University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/66550

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

MAXIMAL TORI IN FINITE GROUPS OF LIE TYPE

by

Philip Charles Gager

A thesis submitted for the degree of Doctor of Philosophy at the University of Warwick.

ABSTRACT.

It isbelieved that a unified approach to a study of the representation theory of the finite groups of Lie type should begin with a study of the regular characters of the maximal tori of these groups. This thesis is directed towards determining the structure of the maximal tori in the finite groups of Lie type.

Chapter l is a general introduction to the properties of Chevalley groups, together with the consequences of a result of Springer and Steinberg. This result establishes a correspondence between the conjugacy classes of maximal tori and certain equivalence classes of the associated Weyl group. In certain cases, these classes are the conjugacy classes, and Chapter 2 begins with a review of Carter's unified approach to the conjugacy classes of Weyl groups. Chapter 2 also includes some results on automorphisms of Weyl groups in relation to Carter's approach.

The finite Chevalley groups are the first to be considered. Chapter 3 studies those of type A_{ℓ}, and Chapter 4 simultaneously considers the Chevalley groups of types $B_{\ell}, C_{\mathcal{l}}$ and $D_{\boldsymbol{l}}$. Finally, Chapter 5 presents the results for the Chevalley groups of exceptional type.

The finite groups of twisted type are the last to be discussed. Chapter 6 begins with a general description of the classes of the Weyl group in these types and concludes with the results for the Steinberg groups of types ${ }^{2} A_{l},{ }^{2} D_{l}$ and ${ }^{2} \mathrm{E}_{6}$: The Steinverg groups of type ${ }^{3} \mathrm{D}_{4}$ are left until the end of Chapter 7, after a discussion of the Ree and Suzuki groups.

The thesis concludes with a note on the representation theory and a description of the regular characters of the maximal tori.

ACKIOWLEDGENETTS

It is a pleasure to express my gratitude to Professor R.W. Carter, who first aroused my interest in the subject of algebraic eroups and related topics with a stimulating lecture course on Weyl groups, and who has held my interest since by his continued encouragement and guiding influence. His counsel has been an unfailing source of inspiration and assistance, and has been the outstanding factor in the preparation of this thesis.

Secondly, I would like to take this opportunity of thanking Dr. S.E. Stonehewer for his supervision and encouragement during the early part of the academic year 1969-1970, and Dr. T.O. Hawkes for his assistance during Professor Carter's absence. Also, I would like to express my gratitude to all those at the University of Warwick during the period 1969-1972 who have severally contributed to the completion of this thesis, and, in particular, to Drs. G.B.Elkington and S:J. Mayer for all their interesting and rewarding conversations.

Finally, I wish to record my appreciation of the Science Research Council for their financial support during the above period, and the University of Warwick tutorial system for supplementing the grant.

Abstract.
Acknowledgements.
Introduction.

Chapter 1. Preliminaries
§1.1. Definition and properties of Chevalley groups. 1.1
§1.2. Automorphisms of G. I.4
1.3. The Basic Theorem and its consequences 1.7

S1.4. Some results on weight lattices 1.17.
§1.5. A result on normalisers of maximal tori. \quad. 20.

Chapter 2. Conjugacy classes in the Weyl group.
§2.1. Description of the conjugacy classes of W. 2.2.
§2.2. Choosing a basis of $\Delta_{\text {ad }}$. 2.4.
§2.3. Examples of the methods to prove Proposition 2.2 2.7.
§2.4. Some automorphisms of W. 2.9.
§ 2.5. Maximal tori corresponding to Weyl subgroups of W. 2.14.

Chapter 3. Chevalley groups of type A_{l}.
§ 3.1. Introduction. 3.1.
§3.2. The matrix $\mathrm{L}_{\mathrm{d}}(\lambda)$. 3.3.
§3.3. The groups $G_{a d, K}$ and $G_{S c, K}$. 3.5.
§3.4. The Coxeter tori in the groups $G_{\pi, K}$. 3.9.
§ 3.5. A generalisation. 3.13.

Chapter 4. Chevalley groups of types B_{l}, C_{l}, and D_{l}.
§4.1. Introduction. 4.1.
§4.2. Modules in V. 4.2.
§4.3. Description of the weight lattices Δ_{π}. 4.7.
§4.4. The module M_{1}. 4.8.
§4.5. The module M_{3}. 4.9.
§4.6. The module M_{4}. 4.23.

Chanter 5. Chevalley groups of exceptional type.
§5.1. Introduction 5.1.
§5.2. Groups of type G_{2}. 5.2.
55.3. Groups of type F_{4}. 5.3.
§5.4. Groups of type E_{6} and E_{7}. 5.7.
§5.5. Groups of type E_{8}. 5.8.
Chapter 6. Steinberg groups of type ${ }^{2} A_{\ell},{ }^{2} D_{l}$ and ${ }^{2} E_{6}$.
\$6.1. Exterior forms 6.2.
§6.2. The set $H^{1}(\sigma, W)$. 6.5.
36.3. The root system of type A_{l}, D_{l}, and E_{6}. 6.8.
56.4. The groups ${ }^{2}{ }_{A_{\ell}},{ }^{2} \mathrm{E}_{\boldsymbol{\ell}}(\boldsymbol{\ell}$ odd $)$ and ${ }^{2} \mathrm{E}_{6}$. 6.11.
66.5. The groups ${ }^{2} \mathrm{D}_{\boldsymbol{\ell}}(\boldsymbol{\ell}$ even).

Chapter 7. Finite groups of twisted type ${ }^{2} B_{2}\left(q^{2}\right),{ }^{2} G_{2}\left(q^{2}\right)$ ${ }^{2} F_{4}\left(q^{2}\right)$ and ${ }^{3} D_{4}(q)$.
§7.1. Construction of the Ree and Suzuki groups. 7.2.
97.2. The Suzuki groups ${ }^{2} B_{2}\left(q^{2}\right)$, where $q^{2}=2^{2 m+1}$. 7.5.
87.3. The Ree groups ${ }_{G_{2}}\left(q^{2}\right)$, where $q^{2}=3^{2 m+1}$. 7.7.
§7.4. The Ree groups ${ }_{2} F_{4}\left(q^{2}\right)$, where $q^{2}=2^{2 m+1}$. 7.9.
§7.5. The Steinberg groups ${ }^{3} \mathrm{D}_{4}(\mathrm{q})$.

Chapter 8. Conclusion.

References.

INTRODUCTION

In 1955, Chevalley showed how to construct analogues of the complex simple Lie groups over arbitrary fields. These Chevalley groups were found to be simple and were identified by Ree with some families of classical simple groups over finite fields. However, there were families of classical groups which could not be identified in this way, for example the unitary groups. Independently, Steinberg and Tits modified Chevalley's construction to obtain more finite simple groups of Lie type, the "twisted groups" or Steinberg groups. These groups accounted for the remaining classical groups over finite fields and, in fact, added to the list of previously known finite simple groups. However, there were found to be three types of Chevalley group which suggested that they might lead to further families of finite simple groups, although Steinberg's construction did not yield such results. Then, in 1960, Suzuki discovered a new family of simple groups using properties of centralisers of elements. Ree imnediately interpreted these as a new type of twisted group, and then proved the existence of two further families. These three families are the Ree and Suzuki groups.

These finite groups of Lie type have evoked considerable interest since their introduction and rapid progress has been made in the general theory. However, a present unsolved problem is a unified approach to the representation theory of these finite groups, and it is believed that a study of certain characters of a particular type of abelian subgroup (called maximal tori) will lead to a solution of the problem. The representation theory problen has been solved inafew particular cases, notably the work of Green on $G L_{n}(q)$, and also by Srinivasan in the case.
of $\mathrm{Sp}_{4}(\mathrm{q})$, Lehrer in the case of $\mathrm{SL}_{\mathrm{n}}(\mathrm{q})$ and Ree and Chang in the case of $G_{2}(q)$. In such a light, the purpose of this thesis is to determine the structure of these maximal tori in the finite groups of Lie type.

One of the more rewarding viewpoints of the Chevalley groups is as split-forms of linear algebraic groups, and it is from this standpoint that the required results are determined. From a theoren of Lang on the fixed-point group of an endomorphism of a linear algebraic group, Springer and Steinberg have shown in [19] that there is a bijection between the conjugacy classes of maximal tori in the finite group and certain equivalence classes in the corresponding Weyl group. This result, and its consequences, is discussed in Chapter l, together with a discussion of automorphisms of Chevalley groups. In certain cases, the above equivalence classes are just the conjugacy classes of the Weyl group. Since certain ideas and results from it will be needed throughout the thesis, a brief survey of Carter's paper on the conjugacy classes [6] is included in Chapter 2, together with some results on automorphisms of Weyl groups which are related to op.cit.

A working knowledge of most standard facts on linear algebraic groups will be assumed, and these can be found in [1] and [8]. Carter's recently published "Simple groups of Lie type" also provides an ideal reference to the finite groups considered in this thesis. For the construction of, and the main results of, Chevalley groups, the reference is $\S \S 1-3$ of [2] . Some of this is treated in greater detail by Steinberg in [20], but the thesis will be based upon the notation of the former. Thus, associated with the triple $\{\mathrm{g}, \pi, \mathrm{k}\}$ consisting of a complex,
semi-simple Lie algebra g, a faithful representation $\pi: g \longrightarrow g(E)$ of \mathbf{g} over a complex vector space E, and the field k, there exists a corresponding Chevalley group $G_{\pi, k}$. Chevalley has shown in [8] that, if K is an algebraically closed field, every connected, semi-simple, linear algebraic group over K is isomorphic to one of the groups $G_{\pi, K}$.

Throughout the thesis, K_{o} denotes the finite field $G F(q)$ of $q=p^{n}$ elements, for some prime p, and the algebraic closure of K_{o} is denoted by K. Then $G_{\pi, K}$ is a finite Chevalley group. Let $G=G \pi, K$, so that G is a subgroup of $G L_{n}(K)$ for some n, and is also an algebraic set in the affine space which is determined by the n^{2} matric coefficients and is subject to the Zariski topology. Let $G(q)$ denote the K_{o}-rational points of G, ie. $G(q)=G \pi, K \cap{ }^{G L}\left(E_{Z} \otimes_{Z} K_{o}\right)$, where E_{Z} is an admissible $Z-i$ iorm of E with a basis of eigenvectors of the Cartan subalgebra \underline{h} of g. Then it is known that $G \pi, K_{0}$ is the derived group of $G(q)$. In the case that G is simply connected, ie. π is the sum of the representations having the fundemental weights as highest weights, then $G_{\pi, K_{0}}$, is equal to $G(q)$.

The group $G(K)$, of K-rational points of G, can (and will) be identified with G, and a torus in G is defined to be a closed subgroup which is isomorphic to a direct product of r copies of K^{*}, for some $r>0$, where K^{*} is the multiplicative group of K. A maximal torus of G is one contained in no other, so that r is equal to ℓ, the rank of G. In [8], Chevalley shows that the maximal tori of G are all conjugate in G .

Now let σ be an endomorphism of G onto itself and let G_{σ} be the group of σ-fixed points. Then Lang has shown that if $G \sigma$ is finite, any element of G can be written as $g . \sigma(g)^{-1}$ for some $g \in G$. This is discussed in Chapter l. The justification for this approach is that the groups $G(q)$ can be realised as groups of type G_{σ}. For, if σ is the automorphism of G (induced from the Frobenius automorphism of K) which raises every matric entry of an element $g \in G$ to its $q^{\text {th }}$ power, then $G \sigma$ is finite and is just $G(q)$, the group of K_{o}-rational points of G. These are the finite Chevalley groups. The finite twisted groups of Lie type are constructed by combining the above automorphism with another type of automorphism and are the groups G_{σ} again. This is discussed in Chapters 1, 6 and 7.

A torus of G_{σ} is defined to be the group T_{σ} of σ-fixed points of a onfixed torus T of G, and a maximal torus to be a subgroup obtained in the same way from a maximal torus of G. Then a maximal torus in $G(q)$ is the group of K_{o}-rational points of a K_{o}-maximal torus (ie. one defined over K_{0}) in G. It is to be noted that the maximal tori of G_{σ} need not be naximal in the set of tori of G_{σ}, and certainly they need not be isomorphic to direct products of copies of K_{o}. For example, there al ways exists a maximal torus of $G(q)$ which comes from a K_{o}-split maximal torus (diagonalisable over K_{o}) of G. When $q=2$ this consists solely of the identity element and is thus contained in other (non-maximal) tori. The aim of this thesis is to determine the structure of the maximal tori of the groups G_{σ}, when G is a simple Chevalley group $G_{\pi, K}$ and σ is an automorphism of G.

Given g and k, there is a collection \mathcal{G} of groups
$\left\{G_{\pi_{I} k}, \ldots,{ }^{G} \pi_{n}, k\right\}$ corresponding to different representations π_{i} of \mathbf{g}. \mathcal{G} is called the isogeny class of type $\{g, k\}$ and there exists (under certain conditions depending upon π_{i}, π_{j}) an isogeny $\pi_{i j}: G_{i}, k \longrightarrow G_{i}, k$, where an isogeny is a surjective k-rational homomorphism with finite kernel. In most cases, the cardinality of this set is either 2 (when π_{1} is the simply connected representation and π_{2} is the adjoint representation of \mathfrak{g} on itself) or I (when π_{1} and π_{2} coincide). However, in groups of type A_{l} and D_{l}, the cardinality of \mathcal{G} is greater than 2 . One might expect the results of Chapter 1 to imply that the results of the thesis are independent of π. In fact, it is shown in Proposition 1.4. that the order of a maximal torus T_{σ} of $G_{\pi, K}\left(K_{0}\right)$ is independent of the representation π. It is further proved in [I] that the order of $G \pi, K\left(K_{0}\right)$ is independent of π, as in the case of groups of type A_{ℓ}, where $G_{a d, K}\left(K_{0}\right) \cong P_{\ell+1}(q)$ and $G_{S C, K}\left(K_{0}\right) \cong S L_{\ell+1}(q)$ have the same order. This, of course, although strongly suggestive, does not imply that the structure of the maximal torus is independent of π, and the dependence upon π in types A_{ℓ} and $D_{\boldsymbol{\ell}}$ will be seen. It is to be noted however that in the adjoint groups it is the representation theory which is well-beneved, whereas in the simply-connected groups it is the conjugacy classes which are well-behaved.

The finite Chevalley groups of type A_{ℓ} are discussed in Chapter 3, and those of type B_{ℓ}, C_{ℓ} and D_{ℓ} in Chapter 4. The reason for this simultaneous treatment becomes obvious when one considers the results of
[6]. The finite Chevalley groups of exceptional type are discussed in Chapter 5. At present, only partial results for the groups of type E_{n} are presented, due to the size of the groups $W\left(E_{n}\right)$. However, the results for the most interesting cases, viz. the semi-Coxeter tori, are presented.

As remarked earlier, when σ is modified from a pure field automorphism to include a graph automorphism, then other finite-groups due to Steinberg, and further groups due to Ree and Suzuki, are recovered. The determination of the maximal tori in the former type is discussed in Chapter 6, and the latter in Chapter 7. Because of the connection between types D_{4} and F_{4}, the Steinberg groups of type ${ }^{3} D_{4}$ are discussed with the Ree groups of type ${ }^{2} \mathrm{~F}_{4}$ in Chapter 7.

Finally, the thesis is concluded with a brief note on the representation theory of the groups G_{σ}. This outlines Springer's recent work towards a unified approach.

To the best of the author's knowledge, those results in this thesis which are not otherwise attributed are originel.

§1.1 Definition and properties of Chevalley groups.

For any group G and any subset $S \subseteq G$, we denote by $Z_{G}(S)$ the centraliser of S in G, the normaliser of S in G by $N_{G}(S)$, and for any $x \in G$ we denote $x . S . x^{-1}$ by ${ }^{x} S$. For any $g \in G$, we denote by i_{g} the inner automorphism, $i_{g}: x \longmapsto g_{x}$, of G, and by $\overline{\mathscr{b}}(G)$, the set of conjugacy classes of G. Let N be the monoid of natural numbers, Z the ring of integers, and R (resp. C) the field of real (resp. complex) numbers. .

If h is the Cartan subalgebra of the complex, semi-simple Lie algebra g corresponding to the Cartan decomposition of g, and $\left\{h_{a}, e_{b}: a \in \pi, b \in \mathcal{K}\right\}$ is a Chevalley basis of g with root system \mathcal{Z}^{\wedge} and fundamental roats π, and if \underline{h}^{*} is the dual space of \underline{h}, then $m \in \underline{h}^{*}$ is a weight if and only if $m\left(h_{a}\right) \in Z$ for all $a<\pi$. The weights form a Z-form of \underline{h}^{*} which we call $\Delta_{s c}$, and the fundamental weights, i.e. those $m_{a} \in \underline{h}^{*}$ for which $m_{a}\left(h_{b}\right)=\delta_{a b}$ for $a, b<\pi$, form a basis of this. The subgroup $\Delta_{a d}$ generated by the roots has finite index in $\Delta_{s c}$, and in fact $\Delta_{s c} / \Delta_{a d}$ has relation matrix $\left(A_{i j}\right)$, the Cartan matrix of π. If (π, E) is a finite dimensional g-module and $m \in \underline{h}^{*}$, we let $E_{m}=\{v \in E: \pi(h) . v=m(h) . v$ for all $h \in \underline{h}\}$. Those $m \in \underline{h}^{*}$ for which $E_{m} \neq 0$ are the weights of π, and the space E is the direct sum of the E_{m}, where m runs through the set $P(\pi)$ of the weights of π. We let Δ_{π} denote the subgroup of \underline{h}^{*} generated
by the weights of π. If π is faithful, then $\Delta_{\text {sc }}>\Delta_{x}>\Delta_{\text {ad }}$, and we know from the representation theory that, given Δ between Δ sc and $\Delta_{\text {ad }}$, there always exists a faithful representation π of g such that $\Delta_{\pi}=\Delta$.

Let (π, E) be any g-module. An admissible Z-form of E is a Z-form which is stable under $\pi\left(e_{a}^{j} / j!\right)$ for $a \in \mathcal{K}$ and $j \in N$. If $\pi: g \longrightarrow g l(E)$ represents g in the Lie algebra of endomorphisms of a complex vector space E, then we identify E with C^{n} by means of a basis of an admissible Z-form E_{Z}, which consists of eigenvectors of \underline{h}. Then $\quad X_{a}^{(\pi)}(t)=\exp \left(t . \pi\left(e_{a}\right)\right)$ defines an automorphism of $E(k)=E_{Z} \boldsymbol{\theta}_{Z} k$ for every $t \in k$. Then, the Chevalley group associated with $\{\mathbf{g}, \boldsymbol{\pi}, \mathrm{k}\}$ is $G_{\pi, k}=\left\langle{\underset{X}{a}}_{G}^{G}(t): 2 \in \mathcal{Z}, t \in k\right\rangle$, and this is a subgroup of GL $\left(E_{Z} \boldsymbol{\otimes}_{Z} k\right)$. If there is no ambiguity, we shall write $x_{a}(t)$ for $x_{a}^{(\pi)}(t)$. By $\langle S: R\rangle$, we mean the group generated by the set S, subject to the relation set R.

For each a $\in \mathcal{L}$, there is a unique homomorphism $\mu_{a}: S L_{2}(k) \longrightarrow G \pi, k$
 for every $t \in k$. Let $h_{a}(t)$ be the image of $\left(\begin{array}{c}t \\ 0 \\ 0\end{array} t^{-1}\right)$, for $t \in k^{*}$, under μ_{a}. The group $H=\left\langle h_{a}(t): a \in \pi, t \in k^{*}\right\rangle$ is a maximal torus of $G_{\pi, k}$.

If Δ is a Z-form of \underline{h}^{*}, we let Δ^{*} denote the dual Z-form of h , ie.

$$
\Delta^{*}=\{n \in \underline{h}: a(h) \in z \text { for } a \in \Delta\}
$$

If $m \in P(\pi)$ is a weight of π, then, putting
${ }^{E_{(k), m}}=\left(E_{Z} \cap E_{m}\right) \otimes_{Z} k$, we have

$$
h_{a}(t) \cdot x=t^{m\left(h_{a}\right)} \cdot x, \text { for } x \in E_{(k), m} ; t \in k^{*} ; a \in \mathcal{L}
$$

To m there is associated a homomorphism of H into k^{*} characterised by $m\left(\prod_{a \in \pi} h_{a}\left(t_{a}\right)\right)=\prod_{a \in \pi} t_{a}^{m\left(h_{a}\right)}$.

Let w_{a} be the image of $\left(\begin{array}{rl}0 & 1 \\ -1 & 0\end{array}\right)$ under μ_{a}, for $a \in \mathcal{K}$. Then. w_{a} normalises H. We let $N=\left\langle H, w_{a}: a \in \mathcal{L}\right\rangle$. Let $\left.\dot{U}=U^{+}=\left\langle x_{a}(t): t \in k, a\right\rangle 0\right\rangle$ and $U^{-}=\left\langle x_{a}(t): t \in k, a<0\right\rangle$. Then the group $U^{ \pm}$is unipotent. Let $a_{1}, a_{2}, \ldots, a_{N}$ be the positive roots: Then $\nu_{ \pm}:\left(t_{1}, \ldots, t_{N}\right) \longmapsto x_{ \pm a_{1}}\left(t_{1}\right) \ldots \ldots x_{ \pm a_{N}}\left(t_{N}\right)$, is a bijection of k^{N} onto U^{\ddagger}.

The group $U^{ \pm}$is normalised by H in the following way :-

$$
h \cdot x_{a}(t) \cdot h^{-1}=x_{a}(a(h) \cdot t) \text { for } t \in k ; h \in H ; a \in \mathcal{K} .
$$

Let $B=B^{+}=H . U, B^{-}=H \cdot U^{-}$. Then (B, N) is a B.N-pair in ${ }^{G} \pi, k$ with root system \mathcal{Z}, and B is a Bore subgroup.

Let ρ be another faithful representation of g. If $\Delta_{n} \supset \Delta_{\rho}$, then the $\operatorname{map} x_{a}^{(\pi)}(t) \longmapsto x_{a}^{(\rho)}(t)$ for $t \in k ; a \in \mathcal{K} \quad$ extends to a surjective homomorphism $\quad \lambda_{\rho, \pi}: G_{\pi, k} \longrightarrow G_{\rho, k}$.

Suppose now that $k=K$ is algebraically closed. Then the kernel of $\lambda_{\rho, \pi}$ is isomorphic to $\Delta_{\rho}^{*} / \Delta_{\pi}^{*} \quad$ modulo p-torsion. Furthermore, H is a $\ldots K_{0}$-split maximal torus of $G \pi, K$.

For $m \in P(\pi)$, the homomorphism of H into K^{*} associated to m by (1) is a rational character of H. Let $X(H)=\operatorname{Mor}\left(H, K^{*}\right)$ be the group
of rational characters of H. Then the map $P(\pi) \longrightarrow X(H)$ defined by (1) induces an isomorphism of Δ_{π} onto $X(H)$. We shall identify $\mathrm{X}(\mathrm{H})$ with $\Delta_{\boldsymbol{\pi}}$ via this isomorphism . Furthermore, we shall henceforth use the notation h^{m} for $m(h)$, where $m \in P(\pi)$ and $h \in H$. The Weyl group $W=N / H$ acts on $\underline{h}, \underline{h}^{*}$ and on $P(\pi)$. We have $\langle w(m), w(h)\rangle=\langle m, h\rangle \quad$, where $m \in \underline{h}^{*} ; h \in \underline{h} ; w \in W$ and \langle,$\rangle is the canonical pairing (the non-degenerate restriction to \underline{h}$ of the Killing form on g.). Also, W acts on H via inner automorphisms and on $X(H)$ by $h^{W(x)}=\left(h^{W}\right)^{X}$ for $W \in W$ and $x<X(H)$. From now, (,) denotes a fixed W - invariant , positive-definite bilinear form on $X(H)$.

Henceforth, we let g be semi-simple, and let $G=G \pi, K$ Then. the conjugates of H under G are all the maximal tori of G [8], and we let T be any such maximal torus of G. If $N=N_{G}(T)$, then $W=N / T$ is the Weyl group of G relative to T, and n_{W} denotes a representative for $W \in W$ in N. If $X(T)=\operatorname{Mor}\left(T, K^{*}\right)$ then we know that there exists an isomorphism between Δ_{π} and $X(T)$.

Definition 1.1. If A is a group upon which the endomorphism σ acts, we let $H^{l}(\sigma, A)$ denote A modulo the equivalence relation :(R) $a \widetilde{R}^{b}$ if and only if $a=c \cdot b \cdot \sigma(c)^{-1}$, for some $c \in A$.
§1.2. Automorphisms of G.

In this section, we consider automorphisms σ of the Groups $G \pi, k$,
for any field k. Steinberg shows [20] that automorphisms of $G_{\pi, k}$ are of the following types :-
(1). Field automorphisms . If $\gamma \in \operatorname{Aut}(k)$, then the map
$\bar{\gamma}: G_{\pi, k} \longrightarrow G_{\pi, k}$, defined by $\bar{\gamma}: x_{a}^{(\pi)}(t) \longmapsto x_{a}^{(\pi)}\left(t^{x}\right)$ on generators , extends to an automorphism of $G_{\pi, k}$. (2). Diagonal automorphisms . Let $f: \pi \longrightarrow k^{*}$ be a map associating an element $f_{a} \in k^{*}$ to each fundamental root $a \in \mathbb{T}$. Let f be extended to a homomorphism of $\Delta_{a d}$. into k^{*}. Then $\bar{f}: G_{\pi, k} \longrightarrow G, k$ such that $\bar{f}: x_{a}^{(\pi)}(t) \longmapsto X_{a}^{(\pi)}\left(f_{a} \cdot t\right)$ extends to a unique automorphism of $G_{\pi, k}$. If k is algebraically closed, then every diagonal automorphism can be realised as conjugation by a semi-simple element, i.e. an inner automorphism .
(3). Inner automorphisms .
(4). Graph automorphisms . Let \mathcal{L} be an indecomposable root system and ρ an angle-preserving permutation of the fundamental roots such that $\rho \neq 1$. If all roots are equal in length, then ρ. extends to an automorphism of \mathcal{L}. If not, and $p=(a, a) /(b, b)$ for a long and b short, then ρ must interchange long and short roots and ρ extends to a permutation of all roots which also interchanges long and short roots, and is such that the map $\bar{\rho}:\left\{\begin{array}{l}a \longmapsto p a \text { for a long } \\ a \longmapsto p \rho a \text { for a short }\end{array}\right\}$ is an isomorphism of root systems. Let k be a field and let $G \pi, k$ be constructed from a simple Lie algebra g with root system \mathcal{K}. If two root lengths occur, then we assume that k is perfect of characteristic p. If g is of type $D_{2 n}$, then we must assume that $\rho\left(\Delta_{\pi}\right)=\Delta_{\pi}$.

Then there exists an automorphism Q of G and signs \mathcal{E}_{a} (such that $E_{a}=1$ if $\pm a \in \pi$) such that
$Q x_{a}(t)=\left\{\begin{array}{ll}x_{p a}\left(\varepsilon_{a}^{t}\right) & \text { if a is long or all roots are of one length } \\ x_{p a}\left(\varepsilon_{a} t^{p}\right) & \text { if a is short }\end{array}\right.$.
NOTE. Referring to $\mathcal{S}_{4} .2$, we see that if g is of type $D_{2 n}$ and $\pi=\pi_{2}$, then $Q:{ }^{G} \pi_{2}, K \longrightarrow G_{3}, K$ is the isomorphism mentioned, since $\rho\left(\Delta_{\pi_{2}}\right)=\Delta_{\pi_{3}}$. Hence, such groups have only the identity as graph automorphisms. (We always include the possibility of the identity graph automorphism.).

Now we want to consider the groups G_{σ} of fixed points under $\sigma \in \operatorname{Aut}(G)$, and Steinberg has shown [20] that $\sigma=$ i.d.f.g, where $i<\operatorname{Inn}(G), d \in \operatorname{Diag}(G), f \in \operatorname{Field}(G)$ and $g \in \operatorname{Graph}(G)$.

In the case of $G_{\pi, K}, \operatorname{Inn}(G)$ and $\operatorname{Diag}(G)$ are uninteresting since their fixed-point groups are group centralisers of certain elements of G . However, f on its own gives a Chevalley group of the same type but over a different field, (as we saw in the introduction) and such groups are the finite groups of (normal) Chevalley type which we shall discuss in Chapters 3,4 and 5. Similarly, g on its uwn gives G_{σ} as an embedding of a Chevalley group of one type in another Chevalley group of different type, e.g. ${S p_{n}}^{(K)}$ or $S_{n}(K)$ in $S L_{2 n}$ or $S L_{2 n+1}$. If we take σ to be a certain combination of f and g, then we get new. simple groups - the Steinberg groups of Chapter 6 , and the Suzuki and Ree groups of Chapter 7 , i.e. the group G_{σ} is a finite group of twisted type. An example is the embedding of $\mathrm{SU}_{\mathrm{n}}(\mathrm{q})$ in $\mathrm{SL}_{\mathrm{n}}(\mathrm{q})$.

We have the following identification with the Classical groups:-

TABLE 1.1.

${ }^{\pi}$	ad	sc	π_{1}
${ }^{A_{\ell}}$	$\mathrm{PSL}_{\ell+1}$	$\mathrm{SL}_{\ell+1}$	
$\mathrm{~B}_{\ell}$	$\mathrm{PSO}_{2 \ell+1}=\mathrm{SO}_{2 \ell+1}$	$\operatorname{Spin}_{2 \ell+1}$	
C_{ℓ}	$\mathrm{PSp}_{2 \ell}$	$\mathrm{Sp}_{2 \ell}$	
D_{ℓ}	$\mathrm{PSO}_{2 \ell}$	$\operatorname{Spin}_{2 \ell}$	
${ }^{2} \mathrm{~A}_{\ell}$	$\mathrm{PSU}_{\ell+1}$	$\mathrm{SU}_{\ell+1}$	
${ }^{2} \mathrm{D}_{\ell}$	$\mathrm{F} \Omega_{2 \ell}$		

NOTES. (1) π_{1} is defined in Proposition 4.3.
(2) Ω is the commutator subgraup of the orthogonal group leaving invariant a quadratic form of index ℓ relative to K and index $(\ell-1)$ relative to K_{0}.

S1.3. The Basic Theorem and its consequences.
An essential part of our work rests upon the following important extension of a theorem of Lang [19]:

Theorem 1.1. Let $G=G_{\pi, K}$ be semi-simple and σ an endomorphism of G onto G such that G_{σ} is finite. Then the map $f: x \longmapsto x . \sigma(x)^{-1}$ of G into G is surjective.

Under these conditions, we can show that σ fixes a Bore subgroup B and a maximal torus T contained in B. Also, any two such couples are conjugate in G_{σ}. Now, since σ fixes N, it follows that σ fixes W and we have a natural action of σ on W. If G is semi-simple, then we can show that the Bruhat decomposition exists for G_{σ} with W_{σ}, N_{σ} etc. in place of W, N etc.

Since K is algebraically closed, we know that all maximal tori of $G(K)$ are conjugate. However, in the case of a finite field K_{o}, the situation is described in Theorem 1.2. where $\mathscr{C}_{(G, T}\left(G_{\sigma}\right)$ is the set of G_{σ}-conjugacy classes of the σ-fixed maximal tori of. G.

Theorem 1.2. Let G and σ be as in Theorem l.1. Then :-
(a). G contains a maximal torus fixed by σ;
(b). If T is such a torus and $W=N / T$ is its Weyl group, then there is a $1-1$ correspondence $Q: H^{l}(\sigma, W) \longrightarrow \mathscr{C}\left(G_{\sigma}, T\right)$; (c). If σ fixes each element of W, i.e. commutes with the action of W on T, then the classes $\zeta\left(G_{\sigma}, T\right)$ correspond to the conjugacy classes of W. \square

- For a proof of this and other results above, we refer to [21]. Definition 1.2. "Twisting". Let T be as in Theorem 1.2., $W \in W$ and correspondingly $n_{W} \in \mathbb{N}$. By Theorem 1.1., there exists some $g \in G$ with $n_{W}=g^{-l} . \sigma(g)$. Hence σ fixes the maximal torus $T^{\prime}=g_{T}$.

Also , every σ-fixed maximal torus can be obtained in this way , by "twisting" by some $w \in W$. For, suppose that T_{1} is fixed by σ.

Then $T_{1}={ }^{g} l_{T}$ for some $g_{1} \in G$. Hence, $g_{1}^{-1} \cdot \sigma\left(g_{1}\right)$ normalises T, and so corresponds to some $W_{1} \in W$. This is the correspondence Q in Theorem 1.2. (b) ; see [19].

If we identify T^{\prime}, above, with T according to the isomorphism i_{g}, then the original action of σ on T^{\prime} is equivalent to that of $w{ }^{W} \sigma$ on T. For if $t \in \mathbb{T}$, and correspondingly $t^{\prime} \in T^{\prime}$ such that $i_{g}(t)=t^{\prime}$, then :-

$$
i_{g \circ}\left(w_{\circ} \sigma\right)(t)=i_{g \circ}\left(w_{\circ} \sigma_{0} i_{g^{-1}}\left(t^{\prime}\right)=i_{g \cdot n_{w} \cdot \sigma(g)^{-1}}\left(\sigma\left(t^{\prime}\right)\right)=\sigma_{o}^{i}(t)\right.
$$

Hence the following diagram commutes :-

If we replace $w^{\text {b }}$ by an element equivalent to it in $H^{l}(\sigma$, $w)$, then. this amounts to replacing $w_{0} \sigma$ by something conjugate to it under W. For if $w_{1}=w^{\prime} \cdot w \cdot \sigma\left(w^{\prime}\right)^{-1}$ for $w^{\prime} \in W$, then $w^{\prime} \cdot\left(w_{0} \sigma\right) \cdot w^{-1}=\dot{w}_{10} \sigma$ on T.

If we let G, σ, T, be as in Theorem 1.2 , then we denote the induced action of σ on $X(T)$, the (discrete) character group of T, by σ^{*}. If $u \in X(T)=\operatorname{Mor}\left(T, K^{*}\right)$, then we write the image of $t \in T$ under u as t^{u}, and W acts on $X(T)$ by $\left(t^{w}\right)^{u}=t^{w(u)}$, where $t^{w}={ }^{n} w_{t}$.

Since $\sigma(T)=T$, we can consider $\sigma_{T}=\left.\sigma\right|_{T}$, so that σ^{*}, mapping u to $u{ }_{o} \sigma_{T}$, is an automorphism of $X(T)$. Thus $t^{\sigma^{*}(u)}=\sigma(t)^{u}$ for $t \in \mathbb{T}$
and $u \in X(T)$, and this action extends to $X(T)_{R}=R \otimes_{Z} X(T)$, the real extension of $X(T)$. From now, $V=X(T)_{R}$.

Now the isomorphism i_{g} from T to T induces, naturally, the dual isomorphism $g^{*}: X\left(T^{\prime}\right) \longrightarrow X(T)$ defined by $t^{g^{*}}\left(u^{\prime}\right)=\left(g_{t}\right)^{u^{\prime}}$ for $u^{\prime} \in X\left(T^{\prime}\right)$ and $t \in T$. Hence, $t^{\sigma^{*} \cdot w \cdot g^{*}\left(u^{\prime}\right)}=\left(i_{g \cdot n_{w} o} \sigma(t)\right)^{u^{\prime}}$ $=\left(i_{\sigma(g)} \circ \sigma(t)\right)^{u^{\prime}}=t^{g^{*}} \cdot \sigma\left(u^{\prime}\right)$ for all $t \in T, u^{\prime} \in X\left(T^{\prime}\right)$, and so the action of σ^{*} on $X\left(T^{\prime}\right)$ is that of $\sigma^{*}{ }_{0} w$ on $X(T)$. Thus the following diagram commutes :-

Also, i_{g} extends naturally to an isomorphism from $N=N(T)$ to $N^{\prime}=N\left(T^{\prime}\right)$; Hence $i_{g}{ }^{\prime}{ }^{W}=W_{0} \mathbf{i}_{g}$ on T and $g \cdot n_{W} \cdot g^{-1}=n_{w}^{\prime} \cdot t^{\prime}$. for $n_{W} \in N$ and $n_{W}^{\prime} \in N^{\prime}$, and some $t^{\prime} \in T^{\prime}$.

Finally, we make the convention that if T is a fixed, o-fixed maximal torus of G, and T^{\prime} is obtained from T by twisting by $w \in W$, then we denote T^{\prime} by \bar{T}_{W}, and also $\left(T^{\prime}\right)_{\sigma}$ by T_{W}.

Wi th the above notation, we have the following [19] :Proposition 1.3. (i) Suppose that G is simple and that T is a fixed K_{0}-split maximal torus of G. Let σ be a combination of a field automorphism γ and a graph automorphism ρ as in $\$ 1.2$, where we allow ρ to be the identity. Then $\sigma=q \dot{z}$, for some $q>1$ and some
(ii) Further, given any σ-fixed torus T of G, we can find $w \in W$ such that $T^{\prime}=\bar{T}_{W}$, and the action of σ^{*} on $X\left(T^{\prime}\right)$ is given by $\sigma^{*}=\mathrm{q} \cdot \mathrm{wz}$.
(iii) If ρ is the identity graph automorphism, then G_{σ} is a finite group of normal Chevalley type, and z is the identity . Then , the set $\zeta\left(G_{\sigma}, T\right)$ is in $1-1$ correspondence with the set $\zeta(W)$ of conjugacy classes of W under the action of twisting .

Proof. (i) Since G is simple, then \mathbb{Z} is an indecomposable root system. Now if all the roots of \sum have equal length, then ρ is an automorphism of \mathcal{Z} and an isometry of V. For T we may take the maximal torus generated by the $h_{a}(t)$, as in §1.1., and we let $\gamma: a \longmapsto c^{q}$ be the Frobenius automorphism of K.

Let $t \in T$, so $t=\prod_{a \in \Pi} h_{a}\left(t_{a}\right)$ for some $t_{a} \in K$. Then σ acts on T by $\sigma(t)=\prod_{a \in \pi} h_{a}\left(t_{a}^{q}\right)$. Now let $u \in \Delta_{\pi}$. Then $t^{\sigma^{*} u}=\sigma(t)^{u^{\dot{\prime}}}=\prod_{a \in \pi} t_{a} q u\left(h_{\rho a}\right)=\prod_{a \in \pi} t_{a} q \rho\left(h_{a}\right)$. However , $t^{\sigma^{*} u}=\prod_{a \in \pi} t_{a} \sigma^{*} u\left(h_{a}\right)$, and this must be true for all $t \in T$, i.e. for all $t_{a} \in K$. Hence. $\sigma^{*} u=q \cdot \rho u$, and $\sigma^{*}=q \rho$ on $X(T)$. Since ρ is an isometry of V in this case, the result follows with $z=P$.

On the other hand, if roots of different lengths occur, then the map $\bar{\rho}:\left\{\begin{array}{llll}a \longmapsto \rho \rho^{a} & \text { for a long } \\ a \longmapsto & \text { for a short }\end{array}\right\} \quad$ is an isomorphism of root systems for $p=(a, a) /(b, b)$ if a is long and b is short. However , $\bar{\rho}$ is notion isometry of V. Now, in such a case, we shall show in.

Chapter 7 that we must restrict K_{0} to fields of a certain type, viz. such that K_{o} has characteristic $p=(a, a) /(b, b)$ as above, and also that $\left|K_{0}\right|=p^{2 m+1}$, for some $m>0$. Then we must take γ to be the automorphism $\gamma: c \longmapsto c^{p^{m}}$ for $c \in K$, since ρ has order 2 in this case. Now $\Delta_{\boldsymbol{\pi}}=\Delta_{\text {ad }}$ for such cases, whatever the value of π; as we shall see in Chapter 7. Thus :-
$\sigma:\left\{\begin{array}{ll}x_{a}(t) \longmapsto x_{\rho^{a}}\left(t^{p^{m}}\right) & \text { if } a \in \pi \text { is long } \\ x_{a}(t) \longmapsto x_{\rho a}\left(t^{p^{m+1}}\right) & \text { if } a \in \pi \text { is short }\end{array}\right\} \quad$ defines σ on
generators of G.

Suppose that $u \in \Delta_{\pi}$ and that ρ acts on \prod in cycles $c_{i}=\left(a_{i} b_{i}\right)$ of order 2 , with a_{i} long and b_{i} short. Let $h_{C}=h_{a}\left(t_{a}\right) \cdot h_{b}\left(t_{b}\right)$, so that $h_{c}^{\sigma^{*} u}=\left(h_{b}\left(t_{a}^{p^{m}}\right) \cdot h_{a}\left(t_{b}^{p^{m+1}}\right)\right)^{u}=t_{a}^{p^{m}} \cdot\langle u, b\rangle \cdot t_{b}^{p^{m+1}} \cdot\langle u, a\rangle$. Also, $h_{c}^{\sigma_{c}^{*} u}=t_{a}\left\langle\gamma^{*} u, a\right\rangle, t_{b}^{\left\langle\sigma^{*} u, b\right\rangle}$, and this must be true for all $t_{a}, t_{b} \in K$.

Thus,$\left\langle\sigma^{*} u, a\right\rangle=\left\langle p^{m} \cdot u, b\right\rangle=\left\langle p^{m+\frac{1}{2}} \cdot \tau u, a\right\rangle$, where $c a=p^{\frac{1}{2}} \cdot \rho a=p^{\frac{1}{2}} \cdot b \quad . \quad$ Similarly ,
$\left\langle\sigma^{*} u, b\right\rangle=\left\langle p^{m+1} \cdot u, a\right\rangle=\left\langle p^{m+\frac{1}{2}} \cdot \tau u, b\right\rangle$, where $z b=p^{-\frac{1}{2}} \cdot \rho^{b}=p^{-\frac{1}{2}} \cdot a$. Let $q=p^{m+\frac{1}{2}}$, so $\left\langle\sigma^{*} u-q \cdot u, a\right\rangle=0$ for all $a \in \pi$. Hence, $\sigma^{*} u=q . z u$ for all $u \in \Delta_{\pi}$, and so $\sigma^{*}=q \cdot \tau$ on $X(T)$.

$$
\text { Now, }(\tau a, r a)=p(b, b)=(a, a) \text {, if } a \in T \text { is long }
$$

and $b=\rho a$, and $(\varepsilon b, z b)=p^{-1}(a, a)=(b, b)$. Hence,
τ is.an isometry of V, and $\sigma^{*}=q . \tau$ for some $q>1$ and isometry τ, in all cases.
(ii). We have seen from Definition 2.that given any o-fixed maximal torus T^{\prime} of G, we can find $w \in W$ such that $T^{\prime}=\bar{T}_{W}$, and then the action of σ on T^{\prime} is that of $w_{0} \sigma$ on T. Further, the action of σ^{*} on $X\left(T^{\prime}\right)$ is that of $\sigma^{*}{ }_{0} w$ on $X(T)$, ie. of $q . \varepsilon w$. Since replacing w by an equivalent element in $H^{l}(\sigma, W)$ amounts to replacing $\sigma_{o^{*}}$ by an element conjugate under W, and since $\sigma(W)$ is equivalent to w, we can take the action of σ^{*} on $X\left(T^{\prime}\right)$ to be that of $w \cdot \sigma^{*}{ }^{W} \cdot w^{-1}$, ie. q.we on $X(T)$. (iii). If ρ is the identity, then $\sigma(t)=t^{q}$ for all $t \in T$. Hence, $w_{0} \sigma(t)=w\left(t^{q}\right)=w(t)^{q}=\sigma_{0} w(t)$ for all $w \in W$. Hence σ commutes with the action of W on T and by Theorem 1.2(c), the bijection $Q: \zeta(W) \longrightarrow \zeta\left(G_{\sigma}, T\right)$, since $H^{1}(\sigma, W)=\zeta(W)$.

Definition 1.3. Following Proposition 1.3, we say that the triple (Σ, X, τ) of a root system in V, a lattice $X=\Delta_{\pi}$ in V and an isometry \mathcal{c} of V, is the type of (G, σ), and that q is the. parameter of (G, σ).

Proposition 1.4. Assuming the notation and situation of Proposition 1.3., with $X=X\left(\bar{T}_{W}\right)$ and (Σ, X, τ) the type of (G, σ), we have :(a). T_{W} is in duality with, and hence isomorphic to $X /\left(\sigma^{*}-I\right) X$. Thus the matrix $\left(\sigma^{*}-I\right)$ is a relation matrix for the group T_{W}. (b). If $f_{w \mathcal{C}}(t)$ is the characteristic polynomial of $w \boldsymbol{c}$ on $X\left(\bar{T}_{W}\right)_{R}$, then the order of T_{W} is $\left|f_{w C}(q)\right|$.

