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Abstract

The determination of protein structure and the exploration of protein folding landscapes are two of the

key problems in computational biology. In order to address these challenges, both a protein model that

accurately captures the physics of interest and an efficient sampling algorithm are required.

The first part of this thesis documents the continued development of CRANKITE, a coarse-grained

protein model, and its energy landscape exploration using nested sampling, a Bayesian sampling algo-

rithm.

We extend CRANKITE and optimize its parameters using a maximum likelihood approach. The

efficiency of our procedure, using the contrastive divergence approximation, allows a large training set

to be used, producing a model which is transferable to proteins not included in the training set.

We develop an empirical Bayes model for the prediction of protein β-contacts, which are required

inputs for CRANKITE. Our approach couples the constraints and prior knowledge associated with β-

contacts to a maximum entropy-based statistic which predicts evolutionarily-related contacts.

Nested sampling (NS) is a Bayesian algorithm shown to be efficient at sampling systems which exhibit

a first-order phase transition. In this work we parallelize the algorithm and, for the first time, apply

it to a biophysical system: small globular proteins modelled using CRANKITE. We generate energy

landscape charts, which give a large-scale visualization of the protein folding landscape, and we compare

the efficiency of NS to an alternative sampling technique, parallel tempering, when calculating the heat

capacity of a short peptide.

In the final part of the thesis we adapt the NS algorithm for use within a molecular dynamics

framework and demonstrate the application of the algorithm by calculating the thermodynamics of all-

atom models of a small peptide, comparing results to the standard replica exchange approach. This

adaptation will allow NS to be used with more realistic force fields in the future.
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Chapter 1

Introduction

This introductory chapter is comprised of five sections. The first section introduces the reader to the

standard statistical mechanics and thermodynamics concepts used throughout this work. The second

section considers the existing techniques for sampling atomistic models. The third and fourth sections

discuss protein science and the problem of protein structure prediction, reviewing the current computa-

tional protein literature. Finally, the last section summarizes the thesis project, describing the content

of the following chapters.

1.1 Statistical Mechanics and Thermodynamics

In this section, standard equilibrium statistical mechanics and statistical thermodynamic concepts used

throughout this thesis are introduced and formulae are stated without derivations. The reader is referred

to standard texts, for example (1, 2), for a full exposition of the theory.

Thermodynamics is the study of heat and its relationship to energy and work. The theory was

developed in the 19th century and the laws of thermodynamics are some of the most elegant and uni-

versal throughout science. The theory concerns the macroscopic properties of systems, for example,

temperature, pressure and volume, and how they change when heat is transferred into or out of the

system.

Equilibrium statistical mechanics seeks to explain equilibrium thermodynamic results as statistical

averages of the behaviour of a large number of particles without being concerned with individual particle

motions. However, we begin by considering the behaviour of these individual particles. Although a

complete description of the behaviour of interacting atoms requires a full quantum mechanical treatment,

in many systems, where the electron cloud does not require complete modelling, the potential energy of

a system can be well approximated using only the co-ordinates of the atomic nuclei. If such a system is

in thermal equilibrium with its surroundings, its behaviour can then be described using the Boltzmann

distribution, as discussed below.

1.1.1 Boltzmann Statistics and the Partition Function

A conformation Ω of a set of N atoms (of masses mi) comprises of a list of N 3-dimensional vectors of

atomic co-ordinates. The potential energy, EΩ, is a function of Ω, capturing the nature of interactions

between the atoms. The phase (or conformational) space of the system is defined as the set of all possible

Ω and the potential energy surface (PES) is defined as the 3N -dimensional function EΩ.
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Each atom is endowed with a momentum vector P = {p1, . . . ,pN} and the total energy of the state

{Ω,P} is defined as the sum of its potential and kinetic energies:

E(Ω,P) = EΩ +

N∑

i=1

|pi|2
2mi

.

If the system is restricted to a volume V and in thermal equilibrium with its surroundings at tem-

perature T , then it behaves according to Boltzmann statistics at inverse temperature β = 1/kBT where

kB is the Boltzmann constant (≈ 2x10−3 kcal/mol/K). The probability of finding the system in state

{Ω,P} is then given by

P({Ω,P}) ∝ exp(−E(Ω,P)β)

= exp

(
−β

N∑

i=1

|pi|2
2mi

)
exp(−EΩβ)

and the probability of the system being in conformation Ω is thus given by

P(Ω) ∝ exp(−EΩβ).

The (configuration) partition function Z(β) is defined as the normalization constant of this conforma-

tional distribution,

Z(β) =

∫
exp(−EΩβ)dΩ,

where the integral is over the 3N-dimensional conformation space. Following standard statistical theory,

the expectation of any function A(Ω) is given by

〈A〉β =
1

Z(β)

∫
A(Ω) exp(−EΩβ)dΩ.

By setting A = EΩ, the above formula yields the expectation of potential energy, named the internal (or

thermodynamic) energy, which is often denoted by U(β).

Connection to Bayesian Statistics The Boltzmann distribution can be recast in the Bayesian

probability framework by defining a likelihood function L(Ω) = exp(−EΩ), and using a prior, π(Ω),

uniform over the conformational space. The posterior distribution P (Ω) ∝ L(Ω)π(Ω) then corresponds

to the Boltzmann distribution at inverse temperature β = 1, and the normalization constant,

Z =

∫
L(Ω)π(Ω)dΩ,

also known as the marginal likelihood or ‘evidence’ in Bayesian terminology, is precisely the thermo-

dynamic partition function at the same temperature. Replacing the likelihood with Lβ(Ω) gives the

Boltzmann distribution at inverse temperature β. This correspondence allows algorithms and techniques

developed for Bayesian inference to be used with atomistic systems behaving according to Boltzmann

statistics.
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1.1.2 Statistical Thermodynamics

In the previous section we looked at how the microscopic properties of a system change with changing

temperature, namely the probability of the system taking a specific conformation. In this section we

are concerned with the macroscopic properties of a system, such as pressure and heat capacity. Unlike

microscopic properties, macroscopic properties can often be measured experimentally, so when comparing

computer simulations to experiments, their calculation is crucial. As shown below, the partition function,

Z(β), is of fundamental importance in linking the microscopic and macroscopic scales. For example, the

average energy U is given by −∂ logZ/∂β.

A macroscopic state is a set of microscopic conformations. For example, in the case of water we

could define the macroscopic states of ‘ice’, ‘liquid water’ and ‘water vapour’. ‘Ice’ would consist of all

conformations Ω, for which the water molecules are placed in a regular crystal lattice. A natural question

is, given that the system has temperature T , what is the probability the system is found in a particular

macrostate? In the case of a system with two macrostates, X and Y , using the Boltzmann distribution

we find

P(X) =

∫
Ω∈X exp(−EΩβ)dΩ

Z(β)

and the (Helmholtz) free energy of state X, FX , is given by

FX = −
log
(∫

Ω∈X exp(−EΩβ)dΩ
)

β
.

The probability of state X is thus given by

1

1 + exp(−β(FY − FX))
,

where FY is the free energy of state Y .

The free energy difference, FY −FX , determines the relative probabilities, and due to the exponential

in the formula, if the difference is large then the system will be found in the state with smallest free

energy with a probability of effectively 1. Hence the system minimizes its free energy.

Macroscopic states do not have to have categorical labels. For example, macrostates could be labelled

by the real number d, where d is the distance between two specific atoms. The chosen labels are known

as reaction co-ordinates. The calculation and visualization of the free energy landscape – that is, the

function which maps reaction co-ordinates to their free energies at a given temperature – can be an

important step in understanding the thermodynamics of the system (3).

The absolute free energy of the whole system, A = − logZ/β, is an important thermodynamic variable

and it can be shown that A = U − ST , where S is the entropy of the system, given by −∂A/∂T when

the volume of the system and its number of particles are kept fixed.1

Intuitively, a macroscopic state which comprises of a larger number of conformations has a higher

entropy than a state which is comprised of fewer conformations. Returning to our two-state system, let Y

correspond to liquid water and X to ice. In this case, Y is comprised of a large number of conformations

of (relatively) high energy and thus has high entropy and high internal energy. Conversely X is comprised

of a (relatively) small number of conformations of low energy and thus has low entropy and low internal

energy.

1As with all thermodynamic variables, many equivalent definitions exist. The one given here relates to the constant
volume and number of particles formulation that has been followed thus far and hence does not require the introduction
of further terms.
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In thermal equilibrium at low temperatures, Fi ≈ Ui and hence FX � FY and we have ice. However,

at high temperatures, as Fi = Ui − TSi, entropic effects are more important and hence FY � FX and

the system is liquid. The special temperature of 0◦C corresponds to the case FX = FY and the system

is said to undergo a phase transition at this temperature. Phase transitions are discussed further in the

next section.

The (constant volume) heat capacity

Cv =
∂U

∂T
≡ kBβ2 ∂

2 logZ

∂β2
≡ kBβ2(〈E2

Ω〉β − 〈EΩ〉2β)

corresponds to the amount of energy that must be input into the (fixed volume) system in order to increase

its temperature. Two equivalent definitions are shown, one a derivative of the logarithm of the partition

function, the other closely related to the fluctuations of the potential energy of the Boltzmann distributed

system. The heat capacity is of particular interest as it can be directly measured experimentally.

Other thermodynamic variables of interest can also be calculated, given the free energy (or equiv-

alently the logarithm of the partition function), for example the pressure of the system is given by

p = −∂A/∂V when the temperature and number of particles are kept fixed.

Other Thermodynamic Distributions

The Boltzmann distribution and thermodynamic formulae described above assume the number of

particles (N), the total volume (V ) and the temperature (T ) of the system are all kept constant. This

distribution is often called the canonical or NVT distribution. By changing the quantities kept constant,

other important thermodynamic distributions can be derived and examples are shown in Table 1.1.

Although it is possible to perform experiments keeping N , V and T fixed, for example by using a

bomb calorimeter, it is much more typical to keep the pressure rather than volume constant, hence the

importance of the isothermal-isobaric ensemble.

For a system in isothermal-isobaric equilibrium, analogous thermodynamic variables to those de-

scribed above can be defined. For example, the system minimizes its Gibbs free energy G = U+pV −TS.

Analogous to the internal energy U is the enthalpy H = U + pV , and the (constant pressure) heat ca-

pacity, Cp, is defined as ∂H/∂T . For the systems we consider, where volume per molecule is small and

we are at low (atmospheric) pressure, pV is negligible compared to U and so H ≈ U and G ≈ A.

Distribution Constants Partition Function State Function
Microcanonical N,V,E W (# states) Entropy

S = kB logW
Canonical N,V,T Z =

∫
exp(−EΩβ)dΩ Helmholtz free energy

A = − logZ/β = U − ST
Grand canonical µ,V,T Z =

∑
Ni
Z exp(Niµβ) Grand potential

− logZ/β
Isothermal-isobaric N,p,T ∆ ∝

∫
Z exp(−βPV )dV Gibbs free energy

G = − log ∆/β = A+ pV

Table 1.1: A list of the common thermodynamic distributions, their constants, partition functions and
macroscopic state functions. µ is the chemical potential defined as ∂A/∂N when volume and temperature
are kept fixed.
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1.1.3 Phase Transitions

From an intuitive perspective, phase transitions are abrupt changes of macroscopic properties of a system

with changing external conditions. For example, the decrease in temperature of a liquid can lead the

system to freeze into a solid, and lowering the temperature of a paramagnetic material below its Curie

point causes an abrupt transformation from paramagnetism to ferromagnetism, i.e. having a magnetic

moment. Phase transitions also occur in more abstract branches of science; for example, in random

graph theory, as the probability of edges increases above a critical threshold, the probability of there

being a single connected component abruptly approaches 1. Mathematical theories, for example Mean–

field theory and Ginzburg-Landau theory, have been developed in order to explain the behaviour of

systems at phase transitions and we refer the reader to standard texts for full descriptions (2, 4).

From a (constant NVT) statistical mechanics perspective, a phase transition occurs when the Helmholtz

free energy is non-analytic. If the first derivative of A is discontinuous, then the phase transition is first

order, whereas if the first derivative is continuous but its second derivative is discontinuous, then the

transition is described as second order. Examples of first order transitions include the melting of ice

and boiling of water. Examples of second order phase transitions include the ferromagnetic transition

from paramagnetism to ferromagnetism. Figure 1.1 shows the behaviour of the internal energy and heat

capacity of systems with first and second order phase transitions. Analogous behaviour can be found for

systems in the isobaric-isothermal distribution with G replacing A.

Tc

Tc

U

C
v

Tc

Tc

U

C
v

Figure 1.1: Left: Behaviour of the internal energy (top) and heat capacity (bottom) of a system with a
first order phase transition at temperature Tc. Right: Behaviour of the internal energy (top) and heat
capacity (bottom) of a system with a second order phase transition at temperature Tc.
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The phase transitions described above involve bulk systems with enormous numbers of degrees of

freedom, yet these systems cannot be modelled computationally in atomic detail. Only the behaviour

of smaller (or periodic) systems with fewer degrees of freedom can be studied computationally. These

systems, or indeed any finite system, cannot exhibit a true first order phase transition, with a genuine

discontinuity in internal energy. They can, however, exhibit a quasi-first order transition, where the Cv

curve is sharply peaked but remains finite and the U versus T graph is sigmoidal rather than discontinuous

(Figure 1.2 (left)). Typically as N,V → ∞ with N/V remaining constant, the transition becomes

‘sharper’, i.e. the Cv peak is higher and occurs over a shorter temperature range, and rapidly approaches

a true first order transition in the thermodynamic limit.

Finally, we consider how the probability distribution of the potential energy behaves at a first order

phase transition (5). Firstly, away from the phase transition, it can be shown that the distribution

is Gaussian, with mean U(T ) as shown by Figure 1.2 (a,e). Near the critical temperature, Tc, the

distribution is no longer unimodal and non-negligible probability mass is found around two separate

energy values UX and UY , the average energy of the system at this temperature, given that the system is

restricted to phase X or respectively Y. This is shown by Figure 1.2 (b,d). At Tc the probability of being

found in phase X is exactly a half as shown in Figure 1.2 (c). At Tc the free energy of the small number

of low energy states of phase X exactly balances the free energy of the large number of high energy states

of phase Y. As we show below, this behaviour causes serious difficulties when computationally sampling

from such a system.

Figure 1.2: Left: The internal energy (U) as a function of temperature for a system exhibiting a quasi–
first order transition at temperature Tc. Right: The potential energy probability distribution for this
system at five different temperatures A) T � Tc B) T < Tc C) T = Tc D) T > Tc E) T � Tc

1.2 Sampling of Atomistic Systems

Given a molecular model and potential energy function EΩ, we are often interested in calculating kinetic

and thermodynamic properties of the system, in order to compare to an experiment, to compare to other,

often similar, systems or to provide new insight into how the system behaves when changing its external

conditions. Kinetic, or dynamic, properties of the system, such as diffusion and equilibration rates, are

6



time-dependent properties, whereas thermodynamic averages, such as free energies, are time-independent

properties of the system when it is in equilibrium. In order to calculate these properties, it is necessary

to evolve the state of the system and draw samples for analysis.

In this section we introduce the important sampling techniques of molecular dynamics and Monte

Carlo sampling. We then describe the sampling problem associated with sampling from Boltzmann

distributions and discuss methods which attempt to solve this problem. We end the section with a

description of nested sampling, a new sampling technique developed for Bayesian inference, which has

shown potential for improving the sampling of atomistic systems.

However, we first briefly mention molecular models and their energy functions. A model of a molecule

consists of a series of atoms and information as to how they are covalently bonded, together with a set

of parameters such as atomic charges, bond lengths and valence angles. A model of a system consists of

a set of molecule models together with details of boundary conditions, system volume, size and shape.

The potential energy function of physical models comprises of three separate terms

EΩ = Ebonded
Ω + Enon-bonded

Ω + Eexternal
Ω .

Ebonded
Ω captures the energetic interactions between covalently bonded atoms. These interactions include

bond stretching, usually modelled with a harmonic function, valence angle bending and bond rotations.

Enon-bonded
Ω captures interactions between non-covalently bonded atoms, for example, electrostatic inter-

actions, using a Coloumb potential, and van der Waals interactions, often modelled by a Lennard Jones

(LJ) potential.2 Eexternal
Ω consists of terms external to the set of atoms, such as the energy from an

external magnetic field. We discuss specific models for proteins in §1.3.4 and the reader is referred to

(6) for more details of general molecular models.

1.2.1 Molecular Dynamics Sampling

First developed computationally in the late 1950s by Alder and Wainwright (7), molecular dynamics

(MD) evolves the state of the system by integrating Newton’s equations of motion. Given the potential

energy function EΩ, initial atomic co-ordinates Ω(0) = {xi(0)} and velocities {vi(0)}, we have

mi
d2xi
dt2

= Fi,

where the forces Fi are given by −∇xi
EΩ(x). Solving this system of differential equations leads to a

trajectory Ω(t).

It can be shown that the total energy (EΩ+kinetic energy) of the trajectory remains constant, and

therefore, assuming the ergodic hypothesis described below is satisfied, the samples generated are dis-

tributed according to the microcanonical distribution.3

When integrating the equations numerically, care must be taken to use an integration scheme which

does not introduce large discretization errors. Schemes such as the Verlocity Verlet, described in (8), are

widely used.

In the thermodynamic limit of a large number of particles, the canonical and microcanonical ensembles

coincide. However, for small systems, in order to sample their canonical distributions, a thermostat must

2If atomic distance is r, then the LJ potential is given by 4ε((σ/r)12 − (σ/r)6) where ε and σ are parameters. The
LJ potential models both short-range repulsion and the long-range attraction due to the fluctuating charge densities of
induced dipoles.

3Technical details have been omitted. For example, in non-periodic systems the angular momentum, J , is also a
constant of motion and samples come from a ‘NVEJ’ distribution.
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be used to ensure constant temperature. The Andersen thermostat (9) is a simple procedure, coupling

the system to an external heat bath to maintain the desired temperature. After each timestep, each

atom undergoes a collision with the heat bath with probability ν. A collision involves resampling the

momentum of an atom, with its new momentum sampled from the Maxwell-Boltzmann distribution4 at

the desired temperature. It can be shown that the samples generated using this procedure come from

the canonical distribution.

Other schemes, such as Langevin dynamics or the Nosé–Hoover thermostat, have also been developed.

For further details on these and sampling atomistic systems in general, we refer the reader to the excellent

discussion in (10). Barostats, which control the pressure of the system by changing its volume, have also

been developed, enabling isothermal-isobaric trajectories to be computed.

When using MD trajectories to estimate kinetic properties of the system, for example diffusion rates,

it is important to choose a thermostat and barostat which preserve the kinetics of the system. The

resampling of momenta in the Andersen thermostat described above means it cannot be used to estimate

time-dependent system properties.

As well as the calculation of kinetic properties, samples from MD trajectories can be used to estimate

thermodynamic averages. For example, given an NVT trajectory Ω(t), . . . ,Ω(Mt), the thermodynamic

energy can be estimated as

〈EΩ〉β ≈
1

M

M∑

i=1

EΩ(it)

and this will, in the limit of large M , converge to the ensemble average, assuming the ergodic hypothesis.

The ergodic hypothesis, originally formulated by Boltzmann at the end of the 19th century, proposes

that the long-time average of a property over a trajectory does indeed converge to its ensemble average.

Whilst usually assumed true, there are cases when, in practice, it does not hold, such as when the system

has long-lived metastable states.

1.2.2 Monte Carlo Sampling

An alternative to MD simulation is that of Markov Chain Monte Carlo (MC) sampling. The MC method

was devised in the 1940s and ’50s for use on some of the very first computers. We refer the reader to

(11) for an interesting historical perspective on the invention of MC methods.

The basic idea of this method is to devise a Markov chain,5 such that its equilibrium distribution is

the distribution from which we wish to sample. Again, assuming ergodicity, ensemble averages can then

be estimated from the MC samples.

We describe the Metropolis-Hastings algorithm (12), a generalization of the original Metropolis pro-

cedure (13). In order to use this method, a set of moves which evolve the state of the system must

be devised. We define P(Ω → Ω′) as the probability that, given conformation Ω, a move is chosen

which would transform it into conformation Ω′. Assuming the system is in conformation Ω and we have

proposed to evolve the chain to conformation Ω′, we accept this move with the Metropolis-Hastings

acceptance probability

min

(
1,
P (Ω′)P(Ω′ → Ω)

P (Ω)P(Ω→ Ω′)

)
,

where P (Ω) is the distribution of interest. In the case of the canonical distribution, P (Ω′)/P (Ω) =

4The marginal distribution of momenta when the system follows the canonical distribution.
5A Markov Chain is a sequence of random variables X1, X2, . . . such that P(Xk|Xk−1, Xk−2 . . . , X1) = P(Xk|Xk−1).

In atomistic systems Xi is a conformation Ωi.
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exp(−β(E′Ω − EΩ)). If we reject the move, the MC chain remains in state Ω and another move is

proposed. The equilibrium distribution of this chain is P (Ω).

The choice of the move set is an important factor in MC procedures. Since only E′Ω−EΩ is required

in order to accept or reject moves, local moves, that is those which keep most of the system fixed, are

usually more efficient; only the part of the potential energy function which involves the atoms that have

moved needs to be calculated for each iteration. Also, at low temperatures, large changes to the system

will likely be rejected. In atomistic systems, moves typically include molecular translations and rotations

and intra-molecular bending and rotation of covalent bonds.

Alongside canonical sampling, the MC procedure has been used to sample other thermodynamic

distributions, as described in (10). These even include the grand canonical ensemble, where proposal

moves include the addition or removal of atoms from the system.

Unlike MD sampling, samples generated from an MC sampler cannot be used to estimate kinetic

properties of the system but, if appropriate moves exist, MC sampling can be a very efficient way of

exploring conformation space.

1.2.3 Advanced Sampling Techniques

Unfortunately, in many cases standard MC or MD sampling is not effective. For example, in a multimodal

system with low probability of swapping between modes at temperature β, the system will become stuck

in a single mode and require an enormous runtime in order to produce accurate ensemble averages.

If we are using MD or MC to sample a system with a phase transition near the critical temperature,

for example Figure 1.2 (right C), it will be nearly impossible to equilibrate the samples between the

(relatively) small number of low energy samples with energy around UX and the large number of high

energy samples with energy near UY . This problem can occur in both multi and unimodal systems. We

return to this example in more detail below.

Furthermore, if the partition function is required, it is possible to use the samples, Ω1, . . .ΩM to

produce an estimate

Z−1 = 〈exp(EΩβ)〉β ≈
m∑

i=1

exp(EΩi
β).

However, this estimate, the ‘harmonic mean approximation’, has infinite variance at low temperatures

(14) and hence should not be used.

In order to avoid these problems, more sophisticated sampling algorithms involving MC, MD or a

combination of both techniques have been designed. In this section we discuss some of these algorithms

before introducing a novel algorithm, nested sampling, which has the potential to significantly improve

the sampling of atomistic systems.

General Sampling Algorithms

Although technically an optimization algorithm, we first describe simulated annealing (SA), as the

ideas it introduces are applicable to the sampling algorithms described below. SA was developed by

Kirkpatrick and colleagues in the early 1980s (15). The algorithm starts by exploring the conformation

space using a high temperature canonical MC chain. Gradually throughout the simulation, the temper-

ature is lowered, following a chosen schedule, until we are sampling from the canonical distribution of

the temperature of interest.

At high temperatures (low β), the factor exp(−EΩβ) is less important: in the limit of high tempera-

ture this term is constant with respect to EΩ, and exploring is easy, as it is uniform in conformational
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space. At the start of SA, the chain can explore the conformation space more easily and thus larger MC

steps can be taken. As the temperature is decreased this exponential factor becomes more important

and smaller MC steps must be taken. The system is slowly cooled, hopefully resulting in finding the

correct (free) energy minimum of the system. The slow cooling gives the a system chance to properly

equilibrate.

Once the temperature has been reduced, the conformation will eventually become stuck in a local

minimum. An adaptation of SA, the simulated tempering algorithm (16), allows increases of the tem-

perature of the system, so that the conformation is no longer trapped. Thus, when the temperature is

lowered again, the system can explore another minimum.

One of the most widely used sampling algorithms is that of parallel tempering (PT). It was first

developed by Swenson in 1986 (17) and, like SA, the temperature of the system becomes a parameter

of the algorithm. In the PT procedure, a set of separate MC chains (replicas) are run at different

temperatures in parallel. Periodically one proposes that the temperatures of two chains are swapped.

This proposal is accepted using an acceptance criterion similar to the Metropolis-Hastings criterion

described above.

A key advantage of this approach is that multimodal systems can be sampled much more efficiently.

Low temperature replicas, which would have been be trapped in local modes, can ‘escape’ by swapping

with a conformation from a chain with higher temperature. The high temperature replicas can themselves

more easily escape modes, as explained above.

The algorithm outputs samples from the canonical distribution at a variety of temperatures which can

be used to produce thermodynamic averages over a range of temperatures. Thermodynamic estimates

for other temperatures can also be estimated from these samples using a procedure such as Boltzmann

reweighting (18).

However, care must be taken to ensure enough replicas are used (order
√
N for system size N), so that

the probability of accepting proposed temperature swaps is not too small. Also, the set of temperatures

used must be chosen with care. For example, at a phase transition, more replicas are needed near

the critical temperature to ensure proper equilibration, even though the existence and location of the

transition is not known a priori.

Replica exchange molecular dynamics (REMD) (19) is the same algorithm as PT, except that instead

of each replica running an MC chain, it follows an MD trajectory. Care must be taken to rescale the

velocities after replicas have been exchanged. REMD affords the benefits of PT for systems for which

MC moves are not as efficient as MD.

REMD and PT are widely used algorithms, and various adaptations and improvements have been

developed, for example, adapting the temperature of replicas throughout the simulation in order to

maximize efficiency (20). For a general overview of PT and REMD, consult (21).

Alternative ways of combining MC and MD sampling have also been researched. As an example,

we describe the Hybrid Monte Carlo (HMC) algorithm of Duane et al. (22). The HMC algorithm is

a special MC chain, whereby proposal conformations are generated by giving the atoms of the current

conformation momenta and then running a short MD trajectory.

Perhaps counterintuitively, rather than sampling the canonical distribution directly, it may be more

efficient to sample from a non-canonical distribution and then weight samples to estimate canonical

thermodynamic averages. Algorithms which follow this approach are named biased or extended ensemble

sampling methods. As an example we describe the multicanonical sampling algorithm (23). For this

method, instead of attempting to sample conformations ∝ exp(−EΩβ), we sample ∝ 1/g(EΩ) where

g(E) =
∫

Ω
δ(EΩ − E)dΩ is the density of states (δ is the Dirac delta function).
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This choice of distribution implies that the histogram of potential energies of the samples will be flat,

so that the system is sampling ‘uniformly in energy’. This has the advantage of removing the exponential

barrier between different modes which is found with canonical sampling algorithms. However, before

being used, the algorithm requires a learning stage in order to estimate g(EΩ) and, as the system size

increases, the number of parameters which need to be estimated in order to resolve g(EΩ) accurately

can cause problems.

The challenge of estimating g(EΩ) can be overcome by a powerful non-Markovian (history-dependent)

algorithm, the Wang-Landau sampling algorithm (24), which interactively changes the Markov accep-

tance criteria to ensure that the system converges to the 1/g(EΩ) distribution.

As the exploration of phase space is such an important problem both in atomistic systems and

statistics in general, many other sampling algorithms and combinations of existing algorithms have

been developed. Examples include equi-energy sampling (25) and the 1/k ensemble algorithm (26),

a variant of the multicanonical sampling algorithm, notable in this work because it aims to sample

conformations uniformly in log phase-space volume rather than energy. We now, however, turn our

attention to sampling algorithms specifically developed for calculating the partition function or free

energies of atomistic systems.

Partition Function and Free Energy Estimation Algorithms

Within the statistical literature, algorithms have been developed for calculating the marginal like-

lihood (partition function) of models. Examples include annealed importance sampling (27), Laplace’s

method (28) and bridge and path sampling (29). Interesting discussions from a statistical viewpoint

can be found in (29, 30). Here, however, we focus on methods developed for atomistic systems. Rather

than specific values of free energies themselves, statistical physicists are typically more interested in free

energy differences, either between two separate systems or between macrostates within the same system.

Unlike thermodynamic variables such as the heat capacity, which can be calculated directly as en-

semble averages, free energies are related to volumes in conformation space (consider the definition given

in §1.1.2). This makes their calculation more challenging.

One of the most common methods for calculating free energy differences is that of thermodynamic

integration (TI) (31). As a simple example of TI, consider the case of two systems X and Y , identical

apart from the fact that X has potential energy function EXΩ and Y has potential energy function EYΩ .

Introducing a parameter λ and defining a new potential energy function

EλΩ = (1− λ)EXΩ + λEYΩ

it can be shown that the free energy difference between systems X and Y is given by

∫ 1

0

dλ

〈
∂U(λ)

∂λ

〉

λ

.

The integrand is an ensemble average which can be estimated through MC or MD sampling for different

values of λ, and numerical integration can then be used to estimate the free energy difference.

Often, it is of interest to calculate how the free energy of a system changes when a reaction co-

ordinate, a chosen function of the atomic co-ordinates such as an atomic distance or angle, is used. The

free energy surface along such a co-ordinate is known as the potential of mean force (PMF) (32). PMFs

can be challenging to compute if the surface contains high free energy barriers.

Umbrella sampling (33) is traditionally used to calculate PMFs. In this method, an extra biasing
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potential is used to force the system to sample a chosen value of the reaction co-ordinate. The procedure

is then repeated for different values of the reaction co-ordinate and reweighting these samples generates

a more accurate PMF compared to naive MD or MC sampling. In order to further improve the efficiency

of the procedure, more sophisticated reweighting techniques, such as the weighted histogram analysis

method (WHAM), have been applied to the calculation of PMFs (34).

There have also been many other approaches to the calculation of free energies, including thermo-

dynamic perturbation (35), approximate rapid methods such as λ-dynamics (36) and more specialist

algorithms specifically for the calculation of free energies of solids (37).

Nested Sampling

Nested sampling is a novel sampling algorithm invented by Skilling in 2004 in order to estimate the

marginal likelihood (i.e. the partition function) in Bayesian inference problems (38, 39). The algorithm is

designed for models for which the bulk of the posterior probability mass is contained in an exponentially

small area of the prior space. It is particularly efficient at sampling systems which undergo first order

phase transitions. The algorithm has been used in a wide variety of fields, including astrophysics (40),

system biology (41) and bioinformatics (42).

As shown in §1.1.1, Bayesian inference algorithms can be applied to atomistic systems, and nested

sampling has been shown to be an order of magnitude more efficient at calculating heat capacity curves

of small Lennard Jones clusters compared to parallel tempering (43). The nested sampling algorithm is

athermal, and when run, produces samples from throughout the whole potential energy surface of the

system. These samples can be used to estimate thermodynamic variables at any temperature. Pártay

et al. have used these samples to generate energy landscape charts, which give a high-level visualization

of the potential energy surface. They have also used these charts to define macrostates of the system

without having to pick specific reaction co-ordinates (43).

A simple description of the algorithm follows below and more details and in-depth discussions can

be found in Chapters 2, 5 and 6 of this work. The algorithm begins by choosing K samples uniformly

distributed according to the prior distribution, which in the case of atomic systems is uniform over

conformation space. These samples are the current ‘active set’ and the energy of each sample is calculated.

The conformation with the highest energy is removed from the set and its energy, E1 is saved. A new

conformation, uniformly distributed over the set of conformations with energy less than E1 is generated

and the procedure continues, generating a series of energy levels E1, E2, E3 . . ..

The algorithm does not prescribe how exactly to generate a sample uniformly distributed with energy

below Ei. One method involves making a copy of one of the conformations in the active set and then

running a MC chain to move the copy away from its starting point. In order to sample uniformly, the

standard Metropolis-Hastings acceptance criterion is replaced by a simple criterion: accept the move iff

the energy remains below the current energy cutoff, assuming the moves are such that the probability of

proposing Ω→ Ω′ and Ω′ → Ω are the same.

As explained below, one of the key advantages of nested sampling is that the phase space is shrunk

by a constant factor, α, at every iteration. By using the expected value of the shrinkage ratio, we can

estimate α ≈ exp(−1/K). Estimates for α which take into account the statistical uncertainties of the

procedure can also be used.

By defining Xi = αi, energy level Ei and the conformation removed at this energy level (Ωi) represent

a fraction ωi = Xi−1 −Xi of the prior (conformational) space and, at inverse temperature β, represent

a fraction χi(β) = ωi exp(−Eiβ)/Z(β) of the posterior (Boltzmann distributed) space. The partition
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function is estimated by numerical integration as

Z(β) ≈
∑

i

ωi exp(−Eiβ).

The expected value of any thermodynamic observable, Q(Ω), at any temperature can also be estimated

as

E(Q|β) ≈
∑

i

χi(β)Q(Ωi)

The algorithm terminates when a specific criterion is reached, for example, the estimate for Z(β)

has converged for the temperature of interest. Other criteria may be more appropriate for some systems

(39). Algorithm 1 summarizes the nested sampling algorithm.

Algorithm 1 The Nested Sampling Algorithm

1) Sample K conformations uniformly (w.r.t. conformation space), {Ω1,Ω2, . . .ΩK} and calculate their
energies {EΩ1 , EΩ2 , . . . EΩK

}.
2) Remove the conformation with highest energy from the active set; save it as (E1, X1,Ω1).
3) Generate a new conformation Ω, sampled uniformly from the conformations with energy below E1,
and add it to the active set.
4) Repeat Steps 2 and 3, generating (E2, X2,Ω2), (E3, X3,Ω3), . . ..

Sampling techniques such as parallel tempering and simulated annealing struggle to sample systems

which undergo first order transitions, such as the system shown in Figure 1.2. Starting at diagram E, SA

has to find the volume of phase space with energy Ux which has non-negligible probability mass. This

volume is exponentially small in comparison to the phase space of conformations with energy UY and

in some cases it can be effectively impossible to find it. Furthermore, going from diagram D to A, the

proportion of samples from each Gaussian needs to be kept in equilibrium. Added to this, the fact that

the temperature of the phase transition is not known a priori means the temperature schedule may miss

the transitions entirely. Similar concerns exist for PT. There may be no replicas with temperature near

Tc, and even if there are, for example if an adaptive temperature schedule is used, it can still be very

hard to equilibrate.

Phase transitions, however, are not a problem for nested sampling, which takes steps equidistant in

log phase space volume, taking smaller steps (in energy) when the space shrinks more quickly. It just

marches down from UY to UX , unaware that there was a problem for thermal methods.

In this section we have considered a variety of sampling algorithms without discussing their application

to research problems. In §1.3.6 and §1.3.7 we discuss the application of these algorithms to the study of

proteins and the results they have produced. For more details of general atomistic sampling, however,

we refer the reader to (10) and references therein.

1.3 Proteins: Modelling and Applications

1.3.1 Overview

Proteins are essential to life. Some are enzymes, catalysing cellular chemical reactions. Others are

antibodies, recognising pathogens. Yet more control transport into and out of cells or sense and act

on signals generated by the organism or environment. Regulatory proteins regulate and control cellular

processes such as gene transcription; structural proteins, such as keratin and actin, form tissue such
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as skin and muscles; and motor proteins convert chemical energy to mechanical energy, for example in

muscle contraction. The incorrect behaviour of proteins is implicated in a large range of disease such as

Alzheimer’s or Type II diabetes. The intricate three-dimensional structures of proteins are finely tuned,

through evolution, to perform their highly specialised functions. The diverse structures proteins adopt

explain the large variety of functions they are able to perform.

Protein science, the study of these molecules, is a very wide field, encompassing theory and techniques

from chemistry, molecular and cellular biology, evolutionary biology, bioinformatics, computer science

and biophysics (44). Over the last 70 years proteins have been studied both experimentally, using

techniques including X-ray crystallography (45, 46), NMR spectroscopy (47), circular dichroism (48) and

fluorescence resonance energy transfer (FRET) (49); and computationally, from simple lattice models

(50) through to full all-atom models with more realistic force fields (51).

In this work we mainly focus on globular (water-soluble) proteins. However, there is another impor-

tant class of proteins: membrane proteins. Membrane proteins are found in water-deficient environments

and hence are subject to different conditions to globular proteins and so behave differently. For example,

exposed charges, whilst often favourable in water, are severely energetically disadvantageous when in

contact with a hydrophobic (‘water-hating’) membrane.

The following sections describe the structure of proteins, the theory of protein thermodynamics,

the different types of protein models used to study proteins computationally, how the parameters of

these models are inferred and how conformations are sampled using them. Finally, there is a summary of

applications of protein models. However, discussion of an important application, that of protein structure

prediction, is deferred until later.

1.3.2 Protein Sequence and Structure

The building blocks of proteins are amino acids and there are 20 standard, proteinogenic amino acids.

With the exception of one, proline, all have a standard molecular structure (Figure 1.3 (left)) shown

with the standard atom names), differing only in their side chain. For example, glycine (code G) has a

single hydrogen side chain, whereas serine (S) has a side chain CH2-OH. The side chain of proline (P)

covalently bonds to both the Cα and N atoms; see Figure 1.4. Different side chains endow the amino

acids with different properties. For example, some amino acids are hydrophobic (‘water-hating’) and

others are hydrophilic (‘water-loving’).

A protein is a linear sequence of amino acids joined by peptide bonds (Figure 1.3 (right)) forming a

protein chain. Short protein chains are called peptides. Proteins are defined by a specific sequence of

amino acids (also called residues). An organism’s protein sequences are encoded within its DNA. The

repeating -(N-Cα-C′)- pattern denotes the protein backbone and the two ends of the protein are called

the N and C termini.

Over 50 years ago, the chemist Linderstrøm-Lang described a hierarchy of protein structure (53), the

primary, secondary and tertiary structure of a protein; these terms are defined below. A further level,

the quaternary structure, was later added to describe how separate protein chains assemble into larger

structures.

The primary structure, or sequence, of a protein is precisely an ordered list of its constituent amino

acids. Due to the polar nature of the N-H and C-O covalent bonds (H is slightly positively charged, O

negatively so), an electrostatic ‘hydrogen bond’ can form between water and a residue or between two

different residues. Certain intra-protein hydrogen bond patterns are energetically favourable and hence

common motifs, α-helices and β-strands, are found in most proteins. The specific pattern of helices,
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Figure 1.3: Left: The molecular structure of an amino acid. The atoms are labelled with their standard
names and R represents the amino acid side chain. Right Top: A protein is a linear sequence of amino
acids and the ends of the protein are called the N and C termini. Right Bottom: The first two residues
of a protein joined by a peptide bond (in green) between C′ of residue 1 and N of residue 2. All atomic
models have been created using VMD (52).

Figure 1.4: Unlike the sidechains of the other amino acids, which are only bonded to the Cα atom,
the side chain of proline, as shown, covalently bonds to both Cα and N atoms. Therefore, proline is
technically an imino rather than amino acid. In amino acids the side chain atoms are labelled with the
β-atom bonded to the backbone Cα atom, the γ-atom bonded to β-atom etc. The Cβ , Cγ and Cδ atoms
of proline are labelled.

strands and coil (other) residues is the secondary structure of a protein.

In an α-helix, the hydrogen atom from residue i bonds with the oxygen atom of residue i − 4;

continuing this pattern leads to a helix with 3.6 residues per turn, as shown by Figure 1.5 (left). Other

helices, whilst significantly rarer, are also found in proteins, specifically, 310-helices, where the bonding

pattern is i → i − 3; and π-helices, which have bonding i → i − 5. A β-strand is typically a sequence

of 5-10 residues hydrogen bonded with a set of consecutive residues elsewhere in the protein. β-strands

can hydrogen bond in parallel or anti-parallel directions and when bonded form β-sheets; see Figure 1.5

(right).

The reason α-helices and β sheets are energetically favourable can be understood in terms of backbone

dihedral angles φ and ψ and the Ramachandran plot. The dihedral angle of a chain of atoms a1, a2, a3, a4

is the angle between the planes containing a1, a2, a3 and a2, a3, a4. In a protein, φi is defined as the

dihedral angle between C′-N-Cα-C′, ψi between N-Cα-C′-N and ωi between Cα-C′-N-Cα, where i runs

over the residues of the protein. See Figure 1.6 (left). Due to the nature of peptide bonds, the four

atoms {Cα,C′,N,Cα} are always close to planar and hence ω is always close to 180◦ (trans conformation)

or 0◦ (cis conformation).
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Figure 1.5: Left: A cartoon picture showing an α-helix and the corresponding full atom representation.
Right: A cartoon picture showing a pair of anti-parallel β-strands with the corresponding full atom
representation. Only main chain and Cβ atoms are shown. The backbone atoms are highlighted and the
hydrogen bonds are coloured orange.

With the exception of proline residues, the cis conformation is extremely rare due to the energetically

unfavourable steric repulsion of consecutive Cα atoms when compared to the trans case in which the Cα

atom is close to the much smaller amide hydrogen. The special nature of the proline sidechain makes the

cis conformation much less unfavourable, as in the trans case the small hydrogen atom is now replaced

by the massive Cδ atom (see Figure 1.4). Around 10% of peptide bonds preceding proline residues are

found in the cis conformation.

Unlike ω, φ and ψ are allowed to vary and provide most of the conformational freedom of the protein

main chain. A Ramachandran plot is a graph showing the dihedral angles of a protein (Figure 1.6

(right)). Only certain regions of the graph can be occupied, as dihedral angles from other regions would

lead to steric clashes between backbone or Cβ (the carbon atom in the side chain bonded to Cα) atoms.

Both the α-helix and β-strand have standard dihedral angles which are in the sterically allowed regions

of the graph. Both proline, with its special sidechain, and glycine, which lacks Cβ and hence has more

freedom, have different allowed regions to other amino acids. Certain local motifs of secondary structure

elements, such as a β-hairpin (two anti-parallel β-strands connected by a short turn) or a β-α-β unit (two

interacting parallel β-strands separated in sequence by a single helix), are frequently found in proteins,

and these motifs are often called the ‘supersecondary’ structure.

The tertiary structure of a protein is how the secondary structure elements combine to form the full

three dimensional structure. The tertiary structure is determined by many factors. These include the

hydrophobic effect; non-polar side chains being buried in the core of the protein away from the solvent

(54, 55); electrostatic charges, both involving hydrogen bonds and salt bridges between charged amino

acids (56); dense side chain van der Waals packing (57); the existence of metal ions (58) and disulphide

bridges, where the sulphur atoms of two cysteine (C) amino acids form a covalent bond (59).

Typically large single chain proteins are composed of domains, single subunits capable of folding

independently of the rest of the chain, connected by somewhat disordered loops. Certain domain folds

are particularly common, such as the three helix bundle. For the last 20 years, domain structures have
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Figure 1.6: Left: The dihedral angles φ, ψ and ω. Right: A Ramachandran plot showing the dihedral
angles of protein G (Figure 1.11 (left)). The shaded blue regions are the most stable; where ψ is positive
this indicates a β-strand and when it is negative, an α-helix. The shaded green regions are allowed
but more strained. The yellow areas are less favourable due to steric clashes and are significantly less
common. Glycine, with its smaller sidechain, has more freedom than other amino acids, and the glycine
residues of protein G have been highlighted in red.

been classified and databases of them maintained (60, 61).

In this work we focus on the large number of proteins which have well-defined tertiary structure

essential for their function. Since the pioneering work of Anfinsen and colleagues (62), it has been

understood that proteins (at least small, globular proteins) fold into their tertiary (native) structure

reversibly, leading to the conclusion that the structure of a protein is fully encoded in its primary

sequence and that the native state is thermodynamically stable. However, recently, there has been a

lot of interest in intrinsically disordered proteins, that is proteins which do not adopt a well defined

structure, until, say, they bind to a ligand; they are now believed to be significantly more numerous and

important than originally thought (63, 64).

1.3.3 Protein Thermodynamics

In 1969 the molecular biologist Cyrus Levinthal asked the question: how can a protein fold into its native

state in the millisecond to second timescales that are observed? For simplicity, assume each residue can

take two possible states, α-helical or β-sheet. Then a 100 residue protein would have ≈ 1030 possible

conformations, and assuming an interconversion rate of ∼ 10−13s, it would take of the order of 1010

years for the peptide to explore its conformational space. This argument, named the Levinthal paradox,

implies that protein folding is not a simple diffusive process, and this has lead to the idea of a protein

folding funnel (65–68).

Protein Folding Funnel

The free energy landscape of a system behaving according to Levinthal’s diffusive process is shown

by Figure 1.7 (left). With the exception of the native state, the landscape is flat and hence a random

search is required in order to ‘stumble upon’ the native state. In contrast, Figure 1.7 (right) shows a
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protein folding funnel. The protein starts from one of a large number of conformations with high energy

and hence has high entropy. The chain decreases in energy towards the native state, a state with low

entropy.

Figure 1.7: Left: The free energy landscape of a system behaving according to Levinthal’s diffusive
process. With the exception of the native state, the landscape is flat and hence a random search is
required in order to ‘stumble upon’ the native state (N). Right: A protein folding funnel. The protein
starts from one of a large number of conformations with high energy and entropy. The chain decreases
in energy towards the native state (N), a state with low energy and entropy.

A realistic folding funnel of a naturally occurring protein has rugged sides corresponding to metastable

states or kinetic traps which slow the steady march of the protein toward its native state. The free energy

difference between the native state and other free energy minima is of the order of 10 kcal/mol (69),

which equates to only a couple of hydrogen bonds. This implies that naturally occurring proteins are only

marginally stable, which has been shown to be evolutionarily advantageous (69). In contrast, randomly

chosen heteropolymers typically have very rugged energy landscapes with no clear native state: the free

energy gap between the global minima and other minima is small and the dynamics are glassy (70).

One theory of protein folding is the hierarchical folding theory of Baldwin and Rose (71, 72). Accord-

ing to this theory, a protein folds by first forming local secondary structural elements such as α-helices

and β-strands, and then these structures interact with each other to form the native structure.

Initially the unfolded protein collapses from an extended chain into a ‘molten globule’ state. At this

time the protein is relatively compact, has a substantial amount of correct secondary structure and yet

has more flexibility and looser hydrophobic packing compared to the native state. In order to form the

native state, the secondary structure elements come together, forming a tighter hydrophobic core with

the amino acid side chains interlocking tightly.
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In order for the native state to form, the protein has to overcome free energy barriers (66) in a similar

way to chemical reactions requiring an activation energy in order for the reaction to proceed. The free

energy barriers correspond to regions of increasing free energy on the free energy landscape, which must

be traversed in order to reach the native state. The conformations at these local maxima are called

transition states.

