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Summary 

Chapter 1 | Reviews innate host-defence α-helices and their mimetics as potential 

anticancer chemotherapeutics. Introduces biologically relevant bimetallic triple 

metallohelices as potential non-peptide mimics, and reviews the known flexicates. 

Discusses the criteria such compounds would need to satisfy in order to be 

successful anticancer agents. 

Chapter 2 | Describes the discovery, synthesis and characterisation of nineteen new 

class Ib flexicates with varying ligand functionality. These compounds are found to 

be highly active and selective in cancer, with no observed activity in bacteria. 

Preliminary modes of action studies indicate that they do not act through DNA 

interactions, but cause changes to the cell cycle and induce programmed cell death. 

Chapter 3 | Describes the conception, synthesis and characterisation of a new 

asymmetric type of architecture, named a triplex metallohelix. A range of these 

novel complexes are found to be highly active and selective in several cancer cell 

lines. Possible modes of action found the triplex metallohelices do not bind or 

damage DNA, but do cause changes to the cell cycle, induce programmed cell death 

and appear to localise on the cellular membrane of colon cancer cells.  

Chapter 4 | Summarises the aims and results of this research project and concludes 

this work by discussing the perspectives of the novel metallohelices described as α-

helix mimetics. Final remarks consider some possible directions that this research 

could take in the future. 

Chapter 5 | Provides details of the experimental procedures used to carry out the 

work in this thesis.  
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Glossary and Abbreviations 

Most of the abbreviations and symbols used in this thesis are in common use within 

the scientific community. Necessary abbreviations and a glossary of terms used in 

this work are given below: 

Adenocarcinoma Cancerous gland cells 
 

Albumin Water soluble globulin protein found in blood plasma 
 

AlexaFluor 555® azide Orange-fluorescent tag designed to only fluoresce after 
reacting with an alkyne group in a copper (II) catalysed 
click reaction 
 

Alkylator Compound which covalently adds alkyl groups to 
nucleic acids 
 

Amphipathic Molecule containing both hydrophobic and hydrophilic 
groups or surfaces 
 

Amphiphilic Molecule containing groups that enable it to interact 
favourably with both hydrophobic and hydrophilic 
environments 
 

Amyloid-β Small peptide with a crucial role in Alzheimer’s disease 
 

Annexin-V-FLUOS Fluorescent-conjugated anticoagulant for the detection 
of phosphatidylserine on the cell membrane of apoptotic 
cells 
 

Antimetabolite Chemical which interferes with the function of a 
metabolite 
 

Apoptosis The process of programmed cell death 
 

ARPE19 Human retinal pigment epithelial cells (non-cancerous) 
 

bpy 2,2'-bipyridine 
 

CAP18 Example cathelicidin protein 
 

Carcinogenesis The process by which cancerous tumours form 
 

Carcinoma Cancerous epithelial cells 
 

Cathelicidin Family of innate proteins with a role in host-defence 
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CD Circular dichroism 
 

Cell cycle The series of processes by which a cell divides itself to 
form two daughter cells by duplicating its DNA (NDNA = 
amount of DNA compared to a cell at rest) 
 

ct-DNA Calf thymus DNA, a heterogeneous mixture of linear 
DNA fragments 

  
Sub G1 phase Cells in the cell cycle which are considered 

apoptotic (NDNA < 1) 
 

G1 phase Gap 1: cells in the cell cycle which have 
increased in size but not begun to synthesise 
duplicate DNA (NDNA = 1) 
 

S phase Synthesis: cells in the cell cycle which are 
replicating their DNA (1 < NDNA < 2) 
 

G2/M phase Gap 2: checkpoint in the cell cycle between 
synthesis of DNA and cell division. Mitosis: 
cells in the cell cycle are dividing into two 
daughter cells (NDNA = 2) 
 

Chemotherapy Treatment of cancer by the use of anti-cancer drugs 
 

Click reaction 1,3-dipolar reaction between a molecule with a 
terminal azide and a molecule with a terminal alkyne 
to give a 1,2,3-triazole 
  

Click-iT Click labelling reaction assay kit from Life 
Technologies 
 

Cytotoxicity The measure the toxicity of a compound towards a cell 
  

Down-regulated Reduced production of an innate compound compared 
to the expected normal amount 
 

DSB Double strand DNA breaks 
 

Epithelial Cells which line the membranes of an animal 
 

FACS Fluorescence-activated cell sorting 
 

Fibroblast Cells which form connective tissue in animals 
 

FK-16 Fragment of LL-37, corresponding to residues 13-37 
 

Flexicate Bimetallic complex formed of two independent, 
optically pure, monometallic, octahedral iron (II) or 
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zinc (II) iminopyridine subunits, connected by three 
linear linkers 
 

Class Ia Flexicate where the two subunits are connected 
by the imine side of the chiral imino-pyridine 
 

Class Ib Flexicate where the two subunits are connected 
by the pyridine side of the chiral imino-
pyridine 
 

Flow cytometry Method of cell sorting or counting 
 

Gel electrophoresis Method for the separation and analysis of  biological 
macromolecules by applying a potential gradient 
 

HCT116 p53+/+ Colon carcinoma cells with wild type (non-mutated) 
p53 
 

HCT116 p53-/- Colon carcinoma cells with mutated p53 
 

Helicand Sufficiently short or rigid ligand capable of 
mechanically coupling the stereochemistry of two or 
more metal centres in a multimetallic complex 
 

Helicate Multimetallic complex connected by linear linkers 
which mechanically couple the stereochemistries of 
the metal centres to each other 
 

HHH Head to Head to Head constitution of a bimetallic 
complex with directional linkers 
 

HHT Head to Head to Tail constitution of a bimetallic 
complex with directional linkers 
 

HMQC Heteronuclear multiple quantujm coherence 1H – 13C 
coupling NMR experiment 
 

Host-defence The process by which an organism protects itself from 
microbial invasion 
 

IC50 Half maximal inhibitory concentration 
 

Immunostimulant Molecule which promotes the immune ability of a host  
 

Intercalator Molecule which can insert flat aromatic groups 
between base pairs of a DNA strand 
 

LL-37 The active α-helical peptide from human cathelicidin 
hCAP18 
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Lysis The breaking down of a cell through disintegration of 
the cell membrane 
 

MDA-MB-468 Breast adenocarcinoma cell line 
 

m-xylenyl Derived from 1,3-bis(bromomethyl)benzene 
 

MIC Minimum inhibitory concentration 
 

Microvilli Cellular membrane protrusions which increases the 
surface area of a cell 
 

MLCT Metal-ligand charge transfer 
 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
salt, a yellow tetrazole dye 
 

MTT assay Quantitative colorimetric assay to assess cell viability 
after treatment with a chemical agent 
 

Necrosis Premature cell death caused by external factors 
 

p53 Protein which is involved in cell cycle regulation and 
activation of apoptosis in cells 
 

p-xylenyl Derived from 1,4-bis(bromomethyl)benzene 
 

PBS Phosphate buffered saline 
 

Pharmacokinetics How a drug is affected and metabolised by a cell or 
animal after treatment 
 

Proteolytic cleavage The breaking of peptide bonds 
 

Quadruplex DNA A structure of four strands of DNA stabilised by a 
cation 
 

RPMI-1640 Roswell Park Memorial Institute phosphate rich cell 
culture medium 
 

Serum From clotted blood 
 

SSB Single strand DNA breaks 
 

t½ Half-life 
 

TGA Thermogravimetric analysis 
 

Tm Temperature at which DNA unwinds from a double 
helix to random coil state 
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Transcription The act of copying a strand of DNA to RNA 

 
Triplex DNA Triple helix architecture of DNA 

 
Triplex metallohelix Bimetallic complex where two optically pure iron (II) 

or zinc (II) metal centres scaffold three linear 
directional ligands in an HHT constitution 
 

Triton-X Non-ionic surfactant that permiabilises cell membranes 
 

Up-regulated Increased production of an innate compound compared 
to the expected normal amount 
 

X-link DNA cross link 
 

Zwitterionic A molecule containing both positive and negative 
charges 
 

β-lactam Four-membered cyclic amide where the nitrogen is 
attached to the β-carbon, which makes up the core 
structure of many antibiotics 
 

γ-H2AX Primary rabbit anti-human phosphor histone 
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Ligands used in this Thesis 
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Chapter 1 
Anticancer cationic α-helices and their mimetics 

There is a need to develop new cancer chemotherapeutic drugs1 which are selective 

against tumour cells, with a particular drive to discover systems that exhibit different 

modes of action to traditional DNA damage agents.2, 3 Host-defence peptides have 

been investigated as potential anticancer agents with this aim.4-6 However these 

innate proteins are not ideal chemotherapeutic candidates as they tend to suffer from 

poor selectivity and pharmacokinetics.7-10 The design of mimetic systems with more 

desirable drug-like properties is an area of intense investigation.11 Successful 

strategies include the synthesis of peptidic foldamers,12 stapled peptides,12 non-

peptide oligomers13-15 and metallopeptides;16, 17 all of which seek to imitate some of 

the function and structure of α-helices.  

 Following early comments on the matter by Lehn,18 helicates – formed when 

rigid linear organic ligands are arranged around a metal scaffold – have received 

significant attention.19-23 Some of these assemblies are of a similar size to peptidic α-

helices,24-26 and the advancement of the paradigm that metallohelices may function 

as peptidomimetics is the subject of this thesis.  

In this chapter the current outlook for cationic peptidic α-helices and their 

synthetic analogues as chemotherapeutic agents in cancer are reviewed. Some 

examples of metallohelices are described in this context.  
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1.1 Efficacy of DNA damage agents in chemotherapy 

Cancerous cells are typically genetically unstable, arising from a loss of regulation of 

the cell cycle and an absence of DNA repair.27 These phenomena can be exploited by 

chemotherapeutic agents in several ways. Irreversible damage of DNA within the 

cancer cell by alkylators,2, 3 cyclophosphamide28 and cisplatin,29, 30 induces 

apoptosis.31 Antimetabolites, such as 5-fluorocil,32 act by preventing the replication 

of DNA, which inhibits cell reproduction.33 Doxorubicin34 and other anthracyclines 

are so called anticancer antibiotics which act by intercalating DNA and preventing 

transcription, which can then lead to cell death.35 These DNA damage agents often 

show little or no selectivity towards cancerous over non-cancerous cells, leading to 

off-target interactions and undesirable side effects.36  

The genetic instability of cancer cells means they are also able to build up 

multidrug resistance.27 An example of this is the mutation of p53,37, 38 a protein 

which is key in the activation of some apoptotic pathways.39, 40 Stimulation of p53 

associated cell death is often part of the mode of action of a DNA damage agent and 

mutations which prevent this could cause the cell to become resistant to such a 

mechanism.41  

Alternative chemotherapeutic agents which target different modes of action, 

such as interactions with cell membranes or other biomolecules and cellular 

machinery, may be able to act in a potent manner towards cancer cells that are 

resistant towards DNA damage agents. 
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1.2 Anticancer cationic α-helical peptides 

Innate immunity peptides are produced in many organisms, primarily to fight 

microbial invasion.42-45 They are also involved in the natural ability of the host to 

recognise and destroy cancer cells.46, 47 For this reason host-defence peptides have 

been investigated as anticancer agents.4-6 They are α-helical in shape, small (≤ 50 

residues), cationic (contain arginine, lysine and histidine residues),26, 27 and 

amphiphilic.8, 42  

Normal cell membranes are zwitterionic.5, 8 Cancer cell membranes are more 

negatively charged, due to an overexpression of molecules like phosphatylserine and 

glycoproteins.48, 49 This can cause the cationic peptides, which act by aggregating on 

the extracellular membrane, to interact more strongly with cancerous cells compared 

to healthy ones.4, 19 Tumour cell membranes also have more microvilli which 

increase the surface area available.50, 51 Furthermore, most cancer cells have 

increased susceptibility to membrane destabilisation.52, 53 Membrane interactions 

with host-defence peptides can trigger necrosis through lysis and apoptosis resulting 

from disruption of mitochondria,6, 54-58 although other modes of action have been 

suggested.59-61 

There is a lower of risk of cancer cell resistance62 towards these peptides as 

they act by different modes of action to anticancer alkylators.7 This can also cause 

lower intrinsic cytotoxicity towards healthy host cells.5, 63 
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Figure 1.1 | Solution structure of magainin II with labelled hydrophilic (blue) and hydrophobic 

(green) side chains.64 

Cecropins (host defence peptides from cecropia moths)65 and magainins (from the 

skin of frogs)66, 67 have shown activity in cancerous lung,68, 69 bladder,70, 71 colon72 

and leukaemia73 cells by triggering apoptosis through cell membrane lysis.71, 74-76 

They show some selectivity towards cancer cells over normal fibroblasts,77, 78  but 

display reduced efficacy in in vivo studies.68 

Cathelicidins, such as CAP18,79 make up another class of proteins which 

have a wide range of activity in host defence.80-88 LL-3789 is the active domain of the 

human cathelicidin (hCAP18).83 It is a cationic (net +6), 37 residue, amphipathic9 

peptide, found in human skin and gut epithelial cells, and breast tissue.90-92  It has 

been found to have many inherent roles within the cell93 such as antimicrobial,94-96 

antifungal92, 97, 98 and antiviral99-104 activity. It appears to act in a tissue- and disease- 

specific manner.105, 106 LL-37 has been found to act as an immunostimulant, 

promoting the ability of the host to fight cancerous cells,107 and to induce apoptosis 

in colon,105 oral30, 31 and blood108 cancer cells, as well as preventing regrowth of 

some ovarian cancers.109 In gastric and colorectal cancer, native LL-37 is found to be 

down-regulated and so treatment with exogenous LL-37 has a potential for tumour 

suppression. Indeed, it is found to induce cell cycle arrest and mitochondria-

associated pathways to apoptosis.17, 29, 30 However, LL-37 is also found to be 

University of Warwick | Page 4 



  Rebecca A. Kaner | Chapter 1 

uncontrollably up-regulated in some cancers and can act as an oncogene. It is 

reported to promote carcinogenesis in ovarian,110, 111 breast112, 113 and lung9, 114 

cancer, and the migration of malignant cells.115  

 
Figure 1.2 | Solution structure of the active core of LL-37, corresponding to residues 13-17.116 

FK-16 is a fragment of LL-37.116 It has been identified as having greater 

antimicrobial117 and anticancer118 potential than the full peptide. In colon carcinoma 

cells (LoVo and HCT116) it has been found to be active (IC50 40µM in HCT116) 

and to induce apoptosis, more selectively than complete LL-37. It also appears to be 

highly selective; no activity was observed in normal colon mucosal epithelial cells 

(NCM460).118 

Unfortunately such cationic host defence peptides often exhibit undesirable 

metabolism mechanisms, which means they are not viable drug candidates.8 For 

example they suffer from proteolytic cleavage which reduces their half-life in serum 

and limits their bioavailability. They are also found to interact with negatively 

charged components of serum, such as albumin, which also reduces efficacy.10 Some 

are found to closely resemble human peptides and so treatment with them may 

compromise natural host-defence responses and cause unwanted off-target 

interactions. 7, 9 

The challenge is to design synthetic mimics of these peptides which display 

improved delivery to tumours while maintaining toxicity towards cancer cells, 

increased selectivity and improved production viability.119 This could be achieved by 
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manipulating the peptide sequence, net charge, secondary structure, 

amphipathicity120 and stability.121 Identifying active sequences within the peptide 

would allow the synthesis of less expensive shorter oligomers and may improve 

stability and bioavailability.122 Exchanging L-amino acids for D- has been found not 

to reduce cytotoxicity, but can avoid proteolytic cleavage and so increases the 

stability of the peptide in serum.68 Utilising a system such as vector mediated 

delivery61 or conjugation to a homing peptide123-126 can reduce unwanted off-target 

interactions and improve peptide stability. It is also possible to gain synergistic 

effects if these cationic α-helical peptides are combined with other anticancer drugs.6 
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1.3 Synthetic mimics of α-helical peptides 

Significant progress has been made in the development of synthetic analogues of 

peptidic α-helices,11 with improved structural integrity and relevant biological 

properties.127 Several key examples are described here. Peptidic foldamers,12 such as 

β-peptides,128-130 can be designed and synthesised to support an α-helical 

structure.131-134 Some are found to mimic host-defence peptides135 and they often 

display reduced susceptibility to proteolytic cleavage.136  

 

Figure 1.3 |  Solution structure of a stapled peptide, hydrocarbon tether shown in yellow.137 

α-Helical architectures can be stabilised by the inclusion of labile polar138, 139 or inert 

hydrocarbon140 intramolecular cross-linking moieties, to form stapled peptides.141 

These highly stabilised oligomers have been investigated for their potential 

therapeutic effects.142 They are found to have increased cell permeability and 

selectivity towards specific targets.143 Walensky reports stapled peptides derived 

from the protein BH3 that are found to be active in a range of leukaemia cells (e.g. 

IC50 2.2 µM in Jurkat leukaemia) and are reported to activate apoptotic pathways in 

vivo.144-146 

Several non-peptide synthetic scaffolds have also been put forward,13-15 

including indanes,147-149 terphenyls,150-152 oligophenyls,153 and chalcones.154 These 
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molecules are not formed of amino acid residues, but are designed to mimic the 

structure of natural α-helices.15 They can imitate some protein-protein interactions, 

though certain chalcones are reported by Holak to exhibit marginal antitumour 

activity (IC50 ca 200 µM).154 However they can suffer from poor solubility. This 

tempers their viability for use in the biological regime.13, 155, 156 

 

Figure 1.4 | Structure of an example hairpin pyrrole-imidizole polyamide.157 

Dervan reports hairpin pyrrole-imidizole polyamides that can selectively bind the 

minor groove of DNA.157-162 These polyamides have been reported to gain access to 

the intracellular environment163-165 and appear to have favourable pharmacokinetic 

properties in in vivo studies.166-168 They are found to be active in cancer cells (e.g. 

IC50 7.0 ± 2.8 µM in LNCaP prostate adenocarcinoma)169 and appear to act by 

perturbing DNA-dependant cellular processes, similarly to other anticancer 

alkylators.170, 171 
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Figure 1.5 | Structure of a ruthenium(II) metallopeptide.172 

It is possible to build synthetic oligomers that incorporate metal-chelating units, such 

as 2,2’-bipyridine, to preferentially capture specific metal cations and stabilise 

secondary structures.16, 17 This can allow for the precise control of chirality and 

functional group placement upon the peptide architecture.173 Some synthetic 

metallopeptides have been found to interact with the minor groove of DNA174-177 and 

can exhibit cytotoxicity.178 Vázquez reports a bimetallic ruthenium(II) example (Fig 

1.5) that is found to kill cisplatin resistant ovarian carcinoma (IC50 7 µM in 

A2780cis).172 

The cost and difficulty of synthesis of oligomeric mimics,179 and some of 

their biophysical properties, such as low solubility in aqueous media, could cause 

compounds of this type to be less suitable as a class of anticancer therapeutics.  

Another approach to access the size and structural stability required of an α-helix 

mimetic would be to utilise metallohelices, where linear organic ligands are 

supported by metal scaffolds.  
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1.4 Metallohelices 

A bimetallic triple helicate is an assembly where three organic ligands AB–BA 

arrange about two metal centres; a schematic example is shown in Fig 1.6.18, 24, 180-185 

Some examples are of a similar diameter to peptidic α-helices (ca 1.2 nm); synthetic 

and biophysical studies investigating their potential in the biological regime are 

being carried out by groups worldwide.24-26 Nevertheless, the biological impact of 

these systems will be limited unless certain criteria can be achieved, detailed in a 

recent review by Scott and Howson.19 They must be: optically pure and non-

racemising for use in human systems; soluble and both chemically and 

enantiomerically stable in aqueous solutions; readily available on a practical scale; 

and synthetically flexible so that drug-like properties can be designed or optimised.  

 

Figure 1.6 | Schematic diagram of a bimetallic triple helicate ΔM-[M2(AB-BA)3]n+ 

Some examples of bimetallic triple helicates of the type [M2(AB-BA)3]n+ are 

reported to have interesting properties in the biological regime. An overview of the 

current and potential outlook of bimetallic triple helicates with biological activity is 

given here.  
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1.4.1 Helicates 

 

Figure 1.7 | Structure of LB (R and R' range from small polar groups to larger aromatic moieties) and 

structure of [Ln2LB
3]n+.186 

Bünzli reports bimetallic lanthanide triple helicates, [Ln2LB
3]n+ as bioluminescent 

probes, such as for MRI or protein labelling.186-191 They are formed of three rigid 

ligands (LB) that encapsulate two lanthanide ions (Ln(III)).186, 192 The functionality 

of the ligands can tune the properties of the helicate, by manipulating selectivity 

towards particular Ln(III) cations and protecting them from de-excitation through 

high energy vibrations and low energy ligand-to-metal charge-transfer states.193-196  

 

Figure 1.8 | Structure of Ligand LH and structure of the complex [Fe2LH
3]Cl4.197  

Hannon reports a bimetallic iron(II) triple helicate,197 [Fe2LH
3]Cl4. It binds in the 

major groove of DNA with some sequence-selectivity.198 It induces intramolecular 

coiling199 and has some antimicrobial200 and anticancer activity.201, 202 Qu has 

discovered that the same iron(II) compound recognises human telomeric G-

quadruplex DNA203-205 and targets the amyloid-β peptide, reducing cytotoxicity and 

ameliorating memory deficits in a transgenic mouse model.206 Nevertheless, the 

compound is prepared as a racemate and requires chromatographic resolution, which 
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reduces the appeal of such systems to medicinal chemistry.207, 208 As far as we are 

aware, no details of the synthesis or characterisation of the chloride salt have 

appeared, although the hexafluorophosphate salt is known.197  

Some analogues of the iron(II) complex have been reported209-212 and an 

anticancer racemic ruthenium(II) compound was isolated, though in very low yield 

(IC50 22 µM in HB100 breast carcinoma).201 Recently a derivative of [Fe2LH
3]4+ 

containing arginine units showed improved separation of enantiomers and greater 

cytotoxicity against A2780 ovarian cancer cells (IC50 ca 7 µM).213 

 
Figure 1.9 | Structure of Ligand LV and computed structure of the complex [Fe2LV]4+.177 

Vázquez has recently reported a helical metallopeptide [Fe2LV]4+, where an optically 

pure ligand containing two hairpin turns, predisposes the formation of a homochiral 

iron(II) helix according to calculations.177 The complex is assembled in situ on a 

small scale and is not isolated, but is detected by mass spectrometry. In this 
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preliminary communication it is suggested that the helical complex may bind to 

DNA and there is evidence that it accessed the intracellular environment of Vero 

cells.  

1.4.2 Flexicates 

Previous members of the Scott group have developed a route to thermodynamically 

stable, optically pure octahedral monometallic complexes from simple chiral 

bidentate ligands and iron(II).214, 215 Two of these monometallic species can be 

connected together with linear linkers, to form bimetallic species known as 

flexicates.20-23 Lehn’s strategy for helicate synthesis18 – mechanical coupling of 

chirality between metal centres by short or rigid linkers – is not used here, and it is 

possible to create the assemblies to incorporate linkers with different degrees of 

flexibility. 

Figure 1.10 | Structure of LS
  and structure of a class Ia ΔFe-[Fe2LS

3]Cl4.21 

The class Ia iron(II) flexicate, [Fe2LS
3]Cl4, is formed in a highly diastereoselective 

manner (dr > 99.5 either ΛFe or ΔFe) dependent on the chirality of the ligand (LS). 

The compound is readily water-soluble and remarkably stable in a variety of media. 

It interacts with DNA, showing selectivity for 5'-CACATA and 5'-CACTAT 

segments, as well as stabilising different three- and four- way oligonucleotide 

junctions.22 Overall the ΛFe enantiomer has been found to be a stronger DNA binder 

and more active compound than its ΔFe enantiomer.21, 22 These flexicates have shown 

very promising antimicrobial activity towards methicillin-resistant Staphylococcus 
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aureus (MRSA) (MIC 8 µg ml-1) and Escherichia coli (E. Coli) (MIC 4 µg ml-1) 

alongside low toxicity to the non-mammalian model organism Caenorhabditis 

elegans (LC50 ca 450 µg ml-1).21 In a preliminary study, the author and co-workers 

found that these compounds exhibit potent cytotoxicity in cisplatin-resistant ovarian 

carcinoma cells (IC50 ca 2.5 µM in A2780cis).22 

 
Figure 1.11 | Ligand structure of L1 and structure of class Ib ΛFe-[Fe2L1

3]Cl4 

The class Ib iron(II) flexicate [Fe2L1
3]Cl4 forms in a similar diastereoselective 

manner to the previous example, but is connected via a flexible aliphatic linker. It is 

also found to be soluble in aqueous media, but with somewhat lower stability than 

the previous example. Neither enantiomer is observed to bind significantly to DNA 

selectively or to act as an antimicrobial agent.21, 22 These compounds have, however, 

been found to be active in ovarian cancer (IC50 ca 3.5 µM in A2780).22 Recently Qu 

and Scott have reported that both class Ia and class Ib flexicates interact with 

proteins and can enantioselectively target and inhibit amyloid-β, a therapeutic target 

in Alzheimer’s disease.23 

In using the flexicate system,21 many of the associated drawbacks of more 

traditional helicates are avoided. These compounds form as single diastereoisomers, 

stabilised by interligand π-stacking between the aromatic groups about each 

monometallic subunit. Unlike natural peptides and other metallohelices, they are 

found to be chemically and enantiomerically stable in solution (vide infra).  
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1.5 Project aims 

The promising flexicate system was based on few analogues, therefore a range of 

class Ib flexicates were investigated as non-peptide α-helix mimetics. This system 

was chosen over the other class of flexicate as is displayed potent anticancer activity 

but was inactive in bacteria. It was hoped that the range of complexes synthesised 

would be found to satisfy the previously described requirements of an ideal system 

and would exhibit potent anticancer activity. 

 Alongside the criteria set out by Scott and Howson, to be able to approach 

the precision of functional group placement and topology seen in a natural α-helix, 

the use of high symmetry systems could be considered restricting. We therefore 

suggested that a model amphipathic α-helix mimetic should have the following 

characteristics: 

(a) many analogues available on a practical scale 

(b) optically pure and non-racemising 

(c) soluble, and resistant to deterioration in biological media 

(d) potent and selective biological activity 

(e) precise and deliberate placement of functional groups 

At the outset of the work described in this thesis, a few analogues of class Ia and Ib 

flexicates had been synthesised in an optically pure form with good solubility and 

stability.21 Some promising antimicrobial activity had been noted.  

In chapter 2 we describe the synthesis and characterisation of a range of class 

Ib flexicates, their biophysical properties and potential as active and selective 

anticancer therapeutics, as well as investigations into their possible mode of action.22 
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In chapter 3 we make the first advances towards to the ambitious objective (e) and 

report the highly diastereoselective synthesis of amphipathic metallohelices with 

potent and selective anticancer activity.216  
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Chapter 2 
Functionalised symmetrical flexicates 

2.1 Introduction 

In section 1.4.2 we described work from this laboratory on the synthesis of optically 

and diastereomerically pure (dr >200:1) helicate-like complexes referred to as 

flexicates.1 In order to distinguish between flexicate architectures described, we refer 

to those linked via imine (A) i.e. [M2(BA-AB)3]4+ as class Ia and the pyridine (B) i.e. 

[M2(AB-BA)3]4+ as class Ib systems. Water soluble examples of such flexicates are 

remarkably stable over extended time periods in a variety of media (vide infra). Only 

the class Ia flexicates have been found to interact in a specific manner with DNA in a 

cell free environment2 and exhibit antibiotic activity against MRSA (Methicillin-

resistant Staphylococcus aureus) and Escherichia coli. Although, both class Ia and 

class Ib compounds have been found to have low toxicity towards the nematode 

worm Caenorhabditis elegans.1  

Since the self-assembly of flexicates is dictated by the formation of 

monometallic units at either end of the structure, it should be possible to use a range 

of linker classes and also to include a wider variety of functionality than which 

appears in traditional helicates. Flexicate architectures with differing functionalities 

incorporated into the ligand were proposed, with a focus on the class Ib systems. 

These have proved to be the most synthetically tractable and have shown some 

promising anticancer activity and selectivity.1, 2  
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Figure 2.1 | Cartoon of the strategy to alter the flexicate ligand with a view to producing a library of 

architectures. 

In this chapter we will begin to explore the extent to which the flexicate architecture 

[M2(AB-BA)3]4+ can withstand inclusion of different functionalities, both at the 

chiral amine end group (A) and within the central dipyridyl linear linker (B-B) of the 

ligand. This would give us access to a previously unknown range of compounds. By 

including functional groups, the properties of the flexicate may be altered, for 

example to include different supramolecular interactions with key proteins, 

membranes or DNA. An investigation into the potential of these compounds as 

antimicrobial and anticancer agents is also detailed, along with several studies into 

their possible modes of action.  
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2.2 Synthesis of a range of functionalised flexicates 

2.2.1 Synthesis of functionally diverse dialdehyde units 

Dipyridyl units (B-B) with various lengths, hydrophilicity and rigidity were 

synthesised and characterised.  

 
Scheme 2.1 | Synthesis of dipicolinaldehyde units 5-7 via 5-hydroxypicolinaldehyde (4).3 

A key synthon for this work was 5-hydroxypicolinaldehyde 4, which was prepared 

on a multigram scale several times using a modified literature method (scheme 2.1).3 

First 25 g of 5-hydroxy-2-methylpyridine was treated with m-chloroperoxybenzoic 

acid (mCPBA) to give 5-hydroxy-2-methylpyridine-1-oxide (1). This was 

diacetylated to 6-[(acetyloxy)methyl]pyridine-3-yl acetate (2) and then hydrolysed in 

refluxing hydrochloric acid to 6-(hydroxymethyl)pyridine-3-ol (3). Oxidation with 

activated manganese dioxide gave 5-8 g of the target aldehyde 4 (23%).  

Simple alkyl-bridged dipyridyls with C4-C6 units including the previously 

reported 5,5'-(pentane-1,5-diylbis(oxy))dipicolinaldehyde,4 (5) 5,5'-(butane-1,4-

diylbis(oxy))dipicolinaldehyde (6), and 5,5'-(hexane-1,6-diylbis(oxy))-dipicolin 

aldehyde (7) were synthesised via Williamson etherification of 4 with the 

corresponding α,ω-dibromoalkane in the presence of potassium carbonate.4  
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Scheme 2.2 | Synthesis of 5,5'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))dipicolinaldehyde (9) via 1-

bromo-2-(2-bromoethoxy)ethane 5 (8). 

The inclusion of heteroatoms in the linker was also successful (scheme 2.2); 1-

bromo-2-(2-bromoethoxy)ethane (8) was prepared by brominating diethelyne glycol 

in the presence of triphenylphosphine, before etherification with 4 to 5,5'-(2,2'-

oxybis(ethane-2,1-diyl)bis(oxy))dipicolinaldehyde (9). 

 

Scheme 2.3 | Synthesis of 5,5'-(but-2-yne-1,4-diylbis(oxy))dipicolinaldehyde (11) via 1,4-

dibromobut-2-yne (10) and (E)-5,5'-(but-2-ene-1,4-diylbis(oxy))dipicolinaldehyde  (12) 

To increase the rigidity of the ligand a number of unsaturated and aromatic systems 

were synthesised (scheme 2.3). The alkyne 1,4-dibromobut-2-yne (9) was prepared 

via bromination of 2-butyne-1,4-diol.5 Subsequent etherification of this with 5-

hydroxypicolinaldehyde in the presence of potassium carbonate gave 5,5'-(but-2-

yne-1,4-diylbis(oxy))dipicolinaldehyde (11). The alkene (E)-5,5'-(but-2-ene-1,4-

diylbis(oxy))dipicolinaldehyde  (12) from 1,4-trans-dibromobut-2-ene.  
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The dialdehyde 5,5'-(1,4-phenylenebis(methylene))bis(oxy)dipicolinaldehyde 

(13), analogous to the aryl-bridged linker in a previously reported class Ia flexicate1 

was synthesised similarly from 1,4-bis(bromomethyl)benzene, and its isomer 5,5'-

(1,3-phenylenebis(methylene))bis(oxy)dipicolinaldehyde (14) was also formed from 

1,3-bis(bromomethyl)benzene (scheme 2.4). 

 

Scheme 2.4 | Synthesis of 5,5'-(1,4-phenylenebis(methylene))bis(oxy)dipicolinaldehyde (13), 5,5'-

(1,3-phenylenebis(methylene))bis(oxy)dipicolinaldehyde (14) and 5,5'-(4,4'-methylenebis(4,1-

phenylene)bis(methylene))bis(oxy)dipicolinaldehyde (16) via bis(4-(bromomethyl)phenyl)methane 

(15)6. 

Bis(4-(bromomethyl)phenyl)methane (15) was synthesised via a literature method:6 

the reaction of diphenylmethane, 1,3,5-trioxane and catalytic tetradecyltrimethyl 

ammonium bromide in hydrobromic and acetic acids (scheme 2.5). Following 

etherification with 4, 5,5'-(4,4'-methylenebis(4,1-phenylene)bis(methylene))bis 

(oxy)dipicolinaldehyde (16) was successfully isolated. 

 

University of Warwick | Page 30 



  Rebecca A. Kaner | Chapter 2 

 

Scheme 2.5 | Synthesis of bis(6-formylpyridin-3-yl) glutarate (17).7 

An ester-linked dipicolinaldehyde unit was investigated (scheme 2.5); bis(6-

formylpyridin-3-yl) glutarate (17) prepared via esterification7 of 4 and glutaryl 

chloride in dry tetrahydrofuran and triethyl amine and then was purified by column 

chromatography.  

2.2.2 Synthesis of zinc(II) flexicates 

 
Scheme 2.6 | Self-assembly of  flexicate ΛZn-[Zn2L1

3][ClO4]4 

The synthesis of all the class Ib flexicates followed the same method as the 

previously reported ΛZn-[Zn2L1
3][ClO4]4 (scheme 2.6).1 (R)-1-phenylethan-1-amine 

(6 eq.) and the appropriate dialdehyde unit (3 eq.) were dissolved in acetonitrile. 

Zinc(II) perchlorate* hexahydrate (2 eq.) was added and the flexicate species self-

assembled in solution at ambient temperature. The product that precipitated upon 

addition of ethyl acetate to the reaction mixture was collected and dried under 

reduced pressure. This self-assembly method typically gave the desired single 

species in 40% isolated yield, although NMR analysis indicated essentially complete 

conversion. The compounds were characterised by NMR spectroscopy, mass 

* For perchlorate safety measures see section 5.1.1 
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spectrometry, infra-red spectroscopy and microanalysis. Typical data and features of 

interest in the data are discussed below. 

 
Figure 2.2 | Structure of L2-L4 synthesised with flexible aliphatic linkers and structures of the 

assembled flexicates ΛZn-[Zn2Lx
3][ClO4]4 (x = 2-4). 

The range of aliphatic ether linked class 1b flexicates was extended successfully to 

include all the target compounds: ΛZn-[Zn2Lx
3][ClO4]4 (x = 1-4). The first class 1b 

flexicates containing more rigid linkers were afforded; 11 and 12 gave ΛZn-

[Zn2L5
3][ClO4]4 and ΛZn-[Zn2L6

3][ClO4]4 respectively. The 1H-NMR spectrum of 

ΛZn-[Zn2L6
3][ClO4]4 in d3-acetonitrile at 298 K indicates a high diastereomeric 

purity by the absence of additional peaks in the imine region (8-10 ppm). Indeed for 

each environment only one peak is seen (a-e, Fig 2.3ii). 
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Figure 2.3 | (i) Structure of L5 and L6 and structures of the assembled flexicates ΛZn-[Zn2L5
3][ClO4]4 

and ΔZn-[Zn2L6
3][ClO4]4 (ii) 1H NMR spectrum of ΛZn-[Zn2L6

3][ClO4]4 at 298 K in d3-acetonitrile (δH  

1.95, water present δH 2.19), recorded using 400 MHz spectrometer. 

The 1,4-aryl-bridged system ΛZn-[Zn2L7
3][ClO4]4 was found to have reduced 

solubility compared to other architectures. However, the 1H-NMR spectrum in d3-

acetonitrile at 298 K indicates that a highly symmetrical, diastereomerically pure 

species has formed (Fig. 2.4) . 

(i) 

(ii) 
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Figure 2.4 | (i) Structure of L7 and structures of the assembled flexicates ΛZn-[Zn2L7
3][ClO4]4 (ii) 1H 

NMR spectrum of ΛZn-[Zn2L7
3][ClO4]4 at 298 K in d3-acetonitrile (δH  1.95, water present δH 2.19), 

recorded using 400 MHz spectrometer at 298 K. 

The complex containing the 1,3-phenylene bridge i.e. ΛZn-[Zn2L8
3][ClO4]4 has a 

more complex 1H-NMR spectrum, indicating the presence of more than one species 

(Fig 2.5). At 253 K the methyl group (a) doublet resonances at 1.4-1.7 ppm contain 

one large doublet and two broader resonances in the ratio ca 1.0:0.1:0.1. The 

proportion of the minor species increases with temperature and the resonances 

sharpen somewhat; such that by 313 K two of the smaller doublets corresponding to 

the minor species are relatively sharp and resolved while a third overlaps with the 

main resonance. By 353 K the minor peaks had broadened considerably and were 

observed to be in the ratio of 1.0:0.3:0.3 with the major peak. The imine region (8.5 

– 7.6 ppm 1:0.1 at 253 K, 1:0.3 at 353 K) behaved in a corresponding manner.  

