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Abstract

Phosphate glasses for potential applications as bioactive materials have been
studied using Solid state Nuclear Magnetic Resonance (NMR), owing to the fact that
their bioactivity is strongly correlated to their atomic structure. A multinuclear NMR
approach has been conducted on numerous series of phosphate bioactive glasses includ-
ing 31P, 23Na, along with 27Al MAS NMR on a series of Al doped glasses, and the
less widely studied 71Ga and 17O MAS NMR on multiple series of Ga doped glasses.
In addition, the first implementation of the recently developed 31P refocused INADE-
QUATE Spin-Echo (REINE) experiment on a coherent series of glasses has been shown,
providing greater insight into the distribution of J couplings throughout the phosphate
network.

Upon incorporation of Al into the phosphate network, 27Al MAS NMR has
shown a subsequent change from initially octahedral to tetrahedral Al coordination. In
addition, an increase in shielding and decrease in the quadrupolar parameter CQ of the
Na ions from 23Na MAS NMR, along with a decrease in the 31P J coupling indicated
from the REINE data, evidences the role of Al within the glass network cross linking
phosphate chains, resulting in a strengthened more condensed network.

In the Ga doped glass series the 71Ga MAS NMR data shows a similar trend for
the Ga coordination as found in the Al series, with the 23Na MAS NMR also indicating
comparable results. The 31P REINE results however, do not provide observable trends,
thus indicating that the Ga is having a slight different influence in the glass network
to that of the Al cation. 17O 3QMAS results show the presence of both non bridging
and bridging oxygens as expected in these systems.

Mullite materials are of interest to material scientists owing to their favourable
properties, making them ideal for ‘advanced ceramic’ applications. However, the struc-
ture of mullite is complex owing to the disorder, arising from the vacancies present
in the aluminosilicate network. A comprehensive multinuclear solid state MAS NMR
investigation has been carried out on the structure of both undoped 3:2 mullite, and B
doped 3:2 mullite materials. 27Al single pulse MAS NMR has enabled the identification
of the octahedral and tetrahedral sites present, along with the 27Al 3QMAS experiment
providing conclusive evidence of the Al tri-cluster sites in the structure. 100 % 29Si
labelled samples have enabled the acquisition of quantitative and high resolution 29Si
MAS NMR data, along with 29Si refocused INADEQUATE and {29Si}-27Al J -HMQC
correlation experiments, providing detailed information on the connectivities in the
aluminosilicate network. Both the 27Al and 29Si MAS NMR data have enabled deter-
mination of the nature of the tri-cluster site. 11B MAS NMR on B doped 3:2 mullite
materials have shown B to occupy a BO3 coordination within the mullite structure
according to a substitution with Si, cross linking the octahedral Al chains.
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Chapter 1

Introduction

1.1 History of NMR

Before the 20th century the subject of nuclear physics had not really been established,

with the discovery by Rutherford in 1907 of the model of the atom consisting of a dense

positive nucleus surrounded by the negative electron, and later in 1932 the nucleus by

James Chadwick, both laying down the groundwork for the field.[1, 2] It was only a short

time after this discovery of the neutron in 1938, that the resonance effect of nuclear

matter was observed by Isidor Isaac Rabi. Rabi’s experiment consisted of a molecular

beam of LiCl that was deflected by an inhomogeneous magnetic field and subsequently

refocused by a second field. Resonance was observed when upon variation of the field

a drop in intensity due to a failure in the refocusing occurred.[3] Rabi was awarded the

Nobel prize in physics for his work in 1944 “for his resonance method for recording the

magnetic properties of atomic nuclei.”

In fact the first attempt to measure an NMR signal was actually a few years

earlier in 1936 by Gorter and Broer, endeavouring to observe signals in LiCl and KF

powders. However no signal was measured, with the unsuccessful results published

later. The reason behind this failed attempt is unclear, although it is usually attributed

to long relaxation times and the poor signal to noise of the primitive apparatus used.[4]

It would have to wait until after the Second World War before the next major

step in the story of NMR would take place, when two research groups switched to

observing Nuclear Magnetic Resonance on condensed matter, rather than by molecular

beams, despite the previous failure of Gorter in this area. Edward Purcell working at

1



MIT carried out the first ‘solid state’ NMR experiment, detecting NMR absorption of

protons in a tank of paraffin, upon changing the applied magnetic field. Meanwhile,

Felix Bloch at Stanford carried out the first ‘liquid state’ NMR, using a transmitter

receiver set up in the presence of a magnetic field, to obtain nuclear induction in

water. Both Bloch and Purcell were credited with the discovery of what we think of

as modern day NMR, with both of their results published early in 1946, for which

they were subsequently awarded the Nobel Prize in 1952 “for their development of new

methods for nuclear magnetic precision measurements and discoveries in connection

therewith.” [5–7] It is an interesting point that the two different methods implemented

by the two groups for detecting resonances actually represent the two methods for

explaining the NMR phenomenon, with the absorption from Purcell’s method best

described by quantum mechanics, and Bloch’s method of induction described by the

classical description of electromagnetic induction.

Early work in the field of NMR was predominantly carried out by Physicists,

in the hope of using the nuclear resonance frequency of a nuclear species to measure

its magnetic moment, as it was a non destructive way to obtain these precision mea-

surements. This work was based on the early assumption that the resonance frequency

of a particular nuclear species depended only upon the strength of the applied field.

However, this was all about to change during the 1950s with the surprise discovery by

Proctor and Yu that the 14N resonance frequency observed depended strongly on the

chemical compound under observation.[8] This effect had also been observed by Dickin-

son who noted “for 19F the value of the applied magnetic field H0 for nuclear magnetic

resonance at a fixed frequency depends on the chemical compound containing the flu-

orine nucleus.”[9] A year earlier Walter Knight had observed a similar phenomenon

in a series of metals, however this was due to delocalised conducting electrons in the

vicinity of the metal nucleus, what we now know as the ‘Knight Shift’ in metals.[10] A

full theory of the chemical shift was presented in 1950 by Ramsey.[11] The discovery of

the chemical shift, resulting in different resonance frequencies for a particular nuclear

species due to differences in the chemical structure, ultimately led to the technique

being taken up by chemists to become the vital tool for structural characterisation it

is today.

Around the same time Gerorge E. Pake led further ground breaking research
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looking at a single crystal of gypsum (CaSO4.2 H2O), containing two protons which

represent the only significantly magnetic species when looking at its 1H resonance.[12]

The observed pair of doublets, indicated that each proton could see the two states of its

coupled neighbour, both up and down. Pake then expanded this to powdered solids to

identify the ‘Pake doublet’, arising from the different orientations of different crystals

within a powder. Using NMR to observe H atoms became a useful tool to exploit,

due to the difficulty in observing these small nuclei by other techniques, such as XRD,

due to scattering effects from heavier atoms. In addition, the ability to probe and

measure intermolecular distances due to the 1/r3 dependence of the dipolar interaction

was also noted by Pake. The commonly held view of the turning point towards ‘high

resolution’ NMR actually came from the work of Dharmatti and Packard in 1951.[13]

Due to improvements in magnet inhomogeneity, they managed to observe a spectrum

of ethanol showing three distinct lines with ratios 1:2:3 for the first time, providing

direct evidence for the CH3CH2OH formula.

Early NMR experimental approaches had taken advantage of the readily avail-

able rf apparatus left over from the war. However, a need for more user-friendly appara-

tus was essential as chemists were becoming more interested in exploiting the technique

during the 1950s. Commercial spectrometers became available in the early 50s, devel-

oped by Varian associates after their application for a patent as early as 1946 (the

same year as the discovery by Bloch and Purcell) although it wasn’t granted until

1951. The first operating spectrometers operated at a proton larmor frequency of 30

MHz ( 0.7 T), and although manufactured commercially these initial designs were not

user friendly. Early experiments consisted of sweeping the magnetic field, acquiring

signal over a large frequency range using Continuous Wave excitation (CW). However,

the inefficiency of this method resulted in only one frequency step recorded at any

one time, thus in addition to gathering signal, baseline noise was also acquired if the

exact position of the resonance was unknown, leading to an inefficient use of time. An

alternative method was to use rf pulses, which was the method exploited by Erwin

Hahn in 1949 to measure spin-lattice relaxation times, and Henry Torrey measuring

nutation resonance, providing the first applications of rf pulses in NMR.[14, 15]. Bloch

had in fact proposed the pulsed method in his paper in 1946, with little effort in the

intermediate years to progress this alternate method into the mainstream.
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Poor sensitivity from low Boltzmann factors of NMR states at room temperature

was a key challenge that was successfully tackled in 1963 by Klein and Barton.[16] They

determined that by accumulating many relatively rapid scans of the full spectrum, so

that the signals add coherently whereas the noise adds randomly, signal to noise may be

enhanced by one to two orders of magnitude without sacrifice of bandwidth. This was

then followed in 1966 by Ernst and Anderson by the Fourier transform method, where

short pulses of high power rf radiation were applied with the response of the system

observed and Fourier transformed to obtain a frequency domain spectrum.[17] This

again improved sensitivity and made data acquisition a much faster process. Although

at this stage computing power to carry out the Fourier transformations meant that

obtaining a fully processed spectrum could take a matter of days.

Magnet design was an early problem to overcome, with permanent and electro-

magnets both being used by different research groups, however they were limited by

their strength. The first superconducting magnet for NMR studies was implemented in

1964, which meant much higher fields were accessible, although the economy of these

early systems was poor with short liquid helium hold times, leading to refills being

required twice a week. [18]

With the discovery of the chemical shift and later the J coupling the dominance

of solution NMR became widespread, with narrow resonances obtained emanating from

the molecular tumbling in solution removing any anisotropies.[19, 20] A significant

breakthrough in solid state NMR came with the observation that interactions causing

broadening of resonances had an angular dependence that could be removed upon

successful rotation of the sample at a well defined angle. Magic angle spinning (MAS)

was invented by two groups simultaneously; E. Raymond Andrew in the UK, and by

I.J. Lowe in the US.[21–23] However, its commercially viability wasn’t appreciated until

much later on due to the difficulty in the experimental design of a stable MAS method,

with solution NMR remaining the more accessible and widely researched area.

With the advent of pulsed Fourier transform NMR, developments could be made

in utilising rf pulses to exploit ‘spin dynamics’. The most fundamental of which was

made by accident, when Hahn was experimenting with high power rf pulses of short

duration. He found that at times when no pulse was applied ‘the weird signal appeared ’.

(as discussed in Hahn, Erwin L.: Pulsed NMR-A Personal History [24]), which was
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found to be reproducible, he had discovered the spin echo.[25]. This was later modified

into the conventional 90◦-τ/2-180◦-τ/2 spin echo by Carr and Purcell, which went on

to become the basic building block for a wide range of future NMR pulse sequences.[26]

The desire to manipulate spins was generally twofold; to enhance signal due

to the poor sensitivity of NMR, or to exploit or remove a particular NMR interac-

tion. Cross polarisation (CP) exploited the first of these, transferring polarisation from

the more abundant spin to the less abundant spin, whereas heteronuclear decoupling

achieved the second by suppressing broadening due to undesired interactions.[27, 28]

Pines and his co-workers combined the two techniques to obtain a 13C chemical shift

spectrum of a solid using this dilute nuclei.[29] The idea to combine the approach of CP

with heteronuclear decoupling whilst also under magic angle spinning of Stejskal and

Schaefer successfully achieved removal of broadening due to anisotropic interactions,

with the larger homogeneous dipolar broadening removed by decoupling due to it being

too large to be successfully averaged away by achievable MAS rates at the time, and

with the smaller chemical shift anisotropy (CSA) removed by MAS.[30]

The idea for 2D NMR spectroscopy was first proposed by Jean Jeener at the

Ampere International Summer School II, (Basko Polje, 1971), but the basic theory and

first experiments were published by Richard R. Ernst’s group.[31] This seminal paper

laid the groundwork for many 2D experiments to come, including the 2D heteronu-

clear correlation,[32, 33] the 2D INEPT (Insensitive Nuclei Enhanced by Polarisation

Transfer),[34] the combined rotation at the magic angle and multiple pulse (CRAMPS)

technique,[35] and the homonuclear INADEQUATE, [36] contributing to the wealth of

information achievable from manipulating spins via NMR.

Arguably one of the most significant discoveries in the field of magnetic reso-

nance, or at least the one most recognisable to the general public, would be in its use to

form images, particularly of human organs for medical diagnostics. The first Magnetic

Resonance Imaging (MRI) images were collected in 1974 by Peter Mansfield in the UK

and Paul C. Lauterbur in the USA, where they used magnetic field gradients for the

spatial localisation of NMR signals.[37, 38] This achievement granted them the joint

award of the Nobel Prize in Physiology or Medicine in 2003, after the technique had

already progressed into a huge field of research in its own right.

Another branch out field from nuclear magnetic resonance was that of Dynamic
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Nuclear Polarisation (DNP), with the aim of enhancing weak signals obtained in NMR.

DNP was first proposed by Overhauser in 1953 as a means of enhancing nuclear polar-

isation via transferring polarisation from the electrons of paramagnetic impurities by

microwave irradiation close to the electron resonance frequency, enhancing the signal

obtained.[39] Early studies showed its effect in enhancing signals in metals, then sub-

sequently liquids.[40, 41] Since the early 90s however, with improvements of microwave

sources, DNP has undergone a new ‘renaissance’, with papers by Griffin and co-workers

showing high field MAS-DNP using a gyrotron source.[42, 43] This was followed by the

invention of the dissolution DNP method, where a factor of 10,000 enhancement for

liquid signals was achieved. Whereby in this method the sample is polarised at low

temperature by microwave irradiation, the sample is then dissolved in a hot solvent

and quickly put into the NMR tube in the magnetic field where detection occurs.[44]

During the early days of NMR, quadrupole nuclei were difficult to study, ow-

ing to them experiencing large broadening from the quadrupole interaction at the low

magnetic fields available at the time. However, research to combat these effects was

not neglected, with line narrowing methods developed, with initial studies using con-

ventional MAS, leading to the more technically advanced methods of DOR and DAS

to remove the residual second order quadruple effects.[45–50] However the real turning

point for studies of quadrupole nuclei came in 1995 with the ground breaking pulse

sequence by Frydman and Harwood, the multiple-quantum magic-angle spinning (MQ-

MAS), successfully tacking the problem of broadening from the 2nd order quadrupole

interaction which isn’t removed by conventional MAS.[51] The MQMAS experiment is

still a routinely used tool for solid state NMR spectroscopists, with its implementation

widely shown throughout this thesis.

In recent years solid state NMR has become even more widely used, by Chemists,

Physicists, Engineers and Material Scientists, due to advances in experimental ap-

proaches, but mainly following great improvements in engineering and the hardware

available. MAS rates of just over 100 kHz are now achievable, in addition to high mag-

netic fields commercially available of up to 1 GHz, facilitating in improving signal to

noise and reducing unwanted broadening. This has led to the use of solid state NMR

in the observation of a wide range of systems from inorganic materials, to peptides and

proteins,[52, 53] continuously resulting in new cutting edge discoveries.
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1.2 NMR of Bioactive Phosphate Glasses: Motivation

An area of particular interest for solid state NMR spectroscopists has been in the study

of disordered materials, due to the specify granted by the NMR technique. Other

methods of structural characterisation, such as X-ray diffraction, rely upon long range

periodicity, restricting their use on disordered materials which lack this long range

order. Glass is such a material, with great technological importance, possessing order

only on the more local nuclear scale with no long range periodicity.

Early solid state NMR studies on glasses first appeared in the 1950s,[54] al-

though due to the broad nature of the NMR resonances arising from the vast array

of nuclear sites found within its disordered structure, solid state NMR on glass sys-

tems did not really catch on until the use of magic angle spinning could be used in

pulsed Fourier transform NMR studies, to achieve suitable line narrowing.[55–58] A lot

of early MAS studies focused on silicate based glasses, permitting determination of the

silicon coordinations present within the network. Phosphate based glasses however,

were not neglected, with early work by Brow,[59, 60] and comprehensive reviews of

early NMR phosphate glass results given by Eckert and Kirpatrick and Brow,[61, 62]

proving NMR to be a big contributor in the field, due to the vast array of structural in-

formation obtained along with its non destructive nature, whilst requiring little sample

preparation. Despite the disordered nature of these structures, from amassing the vast

array of data from the numerous studies, simple structural models have been created,

with the publications by Hoppe in 1996, and Brow at the turn of the 21st century,

showing the significant progress in the understanding of these disordered phosphate

materials.[63, 64]

The driving force behind understanding the structure of glassy materials origi-

nates in the desire for knowledge that will help in their development for their numerous

applications. One area of significant interest is in the use of glass as biomaterials, for in-

stance as artificial implants. The developments that initiated this field of research were

carried out by Larry Hench, who carrying out work funded by the US army, had the

desire to design a material that would help prevent unnecessary amputation of wounded

soldiers limbs, due to rejection of bioinert implants routinely used at the time.[66] The

original premise of Hench’s research was to design a material that would successfully
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form a Hydroxyapatite layer in vivo that would not get rejected by the body, due to

a major proportion of bone being composed of Hydroxyapatite. Thus Bioglass R© was

developed, a glass comprising of Ca and phosphate, within a Na2O -SiO2 matrix.[65]

The first implementation of Bioglass R© clinically was in 1985 to solve hearing loss, by

replacing bones within the inner ear with a Bioglass R© substitute. A review of the mo-

tivation behind the discovery of Bioglass R© and its history through the past 40 years is

given in full by Hench in “The Story of Bioglass R©”.[66]

Technological advances in silicate based Bioglasses R© have not been the only area

of successful research in the field of biomaterials, with Ca phosphate based bioceramics

used in dentistry and medicine for over 20 years.[67] Attention has also been focused on

developing phosphate based bioactive glasses, similar to the original Bioglass R©. The

advantage of a glass material is that a wide variety of dopant cations can be incorpo-

rated to the structure, with the purpose of fulfilling a specific role. In comparison to

the silicate based bioactive glasses, which have break down times within the body on

the order of years,[68] phosphate bioactive glasses have much faster dissolution rates

which could allow them to perform different functions. For instance, phosphate bioac-

tive glasses have been developed as novel delivery devices providing controlled release

of ions such as antibacterial Ag or Cu.[69, 70] In addition, various developments for

phosphate glasses for hard tissue engineering as biodegradable scaffolds that are even-

tually replaced by natural tissue has been proposed, with a comprehensive review of

the area given by Abou Neel and Pickup. [71]

The key characteristics of phosphate bioactive glasses is both the bioactivity

and the dissolution rates, as control of both can allow specific functions to be achieved,

with numerous studies focused on measuring both of these factors for particular glass

compositions.[72–77] Both bioactivity and dissolution rates are strongly correlated to

the atomic structure of the glass network, thus a detailed understanding of the struc-

ture, permits the greatest control of the glasses properties. In recent years, many NMR

studies on phosphate bioactive glasses have been undertaken, with the technique shown

to provide detailed valuable structural information.[71, 78, 79]

The work in this thesis involves using multinuclear solid state MAS NMR tech-

niques, to look in detail at the structure of numerous series of phosphate glasses, for

potential bioactive applications. Recent developments in the field of solid state MAS
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NMR will be used, including the implementation of the 31P REINE pulse sequence on

a series of glasses for the first time, providing valuable information on the disorder in

the phosphate network. 17O and 71Ga NMR will also be presented, which previously

have proved difficult to study using solid state MAS NMR, due to their quadrupole

nature and their low natural abundance (in particular 17O, which is only 0.037 %).

The intention is to provide a much deeper insight into the structure of these disordered

systems, with the ultimate aim of helping to further stimulate their use as potential

biomaterials.

1.3 NMR of Mullite Structures: Motivation

Understanding and studying the structure of ceramic materials is important not only

owing to their occurrence in nature, but also due to their widespread production and

use for over thousands of years for wide ranging applications. The aluminosilicate ce-

ramic mullite is no exception to this, taking its name from the Isle of Mull in Scotland

where it was initially discovered, in regions where hot lava comes into contact with

Al2O3 rich sedimentary rocks.[80] Despite its rare presence in nature, mullite is a com-

mon phase in many conventional man made ceramics including clay products, pottery,

porcelains, sanitary ceramics, refractories and in structural clay products like building

bricks, pipes and tiles. Thus, mullite has arguably had a large influence indirectly on

the development of civilisation throughout the history of mankind. Recently mullite

has gained significant interest for use in ‘advanced ceramics’ due to its very appeal-

ing properties, including high thermal stability, low thermal expansion, low thermal

conductivity, high creep resistance, corrosion stability, and its hard wearing nature.[81]

The fact that the starting materials required for mullite formation are abundant in

large quantities on earth, and the ability of mullite to form a solid solution in a large

Al2O3/SiO2 range, giving it the ability to incorporate a wide range of foreign cations,

coupled with the fact that the structural principles of mullites can be extended to a

wide ‘family range’ of related phases with different compositions, all add to its appeal

for engineers and materials scientists alike.

The name mullite was first proposed in the work by Bowen and Greig in 1924,

who found that stable aluminosilicate in the Al2O3-SiO2 system has 3:2 (3 Al2O32 SiO2)
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instead of the 1:1 (Al2O3SiO2) composition as was commonly thought prior to this.[82]

The general formula for the structure of mullite is Al2[Al2+2xSi2−2x]O10−x with x typ-

ically varying from x = 0.2 to 0.9. Many studies on the crystallographic structure of

mullite have since been published, with the general consensus being that its structure is

very similar to that of the crystalline aluminosilicate sillimanite (Al2SiO5).[80, 83, 84]

Like sillimanite, mullite consists of chains of Al octahedra running down the crystallo-

graphic c-axis, with these chains cross linked by tetrahedral double chains of (Al,Si)O4

tetrahedra. In mullite however, some of the O bridging the tetrahedra are vacant (thus

making it distinct from sillimanite), resulting in the formation of proposed tri-cluster

sites (T3O). This leads to a slight disorder in the structure due to this vacancy, mak-

ing the creation of an absolute model of the mullite structure incomplete, due to the

complexity of the vast array of possible crystallographic sites present.

As already mentioned, one of the favourable properties of mullites lies in its

ability to incorporate a wide range of different cations, whilst still retaining the mullite

type structure and thus its favourable properties. Al borates are a related class of

material that like mullites possess stability to very high temperatures and pressures.

The Al18B4O33 phase (9 Al2O3.2 B2O3) has gained specific interest, used as both a

refractory lining due to its low thermal expansion and its corrosion resistance against B

rich glasses, and for the reinforcement of metal matrices.[85, 86] There are many phases

within the Al2O3-B2O3 series which are structurally related to mullite, and therefore a

combination of the two systems promises a great potential to design high-performance

materials. A solid solution between mullite and Al18B4O33 was proposed in the 1950’s

with the term ‘B mullite’ or ‘boron-mullite’ introduced by Werding and Schreyer.[87,

88] Recent work has however shown that there is no complete solid solution between

mullites and Al borates.[86, 89, 90] Although, significant changes of lattice parameters

b and c occurs with B doping, in contrast no significant changes are observed for lattice

parameter a, which is linearly correlated with the Al/Si ratio in mullite.[86, 89, 90]

Solid state MAS NMR studies on mullite systems have long being carried out.

Turner et al. showed the first 27Al MAS NMR data on mullite materials, distinguishing

between the octahedral and tetrahedral resonances, along with attributing a site in the

intermediate regime to possibly be a tri-cluster species.[91] 29Si MAS NMR was first

shown by Merwin et al., along with further 27Al MAS NMR data, again with assignment
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of the tri-cluster species.[92] Further 29Si assignments have been carried out in many

studies since, most notably by Ban and Okada, Jaymes et al., and Schmucker et al..[93–

96] However the most conclusive evidence of the tri-cluster species has been presented

by Bodart et al. from 27Al 3QMAS measurements on a 2:1 mullite system.[97] The

suitability of using solid state MAS NMR to probe the mullite structure emanates from

mullite crystallography not being straightforward, due to the vacancies resulting in an

apparent disorder. Therefore, NMR remains a key tool in its structural characterisation,

due to its nuclear specificity, probing the nuclear sites directly.

Since the previous studies surrounding both mullites and B doped mullites,

developments in solid state NMR techniques have greatly improved. This means that

structural questions that still remain unanswered regarding the mullite structure, can

now be addressed using these more advanced techniques. For instance, the desire for

clear unambiguous confirmation of the presence of the tri-cluster resonance using 27Al

MAS NMR in the 3:2 mullite system can be achieved by exploiting the 2D method

of MQMAS, as done by Bodart et al. on a 2:1 mullite system. This enables the

separation of resonances in a second dimension, typically broadened by the second order

quadrupole interaction precluding their observation from 1D MAS NMR.[97] Further

information will also be obtained upon using 2D NMR correlation methods, which have

become more widespread in solid state NMR since the late 1990’s, in order to provide a

more complete picture of the network connectivities within this complicated structure.

Focus will be on both the ‘conventional’ aluminosilicate 3:2 mullite, in addition to a

series of B doped 3:2 mullites providing further advancement in this field of materials

of great industrial importance.
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Chapter 2

NMR Theory

The theory in this section is based upon a number of sources, mainly the texts: ‘In-

troduction to Solid State NMR Spectroscopy’ M.J. Duer.[98] ‘Spin Dynamics’ M.H.

Levitt.[99] ‘NMR: the Toolkit’ P.J Hore, J A. Jones, and S. Wimperis.[100] ‘Multinu-

clear Solid State NMR of Inorganic Materials’ K.J.D. MacKenzie, and M.E. Smith.[101]

‘Solid-state NMR : basic principles & practice’ D.C. Apperley, R.K. Harris, and P.

Hodgkinson. [102]

2.1 Zeeman Interaction

All subatomic particles have a series of fundamental properties such as mass and charge,

however a further intrinsic property determined from Quantum Mechanics is that of

spin angular momentum. This is defined by the spin angular momentum quantum

number, I, which can take positive integer or half integer values, and for atomic nuclei

takes a specific value for each individual isotope, dependent on the constituent nucleons.

Further to this, the spin angular momentum is quantized in units of h̄ into 2I+1 possible

energy levels, represented by the azimuthal quantum number m, m = +I,+I−1, ...,−I.

In the absence of a magnetic field all of these energy levels are degenerate.