From an experimental point of view, it is not possible to visualise the high dimensional free energy

landscape. However, protein folding pathways can be investigated through a procedure known as Φ-

analysis (73). Φ-analysis allows investigation of the transition state, which is by definition unstable and

short lived and therefore not amenable to standard structural methods.

Figure 1.8 (left) shows a reaction diagram for a non mutated (wild-type) protein. Although the

free energy of the native state is lower than that of the unfolded state, in order for the protein to

fold, activation energy is required in order to reach the transition state. If a residue is making the

same interactions in both the native state and the transition state then, when it is mutated, both the

transition and folded states are destabilized by similar amounts, as shown in the reaction diagram Figure

1.8 (middle). However, if the residue is not making the same interactions, then only the folded state

is destabilized and the reaction diagram Figure 1.8 (right) is seen. The ratio of the destabilization of

the transition state to the destabilization of the native state, Φ = ∆∆G‡/∆∆G, can be measured for

different residues by estimating rate constants, and these results can be used to build up a picture of the

transition state.

Transition

Transition

ΔΔG ΔΔG

ΔΔG
ΔΔG

ΔG

ΔG

Unfolded

Transition

Folded

Unfolded

Folded

Unfolded

Folded

Figure 1.8: Left: A reaction diagram for a non-mutated (wild-type) protein, where a free energy barrier
of height ∆G‡ must be overcome in order for the protein to fold. Middle: The reaction diagram of
the protein when a residue which has the same interactions in both the native state and the transition
state has been mutated (red). The transition and folded states are destabilized by similar amounts and
Φ = ∆∆G‡/∆∆G is close to 1. Right: The reaction diagram of the protein when a residue which does
not have the same interactions in both the native state and the transition state has been mutated (red).
The folded state is destabilized significantly more than the transition state and Φ is close to 0.

The situation described by Figure 1.8 (left) is the most simple case. Many proteins have more

complicated reaction diagrams, including meta-stable intermediate states, corresponding to local minima

of the free energy landscape, and even multiple folding pathways, whereby a different folding rate is

attained depending on which folding pathway is taken.

Finally, from a statistical thermodynamics viewpoint, there are theoretical arguments suggesting that

denaturation of globular proteins is a (quasi) first order phase transition (74); experimental evidence such

as circular dichroism spectra (75) and experimental heat capacity curves (76) also supports the conclusion

that the transition is all-or-none. This first order transition has implications for the sampling of protein

conformations in silico. The nature of this transition explains the free energy barriers and activation

energy required for a protein to fold. For further discussions concerning protein thermodynamics we

refer the reader to (77).
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It is very useful to form general theories about protein folding and thermodynamics. However, it is

important to note that the complex balance of competing forces can produce very different behaviours

in different proteins and that these sequence-specific details are of crucial importance. For example,

ubiquitin is a 76 residue protein with a folding rate of ∼ 3ms, whereas the 73 residue protein α3D folds

around three orders of magnitude faster at ∼ 3µs (78). Equally noteworthy, Karanicolas and Brooks

have shown that two proteins with the same native fold follow very different folding pathways, with

protein G initially folding its C terminal hairpin, in contrast to protein L which first folds its N terminal

hairpin (79).

1.3.4 Protein Models

In the 1950s, Linus Pauling and Robert Corey used simple protein models to predict the existence of

α-helices and β-sheets before they were discovered experimentally (80). Since that time protein models

have continued to improve our understanding of protein structure, stability and thermodynamics. Early

models, such as the HP lattice model of Lau and Dill (50), gave an insight into the general principles of

protein folding, rather than protein-specific details.

In the HP model, each residue is either hydrophobic (H) or polar (P) and is represented by a single

bead positioned on a square lattice; placing two hydrophobic residues on adjacent sites is energetically

favourable. This model has been used to study hydrophobic collapse and, for small proteins, has the

advantage of being simple enough to exhaustively explore the entire conformational space. With increases

in computational power, more complicated and realistic models have been developed and in this section

we give an overview of the types of models which are currently in use.

Protein models with vastly different levels of complexity and accuracy have been developed. The

most accurate, and hence computationally expensive, are QM/MM approaches which combine molecular

mechanics force fields with regions captured in full quantum mechanical accuracy. Due to the vast

expense of using these models, they are typically only used when covalent bonds are being formed or

broken, as in this case only QM approaches can be used; see the recent review on the use of QM/MM

methods with proteins and biomolecules (81).

More typically, models of proteins can be developed from standard all-atom (AA) force fields, such

as AMBER (82) or CHARMM (83). These models, often including explicit water molecules, have been

used in simulations of proteins unfolding (84, 85) and even the folding simulations of small proteins (51).

AA models provide a high level of accuracy as they typically use complex energy functions in order to

capture all pairwise atomic interactions. These energy functions are computationally expensive and so

AA models cannot be used to capture the behaviour of large proteins or the long time behaviour of small

systems.

In order to study larger systems for longer timescales, coarse-grained (CG) protein models have been

developed. CG models are simpler than AA models, for example representing the whole side chain with

a single bead, yet complex enough to still capture the physics of interest. CG models can be divided into

two broad classes: structure independent, where no prior knowledge of the structure is required, and

structure dependent, where the model is built from knowledge of the structure of the system (86, 87).

Gō models (88) are examples of structure dependent CG models. They assume that only native

interactions contribute to the overall shape of the folding energy landscape and an attractive potential

is applied to residues in contact in the protein native state. These models have been used to investigate

the folding landscape (funnel) of proteins (89) and protein unfolding due to the application of force (90).

Elastic network models (ELN) are another type of structure dependent model (91–93). In these
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models harmonic springs are attached to atoms (or beads) which are close in the native structure.

ELN models allow the study of folded protein dynamics, for example by normal mode analysis, that is

projecting the network along its eigenvectors (94), or rigidity analysis, which determines flexible regions

of proteins in order to determine plausible, large-scale, conformational changes (95).

In contrast, structure independent models typically rely on the physical and chemical properties

of constituent atoms of the protein and solvent and are used for the study of protein aggregates (96)

or when native structure is unknown (in the case of structure prediction) or intrinsically disordered

(97). CG structurally independent models have not been as useful as those which incorporate structural

information because in proteins very specific side chain interactions contribute to protein stability and

in CG models these interactions are not usually modelled to a high enough level of detail. Due to this,

there has been a lot of work developing models which sit somewhere between the two paradigms, so

called weakly-biased models, where a small amount of structural information, often secondary structure

information, is incorporated into a structural independent model. Examples include MARTINI (98) and

AMH (99) which can be tuned to balance the structural bias and physical force field.

As an example of a weakly-biased CG protein model, we describe CRANKITE (100, 101), a protein

model designed to stabilize secondary structure elements in room-temperature simulations.6 CRANKITE

includes all heavy main chain atoms, together with the amide hydrogen and side chains represented by

Cβ atoms; see Figure 1.9. There are 3 degrees of freedom per residue, the dihedral angles φ and ψ and

τ , the Cα valence angle. All other valence angles, bond lengths and dihedrals are fixed, notably the

peptide bond which is exactly planar. As is common for CG models, the effect of the solvent is modelled

implicitly through the energy function rather than the explicit modelling of water molecules.

Figure 1.9: The CRANKITE protein model. All heavy main chain atoms and amide hydrogens are
modelled. Side chains are represented by Cβ atoms (shown in green). The peptide bond is exactly
planar (as shown by yellow planes) and the dihedrals φ and ψ as well as τ , the Cα valence angle, are free
to vary.

A wide variety of CG models have been proposed, ranging from a very high level of coarse-graining,

such as a single Cα (102, 103) or Cβ (104) bead per residue, to a much more detailed representation, for

example, representing sidechains by up to 6 beads (98).

The energy functions used by protein models attempt to capture the various factors involved in

protein folding, stability and dynamics. AA models typically use standard energy functions as described

in §1.2. On the other hand, energy functions for CG models of varying levels of complexity and expense

have been developed, aiming to balance the need for accuracy with computational expense. Once again

we provide an example by focussing on the energy function of CRANKITE. Given a protein sequence R

6We describe CRANKITE as found in (101). See Chapters 2 and 3 for recent improvements to the model.
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of length N and a specific conformation Ω the energy ER(Ω) is given by

ER(Ω) =

N∑

i=1

EB
i +

N∑

i=1

i∑

j=1

(EvdW
ij + EHB

ij + ESC
ij ).

EB
i is a harmonic function keeping τ restrained and EvdW

ij is a simple model of the van der Waals atomic

repulsions. How well simplified van der Waals functions capture the intricate side chain interactions and

packing when compared to more sophisticated Lennard-Jones functional forms is an interesting research

question and is discussed in Chapter 3. EHB
ij is a hydrogen bond term capturing the essential electrostatics

required for secondary structure formation; see (105). In AA models this term is not usually required

as H-bonds are implicitly incorporated into a more general electrostatic function. Finally ESC
ij provides

the weak-bias part of the model and is the only energy term which depends on R. It forces α-helix

formation for residues known to form helices, and for residues known to form β sheets, it forces local

extending of the chain to form strands and also pulls together interacting β-strands. Often CG models

will include a hydrophobic energy term (two hydrophobic residues in contact is energetically favourable)

which is designed to allow a hydrophobic core to form. This effect is actually caused by surrounding

water molecules but these are not explicitly modelled.

When developing CG models, as well as the trade off between computational accuracy and expense, it

is important to consider the transferability of the model to other, often similar, systems. Transferability

of CG models is an active area of research (106, 107).

1.3.5 Parameter Inference

Given a protein model and energy function, it is a non-trivial task to optimize parameters, such as

hydrogen bond strength or atomic radii, to produce accurate and reliable results. A wide variety of tech-

niques have been developed. General purpose AA models optimize their parameters to match quantum

mechanical calculations (108) or experimentally derived properties of small molecules (109).

In contrast, when optimizing parameters for CG models, especially those which include some form

of bias, some terms of the energy function may not have a well-defined physical force associated with

them. In these cases force field parameters should be optimized so that the native state is found at the

(physiologically relevant temperature) global free energy minimum (62).

Traditionally CG models have used statistical-knowledge-based potentials (110) and the parameters

have been tuned to best reproduce features, such as dihedral angle distributions or atomic distance distri-

butions derived from a training set. This procedure relies on the Boltzmann hypothesis, the assumption

that within native structures the features are statistically independent and are distributed according to

the Boltzmann distribution. There is some empirical evidence for this hypothesis (111), yet the statistical

independence of features is likely to be a poor assumption.

Over twenty years ago Maiorov et al. and Goldstein et al. developed native structure discriminant

methods for parameter inference (112, 113) and these remain popular to this day (114). These methods

optimize the parameters so that the native state has the lowest energy when compared to a decoy set

of protein-like conformations. A disadvantage of these methods, however, is that they do not take

temperature and hence protein thermodynamics into account: only the strength of the intermolecular

forces relative to the decoys is used in the parameter estimation.

An alternative class of optimization algorithms use the principle of maximum likelihood (ML). Given

a data set of observed experimental (or computationally generated) samples Ω and a set of force field
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parameters Θ, an appropriate likelihood function, typically the Boltzmann distribution at an appropriate

temperature, L(Θ|Ω), is introduced. ML methods tune their force field parameters in order to maximize

this likelihood function, iteratively improving by following the gradient of the logarithm of the likelihood

function.

Models which use parameters that maximize the likelihood function will produce the (suitably defined)

closest distribution to the original dataset and ML (also called relative entropy) approaches have been

used successfully to infer parameters for CG water (107) and polyalanine (115) models, using samples

from AA models as the data set. Parameter estimation methods for general protein models using the

PDB database as the data set have also been developed (105, 106, 116).

Contrastive Divergence

For the simple case of a single parameter Θ = {θ}, a single conformation Ω = {Ω0} and setting the

inverse thermodynamic temperature β = 1, the gradient of the log-likelihood required for ML methods

is given by
∂ lnL

∂θ
=

〈
∂E(Ω, θ)

∂θ

〉
− ∂E(Ω0, θ)

∂θ
,

where E(., θ) is the (potential) energy function using parameter value θ and the angular brackets corre-

spond to the thermodynamic expectation of the system using energy function E(., θ). A full derivation

of this and the general case can be found in Chapter 3.

Although ∂E(Ω0, θ)/∂θ can be calculated directly, the thermodynamic average can only be accurately

estimated by running an MC or MD sampling algorithm until equilibrium is reached and then taking the

expectation of a large number of equilibrated samples. This is an expensive procedure which needs to be

carried out for a different θ for every iteration of the ML procedure. For example, Winther and Krogh

estimate the thermodynamic average by running extensive REMD simulations for each ML iteration

(106).

A few methods which aim to reduce the computational expense have been developed. For example

Shell et al. reweight samples from one iteration for use at later iterations so as to reduce the number of

long equilibration runs required (115). Here we focus on an alternative method, known as contrastive

divergence (CD). CD is a statistical machine learning technique, initially developed to efficiently learn

the parameters of Boltzmann machines (117).

For each ML iteration of the CD procedure, rather than running until equilibration, Ω0 is evolved

only K MC steps to conformation ΩK . K is a tunable parameter and theoretically can be as low as 1.

Rather than using the true log-likelihood gradient we replace it by

∂E(ΩK , θ)

∂θ
− ∂E(Ω0, θ)

∂θ

when updating θ.

The idea behind this approximation is that even after only K steps, the data distribution has drifted

towards the equilibrium distribution; ΩK is closer than Ω0 to the equilibrium distribution (for the current

value of θ), where closer is appropriately defined. The drift in the observed energy gradient can then be

used to guide the update procedure. A full justification and further discussion can be found in Chapter

3.

CD is significantly computationally cheaper than traditional ML methods and therefore a larger data

set can be used for parameter inference. For example, Winter and Krogh were restricted to 24 different

11–14 residue-long protein fragments (106), whereas using CD, Podtelezhnikov et al. were able to use a
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database of 247 protein PDB files as a data set (105). A large data set is important for transferability;

Winter and Krogh found their force field performed poorly when used with proteins and peptides not in

their data set.

1.3.6 Conformational Sampling

In order to use a protein model a simulation needs to be run, generating conformational samples which

can then be used in analysis. If kinetic parameters such as accurate folding or transition rates are being

studied then MD simulations should be run, typically keeping temperature and pressure constant; care

must be taken to use a thermostat which preserves these properties.

If dynamic properties of the system, such as folding rates, are not required, then alternatives to

MD can be used to generate samples. For example, MC sampling is effective for CG models where

the only degrees of freedom are the dihedral angles φ and ψ. An example of a proposal move is a

crankshaft rotation; the axis between two Cα atoms is chosen and the residues between these two atoms

are rotated around this axis, as in Figure 1.10. Cα atoms close in the chain are selected so that the

MC moves are local. In order for τ , the Cα valence angle, to remain fixed, only certain combinations

of rotations are allowed and their calculation, the ‘loop-closure’ problem, is computationally expensive

(118). CRANKITE, inspired by the study of large-scale DNA properties, allows τ to vary, thus negating

the need for a computational solution to the loop-closure problem (100).

Figure 1.10: An example crankshaft rotation. The axis of rotation is chosen as the axis connecting two
Cα atoms (shown as spheres). The portion of the chain between these atoms (to the right in this figure)
is rotated; the rest of the chain is fixed. Cα atoms close in the chain are selected so that the MC moves
are local.

Compared to AA models, CG models are able to explore the phase space much more easily, not

only because energy evaluation is quicker but also because high frequency vibrations (such as those of

covalently bonded hydrogen atoms) have been ‘coarse-grained’ away so that larger timesteps or MC moves

can be taken. Another advantage of CG models with regards to exploration is that they smooth the

energy landscape, removing some of the ruggedness and local traps which slow down the exploration of

AA models. This is particularly noticeable with Gō models, where only native interactions are included,

thus smoothing the landscape enormously (87). Also, for CG models, statistical averages can more easily

be calculated as they, unlike AA models, are often cheap enough to run large numbers of simulations in

order to combine their results.
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Alongside MD and MC, the advanced sampling techniques described in §1.2.3 have been applied to

sampling protein conformations. REMD is a very common choice when thermodynamic data is required

because exchanges between low and high temperature replicas ensure chains do not become trapped in

basins. Also, researchers are often interested in the change of behaviour as a function of temperature, so

the samples from higher temperature replicas are of value in their own right. For AA simulations, the

crystal structure is typically used as a starting condition for each replicate to save the computational

expense of actually folding the protein or in order to conduct unfolding–refolding simulations. However,

REMD has been used to fold small mini-proteins such as the 20 residue Trp-cage (119).

As REMD has been so successful for sampling protein thermodynamics, there have been algorithms

proposed which use REMD to obtain protein kinetics (120, 121) and even transition path analysis (122).

Biased MD algorithms such as umbrella sampling (34) and self-guided MD (123) have also been used to

generate conformations, aiming to explore as much of the phase space for as little expense as possible.

The exploration of protein potential energy surfaces (PES) has generated specialised sampling al-

gorithms, such as David Wales’ discrete path sampling method (124, 125), which has been applied to

small proteins and peptides in order to explore PESs. Discrete path sampling proceeds by building

a database of potential energy minima and transition states, clustering the minima and using master

equation dynamics to estimate the kinetic parameters of the underlying system.

Finally, further examples of sampling algorithms such as discrete MD (96, 126, 127) and normal

mode projection (94, 128) have also been applied to proteins. Discrete MD is an event-driven variant

of MD, where the collision dynamics of systems interacting with discontinuous potentials can be solved

exactly and normal mode dynamics projects the system along the eigenvectors of the mass-corrected

force constant matrix, allowing the study of large scale conformational changes.

1.3.7 Applications

We end this section with a discussion of protein model applications and the results derived from their

study. A final application, that of protein structure prediction, is deferred until later.

From the earliest lattice models, computational simulation has been used to study the process of

protein folding, the characterization of folding pathways and the dynamics and thermodynamics of

globular proteins.

Recent work by the Shaw group has shown the viability of using MD with AA models to fold small

proteins and probe the protein folding pathways to atomic level accuracy (51), although special purpose

hardware was required. However, it is important to remember that AA protein force fields have been

optimized for proteins in their native state and it is unknown how well they model unfolded chains (129).

For example, researchers have studied the accuracy of AA force fields when modelling small peptides

such as alanine dipeptide (130), trialanine (131) and the five residue peptide Met-Enkephalin (132);

they are small systems whose peptide bonds are believed to be behave reasonably similarly to those

found in unfolded proteins. Results have been compared with other AA force fields, QM calculations

or experimental work with mixed results; good agreement between different methods and force fields is

often found (131) but this is not always the case (130).

Alongside protein folding studies, researchers have used protein models to study the behaviour of

proteins unfolding. For example, Dudko et al. have used a Gō model to study the behaviour of proteins

unfolding by the application of force (90). They show how the choice of reaction co-ordinate is crucial

in understanding the energetic barriers to unfolding. These simulations can be directly compared to the

experiments where single proteins are pulled apart by the application of force (133). Protein unfolding is
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a much faster process compared to folding and hence is also accessible to AA models. For example Li and

Daggett characterized the (unfolding) transition state of Chymotrypsin inhibitor 2 (84), and their later

work compared simulations and experiments of the unfolding of the Engrailed Homeodomain protein

(85).

The thermodynamics of proteins has also been extensively studied with protein models. The heat

capacity of proteins can be experimentally measured and so its calculation in silico is highly desirable,

although very challenging to compute. For example, Yeh et al. calculate the heat capacity for an SH3

domain, starting the simulation from the crystal structure (134), and Lee and Olson calculate the heat

capacity for the Trp-cage (135). The position of the peak in the heat capacity curve corresponds to the

temperature at which the protein unfolds, and alternatives to the heat capacity, such as the proportion

of native contacts (Q) and even the radius of gyration Rg, are often reported. It is also common to

present free energy landscapes projected onto suitably chosen reaction co-ordinates. For example, Shea

et al. present the free energy surface as a function of Q and Rg for an SH3 domain (136) and Zhou

studies the effect of explicit and implicit water on the free energy surface of a β-hairpin using Rg and

number of H-bonds as the reaction co-ordinates (137).

The potential energy landscapes and folding funnels of proteins have also been studied and visualised

using disconnectivity and later scaled disconnectivity graphs (138, 139). Koga and Takada have used

protein models to perform in silico mutation analysis, mimicking experiments in order to study the

mechanism of the rotary motor F1-ATPase (140).

Protein models have also been used to study peptide aggregation, one of the processes known to be

heavily involved in diseases such as Alzheimer’s. Nguyen and Hall studied the sensitivity of fibrillization

on temperature and peptide concentration (96). Their simulations provided evidence for the nucleated

fibrillization hypothesis; an ordered nucleus is formed from a small amorphous aggregate and this is

then followed by rapid fibril formation. Fawzi and coworkers use a CG model of the Alzheimer’s Aβ1−40

peptide in order to study the propensity of different protofibiril seeds to form full fibirils, their patterns

of growth and level of stability (141).

Since the 1970s there has been success using protein models to study protein-protein docking (142),

that is building models of proteins known to interact and using the models to predict the interaction site

and relative orientations of the molecules. Initial models treated the molecules as rigid bodies, but with

the increase in computational power, more recent models allow for flexible docking. There has also been

success combining models with experimental results, improving our understanding of protein docking

(143). See the special review issue of Proteins: Structure Function and Bioinformatics (144) for details

of the recent progress in this field.

Another application of protein models is in protein design. Using computational techniques, Kuhlman

et al. successfully designed a 93 residue protein, Top7, which was shown experimentally to be stable and

have the designed tertiary structure (145). The Mayo lab have been at the forefront of computational

protein design (146, 147) and they have incorporated protein models and computational design into

directed evolution experimental pipelines. Directed evolution is an experimental approach to designing

proteins. For example, to improve binding affinity to a specific ligand, a library of sequences is taken

and random mutations are performed, and the sequences with the highest affinity are kept for the next

iteration. Protein models can be used as a filter for desirable sequences before in vitro experiments (148).

Finally, one of the main criticisms of CG models is that they may not be sufficiently accurate and

therefore that the conclusions drawn from the models may not be relevant to real systems. Therefore,

it is important to compare results to experiment (97, 149), or failing that, all-atom models of the same

system (107, 150). However, if this comparison is not always shown or is very general, the results can
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only provide insights into possible or qualitative behaviours of the system. Due to the increasing amount

of experimental data, the increase in computing resources and the maturing nature of the field, recent

CG modelling work is, generally, more able to compare to experimental or AA work than it was in the

past.

In recent years, CG models have improved our understanding of biophysical systems. As compu-

tational power increases, larger systems will be able to be studied using AA models (51), and for CG

models to maintain their utility, new models will have to be developed which study larger, even mesoscale,

systems (151, 152). Further work is also required to improve the transferability of CG models and in

inferring their parameters. Novel ways of using CG models, for example by running hybrid CG-AA

models (153), may also be an interesting line of enquiry.

1.4 Protein Structure Prediction

1.4.1 Overview

The prediction of the tertiary structure of proteins given their primary sequence is one of the central

problems in computational biology. Beginning in the 1960s, with the prediction of α-helices from residue

identity (154), the problem remains an active area of research to this day (155, 156). Protein structures

are required in order to determine the mechanism of action of a protein or to use it as a drug target

because the function and behaviour of a protein depend completely on its structure. Since the 1950s,

protein structure has been determined by experiment using X-ray crystallography (45, 46), and from

the 1980s, NMR spectroscopy (47). However, it is time consuming, expensive and for some proteins,

particularly those which do not easily crystallize, very difficult. With the advent of cheap DNA sequencing

techniques the number of sequenced proteins (≈ 5x107) (157) is significantly higher than the number

of solved structures (≈ 105) (158, 159) and growing at a faster rate (≈ 106 new sequences in February

2014). Hence, an automated, in silico approach would be of enormous benefit for protein science.

Näıvely, one might not expect the problem to be too difficult; we have protein models and force

fields, so we can initialize an unequilibrated protein and then evolve the state of system using molecular

dynamics, enabling us to watch the protein fold into its native structure. However, there are problems

with this technique. Firstly, the timescale over which proteins fold (typically µs to ms) is computationally

infeasible for all-atom protein force fields, especially as the protein must be immersed in water for accurate

results. For example, even with a special purpose-built computer, we can only successfully fold small

proteins in atomic detail (51). Secondly, atomic protein force field energy functions are approximations

which have been optimized for folded structures and it is unclear whether these approximations are

justified for modelling unfolded proteins (130). This is particularly important as the free energy difference

between the native structure and many non-native conformations is relatively small and could easily be

eliminated when approximate energy functions are used. Due to these disadvantages more sophisticated

techniques are usually employed.

The following sections describe the techniques that are currently used for protein structure predic-

tion and how well they perform; related simpler prediction problems which aim to provide information

about the structure, for example residue contact prediction; and finally a discussion of how correlated

mutational analysis can be used in the context of protein structure prediction.
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1.4.2 Existing Techniques

For prediction of protein structure, it is not just the physicochemical properties of the specific amino acid

sequence of a protein which are relied upon; the repository of existing known protein structures (158)

and the database of occurring primary sequences (157) can also be of tremendous importance. In fact,

the most successful prediction techniques, ‘template’ methods, are a form of recognition and refinement

rather than straightforward prediction.

Given a target sequence, a template method first seeks a homologous (similar) sequence for which

a structure is already known. Dynamic programming sequence alignment programs, such as PSI-Blast

(160), or Hidden Markov Models (161), are typically used to find this template structure. Once a template

has been selected, it is used to build a model of the target protein which is then adapted, often using

knowledge-based (162) or possibly physics-based refinements (163) in order to produce a final output.

Some of the best template methods include HHpred (164) and I-Tasser (162, 165), as shown by

their performance in the bi-annual community-wide experiment, the Critical Assessment of Techniques

for Protein Structure Prediction (CASP). Template-based modelling is maturing as a field and large

proteins are now being predicted in all-atom detail relatively successfully (166). However, significant

challenges still remain, both in choosing a template, especially when sequence similarity between target

and template is low, and in successfully refining a correctly chosen template (166).

An alternative template-based approach is that of threading or fold recognition (167–170). The

method does not rely on finding homologous sequences but instead tries to align the residues of the

target sequence onto existing folded protein structures, comparing how well the residues ‘fit’ to the

template, aiming to recognise the native fold. This method can work well as there seems to be a small

number of protein folds found in nature, estimated to be of the order of a few thousand ((171) and

references therein) and, as the CASP experiment has shown, the majority of newly determined proteins

structures are found to have known folds.

In the case where either no template exists or one cannot be determined by sequence analysis, the

prediction becomes significantly more difficult and currently only very small proteins can be determined

to any degree of accuracy (172, 173). One of the most successful ab initio prediction algorithms is

Rosetta, developed by David Baker’s lab (174, 175). The algorithm starts with an extended chain, and

small fragments, typically nine residues, of the chain are replaced by fragments from existing protein

structures, chosen due to their residue similarities with the target sequence. The replacement is then

accepted or rejected based on a Monte Carlo algorithm using a complicated knowledge-based energy

function. Low energy conformations are then extracted, clustered and ranked, aiming to output the

correct tertiary structure.

More novel approaches to the protein structure prediction have also been employed. For example,

‘Fold it’ is a game designed for the general public to try solve structure by manually optimizing a scoring

function. It has had some success elucidating structures and is also used to learn how humans approach

the prediction problem (176).

1.4.3 Protein Contact Prediction

Rather than determining the full tertiary structure of proteins directly, it is often easier to first predict

more tractable information concerning the protein, such as its secondary structure. This information

can then be used to guide the tertiary structure prediction.

Protein secondary structure prediction is a mature field; see (177) for a full overview. Typically, pre-

diction involves taking the target sequence as an input to machine-learning algorithms, such as neural
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networks, first researched by Qian and Sejnowski in 1988 (178), and still popular today (179); support

vector machines (180); or segmental Markov models (181, 182). Incorporating an aligned set of homol-

ogous sequences (a ‘multiple sequence alignment’) can vastly improve predictions (183). State of the

art single sequence methods typically achieve 70% accuracy, whereas the addition of multiple sequence

alignments can increase the accuracy up to nearly 80% (184). This is approaching the theoretical maxi-

mum of 88%; 100% cannot be achieved as different experimental models of the same protein can disagree

with up to 12% of secondary structure assignments (177). Other protein features, such as residue solvent

accessibility (see, for example (185)) and protein disulphide bonds (186) can also be predicted.

Protein Contacts

A particularly important subproblem is the prediction of protein contacts. A protein contact is a pair

of residues sufficiently close to each other in the native state. For example, CASP deems two residues to

be in contact if their Cβ atoms are within 8Å of each other (187). Protein contacts are combined in a

protein contact map, Cij , a binary symmetric matrix where Cij = 1 exactly when residues i and j are in

contact (188). See Figure 1.11 for an example. Once again, machine learning algorithms, such as neural

Figure 1.11: Left: The structure of protein G (1PGA). Right: the contact map of protein G. The white
cells are residue contacts which occur when residue Cβ (or Cα for glycine) atoms are within 8Å of each
other. α-helices (highlighted in purple) and β-sheets (highlighted in yellow) can easily be read from the
contact map and the remaining contacts describe how the secondary structure elements pack together
to form this globular protein.

networks (189, 190), support vector machines (191) and random forests (192), have all been used to try

to predict protein contacts. It is interesting to note that the latest CASP experiment was split into two

separate categories: proteins for which a template exists (though challenging to identify) and proteins

for which no template exists. The best contact prediction algorithm for the former category ‘cheated ’,

in that it used the results of template-based prediction servers as inputs to its own contact prediction

algorithm (187).

A discussion of another method to predict protein contacts, the use of correlated mutational analysis,

is deferred until the following section. It is possible to use the predicted contacts to determine the full

tertiary structure (193), but it has been shown, when using randomly chosen contacts, that between a

quarter and two-fifths of native contacts are required (194–196).
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Alongside the problem of predicting general protein contacts, a related problem is the prediction of

protein β-contacts, or more generally the β-sheet topology of proteins. A β-contact is defined as a lateral

pair of residues in interacting β-strands, as shown by Figure 1.12.

Figure 1.12: Left: The structure of protein G (1PGA). Right: The β-topology for protein G. The
numbers are the positions in the sequence of the strand and the horizontal lines are β-contacts. For
example residue 6 has two β-contacts: residues 15 and 53. Figure adapted from (197).

Unlike general protein contacts, β-contacts are subject to much more stringent constraints. For

example, each residue can be involved in a maximum of two β-contacts, and due to the sequential nature

of β-strands, given one or two β-contacts, many more are then forbidden. This extra structure can be

incorporated into inference algorithms as prior knowledge. The prediction of β-contacts can be used to

directly aid protein structure prediction (116, 198), in designing proteins (199, 200) and understanding

protein folding pathways (201, 202).

A wide variety of machine-learning algorithms have been developed for β-contact prediction. BetaPro,

a 2D recurrent neural network, the work of Cheng and Baldi (203), is noteworthy for being the first

algorithm which takes the global nature of β-topologies into account. A variety of other approaches are

also taken, for example, the use of statistical potentials (204), information theoretic approaches (205),

hybrid neural network-probabilistic models (206), segmental Markov models (182) and Markov logic

networks (207).

1.4.4 Correlated Mutational Analysis

Given a primary sequence of a protein, one can generate an aligned set of homologous sequences (a

‘multiple sequence alignment’, MSA), first by using PSI-Blast (160) to generate a list of proteins with

similar sequences and then using an alignment program, see for example (208, 209), to generate the

MSA. Figure 1.13 shows a toy MSA which is referred to throughout this section.

The MSA of a protein contains information about proteins evolutionarily related (and hence probably

structurally related) to it. Therefore the MSA is usually an integral input into the various machine learn-

ing algorithms described above, and using it significantly improves their performance. As an illustrative

example, given only the target sequence in Figure 1.13, it is unclear whether there is a disulphide bridge,

and if so, whether it is between cysteines in positions (1,5), (1,10) or (5,10). In many cases, if there is a

disulphide bridge, it is essential for the structural stability of the protein, and therefore is usually highly

conserved between homologous proteins. In our example, using the MSA, it is likely there is a disulphide

bridge between residues 1 and 5, as only these cysteines are highly conserved.
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Figure 1.13: The top line is part of the primary sequence of a (toy) protein and the following lines show
its MSA. Each row represents a different protein and each column a residue position. The conserved
cysteines (C) in columns 1 and 5 strongly suggest a disulphide bridge between these residues; see the
text for more details. It is also likely that residues 3 and 6 have co-evolved, as whenever alanine (A)
in column 3 mutates into a larger residue, the large residue in column 6 compensates by mutating into
the smaller residue, alanine; see the text for more details. We define fi(Ai) as the observed frequency
of residue Ai in position i and fij(Ai, Aj) as the observed frequency of both Ai in position i and Aj in
position j. In this case f3(A) = 4/7, f7(P ) = 1 and f3,8(A, I) = 2/7.

In contrast to other methods, which typically use the MSA as an input into a machine learning algo-

rithm, the technique of correlated mutational analysis (CMA) looks at correlations between the columns

of an MSA in an attempt to predict residues that have co-evolved. Co-evolution may imply structural

proximity in the folded state, for example, if a residue mutates into a larger one, a compensatory mu-

tation, reducing the size of a structurally proximal residue may be required to maintain the viability of

the fold; hence these two residues have ‘co-evolved’. An example is shown by columns 3 and 6 in Figure

1.13.

Although these techniques date back over 20 years (210, 211), with the increasing number of sequences

now available, CMA has recently received a lot of attention (212, 213). Early CMA methods were

developed using Pearson correlation coefficients (210) and perturbation methods (214), but we focus

on methods which use mutual information (MI) to detect correlated pairs of residues. Given an MSA,

we define fi(Ai) as the observed frequency of residue Ai in position i and fij(Ai, Aj) as the observed

frequency of both Ai in position i and Aj in position j; see Figure 1.13 for examples. The MI of residues

i and j, M(i, j) is defined as

M(i, j) =
∑

Ai

∑

Aj

fij(Ai, Aj) ln

(
fij(Ai, Aj)

fi(Ai)fj(Aj)

)

and a large M(i, j) implies residues i and j are correlated, which may imply a protein contact.

Unfortunately MI is often a poor predictor of residue contacts for a number of reasons. For example,

background variability of the columns can skew the results; typically columns of the MSA with higher

variability have higher MI scores. Also, if a large number of near identical sequences are included in

the MSA, for example if the protein evolves slowly in one family of organisms, then the signal from this

family will be amplified. There has been work adapting MI to compensate for these problems (215–217).

However, the pairwise nature of MI means it is unable to distinguish between transitive correlations

and true protein contacts: if residue pairs (i,j) and (j,k) are in contact and their MSA columns are

correlated, residue pair (i,k), which is not a contact, is also likely to be correlated and this cannot be
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distinguished by pairwise statistics such as MI.

In an attempt to disentangle direct and indirect correlations, in under-recognised work, Lapedes and

coworkers developed a statistical model of the entire MSA (218). Recently this model has been revived

and made computationally less expensive and has successfully predicted protein-protein interaction con-

tacts (219) and protein residue contacts to sufficient accuracy to determine tertiary structure of both

globular (193) and even membrane proteins (220).

Unlike pairwise methods, in this case the entire MSA is modelled by assigning probability mass over

all (fixed length) sequences, even those which have not been observed. This probability distribution,

P(A), matches the low order empirical moments of the observed MSA. Specifically Pi(Ai) = fi(Ai)

and Pij(Ai, Aj) = fij(Ai, Aj) where Pi(.) is the marginal distribution for position i and Pij(., .) is the

joint marginal distribution for positions i and j. P(A) is then fully defined following the principle

of maximum entropy (221). Specifically P(A) is the distribution with maximizes entropy, S(P) =

−∑A P(A) logP(A), whilst satisfying the above constraint.

P(A) can be expensive to compute; message passing (219), perturbation methods (222) and mean-

field approximations (193) have all previously been used, yet it is interesting to note that this computation

happens to be ideally suited to the contrastive divergence method mentioned earlier. However, once P(A)

is known, the direct information (DI), a statistic analogous to MI, can be computed. DI is an attempt

to ascertain the strength of direct correlations between pairs of residues taking into account the global

nature of the MSA, through the use of P(A). Further details and discussions can be found in Chapter

4.

Unfortunately, as the number of sequences in a MSA decreases, CMA methods lose their effectiveness

(211), and therefore authors have typically focussed on a small number of proteins for which large high

quality MSAs exist. In these cases a structure representative of the family almost always exists and

template-based methods could successfully have been used.

An interesting question is, when the MSA is small, as is often the case when no template exists, does

it still contain co-evolution information and can CMA methods still be used to extract it? A promising

idea is to combine prior knowledge about protein contacts into the CMA method; for example Burger

and van Nimwegen have developed a dynamic Bayesian network to predict protein contacts which is

dramatically improved when used with an informative prior which takes into account, for example, the

fact that contact probability strongly depends on sequence distance (223).

1.5 Thesis Overview

This is a thesis principally based on published work. Chapters 2–4 contain published research presented

as journal articles and Chapter 5 includes unpublished work written in paper format. Each chapter is

prefaced by a summary and context of the research work and a statement describing the contribution of

the candidate to the work.

Chapter 2 describes the first application of the nested sampling algorithm to a biophysical system.

The nested sampling algorithm is parallelized and applied to the CRANKITE coarse-grained protein

model, which has also been improved with the addition of side chain γ-atoms and a hydrophobic energy

function. The potential energy landscapes of three small proteins are explored and energy landscape

charts are generated giving a large-scale visualization of the potential energy surface. Finally, the nested

sampling algorithm is compared to parallel tempering, with both methods calculating the heat capacity

of a polyalanine α-helix.
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CRANKITE is further improved in Chapter 3, where the contrastive divergence algorithm is used to

learn the parameters for the Lennard Jones (LJ) form of the van der Waals potential. Unlike previous

maximum likelihood optimized models, the CRANKITE force field is shown to be transferable to proteins

not in the training set. The more expensive and accurate LJ potential is shown to be more effective in

modelling the dense packing of the hydrophobic core compared to a more simple steric repulsion function.

The importance of correctly optimizing parameters, rather than taking literature values or those found

in other force fields, is also discussed.

CRANKITE can also been used when the native structure of a protein is unknown in order to

predict protein structure. However, β-contacts are required as an input for the model. For unknown

structures these contacts must be predicted, and in Chapter 4 a new β-contact prediction algorithm

is described which incorporates a powerful correlated mutation statistic, the direct information (DI).

Unlike in previous work, CD is used to estimate the maximum entropy distribution from which the DI is

derived. Furthermore, unlike the majority of correlated mutation analysis research, proteins with large

high-quality multiple sequence alignments are not ‘cherry-picked’ for analysis, but instead a standard

dataset of 916 proteins used to benchmark β-contact prediction algorithms is used. The DI, which is

often noisy for proteins with small MSAs, is coupled to an empirical Bayes β-sheet model. The strong

constraints and prior knowledge associated with β-contacts are ideally suited for prediction using a

method that incorporates the often noisy DI. The developed method is competitive with existing state

of the art prediction methods whilst requiring fewer inputs.

Standard nested sampling is a Monte Carlo sampling algorithm, and for coarse-grained models such

as CRANKITE, MC moves such as crankshaft rotations can be used successfully. However, for more

complicated all-atom models, which have more degrees of freedom per residue, additional moves such as

angle bending and side chain rotations must be included. These MC moves, particularly at low temper-

atures, are less efficient, and so molecular dynamics simulations are normally used for all-atom models.

Therefore, in order for the nested sampling algorithm to gain popularity within the computational struc-

tural biology community, it is necessary to adapt the nested sampling algorithm to incorporate MD,

whilst still retaining its inherent advantages.

Recently, Skilling has developed Galilean nested sampling (224), a version of nested sampling which

can be implemented within a MD framework. In Chapter 5 Galilean NS has been implemented for

use with the Amber MD software package. The algorithm is used to sample an all-atom model of

alanine dipeptide, producing estimates of free energies and heat capacities. The performance of the new

algorithm is compared to that of the standard REMD approach.

Finally Chapter 6 concludes the work, summarizing the thesis and describing possible avenues of

further work.
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Chapter 2

Nested Sampling for a

Coarse-Grained Protein Model

Nested sampling is a Bayesian sampling algorithm which is particularly efficient at sampling systems

which undergo a first order phase transition. The algorithm has previous been applied to calculate the

heat capacities of small Lennard Jones (LJ) clusters, where the algorithm was shown to be an order of

magnitude more efficient than the standard parallel tempering approach.

In this chapter we parallelize the nested sampling algorithm and, for the first time, apply it to a

biophysical system. We use the algorithm to explore the potential energy surface of three small globular

proteins using a coarse-grained protein model, CRANKITE. We have improved the existing CRANKITE

model by more accurately modelling amino acid side chains, including a specific hydrophobicity energy

term and modifying the functional form of existing energy terms.

In order to test algorithm efficiency, we calculate the heat capacity of a 16-residue polyalanine helix

using both parallel tempering and nested sampling. Unlike phase transitions of LJ clusters, the transition

from coil to helix occurs over a large temperature range and so parallel tempering is able to successfully

sample the system. Therefore, we find nested sampling and parallel tempering to be of similar efficiency

for this system. However, it has been shown that larger proteins undergo a first order phase transition

and in these cases, we would expect nested sampling to outperform parallel tempering.

The nested sampling algorithm provides conformations taken from throughout the entire potential

energy surface, and we cluster these samples and use them to generate energy landscape charts. These

give a large-scale visualization of the potential energy surface and provide insights into the force field

and model used.

For example, using CRANKITE to study protein G, these charts show a high energy barrier between

conformations with the helix on the same side of the β-sheet as in the native structure and the helix

on the other side of the sheet. The top-down approach of nested sampling ensures that both basins are

explored. When using parallel tempering, it is necessary for the highest temperature replica to be able

to cross all energy barriers and it can be challenging to ensure this is the case because the height of

energy barriers is not known a priori.

Although nested sampling is athermal, the samples can be weighted to generate a distribution of

conformations at any temperature. We take the room-temperature distribution of conformations for

protein G and compare the distribution to the samples found when using rigidity analysis.

Rigidity analysis uses the native structure of a protein to build an elastic network model of the
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protein, which is used to determine the rigid and flexible regions of the protein. Normal mode projection

is then used to move the flexible regions of the protein in order to estimate the conformational changes

which are accessible at a given temperature. We find good agreement between these two, very different,

coarse-grained models.

We have shown that nested sampling is a promising algorithm for Monte Carlo sampling of coarse-

grained protein models.

2.1 Contribution

The initial idea was formulated by Wild. A serial implementation of the nested sampling algorithm,

using an earlier version of CRANKITE, together with the generation of ‘posterior’ energy landscape

charts, was submitted by Burkoff to the University of Warwick towards an MSc in Scientific Computing.

Wild provided general supervision throughout the project. Burkoff parallelized and implemented the

parallel nested sampling algorithm. Várnai, with the help of Burkoff, developed the updated CRANKITE

model and force field. Burkoff implemented the ‘prior’ energy landscape charts under the supervision

of Várnai. Burkoff calculated the heat capacity curves and benchmarked the results against parallel

tempering. Wells implemented the rigidity analysis of protein G and wrote Section 3 of the Supporting

Material.

The initial draft of the paper was written by Burkoff, with Wild and Várnai contributing to the

revision of the paper before submission. Burkoff also drafted a response to referees with input from Wild

and Várnai during the peer review process and revised the paper before publication.

The article was originally published by Cell Press: Burkoff, N. S., C. Várnai, S. A. Wells and

D. L. Wild. Exploring the Energy Landscapes of Protein Folding Simulations with Bayesian Computa-

tion. Biophysical J. (2012) 102 878–886.
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Exploring the Energy Landscapes of Protein Folding Simulations with
Bayesian Computation

Nikolas S. Burkoff,† Csilla Várnai,† Stephen A. Wells,‡ and David L. Wild†*
†Systems Biology Centre and ‡Department of Physics and Centre for Scientific Computing, University of Warwick, Coventry, United Kingdom

ABSTRACT Nested sampling is a Bayesian sampling technique developed to explore probability distributions localized in an
exponentially small area of the parameter space. The algorithm provides both posterior samples and an estimate of the evidence
(marginal likelihood) of the model. The nested sampling algorithm also provides an efficient way to calculate free energies and
the expectation value of thermodynamic observables at any temperature, through a simple post processing of the output.
Previous applications of the algorithm have yielded large efficiency gains over other sampling techniques, including parallel
tempering. In this article, we describe a parallel implementation of the nested sampling algorithmand its application to the problem
of protein folding in a G�o-like force field of empirical potentials that were designed to stabilize secondary structure elements in
room-temperature simulations. We demonstrate the method by conducting folding simulations on a number of small proteins
that are commonly used for testing protein-folding procedures. A topological analysis of the posterior samples is performed to
produce energy landscape charts, which give a high-level description of the potential energy surface for the protein folding simu-
lations. These charts provide qualitative insights into both the folding process and the nature of the model and force field used.

INTRODUCTION

Approximately 50 years ago, Anfinsen and colleagues (1)
demonstrated that protein molecules can fold into their
three-dimensional native state reversibly, leading to the
view that these structures represented the global minimum
of a rugged funnel like energy landscape (1–3).

According to the hierarchical folding theory of
Baldwin and Rose (4,5), a protein folds by first forming
local structural elements, namely, a-helices and b-strands.
These secondary structure elements then interact with
each other, resulting in the formation of the folded protein.
The formation of local structural elements reduces the
entropy of the protein (for example, the side chains of
helical residues are strongly constrained by the rest of the
helix). This loss of entropy is compensated by favorable
short-range interactions, including hydrogen bonding and
desolvation of backbone polar groups. This is considered
to be a fundamental property of proteins, and any model
system attempting to simulate protein folding should mimic
this property.

Although there has been recent evidence of hierarchical
folding in long timescale molecular dynamics simulations
made possible by the use of custom designed supercom-
puters (6), simplified G�o-type models remain an important
class of protein models in the investigation of energy land-
scapes. G�o models assume that nonnative interactions do not

contribute to the overall shape of the folding energy surface
(7,8). In this work we use an extended G�o-type model, in
which a G�o potential captures interactions between contacts
of the native state of the protein, but attractive nonnative
interactions are also permitted (for example, hydrogen
bonds can form between residues that are not in contact in
the native state). This addition allows us to explore a more
realistic rugged energy landscape compared to the ‘‘perfect
funnel’’ found in a standard G�o model (8), while maintain-
ing the ability to perform simulations with limited computa-
tional resources.