(i) 

(ii) 
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Figure 2.5 | (i) Structure of L8 and structures of the assembled flexicate ΛZn-[Zn2L8
3][ClO4]4. (ii) 1H 

NMR spectra of ΛZn-[Zn2L8
3][ClO4]4 at 253 – 353 K in d3-acetonitrile (δH  1.95, water present δH 

2.19), recorded using 400 MHz spectrometer at 298 K, with magnified area shown in red depicting 

increasing population of second asymmetric conformer. 

These observations are consistent with the presence of one high symmetry and one 

low symmetry species in thermodynamic equilibrium (ratio ca 1:0.3 at low 

temperature, increasing to 1:1 at high temperature). The processes leading to the 

observed variable temperature NMR behaviour may correspond to exchange 

between these conformers, or indeed between isostructural low symmetry species. 

While the spectra are not sufficiently well resolved to determine kinetic parameters, 

we sought to investigate this molecular system by computational means. 

(ii) 

(i) 
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A number of possible conformers of ΛZn-[Zn2L8
3][ClO4]4 were constructed 

and optimised by Dr Alan Faulkner using the methods described in section 5.8. A 

range of candidate structures was constructed and annealed using DommiMOE at 

500 K before cooling to 0 K. The output structures were then optimised using ORCA 

(DFT calculations) including a correction for solvent.  

The six calculated conformers fell into two classes: those where the three m-

xylenyl groups were oriented away from the central cavity i.e. exo, and those where 

one such group was oriented endo. No conformers were observed in which two or 

three m-xylenyl groups were oriented into the cavity. Presumably, this is due to such 

conformations being unstable for steric reasons and possibly having high strain about 

each octahedral metal subunit.  

Structure endo1 (Table 2.1) was found to be the lowest in energy, the next 

lowest being endo2 (ca +5 kcal mol-1) which differs only in the fold of one of the 

linkers. For these structures the Zn-Zn distances are ca 11.7 and 11.8 Å respectively. 

The structure exo1 (+7 kcal mol-1) has a large central cavity but a similar Zn-Zn 

distance (11.8 Å). The structure exo2 (+8 kcal mol-1) has a considerably shorter Zn-

Zn distance at ca 9.5 Å with accompanying concertinaed fold. Furthermore, higher 

energy conformers exo3 and exo4 differed principally in how the m-xylenyl groups 

folded towards each metal centre. Both were found to have a short Zn-Zn distances 

of 9.4 and 9.5 Å respectively.  
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Conformer Relative energy /kcal 
mol-1 Zn-Zn distance /Å 

 

endo1 0 11.7 

 

endo2 5.4 11.8 

 

exo1 7.1 11.8 

 

exo2 7.9 9.5 

 

exo3 12.4 9.4 

 

exo4 24.8 9.5 

Table 2.1 | Calculated structures, relative energies (compared to endo1) and Zn-Zn distances of the 

six conformational isomers of ΛZn-[Zn2L8
3][ClO4]4. 
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Our expectation would be that the barrier to conversion between exo structures is 

low since it would involve a relatively simple concertina-type process; and we 

propose that the located exo species of Table 2.1 and perhaps other high symmetry 

conformations are responsible for the majority species in the NMR spectra (Fig. 2.5). 

The low symmetry endo species are proposed to give rise to the minority NMR 

spectrum described above. Conversion between exo and endo conformations requires 

the rotation of the m-xylenyl linker through a strained, high energy transition state. 

Given the total number of possible structures, the accompanying entropy becomes 

very difficult to take into account, so prediction of population from the above 

calculations is very challenging. Nevertheless, these calculations strongly support 

our proposal that the major symmetric isomer has the three 1,3-phenylene bridges in 

an exo conformation as shown in Fig 2.4(i), while an asymmetric species has one or 

more such groups in an endo conformation. 

 

Figure 2.6 | Structure of L9 and structure of the assembled flexicate ΛZn-[Zn2L9
3][ClO4]4. 

In contrast to the above, the flexicate ΛZn-[Zn2L9
3][ClO4]4 incorporating the 

diphenylmethylene linker unit 16 gave a conventional 1H NMR spectrum; while the 

ligands L8 and L9 are topologically similar, steric effects preclude the possibility of 

endo conformers of the latter system.  
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Figure 2.7 | (i) Structure of L10 and structure of the assembled flexicate ΛZn-[Zn2L10

3][ClO4]4 (ii) 1H 

NMR spectrum of ΛZn-[Zn2L10
3][ClO4]4 at 298 K in d3-acetonitrile (δH  1.95, water present δH 2.19), 

recorded using 400 MHz spectrometer at 298 K. 

The ester-linked system ΛZn-[Zn2L10
3][ClO4]4 self-assembled to form a symmetric 

flexicate. In the 1H NMR spectrum, the diastereotopic CH2 groups adjacent to the 

ester carbonyls appear as a second order system at 2.5 ppm (d) while the central CH2 

groups, being further away from the sources of chirality, give a simple quintet at 1.9 

ppm (e).  

 

 

(i) 

(ii) 
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2.2.3 Flexicates with functionalised amine units 

 

Figure 2.8 | Structure of L11-20 with differing functionality at position R and R´ and structures of ΛFe-

[Fe2LX
3][ClO4]4 (x = 11 – 20). 

It is possible to include functional groups on the chiral amine of the ligand, with a 

few examples having been demonstrated previously.1, 8 The inclusion of more 

functionality was explored here. In this study, iron(II) perchlorate was used as the 

metal source as it had been demonstrated to form the desired flexicate architecture 

with the previously known [Fe2LS
3][ClO4]4 and [Fe2L1

3][ClO4]4.1 

Reduction of optically pure D-phenylglycene with lithium aluminium hydride 

gave (R)-phenylglycinol (18).9 This alcohol was converted to a range of ethers 

(scheme 2.7) using a modified Williamson ether synthesis in the presence of sodium 

hydride (20-25).10 

 

Scheme 2.7 | Reduction of (R)-phenylglycene to (R)-phenylglycinol and subsequent modified ether 

synthesis.9, 10 

The chiral amines (6 eq.) were dissolved in acetonitrile with dialdehyde 54 (3 eq.). 

Iron(II) perchlorate hexahydrate (2 eq.) was added, and after heating to reflux, 
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cooling and addition of ethyl acetate, the diastereomerically pure flexicate, a dark 

purple crystalline solid, was collected and dried. [Fe2Lx
3][ClO4]4 (x = 11-15, Fig 2.8) 

formed in an analogous manner to the zinc(II) complexes described earlier (see 

chapter 5 for full analyses). 

Single crystals of ΔFe-[Fe2L14
3][ClO4]4 were grown upon slow diffusion of a 

layer of water into a solution of the complex in acetonitrile. Diffraction data were 

recorded by Dr Guy Clarkson on an Xcalibur Gemini diffractometer, but the 

structure was only partially resolved because there was a high degree of disorder, 

particularly in the terminal alkene groups and the perchlorate counter ions (removed 

from Fig 2.9 for clarity). Each of the pentyl linkers takes a different path between the 

stereogenic octahedral iron(II) complexes at either end of the molecule and thus, as 

predicted, this diastereomerically pure class Ib flexicate is assembled without a 

contribution from mechanical coupling of the two metal centres. As in previous 

monometallic structures, the diastereoselection arises in part from hydrophobic inter-

ligand π-stacking interactions.1, 11, 12 An acetonitrile molecule occupies the cavity 

between the two metal centres in the complex. 

 
Figure 2.9 | Partially resolved crystal structure of ΔFe-[Fe2L14

3][ClO4]4.MeCN with acetonitrile 

molecule occupying the cavity. 
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In addition to the above phenylglycinol-derived examples, we exploited the 

availability of p-substituted phenylethylamines (Fig 2.8, R'), allowing us to further 

extend the range of functionality in class Ib flexicate architectures. The compounds 

[Fe2Lx
3][ClO4]4 (x = 16-19, Fig 2.8) were synthesised by analogous methods to the 

above.   

2.2.4 Synthesis of highly water soluble complexes 

In order to prepare water-compatible systems for biological testing we turned to 

iron(II) chloride as the metal source. Four class Ib systems – [Fe2Lx
3]Cl4 (x = 4, 5, 6 

and 8) – were selected to demonstrate these syntheses and to compliment the 

previously known class Ib ([Fe2L1
3]Cl4) and class Ia ([Fe2LS

3]Cl4) flexicates.2, 8 

Unfortunately the p-xylenyl bridged [Fe2L7
3]Cl4 and diphenylmethylene-bridged 

[Fe2L9
3]Cl4 displayed poor solubility in aqueous media making them unsuitable for 

testing. The assembly of the ester linked [Fe2L10
3]Cl4 was unsuccessful, perhaps due 

to the ester carbonyl groups in the linker which may bind iron(II). 

Pairs of water soluble flexicate enantiomers were synthesised in high yield by 

heating the appropriate dipicolinaldehyde linker (3 eq.) and either (R)- or (S)-1-

phenylethan-1-amine (6 eq.), with iron(II) chloride (2 eq.) to reflux in methanol. The 

dark purple solutions were filtered through silica gel and evaporated carefully to 

dryness. The products were analysed by NMR spectroscopy, mass spectrometry, 

microanalysis, thermogravimetric analysis, infra-red, UV-vis absorption, and circular 

dichroism spectroscopies. 
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Figure 2.10 | (i) Structure of L6 and structure of the assembled flexicate ΔFe-[Fe2L6
3][Cl4. (ii) 1H-

NMR spectrum (iii) 13C{1H}-NMR spectrum of ΔFe-[Fe2L6
3]Cl4 298 K in d4-methanol (δH  3.31, δC 49, 

water present δH 4.87), recorded using 400 MHz spectrometer at 298 K. 

The complexes gave excellent electrospray mass spectrometry data with, for 

example ΛFe-[Fe2L4
3]4+ giving a strong peak at m/z 420.17 Da for the tetracationic 

ion. The 1H-NMR spectra were similar but typically broader than the analogous 

zinc(II) perchlorate complexes; the spectra of ΛFe-[Fe2L6
3]Cl4 [Fig 2.10] are typical, 

and are consistent with the presence of single diastereomers. Circular dichroism 

spectra of each pair of enantiomers were recorded in water (0.03 mM). Each 

displayed equal and opposite spectra, indicating that the complexes were formed in 

non-racemic mixtures of opposite configurations. Spectra for other complexes are 

presented in chapter 5 and appendix A. 

(i) 

(ii) 

(iii) 
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Figure 2.11 | CD spectra of ΛFe-[Fe2L4
3]Cl4 and ΔFe-[Fe2L4

3]Cl4 (0.03 mM) in H2O, showing each 

pair of enantiomers has equal and opposite spectra. 

2.2.5 Water of crystallisation 

Figure 2.12 | Infra-red spectrum of ΛFe-[Fe2L5
3]Cl4.9H2O. 

The formula weights of the panel of complexes, including the level of water of 

crystallisation were determined by combining data from a range of techniques. First, 

NMR spectroscopy showed that the samples contained only the complex and water; 

the latter was confirmed by IR spectroscopy (e.g. Fig 2.12) where the two broad and 

intense O-H stretching modes were observed in the region 3000-3500 cm-1. 
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ΛFe-[Fe2L5
3]Cl4.9H2O ΔFe-[Fe2L5

3]Cl4.9H2O 

  
  

Figure 2.13 | Thermogravimetric spectra of ΛFe-[Fe2L5
3]Cl4.9H2O and ΔFe-[Fe2L5

3]Cl4.9H2O, 

indicating mass lost due to water of crystallisation and thermal decomposition. 

Thermogravimetric analysis was performed (e.g.  Fig 2.13)  in all cases, showing a 

significant mass loss between 300 and 400 K, consistent with loss of water of 

crystallisation, before further mass loss at higher temperatures. In the case of 

enantiomers ΛFe-[Fe2L5
3]Cl4 and ΛFe-[Fe2L5

3]Cl4 8.5% (±0.5%) of the total mass 

was lost at the lower temperature, corresponding to nine equivalents of water per 

complex (for calculations, see appendix A). This result was typical for the complexes 

synthesised here. It was found that the thermogravimetric and microanalytical data 

(table 2.2) correlated well in all cases. Also, samples of enantiomers gave, within 

error limits, the same thermogravimetric and microanalytical results, thus adding 

further confidence to our interpretation of these measurements. Further data are 

presented in chapter 5 and appendix A.  

Complex % C % H % N 
C96H90Cl4Fe2N12O6.9H2O 60.0 5.7 8.7 

ΛFe-[Fe2L5
3]Cl4.9H2O 59.6 5.5 8.6 

ΔFe-[Fe2L5
3]Cl4.9H2O 60.6 5.5 8.8 
    

2.2.6 Synthesis of the Hannon helicate 

We wished to include the water-soluble helicate from the Hannon group13 for 

comparison with our new complexes in biological studies, but while the synthesis of 

Table 2.2 | Recorded and theoretical elemental analysis of ΛFe-[Fe2L5
3]Cl4.9H2O and ΔFe-

[Fe2L5
3]Cl4.9H2O. 
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this compound is described in outline,14 to our knowledge no detailed synthetic 

method or characterising data for this compound with chloride counter-ions have 

appeared.  

 

Scheme 2.8 | Self-assembly of the known helicate, [Fe2LH
3]Cl4.4H2O. 

The synthesis of this helicate was investigated in detail by Pratik Gurnani. 4,4'-

methylenedianiline and 2-pyridinecarboxaldehyde were heated to reflux with iron(II) 

chloride tetrahydrate in methanol. After careful evaporation of the solvent the crude 

product was shown to contain a number of impurities, but washing with 

dichloromethane and drying under reduced pressure gave clean samples which were 

thoroughly characterised. The material produced was consistently found, via 

thermogravimetric analysis and microanalysis as above, to contain four water 

molecules of crystallisation. To our knowledge this has not been noted in the 

literature. Attempts to separate this racemic helicate by chiral chromatography15 

were not successful. 

2.2.7 Complex stability in aqueous media 

Sufficient stability in aqueous media is a vital attribute for any molecule which is 

intended to be tested for activity in the biological regime, unless its degradation is an 

integral part of any observed activity. To investigate how the water soluble class Ib 

flexicates behave in aqueous media over an extended period of time, their 
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absorbance spectra were recorded in various aqueous media. The Hannon helicate 

was included for comparison.  

Little decomposition of the new flexicates occurred in neutral water over a 

reasonable timescale, but half-lives for decomposition could readily be recorded in 

acid. A 0.03 mM solution of each compound was made up in hydrochloric acid (0.2 

M) and absorbance spectra in the range 350-650 nm were measured periodically. 

The absorbance at 540 nm, which corresponds to the MLCT band of the complex, 

was used to quantify the concentration of the complex since peaks for decomposition 

products are unlikely to appear in this region. The observed complex decay was best 

modelled by first order kinetics. The half-lives (t½) were calculated using the 

following equations; 

ln[𝐴] = −𝑘𝑡 + ln[𝐴]0         𝑡1
2�  = ln(2)

𝑘
 

 

Complex pH 1, 20°C 
t½ /hours (esd) 

[Fe2LH
3]Cl4 1.4 (9.5E-3) 

ΔFe-[Fe2L1
3]Cl4 9.6 (0.3) (ref 1)  

ΛFe-[Fe2L4
3]Cl4 9.0 (0.5) 

ΔFe-[Fe2L4
3]Cl4 9.0 (0.5) 

ΛFe-[Fe2L5
3]Cl4 10.5 (0.5) 

ΔFe-[Fe2L5
3]Cl4 11.0 (0.5) 

ΛFe-[Fe2L6
3]Cl4 19.5 (0.9) 

ΔFe-[Fe2L6
3]Cl4 18.2 (0.5) 

ΛFe-[Fe2L9
3]Cl4 11.2 (1.1) 

ΔFe-[Fe2L9
3]Cl4 8.7 (0.9) 

 

The range of recorded t½ values indicates that the structure of the ligand affects 

stability. The most stable flexicate was the class Ia [Fe2LS
3]Cl4 which had previously 

Table 2.3 | Solution half-life (t½) of MLCT band (540 nm) for the iron (II)chloride flexicates, 0.03 

mM in 0.2 M hydrochloric acid (pH 1.0) at 20°C. 

Equation 2.1 Equation 2.2 
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been shown to not decay significantly in harsh acidic conditions even after 10 d.1 

Class Ib flexicate alkene-bridged [Fe2L6
3]Cl4 was also found to be very stable with a 

half live of ca 19 h. Alkyne-bridged [Fe2L5
3]Cl4, meta-arene bridged [Fe2L8

3]Cl4, 

pentyl-bridged [Fe2L1
3]Cl4 and glycol-bridged [Fe2L4

3]Cl4 exhibited similar stability 

in these conditions, recording half-lives of around 10 h. In contrast, the Hannon 

system [Fe2LH
3]Cl4 had a half-life under the same conditions of less than 2 h.  

Screening of such compounds in antimicrobial, anticancer and other 

biological assays involves their dissolution and storage for long periods in complex 

growth media.  We thus set out to assess the stability of the complexes in Roswell 

Park Memorial Institute (RPMI-1640) cell culture medium at 37°C. Preliminary 

studies indicated that the kinetics of decomposition did not follow simple rate laws 

and despite extensive efforts the data could not be modelled with a realistic number 

of parameters. Thus an estimate was made, based on repeat UV-vis storage 

experiments, of the amount of complex remaining after 96 h. [Fe2LS
3]Cl4 was found 

to be extremely resistant to hydrolysis in these conditions with 90 ± 5% remaining., 

while for [Fe2L1
3]Cl4 the integrity was 45 ± 3%. Under the same conditions, 

[Fe2LH
3]Cl4 gave rather inconsistent results but certainly decayed almost completely 

under these conditions.  

Complex RPMI-1640 medium, 37°C 
96h % integrity (esd) 

[Fe2LH
3]Cl4 12 (9) 

ΛFe-[Fe2LS
3]Cl4 90 (5) 

ΛFe-[Fe2L1
3]Cl4 45 (3) 

 

Table 2.4 | % integrity in MLCT band (540 nm) after 96 h in RPMI-1640 cell culture medium at 

37°C. 
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The greater stability of all flexicates than the Hannon helicate, despite the fact that 

the latter contains an efficient helicand, is probably due to the presence of extensive 

π-stacking in the flexicates. Whatever the mechanism, these hydrophobic 

interactions must be disturbed in order to allow hydrolysis. The particularly high 

stability of the class Ia flexicate is probably due to the stereogenic amine unit being 

contained within the bridge rather than at the periphery of the complex. This will 

encumber rotation of the aryl ring out of the π-stacked arrangement.   
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2.3 Antimicrobial Activity 

Minimum inhibitory concentration (MIC) is defined as the lowest concentration of 

an antimicrobial compound that will inhibit growth of a microorganism.16 Following 

the activity reported for class Ia [Fe2LS
3]Cl4,1 a range of class Ib flexicates 

[Fe2Lx
3]Cl4 (x = 4, 5, 6), and [Fe2L1

3]Cl4,1 were selected for screening, along with  

[Fe2LH
3]Cl4 as synthesised by Pratik Gurnani, and the β-lactam ampicillin as a 

control. 

Using a previously repored procedure,16 cultures of the Gram-positive 

bacterium Methicillin-resistant Staphylococcus aureus, USA300 (MRSA) and the 

Gram-negative Escherichia coli, TOP10 (E. Coli) were exposed to drug 

concentrations (2 – 128 µg/ml) in Mueller-Hinton broth over 20 h at 37°C by Daniel 

Simpson at the University of Warwick.  

Table 2.5 | MIC values for ampicillin, class Ia (ΛFe-[Fe2LS
3]Cl4) and  class Ib (ΛFe-[Fe2Lx

3]Cl4, x = 1, 

4-6)  flexicates, and [Fe2LH
3]Cl4 against Staphylococcus aureus, USA300 (MRSA) and Escherichia 

coli, TOP10 (E. Coli) over 20 h at 37°C in Mueller-Hinton broth. 

Compound MRSA E. Coli 
MIC (μg ml-1) MIC (μg ml-1) 

Ampicillin <2 4 
ΛFe-[Fe2LS

3]Cl4 8 4 
ΛFe-[Fe2L1

3]Cl4 64 >128 
ΔFe-[Fe2L1

3]Cl4 64 >128 
ΛFe-[Fe2L4

3]Cl4 128 >128 
ΛFe-[Fe2L5

3]Cl4 128 >128 
ΔFe-[Fe2L6

3]Cl4 64 >128 
[Fe2LH

3]Cl4 >128 >128 
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While ampicillin behaved as expected,16 and our collaborator Bolhuis’ results for the 

class Ia system and ΛFe-[Fe2L1
3]Cl4 were reproduced, none of the class Ib flexicates 

were found to significantly inhibit cell growth or cause cell death at these 

concentrations. Notably, the Hannon system was also found to be inactive; we note 

however that the literature reports of antimicrobial activity for this complex refer to 

the use of a unique (Richards-Bolhuis) broth which was formulated specifically for 

this complex.13 Our expectation is that the discrepancy between our results here and 

those reported by Hannon and Bolhuis arise from the instability of that complex in 

conventional biological media.  
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2.4 Anticancer Activity 

In cancer chemotherapeutic agent discovery, half maximal inhibitory concentration 

(IC50) is defined as the concentration of a drug which permits 50% cell survival 

compared to an untreated control over a set time period. It is determined by 

constructing a dose response curve of drug concentration vs % cell survival. The 

specific method employed in this project is the MTT colorimetric assay.17 Live cells 

can reduce yellow, water-soluble 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra 

zolium bromide (MTT) to purple insoluble formazan (scheme 2.9). The amount of 

MTT that is reduced to formazan can be used as a quantitative measurement of cell 

survival after drug treatment. 

 

Scheme 2.9 | Cellular reduction of soluble yellow 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) to insoluble purple formazan. 

Cells were seeded into 96 well plates (200 cells per well) and incubated for 24 h at 

37°C in an atmosphere of 5% CO2 prior to drug treatment. Drug dilutions (10 

different dilutions 100 – 0.003 µM) were added, leaving a row of drug-free reference 

wells. Following incubation for 96 h, MTT (20 µl of 5 mg/ml per well) was added 

(Fig 2.14i) and after an incubation of 4 h all solutions were removed from the wells. 

Dimethyl sulfoxide was added to each well to dissolve the purple formazan crystals 

formed (Fig 2.14ii). The absorbance at 540 nm of each well was recorded as a 

quantitative measurement of the amount of formazan produced by the living cells 
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after drug treatment. This was plotted vs drug concentration to construct a dose 

response curve. The concentration at which absorbance was 50% of the untreated 

reference cells was determined to be the IC50 of that drug. These tests were 

conducted in triplicate.17 

(i) 

 

(ii) 

 
 

Figure 2.14 | (i) Photograph of a 96 well plate containing MDA-MB-468 cells after treatment with 

ΔFe-[Fe2L1
3]Cl4 and addition of MTT. (ii) Photograph of the same 96 well plate after incubation with 

MTT for 4 h and dissolution of the formazan produced in dimethyl sulfoxide. 

2.4.1 Cytotoxicity in cancer cells 

The activity of the water-soluble flexicates in several human tumour cell-lines was 

investigated. MDA-MB-468 (human epithelial breast adenocarcinoma) was chosen 

as it is a widely used cell line in chemosensitivity studies.18 Human colon carcinoma 

HCT116 with wild type p53 (+/+) was chosen because FK-16 (a fragment of human 

cathelicidin LL-37) is reported as active in this cell line (IC50 40 µM).19-21 A sister 

cell-line to HCT116 p53+/+ with mutated (-/-) p5322 was chosen, following the 

discovery of very encouraging activity in the wild type cells, to probe the 

involvement of p53 in the mechanism. Cisplatin was used as a control, principally 

because of the large number of studies made on this compound rather than because 

we have any expectation that flexicates act via an alkylator mechanism. We also 

included [Fe2LH
3]Cl4 since, other than our own compounds,2 this is the most 

extensively studied metallohelix in the area and which has been shown to have 
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moderate activity in other human tumour cell lines.23, 24 All the complexes were 

found to be sufficiently soluble under assay conditions while in contrast, the 

component ligands were found to be insufficiently soluble for meaningful testing. 

Here the results are first discussed for each cell-line against the whole panel, and 

then highlighting important differences in potency (selectivity) against the various 

cell-lines for each compound. 

MDA-MB-468 Ligand structure key 

  

HCT116 p53+/+ HCT116 p53-/- 

  
  

Figure 2.15 | IC50 values of cisplatin (Pt, white), [Fe2LH
3]Cl4 (H, hashed) and flexicates [Fe2Lx

3]Cl4 

(x = S, 1, 4, 5, 6, 8) (ΔFe - light grey, ΛFe - dark grey) against MDA-MB-468, HCT116 p53+/+ and 

HCT116 p53-/- cells over 96 h and ligand structure key.  

In MDA-MB-468 cells cisplatin displayed an IC50 of 2.5 ± 0.5 µM while [Fe2LH
3]Cl4 

and the previously reported class Ia flexicate [Fe2LS
3]Cl4 were slightly less active. 

The class Ib flexicates had a range of activities. Pairs of enantiomers had very 

similar effects on cells and may be considered equipotent. While the simple pentyl-

bridged compound [Fe2L1
3]Cl4 had the highest IC50 in this panel, the isostructural 
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glycol-bridged [Fe2L4
3]Cl4 was extremely potent (IC50 0.2 ± 0.1 µM) and an order of 

magnitude more toxic here than cisplatin. The alkyne-bridged [Fe2L5
3]Cl4 and meta-

xylenyl [Fe2L8
3]Cl4 also performed well while the alkene-bridged architecture 

[Fe2L6
3]Cl4 had significantly lower activity. 

At 3.5 ± 1.5 µM, cisplatin had a similar potency in HCT116 p53+/+ cells as in 

the breast cancer cell line, while the Hannon helicate at 10.4 ±0.6 µM had 

significantly lower toxicity. The class Ia flexicate ([Fe2LS
3]Cl4) was highly active, 

with IC50 as low as 0.6 ± 0.3 µM for the ΛFe enantiomer; the selectivity here – it 

being nearly an order of magnitude more active in HCT116 p53+/+ than in MDA-

MB-468 – merits further study. Some of the class Ib compounds were even more 

potent, and in contrast to performance in the breast cancer cell line there were some 

significant enantiomeric differences; ΔFe enantiomers of glycol-bridged [Fe2L4
3]Cl4 

(IC50 0.6 ± 0.3 µM) and alkene-bridged [Fe2L6
3]Cl4 (IC50 0.7 ± 0.1 µM) being up to 

an order of magnitude more potent than the ΛFe enantiomer. In contrast, both isomers 

of the alkyne-bridged [Fe2L5
3]Cl4 had moderate activity – similar to cisplatin – while 

the meta-xylene compounds [Fe2L8
3]Cl4 gave similar IC50 values of 0.4 ± 0.1 µM 

and  0.3 ± 0.03 µM respectively.  

In HCT116 p53-/- cells both cisplatin and the Hannon helicate showed modest 

activity. The class Ia flexicate [Fe2LS
3]Cl4 was found to be extremely active, much 

more so than in the sister cell line, with an IC50 as low 70 ± 4 nM for the ΛFe 

enantiomer. For the class Ib compounds, the general trend is to higher potency 

(lower IC50) in the p53 mutant, but the most striking improvements are for the alkene 

enantiomers [Fe2L6
3]Cl4, with IC50 values falling by around an order of magnitude – 

in the case of the ∆Fe-isomer to 40 ± 3 nM. In contrast, meta-xylenyl Λ-[Fe2L8
3]Cl4 is 
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the only compound showing substantially attenuated activity, an order of magnitude 

less potent at 2.7 ±0.5 µM than it was in the wild type at 0.3 ± 0.03 µM.  

As the cell line with mutated p53 generally appeared to be more sensitive 

towards the panel of flexicates, this may indicate the mode of action involves a p53 

pathway either in a direct or indirect manner.25 This is extremely encouraging as 

many cancers have mutated p53,26, 27 which may lead to drug resistance if modes of 

action that involve a manipulation of only wild type p53 cannot activate.  

2.4.2 Toxicity against non-cancerous human cells and selectivity 

The selectivity of chemotherapeutic agents towards cancerous cells over healthy host 

cells in an organism is of paramount concern in respect to minimization of unwanted 

side effects caused by off-target interactions. To begin to elucidate this complex 

issue the toxicity of the most active flexicates in HCT116 p53-/-, along with the 

control compounds, were investigated in human retinal pigment epithelial cells 

(ARPE19), which display normal growth behaviour in culture medium (Fig 2.16).28   

While cisplatin was found to be almost twice as toxic to this healthy cell line 

as it is to the cancer cell line HCT116 p53-/- the flexicates tested showed very 

favourable selectivity. The most selective compounds were found to be ΛFe-

[Fe2LS
3]Cl4 and ΔFe-[Fe2L6

3]Cl4 which were up to 3 orders of magnitude more toxic 

to the cancer cell line than they were to the healthy one. 
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Figure 2.16 | (i) IC50 values of cisplatin (Pt, white), [Fe2LH
3]Cl4 (H, hashed) and flexicates 

[Fe2Lx
3]Cl4 (x = S, 1, 4) (ΔFe - light grey, ΛFe - dark grey) against ARPE19 over 96 h (ii) comparison 

of activity of cisplatin (black), ΛFe-[Fe2LS
3]Cl4 (red) and ΔFe-[Fe2L6

3]Cl4 (blue) in cancerous HCT116 

p53-/-  and non-cancerous ARPE19 cells, on a logarithmic scale. 

This result is encouraging evidence that these potential new anticancer compounds 

are acting in a highly selective and specific manner. They may well display reduced 

unwanted side effects, which can occur when a chemotherapy agent acts upon targets 

within healthy cells.   

(i) (ii) 
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2.5 Mode of action 

To better understand how flexicates cause the observed chemosensitivity in cancer 

cells several studies into their mode of action were undertaken: interactions with 

DNA in cell-free and in vitro systems, effect on the cell cycle and induction of 

apoptosis. Clinical cancer treatments often involve DNA binding and interactions, 

indeed cisplatin29 and Hannon’s tetratcation30, 31 are both reported to affect cells in 

this way. [Fe2LS
3]Cl4 is also reported to bind selectively and stabilise several 

moieties.2  

2.5.1 Denaturation of ct-DNA 

The denaturation temperature (Tm) of DNA is defined as the temperature at which 

half of the DNA strands have unwound from the double-helical to a random coil 

state.32 This can be measured by recording the absorbance of a buffered solution of 

ct-DNA at 260 nm as a function of temperature. ct-DNA (0.5 mg/ml) was mixed 

with each complex (7.5 µM) in buffered conditions (10 mM Tris, 1 mM EDTA at pH 

7.0) to give 10 base: 1 complex and the absorbance at 260 nm between 25°C and 

90°C was recorded (0.4 °C min-1). Tm for each experiment was calculated from the 

first derivative of a Boltzmann sigmoidal fit of the plot of absorbance vs temperature. 
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Figure 2.17 | Effect on Tm of linear ct-DNA (DNA, white) from interactions with [Fe2LH

3]Cl4 (H, 

hashed) and flexicates [Fe2Lx
3]Cl4 (ΔFe - light grey, ΛFe - dark grey) in 1mM Trizma base (10:1 base 

pair to complex). 

Tm of untreated ct-DNA (0.25 mg/ml in 10mM Tris, 1 mM EDTA at pH 7.0) was 

measured to be 68.3 ± 0.5°C. The class Ia flexicate [Fe2LS
3]Cl4 and [Fe2LH

3]Cl4 have 

been previously reported to increase Tm,1, 30 which we also observed (Δ > +10°C) – 

indicating that a specific constructive binding event occurred between these 

complexes and ct-DNA. The class Ib flexicate [Fe2L1
3]Cl4 is reported to have no 

effect on Tm (Δ -0.1°C).1 The functionalised class Ib flexicates were also observed to 

have no effect on the denaturation of ct-DNA which would indicate that no 

constructive or destructive binding event occurred.  

2.5.2 Potency over 24 h in HCT116 p53+/+ 

  
 
Figure 2.18 | IC50 values of cisplatin (Pt, white), [Fe2LH

3]Cl4 (H, hashed) and flexicates  (ΔFe - light 

grey, ΛFe - dark grey) against HCT116 p53+/+ over 24 h. 
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The timescale of drug treatment is an important factor when considering dose in 

mode of action studies. The potency of the flexicates over a shorter time period in 

HCT116 p53+/+ over 24 h was investigated. This was to determine the drug 

concentration that would be used (i.e. > IC50) in mode of action studies with the most 

active compounds. The two most potent flexicates over this shorter timescale were 

found to be [Fe2LS
3]Cl4 and [Fe2L1

3]Cl4, both with IC50 ca 4 µM. These were used in 

all further mode of action studies in this cell line. 

2.5.3 Induction of DNA damage 

DNA damage agents often bind in a chemically irreversible manner, causing lesions 

which can, in the absence of repair, lead to cell death.29, 33 In contrast to some 

helicates34 cell free studies have shown that only the class Ia flexicate [Fe2LS
3]Cl4  

binds in a specific manner to DNA.2  There is no evidence that any of the class Ib 

flexicates bind to DNA. While the metal ions here are intended to be structure-

forming rather than reactive, the potential of [Fe2LS
3]Cl4 and [Fe2L1

3]Cl4 to induce 

DNA damage in cancer cells was investigated in collaboration with Dr Qasem 

Abdallah and Dr Roger Phillips at the Institute of Cancer Therapeutics. HCT116 

p53+/+ cells were treated with each complex (20 µM) in RPMI-1640 medium for 24 

h, fixed to slides and had their cell membranes lysed off. The treated cells were 

subjected to gel electrophoresis whereby any fragmented DNA would travel further 

than intact DNA across the potential gradient. The electrophoresed cells were then 

treated with SiBr-gold, which fluoresces when it intercalates DNA, immediately 

prior to fluorescence microscopy. The size of the ‘tail’ seen indicated the amount of 

DNA damage which has occurred through fragmentation. 

When investigating the induction of single strand breaks (SSB), the larger the 

tail, the more fragmented the DNA has become compared to untreated cells 
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(considered 0% damage) hence SSB damage has been induced. For example, cells 

which have been treated with hydrogen peroxide after lysis can be considered to 

have 100% SSB DNA damage. As seen in Table 2.6(i), treating the cells with either 

flexicate did not induce any single strand breaks in the HCT116 p53+/+ cells 

compared to the untreated control (images of electrophoresed cells are shown in 

chapter 3, Fig 3.19). 

Cisplatin is known to cause cross-linking between DNA strands.29 This 

causes the tethered DNA to become heavier and so it will not travel as far as 

untethered DNA when subjected to electrophoresis. After lysis, drug treated cells are 

exposed to hydrogen peroxide to induce single strand breaks in the untethered DNA. 

The shorter the tail seen the more DNA cross-linking has occurred, with treatment 

with hydrogen peroxide alone being considered 0% DNA cross-linking. Table 2.6(ii) 

shows that treatment with either flexicate exhibits no DNA cross-linking.  

(i) Complex SSB (esd) (ii) Complex X-link (esd) 
 Untreated control 3.51 (1.30)  Untreated control 1.87 (0.39) 
 H2O2 36.04 (6.77)  H2O2 36.44 (4.02) 
 ΛFe-[Fe2LS

3]Cl4   3.77 (1.45)  ΛFe-[Fe2LS
3]Cl4   38.53 (1.68) 

 ΔFe-[Fe2LS
3]Cl4   4.35 (1.11)  ΔFe-[Fe2LS

3]Cl4   41.90 (12.13) 
 ΛFe-[Fe2L1

3]Cl4   4.87 (2.20)  ΛFe-[Fe2L1
3]Cl4   35.81 (1.93) 

 ΔFe-[Fe2L1
3]Cl4   3.81 (0.59)  ΔFe-[Fe2L1

3]Cl4   41.04 (6.98) 
 

γ-H2AX is a histone which plays a key role in the repair of damaged DNA.35-38 It is 

expressed as a response to double strand breaks (DSB) which can be caused either 

directly or indirectly via SSB, cross links, intercalation, or the inhibition of certain 

key enzymes involved in the repair of DNA.39  This therefore makes γ-H2AX a 

Table 2.6 | (i) Mean tail moments of 50 HCT116 p53+/+ cells after treatment with 20 µM flexicates 

for 24 h, with an untreated control (0% SSB) and H2O2 (100% SSB); (ii) Mean tail moments of 50 

HCT116 p53+/+ cells after treatment with 20 µM flexicates for 24 h and H2O2, with an untreated 

control and those treated with H2O2 only (0% X-link). 

University of Warwick | Page 61 



  Rebecca A. Kaner | Chapter 2 

useful universal marker for DNA damage. The effect that the flexicates had on the γ-

H2AX expression in HCT116 p53+/+ cells has been studied. 

 

Figure 2.19 | Mean γ-H2AX expression of HCT116 p53+/+ cells  (untreated control – white) after 

treatment with flexicates (10 μM, ΔFe - light grey, ΛFe - dark grey) for 24 h. 

