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ABSTRACT.

It isbelieved that a unified approach to a study of the
representation theory of the finite groups of Lie type should
begin with a study of the regular characters of the maximal
tori of these groups. This thesis is directed toward;
determining the structure of the maximal tori in the finite

groups of Lie type.

Chapter 1 is a general introduction to the properties of
Chevalley groups, together with the consequences of a result of
Springer and Steinberg. This result establishes a correspondence -
between the conjugacy classes of maximal tori and certain
equivalence classes of the associated Weyl group. In certain
cases, these classes are the conjugacy classes, and Chapter 2
begins with a review of Carter's unified approach to the conjugacy
classes of VWeyl groups. Chapter 2 also includes some results on

automorphisms of Weyl groups in relation to Carter's approach.

The finite Chevalley groups are the first to be considered.
Chapter 3 studies those of type AL , and Chapter 4 simulteneously
considers the Chevalley groups of types B, , CL and Dp .
Pinally, Chapter 5 presents the results for the Chevalley groups
of exceptional type.

The finite groups of twisted type are the last to be
discussed., Chapter 6 begins with a general description of the
classes of the Weyl group in these types and concludes with the
results for the Steinberg groups of types 2AL’ 2D£ and.2E6 .
The Steinberg groups of type 3D4 are left until the end of

Chapter 7, after a discussion of the Ree and Suzuki groups.

The thesis concludes with a note on the representation

theory and a description'of the regular characters of the maximal

tori.
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INTRODUCTION

In 1955, Chevalley showed how to construct analogues of the complex
simple Lie groups over arbitrary fields. These Chevalley groups were
found to be simple‘and were identified by Ree with somé families of
classical simple groups over finite fields. However, there were families
of classical groups which could not be identified in this way, for example
the unitary groups. Independently, Steinberg and Tits modified
Chevalley'!s construction to obtain more finite simple groups of Lie type,
the "twisted groups" or Steinberg groups. These groups accounted for the
remaining classical groups over finite fields and, in fact, added to the
list of previously known finite simple groups. However, there were found
to be three types of Chevalley group which suggested that they might lead
to further families 6f finite simple groups, althoughASteinberg's
construction d4id not yield such results. - Then, in 1960, Suzuki discovered
a new family of simple groups using properties of centralisers of elements.
Ree immediately interpreted these as a new type of twisted group, and then

proved the existence of two further families. These three families are

the Ree and Suzuki groups.

These finite groups of Lie type have evoked considerable interest
since their introduction and rapid progress hés been made in the éeneral
theory. However, a present unsolved problem is a unified approach to the
representation theory of these finite groups, and it is believed that a

study of certain characters of a particular type of abelian subgroup

(called maximal tori) will lezd to a solution of the problen. The
representation theory problem has been solved ina few particular cases,

notably the work of Green on GLn(q), and also by Srinivasan in the case.



of Sp4(q), Lehrer in the case of SLn(q) and Ree and Chang in the case
of Gz(q). In such a light, the purpose of this thesis is to determine

the structure of these maximal tori in the finite groups of Lie type.

One of the more rewarding viewpoints of the Chevalley groups is as
split-forms of linear algebraic groups, and it is from this standpoint
that the required results are determined. From a theorem éf Lang on
the fixed-point group of an endomorphism of a linear algebraic group,
Springer and Steinberg have shown in [19] that there is a bijection
between the conjugacy classes of maximal tori in the finite group and
certain equivalence classes in the corresponding Weyl group. This
result, and its consequences, is discussed in Chapter»l, together with
a discussion of esutomorphisms of Chevalley groups. In certain cases,
the above equivalence classes are just the conjugacy classes of the Weyl
group. Since certain ideas and results from it will be needed throughout.
the thesis, a brief survey of Carter's paper on the conjugacy classes [?]
is included in Chapter 2, together with some results on automorphisms of

Weyl groups which are related to op.cit.

A working knowledge of most standard facts on linéar algebraic
groups will be assumed, and these can be found in [l] and [8] . Carter's
recently publishéd "Simple groups of Lie type" also provides an ideal
reference to the finite groups considered in this thesis.  For the
construction of, and the maig results of, Chevalley groups, the reference
is §881-3 of [2] . Some of this is treated in greater detail by Steinberg
in [2@], but the thesis will be based upon the notation of the former;

Thus, associated with the triple {,g y X , lc} consisting of a complex,

ii



semi-simple Lie algebra g , a faithful representation 7Y:‘g-——a-g£(E)
of g over a complex vector space E , and the field k , there exists
a corresponding Chevalley group Gw,k . Chevalley ha; shown in [8]
that, if K is,an'algebraically closed field, every connected,
Semi-simple, linear algebraic group over K is'isomorphic to one of the

groups G”,K.

Throughout the thesis, K_ denotes the finite field GF(q) of q = o

elements, for some prime p, and the algebraic closure of Ko is denoted
by K . Then Q"’Ko

so that G is a subgroup of GLn(K) for some n , and is also an

is a finite Chevalley group. Let G = Qr K ?
’

algebraic set in the affine space which is determined by the n2 matric
coefficients and is subject to the Zariski topology. Let G{q) denote
the K _-rational points of G, ie. G(q) =_G_"’K/\GL(EZ®ZKO) , where E,
is an admissible Z-form of E with a basis of eigenvectors of the
Cartan subalgebra h of g . Then it is known that Qﬁ X is the

150

derived group of c¢(q) . In the case that G is simply connected,

ie. 7 is the sum of the representations having the fundemental weights

as highest weights, then Gp . , is equal to G(q) .
1Ko

The group G(K) , of K-rational points of G , can ( and will) be
identified with .G , and a torus in G 1is .defined to be a closed subgroup
which is isomorphic to a direct product of r copies of K* , for some

r > 0 , where K* is the multiplicetive group of K . A maximal torus

of G is one contained in no other, so that r is equal to ¢ , the
rank of G . In [8] , Chevalley shows that the maximal tori of G are

all conjugate in G .

diii



Now let o be an endomorphism of G onto itself and let Gc
be the group of o&-fixed points. Then Lang has shown that if GG
is finite, any element of G can be written as g.c(g)-l for some
g€ G . This is éisbussed in Chapter 1. The justification for this
approach is that the groups G(q) can be realised as groups of type
GU . . For, if o is the automorphism of G (induced from the Frobenius
automorphism of KX) which raises every matric entry of an eiement
g€ G toits q'™ power, then G, is finite and is just G(q), the
group of Ko—rational points of G. These are the finite Chevalley
groups. The finite twisted groups of Lie type are constructed by

combining the above automorphism with another-type of automorphism and

are the groups Gc again. This is discussed in Chapters 1, 6 and 7.

A torus of GU is defined to be the group TG of o-fixed points

of a o-fixed torus T of G , and a maximal torus to be a subgroup

‘obtained in the same way from a maximal torus of G . Then a maximal
torus in G(q) is the group of Koarational roints of a Ko—maximal torus
(ie. one defined over KO) in G . It is to be noted that the maximal
tori of GG need not be maximal in the set of tori of ‘GG , and certainly
they need not be isomorphic to‘diréct products of copiés of Ko . For
example, there aiways exists a maximal torus of G(q) which comes‘from a
Kofsplit maximal torus (aiagonalisable over Ko) of G . When q = 2

this consists solely of the identity element and is thus contained in other
(non—maximal) tori. The aim of this thesis is to detérmine the structure

of the maximal tori of the groups Gd , when G is a simple Chevalley

group GN K and o is an automorphism of G .
’

iv



Given g and k , there is a collection ti of groups

{G”ik,...,G’h{k} corresponding to different representations 1ti of g .

g is cealled the isogeny class of type {g ’ k} and there exists

(under certain conditions depending upon 7ri , 7Tj) an isogeny

7Tij : Gfi;k-_—-"eﬁi,k ’ whe?e an isogeny is a surjective k-rationsal
homomorphism with finite kernel. In most caées, the cardinality of this
set is either 2 (when 7Tl is the simply connected representation and.
™ 5 is the adjoint representation of g on itself) or 1 (when 'ﬂl“"

and 0y coincide). However, in groups of type Ae and Dl , the

2
cardinality of ‘5 is greater than 2 . One might expect the results of
Chapter 1 to imply that the fesults of the thesis are_independent of T
In fact, it is shown in Proposition l.4. that the order of a maximal torus
Tc of GW;K(KO) is independent of the representation 7v . It is
further proved in [1] that the order of QW,K(KO) is independent of &« ,
as in the case of groups of type A£~' where Gad,K(Ko) = PGLt+l(q) and

G (KO) & SL

sc K (q) have the same order. This, of course, although
) T

e+1

strongly suggestive, does not imply that the structure of the maximel
torus is independenf of ® , and the dependence upon A in types A,
and D& will be .seen. It is to be noted however that in the adjoint
groups it is the representation theory which is well-behaved, whereas in
the simply-connected groups it is the conjugacy claéses which are

well-behaved.

The finite Chevalley groups of type - AL are discussed in Chapter 3,
and those of type B, » Cp and D& in Chapter 4. The reason for this

simultaneous treatment becomes obvious when one considers the results of



[6] . The finite Chevalley groups of exceptional type are discussed
in Chapter 5. At present, only partial results for the groups of type
En are presented{ due to the size of the groups W(En) . However,
the results fof the most interesting céses, viz. the semi-Co%eter tori,

are presented.

As remarked earlier, when o is modified from a pure field
automorphism to include a graph automorphism, then other finite-groups
due to Steinberg, and further groups due to Ree and Suzuki, are recovered.
The determination of the maximal tori in the former type is discussed in
Chapter 6, and the latter in Chapter 7. Because of the connection
between types D4 and F4 , the Steinberg groups of type 3D4 are

discussed with the Ree groups of type 2F4 in Chapter 7.

Finally, the thesis is concluded with a brief note on the
representation theory of the groups Gc . This outlines Springer's

recent work towards a unified approach.

To the best of the author's knowledge, those results in this thesis

which are not otherwise attributed are originel.

vi




(_I_HAPTER 1. Preliminaries

§1.1 Definition and properties of Chevalley groups.

For any group G and any subset S &€ G , we denote by | ZG(S) the
centraliser of S in G , the normaliser of S in G by NG(S) , and
for any x € G we denote x.S.x-l by Is . For any' g € G , we denote
by ig the inner automorphism , ig : X%, of G, and by £(G) ,
the set of conjugacy classes of G . Let N ©be the monoid of na#ural
numbers , 2 ‘the ring of integers , and R (resp. C) the.field of real

(resp. complex) numbers .

If h is the Cartan subalgebra of the complex , semi-simple Lie
algebra g corresponding to the Cartan decomposition of g , and
{ha s eb : aeT(, beﬁ} is a Chevalley basis of g with root system.ﬁ

T( . *
and fundamental roats , and if h is the dual space of h , then
J

* . . . T(

me€h is a weight if and only if m(ha) € 2 for all sa¢€ . The
%

weights form a Z-form of h which we call Asc , and the fundamental

for a, b<7T,

form a basis of this . The subgroup Aad generated by the roots has

weights , i.e. those m, € _1_1_* for which ma(hb) = Sab
finite index in Asc , and in fact Asc /Aad has relation matrix

(Aij) , the Cartan matrix of 7( . If (x, E) is a finite dimensional

g-module and m € g* , we let E = {v € E : x(h).v = m(h).v for all h e _Il}.

. .
Those m € h™ for which Em 75 0 are the weights of = , and the space
E is the direct sum of the Em , where m runs through the set P(x) '

. : ‘ ¥
of the weights of 7v , We let A.,,denote the subgroup of h generated




by the weights of 7¢ . If = is faithful , then & PAPA  , and we
know from the representation theory that , given A bvetween Asc and

Aad y there always exists a faithful representation ™ of g such that

NN

Let (m, E) be any g-module. An admissible Z-form of E is a
Z-form which is stable undér = ( eg / i') for ae=<, and je€N . If
TN By gl (E) represents g in the Lie algebra of endomorphisms of
a complex vector space E , then we identify E with et by means of a
basis of an admissible 2Z-form EZ , which consists of eigenvectors of h .
Then x(:)(t.) = eip (t. W(ea)) defines an automorphism of E(x) = E,®, k
for every t € k . Then , the Chevalley group associated with {g y N, k}
is’ Gn,k = <x(:)(t) : Q( £, te¢ k>, and\ this is a subgroup of
GL (EZ®Z k) . If there is no ambiguity , we shall write xa(t) for
X(:)(’C) . By <S : R> , we mean the group generated by the set S ,

subject to the relation set R .

For each a € .ﬁ, there is a unique homomorphism /‘a H SLz(k)-——>G_K K
1

which maps ( é I‘) (resp. ( };(J). ) ) onto x.(:;) (t) (resp. xgti (t) )

for every t €k . Let h, (t) be the image of ( g 2_1 ) , for

tek*,undei/;a. The group H=<ha(t):a€ﬂ,t€k*> is a

naxi
aximal torus of G7r,k .

#*
If Z\ is a Z-form of _1_1_* , we let Z\ denote the dual Z-form of
h, i.e.

—-—

A#: {he_llza(h)e Z. for a(A} )




If meP(ﬂ) is a weight of x , then , putting
E(k),m = (EZ/\Em)®Z k , we have | '
h(t) . x = ¢alha) x,for x€ By 5t K" ; ae £,
To m there is associated a homomorphism of H into k*
characterised by m (Z:(n ha(ta) ) = 37;;‘ t‘:(ha) . . ) (1) .
Let w, be the j.mage of (_g é ) under Ha for gé =<' . Then

W, normalises H . We let N =<H y Wy 8 a€ £> . Let

U=0" = x(t) s tex, a>00> and U= x(t) ¢ tek a< 0

Then the group U't is unipotent. Let a) a2 y v sty aN be the positive

roots ., Then vi : (tl yr e vy tN)'—"’ xial(tl). see oX (tN) , 18 a

oy
bijection of kN onto u¥ .
The group Ui is normalised by H in the following way :-

hox () . nt o= x, (a(n).t) for te€k; heH; acZ,

Let B=B" =g U, B =H.U . Then (B,N) is a B.N-pair in
G A,k With root system £, and B is a Borel subgroup .

Let @ be another faithful representation of .1t DN DA,
Q g L3 R

%), .
then the map xi)(t)v—-—> xée)(t) for t€k; a€=, extends to a
surjective h hi : G G .
omomorphism .)\Q'“ N,k-—) e’k
Suppose now that k = K is algebraically closed. Then the kernel
. * K .
of ')\e‘" is isomorphic %o A(/AK modulo p-torsion. Furthermore,

H isa K - i i
Ko split maximal torus of Gﬂ',K' .

For m € P(%) , the homomorphism of H into K» associated to m by

(1) is a rational character of H. Let X(H) = Mor (H, k™) be the group



of rational characters of H . Then the map P(%)——X(H) defined
by (1) induces an isomorphism of Aﬁ&n onto X(H) . We shall identify
X(H) with Aﬁ&n via this isomorphism . Furthermore , we shall

henceforth use the notation h" for m(h) , where me& P(x) and heH .

The Weyl group W = N/, acts on 'g , ﬁ* and on P(®) . We have
<<%(m’ , w(h)>> = <um,h> , where m¢ h® ;heh ; we W and
< ,> is the canonical pairing (the non-degenerate restriction to h
of the Killing form on & .). Also, W acts on H via inner
automorphisms and on X(H) by Pw(x) = (0)* for we VW and x € X(H) .

From now , ( , ) denotes a fixed W - invariant , positive-definite

bilinear form on X(H) .

. Then.

Henceforth, we let & Dbe semi-simple , and let G = G?t K
H

the conjugates of H under G are all the maximal tori of G [8], and
we let T be any such maximal torus of G . If N = Ng(T) , then

W= N/p is the Weyl group of G relative fo T, and nw' denotes a
represeatative forv wew in N . | If X(T) = Mor (T ; K*) then we know
that there exists<an isomorphism between Afxwand X(T) .

Definition 1.1, If A is a group upon which the endomorphism <

acts , we let Hl( o, A ) denote A modulo the equivalence relation :-

(R) a~~b if and only if a = c.b.o‘(c)ml , for some c € A .

R

51.2. Automorphisms of G.

In this section , we consider automorphisms o of the Groups Gn k. *
H ?



1.5,

for any field k . Steinberg shows [20] that automorphisms of G"

"
are of the following types :-
(1). Field automorphisms . If ¥ € Aut(k) , then the map
%, . 5. (™) (*) (,¥"
¥: Gn,k—_"Gﬂ,k , defined by ¥: x'_ (f)r———-»-x a (t*) on

generators , extends to an automorphism of G_” x °
?

(2). Diagonal sutomorphisms . Let f :7T—-—-+ *  ve a map associating

an element fa( k* to each fundamental root a € T‘ . Let f Vbe

' . »* - .
extended to a homomorphism of Aad inte k . Then f : G, —»G
such that £ : x(-';) (t) &-—-———)-x(:) (fa.t) extends to a unique automorphism

of G

—— If k 1is algebraically closed , then every diagonal
’

automorphism can be realised as conjugation by a semi-simple element ,

i.e. an inner automorphism .

(3). Inner automorphisms .

(4). Graph automorphisms . Let £, be an indecomposable root system and

Q an angle-preserving permutation df the fundamental roots such that

Q A1, If all roots are equal in length , then Q extends to an

automorphism of £, Ifnot , and p=(a,a)/(b,Dv) for a

long and b short , then Q must interchange long and short roots and Q

extends to a permutation of all roots which also interchanges long and

{au—-—-—) ea for a long ]is

short roots , and is such that the map Q: ar—> pga for a short

an isomorphism of root systems . Let k be a field and let G7r X be
’
constructed from a simple Lie algebra g with root system é, . If two

root lengths occur , then we assume that k is perfect of characteristic p .

If g is of type D2n , then we must assume that Q(A") = A.,‘. .



1.6,

Then fhere exists an automorphism Q of G and signs E'a (such that

€,=1 if +a¢/\) such that

( ) x(é( Eat) if a is long or all roots are of one length
Qx t) =
a x ( eatp) if a is short

Qa

NOTE. Referring to §'4.2, we see that if g is of type D and

-

2n
K= 7(2 , then Q : G _’rz,K-—-------)-GWTK is the isomorphism gentloned ’
since ( A_) = . Hence , such groups have only the identity as
QY “, T

graph automorphisms . (We always include the possibility of the identity

graph automorphism. ).

Now we want to consider the groups Ga/ of fixed points under
g & Aut(G) , and Steinberg has shown [201 that o =.i.d.f.g , wWhere
i ¢ Inn(G) , a e’ Diag(G) , f € Field(G) and g e Graph(G) .

In the case of GW;K , Inn(G) ané/ Diag(G) are uninteresting
since their fixed-point groups are group centralisers of certain elements
of G . However , f on its own gives a Chevalley group of the same type
but over a different field ,‘(as we saw in the introduction) and such
groups are the finite groups of (normal) Chevalle& type which we ;hall
discuss in Chapfers 3,4 and 5 . Similarly , g on its own gives Go as:
an embedding of a Chevalley group of one type in another Chevalley group
of different type , e.g. Spn(K) or SOn(K) in 8L, or SL, . '. if
we take & to be a certain combination of f and g , then we get neﬁ
simple groups -~ the Steinberg groups of Chapter 6 , and the Suzuki and
Ree groups of Chapter 7 , i.e. the group Go is a finite group of

twisted type . An example is the embedding of SUn(q) in SLn(q) .



1.7,

We have the following identification with the Classical groups:-

TABLE 1.1.
T
e ad sc TTl
) PSTy 1 Sy
By || PS05p41= S0pp | SPing, .,
Co PSpy, SPog
D ' i
3 PSOZt sPln2£ SO2£
%) PSU SU
[ l+,1 2+1
21)‘ Q)

NOPES. (1) 7v, is defined in Proposition 4.3.
(2) Q) is the commutator subgroup of the orthogoml group leaving
invariant a quadratic form of index £ relative to K eand index (4 -1)

-

relative to &o .

§1.3. The Bagsic Theorem and its conseguences.

An essential part of our work rests upon the following important
extension of a theorem of Lang [19] :

Theorem 1.1, Let G = Gn’K be gemi-simple and ¢ an endomorphism of
H

G onto G such that Gc is finite . Then the map f ¢ X $——— x.0{

of G into G is surjective . [:J

x)7t



1.8.

Under these conditions , we can show that o fixes a Borel subgroup
B and a maximal torus T contained in B . Also , any two such couples
are conjugate in Gc . Now, since o fixes N , it follows that ¢
fixes W and we have a natural action of ¢ on W. If é is
semi-simple , then we can show that the Bruhat decomposifion exists for

Gc with Wc , Na etc. in place of W , N etc.

Since K is algebraically closed, we know that all maximal tori of
¢(K) are conjugate. However , in the case of a finite field Ko , the
situation is described in Theorem 1l.2. , where 1:(GG ’ T) is the set of

: Gorconjugacy classes of the ¢ ~-fixed maximal tori of . G .

Theorem 1.2. Let G and o be as in Theorem 1l.1. Then :-

(a). G contains a maximal torus fixed by o ;

(b), If Tﬂ‘is such a torus and W = N/T is its Weyl group, then there
is a 1-1 éorrespondence Q Hl( c, W ) —————-#-1:(G°_, T) H

(c). If o fixes each element of W, i.e. commutes with the action. of

W on T, then the classes 5o G, , T ) correspond to the conjugacy

classes of W .

* For a proof of this and other results above , we refer td [21] .

Definition 1.2. "Pwisting". Let T be as in Theorem 1.2, , w € W and

correspondingly n_ € ¥. By Theorem 1l.1. , there exists some g € G

with n = g—l.o(g) . Hence o fixes the maximal torus T' = ©f

Also , every o-fixed maximal torus can be obtained in this way , by

"

twisting" by some w e W. For , suppose that Tl is fixed by o .
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€y

Then T, = T for some g € G . Hence, gll.c(gl) normalises T ,
and so corresponds to some w, € W . This is the correspondence Q in

Theorem 1.2, (b) ; see [19] .

If we iQentify T' , above , with T according to the isomorphism.
ig , then the original action of ¢ on T' 1is equivalent to that of w o (o}
on. T ; For if t+ € T, and correspondingly +t' € T' such that
' ig(t) =’t' , then :=

i (w

g o o a)(t) = ig o (w

c)o i _l(t') =i ne (¢) ) = o'oig(t)

(o)
g g.n_.o(g)

Hence the following disgram commutes :-
-3 T

i
g
wod o
i
g >

]

=)

{ .
If we replace w by an element equivalent to it in ' (e, W), then
this amounts to replacing woa by something conjugate to it under W ..

For if w, =w' . w.o (w')"l for w'e W, then w'.'(wooﬁ. wt o W o0

on T .

If we let G, o, T, be as in Theorem 1.2 , then we denote the induced
action of o on X(T) , the (discrete) character group of T, by o* .,

If v ¢ X(T) = Mor(T , X®) , then we write the image of t € T under

w(d) w  w
=t , where t = t

u
u as t

, and W acts on X(T) by (t")"

Since O(T) =T , we can consider o, = °1T , 8o that (r*, mapping u to

T
. . *(u) u
u oy ,is an eutomorphism of X(T) . Thus ¢t =oc(t)" for t € T
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and u € X(T) , and this action extends to X(T)R =R @ 2 X(T) , the real

extension of X(T) . Fromnow , V = X(T)R .

Now the isomorphism ig from T to. T' induces , naturally , the

] 1
dual isomorphism g* : X(7)— X(T) defined by tg"(u ) = (gt)u for

* (o, .
w ¢ X(T') and t €T .,  Hence, t° *¥8 (ut) = (ig 5o o ()4
. . w

1 N [ . IS
=(i a(t))* = t& o (W) prall toer , u' € X(T') , and so

o(g) o

the action of o™ on X(T') is that of o-""o w on X(T) . Thus the

following diagram commutes :-

X(T) - m (1)
: g
W o™
0
g

X(T) ¢ x(1)
Also , ig extends naturally to an isomorphism from N = N(T) to
N' = N(T') . Hence ig,w= woig on T and g.nw.g-_ =n' .t'. for

nweN and n;IeN' , éend come t' e T' ,

Finally, we make the convention that if T is a fixed , o-fixed

maximal torus of G , and T' is obtained from T by twisting by w € W, _

m m a '
then we denote T' by T_, eand also (m )G by T .

With the above notation , we have the following [19] $—

Proposition 1.3. (i) Suppose that G is simple and that T is a fixed

Ko—split maximal torus of G . Let o be a combination of a field
automorphism ¥ and a graph automorphism Q as in § 1.2, , where we allow
e to be the identity . Then ¢ = qT, for some q > 1 and some

isometry ¥ of V .
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(ii) Further , given any o -fixed torus T' of G, we can find we W
such that T' = Ew , and the action of & on X(T') is given by

o¥* = q.¥T .

(iii) 1f Q ig the identity grai)h automorphism , then Go‘ j‘.s a finite
group of normal Chevalley type , and ¥ is the identity . Then , the set

K(GU, T) is in 1-1 correspondence with the set [ (W) of conjugacy

classes of W under -the action of twisting .

Proof. (i) Since G is simple , then ﬁ, is an indecomposable root
systenm . Now if all the roots of i, have equal length , then Q -is an
automorphism of £, and an isometry of V . For T we may take _the
maximal torus generated by the ha( t) , as in §1.1. ,' and we let

¥ : cw—mc? be the Frobenius automorphism of X .

Let teT, so t=/ b (ta) for some t €& K. Then o acts

on T by o:(t) = Z;;‘h a (taq) . Now let u¢ A-K. Then

U o (Y o Z;gt i, lha) _ 23‘ RS C L I—

.
78 . ZS\ ta°' u(ha) , and this must be true for all te€ T, i.é. for all
t € K Hence o'*u = u and o= on X(T) Since is an
a e . - q'Q ’ - qe . Q

isometry of V .in this case , the result follows with = = Q .

On the other hand , if roots of different lengths occur , then the map

= . ap———> Qa for a 1long
Q' & pF——> pga for a short

for p=(a,a)/(b,b) if a is long and b is short . However ,

} is an isomorphism of root systems

Q is not'an isometry of V . Now , in such a case , we shall show in.




Chapter 7 that we must restrict Ko to fields of a certain type , viz, |

such that K has characteristic p = (a,a)/ (b, b) as above,

and also that lKol = p2m+l , for some mpO. Then we must take ¥

m

P

{;o be the automorphism ¥ : ¢¥r——pc for ¢ e X, since Q has

order 2 in this case . Now A,, = A ad for such caseg , whatever

the value of ™ ; as we shall see in Chapter 7 . Thus :~

n
Qa(tp ) if a € J\ is long

o defines ¢ on
m+1 )
xa(t)v—-—-—> x (1:p ) if ae T( is short

Q&

xa( ) ——— x

generators of G ..

Suppose that u € A\, and that e acts on 7-( in cycles ¢, = (ai‘ bi)

of order 2 , with a, long and b, short . Let h,= ha(ta).hb(tb) , SO

™*u P p™1 L P2 <u, B> L p. <u, 8>
that h, = = (hb(ta ) . ha(tb } ) o= 154 Tty .
Also, h(c’!'u = ta<°*u’a> . tfo"'u,b} , and this must be true for all
t.a y tb €& K.
Thus , <ou ,é> = <pm.u ,b> = <pm+%.'cu ,a> , where
wa = p%.{a = p%.b Similarly ,

<o”u , b> pm+1.u , a> = <pm+%.tu , b> , where
. -3 ' |

tb—p.eb p-.a . Let q=pm+7,so<o'*u-q.u,a>=o

for all a éT(. Hence , Fu = q.xtu for all u' € A.K , and so

o®=q.2 on x(7) .

Now, (ra,cxa)=p(b,b)=(a,a) , if aeﬂ is long

} and b =Qa, and (z,b,:b):p—l(a,a):(b,b). Hence ,
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‘z is-an isometry of V , and o = q.w. for some g > 1 and isometry

T, in all cases ,

(ii). We have seen from Definition 2.that given any o-fixed maximal torus
™ of G, we can find wé€ W such that T' = Ew , and then the action of
o on T is that of w o on T . Further , the action of o®* on X(1')
is that of ¢" w on I(T)’, ie. of quw . Since replacing w by en

equivalent element in Hl(Of , W) amounts to replacing a'*ow. by an element
conjugate under W , and since o (w) is equivalent to w , we can take the

action of o™ on X(T') +to be that of W.cr*ow.w—l , ie. q.we on X(T) .

(iii). 1f e is the identity , then o (t) = t&* for all te T .
Hence , w o (t) = w () = w(t)? = CA (t) for all we W . Hence «
commutes with the action of W on T and by Theorem 1.2(c) , the bijection

Q: () —>E(G . 1), since H (o, W) = LW . a

Definition 1.3. Pollowing Proposition 1.3 , we say that the triple

(=.,X,t ) of aroot system in V , a lattice X =Ayin V and an

isometry T of V , is the type of (G , o) , and that q is the

parameter of (6 , o) .

Proposition 1.4; Assuming the notation and situation of Proposition 1.3. ,
with X = X(Tw) and (=, X ,®) the type of (G, o) , we have 3-

(a). T is in duality with, and hence isomorphic to X / (- 1)X .
Thus_ the matrix (cr*— I) is a rglation matrix for‘ the group Tw .

()., 1f fwz (t) is the characteristic polynomial of we on X(TW)R ,

then the order of T, is lfwt(Q)! . [21]
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Proof. (a). Consider o (modulo p) relative to X , ie. the action of

o% on Ko\ = X®; Z , the localisation of X at p . Then , by

Lemma 1.3. , g " , where m is the order of ww € <W,ey = W

n

Hence, if n is the exponent of W*, then o™ % =0 (modulo p) , and

o* is nilpotent on X

{r} .°

Now, if (o™ ~I)u=0 for ue X then o'u = u and

(v} ’

©@® u=u. Hence, u=0, so that (¢¥-1I) is injective an X{p} .

»X / (6* - I)X—>0 .

Consider the exact sequence X

(o* - I);X kAl

Then the following sequence is also exact :-

(o™~ 1) _ ' >(x / (o™ - I)X){p'——""o . Naw,

X oy e }

(0'*— I). is injective on X{P} , so that the following sequence is short

exacts-

o (®*-1) . L
0 ,xfp} fx{p} —>(x / (o*- I)X){p}————-—>0 .

But X{p} is finite , so that (o¥®- I) is an isomorphism on X{p} and so

[

7' is the zero map .