Proof. (a). Consider σ^{*} (modulo p) relative to X, ie. the action of σ^{*} on $X_{\{p\}}=X \otimes_{Z} Z_{p}$, the localisation of X at $p \cdot$ Then, by Lemma 1.3., $\sigma^{*} m=q^{m}$, where m is the order of $w \tau \epsilon\langle W, r\rangle=W^{*}$. Hence, if n is the exponent of W^{*}, then $\sigma^{*} \equiv 0$ (modulo p), and σ^{*} is nilpotent on $X_{\{p\}}$.

Now, if $\left(\sigma^{*}-I\right) u=0$ for $u \in X_{\{p\}}$, then $\sigma^{*} \cdot u=u$ and $\left(\sigma^{*}\right)^{n} \cdot u=u$. Hence, $u=0$, so that $\left(\sigma^{*}-I\right)$ is injective on $X_{\{p\}}$.

Consider the exact sequence $X \xrightarrow{\left(\sigma^{*}-I\right)} X \xrightarrow{\pi} X /\left(\sigma^{*}-I\right) X \longrightarrow 0$.
Then the following sequence is also exact :-

$$
X_{\{p\}} \xrightarrow{\left(\sigma^{*}-I\right)} X_{\{p\}} \xrightarrow{\pi^{\prime}}\left(X /\left(\sigma^{*}-I\right) X\right)\{p\} \longrightarrow \text {. Now , }
$$

($\sigma^{*}-\mathrm{I}$). is injective on $\mathrm{X}_{\{p\}}$, so that the following sequence is short exact:-

$$
0 \longrightarrow X_{\{p\}} \xrightarrow{\left(\sigma^{*}-I\right)} X_{\{p\}} \xrightarrow{\pi^{\prime}}\left(X /\left(\sigma^{*}-I\right) X\right)_{\{p\}}
$$

But $X_{\{p\}}$ is finite, so that $\left(\sigma^{*}-I\right)$ is an isomorphism on $X_{\{p\}}$ and so π^{\prime} is the zero map.

Hence, $\left(X /\left(\sigma^{*}-I\right) X\right) \otimes z_{p}=0$. Now. $X /\left(\sigma^{*}-I\right) X$ is
isomorphic to a direct sum of cyclic groups $Z_{q_{i}}$, for integers q_{i}, and since $Z_{m} \otimes Z_{n}$ is isomorphic to $Z_{(m, n)}$, then $\left(q_{j}, p\right)=1$ for all i. Hence, $X /\left(\sigma^{*}-I\right) X$ has finite order prime to p.

By the elementary divisor theorem, and by choosing compatible bases for X and $\left(\sigma^{*}-I\right) X$, we have $\left|X /\left(\sigma^{*}-I\right) X\right|=\left|\operatorname{det}\left(\sigma^{*}-I\right)\right|$. Under the duality between X and \bar{T}_{W}, the annihilator of $\left(\sigma^{*}-I\right) X$ in
\bar{T}_{W} is isomorphic to the dual of $X /\left(\sigma^{*}-I\right) X$. Since the latter is a finite abelian group which has order prime to. p, it is isomorphic to its own dual .

However, the annihilator of $\left(\sigma^{*}-I\right) X$ in \bar{T}_{W} is just T_{W}. For, if $t \in \overline{\mathbb{T}}_{w}$ and t annihilates $\left(\sigma^{*}-I\right) X$, then $t\left(\sigma^{*}-I\right) u=1$ for all $u \in X$. Thus $\left(\sigma(t) \cdot t^{-1}\right)^{u}=1$ for all $u \in X$. Hence $\sigma(t)=t$ and $t \in T_{W}$. Conversely, if $t \in T_{W}$, then t annihilates $\left(\sigma^{*}-I\right) X$.

Thus , T_{W} is isomorphic to $X /\left(\sigma^{*}-I\right) X$, and $\left|T_{W}\right|=\left|\operatorname{det}\left(\sigma^{*}-I\right)\right|$.
(b). Since $\sigma^{*}=q \cdot w \tau$ on $X\left(\bar{T}_{w}\right)_{R}$, then $\left|T_{w}\right|=|\operatorname{det}(q \cdot w \tau-I)|$. Now (wry) is an isometry of $X\left(\bar{T}_{w}\right)_{R}$, so that $|\operatorname{det} w \tau|=1$ and $(w \varepsilon)^{-1}={ }^{t}(w \varepsilon) \quad$. Thus $\left|T_{w}\right|=\left|\operatorname{det}\left(q \cdot I-(w \varepsilon)^{-1}\right)\right| \cdot|\operatorname{det}(w z)|$ $=\left|\operatorname{det}^{t}(q I-w \varepsilon)\right|=\left|f_{w \varepsilon}(q)\right|$.

Hence, the characteristic polynomial of we evaluated at q yields the order of T_{w}, and the corresponding matrix. ($q \cdot(w \boldsymbol{\varepsilon})_{\mathcal{N}}-I$) is a relation matrix for the group T_{W}, where Λ is some basis of $X\left(\bar{T}_{W}\right)=\Delta_{\boldsymbol{\pi}}$. All the groups T_{W} corresponding to some class $h \in H^{l}(\sigma, W)$ form a conjugacy class of maximal tori of G_{σ} by Theorem 1.2., and hence have the same structure . Thus we need only determine the relation matrix (q. $\left.(w)_{\Lambda}-I\right)$ for a representative w from each class of $H^{l}(\sigma, W)$ in order to determine the structure of the maximal tori of G_{σ}.

Now, T_{w} is an abelian group with l generators and with relation matrix $\left(q \cdot(w z)_{\mathcal{N}}-I\right)$. This relation matrix is equivalent to a diagonal
matrix D, in the sense that there exist integral , uni-modular matrices X, Y such that $X .\left(q_{0}(w r)_{\mathcal{N}}-I\right) \cdot Y=D$. According to the theory of abelian groups , $[24]$, if $D=\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{\ell}\right)$, then these e_{i} are called the elementary divisors of T_{w}, and T_{w} is isomorphic to the direct product of cyclic groups $C_{e_{1}} \times{ }^{C_{e}}{ }_{2} \times \ldots \times C_{e_{k}}$, where $\left\{e_{1}, \ldots, e_{k}\right\}$ are the non-unit elementary divisors of T_{w}. Hence, we. must determine those elementary divisors corresponding to a representative w of each class of $H^{l}(\sigma, W)$, by diagonalising the matrix (q. $\left.(w \varepsilon)_{\mathcal{N}}-I\right)$ over Z.

Notation. By the above, we mean that given an integral matrix A which is a relation matrix for a group G, we reduce A to a diagonal matrix (or diagonalise A) in order to find the elementary divisors of G (we freely make use of also calling these the elementary divisors of A). This reduction process involves the use of elementary transformations of the matrix A. We use the following transformations :-
(i). $\quad a r_{i}$ to r_{j} for $i \neq j$. This amounts to replacing the generator R_{j} of G by $R_{j}+a R_{i}$, where $a \in Z$, and is the operation of replacing $j^{\text {th }}$ row of A^{A} by adding a times the $i^{\text {th }}$ row to the $j^{\text {th }}$ row. (ii). $\varepsilon \times r_{i}$, where ε is a unit of Z, ie. replacing the generator R_{i} by its inverse, which multiples the $i^{\text {th }}$ row of A by -1 . (iii). a c_{i} to c_{j} for $i \neq j$. This is the operation of replacing the $j^{\text {th }}$ column of A by adding a times the $i^{\text {th }}$ column to the $j^{\text {th }}$ column , for $a<Z$.
(iv). Remove $\left(r_{i}, c_{i}\right)$. This is when A is of the form $\left[\begin{array}{ll} \pm 1 & \underline{0} \\ \underline{0} & \mathrm{~A}^{\prime}\end{array}\right]$, and we can remove the unit elementary divisor ± 1, reducing A to A^{\prime}. Such an elementary divisor corresponds to a generator of T_{W} being made redundant by A.

Finally we denote a reduction of A by one of these transformations as $A \longrightarrow B$, with the relevant transformation described with the arrow, according to the notation above. We sometimes say that B is equivalent to A.
\$1.4. Some results on weight lattices.
In this section, we prove a result which reduces the number of cases to be considered. We let \triangle be any 2 -module and $\Delta^{*}=\operatorname{Hom}_{Z}(\Delta, 2)$ its dual. If $x \in \Delta$ and $x^{*} \in \Delta^{*}$, then we denote $x^{*}(x) \in Z$ by $\left\langle x, x^{*}\right\rangle$. If Δ^{\prime} is another z-module, and u is a linear map $u: \Delta \longrightarrow \Delta^{\prime}$, then we denote the transpose of u by $t^{t} u$, so ${ }^{t} u: \Lambda^{\prime *} \longrightarrow \Delta^{*}$ such that ${ }^{t}{ }_{u}: y^{*} \longmapsto y^{*}{ }_{o} u$ for $y^{*} \in \Lambda^{*}$. Hence

$$
\left\langle u(x), y^{*}\right\rangle=\left\langle x,{ }^{t} u\left(y^{*}\right)\right\rangle \quad \text { for } x \in \Delta, y^{*} \in \Delta^{\prime *}
$$

Let Λ be a basis of \triangle and $V=\Delta \otimes_{2} R$. The matrix of u with respect to Λ is denoted by u_{Ω}. Let \mathcal{K} be a system of roots in $V, W(\Sigma)$ the Well group of \mathcal{K}, and let (,) be a non-degenerate, symmetric bilinear form on V, which is W-invariant • Then identify V with $V^{*}=\operatorname{Hom}_{R}(V, R)=\Delta^{*} \otimes_{z^{R}}$ according to this form, ie. given $y^{*} \in V^{*}$, there exists a unique $y \in V$ with $y^{*}(x)=(x, y)$ for all $x \in V$ and we identify $y^{*} \longleftrightarrow y$.

If Δ is the weight lattice Δ_{π} for some faithful representation π of a complex, simple Lie algebra \mathbb{g} with root system $乏$, and u is an isometry of Δ with respect to (,), then $u(=u \otimes 1)$ acts on V, and hence on V^{*} as ${ }^{t} u$ by $(u(x), y)=\left(x,{ }^{t} u(y)\right)$.

Lemma 1.5. If Λ^{*} is the dual basis of Λ, then ${ }^{t}{ }_{u_{\Lambda^{*}}}=u_{\Lambda}^{-1}$. Proof. If $\Lambda=\left\{\gamma_{i}\right\}_{i=1}^{l}$, then $\Lambda^{*}=\left\{\gamma_{j}^{*}:\left(\gamma_{i}, \gamma_{j}^{*}\right)=\delta_{i j}\right\}$ is a basis of Λ^{*}, the dual basis of Ω. Since u is an isometry, then $\left(u\left(\gamma_{i}\right), u\left(\gamma_{j}^{*}\right)\right)=\left(\gamma_{i}, \gamma_{j}^{*}\right)=\delta_{i j}$.
Further, $\left(u\left(\gamma_{i}\right), u\left(\gamma_{j}^{*}\right)\right)=\left(\sum_{k=1}^{\ell}\left(u_{\Lambda}\right)_{k i} \cdot \gamma_{k}, \sum_{r=1}^{\ell}\left(u_{\Lambda^{N}}\right)_{r j} \cdot \gamma_{r}^{*}\right)$

$$
=\sum_{k=1}^{\ell}\left(u_{\Omega^{\prime}}\right)_{k i} \cdot\left(u_{\Omega^{*}}\right)_{k j}=\left({ }^{t} u_{\Lambda^{\prime}} \cdot u_{\Lambda^{*}}\right)_{i j} .
$$

Hence, ${ }^{t} u_{u^{\prime}} \cdot u_{\Lambda^{K}}=I_{l}$, and ${ }^{t}{ }_{u_{\Lambda^{*}}}=u_{\Omega}^{-1}$.

Now for every $a \in \mathcal{Z}$, there exists an element $a^{v} \in \nabla^{*}$ such that $a^{\nabla}(a)=2$. Then $a^{v}=\frac{2 a}{(a, a)}$ under the identification. By [4]:. Lemma 1.6. If $\mathcal{\Sigma}^{v}=\left\{a^{v}: a \in \mathcal{K}\right\}$, then $\mathcal{K}^{\mathbb{V}}$ is a root system in $\mathrm{V}^{*}($ ie in $V)$, and $\mathrm{a}^{\mathrm{vV}}=\mathrm{a}$. The map $Q: W(\Sigma) \longrightarrow W\left(\Sigma^{\mathrm{V}}\right)$ defined by Q : w $\longmapsto \mathrm{w}^{\mathrm{t}} \mathrm{w}^{-1}$ is an isomorphism of groups .

Proof. Both statements follow since $t_{w_{a}}^{-1}=w_{a} v$, as the axioms for a root system are readily verified.

Lemma 1.7. Let Δ^{V} ad be the Z-module generated by the root system Σ^{V}. Then $\Delta_{\mathrm{sc}}=\left(\Delta_{\mathrm{ad}}^{\mathrm{V}}\right)^{*}$.
1.19.

Proof. This follows since $\Delta_{s c}=\left\{x \in V:\left(x, y^{*}\right) \in z\right.$ for all $\left.y^{*} \in \Delta_{a d}^{v}\right\}$.

If g is a simple Lie algebra with root system \mathcal{Z}, then let $\mathbf{g}^{\mathbf{V}}$ denote a simple Lie algebra with root system $\mathcal{Z}^{\mathbf{v}}$. By Lemma 1.7 , if $\Delta_{\mathrm{ad}} \subset \Delta \subset \Delta_{\mathrm{sc}}$, then $\Delta_{\mathrm{sc}}^{\mathrm{v}} \supset \Delta^{*} \supset \Delta_{\text {ad }}^{v}$. Hence, if $\Delta=\Delta_{\pi}$ for some faithful representation π of g, then $\Delta^{*}=\Delta_{\pi^{*}}$ for some faithful representation π^{*} of $\mathbf{g}^{\mathbf{v}}$.

If \mathcal{L} is not of type B_{l} or C_{l}, then $\mathcal{K}^{V}=\mathcal{L}$, so $\Delta_{s c}=\Delta_{\text {ad }}^{*}$, and the map Q of Lemma 1.6 becomes the identity when induced to $\hat{Q}: \zeta(W) \longrightarrow \zeta(W)$, since Q is the identity.

However, if $\mathcal{\Sigma}$ is of type B_{ℓ}, then \sum^{V} is of type $C_{l} . A l s o$, W^{v} is isomorphic with W and $\hat{Q}: \zeta(W) \longrightarrow \zeta\left(W^{v}\right)$ is the identity .

Lemma 1.8. Let $q \in Z$ and $w \in W$. Then $\Delta /(q w-I) \Delta \cong \Delta^{*} /(q w-I) \Delta^{*}$.

Proof. It suffices to show that (q. W $\mathcal{N}^{*}-I$) and (q. w - I) are equivalent in the sense of the previous section. We know, by [6], that w is conjugate to W^{-1} in W. Since $|\operatorname{det} w|=1$ for $w \in W$ and w is known to be integral [4], it follows that there exists an integral unimodular matrix $\quad X_{1}$ with $X_{1} \cdot W_{\Lambda}^{-1} \cdot X_{1}^{-1}=W_{\Lambda}$.

Suppose that $X\left(q \cdot w_{\mathcal{L}}-I\right) \cdot Y=D$, where X, Y are integral unimodular, and D is a diagonal matrix . Then,

$$
\left(X X_{1}\right) \cdot\left(q w_{\Lambda}^{-1}-I\right) \cdot\left(X_{1}^{-1} Y\right)=D
$$

Hence,$\left(X X_{l}\right) \cdot\left(q \cdot{ }^{t}{ }_{W_{\Lambda^{*}}}-I\right) \cdot\left(X_{1}^{-1} Y\right)=D$, by Lemma 1.5 ,
so

$$
{ }^{t}\left(X_{1}^{-1} Y\right) \cdot\left(q \cdot W_{\Lambda^{*}}-I\right) \cdot{ }^{t}\left(X X_{1}\right)={ }^{t_{D}}=D .
$$ Thus, ($q \cdot w_{\Lambda}-I$) and ($q \cdot W_{\Lambda^{*}}-I$) are equivalent to the same diagonal matrix and the result follows .

Given the group) $G_{\pi, K}$ corresponding to the triple $\{g, \pi, K\}$, we let $G^{\mathbf{V}} \boldsymbol{\pi}^{*}, \mathrm{~K}$ be the Chevalley group corresponding to the triple $\left\{\mathrm{g}^{\mathrm{v}}, \pi^{*}, \mathrm{~K}\right\}$ 。

Corollary 1.8. If T (resp. T^{*}) is a maximal K_{o}-split torus of $G_{\pi, K}\left(\right.$ resp. $\left.G_{\pi^{*}, K}^{V}\right)$, and w is a representative of some element of $\zeta(W)$, then $T_{W} \cong \mathbb{T}_{Q(w)}^{*}$, and so the structures of the tori are identical in the groups $G \pi, K$ (Kor $\left.{ }_{0}\right)$ and ${ }^{V} \pi^{*}, K\left(K_{0}\right)$.

Proof. This follows from Proposition 1.4 since $T_{W} \cong \mathcal{Y}(q . w-I) \Delta$

This means that we do not have to determine the structure of the maximal tori of $G^{V} \pi^{*}, K$ separately . For example, if \sum is not of type B_{ℓ} or C_{l}, then the results for $G_{a d, K}\left(K_{0}\right)$ and $G_{s c, K}\left(K_{0}\right)$ are identical. This is discussed in Chapter 4 .

61.5. A result on normalisers of maximal tori.

We conclude this chapter with a result concerning the normaliser of a maximal torus T_{W} in G_{σ}. In Chapter 8 , we note that in considering the representation theory of the finite groups we are interested in
$N_{G_{\sigma}}\left(\bar{T}_{W}\right) / T_{W}$ which is always isomorphic to W_{σ}. Let T be a σ-fixed maximal torus .

Lemma 1.9. Let \bar{T}_{W} be a maximal torus of G obtained from T by twisting by $w \in W$, and let $h_{W} \in H^{1}(\sigma, W)$ be the class containing w. Let W be the Weyl group of G relative to \bar{T}_{W}. Then there is a bijection

$$
\mathrm{W} / \mathrm{W}_{\sigma} \longleftrightarrow \mathrm{h}_{\mathrm{W}} .
$$

Proof. We know that σ acts on W as conjugation by wr, so that

$$
\begin{aligned}
w_{\sigma} & =\left\{w_{1} \in W:(w r)^{-1} \cdot w_{1} \cdot(w と)=w_{1}\right\} \\
& =\left\{w_{1} \in W: w_{1} \cdot w \cdot \sigma\left(w_{1}\right)^{-1}=w\right\} .
\end{aligned}
$$

Thus the map $Q: W / W_{\sigma} \longrightarrow h_{W}$ such that $W^{\prime} \cdot W_{\sigma} \longrightarrow W^{\prime} \cdot W \cdot \sigma\left(W^{\prime}\right)^{-1}$ is a bijection . This follows from the Orbit-Stabiliser Theoren .

This bijection is in fact a generalisation of the bijection between $W / \mathbb{C}_{W}(W)$ and C_{W}, where $\mathbb{C}_{W}(W)$ is the centraliser of W in W and C_{w} is the conjugacy class of W containing w. This is the special case of the Lemma when σ is just a field automorphism of K, in which case W_{σ} is isomorphic with $\mathbb{C}_{W}(w)$. Although we cannot ingeneral say what the structure of W_{σ} is, we do know that in the case when w is in the Coxeter class of. W, then $\mathbb{C}_{W}(w)$ is a cyclic group of order h, the Coxeter number of W, see [6]. Furthermore, in groups of small order viz. those discussed in Chapter 7, we are able by virtue of Lemma 1.9 to state the order of the group W_{σ} corresponding to the maximal torus T_{W} of G_{σ}.

CHAPTER 2. Conjugacy classes in the Weyl group.

Let $G=G_{\pi, K}$ be a simple Chevalley group, and let W be the corresponding Weyl group . Suppose now that σ is the field automorphism of G induced by the Frobenius automorphism of K, so that τ is the identity . Then G_{σ} is a finite group of (normal) Chevalley type, and we have seen in Proposition 1.3.(iii) that , in this case, the classes $H^{l}(\sigma, W)$ are just the conjugacy classes $\zeta(W)$ of W. Hence, in order to determine the structure of the maximal tori T_{w} of G_{σ}, we need only consider twisting the fixed K_{0}-split maximal torus T by a representative from each conjugacy class of W, and to diagonalise over 2 the matrix ($q \cdot W_{\Omega}-I$) Also the σ-fixed maximal tori of G are just the K_{o}-maximal tori, ie. those defined over K_{o}.

Hence, we need a uniform description of the conjugacy classes of the various Weyl groups, and this has been discussed by R.W. Carter in [6], where he describes the conjugacy classes of W by using its structure as a reflection group , hence obtaining a uniform description . We present a brief summary of this work in §2.1. .

To determine the elementary divisors of T_{W}, we need to consider the matrix of w with respect to a suitable basis Λ of $\Delta_{\pi} . \operatorname{Infact}$, great care should be taken to ensure that Λ is a basis of Δ_{π} and not a basis of V which generates some Z-module in V other than Δ_{π}, in which case it follows from Lemma 1.4 that ($q . w_{\Omega}-I$) is not a relation matrix for T_{w}. In § 2.2 , we show how we can find a suitable basis
Φ of $\Delta_{\text {ad }}$ from the description of $\S 2.1$, for which the matrix ${ }^{W}{ }^{\boldsymbol{\Phi}}$ is readily obtainable. Due to the results of Chapter 1 (principally Lemmas 1.7 and 1.8), it turns out that we need only consider Δ_{π} for $\pi=$ ad.

In § 2.3 , we consider some examples of Φ from § 2.2 , and in § 2.4. we discuss certain automorphisms of W . Finally, § 2.5 contains a discussion of why we are forced to consider all the conjugacy classes of W and not just those contained in no Weyl subgroup, as described in §§2.1 and 2.2.

The material in this chapter is aimed principally at Chapter 5, although we do use the results and ideas in other chapters .

82.1. Description of the conjugacy classes of W.

Referring to [6], we see that the basis of the work rests upon the fact that one can express $w \in W$ as a minimal-length product of reflections of W, ie. $w=w_{r_{1}} \cdot \ldots \cdot w_{r_{k}}$ with $k \leq \ell$, and then split the corresponding set of roots $\Phi=\left\{r_{1}, \ldots, r_{k}\right\}$ into two subsets of mutually orthogonal roots , so that $w=\left(w_{a_{1}} \cdot \ldots \cdot w_{a_{h}}\right) \cdot\left(w_{a_{h+1}} \cdot \ldots \cdot w_{a_{k}}\right)$ is a product of two involutions . Correspondingly, we define a graph Γ with k nodes, where two nodes a and b are joined by a bond of strength $n_{a b} \cdot n_{b a}$, where $n_{a b}=2(a, b) \cdot(a, a)^{-1}$. Then, Γ^{-1} represents the conjugacy class of w, and the admissible graphs corresponding to all elements $W \in W$ can then be determined, as in [6]. In fact, it is
only necessary to determine those admissible graphs Γ for which the corresponding conjugacy class is not contained in any Weyl subgroup W' of W, and these are tabulated in. [6]. There is not a l-l correspondence between conjugacy classes and admissible graphs, and this breakdown is discussed fully in [6] .

If A_{W} is the matrix, with coefficients $n_{a_{i}} a_{j}$ in the position (i, j), which corresponds to w, then A_{W} is determined by Γ to within alterations obtained ly replacing certain roots by their negatives , provided we know which nodes of Γ correspond to long roots and which to short roots . Hence, care must be taken in assigning signs to the bonds , a task made easier by the result that a subgraph of Γ which is a cycle contains an even number of nodes, and an odd number of acute angles between roots adjacent in Γ. Also, the characteristic polynomial of w is determined by Γ. Now, if w is as above, with Φ split as $\left\{a_{1}, \ldots, a_{h}\right\}_{\cup}\left\{a_{h+1}, \ldots, a_{k}\right\}$ and we order the roots in this way, then they are linearly independent and so span a subspace U of $V=X_{R}$ of dimension k. Then, it is shown in [6] , that :-

Proposition 2.1. The matrix A_{W} is a block matrix :

$$
\begin{aligned}
& A_{W:}=\left[\begin{array}{cc}
2 I_{h} & B \\
C & 2 I_{k-h}
\end{array}\right] \text {, and also the matrix, }{ }^{W} \Phi \text {, of } w \text { on } U \text { with } \\
& \text { espect to the (ordered) basis } \Phi \text { is }\left[\begin{array}{cc}
B C-I_{h} & B \\
-C & -I_{k-h}
\end{array}\right] \text { • }
\end{aligned}
$$

§2.2. Choosing a basis of \triangle ad .

We have already mentioned the importance of choosing a suitable basis
Ω of $\Delta_{\text {ad }}$, and in order to employ the above result for obtaining the matrix ${ }^{\mathrm{w}}$ 玉 of the action of w on $\Delta_{\text {ad }}$, we must ensure that Φ is a basis of $\Delta_{\text {ad }}$, (which it certainly need not be, even when rank $\Phi=\ell$.). Now, a natural basis of $\Delta_{a d}$ is any fundamental system of roots π, and we must consider the matrix $\mathrm{E}_{\text {玉 }}$ corresponding to the change of basis of V from π to Φ. In order that Φ be a basis of $\Delta_{\text {ad }}$ it is necessary and sufficient that the matrix E_{Φ} be integral and unimodular . In fact, since Φ is contained in $\Delta_{a d}$, it is only necessary to check that E is unimodular . Hence, in order to employ the result of Proposition 2.1 to obtain the matrix ${ }^{W}{ }_{\Phi}$ as the action of w on $\Delta_{\text {ad }}$, we must check that the corresponding $E^{\mathbf{\Phi}}$.is unimodular for every Φ-type of W.

Certainly E_{Φ} will not be unimodular in the case when rank $\Phi<\ell$, for then U has dimension strictly less than that of V. Even if rank $\Phi=\ell$, it does not always happen that ${ }^{E} \Phi$ is unimodular (egg. in the class $A_{2}+\tilde{A}_{2}$ in $W\left(F_{4}\right)$.) . However, we do have :Proposition 2.2. If Φ corresponds to a conjugacy class of W which is not contained in any Weyl subgroup W^{\prime} of W, then the corresponding matrix ${ }^{\mathbf{\Phi}}$ is unimodular.

Proof. For every root system $\sum, W(\aleph)$ has at least one conjugacy class which is not contained in any Weyl subgroup, viz. the Coxeter class,
where Φ is just π. (For more details see [4] .). Hence, in this case,${ }^{E_{\Phi}}$ is the identity matrix and the result follows trivially . If \sum is of type $A_{l}, B_{\ell}, C_{\ell}$ or G_{2}, then there are no conjugacy classes satisfying the hypothesis of the Proposition, apart from the Coxeter class. In those cases, we use methods other than those employing the result of Proposition 2.1. . Similarly, we use other methods for \mathcal{L} of type D_{ℓ}, although we do prove the Proposition for this case . In fact the remainder of the proof follows a "case - by - case" treatment, and we consider the list of Φ-types, corresponding to conjugacy classes of W not contained in any Weyl subgroup and excluding the Coxeter class , which appears in [6] . We call such a Φ-type a semi-Coxeter type. In these cases, except for types $\mathrm{E}_{7}\left(\mathrm{a}_{4}\right)$, $E_{8}\left(a_{6}\right), E_{8}\left(a_{7}\right)$ and $E_{8}\left(a_{8}\right)$, it can readily be seen that by removing one root from Φ, and replacing it by another root such that Γ becomes the Dynkin diagram Γ^{\prime} of the group W, the new system Φ ' remains linearly independent and assumes the property that the scalar product of any two of its elements is non-positive . Hence, this new system Φ^{\prime} becomes a fundamental system, π say . Then we can check that ${ }^{E}{ }_{\Phi}$ is unimodular by checking that, in the expression for the removed root in. terms of the elements of π, the coefficient of the new root is ± 1. Then ,

$$
{ }^{E_{\Phi}}=\left[\begin{array}{ll}
I_{\ell-1} & * \\
0 & \pm 1
\end{array}\right] \quad, \text { which is unimodular }
$$

In the cases $E_{7}\left(a_{4}\right), E_{8}\left(a_{6}\right), E_{8}\left(a_{7}\right)$ and $E_{8}\left(a_{8}\right)$, it is necessary to replace more than one node of Γ to make Γ, the Dynkin diagram of W. Hence, it will be necessary to compute the determinant of $\mathbf{E} \boldsymbol{\Phi}$ directly, to check that ${ }^{\mathrm{E}} \mathbf{\Phi}$ is unimodular .

We omit the details of this " case - by - case " treatment , but we give two examples of the method in §2.3. .

Henco , by Proposition 2.2, we may use the result of Proposition. 2.1 to obtain the matrix ${ }^{W}{ }_{\Phi}$ of the action of w. upon $\Delta_{a d}$, in the case where Φ is a semi-Coxeter type . Then we can find the elementary divisors of the group T_{w} for a representative w of the conjugacy class corresponding to Φ, by diagonalising the matrix. (q. $w_{\mathbf{z}}-I$) over Z.
 diagonalisable over the ring $Z[q]$ of polynomials in q in every case except one. This exceptional case occurs in groups of type E_{8}, and is dealt with in §5.5. .

Before proceeding with the details of the proof of Proposition 2.2 , we give an example of the need to take care over the choice of basis for $\Delta_{\text {ad }}$ in the case of Φ-type $D_{\ell}\left(a_{j}\right)$, where a particularly simple expression for ${ }^{W}$ can be found by considering the action of w with respect to an orthonormal basis, Φ, of V. However, E^{Φ} is not unimodular in this case, and, in fact, if this basis is considered, then one can show that T_{W} is isomorphic to $C\left(q^{i}+1\right) \times\left(q^{\ell-i}+1\right)$ for $i=j+1$, which is inconsistent with the result abtained by considering
the matrix w_{π}, with respect to a fundamental system π, and certainly inconsistent with the isomorphism between $W\left(A_{3}\right)$ and $W\left(D_{3}\right)$.

NOTES. (1). Since we must take care of the lengths of roots, we make the notation that in any graph Γ, we denote long roots by nodes of the form - , and short roots by nades of the form 0 . If Γ represents a class of a Weyl group W whose root system \mathcal{K} has roots of two lengths, and the system Φ corresponding to Γ has all its roots of the same length, then we denote Γ by X if the roots are long and by \tilde{X} if the roots are short, where X is the type of Γ
(2). Although the results for the classical groups could be derived entirely in terms of root systems, as explained above, we find it more convenient to follow [6] and to use the language of permutation groups in Chapters 3 and 4 .
82.3. Examples of the methods to prove Proposition 2.2.
(i) $\mathrm{F}_{4}\left(\mathrm{a}_{1}\right)$.

A system of roots Φ with graph Γ is :-
$\Phi=\left\{r_{1}=e_{2}-e_{3}, r_{2}=e_{3}-e_{4}, r_{3}=e_{4}, r_{4}=\frac{1}{2}\left(e_{1}-e_{2}+e_{3}+e_{4}\right)\right\}$, where $\left\{e_{i}\right\}$ is an orthonormal basis of X_{R}.

A system of roots π with graph Γ^{\prime} is :-
$\pi=\left\{p_{1}=e_{2}-e_{3}, p_{2}=e_{3}-e_{4}, p_{3}=e_{4}, p_{4}=\frac{1}{2}\left(e_{1}-e_{2}-e_{3}-e_{4}\right)\right\}$.
Then $r_{4}=p_{2}+2 p_{3}+p_{4}$, and, since the coefficient of p_{4} is +1 , the change of basis from Φ to π is integral unimodular.
(ii). $E_{8}\left(a_{8}\right)$.

In this case, we must replace the three nodes r_{1}, r_{7}, r_{8}. A system of roots Φ with graph Γ is $\Phi=\left\{r_{i}\right\}_{i=1}^{8}$, and a system of fundamental roots π with graph Γ^{\prime} is $\pi=\left\{p_{i}\right\}_{i=1}^{8}$, where :-$r_{2}=p_{2}=e_{2}-e_{3}$, $p_{1}=e_{1}-e_{2}$,
$r_{3}=p_{3}=e_{3}-e_{4}$,
$r_{4}=p_{4}=e_{4}-e_{5}$,
$p_{7}=-\frac{1}{2}\left(e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}+e_{7}+e_{8}\right)$,
$r_{5}=p_{5}=e_{5}-e_{6}$,
$r_{6}=p_{6}=e_{6}+e_{7}$,

$$
p_{8}=e_{6}-e_{7} .
$$

Then we find :- $\quad r_{1}=\frac{1}{2}\left(e_{1}+e_{2}-e_{3}-e_{4}+e_{5}+e_{6}+e_{7}+e_{8}\right)$,

$$
\begin{aligned}
& r_{7}=\frac{1}{2}\left(e_{1}+e_{2}-e_{3}-e_{4}-e_{5}-e_{6}-e_{7}-e_{8}\right), \\
& r_{8}=\frac{1}{2}\left(e_{1}+e_{2}+e_{3}-e_{4}-e_{5}+e_{6}-e_{7}-e_{8}\right) .
\end{aligned}
$$

Thus, $r_{1}=-p_{3}-2 p_{4}-2 p_{5}-p_{6}-p_{7}-p_{8}$,

$$
\begin{aligned}
& r_{7}=p_{1}+2 p_{2}+2 p_{3}+2 p_{4}+2 p_{5}+p_{6}+p_{7}+p_{8}, \\
& r_{8}=p_{1}+2 p_{2}+3 p_{3}+3 p_{4}+3 p_{5}+2 p_{6}+p_{7}+2 p_{8} .
\end{aligned}
$$

If we order Φ into two mutually orthogonal subsets as
$\left\{r_{1}, r_{3}, r_{5}, r_{7} ; r_{2}, r_{4}, r_{6}, r_{8}\right\}$ and π as
$\left\{p_{1}, p_{3}, p_{5}, p_{7} ; p_{2}, p_{4}, p_{6}, p_{8}\right\}$, then $w_{\pi}=E_{\Phi}^{-1} \cdot w_{\Phi} \cdot E_{\Phi}$, where
$\mathrm{E}_{\boldsymbol{I}}=\left[\begin{array}{rrrrrrrr}0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ -1 & 1 & 0 & 2 & 0 & 0 & 0 & 3 \\ -2 & 0 & 1 & 2 & 0 & 0 & 0 & 3 \\ -1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 1 & 0 & 0 & 2 \\ -2 & 0 & 0 & 2 & 0 & 1 & 0 & 3 \\ -1 & 0 & 0 & 1 & 0 & 0 & 1 & 2 \\ -1 & 0 & 0 & 1 & 0 & 0 & 0 & 2\end{array}\right]$, and $\operatorname{det} E_{\mathbf{I}}=1$.

Similarly, we can check that, for each Φ-type satisfying the hypothesis of Proposition 2.2, the matrix E. is unimodular. Hence we have proved Proposition 2.2, which we use in Chapter 5.

82.4. Some automorphisms of W.

In this section, we combine the work of Carter described in the previous sections and a result of Burnside, to obtain a useful result. Let \sum be any irreducible root system in a real vector space V, and let $A\left(\sum\right)$ be the group of all automorphisms of V which leave \sum invariant. Further, let π be a fundamental system for \sum and $D(\Sigma)$ the subgroup of $A(\Sigma)$ formed by elements leaving π invariant. Then by [4]:

Lemma 2.3 $W(\Sigma)$ is a normal subgroup of $A(\Sigma)$, and $A(\Sigma)$ is the semi-direct product of $W(\approx)$ by $D\left(\Sigma_{i}\right)$. Moreover, $D(\Sigma)$ is the group of automorphisms of the graph of $\mathcal{\Sigma}$, which is thus isomorphic to. $A(\Sigma) / W(\Sigma)$.

Proof. If $a \in \sum$ and $t \in A(\Sigma)$, then $t \cdot w_{a} \cdot t^{-1}=w_{t(a)}$. Since
$W(\Sigma)$ is generated by the $\operatorname{set}\left\{w_{a}: a \in \mathcal{Z}\right\}$, it follows that $W(\Sigma) \triangleleft A(\Sigma)$. Now t transforms π into another fundamental system π^{\prime}, and , since $W(\Sigma)$ operates simply transitively on the set of fundamental systems, t can be written uniquely as wad for $w \in W(\Sigma)$ and $d \in D(\Sigma)$. Hence, $A(₹)=W(₹) \cdot D(\Sigma)$.

Finally, since the graph of $\mathcal{1}$ has nodes in l-1 correspondence with the elements of π, it follows easily that $D(\Sigma)$ is the group of automorphisms of this graph.

Now let $z \in D(\mathcal{Z})$. Then z acts on $W(\Sigma)$ by conjugation in. $A(\Sigma)$, and let $\operatorname{ord}(\tau)=\delta$. Then τ corresponds, by §1.2, to a permutation π of \approx

Lemma 2.4. π acts on the set $\mathscr{C}(W)$, as a permutation of order \mathcal{E}, by permuting the set of admissible graphs .

Proof. Since $\pi \in \operatorname{Aut}(W)$, then π acts on the set $\mathscr{C}(W)$ by conjugation . We can see this action by considering how π acts on the graph Γ_{C} of a class $C \in \mathscr{K}(\mathbb{W})$. Let Γ_{C} have nodes representing the set $\Phi=\left\{a_{1}, \ldots, a_{h} ; b_{1}, \ldots, b_{k}\right\}$, and a bond of strength $n_{a b} \cdot n_{b a}=2 \frac{(a, b)}{a, a)} \cdot 2 \frac{(b, a)}{(b, b)}$ joining the node a to node b. Then π acts on the nodes of Γ_{C} by its action on Σ, and we claim that bond strengths are preserved. Then $\Gamma_{\pi(c)}$ has nodes representing the set $\Phi^{\pi}=\left\{\pi\left(a_{1}\right), \ldots, \pi\left(a_{h}\right) ; \pi\left(b_{1}\right), \ldots, \pi\left(b_{k}\right)\right\}$.
of the space they generate. So $n_{\pi(a) \pi(b)} \cdot n_{\pi(b) \pi(a)}=n_{a b} \cdot n_{b a}$. If a is short, and b is long, then $\tau a=p^{\frac{1}{2}} \cdot \pi a$, and $\tau b=p^{-\frac{1}{2}} \cdot \pi b$, by Proposition 1.3. Hence ,

$$
\begin{aligned}
n_{\pi}(a) \pi(b) \cdot n_{\pi(b) \pi(a)} & =2 \frac{(\pi a, \pi b)}{(\pi a, \pi a)} \cdot 2 \frac{(\pi b, \pi a)}{(\pi b, \pi b)} \\
& =2 \frac{\left(p^{-\frac{1}{2}} r a, p^{\frac{1}{2}} r b\right)}{\left(p^{-\frac{1}{2}} r a, p^{-\frac{1}{2}} r a\right)} \cdot 2 \frac{\left(p^{\frac{1}{2}} r b, p^{-\frac{1}{2}} r a\right)}{\left(p^{\frac{1}{2}}, r b, p^{\frac{1}{2}}, r b\right)} \\
& =2 \frac{(a, b)}{(a, a)} \cdot 2 \frac{(b, a)}{(b, b)} \text { since } \tau \text { is an isometry . }
\end{aligned}
$$

Hence, bond strengths are preserved, and $\Gamma_{\pi(c)}=\pi\left(\Gamma_{c}\right)$.
Hence, we can see precisely how π acts on $\zeta(W)$ by seeing how π acts on the set $\Gamma(W)=\left\{\Gamma_{C}: C \in \mathscr{C}(W)\right\}$ of adrissible graphs of W. Notation. If G is any group and $C \in \mathscr{C}(G)$ with $g \in C$, we specify C by writing C as C_{g} if there is no ambiguity . Otherwise, or in case of ambiguity, if $H \leq G$, we write the H-conjugacy class containing $g \in G$ as $\{g\}^{H}$.

We now prove a result (due to Burnside [5]), which proves to be very useful in later chapters. Let $W^{*}=\langle W, \tau\rangle=W .\langle\tau\rangle$. Proposition 2.5. Suppose that $|\zeta(W)|=c$, and that the action of π on $\boldsymbol{\zeta}(\mathrm{w})$ leaves c_{1} classes fixed. Then π permutes the remaining $\left(c-c_{1}\right)$ classes in orbits of length δ, and the number of conjugacy classes of W^{*} which are in any non-trivial coset of W in W^{*} is just c_{1}. Moreover, the total number of conjugacy classes of W is $\left(6 c_{1}+\frac{c-c_{1}}{\delta}\right)$.

Proof. If $w=\left\{w_{1}, \ldots, w_{n}\right\}$, then $\operatorname{let} \Omega=\left\{w_{1} \varepsilon, \ldots, w_{n} \varepsilon\right\}$. Then, the elements of Ω, when transformed by conjugation by any element of W^{*}, are permuted amongst themselves, and so W^{*} acts as a permutation group on the coset $W \boldsymbol{W r}=\Omega$. We suppose that Ω splits. into t orbits under this action as $\Omega=\Omega_{1} \cup \cdots \cup \Omega_{t}$.

Suppose $w \in W$ and that $W \in C$ for some $C \in \mathscr{C}(W)$ with eC. $\varepsilon^{-1}=C$. Then $\varepsilon \cdot w \cdot \tau^{-1}=w_{j} \cdot w \cdot w_{j}^{-1}$ for some fixed $j \in\{1, \ldots, n\}$, since $\tau \cdot w . \varepsilon^{-1} \in C$. Hence, any element $w_{i} \tau \in \Omega$ is fixed by $w \not \Longrightarrow w_{0} w_{i} \tau \cdot w^{-1}=w_{i} \tau$,

$\Longleftrightarrow w_{i}^{-1} \cdot w \cdot w_{i}=w_{j} \cdot w \cdot w_{j}^{-1}$,
$\Longleftrightarrow w_{i} \cdot w_{j} \in \mathbb{C}_{W}(w)$,
$\Longleftrightarrow w_{i} \in \mathbb{C}_{W}(w) \cdot w_{j}^{-1}$.
Hence, there are precisely $\left|\mathbb{C}_{W}(w)\right|=|W| /|c|$ such elements $w_{i} \tau \in \Omega$.
On the other hand, if $w \in W$ and $w \in C$ for some $C \in \zeta(W)$ with z.c. $\varepsilon^{-1} \neq c$, then $w_{i} \varepsilon \in \Omega$ is fixed by $w \Longleftrightarrow$ w. w_{i} r. $w^{-1}=w_{i} \varepsilon$;

$$
\Longleftrightarrow w_{i}^{-1} \cdot w \cdot w_{i}=r \cdot w, r^{-1} \notin c,
$$

which is not true for any w_{i}. Hence, no element of Ω is fixed by w. Hence, when Ω is acted upon by all the permutations of w, the total number F of fixed symbols is $c_{1} \cdot|c| \cdot(|w| /|c|)=c_{1} \cdot|W|$.

Now W is transitive on each Ω_{i}, so consider the action of W on $\Omega_{i}=\left\{a_{1}, \ldots, a_{k}\right\}$. Let $\mu_{i}(\dot{w})=\left|\left\{a_{j} \in \Omega_{i}: w . a_{j}=a_{j}\right\}\right|$ for $w \in W$,
and $\lambda_{i}\left(a_{j}\right)=\left|\left\{w \in w: w, a_{j}=a_{j}\right\}\right|$. Certainly, we know that i

$$
\begin{equation*}
\sum_{j=1}^{k} \lambda_{i}\left(a_{j}\right)=\sum_{w \in W} \mu_{i}(w) \tag{*}
\end{equation*}
$$

Now $\lambda_{i}\left(a_{j}\right)=\left|S_{j}\right|$, where $S_{j}=s t a b{ }_{W}\left(a_{j}\right)$, and since W is transitive on Ω_{i}, we have $k=\left|\Omega_{i}\right|=\left|W / s_{j}\right|$ for all j. So $|W|=k \cdot\left|S_{j}\right|$, and $\left|S_{j}\right|=\left|S_{l}\right|$ for all j. Hence,

$$
\sum_{j=1}^{k} \lambda_{i}\left(a_{j}\right)=\sum_{j=1}^{k}\left|s_{j}\right|=k \cdot\left|s_{1}\right|=|w| .
$$

Thus, $\sum_{w \in W} \mu_{i}(w)=|w|$, by (*). This is true for all Ω_{i}, so if $\nu(w)=|\{a \in \Omega: w . a=a\}|$, then $F=\sum_{W \in W} \nu(w)=\sum_{W \in W}\left(\sum_{i=1}^{t} \mu_{i}(w)\right)=\sum_{i=1}^{t}\left(\sum_{W \in W} \mu_{i}(w)\right)=$ $\sum_{i=1}^{t}|w|=t|w|$.