HCT116 p53+/+ cells (5 × 105 cells in 10 ml RPMI-1640 medium) were incubated 

with [Fe2LS
3]Cl4 and [Fe2L1

3]Cl4 (10 µM) for 24 h, treated with primary rabbit anti-

human phosphor Histone γ-H2AX (Ser 139, 2 µl) antibody (1:50), followed by 

AlexaFluor conjugated ant rabbit IgG secondary antibody (1:1000, 100 µl). These, 

along with a control of untreated HCT116 p53+/+ cells were analysed using FACS. 

Neither of the flexicate architectures significantly altered the production of γ-H2AX 

indicating that no DNA lesions or interruption of the γ-H2AX pathway have 

occurred.  

These results taken together give strong evidence that the chemosensitivity 

observed for flexicates does not involve the damage of DNA within the cell, despite 

some minor indications of DNA binding in a cell free environment.  

2.5.4 Effects on the cell cycle 

The cell division cycle is the process by which a cell prepares for and carries out 

self-replication. In cancerous cells this is often disrupted where mutations have 

occurred which switch off important regulatory processes.40 Arresting cancerous 
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cells at a certain stage of this division cycle is an important indicator in the mode of 

action of an anticancer agent and can be used to give direction to further study of the 

effect of the compound on certain key biomolecules. The effect flexicates have on 

the cell cycle of HCT116 p53+/+ cells was assessed.  

 

Figure 2.20 | % population of HCT116 p53+/+ cells in each of the phases of the cell cycle after 

treatment with flexicates (10 µM) for 24 h compared to a control of untreated cells. 

HCT116 p53+/+ cells (5 × 105 cells in 1 ml RPMI-1640 medium) were incubated 

with each flexicate (10 µM) for 24 h and treated with the fluorescent dye propidium 

iodide (PI) which stains DNA quantitatively. The proportion of cells in the various 

phases of the cell cycle were determined by fluorescence via FACS analysis as a 

result of the differing amounts of DNA  in the cells.41 [Fe2LS
3]Cl4 flexicates show a 

dramatic increase in the proportion of cells in G2/M phase compared to the control 

(from ca 20 to 40 % of cells); such arresting of cell growth at this phase is likely to 

be a significant factor in the mechanism of action. Interestingly [Fe2L1
3]Cl4 

flexicates did not show a significant increase in the G2/M phase, indicating a 

different mechanism. There is a very pronounced increase in population of sub G1 

cells, from 4 % in the control to between 13 and 30 %, the latter result being, again, 

for [Fe2LS
3]Cl4. Cells in the sub G1 phase are considered apoptotic42, 43 and this 
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suggests that these compounds may well be inducing programmed cell death at a 

much higher rate than in an untreated cell over 24 h. 

2.5.5 Induction of apoptosis 

In the early stages of apoptosis cell membrane changes occur, without the loss of 

membrane integrity.44-46 These changes are recognised by Annexin-V-FLUOS (a 

fluorescent-conjugated calcium(II) dependant phospholipid binding protein).47 As 

these cell membrane changes are also present in necrotic cells Annexin-V-FLOUS 

cannot differentiate between the two cell types. Propidium iodide (PI, a DNA stain) 

is thus introduced to distinguish between apoptotic and necrotic cells. PI will stain 

necrotic cells exclusively as the loss of membrane integrity membranes permits 

access to the intracellular environment. The induction of apoptosis and necrosis by 

flexicates was investigated by Dr Simon Allison, Bradford Institute of Cancer 

therapeutics. 

HCT116 p53+/+ cells were seeded (5 × 105 cells per flask) and incubated for 

24 h. Upon addition of fresh media containing no drug (control) or freshly dissolved 

drug (20 µM) the cells were incubated for a further 72 h. Cells were then harvested 

by trypsinisation with non-adhered cells also collected, washed with PBS and stained 

with propidium iodide (100 µl) and Annexin-V-FLUOS labelling solution (100 µl). 

The proportion of live, early apoptotic and late apoptotic/necrotic cells were then 

quantitated by flow cytometry.48 
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Figure 2.21 | Amount of early apoptotic (dark grey) and late apoptotic / necrotic (light grey) HCT116 

p53+/+ cells after treatment with flexicates (20 µM) for 72 h, along with an untreated control. 

Compared to the untreated control both class Ia and class Ib flexicates increased the 

number of both early apoptotic and necrotic cells significantly, with ΛFe-[Fe2LS
3]Cl4 

in particular having an extreme effect. This, with the cell cycle data, was a strong 

positive indication that these compounds are triggering early cell death as part of 

their mode of action. 
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2.6 Summary  

At the beginning of this work we set out to make a library of functionalised 

flexicates by including different moieties in the structure of the ligand. This we have 

been able to achieve successfully and can now access the widest library of water-

soluble complexes of this size and function available. Each complex of this library 

exists as a single diastereomerically pure species and is fully characterised by NMR 

spectroscopy, mass spectrometry, thermogravimetry, microanalysis and circular 

dichroism.  

 These novel compounds have also been found to be active and selective 

anticancer agents, particularly potent towards the human colon carcinoma cell lines, 

giving IC50 values in the nM range – substantially more toxic than cisplatin. For 

some flexicates the range of sensitivity in between human tumour and healthy cells 

is up to three orders of magnitude; very promising selectively. Enantiomers of class 

Ia [Fe2LS
3]Cl4 have been shown previously to be selective DNA binders,1, 2 however 

they, and the non-DNA binding class Ib flexicates, do not induce DNA damage as 

demonstrated by single gel electrophoresis and γ-H2AX expression analysis; the 

chemosensitivity is not caused by DNA damage. These compounds do, however, 

induce dramatic changes in cell-cycle population and a high level of apoptosis, 

which indicates that it is this promotion of programmed cell death that is crucial in 

their mode of action. Moving forwards in this project, further study into the mode of 

action is required. Whether an extrinsic or intrinsic apoptotic pathway is being 

triggered as well as interactions with key biomolecules, such as p53, are currently 

being investigated with our collaborators at the Institute of Cancer Therapeutics. 

 

University of Warwick | Page 66 



  Rebecca A. Kaner | Chapter 2 

2.7 References 

1. S. E. Howson, A. Bolhuis, V. Brabec, G. J. Clarkson, J. Malina, A. Rodger 
and P. Scott, Nat. Chem., 2012, 4, 31-36. 

2. V. Brabec, S. E. Howson, R. A. Kaner, R. M. Lord, J. Malina, R. M. Phillips, 
Q. M. A. Abdallah, P. C. McGowan, A. Rodger and P. Scott, Chem. Sci., 
2013, 4, 4407-4416. 

3. M. Seredyuk, A. B. Gaspar, V. Ksenofontov, Y. Galyametdinov, J. Kusz and 
P. Gütlich, J. Am. Chem. Soc., 2008, 130, 1431-1439. 

4. S. M. Bakunova, S. A. Bakunov, T. Wenzler, T. Barszcz, K. A. Werbovetz, 
R. Brun and R. R. Tidwell, J. Med. Chem., 2009, 52, 4657-4667. 

5. R. Machinek and W. LÜTtke, Synthesis, 1975, 1975, 255-256. 
6. R. H. Mitchell and V. S. Iyer, Synlett, 1989, 1989, 55-57. 
7. J. S. Zakhari, I. Kinoyama, M. S. Hixon, A. Di Mola, D. Globisch and K. D. 

Janda, Bioorgan. Med. Chem., 2011, 19, 6203-6209. 
8. S. E. Howson, Ph.D. Thesis, University of Warwick, 2011. 
9. Y. Hsiao and L. S. Hegedus, J. Org. Chem., 1997, 62, 3586-3591. 
10. R. N. Bream, S. V. Ley, B. McDermott and P. A. Procopiou, J. Chem. Soc., 

Perkin Trans. 1, 2002, 2237-2242. 
11. S. E. Howson, L. E. N. Allan, N. P. Chmel, G. J. Clarkson, R. van Gorkum 

and P. Scott, Chem. Commun., 2009, 1727-1729. 
12. C. P. Sebli, S. E. Howson, G. J. Clarkson and P. Scott, Dalton Trans., 2010, 

39, 4447-4454. 
13. A. D. Richards, A. Rodger, M. J. Hannon and A. Bolhuis, Int. J. Antimicrob. 

Agents, 2009, 33, 469-472. 
14. M. Hannon, J. , C. Painting, L. , A. Jackson, J. Hamblin and W. Errington, 

Chem. Commun., 1997, 1807-1808. 
15. M. J. Hannon, I. Meistermann, C. J. Isaac, C. Blomme, J. R. Aldrich-Wright 

and A. Rodger, Chem. Commun., 2001, 1078-1079. 
16. J. M. Andrews, J. Antimicrob. Chemother., 2001, 48 (suppl 1), 5-16. 
17. T. Mosmann, J. Immunol. Methods, 1983, 65, 55-63. 
18. S. Pathak, M. J. Siciliano, R. Cailleau, C. L. Wiseman and T. C. Hsu, J. Natl. 

Cancer Inst., 1979, 62, 263-271. 
19. W. K. K. Wu, G. Wang, S. B. Coffelt, A. M. Betancourt, C. W. Lee, D. Fan, 

K. Wu, J. Yu, J. J. Y. Sung and C. H. Cho, Int. J. Cancer, 2010, 127, 1741-
1747. 

20. W. K. K. Wu, J. J. Y. Sung, K. F. To, L. Yu, H. T. Li, Z. J. Li, K. M. Chu, J. 
Yu and C. H. Cho, J. Cell. Physiol., 2010, 223, 178-186. 

21. S. X. Ren, J. Shen, A. S. L. Cheng, L. Lu, R. L. Y. Chan, Z. J. Li, X. J. 
Wang, C. C. M. Wong, L. Zhang, S. S. M. Ng, F. L. Chan, F. K. L. Chan, J. 
Yu, J. J. Y. Sung, W. K. K. Wu and C. H. Cho, PLoS One, 2013, 8, e63641. 

22. M. D. Kaeser, S. Pebernard and R. D. Iggo, J. Biol. Chem., 2004, 279, 7598-
7605. 

23. A. C. G. Hotze, N. J. Hodges, R. E. Hayden, C. Sanchez-Cano, C. Paines, N. 
Male, M.-K. Tse, C. M. Bunce, J. K. Chipman and M. J. Hannon, Chem. 
Biol., 2008, 15, 1258-1267. 

24. A. J. Pope, C. Bruce, B. Kysela and M. J. Hannon, Dalton Trans., 2010, 39, 
2772-2774. 

25. J. M. Brown and B. G. Wouters, Cancer Res., 1999, 59, 1391-1399. 

University of Warwick | Page 67 



  Rebecca A. Kaner | Chapter 2 

26. M. Hollstein, D. Sidransky, B. Vogelstein and C. C. Harris, Science, 1991, 
253, 49-53. 

27. S. J. Baker, E. R. Fearon, J. M. Nigro, S. R. Hamilton, A. C. Preisinger, J. M. 
Jessup, P. VanTuinen, D. H. Ledbetter, D. F. Barker, Y. Nakamura, R. White 
and B. Vogelstein, Science, 1989, 244, 217-221. 

28. K. C. Dunn, A. E. Aotaki-Keen, F. R. Putkey and L. M. Hjelmeland, Exp. 
Eye Res., 1996, 62, 155-170. 

29. Z. H. Siddik, Oncogene, 2003, 22, 7265-7279. 
30. A. Rodger, K. J. Sanders, M. J. Hannon, I. Meistermann, A. Parkinson, D. S. 

Vidler and I. S. Haworth, Chirality, 2000, 12, 221-236. 
31. C. Ducani, A. Leczkowska, N. J. Hodges and M. J. Hannon, Angew. Chem.-

Int. Edit. Engl., 2010, 49, 8942-8945. 
32. J. SantaLucia, Proc. Natl. Acad. Sci. USA, 1998, 95, 1460-1465. 
33. D. Fu, J. A. Calvo and L. D. Samson, Nat. Rev. Cancer, 2012, 12, 104-120. 
34. M. J. Hannon, Chem. Soc. Rev., 2007, 36, 280-295. 
35. J. Kobayashi, J. Radiat. Res., 2004, 45, 473-478. 
36. T. L. DeWeese and M. Laiho, eds., Molecular Determinants of Radiation 

Response, Springer New York, New York, 2011. 
37. W. M. Bonner, C. E. Redon, J. S. Dickey, A. J. Nakamura, O. A. 

Sedelnikova, S. Solier and Y. Pommier, Nat. Rev. Cancer, 2008, 8, 957-967. 
38. A. Celeste, S. Petersen, P. J. Romanienko, O. Fernandez-Capetillo, H. T. 

Chen, O. A. Sedelnikova, B. Reina-San-Martin, V. Coppola, E. Meffre, M. J. 
Difilippantonio, C. Redon, D. R. Pilch, A. Olaru, M. Eckhaus, R. D. 
Camerini-Otero, L. Tessarollo, F. Livak, K. Manova, W. M. Bonner, M. C. 
Nussenzweig and A. Nussenzweig, Science, 2002, 296, 922-927. 

39. L. J. Kou and L.-X. Yang, In Vivo, 2008, 22, 305-309. 
40. G. M. Cooper and R. E. Hausman, The Cell: a molecular approach, 6th edn., 

Sinauer Associates, Boston, 2013. 
41. A. Krishan, J. Cell Biol., 1975, 66, 188-193. 
42. I. Nicoletti, G. Migliorati, M. C. Pagliacci, F. Grignani and C. Riccardi, J. 

Immunol. Methods, 1991, 139, 271-279. 
43. M. Kajstura, H. D. Halicka, J. Pryjma and Z. Darzynkiewicz, Cytometry Part 

A, 2007, 71A, 125-131. 
44. H. A. Andree, C. P. Reutelingsperger, R. Hauptmann, H. C. Hemker, W. T. 

Hermens and G. M. Willems, J. Biol. Chem., 1990, 265, 4923-4928. 
45. V. A. Fadok, D. R. Voelker, P. A. Campbell, J. J. Cohen, D. L. Bratton and 

P. M. Henson, J. Immunol., 1992, 148, 2207-2216. 
46. C. E. Creutz, Science, 1992, 258, 924-931. 
47. G. Koopman, C. Reutelingsperger, G. Kuijten, R. Keehnen, S. Pals and M. 

van Oers, Blood, 1994, 84, 1415-1420. 
48. Apoptosis, Cytotoxicity and Cell Proliferation, 4th edn., Roche Diagnostics 

GmbH, Mannheim, Germany, 2008. 

 

University of Warwick | Page 68 



Chapter 3  
Asymmetric triplex metallohelices with high and 

selective activity against cancer cells 

3.1 Introduction 

The chemistry and biology of the flexicate system explored in chapter 2 indicates 

significant potential of such molecules in the medicinal sphere. Nevertheless we 

consider that they fall short of addressing the criterion (e) of section 1.5 i.e. that 

metallo-helix platforms should allow the deliberate placement of functional groups. 

At present, flexicates and conventional helicates cannot at present provide us with 

anything approaching the exquisite functionality and topology present in natural α-

helix systems. As a first step towards this, we considered the possibility of 

stereoselective synthesis of lower symmetry architectures.  

3.1.1 Design of the triplex metallohelix 

If directional ligands (AB–CD) are employed in helicate chemistry, Head-to-Head-

to-Head [HHH, Fig 3.1(ii)] and Head-to-Head-to-Tail [HHT, Fig 3.1(iii)] 

constitutions of species [M2(AB-CD)3]4+ may assemble. These two geometries can 

form either helical (ΔΔ or ΛΛ) or mesocate-like (ΔΛ or ΛΔ) structures with respect 

to the stereochemistry at the two metal centres. This leads to eight possible isomers 

overall; ∆α∆β-HHH and ΛαΛβ-HHH, ΔαΛβ-HHH and ΛαΔβ-HHH, ∆α∆β-HHT and 

ΛαΛβ-HHT, ΔαΛβ-HHT and ΛαΔβ-HHT. In the absence of any external effects these 

will exist in a statistical 3:1 HHT:HHH ratio, in much the same way as fac and mer 

configurations in monometallic systems. We have previously reported structures of 

the HHH type (ii) synthesised in a stepwise fashion (see appendix B).1 Pioneering 
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work by Albrecht2, 3 and others4-9 led to observations of low symmetry HHT 

structures (iii) in single crystals, but these exist as mixture of stereo- and optical 

isomers in solution. Selective asymmetric self-assembly of only the homohelical 

HHT architecture presents a great challenge for (metallo)supramolecular chemistry.2, 

6 

 

Figure 3.1 | Schematic diagrams of (i) the highly symmetrical ΔM-[M2(AB-BA)3] configuration,  (ii) 

the symmetric ∆α∆β-Head-to-Head-to-Head [M2(AB-CD)3], and (iii) the asymmetric ∆α∆β-Head-to-

Head-to-Tail [M2(AB-CD)3] configurations. 

Thus the use of a directional ditopic ligand design AB-CD was considered, where 

AB- is the stereogenic π-stacking α-phenyl iminopyridine unit derived from the 

monometallic and flexicate architectures previously described.1, 10-15 While the three 

ligands (AB) in the monometallic fac-[M(AB)3]2+ case participate in a mutual π-

stacking arrangement,10 the system is rather sterically congested. Substituting a 

smaller ligand –CD should lead to some relief of this. If, in addition, –CD is a 

planar, aryl bidentate ligand, then it may participate in interligand π-stacking with 
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the adjacent chiral iminopyridine AB-, but under normal circumstances may not 

form π-stacks with adjacent groups of its own kind. In the case of an HHT-[M(AB-

CD)3]4+ helicate system (Fig 3.1(iii)), the [M(AB)2(CD)]2+ α-subunit can only adopt 

a fac configuration since it is tethered to the β-subunit. The [M(AB)(CD)2]2+ β-

subunit, contains only one carbon stereogenic centre so a relatively short or rigid 

tether to the α-subunit can link the two metal centres by helication.16 It has been 

reported that the π-stacking interaction between one aromatic ring with a fused or 

biaryl system is more favourable than that between two simple aromatic rings that 

can only be maximised in the HHT structures.17, 18 Therefore a combination of these 

effects could lead to a thermodynamic preference for the target homohelical 

asymmetric helicate system (HHT-[M2(AB-CD)3]4+).  

Suitable -CD units for use in this strategy units include catechols,19 

pyrrolylketones,20 phenanthrolines,21  pyrazolyl-pyridines,22 or other diimines. We 

used 2,2'-bipyridine (bpy) in this preliminary study since its chemistry and use as a 

ligand are very well developed.23  

Two different directional ditopic ligands were designed, one where the bpy 

unit was attached to the pyridine side of the chiral unit (Fig 3.2, L20) and the other 

where the bpy unit was attached to the imine side of the chiral unit (Fig 3.2, LF1). 

The HHT-[M2(AB-CD)3] arrangement – which by analogy with the bi-directional 

motif of triplex DNA24 we might refer to as a triplex metallohelix – is very 

appealing. Like the peptide α-helix, it is directional and, depending on the degree of 

helix twist, it could provide amphiphilic structures; note that in fig 3.1(iii) the AB 

units are on one side of the assembly.  
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Figure 3.2 | Structure of L20 and LF1 

Following a brief description of computational prediction of structure and 

stereoselection, below we describe the synthesis of a range of new triplex 

metallohelices of the general type L20,* study some biophysical properties, 

investigate their antimicrobial and anticancer activity, and obtain preliminary 

evidence as to mechanism of action in the latter disease area. 

3.2 Assembly of triplex metallohelices 

3.2.1 Molecular modelling of [M2(AB-CD)3]4+ 

The potential effects of helication and the thermodynamic preference of HHT vs 

HHH for bimetallic complexes [M2L20
3]4+ (M = zinc(II) or iron(II)) were 

investigated.25 Each structure was optimised using ligand field molecular mechanics 

(LFMM)26 as implemented in the DommiMOE program,27 then annealing was 

implemented at 500 K for 1 ns, followed by cooling to 0 K and re-optimisation. 

Single point calculations were then performed at the B3LYP-D def2-TZVP level of 

theory on each structure. 

In the case of L20 the increased stability for inter ligand π-stacking between 

phenyl and bpy over phenyl and pyridine is demonstrated by each HHT isomer being 

more stable than its corresponding HHH isomer.18  Each ∆α metal centre is more 

* The computational work in this chapter was conducted by Dr Alan Faulkner (Scott group, University 
of Warwick) as was the synthesis of complexes based on LF1. The biological work for all systems was 
conducted by the author. 
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stable than its Λα enantiomer due to an observed reduction of the steric clashes10 

between adjacent chiral iminopyridine groups in the latter case. Each monometallic 

subunit in the complex is found to be mechanically coupled to the other through the 

short –CH2–O– bridge, causing the preference for ∆ stereochemistry to be translated 

from the α- to the β-metal centre. Also, each HHT structure can be formed in three 

ligand permutations compared to only one for each HHH structure, and the 

corresponding entropy term favours the triplex architectures. These three effects lead 

to calculated Boltzmann populations with the ΔαΔβ-HHT isomer as the majority 

species. Calculations for the LF1 system gave the same outcome.18, 25  Ultimately 

these studies appear to validate our proposed strategy to synthesise asymmetric 

triplex metallohelices. 

Table 3.1 | Relative energies (compared to ∆α∆β-HHT) of calculated structures of (S)-[M2L20
3]4+ ((M 

= Zn(II), Fe(II)) and predicted percentage Boltzmann population of each isomer at 298 K (calculated 

from the energy difference between each isomer and the lowest energy isomer, including a statistical 

correction term).28  

Complex Isomer Rel. energy 
kcal mol-1 

Population/% 
(298 K) 

[Zn2L20
3]4+ 

∆α∆β-HHT 0.00 93.8 
∆α∆β-HHH +0.95 6.2 
∆αΛβ-HHT +4.66 0.0 
∆αΛβ-HHH +6.48 0.0 
ΛαΛβ-HHT +8.07 0.0 
ΛαΛβ-HHH +10.91 0.0 
Λα∆β-HHT +13.44 0.0 
Λα∆β-HHH +13.63 0.0 

[Fe2L20
3]4+ 

∆α∆β-HHT 0.00 97.4 
∆α∆β-HHH +1.51 2.6 
∆αΛβ-HHH +7.62 0.0 
∆αΛβ-HHT +8.82 0.0 
ΛαΛβ-HHT  +15.33 0.0 
Λα∆β-HHT  +20.70 0.0 
ΛαΛβ-HHH +20.97 0.0 
Λα∆β-HHH +26.10 0.0 
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3.2.2 Synthesis of triplex metallohelices 

 

Scheme 3.1 | Synthesis of 5-(2,2'-bipyridin-5-ylmethoxy)picolinaldehyde (30) via 5-(chloromethyl)-

2,2'-bipyridine (29).29, 30 

In a Khronke pyridine synthesis (scheme 3.1), 27 g of 2-acetylpyridine was treated 

with iodine in pyridine to give the 1-(2-pyridylacetyl)pyridinium iodide salt (26).29 

This was then treated with ammonium acetate and freshly distilled methacrolein in 

formamide to give 5-methyl-2,2'-bipyridine (27); a clear oil. Chlorination was 

achieved via silylation to 5-((trimethylsilyl)methyl)-2,2'-bipyridine (28) with LDA 

and chlorotrimethylsilane, followed by treatment with hexachloroethane and caesium 

fluoride.30 Recrystallisation from hot hexane yielded 10 g of the desired product as a 

yellow crystalline solid. This 5-(chloromethyl)-2,2'-bipyridine (29) was then 

etherified with 5-hydroxypicolinaldehyde in the presence of potassium carbonate to 

furnish 5-(2,2'-bipyridin-5-ylmethoxy)picolinaldehyde (30, 11 g). 

 In the L20 series it is possible to develop analogues based on the pyridyl unit 

30. However, for this first study we considered that the amine unit provided the 

readiest entry to functionalised derivatives, similar to the flexicates of chapter 2. A 

range of (R)-phenylglycinol (18) derivatives and commercially-available 

phenylethylamines and used in the following self-assembly reactions. 
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Scheme 3.2 | Self-assembly of a triplex metallohelix ΛZn,HHT-[Zn2L20
3][ClO4]4. 

(R)-1-Phenylethan-1-amine and 5-(2,2'-bipyridin-5-ylmethoxy)picolinaldehyde (30) 

were dissolved in acetonitrile. Zinc(II) perchlorate hexahydrate was added and after 

stirring at ambient temperature for a few minutes ΛZn,HHT-[Zn2L20
3][ClO4]4 was 

precipitated from the reaction solution by addition of ethyl acetate (scheme 3.2). 
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Figure 3.3 | (i) Structure of L20 and structure of the assembled triplex metallohelix ΛZn-

[Zn2L20
3][ClO4]4 (ii)1H (500 MHz) and (iii) 13C{1H} (126 MHz) NMR spectra of ΛZn,HHT-

[Zn2L20
3][ClO4]4  in d3-acetonitrile (δH  1.95, δC 117, water present δH 2.19) at 298 K, with some key 

assignments. * indicates the presence of the HHH-isomer, ca 3%. 

Electrospray mass spectra were consistent with the formation the proposed structure 

with a strong peak at m/z 324.15 Da for the tetracation. Figure 3.4 depicts the 1H and 

13C NMR spectra (Fig 3.3) of ΛZn,HHT-[Zn2L20
3][ClO4]4 in d3-acetonitrile. These 

confirm the asymmetric self-assembly since each ligand is chemically inequivalent. 

Nevertheless, it is possible to assign the spectra, with the exception of the rather 

crowded aromatic regions. Three distinct doublets of the same intensity can be seen 

between 1.4 and 1.9 ppm; these arise from each methyl group of the three ligands 

(i) 

(ii) 

(iii) 
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(d). Between 5.0 and 5.7 ppm each different CH (c) and CH2 (a) group is identified, 

though there is significant overlap of individual peaks. Two of the three expected 

imine peaks can be seen clearly at around 9.0 ppm, the third, as assigned by HMQC 

coupling experiments, appears amongst the aromatic peaks (b). The 13C NMR 

spectrum can be assigned in a similar way with the key peaks being indicated in 

figure 3.4. Although some aromatic carbons seem to overlap, which is not 

unexpected given the high number in the complex, three distinct peaks representing 

each of the key groups can be identified. It is also possible to determine the 

diastereoselectivity of the assembly; two small peaks at 1.6 and 8.9 ppm respectively 

(Fig 3.3 *) in the 1H NMR spectrum have been determined to arise from the presence 

of 3% ΛZn,HHH-[Zn2L20
3][ClO4]4 isomer. This population was similar to – perhaps 

slightly better than – that predicted in the calculations of table 3.1.  
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Figure 3.4 | (i) Structure of L21 and structure of the assembled triplex metallohelix ΛZn-

[Zn2L21
3][ClO4]4 (ii)1H (500 MHz) and (iii) 13C{1H} (126 MHz) NMR spectra of ΛZn,HHT-

[Zn2L21
3][ClO4]4  in d3-acetonitrile (δH  1.95, δC 117, water present δH 2.19) at 298 K, with some key 

assignments. 

ΛZn,HHT-[Zn2L21
3][ClO4]4 and ΛZn,HHT-[Zn2L22

3][ClO4]4 were successfully 

synthesised in a similar manner using the amines (R)-1-(4-methoxyphenyl)ethan-1-

amine and (R)-1-(4-nitrophenyl)ethan-1-amine respectively. The NMR spectra were 

analogous to that of ΛZn,HHT-[Zn2L20
3][ClO4]4. In the case of ΛZn,HHT-

[Zn2L21
3][ClO4]4  (fig 3.5) three methoxy peaks (e) were present between 3.7 and 3.9 

ppm. 4% of the ΛZn-HHH isomer observed, indicating a similar level of 

stereoselection to ΛZn,HHT-[Zn2L20
3][ClO4]4.  Similarly ΛZn,HHT-[Zn2L22

3][ClO4]4 

was observed to contain 6% of the ΛZn-HHH isomer. 

(i) 

(ii) 

(iii) 
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Figure 3.5 | Structure of L22 and structure of the assembled triplex metallohelix ΛZn,HHT-

[Zn2L22
3][ClO4]4.  

A napthyl group was successfully incorporated into the architecture in this position; 

ΛZn,HHT-[Zn2L23
3][ClO4]4 was formed with (R)-1-(naphthalen-1-yl)ethan-1-amine, 

5-(2,2'-bipyridin-5-ylmethoxy)picolinaldehyde (30) and zinc(II) perchlorate 

hexahydrate in acetonitrile, although it had reduced solubility compared to other 

examples of triplex metallohelices. 

 

   Figure 3.6 | Structure of L23 and structure of the assembled triplex metallohelix ΛZn,HHT-

[Zn2L23
3][ClO4]4. 

Substituting (R)-1-phenylethan-1-amine for optically pure (R)-phenylglycinol31 (18) 

gave ΛZn,HHT-[Zn2L24
3][ClO4]4 (Fig 3.8) with three external facing hydroxyl 

moieties on the complex with a similar stereoselectivity (3% ΛZn-HHH) to the 

previous examples. (R)-1-phenyl-2-(prop-2-yn-1-yloxy)ethan-1-amine (25) was 

formed in a modified Williamson ether synthesis of R-phenylglycinol in the presence 
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of sodium hydride.32  Subsequently ΔZn,HHT-[Zn2L25
3][ClO4]4, with external facing 

propargyl functionality, formed successfully with amine 25 (5% ∆Zn-HHH). This 

complex was targeted in order to access functionalised systems via copper mediated 

azide-alkyne click reaction, in a similar manner to that previously reported in 

monometallic complexes by our research group.1  

 

Figure 3.7 | Ligand structure of L24 and L25 and structures of the assembled triplex metallohelices 

ΛZn,HHT-[Zn2Ln
3][ClO4]4 (n = 24, 25) 

3.2.3 Synthesis of highly water soluble triplex metallohelices 

Five systems – [Fe2Lx
3]Cl4 (x = 20-23 and 25) – were synthesised and characterised 

for biological testing. Unfortunately the attempts to synthesise [Fe2L24
3]Cl4 resulted 

in extremely broad 1H NMR spectra and so these compounds were not considered 

suitable for testing. Five additional systems – [Fe2Lx
3]Cl4 (x = F1-F5) – synthesised 

by Dr Alan Faulkner were chosen to compliment these compounds in biological 

tests. 
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Figure 3.8 | Ligand functionality of water soluble iron(II) chloride triplex metallohelices. 

Pairs of water soluble triplex metallohelix enantiomers were synthesised in high 

yield by heating 30 (3 eq.) and the appropriate chiral amine (3 eq.), with iron(II) 

chloride (2 eq.) to reflux in methanol. After being filtered through silica gel, the dark 

purple solutions were evaporated carefully to dryness. The products were analysed 

by NMR spectroscopy, mass spectrometry, microanalysis, thermogravimetric 

analysis, infra-red, UV-vis absorption, and circular dichroism spectroscopies. 
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Figure 3.9 | (i) Structure of L20 and structure of the assembled triplex metallohelix ΛFe-[Fe2L20
3][Cl4 

(ii)1H (500 MHz) and (iii)1H (500 MHz) and 13C{1H} (126 MHz) NMR spectra of ΛFe,HHT-

[Fe2L20
3]Cl4  in d4-methanol (δH  3.31, δC 49, water present δH 4.87)  at 298 K, with some key 

assignments. 

The complexes gave excellent electrospray mass spectrometry data with, for 

example, ΛFe,HHT-[Fe2L20
3]Cl4 giving a strong peak at m/z 323.19 Da for the 

tetracation, similar to the analogous zinc(II) perchlorate complex. 1H NMR spectra 

were broadened in comparison with the zinc(II) systems but partially resolved and 

fully assigned 13C NMR spectra were obtained. Compared to the zinc(II) systems the 

iron(II) systems were more stereoselective towards the ΛFe-HHT isomer, in 

agreement with or with better stereoselectivity than the predicted Boltzmann 

populations in table 3.1. For example, the NMR spectra in figure 3.9 show that 

(i) 

(ii) 

(iii) 
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ΛFe,HHT-[Fe2L20
3]Cl4 has formed in a diastereomerically pure manner (>1% ΛFe-

HHH). Circular dichroism spectra of each pair of enantiomers (0.03 mM in water) 

were found to be equal and opposite, indicating the complexes were formed of a 

non-racemic mixture of opposite configurations. This is in agreement with the 

previously described water soluble flexicates. Taken with the NMR spectra this 

showed that each of the pair of enantiomers has formed as a single 

thermodynamically stable species. Further data in chapter 5 and appendix A.  

 

Figure 3.10 | CD spectra of HHT-[Fe2L20
3]Cl4  (0.03 mM) in H2O, each of the pair of enantiomers 

display an equal and opposite spectrum. 

3.2.4 Water of crystallisation 

Figure 3.11 | Solid-state infra-red spectrum of ΛFe,HHT-[Fe2L22
3]Cl4 

                          

 

84
86

88
90

92
94

96
98

10
0

Tr
an

sm
itt

an
ce

 [%
]

  

                          

500100015002000250030003500
Wavenumber cm-1

 

  

University of Warwick | Page 83 



                                                     Rebecca A. Kaner | Chapter 3 

NMR spectroscopies had showed that the samples contained only the complex and 

water. The latter was confirmed by solid-state IR spectroscopy (e.g. fig 3.11) where 

the two strong O-H stretching modes were observed in the region 3000-3500 cm-1.  

In thermogravimetric analyses, samples were heated from ambient 

temperature to 673 K at a rate of 10 K/min and the mass loss was recorded against 

temperature. As can be seen in figure 3.13 for ΛFe,HHT-[Fe2L20
3]Cl4 and ΔFe,HHT-

[Fe2L20
3]Cl4 there was a significant rate of mass loss up to ca 400 K, corresponding 

to 11.5% (±0.5%) of the total mass or 11 equivalents of water per complex. This was 

followed by a plateau of relative stability until degradative mass loss with an onset of 

ca 525 K.   

ΛFe,HHT-[Fe2L20
3]Cl4 ΔFeHHT-[Fe2L20

3]Cl4 

  
  

Figure 3.12 | Thermogravimetric spectra of ΛFe,HHT-[Fe2L20
3]Cl4 and ΔFe,HHT-[Fe2L20

3]Cl4, 

indicating mass lost due to water of crystallisation and thermal decomposition. 

It was found that the thermogravimetric and microanalytical data correlated well in 

all cases. Also, samples of enantiomers gave, within error limits, the same 

thermogravimetric and microanalytical results. Further data are presented in chapter 

5 and appendix A. Each of the synthesised panel of complexes was observed to 

contain between eight and fourteen equivalents of water of crystallisation. 
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Table 3.2 | Recorded and theoretical elemental analysis of ΛFe,HHT-[Fe2L20
3]Cl4 and ΔFe,HHT-

[Fe2L20
3]Cl4 

Complex % C % H % N 
Theory [Fe2L20

3]Cl4.11H20 55.1 5.4 10.3 
Recorded ΛFe-[Fe2L20

3]Cl4.11H2O 54.7 4.8 9.7 
Recorded ΔFe-[Fe2L20

3]Cl411H2O 55.0 5.0 10.0 
 

3.2.5 Complex stability in aqueous media 

To investigate how the panel of triplex metallohelices behave in aqueous media over 

an extended period of time, their absorbance spectra were recorded periodically in 

different aqueous environments. The Hannon’s racemic helicate ([Fe2LH
3]Cl4), 

synthesised as described in chapter 2, was included for comparison. All of the 

complexes were found to be readily soluble in water, dilute acid (0.2 M HCl, pH 1.0) 

and RPMI-1640 cell culture medium.  

Table 3.3 | Solution half-life (t½) of MLCT band (540 nm) for triplex metallohelices and [Fe2LH
3]Cl4 

(0.03 mM) in water (pH 7.0) at 20°C, a Complete hydrolysis observed in 19 days.  

Complex pH 7, 20°C 
t½ /days (esd) 

[Fe2LH
3]Cl4 a 

ΛFe,HHT-[Fe2L20
3]Cl4 61 (4) 

ΔFe,HHT-[Fe2L20
3]Cl4 71 (7) 

ΛFe,HHT-[Fe2L21
3]Cl4 77 (10) 

ΔFe,HHT-[Fe2L21
3]Cl4 78 (10) 

ΛFe,HHT-[Fe2L22
3]Cl4 52 (8) 

ΔFe,HHT-[Fe2L22
3]Cl4 47 (8) 

 

A 0.03 mM solution of each compound was made up in water and the absorbance of 

200-800 nm light was recorded over 50 d. The reduction in absorbance at 540 nm, 

which corresponds to the MLCT band of the complex, was used as an indication of 

the presence of the complete complex. The complexes all appeared to decay via first 

order kinetics, with extrapolated t½ of 60 – 80 days, except the complexes of 

nitroarene L22 which was significantly shorter at ca 50 d.  
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Figure 3.13 | (i) Absorbance spectra of ΛFe,HHT-[Fe2L20
3]Cl4 (0.03 mM in 0.2 M HCl at 20°C) at 0, 

12 and 24 h. (ii) ln(ε) at 540 nm (corresponding to MLCT band) of ΔFe,HHT-[Fe2L20
3]Cl4 (0.03 mM 

in 0.2 M HCl at 20°C). 