However, in the presence of an external magnetic field this degeneracy is lifted causing

the spin states to split, resulting in a separation of energy levels. This is due to the

interaction between B0 and the magnetic moment and is commonly known as the

Zeeman Effect, as shown in Figure 2.1.

The classical expression for the Zeeman interaction is
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Figure 2.1: Diagram showing the Zeeman effect for a I = 1
2 . In the absence of a

magnetic field the energy levels are degenerate. Whereas application of a magnetic
field, B0, lifts the degeneracy resulting in two energy levels α and β, m = 1

2 and −1
2 ,

respectively, with an energy difference in frequency units of ω0 between them.

E = −µ ·B0 (2.1)

where µ is the magnetic moment represented by:

µ = γI, (2.2)

and γ is the gyromagnetic ratio specific for each individual nuclei. However, in NMR

we want to express this in terms of Quantum Mechanical operators, so the Zeeman

energy Hamiltonian in a static field is represented by:

ĤZ = −µ ·B0. (2.3)

By convention when the angular momentum is aligned in the z-direction then, I =

(0, 0, Iz), as is the external field, B0 = (0, 0, B0), and using Equation 2.2 the Hamilto-

nian can be written as:

ĤZ = −γÎzB0 (2.4)

or

ĤZ = ω0Îz. (2.5)

Note that above the factor of h̄ has been omitted, with energies representing multiples

of h̄, in angular frequency units. ω0 is the Larmor frequency given by:
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ω0 = −γB0. (2.6)

Therefore, the Larmor frequency is dependent upon the external magnetic field applied,

and due to the gyromagnetic ratio being specific for each type of nucleus, it has a

different strength depending on the nucleus in question.

A quantum mechanical description is necessary for the most accurate description

of an NMR experiment. The state of a quantum mechanical system can be described

by a quantum mechanical wavefunction |ψ〉 which represents the physical properties of

the system. An operator can be defined that corresponds to an observable quantity,

for example energy or angular momentum, that acts upon the wavefunction. Upon

repeating an experiment many times the average value we obtain is represented by the

expectation value:

〈
Â
〉

= 〈ψ| Â |ψ〉 . (2.7)

Application of the relevant angular momentum operator Îx, Îy, Îz, Î
2, which represent

the x, y, z components of the nuclear spin and magnitude of the nuclear spin squared

respectively, can lead to observables relating to the nuclear spin. This set of operators

obey the commutation relations:

[Î2, Îz] = 0 (2.8)

[Îx, Îy] = iÎz (2.9)

and any cyclic permutation of the subscripts, and are linked by the relation:

Î2 = Î2
x + Î2

y + Î2
z . (2.10)

These commutation relations show that as only one component of the spin angular

momentum commutes with the total spin angular momentum, only one component is

observable at a particular time, by convention Îz. In addition the individual components

don’t commute with each other.

From Equation 2.5 it can be seen that the eigenfunctions of Ĥ are the same as
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Îz written as |I,m〉, or:

Îz |I,m〉 = m |I,m〉 . (2.11)

For a spin I = 1
2 nucleus, which is the simplest case relevant for NMR, m = +1

2 and

−1
2 , represented as α = 1

2 and β = −1
2 , spin up and spin down, respectively. Therefore,

the eigenvalues become:

Îz |α〉 = +
1

2
|α〉 Îz |β〉 = −1

2
|β〉 (2.12)

and from Equation 2.5:

Ĥ |α〉 = +
1

2
ω0 |α〉 Ĥ |β〉 = −1

2
ω0 |β〉 . (2.13)

Thus the difference between the Zeeman states is ω0, as stated in Equation 2.5. From

Equation 2.12 we can use the eigenvalues to construct a matrix representation of the

Îz operator:

Îz =

1
2 0

0 −1
2

 . (2.14)

The complete wavefunction is a superposition of the α and β basis sets:

|ψ〉 = cα |α〉+ cβ |β〉 (2.15)

where cα and cβ represent the contribution of each state. The expectation value of the

Îz operator using Equation 2.7 is given by:

〈
Îz

〉
=

1

2
(cαc

∗
α − cβc∗β), (2.16)

showing that the longitudinal component is directly related to the probability of the

system been found in either of these spin states.

In contrast, operators with x and y angular momentum don’t have |α〉 and |β〉

as eigenstates. Instead they inter convert |α〉 and |β〉:

15



Îx |α〉 =
1

2
|β〉 Îx |β〉 =

1

2
|α〉

Îy |α〉 =
1

2
i |β〉 Îy |β〉 =

1

2
i |α〉 .

(2.17)

In matrix form these Îx and Îy operators are:

Îx =

0 1
2

1
2 0

 Îy =

 0 −1
2 i

1
2 i 0

 (2.18)

with expectation values given by:

〈
Îx

〉
=

1

2
(cαc

∗
β + cβc

∗
α) (2.19)

〈
Îy

〉
=

1

2
i(cαc

∗
β − cβc∗α) (2.20)

2.2 Density Operator

The methods outlined in the previous section are adequate for describing simple sys-

tems, however for systems consisting of many spins, or for I > 1
2 , a linear treatment can

become complicated involving many terms. The density operator method is a much

more convenient approach utilising matrices. The density operator can be defined as:

ρ̂ = |ψ〉 〈ψ| (2.21)

where the overbar represents an ensemble average of the spin system. The density

matrix is:

ρrs = 〈r| ρ̂ |s〉 = crc
∗
s. (2.22)

For a single spin this density matrix becomes:

ρ =

cαc∗α cαc
∗
β

cβc
∗
α cβc

∗
β

 (2.23)
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therefore, we now have a matrix ρ, that relates to the sample, and one that relates the

measurement of a particular operator, Â. A product of the two yields:

ρÂ =

cαc∗α cαc
∗
β

cβc
∗
α cβc

∗
β


Aαα Aαβ

Aβα Aββ

 (2.24)

=

cαc∗αAαα + cαc
∗
βAβα cαc

∗
αAαβ + cαc

∗
βAββ

cβc
∗
αAαα + cβc

∗
βAβα cβc

∗
αAαβ + cβc

∗
βAββ

 (2.25)

and upon inspection of Equation 2.24 above it can be seen that the expectation value

of this operator in terms of this density operator is:

〈
Â
〉

= Tr[ρA]. (2.26)

The above equation shows that independent of the number of spins within the system,

any macroscopic observation of the system can be represented by the two operators

representing the measured observable and the entire spin ensemble.

If we compare Equation 2.23 to the expressions for the expectation values of

Îz, Equation 2.16, it can be seen that Îz is represented by like terms, therefore the

diagonal elements of Equation 2.23 represent populations of basis functions. Whereas

the expectation values for Îx and Îy, Equations 2.19 and 2.20, show that the off diagonal

elements represent a mixture of states, known as coherences.

2.2.1 Evolution of the Density Operator

A NMR experiment consists of periods of free precession and rf pulses changing over

time, which can be described by the time dependent Schrödinger equation:

d

dt
|ψ〉 = −iĤ |ψ〉 . (2.27)

We can use this to determine how the density operator changes over time:

dρ

dt
= −i[Ĥ , ρ̂] (2.28)
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this is known as the Liouville von-Neumann equation and has the solution:[100]

ρ̂(t) = e−iĤ tρ̂(0)e+iĤ t

= Û(t)ρ̂(0)Û(t)−1.

(2.29)

This is an important result as it states that if we know the density operator at a

starting point (t = 0), and if we know the Hamiltonians, then we can calculate the

density operator at any later time, t. Here Û(t) is known as the propagator, which if

Ĥ is constant, can be expressed as:

Û(t) = e−iĤ t. (2.30)

If Ĥ is not constant then the propagator can be separated into a series of Hamiltonians

each acting consecutively for a time period, e.g.,

Û(t) = e−iĤ1t1e−iĤ2t2e−iĤ3t3 ....e−iĤntn . (2.31)

2.3 Hamiltonians and Interactions

The Hamiltonian that describes the NMR system can be represented by a linear com-

bination of different interaction Hamiltonians that each play a part on the observed

NMR signal:

ĤTotal = Ĥrf + ĤZ + Ĥcs + ĤJ + ĤD + ĤQ + ...... (2.32)

the above Hamiltonians can be classified into either external or internal Hamiltonians.

The external interactions include: ĤZ which describes the Hamiltonian for the Zeeman

interaction, as discussed in Section 2.1, and Ĥrf the perturbing interaction of the

oscillating rf magnetic field that creates spin coherences. The other interactions are

known as the internal interactions, which reveal the chemical information due to the

response from the external magnetic fields, these are discussed in later sections.

The Hamiltonian to describe an operator Ã in Cartesian coordinates can be

expressed as:
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ĤA = Î .Ã.Ŝ =

(
Îx Îy Îz

)
Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz



Ŝx

Ŝy

Ŝz

 (2.33)

where Î is the spin operator, Ã a second rank tensor describing the interaction, and Ŝ

either the external field or a further spin operator.

2.3.1 External Interactions

To observe an NMR signal we require transverse magnetisation, which is a so-called

coherence state. This can be achieved by perturbing the spins from equilibrium by

application of a magnetic field, that is much weaker than the external magnetic field

(B1<<B0). The oscillation frequency of this B1 field is comparable to the Larmor

frequency of the nuclei under observation, i.e. ωrf ≈ ω0, in order to ensure resonance

is achieved,

B̂1 = 2B1(cos[ωrf t+ φ])i (2.34)

= B1(e+iωrf t + e−iωrf t)i, if φ = 0 (2.35)

where i is the unit vector along the axis in question, and φ is the initial phase of the

pulse. Therefore, the B1 field is made up of two counter rotating fields, with frequencies

+ωrf and −ωrf , however we can safely neglect one of these, −ωrf by convention, owing

to only one being near the Larmor frequency. If we consider the Hamiltonian for an

arbitrary rf field this can be simplified to:

Ĥrf = −γB1[Îxcos(ωrf t+ φ) + Îysin(ωrf t+ φ)]. (2.36)

To simplify Equation 2.36, we can transform to a rotating frame, rotating at ωrf about

the z axis, making this Hamiltonian time independent:

Ĥ rot
rf = ω1[Îxcosφ+ Îysinφ] (2.37)
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here ω1 is the strength of the rf field applied, the so called nutation frequency, defined

by:

ω1 = −γB1. (2.38)

Equation 2.37 shows that the initial phase, φ, defines the orientation of the pulse applied

in the xy plane, for instance if we apply φ = 0:

Ĥ rot
rf = ω1Îx, (2.39)

therefore the pulse appears as a static magnetic field applied along the x-axis. Using

the solution to the Liouville-von Neumman Equation we can observe what happens

under this pulse:

ρ̂(t) = e−iω1tÎx ρ̂(0)e+iω1tÎx . (2.40)

At equilibrium the spins are in the Îz state, therefore:

ρ̂(0) = Îz (2.41)

ρ̂(t) can then be expressed as: [100]

ρ(t) =

 1
2cosω1t

i
2sinω1t

− i
2sinω1t −1

2cosω1t

 (2.42)

where, in addition to populations, the rf pulse has created coherences, the off diagonal

elements. The expectation values of the Îz, Îx and Îy operators can then be determined

using Equation 2.26:

〈
Îx

〉
= Tr[ρIx] = 0 (2.43)〈

Îy

〉
= Tr[ρIy] = −1

2
sinω1t (2.44)〈

Îz

〉
= Tr[ρIz] =

1

2
cosω1t (2.45)

This shows that upon application of a pulse along the x-axis, the expectation values

of Îz and Îy oscillate at the nutation frequency. Population inversion is achieved when
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ω1t = π, whereas to create a pure coherence state ω1t = π
2 . Here ω1t is commonly

known as the flip angle in NMR, this will be covered in more detail in the Section 3.4.1.

Similarly to the Ĥrf Hamiltonian, the Zeeman Hamiltonian can also be ex-

pressed in the rotating frame. Recall Equation 2.5, which if we transfer to the rotating

frame becomes:

Ĥ rot
z = (ω0 − ωrf )Îz = ΩÎz (2.46)

where Ω is known as the resonance offset. This results in more manageable values of

the frequency observed, as it corresponds to mixing down the signal with a reference

frequency, therefore detecting kHz frequencies rather than the MHz of the Larmor

frequency.

A similar approach as shown previously for the application of the rf x-pulse, can

now be applied to use the Liouville von-Neumann equation to observe the state of the

transverse magnetisation under a resonance offset:

ρ̂(t) = e−iΩtÎz ρ̂(0)e+iΩtÎz . (2.47)

In this case

ρ(0) = Îx (2.48)

therefore the density operator at time t is expressed as:

ρ̂(t) =

 0 1
2e
−iΩt

1
2e
iΩt 0

 . (2.49)

Measurement of this transverse signal can be detected by acting on this density operator
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with the complex conjugate of the lowering operator (Î−)∗ = Î+:

s(t) = Tr[ρ̂(t)Î+] (2.50)

= Tr

[ 0 1
2e
−iΩt

1
2e
iΩt 0


0 1

0 0

] (2.51)

= Tr

0 0

0 1
2e
iΩt

 (2.52)

=
1

2
eiΩt (2.53)

=
1

2
(cos(Ωt) + isin(Ωt)). (2.54)

This allows the detection of the signal, consisting of two signals π
2 out of phase, thus

giving a sense of precession of the signal, as the oscillating magnetic fields induces a

current in the NMR coil, as will be discussed in Section 3. The above equations show

that the single quantum coherences that are generated by the rf pulse during the NMR

experiment, result in the NMR signal obtained. Although higher order coherences are

possible for coupled systems, we cannot directly observe them in an NMR experiment,

however some techniques exploit these higher coherence orders, as will be discussed

later.

2.4 Internal Interactions

2.4.1 Frame Rotations and Tensors

In addition to the external interactions that we can control in the NMR experiment,

such as the magnetic fields, internal interactions from the local environment of the

nuclear spins also play a part in the behaviour of the spin system. The fact that the

external interactions are usually much larger than the effects of the internal interactions

arising from the local molecular environment of the spins themselves, is what makes

NMR an interesting technique. In the NMR experiment we actually have the spin

system coupled to the external system. Upon making small changes to the external

system, via application of an rf pulse, we can obtain information on the molecular

environment, due to the perturbations observed via these internal interactions. The

22



total Hamiltonian can be expressed as:

ĤT = Ĥ0 + Ĥ1 (2.55)

where Ĥ0 is the Zeeman Hamiltonian and Ĥ1 is a first order perturbation to the

Zeeman Hamiltonian, composed of the rf pulse and the internal interactions. A first

order perturbation approach is sufficient to describe most interactions, as usually they

are much smaller than the effect of the dominant Zeeman interaction. However, for the

case of large quadrupole interactions a second order treatment may be required, as will

be discussed later.

The internal interactions in NMR can be described by second rank tensors ow-

ing to their 3D orientation dependence. The most convenient way to represent these

tensors is in the Principal Axis System (PAS) of the interaction, where the tensor is

diagonalised, with only diagonal elements of the tensor being non zero. However the

PAS frame for each interaction will be different, and as the dominant interaction in the

NMR experiment is usually the Zeeman interaction, it is necessary to rotate the tensors

describing the internal interactions from their PAS frame into the lab frame where the

NMR measurement is taken.

To carry out these rotations it is easier to express the internal interaction Hamil-

tonians in spherical tensor form, by converting from the usual Cartesian representation:

Ĥ =
2∑
j=0

+j∑
m=−j

(−1)mAj,mT̂j,−m, (2.56)

where Ajm is the spatial component of the tensor representing the magnitude of the

interactions, and T̂j−m the spin component representing the quantum mechanical op-

erators. It is important to note that under rotations only the spatial term is affected.

In the PAS frame, as only the diagonal terms are non zero, not all terms in

Equation 2.56 will be retained. Equation 2.56 becomes:

Ĥ P = AP00T̂00 +AP20T̂20 +AP22T̂2−2 +AP2−2T̂22. (2.57)

When rotating between different frames of reference Euler angles are used, correspond-

ing to three angles α, β and γ, as given by the rotation operator:
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Figure 2.2: The convention upon using Euler angles to rotate between frames of ref-
erence. From frame (1) a rotation by α about the z-axis, results in the frame (2).
Secondly a rotation about the new y-axis through β gives frame (3). Then a final
rotation through γ about the final z-axis, results in frame (4). The convention used is
that of passive rotations.

R̂(α, β, γ) = R̂z(α)R̂y(β)R̂z(γ) (2.58)

Figure 2.2 shows how these rotations are applied. Initially a rotation by α about

the z-axis, followed by a rotation about the new y-axis through β, then a final rota-

tion through γ about the final z-axis. It is important to note that different conven-

tions of these rotations exist, but the convention used in this thesis, is that of passive

rotations.[98]

An operator R̂ acting on a spherical tensor can be described by:

R̂(Ajm) =

m′=+j∑
m′=−j

Dj
m′m(α, β, γ)A′jm′ (2.59)

where Dj
m′m(α, β, γ) is a rotation matrix, the Wigner D-matrix. Therefore, upon ro-

tation the spherical tensor is converted into a sum of spherical tensors with the same
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rank j, but different order m. The Wigner D-matrix is defined in terms of the Euler

angles as [103, 104]:

Dj
m′m(αβγ) = e−im

′αdjm′m(β)e−imγ (2.60)

where djm′m are the reduced Wigner matrices which can be found in reference tables,

see Appendix A.1 [100].

Thus, for the specific case of the NMR experiment, in transforming frames from

the PAS to the lab frame (L), we have:

ALjm′ =
∑
m

APjmD
j
mm′(αPL, βPL, γPL) (2.61)

so with any spherical tensor in the PAS frame of a particular interaction we can now

transform to the more general lab frame.

It is important to note that due to the interactions being considered as first

order perturbations, only spin terms that commute with the Zeeman interaction, Îz,

are retained:

[Îz, T̂jm] = mT̂jm. (2.62)

The above equation only commutes when m = 0, meaning that in the lab frame only

ALj0 terms are retained. This is known as the secular approximation, and only holds

when first order perturbations to the Zeeman interaction are considered. Therefore:

Ĥ L = AL00T̂00 +AL20T̂20 (2.63)

where AL00 corresponds to the isotropic component of the particular interaction, and

AL20 the anisotropic component.

2.4.2 Magic Angle Spinning (MAS)

In solution state NMR rapid molecular tumbling results in all different orientations

of the molecule being experienced over a short time scale, thus averaging away the

anisotropic components of the internal interactions. This leads to very narrow lines

corresponding to only the isotropic part of the interactions. However, in solid state
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Figure 2.3: Diagram showing the orientation of the MAS rotor with respect to the
external B0 field. Euler angles are shown for the transformations between the PAS to
the rotor frame, and then a further rotation to the lab frame.

NMR due to the rigidity of solids, this molecular tumbling does not occur, thus result-

ing in the anisotropic component still being present. This will lead to broadening of the

lineshapes observed, especially in the case of powered solids where a range of orienta-

tions will be present, resulting in the overlap of many different anisotropic resonances.

Therefore, in solid state NMR a commonly employed technique is that of Magic Angle

Spinning (MAS), whereby the sample is orientated at a fixed angle to the external

magnetic field and rotated about this axis, with the aim of removing this anisotropic

component of the interactions.

A further transformation is now required from the PAS frame to the so called

rotor frame, the rotor being the small container the sample is put into and subsequently

rotated in, and finally a further transformation to the lab frame where the NMR mea-

surement is taken. There are now two sets of Euler angles we need to consider:

ΩRL = (αRL, βRL, γRL) (2.64)

ΩPR = (αPR, βPR, γPR). (2.65)

Figure 2.3 shows the transformations that are required and the corresponding Euler

angles applicable for the rotation from the rotor to the lab frame. Of the three angles
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of ΩRL, the user has control of γRL, enabling it to be set to zero. βRL is the angle of

the rotor with respect to the magnetic field, and αRL the rotor position, that is time

dependent, t, and also depends upon the frequency of rotation, ωr.

For the two rotations, Equation 2.61 can be written as:

AL20 = AP20

2∑
m=−2

D2
m0(ΩRL)D2

0m(ΩPR) (2.66)

only the AL20 term is important as previously mentioned, Equation 2.63. The Wigner

D-matrix for the transformation from the rotor to the lab frame is given by:

D2
m0(ΩRL) = eimωrtd2

0m(βRL). (2.67)

Upon rotating the sample using Magic Angle Spinning, if we average over one complete

rotor period, tr = 2π
ωr

then:

∫ 2π
ωr

0
eimωrt = 0 if m 6= 0 (2.68)

= 1 if m = 0 (2.69)

so when m = 0, the time dependent component equates to unity after one rotation

period. For all other values of m the time dependent part becomes zero after one rotor

period. Equation 2.66 becomes:

< AL20 >tr= AP20D
2
00(ΩPR)d2

00(βRL), (2.70)

where the reduced Wigner Matrix has the form:

d2
00(βRL) =

1

2
(3cos2βRL − 1), (2.71)

known as the P2(cosθ) Legendre polynomial. It can be seen that upon setting βRL to

an angle of 54.74◦ this (3cos2βRL− 1) term goes to zero upon averaging over one rotor

period. This angle is aptly known as the Magic Angle, and Equation 2.66 subsequently

becomes zero with the anisotropy removed. MAS will average second rank tensors to

zero after one rotor period, and with most of the significant interactions in solid state
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NMR being described by second rank tensors, this makes MAS a powerful tool.

However, if the spectra are not acquired at an integer of a complete rotor period,

as is often the case, (m 6= 0), the other terms of Equation 2.66 must be considered.

Thus calculating the remaining Wigner rotation matrices under MAS the spatial term

becomes:

AL20 = AP20

[
1

2
sin2βPRcos(2γPR − 2ωrt)−

1√
2
sin2βPRcos(γPR − ωrt)

]
(2.72)

these terms oscillating at ωr and 2ωr are what give rise to what is known as ‘spinning

sidebands’. Upon rotation of the sample at the magic angle the powder lineshape splits

up into a series of resonances separated in Hz, by the MAS frequency ωr. As ωr is

increased the intensity of these spinning sidebands decrease, ultimately disappearing

when the spinning frequency is much greater than the size of the anisotropy. This leads

to one resonance observed at the isotropic chemical shift.

2.4.3 Chemical Shielding

Arguably the most important internal interaction in NMR is that of chemical shielding,

as it gives direct evidence on the local chemical environment. In the presence of a

strong magnetic field, in the case of the NMR experiment that of B0, the magnetic

field experienced by the nuclear site can differ from the applied field. This is because of

the fact that currents in the electron orbitals surrounding the nucleus induce a different

magnetic field experienced at the nuclear site, i.e. so called shielding or de-shielding

the nucleus. Due to the 3D nature of this electron density, the chemical shielding

is described by a second rank tensor, σ̃. The Hamiltonian describing the chemical

shielding for a spin I is given by:

Ĥcs = γÎ.σ̃.B0. (2.73)
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As previously stated all interactions can be defined within their principal axis system

(PAS), which for the shielding tensor is:

σP =


σXX 0 0

0 σY Y 0

0 0 σZZ

 (2.74)

where capital subscripts denote the PAS frame. Upon rotation from the PAS frame of

the shielding interaction into the lab frame the tensor becomes:

σL =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 . (2.75)

This can then be combined with the expression for the external magnetic field. The

field at the nucleus including both contribution from the shielding and the external

field is then:

B̂ = (1− σ).B0 =


1− σxx −σxy −σxz

−σyx 1− σyy −σyz

−σzx −σzy 1− σzz




0

0

B0

 =


−σxzB0

−σyzB0

(1− σzz)B0

 . (2.76)

In the above both contributions due to −σxz and −σyz can be neglected as they repre-

sent second order contributions. This then gives the total Hamiltonian for the chemical

shielding interaction as:

Ĥcs = γÎz.σzz.B0. (2.77)

An expression for σzz is then required to accurately describe this Hamiltonian:[101]

σzz(θ, φ) = σiso +
1

2
∆[(3cos2θ − 1)− η(sin2θcos2φ)] (2.78)

where the angles θ and φ represent polar angles that arise from the rotation from the

PAS to the lab frame. The three terms σiso, ∆, and η characterise the local symmetry

around the nucleus and are expressed as

σiso =
1

3
(σPXX + σPY Y + σPZZ) (2.79)
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∆ = σPZZ − σiso (2.80)

η =
σPY Y − σPXX

∆
(2.81)

σiso is the isotropic value, corresponding to the average of the diagonal elements, as the

name suggests being isotropic means it is invariant under rotations. ∆ and η are the

anisotropy and the asymmetry, respectively, and give information on the local symmetry

around the nuclear site. It is common practice for these three terms to be quoted as a

measure of the shielding interaction, rather than the three principal components.

In solid state NMR the sample under observation is usually in powder form,

thus all possible orientations of crystallites, hence θ and φ, are represented resulting

in different chemical shielding values. A powder patten subsequently forms, spanning

a range of frequencies. The distinctive lineshape of this pattern depends heavily upon

the symmetry of the tensor, as shown in Figure 2.4.

As shown in Section 2.4.2 MAS can be used to remove anisotropic broadening

due to first order interactions, after two successive frame rotations. This is commonly

applied to remove the effect of CSA in the solid state, thus leaving a resonance with the

only chemical shielding effect being from the isotropic value. The isotropic shielding is

normalised with respect to a reference Larmor frequency for the observed nucleus by:

δiso =
νsample − νref

νref
× 106 =

σref − σsample
1− σref

(2.82)

to obtain the isotropic chemical shift δiso, which is quoted in parts per million (ppm),

and is usually what experimentalists measure. Due to the normalisation with respect

to a known reference frequency, chemical shifts are independent of B0, thus enabling a

method of comparison for spectroscopists at a wide range of field strengths.