Hence , (X / (¢*-I1)X)® Z,=0 . Now X / (%~ 1)X is
isomorphic to a direct sum of cyclic groups Zq , for integers qi , and
i

cince Zm® Zn is isomorphic to Z(m,

n) » then (qi , p) =1 for all i,

Hence , X / (c'%- I)X has finite order prime to P .

By the elementary divisor theorem , and by choosing compatible bases

det(o'*- I) .

for X and (- 1)X , we have | X / (®- I)Xl =

Under the duality between X and —'fw , the annihilator of (0'*— I)X in



'T'w is isomorphic to the dual of X / (¢®- I)X . Since the latter is
a finite abelian group which has order prime to p , it is isomorphic to
its own dual .

However , the annihilator of (o™- I)X in -'I—‘w is just T . For,

*-
Du_, for all

if teiw and t annihilates (o™~ I)X , then +(o
u€X . Thus (O'(t).t—l)u=l for all ue€ X . Hence o(t) =t and

t e Tw . Converseley , if t € Tw , then t annihilates (o™~ I)X .

Thus , T_ is isomorphic to X / (o™ - 1)X , and TWI= ldet(a*- I)I

(b). Since o¥®=q.wz on X(_‘I-‘W)R , then lTwl = |det(q.wz -~ I)I .
Now (wz) is an isometry of X(T ), , so that ,det wz.' =1 and

Jaet(a.1 - (we)™)]. |aet(w)]
|aet ¥(qr - wt.)l = lfn(q)j .

(w:)-l = t(wz) . Thus ITwl

\
1

Hence , the characteristic polynomial of wwe evaluated at q yields
the order of ’J.‘W , and the corresponding matrix (q(wr.)_A_ - I) is a |
relation matrix for the group ‘.[‘w , where /\_ is some basis of X(wa) = A,‘..
All the groups 'Tw corresponding to some class h € Hl(cr , W) form a
conjugacy class of maximal tori of Go‘ by Theorem 1.2. , and hence have
the same structure . Thus we need only determine the relation matri.x
(q.(wz)_A_ - 1) for a representative w from each class of Hl(o‘ , W) in

' order to determine the strucf,ure of the maximal tori of Gcr' .

Now , Tw is an abelian group with £ generators and with relation

matrix (q.(wz)_A_ - I) . This relation matrix is equivalent to a diagonal
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matrix D , in the sense that there exist integral , uni-modular matrices
X, Y such that X.(q,(wczj\_ -I).Y=D. According to the theory of

abelian groups , [24] , if D = diag(el 185 5 see ,ge) , then these. e

are called the elementary divisors of Tw , and Tw is isomorphic to the

direct product of cyclic groups C x C X ... xC , where
_ ? e, e, €,

{ ey ,...,ek} are the non-unit elementary divisors of Tw . Hence , we
must determine those elementary divisors corresponding to a representative
w of each class of HY(o,W) , by diagonalising the matrix (q.(w:@x -1I)

over Z .

Notation. By the above , we mean that given an integral matrix A which
is a relation matrix for a group G , we reduce A to a diagonal matrix
(or diagonalise A) in order to find the elementary divisors of G (we
freely meke use of also calling these the elementary divisors of A) .
This reduction process involves the use of elementary transformations of
the matrix ’A . We use the following transformations :~

(1). ar, to rj for i¢j . This amounts to replacing the generator

R. of Q by Rj+a Ri , where a € Z , and is the operation of replacing
jth row of A by adding a times the ithrow to the jth row .

(ii). €x TS where € is aunit of Z , ie. replacing the generator
R. by its inverse , which multiples the ith row of A by -1 .

1

(iii). ac, to Cj for 1igj . This is the operation of replacing the

jth column of A by adding .a times the ith column to the jth column ,

for a¢€ 2 .
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(iv). Remove (ri’ci‘) . This is when A 1is of the form ' ,
o A

and we can remove the unit elementary divisor +1 , reducing A to A!' .
Such an elementary divisor corresponds to a generator of 'Tw being made

redundant by A .

Finally we denote a reduction of A by one of these transformations
as Awsew——3 B , with the relevant transformation described with the arrow ,
according to the notation above. We sometimes say that B is eqguivalent

to A,

51.4. Some results on weight lattices .

In this section , we prove a result which reduces the number of
cases to be considered . We let A be any Z-module and
¥ »* »*
AN =Hom, (A, 2) its dual . If x e and e\, then we denote
' .
x*(x) € 7 by <x , x*'> . If NN is another 2-module , eand u is a
‘ . :
linear map u: A “—-—-?'A , then we denote the transpose of u by 1;u ’
1% »
so 1'-'u : A -——-—)A such that tu : y*y—-__py* oU for y*e A’* .
Hence
' t A TN

Lu(z) , ¥*> = <x, "u(y*) > forxe AN , y*e AT,

Let _/\_ be a basis of A and V = A@zR . The matrix of wu
with respect to _/\_ is denoted by una_ . Let £, be a system of roots
in Vv, W(£) the Weyl group of ‘é , and let ( , ) bvea
non-degenerate , symmetric bilinear form on V , which is W-invariant .

* - Kad
Then identify V with V' = HomR(V,R) AN ,R according to this form ,
. . * * ‘. . . 2%
ie. given y €& V , there exists a unique y€V with ¥y (x) = (x,y) for

all x € V and we identify y”(——by .



1f A\ is the weight lattice A\, for some faithful representation
o of a complex , simple Lie algebra g with root system 2, , and

u is an isometry of A with respect to ( , ) , then u (= u@l)

t

acts on V , and hence on _V* as u by (u(x), y)=(x, tu(y) ) .

. »* -
Lemma 1.5. If /AU is the dual basis of /\. , then tux = uJE' .

Proof. 1If J\ ={v.} i!=1’ then /\o ={x;‘ : (xi,x;‘) =8lj}

is a
T
basis of A\ , the dual basis of J\. . Since u is an isometry ,

then (u(Xi) , u(X’;) ) = (Yi ,)’;) = Sij i

[t
3
=
e
123
w°<
=
>
H\./
[}
o
HoX

Further , (u(Xi) , u(Xg) )

il
M
—
[+
=
<3
—
e

Hence , tuA.ux_« = I!. , and u

o

Now for every a € ﬁ‘, , there exists an element avé V* such that

av(a) =2 . Then a' = Tii;i under the identification . By [4] T

Lemma 1.6. If 2v = {av : ae é:‘i , then ﬁv is a root system in

> .
V (iein V) , and a'' =a, The map Q : W (=) ——W(=) defined by

t -1 . . .
Q :Wih————w is an isomorphism of groups .

Proof. Both statements follow since tw'a—l = W.v, as the axioms fér a

root system are readily verified .

Lemma 1.7. Let /N aq D€ the Z-module generated by the root system

ﬁv . Then Asc = (Avad)* .
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Proof. This follows since ASC={x.eV : (x,7) € 2 for all y¥e Avad}

[T

If g is a simple Lie algebra with root system 2 , then let Kv

denote a simple Lie algebra with root system iv . By Lemma 1.7 , if

%
c < =) Voo ;
Aad 2\ Asc , then Asc A 2 Aad . Hence , if
PANGS A" for some faithful representation 7* of g , 'then

»*
JAS A“u for some faithful representation 7™ of ‘gv .

. v »
If ﬁ is not of type Bl or Cl , then £ =£ , SO Asc =Aad ,
and the map Q of Lemma 1.6 becomes the identity when induced to

a ﬁ(W)——PK(W) s Since .Q is the identity.

However, if ==, is of type B, , then ﬁ,v is of type C, . Also ,

W' is isomorphic with W and 6, :z(W)—-——-r}:(Wv) is the identity .

. »”
Lemma 1.8. Let g€ Z and weW . Then A/(qw—I)Ag A/(qw-I)&

s

Proof. It suffices to show that (q. we- I) and (q. w, - I) are
equivalent in the sense of the previous section. We know , by [6] , that
w 1is conjugate to w‘l in W . Since ]det wj=1 for we&W and w

is known to be integral [4] , 1t follows that there exists an integral

. . ) =1 -1
unimodular matrix Xl with ,Xl.w_,\_.Xl = Wy o

Suppose that X (q.wy, -I) .Y =D, vhere X, Y are integral

unimodular , and D is a diagonal matrix . Then ,

(x %) - (qwy -1) .(x;lx)gn :

-1
1

Hence , (X Xl) . (q.tw

A Y)=D,byLemma1.5,

-I) . (x



: t,,~1 t t
so (x77Y) « (qowp -1I) . “(X%)="D=D .
Thus , (q.w_A_ - I) and (q.w_&c - I) are equivalent to the same

diagonal matrix and the result follows . D

Given the group G_R X corresponding to the triple fg y T, K}', we
14

let G:r,. X be the Chevalley group corresponding to the triple
1

{g?,‘ﬂ”, Kﬁg .

Corollary 1.8. If T (resp. T*) is a maximal Ko-split torus of

v ' . i
Gvr,K (resp. G ,K) , and w 1is a representative of some element of

2
E(W) , then Tw§ TQ(w) , and so the structures of the tori are identical

in the groups GW,K(KO) and Gvﬂ*,K(Ko) .

Proof. This follows from Proposition 1.4 since T, = (q.w - I)A

]

This means that we do not have to determine the structure of the

maximal tori of Gvn,(. separately . For example , if ﬁ is not of

K

type By, or Cj , then the results for Gad,K(ko) and Gsc,K(Ko) are

identical. This is discussed in Chapter 4 .

81.5. A result on normalisers of maximal tori .

We conclude this chapter with a result concerning the normaliser of a

maximal torus TW in Go . In Chapter 8 , we note that in considering

the representation theory of the finite groups we are interested in.
Ng (71‘-w) / T, which is always isomorphic to W, . Let T bea o-fixed
o

maximal torus .
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Lemma 1.9. Let Ew be a maximal torus of G obtained from T by
twisting by we W , and let hw'e Hl(01W) be the class containing w.
Let W be the Weyl group of G relative to Ew . Then there is a
bijection

W/ Wg———>nh_ .
Proof. We know that & acts on W as conjugation by wre ., so that

Vo

]

{wle W (wz)_%wl.(wz.) = wl§

: -1
{wl e Wi w .. c(wl) =W } .
Thus the map Q : W / W_——h_ such that w'.W —p w'.w.c(w')‘l is a

bijection . This follows from the Orbit-Stabiliser Theoren .

]

This bijection is in fact a generalisation of the bijection between
W /Cw(w) and C_ , where Cw(w) is the centraliser of w in W end
Cw is the conjugacy class of”ﬂw containing w . This is the special case
of the Lemma when o is just a field automorphiswm of K , in which case
WU is isomorphig with {:w(w) . Although we cannot in,genera{ say what the
structure of Wo_ is , we do know that in the case when w is in the
Coxeter class of, W , then d:w(w) is a cyclic group of érder h , the
Coxeter number of W , see [ 6] . Furthermore , in groups of small order
viz. those discussed in Chapter 7 , we are able by virtue of Lemna 1.9 to
statevthe order of the group Wc‘ corresponding to the maximal torus T

Fy

of GG .



CHAPTER 2. Conjugacy classes in the Weyl group.

Let G =G

* K be a simple Chevalley group , and let W Dbe the
’

corresponding Weyl group . Suppose now that o is the fiela automorphism
of G 1induced by the Frobenius automorphism of X , so that <« is the
identity . Then Ga_l ,"is a finite group of (normal) Chevalley type , and
we have seen in Proposition 1.3.(iii) that , in this case , the classes
Hl(c' , W) are just the conjugacy classes 5(W) of W . Hence , in
order to 'determine the structuxjé of the maximal tori Tw qf Go, s WE negd
only consider twisting the fixed Ko-split maximal torus T by a
representative from each conjugacy class of W , and to diagonalise over

Z the matrix (q.w, -~ I) . Also the o-fixed maximal tori of G are

Just the Ko—maximal tori , ie. those defined over Ko .

Hence , we need a uniform description of the conjugacy classes of the
various Weyl groups , and this has been discussed by R.W. Carter in [6] ,
where he describes the conjugacy classes of W by using its structure as
a reflection group , hence obtaining a uniform description . _We present

a brief summary of this work in §2.1. .

To determine the elementary divisors of Tw y we need to consj..der the
matrix of w with respect to a suitable basis /A of A-K . In fact ,
great care should be taken to ensure that J\. is a basis of A“ and not a
basis of V vhich generates some Z-module in V other than A,\- , in
which case it follows from Lemma 1.4 that (q.wJL- I) is not a relation

matrix for Tw . In 8 2.2 , we show how we can find a suitable basis
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_§ of Aad from the description of §2.l , for which the matrix We
is readily obtainable . Due to the results of Chapter 1 (principally

Lemmas 1.7 and 1.8) , it turns out that we need only consider

A-,, for = = ad .

In § 2.3 , We considler some examples of @ _fr.om §2.2 , and in § 2.4,
we discuss certain automorphisms of W . Finally , § 2.5 c;ontains a
discussion of why we are forced to consider all the conjugacy classes of W
and not jﬁst those contained in no Weyl subgroup , as describe.d in 8% 2.i

and 2.2,

The material in this chapter is aimed principally at Chapter 5 ,

although we do use the results and ideas in other chapters .

§2.1. Description of the conjugacy classes of W.
Referring to [6] , we see that the basis of the work rests upon the
fact that.one can express w € W as a minimal-length p:éoduct of reflecﬁtions'

of W, ie. W= W_ . «o0 oW with k £ , and then split the
1 i -

corresponding set of roots § = {rl ,...,rk‘ﬁ into two subsets of mutually V

orthogonal roots , so that w =(w e ese oW )(w S ) is a

8y & Sp+l 8-

product of two involutions . Correspondingly , we define a graph l'"' with
k nodes , where two nodes a and b are joined by a bond of strength

n , where n_, = Z(a,b).(a,‘a)—l . Then , 1 represents the

ab * “ba

conjugacy class of w , and the admissible graphs corresponding to all

elements w € W can then be determined , @s in [6] . In fact , it is
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only necessary to determine those admissible graphs M for which the
corresponding conjugacy class is not contained in any Weyl subgroup
W' of W, and these are tabulated in. [6] . There is not a 1-1
correspondence between conjugacy classes and admissible graphs , and this

breakdown is discussed fully in [5] .

If Aw is the matrix , ﬁith coefficients N, g in the position
o 13

(i,j) , which corresponds to w , then Aw is determined by F‘ to
within alterations obtained by replacing certain roots by their negatives ,
provided we know.which nodes of [ ' correspond to long roots and which to
short roots . Hence , care must be taken in assigning signs to the bonds ,
a task made easier by the result that a subgraph of f‘ which is a cycle
contains an even number of nodes , and an odd number of acute angles between‘
roots adjacent in . Also , the characteristic polynomial of w is
determined by l"‘ . Now , if w is as above , with § split as
{al y eeo 3 ah} U {ah+l y see ak'k and we order the roots in this way ,
then they.are linearly independent and so span a subspace U of V =-XR

of dimension k . Then , it is shown in [6] , that :-

Propoéition 2.1l The matrix Aw is a block matrix :

2 Ih B
A = , and also the matrix , w , 0f w on U with
W $
Cc 2 Ik h
) - BC -~ Ih B
respect to the (ordered) bvasis & is .
- C - T

k-h

L]




§2.2. Choosing a basis of Aad .

We have already mentioned the importance of choosing a suitable basis
J\. of Aad ,» and in order to employ the above result for obtaining the

matrix Vg of the action of w on Aad , we must ensure that § is a

basis of Aad , (which it certainly need not be , even when rank d = e.) .

Now, & natural basis of‘lzxad vis any fundamental system of roots 7-( ’
and we must consider the matrix E§ corresponding to the change of basis
of vV from JU to @ . 1Inorder that @ be a basis of AN . it is
necessgry and sufficient that the matrix E§ be integral and unimodular .
In fact , since § is contained in .Aad , it is only necessary to check
that E§ is unimodular . Hence , in order to employ the result.of
Proposition 2.1 to obtain the matrix Vg ‘as the action of w on Aad ’
we must check that the corresponding E§ ~is unimodular for every

§-’cype of W. ~

Certainly EE will not be unimodular in the case when rank¥ < 4,
for then U has dimension strictly less than that of' V. Even if
rank E = .e , 1t does not always happen thct E3 is unimodular (e.g. in
the class A2 +12 in W(F4).) . However ,we do have :-

Proposition 2.2. If © corresponds to a conjugacy class of W which is

not contained in any Weyl subgroup W' of W , then the corresponding

matrix E§- is unimodular ., -

Proof. TFor every root system =, , W(=) has at least one conjugacy

class which is not contained in any Weyl subgrcup.-', viz. the Coxeter class,




where § is just 7( . (For more detéils see [4] g . Hence , in

this case , E§ is the identity matrix and the result follows trivially .

If £, is of type A B-?, , Cz or G, , then there are no

e’ 2
conjugacy classes satisfying the hypothesis of the Proposition , apart
from the Coxeter class . In those cases , we use methods other than

those employing the result of Proposition 2.1. . Similarly , we use other

methods for é, of type D@ , although we do prove the Proposition for

this case . In fact the remainder of the proof follows a "case - by -~ case" ‘:

treatment , and we consider the list of @ -types , corresponding to
conjugacy classes of W not contained in any Weyl subgroup and excluding
the Coxeter class , which appears in [6] . We call such a §—type

a semi-Coxeter type . In these cases , except for types E7(a4) ’

E8(a6) ’ E8(a7) and E8(a8) ,‘it can readily be‘seen that by removing
one root from § , and re\bllacing it by another root such th.at i becomes
the Dynkin diagram [ of the group W , the new systém 3 remainé
linearly indepeﬁdent and assumes the property that the .scalar inroduct .of‘
any two of ité elements is nonépositive . Hence , .this new system &°

becomes a fundamental system , 7\- say . Then we can check that E;

is unimodular by checking that , in ‘the expression for the removed root in

terms of the elements of J\ , the coefficient of the new root is + 1 .

Then ,

B , which is unimodular .
3 0 ‘ 1l

4
1
i
J;
i

w

e A ey o
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In the cases E7(a4) , E8(a6) , E8(a7) and E8(a8) , it is necessary
to replace more than one node of T‘ to make r" the Dynkin diagram
of W. Hence , it will be necessary to compute the determinant of E§

directly , to check that E§ is unimodular .

We omit the details of this " case - by - case " treatment , but we

give two examples of the method in §2.3. . D

Hencc , by Proposition 2.2, we may use the result of Proposition. 2.1
to obtain the matrix W§ of the action of w upon Aad , in the case
where § is a semi-Coxeter type . Then we can find the elementary
divisors of the group ’1‘w for a representative w of the conjugacy class
corresponding to. § , by diagonalising‘ the matrix. (ci.w; - I) over 4 .

In fact, as we shall see in Chapter 5 , the matrix (q.w. - I) is

)
diagonalisable over the ring Z[ql of polynomials in q in every case
except one . This exceptional case occurs in groups of type E8 , and

is dealt with in §5.5. .

Before prodeeding with the details of the proof of Proposition 2;2 "
we give an eaample of the need to take care over the choice of basis for
Aad in the. c'ase of $-~type Dl(aj) , where a particularly simple
expression for wi can be found by considering the action of .w with
respect to an orthonormal basis , §- , of V ., However , E§ is not
unimodular in this case , and , in fact , if this basis is considered ,

then one can show that Tw is isomorphic to C for

. x C .
(t+ 1)~ (ot He 1)

i = j+1 , which is inconsistent with the result obtained by considering



the matrix. w , with respect to a fundamental system 7Y , and

"

certainly inconsistent with the isomorphism between W(A3) and W(D3) .

NOTES. (1) Since we must take care of the lengths of roots, we make

the notation that in any graph r1 » we denote long roots b;;( nodes of

the form o y and short -roots by nodes of the form o . f I
represents a class of a Weyl group W whose root system ﬁ, has roots
of.two lengths , and the system 3 corresponding to [ nes all its roots
6f the same length , then we denote ™ by X if the roots are long and

~/
by X if the roots are short , where X is the type of [ .

(2). Although the results for the classical groups could be derived
entirely in terms of root systems , as explained above , we find it more
convenient to follow [6] and to use the language of permutation groups

in Chapters 3 and 4 .

§2.j. Examples of the methods to prove Proposition 2.2,

(i) F4(al) . r‘! r-l'

o
T4
r Ir or— — e()
1 3 »*
Pp P Py P
Ty

A system of roots § with graph [ is :-

- = e - e-e , T, = r = e -e..
§ = '{rl = e, e3‘ y Ty = e3 e4 , r3 = e4 » Ty -2-(el e2+e3+e4)}, where

{e.k is an orthonormal basis of X_ .
. i R




) [
A system of roois 7‘ with graph ™ is :-

1

T‘ = {pl = 62—63 ’ P2 = 63-—64 ’ P3 = 34 ’ p4 = f(el-e‘2—83—64) } o
Then r4 = Pyt 2p3+ p4 , and , since the coefficient of p4 is +1 , the

change of basis from EE to TV is integrai unimodular .

(ii).

In this case , we must replace the three nodes T

g * A system

v .t
of roots @ with graph [ is ¢ = {ri} ?zl , and a system of

fundamental roots :TY with graph M is TT‘ = {pi'} ?—l , where :-

Tp =Py =€ = 85 Py =€ -%:
T3 = P35 = €3 7 €4
r, =P, =€ - e, Py = —%(e1+e2+e3+e4+e5+e6+g7+e8) .
s = Pg = 65 = € |
Te = Pg = ® *-S7 Pg = © = ©7 °
Then we find := 1, = é—(el t 8y mez - g et est 68) ’
Ty = e +oe, - €5 = €, = €5 = € = ey - 68) ,
rg = 3(e; + e, + &5 = €, = &5 + e = ey - eg) -
Thus , ) = =Py - 2p4 - 2P5 - Pg = Py = Pg »
Tg = Py + 2p2 + 2p3 + 2p4 + 2p5 + Pg + p7 + Pg »
rg =

Py * 2pp + 3P5 + 3py + 3pg + 2p, + B, + 20



If we order § into two mutually orthogonal subsets as

{rl,r3,r5,r7;r2;r4',r6,r8} and7Tas

~1
ipl » P59 Pg » Pp i Py oy Py s Pg oo Pei » then w. = E§ °w§'E§’ where

" 0001000 1]

1102000 3

20120003

10010001 _
E=| 00021002 , and det E.=1 .
T 1200201053 £3

210010012

-1001000 2]

Similarly, we can check that , for each & ~-type satisfying the
hypothesis of Proposition 2.2, the matrix E g is unimodular . Hence we

have proved Proposition 2.2, which we use in Chaﬁter 5.

82.4. Some automorphisms of W .

In this section , we combine the work of Carter described in the
previous sections and a réwsult of Burnside ,to obtain a useful result .
Let 2 be any irreducible root system in a real vectof space V , and
let A(= ) be the group of all automorphisms of V which le‘ave ﬁ,
invariant . Further , let 7V be a fundamental system for f, and
D(= ) the subgroup of A(ﬁ) formed by elements leaving 7V  invariant . |
Then by [4] :

Lemma 2.3 W(=,) is a normal subgroup of A(=) , and A(=) is the
semi-direct product of W(=) by D(=£) . Moreover , D(=) is the
group of automorphisms of the graph of ﬁ , which is thus isomorphic to.

M=) /=) .

Proof. If a €=,and t € A=) , then t.wa.t"l = Wi(a) * Since



W(=) is generated by the set {wa : ae 2& , it follows that
=) =< A(=) . Now t transforms /\ into another fundamental systen
70" , and , since W(=) operates simply transitively on the set of

fundamental systems , t can be written uniquely as w.d for we W(=)

and d € D(=) . Hence, A=) =w(=).p(=) .

Finally , since the graph of é‘, has nodes in 1-1 correspondence with
the elements of T‘ , it follows easily that D(==) 4is the group of

automorphisms of this graph . D )

Now let - e D(ﬁ) . Then - acts on W(i) by conjugation in.

A(=) , and let ord(t) = ® . Then = corresponds , by 81.2, to a

permutation x of ﬁ, .

Lemma 2.4. 7¢ acts on ‘the set z(W) , as a permutation of order § , by
pérmuting the set of admissible graphs .

Proof. Since 7 € Aut(w) , then 7 acts on the set X(W) by

conjugation . We can see this action by considering how 7% acts on the

graph ’—(‘: of a class C e);(w) . Let Pc have nodes representing the.

set §={al s oeee s By bl s eee bki , and a bond of strength

Dol = 2 (a,b) . 2 (b,a) joining the node a to node b . Then 7v
a, a) (b’b)

acts on the nodes of M by its action on é , and we claim that bond

C

strengths are preserved . Then r"‘\'(C) has nodes representing the set

Efr(ay) s oen ey 7o), e mm) ]

If the roots a , b have the same length , then w = T is an isometry
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of the space they generate . So nw(a)vr(b) * Be(b)n(a) = nopelpg If

3

. . 1
a 1is short , and b is long , then wa = p° .wa, and b = 57. xd ,

by Proposition 1.3. Hence ,

2 (wa,p) . 2 §7rb,vra§ ‘
: wa,wa b, b .

_ 1 1 )
2 (p %.za , p?}r_b) . 2 Kp?r_b , p?ra)
(p-%ea , p-°ca) (pZedb , pieb )

2 éa,b; . 2 %b,a\s since = 1is an isometry .
a,a b,b

Hence , bond strengths are preserved , and F;(C) = 'l\'(r'c) .

Tw(a)w(b)* "r(b)n(a)

il

]

Hence , we can see precisely how v acts on E(W) by seeing how

acts on the set [ (W) = {ré : C € E(w)'; of admissible graphs of W .

Notation., If G is any group and C € L(G) with g € C , we specify C
by writing C as Cg if there is no ambiguity . Otherwise , or in case
of ambiguity , if H4 G y Wwe write the H-conjugacy class containing'
g€ G as {g}H .

We now prov'e a I/-esult (due to Burnside [5] ), \;rhich proves to be

very useful in later chapters . Let W* = <W ,z>r =W .<z¥> .

Proposition 2.5. Suppose that }:(W)l = ¢, and that the action of 7

on ,C(W) leaves 2 classes fixed . Then  permutes the remaining
(c - cl) classes in orbits of length & , and the number of conjugacy
classes of WX which are in any non-trivial coset of W in W ois just

c Moreover , the total number of conjugacy classes of W is

l .

(Scl + -c——"s:——gl) .
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Proof. If W= {wl. ye ooy wn} , then letn ={wl'c yeeey wnr,} .

Then , the elements of n , when transformed by conjugation by any
element of W™ , are permuted amongst themselves , and so W* acts as a
permutation group on the coset We = Q.. We suppose that ﬂ ‘splits
into t orbits under this action as Q = ﬂl e S Qt .

Suppose w € W and that we C for some C e &(W) with ecel-oc.

Then 'c.w.'c-l = Wj.W.W:_l:l for some fixed J€ {l,...,n} , Since z.w.r.-l €C ,
ﬂ . . -1 ]
Hence , any element wi: € is fixed by w(m-)w«.wiz.w = W.T,
“loew, = zowz
<=$Wi o We i = o We. ’
T
@ i oW i = jo . j ’ ‘

. <4<==>wi.wj € Cw( W)

’
-1
<=wi € Cw(w).wj .
Hence , there are precisely ICW(W)I = IWI/ 'Cl such elements wit € Q.
On the other hand , if we W and we C for some C € [S(W) with
'C.C.t.-l ;é C , then wic 3 Q is fixed by w¢_——_—_>w.wiz.w'1_= wiz R
- -1
@Wi -W.Wi = T.W.C ¢ c'
which is not true for any LA Hence , no element of Q is fixed by w .

Hence , when (1 is acted upon by all the permutations of W , the total

number F of fixed symbols is cl.lCI.(lwl/lCl) = cl.IWI .

Now W is transitive on each {L ; » S0 consider the action of W on

{aj 3 ﬂi : w.aj = ajH for we VW,

Qi = {al seeey ak} . Let /.&i(w) =
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and \.(a.) Hw € W: wea, = aj}l . Certainly , wé know that
"k
=0 = By =) .

Now 'Xi(aj) = lsjl , where SJ. = stab W(aj) , a‘nd since W is

for all j . So

transitive on Qi . we have k —_-I_O.il = Iw / s,

lWl = k.,lsjl , and ISjI = lSl' for all j . Hence ,

K x
5: 'Xi(aj) = 54'53' = ks | =|w| .
Thus ,  Z /*i(w) = |w] . by (%) . This is true for éll,ﬂi ,
so if P (w) = I{aeﬂz wa=a}| , then
e F T = (B ) s, ) - ;
22 = el ’
However , we have already seen that F = [w] , so that t=c .

SuPPOseQ { 't yeouy wz:.} Then Qi___ {wit}w . and
OF - feoge} "o} = Bt} Y- [eb - 00,

i
Hence , =T fixes each Q i for i e {l,..o,t} , and so each Ql is
invariant under the action of any element of W* . Hence , the sets

*
Ql ,Qz y eee ’Qt are just the W -conjugacy classes in the coset. We .

( This is a union of conjugacy classes since = is an automorphism of W.).

Hence , the set Q: W= falls into ¢ W*—conjugacy classes . Similarly

1

5
with the other cosets Wz:2 seeey WT 1 .

Finally , since = permutes the (e - cl) classes of G(W) , which

are not fixed by T , in orbits of order & , these fuse in sets of
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order S to give = g cl W*;conjugacy classes , whereas the c1 classes

of ,gKW) which are fixed by & , remsain as W’Lconjugacy classes .

Hence the total number of W*—conjtgacy classes of W* is

o) + (s - l)cl + (S < €1) = Scl + (ELifih) .

Hence , by combining Lemma 2.4 and Proposition 2.5 with the work

described in82.1 , we obtain a useful result about the number of conjugacy
classes of W’( by considering the action of T on the set r1(W) of

admissibie diagrams of W . In Chapter 6 , we‘show how this result gives
us the number of equivalence classes in Hl(a,W) when ¢ is not a pure
field automorphism , and we use this in Chapters 6 and T . Although we
need to know representative elements of the classes of Hl(o,W) in order
to determine the structgre of thé maximal tori , this result does tell us

when we have all the representatives .

82.5. Haximal tori corresponding to Weyl subgroups of W .

In §2.1 , we mentioned the fact that is only necessary in the work
of [6] to defermine those admissible graphs of a We&l group W fof
which the corresponding conjugacy class is not contained in any Weyl
subgroup W! of W . Furthermore , in Proposition 2.2 , we saw that the
matrix Eg corresponding to such classes is unimodular , thus enabling us
to readily compute the elementary divisors of the maximal‘tori '1‘W

corresponding to these classes from the graph .