The energy landscapes of protein-folding simulations are
most commonly visualized in terms of two- or three-dimen-
sional plots of microscopic or free energy versus a reaction
coordinate, such as the fraction of residue contacts in
common with the native state or the root mean-square devi-
ation (RMSD) between a given conformation and the native
state (9,10). Originally developed for reduced lattice
models, these approaches have since been used for all-
atom off-lattice simulations, although, in these more real-
istic models, they offer only an indirect visualization of
the energy landscape at a single scale (11). Projection into
the space defined by principal components analysis of the
contact map has also been used to provide a two-dimen-
sional visualization of the energy surface (12). Techniques
adapted from robotic motion planning have been used to
provide a probabilistic roadmap of protein folding, which
may be mapped onto a conceptual drawing of the potential
energy surface (13). Protein potential energy surfaces and
folding funnels have also been visualized by disconnectivity
graphs (14) and scaled disconnectivity graphs (15,16).
Although these latter methods have the advantage of
providing a visualization of the whole energy landscape,
they rely on creating a large database of local energy
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minima of the surface, and are therefore impractical for
large systems; they also do not provide information about
the entropy of the system (which governs the widths of
the conceptual protein-folding funnel).

The funnel like nature of the energy landscape provides
a challenging conformational space for computer simula-
tions to explore, because only an exponentially small number
of conformations have low energy and low entropy and are
found toward the bottom of the funnel; the system also
undergoes a first-order phase transition as the protein
collapses into its native state. In this work, we use nested
sampling to explore the energy landscapes of protein folding
simulations. Nested sampling is a Bayesian sampling tech-
nique introduced by Skilling (17,18), designed to explore
probability distributions where the posterior mass is local-
ized in an exponentially small area of the parameter space.
It both provides an estimate of the evidence (also known as
the marginal likelihood, or partition function) and produces
samples of the posterior distribution. Nested sampling offers
distinct advantages over methods such as simulated anneal-
ing (19), Wang-Landau sampling (20), parallel tempering
(replica exchange) (21), and annealed importance sampling
(22), in systems characterized by first-order phase transitions
(17,23). The technique reduces multidimensional problems
to one dimension and has a single key parameter in the
trade-off between cost and accuracy. The calculation of
free energies by thermodynamic integration (24) and thermo-
dynamic observables, such as heat capacities, typically
involves multiple simulations at different temperatures.
Nested sampling provides an efficient framework for
computing the partition function and hence thermodynamic
observables at any temperature, without the need to generate
new samples at each temperature. Hence, it allows us to
directly investigate the macroscopic states of the protein-
folding pathway and evaluate the associated free energies.
Nested sampling has previously been used in the field of
astrophysics (25) and for exploring potential energy hyper-
surfaces of Lennard-Jones atomic clusters (23), yielding
large efficiency gains over parallel tempering. Its use in
this article represents, to our knowledge, the first application
of this technique to a biophysical problem.

MATERIALS AND METHODS

In general, the energy of a polypeptide, E(U,q), is defined by its conforma-

tion, U, and arbitrary interaction parameters, q. These interaction parame-

ters may be as diverse as force constants, distance cutoffs, dielectric

permittivity, atomic partial charges, etc. This energy, in turn, defines the

probability of a particular conformation, U, at inverse thermodynamic

temperature b via the Boltzmann distribution

PðU; qjbÞ ¼ 1

Zðq; bÞexp½ � EðU; qÞb�; (1)

Zðq; bÞ ¼
Z

dU exp½ � EðU; qÞb�; (2)

where Z(q, b) is the partition function (or evidence, in Bayesian termi-

nology). In the following, energy is expressed in units of RT, the product

of the molar gas constant and absolute temperature and b ¼ 1/RT.

In Bayesian statistics, with q an unknown parameter,D the observed data,

and H the underlying model or hypothesis, we have the following relation

(Bayes’ rule)—posterior � evidence ¼ likelihood � prior—

PðqjD;HÞZ ¼ PðDjH; qÞPðqjHÞ;
where Z, the evidence, is defined as

Z ¼
Z

PðDjH; qÞPðqjHÞdq:

Nested sampling provides an algorithm for estimating the evidence, Z ¼
P(DjH), and the procedure additionally explores the posterior distribution,

allowing its properties to be estimated.

Procedure

We define X(l) ¼ l to be the proportion of the prior distribution with likeli-

hood L(X) > l. Then, following Skilling (17), the evidence is

Z ¼
Z 1

0

LðXÞdX;

where L(X(l)) ¼ l and dX ¼ p(q)dq, with p(q) the prior distribution. Fig. 1

shows the graph of L against X (this is not to scale, as normally the bulk of

the posterior is in an exponentially small area of the phase space). L is

a decreasing function of X, as the restriction on the likelihood becomes

tighter as l increases. The area under the curve is Z. The nested sampling

procedure estimates points on this curve (see Algorithm, below) and then

uses numerical integration to calculate Z.

Algorithm

1. Sample (uniformly, with respect to the prior distribution) K points of the

parameter space {q1.qK}, i.e., the ‘‘active list’’; then calculate their

likelihoods: {L(q1),.,L(qK)}.

2. Take the sample point with the smallest likelihood; save it as (L1, X1)

(see below for an estimate of X); remove this point from the active list.

FIGURE 1 Evidence Z is the area under the function L(X). The sample qn
represents Xn�1 – Xn of the phase space volume; the proportion of the x axis

is shaded. Its weighting for the posterior is Ln (Xn�1 – Xn)/Z; the proportion

of Z is shaded.
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3. Generate a new point q sampled uniformly (with respect to the prior

distribution) from those points with likelihood L(q) > L* ¼ L1; then

add it to the active list.

4. Repeat Steps 2 and 3, generating (L2, X2), (L3, X3),.,(L1, Xi),. .

X1 is located at the largest of N numbers uniformly distributed on

(0, X0), where X0 ¼ 1. Skilling (17) suggests using the expected value

of the shrinkage ratio, Xi/Xi�1, to estimate Xi (the estimate of X for

iteration i), where Xi is the largest of N numbers uniformly distributed

on (0, Xi�1). The shrinkage ratio has the probability density function

f(t) ¼ KtK�1, with mean and standard deviation log (t) ¼ (�1 5 1)/K,

and, as each shrinkage ratio is independent, we find, if uncertainties are

ignored,

logðXiÞ ¼
�
�i5

ffiffi
i

p �
=K0Xizexpð�i=KÞ:

It is also possible to use the arithmetic expected value to estimate Xi (26).

This implies that Xi¼ ai, where a¼ K/(Kþ 1). In the limit of large K, these

two approaches are identical and henceforth we will use a ¼ exp(�1/K) or

K/(K þ 1), and Xn ¼ an.

Parallel nested sampling

For high-dimensional systems, sampling uniformly (conditional upon the

likelihood being above a fixed value, L*) is not computationally tractable.

In this case, a Markov chain can be used to explore the parameter space

(22). To generate a new point, one of the active set of points (not necessarily

the one with the lowest likelihood) is chosen to be the start of a short Monte

Carlo (MC) run, with all moves that keep the likelihood above L* being

accepted.

Starting the MC run from a copy of one of the points of the active set,

chosen at random, is crucial to nested sampling. Supposewe have a bimodal

likelihood function. Once L* is sufficiently high, the region of the param-

eter space the chain is allowed to explore will no longer be connected; it

will have two disconnected components. Without copying, all active points

that enter the subordinate component will be trapped there. With copying,

provided at least one enters the dominant mode, then as L* increases, active

points in the subordinate mode will be replaced by ones from the dominant

mode. This is particularly important for likelihood functions for which the

dominant mode splits again at a higher likelihood. In general, for a given K,

if the relative phase space volume of a mode is <1 / K in comparison to the

rest of the space at the splitting likelihood, the chances of nested sampling

exploring the mode is small (23). Therefore, the parameter K controls the

resolution of the exploration.

The number of trial MC moves per nested sampling iteration, m, is

another key parameter when using nested sampling for higher dimensional

systems. If m is too small, the parameter space is inadequately explored;

new active set samples and the current conformations they are copied

from remain very similar. Settingm too high results in longer than necessary

runtimes, as conformations partway through the MC run are already suffi-

ciently different from their starting positions. Hence, K controls which

regions of the parameter space are available to the algorithm and m controls

how well these regions are explored.

We parallelized the nested sampling algorithm by removing the P points

with the lowest likelihood at each nested sampling iteration, one for each

processor used. Each processor then runs its own independent MC simula-

tion to replace one of the removed points. For post processing, at each iter-

ation we only store the point that has the Pth lowest likelihood and adjust

a accordingly; a ¼ 1 � P/(K þ 1).

Running a parallel nested sampling algorithm with K points explores the

parameter space more effectively than P serial nested sampling simulations

each with K/P points in the active set, while requiring equal computational

resources. Consider a likelihood function, which splits n times in the domi-

nant mode (i.e., contains the majority of the evidence), with the probabili-

ties of an exploratory active point falling into the dominant mode being

W1,W2,.Wn at the critical likelihood (which is the likelihood of splitting).

Defining success as exploring the dominant mode at the nth split in at least

one simulation, it can be shown, using an argument similar to that of Sivia

and Skilling (18), that

Pðsuccessjone simulation with K pointsÞ¼Pg

h
1��1�Wg

�Ki

(3)

and

PðsuccessjP simulations with K=P pointsÞ

¼ 1�
�
1�Pg

�
1� �

1�Wg

�K=P��P

:

For example, if n ¼ 2, W1 ¼ W2 ¼ 0.1, K ¼ 32, and P ¼ 4, then

P(successjparallel) ¼ 0.933 and P(successjserial) ¼ 0.792.

Posterior samples

The sample points removed from the active set, labeled q1, q2,., say, can

be used to estimate properties of the posterior distribution. Sample point qn
represents

un ¼ Xn�1 � Xn

of the phase space volume (with respect to the prior distribution) and hence

cn ¼ ðXn�1 � XnÞLðqnÞ
Z

is the relative volume of the posterior space that qn represents; see Fig. 1.

In the case of a Boltzmann distribution, at inverse temperature b, L(qn)¼
exp (�Enb) and hence, by calculating cn(b), a single nested sampling simu-

lation can provide the expectation value of any thermodynamic observable,

such as heat capacity, at any temperature. Given a property Q(qjb) of the
posterior,

EðQjbÞz
X
i

ciðbÞQðqiÞ: (4)

In energetic terms, the nested sampling scheme is built from a set of

decreasing energy levels, {En}, with the energy of conformation Un given

by Eq. 5. Each energy level has an associated weight, which is also

decreasing. At each energy level, a set of K sample points (or conforma-

tions), {Ui
n}, is obtained by uniform sampling from the energy landscape

below En:U
i
n ~U(U: E(U)< En). After every iteration, a new lowest energy

level Enþ1 is defined to be at a fixed fraction, a, of the current energy distri-

bution. In this way, a fraction an of the whole phase space has energy below

En, and a fraction a
nþ1 has energy below Enþ1. The phase space volumewill

therefore shrink exponentially, by a factor of a, with every nested sampling

iteration, and the algorithm is able to locate exponentially small regions of

phase space.

The protein model

The polypeptide model we use is adapted from our previous published work

(27–30). It is fully described in the Supporting Material and a summary is

provided below.

Our polypeptide model features all-atom representations of the polypep-

tide backbone and b-carbon atoms. Other side-chain atoms are represented

by one or, in the case of branched side chains, two pseudoatoms, following

Srinivasan and Rose (31).

For a given protein sequence, R, the Boltzmann distribution defines

the probability, P(R, Ujb), of it adopting a particular conformation, U, at
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inverse thermodynamic temperature b. This probability can be factorized

into the product of the sequence-dependent likelihood for a given confor-

mation and the prior distribution of conformations, P(R, U) ¼ P(RjU)P(U).
This can be rewritten in energetic terms as

EðR;UÞ ¼ �ln PðRjUÞ þ EðUÞ; (5)

where sequence-dependent and sequence-independent contributions to the

energy are separated. We assume that the sequence-independent term,

E(U), is defined by short-range interactions among the polypeptide back-

bone, b-carbon, and pseudo-atoms. At room temperature, van der Waals

repulsions and covalent bonding between atoms are extremely rigid interac-

tions that contribute to this energy. Another large contribution comes from

hydrogen bonding, but the magnitude of this interaction is vaguely under-

stood. The sequence-dependent part of the potential (the negative log-likeli-

hood) can be approximated by the pairwise interactions between side

chains, which make the largest contribution to this term. In this work, these

interactions are modeled by a G�o-type potential based on a regularized

native contact map (27), which contains lateral contacts in parallel and anti-

parallel b-sheets and contacts between residues i and i þ 3 in a-helices

(32,33). Our model also includes a hydrophobic packing term; hydrophobic

side chains coming into contact with hydrophobic or amphipathic side

chains are rewarded with a decrease in energy (31). The force constants

for these side-chain interactions, as well as backbone hydrogen bonding,

are optimized using a novel statistical machine learning technique (29).

Nested sampling is initialized with K conformations, uniformly distrib-

uted over the space of dihedral angles (i.e., every fi, ji ~ U[�180�, 180�]).
To generate new sample points we use our implementation of an efficient

Metropolis Monte Carlo (MMC) algorithm (28,30), which relies on local

Metropolis moves, as suggested in earlier studies (34). In contrast to other

programs that rely on local Metropolis moves in the space of dihedral

angles, our sampler utilizes local crankshaft rotations of rigid peptide bonds

in Cartesian space. An important feature of our model is the elasticity of the

a-carbon valence geometry. With flexible a-carbon valence angles, it

becomes possible to use crankshaft moves inspired by earlier MMC studies

of large-scale DNA properties. The amplitudes of proposed crankshaft

rotations were chosen uniformly from [�a0, a0] where, at every 2000

nested sampling iterations, a0 (the maximum allowed proposed amplitude)

was recalculated, attempting to keep the acceptance rate at 50% (the trial

MC moves used for this calculation were then ignored).

We ran simulations until Z(b) converges for b ¼ 1 (T ¼ 25�C), which
implies that we have sampled from the thermodynamically accessible states

for all temperatures smaller than b (>T). The nested sampling algorithm

marches left across the x axis of Fig. 1. The step size is constant in log X

and the larger the K, the smaller the step size. For a given protein and b,

we find that simulations terminate at approximately the same point on the

x axis (for protein G, with b ¼ 1, this is ~e�440). This implies that the total

number of iterations is proportional toK, and the total number of MCmoves

is proportional to mK. The results for protein G shown below are from

a simulation with K ¼ 20,000 and m ¼ 15,000, which used 32 processors

(Xeon X5650; Intel, Santa Clara, CA), had 1.38 � 1011 MC moves, and

took ~22 h.

Energy landscape charts

We use the algorithm recently introduced by Pártay et al. (23), which uses

the output of a nested sampling simulation to generate an energy landscape

chart, facilitating a qualitative understanding of potential energy surfaces. It

has the advantage of showing the large-scale features of the potential energy

surface without requiring a large number of samples.

The output of a nested sampling simulation is a sequence of sample

points with decreasing energy. Each sample point (conformation), Un,

represents un ¼ an�1 � an of the phase space and has energy En(Un). A

metric defining the distance between two conformations is required, and

using this, a topological analysis of the sample points is performed. As the

metric, we use the root mean-square deviation of the backbone and side-

chain nonhydrogen atoms of a pair of conformations; that is, the sum of

the Euclidean distances of corresponding atoms after the two conformations

have been translated and rotated in space to minimize the overall distance.

A graph G is created with the sample points as nodes and arcs joining

a sample to the k nearest samples that have higher energy. In this work,

k is chosen to be 15 throughout. We then start with an empty graph (G0),
adding nodes one at a time (starting with the lowest energy) to gradually

rebuild G.
Energy landscape charts are produced with energy on the vertical axis,

and, at a given energy En, the width of the chart is proportional to the sum

of the weights of the points below that energy (i.e., unþ unþ1þ.), that is,

the available phase space volume in the prior space, contained at <En. On

the horizontal scale, the chart is split into different basins corresponding

to the disconnected subgraphs that exist when sample n is added to G0.
The relative widths of the basins is given by the ratio of the sum of the

weights of the sample points in the disconnected subgraphs. The ordering

of the basins horizontally is arbitrary. Due to the rapid shrinking of the

available phase space volume with decreasing energy, for better visualiza-

tion, a horizontal scaling is applied by an exponential function of the

energy, similar to Pártay et al. (23). The energy landscape chart represents

a potential energy landscape for the system.

We also use a variant of the energy landscape charts where the width

of the chart is proportional to the sum of the posterior weights, cn ¼ un

exp(�Enb)/Z(b), i.e., (cn þ cnþ1 þ .), at inverse temperature b. Hence,

the relative widths of the basins correspond to the probabilities of adopting

a conformation from one basin or another. These energy landscape charts,

therefore, represent the energy landscape as it is experienced by the protein

at inverse temperature b. In the following, the two versions will be referred

to as prior and posterior energy landscape charts, according to the weights

used in the calculation of their basin widths.

RESULTS

To validate the nested sampling procedure, we simulated the
folding of an isolated 16-residue polyalanine b-hairpin. We
then conducted folding simulations on a number of small
proteins that are commonly used for testing protein folding
procedures: protein G (PDB code 1PGA), the SH3 domain
of Src tyrosine kinase (PDB code 1SRL), and chymotrypsin
inhibitor 2 (PDB code 2CI2).

Isolated polyalanine b-hairpin

We used a G�o-like potential to simulate the folding of an
isolated 16 residue polyalanine b-hairpin. Fig. S1 in the
Supporting Material (bottom panel) shows a snapshot of
five (equally spaced along the log(X) axis) conformations
from a single simulation with K ¼ 1000, m ¼ 2500 (a total
of 1.12 � 108 MC moves). At the beginning there is a rapid
decrease in energy, moving from extended conformations
(at first those with van der Waals collisions) to hairpinlike
structures (A–C). The final part of the simulation moves
through the exponentially small volume of the phase space
containing hairpinlike structures, gradually decreasing in
energy toward a fully formed hairpin (D and E).

We used the hairpin to check the behavior of the nested
sampling procedure: Fig. S1 (top panel) shows how a0
(the maximum proposed crankshaft rotation amplitude)
varies with the energy threshold for a simulation with

Biophysical Journal 102(4) 878–886

Protein Energy Landscapes 881



K¼ 1000. As lower energy is reached, a0 is reduced to keep
the acceptance rate near 0.5. Fig. S1 (second panel) shows
the acceptance rate. Fig. S1 (third panel) shows the differ-
ence between the start and end points of a single MC chain,
specifically the drift per dihedral angle, where the drift is the
L2-norm of the dihedral angles.
The protein model used stabilizes room temperature

secondary structure formation; it folds isolated helices and
hairpins very effectively. This is reflected in the energy land-
scape charts that consist of a single funnel (not shown).

Fig. S2 (top) shows the time evolution of the dihedral
angles of four residues of the 16-residue polyalanine. The
formation of the hairpin can be clearly seen. For example,
the dihedral angles of the residues in the strands 4 and 11
converge to the standard b-sheet area of the Ramachandran
plot. The G�o-like potential used was designed for a hairpin
with a two-residue turn, and this is found to be the case. The
dihedral angles of the turn residues 8 (605 15, �90 5 30)
and 9 (�150 5 30, 0 5 30) are closest to the values of
a type II0 turn ((60, �120) and (�80, 0)) (35). Fig. S2
(bottom) shows the energy of the snapshots (right-hand
axis) for nested sampling plotted against time. The mono-
tonic decrease of the energy over a very large energy range
allows us to view the formation of the hairpin.

Due to the nature of the model used, the folding pathway
of the hairpin is relatively simple to sample, and parallel
tempering can also successfully fold the hairpin. However,
in this case, we need a very large temperature range to
explore the whole parameter space and view the folding
pathway in its entirety. For example, Fig. S2 (bottom) shows
the energy of two of the parallel tempering chains; room
temperature and 300�C. For real proteins, which have
more complicated energy landscapes and possibly high
energy barriers, it is difficult to know the temperature range

required for parallel tempering to explore the entire param-
eter space and not be trapped in a particular basin. Nested
sampling, with its top-down, temperature-independent
approach, does not suffer from this problem.

Another of the advantages of nested sampling is that simu-
lations are temperature-independent, and hence can provide
estimates of thermodynamic variables at any temperature.
Fig. 2 shows the heat capacity (Cv) curve for the 16-residue
polyalanine. The curves were calculated using nested
sampling (converged down to �25�C, so that the Cv curve
does not stop abruptly at room temperature), and parallel
tempering. The solid line is calculated using 10 nested
sampling simulations each with 1.3 � 109 MC moves. The
dashed lines show twice the standard error. The parallel
tempering curve shows the heat capacity using 10 parallel
tempering simulations (again each with 1.3 � 109 MC
moves) with error bars showing twice the standard error.
For parallel tempering, the heat capacity is only calculated
for discrete temperatures and a procedure such as Boltzmann
reweighting (36) is needed to calculate the continuous curve.

There appears to be good agreement between the
methods. Previous results have found nested sampling to
be more efficient at calculating the heat capacity curves
(23). In this example, we found nested sampling to be of
similar efficiency to parallel tempering. We believe this to
be because, unlike the system presented in Pártay et al.
(23), our phase transition (from coil to hairpin) occurs
over a very large energy (and hence temperature) range
from which parallel tempering can successfully sample.

Protein G

Protein G is a 56-residue protein consisting of an antipar-
allel four-stranded b-sheet and an a-helix, with a b-Grasp

FIGURE 2 Heat capacity curve for the 16-

residue polyalanine. The nested sampling simula-

tions (solid line) use 1.3 � 109 MC moves, with

error lines denoting two standard errors from the

mean. The parallel tempering uses the same number

of MC moves again with error bars showing two

standard errors from the mean.
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(ubiquitin-like) fold, which has been extensively studied by
a variety of folding simulation techniques (37–40). Its native
structure is shown on the left of Fig. S3. All figures of
protein G in this article have been oriented so that the first
b-strand is the second strand from the right and the
N-terminal residue is at the top.

As described above, the nested sampling procedure can
be used to estimate the thermodynamic energy of the system
at any temperature, using Eq. 4 For protein G, at room tem-
perature (b¼ 1.0), the thermodynamic energy is�190 units.
Fig. S3 shows a sample of four room-temperature, thermo-
dynamically accessible conformations found by a single
nested sampling simulation with K ¼ 20,000 and m ¼
15,000. The conformers have energies �189, �190, �191,
and �190, respectively, with backbone RMSDs (from the
crystal structure) of 1.93 Å, 2.96 Å, 3.97 Å, and 5.22 Å, re-
spectively. The estimated value of the backbone RMSD at
b ¼ 1, calculated using Eq. 5, is EðRMSDjb ¼ 1Þ ¼ 3:21�A.

Conformers A–D in Fig. S3 have the correct backbone
topology, close to the native structure, but there is a reason-
able amount of variation in the orientation of the helix with
respect to the b-sheet at this temperature. It is important to
remember that protein structures are intrinsically flexible
(41–43), and the crystal structure (1PGA.pdb) is only one
member of an ensemble of conformations that the protein
may explore. In the Supporting Material we demonstrate
that flexible motion of protein G allows a substantial re-
orientation of the axis of the helix with respect to the sheet.
Conformers A–D in Fig. S3, which differ from the native
state principally in the orientation of the helix relative to
the sheet, may therefore be more representative of the native
state than the RMSD alone suggests.

The first half of the nested sampling simulation is spent
exploring high-energy conformations with no noticeable
secondary structure and often steric hindrances. In the
second half of the simulation, once the long-range quadratic
bias potential has pulled the secondary structure elements
close together, the short-range hydrogen-bond interaction
contributions increase to dominate the bias potential contri-
butions, having a steeper gradient in the last third of the
simulation (see Fig. S4 (top)). The short-range hydrophobic
interaction contributions are the smallest, but nevertheless
not negligible; they ensure the correct packing of the hydro-
phobic and amphipathic side chains at conformations avail-
able at room temperature (see below and Fig. 3). Fig. S4
(bottom) shows a sequence of 10 conformers in order of
decreasing energy. These conformers come from the deepest
basin of the energy landscape chart of a simulation (higher
energy conformers come from the part of the energy land-
scape chart that contains the deepest basin). The sequence
illustrates how the secondary and tertiary structure accrete
in the course of a simulation, capturing the essence of the
hierarchical folding model. The sequence is not, however,
a single folding pathway, in the sense of a molecular
dynamics trajectory; there are many conformations in the

FIGURE 3 (Top) Prior (potential) energy landscape chart. (Bottom)

Posterior energy landscape chart at b ¼ 1, for a nested sampling simulation

of protein G using K ¼ 20,000 and m ¼ 15,000. (Left axis) The energy is

shown in units of RT, and the width of the chart is proportional to the

sum of the prior (top) and posterior (bottom) weights of the nested sampling

points below the given energy level (shown on the right axis). The prior

energy landscape chart shows the potential energy surface and the posterior

energy landscape chart shows, for a given temperature, the probabilities of

finding conformations from the different basins. At b ¼ 1 (room tempera-

ture), only funnel 1 is accessible. The scaling function used for the prior

energy landscape chart is exp(�fE) (with f being 0.1, 0.4, and 0.7 on the

top, middle, and bottom panels of the prior energy landscape chart, respec-

tively). Example conformers from the main basins, at various energy levels,

are shown on the charts.
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active set in the same basin. It is possible, though, that
Fig. S4 (bottom) represents a plausible sequence of events
leading to the native structure.

Energy landscape charts using the prior and posterior
weights for a nested sampling simulation of protein G using
K¼ 20,000 and m¼ 15,000, calculated using a connectivity
number k¼ 15, are shown in Fig. 3. The volume scale on the
right-hand axis shows the proportion of the prior and poste-
rior phase space volume available below the given energy
level. The width of the chart uses this scale. Basins that
contain <1/1000th of the probability mass at the point of
splitting are not shown on the diagram. Conformers have
been placed on the chart to provide examples of the samples
found in different places of the chart.

Topologically, for energy above 405 units, there is one
main basin containing virtually all of the samples. There
is little structure in the samples, as shown by the conformer
at the top of the chart. However, at energy 405 units, the
phase space splits into two main funnels: one with the helix
forming on the correct side of the sheet (funnel 1) and one
with it forming on the incorrect side (funnel 2). Funnel 1
further splits at energy �75 units, corresponding to confor-
mations where the hydrophobic residues are in the interior
of the protein (funnel 1) or on the surface of the protein (fun-
nel 1A). At room temperature (the expected energy corre-
sponding to b ¼ 1 is marked by a horizontal line on both
panels of the chart), the phase space volume of both funnels
1A and 2 are <1/1000th of the main funnel and hence the
posterior energy landscape chart consists of a single funnel.
The inaccessibility of funnel 1A at room temperature indi-
cates the importance of hydrophobic interactions.

Fig. S5 shows two conformers that are placed in the same
small basin, branching off the right-hand funnel. The
conformer on the left has higher energy than the one on
the right. These conformers are very similar, and demon-
strate that the topological analysis shows how metastable
conformations are formed. The pathway to these states
would be obtained by considering conformers found in the
same basin.

DISCUSSION

It is interesting to consider how the energy landscape charts
vary from simulation to simulation. Topologically, we
always find two main funnels in the protein G simulations
(funnels 1 and 2 on Fig. 3), corresponding to the packing
of the helix on either side of the sheet. The dominant
mode with the native like backbone topology (funnel 1)
splits again at a lower energy level to two funnels, corre-
sponding to the hydrophobic residues being in the interior
(funnel 1) or on the surface (funnel 1A) of the protein.
The energy at which funnels 1 and 2 split varies significantly
between simulations, from 220 to 580 energy units. This is
probably because the RMSD metric is an imprecise way of
comparing wildly different conformations. The energy

where funnels 1 and 1A split has a much smaller variation,
�75 to�55 energy units. This trend in the variation of split-
ting energies was also observed in the nested sampling
simulations of the other modeled proteins. Metrics other
than the RMSD might improve the reproducibility of energy
landscape charts and would be worthy of investigation.

The relative basin widths of energy landscape charts
depend on the size of the nested sampling active set, K. In
general, K determines the resolution of exploration. When
converging the evidence at lower temperatures, a larger
value of K is required. This is because at every splitting of
the likelihood function, the probability of exploring the
dominant mode decreases, according to Eq. 3. At high ener-
gies, the accessible conformational space is connected,
and the MMC procedure explores the space effectively. As
the energy lowers, the accessible conformational space
becomes increasingly disconnected. Because the MMC
procedure cannot jump between disconnected components
of the conformational space, an increasingly large set of
active points is required to sample effectively. As the poste-
rior mass is concentrated at lower energies for lower temper-
atures, K behaves as an effective minimum temperature.
Using too small an active set for a given temperature causes
large variation between different nested sampling simula-
tions; for example, the estimates for the evidence and the
relative widths of the funnels of energy landscape charts.

In the protein G simulations, we find that K ¼ 20,000 is
large enough to produce simulation independent charts for
temperatures near b ¼ 1. When using, for example, K ¼
2500, which is too small for sampling the posterior distribu-
tion at b ¼ 1, we find that the active set becomes extremely
homogenous and the simulation is, in effect, exploring just
one tiny basin in one of the main funnels, by making smaller
and smaller crankshaft rotations. Hence, we find a single
room-temperature accessible conformation, as opposed to
the wide selection that is found when K ¼ 20,000.

The magnitude of m relative to K is problem-specific. It
has been suggested that for probability distributions that
lack a large number of modes, it is optimal to set K small
and use a large m (the cost is proportional to mK) (21).
For protein G, we find the energy landscape is so complex
that we need a large K to explore all the funnels simulta-
neously, and a large m to ensure the active set remains
heterogeneous, and we therefore choose m and K to have
the same order of magnitude. Incorporating nonlocal flex-
ible motions (44) into our MMC procedure may allow
a decrease in m without losing heterogeneity and this is a
focus of future work. If this proves to be the case, we would
choose to increase K relative to m.

In our previous work (27), using MMC with parallel
tempering to simulate the folding of protein Gwith a simpler
model (no g-atoms and hydrophobic interactions were
included in this model), the lowest energy structures ob-
tained were similar to those shown at the bottom of funnel
2 of Fig. 3, with the helix packed on the incorrect side of
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the sheet and a backbone RMSD of 8.6 Å from the crystal
structure. This demonstrates the difficulty of using parallel
tempering or simulated annealing to reconstruct the native
structure, when the energy landscape exhibits two main fun-
nels separated by a large energy barrier. If the annealing
proceeds down the incorrect funnel it will be nearly impos-
sible for it to climb back out and down into the correct
funnel.

The reason for the double funnel is the symmetry of the
protein G topology with respect to the G�o-type bias poten-
tial, which is the predominant factor at the beginning of
the simulation. The further splitting of the main funnel
into funnels 1 and 1A (Fig. 3) is also due to the nature of
the G�o-type bias potential. This applies a quadratic potential
on the Cb atom contacts, which does not restrict the
hydrogen-bond pattern between the individual strands; at
high energies, both conformations (with the hydrophobic
residues of the b-sheet being in the interior or on the surface
of the protein) are similarly likely to be adopted. However,
other energy and entropy contributions due to the presence
of side chains (e.g., hydrophobic interactions and steric
clashes) ensure that only conformations with the nativelike
topology are accessible at room temperature. This way,
energy landscape charts also reflect the nature of the protein
model and force field used. For example, the energy land-
scape charts for chymotrypsin inhibitor 2, which differs in
topology from protein G, but also possesses a similar
symmetry with regard to the packing of the a-helix against
the b-sheet, also exhibit this double funnel (see the Support-
ing Material).

It would be interesting to compare energy landscape
charts of nested sampling simulations using other protein
models and force fields, for example, all-atom representa-
tions, and this will be a focus of future work.

CONCLUSION

This article has described the parallelization of the nested
sampling algorithm, and its application to the problem of
protein folding in a force field of empirical potentials that
were designed to stabilize secondary structure elements in
room-temperature simulations. The output of the nested
sampling algorithm can be used to produce energy land-
scape charts, which give a high level description of the
potential energy surface for the protein folding simulations.
These charts provide qualitative insights into both the
folding process and the nature of the model and force field
used. The topology of the protein molecule emerges as
a major determinant of the shape of the energy landscape,
as has been noted by other authors (37). The energy land-
scape chart for protein G exhibits a double funnel with a
large energy barrier, a potential energy surface that parallel
tempering struggles to explore fully. The nested sampling
algorithm also provides an efficient way to calculate free
energies and the expectation value of thermodynamic

observables at any temperature, through a simple postpro-
cessing of the output.

SUPPORTING MATERIAL

Supporting text with 11 figures and references (45–62) is available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(12)00055-0.
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Supporting Material

Figures Referenced in Main Text

Figure S1: Top graph: the maximum allowed amplitude of the crankshaft rotations α0 (in radians); Middle
graph: the acceptance rate of the MC chains; Bottom graph: the drift per dihedral angle (the distance
between the start and end conformations of a single MC chain). All with respect to the current energy
threshold, for a 16 residue polyalanine β-hairpin; see text for more details. Bottom: Five snapshots from
a single nested sampling simulation of a β-hairpin with K = 1000 and m = 2500. The snapshots are
equally spaced along the log(X) axis and have energies 3567, 190, 0, -46 and -66 (A-E). For comparison, the
expectation of the internal energy at room temperature is -43.
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Figure S2: Top: Dihedral angle evolution for residues 4, 8, 9 and 11 of the 16 residue polyalanine nested
sampling simulation. In the later snapshots, residues 4 and 11 are distributed in the standard β-sheet region
of the Ramachandran plot. Residues 8 and 9 contain the turn of the polypeptide. The dihedral angles of
the turn residues, 8 (60± 15,−90± 30) and 9 (−150± 30, 0± 30), are closest to the values of type II’ turn
((60,−120) and (−80, 0)) Bottom: Energy v Time graph for nested sampling (right hand axis) and two of
the chains from a parallel tempering simulation (room temperature and 300◦C; both left hand axis.). On
both vertical axes a star marks the expected thermodynamic energy at room temperature.
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Figure S3: The native (crystal) structure of protein G (left) with a sample of conformations accessible at
room temperature from a simulation with K = 20000 and m = 15000. All figures of protein G in this paper
have been oriented so that the first β-strand is the second strand from the right and the N-terminal residue
is at the top. The thermodynamic energy at room temperature, estimated from the simulation, is -190 and
conformers A,B,C and D have have energies -189, -190, -191 and -190, respectively. The backbone RMSDs
from the crystal structure are 1.93 Å, 2.96 Å, 3.97 Å and 5.22 Å, respectively. The angle between the helix
projected onto the sheet and the first β-strand is 17.9◦, 8.6◦, −4.7◦ and −15.1◦, respectively, compared to
21.9◦ of the crystal structure.

Figure S4: Top: Energy contributions of the Gō-type bias potential (red), hydrogen bonds (green) and
hydrophobic interactions (blue) in the second half of a nested sampling simulation of protein G with K =
20000 and m = 15000. Units of energy are in RT corresponding to temperature. Note the different scale on
the vertical axes. Bottom: Ten conformations of protein G from the same simulation, in order of decreasing
energy.
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Figure S5: The topological analysis places similar conformations in the same basin. For example, these two
conformations (which both have the 3rd and 4th β-strands aligned incorrectly) are placed in the same basin.
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1 The Protein Model

We modelled the polypeptide as a chain of peptide groups elastically connected at the Cα atoms, with the
valence angles constrained to 111.5◦±2.8◦. The positions of all backbone and Cβ atoms, including hydrogen,
were specified by the orientations of the peptide bonds. We fixed the peptide bond lengths and angles at
standard values (1–3). The distance between Cα atoms separated by trans peptide bonds was fixed at 3.8 Å.
The Cβ positions were stipulated by the tetrahedral geometry of the Cα atoms and corresponded to l-amino
acids. Most of the conformational variability of polypeptides comes from relatively free rotation around N–
Cα and Cα–C bonds characterised, respectively, by dihedral angles φ and ψ (Fig. 1 in (4)). These rotations
are least restricted in glycine that lacks Cβ . The dihedral angles φ in proline were elastically constrained
to −60◦ ± 7◦ by covalent bonding (5). We introduced a harmonic potential EBi to impose these and other
elastic constraints. A more detailed description of the model is given in our previous work (4).

In this work, we represented other side chain atoms by one, or in the case of branched side chains, two
pseudo-atoms, following (6). The side chain dihedral angles χ were permitted to vary, and take the values
{±60◦, 180◦}, or in the case of proline {±30◦}, with probabilities dependent on residue type, with values
corresponding to the distribution of the χ angles in the same ASTRAL PDB database (7) that was used
in (4), and here, to learn the potential parameters by a statistical machine learning procedure, contrastive
divergence (8).

We modelled van der Waals repulsions so that there is a prohibitively large energetic cost of overlaps
between atoms. We used values of atomic radii close to a lower limit of the range found in the literature
(9–12): r(Cα) = r(Cβ) = 1.57 Å, r(C) = 1.42 Å, r(O) = 1.29 Å, r(N) = 1.29 Å. We adopted values of the
contact radii for the pseudo-atoms from (6).

Hydrogen bonding is a major polar interaction between NH and CO groups of polypeptide backbone.
Based on surveys of the Protein Data Bank (PDB) (13), important reviews of hydrogen bonding in globular
proteins have formulated the basics of the current understanding of hydrogen bond geometry and networking
(14–17). We considered the hydrogen bond formed when three distance and angular conditions were satisfied:
r(O, H) < δ, ∠OHN > Θ, and ∠COH > Ψ, where r(O, H) is the distance between oxygen and hydrogen,
and symbol ∠ denotes the angle between the three atoms (see Fig. 1A in (18) ). The lower bound on the
separation between the atoms (r(O, H) > 1.8 Å) was implicitly set by the hard-sphere collision between
oxygen and nitrogen. We used the same hydrogen bond potential regardless of the secondary structure
adopted by the peptide backbone. The energy of the hydrogen bond (Fig. 1B in (18) ) was described in (18)
by a square-well potential,

EHBij = −nhH (1)

where H is the strength of each hydrogen bond, and nh is the number of hydrogen bonds between the amino
acids i and j. The strength of the hydrogen bonds, H, as well as the three cutoff parameters, δ, Θ, Ψ was
determined by a machine learning procedure, contrastive divergence (8). We found that softening the hard
cutoffs {δ,Ψ,Θ} improved the results, and hence we used a steep continuous approximation to the square
well.

We modelled hydrophobic interactions in a manner consistent with (6). The hydrophobic interaction
contribution between hydrophobic atoms A and B of amino acids i and j (|i− j| ≥ 2) is

EhydAB =





fkh rAB < rcut,AB

fkh

(
rAB−rcut,AB

∆

)
rcut,AB ≤ rAB < rcut,AB + ∆

(2)

where kh is a constant parameter proportional to the Kauzmann parameter (19), the cutoff distance rcut,AB
is the sum of the vdW radii of atoms A and B listed in (6), ∆ = 2.8 Å is a smoothing range beyond the cutoff
distance, and the multiplicative factor f takes the value 2, if both amino acids are hydrophobic, 1, if one is
hydrophobic and the other one is amphipathic, and 0, if neither are hydrophobic. Hydrophobic amino acids
are cysteine, isoleucine, leucine, methionine, phenylalaninne, tryptophan and valine; amphipathic residues
are alanine, histidine, threonine and tyrosine.
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The sequence-dependent part of the potential (the negative log-likelihood) was approximated in our model
by pair-wise interactions between side-chains, as described in (20). Our main focus was on the resulting effect
of these interactions and how they stabilise secondary structural elements. We did not consider the detailed
physical nature of these forces, or how they depend on the amino acid types. We introduced these interactions
between the polypeptide side chains as an effective Gō-type potential (21) dependent on the distance between
Cβ atoms,

ESCij = κCij(rij − r)2 (3)

where rij is a distance between non-adjacent Cβ atoms, |i − j| > 1; r a constant and κ is a force constant.
In (20) we introduced a “regularised contact map”, Cij . In this binary matrix, two types of contacts were
defined in the context of protein secondary structure. First, only lateral contacts in the parallel and anti-
parallel β-sheets were indicated by 1’s. Second, the contacts between amino acids i and i + 3 in α-helices
were also represented by 1’s. These contacts typically have the closest Cβ–Cβ distance among non-adjacent
contacts in native proteins. The force constants and r depend on the secondary structure type, introducing
positive κα κβ , rα and rβ . Non-adjacent contacts in secondary structural elements were, therefore, stabilised
by attracting potentials.

We also modelled interactions between sequential residues. This interaction was defined by the mutual
orientation of adjacent residues that are involved in secondary structural elements,

ESCi,i+1 = η cos γi,i+1 (4)

where γi,i+1 is the dihedral angle Ni–Cα,i–Cα,i+1–Ci+1 between the adjacent residues. The purpose of this
interaction is to bias the conformation towards the naturally occurring orientations of residues in secondary
structural elements. In α-helices, adjacent residues adopt a conformation with positive cos γ. In β-sheets,
cos γ is negative. We, therefore, used two values of the force constant: negative ηα and positive ηβ .

As in (20), all parameters were determined by a statistical machine learning procedure, contrastive
divergence (8) and in this work δ = 2.06, − cos Θ = 0.89, − cos Ψ = 0.766, H = 4.35, ηβ = 3.5, ηα =
−4.9, κα = 3.3, κβ = 1.2, rα = 5.66, rβ = 5.35 and kh = 0.08, where the unit of energy is RT at
room temperature. With the improved model and force field described in this paper, contrastive divergence
provided good parameters without the need of further adjustments, as had been the case in (20).

To summarise, the total energy of a polypeptide chain with conformation Ω was calculated as follows

E(R,Ω) =
N∑

i=1

EBi +
N∑

i=1

i∑

j=1

(EvdWij + EHBij + ESCij + Ehydij ) (5)

where we consider harmonic valence elasticity, EBi , van der Waals repulsions, EvdWij , hydrogen bonding, EHBij
and hydrophobic packing, Ehydij . The valence elasticity, van der Waals repulsions, and hydrogen bonding
that contribute to this potential have a clear physical meaning and are analogous to traditional ab initio
approaches. The side-chain interactions, ESCij in this model were introduced as a long-range quadratic Gō-
type potential based on the contact map and secondary structure assignment. This pseudo-potential had
two purposes: it was needed to stabilise the secondary structural elements, and to provide a biasing force
that allows reconstruction of the backbone conformation in the course of Metropolis Monte Carlo simulations
(4, 20).

2 Additional Results

Src Tyrosine Kinase SH3 Domain.

Src Tyrosine Kinase SH3 Domain is a 56-residue protein, comprising a 5-stranded β-barrel. The last strand
is interrupted by a single turn of a 310-helix, which was not included in the ‘regularised’ contact map used
to define the native state in these simulations. The native (crystal) structure is shown in Fig. S6.
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Figure S6: The native (crystal) structure of the SH3 Domain, with conformers from the two main funnels
accessible at room temperature from a simulation with K = 15000 and m = 15000. Conformers 1 and
1B have the correct backbone topology, unlike conformer 2. The backbone RMSDs are 4.89 Å, 5.28 Å and
11.51 Å, respectively. The N and C termini are marked; see the text for more details.

The energy landscape for a simulation with K = 15000 and m = 15000, depicted in Fig. S7, shows two
main funnels (funnels 1 and 2) that further split into sub-funnels (funnels 1 and 1A, and funnels 2 and 2A). At
room temperature, conformations representative of funnels 1 and 2 are accessible, and most of the posterior
mass is in funnel 1, which contains conformers with the correct backbone topology. Funnel 1 splits further
at −43 energy units. The sub-funnels 1 and 1B are connected at room temperature, and the probability of
moving from one to the other is non-zero, due to the non-zero probability of adopting a conformation that
is indistinguishable from those typical to funnels 1 and 1B. The estimated energy at room temperature is
−39 energy units.

Fig. S6 shows low energy conformers from the same simulation. Conformers 1 and 1B (from funnels 1
and 1B in Fig. S7) have the correct backbone topology and a backbone RMSD of 4.61 Å and 5.47 Å with
respect to the crystal structure. Moreover, although the N-terminal loop is not included in the ‘regularised’
contact map used in the simulation, the packing of the loop is in reasonable agreement with the crystal
structure. Conformer 2, taken from the bottom of the other major funnel, adopts a conformation with
an incorrect backbone topology – note the relative positions of the N and C termini with respect to the
sheet. The conformers shown in Fig. S6 correspond to lower energies than the estimated energy at room
temperature, but have been shown as it is clearer to see the differences between them once the β-strands have
fully formed. Conformations available at room temperature typically have shorter β-strands. The estimated
backbone RMSD at room temperature is E(RMSD|β = 1) = 6.46 Å.

Chymotrypsin Inhibitor 2.

Chymotrypsin inhibitor 2 is a 65-residue protein which contains a four-stranded β-sheet and an α-helix, but
differs in topology from protein G. However, it also possesses a similar symmetry with regard to the packing
of the α-helix against the β-sheet.

As with protein G, the energy landscape shows two main folding funnels. Fig. S9 shows the prior
energy landscape chart and the posterior energy landscape chart at room temperature for a simulation with
K = 15000 and m = 15000. Sample conformers from the main funnels at different energy levels are also
included. The posterior energy landscape chart shows that virtually all the posterior mass is in funnel
1 (including funnel 1A) at room temperature, with funnel 2 being insignificant. Funnel 1 splits at −75
energy units into funnels 1 and 1A, which are connected at room temperature; the probability of adopting a
conformation that is indistinguishable from the ones in funnels 1 and 1A is non-zero. The estimated value
of the energy at β = 1 is −82 units.