2.4.4 Dipolar Interaction

Nuclear spins have an associated magnetic moment, as represented in Equation 2.2,

which, when in close proximity with one another, will interact through space. This

interaction, known as the dipolar coupling, is important in NMR. If we consider the
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Figure 2.4: Chemical shift anisotropy (CSA) powder patterns, made up of randomly
orientated crystallites. Lineshapes observed due to different values of η and ∆. Bottom
spectrum for the case of cubic symmetry is what is observed under MAS whereby the
anisotropy is removed, using rotor-synchronised acquisition.

classical energy of the interaction between two magnetic dipoles we obtain:

ĤD = −µ0

4π

h̄γIγS
r3

(Î .Ŝ − 3(Î .r̂)(Ŝ.r̂)

r2
) (2.83)

where Î and Ŝ represent the two coupled spins, and r the distance between them. We

can define a dipolar coupling constant as:

dIS = −µ0

4π

h̄γIγS
r3

, (2.84)

the strength of the interaction therefore depends on the inverse cubed separation of the

nuclei and the product of the gyromagnetic ratios (γ). Therefore, the interaction can
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Figure 2.5: (a) Diagram showing the orientation of the internuclear vector (θ), between
two dipolar coupled spins. (b) Powdered static lineshape for dipolar coupled heteronu-
clear spin pair showing the “Pake Doublet”. The “horns” represent θ = 90 ◦, where the
internuclear vector is perpendicular to B0. The humps at the end of the tail represent
θ = 0 ◦, where the internuclear vector is parallel to B0.

be a good measure of internuclear distances. The Hamiltonian represented in Cartesian

tensors is given by:

ĤD = −2Î .D̃.Ŝ (2.85)

in angular frequency units. Here D̂ is the dipolar coupling tensor which describes how

the magnetic field at one spin is affected by the other spin, upon variation of the I-S

internuclear vector in the applied field, see Figure 2.5. However, it is more useful to

represent the dipolar coupling Hamiltonian in spherical tensor form. In its principal

axis system it is given by:

Ĥ P
D = AP20T̂20 (2.86)

only the AP20 remains due to the fact that the dipolar interaction is traceless Axx +

Ayy + Azz = 0, and axially symmetric Axx = Ayy. This has the consequence that the

dipolar interaction contains no isotropic terms, only having anisotropic contributions.

In solution molecular tumbling averages away this anisotropic interaction resulting in

no dipolar broadening, although relaxation effects are still experienced. Due to the lack

of motion in the solid state the anisotropic term remains, with the spatial term given

by:

AP20 =
√

6dIS . (2.87)

32



As shown previously, a transformation is then required of the spatial term in the PAS

frame of the interaction, into the lab frame where the NMR measurement is observed:

AL20 = AP20D
2
00 =

√
6dIS

1

2
(3cos2θ − 1) (2.88)

where the angle θ is the angle between the internuclear vector and B0. The spin

spherical tensor term is given by:

T̂20 =
1√
6

(3ÎzŜz − Î.Ŝ). (2.89)

Therefore combining Equation 2.88 and 2.89 the dipolar Hamiltonian becomes:

ĤD = dIS
1

2
(3cos2θ − 1)(3ÎzŜz − Î.Ŝ). (2.90)

The term Î.Ŝ can be written as ÎxŜx+ ÎyŜy+ ÎzŜz, leading Equation 2.90 to be written

as:

ĤD = dIS
1

2
(3cos2θ − 1)(2ÎzŜz − (ÎxŜx + ÎyŜy)). (2.91)

For the case of two coupled spin 1
2 nuclei the spin angular momentum operators can be

expressed as:

2ÎzŜz =



1
2 0 0 0

0 −1
2 0 0

0 0 −1
2 0

0 0 0 1
2


, (ÎxŜx + ÎyŜy) =



0 0 0 0

0 0 1
2 0

0 1
2 0 0

0 0 0 0


(2.92)

substituting these operators into Equation 2.90:

ĤD = dIS
1

2
(3cos2θ − 1)



1
2 0 0 0

0 −1
2 −1

2 0

0 −1
2 −1

2 0

0 0 0 1
2


. (2.93)

The nuclear spins involved in the dipolar interaction can be of one of two cases, either

of the same nuclear species, so called homonuclear dipolar coupling, or of a completely
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different nuclear species, heteronuclear dipolar coupling. For the heteronuclear case the

off diagonal terms in the matrix in Equation 2.93 are zero, and hence the ÎxŜx + ÎyŜy

terms. Therefore, the spin states are only the Zeeman energy states and the result is a

first order energy shift to the Zeeman interaction. Whereas for the homonuclear spin

case the off diagonal terms are now relevant, representing a mixing of spin states. This

causes an additional complication, as the eigenstates now consist of a linear combination

of the αβ and βα degenerate Zeeman levels. For a many spin system this leads to a

range of transition frequencies, thus resulting in an overall Gaussian broadening to the

lineshape observed.[98]

For the heteronuclear coupling due to the lack of mixing of the energy levels,

there are two possible transitions for each spin, each containing a (3cos2θ − 1) depen-

dence, thus giving rise to a typical powder pattern, the so called Pake Doublet.[12] The

doublet nature comes from the fact that one transition has the opposite sign to the

other, resulting in two lines, mirror images of each other, superimposed on one another.

This is shown in Figure 2.5, where the “horns” of the lineshape represent θ = 90 ◦ and

the outer limits θ = 0 ◦, with the distance between the splitting of the two “horns” and

the total width being related to the dipolar coupling constant.[12]

In practice the spin system is likely to consist of a combination of both of these

interactions at once, due to many different spins coupled together at once resulting in

an overall broadening of the lineshape observed. In Section 2.4.2 it was shown how the

spatial part of an interaction Hamiltonian is averaged to zero when rotated, orientated

at the magic angle. This is true for the heteronuclear dipolar interaction, enabling

lineshapes free from the broadening to be obtained. However, the homonuclear dipolar

coupling requires very fast MAS frequencies in order to remove the line broadening

associated with it, due to the mixing of the Zeeman energy states. The homonuclear

interaction however, will not play a big part in the NMR results observed in this thesis.

2.4.5 J Coupling

In addition to the through space dipolar a further coupling can arise in the form of the

indirect through bond coupling, also known as the J coupling. The J interaction arises

when the spin of one nucleus polarises a nearby electron spin, the spin polarisation is

then transferred to other bonded electrons, which ultimately transfer the polarisation
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to a second nucleus. The Hamiltonian of the J coupling is:

ĤJ = Î .J̃ .Ŝ (2.94)

where J̃ is the J coupling tensor, which is represented in Hz owing to the fact that the

interaction is independent of the external field B0. The J coupling unlike the dipolar

interaction is not traceless, therefore in solution NMR the interaction is not removed

via molecular tumbling. Anisotropic terms of the J coupling do exist in the solid state,

although their small size usually means that they are neglected. The interaction is

almost always described by the isotropic term represented by:[105]

J =
1

3
(Jxx + Jyy + Jzz). (2.95)

The interaction leads to splitting of resonances in the NMR spectrum, separated by

J, with the splitting therefore remaining invariant between B0 fields. In the solid

state due to the fact that it is usually the smallest interaction, splitting due to the

J coupling is rarely seen in most spectra, with large linewidths masking the small J

splitting. Notable exceptions to this do occur however, with splittings observed in some

crystalline samples when sufficient decoupling and MAS is utilised.

The splitting arising from the J coupling depends upon the nuclear spin I of

the nuclei involved, and due to the through bond nature of the interaction it is most

significant in covalent materials. If two nuclei, Î and Ŝ, are coupled together, both with

spin I, then the spectra of Î will be split into 2I+ 1 lines, with the splitting equal to J.

The splitting can be visualised if we consider an isolated spin I = 1
2 , in the presence of

a magnetic field, Zeeman splitting leads to two spin states α and β, with a transition

between them resulting in the observation of one NMR resonance. However, for the

case of two coupled spin I = 1
2 nuclei, there are now four possible energy levels, αα,

αβ, βα, ββ, therefore four allowed transitions are possible, hence two doublets, one for

each spin. This is shown in more detail in Figure 2.6.

Even though the interaction is often masked in the solid state, particularly in

disordered type materials, where a wide range of different sites are present, numerous

experimental methods have been developed to exploit the J coupling. Pulse sequences

such as the spin echo, the INADEQUATE and the J -HMQC all rely on the J coupling
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Figure 2.6: (a) Energy level diagram for an isolated spin I = 1
2 nucleus in the presence

of a magnetic field, showing the α and β energy levels and the allowed transition. (b)
Energy level diagram for a pair of coupled spin I = 1

2 nuclei in the presence of a magnetic
field, showing the four possible energy levels. Allowed transitions are indicated. (c)
The observed spectra for a pair of coupled spin I = 1

2 nuclei in the presence of a
magnetic field showing the two doublets obtained, the transitions are indicated in red
corresponding to the energy level change as in (b). The splitting of the doublets is
equal to the J coupling.

between nuclei, enabling information on couplings to be extracted that aren’t resolvable

from conventional single pulse NMR. This is covered in more detail in Section 3.

2.4.6 Quadrupole Interaction

Over 70 % of the NMR active elements in the periodic table have spin I > 1
2 , an

important point as they can be subject to a further coupling; the quadrupole interac-

tion. These nuclei, with I > 1
2 , have a non-spherical charge distribution, giving rise to

a quadrupole moment. The interaction of the quadrupole moment of a nucleus with

the electric field gradient (EFG) that is present across the nucleus, is the origin of

this quadrupole effect. The quadrupole interaction is generally the largest and most

dominant interaction of each of the internal interactions present in solid state NMR,

sometimes on the order of several MHz in strength. This has important effects as it
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can be much bigger than the rf nutation frequency, thus resulting in distortions of line-

shapes, and can also mean in some cases the secular (high field) approximation is no

longer valid.

From Slichter the energy of a charge distribution, in an electrostatic potential

can be given by: [101, 106]

E =

∫
ρ(r).V (r)dτ (2.96)

where ρ is the charge density. By expanding as a Taylor series the potential in the

volume surrounding the nucleus can be given as:

V (r) = V (0) +
∑
i

xi
∂V

∂xi

∣∣∣∣
r=0

+
1

2!

∑
i,j

xixj
∂2V

∂2xi∂2xj

∣∣∣∣
r=0

+ ...... (2.97)

where i and j represent x, y or z. The partial derivatives can be expressed as:

Vi =
∂V

∂xi
and Vij =

∂V

∂2xi∂2xj
(2.98)

substituting this expression for the potential in Equation 2.97 and Equation 2.98 into

Equation 2.96 we obtain:

E = V (0)

∫
ρ(r)dτ +

∑
i

Vi

∫
xiρ(r)dτ +

1

2!

∑
i,j

Vij

∫
xixjρ(r)dτ + ....... (2.99)

where the energy now consists of a series of terms. The first term corresponds to the

electrostatic energy which is the same in all orientations as it is a point charge. The

second term, the electric dipole moment equals zero for the nuclear charge distribution,

otherwise a net resultant force would act to remove this electric dipole. The third term

represents the electric quadrupole moment, the origin of the quadrupole interaction.

This term gives an orientational dependence of the interaction, due to the variation of

charge distribution, from changes in symmetry of the site.

The electric field gradient Vij is described by a second rank tensor which, like

the dipolar interaction, is traceless in its PAS, Vxx + Vyy + Vzz = 0. By convention the

principal values follow the condition |Vzz| ≥ |Vyy| ≥ |Vxx|, where the largest component

Vzz is given by:

Vzz = eq (2.100)
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and is known as the anisotropy of the electric field gradient, and

η =
Vxx − Vyy

Vzz
(2.101)

the quadrupole asymmetry parameter, which takes values 0 ≤ η ≤ 1.

The Hamiltonian for the quadrupole interaction, for a spin I, is given by:[98, 107]

ĤQ =
eQ

2I(2I − 1)h̄
Î.Ṽ .Î (2.102)

from Slichter in an arbitrary x, y, z reference frame is to be given by:[106, 108]

ĤQ =
eQ

6I(2I − 1)h̄

∑
i,j=x,y,z

Vij(
3

2
(ÎiÎj + Îj Îi)− δijI(I + 1)) (2.103)

where δij is the Kronecker delta giving values:

δij =

{
0 if i 6= j

1 if i = j.
(2.104)

As with the other interactions in the PAS only the diagonal components of the Vij

tensor are non zero, thus the quadrupole Hamiltonian can be written in its PAS as:

ĤQ =
e2qQ

4I(2I − 1)h̄
(3Î2

z − I(I + 1) + η(Î2
x − Î2

y )) (2.105)

where the definitions of the anisotropy and asymmetry have been used, Equations 2.100

and 2.101 respectively. Equation 2.105 neatly shows that for the case of spin I = 1
2

then ĤQ = 0 and there is no quadrupole effect as expected. A further parameter CQ,

can be defined, known as the quadrupole coupling constant expressed in units of Hz as:

CQ =
e2qQ

h
. (2.106)

As shown in Section 2.4.1 when we want to apply transformations between frames

spherical tensor notation is much more convenient. Due to the quadrupole interaction

being described by a second rank tensor Equation 2.56 can be written for the quadrupole
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interaction as:[109]

ĤQ =
eQ

2I(2I − 1)h̄

2∑
m=−2

(−1)mV2mT̂2−m (2.107)

where V2m is the spatial component for the quadrupole interaction. If the summation

is carried out this can be expressed as:

ĤQ =
eQ

2I(2I − 1)h̄
(V20T̂20 − V21T̂2−1 − V2−1T̂21 + V22T̂2−2 + V2−2T̂22). (2.108)

The values of both Vjm and T̂2−m are given for an arbitrary reference frame, by the

relations between the spherical and Cartesian tensor components as:[109]

V20 = 3

√
1

6
Vzz (2.109)

V21 = −Vxz − iVyz (2.110)

V2−1 = Vxz − iVyz (2.111)

V22 =
1

2
(Vxx − Vyy) + iVxy (2.112)

V2−2 =
1

2
(Vxx − Vyy)− iVxy (2.113)

T̂20 =
1

6

√
6[3Î2

z − I(I + 1)] (2.114)

T̂21 = −1

2
(Îz Î+ + Î+Îz) (2.115)

T̂2−1 =
1

2
(Îz Î− + Î−Îz) (2.116)

T̂22 =
1

2
Î+Î+ (2.117)

T̂2−2 =
1

2
Î−Î− (2.118)

where the raising and lowering operators are used, as defined by Î+ = Îx + iÎy and

Î− = Îx − iÎy. In an arbitrary frame the quadrupole Hamiltonian becomes:

ĤQ =
eQ

4I(2I − 1)h̄
(
1

3

√
6(3Î2

z − I(I + 1))V20 − (Îz Î− + Î−Îz)V21

−(Îz Î+ + Î+Îz)V2−1 + Î+Î+V22 + Î+Î+V2−2). (2.119)
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In the PAS frame it can be seen that:

V20 =

√
3

2
eq, V21 = V2−1 = 0

V22 = V2−2 =
1

2
eqη (2.120)

In a NMR experiment even though the quadrupole interaction is usually very

large, on the order of MHz, the Zeeman interaction is still usually the dominant in-

teraction. This means that the quadrupole interaction can still be considered as a

perturbation to the Zeeman states, represented by a sum of terms with decreasing

significance. In some cases when the quadrupole interaction is small enough only a

first order correction is needed, however commonly a second order perturbation treat-

ment is required. Only the terms that commute with the Zeeman interaction (Îz) are

considered. The quadrupole Hamiltonian for this perturbation is given by: [102]

ĤQ = Ĥ
(1)
Q + Ĥ

(2)
Q . (2.121)

From [109] the Hamiltonian for the first order and second order terms are:

Ĥ
(1)
Q =

eQ

4I(2I − 1)h̄

√
6

3
(3Î2

z − I(I + 1))V20 (2.122)

and

Ĥ
(2)
Q = − 1

ω0

[
eQ

4I(2I − 1)h̄

]2

(2V2−1V21Îz[4I(I + 1)− 8Î2
z − 1]

+2V2−2V22Îz[2I(I + 1)− 2Î2
z − 1]). (2.123)

It is important to know how these quadrupole Hamiltonians will affect the appearance

of the NMR lineshape observed. An immediate and obvious point to note is that there

is a dependence of the second order contribution with 1
ω0

, therefore upon increase of the

external magnetic field B0 the second order quadrupole contribution is reduced. This

is not the case to first order as there is no dependence of ω0 in Equation 2.122. If we

consider the case of a spin (I) in the presence of a strong magnetic field, the Zeeman
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Figure 2.7: Energy level diagram for a spin 3
2 nucleus, showing the splitting due to the

Zeeman interaction, and the first order quadrupole interaction. It can be seen that the
central transition splitting remains equal to ω0 even under the first order quadrupole
interaction.

interaction removes degeneracy to give 2I + 1 energy levels:

E =< m|Ĥz|m >= −mω0. (2.124)

The splitting between these energy levels is given by:

ω
(z)
m−1,m =< m− 1|Ĥz|m− 1 > − < m|Ĥz|m >= ω0 (2.125)

as shown in Section 2.1. If a similar consideration is taken for the quadrupole interac-

tion, to first order:

E
(1)
Q =< m|Ĥ (1)

Q |m >=
eQ

4I(2I − 1)h̄

√
6

3
(3m2 − I(I + 1))V20 (2.126)

and the resulting first order shift to the line is:

ω
(1)
m−1,m =< m− 1|Ĥ (1)

Q |m− 1 > − < m|Ĥ (1)
Q |m >

=
3eQ

4I(2I − 1)h̄

√
6

3
(1− 2m)V20. (2.127)

If the central transition (−1
2 ,

1
2) is considered, the right hand side of Equation 2.127

goes to zero, showing that there is no effect to first order of the quadrupole interaction

on the central transition, i.e., the resonance still appears at ω0, this is shown in Figure

2.7 for the case of a I = 3
2 nucleus. The other lines, which are affected to first order,
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are known as the satellite transitions. For the second order contribution:

E
(2)
Q =< m|Ĥ (2)

Q |m >= − 1

ω0

[
eQ

4I(2I − 1)h̄

]2(
V2−1V21m[4I(I + 1)− 8m2 − 1]

+V2−2V22m[2I(I + 1)− 2m2 − 1]
)

(2.128)

and the quadrupole shift to second order is:

ω
(2)
m−1,m = − 2

ω0

[
eQ

4I(2I − 1)h̄

]2(
V2−1V21(24m(m− 1)− 4I(I + 1) + 9)

+
1

2
V2−2V22(12m(m− 1)− 4I(I + 1) + 6)

)
. (2.129)

unlike to first order, this second order shift clearly has an effect on the central transition.

Therefore, for a transition (m − 1,m) the total effect to the line observed considering

both the Zeeman and quadrupole effect is:

ωm−1,m = ω0 + ω
(1)
m−1,m + ω

(2)
m−1,m. (2.130)

As previously shown for the other interactions, it is important to describe the quadrupole

interaction in a frame where the NMR experiment is being measured, requiring rota-

tions from its PAS to the lab frame. Using Equation 2.66:

V L
20 = V P

20D
2
00 + V P

22D
2
20 + V P

2−2D
2
−20

= V P
20d

2
00(β) + V P

22d
2
20(β)e−i2α + V P

2−2d
2
−20(β)ei2α (2.131)

using V P
22 = V P

2−2 and d2
20(β) = d2

−20(β):

V L
20 = V P

20d
2
00(β) + V P

22d
2
20(β)(e−i2α + ei2α)

= V P
20d

2
00(β) + V P

22d
2
20(β)cos2α (2.132)

inserting the values for the reduced Wigner matrices and Equation 2.120:

V L
20 =

√
3

2
eq
(1

2
(3cos2β − 1) +

1

2
ηsin2βcos2α

)
(2.133)
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substituting into the first order quadrupole Hamiltonian:

Ĥ
(1)
Q =

1

3
ωQ
(
3Î2
z − I(I + 1)

)
(2.134)

where:

ωQ =
3e2Qq

4I(2I − 1)h̄

(1

2
(3cos2β − 1) +

1

2
ηsin2βcos2α

)
(2.135)

the pre-factor of ωQ can be expressed in terms of CQ as shown earlier in Equation

2.106. In some texts χQ is used, which is related to CQ by; χQ = 2πCQ, where χQ is

in units of rads−1 and CQ in units of Hz. This gives:

ωQ =
3CQ2π

4I(2I − 1)h̄

(1

2
(3cos2β − 1) +

1

2
ηsin2βcos2α

)
. (2.136)

The quadrupole shift of energy levels to first order can be expressed in terms of the

quadrupole frequency, ωQ as:

ω
(1)
m−1,m = (1− 2m)ωQ (2.137)

once again indicating the central transition is not shifted to first order. To obtain the

second order shift in the lab frame of reference values of V21V2−1 and V22V2−2 in the

lab frame are required, from [109]:

2V L
21V

L
2−1 = −3

2
e2q2

[
(−1

3
η2cos22α+ 2ηcos2α− 3)cos4β

+(
2

3
η2cos22α− 2ηcos2α− 1

3
η2 + 3)cos2β

+
1

3
η2(1− cos22α)

]
(2.138)

2V L
22V

L
2−2 =

3

2
e2q2

[
(

1

24
η2cos22α− 1

4
ηcos2α+

3

8
)cos4β

+(− 1

12
η2cos22α+

1

6
η2 − 3

4
)cos2β

+
1

24
η2cos22α+

1

4
ηcos2α+

3

8

]
. (2.139)
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The second order shift to the central transition from [109] is:

ω
(2)Static
−1/2,1/2 = − 1

6ω0

[
3CQ2π

2I(2I − 1)

]2

[I(I + 1)− 3

4
]

×[A(α, η)cos4β +B(α, η)cos2β + C(α, η)] (2.140)

where:

A(α, η) = −27

8
+

9

4
ηcos2α− 3

8
(ηcos2α)2

B(α, η) =
30

8
− 1

2
η2 − 2ηcos2α+

3

4
(ηcos2α)2

C(α, η) = −3

8
+

1

3
η2 − 1

4
ηcos2α− 3

8
(ηcos2α)2. (2.141)

If the simplest case of axial symmetry, η = 0 is considered then Equation 2.140 becomes:

ω
(2)Static
−1/2,1/2 = − 1

16ω0

[
3CQ2π

2I(2I − 1)

]2

[I(I + 1)− 3

4
]

×(1− cos2β)(9cos2β − 1) (2.142)

the above analysis is for the case of a single crystal. For a powder spectrum, as com-

monly looked at in solid state NMR, all orientations of V are present with respect to

B0, so β can take on any value from 0 to π.

Quadrupolar Interaction Under MAS

The descriptions for the quadrupole interaction shown in the previous section only

accounts for the case of a static sample within the presence of a magnetic field. However,

the NMR experiment is usually carried out using MAS, as previously discussed in

Section 2.4.2. A further rotation is therefore required from the rotor frame. The first

order quadrupole shift under MAS, looking at Equation 2.127 and using Equations 2.70

and 2.71 is:

ω
(1)MAS
m−1,m =

1

2
(1− 2m)ωQ(3cos2θ − 1). (2.143)

The familiar 3cos2θ − 1 term is again present here for the first order quadrupole in-

teraction that is also present for the dipolar coupling and the chemical shielding. Like
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Figure 2.8: Simulations of lineshapes for quadrupole broadened spin I = 3/2 nucleus
under MAS, displaying only the second order central transition. Variation in the line-
shapes are due to changes in η, with the other parameters being CQ = 2 MHz at 9.4
T. Diagram is based on Figure in [108]

these other anisotropic interactions the effect of MAS causes the first order quadrupole

interaction to be averaged to zero, thus resulting in the 2I lines being reduced to a

single line at ω0.

The effect of the second order quadrupole interaction shift under MAS is given

in [109] as:

ω
(2)MAS
m−1,m =− 3

32ω0

[
CQ2π

I(2I − 1)

]2

(1 +
1

3
η2)

× [2I(I + 1)− 14m(m− 1)− 5]

+
3

128ω0

[
CQ2π

I(2I − 1)

]2

× [6I(I + 1)− 34m(m− 1)− 13]

× g(α, β, η), (2.144)
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where

g(α, β, η) =
1

2
(1 + 6cos2β − 7cos4β)

+
1

3
η(1− 8cos2β + 7cos4β)cos2α

+
1

18
η2[−7(1− cos2β)2

× cos22α+ 8− 4cos2β]. (2.145)

Due to there being no 3cos2θ − 1 dependence for this effect MAS does not sufficiently

average away the second order quadrupole contribution, with an anisotropic powder

lineshape observed even under rapid spinning, typical lineshapes are shown in Figure

2.8.
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Chapter 3

Experimental Details

In the previous chapter the theory behind the phenomenon of nuclear magnetic res-

onance has been presented, outlining how the different nuclear interactions affect the

spins under investigation. Building on from this theory, the techniques required to con-

duct solid state NMR experiment will now be covered, showing how NMR can be used

as a tool to gain valuable structural information. The theory presented in this chap-

ter is collected from the following sources; [98–100], in addition to other publications

explicitly referred to in the text.

3.1 The NMR Signal

As shown in Section 2.3.1 the signal for a one dimensional NMR experiment is given

by Equation 2.50. This can be more formally written as:

s(t) =
1

2
(cos(Ωt) + isin(Ωt))e(−t/T2) (3.1)

where the extra damping term e(−t/T2) is included to indicate decay due to relaxation,

as covered in the Section 3.6. The resonance offset, as previously mentioned, is used

to compare the signal observed with a known reference frequency, both on the order

of MHz; by displaying the difference between the two, a smaller and hence more easily

processed signal will be obtained. From Equation 3.1 the NMR signal is detected

as two signals 90◦ out of phase with one another, known as Quadrature detection.

This is crucial as detection along one axis alone would mean it wouldn’t be possible to

determine the sign of precession of the magnetisation, i.e. to determine if the resonance
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Figure 3.1: Figure showing example of absorptive (top) and dispersive (bottom) line-
shapes (A(∆ω)) and (D(∆ω)). The absorptive lineshape is the desired lineshape cor-
responding to a narrow Lorentzian centred at (+Ω).

offset is positive or negative. Using Quadrature detection successfully ensures sign

discrimination can be obtained.

Equation 3.1 represents the NMR signal in the time domain, which is how the

data is collected in the form of the free induction decay (FID). However, to make

this more useful for a spectroscopist a mathematical function the Fourier transform

is carried out, to transform this time domain data into the frequency domain that is

easier to visualise. The Fourier transform is given by:

s(ω) =

∫ ∞
−∞

s(t)e−iωtdt (3.2)

this results in the signal:

s(ω) = A(∆ω)− iD(∆ω) (3.3)

where:

A(∆ω) =
1/T2

(1/T2)2 + (ω − Ω)2
and D(∆ω) =

(ω − Ω)

(1/T2)2 + (ω − Ω)2
. (3.4)

These are known as the absorptive and dispersive parts of a Lorentzian lineshape, see

Figure 3.1. Only the absorption line is usually presented, due to it being narrower

and centred upon the frequency of interest Ω. However, in reality the signal is most

likely not going to be purely absorptive in the real part of the spectrum and disper-

sive in the imaginary part, as implied in Equation 3.3, due to phase imperfections in

the magnetisation collected. Therefore, “phasing” the spectrum is generally required
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by the spectroscopist, involving taking linear combinations of the real and imaginary

components, to achieve the desired absorptive lineshape.