Suppose that w e W' , a proper Weyl subgroup of W of rank £' .

Then we can choose W' so that w Dbelongs to no proper Weyl subgroup of W'
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and then the conjugacy class containing w has as graph an admissible
graph [ ' of W' . Then the roots ?E mentioned in.§2.l span a

subspace U of V of dimension £' , and the characteristic polynomial

_pt
fp,(t) . (q—l)e ¢ , [6) One wight therefore expect
-8
that T. would be isomorphic to T' xC_ .x ... x C
W W g-1

of w is f_(t)
qjl , Where T; is
the maximal torus of the corresponding Chevalley subgroup G' of G .
Although this may be true in certein cases , one only needs to refer to
Table 5.2 to see that this is certainly not so in generai . We now
discuss this situation . Even if the above were to be valid one would .

have to be careful of the isogeny type of G' with respect to that of G ,

a problem which involves the extension problem of finite abelian groups.

Suppose that W' is a Weyl subgroup of W of rank £' and that

we W . Let T ©be a maximal torus of Gp g twisted with respect to w,
’

and let X=X(T) . If X' = {xe€ X :x"=x forall we W} , then

‘ ’ L
it easily follows that X/X' has no torsion . Hence , (X') =T' is a

subtorus of T , see [8] ; and X/X' ¥ x(1') .

Now , although w acts trivially on X' , it is not clear that there
exists a w-invariant complement of X' in X , and indeed such a
complement does not exist in genefal . However , if it did , then the

: Te-et O
action of w on X could be represented as a block matrix ,
0 w'l-
where w' is the matrix of w on the subgroup X(T') . Then we should

o _ L . .
certainly be able to say that T, is isomorphic to Cq_lx...qu_l x Tw .

Hence , we must direct our study , not only to the semi-Coxeter classes



e

of W, but to all the conjugacy classes of W .
I

A simple counter example is in the adjoint group of type A2 , wWhere
w 1is in the conjugacy class corresponding to the partition [1,2] .

Then w € W' €W , where W' Q'W(Al) y, and by Proposition 3.3 , Ti ¥ C é ,
q -1

which is not isomorphic wfth Cq-l X Cq;l when q is an odd prime pover .



CHAPTER 3. Chevalley groups of Type Al

§:5_l In this chapter , we discuss the groups G_A,,K when E is a

simple complex Lie algebra of type A, . These groups are of especial
interest because G = sL, .(K) (as groups) , and generally they are
sc,K 4+1
the first to be investigated with regard to conjectures , and their
properties often bear fruit for generalisations to Chevalley groups .
However , although these groups generally prove to be easier to handle ,
in this case the problem has not been solved completely for all cases .
We proceed to give an account of the partial results that we have. so far

been able to obtain .

In this situation , the isogeny class Vzlﬂ of simple groups of type

Ae contains groups other than Ga and GS For then the finite

¢,k °*

’

4,K

group zﬁssc /123 q is isomorphic to the cyclic group 'C€+1 of order ¢€+1 .
a

Hence , given any divisor d df (£+1) , we can find a lattice 2\ such

that AN_ 2N > AN, anda AN //N=C,. Then, by §1.1 ,
sc - ad sc d h
there exists a faithful represéntation 7"d of g with ACS = Aﬁ; q
pas

and hence a corresponding group G a . If Q end w are faithful
. 7, K

representations of g , then the kernel of the homomorphism

’)\(m : G (K)——G_(K) , mentioned in&1.1 , is isomorphic with the

R
group ACSQ/‘ZSW‘ modulo p-torsion . Hence , there may be some repetitions

or collapsingrin the groups G a , depending upon the value of (£+l,p) .
. . " LK
If there is no collapsing , then there is a radical isogeny between G
K
and Gsc;K/Zd , where Zd is the unique central subgroup of Gsc,K of



order d . From now , we denote A d by Ad .
L]

Lemma 3.1. The lattice Ad has a basis ‘/\'d = {rl,rz,...,re} ,
£+1

1 .
where r, = d(el - i ,jélej) and r, = e;-e; for 16{2,:..,2} .

Proof. Now 7‘: A. Q ’ where A is the Cartan mai;rix of the root
éystem’ of type Al’ 7( is a system of fundamental roots of ‘the root
syste.:n ﬁ of type A, and Q is the corresponding system of fundamental
weights .  Since Asc /Aad = C,,1 » We can diagonalise A to

Teoy 2

A' = 0 €+l:l over Z by the basis theorem for abelian groups

[24] to find a basis ﬂ' of .Aad and a basis Q' of Asc such
that J\' = 4'. L) . How A' = R.A.C, vhere R is the product of the
elementary row operations on A and C 1is the product o: the elementary
column operations . Hence , if J\' = R.J\ and Q1 = 1. Q) , then

T(' = A QL s req.uired . i

{

It {ei}i!ii is an orthonormal basis of a real vector space V , then
441 4+ ‘
we can embed /N ag  ©nd Asc in the hyperplane{:%_? Ei.ei : §§1 =0 },

and realise the bases 7—( and Q as T\  = {pi =e;-e . 1€ f1,...,¢1 } y

i
andﬂ={q.= e, - jim l-;é,‘e :ie{l...(’.}}.
i 3= "3 €+1 313 rec
. . . 2-1 0 .
Recalling that A is the matrix -1 241 , 1t follows that
) ‘
0 a2
-1 2
I PRI -
R-fo G-l | oo tmat JU < pympeepyy (00).) § ana
1:23 .00 @ :

ﬂ' = iplipzr"°7pe_qul’k .
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Hence , for any divisor 4 of (8+l) , there corresponds a proper
sublattice of ACS se containing Acsad denoted Ade , and zﬁsd is

generated by the basis _j\jd = {pl,pz,...p!_l,dql} .

The lemma now follows since JK_d and J\}d are integrally
equivalent in the sense that an element of one can be expressed as an

integral combination of the elements of the other , and vice versa .

i1
= p, for ic¢ f2,...,2% .

1 = J:l

Explicitly , r, = dql , and r,

Conversely , p. = r. -Tr. .

i i+l i e
]

Hence , by Chapter 1 , we must find the elementary divisors of the
matrix (q.wd - I) for a representative element w from each class of

8'(o,W) , where w, is the matrix of the action of W on A, with

d

respect to the basis _f&d.

§3.2. The matrix Ld(ﬁ) .

We'have seen in Chapter gxthat in the case of the Chevalley groups ,
thé set Hl(03W) of equivalence classes corresponds ta the set }:(W)~ of
conjugacy classes of W . Now , in groups of type Aé' W ?; <§5€+1 , the )
symmetric group on (0 +1) letters , and fhis is another reason why this

group tends to be the first to be investigated .

It is well known that there is a 1-1 correspondence between the

conjugacy classes of (§5Q+1- and partitions of €41 , due to Young . - .In

fact the group W acts upon V by peranutations of the basis {ei fti

Let = [A1’22"°°’kt] be a general partition of {+l1 such that



t
Z Ai ={¢+1 and llé 125 ces £ ;\t . Then we denote the corresponding
i=1

conjugacy class of W by C?. . Following the work of Carter [6] ,

this has a graph of the form A;\ a1t AA gt et A2 -1 °
1 2 t

A representative element of C4 1is the element 'w such that :-

egr—>e, —r . . . — €y > &,

€54 € 4> . . t—>en X bt—> €A
/

€ e\ r it Ealar2a 0 - - > 25 datVh > Sa ¢+t

Ear- o tdp 4l B> Cy 4 Q42> Y LTS, U el WRDE' V|

Then w acts on A’d in the following way with respect to the basis

J\'d HE e o , where kd =841 .
[-‘T N CoT g
! ‘r_ _____ ._l,_.l__x; ! ; ! _4: k
i ! t 1 N i i
rdi=ti . -l L2
1ol IR
. ' | P L.

W, = [ S ; T -:

d b oy ’ | l |l
IR NN RN
il [N
EERNERE RN .

] el LoO]
| T T
o | 1.
P R
Ll .0
L I I N Y

Hence , the matrix (q.wd - I) can be obtained and this reduces to the

matrix Ld(A) upon diagonalisation over Z , where



Ed P ] T
4 ?N @) ?h &) ?9., &) ol L

Lol g b .t ]

v« [ R T e

I _ ‘;‘y—.‘ 4o 1
NS - S I . .' sl -..4}__.. %

I N T O S B - 5T #,b,'co,)*

_,wv' e L T SR ) i o —~¥A§“)J

RSN
where z = = [q + 2q + oeee + (xi—z)q + (Ai-—l)_] and

. t
fn(q) = anl + oo + 1. We note that (q-1)z = :E§ £, (@) - (@+1) ©9,
1= .
i

The matrix Ld(m) appears to resist all attempts at a general
diagonalisation which accounts for the incomplete results for these groups .

However , in the next few sections , we consider some particular cases ,

beginning with the groups Gsc,K .

§3.3. The groups Gad,K and Géb,K .

We consider the groups Gsc X and , equivalently because of
’
Corollary 1.8 , the groups Gad K ° These groups correspond to the

situation d = 1 , and then the natrix Ld(l) quickly reduces to the matrix’

UL ] T e

=1 )

. Sl T
1 - IS SO TS AU DR SN N S S B ’

L et Bl

IREEEERE M%k-(w)




by the following operations 3-

t+1

(1) (q—l)r2 to r, (ii) =3 T .to r, , using the expression (%) ;

"

(iii) Removing (r2,cl) . To diagonalise this matrix Ll(A) , We need

the following Leumma .

~

Lemma 3.2. Consider the_submatrix L = éX -1 0 fuﬂq) of Ll(ﬁ) ’

Y
0 q*1 faq)

0 0 f,t(q)J

and let v, = (ﬁl,l2) be the greatest common divisor of Al and 1\2 .

: : T 2, s -
Then L reduces to the matrix (g _%i(q -1) 0 0
(q *-1)
1
0 q -1 f£.(a)
0 0 fxt(q)
ot -l
Proof. If k2 = a, 31 + bl
A = 8,.by + D,
bl = 813.132 + b3
bn_2 = an.bn_l + bn
bn—l = an+l'bn s, so that bn = vl, and bn+1 =0 .
bif, Pi-1, ai-1 bs_
Let ¢, = -q 1[(q Y YT s o+ (g l) + l] . Then by the sequence
of operations (1) c;.r; to T, if i is odd ,
(2) c;.r, to 1) if i is even , beginning with i =1,

we can reduce the iLatrix L to a matrix of the form

b' A b. 1
Lo = g =1 (P-1(gh) (q)
(qPi-1) by
b, pV) A1l Pi4l
q 1 (g7-1)(q" -a ) £, (q)
(qbi+l‘-l) P
0 0
L £, (a)




T

After the (n+1)th operation , we have the matrix L ., , where
b =0 . Hence ,
n+l
i v, h .
R 0 fvl(q) , and the result follows .
Al 2
o (4 ~_‘1r)(q"\ -1)
(q 1-1)

0 0 £, (q)

) o

We are now able to solve the problem for the groups GSc K after
H
introducing some notation . Let ?\::Y}l,xz,...;xtl be a partition of
(£+1) , and let v = (11’12""Xt) be the greatest common divisor of the

A. . Then define v, = (11,12) and Vv, = (vi_l,ﬁ ) for i=2,...,8,

i i i+l

so that vy = (v ) =v . For , certainly such an s with

s—l’gé+l

1£ s<+t exists , by definition of v .

Proposition 3.3. Let w be a representative element of the conjugacy

class Cs of W(Ae) , where A = [1l,ﬁ ,...,Rt]‘ . Then , with the above -

notation , the corresponding maximal torus T = of the group G K(q) has
4

elementary divisors , when 7v is ad or sc , equal to :

. . s : .
ey = (11(@P1) , e, = (@ B, e, - (0 TR @)
V1 v s =
(g"t-1) (q 2-1) (q -1)
€1 = qV-1+..;+q+1 y egp = (éks+2_l) berey o = (qmt_l> .

Proof. By Lemma 3.2 , it follows that we can reduce the matrix Ll(ﬁ) to

A
obtain the first elementary divisor e, = ﬁql—lg(éxz—l) and we are left

(q 1-1)
with the matrix



Ll(x)l =

PIEEREERE v
q'. : : i ! ; g’v.h)
| Ai i ; i X

Ay | R R -
i Yl — ; 4‘!(’)
t i L 1 ’L . ; .
| ! ] ; f R
T i
] &t@')l
4
— : f . 23('}
= l‘ﬂ: o !_ ,j_, 1 I 1' ’I l { 1__

We can continue this process until we have obtained the first

elementary divisors e, = (g l_l—l)(q

i)

(g

Aisl

we are left with the matrix

LN

Now if we subtract the final

[V T T"“T“?" fa
S T ¥(3L
T '“ﬂsk T g
T T | A
IR 1 :
i S I, L .
T T
[ ] T :\bt-l‘ : ..
' ‘ A a1 4@
[ ! R
I ! T
L e fa, )
oL cod b b ]

=1) fOr i = 2,.0e,8 .

, sSince v
s

Then

= V .

column from the first column (q-1).

times , and add the intermediate columns to the first column , then we can

reduce this matrix to

L ()¢

il

=TT L P
o |l ; &(Qﬂ
L | ! |

!

T Agi
4

% 9. ﬂ — gl
NN RN
Do oo

i b sk}
. — 4 %ﬁm
[ ! :

-.at ; ;

L | 2
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Now , since Vv = (11,12,...,§t) , 1t follows from Corollary 4.6 that
since v }i for all i , then fv(q) £y (q) for i=1,.0.,t and in
i )
particular for i = s+3,...,t . Hence , by operations on the first row

of Ll(ﬁ); , we can reduce the matrix to

')t—l_l’q'kt_l) i

—1,oot,q_

. p)
diag (£ (a) , ¢"°

Hence , the result follows.

Although the results in this case are not quite as simple as one might
expect , in practice it is generally possible to arrange the sequence

ill,...,)t} so that the sequence {vl,...,vs§ becomes quite short .

Examples (i). If )\ =[2+1], so that t =1, it follows that v =¢+1 .
Since s = o , it follows that there is just one elementary divisor in this
case , vigz. e = q£+..,+q+1 .

(i1). 1f X =[4,6,8], then v=2. Now v = (4,6) = v, so that

s =1. Hence the elementary divisors in this case are

ep = (f-1)(a%1) = (Pn)(e®-1) , e, = (ar1) , ey = (® A1) .
2 . .
(q°-1) '

§3.4. The Coxeter tori in the groups G

K ° )
Considering the previous results and Corollary 1.8 , the fact that

the tori in all of the groups G corresponding to a particular class

n,K
of )g(W) have the same order (a consequence of Proposition 1.4) might
seem to suggest that such tori have the same structure also . Al though

we have been unable to obtain complete results for the groups Ay, we now

consider a special case which demonstrates that the structure of the tori



clOo

«
N

corresponding to some class of )f(W) does depend upon the isogeny type
of the group concerned .
We have discussed the Coxeter class of W in Proposition 2.2 and

we define a Coxeter torus of Q" to be a maximal torus of Qx K which
»

K

corresponds to the Coxeter class of E(W) under the bijection Q of

Theorem 1,2, We now discuss the structure of the CoxeterAtori in the

various groups qnd . for 4 a divisor of (¢+1) , where G is.of type
’

AQ . Now the Coxeter class of W corresponds to the partition

2\ =['>‘l] such that }1 = (€+1) , since this is the only partition of (€ +1)

which corresponds to elements not lying in any Weyl subgroup of W .

Lemma 3, The matrix Ld(ﬁ) in this case reduces to the matrix
qd-l+...+q+l 0
Proof. The matrix Ld(A) = [q -1 k] in this case , where
-d z

7 = (qe—l+ 2qe—2+...+(e—l)q+() .
Let y = ( (qd)k_2+ 2(qd)k-3+...+(k—2)qd+(k—1) ) . (qd—l+...+q+l) , so that

the operation y.c; to c, reduces Ld(l) to

1
' T, dyk=l , d\k-2 d
(q-1) (@) +(a ) kg + 1 .
d\k-1  d -2 ., d- '
-d ( (@) " +evetq +1) . (g %+ 2q 3+...+(d—2)q+(d—1) )
. d-2 d-3
By the operation -(q "+ 2q +...+(d—2)q+(d—l)).rl to r, , and then

multiplying r, by the unit -1 of 2, this matrix reduces to

q-1 '(qd)k-l+...+qd+l .

q  +e..tq+l 0




J11.

a; 0
Lemma 3.5. Suppose that B =

&5 %2

abelian group G , and that e = (al,az,aB) - the greatest coumon divisor

is a relation matrix for an

of the three integers al,az,a3 . Then B is equivalent (in the sense
of relation matrices) to the diagonal matrix diag (gl.az.e-l,e) , and ,

consequently , G is isoﬁorphic to the group Ce x.C -1

alQaz.e L]
Proof. Let a =af.e for i =1,2,5 so that (a', ') , and
al 0
then B = eI . B' , where B' = 1 . Since the matrix el is in
al al
3 2

the centre of the group GLZ(Z) , we may just consider reducing the
matrix B' .
1 —_ ] 1] ]
We assume that a; > 0, and let 8l = (ai , aj) so .that (a , ak)_l
for i,),k distinct . Then we proceed by induction on the modulus of the

leading term of B' .

1 0
Suppose that a! =1, so that B' easily reduces to .
1 0 al.a}
1 L l‘ 1
Assume now that al >1l. Then al3 L al .
Suppose first that aiB = ' . Then a'l , and B easily reduces
t
to the matrix & 0 . However (a',aé) (a', ') =1, so that
0 aé-
there exist u,v e Z with u.ai + v.aé =1 , Hence
1 0 ai 0 1 0 ai 0 , 1 o0
. . : = , which reduces to
u 1 0 aé v 1 1 aé 0 ai al

Suppose now that ai3<< ai , so that there exist u,v€ Z with

u.aé + V.a) = 13 . Then v' :' c1® ° ai3 ua;
- '
' a3/ai3 1/a13 aé as 0 ai-aé/aiB

. 0"
and we have reduced B' to a matrix B" = 1 b such that 0 < bl'< ai
b3 P2 <




12,

a

and (b.,b,,b,) = (a!_,al.a! ') = (gt at) =
177°2°73 13’71 2/ai3’uaz) - (813’82) =1
x, 0
We assume for our induction principle that for matrices X =
X, X
3 2

with (xl,x2,13) =1 and 0L x; < 8] , then X is equivalent to the

1l 0

0 xlx2

diagonal matrix . Thus , by induction ,- B' is equivalent to

0 b.b t ot
0 al.a

1 0 '
[ } = [} 0 ] = A . Thus we have found integral unimodular
172 2 ' .

matrices P,Q such that P.B'.Q = A . Hence ,
e‘ 0 e 0

tat = -
0 alaze 0] alaze

P.B.Q = P.(eI).P™ . P.B'.Q = eI . A = 1] .

The final part follows obviously .

Lemma 3.6. The Coxeter tori of the groups G a (q)’ have the structure
K
?

. - {41
Cel XACez , with elementary divisors e; = (d,—a—,q—l) and

2 -1
ez = (q +ceo+l)oel .

Proof. By Lemmas 3.4 and 3.5 , it follows that the matrix Ld(x) is
e | 0 O
, wWhere

equivalent to the diagonal matrix ¢ -1
0 (g +...41).e

4

a1 dyk-1 a :
e = (q +ooo+1, (q ) +f-a+q +1 N q—l) = (d,k,q—l) .

If w is a representative of the Coxeter class of W , then it
e 0

follows from 53.2 that the matrix (q.wd-I) reduces to - : Al
) 0 (q®+...41).e

Hence the Coxeter tori have elementary divisoqs e, = (d,¢+1,q—l) and
. d

= (g8 -1
e, = (q +°..+l).el .

Example. Obviously , in the gréups GSC X when d =1, it follows -
?

that e, = 1, as we have already seen . The first non-trivial examplé
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P

occurs in groups of type A5' , where A-sc /'Aad =2, If we let

4 .

d

K0 = GF(5) , tHen there is no collapsing in the groups G . The only
. . 7‘- ,K

proper divisor d of (+1) is 2, so that G > is a Chevalley group
x ,K ;
In this case ,

of type A3 distinct from Ga and Gs

d,K c,K *

e, = (2,2,4) =2, and e, = (53+52+5+1).2"1 =78 . Hence , the

(5) is c, gc78 .

structure of the Coxeter tori of the gi‘oup G

K

However , in the groups Gsc,K(5) and Gad,K(5) , the Coxeter tori have

structure 0156 ¥ C, x 059 , as in Example (i) 9f§3.3.

$3.5. A generalisation .

Finally , we discuss the case of those maximal tori of the groups

G 4 which correspond to the conjugacy classes of W(AI_) with elements
™ ,K .

inside a proper Weyl subgroup of type W(Ae-l) ~ @2 . These classes
correspond to partitions AN = [)‘1’}2""’;\t+l] in which some ')i =1,
and we may assume that }t+l =1, This amounts %o assuming that the
action of a representative element w of Cgl on V leaves one

co~ordinate axis fixed . Then we let N\ = [')'l"AZ""”At] .

Lemma 3.7. The matrix Ld(‘x') in this case reduces to the matrix.

TUTTTT T
! i

PN ENEERE RN
T -
- ] ’ B

T r : Lo ‘
P P S T SR
L (A = MR+ VRN I R R V%) B
oo T
A .
| ~AA’, i ' ! : !
i i i | ; B i i o
T - T A '
T T )
R A
—— e ho
L i L et e




Proof. Fromh§3,2, the polynomial entry fﬁ (q) of Ld(?Q) becomes
i _ t+1 ' ’

fa (q) =1, when

=1 . Hence , by elemehtary operations , we may

t+1 :

t+1 :
1]

remove (rt+2,ct+2) and transpose ry and ¢y to reduce Ld(A ) to the

matrix Ld(?v)' above . . ' [:]

Proposition 3.8. Let w be a repreéentative element of the conjugacy
| B -

‘class C,, of W(4y) , where 2 ‘[3‘1"“')””1] and  Q,, =1.

With A defined as above and the notation of Proposition 3.3 , the

corresponding maximal ftorus Tw has elementary divisors

e = (D), ey = (o (@), e = (o SR
(q 2-1) (12-1) o (q)

_ (At

v -1 As+2

where e = (q—l,v,d) .

Proof. We can proceed as in proposition 3.3 until we reach the stage

[EQIIDS RIS (U SIS

'
i

If , as before , we subtract the final column from the second column

(q—l) times , and add the intermediate columns to the second column , then



adding the first column to the second column 4 times , we can reduce

the matrix to

La(a)y =

X}

?’;;_ ‘(‘\')

. 2 ' g : @ GJ
LT T

Proceeding as in Proposition 3.3, we can reduce this matrix. ta
diag (éks+2_1 ooy q?t-l , L ) , where

L = q-. l d . ]

o £ (q)

By Lemma 3.5 , L reduces to diag (e,(qv—l).e-l) , where

e = (a-1,f _(q),d) = (q-1,v,d) , and the result follows .

B ( ) .
We conclude this chapter by considering the isomorphism between

groups of type A3 and groups of type D3 . In both of these , there is

a group G distinct from G, . and G . since ‘Cssc/'45ad &
’ [

K 4 °

Using the results of §3.4 , we see that the Coxeter torus 6f the group of

type A, has the structure C_x C , where e = (g-1,2,2) .
3 © (c13+c12+q+1)e"l

So e =2 in the case of K having odd characteristic , and



.16,

—
i

‘This class corresponds to the class with signed cycle-type [Z,il

in the group W(D3) under the above isomorphism , and the results of‘§4u4

<

show us that the corresponding torus T is isomorphic to C x C .
W g+l q2+1

.

This does not contradict the previous paragraph since. (q+l,q2+1) =2 if
g is odd . However , this does suggest that the result of $3.4 may
not be in the best form , since , in this case , the polynomial

(qg+qe*l+...+q+l) factorises as (qd+...+q+1).((qd)k_l+...+qd+l) .

.

That this does not happen ( and therefore that the results of § 3.4
are in the best form) is demonstrated in groups of type A35‘, where

k=d =6, for the field GF(5) . Our results show that the Coxeter

torus has the structure 02 x.Ct , where ¢t = 536—1 . However , a torus
8
. - d dyk-1 d
with elementary divisors of the form (q +...+q+1) and ((q“)" “+eeetq +1)

would have a subgroup isomorphic to C6 x C6 .



CHAPTER 4. Chevalley Groups of type By, Cl and D, .

§4.l. In this chapter , we consider the groups GI‘K , Wwhere T is
’

a faithful representation of a complex , simple Lie algebra of type

B, » Cl or D, . The reason for the simultaneous treatment of these
groups becomes apparent when one considers the description of the conjugacy

classes of their respective Weyl groups , and we refer to [6] . For ,

let W =Ww(B,) = w(C,) . The elements of W(C,) operate on an

¢

orthonormal basis {ei}i-—l of XR by means of permutations and sign

changes . Each element w ¢ W determines a permutation of the set

{1,...,1} which can be expressed as a product of disjoint cycles , and if

y

('jl'jZ"'jr) is one such cycle , then w operates as

e. br———3te. ——p>te. P —p e, —— te, .
1 Iz I3 Ir 9
The cycle is said to be positive if wr(ej ) = ej , and negative if
1 1
wr(ej ) = - ej . The lengths of the cycles together with their signs
1 1

give a set of positive or negative integers called the signed cycle-type
of w . Two elements of W are conjugate if and only if they have the
same signed cycle-type . A positive }i—cycle [}i] is a Coxeter

element of a Weyl subgroup W(A;\ _1) s0 is represented by the admissible
i

graph A (with A the empty set) , whereas a negative /xj.-cygle [}AJ]

A.-1
i

is a Coxeter element of a Weyl subgroup w(c ) so is represented by the
. #
graph €, . If we define the partition [’X,}l] by = ['X

/'3

}I: [}‘—l""’;s] , then &Je recover Young's classical result that there is

l’“"g‘t] and
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a 1l-1 correspondence between the set ,t(W(Cﬂ)) and pairs of partitions
(1,r) such that |'x| +|/A| = 4 .

Now let Wl = W(Dl) . Then W is a subgroup of W , and an

1

element of W 1lies in wl if and only if it has an even number of
negative cycles in its signed cycle-type , ie. s 1is even . Two elements

of wl are conjugate if and only if they have the same signed cycle-type ,

except that if all the cycles are even and positive then there are two
conjugacy classes , The admis sible graphs representing the classes are
as follows . The positive i-cycle [1] ‘has graph Ai—l and the pair

(a;.,)

of negative cycles [15} , with 1i2» j» 1 , has graph Di+j

where Dk(ao) = Dk . A general graph is obtained by combining such graphs .

§4.2. Modules in V .

We know that , given any maximal torus T of GN,K , X(T) Q'A_R
and ig generated , as a Z—mod;).le , by the weights P(R) of ® .
Whichever repre’sen\tation ® is , )&i is a'real vecto_z; space , say V ,
of dimension & . Let {el""’el\ be the natural basis of V , with
scalar product (x,y) on V for which this basis is orthonormal , and
identify V* with V by this product . Then X is embedded as a
lattice in V , and we define certain 2Z-modules in V as follows .

(1). Let M, be the Z-module with basis {eil), ie. M = él Ze, .

1

2
(i1). Let M, be the submodule of M, consisting of elements x = igl'gi'ei

2 1

e ,
such that E Ei is even . Let Mé " be the submodule of Iv12 generated
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L e
by th\e set {ei_tej} . Then 1£’ € e = (i E.)ez modulo M! , and

=1 “i7i i=1l “i 2
= 2
. , . . .
since 2eL € M! , then i Eiei € M2 if i E"i is even . Hence
. . ~
Mé = M2 . Since Ml = <M2,el> y, 1t follows that Ml / M2 = 02 .
. L=
(iii). Let M, be the Z-module generated by M; al.ad RQu=*% 7 ¢ -
. 2
Then x = Zy Kiei ¢ M, if and only if
(a). 2Ei €z and (b). (‘gi-‘gj) ¢z forall i,j el1,...,e} .

~
Also , M3/Ml—02.

(iv). Let M, be the Z-module gemerated by M, and @, . Then it is

clear that I, / M, = C, . Furthermore , if { is a multiple of 4,

Q
then M, is the set of elements égiei which satisfy (a), (b) and

‘(c). é € ¢ 22,

1

Lemma 4.1. If M_*: Homz(M,Z) is the dual module of a module M, then :-

" :
M"_t = M ; n* =1"I3 jand M 4 =M, if € is a multiple of 4 .

4

Proof. Trivially , Ml is self~-dual because the basis {ei} is

orthonormal under ( ’ )

. 4
Suppose X = ﬁ: €. e, € M* . Then , since M is generated by

=1 “i7i 2 2

{ei_tej , we have (Ei_-tEJ)éZ for all i,j €{1,...,8Y . Hence , since
2
this is equivalent to (a) and (b) , it follows that I-12 = M3 and M2 , M3

are dual .

) ] C
. * = .
Finally , M, = {x = i—*fl"Eieicsr«x3 s Eiezz} . If 2 is a

multiple of 4 , then M4 is self-dual .

We consider the modules Mi to be embedded in V , and let

¢:V——»V be the involutive automorphism T: > - & .



Lemma 4.2. (). If & is odd , then there is precisely one Z-module

This is M, .

M satisfying M2 cMe M3 . 1

(ii). If L is even , there are precisely 3 Z-modules M satisfying

¢

M2 cMclM They are M M and © (M4) .

3° 1’ 74

M._ . It is clear that the abelian group M3 / M2 has qrder 4 , and
there are two cases .
(i) If L is odd , then n. Qe © H,&=n =0 (modulo 4) . Hence ,
M3 / M2 % C4 , and there is precisely one subgroup M . This is

‘ 2

generated by M2 and 2Q¢ = jéei , so since £ is odd it follows that

M:Mlc

(ii). If € 1is even , then n. € }Izézé;p is even , and
n. ‘:(%) € M,&==$n is even . Since et M, + *z(%) + M, , it follows

that M, /M,%cC,xC,, &nd M / M, contains 3 distinct , proper

2

subgroups . Since ((. +M2) + (r(K")H%) = e, +I\i2 y it follows that these

are <Iv12, <Q7Z‘= M, <I‘{2,*c(Q) > =z(M4) , <M2'el>'z = M,
Hence , in this case , since T fixes M2 and M3 , then - acts on

and z(m4) , and fixing

the subgroup lattice of M3 / M2 by permuting M4
- O
Definition. We say that Ml is situated diagonally between 1‘12 and I"I3 .