In 0.2 M HCl (pH 1.0, 20°C) the complexes again appeared to decay by first order 

rate kinetics and with shorter half-lives. By far the most stable complexes were the 

HHT-[Fe2LF1
3]Cl4 enantiomers which showed no signs of deterioration even over 

many days. The alkyne HHT-[Fe2L25
3]Cl4 enantiomers were also extremely stable, 

with recorded half-lives of around 38 h. HHT-[Fe2L23
3]Cl4 exhibited moderate 

stability with a recorded half-life of 15 h. The parent and methoxy derivatives 

[Fe2Lx
3]Cl4 (x = 20, 21) had similar recorded half-lives of around 10 h. HHT-

[Fe2L22
3]Cl4 was found to be much less stable to hydrolysis than the other triplex 

metallohelices with a recorded half-life similar to the known Hannon helicate of 

around 2 h.  

 

 

 

 

 

(i) (ii) 
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Table 3.4 | Solution half-life (t½) of MLCT band (540 nm) for triplex metallohelices and [Fe2LH
3]Cl4 

(0.03 mM), 0.2 M hydrochloric acid (pH 1.0) a No hydrolysis observed over a time period of the 

experiment (10 days). 

Complex pH 1, 20°C 
t½ /hours (esd) 

[Fe2LH
3]Cl4 1.4 (0.01) 

ΛFe,HHT-[Fe2LF1
3]Cl4 a 

ΔFe,HHT-[Fe2LF1
3]Cl4 a 

ΛFe,HHT-[Fe2L20
3]Cl4 10.3 (0.1) 

ΔFe,HHT-[Fe2L20
3]Cl4 10.0 (0.04) 

ΛFe,HHT-[Fe2L21
3]Cl4 11.5 (0.1) 

ΔFe,HHT-[Fe2L21
3]Cl4 11.3 (0.1) 

ΛFe,HHT-[Fe2L22
3]Cl4 2.0 (0.3) 

ΔFe,HHT-[Fe2L22
3]Cl4 2.5 (0.4) 

ΛFe,HHT-[Fe2L23
3]Cl4 16.1 (0.8) 

ΔFe,HHT-[Fe2L23
3]Cl4 15.5 (0.8) 

ΛFe,HHT-[Fe2L25
3]Cl4 38.5 (1.2) 

ΔFe,HHT-[Fe2L25
3]Cl4 37.7 (1.1) 

 

Preliminary studies in RPMI-1640 medium indicated that the kinetics of 

decomposition did not follow simple rate laws and the data could not be modelled in 

a realistic manner. Therefore an estimate of the amount of ΛFe complex (ΔFe assumed 

to be analogous) remaining after 96 h was recorded, based on the intensity of the 

MLCT band at 540 nm (table 3.5). HHT-[Fe2L20
3]Cl4 was found to be the most 

stable complex with an integrity after 96 h of 72%.  

Table 3.5 | % integrity in MLCT band (540 nm) of triplex metallohelices and [Fe2LH
3]Cl4, (0.03 mM) 

after 96 h in RPMI-1640 cell culture medium at 37°C.  

Complex RPMI-1640 medium, 37°C 
96h % integrity (esd) 

[Fe2LH
3]Cl4 12.0 (9.4) 

ΛFe,HHT-[Fe2L20
3]Cl4 71.6 (1.4) 

ΛFe,HHT-[Fe2L22
3]Cl4 12.6 (4.4) 

ΛFe,HHT-[Fe2L23
3]Cl4 10.1 (4.5) 

ΛFe,HHT-[Fe2L25
3]Cl4 38.6 (3.0) 
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3.3 Antimicrobial activity 

The class Ia flexicates have previously been found to be potent antimicrobial 

agents.15 The triplex metallohelices were tested against Gram-positive Methicillin-

resistant Staphylococcus aureus, USA300 (MRSA) and Gram-negative Escherichia 

coli, TOP10 (E. Coli) by Daniel Simpson at University of Warwick. Each compound 

was tested over a range of concentrations (2 – 128 µg/ml) in Mueller-Hinton broth 

over 20 h at 37°C.33 As can be seen in table 3.6 none of the tested triplex 

metallohelices inhibited cell growth even at the highest concentration of 128 μg ml-1. 

It can therefore be deduced that the triplex metallohelices are not antimicrobial 

agents at clinically significant concentrations.  

Table 3.6 | MIC values for triplex metallohelices, along with positive controls, ΛFe-[Fe2LS
3]Cl4, the 

Helicate racemate and ampicillin against gram-positive Staphylococcus aureus, USA300 (MRSA) and 

gram-negative Escherichia coli, TOP10 (E. Coli) over 20 h at 37°C in Mueller-Hinton broth. 

Compound MRSA E. Coli 
MIC (μg ml-1) MIC (μg ml-1) 

[Fe2LH
3]Cl4 >128 >128 

Ampicillin <2 4 
ΛFe-[Fe2LS

3]Cl4 8 4 
ΛFe,HHT-[Fe2L20

3]Cl4 >128 >128 
ΔFe,HHT-[Fe2L20

3]Cl4 >128 >128 
ΛFe,HHT-[Fe2LF1

3]Cl4 >128 >128 
ΔFe,HHT-[Fe2LF1

3]Cl4 >128 >128 
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3.4 Anticancer activity 

The water-soluble iron(II) triplex metallohelix enantiomers were screened, along 

with control compounds cisplatin and the racemic Hannon helicate, for their activity 

against the same human cancer cell lines as used in chapter 2: MDA-MB-468 

(human breast adenocarcinoma), HCT116 p53+/+ (human colon carcinoma with wild 

type p53) and HCT116 p53-/- (human colon carcinoma with mutated p53).  All the 

tested compounds were found to be sufficiently soluble under assay conditions and 

notably, no decolouration of the drug solutions was detected during the 96 h 

experiments. Conversely the component ligands were found to be insufficiently 

soluble in aqueous media for testing. Following the procedure described in section 

2.4.1,34 the range of IC50 values indicated triplex metallohelices acted with great 

selectivity, covering ca two orders of magnitude (0.2 – 70 µM). 

3.4.1 MDA-MB-468 

 

Figure 3.14 | IC50 values of cisplatin (Pt, white), [Fe2LH
3]Cl4 (H, hashed) and the panel of triplex 

metallohelices (ΔFe - light grey, ΛFe - dark grey) against MDA-MB-468 over 96 h. 

In MDA-MB-468 cells, none of the triplex metallohelices were more potent than 

cisplatin and showed only moderate toxicity (IC50 5-100 µM). HHT-[Fe2Lx
3]Cl4 (x = 

20-23, 25) did not display an enantiomeric selectivity; the nitroarene, napthyl and 

terminal alkyne compounds HHT-[Fe2Lx
3]Cl4 (x = 22, 23, 25) were the most active 

University of Warwick | Page 89 



                                                     Rebecca A. Kaner | Chapter 3 

triplex metallohelices tested with a similar activity to [Fe2LH
3]Cl4 in this cell line. 

Both the unfunctionalised and methoxy HHT-[Fe2Lx
3]Cl4 (x = 20, 21) compounds 

were substantially less active (IC50 > 25 µM). 

All the ΔFe,HHT-[Fe2Lx
3]Cl4 (x = F1-F5) complexes were found to be more 

active than their ΛFe enantiomers. Inclusion of hydroxyl or methoxy functionality 

HHT-[Fe2Lx
3]Cl4 (x = F2, F3) reduced the observed activity ca 4-fold compared 

with the unfunctionalised compound HHT-[Fe2LF1
3]Cl4. Broadly it appeared that the 

more hydrophobic ligands led to a higher observed activity in this cell line. 

3.4.2 HCT116 p53+/+ 

 

Figure 3.15 | IC50 values of cisplatin (Pt, white), [Fe2LH
3]Cl4 (H, hashed) and the panel of triplex 

metallohelices (ΔFe - light grey, ΛFe - dark grey) against HCT116 p53+/+ over 96 h. 

The triplex metallohelices showed substantially higher activity against HCT116 

p53+/+ than MDA-MB-468 cells, with several examples exhibiting nanomolar 

potency. ΛFe,HHT-[Fe2Lx
3]Cl4 (x = 20-23, 25) compounds were more active than 

their ΔFe enantiomers. ΛFe,HHT-[Fe2Lx
3]Cl4 (x = 20, 21, 25) were all active in this 

cell line at IC50 ca 1 µM, but no coherent relationship between activity and ligand 

functionality is clear. 
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HHT-[Fe2Lx
3]Cl4 (x = F1-F5) compounds did not exhibit a consistent 

enantiomeric preference. ΛFe,HHT-[Fe2LF1
3]Cl4 was the most active compound of 

this type, up to seven times more potent than cisplatin, while both enantiomers of 

hydroxyl HHT-[Fe2LF2
3]Cl4 were much less so (IC50  > 10 µM). Again with this 

architecture of triplex metallohelix it appears that inclusion of hydrophilic 

functionality reduces the observed activity. 

3.4.3 HCT116 p53-/- 

 

Figure 3.16 | IC50 values of cisplatin (Pt, white), [Fe2LH
3]Cl4 (H, hashed) and HHT-[Fe2Lx

3]Cl4 (x = 

20-23, 25) (ΔFe - light grey, ΛFe - dark grey) against HCT116 p53-/- over 96 h. 

HHT-[Fe2Lx
3]Cl4 (x = 21-24, 26) were then investigated in HCT116 p53-/- cells, 

which is genetically identical to HCT116 p53+/+ but with mutated p53. Although 

cisplatin and [Fe2LH
3]Cl4  were less active in this than the sister cell line (IC50 ca 12 

µM), all the tested triplex metallohelices were found to be substantially more active, 

with several examples exhibiting nanomolar IC50 values, similar to the flexicates 

investigated in chapter 2. The ΛFe compounds were found to be up to five times 

more active than their ΔFe enantiomers and up to two orders of magnitude more 

active than cisplatin or [Fe2LH
3]Cl4. Adding functionality to the para- position of the 

phenyl group of the ligand appeared to reduce the toxicity of the compound towards 

this cell line, possibly due to a disruption of a key interaction with a biomolecule. 
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3.4.4 Toxicity against non-cancerous human cells and selectivity 

The toxicity of the most active of the triplex metallohelices was investigated in 

human retinal pigment epithelial cells (ARPE19), which display normal growth 

behaviour in culture medium.  

The triplex metallohelices tested were found to be considerably less active in 

the healthy cell line than cisplatin, and much less active than they were in HCT116 

p53-/-, the most sensitive cancerous cell line. This indicated a high level of 

selectivity. In fact while cisplatin was almost twice as potent in the healthy cell line 

as the cancerous, ΔFe,HHT-[Fe2L20
3]Cl4 and ΛFe,HHT-[Fe2L25

3]Cl4 were up to 200 

times less active in the healthy cells than the cancerous cells.  

 
Figure 3.17 | (i) IC50 values for the most active of the panel of complexes against ARPE19 cells over 

96 h, presented on a logarithmic scale. (ii) Comparison of activity of Cisplatin, ΔFe,HHT-[Fe2L20
3]Cl4 

and ΛFe,HHT-[Fe2L25
3]Cl4 in HCT116 p53-/- and ARPE19 cells. 

The triplex metallohelices thus appear to be acting in a highly selective manner 

towards cancerous colon cells over both healthy cells and breast cancer cells. They 

may display reduced side effects compared to other chemotherapy agents acting on 

unwanted targets.  

(i) (ii) 
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3.5 Mode of action 

To further study how triplex metallohelices act on colon cancer cells their 

mode of action has been investigated. By studying their interactions with DNA in 

cell-free and in vitro systems, their effect on the cell cycle and their induction of 

apoptosis some indications of possible mode of action will become apparent.  

3.5.1 Denaturation of ct-DNA 

Following the procedure described in section 2.5.1, the triplex metallohelices effects 

on the denaturation temperature (Tm)35 of linear ct-DNA (measured to be 68.3 ± 

0.5°C when untreated) was investigated.  

 

Figure 3.18 | Effect on Tm of linear ct-DNA (DNA, white) from interactions with [Fe2LH
3]Cl4 (H, 

hashed) and triplex metallohelices in 1mM Trizma base (10:1 base pair to complex). 

None of HHT-[Fe2Lx
3]Cl4 (x = 20-23, 25) had a significant effect on the 

denaturation temperature of ct-DNA. HHT-[Fe2L20
3]Cl4 and HHT-[Fe2L21

3]Cl4 both 

increased Tm ca 3°C possibly indicating a non-specific interaction between the DNA 

and complex, with the ΛFe enantiomer having a slightly stronger effect than ΔFe 

enantiomer. This would lead us to consider that any observable activity of HHT-

[Fe2Lx
3]Cl4 (x = 20-23, 26) in biological systems is unlikely to involve DNA binding 

in the mode of action. 
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Conversely, ΛFe,HHT-[Fe2LF1
3]Cl4 increased Tm ca 15°C, which is indicative 

of an electrostatic binding event occurring between the two molecules, similar to the 

known flexicate ΛFe-[Fe2LS
3]Cl4.15, 36  

3.5.2 Induction of DNA damage 

DNA breaking, binding or modifying is a common mode of action in anticancer 

drugs such as cisplatin37 and cyclophosphamide.38 The Hannon helicate is also 

reported to induce some DNA damage in cells.39 As with the flexicates discussed in 

chapter 2, the metal ions in triplex metallohelices are intended to be merely a 

scaffold rather than providing a reaction centre. Nevertheless the ability of HHT-

[Fe2Lx
3]Cl4  (x = 21-23) and HHT-[Fe2LF1

3]Cl4 to induce DNA damage was studied 

by single cell gel electrophoresis, following the procedure described in section 2.5.3.  

 Untreated 
control H2O2 Drug (ΛFe-20) 

Single Strand 
Break 

   
    

 Untreated 
control H2O2 

Drug (ΛFe-20)  
& H2O2 

Cross Linking 

   

    

Figure 3.19 | Fluorescence microscopy images of single untreated control HCT116 p53+/+ cells, those 

exposed to ΛFe,HHT-[Fe2L20
3]Cl4 (20 μM) for 24 h, those exposed to H2O2 for 30 min and those 

exposed to both ΛFe,HHT-[Fe2L20
3]Cl4 and H2O2. 

As seen in figure 3.19 and table 3.7, treating the cells with triplex metallohelices did 

not induce any single strand breaks or cross linking37 in the HCT116 p53+/+ cells 

compared to the untreated control. 
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Table 3.7 | (i) Mean tail moments of 50 HCT116 p53+/+ cells after treatment with 20 µM triplex 

metallohelices for 24 h, with an untreated control (0% SSB) and H2O2 (100% SSB); (ii) Mean tail 

moments of 50 HCT116 p53+/+ cells after treatment with 20 µM triplex metallohelices for 24 h and 

H2O2, with an untreated control and those treated with H2O2 only (0% X-link). 

(i) Complex SSB (esd) (ii) Complex X-link (esd) 
 Untreated control 3.51 (1.30)  Untreated control 1.87 (0.39) 
 H2O2 36.04 (6.77)  H2O2 36.44 (4.02) 
 ΛFe,HHT-[Fe2LF1

3]Cl4 2.26 (0.42)  ΛFe,HHT-[Fe2LF1
3]Cl4 32.02 (0.76) 

 ΔFe,HHT-[Fe2LF1
3]Cl4 1.38 (0.51)  ΔFe,HHT-[Fe2LF1

3]Cl4 - 
 ΛFe,HHT-[Fe2L20

3]Cl4 2.44 (0.55)  ΛFe,HHT-[Fe2L20
3]Cl4 34.62 (5.45) 

 ΔFe,HHT-[Fe2L20
3]Cl4 2.26 (1.50)  ΔFe,HHT-[Fe2L20

3]Cl4 - 
 ΛFe,HHT-[Fe2L21

3]Cl4 2.16 (1.42)  ΛFe,HHT-[Fe2L21
3]Cl4 - 

 ΛFe,HHT-[Fe2L22
3]Cl4 3.40 (2.21)  ΛFe,HHT-[Fe2L22

3]Cl4 - 
 

γ-H2AX – a DNA damage repair histone40-43 – is a useful universal marker for DNA 

damage. The effect HHT-[Fe2L20
3]Cl4 and HHT-[Fe2LF1

3]Cl4 had on the γ-H2AX 

expression in HCT116 p53+/+ cells was studied following the procedure outlined in 

section 2.5.3. None of the tested triplex metallohelices had a significant effect on the 

production of γ-H2AX which would suggest these compounds did not cause DNA 

lesions or interruption of the γ-H2AX pathway.  

 

Figure 3.20 | Mean γ-H2AX expression of HCT116 p53+/+ cells  (untreated control – white) after 

treatment with HHT-[Fe2L20
3]Cl4 or HHT-[Fe2LF1

3]Cl4 (10 μM, ΔFe - light grey, ΛFe - dark grey) for 

24 h. 
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3.5.3 Effects on the cell division cycle 

Investigating if an anticancer agent disrupts the cell cycle can indicate mode of 

action and give direction to further study.44 Following the procedure in section 

2.5.444 the tested complexes were found to cause a dramatic increase in the 

proportion of cells in the G2/M phase, from ca 20 to 23-46% of cells. The 

compounds also reduced the percentage of cells found in the S (29% to 8-18%) and 

G1 (44% to 4-43%) phases compared to the untreated cells. ΔFe,HHT-[Fe2LF1
3]Cl4 

had the most pronounced effect on the populations of these phases, with ΛFe,HHT-

[Fe2L20
3]Cl4 having a similar but less extreme effect.  

 

Figure 3.21 | Cell Cycle FACS Assay showing the % population of HCT116 p53+/+ cells when treated 

with ΛFe,HHT-[Fe2L20
3]Cl4 and ΔFe,HHT-[Fe2LF1

3]Cl4 (10 µM) for 24 h and a control of untreated 

cells. 

Upon treatment with the triplex metallohelices there was a very pronounced change 

in the population of sub G1 cells (ca 4% to 30%), which are considered apoptotic.70, 

71 These data indicated that triplex metallohelices induced programmed cell death in 

HCT116 p53+/+ colon carcinoma cells.  

3.5.4 Induction of apoptosis 

Due to the positive indication for induction of programmed cell death by triplex 

metallohelices, further investigations were carried out by Dr Simon Allison, 
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Bradford Institute of Cancer therapeutics, following the same procedure as in section 

2.5.5.45 

 

Figure 3.22 | Amount of early apoptotic (annexin-v positive, propidium iodide negative) and late 

apoptotic / necrotic (annexin-v positive, propidium iodide positive) HCT116 p53+/+ cells after 

incubation for 72 h with 20 μM of each compound, compared to an untreated control. 

Treatment with ΔFe,HHT-[Fe2LF1
3]Cl4 increased the number of both early and late 

apoptotic cells significantly compared to the untreated control. This was a solid 

indication that this compound was triggering early cell death as part of its mode of 

action. However, ΛFe,HHT-[Fe2L20
3]Cl4 appeared to only slightly increase the 

number of apoptotic cells over this time period. This could be due to several factors. 

In the cell cycle study described above ΛFe,HHT-[Fe2L20
3]Cl4 had a less pronounced 

effect on the cells than ΔFe,HHT-[Fe2LF1
3]Cl4 and so it is possible that it is acting in 

a similar but much less pronounced manner. However, as the two compounds were 

similarly cytotoxic in this cell line over 96 h it could be that ΛFe,HHT-[Fe2L20
3]Cl4 is 

not inducing apoptosis, but inhibiting cellular processes in another way. This could 

indicate a very subtle mode of action, which requires further study. 

3.5.5 Cell localisation 

The study of localisation of drug molecules in the cell during treatment can give 

valuable information concerning the mode of action. The terminal alkyne 
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functionality in ΔFe,HHT-[Fe2L25
3]Cl4 allowed us to attempt a whole-cell localisation 

experiment with the fluorescent tag AlexaFluor 555 azide via a copper(II) mediated 

alkyne-azide click reaction.46, 47 This dye is activated only on triazole formation, and 

thus gives no fluorescence in an alkyne free environment.48, 49 Preliminary examples 

of similar propargyl functionalised complexes being amenable to a conceptually 

similar copper(II) mediated alkyne-azide click reaction have been demonstrated in 

our research group.1, 18  

 

Scheme 3.3 | Copper(II) mediated click azide-alkyne reaction between ΔFe,HHT-[Fe2L25
3]Cl4 and 

AlexaFluor® 555 (structure not yet published by Invitrogen).  

HCT116 p53+/+ cells were treated with ΔFe,HHT-[Fe2L25
3]Cl4 at a range of 

concentrations (1 – 30 µM) for 48 h. After washing, to remove any excess complex 

in the cell culture medium, they were permiabilised with Triton-X, and then treated 

with Click-iT® reaction buffer cocktail containing copper(II) sulphate (2 mM) and 
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AlexaFluor® 555 azide (5 µM) for 30 minutes in the absence of light. After washing 

with PBS the cells were analysed using confocal laser microscopy.50  

  
  

  

  

Figure 3.23 | Fluorescence microscopy images of HCT116 p53-/- cells treated with different 

concentrations – (a) 1 µM, (b) 3 µM, (c) 10 µM, (d) 30 µM – of ΔFe,HHT-[Fe2L25
3]Cl4 for 48h and 

stained with AlexaFluor® 555 azide. 

In this early study a wide range of drug concentrations (100 – 1 µM) were included 

to ensure the observation of the fluorescent species. As shown in fig 3.23, 

AlexaFluor® 555 azide and ΔFe,HHT-[Fe2L25
3]Cl4 successfully coupled in a 

copper(II) mediated alkyne-azide click reaction and the resulting red fluorescence 

was observed at least as low as 1 µM of the triplex metallohelix. At high drug 

b 

c d 

a 10 µM 
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concentrations the increased amount of fluorescence seemed to obscure some of the 

finer details of the cellular environment, and the large amount of drug present may 

have necrotised the cells. In general it appeared that ΔFe,HHT-[Fe2L25
3]Cl4 had 

congregated principally in the region of the cell membrane of HCT116 p53+/+ cells at 

the observed IC50 (ca 1.5 µM) although some may have accessed parts of the 

intracellular environment (dark and light spots seen in fig 3.23).  

This first localisation study could indicate that ΔFe,HHT-[Fe2L25
3]Cl4 may act 

on cells in a similar manner to innate peptidic α-helices,51 and the complex may be 

affecting key processes of biomolecules found on the cell membrane. 
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3.6 Summary 

A strategy for the selective formation of anti-parallel triplex metallohelices has been 

successfully established though both molecular modelling, synthetic and structural 

studies. Ultimately, while absolute configuration at the metal centres was achieved 

by conventional diastereoselection, the far greater challenge of selectivity for the 

target asymmetric HHT structure was achieved by maximisation of the relatively 

strong phenyl-bipyridine inter ligand π-stacks which were present only in the triplex 

architectures. These secondary interactions also contribute to chemical stability such 

that the rates of hydrolysis in biologically-relevant media were found to be 

exceptionally low. In addition, the modular self-assembly has allowed for the 

production of a large and diverse library of metallohelices. We believe that this 

represents a significant step towards α-helix-peptide-like candidates for biochemical 

targets and phenotypic screens.  

To this end, and as with the peptidic α-helices they are designed to emulate, 

triplex metallohelices have been shown to display potent, selective and structure-

dependent toxicity to certain cancer cell-lines. They also exhibit no measured 

toxicity to example Gram-positive and Gram-negative bacteria, alongside a low 

potency in non-cancerous human epithelial cells. Thus, a subtle biomimetic 

mechanism rather than broad-spectrum cytotoxicity is indicated. This is corroborated 

by the observation of major changes to the cell cycle, indications of programmed 

apoptosis and by localisation on the extracellular cell membrane, without detected 

DNA damage.  
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Chapter 4 
Progress towards α-helix mimetic metallohelices 

Scott and Howson reported several criteria that metallohelix systems should satisfy 

in order to be relevant in the biomedical domain.1 They must be optically pure and 

non-racemising, soluble and resistant to deterioration in aqueous solutions, available 

from scalable and functionally flexible syntheses, and display relevant potent and 

selective biology. In chapter 1 we extended these criteria, stating that to be able to 

act as functional mimics of natural α-helices, an ideal system should present a low 

symmetry architecture in order to approach acute placement of functionality. 

The work detailed in this thesis makes significant progress towards these 

goals. This brief chapter summarises our progress, describes some remaining targets, 

and proposes how this research might be progressed and refined to deliver more 

sophisticated α-helix mimetics. 
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4.1 Progress through this research project 

We have developed a new range of compounds which have very selective and potent 

anticancer activity. Following Scott and Howson’s conception of the flexicate 

architecture,2 work reported in chapter 2 extended this area of research through the 

synthesis of a range of modified class Ib flexicates. We have demonstrated that this 

architecture allows for the inclusion of varied functionality, although there are still 

many possible ligand designs to investigate. 

 

Figure 4.1 | Schematic diagram of a symmetrical flexicate metallohelix. 

Water soluble examples of flexicates act by inducing cell cycle arrest and apoptosis, 

without causing DNA damage in cancer cells. They show high activity in habitually 

resistant cell lines A2780cis3 (cisplatin resistant ovarian carcinoma) and HCT116 

p53-/- (colon carcinoma with mutated p53).  

With respect to the supposition that we are creating amphipathic α-helix 

mimetics, the flexicate design is unable to satisfy our extended criteria. Such 

assemblies are unable to present the asymmetric topologies we were aiming to 

imitate. Therefore it would be unrealistic to posit that flexicates are actually 

mimicking α-helix behaviour. Further, we do not fully understand how these 

compounds act on cells; it could be that they are merely soluble delivery systems of 

one or more ligand components.  
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In chapter 3 we demonstrated that we were able to access lower symmetry 

architectures. Using directional ligands evolved from the flexicate design, we 

synthesised asymmetric HHT constitutions which we named triplex metallohelices.4 

This new system makes a significant step towards satisfying our stated criteria for α-

helix mimetics from metal scaffolded self-assembly. Albrecht recently commented 

favourably on our approach.5 

 

Figure 4.2 | Schematic diagram of an asymmetric HHT triplex metallohelix. 

Water soluble and stable examples of triplex metallohelices were found to be 

similarly active and selective in cancer to the flexicate system. Preliminary studies 

into possible mechanisms of action show these compounds do not induce DNA 

damage, but do promote early apoptosis, cause significant changes to the cell cycle 

and congregate on the membrane. This is a positive indication towards a similar 

mode of action to innate host-defence peptides and gives us confidence that we have 

achieved the aim of accessing a range of low symmetry functional α-helix mimetics.  
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4.2 Potential future developments 

An in depth study into the pharmacokinetics and mode of action of lead flexicates 

needs to be undertaken to further progress the discovery of high anticancer activity. 

This is with a view to developing this system as a chemotherapeutic panel.  

Triplex metallohelices represent a promising new area of chemistry and 

pharmacology that is in its infancy, and there is still much to discover. To further this 

work a more detailed investigation into how these new low symmetry architectures 

act on cells should be conducted. These should include: interactions with 

membranes, pathways to the observed activation of apoptosis and refinement of the 

visualisation experiments. Although several lead examples have been identified as 

being of particular interest, additional screening of new compounds should be 

continued.  

 

Figure 4.3 | Schematic diagram of a hairpin-tethered HHT metallohelix. 

We must also consider how to further refine the structures we can produce with a 

view to acutely controlling the placement of individual functional groups. Key 

concepts from the literature could be combined with our asymmetric triplex 

metallohelix system to create a new generation of low symmetry compounds. For 

example, linking two of the directional ligands with a variety of hairpin tethers could 

afford a novel class of compounds. They may have increased stability and would 

provide unique sites on the architecture – different D groups (Fig. 4.3) – for the 

inclusion of functionality. Adding peptide or carbohydrate groups may also tune the 
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properties of the complex and could be used to build recognition motifs into such 

low symmetry architectures. 

If triplex and future metallohelix systems are indeed to be considered as α-

helix mimetics, then many other applications in medicinal chemistry need to be 

addressed, such as the research of their activity in other disease areas. These 

investigations should particularly be in relation to the design, discovery and 

exploitation of interactions with proteins.   
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Chapter 5 
Experimental details 

5.1.1 Solvents and chemicals 

All solvents and chemicals purchased from commercial sources (Sigma-Aldrich, 

Acros, Fisher Scientific, Alfa Aesar or Invitrogen) were used without further 

purification unless otherwise stated. Sodium hydride dispersions in mineral oil were 

placed in a Schlenk vessel under an inert atmosphere and washed three times with 

diethyl ether to remove the oil, then dried and stored under argon in an MBraun dry 

box. Necessary solvents were dried by heating to reflux for 3 d under dinitrogen over 

the appropriate drying agents (potassium for tetrahydrofuran, sodium/potassium 

alloy for diethyl ether, and calcium hydride for acetonitrile and pyridine) and 

degassed before use. Tetrahydrofuran and diethyl ether were additionally pre-dried 

over sodium wire. Dried solvents were stored in glass ampoules under argon. 

Deuterated solvents were purchased from Sigma-Aldrich or Cambridge Isotope 

Laboratories and pre-dried over molecular sieves (3A for methanol, dimethyl 

sulfoxide and acetonitrile; 4A for chloroform), for 24 h prior to use. Zinc(II) and 

iron(II) perchlorate hexahydrate pose a risk of explosion and were therefore used 

only on a small scale. 

5.1.2 Equipment and instrumentation 

Where appropriate, reactions were carried out under argon using a dual manifold 

argon/vacuum line and standard Schlenk techniques or an MBraun dry box. All 

glassware and cannulae for these techniques were stored in an oven at > 375 K. 
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NMR spectra were recorded on Bruker Spectrospin DPX-300/400 and Bruker 

AV II DRX-500 spectrometers. Routine NMR assignments were confirmed by 1H-

1H (COSY) and 13C-1H (HMQC) correlation experiments where necessary. The 

spectra were internally referenced using the residual protio solvent (CDCl3, CD3CN 

etc.) resonance relative to tetramethylsilane (δ = 0 ppm). ESI mass spectra were 

recorded in a methanol-water mix (80:20 v/v) on either an Agilent Technologies 

1260 Infinity spectrometer or a Bruker Daltonics MicroTOF spectrometer. Infra-red 

spectra were measured using a Bruker Alpha-P FTIR spectrometer. Elemental 

analyses were performed by Medac Ltd. Chobham, Surrey GU24, 8JB, UK or 

Warwick Analytical Service, Coventry, CV4 7EZ. Optical rotation measurements 

were performed on a Perkin Elmer Polarimeter 341 by Warwick Analytical Services, 

Coventry, UK. In all cases the following parameters were used: solvent methanol, 

temperature 20°C, pathlength 100 mm, wavelength 589 nm. 

Suitable single crystals for X-ray diffraction were mounted on a glass fibre 

with Fomblin oil on a Bruker-Nonius FR591 rotating anode diffractometer with a 

Bruker APEX II CCD camera on a kappa goniostat. The crystals were kept at 120 ± 

2 K during data collection. Using Olex2,1 the structure was solved with the ShelXS2 

structure solution program using Direct Methods and refined with the ShelXL2 

refinement package using Least Squares minimisation. 
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5.2 5-hydroxypicolinaldehyde 

5-hydroxypicolinaldehyde was synthesised using a modified literature procedure.3 

5-hydroxy-2-methylpyridine-1-oxide (1) 

N

HO

O
 

5-hydroxy-2-methylpyridine (25.0 g, 0.23 mol) and m-chloroperoxybenzoic acid 

(43.0 g, 0.23 mol) were suspended in chloroform (250 ml) and heated at reflux 

(75oC) for 1.5 h before being cooled to ambient temperature and stirring for a further 

18 h. The solvent was removed under reduced pressure yielding a yellow solid which 

was dried in vacuo at 30oC. This was washed with hot ethyl acetate  

(200 ml) and the pale yellow solid was isolated by filtration. 

Yield 16.17 g, 56%. 

1H NMR (300MHz, 298 K, DMSO) δH 10.24 (1H, br s, OH), 7.81 (1H, d, 4JHH = 

2.0Hz), 7.26 (1H, d, 3JHH = 8.5 Hz), 6.78 (1H, dd, 3JHH = 8.5 Hz, 4JHH = 2.0 Hz, Py), 

2.22 (3H, s, CH3). 

13C{1H} NMR (101 MHz, 298 K, DMSO) δC 154.3, 138.9, 127.4, 125.9, 113.7 (Py), 

16.3 (CH3). 

MS (ESI) m/z 109 [M-O]+, 126 [M+H]+, 148 [M+Na]+ 

IR υ cm-1 2359 m, 1619 w, 1570 w, 1527 m, 1457 m, 1308 m, 1225 w, 1160 m, 1115 

m, 999 w, 962 W, 861 s, 824 m, 774 w, 739 s, 690 w. 
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6-[(acetyloxy)methyl]pyridine-3-yl acetate (2) 

N

O

O

O

O

 

1 (16.0 g, 0.12 mol) was suspended in acetic anhydride (200 ml) and heated at reflux 

(150°C) for 3 h, causing a colour change from yellow to dark brown. The solvent 

was removed under reduced pressure and the resulting dark brown liquid was dried 

in vacuo at 50oC.  

Yield 29.01 g, 99%. 

1H NMR (400 MHz, 298 K, CDCl3) δH 8.40 (1H, d, 4JHH = 2.5 Hz), 7.52 (1H, dd, 

3JHH = 8.0 Hz, 4JHH = 2.5 Hz), 7.41 (1H, d, 3JHH = 8.5 Hz, Py), 5.21 (2H, s, CH2), 

2.32 (3H, s), 2.17 (3H, s, CH3). 

13C{1H} NMR (100 MHz, 298K, DMSO) δC 170.0, 169.0 (CO), 152.9, 146.4, 142.7, 

130.3, 122.4 (Py), 65.6 (CH2), 20.7, 20.6 (CH3). 

MS (ESI) m/z 210 [M+H]+, 232 [M+Na]+ 

IR υ cm-1 2946 w, 1765 m, 1738 s, 1581 w, 1485 m, 1436 w, 1370 m, 1182 s, 1024 

s, 925 m, 898 m, 856 m, 722 w, 670 w. 

6-(hydroxymethyl)pyridine-3-ol (3) 

N

HO

OH  

2 (29.0 g, 0.12 mol) was dissolved in concentrated hydrochloric acid (36%, 100 ml) 

and stirred at reflux (110°C) for 24 h. The volatiles were removed under reduced 

University of Warwick | Page 113 



  Rebecca A. Kaner | Chapter 5 

pressure to 20 ml and the solution was neutralised with sodium hydroxide solution (2 

M, 50 ml) to pH 7.0. The solvent was removed under reduced pressure yielding a 

brown solid which was dried in vacuo at 50oC. This solid was heated to reflux in 

acetonitrile (200 ml), filtered hot and the solvent was removed giving a pale yellow 

solid, which was dissolved in hot acetonitrile (20 ml) and allowed to cool to ambient 

temperature and the product was collected upon filtration. 

Yield 4.55 g, 30%. 

1H NMR (300 MHz, 298 K, DMSO) δH 9.72 (1H, br s, PyOH), 8.02 (1H, d, 4JHH = 

2.5 Hz), 7.24 (1H, d, 3JHH = 8.0 Hz), 7.13 (1H, dd, 3JHH = 8.0 Hz, 4JHH = 2.5 Hz), 

5.21 (2H, br s, CH2OH), 4.43 (1H, s, CH2).  

13C{1H} NMR (100 MHz, 298K, DMSO) δC 152.2, 152.0, 136.3, 122.5, 121.0 (Py), 

63.9 (CH2). 

MS (ESI) m/z 124 [M-H]- 

IR υ cm-1 3439 w, 2407 w, 1765 w, 1570 m, 1483 m, 1461 m, 1445 m, 1335 m, 1270 

s, 1209 s, 1127 m, 1117 m, 1072 s, 1027 m, 893 m, 858 m, 830 s, 760 m, 714 m, 656 

s. 

5-hydroxypicolionaldehyde (4) 

N

HO

O  

3 (4.50 g, 36 mmol) was dissolved in isopropanol (200 ml). Activated manganese 

dioxide (4.75 g, 90 mmol) was added and the reaction was heated at reflux (100oC) 

for 4 h, allowed to cool to ambient temperature and stirred for a further 18 h. The 
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reaction mixture was filtered through celite and the solvent was removed under 

reduced pressure. The resulting brown solid was dissolved in hot water (50 ml) and 

precipitated by cooling to 5°C, before being collected by filtration. 

Yield 1.02 g, 23%. 

1H NMR (300 MHz, 298 K, DMSO) δH 11.11 (1H, br s, OH), 9.82 (1H, s, CHO), 

8.31 (1H, d, 4JHH = 2.5 Hz), 7.83 (1H, d, 3JHH = 8.5 Hz), 7.33 (1H, dd,  

3JHH = 8.5 Hz, 4JHH = 2.5 Hz, Py), 3.37 (1H, br s, PyOH). 

13C{1H} NMR (105 MHz, 298 K, DMSO) δC 191.8 (CHO), 157.9, 144.7, 138.7, 

123.6, 122.3 (Py). 

MS (ESI) m/z 124 [M-H]-, 159 [M+Cl]- 

IR υ cm-1 2506 w, 1694 m, 1597 w, 1567 s, 1471 w, 1311 m, 1273 m, 1209 s, 1115 

s, 1024 m, 911 m, 871 m, 847 s, 790 s, 730 m, 660 s. 