However, we have already seen that $F=c_{1} \cdot|W|$, so that $t=c_{1}$. Suppose $\Omega_{i}=\left\{w_{i} \tau, \ldots, w_{k}^{\prime} \tau\right\}$. Then $\Omega_{i}=\left\{w_{i}^{\prime} \tau\right\}^{W}$, and $\Omega_{i}^{z}=\left\{\varepsilon \cdot w_{1}^{\prime} r \cdot r^{-1}\right\}^{W^{\varepsilon}}=\left\{r w_{1}^{\prime}\right\}^{W}=\left\{w_{1}^{-1} \cdot w_{1}^{\prime} r \cdot w_{1}^{\prime}\right\}^{W}=\left\{w_{1}^{\prime} r\right\}^{W}=\Omega_{i}$. Hence, τ fixes each Ω_{i} for $i \in\{1, \ldots, t\}$, and so each Ω_{i} is invariant under the action of any element of W^{*}. Hence, the sets $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{t}$ are just the W^{*}-conjugacy classes in the coset Wr . (This is a union of conjugacy classes since τ is an automorphism of W.). Hence, the set $\Omega=W e$ falls into $c_{1} W^{*}$-conjugacy classes . Similarly with the other cosets $W z^{2}, \ldots, W \varepsilon^{\delta-1}$

$$
\text { Finally, since } \tau \text { permutes the }\left(c-c_{1}\right) \text { classes of } \zeta(W) \text {, which }
$$ are not fixed by τ, in orbits of order $\mathcal{\delta}$, these fuse in sets of

order δ to give $\frac{c-c_{1}}{\delta} W^{*}$-conjugacy classes, whereas the c_{1} classes of $\mathscr{C}(W)$ which are fixed by $と$, remain as W^{*}-conjugacy classes . , Hence the total number of W^{*}-conjugacy classes of W^{*} is

$$
c_{1}+(\delta-1) c_{1}+\left(\frac{c-c_{1}}{\delta} 1\right)=\delta c_{1}+\left(\frac{c-c}{\delta} 1\right) .
$$

Hence, by combining Lemma 2.4 and Proposition 2.5 with the work described in $\$ 2.1$, we obtain a useful result about the number of conjugacy classes of W^{*} by considering the action of π on the set $\Gamma(W)$ of admissible diagrams of W. In Chapter 6 , we show how this result gives us the number of equivalence classes in $H^{l}(\sigma, W)$ when σ is not a pure field automorphism, and we use this in Chapters 6 and 7 . Although we need to know representative elements of the classes of $H^{l}(\sigma, W)$ in order to determine the structure of the maximal tori, this result does tell us when we have all the representatives .
§2.5. Maximal tori corresponding to Weyl subgroups of W.
In $\$ 2.1$, we mentioned the fact that is only necessary in the work of [6] to determine those admissible graphs of a Weyl group W for which the corresponding conjugacy class is not contained in any Weyl subgroup W' of W . Furthermore , in Proposition 2.2 , we saw that the matrix $\mathrm{E}_{\boldsymbol{\Phi}}$ corresponding to such classes is unimodular, thus enabling us to readily compute the elementary divisors of the maximal tori T_{W} corresponding to these classes from the graph.

Suppose that $W \in W^{\prime}$, a proper Weyl subgroup of W of rank ℓ^{\prime}.
Then we can choose W^{\prime} so that W belongs to no proper Weyl subgroup of W^{\prime}
and then the conjugacy class containing w has as graph an admissible graph Γ^{\prime} of W^{\prime}. Then the roots Φ mentioned in $\$ 2.1$ span a subspace U of V of dimension l^{\prime}, and the characteristic polynomial of w is $f_{w}(t)=f_{\Gamma^{\prime}}(t) \cdot(q-1)^{\ell-\ell^{\prime}},[6]$. One eight therefore expect that T_{W} would be isomorphic to $T_{W}^{\prime} \times \overbrace{C_{q-1} X \cdots X C_{q-1}}^{\ell-\ell^{\prime}}$, where T_{W}^{\prime} is the maximal torus of the corresponding Chevalley subgroup G^{\prime} of G. Although this may be true in certain cases, one only needs to refer to Table 5.2 to see that this is certainly not so in general . We now discuss this situation. Even if the above were to be valid one would have to be careful of the isogeny type of G^{\prime} with respect to that of G, a problem which involves the extension problem of finite abelian groups.

Suppose that W^{\prime} is a Weyl subgroup of W of rank ℓ^{\prime} and that $W \in W^{\prime}$. Let T be a maximal torus of $G_{\pi, K}$ twisted with respect to w, and let $X=X(T)$. If $X^{\prime}=\left\{x \in X: X^{W}=x\right.$ for all $\left.w \in W^{\prime}\right\}$, then it easily follows that X / X, has no torsion. Hence , $\left(X^{\prime}\right)^{\perp}=T^{\prime}$ is a subtorus of T, see $[8]$, and $X / X, \cong X\left(T^{\prime}\right)$.

Now, although w acts trivially on X^{\prime}, it is not clear that there exists a w-invariant complement of X^{\prime} in X, and indeed such a complement does not exist in general . However, if it did, then the action of W on X could be represented as a block matrix $\left[\begin{array}{ll}I_{l}-e^{\prime} & 0 \\ 0 & w^{\prime}\end{array}\right]$, where w^{\prime} is the matrix of w on the subgroup $X\left(T^{\prime}\right)$: Then we should certainly be able to say that T_{W} is isomorphic to $C_{q-1} \times \ldots C_{q-1} \times T_{W}^{\prime}$. Hence, we must direct our study, not only to the semi-Coxeter classes
of W, but to all the conjugacy classes of W.

A simple counter example is in the adjoint group of type \mathbf{A}_{2}, where w is in the conjugacy class corresponding to the partition $[1,2]$. Then $W \in W^{\prime} \leq W$, where $W^{\prime} \cong W_{1}\left(A_{1}\right)$, and by Proposition $3.3, T_{w} \cong C_{q^{2}-1}$, which is not isomorphic with $C_{q-1} \times \mathrm{C}_{\mathrm{q}+1}$ when q is an odd prime power.

CHAPTER 3. Chevalley groups of Type A_{l}

§3.1. In this chapter, we discuss the groups $G_{\pi, K}$ when g is a simple complex Lie algebra of type A_{ℓ}. These groups are of especial interest because $G_{S C, K} \cong S_{\ell+1}(K)$ (as groups), and generally they are the first to be investigated with regard to conjectures , and their properties often bear fruit for generalisations to Chevalley groups . However, although these groups generally prove to be easier to handle, in this case the problem has not been solved completely for all cases . We proceed to give an account of the partial results that we have so far been able to obtain.

In this situation, the isogeny class \mathcal{A}_{ℓ} of simple groups of type A_{ℓ} contains groups other than $G_{a d, K}$ and $G_{s c, K}$. For then the finite group $\Delta_{\mathrm{sc}} / \Delta_{\mathrm{ad}}$ is isomorphic to the cyclic group $C_{\ell+1}$ of order $\ell+1$. Hence, given any divisor d of $(\ell+1)$, we can find a lattice Δ such that $\Delta_{\mathrm{sc}} \supset \Delta \supset \Delta_{\mathrm{ad}}$ and $\Delta_{\mathrm{sc}} / \Delta \cong_{C_{d}}$. Then, by §1.1, there exists a faithful representation $\quad \pi^{d}$ of g with $\Delta=\Delta_{\pi^{d}}$, and hence a corresponding group $G \pi^{d}, K$. If ρ and π are faithful representations of \mathbb{g}, then the kernel of the homomorphism
$\lambda_{\rho, \pi}: G_{\pi}(K) \longrightarrow G_{\rho}(K)$, mentioned in $§ 1.1$, is isomorphic with the group $\Delta_{\rho} / \Delta_{\pi}$ modulo p-torsion . Hence, there may be some repetitions or collapsing in the groups $G \underset{\pi^{d}, K}{ }$, depending upon the value of $(\ell+1, p)$.

If there is no collapsing , then there is a radical isogeny between G
and $G_{s c, K} / Z_{d}$, where Z_{d} is the unique central subgroup of $G{ }_{S c, K}$ of
order d. From now, we denote
 by

Lemma 3.1. The lattice Δ_{d} has a basis $\Lambda_{\mathrm{d}}=\left\{r_{1}, r_{2}, \ldots, r_{\ell}\right\}$, where $r_{1}=d\left(e_{1}-\frac{1}{\ell+1} \sum_{j=1}^{\ell+1} e_{j}\right)$ and $r_{i}=e_{1}-e_{i}$ for $i \in\{2, \ldots, \ell\}$.

Proof. Now $\pi=A . \Omega$, where A is the Carton matrix of the root system of type A_{l}, π is a system of fundamental roots of the root system \sum of type A_{l}, and Ω is the corresponding system of fundamental weights . Since $\Delta_{s c} / \Delta_{a d} \cong C_{\ell+1}$, we can diagonalise A to $A^{\prime}=\left[\begin{array}{ll}I_{\ell-1} & \underline{Q} \\ \underline{0} & \ell+1\end{array}\right]$ over \dot{Z} by the basis theorem for abelian groups [24] to find a basis π ' of $\Delta_{\text {ad }}$ and a basis Ω ' of $\Delta_{\text {sc }}$ such that $\pi^{\prime}=A^{\prime} \cdot \Omega \cdot$. Now $A^{\prime}=$ R.A.C , where R is the product of the elementary row operations on A and C is the product oi the elementary column operations. Hence, if $\pi=R . \pi$ and $\Omega \prime=c^{-1} . \Omega$, then $\pi^{\prime}=A^{\prime} \cdot \Omega^{\prime} \quad$ as required.

If $\left\{e_{i}\right\}_{i=1}^{\ell+1}$ is an orthonormal basis of a real vector space V, then we can embed Δ ad and $\Delta_{\text {sc }}$ in the hyperplane $\left\{\sum_{i=1}^{\ell+1} \xi_{i} \cdot e_{i}: \sum_{i=1}^{\ell+1} \xi_{i}=0\right\}$, and realise the bases π and Ω as $\pi=\left\{p_{i}=e_{i}-e_{i+1}: i \in\{1, \ldots, \ell\}\right\}$, and $\Omega=\left\{q_{i}=\sum_{j=1}^{i} e_{j}-\frac{i}{\ell+1} \sum_{j=1}^{\ell+1} e_{j}: i \in\{1, \ldots, \ell\}\right\}$.
 $R=\left[\begin{array}{cc}\vdots & I_{\ell-1} \\ \hdashline & \ldots \ldots \ldots . \dot{l}\end{array}\right] \quad$, so that $\pi^{\prime}=\left\{p_{1}, p_{2}, \ldots, p_{\ell-1},(\ell+1) \cdot q_{1}\right\}$ and $\Omega^{\prime}=\left\{p_{1}, p_{2}, \ldots, p_{\ell-1}, q_{1}\right\}$.

Hence, for any divisor d of $(\ell+1)$, there corresponds a proper sublattice of $\Delta_{\text {sc }}$ containing $\Delta_{a d}$ denoted Δ_{d}, and Δ_{d} is generated by the basis $\Lambda_{\prime_{d}}^{\prime}=\left\{p_{1}, p_{2}, \ldots p_{\ell-1}, d_{1}\right\}$.

The lemma now follows since Λ_{d} and $\Lambda^{\prime}{ }_{d}$ are integrally equivalent in the sense that an element of one can be expressed as an integral combination of the elements of the other, and vice versa.

$$
\text { Explicitly, } \quad r_{1}=d q_{1}, \text { and } r_{i}=\frac{i-1}{j} p_{j=1} \text { for } i \in\{2, \ldots, \ell\} \text {. }
$$

Conversely , $p_{i}=r_{i+1}-r_{i}$.

Hence , by Chapter 1 , we must find the elementary divisors of the matrix ($q \cdot W_{d}-I$ for a representative element w from each class of $H^{l}(\sigma, W)$, where W_{d} is the matrix of the action of w on Δ_{d} with respect to the basis Λ_{d} 。
§3.2. The matrix $\mathrm{I}_{\mathrm{d}}(\underline{\lambda})$.
We have seen in Chapter 2 that in the case of the Chevalley groups, the set $H^{l}(\sigma, W)$ of equivalence classes corresponds to the set $\mathscr{C}(W)$. of conjugacy classes of W. Now, in groups of type $A_{\ell}, W \cong \mathcal{S}_{\ell+1}$, the symmetric group on $(\ell+1)$ letters, and this is another reason why this group tends to be the first to be investigated.

It is well known that there is a l-1 correspondence between the conjugacy classes of $\mathcal{S}_{\ell+1}$ and partitions of $\ell+1$, due to Young . . In fact the group W acts upon V by permutations of the basis $\left\{e_{i}\right\}_{i=1}^{\ell+1}$.

Let $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right]$ be a general partition of $\ell+1$ such that
\sum^{t} $i=1$ conjugacy class of W by C_{λ}. Following the work of Carter [6], this has a graph of the form $A_{\lambda_{1}-1}+A_{\lambda_{2}-1}+\cdots+A_{\lambda_{t}-1}$. A representative element of $C_{\boldsymbol{\lambda}}$ is the element w such that :-

Then w acts on Δ_{d} in the following way with respect to the basis $\Lambda_{d}:-$

Hence, the matrix ($q \cdot w_{d}-I$) can be obtained and this reduces to the matrix $L_{d}(\lambda)$ upon diagonalisation over Z, where

where $z=\sum_{i=1}^{t}\left[q^{\lambda_{i}-2}+2 q^{\lambda_{i}-3}+\ldots+\left(\lambda_{i}-2\right) q+\left(\lambda_{i}-1\right)\right]$ and $f_{n}(q)=q^{n-1}+\ldots+1$. We note that $(q-1) z=\sum_{i=1}^{t} f_{\lambda_{i}}(q)-(l+1)(*)$.

The matrix $L_{d}(\lambda)$ appears to resist all attempts at a general diagonalisation which accounts for the incomplete results for these groups . However , in the next few sections, we consider some particular cases , beginning with the groups $G_{S c, K}$.
\$3.3. The groups $G_{a d, K}$ and $G_{S c, K}$. We consider the groups $G_{S c, K}$ and, equivalently because of Corollary 1.8 , the groups $G_{a d, K}$. These groups correspond to the situation $d=1$, and then the matrix $L_{d}(\lambda)$ quickly reduces to the matrix

by the following operations :-
(i) $(q-1) r_{2}$ to r_{1}; (ii) $\sum_{i=3}^{t+1} r_{i}$ to r_{1}, using the expression (*); (iii) Removing (r_{2}, c_{1}). To diagonalise this matrix $L_{1}(\lambda)$, we need the following Lemma .

Lemma 3.2. Consider the submatrix $L=\left[\begin{array}{cccc}q^{\lambda_{1}}-1 & 0 & f_{\lambda_{1}}(q) \\ 0 & q^{\lambda_{2}-1} & f_{\lambda_{1}}(q) \\ 0 & 0 & f_{\lambda_{1}}(q)\end{array}\right]$ of $L_{1}(\lambda)$,
and let $v_{1}=\left(\lambda_{1}, \lambda_{2}\right)$ be the greatest common divisor of λ_{1} and λ_{2}.
Then L reduces to the matrix $\left[\begin{array}{ccc}\frac{\left(q^{\lambda_{1}}-1\right)\left(q^{\lambda_{2}}-1\right)}{\left(q^{v_{1}}-1\right)} & 0 & 0 \\ 0 & q^{v_{1}}-1 & f_{v_{1}}(q) \\ 0 & 0 & f_{\lambda_{l}}(q)\end{array}\right]$
Proof. If $\lambda_{2}=a_{1} \cdot \lambda_{1}+b_{1}$

$$
\lambda_{1}=a_{2} \cdot b_{1}+b_{2}
$$

$$
b_{1}=a_{3} \cdot b_{2}+b_{3}
$$

$$
b_{n-2}=a_{n} \cdot b_{n-1}+b_{n}
$$

$$
b_{n-1}=a_{n+1} \cdot b_{n} \quad \text {, so that } b_{n}=v_{1} \text {, and } b_{n+1}=0
$$

Let $c_{i}=-q^{b_{i}}\left[\left(q^{b_{i-1}}\right)^{a_{i}-1}+\ldots+\left(q^{b_{i-1}}\right)+1\right]$. Then by the sequence
of operations (I) $c_{i} \cdot r_{1}$ to r_{2} if i is odd,
(2) $c_{i} \cdot r_{2}$ to r_{1} if i is even, beginning with $i=1$,
we can reduce the matrix L to a matrix of the form

$$
L_{i}=\left[\begin{array}{ccc}
q^{b_{i}}-1 & \frac{\left(q^{2}-1\right)\left(q^{\lambda 1}-q^{b_{i}}\right)}{\left(q^{b_{i}-i}\right)} & f_{b_{i}}(q) \\
q^{b_{i+1}-1}\left(\frac{\left(q^{\lambda 2}-1\right)\left(q^{\lambda 1}-q^{b_{i+1}}\right)}{\left(q^{b_{i+1}}-1\right)}\right. & f_{b_{i+1}}(q) \\
0 & 0 & f_{\lambda_{t}}(q)
\end{array}\right]
$$

After the $(n+1)^{\text {th }}$ operation, we have the matrix L_{n+1}, where $b_{n+1}=0$. Hence ,

$$
L_{n+1}=\left[\begin{array}{ccc}
q^{v_{1}}-1 & 0 & f_{v_{1}}(q) \\
0 & \frac{\left(q^{\lambda_{1}}-1\right)\left(q^{\lambda_{2}}-1\right)}{\left.{ }^{v_{1}}-1\right)} & 0 \\
0 & 0 & f_{\lambda_{t}}(q)
\end{array}\right]
$$

We are now able to solve the problem for the groups $G_{s c, K}$, after introducing some notation. Let $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right]$ be a partition of $(\ell+1)$, and let $\nabla=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right)$ be the greatest common divisor of the λ_{i}. Then define $v_{1}=\left(\lambda_{1}, \lambda_{2}\right)$ and $v_{i}=\left(v_{i-1}, \lambda_{i+1}\right)$ for $i=2, \ldots, s$, so that $v_{s}=\left(v_{s-1}, \lambda_{s+1}\right)=v$. For, certainly such an s with $1 \leqslant s<t$ exists, by definition of v.

Proposition 3.3. Let w be a representative element of the conjugacy class C_{λ} of $W\left(A_{\rho}\right)$, where $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right]$. Then, with the above notation, the corresponding maximal torus T_{W} of the group $G_{\pi, K}(q)$ has elementary divisors, when π is ad or sc, equal to : $e_{1}=\frac{\left(q^{\lambda 1}-1\right)\left(q^{\lambda 2}-1\right)}{\left(q^{v_{1}}-1\right)}, e_{2}=\frac{\left(q^{v_{1}}-1\right)\left(q^{\lambda 3}-1\right)}{\left(q^{v_{2}}-1\right)}, \ldots, e_{s}=\frac{\left(q^{v}-1-1\right)\left(q^{\lambda+1}-1\right)}{\left(q^{v}-1\right)}$, $e_{s+1}=q^{v-1}+\ldots+q+1, e_{s+2}=\left(q^{\lambda+2}-1\right), \ldots, e_{t}=\left(q^{\lambda t}-1\right)$.

Proof. By Lemma 3.2 , it follows that we can reduce the matrix $L_{1}(\lambda)$ to obtain the first elementary divisor $e_{1}=\frac{\left(q^{\lambda 1}-1\right)\left(q^{\lambda 2}-1\right)}{\left(q^{1}-1\right)}$ and we are left with the matrix

We can continue this process until we have obtained the first s elementary divisors $e_{i}=\frac{\left(q^{v_{i-1}}-1\right)\left(q^{\lambda_{i+1}}-1\right)}{\left(q^{v_{i}}-1\right)}$ for $i=2, \ldots, s$. Then we are left with the matrix

Now if we subtract the final column from the first column (q-1). times, and add the intermediate columns to the first column, then we can reduce this matrix to

Now, since $v=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right)$, it follows from Corollary 4.6 that since $v \mid \lambda_{i}$ for all i, then $f_{v}(q) \mid f_{\lambda_{i}}(q)$ for $i=1, \ldots, t$ and in particular for $i=s+3, \ldots, t$. Hence, by operations on the first row of $L_{1}(\lambda)_{s}^{\prime}$, we can reduce the matrix to

$$
\operatorname{diag}\left(f_{v}(q), q^{\lambda_{s+3}}-1, \ldots, q^{\lambda_{t-1}}, q^{\lambda_{t}}-1\right) .
$$

Hence, the result follows.

Although the results in this case are not quite as simple as one might expect, in practice it is generally possible to arrange the sequence $\left\{\lambda_{1}, \ldots, \lambda_{t}\right\}$ so that the sequence $\left\{v_{1}, \ldots, v_{s}\right\}$ becomes quite short. Examples (i). If $\lambda=[\ell+1]$, so that $t=1$, it follows that $v=\ell+1$. Since $s=0$, it follows that there is just one elementary divisor in this case, viz. $e_{1}=q^{\ell}+\ldots+q+1$.
(ii). If $\lambda=[4,6,8]$, then $v=2$. Now $v_{1}=(4,6)=v$, so that $\mathbf{s}=1$. Hence the elementary divisors in this case are

$$
e_{1}=\frac{\left(q^{4}-1\right)\left(q^{6}-1\right)}{\left(q^{2}-1\right)}=\left(q^{2}+1\right)\left(q^{6}-1\right), e_{2}=(q+1), \quad e_{3}=\left(q^{8}-1\right)
$$

\$3.4. The Coxeter tori in the groups $G \pi, K$.
Considering the previous results and Corollary 1.8 , the fact that the tori in all of the groups ${ }^{G} \pi, K$ corresponding to a particular class of $\mathscr{C}(W)$ have the same order (a consequence of Proposition 1.4) might seem to suggest that such tori have the same structure also . Although we have been unable to obtain complete results for the groups A_{l}, we now consider a special case which demonstrates that the structure of the tori
corresponding to some class of $\mathscr{C}(W)$ does depend upon the isogeny type of the group concermed.

We have discussed the Coxeter class of W in Proposition 2.2 and we define a Coxeter torus of $G_{\pi, K}$ to be a maximal torus of $G_{\pi, K}$ which corresponds to the Coxeter class of $\boldsymbol{\mathscr { C }}(W)$ under the bijection Q of Theorem 1.2. We now discuss the structure of the Coxeter tori in the various groups $G \pi^{d}, K$ for d a divisor of $(l+1)$, where G is of type A . Now the Coxeter class of W corresponds to the partition $\lambda=\left[\lambda_{1}\right]$ such that $\lambda_{1}=(\ell+1)$, since this is the only partition of $(\ell+1)$ which corresponds to elements not lying in any Weyl subgroup of W. Lemma 3.4 The matrix $L_{d}(\lambda)$ in this case reduces to the matrix

$$
\left[\begin{array}{cc}
q-1 & \left(q^{d}\right)^{k-1}+\ldots+q^{d}+1 \\
q^{d-1}+\ldots+q+1 & 0
\end{array}\right]
$$

Proof. The matrix $L_{d}(\lambda)=\left[\begin{array}{cc}q-1 & k \\ -d & z\end{array}\right]$ in this case , where

$$
z=\left(q^{\ell-1}+2 q^{\ell-2}+\ldots+(\ell-1) q+\ell\right) .
$$

Let $y=\left(\left(q^{d}\right)^{k-2}+2\left(q^{d}\right)^{k-3}+\ldots+(k-2) q^{d}+(k-1)\right) \cdot\left(q^{d-1}+\ldots+q+1\right)$, so that the operation $y . c_{1}$ to c_{2} reduces $L_{d}(\lambda)$ to

$$
\left[\begin{array}{ll}
(q-1) & \left(q^{d}\right)^{k-1}+\left(q^{d}\right)^{k-2}+\ldots+q^{d}+1 \\
-d & \left(\left(q^{d}\right)^{k-1}+\ldots+q^{d}+1\right) \cdot\left(q^{d-2}+2 q^{d-3}+\ldots+(d-2) q+(d-1)\right)
\end{array}\right]
$$

By the operation $-\left(q^{d-2}+2 q^{d-3}+\ldots+(d-2) q+(d-1)\right) . r_{1}$ to r_{2}, and then multiplying r_{2} by the unit -1 of Z, this matrix reduces to

$$
\left[\begin{array}{cc}
q-1 & \left(q^{d}\right)^{k-1}+\ldots+q^{d}+1 \\
q^{d-1}+\ldots+q+1 & 0
\end{array}\right]
$$

Lemma 3.5. Suppose that $B=\left[\begin{array}{ll}a_{1} & 0 \\ a_{3} & a_{2}\end{array}\right]$ is a relation matrix for an abelian group G, and that $e=\left(a_{1}, a_{2}, a_{3}\right)$ - the greatest conmon divisor of the three integers a_{1}, a_{2}, a_{3}. Then B is equivalent (in the sense of relation matrices) to the diagonal matrix diag $\left(a_{1} \cdot a_{2} \cdot e^{-1}, e\right)$, and , consequently, G is isomorphic to the group $C_{e} x C_{a_{1}} \cdot a_{2} \cdot e^{-1}$.

Proof. Let $a_{i}=a_{i}^{\prime} \cdot e$ for $i=1,2,3$ so that $\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)=1$, and then $B=e I . B^{\prime}$, where $B^{\prime}=\left[\begin{array}{ll}a_{1}^{\prime} & 0 \\ a_{1}^{\prime} & a_{2}^{\prime}\end{array}\right]$. Since the matrix eI is in the centre of the group $\mathrm{GL}_{2}(Z)$, we may just consider reducing the matrix B^{\prime}.

We assume that $a_{1}>0$, and let $a_{i j}^{\prime}=\left(a_{i}, a_{j}^{\prime}\right)$ so that $\left(a_{i j}^{\prime}, a_{k}\right)=1$ for i, j, k distinct. Then we proceed by induction on the modulus of the leading term of B^{\prime}.

Suppose that $a_{1}^{\prime}=1$, so that B^{\prime} easily reduces to $\left[\begin{array}{cc}1 & 0 \\ 0 & a_{1}^{\prime} \cdot a_{2}^{\prime}\end{array}\right]$. Assume now that $a_{1}^{\prime}>1$. Then $a_{13}^{\prime} \leqslant a_{1}^{\prime}$.

Suppose first that $a_{13}^{\prime}=a_{1}^{\prime}$. Then $a_{1}^{\prime} \mid a_{3}^{\prime}$, and B easily reduces to the matrix $\left[\begin{array}{cc}a_{1}^{\prime} & 0 \\ 0 & a_{2}^{\prime}\end{array}\right]$. However $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)=\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{2}^{\prime}\right)=1$, so that there exist $u, v \in Z$ with $u . a_{1}^{\prime}+v . a_{2}^{\prime}=1$. Hence

$$
\left[\begin{array}{ll}
1 & 0 \\
u & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
a_{1}^{\prime} & 0 \\
0 & a_{2}^{\prime}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
v & 1
\end{array}\right]=\left[\begin{array}{ll}
a_{1}^{\prime} & 0 \\
1 & a_{2}^{\prime}
\end{array}\right] \text {, which reduces to }\left[\begin{array}{lll}
1 & 0 & \\
0 & a_{1}^{\prime} & a_{2}^{\prime}
\end{array}\right]
$$

Suppose now that $a_{i 3}^{\prime}<a_{1}^{\prime}$, so that there exist $u, v \in Z$ with
$u \cdot a_{3}^{\prime}+v \cdot a_{1}^{\prime}=a_{13}^{\prime} . \quad$ Then $\left[\begin{array}{cc}v & u \\ -a_{3}^{\prime} / a_{13}^{\prime} & a_{1}^{\prime} / a_{13}^{\prime}\end{array}\right] \cdot\left[\begin{array}{ll}a_{1}^{\prime} & 0 \\ a_{3}^{\prime} & a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}a_{13}^{\prime} & u a_{2}^{\prime} \\ 0 & a_{1}^{\prime} \cdot a_{2}^{\prime} / a_{13}^{\prime}\end{array}\right]$, and we have reduced B^{\prime} to a matrix $B^{\prime \prime}=\left[\begin{array}{ll}b_{1} & 0 \\ b_{3} & b_{2}\end{array}\right]$ such that $0<b_{1}<a_{1}$
and $\left(b_{1}, b_{2}, b_{3}\right)=\left(a_{13}^{\prime}, a_{1}^{1} \cdot a_{2}^{\prime} / a_{13}^{\prime}, u a_{2}^{\prime}\right)=\left(a_{13}^{\prime}, a_{2}^{\prime}\right)=1$.
We assume for our induction principle that for matrices $X=\left[\begin{array}{ll}x_{1} & 0 \\ x_{3} & x_{2}\end{array}\right]$ with $\left(x_{1}, x_{2}, x_{3}\right)=1$ and $0<x_{1}<a_{1}^{1}$, then X is equivalent to the diagonal matrix $\left[\begin{array}{cc}1 & 0 \\ 0 & x_{1} x_{2}\end{array}\right]$. Thus, by induction, B^{\prime} is equivalent to $\left[\begin{array}{cc}1 & 0 \\ 0 & b_{1} b_{2}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & a_{1}^{\prime} \cdot a_{2}^{\prime}\end{array}\right]=A$. Thus we have found integral unimodular matrices P, Q such that $P \cdot B^{\prime} 。 Q=A$. Hence , $P \cdot B \cdot Q=P \cdot(e I) \cdot P^{-1} \cdot P \cdot B^{\prime} \cdot Q=e I \cdot A=\left[\begin{array}{cc}e & 0 \\ 0 & a_{1}^{\prime} a_{2}^{\prime} e\end{array}\right]=\left[\begin{array}{cc}e & 0 \\ 0 & a_{1} a_{2} e^{-1}\end{array}\right] \cdot$ The final part follows obviously .

Lemma 3.6. The Coxeter tori of the groups $G_{\pi^{d}, K}(q)$ have the structure $c_{e_{1}} \times C_{e_{2}}$, with elementary divisors $e_{1}=\left(d, \frac{\ell+1}{d}, q-1\right)$ and $e_{2}=\left(q^{l}+\ldots+1\right) \cdot e_{1}^{-1}$.

Froof. By Lemmas 3.4 and 3.5 , it follows that the matrix $L_{d}(\lambda)$ is equivalent to the diagonal matrix $\left[\begin{array}{cc}e & 0 \\ 0 & \left(q^{\ell}+\ldots+1\right) \cdot e^{-1}\end{array}\right]$, where $e=\left(q^{d-1}+\ldots+1,\left(q^{d}\right)^{k-1}+\ldots+q^{d}+1, q-1\right)=(d, k, q-1)$.

If w is a representative of the Coxeter class of W, then it follows from $\dot{\$} 3.2$ that the matrix $\left(q \cdot w_{d}-I\right)$ reduces to $\left[\begin{array}{cc}e & 0 \\ 0 & \left(q^{\ell}+\ldots+1\right) \cdot e^{-1}\end{array}\right]$ Hence the Coxeter tori have elementary divisors $e_{1}=\left(\frac{d, l+1}{d}, q-1\right)$ and $e_{2}=\left(q^{l}+\ldots+1\right) \cdot e_{1}^{-1}$.

Example. Obviously, in the groups $G_{s c, K}$ when $d=1$, it follows that $e_{1}=1$, as we have already seen . The first non-trivial example
occurs in groups of type A_{3}, where $\Delta_{\text {sc }} / \Delta_{\text {ad }} \cong C_{4}$. If we let $K_{0}=G F(5)$, then there is no collapsing in the groups $G{ }^{d}, K$. The only proper divisor d of $(\ell+1)$ is 2 , so that $G{ }_{\pi^{2}, K}$ is a Chevalley group of type A_{3} distinct from $G_{a d, K}$ and $G_{s c, K}$. In this case , $e_{1}=(2,2,4)=2$, and $e_{2}=\left(5^{3}+5^{2}+5+1\right) \cdot 2^{-1}=78$. Hence, the structure of the Coxeter tori of the group $G_{\pi^{2}, K}^{(5)}$ is $C_{2} \times C_{78}$. However, in the groups $G_{S c, K}(5)$ and $G_{a d, K}(5)$, the Coxeter tori have structure $\mathrm{C}_{156} \cong \mathrm{C}_{4} \times \mathrm{C}_{39}$, as in Example (i) of $\S 3.3$.

§3.5. A generalisation.

Finally, we discuss the case of those maximal tori of the groups G^{d}, K which correspond to the conjugacy classes of $W\left(A_{l}\right)$ with elements inside a proper Weyl subgroup of type $W\left(A_{\ell-1}\right) \cong \mathcal{S}_{\ell}$. These classes correspond to partitions $\quad \lambda^{\prime}=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t+1}\right]$ in which some $\lambda_{i}=1$, and we may assume that $\lambda_{t+1}=1$. This amounts to assuming that the action of a representative element w of C_{λ} on V leaves one coordinate axis fixed. Then we let $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right]$. Lemma 3.7. The matrix $L_{d}\left(\lambda^{\prime}\right)$ in this case reduces to the matrix

Proof. From 3 3.2, the polynomial entry $f_{\lambda_{t+1}}(q)$ of $L_{d}\left(\lambda^{\prime}\right)$ becomes $f_{\lambda_{t+1}}(q)=1$, when $\lambda_{t+1}=1$. Hence, by elementary operations, we may remove $\left(r_{t+2}, c_{t+2}\right)$ and transpose r_{1} and c_{1} to reduce $L_{d}\left(\lambda^{\prime}\right)$ to the matrix $L_{d}\left(\lambda^{\prime}\right)$ ' above . \square
Proposition 3.8. Let w be a representative element of the conjugacy class $C_{\lambda^{\prime}}$ of $W\left(A_{\ell}\right)$, where $\lambda^{\prime}=\left[\lambda_{1}, \ldots, \lambda_{t+1}\right]$ and $\lambda_{t+1}=1$. With λ defined as above and the notation of Proposition 3.3, the corresponding maximal torus T_{W} has elementary divisors $e_{1}=\frac{\left(q^{\lambda 1}-1\right)\left(q^{\lambda 2}-1\right)}{\left(q^{v_{1}}-1\right)}, \quad e_{2}=\frac{\left(q^{v_{1}}-1\right)\left(q^{\lambda 3}-1\right)}{\left(q^{v_{2}}-1\right)}, \ldots e_{s}=\frac{\left(q^{v_{s-1}}-1\right)\left(q^{\lambda+1}-1\right)}{\left(q^{v}-1\right)}$, $e_{s+1}=e, e_{s+2}=\left(q^{v}-1\right) \cdot e^{-1}, e_{s+3}=\left(q^{\lambda+2}-1\right), \ldots, e_{t+1}=\left(q^{\lambda t}-1\right)$, where $e=(q-1, v, d)$.

Proof. We can proceed as in proposition 3.3 until we reach the stage

If, as before, we subtract the final column from the second column (q-1) times, and add the intermediate columns to the second column, then
adding the first column to the second column d times, we can reduce the matrix to

Proceeding as in Proposition 3.3, we can reduce this matrix ta

$$
\begin{aligned}
& \text { diag }\left(q^{\lambda s+2}-1, \ldots, q^{\lambda t}-1, L\right) \text {, where } \\
& L=\left[\begin{array}{cc}
q-1 & d \\
0 & f_{v}(q)
\end{array}\right] \quad,
\end{aligned}
$$

By Lemma 3.5 , L reduces to diag $\left(e,\left(q^{v}-1\right) . e^{-1}\right)$, where
$e=\left(q-1, f_{v}(q), d\right)=(q-1, v, d)$, and the result follows.

We conclude this chapter by considering the isomorphism between
groups of type A_{3} and groups of type D_{3}. In both of these, there is a group $G_{\pi, K}$ distinct from $G_{a d, K}$ and $G_{s c, K}$ since $\Delta_{s c} / \Delta_{a d} \cong C_{4}$. Using the results of $£ 3.4$, we see that the Coxeter torus of the group of type A_{3} has the structure $C^{C} x^{C}\left(q^{3}+q^{2}+q+1\right) e^{-1}$, where $e=(q-1,2,2)$. So $e=2$ in the case of K having odd characteristic, and
$T_{w} \cong c_{2} \times c \frac{\left(q^{3}+q^{2}+q+1\right)}{2}$

This class corresponds to the class with signed cycle-type $[2,1]$ in the group $W\left(D_{3}\right)$ under the above isomorphism, and the results of $\$ 4.4$ show us that the corresponding torus T_{w} is isomorphic to $C_{q+1} \times{ }_{\mathrm{C}^{2}+1}$. This does not contradict the previous paragraph since. $\left(q+1, q^{2}+1\right)=2$ if q is odd . However, this does suggest that the result of $\$ 3.4$ may not be in the best form, since, in this case , the polynomial $\left(q^{\ell}+q^{\ell-1}+\ldots+q+1\right)$ factorises as $\left(q^{d}+\ldots+q+1\right) .\left(\left(q^{d}\right)^{k-1}+\ldots+q^{d}+1\right)$.

That this does not happen (and therefore that the results of $\$ 3.4$ are in the best form) is demonstrated in groups of type A_{35}, where $k=d=6$, for the field $G F(5)$. Our results show that the Coxeter torus has the structure $c_{2} \times C_{t}$, where $t=\frac{5^{36}-1}{8}$. However, a torus wi.th elementary divisors of the form $\left(q^{d}+\ldots+q+1\right)$ and $\left(\left(q^{d}\right)^{k-1}+\ldots+q^{d}+1\right)$ would have a subgroup isomorphic to $C_{6} \times C_{6}$.

CHAPTER 4. Chevalley Groups of type $B_{\ell} C_{\ell}$ and $D_{\ell-}$.
§4.1. In this chapter, we consider the groups $G_{\pi, K}$, where π is a faithful representation of a complex , simple Lie algebra of type B_{l}, C_{l} or D_{l}. The reason for the simultaneous treatment of these groups becomes apparent when one considers the description of the conjugacy classes of their respective Well groups, and we refer to [6] . For , let $W=W\left(B_{l}\right)=W\left(C_{l}\right)$. The elements of $W\left(C_{l}\right)$ operate on an orthonormal basis $\left\{e_{i}\right\}_{i=1}^{l}$ of X_{R} by means of permutations and sign changes . Each element $w \in W$ determines a permutation of the set $\{1, \ldots, l\}$ which can be expressed as a product of disjoint cycles, and if $\left(j_{1} j_{2} \ldots j_{r}\right)$ is one such cycle, then w operates as

The cycle is said to be positive if $w^{r}\left(e_{j_{1}}\right)=e_{j_{1}}$, and negative if $w^{r}\left(e_{j_{1}}\right)=-e_{j_{1}}$. The lengths of the cycles together with their signs give a set of positive or negative integers called the signed cycle-type of W. Two elements of W are conjugate if and only if they have the same signed cycle-type . A positive $\boldsymbol{\lambda}_{i}$-cycle $\left[\lambda_{i}\right]$ is a Coxeter element of a Weyl subgroup $W\left(A_{\lambda^{-1}}\right)$ so is represented by the admissible graph $A_{\lambda_{i}-1}$ (with A_{0} the empty set), whereas a negative μ_{j}-cycle $\left[\bar{\mu}_{j}\right]$ is a Coxeter element of a weyl subgroup $W\left(c_{\mu_{j}}\right)$ so is represented by the graph $C_{\mu_{j}}$. If we define the partition $[\lambda, \bar{\mu}]$ by $\lambda=\left[\lambda_{1}, \ldots, \lambda_{t}\right]$ and $\bar{\mu}=\left[\bar{\mu}_{1}, \ldots, \bar{\mu}_{s}\right]$, then we recover Young's classical result that there is
4.2.
a 1-1 correspondence between the set $\mathscr{C}\left(W\left(C_{\ell}\right)\right)$ and pairs of partitions (λ, μ) such that $|\lambda|+|\mu|=\ell$.

Now let $W_{1}=W\left(D_{l}\right)$. Then W_{1} is a subgroup of W, and an element of W lies in W_{1} if and only if it has an even number of negative cycles in its signed cycle-type, ie. s is even . Two elements of W_{1} are conjugate if and only if they have the same signed cycle-type , except that if all the cycles are even and positive then there are two conjugacy classes . The admis sible graphs representing the classes are as follows . The positive i-cycle [i] has graph A_{i-1} and the pair of negative cycles $[\bar{i} \bar{j}]$, with $i \geqslant j>1$, has graph $D_{i+j}\left(a_{j-1}\right)$, where $D_{k}\left(a_{o}\right)=D_{k}$. A general graph is obtained by combining such graphs .
§4.2. Modules in V.
We know that, given any maximal torus T of $G_{\pi, K}, X(T) \cong \Delta_{\pi}$ and is generated, as a Z-module, by the weights $P(\pi)$ of π. Whichever representation π is, X_{R} is a real vector space, say V, of dimension ℓ. Let $\left\{e_{1}, \ldots, e_{\ell}\right\}$ be the natural basis of V, with scalar product (x, y) on V for which this basis is orthonormal, and identify V^{*} with V by this product. Then X is embedded as a lattice in V, and we define certain Z-modules in V as follows. (i). Let M_{1} be the z-nodule with basis $\left\{e_{i}\right\}$, ie. $M_{l}={\underset{i=1}{\ell} Z e_{i} .}_{\text {. }}$. (ii). Let M_{2} be the submodule of M_{1} consisting of elements $x=\sum_{i=1}^{\ell} \xi_{i} \cdot e_{i}$ such that $\sum_{i=1}^{\ell} \xi_{i}$ is even. Let M_{2}^{\prime} be the submodule of H_{2} generated
4.3.
by the set $\left\{e_{i} \pm e_{j}\right\}$. Then $\sum_{i=1}^{\ell} \xi_{i} e_{i} \equiv\left(\sum_{i=1}^{\ell} \xi_{i}\right) e_{l}$ modulo M_{2}^{\prime}, and since $2 e_{\ell} \in M_{2}^{\prime}$, then $\sum_{i=1}^{\ell} \xi_{i} e_{i} \in M_{2}^{\prime}$ if $\sum_{i=1}^{\ell} \xi_{i}$ is even. Hence $M_{2}^{\prime}=M_{2}$. Since $M_{1}=\left\langle M_{2}, e_{1}\right\rangle$, it follows that $M_{1} / M_{2} \cong c_{2}$. (iii). Let M_{3} be the z-module generated by M_{1} and $\rho_{l}=\frac{1}{2} \sum_{i=1}^{\ell} e_{i}$. Then $x=\sum_{i=1}^{\ell} \xi_{i} e_{i} \in M_{3}$ if and only if

$$
\text { (a). } 2 \xi_{i} \in Z \quad \text { and }(b) .\left(\xi_{i}-\xi_{j}\right) \in Z \text { for all } i, j \in\{1, \ldots, l\} \text {. }
$$

Also,$M_{3} / M_{1} \cong C_{2}$.
(iv). Let M_{4} be the z-module generated by M_{2} and ρ_{l}. Then it is clear that $M_{4} / M_{2} \cong C_{2}$. Furthermore, if l is a multiple of 4 , then M_{4} is the set of elements $\sum_{i=1}^{0} \xi_{i} e_{i}$ which satisfy (a), (b) and (c). $\sum_{i=1}^{\ell} \xi_{i} \in 2 Z$.

Lemma 4.1. If $M^{*}=\operatorname{Hom}_{Z}(M, Z)$ is the dual module of a module M, then :$M_{1}^{*}=M_{1} ; M_{2}^{*}=M_{3}$; and $M_{4}^{*}=M_{4}$ if ℓ is a multiple of 4 . Proof. Trivially, M_{1} is self-dual because the basis $\left\{e_{i}\right\}$ is orthonormal under (,).

Suppose $x=\left(\sum_{i=1}^{\ell} \xi_{i} e_{i} \in M_{2}^{*}\right.$. Then, since M_{2} is generated by $\left\{e_{i} \pm e_{j}\right\}$, we have $\left(\xi_{i} \pm \xi_{j}\right) \in Z$ for all $i, j \in\{1, \ldots, l\}$. Hence, since this is equivalent to (a) and (b), it follows that $M_{2}^{*}=M_{3}$ and M_{2}, M_{3} are dual .

$$
\text { Finally }, M_{4}^{*}=\left\{x=\sum_{i=1}^{\ell} \xi_{i} e_{i} \in M_{3}: \sum_{i=1}^{\ell} \xi_{i} \in 2 Z\right\} \text {. If } l \text { is a }
$$

multiple of 4 , then M_{4} is self-dual.
We consider the modules M_{i} to be embedded in V, and let

Lemma 4.2. (i). If ℓ is odd, then there is precisely one z-module M satisfying $M_{2} \subset M \subset M_{3}$. This is M_{1}.
(ii). If ℓ is even, there are precisely 3 Z-modules M satisfying $M_{2} \subset M \subset M_{3}$. They are M_{1}, M_{4} and $\varepsilon\left(M_{4}\right)$.