The native structure and sample conformers from the main funnels are also compared in Fig. S8. As with
protein G, in our model, the helix can be packed on either side of the sheet, and in Fig. S8 conformers 1 and
2 are taken from the bottom of the two funnels. Conformer 1 has the correct backbone topology, whereas
conformer 2 has the helix packed on the incorrect side of the sheet. Conformer 1A from funnel 1A has the
correct backbone topology, but the hydrophobic residues of the C-terminal β-strand are packed on the wrong
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Figure S7: Top: prior (potential) energy landscape chart, Bottom: posterior energy landscape chart at β = 1
for a simulation of the SH3 Domain using K = 15000 and m = 15000. Sample conformers of funnels 1, 1A,
1B, 2 and 2A are marked on the chart.
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Figure S8: The native (crystal) structure for chymotrypsin inhibitor 2 (left) and 3 conformers from a sim-
ulation with K = 15000 and m = 15000. 1 and 1A: conformers from near the bottom of the funnel which
contains conformers with the correct topology with backbone RMSD of 4.86 Å and 4.91 Å, respectively. The
1A conformer has the hydrophobic residues of the C-terminal β-strand on the wrong side. 2: a conformer
from near the bottom of the other funnel with backbone RMSD of 11.18 Å. Note that the helix is packed on
the wrong side of the sheet in conformer 2. The N and C termini are shown.

side of the sheet. Both conformers 1 and 1A have much lower energy than found at room temperature, and
it is interesting to note that in both of these conformers the C-terminal β-strand has formed spontaneously
without contact bias. In the crystal structure this strand is actually a large coil. In simulations, we find
that the secondary structure that is defined by the regularised contact map forms first, and, since the model
allows a large amount of freedom for residues which do not have contact bias, nested sampling then tries
to place the remaining residues in the lowest energy position possible. The backbone RMSD of conformers
1, 1A and 2, from the crystal structure, are 4.86 Å, 4.91 Å and 11.18 Å, respectively, while the estimated
backbone RMSD at room temperature is E(RMSD|β = 1) = 5.55 Å.
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Figure S9: Top: prior (potential) energy landscape chart, Bottom: posterior energy landscape chart at β = 1
for a simulation of the chymotrypsin inhibitor 2 using K = 15000 and m = 15000. Sample conformers of
funnels 1, 1A and 2 are marked on the charts.
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3 Rigidity and Flexibility of Protein G

We have carried out rigidity analysis on Protein G using the software “FIRST” (22). Our input was the
1PGA.pdb structure with hydrogens added using the “Reduce” software (23). Rigidity analysis balances
the degrees of freedom of the atoms against the constraints introduced by covalent bonding, hydrophobic
tethers, salt bridges and hydrogen bonds. The result is a decomposition of the structure into rigid and
flexible regions, known as a rigid cluster decomposition. The set of hydrogen bonds included is determined
by a (negative) cutoff energy Ecut. An Ecut value near zero will include a large number of weak bonds and
largely rigidify a structure; progressively lowering Ecut eliminates hydrogen bonds in an order from weakest
to strongest, a process known as “rigidity dilution”. The progress of this loss of rigidity can be mapped in
a dilution plot (Figure S10a) in which the rigid cluster membership of each residue is mapped onto a 1-D
representation of the protein backbone. A new line is plotted for each cutoff energy at which the rigidity of
the mainchain changes.

At cutoff energies above −1.844 kcal/mol, the helix and the beta-sheet form a single rigid cluster (Figure
S10b), while at lower energies the helix is a rigid body but the beta-sheet has become flexible (Fig. S10c).
We stress that the backbone–backbone hydrogen bonding in both the helix and the sheet persists to much
lower cutoff values. Once the helix and the sheet are not a single rigid cluster, motion of the helix with
respect to the sheet becomes possible. The amplitude of such motion will be constrained by covalent and
non-covalent interactions, in particular the many hydrophobic tethers between helix and sheet residues.

We obtain an eigenvector for flexible motion using a coarse-grained (one site per residue) elastic network
model as implemented in the software “ElNeMo” (24). The lowest-frequency non-trivial mode, mode 7,
corresponds to a rotation of the helix about an axis perpendicular to the beta-sheet. Linear projection of
the structure along this mode would rapidly introduce unphysical distortions such as elongation of the helix.
In order to project the motion to finite non-zero amplitude, we make use of geometric simulation using the
“FRODA” module (25) included in FIRST. FRODA generates new conformations of the protein structure
by repeatedly introducing small perturbations of the atomic positions and reimposing the constraints. We
use the elastic-network mode eigenvector to bias the perturbations (26); this allows us to project the motion
to large amplitudes while maintaining covalent, non-covalent and steric constraints.

The mode can be projected to a Cα RMSD of more than 3 Å from the initial structure (Figure S11a)
while maintaining the network of hydrophobic tethers that are present in the original crystal structure.
During this projection (Fig. S11b–d) the helix rotates from its initial position diagonal to the sheet to lie
parallel to the beta-sheet strands. The projected structures are very similar to conformations from the
folding simulation, shown in the main article.
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Figure S10: (a) Rigidity dilution of Protein G structure 1PGA as hydrogen bond energy cutoff is lowered.
Each line represents the protein backbone; a thin line represents a flexible region while a thick line indicates
membership of a large rigid cluster. The beta-sheets lose their rigidity at a cutoff of −1.844 kcal/mol while
the helix (residues 22-35) remains rigid to much lower cutoffs. (b) Rigid cluster decomposition of 1PGA at a
cutoff of −1.0 kcal/mol. (c) Rigid cluster decomposition at a cutoff of −1.9 kcal/mol. Green and red dashed
lines represent hydrophobic tethers and hydrogen bonds.
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Figure S11: Projection of lowest-frequency non-trivial elastic network mode from initial structure (a) to 3Å
RMSD (b–d). Green and red dashed lines represent hydrophobic tethers and hydrogen bonds.
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Chapter 3

Force Field Parameter Inference

using Contrastive Divergence

When developing a coarse-grained protein model and force field, such as CRANKITE, it is essential to

optimize the parameters in order to produce results that are as accurate and reliable as possible. It is

also important to consider the generalizability of the force field, that is, the ability of the force field to

correctly model proteins not included in the parameter optimization procedure.

In this paper we optimize the parameters of the CRANKITE force field using the maximum likelihood

approach described in the Introduction. We take a set of protein crystal structures from the PDB

database as our training set and optimize the force field parameters in order to maximize the likelihood

(the room-temperature Boltzmann distribution) of the training set.

Rather than calculating the computationally expensive ensemble averages required for the standard

maximum likelihood method, we use a statistical machine learning approach known as contrastive di-

vergence and approximate the direction of the gradient of the logarithm of likelihood. This approach is

significantly more efficient and therefore enables a larger and hence more diverse training set to be used.

This is in contrast to earlier work, where the training set consisted of only a small number of protein

fragments. In that case the optimized force field was not found to be generalizable. However, with the

larger training set, we find the optimized force field is generalizable to protein G, a protein not included

in the training set.

We compare two different van der Waals potential forms, the standard Lennard Jones 12–6 potential

and a computationally cheaper hard cutoff function. Using nested sampling simulations of protein G, we

find that the room temperature ensemble of structures using the 12–6 function include the native helix

orientation, whereas this is not the case with the hard cutoff van der Waals potential.

We also compare the optimized parameters to those taken directly from ‘standard’ molecular dynamics

force fields. Taking the different parameter values, we compare the observed distributions of bond angles,

atomic distances, backbone dihedral angles and hydrogen bonding patterns. We also compare heat

capacities of polyalanine and the different turn types found when folding a β-hairpin. We demonstrate

the importance of optimizing the parameters of the force field rather than taking values found in the

literature.

Finally, we discuss the contrastive divergence procedure as applied to force field parameter inference,

its behaviour, the assumptions it relies upon and the effect of changing the quality of the training set.
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3.1 Contribution

The initial idea was formulated by Wild. Burkoff implemented the initial exploratory tests, which were

used by Várnai in order to develop the procedure. Várnai carried out the simulations. Burkoff contributed

to the contrastive divergence theory described in the Methods Section and all authors were involved in

formulating the discussion in light of the simulation results.

The initial draft of the paper was written by Várnai with Burkoff and Wild contributing to the

revision of the paper before submission. Várnai drafted a response to the referees with input from Wild

and Burkoff during the peer review process and revised the paper before submission.

The article was originally published by ACS Publications: Várnai C., N. S. Burkoff and D. L. Wild.

Efficient Parameter Estimation of Generalizable Coarse-Grained Protein Force Fields Using Contrastive

Divergence: A Maximum Likelihood Approach. J. Chem. Theory Comput. (2013) 9(12)5718–5733.
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ABSTRACT: Maximum Likelihood (ML) optimization schemes are widely used for parameter inference. They maximize the
likelihood of some experimentally observed data, with respect to the model parameters iteratively, following the gradient of the
logarithm of the likelihood. Here, we employ a ML inference scheme to infer a generalizable, physics-based coarse-grained
protein model (which includes Go̅-like biasing terms to stabilize secondary structure elements in room-temperature simulations),
using native conformations of a training set of proteins as the observed data. Contrastive divergence, a novel statistical machine
learning technique, is used to efficiently approximate the direction of the gradient ascent, which enables the use of a large training
set of proteins. Unlike previous work, the generalizability of the protein model allows the folding of peptides and a protein
(protein G) which are not part of the training set. We compare the same force field with different van der Waals (vdW) potential
forms: a hard cutoff model, and a Lennard-Jones (LJ) potential with vdW parameters inferred or adopted from the CHARMM or
AMBER force fields. Simulations of peptides and protein G show that the LJ model with inferred parameters outperforms the
hard cutoff potential, which is consistent with previous observations. Simulations using the LJ potential with inferred vdW
parameters also outperforms the protein models with adopted vdW parameter values, demonstrating that model parameters
generally cannot be used with force fields with different energy functions. The software is available at https://sites.google.com/
site/crankite/.

1. INTRODUCTION

The aim of predicting unknown protein structures from only
their primary sequences1 or to elucidate the folding process or
function of proteins with known structures is one of the central
aims of computational biology. The increase in the number of
protein sequences and structures deposited in the protein
databases2,3 highlights the need for efficient modeling of
proteins. Although all-atom molecular force fields have been
successfully applied to model fast folding mini-proteins,4 they
are too expensive for modeling larger proteins without the use
of specialist hardware. Coarse-grained (CG) protein models,
which are simpler than all-atom models, but still capture the
physics of interest, have shown an increasing popularity in their
use in computer simulations of proteins.5

In general, CG force fields are usually classified into two
main categories:5,6 structure-based or native-centric models,
such as elastic network7,8 and Go̅ models,9 where only the

native interactions are modeled as attractive interactions; and
structure-independent force fields6 that are modeling phys-
icochemical interactions that are often used in simulations of
aggregates,10−12 protein structure prediction,13 or protein
folding studies.11,14−18 Here, we optimize a Go̅-like CG force
field, CRANKITE,19 which was developed to efficiently model
peptides and proteins at room temperature by exploiting a fast
conformational sampling algorithm,20 and to stabilize secondary
structure elements at room temperature,21 which would allow it
to be used for protein structure prediction22 using predicted
secondary structure and β−β contact maps.23 It is an extended
Go̅-type model, where, although some of the secondary
structure interactions are constrained using a harmonic bias
potential, non-native attractive interactions are also modeled. In
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this paper, the bias potential acting on the backbone
conformation of residues with known α-helical and β-strand
secondary structure and the β-carbon distances of known β-
sheet contacts will be referred to as secondary structure bias.
Hence, this model allows the exploration of a more realistic
folding funnel, compared to the “perfect” funnel of standard Go̅
models. Thus, CRANKITE represents an intermediate between
the two main classes of CG protein models. CRANKITE also
uses a full atom representation of the protein backbone,
together with explicit side chain β and γ atoms, to include
entropic contributions coming from the torsional flexibility of
side chains.24 This is important, because it has been shown that
although polyalanine models (including only β atoms) are
excellent for modeling secondary structure elements, they form
more compact structures than real proteins.25

When optimizing force field parameters, protein models
should be parametrized to stabilize the native conformation of
the protein compared to unfolded and misfolded conforma-
tions; that is, the native conformation lies at the global
minimum of the free-energy landscape.26 Traditionally,
statistical-knowledge-based potentials have been used to
estimate model parameters of the energy function to reproduce
certain features of a model dataset,27 such as dihedral angles
and distance distributions, assuming that the selected features
are statistically independent and that their distribution in the
dataset of native conformations comply with the Boltzmann
distribution. This assumption is called the Boltzmann hypothesis.
Although the Boltzmann hypothesis is supported by numerous
empirical studies (see the Discussion section in refs 27 or 28),
the assumption of statistical independence is often poor.
Moreover, a reference state is usually introduced in the
potential of mean force formulation without a rigorous
definition, and the decoy sets used to describe the reference
state will affect the optimized potential parameters, as
demonstrated by Hamelryck et al.,29−31 who give a rigorous
statistical definition of a reference state.
Alternatively, native structure discriminant methods use a set

of decoy conformations to optimize the parameter values, such
that the folding characteristics of the protein are reproduced,
with the lowest energy assigned to the native state, using
various optimization techniques.32−40 However, these methods
do not incorporate temperature into the model, and so they do
not take into account the thermodynamic stability of proteins,
only the relative strength of intermolecular interactions to a set
of decoys.
An alternative way of estimating the potential parameters is

by using maximum likelihood (ML) methods, which infer the
potential parameters by maximizing the likelihood of the
experimentally observed (or computationally generated)
protein conformations, with respect to the model parameters
iteratively (or analytically,41 for very simple models), following
the gradient of the logarithm of likelihood.12,20,41−44 The model
with the parameters giving the highest likelihood would
generate a distribution of conformations (model distribution)
closest to the experimentally observed distribution of
conformations (data distribution, also referred to as the target
distribution of the parameter estimation). The free-energy
landscape of the inferred model potential is closest to the free
energy landscape corresponding to the data distribution, which
was demonstrated using a simple model of water,44 for which
the free energies could be calculated analytically. Winther and
Krogh,42 followed by Podtelezhnikov et al.20,21 used a ML
approach to train a protein model (i.e., a model applicable to

globular proteins), while Shell et al.12 used a ML approach to
train a protein model specific to a 15-residue polyalanine, a
prototype molecule used to model amyloid formation. The
relation of this ML approach (also referred to as the relative
entropy method44) to the force matching method45 was
analyzed by Chaimovich and Shell46 and Rudzinski and
Noid,47 in the context of fitting CG potentials to all-atom
models.
As we show below, the difficulty of the ML approach lies in

the calculation of ensemble averages over the model
distribution at every iteration. Winther and Krogh42 conducted
extensive simulations using replica exchange molecular
dynamics to calculate the ensemble averages, restricting their
training set to a small set of short peptides (24 different 11−14-
residue-long protein fragments), which resulted in poor
transferability to model peptides not in the training set. To
efficiently estimate the gradient of the log likelihood, instead of
re-evaluating the ensemble averages at each ML iteration,
Podtelezhnikov et al.20,21 used a statistical machine learning
technique, known as contrastive divergence (CD),48 which was
developed in the neural network literature to efficiently
estimate the parameters of Boltzmann machines.49,50 This
enabled the use of a larger data set of proteins and resulted in a
transferable protein model, which was subsequently used in
folding simulations of proteins not in the training set. Shell et
al.12 presented another solution to reduce computational costs,
using reweighted ensemble averages between successive
iterations. To accelerate the convergence of the ML
optimization, Hinton51 suggested an adaptive learning rate
with an associated momentum, while Bilionis and Zabaras52

have proposed an optimization algorithm that makes use of the
second derivative of the energy, with respect to the parameters
of the energy function.
In our earlier work, we have used the CD algorithm to

efficiently estimate potential parameters (hydrogen-bond
strength in proteins20 and the secondary structure bias
parameters21) of a CG protein model, CRANKITE. The aim
of this work is to improve the CRANKITE protein model, as an
exemplar for a CG force field, by inferring, or learning, the van
der Waals (vdW) parameters of the CG protein model using
this statistical machine learning approach. Two potential forms
are considered in this paper: a computationally efficient hard
cutoff model, employed by the original CRANKITE force field
that models short-range repulsion due to the Pauli exclusion
between overlapping electron densities, and the Lennard-Jones
(LJ) potential form53 that also models long-range attraction
due to fluctuating charge densities of induced dipoles.
Following the explanation of the method, the parameter
inference and the effect of the simulation parameters on the
inference are discussed. Subsequently, the improvement of the
force field is investigated by a comparison of the performance
of the hard cutoff and LJ type potential forms through the
investigation of structural and thermodynamic properties,
calculated from Monte Carlo (MC) and folding simulations
of 16-residue peptides and protein G (Protein Databank (PDB)
code: 1PGA). Transferability between different protein models
is tested by comparisons of LJ type potentials with learnt vdW
parameters (LJlearnt) and parameters adopted from the widely
used AMBER54 and CHARMM55 all-atom force fields (LJAMBER

and LJCHARMM, respectively). The assumptions of the method
are also discussed.
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2. METHODS
2.1. Maximum Likelihood Inference for Parameter

Estimation of Generalizable Protein Models. We assume
that we have n0 independent observations of the conformation
Ω0 of a protein with amino acid sequence S0, {Ω0|S0} = {Ω0

j |S0:
j = 1, ..., n0}, distributed according to the Boltzmann
distribution at inverse temperature β (e.g., the outcomes of
an experiment or a computer simulation). The interaction
parameters, θ, of a protein model, such as force constants,
distance cutoffs, dielectric permittivity or atomic charges,
specific to the protein with amino acid sequence S0, can be
estimated by maximizing the likelihood, L = P(θ|{Ω0},S0), by a
gradient ascent using an iterative scheme. At iteration k+1,

θ θ η= + ∇θ
+ Llnk k1

(1)

where η is the learning rate, and ∇θ ln L is the gradient of the
logarithm of likelihood, with respect to parameter θ. Assuming
that the observations {Ω0} are independent and come from the
Boltzmann distribution at inverse temperature β for a given
parameter set θ,

∏
∫
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Using Bayes’ equality with a uniform prior P(θ|S0), the gradient
of the likelihood, with respect to the model parameters, can be
written as
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where ⟨A(Ω)⟩θ,S0 = ∫ A(Ω)P(Ω|θ,S0)dΩ is the ensemble
average of A(Ω) in the model distribution. The first term in
the parentheses of eq 3 is an average over the data,
approximating an ensemble average over the data distribution.
Maximizing the likelihood is equivalent to minimizing the
Kullback−Leibler divergence (or relative entropy) of the data
distribution and the model distribution:
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since the entropy of the data distribution, H(P(Ω0)) =
−∑j=1

n0 P(Ω0
j |S0)lnP(Ω0

j |S0), does not depend on the parameters
θ, and the observations are drawn from the data distribution.
Such a protein model will be specific to the protein with

sequence S0 it was trained on, and is unlikely to be transferable
to proteins with arbitrary amino acid sequences. A generalizable
protein model, that is, one that is transferable to proteins not in
the dataset, must be trained on a set of proteins that are
representative of all the proteins we aim to model, and which
are independent of each other. Hence, let us take observations
of the conformations of N proteins with amino acid sequences
{S0} = {S0

i : i = 1, ..., N}. Let us allow that, for some proteins
with sequence S0

i , more than one independent observation of

the conformation is available, {Ω0
i } = {Ω0

ij|S0
i : j = 1, ..., ni}, and

that all observations come from the Boltzmann distribution
corresponding to the same inverse temperature β. The
parameters of the generalizable protein model (we use the
same parameter set θ to describe all proteins) maximize the
likelihood of the parameters, given the observed conformations.
The probability of finding the dataset, given the sequences and
the parameters, is

∏θ θΩ = | = Ω |
=

P i N S P S({{ }: 1, ..., } , { }) ({ } , )i

i

N
i i

0 0
1

0 0

(5)

as a conformation is only dependent on its own protein
sequence and the general θ parameters. Following a similar
derivation to that for eq 3, the gradient of the logarithm of
likelihood, with respect to the model parameters θ, can be
written as

∑ ∑β θ θ
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This is equivalent to minimizing the average of KL divergences
between the data and model distributions for all sequences,

∑ θΩ | || Ω |
=

P S P SKL( ( ) ( , ))
i

N
i i i i

1
0 0 0 0

(7)

Note that neither the length of the proteins, nor other
properties of the protein sequences explicitly affect the
parameter estimation; the direction of the gradient ascent is
given by the unbiased average of the KL divergences of the
model and data distributions for all sequences S0

i . Also note that
if there is only one observation available for any protein
sequence, the first term of the inner sum of eq 6, the average
over the data distribution for S0

i , is approximated by one data
point. Even in this case, the ML estimate is still correct, as long
as all protein conformations are described by the Boltzmann
distribution at the same inverse temperature β, and they are
representative of the proteins we aim to model.

2.2. Contrastive Divergence. In contrastive divergence,48

to avoid the cumbersome calculation of the ensemble average
in the model distribution at every step of the ML iteration (eq
6), the Kullback−Leibler divergence of the data distribution
and a perturbed data distribution is minimized, instead of the
KL divergence of the model and data distributions. Samples
from the perturbed distribution are generated by performing K
MC steps starting from the observed conformations represent-
ing the data distribution, using the model parameters θk at
iteration k. For a protein with amino acid sequence S0, we use
P0(Ω|S0) = P(Ω0|S0) to denote the data distribution, Pθ

∞(Ω|S0)
= P(Ω|θ,S0) to denote the equilibrium distribution of the model
with parameters θ, and Pθ

K(Ω|S0) to denote the perturbed data
distribution, which is generated by performing K MC steps
starting from the data distribution using the model parameters
θ at every iteration. The direction of gradient ascent is given by
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where ⟨A(Ω|S0)⟩0 = (1/n0) × ∑j=1
n0 A(Ω0

j |S0) is the ensemble
average in the data distribution, and ⟨A(Ω|θ, S0)⟩K = (1/n0) ×
∑ j=1

n0 A(ΩK
j |θ, S0) is the corresponding average in the perturbed

data distribution, with ΩK
j being a conformation in the

perturbed data distribution. In the original work by Hinton,48

simulation results of restricted Boltzmann machines with a
small number of visible and hidden units demonstrate that the
third term may be safely ignored, and so the CD parameter
estimation algorithm becomes

θ θ ηβ
θ
θ

θ
θ

= +
∂ Ω|

∂
−

∂ Ω|
∂

+
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

E S E S( , ) ( , )k k
k

K

k
1 0 0

0

(9)

For the problem at hand, we additionally provide the
following argument. As K → ∞, eq 1 is recovered. However,
even for a small number of steps, unless the model distribution
reproduces the data distribution, Pθ

K(Ω|S0) drifts away from the
data distribution, toward the model distribution KL(P0(Ω|S0) ∥
Pθ
∞(Ω|S0)) > KL(Pθ

K(Ω|S0) ∥ Pθ
∞(Ω|S0)), and the drift in the

energy gradient observed during the MC simulation can be
used as the estimate of ∇θ ln L. Changing the parameters
according to eq 9 reduces the tendency of the model
distribution to drift away from the data distribution. To
support this argument for the convergence of the algorithm
using the approximate gradient, we calculated the distribution
of the approximate ∇θ ln L for different model parameter
values, and plotted the distributions at the initial and converged
values of one of the model parameters (Figure S1 in the
Supporting Information). The expected value of the distribu-
tion at the initial parameter values is nonzero (and has the
correct sign), while at the converged parameter values, it is
zero.
When the observed conformations belong to proteins with

different amino acid sequences (i.e., when inferring a
generalizable protein model with ni = 1 for all sequences S0

i ),
the ML algorithm takes the form

∑θ θ ηβ θ θ= + ⟨∇ Ω | ⟩ − ∇ Ω |θ θ
+
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i

N
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K
i i1

1
0 0

(10)

when using the CD estimation of the KL divergences for all
proteins with amino acid sequence S0

i . This equation is used
throughout this work in the ML inference of the protein model
parameters. As a constant during the ML inference, β can be
incorporated into the learning rate.
2.3. The Protein Model. We use a protein model with an

all-atom backbone and coarse-grained side chains represented
up to the gamma atoms, as described by Podtelezhnikov et al.20

and Burkoff et al.22 Bond lengths and bond angles are rigid,
with values taken from Srinivasan et al.56 and Burkoff et al.,22

except for the Cα valence angle τ (the angle determined by the
amide N, Cα and carbonyl C atoms of a residue), which is
allowed to change. Peptide bond geometries are kept fixed,

resulting in fixed Cα−Cα distances. The conformational
flexibility of the backbone comes from free rotation around
the φ and ψ dihedral angles and the Cα valence angle. The side-
chain (N−Cα−Cβ−Cγ) dihedral angles can take values of ±60°
or 180°. During MC simulations, the move set consists of
crankshaft rotations around any axes connecting up to 4 Cα

atoms, and rotations at the termini around any axis passing
through the Cα atom, as implemented in the CRANKITE
software.19,57 At every fourth MC step, the side-chain dihedral
angles were reassigned by drawing from the frequency
distribution of side chain dihedral angles in the dataset.
The energy function of the protein model depends on the

conformation Ω containing all coordinates of its N residues,
and the parameter set θ. It consists of six terms,22
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EB is the backbone stress term due to deviations of the Cα

valence angle τi of residue i from the equilibrium value τ0 =
69°,58 and kτ is the force constant of the quadratic potential.
EvdW is the van der Waals interaction term described below,
employed to prevent atomic clashes, and to model long-range
weak attractive interactions. EHB is the hydrogen bonding term
with hydrogen-bond strength H. nl→m

HB is a number between 0
and 1 representing the strength of hydrogen bonding between
the amide H atom of residue l (Hl) and the carbonyl O atom of
residue m (Om), determined using a distance cutoff δ and two
angle cutoffs (ΘCOH and ΨOHN). (For the exact function form,
see the Supporting Information.) Ehyd is a hydrophobic
interaction term with interaction strength kh, a hydrophobic
match factor Mlm, and the cutoff function fcut

hyd. The hydrophobic
match takes a value of 2 if both amino acids are hydrophobic, 1
if one is hydrophobic and the other one is amphipathic, and 0
otherwise. The cutoff function changes linearly from 1 to 0 as
the distance of the Cβ atoms of residues l and m goes from the
sum of vdW radii (from the hard cutoff model) across 2.8 Å.
ESC is the side-chain−side-chain interaction term representing a
secondary structure bias on the dihedral angles of the residues
as well as β-sheet contacts. The γl,l+1 dihedral angle, Nl−Cα,l−
Cα,l+1−Cl+1, is restrained to an equilibrium value γ0,ss typical for
the corresponding secondary structure element ss (γ0,α = 82°
for α-helical conformation, and γ0,β = 180° for β strand
conformation) using the force constant ηss (ηα for residues in
an α-helical, and ηβ for residues in β-strand conformation, and 0
otherwise, defined by a predetermined secondary structure).
The Cβ,l−Cβ,m distances of residues l and m (rlm) that are in β-
sheet contact, defined by a predetermined binary contact map
Clm are restrained by a quadratic potential to an equilibrium
value r0,β using a force constant κβ. E

P is a proline term, specific
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due to deviations of the Cl−1−Nl−Cα,l−Cl dihedral angle, ϕl, of

the proline residue l from the equilibrium value of ϕ0 = −60°,59

and kP = 30RT is the force constant of the quadratic potential.20

In this paper, we consider the following forms of the vdW

interactions acting between atoms:
• A hard cutoff potential, often used by CG models, because

of its simplicity and computational efficiency,56,57,60 with a

distance-dependent excess energy for clashing atoms:22,57
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where Ri and Rj are the vdW radii of atoms i and j taken from
the original CRANKITE model,20 and rij is their distance.
•A Lennard-Jones potential form, also used in more

sophisticated CG models.32,61,62 Here, the vdW energy is
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between atoms i and j at a distance rij, where εij is the vdW
energy contribution at the minimum energy separation, Rmin,ij
(see Figure S2 in the Supporting Information). The energies
are shifted to obtain zero vdW energy at the cutoff, 2Rmin,ij. For
simplicity, the ε parameters of the LJ model are kept the same
for all atom types.
More-sophisticated approximations of the vdW potential (for

example, the Buckingham potential63 or many-body Axilrod−
Teller−Muto contributions64) would be computationally too
expensive to include in our CG simulations, where the aim is to
develop the simplest protein model that captures the physics of
the systems of interest.
2.4. The Optimization Procedure. In this work, the

following parameters of the energy function (eq 11) were
inferred for all models considered: the backbone stress force
constant (kτ), the hydrogen-bond strength (H), the hydrogen-
bond distance cutoff (δ) and angle cutoffs (ΘCOH and ΨOHN),
the hydrophobic interaction strength (kh), the secondary
structure biasing dihedral angle force constants (ηα and ηβ),
and the Cβ−Cβ contact equilibrium distance (r0,β) and force
constant (κβ). For the hard cutoff model, no further parameters
were inferred. For the LJ model (eq 13), a mutual vdW energy
contribution εi parameter for all atom types and the minimum
energy separation parameters Rmin,i for every atom type (CA,
CB, C, N, O and S) were also inferred (LJlearnt model), or
adapted from the CHARMM and AMBER force fields
(LJCHARMM and LJAMBER; see Table 1). Note that, in the LJlearnt
model, the CRANKITE atom types have the same εi parameter,
while in the LJCHARMM and LJAMBER models they have individual
ones.
During the ML inference, the parameters were inferred in

two stages, following a multigrid approach.65 The potential

parameters that govern the local and global configurations are
separated in the inference, starting with local parameters, and
then moving to more global parameters. The local parameters
were chosen as those affecting the local configuration of atoms
and short atomic distances near atomic clashes, namely, the
hydrogen bonding (H, δ, ΘCOH, and ΨOHN), Cα valence angle
stress (kτ), and vdW potential parameters (Rmin,i and ε, only for
the LJ model), and were inferred together in the first stage. The
other parameters acting over larger distances, namely, the
secondary structure bias (ηα, ηβ, κβ, and r0,β), and hydro-
phobicity (kh), were learnt subsequently, with the former ones
being fixed. Note that the LJ potential also acts at long
distances, and hence, the length scale separation is not perfect.
In fact, it is an effective way to decouple the effects of
potentially competing long-range parameters, such as the
hydrophobic interaction potential or the Cβ−Cβ contact
potential, from the short-range part of the LJ parameters,
which cannot be decoupled from the long-range part of the LJ
parameters.
As the data set of known protein structures representing

thermodynamic equilibrium, we use a subset of the protein
structures in the ASTRAL 1.75 database.66 To avoid proteins
with high sequence similarity, proteins with less than 40%
sequence identity were included. The ASTRAL 1.75 database
contains three-dimensional (3D) structures of protein domains,
classified into folding classes. For each structure, a Summary
PDB ASTRAL Check Index (SPACI)67 score is assigned,
indicating the reliability of crystallographically determined
structures. All PDB structures from the α, β, α+β, and α/β
classes of the ASTRAL 1.75 database with SPACI scores above
0.8 were included in the dataset, excluding the ones with
missing residues, disulfide bonds, or unusual residues.
Following the inference, the hydrophobic interaction

strength kh needed modification. kh was increased by 0.1 RT,
which was necessary for the protein folding simulations to
stabilize the conformation with the hydrophobic residues in the
interior of the protein. Although the hydrophobic interaction
strength was sufficient to preserve the folded structure of the
proteins in the database, it was not sufficiently strong for
folding proteins from an unfolded state. A possible reason for
the learnt value of kh being too small could be that the ASTRAL

Table 1. The CHARMM and AMBER Atom Types Whose LJ
Parameters Were Adopted for the CRANKITE Atom Types
in the LJCHARMM and LJAMBER Models

CRANKITE CA CB C N O S

CHARMM CT1 CT2 C NH2 O S
AMBER CT CT C N O S
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1.75 database used contains individual domains of multidomain
proteins, thus including numerous hydrophobic residues on the
surfaces of proteins in the dataset, although these would be in
the interior of the native multidomain proteins. Moreover,
increasing the hydrophobic interaction strength in effect
incorporates a penalty term for hydrophobic−hydrophilic
interactions of hydrophobic side chains with water molecules.
All other potential parameters were used unmodified.
The convergence was monitored by calculating the mean and

the standard deviation of parameter values for consecutive
1000-step intervals. When the mean changed by less than the
standard deviation and it fluctuated over three consecutive
steps, convergence was achieved. The simulations were further
run for another 5000 steps, and from these steps, the mean and
standard deviation of the distributions of the parameter values
were calculated.
2.5. Simulation Parameters. For the parameter estima-

tion, structures in the protein database were mapped onto the
protein model. In the mapping process, in which constraints of
the CG model are enforced, a few atomic clashes are
introduced. In order to eliminate high-energy configurations
due to clashing atoms, the following modifications were made
to the PDB library. The Cβ−Cγ distances of amino acids with
long and flexible side chains (lysine, methionine, glutamine, and
arginine) were set to their real Cβ−Cγ bond lengths: 1.52 Å for
lysine, methionine, and arginine, and 1.53 Å for glutamine.
Furthermore, any γ atoms that caused atomic clashes (for
instance, due to nonstandard side-chain dihedral angles), 765
atoms in total, were removed from the PDB structures used.
Subsequently, PDB structures whose backbone atoms were
involved in further atomic clashes after the mapping onto the
protein model, 6 proteins in total, were also removed from the
library. The list of the proteins used with their SPACI scores,

ASTRAL class information, and the α-carbon root-mean-square
distance (RMSD) of the mapped and the original structures are
included in Table S1 of the Supporting Information. The
maximum Cα RMSD between a mapped and an original
structure was 0.045 Å, while the mean Cα RMSD between the
mapped and the original structures was 0.025 Å.
In the CD learning simulations, we use 4096 MC moves per

CD learning iteration, and a temperature of 298 K was used in
calculating the Metropolis−Hastings acceptance criterion. The
learning rate of the CD learning simulations for each parameter
was determined by a trial-and-error method and set to be
sufficiently large to speed up the convergence, but small enough
to avoid instabilities in the convergence. The effect of the
maximum amplitude of the crankshaft rotations during the CD
learning was also investigated (see the Results section).
To validate the model parameters against the data, the model

distributions of some geometric observables using the
optimized parameters were compared to the data distribution
of the training set. The model distributions were generated by
106 step MC simulations using the protein models with
optimized parameters, starting from the training set, or from an
independent PDB set consisting of structures of the ASTRAL
1.75 database with SPACI scores between 0.7 and 0.8.
The inferred vdW potentials were further tested using 16-

residue peptides and a 56-residue protein, Protein G (1PGA).
First, a 108 step MC simulation was performed on a 16-residue
polyalanine peptide, using only the stress, vdW, and hydrogen-
bond contributions of the energy function, to determine the
accessible areas on the Ramachandran map, and the stable
secondary structure forms without using any secondary
structure bias. Subsequently, nested sampling (NS)22,68

simulations of β-hairpin folding were performed on a 16-
residue polyalanine and its glycine mutants, introducing a β-

Figure 1. Dependence of the converged potential parameter values, as a function of the Monte Carlo (MC) step size, inferred using the ASTRAL
PDB structures after removing overlapping atoms (solid lines), thus using a dataset that better represents the Boltzmann distribution. The plots
correspond to (a) hydrogen-bond strength (H), (b) α-helix backbone dihedral angle bias potential strength (ηα), (c) β-strand backbone dihedral
angle bias potential strength (ηβ), (d) β−β contact bias potential strength (κβ), (e) β−β contact equilibrium distance (r0,β), and (f) Cα valence angle
stress potential strength (kτ). For the hydrogen-bond strength plot (panel a) only, parameter values inferred using the ASTRAL PDB structures
without removing overlapping atoms are also shown (represented by a dotted line). Vertical dashed lines mark a crankshaft MC step size of 0.01.
The error bars correspond to one standard deviation of the distribution of the converged parameter value.
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hairpin secondary structure bias, to examine the behavior of the
unbiased loop. In the mutants, a glycine residue was introduced
at amino acid positions 8, 9, or 10, corresponding to the i+1, i
+2, and i+3 positions in the turn. Nested sampling is a Bayesian
sampling technique,68 which has been shown to be superior to
parallel tempering with regard to finding the native basin of
Protein G using the CRANKITE protein model in our previous
work.22 Further NS simulations were performed on the 16-
residue polyalanine peptide using α-helix and β-hairpin
secondary structure bias, respectively, to determine melting
heat capacity curves of the secondary structure. The NS
simulations were performed until the partition function
converged to T = −100 °C, which implies that the
thermodynamically accessible states have been sampled for all
temperatures above T, and hence, the heat capacity values have
been converged for any temperature above −100 °C. In the NS
simulations of the 16-residue peptides, 10 000 active points
were used, and 10 000 MC steps were used to generate new
points in the NS iterations. In the NS simulations of Protein G,
20 000 MC steps and 20 000 active points were used, and the
partition function was converged down to 25 °C.

3. RESULTS
3.1. Effect of the Simulation Parameters on the

Inference. In a contrastive divergence iteration, a short MC
simulation is performed to estimate the gradient of the energy,
with respect to the simulation parameters. The number of MC
steps, K, during each CD iteration affects the quality of the
gradient estimation, that is, the smaller the K value, the more

stochastic the gradient estimate becomes; however, K does not
affect the overall maximum likelihood.48 A more-stochastic
estimate of the gradient slows the convergence of the CD
simulations; however, it will not prevent convergence.
Following an argument by Hinton,48 even for K as small as
1, on average, over the training set, the perturbed data
distributions are closer than the data distribution to the
equilibrium distribution of the current model parameters
(unless the data and model distributions are equal), even if
individual MC simulations might result in an opposing gradient
at any iteration. Throughout this work, we use K = 4096, which
was found to be effective for the parameter inference.
During the MC evolution of each CD iteration, the

maximum allowed amplitude of the crankshaft rotations affects
the local exploration, thus influencing the converged potential
parameter values (Figure 1), and this can cause significant
variations in the converged parameter values. Our aim is to
infer a protein model that can be used in protein folding
simulations; hence, the exploration must be local for the
quadratic functions to describe the local basin, but it should
also be able to describe the energy surface nonlocally, and not
only the energy restrained to the crystal structure. In this work,
we approximate many terms of the energy function using
quadratic functions. On rugged energy landscapes where this
harmonic approximation of the curvature of the landscape is a
very crude approximation, larger MC moves facilitate the
crossing (effectively tunnelling) of energy barriers that smaller
MC moves could not climb over, and this makes the potential
energy surface appear to be different, often flatter (e.g.,

Table 2. Inferred Potential Parameters Using Contrastive Divergence, for the Protein Models Using the Hard Cutoff and the
Lennard-Jones (LJ)-Type van der Waals (vdW) Potentialsa

vdW and Backbone Stress Potential Parameters

vdW potential Rmin
CA Rmin

CB Rmin
C Rmin

N Rmin
O Rmin

S ε(RT) kτ(RT)

hard cutoff 1.57 1.57 1.42 1.29 1.29 2.00 90
LJlearnt 2.43 1.97 1.82 1.74 1.98 3.10 0.018 98
LJCHARMM 2.275 2.175 2.00 1.85 1.70 2.00 b 103
LJAMBER 1.908 1.908 1.908 1.824 1.6612 2.00 c 114

Hydrogen-Bond Potential Parameters

vdW potential H (RT) δ (Å) cos ΘCOH cos ψOHN

hard cutoff 4.95 2.01 0.770 0.930
LJlearnt 4.98 2.01 0.772 0.928

LJCHARMM 4.80 2.01 0.772 0.925
LJAMBER 4.91 2.01 0.771 0.921

Secondary Structure Bias Potential Parameters

vdW potential ηβ (RT) ηα (RT) Kβ (RT/Å
2) Rβ (Å)

hard cutoff 4.5 18.0 0.80 5.65
LJlearnt 3.7 15.3 0.85 5.39
LJCHARMM 4.5 18.6 1.00 5.62
LJAMBER 2.6 19.7 1.18 5.15

Hydrophobic Interaction Potential Parameters

vdW potential kh (RT)

hard cutoff 0.030
LJlearnt 0.022
LJCHARMM 0.051
LJAMBER 0.057

aThe vdW potential parameters of the hard cutoff model were taken from ref 20, while those of the LJCHARMM and LJAMBER models were taken from
the CHARMM55 and AMBER54 force fields, respectively. bε/RT values from the CHARMM force field (0.0338, 0.0929, 0.186, 0.338, 0.203, and
0.760 for the CA, CB, C, N, O, and S atom types respectively). cε/RT values from the AMBER force field (0.185, 0.185, 0.145, 0.287, 0.355, and
0.422 for the CA, CB, C, N, O, and S atom types respectively). The potential parameters are described in section 2.3; wherever a unit of length is not
indicated, the unit of length is Å.
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increasing the MC step size from 0.01 to 0.2 in Figures 1a, 1b,
1c, and 1f). Since the parameter estimates do not change by
more than 5% for amplitudes of 0.001−0.01 radians for H and
kτ and 0.002−0.02 radians for ηα, in the following, we chose to
use a maximum crankshaft rotation of 0.01 radians in the CD
estimations of the parameters for all models, and we will be
comparing results using this maximum rotation amplitude. For
the other parameters, we accept that the harmonic approx-
imation is probably far from perfect.
We also note that, although the convergence of parameters

for the individual maximum amplitude sizes is not prohibited,
the speed of convergence also depends on the MC step size.
Decreasing the MC step size increases the acceptance rate,
although from an MC step size of 0.02, the acceptance rate is
over 80% (see Figure S3 in the Supporting Information), and it
does not give much advantage in the exploration of the energy
surface during the short MC simulations used to estimate the
gradient in the CD iterations. On the other hand, when the
allowed MC step size is set to be small (for a given number of
MC steps), the exploration of the energy surface becomes
poorer, and the poorer gradient estimate slows the convergence
of the CD simulations.
3.2. Estimation of the Protein Model Parameters.