Elemental analysis found (calculated for C6H5NO2) % C 58.59 (58.54), H 3.93 

(4.09), N 11.30 (11.37). 
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5.3 Dipicolinaldehyde units 

5,5'-(pentane-1,5-diylbis(oxy))dipicolinaldehyde4 (5) 

O

N

O

N
O O

 

4 (0.54 g, 4.4 mol) was dissolved in acetonitrile (50 ml). Potassium carbonate (0.64 

g, 4.6 mol) followed by 1,5-dibromopentane (0.62 g, 2.7 mol) were added and the 

solution was stirred at reflux (80°C) for 16 h. The reaction mixture was filtered 

through a silica plug and the solvent was removed under reduced pressure. The crude 

product was dissolved in dichloromethane (50 ml), dried over sodium sulphate, 

filtered and the solvent was removed under reduced pressure to give a pale brown 

solid.  

Yield 0.486 g, 71%. 

1H NMR (300 MHz, 298 K, CD3CN) δH 9.88 (2H, s, CHO), 8.49 (2H, d, 4JHH = 2.5 

Hz), 7.91 (2H, d, 3JHH = 8.0 Hz), 7.60 (2H, dd, 3JHH = 8.5 Hz, 4JHH = 2.5 Hz, Py), 

4.21(4H, t, 3JHH = 6.5 Hz), 1.85 (4H, m), 1.61 (2H, m, CH2). 

13C{1H} NMR (75 MHz, 298 K,  CD3CN) δC 193.00 (CHO), 159.6, 145.3, 139.8, 

124.1, 121.6 (Py), 69.6, 29.2, 21.1 (CH2). 

MS (ESI) m/z 315 [M+H]+, 337 [M+Na]+ 

IR υ cm-1 2950 w, 2839 w, 1694 s, 1572 s, 1496 m, 1469 s, 1395 m, 1370 w, 1311 s, 

1256 s, 1209 s, 1132 s, 1109 m, 1067 m, 1030 s, 1013 m, 979 m, 925 m, 869 w, 829 

s, 790 s, 758 m, 735 m, 663 m. 
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Elemental analysis found (calculated for C17H18N2O4) % C 64.48 (64.96), H 5.59 

(5.77), N 8.91 (8.91). 

5,5'-(butane-1,4-diylbis(oxy))dipicolinaldehyde (6) 

N

O
O

N

O

O

 

6 was synthesised using the procedure described for 5, substituting 1,5-

dibromopentane for 1,4-dibromobutane. 

Yield 0.512 g, 84%. 

1H NMR (300 MHz, 298 K, CDCl3) δH 9.93 (2H, s, CHO), 8.37 (2H, d, 3JHH = 2.5 

Hz), 7.89 (2H, d, 3JHH = 9.0 Hz), 7.26 (2H, dd, 3JHH =9.0 Hz, 4JHH = 2.5 Hz, Ar), 4.15 

(2H, m), 2.03 (4H, m, CH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3) δC 192.1 (CHO), 158.4, 146.4, 138.8, 

123.53, 120.6 (Ar), 68.3, 25.8 (CH2). 

MS (ESI) m/z 301 [M+H]+, 323 [M+Na]+ 

IR υ cm-1 2824 w, 1700 m, 1568 m, 1306 m, 1205 s, 964 m, 831 m, 604 s. 

Elemental analysis found (calculated for C16H16N2O4) % C 62.48 (63.99), H 5.59 

(5.37), N 8.99 (9.32) – incomplete combustion. 
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5,5'-(hexane-1,6-diylbis(oxy))dipicolinaldehyde (7) 

N

O
O

N
O

O
 

7 was synthesised using the procedure described for 5, substituting 1,5-

dibromopentane for 1,6-dibromohexane. 

Yield 0.406 g, 61%. 

1H NMR (300 MHz, 298 K, CDCl3) δH 9.98 (2H, s, CHO), 8.41 (2H, d,  

3JHH = 2.5 Hz), 7.93 (2H, d, 3JHH = 8.0 Hz), 7.26 (2H, dd, 3JHH = 9.0 Hz,  

4JHH = 2.5 Hz, Py), 4.12 (4H, t, 3JHH = 6.0 Hz), 1.90 (4H, m), 1.58 (4H, m, CH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3) δC 192.2 (CHO), 158.6, 146.4, 138.9, 

123.54, 120.6 (Ar), 68.7, 29.0, 25.8 (CH2). 

MS (ESI) m/z 329 [M+H]+, 351 [M+Na]+ 

IR υ cm-1 2951 w, 1700 m, 1567 s, 1315 s, 1208 m, 1011 m, 851 m, 656 s. 

Elemental analysis found (calculated for C18H20N2O4) % C 64.72 (65.84), H 6.39 

(6.14), N 8.46 (8.53) – incomplete combustion. 

1-bromo-2-(2-bromoethoxy)ethane5 (8) 

Br
O

Br
 

Triphenylphosphine (25 g, 94 mmol) was suspended in dry acetonitrile 

(20 ml) and cooled to 0°C using an ice-water bath. Bromine (5 ml, 94 mmol) was 

added dropwise followed by diethylene glycol (5 ml, 47 mmol). The reaction was 

stirred at reflux (80°C) for 18 h under argon. The solvent was removed under 
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reduced pressure and the residue was taken up in diethyl ether (150 ml). The solution 

was then filtered and the solvent was removed under reduced pressure to give the 

crude product as a yellow liquid. This was purified by Kügelrohr distillation to give 

a clear liquid (b.p. 95°C under high vacuum). 

Yield 8.21 g, 76%. 

1H NMR (400 MHz, 298 K, CDCl3) δH 3.83 (4H, t, 3JHH = 6.0 Hz, 3.48 (4H, t, 3JHH = 

6.0 Hz, CH2). 

13C-NMR (101 MHz, CDCl3): δ 71.0, 30.2 (CH2). 

MS (ESI) m/z 233 [M+H]+ 

IR υ cm-1: 2966 w, 2856 w, 1739 m, 1438 w, 1421 m, 1361 w, 1279 m, 1226 w, 

1111 s, 1030 m, 1005 m, 948 m, 726 m, 691 m, 663 m. 

Elemental analysis found (calculated for C4H8Br2O) % C 20.78 (20.72), H 3.49 

(3.48). 

5,5'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))dipicolinaldehyde (9) 

O
O

N

O

N
O O

 

9 was synthesised using the procedure described for 5, substituting 1,5-

dibromopentane for 8. 

Yield 1.02 g, 75%. 

1H NMR (400 MHz, 298 K, CD3CN): δ 9.99 (2H, s, CHO), 8.45 (2H, d, 3JHH = 2.5 

Hz), 7.96 (2H, d, 3JHH = 8.5), 7.33 (2H, dd, 3JHH = 8.5 Hz, 4JHH = 2.5 Hz, Py), 4.30 

(4H, t, 3JHH = 4.5 Hz), 4.00 (4H, t, 3JHH = 4.5 Hz, CH2). 
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13C{1H} NMR (75 MHz, 298 K,CD3CN) δ 193.0 (CHO), 165.6, 163.6, 139.9, 124.1, 

121.9 (Py), 70.1, 69.3 (CH2). 

MS (ESI) m/z 339 [M+Na]+ 

IR υ cm-1 3650 w, 2963 m, 1695 m, 1573 m, 1491 m, 1456 w, 1278 m, 1258 s, 1221 

m, 1093 s, 1045 s, 1010 s, 947 m, 923 m, 842 m, 795 s, 765 m, 720 m, 696 m, 663 s. 

Elemental analysis found (calculated for C16H16N2O5) % C 60.47 (60.76), H 5.05 

(5.10), N 9.14 (8.85). 

1,4-dibromobut-2-yne5 (10) 

Br

Br  

Triphenylphosphine was crystalised from hot toluene (250 ml) and dried in vacuo. at 

ambient temperature for 18 h. Triphenylphopshine (25 g, 95 mmol) was suspended 

in dry acetonitrile (20 ml) and cooled to 0°C using an ice-water bath. Bromine (5 ml, 

93 mmol) was added dropwise followed by 2-butyne-1,4-diol (3.6 g, 46 mmol) in 

dry acetonitrile (10 ml). The reaction was stirred at ambient temperature for 18 h 

under argon. The solvent was removed under reduced pressure and the residue was 

taken up in diethyl ether (150 ml). The solution was then filtered and the solvent was 

removed under reduced pressure to give the crude product as a yellow liquid. This 

was purified by Kügelrohr distillation to give a clear liquid (b.p. 95°C under high 

vacuum). 

Yield 1.04 g, 42%. 

1H NMR (300 MHz, 298 K, CDCl3) δH 3.95 (4H, s, CH2).
 

University of Warwick | Page 120 



  Rebecca A. Kaner | Chapter 5 

13C{1H} NMR (75 MHz, 298 K, CDCl3) δC 81.7, 14.0 (CH2). 

MS (ESI) m/z 212 [M+H]+ 

IR υ cm-1 2899 w, 1704 m, 1311 m, 1281 m, 998 m, 724 m, 601 s. 

Elemental analysis found (calculated for C4H4Br2) % C 85.22 (85.26), H 8.08 (8.11), 

N 6.64 (6.63). 

5,5'-(but-2-yne-1,4-diylbis(oxy))dipicolinaldehyde (11) 

N

O
O

O
N

O  

11 was synthesised using the procedure described for 5, substituting 1,5-

dibromopentane for 10. 

Yield 0.208 g, 60 %. 

1H NMR (400 MHz, 298 K, CD3CN) δH 9.88 (2H, s, CHO), 8.40 (2H, d, 3JHH = 3.0 

Hz), 7.80 (2H, d, 3JHH = 8.5 Hz), 7.40 (2H, dd, 1H, 3JHH = 8.5 Hz, 4JHH = 3.0 Hz, Py), 

4.94 (4H, s, CH2). 

13C{1H} NMR (101 MHz, 298 K, CD3CN) δC 192.8 (CHO), 160.1, 139.8, 134.5, 

123.6, 122.2 (Py), 69.4, 57.1 (CH2). 

MS (ESI) m/z 297 [M+H]+, 319 [M+Na]+ 

IR υ cm-1 2854 w, 1699 m, 1568 s, 1307 m, 1199 s, 998 m, 824 m, 611 s. 

Elemental analysis found (calculated for C16H12N2O4) % C 62.85 (64.86), H 3.95 

(4.08), N 9.11 (9.45) – incomplete combustion. 
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(E)-5,5'-(but-2-ene-1,4-diylbis(oxy))dipicolinaldehyde (12) 

N
O

O
O

N
O

 

12 was synthesised using the procedure described for 5, substituting 1,5-

dibromopentane for 1,4-trans-dibromobut-2-ene. 

Yield 0.323 g, 53%. 

1H NMR (300 MHz, 298 K, CD3CN) δC 9.93 (2H, s, CHO), 8.46 (2H, d, 3JHH = 2.5 

Hz), 7.91 (2H, d, 3JHH = 8.0 Hz), 7.47 (2H, dd, 3JHH = 8.0 Hz, 4JHH = 2.5 hz, Py), 6.16 

(2H, m CH), 4.80 (4H, m, CH2). 

13C{1H} NMR (75 MHz, 298 K, CD3CN) δC 193.0 (CHO), 165.4, 142.3, 140.0, 

129.2, 124.1, 122.1 (Py), 69.1 (CH2). 

MS (ESI) m/z 321 [M+Na]+ 

IR υ cm-1 2844 w, 1710 m, 1566 m, 1273 s, 1121 s, 803 m, 609 m. 

Elemental analysis found (calculated for C16H14N2O4) % C 62.85 (64.42), H 4.59 

(4.73), N 9.11 (9.39) – incomplete combustion. 

5,5'-(1,4-phenylenebis(methylene))bis(oxy)dipicolinaldehyde (13) 

O
N

O

O
N

O  

13 was synthesised using the procedure described for 5, substituting 1,5-

dibromopentane for 1,4-bis(bromomethyl)benzene. 
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Yield 0.636 g, 90%. 

1H NMR (400 MHz, 298 K, CDCl3) δH 9.76 (2H, s, CHO), 8.27 (2H, d,  

3JHH = 3.0 Hz), 7.72 (2H, d, 3JHH = 9.0 Hz), 7.26 (2H, s), 7.14 (2H, dd, 3JHH = 8.5 Hz, 

4JHH = 2.5 Hz), 7.03 (2H, s, Ar), 4.99 (4H, s, CH2). 

13C{1H} NMR (101 MHz, 298 K, CDCl3) δC 192.0 (CHO), 158.1, 146.6, 139.0, 

135.7, 128.0, 123.3, 121.1 (Ar), 70.2 (OCH2). 

MS (ESI) m/z 371 [M+Na]+ 

IR υ cm-1 2821 w, 1698 m, 1569 s, 1312 m, 1206 s, 1010 m, 848 m, 602 m. 

Elemental analysis found (calculated for C20H16N2O4) % C 67.85 (68.96), H, 4.67 

(4.63), N 8.41 (8.04) – incomplete combustion. 

5,5'-(1,3-phenylenebis(methylene))bis(oxy)dipicolinaldehyde (14) 

O O

N N
OO

 

4 (0.5 g, 4.1 mol) was dissolved in dimethylformamide (20 ml). Potassium carbonate 

(0.57 g 4.3 mol) followed by 1,3-bis(bromomethyl)benzene (0.55 g, 2.1 mol) were 

added and the solution was stirred at reflux (100°C) for 4 h. After removing the 

solvent under reduced pressure the crude material was dissolved in dichloromethane 

(100 ml), washed with sodium hydroxide solution (1 M, 3 × 100 ml) and brine (3 × 

100 ml), dried over sodium sulphate and the solvent was removed. This was then 

taken up in acetonitrile, filtered and the solvent was removed and a white solid was 

recovered following a hot hexane extraction. 

Yield 0.615 g, 87%. 
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1H NMR (300 MHz, 298 K, CD3CN) δH 9.69 (2H, s, CHO), 8.27 (2H, d,  

3JHH = 2.5 Hz), 7.68 (d, 2H, 3JHH = 8.5 Hz), 7.38 (2H, s), 7.24 (4H, m, Ar), 5.05 (4H, 

s, CH2). 

13C{1H} NMR (75 MHz, 298 K, CD3CN) δC 193.0 (CHO), 159.2, 142.6, 140.1, 

137.6, 130.1, 128.9, 128.2, 124.1, 122.2 (Ar), 71.2 (OCH2). 

MS (ESI) m/z 347 [M-H]-, 349 [M+H]+, 371 [M+Na]+, 383 [M+Cl]- 

IR υ cm-1 3049 w, 2820 w, 1700 s, 1570 s, 1210 s, 1156 s, 1012 m, 838 m, 795 m, 

616 m. 

Elemental analysis found (calculated for C20H16N2O4) % C 68.45 (68.96), H 4.40 

(4.63), N 8.23 (8.04). 

bis(4-(bromomethyl)phenyl)methane6 (15) 

Br Br
 

Diphenylmethane (5.0 g, 30 mmol) was added to a solution of hydrobromic acid 

(40%, 80 ml) and acetic acid (20 ml) followed by 1,3,5-trioxane (5.0 g, 60 mmol) 

and tetradecyltrimethylammonium bromide (0.2 g, 0.48 mmol). The solution was 

stirred at reflux (125°C) for 16 h. After cooling to 0 °C in an ice bath a yellow 

precipitate formed which was collected and washed with water (50 ml). This was 

dissolved in dichloromethane (100 ml), washed with water (100 ml), dried over 

sodium sulphate and the solvent removed under reduced pressure. The desired 

product was collected upon crystallisation from hot dichloromethane. 

Yield 1.48 g, 14%. 
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1H NMR (400 MHz, 298 K, CDCl3) δH 7.23 (4H, d, 3JHH = 7.5 Hz), 7.09 4H, d, 3JHH 

= 7.5 Hz, Ph), 4.41 (4H, s), 3.89 (2H, s, CH2). 

13C{1H} NMR (101 MHz, 298 K, CDCl3) δC 141.2, 135.9, 129.5, 129.4 (Ph), 41.5, 

33.6 (CH2). 

MS (ESI) m/z 275 [M-Br+H]+ 

IR υ cm-1 2922 w, 1700 w, 1509 w, 1223 m, 734 m, 714 m, 692 m, 595 s. 

Elemental analysis found (calculated for C15H14Br2) % C 51.54 (50.88), H 3.96 

(3.99). 

5,5'-(4,4'-methylenebis(4,1-phenylene)bis(methylene))bis(oxy)dipicolinaldehyde 

(16) 

O O

NN
OO

 

16 was synthesised using the procedure described for 5, substituting 1,5-

dibromopentane for 15. 

Yield 0.510 g, 28%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 9.88 (2H, s, CHO), 8.45 (2H, d,  

3JHH = 2.5 Hz), 7.87 (2H, d, 2H, 3JHH = 8.0 Hz), 7.46 (2H, dd, 3JHH = 9.0 Hz, 4JHH = 

3.5 Hz), 7.36 (4H, d, 3JHH = 7.5 Hz), 7.27 (4H, d, 3JHH = 7.5 Hz, Ar), 5.18 (4H, s, 

CH2O), 3.98 (2H, s, CH2). 

13C{1H} NMR (75 MHz, 298 K, CD3CN) δc 193.3 (CHO), 164.2, 159.7, 143.0, 

140.4, 135.1, 130.3, 129.6, 124.4, 122.4 (Ar), 71.5 (OCH2), 42.0 (CH2). 
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MS (ESI) m/z 440 [M+H]+, 463 [M+Na]+. 

IR υ cm-1 2924 w, 2820 w, 1720 w, 1578 s, 1521 w, 1222 m, 795 m, 730 m, 713 m, 

697 m. 

Elemental analysis found (calculated for C27H22N2O4) % C 73.22 (73.96), H 4.90 

(5.06), N 5.94 (6.39). 

bis(6-formylpyridin-3-yl) glutarate (17) 

N

O O

O OO
N

O
 

Following a related literature method,7 4 (1.0 g, 8.1 mmol) was dissolved in dry 

tetrahydrofuran (25 ml) under argon and cooled to 0 °C in an ice bath. Triethylamine 

(1.71 ml, 12.2 mmol) was added slowly, followed by glutaroyl chloride (0.52 ml, 

0.69 g, 4.1 mmol). After warming to ambient temperature this was stirred for 3 h, 

diluted with ethyl acetate (20 ml) and quenched with saturated ammonium chloride 

solution (30 ml). The product was extracted into ethyl acetate (50 ml), washed with 

distilled water (100 ml) and brine (100 ml), dried over sodium sulfate and the solvent 

was removed under reduced pressure. The product was purified via column 

chromatography (hexane: ethyl acetate, 1:2) and the solvent was removed to yield 

the desired product; a yellow solid. 

Yield 0.154 g, 6%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 9.80 (2H, s, CHO), 8.42 (2H, d, 3JHH = 2.5 

Hz), 7.80 (2H, d, 3JHH = 8.5 Hz), 7.58 (2H, dd, 3JHH = 8.5 Hz, 4JHH = 2.0 Hz, Py), 

2.62 (4H, t, 3JHH = 6.5 Hz), 1.75 (2H, quin, 3JHH = 2.5 Hz, CH2). 
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13C{1H} NMR (101 MHz, 298 K, CD3CN) δC 192.9 (CHO), 171.7, 151.1, 144.8, 

131.1, 123.1 (Ar), 117.9, (CO), 33.15, 19.86 (CH2). 

MS (ESI) m/z 365 [M+Na]+ 

IR υ cm-1 2961 w, 1702 s, 1572 s, 1483 m, 1475 s, 1395 m, 1311 s, 1256 s, 1067 m, 

1030 s, 925 m, 869 w, 735 m, 610 m. 

Elemental analysis found (calculated for C17H14N2O6) % C 58.90 (59.65) H 4.77 

(4.12) N 8.04 (8.18).  
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5.4 Phenylglycinol and derived ethers 

5.4.1 Phenylglycinol8 

 (S)-phenylglycinol (18) 

H2N
OH

 

L-phenylglycine (20.0 g, 0.13 mol) was suspended in dry tetrahydrofuran (100 ml) 

under argon and added drop-wise to a stirred solution of lithium aluminium hydride 

(10.0 g, 0.26 mol) in dry tetrahydrofuran (100 ml) at 0°C. The suspension was 

allowed to warm to ambient temperature and then heated at reflux (70°C) for 16 h. 

After cooling to 0°C the reaction mixture was quenched by adding saturated 

potassium carbonate solution (250 ml) drop-wise. The solid was filtered off to give a 

yellow solution. The solvent was removed under reduced pressure to give a yellow 

solid, which upon recrystallisation from hot toluene gave a white crystalline solid. 

Yield 9.09 g, 50%. 

1H NMR (400 MHz, 298 K, CDCl3) δH 7.28 (5H, m, Ph), 3.95 (1H, dd,  

3JHH = 8.0 Hz, 4JHH = 4.0 Hz, CH), 3.68 (1H, dd, 3JHH = 10.5 Hz,  

4JHH = 4.0 Hz), 3.50 (1H, dd, 3JHH = 10.5 Hz, 4JHH = 8.0 Hz, CH2), 2.09 (2H, s, NH2). 

13C{1H} NMR (101 MHz, 298 K, CDCl3) δC 142.8, 128.8, 127.6, 126.6 (Ph), 68.1 

(CH2), 57.5 (CH). 

MS (ESI) m/z 120 [M-OH]+ 

IR υ cm-1 3327 w, 2831 s, 1598 m, 1250 m, 1062 m, 932 m, 750 m, 702 s, 554 m, 

402 m. 
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Elemental analysis found (calculated for C8H11NO) % C 69.88 (70.04), H 8.12 

(8.08), N 10.18 (10.21). 

Optical Rotation +24.99° (6.652 g/100 ml MeOH). 

(R)-phenylglycinol (19) 

H2N
OH

 

19 was synthesised using the procedure described for 18, substituting L-

phenylglycine for D-phenylglycine. 

Yield 8.55 g, 47%. 

1H NMR (300 MHz, 298 K, CDCl3) δH 7.28 (5H, m, Ph), 3.97 (1H, dd,  

3JHH = 8.0 Hz, 4JHH = 4.5 Hz, CH), 3.65 (1H, dd, 3JHH = 10.5 Hz, 4JHH = 4.5 Hz), 3.51 

(1H, dd, 3JHH = 10.5 Hz, 4JHH = 8.0 Hz, CH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3) δC 142.5, 128.7, 127.6, 126.6 (Ph), 67.9 

(CH2), 57.5 (CH). 

MS (ESI) m/z 120 [M-OH]+ 

IR υ cm-1 2835 m, 1604 m, 1497 m, 1453 m, 1361 w, 1197 w, 1077 m, 1047 m, 978 

m, 882 m, 755 s, 700 s. 

Elemental analysis found (calculated for C8H11NO) % C 69.65 (70.04), H 8.60 

(8.06), N 10.14 (10.21). 

Optical Rotation -25.99° (6.619 g/100 ml MeOH) [Lit. -25.8° (6.60 g/100 ml)]9 
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5.4.2 Phenylglycinol derived ethers 

 (R)-2-methoxy-1-phenylethanamine10 (20) 

H2N
O

 

Following a literature method,10 19 (2.0 g, 14.6 mmol) was dissolved in dry 

tetrahydrofuran under argon and added drop-wise to a suspension of sodium hydride 

(0.32 g, 16.0 mmol) in dry tetrahydrofuran, which was then stirred at ambient 

temperature for 1 h under reduced pressure. Iodomethane (2.1 g, 14.6 mmol) was 

added drop-wise and the solution was heated at reflux (65°C) under partial vacuum 

for 18 h. Brine (20 ml) was added after the solution had been cooled to ambient 

temperature. The product was extracted into dichloromethane (3 × 100 ml), dried 

over sodium sulphate and the solvent was removed under reduced pressure, taken up 

in diethyl ether (50 ml), filtered and the solvent was removed to give a yellow or 

brown oil, which was purified via Kügelrohr distillation at 70°C to give a clear oil. 

Yield 1.38 g, 63%. 

1H NMR (300 MHz, 298 K, CDCl3) δH 7.20 (5H, m, Ph), 4.12 (1H, dd, 3JHH = 4.0 

Hz, 9.0 Hz, CH), 3.43 (1H, dd, 2JHH = 8.5 Hz, 3JHH = 4.0 Hz, CH2), 3.32-3.26 (4H, 

m, CH2, CH3), 1.67 (2H, s, NH2). 

13C{1H} NMR (75 MHz, 298 K, CDCl3) δC 142.6, 128.4, 127.4, 126.8 (Ph), 79.0 

(CH2), 58.9 (CH3), 55.4 (CH). 

MS (ESI) m/z 135 [M-NH2]+ 
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IR υ cm-1 3028 w, 2888 m, 1603 w, 1493 m, 1453 m, 1355 w, 1194 m, 1111 s, 968 

m, 844 m, 758/700 s. 

Elemental analysis found (calculated for C9H13NO) % C 70.98 (71.49), H 9.00 

(8.67), N 9.39 (9.26). 

Optical rotation -69.25° (3.03 g/ 100ml) [Lit. -34.04° (5.963 g/100 ml)]11 

(R)-2-(allyloxy)-1-phenylethanamine (21) 

H2N
O

 

21 was synthesised using the procedure described for 20, substituting iodomethane 

for 3-bromoprop-1-ene. Distilled under high vacuum at 110 °C. 

Yield 1.33 g, 52%. 

1H NMR (300 MHz, 298 K, CDCl3) δH 7.21 (5H, m, Ph), 5.79 (1H, m, HC=C), 5.19 

(1H, dd, 3JHH = 17.0 Hz, 4JHH = 1.5 Hz), 5.08 (1H, dd, 3JHH = 10.5 Hz, 3JHH = 1.5 Hz, 

H2C=C), 4.08 (1H, dd, 3JHH = 9.5 Hz, 3JHH = 3.0 Hz, CH), 3.89 (2H, d, 3JHH = 5.5 

Hz), 3.44 (1H, dd, 3JHH = 9.5 Hz, 3JHH = 3.5 Hz, CH2), 3.28 (1H, t, 3JHH = 9.5 Hz, 

CH2), 1.74 (2H, s, NH2). 

13C{1H} NMR (101 MHz, 298 K, CDCl3) δC 145.5, 137.0 (Ar), 134.7 (CH), 128.6,  

127.9, 127.7, 127.0 (Ar), 117.3 (CH2), 78.2, 75.5, (CH2), 55.7 (CH). 

MS (ESI) m/z 178 [M+H]+ 200 [M+Na]+ 

IR υ cm-1 3028 w, 2854 w, 1667 m, 1603 w, 1493 m, 1453 m, 1353 w, 1257 w, 1085 

s, 1027 w, 991 m, 9212 m, 842 w, 758 s, 699 s. 
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Elemental analysis found (calculated for C11H15NO) % C 75.89 (74.54), H 8.83 

(8.53), N 6.89 (7.90) – incomplete combustion. 

Optical rotation -94.25 (4.733 g/100 ml) 

(R)-2-(benzyloxy)-1-phenylethanamine12 (22) 

H2N
O

 

22 was synthesised using the procedure described for 20, substituting iodomethane 

for (bromomethyl)benzene. Distilled under high vacuum 135 °C. 

Yield 1.50 g, 47%. 

1H NMR (300 MHz, 298 K, CDCl3) δH 7.30 (10H, m, Ph), 4.49 (2H, s, CH2), 4.16 

(1H, dd, 3JHH = 9.5 Hz, 4JHH = 4.0 Hz, CH), 3.53 (1H, dd, 3JHH = 9.0 Hz,  

4JHH = 3.5 Hz), 3.39 (1H, t, 3JHH = 8.0 Hz, CH2), 1.73 (2H, s, NH2). 

13C{1H} NMR (75 MHz, 298, CDCl3) δC 142.1, 137.8, 128.1, 127.4, 127.4, 127.1, 

126.5 (Ar), 77.2, 73.0 (CH2), 55.3 (CH). 

MS (ESI) m/z 228 [M+H]+, 250 [M+Na]+ 

IR υ cm-1 3028 w, 2856 w, 1603 w, 1494 m, 1452 m, 1356 w, 1205 w, 1090 s, 1075 

s, 1027 m, 845 w, 735 m, 695 s. 

Elemental analysis found (calculated for C15H17NO) % C 79.02 (79.26), H 7.65 

(7.54), N 5.93 (6.16). 

Optical rotation -55.09 (3.015 g/ 100ml) [Lit. -18.87° (3.02 g/100 ml)]11 
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(R)-2-(naphthalen-2-ylmethoxy)-1-phenylethanamine (23) 

H2N
O

 

23 was synthesised using the procedure described for 20, substituting iodomethane 

for 2-(bromomethyl)naphthalene. Distilled under high vacuum at 140 °C. 

Yield 0.209 g, 5.1%. 

1H NMR (300 MHz, 298 K, CDCl3) δH 7.74 (4H, m), 7.40 (3H, m), 7.31 (5H, m, 

Ph), 4.65 (2H, s, OCH2), 4.19 (1H, dd, 3JHH = 8.5 Hz, 4JHH = 3.5 Hz, Ch), 3.57 (1H, 

dd, 3JHH = 9.5 Hz, 4JHH = 3.5 Hz), 3.43 (1H, t, 3JHH = 8.5 Hz, CH2), 1.72 (2H, s, 

NH2). 

13C{1H} NMR (101 MHz, 298 K, CDCl3) δC 138.5, 133.5, 133.1, 128.8, 128.4, 

128.0, 127.8, 127.7, 126.6, 126.3, 126.0, 125.5, 125.3 (Ar), 68.1, 65.5 (CH2), 57.4 

(CH). 

MS (ESI) m/z 278 [M+H]+, 300 [M+Na]+ 

IR υ cm-1 3056 w, 2856 w, 1682 w, 1634 w, 1601 m, 1508 w, 1493 w, 1452 m, 1352 

m, 1269 w, 1170 w, 1123 m, 1085 s, 1026 m, 951 w, 891 w, 854 m, 814 m, 747 s, 

698 s. 

Elemental analysis found (calculated for C19H19NO) % C 78.67 (82.28), H 6.98 

(6.90), N 5.05 (2.92) – incomplete combustion. 

Optical rotation -22.24 (1/.194 g/ 100ml)  
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(S)-1-phenyl-2-(prop-2-ynyloxy)ethanamine11 (24) 

H2N
O

 

24 was synthesised using the procedure described for 20, substituting iodomethane 

for 3-bromoprop-1-yne (80% in toluene) and (R)-phenylglycinol for (S)-

phenylglycinol. Distilled under high vacuum at 110 °C. 

Yield 1.03 g, 81%. 

1H NMR (400 MHz, 298 K, CDCl3) δH 7.45-7.20 (5H, m, Ph), 4.26-4.16 (3H, m, 

CH, CH2), 3.68 (1H, dd, 3JHH = 9.0 Hz, 4JHH = 4.0 Hz), 3.47 (1H, t, 3JHH = 9.0 Hz, 

CH2), 2.43 (1H, t, 4JHH = 2.5 Hz, CH), 1.70 (2H, s, NH2). 

13C{1H} NMR (101 MHz, 298 K, CDCl3) δC 142.1, 128.3,  127.3, 126.7 (Ph), 79.4 

(C), 74.4 (CH), 60.2, 58.3 (CH2), 55.2 (CH). 

MS (ESI) m/z 159 [M-NH2]+, 176 [M+H]+ 

IR υ cm-1 3286 w, 2855 w, 1087 s, 861 m, 759 s, 699 s. 

Elemental analysis found (calculated for C11H13NO) % C 74.92 (75.40), H 7.56 

(7.48), N 7.92 (7.99). 

Optical rotation +65.74° (3.10 g/ 100ml)  
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(R)-1-phenyl-2-(prop-2-ynyloxy)ethanamine (25) 

H2N
O

 

25 was synthesised using the procedure described for 20, substituting iodomethane 

for 3-bromoprop-1-yne (80% in toluene). Distilled under high vacuum at 110 °C. 

Yield 0.37 g, 28%. 

1H NMR (400 MHz, 298 K, CDCl3) δH 7.43-7.22 (5H, m, Ph), 4.25-4.17 (3H, m, 

CH, CH2), 3.68 (1H, dd, 3JHH = 9.0 Hz, 4JHH = 4.0 Hz), 3.47 (1H, t, 3JHH = 9.0 Hz, 

CH2), 2.43 (1H, t, 4JHH = 2.5 Hz, CH), 1.68 (2H, s, NH2). 

13C{1H} NMR (101 MHz, 298 K, CDCl3) δC 142.7, 128.5, 127.5, 126.8 (Ph), 79.6 

(C), 74.6 (CH), 60.4, 58.4 (CH2), 55.4 (CH). 

MS (ESI) m/z 159 [M-NH2]+, 176 [M+H]+ 

IR υ cm-1 3285 w, 2855 w, 1088 s, 859 m, 759 s, 699 s. 

Elemental analysis found (calculated for C11H13NO) % C 74.82 (75.40), H 7.60 

(7.48), N 7.81 (7.99). 

Optical rotation -81.60° (3.12 g/ 100ml) [Lit. -32.11° (6.08 g/100 ml)]11 
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5.5 Functionalised flexicates 

5.5.1  [Zn2L2-10
3][ClO4]4 

ΛZn-[Zn2L2
3][ClO4]4 

N

N

N

N

O
Zn

O

N

N

O

NZn

O

N

O

N

N
O

N N

O

N

N

O

N

N

L2

ΛZn-[Zn2L2
3]4+

4+

 

6 (0.13 g, 0.44 mmol) and (R)-1-phenylethan-1-amine (0.11 g, 0.88 mmol) were 

stirred in acetonitrile (10 ml) for 1 h. Zinc (II) perchlorate hexahydrate (0.11 g, 0.29 

mmol) was added and the solution was stirred at ambient temperature for 20 h ethyl 

acetate was added drop-wise to cause precipitation of a white crystalline solid. 

Yield 0.192 g, 64%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 8.09 (6H, s, CHN), 7.51 (6H, dd, 3JHH = 8.5 

Hz, 4JHH = 3.0 Hz), 7.39 (6H, d, 3JHH = 8.5 Hz), 7.09 (12H, m), 6.98 (12H, t, 3JHH = 

8.0 Hz), 6.67 (12H, d, 3JHH = 7.0 Hz, Ar), 5.40 (6H, q, 3JHH = 6.5 Hz, CH), 4.17 (6H, 

m), 4.09 (6H, m), 1.90 (12H, m, CH2), 1.62 (18H, d, 3JHH = 5.5 Hz, CH3). 

13C{1H} NMR (101 MHz, 298 K, CD3CN) δC 161.8 (CHN), 160.2, 156.1, 142.0, 

139.6, 139.6, 132.4, 129.7, 128.5, 126.4, 122.5 (Ar), 69.9 (CH2), 64.7 (CH), 26.1 

(CH2), 23.6 (CH3). 

MS (ESI) m/z 413 [Zn2L3]4+, 507 [L+H]+, 529 [L+Na]+ 

University of Warwick | Page 136 



  Rebecca A. Kaner | Chapter 5 

IR υ cm-1 2936 w, 1641 m, 1262 m, 1081 s, 702 m, 621 s. 

Elemental analysis found (calculated for C96H102Cl4N12O22Zn2) % C 54.02 (54.38), 

H 4.79 (5.23), N 7.81 (7.93). 

ΛZn-[Zn2L3
3][ClO4]4  

N

N

N

N

O
Zn

O

N

N

O

NZn

O

N

O

N

N
O

N N

O

N

N

O

N

N

L3

ΛZn-[Zn2L3
3]4+

4+

 

ΛZn-[Zn2L3
3][ClO4]4 was synthesised using the procedure described for ΛZn-

[Zn2L2
3][ClO4]4, substituting 6 for 7.  

Yield 0.145 g, 41%. 

1H NMR (300 MHz, CD3CN) δ 8.09 (6H, s, CHN), 7.50 (6H, dd, 3JHH = 8.5 Hz, 4JHH 

= 2.5 Hz), 7.38 (6H , d, 3JHH = 8.5 Hz), 7.17-7.06 (12H, m), 6.97 (12H, t, 3JHH = 7.5 

Hz), 6.67 (12H, d, 3JHH = 7.5 Hz, Ar), 5.41 (6H, q, 3JHH = 6.5 Hz, CH), 4.20-3.96 

(12H, m), 1.68 (12H, m, CH2), 1.61 (18H, d, 3JHH = 6.5 Hz), 1.53-1.39 (12H, m, 

CH2). 

13C{1H} NMR (75 MHz, CD3CN) δC 165.43 (CHN), 165.4, 161.8, 139.6, 139.5, 

132.4, 132.2, 129.6, 128.5, 126.4, 122.7 (Ar), 74.2, 70.3 (CH2), 64.7 (CH), 45.4 

(CH2), 30.9 (CH3). 

MS (ESI) m/z 432 [Zn2L3]4+, 535 [L+H]+, 557 [L+Na]+ 
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IR cm-1 2936 w, 1591 w, 1227 w, 1082 m, 702 w, 621 w. 

Elemental analysis found (calculated for C102H114Cl4N12O22Zn2) % C 55.22 (55.57), 

H 5.13 (5.58), N 7.49 (7.62).  

ΛZn-[Zn2L4
3][ClO4]4.6H2O  

ON

N

N

N

O
Zn

O

N

N

O

NZn

O

N

O

N

N
O

N

O

N

O
O

N

N

O

N

NL4

O

ΛZn-[Zn2L4
3]4+

4+

 

ΛZn-[Zn2L4
3][ClO4]4 was synthesised using the procedure described for ΛZn-

[Zn2L2
3][ClO4]4, substituting 6 for 9.  