Proof: It is clear that the abelian group M_{3} / M_{2} has order 4 , and there are two cases .
(i). If l is odd, then n. $\rho_{e} \in M_{2} \Longleftrightarrow n \equiv 0$ (modulo 4). Hence, $M_{3} / M_{2} \cong C_{4}$, and there is precisely one subgroup M. This is generated by M_{2} and $2 \rho_{e}=\sum_{i=1}^{\ell} e_{i}$, so since ℓ is odd it follows that $M=M_{1}$.
(ii). If l is even, then $n . \rho_{l} \in M_{2} \Longleftrightarrow n$ is even, and $n . \tau\left(\rho_{f}\right) \in M_{2} \Longleftrightarrow n$ is even. Since $\rho_{1}+M_{2} \neq \tau\left(\rho_{\Omega}\right)+M_{2}$, it follows that $M_{3} / M_{2} \cong C_{2} \times C_{2}$, and M_{3} / M_{2} contains 3 distinct, proper subgroups . Since $\left(\rho_{\rho}+M_{2}\right)+\left(r\left(\rho_{1}\right)+M_{2}\right)=e_{\ell}+M_{2}$, it follows that these are

$$
\left\langle H_{2}, \rho_{\ell}\right\rangle_{Z}=M_{4},\left\langle M_{2}, r\left(\rho_{\ell}\right)\right\rangle{ }_{z}=\tau\left(M_{4}\right),\left\langle M_{2}, e_{\ell}\right\rangle_{Z}=M_{1}
$$

Hence, in this case, since τ fixes M_{2} and M_{3}, then τ acts on the subgroup lattice of M_{3} / M_{2} by permuting M_{4} and $\tau\left(M_{4}\right)$, and fixing M_{1}.

Definition. We say that M_{1} is situated diagonally between M_{2} and M_{3}. Consider now the fundamental roots $\mathbb{T}=\left\{p_{i}\right\}$ and the fundamental weights $\Omega=\left\{q_{j}\right\}$ of a root system Σ. So that $\Delta_{a d}=z \pi$ and $\Delta_{\mathrm{sc}}=z \Omega$.

Proposition 4.3. If $G_{\pi, K}$ is a group of type B_{l}, C_{l} or D_{l}, then Δ_{π} is one of the modules $M_{1}, M_{2}, M_{3}, M_{4}$ or $\mathcal{C}\left(M_{4}\right)$ as follows.

are 3 faithful representations of a complex, simple Lie algebra of type D_{ℓ} which we describe below.

Proof. (i). If Σ is of type B_{l}, then $p_{i}=e_{i}-e_{i+1}$ for $i<l$ and $p_{\ell}=e_{l}$. Hence, $\Delta_{a d}=M_{1}$. Also, $q_{j}=\sum_{k=1}^{j} e_{k}$ for $j<l$ and $q_{l}=\rho_{l}$. Hence $\Delta_{\mathrm{sc}}=\mathrm{M}_{3}$.
(ii). If \mathcal{K} is of type c_{ℓ}, then $p_{i}=e_{i}-e_{i+1}$ for $i<l$ and . $p_{l}=2 e_{l}$. Hence, $\Delta_{a d}=N_{2}$. Also $q_{j}=\sum_{k=I}^{j} e_{k}$ for all $j \leq l$, so $\quad \Delta_{s c}=M_{i} \cdot$
(iii). If \sum is of type D_{l}, then $p_{i}=e_{i}-e_{i+1}$ for $i<\ell$ and $p_{l}=e_{\ell-1}+e_{l}$. Hence $\Delta_{a d}=M_{2}$. Also, $q_{j}=\sum_{k=1}^{j} e_{k}$ for $j<\ell-1$, $q_{l-1}=z\left(\rho_{l}\right)$ and $q_{l}=\rho_{l}$. Hence $\Delta_{s c}=M_{3}$.

When \underline{g} is simple of type B_{ℓ} or C_{ℓ}, then $\Delta_{S c} / \Delta a_{a d} \cong C_{2}$ and there are no submodules Δ such that $\Delta_{a d} \subset \Delta \subset \Delta_{\text {sc }}$. Hence the isogeny class \mathcal{G} consists solely of the groups $G_{a d, K}$ and $G_{S c, K}$.

However, when \boldsymbol{g} is simple of type D_{ℓ}, then $\boldsymbol{\mathcal { G }}$ contains groups other than $G_{a d, K}$ and $G_{s c, K}$. For then $\Delta_{s c} / \Delta_{a d} \cong M_{3} / M_{2}$, and , by Lemma 4.2 , there exist submodules $\Delta_{\text {ad }} \subset \Delta \subset \Delta_{\text {sc }}$ such that $\Delta_{\mathrm{sc}} / \Delta \cong_{c_{2}}$. Then $\Delta=\Delta_{\pi}$ for some faithful representation π of g, and , correspondingly, we have the group $G_{\pi, K}$ which is distinct from $G_{a d, K}$ and $G_{s c, K}$.

Following Lemma 4.2, we have 3 representations π_{1}, π_{2} and π_{3} which we define by $\Delta_{\pi_{1}}=M_{1}, \Delta_{\pi_{2}}=M_{4}$ and $\Delta_{\pi_{3}}=\tau\left(M_{4}\right)$. We note that only the first representation occurs if l is odd.

By §1.1, there is an isomorphisia between $\zeta=\operatorname{ker}\left(\lambda_{a d, s c}\right)$ and the group $\Delta_{\text {sc }} / \Delta_{\text {ad }}$ modulo p-torsion, so there may be some repetitions or collapsing in the groups $G_{\pi_{i}}, K$. Assuming otherwise, if \boldsymbol{Y}_{i} is the subgroup of ζ corresponding to π_{i}, there is a radical isogeny . between $G_{\pi_{i}, K}$ and $G_{s c, K} / \mathcal{S}_{i}$. In fact, we have :if l is even, then $\mathcal{Y}=\left\langle z, z^{\prime}: z^{2}=z^{\prime 2}=\left[z, z^{\prime}\right]=1\right\rangle \cong c_{2} \times c_{2}$, and if l is odd, then $\zeta=\left\langle z: z^{4}=1\right\rangle \cong c_{4}$.

In the case when ℓ is even, then the two elements z, z play a symmetric role, in that there exists an automorphism (inducing the automorphism τ of Lemma 4.2) of $G_{s c, K}$ which interchanges z and z^{\prime}. Hence, if $\zeta_{2}=\langle z\rangle$ and $\zeta_{3}=\left\langle z^{\prime}\right\rangle$, then there exists an automorphism between $G_{\pi_{2}, K}$ and $G_{\pi_{3}, K}$ which induces $\tau: \Delta_{\pi_{2}} \longrightarrow \Delta_{\pi_{3}}$. Hence, we need only consider the submodule $\Delta_{\pi_{2}}=M_{4}$.

On the other hand, the element $\left(z z^{\prime}\right)$, which generates Y_{1} and is fixed by the above automorphism, is essentially different from z and z^{\prime} (except when $\ell=4$, in which case $G_{S C, K} \cong \operatorname{Spin}_{8}(K)$ has an automorphism which cyclically permutes z, z^{\prime} and $z z^{\prime}$ - see Chapter 7.) .' We say that ζ_{1} is situated diagonally in ζ.
\$4.3. Description of the weight lattices
Suppose that Δ_{π} has z-basis Ω, and that with respect to this basis, the action of $w \in W$ is given by the matrix W_{Ω}. Then, in order to determine the elementary divisors of the maximal torus T_{W} in the groups $G_{\pi, K}\left(K_{0}\right)$, we must take a representative w from each. element of $\zeta(W)$ and compute the elementary divisors of the matrix (q. $w_{\Omega}-I$). We have seen in $\$ 4.1$. that such a representative is given by a pair of partitions $[\lambda, \bar{\mu}]$ of l. So, for this chapter, we take a general element of $\mathscr{\zeta}(W)$ with representative w and signed cycle-type $[\lambda, \bar{\mu}]$. Furthermore, by Proposition 4.3 , in the groups under consideration,

$$
\Delta_{\pi} \text { is one of } M_{1}, M_{2}, M_{3} \text { or } M_{4} \text {, since we can exclude } \subset\left(M_{4}\right) \text { because }
$$ of the automorphism . By Lemmas 1.7 and 1.8 , we may exclude one of a pair of dual modules, since the elementary divisors will be identical in such cases . Hence, we need only to consider the action of w on M_{1}, M_{3} and M_{4} to determine the elementary divisors of the maximal tori in the groups $G \pi, K\left(K_{0}\right)$ of type B_{l}, C_{l} or D_{l}. In fact :Proposition 4.4. Let w have signed cycle-type $[\lambda, \bar{\mu}]$. Then the elementary divisors of ($q . w-I$) acting on the module M are those of the

corresponding tori T_{W} in the groups $G_{\pi, K}\left(K_{o}\right)$ according to the table :-

M	M_{1}	M_{3}	M_{4}
B_{l}	$a d$	sc	
C_{l}	sc	ad	
D_{l} leven	π_{1}	ad, sc	π_{2}, π_{3}
D_{l} code	π_{1}	ad, sc	

, where a
given type G and module M fixes the representation π.

Proof. From the above, and Proposition 4.3.
\square
\qquad
§4.4. The module M_{1}.
In this section, we consider the action of w upon the module M_{1} with basis $\Omega_{1}=\left\{e_{i}\right\}_{i=1}^{l}$, and we make the convention that if w is as above, then w acts on Ω_{1} as :-$\omega:\left\{\begin{array}{l}e_{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i-1}+1} \mapsto e_{\lambda_{1}+\cdots+\lambda_{i-1}+2} \mapsto \cdots \cdot e_{\lambda_{1}+\cdots+\lambda_{i} \mapsto} e_{\lambda_{1}+\cdots+\lambda_{i-1}+1} \\ e_{|\lambda|+\mu_{1}+\cdots+\mu_{j+1}+1} \longmapsto e_{|\lambda|+\mu_{1}+\cdots+\mu_{j-1}+2 \mapsto} \mapsto \cdot \mapsto e_{|\lambda|+\mu_{1}+\cdots+\mu_{j} \mapsto-e_{|\lambda|+\mu_{1}+\cdots+\mu_{j-1}+1}}\end{array}\right.$ for all $i \in\{1, \ldots, t\}$ and $j \in\{1, \ldots, s\}$, where $\lambda_{0}=\mu_{0}=0$. Proposition 4.5. The elementary divisors of (q. $\mathrm{w}_{\Lambda_{1}}-\mathrm{I}$) are

$$
e_{1}=q^{\lambda 1}-1, e_{2}=q^{\lambda 2}-1, \ldots, e_{t}=q^{\lambda t}-1, e_{t+1}=q^{\mu_{1}}+1, \ldots, e_{t+s}=q^{\mu_{s}}+1 .
$$

$$
\text { Proof. Let } M^{\lambda_{i}}=\left\langle e_{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i-1}+1}, e_{\lambda_{1}+\cdots+\lambda_{i-1}+2}, \ldots, e_{\lambda_{1}+\cdots+\lambda_{i}}\right\rangle
$$

$$
\text { and } H^{\mu_{j}}=\left\langle e_{|\lambda|+\mu_{1}+\cdots+\mu_{j-1}+1}, e_{|\lambda|+\mu_{1}+\cdots+\mu_{j-1}+2}, \ldots, e_{|\lambda|+\mu_{1}+\cdots+\mu_{j}}\right\rangle \text {. }
$$

Then each $M^{\lambda i}, M^{\mu j}$ is w-invariant and so is (q.w-I)-invariant. Also, $M_{1}=\left(\stackrel{t}{\oplus}_{i=1}^{M^{\lambda}}\right) \oplus\left(\underset{j=1}{\stackrel{S}{\oplus}} M^{\mu}\right)$. Hence,$\left(q \cdot W_{\Lambda_{1}}-I\right)$ is equal to the diagonal
block matrix $\operatorname{diag}\left(\left.\left(q \cdot w_{\Omega_{1}}-I\right)\right|_{M 1} \lambda_{1}, \ldots,\left.\left(q \cdot W_{\Lambda_{1}}-I\right)\right|_{M} \mu_{S}\right)$. Now $\quad\left(q \cdot W_{\Lambda_{1}}-I\right) \left\lvert\, M_{1} \lambda_{i}=\left[\begin{array}{rrrr}-1 & & & q \\ q & -1 & & \\ & q & \ddots & \\ & & & q\end{array}\right] \longrightarrow\left[\begin{array}{lll}1 & & \\ \ddots & & \\ & 1 & \\ & & \lambda_{i}\end{array}\right]\right.$, and

$$
\left(q \cdot w_{\mu_{1}}-I\right)_{M} \mu_{j}=\left[\begin{array}{rrrr}
-1 & & & -q \\
q & -1 & & \\
& q \cdot & \ddots_{q} & -1
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
1 & & \\
& \ddots_{1} & \\
& & q^{\mu} j_{+1}
\end{array}\right]
$$

Hence,$\quad\left(q_{1} \cdot w_{\Lambda_{1}}-I\right) \longrightarrow \operatorname{diag}\left(q^{\lambda_{1}}-1, \ldots q^{\lambda_{t}}-1, q^{\mu_{1}}+1, \ldots, q^{\mu_{S}}+1\right)$.
\$4.5.- The module M_{3}
In this section, we consider the action of w upon the module M_{3}, which is generated by M_{1} and ρ_{l}. Then, a Z-basis $\boldsymbol{\lambda}$. of M_{3} is $\Lambda=\left\{e_{1}, \ldots, e_{l-1}, \rho_{l}\right\}$, since $e_{l}=2 \rho_{l}-\sum_{j=1}^{l-1} e_{j}$. We now consider different cases .

Case (I). In this case we assume that $s \geqslant 1$, ie. that there is at least one negative cycle, and for the moment we also assume that there exists some $j \in\{1, \ldots, s\}$ for which $\mu_{j} \neq 1$. Hence, we may assume that $\mu_{s}>1$.

We let $M^{\lambda_{i}}$ and $M^{\mu j}$ be as in $\S 4.4$, except that for $j=\mathbf{s}$, we have $M^{\mu_{s}}=\left\langle e_{|\lambda|+\mu_{1}+\cdots+\mu_{s-1}+1}, \cdots, e_{|\lambda|+|\mu|-1}=e_{l-1}, \rho_{l}\right\rangle$. Then $M^{\lambda_{i}}$ and $M^{\mu_{j}}$ are w-invariant for all $i \in\{1, \ldots, t\}$ and all $j \in\{1, \ldots, s-1\}$. However , w acts on $M^{\mu_{s}}$ in the following way :-

whenever $j \neq s$. Then it follows that the matrix (q wiI) reduces to the matrix
where $f_{n}(q)=q^{n-1}+\ldots+q+1$, for any positive integer n, as in Chapter 3
We have assurned that $\mu_{s}>1$, so now let us assume that $\mu_{j}=1$ for all $j \in\{1, \ldots, s\}$. Then $w: e_{j} \longmapsto e_{j}$ for all $j \in\{|\lambda|+1, \ldots, \ell\}$, so that $w \mid M_{j}^{\mu_{j}=-I ~ f o r ~} j \neq s . \quad$ Now $M^{\mu_{s}}=\left\langle\rho_{e}\right\rangle_{Z}$, so
$w: \rho_{\ell} \longrightarrow e_{1}+e_{2}+\ldots+e_{|\lambda|}-\rho_{e} . \quad$ Then

which can be diagonalised to $M(\lambda, \bar{\mu})$. Hence we do not need to consider this case separately.

As in Chapter 3 , for any sequence $\left\{a_{1}, \ldots, a_{n}\right\}$ of integers, we denote the ideal of Z that they generate by $\left\langle a_{1}, \ldots, a_{n}\right\rangle$. We also denote g.c.d. $\left\{a_{1}, \ldots, a_{n}\right\}$ by $\left(a_{1}, \ldots, a_{n}\right)$.

Considering $M(\lambda, \bar{\mu})$, we see that, in order to diagonalise it, we need to consider whether
(i) $f_{\lambda_{i}}(q) \in\left\langle q^{\lambda_{i}}-1, q^{\mu_{s}}+1\right\rangle$ and (ii) $f_{\mu_{j}+\mu_{s}}(q) \in\left\langle q^{\mu_{j}}+1, q^{\mu_{s}}+1\right\rangle$.

So we make the following notation for any nonnegative integers a, b. Let J, \quad and $\left.\bar{J}_{a, b}=\left\langle q^{a}+1, q^{b}+1\right\rangle, q^{b}+1\right\rangle$.

Proposition 4.6. For any nonnegative integers a, b such that $d=(a, b)$, we have (i) $J_{a, b}=\left\langle q^{d}+1,1+(-1)^{\frac{a+b}{d}-1}\right\rangle$; and
(ii) $\bar{J}_{a, b}=\left\langle q^{d}+1,1+(-1)^{\frac{a}{d}-1}\right\rangle$.

Proof. (ii) Assume that (i) is true . Then we have $\bar{J}_{a, b}=\left\langle q^{a}-1, q^{b}+1\right\rangle=\left\langle q^{a+b}+1, q^{b}+1\right\rangle=\left\langle q^{a}+1,1+(-1)^{\frac{a+2 b}{d}-1}\right\rangle$ by (i) $=\left\langle q^{d}+1,1+(-1)^{\frac{a}{d}-1}\right\rangle$.
(i). Suppose that (i) is true for $(a, b)=1$, ie. suppose that $J_{a, b}=\left\langle q^{q+1}, l+(-1)^{a+b-1}\right\rangle$. (1). Now let a, b be any nonnegative integers such that $(a, b)=d$. Then $a=a^{\prime} d$ and $b=b^{\prime} d$ and $\left(a^{\prime}, b^{\prime}\right)=1 \cdot$ Hence ,
$J_{a, b}=\left\langle\left(q^{d}\right)^{a^{\prime}}+1,\left(q^{d}\right)^{b \prime}+1\right\rangle=\left\langle q^{d}+1,1+(-1)^{a^{\prime}+b^{\prime}-1}\right\rangle, b y(1)$. Thus , $J_{a, b}=\left\langle q^{d}+1,1+(-1)^{\frac{a+b}{d}-1}\right\rangle$, and it remains for us to show (1)

Consider the Euclidean algorithm for finding the greatest common divisor
of a, b. Then $a=s_{1} \cdot b+r_{2}$

$$
\begin{aligned}
b & =s_{2} \cdot r_{2}+r_{3} \\
r_{2} & =s_{3} \cdot r_{3}+r_{4} \\
& \vdots \\
r_{n-1} & =s_{n} \cdot r_{n}+r_{n+1} \\
r_{n} & =s_{n+1} \cdot r_{n+1} \quad, \text { where } r_{n+1}=1 .
\end{aligned}
$$

Then $\left\langle q^{a}+1, q^{b}+1\right\rangle=\left\langle\left(q^{b}\right)^{s} 1 \cdot q^{r_{2}}+1, q^{b}+1\right\rangle=\left\langle(-1)^{s_{1}} q^{r_{2}}+1, q^{b}+1\right\rangle$

$$
\begin{aligned}
& =\left\langle q^{b}+1, q^{r_{2}}+(-1)^{s_{1}}\right\rangle \\
& \vdots \\
& =\left\langle q+1,1+(-1)^{a+b-1}\right\rangle, \quad \text { by this process. }
\end{aligned}
$$

Hence the result follows . \square
Corollary 4.6.

$$
\left\langle\mathrm{q}^{\mathrm{a}}-1, \mathrm{q}^{\mathrm{b}}-1\right\rangle=\left\langle\mathrm{q}^{\mathrm{d}}-1\right\rangle
$$

Proof. Assume first that $(a, b)=1$. Then, if both a and b are odd,
it follows from Proposition 4.6 (i) , by replacing q with $-q$, that $\left\langle q^{a}-1, q^{b}-1\right\rangle=\left\langle q^{d}-1\right\rangle$. On the other hand, if one of a and k is even and the other is odd, we may choose a to be even, then by replacing q with $-q$ in Proposition 4.6 (ii), it follows that $\left\langle q^{a}-1, q^{b}-1\right\rangle=\left\langle q^{d}-1\right\rangle$ The result follows as in the proof of Proposition 4.6 (i) . \square

Proposition 4.7. Let a, b be any nonnegative integers such that $\mathrm{d}=(\mathrm{a}, \mathrm{b})$. Then ,

$$
f_{a}(q) \leqq\left\{\begin{array}{l}
1 \text { if } a \text { is odd and } q \text { is odd } \\
0 \text { otherwise }
\end{array}\right\} \text { modulo } \vec{J}_{a, b} .
$$

Proof. We have two cases :-
(i). Suppose that ald $=2 \mathrm{c}$ is even. Then $\vec{J}_{a, b}=\left\langle\mathrm{q}^{\mathrm{d}}+1\right\rangle$; and $f_{a}(q)=q^{a-1}+\ldots+q+1=\frac{q^{a}-1}{q-1}=\frac{\left(q^{2 d}\right)^{c}-1}{q-1}=\left(q^{d}+1\right) \cdot\left(\frac{q^{d}-1}{q-1} \cdot\left[\left(q^{2 d}\right)^{c-1}+\ldots+q^{2 d}+1\right]\right.$ $\equiv 0$ modulo $\bar{J}_{a, b}$.
(ii). Suppose that a / d is odd, so that $\bar{J}_{a, b}=\left\langle q^{d}+1,2\right\rangle$. Then we must consider the parity of q.

If q is odd, then $\bar{J}_{a, b}=\langle 2\rangle$, so $f_{a}(q) \equiv a$ modulo $\bar{J}_{a, b}=\langle 2\rangle$.
On the other hand, if q is even, then $\bar{J}_{a, b}=\langle I\rangle=2$, so that $f_{a}(q) \equiv 0^{\circ}$ modulo $\bar{J}_{a, b}$.

Corollary 4.7. With a, b as above, we have

$$
f_{a+b}(q) \equiv \begin{cases}1 & \text { if }(a+b) \\ 0 & \text { otherwise }\end{cases}
$$

Proof. This follows since $\bar{J}_{a+b, b}=J_{a, b}$.

Suppose, for the moment, that we have fixed $\mu_{\mathbf{s}}$. Then we order the $\left\{\lambda_{i}\right\}$ such that $\lambda_{1}, \ldots, \lambda_{g}$ are odd and $\lambda_{g+1}, \ldots, \lambda_{t}$ are even. We also order the $\left\{\mu_{j}\right\}$ such that for $j \in\{1, \ldots, h\}$, we have $\left(\mu_{j}+\mu_{s}\right)$ is odd ; and for $j \in\{h+1, \ldots, s-1\}$, we have $\left(\mu_{j}+\mu_{s}\right)$ is even .

Returning to $M(\lambda, \bar{\mu})$, we can perform elementary row and column operations using r_{i}, and c_{t+s} to alter the (i,s+t)-entry of $M(\lambda, \bar{\mu})$, for $i \in\{1, \ldots, t+s-1\}$. Then we can use Proposition 4.7 and its Corollary to obtain :-

Lemma 4.8. (i). If q is even, then

$$
M(\lambda, \bar{\mu}) \longrightarrow \operatorname{diag}\left(q^{\lambda_{1}}-1, \ldots, q^{\lambda t}-1, q^{\mu_{1}}+1, \ldots, q^{\mu_{s}}+1\right) .
$$

(ii). If q is odd, then
$M(\lambda, \bar{\mu}) \longrightarrow \operatorname{diag}\left(q^{\lambda_{g+1}} \underline{-}_{1}, \ldots, q^{\lambda_{t}}-1, q^{\mu_{h+1}}+1, \ldots, q^{\mu_{S-1}}+1, M(\lambda, \bar{\mu}) \cdot\right)$, where

Proof. (i). If q is even, then, by Proposition 4.7 and Cor .4.7,

$$
f_{\lambda_{i}}(q) \equiv 0 \text { modulo } \bar{J}_{\lambda_{i}, \mu_{s}} ; \text { and }{ }_{\mu_{j}+\mu_{s}}(q) \equiv 0 \text { modulo } J_{\mu_{j}, \mu_{s}} \text {. }
$$

Hence we can eliminate the ($i, t+s)$-entry of $M(\lambda, \bar{\mu})$, for all
i $\in\{1, \ldots, t+s-1\}$, and the result follows.
(ii). If q is odd, then, in the same way, we can reduce the ($k, t+s)$-entry of $M(\lambda, \bar{\mu})$ to :-

$$
\begin{cases}\lambda_{k} \text { (modulo 2) } & \text { if } k \in\{1, \ldots, t\} \\ \mu_{k-t}+\mu_{s} \text { (modulo 2) } & \text { if } k \in\{t+1, \ldots, t+s-1\}\end{cases}
$$

Hence the result follows .

Henceforth, we shall assume that q is odd. Then it remains to

 consider the matrix $\mathcal{M}(\lambda, \bar{\mu})^{\prime}$, and we assume, for the moment, that $g \neq 0$. Then we can reduce $M(\lambda, \bar{\mu})$ ' to

Lemma 4.9. Let a, b be any odd integers with $d=(a, b)$, let c be any integer, and let $\overline{\bar{I}}_{a, b, c}=\left\langle q^{a}-1,\left(q^{b}-1\right)\left(q^{c}+1\right)\right\rangle$. Then $\left(q^{b}-1\right) \equiv 0$. modulo $\overline{\bar{I}}_{a, b, c}$, as long as q is odd. Proof: By Corollary $4.6,\left\langle q^{a}-1, q^{b}-1\right\rangle=\left\langle q^{d}-1\right\rangle$, so that if $a^{\prime}=a^{\prime} d$, then $\overline{\bar{I}} \quad a, b, c=\left(q^{d}-1\right) \cdot\left\langle q^{c}+1, f_{a^{\prime}}\left(q^{d}\right)\right\rangle$.

Now, $\left\langle q^{c}+1, f_{a}\left(q^{\alpha}\right)\right\rangle \supseteq\left\langle q^{c}+1, q^{a}-1\right\rangle=\left\langle q^{(a, c)}+1,2\right\rangle$ by Proposition 4.6

$$
=\langle 2\rangle \text { since } q \text { is odd. }
$$

However $f_{a^{\prime}}\left(q^{d}\right) \equiv a^{\prime} \equiv 1$ modulo $\langle 2\rangle$. Hence,

$$
\left\langle q^{c}+1, f_{a^{\prime}}\left(q^{d}\right)\right\rangle=z \quad \text { and } \quad \bar{I}_{a, b, c}=\left\langle q^{d}-1\right\rangle .
$$

Thus $\left(q^{b}-1\right) \equiv 0$ modulo $\vec{I}_{a, b, c}$, as claimed. \square
Lemma 4.10. Let a be any even integer, and b, c any odd integers with $(a, b)=d$. Let $\overline{\mathrm{I}}_{a, i, c}=\left\langle q^{a}+1,\left(q^{b}-1\right)\left(q^{c}+1\right)\right\rangle$. Then., as long as q is odd, $\left(q^{b}-1\right) \equiv 0$ modulo $\bar{I}_{a, b, c}$. Proof. By Proposition 4.6, $\bar{I}_{a, b, c}=\left(q^{d}+1,2\right) \cdot\left\langle\frac{q^{a}+1}{\left(q^{\dot{d}}+1,2\right)}, q^{c}+1\right\rangle$

$$
=2\left\langle\frac{q^{a}+1}{2}, q^{c}+1\right\rangle
$$

Let $e=(a, c)$. Then

$$
\begin{aligned}
\left\langle\frac{q^{a}+1}{2}, q^{c}+1\right\rangle \supseteq\left\langle q^{a}+1, q^{c}+1\right\rangle & =\left\langle q^{e}+1,2\right\rangle \text { by Proposition } 4.6 \\
& =\langle 2\rangle \text { since } q \text { is odd } .
\end{aligned}
$$

However, since q is odd and a is even, then $q^{2}+1 \equiv 2(\bmod 4)$. Hence, $\quad \frac{q^{a}+1}{2} \equiv 1$ modulo $\langle 2\rangle$, and $\left\langle\frac{q^{a}+1}{2}, q^{c}+1\right\rangle=z$. Hence, $\bar{I}_{a, b, c}=\langle 2\rangle$ and $\left(q^{b}-1\right) \in \bar{I}_{a, b, c}$.

Lemma 4.11. When q is odd, then $M(\lambda, \bar{\mu})$ diagonalises to

$$
\operatorname{diag}\left(q^{\lambda_{2}}-1, \ldots, q^{\lambda_{g}}-1, q^{\mu_{1}}+1, \ldots, q^{\mu_{h}}+1,\left(q^{\lambda_{1}}-1\right) \cdot\left(q^{\mu_{s}}+1\right)\right) .
$$

Proof. By considering $M(\lambda, \bar{\mu})$ " and Lemma 4.9 with $a=\lambda_{i}$ for $i \in\{2, \ldots, g\}, b=\lambda_{1}$ and $c=\mu_{s}$, we can eliminate the first ($g-1$) entries of the final column .

Suppose now that μ_{j} is even for all $j \in\{1, \ldots, s\}$. Then μ_{s} would be even so that $h=0$, and this case can be treated as above (since c is artibrary in 4.9.) . Hence we may assume that some μ_{j} is odd , and we choose μ_{s} to be odd.

Then, for $j \in\{1, \ldots, h\}$, we have μ_{j} is even . By considering $M(\lambda, \bar{\mu}) "$ and Lemma 4.10 with $a=\mu_{j}$ for $j \in\{1, \ldots, h\}, b=\lambda_{1}$ and $c=\mu_{s}$, we can eliminate the remaining non-diagonal entries of the final column . Hence the result follows .

We have assumed that $g \neq 0$, and if we assume otherwise then

Lemma 4.12. Let a, b be even integers with $d=(a, b)$, and let c be an odd integer. Let $I_{a, b, c}=\left\langle q^{a}+1,\left(q^{b}+1\right)\left(q^{c}+1\right)\right\rangle$. Then $\left(q^{b}+1\right) \equiv 0$ modulo $I_{a, b, c}$, as long as q is odd.

Proof. We have to consider two cases :-
(i). When $\frac{a+b}{d}$ is even, and $I_{a, b, c}=\left(q^{d}+1\right) \cdot\left\langle\frac{q^{a}+1}{q^{d}+1}, q^{c}+1\right\rangle=\left(q^{d}+1\right) \cdot I$, say •
(ii). When $\frac{a+b}{d}$ is odd, and $I_{a, b, c}=\left(q^{d}+1,2\right)\left\langle\frac{q^{a}+1}{\left(q^{d}+1,2\right)}, q^{c}+1\right\rangle$ $=2 \cdot\left\langle\frac{q^{a}+1}{2}, q^{c}+1\right\rangle=2 \cdot \mathrm{~J}$, say , since
q is odd.

$$
\text { Now } I, J \supseteq\left\langle q^{a}+1, q^{c}+1\right\rangle=\left\langle q^{(a, c)}+1,2\right\rangle=\langle 2\rangle \text {, since } q \text { is }
$$ odd .

Now a is even so that $\frac{q^{a}+1}{2}=1$ modulo $\langle 2\rangle$ as in Lemma 4.10, and hence $\frac{q^{a}+1}{q^{d}+1} \equiv 1$ modulo $\langle 2\rangle$. Thus $I=J=Z$, and so $I_{a, b, c}=\left\langle q^{d}+1\right\rangle$ in case (i) and $I_{a, b, c}=\langle 2\rangle \quad$ in case (ii). Hence $q^{b}+1 \cong 0$ modulo $I_{a, b, c}$. \square
Lemma 4.13. If $g=0$ and q is odd, then $N(\lambda, \bar{\mu})^{\prime}$ diagonalises to $\operatorname{diag}\left(q^{\mu_{2}}+1, \ldots, q^{\mu_{h}}+1,\left(q^{\mu_{1}}+1\right) \cdot\left(q^{\mu_{s}}+1\right)\right)$.

Proof. If μ_{j} is even for all $j \in\{1, \ldots, s\}$, then $h=0$ and $M(\lambda, \bar{\mu})$, is just the 1×1 matrix $\left(q^{\mu_{s}}+1\right)$. Hence, we can choose μ_{s} to be odd, so that μ_{j} is even for all $j \in\{1, \ldots, h\}$. By considering $M(\lambda, \bar{\mu})$ '' 1 and Lemma 4.12 with $a=\mu_{j}$ for $j \in\{2, \ldots, h\}, b=\mu_{1}$ and $c=\mu_{s}$, we can eliminate the non-diagonal entries of the final column. We collect these results in :-

Proposition 4.14. The elementary divisors of (qw-I) are :-
(i). $\left\{q^{\lambda_{1}}-1, q^{\lambda_{2}}-1, \ldots, q^{\lambda_{t}}-1, q^{\mu_{1}}+1, \ldots, q^{\mu_{s}}+1\right\} \quad$ if $\quad q$ is even, or if all λ_{i} are even. and all μ_{j} have the same parity . (ii). $\left\{q^{\lambda_{2}}-1, \ldots, q^{\lambda_{t}}{ }_{-1}, q^{\mu_{1}}+1, \ldots, q^{\mu_{s-1}}+1,\left(q^{\lambda_{1}}-1\right),\left(q^{\mu_{s}}+1\right)\right\}$ if there exists some λ_{i}, say λ_{1}, which is odd, and μ_{s} is odd (unless all μ_{j} are even, when μ_{s} is even.).
 even, and there exists some μ_{j}, say μ_{s}, which is add, and μ_{1}, which is even .

This completes case (I) , and now we turn to :-

Case (II). In this case, we assume that $s=0$, ie. that all cycles are positive. Then we can assume that $\lambda_{i}>1$ for some i, so we choose $\lambda_{t}>1$. Then we define $M^{\lambda_{i}}$ as in $\{4.4$, for $i \in\{1, \ldots, t-1\}$, but we define

$$
M^{\lambda_{t}}=\left\langle e_{\lambda_{1}+\ldots+\lambda_{t-1}+1}, \ldots, e_{\ell-1}, \rho_{l}\right\rangle_{z}
$$

w acts as :-

$$
\mathrm{w}:\left\{\begin{array}{cc}
e_{\lambda_{1}}+\ldots+\lambda_{t-1}+1 & \longmapsto \\
\vdots & e_{\lambda_{1}}+\ldots+\lambda_{t-1}+2 \\
e_{l-2} & \longmapsto \\
e_{l-1} \\
e_{l-1} & \longmapsto \\
\rho_{l} & \longmapsto e_{1}-e_{2} \cdots-e_{l-1}+2 \\
\rho_{l}
\end{array}\right\}
$$

Then (qw-I) diagonalises to

Lemma 4.15. Suppose that not all cycles are even. Then $M(\boldsymbol{\lambda})$ diagonalises to $\operatorname{diag}\left(q^{\lambda_{1}}-1, \ldots, q^{\lambda_{t}}-1\right)$.

Proof. If not all cycles are even ; then we can choose λ_{t} to be odd, and then

and the result follows.

Hence the only remaining case is when w has all cycles even and positive, the case which causes the correspondence between pairs of partitions of l and the conjugacy classes of $W\left(D_{l}\right)$ to be not bijective. So we assume this situation from now, and we have the following lemma .

Lemma 4.16. (i). Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be any set of integers, and let $d_{i j}=\left(a_{i}, a_{j}\right)$. If we write $a_{i}=d_{i j} a_{i j}^{\prime}$, then there exists some $k \in\{1, \ldots, n\}$ such that $a_{k j}^{\prime}$ is odd for all $j \in\{1, \ldots, n\}$: (ii). If, further, q is odd, and $I_{a_{i}, a_{j}}^{\prime}=\left\langle\frac{q^{a_{i}}-1}{2}, q^{a_{j}}{ }^{\prime}\right\rangle$, then

$$
\frac{a_{j} a_{-1}}{2} \equiv 0 \text { modulo } I_{a_{k}, a_{j}}^{\prime} \text { for all } j \in\{1, \ldots, n\} \text {, and } k \text { as in (i). }
$$

Proof. (i). Let $d=\left(a_{1}, \ldots, a_{n}\right)$. Then a_{i} / d must be odd for some $i \in\{1, \ldots, n\}$, say k. Since $\left.d\right|_{k j}$ for all $j \in\{1, \ldots, n\}$, then $a_{k j}^{\prime} \mid a_{k} / d$, so $a_{k j}^{\prime}$ is odd.
(ii). By Corollary 4.6, $I_{a_{k}, a_{j}}^{\prime}=\frac{q^{d_{k j}}}{2} \cdot\left\langle f_{a_{k j}^{\prime}}(q), 2 f_{a_{j k}^{\prime}}(q)\right\rangle$ Since $\left(a_{i j}^{\prime}, a_{j i}^{\prime}\right)=1$ for all $i, j \in\{1, \ldots, n\}$, then

$$
\begin{aligned}
\left\langle f_{a_{i j}^{\prime}}(q), 2 f_{a_{j i}^{\prime}}(q)\right\rangle & =\left\langle f_{a_{i j}^{\prime}}(q), 2\right\rangle \quad \text { by Corollary } 4.6 . \\
& =\left\langle a_{i j}^{\prime}, 2\right\rangle, \text { since } q \text { is odd } .
\end{aligned}
$$

Since $a_{k j}^{\prime}$ is odd, then $I_{a_{k}, a_{j}}^{\prime}=\left\langle\frac{q^{d_{k j}}-1}{2}\right\rangle$. Hence ,

$$
\frac{q^{a_{j}}}{2} \equiv 0 \text { modulo } I_{a_{k}, a_{j}}^{\prime} .
$$

\square
Lemma 4.17. (i) If q is even, then $M(\lambda)$ diagonalises to $\operatorname{diag}\left(q^{\lambda_{1}}-1, \ldots, q^{\lambda_{t}}-1\right)$.
(ii). If q is odd, then $M(\lambda)$ diagonalises to $\operatorname{diag}\left(q^{\lambda^{1}}-1, \ldots \frac{q^{\lambda t}-1}{2}, 2\right)$, where λ_{t} is such that $\lambda_{t} \cdot\left(\lambda_{i}, \lambda_{t}\right)^{-1}$ is odd for all $i \in\{1, \ldots, t-1\}$.

Proof. (i). This follows by elementary row and column operations, since $(q+1, q-1)=1$.
(ii). In this case, $M(\lambda)$ diagonalises to diag (2,M(λ ') , where

By Lemma 4.16(i), we know that there exists $k \in\{1, \ldots, t\}$ such that $\lambda_{k} \cdot\left(\lambda_{i}, \lambda_{k}\right)^{-1}$ is cad for all $i \in\{1, \ldots, t\}$. Choose $k=t$, and then Lemma 4.16 (ii) shows that we can eliminate the (j, t)-entry of $M(\lambda)$, for all $j \in\{1, \ldots, t-1\}$, by elementary row and column operations with c_{j} and r_{t}. Hence the result follows. \square

This completes the section for M_{3}, and we have :-
Proposition 4.18. The elementary divisors of (q .w-I) with respect to M_{3} are :-
(i). $\left\{q^{\lambda_{1}}-1, q^{\lambda_{2}}-1, \ldots, q^{\lambda_{t}}-1, q^{\mu_{1}}+1, \ldots, q^{\mu_{s}}+1\right\}$ if q is even, or if all λ_{i} are even and $s \geqslant 1$ with all μ_{j} having the same parity .
 some λ_{i}, say λ_{1}, which is odd, and μ_{s} is odd (unless all μ_{j} are even, when μ_{s} is even).
(iii). $\left\{q^{\lambda_{1}}-1, \ldots, q^{\lambda_{t-1}}, q^{\mu_{2}}+1, \ldots, q^{\mu_{s-1}}+1,\left(q^{\mu_{1}}+1\right) .\left(q^{\mu_{s}}+1\right)\right\} \quad$ if all λ_{i} are even, and there exists some μ_{j}, say μ_{s}, which is odd, and μ_{1} which is even.
4.23.
(iv). $\left\{q^{\lambda_{1}}-1, q^{\lambda_{2}}-1, \ldots, \frac{q^{\lambda_{t}}-1}{2}, 2\right\}$ if all cycles are even and positive, where λ_{t} is such that $\lambda_{t} \cdot\left(\lambda_{i}, \lambda_{t}\right)^{-1}$ is odd for all $\lambda_{i} \neq \lambda_{t}$.

Proof. From Proposition 4.14 and Lemmas 4.15 , 4.17 .

This concludes the section relating to the modules. M_{2} and M_{3}. From now, we cease to make use of the notation $f_{a}(q)=q^{a-1}+\ldots+q+1$. §4.6. The module M_{4}. In this section, we consider the groups $G_{\pi, K}$, where G is a group of type D_{ℓ} for ℓ even, and π is one of the pair of "dual" representations π_{2} and π_{3} of g mentioned in. $\oint_{4.3 \text {. We have seen. }}^{\mathbf{g}}$. that we need only consider one of these groups since they are isomorphic . In fact, these groups tend to be rather ill behaved, and, for reasons very similar to those of $\S 3.4$. we have been unable to obtain complete results for these groups . This is due to the fact that, with the rather complicated basis of Δ_{π}, viz. the module M_{4}, the matrix (q. $W_{\mathcal{A}}-I$) does not appear to be readily diagonalisable over $Z[q]$ to give a general result, although it obviously diagonalises over Z in any particular case .

However, we do have results for the classes corresponding to the semi-Coxeter classes of $W\left(D_{l}\right)$. These, in themselves, are rather interesting in that they show how these particular groups behave differently depending upon the value of ℓ (modulo 4). We saw how M_{4} is self-dual if ℓ is a multiple of 4 in Lemana 4.1.

Lemma 4.19. The set $\Lambda=\left\{r_{1}, \ldots, r_{l}\right\}$ is a basis for the Z-module
M_{4}, where $r_{1}=\rho_{l}=\frac{1}{2} \sum_{i=1}^{\ell} e_{i}, r_{i}=e_{i}-e_{i+1}$ for $i \in\{2, \ldots, \ell-1\}$ and.

$$
r_{l}=2 e_{l}
$$

Proof. This follows immediately by definition of M_{4} as in $\$ 4.2$, and since M_{2} is generated by $\left\{e_{1}-e_{2}, r_{2}, \ldots r_{l}\right\}$. We note that $\frac{1}{2} \ell \in Z$ and that $e_{1}-e_{2}=2 r_{1}-2 r_{2}-3 r_{3}-\ldots-(\ell-1) r_{\ell-1}-\frac{1}{2} \ell r_{l} \ldots$

We now consider the case where w is a representative of the particular conjugacy class corresponding to $[\lambda, \bar{\mu}]$, where $t=0, s=2$ and $\bar{\mu}=[\bar{i} \overline{l-i}]$. This is denoted in. [6] by $D_{l}\left(a_{i-1}\right)$, with $D_{\ell}\left(a_{0}\right)=D_{l} \quad$ the Coxeter class of $W\left(D_{l}\right)$.

Then we can choose w to be the element which acts on $\left\{e_{i}\right\}$ by :-

$$
w:\left\{\begin{array}{l}
e_{1} \longmapsto e_{2} \longmapsto \sim \cdot \cdot \cdot \cdot \cdot \cdot \longrightarrow e_{i} \longmapsto \gg-e_{1} \\
e_{i+1} \longmapsto e_{i+2} \longmapsto \\
\cdot
\end{array}\right\}
$$

Then w acts on Λ by :-

$$
\omega:\left\{\begin{array}{l}
r_{1} \longmapsto r_{1}-e_{1}-e_{i+1}=-r_{1}+r_{2}+2 r_{3}+\ldots+(i-1) r_{i}+(i-1) r_{i+1}+\ldots+(l-3) r_{l-1}+\left(\frac{l-2}{2}\right) r_{l} \\
r_{2} \longmapsto e_{3}-e_{4}=r_{3} \\
r_{3} \longmapsto e_{4}-e_{5}=r_{4} \\
\vdots \\
\vdots \\
r_{i-1} \longmapsto e_{1}+e_{i}=2 r_{1}-r_{2}-2 r_{3}-\ldots-(i-2) r_{i-1}-(i-2) r_{i}-\ldots-(l-3) r_{l-1}-\left(\frac{l-2}{2}\right) r_{l} \\
r_{i} \longmapsto-e_{1}-e_{i+2}=-2 r_{1}+r_{2}+2 r_{3}+\ldots+i r_{i+1}+i r_{i+2}+\ldots+(l-3) r_{l-1}+\left(\frac{l-2}{2}\right) r_{l} \\
r_{i+1} \longmapsto e_{i+2}-e_{i+3}=r_{i+2} \\
\vdots \\
\vdots \\
r_{l-1} \longmapsto e_{i+1}+e_{l}=r_{l+1}+r_{i+2}+\ldots+r_{l-1}+r_{l} \\
r_{l} \longmapsto
\end{array}\right.
$$

Then the matrix (q.w $-I$) is

This readily diagonalises over $Z[q]$ to the matrix

$$
X=\left[\begin{array}{cc}
q^{i}+1 & 0 \\
x & q^{\ell-i}+1
\end{array}\right]
$$

where $x=\left[q^{\ell-2}+2 q^{\ell-3}+\ldots+(\ell-2) q+(\ell-1)\right]-\frac{1}{2} \ell\left[q^{\ell-i-1}+\ldots+q+1\right]$.
To diagonalise this, we need to know when $x \in\left\langle q^{i}+1, q^{\ell-i}+1\right\rangle=J_{i, \ell-i}$, in the notation of Proposition 4.6 . Then we have :-

Proposition 4.20. In the groups $G_{\pi, K}(q)$, where π is either $\pi \pi_{2}$ or π_{3}, then the torus T_{w} for w corresponding to the class $D_{e}\left(a_{i-1}\right)$ has elementary divisors as follows :-
(i). $\quad e_{1}=\left(q^{i}+1\right) \cdot\left(q^{\ell-i}+1\right)$ if $\ell \equiv 2(4), \quad i \equiv 0(2)$ and q is odd. (ii). $e_{1}=\left(q^{i}+1\right), e_{2}=\left(q^{\ell-i}+1\right)$ otherwise.