Consider now the fundamental roots T{ = {pi} and the fundamental
weights Q = {qj‘ of a root system i, . So that Aad = 2zJ\ and

N =zQ).

Sc
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Proposition 4.3. If GR'K is a group of type Begy, Cp or De , then.
- ’

A, is one of the modules My, My, Mg, M, oor 'c(M4) as follows .

M
le I My I, 1»13 M, v(1,)
| ————
t ad Asc
Cy ASC Aad , where 7\'1, 7‘2 and 7\‘3
De A’x Dog | D A-;r A?\‘
Leven 1 2 3
L,
2 A PAN D
L odd h 7\'1 ad scC

are 3 faithful representations of a complex , simple Lie algebra of type

Dl which we describe below .

Proof. (i). If =, is of type B, , then P, =€ -~ e for i< @

1 .
and pp = e, . Hence, Aad =M, . Also, q. = é e, for j<?
and q = QQ . Hence Asc = 1"13 .
(i1). If =, is of type C, , then p, =e -6, for i< and

J
Py = 2¢4 . Hence, Aad = I'12 . Also qj = k£=_‘[' e for all j< ¢ ,

soo A =M. .-

sc 1

(1ii). If =, is of type Dy , then p; = € = e . for i< & and
J

Py = e£_1+ee . Hence Aad = M2 . Also , qj = k£=l' ey for j<é-1 ,
Q= T (Q‘) and q, = C . Hence Asc =My s
When g is simple of type By or C, , then Asc / Aad ~ C, end

there are no submodules A such that Aadc A == Asc . Hence the

isogeny class g consists solely of the groups Gad,K and .Gsc,K .
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However , when g is simple of type DQ y then § contains groups other

than Ga and Gs For t_hen Asc /Aad = M3 / MZ , &nd , by

4,k c,K °

Lemma 4.2 , there exist submodules Aadc A < Asc such that

Asc /A = C, . Then A A,‘ for some faithful representation

7* of g , and , correspondingly , we have the group Gvr which is
?

K
distinct_ frém Gad,K and Gsc,K .
Following Lemma 4.2 , we have 3 representations 7rl, 7!’2 | and ® 3
which we define by A.“. =M, A\ =M, and AT = ’C(M4) . We note

1 T 4 3

that only the first representation occurs if £ is odd .

By §1.1 , there is an isomorphisi between S = ker (xad sc) and the
b
group Asc / Aad modulo p-torsion , so there may be some repetitions

or collapsing in the groups G‘K.,K

. Assuming otherwise , if \Si is
i

the subgroup of S corresponding to 7\’i , there is a radical isogeny

between G‘A‘.

1’K and Gsc,K /‘Sl . In fact , we have :-.

<z,z‘ : z2 = z'2 =12,2'] =1 ¥C, xC ’
2 2
<z:z4=l>“='04.

if & is even , then 3§

1]

and if @ is'odd , then %

In the case when € is even , then the two elements z,z' play a
cymmetric role , in that there exists an automorphism (inducing the

automorphism ¥ of Lemma 4.2) of GSc which interchanges 2z and 3z' .

,K

Hence , if %2 = <£z7 and X3 = <Lz'S> , then there exists an

automorphism between Gﬂ_ K and G"_ X which induces & .A_"_'—-—-* A“ .
2 3 2 3
Hence , we need only consider the submodule A'r = I-‘I4 .

2



|.il
bn the other hand , the element (zz') , which generates \Sl and is

fixed by the above automorphism , is essentially different from z and z'

(except when & =4 , in which case G.x = Spins(K) has an. automorphism

K

which cyclically permutes z,2z' and zz' - see Chapter 7.) . ' We say that

3

; is situated diagonally in T .

84.3. Description of the weight lattices

Suppose that A.,‘ has Z-basis /\_ , and that with respect to

——

this basis , the action of we W 1is given by the matrix w, . Then ,
in order to deteraine the elementary divisors of the maximal torus Tw in
the groups GW,K(KO) , we must take a representative w from each- element
of ﬁ(W) and compute the elementary divisors of the matrix (q.wA_ -1).
We have éeen in 84.1. that such a representative is given by a pair of
partitions [3‘,}1‘] of £ . So , for this chapter , we take a generel
element of )Z(w) with representative w and signed cycle-type [},/1] .
Furthermore , by Proposition 4.3 , in the groupsvunder consideration ,

A'N is one of M., M,, M, or M, , since we can exclude (M4) because

172" 73 4

of the automorpﬂism . By Lemmas 1.7 and 1.8 , we may exclude one of a

pair of dual modules , since the elementary divisors will be identical in

such cases . Hence , we need only to consider the action of w on Ml s

M and M4 to determine the elementary divisors of the maximal tori in

3

the groups Gw,K(Ko) of type B,, C, or D, . In fact :-

Proposition 4.4. Let w have signed cycle-type [3,/7] « Then the

elementary divisors of ('q.w—I) acting on the module M are those of the



corresponding tori T_ in the groups Gi K(Ko) according to the table :-
3 ’

M
. M., M

G ——;-———“-?———zj—_i_—= |

By ad sc

. , Where a
CQ sc ad
D
ad, sc <, , K

leven st ’ 2’73

Te
¢ odd M ) ad, se

given type G and module M fixes the representation W .

Egégi. From the above , and Proposition 4.3.

8§4.4. The module Ml .

In this section, we consider the gction of w upon the module Ml

with basis .Jle = ieig , and we make the convention that if w is

e
i=1
as above , then w acts on _/\]_ as :1-

LT N N N e - W I L an A - R P W Y
:

elxl,}'.’-...‘ly&h-ﬂ — e,an/(,,...-../;;.ﬁg_.__; . e . Helﬁ\l"jﬁ""““j‘,i"""e'l'n\l‘*/‘l"'“"")‘j-v""

for all i € f1,...,t} and jefl,...,s'k , where }o=}l.o=0 .

~

Proposition 4.5. The elementary divisors of (q.qk.—I) are

A1 A2 At M1 s
e; =4 -1, e, =4 -1, ..., e, = q -1, i1 = ¢ +1 .00, g™ q}l +1.
Proof. Let MRI =<€X.+>,,+~--+M--‘” - WS I R €;|+..‘.+'\¢> ,

and I-‘I)l') =<€|M+};.+...-\7lj_‘+l » 2]'.\\+}L.+---+/A:].\+2 ) e—}'k\+jL.+---+}A> .

Then each QXI , M}J is w-invariant and so is (q.w—I)—invariant. Also ,

1 . S ..
(@ A ¥ » _ . .
M, = (i=1 M) 69(5%3 hf ) : Hence , (q.wJLl I) is equal to the diagonal



block matrix diag((q.wﬁ—l)lmll y eee (q.viAl-I)lM)‘s) . _

{ N . 7
Now (q.w_A_ -I) Mli = F—l q| ——3m rl. , and j
1 . a -1 ) . .
qQ . 1
BRI Ai 1
L 4 " L. 4 -
. - . -1 g -
(q.v& -IiM}‘J = | -1 Q| —— | 1 .
1 q -1 -
Q. - 1 ; : -
q =1 q'"]+1J

A
Hence , (q.w, —I)—-)diag(qrxl—l,...q —l,qu+l yeoes c{ls+l) .
1

[

« §4.5._  The module 1'13 .
In this section, we consider the action of w uponthe module M

3 ’
‘which is generated by M, end @y . Then, a Z-basis _A. of M3 is
-1 :
N = {el""’et-l’ Q,} , since e, = 2{1— ) e‘_j . We now consider

different caseé .

Case (I). 1In this case we assume that s3» 1 , ie. that there is at least
one negative cycle , and for thevmoment we also assume £hat there exists
gome J € fl,...,s} for which /Mj + 1. Hence , we may assume that

/Ls >l .

o .
We let M and M)L'J be as in 84.4 , except that for j =s , we
Ps < L
ha‘Ve M = G‘M_.,}kl.....v;s.‘*\ » ) » e‘.‘\‘*y“_‘ = e,,__, » Q_L .
Then I\'I'\1 and M}"J are w-invariant for gll i € {1 ,...,t} and all

jt—.{l ,...,s—l't . However ., w acts on M}Ls in the following way :-



SRl putee o Pt > G vk Asar2

.

.

. -

4.10.

€y, ¥ > e, = —€—€— - - =& +2Q9_

&t
Ra - > = é Eptper- P Q"?'

H
|
P}

As before , (qw-I) Mmi

'q—l

wnenever Jj#8 . Then it follcws that the matrix (qw—I) reduces to the

q

q and (qw-I) IM}‘J = |-l -é

q -1

matrix
. VY CTITTTL e S i e ey At aunlis setle S o e
Ly [ BEEEEENEREREEEED
YT J}if"i“w;;m-""""l
: : ; TR
: >y | I i ! ; } : ;
SR R S . b
! ! ! o i : ! ' ; ' ! ! .
T B : N T RS S
MOR) = 1 ' e e
T o o 1l ! {1 N )
% i i ' : v : : f i i i : i . i
| : ! : —'l ! ! ' ! ' 1
‘ I 1q'lz T 1 . %,(&),
HN RN NN tw
! BN | s
3; f T M1 . : T
: | | . SRR 2 RN ‘ L)
| | ) | T ] 7 : . : ) —
i i f , ; I ﬂ s
T L ; i T N A A I
. . : { ! H i i N ! of § : t o,
T i H ; » T i . ‘ ' i '
% ’ . | T A O T OO PO N N N
! i R P P (a)
', e ; ] q X
L RN HEEEEERME %"’7"
T - T T s
| NI N I AT e
NN . | IS T I O
-1 s . . ‘
vwhere fn(q_) = qn +...+q+l , for any positive integer n , as in Chapter 3 .

We have essumed that }157 1, so now let us assume that /Uj =1 for

all jé{l,...,s} . Then w:e.l-------'pe‘j for all j € {IM+1,...,’L},

J

so that W|M)“j=—I for j+ s . Now I-‘ljls= <Q"~>Z’ 1)



.11,

w :g&_h———9 e te teeeteny - Q& . Then

— T
-\ ? AW} | | 9

g , ! !

i :ll I )

| | i a !

(qw-I) = | | Tq al ! B ’
’ N L
B TR ) ;
IBEDEEEE L)
IR Ll
[ ! R HE |
L X
B i E ; . s_qi_l ! }o
! i o .
4 ! i : j
| o] »

! L gt ©

a | | P
T i i L el
__'b_._fh...i_. J i %.._L_

which can be diagonalised to M (§,F0 . Hence we do not need to consider

this case separately .

As in Chapter 3 , for any sequence {al,...,anl of integers , we
denote the ideal of Z that‘they generate by <<al,...,an§> . We also

denote g.c.d.{ al,...,ank by (al,...,an) .

Considering M (A,ji) , we see that , in order to diagonealise it , we

need to consider whether (i) fq (q) € <q)‘i-1 , q}‘s+l>
i

(q) € <<§”j+l , qfs+1:>, .

and (ii)

f
/ujf)%

So we make the following notation for any non-negative integers

a,b. Let J_ = La¥1, ¢"+1> and T, =<1, >
’ . ’

Proposition 4.6. For any non-negative integers a, b "such that

atb )
. d
d = (a,b) , we have (i) Ja,b =<<é +1, 1+ (-1) d >>'; and



.12'

&

(i1) Ea,b = <qd+l . 1+(-1)E > .

Proof. (ii) Assume that (i) is true . Then we have
a+2b

' - -1
Ea,b = <<ga-l,qb+l>> = <<ga+b+l,qb+1:>-= <<gd+1,1+(-1) d ’ :>’ vy (i)

=.<<§d+l,1+(-l)a -1.:>>.

(i). = Suppose that (i) is true for (a,b) =1 , ie. suppose that

a+b-1 .
Ja,b = <<é+l , 1+(-1) t>>. (1) . Now let a,b be any non-negative
integers such thét (a,b) =4 . Then a =.a'd and b = Db'd and
(a',b') = 1. Hence ,
! d\b! d '+h' -1
To = L@H* s, (@D a> = G, 1e(-)® >, oy (1) . .
’ . ﬂih =1
Thus , J_ , = <(:9d+1, 1+(-1) d >>, and it remains for us to show (1) .
*rM.,

Consider the Buclidean algorithm for finding the greatest common divisor

of a,b. Then a

slib+r2

b = s2.r2+r3

r2 f 33.r3+r4
Ta-1 = %nTn™Tns1
r, = sn+l'rn+l , where rn+1 =1.

s, T ' s, T
Then <{o*1 , "1 = <(d") t.q %, Q%41 = 4-1) a2, P>
r S
b 2 1
Py g B >

<<é+l , 1+(—1)a+b—l‘>> , by this process .

I

Hence the result follows .

Corollary 4.6. <qa-l ’ qb—l> = <1d-l> .

Proof. Assume first that (a,b) =1 . Then , if both & and b are odd ,




N

it follows from Proposition 4.6 (i) , by replacing q with -~q , that

L1, qb-1> = <qd-l> .  On the other hand , if one of & snd &

is even and the other is odd , we may choose &a to be even , then by

replacing q with -q in Proposition 4.6 (ii) , it follows that

' <<:qa—l ’ qb-l‘>> = <<éd-lt>> . .- The result follows as in the proof of

Proposition 4.6 (i) . [:]'

Proposition 4.7. Let a,b be any non-negative integers such that
da = (a,b) . Then ,

f (q) = ,{1 if a is odd and q is odd} modulo J . .
a ‘ a,b

0 otherwise

Proof. We have two cases :-

. _ . . - d -
(). Suppose that 'a / d=2c is even . Then Ja,b = <<§ +1>> , and

- o 2a 2dyc-1
£ (@)=a"T o raed = g% = (D)% = (%) (ah). [(2H)° roeera?i ]
q-1 g-1 q-1 :

= 0 modulo J .
a,b N
. . = /4
(11). Suppose that a / 4 is odd , so that J_ . =.<q 41,23 . Then

we must consider the parity of q .

L]

n

If q is odd , then ;'fa’b =<2>, so £.(q) = a wodulo Fa’b = 2>

On the other hand , if q is even , then 3; b = <<}:> = 2 , so that

s

fa(q) = 0 modulo Ja’b .

Corollary 4.7. With a,b" as above , we have

fa+b(q) = il if (a+b) is odd and q is odd& mcdulo Ja,b

0 otherwise

Proof. This follows since J

atb,b = Ja,b *




p—_—y .l .

Suppose , for the moment , that we have fixed }As . Then we order
} LI ]
the {&ii such that 1’ .,}g are odd and :Xg+l""’1tb are even .
We also order the {/&Jk such that f.or jé{l,...,hl , we have (fj*'/‘s) is

odd ; and for j€{h+1,...,s-1 , we have (u.+m ) is even‘..
Pitlst

Returning to M(a ,/'1) y we can perform elementary row and \‘column
operations using r, and Cirs to alter the (i,s+t)-entry of M(a ,/‘1) )
for ié{l,..‘.,t+s—l} . Then we can use Proposition 4.7 and its Corollary
to obtain i
Lemma 4.8.- (i). If q 1is even , then

M(a B) —> diag(g‘l—l,...,q')‘t—l , ’u1+1,...,q}‘s+1)
(ii). 1If q is odd,then
Ag+l ,...,qat—-l, q/‘h+l+l’”” s

H(A,A) — diag(q +1, M(X,E)') , where

(o T T T T ; Ty
%1_:‘( i | i i ! i | } ! [ 1
IEEREEEEN EENE
| ey b 4
}I(A,—)' = : A o ! I v
4 ST -y " ; i ’
P ! cob b ; ‘-
) A H . m | .
T T 1
- ! i RN i ; | : ;
. N I B B N
b gM :
. I S B quT‘—‘ i
| b i
" T ¥ I T )
{ HEERR R
R i A Y
SRR Loan 4
1 ! ] t H i A [ ; i
Lol T N 5
; : ' . . s
P ! q.+]
; l ‘ I A
) i i i H ¢
JUUTR UG TR U D b i U S

Proof. (i). If q 4is even , then , by Proposition 4.7 and Cor.4.7 ,

f,x (q) = 0 modulo J. s and (q) 0 modulo J .

i ‘ "i’/‘s /u’,]+/*s ﬂj’/‘s

Hence we can eliminate the (i,t+s)-entry of M(A,B) , for all



ie {1,...,t+s—1}, and the result follows .
(ii). .If q is odd , then , in the same .way » we can reduce the
(x, t+s)-entry of M(ﬁ,}‘h) to :-

A, (modulo 2) if ke {1,...,t}

‘/‘(k—t'?‘s (modulo 2) if k e {t+l,...,t+s-l}.‘

[

Hence the result follows . ‘ E:
Henceforth , we shall assume that gq is odd . Then it remains to

consider the matrix M('A,;L)' , and we assume , for.the moment , that

g€ + 0 . Then we can reduce M(ﬂ,/'i)' to

B e S s 2l
Ty {
—a=l
CoL
N i 4 1
N |
Q-
; A

ERIEEEEENEEEE

']

cede

U SN

M(:\,F) "

]
:
! b A B AR A
(S T T T O A S O A

Lemma 4.9. Let a,b be any odd integers with d = (a,b) , let c be

any integer , and let ?a,b,c = <qa-l , (qb—l)(qc+l)> . Then

(qb-l) = 0 modulo 1 , as long as q is odd .

a,b,c
Proof. By Corollary 4.6 , <qa-l , qb—l> = <qd-l> , 80 that if

a=a'd, then I .  =(qg-1). <q°+l » £,.(q )> .
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Now , <qc+1,fa,(qd)>2 <C+l,qa—l> = <q(a’c)+l,2> by Proposition 4.6

<2> since q is odd .

il

However fa,(qd) = a' =1 modulo 2> . Hence ,

<qc+l , fa,(qd)> = 2 and Ta,b,c = <qd-l>- .

b - = .
Thus (q -1) = 0 modulo Iobc ' 28 claimed . D /

Lemma 4.10. Let a be any even integer , and b,c any odd integers
. - a b c |
with (a,b) =4 . Let Ia,’u,c = <q +1 , (q -1)(q +1)> . Then., as

long as ' q is odd , (qb-l) = 0 modulo I .
a,b,c

a
Proof. By Proposition 4.6 , Ia b. e (qd+l,2). —%Jl— , qc+l>
P (q"+1,2)

4 7 ¢
2<g_2___ , q+l>.

Let e = (a,c) . Then

a
<fhaty 2 Gt

]

<qe+l;2> by Proposition 4.6

<2> since q is odd .

However , since q is odd and a 1is even , then qa+1' = 2 (mod 4) .

]

a’ a ’
Hence , 9—2—”—1— =1 modulo <23 , and <9—23‘—1 , q°+1> =z .
= b =
Hence , Ia,b,c = <2> end (q -1) € 1 .

a,b,c D

Lemma 4.11. When q is odd , then M(A,/'A)' diagonalises to

diag(@ 21, ..., 60, T, L P (L))

Proof. By considering M('»\,fk)" and Lemma 4,9 with a = 'a\i for
1€ {2,...,g} , b =IAl and ¢ =}As , Wwe can eliminate the first (g-1)

entries of the final column .



Suppose now that p% is even for all j € {l,...,sl . Then /‘s

would be even so that h = 0 , and this case can be treated as above (since

¢ is artibrary in 4.9.) . Hence we may assume that some )&j is odd ,

and we choose /ps to be odd .

Then , for j e {1,...,h} , we have )*j is even . By considering

M(A,»)" and Lemma 4.10 with a = . for j & {1,...,h , b=A. and
/e Ve

1

c =/us , we can eliminate the remaining non-diagonal entries of the final

column . Hence the result follows .

We have assumed that g & 0 , and if we assume otherwise then

[~ i ST N
w,E = Y e , which diagonalises to
NN TN
L ! el l 1,_ _—
ALl
o= |ELT T T -
R AT
. S O SO
T e
Ll ]

Lemma 4.12. Let a,b be even integers with 4 = (a,b) , and let ¢ be

. an odd integer . Let .Ia b.c =‘<<:qa+l , (qb+l)(qc+l)i>> . Then
bd ’ A

(qb+l) = 0 modulo I , as long as

a,b,c q 1is odd .
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Proof. We have to consider two cases :-

a
(i). When atb is even , and I = (qd+l). u,q°+l> = (qd+l).I ’
d a,b,c d
q +1
say .
atb ' a ‘g% c
(ii). When = isodd, and I = (q +1,2), ,q +1
a,b,c . d
(a +1,2)
a .
=2.<%'-1-,qc+1> = 2.J , say , since
q is odd .
Now I,7 2 <a%1,¢°11> =<q(a’°)+1,2> =<2 , since q is
odd .

' a
Now a is even so that 92—*'-1- = 1 modulo <2> - as in Lemma 4,10 ,

and hence 97111_ = 1 modulo <2> . Thus I =J = 2 , and so
q +1 '

= d i 4 ! — 2 > .
Iab,c = <q +1> in case (i) and Iab,o = <2> in case (ii) .

Hence qb+l?'—-0 modulo Ia

,b,ec *

Lemma 4.13. If g =0 and q is odd , then M('A‘,/R)' diagonalises to

gisg (4241, ... P, (L 241)(501)) .

Proof. If M, is even for all j ¢ f1,...,s% , then h =0 and
“\y s . Ms
M('A,/a-) is just the, 1 x 1 matrix {(qd "+1.) . Hence , we can choose .
to be odd , so that /“j is even for all jJ € {l,...,h} . By considering
Akl B 3 — a —
M(X,5)" end Lemma 4.12 with a =@, for jé f2,...,hat , b =, end

c =}AS , Wwe can eliminate the non-diagonal entries of the final column .

We :collect these results in :-

Proposition 4.14. The elementary divisors of (qw—I) are -



(1), {qh A2 At

-1, ~-1,...,9 -1,§u1+1,,..,qgs+1} if q 4is even, or if all Ai
are even and all‘}A. have the same parity .
(ii). { l,e00,9 —l,dﬂl+l,...,d”s°l+l,(é\l-ll(dgs+l) } if there exists
some Ai , say 31' which is odd , and f‘s is odd (unless all /“j are
even , when )*s is even.)

(iii). {q”\l-l,...,qh-l q}‘2+l,...,q{‘s 1, ( 1),(cf‘ +1)} if all 5\ are

;
even , and there exists some /uj , say /Ms , which is odd , and/&1 R

vhich is even . [:]

This completes case (I) , and now we turn to :-
Case QIIZ. In this case , we assume that s =0 , ie. that all cycles are
positive . Then we can assume that in > 1 for some i , so we choose
. Ai . X
At »1 . Then we define M as in 84.4 , for i € {1,...,t~ll , but

we define

< NP WP AR BS & Qz>’z .

_ _ N
Then (qw—I)I o= [ q] for ief1,...,t-1} , endon W °

w acts as :~

w e e
* a LI ‘_—+ * o0
)+ . +>%_1+1 AlT +At_l+2

Cloz M &
)-—-—'-—-—P - - el A Rl
€L-1 - Tees €-1%2 @,

R >



Then (qw-I) diagonalises to

o - T T T
qf = E 2’3‘—‘&) : O
(o i
» —o—
o=} L@ o
2 i
4 o
H) = b ] .
| ot
X 1 ;
] N W C M -
o .5
) { T
Lo i
— i
Q1 q-1]
L | _J._ A i J_J
Lemma 4.15. Suppose that not all cycles are even . Then M(})

pY Py
diagonalises to diag (gq l-1,...,q t-1) .

Proof. If not all cycles are even , then we can choose '}t to be odd ,

and then

Qi REEE ({%l){;(ﬂv;g
o e
ke
(2) > { | ‘ ’
SR &;;*‘réio L
ey |
_ M
and thé result follows . ‘ ' .‘[:]

Hence the only remaining case is when w has all cycles even and
positive , the case which causes the correspondence between pairs of
partitions of £ and the conjugacy classes of w(pk) to be not bijective.

So we assume this situation from now , and we have the following lemma .



Lemma. 4.16. (i). Let {al,...,an} be any set of integers , and let
d.. = (a.,a.) . If we write a, = d,.a', , then there exists some
ij i’7) i ij ij

xef1,...,n} such that ap; is 0dd for all je {1,....,2}" .

a, a,
(ii). -If , further , q is odd , and I:a a = <g i y qQ J-l> , then
i 285 5

- 1
a. -
g -1 = 0 modulo I;_ka for a1l je{1l,...,nt , and k asin (i) .
2 184

Proof. (i). Let d = (al,...,an) . Then ai/d nust be odd for some

ié {l,...,n} , say k. Since dl.dkj for all j & {l,...,n} » then
al"jl ek/d,so al'{j is odd . _‘
d . A
(ii). By Corollary 4.6 , I! . =4 ki1, <f , (a) , 2 £ (q)
B8y 2 8;j ik y

jaly) =1 for all 4,5 {1,...,n} , then

<fa. (a) , 21, (q)>=<‘a. (q),2> by Corollary 4.6 .
ij Ji ij .
=4{! ,,2> , 8ince ¢ 1is odd .

1)
Since al'cj is odd , then I' a =<gdk3—1>. Hence v,
A j 2 .

Since (a!
1

ak’
%
g -1 =0 dulo TI! .
5 moqQau ak’aj
Lemma 4.17. (i) If q is even , then M(D) diagonalises to
'/\]_ At
diag (q "-1,...,q4 -1) .
A1 Moy
(ii). If q is odd , then M(X) diagonalises to diag(q -1,..,3?'—,2) ,

where ﬁt is such that At.(ii,ﬁ )"l is odd for &ll1 i € {1,...,t-1§ .
Proof. (1) This follows by elementary row and column operations , since

(g+l,9-1) = 1 .



TN
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(ii). In this case , M(A) diagonalises to diag (2,M(1)') , where

rh
"1
- |

-
=
ab?

B

').'a
t

o) = | —T- I .

g S TR
- . q'l "\ i&-z:-!-u

! |

By Lemma 4.16(i) , we know that there exists k € il,...,t} such that
A0 )"! is cdd for all i € {1,...,t} . Choose k = t , and then
Lemma 4.16 (ii) shows thét we can eliminate the (j,t)-entry of M(A)' for
all j ¢ {1,...,t—1} , by elementary row and column operations with cj

and r

P Hence the result follows . , [:]

~

This completes the section for M3 » and we have :-

Proposition 4.18. The elementary divisors of (q.w~I) with respéct to

M are $-
’ A A
A
(i).{q 11,9°%1,...,4 t-l,q)‘l+1,...,¥‘s+1} if q is even , or if all
Ai are even and s » 1 with all /uj having the same parity .
2 2 I M- A
(ii). {q.2-1,...,q t--l,q l+l,...,q S l+1,(q l—l)jdﬂs+l)} if there exists
A . . . .
some 2& , say 1 which is odd , and./us is odd (unless all /&j are
even , when /*s is even) .

(iii). { qﬁl-l,...,th-l,q}‘2+l,..;,{*S—l+l,(q/‘1+l),(c{‘3+l)} if all }\i are

even , and there exists some /Aj , say//;s , which is odd , and /*l which

is even .



.23,

LI Ay . s
(iv). { g -1,9 -1,...,9 -1, 2 if all cycles are even and positive ,
2

. -1
where >'t is such that }t'(mi’)t) is odd for eall Ai ﬂt .
Proof. From Proposition 4.14 and Lemmas 4.15 , 4.17 . . [::]

This concludes the section relating to the modules - M2 and M

3 *

a-1

From now , we cease to make use of the notation fa(q) =q “4...+q+l .

84.6. The module M4 .

In this section , we consider the groups G wherg G is a

~K "’
group of typé Dy for £ even , and = is one of the pair of "dual"
representations 7T2 and 7r3 of g mentioned in.$4.3 . We héve seen.
that we need only consider one of these groups since fhey are isomorphic .
In fact , these groups tend to be rather ill behaved , and , for reasons
very similar to those of § 3.4, we have been unable\tq obtain complete
results for these groups . This is'due to the fact that , with the

rather complicated basis of .Zl"., viz. the module M4 » the aatrix
(q.qm—I) does not appear to be readily diagonalisable over Z[g] to give
a general result , although it obviously diagonalisés over 2 in any
particular case .

Hoyever, we do have results for the classes corresponding to the
semi~Coxeter classes of W(IQ) . These , in themselves , are rather
interesting in thaé they show how these particular groups behave differently
erending upon the value of £ (modulo 4) . We saw how M is self-dual

4

if € is a multiple of 4 in Lemma 4.1.




Lemma 4.19. The set N = {rl,...,r&k is a basis for the Z-module
g

=,

M4 , where T = QQ= + 3 ei » T, = e;-ey for i€ {2,...,4.—1} and-

+1
rL = 262 .
)

Proof. This follows immediately by definition of M'4 as in§4.2, and

since’ M2 is generated by {el-ez,rz,...r_a} . We note that %2 € Z

- = - - - - - - 1 . e -
and that e, -e, = 2r,- 2r, 3r3 (Ll)rc;lw 3L 5 -

1
/

We now consider the case vhere w 1is a representative of the

particular conjugacy class corresponding to [1,;] , Where t =0, s =2

and /I =[I Z"-T] . This is denoted in [6] by De(ai__l) , with
Dl(ao) = D, the Coxeter class of W(Dz) .7

Then we can choose w to be the element which acts on {ei}_ by :-

w oS >, — . ... .. e e .
& m > &2 - - - . > —s -€i 1

Then w acts on /. by :-

N> M- -ty = NG 20 Al GGy 4t @‘3)‘4—'*&})*:“

"&w' > erey = 20-G-25—. .. —GDv, ~@D - = &) 1y, “(%) Yoo

Yin > €2 Cin T Vi

Vpgb—> €iy + €y = T ¥ 4 - .+ N+
2 = 2¥i ~LViaa— - o o = A - .

r‘_ e —.264%’!

Vi =€ =€y = AN AN+ 2G4 . . ¥ A+ AT+, L @3) 7, +G’—}) L/}

.‘
}
x
|
|



Then the matrix (q.w 1) is

%

(411 " 24, 20 | ! |
. P S VY AL l
24, g -t | c2e ! e

) o T

. g
| A
4G z)a,I (1-2)14 ;

i .(:»:')L... S )1 B ) D N .
G LR S )L -‘l SRR
'“3"qr : L ‘:\'— _1.1,‘],_' - i ™

! ! f] ‘J " l : !

J IR ; ‘—l‘ 4 ~2s,
(L-3)q, L —0q @4y | | 1 @ Lol -2
(1), (IR CLY I R

1 0 I I B L O IJfL_J.