Yield 0.390 g, 75%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 8.09 (6H, s, CHN), 7.49 (6H, dd, 3JHH = 8.5 

Hz, 4JHH = 2.5 Hz), 7.41 (6H, d, 3JHH = 8.5 Hz), 7.06 (6H, t, 3JHH = 7.5 Hz), 6.96 

(12H, t, 3JHH = 7.5 Hz), 6.91 (6H, d, 4JHH = 2.5 Hz), 6.67 (12H, d, 3JHH = 7.5 Hz, Ar), 

5.35 (6H, q, 3JHH = 6.5 Hz, CH), 4.11-4.01 (12H, m), 3.85-3.74 (12H, m, OCH2), 

1.57 (18H, d, 3JHH = 6.5 Hz, CH3). 

13C{1H} NMR (101 MHz, 298 K, CD3CN) δC 161.6 (CHN), 156.0, 157.8, 154.2, 

143.9, 138.2, 132.1, 129.6, 128.6, 126.6, 124.5 (Ar), 70.1, 70.0 (CH2), 64.8 (CH), 

23.7 (CH3). 

MS (ESI) m/z 523 [L+H]+, 545 [L+Na]+ 

IR υ cm-1 2935 w, 1570 m, 1267 m, 1082 s, 651 w, 622 m. 

University of Warwick | Page 138 



  Rebecca A. Kaner | Chapter 5 

Elemental analysis found (calculated for C106H102Cl4N12O25Zn2.6H2O) % C (51.54), 

H 4.74 (5.21), N 7.33 (7.62). 

ΛZn-[Zn2L5
3][ClO4]4.6H2O 
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ΛZn-[Zn2L5
3][ClO4]4 was synthesised using the procedure described for ΛZn-

[Zn2L2
3][ClO4]4, substituting 6 for 11.  

Yield 0.152 g, 35%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 8.05 (6H, s, CHN), 7.48 (6H, dd, 3JHH = 8.0 

Hz, 4JHH = 2.5 Hz),  7.40 (6H, dd, 3JHH = 8.0 Hz, 4JHH = 2.5 Hz), 7.08 (6H, t, 3JHH = 

7.0 Hz), 7.04 (6H ,d, 3JHH = 2.5 Hz), 6.94 (12H, t, 3JHH = 8.0 Hz), 6.65 (12H, d, 3JHH 

= 7.0 Hz, Ar), 5.39 (6H, q, 3JHH = 6.0 Hz, CH), 4.88 (12H, s, CH2), 1.58 (18H, d, 

3JHH = 6.0 Hz, CH3). 

13C{1H} NMR (101 MHz, 298 K, CD3CN) δC 161.7 (CHN), 142.0, 140.4, 140.1, 

139.7, 132.3, 129.7, 128.6, 126.6, 123.1 (Ar), 82.7 (C) 64.9 (CH), 58.5 (CH2), 23.6 

(CH3). 

MS (ESI) m/z 410 [Zn2L3]4+. 

IR υ cm-1 2971 m, 1567 w, 1225 m, 1076 s, 621 m. 
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Elemental analysis found (calculated for C96H90Cl4N12O22Zn2.6H2O) % C 53.56 

(53.77), H 4.28 (4.79), N 7.72 (7.84). 

ΛZn-[Zn2L6
3][ClO4]4.10H2O 
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ΛZn-[Zn2L6
3][ClO4]4 was synthesised using the procedure described for ΛZn-

[Zn2L2
3][ClO4]4, substituting 6 for 12.  

Yield 0.214 g, 57%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 8.06 (6H, s, CHN), 7.49 (6H, dd, 3JHH = 8.5 

Hz, 4JHH = 3.5 Hz), 7.36 (6H, d, 3JHH = 8.5 Hz), 7.14 (6H, d, 3JHH = 3.5 Hz), 7.09 

(6H, t, 3JHH = 8.0 Hz), 6.95 (12H, t, 3JHH = 7.5 Hz), 6.64 (12H, d, 3JHH = 7.0 Hz, Ar), 

6.12 (6H, m), 5.38 (6H, q, 3JHH = 6.5 Hz, CH), 4.64 (12H, s, CH2), 1.61 (18H, d, 3JHH 

= 6.5 Hz). 

13C{1H} NMR (101 MHz, 298 K, CD3CN) δC 161.8 (CHN), 159.6, 142.0, 139.9, 

139.4, 132.3 (Ar), 129.7 (CH), 129.4, 128.5, 126.4, 122.7 (Ar), 69.7 (CH2), 64.7 

(CH), 23.6 (CH3). 

MS (ESI) m/z 411 [Zn2L3]4+. 

IR υ cm-1 2976 w, 1570 m, 1316 m, 1225 m, 1082 s, 762 w, 703 m, 653 m. 
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Elemental analysis found (calculated for C96H96Cl4N12O22Zn2.10H2O) % C 51.08 

(51.88), H 4.82 (5.26), N 7.38 (7.56). 

ΛZn-[Zn2L7
3][ClO4]4 
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ΛZn-[Zn2L7
3][ClO4]4 was synthesised using the procedure described for ΛZn-

[Zn2L2
3][ClO4]4, substituting 6 for 13.  

Yield 0.051 g, 24%. 

1H NMR (400 MHz, , 298 K, CD3CN) δH 8.15 (6H, s, CHN), 7.65 (6H, dd, 3JHH = 

8.5 Hz, 4JHH = 3.0 Hz), 7.47 (24H, s), 7.44 (6H, d, 3JHH = 8.5 Hz), 7.31 (6H, d, 3JHH = 

2.5 Hz), 7.16 (6H, t, 3JHH = 2.5 Hz), 7.03 (12H, t, 3JHH = 7.5 Hz), 6.71 (12H, d, 3JHH 

= 8.0 Hz, Ar), 5.46 (6H, q, 3JHH = 6.5 Hz, CH), 1.67 (18H, d, 3JHH = 7.0 Hz, CH3). 

13C{1H} NMR (101 MHz, 298 K, CD3CN) δc 162.0 (CHN), 160.6, 142.5, 140.5, 

138.5, 137.0, 132.5, 130.9, 129.6, 129.0, 128.5, 126.3, 125.3 (Ar), 72.9 (CH2), 65.3 

(CH3), 24.8 (CH). 

MS (ESI) m/z 502 [L+H]+, 409 [Zn2L3]4+. 

IR υ cm-1 2974 w, 1569 m, 1224 m, 1083 s, 702 m, 651 m. 
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Elemental analysis found (calculated for C108H102Cl4N12O22Zn2.4H2O) % C 56.79 

(57.28), H 4.30 (4.90), N 7.30 (7.40). 

ΛZn-[Zn2L8
3][ClO4]4.4H2O 
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ΛZn-[Zn2L8
3][ClO4]4 was synthesised using the procedure described for ΛZn-

[Zn2L2
3][ClO4]4, substituting 6 for 14.  

Yield 0.220 g, 53%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 8.13 (6H, s, CHN), 7.65 (6H, dd, 3JHH = 9.0 

Hz, 4JHH = 3.0 Hz), 7.54 (6H, s), 7.48 (18H, m), 7.16 (6H, t, 3JHH = 7.0 Hz), 7.02 

(12H, m), 6.73 (12H, d, 3JHH = 7.0 Hz, Ar), 5.41(6H, q, 3JHH = 7.0 Hz, CH), 5.23 

(6H, m), 5.09 (6H, m, CH2), 1.62 (18H, d, 3JHH = 7.0 Hz, CH3). 

13C{1H} NMR (101 MHz, 298 K, CD3CN) δc 161.8 (CHN), 160.3, 142.25, 140.4, 

138.3, 137.0, 132.5, 130.9, 129.9, 129.8, 128.8, 126.8, 125.0 (Ar), 72.0 (CH2), 65.1 

(CH3), 24.0 (CH). 

MS (ESI) m/z 502 [L+H]+, 409 [Zn2L3]4+. 

IR υ cm-1 2972 w, 1569 m, 1225 m, 1083 s, 702 m, 622 m. 

Elemental analysis found (calculated for C108H102Cl4N12O22Zn2.4H2O) % C 56.77 

(57.28), H 4.41 (4.90), N 7.32 (7.40). 
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ΛZn-[Zn2L9
3][ClO4]4.13H2O 
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ΛZn-[Zn2L9
3][ClO4]4 was synthesised using the procedure described for ΛZn-

[Zn2L2
3][ClO4]4, substituting 6 for 16.  

Yield 0.124 g, 27%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 8.12 (6H, s, CHN), 7.58 (6H, dd, 3JHH = 8.5 

Hz, 4JHH = 3.0 Hz), 7.45 (12H, d, 3JHH = 9.0 Hz), 7.26 (18H, d, 3JHH =  8.5 Hz), 7.14 

(30H, m), 7.01 (24H, t, 3JHH = 8.5 Hz), 6.70 (12H, d, 3JHH = 8.0 Hz, Ar), 5.39 (6H, q, 

3JHH = 6.0 Hz, CH), 5.01 (6H, d, 3JHH = 8.5 Hz), 4.96 (6H, d, 3JHH = 8.5 Hz), 3.96 

(6H, s, CH2), 1.53 (18H, t, 3JHH = 8.5 Hz, CH3). 

13C{1H} NMR (101 MHz, 298 K, CD3CN) δC 161.6 (CHN), 159.7, 141.8, 139.8, 

138.8, 133.7, 132.1, 129.9, 129.6, 129.5, 128.4, 126.4, 124.0, 118.1 (Ar), 71.8, 64.7 

(CH2), 23.3 (CH), 1.3 (CH3). 

MS (ESI) m/z 517 [ZnL3]4+ 

IR υ cm-1 2974 m, 1569 m, 1226 m, 1084 s, 702 m, 622 m. 

Elemental analysis found (calculated for C129H120Cl4N12O22Zn2.13H2O) % C 57.12 

(57.44), H 5.44 (5.46), N 6.31 (6.23). 
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ΛZn-[Zn2L10
3][ClO4]4.4H2O 
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ΛZn-[Zn2L10
3][ClO4]4 was synthesised using the procedure described for ΛZn-

[Zn2L2
3][ClO4]4, substituting 6 for 17.  

Yield 0.13 g, 64%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 8.28 (6H, s, CHN), 7.79 (6H, dd, 3JHH = 8.0 

Hz, 4JHH = 2.5 Hz), 7.54 (6H, d, 3JHH = 9.0 Hz), 7.39 (6H, d, 3JHH = 2.5 Hz), 7.14 

(6H, t, 3JHH = 7.5 Hz), 7.00 (12H, t, 3JHH =8.0 Hz), 6.69 (12H, d, 3JHH = 7.5 Hz, Ar), 

5.49 (6H, q, 3JHH = 6.5 Hz, CH), 2.55 (12H, m), 1.91 (6H, m, CH2), 1.66 (18H, d, 

3JHH = 6.0 Hz, CH3). 

13C{1H} NMR (101 MHz, 298 K, CD3CN) δC 160.9 (CHN), 156.0, 155.8, 154.2 

(Ar), 140.4 (CO), 138.7, 132.1, 120.2, 128.7, 126.9, 121.4 (Ar), 70.5, 70.8 (CH2), 

64.1 (CH), 25.0 (CH3). 

MS (ESI) m/z 444 [Zn2L3]4+ 

IR υ cm-1 2980 m, 1748 s, 1566 m, 1384 m, 1005 s, 811 m, 645 m. 

Elemental analysis found (calculated for C99H96Cl4N12O28Zn2.4H2O) % C 52.12 

(52.93), H 5.01 (4.67), N 7.73 (7.48). 

 

University of Warwick | Page 144 



  Rebecca A. Kaner | Chapter 5 

5.5.2  [Fe2L11-20
3][ClO4]4

13 

ΛFe-[Fe2L11
3][ClO4]4.4H2O 
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5 (0.10 g, 0.32 mmol) and (R)-1-phenylpropan-1-amine (0.09 g, 0.64 mmol) were 

dissolved in acetonitrile (10 ml). Iron (II) perchlorate hexahydrate (0.08 g, 0.21 

mmol) was added and an immediate colour change to deep magenta was seen. The 

solution was heated at reflux (80°C) for 20 h and after cooling to ambient 

temperature ethyl acetate was added drop-wise to cause precipitation of a dark purple 

crystalline solid. 

Yield 0.116 g, 49%. 

1H NMR (300 MHz, 298 K, CD3CN) δH 8.68 (6H, s, CHN), 7.40 (6H, d, 3JHH = 8.5 

Hz), 7.18 (6H, dd, 3JHH = 8.5 Hz, 4JHH = 3.0 Hz), 7.11 (6H, t, 3JHH = 7.0 Hz), 7.02 

(12H, t, 3JHH = 7.0 Hz), 6.67 (12H, d, 3JHH = 7.0 Hz), 6.03 (6H, d, 4JHH = 3.0 Hz, Ar), 

4.63 (6H, d, 3JHH = 11.5 Hz), 3.88 (6H, m, CH), 3.71 (6H, m, CH2), 1.65 (12H, m), 

1.30 (6H, m), 0.92 (18H, t, 3JHH = 7.0 Hz, CH2), 0.83 (12H, t, 3JHH = 8.0 Hz, CH3).  

13C{1H} NMR (75 MHz, 298 K, CD3CN) δC 170.4 (CHN), 156.3, 150.6, 143.7, 

135.2, 130.3, 128.7, 127.1, 126.0, 121.2 (Ar), 72.0, 71.7 (CH2), 69.6 (CH), 56.11 

(CH3), 26.31, 22.91 (CH2). 

MS (ESI) m/z 439.5 [Fe2L3]4+ 

IR υ cm-1 2969 m, 1559 m, 1496 w, 1240 m, 1081 s, 703 m, 622 m. 
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Elemental analysis found (calculated for C105H120Cl4Fe2N12O22.4H2O) % C 45.35 

(56.61), H 4.49 (5.79), N 5.85 (7.55) incomplete combustion. 
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4+

N

O O

N

NR N R

N

N

N

N

O
Fe

O
R

N

N

O

R

NFe

O

R N

O
R

N

N
O

R
N N

L12 
R = CH2OMe

ΛFe-[Fe2L12
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ΔFe-[Fe2L12
3][ClO4]4 was synthesised using the procedure described for ΛFe-

[Fe2L11
3][ClO4]4, substituting (R)-1-phenylpropan-1-amine for 20.  

Yield 0.258 g, 70%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 8.75 (6H, s, CHN), 7.30 (6H, d, 3JHH = 8.0 

Hz), 7.07 (12H, d, 3JHH = 8.0 Hz), 6.99 (12H, t, 3JHH = 7.0 Hz), 6.73 (12H, d, 3JHH = 

8.0 Hz), 6.18 (6H, d, 3JHH = 2.5 Hz Ar), 5.61 (6H, dd, 3JHH = 10.5 Hz, 4JHH = 3.0 Hz, 

CH2), 4.16 (6H, t, 3JHH = 12.0 Hz, CH), 3.83 (6H, m), 3.71 (6H, m), 3.46 (6H, dd, 

3JHH = 11.0 Hz, 4JHH = 3.0 Hz, CH2), 3.26 (12H, s, CH3), 1.70 (12H, m), 1.31 (6H, m, 

CH2). 

13C{1H} NMR (105 MHz, 298 K, CD3CN) δC 169.8 (CHN), 159.6, 158.9, 152.2, 

143.4, 133.0, 130.7, 126.8, 122.0, 115.2 (Ar), 70.6 (CH2), 58.6, 56.1 (CH3), 29.4, 

26.3, 22.91 (CH2). 

MS (ESI) m/z 603 [L+Na]+, 735 [Fe2L2(ClO4)2]2+/[FeL(ClO4)]+ 

IR υ cm-1  2939 w, 2169 w, 1592 w, 1558 m, 1495 m, 1453 m, 1374 w, 1308 m, 

1280 w, 1236 m, 1195 w, 1079 s, 974 w, 841 w, 750 m, 700 m. 
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Elemental analysis found (calculated for C105H120Cl4Fe2N12O28.4H2O) % C 54.45 

(54.27), H 5.25 (5.55), N 7.22 (7.23).  

ΔFe-[Fe2L13
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ΔFe-[Fe2L13
3][ClO4]4 was synthesised using the procedure described for ΛFe-

[Fe2L11
3][ClO4]4, substituting (R)-1-phenylpropan-1-amine for 21.  

Yield 0.08g, 77% 

1H NMR (300 MHz, 298 K, CD3CN) δH 8.85 (6H, s, CHN), 7.36 (6H, d, 3JHH = 8.0 

Hz), 7.11 (12H, m), 7.03 (12H, t, 3JHH = 7.5 Hz), 6.82 (12H, d, 3JHH = 7.5 Hz, 6.20 

(6H, d, 3JHH = 2.5 Hz, Ar), 6.11 (6H, m), 5.74 (6H, d, 3JHH = 9.0 Hz, CH), 5.50 (6H, 

d, 3JHH = 16.0 Hz), 5.33 (6H, d, 3JHH = 9.5 Hz), 4.32 (12H, m), 3.87 (6H, m), 3.76 

(6H, m), 3.51 (6H, d, 3JHH = 10.5 Hz), 1.66 (6H, m), 1.35 (6H, m, CH2). 

13C{1H} NMR (75 MHz, 298 K, CD3CN) δC 169.2 (CHN), 157.2, 151.0, 141.7, 

135.2 (Ar), 134.0 (C=C), 129.6, 128.4, 127.8, 125.6, 121.3 (Ar), 117.0 (C=C), 71.7, 

71.5 (CH2), 69.8 (CH), 68.6, 28.0, 21.5 (CH2). 

MS (ESI) m/z: 655 [L+Na]+, 1675 [Fe2L2.3ClO4]+ 

IR υ cm-1 2159 m, 2018 w, 1557 m, 1495 w, 1236 m, 1077 s, 760 m, 700 s. 

Elemental analysis found (calculated for C117H132Cl4Fe2N12O28.4H2O) % C 56.19 

(56.67), 5.10 (5.69), 6.77 (6.78).  
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Crystal data for C126.5H149Cl4Fe2N17.5O29.5 (M =2640.12 g/mol): orthorhombic, space 

group P212121 (no. 19), a = 12.362(3) Å, b = 21.345(4) Å, c = 49.687(10) Å, V = 

13110(5) Å3, Z = 4, T = 120(2) K, μ(MoKα) = 0.383 mm-1, Dcalc = 1.338 g/cm3, 

33155 reflections measured (5.922° ≤ 2Θ ≤ 54.968°), 14840 unique (Rint = 0.0524, 

Rsigma = 0.0646) which were used in all calculations. The final R1 was 0.1453 (I > 

2σ(I)) and wR2 was 0.3278 (all data). 
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ΔFe-[Fe2L14
3][ClO4]4 was synthesised using the procedure described for ΛFe-

[Fe2L11
3][ClO4]4, substituting (R)-1-phenylpropan-1-amine for 22.  

Yield 0.14 g, 39%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 8.76 (6H, s, CHN), 7.56 (12H, d, 3JHH = 7.0 

Hz), 7.34 (24H, m), 7.02 (12H, m,) 6.89 (12H, t, 3JHH = 7.5 Hz), 6.57 (12H d, 3JHH = 

7.5 Hz), 6.12 (6H, s, Ar), 5.53 (6H, d, 3JHH = 10.0 Hz, CH), 4.72 (12H, s, 12H), 4.07 

(6H, t, 3JHH = 10.0 Hz, CH2), 3.81 (6H, m), 3.70 (6H, m, OCH2), 3.23 (6H, d, 3JHH = 

10.0 Hz), 1.61 (12H, m), 1.29 (6H, m, CH2). 

13C{1H} NMR (105 MHz, 298 K, CD3CN) δC 170.5 (CHN), 158.4, 152.4, 142.9, 

138.4, 136.3, 130.7, 129.5, 129.4, 129.3, 129.1, 129.0, 128.9, 126.8, 126.0, 122.5, 

122.3, 118.1 (Ar), 74.4 (CH2), 73.0, 70.9 (OCH2), 69.8 (CH), 28.3, 21.8 (CH2). 

MS (ESI) m/z 1254 [Fe2L3(ClO4)2]2+ 
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IR υ cm-1 2864 w, 2159 w, 2030 w, 1591 m, 1557 m, 1495 m, 1453 m, 1362 s, 1307 

m, 1280 m, 1236 m, 1075 s, 999 s, 841 m, 739 m, 697 s. 

Elemental analysis found (calculated for C141H144Cl4Fe2N12O28) % C 61.31 (61.79), 

H 5.23 (5.47), N 6.08 (6.41). 
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ΔFe-[Fe2L15
3][ClO4]4 was synthesised using the procedure described for ΛFe-

[Fe2L11
3][ClO4]4, substituting (R)-1-phenylpropan-1-amine for 23.  

Yield 0.053 g, 21%. 

1H NMR (300 MHz, 298 K, CD3CN) δH 8.76 (6H, s, CHN), 7.91 (6H, s), 7.82 (18H, 

s), 7.71 (6H, d, 3JHH = 8.5 Hz), 7.47 (12H, m), 7.31 (6H, d, 3JHH = 8.5 Hz), 7.07 (6H, 

d, 3JHH = 7.5 Hz), 6.97 (6H, t, 3JHH = 7.5 Hz), 6.83 (12H, t, 3JHH = 7.5 Hz), 6.57 

(12H, d, 3JHH = 7.5 Hz), 6.10 (6H, s, Ar), 5.53 (6H, d, 3JHH = 8.5 Hz, CH), 4.75 (6H, 

s), 4.02 (6H, t, 3JHH = 10.0 Hz), 3.80 (6H, m,), 3.67(6H, m,), 3.26 (6H, d, 3JHH = 9.5 

Hz,), 1.59 (12H, m,), 1.27 (6H, m, CH2). 

13C{1H} NMR (101 MHz, 298 K, CD3CN) δC 170.7 (CHN), 158.4, 152.1, 142.9, 

136.2, 135.9, 134.0, 133.9, 130.8, 129.3, 129.2, 128.9, 128.6, 128.5, 128.4, 127.4, 

127.3, 127.2, 127.2, 126.8, 122.3, 118.2 (Ar), 74.4, 73.0 (CH2), 70.8 (CH), 69.7, 

29.02, 22.6 (CH2). 
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MS (ESI) m/z 855 [L+Na]+, 1405 [Fe2L3(ClO4)2]2+ 

IR υ cm-1: 2863 w, 2159 w, 2028 w, 1592 w, 1558 m, 1495 w, 1307 m, 1280 m, 

1237 m, 1081 s, 820 m, 753 m, 700 m. 

Elemental analysis found (calculated for C165H156Cl4Fe2N12O28.8H2O) % C 62.43 

(62.86), H 4.99 (5.50), N 5.40 (5.33). 
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3][ClO4]4.4H2O  
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ΛFe-[Fe2L16
3][ClO4]4 was synthesised using the procedure described for ΛFe-

[Fe2L11
3][ClO4]4, substituting (R)-1-phenylpropan-1-amine for (R)-1-(p-tolyl)ethan-

1-amine.  

Yield 0.097 g, 45%. 

1H NMR (300 MHz, 298 K, CD3CN) δH 8.55 (6H, s, CHN), 7.36 (12H, m), 6.77 

(12H, d, 2H, 3JHH = 8.0 Hz), 6.48 (12H, d, 3JHH = 8.0 Hz), 6.15 (6H, d, 3JHH = 2.5 Hz, 

Ar), 5.10 (6H, q, 3JHH = 6.5 Hz, CH), 3.95 (6H, m), 3.81 (6H, m, CH2), 2.26 (18H, 

m), 1.89 (18H, d, 3JHH = 6.0, CH3), 1.70 (12H, m, 2H), 1.39 (6H, m, 1H, CH2). 

13C{1H} NMR (75 MHz, 298 K, CD3CN) δC 169.9 (CHN), 159.0, 152.1, 143.3, 

138.2, 130.8, 130.4, 125.5, 121.8 (Ar), 70.0 (CH2), 69.0 (CH), 29.4 (CH2), 26.2 

(CH3), 23.1 (CH2), 20.9 (CH3), 2.1 (CH2). 
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MS (ESI) m/z 439.5 [Fe2L3]4+ 

IR υ cm-1 2901 m, 1557 w, 1509 w, 1236 m, 1071 s, 828 m, 671 m. 

Elemental analysis found (calculated for C105H120Cl4Fe2N12O22.4H2O) % C 54.56 

(56.61), H 5.24 (5.79), N 7.22 (7.55) – incomplete combustion. 

ΛFe-[Fe2L17
3][ClO4]4.4H2O 

N

O O
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ΛFe-[Fe2L17
3][ClO4]4 was synthesised using the procedure described for ΛFe-

[Fe2L11
3][ClO4]4, substituting (R)-1-phenylpropan-1-amine for (R)-1-(4-

methoxyphenyl) ethan-1-amine.  

Yield 0.322 g, 83%. 

1H NMR (300 MHz, 298 K, CD3CN) δH 8.57 (6H, s, CHN), 7.43 (6H, d, 6H, 3JHH = 

8.5 Hz) , 7.30 (6H, dd, 3JHH = 8.5 Hz, 4JHH = 2.5 Hz), 6.49 (24H, s), 6.13 (6H, d, 3JHH 

= 3.0  Hz, Ar), 5.05 (6H, q, 3JHH = 7.0 Hz, CH), 3.90 (6H, m,), 3.79 (6H, m, CH2), 

3.73 (18H, s), 1.86 (18H, d, 3JHH = 5.0 Hz, CH3), 1.70 (12H, m), 1.37 (6H, m, CH2). 

13C{1H} NMR (75 MHz, 298 K, CD3CN) δC 169.8 (CHN), 159.6, 158.9, 152.2, 

143.4, 133.0, 130.7, 126.8, 122.0, 115.2 (Ar), 70.1 (CH2), 68.7, 56.1 (CH3), 29.4, 

26.3, 22.91 (CH2). 

MS (ESI) m/z 463 [Fe2L3]4+ 
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IR υ cm-1 2901 m, 1557 w, 1509 w, 1236 m, 1071 s, 828 m, 671 m. 

Elemental analysis found (calculated for C105H120Cl4Fe2N12O28.4H2O) % C 53.49 

(54.27), H 5.13 (5.55), N 6.97 (7.23).  

ΛFe-[Fe2L18
3][ClO4]4.4H2O 
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ΛFe-[Fe2L18
3][ClO4]4 was synthesised using the procedure described for ΛFe-

[Fe2L11
3][ClO4]4, substituting (R)-1-phenylpropan-1-amine for (R)-1-(4-

nitrophenyl)ethan-1-amine.  

Yield 0.211 g, 70%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 8.65 (6H, s, CHN), 7.80 (12H, d, 3JHH = 8.5 

Hz), 7.46 (6H, d, 3JHH = 9.0 Hz), 7.31 (6H, dd, 3JHH = 8.5 Hz, 4JHH = 3.0 Hz), 6.86 

(12H, d, 3JHH = 8.5 Hz), 6.20 (6H, d, 3JHH = 2.5 Hz, Ar), 5.27 (6H, q, 3JHH = 6.5 Hz, 

CH), 3.95 (6H, m), 3.88 (6H, m, CH2), 1.92 (18H, m, CH3) 1.79 (6H, m), 1.71 (6H, 

m), 1.40 (6H, m, CH2). 

13C{1H} NMR (101 MHz, 298 K, CD3CN) δC 171.6 (CHN), 159.6, 151.5, 148.1, 

147.8, 144.6, 143.9, 136.0, 131.6, 126.9, 124.9, 122.4 (Ar), 70.3 (CH), 68.7, 29.1 

(CH2), 25.9 (CH3), 22.7 (CH2). 

MS (ESI) m/z 486 [Fe2L3]4+ 
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IR υ cm-1 3453 w, 2970 w, 1544 w, 1386 w, 1359 w, 1042 m, 627 m. 

Elemental analysis found (calculated for C99H102Cl4Fe2N18O34.4H2O) % C 48.93 

(49.27), H 4.58 (4.59), N 10.31 (10.45). 

ΛFe-[Fe2L19
3][ClO4]4.4H2O 
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ΛFe-[Fe2L19

3][ClO4]4 was synthesised using the procedure described for ΛFe-

[Fe2L11
3][ClO4]4, substituting (R)-1-phenylpropan-1-amine for (R)-1-(4-

chlorophenyl)ethan-1-amine.  

Yield 0.174 g, 58%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 8.60 (6H, s, CHN), 7.48 (6H, d, 3JHH = 8.0 

Hz), 7.36 (6H, dd, 3JHH = 9.0 Hz, 4JHH = 2.5 Hz), 6.97 (12H, d, 3JHH = 8.0 Hz), 6.59 

(12H, d, 3JHH = 8.0 Hz), 6.16 (6H, d, 3JHH = 2.5, Hz Ar), 5.08 (6H, q, 3JHH = 6.0 Hz, 

CH), 3.95 (6H, m), 3.82 (6H, m, CH2), 1.86 (18H, d, 3JHH = 7.0 Hz, CH3), 1.77 (6H, 

m), 1.67 (6H, m), 1.38 (6H, m, CH2). 

13C{1H} NMR (101 MHz, 298 K, CD3CN) δC 170.8 (CHN), 159.4, 152.0, 143.7, 

139.7, 133.8, 131.2, 129.9, 127.4, 122.0 (Ar), 70.2 (CH2), 68.7 (CH3), 26.2 (CH2), 

22.8 (CH), 1.5 (CH2). 

MS (ESI) m/z 470 [Fe2L3]4+ 

IR υ cm-1 2971 m, 1558 w, 1236 w, 1074 s, 827 m, 621 m. 
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Elemental analysis found (calculated for C99H102Cll0Fe2N12O22.4H2O) % C 50.04 

(50.59), 4.34 (4.72), 6.95 (7.15). 

5.5.3 [Fe2L3]Cl4
13 

ΛFe-[Fe2L4
3]Cl4.13H2O 
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9 (0.1 g, 0.32 mmol) and (R)-1-phenylethan-1-amine (0.08 g, 0.63 mmol) were 

dissolved in methanol. Iron (II) chloride (0.03 g, 0.21 mol) was added and an 

immediate colour change to deep purple was seen. The solution was heated to reflux 

(75°C) for 48 h. The solvent was removed under reduced pressure to yield a dark 

purple solid.  

Yield 0.235 g, 78%. 

1H NMR (400 MHz, 298 K, MeOD) δH 8.80 (6H, s, CHN), 7.47 (6H, br s), 7.13 (6H, 

t, 3JHH = 7.5 Hz), 7.04 (12H, t, 3JHH = 7.5 Hz), 6.64 (12H, d, 3JHH = 7.5 Hz), 6.47 

(6H, s), 6.05 (6H, s, Ar), 5.26 (6H, q, 3JHH = 6.5 Hz, CH), 4.65 (12H, br s), 4.59 

(12H, br s, CH2), 1.99 (18H, d, 3JHH = 6.5 Hz, CH3). 

13C{1H} NMR (101 MHz, 298 K, MeOD) δC 171.2 (CHN), 159.0, 152.4, 145.0, 

141.7, 131.4, 130.3, 130.0, 128.7, 125.7, 121.2 (Ar), 70.3 (CH3), 69.8, 26.3 (CH2). 

MS (ESI) m/z 420 [Fe2L3]4+, 522 [L+H]. 
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IR υ cm-1 3373 br s, 2927 s, 1557 s, 1491 m, 1450 m, 1300 m, 1231 s, 1122 m, 1038 

s, 921 w, 841 w, 760 m, 660 m. 

Elemental analysis found (calculated for C96H102Cl4Fe2N12O9.13H2O) % C 55.03 

(56.09), H 5.81 (6.28), N 7.74 (8.18). 

ΔFe-[Fe2L4
3]Cl4.13H2O 

ΔFe-[Fe2L4
3]Cl4 was synthesised using the procedure described for ΛFe-[Fe2L4

3]Cl4, 

substituting (R)-1-phenylethan-1-amine for (S)-1-phenylethan-1-amine.  

Yield 0.271g, 90%. 

MS (ESI) m/z 420 [Fe2L3]4+, 522 [L+H]. 

IR υ cm-1: 3366 br s, 2987 m, 1556 s, 1486 m, 1450 m, 1382 w, 1231 s, 1121 m, 

1039 m, 924 w, 842 w, 761 m, 700 m, 543 m. 

Elemental analysis found (calculated for C96H102Cl4Fe2N12O9.13H2O) % C 56.26 

(56.09), H 5.95 (6.28), 7.89 (8.18). 
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ΛFe-[Fe2L5
3]Cl4 was synthesised using the procedure described for ΛFe-[Fe2L4

3]Cl4, 

substituting 11 for 9.  

Yield 0.301 g, 86%. 

1H NMR (400 MHz, 298 K, MeOD) δH 8.83 (6H, s, CHN), 7.57 (6H, t, 4JHH = 2.5 

Hz), 7.47 (6H, d, 3JHH = 4.5 Hz), 7.12 (6H, t, 3JHH = 7.0 Hz), 7.01 (12H, t, 3JHH = 7.0 

Hz), 6.66 (12H, d, 3JHH = 7.0 Hz), 6.27 (6H, d, 4JHH = 2.5 Hz, Ar), 5.34 (6H, q, 3JHH 

= 6.5 Hz, CH), 4.90 (12H, s, CH2), 2.01 (18H, d, 3JHH = 6.5 Hz). 

13C{1H} NMR (101 MHz, 298 K, MeOD) δC 157.7 (Ar), 153.2 (CHN), 145.3, 141.7, 

131.2, 130.3, 128.8, 127.6, 125.8, 122.2 (Ar), 83.4 (C≡C), 70.2 (CH), 57.5 (CH2), 

26.3 (CH3). 

MS (ESI) m/z 405 [Fe2L3]4+, 503 [L+H]. 

IR υ cm-1 3350 br, s, 2926 m, 1557 m, 1490 m, 1223 s, 987 s, 836 w, 780 m, 699 m, 

535 w. 
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Elemental analysis found (calculated for C96H90Cl4Fe2N12O6.9H2O) % C 59.62 

(59.95), H 5.45 (5.66), N 8.56 (8.74). 

ΔFe-[Fe2L5
3]Cl4.9H2O 

ΔFe-[Fe2L5
3]Cl4 was synthesised using the procedure described for ΛFe-[Fe2L5

3]Cl4, 

substituting (R)-1-phenylethan-1-amine for (S)-1-phenylethan-1-amine.  

Yield 0.319 g, 91%. 

MS (ESI) m/z 405 [Fe2L3]4+, 503 [L+H]. 

IR υ cm-1 3362 br s, 2928 br s, 1557 m, 1488 w, 1449 w, 1298 m, 1224 s, 988 m, 759 

m, 699 s, 533 w, 467 w. 

Elemental analysis found (calculated for C96H90Cl4Fe2N12O6.9H2O) % C 60.64 

(59.95), H 5.49 (5.66), N 8.82 (8.74). 

ΛFe-[Fe2L6
3]Cl4.9H2O 
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ΛFe-[Fe2L6
3]Cl4 was synthesised using the procedure described for ΛFe-[Fe2L4

3]Cl4, 

substituting 12 for 9.  

Yield 0.388 g, 97%. 
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1H NMR (400 MHz, 298 K, MeOD) δH 8.80 (6H, s, CHN), 7.47 (6H, s), 7.13 (6H, t, 

3JHH = 7.0 Hz), 7.04 (12H, t, 3JHH = 7.0 Hz), 6.64 (12H, d, 3JHH = 7.0 Hz), 6.44 (6H, 

s), 6.05 (6H, s, Ar), 5.26 (6H, q, 3JHH = 6.0 Hz, CH), 4.65 (12H, s, CH2), 4.59 (6H, br 

s, CH), 1.99 (18H, d, 3JHH = 6.0 Hz, CH3). 

13C{1H} NMR (101 MHz, 298 K, MeOD) δC 171.0 (CHN), 158.8, 152.5, 144.8, 

141.7, 131.2, 130.1, 129.8, 128.5, 125.5 (Ar), 121.0 (CH), 70.0 (CH2), 69.6 (CH), 

26.1 (CH3). 

MS (ESI) m/z 406 [Fe2L3]4+, 505 [L+H]. 

IR υ cm-1 3352 br s, 2970 br s, 1589 s, 1557 w, 1488 w, 1381 m, 1299 s, 1067 m, 

1028 m, 760 m, 699 s, 562 w. 

Elemental analysis found (calculated for C96H96Cl4Fe2N12O6.9H2O) % C 59.92 

(59.76), H 5.84 (5.96), N 8.63 (8.71). 

ΔFe-[Fe2L6
3]Cl4.9H2O 

ΔFe-[Fe2L6
3]Cl4 was synthesised using the procedure described for ΛFe-[Fe2L6

3]Cl4, 

substituting (R)-1-phenylethan-1-amine for (S)-1-phenylethan-1-amine.  

Yield 0.340 g, 89%. 

MS (ESI) m/z 406 [Fe2L3]4+, 505 [L+H]. 

IR υ cm-1 3360 br s, 2928 m, 1589 w, 1557 s, 1485 m, 1451 m, 1381 w, 1299 m, 

1230 s, 1135 w, 1069 m, 976 s, 836 w, 760 m, 699 m, 545 m. 