Proof. By Proposition $4.6, J_{i, \ell-i}=\left\langle q^{\alpha}+1,1+(-1)^{\frac{\ell}{d}-1}\right\rangle$, where
$d=(\ell, i)$. Then two cases arise, viz. either ℓ / d is odd or ℓ / d is even. Let $J=J_{i, \ell-i}$.
(a). If ℓ / d is odd, then $J=\left\langle q^{d}+1,2\right\rangle$ and we have to consider the parity of q. If q is even, then $J=\langle 1\rangle=Z$, so $x \in J$ and so X has two elementary divisors $e_{1}=\left(q^{i}+1\right), e_{2}=\left(q^{\ell-i}+1\right)$. However, this case does not really occur since $\Delta_{s c} / \Delta_{a d}$ modulo 2-torsion is trivial and the groups $G_{\pi, K}$ all collapse to $G_{a d, K}$. This accords with the results of Propositions 4.5 and 4.18 .

On the other hand, if q is odd, then $J=\langle 2\rangle=22$. Then $x \equiv[1+2+\ldots+(\ell-1)]-\frac{1}{2} \ell(l-i)$ (modulo J)

$$
=\frac{\ell(i-1)}{2} \text { (modulo J). }
$$

So $x \equiv\left\{\begin{array}{ll}1(\text { modulo } J) & \text { if } \ell \equiv 2(4) \text { and } i \equiv 0(2) \\ 0(\text { modulo } J) & \text { otherwise }\end{array}\right.$.
Hence : the elementary divisors of the maximal torus T_{w} are :-

$$
\left\{\begin{array}{l}
e_{1}=\left(q^{i}+1\right) \cdot\left(q^{\ell-i}+1\right) \text { if } l \equiv 2(4), i \equiv 0(2) \text { and } q \text { is odd } \\
e_{1}=\left(q^{i}+1\right), e_{2}=\left(q^{l-i}+1\right) \text { otherwise }
\end{array}\right\}
$$

(b). If ℓ / d is even, say $\ell=2 k d$, then i / d is odd, say $i=(2 m+1) d$. Hence , $J=\left\langle q^{d}+1\right\rangle$. Let $n=k-m-1$.

$$
\begin{aligned}
& \text { How }, q^{\ell-i-1}+\ldots+q+1=q^{d}\left(q^{2 n d-1}+\ldots+1\right)+\left(q^{d-1}+\ldots+1\right) \\
&= q^{d}\left(q^{d}+1\right) \cdot\left(q^{d-1}\right) \cdot\left(q^{2 n-2}+q^{2 n-4}+\ldots+q^{2}+1\right)+\left(q^{d-1}+\ldots+1\right) \text {, as in }
\end{aligned}
$$

Proposition 4.7 .

$$
\begin{equation*}
\text { Hence , } \quad \frac{1}{2} l\left[q^{\ell-i-1}+\ldots+q+1\right] \equiv \frac{1}{2} \ell\left(q^{d-1}+\ldots+1\right) \text { modulo } \mathrm{J} \text {. } \tag{1}
\end{equation*}
$$

Furthermore , $\left[q^{\ell-2}+2 q^{\ell-3}+\ldots+(l-2) q+(\ell-1)\right]=y\left(q^{d}+1\right)+k d\left(q^{d-1}+\ldots+1\right)$, (2)
 $+d q^{l-2 d-2}+\quad d q^{l-2 d-3}+\ldots+q^{l-3 d-1}$
 $+2 d q^{\ell-4 d-2}+2 d q^{\ell-4 d-3}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+2 d q^{\ell-5 d-1}$
$+(2 d+1) q^{\ell-5 d-2}+(2 d+2) q^{\ell-5 d-3}+\ldots+3 d q^{\ell-6 d-1}$
$+(k-1) d q^{2 d-2}+(k-1) d q^{2 d-3}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots+(k-1) d q^{d-1}$
$+((k-1) d+1) q^{d-2}+((k-1) d+2) q^{d-3}+\ldots \ldots \ldots \ldots \ldots \ldots+(k d-1)$
By (1) and (2), and since $k d=\frac{1}{2} l$, it follows that

$$
\begin{aligned}
x & =\left[q^{\ell-2}+2 q^{l-3}+\ldots+(l-2) q+(l-1)\right]-\frac{l}{2}\left[q^{\ell-i-1}+\ldots+q+1\right] \\
& \equiv \frac{\ell}{2}\left(q^{d-1}+\ldots+q+1\right)-\frac{l}{2}\left(q^{d-1}+\ldots+1\right) \equiv 0 \text { (modulo J). }
\end{aligned}
$$

So, in this case, X diagonalises over $Z[q]$ to give the two elementary divisors $e_{1}=\left(q^{i}+1\right)$ and $e_{2}=\left(q^{\ell-i}+1\right)$.

Since the condition $\ell \equiv 2(4)$ and $i \equiv 0(2)$ implies that $\frac{\ell}{d}$ is odd, the result follows as stated .

This concludes the chapter on Chevalley groups of type $\mathrm{B}_{\ell}, \mathrm{C}_{\ell}$, and $D_{\ell} \quad$.

CHAPTER 5. Chevalley groups of type $G_{2}, F_{4}, E_{6}, E_{7}$ and $E_{8}{ }^{\circ}$
55.1. In this chapter, we consider the groups $G_{\pi, K}$, where g is one of the exceptional coinplex, simple Lie Algebras, ie. of type G_{2}, F_{4}, E_{6}, E_{7} or E_{8}. In such cases, $G_{\pi, K}$ is either $G_{a d, K}$ or $G_{s c, K}$, and the latter case arises as a distinct group only in the case where g is of type E_{6} or E_{7}. Hence, since $\mathcal{\Sigma}^{\nabla}=\Sigma$ in these cases, Lemmas 1.7 and 1.8 show that in all these cases we need only consider the action of w on $\Delta_{a d}$, where w is a representative of each conjugacy class of W.

In this chapter, we make use of Propositions 2.1 and 2.2 to find the matrix $W_{\boldsymbol{\Phi}}$ from the graph Γ of Φ, in those cases for which we have shown that Φ generates $\Delta_{a d}$, ie. for the Coxeter and semi-Coxeter classes of W. Using further methods, the results are complete for groups of type G_{2} or F_{4}, but not for groups of type E_{n}, due to the size of the groups $W\left(E_{n}\right)$. In fact, we are only able to give the results for the Coxeter and semi-Coxeter types in E_{6} and E_{7}. We also show how many of the results for groups of type E_{8} can be obtained in terms of the results for the groups of type D_{8}, which are not situated diagonally, viz. the groups treated in $\$ 4.6$. However, the results there not being complete, we are only able to present slightly more results than in the other two cases . We omit most of the details of diagonalisation.
§5.2. Type G_{2}. This case is straightforward since $W\left(G_{2}\right)$ is isomorphic to the dihedral group of order 12 , and so has 6 conjugacy classes. If we let π be the system of fundamental roots $\left\{p_{1}, p_{2}\right\}$ with corresponding diagram

then $w=\left\langle w_{1}, w_{2}: w_{1}{ }^{2}=w_{2}{ }^{2}=\left(w_{1} w_{2}\right)^{6}=1\right\rangle$, where $w_{i}=w_{p_{i}}$. Moreover, representatives for the set $\zeta(w)$ are $R=\left\{1,\left(w_{1} w_{2}\right)\right.$, $\left.\left(w_{1} w_{2}\right)^{2},\left(w_{1} w_{2}\right)^{3}, w_{1}, w_{2}\right\}$, with respective graphs $\left\{\emptyset, G_{2}, A_{2}, A_{1}+\tilde{A}_{1}, \tilde{A}_{1}, A_{1}\right\}$, where X denotes a graph consisting of long roots and \tilde{X} a graph of short roots.

Considering the action of each $w \in R$ upon the basis π of Δ ad , we obtain the following results :-

TABLE 5.1.

ICtype	Elementary divisors e_{i}
\emptyset	$e_{1}=e_{2}=(q-1)$.
A_{1}	$e_{1}=\left(q^{2}-1\right)$.
\tilde{A}_{1}	$e_{1}=\left(q^{2}-1\right)$.
$A_{1}+\tilde{A}_{1}$	$e_{1}=e_{2}=(q+1)$.
A_{2}	$e_{1}=\left(q^{2}+q+1\right)$.
G_{2}	$e_{1}=\left(q^{2}-q+1\right)$.

NOTE . The class $A_{1}+\tilde{A}_{1}$ consists of the unique non-identity central element $w_{0}=-1$, where w_{0} is the unique element of W of maximal length.
55.3. Type F_{4}. The group $W\left(\mathrm{~F}_{4}\right)$ is soluble of order 1152 , and it has 25 conjugacy classes with admissible diagrams as in [6]. A system of fundamental roots of type F_{4} is
$\pi=\left\{p_{1}=e_{2}-e_{3}, p_{2}=e_{3}-e_{4}, p_{3}=e_{4}, p_{4}=\frac{1}{2}\left(e_{1}-e_{2}-e_{3}-e_{4}\right)\right\}$ embedded in a real 4-dimensional vector space V with natural basis $\left\{e_{i}\right\}_{i=1}^{4}$. Hence, $\Delta_{\text {ad }}$ is generated, over z, by $\left\{e_{1}, e_{2}, e_{3}, \rho_{4}\right\}$, so that $\Delta_{\mathrm{ad}} \cong M_{3}$.

Now, the root system \mathcal{K} of type F_{4} has a sub-system \mathcal{K}^{\prime}, of type B_{4}, and so $W=W\left(F_{4}\right)$ has a Weyl subgroup W isomorphic to $W\left(B_{4}\right)$, (in fact (W:W') $=3$.). Hence, for any conjugacy class $C r$ of W with admissible diagram Γ such that Γ is also admissible for $W\left(B_{4}\right)$, we can find a representative $w \in C_{\Gamma}$ such that $w \in W^{\prime}$. Now., a fundamental system π^{\prime} for Σ^{\prime} is $\pi^{\prime}=\left\{r_{1}=e_{1}-e_{2}, e_{2}-e_{3}, e_{3}-e_{4}, e_{4}\right\}$ so that W^{\prime} acts on $\Delta_{\text {ad }}$ by permutations of the $\left\{e_{i}\right\}$ and by sign changes. Hence, the action of such an element w is known from $\$ 4.5$, and is noted in Table 5.2 .

From Table 5.2, we see that there are precisely 7 classes (see §7.5) not dealt with in this way, viz. $\zeta^{*}=\{7,13,16,18,20,24,25\}$. Now there are 3 maximal W weyl subgroups of W, viz. $W^{\prime} \cong W\left(B_{4}\right), W^{\prime \prime} \cong W\left(C_{3}\right) \times W\left(A_{1}\right)$ and $W^{\prime \prime \prime} \cong W\left(A_{2}\right) \times W\left(\tilde{A}_{2}\right)$, (see[3]). Then Class Fos. 13,20 are entirely contained in $W^{\prime \prime}$, Class Nos. 7,16,18 are entirely contained in $\mathrm{Wm}^{\prime \prime \prime}$, and Class Nos. 24,25 , being the Coxeter and semi-Coxeter classes respectively, are contained in no proper Weyl subgroup.

Now, in the case of Class Nos. $7,13,16,18$ and 20 , the corresponding Φ does not generate $\Delta_{a d}$, and so we cannot use the results of Propositions 2.1 and 2.2. Hence, we must calculate w_{π} directly in these cases . However, by Proposition 2.2 , we know that Φ does generate \triangle ad. in the case where Φ corresponds to a Coxeter or semi-Coxeter class Hence we may calculate w in the cases of Class Nos. 24,25 from the graph, as in Proposition 2.1. In the remaining cases, we refer to Proposition 4.18 .

It is well known(\$7.4.), that there exists an involutive automorphism τ of $\Delta_{a d}$ in this case such that τ normalises W. In fact, by Lemma 2.4 , τ acts on $\zeta(W)$ by permuting the Γ in orbits of length 1 or 2 . Then we have :

Lemma 5.1. Let w be a representative from a conjugacy class Γ, and w^{\prime} a representative from the class Γ^{ε}. Then $T_{W} \cong T_{W^{\prime}}$.

Proof. It is sufficient to show that $\left(q \cdot w_{\pi}-I\right)$ and $\left(q \cdot w_{\pi}^{\prime}-I\right)$ are equivalent, (in the sense of §1.3.), since then
$\Delta_{a d} /\left(q_{2} \cdot w-I\right) \Delta{ }_{a d} \cong \Delta_{a d} /\left(q \cdot w^{\prime}-I\right) \Delta{ }_{a d}$. Now we may choose w^{\prime} to be $w^{\tau}=\tau \cdot w \cdot \tau^{-1}$, and then $\left(q \cdot w_{\pi}^{1}-I\right)=\tau_{\pi} \cdot\left(q w_{\pi}-I\right) \cdot \tau_{\pi}^{-1} \cdot$ Since τ is an isometry, then τ is integral unimodular, and the result follows .

Proposition 5.2. The elementary divisors of the Chevalley groups $G_{\pi, K}\left(K_{0}\right)$ of type F_{4} are those of Table 5.2.

$\left\|\begin{array}{c} \text { Mo.Of } \\ \text { Class } \\ \text { C } \end{array}\right\|$	Φ-type of	Γ	$\|\mathrm{c}\|$	Signed cycletype	Elementary divisors e_{i}	c^{2}
1	ϕ	ϕ	1	[1111]	$e_{1}=e_{2}=e_{3}=e_{4}=(q-1)$	1
2	A_{1}	-	12	[112]	$e_{1}=e_{2}=(q-1), e_{3}=\left(q^{2}-1\right)$.	3
3	χ_{1}	\bigcirc	12	[1111]	$e_{1}=e_{2}=(q-1), e_{3}=\left(q^{2}-1\right)$	2
4	$2 \mathrm{~A}_{1} ; 2 \tilde{A}_{1}$	$\stackrel{\bullet}{\circ}$	18	$\left[\frac{[22]}{1111}\right]$	$e_{1}=(q-1), e_{2}=(q+1), e_{3}=\left(q^{2}-1\right)$	4
5	$\mathrm{A}_{1}+{ }_{\text {I }}$	- 0	72	[12ī]	$e_{1}=e_{2}=\left(q^{2}-1\right)$.	5
6	A_{2}	\cdots	32	[13]	$e_{1}=(q-1), e_{2}=\left(q^{3}-1\right)$.	7
7	\widetilde{A}_{2}	\bigcirc	32		$e_{1}=(q-1), e_{2}=\left(q^{3}-1\right)$.	6
8	B_{2}	ω	36	[112]	$e_{1}=(q-1), e_{2}=(q-1)\left(q^{2}+1\right)$.	8
9	$3 A_{1}: 2 R_{1}+A_{1}$	$\stackrel{0}{\circ} \quad \stackrel{ }{0}$	12	[211]	$e_{1}=e_{2}=(q+1), e_{3}=\left(q^{2}-1\right)$.	10
10	$2 \mathrm{~A}_{1}+{\widetilde{\mathrm{A}_{1}}} ; 3 \widetilde{\mathrm{~A}}_{1}$	$\stackrel{0}{-} 0$	12	[1117]	$e_{1}=e_{2}=(q+1), e_{3}=\left(q^{2}-1\right)$.	9
11	$\mathrm{A}_{3} ; \tilde{\mathrm{A}}_{1}+\mathrm{B}_{2}$	$\stackrel{\square}{\square}$	72	$\left[\begin{array}{l} {[4]} \\ {[112]} \end{array}\right.$	$\epsilon_{1}=\left(q^{2}-1\right), e_{2}=\left(q^{2}+1\right)$.	12
12	$\tilde{A}_{3} ; A_{1}+B_{2}$	$\because \infty$	72	[22]	$e_{1}=\left(q^{2}-1\right), e_{2}=\left(q^{2}+1\right)$.	11
13	c_{3}	\square	96		$e_{1}=(q-1)\left(q^{3}+1\right)$.	14
14	B_{3}	$\longrightarrow 0$	96	$[1 \overline{3}]$	$e_{1}=(q-1)\left(q^{3}+1\right)$.	13
15	$\mathrm{A}_{2}+\tilde{A}_{1}$	$\bullet \quad \circ$	96	[3i]	$e_{1}=\left(q^{3}-1\right)(q+1)$.	16
16	$\widetilde{A}_{2}+\mathrm{A}_{1}$	\square -	96		$e_{1}=\left(q^{3}-1\right)(q+1)$.	15
17	$\begin{aligned} & 4 \mathrm{~A}_{1}: 4 \tilde{\mathrm{~A}}_{1} \\ & 2 \mathrm{~A}_{1}+2 \mathrm{~A}_{1} \end{aligned}$	$\begin{array}{llll} \bullet & 0 & \bullet & \bullet \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	1	[1111]	$e_{1}=e_{2}=e_{3}=e_{4}=\left(0_{2}+1\right)$.	17
18	$\mathrm{A}_{2}+\tilde{A}_{2}$	$\cdots 0$	16		$e_{1}=e_{2}=\left(q^{2}+q+1\right)$.	18
19	$\begin{aligned} & \mathbb{X}_{3}+A_{1} \\ & A_{3}+\tilde{A}_{1} \\ & B_{2}+2 A_{1} \\ & B_{2}+2 \mathbb{X}_{1} \end{aligned}$		36	[12]	$e_{1}=(q+1), e_{2}=(q+1)\left(q^{2}+1\right)$.	19

No. of Class C	$\left.\right\|_{\mathrm{E} \text {-type of }} ^{c}$	Γ	$\|c\|$	Signed cycletype	Elementary divisors e_{i}	c^{z}
20	$C_{3}+A_{1} ; \tilde{D}_{4}$	$a \Longrightarrow$	32		$e_{1}=(q+1), e_{2}=\left(q^{3}+1\right)$	21
21	$B_{3}+\tilde{A}_{1} ; D_{4}$		32	$[13]$	$e_{1}=(q+1), e_{2}=\left(q^{3}+1\right) .$	20
22	$\begin{aligned} & D_{4}\left(a_{1}\right) ; \\ & \widetilde{D}_{4}\left(a_{1}\right) ; \\ & B_{2}+B_{2} \end{aligned}$		12	[22]	$e_{1}=e_{2}=\left(q^{2}+1\right)$	22
23	$\mathrm{B}_{4} ; \mathrm{C}_{4}$	\Longrightarrow	144	[4]	$e_{1}=\left(q^{4}+1\right)$.	23.
24	F_{4}	$\cdots-0$	96		$e_{1}=\left(q^{4}-q^{2}+1\right)$.	24
25	$\mathrm{F}_{4}\left(\mathrm{a}_{1}\right)$		16		$e_{1}=e_{2}=\left(q^{2}-q+1\right) .$	25

Proof.
(i). Class Nos. 7,13,16,20. In these cases, $\Gamma^{\boldsymbol{2}}$ is class No. 6,14,15 and 21 respectively . Hence, we may use Lemma 5.1 to determine the e_{i} for such classes .
(ii). Class No. 18. In this case, Γ is fixed by τ, so we cannot use
 may choose a system $\Phi=\left\{r_{1}=-\delta, r_{2}=p_{1}, r_{3}=p_{3}, r_{4}=p_{4}\right\}$, where δ is the highest root of $\mathcal{\Sigma}$. A representative of Γ is $w=W_{r_{4}} W_{r_{2}} \cdot{ }^{W_{r_{1}}}{ }^{W} r_{3}$, and so we may calculate ${ }^{W} \pi$ directly. (iii). Class Nos. 24,25. In these cases, we use Proposition 2.1 , to calculate ${ }^{W}{ }^{\text {I }}$ directly from the graph, knowing that Φ generates $\Delta_{\text {ad }}$, and we give an example here in the case of Φ-type $F_{4}\left(a_{1}\right)$. Then Γ is

with signs assigned to the bonds as described in Chapter 2 .
Then $A_{W}=\left[\begin{array}{cc:cc}1 & 3 & 2 & 4 \\ 2 I & -1 & -1 \\ -1 & 1 & 2 & -1 \\ -2 & -1 & 2 I\end{array}\right] \begin{aligned} & 1 \\ & 3 \\ & 2 \\ & 4\end{aligned}$
Thus $W_{\Phi}=\left[\begin{array}{rrrr}2 & 0 & -1 & -1 \\ 0 & 2 & 2 & -1 \\ 1 & -1 & -1 & 0 \\ 2 & 1 & 0 & -1\end{array}\right]$ and $\left(q \cdot w_{\Phi}-I\right)=\left[\begin{array}{cccc}2 q-1 & 0 & -q & -q \\ 0 & 2 q-1 & 2 q & -q \\ q & -q & -q-1 & 0 \\ 2 q & q & 0 & -q-1\end{array}\right]$
So we diagonalise ($q . \mathrm{w}_{\mathbf{E}}-\mathrm{I}$) by the following operations :-

$$
\begin{aligned}
& \xrightarrow{-r_{4} t_{0} r_{1}}\left[\begin{array}{cccc}
-1 & -q & -q & 1 \\
0 & 2 q-1 & 2 q & -q \\
q & -q & -q-1 & 0 \\
2 q & q & 0 & -q-1
\end{array}\right] \quad \begin{array}{l}
\text { 5.6. } \\
\begin{array}{l}
\text { (i). } q \cdot r_{1} t_{0} r_{3} \\
\text { (ii). } 2 q . r_{1} t_{0} r_{4} \\
\text { (iii). Remove }\left(r_{1}, c_{1}\right)
\end{array}
\end{array}\left[\begin{array}{lll}
2 q-1 & 2 q & -q \\
-q^{2}-q & -q^{2}-q-1 & q \\
-2 q^{2}+q & -2 q^{2} & q-1
\end{array}\right] \\
& \xrightarrow[\text { (ii). } r_{2} t_{0} r_{1}]{\text { (i) } q \cdot r_{1} t_{0} r_{3}}\left[\begin{array}{ccc}
1-q^{2}+q-1 & -q^{2}+q-1 & 0 \\
-q^{2}-q & -q^{2}-q-1 & q \\
0 & \dot{0} & -q^{2}+q-1
\end{array}\right] \xrightarrow[\text { (ii). Remove }\left(r_{1}, c_{2}\right)]{\text { (i). }-c_{1} r_{0} c_{2}}\left[\begin{array}{cc}
-q^{2}+q-1 & 0 \\
0 & -q^{2}+q-1
\end{array}\right]
\end{aligned}
$$

Hence , the two non-unit elementary divisors of ($\mathrm{q} \cdot \mathrm{w}_{\Phi}-\mathrm{I}$) are both $\left(q^{2}-q+1\right)$.
(iv). Remaining Class Nos. In these cases , we refer to Proposition 4.18 where the elementary divisors for T_{w} are calculated for an olement with signed cycle-type $[\lambda, \bar{\mu}]$ acting on M_{3}. These are straightforward to calculate, but we note that in Class Nos. 4 and 11 , there are two cycle-types corresponding to each class. In these classes, one of the cycle-types has all its cycles even and positive, a case which necessitates individual treatment in Lemma 4.17 . As an example , in Class No. 4 , according to Proposition 4.18 , if we take
(a). $[\lambda, \bar{\mu}]=[22]$, then $e_{1}=2, e_{2}=\frac{q^{2}-1}{2}, e_{3}=q^{2}-1$;
(b). $[\lambda, \bar{\mu}]=[11 \overline{1} \overline{1}]$, then $e_{1}^{\prime}=(q-1), e_{2}^{\prime}=(q+1)$ and $e_{3}=(q-1)(q+1)$.

Since $\left(q+1, \frac{q-1}{2}\right)=1$, and $C_{m} \times C_{n} \cong C_{m n}$ if $(m, n)=1$, then we may
rewrite $e_{1}=2 \cdot \frac{q-1}{2}=q-1=e_{1}^{\prime}$, and $e_{2}=q+1=e_{2}^{\prime}$, if $q \neq$ (4). Similarly if $q \neq 3(4)$ by taking $\frac{q+1}{2}$.

In case q is even, then for w of signed cycle-type $[\lambda, \bar{\mu}]$, (q. $w_{\pi}-I$) has elementary divisors $\left\{q^{\lambda_{1}}-1, \ldots, q^{\lambda_{t}}-1, q^{\mu_{1}}+1, \ldots q^{\mu_{s}}+1\right\}$.

However , that causes no disagreement with Table 5.2 , since, for example in Class No. $15,\left(q^{3}-1, q+1\right)=1$ so that $C_{q^{3}-1} \times \mathrm{C}_{q+1} \cong \mathrm{C}_{\left(q^{3}-1\right)(q+1)}$. Similarly for class Nos. $3,8,13,14,15,16$ and 19 . Hence the results of

Table 5.2 hold for all values of q.
This completes the section on F_{4}.
§5.4. Types E_{6} and E_{7}. For the groups of type E_{6} or E_{7}, the results here are incomplete, due to the large order of the Weyl groups, since $|\mathscr{C}(i)|$ is 25 and 60 respectively, and the structure of the maximal tori T_{W} is determined only for w a representative of the semi-Coxeter or Coxeter classes of the corresponding Weyl group. To determine the elementary divisors of T_{w} in these cases, we use the results of Propositions 2.1 and 2.2., and present the results in the following table :TABLE 5.3.

I-type	Elementary divisors e_{i}
E_{6}	$e_{1}=\left(q^{2}+q+1\right) \cdot\left(q^{4}-q^{2}+1\right) \cdot$
$E_{6}\left(a_{1}\right)$	
$E_{6}\left(a_{2}\right)$	
E_{7}	$e_{1}=\left(q^{6}+q^{3}+1\right) \cdot$
$E_{7}\left(a_{1}\right)$	$e_{1}=\left(q^{2}-q+1\right), e_{2}=\left(q^{2}-q+1\right) \cdot\left(q^{2}+q+1\right) \cdot$
$E_{7}\left(a_{2}\right), E_{7}\left(b_{2}\right)$	$e_{1}=(q+1) \cdot\left(q^{6}-q^{3}+1\right)$.
$E_{7}\left(a_{3}\right)$	$e_{1}=\left(q^{7}+1\right) \cdot$
$E_{7}\left(a_{4}\right)$.	$e_{1}=\left(q^{3}+1\right) \cdot\left(q^{4}-q^{2}+1\right) \cdot\left(q^{4}-q^{3}+q^{2}-q+1\right)$.

These groups are the only ones considered in this chapter where the isogeny class \mathcal{G} contains more than one distinct element, viz. $G_{\text {ad, }}$ and $G_{s c, K}$. By Corollary 1.8 , the results are identical for these two situations .
\$5.5. Type E_{8}. In groups of type E_{8}, the results are more detailed because of the nature of $\Delta_{a d}=\Delta_{\text {sc }}$, even though $|\mathscr{C}(W)|=112$ in this case. Let \sum be a root system of type E_{8} embedded in a real vector space V with natural basis $\left\{e_{i}\right\}_{i=1}^{8}$, and let π be the fundamental system
$\pi=\left\{p_{i}=e_{i}-e_{i+1}\right.$ for $\left.1 \leqslant i \leqslant 6 ; p_{7}=e_{6}+e_{7} ; p_{8}=-p_{8}=-\frac{1}{2} \sum_{i=1}^{8} e_{i}\right\}$. Then the corresponding Dynkin diagram is

and the highest root is $\delta=e_{1}-e_{8}=2 p_{1}+3 p_{2}+4 p_{3}+5 p_{4}+6 p_{5}+3 p_{6}+4 p_{7}+2 p_{8}$
Hence, by [3], there are five maximal Weyl subgroups of $W=W\left(E_{8}\right)$
viz. $W_{1} \cong W\left(D_{8}\right), W_{2} \cong W\left(A_{8}\right), W_{3} \cong W\left(A_{4}\right) \times W\left(A_{4}\right), W_{4} \cong W\left(E_{6}\right) \times W\left(A_{2}\right)$ $W_{5} \cong W\left(E_{7}\right) \times W\left(A_{1}\right)$. As in $\$ 5.3$, for any conjugacy class C_{Γ} of W with admissible diagram Γ such that Γ is also admissible for W_{1}, we can find a representative $w \in C_{\Gamma}$ such that $w \in W_{1}$.

Although $\left(W: W_{1}\right)=3^{3} .5, W_{1}$ is "large" in the sense that it meets exactly half (ie. 56) of the classes of W in this way. If \mathcal{K}_{1} is the subsystem of \sum corresponding to W_{1}, with fundamental system $\Pi_{1}=\left\{p_{1}, p_{2}, \ldots, p_{7},-\delta\right\}$, then W_{1} acts on $\Delta_{a d}$ by permutations and sign changes and every element w corresponds to a pair of partitions $[\lambda, \bar{\mu}]$ of 8 , as in $\S 4.1$. It is clear that $\Delta_{\text {ad }} \cong M_{4}$, so that the action of $w \in W_{1}$ on $\Delta_{a d}$ is known from $\S 4.6$.

Although the results are incomplete in that case , $\S 4.6$ does give the elementary divisors of the maximal torus T_{w} when w is a representative of a class of W which corresponds to a semi-Coxeter class of W_{1}. Furthermore, for the 9 semi-Coxeter classes of W, we may use the results of Propositions 2.1 and 2.2 to obtain ${ }^{w}$ 亜 from the corresponding graph Γ, since Φ generates $\Delta_{\text {ad }}$ in such cases .

Lemma 5.3. The matrices ($q \cdot W_{\text {里 }}-I$) are diagonalisable over $Z[q]$, with the exception of Φ-type $E_{8}\left(\mathrm{a}_{4}\right)$.

Proof. This follows a case-by-case argument. In the exceptional case $\mathrm{E}_{8}\left(\mathrm{a}_{4}\right)$, the matrix $\left(\mathrm{q} \cdot \mathrm{w}_{\mathbf{2}}-\mathrm{I}\right)$ diagonalises over $\mathrm{Z}[\mathrm{q}]$ to the matrix

$$
P=\left[\begin{array}{cc}
q^{6}-q^{3}+1 & -q-1 \\
0 & q^{2}-q+1
\end{array}\right]
$$

P is not diagonclisable over $Z[q]$, since $f_{i}(q)=h_{i j}(q) \cdot f_{j}(q)+3$ for some $h_{i j}(q) \in Z[q]$, if $\operatorname{deg} f_{i}>\operatorname{deg} f_{j}$, where the $f_{i}(q)$ are the polynomial entries of P. Hence, the diagonalisation of P depends upon
the value of $(q+1,3):-$
(i). If $(3, q+1)=1$, then there exists some $n \in Z$ with $(q+1)+3 . n= \pm 1$. Now P reduces to $\left[\begin{array}{lc}q^{6}-q^{3}+1 & -q-1 \\ q^{7}+2 q^{6}-q^{4}-2 q^{3}+q-2 & 3\end{array}\right]$, and this reduces to a matrix with one elementary divisor $e_{1}=\left(q^{2}-q+1\right)\left(q^{6}-q^{3}+1\right)$ on premultiplying by the integral unimodular matrix $\left[\begin{array}{cc}3 & q+1 \\ 1 & -n\end{array}\right]$. (ii). If $3 \mid(q+1)$, then $(q+1)=3 . m$ for some $m \in Z$, and hence, as above, $\left(q^{6}-q^{3}+1\right)-h(q) \cdot\left(q^{2}-q+1\right)=3$. Thus $m\left(q^{6}-q^{3}+1\right)-m \cdot h(q) \cdot\left(q^{2}-q+1\right)=(q+1)$, and P reduces to a matrix with elementary divisors $e_{1}=\left(q^{2}-q+1\right)$ and $e_{2}=\left(q^{6}-q^{3}+1\right)$.

Thus, in the case of Φ-type $E_{8}\left(a_{4}\right), T_{w}$ is isomorphic to ${ }^{C}\left(q^{2}-q+1\right) \cdot\left(q^{6}-q^{3}+1\right)$ if $(3, q+1)=1$, and to $C_{\left(q^{2}-q+1\right)} \quad$ $C_{\left(q^{6}-q^{3}+1\right)}$ if $3 \mid(q+1)$.

However, suppose that $(3, q+1)=1$. Then, for $d=\left(q^{6}-q^{3}+1, q^{2}-q+1\right), \quad d=\left(3, q^{2}-q+1\right)$. Then :-

$$
\begin{aligned}
& \text { if } q+1 \equiv 1(\operatorname{modulo} 3), \text { then } q \equiv 0(\bmod 3) \quad \text { and } d=(3,1)=1, \\
& \text { if } q+1 \equiv 2(\operatorname{modulo} 3), \text { then } q \equiv 1(\bmod 3) \text { and } d=(3,1)=1,
\end{aligned}
$$

again. Hence, ${ }^{C}\left(q^{2}-q+1\right) \cdot\left(q^{6}-q^{3}+1\right)$ is isomorphic to
${ }^{C}\left(q^{2}-q+1\right)^{x C}\left(q^{6}-q^{3}+1\right)$
Also, if $3 \mid(q+1)$, then $q \equiv 2(\bmod 3)$ and $q^{2} \equiv 1(\bmod 3)$.
Hence, $d=(3,0)=3$. Thus, whatever the value of q, it is clear that T_{w} is always isomorphic to $C_{\left(q^{2}-q+1\right)}{ }^{C}{ }_{\left(q^{6}-q^{3}+1\right)} \cdot$

We collect the results for the groups of type E_{8} in the following table :-

TABLE 5.4.

type	Elementary divisors e_{i}		
D_{8}	$e_{1}=(q+1), e_{2}=\left(q^{7}+1\right)$.		
$D_{8}\left(a_{1}\right)$	$e_{1}=\left(q^{2}+1\right), e_{2}=\left(q^{6}+1\right)$.		
$D_{8}\left(a_{2}\right)$	$e_{1}=\left(q^{3}+1\right), e_{2}=\left(q^{5}+1\right)$.		
$D_{8}\left(a_{3}\right)$	$e_{1}=\left(q^{4}+1\right), e_{2}=\left(q^{4}+1\right)$.		
E_{8}	$e_{1}=\left(q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1\right)$.		
$E_{8}\left(a_{1}\right)$	$e_{1}=\left(q^{8}-q^{4}+1\right) \cdot$		
$E_{8}\left(a_{2}\right)$	$e_{1}=\left(q^{8}-q^{6}+q^{4}-q^{2}+1\right)$.		
$E_{8}\left(a_{3}\right)$	$e_{1}=e_{2}=\left(q^{4}-q^{2}+1\right) \cdot$		
$E_{8}\left(a_{4}\right)$	$e_{1}=\left(q^{2}-q+1\right), e_{2}=\left(q^{6}-q^{3}+1\right)$.		
$E_{8}\left(a_{5}\right)$	$e_{1}=\left(q^{8}-q^{7}+q^{5}-q^{4}+q^{3}-q+1\right)$.		
$E_{8}\left(a_{6}\right)$			
$E_{8}\left(a_{7}\right)$			
$E_{8}\left(a_{8}\right)$		\quad	$e_{1}=e_{2}=\left(q^{4}-q^{3}+q^{2}-q+1\right)$.
:---			
$e_{1}=e_{2}=\left(q^{2}-q+1\right), e_{3}=\left(q^{4}-q^{2}+1\right)$.			

CHAPTER 6. Steinberg groups of type ${ }^{2}{ }_{A} \ell,{ }^{2}{ }^{D_{l}} l,{ }^{2} E_{6}$.
It was mentioned in $\S 1.2$, that the Steinberg groups are the groups G_{σ} for σ a combination of a field automorphism and a graph automorphism of G. Precisely how this is achieved, we explain now, and then we spend the rest of this chapter in determining the structure of the maximal tori of such finite groups .

Following Tits [23] , we let K_{0}^{G} be any semi-simple algebraic group defined over K_{0} and we extend the base field to obtain a group \bar{G} defined over K. Then Chevalley has shown that $\bar{G}=G_{\pi, K}$, where π is a faithful representation of a semi-simple Lie algebra $\dot{\mathbf{g}}$. We say that K_{0}^{G} is a \underline{K}_{0}-form of $G_{\pi, K}$. We are interested in two particular types of K_{o}-forms, viz.
(i). Normal (Chevalley, split) forms . We say that K_{o}^{G} is normal (solit) over K_{o} if every conjugacy class of parabolic subgroups contains at least one subgroup defined over K_{o}. Then every simple algebraic group defined over K has one and (up to isomorphism) only one normal K_{o}-form, viz. $G \pi, K_{o}$ - the Chevalley form , and this we have studied in the previous chapters .
(ii). Exterior (semi-snlit) forms . We say that K_{o}^{G} is exterior (semi-split) if it has Borel subgroups defined over K_{o}. By Theorem 1.1., it follows that every semi-simple group K_{o}^{G} is exterior . We will follow the normal practice of giving these exterior forms the name

Steinberg groups , since $K_{o}=G F(q)$ throughout.
§6.1. Exterior forms . In this Chapter we are interested in the exterior forms and we let $G=G_{\pi, K}$.

Theorem 6.1. (a). The Bore subgroups of G are all conjugate ;
(b). The parabolic subgroups of G are all connected;
(c). The lattice of parabolic subgroups containing a given Bore subgroup B is isomorphic to the lattice of subsets of a finite set. In other words, if $P^{(i)}$, for $i \in I$, denote the maximal subgroups of G which contain. B , then the index set I is finite , and every subgroup containing B is uniquely an intersection of the form $\mathrm{P}^{\left(\mathrm{i}_{1}\right)} \mathrm{P}^{\left(\mathrm{i}_{2}\right)} \bumpeq \cdots \wedge^{\left(\mathrm{i}_{\mathrm{m}}\right)}$ for $\left(i_{1}, \ldots, i_{m}\right) \in I^{m}$;
(d). Two parabolic subgroups containing the same Bored subgroup B are never conjugate .

It follows that the classes of conjugate parabolic subgroups are in canonical 1-l correspondence with the subsets of the finite set I. See [23]

Construction of the diagram D of G.

For all subsets $J \subseteq I$, we let $d_{J}=\operatorname{dim}\left(\bigcap_{i \neq J}(i)\right.$, so $d_{\phi}=\operatorname{dim} B$.
Then, by 6.1 , it follows that $d_{i, j}-d_{\phi} \geqslant 2$ and $d_{i}-d_{\phi}=1$ for $i, j \in I . S o w e ~ c o n s t r u c t ~ D$ by nodes corresponding to each $i \in I$, and those corresponding to $i, j \in I$ are joined by a bond of strength $\left(d_{i j}-d_{\phi}-2\right)$.

Suppose that $K_{0}{ }^{G}$ is any exterior form of a semi-simple group $G_{\pi, K}$ • Then the Galois group Γ of K / K_{0} acts on G by $\gamma\left(a_{i j}\right)=\left(\left(x\left(a_{i j}\right)\right)_{i j}\right)$ for $\gamma \in \Gamma$ and some embedding of G in $G L_{n}(K)$. Suppose that B is a Borel subgroup of K_{o}^{G} defined over K_{o}. Then Γ preserves B, and hence permutes among themselves the $P^{(i)}$. Since these are represented by the nodes of \mathscr{D}, we can say that Γ operates on \mathscr{D}, and it is clear that the elements of Γ induce automorphisms of \varnothing since $d_{\gamma(i)} \cdot \gamma(j)=d_{i, j}$. If Γ operates trivially on \mathscr{D}, then the $p^{(i)}$ are defined over K_{o}, and so K_{o}^{G} is a normal form, by Theorem 6.1. More generally, if Γ_{1} denotes the group of all elements of Γ which induce the identity on D, then the field K_{1} of the invariants of Γ_{1} is the smallest extension of K_{0} for which $K_{1}{ }^{G}$ is a normal form . We call K_{1} the splitting field of $K_{0}{ }^{G}$. Then K_{1} is a finite Galois extension of K_{0}, and its Galois group $\Delta=\Gamma / \Gamma_{1}$ operates faithfully on \mathcal{D}.

Theorem 6.2. Let \mathscr{D} be the diagram of a simple group $G_{\pi, K}, K_{l}$ a finite Galois extension of K_{0}, and suppose we are given a faithful representation $\rho: \Delta \longrightarrow \operatorname{Aut}(\mathscr{D})$, where $\Delta=\operatorname{Gal}\left(K_{1} / K_{0}\right)$. Then $G \pi, K$ has one exterior $K_{o}-$ form and (up to isomorphism) only one having K_{1} as splitting field, and such that, with respect to this form, Δ operates on \mathcal{D} in the given way. See [23].

NOTE. Since K_{o} is a finite field, then \triangle must be a cyclic group, and this excludes the case ${ }^{6} D_{4}$, where $\triangle \cong \operatorname{Aut}(\mathcal{D}) \cong \mathcal{C}_{3}$. In Table 6.1 are represented all the groups of non-trivial automorphismsof diagrams of simple groups . By 6.2 , to each of them corresponds a type of exterior form. Once the type $G=A_{\ell}, B_{l}, \ldots$ of the diagram \mathscr{D} and the order δ of the group Δ is known., then this group Δ and its action on \mathscr{D} are fully determined, so we may denote the type of forms in question by $\quad \delta_{G}$. In the case we consider, it is clear that K_{1} is welldetermined as $G F\left(q^{8}\right)$. Hence, since a given exterior form K_{0}^{G} of type ${ }^{\delta_{G}}$ is fully determined if we are given K_{o} and K_{1}, we may denote this exterior form by ${\underset{K}{0}}_{\delta}^{G}$, and its group of K_{o} rational points by ${ }^{\delta_{G}}\left(K_{0}\right)$. TABLE 6.1.

${ }^{2} \mathrm{~A}_{\ell}$

${ }^{2} E_{6}$

We are interested in the groups $\boldsymbol{\delta}_{G}\left(K_{0}\right)$, and these groups can be obtained from the groups $G\left(K_{l}\right)$ in the following way, where $G=G \pi, K$. The group Γ_{1} operates trivially on the group $G\left(K_{1}\right)$ of
K_{1}-rational points of the normal form $K_{l}{ }^{G}$. Consequently, $\Delta=\Gamma / \Gamma_{1}$ acts on $G\left(K_{1}\right)$, and the group of Δ-invariant points of $G\left(K_{1}\right)$ is ${ }^{\delta} G\left(K_{0}\right)$.
§6.2. The set $H^{1}(\sigma, W)$.
In this chapter, we are interested in the Steinberg groups
${ }^{2} A_{\ell},{ }^{2} D_{\ell}$ and ${ }^{2} E_{6}$, where $\delta=2$. In $[7]$, it is shown that $G\left(K_{1}\right)$
admits an automorphism $\sigma: x_{a}(t) \longmapsto x_{c a}\left(t^{q}\right)$, where c is the permutation of the fundamental roots (ie. graph automorphism) of Table 6.1. Then ${ }^{2} G\left(K_{0}\right)=G\left(K_{1}\right)_{\sigma}$, the σ-fixed points of $G\left(K_{1}\right)$. If we let $\sigma=q \tau$ be the corresponding automorphism of $G=G \pi, K$ (ie. the combination of field and graph automorphisms mentioned in $\% 1.2$), then $G_{\sigma}^{2}=G\left(K_{1}\right)$. Since $\left(G_{\sigma}^{2}\right)_{\sigma}=G_{\sigma}$, then ${ }^{2} G_{G}\left(K_{o}\right)=G_{\sigma}$, a situation we are equipped to deal with , by Chapter 1 .