When inferring several potential parameters together, learning
correlated potential parameters is crucial for the convergence of
the ML estimation. This can be done by considering the
functional form of the energy function. When using the LJ-type
potential that is designed to have a nonspecific long-range
attractive energy contribution, we find problems with the
convergence of the CD learning of the parameters. The reason
for this is that the attractive interactions of the LJ potential
compete with the short-range attractive interactions. For
example, the vdW interaction between a N atom and an O
atom of a hydrogen bond would compete with the hydrogen-
bond interaction between them, both trying to describe an
attractive interaction between the two atoms at the same time.
Similarly, distances that occur frequently in secondary structure
elements (and are therefore enforced by the secondary
structure bias interactions), e.g., the Cβ−Cβ distance of
interacting amino acid residues in a β-sheet, would introduce
an artificial bias to the LJ potential parameters. To avoid these
problems, we only evaluate the hard cutoff part of the LJ
potential between atoms of amino acid residues that are
connected via a hydrogen bond, or whose neighbors are
connected via a hydrogen bond. This way, only nonspecific
nonbonded interactions are taken into account in the
parameter estimation of the LJ potential, and the correlation
of the potential parameters are suppressed for the inference.
Other ways to address this problem include fixing a parameter
value, or the ratio of the competing parameters together (e.g.,
merging the hydrogen bond with a hydrophobicity into one
function). However, introducing such constraints on the
potential parameters could introduce an artificial bias on the
parameter values.
The inferred values of the vdW potentials, hydrogen bond,

secondary structure bias, and hydrophobicity potential
parameters are summarized in Table 2, together with
corresponding values taken from the CHARMM and AMBER
force fields. While there is no noticeable difference between the
hydrogen-bond potential parameters for the two vdW models,
the force constant kτ of the backbone stress interaction is higher
for the protein model using the LJ potential than for the one
using the hard cutoff potential. This indicates that when using

the LJ functional form, as opposed to the hard cutoff functional
form, to represent the atoms, a larger conformation space might
be available by applying the vdW potential, and a higher
backbone stress force constant compensates for this, to obtain
the equilibrium distribution of Cα valence angles in the dataset.
This is supported by the comparison of vdW interaction
functions between various atom types using the model
parameters. Also, the β-strand backbone bias potential
parameter, ηβ, is noticeably higher for the protein model
using the hard cutoff vdW potential, which shows that the LJ
models favor the extended conformation more than the hard
sphere model. On the other hand, the β−β contact potential is
slightly stronger in the protein model using the LJ-type vdW
potential, with shorter equilibrium distance, r0,β, for the
interacting Cβ atoms, and a slightly higher force constant.
The α-helices might also be slightly more stable without a bias
potential, suggested by the lower α-helix backbone bias force
constant, ηα.
During the ML inference, the KL divergence of the model

and data distributions is minimized. However, for an unrealistic
energy function, the model distribution might still be far from
the data distribution. To validate our protein models for
describing the training set of proteins, we calculate various
structural observables in the model and data distributions, such
as the backbone dihedral angles (see Figures S4 (left) and S5 in
the Supporting Information), the α-carbon valence angle (see
Figure S7 (left) in the Supporting Information) and the
distribution of the distance between β-carbon atoms of
interacting amino acid residues in β-sheets (see Figure S7
(left) in the Supporting Information). Although the above
distributions are 1-dimensional (1D) or two-dimensional (2D)
marginalizations of the joint distributions, they would provide a
good indication if the model distribution were different from
the data distribution. In our current work, all model
distributions of the α carbon valence angle are identical to
the data distribution. The model distribution of the β-carbon
atoms of interacting amino acid residues in β-sheets in the
LJAMBER model is shifted to smaller values by 0.3 Å (potentially
indicating a slightly too strong bias on β sheets), while all other
model distributions are identical to the data distribution. All
model distributions of the backbone dihedral angles show the
same features as their distribution in the training set with high
occurrences in the α-helical, extended, and left-handed helical
regions, although the model distributions tend to be more
diffuse, spanning a larger area of the Ramachandran map than
in the distribution of the training set. These differences reflect
the residual KL divergence between the optimized model
distribution and the data distribution, arising from the mapping
entropy (i.e., that several configurations in the atomistic model
translate to the same CG configuration), which is the same for
all models, and from the differences in the potential energy
functions, which are unable to perfectly describe the native data
distribution. For example, the CG protein model employed
here allows for slightly more flexibility of the backbone by its
side-chain beads filling less space than the full side chains in an
atomistic representation, and this manifests in the more diffuse
Ramachandran plots of the backbone dihedral angles.
The transferability of the protein models was investigated

using a test set of proteins independent of the training set,
consisting of all 78 proteins in the ASTRAL database with a
SPACI score between 0.7 and 0.8. The data and model
distributions of the above-mentioned structural observables
were calculated for this test set (see Figures S4 (right), S6, S7
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(right), and S8 (right) in the Supporting Information). These
model distributions were practically identical to the data
distributions of the test set, indicating the transferability of the
protein models to proteins not in the training set. This is an
improvement over the nontransferable protein model of
Winther et al.,42 who were limited to a small set of short
peptides as their training set by the cumbersome calculation of
the ensemble averages in the model distributions at every
iteration. Here (and in our previous work20,21), it is the efficient
estimation of the gradient of the logarithm of likelihood by the
CD approximation that allows for the employment of a more-
realistic training set. We note that other efficient methods also
exist to avoid the re-evaluation of ensemble averages (for
example, Shell et al. used a reweighting of ensemble
averages12).
3.3. Accessible Regions of the Ramachandran Plot

from MC Simulations of an Ala16 Peptide. To test the
available regions of the Ramachandran plot using the two vdW
models described in the Methods section, MC simulations of a
16-residue peptide, Ala16, were carried out at room temper-
ature, using the vdW and hydrogen-bond energy contributions,
together with the Cα valence backbone stress, without the
secondary structure bias. For all models investigated, the
accessible regions of the Ramachandran maps in the MC
simulations at room temperature cover the allowed regions
calculated from the ASTRAL 1.75 database (see Figure S9 in
the Supporting Information). On the individual residue level,
for all models, helical backbone dihedral angles occur most
frequently, with the extended and left helical conformations
also being significant. The distributions for the LJlearnt and hard
cutoff models are more diffuse and more connected between
the positive and negative ϕ values, indicating a smaller energy
barrier for the conformational changes of the peptide backbone
within these regions of the probability map. During the
simulations, there is approximately one hydrogen bond per
configuration at any time, indicating that random coil is the
main conformation. The hydrogen-bond distribution is plotted
in Figure 2. For the hard cutoff model and the LJ model with
learnt vdW parameters (LJlearnt), the most commonly observed
hydrogen bonds correspond to 3,10- (i→(i−3) hydrogen
bonds) and α-helices (i→(i−4) hydrogen bonds). This is
consistent with experimental studies of polypeptides with high
alanine content.69 However, when using the LJ potential with
vdW parameters adopted from CHARMM (LJCHARMM) or
AMBER (LJAMBER), π-helices (i→(i−5) hydrogen bonds) are
also found to be common, which are not seen experimentally.
This problem was also seen in previous molecular dynamics
simulations of short peptides70 using the CHARMM force field.
The difference between the hydrogen-bond distribution using
the various LJ potential parameters implies that it is possible to
change the relative stability of the different helix types by tuning
the LJ potential parameters, and this is confirmed by
simulations using the hydrogen-bond and the Cα valence
angle stress parameters of the LJlearnt model with the LJ
parameters of the three LJ models investigated (see Figure S10
in the Supporting Information). For all models, left handed
helices (i→i+3,4) are also present, in agreement with the
allowed regions of the Ramachandran map, indicating that turn
formation in unbiased loop regions of proteins is conforma-
tionally accessible.
3.4. Studying Steric Effects in Turn Conformations on

16-Residue Peptides with a Hairpin Bias. The protein
model employed here is designed to be used with a known (or

predicted) secondary structure and β−β residue contact bias.
To further test how the hard cutoff and LJ type vdW models
perform in unbiased regions of proteins, in particular in turn
regions of β-hairpins, nested sampling simulations of 16-residue
peptides were performed employing a hairpin bias, where the
turn is located at the center of the peptide (residues 8 and 9).
The peptides used in this test were an Ala16 peptide, and its
mutated forms, where one of the turn residues is replaced by
Gly. These will be referred to as A-G-A-A, A-A-G-A and A-A-A-
G, corresponding to the glycine being at the i+1, i+2, or i+3
position of the turn, respectively. The secondary structure bias
of the energy function keeps the backbone of residues 1−7 and
10−16 extended, as well as restraining the Cβ−Cβ distances of
the interacting amino acid residue pairs of the two strands. The
inner two residues of the turn are unbiased, thus allowing the
investigation of whether or not the protein models described in
the Methods section reproduce observed correlations between
the position of glycine in a β-turn and the observed turn
conformation.71 The turn types found in the NS simulations are
listed in Table 3, with their relative probabilities at 298 K,
where we used the turn definitions of Venkatachalam72 (see
Figure S11 in the Supporting Information). The relative
probability of a turn type at 298 K is calculated by summing the
posterior weights of all NS configurations that fall into the
definition of the turn type, and then normalizing it by the sum
of the posterior weights of all turn types. [The posterior
weights of NS configurations are proportional to the available
phase space volume at a given temperature; hence, they provide
the probability of finding the system in that configuration.]
Turn type IV, that is, when no particular turn type can be
assigned to the dihedral angles of residues 8 and 9, is omitted
from this analysis.
All models investigated show the same trend of the turn

types adopted in the corresponding simulations, although
significant differences between the models used can be
observed for simulations of peptides with the i+2 residue of
the turn substituted with a glycine (A-A-G-A). In all the

Figure 2. Hydrogen-bond pattern from MC simulations of an Ala16
peptide, using the protein models employing the hard cutoff vdW
potential (solid line), the LJlearnt model (dashed line), the LJCHARMM
model (dotted line), and the LJAMBER model (dash-dotted line).
Potential parameters are listed in Table 2. On the horizontal axis, −4
represents a hydrogen-bond between amino acid residues i→j = i−4,
typical of α-helices, while −3 is typical of (3,10)-helices, and −5 of π-
helices. The small peak between +3 and +5 corresponds to left-handed
helices.
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simulations of the peptides, the type II′ turn is the dominant
turn type. When substituting the i+1 residue of the turn of the
polyalanine peptide with a glycine (A-G-A-A), the posterior
weight of type II′ turn increases further, and becomes almost
the exclusive turn type. This is consistent with the findings of
Sibanda et al.71 that, among the protein structures investigated,
type II′ turns mostly occurred with X-G-[ST]-X turn residues
(with X being an unspecified amino acid). Substituting the i+3
residue of the turn with a glycine (A-A-A-G) increases the
probability of adopting a type I turn (by more than a factor of
2). This is consistent with type I turns typically having glycine
residues at the i+3 position of the turn (X-X-X-G).71 When
substituting the i + 2 residue of the turn with a glycine (A-A-G-
A), the type I′ and type II turns become much more significant
compared to simulations of other glycine-substituted peptides.
The increase in the probability of type I′ turns is consistent
with type I′ turns most often consisting of X-[NDG]-G-X
residues.71 Simulations using the LJAMBER model appear to
demonstrate this best. However, this discrepancy might also be
attributable to the LJAMBER model being best at artificially
compensating for the lack of explicit side-chain−main-chain
hydrogen bonds in our model. If this were the case, including
side-chain-main-chain interactions in our model would further
increase the probability of the type I′ turn for an A-[ND]-G-A
peptide for the other models investigated, and the apparent
advantage of the LJAMBER model would be lost; however, this is
beyond the scope of the present paper.
When comparing the fully learnt (LJlearnt) model with the

hard cutoff model, the two models perform very similarly, and
consistently with findings in the literature. We find no apparent
superiority of the more-elaborate LJ function of the vdW
potential in this test. However, note that this does not imply
that, generally, vdW interactions would be unimportant in
modeling small peptides; for example, they have been found to
have a stabilizing effect in quantum mechanical studies of short
polyalanine helices.73 In our CG model, secondary structure
bias contributions are optimized to stabilize the secondary

structure, and, for this particular model, no superiority of any
one of the investigated vdW models is indicated.

3.5. Heat Capacity Curves of an Ala16 Peptide with
Varying Secondary Structure Bias. Since purely structural
properties of polyalanine peptides are not sufficient to rank the
protein models, we also investigated the energetics of the
models. However, analyzing the energetics of solely the vdW
contributions would be misleading, since all other model
parameters might depend on the values of the vdW parameters.
Instead, we investigated relative stabilities and heat-capacity
curves from polyalanine simulations. One of the major
advantages of nested sampling is that, by post-processing the
results of the simulation, thermodynamic properties such as
heat capacity curves may be calculated for any temperature.
Here, we calculate heat capacity curves for a 16-residue
polyalanine peptide under the assumption of either an α-helix
or β-hairpin secondary structure by using an α-helical or β-
hairpin secondary structure bias.
The critical temperatures of the heat-capacity curves (Tc)

(i.e., the peak position) and the heat capacities Cv,c at these
temperatures are listed in Table 4, with the heat capacity curves

given in Figure S12 in the Supporting Information. Also shown
in Table 4 are some indicative experimental values taken from
calorimetric measurements of a variety of peptides 20−30
amino acid residues in length,74 although the secondary
structures of these peptides were not reported. Specific β-
hairpin peptides (see, e.g., ref 75) involve a significant amount
of stabilizing side-chain interactions which are not modeled by
the polyalanine peptides, so they were omitted from this
comparison. The heat capacities for all four models correlate
better with the experimental values under the assumption of a
α-helix rather than a β-hairpin. This is consistent with
experimental NMR studies of polyalanine peptides, which
find a helical form at room temperature,69 and strongly suggests
that the α-helix form is indeed the more stable.
Of the four models, the LJCHARMM model initially appears to

give the best prediction for the critical temperature. However,
this is the only simulation that predicts the β-hairpin to be
more stable than the α-helix (i.e., to have a higher Tc values). In
contrast, the very high critical temperatures predicted for the
hard cutoff potential and LJAMBER model show that these
models cause the α-helix secondary structure to be overly
stable, which is consistent with the critical temperature (∼400
K, or 127 °C) found by Peng et al.,76 using the AMBER force
field for a 15-residue polyalanine peptide. The critical

Table 3. Relative Probabilities of the Turn Types Identified
from Nested Sampling Simulations of 16-Residue Peptides
Applying a β-Hairpin Bias, at 298 Ka

turn residues vdW model turn II′ turn I′ turn I turn II

AAAA hard cutoff 0.968 0.000 0.000 0.032
AAAA LJlearnt 0.983 0.000 0.003 0.014
AAAA LJCHARMM 0.965 0.000 0.028 0.000
AAAA LJAMBER 0.997 0.000 0.002 0.001
AGAA hard cutoff 0.980 0.000 0.001 0.020
AGAA LJlearnt 0.993 0.000 0.001 0.006
AGAA LJCHARMM 0.997 0.000 0.003 0.000
AGAA LJAMBER 1.000 0.000 0.000 0.000
AAGA hard cutoff 0.864 0.022 0.001 0.113
AAGA LJlearnt 0.873 0.023 0.001 0.102
AAGA LJCHARMM 0.619 0.091 0.029 0.182
AAGA LJAMBER 0.588 0.383 0.001 0.025
AAAG hard cutoff 0.944 0.000 0.009 0.046
AAAG LJlearnt 0.980 0.000 0.007 0.012
AAAG LJCHARMM 0.931 0.000 0.066 0.000
AAAG LJAMBER 0.969 0.000 0.030 0.000

aTurn type IV was excluded from the analysis. Substituting the i+1, i
+2, or i+3 residue of the turn by glycine (AGAA, AAGA, and AAAG,
respectively) increases the relative probability of the type II′, the types
I′ and II, and the type I turn, respectively.

Table 4. Critical Temperatures (Tc) of Heat-Capacity Curves
and the Heat-Capacity Value at Tc (Cv,c) in Units of R for the
Ala16 Nested Simulations with α-Helix and β-Hairpin
Secondary Structure Bias, Using the Hard Cutoff (Hard) and
Lennard-Jones Type vdW Modelsa

Critical Temperature Data (°C)

Tc
hard Tc

LJlearnt Tc
LJCHARMM Tc

LJAMBER Tc
exp

α-helix 130 70 0 150
0−30

β-hairpin 10 40 20 30
Heat-Capacity Data (R)

Cv,c
hard Cv,c

LJlearnt Cv,c
LJCHARMM Cv,c

LJAMBER Cv,c
exp

α-helix 170 130 90 80
100−200

β-hairpin 67 63 43 47
aApproximate experimental values (exp) are taken from ref 74.
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temperatures calculated using the LJlearnt model correlate best
with the experimentally observed range while still predicting the
correct relative secondary structure stability. Comparing the
hard cutoff model and the LJlearnt model (for which all
parameters including the LJ parameters were inferred), the heat
capacity results and the relative stabilities suggest that the LJ
potential may be more suitable than the hard cutoff vdW
potential for calculating the thermodynamic properties of
peptides. We also note that there is sufficient flexibility in the LJ
parameters to change the relative stabilities of helical and strand
conformations. The LJ parameter values of the LJCHARMM

model overstabilizes the β-hairpin form, while the LJAMBER

model overstabilizes the α-helical form, when used with the
CRANKITE force field.
3.6. Folding Simulations of Protein G. In the previous

sections, simulations of small peptides with fixed secondary
structure were described, where the form of the vdW
interactions was found to have no significance using our CG
force field including a secondary structure bias. The effects of
the long-range vdW interaction contributions of our force field
on side-chain packing between interacting secondary structure
units (α-helices and β-sheets) can be investigated by protein
folding simulations, because this tertiary level of structure

formation is not modeled by other interaction parameters in
our force field. We present folding simulations of protein G,
including secondary structure bias and hydrophobic interaction
contributions in the models used. Protein G is a 56-residue
protein consisting of an antiparallel four-stranded β-sheet and
an α-helix, with a β-Grasp (ubiquitin-like) fold (see Figure S13
(right) in the Supporting Information). Conformations found
in simulations using the different vdW models were assessed
visually (which side of the β-sheet the helix was on, whether the
hydrophobic residues are in the interior of the protein or
exposed), as well as quantitatively, by calculating the Cα root-
mean-square distance (RMSD) from the crystal structure
present in the PDB database, and the angle of the helix
orientation with respect to the axis of the β-sheet. The helix
orientation angle is calculated as the directional angle between
the axis of the N-terminal β-strand (the vector pointing from
the Cα atom of residue 7 to the Cα atom of residue 3) and the
axis of the α-helix (the vector pointing from the center of mass
of the Cα atoms of residues 24−27 to the center of mass of the
Cα atoms of residues 31−34), around the surface normal of the
β-sheet (the cross product of the vector pointing from the Cα

atom of residue 7 to the Cα atom of residue 3, and the vector

Figure 3. The backbone RMSD from the native state (top), and the angle of the helix with respect to the axis of the β-strands (bottom), as a
function of the potential energy for the conformations in the main basin of the energy landscape, explored by nested sampling simulations using the
protein model with (left) hard cutoff vdW potential and (right) Lennard-Jones type vdW potential with inferred vdW parameters. The estimated
energy at room temperature is marked by solid vertical lines. Conformations obtained by using the LJ potential show a wide range of allowed helix
orientation angle at room temperature, including the native angle in the crystal structure, 21.8° (dashed horizontal line), while simulations using the
hard cutoff potential fail to find the native helix orientation.
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pointing from the Cα atom of residue 7 to the Cα atom of
residue 54).
For all vdW models investigated here, the main conformation

at room temperature is topologically correct. The helix was on
the correct side of the β-sheet at room temperature in all
simulations, as opposed to earlier simulations using the
CRANKITE protein model without including the γ atoms
(and without hydrophobic interactions), which allowed the
helix to be equally on either side of the sheet.21 Since there is
no information coded in the secondary structure bias about
which side of the sheet the helix may pack against, this indicates
that having the γ atoms and the hydrophobic interactions in the
model makes a clear distinction between the two basins.
Previous simulations including γ atoms but no hydrophobic
interactions (data not shown) showed a preference for the helix
to be on the correct side of the sheet, probably due to the steric
clashes of large residues in the loops that prohibit the folding of
the helix onto the wrong side of the sheet at room temperature.
The inclusion of hydrophobic interactions enables a qualitative
shaping of the energy landscape, representing a driving force for
the correct collapse of the protein in the folding simulations, in
agreement with previous studies arguing for the importance of
the hydrophobic interactions in protein folding.77

When comparing the RMSD of the conformations in the
main basin from the native conformation in the PDB database,
the LJlearnt model outperforms the hard cutoff potential.

Conformations in the main basin of the energy landscape,
explored by NS simulations using the LJlearnt model, have an
RMSD from the native conformation as small as 2 Å, while the
model employing the hard cutoff potential cannot find
conformers that have an RMSD distance of less than 3 Å
(see Figure 3, top). The reason for this is that the packing of
the helix with respect to the β sheet can be better described by
the LJ model. Indeed, the orientation of the α-helix, with
respect to the β-sheet, is closer to the native orientation when
using the LJlearnt model (see Figure 3 (bottom), as well as
Figure S13 in the Supporting Information). The native helix
orientation angle, with respect to the sheet, only appears using
the LJ potential, and a wide range of orientation angles are
accessible at room temperature, showing that a twisting motion
of the helix is allowed. This is consistent with rigidity analysis of
Protein G,22 where the lowest-frequency nontrivial mode of the
normal-mode analysis of Protein G was found to correspond to
a rotation of the helix about an axis perpendicular to the β-
sheet, allowing a deviation of more than 30° in the helix
orientation angle from the crystal structure while maintaining
the network of hydrophobic bonds present in the crystal
structure.
The reasons why the LJ potential form could be better than

the hard cutoff at modeling the packing of Protein G could be
2-fold. First, as discussed in section 3.2, the LJ potential is softer
than the hard cutoff potential, allowing for more flexibility of

Figure 4. Distribution of the helix angle at room temperature from a MC simulation for the different models: (top left) hard cutoff model, (top
right) LJlearnt , (bottom left) LJCHARMM, and (bottom right) LJAMBER. Simulation length: 1010 MC steps, starting from the crystal structure. Vertical
dashed lines show the helix orientation angle in the crystal structure.
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the loop regions at the two ends of the helix; and second, the
weak long-range attractive interactions might favor the packing
of the helix in the native orientation, which would appear as a
zero-energy contribution using a hard cutoff. However, we have
found that the hard cutoff and the LJ potentials behaved
similarly in modeling small loop regions of peptides with simple
tertiary structure, suggesting that it is more likely that the long-
range attractive interactions make the Lennard-Jones potential
a more-realistic model for proteins. Our results confirm
previous observations about the importance of the long-range
attractive interactions of the vdW interactions in the modeling
of the packing of protein interior78 and small clusters.79 We find
that, in the CRANKITE model, while the hydrophobic
interactions are responsible for stabilizing the correct tertiary
assembly of the secondary structure elements enabling the
qualitatively correct collapse of the protein during the folding
process, the vdW interactions are important for the fine-tuning
of the energy landscape within its main basin. This agrees with
previous experimental and simulation results (see citations
given in ref 80), which found that both the hydrophobic
interactions and the packing are important in protein folding.
When comparing simulations using the LJ potential with

learnt or adopted vdW parameters, we find that, although low
RMSD structures with the native orientation are observed in all
LJ simulations (see Figure S14 in the Supporting Information),
the distributions of the helix orientation angle exhibit significant
differences: while the helix distribution angle follows a broad
unimodal distribution for the LJlearnt model, it follows a bimodal
distribution using the LJCHARMM and LJAMBER models, implying
a two-state model with a high energy barrier. This is shown by
the distribution (Figure 4), the trace plots (Figure S15 in the
Supporting Information), and the autocorrelation functions
(Figure S16 in the Supporting Information) of the helix
orientation angle, calculated in room temperature MC
simulations of 1010 steps, starting from the crystal structure.
The energy barrier of twisting the helix is so high using the
LJAMBER model that the helix orientation angle only switched
once between the two main basins. The trace plots and the long
autocorrelation time of the helix orientation angle of the
LJCHARMM model suggest the presence of an energy barrier for
this model. The rigidity analysis of Protein G22 suggests a broad
unimodal distribution without the implication of an energy
barrier, supporting the distribution generated by the LJlearnt
model. We note that the helix angle distribution is far from
perfect, being shifted toward negative values, which indicates
that there are other effects not considered in the model that
play a role in the helix packing, for example, electrostatic
interactions.

4. DISCUSSION
When inferring a generalizable protein force field using a
training set of proteins with varying sequences (see section
2.1), our ML approach with the CD approximation relies on
the following assumptions. First, the protein conformations of
the various sequences S0

i come from their respective Boltzmann
distributions corresponding to the same inverse temperature,
and second, the training set of protein conformations
represents independent and representative samples from a set
of proteins that is intended to be modeled by the protein force
field.
The training set of protein conformations may be

experimentally observed,20,21,42 or computer-generated.12,28

When conformations are generated from computer simulations

at a given temperature, although the assumption of Boltzmann
distribution of each sequence holds a priori, the fitted CG
model will have the limitations of the all-atom model at best.
The same holds for fitting to NMR structures optimized by all-
atom force fields. Hence, we used only crystal structures in the
training set of our protein model. The assumption that the
individual conformations in the training set, all of which are
crystal structures, are representative of the native structure in
thermodynamic equilibrium in solution, is based on previous
studies.81,82 When the atomic coordinates of proteins are
mapped onto the CG model, high energy states, non-
representative of the Boltzmann distribution were eliminated
by removing the clashing gamma atoms. This causes the
converged parameter values (hydrogen bond strength, bias
potential strength) to be consistently up to 5% lower than
when the ensemble including high energy conformations is
used (Figure 1a). A possible explanation of this is that stronger
attractive interactions (hydrogen bonds and side-chain−side-
chain interaction) are necessary to compensate the high energy
atomic clashes, in order to be able to preserve the structure of
the proteins in an MC simulation. This demonstrates the
importance of the data set of known proteins being drawn from
an ensemble representing thermodynamic equilibrium at room
temperature. One might argue that it could be better to keep all
atoms, and relax the structure by minimization or perturbation
of the structures. However, at this stage, we do not know the
parameters of the energy function, and the energy function
used would bias the equilibrium state, and the inferred potential
parameter values. We also note that, in PDB structures, there
are missing atoms, and none of the potential parameters of our
CG model are dependent on whether all atoms in a residue are
present. In the parameter inference, the dataset with the
clashing atoms removed was used.
According to the Boltzmann hypothesis, the statistics of

structural features such as hydrogen-bond distances in the
native state of proteins comply with the Boltzmann
distribution.83−85 It has been argued that the Boltzmann
hypothesis represents an evolutionary equilibrium where these
structural features are maintained around a narrow set of
values,83 for example it has been proposed that protein
sequences have evolved maintaining an optimal mean hydro-
phobicity profile.84 According to the maximum entropy
principle, these may be considered as evolutionary constraints
on the evolution of protein sequences (see the Discussion
section in the work of Podtelezhnikov et al.27). This argument
suggests the existence of a generalizable protein force field that
captures these evolutionary constraints, which we infer using a
training set of protein conformations that is representative of
the proteins to be modeled (that is, proteins with a globular
structure). In another study, to recover a very simple
underlying CG force field, a training set of 5 proteins have
been found to be sufficient,28 where the training set is called an
extended canonical ensemble, referring to the collection of
equilibrium systems that are governed by the same underlying
general force field.
To test that our training set is representative of this

distribution, we considered parameter estimation using differ-
ent subsets of the ASTRAL library, marked by a minimum
SPACI score, representing the quality of the crystallographic
structures. The higher the SPACI score the better the
crystallographic structures are, although the variability of folds
may be lower, due to the smaller number of structures. The
parameter estimation using the different subsets reveals a trend
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for the hydrogen bond strength (a 10% increase for SPACI
score 0.8 as opposed to 0.4), corresponding to more perfectly
formed hydrogen bonds in the dataset, but no dependence of
the bias potential parameters on the quality of protein
structures. The weak dependence of the protein model
parameters on the quality of the crystal structures indicate
that the ASTRAL data set is sufficiently diverse to estimate
parameters of a generalizable protein model, and as such, in the
parameter inference, we used the subset of the database with a
minimum SPACI score of 0.8, comprising 73 proteins of
varying length from 43 to 690. In comparison, Winther and
Krogh42 used a dataset of 24, 11−14-residue-long peptides as
the training set of their ML inference. Although the training set
was successfully folded with their optimized potential, the
inferred protein model was not found to be transferable to
peptides not included in the training set. One of the reasons for
this was that the training set was not representative of the
native distribution of protein sequences.
The CD approximation allows a significant acceleration of

the ML inference. Assuming 106 MC steps for the convergence
of the ensemble average, which might be a reasonable estimate
for the peptide size used by Winter and Krogh,42 the
acceleration of the ML inference coming from the use of the
CD approximation is over 200-fold for the same dataset of
peptide conformations. Moreover, larger proteins included in
the dataset will have longer equilibration and decorrelation
times (for example, in the MC simulations of Protein G using
the LJAMBER model, even 1010 MC steps are not sufficient to
calculate the equilibrated distributions), further increasing the
acceleration of the current algorithm over a naıv̈e ML
algorithm.

5. CONCLUSION
In this work, the potential parameters of a generalizable coarse-
grained (CG) force field for modeling proteins were inferred,
or learnt, from a data set of known protein structures, using a
maximum likelihood (ML) approach. We show how our
method of inferring a generalizable protein model relates to
inferring protein models specific to an amino acid sequence.
This ML inference of a specific force field relies on the
assumption that the training set contains independent
observations of conformations of not only one, but a set of
proteins, which are independent and representative of the
proteins to be modeled by the force field. While the training set
used here is a subset of crystal structures from the Protein
Database (PDB) database (the only available experimental data
on protein structures), it could also be generated by computer
simulations.12,28

To avoid the necessity of equilibrating each protein of the
training set in the model distribution at each iteration of the
ML optimization, we employ contrastive divergence for a
computationally efficient approximation of the gradient of the
energy with respect to the potential parameters, reducing the
computational requirements by several orders of magnitude.
The contrastive divergence approximation relies on the
assumption that the conformations of any protein in the
training set represent samples from a thermal equilibrium. We
show that if this assumption does not hold (due to including
several high energy conformations), a systematic error in the
parameter estimation is introduced. The algorithm is very
simple, increasing the number of the parameters of the ML
inference by only two; the number and the maximum
amplitude of Monte Carlo (MC) steps to generate the

perturbed data distribution. While the number of MC steps
only affects the noise on the gradient estimate, we find that,
because of the ruggedness of the energy landscape, selection of
the maximum allowed MC step size affects the local exploration
of the energy landscape. Preliminary tests show that the ML
optimization can be further accelerated by employing an
adaptive learning rate with an associated momentum, as
suggested by Hinton.51

We infer parameters for protein models employing two
different van der Waals (vdW) interaction potentials: a hard
cutoff potential and a Lennard-Jones (LJ) potential using
inferred parameters (LJlearnt) and parameters adopted from the
CHARMM and AMBER force fields (LJCHARMM and LJAMBER,
respectively). We find that the LJlearnt model better models heat
capacities of small peptides, as well as the helix orientation
distribution of Protein G at room temperature, when used
within the CRANKITE force field, which is an improvement
over the original version of the force field employing the hard
cutoff potential form. In the improved force field, the
hydrophobic interactions determine the main basin of the
energy landscape into which the protein collapses during the
folding simulations, while the vdW interactions serve to fine-
tune the potential energy landscape within the main basin. The
simulation results suggest that the CRANKITE force field can
be further improved by incorporating electrostatic interactions
or side-chain−main-chain hydrogen-bond interactions. Our
simulations demonstrate that model parameters generally are
not transferable between different models. When comparing
the all-atom CHARMM or AMBER force fields using our CG
force field, both the atomistic resolution and the energy
function differ significantly. Adopting vdW parameters without
further optimization was found to cause a significant change in
the secondary structure bias potential parameters (not present
in the CHARMM or AMBER force fields), and the relative
stability of the secondary structure elements was also found to
be altered. However, the maximum likelihood inference using
the contrastive divergence approximation employed here
provides an efficient general inference scheme to achieve a
model distribution closest to the data distribution in the
training set, as long as the assumptions of the model discussed
above hold.
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Internet at http://pubs.acs.org/.
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1 The hydrogen bonding energy term (nHB
l→m) of the CRANKITE

force field

The hydrogen bonding energy term between the amide H atom of residue l (Hl) and the carbonyl

O atom of residue m, (Om), is determined using a distance cutoff, δ , and two angle cutoffs, ΘCOH

and ΨOHN.

nHB
l→m = f cut

δ (d(Om,Hl),δ ) f cut
Θ (Θ(Cm,Om,Hm),ΘCOH) f cut

Ψ (Ψ(Om,Hl,Nl),ΨOHN) (1)

where d(Om,Hl) is the Om–Hl distance, Θ(Cm,Om,Hm) ≥ ΘCOH is the Cm–Om–Hl angle, and

Ψ(Om,Hl,Nl)≥ΨOHN is the the Om–Hl–Nl angle. The cutoff functions are

f cut
δ (d(Om,Hl),δ ) =





1 d(Om,Hl)≤ δ

δ 4d(Om,Hl)
−4 d(Om,Hl)> δ

, (2)

f cut
Θ (Θ(Cm,Om,Hm),ΘCOH)=





1 Θ(Cm,Om,Hm)≥ΘCOH

cos4(ΘCOH)cos−4(Θ(Cm,Om,Hl)) Θ(Cm,Om,Hl)<ΘCOH

and

(3)

f cut
Ψ (Ψ(Om,Hl,Nl),ΨOHN) =





1 Ψ(Om,Hl,Nl)≥ΨOHN

cos4(ΨOHN)cos−4(Ψ(Om,Hl,Nl)) Ψ(Om,Hl,Nl)<ΨOHN

.

(4)
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2 Figures referenced in the Main Text
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Figure S1: The convergence of the H-bond strength parameter (H) in the ML inference using
the CD approximation, when using the hard cutoff model. The insets show the distribution of
the approximate gradient for the initial value, H = 4.25RT (left), and for the converged value,
H = 4.92RT (right). At the initial value, the distribution is centred around 0.07, while at the
converged value, around 0. The standard deviation of the gradient distributions is 0.45. The
converged value of the parameter was calculated from iterations 5,000 to 10,000.
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Figure S2: The Lennard-Jones type interaction energy function, as implemented in this work (solid
line). The 0 energy is marked with dashed line, the excess energy of clashing atoms (Eclash) and the
minimum energy (εi j) are marked with horizontal dotted lines, and the minimum energy separation
Rmin,i j is marked with a vertical dotted line.
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Figure S3: The dependence of the Monte Carlo acceptance rate on the MC step size (solid line).
The angle of the maximum allowed crankshaft rotation is on the horizontal axis. The vertical
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Figure S4: The distribution of backbone dihedral angles in the model distributions using the models
listed in Table 1 of the main text (hard cutoff: first row; LJlearnt: second row; LJCHARMM: third
row; LJAMBER: bottom row). The PDB structures modelled were Left: the training set, Right: an
independent PDB set, the ASTRAL PDB structures with SPACI scores from 0.7 to 0.8.
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Figure S5: The Ramachandran map of the backbone dihedral angles in the training set (the data
distribution). Left: backbone dihedral angles without smoothing, Right: backbone dihedral angles
smoothed by Gaussians with standard deviation of 10 degrees.
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Figure S6: The Ramachandran map of the backbone dihedral angles in the test set (the data dis-
tribution). Left: backbone dihedral angles without smoothing, Right: backbone dihedral angles
smoothed by Gaussians with standard deviation of 10 degrees.
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Figure S7: The distribution of the α-carbon valence angle, τ , in the data distribution and in the
model distributions with the models listed in Table 1 of the main text. Left: The data distribution of
the training set (black curve) with mean and standard deviation 111±5 is reproduced by all model
distributions of the training set (hard cutoff: 111± 4, purple curve; LJlearnt: 111± 4, red curve;
LJCHARMM: 111± 4, blue curve; LJAMBER: 110± 4, cyan curve. Right: The data distribution
of the training set (black curve) with mean and standard deviation 111± 5 is reproduced by all
model distributions of an independent PDB set, the ASTRAL PDB structures with SPACI 0.7–0.8
(hard cutoff: 111±4, purple curve; LJlearnt: 111±4, red curve; LJCHARMM: 111±4, blue curve;
LJAMBER: 110±4, cyan curve.
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Figure S8: The distribution of β -carbon atom distances in β -sheet interactions, in the data dis-
tribution and in the model distributions with the models listed in Table 1 of the main text. Left:
The data distribution of the training set (black curve) with mean and standard deviation 5.2±0.7
is reproduced by all model distributions of the training set (hard cutoff: 5.2± 0.7, purple curve;
LJlearnt: 5.2± 0.7, red curve; LJCHARMM: 5.1± 0.6, blue curve; LJAMBER: 4.9± 0.6, cyan curve.
Right: The data distribution of the training set (black curve) with mean and standard deviation
5.2±0.7 is reproduced by all model distributions of an independent PDB set, the ASTRAL PDB
structures with SPACI 0.7–0.8 (hard cutoff: 5.2±0.6, purple curve; LJlearnt: 5.2±0.7, red curve;
LJCHARMM: 5.1±0.6, blue curve; LJAMBER: 4.9±0.6, cyan curve.
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Figure S9: The distribution of the backbone dihedral angles in the MC simulations of Ala16 with-
out a secondary structure bias, using the Top Left: LJlearnt, Top Right: hard cutoff, Bottom Left:
LJCHARMM, and Bottom Right: LJAMBER models. The distribution has been smoothed by Gaus-
sians with standard deviation of 5 degrees.
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allow a deviation of 40◦ from the ideal values, and the closest centre is taken into account when
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Figure S12: Heat capacity curves of Left: α-helix and Right: β -hairpin formation from NS simu-
lations of an Ala16 peptide with secondary structure bias, using a hard cutoff vdW potential (solid
line), and a Lennard-Jones potential with learnt (dashed line) and adopted vdW parameter values
from CHARMM (dotted line) and AMBER (dash-dotted line). Room temperature is marked by a
vertical dashed line at 25◦C.

A B C

Figure S13: The ensemble of conformations at or below room temperature, in the main basin of
the energy landscape, explored by Nested Sampling simulations using the protein model with A:
hard cutoff vdW potential, B: Lennard-Jones type vdW potential with inferred vdW parameters.
The crystal structure is shown on the right (C). Conformations obtained by using the LJ potential
show a wide range of allowed helix orientation angle at room temperature, including the native
angle in the crystal structure, 21.8◦, while simulations using the hard cutoff potential fail to find
the native helix orientation.
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Figure S14: The backbone RMSD from the native state (a)–c)), and the angle of the helix with
respect to the axis of the β -strands (d)–f)), as a function of the potential energy for all sample
points (black) and sample points in the main basin of the energy landscape (red), explored by
Nested Sampling simulations using the LJ type protein model with vdW parameters a) and d):
inferred, b) and e): adopted from the CHARMM force field, and c) and f): adopted from the
AMBER force field. The estimated energies at room temperature are marked by vertical dashed
lines. The helix orientation angle in the crystal structure (21.8◦) is marked by horizontal dashed
lines. While all three simulations explored conformations with an RMSD of as low as 2 Å from
the crystal structure, for the simulations with the LJ potential with adopted vdW parameters, the
energy landscape splits above the estimated energy at room temperature, indicating a bimodal
distribution of the helix orientation angle at room temperature, and for the simulation using the LJ
potential with inferred vdW parameter values, the main basin split below the estimated energy at
298 K, indicating a broad unimodal distribution at room temperature.
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Figure S15: The trace plots of the helix orientation angle of Protein G, calculated from room
temperature MC simulatilons of 1010 steps, using Top Left: the protein models employing the
hard cutoff vdW potential, Top Right: the LJlearnt model, Bottom Left: the LJCHARMM model and
Bottom Right: the LJAMBER model. The LJCHARMM and the LJAMBER models imply a two-state
model with an energy barrier.
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Figure S16: The autocorrelation function of the helix orientation angle of Protein G, calculated
from room temperature MC simulatilons of 1010 steps, using the protein models employing the
hard cutoff vdW potential (solid line), the LJlearnt model (dashed line), the LJCHARMM model
(dotted line) and the LJAMBER model (dash-dotted line). The large correlation times using the
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3 Tables referenced in the Main Text
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Table S1: The list of proteins used in the parameter estimation of the energy function. Listed are the
ASTRAL 1.75 protein IDs with their ASTRAL classes, their SPACI scores, and the Cα RMSDs
between the crystal structures and the structures mapped onto the coarse-grained CRANKITE
model.

ASTRAL ID class SPACI Cα RMSD (Å)
d1a6ma_ α 1.16 0.024
d1atga_ α 0.96 0.017
d1bi5a1 β 0.82 0.023
d1bi5a2 β 0.82 0.022
d1bkra_ β 1.03 0.017
d1bqka_ β 0.85 0.020
d1byia_ β 1.18 0.027
d1c0pa2 α/β 1.01 0.031
d1c1da1 α/β 0.83 0.034
d1c1da2 α/β 0.83 0.035
d1c52a_ α/β 0.93 0.023
d1c5ea_ α/β 1.09 0.027
d1c75a_ α/β 1.26 0.025
d1c9oa_ α/β 0.98 0.036
d1cc8a_ α/β 1.12 0.017
d1csei_ α/β 0.85 0.041
d1ctja_ α/β 1.06 0.023
d1cy5a_ α/β 0.90 0.019
d1d4oa_ α+β 0.94 0.018
d1d4ta_ α+β 1.08 0.025
d1d5ta2 α+β 1.05 0.019
d1ds1a_ α+β 1.02 0.021
d2a13a1 α 0.88 0.017
d2a26a1 α 1.03 0.022
d2acfa1 α 0.84 0.027
d2aeba1 α 0.81 0.022
d2akza1 α 0.87 0.044
d2akza2 α 0.87 0.045
d2b3na1 β 0.91 0.028
d2b5aa1 β 0.81 0.017
d2b69a1 β 1.02 0.029
d2b82a1 β 0.91 0.014
d2bfdb2 β 0.82 0.026
d2bhua1 β 1.05 0.032
d2bhua2 β 1.05 0.033
d2blna1 β 1.00 0.034

d2bmoa1 β 0.95 0.021

ASTRAL ID class SPACI Cα RMSD (Å)
d2bmoa2 β 0.95 0.019
d2bmob1 β 0.95 0.024
d2bw4a1 β 1.27 0.022
d2bwfa1 β 0.99 0.024
d2c1ia1 α/β 0.82 0.021
d2c4ba1 α/β 0.92 0.035
d2c4ja1 α/β 0.84 0.013
d2c4ja2 α/β 0.84 0.020
d2c5aa1 α/β 0.87 0.025
d2c60a1 α/β 1.01 0.023
d2c71a1 α/β 1.12 0.018
d2cara1 α/β 1.04 0.045
d2chha1 α/β 1.16 0.036
d2ciwa2 α/β 0.97 0.019
d2cs7a1 α/β 1.06 0.022
d2d8da1 α+β 1.00 0.013
d2dfba1 α+β 1.04 0.036
d2dlba1 α+β 0.98 0.027
d2dsxa1 α+β 1.60 0.022
d3b7sa1 β 0.82 0.021
d3b7sa2 β 0.82 0.024
d3b7sa3 β 0.82 0.022
d3bbba1 β 0.87 0.024
d3bnea1 β 0.81 0.022
d3boea1 β 0.85 0.023
d3bvua1 β 1.03 0.017
d3c70a1 α/β 1.13 0.023
d3c8ya1 α/β 0.82 0.028
d3c8ya2 α/β 0.82 0.033
d3c8ya3 α/β 0.82 0.031
d3cjsb1 α/β 0.82 0.024
d3ct6a1 α/β 1.02 0.034
d3d1ka1 α+β 0.90 0.017
d3d1kb1 α+β 0.90 0.025
d3d32a1 α+β 0.88 0.016
d7a3ha_ α 1.21 0.022
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Chapter 4

β-Contact Prediction for Protein

Structure Prediction

CRANKITE is a weakly biased coarse-grain protein model and requires protein secondary structure and

β-contacts as inputs. In the previous chapters, proteins with known tertiary structure were folded and

known secondary structure and β-contacts were used. In order for CRANKITE to be used for proteins

with unknown structure, for example in protein structure prediction, both protein secondary structure

and β-contacts must be predicted. In this paper we develop a β-contact prediction algorithm.

As described in the Introduction, our approach uses a correlated mutation statistic, the direct in-

formation, which uses the correlations between columns of protein multiple sequence alignments (MSA)

to predict protein contacts. Traditional correlated mutation statistics, such as mutual information, are

often pairwise statistics and hence are unable to distinguish between protein contacts and transitive

correlations. The direct information, however, is more global in nature and does not suffer from this

problem. In order to calculate the statistic, an optimization procedure is required, and many approaches

have been used. In this work, however, we use the contrastive divergence approach described in Chapter

3.

In contrast to many correlated mutation analysis studies, we do not focus on a small group of protein

families with large, high quality alignments (for which the structure of at least one member of the family

almost always exists, and hence template-based methods could be used). Instead we take a standard

dataset of 916 proteins commonly used for benchmarking β-contact prediction algorithms. The proteins

in this dataset have varying sizes of MSAs.

We show that the correlated mutation statistic contains information, even for proteins with small

sequence alignments, but by itself is unlikely to provide enough information to generate the tertiary

structure of the protein. We show that by coupling the direct information to an empirical Bayes β-sheet

model we can make use of the correlated mutation information, significantly improving the accuracy of

the model. The strong constraints and prior knowledge associated with β-contacts nicely complement

the often noisy direct information.

We compare our algorithm to state-of-the-art β-contact prediction algorithms producing competitive

results both at the residue and strand level. The only information our algorithm requires from the MSA

is the direct information and we thus show that the direct information is a very powerful statistic, as

other approaches require the entire MSA to be input, together with extra information such as residue

solvent accessibility and sequence position of the helices of the proteins, although their results are no
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better than ours.

Following previous β-contact work, the algorithm is initially benchmarked assuming protein secondary

structure is known. However, in the supporting information, we also test the algorithm with the CASP

2010 dataset using predicted secondary structure. Finally, linking this work to Chapters 2 and 3, we use

nested sampling CRANKITE simulations, with predicted β-contacts as inputs, to successfully fold two

of these CASP proteins.

4.1 Contribution

The initial idea was formulated by Burkoff and Wild. Burkoff, under the supervision of both Wild

and Várnai, developed and implemented the model and benchmarked the dataset. The initial draft

of the paper was written by Burkoff, with all authors contributing to the revision of the paper before

submission. Burkoff also drafted a response to referees with input from Wild and Várnai during the peer

review process and revised the paper before publication.

The article was originally published by Oxford University Press: Burkoff, N. S. , C. Várnai and D. L.

Wild. Predicting protein β-sheet contacts using a maximum entropy-based correlated mutation measure.

Bioinformatics (2013) 29(5)580–587.
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ABSTRACT

Motivation: The problem of ab initio protein folding is one of the most

difficult in modern computational biology. The prediction of residue

contacts within a protein provides a more tractable immediate step.

Recently introduced maximum entropy-based correlated mutation

measures (CMMs), such as direct information, have been successful

in predicting residue contacts. However, most correlated mutation

studies focus on proteins that have large good-quality multiple

sequence alignments (MSA) because the power of correlated mutation

analysis falls as the size of the MSA decreases. However, even with

small autogenerated MSAs, maximum entropy-based CMMs contain

information. To make use of this information, in this article, we focus

not on general residue contacts but contacts between residues in

�-sheets. The strong constraints and prior knowledge associated

with �-contacts are ideally suited for prediction using a method that

incorporates an often noisy CMM.

Results: Using contrastive divergence, a statistical machine learning

technique, we have calculated a maximum entropy-based CMM. We

have integrated this measure with a new probabilistic model for

�-contact prediction, which is used to predict both residue- and

strand-level contacts. Using our model on a standard non-redundant

dataset, we significantly outperform a 2D recurrent neural network

architecture, achieving a 5% improvement in true positives at the

5% false-positive rate at the residue level. At the strand level, our

approach is competitive with the state-of-the-art single methods

achieving precision of 61.0% and recall of 55.4%, while not requiring

residue solvent accessibility as an input.

Availability: http://www2.warwick.ac.uk/fac/sci/systemsbiology/

research/software/

Contact: D.L.Wild@warwick.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The problem of ab initio protein folding is one of the most

difficult in modern computational biology. The prediction of

residue contacts within a protein provides a more tractable

immediate step, and these contacts can be used as a guide to

generate the tertiary structure of the protein.

Correlated mutation (CM) methods, first pioneered by

Valencia and colleagues (Gobel et al., 1994), take a multiple

sequence alignment (MSA) profile of evolutionarily related pro-

teins and attempt to predict residues that have co-evolved. If

residues have co-evolved, this may imply proximity in the

native structure. For example, if a small residue increases in

size by mutating, a proximal residue may have to reduce

in size to retain the viability of the fold.
Many CM methods have been developed using Pearson cor-

relation coefficients (Gobel et al., 1994), adaptions of Mutual

Information (Dunn et al., 2008; Lee and Kim, 2009), perturb-

ation methods (Dekker et al., 2004) and Dynamic Bayesian

networks (Burger and van Nimwegen, 2010).
A recently developed correlated mutation measure (CMM),

the direct information (Morcos et al., 2011; Weigt et al., 2008),

is a global measure that is derived from modelling the entire

MSA, specifically defining the probability of each sequence

being a member of the MSA. This distribution shares the same

low-order moments as the MSA, and the maximum entropy

principle (Jaynes, 2007) is used to fully specify the distribution.

Marks et al. (2011), Sulkowska et al. (2012) and Hopf et al.
(2012) have used this measure to successfully aid the folding of

a diverse range of proteins. However, like the majority of CM

studies, these authors focused on a small number of proteins for

which there is a large high-quality MSA because all CMMs

suffer as the size of the MSA decreases (Olmea and Valencia,

1997). A key distinction of this work is that we focus on a wide

selection of proteins that have a variety of sizes of MSAs. We

also automate the generation of MSAs and do not rely on a large

high-quality MSA being available.
In an attempt to improve the power of CM methods, the

Dynamic Bayesian network of Burger and van Nimwegen

(2010) incorporates primary-sequence distance into an inform-

ative prior for the model. The incorporation of this knowledge

substantially improves the results. Inspired by this, we have
chosen to predict the lateral pairs of residues in interacting

�-strands, �-contacts, using a CMM. �-contacts are associated

with strong constraints, for example, sequential pairs of residues

form �-contacts and residues can only be in �-contact with up to

two other residues. These constraints mean �-contacts are ideally
suited for prediction using a CMM—the noise associated with

the CMM is compensated for by incorporating the strong

�-contact constraints.
The prediction of �-contacts can be used to aid tertiary struc-

ture prediction (Podtelezhnikov and Wild, 2009; Ruczinski et al.,

2002), explore energy landscapes (Burkoff et al., 2012), in design-

ing proteins (Kortemme et al., 1998; Smith and Regan, 1995) and

understanding protein folding pathways (Mandel-Gutfreund

et al., 2001; Merkel and Regan, 2000).*To whom correspondence should be addressed.
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We highlight BetaPro, the work of Cheng and Baldi (2005),
which uses a three-stage method to predict �-topologies and was
the first method to take into account the global nature of

�-topologies. Firstly, a 2D recurrent neural network is used to
generate a residue-level pairing map. Secondly, a dynamic pro-
gramming algorithm is applied to this map to derive strand-level

pseudo binding energies and finally, a graph matching algorithm
is used to predict strand contacts.
There are a variety of other existing methods for �-contact

prediction. They include the use of statistical potentials
(Hubbard and Park, 1994), information theoretic approaches
(Steward and Thornton, 2002), integer linear optimization

(Rajgaria et al., 2010), hybrid neural network-probabilistic
models (Aydin et al., 2011) and Markov logic networks
(MLNs; Lippi and Frasconi, 2009).