This readily diagonalises over Z([qg] to the matrix

X = q +1 0 ,
x q2—1+1

[ L-2 0 £ ‘ g -i-1

where x q ke 2)q+(£-1) +0 |4 +ooodgil
To diagonalise this , we need to know when x € <<g +1,q +1>>-_ Jl 0-i?
in the notation of Proposition 4.6 . Then we have :—
Proposition 4.20. 1In the groups Gﬂ'K(q) y Where -« is eitner =« or
’

2

7t3 » then the torus Tw for w corresponding to the class Dé(ai 1) has

elementary divisors as follows :-

(i). e = (qi+1).(qe—i+l) if &=2 (4) , i=0 (2) and q ié odd .

(ii). e (a'+1) , e, = (qg—l+l) otherwise .

[
]

2
S |
Proof. By Proposition 4.6 , J, , . = <qd+1 , 1+(-1)d > . where



4.26,

a=(2,i) . Then two cases arise , viz. either &€/d is odd or <&/d is

14

even . Let J =J. . e
il-i

(). 1If 4/d is odd , then J = <<qd+l,2j> and we have to consider the
parity of gq ; If é\ is even , then J =~<:l>> =2, so x &€J and so
X has two elementary divisors e, = (qi+l) ey = (q(-i+1) . However ,
this case does not really occur since zﬁssc/;C;ad modulo é-torsion.is

This accords with

trivial and the groups Gx X all collapse to Gad K *
’ b

the results of Propositions 4.5 and 4.18 .
On the other hand , if q is odd , then J = <27 = 2% . Then
X = [1+2+...+(l-l)] - Fp(e-i) (module J) , '
| = £i%:;l (modulo J) .

So x = 1 (modulo J) if ¢ = 2(4) and i = 0(2) .
0 (modulo J) otherwise

Hence . the elementary divisors of the maximal torus Tw are -

= (¢t) o (Pt) i g=2(4), i=0(2) and q is odd .

[
|

(qe—l

L= (a+1) , e, = +1)  otherwise

[0]
]

(b). If ¢/a is even , say & = 2xd , then i/d is odd , say

i = (2m+1)d. Hence , J =<<qd+l>>. Let n = k-m-1 .,

How , q?‘1‘1+...+q+1 = qd(qznd°l+...+l) + (qd_l+...+l)
d 4 2n-2 - -
=q (qd+l).(q -1).(q"" +q2n 4+...+q2+1) + (qd l+...+1) , as in
g-1

Proposition 4.7 .

Hence , %2,[qz‘l'l+...+q+1] = %Q(qd-l+...+l) modulo J. (1)



Furthermore , [q2—2+2qg-3+...+(L-2)q+@2-1)] = y(qd+l) + kd(qd-1+...+l) ,(2)

where y = L—d- + 2qL_d-3+3q?-d—4+..................+ddg-2d-1
t—2d-2 + dqt_2d_3 +.....................:_..+dql-3d-l

+(d+1)ql"'3d-2 + (d+2)-q',e"3d-3 +.........................+2dq‘t"4d-l

+2dq£ -4d-2 | 2dq,2'4d‘3 +....................,...+2dq""5d‘1

+(2d+1)q@‘5d‘2 + (2<1+2)q‘_e"5d"3 Feeeoraessecnneonsosonans +3dq4 ~64-1

.

2 . _ . . -
+(k—'l)dq2d. + (k_l)qud 3 +.ooooo-oo.--.o.uoooo'oo."'(k-l)dqd 1

H((x=1)a+1)q%?  +((=1)a+2)a¥ 4eriiiiiiiine s at(ka-1)

By (1) and (2) , and since kd = +{ , it follows that i

[q?‘2+2 +...+(Q -2)q+(4- 1)] %' e_i_l+...+q+1]

da-1

Nl

So , in this case , X diagonalises over Z[q] to give the two elementary

= (¢ t)

divisors e; = (q*+1) and e,
Since the condition £ = 2(4) and i = 0(2) implies that % is odd ,
the result follows as stated . . [:]

This concludes the chapter on Chevalley groups of type B,, C,, and



CHAPTER 5. Chevalley groups of type (}2,F4,E6,E.7 and E8.

55.1. In this chapter , vwe consider the groups

QW;K y Where g 1is one

of the exceptional couplex , simple Lie Algebras , ie. of type G2 ’ F4 ,

sc,K ’ and

E_ , E, or E

7 g In such cases , G is either G - or G

6 n, K ad,kK

the latter case arises as a distinct group only in the case where g 1is

of type E6 or E Hence , since :E:v =::£: in these cases ,

7 L]
Lemmas 1.7 and 1.8 show that in 8ll these cases we need only consider the

action of w on XA\ where w 1is a representative of each conjugacy

ad ’
class of W .

In this chapter , we make use of Propositions 2.1.and 2.2 to find the
matrix s from the graph F' of § , in those cases for which we have
shown fhat § generates Aad , ie. for the Coxeter and semi-Coxeter
classes of W . Using further methods , the results are complete for
groups of type G2 or F4 , but not for groups of type En , due'to the
size of the graqups W(En) . In fact , we are only able to give the results
for the Coxeter and semi-Coxeter types in E6 and E7 . We also show how
many of the results for groups of type E8 can be obtained in terms of the
results for the groups of type D8 , which are not situated diagonally ,
viz. the groups treated in §4.6 . However , the results there not_being
complete , we are only able to present slightly more resﬁlts than in the

other two cases . We omit most of the details of diagonalisation .




5.2, Type G2 . This case is straightforward since W(GZ) is

isomorphic to the dihedral group of order 12 , and so has 6 conjugacy

classes . If we let J\ be the system of fundamental roots ipl,pz} with
corresponding diagram
51 P>
] 2 2 6
~then W = <<w1,w2 Wt o= Wy = (w w2) = 1,>> » where w, = w_ .
Moreover , representatives for the set ;:(W) are R = {l ’ (w1w2) ’
(w,w 2 (w,w )3 W W } with respective graphs
172 ' 172 L T2 '
~ ~

{¢ , G2 ’ A2 ’ Al_+ AI ’ Al , Al} , where X denotes a graph consisting

of long roots and P a graph of short roots .

Considering the action of cach w ¢ R upon the basis J\ of z:.ad ,

we obtain. the following results :-

TABLE 5.1.
$ -type _ Elementary divisors e,

g e, = e, = (a-1) .
2

Al el = (q "l) .

~ 2

A e = (¢°-1) .

Al+'Kl el = 62 = (q+1) .
2

’ A, e.1 = (q"+q+1) .

2

G, e, = (qS-q+1) .

HOTE . The class Al + Ki consists of the unique non-identity central

element W, o= -1 , where v, is the unigue element of W of maximal length .




5' L]

§5.3. Iype F, . The group W(F4) is soluble of order 1152 , and it
has 25 conjugacy classes with admissible diagrams as in [6] . A system

of fundamental roots of type 'F4 is

71{ = { Py = 92-93 » Py = 63-64 ’ p3 = e4 ’ p4 = % (el-ez—e3-e4)-} embedded

in a real 4-dimensional vector space V with natural basis { ei} 4 .

_— i=1
Hence , ACS

Aad"_—'mj .

ad is generated , over Z , by iel,ez,e3, Q4:k', so that

Now , the root system :E: of type F, has a sub-systen :E:' of type

4
B4 , and so W = W(F4) has a Weyl subgroup W' isomorphic to W(B4) , (in
fact (W:W') =3 .) . THence, for any conjugacy class Cp-of W with
admissible diagram ™ such that TH is also admissible for W(B4) s We can
find a representative w € Cn such that we W' . Now , a fundamental
] 1 ] | B —_ -— - -
system J{' for =, is T\ = irl = ej=e, , e~z , €x=¢, , €, } S0
that W' acts on zﬁsad by permutations of the {ei} and by sign changes .

Hence , the action of such an element w is known from 84.5 , and is noted

in Table 5.2 .

From‘Tlee 5.2 , we see that there are precisely 7 classes (see §7.5)
3
not dealt with in this way , viaz. )f = {7,13,16,18,20,24,25 } . Now there
are 3 maximal Weyl subgroups of W, viz. W' ¥ W(B4) , W= W(C3) x W(Al)
and W™= W(Az) x W(Iz) , (see [3] ) . Then Class Kos. 13,20 are
entirely contained in W" , Class Nos. 7,16,18 are entirely contained in W™,
and Class Nos. 24,25 , being the Coxeter and semi-Coxeter classes

respectively , are contained in no proper Weyl subgroup .




5.4,

Now , in the case of C}ass Noé. 7,1%,16,18 aﬁd 20 , the corresponding
® does ﬁot generate zﬁ*ad , and so we cannot use the results of
Propositions 2.1 and 2.2 . Hence‘, we must calculate P directly in
these cases . However , by Proposition 2.2 , we know that éE does generate
AN ad in the case where ¥ corresponds to a Coxéter or semi-Coxeter class .
Hence we may calculate LE in the cases of Class Nos. 24,25 from the i

grapk , as in Proposition 2.1 . In the remaining cases , we refer to

Proposition 4.18 .,

It is well known(87.4.) , that there exists an involutive
automorphism T of ‘Cxad in this case such that ¥ -normalises W . Id

fact , by Lemma 2.4 , ¥ acts on Z(W) by permuting the 7 in orbits of

length 1 or 2 . Then we have :

Lemma 5,1, Let w be a representative from a conjugacy class [' , and

T
w! a representative from the class I"" . Then 'I‘w = Tw; .

Proof. It is sufficient to show that (q.w.~I) and (q.w! -I) are

equivalent , (in the sense of §1.3.) , since then
A

A /(aw-T) AN,

IR

2 [(q.w'-I) I . Now we may choose w' to
ad ad
- -1 4 -1
be w* =TwT , and then (q.w.". -1) = l:,r.(q W -—I).‘C,‘ .
Since 7 1is an isometry , then = 1is integral unimodular , and the result
foliows . . t::]

Proposition 5.2. The elementary divisors of the Chevalley groups Gw K(Ko)
?

of type F are -those of Table 5.2 .

4



TABLE 5.2.

Fo.of §-—type of [CI Signed| Elementary divisors e, c*
Cless C cycle-
C type
1 ¢ o 1 [1111] el=e2=e3=e4=(q—l) . 1
' 2
2 A o 12| [112) el=e2=(q-—l),e3=r(q -1) . 3
= 2
3 751 0 12 [1111] el=e2=(q-1),e3_=(q -1) . 2
% 9 (o _ (a2
4 2Al,2Al 18 [llﬁ el'-(q 1)192“( qfl)’eB-(q l) 4
5 A1+Kl 72 [123] e1=e2=( q2—l) . 5
6 A, ~——e 321 17 elz(q-l),e2=(q3-l) . 7
~ _ _ 3_
7 A, OO 32 el-(q—l),ez_(q 1). 6
= 2
8 B, s 36 [112] e1=(q—l),ez=(q-1)(q +1). 8
. . ' - ;2
9 3Al:2Kl+A1 o o e 12 [211] e1=e2=(q+l),e3=(q -1). 10
10 | 2a,+% ;3% ¢ o O 12| [1TT3] | e, =e.=(q+1),e <(q%-1) 9
174140 o o o 17%27\aT/» 83 :
o~ *——t—o {4 2 -
11 | Ay K +B, 5 72 [117) e—l=(q -l)?e2—(q +1). 12
~ Ot o) 2 .y 2
12 Ej34,+B, . 72 | [22] e1=(q —l),e2=(q +1). 11
13 C3 Ol 96 el=( q-l)(q3+l) . 14
14 B, e | 96| [13] |e=(a-2)(41). 13
15 A2+2§1 e——e 0 96 [ﬁ el=( ©-1)(g+1). 16
16 LY —o o | 96 el=(q3-1)(q+1). 15
4A :4Kl . .
l pAR—
17 2A1+2K1 o} 0 1 [llll] el=e2=e3=e4=( q+l) . 17
] 0
18 A2+K2 ——e o—0 | 16 el=e2=(q2+q+l) . 18
X +a, OmemO==0 @
371 . : 5
19 a+E o o | 36 [T | e=(at1),e,=(ar1)(a%41). |9
B2+2Al fo——") Y .
BZ+2K1 «—D o)




TABLE 5.2.(continued)

Mo.ofj¢-type of ,—-—1 : ICI Signed Elementary divisors e c*
Class C cycle~
C type
~ o—G==0 o ' 3
20 03+Al; D4 32 el=(q+l),e2=(q +1) 21
_ —a—D 0 - ’ 3
21 B3+Kl; D, 32 [13 el=(q+1),e2=(q’+l)- 20
22 34( al) ; O 12 [’2‘2‘] el=e2=( q2+1) 22
DACE .
]32+B2 (Q]
T oc=»
2 ; [z (g1 3
3 B, 5 C4 —e—eo |144 | |4 el—(q +1). 23
OO (IZ500 ’
| 4 2
24 Fy —e—0—0 | 96 e1=(q -q°+1). 24
”
25 F4(al) O} 16 e1=e2=(q.-q+1). 25




Proof. -
(1). Class Nos. 7,13,16,20. In these cases , | ' is class No. 6,14,15

and 21 respectively . Hence , we may use Lemma 5.1 to determine the ei

for such classes .

(ii). Class No, 18. 1In this case , | is fixed by = , so we cannot use
: r r r r

1 T2 Tz T

this method . However , r‘ is the graph o

, and we

may choose & system E = {rl = =%, Ty =Py » r3 = p3 s r4 = p4} ’ ?here

® is the highest root of ﬁ . A representative of mn is

W= W_W_ W_W , and so we may calculate w diréctly .
r4 r2 rl r3 - iy

(ii1). Class Nos. 24,25. In these cases , we use Proposition 2.1 , to

calculate LF directly from the graph , knowing that (Y generates A\ ad

and we give an example here in the case of £ ~type F4(al) . Then

r

ris 4

3 2 4
Then A = 21 ;L e , so that BC = 3I, .
W ' -1 3 2
SR O S 2
2 a1, A 4
Thus L 2 0 -1 =1 and (q,wi—I) = {2q-1 0 -q -q
0 2 2 - 0 2g-1 2q -q
1 -1 -1 0 q -q =-g-1 O )
2 1 0 -1 2q q 0 =q-1

So we diagonalise (q.ws—I) by the following operations :-



(-1 ¢ - 1
0 2g-1 2q -q
-,
‘_‘1'"—’4 qQ -9 -9-1 O
2q T q 0 —q—lJ
[ 2
Mqwntn f-3tel -ael 0
> 2 -1
ek | "473 "4 4
5 0 0 —q2+q-l

Hence , the two non-unit elementary di
2
(q°~q+l) .

(iv).

Remaining Class Nos.. In thes

5.6,

. 1,1" fo vy 2q-1 2q -q
). 2q.% % 2 2_,1
Q). Rawore ("-:ﬁ) -1 -1 T a
—2q2+q -2q2 q-1
2
G). ~C ey N -q +q-1 Y
Gv. R‘W (';,Q'A’ 0 _q2+q_l

visors of (q.w§ -I) are both

e cases , we refer to Proposition 4.18 ,

where the elementary divisors for Tw are calculated for an clement w with

signed cycle~type [?s,}l] acting on M

These are straightforward to

3 3

calculate , but we note fhat in Class Nos. 4 and 11 , there are two

cycle-types corresponding to each clas
cycle~-types has all its cycles even an

individual treatment in Lemma 4.17

according to Proposition 4.18 , if we

(a). ['i,;]=[22] , then e
(o). [%.x]=[wii] .

then ei

Since (q+l,9-1) =1 , and C, x
2
rewrite e, = 2.g-1 = g-1 = e! , and
1 5 1
Similarly if qf 3(4) by taking g+l .

2

s . In these classes , one of the
d positive , a8 case which necessitates

As an example , in Class No. 4 ’

take

2, e, = gzél ’ e3 = q2—l H _

(g-1) , e) = (q+1) and e5 = (q—i&q+l) .
Cn =4 Cmn if (m,n) = 1 , then we may
e2=q+l=eé , if q# (4) .

In case q is even , then for w of signed cycle~type [3,;11,

(q.w-I) has elementary divisors { q

A1

At

M1
—l,oac,q

-1,q +1,ooo

It .

\
\
1
\
1
1



5.].
However , that causes no disagreement with Table 5.2 , since, for example

x C ¥ C .
o1 T (Blien)

Similarly for class Y¥os. 3,8,13,14,15,16 and 19 . Hence the results of

in Class No. 15 , (q3-1,q+1) =1 so that ¢

Table 5.2 hold for all values of g¢q . E:] ‘

This completes the section on F4 .

\

85.4. Types E6 and E. . For the groups of type E

i 6 7

here are incomplete , due to the large order of the Weyl groups , since

Lﬁ(ﬂ)’ is 25 and 60 fespectively ,» &nd the structure of the maximal tori

Tw is determined orly for w a representative of the semi-Coxeter or
Coxeter classes of the corresponding Weyl group . To determine the
elementary divisors of TW in these cases , we use the results of

Propositions 2.1 and 2.2., and present the results in the following table

TABLE 5.3. .
P-type Elementary divisors e
cr 2
Eg e, = (q +q+1).(q4—q2+1) .
6
Eg(a)) e, = (q +q741) .
I 2 2 2
Ec(a,) e; = (¢7-a+1) , e, = (g7-q+1).(g"+a+1) .
6
E, e = (g+1).(q —q3+1) .
E (a ) e, = (q7+1)
71 1 _ '
2
B, (8,),By(b,) | e = (¢41).(a*-a%1) .
2
E;(az) e, = (a7+1).(g*-+q®-qn1) .
E.(a,) e, = e, = ( 2. +1) , e, = ( 3+l)
7 4 1 2 - q q ’ 3 q .

or E. , the results



These groups are the only ones considered in this chapter where the

isogeny class ; contains more than one distinct element , viz. G 4.k
, : ad,

and G . By Corollary 1.8 , the results are identical for these two

sc,kK

situsations .

i

|

§i._§. Type EB . In groups ?f type E8 ’ t_he results are more Adetailed
because of the nature of Aad = Asc , even though lﬁ(w)l = 112 in
this case . Let 2, be a rqot system of type E8 embedded in a real
vector space V with natural basis S_ei} ?:l , and let 7‘ bé ‘tvhe

fundamental system
- =e.- £i¢6 ;5 p, = D = —p =}
7-( = { P, = e;-e 3 for1<£i46 ; p7 e6+e7 5. Pg 68 Py e } .

Then the corresponding Dynkin diagram is

s :
and the highest root is & = e ~eg = 2pl+3p2+493+5p4+6p5+3p6+4p1+2P8 .

Hence , by [3] , there are five maximal Weyl subgroups of W = W(Es)l

R

viz. Wy ¥W(Dg) , W, = W(Ag) , Wy =w(a) xW(a) , W, o=w(E) x W(a,)
Wy ¥ W(E7) x W(Al) . As in §5.3 , for any conjugacy class Cp, of W
with admissible diagram 7 such that r is also édxnissible for Wl , We

can find a representative w€ Cp such that we W .



30

Although (W:Wl) =3".5, W is "large" in the sense that it meets

1

exactly half (ie. 56) of the classes of W in this way . If ﬁ 1 is

the subsystem of =, corresponding to W

1 with fundamental system

T‘-l = {pl,pg,._..,p,?, —S} , then wl acts on Aad by permutations and
sign changes and every element w corresponds to a’'pair of partitions

["X,)x] of 8, as in $4.1 . It is clear that Aadg M, , so that

the uction of w e W, on Aad is known from 84.6 .
Although the results are incomplete in that case , §4.6 does give the
elementary divisors of the maximal torus Tw when w 1is & representative
of a class of W which corresponds to a semi—Céxeter class of Wl .
Furthermore , for the 9 semi-Coxeter classes of W , we may use the

results of Propositions 2.1 and 2.2 to obtain Vg from the corresponding

graph 7 , since @ generates Aad in such cases ..

Lemma 5.3. The matrices (q.wi ~-I) are diagonalisable over Z[q] , with

the exception of § -type E8(a4) .

Proof. Thié follows a case-by-case argument. In the exceptional case

E8(a4) , the matrix (q.wi—I) diagonalises over Z[q] to the matrix

o®-a>+1 -q-1

0 q2-q+l

P is not diagonelisable over Z[ql , since fi(q)' = hij(q)-fj(Q)' + 3 for

some hij(q) ¢ 2[q 1f deg f; > deg fj E where the fi(q) are the

polynomial entries of P . Hence , the diagonalisation of P depends upon

el



.lo.

the value of (q+1,3) :-

(1). If (3,q+1) = 1 , then there exists some n € Z with

(a41)+3.n = #1 . Now P reduces to q6-q3+1 -q-1 , and
6 -
, a'+24%-q*-2q%4q-2 3
. . . - 2 6 3
this reduces to a matrix with one elementary divisor e, = (q°~g+1)(q -q”+1)
on premultiplying by the integral urimodular matrix 3 q+l .
1 -n

3.m for some m €& Z , and hence , as

(i1). If 3|(q+l) , then (g+1)

3 . Thus

6 2
sbove , (a°-q”+1) - h(a).(q"~q+1)
6 3 2 . .
m{q -q”+1) - m.h(q).(q“-q+1) = (g+1l) , and P reduces *o a matrix with

.. 2 6 3
elementary divisors e, = (g“~q+1) and e, = (q -a7+1) .
Thus , in the case of $-type E8(a4) , Tw is isomorphic to

if (3,q+1) =1, and to ¢ 5 xC 5 if
(g"-a+1) (g -q7+1)

2 6
(q®-q+1).(q%-a"+1)
3] (a41) .
However , suppose that (3,q+#l) =1 . Then , for

d = (q6-q3+1,q2-Q+1) y d = (3,q2—q+l) . Then :-

if g+l =1 (modulo 3) y, then ¢q =0 (mod 3) eand d = (3,1) =1,
if g+l = 2 (modulo 3) , then q =1 (mod 3) and 4 = (3,1) = 1,
again. Hence , C > 6 3 | is isomorphic to
(a°-q+1).(q -q”+1)
C(q2-q+l) ) C(qG-q3+l) .
Also , if 3 I(q+l) , then q = 2 (mod 3) and q2 =1 (mod 3) .

Hence , d = (3,0) =3 . Thus , whatever the value of q , it is clear that

T is always isomorphic to C 5 x C 6
N (a°-a+1)  (q®-a>+1)

L]
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following

We collect the results for the groups of type E8 in the
table :-
TABLE 5.4. ;
P ~type Elementary divisors e,
Dg e; = (a+l) , e, = (¢'+1) .
DB(aL) e = (q2+l) ey = (q6+l) .
D8(a2) e, = (+1) , e, = (q5+1) .
Da(a3) ey = (q4+1) y €5 = (q4+l) .
Eg e, = (q8+_q7-q5-q4-q3+q+l) .
E8(a1) e; = (q?-g4+l) .
Eg(a,) e, = (e®-qP+q*-a®41) .
E8(a3) e, = ey = (q4-q2+l) .
Bg(a,) e = (P-ar1) , e, = (a®-a%11) .
Eg(ag) e, = (B-ql+a-gted-gr1)
B(ag) | e = ey = (aaraan)
E8(‘a7) ey = e, = O ey = (a*-q%+1) .
E8(a8) e, = e, = e3 ='e4 ='(q2-q+l) .




CHAPTER 6. Steinberg groups of type 2A£ ,‘2D¢ , 2E

6 *

It was mentioned in $1.2 , that the Steinberg groups are the groups
GU for o a combination of a field automorphise and a graph automorphism
of G . Precisely how this is achieved , we explain now , and then we
spend the rest of this chapter in determining the s£ructure of the maximal
tori of such finite gfoups .

Following Tits [?3] , we let X G be any semi-simple algebraic group

)
defined over Ko and we extend the base field to obtain a group G defined
over K . Then Chevalley has shown that G = G"_K , where 7w 1is a
’

faithful representation of a semi-simple Lie algebra g . We say that

KOG is a Ko—form of Gﬂ

K * We are interested in twc particular types
’

of Ko—forms, viz.

(i). ¥Yormal (Chevalley, split) forms . We say that . G is normal (svlit)

K

(o)

over K0 if every conjugacy class of parabolic subgroups contains at least
one subgroup defined over KO . Then every simple algebraic group defined
over K has one and (up to isomorphism) only one normal Ko—form , Vigz,

Qw K - the Chevalley form , and this we have studied in {the previous
’
o]

chapters .

(ii). Exterior (semi-split) forms . We say that K G is exterior
)

(semi~split) if it has Borel subgroups defined over K0 . By Theorem 1.1l. ,

it follows that every semi-simple group K G is exterior . We will
)

follow the normal practice of giving these exterior forms the name




Steinberg groups , since K = GF(q) throughout .

86.1. BExterior forms . In this Chapter we are interested in the

I

exterior forms and we let G =G .
,K

Theorem 6.1. (a). The Borel subgroups of G are.all conjugate ;

(v). The parabolic subgroups of G are all connegted ;

(c). The lattice- of parabolic subgroups containing a given Borel subgroup -

B 1is isomorphic to the lattice of subsets of a finite set . In other

words , if P(i) y, for i€ I , denote the maximal subgroups of G which

contain. B , then the index set I is finite , and every subgroup containing '

B is uniquelykan intersection of the form P(il) P(iz) (im) '
R AN N--NF \

for (ip,...,i) € I ;

(d). Two parabolic subgroups containing the same Borel subgroup B are

never conjugate .

It follows thét the classes of conjugate parabolic subgroups are in

canonical 1-1 correspondence with the subsets of the finite set I .

See [23] . | D

Construction of the diagram D of G .

For all subsets J& I, we let d; = dim ({:}uP(l)) , SO dﬁ dim B .

Then , by 6.1 , it follows that di,j - d¢ > 2 and di - d¢ =1 for

i,jeIl. So we construct D by nodes corresponding to each i€ I , and

those corresponding to i,j € I are joined by a bond of strength

(dij -4y - 2) .



Suppose that X G 1is &any exterior form of a semi-simple group Gv\- K °
[s) ’

Then the Galois group r' of X/ K, actson G by X(aij) = ((x(aij))ij)
for ¥ €)' and some embedding of G in GLn(K) . Suppose. that B 1is

a Borel subgroup of K G defined over Ko . Then preserves B , and

0
hence permutes among themselves the P(l) . Since these are represented
by the nodes of D , we can say that r operates on o@ , and it is clear

that the elements of I induce automorphisms of D since
d . N = d. . .
5(1)’%(3) ~ 1,3
r operates trivially on 09 , then the P(l) are defined over

Ko , and so X G is a normal form , by Theorem 6.1 . More generally , if’
' o

l_: denotes the group of all elements of " vwhich induce the identity on D ,'
then the field Kl of the invariants of l“, is the smallest extension of

Ko for which X G is a normal form . We cell Kl the splitting field
1

of K G . Then Kl is a finite Galois extension of Ko , and its Galois
o

group A\ = r‘/ l"'l operates faithfully on DO .

Theorem 6.2. Let & be the diagram of a simple group G’ir K K1 a finite
’

Galois extension of K0 , and suppose we are given a faithful representé_tion
Q: D—> Aut(-f)) , Where A = Gal (Kl / Ko) . Then G‘JrK hes one
’

as splitting

exterior Ko-form and (up to isomorphism) only one having Kl

field , and such that , with respect to this form , JAN operates on a@ in

the given way. See [23] 0

L]




6-4.

NOTE. Since Ko is a finite field , then Zﬁ& must be a cyclic group ,

and this excludes the case 6D4 , where Z\ = aut(D) §<333 .

In Table 6.1 are represented all the groups of non-trivial automorphismsof

diagrams of simple groups . By 6.2 , to each of them corresponds a type
of exterior form . Once th: type G = Apy By 4o " of the diagram D and
the order © of the group A\ is known., then this group A and its action

on D are fully determined , so we may denote the type of forms in question

by - 5¢ . In the case we consider , it is clear that Kl is well-

determined as GF(qs) . Hence , since a given exterior form K G of type
o

8¢ is fully determined if we are given Ko and K. , we may denote this

1

exterior form by E’G , and its group of Ko—rational points by sG(Ko) .

o
TABLE 6.1.
z//////::j:::::::::::\\\\\\* 0
o —0- O ittt ieres a0 o 0 Ay
o- —O- -0~ o ceceaons ) 2DL
/—* 3 ~/4/~—_,\—-\\,“ ,
\\\\\h—— D4 o 0 1 O -0 E6
We are interested in the groups sG(Ko) , and these groups can be
obteined from the groups G(Kl) in the following way , where G = Gw K
b

The group rT operates trivially on the group G(Kl) of
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K,-rational points of the normal form . G . Consequently , AN r‘/r"
1

acts on G(Kl) , and the group of /\ -invariant points of G(Kl) is

sG(Ko) .

§6.2. The set Hi(oW) .

In this chapter , we are interested in the Steinberg groups

2 2 2 3 . -
D, and E6 , where §=2., 1In [’7] , it is shown that G(Kl)_

admits an automorphism o : xa(t)s—-) Xta(tq) , where = is the

permutation of the fundemental roots (ie. graph automorphism) of Table 6.1 .
2 . .

Then G(Ko) = G(Kl)cr , the o -fixed points of G(Kl) . If we let o= qe

be the corresponding automorphism of G = G (ie. the combination of

T, K
field and graph automorphisms mentioned in 8 1.2), then G 5 = G(Kl) .
o
Since (G 2) = Go_ , then dG(Ko) = GO_ , & situation we are equipped to
o o A

deal with , by Chapter 1 .

Let ﬁ, be an irreducible root system in a real vector space V , and

let A(=) end D(=) be as in §2.4 . Then , as in [-4] -

Lemma 6.3. The group A(=, ) / Ww(= ) (and hence D(ﬁ )) operates

naturally on Asc/ Aad .

Proof. If q € Asc and w e W(=,) , then q-w(q) € Aad . For ,
let w=w Then gq-w(q) = <q a’ >.a€Zacc A and for
a’ ’ ad ’

W= W eeeeW , we repeat this .
] &

Now A(=,) fixes Asc and A\

ad '’

By the above , W(=, ) operates trivially on. Asc/ Aad , so that the

result follows . D

and so operates on Asc/ Aad

i

:
|
L
f



This justifies our statements in 81.2 , where we impose the condition
on € € D(=,) that €(As) = A, . For, = operates on the

subgroup lattice of zﬁssc/ zﬁ;ad by Lemma 6.3 , and hence permutes the

A\ such that A /AN e A .

So we now consider the situation of Chapter 1 , with T} a Ko-split

maximal torus of G = G and suppose that Ew is a ¢ -fixed maximal -

K ’
torus of G which is twisted from T by we W . From the previous

section we have seen that we must restrict attention to G of type Ay,

Dp or E, , and that the representation 7 is such that v(Agx) = Ayx .