Let \mathcal{L} be an irreducible root system in a real vector space V, and let $A(\mathbb{\Sigma})$ and $D(\Sigma)$ be as in §2.4. Then. as in $[4]:-$

Lemma 6.3. The group $A(\mathcal{\Sigma}) / W(\mathcal{\Sigma})$ (and hence $D(\Sigma)$) operates naturally on $\Delta_{\text {sc }} / \Delta_{\text {ad }} \cdot$

Proof. If $q \in \Delta_{\text {sc }}$ and $w \in W(\Sigma)$, then $q-W(q) \in \Delta_{\text {ad }}$. For , Let $w=w_{a}$. Then $q-w(q)=\left\langle q_{q}, a^{v}\right\rangle . a \in \operatorname{Za} \in \Delta_{a d}$, and for $w=w_{a_{1}} \ldots w_{a_{r}}$, we repeat this.

Now $A(\Sigma)$ fixes $\Delta_{\text {sc }}$ and $\Delta_{a d}$, and so operates on $\Delta_{s c} / \Delta_{\text {ad }}$. By the above, $W(\Sigma)$ operates trivially on $\Delta_{s c} / \Delta_{\text {ad }}$, so that the result follows .

This justifies our statements in $\$ 1.2$, where we impose the condition on $\tau \in D(\Sigma)$ that $\tau\left(\Delta_{\pi}\right)=\Delta_{\pi}$. For, τ operates on the subgroup lattice of $\Delta_{\mathrm{sc}} / \Delta_{\mathrm{ad}}$ by Lemma 6.3, and hence permutes the Δ_{π} such that $\Delta_{a d} \subset \Delta_{\pi} \subset \Delta_{s . c}$.

So we now consider the situation of Chapter 1 , with T a K_{0}-split maximal torus of $G=G_{\pi, K}$, and suppose that \bar{T}_{W} is a σ-fixed maximal torus of G which is twisted from T by $W \in W$. From the previous section we have seen that we must restrict attention to G of type A_{ℓ}, $D_{\boldsymbol{l}}$ or E_{6}, and that the representation π is such that $\varepsilon\left(\boldsymbol{\Delta}_{\boldsymbol{\pi}}\right)=\Delta_{\pi}$. Then the action of σ induced to $X(T) \cong \Delta_{\boldsymbol{x}}$ is $\sigma^{*}=q \boldsymbol{r}$. Furthermore, the action of σ induced to $X\left(\bar{T}_{w}\right)$ is given by $w_{0} \sigma^{*}=q w z$, by Proposition 1.3 . By Theorem 1.2, the G_{σ}-conjugacy classes of σ-fixed maximal tori of $G_{\pi, K}$ are in $1-1$ correspondence with the elements of $H^{I}(\sigma, W)$. So we must investigate the nature of $H^{l}(\sigma, W)$, when W is of type A_{l}, D_{l} or E_{6} and σ is as above.

Now σ acts on W according to the way $\tau \in D(\approx)$ acts on W in the semi-direct product $W(\Sigma) \cdot D(\Sigma)=A(\Sigma)$, viz. by conjugation in $A(\Sigma)$. So we let $W^{*}=\langle W, r\rangle \leqslant A(\Sigma)$, so that $W^{*}=W .\langle r\rangle$ (semi-direct) .

Now in the case of a normal form, $H^{l}(\sigma, W)=\zeta(W)$. However, in the case of an exterior form, when σ acts as $q \subset$ on V, we have :-

Lemma 6．4．There is a bijection $\psi: H^{1}(\sigma, W) \longrightarrow \wp_{z}\left(W^{*}\right)$ ，where $\boldsymbol{\zeta}_{z}\left(W^{*}\right)$ is the set of conjugacy classes of W^{*} which are contained in the coset $W r$ ．

Proof．Now $\zeta_{r}\left(W^{*}\right)$ is well－defined since $W r$ is a union of conjugacy classes of W^{*} ．For $\left(w_{1} \tau\right)^{W}=w_{1}{ }^{W} \cdot W \cdot w^{-\tau} \cdot \tau \in W \tau$ and
$\left(w_{1} \tau\right)^{\tau}=w_{1}, \tau \in W z$.
Now $\mathrm{w}_{1}-\widetilde{\mathrm{n}} \mathrm{w}_{2} \Longleftrightarrow \exists^{-} \Longleftrightarrow \in \mathrm{W}$ with $\mathrm{w}_{1}=\mathrm{w} \cdot \mathrm{w}_{2} \cdot \sigma(\mathrm{w})^{-1}$ $\Longleftrightarrow \exists \mathrm{w} \in \mathrm{W}$ with $\mathrm{w}_{1}=\mathrm{w} \cdot \mathrm{w}_{2} \cdot$ と．$W^{-1} \cdot \tau^{-1}$ $\Longleftrightarrow \exists \mathrm{w} \in \mathrm{W}$ with $\mathrm{w}_{1} \tau=\mathrm{w} \cdot \mathrm{w}_{2} \subset \cdot \mathrm{w}^{-1}$ $\Longleftrightarrow \quad \mathrm{w}_{1} \tau \widetilde{W} \mathrm{w}_{2} \tau$ ，where \widetilde{W} denotes W－conjugacy． Thus，there is a bijection $\psi: H^{l}(\sigma, w) \longrightarrow\left\{\{w, \tau\}^{W}: w \in W\right\}$ ，ie． the set of W－conjugacy classes of $W \mathbf{W}$ ．

Now $\{w r\}^{W r}=\left\{w \varepsilon^{W_{1} z}: w_{1} \in W\right\}=\left\{w_{1} \tau \cdot w と \cdot \varepsilon^{-1} w_{1}^{-1}: w_{1} \in W\right\}$

$$
=\left\{w_{1} w^{-1} \cdot w z \cdot w_{1}^{-1}: w_{1} \in w\right\}=\{w \varepsilon\}^{W} .
$$

Hence $\{w \tau\}^{W^{*}}=\{w \tau\}^{W} \cup\{w と\}^{W}=\{w \tau\}^{W}$ ，and the W^{*}－conjugacy classes of We are identical with the W－conjugacy classes of ．We ．

Thus $, \psi: H^{l}(\sigma, W) \longrightarrow \mathscr{C}_{r}\left(W^{*}\right)$ is a bijection such that if w is a representative of $h \in H^{l}(\sigma, W)$ ，we have $\psi(h)=\{w と\}^{W^{*}}$－the ＊＊＊ ºnjugacy class containing $^{*} \boldsymbol{\mathcal { E }}$ ．

Hence，to find the structure of the maximal tori T_{W} of ${ }^{2} G\left(K_{o}\right)$ ，we must determine the elementary divisors of $\Delta_{\pi} /(q \cdot w \tau-I) \Delta_{\pi}$ ，where $G=G_{\pi, K}$ and $w z$ runs through the representatives of the classes of $\zeta_{r}\left(W^{*}\right)$ ．We now consider the groups W^{*} for the groups ${ }^{2} A_{l},{ }^{2} D_{l}$ and
${ }^{2} E_{6}$, in which case $\tau^{2}=1$ and $W r$ is the unique nontrivial coset of W in W^{*}.
§6.3. The root systems of type A_{ℓ}, D_{ℓ} and E_{6} -
Type $A_{\ell} \cdot(l \geqslant 2)$. We must assume that $\ell \geqslant 2$ because τ is the identity in the case A_{1}. Let \sum be a root system of type A_{l}. For $\ell \geqslant 2$, let $\tilde{z} \in \mathbb{A}(\Sigma)$ be the automorphism $\tilde{z}: p_{i} \longmapsto p_{\ell+1-i}$, where $\pi=\left\{p_{i}\right\}_{i=1}^{\ell}$ is a fired fundamental system in $\widehat{\Sigma}$. It is clear that the automorphism

of $D(\Sigma)$ induced by $\tilde{\mathcal{c}}$ is the unique nontrivial automorphism τ of the graph of $\mathcal{\Sigma}$. The group $A(\hat{\Sigma}) / W(\hat{\Sigma})$ is isomorphic to Z_{2}. Since $-1 \in A\left(\Sigma_{1}\right)$ always, but $-1 \notin W(\Sigma)$ in this case, we see that $A(\Sigma) \cong W(\Sigma) \times\{1,-1\}$, and $W_{0}=-\tilde{\Sigma}$. Furthermore, the unique non-trivial element c of $A(\Sigma) / W\left(\Sigma_{1}\right)$ acts on $\Delta_{s c} / \Delta_{\text {ad }}$ by the automorphism $x \longmapsto-x$, by Lemma 6.3.

Type E_{6}. Let \sum be a root system of type E_{6} with fundamental system

Let $\tilde{\tau} \in A(\Sigma)$ be the automorphism which maps $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}$ into $p_{6}, p_{5}, p_{3}, p_{4}, p_{2}, p_{1}$ respectively. As for A_{l}, it is clear that the automorphism of $D(\mathcal{\Sigma})$ induced by $\tilde{\boldsymbol{\tau}}$ is the unique nontrivial automorphism ε of the graph of $\mathbb{\Sigma}$. Also $-1 \notin W(\mathcal{K})$, so
$A(\Sigma) \cong W(\approx) x\{1,-l\}$, and $w_{0}=-\check{\Sigma}$. Further, the unique nontrivial element $\tau \in A(\mathcal{\Sigma}) / W(\mathcal{\Sigma})$ acts on $\Delta_{\text {sc }} / \Delta_{\text {ad }}$ by the automorphism $x \longmapsto-x$.

Type D_{l}. Let \sum be a root system of type D_{l} with fundamental system $\pi=\left\{p_{i}\right\}_{i=1}^{\ell}$ such that \sum_{i} has graph $p_{1} p_{0} \ldots \ldots .$.

Lemma 6.5. $W\left(B_{l}\right) \cong A\left(D_{l}\right)=W\left(D_{l}\right) .\langle\varepsilon\rangle=W^{*}$, for $\ell \geqslant 5$.

Proof. As above, let $w_{p_{i}}=w_{i}$. Since $\tau \cdot w_{a} \cdot \tau^{-1}=w(a)$, then. centralises w_{i} for $i \in\{1, \ldots, \ell-2\}$ and permutes $w_{\ell-1}$ and ${ }_{l}{ }_{\ell} \cdot$ Now $W^{*}=\langle W(D), \tau\rangle=\left\langle W_{1}, \ldots, w_{e-1}, \tau: R\right\rangle$, where R is the set of defining relations :-
$R=\left\{w_{i}^{2}=\varepsilon^{2}=1 ;\left(w_{i} w_{i+1}\right)^{3}=1\right.$ for $i<\ell-1 ;\left(w_{i} \varepsilon\right)^{2}=1$ for $i<\ell-1$;

$$
\left.\left(w_{i} w_{j}\right)^{2}=1 \text { for } j \neq i+1 ; \quad\left(w_{l-1} r\right)^{4}=1\right\},
$$

since $\left(w_{l-1} r\right)^{2}=w_{\ell-1} \cdot \tau w_{\ell-1} \tau=w_{\ell-1} \cdot w_{l}$.
.Hence , W^{*} is a Coxeter group satisfying the relations of $W\left(B_{\ell}\right)$, so W^{*} is isomorphic to a factor group of $W\left(B_{\ell}\right)$. Since $\left|W^{*}\right|=\left|W\left(B_{l}\right)\right|=2^{l} \cdot l!$, then $W^{*} \cong W\left(B_{l}\right)$.

Corollary 6.5. The set $\zeta_{\varepsilon}\left(W^{*}\right)$ of conjugacy classes is in 1-1 correspondence with the pairs of partitions $[\lambda, \bar{\mu}]$ of ℓ, consisting of an odd numbers of negative cycles .

Proof. By Lemma 6.5., the classes of $\zeta_{c}\left(W^{*}\right)$ are those in $W\left(B_{l}\right) \cong W\left(c_{l}\right)$ which are not in $W\left(D_{\ell}\right)$. By $\S 4.1$, these are the classes of $W\left(C_{l}\right)$ which correspond to pairs of partitions $[\lambda, \bar{\mu}]$ of l, consisting of an odd number of negative cycles .
\square
NOTE. As we see in Table 6.1., when $\ell=4$, there is a further automorphism $\rho \in D(\Sigma)$ of order 3 given by $\rho: p_{1} \longrightarrow p_{3} \longmapsto p_{4} \longrightarrow p_{1}$ and $\mathrm{p}_{2} \longrightarrow \mathrm{p}_{2}$,

In this case, we still have the automorphism τ interchanging
p_{3} and p_{4}, and $D\left(D_{4}\right)=\left\langle\rho, r: c^{2}=\rho^{3}=(r \rho)^{2}=1\right\rangle \cong S_{3}$. So that, although $W^{*}<A\left(D_{4}\right)$ (strictly), we still have $W^{*}=W\left(D_{4}\right) \cdot\langle r\rangle \cong W\left(B_{4}\right)$.

Then ρ acts on $\Delta_{s c} / \Delta_{\text {ad }}$ by permuting the $\Delta_{\pi_{i}}$ for $i=1,2,3$. in a cycle of order 3. However, we leave the Steinberg groups ${ }^{3} \mathrm{D}_{4}(\mathrm{q})$ until Chapter 7 , for reasons which become obvious there.
§6.4. The groups ${ }^{2} A_{l},{ }^{2} \mathrm{D}_{\ell}(\boldsymbol{l}$ odd $)$ and ${ }^{2} E_{6}$.
In all these cases,τ acts on $\Delta_{s c} / \Delta_{\text {ad }}$ by $\tau: x \longmapsto-x$, and hence τ fixes the subgroup lattice of $\Delta_{\mathrm{sc}} / \Delta_{\mathrm{ad}}$. Hence,${ }^{2}{ }_{G}\left(K_{o}\right)$ is defined for the group. $G_{\pi, K}=G$ for all possible faithful representations π of g (of type $A_{l}, D_{l}(l$ odd $)$ or $\left.E_{6}\right)$, since then $\tau\left(\Delta_{\pi}\right)=\Delta_{\pi}$ for all Δ_{π} with $\Delta_{a d} \subset \Delta_{\pi} \subset \Delta_{s c}$.

Lemma 6.6. For \sum of type A_{l}, D_{l} (lodd) or $E_{6}, \quad \varepsilon=-w_{0}$ and $W^{*} \cong W \times\{1,-1\}$. Further,$\left|\mathscr{\zeta}\left(W^{*}\right)\right|=2|\mathscr{\zeta}(W)|$ and $Z(W)=1$. . The set $\zeta_{\varepsilon}\left(W^{*}\right)$ is just the set $\{-C: C \in \zeta(W)\}$, and the classes $H^{1}(\sigma, W)$ are in. 1-1 correspondence with the W-conjugacy classes of W ie. the set $\mathscr{C}(W)$ under the map $\bar{\psi}=-\psi$, (for ψ as in Lemma 6.4). So that $\bar{\psi}^{-1}: \breve{C}(w) \longrightarrow H^{1}(\sigma, w)$ by $\bar{\psi}^{-1}: c \longmapsto c . w_{0}$, for $c \in \mathscr{C}(W)$.

Proof. The first statement follows from the investigation of the root systems above . Secondly, we know from $\$ 2.4$ that \mathcal{z} acts on the set of
graphs $\left\{\Gamma_{C}: C \in \mathscr{C}(W)\right\}$. In the case where \mathcal{K} is of type A_{l} or E_{6}, there is a ll correspondence between admissible graphs and conjugacy classes in W. Hence, τ must fix each class $c \in \mathscr{C}(W)$. However, in groups of type D_{l}, there is no such correspondence, but for ℓ odd, there is a l-l correspondence between conjugacy classes in W and signed cycle-iypes $[\lambda, \bar{\mu}]$ with s even. Now \mathcal{C} acts on the class C corresponding to the cycle-type $[\lambda, \bar{\mu}]$ by mapping w to $w^{\boldsymbol{c}}$. Let γ be the cycle of $\left\{e_{i}\right\}_{i=1}^{\ell}$ under w which contains e_{ℓ}. Then \mathcal{C} fixes all other cycles , and acts on γ in the following way :-

$$
\text { if } \begin{aligned}
\gamma= & \left(\ldots \ldots e_{i} e_{\ell} e_{j} \ldots \ldots\right), \text { then } \gamma^{z}=\left(\ldots e_{i}-e_{\ell} e_{j} \ldots \ldots\right) \text { and } \\
& \operatorname{sgn}\left(\gamma^{r}\right)=\operatorname{sgn}(\gamma) .
\end{aligned}
$$

Hence, w^{2} has the same cycle type as w, and τ fixes the classes $\mathscr{C}\left(W\left(D_{l}\right)\right)$ for ℓ odd. In fact, this follows directly since $\varepsilon=-W_{0}$, but we need the fact that τ fixes the signed cycle-type of any $w \in W\left(D_{l}\right)$ for any l, in $\S 6.5$.

By Proposition $2.5,\left|\zeta_{c}\left(w^{*}\right)\right|=|\zeta(w)|$ and $\zeta_{\varepsilon}\left(w^{*}\right)=\{-c: c \in \zeta(w)\}$. Then, by Lemma 6.4, ψ is the map $\psi: \zeta(W) \longrightarrow H^{l}(\sigma, w)$ such that $\psi: C \longmapsto C r=-\mathrm{Cw}_{\mathrm{O}} . \quad$ So we put $\bar{\psi}=-\psi$.

Corollary 6.6. Let $\zeta(W)=\left\{C_{i}\right\}_{i=1}^{r}$, and let $w_{i} w_{0}$ be a representative element of C_{i}, for a subset $\left\{w_{i}: i=1, \ldots r\right\} \subset W$. Then a representative for the corresponding element $h_{i} \in H^{l}(\sigma, W)$ is w_{i}.

Proof. By Lemmas 6.4 and 6.6 .

Proposition 6.7. Let $G=G_{\pi, K}$ be a simple group of type A_{l}, D_{l} (ℓ odd) or E_{6}, and let $w_{i} \in W$ be the representative of the element $h_{i} \in H^{l}(\sigma, W)$, as above. Let $E_{i}=\left\{e_{i j}=f_{i j}(q): j\right.$ runs over some subset $\left.N_{i} \subset N\right\}$, so that $E_{i} \subset Z(q)$, be the elementary divisors for the torus $T_{W_{i}} W_{0}$ in the corresponding Chevalley form $G\left(K_{0}\right)$. Then the elementary divisors for the maximal torus ${ }^{2} T_{w_{i}}$ of the group ${ }^{2} G\left(K_{0}\right)$ in the conjugacy class corresponding to h_{i} under Q are ${ }^{2} E_{i}=\left\{{ }^{2} e_{i j}=\left|f_{i j}(-q)\right|: j \in N_{i}\right\}$.

Proof. Given a K_{0}-split maximal torus T of $G=G \pi, K$, and a maximal torus \bar{T}_{W}, twisted from T by $w \in W$, the action of σ^{*} on $X\left(\bar{T}_{W}\right) \cong \Delta_{\pi}$ is given by $q \cdot w \tau=-q \cdot w_{0}$, by Proposition 1.3.

Hence, $\left.{ }^{2} T_{W}=\left(\bar{T}_{W}\right)_{\sigma} \cong \Delta_{\pi} /(-q) . W_{o}-I\right) \Delta_{\pi}$, by Proposition 1.4.
Thus, for $w=w_{i}, \quad{ }^{2} e_{i j}=\left|f_{i j}(-q)\right|$.

Hence we may obtain the sets ${ }^{2} E_{i}$ for the group ${ }^{2} G\left(K_{o}\right)$ by changing the sign of q in the sets E_{i} for the corresponding group $G\left(K_{o}\right)$, and we have determined these latter in Chapters 3,4,5.
§6.5. The groups ${ }^{2} D_{l}$ for ℓ even \cdot
In this case, τ acts on $\Delta_{s c} / \Delta_{a d}$ by permuting $\Delta_{\pi_{2}}$ and $\Delta_{\pi_{3}}$, so that, by $\$ 1.2$, we may only consider G to be one of $G_{a d, K}, G_{s c, K}$ or $G_{\pi_{1}, K}$. We have seen, in the proof of Lemma 6.6 , that τ acts on $\zeta(W)$ by mapping the class with signed cycle-type $[\lambda, \bar{\mu}]$ to another class with the same signed cycle-type. When ℓ is odd, we have
seen that this just means that \mathcal{c} fixes every element of $\mathscr{C}(\mathrm{w})$, but when l is even, there are two classes corresponding to the signed cycle-type $[\lambda]$, where λ_{i} is even for all $i \in\{1, \ldots, t\}$. Hence, this allows the possibility of τ permuting such elements of $\mathscr{C}(W)$. In. fact ,

Lemma 6.8. If C and C^{\prime} are two distinct classes in $\mathscr{C}(W)$ with the same signed cycle-type, then $C^{r}=C^{\prime}$.

Proof. By Lemma 6.5, we know that $W^{*} \cong W\left(C_{l}\right)$, and $Z(w)=\{1,-1\}$. Now, there is a l-l correspondence between classes and signed cycle-types in W^{*}, by [6] . Hence, the two classes C and C' cannot be distinct inside W^{*} and so must fuse under action by W^{*}. Thus C and C^{\prime} are permuted by W^{*} / W, ie. by τ. \square

Corollary 6.8. Let $|\zeta(W)|=r$, and suppose that there are r_{2} distinct "even-positive" partitions of l. Then there are r_{1} classes fixed by τ acting on $\zeta(W)$, and $2 r_{2}$ classes which are permuted in cycles of order 2 , where $r=r_{1}+2 r_{2}$. Then the number of classes of W^{*} in: the coset $W と$ is r_{1}, and the total number of conjugacy classes of $W^{*} \cong W\left(B_{\ell}\right)$ is $\left(2 r_{1}+r_{2}\right)=2 r-3 r_{2}$.

Proof. By the proof of Lemma 6.6, all the classes of $\mathscr{C}(W)$ are fixed except those corresponding to "even-positive" partitions . The result follows from Lemma 6.8, using Proposition 2.5.
\square

Hence, we see that by Corollary 6.5 , if $G=G \pi, K$, then the maximal tori of the group ${ }^{2}{ }_{G}\left(K_{o}\right)$ of type D_{l} (ℓ even) have the same structure as those of the corresponding (via lattices) Chevalley group $B_{\ell}\left(K_{o}\right)$ which do not correspond to conjugacy classes of $W\left(D_{\ell}\right)$. The correspondence here is
if π is ad or $s c$, we take $\left(B_{l}\right)_{s c, K}\left(K_{o}\right)$,
if π is π_{1}, we take $\left(B_{l}\right)_{a d, K}\left(K_{0}\right)$. (see Proposition 4.4).
We put this on a more formal basis in the following way . First we make two definitions to determine the classes of $H^{1}(\sigma, W)$.

Definition 6.1. Let \mathcal{B} be the partition of W defined by associating with each $p_{i} \in \theta$ an ordered n-tuple $N_{i}=\left[\nu_{1}, \nu_{2}, \ldots, \nu_{n}\right]$ of positive and negative integers with $\sum_{j=1}^{n}\left|\nu_{j}\right|=\ell$, such that $w \in p_{i}$ if w acts as a
 of the natural basis $\left\{e_{j}\right\}_{j=1}^{\ell}$ of V. (This is a finer partition than that effected by the signed-cycle type).

Definition 6.2. Let $\eta=\{N: N$ is an ordered n-tuple of integers $\}$ and let Ω be the set of pairs of partitions $[\lambda, \bar{\mu}]$ of l. We define a function $g: \Upsilon \longrightarrow \Lambda$ which maps an ordered n-tuple N onto the (unordered) n-tuple $g(\mathbb{N})$. Let $\bar{N}=\left[\nu_{1}, \nu_{2}, \ldots,-\nu_{n}\right]$.

Lemma 6.9. Let $[\lambda, \bar{\mu}]$ be any signed cycle-type corresponding to a class $c \in \mathscr{C}_{2}\left(W^{*}\right)$ and consider all those $p_{i} \in P$ such that $g\left(\bar{N}_{i}\right)=[\lambda, \bar{\mu}]$.

Let $h=\bigcup_{p_{i}}$. Then $h \in H^{l}(\sigma, W)$ and $\psi(h)=C$.

Proof. Let $w \in p_{i}$ with associated $N_{i}=\left[\nu_{1}, \nu_{2}, \ldots, \nu_{n}\right]$. Then, since τ fixes e_{j} for $j<\ell$ and $\tau: e_{\ell} \longmapsto \boldsymbol{e}_{\ell}$, it is clear that we has associated with it the n-tuple $\overline{\mathbb{N}}_{i}=\left[\nu_{1}, \nu_{2}, \ldots, \nu_{n-1},-\nu_{n}\right]$.

Let $w_{i} \in p_{i}$ and $w_{j} \in p_{j}$ for p_{i}, p_{j} as above. Then

$$
\begin{aligned}
w_{i} \tilde{R}^{\prime} w_{j} & \Longleftrightarrow w_{i} \tau, w_{j} \tau \in c \cdot \\
& \Longleftrightarrow g\left(\bar{N}_{i}\right)=g\left(\bar{N}_{j}\right)=[\lambda, \bar{\mu}] .
\end{aligned}
$$

Hence $h=\bigcup p_{i}$.

This determines the classes of $H^{1}(\sigma, W)$, and we finally have :Proposition 6.10. Let $w \in p$ such that $g(\bar{N})=[\lambda, \bar{\mu}]$, and suppose that $p \subset h$ for $h \in H^{l}(\sigma, W)$. Then the maximal tori 2_{W} of the group ${ }^{2} G_{\pi, K}\left(K_{o}\right)$ of type $D_{l}(l$ even $)$ corresponding to the class h have elementary divisors given by :-
(i). Proposition 4.5, if $\pi=\pi$,
(ii). Proposition 4.18 , if $\pi=$ ad or sc .

Proof. This follows from Lemma 6.9.

CHAPTER 7. Finite groups of twisted type ${ }^{2} G_{2}\left(g^{2}\right),{ }^{2} B_{2}\left(g^{2}\right),{ }^{2}{ }^{2}{ }_{4}\left(q^{2}\right)$ and ${ }^{3}{ }_{4}(a)$.

If one does not take account of the type of nodes in the set of diagrams of simple groups $G \pi, K$, then the list of graph automorphisms in Table 6.1 is completed by the addition of three cases, represented in. Table 7.1. These automorphisms are described in $\$ 1.2$, where we note that such automorphisms only occur when $p=2$ or 3 , depending upon the type of the root system $\mathbb{\Sigma}$ of g. Due to the nature of these automorphisms, the diagrams of Table 7.1 do not give rise to new exterior forms of $G_{\pi, K}$. However, R. Ree [14] showed that one can, under certain. conditions, associate with them abstract groups which are analogues of groups of rational points ${ }^{\boldsymbol{6}} \mathrm{G}_{\mathrm{G}}\left(\mathrm{K}_{\mathrm{o}}\right)$ of exterior forms. These are the Ree groups ${ }^{2} G_{2}\left(q^{2}\right)$ and ${ }^{2} F_{4}\left(q^{2}\right)$, and the Suzuki groups ${ }^{2} B_{2}\left(q^{2}\right)$ which were originally discovered by \mathbb{M}. Suzuki [22] in a very different light.

In this Chapter , we complete our discussion by finding the structure of the maximal tori in the remaining finite groups of Lie type, viz. the Ree and Suzuki groups and the Steinberg grouns ${ }^{3} D_{4}(q)$, and we begin by examining the procedure for obtaining the Ree and Suzuki groups in § 7.1. The reason for including the groups ${ }^{3} D_{4}(q)$ in this Chapter is that the groups ${ }^{3} D_{4}(q)$ and ${ }^{2} F_{4}\left(q^{2}\right)$ are very closely related and, had we not already considered the groups ${ }^{2} \mathrm{D}_{4}(\mathrm{q})$ in Chapter 6 , it would be convenient to also discuss those in this Chapter. In fact, if \sum is a root system of type F_{4} then both the long roots $\mathcal{\Sigma}_{\ell}$ and the short roots
\sum_{s} form root systems of type D_{4}.

87.1. Construction of the Ree and Suzuki groups.

If one attemps to reproduce the construction of $\$ 6.1$ by taking a figure ${ }^{2} G$ from Table 7.1 , then., as in $\S 1.2$, one can prove that for certain fields K_{I}, (of characteristic $p=2$ if $G=B_{2}$ or F_{4}, and of characteristic 3 if $G=G_{2}$, the group $G\left(K_{1}\right)$ has automorphisms σ of order 2. By analogy with the exterior forms, we shall call a group of points fixed under such an automorphism σ a twisted group of type ${ }^{2} G\left(K_{1}\right)$. The essential difference between the two types is that here, no field K_{o} plays the rôle of "base field" .

Another automorphism σ^{\prime} of $G\left(K_{1}\right)$ of order 2 , which possesses the same properties as σ, will be said to be equivalent to σ if it is the transform of σ by an inner automorphism of $G\left(K_{1}\right)$. The classification of the automorphisms , (and hence the Ree groups), is given by the following Theorem, due to Ree, [14].

Theorem 7.1. If $G=B_{2}$ or $F_{4}(r e s p . ~ G 2)$, the equivalence classes of automorphisms of order 2 of $G\left(K_{1}\right)$, which act in the way shown in Table 7.1, are in canonical l-1 correspondence with the automorphisms θ of K_{1} such that $\left(x^{2}\right)^{\theta^{2}}=x,\left(\operatorname{resp} .\left(x^{3}\right)^{\theta^{2}}=x\right)$, for all $x \in K_{1}$.

Thus to every automorphism θ of K_{l} satisfying.this relation, there is associated a group of type ${ }^{2}{ }_{G}\left(K_{1}\right)$, which one could write as ${ }^{2}\left(\boldsymbol{\theta}, K_{1}\right)$,
although we will not need to make use of such a notation.

TABLE 7.1.

The field $K_{1}=G F(q)$ of $q=p^{n}$ elements has an automorphism θ such that $\left(x^{p}\right)^{\theta^{2}}=x$ if and only if $n=2 m+1$, for any $m \geqslant 0$. Then θ must be the automorphism $x^{\theta}=x^{p^{m}}$, and the uniqueness of this automorphism will permit us, in the case of a finite field K_{1}, to speak without ambiguity of the Res group ${ }^{2} G\left(K_{1}\right)$, where $K_{1}=G F\left(p^{2 m+1}\right)$.

$$
\begin{aligned}
& \text { Specifically, by [7] , we have } \sigma \text { defined on generators as :- } \\
& \sigma:\left\{\begin{array}{lll}
x_{a}(t) \longmapsto & \rho^{a}\left(t^{p^{m}}\right) & \text { if } a \in \pi \\
x_{a}(t) \longmapsto & \text { is long } \\
\left.\rho^{(} t^{p^{m+1}}\right) & \text { if } a \in \pi & \text { is short }
\end{array}\right\} \text {, where } \rho
\end{aligned}
$$

is the permutation of π described in the corresponding diagram ${ }^{2} G$ of Table 7.1.

Now let K be the algebraic closure of the field $K_{1}=\operatorname{GF}\left(p^{2 m+l}\right)$, where $p=2$ (resp. 3) and let $G=G \pi, K$ be a simple algebraic group of type B_{2} or $\mathrm{F}_{4}\left(\right.$ resp. $\left.G_{2}\right)$. Then, with σ defined as above, we know that $G_{\sigma^{2}}=G\left(K_{1}\right)$. Hence, since $\left(G_{\sigma^{2}}\right)_{\sigma}=G_{\sigma}$, we know that $G_{\sigma}={ }^{2}{ }_{G}\left(K_{1}\right)$, the twisted group of type G. Thus, we may use the results of Chapter 1 to find the structure of the maximal tori of the Ree and Suzuki groups .

Let \mathcal{L} be a root system of type B_{2}, G_{2} or F_{4} embedded in a real
vector space V. Now σ induces, by Proposition 1.3, an isometry τ of V and also, via the permutation ρ of π, an automorphism of W. Hence r acts on W and we consider the group $W^{*}=\langle W, \varepsilon\rangle$, which is the semi-direct product of W by τ. Then W^{*} is a group of automorphisms of V, although $A(\Sigma)=W(\Sigma)$ is a proper, normal subgroup of W^{*} since τ does not preserve $\mathcal{\Sigma}$. In fact, $\mathcal{\tau}$ is an isomorphisk of root systems and maps \mathcal{Z} into a distinct root system \mathbb{K}^{\prime} of the same type embedded in V.

We recall Lemma 6.4 , which sets up a bijection $\psi: H^{l}(\sigma, W) \longrightarrow \bigodot_{z}\left(W^{*}\right)$ and this holds in this case . We proceed by considering each group in turn., but first we prove a general result on Dihedral groups. The reason for proving this is that if \mathcal{K} is of type B_{2} or G_{2}, then W is a Dihedral group of order divisible by 4 .

Lemma 7.2. Let w be the Dihedral group, $w=\left\langle x, y: x^{2}=y^{2}=(x y)^{2 n}=1\right\rangle$, of order 4 n , and let τ be the involutive automorphism of W which permutes x and y. Then $\left|\varphi_{r}\left(W^{*}\right)\right|=(n+1)$, and a set of representatives of the elements of $\mathscr{C}_{\varepsilon}\left(W^{*}\right)$ is $\left\{\tau, x \boldsymbol{x},(x y) x \boldsymbol{f},(x y)^{2} x \tau, \ldots,(x y)^{n-1} \cdot x \boldsymbol{x}\right\}$.

Proof. Now $\boldsymbol{\zeta}(w)=(n+3)$, with classes represented by

$$
c_{0}=\{1\}^{W}, c_{1}=\{x y\}^{W}, c_{2}=\left\{(x y)^{2}\right\}^{W}, \ldots, c_{n}=\left\{(x y)^{n}\right\}^{W}, c_{n+1}=\{x\}^{W}
$$

and $C_{n+2}=\{y\}^{W}$.
the last two . Hence , by Proposition 2.5, the number of classes of $\zeta_{z}\left(W^{*}\right)$ is just $(n+1)$.

As we remarked earlier, this does not supply us with a list of representatives of elements of $\zeta_{r}\left(W^{*}\right)$, but it does serve as a useful check. To determine representatives, we see that the W-conjugacy classes of $W z$ are :-

$$
\begin{aligned}
& \{\tau\}^{W}=\left\{\tau,(x y) \tau,(x y)^{2} \tau, \ldots,(x y)^{2 n-1} \tau\right\} \\
& \left\{(x y)^{s} x \tau\right\}^{W}=\left\{(x y)^{s} x \tau,(x y)^{2 n-s-1} x \tau\right\} \text { for } s \in\{0,1, \ldots, n-1\}
\end{aligned}
$$

Now, we have seen in the proof of Lemma 6.4 that the W^{*}-conjugacy classes of W^{*} are the W-conjugacy classes of W^{*}. Hence we have the result as claimed. \square

NOTE. We could get information by looking at the action of τ on $\left\{\Gamma_{C}: C \in \zeta_{(W)}(W)\right.$ as in Lemma 2.4, but this would not enable us to find the representatives of $H^{I}(\sigma, W)$, as Lemma 7.2 does .
§7.2. The Suzuki groups ${ }^{2} B_{2}\left(q^{2}\right)$, where $q^{2}=2^{2 m+1}$.
In this case, τ is the operation of reflection in the dotted line shown at an angle of $67 \frac{1}{2}^{\circ}$ with the root a, where $\pi=\{a, b\}$ is a fundamental system for \mathcal{Z}. Furthermore, in this case , $\operatorname{Hom}\left(\Delta_{\mathrm{sc}} / \Delta_{\text {ad }}, \mathrm{K}^{*}\right)$ is trivial, since K has
 characteristic 2. Hence, the centre of $G_{s c, K}$ is trivial, and the
isogeny $G_{s c, K} \longrightarrow G_{a d, K}$ becomes a radical isogeny. Thus we need only consider (up to radical isogeny) the groups $G_{a d, K}$, by considering the action of σ^{*} on $\Delta_{a d}$.

Now, in this case, $W=\left\langle w_{a}, w_{b}: w_{a}{ }^{2}=w_{b}{ }^{2}=\left(w_{a} w_{b}\right)^{4}=1\right\rangle$ is a Dihedral group of order 8 . Hence, by Lemma $7.2,\left|\mathscr{C}_{2}\left(w^{*}\right)\right|=3$ and represontatives of the 3 elements of $\mathscr{C}_{z}\left(w^{*}\right)$ are $\left\{\tau, w_{a} \tau,\left(w_{a} w_{b}\right) w_{a} \tau\right\}$. Thus , by Lemma 6.4, representatives of the 3 elements of $H^{1}(\sigma, W)$ are $\left\{1, w_{a}, w_{a} w_{b} w_{a}\right\}$. By Propositions 1.3 and 1.4 , a maximal torus of $2_{B_{2}}\left(K_{1}\right)$ corresponding to the representative w. has relation matrix (q. (we $\left.)_{\pi}-I\right)$. Then, by Theorem 1.2 , there are 3 conjugacy classes of maximal tori in ${ }^{B_{2}}\left(K_{1}\right)$ with relation matrices corresponding to the 3 representatives above . Hence we must determine the action of we on $\Delta_{a d}$, for $w \in\left\{1, w_{a}, w_{a} w_{b} w_{a}\right\}$. Then we have :

Proposition 7.3. There are 3 conjugacy classes of maximal tori in the groups ${ }^{2} B_{2}\left(q^{2}\right)$, and these are described in the following table together with the order of the corresponding group W_{σ}.

Representative element	Order of class	$\left\|w_{\sigma}\right\|$	Elementary divisors
1	4	2	$e_{1}=\left(q^{2}-1\right)$.
w_{a}	2	4	$e_{1}=\left(q^{2}-\sqrt{2} q+1\right) \cdot$
$w_{a} w_{b} w_{a}$	2	4	$e_{1}=\left(q^{2}+\sqrt{2} q+1\right)$.

Proof. We omit the details but note that the matrices (q. $(w \boldsymbol{\sim})_{\pi}-I$) diagonalise over the ring $2[q / \sqrt{2}] \quad$ - \square

This completes the case for the groups ${ }^{2} B_{2}\left(K_{1}\right)$.
87.3. The Ree groups ${ }^{2} G_{2}\left(q^{2}\right)$, where $q^{2}=3^{2 m+1}$.

In this case, τ is the operation of reflection in the dotted line shown at an angle of 75° with the root a, where $\pi=\{a, b\}$ is a fundamental system for \sum. Also, $\Delta_{\text {sc }}=\Delta_{\text {ad }}$, so that we only need consider the action of σ^{*} on
$\Delta_{a d}$.
When \mathcal{Z} is of type G_{2}, then W is a Dihedral group,
$\left\langle\mathrm{w}_{\mathrm{a}}, \mathrm{w}_{\mathrm{b}}: \mathrm{w}_{\mathrm{a}}^{2}=\mathrm{w}_{\mathrm{b}}{ }^{2}=\left(\mathrm{w}_{\mathrm{a}} \mathrm{w}_{\mathrm{b}}\right)^{6}=1\right\rangle$ of order 12 . Hence, by Lemma 7.2,

$$
\left|\zeta_{r}\left(w^{*}\right)\right|=4 \text { and representatives of }
$$

$$
\text { the } 4 \text { elements of } \zeta_{z}\left(w^{*}\right) \text { are }\left\{\tau, w_{a} \tau, w_{a} w_{b} w_{a} \tau,\left(w_{a} w_{b}\right)^{2} w_{a} \tau\right\} \text {. }
$$ As in $\S 7.2$, we have :-

Proposition 7.4. There are 4 conjugacy classes of maximal tori in the groups ${ }^{2} G_{2}\left(q^{2}\right)$, and these are described in the following table together with the order of the corresponding group W_{σ}.

Representative element	Order of class	$\left\|w_{\sigma}\right\|$	Elementary divisors
1	6	2	$e_{1}=\left(q^{2}-1\right)$.
w_{a}	2	6	$e_{1}=\left(q^{2}-\sqrt{3} q+1\right)$.
$w_{a} w_{b} w_{a}$	2	6	$e_{1}=\theta_{2}=2, e_{3}=\frac{1}{4}\left(q^{2}+1\right)$.
$\left(w_{a} w_{b}\right)^{2} w_{a}$	2	6	$e_{1}=\left(q^{2}+\sqrt{3} q+1\right)$.

Proof. We omit the details but note that the matrices (q. $\left.(w)_{\pi}-I\right)$ diagonalise over the ring $Z[q / \sqrt{3}]$ only in cases (i), (ii) and (iv). In case (iii), however, the matrix ($q .(w \varepsilon)_{\pi}-I$) reduces to

$$
\left[\begin{array}{cc}
q / \sqrt{3}+1 & 2 \\
-2 & \sqrt{3} q-3
\end{array}\right] \xrightarrow{-\frac{1}{2}(q / \sqrt{3}+1) c_{2}}\left[\begin{array}{cc}
0 & 2 \\
\text { to } c_{1}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
0 & 2 \\
-\frac{1}{2}\left(q^{2}+1\right) & \sqrt{3} q-3
\end{array}\right] \rightarrow\left[\begin{array}{cc}
0
\end{array}\right]
$$

over Z since $q / \sqrt{3}=3^{m}$. This result is nontrivial since $\left(q^{2}+1\right)$ is divisible by 4 , and by no higher power of 2 , when $q^{2}=3^{2 m+1}$. Hence, $C_{2} \times C_{\frac{1}{2}\left(q^{2}+1\right)}$ is isomorphic to $C_{2} \times C_{2} \times C_{\frac{1}{4}\left(q^{2}+1\right)}$.

NOTE. In these two cases, the groups $C_{q^{2}-1}$ correspond to the K_{1}-split tori of $G\left(K_{1}\right)$. For groups of type B_{2} and G_{2} we may consider the action of τ on $\left\{\Gamma_{c}: c \in \zeta(W)\right\}$. Then we have

$$
\Gamma\left(B_{2}\right)=\{\phi, 0, \bullet, 0 \bullet, \omega\}
$$

and $\Gamma\left(G_{2}\right)=\{\phi, 0, \bullet, 0 \bullet, \bullet, \ldots\}$.
Hence, by Lemma 2.4, τ fixes each graph of $\Gamma(W)$ except 0 and \bullet, which are permuted, (since $\square \longrightarrow$ and \longrightarrow represent the same class in

7.9.

$\left.W\left(G_{2}\right).\right)$. Hence $\left|\mathscr{\zeta}_{\mathrm{r}}\left(\mathrm{W}^{*}\right)\right|=\mathrm{n}+1$, as in Lemma 7.2. In these cases, $2 \mathrm{n}=\mathrm{h}$ - the Coxeter number, $[4]$.

Also , in the list of representatives of Lemma 7.2, the final representative can be replaced by $(x y)^{n} \cdot x \tau$, ie. by $(x y)^{h / 2^{\prime}} x \tau$ in these cases (see the proof of Lemma 7.2.) . But $(x y)^{h / 2}=z$ is the unique non-identity central element of W, (see [10].). Further , $z=-1$ in these cases, so that for $w=\left(w_{a} w_{b}\right)^{n-1} w_{a}$, then $\left(q \cdot(w \tau)_{\pi}-I\right)$ is equivalent to the matrix $\left(q \cdot\left(z w_{a} r\right)_{\pi}-I\right)=\left((-q) \cdot\left(w_{a} r\right)_{\pi}-I\right)$. Since the matrix for the representative w_{a} of the class (ii) is diagonalisable over $Z[q / \sqrt{p}]$ in each case to give elementary divisors $e_{i}=f_{i}(q) \in Z[q / \sqrt{p}]$, then the elementary divisors corresponding to the final class are $\bar{e}_{i}=f_{i}(-q)$.

\$7.4. The Ree groups of type ${ }^{2} \mathrm{~F}_{4}\left(q^{2}\right)$, where $q^{2}=2^{2 m+1}$.

In this case , it is much more difficult to see geometrically how $₹$ acts on \sum, since \sum is embedded in a 4-dimensional real vector space. However, according to the diagram of Table 7.1 , τ acts by exchanging long roots with short roots, and vice-versa. Hence, τ acts on W by mapping a reflection due to a short root onto a reflection corresponding to a long root and vice-versa. Thus, τ acts on $\mathscr{C}(w)$ by mapping the graph Γ_{C} representing $C \in \zeta(W)$ to the graph $\Gamma_{\boldsymbol{C}}(\mathrm{c})$ representing $\tau(c) \epsilon \zeta(W)$, where $\Gamma_{\tau(C)}$ is obtained from Γ_{C} by exchanging each node by the node o and vice-versa. Hence, we can find $\boldsymbol{c}(c)$ for every
class $c \in \mathscr{C}(W)$ by looking at the graphs Γ_{C} listed in Table 5.2. In $W\left(F_{4}\right)$, we do have the situation where, in some cases, more than one graph represents a given class C . Hence, we do need the full list of admissible graphs and their respective classes in order to determine precisely where \mathcal{C} maps each graph Γ. I take this opportunity of thanking Professor R.W. Carter for supplying me with this information . We also list the graphs Γ^{r} in Table 5. 2 .

When g is of type F_{4}, then $\Delta_{\text {sc }}=\Delta_{\text {ad }}$ so that we only have one type of group in the isogeny class, viz. $G_{a d, K}$. Hence we need only consider the action of w on $\Delta_{\text {ad }}$, where w is a representative of each. element of $H^{l}(\sigma, W)$, in order to determine the elementary divisors of the matrix $\left(q \cdot(w \tau)_{\pi}-I\right)$.