In this article, we have developed a global probabilistic model
for �-contact prediction, inspired by the secondary structure
models of Schmidler (2002), which can be used to predict both

residue- and strand-level interactions. We have integrated this
model with a CMM, similar in nature to direct information,

and using this model on a standard dataset, significantly outper-
form the recurrent neural network of BetaPro and are competi-
tive with the best single methods currently available. Unlike these

methods, our approach does not require additional information
such as residue solvent accessibility to be entered as an input to
the model. In common with other methods, we assume the native

secondary structure is known. However, our framework can be
easily extended to predict both secondary structure and
�-contacts simultaneously, and this is the focus of our current

work.

2 METHODS

2.1 Data set

In this work, we use the set of 916 proteins from Cheng and Baldi (2005)

(CB916). The proteins share no415–20% sequence identity, and the set

consists of 187516 residues, of which 48996 are strand residues, which

are involved in 31 638 �-contacts.

Most CM analysis procedures focus primarily on proteins for which

there is a large good-quality MSA, often a large PFAM alignment

(Sonnhammer et al., 1997). We wanted to develop a method that will

take advantage of this information where it exists, and yet is applicable

even if the CM analysis is not useful, or indeed there is no MSA, which

can be the case for newly sequenced proteins, such as those selected as

targets in the Critical Assessment of Techniques for Protein Structure

Prediction (CASP) community-wide experiment. Therefore, our method

of generating MSAs is extremely general.

We generate MSAs following a similar method to Saqi et al. (1999).

For each sequence, we run PSI-Blast (Altschul et al., 1997) for two iter-

ations (Evalue¼ 0.005) against the Non-Redundant database, keeping all

sequences that share at least 30% identity to the profile constructed after

the first PSI-Blast iteration, similar to the procedure recommended in

Ashkenazy et al. (2009). We then perform a global–local alignment

using GLsearch (Pearson, 2000) to trim the sequences PSI-Blast found.

We then use CD-Hit (Li et al., 2001; Li and Godzik, 2006) to cluster the

trimmed sequences at the 98% threshold and use Muscle (Edgar, 2004)

(maxiters¼ 2) to generate MSAs. Finally, we removed columns of the

MSA that were gaps in our target sequence and any row that contained

433% gaps. There is an enormous variation in the number of sequences

in the alignments: six proteins have no homologues, one-fifth have5100

homologues and 7% have42000 (see Fig. 1).

2.2 Maximum entropy-based CM measure

CMMs based on maximum entropy modelling (also called Direct

Coupling Analysis) (Marks et al., 2011; Morcos et al., 2011; Weigt

et al., 2008) aim to distinguish between direct and indirect correlations.

Direct correlations arise owing to proximity in the native structure of the

protein and are of primary interest in contact prediction; indirect correl-

ations are caused by other reasons, such as the fact that correlations are

transitive, and are the cause of the poor performance of many CMMs.

The idea is to model the entire family of evolutionarily related proteins,

assigning probability mass over all possible (fixed-length) sequences,

including those that have not been observed. From this global model,

measures can be developed to model the strength of the direct correl-

ations between pairs of residues. This idea is formalized below.

Given an MSA containing M sequences for a protein of length N, we

define fiðAiÞ as the observed frequency of residue Ai occurring in position

i of the MSA and fijðAi,AjÞ as the observed frequency of both residue Ai

occurring in position i and residue Aj occurring in position j of the MSA.

Given any sequence A ¼ A1,A2, . . . ,AN, we model the probability of it

occurring in the MSA by a distribution PðAÞ ¼ PðA1,A2, . . . ,ANÞ

However, there are qN possible different sequences (where q is the size

of the alphabet of amino acids) and onlyM� qN sequences in the MSA.

The sparsity of the data and the number of sequences imply that it is

impractical for detailed use. However, we would like our model to match

the empirical low-order moments given by the MSA. Specifically we

would like

PiðAiÞ ¼ fiðAiÞ and PijðAi,AjÞ ¼ fijðAi,AjÞ

where Pið:Þ is the marginal distribution for position i and Pijð:, :Þ is the

(joint) marginal distribution (We have not added pseudo-counts or

weighted sequences) marginal distribution of positions i and j (we have

not added pseudo-counts or weighted sequences).

Among the valid distributions P satisfying these constraints, using the

maximum entropy principle (Jaynes, 2007), we favour P, the distribution

that has maximum entropy, S:

P ¼ argmaxP½SðPÞ� � argmaxP �
X
A

PðAÞ log½PðAÞ�

( )

and solving this optimization problem using Lagrange multipliers leads to

the distribution

PðA1, . . . ,ANÞ / exp �
X

1�i�j�N

eijðAi,AjÞ þ
X

1�i�N

hiðAiÞ

" #

for some pair-interaction energies eijðAi,AjÞ and local fields hiðAiÞ (Weigt

et al., 2008). See the Supplementary Data for further details.

Fig. 1. The number of sequences in the 916 MSAs varies enormously.

For example, 60% of the MSA have5500 sequences

581
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The maximum entropy distribution can be viewed as a Potts model on

an underlying complete graph, where the nodes represent the residue

positions, the ‘spins’ correspond to the amino acid types and the edges

describe the pairwise interactions, whose strengths are described by the

pairwise interaction energies eij. A related model for protein families,

using Markov random fields (Balakrishnan et al., 2011), can also be

viewed as a Potts model. However, instead of the underlying graph

being complete, an optimal subgraph is chosen that aims to fully explain

the correlations and conditional independencies within the underlying

protein family.

To generate the maximum entropy distribution P, we use a statistical

machine learning technique, contrastive divergence (Hinton, 2002). This

work represents the first application of this approach to the modelling of

protein MSAs. For a given set of eijðAi,AjÞ and hiðAiÞ, we use contrastive

divergence to approximate the marginal distributions Pið:Þ and Pijð:, :Þ
and use gradient descent to update eij and hi. We iterate this procedure

to convergence. For a protein of 75 residues, the procedure takes �10mi-

nutes on a single core of an Intel Core i7 processor, and for a protein of

350 residues, the procedure takes �2.5 h. Further details are found in the

Supplementary Data.

Once we have calculated the distribution P, we define our CMM, D.

For each pair of residues (i, j), we define Dði, jÞ as follows:

Dði, jÞ ¼
X
Ai ,Aj

P
D
ij ðAi,AjÞ log

P
D
ij ðAi,AjÞ

fiðAiÞfjðAjÞ

where

P
D
ij ðAi,AjÞ / fiðAiÞfjðAjÞ exp½�eijðAi,AjÞ�:

This is a modified version of the Direct Information previously used to

predict protein contacts (Marks et al., 2011; Weigt et al., 2008). The

Direct Information measure itself was tried but produced slightly

poorer results than D. See the Supplementary Data for more details.

To show the power of D, for each protein in the dataset, we took the

top N/2 ranked Dði, jÞ, where N is the length of the protein (we remove

those for which ji� jj � 4 from the analysis) and calculated the contact

ratio: the proportion of these pairs of residues whose C� distance is � 8 Å.

The contact ratio versus logðMÞ is shown in Figure 2 (Top). Figure 2

(Bottom) shows the average C� distance of these N/2 predicted contacts.

These figures show that there is a lot of information contained within D,

especially as M increases.

However, using randomly chosen contacts of known structures, it has

been shown that one needs around a quarter to two-fifths of contacts to

be able to successfully regenerate the native structure (Duarte et al., 2010;

Sathyapriya et al., 2009; Vendruscolo et al., 1997). Marks et al. (2011)

and Hopf et al. (2012) have shown that if a protein has a large number of

sequences in its MSA, then maximum entropy-based CM analysis, to-

gether with predicted secondary structure is enough to successfully recon-

struct the tertiary structure of the protein. In these articles, the authors

take the highest-ranked correlated pairs of residues to be incorporated

into distance constraints used to generate initial all-atom conformations

of the protein. Simulated annealing, relaxing these distance constraints

throughout the simulation, is then used to generate final

three-dimensional structures.

However, as shown by Figures 1 and 2, a large number of proteins

have only a small MSA and CMMs by themselves are unlikely to be able

to provide a large enough number of contacts to successfully fold the

protein. For example, Marks et al. (2011) restrict their attention to

proteins whose MSA has at least 1000 sequences, and usually significantly

more. Nevertheless, even an alignment withM ¼ e6 � 400 sequences pro-

duces an average contact ratio of �0.15, which still contains lots of

information (for an average protein, the contact ratio for randomly

chosen contacts is �0.03). In contrast to these other studies, we investi-

gate whether one can make use of this evolutionary information. We

propose to use D to improve the prediction of �-contacts, for which

there is a large amount of structural knowledge, which can be incorpo-

rated as prior beliefs within a Bayesian statistical framework. The follow-

ing sections describe the new �-strand Bayesian model we have developed

and how we couple Dði, jÞ to it.

2.3 b-Topology model

Given a primary sequence R ¼ fR1,R2, . . . ,RNg and its secondary struc-

ture S ¼ fS1,S2, . . . ,SNg, where Si is the secondary structure of residue i,

residues Ri and Rj are defined to be a �-contact if they are a lateral pair

within two interacting �-strands. For example, in Figure 3, residues 6 and

53 are a parallel �-contact and residues 44 and 53 are an antiparallel

�-contact. We define I to be the set of �-contacts. Specifically

ði, j, 1Þ 2 I if residues Ri and Rj are a parallel �-contact, ði, j, � 1Þ 2 I

if residues Ri and Rj are an antiparallel �-contact and ði, j, 0Þ 2 I if either

residue Ri or Rj is an isolated �-bridge. We say ði, jÞ 2 I if ði, j, 1Þ, ði, j, 0Þ

or ði, j, � 1Þ 2 I .

The general framework we are using (from Schmidler, 2002) allows

inference for S and I given R. Following the Bayesian method,

we require a prior PðS, IÞ ¼ PðIjSÞPðSÞ and a likelihood PðRjS, IÞ.

Using Bayes’ theorem, these yield the posterior of interest

PðS, IjRÞ / PðRjS, IÞPðS, IÞ.

In this work, we assume the secondary structure is fixed. Specifically

PðSÞ ¼ 1, if S is the secondary structure assignment given by DSSP

(Kabsch and Sander, 1983)—we map residues labelled E and B to E,

strand residues, and all other labels to C, non-strand residues. For clarity

we suppress the dependency on S, i.e. PðIjSÞ ¼ PðIÞ. A focus of our

current work is to extend the model to allow joint inference for S and I .

Fig. 2. Top: The proportion of the top N/2 ranked Dði, jÞ in contact

(contact ratio) versus the number of sequences in the MSA for each

protein in the CB916 dataset. A contact is defined as the C� distance

being � 8 Å. Bottom: The average C� distance of the top N/2 ranked

Dði, jÞ. Two outliers [at (3.4, 37.9) and (4.5, 42.1)] are not shown
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Definitions: Viewing I as a collection of individual residue contacts

does not easily allow the incorporation of the structure of �-contacts into

a model; therefore, we model I as a set of interacting strand segments,

following (Chu et al., 2006). The set of residue contacts in I can be

uniquely determined by specifying which strand segments interact and

for each pair of interacting strands specifying their direction, alignment

and position of any bulges. We formalize these terms below.

The strand residues of a protein can be represented as a set of distinct

strand segments (For some proteins, DSSP defines two separate strand

segments immediately adjacent in sequence. For example ‘EEEB’. For a

fair comparison with BetaPro we define a strand segment as a contiguous

block of strand residues. However, this is not necessary for our model).

For example, Figure 3 shows 4 strand segments (E1,E2,E3,E4). In this

protein, there is a single sheet, and in this simple case, the strand inter-

actions can be described by a permutation � of the set of strand segments.

Specifically �ð1, 2, . . . ,mÞ ¼ ½�ð1Þ,�ð2Þ, . . . ,�ðmÞ� and implies segment

E�ðrÞ and E�ðrþ1Þ interact for r ¼ 1, 2, . . . ,m� 1. In Figure 3,

�ð1, 2, 3, 4Þ ¼ ð3, 4, 1, 2Þ. In more complicated cases, the sheet structure

cannot be described by a permutation. For example, if there is more than

one sheet, if strands are involved in more than two interactions or if there

is a cycle (for example in �-barrels, where every strand interacts with two

partners).

Following the terminology in (Ruczinski et al., 2002), we say there is a

jump between segments Er and Erþ1 if Er and Erþ1 are not interacting. In

Figure 3, there is a jump between segments E2 and E3 and no other

jumps. We define the jump pattern J as the set of r for which Er and

Erþ1 are not interacting; in Figure 3, the jump pattern J ¼ f2g. See

Figure 4(a–d) for further examples of � and J.

We introduce drs to describe the direction of interaction, specifically

drs ¼ 1 if interacting segments Er and Es are a parallel strand interaction

and drs ¼ �1 if the segments are antiparallel. In Figure 3, d34 ¼ d12 ¼ �1

and d14 ¼ 1. If either Er or Es is an isolated �-bridge, then drs ¼ 0.

The variable ars is used to define the shift between strands. For parallel

interactions, ars describes the shift between the final residues of both

strands. For example, in Figure 3, a14 ¼ 0 because ð8, 55Þ 2 I . If E1

was shifted up by one residue, so that ð8, 54Þ 2 I , then a14 would equal

þ1. Conversely, if E1 was shifted down by two residues, so that residue

ð6, 55Þ 2 I , then a14 would equal �2. For antiparallel interactions, ars
describes the shift between the end of the strand earlier in the sequence

and the beginning of its interacting partner (i.e. between residues 8 and 13

for a12 in Fig. 3).

Restricting the number of bulges to at most one per �-strand inter-

action (which is the case in 98.6% of cases), we can define brs ¼ 0 if there

is no bulge or brs ¼ k if residue k is the �-bulge. There are no bulges in the

sheet shown in Figure 3. Figure 4 shows the values of fdrs, ars, brsg for

different interacting segments.

Prior for I , PðIÞ: There is a huge amount of structure in

�-topologies and the challenge for a Bayesian statistician is to try and

capture this while being able to efficiently calculate posterior probabilities

and not overfitting the model. Rather than aim for the most probable

�-topology, we calculate Pðði, jÞ 2 IjRÞ, producing a probability contact

map, analogous to the output from BetaPro’s Neural Network. Unlike

other statistical models (Aydin et al., 2011), we do not take the output

from BetaPro’s Neural Network as an input to our model.

We take advantage of the framework of Bayesian inference, which

allows us to exercise our scientific judgement and experience concerning

parameters that we expect to be of particular importance, and by specify-

ing how these are plausibly related.

We model the interacting �-strands as a single sheet defined by a per-

mutation �, as described above. Although our approach does not model

more than one sheet per protein, we can predict multiple sheets (see

Figure 8). More complicated models involving partitioning the segments

into different sheets were tried, but these did not improve the results. We

only allow a single bulge per strand interaction.

Our prior is defined as

PðIÞ ¼ Pð�Þ
Y
r, s

PðdrsÞPðarsjdrsÞPðbrsjars, drsÞ

where the product is over all segments Er and Es that are interacting,

given permutation �, and we have suppressed the dependence of every-

thing on the secondary structure S. The set f�, drs, ars, brsg gives a unique

set of residue contacts ði, jÞ 2 I , and if I cannot be described by a set

f�, drs, ars, brsg, then PðIÞ ¼ 0. We define the distance �rs as the number

of residues between segments Er and Es. For example, in Figure 3,

�12 ¼ 4, and we define lr as the number of residues in segment Er.

	 Pð�Þ: The probability of a specific permutation depends on all the

distances �rs and the lengths of all the strands lr. However, incorpor-

ating all this information leads to an exponential number of param-

eters. In the dataset, 50% of interacting strands are adjacent in

sequence (and 42% of adjacent strands are interacting), so one of

the most important things we would like the distribution to capture is

whether adjacent strands are in contact. For these reasons, in our

Fig. 3. Left: The structure of protein G (1PGA). Right: The �-topology

for protein G. The numbers are the positions in the sequence of the strand

residues and the horizontal lines are �-contacts. Residues 6 and 53 are a

parallel �-contact and residues 53 and 44 are an antiparallel �-contact.

Hence (6, 53, 1) and ð44, 53, � 1Þ 2 I . The 4-strand segments E1,E2,E3,E4

are ordered from left to right in the sheet E3,E4,E1,E2, and hence the

permutation �, which permutes (1, 2, 3, 4) to (3, 4, 1, 2) describes the

set of interactions. There is a jump between segments E2 and E3.

Segments E1 and E2 are an antiparallel interaction and hence d12 ¼ �1,

and segments E1 and E4 are parallel and so d14 ¼ 1

(a)

(e) (f) (g) (h) (i)

(b) (c) (d)

Fig. 4. (a–d) Examples of different values of �: (a) � ¼ ð1, 2, 3, 4Þ, J ¼ fg;
(b) � ¼ ð1, 4, 3, 2Þ, J ¼ f1g; (c) � ¼ ð4, 1, 3, 2Þ, J ¼ f1, 3g; (d)

� ¼ ð2, 4, 1, 3Þ, J ¼ f1, 2, 3g. (e–i) Examples of different fdrs, ars, brsg: (e)

f�1, 0, 0g; (f) f�1, � 1, 12g; (g) f�1, 1, 0g; (h) f1, � 4, 0g; (i) f1, 0, 15g
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model, all � that share the same jump pattern J are equally likely,

and the probability Pðr 2 Jj�rrþ1, lr, lrþ1Þ is independent for each r.

Pðr 2 Jj�rrþ1, lr, lrþ1Þ is taken from the training set by counting oc-

currences. For small l and �, we take values directly from the training

set, and for larger l and �, owing to sparsity of data, we collapse the

data into a small number of bins. We added a pseudo-count to

smooth the data from the training dataset.

	 If either lr or ls¼ 1, then Pðdrs ¼ 0Þ ¼ 1, otherwise Pðdrs ¼ 1j�rsÞ is a

piecewise linear function of �rs, fitted from the training set.

	 PðarsjdrsÞ: There is an inherent asymmetry in our definition of ars; in

the case of parallel strands, we are measuring the shift from a perfect

alignment of the ends of the segments, not the beginnings.

In proteins, it is found that the shift measured from a perfect

alignment of at least one end of the segments is small. Compare ars
for Figures 4(h–i). Previous work has not taken this into account

(Chu et al., 2006), which leads to a drop in performance. Therefore,

we model PðarsjdrsÞ as a mixture (equally weighted) of the distribu-

tions Pdrs ðarsÞ and Pdrs ðârsÞ, where ârs is the shift required from align-

ing the beginnings of the segments to get the same residue contacts as

a shift of ars produces from aligning the ends of the strands. These

distributions are taken from the training set. An analogous proced-

ure is followed for the antiparallel case.

	 Pðbrs 6¼ 0jdrs, arsÞ ¼ Pðbrs 6¼ 0Þ is taken from the training set, and if

there is a bulge, there is a uniform probability over all residues

involved in the interaction that they are a bulge (hence the depend-

ence on drs and ars—to know which residues can be the bulge).

Likelihood: PðRjIÞ

PðRjIÞ / jIjðujEj�1Þ expð�vjIjÞ
Y

ði, j, dijÞ2I

LðRi,RjjdijÞ

where the joint likelihood LðRi,RjjdijÞ is approximated from the limited

training set by the product of the conditionals, PðRijRj, dijÞ and

PðRjjRi, dijÞ, where Pð:jRj, dijÞ is the distribution of amino acids in con-

tact with the residue type of Rj in the direction of dij. jIj is the number of

contacts and jEj is the number of �-residues. The distributions Pð:jRj, dijÞ

are taken from the training set, and u and v are constants to be

determined.

We have chosen this likelihood because of its simplicity. More com-

plicated dependencies, such as letting Ri depend on Rj
1, were tried, but

did not noticeably improve the results. We include a gamma distribution

on the number of contacts into the likelihood because, without this term,

the likelihood is a product of 2jIj numbers smaller than one, and so

actively penalises against contacts. We include jEj so that the mean

and variance of the gamma distribution depend on the number of

�-residues, which allows the model to control the total number of con-

tacts. This is important as jIj and jEj are strongly correlated. The

constants u and v were fitted using an empirical Bayes approach, and

set to 18 and 12, respectively. See Supplementary Data for more details.

2.4 Integrating CM measure with the b-topology model

In this work, we perform inference on both the posterior distribution

P1ðIjRÞ / PðIÞPðRjIÞ and, by adapting the concept of a ‘product of

experts’ (Hinton, 1999, 2002), on a distribution that couples Dði, jÞ to the

�-topology model. A product of experts allows different probabilistic

models of the same data to be combined together by multiplying the

probabilities together and renormalizing. An advantage of this method

is that each model (‘expert’) can focus on different aspects of the under-

lying problem, and that regions of space with high probability mass must

satisfy each of the experts, owing to the multiplication of their

probabilities.

A product of experts has been successfully used for secondary

structure prediction (Chu et al., 2006), where there were separate experts

for segmental dependency and strand and helical capping signals.

In the present case, we have a distribution for inference of I given

strand pattern P1, and a distribution for inference of I given D, a

distribution proportional to exp½!ðD, IÞ�, described below. Adapting

the idea of a product of experts distribution, we use a product of

distributions P2ðIjRÞ / P1ðIjRÞ exp½!ðD, IÞ�. When P2ðIÞ is large, I

must satisfy both the strand pattern model of P1 and the CMM

exp½!ðD, IÞ�: (Formally, P2ðIjRÞ ¼ PðIjR,DÞ / PðIjRÞPðIjDÞ and

PðIjDÞ ¼ exp !ðD, IÞ½ �=
P

i exp !ðD, I iÞ½ � where the sum is over the

(finite) set of possible I i.)

Correlated mutation measure, exp½!ðD, IÞ�: As previously

described, Dði, jÞ is a measure of how strongly residues in columns

i and j co-vary, and a large Dði, jÞ suggests residues in columns i and

j have co-evolved, and may imply a �-contact between Ri and Rj. This

information can be incorporated into the inference as a CMM

exp½!ðD, IÞ�. The better I and Dði, jÞ fit the larger the value of !. The

formal description of ! follows. We define

;i ¼ ðj : Rj is a residue in a different strand to residue RiÞ:

As a concrete example, Figure 5a shows a protein with three

strands, residues 3–5, 12–14 and 23–25, where, for example,

;4 ¼ f12, 13, 14, 23, 24, 25g and ;23 ¼ f3, 4, 5, 12, 13, 14g.

In �-sheets, the side chains of residues j and j
 2 are near each other

in space, and so if Dði, j
 2Þ are large, this may also imply a

contact between Ri and Rj. For a particular set of contacts I and

residue Ri, we define the score �ði, IÞ as the mean of the set

fDði, jÞ : j 2 I ig where

I i ¼
;i if M j : ði, jÞ 2 IS

j:ði, jÞ2I

fj� 2, j, jþ 2g otherwise

(

As a concrete example, Figure 5b shows a specific instance of I , and in

this case I 5 ¼ ;5, I 4 ¼ f12, 14, 16g and I 13 ¼ f1, 3, 5, 22, 24, 26g. The

larger �ði, IÞ the better D and I fit for residue Ri. However, for different

residues Ri, the mean and variance of the set of values fDði, jÞ : j 2 ;ig

differ wildly and so �ði, IÞ needs to be standardized before being used.

For this standardization we take the sample mean �i and standard devi-

ation �i of the set fDði, jÞ : j 2 ;ig. So the standardized score, for residue

Ri and interaction set I is then defined as

Zði, IÞ ¼
�ði, IÞ � �i

�i

Defining Inative as the crystal structure �-contacts defined by DSSP,

Figure 6 shows the empirical distribution of Zði, InativeÞ over all residues

involved in at least one �-contact from the dataset. A much larger mass

has positive score than a negative score, implying native contacts have, on

average, a larger value for Z.

We then define

!ðD, IÞ ¼ logM
X
i

Zði, IÞ

where the sum is over all i for which Ri are strands and M¼ number

of sequences in MSA; so that proteins with larger MSA attach more

importance to !.

3 RESULTS AND DISCUSSION

We performed 10-fold cross validation using the same folds as

Cheng and Baldi (2005). To estimate posterior probabilities, we

used importance sampling. We generated 1 million independent
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samples from the prior PðIÞ, fIg and use these to generate a

probability contact map:

Pðði, jÞ 2 IjRÞ �
X
fIg

I½ði, jÞ 2 I�
PðRjIÞP
fIg

PðRjIÞ

where I is the indicator function and PðRjIÞ is the likelihood

described above (in the case with the CMM we replace PðRjIÞ

by PðRjIÞ exp½!ðD, IÞ�. See Supplementary Data for further de-

tails. We repeated this 50 times and took the mean of the 50

values to generate a single result.

We first quantify the effect of incorporating the CMM into

our model. We can take the output of our model and discretize

the results, taking as our �-contacts, all (i, j) such that

Pðði, jÞ 2 IjRÞ is larger than a threshold value. Taking different

threshold values, Figure 7 shows the receiver operating charac-

teristic (ROC) curve for �-contacts using both the posterior with-

out the CMM P1 (dashed) and the model using the CMM P2

(solid). Using the CMM has significantly improved the results.

For example, there is a 10% improvement in the number of true

positives at the 5% false-positive rate. Figure 7 clearly shows that

we have successfully used the evolutionary information, shown

to exist in Figures 2 and 6, to improve the prediction of

�-contacts.
We can also compare our model with existing �-contact pre-

diction methods. For example, Table 1 shows a comparison with

the Neural Network output of the first stage of BetaPro. The

results quoted are AUC (Area Under Curve), the true-positive

(TP) rate at 5% false positives (FP), TP at the break even point

(BEP—when the total number of predicted �-contacts is equal to
the true number of � contacts) and the correlation coefficient

	¼ðTPxTN�FPxFNÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞðTPþFPÞðTNþFNÞðTNþFPÞ

p
at the BEP. This table shows that without the CMM, we produce

poorer results than BetaPro. This is to be expected as P1 is a

single sequence method, in contrast to BetaPro that inputs the

whole MSA into its neural network. The addition of our CMM

improves our method, producing better results than BetaPro.
Unlike some existing models, including BetaPro, our model is

completely probabilistic, which enables us to predict both resi-

due-level contacts and strand interactions simultaneously, rather

than the latter needing a post processing step. Given strands Er

and Es, they are defined to be interacting if there exist any

�-contact between a residue in strand Er and a residue in

strand Es. Using our model, we find the following:

PðEr,Es interactjRÞ �
X
fIg

IðEr,Es interactÞ
PðRjIÞP
fIg

PðRjIÞ

Figure 8 shows the results for two proteins, the N-terminal

domain of the yeast HSP90 chaperone [1A4H (left)] and the

tetramerization domain of the Shal voltage-gated potassium

channel [1NN7 (right)]. For these proteins, our model correctly

predicted all strand level interactions and it is interesting to note

that for 1NN7, two separate �-sheets are correctly predicted

(strands {5,6}, {3,4,1,2} are distinct �-sheets), despite our

model not explicitly modelling multiple sheets.
By thresholding the strand interaction probabilities at different

values, we can generate a Precision [P¼TP/(TPþFP)] versus

Recall [R¼TP/(TPþFN)] graph for strand interactions,

shown in Figure 9. This figure again shows the improvement

of the results when we use our CMM.
Table 2 shows a comparison of the strand interactions results

for our model, the final output of BetaPro and a MLN (Lippi

and Frasconi, 2009). For the comparison, we have only included

independent methods and not those such as MLN-2S (Lippi and

Frasconi, 2009) or those found in Aydin et al. (2011), which are

hybrid approaches that combine results from more than one

method. The results quoted for our model use the specific prob-

ability threshold of 0.45; however, taking the threshold at any

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Standardized Score

D
en

si
ty

Fig. 6. The empirical distribution of the standardized score, Zði, InativeÞ

(described in the main text), of all residues involved in at least one

�-contact from the dataset

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.02  0.04  0.06  0.08  0.1

S
en

si
tiv

ity

1 - Specificity

Using Correlated Mutation Measure
Not using Correlated Mutation Measure

Fig. 7. ROC curves for the posterior both unweighted (dashed) and

weighted (solid)

(a)

(b)

Fig. 5. (a) A protein with three strands, residues 3–5, 12–14 and 23–25.

(b) A specific set of contacts I ¼ fð3, 13Þ, ð4, 14Þ, ð12, 23Þ, ð13, 24Þ, ð14, 25Þg.

See the text for how the standardized score is calculated for this example
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value between 0.25 and 0.63 produces an F1 ¼ 2PR=ðPþ RÞ

statistic equal to or above the value found by BetaPro.

The results of our model are clearly better than BetaPro and

competitive with MLN. This is an impressive result, as unlike

these methods we do not require the additional information of

the solvent accessibility of the residues as an input. We also do

not require the secondary structure of the non-strand residues,

which is important to the MLN method. The only information

we use is the maximum entropy-based CMM D (P1 is a single

sequence method). D is as useful as providing the entire MSA as

a set of 20-dimensional vectors of probabilities as input to a

neural or MLN. This may be because providing the columns
of the MSA as independent input vectors captures the wrong

information; although certain residue pairs are more likely to

form �-contacts (for example, pairs of hydrophobic residues in

the core of a protein), the individual pairing preferences are not

especially strong, and proteins do not seem to have strong evo-
lutionary pressure to maintain favourable pairings between

strands (Mandel-Gutfreund et al., 2001).

Also, just considering the specific residue types, rather than
how they co-vary, suffers from the problem of transitivity: if Er is

paired with both Es and Et, then it is often the case Et and Es

themselves contain residues with favourable pairings, as they

both favourably interact with Er.
For our method to be useful for proteins with unknown struc-

ture, it is important to test our method with predicted secondary

structure. In the Supplementary Data, we have presented results

for the CASP 2010 set of proteins using both known and pre-
dicted strand structure, and in both cases our method compares

favourably with BetaPro.

4 CONCLUSION AND FURTHER WORK

In this article, we have used a statistical machine learning

approach known as contrastive divergence to efficiently calculate

a Maximum Entropy distribution that models the evolutionarily

related family of a protein and have used this to calculate a

CMM to predict residue contacts. We have coupled this measure
to a probabilistic model of �-strand interactions to produce a

state-of-the-art �-contact predictor that can be used even if a

poor quality or no MSA is available. The current focus of our

work is to allow joint inference of �-contacts and secondary

structure by incorporating a semi-segmental Markov model to
model the secondary structure of proteins (Chu et al., 2006;

Schmidler et al., 2000).

Unlike other recent CM studies, we have focused on proteins
that do not necessarily have large enough MSAs to enable full

tertiary structure determination using a CM approach. However,

our strand interaction prediction can be incorporated into a

tertiary structure prediction method. For example, our previ-

ously published work describes a coarse-grained protein model
that uses a physically meaningful energy function, biased by a

harmonic potential on �-contacts to enable the protein to

fold (Burkoff et al., 2012; Podtelezhnikov and Wild, 2008).

Using our strand prediction method to predict �-contacts enables
this model to be used for protein tertiary structure prediction.
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Fig. 9. Precision versus Recall graph for strand interactions. As a com-

parison, a naive algorithm always pairing adjacent strands yields P¼ 0.42

and R¼ 0.50. The results from the final output of BetaPro and a Markov

Logic method (Lippi and Frasconi, 2009) are also displayed for

comparison

Fig. 8. Contact maps for the strand level for proteins 1A4H (left)

and 1NN7 (right). Above the main diagonal, the native (true) strand

interactions are shown in yellow, and below the diagonal,

PðEr,Es interactjRÞ using P2 is shown. For protein 1NN7, it is interest-

ing to note that two separate �-sheets are correctly predicted, despite our

model not explicitly modelling multiple sheets

Table 2. Comparison of strand level statistics of our model (P2), the final

output of BetaPro and the MLN method of Lippi and Frasconi (2009)

Statistic P2 BetaPro MLN

P 61.0 53.1 59.8

R 55.4 59.7 55.5

F1 58.1 56.2 57.6

	 0.532 0.508 0.528

Chains with F1 � 70:0 35.0 31.7 33.7

Apart from 	, statistics are shown as percentages.

Table 1. Comparison of the model with the output of BetaPro’s Neural

Network

Method AUC TP at 5%

FPR

TP at

BEP

	 at

BEP

P1 (no CMM) 0.85 53% 36% 0.34

P2 (with CMM) 0.89 63% 44% 0.43

BetaPro 0.86 58% 41% 0.4

See text for further details. FPR¼ false positive rate.
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Further details and specific examples are shown in the
Supplementary Data.
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1 Supplementary Data

1.1 Calculating the Correlated Mutation Measure

1.1.1 Maximum Entropy Distribution

Given a MSA containing M sequences for a protein of length N , we define fi(Ai) as the observed fre-
quency of residue Ai occuring in position i of the MSA and fij(Ai, Aj) as the observed frequency of
both residue Ai occuring in position i and residue Aj occuring in position j of the MSA. Given any
sequence A = A1, A2, . . . , AN , we model the probability of it occurring in the MSA by a distribution
P (A) = P (A1, A2, . . . , AN ). However, there are qN different sequences (where q = 21 is the size of the
alphabet of amino acids – in these models the ‘gap’ residue is treated as a 21st amino acid type) and only
M � qN sequences in the MSA. The sparsity of the data and the number of sequences imply it is impractical
for detailed use. However, we would like our model to match the emiprical low-order moments given by the
MSA. Specifically we would like

Pi(Ai) = fi(Ai) and Pij(Ai, Aj) = fij(Ai, Aj) (1)

where Pi(.) is the marginal distribution for position i and Pij(., .) is the (joint) marginal distribution of
positions i and j. In this work we have not added pseudo-counts or weighted sequences.

Among the valid distributions P satisfying these constraints, using the maximum entropy principle [9]
we favour, P, the distibution which has maximum entropy, S:

P = argmaxP {S(P )}≡argmaxP {−
∑

A

P (A) log(P (A))}

and solving this optimization problem using Lagrange multipliers leads to the distribution

P(A1, . . . , AN ) ∝ exp


 ∑

1≤i≤j≤N
−eij(Ai, Aj) +

∑

1≤i≤N
hi(Ai)


 (2)

for some pair-interaction energies eij(Ai, Aj) and local fields hi(Ai) [17].
The number of parameters specificed by equation 2 is N(N − 1)q2/2 + Nq yet there are only N(N −

1)(q − 1)2/2 +N(q − 1) free parameters because the constraints from (1) are not independent, for example∑
Aj
fij(Ai, Aj) = fi(Ai). To uniquely specify a solution requires the imposition of so-called gauge condi-

tions. We follow the approach of [17](Supporting Information); since we are trying to estimate the coupling
between residue pairs it intuitively makes sense to capture as much as possible by the local fields hi and to
leave only the essential pairwise contributions in the interaction energies eij . Formally this can be achieved
by imposing the gauge constraints

∑

Aj

eij(Ai, Aj) =
∑

Ai

eij(Ai, Aj) = 0

for all i, j, Ai, Aj . Finally to fully determine the system we fix

∑

Ai

hi(Ai) = Ci

for all i, where Ci is a constant, chosen for simplicity as
∑
Ai

ln(fi(Ai)).
To drastically reduce the dimensionality of the problem, if fi(Ai) = 0 for some i and Ai, then we do not

need to use hi(Ai) or eij(Ai, Aj) for all j and Aj (in effect we are setting hi(Ai) = −∞). This reduces both
the number of independent variables and the number of constraints.
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1.1.2 Contrastive Divergence

Due to the large number of eij , it is a significant computational challenge to compute P and many different
strategies have previously been employed. These include Monte Carlo samping [15], message passing [17],
perturbation methods [4] and mean-field approximations [13, 12]. In this work we take a different approach;
we use contrastive divergence, a statistical machine learning technique introduced by Hinton [7]. This
work represents the first application of contrastive divergence to the modelling of protein multiple sequence
alignments. We have chosen contrastive divergence because Equation 2 defines a (restricted) Boltzmann
machine [8, 16] and contrastive divergence is a technique which has been developed to efficiently learn the
parameters of Boltzmann machines.

Given a MSA, we replicate it to ensure it contains M ≥ 5000 sequences. We denote this ensemble by E∞
and view it as a single data point. For a given set of θm = {e(m)

ij , h
(m)
i } we define the distribution πm as

πm(A) = πm(A1, . . . , AN ) ∝ exp


−

∑

1≤i≤j≤N
e
(m)
ij (Ai, Aj) +

∑

1≤i≤N
h
(m)
i (Ai)




and we can define πm(E∞) =
∏
X∈E∞ πm(X). Using Maximum Likelihood (ML) optimization, with learning

rate η, we would update θ using

θm+1 = θm + η
∂

∂θ
lnπm(E∞) = θm + η

[
∂ lnπm(E∞)

∂θ
−
〈
∂ lnπm(E)

∂θ

〉]

where
〈
∂ lnπm(E)

∂θ

〉
is the average with respect to all possible data points E . This ensemble average is

extremely computationally expensive to compute; typically, a Markov Chain (MC) would have to be run to
equilibrium for each ML iteration.

Contrastive divergence is an alternative method whereby one runs a short MC chain, starting from E∞
and using the stationary distribution πm, ending at state Em. The approximation

〈
∂ lnπm(E)

∂θ

〉
≈ ∂ lnπm(Em)

∂θ

is then used. For a full discussion of the theory behind contrastive divergence see [7]. Using a simple gradient
descent update scheme does not preserve the gauge conditions, so we follow the update scheme described
in [17](Supporting Information). The complete algorithm is described by Algorithm 1 and the independent
MC sampler moves are described by Algorithm 2.

1.1.3 Correlated Mutation Measure

Once we have the values of eij and hi, we need a measure which quantifies the coupling between residues Ri
and Rj . In this work we use D(i, j) which is defined as

D(i, j) =
∑

Ai,Aj

PDij (Ai, Aj) log
PDij (Ai, Aj)

fi(Ai)fj(Aj)

where
PDij (Ai, Aj) ∝ fi(Ai)fj(Aj) exp(−eij(Ai, Aj)).

For {i, j} this is the relative entropy between the independent site joint distribution fi(Ai)fj(Aj) and
the independent site joint distribution moderated by only this pair’s interaction energies. The larger D(i, j),
the greater the coupling between i and j and this may indicate co-evolution and a residue contact.

Many measures are possible, for example,
∑
Ai,Aj

[eij(Ai, Aj)]
2, and these measures are found to contain

essentially the same information [17]. In previous work the direct information [12, 13, 17] was used, which has
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Algorithm 1 Procedure to calculate P using contrastive divergence (with an independent MC sampler)

E∞ ← MSA (copied to ensure 5000 sequences in ensemble).

e
(0)
ij (Ai, Aj)← 0, h

(0)
i (Ai)← fi(Ai)

m← 0, q ← 21
loop

πm ← Maximum Entropy Distribution with e
(m)
ij and h

(m)
i

Em ← E∞
for n = 1→ 5000 do

Propose MC move Em → Em′ (see Algorithm 2)
U ∼ U [0, 1]

if U ≤ min{1, πm(Em′)
πm(Em) } then

Em ← Em′
end if

end for
Update eij and hi:
Pi(Ai), Pij(Ai, Aj)← empirical first and second order moments of Em
∆hi(Ai)← fi(Ai)− Pi(Ai)
∆eij(Ai, Aj)← [fij(Ai, Aj)− Pij(Ai, Aj)]− fi(Ai)+fj(Aj)−Pi(Ai)−Pj(Aj)

q

h
(m+1)
i (Ai)← h

(m)
i (Ai) + η∆hi(Ai)

e
(m+1)
ij (Ai, Aj)← e

(m)
ij (Ai, Aj) + η∆eij(Ai, Aj)

m← m+ 1
end loop

Algorithm 2 Proposing MC move Em → Em′
Uniformly choose a sequence from Em: S
Uniformly choose a starting column: s
Uniformly choose block size k from the set {0, 1, 2, 3, 4},
for i = 0→ k do

Change residue s+ i of sequence S, choosing uniformly over alphabet of amino acids which are found
in column s+ i of E∞.
end for
The MC chain is now in state Em′

Notes:
The standard independent Metropolis-Hasting acceptance criteria (described in Algorithm 1) is then used.
If s+ i is greater than L, the number of residues in each sequence then we wrap around back to column 0.

3



the advantage of being gauge invariant. From a theoretical viewpoint, however, since our gauge constraint
has been chosen so that the hi explain as much as possible, what is left in eij is, in some sense, the essential
pairwise interactions. Numerically, the direct information was also used for this work but produced slightly
poorer prediction results. This is shown in Figure 1 where, for each protein, the contact ratio (as defined in
the caption for Figure 2 (Top) in the main text) is plotted using both the the new correlation measure D
and the original direct information. As expected both measures contain similar information (the correlation
coefficient is 0.948) yet the direct information is slightly poorer: the linear regression line shows (Direct
Information) = 0.9(D) + 0.0034. Finally, unlike the direct information, the new correlation measure has
the computational advantage of not having to calculate O(N2) additional fields after the maximum entropy
distribution has been calculated.
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Figure 1: The contact ratio using both D (x-axis) and the direct information (y-axis) is plotted for each
of the 916 proteins in the dataset. Both correlation measures contain essentially the same information (the
correlation coefficient is 0.948) yet the new measure performs slightly better, as shown by the linear regression
line.

Noise associated with correlated mutation analysis: There are distinct types of noise associated
with contact prediction from correlated mutation analysis. The first is independent of the size of the MSA
and concerns direct and indirect contacts as described in Section 2.2 of the main text. As a specific example,
if residues X and Y are in contact and correlated and residues Y and Z are in contact and correlated, X and
Z, which are not in contact, are likely to be correlated. A pairwise correlation measure would be unable to
distinguish between the actual contacts and the indirect correlations.

The maximum entropy formalism is a global (rather than pairwise) method which aims to find the
minimally constrained distribution (as defined by entropy) which satisfies all observed correlations. For
example, in the above case, a large interaction energy between X and Y and between Y and Z would be
enough to explain the correlation between X and Z.

There are other causes of noise, for example, in the case of a homodimer made up of two identical
monomers A and A’. Chain A residue X could be in contact with and hence co-evolve and be correlated
with chain A’, residue Y. Correlated mutation analysis could then seem to imply that residues X and Y are
in contact within the monomer, which is not the case. This is an issue for all correlated mutation measures,
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although the maximum entropy formalism performs strongly despite this noise. In this paper, for the case of
β-contacts, we have tried to mitigate this noise, as well as the noise occurring due to lack of data, by coupling
the correlation measure to a strongly structured strand model which only allows plausible β-contacts. As a
simple example, if residues (i, j) and (i+ 1, j+ 1) are β-contacts, residues (i+ 1, j−1) cannot be a β-contact
even if positions i+ 1 and j − 1 of the MSA are highly correlated.

1.2 Empirical Bayes Parameter Optimization

We weight the likelihood with a gamma distribution on the number of β-contacts (|I|(u|E|−1) exp(−v|I|))
for the reasons outlined in the main text. To optimize the parameters u and v we used an empirical Bayes
technique. We set the mean and variance of the gamma distribution as µ|E| and σ2|E| where |E| is the
number of β-residues. For a fixed µ and σ2 we have

v =
µ

σ2
and u =

µ2

σ2

Fixing {µ, σ2} we generated 3 independent sets of results using the same 10-fold cross validation procedure
described in the main text (each set of results was the mean of 20 sets of 250000 samples per protein). For
each set of results we calculated the maximum value of F1 = 2PR/(P +R), the harmonic mean of Precision
and Recall for strand interactions, and took the mean of these three maximum values. We then repeated
this for 120 other pairs of {µ, σ2}. Figure 2 shows the results. The results seem to show that a large range of
{µ, σ2} produce statistically equivalent results and we chose µ = 1.5 and σ2 = 0.125, which implies u = 18
and v = 12. Although we chose the maximum F1 = 2PR/(P + R) value as our statistic to compare, the
same behaviour was found when using other statistics such as the correlation coefficient γ.
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Figure 2: The maximum value of F1 = 2PR/(P + R) for different values of {µ, σ2}. See the text for more
details.

1.3 Importance Sampling:

Following [3] we use importance sampling to estimate properties of the posterior distribution. We draw 1
million samples {I1, I2, . . .} from our proposal distribution, the prior: P(I), and use the standard importance
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sampling weights:

Wi =
P(Ii|R)

P(Ii)
=

P(R|Ii)
Z

where
Z =

∑

I
P(R|I)P(I) ≈

∑

{Ii}
P(R|Ii) (3)

Given a property of the posterior h(I) we can estimate its expectation:

E(h(I)) ≈
∑

{Ii}
h(I)Wi

and we take the mean of 50 independent estimates of E(h(I)) to produce the results shown in the paper. Since
such a large number of samples is taken and the fact that the prior itself is extremely informative (especially
for the posterior which does not include the correlated mutation measure, P1), we find the approximation
in Equation 3 is valid.

1.4 CASP 2010 Dataset

We have also benchmarked our method on the CASP 2010 set of proteins. We removed those proteins which
have fewer than 10 β-residues and we also removed protein T0543, an 887 residue protein, leaving a total
of 92 proteins. We followed the same procedure described in the paper to autogenerate MSAs. Figure 3
shows a comparison between the number of sequences in the MSAs of the CASP dataset and the BetaPro
916 dataset shown in the paper. There are more CASP targets with larger MSAs, for example 30% of the
CASP dataset have at least 1000 sequences in their MSA as opposed to 22% of the BetaPro 916 dataset.
Nevertheless, similarly to the dataset in the main paper, a third of the CASP dataset still have fewer than
200 sequences in their MSA and so this data set also provides an additional test of our method when only
small MSAs are available.
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Figure 3: A comparison between the number of sequences in the MSAs of the 916 dataset from the main
paper and the CASP 2010 92 proteins.
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1.4.1 Known Secondary Structure

Using constrastive divergence we generated our correlated mutation statistic D, and in the first instance we
tested our strand predictor program using the secondary structure assignments from DSSP [11]. For BetaPro
we also used solvent accessibilty derived from DSSP. The results were similar to those of the BetaPro 916
dataset, for example, Figure 4 and Table 1 show the strand level results of our method compared to BetaPro.
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Figure 4: Precision versus Recall graph for strand interactions on the CASP dataset using Correlated
Mutation Measure (CMM): P2, and not using CMM: P1. Compare to Figure 9 in the main text.