%

Then the action of ¢ induced to X(T) = zﬁ;, is ¢ =qe . Furthermoré y !

the action of o induced to X(Tw) is given by woc”= gwz , by
Proposition. 1.3 . By Theorem 1.2 , the Gorconjugacy classes of o -fixed

maximal tori of Gw K are in 1l-1 correspondence with the elements of
’

H1(03W) . So we must investigate the nature of Hl(d,W) , Wwhen W is of

type Al’ Dl or E6 and © is as above .

Now G' acts on. W according to the way ¥ € D(=.) acts on W in
the semi-direct product W(=, ).D(=L) = A(=£.) , viz. by conjugation in
AZL) . So we let w* =<V, > < A=), so that W = W.<<7

(semi-direct) .

Now in the case of a normal form , Hl(o;W) =‘£(W) . However , in the

case of an exterior form , when o acts as qr on V , we have :-




6.7.

Lemma 6.4. There is a bijection ¥ : Hl(c',X'I)——»fz(W*) , where B (™)

is the set of conjugacy classes of W* which are contained in the coset We .

Proof. Now K‘(W*) is well-defined since We is a union of conjugacy

-t
classes of W*. For (wl't:)W = wlw.w.w. .T & Wz and

(wlz)"ﬂf.c e W= . . : -

. _- e 1o
Now w-l,?{ WZ@ ’3 we€é€ W with W o= w.wz.o(w)

L= J weW with Wy = w.wz.‘c..w—]I 2t
> 3 weé W with wl.'c. = w.wz'c.w,-l
> T ’\W' w2z, , Where f}/ denotes W-conjugacy . i

Thus , there is a bijection Hl(O’,w)——+i {w.t}w P We W} , ie.

the set of W-conjugacy classes of W=z .

Wiz
Now {w‘c'sz ={we 1 wleW} = {wlt.w'c.t—lwil P oW & Wi
={wlw_l.wz.ww1 t W€ W} = {w-t.}w .

*
»®
Hence {wz} W = {wt}wu {wz}wv = iwt}w , and the W -conjugacy classes
of Wz are identical with the W-conjugacy classes of We . ' f
Thus , AL Hl(c',w) —-——-»fz(w*) is a bijection such that if w is a
. . 1 » w*
representative of h € H (o,W) , we have <y (h) = {w‘c,} - the

o . - .
W-conjugacy class containing we . D

Hence , to find the structure of the maximal tori Tw of 2G(Ko) y WE
must determine the elementary divisors of A-,.-/(q.wt -I)A,‘._ s, Where
G = G7rK and w=Zz Tuns £hrough the representatives of the classes of
?

fz(w*) . We now consider the groups W for the groups 2A4, 2D~2 and



2E6 » in which case ‘c.2 =1 and Wwe 1is the unique non-trivial coset of

W oin w¥ .

86.3. The root systems of type Al’—DL and ES-—' ;
Type Ag . (822) . We must assume that &3 2 because = is the
identity in the case Al . Let 2, be a root system of type A, . For

L=z 2, let T e A(=2) be the automorphism < : Pi—>Py 1 5 where

N = {pi'ke is a fixed fundamental system in. =, . It is clear that the
Az |

automorphi sm . /‘\
Pl P2 pe_]_ pt
Q- cveceee o =D

of D(=)) induced by € is the unique non~trivial automorphism <= of the

graph of f, . The group A(i.) / Ww(=) is isomorphic to 22 . Since
-1 € A(=) always , but -1 <& W(=) in this case , we see that
A=) 2w=) x £1,-11 , and W, = -¥ . TFurthermore , the unique

non-trivial element T of A(Z) / W(=) acts on Asc/ Aad by the

automorphism Xw——> -x , by Lemma 6.3 .

Type E6 . Let ﬁ, be a root system of type E6 with fundamental system

- 6 . P P P P P
7-(_ {pi} i1 such that ﬁ has graph cl 2 3 °5 06

Let T e A(ﬁ) be the automorphism which maps pl,pz,p3,p4,p5,p6 into
Pg» P5s D5 PysPps Py respectively . As for 4, , it is clear that the
automorphism of D(=£:) 4induced by € is the unique non-trivial

automorphism ¥ of the graph of =, . Mso -1¢ (=), so




A=) 2 w=) x {1,-1} , and W, o= -% . TFurther , the unique non-trivial

element © e A(=) / W(=) acts on. Asc/ Aa

d by the automorphism

X b =X o ‘

Type Dy . Let =, be a root system of type DQ vith fundamental system

A {.pi}

¢ such that £ has graph Py P,
i=1 O———0=tsecass

Let © ¢ A(=£,) be the automorphism of V which maps p, ,€¢—> P, and

fixes P; for ié[l,...,Q-Z} . If p, = e ,-e, for ie€ {1,...,(,-1}

i+l
e . .
and Pp=¢€_1t+ € where {ei}i=l is an orthonorma;l. basis of V , then ’

< is the automorphism such that € fixes e, for ietl l,...,L-l} and

z: ey F——r =8, (see§ 4.2.) .

Assume that & » 5 . Then the automorphism of D(=;) induced by &
is the unique non-trivial automorphism = of the graph of =, ., Hence

AE) /u(=) is isomorphic': to Z, .

Now , W(D,) acts on {ei} ¢ uy permutations and an even number of
i=l :

sign changes . Hence we have :-

L even. Then -1 € W(Dy) , so w_ = -l by uniqueness .

£ odd. Then -i¢ W(Dy) , so A(D,) 2 w(p,) x {1,-1} ana v o= -T .
Now A(Z) / W‘(i) acts on Asc/ Aad as described in §4.2 , in
particular :-

(i), if L& 4is even , then =T fixes A"". and permutes AR and A
2

(i1). if & is odd , then ¥ fixes A __ .

1




Lemma 6.5. W(B,) = A(D,) = W(D,) . <=> =W, for L»5 .

) . -1
Proof. As above , let wpi_ wi . Since z.wa.t = w'c(a) , then.

centralises W, for 1€ {1,...,0.-2} and permutes w

-1 and Vo o

Now W*= <W(D) ,’C>v = <W1,...,WQ_1,“C :R> , where R 1is the

set of defining relations :-

'

)2 = 1 for i<{-1;

|
=

2 2 . 2
R = {Wi =t =1 (wiwi+1 for i<4-1 ; (wi“c)

I
[ o

2 o 4 _
(Wiwj) for j#i+l ; (wl—lz) _.l } ,

. 2
since (we_l'c) = wc_l.‘cwe_lz = W(_—-l"W?- .
Hence , W* is a Coxeter group satisfying the relations of W(Be) ,

SO W* is isomorphic to a factor group of W(Be) . Since

IW*I = 'W(BQ)l = 22.“ , then w* =z W(BL) . :]

Corollary 6.5. The set ):’,c(w*) of conjugacy classes is in 1-1

correspondence with the pairs of partitions [3‘ ,F] of £ , consisting of

an odd numbers of negative cycles .

Proof. By Lemma 6.5. , the classes of }ft(w*) are those in W(BL) = W(C‘Q_)
which are not in W(DL) . By§84.1 , these are the classes of W(C,) which
correspond to pairs of partitions [A,,F] of £ , consisting of an odd

number of negative cycl‘es . ' l:l

NOTE. As we see in Table 6.1. , when £ = 4 , there is a further

automorphism (e D(ﬁ) of order 3 given by Q: pl-—vp3-—-—» p4-—-—>pl and

. P3
Pz'-_'* P2 ’

Py

P,



6,11,

In this case , we still have the automorphism =z interchanging
p, and p, , and D(D) =<p,e:el =g’ = (xg?=1> = B,. s
3 4" 4 R R R 3 |

that , a2lthough w*< A(D4) (strictly) , we still have

W= w(D4).<:7 gw(34) .

Then ¢ acts on Asc/Aad by permuting the A'll'.‘ for i =1,2,3
i .

~in a cycle of order 3 . However , we leave the Steinberg groups 3D4(q)"

until Chapter 7 , for reasons which become obvious there .

2

§6.4. The groups 2A 2D'Q (€ 0dd) and °E

-
Q

2 ’
In all these cases , T acts on Asc/ Aad by T: X+—>-x , and
hence < fixes the subgroup lattice of Asc/ Aad . Hence , 2G(Ko)

is defined for the group- G = G for all possible faithful representations

T, K
7 of g (of type 4y, Dy (2 0dd) or E6), since then =z (&) = O for

. - c |
all A with A, A e .

Lemma 6.6. For ﬁ, of type_ Aﬂ_, D.O. (Lodd) or E6 , T = - and

W= wx {1,211 . Further , |B(#™)] = 2 |EW)| and 2(W) =1 . The set
f:t(w") is just the set {-—C ] Cé}:(W)} , and the classes Hl(O',W) are in.-
1-1 correspondence with the W—conjugacy classes of W ie. the set ﬁ(IW) '
under the map W = - v (for 4 as in Lemma 6.4) . | So that

«’p-l:;(W)—-—-—-)AHl(d,w) by '\7/_1: C+—>C.w , for C éﬁ(W) .

Proof. The first statement follows from the investigation of the root

systems above . Secondly , we know from82.4 that = acts on the set of



graphs { r‘C : C € E(W)} . In the case where £ is of type A!. or E6 ’

there is a 1-1 correspondence between admissible graphs and conjugacy
classes in W . Hence , © must fix each class C ¢ B(W) . ~ However , in
groups of type D'_, there is no such correspondence , but for £ odd , there
is a 1-1 correspondence between conjugacy classes in W apd signed
) cycle~lypes [& ,7&] with s even . Now ¢ acts on the cI;.ss c
corresponding to the cycle-type [ﬁ ,;] by mapping w to w- . Let ¥
be the cycle of {eil 'Ql under w which contains eyg . Then = fixes
i= ,

all other cycles , and acts on. ¥ in the following way :-

if \X = (.....eiee_ ej.....) , then %Xt = (.....ei—e,_ ej.....) and

sgn(‘&t) = sgn(¥) .

Henc;e ’ Ww®- has the same cycle type as w , and T fixes the classes
,Cf('W(D,.)) for L 0dd . 1In fact , this follows directly since T = v,

but we need the fact that T fixes the signed cycle-~type of any w & W(D‘Q)v

for any ¢ , in §6.5 .

By Proposition 2.5 , l)sz(w*)l = l)‘i(w)l and L (W) =f{-c : ceX(l.

Then , by Lemma 6.4, % is the map 4 : ,t(W)——-)- A}(o,w) such that

A2 C—>Ce = ~Cw . So we put - A = - . E

Corollary 6.6. Let I(W) = {Ci} r , and let wiwo be a representative
i=1 . .

element of Ci , for a subset {wi : i = l,...r} C W. Then a

representativé for the corresponding element hié Hl(G,W) is LA

Proof. By Lemmas 6.4 and 6.6 .
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Proposition 6.7. Let G = GW,K

be a simple group of type Al’ D, (¢ o_dd)

i
J

4
i

or E. , and let w. € W bYe the representative of the element h, €& Hl(O',W) ’
6 i i

as above . Let Ei = {eij = fij(q) : J 7rTuns over some subset Nic N}, S0

that E. C Z(q) be the elementary divisors for the torus T ~in the
* ’ Wi %

corresponding Chevalley form G(Ko) . Then the elementary divisors for
the maximal torus ZT‘; of the group 2G(Ko) in the conjugacy class
i

2 2 .
corresponding to h; under Q are EjL ={ eij = Ifij(-—q)l : j¢€ Ni} .

Proof. Given a Ko-split maximal torus T of G = Ger , and a maximal
. ’

torus TI'-w y, twisted from T by w €& W, the action of' o™ on X(Ew) ] An-
is given by gq.wr = -q.wwo s, by Proposition 1.3 . .

Hence , 2’.1.‘w = (-’fw)q x DNg/ (-q).wwo—I) AN, , by Proposition 1.4 .
Thus , for w = LA zeij = Ifij(—q)l . D

Hence we may obtain the sets 2Ei for the group 2G(Ko) by changing

the sign of q in the sets Ei for the corresponding group G(Ko) , and

we have determined these latter in Chapters 3,4,5 .

$6.5. The groups ZD‘1 for & even .

In this case , ¥ acts on Asc/ Aad by permuting A and

T2
Aﬂ , so that , by 81.2 , we may only consider G to be one of
3 ' '
G G or G We have seen , in the proof of Lemma 6.6 , that

ad,K ’ “sc,K K :

T acts on ): (W) by mapping the class with signed cvcle~type [9\ ,/:] to

another class with the same signed cycle-type. When £ is odd , we have
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seen that this just means that = fixes every element of ,C(W) , but
when £ 1is even , there are two classes corresponding to the signed
cycle~-type [1] , where. Ai is even for all i éil,...,t} . Hence ,

this allows the possibility of = permuting such elements of ,f(W) .

In.fact ,
i

Lemma 6.8. If C and G' are two distinct classes in }:(W) with the

same signed cycle-type , then cT =c¢' .

-

ol .
Proof. By Lemma 6.5 , we know that W = W(c,) , and 2(w) =1{1,-1} .
Now , there is a 1-1 correspondence between classes and signed cycle-types
in W* , by [6] . Hence , the two classes C and C' cannot be distinct

inside w* and so must fuse under action. by w* . Thus € and C' are

permuted by W*/ W, ie. by T .

Corollary 6.8. Let ‘,ﬁ(W)I = r , and suppose that there are I, distinct

"even-positive" partitions of e . Then. there are - classes fixed by
€ acting on L(w) , and 2r, classes which are permuted in cycles of
order 2 , where 1 = ry + 2r2 . Then the number of classes ofx W* in:

the coset We is Ty and the total number of conjugacy classes of

WX W(B’_) is (21':L + r2) = 2r - 3r, .

Proof. By the proof of Lemma 6.6 , all the classes of 1,°(w) are fixed
except those corresponding to *Meven-positive" partitions . The result

follows from Lemma 6.8 , using Proposition 2.5 .




Hence , we see that by Corollary 6.5 , if G = then the

: G‘II‘,K ! _
maximal tori of the group 2G(Ko) of type D, (Qeven) have the same
structure as those of the corresponding (via lattices) Chevalley group
Bl(Ko) which do not correspond to conjugacy classes of W(Dl) . The
correspondence he:e is |
if 7 is ad or .sc , we take (B-Q)sc,K(Ko) ,
if 7 is '7l"l , we take (Bl)ad,K(Ko)‘ , (see Prdposition 4.4) .

We put this on a more formal basis in the following way . First we

meke two definitions to determine the classes of HY(o,W) .

Definition 6.1. Let | be the partition of W defined by associating

with each pié & an ordered n-tuple Ni = [91,7’2,...,')-’11} of positive and

n
negative integers with ;)-ﬁl I’VJ.] =Q , such that we Py if w acts as a |

')Jj-cycle (taking care of the sign)on the subset {'eP1+"'+j-1+k ':714.}: < -,)J_} v
of the natural basis {ej} e of V . (This is a finer partition. than
_ j=1 .

that effected by the signed-cycle type) .

Definition 6.2. Let ‘Q_ ={N ¢t N is an ordered n-tuple of integers} and
let A. be the set of pairs of partitions ['k,;\] of { . We define a
function g TL“"‘*_/\. which maps an ordered n-tuple N onto the

- { N = -
(unordered) mn-tuple g(N) . Let X _[771,75,..., ‘)’n] .

Lemma 6.9. Let [3‘,75] be any signed cycle-type corresponding to a class

C e ,&(_(w*) and consider all those p, € P such that g(ﬁi) = [)‘ ,;] )



Let h=Up, . Then henl(o',w) and W (h) =C. .

Proof. Let w € p, with associated N =[v1;>_’2,...,vn] .  Then, since
T fixes e for j<{ eand T: e r——>-e , itis clee;r that we
has associated with it the n-tuple ¥, = [”1”5"""”:;-1"%] .
Let W € P and w:j 4 pj for P » p.j as above . Then
LA 4 wj<_—_==> w.e, wjt € C.,
&= g(i) =¢ (-ﬁj) = ['A,/_s] .

Hence h .= Upi . D

This. determines the classes of Hl(O',W) , and we finally have :-

Proposition 6.10. ILet w € p such that g(N) =[1 ,;k] , and éuppose that
peh for he Hl(cr,w) . Then the maximal tori '2'1‘“ of the group
2GT,K(K0) of t&pe Dl. (R even) corresponding to' the ciass h have
elementary divisors given by :-

(i). Proposition 4.5 ,"if =« = |, ,

(ii). Proposition 4.18 , if =«

1§
©
Q
(o}
- 0H
14
e

Proof. This follows from Lemma 6.9 .




CHAPTER 7. Finite groups of twisted type 2G2(g?) R 2B2(q2) , 2F,(922
. 4

and 3D,(Q)' .
*

If one does not take account of the type of nodes in the szet of

then the list of graph automorphisms in

diagrams of simple groups G“;K s
Table 6.1 is completed by the addition of three cases , répresented in
Table 7.1 . These automorphisms are described in §1.2, wﬁere we note
that such automorphisms only occur when p = 2 or 3 , depepding upon the
type of the root system :i: of g. Dge to the nature of these

automorphisms , the diagrams of Table 7.1 do not give rise to new exterior

forms of G

K However , R. Ree [}{] showed that one can , under ce;taiq .

conditions , associate with them abstract groups which are analogues of

groups of rational points 5G(Ko) of exterior forms . These are the

Ree groups 2G2(q2) and 2F4(q2) , and the Suzuki groups 2B2(q2) which

were originally discovered by M. Suzuki [2?] in a very different light .

In this Chapter , we complete our discussion by ﬁindiné the structure
of the maximal tori in the remaining'finite groups of Lie type , viz. the
Ree and Suzuki groups and the Sﬁeinberg groups 3D4(q') , and we begin by
examining the procedure for obtaining the Ree and Suzuki groups in & 7;l.
The reason for including the groups 3D4(q) in this Chepter is that the
gfoups 3D4(q5‘ and 2F4(q2) are very closely related and , had.we not.
already considered the groups 2D4(qd, in Chapter 6 , it would be
convenient to also discusé those in this Chapter . In fact , if =, is

a root system of type ¥ then both the long roots :Ejl.and the short roots

4



:Z:s form root systems of type D4 .

§7.1. Construction of the Ree and Suzuki groups .

If one attemps to reproduce the construction of 8§6.1 by taking a
figure 2G from Table 7.1 , then., as in §1.2 , one'can prove that for
~certain fields K1 , (of characteristic p =2 if G = 32 or F4 , and of
characteristic 3 if G = G2) , the group G(Kl) has automorphisms o= of
order 2 . By analogy with the exterior forms , we shall call a group of

points fixed under such an automorphism ¢ a twisted group of type 2G(Kl) .

4

The essential difference between the two types is that here , no field Ko

plays the rdle of "base field" .

Another automorphism ol of G(Kl) of order 2 , which possesses the
saﬁe properties as o, will be said to be equivalent to ¢ if it is the
transform of o by en inner automorphism of G(Kl) . The classification,_
of the automorphisms , (and hence the Ree groups) , is given by the

following Theorem , due to Ree , [_1[;(] .

Theorem T.1. If G = B2 or F4 (resp. G2) ,» the equivalence classes of

automorphisms of order 2 of G(Kl) , which act in the way shown in Table 7.1 ,

are in canonical 1-1 correspondence with the automorphisms © of Kl such
92

that (x2) =x , (resp. (x3) = x) , for all x e K-

ThusAto every automorphismk 0 or Kl satisfying- this relation , there

is associated a group of type 2G(Kl) , which one could write as 2G(G,Kl) ,



although we will not need to make use of such a notation ;

TABLE 7.1,

The field Kl = GF(q) of g = pn elements has an automorpnism 9

2
~such that (xp)!3 = x if and only if n = 2m+l , for any m> 0 . Then

, m
© nust be the automorphism x9 = xp , and the uniqueness of this
automorphism will permit us , in the case of a finite field Kl , to speak

. S 2 2m+1
without ambiguity of the Ree group G(Kl) » where K, = GF(p ) .

Specifically , by [7] , we have o defined on génerators as t-

m
a(tp ) it a ¢ /U is long , where @

R
m+1
Py if ace JANES short

& xa(t)a—-—-———-—)x

xa(t) p—— X

Qa(t
is the permutation of 7( described in the corresponding diagram G of

Table 7.1 .

Wow let K be the algebraic closure of the field K1 = GF(p2m+l) ,

where p = 2 (resp. 3) and let G = G“_K be a simple algebraic group of
Ny

type B2 or F4 (resp. G2) . Then , with o defined as above , we kKnow

that G > = G_, we know that
o

o

= G(Kl) . Hence , saince (GUZ)O’-

Go_ = 2G(Kl) , the twisted group of type G . Thus , we may use the results.

of Chapter 1 to find the structure of the maximal tori of the Ree and

Suzuki groups .

G or F embedded in a real

Let ﬁ, be a root system of type B, , 5 4



ve;:tor space V . Now o iinduces » by Proposition 1.3 , an isometry T

of V and also , via the permutationA Q of -)T, an automorphism of W
Hence € acts on W and we consider the grop.p W*z <W,‘c.> , which is the
semi-direct product of Wby = . Then WX is e; group of automorphisms
of V , although A(=,) = w(=) is é proper , normal subgroup of W
since © does not preserve ﬁ T In fact , © is an isomorphism of root
systems and maps .f, into a distinct root system ﬁ' of the same type-

embedded in V .

We recall Lemma 6.4 , which sets up a bijection Ay : Hl(cr,W) ——-—»:z(w"') ,;

and this holds in this case . We proceed by considering each group in turn ,i

|

but first we prove a general result on Dihedral groups . The reason for
proving this is that if ﬁ is of type B2 or G2 ’ then W is a Dihedral

group of order divisible by 4 .

Lemma 7.2. Let W be the Dihedral group , W =<x,y : x2 = 'y2 = (xy)2n=l>,
of order 4n., and let & be the involutive automorphism of W which
permutes x and y . Then I,L:(W*)l = (n+l) , and a set of representatives

of the elements of ,&(W*) is i 'c.,xz:,(xy)xr,,(xy)2x*&,...,(xy)n-l.xt. } .

Proof. How ;(W) = (n+3) , with classes represented by
CO = {l&w , Cl = i}(y} W , 02 = {(xy)z}w,...’cn = {(Xy)n W , Cm_i - {X}w
( W
and Cri+2 ={y} .

As in Lemma 2.4 , < acts on I(W) , and fixes all the classes except



1.5.

the last two . Hence , by Proposition 2,5 , the number of classes of
fz(w") is just (n+l1) .

As we remarked earlier , this does not supply us with a list of

;

representatives of elements of Lf’,_(w*) ,» but it does serve as a useful check .

To determine representatives , we see that the W-conjugacy classes of We

i

are -
(e} - {z, (e, @@},

{(xy)%xe}¥ = { (=), (Xy)zn”s'lx'c} for s ¢ {0, 1,..., n-1}.

Now , we have seen in the proof of Lemma 6.4 that the W* -conjugacy
classes of W')e are the W-conjugacy classes of W* .. Hence we have the

result as claimed . _ D

NOTE. We could get information by looking at the action of
T on {r‘c : C <]f(w) } as in Lemma 2.4 , but this would not enable us to

find the representatives of H:L (o,W) , as Lemma 7.2 does .

87.2. The Suzuki groups 2Bg(qz) , Where 12 = 22m+l .

In this case , Z 1is the operation of reflection /

~

in the dotted line shown at an angle of 67—;—0 with ‘ /

the root a , where T( = '{a,b} is a fundamental . a

/
system for ﬁ . Furthermore , in this case , . /

Hom(Asc/Aad’K"e) is trivial , since KX has Ty

characteristic 2 . Hence , the centre of Gs

is trivial , and the
c,K '



isogeny Gsc —-—*Ga becomes a radical isogeny . Thus we need only

K d,K

consider (up to radical isogeny) the groups G by considering the

ad,X ’

-

. »*
action of o¢” on Aad‘

. -, 2 .2 ' .
Now , in this case , W = <Wa’wb pw, =W o= (wawb)dr = l> is a

Dihedrel group of order 8 . Hence , by Lemma 7.2 , l/fz(w*)l =3 and

- represcntatives of the 3 elements of ,f!(W*) are {‘C, W ,(wawb)wa'&} .

Thus , by Lemma 6.4 , representatives of the 3 elements of Hl(c,‘vl) are
{ 1, LI Wawbwa" . By Propositions 1.3 and 1.4 , a maximal torus of '
2BZ(K1) corresponding to the representative w has relation matrix

(q.(w'c. ).". - I) . Then , by Theorem 1.2 , there are 3 conjugacy classes

of maximal tori in 2B2(Kl) with relation matrices corresponding to the 3

representatives above . Hence we nmust determine the action of we on

2\ ad ? for we {l » Wo» wawbwak ° Then we have :

Proposition 7.3. There are 3 conjugacy classes of maximal tori in the

groups' 2B2(q2) , and these are described in the following table together

with the order of the corresponding group WU, .

Representative element | Order of class ".‘Io_l Elementary -divisors
1 4 2 e, = (¢%-1) .
W 2 4 | e, = (q2— SCq+l)
a 1 q .
W_oW W 2 4 e, = (q2+ A2q+1)
b a . 1 Q .




Proof. Ve omit the details but note that the matrices (q.(wz).n - 1)

diagonalise over the ring 2fq /.rz'] .

This completes the case for the groups 232(1{1) .

§7.3. _ The Ree groups 2G2(q2) . where q2 - 32m+1 . |

In this case , & 1is the operation of reflection in the dotted line
shown at an angle of 750 with the root a , where 7—( = {a,b} is a
fundamental system for i, . Also , Asc = Aad , 80 that we only need

II
¥

/
consider the action of ¢¥ on

Aad '

When =, is of type G then W

2 ?

is a Dihedral group:

' 2 2 6
<Wa’wb W, =W = (wawb) = l> of

order 12 . Hence , by Lemma 7.2 ,

lr;(w*)l = 4 and representatives of !
* 2
the 4 elements of )f_‘(w ) are {’c, w.T, wawbwat,(wawb) wa'c} .

As in 87.2 , we have :-

Proposition 7.4. There are 4 conjugacy classes of maximal tori in the

groups 2G2(q2) , and these are described in the following table together

with the order of the corresponding group Wo, .




Representative element | Order of class |Wc| Elementary divisors
1 6 2 fe = (a®-1) .
W 2 6 e, = (qz-,Bq+l)
a 1 *
2
- - .
W W W 2 6 el_—32-2,e3—1(q +1).
(w_w. )2w | 2 : 6 e = (q2+,5q+1)
ab’ "a 1 *

Proof. We omit the details but note that the matrices (q.(wr)x -I)
diagonalise over the ring 2 El/,ﬁ] only in cases (i),(ii) and (iv) . 1In

case (iii) , however , the matrix (q.(w*c),‘. -I) reduces to

/53 + 1 2 | -+(a/f3 + 1)c2 0 2 0 2| ,

—_—

-2 3q-3 _ to ¢; “Ha?41) [3o-3 He%41) o

over 2 since q/,rf = 3m . This result is non-trivial since (q2+1) is

2 2m+1

divisible by 4., and by no higher power of 2 , when q =3 . Hence ,

C,xC is isomorphic to C, x C, x C . "

27 $(q?41) 27727 HePh) ¢ O

NOTE. In these two cases , the groups ¢C 2.1 correspond to the Kl—split
q -—

tori of G(Kl) . For groups of type B‘2 and G2 we may consider the

action of T on i T :c eﬁ(w)} . Then we have

C
P(Bé):{;&,o-,o,oo,o::::}

andF(GQ:{;f,o,o,o.,o———o,cE} .

Hence , by Lemma 2.4, ¥ fixes each graph of P(W) except o and e,

which are permuted , (since o—o0 and e—e represent the same class in



1.9

\

W(GZ)') . Hence , ;.‘_(W*)l =n+1 , @as in Lemma 7.2 . In these cases ,

2n. = h - the Cozxeter number , [4] .

Also , in the list of representatives of Lemma 7.2 , the final
: n . n/2’ o
representative can be replaced by (xy). xr , ie. by (zy) /" xz in these

b/2 _

cases (see the proof of Lemma 7.2.) . But (xy) z 1is the unique

non-identity central element of W, (see [10] o Further , z = =1 in
these cases , so that for w = (w w )n—lw ,» then (q.(wz)y -I) is

ab a
equivalent to the matrix (q.(zwa‘c)n.—l) = ((-q).(wa'c)w -I) . Since the
matrix for the representative w_ of the class (ii) is diagonalisable over
z[q /,ﬁ;] in each case to give elementary divisors e = fi(q)e Z[q /,ff)] ’ R

then the elementary divisors corresponding to the final class are

-éi = fi(-—q) .

§7.4. The Ree groups of type 2F4ﬁ_qz) , _where q2 = 22m+1 .

In this case , it is much more difficult to see geometrically hgw. T
ac%s on £ , since £ is embedded in a 4-diniensional.real vector space .
However , according to the diagram of Table 7.1 , ¥ acts by exchanging
long roots with short roots , and vice-versa . Hence , © acts on W by
mapping a reflection due to a short root onto a reflection cor.responding to

a long root and vice-versa . Thus , = acts on 5 (W) by mapping the

graph FC representing C e‘ﬁ,(w) to the graph l':_(c) representing

z(c) é—;(W) , where I';_(C) is obtained from r; by exchanging each node o

by the node o and vice-versa . Hence , we can find ¥(C) for every



<10,

class C € ;(W) by looking at the graphs F; listed in Table 5.2 . In
W(F4) , we do have the éituation where‘, in some cases , more than one
graph represents a given class. C . Hence , we do need the full list of
admissible graphs and their respective classes in order to de%ermine
precisely where © maps each graph F‘ . I take this opportunity of

thanking Professor R.W. Carter for supplying me with this informatiomn .

: T
We also list the graphs f" in Table 5. 2 .

When g is of type F then /\ = ‘Qsad so. that we only have

4’ sc
one type of group in the isogeny class, viz. Gad K Hence we need only
H
consider the action.of w on lﬁsad » where w 1is a representative of each

element of H1(03W), in order to determine the elementary divisors of the

‘matrix (q.(wz%r —I) .

Proposition 7.5. Let W = W(F4) , then lHl(cr,W)l =11 .