Elemental analysis found (calculated for C96H96Cl4Fe2N12O6.9H2O) % C 59.34 

(59.76), H 5.93 (5.96), N 8.54 (8.71).  
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ΛFe-[Fe2L8
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ΛFe-[Fe2L8
3]Cl4 was synthesised using the procedure described for ΛFe-[Fe2L4

3]Cl4, 

substituting 14 for 9.  

Yield 0.228 g, 76%. 

1H NMR (400 MHz, 298 K, MeOD) δH 8.83 (6H, s, CHN), 7.52 (6H, dd, 3JHH = 9.0 

Hz, 4JHH = 3.0 Hz), 7.46 (6H, s), 7.32 (18H, m), 7.08 (6H, t, 3JHH = 7.0 Hz), 6.95 

(18H, m), 6.69 (12H, d, 3JHH = 7.0 Hz, Ar), 5.25(6H, q, 3JHH = 7.0 Hz, CH), 5.12 

(6H, m,), 5.03 (6H, m, CH2), 1.62 (18H, d, CH3). 

13C{1H} NMR (101 MHz, 298 K, MeOD) δc 171.2 (CHN), 141.7, 131.2, 140.4, 

130.3, 130.1, 129.8, 129.3, 128.5, 127.6, 127.4, 125.5 (Ar), 71.83 (CH2), 52.13 

(CH3), 26.20 (CH). 

MS (ESI) m/z 444 [Fe2L3]4+ 

IR υ cm-1 3352 br s, 3026 br s, 1556 m, 1491 m, 1299 m, 1230 s, 1069 w, 997 m, 

759 m, 698 s, 532 w. 

Elemental analysis found (calculated for C108H102Cl4Fe2N12O6.6H2O) % C 63.62 

(64.04), H 5.73 (5.67), N 7.96 (8.30). 
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ΔFe-[Fe2L8
3]Cl4.4H2O 

ΔFe-[Fe2L8
3]Cl4 was synthesised using the procedure described for ΛFe-[Fe2L8

3]Cl4, 

substituting (R)-1-phenylethan-1-amine for (S)-1-phenylethan-1-amine.  

Yield 0.198 g, 66%. 

MS (ESI) m/z 444 [Fe2L3]4+ 

IR υ cm-1 3366 br s, 2970 br s, 1557 m, 1491 w, 1226 s, 1082 w, 1010 m, 759 m, 698 

s, 531 w. 

Elemental analysis found (calculated for C108H102Cl4Fe2N12O6.4H2O) % C 65.99 

(65.20), H 5.67 (5.57), N 8.53 (8.45).  

University of Warwick | Page 160 



  Rebecca A. Kaner | Chapter 5 

5.6 5-(2,2'-bipyridin-5-ylmethoxy)picolinaldehyde 

1-(2-oxo-2-(pyridin-2-yl)ethyl)pyridinium iodide14 (26) 

N

O
NI

 

2-Acetylpyridine (27.0 g, 25 ml, 0.22 mol) was added to a suspension of iodine (56.5 

g, 0.22 mol) in dry pyridine (225 ml) under argon, then stirred at reflux (130°C) for 

2h. Diethyl ether (100 ml) was added and the solution was cooled to 0oC. The 

resulting black precipitate was filtered off, washed with diethyl ether (3 × 100 ml), 

and dried in air. The solid was then dissolved in hot methanol (250 ml) with 

activated charcoal (30 g) and stirred at reflux (70°C) for 30 min. The solution was 

filtered through celite in a fritted funnel, washed with hot methanol (3 × 50 ml) and 

the solvent was removed under reduced pressure to leave the crude product. 

Recrystallisation from hot methanol (300 ml) resulted in light green crystals which 

were filtered, washed with cold methanol (50 ml), and dried in vacuo. 

Yield 40.1 g, 55%. 

1H NMR (400 MHz, 298 K, DMSO) δH 8.70 (2H, dd, 3JHH = 7.0 Hz, 4JHH = 1.5 Hz), 

8.58 (1H, dt, 3JHH = 4.5 Hz, 4JHH = 1.5 Hz), 8.44 (1H, tt, 3JHH = 8.0 Hz, 4JHH = 1.5 

Hz), 7.97 (2H, t, 3JHH = 7.5 Hz) 7.86 (1H, td 3JHH = 8.0 Hz, 4JHH = 4.5 Hz), 7.79 (1H, 

dt, 3JHH = 8.0 Hz, 4JHH = 1.5 Hz), 7.54 (1H, m, Py), 6.22 (2H, s, CH2). 

13C{1H} NMR (75 MHz, 298 K, DMSO) δC 192.0 (CO), 150.9, 150.1, 146.8, 146.4, 

138.7, 129.7, 128.2, 122.6 (Py), 67.2 (CH2). 

MS (ESI) m/z 199 [M]+ 
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IR υ cm-1 3039 w, 1704 m, 1478 m, 993 m, 788 m, 761 m, 692 m, 672 m, 570 m. 

5-methyl-2,2'-bipyridine14 (27) 

N

N

 

Methacrolein was degassed then vacuum transferred to remove the initiator, then 

stored under argon before use. Formamide was degassed and stored under argon 

before use. 26 (40 g, 0.12 mol) and ammonium acetate (22.0 g, 0.29 mol) were 

dissolved in dry formamide (100 ml), followed by dry, distilled methacrolein (10 ml, 

0.13 mol) and stirred at reflux (80°C) for 6 h. After cooling to ambient temperature 

water (80 ml) was added and the reaction mixture was extracted into 

dichloromethane (3 × 200 ml), washed with saturated brine (100 ml), dried over 

sodium sulphate and the solvent was removed under reduced pressure to leave the 

crude product as a brown liquid. This was distilled under high vacuum at 100-110°C 

to give a clear liquid.  

Yield 11.3 g, 55 %. 

1H NMR (400 MHz, 298 K, CDCl3) δH 8.66 (1H, d, 3JHH = 4.5 Hz), 8.51 (1H, d, 3JHH 

= 2.0 Hz), 8.35 (1H, d, 3JHH = 8.0 Hz), 8.29 (1H, d, 3JHH = 8.5 Hz), 7.80 (1H, td, 3JHH 

= 8.0 Hz, 4JHH = 2.0 Hz), 7.62 (1H, dd, 3JHH = 8.0 Hz, 4JHH = 2.0 Hz), 7.28 (1H, m, 

Py), 2.39 (3H, s, CH3). 

13C{1H} NMR (101 MHz, 298 K, CDCl3) δC 156.3, 153.7, 149.7, 149.1, 137.5, 

136.9, 133.4, 123.4, 120.8, 120.6 (Py), 18.4 (CH3). 

MS (ESI) m/z 171 [M+H]+, 193 [M+Na]+ 
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IR υ cm-1 3002 w, 1458 s, 1431 s, 1379 m, 787 s, 740 s. 

5-((trimethylsilyl)methyl)-2,2'-bipyridine15 (28) 

N

N

Si

 

A schlenk vessel was charged with dry tetrahydrofuran (100 ml) and 

diisopropylamine (9.8 ml, 0.07 mol) and cooled to -78˚C, then n-butyllithium (23.2 

ml, 2.5 M, 0.06 mol) was added and the solution was stirred for 10 min warmed to 

0˚C for 10 mins, then cooled to -78 °C. 27 (8.2 g, 0.05 mol) in dry tetrahydrofuran 

(50 ml) was then added drop wise and the solution was stirred for at -78˚C for 1h. 

Chlorotrimethylsilane (7.9 ml, 0.056 mol) was then added rapidly to the solution and 

after 1 min the reaction was quenched by the rapid addition of absolute ethanol (200 

ml) and the solution was warmed to ambient temperature. Saturated NaHCO3 (150 

ml), was added and the solution was extracted into dichloromethane (3 × 75 ml), 

dried over sodium sulphate, filtered and the solvent was removed under reduced 

pressure to give a white solid. 

Yield 10.5 g, 66 %. 

1H NMR (400 MHz, 298 K,  CDCl3) δH 8.69 (1H, dq, 3JHH = 4.5 Hz, 4JHH = 1.0 Hz), 

8.42-8.40 (2H, m), 8.33 (1H, d, 3JHH = 8.5 Hz), 7.78 (1H, td, 3JHH = 8.0 Hz, 4JHH = 

2.0 Hz), 7.46 (1H, dd, 3JHH = 8.0 Hz, 4JHH = 2.5 Hz), 7.25 (1H, ddd, 3JHH = 7.5 Hz, 

3JHH = 4.5 Hz, 4JHH = 1.0 Hz, Py), 2.14 (2H, s, CH2), 0.05 (9H, s, CH3). 

13C{1H} NMR (100 MHz, 298 K, CDCl3) δC 156.2, 152.2, 148.9, 148.4, 136.7, 

136.2, 135.8, 122.9, 120.5, 120.4 (Py), 23.9 (CH2), 2.2 (CH3). 
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MS (ESI) m/z 243 [M+H]+ 

IR υ cm-1 3050 w, 1589 m, 1258 s, 1432 s, 1269 w, 1145 w, 874 m. 

5-(chloromethyl)-2,2'-bipyridine15 (29) 

N

N

Cl

 

28 (12 g, 0.1 mol), hexachloroethane (40 g, 0.2 mol) and caesium fluoride (20 g, 0.2 

mol) were suspended in dry acetonitrile (200 ml) at 60°C for 4 h. After cooling to 

ambient temperature water (100 ml) was added and extracted into ethyl acetate (3 × 

150 ml), washed with brine, dried over sodium sulphate, filtered and the solvent was 

removed under reduced pressure and the resulting brown solid was extracted into hot 

hexane and the solvent was removed under reduced pressure. Recrystallisation from 

hot hexane gave a pale yellow crystalline solid. 

Yield 10.5 g, 50%. 

1H NMR (400 MHz, 298 K, CDCl3) δH 8.67 (2H, s), 8.41 (2H, t, 3JHH = 6.5 Hz), 

7.93-7.77 (2H, m), 7.31 (1H, t, 3JHH = 6.5 Hz, Py), 4.65 (2H, s, CH2).  

13C{1H} NMR (101 MHz, 298 K, CDCl3) δC 149.7, 149.5, 142.9, 137.6, 137.4, 

133.6, 128.6, 124.4, 121.7, 121.4 (Py), 43.6 (CH2). 

MS (ESI) m/z 205 [M+H]+, 227 [M+Na]+, 242 [M+K]+ 

IR υ cm-1  2969 w, 1492 m, 1437 m, 1391 m, 1261 m, 1250 m, 746 m, 731 s, 674 s, 

647 m. 
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Elemental analysis found (calculated for C11H9ClN2) % C 64.28 (64.56), 4.11 (4.43), 

13.60 (13.68). 

5-(2,2'-bipyridin-5-ylmethoxy)picolinaldehyde (30) 

N

N O

N
O

 

4 (2.0 g, 0.016 mol) was dissolved in acetonitrile (50 ml). Potassium carbonate (2.65 

g, 0.019 mol) followed by 29 (3.32 g, 0.016 g) were added and the solution was 

stirred at reflux (80°C) for 16 h. The reaction mixture was filtered through a silica 

plug and the solvent was removed under reduced pressure. The crude product was 

taken up in dichloromethane (50 ml), filtered and the solvent was removed under 

reduced pressure to give the desired 30, a pale brown solid. 

Yield 3.67 g, 79%. 

1H NMR (400 MHz, 298 K, CDCl3) δH 9.94 (1H, s, CHO), 8.69 (1H, d, 3JHH = 2.0 

Hz), 8.62 (1H, d, 3JHH = 4.5 Hz), 8.47 (1H, d, 3JHH = 2.5 Hz), 8.40 (1H, 3JHH = 8.0 

Hz), 8.34 (1H, d, 3JHH = 8.0 Hz), 7.91 (1H, d, 3JHH = 8.5 Hz), 7.84 (1H, dd, 3JHH = 

8.5 Hz, 4JHH = 2.5 Hz), 7.77 (1H, td, 3JHH = 8.0 Hz, 4JHH = 2.0 Hz), 7.34 (1H, dd, 3JHH 

= 8.0 Hz, 4JHH = 3.0 Hz), 7.27 (1H, m, Py), 5.21 (2H, s, CH2). 

13C{1H} NMR  (75 MHz, 298 K, CDCl3) δC 192.1 (CHO), 149.4, 148.6, 139.0, 

138.1, 137.2, 136.6, 136.6, 131.9, 130.9, 124.3, 124.2, 123.5, 122.7, 121.4, 121.2 

(Py), 68.3 (CH2). 

MS (ESI) m/z 292 [M+H]+, 314 [M+Na]+ 
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IR υ cm-1 2811 w, 1701 s, 1567 s, 1455 m, 1204 s, 788 s, 736 s, 590 s. 

Elemental analysis found (calculated for C17H13N3O2) % C 69.28 (70.09), H 4.52 

(4.50), N 14.08 (14.52). 
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5.7 Triplex metallohelices 

5.7.1  [Zn2L20-26
3][ClO4]4 

ΛZn,HHT-[Zn2L20
3][ClO4]4.4H2O 

N
N

O

Zn
N

N

O
N N

N
N

Zn
N NO

N

NN

ON

N

N

L20

ΛZn,HHT-[Zn2L20
3]4+

4+

 

30 (0.10 g, 0.46 mmol) and (R)-1-phenylethan-1-amine (0.06 g, 0.46 mmol) were 

dissolved in acetonitrile (10 ml). Zinc (II) perchlorate hexahydrate (0.11 g, 0.30 

mmol) was added and the solution was stirred at ambient temperature for 20 h then 

ethyl acetate was added drop-wise to cause precipitation of a crystalline solid. 

Yield 0.11 g, 41%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 8.99 (1H, s), 8.91 (1H, s, CHN), 8.51-8.44 

(4H, m), 8.33 (1H, t, 3JHH = 7.0 Hz) 8.22-8.19 (2H, m, Ar), 8.16-8.03 (7H, CHN / 

Ar), 7.97 (2H, d, 3JHH = 9.0 Hz), 7.91-7.86 (2H, m), 7.84-7.76 (3H, m), 7.71-7.67 

(3H, m), 7.60-7.55 (3H, m), 7.50 (1H, t, 3JHH = 6.0 Hz), 7.20 (1H, t, 3JHH = 7.0 Hz), 

7.06 (3H, t, 3JHH = 7.5 Hz), 6.97 (1H, t, 3JHH = 7.5 Hz), 6.87 (2H, t, 3JHH = 6.0 Hz), 

6.78 (2H, d, 3JHH = 7.5 Hz), 6.69 (2H, t, 3JHH = 7.5 Hz), 6.57-6.53 (3H, m), 6.20 (4H, 

q, 3JHH = 7.5 Hz, Ar), 5.68 (1H, q, 3JHH = 7.5 Hz, CH), 5.19-5.06 (7H, m, CH / CH2), 

5.01 (1H, d, 3JHH = 9.5 Hz, CH2), 1.81 (3H, d, 3JHH = 6.5 Hz), 1.65 (3H, d, 3JHH = 6.5 

Hz), 1.45 (3H, d, 3JHH = 6.5 Hz, CH3). 
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13C{1H} NMR (126 MHz, 298 K, CD3CN) δC 162.0, 161.3, 160.2 (NCH), 159.6, 

159.6, 159.0, 150.1, 149.7, 149.3, 149.2, 149.1, 149.1, 149.0, 149.0, 148.9, 148.5, 

148.3, 148.0, 143.3, 142.3, 142.0, 142.0, 141.9, 141.8, 141.3, 140.6, 140.5, 140.4, 

140.4, 139.2, 139.1, 138.3, 135.7, 135.0, 134.7, 132.3, 132.1, 132.0, 129.2, 129.0, 

128.8, 8.7, 128.5, 128.3, 128.0, 127.8, 127.4, 126.1, 125.7, 125.6, 124.4, 124.3, 

124.0, 123.9, 123.9, 123.7, 123.6, 123.4 (Ar), 68.6, 68.5, 68.5 (CH), 65.2, 64.8, 64.5 

(CH2), 22.3, 22.3, 21.7 (CH3). 

MS (ESI) m/z 324 [Zn2L3]4+ 

IR υ cm-1 3120 w, 1571 m, 1224 w, 1083 s, 791 w, 702 w, 621 m, 412 w. 

Elemental analysis found (calculated for C75H66Cl4N12O19Zn2.4H2O) % C 49.39 

(50.49), H 3.64 (4.18), N 9.18 (9.42). 

ΛZn,HHT-[Zn2L21
3][ClO4]4.4H2O 

L21

ΛZn,HHT-[Zn2L21
3]4+

4+

N
N

O

Zn
N

N

O
N N

N
N

Zn
N NO

N

N

O

OO

N

ON

N

N

O

 

ΛZn,HHT-[Zn2L21
3][ClO4]4was synthesised using the procedure described for 

ΛZn,HHT-[Zn2L20
3][ClO4]4, substituting (R)-1-phenylethan-1-amine for (R)-1-(4-

methoxyphenyl)ethan-1-amine.  

Yield: 0.09 g, 40%. 
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1H NMR (400 MHz, 298 K, CD3CN) δH 9.01 (1H, s), 8.92 (1H, s, CHN), 8.53 3H, t, 

3JHH = 8.5 Hz), 8.47 (1H, d, 3JHH = 5.0 Hz), 8.37 (1H, t, 3JHH = 8.5 Hz), 8.26 (1H, d, 

3JHH = 7.5 Hz, Ar), 8.22-8.00 (12H, m, Ar/CHN), 7.92 (1H, m), 7.87-7.80 (6H, m), 

7.76-7.67 (4H, m), 7.60 (1H, s), 7.55 (1H, m), 7.34 (1H, d, 3JHH = 7.5 Hz), 7.06 (1H, 

d, 4JHH = 3.5 Hz), 6.98 (1H, d, 3JHH = 7.5 Hz), 6.87 (1H, d, 4JHH = 3.5 Hz), 6.71 (2H, 

d, 3JHH = 7.5 Hz), 6.62 (1H, d, 3JHH = 8.5 Hz), 6.54 (1H, d, 4JHH = 3.5 Hz), 6.27-6.25 

(2H, m), 6.20-6.10 (5H, m, Ar), 5.63 (1H, q, 3JHH = 6.5 Hz, CH), 5.26 (1H, d, 3JHH = 

10.0 Hz, CH2), 5.19-5.16 (4H, m, CH2/CH), 5.11 (2H, d, 3JHH = 10.0 Hz), 5.06 (1H, 

d, 3JHH = 10.0 Hz, CH2), 3.85 (3H, s), 3.77 (3H, s), 3.68 (3H, s), 1.81 (3H, d, 3JHH = 

6.5 Hz), 1.69 (3H, d, 3JHH = 6.5 Hz), 1.51 (3H, d, 3JHH = 6.5 Hz, CH3). 

13C{1H} NMR (126 MHz, 298 K, CD3CN) δ 162.1, 161.57, 160.6 (CHN), 160.3, 

159.8, 159.7, 159.4, 150.8, 150.4, 150.2, 150.0, 149.9, 149.3, 149.1, 148.8, 144.0, 

143.1, 142.7, 142.6, 141.3, 141.3, 139.9, 139.9, 139.0, 136.6, 135.9, 135.5, 133.8, 

133.2, 133.0, 132.9, 132.8, 132.4, 131.3, 129.8, 129.7, 129.3, 128.8, 128.5, 128.2, 

127.8, 125.1, 125.0, 124.6, 124.4, 124.3, 124.1, 124.0, 118.5, 115.5, 115.1, 115.0, 

114.7 (Ar), 69.4, 69.2 (CH2), 65.4 (CH), 65.2 (CH2), 65.1, 64.7 (CH), 56.3, 56.1, 

56.1 (OCH3), 23.0, 23.0, 22.4 (CH3). 

MS (ESI) m/z 425 [L+H]+, 501 [Zn2L3][ClO4]3+, 801 [Zn2L3][ClO4]2
2+ 

IR υ cm-1 2900.7 br, w, 1573 w, 1513 m, 1316 w, 1249 w, 1091 s, 835 w, 622 m, 

416 w. 

Elemental analysis found (calculated for C78H72Cl4N12O22Zn2.4H2O) % C 49.23 

(49.99), H 3.73 (4.03) N 8.36 (8.97). 
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ΛZn,HHT-[Zn2L22
3][ClO4]4.4H2O 

L22

ΛZn,HHT-[Zn2L22
3]4+
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N
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N
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N
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N

N
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ΛZn,HHT-[Zn2L22
3][ClO4]4was synthesised using the procedure described for 

ΛZn,HHT-[Zn2L20
3][ClO4]4, substituting (R)-1-phenylethan-1-amine for (R)-1-(4-

nitrophenyl)ethan-1-amine.  

Yield 0.13 g, 47%. 

1H NMR (500 MHz, 298 K, CD3CN) δH 9.07 (1H, s), 8.98 (1H, s, CHN), 8.53-8.47 

(3H, m), 8.35 (1H, t, 3JHH = 6.5 Hz), 8.22 (3H, d, 3JHH = 8.0 Hz), 8.16 (3H, t, 3JHH = 

8.5 Hz), 8.12 (2H, t, 3JHH = 7.5 Hz), 8.06 (2H, d, 3JHH = 8.0 Hz), 7.98-7.96 (3H, m), 

7.92-7.89 (4H, m), 7.86-7.76 (5H, m), 7.70 (1H, d, 3JHH = 5.5 Hz), 7.66 (2H, d, 3JHH 

= 9.0 Hz), 7.55-7.51 (4H, m), 7.37 (2H, d, 3JHH = 8.5 Hz), 7.07-7.03 (2H, m), 6.90 

(1H, s), 6.58 (1H, s), 6.52 (4H, dd, 3JHH = 8.0 Hz, 4JHH = 4.0 Hz, Ar), 5.85 (1H, q, 

3JHH = 6.0 Hz, CH), 5.39-5.34 (2H, m), 5.30-5.25 (2H, m, CH2), 5.20 (1H, d, 3JHH = 

9.0 Hz, CH), 5.11 (2H, t, 3JHH = 10.0 Hz, CH2), 5.04 (1H, d, 3JHH = 9.0 Hz), 1.87 

(3H, t, 3JHH = 6.5 Hz), 1.73 (3H, t, 3JHH = 6.5 Hz), 1.47 (3H, t, 3JHH = 6.5 Hz, CH3). 

13C{1H} NMR (126 MHz, 298 K, CD3CN) δC 164.1, 163.3, 162.4 (CHN), 160.8, 

160.4, 159.9, 150.7, 150.5, 150.3, 150.1, 149.7, 149.4, 149.3, 149.2, 149.2, 149.0, 

148.8, 148.5, 148.5, 148.4, 147.9, 147.7, 144.0, 143.0, 142.9, 142.7, 140.9, 140.8, 

140.7, 140.0, 139.5, 136.8, 136.2, 135.3, 133.4, 133.3, 132.8, 129.2, 128.7, 127.9, 
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127.7, 127.6, 125.0, 125.0, 124.9, 124.5, 124.3, 124.2, 124.1, 124.1, 124.0 , 118.3 

(Ar), 69.3, 69.2, 69.1 (CH), 65.1, 64.6, 64.5 (CH2), 22.6, 22.5, 21.9 (CH3). 

MS (ESI) m/z 361 [Zn2L3]4+ 

IR υ cm-1 3450 (br, w), 2986 (w), 1571 (w), 1349 (w), 1316 (w), 1082 (m), 622 (m). 

Elemental analysis found (calculated for C75H63Cl4N15O25Zn2.4H2O) % C 46.02 

(46.94), H 3.22 (3.73), 10.55 (10.95). 

ΛZn,HHT-[Zn2L23
3][ClO4]4.4H2O 

L23

ΛZn,HHT-[Zn2L23
3]4+

4+

N

ON

N

N

N
N

O

Zn
N

N

O
N N

N
N

Zn
N NO

N

N

 

ΛZn,HHT-[Zn2L23
3][ClO4]4was synthesised using the procedure described for 

ΛZn,HHT-[Zn2L20
3][ClO4]4, substituting (R)-1-phenylethan-1-amine for (R)-1-

(naphthalen-1-yl)ethan-1-amine.  

Yield 0.068 g, 33%. 

1H NMR (500 MHz, 298 K, CD3CN) δH 9.16 (1H, s), 8.98 (1H, s, CHN), 8.70 (2H, 

d, 3JHH = 5.0 Hz), 8.53-8.50 (2H, m, Ar), 8.40-8.35 (3H, m, CHN / Ar), 8.25 (1H, d, 

3JHH = 8.0 Hz), 8.20 (2H, d, 3JHH = 8.0 Hz), 8.13 (3H, t, 3JHH = 9.0 Hz), 8.09 (1H, d, 

3JHH = 8.0 Hz), 7.99-7.75 (12H, m), 7.72-7.55 (8H, m), 7.46-7.36 (9H, m) 7.26 (2H, 

q, 3JHH = 8.0 Hz), 7.16 (1H, br s), 7.10 (1H, s), 6.89 (1H, t, 3JHH = 8.0 Hz), 6.63 (1H, 

t, 3JHH = 8.0 Hz), 6.50 (1H, q, 3JHH = 6.5 Hz), 6.34-6.28 (2H, m, Ar), 6.19 (1H, br s), 

5.97 (1H, d, 3JHH = 6.5 Hz, CH2), 5.53 (1H, br s, CH), 5.39-5.27 (2H, m), 5.16 (2H, 
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q, 3JHH = 11.0 Hz, CH2), 5.07 (1H, d, 3JHH = 9.5 Hz), 4.98 (1H, d, 3JHH = 9.5 Hz, 

CH), 2.00 (3H, d, 3JHH = 6.5 Hz), 1.83 (3H, br s), 0.49 (3H, br s, CH3). 

13C{1H} NMR (126 MHz, CD3CN) δC 163.8, 162.8, 160.8 (CHN), 160.5, 160.4, 

159.9, 150.9, 150.5, 150.1, 149.9, 148.9, 148.7, 148.4, 148.0, 147.9, 144.1, 143.1, 

142.9, 141.8, 141.4, 141.3, 140.8, 140.0, 139.9, 139.4, 137.9, 137.0, 136.4, 135.7, 

135.4, 135.2, 134.7, 134.6, 133.1, 133.1, 131.4, 131.0, 130.7, 129.8, 129.8, 129.4, 

129.1, 128.9, 128.8, 128.6, 128.0, 127.7, 127.1, 127.0, 126.6, 126.5, 125.9, 125.1, 

124.7, 124.4, 124.3, 124.2, 123.7, 123.4, 123.3, 123.1 (Ar), 69.4, 69.3, 69.2, (CH2) 

65.3, 62.3, 60.5 (CH), 21.7, 20.8, 20.0 (CH3). 

MS (ESI) m/z 366 [Zn2L3]4+ 

IR υ cm-1 3502 w, 3004 w, 1571 w, 1987 m, 780 w, 622 m. 

Elemental analysis found (calculated for C87H72Cl4N12O19Zn2.4H2O) % C 54.12 

(54.02), H 3.85 (4.17), 8.70 (8.69). 

ΔZn,HHT-[Zn2L24
3][ClO4]4.6H2O 

N

ON

N

N

OH
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ΔZn,HHT-[Zn2L24
3][ClO4]4was synthesised using the procedure described for 

ΛZn,HHT-[Zn2L20
3][ClO4]4, substituting (R)-1-phenylethan-1-amine for (R)-

phenylglycinol.  
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Yield 0.102 g, 50%. 

1H NMR (400 MHz, 298 K, CD3CN) δH 9.09 (1H, s), 9.01 (1H, s, CHN), 8.89 (1H, t, 

3JHH = 4.5 Hz), 8.51 (2H, q, 3JHH = 4.5 Hz, Ar), 8.46 (1H, s, CHN), 8.34 (2H, t, 3JHH 

= 7.5 Hz), 8.26-8.19 (3H, m), 8.16-8.03 (3H, m), 7.98 (2H, t, 3JHH = 7.0 Hz), 7.90-

7.66 (9H, m), 7.62 (1H, dd, 3JHH = 9.0 Hz, 4JHH = 3.0 Hz), 7.55-7.50 (4H, m), 7.19 

(1H, t, 3JHH = 7.5 Hz), 7.11-7.04 (3H, m), 6.94-6.86 (3H, m), 6.76 (3H, t, 3JHH = 7.5 

Hz), 6.65-6.59 (2H, m), 6.25-6.23 (3H, m, Ar), 5.62 (1H, q, 3JHH = 9.5 Hz, 4JHH = 4.0 

Hz, CH), 5.21-5.01 (8H, m, CH / CH2), 3.95-3.81 (3H, m), 3.79 (1H, t, 3JHH = 5.5 

Hz), 3.67 (1H, t, 3JHH = 5.5 Hz), 3.35 (1H, t, 3JHH = 5.5 Hz, CH2). 

13C{1H} NMR (126 MHz, 298 K, CD3CN) δC 163.4, 163.0, 162.7 (CHN), 160.3, 

160.1, 159.8, 150.7, 150.5, 150.0, 149.9, 149.8, 149.8, 149.5, 149.4, 149.2, 148.7, 

144.0, 142.9, 142.6, 142.6, 142.4, 142.4, 141.0, 141.0, 139.9, 139.9, 139.2, 136.5, 

136.4, 136.3, 136.0, 135.7, 135.4, 133.1, 132.9, 132.5, 130.0, 129.5, 129.5, 129.3, 

129.1, 129.0, 129.0, 128.6, 128.5, 128.4, 128.2, 127.8, 127.7, 127.3, 124.9, 124.9, 

124.5, 124.4, 124.3, 124.2, 124.1, 124.1, 123.9 (Ar), 71.2, 71.0, 70.8 (CH), 69.3, 

69.1, 69.0, 64.3, 64.0, 63.7 (CH2). 

MS (ESI) m/z 344 [Zn2L3]4+ 

IR υ cm-1 2973 w, 1571 m, 1316 w, 1223 w, 1082 s, 702 m, 654 m. 

Elemental analysis found (calculated for C75H66Cl4N12O25Zn2.6H2O) % C 46.22 

(48.22), H 3.75 (4.21), N 8.48 (9.00). 
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ΔZn,HHT-[Zn2L25
3][ClO4]4was synthesised using the procedure described for 

ΛZn,HHT-[Zn2L20
3][ClO4]4, substituting (R)-1-phenylethan-1-amine for 25.  

Yield 0.088 g, 42%. 

1H NMR (500 MHz, 298 K, CD3CN) δH 9.01 (1H, s), 8.96 (1H, s, CHN), 8.86 (2H, 

s), 8.53 (1H, dd, 3JHH = 8.5 Hz, 4JHH = 2.5 Hz, Ar), 8.42 (1H, s, CHN), 8.33 (2H, t, 

3JHH = 7.5 Hz), 8.25 (2H, dd, 3JHH = 8.0 Hz, 4JHH = 2.0 Hz), 8.20 (2H, d, 3JHH = 8.5 

Hz), 8.16-7.97 (10H, m), 7.89-7.68 (8H), 7.59 (1H, dd, 3JHH = 8.5 Hz, 4JHH = 3.0 

Hz), 7.53 (2H, t, 3JHH = 7.0 Hz), 7.50 (1H, d, 3JHH = 8.5 Hz), 7.45 (1H, s), 7.20 (1H, 

t, 3JHH = 7.5 Hz), 7.13-7.05 (3H, m), 6.93 (1H, t, 3JHH = 7.5 Hz), 6.90-6.86 (2H, m), 

6.79 (1H, t, 3JHH = 8.0 Hz), 6.65 (1H, d, 4JHH = 2.5 Hz), 6.61 (1H, t, 3JHH = 8.0 Hz), 

6.27 (3H, dd, 3JHH = 8.0 Hz, 4JHH = 3.0 Hz, Ar), 5.65 (1H, dd, 3JHH = 11.0 Hz, 4JHH = 

3.5 Hz, CH2), 5.21 (3H, t, 3JHH = 10.0 Hz, CH), 5.12 (3H, dd, 3JHH = 10.0 Hz, 4JHH = 

6.0 Hz), 5.02 (1H, d, 3JHH = 10.0 Hz), 4.39 (2H, d, 4JHH = 2.0 Hz), 4.33 (2H, t, 4JHH = 

2.0 Hz), 4.28 (2H, d, 4JHH = 2.0 Hz, CH2), 4.19 (1H, t, 3JHH = 11.0 Hz, CH), 4.10-

4.03 (2H, m), 3.96 (1H, dd, 3JHH = 11.0 Hz, 4JHH = 3.5 Hz, CH2), 3.90 (1H, t, 3JHH = 

10.0 Hz, CH), 3.74 (2H, br s, CH2), 2.93 (1H, t, 4JHH = 2.0 Hz), 2.91 (1H, t, 4JHH = 

2.0 Hz), 2.90 (1H, t, 4JHH = 2.0 Hz, CCH).  
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13C{1H} NMR (126 MHz, 298 K, CD3CN) δC 163.2, 162.7, 162.6 (CHN), 160.2, 

160.0, 159.8, 150.6, 150.4, 149.9, 149.8, 149.7, 149.6, 149.5, 149.3, 149.2, 149.0, 

148.7, 143.9, 142.8, 142.6, 142.3, 140.6, 140.5, 139.8, 139.1, 136.2, 135.7, 135.6, 

135.3, 135.2, 133.1, 132.9, 132.5, 130.0, 129.5, 129.4, 129.2, 129.1, 128.8, 128.4, 

128.3, 127.8, 127.5, 127.2, 124.8, 124.3, 124.1, 124.0, 123.8 (Ar), 80.1, 76.8, 76.7 

(CH2), 71.7, 71.1 (CH) 71.0, 70.9, 70.6 (CH2), 70.5 (CH) 69.2, 69.0, 68.9 (CH2), 

68.8, 68.7, 68.7 (CCH), 59.3, 59.2, 58.9 (CCH). 

MS (ESI) m/z 369 [Zn2L3]4+, 449 [L+H]+, 471 [L+Na]+ 

IR υ cm-1 2937 w, 1571 m, 1225 w, 1083 s, 702 w, 621 m. 

Elemental analysis found (calculated for C84H72Cl4N12O22Zn2.7H2O) % C 49.98 

(50.44), H 3.73 (4.33), N 8.63 (8.40). 

5.7.2  [Fe2L3]Cl4  

ΛFe,HHT-[Fe2L20
3]Cl4.11H2O 

N
N

O

Fe
N

N

O
N N

N
N

Fe
N NO

N

NN

ON

N

N

L20

ΛFe,HHT-[Fe2L20
3]4+

4+

 

30 (0.20 g, 0.69 mmol) and (R)-1-phenylethan-1-amine (0.08 g, 0.69 mmol) were 

dissolved in methanol. Iron (II) chloride (0.06 g, 0.46 mmol) was added and an 

immediate colour change to deep magenta was seen. The solution was heated at 

reflux (75°C) for 48 hours. The solvent was removed under reduced pressure to yield 

a dark purple solid.  
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Yield 0.31 g, 96%. 

13C{1H} NMR (126 MHz, 298 K, MeOH) δC 171.1, 170.8, 170.3 (CHN), 161.1, 

160.9, 160.8, 160.5, 160.3, 160.0, 159.4, 158.7, 158.4, 157.2, 156.6, 155.1, 153.9, 

153.8, 153.7, 142.1, 141.4, 140.8, 140.7, 140.5, 140.5, 139.7, 139.75, 139.6, 136.7, 

136.6, 136.6, 133.5, 132.7, 132.5, 130.3, 130.2, 130.2, 129.9, 129.8, 129.6, 129.1, 

128.9, 128.7, 128.6, 128.5, 127.6, 126.1, 126.0, 125.3, 125.0, 124.9, 124.7 (Ar), 

70.5, 70.5, 69.6, 69.6, 69.5, 69.3 (CH/CH2), 26.4, 25.6, 25.2 (CH3). 

MS (ESI) m/z 323 [Fe2L3]4+ 

IR υ cm-1 3358 (br, s), 3001 (w), 1555 (m), 1467 (w), 1233 (m), 759 (w), 701 (m). 

Elemental analysis found (calculated for C75H66Cl4Fe2N12O3.11H2O) % C 54.70 

(55.09), H 4.76 (5.42), N 9.67 (10.28). 

ΔFe,HHT-[Fe2L20
3]Cl4.11H2O 

ΔFe,HHT-[Fe2L20
3]Cl4 was synthesised using the procedure described for ΛFe,HHT-

[Fe2L20
3]Cl4, substituting (R)-1-phenylethan-1-amine for (S)-1-phenylethan-1-amine.  

Yield 0.32 g, 96%. 

MS (ESI) m/z 323 [Fe2L3]4+ 

IR υ cm-1 3348 (br, s), 2986 (m), 1555 (w), 1301 (w), 1233 (m), 759 (w), 701 (w). 

Elemental analysis found (calculated for C75H66Cl4Fe2N12O3.11H2O) % C 55.02 

(55.09), H 4.99 (5.42), N 10.04 (10.28). 
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ΛFe,HHT-[Fe2L21
3]Cl4.14H2O 

L21

ΛFe,HHT-[Fe2L21
3]4+

4+

N
N

O

Fe
N

N

O
N N

N
N

Fe
N NO

N

N

O

OO

N

ON
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N
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ΛFe,HHT-[Fe2L21
3]Cl4 was synthesised using the procedure described for ΛFe,HHT-

[Fe2L20
3]Cl4, substituting (R)-1-phenylethan-1-amine for (R)-1-(4-methoxy 

phenyl)ethan-1-amine.  

Yield 0.33 g, 94%. 