3.2 Two Dimensional NMR

Commonly, more information is required than can usually be provided with a simple

1D NMR experiment alone, therefore a second varying time period can be included,

which under a further Fourier transformation leads to a two dimensional frequency

domain spectrum. The duration of this second time period, denoted by t1 (Note this

isn’t the same as T1 relaxation see Section 3.6) is incremented during the course of a

series of FIDs being obtained, leading to a modulation of the NMR signal dependent

upon this t1 value. During the t1 period the signal can be modulated in two different

ways, phase or amplitude modulated. Phase modulation leads to undesirable phase

twist lineshapes obtained in the 2D spectra unless a full echo is acquired, therefore the

experiments used in this thesis will solely consist of amplitude modulation.

In a standard 2D amplitude modulated experiment the signal is given by:

s(t1, t2) = (e−iΩt1 + e+iΩt1)e−t1/T
(1)
2 e+iΩt2e−t2/T

(2)
2

= 2cos(Ωt1)e−t1/T
(1)
2 e+iΩt2e−t2/T

(2)
2 . (3.5)

If a Fourier transformation is applied in the F2 dimension first, as shown for a simple

1D experiment, this becomes:

s(t1, ω2) = 2cos(Ωt1)e−t1/T
(1)
2 (A+

2 − iD
+
2 ), (3.6)

where the terms A±n and D±n correspond to absorptive and dispersive lineshapes respec-

tively centred at the frequency ±Ω in the Fn dimension. The next step is to consider

both the real and imaginary parts of Equation 3.6 individually and carry out the further

Fourier transformation in F1 separately, known as a hypercomplex Fourier transform.

Firstly, for the real parts:

s(ω1, ω2)Re = [(A−1 − iD
−
1 ) + (A+

1 − iD
+
1 )]A+

2

= (A−1 +A+
1 )A+

2 − i(D
−
1 +D+

1 )A+
2 (3.7)
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and the imaginary part:

s(ω1, ω2)Im = [(A+
1 − iD

+
1 ) + (A−1 − iD

−
1 )]D+

2

= (A+
1 +A−1 )D+

2 − i(D
+
1 +D−1 )D+

2 . (3.8)

From Equations 3.7 and 3.8 it is clear that four possible lineshape can exist corre-

sponding to: pure absorption in F1 and F2, pure dispersion in F1 and F2, and both

combinations of dispersive and absorptive in each dimension. Thus, using amplitude

modulation alone does not result in sign discrimination due to the mixture of positive

and negative amplitude and dispersive terms, so determining if the signal obtained

is larger or smaller than the rf frequency is not possible. To restore sign discrimina-

tion there are two possible methods that are commonly implemented, States [110] or

TPPI [111]. All of the experiments in this thesis use the States method, which involves

recording two FIDs 90◦ out of phase with each other so that both a cosine and sine

modulation is obtained with respect to t1:

ssin(t1, t2) = 2sin(Ωt1)e−t1/T
(1)
2 e+iΩt2e−t2/T

(2)
2

scos(t1, t2) = 2cos(Ωt1)e−t1/T
(1)
2 e+iΩt2e−t2/T

(2)
2 .

(3.9)

Applying a Fourier transform with respect to F2:

ssin(t1, ω2) = 2sin(Ωt1)e−t1/T
(1)
2 (A+

2 − iD
+
2 )

scos(t1, ω2) = 2cos(Ωt1)e−t1/T
(1)
2 (A+

2 − iD
+
2 ).

(3.10)

Discarding the imaginary components these equations become:

ssin(t1, ω2)Re = 2sin(Ωt1)e−t1/T
(1)
2 A+

2

scos(t1, ω2)Re = 2cos(Ωt1)e−t1/T
(1)
2 A+

2 .

(3.11)
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Figure 3.2: Top: Two pulse pulse sequence diagram (COSY) showing two 90◦ pulses
separated by delay τ . Bottom: Coherence transfer pathway showing desired coherences
upon application of rf pulses. Unwanted coherences are suppressed by phase cycling.

Then carrying out the second Fourier transform, now in the F1 dimension:

ssin(ω1, ω2)Re = i[(A−1 − iD
−
1 )− (A+

1 − iD
+
1 )]A+

2

= (D−1 −D
+
1 )A+

2 + i(A−1 −A
+
1 )A+

2

scos(ω1, ω2)Re = [(A−1 − iD
−
1 ) + (A+

1 − iD
+
1 )]A+

2

= (A−1 +A+
1 )A+

2 − i(D
−
1 +D+

1 )A+
2 (3.12)

Upon inspection of Equation 3.12 if we take the imaginary part of the sin originating

term and the real part of the cos originating term, upon taking the difference between

the two:

Re[scos(ω1, ω2)Re]− Im[ssin(ω1, ω2)Re] = 2A+
1 A

+
2 (3.13)

Which as required results in a two dimensional absorption lineshape, with sign discrim-

ination, centred at the frequency (+Ω,−Ω), due to the States procedure.

3.3 Phase Cycling

As discussed in Section 2.3.1 coherent states are created during the NMR experiment

upon application of an rf pulse, that ultimately result in the observed NMR signal.

In addition to the single quantum coherences discussed in Section 2.3.1 achieved upon
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application of a 90◦ pulse, higher order coherences are achievable, such as double or

triple quantum coherence, dependent upon the spin system. Pulse sequences in NMR

utilise a series of different rf pulses and delays, in order to manipulate these coherences,

to ultimately gain further insight into the spin system, where a wealth of information

can be obtained. During a pulse sequence only certain coherences may be desired,

dependent upon the particular interaction being considered. These coherence levels are

best illustrated illustratively, as shown in Figure 3.2, corresponding to the case of the

solution state COSY experiment. At the top of Figure 3.2 is the pulse sequence diagram,

where pulses are indicated by solid blocks, the length of which depends upon the pulse

used, e.g. 90◦ or 180◦. Below the pulse sequence is the coherence transfer pathway

diagram, which indicates the desired coherences for that particular pulse sequence. It

is important to note that changes in coherences can only be obtained via application

of an rf pulse, periods of free precession do not create change in coherence order.

The problem is that rf pulses are not particularly effective at selecting the coher-

ence orders desired, resulting in a whole number of coherences being created, not just

the pathways as indicated in the coherence pathway diagram in Figure 3.2. Therefore

the technique of phase cycling is used, where upon subsequent acquisitions the phase

associated with the rf pulses are varied, suppressing unwanted coherences.

Phase cycling follows a series of basic rules that enable the NMR spectroscopist

to follow and create phase cycling schemes for even the most complex of pulse se-

quences, to achieve the desired coherence pathways. Firstly, the coherence pathway

always starts at p = 0, coherence order 0. The required finishing point of a phase cycle

is for single quantum coherence resulting in the signal observed, as shown in Section

2.3.1, p = −1. Therefore, the phases of the rf pulses need to be cycled to achieve the

desired coherences between these two fixed points. The golden rules of phase cycling

are:[100]

If the phase of a pulse or a group of pulses is shifted by φ then a coherence under-

going a change in coherence order ∆p experiences a phase shift −φ∆p, detected by the

receiver. [100]

And the second golden rule of phase cycling is:
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Step Number φA −φA.∆p Receiver Phase

1 0 0 0
2 90 -90(270) 270
3 180 -180(180) 180
4 270 -270(90) 90

Table 3.1: Phase cycling table for the pulse sequence in Figure 3.2. The 4 step cycle,
from Golden Rule 2, selects the desired coherence pathway, with the receiver phase
determined using Golden Rule 1.

If a phase cycle uses steps of 360◦/N then, along with the desired pathway ∆p, path-

ways ∆p ± nN , where n = 1, 2, 3, ., will also be selected. All other pathways are sup-

pressed.[100]

These rules provide instructions to follow to construct the phase cycle, if we use the

example from Figure 3.2, an initial coherence change from p = 0 to p = 1 upon applica-

tion of the first pulse is required, ∆p = 1. From the second golden rule if we select a 4

step phase cycle we obtain coherences ∆p = +1,+5,+9,−3,−7,−11, thereby blocking

the undesirable coherences +2,+3,−1,−2, but retaining the required +1 coherence.

Although we detect other coherences in addition to the p = +1 path, such as +5,+9

etc., these will have negligible contribution and can safely be ignored due to inefficient

excitation of these higher coherence orders. A phase cycle table can then be created-

see Table 3.1, that shows the phase cycling scheme required for the pulse sequence in

Figure 3.2, with both the phase of pulse A required and the corresponding receiver

phase. This successfully results in signal only being detected that evolved as single

quantum coherence during the period τ(between A and B pulses). For more advanced

pulse sequences containing more pulses a total of n− 1 pulses need to be phase cycled,

where n is the number of pulses in the pulse sequence.

3.4 Pulsed Experiments

3.4.1 Product Operators

The density operator analysis, as described in Section 2.2, is useful as it encodes all of

the relevant information in order to describe the NMR experiment. However for the
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analysis of more than a few coupled spins the density operator approach becomes less

intuitive due to the increasingly expanding matrix calculations required. An alternative

approach that can be adopted is to express the density matrix as a series of product op-

erators. Upon following certain identities, the product operator analysis can help give

information on the effect of rf pulses, helping to give a quantum mechanical approach

but with an intuitive feel, enabling a much more detailed analysis of NMR pulse se-

quences. Despite its usefulness the product operator analysis does have its drawbacks,

in that it is only applicable to describe systems evolving under weak J coupling, and

it doesn’t take into account relaxation effects. However for simple pulse sequences on

spin I = 1
2 nuclei it is extremely effective.

From Section 2.2 the three operators describing an isolated spin I = 1
2 nucleus

are:

Îx, Îy, Îz (3.14)

representing the magnetisation in each axis of the rotating frame. For the product

operator analysis the hat will be omitted for brevity.

The effect of an x and y rf pulses on each of the operators is given by:

Ix
βx−→ Ix

Iy
βx−→ Iycosβ + Izsinβ

Iz
βx−→ Izcosβ − Iysinβ

Ix
βy−→ Ixcosβ − Izsinβ

Iy
βy−→ Iy (3.15)

Iz
βz−→ Izcosβ + Ixsinβ (3.16)

which shows that application of a pulse in a particular axis has no effect on the operator

in that axis. By inserting values of the pulses, for instance 90◦ or 180◦, the effects of

the pulse on the operator are easily understood.

Upon a period of free evolution under the resonance offset, the operators behave
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as:

Ix
Ωt−→ Ixcos(Ωt) + Iysin(Ωt)

Iy
Ωt−→ Iycos(Ωt)− Ixsin(Ωt)

Iz
Ωt−→ Iz (3.17)

The above show what the effects of rf pulses and free evolution on a single isolated spin

I = 1
2 nucleus, however the power of product operators is in describing coupled spin

systems. For a pair of spin I = 1
2 J coupled nuclei the relevant product operators are

now:

Ix, Iy, Iz, Sx, Sy, Sz,

2IxSx, 2IxSy, 2IxSz, 2IySx,

2IySy, 2IySz, 2IzSx, 2IzSy, 2IzSz (3.18)

where the factor 2 is purely for normalisation purposes. Evolution during free precession

will now be under the effect of the J coupling, in addition to the resonance offset. In

the product operator approach these can be dealt with sequentially, with the effect of

the J evolution given by:

Ix
πJISt−−−→ Ixcos(πJISt) + 2IySzsin(πJISt)

2IySz
πJISt−−−→ 2IySzcos(πJISt)− Ixsin(πJISt)

Iy
πJISt−−−→ Iycos(πJISt)− 2IxSzsin(πJISt)

2IxSz
πJISt−−−→ 2IxSzcos(πJISt) + Iysin(πJISt) (3.19)

where the factor of 2π has come from the fact the J coupling is considered in terms of

rad s−1 rather than its usual Hz. For the anti-phase terms, such as 2IxSz, the effect

of a resonance offset is:

2IxSz
ΩI t−−→ 2IxSzcos(ΩIt) + 2IySzsin(ΩIt) (3.20)
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Figure 3.3: Pulse sequence for a two pulse spin echo experiment [25, 26]. The initial 90◦

pulse creates single quantum coherence that evolves during the delay τ/2. The 180◦

pulse causes a refocusing of the magnetisation after the second τ/2 delay period. The
corresponding coherence transfer pathway is shown below the pulse sequence indicating
the coherence changes associated with each step of the sequence.

and the effect of a pulse:

2IxSz
(βy)I−−−→ 2IxSzcosβ − 2IzSzsinβ (3.21)

where the subscript I denotes the pulse effecting the I spin, therefore the S term

remains unchanged.

The product operator analysis is best understood by way of examples, its de-

scription for pulse sequences used within this thesis is given in the subsequent sections.

3.4.2 Spin Echo

First proposed in 1950 by Hahn [25] and later developed by Carr and Purcell [26],

the spin echo has become a building block for many solid state NMR pulse sequences,

with the pulse sequence shown in Figure 3.3. The main function of the spin echo in

NMR spectroscopy is to refocus broadening effects from the Hamiltonians of undesired

interactions. A simple magnetisation vector model can be easily used to describe the

spin echo. Initially the spins are aligned with the B0 field in the z-direction; this is

then perturbed into the xy plane by the 90◦ pulse. The spins then precess freely for a

time τ/2 before the final 180◦ pulse flips them to their mirror image. During the final

τ/2 period the spins again are able to precess freely resulting in an echo forming. The

refocusing echo originates from the fact that some spins will be subject to different local
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magnetic fields, due to the interactions present. During the periods of free precession

some spins will precess faster than others during the first period τ/2; upon application

of the 180◦ pulse the magnetisation is caused to flip, resulting in the faster precessing

spins now being behind the slower spins. After the further τ/2 period the spins catch

up with one another, resulting in the refocusing effect.

The spin echo can be described quantum mechanically by the product operator

analysis, as introduced in the last section. Considering the case of a pair of heteronu-

clear spin I = 1
2 coupled nuclei:

Iz
(90x)I−−−−→ −Iy (3.22)

The equilibrium magnetisation, Iz is perturbed into the x− y plane, creating Iy. This

is then followed by a period of free precession τ/2 where evolution is due to both the

resonance offset and the heteronuclear J coupling, which can be taken sequentially:

ΩIτ/2−−−−→− Iycos(ΩIτ/2) + Ixsin(ΩIτ/2)

πJISτ/2−−−−−→− Iycos(ΩIτ/2)cos(πJISτ/2) + 2IxSzcos(ΩIτ/2)sin(πJISτ/2)

+ Ixsin(ΩIτ/2)cos(πJISτ/2) + 2IySzsin(ΩIτ/2)sin(πJISτ/2) (3.23)

Next the 180◦ pulse is applied:

(180y)I−−−−→− Iycos(ΩIτ/2)cos(πJISτ/2)− 2IxSzcos(ΩIτ/2)sin(πJISτ/2)

− Ixsin(ΩIτ/2)cos(πJISτ/2) + 2IySzsin(ΩIτ/2)sin(πJISτ/2) (3.24)

before the final τ/2 period of free precession:

ΩIτ/2−−−−→ −Iycos(πJISτ/2)− 2IxSzsin(πJISτ/2)

πJISτ/2−−−−−→ −Iy (3.25)

The identity cos2θ + sin2θ = 1 has been used for both of the above steps. Therefore

after the second τ/2 period −Iy magnetisation is created, as was created after the initial

90◦ pulse, hence a refocusing of the magnetisation.

Typically in the solid state NMR experiment the observed linewidth, due to
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the effects of magnetic inhomogeneities, doesn’t solely correspond to T2 as expected.

This is due to varying magnetic fields experienced across the sample, such as from

instrumental imperfections, resulting in a range of chemical shifts broadening the line.

This means the observed NMR linewidth (T ∗2 ) is much broader than expected from

transverse relaxation alone, T ∗2 ≤ T2. However, from Equation 3.25 above for the

case of the heteronuclear coupled spin pair, the effects of the resonance offset, and

the heteronuclear J coupling, are refocused using the spin echo sequence. Due to this

refocusing effect these inhomogeneities broadening the lineshape are clearly removed,

resulting in a refocused line width that is smaller than the ordinary one pulse linewidth.

Thus the coherence lifetime T
′
2 is much larger than the dephasing time of the FID T ∗2 .

For a homonuclear coupled spin 1
2 pair the product operator analysis gives:

Iz
(90x)IS−−−−−→ −Iy (3.26)

The 90◦ pulse can affect both I and S magnetisation, although the result above in

Equation 3.26 is the same as for the heteronuclear case due to there being initially no

magnetisation on the S spin. The period of free precession also results in the same

result as for the heteronuclear case:

ΩIτ/2−−−−→− Iycos(ΩIτ/2) + Ixsin(ΩIτ/2)

πJISτ/2−−−−−→− Iycos(ΩIτ/2)cos(πJISτ/2) + 2IxSzcos(ΩIτ/2)sin(πJISτ/2)

+ Ixsin(ΩIτ/2)cos(πJISτ/2) + 2IySzsin(ΩIτ/2)sin(πJISτ/2) (3.27)

The 180◦ pulse affects now both I and S magnetisation giving:

(180y)IS−−−−−→− Iycos(ΩIτ/2)cos(πJISτ/2) + 2IxSzcos(ΩIτ/2)sin(πJISτ/2)

− Ixsin(ΩIτ/2)cos(πJISτ/2)− 2IySzsin(ΩIτ/2)sin(πJISτ/2) (3.28)

and the final free precession during τ/2 gives:

ΩIτ/2−−−−→ −Iycos(πJISτ/2) + 2IxSzsin(πJISτ/2)

πJISτ/2−−−−−→ −Iycos(πJISτ) + 2IxSzsin(πJISτ) (3.29)
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where the identities cos2θ − sin2θ = cos2θ and 2sinθcosθ = sin2θ have been used in

the last step. The above procedure only accounts for the magnetisation on the I spin,

however the S spin will behave exactly the same, giving the result for both spins as:

−(Iy + Sy)cos(πJISτ) + (2IxSz + 2IzSx)sin(πJISτ) (3.30)

From Equation 3.30 it can be seen that the spin echo again refocuses the chemical

shift, however this time unlike for the heteronuclear case, the J coupling is retained for

the homonuclear spin system. The dependence on the homonuclear J coupling observed

can be quite useful, and forms the building block of many advanced NMR experiments

to exploit this homonuclear coupling. Upon carrying out multiple spin echo experiments

with differing τ/2 values the J modulation can be mapped out to extract a value for the

J coupling, that may normally be masked by the large linewidths originating from the

distributions of chemical shifts which themselves have been refocused by the spin echo.

A thorough theoretical treatment of spin echo modulation by homonuclear J couplings

under MAS is given in the article Duma et al..[112]

Another advantage of echo experiments is that the formation of the echo begins

after the second τ/2 period, meaning that the effects experienced from the ring down

of the probe immediately after the pulse, do not distort the beginning of the signal

acquisition. This has the advantage for resolving broad NMR lines that decay quite

quickly, which may be distorted in the deadtime between the rf pulse and the beginning

of the acquisition that is required in an ordinary one pulse experiment. For static NMR

work, and work on broad quadrupole lines a quadrupole echo is commonly used.[113]

3.4.3 INADEQUATE and refocused INADEQUATE

A vast array of pulse sequences in NMR exploit the useful properties of spin echoes

outlined in the previous section. One such experiment the INADEQUATE (Incredible

natural abundance double quantum transfer), was developed in the early 1980s for use

in solution NMR [36, 117, 118], with near identical versions implemented in the solid

state by Lesage and co workers in the late 1990s.[114] The ordinary INADEQUATE

pulse sequence was, however, quickly overtaken in the solid state by the refocused

INADEQUATE,[115] where an additional spin echo was appended to the end of the
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Figure 3.4: Pulse sequence diagrams and corresponding coherence transfer pathway
diagrams of (a) INADEQUATE experiment which consists of an initial spin echo se-
quence with a further 90◦ pulse to create DQ coherence which evolves for the delay t1
and is then converted to observable anti-phase signal by the final 90◦ pulse.[114] (b)
refocused INADEQUATE experiment which contains a further spin echo appended on
at the end of the INADEQUATE sequence to detect in-phase magnetisation.[115] (c)
REINE experiment, which contains a further spin echo appended to the end of the refo-
cused INADEQUATE sequence. The length of the final spin echo delay in the REINE
experiment (τj) is incremented during a series of REINE experiments to observe a J
modulation of the observed signal. Z -filters are shown instead of the 90◦ pulses, before
the final spin echo period (Zf1) and after the final spin echo period (Zf2), to remove
unwanted coherence orders that could result in lineshape distortions.[116]
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INADEQUATE to provide in-phase magnetisation, rather than the anti-phase line-

shapes produced in the INADEQUATE. The benefit of acquiring in-phase lineshapes

lies in the fact that broader lines, typical in solid state NMR, are acquired without the

effect of signal cancellation that can occur from anti-phase lineshapes.

Figure 3.4 shows the pulse sequence for both the INADEQUATE and refocused

INADEQUATE experiments. Both experiments consist of an initial spin echo, which is

used to remove evolution under offsets and hence chemical shielding inhomogeneities,

and result in only evolution under the homonuclear J coupling. A 90◦ pulse then

creates double quantum (DQ) coherence, which then evolves during the period t1,

this is then converted to observable SQ coherence by the final 90◦ pulse where for

the INADEQUATE experiment the signal is subsequently acquired as an anti-phase

lineshape. The difference for the refocused INADEQUATE experiment comes from

the fact that after the final 90◦ pulse, there is an additional τ − 180◦ − τ spin echo

period, resulting in purely in-phase signal acquired. DQ coherence is only achievable

for coupled spin systems, therefore signal from isolated uncoupled spins are suppressed

by the double quantum filter, meaning that any signal observed will only originate

from bonded nuclei. DQ coherence in itself isn’t directly observable, however due to its

evolution during t1 and subsequent conversion to SQ coherence by the final 90◦ pulse,

indirect observation is achieved.

Both the INADEQUATE and refocused INADEQUATE pulse sequences can

be easily modified into 2D experiments upon incrementing the time period t1. Sig-

nals obtained in the 2D spectra occur in the F1 (vertical) dimension, known as the

double quantum (DQ) dimension, at the sum of the individual chemical shifts of the

two coupled nuclei. These 2D maps can provide great insight into bonded networks,

particularly when multiple connectivities are present.

The product operator analysis can provide an insightful explanation as to the

working of the INADEQUATE and refocused INADEQUATE experiments. Consider-

ing a three spin I = 1
2 homonuclear system, where I and S spins are coupled and R is

an isolated spin of the same species, after the application of the first 90◦ pulse:

Iz + Sz +Rz
(90x)ISR−−−−−→ −Iy − Sy −Ry (3.31)
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The spin echo period τ/2 − 180◦ − τ/2 can be considered as an evolution due to the

homonuclear J for a period of length τ , as the spin echo was shown to refocus the

resonance offset, so it does not need to be considered:

πJISτ−−−−→− (Iy + Sy)cos(πJISτ) + (2IxSz + 2IzSx)sin(πJISτ)−Ry. (3.32)

The J evolution only affects the I and S terms, as the R spin is not coupled to the

other spins. A further 90◦ pulse is then applied:

(90x)ISR−−−−−→− (Iz + Sz)cos(πJISτ)− (2IxSy + 2IySx)sin(πJISτ)−Rz. (3.33)

Here the terms (2IxSy + 2IySx) correspond to DQ coherence which then evolve during

the short period of t1, after which the final 90◦ pulse converts them back into SQ

coherence:

(90x)ISR−−−−−→(Iy + Sy)cos(πJISτ)− (2IxSz + 2IzSx)sin(πJISτ) +Ry (3.34)

where the SQ coherence (2IxSz+2IzSx) results in an anti-phase signal obtained. This is

the final step in the INADEQUATE pulse sequence, with Ry and (Iy+Sy) contributions

removed by phase cycling the first three pulses by φ = 90◦ in a 4 step cycle.

For the refocused INADEQUATE experiment a further spin echo is appended

to the end. Only considering the anti-phase terms in Equation 3.34 (as the other terms

were removed by phase cycling):

πJISτ−−−−→− (Iy + Sy)sin
2(πJISτ)− (2IxSz + 2IzSx)sin(πJISτ)cos(πJISτ). (3.35)

Therefore, at the end of the refocused INADEQUATE experiment the first term in

Equation 3.35 is the in-phase SQ coherence that is detected. The other term, the

SQ anti-phase magnetisation is not observed as it induces no NMR signal. Although

this anti-phase term can evolve into sin modulated in-phase magnetisation (anti-phase

signal) through J modulations during t2, leading to lineshape distortions.

Real systems tend to be more complicated than the case described above of only

two coupled spins. A more complicated three coupled spin product operator analysis
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is given by Cadars et al. for the refocused INADEQUATE pulse sequence.[119]

The theoretical product operator treatment of the refocused INADEQUATE

experiment shows that signals should only be observed originating from through bond

correlations. Although this is true in solution NMR, there are certain cases in the

solid state where signals can arise in the refocused INADEQUATE experiment that

are not attributed to a through bond coupling, and in fact arise from residual higher

order effects from anisotropic interactions, such as CSA and dipolar effects. Duma et

al. discusses the effect of these residual interactions on the spin echo experiment.[112]

Fayon et al. use experiment and theory to investigate unexpected additional peaks

in the refocused INADEQUATE experiment, showing that for the case of identical

chemical shifts, but differing CSA tensors, so called “n = 0 rotational resonance”, where

no coupling is present, signals can appear on or close to the F1 = 2F2 diagonal.[120]

It is shown that these peaks occur if the MAS rates are much less than the size of the

anisotropies, with their strength increasing with B0 and decreasing with MAS rate.