Proof. If we look at Table 5.2 , we see that there are precisely 11
conjugacy classes C such fhat z(C) =0 . Hence , by Proposition 2.5 ,

since ¥ 1is of order 2 ,

()] =2x11+2 - 29 ang (W9 = 11.
2 1

Now , by Lemma 6.4 , there is a bijection i H'(o,W) ——s £ _(w¥) ,

so the result follows . .[:]

Although this result does not supply us with representative elements

for the classes of Hl(c,W) , it does at least inform us when we -have



TABLE 7.2.
Positive Co-ordinates | wl(i) ’wz(i) w3(i) w4(i) Length | (i)
root i : of root
1 (0,1,-1,0) -1 7 1 1 ¢ 2
2 (3,-%,-%,-%) 2 2 8 =2 s 1
3 (0,0,1,-1) 7 -3 5 3 ¢ 4
4 (0,0,0,1) 4 6 -4 8 s 3
5 (0,0,1,1) 11 5° 3 9 ¢ 6.
6 (0,0,1,0) 10 4 6 12 s 5
7 (0,1,0,-1) 3 1 11 7 (A
8 (%,-%,-%,%) 8 12 2 4 s T
9 (1,-1,0,0) 15 9 9 5 e 10
10 (0,1,0,0) 6 10 10 16. s 9
11 (0,1,9,1) 5 13 7 15 t 12
12 (%, -+, %,-%) 16 8 14 6 s 11
13 (0,1,1,0) 13 11 13 17 ¢ 14
14 (%,-%,%.%) 18 14 12 14 s 13
15 (1,0,-1,0) 9 17 15 11 ¢ 16
16. (+,%,=%,-%) 12 16 18 10 s 15
17 (1,0,0,-1) 17 15 19 13 ¢ 18
18 (%,%,-%,%) 14 20 16 18 s 17
19 (1,0,0,1) 19 21 17 19 ¢ 20
20 (£,%,%,-% 20 18 22 20 s 19
21 (1,0,1,0) 23 19 21 21 ¢ 22
22 ($,%,5,%) 22 22 20 24 s 21
23 (1,1,0,0) 21 23 23 23 ) 24
24 (1,0,0,0) 24 24 24 22 s 23




1.2,

completed our search for such representatives . Since ¥ is just
post-multiplication by & , we direct our search to finding representatives
of the 11 classes of }f;(w*) . Hence , we must investigate the nature

;

of the group W* .

4

Let ﬁ be a root system of type F, embedded in a 4-dimensional real
vector space V with natural basis {ei,ez,eyedr]s ° A fundamental system.

TV for = is 7(:{131 = ey=€z , Dy = €3-€, , Pz = &, , D= -;—(el;-ez—e3—e4 },

with corresponding Dynkin diagram P Po PS p4 . Then, with

respect to the basis {ei} , the 24 positive roots of 2 are given in

Tebie 7.2 , along with the action of =T on ﬁ and the action. of the
fundamental reflections W, = wp on ﬁ o« The action of = is obtained
i

since we know from Table 7.1 that <« permutes Py with p4 and P, with

P3‘

Here , we label the positive roots as r, for i é{l,...,24} and fbr-
abbreviation in the Table , we denote rs by i . S0 ~wl(i) is the image
Vof T under the fundamental reflection wl , and if Wl(ri) = -Tr. , We

write wl(i) = = . Also , we have rl =Py s Ty = p4 , r3 =Dy s r4 = p3 .
Then. , if és is the set of shoft roots of ﬁ: and £‘Q ghe set of
long roots of 2; , both ﬁs and "é‘l are root systems of type D4 and
(=) ==, .
There are several wa&s we can investigate the group W(F4) (and hence

the group W*) , and we shall begin. by considering these approaches .



First we consider W - in the context of reflection groups , following
[i3] . Let V be a 4-dimensional real vector‘séace with orthonormal
basis '{ei} iil , and consider the four vectors of the set .
7('1 =§ r3,r5,r9,rlk . Then. 7T 1 is a fundamental system for the root

system ‘:E:£= :E: 1’ Sy, which is of type D, . Let s,t,u,v be the

4

corresponding reflections in Aut(V) , ie. s is the reflection in the .plane

3 e4 . Then the group- Wl = <<s,t,u,v:le> with defining relations-— -

o
il

—-{s2=t2=u2=v2=(sv)3=(tv)3=(uv)3=l;st=ts, u=ut, su=us } is a Weyl group

j=s]
|

e |

of type D4 with corresponding graph s

e i
PRI WL

. 2 -1 -1
Consider the group S = D(:éﬁl) = <<x,y : x° = y3 =1, xyx =y >>
acting on the graph in the following way :-
R, =~{x,s.x—l=t,xu=ux,xv=vx,y.s.y-l=t,y.t.y—l=u,y.u.y—lzs,y.v.y-l=v } .

Then. S % @ , the symmetric group on three letters (viz. r

5 r9) , and

31r5’

S £ A( £l) . So S acts as above .

From R2 , we see that S is an automorphism group of W and we let

1 ’

W = Wl . S (semi-direct) , so that W = A(:E:l) by Lemma 2.3 Then we

Proposition 7.6. WY W(F4) .



.14.

Proof. From R, and R2 , it follows that W is generated by

1
s,v,x and xy . Hence, W= < s,v,x,xy:R3> with defining relations

2 ‘
R3=={ s2ev2ox®=(xy) %= (sv)?=(x. xy) *=(sx) *= 1,VX=xv,V(xy)=(xy)v,S(xy)=(xy)3] .

This is a set of defining relatidns for W(F4) y SO W& W(F4) . Since

jw] = IW(F4)I = 1152 , the result follows . .

Now let W2 = <s,t,u,v,x : R1VR2> . Then we have :-

Proposition 7.7. W, ¥ W(B4) .

, =1 . .
Proof. Since x.s.x =t , it follows that W2 = <s,u,v,x : RluR2>and'

the result follows by a similar argument to the proof of 7.6 . D |

Hence we can regard W(F4) as the full group of zutomorphisms of V
which preserve the root system ﬁl of type D4‘, ie. the group A(ﬁl) ..

Then W(D4)44 W(F4) and W(F4) / W(D4) x® Gg; . Furt#érmore ,

W(B4) < W(F4) , and this subgroup is not normal since y.x..y_l =y "X .

This situation:is represented by the following graph :-

where each of the groups Wl’WZ’W corresponds to a certain subgraph
containing 4 nodes . This corresponds to the reverse process described by
Dynkin [_12] in order to find the subsystems of maximal rank of £ , SO

that u is the reflection corresponding to the highest root of ﬁ , and



t +that corresponding to the highest root vof £ 5 = é‘,(B4) . Let =T be
the isometry of V defined by the graph automorphism of ﬁ: <asv in
Proposition 1.3 and let W= <W, z>. | Then Z is the involutive
automorphism of W which is defined by

Ry = { z.v.ET = xy and z.5.2 ) = x } . 1‘\

Proposition. 7.8. (i). N = W-f N Wl is a normal subgroup of W of order 32,

and , by definition , K is a normal subgroup of W* ’
(i1). w /N % @3 x §3 and this extension splits , ;
(iii). The commutator subgroup W' of W is generated by i_N,y,e} , Where !

e = (stuv)z‘ . Then , W = Wlu le v Wlx v Wlxv .

Proof. See [_13] . : !:

Since we wish to find the conjugacy classes of W*, and we know that
a normal subgroup is a union of conjugacy classes , we could begin by
considering all the normal subgroups of W* . We know that W* is a
8 .2

gsoluble group of order 2304 = 27,3 , and 'w'*=<s,v,"c> with defining

relations given by R3 v R4 .

Proposition 7.9. (i), 0, (W) = 0, (W) = .
(ii). OB(W*) =1 .

Proof. Since A x B ¥ @3 1@3 has no normel 2-subgroups , then

OZ(W) =N . Now W*/ N has no normal 2-subgroups , so that OZ(W*)z 02(W) .
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Part (ii) follows because of the nature of =z .

If we denote the group , { W zw'c_l = w} , of T -fixed points of

W by W, , then :-

Proposition 7.10. Wt'= <a,b : a2=b2=(ab)8 = 1> = D16 , the Dihedral

-‘ group of order 16 , where a = v.xy and b = (s.x)2 .

PP P, Pz Py

, and 7Y

Proof. The Dynkin diagram of =£, is

splits into two T -orbits :- Wy ={pl, J?p4} and W, = {p2,9p3§ . Let
L = av(;l) = %—(pl+f§p4) and @ = av(;z) = -}z(p2+r2'p3) . Then. Steinberg

[20] shows how Wy = V.Xy , Vg = (s.x)2 and

i

2 2. 8
Wy =<W,,‘,wQ PV = W' = (w‘wq) = 1> .

Hence w"‘ has the following structure :-
Suppose that M 1is a maximal normal subgroup
A » »® . .
of W™ . Then W / M is abelian , so

(W) < M-,

Lemma 7.11. There are 3 maximal normal subgroups

of WX, and W%/ (w9 = ¢, x C, . t

Proof. WY (w¥)' = <'§ , ¥ ,Tc’>with defining relations
R5 ={§2 =¥ 2. -22 = 's‘v2~-_- ’1‘1 -, where X = (w¥)rx .

with maximal normal subgroups

R

02x02

LIs> ,<1, > aud Li,se/7 . |
. ) D,,_

Hence W*/ (w¥)!



Coxeter [9,ldJ discusses W as the symmetry gréup of the self-
reciprocal 24-cell {3,4,3] in Euclidean 4-space . This offers a.
geometrical illustration of many of the properties of W and W* . This
regular polytope is gquite remarkable , being anothef peculiarity of
4-dimensional Euclidean space in that it has no analégue in any other
dimension . In fact , we can see that :E: is a "skeleton" of {3,4,31 with
the long roots corresponding to the vertices of {3,4,3} and the short roots

to the mid-points of the 24 cells of {3,4,3} . Then we can easily see

that % is the dual map of this self-reciprocal figure .

The polytope {3,4,3} arises by truncating f34 ’ the 4-dimensional
hyperoctahedron . So it has 24 octahedra as cells , and consequently 24
vertices , viz. the centres of the edges of 94'. The subéroup'of W that
leaves fixed a vertex of {3;4,3} is the symmetry group of the vertex figure
{4,3} , ie. the cube , so this group is the hyperoctahed?al group W(B3) .
The 24 cosets of W(B3) in W(F4) correspond to the 24 vertices of {3,4,3} .
This construction , due to Cesaro , exhibits W(C4) as a subgroup of W of
index 3 , and the 24 octahedra fall into 3 sets of 8 , which are the vertex
figures of 3 distinct hyperoctahedra lying in the bounding hyperplénes.of

3 hypercubes.

We also have the reciprocal coanstruction , due;to Gosset , from two
equal hypercubes , which is the analogy of the construction for the rhombic
dodecahedrdn . In fact , the 24 vertices of {3,4,3} represent the 24 units

of Hurwitz's integral quaternions .
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Coxeter shows the link between W as the symmetry group of {3,4,3}
and as a reflection group , and then provides some additional information

in [ld] . Since the defining relations , R for W dinvolve an even

3 4

number of generators , each element of W is either even or odd , according

as any -expression for it has an even number of generators or an odd number .

The even elements of W form a subgroup W* of index 2 , called the

even subgroup .

In.a dual paper , [}1] , on,groups of the fo?m
<<a,b s al = p® - (a—lb-lab)p = l:> , the authors show that the subgroup
of W generated by { a==st and b= uv } has definihg relations
R = {a3 = b = (a-lb—lab)2 =1 } , and is a subgroup of index 4 . Since a
and - b .are commutators , it follows that this subgroup is W' . 1In [10} ’
Coxeter shows that W contains a unique central inversion which reverses

every vector inm V . This is 2z = (stuv)6 , which generates the central
, .

subgroup 2 .

Coxeter also shows , [ll] , that the central quotient group of W' is

isomorphic to A X'A4 y where A4 is the alternating group of degree 4 ,

4

Hence we heave the structure shown alongside .




Lemma 7,.12. (). (W*)' = W+ .
(ii). Each coset of wh in w¥ ’ viz.{W+ ,W+s,W+z,W+sz} is a union

-

of conjugacy classes of W* .

Proof. . (1) Let w e (W*)' y SO W 1is a product‘ of terms [gl,g2 with

gié W’e . Now , W* =Wy Wt , so we have three situations :-

(8). g,,8, ¢ W and then [g ,g,] € W since W'& W' .
: 1782 1782

(b). g8 €W, & ¢ Wz S50 that g = wl , g2 = wzz_ for Wl,W2 e V.
-1 -1 =1 -1 -1 + .
= T =
Then [gl,gz] wl'r_.wz. Wy eW, wl.w2 .Wl Vi, e W since

E(wz'c) =-e(w2) , Where e(w) is the number of generators in a reduced

word for w .

(c). 8,78, € We so that g =wz for w & W. Then

_ -1 -1 r . -t _ =1 + .
[gl,gZ] = wl.?-wzt .T W) T, = WyWoT oW LW, e W as in (b) .

Hence w ¢ W , and (W*)' ¢ w'. By Lemma 7.11 and by definitions of the

groups W+ and W¥ , both (W*)' and W' have index-,4' in W* . Hence
(¥ = wh .,
(ii). Let £ be any group and let G/G' ={G',G'xl,.,.,G'xn1 . Let g€ G.

-1 -1 -1 =1
| 4 — t — 1 — !
Then g . G'x;.g =g .G'.g (g X8 X ),xi =G .[g,xi].xi'_ G' x, .
Thus each coset G'xi is a normal subset of G , and is thus a union of
conjugacy classes of G . When G = WX |, then (WX)' = w' and the four

_cosets W' ’ W's , wh  and W+sz are each a union of conjugacy classes

of W .




1.20.

We have already established in Proposition 7.5 that we are searching
for the 11 conjugacy classes of W*'vﬂﬁch.are contained in Wz , so we

have :~

Corollary 7.,12. The 11 classes of W’ contained in We are partitioned

into the two cosets ch and W'sz of W%/ wh .

Proof. By Lemma 7.12. : [:]

Another way of considering W 1is suggested by considering the vector
spaces Vn(B) of dimension n over the field GF(3) . Then Vn(3) can
be thought of as a "skeleton" of an n-dimensional cube in the sense that
each point of Vn(B) represents the mid-point of some j—dimensional face
of the cube , for 0 ¢ j<¢ n . The orthogonal group .O;(B) is the group
of transformations of Vn(3) which fix the origin and preserve distances .
The group 0;53) is genérated by reflections in the hyperplanes which passv‘
through the origin and are orthogonal to the non—isotroéic vectors of Vn(3) .

It is clear that if n = 2 or 3 , then 02(3) ¥ W(Bn) - the symmetry group

of the n~-cube . However , such an analogy soon breaks down in
4-dimensional space because of the unit vectors (+l., +1 , +1 , +1) . For
we can embed W(Bn) in ozﬁz) and reduce (modulo 3) to embed in ‘OZKB) .
This gives a monomorphism w(Bn)‘——>o;(z)f~>o;(3) so that W(B ) % 02(3) .
However , when n =2 or 3 , any 'g € 0:(3) can be "lifted" uniquely to

v»—l(g) ¢ O;(Z) , and this breaks down for n = 4 because of the unit



vectors (+1, +1, +1, +1) so that W(B4) < 02(3) .

~ .
Now W(B4) e c2"»<§3 , and we can th1nk»of the C2x02x02x02 as a

split maximal torus T inside GL4(3) with the (§;4 as Weyl group W(T) .
Then W(B4) is just the normaliser N(T) inside GL4(3) , ie. the subgroup

of monomial matrices .

Lemma 7.13. (OZ(3) : W(B4))= 3

Proof. It is straightforward to check that there are twice as many
orthogonal matrices that cannot be "lifted" from 01(3) to OZ(Z) as there

are monomial matrices . : [:]

We recall that (W(F4) : W(B4)) = 3 also , and this suggests a

possible isomorphism between..W(F4) and 02(3) .«

‘Proposition 7.14. W(r,) 2 01(3) .

Proof. Let. Z* = <:Z ,-%77 and let Q : Z*————+ Z3 Ye reduction

modulo 3 . Then Z*/ SZ* = Z By the nature of W as a reflection

3 .
group and of :éi , we know that we can embed W in OZ(Z*) , Where the

basis of V is {e,] and the roots of =, are as in Table 7.2 .

If m ¢ OZ(Z*) , then either m ¢ M is a wmonomial matrix in 02(3) ’
or every entry of m 1is i% . Now consider the sequence

L7 WC—~»OZ(Z*)—1§+-CZ(3), where ﬁ(aij) = (Q(aij» .

Let m ¢ kery and suppose m & OZ(Z*) is a monomial ,- Then , since



9(M) =T, , we must have m =1 . If , on the other hand , m has every

4
entry equal to i% , then correspondingly , J(m) will have every entry
T 1, so that Q(m) % I, - ~ Hence , kerp=1 and ¢ is a monomorphism .

We have already seen that le = lOZ(B)l , although it is easy to see that

® can be inverted to a "lifting" map . Hence , 4 1is an isomorphism .

[

Now we have shown W to be isomorphic to 02(3) , we may describe the

group W* in. the same context .

Proposition 7.15. W< 02(32) .

Proof. Let k = GF(3) and consider X = k(i) , where i is the positive
root of the polynomial X2+l € k[x] . Then K 2 GF(32) . Identify W
with OZ(B) ias in 7.14 , and consider all matrices with respect to the

natural basis | ei} 4 . Consider the action of T on V and let the

Ji=1

corresponding matrix be T . Then we can show that

1 E O : 1 1
T = i [; E] , Where E = [; _1]

Now let Y = 2z™((2) , then obviously T ¢ OZ(Y) end if Q : Y —>K
is reduction modulo 3 , then Y / Y K . Then , just as in Proposition
7.14 , we have W™ % <OZ(3),T > & 01(32) . So we may identify W™

: + Atz * +( 2 '
with the subgroup << 04(3),T >> = 04(3) of 04(3 ) . [:]

Wow that we have established some of the various rdles of the group W,

we may freely use each rdle to aid us in our solution of the, problem .



1.23.

First , we prove a result concerning the characteristic poiynomials

corresponding to the classes )ft(w*) .

Proposition 7.16. Let fx(t) € Y{t] be the characteristic polynomial of
a representative element x of some class of ;;KW*) acting on V . Then

Q (fx(t)) = gx(t) € XK[t]l is one of the following :-

(1) gt (i1).  theatoeitel  (dii).  tHit-itel
(iv). tht241 (v). s to4t8es Bl (iv).  th-it2tPeibel
(vii). t*-t?n (viii). thitP-tZeital  (ix).  theitd-t?eita
(x). %1 (1),  thitd-it-1 (xii). th-itdsit-r

where  is as in the proof of Froposition 7.15 .

*

Proof . Consider W" embedded in 02(32) and let x € W*‘\ W . Then

¥ = T.w for some wé€& W. Hence x =1 . B, where B =[g g] o w:eGL4(3) .

Now x ¢ 01(32) , 80 x= I4 . t - i°

Now let gA(t) ¢ klt]l bve the characteristic polynomial of the matrix

A on V4(3)'. Then gB(t) det(t.B-I) = t4.det B.gB(-tfl) . Since

+ té.gB(—t—l) . | (1)

E O
det [0 E] = 1 , then gB(t)

Also , gx(t); g, p(t) = det(it.B-1) = g5(it) , so that g () = gylit). (2)

4+a t7+a, bt +a, t+a

2 .
Let gy(t) ¢ KLt] , so that gy(t) = t'ra, Jra,toea thay , with a €k .

In order to satisfy (l) , we must have

_ 4 3 2
ta, ttay = € (aot -a) thra ttoast + 1) , (3)

4+a t3+a t2

t 3 >

where € =+ 1 . This set of equations has two solutions :-



(1). if € =+ 1 , then ay = 1l and a; = —a3 ,
(ii). 4if € =- 1, then a,=-1, & = as and a, = 0.

Hence , if tB.B = -T then gB(t) has one of the two forms :~

4 ¥

t4+at?+bt2-at +1 , oOr

(1) gy(®)

(2)  g(t)

thhatdrat - 1 , where a,b e GF(3) .
y

Correspondingly , if x ¢ WIS W , then gxﬂt) has one of the two

forms :-
(3) g (t) = t*-ait’vtP-ait + 1 or
(4) g (t) = t*aitdsait - 1, where a,b € GF(3) .

This follows from equation (2) . Since a,b ¢ GF(B) , equation (3)
results in the nine possible polynomials (i) - (ix) , and equation (4)

supplies the further three polynomials (x) - (xii) .

]

Hence , we know that if fx(t) is the characteristic polynoﬁial of the
element x acting on V , where x ‘belohgs to some.claés of X:E(W“) , theﬁ
its reduction modulo 3 , ie. gx(t) , must be one of the polynomials of K [£]
listed in Prcvosition 7.16 ; Although there is not a 1-1 correépondence
between the.classes of [ (uw¥) and these polynomials , this rgsult proves

useful in finding the classes .

We now proceed with the detailed search for the eleven classes of

ﬁ;(W*) , making use of the results so far obtained . However , we first

prove a few useful lemmas .



Lemma 7.17. Let 2z Dbe the central involution of W , and let x € W’e,

then. £ _(t) = £_(~t) .

Proof. It is well known [4] , that in the group W(F4) , WQ =<1, so
that 2z = -1 1is the unique central involution of W . Furthermore , 2z
commutes with € , so that 2z 1is the unique central involution of W™

“also .

Hence , fzxﬂt) = det(t.zx -~ I) = det{lt)x - I) = fx(-t) .

This result is extremely useful in our search for the classes , forwe
know that two elements from the same conjugacy class.of W*' have the same -’
characteristic polynomial . Hence , if we find an element x with
characteristic polynomial fx(t) such that fx(t) * fx(—t) , thén we know
that the conjugacy class , Cx , of W™ containing thé eiement x is

distinect from C .
ZX

Lemma 7.18. Let C ¢ ﬁ;jw*) and let x Dbe a representative of C , so

that ¢ =0C_. If d:w(x) denotes the ceniraliser of x in W, and

sx:=|a:w(x)l ’ theh lCXI = [WI / Sy . Furthermore , ICZXI = ICXI.
w* W
Proof. In the proof of Lemma 6.4 , we saw that C_ = {x}" = {x1" . By

letting W act on the coset We , it follows from the orbit-stabiliser

theorem that there is s bijection between Cx and W / stabw(x) =W /(:W(x) .

The final statement follows since (‘W(ZX) =¢W(x) .




N 7’26.

With this result we are able to calculate , by working ﬁwith the
subgroup 01(3) in GL4(3) , the size of each class of ,Zz(w*) once we
have a representative of the class . This mer'elj involves the solution of
several simultaneous equations , and , by Lemma 1.9 , this fact enables us
to caiculate I wd I , which is useful for the representation ..theory . As
we discover each class Ci for i € {l,...,lll , we shall l:jLst a
representative element x , the order ord(x) of the elements of the class
Ci , the order of the class ICil , the coset of whoin W;)e to which the
class belongs , and its characteristic polynomial fx(t) , together with the
structure of the corresponding torus sz . This latter we shall calculate
by taking the representative x of Ci . Under the map ¥ of Lemma 6.4 ,
the corresponding plass y"l(ci) of H(o,W) has' xx eV as a

representative . Then the maximal torus of Go‘ corresponding to the class

y_l(Ci) of Hl(cr,W) is an abelian group with elementary divisors

{el,...,ek} determined by diagonalising the matrix (q.(x%)c-I) (q.x,-1)
over Z , where x, 1is the action of x on the lattice A‘ad = M3 .
The methods will be omitted in most cases , except to illustrate the

method in one case , and to note that the metrices (qexy -1) are

diagonalisable over 2Z[q /47) .

NOTE. The notation of fi(t) for the characteristic polynomial’

corresponding to the class Ci is not to be confused with the notation

fn(q) = qn—1+..,+1 used only in Chapters 3 and 4



Lemma 7,19, The class Clr has as representative the element = , and

01.C'Wf‘ . Mso, ord(e) =2, |cl| = 72 and fl(t) = (t2-l)2 .

2
Further , e, = e, = (g°-1) . - /

Proof. Certainly we know that <<z must belong to some class of f,_(w") ,
and ¥ = 1.¢ €Wz . . In fact y Ce¢= [W,t].z . In the case of the groups

32 and G2 ’ [W,‘c] = W+ , but that is not true in this case .

Although the general method of calculating lCiI is to use Lemma 7.18

with W identified with 01(3) , in this case it is easy to see that

(I:W(‘c.) = {w € W : w.‘t:.w-'1 = t}: We Dl6 » so the result follows . .
-1 0 0 q/f2 2_, 0
- Also , (q.‘z,, —I) = —— q
0 -1 ¢/f2 o
0 Bq -1 o o <%
£29 o0 0 -1 | '

We note that zz € C; . For , if we let c = (wlw2w3w4) , an

element of the Coxeter class of W , then:

z = c® = 03.(;C.c-3.‘c-1) = [03,2:] € [W,‘c] . ﬁence ze ¢ [W,e]e = C, .

Since elements of the same class must have the same order , we find this

a useful guide in our search also

Lemma 7,20. The class C2 has as a representative the element WoT, and

+ ,
C,C Ws=z . Also, ord(wzz) =8 ,|cC,|=144 end

fz(t) = t4-—,rét3+,r2't - 1. Turther, e, = q4—.{§q3+,féq -1 and VT € c, .
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Proof. Certainly w2z € W+s'c. , and also , (w z.) = wzwz‘c = W w3 , an

element of order 4 . Hence , Qrd(wzz) =8 .

To find I CZl , We use Lemma 7.18 .  The matrix of W, with respect '

to the basis {e.} .4 is 1 000 , 80 the matrix of ww, is
i) i=1 2
0O 1 0 O
0 0 0 1
0 01 O
1 0 0 0 [1 1 0 o°
E O 1 0 0f . -1 0 0 . o
i x x =1 = 1iC , .as in
0 E 0 0 1 0 1 1
0 0 1 0] i 0-1 1

Proposition 7.15 .

+ . ' ‘
Then €, (w,2) = {4 e 0)(3) + ¢ = ca} , and if we let A = (a;,)
then. the condition AC = CA is equivalent to the set of 16 equations .

= a

810 = 8oy 5 Bpp T ByyHBy5 5 Byg = <8y, 7 85y = 8133

811 T "8p1T8pp 3 By T Byp 3 Byg T m8pgm8yy 3 By = 8378y, 3

841 T Bap 3 Byp T 85 FEnp 5 8y =78z, 5 8y = 853
31 = "0 3 B3 T T Tfyp 3 833 = By 0 83y =73 -

Hence , a13 =8y = a23 = a24 = a3l = a32 = 8,y = a42 =

C o) = | = b 0 o] 0J(3) ¢ ab,e,a €cF(3) | .

a b 0 0 )
Now A = P at+b O 0] ¢ 02(3)<?=%>tA.A = I4 , and this condition
0 0 e d
| O 0 -d C |

is equivalent to the set of 3 -equations :-



{8.2+b2 =1, bz—ab =0, 02+(32 =1 } .
Since b2-ab = 0 implies that either a = b or b = 0 , this set of equations
is equivalent to the two sets :- ;

(1). {22 =1, c%+a®=1,bv=2a} and

]
]

]
]
]

(2). {a2p®2 =1, ¢2d®=1,v=01} . o
Now set (1) is impossible as this would imply that a2 = ~1 , and this has

no solution in GF(3) . Hence the condition tA.A = I4 is equivalent to

the set of eqli:ations (2) . Hence , the only possibilities for the ordered

quadruple (a,b,c,d) are (+1,0,+1,0) and (+1,0,0,+1) .

Thus , Id:w(wzz)l =8, and |C,| = 144, by Lemma 7.18 .

. =1 :
Since T,w.t .T= W

5 3 , it follows that w,z € C

3 5 The remaining

facts follow by diagonalisation . ' _ D

Lemma 7.21. The class ( has as a representative the element zwz‘c ’

3

and Cy C Wwise . Also , ord(zwz'c) =8, lCBI _ 144 o

f3(t) = t4+J§t3-J§t -1 . Further, e = q4+J§q3_J§q -1.

Proof. Since fz(t) + fz(-—t) , then zwyT ¢.C2 by Lemma 7.17. Hence

C3 is distinet from 02 , and C3C Wse , Since wzé W's . By

Lemma 7.18 , | G | = |C,|= 144 and £5(8) = £,(-4) s P8 Pt -1 .

i

Also , (zwzt)n = zn.(wz'(.)n so that ord(zwz‘c) = 8 , since ord(e) = 2 .

U

Lemnma 7.22. The class C4 has as a representative the element T and

+ . ) _ _ .__4_
¢,C Wsz . Also, ord(wlz) =4 , |c4| = 288 and f4(t) = & -1 .



- 4
Further , e, = 4 -1 and w4'c € 04 .

+ : 2
€ Wsz , and also (wl"c) = W .‘c.wlt: = wlw4 y &n

Proof. Certainly w 1

1
element of order 2 . Hence , ord(wl'c) =4, The remaininé results

follow as. above . \ D

1

Lemma 7.23. The coset W+st is the union of the three conjugacy classes

C2,C3 and C4.

Proof. We have seen in Lemma 7.12 that w*/ wh = 02 x 02 . Hence ,

each coset of W+ in w* has order 576 , in particular the coset W+sz‘, .

Since |C, |+ ]c3] + |c4| =576 and C,, C;, C, Wwse |, i@

follows that W+s'c is the union of these three classes . D

So , by Corollary 7.12 , we know that the remaining 7 classes of
,Kc(w*) lie in W+7, . In crder to determine these , we consider the

possible orders of their representatives .

Lemma 7,24. The only possibilities for the orders of elements of Wz are

2,4 ,6,8,12, 16, 24 .

Proof. Suppose that x € We , so that x = wz for we W. Then

x> = We.we = w.xweE L = w.w® .  Hence , ord(x) = 2e , where e = ord(w.w%) .

Since (w.w‘) ¢ W, the only possibilities for e are the orders of

elements of W, viz. 1, 2,3 ,4,6,8,12, [6] .

]



Corollary 7.24. The represeantatives of the classes Cx and sz , for

X € We , have the same order .

Proof. Since ord(x) = 2e , for some e , it follows that -

(zx)™ = 2%™ =1 . ©Now ord(z) = 2, so that ord(zz) = 2e also .

O

§

We now have the possibilities for ord(x) , where x ¢ Wer , and we may
be able to reduce the list of Lemma 7.24 even further if we can decide just
how the set E = {w.wt :.WGTW} intersects the conjugacy classes of W .

For the possibilities of e are precisely those belonging to the set
{ora(x) t: x e E } . Although we have found the éOSet W+sz, as a union-
of conjugacy classes of w* , we can in fact show that there is no element

of order 2 din this coset .
Lemma 7.25. There is no element of order 2 in the coset W+sz. .

