h
?
t+r). Then, apply the disturbance smoother of Koopman (1993)

to (A.3) to obtain new values of (ĥt, ..., ĥt+r). Use these values to update

(σ2?
t , ..., σ

2?
t+r) and (h?t , ..., h

?
t+r) and then apply again the disturbance smoother.

After some repetitions, we obtain the approximated posterior mode of (ht, ..., ht+r).

p(φ|•) :

To ensure that φ is restricted in the stationary region, we assume that (φ +

1)/2 ∼ Beta(φa, φβ) so that the prior on φ, denoted by p(φ), has support on

(−1, 1). The posterior of φ is

p(φ|σ2
η,h) ∝ p(φ)×

√
1− φ2× exp(− h12(1−φ2)

2σ2
η

)×
T−1∏
t=1

exp(− (ht+1− φht)2

2σ2
η

)

130



The last two terms of this posterior correspond to the kernel of the normal

distribution N(µφ, σ
2
φ) with mean µφ =

T−1∑
t=1

htht+1/
T−1∑
t=2

h2
t and variance σ2

φ =

σ2
η/
T−1∑
t=2

h2
t .

We can not sample directly from p(φ|σ2
η,h) as it has a non-standard

density. To circumvent this problem, we use an independence Metropolis-

Hasting algorithm. At the ith iteration we generate proposed values φ∗(p)

from N(µφ, σ
2
φ). Then, provided that |φ∗(p)| < 1 and given the accepted value

φ(i−1) from the previous (i − 1)th iteration, we accept φ∗(p) as a valid current

value (φ(i) = φ∗(p)) with probability

ap(φ
(i−1), φ∗(p)) = min

(
p(φ∗(p))

√
1−φ2∗(p)

p(φ(i−1))
√

1−φ2(i−1)
, 1

)
.

Practically, the ap(φ
(i−1), φ∗(p)) value is compared with a draw u from

the uniform U(0; 1): If ap(φ
(i−1), φ∗(p)) > u accept φ∗(p) at the i-th iteration;

otherwise set φ(i) = φ∗(i−1).

p(ζ∗(2,J−2)|•) :

We want to sample from the joint posterior

p(y∗, ζ∗(2,J−2)|y,β,α,θ,h) = p(ζ∗(2,J−2)|y,β,α,θ,h)

×p(y∗|ζ∗(2,J−2),y,β,α,θ,h).

The full conditional distribution of the cutpoints ζ(2,J−2) is given by

p(ζ(2,J−2)|y,β,α,θ,h) ∝
∏
t:yt=2

P (ζ1 < y∗t ≤ ζ2)

×... ...×
∏

t:yt =J−1

P (ζJ−2 < y∗t ≤ ζJ−1).
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The Jacobian of the transformation of ζ(2,J−2) to ζ∗(2,J−2) is
J−2∏
j=2

(1−ζj−1) exp ζ∗j
(1+exp ζ∗j )2

.

Therefore, the conditional distribution of p(ζ∗(2,J−2)|y,β,α,θ,h) is defined as

p(ζ∗(2,J−2)|y,β,α,θ,h) = p(ζ∗(2,J−2))p(ζ(2,J−2)|y,β,α,θ,h)×
J−2∏
j=2

(1−ζj−1) exp ζ∗j
(1+exp ζ∗j )2

.

This kernel has a nonstandard density. Hence, in order to sample from

p(ζ∗(2,J−2)|•) we use a Metropolis-Hasting step; the multivariate Student-t dis-

tribution MV t(ζ∗(2,J−2)| ̂ζ∗(2,J−2), cΣ̂ζ∗(2,J−2)
, v) is used as a proposal distribution

where ̂ζ∗(2,J−2) = arg max p(ζ∗(2,J−2)|y,β,α,θ,h) is defined to be the mode of

the right hand side of p(ζ∗(2,J−2)|•) and the term

Σ̂ζ∗(2,J−2)
=

[(
− ϑ2 log p(ζ∗(2,J−2)|•)

ϑζ∗(2,J−2)ϑζ
∗′
(2,J−2)

)
ζ∗(2,J−2)=

̂ζ∗(2,J−2)

]−1

is the inverse of the negative Hessian matrix of log p(ζ∗(2,J−2)|•), scaled by some

arbitrary number c > 0. The term v is the degrees of freedom and is specified

arbitrarily at the onset of the programming along with the scalar c and the other

priors. We use both c and v in order to achieve the desired M-H acceptance rate

by regulating the tail heaviness and the covariance matrix of the multivariate

Student-t proposal distribution. Notice that a very small v or a very large value

of c can lead to a very low acceptance rate.

The M-H algorithm for updating the ζ∗(2,J−2) works as follows.

1) Let ζ
∗(l−1)
(2,J−2) be the accepted value of ζ∗(2,J−2) at the previous (l−1-th) iteration.