3.4.4 Z -filters

Cadars et al. have shown that for a multiple coupled spin system that further line-

shape distortions can arise in the refocused INADEQUATE experiment.[119] These

undesirable distortions originate from ZQ and DQ coherences, created from anti-phase

terms evolving into observable anti-phase NMR signal during the detection period, as

mentioned previously. Cadars et al. have shown how for solids the implementation

of a Z-filter at the end of the pulse sequence, that is a series of pulses separated by

a short delay between them, combined with appropriate phase cycling, can be effec-

tive in removing most of these ZQ and DQ coherences, and consequently most of the

lineshape distortions.[119] If the anti-phase term present at the end of the refocused IN-

ADEQUATE Equation 3.35 is considered, the product operator analysis of the Z -filter

is:

2IxSz
(90x)IS−−−−−→ −2IxSy (3.36)
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If we use the expressions for the multiple quantum coherences:[121]

2IxSx =
1

2
(I+S+ + I+S− + I−S+ + I−S−)

2IySy = −1

2
(I+S+ − I+S− − I−S+ + I−S−)

2IxSy =
1

2i
(I+S+ − I+S− + I−S+ − I−S−)

2IySx =
1

2i
(I+S+ + I+S− − I−S+ − I−S−).

(3.37)

Equation 3.36 can be written as:

− 2IxSy =
1

2i
(I−S− − I+S+ + I+S− − I−S+) (3.38)

the phase cycling removes the DQ terms, leaving only the ZQ terms, giving:

φ−cycle−−−−−→ 1

2i
(I+S− − I−S+) =

1

2
(2IySx − 2IxSy). (3.39)

After the final 90 pulse:

(90−x)IS−−−−−→ 1

2
(2IxSz − 2IzSx). (3.40)

For the magnetisation that originated as in-phase the Z -filter has the effect of:

Iy
(90x)IS−−−−−→ Iz

(90−x)IS−−−−−→ Iy (3.41)

Therefore, in a successful Z -filter half of the terms (the DQ contribution) are removed,

leaving only the ZQ coherences. To successfully remove the ZQ coherences a long

enough Z -filter delay is required, through which these coherences dephase. Whereas

the in-phase magnetisation that is converted to population states during the Z -filter

experiences no dephasing, and thus is unaffected.

3.4.5 REINE

A modification of the conventional refocused INADEQUATE pulse sequence, first pro-

posed by Cadars et al., is the refocused INADEQUATE spin echo (REINE) pulse
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sequence.[116] The REINE pulse sequence, shown in Figure 3.4, consists of the con-

ventional refocused INADEQUATE with an additional spin echo appended upon the

end, the idea being that the refocused INADEQUATE section provides a 2D map of

the connectivities, with an additional J modulation introduced by the additional spin

echo. Upon carrying out a series of 2D experiments and by incrementing the duration

of the final spin echo period τj , values of the J couplings can be extracted from the

intensity modulation of each of the peaks in the 2D spectra.

After the refocused INADEQUATE the product operator analysis results in

Equation 3.35, upon application of the first Z -filter this becomes:

ZF1−−→ Z1(2IxSz + 2IzSx)cos(πJISτ)sin(πJISτ) + (Iy + Sy)sin
2(πJISτ) (3.42)

where Z1 represents the efficiency of the Z -filter, with values 0 ≤ Z1 ≤ 1. Z1 = 0 for

a perfect Z -filter, and Z1 = 1 for no Z -filter implemented. The evolution under the J

coupling for the final REINE spin echo period is:

πJISτj−−−−→ Z1[(2IxSz + 2IzSx)cos(πJISτ)sin(πJISτ)cos(πJISτj)

+(Iy + Sy)sin(πJISτ)cos(πJISτ)sin(πJISτj)]

+(Iy + Sy)sin
2(πJISτ)cos(πJISτj)

−(2IxSz + 2IzSx)sin2(πJISτ)sin(πJISτj) (3.43)

Finally a further Z -filter is applied at the end of the pulse sequence:

ZF2−−→ Z1Z2(2IxSz + 2IzSx)cos(πJISτ)sin(πJISτ)cos(πJISτj)

+Z1(Iy + Sy)sin(πJISτ)cos(πJISτ)sin(πJISτj)

+(Iy + Sy)sin
2(πJISτ)cos(πJISτj)

−Z2(2IxSz + 2IzSx)sin2(πJISτ)sin(πJISτj) (3.44)

where again Z2 represents the efficiency, this time of the second Z -filter. If two perfect

Z -filters are implemented then the signal at the end of the REINE pulse sequence
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should correspond to:

(Iy + Sy)sin
2(πJISτ)cos(πJISτj) (3.45)

where an in-phase signal is acquired, modulated by the cos(πJISτj) term. Comparing

this result to that from the ordinary homonuclear spin echo, it can be seen that spin

echo like behaviour is observed during the REINE experiment, however it is combined

with the 2D separation of peaks as found in the refocused INADEQUATE experiment.

The REINE experiment has been applied to slightly disordered systems of 13C

in cellulose and 31P in bis-phosphino amine sample by Cadars et al..[116] Guerry et al.

showed its implementation on a disordered phosphate glass for the first time, enabling

further insight to be extracted from these broad and usually featureless lineshapes.[122]

It was shown that the advantage of the REINE experiment over the conventional spin

echo on these glasses lies in the fact that the broad lines often are composed of many

different connectivities, therefore upon measuring the J coupling using a spin echo the

values obtained would be an averaged coupling value for each 1D peak, whereas in the

REINE experiment, due to the separation of these usually overlapping peaks in the

second (F1) dimension, upon looking at each of these peaks separately, distinct values

of the J couplings could be determined for each different connectivity. [122]

Guerry et al. showed a pixel by pixel fitting analysis, where a separate spin

echo fit was carried out for each individual pixel across the REINE peaks, successfully

providing a map of the J couplings across each of the peaks.[122] This enabled greater

insight into the disorder within the glass network. Furthermore, unlike in the refo-

cused INADEQUATE experiment, where correlation peaks may occur not arising from

through bond correlations, Guerry et al. found no dependence or change in results ob-

tained upon modelling the REINE data to take into account for a zero frequency term.

Therefore all correlations should arise from through bond correlations, demonstrating

the power of this technique.[122]

3.4.6 J -HMQC

A further NMR pulse sequence for investigation of correlations through J couplings

is the J -HMQC experiment. Initially designed for solution state NMR by Bax et al.
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Figure 3.5: Pulse sequence diagram for a J -HMQC experiment.[124] The pulses applied
to the two spin systems are shown one above the other. Detection occurs on the I spin,
which consists of effectively a spin echo. Two 90◦ degree pulses on the S spin effectively
flank the 180◦ pulse of the I spin echo, with the delay between these 90◦ pulses and the
180◦ pulse on the I spin incremented to create the second time dimension. Signals are
only retained from heteronuclear J couplings, giving insight into the bonded network.

[123], its first implementation on solid state systems was carried out by Lesage et al.

looking at the spin I = 1
2 pair of 13C and 1H.[124] Unlike the refocused INADEQUATE

experiment, rather than focusing on homonuclear couplings, the J -HMQC experiment

exploits heteronuclear couplings, providing a 2D map of heteronuclear through bond

connectivities. The pulse sequence is shown in Figure 3.5, consisting of two channels,

one for spin I and one for spin S. Again the product operator analysis is useful for

providing insight into the inner workings of the sequence. Considering the I spin, the

sequence is effectively a spin echo, thus evolution under the resonance offset of spin I is

refocused and can be safely neglected during this product operator approach. After the

first τ/2 delay the state of the system is due to −Iy evolving under the heteronuclear

coupling:

−Iycos(πJISτ) + 2IxSzsin(πJISτ) (3.46)
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if the τ/2 delay is selected so that τ = 1
2JIS

then only the anti-phase term remains.

Upon application of the 90◦ pulse on the S spin:

2IxSz
(90x)S−−−−→ −2IxSy. (3.47)

Therefore, a mixture of heteronuclear multinuclear quantum coherences are created,

which now can evolve during t1 under the resonance offset of spin S:

ΩSt1−−−→ −2IxSycos(Ωst1) + 2IxSxsin(Ωst1) (3.48)

The second 90◦ pulse on the S spin converts these multiple quantum coherences back

into observable single quantum coherences:

(90x)S−−−−→ −2IxSzcos(Ωst1) + 2IxSxsin(Ωst1), (3.49)

where the second term still remains as multiple quantum coherence, and so remains

unobservable and is ignored. The other term evolves during the final τ/2 period under

the J coupling from anti-phase to in-phase signal:

πJISτ−−−−→ −Iycos(Ωst1), (3.50)

thus an in-phase doublet is obtained, centred on the offset of I. Phase cycling ensures

that only the desired DQ coherences are present during t1, leading to signals from

uncoupled nuclei to be suppressed.

In solids broad lines usually prevent the observation and resolution of the doublet

splitting. However, in-phase signals are observed from the J -HMQC in the presence of

a J coupling, giving clear indication on the connectivities present, even for broad solid

lineshapes.

Although the analysis shown above was for a coupled heteronuclear spin I = 1
2

pair, the J -HMQC experiment is also suitable for observing J correlations in systems

involving quadrupole nuclei, with Massiot et al. looking at 27Al-31P,and Iuga et al.

even looking at the two quadrupole nuclei pair of 17O and 27Al.[125, 126] However,

the limitation remains that the evolution time required to observe signal is inversely
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proportional to the strength of the J coupling, and with couplings typically being very

small, long evolution times are often necessary. Thus long enough coherence lifetimes

(T ′2) are ultimately required to ensure the signal survives.

3.4.7 MQMAS

As was discussed in Section 2.4.2 MAS is effective at removing first order effects due

to anisotropic interactions, however for the quadrupole interaction due to its generally

larger nature there is often need to consider second order contributions. The complex

angular dependence of this second order contribution means that these anisotropic

component are not fully removed under MAS alone. The multiple quantum experiment

combined with magic angle spinning (MQMAS) was first proposed by Frydman and

Harwood in 1995, showing that line narrowing of the central transition (CT) can be

obtained under MAS by exploiting high coherence orders, correlating evolution under

MQ coherences to that of SQ coherences, thus retaining isotropic information whilst

refocusing the anisotropic contribution.[51] Equation 2.144 shows the frequency shift

due to the second order quadrupole interaction under MAS between the transitions of

m and m − 1. The angular dependant term in Equation 2.144 is known as the 4th

order legendre polynomial and is the origin of the anisotropic broadening remaining

under MAS. (Coefficients representing this term are given in for different spins (I)

in Table A.1 located in the Appendix). Frydman and Harwood identified that the

coefficients of the isotropic and anisotropic shifts differ between single and multiple

quantum coherences. Therefore allowing SQ and MQ evolution to occur for a period

equal to the ratio between multiple quantum and single quantum coherence, so called

the MQMAS ratio, results in a refocusing of the anisotropic effects. For the case of 3Q

coherence this ratio is given by:

k =
C4(I, 3/2)

C4(I, 1/2)
(3.51)

where C4 is the coefficient for the 4th order legendre polynomial.

Due to the popularity of the MQMAS technique there have been many studies,

and hence many modifications to the pulse sequence from the one originally proposed

by Frydman and Harwood. However, all MQMAS experiments follow the same basic
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Figure 3.6: Pulse sequence diagram of amplitude modulated MQMAS experiments. (a)
Two pulse MQMAS, consisting of φ1 pulse creating 3Q coherence, which then evolves
during t1 period. φ2 pulse then converts this 3Q coherence to SQ coherence, with an
echo forming after t2, when the signal is then acquired. (b) Amplitude modulated
Z -filtered MQMAS, where the difference is that the second pulse φ2, now converts the
magnetisation to the p = 0 level for a period τ , before the final pulse φ3 converts the
signal to observable SQ coherence.

principles. Initially an rf pulse is applied to create the MQ coherences, which are then

allowed to evolve during a period t1. The MQ coherences are then reconverted into

observable SQ coherences by a further rf pulse, with the magnetisation then detected

during the period t2. In principle, the multiple quantum coherences evolving during

t1 can be one of many, as selected by the user, for instance 3Q, 5Q 7Q, with the

appropriate coherence order obtained by phase cycling. The inefficiency of rf pulses

to excite only the desired coherence order, resulting in magnetisation being lost upon

phase cycling away unwanted coherences, demonstrates one of the key problems in

the MQMAS experiment; efficiency.[127, 128] Although it has been shown that some

improvements in resolution may be obtained by looking at higher order coherences, the

most commonly observed coherence order remains 3Q due to it being more efficient to
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Figure 3.7: Amplitude modulated Split t1 MQMAS pulse sequence and coherence path-
way, for a I = 3

2 nucleus, with Z -filter (ZF).The evolution period is split between SQ
and 3Q evolution according to the MQMAS ratio.

generate, and therefore generally resulting in much better signal to noise.

Both amplitude and phase modulated MQMAS sequences have been shown in

the literature, with the phase modulation coming from a single pathway, with a π refo-

cusing pulse at the end of the sequence necessary to acquire a whole echo during t2, and

after a Fourier transform a purely in-phase absorptive lineshape is observed.[129, 130]

Amplitude modulated experiments allow the acquisition of both echo and anti echo

pathways, as shown in Figure 3.6, thus combination of both pathways and Fourier

transformation results in a largely absorptive lineshapes, with only slight dispersions

arising from the not completely symmetric combination of the two pathways.[131] How-

ever, the effect of residual dispersive components were shown to be successfully removed

by the implementation of a Z -filter by Amoureux et al.. During the Z -filters short delay

τ , the magnetisation is stored along B0 (p = 0), which is then converted into observable

SQ magnetisation though the use of a final soft “selective” pulse.[132] The advantage

of the Z -filter approach being that both echo and anti-echo pathways are symmetric,

as can be seen from the coherence pathways in Figure 3.6, thus resulting in purely

absorptive 2D spectra obtained.

MQMAS spectra display resonances with the inhomogeneous quadrupole broad-

ening spread out along a ridge at a gradient corresponding to the MQMAS ratio, −7/9

for I = 3/2, and 19/12 for I = 5/2 (for a 3QMAS experiment). Therefore, a shearing

transformation is usually applied resulting in the anisotropic axis being parallel to F2

and creating an isotropic F1 dimension (Fiso). An alternative method, the “split t1”,
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removes this need for shearing by fully refocusing the anisotropic broadening during

t1, by allowing SQ and TQ coherence to evolve during the t1 period, see Figure 3.7. A

review and comparison of the many MQMAS methods is given in the work by Brown

and Wimperis.[133]

It is important to note that there are different conventions used when referencing

the chemical shift axis of the F1 dimension in the MQMAS experiment, after shearing.

This is best discussed by Pike et al. with the two main methods outlined, with further

discussions of the other axis conventions in the review by Milliot and Man.[128, 134] The

main two conventions in use for scaling of the chemical shift are; the convention shown

by Wimperis and co-workers,[135, 136] and the convention established by Amoureux

and co-workers.[127]

In the Wimperis convention, the frequency difference between two points is

divided by the Larmor frequency to obtain the chemical shift difference between the

two points:

δ(ppm) =
∆ν × 106

ν0
. (3.52)

In the Amoureux convention this is then further scaled by the chemical shift scaling

factor xcs(I, P ) by:

δ(ppm) =
∆ν × 106

xcs(I, P )ν0
. (3.53)

where xcs(I, P ) is defined by:

xcs(I, P ) =
k − p
1 + k

(3.54)

where p is the coherence order for the MQMAS and k is the MQMAS ratio given in

Equation 3.51 (and Table A.1 in the Appendix A).

The difference in the two methods means that the chemical shift observed in the

Amoureux convention is independent of the coherence order p. Therefore, carrying out

a 5QMAS experiment or a 3QMAS experiment on the same sample, would result in

the same chemical shift difference between two peaks, independent of the experimental

method, due to the xcs(I, P ) factor. Whereas in the Wimperis convention, the chemical

shift will be different between two peaks for a 5QMAS or a 3QMAS experiment, for

instance. Throughout this thesis the Amoureux convention will be implemented, with

all MQMAS experiments being of p = 3 coherence order.

Care has to be taken with MQMAS experimental results due to the use of
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multiple quantum coherences. As previously mentioned excitation of these coherences

isn’t quantitative, and can depend upon the strength of the CQ for a particular site.

However, the usefulness lies in the separation of resonances into a second dimension

free from anisotropic quadrupole broadening, where it is possible to extract useful

information on the number of sites and corresponding shifts. This information, which

may not be possible to obtain via other methods, can be combined with ordinary MAS

spectra and used to constrain fitting to obtain reasonably reliable NMR parameters.

Although useful the MQMAS experiment is not the only way to obtain line-

shapes free from second order quadrupole broadening, however its convenience lies in

the fact that it is accessible using conventional NMR equipment. Double Rotation

(DOR) whereby a rotor is orientated at an angle within a second outer rotor, both of

which spinning at specific angles to successfully satisfy the orientational dependence of

the interaction, can also be used to removed anisotropy.[46–48] As can Dynamic Angle

Spinning (DAS) whereby the sample is rotated sequentially at two different axis during

different periods.[49, 50] However both of these methods require additional hardware

and are much more experimentally challenging.

The satellite transition magic-angle spinning (STMAS) experiment is an alter-

native experimental method that doesn’t require additional hardware, unlike DOR and

DAS. Similar to the MQMAS experiment STMAS utilises refocusing of coherences, due

to switching between coherences during the experiment. However, in the STMAS ex-

periment rather than selecting multiple-quantum coherence, coherences associated with

single-quantum satellite transitions are selected. This requires very accurate setting of

the magic angle, which can result in long set up times, however spectra free from the

broadening from the residual second order quadrupole interaction can be achieved upon

its successful implementation.

3.5 Signal to Noise

A typical NMR experiment consists of repeatedly adding a series of free induction

decays (FIDs), obtained upon carrying out the same experiment a number of times.

The main reason for this approach is in order to obtain signal that is well distinguished

from the random noise that may also be detected leading to poor quality spectra. The
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signal to noise ratio is given by:

S/N ∝
√
n, (3.55)

where n represents the number of distinct FIDs collected. Thereby, upon increasing the

number of FIDs accumulated the noise increases, albeit at a smaller rate than the signal,

resulting in a signal with sufficiently diminished noise after sufficient acquisitions.

3.6 Relaxation

During the NMR experiment the nuclear spin system will return to its equilibrium

state, the process by which it does so is known as relaxation. There are two main

important types of relaxation that play a role in the NMR experiment. Spin lattice,

or sometimes called longitudinal relaxation (T1), is the time it takes the magnetisation

to return to its equilibrium position, in the case of the NMR experiment along the B0

bulk magnetisation axis. The T1 value, which can vary significantly from µs to hours

or even days, needs to be taken into consideration by the spectroscopist, as it defines

how often the NMR experiment can be repeated between acquiring successive FIDs, in

order to ensure saturation does not occur.

The other important relaxation process is the spin-spin, or transverse (T2) re-

laxation, which is the loss of the coherence of the magnetisation in the xy plane. This

defines how long a period the NMR signal can be acquired for, as a loss of coherence

means a loss of signal observed in the FID.

Many different interactions play a part in relaxation processes, although as a

general rule the larger the interaction the more efficient the relaxation. Therefore, for a

quadrupole broadened system the quadrupole interaction is usually the most dominant

cause of relaxation. Relaxation can however give insightful information on the dynamics

of the system under investigation, with a more thorough description given in the work

of Slichter. [106]

3.7 Simulation Details

Throughout this thesis a number of software simulation packages have been used in

order to extract meaningful information from the NMR lineshapes obtained. This
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predominately involves extracting NMR interaction parameters, providing insight into

the local environment of the nuclei under observation.

3.7.1 DMFit

DMFit is a software package developed by Massiot [152] for simulating solid state

NMR lineshapes. Its capabilities includes simulating a wide range of NMR lineshapes,

for instance taking into account quadrupole and CSA broadening, under both static

and MAS conditions, in addition to simple ‘Gaussain/Lorentzian’ lineshapes.

The DMFit package has been used throughout this thesis for simulating line-

shapes of I = 1
2 nuclei under MAS, using the ‘Gaussian/Lorentzian’ function, whereby

a ‘Gaussian/Lorentzian’ broadened lineshape is centred around an isotropic chemical

shift. As these nuclei experience no quadrupole broadening effects and the anisotropic

broadening is removed by MAS, this fitting method is suitable to extract details of

chemical shifts, and the intensity that each lineshape contributes to the overall spec-

trum.

The program iteratively attempts to minimise differences between the experi-

mental data and the simulation, using simple quadratic difference between the datasets.

It provides reliable fitting parameters, however the user has to specify the exact number

of lineshapes to simulate.

3.7.2 Quadfit

A significant proportion of this thesis has focused on looking at disordered systems, the

NMR lineshapes of which, do not show well resolved distinct resonances. The observed

lineshapes are broadened, comprising of an overlap of many resonances, due to a range

of local environments such as different bond angles and bond distances. For the spin

I = 1
2 this is easily represented by broadening of the ‘Gaussian/Lorentzian’ fitting

function in DMFit. However, for I>1
2 nuclei, due to the quadrupole broadening the

lineshape will depend upon a larger set of parameters.

In the case of a quadrupole nuclei under MAS, it is desirable to extract the

quadrupole parameters from the residual second order quadrupole broadening present

within the NMR lineshape to obtain structural information. However, due to the

disordered nature a distribution of these quadrupole parameters will be present. The
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Figure 3.8: The effect on the Quadfit lineshape upon changing the CQ width parameter
for a second order quadrupole broadened lineshape under MAS. Upon increasing the
CQ width, indicative of an increase in disorder, the distinct second order lineshape is
lost, resulting in a broadened tail. Lineshapes simulated at a Larmor frequency of 156
MHz for a spin I = 5

2 . Based on Figure 3 from [153]

Quadfit package is successful in handling these disorders.[153] This is achieved by fitting

a resonance using multiple quadrupole lineshapes, all possessing slightly different NMR

parameters. This is done using a Gaussian distribution of the lineshapes resulting in

additional CQ and ηQ width parameters, indicative of the distribution of quadrupole

lineshapes, in addition to the CQ and ηQ centre parameters, representing the average

values.

Figure 3.8 shows how the CQ width parameter affects the lineshape observed.

When a small distribution is present, the CQ width is low, and the line shows a typical

second order quadrupole lineshape. Upon an increase in the distribution, the distinct

features broaden out, resulting in a tail forming as evidenced towards the top of Fig

3.8. This is a typical lineshape observed for quadrupole lineshapes within a disordered

structure, such as a glass.

There are inherent disadvantages in the Quadfit package in that perfect pulses

and detection are assumed along with infinite spinning speeds. Nevertheless, by fitting

data over multiple fields, and by constraining the field independent parameters, such

as the quadrupole parameters, reliable values can be determined.

Throughout this thesis upon simulating the quadrupole lineshapes of the dis-

ordered systems the value of ηQ has been set to a nominal value, with the simulation

focused on determining the CQ parameter. In reality there will additionally be a range

of ηQ values present, however owing to the large number of independent parameters it
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was deemed that the CQ parameter provided the greatest influence on the disordered

lineshapes, and thus, more insight into the nuclear structure.

77



Chapter 4

Aluminium Doped Phosphate

Bioactive Glasses

4.1 Introduction

Biodegradable materials or ‘biomaterials’ have generated a large research field in re-

cent years with the ultimate goal of producing materials that can stimulate tissue or

bone regrowth as they break down or demonstrate resorbable characteristics in situ

as this healing process ensues. Commercially available Bioglass R© is one such ma-

terial, with the characteristic 45S5 composition, typically consisting of 45 mol% sil-

ica with Ca and a small amount of P. However the dissolution rate of this material

can be long, up to years, and the long term reaction to silica is unknown.[72] Owing

to chemical compositions more closely related to that of bone, Ca phosphate glasses

show great potential for use as bone scaffolds rather than the traditionally used silica

Bioglass R©.[71, 137] Phosphate glasses have much higher dissolution rates due to the

unstable nature of the phosphate network, and control of the dissolution rate can be

maintained by varying the modifier oxide composition of these glasses. Many stud-

ies have been reported looking at the structure of bioactive glasses containing CaO,

P2O5, and Na2O, with neutron diffraction, and solid state NMR being the most widely

used structural probes.[61, 73, 78, 79] The additional incorporation of oxides containing

different cations has been investigated, such as TiO2, Ga2O3, and Al2O3, in order to

obtain greater control of the degradation rate of the glasses and also to fulfil specific

roles such as drug delivery.[74, 76, 138] Specifically, the addition of Al to the glass net-
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work has been shown to further increase the stability of the network leading to more

favourable dissolution rates.[75]

Comprehensive reviews of the structure of simple phosphate glasses have been

presented elsewhere, most notably by Brow and Hoppe.[63, 64] The generally accepted

model consists of a network of phosphorus tetrahedra with three of the oxygens within

the tetrahedra having the possibility of bonding covalently to other phosphorus tetrahe-

dra, these are termed bridging oxygens (BO), with the fourth bonding by a double bond,

with an enhanced π bond character, resulting in a terminal oxygen (TO). The tetra-

hedra are best described using the Qn terminology, where n represents the number of

bridging oxygens (BO) present within each tetrahedra. With the incorporation of mod-

ifier cations, such as Na+ and Ca2+, to the network, the bridging bonds are removed,

resulting in a depolymerisation of the phosphate network thus producing non-bridging

oxygens (NBO). The role that Al plays within the glass structure is a complicated one

in that it is known to act as a network modifier removing BO. However, at certain con-

centrations, it is also known to play the role of a network intermediate, strengthening

the network, leading to a decrease in glass dissolution rates.