Table 1: Comparison of strand level statistics of our model (P2) with threshold 0.45 and the final output
of BetaPro for the CASP 2010 dataset. Apart from γ, statistics are shown as percentages. Compare with
Table 2 in the main text.

P2 BetaPro
P 53.1 44.1
R 54.2 57.1
F1 53.7 50.0
γ 0.495 0.451

Chains with F1 ≥ 70.0 32.6 32.6

1.4.2 Predicted Secondary Structure

We have also tested our method with predicted secondary structure. We predicted strand residues using
both Jpred [5, 6] and PsiPred [1, 10], taking a residue to be part of a strand if at least one of the methods
predicted it to be a strand residue. For the CASP dataset, 81.2% of the strand residues were correctly
predicted and of those predicted as strands 79.6% were actually strands. For BetaPro we also predicted
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helices using the same criterion and predicted solvent accessibility using Jpred. Figure 5 shows the ROC
curve at the residue level1 of the CASP dataset using predicted secondary structure. It shows that in the
region of few false positives, we perform slightly better than Betapro. It is important to note that this graph
cannot be compared to the ROC curve in the main paper (Figure 7) because in this case there are many
more true negatives, as all pairs of residues could be in β-contact as opposed to only the known β-residues.
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Figure 5: ROC curve for residue level β-contacts using correlated mutation measure, compared to the neural
network output of BetaPro. It is important to note that this graph cannot be compared to the ROC curve
in the main paper (Figure 7) because in this case there are many more true negatives, as all pairs of residues
could be in β-contact as opposed to only the known β-residues.

1.5 Tertiary Structure Prediction

As described in the main text, our β-contact predictions can be incorporated into a tertiary structure
prediction method. Our previously published software, CRANKITE, describes a coarse-grained protein
model which uses a physically meaningful energy function biased by a harmonic potential on β-contacts to
fold a protein [14, 2]. CRANKITE requires protein secondary structure and β-contacts as an input. Using
our strand prediction method to predict β-contacts enables our coarse-grained model to be used for protein
tertiary structure prediction. A full account of the physical model and statistical sampling method can be
found in [14, 2]2.

Figures 6 and 7 are examples of tertiary structure prediction of the 2010 CASP targets T0622 (a 122
residue protein with 968 sequences in its MSA) and T0594 (a 140 residue protein with only 258 sequences
in its MSA). These figures include the primary sequence, native (crystal structure) and predicted secondary
structure. The predicted secondary structure uses the same consensus method described in Section 1.4.2.
The figures also include the native residue level β-contacts and the contacts predicted using our β-strand

1It no longer makes sense to describe strand level interactions as there is no clear correspondance between predicted strands
and actual strands in the protein.

2An additional energy term constraining the radius of gyration of the centre of masses of the distinct helices and strands
has been developed since our last publication, this energy term allows secondary structure elements to form, yet ensures the
overall conformation is compact.
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model (analogous to the strand level heat maps of Figure 8 in the main text) using the predicted secondary
structure. Finally the native (crystal) structure of the protein is shown along with example low energy
structures found by CRANKITE together with their RMSDs from the crystal structure.

Primary:      KKKVLIYGAGSAGLQLANMLRQGKEFHPIAFIDDDRKKHKTTMQGITIYRPKYLERLIKKHCISTVLLAVPSASQVQKKVIIESLAKLHVEVLTIPNLDDLVNGKLSIGQLKEVSIDDLLGR

Predicted SS: ---EEEEE--HHHHHHHHHHHH----EEEEEEE-------EEE--EEE---HHHHHHHHH----EEEEEE----HHHHHHHHHHHHH---EEEE---HHHHH--------------------

Native SS:    -EEEEEE---HHHHHHHHHHHH---EEEEEEE---------EE--EEEE----HHHHHHHH---EEEE------HHHHHHHHHHHH----EEEE---HHHHH---------EE--HHHHH--

T0622
Number of residues: 122      Size of MSA: 968

Native structure

Sample predicted structures

Residues 2-87:                              3.47                                                    4.27                                                    3.78 
RMSD from native of

Native contacts                                             Predicted contacts

Residue                                                                                                        Residue
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Figure 6: Tertiary structure prediction of 2010 CASP target T0622, a 122 residue protein with 968 sequences
in its MSA. Top: The protein primary sequence, native (crystal structure) secondary structure (ss) and
predicted secondary structure. Middle: Actual residue β-contacts, β-contact prediction using our model and
the native structure of the protein. Bottom: Example low energy structures found using CRANKITE. The
C-terminal tail of the protein, the blue portion, has been rendered using ‘ribbon’ view so that the topology
of the rest of the protein can be clearly seen. Note for this protein the contact between residue 28 and 47
was used as an input for CRANKITE but it is unclear from the prediction whether this strand interaction
is parallel or antiparallel. Therefore, only this contact was used for this strand interaction and CRANKITE
found the most favourable direction itself.
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Primary:       GMSFEITEEYYVPPEVLFNAFTDAYTLTRLSRGSLAEVDLKVGGKFSLFSGSILGEFTEITKPHKIVEKWKFRDWNECDYSTVTVEFISVKENHTKLKLTHNNIPASNKYNEGGVLERCKNGWTQNFLHNIEVILGYPKK

Predicted SS:  -EEEEEEEEE---HHHHHHHHH-HHHHHHH-----EEEEEE---EEEEEE--EEEEEEEEE---EEEEEEE---------EEEEEEEEE----EEEEEEEEE-------HHHH-HHHHHHH-HHHHHHHHHHHHHH----
Native SS:     ---EEEEEEE---HHHHHHHHH-HHHHHHH------EE------EEEE----EEEEEEEEE---EEEEEEEE--------EEEEEEEEEEE--EEEEEEEEE------------HHHHHHHHHHH-HHHHHHH-----E- 

T0594
Number of residues: 140      Size of MSA: 258
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Figure 7: Tertiary structure prediction of 2010 CASP target T0594, a 140 residue protein with only 258
sequences in its MSA. Top: The protein primary sequence, native (crystal structure) secondary structure (ss)
and predicted secondary structure. Middle: Actual residue β-contacts, β-contact prediction using our model
and the native structure of the protein. Bottom: Example low energy structures found using CRANKITE.
The β-contact prediction produced two possible residue level interactions for the final two strands, the one
with larger probability was chosen as input for CRANKITE.
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Chapter 5

Nested Sampling with Molecular

Dynamics

In Chapter 2 we applied the nested sampling algorithm to a coarse-grained protein model specifically

designed to allow the implementation of efficient MC crankshaft moves. This is due to the fixed bond

lengths and valence angles (with the exception of the Cα atom). However, these degrees of freedom are

not fixed in proteins, and hence many standard all-atom force fields allow bond stretching and angle

bending.

For these models MC sampling is not typically used. For example, it is not included with the popular

bimolecular modelling package, Amber. Therefore, in order for nested sampling to become widely used

within the computational biophysics community, it would be advantageous to implement nested sampling

within a MD framework.

Skilling has recently developed Galilean nested sampling (GNS), a variant of nested sampling whereby

each degree of freedom is given a ‘velocity’ and new samples are generated by using these velocities to

evolve existing samples along trajectories. Rather than Hamiltonian (i.e. canonical or microcanonical)

trajectories, samples follow Galilean trajectories, a novel exploration procedure designed to sample phase

space uniformly. This ensures GNS retains the advantages of nested sampling at first order phase

transitions.

GNS is ideally suited to sample atomistic systems and in this chapter we implement the algorithm

as a wrapper to the Amber MD package.1 We demonstrate the validity of GNS by sampling the small

peptide alanine dipeptide, a common test system for researchers developing new sampling algorithms.

Unlike earlier studies, we calculate the heat capacity of the peptide both in vacuo and in implicit

solvent using the latest Amber force field. The heat capacity is particularly challenging to calculate (it is

the second derivative of the partition function with respect to temperature) and provides a stringent test

for sampling algorithms. This is especially the case for alanine dipeptide as the heat capacity is almost

constant over the 800K temperature range considered and hence a large number of samples are required

to reduce the statistical noise in order to clearly resolve the curve. In order to show correctness, we also

calculate the heat capacity using replica exchange MD and find good agreement between the methods.

We also calculate the Ramachandran free energy surface, a common reaction co-ordinate for this

system and compare the latest Amber force field results to previous theoretical and experimental alanine

dipeptide studies. Finally, we discuss both the properties of GNS and peptide force fields in general.

1We also have to make a small number of changes to the Amber source code.
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As described in the article, an alternative MD nested sampling algorithm, one which directly uses

canonical MD trajectories, has also been developed, and we finish the article with a theoretical comparison

between GNS, REMD and canonical nested sampling for systems which undergo a first order phase

transition.

5.1 Contribution

This chapter contains a draft of a paper awaiting submission. The initial idea was formulated by Csányi.

Burkoff, under the supervision of Wild and Várnai, and Baldock, under the supervision of Csányi,

jointly developed the algorithm. The results in this paper were generated using an implementation of

the algorithm by Burkoff, who also performed the post processing analysis included in the Results section.

The initial draft of the paper was written by Burkoff with Wild and Várnai contributing to the revisions

of the current draft of the paper.
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Exploiting Molecular Dynamics in Nested Sampling Simulations

of Small Peptides

Nikolas S. Burkoff∗†, Robert Baldock∗‡, Csilla Várnai†,

David L. Wild†and Gábor Csányi§

Abstract

Nested sampling (NS) is a Bayesian sampling algorithm which has significant theoretical advan-

tages for sampling atomistic systems, particularly those which undergo a first order phase transi-

tion. It has previously been used to explore the potential energy surface of a coarse-grained protein

model and has significantly outperformed parallel tempering when calculating heat capacity curves

of Lennard Jones clusters. The original algorithm is Monte Carlo (MC) in nature; however, a vari-

ant, Galilean NS, has recently been introduced which allows NS to be incorporated into a molecular

dynamics framework, so NS can be used for systems which lack efficient prescribed MC moves. In

this work we demonstrate the applicability of Galilean NS to atomistic systems. We present an

implementation of Galilean NS using the Amber molecular dynamics package and demonstrate its

viability by sampling alanine dipeptide, both in vacuo and implicit solvent. Unlike previous studies,

we present heat capacity curves of alanine dipeptide, whose calculation provides a stringent test

for sampling algorithms. We also compare our results with those calculated using replica exchange

molecular dynamics (REMD) and find good agreement. We show the computational effort required

for accurate heat capacity estimation for small peptides. We also calculate the alanine dipeptide

Ramachandran free energy surface and use it to compare the latest Amber force field with previous

theoretical and experimental results. Finally, we discuss the behaviour of Galilean NS, comparing it

to REMD and an alternative canonical molecular dynamics NS algorithm recently developed, par-

ticularly focusing on how the choice of ensembles used affects systems, such as large proteins, which

undergo a first order phase transition.

Introduction

It has been over 50 years since Ramachandran and coworkers first modelled protein peptide bonds

(1). In their work they used small peptides, containing only one or two peptide bonds, to study the

sterically allowed protein dihedral angles. Using this information they developed the ‘Ramachandran

plot’, familiar to protein scientists to this day.

The peptide bond is the smallest building block of proteins, and over the last few decades, it has

continued to be studied intensively both experimentally (2–6) and theoretically (7–11). Polypeptide

models and force fields of varying levels of complexity have been developed, ranging from simple

coarse-grained models (12), through all-atom molecular mechanics force fields (13, 14) and hybrid

quantum mechanics molecular mechanics (QM-MM) models (15, 16), to the full quantum mechanical

∗These authors contributed equally to this work
†Systems Biology Centre, Senate House, University of Warwick
‡Cavendish Laboratory, University of Cambridge
§Engineering Laboratory, University of Cambridge
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treatment (17). These models have allowed the computational study of peptide thermodynamics and

the exploration of their potential (and free) energy surfaces (10, 11, 18, 19).

Although short peptides which occur naturally, such as the five residue neurotransmitter Met-

enkephalin (20), are of particular interest, the peptide bonds in short peptides are thought to have

similar properties to the peptide bonds in unfolded and unstructured proteins (21), and so their

study can also inform our knowledge of proteins in their unfolded state. Peptide models have also

been used to study peptide aggregation (22) and have been used in order to develop (23–25) and

test (21) more general protein force field parameters and models.

Running in parallel to the development of these models and force fields, there has been consider-

able work in developing sampling algorithms in order to fully explore the potential (and free) energy

surfaces of proteins and peptides, and to calculate accurate thermodynamics of the force fields used.

These algorithms are required, as standard molecular dynamics (MD) canonical trajectories strug-

gle to overcome energy barriers and fully sample the conformational space. As shown below, when

initially developing a sampling algorithm, it is typically first tested on small peptides.

The de facto standard algorithm for general conformational phase space exploration is replica

exchange molecular dynamics (REMD) (26). A set of canonical MD trajectories are run with each

‘replica’ using a different temperature. Periodically, the swapping of conformations for two replicas

is proposed and is accepted using the standard Metropolis-Hastings Monte Carlo (MC) acceptance

criteria. The high temperature replicas ensure the system can escape from local modes. Many

extensions, such as allowing the temperature of the replicas to change throughout the simulation in

order to improve efficiency, have been developed (27). In the original REMD research, the penta-

peptide Met-enkephalin was studied (26), and subsequently the method has been very widely used,

for example, to fold the Trp-cage mini-protein (28) and to calculate the heat capacity curve of an

SH3 domain (29).

One of the main thermodynamical properties of interest to protein scientists is the free energy

difference between different states of the system. These are used to plot the free energy surface with

respect to reaction co-ordinates of interest and give key insights into the behaviour of the system.

Although in this work we focus on algorithms which do not require suitable reaction co-ordinates

to be known a priori, if these are available, then specialized free energy algorithms can be used to

calculate such differences (30–32). One such algorithm is umbrella sampling (30), where an extra

force is applied to keep the reaction co-ordinate at a chosen value. Originally tested on Lennard

Jones (LJ) clusters, umbrella sampling has been used to study short peptides (33) and is now a

standard free energy calculation algorithm.

Sophisticated general (i.e. not requiring prior knowledge of the potential energy surface) con-

formational sampling algorithms have also been developed. For example, accelerated molecular

dynamics, where a bias (a function of only the potential energy) is used to facilitate the traver-

sal of energy barriers (34). To initially test the algorithm, in the original work, Hamelberg et al.

calculate the free energy surface of alanine dipeptide, a simple molecule with only a single peptide

bond (34). Another example is multicanonical sampling, using either Monte Carlo (35) or molecular

dynamics (36) sampling. In this algorithm, instead of sampling from the Boltzmann distribution –

P(Ω) ∝ exp(−E(Ω)β) – samples are drawn from the multicanonical distribution – P(Ω) ∝ 1/g(E(Ω)),

where g(E) is the density of states. Multicanonical sampling was specifically designed to be efficient

when sampling systems which undergo a first order phase transition (35). Multicanonical MD has

been used to study the free energy landscapes of tri-peptides (37) and a seven-residue DNA binding

peptide (38). Recently, the algorithm has been applied to larger peptides and protein domains; fur-

ther applications of the multicanonical MD algorithm can be found in a recent review (39). Many

variants of the multicanonical algorithm, such as the Wang-Landau algorithm (40), have also been

developed. Further examples of MC algorithms include equi-energy (41) and well-tempered ensemble

(42) sampling.
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Recently, Skilling introduced a novel sampling technique, nested sampling (43), which has distinct

advantages for sampling atomistic systems, and subsequently, a similar algorithm to nested sampling,

the energy partitioning method, was independently developed for sampling water molecules and

binary mixtures of fluids (44, 45).

Nested Sampling

Nested sampling is a Bayesian sampling algorithm, specifically designed to sample high dimen-

sional spaces (43, 46). The algorithm is designed for systems where the bulk of the probability

mass is contained in an exponentially small volume of phase space. The algorithm outputs both an

estimate for the evidence (also known as the marginal likelihood or partition function) and a set of

samples from which thermodynamic variables, such as heat capacities and free energy differences,

can be calculated at any temperature.

Whilst initially developed for statistical inference (43), the algorithm is well-established in the as-

trophysics community (47) and has also been successfully applied in a variety of other fields including

bioinformatics (48), systems biology (49) and flow model selection (50).

The nested sampling algorithm has also been applied to atomic systems. Pártay et al. have used

it to sample LJ clusters (51) and hard sphere models (52), and in our previous work we explored

the potential energy surface of a coarse-grained protein model (53). The algorithm is ideally suited

for the sampling of atomistic systems, and particularly proteins as, for these systems, the dimension

of the phase space is large; accessible conformations (at temperatures of interest) are located in

exponentially small regions of phase space; and, although the nested sampling procedure is athermal,

a single nested sampling simulation can be used to estimate thermodynamic observables at any

temperature.

Furthermore, nested sampling has also been shown to be particularly efficient at sampling systems

which undergo a first order phase transition (46). For example, when calculating the heat capacities

of LJ clusters, nested sampling outperformed parallel tempering by over an order of magnitude (51).

It is well known that proteins undergo a first order phase transition upon thermal unfolding (54–56).

The original nested sampling algorithm is a Monte Carlo (MC) sampling algorithm and in our

previous work, the coarse-grained protein model used was designed to allow efficient MC crankshaft

moves (53). For example, all bond lengths were fixed and the peptide bond was kept exactly planar.

In this work, however, we apply the algorithm to an all-atom force field where the extra degrees of

freedom would make MC sampling more challenging.

Recently, however, Skilling introduced Galilean nested sampling (57), a variant of the nested

sampling algorithm for which each atom is given velocities and system specific MC moves are not

required. The velocities are then used to evolve sample points using Galilean sampling, a novel

exploration procedure, rather than using the standard Hamiltonian or canonical exploration.

Galilean exploration allows nested sampling to be used for systems for which required MC moves

are not efficient. For example, all-atom models of proteins and peptides, especially with explicit

solvent, have a large number of degrees of freedom and MC sampling requires moves such as bond

stretching and angle bending. These moves are not particularly efficient, leading to long decorrelation

times, especially at low temperatures. It also allows an efficient nested sampling algorithm to be

implemented within a molecular dynamics (MD) framework and, hence, increases the utility of the

nested sampling method.

In this work we implement Galilean nested sampling within the Amber MD package (13) and we

test the algorithm by generating thermodynamical data for the short peptide alanine dipeptide, both

in vacuo and in implicit solvent. Unlike earlier work with alanine dipeptide, we focus on calculating

accurate1 heat capacity curves and compare the nested sampling results to those obtained using the

1In this work, ‘accurate’ thermodynamic data indicates that it is accurate for the force field used.
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standard REMD procedure. We also calculate dihedral angle Ramachandran free energy surfaces,

comparing the results to previous theoretical and experimental work.

We discuss the properties of Galilean nested sampling and our expectations for the method

looking to the future. Finally, Nielsen has recently published an alternative MD version of nested

sampling, which uses canonical MD exploration (58). We end the discussion with a description of

the differences between this algorithm, REMD and Galilean nested sampling, with a particular focus

on their behaviour when sampling systems which undergo a first order phase transition.

Methods

Following the principles of classical statistical mechanics, the configurations of constant volume sys-

tems which are in thermal equilibrium with their surroundings are distributed according to the

Boltzmann (or canonical) distribution. Specifically, at temperature T , the probability of the sys-

tem adopting the configuration Ω is proportional to exp(−E(Ω)β) where β = 1/(kBT ), kB is the

Boltzmann constant ( ≈ 2x10−3 kcal/mol/K ) and E(Ω) is the potential energy of configuration Ω.

The normalization constant of the Boltzmann distribution, the partition function,

Z(β) =

∫

Ω

exp(−E(Ω)β)dΩ,

is of fundamental importance in statistical physics, as it can be used to obtain thermodynamic

quantities; for example, the internal energy,

U = 〈E(Ω)〉β ≡ −
(
∂ lnZ

∂β

)

V

,

and the constant volume configurational heat capacity,

Cv = 〈E2(Ω)〉β − (〈E(Ω)〉β)2 ≡ kBβ2

(
∂2 lnZ

∂β2

)

V

,

where 〈.〉β is expectation under the Boltzmann distribution.

Although it is possible to estimate the partition function using the ‘harmonic mean approxima-

tion’, Z−1 = 〈exp(E(Ω)β)〉, this estimate has infinite variance and hence should be avoided (59).

Nested Sampling Algorithm

The nested sampling algorithm is an iterative procedure which generates a set of energy levels

E1 > E2 > E3 . . ., where for each i, Ei is chosen so that

∫

Ω

I{E(Ω) < Ei}dΩ
∫

Ω

I{E(Ω) < Ei−1}dΩ

= α

for some fixed proportion α. Hence the algorithm takes steps equidistant in ‘the logarithm of phase

space volume’. See Figure 1 for further details.

The proportion ωi = αi−1 − αi of conformations have energy between Ei−1 and Ei and hence,

by using numerical integration, we can estimate the partition function to be

Z(β) =

∫

Ω

exp(−E(Ω)β)dΩ ≈
∑

i

ωi exp(−E(Ωi)β). (1)

The algorithm does not prescribe a specific terminating condition, only running until the variables
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Figure 1: The energy levels E1 > E2 > . . . are chosen to be equidistant in log phase space volume. Therefore, the
proportion 1− α of conformations have energy > E1 and α− α2 of conformations have energy < E1 and > E2.

of interest have converged. In previous work the algorithm was terminated at iteration j when

log

(
j∑

i=1

ωi exp(−E(Ωi)β)

)
− log

(
j−1∑

i=1

ωi exp(−E(Ωi)β)

)
< ε

for the lowest temperature, Tmin, (respectively highest β) of interest (53). We follow the same

procedure here, and by setting ε = 10−5, we ensure the heat capacity estimate has converged at

Tmin.

Generation of Energy Levels

Although the original algorithm does not prescribe a specific method to calculate the energy

levels, a Monte Carlo method is proposed and is described in Algorithm 1. An active set of K

samples, uniformly distributed over the set of configurations with energy below the current energy

level, is maintained. The set is initialized with samples uniformly distributed throughout the whole

phase space. The energy of the highest energy configuration in the active set is chosen to be the first

energy level, E1, and this configuration, Ω1, is removed from the active set.

The K − 1 samples remaining in the active set are uniformly distributed over the set of configu-

rations with energy below the current energy level, and only a single new configuration is required.

This configuration is generated by copying an existing member of the active set and taking the final

configuration of a Markov chain with equilibrium distribution given by P(Ω) ∝ I{E(Ω) < E1}. The

second energy level E2 is then taken to be the energy of the highest energy configuration currently

in the active set, Ω2, and the procedure repeats, generating E3, E4, . . ..

At iteration i, the proportion of the configuration space with energy < Ei−1 which has energy

less than the sample of the active set with highest energy ∼ Beta(K + 1, 1) and its expected value

is K/(K + 1). Therefore, ignoring uncertainties, we find α = K/(K + 1). It is possible to quantify

these uncertainties when producing estimates of the partition function (46).

The sample points removed from the active set, {Ω1,Ω2, . . .} can be used to estimate properties of

the Boltzmann distribution at any temperature. Ωi represents ωi of configuration space, and therefore

represents χi(β) = ωi exp(−E(Ω)β)/Z(β) of the probability mass of the Boltzmann distribution at
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Algorithm 1 Monte Carlo (MC) algorithm to generate nested sampling energy levels

Generate K samples uniformly distributed throughout phase space, the active set
i← 1
loop

Remove sample with highest energy, E∗, from the active set
Output Ei = E∗

Copy randomly chosen member of active set to use as a starting conformation for a MC chain
Run Markov Chain Monte Carlo with equilibrium distribution ∝ I{E(Ω) < E∗}
Add the final conformation from MC chain into the active set
i→ i+ 1

end loop

inverse thermodynamic temperature β. Any property Q(Ω|β) can be estimated as

E(Q|β) =
∑

i

χi(β)Q(Ωi).

For example, the heat capacity is given by

Cv(β) ≈ kBβ2

[∑

i

χi(β)E2(Ωi)−
(∑

i

χi(β)E(Ωi)

)2 ]
. (2)

Estimates for (Helmholtz) free energy differences can also be computed: if the set of samples {Ω}
can be split into disjoint macrostates A and B, then the free energy difference is given by

FA − FB ≈ −β−1


log


 ∑

{i:Ωi∈A}
ωi exp(−E(Ωi)β)


− log


 ∑

{i:Ωi∈B}
ωi exp(−E(Ωi)β)




 . (3)

Although thermodynamic variables can be calculated for any temperature, the energy levels that

are output by nested sampling and the MC exploration it uses are both athermal. In the Discussion

Section we show how these imply nested sampling is ideally suited for sampling systems which

undergo a first order phase transition.

Galilean Exploration

In our previous work sampling protein models we used a coarse-grained force field, CRANKITE

(60). In this model each amino acid had 3 degrees of freedom, the dihedral angles φ and ψ and

the Cα valence angle, and we used crankshaft rotations as MC moves which efficiently sample the

configurational space (53). However, more realistic all-atom models have more degrees of freedom,

and in order to sample the system, additional MC moves such as angle bending and bond stretching,

must be included. These moves, especially at low temperatures, or for systems which include explicit

solvent molecules, are often inefficient. For these systems, sampling using MD, which has shorter

decorrelation times than MC, is often preferred.

In this work we implement Galilean exploration, a method of exploration used to generate nested

sampling energy levels, recently introduced by Skilling (57). Galilean exploration does not require

system-specific MC moves. Following the MD approach, the atoms of the conformation are given

velocities and the system is then evolved along a trajectory generating samples uniformly distributed

over all conformations with energy less than a prescribed value. The details of Galilean exploration

are given below.

In Galilean nested sampling, in order to generate a new sample for the active set, an existing

member of the set, Ω, with atomic co-ordinates x is chosen. A set of velocities, v : vi ∼ N (0, kBT ),
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for a chosen parameter,2 T , are drawn and the move x → x′ = x + τv is proposed, where τ is

the timestep.3 If the proposed conformation has energy below the current energy level, the move is

accepted; otherwise we try to ‘reflect’ the conformation back into the acceptable region by choosing

a unit normal vector n and proposing the move x → x′′ = x′ + τ(v − 2n(n.v)). In principle any

unit vector n can be used. However, if possible, we would like to reflect off the boundary of the

acceptable region, thus ensuring the move is accepted. We can estimate this orientation by taking n

as the unit vector in the direction of ∇E(x′).

If the new conformation has energy less than the current energy level, the reflection is accepted

and the trajectory continues with velocity v′ = v−2n(n.v). If not, detailed balance insists we reject

the move, thus remaining at x, and we continue the trajectory by using the velocity −v. See Figure

2 for an example trajectory.

E

n

v

v

x

x

x

1

2

3

v'

Figure 2: At x1 the conformation x2 = x1 + τv is proposed. As the conformation remains in the acceptable
region (has energy below E, shown by the red contour), it is accepted. The proposed move to x′ = x2 + τv takes
the conformation outside the acceptable region, so it is reflected to x3 = x′+ τv′, where v′ = v−2n(n.v) for the
unit vector n = ∇E(x′). As x3 is inside the acceptable region, the move is accepted and the trajectory continues
using velocity v′. If x3 were to be outside the acceptable region, then the move would have been rejected, the
conformation returned to x2 and the velocity reversed to −v.

Unless the energy level boundary is crossed, the same v continues to be used throughout the

trajectory, as the induced systematic motions can be expected to explore more efficiently than random

diffusions. However, in order to decrease equilibration time, it is suggested that we slightly perturb

the velocity at each iteration and, instead of using velocity v, use the velocity vp = v cos θ + ṽ sin θ

where ṽ, is a newly drawn set of velocities and θ is small.

Galilean Nested Sampling for Peptides

In this work we adapt the Amber molecular dynamics package (13) to perform Galilean exploration

in order to generate nested sampling energy levels. We use the Amber ff12SB protein force field

with igb=6 for vacuum simulations and, for implicit solvent simulations, igb=8, a generalized Born

solvation model (61). We use the default Amber chirality and trans/cis peptide bond restraints. We

do not employ a van der Waals distance cutoff and do not constrain the covalent hydrogen bond

distances with SHAKE.

2The parameter T controls how fast the particle moves and hence is analogous to temperature in canonical MD simu-
lations. However, it does not correspond to the temperature of any canonical MD simulation.

3With Galilean exploration, there is a direct correspondence between timestep τ and ‘temperature’ T : the transformation
(T, τ)→ (aT, τ/

√
a) for constant a is invariant. In this work, for each simulation, we fix τ and allow T to vary as described

later in the text.
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Due to the rapid shrinking of the available phase space volume, we find it is sufficient to set

α = 0.5, and thus remove half of the available phase space each iteration. However, it is necessary

to estimate the next energy level to a very high degree of accuracy, and following the standard

algorithm, which would use an active set with a single sample, is inappropriate. Therefore, instead,

at each iteration we use Galilean exploration to generate a large set of uniformly distributed samples

and use the empirical median of this distribution to estimate the next energy level. The samples from

this iteration with energy less than the next energy level are still uniformly distributed, so we can, as

in the original algorithm, re-use these samples in subsequent iterations. The starting conformations

for the trajectories of the subsequent iteration are chosen uniformly from the set of conformations

with energy less than the new energy level.

As the accessible region of phase space shrinks, it is necessary to reduce the magnitude of the

velocities in order to keep the trajectories within the allowed region. We define the mean free path

to be the average number of successful steps taken before requiring a reflection. We use the variable

T in order to keep the mean free path constant throughout a nested sampling simulation. See the

Supporting Material for technical details.

In the original algorithm, simulations are initialized by choosing samples uniformly throughout

the whole of configuration space. As we are only interested in thermodynamics at relatively low

temperatures, we initialize the algorithm by generating a set of samples uniformly distributed over

the conformations with potential energy below a chosen initial energy level. We refer the reader to

the Supporting Material for further details concerning initializing the algorithm at a specific energy

level.

Each reflection requires two separate force evaluations, one when the sample steps outside the

acceptable region and one after it has been reflected. Therefore, when the mean free path is lower,

there are more reflections, and so trajectories must be shortened in order to maintain the same

number of force evaluations,4 and therefore computational expense, when comparing efficiencies.

Due to the implementation within Amber, in this work we calculate the forces at each step of the

trajectory. However, it is important to note that this is not strictly required as Galilean exploration

only requires the calculation of the forces (i.e. −∇E) when outside the acceptable region. At other

times, only the potential energy is required (to check whether the trajectory has left the acceptable

region).

Results

We demonstrate the Galilean nested sampling algorithm by using it to calculate the thermodynamics

and free energy surfaces of the small peptide alanine dipeptide both in vacuum and implicit solvent.

Alanine dipeptide in vacuo

It is over 50 years since Ramachandran and co-workers analysed the sterically allowed peptide dihe-

dral angles φ and ψ. In their work they introduced the name dipeptide to describe molecules which

include, beside a single amino acid, adjacent residues as far as the Cα atoms (1). Over the last 50

years dipeptides, and particularly alanine dipeptide (N-acetyl-alanyl-N’-methylamide; see Figure 4),

have been studied experimentally, both in solution (6) and in the gas phase (4). Alanine dipeptide

has also been studied from a quantum mechanical perspective (8, 9) and has previously been used

to parametrize molecular force fields (62) and test their accuracy (21).

Alanine dipeptide, alongside glycine dipeptide, is the smallest molecule which contains a peptide

bond and therefore, due to its size, the molecule is commonly used when testing new sampling

4Specifically, the total number of force evaluations = (m + 2)S/(m + 1), where S is number of steps and m the mean
free path.
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algorithms, for example (11). For the same reason we have chosen to use alanine dipeptide to test

Galilean nested sampling. Unlike previous work, here we focus not only on calculating the free

energy (or potential energy) surface, but also on the accurate determination of the heat capacity of

the system. To the authors’ knowledge these are the first published heat capacity curves for alanine

dipeptide.

Heat Capacity

Figure 3 shows estimates for the heat capacity of alanine dipeptide in vacuo for five independent

nested sampling simulations (lines) calculated using Equation (2). Although the potential energy

at temperatures of interest is low (e.g. at 360K, U ≈ 0 ± 4 kcal/mol), the initial energy cutoff was

chosen to be E = 100 kcal/mol. This is necessary due to the extremely high energy barrier separating

room-temperature accessible conformations with dihedral angle φ > 0 and those with φ < 0 (see

Figures 4 and 5 below). Although for biophysical systems we would not normally be interested in the

behaviour of the system at 100K, for this study, we choose Tmin = 100 as this allows us to capture

the peak in the heat capacity curve.

Following our previous work (53), we choose to use a large number of independent walkers, in

this case 16000. We use the parameter T to keep the mean free path ≈ 2, and by setting θ = 0.2 we

allow a small amount of velocity randomization every Galilean step. See the Discussion Section for

further details concerning the chosen parameters.

Each Galilean trajectory runs for a total of 2700 steps, outputting the potential energy every 75

steps. This implies each nested sampling iteration uses approximately 57 million force evaluations,

which leads to a total of ≈ 9.6x109 force evaluations per simulation. This is a very large number of

force evaluations for such a small system. However, as the value of the heat capacity only varies by

∼ 2kB over the 800K temperature range, a very large number of force evaluations are required to

reduce the statistical error to a small enough value to clearly resolve the curve.

 29
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Figure 3: The heat capacity, Cv, from 5 independent nested sampling simulations (lines) and 5 REMD simulations
(points). All simulations used a comparable number of force evaluations (≈ 9.6x109). See the text for further
details.
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The variance between estimates from independent simulations is very small. However, in order

to show that the algorithm has converged to the correct value, Figure 3 also includes heat capacity

estimates from five independent REMD simulations, and there is good agreement between the meth-

ods. The REMD simulations use a similar number of total force evaluations (9.6x109) as the nested

sampling simulations. The temperatures of the 32 replicas are in a geometric progression from 100

to 900K, and swaps between different replicas are attempted every 2ps. A very small timestep (0.2fs)

was used to ensure accuracy, and the parameters of these REMD simulations (such as the number of

replicas) have not been optimized. Therefore, we claim only that nested sampling and REMD are of

similar efficiencies for this system. Rigorous benchmarking of REMD and Galilean nested sampling

on larger systems is the major focus of our current work.

Free Energy Surface

A standard free energy reaction co-ordinate for alanine dipeptide is the pair of dihedral angles

(φ, ψ), for example see (11). We split the conformations generated by a nested sampling simulation

into separate ‘bins’ based on their dihedral angles and then use Equation (3) to generate the free

energy surface. A Gaussian filter has then been applied to smooth the data and the result, for

300K, is shown in Figure 4. For comparison, the unsmoothed free energy surface is shown in the

Supporting Material; see Figure S3. When using the original nested sampling algorithm, each energy

level corresponded to exactly one sample point, which represented ωi of phase space. In this work,

we output a whole set of samples for each energy level and, when calculating free energy surfaces,

we give each sample a uniform5 share of the weighting ωi.

Although the focus of this work is the implementation of Galilean nested sampling rather than

force field development, it is nevertheless interesting, to use these results to compare the Amber

ff12SB force field with experimental results and quantum mechanical (QM) calculations. Pohl et

al. compared alanine dipeptide QM calculations with infra-red absorption spectra in Ar and Kr

isolation matrices (4). From QM calculations they found that the two most common conformations

were expected to be C7eq (also named γL) and C5 ( βL(D)). Depending on the choice of basis sets,

the relative abundance of C7eq (at 343K) was between 32% and 63%. For this force field, we also

find the same two common conformations with the abundance of C7eq (at 343K) ≈ 66%. These

conformations were also identified experimentally (4). Tobias et al. compared a QM and molecular

mechanics (MM) potential energy surface of alanine dipeptide and, although they find differences in

the position of local minima, they conclude that the MM force field provides a very good description

of alanine dipeptide in vacuo. We find the locations of minima agree well with the positions on the

MM force field used by Tobias et al..

These nested sampling simulations converge the heat capacity, which requires the calculation of

the second derivative of the logarithm of the partition function (as a function of temperature). Free

energies are calculated directly from the logarithm of the partition function, without differentiation,

and therefore it is unsurprising that for the simulations from Figure 3 we find excellent agreement

when calculating free energies; for example, see Figure S3 in the Supporting Material. If the heat

capacity were not required, only the free energy surface, it is likely that much smaller simulations

could be used. In this case, fewer force evaluations would be needed.

For alanine dipeptide, there is a clear choice of reaction co-ordinates for a low dimensional free

energy surface (the dihedral angles), and, as the system is so small, Figure 4 could easily be calculated

by a specialized free energy calculation method such as umbrella sampling (30). However, these

methods typically require a reaction co-ordinate to be chosen a priori. This is not the case for

5Technically, as samples have slightly different energies ( Ei > E(Ω) > Ei+1), they ought to represent slightly different
proportions of phase space. However, the energy gap between successive energy levels is extremely small, and this approx-
imation is analogous to the approximation used by the original nested sampling algorithm when performing the numerical
integration to estimate the partition function. Therefore, in practice, we find this approximation adequate.

10



Figure 4: Top: Three conformations of alanine dipeptide accessible (in vacuo) at room temperature, from left to
right C5, C7eq and C7ax; see (4, 8, 9). Bottom: The free energy surface of alanine dipeptide in vacuuo at 300K.
See the text for further details. Note: in this work, the dark red used for β(free energy difference)= 6 is also
used where this value is greater than 6.

nested sampling as no reaction co-ordinate is required for the sampling algorithm. A discrete order

parameter can actually be derived directly from clustering the samples output by a nested sampling

simulation; we refer the reader to (51) for further details.

By reweighting the samples from the same nested sampling simulation, the free energy surface

can be calculated for arbitrary temperatures. For example, Figure 5 shows the free energy surface

at 100, 200 and 900K. Although there is a clear energy barrier at φ ≈ 0, it is possible for canonical

trajectories at 900K to overcome this barrier. However, at 600K it is all but impossible. This shows

the importance of ensuring there are replicas which have temperatures high enough to overcome all

energy barriers when running REMD. If not, truly accurate thermodynamics of a system cannot be

attained. Further discussion concerning this can be found in the Supporting Material.
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Figure 5: Free energy surface of alanine dipeptide in vacuo at 100K, 200K and 900K.

Alanine dipeptide in implicit solvent

In this section we perform nested sampling of alanine dipeptide in solvent and compare the results

generated by the Amber ff12SB force field to the latest experimental data.

There is no theoretical barrier to using Galilean nested sampling algorithm with explicit solvent

molecules, as each solvent molecule can be given velocities and the whole system can be evolved

using Galilean exploration. However, in this work we have focused on the calculation of accurate

heat capacity curves and so, in order to reduce computational expense, we have chosen to use a

generalized Born (61) implicit solvent model.

The initial energy level was chosen to be 75 kcal/mol, which is high enough to allow the heat

capacity to be calculated at 900K, similarly to the in vacuo case. All other parameters have been

kept the same, except that in order to capture the peak of the heat capacity curve, we set Tmin = 30.

Therefore we needed to calculate an additional 48 energy levels and, as we chose to use the same

number of force evaluations for the simulations as previously, these additional iterations meant we

had to shorten trajectory lengths from 2700 to 2100 steps.

Heat Capacity

Figure 6 shows the heat capacity of alanine dipeptide in implicit solvent. There is, again, good

agreement between nested sampling and REMD simulations. In this case, the 32 temperatures of

the REMD replicas were chosen in geometric progression from 30 to 900K. It is interesting to note

the peak of the curve is ≈ 140K lower than the in vacuo case.

Free Energy Surface

Analogous to the in vacuo case, the dihedral angle free energy surface of alanine dipeptide in

solvent can be calculated using the samples output from a nested sampling simulation. Figure 7

shows the free energy surface at 300K together with images of the three low energy minima, PII, β

and αR, as defined by (6).

The results presented here clearly show that there are three free energy minima, and their lo-

cations are given by PII (−80◦, 150◦), β (−150◦, 150◦) and αR (−75◦,−20◦). These results agree

qualitatively with those from a published QM/MM force field ((21) Figure 6).

It is possible to directly compare the accuracy of this implicit molecular force field with exper-

imental results. Each conformation from nested sampling is assigned to a ‘basin’, PII, β, αR or

‘other’; the basins are defined in Figure 8. The choice for basin definitions has been guided by the

free energy surface, rather than previous definitions found in the literature. However, the occupancy

probabilities shown in Figure 9 are not sensitive to the precise definitions used. Using Equation (3),

free energy differences, and hence probabilities of occupancy (i.e. P(Ω ∈ PII|T ), with T the canonical
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Figure 6: The heat capacity, Cv, of alanine dipeptide in implicit solvent from 5 independent nested sampling sim-
ulations (lines) and 5 REMD simulations (points). All simulations used a comparable number of force evaluations
(≈ 9.6x109). See the text for further details.

temperature), can be calculated. Figure 9 compares these probabilities of occupancy with probabil-

ities derived from published ATR-absorbance spectra data (6). The experimental results are shown

by squares and the estimates calculated from the nested sampling simulations are shown by the error

bars (mean±sd of 5 independent simulations). The nested sampling probabilities of occupancy for

‘other’ (≈ 2%) are not displayed.

Figure 9 shows that this protein force field (ff12SB), together with the generalized Born implicit

solvent igb=8, overestimates the probability of finding the molecule in the αR conformation. The

inaccuracy of peptide force fields is discussed in the following section.
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Figure 7: Bottom: The Ramachandran free energy surface at 300K for alanine dipeptide. Top: Conformations
from the three main accessible regions of the Ramachandran plot, from left to right β, PII and αR (6)
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Figure 8: The dihedral angle definitions of PII (red), β (blue), αR (green) and ‘other’ (white). The choice for basin
definitions has been guided by the free energy surface, rather than previous definitions found in the literature;
however, the occupancy probabilities shown in Figure 9 are not sensitive to the precise definitions used.
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Figure 9: The occupancy probabilities for the three main conformations PII (red), β (blue) and αR (green), as
a function of temperature. The squares are ATR-absorbance spectra data (6); the error bars are mean±sd of
5 independent nested sampling simulations. The nested sampling probabilities of occupancy for ‘other’ (≈ 2%)
are not displayed. The ‘other’ refer to the small population of αL (left-handed helical) conformations, the free
energy minimum with φ > 0 on Figure 7. No direct test to detect these conformations was possible using the
experimental techniques used in (6).
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Discussion

Unlike proteins where in general, there is a dominant free energy minimum (the native state), the free

energy differences between the different macrostates in peptides is small, and hence a distribution of

states exist when the peptide is in thermal equilibrium. Therefore, a small inaccuracy in a protein

force field can effect a large change in the equilibrium distribution when compared to experiments.

We find that this is the case with the Amber force field used here, with the αR conformation being

over-represented.

The Amber force field was originally developed to study proteins in their native state, with

secondary structure already formed, rather than studying the peptide bond in the unfolded state.

Small peptides, which lack secondary structure, are believed to behave in similar ways to proteins

in their unfolded state, and previous studies have found that standard molecular force fields often

struggle to reproduce peptide QM results (21). The fact that the same peptide in different molecular

force fields has different propensity to form helical or extended structures is a well known phenomenon

(21, 25) and corrections to existing force fields to accurately reproduce helix propensity have been

developed (25).

Galilean Nested Sampling

The Galilean nested sampling simulations in the Results Section used θ = 0.2, which introduced

a small amount of randomization at every Galilean step. This randomization is important in order to

efficiently sample the system; Figure 10 (left) shows three nested sampling simulations with exactly

the same parameters as those in Figure 3 except that θ = 0.01 rather than 0.2. The same REMD

data are shown for ease of comparison.

We also find that having a large number of short trajectories is beneficial, as shown by Figure

10 (right). In this figure, the same parameters were used as in Figure 3, except instead of 16000

trajectories of 2700 steps each, 160 trajectories of 270000 were used at each iteration.
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Figure 10: Nested sampling simulations of alanine dipeptide in vacuo with the same number of force evaluations
as those in Figure 3. The same parameters were used except in left: θ = 0.01 rather than 0.2 and in right: 160
trajectories of 270000 were used each iteration instead of 16000 trajectories of 2700 steps each. The REMD data
from Figure 3 are shown for ease of comparison.

In previous studies, accurate heat capacities of alanine dipeptide have not been calculated, and

because the curve is almost constant, varying by only ∼ 2kB over the 800K temperature range, we

believe that a large number of force evaluations are required in order to clearly resolve the curve.

Figure 11 shows the heat capacity estimates using an order of magnitude fewer force evaluations6

6Note, though, that we did not reduce the initial equilibration period, as we did not want an unequilibrated initial set
to affect the comparison.

16



for nested sampling, as compared to Figure 3. Figure 11 (left) reduces the number of trajectories

of each nested sampling iteration by a factor of ten, and this clearly reduces the quality of the

curves generated. Figure 11 (right) instead reduces the length of each trajectory by a factor of ten.

Although the general shape of the heat capacity can still be resolved, individual Cv curves are of

a lower quality than those of Figure 3. Once again, the previous REMD data is shown for ease

of comparison between figures. It is important to note that ≈ 109 force evaluations is still a large

number of force evaluations for a system with only 60 internal degrees of freedom, of which very few

(notably the dihedrals φ and ψ) are not highly constrained.
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Figure 11: Heat capacity estimates from nested sampling simulations using an order of magnitude fewer force
evaluations, as compared to Figure 3. Left: the number of trajectories of each nested sampling iteration by a
factor of ten. Right: the length of each trajectory is reduced by a factor of ten.

In the future, we expect to test Galilean nested sampling with larger proteins. If a protein has

a well-defined and known tertiary structure, i.e. a single dominant free energy minimum, then by

starting all replicas of an REMD simulation from this minimum, the amount of equilibration is sig-

nificantly reduced, as the protein does not need to be folded before investigating its thermodynamics.

For example Yeh et al. (63) calculate the heat capacity of an SH3 domain in different implicit sol-

vents, starting trajectories from the crystal structure of the protein. Unfortunately, the top-down

nature of nested sampling does not easily allow simulations to be started from the crystal structure.

However, there has been a lot of recent interest in intrinsically disordered proteins (IDPs), that

is proteins which do not have a well-defined fixed structure, which may, for example, only take

well-defined structure upon binding. This interest is because it is now understood that they are

significantly more common and important than first thought and perform a variety of biological

functions, often related to human disease (64, 65). For these proteins, in equilibrium, there is a

distribution over a set of possible macrostates, as is the case for alanine dipeptide. In this case, there is

not a single obvious starting conformation for REMD replicas, and hence we believe nested sampling,

with its top-down approach, will be particularly beneficial for the study of the thermodynamics of

IDPs.