2) At the l-th iteration generate a proposed value ζ
∗(p)
(2,J−2) from MV t(ζ

∗(p)
(2,J−2)|•)

3) The transition probability from ζ
∗(l−1)
(2,J−2) to ζ

∗(p)
(2,J−2) is

ap(ζ
∗(l−1)
(2,J−2), ζ

∗(p)
(2,J−2)) = min(

p(ζ
∗(p)
(2,J−2)

|y,β,α,θ,h) MV t(ζ
∗(l−1)
(2,J−2)

|•)

p(ζ
∗(l−1)
(2,J−2)

|y,β,α,θ,h) MV t(ζ
∗(p)
(2,J−2)

|•)
, 1).

4) Generate a draw u from the uniform U(0, 1). If ap > u set ζ
∗(l)
(2,J−2) = ζ

∗(p)
(2,J−2);
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otherwise set ζ
∗(l)
(2,J−2) = ζ

∗(l−1)
(2,J−2).

p(ϑ∗m|•)

The accelerating step implies generating draws for each ϑ∗m, m = 1, ...,M from

p(µ∗m, λ
∗2
m |{εt}t∈Fm , {ht}t∈Fm , µ0, τ0, e0, f0 ∝

N(µ∗m|µ0, τ0λ
∗2
m )IG(λ∗2m | e02 ,

f0
2

)
∏
t∈Fm

p(εt|ht, µ∗m, λ∗2m )

∝ (λ∗2m )−(
e0
2

+1) exp(− f0
2λ∗2m

)×

(λ∗2m )−(nm+1
2

) exp

(
−1

2

[
(µ∗m−µ0)2

τ0λ∗2m
+

∑
t∈Fm

[(εt−µ∗m)2 exp(−ht)]

λ∗2m

])
(B.4)

Using (B.4) and the identities

∑
t∈Fm

[(εt − µ∗m)2 exp(−ht)] =
∑
t∈Fm

[εt exp(−ht/2)− ε̃t exp(−ht/2)]2 +

(ε̃t − µ∗m)2
∑
t∈Fm

exp(−ht)

and

τ−1
0 (µ∗m − µ0)2 + (ε̃t − µ∗m)2

∑
t∈Fm

exp(−ht) = [τ−1
0 +

∑
t∈Fm

exp(−ht)](µ∗m − µnm)2+

τ−1
0 (ε̃t − µ0)2

∑
t∈Fm

exp(−ht)/[τ−1
0 +

∑
t∈Fm

exp(−ht)]

where ε̃t =

∑
t∈Fm

εt exp(−ht)∑
t∈Fm

exp(−ht) and µnm =
µ0+τ0

∑
t∈Fm

εt exp(−ht)

1+τ0
∑

t∈Fm
exp(−ht) , we derive the posteriors

of µ∗m and λ∗2m given in subsection 3.3.1.

Furthermore, each new cluster is drawn from p(ϑt|εt, ht, µ0, τ0, e0, f0) that

has the following joint posterior kernel

p(µt, λ
2
t |εt, ht, µ0, τ0, e0, f0) ∝ IG(λ2

t | e02 ,
f0
2

)N(µt|µ0, τ0λ
2
t )p(εt|ht, µt, λ2

t )

∝ (λ2
t )
−(

e0
2

+1) exp(− f0
2λ2t

)×(λ2
t )
−( 1+1

2
) exp

(
−1

2

[
(εt−µt)2
exp(ht)λ2t

+ (µt−µ0)2

τ0λ2t

])
(B.5)
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Using (B.5) and the identity

τ−1
0 (µi − µ0)2 + exp(−ht)(εt − µt)2 = [τ−1

0 + exp(−ht)](µt − µN)2+

τ−1
0 exp(−ht)(εt − µ0)2/[τ−1

0 + exp(−ht)]

where µN = µ0+exp(−ht)τ0εt
1+exp(−ht)τ0 we derive the posteriors of µt and σ2

t given in sub-

section 3.3.1
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Appendix C

Probability distributions

In this appendix I define some of the p.d.f.s that I used in my thesis.

Inverse Gamma distribution: The p.d.f of the inverse gamma distribution is

defined as

f(x; a, b) =
ba

Γ(a)
x
−(a+1)

exp(− b
x

), x, a, b > 0

where Γ(·) is the gamma function.

Gamma distribution: The p.d.f of the gamma distribution is defined as

f(x; a, b) =
ba

Γ(a)
x
a−1

exp(−bx), x, a, b > 0

where Γ(·) is the gamma function.

Inverse-Wishart distribution: The p.d.f of the inverse-Wishart distribution is

defined as
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f(H; ∆, δ) =
|∆| δ2

2
δp
2

Γp( δ
2

)
|H|−

δ+p+1
2 exp(−1

2
tr
(
∆H−1

)
)

where H and ∆ are p× p positive definite matrices, δ > 0 denotes the degrees

of freedom and Γp(·) is the multivariate gamma function.

Multivariate Student-t distribution: The p.d.f of the multivariate Student-t dis-

tribution is defined as

ft(x;µ,Σ, v) =
v
v
2 Γ(v+k

2
)

π
k
2 Γ(v

2
)
|Σ|−

1
2 [v + (x− µ)′Σ−1(x− µ)]−

v+k
2

where Σ is a k × k positive definite matrix, µ is a k-vector, v > 0 denotes the

degrees of freedom and Γ(·) denotes the gamma function. For k = 1 we obtain

the univariate Student-t distribution.
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