Due to the disordered nature of glass structures, arising from the random incor-

poration of modifier cations into the network, solid state NMR has demonstrated itself

to be a vital tool in the structural analysis of glassy materials, because of the ability of

NMR to probe the local atomic environment, without the need for long-range periodic

order. Advances in solid state NMR techniques have led to the development and im-

plementation of numerous experiments for disordered materials, enabling a wealth of

structural information to be determined. [139–146]

The use of two-dimensional (2D) correlation experiments that probe through

bond connectivities within materials are one specific approach, notably the refocused

INADEQUATE experiment.[114, 115, 119, 120, 147–149] Moreover, the development

of the refocused INADEQUATE spin echo (REINE) experiment shows much promise

for providing valuable structural information in disordered systems.[116] The REINE

experiment combines the 2D separation of peaks due to different connectivities found

in the refocused INADEQUATE experiment, with the additional modulation of the

signal of each peak dependent upon the J couplings that is active during the final spin

echo period. Guerry et al. recently applied the REINE experiment for the first time to
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a glass, namely a cadmium containing phosphate glass, enabling correlations between

J couplings and chemical shifts to be determined, resulting in better understanding of

the phosphate chains present within the glass structure.[122]

In this chapter the application of a multinuclear 23Na, 27Al and 31P solid state

NMR investigation is presented, notably employing 2D 31P REINE experiments, to

a series of glasses with the nominal stoichiometry x(Al2O3) (11-x)(Na2O) 44.5(CaO)

44.5(P2O5) (with x = 0, 3, 5, 8). These glasses were recently the subject of an analysis

by neutron diffraction and solid state 27Al MAS NMR by Smith et al. where it was

observed by neutron diffraction a change in Al species occurs with increasing Al2O3

content.[79] This was further confirmed by the 27Al NMR showing a tendency for

octahedral Al at low concentration and a subsequent change to tetrahedral Al at higher

Al2O3 concentrations. The aim of this work is to provide further insight into these glass

structures, in particular utilising complementary solid state NMR techniques to gain

additional information of the environments of the other ions within the glass network.

4.2 Experimental Details

Phosphate glasses investigated are of the same composition as reported by Smith et al.,

see Table 4.1, synthesized by identical methods.[79] All glasses were produced as glass

rods and ground to a fine powder under an inert nitrogen atmosphere before packing

into NMR rotors in the same atmosphere to ensure no uptake of water.

Single pulse 27Al MAS NMR were performed at 14.1 T and 9.4 T, using Bruker

Avance II-600 and Bruker DSX-400 spectrometers, which operated at the 27Al Larmor

frequencies of 156.18 MHz and 103.92 MHz, respectively. These measurements utilised

Bruker 3.2 mm HX probes which enabled MAS frequencies of 20 kHz. Flip angle

calibration was performed on a 1.1 M Al(NO3)3 solution from which a ‘non-selective’

(solution) π/2 pulse time of 19.8 µs was measured. This corresponds to a ‘selective’

(solid) pulse time of 6.6 µs for the I = 5/2 27Al nucleus. All measurements were

undertaken with a π/12 tip angle (‘selective’) of 1.1 µs to ensure quantitative estimates

of the complete Al speciation present. All 27Al center of gravity (apparent) shifts were

reported against the IUPAC recommended primary reference of Al(NO3)3 (in D2O 1.1

M, δ 0.0 ppm) via a solid yttrium aluminium garnet (YAG) secondary reference in
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Mol % Al2O3 Mol % Na2O Mol % CaO Mol % P2O5

0Al 11Na 0 11 44.5 44.5

3Al 8Na 3 8 44.5 44.5

5Al 6Na 5 6 44.5 44.5

8Al 3Na 8 3 44.5 44.5

Table 4.1: Compositions of glasses under investigation, with varying Al and Na content.

which the six coordinate resonance is established δ 0.7 ppm.[101, 150]

Single pulse 23Na MAS NMR were performed at 14.1 T and 9.4 T using Bruker

Avance II-600 and Bruker DSX-400 spectrometers, which operated at the 23Na Larmor

frequencies of 158.55 MHz and 105.49 MHz, respectively. These measurements utilised

Bruker 3.2 mm HX probe which enabled MAS frequencies of 20 kHz at 9.4 T, and

a Bruker 4.0 mm HX probe which enabled MAS frequencies of 12.5 kHz at 14.1 T.

Flip angle calibration was performed on a NaCl solution from which a ‘non-selective’

(solution) π/2 pulse time of 6 µs was measured. This corresponds to a ‘selective’

(solid) pulse time of 3 µs for the I = 3/2 23Na nucleus. All measurements were

undertaken with a π/4 tip angle (‘selective’) of 1.5 µs to ensure accurate estimates of

the quadrupole parameters. All 23Na center of gravity (apparent) shifts were reported

against the IUPAC recommended primary reference of NaCl solution (in D2O 0.1 M,

δ 0.0 ppm) via a solid secondary NaCl reference of known isotropic chemical shift of δ

7.2 ppm.[150, 151] A common relaxation time of 5 s was deemed to be sufficient for all

23Na and 27Al measurements.

All 31P experiments were carried out at 7.05 T, using a Varian/Chemagnetics

Infinity Plus-300 spectrometer operating at a Larmor frequency of 121.48 MHz, and

employed a Bruker 4 mm HX probe which enabled MAS frequencies of 12.5 kHz. A

recycle delay of 15 s was used. These data were referenced to a secondary reference of

ammonium dihydrogen phosphate (NH4H2PO4, ADP) at δ 1.0 ppm, with respect to the

primary IUPAC reference of 85 % H3PO4.[101, 150] For the single pulse experiments,

a tip angle of π/4 of 2.5 µs was implemented to achieve quantitative estimates of the

P sites present. 31P REINE experiments were carried out using the pulse sequence
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as described by Guerry et al. (see Figure 3.4 in Chapter 3 for the pulse sequence

diagram).[122] Using a 32 step phase cycle, a total of 256 transients were co-added for

22 t1 increments, with the States procedure implemented to ensure sign discrimination

in F1.[110] The spectral width was synchronised to the rotor spinning speed in both

dimensions. Between 12 and 14 REINE experiments were carried out with varying τj/2

values for each glass composition. With the build up τ/2 delay of 6.8 ms kept fixed

throughout. Processing of the REINE data was carried out using MATLAB.

Spectra fitting was performed using the DmFit software for 31P one-pulse ex-

periments, and the Quadfit software for 23Na and 27Al one-pulse experiments.[152, 153]

4.3 Results

4.3.1 27Al MAS NMR

Figure 4.1 shows 27Al single pulse MAS-NMR spectra for each of the Al containing

glasses, obtained at two different fields in order to obtain quantitative estimates of the

quantity of each species present. Due to the incomplete removal of the second order

quadrupole interaction by MAS, the line shapes are broadened showing asymmetrical

resonances typical for Al in disordered environments. It can be seen that three reso-

nances are clearly resolved assigned to 4, 5 and 6 coordinated Al, with chemical shifts

becoming more negative with increasing coordination number.[60, 154] However, for

the 8Al3Na glass, it is clear that there is an additional narrow resonance found in the

4-coordinate region that is attributed to crystallization occurring within the glass at

this high Al composition.

The variation in Al speciation upon increasing Al content within the glass struc-

ture is also shown in Figure 4.1 with simulation parameters in Table 4.2. It can be

seen that, upon initial incorporation of small amounts of Al into the structure, the Al

is forming mostly an octahedral co-ordination, as widely reported in studies on other

aluminophosphate glass series. [60, 75, 143, 154, 155] However, upon further increase

of the Al content in the glass, it can be seen that the proportion of AlO6 decreases

at the expense of the formation of AlO4 tetrahedral linkages. The density change can

be seen to be following the same trend as previously determined by Manupriya et al.

in that initial incorporation of Al into the glass leads to an increase in density, which
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Figure 4.1: Top: 27Al single pulse MAS-NMR spectra and simulated fits at 9.4 T (a)-
(c), and 14.1 T (d)-(f), for glasses; 3Al8Na (a) and (d). 5Al6Na (b) and (e). 8Al3Na
(c) and (f). Bottom: (g) The change in Al coordination and also the change in the
density with increasing incorporation of Al2O3 content
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Peak δ(ppm) CQ Center CQ Width η Int (%) Environment
(± 0.1) (MHz) (MHz) (± 0.05) (± 3)

(± 0.5) (± 0.6)

8Al3Na
1 41.5 0.7 0.1 0.1 9 Impurity
2 44.8 5.8 3.0 0.1 34 AlO4

3 17.3 6.4 3.0 0.1 26 AlO5

4 -8.2 5.3 3.3 0.1 31 AlO6

5Al6Na
1 46.0 5.9 3.0 0.1 31 AlO4

2 17.3 6.8 3.0 0.1 26 AlO5

3 -9.2 5.1 3.3 0.1 43 AlO6

3Al8Na
1 42.6 4.3 4.1 0.1 24 AlO4

2 12.2 4.3 4.1 0.1 24 AlO5

3 -10.5 4.5 4.1 0.1 54 AlO6

Table 4.2: 27Al NMR parameters from simulation of single pulse NMR spectra. Pa-
rameters constrained from multiple field fitting, using Quadfit software package. [153]

would be expected due to Na2O being less dense than Al2O3.[75] However, as shown

in Manupriya’s study there is a decrease in the density upon further Al incorporation,

with the density following a similar trend to the amount of Al occupying octahedral

sites; this phenomenon has also been discussed by Smith et al.[79]

4.3.2 23Na MAS NMR

The 23Na MAS NMR data from these glasses exhibit broad and featureless lineshapes

owing to a range of chemical shifts and quadrupole coupling constant (CQ) values, re-

sulting from the distribution of sites occupied by the Na cations (Figure 4.2). The 23Na

spectrum for the 8Al3Na glass, like the corresponding 27Al data of the same sample,

shows an additional unexpected narrow resonance due to the presence of a crystalline

phase occurring for this composition. The simulation of the 23Na single pulse spectra

using the Quadfit software package enables details concerning the environments of the

Na sites to be explicitly determined.[153] Figure 4.2 shows the change in the 23Na chem-

ical shift, mean quadrupolar coupling constant (CQ) and quadrupolar coupling width

(CQ width that corresponds to the full-width at half-maximum height of the Gaussian

distribution), for each glass composition extracted from these fits. It is observed that

the CQ width is particularly large in comparison to the mean CQ value, with CQ widths
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Figure 4.2: Top: 23Na single pulse NMR spectra and simulated fits at 9.4 T (20 kHz
MAS) (a)-(d), and 14.1 T (12.5 kHz MAS) (e)-(h), for glasses; 0Al11Na (a) and (e).
3Al8Na (b) and (f). 5Al6Na (c) and (g). 8Al3Na (d) and (h). Bottom: 23Na change in
chemical shift (left) and quadrupole parameters (right) with increasing incorporation
of Al2O3 content. Fitting parameters are shown in the Appendix A.

ranging from 50 % up to 90 % of the total CQ, thus emphasising the disorder of the

environments occupied by the Na cations. As expected, the same trend is observed for

the fits of the 27Al spectra (see Table 4.2).

The presentation of data at the bottom of Figure 4.2, demonstrates that upon

increasing incorporation of Al2O3 into the glass structure, a downfield shift of the 23Na

resonance to more negative ppm occurs with a concomitant decrease in the mean CQ.

This has been observed previously in other Na containing glass systems in the work by

Brow et al.[59]

4.3.3 31P 1D MAS NMR

31P MAS NMR spectroscopy has proved to be a powerful tool for glass characterization
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Figure 4.3: Left: 31P one-pulse MAS NMR spectra for each glass composition at 7.05
T and 12.5 kHz MAS. Right: Change in the relative Q1 species proportion and density
with increasing incorporation of Al content within the glass. Fitting parameters are
shown in the Appendix A.

owing to the 31P isotropic chemical shift being strongly dependent on the nearest

neighbour coordination, thus leading to a quantitative determination of the proportions

of Qn species present. Glasses with a phosphate composition of 45 mol % are typically

expected to contain both Q2 and Q1 units, as evidenced by the 31P spectra for each

of the glasses in this series, see Figure 4.3.[64] For the 0Al11Na glass, it can be seen

that the 31P resonances are well resolved for both Q1 and Q2 sites; however, upon

the incorporation of Al into the glass structure, it can be seen that the Q1 resonance

shifts to more negative ppm and broadens resulting in a significant overlap of these

resonances. This phenomenon becomes more apparent as the Al content of the glass

increases.

Figure 4.3 shows how the proportion of Q1 species changes upon the increase in

Al2O3 incorporation. It can be seen that this is following a similar trend to the density,

and thus the proportion of AlO6, in that there is an initial increase in the amount of

Q1 with initial incorporation of Al. This is however, like the density, followed by a

decrease for higher Al concentrations.

4.3.4 2D 31P REINE MAS NMR

The REINE experiment previously presented by Cadars et al. and Guerry et al. is an

extension of the commonly used refocused INADEQUATE experiment.[115, 116, 122]

In the refocused INADEQUATE experiment, a double-quantum (DQ) filter selects
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only spins with a J coupling to another spin. Therefore, a 2D map of connectivities

results whereby a signal from two bonded nuclei appears, at the chemical shift of the

nuclei being directly observed in the single-quantum (SQ) F2 (horizontal) dimension,

at a DQ frequency in the F1 (vertical) dimension corresponding to the sum of the

SQ chemical shifts of the two bonded nuclei. The modification applied in the REINE

experiment entails the further addition of a spin echo appended to the end of the

refocused INADEQUATE experiment. The length of this final spin echo can then be

varied in a series of 2D experiments resulting in a modulation of each of the 2D peaks

that is dependent on the J coupling between the two connected nuclei. By fitting this

modulation, the J coupling(s) can then be extracted for the summed intensity of each

2D peak or for individual pixels within each 2D peak.

31P REINE measurements have been undertaken on each of the glasses in this

series. Maximum signal intensity is observed for each of the REINE peaks for all glasses

for the shortest employed final spin echo evolution duration of 0.8 ms. These 2D 31P

REINE spectra are shown for each of the glasses in Figure 4.4, with connectivities

between structural moieties corresponding to Q1-Q1, Q1-Q2, Q2-Q1 and Q2-Q2 clearly

present in the data for the 0Al11Na glass presented in Figure 4.4. However, as observed

in the one-pulse spectra, a broadening and overlap of resonances is occurring with

increasing Al content, resulting in uncertainty in the determination of distinct positions

for each of the 2D REINE peaks; e.g., deciding where the Q1-Q1 resonance ends and

the Q1-Q2 resonance begins becomes increasingly difficult for the glasses with higher

Al2O3 content.

The modulation of the signal in the REINE experiment due to the final spin

echo period (τj/2 − π − τj/2) is that of a damped cosine function, whose form varies

depending on the number of phosphate units, that the nucleus corresponding to the SQ

resonance is coupled to. For the peak occurring in the F2 dimension at the chemical

shift of the Q1 species, the function

I(τj) = I0cos(πJτj)e
−τj/T ′2 (4.1)

is used because of the dependence on only one J coupling, since the Q1 unit is coupled

to only one other phosphate unit. T ′2 is the spin echo dephasing time.[115] For the peak
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Figure 4.4: 31P REINE spectra (7.05 T with 12.5 kHz MAS) at τj = 0.8 ms for each
glass composition, (a) 0Al11Na, (b) 3Al8Na, (c) 5Al6Na, (d) 8Al3Na, showing the
maximum signal intensity for each REINE peak.

in the F2 dimension at the chemical shift of the Q2 species, the fitting function can

either be:

I(τj) = I0cos(πJ1τj)cos(πJ2τj)e
−τj/T ′2 (4.2)

which is appropriate where the J coupling between the two bonded P units is different.

Alternatively:

I(τj) = I0cos
2(πJτj)e

−τj/T ′2 (4.3)

becomes a more appropriate function where the two J couplings are identical or al-

most identical (In such cases, fitting using Equation 4.2 becomes unstable due to the

interchange of the two J coupling values upon fitting).

Time-domain spin echo curves due to the modulation of the summed intensity
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of the Q1-Q1 and Q1-Q2 REINE peaks are shown in Figure 4.5. The peaks show

well defined zero crossings enabling a good fit to be obtained to Equation 4.1, aiding

in accurate determination of the mean J couplings. The advantage of the REINE

experiment over the ordinary spin echo experiment is the ability to distinguish between

the 2JQ1Q1 and 2JQ1Q2 couplings that cannot be achieved using a conventional spin

echo experiment. By contrast, the REINE experiment enables separate values to be

extracted, due to the 2D resolution in a refocused INADEQUATE spectrum of distinct

Q1-Q2 and Q1-Q1 peaks that appear at different DQ frequencies. From Equation 4.1, it

can be seen that the first zero crossing occurs at τj/2 = J /4. In Figure 4.5, the position

of this zero crossing for the 0Al11Na glass is shown as a vertical dashed line for both

the Q1-Q2 and Q1-Q1 peaks. Firstly, it is important to notice that the zero crossing for

the Q1-Q1 peak occurs at a significantly later time than that of the Q1-Q2 peak. This

indicates a larger J coupling arising for the Q1-Q2 peak (2JQ1Q2) than for the Q1-Q1

peak (2JQ1Q1). This can be seen from the bottom of Figure 4.5 (and the Table A.4 in

the Appendix A), where the fitted J coupling of 11.9 ± 0.7 Hz for 2JQ1Q1 is smaller

than that for 2JQ1Q2 of 16.8 ± 0.3 Hz. Upon following the dotted lines down, with an

increase in the Al content in the glass, it can be seen that the zero crossing moves to a

longer τj/2 time. Specifically, considering the plots at the bottom of Figure 4.5, where

the change in J coupling for both peaks are presented as a function of increasing Al2O3

content in the glass: a marked decrease is observed in both 2JQ1Q2 from 16.8 ± 0.3 Hz

to 13.1 ± 0.6 Hz, and 2JQ1Q1 from 11.9 ± 0.7 Hz to 10.6 ± 0.7 Hz.

Another very useful feature of the REINE experiment is the ability to map out

distributions of J couplings throughout each of the 2D REINE peaks for a disordered

glass.[122] This is of particular interest due to the disordered nature of the P environ-

ments within the glass structure, due to the range of bond angles, bond distances, and

next nearest neighbour coordinations that are present. Figure 4.6 (a)-(d) shows the

31P REINE signal of the Q1-Q2 peak at τj/2 = 18 ms, normalized with respect to the

corresponding maximum signal intensity at τj/2 = 0.8 ms. It can be seen from these

spectral regions that different parts of the peaks are clearly showing varying modula-

tions. In particular, owing to this evolution time being close to the zero crossing for

the 5Al6Na and 8Al3Na glasses, regions exhibiting notably both positive and negative

modulation are present within the peak. This marked difference in spin echo modula-
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Figure 4.5: Time-domain spin echo curves obtained from the summed intensity for the
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tion is indicative of a difference in the J coupling across the peak, as is shown in Figure

4.6 (e)-(h), where a pixel by pixel fitting has been carried out for each of these regions,

with regions that cross zero earlier displaying larger J couplings, as expected for the

damped cosine modulation. The J coupling variations across each of the Q1-Q2 peaks

are significant, with a change from 17.8 ± 0.4 Hz to 16.2 ± 0.3 Hz for the 0Al11Na

glass, and an even more significant change for the 8Al3Na glass of 17.4 ± 0.3 Hz to

10.5 ± 0.7 Hz.

From Figure 4.6, it can be seen that the variation in the J coupling for the

Al containing glasses, (f)-(h), is in the direction of the F2 (horizontal) dimension,

corresponding to a correlation of the J coupling value with the chemical shift of the

P unit being directly observed, as found previously from spin echo experiments.[148]

However the converse is found for the glass with no Al content, Figure 4.6(e), in that a

F1 (vertical) variation is now present, corresponding to the J coupling being correlated

with the chemical shift of the coupled nucleus. This F1 (vertical) variation was also

found in the REINE analysis of the 0.575CdO-0.425P2O5 glass by Guerry et al.[122]

4.4 Discussion

From the NMR results it is clear that the incorporation of Al into this Ca phosphate

glass series is having a marked effect on the structure. Arguably the most important

change is that of the Al coordination. The reason for the change from octahedral to

tetrahedral Al coordination has been previously discussed by Brow et al., where AlO4

is forming in order to maintain charge balance within the network, due to AlO4 units

having more electrons to donate than the AlO6 units, for glasses with a higher |O|/|P |

ratio.[60] As previously stated, AlO5 units are also present within the glass, however

with a proportion that is somewhat lower than that of the other two species, this

proportion of AlO5 units is not changing significantly throughout the series.

A change in the glass structure is also indicated by the 23Na NMR spectra,

with a decrease of the CQ and a shift to more negative ppm being observed, upon

increasing Al content. This is indicative of the Na sites becoming more shielded and

more symmetrical as more Al enters the glass structure. A shift to more negative ppm

is also found in the 31P NMR spectra for the Q1 resonance along with a subsequent
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Figure 4.6: 31P Q1-Q2 REINE peak (7.05 T with 12.5 kHz MAS) (a)-(d) intensity at
τj/2 = 18 ms normalised to regions for which the intensity at τj/2 = 0.8 ms exceeds
66% of the maximum signal intensity. (e)-(h) Pixel by Pixel spin echo fitting of the
same area showing distribution of J couplings. (a) and (e) 0Al11Na glass. (b) and (f)
3Al8Na glass. (c) and (g) 5Al6Na glass. (d) and (h) 8Al3Na glass.
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broadening. This can be envisaged to be due to an increase in the relative proportion of

AlO4 units at higher Al content, probably due to the formation of Al-O-P tetrahedral

linkages, thus leading to the shift of the Q1 peak to more negative ppm, because an

Al as a next nearest neighbour causes a more shielded P environment, as compared to

if the next nearest neighbour was a modifier Na or Ca cation. This gives rise to an

apparent broadening of the P Q1 resonance due to there being a greater number of

possible P sites, owing to Al now taking part in the network bonding, in addition to

the Na and Ca ions that are the only cations present in the 0Al11Na glass. This has

been shown previously by 27Al-31P CP MAS studies on Al phosphate glasses.[143, 155]

This initial increase in the amount of Q1 upon the incorporation of Al into the

network indicates that the AlO6 present within these glasses is most likely removing

P-O-P linkages, thus resulting in a large number of Q1 units due to the large number of

bonds available for the AlO6 moiety. However, it should also be noted that the relative

proportion of Q1 units for the glass with the highest Al content, where most of the

Al is in tetrahedral coordination, is of a similar scale to the glass containing only Na,

and no Al. This implies that the AlO4 units are removing P-O-P linkages in favour of

forming P-O-Al tetrahedral clusters, however due to the enhanced covalent nature this

does not completely reduce the connectivity of the network.

As previously mentioned the dependence of the REINE signal modulation of

the peaks occurring at the Q2 frequency in the F2 dimension can follow two different

functions, (Equation 4.2 and 4.3), depending on the connectivity of the P network. For

the Q2-Q2 peak, the summed intensity spin echo fits are shown in Figure 4.7 for each of

the glasses studied (fitting parameters are shown in Table A.5 in the Appendix A). The

glass with no Al in the structure (Figure 4.7(a)), and the glass with the least Al in the

structure (3Al8Na) (Figure 4.7(b)), show REINE modulations that only give reliable

fits to the cos2 fitting function, Equation 4.3. This implies that the J couplings of

the two bonded units are approximately identical in size, owing to long chains or rings

being predominant within the phosphate Q2 network. However as previously noted,

the J coupling for these glasses are slightly larger than those found for the glasses with

higher Al content. Coupled with the fact that there is a clear proportion of Q1-Q2 units

present within the glasses (evidenced by the presence of Q1-Q2 and Q2-Q1 peaks), it is

safe to conclude that long chains rather than rings make up the largest contribution to
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Figure 4.7: Time domain spin echo curves obtained from the summed intensity of the
31P Q2-Q2 REINE peaks (7.05 T with 12.5 kHz MAS) for each glass composition. Fit
carried out using Equation 4.2, for (a) 0Al11Na glass and (b) 3Al8Na glass. Fit carried
out using Equation 4.3, for (a) 5Al6Na glass and (b) 8Al3Na glass. Parameters and
correlation coefficients shown in Table A.5 in the Appendix A.

the network. For the glasses with the higher Al concentrations (5Al6Na and 8Al3Na),

the fitting function that gave the most accurate fits was that of cos(πJ1τj)cos(πJ2τj),

Equation 4.3 , where the two J couplings are significantly different. This implies that

tetraphosphate chains (Q1-Q2-Q2-Q1) are now predominant within the glass structure,

as opposed to the longer chains found for the other two glasses. This apparent decrease

in chain length only implies that P-O-P bonds are being removed. However, it does not

account for the formation of P-O-Al bonds, so as to form Al-Q1-Q2-Q2-Q1 tetrahedral

linkages, which could explain this observation.

From previous studies, 2JSi−O−Si,
2JB−O−B and 2JP−O−P DFT calculations,

have all shown a clear decrease in the J coupling with decreasing bond angle and,

consequently, bond distance.[156–159] Therefore, upon incorporation of Al2O3 into the

glass structure, it is safe to assume that the decrease in J coupling is indicating a

decrease in the P-O-P bond angle and P-P distance, signifying that the P network is

becoming more condensed and less linear. This assertion is in agreement with the results
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from the 23Na MAS NMR data in that, upon increasing the Al2O3 content within the

glasses, the Na environment is becoming more shielded, probably due to this decrease in

linearity of the P network, with the Na becoming trapped inside the phosphate network.

Another point to note is that the Al is taking up more AlO4 coordination with higher

Al incorporation in the glasses, thus the Al tetrahedral linkages are probably forming

between the P tetrahedra resulting in strong P-O-Al cross linkages, and thus a more

condensed network. These conclusions are in agreement with the work by Manupriya

et al. who found that the bioactivity of glasses with >5mol% Al2O3 is greatly reduced,

probably emanating from the increased strength of the Al-O-P linkages and a more

condensed network at higher Al incorporation, resulting in the much longer dissolution

times.[75]

4.5 Summary and Conclusion

Overall, it has been shown that addition of Al into Ca phosphate glass formulations

in favour of Na can drastically change the glass structure. With small amounts of Al

incorporated the changes are relatively minor, with the AlO6 that is formed playing

the role of a network modifier, in a similar fashion to the Na cation. However, further

incorporation of Al into the network results in the formation of strong tetrahedral AlO4

linkages, thus producing a more condensed and cross-linked glass structure. Although

the aim of Al incorporation into these materials is to improve the glass stability, it

appears that the incorporation of too much Al can have an adverse effect on its bioactive

properties, as shown by Manupriya et al. who found that above 5 mol% Al2O3 the

bioactivity of the glass is affected.[75] This is indicating that the ideal glass composition

may be somewhere in the intermediate regime, where the Al is stabilising the network

to a certain degree with some strong tetrahedral linkages, however the presence of AlO6

is still a sizeable contribution to the structure making the glass easier to decompose.

Due to their potential use as biomaterials, determining the structure of Ca phosphate

glasses is an important goal, with NMR being the ideal tool for the materials scientist.