13C{1H} NMR (126 MHz, 298 K, MeOH) δC 170.6, 170.9, 169.7 (CHN), 161.8, 

161.1, 161.0, 160.9, 160.6, 160.5, 160.4, 160.2, 160.0, 159.4, 158.6, 158.3, 157.2, 

156.6, 155.0, 154.0, 153.9, 153.8, 140.5, 139.7, 139.6, 136.7, 136.6, 133.3, 133.1, 

132.6, 132.5, 131.3, 129.8, 129.1, 129.0, 128.5, 127.4, 127.4, 125.9, 125.3, 125.0, 

124.9, 124.5, 115.6, 115.4, 115.2, 114.9 (Ar), 70.5, 70.0, 69.6, 69.5, 69.0, 68.7 

(CH/CH2), 56.0, 55.9, 55.9, (OCH3), 26.3, 25.5, 25.1 (CH3). 

MS (ESI) m/z 346 [Fe2L3]4+ 

IR υ cm-1 3359 br s, 2968 m, 1607 w, 1510 m, 1301 m, 1235 s, 1023 m, 834 m. 

Elemental analysis found (calculated for C78H72Cl4Fe2N12O6.14H2O) % C 51.97 

(52.65), H 5.33 (5.67), N 9.29 (9.45). 
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ΔFe,HHT-[Fe2L21
3]Cl4.14H2O 

ΔFe,HHT-[Fe2L21
3]Cl4 was synthesised using the procedure described for ΛFe,HHT-

[Fe2L21
3]Cl4, substituting (R)-1-phenylethan-1-amine for (S)-1-phenylethan-1-amine.  

Yield 0.32 g, 96%. 

MS (ESI) m/z 346 [Fe2L3]4+ 

IR υ cm-1 3350 br s, 2968 m, 1697 w, 1510 m, 1302 m, 1236 s, 1178 m, 1012 m, 834 

m, 544 w. 

Elemental analysis found (calculated for C78H72Cl4Fe2N12O6.14H2O) % C 52.83 

(52.65), H 5.48 (5.67), N 9.43 (9.45). 

ΛFe,HHT-[Fe2L22
3]Cl4.13H2O 

L22

ΛFe,HHT-[Fe2L22
3]4+

4+

N
N

O

Fe
N

N

O
N N

N
N

Fe
N NO

N

N

NO2

NO2NO2

N

ON

N

N

NO2

 

ΛFe,HHT-[Fe2L22
3]Cl4 was synthesised using the procedure described for ΛFe,HHT-

[Fe2L20
3]Cl4, substituting (R)-1-phenylethan-1-amine for (R)-1-(4-nitrophenyl)ethan-

1-amine. 

Yield 0.36 g, 99%. 

MS (ESI) m/z 357 [Fe2L3]4+ 
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IR υ cm-1 3352 br s, 3035 m, 1602 m, 1561 m, 1216 m, 1344 s, 1232 s, 1011 m, 853 

m, 788 w, 753 w. 

Elemental analysis found (calculated for C75H63Cl4Fe2N15O9.13H2O) % C 48.88 

(49.88), H 4.31 (4.97), N 10.65 (11.63). 

ΔFe,HHT-[Fe2L22
3]Cl4.13H2O 

ΔFe,HHT-[Fe2L22
3]Cl4 was synthesised using the procedure described for ΛFe,HHT-

[Fe2L22
3]Cl4, substituting (R)-1-phenylethan-1-amine for (S)-1-phenylethan-1-amine.  

Yield 0.33 g, 90%. 

MS (ESI) m/z 357 [Fe2L3]4+ 

IR υ cm-1 3351 br s, 3036 m, 1602 m, 1562 m, 1513 s, 1501 s, 1343 s, 1301 m, 1232 

s, 1205 s, 1009 m, 853 m, 787 m, 670 m. 

Elemental analysis found (calculated for C75H63Cl4Fe2N15O9.13H2O) % C 50.15 

(49.88), H 4.35 (4.97), N 10.89 (11.63). 

ΛFe,HHT-[Fe2L23
3]Cl4 

L23

ΛFe,HHT-[Fe2L23
3]4+

4+

N

ON

N

N

N
N

O

Fe
N

N

O
N N

N
N

Fe
N NO

N

N

 

ΛFe,HHT-[Fe2L23
3]Cl4 was synthesised using the procedure described for ΛFe,HHT-

[Fe2L20
3]Cl4, substituting (R)-1-phenylethan-1-amine for (R)-1-(naphthalen-1-

yl)ethan-1-amine. 
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Yield 0.267 g, 89%. 

13C{1H} NMR (126 MHz, 298 K, MeOH) δC 172.7, 172.2, 171.7 (CHN), 161.1, 

161.9, 160.5, 160.4, 160.0, 159.7, 158.9, 157.7, 156.5, 155.4, 153.6, 153.4, 151.8, 

149.5, 148.6, 148.5, 148.4, 148.3, 147.9, 147.4, 144.7, 142.8, 142.3, 141.2, 141.0, 

140.6, 140.2, 140.0, 137.2, 137.1, 136.9, 136.6, 134.0, 133.4, 132.9, 130.6, 129.9, 

129.6, 129.0, 128.9, 127.6, 127.5, 126.9, 125.2, 125.1, 125.1, 124.9, 124.8, 124.7, 

124.4, 123.3, 122.8, 122.4 (Ar), 70.5 (CH2), 69.8 (CH), 69.6, 69.5 (CH2), 68.8, 68.7 

(CH), 27.1, 25.9, 25.0 (CH3). 

MS (ESI) m/z 467 [L+Na]+, 493 [Fe2L3][Cl]3+ 

IR υ cm-1 3364 br s, 2973 m, 1568 w, 1510 w, 1228 m, 1074 m, 702 w, 621 w. 

ΔFe,HHT-[Fe2L23
3]Cl4 

ΔFe,HHT-[Fe2L23
3]Cl4 was synthesised using the procedure described for ΛFe,HHT-

[Fe2L23
3]Cl4, substituting (R)-1-phenylethan-1-amine for (S)-1-phenylethan-1-amine.  

Yield 0.211 g, 77%. 

MS (ESI) m/z 467 [L+Na]+, 493 [Fe2L3][Cl]3+ 

IR υ cm-1 3356 br s, 2975 m, 1567 w, 1531 m, 1229 m, 1074 m, 702 w, 621 w. 
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ΛFe,HHT-[Fe2L25
3]Cl4.9H2O 
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ΛFe,HHT-[Fe2L25
3]Cl4 was synthesised using the procedure described for ΛFe,HHT-

[Fe2L20
3]Cl4, substituting (R)-1-phenylethan-1-amine for 25. 

Yield 0.243 g, 80%. 

13C{1H} NMR (126 MHz, 298 K, MeOH) δC 172.0, 171.8, 171.3 (CHN), 161.1, 

160.9, 160.8, 160.5, 160.3, 160.0, 159.4, 158.8, 158.2, 157.7, 157.1, 155.0, 153.8, 

153.7, 153.5, 140.4, 139.8, 136.8, 136.6, 135.8, 135.1, 134.9, 133.8, 133.0, 132.6, 

130.5, 130.3, 130.0, 130.0, 129.7, 129.6, 129.5, 129.1, 128.8, 128.4, 127.5, 127.4, 

127.3, 127.1, 125.8, 125.3, 125.1, 125.0, 124.8, 124.7 (Ar), 77.6, 77.2, 77.0 (CH2), 

73.5, 73.3, 72.7 (CH), 71.9, 71.7, 71.3 (CH2), 70.7, 69.6, 69.4 (CCH), 59.7, 59.5, 

59.4 (CCH). 

MS (ESI) m/z 364 [Fe2L3]4+, 449 [L+H]+. 

IR υ cm-1 3362 br s, 3024 m, 1556 m, 1434 w, 1233 m, 1082 m, 700 m. 

Elemental analysis found (calculated for C84H72Cl4Fe2N12O6.9H2O) % C 57.69 

(57.29), H 4.89 (5.15), N 9.39 (9.54). 
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ΔFe,HHT-[Fe2L25
3]Cl4.9H2O 

ΔFe,HHT-[Fe2L25
3]Cl4 was synthesised using the procedure described for ΛFe,HHT-

[Fe2L25
3]Cl4, substituting 25 for 24.  

Yield 0.222 g, 74%. 

MS (ESI) m/z 364 [Fe2L3]4+, 449 [L+H]+. 

IR υ cm-1 3355 br s, 3027 m, 1556 w, 1486 w, 1233 m, 1082 m, 700 m. 

Elemental analysis found (calculated for C84H72Cl4Fe2N12O6.9H2O) % C 56.68 

(57.29), H 4.85 (5.15), N 9.29 (9.54). 
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5.8 Molecular modelling 

Conducted by Dr Alan Faulkner, University of Warwick. 

Starting points for geometry optimisations were taken from crystallographic 

data that was available, and where unavailable, starting structures were created from 

existing crystallographic fragments. Monometallic structures were first optimised 

using the B3LYP-D3(BJ)16 functional and the 6-31g* basis set, with convergence 

criteria of 0.0001 a.u. as implemented in the Firefly quantum chemistry package,17 

which is partially based on the GAMESS(US) source code.18  Bimetallic systems 

were optimised using ligand field molecular mechanics (LFMM)19 as implemented 

in the DommiMOE program,20  before being annealed at 500 K for 1 ns prior to re-

optimisation. Single point energy calculations of all structures were performed using 

the B3LYP-D3(BJ)16 functional and the deff2-TZVP basis set with energy 

convergence criteria of 0.0001 a.u. as implemented in the Firefly quantum chemistry 

package.17 

Where indicated these calculations were conducted by employing the 

RIJCOSX approximation with SCF convergence criteria set to ‘tight’, both of which 

are defined internally as part of the ORCA DFT quantum chemistry package.21 

Where relevant, acetonitrile solvate correction was performed using the conductor-

like screening model (COSMO)22 as implemented in ORCA.21  
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5.9 Biophysical analysis 

5.9.1 Circular dichroism 

Each compound was dissolved in water to 0.03 mM and spectra were measured on a 

Jasco J-815 spectrometer, calibrated conventionally using a 0.060% ACS holmium 

filter. Measurements were collected using a 1 cm path-length quartz cuvette. The 

parameters used were; bandwidth 1 nm, response time 1 sec, wavelength scan range 

200 – 750 nm, data pitch 0.2 nm, scanning speed 100 nm/min and accumulation 4.  

5.9.2 Thermogravimetric analysis 

To determine the amount of water of crystalisation present in the chloride salts of 

iron (II) triplex helicates thermogravimetric analysis was performed using a DSC1-

1600 scanning calorimeter. An accurately weighed 40 µl aluminium crucible was 

heated from 25 to 400°C at 10 °C/min under dinitrogen. The mass lost was plotted 

against temperature and the % mass loss from ambient temperature to 200°C (loss of 

water) was calculated; a worked example is shown in Appendix A. 

5.9.3 Absorbance spectroscopy and stability 

Visible absorbance spectra for stability studies were recorded using a Carey IE 

spectrometer. Measurements were collected in a 1 cm path-length polystyrene 

cuvette and the standard parameters used were bandwidth 1 nm, response time 1 sec, 

wavelength scan range 350 – 800 nm, data pitch 0.2 nm, scanning speed 200 nm/min 

and accumulation 1. A 0.03 mM solution of each compound was measured in water 

(20°C, every 7 d for 50 d) RPMI-1640 cell culture medium (37°C, every 6 h for 96 

h) and 0.2 M hydrochloric acid (20°C, every 2 h for 24 h) was measured.  
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5.9.4 Denaturation of ct-DNA 

ct-DNA (0.5 mg/ml, 7.5×10-5 per base, as determined by absorbance at 200 nm) was 

mixed with each complex (7.5 µM) in buffered conditions (10mM Tris, 1 mM 

EDTA at pH 7.0) to give 10 base: 1 complex. The absorbance at 260 nm as a 

function of temperature (every 1°C, 25-90°C) was measured in a 1 cm masked 

quartz cuvette at a rate of 0.4°C min-1 and run in triplicate. Tm was calculated from 

the first derivative of a Boltzmann sigmoidal fit of the plot of absorbance at 260 nm 

against temperature for each complex. 
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5.10  Antimicrobial Activity 

Conducted by Daniel Simpson, University of Warwick. 

Verified stocks of MRSA [USA300] and E. coli [TOP10] were grown to 108 cfu/ml 

(cfu = colony forming units) respectively in sterile Luria-Bertani (LB) medium, as 

measured by OD600 (optical density measured at wavelength: 600 nm) and confirmed 

by hemocytometer measurement. These were used to diluted of 106 cfu/ml in sterile 

Mueller-Hinton (MH) broth (15% w/v glycerol) and flash-frozen in liquid N2 to store 

before use. 

Minimum inhibitory concentrations (MICs)23 were established using the 

standardised macrobroth dilution method in cation-adjusted MH broth. 200µl 

aliquots (128 µg/ml of each complex in sterilized MH broth, diluted 2n µg/ml × 5) 

were added to 96-well plates in duplicate. This was inoculated with each bacterial 

strain (bacterial density of 103 cfu/ml, ~200 cells per well) and sealed. After mixing 

at 720 strokes/min for 10 seconds, growth was monitored over 20 h at 37 °C by 

recording OD600 every 10 mins with an iEMS 96-well plate reader. The lowest 

concentration to inhibit growth across each repeat is classified as the MIC. Positive 

(medium and untreated bacteria) and negative (medium only) controls were run with 

each plate. The antimicrobial properties of our recently reported flexicate systems13 

were reproduced as a positive control alongside ampicillin.  
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5.11  Pharmacology 

Conducted in collaboration with Dr Roger Phillips and Dr Qasem Abdallah, Institute 

of Cancer Therapeutics. 

Complete cell media containing either – for cancerous cells – RPMI-1640, 

supplemented with 10% foetal calf serum, sodium pyruvate (1 mM) and L-glutamine 

(2 mM), or – for normal cells – DMEM/F12 (1:1), supplemented with 10% foetal 

calf serum and L-glutamine (2 mM), was used to prepare the desired cell 

concentration and reference wells. 

Stocks of MDA-MB-468 (human breast adenocarcinoma), HCT116 p53+/+ 

(human colon carcinoma, wild type p53), HCT116 p53-/- (human colon carcinoma, 

mutated p53) and ARPE19 (human retinal pigment epithelium) were maintained in 

T75 flasks in complete cell medium. At 80% confluence cells were passaged and 

seeded into new flasks or used in the following experiments.  

5.11.1 MTT assay  

Cells were incubated in 96-well plates at a cell concentration of 2.0 × 104 cells/ml 

for 24 h at 37°C in an atmosphere of 5% CO2, prior to drug exposure. All 

compounds were dissolved in sterilized deionised water to give an initial 

concentration of 100 mM and diluted further with complete cell media to obtain 

concentrations ranging from 100 µM – 5 nM. Cell media (200 μl) was added to the 

reference cells and differing concentrations of drug solution (200 μl) were added to 

the remaining wells. The plates were incubated for a further 96 h at 37°C in an 

atmosphere of 5% CO2. 3-(4,5-Dimethylthiazol-1-yl)-2,5-diphenyltetrazolium 

bromide (MTT) solution (0.5 mg/ml, 20 µl per well) was added to each well and 

incubated for a further 4 h at 37°C in an atmosphere of 5% CO2. Upon completion 
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all solutions were removed from the wells and dimethyl sulfoxide (150 μl) was 

added to each well to dissolve the purple formazan crystals. A Thermo Scientific 

Multiskan EX microplate photometer was used to measure the absorbance at 540 

nm. Lanes containing 100% cell media and untreated cells were used as a blank and 

100% cell survival respectively. Cell survival was determined as the absorbance of 

treated cells minus the blank cell media, divided by the absorbance of the untreated 

control; this value was expressed as a percentage. The IC50 values were determined 

from a plot of percentage cell survival against drug concentration (μM). All assays 

were conducted in triplicate and the mean IC50 ± standard deviation was determined.  

5.11.2 Single cell gel electrophoresis (comet assay) 

Conducted in collaboration with Dr Roger Phillips and Dr Qasem Abdallah, Institute 

of Cancer Therapeutics. 

The induction of single strand breaks (SSB) and cross linking in HCT116 

p53+/+ cells was determined via single cell gel electrophoresis. Cells were seeded at 3 

× 105 cells in 6 well plates in complete RPMI-1640 medium and incubated for 18 h 

at 37°C in an atmosphere of 5% CO2. Following treatment with each compound (10 

µM in complete RPMI-1640 medium for 24 h) the cells were washed twice with 

Hanks balanced salt solution (HBSS), harvested by trypsinisation and embedded in 

0.5% low-melting point agarose and transferred to agarose coated glass slides. These 

slides were immersed in freshly prepared ice-cold lysis buffer (2.5 M NaCl, 100 mM 

Na2EDTA, 10 mM Trisma base, 1% sodium hydroxide, pH 10.0) 1% Triton X-100 

and 10% dimethyl sulfoxide. The slides were then submerged in electrophoresis 

buffer (300 mM sodium hydroxide, 1 mM Na2EDTA, pH > 13.0) for 30 min in a 

horizontal gel electrophoresis, and then subjected to electrophoresis at 0.6 V cm-1 for 

25 min. Following electrophoresis, the slides were neutralised (3 × drop wise 

University of Warwick | Page 188 



  Rebecca A. Kaner | Chapter 5 

addition of 0.4 M Trisma buffer, pH 7.5) rinsed with water and fixed with 100% ice-

cold ethanol and dried in air for 18 h. To detect cross-links drug treated cells were 

further treated with 100 µM of hydrogen peroxide for 20 minutes prior to gel 

electrophoresis. Immediately before analysis the slides were stained with SYBRTM 

Gold solution (Molecular probes Inc.) and viewed with an epifluorescent microscope 

(Nikon Eclipse E800, Japan). The tail moment was measured on 50 randomly 

selected cells using Comet assay III software (Perceptive Instruments, UK) and each 

assay was performed in triplicate.  

5.11.3 FACS assay (γ-H2AX expression and cell cycle analysis) 

Conducted in collaboration with Dr Roger Phillips and Dr Qasem Abdallah, Institute 

of Cancer Therapeutics. 

HCT116 p53+/+ cells (5 × 105 cells/flask, 10 ml complete RPMI-1640 

medium) were incubated for 18 h at 37°C in 5% CO2, then treated with 10 µM 

triplex metallohelix (10 ml in complete RPMI-1640 medium for 24 h). The 

supernatant, containing any dead cells, was collected and the cells were harvested by 

trypsinisation. This single cell suspension in trypsin was added to the supernatant 

and centrifuged at 1500 rpm (300 g) for 5 min. The cells were washed twice with 

PBS (phosphate buffered saline), re-suspended in ice-cold methanol in PBS (90:10) 

and incubated in ice for 30 min, then stored at -20°C until required for analysis. 

For γ-H2AX expression the pre-treated cells were washed twice in incubation 

buffer (PBS containing 0.5 mM BSA) then re-suspended in 100 µl incubation buffer 

for 10 min at room temperature. 2 µl of primary rabbit anti-human phosphor Histone 

H2AX (Ser 139) antibody (1:50 final dilution) was added and incubated at RT for a 

further 1 h. This was then washed twice with incubation buffer, re-suspended in 100 
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µl incubation buffer containing Alexa Fluor conjugated anti-rabbit IgG secondary 

antibody (1:1000 final dilution) and incubated in the absence of light at room 

temperature for 30 min then the cells were stored at 0°C until analysis using the 

FACS. The H2AX expression assay was repeated in triplicate with each compound 

and the mean expression ± standard deviation was determined. 

For cell cycle analysis 300 µl PBS containing Propidium Iodide (40 µg/ml) 

and RNAse A (200 µg/ml) was added to the pre-treated cells and they were 

incubated in the absence of light at room temperature for 30 min. 200µl ice-cold PBS 

was added (final volume of 600 µl) and the cells were placed on ice until analysis 

using the FACS. The cell cycle assay was repeated four times with each compound 

and the mean % cells in each phase ± standard deviation was determined. Red 

fluorescence was observed at 488 nm excitation by flow cytometry and data analysed 

using WinMDI2.9 and Cylchred software 

5.11.4 Flow cytometry (apoptosis induction) 

Conducted by Dr Simon Allison, Institute of Cancer Therapeutics. 

HCT116 p53+/+ cells (5 × 105 cells/flask, 10 ml complete RPMI-1640 

medium) were incubated for 18 h at 37°C in 5% CO2, then treated with 20 µM 

triplex metallohelix (10 ml in complete RPMI-1640 medium for 72 h) or fresh media 

containing no drug (control). The supernatant, containing any dead cells, was 

collected and the cells were harvested by trypsinisation. This single cell suspension 

in trypsin was added to the supernatant and centrifuged at 1500 rpm (300 g) for 5 

min. The cells were washed with twice with PBS (2 ml) and stained with propidium 

iodide (100 µl) and Annexin-V-FLUOS labelling solution (100 µl).24 The proportion 
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of live, early apoptotic and late apoptotic/necrotic cells were then quantified by flow 

cytometry.25 

5.11.5 Cell localisation assay 

Conducted in collaboration with Dr Roger Phillips, Institute of Cancer Therapeutics. 

Click-iT® reaction buffer (4 ml of component A in 36 ml distilled water) and 

Click-iT® buffer additive (Component C in 4 ml distilled water) were prepared in 

advance. Click-iT® reaction buffer (4.4 ml), copper sulphate (100 μL), Click-iT® 

buffer additive (500 μl) and Alexa Fluor® 555 azide (8.5 µL) were mixed together 

and the Click-iT® reaction cocktail was used immediately after being prepared. 

HCT116 p53+/+ cells were seeded at 2000 cells per well in complete RPMI-1640 

medium (100 μl per well) into Lab-Tek II borosilicate eight-chamber plates and 

incubated at 37°C, 5% CO2 for 24 h, prior to drug exposure. All compounds were 

dissolved in distilled water to give an initial concentration of 100 mM and diluted 

further with cell media to obtain concentrations ranging from 100 µM – 140 nM. 

Cell media (200 μl) was added to the reference chamber and differing concentrations 

of drug solution (100 μl) were added to the remaining chambers. The plates were 

incubated for a further 24 h at 37°C in an atmosphere of 5% CO2. The treated cells 

were fixed with 4% paraformaldehyde in PBS for 10 min, washed with PBS, 

permiabalised with 0.2% Triton-X 100 in PBS for 5 min, washed with PBS, 

quenched with 0.1% sodium borohydride in PBS for 5 min and finally washed with 

PBS three times. The cells were then washed with 2% BSA in PBS, freshly prepared 

Click-iT® cell reaction cocktail was added (500 μl per well) and the cells were 

incubated at ambient temperature in the absence of light for 30 min, after which the 

cells were washed with 2% BSA in PBS. These slides were then analysed by 

confocal microscopy.    
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Appendix A 
A.1 Absorbance spectroscopy 

A.1.1 Circular dichroism spectra 

 
 

Figure A.1 | Circular Dichroism spectra of each pair of [Fe2L3]Cl4 enantiomers in water (0.03 mM). 
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A.1.2 Water stability studies 

The ln(ε) of absorbance at 540.0 nm (MLCT band) of each iron(II) chloride complex 

was plotted against time in hours in water (0.03 mM). It can be seen that triplex 

metallohelices decay with first order rate kinetics. The decay of the complexes was 

best modelled via the following rate equations; k can be calculated from the gradient 

of a linear fit of ln(ε540 nm) vs time. Due to the high experimental error all the iron(II) 

chloride complexes were investigated in dilute hydrochloric acid. 

ln[𝐴𝐴] = −𝑘𝑘𝑘𝑘 + ln[𝐴𝐴]0         𝑡𝑡1
2�  = ln (2)

𝑘𝑘
 

 

Figure A.2 | ln(ε) at 540 nm (corresponding to MLCT band) of iron(II) chloride triplex metallohelices 

(0.03 mM in water). 
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A.1.3 Dilute acid stability studies 

The ln(ε) of absorbance at 540.0 nm (MLCT band) of each iron(II) chloride complex 

was plotted against time in hours in dilute hydrochloric acid (0.03 mM). It can be 

seen that flexicates and triplex metallohelices decay with first order rate kinetics. 

The complexes all decay via the following rate equations; k can be calculated from 

the gradient of a linear fit of ln(ε540 nm) vs time. 

ln[𝐴𝐴] = −𝑘𝑘𝑘𝑘 + ln[𝐴𝐴]0         𝑡𝑡1
2�  = ln (2)

𝑘𝑘
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Figure A.3 | ln(ε) at 540 nm (corresponding to MLCT band) of iron(II) chloride flexicates and triplex 

metallohelices (0.03 mM in 0.2 M HCl). 
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A.2 Thermogravimetric analysis 

The % mass lost was plotted against temperature and the % mass loss between 

ambient temperature and 200°C (loss of water) was recorded. A worked example of 

ΛFe-[Fe2L4
3]Cl4.nH2O is shown here (mass lost = 11.4%); 

𝑛𝑛 =  
𝑚𝑚% × 𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎ℎ

18(100 −𝑚𝑚%)
 

11.4 × 1821.44
18(100 − 1821.44)

= 13 

n - stoichiometric equivalents of water 

m% - percentage mass loss 

Mranh - anhydrous moleuclar weight 
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Figure A.4 | Thermogravimetric analysis of iron(II) chloride flexicates and triplex metallohelices, 

indicating mass lost due to water of crystalisation and thermal decomposition. 
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A.3 IC50 values 

Complex MDA-MB-468 
/µM (esd) 

HCT116 p53+/+ 
/µM (esd) 

HCT116 p53-/- 
/µM (esd) 

ARPE19/µM 
(esd) 

HCT116 p53+/+ 

24h /µM (esd) 

cisplatin 2.44 (0.49) 3.51 (1.50) 8.12 (1.83) 3.43 (0.48) 52.18 (3.30) 
[Fe2LH

3]Cl4 5.29 (1.28) 10.36 (0.60) 14.83 (4.06) 44.54 (2.16) 79.58 (18.61) 
ΛFe-[Fe2LS

3]Cl4 4.06  (0.85) 0.61 (0.31) 0.07 (0.004) 18.69 (2.09) 4.88 (1.36) 
ΔFe-[Fe2LS

3]Cl4 3.72 (0.68) 1.66 (1.05) 0.09 (0.04) 13.90 (1.14) 4.51 (0.67) 
ΛFe-[Fe2L1

3]Cl4 7.29 (0.29) 0.62 (0.08) 0.36 (0.04) 7.00 (0.82) 4.11 (0.85) 
ΔFe-[Fe2L1

3]Cl4 8.36 (0.37) 0.87 (0.13) 0.43 (0.06) 12.06 (0.31) 4.52 (0.84) 
ΛFe-[Fe2L4

3]Cl4 0.21 (0.10) 4.29 (1.85) 2.29 (0.32) - >100 
ΔFe-[Fe2L4

3]Cl4 0.24 (0.07) 0.58 (0.25) 1.44 (0.60) - 41.60 (13.84) 
ΛFe-[Fe2L5

3]Cl4 0.73 (0.22) 3.85 (0.94) 3.37 (1.21) - 6.42 (1.30) 
ΔFe-[Fe2L5

3]Cl4 0.49 (0.01) 3.48 (0.19) 1.71 (0.77) - 6.50 (0.85) 
ΛFe-[Fe2L6

3]Cl4 4.80 (3.27) 3.67 (0.54) 0.41 (0.17) 21.28 (5.47) 22.45 (6.43) 
ΔFe-[Fe2L6

3]Cl4 3.59 (1.52) 0.36 (0.05) 0.04 (0.003) 33.42 (8.25) 27.85 (9.02) 
ΛFe-[Fe2L8

3]Cl4 0.84 (0.06) 0.27 (0.03) 2.68 (0.49) - 6.75 (1.66) 
ΔFe-[Fe2L8

3]Cl4 0.54 (0.002) 0.48 (0.04) 0.58 (0.18) - 15.57 (5.86) 
ΛFe,HHT-[Fe2L21

3]Cl4 29.27 (13.94) 0.98 (0.60) 0.16 (0.05) 8.03 (0.39) 31.34 (1.89) 
ΔFe,HHT-[Fe2L21

3]Cl4 27.34 (4.83) 2.85 (0.37) 0.97 (0.24) 5.79 (1.83) 22.76 (1.86) 
ΛFe,HHT-[Fe2L22

3]Cl4 21.11 (1.73) 1.06 (0.51) 0.37 (0.01) - 48.96 (3.21) 
ΔFe,HHT-[Fe2L22

3]Cl4 38.43 (9.94) 9.00 (1.59) 2.10 (0.75) - 42.27 (6.24) 
ΛFe,HHT-[Fe2L23

3]Cl4 6.44 (1.10) 3.15 (0.79) 0.99 (0.05) - 7.47 (1.98) 
ΔFe,HHT-[Fe2L23

3]Cl4 6.52 (0.93) 5.21 (1.04) 1.70 (0.09) - 22.76 (1.86) 
ΛFe,HHT-[Fe2L24

3]Cl4 7.78 (1.25) 5.28 (0.49) 2.39 (0.44) - 13.84 (1.48) 
ΔFe,HHT-[Fe2L24

3]Cl4 5.96 (1.10) 10.02 (3.32) 4.23 (0.34) - 15.67 (2.50) 
ΛFe,HHT-[Fe2L26

3]Cl4 9.47 (0.52) 1.06 (0.13) 0.56 (0.09) 10.75 (3.14) 15.07 (1.03) 
ΔFe,HHT-[Fe2L26

3]Cl4 9.90 (0.64) 1.94 (0.24) 0.77 (0.23) - 9.44 (1.71) 
ΛFe,HHT-[Fe2LF1

3]Cl4 7.06 (2.95) 1.41 (0.78) - - - 
ΔFe,HHT-[Fe2LF1

3]Cl4 16.64 (7.82) 0.41 (0.01) - - - 
ΛFe,HHT-[Fe2LF2

3]Cl4 58.49 (31.70) 31.08 (9.15) - - - 
ΔFe,HHT-[Fe2LF2

3]Cl4 29.10 (6.99) 9.43 (2.85) - - - 
ΛFe,HHT-[Fe2LF3

3]Cl4 71.34 (2.58) 4.28 (1.84) - - - 
ΔFe,HHT-[Fe2LF3

3]Cl4 16.13 (3.54) 4.83 (2.90) - - - 
ΛFe,HHT-[Fe2LF4

3]Cl4 16.72 (3.07) 1.79 (1.45) - - - 
ΔFe,HHT-[Fe2LF4

3]Cl4 12.60 (5.83) 1.08 (0.42) - - - 
ΛFe,HHT-[Fe2LF5

3]Cl4 18.65 (2.11) 10.36 (3.18) - - - 
ΔFe,HHT-[Fe2LF5

3]Cl4 6.61 (2.15) 3.60 (0.35) - - - 

 

Table A1 | IC50 values of cisplatin, [Fe2LH
3]Cl4 and all iron(II) chloride complexes against MDA-MB-468, HCT116 p53+/+, 

HCT116 p53-/- and ARPE19 cells over 96 h, and HCT116 p53+/+ cells over 24 h. 
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Appendix B 
B.1 Optically pure heterobimetallic helicates 

From “Optically pure heterobimetallic helicates from self-assembly and clock 

strategies” S. E. Howson, G. J. Clarkson, A. D. Faulkner, R. A. Kaner, M. J. 

Whitmore & P. Scott, Dalton Trans, 2013, 42, 14967-14981. 

N

N

Ph

O
N

 
Figure B.1 | Structure of L26 designed for formation of a heterobimetallic complex. 

The first attempt to synthesise complexes with a reduced symmetry with a ligand 

based on the chiral iminopyridine unit described previously was to create an 

optically pure mixed iron (II) copper (I) system with an asymmetric ligand (AB–C) 

containing a pyridine unit bound to the chiral iminopyridine. It is possible to form C3 

helical isomers when the pyridine is bound as a phenylglycinol derived ether, with 

one copper (I) bound by the three pyridine units. However if the pyridine unit is 

bound by the pyridine of the chiral part of the ligand this was not successful, 

probably because in the precursor [FeL26
3]2+ complex the three pyridine units sit too 

far apart to bind a copper (I) cation due to the rigid nature of the coupling of the two 

parts of the ligand, as can be seen in the single crystal structure of that complex. 
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Figure B.2 | Structure of the cation in the asymmetric unit of fac,ΛFe,RC-[FeL26

3](ClO4)2·CH3CN (H atoms, counterions and 

solvent molecules omitted for clarity). Thermal ellipsoids are shown at 50% probability. Selected bond lengths (Å) and angles 

(°): Fe(1)-N(1) 1.9745(14), Fe(1)-N(4) 1.9804(15), Fe(1)-N(7) 1.9748(15), Fe(1)-N(2) 1.9788(15), Fe(1)-N(5) 1.9789(15), 

Fe(1)-N(8) 1.9874(14); N(1)-Fe(1)-N(2) 81.58(6), N(4)-Fe(1)-N(5) 81.16(6), N(7)-Fe(1)-N(8) 81.22(6). 
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B.2 Experimental details 

5-(2-Pyridinyloxy)picolinaldehyde 

N

O

O
N

 

2-(bromomethyl)pyridine hydrobromide (0.5 g, 1.97 mmol) was dissolved in DMF 

(10 ml). Potassium carbonate (0.68 g, 4.92 mmol) was added followed by 5-

hydroxypicolinaldehyde (0.24 g, 1.97 mmol) and the mixture was stirred at 100 °C 

for 16 h. The solvent was removed under reduced pressure to give a dark brown solid 

which was extracted with chloroform (3 × 50 ml), washed with NaOH solution (1M, 

3 × 100 ml) and saturated brine solution (3 × 100 ml) and dried over MgSO4 before 

evaporation under reduced pressure to give a light brown solid. 

Yield 0.31 g, 73% 

1H NMR (300 MHz, 298 K, CDCl3) δH 9.99 (1H, s, CHO), 8.62 (1H, d, 3JHH = 4.5 

Hz), 8.54 (1H, d, 3JHH = 2.5 Hz), 7.94 (1H, d, 3JHH = 8.5 Hz), 7.75 (1H, td, 3JHH = 8.0 

Hz, 4JHH = 1.5 Hz), 7.51 (1H, d, 3JHH = 8.0 Hz), 7.39 (1H, dd, 3JHH = 8.5 Hz, 4JHH = 

2.5 Hz), 7.29 (1H, dd, 3JHH = 7.5 Hz, 4JHH = 4.5 Hz, Py), 5.33 (2H, s, CH2). 

13C{1H} NMR (101 MHz, 298 K, CDCl3) δC 192.1 (CHO), 158.0, 155.5, 149.7, 

146.8, 139.3, 137.2, 123.5, 123.4, 121.7, 121.2 (Py), 71.43 (CH2) 

MS (ESI) m/z 215 [M+H]+, 237 [M+Na]+ 

Elemental Analysis found (Calculated for C12H10N2O2) % C 66.16 (67.28), H 4.48% 

(4.70) N 12.86 (13.07). 
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fac,ΛFe,-[FeL26
3](ClO4)2.3H2O 

N

N

Ph

O
N

  

(R)-(+)-α-methylbenzylamine (0.30 ml, 2.33 mmol) was dissolved in acetonitrile (10 

ml). 5-(2-Pyridinyloxy)picolinaldehyde (0.5 g, 2.33 mmol) was added, followed by 

iron (II) perchlorate hexahydrate (0.282 g, 0.78 mmol) to give an immediate colour 

change to dark pink/purple. After stirring at ambient temperature for 16 h, addition 

of ethyl acetate (10 ml) caused precipitation of a dark purple powder (0.667 g, 70 %) 

that contained water of crystallisation according to IR spectroscopy. Single crystals 

were grown by layering a solution in acetonitrile onto ethyl acetate. 

1H-NMR (300 MHz, 298 K, CD3CN) δH 8.51 (6 H, bs, 6H, CHN/Ar), 7.78 (3H, t, 

3JHH = 7.5 Hz), 7.25-7.41 (12H, m), 7.05 (3H, t, 3JHH = 7.0 Hz), 6.92 (3H, t, 3JHH = 

7.5 Hz), 6.51 (3H, d, 3JHH = 7.5 Hz), 6.35 (3H, d, 3JHH = 2.0 Hz), 5.05-5.20 (9H, m, 

CH/CH2), 1.87 (9H, d, 3JHH = 6.5 Hz, CH3). 

13C{1H} NMR (75 MHz, 298 K, CD3CN) δC 170.3 (CHN), 157.9, 155.7, 152.5, 

150.5, 143.0, 141.1, 138.2, 130.8, 130.0, 128.3, 125.4, 124.6, 124.5, 123.2, 72.2 

(CH2), 69.3 (CH) 

MS (ESI) m/z 345 [FeL2]2+, 503 [FeL3]2+, 789 [FeL2.ClO4]+ 

Elemental analysis found (calculated for C60H57Cl2FeN9O11.3H2O) % C 57.16 

(57.15), H 4.58 (5.04), N 9.79 (10.00). 
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The crystal data for fac,ΛFe,RC-[FeL27
3](ClO4)2 (CCDC 947142) was collected using 

an Xcalibur Gemini diffractometer with a Ruby CCD area detector using CuKα (λ = 

1.54184 Å) radiation source. The structures were solved with the XS structure 

solution program using Direct Methods and refined with the ShelXL1  refinement 

package using Least Squares minimisation. 

1. G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112-122. 
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