Behaviour at First-Order Phase Transitions

An alternative nested sampling algorithm has been introduced by Nielsen (58). In this work,

canonical MC Markov chains, at a chosen (heat bath) temperature TN , are generated. The samples

output are then used to calculate the next nested sampled energy level using importance sampling;

the samples are weighted by the inverse Boltzmann factor exp(+E(Ω)/kBTN ) in order to ‘simulate’ a

uniformly distributed active set. Nielsen suggests that this algorithm could also be used with an MD

framework, as canonical MD trajectories could be used in order to generate the required samples.
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Due to the exponential Boltzmann factor, the standard deviation of the potential energies of the

Boltzmann distribution is much larger than the standard deviation of uniformly distributed samples.

Therefore, in order to improve the number of samples given non-negligible importance sampling

weights, Nielsen adds an extra harmonic umbrella biasing term to narrow the standard deviation of

the potential energy of samples.7 The temperature TN is controlled throughout the simulation in

order to ensure that the energy of samples is found around the current nested sampling energy level.

In this initial exploratory study we focused on small peptides, relatively small systems which do

not undergo a phase transition. However, nested sampling is expected to significantly outperform

REMD, its extensions such as adaptive temperature REMD (27, 29), and other thermal sampling

algorithms, when applied to high dimensional systems which undergo a first order phase transition.

In this section we consider the behaviour of Galilean nested sampling, canonical nested sampling and

REMD when they encounter a first order phase transition.

Figure 12 shows both the internal energy as a function of temperature and the evolution of the

potential energy probability distribution as a function of temperature for a finite system undergoing

a (quasi) first order phase transition at temperature Tc. In thermal equilibrium at Tc, the (relatively)

small number of conformations of phase X with low potential energy (≈ UX) exactly balance the

large number of high energy (≈ UY ) conformations of phase Y , and so overall the probability of the

system being found in phase X is exactly a half.

Figure 12: Left: The internal energy (U) as a function of temperature for a system exhibiting a first order
transition at temperature Tc. Right: The potential energy probability distribution for this system at five different
temperatures A) T � Tc; B) T < Tc; C) T = Tc; D) T > Tc; E) T � Tc.

Even with an REMD replica at Tc, it is difficult for REMD to equilibrate between the high energy,

large phase space volume phase Y and the low energy, small phase space volume phase X. The larger

the discrepancy of phase space volume between the phases, the harder the equilibration becomes.

It is important, however, to note that for finite systems it is possible to have a sigmoidal internal

energy curve without a first order phase transition (66), i.e. the probability distributions of potential

energy remain unimodal. In this case adaptive temperature REMD could be expected to perform well;

a large number of replicas could be placed at the sigmoidal ‘bend’ and there would be no equilibration

problem for individual replicas. In contrast, Galilean nested sampling, and similarly standard MC

nested sampling, has no need to equilibrate between phases; at first order transitions, the algorithm

steadily marches down in energy from UY to UX , unaware that there was no temperature for which

conformations with potential energy between UX and UY were accessible.

Finally, we consider the canonical nested sampling of Nielsen. Due to the exponential weighting

7This bias is, of course, removed when calculating the next nested sampling energy level.
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of samples, only those conformations with energy very close to the current energy level have a non-

negligible weight, and therefore it is not necessary for samples from one iteration to equilibrate

between different phases. However, a heat-bath temperature must be chosen for each iteration, even

those when the energy level falls between UX and UY . By applying umbrella biasing potentials, it may

be possible to carefully control the temperature in order to retain the performance of nested sampling.

However, this is likely to be very challenging as, even with a biasing potential, the temperature may

not change monotonically throughout a simulation. Furthermore, if strong biasing potentials are

applied, smaller integration steps are likely to be required, further reducing the performance of the

algorithm. Finally, as few samples have non-negligible weights, a lot of computational expense is

wasted exploring parts of the PES which are not currently relevant for the algorithm.

Comparing the efficiency of Galilean nested sampling, REMD and canonical nested sampling for

sampling biophysical systems, such as proteins (54–56), and physical systems, such as water boxes,

that are known to undergo first order phase transitions is a current focus of our work.

Conclusion and Future Work

In this study we have implemented Galilean nested sampling for use with the widely used Amber

MD package. We have demonstrated the algorithm by sampling alanine dipeptide both in vacuo and

using a generalized Born implicit solvent model. We have calculated heat capacity curves, and, by

comparing our results with those generated by REMD, we have shown that it is possible to achieve

good agreement between different sampling algorithms when estimating peptide heat capacity curves.

We have also calculated the Ramachandran free energy surface for the latest Amber force field,

both in vacuo and with a generalized Born implicit solvent, and compared the results to previous the-

oretical and experimental work, notably the recent infra-red and Raman spectra data of Grdadolnik

et al. (6).

We have discussed the performance of peptide force fields and considered in detail the behaviour

of Galilean nested sampling for this system. We have also considered the theoretical behaviour of

the algorithm, REMD and canonical nested sampling for systems which undergo a first order phase

transition.

In this work we sampled Galilean velocities v = Sr where r ∼ N (0, I) and S =
√
kBT I with the

identity matrix I. In the original description of the algorithm, Skilling suggests that certain choices

of ‘semimetric’ S could be used to improve Galilean exploration (57). The reflection formula is then

adapted to preserve detailed balance.

Specifically, Skilling suggests the semimetric S ≈ (−∇F)−1/2, where F are the forces, at a pre-

ferred configuration (57). This semimetric takes into account the curvature of the space when choos-

ing velocities. We believe this improvement would be essential for using Galilean nested sampling

with larger molecular systems. This is because in molecular systems, certain degrees of freedom, such

as the stretching of covalent bonds, are very highly constrained, whereas others, such as the dihedral

angles φ and ψ, are not very constrained at all. It is clear that the magnitude of velocities in the

highly constrained directions should be smaller than those in other directions in order to maximize

efficiency. Preliminary results using the isotropic algorithm (i.e. S ∝ I) for the penta-peptide Met-

enkephalin suggest an appropriate semimetric would essential when using Galilean nested sampling

with larger biophysical systems.

We conclude that Galilean nested sampling, with an appropriate semimetric, is a promising

conformational sampling algorithm for biophysical atomistic systems, and we look forward to inves-

tigating its performance compared to other general-purpose sampling algorithms (i.e. those where

no prior knowledge of the PES is required) such as REMD, accelerated MD and multicanonical MD,

when sampling larger peptides and proteins.
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Supporting Material

Starting the Algorithm at a Chosen Initial Energy Level

In this work we choose an initial energy level, E0, rather than sampling the parts of conformational

space with high energy. This improves the efficiency of the algorithm as fewer iterations are needed.

Provided E0 is chosen to be higher than accessible conformations over the range of temperatures of

interest, choosing an initial energy level does not affect thermodynamic estimates at these tempera-

tures.

As an example, although our estimate for logZ(β) is out by an additive constant,1 its derivatives

(w.r.t. β), the internal energy and heat capacity, are unaffected by this constant. Similarly, when

calculating free energy differences using Equation (3), this constant cancels out.

It is extremely important that E0 is high enough to allow easy equilibration. For example, if at

E0 the acceptable region was disconnected, then it would be very challenging to initially equilibrate

an active set. Figure S1 shows the dihedral angles of the samples output by a nested sampling

simulations of alanine dipeptide in vacuo which have potential energy between 44 and 50 kcal/mol

(left) and between 86 and 100 kcal/mol (right). It is possible for samples to cross the potential
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Figure S1: The dihedral angles of conformations output by nested sampling simulations which have energy
between 44 and 50 kcal/mol (left) and between 86 and 100 kcal/mol. Both graphs contain approximately 104

data points.

energy barrier with the energy constrained to below 50 kcal/mol. However it is significantly easier if

the energy is allowed to rise to 100 kcal/mol, and this is the value we chose for E0.

With regards to canonical molecular dynamics, at 900K the potential energy distribution is

approximately Gaussian, with mean ≈ 31 and standard deviation ≈ 10, which allows the trajectories

to cross the barrier. At 600K the distribution has mean ≈ 13 and standard deviation ≈ 6, making it

very difficult to cross the barrier. Therefore, it is likely that incorrect thermodynamics would have

been calculated if the highest temperature replica was only 600K.

In order to generate an active set of conformations uniformly distributed over configuration space,

subject to having energy < E0, we first generate a set of independent conformations with uniformly

distributed dihedral angles. We then perform short minimizations so their energies < E0.

At this point, it is possible to use Galilean exploration to equilibrate the samples. In this work,

however, for initialization, although we perform Galilean exploration, rather than reflecting at the

boundary, we allow samples to cross the boundary and then perform standard canonical exploration

until we re-enter the allowed region. This is not strictly necessary, but does ensure the samples are

well equilibrated and, if desired, could allow a lower E0 to be used than otherwise would be possible.

The total number of force evaluations used in the initial equilibration is not included in the

comparison with REMD in the main text, yet is only of the order of a couple of nested sampling

1If E0 is chosen so that we miss the first j nested sampling iterations and β is large enough so that
∑j
i ωi exp(−Eiβ)

is negligible, using Equation (1), our estimate for Z is out by the multiplicative factor ωj .
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iterations.

Temperature Control

As the accessible region of phase space shrinks, it is necessary to reduce the magnitude of the

velocities in order to keep the trajectories within the allowed region. At each iteration, the accessible

volume (V ) of phase space shrinks by a factor α. Therefore, for a system of dimension d, the length

scale shrinks by a factor of α1/d and, as T ∼ <speed>2, this implies we should multiply T by a

factor of α2/d each iteration in order to maintain a chosen mean free path.

Alanine dipeptide is a 22-atom molecule. Hence our (non-periodic) system has 60 internal degrees

of freedom and so we multiply T by a factor of 0.52/60 each iteration. The initial T is chosen

empirically, tuned to generate the desired mean free path. The timestep τ is fixed at 0.2fs throughout.

The theoretical argument above does not take into account the changing shape of the phase space

throughout the nested sampling simulation, so for more complicated potential energy surfaces it may

be necessary to algorithmically adjust T in order to control the mean free path. However, for alanine

dipeptide, although there is a slight drift, the simple control is good enough, as shown by Figure S2.
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Figure S2: The mean free path throughout alanine dipeptide vacuum nested sampling simulations using three
different initial T and reducing T by a factor of 0.52/60 each iteration. The mean free path remains fairly stable
over the whole simulation. The proportion of Galilean reflections accepted was ≈ 0.98, 0.97 and 0.93 for mean
free paths 4, 2 and 1 respectively.
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Unsmoothed Free Energy Surface

A Gaussian smoothing function has been applied to the raw data when generating the free energy

surfaces in the main text (see for example Figures 4). For comparison, Figure S3, below, shows the

raw unsmoothed data for alanine dipeptide in vacuo at 300K for three of the independent simulations

whose heat capacity curves are shown in Figure 3.

Figure S3: The raw (unsmoothed) free energy surfaces of alanine dipeptide in vacuo at 300K from three inde-
pendent nested sampling simulations.
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Chapter 6

Conclusions

6.1 Thesis Summary

6.1.1 Nested Sampling of Proteins and Peptides

Nested sampling is a Bayesian algorithm designed to be particularly efficient at sampling systems which

undergo a first order phase transition. In Chapter 2 we parallelized the algorithm and, for the first time,

used it to sample a biophysical system, a coarse-grained protein model, CRANKITE.

The potential energy landscapes of three small proteins are explored and energy landscape charts are

generated, giving a large-scale visualization of the potential energy surface showing the protein folding

funnel. We considered how the simulations behave when changing the NS algorithm parameters. We

also compared the nested sampling algorithm to parallel tempering, using both methods to calculate the

heat capacity of polyalanine.

For more complicated protein models, which have more degrees of freedom per residue, the MC move

set must allow for, for example, angle bending and side chain rotations. These moves, especially at low

temperatures, are often inefficient when compared to the more widely used molecular dynamics approach.

This will be particularly noticeable in cases where explicit solvent molecules are included, which is often

the case for biophysical systems.

When using explicit solvent molecules with MD, collisions between separate solvent molecules ex-

change energy and can enable energy barriers to be crossed, whereas with MC, a large number of moves

cause molecules to overlap, which can cause a low acceptance rate and long decorrelation times. There-

fore, in order for NS to gain popularity within the computational structural biology community, it is

necessary to adapt the algorithm to work within an MD framework.

To that end, in Chapter 5, we adapted the nested sampling algorithm to be used within an MD

framework by implementing Galilean exploration. We demonstrated the application of the algorithm by

calculating heat capacity curves for an all-atom model of alanine dipeptide and compared the results to

the standard replica exchange approach. We calculated the dihedral angle free energy surface of alanine

dipeptide both in vacuo and implicit solvent and used the surface to compare the latest Amber force

field to previous computational and experimental work.

Finally, we discussed the theoretical behaviour of Galilean nested sampling, REMD and an alternative

nested sampling algorithm, which uses canonical trajectories, for systems which undergo a first order

phase transition. After incorporating an appropriate semimetric, Galilean exploration should allow NS

to be used with more realistic force fields where there is often no efficient MC move set.
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6.1.2 Contrastive Divergence and Protein Force Field Parameter

Optimization

In this work we have substantially improved CRANKITE, a coarse-grained protein model. In Chapter 2

we added side-chain γ-atoms to the model, together with an MC side-chain dihedral angle rotation move.

We also improved the energy function by adding a hydrophobic energy term and tuning the functional

forms of existing energy terms.

In Chapter 3 we focussed on optimizing the parameters of the CRANKITE force field. We used a

maximum likelihood approach, optimizing the force field parameters such that the likelihood of a training

set, consisting of experimentally-derived protein crystal structures, is maximized.

In order to avoid the expensive calculation of ensemble averages, we used a statistical machine-

learning technique, contrastive divergence. In comparison to other maximum likelihood approaches, the

efficiency of our algorithm allows a larger training set to be used and we have shown the optimized force

field is transferable to a protein not included in the training set.

In Chapter 3 we placed particular emphasis on the van der Waals energy term. We optimized

parameter values for both a cheap, hard cutoff function and a more expensive 12–6 LJ functional form,

and we compared them to parameters taken from ‘standard’ molecular dynamics force fields: we compared

the observed distributions of bond angles, atomic distances, backbone dihedral angles and hydrogen

bonding patterns. We also calculated the heat capacities of polyalanine and observed the different turn

types found when folding a β-hairpin. We demonstrated the importance of optimizing the parameters

of the force field rather than taking values found in the literature.

In Chapter 3 we also discussed the contrastive divergence procedure as applied to force field parameter

inference, its behaviour, the assumptions it relies upon and the effect of changing the quality of the

training set.

6.1.3 β-Contact Prediction and Correlated Mutation Analysis

In Chapter 4 we developed a protein β-contact prediction algorithm whose predictions can be used as

inputs to CRANKITE when the native protein structure is unknown. We developed an empirical Bayes

β-sheet model which encodes the strong constraints and prior knowledge associated with β-contacts.

We coupled the model to the direct information (DI), a powerful maximum entropy-based correlated

mutation statistic.

Unlike the majority of correlated mutation analysis research, proteins with large high-quality multiple

sequence alignments are not specifically chosen for analysis, but instead a standard dataset of 916 proteins

used to benchmark β-contact prediction algorithms is used. We show that the DI statistic contains useful

information even when smaller autogenerated MSAs are used, and that, according to our benchmarked

results, the DI is as informative as inputting the entire MSA into a neural network or Markov random

field when predicting β-contacts.

Finally, tying this work in with the rest of the thesis, we show that the β-contact predictions can be

used within a tertiary structure prediction pipeline by using them as inputs to CRANKITE, enabling it

to successfully determine the folds of two previous CASP targets.
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6.2 Discussion and Future Work

In this section possible future projects, extending the work described in this thesis, are discussed. Fur-

ther applications of contrastive divergence to force field parameter optimization are considered and the

future of coarse-grained protein models more generally is discussed. Possible improvements to the β-

contact prediction algorithm, and its use within tertiary prediction schemes, are explored. The use of

correlated mutation analysis for predicting protein-protein interactions is also examined. However, first,

improvements to, and further applications of, the nested sampling algorithm are considered.

6.2.1 Improving the Nested Sampling Algorithm

Multimodal Potential Energy Landscapes

As described in Chapter 2, the copying procedure used by nested sampling to generate starting

conformations for the MC chains has a distinct advantage for multimodal systems such as the example

shown in Figure 6.1 (left). Basin B splits into basins C and D at energy level E, a lower energy than

the ‘bottom’ of basin A. Provided one sample ‘finds’ basin B, the copying procedure will ensure all K

samples in the active set are found in basin B at energy E, thus maximizing the chances of the algorithm

finding basin D.

Figure 6.1: Left: A multimodal energy surface for which the copying procedure of nested sampling is
advantageous. Provided one sample ‘finds’ basin B, the copying procedure will ensure all K samples in
the active set are found in basin B at energy E, thus maximizing the chances of the algorithm finding
basin D. Right: An energy suface for which the copying procedure is not particularly useful. See the
text for further details.

However, if a system has a potential energy surface which resembles Figure 6.1 (right), such as protein

G using CRANKITE (Figure 3 Chapter 2), the copying procedure is not especially advantageous. Once

the nested sampling energy level is lower than the energy of separation for the basins, the algorithm

is sampling a disconnected space and it is relying on the copying procedure to equilibrate between the

modes. The copying procedure is a random diffusive process and if the number of nested sampling

iterations though the disconnected space required to reach the posterior mass is large, then it is likely

that no samples will be left in one of the basins and the evidence value will be lost.

To overcome this problem, an enormous active set must be used, which means a tiny fraction of

available phase space is removed in each iteration, leading to a substantial loss of efficiency. It is also
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worth mentioning that, although CRANKITE is a coarse-grained model, similar behaviour, i.e. a small

number of deep basins separated by high energy barriers, is also found when exploring the PES of alanine

dipeptide using the all-atom Amber force field (see Chapter 5, Figures 4, 5 and S1).

Brewer et al. have described a possible solution to this problem with their diffusive nested sampling

algorithm (225). In this procedure, instead of a hard energy cutoff, the MC chain is allowed to diffuse

up to higher energy levels. However, for high energy barriers, the problem is likely to remain.

An alternative solution is to identify the modes during the nested sampling simulation, for example by

clustering the active set of samples and keeping track of whether samples change clusters after running

the MC chains. Once modes have been identified, separate nested sampling simulations can be run

independently, one for each mode, and then the individual results can be combined. A ‘clustered’ nested

sampling algorithm has been developed for astrophysics parameter inference (226), but has not been

implemented for atomistic systems.

The algorithm could be improved further by allowing the number of samples in the active set, and

the length of the MC chains to vary throughout the simulation. For example, at high energies, where

multimodality is not an issue and large MC steps can be accepted, shorter MC chains could be used.

Similarly, at the end of a simulation, we essentially have K copies of the same conformation, and we

slowly keep lowering the energy of all K samples. At this point, a much smaller active set could be used.

Galilean Nested Sampling

In Chapter 5 we implemented Galilean nested sampling for atomistic systems and demonstrated

its validity by sampling alanine dipeptide. In that work we sample Galilean velocities v = Sr where

r ∼ N (0, I) and S =
√
kBT I with the identity matrix I. In the original description of the algorithm,

Skilling suggests that certain choices of ‘semimetric’ S could be used to improve Galilean exploration

(224). The reflection formula is then adapted to ensure detailed balance is maintained.

Skilling suggests the semimetric S ≈ (−∇F)−1/2, where F are the forces (−∇E) at a preferred con-

figuration (224). This semimetric takes into account the curvature of the space when choosing velocities,

and it is hoped that the extra expense in its calculation is less significant than the benefits it brings,

especially as an approximation to the semimetric can be used and this approximation need only be

accurate enough to be useful.

As described in the conclusion of Chapter 5, we believe this improvement is essential for using Galilean

nested sampling with larger molecular systems. This is because in molecular systems, certain degrees of

freedom, such as the stretching of covalent bonds, are very highly constrained, whereas others, such as

the dihedral angles φ and ψ, are not very constrained at all. It is clear that the magnitude of velocities

in the highly constrained directions should be smaller than those in other directions and this is ensured

by using the above choice of semimetric.

We do not envisage any serious difficulties in extending our Amber implementation of Galilean nested

sampling in order to incorporate this semimetric; most of the routines that are required in order to cal-

culate and diagonalize the Hessian, are available within the Amber source code.1 An important consid-

eration, however, is that detailed balance requires a constant S throughout a trajectory,2 and therefore

a preferred location must be chosen for the curvature calculation. When using internal co-ordinates,

such as bond lengths and valence angles, certain directions (i.e. dimensions) are highly constrained

throughout the entire PES. In this case the choice of preferred location is unlikely to be very important.

However, in Cartesian co-ordinates, as used by Amber, in different parts of phase space, different direc-

1Though somewhat obfuscated.
2Though it can be allowed to vary occasionally (224).
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tions relative to the reference axes are highly constrained. This may cause problems and may therefore

increase the amount of parameter testing and validation time that is required. Alternatively, it may be

preferable to work with internal co-ordinates, using an internal co-ordinate MD approach, as has been

developed by Abagyan et al. (227). For further details, we refer the reader to the Appendix, which

contains preliminary results demonstrating the effect of choosing a sensible semimetric.

It is interesting to note that at no stage are the masses of the particles used. As the PES is in-

dependent of particle mass, this is not especially surprising. However, we note that the semimetric

S = diag(
√
kBT/m1,1, . . . ,

√
kBT/m3,N ) where mi,j is the mass of particle j (and i runs from 1 to 3)

for Galilean exploration would imply the velocities are picked according to a Maxwell–Boltzmann distri-

bution, as is the case for canonical exploration. However, we do not believe this semimetric will be as

useful as one which incorporates the curvature of the PES.

After implementing an appropriate semimetric, and possibly other algorithmic improvements de-

scribed above, the next step is to test the algorithm on larger biophysical systems, first trying commonly

tested small peptides such as Met-enkephalin (19) and Cys-Ala-Gly-Gln-Trp (228); then moving on to

mini-proteins, such as the Trp-cage (119), and finally to small proteins such as the SH3 domain (135).

Due to the nature of larger peptides and proteins, the PESs of these systems are likely to have a

number of deep basins, each basin containing a set of conformations with broadly similar backbone

dihedral angles, and therefore the clustered nested sampling approach described above is likely to be

effective. Care must also be taken to ensure the initial set of conformations are sufficiently equilibrated

and that an initial energy level, if used, is sufficiently high to allow adequate sampling. See the Supporting

Material in Chapter 5 for further details.

As described in Chapter 5, there is no theoretical reason against using Galilean nested sampling with

explicit solvent molecules, and it could be interesting to use Galilean nested sampling to compare the

free energy surface of alanine dipeptide in implicit and explicit solvent.

Comparing the performance of both standard MC nested sampling and Galilean nested sampling for

sampling explicitly solvated proteins and peptides with other state-of-the art general-purpose sampling

algorithms is a particularly exciting prospect. By general-purpose, we mean algorithms which do not

rely on prior knowledge of the PES, such as REMD, accelerated MD (229) and multicanonical sampling

(23, 230), rather than algorithms which require some additional knowledge such as umbrella sampling

(33), where reaction co-ordinates are chosen a priori.

A comparison of nested sampling and multicanonical sampling algorithms is of particular interest as

the multicanonical approach was also designed to efficiently sample systems which undergo a first order

phase transition (23).

Choice of force field

As described above, many popular MD force fields allow bond lengths and valence angles to vary

around their equilibrium value. This can be important, as this variation is found in experimentally

determined structures (159). Even the peptide bond is often far from planar (231). However, allowing

bond lengths and angle values to vary substantially increases the cost of energy evaluations. Therefore

alternative, fixed bond and valence angle force fields have been developed.

One such example is the ‘ultra-fast’ (unbiased) implicit solvent PROFASI force field (232), which has

been used with parallel tempering in order to study the folding of Top7, a designed protein (233). It is

interesting to note that the authors could not accurately determine the peak of the heat capacity curve

for this system. Also, when starting from the unfolded state, although structures with RMSD ≈ 3.5Å

from the native structure were found, so were a large number of very stable non-native states. This may
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imply that the sampling was inadequate, and possibly that the force field is not able to determine the

native structure to a high degree of accuracy. This suggest that it may be worth using nested sampling

to fully explore the PES for proteins when using force fields such as PROFASI.

Assessing the accuracy of currently used force fields for protein folding studies is an active area of

research, and the latest perspectives can be found in (129, 234). The results of Chapters 2 and 5 indicate

how nested sampling may provide insights into the properties of particular protein models and force

fields.

Further applications

In this work we do not find the orders of magnitude efficiency gains using nested sampling to accurately

calculate thermodynamic averages which have been found previously (43). We believe this is because the

systems we have studied either do not undergo first order phase transitions, or thermal methods manage

to equilibrate between the phases (e.g. in Figure 1.2 of the thesis introduction Ux ∼ Uy and the regions

of conformational space associated with each phase have similar volumes).3

Nested sampling is expected to perform well in systems with first order phase transitions (39), and

therefore we would expect to see large efficiency gains when using nested sampling to calculate heat

capacities of larger proteins because there is theoretical (74) and experimental evidence (77) (for example,

calorimetric studies of lysozyme heat denaturation (76)) which suggests proteins undergo a first order

phase transition upon folding.

Currently it would be very computationally expensive to perform such calculations, starting from the

unfolded state, because of the large number of energy evaluations required to initially fold the protein,

and also the fact that energy evaluations themselves become increasingly expensive when larger systems

are studied. Furthermore, the top-down nature of standard nested sampling makes it unsuitable to start

the system in the folded state. However, future increases in computational power, including GPU enabled

MD packages (235, 236) for fast energy evaluations and special-purpose hardware (237), should enable

nested sampling to be used for larger systems in the coming years.

Recently there has been a lot of interest in the study of intrinsically disordered proteins, that is,

proteins without well-defined tertiary structure (at near-physiological conditions), because it is now

understood that they are significantly more common and important than first thought (63, 64). When

a protein has a well-defined (and known) tertiary structure, REMD can be used to investigate the

thermodynamics of the protein starting each replica from the native structure, see for example (134). In

this case the system is already closer to equilibrium than starting from an unfolded chain, and hence the

computational expense should be dramatically reduced.

For intrinsically disordered proteins this is not possible, as the set of probable conformations under

the low temperature Boltzmann distribution do not all share a well-defined tertiary structure, but are an

equilibrated distribution of allowed macrostates, similar to the distribution of alanine dipeptide shown

in Chapter 5 (Figure 9). For these proteins, it is not clear what the initial configurations should be for

REMD a priori, and hence nested sampling should be particularly useful in this case.

The study of intrinsically disordered proteins is a field for which many traditional structural biology

tools are not ideal and new tools are required. A recent review considers the latest models and MD

algorithms for studying intrinsically disordered proteins which take a specific tertiary structure upon

binding (238). Of particular interest is the work of Ozenne and colleagues (239), who have developed a

3In Chapters 2 and 3 we run nested sampling simulations of protein G using CRANKITE. However, we do not attempt
to calculate the heat capacity curve for this system. It is important to note that the long-range harmonic potential which
pulls β-strands together used in CRANKITE may affect the nature of the folding ‘transition’.
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computational approach to constructing equilibrium ensembles of intrinsically disordered proteins which

are consistent with chemical shifts or residual dipolar couplings NMR experimental data. Their approach

may allow more accurate force fields for intrinsically disordered proteins to be developed in the future.

Changing our view from ‘the native structure of a protein’ to ‘the equilibrium distribution of the

system’, with regards to experiments and also when developing computational models and sampling

algorithms, is an important step towards understanding the behaviour of intrinsically disordered bio-

physical systems.

Finally, in Chapter 5 we showed the calculation of free energy differences between different macrostates

within the same system (alanine dipeptide). In principle, nested sampling can also be used to calculate

free energy differences between different systems, for example, between a wild type protein and a mutant

or between two different ligands binding to a protein. Separate nested sampling simulations could be

run for each system and their partition functions compared.

Specifically, the absolute free energy of a system is given by −β−1 logZ and the free energy difference

between two systems, A and B, is therefore −β−1(logZA−logZB). However, as the system size increases,

it becomes increasingly difficult to accurately estimate the partition function. As only the free energy

difference is required, direct estimation of the partition function is not attempted and a different approach

is usually taken.

Many advanced ‘alchemical’ free energy algorithms have been developed in order to calculate absolute

binding affinities (for example, the free energy difference between a bound and unbound protein and

ligand) and relative binding affinities (for example, the free energy difference between a protein bound

to ligand A or ligand B); see (240) and references therein for examples.

It is possible that nested sampling will not be an efficient algorithm for these calculations as it

is appropriate to start simulations with already folded proteins, rather than exploring the whole PES.

However, alchemical free energy algorithms often perform poorly when there are long-time scale effects or

multiple modes of binding, because in these cases the sampling algorithms often to struggle to effectively

sample the space (240). Even if nested sampling itself is unsuitable, this suggests that Galilean sampling

could be incorporated into existing algorithms, instead of using standard MD trajectories, perhaps

yielding substantial efficiency gains.

6.2.2 Contrastive Divergence and Coarse-Grained Protein Models

There are several possible improvements to the CRANKITE force field which should improve the accuracy

and utility of the model, whilst allowing it to remain a lightweight, efficient, backbone conformational

sampler. The addition of a (non-hydrogen bond) electrostatic energy term would allow the force field

to capture protein salt bridges, and the incorporation of main chain–side chain hydrogen bonds may

improve the stability of tertiary structures.

Implementing normal mode projections (such as those used to perform the rigidity analysis in Chapter

2) as possible ‘moves’ would allow large-scale conformational changes which could improve sampling

efficiency, especially towards the end of nested sampling simulations. However, care must be taken in

order to preserve detailed balance.

For protein structure prediction, it would be interesting to implement a disulphide bridge energy

term which would mimic the formation (and persistence) of disulphide bridges. Similarly to the β-

contact case, disulphide bridges could then be predicted (see, for example, (186)) and entered as inputs

to CRANKITE.

For CRANKITE, the β-contact energy term is the main long-range ‘force’ which pulls the secondary
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structure elements together, though once the β-strands are close, the hydrogen bond energy term is

then important (see Figure S4 in Chapter 2). This long-range term is essential when starting from an

extended chain as it enables the protein to actually fold using a realistic amount of computer power.

However, for α-helical proteins, or proteins with few β-contacts, although the secondary structure

elements form, the protein does not fold up into a globule. One possible solution is to try and predict

more protein contacts and use them as inputs for CRANKITE.

An alternative solution is to use an energy term to pull the secondary structure elements together

whilst still allowing them to form. The footnote of the supplementary data of Chapter 4 describes such

an example: the energy term constrains the radius of gyration of the centre of masses of the distinct

helices and strands (whose residues are inputs to CRANKITE). Further work will be needed to fully test

this new energy term.

The reference ratio method of Hamelryck et al. (241) is a statistically rigorous method which aims

to take force fields which accurately model ‘local’ protein properties, such as steric attractions and

secondary structure elements, and use them to sample proteins with user-specified distributions of ‘global’

properties, such as radius of gyration and hydrogen bond networks. Implementing this method could be

an alternative approach to improve the quality of tertiary structures generated by CRANKITE.

Contrastive Divergence and the Maximum Likelihood Approach

Contrastive divergence, and the maximum likelihood approach more generally, can be used whenever

parameters are to be inferred from a training set. The approach is agnostic to model-specific details. A

particularly interesting example of the approach is the 2013 work by Bottaro et al.. They use a maximum

likelihood (also known as relative entropy) method to optimize an implicit solvent model using a training

set of configurations derived from an all-atom explicit solvent model. The aim of the work is developing a

solvent model which retains the accuracy of an explicit solvent model, yet computationally is significantly

cheaper (242).

The maximum likelihood method has already been used in a framework for protein design (243).

However, in the future it would be interesting to use the contrastive divergence approximations to

optimize force fields specifically developed for aiding protein design or protein-protein docking prediction.

Additionally, it may also be possible to develop a maximum likelihood framework for picking native

structures from a set of decoys (protein-like configurations). For example, a binary classifier could be

developed to separate native structures from decoys, and the parameters of the model could be optimized

within the maximum likelihood framework. This would be of enormous use to the template-based protein

structure prediction community as often these methods generate a large number of plausible predictions

and the challenge is to pick the ‘best’ one.

Coarse-Grained Protein Models

As computational power increases, many of the problems traditionally researched with coarse-grained

protein models will be able to be attacked with all-atom models. In this light, it is interesting to consider

the future of coarse-grained protein models and the types of problems they are likely to be solving. One

promising area for CG models is the study of larger, even mesoscale biophysical systems (151), such as

the adenylate kinase enzyme catalytic cycle (152).

Combining CG models with all-atom models in order to develop hybrid CG-AA models is an exciting

idea (153). The aim is to use AA (or, in the future, even quantum mechanical) models for the parts of

the system which are of particular interest or complexity, and then use a CG model for the more simple
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parts. The overall aim is to maintain the accuracy of all-atom models, whilst significantly reducing the

computational expense. A review of the latest multiscale modelling frameworks can be found in (244).

6.2.3 β-Contact Prediction for Protein Structure and Protein-Protein Inter-

action Prediction

Since the publication of our β-contact prediction algorithm, Savojardo et al. have developed BCov,

an alternative, unsupervised β-contact prediction algorithm (245). In their work they benchmark our

algorithm on a new 1452 protein dataset and find that the accuracy of our approach matches that of

BCov at the residue level. However, due to the more sophisticated way of predicting β-strand partners,

BCov performs slightly better at the strand level.

This suggests it may be possible to improve our model to increase the accuracy of strand level

predictions, and it may be useful to take into account the whole protein topology within the model.

For example, currently, once the interacting strands have been chosen, the direction of interaction is

independent for each pair, whereas this is not actually the case in proteins (198). It is also true that

certain β-topologies are much more common than others (198) and it is possible our model could use

this information effectively. A further project would be to develop a model which could jointly infer both

the protein secondary structure and the β-contacts.

The direct information statistic has been used to study the co-evolution of inter-chain residues of

interacting proteins (219). It would be an interesting project to see if the DI can be incorporated into a

protein-protein interaction (PPI) prediction algorithm. Similar to the β-contact prediction case, if the

protein MSAs are reasonably small, then the DI could be coupled to a PPI model, or used as one of the

inputs to a scoring function aiming to rank possible docked PPI configurations. See (246), and references

therein, for further details.

General Protein Structure Pipelines

It has previously been noted that contact prediction methods which rely on correlated mutation mea-

sures typically require a large number of homologous sequences, and therefore there is often a structure

for one of these homologous proteins. If so, template methods, which are more accurate than ab initio

techniques, can be used (213).

Therefore, it would also be interesting to test how well our model, and protein β-contact prediction

algorithms in general, can be used within tertiary structure prediction pipelines. For example, is it

preferable to know β-contacts rather than general protein contacts, and is it easier to predict them?

Different models incorporate a large variety of sources of information, for example β-sheet topologies,

existing protein fragments, putative protein contacts, evolutionarily information, amino acid chemical

properties and even early-stage experimental data. Combining these models in useful, yet statistically

rigorous ways, is another important area of research, both for protein science and more general ‘big data’

problems.

6.3 Final Reflections

In this work we have developed and applied statistical methods to the study of outstanding research

problems in computational structural biology. We have used the statistical machine learning technique,

contrastive divergence, within a maximum likelihood framework to optimize the parameters of a coarse-

grained protein model. We used the Bayesian inference algorithm nested sampling to explore the protein
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folding landscapes of this model. We combined a maximum entropy-derived correlated mutation measure

with an empirical Bayes model in order to improve the prediction of protein β-contacts for use within

tertiary structure prediction pipelines. Finally we implemented a novel phase space exploration method,

Galilean sampling, in order to use nested sampling within a molecular dynamics framework.

Throughout the work we have benchmarked our new algorithms against existing approaches. We

have compared nested sampling to parallel tempering and Galilean nested sampling to replica exchange

molecular dynamics when calculating peptide heat capacities, and we have compared our protein β-

contact prediction algorithm against existing state-of-the-art algorithms BetaPro and MLN.

We have used our algorithms to study specific biophysical problems of interest. We investigated

the performance of the latest Amber force field by calculating both the free energy surface and the

heat capacity curve of alanine dipeptide. We studied the behaviour of different functional forms when

modelling atomic steric effects. Using energy landscape charts, we visualized the potential energy surface

of three small proteins. We demonstrated the impressive nature of the maximum entropy-based correlated

mutation measure, the direct information, using a large set of test proteins. Finally, drawing together our

separate algorithms, we successfully folded two CASP targets using nested sampling and CRANKITE,

using inputs from our β-contact prediction algorithm.

I look forward to seeing how the work in this thesis, and more generally, the application of novel

statistical techniques to protein science, advance the field over the coming years.
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Appendix

In Chapter 5 we sample Galilean velocities v = Sr where r ∼ N (0, I) and S is proportional to the

identity matrix. Following the MD implementation in Amber, we use Cartesian co-ordinates to describe

the atomic positions, and hence we name this algorithm ‘Cartesian isotropic’ (CI).

As mentioned in Chapter 6, it is possible to choose a different ‘semimetric’ S, in order to improve

Galilean exploration. The reflection formula v′ = v − 2n(ntv) is then replaced by

v′ = v − 2SStn
ntv

ntSStn
,

in order to maintain detailed balance (224).

In Chapter 6 we claim that it will be essential to use an appropriate semimetric when using Galilean

nested sampling with larger molecular systems. This is because in molecular systems, certain degrees of

freedom, such as the stretching of covalent bonds, are very highly constrained, whereas others, such as

the dihedral angles φ and ψ in proteins, are not very constrained at all. The magnitude of velocities in

the highly constrained directions should be smaller than those in other directions.

Skilling suggests using S ≈ (−∇F)−1/2, where F are the forces (−∇E) at a preferred configuration

(224). This choice of semimetric takes into account the curvature of the space. However, its calculation

could be expensive and the choice of preferred configuration (especially using Cartesian co-ordinates)

could be a difficult one to make. In this Appendix we briefly show how even a simple well-chosen

semimetric can improve the Galilean exploration of the PESs of the small molecules ethane and alanine

dipeptide.

Ethane

We first sample the PES of ethane (C2H6) using the GAFF Amber energy function (82). In molecular

systems, including ethane, it is generally the case that covalent bond lengths are more constrained than

valence angles, which themselves are more constrained than dihedral angles. We will use this information

to devise a simple semimetric, and therefore we find it useful to describe the 18 dimensional PES using

internal co-ordinates. Specifically, we parameterize the PES using {r,B,A,T}, where r is the C-C bond

distance, B = {b1, . . . , b6} are the 6 C-H bond lengths, A = {a1, . . . , a6} are the 6 H-C-C valence angles

and T = {t1, . . . , t5} are 5 of the H-C-C-H dihedral (torsion) angles. See Figure A1 for further details.

The potential energy term is given by

E({r,B,A,T}) = Kr(r−req)2+
∑

b∈B
Kb(b−beq)2+

∑

a∈A
Ka(a−aeq)2+

1

2

∑

t∈T
V3(1+cos 3t)+Eother({r,B,A,T})

where req, beq and aeq are equilibrium constants (whose values are unimportant here) and Kr = 303.1,

Kb = 337.3 , Ka = 46.37 and V3 = 0.15 are force constants (values given in standard Amber units). The
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1 2
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Figure A1: A molecule of ethane. Two carbon atoms (circles) covalently bonded to each other and to
three hydrogen atoms (numbered 1 to 6). r is the C-C bond length (blue line), b1, . . . , b6 are the 6 C-H
bond lengths (black lines), a1, . . . a6 are the 6 H-C-C valence angles (a5 and a6 are marked by red lines)
and t1, . . . , t5 are dihedral angles H-C-C-H, for different hydrogen atoms, marked by the green arrow.

Eother term contains all other energy terms. This includes potentials for the 6 valence and 5 dihedral

angles whose values can be derived from {r,B,A,T} and Lennard Jones potentials between pairs of

hydrogens bonded to different carbon atoms.1

Looking at the values of the force constants suggests a good choice of semimetric could be a simple

diagonal semimetric S = diag(s1, s2, . . . , s18), with si small when associated with bond length dimensions,

larger for those associated with valence angle dimensions and even larger for the si for dihedral angle

dimensions. Specifically, for bond length and valence angles we choose s = (2K)−1/2, for the appropriate

force constant K as this corresponds to Skilling’s choice of semimetric, if Eother is ignored.

The functional form of the dihedral potential is more complex and we choose si to be 8.0 for dihedral

angle dimensions.2 This can be compared to ≈ 0.14 for valence angle dimensions. We name this

semimetric ‘internal anisotropic’ (IA).

Comparison of semimetrics We briefly illustrate the behaviour of Galilean exploration of the PES

of ethane using both the CI and IA semimetrics. These results are early proof-of-concept work and we

expect to carry out further, more rigorous analysis in the future. For both semimetrics we set θ = 0.2

(the amount of randomization of the velocity each step) and tune the timestep to keep a mean free path

(average number of successful steps before leaving the acceptable region) of 5. This ensures the same

number of force evaluations for both CI and IA.

The dihedral angle potential has 3 minima (±60◦,180◦), and, with a low nested sampling energy level,

the dihedral angles of ethane cannot escape one of the minima; the molecule cannot cross the ‘ethane

barrier’. For this work we choose the current nested sampling energy level to be 10 kcal/mol, which is

sufficiently high to keep the acceptable region connected.

Figure A2 shows the H-C-C-H dihedral angle (for two chosen hydrogen atoms) for eight CI trajectories

(top left) and eight IA trajectories (top right). All 16 trajectories start from the same conformation and

it is clearly much easier for the IA trajectories to cross the ethane barrier, whose location is marked

1Due to the geometry of ethane, the LJ functions are not especially important.
2This choice is somewhat arbitrary, but sufficient to illustrate the general point of the Appendix, which is that the

choice of semimetric is very important.
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with solid horizontal lines. This demonstrates how a sensible choice of semimetric can improve the

exploration of the acceptable region, whilst, in the limit, sample it uniformly. Traces of the potential

energy throughout a CI trajectory (bottom left) and an IA trajectory (bottom right) are also shown.

For completeness, Figure A3 shows how a C-H bond distance (top) and a H-C-C valence angle (bottom)

vary throughout CI (left) and IA (right) Galilean trajectories.
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Figure A2: The value of an H-C-C-H dihedral angle for eight CI Galilean trajectories (top left) and eight
IA trajectories (top right), with the current nested sampling energy level chosen to be 10 kcal/mol and all
trajectories starting from the same initial configuration. It is clearly much easier for the IA trajectories
to cross the ethane barrier, whose location is marked with solid horizontal lines. Traces of the potential
energy throughout a CI trajectory (bottom left) and an IA trajectory (bottom right) are also shown.

Alanine dipeptide

A similar comparison of semimetrics can be made when sampling the PES of alanine dipeptide in

vacuo. We use the same model and force field as described in Chapter 5, and in that chapter we used the

Cartesian isotropic (CI) semimetric. Analogously to ethane, we can describe the 60 degrees of freedom

of alanine dipeptide by 21 bond lengths, 20 valence angles and 19 dihedral angles. We can also define an

internal anisotropic (IA) semimetric, by taking S to be diagonal with (2K)−1/2 (for appropriate force

constants K) for the bond length and valence angle dimensions; si = 2.5 for dihedral angles which keep

the main chain atoms near planar; and si = 10 for the other dihedral angles including φ and ψ.

Figure A4 shows the trace of the (φ,ψ) angles on the Ramachandran plot for a single 105 step Galilean

trajectory using the CI (left) and IA (right) semimetrics. The nested sampling energy level was chosen

to be 100 kcal/mol, the mean free path was set to 3.5 and θ = 0.2. It appears the IA is far superior at

exploring the available region.
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Figure A3: A C-H bond distance (top) and a H-C-C valence angle (bottom) trace plots throughout a
CI (left) and IA (right) Galilean trajectory. The equilibrium bond length is 1.09Å and the equilibrium
valence angle constant is 110◦.
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Figure A4: The trace of the (φ,ψ) angles on the Ramachandran plot for a single 105 step Galilean
trajectory using the CI (left) and IA (right) semimetrics. The nested sampling energy level was chosen
to be 100 kcal/mol, the mean free path was set to 3.5 and θ = 0.2. It appears the IA is far superior at
exploring the available region.

Figure A5 shows the empirical marginal (φ,ψ) probability distributions for sampling uniformly over

the conformations with energy less than 100 kcal/mol using the CI metric (left) and the IA metric

(right). The distributions were generated by running 8 independent trajectories for each semimetric (all
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starting from the same configuration) and discarding the first 10% of the trajectories for equilibration.

A Gaussian filter was applied to smooth the data. The IA semimetric clearly explores the space more

efficiently. It is interesting to compare Figure A5 to Figure S1 in Chapter 5. However, that figure was

generated using a few orders of magnitude more force evaluations and used a very large number of short

trajectories over a few nested sampling iterations, rather than a few long trajectories.
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Figure A5: The empirical marginal (φ,ψ) probability distributions for sampling uniformly over the
conformations with energy less than 100 kcal/mol using the CI metric (left) and the IA metric (right).
The distributions were generated by running 8 independent trajectories for each semimetric, (all starting
from the same configuration) and discarding the first 10% of the trajectories for equilibration. A Gaussian
filter was applied to smooth the data.

Conclusion

In this Appendix we have shown that a simple, well-chosen semimetric can significantly improve the

Galilean exploration of molecular systems. Unlike ethane, in larger molecules, Eother is significantly

more complicated; it includes a larger number of derived valence and dihedral angle potentials along

with improper dihedral angle potentials, significant LJ potentials, Coulombic point charge potentials and

possibly generalized Born potentials for implicitly solvated systems. In these cases, the IA semimetric

may perform less well. Further work will be required to compare the simple IA semimetric with the

semimetric S ≈ (−∇F)−1/2 suggested by Skilling.

From a practical point of view, Amber is not designed for internal co-ordinate molecular dynamics,

and the preliminary results shown here involve a lot of highly inefficient converting between co-ordinate

systems. This approach will definitely not scale to larger systems. Unlike the semimetric S ≈ (−∇F)−1/2,

which is independent of the co-ordinate system used, in order to use the IA semimetric with Amber effi-

ciently, it is likely that large scale changes would need to be implemented. Therefore it may be necessary

to use an alternative molecular dynamics package, for example the internal co-ordinate dynamics package

of Abagyan et al. (227).
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