Whilst much structural information can be obtained from a simple single pulse MAS

experiment, it has been shown that the REINE experiment offers great promise in

providing further insight into the bonding arrangements of the PO4 network.
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Chapter 5

Gallium Doped Phosphate

Bioactive Glasses

5.1 Introduction

Over the last 50 to 60 years antibiotics have been vital in improving public health,

through tacking bacteria related diseases. [160] However, overuse of antibiotics is lead-

ing to an added problem, with an increased likelihood for resistant bacteria strains to

multiply, thus rendering some antibiotics useless in their fight against disease. Even

though this threat is imminent the amount of new antibiotics in their final stages of

development remains small, and few novel methods for tackling bacteria are forthcom-

ing. [161] One potential method of alternative treatment could nevertheless rely on

exploiting the antibacterial properties that certain cations have been found to possess.

Studies have shown that Cu, Ag, and Ga ions are all effective in reducing the presence

of bacteria, utilising a completely original method to that of antibiotic drugs.[76, 162–

170] Beneficial effects of Ga3+ are already recognised, with Ga3+ already used in the

treatment of certain medical conditions. For instance, Ga3+ can prevent bone resorp-

tion thus could help to treat osteoporosis, and Ga3+ has already been approved by

the US agency Food and Drug Administration (FDA) for the care of Hypercalcaemia

associated with bone tumour metastases.[168, 171] Studies have shown Ga3+ to inhibit

the growth of bacteria Rhodoccus equi,[166] Pseudomonas aeruginosa,[76, 167] and M.

tuberculosis[163] to name but a few, which has been attributed to the Ga3+ disrupting

the Fe3+ metabolism in these micro-organisms. Fe3+ is an essential part of bacteria
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metabolism, and the similar ionic radii of Ga3+ to Fe3+ enables Ga3+ to prevent the

metabolism by a ‘Trojan Horse’ type mechanism, owing to the fact the Ga3+ does not

undergo redox reactions, unlike Fe3+ which is critical for bacterial growth.[163, 167, 171]

The most promising method of delivery of antibacterial ions remains in the form

of incorporating the cation into a host material that can be implanted into the body,

thus releasing the ions over time. Most appealing among these delivery devices remains

the use of bioactive glass type materials, owing to their ability to incorporate a wide

range of cations, and the subsequent ability to tailor the degradation rate as required,

steadily releasing the antibacterial cation in-situ over a suitable time period.[172] A few

studies have been carried out on Ga doped phosphate bioactive glasses, owing to the

similar composition of calcium phosphate materials to that of bone, and their ability to

form a bioactive interface.[76, 168] The usually fast dissolution rates of phosphate based

bioactive glasses, can actually be controlled and strengthened by the incorporation of

Ga into the network, thus aiding with the controlled delivery of the antibacterial Ga3+

ions.[76, 168, 173]

As important as understanding their bioactivity a knowledge of the structure of

bioactive glasses is vital in order to appreciate how best to tailor them to suit specific

needs. Numerous studies using various structural characterisation techniques have been

carried out, with solid state NMR showing great promise, owing to the lack of long range

order in these disordered systems, which is perfectly handled by the atomic specificity

of NMR.[73, 78, 79, 138, 169, 173, 174] Most studies have concentrated on the spin 1/2

31P nuclei, which gives information on the Qn species present, or the quadrupole 23Na

nuclei which can give some insight on the local Na environment. Ga has two NMR

active isotopes 71Ga and 69Ga, both are spin I = 3/2 so experience broadening due

to the quadrupole interaction. Both isotopes have different quadrupole moments, with

both being significantly large, however 71Ga is the smaller of the two and despite its

less abundant nature (39.6 % compared to 60.4 % for 69Ga) it is more appealing to

NMR spectroscopists. Despite its difficulties, 71Ga NMR is becoming more widely used,

with the increase in magnetic field strengths available helping to reduce the significant

second order quadrupole broadening, with studies on crystalline Ga phosphates, such

as GaPO3,[175] Ga doped TCP,[176] and other GaPOs,[177] showing resonances can

be resolved enabling distinction between different Ga coordination environments. 71Ga
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NMR has also been utilised on numerous glass type materials, including amorphous

Ga fluorides,[178, 179] Ga chalogenide glasses,[180] and caesium gallate glasses.[181]

However there have been few 71Ga NMR studies on phosphate glasses, with Valappil

et al. using 71Ga to show Ga is present in Ga phosphate glasses as GaO6, however the

quality of the data is poor, owing to low signal-to-noise and insufficient MAS rates,

making it impossible to draw any firm conclusions from the data.[76, 168] Belkbir et

al. present the best data to date, with three different Ga coordination environments

resolved in a Na phosphate glass series.[182] Although again the MAS rates employed

were far from adequate to completely separate the presence of spinning side bands from

the central transition resonances, consequently limiting the usefulness of the results

obtained.[182]

Another quadrupole nucleus that has shown potential to become a powerful

structural probe is that of 17O, owing to its vital importance in inorganic oxides. Al-

though the low natural abundance of 17O (0.037 %) means labelling schemes usually

have to be undertaken in order to increase the number of NMR active spins in the

system to a measurable level.[183–185] However its moderate magnetic moment (-1.132

J T−1) and small quadrupole moment (-25.56 mbarns), along with large chemical shift

range, can make 17O an informative nucleus of choice.[186] There have been numer-

ous studies of 17O NMR of glass materials with distinction between bridging (BO)

and non-bridging oxygens (NBO) in silicates.[183, 187–192] Though often requiring 2D

multiple quantum magic angle spinning (MQMAS) experiments, due to the lines being

broadened by the second order quadrupole interaction, which is not averaged to zero

by conventional MAS, making their identification from 1D NMR unsuccessful. Zeyer

et al. first managed to resolve BO and NBO from phosphate based glasses using 17O

NMR, with the two sites showing clear differences in quadrupolar coupling parameters,

4.7 MHz for NBO, and 7.7 MHZ for BO.[183] Assignments were initially made by Zeyer

et al. by comparison of the intensities to expected compositions.[183] This was further

supported by Zeyer using the empirical correlation between CQ and the average per-

centage of ionic character, as first devolved by Schrammn and Oldfield, showing the

more covalent P-O-P bond in the BO to have a larger CQ than the more ionic P-O-Na

bonds in the NBO.[193] More recently these assignments have been confirmed through

the use of first principles calculations, with Vasconcelos et al. linking 17O assignments
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Table 5.1: Compositions of glasses under investigation, with varying Ga and Na content.

Mol % Ga2O3 Mol % Na2O Mol % CaO Mol % P2O5

P45Ga1 1 24 30 45
P45Ga3 3 22 30 45
P45Ga5 5 20 30 45
P45Ga10 10 15 30 45
P45Ga15 15 10 30 45

P50Ga0 0 20 30 50
P50Ga1 1 19 30 50
P50Ga3 3 17 30 50
P50Ga5 5 15 30 50
P50Ga10 10 10 30 50
P50Ga15 15 5 30 50

P55Ga1 1 14 30 55
P55Ga3 3 12 30 55
P55Ga5 5 10 30 55
P55Ga10 10 5 30 55

with DFT calculations on crystalline Na phosphates, and Forler et al. taking a similar

approach for phosphate glass.[185, 190]

In this study we look at a quaternary gallo-phosphate based bioactive glass series

using multinuclear solid state NMR methods, including exploiting the recent increase in

availability of high magnetic fields and fast MAS rates, to aid in the challenging NMR

of 17O and 71Ga quadrupolar nuclei. The more information we have on the structure

of these biologically important materials the better their bioactivity can hopefully be

understood.

5.2 Experimental Details

Melt-quenched glass samples were prepared using NH4H2PO4 (Sigma-Aldrich, 99.5%),

Na2CO3 (Sigma-Aldrich, 99.5+%), Ga2O3 (Alfa Aesar, 99.99%) and CaO. (17O la-

belled CaO was used for the labelled samples, obtained from Franck Fayon at Univer-

site d’Orleans,) After mixing thoroughly the precursors were placed in a 90 % Pt-10 %

Rh crucible and placed into a furnace preheated to 300◦C for 30 minutes. The furnace

temperature was then rapidly increased to 600◦C and held for 30 minutes, the temper-

ature was then increased to 1100◦C and held at this temperature for 60 minutes. The
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samples were then quenched by placing the bottom of the crucible into an ice water mix

being careful not to get water in the sample. For the 17O samples during the heating

process an argon flow was passed through the furnace to reduce the probability of 17O

exchange with the O in the air. The compositions of the three glass series are shown

in Table 5.1.

Single pulse 31P MAS NMR experiments were performed at 2.35 T using a

Chemagnetics Infinity spectrometer operating at the 31P Larmor frequency of 40.48

MHz. These measurements utilised a 2.5 mm Bruker HX probe using MAS frequencies

of 20 kHz. An excitation pulse length of 2 µs corresponding to a nutation frequency of

π/4 was employed with a delay between subsequent pulses of 15 s, to ensure quantitative

estimations of the P sites present is achieved. Chemical shift referencing and pulse

calibrations were performed on a crystalline secondary solid reference sample of BPO4

(δiso -29.5 ppm), with all 31P chemical shifts being directly referenced to the IUPAC

primary reference of 85% H3PO4 (δiso 0 ppm).[91, 150]

The 31P refocused INADEQUATE Spin Echo (REINE) experiments were per-

formed on the P45 glass series at 7.05 T using a Varian/Chemagnetics InfinityPlus

spectrometer operating at the 31P Larmor frequency of 121.48 MHz.[116, 122] These

experiments used a Bruker 4 mm HX probe with MAS frequencies of 12.5 kHz. A total

of 256 transients were co-added for 22 t1 increments, with the pulse delay between

transients set to 15 s to achieve maximum signal in a reasonable experimental time

period. π/2 and π pulse lengths of 4 µs and 8 µs respectively were utilised with τ/2

delays set to 6.8 ms. Spectral widths were synchronised with the MAS speed at 12.5

kHz in both the F1 and F2 dimensions. Between 12 and 14 different REINE experi-

ments were carried out for each sample with varying τj/2 times, ranging from 0.8 ms to

48 ms. REINE spectra were processed using MATLAB. Spectra were referenced via a

secondary solid ammonium dihydrogen phosphate (NH4H2PO4) at δiso 1.0 ppm, with

respect to 85 %H3PO4.[91, 150]

Single pulse 23Na MAS NMR experiments were performed at 14.1 T and 9.4

T using Bruker Avance II-600 and Bruker DSX-400 spectrometers which operated at

the 23Na Larmor frequencies of 158.55 MHz and 105.49 MHz, respectively. These

measurements utilised a Bruker 4 mm HX probe which enabled MAS frequencies of

15 kHz. Flip angle calibration was performed on a NaCl solution from which a ‘non-
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selective’ (solution) π/2 pulse time of 6 µs was measured, which corresponded to a

‘selective’ (solid) pulse time of 3 µs for the I = 3/2 23Na nucleus. All measurements

were undertaken with a π/4 tip angle (‘selective’) of 1.5 µs to ensure accurate estimates

of the quadrupole parameters. All 23Na center of gravity (apparent) shifts were reported

against the IUPAC recommended primary reference of NaCl solution (in D2O 0.1 M, δ

0.0 ppm), via a secondary solid NaCl reference at a known shift of δ 7.2 ppm.[150, 151]

A common relaxation time of 5 s was deemed to be sufficient for all 23Na measurements.

Single pulse 71Ga MAS NMR experiments were performed at 14.1 T using a

Bruker Avance II-600 spectrometer operating at the 71Ga Larmor frequency 182.79

MHz. These measurements utilised a Bruker 2.5 mm HX probe functioning at a MAS

frequency of 31.25 kHz. Single pulse 71Ga MAS NMR experiments were also performed

at 20.0 T, using a Bruker Avance III-850 spectrometer operating at the 71Ga Larmor

frequency of 259.32 MHz. Experiments at 20.0 T were carried out using a Bruker 1.3

mm HXY probe using 60 kHz MAS frequency. Flip angle calibration was performed

on a 1.1 M (GaNO3)3 solution from which a ‘non-selective’ (solution) π/2 pulse time

of 12 µs was measured. This corresponds to a ‘selective’ (solid) pulse time of 6 µs

for the I = 3/2 71Ga nucleus. All measurements were undertaken with a π/12 tip

angle (‘selective’) of 1 µs to ensure quantitative estimates of the different 71Ga species

present. A common recycle delay of 1 s was utilised between subsequent transients to

ensure sufficient relaxation. All 71Ga center of gravity (apparent) shifts were reported

against the IUPAC recommended primary reference of Ga(NO3)3 (in D2O 1.1 M, δ 0.0

ppm) [150]

A 31P 71Ga J -HMQC experiment was performed on the P45Ga15 glass at 20.0 T

using a Bruker 1.3 mm HXY probe in triple resonance mode at a MAS frequency of 60

kHz. The pulse sequence of the J -HMQC experiment is shown in Figure 3.5 (Chapter

3, owing to the quicker relaxation of the 71Ga nucleus than 31P nucleus, detection was

carried out on the 71Ga channel, enabling a much smaller pulse delay of 1 s to be

used.[125] 8000 transients were coadded for 28 t1 slices, with a τ/2 delay of 3.33 ms. A

π/2 pulse of 7 µs was implemented on the 31P channel, and a 3.5 µs π/2 pulse and 7

µs π pulse on the 71Ga channel.

17O spin echo MAS NMR experiments were carried out at 11.75 T and 14.1 T

using Bruker Avance III-500 and Avance II-600 spectrometers, operating at a Larmor
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frequency of 67.80 MHz and 81.26 MHz, respectively. These measurements utilised a

Bruker 4 mm HX probe which enabled MAS frequencies of 15 kHz. Pulse flip angle

calibration was performed on H2O, from which a ‘non-selective’ (solution) π/2 pulse

time of 9 µs was measured. This corresponds to a ‘selective’ (solid) pulse time of 3 µs

for the I = 5/2 17O nucleus. Spin echo experiments used a π/2 - π pulse scheme with

a 3 µs and 6 µs pulse lengths corresponding to a ‘selective’ (solid) π/2 and π pulses,

respectively, with a τ delay of 6.67 µs rotor synchronized to the MAS frequency. All

17O center of gravity (apparent) shifts were reported against the IUPAC recommended

primary reference of H2O (δ 0 ppm).[150] A common relaxation time of 2 s was found

to be sufficient for all 17O measurements.

17O MQMAS experiments were performed using the amplitude modulated Z -

filter pulse scheme.[132] At 14.1 T 1260 transients were co-added for each of the 128

t1 slices. Pulse times of the initial excitation ‘hard’ pulse to produce triple quantum

coherence, and the conversion ‘hard’ pulse, were 6 µs and 2 µs respectively (approxi-

mately 100 kHz rf), with the ‘soft’ Z -filter pulses 18 µs (approximately 13 kHz rf). At

11.75 T 2016 transients were required to obtain sufficient signal to noise, meaning only

64 t1 slices were able to be obtained in a reasonable experimental time scale. Higher

rf fields were achievable at 11.75 T, with pulse times of the initial excitation ‘hard’

pulse to produce triple quantum coherence, and the conversion ‘hard’ pulse, were 3.75

µs, and 1.25 µs respectively (corresponding to over 150 kHz rf), with the ‘soft’ Z -filter

pulses of 20 µs (approximately 12.5 kHz rf). Shearing was carried out during processing

and the F1 axis was referenced using the Amoureux convention, as discussed in Section

3.4.7.

5.3 Results

5.3.1 1D 31P Single Pulse MAS NMR

31P single pulse MAS NMR data are shown for each glass series in Figure 5.1 (a)-

(c). According to the binary model it is expected that two P sites will be present

for any particular glass which can be predicted by the nominal P content within the

glass network.[64] Although the glasses under investigation here are quaternary systems

the same general rules are thought to apply. From Brow’s review on phosphate glass
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Figure 5.1: (a)-(b) 2.35 T 31P single pulse MAS NMR data and spectral simulations for
three Ga-containing phosphate glass series. The MAS frequency was 20 kHz through-
out, and the 31P Larmor frequency was 40.48 MHz. (d)-(f) Change in % Q species
upon Ga2O3 incorporation from the 31P single pulse MAS NMR simulated fits. (h)-
(j) Change in δiso upon Ga2O3 incorporation from the 31P single pulse MAS NMR
simulated fits.
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δiso(ppm) Int (%) Environment
±0.1 ppm ±2%

P45Ga1
1 -11.0 22 Q1

2 -26.9 78 Q2

P45Ga3
1 -13.4 32 Q1

2 -26.9 78 Q2

P45Ga5
1 -14.6 37 Q1

2 -27.3 63 Q2

P45Ga10
1 -16.5 46 Q1

2 -27.4 54 Q2

P45Ga15
1 -17.6 63 Q1

2 -27.1 37 Q2

P50Ga0
1 -13.5 1 Q1

2 -28.5 99 Q2

P50Ga1
1 -13.1 1 Q1

2 -29.1 99 Q2

P50Ga3
1 -14.7 5 Q1

2 -29.3 95 Q2

P50Ga5
1 -16.3 8 Q1

2 -29.9 92 Q2

P50Ga10
1 -18.8 22 Q1

2 -30.5 78 Q2

P50Ga15
1 -20.4 42 Q1

2 -30.9 58 Q2

P55Ga1
1 -30.7 64 Q2

2 -36.9 36 Q3

P55Ga3
1 -30.8 55 Q2

2 -36.9 45 Q3

P55Ga5
1 -31.0 33 Q2

2 -37.5 67 Q3

P55Ga10
1 -25.7 19 Q2

2 -34.6 81 Q3

Table 5.2: Fitting parameters from 31P NMR of Ga glass samples carried out at 2.35
T. Simulations carried out using DmFit software package.[152]
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systems, polyphosphate glasses with P2O5 ≤ 50 are expected to contain Q1 and Q2

species, while ultraphosphate glasses with P2O5 ≥ 50 are expected to be dominated

by Q2 and Q3 species. Therefore, from the series studied here it can be predicted

that the P45 series should contain both Q1 and Q2 units, the P55 series Q3 and Q2

units, and since the P50 series sits on the compositional boundary Q2 units would be

expected to dominate. From Figure 5.1 it can be observed that the P45 glass series

shows the most well resolved indication of two distinct P environments, particularly at

low Ga concentration, with the two detected 31P resonances at δiso -11.0 to -17.6 ppm

and δiso -26.9 to -27.4 ppm assigned to Q1 and Q2 P environments, respectively. This

behaviour observed from this Ga containing phosphate glass system is consistent with

Brow’s model. As the Ga content is increased in this series the resonances broaden

and become less resolved (as observed for the Al glass series in Chapter 4), however

the presence of Q1 and Q2 P environments remains indisputable. For the P50 glass

series two 31P resonances are again observed; as predicted the majority of P content

assumes Q2 coordination due to the series lying on the boundary between ultra and

poly phosphate glass, however a small amount of Q1 units are still present. From Figure

5.1 it can be seen that the P55 series as expected contains both Q2 and Q3 sites, which

appear to be quite broadened and poorly resolved even at low Ga concentration in

comparison to the Q1 and Q2 resonances observed from the P45 and P50 series.

Table 5.2 and Figure 5.1 (d)-(j) report the variation in the simulation parameters

elucidated from the 31P MAS NMR data in Figure 5.1 (a)-(c); this enables the direct

quantification of the individual Qn species and their changing trends induced by Ga

incorporation. For the P45 glass series it is apparent that upon Ga incorporation the

number of Q2 units (which is initially the most significant contribution) decreases as

the number of Q1 units increases, with Q1 becoming the largest contribution in the

x = 15 glass. This suggests the Ga is depolymerising the P-O-P bonds in the Q2

phosphate units. This is a very similar observation to that reported in Chapter 4 for

the Al containing phosphate glass series, and is not surprising since both Al and Ga

are trivalent cations of similar ionic radii. For the P50 glass series the Ga free glass

(i.e. x = 0, or P50Ga0) exhibits that virtually all of the P is in a Q2 coordination

environment. Upon initial Ga incorporation (i.e. x = 1, or P50Ga1), there is no

detectable change in the Q2 content, however further Ga incorporation causes the
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amount of Q2 to significantly decrease, with the x = 15 glass showing the largest Q1

content of this series. This demonstrates that Ga incorporation plays a similar role in

both the P50 and P45 series. For the P55 series, which contains a significant amount

of Q3 species, it is observed that for low Ga concentrations the majority ( 64 %) of the

P is in a Q2 environment. However, Ga incorporation into this network demonstrates

that an opposing trend to that of the other P50 and P45 glass series ensues. In this

case Ga incorporation induces a condensation or polymerisation of the network, thus

resulting in a decrease in Q2 and a subsequent increase in Q3 speciation.

From Table 5.2 and Figure 5.1 (h)-(j) the variation of the 31P shift values for

each series upon Ga2O3 incorporation can be observed. From Figure 5.1 (h) it can be

seen that upon Ga incorporation for the P45 series the Q1 unit shifts to more −ve ppm

from -11 to -17.6 ppm. Whilst the Q1 units shift in a similar direction, this shift is much

smaller (about 0.4 ppm), which probably is within error values. Similarly for the P50

glass series as shown in Figure 5.1 (i) shifts in both the Q1 resonance to more -ve ppm

upon Ga incorporation, along with a much more noticeable shift in the Q2 resonance of

∼ 2 ppm to more -ve ppm. The shift of the 31P resonances to more -ve ppm indicates

an increase in shielding of the P sites upon Ga incorporation, therefore even though

the amount of Q1 units are increasing upon Ga incorporation, these Q1 sites are more

shielded, most likely due to Ga ion surrounding the P units cross linking phosphate

chains. Figure 5.1 (j) displays the trends for the P55 glass series, with the first three

data points indicating a similar trend of shift to more -ve ppm as displayed in the

other two series, although here changes are less significant as there is now no Q1 units

present. However for the final glass in this series P55Ga10 there is a significant shift

in the opposite sense to more +ve ppm for both Q species, indicating a de-shielding of

the 31P site.

5.3.2 2D 31P REINE MAS NMR

Further information can be obtained on P connectivities using the 31P refocused IN-

ADEQUATE spin echo (REINE) experiment as shown by Guerry et al. on a cadmium

phosphate glass, and in Chapter 4 on a series of Al doped phosphate glasses.[122]

REINE experiments have here been carried out on the P45 glass series since they

posses the largest proportion of Q1 units, which are the most informative as they de-
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Figure 5.2: 31P REINE spectra (7.05 T with 12.5 kHz MAS) at τj = 0.8 ms for each
glass composition, (a) P45Ga1, (b) P45Ga3, (c) P45Ga5, (d) P45Ga10, (e) P45Ga15
showing the maximum signal intensity for each REINE peak.

scribe only one P-O-P bond. The existence of only one P-O-P bond in the Q1 unit

means the REINE analysis is reliant upon one J coupling value only, whereas higher

coordinations such as Q2 and Q3 (as found for the P50 and P55 series) depend upon

multiple P-O-P linkages and multiple J couplings, thus rendering the analysis ambigu-

ous and difficult to be carried out with any real accuracy. Figure 5.2 shows REINE

data for each of the P45 glasses with the final spin echo period τj/2 set as small as

possible (0.8 ms), thus resulting in the maximum signal intensity, similar to what would

be observed in a regular refocused INADEQUATE experiment.[114, 115] For low Ga

contents the spectra show four distinct peaks corresponding to connectivities of Q1-Q1,

Q1-Q2, Q2-Q1 and Q2-Q2, as would be expected in a disordered glassy material. As
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Figure 5.3: Time-domain spin echo curves obtained from the summed intensity for the
Q1-Q2 (left) and Q2-Q2 (right) 31P REINE peaks for each glass composition. Solid
lines are fits to Equation 4.1 for Q1-Q2, and Equation 4.3 for Q2-Q2 (fit parameters
and correlation coefficients are shown in Table A.6 in the Appendix A). Bottom graphs
show the change in the J coupling with increasing Ga2O3 content for the Q1-Q2 (left)
and Q2-Q2 (right) peaks, showing no evident change in the J couplings with increasing
Ga2O3 content.
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Figure 5.4: 31P Q1-Q2 REINE peak (7.05 T with 12.5 kHz MAS). Pixel by Pixel spin
echo fitting showing distribution of J couplings. (a) P45Ga1 (b) P45Ga3 (c) P45Ga5
glasses.

the Ga content is increased the four resonances are no longer well resolved, with the x

= 15 glass showing only a single broadened resonance, as also evidenced by the single

pulse 31P MAS NMR data in Figure 5.1 depicting increase linewidths and reducing

resolution of the sites. This makes determining distinct regions corresponding to Q1

and Q2 coordinations less accurate at higher Ga levels. The most effective method to

further study the REINE analysis is to sum the intensity across a whole resonance,

and then map out how this changes with increasing the final τj/2 evolution period.

This behaviour should be modulated according to Equations 4.1,4.2 and 4.3 shown in

Chapter 4, and subsequently dependent upon the J coupling between the two bonded

P sites. This is shown in Figure 5.3 for the Q1-Q2 peak with corresponding fits using

Equation 4.1. However as observed, successful fits from the REINE analysis were only

obtainable for the x = 1, 3, and 5 glasses, with the corresponding data obtained from

the x = 10 and 15 glasses unable to be simulated with appropriate fitting functions.

Clearly the Ga is having an effect on the glass network which is preventing the REINE
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analysis. This is most likely due to disorder broadening, due to the fact that for these

glasses with highest Ga content the lineshapes are becoming very broad resulting in an

overlap of many sites, this prevents the REINE analysis as the regions are no longer

dependent upon one (in the case of Q1) or two (in the case of Q2) J couplings, and is

in fact a complex mixture of many sites, and thus many J values. This prevents the

usual modelling of the J modulation to that of the Equations 4.1 4.2 and 4.3.