Proposition 7.5. Let $W=W\left(F_{4}\right)$, then $\left|H^{1}(\sigma, W)\right|=11$.

Proof. If we look at Table 5.2 , we see that there are precisely 11 conjugacy classes C such that $\tau(C)=C$. Hence, by Proposition 2.5, since τ is of order 2,

$$
\left|\mathscr{C}\left(w^{*}\right)\right|=2 \times 11+\frac{25-11}{2}=29 \text { and }\left|\zeta_{r}\left(w^{*}\right)\right|=11 .
$$

Now, by Lemma 6.4 , there is a bijection $\psi: H^{l}(\sigma, W) \longrightarrow \rho_{r}\left(W^{*}\right)$, so the result follows .

Although this result does not supply us with representative elements for the classes of $H^{l}(\sigma, W)$, it does at least inform us when we have

TABLE 7.2.

Positive root i	Co-ordinates	w_{1} (i)	$\mathrm{w}_{2}(\mathrm{i})$	w_{3}	$\mathrm{w}_{4}(\mathrm{i})$	Length of root	$z(i)$
1	$(0,1,-1,0)$	-1	7	1	1	ℓ	2
2	($\left.\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)$	2	2	8	-2	s	1
3	$(0,0,1,-1)$	7	-3	5	3	ℓ	4
4	$(0,0,0,1)$	4	6	-4	8	s	3
5	$(0,0,1,1)$	11	5	3	9	ℓ	6
6	$(0,0,1,0)$	10	4	6	12	s	5
7	$(0,1,0,-1)$	3	1	11	7	ℓ	8
8	($\left.\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	8	12	2	4.	s	7
9	$(1,-1,0,0)$	15	9	9	5	ℓ	10
10	$(0,1,0,0)$	6	10	10	16	s	9
11	$(0,1,0,1)$	5	13	7	15	ℓ	12
12	$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$	16	8	14	6	s	11
13	$(0,1,1,0)$	13	11	13	17	ℓ	14
14	($\left.\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	18	14	12	14	s	13
15	$(1,0,-1,0)$	9	$17 i$	15	11	l	16
16.	$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)$	12	16	18	10°	s	15
17	$(1,0,0,-1)$	17	15	19	13	ℓ	18
18	$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	14	20	16	18	s	17
19	(1, 0, 0, 1)	19	21	17	19	ℓ	20
20	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$	20	18	22	20	s	19
21	($1,0,1,0$)	23	19	21	21	ℓ	22
22	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	22	22	20	24	s	21
23	$(1,1,0,0)$	21	23	23	23	ℓ	24
24	(1, 0, 0, 0)	24	24	24	22	s	23

completed our search for such representatives. Since ψ is just post-multiplication by ε, we direct our search to finding representatives of the 11 classes of $\zeta_{y}\left(W^{*}\right)$. Hence, we must investigate the nature of the group W^{*}.

Let \sum be a root system of type F_{4} embedded in a 4-dimensional real vector space V with natural basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. A fundamental system π for \ll is $\pi=\left\{p_{1}=e_{2}-e_{3}, p_{2}=e_{3}-e_{4}, p_{3}=e_{4}, p_{4}=\frac{1}{2}\left(e_{1}-e_{2}-e_{3}-e_{4}\right)\right\}$, with corresponding Dynkin diagram $\quad \mathrm{p}_{1} \quad \mathrm{p}_{2} \quad \mathrm{p}_{3} \quad \mathrm{p}_{4}$. Then, with respect to the basis $\left\{e_{i}\right\}$, the 24 positive roots of \sum are given in Tabie 7.2 , along with the action of τ on $₹$ and the action of the fundamental reflections $w_{i}=w_{p_{i}}$ on $\mathbb{\Sigma}$. The action of τ is obtained since we know from l'able 7.1 that c permutes p_{1} with p_{4} and p_{2} with p_{3}.

Here, we label the positive roots as r_{i} for $i \in\{1, \ldots, 24\}$ and for abbreviation in the Table, we denote r_{i} by i. So $\cdot w_{l}(i)$ is the image of r_{i} under the fundamental reflection w_{1}, and if $w_{1}\left(r_{i}\right)=-r_{j}$, we write $w_{1}(i)=-j$. Also, we have $r_{1}=p_{1}, r_{2}=p_{4}, r_{3}=p_{2}, r_{4}=p_{3}$.

Then, if \mathcal{K}_{s} is the set of short roots of \mathcal{L} and \mathcal{K}_{ρ} the set of long roots of $\Sigma_{\text {, }}$, both Σ_{s} and \sum_{l} are root systems of type D_{4} and $\tau\left(\Sigma_{S}\right)=\mathcal{K}_{l}$.

There are several ways we can investigate the group $W\left(F_{4}\right)$ (and hence the group W^{*}), and we shall begin by considering these approaches .

First we consider W in the context of reflection groups, following [13] . Let V be a 4-dimensional real vector space with orthonormal basis $\left\{e_{i}\right\}_{i=1}^{4}$, and consider the four vectors of the set., $\pi_{1}=\left\{r_{3}, r_{5}, r_{9}, r_{1}\right\}$. Then. π_{1} is a fundamental system for the root system $\mathcal{K}_{l}=\mathcal{L}_{1}$, say, which is of type D_{4}. Let s, t, u, v be the . corresponding reflections in $A u t(V)$, ie. s is the reflection in the plane... $e_{3}=e_{4}$. Then the group. $W_{1}=\left\langle s, t, u, v: R_{1}\right\rangle$ with defining relations $R_{1}=\left\{s^{2}=t^{2}=u^{2}=v^{2}=(s v)^{3}=(t v)^{3}=(u v)^{3}=1 ; s t=t s, u=u t, s u=u s\right\}$ is a Weyl group of type D_{4} with corresponding graph

Consider the group $S=D\left(\mathcal{K}_{1}\right)=\left\langle x, y: x^{2}=y^{3}=1, x y x^{-1}=y^{-1}\right\rangle$ acting on the graph in the following way :$R_{2}=\left\{x \cdot s \cdot x^{-1}=t, x u=u x, x v=v x, y \cdot s \cdot y^{-1}=t, y \cdot t \cdot y^{-1}=u, y \cdot u \cdot y^{-1}=s, y \cdot v \cdot y^{-1}=v\right\} \quad$. Then $S \cong \mathcal{S}_{3}$, the symmetric group on three letters (viz. r_{3}, r_{5}, r_{9}), and $S \leqslant A\left(\Sigma_{1}\right)$. So S acts as above.

From R_{2}, we see that S is an automorphism group of W_{1}, and we let $W=W_{1}$. S (semi-direct), so that $W=A\left(\Sigma_{1}\right)$ by Lemma 2.3. Then we have :-

Proposition 7.6. $W \cong W\left(F_{4}\right)$.

Proof. From R_{1} and R_{2}, it follows that W is generated by s, v, x and $x y$. Hence, $W=\left\langle s, v, x, x y: R_{3}\right\rangle$ with defining relations $R_{3}=\left\{s^{2}=v^{2}=x^{2}=(x y)^{2}=(s v)^{3}=(x \cdot x y)^{3}=(s x)^{4}=1, v x=x \nabla, v(x y)=(x y) v ; s(x y)=(x y) s\right\}$. This is a set of defining relations for $W\left(F_{4}\right)$, so $W \leq W\left(F_{4}\right)$. Since $|W|=\left|W\left(F_{4}\right)\right|=1152$, the result follows. \square

Now let $W_{2}=\left\langle s, t, u, v, x: R_{1} \cup R_{2}\right\rangle$. Then we have :-

Proposition 7.7. $W_{2} \cong W\left(B_{4}\right)$.

Proof. Since $x . s . x^{-1}=t$, it follows that $W_{2}=\left\langle s, u, v, x: R_{1} \cup R_{2}\right\rangle$ and the result follows by a similar argument to the proof of 7.6 . \square

Hence we can regard $W\left(F_{4}\right)$ as the full group of automorphisms of V which preserve the root system $\mathbb{\Sigma}_{1}$ of type D_{4}, ie. the group $A\left(\Sigma_{1}\right)$. Then $W\left(D_{4}\right) \Delta W\left(F_{4}\right)$ and $W\left(F_{4}\right) / W\left(D_{4}\right) \cong \mathcal{S}_{3}$. Furthermore, $W\left(B_{4}\right) \leqslant W\left(F_{4}\right)$, and this subgroup is not normal since $y \cdot x \cdot y^{-1}=y^{-1} x$. This situation is represented by the following graph :-

where each of the groups W_{1}, W_{2}, W corresponds to a certain subgraph containing 4 nodes . This corresponds to the reverse process described by Dynkin [12] in order to find the subsystems of maximal rank of $\mathcal{\Sigma}$, so that u is the reflection corresponding to the highest root of \sum, and
t that corresponding to the highest root of $\mathcal{\Sigma}_{2}=\Sigma\left(B_{4}\right)$. Let z be the isometry of V defined by the graph automorphism of \mathbb{K} as in Proposition 1.3 and let $W^{*}=\langle W, \tau\rangle$. Then τ is the involutive automorphism of W which is defined by

$$
R_{4}=\left\{\tau \cdot v \cdot \tau^{-1}=x y \quad \text { and } \quad z \cdot s \cdot \tau^{-1}=x\right\}
$$

Proposition 7.8. (i). $N=W_{1}^{2} \cap W_{1}$ is a normal subgroup of W of order 32 , and , by definition, N is a normal subgroup of W^{*},
(ii). W/N $\cong \mathbb{S}_{3} \times \overrightarrow{\mathbb{S}}_{3}$ and this extension splits,
(iii). The commutator subgroup W of W is generated by $\{N, y, e\}$, where $e=(\text { stuv })^{2} . \quad$ Then,$W=W^{l} \cup W^{1} v \cup W^{l} x \cup W^{l} x v$.

Proof. See [13].

Since we wish to find the conjugacy classes of W^{*}, and we know that a normal subgroup is a union of conjugacy classes, we could begin by considering all the normal subgroups of W^{*}. We know that W^{*} is a soluble group of order $2304=2^{8} \cdot 3^{2}$, and $i^{*}=\langle s, v, \tau\rangle$ with defining relations given by $R_{3} \cup R_{4}$.

Proposition 7.9. (i). $\quad 0_{2}\left(W^{*}\right)=o_{2}(W)=N$.
(ii). $\quad o_{3}\left(W^{*}\right)=1$.

Proof. Since $A \times B \cong \mathbb{S}_{3} \times \mathbb{S}_{3}$ has no normal 2 -subgroups, then $0_{2}(W)=N$. Now W^{*} / N has no normal 2-subgroups, so that $0_{2}\left(W^{*}\right)=O_{2}(W)$.

Part (ii) follows because of the nature of τ.

If we denote the group, $\left\{w: \tau w \tau^{-1}=w\right\}$, of τ-fixed points of W by W_{c}, then :-

Proposition 7.10. $\quad W_{c}=\left\langle a, b: a^{2}=b^{2}=(a b)^{8}=1\right\rangle \cong D_{16}$, the Dihedral group of order 16 , where $a=v . x y$ and $b=(s . x)^{2}$.

Proof. The Dynkin diagram of \mathcal{Z} is
 splits into two z-orbits :- $\bar{w}_{1}=\left\{p_{1}, \sqrt{2} p_{4}\right\}$ and $\bar{w}_{2}=\left\{p_{2}, \sqrt{2} p_{3}\right\}$. Let $\alpha=\operatorname{av}\left(\bar{w}_{1}\right)=\frac{1}{2}\left(p_{1}+\sqrt{2} p_{4}\right)$ and $\beta=a v\left(\bar{w}_{2}\right)=\frac{1}{2}\left(p_{2}+\sqrt{2} p_{3}\right)$. Then. Steinberg $[20]$ shows how $w_{\alpha}=v \cdot x y, w_{\beta}=(s . x)^{2}$ and $W_{\tau}=\left\langle W_{\alpha}, W_{\beta}: w_{\alpha}{ }^{2}=w_{\beta}{ }^{2}=\left(w_{\alpha} w_{\beta}\right)^{8}=1\right\rangle$.

Hence W^{*} has the following structure :Suppose that M is a maximal normal subgroup of W^{*}. Then W^{*} / M is abelian, so $\left(W^{*}\right)^{\prime} \leq M \cdot$.

Lemma 7.11. There are 3 maximal normal subgroups of W^{*}, and $W^{*} /\left(W^{*}\right)^{\prime} \cong C_{2} \times C_{2}$.

Proof. $W^{*} /\left(W^{*}\right)^{\prime}=\langle\bar{s}, \bar{v}, \bar{\zeta}\rangle$ with defining relations $R_{5}=\left\{\bar{S}^{2}=\bar{v}^{2}=\bar{z}^{2}=s v^{2}=\bar{l}\right\}$, where $\bar{x}=\left(W^{*}\right)^{\prime} x$.

Hence $W^{*} /\left(W^{*}\right)^{\prime} \cong C_{2} \times C_{2}$ with maximal normal subgroups

$$
\langle\overline{\mathrm{I}}, \overline{\mathrm{~s}}\rangle,\langle\overline{\mathrm{I}}, \overline{\mathrm{z}}\rangle \text { and }\langle\overline{\mathrm{I}}, \overline{\mathrm{~s}}\rangle .
$$

Coxeter $[9,10]$ discusses W as the symmetry group of the selfreciprocal 24 -cell $\{3,4,3\}$ in Euclidean 4-space. This offers a geometrical illustration of many of the properties of W and W^{*}. This regular polytope is quite remarkable , being another peculiarity of 4-dimensional Euclidean space in that it has no analogue in any other dimension. In fact, we can see that \mathcal{K} is a "skeleton" of $\{3,4,3\}$ with the long roots corresponding to the vertices of $\{3,4,3\}$ and the short roots to the mid-points of the 24 cells of $\{3,4,3\}$. Then we can easily see that τ is the dual map of this self-reciprocal figure .

The polytope $\{3,4,3\}$ arises by truncating β_{4}, the 4-dimensional hyperoctahedron. So it has 24 octahedra as cells, and consequently 24 vertices, viz. the centres of the edges of β_{4}. The subgroup of W that leaves fixed a vertex of $\{3,4,3\}$ is the symmetry group of the vertex figure $\{4,3\}$, ie. the cube, so this group is the hyperoctahedral group $W\left(B_{3}\right)$. The 24 cosets of $W\left(B_{3}\right)$ in $W\left(F_{4}\right)$ correspond to the 24 vertices of $\{3,4,3\}$. This construction, due to Cesàro, exhibits $W\left(C_{4}\right)$ as a subgroup of W of index 3 , and the 24 octahedra fall into 3 sets of 8 , which are the vertex figures of 3 distinct hyperoctahedra lying in the boundịng hyperplanes of 3 hypercubes.

We also have the reciprocal construction, due to Gosset, from two equal hypercubes, which is the analogy of the construction for the rhombic. dodecahedron. In fact, the 24 vertices of $\{3,4,3\}$ represent the 24 units of Hurwitz's integral quaternions .

Coxeter shows the link between W as the symmetry group of $\{3,4,3\}$ and as a reflection group , and then provides some additional information in [10]. Since the defining relations, R_{3}, for W involve an even number of generators , each element of W is either even or odd, according as any expression for it has an even number of generators or an odd number. The even elements of W form a subgroup W^{+}of index 2 , called the even subgroup .

In a dual paper, [11], on groups of the form $\left\langle a, b: a^{l}=b^{m}=\left(a^{-1} b^{-1} a b\right)^{p}=1\right\rangle$, the authors show that the subgroup of W generated by $\{a=$ st and $b=u v\}$ has defining relations $R=\left\{a^{3}=b^{3}=\left(a^{-1} b^{-1} a b\right)^{2}=1\right\}$, and is a subgroup of index 4 . Since a and b are commutators, it follows that this subgroup is W^{\prime}. In [10], Coxeter shows that W contains a unique central inversion which reverses every vector in V. This is $z=(s t u v)^{6}$, which generates the central , subgroup Z.

Coxeter also shows , [Il], that the central quotient group of W'. is usomorphic to $A_{4} \times A_{4}$, where A_{4} is the alternating group of degree 4 . Hence we have the structure shown alongside .

Lemma 7.12. (i). $\quad\left(W^{*}\right)^{\prime}=W^{+}$.
(ii). Each coset of W^{+}in W^{*}, viz. $\left\{W^{+}, W^{+} s, W^{+} \tau, W^{+} s \varepsilon\right\}$ is a union of conjugacy classes of W^{*}.

Proof. . (i). Let $w \in\left(W^{*}\right)^{\prime}$, so w is a product of terms $\left[g_{1}, g_{2}\right]$ with $g_{i} \in W^{*}$. Now, $W^{*}=W \cup W r$, so we have three situations :-
(a). $g_{1}, g_{2} \in W$ and then $\left[g_{1}, g_{2}\right] \in W^{+}$since $W^{\prime} \leqslant W^{+}$.
(b). $g_{1} \in W, g_{2} \in W r$ so that $g_{1}=w_{1}, g_{2}=\dot{w}_{2} r$ for $w_{1}, w_{2} \in W$.

Then $\left[g_{1}, g_{2}\right]=w_{1} r \cdot w_{2} \cdot \tau^{-1} W_{1}^{-1} \cdot w_{2}^{-1}=w_{1} \cdot w_{2}^{\tau} \cdot w_{1}^{-1} W_{2}^{-1} \in W^{+}$since $\ell\left(w_{2}^{r}\right)=\ell\left(w_{2}\right)$, where $\ell(w)$ is the number of generators in a reduced word for w.
(c). $g_{1}, g_{2} \in W r$ so that $g_{i}=w_{i} r$ for $w_{i} \in W$. Then $\left[g_{1}, g_{2}\right]=w_{1} \cdot \varepsilon_{w_{2}} \tau \cdot \tau w_{1}^{-1} \tau w_{2}^{-1}=w_{1} w_{2}^{\tau} \cdot w_{1}^{-\tau} \cdot w_{2}^{-1} \epsilon W^{+} \quad$ as in (b). Hence $W \in W^{+}$, and $\left(W^{*}\right)^{\prime} \leq W^{+}$. By Lemma 7.11 and by definitions of the groups W^{+}and W^{*}, both $\left(W^{*}\right)^{\prime}$ and W^{+}have index 4 in W^{*}. Hence $\left(W^{*}\right)^{\prime}=W^{+}$.
(ii). Let a be any group and let $G / G^{\prime}=\left\{G^{\prime}, G^{\prime} x_{1}, \ldots, G^{\prime} x_{n}\right\}$. Let $g \in G$ Then $g \cdot G^{\prime} x_{i} \cdot g^{-1}=g \cdot G^{\prime} \cdot g^{-1} \cdot\left(g x_{i} g^{-1} x_{i}^{-1}\right) \cdot x_{i}=G^{\prime} \cdot\left[g, x_{i}\right] \cdot x_{i}=G^{\prime} x_{i}$. Thus each coset $G^{\prime} x_{i}$ is a normal subset of G, and is thus a union of conjugacy classes of G. When $G=W^{*}$, then $\left(W^{*}\right){ }^{\prime}=W^{+}$and the four cosets $W^{+}, W^{+} s, W^{+} z$ and $W^{+} s z$ are each a union of conjugacy classes of W.

We have already established in Proposition 7.5 that we are searching for the 11 conjugacy classes of W^{*} which are contained in $W \tau$, so we have :-

Corollary 7.12. The 11 classes of W^{*} contained in $W r$ are partitioned into the two cosets $W^{+} \tau$ and W^{+}Sz of W^{*} / W^{+}.

Proof. By Lemma 7.12.

Another way of considering W is suggested by considering the vector spaces $V_{n}(3)$ of dimension n over the field $G F(3)$: Then $V_{n}(3)$ can. be thought of as a "skeleton" of an n-dimensional cube in the sense that each point of $V_{n}(3)$ represents the mid-point of some j-dimensional face of the cube, for $0 \leq j \leq n$. The orthogonal group $0_{n}^{+}(3)$ is the group of transformations of $V_{n}(3)$ which fix the origin and preserve distances. The group $0_{n}^{+}(3)$ is generated by reflections in the hyperplanes which pass through the origin and are orthogonal to the non-isotropic vectors of $V_{n}(3)$. It is clear that if $n=2$ or 3 , then $O_{n}^{+}(3) \cong W\left(B_{n}\right)$ - the symmetry group of the n-cube . However, such an analogy soon breaks down in 4 -dimensional space because of the unit vectors $(\pm 1, \pm 1, \pm 1, \pm 1)$. For we can embed $W\left(B_{n}\right)$ in $O_{n}^{+}(Z)$ and reduce (modulo 3) to embed in $O_{n}^{+}(3)$. This gives a monomorphism $W\left(B_{n}\right) \longleftrightarrow 0_{n}^{+}(Z) \xrightarrow{\boldsymbol{\psi}} 0_{n}^{+}(3)$ so that $W\left(B_{n}\right) \leqslant O_{n}^{+}(3)$. However, when $n=2$ or 3 , any $g \in O_{n}^{+}(3)$ can be "lifted" uniquely to $\psi^{-1}(g) \in O_{n}^{+}(Z)$, and this breaks down for $n=4$ because of the unit
vectors $(\pm 1, \pm 1, \pm 1, \pm 1)$ so that $W\left(B_{4}\right)<O_{4}^{+}(3)$.
Now $W\left(B_{4}\right) \cong C_{2} \downarrow \mathcal{S}_{4}$, and we can think of the $C_{2} X C_{2} x C_{2} x C_{2}$ as a split maximal torus T inside $\mathrm{GL}_{4}(3)$ with the $\overrightarrow{\mathbb{S}}_{4}$ as Weyl group $W(T)$ 。 Then $W\left(B_{4}\right)$ is just the normaliser $N(T)$ inside $G L_{4}(3)$, ie. the subgroup of monomial matrices .

Lemma 7.13. $\left(O_{4}^{+}(3): W\left(B_{4}\right)\right)=3$

Proof. It is straightforward to check that there are twice as many orthogonal matrices that cannot be "lifted" from $0_{4}^{+}(3)$ to $0_{4}^{+}(Z)$ as there are monomial matrices .

We recall that $\left(W\left(F_{4}\right): W\left(B_{4}\right)\right)=3$ also, and this suggests a possible isomorphism between. $W\left(F_{4}\right)$ and $O_{4}^{+}(3)$.

Proposition 7.14. $W\left(F_{4}\right) \cong 0_{4}^{+}(3)$.

Proof. Let, $Z^{*}=\left\langle Z, \frac{1}{2}\right\rangle$ and let $Q: Z^{*} \longrightarrow Z_{3}$ be reduction modulo 3. Then $Z^{*} / 3 Z^{*} \cong Z_{3}$. By the nature of W as a reflection group and of \mathcal{Z}^{\sim}, we know that we can embed W in $O_{4}^{+}\left(Z^{*}\right)$, where the basis of V is $\left\{e_{i}\right\}$ and the roots of \sum are as in Table 7.2.

If $m \in O_{4}^{+}\left(\mathrm{z}^{*}\right)$, then either $m \in \mathbb{M}$ is a monomial matrix in $O_{4}^{+}(3)$, or every entry of m is $\pm \frac{1}{2}$. Now consider the sequence $\psi: W C O_{4}^{+}\left(Z^{*}\right) \xrightarrow{\widetilde{Q}} 0_{4}^{+}(3)$, where $\widetilde{Q}\left(a_{i j}\right)=\left(Q\left(a_{i j}\right)\right)$.

Let $m \in \operatorname{ker} \psi$ and suppose $m \in O_{4}^{+}\left(Z^{*}\right)$ is a monomial. Then, since
$\widetilde{Q}(M)=I_{4}$, we must have $m=1$. If, on the other hand, m has every entry equal to $\pm^{\frac{1}{2}}$, then correspondingly, $\tilde{Q}(m)$ will have every entry ∓ 1, so that $\tilde{Q}(m) \neq I_{4}$. Hence, $\operatorname{ker} \psi=1$ and ψ is a monomorphism. We have already seen that $|W|=\left|O_{4}^{+}(3)\right|$, although it is easy to see that \widetilde{Q} can be inverted to a "lifting" map . Hence, ψ is an isomorphism .

Now we have shown W to be isomorphic to $O_{4}^{+}(3)$, we may describe the group W^{*} in the same context.

Proposition 7.15. $\quad W^{*} \leqslant 0_{4}^{+}\left(3^{2}\right)$.

Proof. Let $k=G F(3)$ and consider $K=k(i)$, where i is the positive root of the polynomial $x^{2}+1 \in k[x]$. Then $K \cong G F\left(3^{2}\right)$. Identify W with $0_{4}^{+}(3)$ as in 7.14 , and consider all matrices with respect to the natural basis $\left\{e_{i}\right\}_{i=1}^{4}$. Consider the action of τ on V and let the corresponding matrix be T. Then we can show that

$$
T=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
E & 0 \\
0 & E
\end{array}\right] \quad \text { where } \quad E=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Now let $Y=Z^{*}(\sqrt{2})$, then obviously $T \in O_{4}^{+}(Y)$ and if $Q: Y \longrightarrow K$ is reduction modulo 3, then. $Y / 3 Y \cong K$. Then , just as in Proposition 7.14 , we have $W^{*} \cong\left\langle O_{4}^{+}(3), T\right\rangle \leqslant O_{4}^{+}\left(3^{2}\right)$. So we may identify W^{*} with the subgroup $\left\langle\mathrm{O}_{4}^{+}(3), \mathrm{T}\right\rangle=0_{4}^{+}(3)^{*}$ of $\mathrm{O}_{4}^{+}\left(3^{2}\right)$.

Now that we have established some of the various rôles of the group W, we may freely use each rôle to aid us in our solution of the problem .

First, we prove a result concerning the characteristic polynomials corresponding to the classes $\zeta_{r}\left(W^{*}\right)$.

Proposition 7.16. Let $f_{X}(t) \in Y[t]$ be the characteristic polynomial of a representative element x of some class of $\zeta_{\tau}\left(W^{*}\right)$ acting on V. Then $Q\left(f_{x}(t)\right)=g_{x}(t) \in K[t]$ is one of the following :-
(i) $\quad t^{4}+1$ (ii). $t^{4}+i t^{3}+i t+1$ (iii). $t^{4}-i t^{3}-i t+1$
(iv). $t^{4}+t^{2}+1$ (v). $t^{4}+i t^{3}+t^{2}+i t+1$ (iv). $t^{4}-i t^{3}+t^{2}-i t+1$
(vii). $t^{4}-t^{2}+1$ (viii). $t^{4}+i t^{3}-t^{2}+i t+1$ (ix). $t^{4}-i t^{3}-t^{2}-i t+1$
(x) $\quad t^{4}-1$ (xi). $\quad t^{4}+i t^{3}-i t-1$ (xii). $t^{4}-i t^{3}+i t-1$, where Q is as in the proof of Proposition 7.15.

Proof . Consider W^{*} embedded in $0_{4}^{+}\left(3^{2}\right)$ and let $x \in W^{*} \backslash W^{\prime}$ Then $x=T \cdot w$ for some $w \in W$. Hence $x=i$. B, where $B=\left[\begin{array}{ll}E & 0 \\ 0 & E\end{array}\right]$. $w \in G L_{4}(3)$. Now $x \in O_{4}^{+}\left(3^{2}\right)$, so $t_{x} \cdot x=I_{4}$. Hence, $t_{B} \cdot B=i^{2} I_{4}=-I_{4}$.

Now let $g_{A}(t) \in k[t]$ be the characteristic polynomial of the matrix
A on. $V_{4}(3)$. Then $g_{B}(t)=\operatorname{det}(t \cdot B-I)=t^{4} \cdot \operatorname{det} B \cdot g_{B}\left(-t^{-1}\right)$. Since $\operatorname{det}\left[\begin{array}{cc}E & 0 \\ 0 & E\end{array}\right]=1$, then $g_{B}(t)= \pm t^{4} \cdot g_{B}\left(-t^{-1}\right)$.
Also, $g_{X}(t)=g_{i B}(t)=\operatorname{det}(i t . B-I)=g_{B}(i t)$, so that $g_{x}(t)=g_{B}(i t)$.
Let $g_{B}(t) \in K[t]$, so that $g_{B}(t)=t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}$, with $a_{i} \in k$.
In order to satisfy (1), we must have
$t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}=\varepsilon\left(a_{0} t^{4}-a_{1} t^{3}+a_{2} t^{2}-a_{3} t+1\right)$,
where $\varepsilon= \pm 1$. This set of equations has two solutions :-
(i). if $\varepsilon=+1$, then $a_{0}=1$ and $a_{1}=-a_{3}$,
(ii). if $\varepsilon=-1$, then $a_{0}=-1, a_{1}=a_{3}$ and $a_{2}=0$.

Hence, if $t_{B . B}=-I_{4}$, then $g_{B}(t)$ has one of the two forms:-
(1) $g_{B}(t)=t^{4}+a t^{3}+b t^{2}-a t+1$, or
(2) $g_{B}(t)=t^{4}+a t^{3}+a t-1$, where $a, b \in \operatorname{GF}(3)$.

Correspondingly, if $x \in W^{*} \backslash W$, then $g_{x}(t)$ has one of the two forms :-
(3) $g_{x}(t)=t^{4}-a i t^{3}-b t^{2}-a i t+1$ or
(4) $g_{x}(t)=t^{4}-a i t^{3}+a i t-1$, where $a, b \in \operatorname{GF}(3)$.

This follows from equation (2) . Since $a, b \in G F(3)$, equation (3) results in the nine possible polynomials (i) - (ix), and equation (4) supplies the further three polynomials (x) - (xii).

Hence, we know that if $f_{x}(t)$ is the characteristic polynomial of the element x acting on V, where x belongs to some class of $\zeta_{\Sigma}\left(W^{*}\right)$, then its reduction modulo 3 , ie. $g_{x}(t)$, must be one of the polynomials of $K[t]$ listed in Pronosition 7.16. Although there is not a l-1 correspondence. between the classes of $\mathscr{\zeta}_{\boldsymbol{r}}\left(W^{*}\right)$ and these polynomials, this result proves useful in finding the classes.

We now proceed with the detailed search for the eleven classes of $\wp_{r}\left(W^{*}\right)$, making use of the results so far obtained. However, we first prove a few useful lemmas.

Lemma 7.17. Let z be the central involution of W, and let $x \in W^{*}$, then. $f_{Z X}(t)=f_{X}(-t)$.

Proof. It is well known [4], that in the group $W\left(F_{4}\right), W_{o}=-1$, so that $z=-1$ is the unique central involution of W. Furthermore , z commutes with τ, so that z is the unique central involution of W^{*} also .

Hence, $f_{z x}(t)=\operatorname{det}(t . a x-I)=\operatorname{det}((-t) x-I)=f_{x}(-t)$.

This result is extremely useful in our search for the classes, forwe know that two elements from the same conjugacy class of W^{*} have the same characteristic polynomial . Hence, if we find an element x with characteristic polynomial $f_{x}(t)$ such that $f_{x}(t) \neq f_{x}(-t)$, then we know that the conjugacy class, C_{x}, of W^{*} containing the element x is distinct from $C_{z x}$.

Lemma 7.18. Let $C \in \zeta_{工}\left(W^{*}\right)$ and let x be a representative of C, so that $C=C_{x}$. If $\mathbb{C}_{W}(x)$ denotes the ceniraliser of x in W, and $s_{x}=\left|\mathbb{C}_{W}(x)\right|$, then $\left|C_{x}\right|=|W| / s_{x}$. Furthermore, $\quad\left|C_{z x}\right|=\left|C_{x}\right| \cdot$

Proof. In the proof of Lemma 6.4 , we saw that $C_{x}=\{x\}^{W^{*}}=\{x\}^{W}$. By letting W act on the coset $W c$, it follows from the orbit-stabiliser theorem that there is a bijection between C_{x} and $W / \operatorname{stab}_{W}(x)=W / \mathbb{C}_{W}(x)$. The final statement follows since $\mathbb{C}_{W}(z x)=\mathbb{C}_{W}(x)$.

With this result we are able to calculate, by working with the subgroup $\mathrm{O}_{4}^{+}(3)$ in $\mathrm{GL}_{4}(3)$, the size of each class of $6_{z}\left(W^{*}\right)$ once we have a representative of the class. This merely involves the solution of several simultaneous equations, and , by Lemma 1.9 , this fact enables us to calculate $\left|W_{\sigma}\right|$, which is useful for the representation theory . As we discover each class C_{i} for $i \in\{1, \ldots, 11\}$, we shall list a representative element x, the order $\operatorname{ord}(x)$ of the elements of the class C_{i}, the order of the class $\left|C_{i}\right|$, the coset of W^{+}in W^{*} to which the class belongs, and its characteristic polynomial $f_{X}(t)$, together with the structure of the corresponding torus $T_{x r}$. This latter we shall calculate by taking the representative x of C_{i}. Under the map ψ of Lemma 6.4 , the corresponding class $\psi^{-1}\left(C_{i}\right)$ of $H^{l}(\sigma, W)$ has $x \tau \in W$ as a. representative . Then the maximal torus of G_{σ} corresponding to the class $\psi^{-1}\left(c_{i}\right)$ of $H^{l}(\sigma, W)$ is an abelian group with elementary divisors $\left\{e_{1}, \ldots, e_{k}\right\}$ determined by diagonalising the matrix $(q \cdot(x r) r-I)=\left(q \cdot x_{\pi}-I\right)$ over Z, where x_{π} is the action of x on the lattice $\Delta_{a d}=M_{3}$. The methods will be omitted in most cases , except to illustrate the method in one case, and to note that the matrices ($q \cdot \mathrm{x}_{\boldsymbol{\pi}}-\mathrm{I}$) are diagonalisable over $\mathbb{Z}[q / \sqrt{2}]$.

NOTE. The notation of $f_{i}(t)$ for the characteristic polynomial corresponding to the class C_{i} is not to be confused with the notation $f_{n}(q)=q^{n-1}+\ldots+1$ used only in Chapters 3 and 4

Lemma 7.12. The class C_{1} has as representative the element c, and $C_{1} \subset W^{+} r$. Also, $\operatorname{ord}(r)=2,\left|C_{1}\right|=72$ and $f_{1}(t)=\left(t^{2}-1\right)^{2}$. Further, $e_{1}=e_{2}=\left(q^{2}-1\right)$.

Proof. Certainly we know that τ must belong to some class of $\zeta_{\varepsilon}\left(w^{*}\right)$, and $\tau=1 . \varepsilon \in W^{+} \tau$. In fact, $C_{\tau}=[W, \tau] . \tau$. In the case of the groups B_{2} and $G_{2},[W, r]=W^{+}$, but that is not true in this case.

Al though the general method of calculating $\left|C_{i}\right|$ is to use Lemma 7.18 with W identified with $O_{4}^{+}(3)$, in this case it is easy to see that

$$
\mathbb{C}_{W}(r)=\left\{w \in W: w \cdot \tau \cdot W^{-1}=\tau\right\}=W_{\tau} \cong D_{16} \text {, so the result follows. }
$$

Also, $\left(q \cdot \tau_{\pi}-I\right)=\left[\begin{array}{cccc}-1 & 0 & 0 & q / \sqrt{2} \\ 0 & -1 & q / \sqrt{2} & 0 \\ 0 & \sqrt{2} q & -1 & 0 \\ \sqrt{2} q & 0 & 0 & -1\end{array}\right] \longrightarrow\left[\begin{array}{cc}q^{2}-1 & 0 \\ 0 & q^{2}-1\end{array}\right]$

We note that $z e \in C_{1}$. For, if we let $c=\left(w_{1} w_{2} w_{3} w_{4}\right)$, an element of the Coxeter class of W, then: $z=c^{6}=c^{3} \cdot\left(\tau \cdot c^{-3} \cdot \tau^{-1}\right)=\left[c^{3}, \tau\right] \in[W, \tau]$. Hence $z \tau \in[W, r] r=c_{\tau}$.

Since elements of the same class must have the same order , we find this a useful guide in our search also.

Lemma 7.20. The class C_{2} has as a representative the element $w_{2} r$, and $\mathrm{C}_{2} \subset \mathrm{~W}^{+} \mathrm{s} z . \quad$ Also $, \operatorname{ord}\left(\mathrm{w}_{2} \tau\right)=8 \quad,\left|\mathrm{C}_{2}\right|=144$ and $f_{2}(t)=t^{4}-\sqrt{2} t^{3}+\sqrt{2} t-1$. Further, $\quad e_{1}=q^{4}-\sqrt{2} q^{3}+\sqrt{2} q-1$ and $w_{3} \subset \in C_{2}$.

Proof. Certainly $w_{2} r \in W^{+} s \tau$, and also, $\left(w_{2} r\right)^{2}=w_{2} \tau w_{2} \tau=w_{2} w_{3}$, an element of order 4 . Hence, $\operatorname{ord}\left(w_{2} \tau\right)=8$.

To find $\left|\mathrm{C}_{2}\right|$, we use Lemma 7.18. The matrix of w_{2}, with respect to the basis $\left\{e_{i}\right\}_{i=1}^{4}$ is $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$, so the matrix. of τw_{2} is

$$
i \times\left[\begin{array}{ll}
E & 0 \\
0 & E
\end{array}\right] \times\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]=i\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]=i C \text {, as in }
$$

Proposition 7.15 .
Then $\mathbb{C}_{W}\left(W_{2} r\right)=\left\{A \in O_{4}^{+}(3): A C=C A\right\}$, and if we let $A=\left(a_{i j}\right)$, then the condition $A C=C A$ is equivalent to the set of 16 equations .

$$
\begin{aligned}
& a_{12}=a_{21} ; \quad a_{22}=a_{11}+a_{12} ; \quad a_{23}=-a_{14} ; a_{24}=a_{13} ; \\
& a_{11}=-a_{21}+a_{22} ; \quad a_{21}=a_{12} ; \quad a_{13}=-a_{23}-a_{24} ; a_{14}=a_{23}-a_{24} ; \\
& a_{41}=a_{32} ; \quad a_{42}=a_{31}+a_{32} ; a_{43}=-a_{34} ; a_{44}=a_{33} ; \\
& a_{31}=-a_{42} ; \quad a_{32}=-a_{41}-a_{42} ; \quad a_{33}=a_{44} ; \quad a_{34}=-a_{43} .
\end{aligned}
$$

Hence, $a_{13}=a_{14}=a_{23}=a_{24}=a_{31}=a_{32}=a_{41}=a_{42}=0$, and $\mathbb{C}_{W}\left(w_{2} z\right)=\left\{\left[\begin{array}{cccc}a & b & 0 & 0 \\ b & a+b & 0 & 0 \\ 0 & 0 & c & d \\ 0 & 0 & -d & c\end{array}\right] \in 0_{4}^{+}(3): a, b, c, d \in G F(3)\right\}$.
Now $A=\left[\begin{array}{cccc}a & b & 0 & 0 \\ b & a+b & 0 & 0 \\ 0 & 0 & 0 & d \\ 0 & 0 & -d & c\end{array}\right] \in 0_{4}^{+}(3) \Longleftrightarrow{ }^{t} A \cdot A=I_{4}$, and this condition
is equivalent to the set of 3 equations :-

$$
\left\{a^{2}+b^{2}=1, b^{2}-a b=0, c^{2}+d^{2}=1\right\}
$$

Since $b^{2}-a b=0$ implies that either $a=b$ or $b=0$, this set of equations is equivalent to the two sets :-
(1). $\left\{a^{2}+b^{2}=1, c^{2}+d^{2}=1, b=a\right\}$ and
(2). $\left\{a^{2}+b^{2}=1, c^{2}+d^{2}=1, b=0\right\}$.

Now set (1) is impossible as this would imply that $a^{2}=-1$, and this has no solution in $G F(3)$. Hence the condition $t_{A . A}=I_{4}$ is equivalent to. the set of equations (2) . Hence, the only possibilities for the ordered quadruple (a, b, c, d) are $(\pm 1,0, \pm 1,0)$ and $(\pm 1,0,0, \pm 1)$.

Thus, $\left|\mathbb{C}_{W}\left(w_{2} r\right)\right|=8$, and $\left|C_{2}\right|=144$, by Lemma 7.18.
Since $\tau \cdot w_{2} \varepsilon^{-1} \cdot \tau=w_{3}$, it follows that $w_{3} v \in C_{2}$. The remaining facts follow by diagonalisation . \square

Lemma 7.21. The class C_{3} has as a representative the element $\boldsymbol{z W}_{2}$, , and $C_{3} \subset \mathrm{~W}^{+} \mathrm{s} \tau$. Also, ord $\left(\mathrm{ZW}_{2} r\right)=8,\left|\mathrm{C}_{3}\right|=144$ and $f_{3}(t)=t^{4}+\sqrt{2} t^{3}-\sqrt{2} t-1$. Further, $\quad e_{1}=q^{4}+\sqrt{2} q^{3}-\sqrt{2} q-1$.

Proof. Since $f_{2}(t) \neq f_{2}(-t)$, then $z W_{2} \tau \notin C_{2}$ by Lemma 7.17. Hence C_{3} is distinct from C_{2}, and $C_{3} \subset W^{+}{ }_{s c}$, since $w_{2} \in W^{+}$. By Lemma $7.18,\left|C_{3}\right|=\left|C_{2}\right|=144$ and $f_{3}(t)=f_{2}(-t)=t^{4}+\sqrt{2} t^{3}-\sqrt{2} t-1$.

Also, $\left(z w_{2} \tau\right)^{n}=z^{n} \cdot\left(w_{2} \tau\right)^{n}$ so that $\operatorname{ord}\left(z w_{2} \tau\right)=8$, since ord $(\tau)=2$.

Lemma 7.22. The class C_{4} has as a representative the element $w_{1} 工$, and $C_{4} \subset W^{+} s^{\prime} . \quad$ Also $, \quad \operatorname{ard}\left(w_{1} \tau\right)=4,\left|C_{4}\right|=288 \quad$ and $f_{4}(t)=t^{4}-1 \quad$.

Further , $e_{1}=q^{4}-1$ and $w_{4} \tau \in C_{4}$.

Proof. Certainly $w_{1} \tau \in W^{+} s \tau$, and also $\left(w_{1} \tau\right)^{2}=w_{1} \cdot \varepsilon w_{1} \tau=w_{1} w_{4}$, an element of order 2. Hence, ord $\left(w_{1} r\right)=4$. The remaining results follow as above.

Lemma 7.23. The coset W^{+}se is the union of the three conjugacy classes $\mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4}.

Proof. We have seen in Lemma 7.12 that $W^{*} / W^{+} \cong C_{2} \times C_{2}$. Hence, each coset of W^{+}in W^{*} has order 576 , in particular the coset W^{+}se.

Since $\left|C_{2}\right|+\left|C_{3}\right|+\left|C_{4}\right|=576$ and $C_{2}, C_{3}, C_{4} \subset W^{+} s \tau$, it follows that W^{+}se is the union of these three classes.

So , by Corollary 7.12 , we know that the remaining 7 classes of $\mathscr{C}_{\varepsilon}\left(W^{*}\right)$ lie in $W^{+} \tau$. In order to determine these, we consider the possible orders of their representatives .

Lemma 7.24. The only possibilities for the orders of elements of Wc are $2,4,6,8,12,16,24$.

Proof. Suppose that $x \in W \tau$, so that $x=w \varepsilon$ for $w \in W$. Then $x^{2}=w と \cdot w r=w \cdot \tau w r^{-1}=w \cdot w^{r}$. Hence, $\operatorname{ord}(x)=2 e$, where $e=\operatorname{ord}\left(w \cdot w^{r}\right)$. Since $\left(w . w^{2}\right) \in W$, the only possibilities for e are the orders of elements of W, viz. $1,2,3,4,6,8,12,[6]$.

Corollary 7.24. The representatives of the classes C_{X} and $C_{z x}$, for $x \in W r$, have the same order .

Proof. Since $\operatorname{ord}(x)=2 e$, for some e, it follows that $(z x)^{n}=z^{n} x^{n}=1$. Now $\operatorname{ord}(z)=2$, so that $\operatorname{ord}(z x)=2 e$ also .

We now have the possibilities for ord (x), where $x \in W \tau$, and we may be able to reduce the list of Lemma 7.24 even further if we can decide just how the set $E=\left\{W, W^{\tau}: W \in W\right\}$ intersects the conjugacy classes of W. For the possibilities of e are precisely those belonging to the set $\{\operatorname{Ord}(x): x \in E\}$. Although we have found the coset $W^{+} s r$ as a union. of conjugacy classes of W^{*}, we can in fact show that there is no element of order 2 in this coset.

Lemma 7.25. There is no element of order 2 in the coset $\mathrm{W}^{+} \mathrm{s}$.