Proof. Suppose w € W+s such that ord{wz) =2 . Then w.w- =1, ie.
< -1 - . . -1 : .
wWo=Ww . Now w is conjugate to  w ,[6] , so that ¢ mnust fix the

+

graph f‘w . Since w ¢ W , then " nmust have either 1 or 3 nodes .

There are 10 such graphs in Table 5.2 , none of which is fixed by T .

Hence there is no such element . '
Lemma 7.26. There is no element of order 6 in Wz .

Proof. Suppose that ord(wx) = 6 for some we W . Then the element



| ke

A

(i), r is long, s is short; (ii). (r,s) =0

Ww.w® € E has order 3 , and so would have to belong to one of the classes

~
However , Ww.w°® cannot belong to A, or 4, since

X A +K
or 2 >

27 T2 272 °

then w would have to be & reflection w_ , and then WoWS = W W
, r ‘ re(r)

~S
would belong to A1+A1 .

Now for w<e to belong to A2¥Kz , we must have w = w w_ such that

i

-e

(z(s),s) =0 ; (iv). (z(r),8) =+ % ;

(iii). (t(r),r)

(v). (z(s),r) =+ 1. Then (wz)z = W V() Wl g) € Aé;Xé .

For r to satisfy (i) and (iii) , we see from Table 7.2 that r must
be one of T s Tyz oo Tyg s Tpg o Then we have = {r) = T5sTy49T1g0Tog
respectively . Similarly , for s to satisfy (i) and (iii) , s must
belong to the set Ty Ty 9T g1 Tog with ©(s) = ?l’rlB’rl7’r19
respectively . It soon follows that none of these pairings of r and s
satisfy (ii), (iv) and (v) also . Hence no such element w exists .
Lemma 7,.27. - The class 05 has as a representative the element wlwzt.,

+ .
and Cscz Ve . Also , ord(wlw2t) = 24 , |C5| = 96 and

£:(t) = t4Pt2+t°- (3t + 1 . Further , e, = PP +d®-dBg + 1 .

)Z.

+ 2 .
Proof. Now w,w,z € Wz , and (wlwzz) = wlwz(wlw2 = W Wo, Wy which

17274

belongs to the Coxeter class of W and so has order 12 . HenceA,
ord(wlwzt) = 24 and 05‘ is distinct from Cl . The remaining results

follow as in Lemmas 7.19 and 7.20 . [:]



Lemma 7.28, The class C6 has as a representative the element zwlwzt.,
+ .
end C.,C Wz. Also, ord(zwlwzt) = 24 , |06| = 96 and

_fG(t) = theBt0et%elBt + 1 . Further , e, = q4+J§q3+q2+I§q_+ 1.,

Proof. Since f5(t) £ f5(-t) ,vthen ZW) W, T ¢ 05 by Lemma 7.17 . Hence
06 is distinct from 05 , and C6l: whe since z e W . By Lemma 7.18 ,
el = |c5] = 96 and £.(%) = £(-t) = P 29423t + 1 . By

Corollary 7.24 , it follows that ord(zwlwzt) = 24 .

3

We recall the notation of Proposition 7.10 . Then :-

Lemma 7,29, The class C7 has as: a representative the element abt ,
eand C, C_W+z . MAso , ord(abz) =8, | c7| =12 and f7(t) = (t2-J§t+1)2 .

Further , e, = e, = (qZ-J§q+1) .

Proof. We recall that a = w1w4 and b = (w2w3)2 , so that abt ¢ W= .
Also , (abz)2 = (ab)2 since <a,b» = W, . Now ord(ab) =8 , so that

ord(abe) = 8 also . The final result follows as in Lemma 7.19 .

As‘in‘Lemma 7.20 , we can show that

-e

+
d:w(abz) = {.(aij) 3 04(3) Pagy T om8)g o 8gp =8), 5 835 = 8)) § 85 = 8,

8,1 = -a23 P o8yp = =85, a43 = 85 344 = 322}'
[ a c d
Hence , A€ Cw(abt)¢==>" A= e g h € 0:(3)
- ]J-c -4 a b {
-g -h e f

&=——> (a,b,c,d) and (e,f,g,h) are orthonormal vectors of V4(3)



satisfying ag + bh - ce - df = 0 , (1) .

If the vectors are monomials , then we may choose a=+1and b=c=4d=0,

Hence , e = g = 0 and f2+h2 =1 . This gives 8 combinations for each

choice of one of 4a,b,c,d to be non-zero . Hence there are 32
possibilities among the monomials .

Otherwise , a2_b2_ 2—d2_ 2_ 2_ 2 2 =1, and we may choose one of the 16

possibilities for (a,b,c,d) . Then , the orthogonality condition is
ae + bf + cg + dh = 0 , (2) .
Adding equations (1) and (2) , we have

(a-c)e + (b=d)f + (a+c)g + (b+d)h =0  (3) .

Now , in the vector (a,b,c,d) we have chosen , just one of {:a—c.,ba+c}.
is zero and just one of { b-d , b+d } is zero . So equation (3) gives one
of {e,f,g,h} as a mulfiple € of one othef element 6f the set , and
E =41 . Then equation (2) gives one of the remaning;two in the set
{e,f,g,h.} as a multiple of the other . Hence ,we have freedom of choice
for two of the set {e,f,g,h} , a total of 4imatrices for each first choice .
Hence there are 64 such matrices altogether , and Idlw(abzﬂ] = 96 . Then

|c7| =12 by Lemma 7.18 .

]

Lemma 7.30. The class 08 has as a representative the element =zabz , and

Cq cvW'e . Also , ord(zabz) = 8 , |08|= 12 and f8(t) = (t2+J§%+1)2

Further , e; = e, = (*+42q + 1)

e el a5t S e A e - B i 0 W




1.35.

Proof. Since f7(t) # f7(-t) , then zabt.é_C7 by Lemma 7.17 . Hence

C. is distinet from C, , and C, c Wz since z € W . By Lemma 7.18 ,

8 7° 8
lca | = |c7 |= 12 and fs(t) = f7(—t.) = (t2+[§t+l)2 . By Corollary 7.24 ,
it follows that ord(zabz) =8 . , I:]

Lemma 7.31. There exist elements w.w- € E of order 2 , and (ab)2 is

one such .

Proof. The classes of W containing elements of order 2 are 4A , 2Al

A _lv ~ T _ ' .
Al , Al , 3Al , A1+Al . If woew™ = w!' , then r;, hes an equal number of

long and short nodes . Hence , the only possibilities are Al-i-Il and

— w i t A i i
4Al = 2A1+2K1 . Now , if w' e A1+Al , then w is a reflection and so

belongs to W*s . Hence , we must look in the class 2A1+21i'.

Consulting Table 7.2 , we see that g = L 'Wr .wr AL is the
1 2 19 “20

central element of W in the class 2A1+2Ki , and a product of commuting

reflections . Hence , (w_ W"‘c)z = W_ W_ W W =% . Since z has
T, T r.r r, r
1 719 1719 "2 720

order 2 , then ord(wr W, T) =4 .
1 719

I W = %
Now w3w4mlw2w3(wr19) r3 , so that

2 . . . 2
v = wrlwrlg = w3w2.(w1w4).(w2w3) L(w1w4).w2w3 , which is conjugate to (ab)

Lemma 7.32. The class C9 has as a representative the element (ab)zt. ’

14

3

and C, cw'e. Also ,Aord((ab)z'c) =4, |09| = 24 and fg(t) = (t2+l)2 .

M

2
Further , ey = e, = (q +l) .




1.36.

Proof. Since (ab)2€, W, , it follows that ((ab)zn)4 = (ab)8 =1, so

that ord((ab)%;) = 4 . The remaining results follow as in Lemmas T7.19

and 7.20 .

Lemma 7.33. There exist elements w.w® € E of order 6 .

Proof. The classes of W containing elements of order 6 are D4 ,‘34 ,
~ < _ ' X
Fy(e)) 5 By, Cy ) Atk X +a, . 1T w.w® = W', then I, has an

equal number>of long and short nodes . Hence the only possibility is the

class F4(al) .

Suppose w = wrws , with (i). r long and s sﬁort . If w.w® is
to belong to the class F4(al) , then (ii). (z,s) = ({(r),x(s)) =0,
(113). (re() = sls,5(s)) =21, (i), (ne(s) =21,

(v). (e(z),s) =2 %.
Let r=1r

and ©(r) = r Then the possibilities for the pair

3
{s,x(s)} to satisfy (i) and (ii) are {10,9}, {2,1} ,-{14,13}, {16,15}

4

{22,21} ,‘{24,23} , and the only pair to satisfy all the conditions is the

pair {16,15} . So we let w = wr .wr , and then WeWT belongs to the
3 "16
class F4(al) end so has order 6 .

By Table 7.2 , it follows that w2w1w4(r16) = s and Tz = Py » SO
*
that we = w,w,W,w,W_w,Ww.w,t, which is conjugate in W to w, w,w_ w, T, or

27°4717273727174 217372

c(w2w3)z , where c¢ = Wlw2W3w4 is a Coxeter elegent .

i ot i e v

‘
4
1
|
{
j
¥
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Lemma 7.34. The class clO has as a representative element c(w2w3)t. ,

+
and € ,C Wz . Also, ord(c(w2w3)z) =12, |clo[ =192 and

4 .2

flo(t) =t -t +1. Further , e, = (q4-q2+1) .

-

Proof. By Lemma 7.33 , c(w2w3)i is conjugate to the element w<¥ which

has order 12 . The remaining results follow as in Lemmas T.19 and 7.20 . .

]

We have so far found 10 of the 11 conjugacy classes of Liiw*) and

to determine the remaining class , we consider the characteristic polynomials

of the classes we have found , taking note of Proposition 7.16 .

Lemma 7.35. In the notation of Proposition 7.16 , the characteristic

polynomials gx(t) ¢ K[t] for the classes C'j for J = 1l,eee,10 are :-

e evmmermt e i s £ o

Class Cl C2 C3 04 05 C6 C7 08 09 Clo

Polynomial | (iv).|(xii).{(xi).| (x).}(vi). | (v).] (v) .} (vi) f(vii). ] (vii).

roof. ince g = , we just reduce e coefficients of ea
P Si x(t) Q(fx(t)) just red th ffi ts of each

polynomial fj(t) modulo 3 .

O

We saw in Proposition 7.16 , that the last three polynomials (x), (xi),

(xii) of the list correspond to elements of the coset W+st » and since we

know (Lemma 7.23) that the remaining class is in the coset Utt., the

migsing characteristic polynomial gll(t) must be oﬁe of the list (i),...,(ix).



Lemma 7.36. gll(t) is not one of the polynomials (ii), (iii), (viii) or

(ix) .

;

Proof. These polynomials occur in pairs , so that if the final class C11

had a representative element x and characteristic'polynomial one of these ,

then f£(t) # £f(-t) so that =zx would be a representative element of a new

class 012 , which is clearly a contradiction . [:]

Although there may be repetitions as in (v), (vi) and (vii) , it

appears that the most likely candidate is (i). t4e1 .

Lemma 7.37. There exists an element w ¢ W such that fwz(t) - t4a ,

and w belongs to the Coxeter class of W . Such an element is

c.b = (wlw2w3w4).(w2W3)2 .
, 0 1 0 0]
Proof. The companion matrix for f£(t) = t*41 is € = o 1 of ,
0 0 0 1
__1 0 0 Oa

and we want to find a matrix B & GL4(3) such that tB.B = =L In order

4

to preser#e the characteristic polynomial f(t) of C , so that

fB(t) = £(t) , we must endeavour to trensform C into B as B = E.C.E T ,
where E 1is a product of elementary matrices . It is easy to see that
o 1 O _ _
B = -1 0 1 0 satisfies all the necessary conditions .
1 0 -1
0 1 o0




Then B = I:E O]. w for some w € 02(3) , so that

l1 -1 -1 -1

w= |5 % 1 = |1 a1 1o e 0h(3) « W .
0 -1 -1 -1 ’
1 a1 1

Furthermore , it is easy to see that ord(w) = 12 , so that w belongs.

to the Coxeter class 6f W. It cen be shown that wr is W-conjugate to
the element c¢br , where c¢ = wlw2w3w4 belongs to the Coxeter class of W
and b = (w‘2w3)2 , so that we may take cb %o be the required w e W .

since £ () = t%41 , it follows that ord(cbe) = 8 . .
Lemma 7,38. The class cll has as a representative element c¢br , and

+ : B _ _ .4
Cllc:jfl’c .  AMso , ord(cbr) =8, |Clll = 72 and fll(t) = t7+1 .

Further y 8 = (q4+1) .

. 2 . ot |
Proof. Since c¢b = (wlw2w31-z4).(w2w3 , it follows that C,;c W=z . By

) =t

Lemma 7.37 it follows that fll(t

+1 and that ord{cbr) = 8 . The

remaining results follow as in Lemmas 7.18 and 7.19 . . D

Lemma 7.39. The coset W+-c of WY is the union of the 8 conjugacy classes

c c

17057C6!C7,C8)C9’C10’ 11'

Proof. As in Lemma 7.23 , the coset w+~c has order 576 , and by the

information of Lemmas 7.27 to 7.38 ,



CuCsuC guCauCauCoulygutyy

Since all these classes are

.40.

=T2 + 96 + 96 + 12 + 12 + 24 + 192 + 72

576

contained in th , the result followé .

.

We recall from Chapter 6 that the classes of Hl(c,W) are

{Ci.‘c_: cie,L"z(w*) } .

Proposition 7.40.

The elementary divisors of the maximali tori 'I'W and

the order of the corresponding group Wc‘ in the groups 2F4(q2) are -as in

the following Table 7.3 .

- TABLE 7.3.
.- 1 Order of |Order of .
Class Represi?tatlve We ‘0lass Elementary Divisors chl
C,.T W, 8 144 e, = q4-J?q3+J§q—l. 8
. _ 4.3
03.t zw, 8 144 e] = q +d2q -{2q-1. 8.
c,.t W 4 288 e, = q4—i 4
4 1 1 el
2
.t el = -
c, 1 2 72 e, = e, (q°-1) . 16
C..T W W 24 96 e, = - PBP+®-Bas1. | 12
5' 172 - l—q q +q q ¢
C. .z 24 6 W SN
6° ZW, W, 9 e; = q +d2q7+q + 2q+1.] 12
c.,.c ab 8 12 e, = e, = (q2—J§q+1). 96
7 1 2 _
CqeT zab 8 12 e, = e, = (q2+J?q+1) .| 96
. 2 2
Cy-x (ab) 4 24 e =e, = (qg“+1) . 48
. 42
€T c(w2w3 12 192 ey = ¢'=q"+1 . 6
C...t cb 8 72 e. = q*11 16
11° 1 *




5

ATV A and z=(ab)4 is

Here,a:(wlw4,b=(w 195y

the non-trivial centrasl element of W . The representatives &re those of

the classes Hl(o‘,W) . , : ‘ ‘

Proof. This follows from Lemmas 7.19 - 7.39 , and ;Dy Lemma 1.9 .

O

§7.5. The Steinberg groups of type 3D4(Q) .

We discuss these groups in this Chapter because of the way in which

W(F4) was constructed from W(D4) . Referring to 8 6.1 , we see that Kl ]

is a finite field of the form GF(qB) , G is either of the groups

7, K

G or G

ad K and r is the triality automorphism of the Dynkin
?

sc,K

diagram of D illustrated in Table 6.1 , which corresponds to the

4

' 'and zz!'. This is

automorphism of SpinB(K) cyclically permuting z,z
discussed in §4.2 . Hence , T(4A,) = A\ if and only if 7v = ad or sc .
Furthermore , by Corollary 1.8 , we need only discuss the case when X 1is

the simply connected representation of g , since the results are identical

in the cases v = ad or sc .

Now 21 }s a root system of type D4 embedded in V , and Wl is
the corresponding Weyl group , as in §7.4 . Furthermore , T corresponds to
the element y ¢ D(i‘.l) , and Wl* = <Wl ,'C> is a normal subgroup of

W of index 2 , as in the diagram after proposition 7.10 . Since T is a

permutation of ﬁ 10 it follows that T maps any graph I—'C onto an




7.42.

jdentical graph , although we have no easy algorithm for deciding how ¢

acts on )f(Wl) in the case of one graph representing distinct classes .

We list the conjugacy classes for Wl in Table 7.4 [6] , and we notice

how there are two graphs which each occur 3 times , suggesting that each

triple may be cyclically permuted by T .

That this is S0, We prove now .

TABLE 7.4.

Mo | @-wee M| [ overee |
cy b é 1 [1111] cy
c, D2 o) o) 6 [f 11 i] C7
03 D2+Dé o o o 1 [I i'I'IJ 03
c, A 0 12 [211] c,
Cs A+0s o o o 12 [2T 1] cs
06 D3 S — 24 - 211 C12
C. (A +A)" a o 6 [2 2] Cg
Cq (A, +4))" o o 6 [2 2] c,
Cq p,(a;) Q 12 [z 3] C,
Cio A, —o 32 [3 1] C1o
11 ! oo 32 [51 11
Ci5 A e — 24 [4] Cys
Cyx ' Ay O——0—0 24 [4] Ce




7.43.

Lemma 7.40. The automorphism ‘¢z of Wl cyclically permutes the triples %‘

(02,07,08) and (CG’CIZ’CIB) in its action on )Z(Wl) . %
Proof. Now T acts on :E:l in the manner 63‘94
illustrated , so that the matrix of <« e,-e e -6
: 1 72
with réspect to the normal basis . \\‘
. e_+e
T 1 1+ 1 17 34
2 2 7 2
* 7 -F-%
is 11 14 . So take any element w € C , for example
7=z 7 -2 2 , ‘
104 14 f
L7 7 77
1 010 0 5 1 0 0 :
0 T *C—l ?
w o= 1 - . Then w =11 0 0 O] and w =41 0 0O O} .
o -1 ¢ 0 0 -1 0O 0 0 1]-
- -1 0 0-1 O 0O 01 O

Then w© and wo poth have signed cycle type [22] . However , they

are conjugate only by an element of W(C4) , and hence belong to different

classes of W1 y Viz. C7 and 08 .

Similarly for the triple (06’012’C13) . D
Now W, '= <<s,t,u,v:> as in 87.4 and is the semi-direct product of the

group 02 X 02 X 02 by the group (§§ , [4] . Coxeter [9] describes it

as the symmetry group of the half-measure polytope hz& . Also , there are

three cosets of Wl in er , each of which is a union of conjugacy classes

»#

»of Wl

» by proposition 2.5 , and it is the coset W<¥ in which we are

interested , by Lemma 6.4 ,




Provosition 7.41. If W, % w(n4) , then lHl(O',Wl)|= 7 , where o is the

triality automorphism of Wl .

Proof. In this case , there is only one graph for each class so that if
the graph F“C correspondihg to the class C does'not occur elsevhere in
the list { I"C : C ¢ }Z(w)g of Table 7.4 , then = must fix that class .

Hence , the only classes not fixed by T are those described in Lemma 7.40

and so there are 7 classes fixed by T .

Thus , by Proposition 2.5 , since T 1is of order 3%,
g * 13=1 _ xyl
|| =327+ 25025 ana [E()] = 7.

. . . *
Now , by Lemma 6.4 , there 1s(a bijection 4b: }rl(c,wl)——->,ﬁ:(wl ),

so the result follows .

: %
We now prove some more results about Wl .

Proposition 7.42. (i). (Wl)t = 4<:(stu) , Vo3 (stu)2'= v2 = (stu.v)6 = l>>

is isomorphic to D12 , the Dihedral group of order 12 , and contains the
' (stuv)’
central element z' = (stuv)” .

(ii). The commutator subgroups of Wl and W;* are identical , and equal

to the eVen subgroup W1+ . Also , the quotient group W;‘/ Wl+ is cyclic

of order 6 .

-

(1ii). ZI Wl+| =96 and z is the central element of WX

l .



Proof. The fundamental system 7—\- splits into two ‘¢ orbits as in

1

Proposition 7.10 , and (i) follows similarly . In fact (W]_)r; £ W(Gz) and

(Zl)z_ is a root system of type G, . See [20] . 4

=

By Coxeter [10] , since all the branches of the graph of ﬁ 1 have

odd numbers attached , it follox{rs that W,' = W + . Tow , ‘by the above ,

1 1
1w, 1=192 , 80 |W."|= w.t] = 9€ . Then , as in Lemma 7.11 , we can see
1= 15 1 1
that. W?/ (Wl*)' is isomorphic to C, . Hence , l (Wl*)'l =96 . Since
+ . . 5
W€ (wf*)' , it follows that all the groups W;, W, and (W§)f are identical -

Since z' = (s’cuv)3 ¢ (wl)*r_ , then z' is the unique central element
* .

*

1 is a union of conjugacy

Corollary 7.43. Each coset of W,* in W

classes of Wl* . In particular , the 7 classes of Wl* contained in

€ are partitioned into the two cosets W *e and W.tse , each of order

W 1 1

1

96 .

Proof. This follows from the fact that o (Wf)' as above , and by

W 1

Lemma 7.12 (ii) . ]

Proposition 7.44. Let S = (W1yu le_l) be the union of the two cosets

W,y end le_l of W, in W . Then § is the union of the 7

conjugacy classes of the set r* {mentioned in §5.3) which do not meet V2 .




Proof. Now I SI = 2 lW = 384 , and the union of the conjugacy classes

|

»# .
of 27 has order (32+496+96+16+32+96+16) = 384 also .

FPurthermore , S 1is a normal subset of W , since wly 'is a normal

subset of W.¥ , by Corollary 7.43 , and since x.wl-y.x_l = le_l .

1
Finally , S W, = $ by definition of W2 as < s,t,u,v,x> .
Now , as we have seen in 55.3 y, the only normal subsets of W not
2 .
intersecting W2 are the subsets of the set z . Hence , by considering

the size of these , S is just the union of these classes .

o

»#

- Hence , the union of the two non-trivial cosets of Wl in Wl 'is the
union of 7 conjugacy classes of W . We see precisely how these classes

split into Wf ~conjugacy classes in the next lemma .

Lemma 7.45. Bach of the 7 classes constituting S splits into two
Wf -conjugacy classes of equal size , one of which lies in le and the

other in wly"1 .

Proof. We recall how le. and le_l are dual under conjugation by = .

Also , by Corollary T7.43 , le is a union of WX -conjugacy classes , SO

1
' 1 -1 -1 1 -1 4 -
let C' be one such . Then zx.C'.x " C le and Ix.C X I = IC | .
Further , (C! V) x.C'.x—l) = C 1is a conjugacy class of W , and since

it lies in S, it follows that ' C € )2 .

]




.47,

We retain the notation that if Ci € ﬁ* , then. C:!L is the
corresponding Wf -conjugacy class contained in le . In fact

ie{7,13,16,18,20,24,25} from Table 5.2 . ,

Lemma T7.46. The coset W.,T is the union of the 7 Wf -conjugacy classes

1
{Ci : cie}f*l.

Proof. We have seen how | CJ'_I =% |Ci| and how. |Wlt| = +IS]. Since

each C'c ¥
i

. — t
T » it follows that W, = Uci . D

Proposition 7.47. The elementary divisors of the torus Tw of 3D4(Q) ,
where w € Wl is a reﬁresentative element of the class Ci , are precisely

those of the torus Tw of F4(q) corresponding to the class Cic W .

Proof, As already stated , it follows from Corollary 1.8 that we need only

consider the case G;HK where 7T is the adjoint represéntatioxi or the
»

simply connected representation , since the results are identical in both

cases . However , Since FAN se for the group D, is identical with

4

AN aq for the group F

4 when they are enbedded in V , (both being the

lattice M3 described in §4.2) , then our obvious choice is Gsc K ° For
H

then , if w is a representative element of some class h ='y/—l(C:!L) of

Hl(c,wl) , we need to find the elementary divisors of the matrix

(q.(wz)_n .—I) , by Chapter 1 , where (wz)_n_ is the matrix of the action of

the element wez € Wl* with respect to a basis,ﬂ of Asc for the group




D However , wt € Ci , Which is a W-conjugacy class as we have seen

4 °
in Lemmas 7.45 and 7.46 . Hence , (WI:ZIL is the matrix of the action of
wr € W with respect to a basis L of z:&ad for the group F, ’
corresponding to the conjugacy class Ci of W. Hence , the elementéry
divisors of the matrix -(q.(wzln.-l) are precisely fhose cof;esponding to

»* ' ' ‘
the classes Ci € }f , which we have already calculated in Table 5.2 , and

the result follows . [:]

We conclude this chapter with a table of results for the groups
3D4(q) which lists the elementary divisors of Tw corresponding to the
conjugacy classes Ci of }:g(Wi*) , together with the order of the

corresponding group Wo,, using Proposition 1.9 .

TABLE 7.5.

Class Order of class Elementary divigors IWGI
oy | e, = (a-1)(a+1) . ‘
Clc 48 e = (g+1)(a”-1) 4
€y 48 e, = (a*-a®1) . 4

S ch 16 e = (g-1) , e, = (q3-1). 12
€20 16 ey = (a11) , ey = (q3'+1).. 12
di8 8 o) = e, = (q2+q+l) . 24
Ce 8 | e, = e, = (q®-qs1) . 24




CHAPTER 8. Conclusion.

In concluding this thesis , we consider some work of Springer [_17] in
which he shows that , under favourable circumstances , & c'—fixed maximal
torus T of G and a regular character. <[> of the.corresponding finite
group TW determine an irreducible character 'XT,¢ of Go; . The
constructic’)n_ of the character XT,¢ uses ideas from the theory of
exceptional characters of finite groups . It is believed that a further
study of the character theory of the groups Go_ should begin with a closer

investigation of the characters 7(‘]3 $ °
’

Let G = Gvr,K , and choose any o-fixed maximal torus »T of ‘G .
‘ Then. we let To, denote its fixed-point group , andé let {1\‘0 denote the
character group of T _ . Let. N = NG(T) , SO thét W= (x / T)cr and
Wo‘ acts on To‘ and /‘fc . In fact , if o is the Frobenius

endomorphism , it easily follows that W0_= ZW(W) , where T 1is twisted

with respect to w , when o is a pure field automorphism .

A .
We say that x €& Tc' (resp. 95 € Tcr) is regular if the isotropy group

of x (reSp.yS) in W, is reduced to the identity . If x € T_ is

o)

regular , then T is the unique maximal torus containing x , and
o
ZG(X) =T .

If we W, we denote the subgroup of elements of T fixed by w by

WT . If we Wo‘ , then wT is o-fixed . Also , any non-regular element

of TO_ is -contained in (wT)o‘ for some non~trivisl w € Wo_ .



Let S be a subset of To_ which satisfies the following condition :=-
. . . X . .
(1). for all x e Gc\Nc , the 1ntersect;on Tc N\ To‘ lies in S .

Then S consists of non-regular elements of To’ . ¢

1 A '
We say that two characters }6 , ¢ € To, are equivalent if they have
the same restriction to S . W_e denote the equivalence class of $ by c(é),

and . the set of regular characters of Tcr by 7 I If H is a
?

subgroup of G and ’b is a character of H , then we denote the character

¢ .

induced to G by ig G

R ,
Let ¢ € To r satisfy the following condition :-

A

(r1). ¢ = c(p) meets at least 3 orbits of Wo_ in T

o’
Then it can be shown that there exists a unique sign &c = + 1 and unique
irreducible characters XT,QS' (independent of the‘ choice of S) of GO,
such that

ipe s ol®-¢) = € (K -Xp 450 ) -

. A ,
. 1 s — 3
AMlso , if ¢&,®' e To-,r satisfy (II) , then XT,¢ _Q(T,QS' if and only

if ¢' lies in the Wo_—orbit of ¢ .

Also , if T and T are two o-fixed maximal tori which are not

1
conjugate by an element of Go‘ , and if Sl c Tl satisfies (I) , then it
. . .
can be shown for regular characters ¢ € To‘,r and ¢l (Tl)d,r«

satisfying (I1) that X, o # ?(Tl’¢1 .

In [17] , there is also a discussion. of asymptotic formulae for the

A
number of regular elements of Tcr and To' , and also of the distinct



irreducible characters of Gcr constructed in this way .

There is a conjecture of MacDonald [18] concerning the values of the

characters ?(T é on the regular semi-simple elements of Go_ , Viz.
?

0 =2, W ' ' .
lXT,?S(t) = (-1) wew ¢( t) , where t € Ta is regular
and the sum is extended over all distinct W-conjugates of t . MacDonald

‘has also conjectured in the case wiere Go’ is of Chevalley type that the.

degree of X 6 should be
il

d
-1 i .
lTO’I . 71_'\1 (q ~-1) ,» vwhere the di are the basic

invariants of W , see [20] .

It seems necessary to obtain explicit values of the ch;aracters XT ¢
H
and , in a recent paper [:15] , Ree and Chang have done this for the groups
Gz(q) when q¢# 2,3 . In fact, G2(2) is the only group of Chevalley

type which does not contain regular elements in the Coxeter tori .

In general ', if w Dbelongs to the Coxeter class 6f W, and h is the
Coxeter number of W , then the non-~regular elements of To‘ are those of

the groups ( dT)o‘ , where 4 is a divisor of h .
W

If L(G) is the Lie algebra of G , then Chevalley has shown [16] that
if G is a semi-simple adjoint group , then L(G)(KO) contains regular
elements , and in fact these elements lie in L(.T)(KO) , where T is a
Coxeter torus of G . Lafer , A. Borel and T.A. Springer [Tohoku- Math.

Journal No.20_] showed this to be true for any reductive Group G .



If we consider regular semi-simple elements in the group G(Ko) , 1t
is easy to show that , for any maximal torus T of G which is twisted
with respect to w € W, regular elements lie in To’ if and only if

(o’il)x contains no root of ':5 , ie. that (qw-I)X contains no root.(III) .

Certainly , to satisfy this condition , w must not lie in any We&l-
subgroup W' of rank less than that of W , and we can check that this -
condition is satisfied in every grogp G(Ko) except G2(2) - Referring
to §'7.3 , we.know that w must bélong to the Coxeter class of W , and a
representative of this cless is a rotation anticlockwise through 60° about ;
the origin. Then , (2.w-I).a = 2.(b+2a)-a = 2b+3a ,vthe highest root of =

;Ei(Gz) . Hence , the condition (III) is not satisfied ; and the
Coxeter tori of G2(2) , which are isomorphic to 03 , do notrcontain
regular elements . In fact , in this group , the group ( ZT) , which is

v

‘a sub-torus corresponding to a long root of :E: , is such that (-2T)o_
S W

coincides with 'TG « We have already remarked that the gromps ( dT)G
w

consist of the non-regular elements of Tc .
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