Proof. Suppose $w \in W^{+} s$ such that $\operatorname{ord}(w r)=2$. Then $w \cdot w^{r}=1$, ie. $w^{r}=w^{-1}$. Now w is conjugate to $w^{-1},[6]$, so that τ must fix the graph Γ_{w}. Since $w \notin \mathrm{~W}^{+}$, then Γ must have either 1 or 3 nodes. There are 10 such graphs in Table 5.2 , none of which is fixed by τ Hence there is no such element.

Lemma 7.26. There is no element of order 6 in Ur.

Proof. Suppose that $\operatorname{ord}(w r)=6$ for some $w \in W$. Then the element
$w . w^{r} \in E$ has order 3 , and so would have to belong to one of the classes A_{2}, \tilde{A}_{2} or $A_{2}+\tilde{A}_{2}$. However, w. w cannot belong to A_{2} or $\tilde{\mathrm{A}}_{2}$ since then w would have to be a reflection w_{r}, and then $w . w^{r}=w_{r} \cdot{ }^{W} r(r)$ would belong to $A_{1}+\tilde{A}_{1}$.

Now for w. c belong to $A_{2}+\tilde{A}_{2}$, we must have $w=w_{r} w_{s}$ such that (i). r is long, s is short ; (ii). ($r, s)=0$;
(iii). $(r(r), r)=(z(s), s)=0$; (iv). $(z(r), s)= \pm \frac{1}{2}$;
(v). $(z(s), r)= \pm 1$. Then $(w r)^{2}=w_{r} w_{s} \cdot w_{z}(r)^{W} z(s) \in A_{2}+\tilde{A}_{2}$:

For r to satisfy (i) and (iii), we see from Table 7.2 that r must be one of $r_{1}, r_{13}, r_{17}, r_{19}$. Then we have $\tau(r)=r_{2}, r_{14}, r_{18}, r_{20}$ respectively . Similarly, for s to satisfy (i) and (iii), s must belong to the set $r_{2}, r_{14}, r_{18}, r_{20}$, with $\tau(s)=r_{1}, r_{13}, r_{17}, r_{19}$ respectively . It soon follows that none of these pairings of r and s satisfy (ii), (iv) and (v) also . Hence no such element w. exists .

Lemma 7.27. The class C_{5} has as a representative the element $w_{1} w_{2}$, and $C_{5} \subset W^{+} \tau$. Also, $\operatorname{ord}\left(w_{1} w_{2} r\right)=24,\left|C_{5}\right|=96$ and $f_{5}(t)=t^{4}-\sqrt{2} t^{3}+t^{2}-\sqrt{2} t+1$. Further, $e_{1}=q^{4}-\sqrt{2} q^{3}+q^{2}-\sqrt{2} q+1$.

Proof. Now $w_{1} w_{2} z \in W^{+} z$, and $\left(w_{1} w_{2} z\right)^{2}=w_{1} w_{2}\left(w_{1} w_{2}\right)^{z}=w_{1} w_{2} w_{4} w_{3}$, which belongs to the Coxeter class of W and so has order 12 . Hence, ord $\left(\mathrm{w}_{1} \mathrm{w}_{2} r\right)=24$ and C_{5} is distinct from C_{1}. The remaining results follow as in Lemmas 7.19 and 7.20 .

Lemma 7.28. The class C_{6} has as a representative the element $\mathrm{zw}_{1} w_{2} r$, and $\mathrm{C}_{6} \subset \mathrm{~W}^{+} \tau$. Also, $\operatorname{ord}\left(z \mathrm{w}_{1} \mathrm{w}_{2} r\right)=24,\left|\mathrm{C}_{6}\right|=96$ and $f_{6}(t)=t^{4}+\sqrt{2} t^{3}+t^{2}+\sqrt{2} t+1 . \quad$ Further,$\quad e_{1}=q^{4}+\sqrt{2} q^{3}+q^{2}+\sqrt{2} q+1$.

Proof. Since $f_{5}(t) \neq f_{5}(-t)$, then $z w_{1} w_{2} q \notin C_{5}$ by Lemma 7.17. Hence C_{6} is distinct from C_{5}, and $C_{6} \subset W^{+} \check{\text { since }} \mathrm{z} \in \mathbb{W}^{+}$. By Lemma 7.18, $\left|C_{6}\right|=\left|C_{5}\right|=96$ and $f_{6}(t)=f_{5}(-t)=t^{4}+\sqrt{2} t^{3}+t^{2}+\sqrt{2} t+1 . \quad B y$ Corollary 7.24 , it follows that $\operatorname{ord}\left(z w_{1} w_{2} \tau\right)=24$.

We recall the notation of Proposition 7.10 . Then :-

Lemma 7.29. The class C_{7} has as: a representative the element abr, and $C_{7} \subset W^{+} \tau$. Also, $\operatorname{ord}(a b z)=8,\left|C_{7}\right|=12$ and $f_{7}(t)=\left(t^{2}-\sqrt{2} t+1\right)^{2}$. Further, $e_{1}=e_{2}=\left(q^{2}-\sqrt{2} q+1\right)$.

Proof. We recall that $a=w_{1} w_{4}$ and $b=\left(w_{2} w_{3}\right)^{2}$, so that $a b r \in W^{+} r$. Also, $(a b r)^{2}=(a b)^{2}$ since $\langle a, b\rangle=W_{z}$. Now ord $(a b)=8$, so that $\operatorname{ord}(a b r)=8$ also. The final result follows as in Lemma 7.19.

As in Lemma 7.20 , we can show that

$$
\begin{aligned}
\mathbb{C}_{W}(a b r)=\left\{\left(a_{i j}\right) \in 0_{4}^{+}(3): a_{31}\right. & =-a_{13} ; a_{32}=-a_{14} ; a_{33}=a_{11} ; a_{34}=a_{12} ; \\
a_{41} & \left.=-a_{23} ; a_{42}=-a_{24} ; a_{43}=a_{21} ; a_{44}=a_{22}\right\} .
\end{aligned}
$$

Hence, $A \in \mathbb{C}_{W}(a b r) \Longleftrightarrow A=\left[\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ -c & -d & a & b \\ -g & -h & e & f\end{array}\right] \in O_{4}^{+}(3)$
$\longleftrightarrow(a, b, c, d)$ and (e, f, g, h) are orthonormal vectors of $V_{4}(3)$
satisfying $\quad a g+b h-c e-d f=0, \quad(1)$.

If the vectors are monomials, then we may choose $a= \pm l$ and $b=c=d=0$. Hence, $e=g=0$ and $f^{2}+h^{2}=1$. This gives 8 combinations for each choice of one of a, b, c, d to be non-zero. Hence there are 32 possibilities among the monomials .

Otherwise, $a^{2}=b^{2}=c^{2}=d^{2}=e^{2}=f^{2}=g^{2}=h^{2}=1$, and we may choose one of the 16 possibilities for (a, b, c, d) . Then, the orthogonality condition is

$$
a e+b f+c g+d h=0 \text {, (2). . }
$$

Adding equations (1) and (2) , we have

$$
(a-c) e+(b-d) f+(a+c) g+(b+d) h=0 \quad(3) .
$$

Now, in the vector (a, b, c, d) we have chosen, just one of $\{a-c, a+c\}$ is zero and just one of $\{b-d, b+d\}$ is zero. So equation (3) gives one of $\{e, f, g, h\}$ as a multiple ε of one other element of the set, and $\varepsilon= \pm 1$. Then equation (2) gives one of the remanding two in the set $\{e, f, g, h\}$ as a multiple of the other. Hence, we have freedom of choice for two of the set $\{e, f, g, h\}$, a total of 4 matrices for each first choice . Hence there are 64 such matrices altogether, and $\left|\mathbb{C}_{W}(a b z)\right|=96$. Then $\left|C_{7}\right|=12$ by Lemma 7.18 .

Lemma 7.30. The class C_{8} has as a representative the element abr, and $c_{8} \subset W^{+} \tau$. Also, ord $(z a b r)=8,\left|c_{8}\right|=12$ and $f_{8}(t)=\left(t^{2}+\sqrt{2} t+1\right)^{2}$. Further, $e_{1}=e_{2}=\left(q^{2}+\sqrt{2} q+1\right)$.

Proof. Since $f_{7}(t) \neq f_{7}(-t)$, then $z a b \varepsilon \notin C_{7}$ by Lemma 7.17. Hence C_{8} is distinct from C_{7}, and $C_{8} \subset W^{+}$, since $z \in W^{+}$. By Lemma 7.18, $\left|c_{8}\right|=\left|c_{7}\right|=12$ and $f_{8}(t)=f_{7}(-t)=\left(t^{2}+\sqrt{2} t+1\right)^{2}$. By Corollary 7.24, it follows that ord $(z a b z)=8$.

Lemma 7.31. There exist elements $w \cdot w^{2} \in E$ of order 2 , and $(a b)^{2}$ is one such .

Proof. The classes of W containing elements of order 2 are $4 A_{1}, 2 A_{1}$, $A_{1}, \tilde{A}_{1}, 3 \tilde{A}_{1}, A_{1}+\tilde{A}_{1}$. If $w \cdot w^{2}=w^{1}$, then $\Gamma_{w^{1}}$ has an equal number of long and short nodes . Hence, the only possibilities are $A_{1}+\tilde{A}_{1}$ and $4 A_{1}=2 A_{1}+2 \tilde{A}_{1}$. Now, if $w^{\prime} \in A_{1}+\tilde{A}_{1}$, then w is a reflection and so belongs to $W^{+} s$. Hence, we must look in the class $2 A_{1}+2 \tilde{A}_{1}$.

Consulting Table 7.2 , we see that $z=w_{r_{1}} \cdot w_{r_{2}} \cdot w_{r_{19}} \cdot w_{r_{20}}$ is the central element of W in the class $2 A_{1}+2 \tilde{A}_{1}$, and a product of commuting reflections. Hence, $\left(w_{r_{1}} w_{19} z\right)^{2}=w_{r_{1}}{ }^{w} r_{19} \cdot{ }^{w_{r}}{ }_{2}{ }^{w} r_{20}={ }_{z}$. Since z has order 2 , then ord $\left({ }^{w_{1}}{ }_{r_{1}}{ }^{r_{1}}{ }_{19}\right)=4$.

$$
\begin{gathered}
\text { Now } w_{3} w_{4} w_{1} w_{2} w_{3}\left(w_{r_{19}}\right)=r_{3} \text {, so that } \\
v=w_{r_{1}} w_{r_{19}}=w_{3} w_{2} \cdot\left(w_{1} w_{4}\right) \cdot\left(w_{2} w_{3}\right)^{2} \cdot\left(w_{1} w_{4}\right) \cdot w_{2} w_{3} \text {, which is conjugate to }(a b)^{2} .
\end{gathered}
$$

Lemma 7.32. The class C_{9} has as a representative the element (ab) ${ }^{2}$, and $C_{9} \subset W^{+} \tau$. Also, ord $\left((\mathrm{ab})^{2} r\right)=4,\left|C_{9}\right|=24$ and $f_{9}(t)=\left(t^{2}+1\right)^{2}$. Further, $e_{1}=e_{2}=\left(q^{2}+1\right)$.

Proof. Since $(a b)^{2} \in W_{z}$, it follows that $\left((a b)^{2} r\right)^{4}=(a b)^{8}=1$, so that $\operatorname{ord}\left((a b)^{2} r\right)=4$. The remaining results follow as in Lemmas 7.19 and 7.20 .

Lemma 7.33. There exist elements w. $w^{\varepsilon} \in E$ of order 6.

Proof. The classes of W contairing elements of order 6 are D_{4}, \tilde{D}_{4}, $F_{4}\left(a_{1}\right), B_{3}, C_{3}, A_{2}+\tilde{A}_{1}, \tilde{A}_{2}+A_{1}$. If $w . w^{r}=w^{\prime}$, then $\Gamma_{w^{\prime}}$ has an equal number of long and short nodes. Hence the only possibility is the class $\mathrm{F}_{4}\left(\mathrm{a}_{1}\right)$.

Suppose $w=w_{r} w_{s}$, with (i). r long and s short. If $w . w^{r}$ is to belong to the class $F_{4}\left(a_{1}\right)$, then (ii). $(r, s)=(r(r), r(s))=0$, (iii). $(r, r(r))= \pm(s, r(s))= \pm 1$, (iv). (r,z(s)) $= \pm 1$; (v). $\quad(r(r), s)= \pm \frac{1}{2}$.

Let $r=r_{3}$ and $r(r)=r_{4}$. Then the possibilities for the pair $\{s, \boldsymbol{c}(\mathrm{~s})\}$ to satisfy (i) and (ii) are $\{10,9\},\{2,1\},\{14,13\},\{16,15\}$ $\{22,21\},\{24,23\}$, and the only pair to satisfy all the conditions is the pair $\{16,15\}$. So we let $w={ }^{w} r_{3} \cdot{ }^{w} r_{16}$, and then $w . w^{\mathcal{C}}$ belongs to the class $F_{4}\left(a_{1}\right)$ and so has order 6 .

By Table 7.2 , it follows that $w_{2} w_{1} w_{4}\left(r_{16}\right)=p_{3}$ and $r_{3}=p_{2}$, so that $w \boldsymbol{r}=w_{2} w_{4} w_{1} w_{2} w_{3} w_{2} w_{1} w_{4} \tau$, which is conjugate in W^{*} to $w_{2} w_{1} w_{3} w_{2} \tau$, or $c\left(w_{2} w_{3}\right) \tau$, where $c=w_{1} w_{2} w_{3} w_{4}$ is a Coxeter element.

Lemma 7.34. The class C_{10} has as a representative element $c\left(w_{2} w_{3}\right) \tau$, and $C_{10} C W^{+} r$. Also, $\operatorname{ord}\left(c\left(w_{2} W_{3}\right) r\right)=12,\left|C_{10}\right|=192$ and $f_{10}(t)=t^{4}-t^{2}+1 . \quad$ Further,$e_{1}=\left(q^{4}-q^{2}+1\right)$.

Proof. By Lemma 7.33, $c\left(w_{2} w_{3}\right) \tau$ is conjugate to the element $w r$ which has order 12 . The remaining results follow as in Lemmas 7.19 and 7.20..

We have so far found 10 of the 11 conjugacy classes of $\mathscr{C}_{z}\left(W^{*}\right)$ and to determine the remaining class, we consider the characteristic polynomials of the classes we have found , taking note of Proposition 7.16.

Lemma 7.35. In the notation of Proposition 7.16 , the characteristic polynomials $g_{x}(t) \in K[t]$ for the classes C_{j} for $j=1, \ldots, 10$ are :-

Class	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}	C_{10}
Polynomial	(iv).	(xii).	(xi).	(x).	(vi).	(v).	(v).	(vi)	(vii).	(vii).

Proof. Since $g_{x}(t)=Q\left(f_{x}(t)\right)$, we just reduce the coefficients of each polynomial $f_{j}(t)$ modulo 3.

We saw in Proposition 7.16 , that the last three polynomials (x), (xi), (xii) of the list correspond to elements of the coset $W^{\dagger} s$, and since we know (Lemma 7.23) that the remaining class is in the coset $W^{+} \mathcal{C}$, the missing characteristic polynomial $g_{11}(t)$ must be one of the list (i),....(ix).

Lemma 7.36. $g_{11}(t)$ is not one of the polynomials (ii), (iii), (viii) or (ix).

Proof. These polynomials occur in pairs, so that if the final class $C_{\text {Il }}$ had a representative element x and characteristic polynomial one of these, then $f(t) \neq f(-t)$ so that $z \bar{x}$ would be a representative element of a new class C_{12}, which is clearly a contradiction.

Although there may be repetitions as in (v), (vi) and (vii), it appears that the most likely candidate is (i). $t^{4}+1$.

Lemma 7.37. There exists an element $w \in W$ such that $f_{w r}(t)=t^{4}+1$, and w belongs to the Coxeter class of W. Such an element is $c \cdot b=\left(w_{1} w_{2} w_{3} w_{4}\right) \cdot\left(w_{2} w_{3}\right)^{2}$.

Proof. The companion matrix for $f(t)=t^{4}+1$ is $C=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0\end{array}\right]$, and we want to find a matrix $B \in G L_{4}(3)$ such that $t_{B \cdot B}=-I_{4}$. In order to preserve the characteristic polynomial $f(t)$ of C, so that $f_{B}(t)=f(t)$, we must endeavour to transform C into B as $B=$ E.C. E^{-1}, where E is a product of elementary matrices. It is easy to see that $B=\left[\begin{array}{rrrr}0 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & 0\end{array}\right]$

$$
\begin{aligned}
& \text { Then } B=\left[\begin{array}{ll}
E & 0 \\
0 & E
\end{array}\right] . W \text { for some } w \in O_{4}^{+}(3) \text {, so that } \\
& w=\left[\begin{array}{ll}
E^{-1} & 0 \\
0 & E^{-1}
\end{array}\right] \cdot B=\left[\begin{array}{rrrr}
1 & -1 & -1 & -1 \\
-1 & -1 & 1 & -1 \\
-1 & -1 & -1 & 1 \\
1 & -1 & 1 & 1
\end{array}\right] \in O_{4}^{+}(3) \cong W
\end{aligned}
$$

Furthermore, it is easy to see that ord $(w)=12$, so that w belongs. to the Coxeter class of W. It can be shown that w (\mathbf{W} W-conjugate to the element $\mathrm{cb} \tau$, where $c=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \mathrm{w}_{4}$ belongs to the Coxeter class of W and $\mathrm{b}=\left(\mathrm{w}_{2} \mathrm{w}_{3}\right)^{2}$, so that we may take cb to be the required $w \in W$. Since $f_{c b r}(t)=t^{4}+1$, it follows that $\operatorname{ord}(\operatorname{cbr})=8$.

Lemma 7.38. The class C_{11} has as a representative element abr, and $C_{11} \subset W^{+} c$. Also, $\operatorname{ord}(\mathrm{cbr})=8,\left|C_{11}\right|=72$ and $f_{11}(t)=t^{4}+1$. Further , $e_{1}=\left(q^{4}+1\right)$.

Proof. Since $c b=\left(w_{1} w_{2} w_{3} w_{4}\right) \cdot\left(w_{2} w_{3}\right)^{2}$, it follows that $c_{11} c W^{+} \tau$. By Lemma 7.37 it follows that $f_{11}(t)=t^{4}+1$ and that $\operatorname{ord}(\operatorname{cbr})=8$. The remaining results follow as in Lemmas 7.18 and 7.19 .

Lemma 7.39. The coset $W^{+} \tau$ of W^{*} is the union of the 8 conjugacy classes $\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}$.

Proof. As in Lemma 7.23, the coset $W^{+} と$ has order 576 , and by the information of Lemmas 7.27 to 7.38 ,

$$
\begin{aligned}
\left|C_{1} u^{C_{5}} u^{C_{6}} U^{C_{7}} u^{C_{8}} u^{C_{9}} u^{C_{10}} \mathbf{U}^{C_{11}}\right| & =72+96+96+12+12+24+192+72 \\
& =576
\end{aligned}
$$

Since all these classes are contained in $W^{+} \check{C}$, the result follows .

We recall from Chapter 6 that the classes of $H^{ }(\sigma, W)$ are $\left\{c_{i} \cdot \tau: c_{i} \in \zeta_{r}\left(w^{*}\right)\right\}$.

Proposition 7.40. The elementary divisors of the maximai tori T_{W} and the order of the corresponding group W_{σ} in the groups ${ }^{2} F_{4}\left(q^{2}\right)$ are as in the following Table 7.3 .

TABLE 7.3.

Class	$\underset{\mathrm{W}}{\substack{\text { Representative }}}$	$\begin{gathered} \text { Order of } \\ \text { wと } \\ \hline \end{gathered}$	Order of Class	Elementary Divisors	$\left\|W_{\sigma}\right\|$
$\mathrm{C}_{2} \cdot \tau$	w_{2}	8	144	$e_{1}=q^{4}-\sqrt{2} q^{3}+\sqrt{2} q-1$.	8
$C_{3} \cdot \tau$	zW_{2}	8	144	$e_{1}=q^{4}+\sqrt{2} q^{3}-\sqrt{2} q-1$.	8
$\mathrm{C}_{4} \cdot \tau$	w_{1}	4	288	$e_{1}=q^{4}-1$.	4
$\mathrm{C}_{1} \cdot \mathrm{c}$	1	2	72	$e_{1}=e_{2}=\left(q^{2}-1\right)$.	16
$\mathrm{C}_{5} \cdot \tau$	$w_{1} w_{2}$	24	96	$e_{1}=q^{4}-\sqrt{2} q^{3}+q^{2}-\sqrt{2} q+1$.	12
$c_{6} \cdot \tau$	$\mathrm{zW}_{1} \mathrm{~W}_{2}$	24	96	$e_{1}=q^{4}+\sqrt{2} q^{3}+q^{2}+\sqrt{2} q+1$.	12
$\mathrm{C}_{7} \cdot \boldsymbol{\tau}$	ab	8	12	$e_{1}=e_{2}=\left(q^{2}-\sqrt{2} q+1\right)$.	96
$\mathrm{C}_{8} \cdot \mathrm{z}$	zab	8	12	$e_{1}=e_{2}=\left(q^{2}+\sqrt{2} q+1\right)$.	96
${ }^{C}{ }_{9} \cdot$ と	$(\mathrm{ab})^{2}$	4	24	$e_{1}=e_{2}=\left(q^{2}+1\right)$	48
$\mathrm{C}_{10} \cdot \tau$	$c\left(\mathrm{w}_{2} \mathrm{~W}_{3}\right)$	12	192	$e_{1}=q^{4}-q^{2}+1$.	6
${ }^{C_{11}} \cdot \tau$	cb	8	72	$e_{1}=q^{4}+1$.	16

Here, $a=\left(w_{1} w_{4}\right), b=\left(w_{2} w_{3}\right)^{2}, c=w_{1} w_{2} w_{3} w_{4}$ and $z=(a b)^{4}$ is the non-trivial central element of W. The representatives are those of the classes $H^{1}(\sigma, W)$.

Proof. This follows from Lemmas 7.19-7.39, and by Lemma 1.9 .

\$7.5. The Steinberg groups of type ${ }^{3} \mathrm{D}_{4}(\mathrm{q})$.

We discuss these groups in this Chapter because of the way in which $W\left(F_{4}\right)$ was constructed from $W\left(D_{4}\right)$. Referring to $\S 6.1$, we see that K_{1}. is a finite field of the form $G F\left(q^{3}\right), G_{\pi, K}$ is either of the groups $G_{a d, K}$ or $G_{s c, K}$, and τ is the triality automorwhism of the Dynkin diagram of D_{4} illustrated in Table 6.1, which corresponds to the automorphism of $\operatorname{Spin}_{8}(K)$ cyclically permuting z, z^{\prime} and $z z^{\prime}$. This is discussed in §4.2. Hence, $\tau\left(\Delta_{\pi}\right)=\Delta_{\pi}$ if and only if $\pi=$ ad or sc. Furthermore, by Corollary 1.8 , we need only discuss the case when π is the simply connected representation of g, since the results are identical in the cases $\pi=$ ad or sc.

Now \mathcal{Z}_{1} is a root system of type D_{4} embedded in V, and W_{1} is the corresponding Weyl group, as in §7.4. Furthermore, $\boldsymbol{\tau}$ corresponds to the element $y \in D\left(\Sigma_{1}\right)$, and $W_{1}^{*}=\left\langle W_{1}, \tau\right\rangle$ is a normal subgroup of W of index 2 , as in the diagram after proposition 7.10. Since τ is a permutation of Σ_{1}, it follows that τ maps any graph Γ_{C} onto an
identical graph, although we have no easy algorithm for deciding how τ acts on $\mathscr{C}\left(W_{1}\right)$ in the case of one graph representing distinct classes . We list the conjugacy classes for W_{1} in Table $7.4[6]$, and we notice how there are two graphs which each occur 3 times, suggesting that each triple may be cyclically permuted by τ. That this is so, we prove now.

TABLE 7.4.

Lemma 7.40. The automorphism c of W_{1} cyclically permutes the triples $\left(C_{2}, C_{7}, c_{8}\right)$ and $\left(C_{6}, c_{12}, c_{13}\right)$ in its action on $\mathscr{C}\left(W_{1}\right)$.

Proof. Now τ acts on \mathcal{Z}_{1} in the manner: illustrated, so that the matrix of τ with respect to the normal basis

is $\left[\begin{array}{rrrr}\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\end{array}\right]$

- So take any element $w \in C_{2}$, for example
$w=\left[\begin{array}{ccc}1 & & \\ & 1 & \underline{0} \\ & 0 & -1 \\ 0 & -1\end{array}\right] \quad . \quad$ Then $w^{2}=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0\end{array}\right]$ and $\boldsymbol{w}^{-1}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$.
Then w^{τ} and $w^{\tau^{-1}}$ both have signed cycle type [22] . However , they are conjugate only by an element of $W\left(C_{4}\right)$, and hence belong to different classes of W_{1}, viz. C_{7} and C_{8}.

Similarly for the triple $\left(C_{6}, C_{12}, C_{13}\right)$.
Now $W_{1}=\langle s, t, u, v\rangle$ as in $\S 7.4$ and is the semi-direct product of the group $C_{2} \times C_{2} \times C_{2}$ by the group $\mathcal{S}_{4},[4]$. Coxeter $[9]$ describes it as the symmetry group of the half-measure polytope $h \gamma_{4}$. Also, there are three cosets of W_{1} in W_{1}^{*}, each of which is a union of conjugacy classes of W_{1}^{*}, by proposition 2.5 , and it is the coset. Wr in which we are interested, by Lemma 6.4. .

Proposition 7.41. If $W_{1} \cong W\left(D_{4}\right)$, then $\left|H^{1}\left(\sigma, W_{1}\right)\right|=7$, where σ is the triality automorphism of W_{1}.

Proof. In this case, there is only one graph for each class so that if the graph Γ_{C} corresponding to the class C does not occur elsewhere in the list $\left\{\Gamma_{C}: C \in \zeta(W)\right\}$ of Table 7.4 , then τ must fix that class. Hence, the only classes not fixed by τ are those described in Lemma 7.40, and so there are 7 classes fixed by τ.

> Thus, by Proposition 2.5 , since τ is of order 3, $\left|\zeta\left(W_{1}^{*}\right)\right|=3 \times 7+\frac{13-7}{3}=2.3$ and $\left|\zeta_{\tau}\left(W_{1}^{*}\right)\right|=7$
> Now, by Lemma 6.4 , there is a bijection $\psi: H^{1}\left(\sigma, W_{1}\right) \longrightarrow \zeta_{r}\left(W_{1}^{*}\right)$, so the result follows.

We now prove some more results about W_{1}^{*}.

Proposition 7.42. (i). $\quad\left(W_{1}\right)_{c}=\left\langle(\right.$ stu $\left.), v:(\text { stu })^{2}=v^{2}=(\text { stuv })^{6}=1\right\rangle$ is isomorphic to D_{12}, the Dihedral group of order 12 , and contains the central element $z^{\prime}=(\text { stuv })^{3}$.
(ii). The commutator subgroups of W_{1} and W_{1}^{*} are identical, and equal to the even subgroup $W_{1}{ }^{+}$. Also, the quotient group W_{1}^{*} / W_{1}^{+}is cyclic of order 6 .
(iii). $\quad\left|W_{1}^{+}\right|=96$ and z is the central element of W_{1}^{*}.

Proof. The fundamental system π_{1} splits into two c orbits as in Proposition 7.10 , and (i) follows similarly. In fact $\left(W_{1}\right)_{r} \cong W\left(G_{2}\right)$ and $\left(\Sigma_{1}\right)_{r}$ is a root system of type G_{2}. See [20].

By Coxeter [10] , since all the branches of the graph of \mathcal{K}_{1} have odd numbers attached, it follows that $W_{1}{ }^{\prime}=W_{1}{ }^{+}$. Now, by the above, $\left|W_{1}\right|=192$, so $\left|W_{1}^{\prime}\right|=\left|W_{1}^{+}\right|=96$. Tine, as in Lemma 7.11, we can see that. $W_{1}^{*} /\left(W_{1}^{*}\right)$ ' is isomorphic to C_{6}. Hence, $\left|\left(W_{1}^{*}\right)\right|=96$. Since $W_{1}^{\prime} \leqslant\left(W_{1}^{*}\right)$, it follows that all the groups $W_{1}^{\prime}, W_{1}^{+}$and $\left(W_{1}^{*}\right)$: are identical Since $z^{\prime}=(\text { stub })^{3} \in\left(W_{1}\right)_{\tau}$, then z^{\prime} is the unique central element. of W_{1}^{*}.

Corollary 7.43. Each coset of W_{1}^{+}in W_{1}^{*} is a union of conjugacy classes of W_{1}^{*}. In particular, the 7 classes of W_{1}^{*} contained in $W_{1} \tau$ are partitioned into the two cosets $W_{1}^{+} \tau$ and $W_{1}^{+} \tau \tau$, each of order 96 .

Proof. This follows from the fact that $W_{1}^{+}=\left(W_{1}^{*}\right)$, as above, and by Lemma 7.12 (ii) .

Proposition 7.44. Let $S=\left(W_{1} y \cup W_{1} y^{-1}\right)$ be the union of the two coset $W_{1} y$ and $W_{1} y^{-1}$ of W_{1} in W. Then S is the union of the 7 conjugacy classes of the set ζ^{*} (mentioned in §5.3) which do not meet W_{2}.

Proof. Now $|S|=2\left|W_{1}\right|=384$, and the union of the conjugacy classes of ζ^{*} has order $(32+96+96+16+32+96+16)=384$ also .

Furthermore, S is a normal subset of W, since $W_{1} y$ is a normal subset of W_{1}^{*}, by Corollary 7.43 , and since $x \cdot W_{1} y \cdot x^{-1}=W_{1} y^{-1}$.

Finally,$S \wedge W_{2}=\phi$ by definition of W_{2} as $\langle s, t, \dot{u}, v, x\rangle$. Now, as we have seen in $\$ 5.3$, the only normal subsets of W not intersecting W_{2} are the subsets of the set ζ^{*}. Hence, by considering the size of these, S is just the union of these classes.

Hence, the union of the two non-trivial cosets of W_{1} in W_{1}^{*} is the union of 7 conjugacy classes of W. We see precisely how these classes split into W_{1}^{*}-conjugacy classes in the next lemma.

Lemma 7.45. Each of the 7 classes constituting S splits into two W_{1}^{*}-conjugacy classes of equal size, one of which lies in $W_{1} y$ and the other in $W_{1} y^{-1}$.

Proof. We recall how $W_{1} y$ and $W_{1} y^{-1}$ are dual under conjugation by x. Also, by Corollary 7.43, $W_{1} y$ is a union of W_{l}^{*}-conjugacy classes, so let C^{\prime} be one such. Then $x \cdot C^{\prime} \cdot x^{-1} \subset W_{1} y^{-1}$ and $\left|x \cdot c^{\prime} \cdot x^{-1}\right|=\left|c^{\prime}\right|$. Further, ($\left.C^{\prime} \cup x \cdot C^{\prime} \cdot x^{-1}\right)=C$ is a conjugacy class of W, and since it lies in S, it follows that $C \in \zeta^{*}$.

We retain the notation that if $C_{i} \in \zeta^{*}$, then C_{i}^{\prime} is the corresponding W_{1}^{*}-conjugacy class contained in $W_{1} y$. In fact $i \in\{7,13,16,18,20,24,25\} \quad$ from Table 5.2 .

Lemma 7.46. The coset $W_{1} \tau$ is the union of the $7 W_{1}^{*}$-conjugacy classes $\left\{c_{i}: c_{i} \in \varphi^{*}\right\}$.

Proof. We have seen how $\left|C_{i}^{\prime}\right|=\frac{1}{2}\left|C_{i}\right|$ and how. $\left|w_{1} と\right|=\frac{1}{2}|S|$. Since each $C_{i}^{\prime} \subset W_{1} z$, it follows that $W_{1} r=U_{i}$.

Proposition 7.47. The elementary divisors of the torus T_{w} of ${ }^{3} D_{4}(q)$, where $w \in W_{1}$ is a representative element of the class C_{i}, are precisely those of the torus T_{W} of $F_{4}(q)$ corresponding to the class $C_{i} \subset W$.

Proof. As already stated, it follows from Corollary 1.8 that we need only consider the case $G \pi, K$ where π is the adjoint representation or the simply connected representation, since the results are identical in both cases . Howtver, since Δ sc for the group D_{4} is identical with Δ ad for the group F_{4} when they are embedded in V, (both being the lattice M_{3} described in $\S 4.2$), then our obvious choice is $G_{s c, K}$. For then, if w is a representative element of some class $h=\psi^{-1}\left(c_{i}^{\prime}\right)$ of $H^{l}\left(\sigma, W_{1}\right)$, we need to find the elementary divisors of the matrix (q. $\left.(w \tau)_{\Omega}-I\right)$, by Chapter 1 , where $(w \varepsilon)_{\Omega}$ is the matrix of the action of the element $w \tau \in W_{l}^{*}$ with respect to a basis Ω of $\Delta_{\text {sc }}$ for the group
D_{4}. However, $w と \in C_{i}$, which is a W-conjugacy class as we have seen in Lemmas 7.45 and 7.46 . Hence,$(w r)_{\Omega}$ is the matrix of the action of $w \tau \in W$ with respect to a basis Ω of Δ ad for the group F_{4}, corresponding to the conjugacy class C_{i} of W. Hence, the elementary divisors of the matrix ($q \cdot(w r)_{\Omega}-I$) are precisely those corresponding to the classes $c_{i} \in \zeta^{*}$, which we have already calculated in Table 5.2 , and the result follows .

We conclude this chapter with a table of results for the groups ${ }^{3} D_{4}(q)$ which lists the elementary divisors of T_{W} corresponding to the conjugacy classes C_{i}^{\prime} of $\mathscr{C}_{c}\left(W_{1}^{*}\right)$, together with the order of the corresponding group W_{σ}, using Proposition 1.9 .

TABLE 7.5.

Class	Order of class	Elementary divisors	$\left\|w_{\sigma}\right\|$
C_{13}^{\prime}	48	$e_{1}=(q-1)\left(q^{3}+i\right)$.	4
C_{16}^{\prime}	48	$e_{1}=(q+1)\left(q^{3}-1\right) *$	4
C_{24}^{\prime}	48	$e_{1}=\left(q^{4}-q^{2}+1\right)$.	4
C_{7}^{\prime}	16	$e_{1}=(q-1), e_{2}=\left(q^{3}-1\right) \cdot$	12
C_{20}^{\prime}	8	$e_{1}=(q+1), e_{2}=\left(q^{3}+1\right)$.	12
C_{18}^{1}	8	$e_{1}=e_{2}=\left(q^{2}+q+1\right)$.	24
C_{25}	$e_{1}=e_{2}=\left(q^{2}-q+1\right)$.	24	

CHAPTER 8. Conclusion.

In concluding this thesis, we consider some work of Springer [17] in which he shows that, under favourable circumstances, a σ-fixed maximal torus T of G and a regular character ϕ of the corresponding finite group T_{W} determine an irreducible character $X_{T, \phi}$ of G_{σ}. The construction of the character $X_{T, \phi}$ uses ideas from the theory of exceptional characters of finite groups. It is believed that a further study of the character theory of the groups G_{σ} should begin with a closer investigation of the characters $X_{T, \phi}$.

Let $G=G_{\pi, K}$, and choose any σ-fixed maximal torus T of G. Then we let T_{σ} denote its fixed-point group, anc let \hat{T}_{σ} denote the character group of T_{σ}. Let $N=N_{G}(T)$, so that $W_{\sigma}=(N / T)_{\sigma}$ and W_{σ} acts on T_{σ} and $\hat{\mathrm{T}}_{\sigma}$. In fact, if σ is the Frobenius endomorphism, it easily follows that $W_{\sigma}=Z_{W}(W)$, where T is twisted with respect to w, when σ is a pure field automorphism .

We say that $x \in T_{\sigma}$ (resp. $\phi \in \hat{T}_{\sigma}$) is regular if the isotropy group of x (resp. ϕ) in W_{σ} is reduced to the identity. If $x \in T_{\sigma}$ is regular, then T is the unique maximal torus containing x, and $Z_{G}(x)^{0}=T$.

If $w \in W$, we denote the subgroup of elements of T fixed by w by $W^{T} \cdot$ If $W \in W_{\sigma}$, then W^{T} is σ-fixed. Also, any non-regular element of T_{σ} is contained in $\left({ }_{W} T\right)_{\sigma}$ for some non-trivial $W \in W_{\sigma}$.

Let S be a subset of T_{σ} which satisfies the following condition :(I). for all $x \in G_{\sigma} \backslash N_{\sigma}$, the intersection $T_{\sigma} \wedge^{X_{T}}{ }_{\sigma}$ lies in. S. Then S consists of non-regular elements of \mathbb{T}_{σ}.

We say that two characters $\phi, \phi^{\prime} \epsilon \hat{T}_{\sigma}$ are equivalent if they have the same restriction to S. We denote the equivalence class of ϕ by $c(\phi)$, and : the set of regular characters of T_{σ} by $\hat{T}{ }_{\sigma, r}$. If H is a subgroup of G and ϕ is a character of H, then we denote the character induced to G by $i_{H \rightarrow G} \phi$.

Let $\phi \in \hat{T}_{\sigma, r}$ satisfy the following condition :(II). $\quad c=c(\phi)$ meets at least 3 orbits of W_{σ} in \hat{T}_{σ} :

Then it can be shown that there exists a unique sign $\varepsilon_{c}= \pm 1$ and unique irreducible characters $X_{T, \phi}$ (independent of the choice of S) of ${ }^{G} \sigma$ such that

$$
i_{T} \longrightarrow G\left(\phi-\phi^{\prime}\right)=E_{C}\left(X_{T, \phi}-X_{T, \phi^{\prime}}\right)
$$

Also, if $\phi, \phi^{\prime} \in \hat{T}_{\sigma, r}$ satisfy (II), then $X_{T, \phi}=X_{T, \phi^{\prime}}$ if and only if ϕ^{\prime} lies in the W_{σ}-orbit of ϕ.

Also, if T and T_{1} are two o-fixed maximal tori which are not conjugate by an element of G_{σ}, and if $S_{1} \subset T_{1}$ satisfies (I), then. it can be shown for regular characters $\phi \in \hat{T}_{\sigma, r}$ and $\phi_{1} \in\left(\hat{T}_{1}\right)_{\sigma, r}$. satisfying (II) that $X_{T, \phi} \neq X_{\mathrm{T}_{1}, \phi_{1}}$.

In [17], there is also a discussion of asymptotic formulae for the number of regular elements of T_{σ} and \hat{T}_{σ}, and also of the distinct
irreducible characters of G_{σ} constructed in this way.
There is a conjecture of MacDonald [18] concerning the values of the characters $X_{T, \phi}$ on the regular semi-simple elements of ${ }^{G} \sigma$, viz.

$$
X_{T, \phi}(t)=(-1)^{l} \sum_{W \in W} \phi\left({ }^{W} t\right) \quad \text {, where } t \in T_{\sigma} \text { is regular }
$$

and the sum is extended over all distinct W-conjugates of t. MacDonald has also conjectured in the case where G_{σ} is of Chevalley type that the degree of $X_{T, \phi}$ should be

$$
\left|T_{\sigma}\right|^{-1} \cdot \prod_{i=1}^{l}\left(q^{d_{i}}-1\right) \text {, where the } d_{i} \text { are the basic }
$$

invariants of W, see [20].

It seems necessary to obtain explicit values of the characters $X_{T, \phi}$, and, in a recent paper [15], Ree and Chang have done this for the groups $G_{2}(q)$ when $q \neq 2,3$. In fact, $G_{2}(2)$ is the only group of Chevalley type which does not contain regular elements in the Coxeter tori.

In general, if w belongs to the Coxeter class of W, and h is the Coxeter number of W, then the non-regular elements of T_{σ} are those of the groups $\left({ }_{w} d^{T}\right)_{\sigma}$, where d is a divisor of h.

If $L(G)$ is the Lie algebra of G, then Chevalley has shown [16] that if G is a semi-simple adjoint group, then $L(G)\left(K_{o}\right)$ contains regular elements, and in fact these elements lie in $L(\mathbb{T})\left(K_{0}\right)$, where T is a Coxeter torus of G. Later, A. Borel and T.A. Springer [Tohoku Math. Journal No.20] showed this to be true for any reductive Group G.

If we consider regular semi-simple elements in the group $G\left(K_{0}\right)$, it is easy to show that, for any maximal torus T of G which is twisted with respect to $W \in W$, regular elements lie in T_{σ} if and only if $\left(\sigma^{*}-I\right) X$ contains no root of \sum, ie. that (q w-I)X contains no root. (III). Certainly, to satisfy this condition , w must not lie in any Weyl subgroup W^{\prime} of rank less than that of W, and we can check that this condition is satisfied in every group $G\left(K_{0}\right)$ except $G_{2}(2)$. Referring to $\$ 7.3$, we know that w must belong to the Coxeter class of W, and a representative of this class is a rotation anticlockwise through 60° about. the origin. Then, (2.w-I).a=2.(b+2a)-a=2b+3a, the highest root of $\sum\left(G_{2}\right)$. Hence, the condition (III) is not satisfied, and the Coxeter tori of $G_{2}(2)$, which are isomorphic to C_{3}, do not contain. regular elements. In fact, in this group, the group (2^{T}), which is a sub-torus corresponding to a long root of \mathcal{L}, is such that $\left(2^{T}\right)$ coincides with T_{σ}. We have already remarked that the groups $\quad\left({ }_{w} d^{T}\right)_{\sigma}$ consist of the non-regular elements of T_{σ}.

References

1. Borel A.	- Linear algebraic groups . W.A. Benjamin Inc. New York 1969
2. Borel A.	- Properties and linear representations of Chevalley groups. Lecture Notes in Mathematics (Springer-Verlag) No. 131 Chapter A.
3. Borel A. \& de	Siebenthal J. - Les sous-groupes fermés de rang maximum des groupes de Lie clos. Comment . Math. Helv. 23 (1949-50).
4. Bourbaki N.	- Groupes et algèbres de Lie. Chapitres 4,5 et 6. Hermann, Paris .
5. Burnside W.	- The theory of groups of finite order. Cambridge (1911), 2nd edition.
6. Carter R.W.	- Conjugacy classes in the Weyl group. Compositio Math. Vol. 25, Fasc. 1, 1972. Pages 1-59.
7. Carter R.W.	- Simple groups and simple Lie algebras. Journal London Math. Soc. 40 (1965).
8. Chevalley C.	- Classification des groupes de Lie algebriques. Séminaire C. Chevalley. Paris 1958.
9. Coxeter H.S.M.	- Regular polytopes. MacMillan.
10. Coxeter H.S.M.	\& Moser W.O.J. - Generators and relations for finite groups. Springer-Verlag 1957. Heft 14.
11. Coxeter H.S.M.	\& Sinkov A. - The groups determined by the relations $S^{l}=T^{m}=\left(S^{-1} T^{-1} S_{T}\right)^{p}=1$. Duke Math. Journal Vol.II. 1936.
12. Dynkin E.B.	- Semi-simple subalgebras of semisimple Lie algebras. A.M.S. Translations (2) 6. 1957.
13. Kondo T.	- The Characters of the Weyl group F_{4}. J. Fac.Sci. University of Tokyo 11 (1965) 145-153.
1.4. Ree R.	- A family of simple groups associated with the simple Lie algebra of type $F_{4}\left(\right.$ resp. $\left.{ }_{2}\right)$. American Journal Math. 83 (1961).
15. Ree R. \& Chang	B. - The character table of $G_{2}(q)$. To appear.
16. Serre J-P.	- Existence d' éléments reguliers sur les corps finis. Lecture Notes in Mathematics (Springer-Verlag) No. 152 P. 342 .

17 Springer T.A. - On the characters of certain finite groups. To appear.

18 Springer T.A. - Cusp forms for finite groups.
Lecture Notes in Mathematics (Springer-Verlag) No. 131 Chapter C.

19 Springer T.A. \& Steinberg R. - Conjugacy classes. Lecture Notes in Mathematics (Springer-Verlag) No. 131 Chapter E.

20 Steinberg R. - Lectures on Chevalley groups. Yale Lecture Notes.

21 Steinberg R. - Endomorphisms of linear algebraic groups. A.M.S. Memoirs 80 (1968).

22 Suzuki M. - (i) A new type of simple group of finite order. Proc. Nat. Acad. Sci. U.S.A. 46 (1960), P.868-870.
(ii) On a class of doubly transitive groups. Ann. of Math. 75 (1962). P.105-145.

23 Tits J.

- Groupes simples et géométries associées. Proc. Int. Con. 1962 P.197-221.

24 Zassenhaus - Theory of groups. Chelsea.