Figure 5.3 also shows the summed intensity REINE spin echo curves for the

Q2-Q2 peaks which was carried out using Equation 4.3, the cos2 function. The use of

Equation 4.3 can give information on the short range chain length within the glass,

owing to the fact that this indicates that the J coupling between the Q2 unit under

observation is the same between both of its bonded nuclei, thus indicating long chains

are predominant, as both of its nearest neighbour nuclei will also be Q2 units. The J

couplings measured from the Q1-Q2 and Q2-Q2 peaks are shown in Figure 5.3, showing

how the J couplings from the summed intensity peaks change as we incorporate Ga

into the glass network. It can be clearly seen that there is little to no variation in the

J coupling in both the Q1-Q2 and Q2-Q2 peaks, as opposed to what was observed in

Chapter 4 for the Al containing glass, whereby there was a decrease in J coupling as

Al entered the glass network even for small incorporation. Therefore it can be assumed

that the Ga is having little effect on the local P-O-P bond angles and bond lengths,

which have recently been found to show correlations on the size of J couplings observed,

unlike that observed for Al.[156–159]

Another useful analysis that can be carried out on the data obtained from

REINE experiments involves fitting each individual pixel of a resonance with one of the

appropriate fitting functions, see Equations 4.1,4.2 and 4.3 Chapter 4, in order to map

out how the J couplings change across the resonance linewidth. This is shown for the

Q1-Q2 resonance in Figure 5.4 which clearly demonstrates that a large variation in the

J couplings is observed, which varies from about 17 Hz to 14.5 Hz, evidently reflecting

a change in the P environments. Different trends have been previously reported on

whether the J coupling appears to change in the horizontal (F2) dimension or the

vertical (F1) dimension, from these type of pixel fitting maps (see Chapter 4).[122]

From Figure 5.4 it can be noted that for the P45Ga5 glass the variation is clearly

in the horizontal (F2) dimension indicating that the J coupling is strongly correlated
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Peak δ(ppm) CQ Center CQ Width η
(± 0.5) (MHz) (MHz) (± 0.05)

(± 0.8) (± 0.3)

P45Ga1 -4.8 2.6 1.7 0.1
P45Ga3 -5.5 2.6 1.7 0.1
P45Ga5 -6.6 2.5 1.7 0.1
P45Ga10 -8.7 2.3 1.7 0.1
P45Ga15 -11.5 2.1 1.7 0.1

P50Ga0 -5.2 2.6 1.9 0.1
P50Ga1 -7.1 2.6 1.9 0.1
P50Ga3 -8.9 2.6 1.9 0.1
P50Ga5 -8.0 2.6 1.9 0.1
P50Ga10 -9.7 2.5 1.9 0.1
P50Ga15 -11.9 2.4 1.9 0.1

P55Ga1 -7.8 2.5 1.9 0.1
P55Ga3 -9.2 2.5 1.9 0.1
P55Ga5 -10.0 2.4 1.9 0.1
P55Ga10 -11.1 2.4 1.9 0.1

Table 5.3: 23Na NMR parameters from simulation of single pulse NMR spectra. Pa-
rameters constrained from multiple field fitting, using Quadfit software package. [153]

to the chemical shift of the Q1 unit being directly observed, with a more negative

ppm resulting in a smaller J coupling. This horizontal variation is also observed to

occur consistently for both of the P45Ga3 and P45Ga1 glasses, however now with an

additional dependence on the chemical shift in the vertical (F1) dimension, showing that

the 31P J couplings in these systems are influenced by a more complicated interplay

of the chemical shift of the directly observed nucleus and its coupled partner. These

finding shows that the J coupling is not simply correlated to the chemical shift of the P

site under investigation, as previously shown by Fayon et al. on Pb phosphate glasses,

and for the Al phosphate glasses in Chapter 4, nor is it supporting the correlation with

the observed nuclei’s coupled partner as shown by Guerry et al..[122, 148]

5.3.3 23Na Single Pulse MAS NMR

The acquired 23Na MAS NMR data and corresponding spectral simulations for all three

glass series are shown in Figure 5.5, with fitting parameters shown in Table 5.3. Each

observed lineshape is typical of Na in disordered glass environments which give rise

to distributions of isotropic chemical shifts and quadrupolar coupling constants. It
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Figure 5.5: Left: 23Na single pulse NMR spectra and simulated fits at 9.4 T (12.5 kHz
MAS) and 14.1 T (12.5 kHz MAS). Right: 23Na change in chemical shift (black) and
CQ Center (blue) with increasing incorporation of Ga2O3 content.

can be observed that for all glass series the quadrupole coupling constant (CQ cen-

tre) decreases as the Ga content increases. Figure 5.5 also indicates that changes in

the average isotropic chemical shift of the Na resonances can be accurately detected.

These data thus show that for all series incorporating increasing amount of Ga into

the network a corresponding shift to more negative ppm is observed, indicating that

the Na environment is becoming more shielded. These trends mirror that found from

the 23Na results for the Al phosphate glasses in Chapter 4, indicating the Na sites are

becoming more shielded and more symmetrical in their environment, perhaps becoming

incorporated into a more cross linked and condensed network.
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5.3.4 71Ga Single Pulse MAS NMR

In the field of solid state NMR, the 71Ga nucleus still remains an uncommon nucleus

of study primarily due to the large quadrupolar broadening experienced by this spin

3/2 nucleus. However, with the increase in available high magnetic field strengths,

and development of MAS NMR probes capable of achieving MAS rates fast enough

to sufficiently average the second order quadrupole interaction, the 71Ga nucleus is

thus becoming more increasingly accessible by MAS NMR techniques.[76, 168, 175–

180, 182, 194] The 71Ga measurements exhibited in Figure 5.6 were initially carried out

at 14.1 T using the fastest available MAS frequency of 31.25 kHz; the results for each

glass series shown in Figure 5.6 show three resolvable resonances observable under these

experimental conditions. Although this was the fastest MAS frequency achievable on

this system, it is not quite fast enough to ensure that the first series of spinning side

bands do not influence the spectrum; i.e. the sideband of the left resonance would lie

outside of the resonance on the right hand side, and vice versa. Fortunately, however no

substantial spinning side band structure was observed, thus enabling the unambiguous

determination of three distinct resonances. Similar measurements were then performed

at the higher field of 20.0 T, using a faster MAS rate of 60 kHz which is achievable on

this high field system. Here this MAS speed is fast enough to ensure that any spinning

sidebands would lie outside of the resonance defining the central transition spectrum,

though again no spinning sideband structure is observed. The multifield data is useful

in that it enables each spectrum to be simulated and constrains parameters over two

magnetic fields which are well separated ultimately yielding reliable information on

the isotropic chemical shifts and quadrupole parameters which are field independent.

These simulations are shown along with the spectra and the corresponding parameters

in Figure 5.6 and Table 5.4. The agreement achieved between the results at these two

magnetic fields clearly shows that although the MAS frequency employed at 14.1 T

is slightly lower than would ideally be desired, it is not affecting the results obtained

owing to the fact that the CQ values characterising these Ga positions are small and

no spinning sidebands structure is present. An unambiguous assignment of the three

71Ga resonances, can be performed. showing Ga to be 4-fold coordinated to O (GaO4),

5-fold coordinated to O (GaO5), and 6-fold coordinated to O (GaO6), with increasing

shift to more negative ppm, see Figure 5.6. This assignment was made upon looking
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Figure 5.6: 71Ga single pulse MAS-NMR carried out at 14.1 T and 20.0 T using
31.25 kHz and 60 kHz MAS respectively, along with simulated fits using Quadfit soft-
ware package.[153] Change in CQ center and intensity of each Ga species shown with
incorporation of Ga into the network.
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Peak δ(ppm) CQ Center CQ Width η Int (%) Environment
(MHz) (MHz) (± 0.05)

P45Ga1
1 121.2 5.5 4.8 0.1 15 GaO4
2 33.8 4.7 4.4 0.1 13 GaO5
3 -30.1 9.1 1.1 0.1 72 GaO6

P45Ga3
1 113.8 5.5 4.8 0.1 13 GaO4
2 28.9 6.0 4.8 0.1 13 GaO5
3 -30.1 9.3 6.8 0.1 74 GaO6

P45Ga5
1 114.8 5.5 4.8 0.1 15 GaO4
2 24.1 6.0 4.8 0.1 15 GaO5
3 -35.2 9.3 6.8 0.1 70 GaO6

P45Ga10
1 127.1 5.8 4.8 0.1 21 GaO4
2 23.4 6.0 4.8 0.1 10 GaO5
3 -37.2 9.5 6.8 0.1 69 GaO6

P45Ga15
1 121.7 6.0 4.8 0.1 44 GaO4
2 19.9 6.0 4.8 0.1 12 GaO5
3 -37.7 10.5 7.1 0.1 44 GaO6

P50Ga0
1 106.2 6.0 4.8 0.1 4 GaO4
2 13.2 6.0 4.8 0.1 8 GaO5
3 -37.5 10.5 7.0 0.1 88 GaO6

P50Ga3
1 105.5 6.0 4.8 0.1 10 GaO4
2 13.2 7.6 4.8 0.1 13 GaO5
3 -36.1 11.1 7.0 0.1 77 GaO6

P50Ga5
1 110.4 6.0 4.8 0.1 13 GaO4
2 18.0 6.0 4.8 0.1 14 GaO5
3 -34.0 11.2 7.0 0.1 73 GaO6

P50Ga10
1 113.2 6.0 4.8 0.1 26 GaO4
2 14.6 6.0 4.8 0.1 10 GaO5
3 -41.7 11.9 7.0 0.1 64 GaO6

P50Ga15
1 110.4 6.0 4.8 0.1 50 GaO4
2 11.8 6.0 4.8 0.1 15 GaO5
3 -41.7 12.2 7.0 0.1 35 GaO6

P55Ga1
1 105.8 6.0 4.8 0.1 5 GaO4
2 17.9 5.9 4.8 0.1 9 GaO5
3 -42.1 8.3 6.7 0.1 86 GaO6

P55Ga3
1 112.1 6.0 4.8 0.1 4 GaO4
2 17.9 5.9 4.8 0.1 11 GaO5
3 -40.1 9.0 6.7 0.1 85 GaO6

P55Ga5
1 109.1 6.0 4.8 0.1 7 GaO4
2 16.55 5.9 4.8 0.1 11 GaO5
3 -47.0 9.7 6.7 0.1 82 GaO6

P55Ga10
1 111.9 6.0 4.8 0.1 18 GaO4
2 7.6 6.0 4.8 0.1 14 GaO5
3 -47.7 10.6 6.7 0.1 68 GaO6

Table 5.4: 71Ga NMR parameters from simulation of single pulse NMR spectra. Pa-
rameters constrained from multiple field fitting, using Quadfit software package. [153]
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at the few papers in the literature on 71Ga NMR of phosphate materials, with Amri

et al. and Belkebir et al. showing for Ga phosphate materials that the tetrahedral

GaO4 lies in the region 110 to 130 ppm, GaO5 in the region of 0 to 30 ppm, and

octahedral GaO6 -30 to -70 ppm.[177, 182] The intensities of each species can be seen

in Figures 5.6, however it is immediately clear that the initial low level incorporation

of Ga into the glass network results in octahedral coordination of this species, whereby

increasing Ga incorporation results in an increase in tetrahedral Ga at the expense of

octahedral. The proportion of five-coordinated GaO5 is fairly consistent throughout all

these glass systems at about the 10 % level. This behaviour is similar to that observed

in the 27Al MAS NMR studies carried out in Chapter 4 on Al phosphate glasses, thus

demonstrating the fact that Ga is likely having a very similar role within the phosphate

glass network to Al.

There are few trends observed for the CQ centre parameters within each system,

except that the CQ centre values characterising the six coordinated Ga sites increases

for each series as the Ga content increases. This increase becomes more substantial as

the phosphate content increases, with the P45 series showing a change of ∼ 1 MHz, the

P50 series of ∼ 2 MHz and the P55 series of ∼ 2.5 MHz (even though the highest Ga

content for the latter series is only 10 mol%). This is indicating the GaO6 is occupying

a less shielded environment upon its higher incorporation, most likely involved in a less

pronounced role within the glass network, perhaps linking end chain units.

5.3.5 {31P}-71Ga J -HMQC

A {31P}-71Ga J -HMQC experiment was carried out on the P45Ga15 glass; this glass

was selected as the best candidate for this experiment as it contains the highest Ga

content of that series. This measurement was undertaken at 20.0 T with the spectrum

shown in Figure 5.7. This experiment presents numerous challenges owing to low signal

to noise arising from numerous factors, thus requiring very long acquisition times. This

included the fact that the volume of the sample was small due to the necessity for fast

MAS, and other difficulties were induced by the large linewidths of both the 31P (and

also more significantly) the 71Ga resonances. Despite these limitations the J -HMQC

experiment shown in Figure 5.7 clearly shows signal indicating the presence of Ga-O-

P bonds within the glass network, as would be expected. Correlations are observed
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Figure 5.7: {31P}-71Ga J -HMQC of P45Ga15 glass carried out at 20.0 T using 60 kHz
MAS. 8000 transients were coadded for 28 t1 slices, with a τ/2 delay of 3.33 ms.

between each of the three Ga sites and the P Q1 unit, as is indicated by the MAS

projections displayed on each of the corresponding axis. The lack of correlation with the

Q2 site indicates that the Ga has more tendency to enter the glass network bonding to

the Q1 sites, as may be expected due to the less P-O-P BO sites. A noticeable difference

in intensity between each of the correlations is observed, with the four coordinated

GaO4 site showing the most intense correlation, and the six coordinated GaO6 the

least. This could be attributed to the τ/2 delay used in this experiment favouring the

tetrahedral GaO4 resonance, due to the τ/2 delay being dependant on the J coupling,

which probably differs between sites. However, this change in intensity of the sites

most likely will arise from the fact that the J coupling is largely dependent upon the

covalence of the bond, the covalence of the GaO4 bonds will be greater, owing to its

tendency to take up more of a network former role than that of the GaO6 resonance,

which acts more like a network modifier. Attempts to repeat the experiment at a

lower field (14.1 T) were unsuccessful, even upon utilising a larger sample volume.

This is most likely due to the fact that at lower field the lines become broader due

to the increase in the second order quadrupole interaction, consequently making the

experiment more difficult to perform.
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Figure 5.8: 17O Spin Echo NMR of P50Gax 17O labelled samples, carried out at 11.75
T and 14.1 T using 12.5 kHz MAS.

5.3.6 17O Spin Echo MAS NMR and 3QMAS

In order to combat the low natural abundance of the 17O nucleus, successful 17O enrich-

ment was achieved for a select few of the glass samples from the P50 series. The 17O

spin echo experiment was performed at 11.75 and 14.1 T as shown in Figure 5.8, with

the data exhibiting reasonably broad resonances, emanating from the disordered glass

structure and the different O species characterising the network. Two distinct types

of O species will undoubtedly be present corresponding to bridging (BO) O involved

in P-O-P bonding, and non-bridging (NBO) oxygen corresponding to P-O−M+ oxygen

bonding (where M corresponds to a metal cation). Looking at Figure 5.8, the 1D 17O

MAS NMR data clearly indicates the presence of multiple sites present, however their

resolution is limited by the quadrupole broadening of the resonances. This can be in-

vestigated further upon utilising the MQMAS experiment, enabling distinct resonances

to be resolved via extension into a second dimension free from the quadrupole broad-

ening. 17O MQMAS results, carried out at two fields, are shown in Figure 5.9. Upon

looking at all of the 17O MQMAS data the two anticipated resonances can be identified,

with the intense resonance at around δF1 = 90 to 120 ppm assigned to the NBO site,

with the BO resonance seen to be present at around δF1 = 170 to 180 ppm with a

much lower intensity. [183, 185] The overlap of the chemical shift in the horizontal (F2)
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Figure 5.9: 17O 3QMAS NMR of P50Gax 17O labelled samples, carried out at 11.75
T and 14.1 T using 12.5 kHz MAS. NBO and BO resonances clearly indicated, with
corresponding spinning sidebands denoted by *
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Figure 5.10: Slices of NBO resonance from 17O 3QMAS of P50Gax glasses. Simulations
carried out using DmFit software package. [152]

dimension of these two resonances, clearly identifiable from these MQMAS spectra,

enforces the difficultly in their observation from the 1D spectra, and the usefulness of

the 2D method in resolving multiple sites broadened by the quadrupole interaction.

Further information can be obtained from the MQMAS results upon extracting

slices along the 17O F2 MAS dimension, which if done at the shift corresponding to the

NBO, a spectra free from the BO contribution can be obtained, thus enabling fitting

of the lineshape to determine the quadrupole and other NMR parameters of this NBO

site. Extracted slices and corresponding simulations are shown in Figure 5.10 for all

glass samples at both fields, with simulated parameters shown in Table 5.5. Unlike in

the echo experiments, it can be seen that the NBO lineshapes themselves are not broad

and featureless, but actually show a distorted second ordered quadrupole lineshape,

indicating that even though there is overall disorder in the glass structure, the 17O

NBO show relatively little chemical shift dispersion.

Although the slices from the MQMAS show relatively small chemical shift dis-

persion from the quadrupole nature of their lineshapes, due to disorder inherent in
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δ(ppm) δ(ppm) CQ Center η Environment
11.75 T 14.1 T (MHz)

P50Ga0 97.4 99.0 4.7±0.2 0.35±0.02 NBO

P50Ga5 103.5 100.2 5.0±0.1 0.43±0.09 NBO

P50Ga10 106.0 105.1 5.2±0.1 0.50±0.05 NBO

P50Ga15 104.1 105.4 5.1±0.1 0.50±0.04 NBO

Table 5.5: 17O NMR parameters from simulation of slices from 3QMAS NMR spectra.

the glass structure some chemical shift dispersion will undoubtedly be present. This is

clearly evidenced by the F1 projections in the MQMAS being broad indicating a wide

range local O environments. It can be observed that upon incorporation of Ga into the

glass network the chemical shift dispersion of the NBO sites is increasing, particularly

noticeable when observing the broadening of the NBO for the 11.75 T data, comparing

the x = 5 and x = 15 glass results. This increase in chemical shift dispersion comes

about due to O becoming involved in a greater number of coordinations due to the new

Ga sites that are being occupied and created with its incorporation.

Using the NMR parameters extracted from fitting the MQMAS data, informa-

tion about the glass structure can be inferred. Previous studies have shown that the

CQ parameter of 17O is strongly correlated to the covalence of the bond present, as

seen from the clearly differing CQ values for both the BO and NBO sites.[186, 193]

However, Vasconcelos et al. went further to show that the CQ parameter is sensitive

to the O coordination present, whereas ηq is sensitive to the angular geometry of the

P-17O bond, and δcs is reliant on the much longer range order.[185] CQ values deter-

mined here for the NBO are in the range (4.7 ± 0.2) and (5.2 ± 0.1) MHz which is

similar to other reported values on crystalline and glassy phosphates, with Zeyer et al.

finding 4.7 MHz, and Vasconcelos et al. in a NaPO3 glass 4.3 to 4.5 MHz.[183, 185]

For the results found in these glass systems the CQ values for the NBO sites do not

change significantly. However, the ηq value changes from (0.35 ± 0.02) to (0.50 ± 0.04),

thus indicating that even though the CQ and bond covalence isn’t varying significantly,

there is an effect on the P-O bond as we incorporate Ga into the network indicated by

the change in ηq. δcs also changes as Ga is incorporated into the glass structure, with a

decrease of around 7 ppm, indicating an alteration in the long range order of the glass,
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as might be expected with Ga subsequently being incorporated, and its tendency as

seen from 71Ga NMR, to take up varying coordinations dependent upon the content of

Ga therein.

Unfortunately, due to the low signal to noise of the BO site and the fact that

probably not all of the lineshape is being excited, extracting lineshape slices from this

peak is not possible. Even upon using the extracted data from the MQMAS for the

NBO slice to constrain parameters and then adding in a further peak to represent the

BO site, the number of independent parameters were too many to constrain to achieve

reliable fits for the spin echo data at two fields. However, the CQ of the BO can be

predicted to fall within the region of 7 to 8 MHz from the apparent linewidth of the

resonance, which is typical of values determined from other studies on these type of

materials.[183, 185]

5.4 Discussion and Conclusions

As shown in the numerous previous studies on phosphate glass systems using NMR,

the spin I = 1/2 31P nucleus still remains a powerful tool in the characterisation of

structure, specifically in determining the Q species present. The fact that the P50 and

P45 series both show an increase in Q1 and decrease in Q2 as Ga enters the network,

indicates that Ga is entering the glass network and removing P-O-P bonds within

these Q2 units, thus creating P-O-Ga linkages. This is further confirmed by the {31P}-
71Ga J -HMQC experiment showing the Ga being predominately coordinated to the Q1

unit in the P45Ga15 glass. This also accounts for the broadening and overlap of the

two resonances, due to the increase in P local environments upon Ga incorporation.

For the P55 series it is observed that there appears to be a ‘polymerisation’ of the

glass network caused by Ga incorporation, in that the amount of Q3 units increases

significantly. However, this can be again thought of as the Ga associating with the

Q2 units, which are initially dominant, however this time rather than removing P-O-P

bonds the Ga is instead removing the NBO. This leads to an apparent increase in Q3

units, however in fact probably corresponds to Q2 units, with two P-O-P bonds and

one P-O-Ga bond. This is further supported by the fact that the chemical shift of these

resonances is moving to more positive ppm, which is similar to the P45 P50 series. This
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is also supported by the 71Ga NMR in that it is shown that Ga enters the network in

a variety of coordinations, ultimately tending to a four fold GaO4 coordination upon

higher incorporation. Similar trends are found from 27Al and 31P NMR studies on Al

phosphate glasses in Chapter 4, thus suggesting Ga has a similar structural role in the

glass network to that of Al, as may be anticipated due to Ga sitting just below Al in the

same group in the periodic table. Further proof of this conclusion could be made upon

carrying out additional {31P}-71Ga J -HMQC experiments on the P55 glass series, in

order to confirm where the Ga is coordinated within the phosphate network for this

series.

Although similarities between the role of Ga and Al in the glass networks are

observed, the REINE analysis suggests that there must be some difference between the

two nuclei. For instance the REINE analysis was only successful for glasses with low

Ga contents (under 5 mol% Ga2O3), whereas for the 27Al glass the REINE experiment

was found to work even for glasses with 8 mol% Al2O3 . In addition, unlike as found

for the Al containing glasses, there is no significant change in the J couplings observed

from the REINE results in the Ga series, which indicates small change on the local

P-O-P bond angles and bond lengths. Therefore unlike Al, Ga is having less effect on

the actual geometry of the P tetrahedra upon its initial incorporation in this P45 series.

This is contradicted in the P50 series by the fact that there is an observed change in

the value of ηQ from the 17O measurements, indicating changes in P-O bonds upon Ga

incorporation. However any comparisons may be unfair, in that the REINE analysis

has been carried out on the P45 series, whereas the 17O measurements are on the P50

series. Therefore, further investigation of 17O measurements on the P45 series would

provide further insight, to determine if the ηQ, which is related to the P-O bond angle,

shows invariance in the P45 series, as found from the REINE analysis of this series

and the role of Ga within the P network may in fact be very different for both series,

despite similar trends in its coordination.[185]

Other trends observed in the 17O NMR parameters are however consistent with

the other multinuclear NMR results. Firstly the 17O chemical shift observed is found

to change upon Ga incorporation, thus proving the change in the long range order of

the glass. This is also evident from 71Ga NMR, by the changing Ga incorporation,

from GaO6 at low concentrations, to increasingly condensed network linked by GaO4
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cross links for higher Ga contents. The change in chemical shift of the 23Na resonances

also shows this change in long range order, as the 23Na site becomes more shielded

as the Ga content increases. However the lack of a change in the 17O CQ, for the

NBO, is implying that the short range order around the 17O nucleus is fairly consistent

throughout the Ga incorporation. Slices taken from the 17O MQMAS of the NBO

site clearly show a second order quadrupole lineshape, with only slight distortions to

it. This has been found in other phosphate glasses, indicating that the distribution of

NMR parameters for these NBO sites are not too large, in that the lineshape shows

only a slight distortion from the typical second order line observed.[185]

MQMAS can be notoriously difficult due to the lack of efficiency of exciting and

reconverting multiple quantum coherences, which explains the lack of signal observed

for the BO for all the 17O results. This could perhaps be further improved by carrying

out an STMAS experiment instead; however the difficulty inherent in this experimental

approach lies in the accurate setting of the magic angle, making it less practical for mul-

tiple samples.[195–199] More important information perhaps would come from carrying

out DFT calculations on simple glass models, in order to predict the NMR parameters

of each of the sites. This approach has been carried out in many previous studies on

phosphate materials however, so the assignments made in this study are thought to be

very reliable.[185, 190] A greater understanding of the structure of these glass systems

would be gained from 17O labelling of the other samples in the other series, however

owing to the cost of producing and buying 17O label, this was not viable for each series

in this study, and the middle ground series of P50 had to be settled upon.

Phosphate glasses are not the only version of bioactive glasses, with silicon

bioactive glass already a well-developed branch of biomaterials. Further NMR studies

on silicate type bioactive glasses, with similar compositions to the phosphate glasses

studied here, are now in progress, to look at the Ga incorporation into these materials.

The recent advances in NMR as utilised here in this study, such as high B0 fields and

fast MAS, will enable further information to be extracted, exploiting these new tools

available to look at the usually inaccessible 17O and 71Ga nuclei.

Previous studies have included investigations into the biological activity of sim-

ilar types of glasses, however no biological studies have been carried out on glasses

with these exact compositions.[76, 168] Therefore, the most suitable bioactive glass in
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these series is unknown. However it is known that Ga3+ ions are a useful addition to

the glass, due to the antibacterial properties of Ga, so the glass that would be ideally

suited for applications would steadily release these Ga3+ ions over time. Although the

common problem with phosphate bioactive glasses remains that they have very quick

dissolution rates, the benefits of the incorporation of Ga could be twofold; in that as

well as a Ga release mechanism, the Ga ions actually help stabilise the phosphate net-

work. This is confirmed by 71Ga NMR, with the increase in the GaO4 network former

within the glass, stabilising the network. Therefore, the ideal composition cannot be

stated without further studies into their actual bioactive properties and degradation

rates, however from studies on similar Al phosphate glasses, a glass with intermediate

Ga content is most likely to be the most suited.[75] Though these glasses would of

course need to be tailored for the specific needs of the application required.
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Chapter 6

A Multinuclear NMR Study of

the Tri-cluster and Defect Sites

in Mullite and Boron Doped

Mullite Systems

6.1 Introduction

Mullites are interesting aluminosilicate materials with uses in both traditional and

advanced ceramics. The mullite structure is the only aluminosilicate formed at ambient

pressure and can be found to occur in a few places in nature, such as where magma

meets Al2O3 rich sediments on the Isle of Mull in Scotland, and in volcanic rocks

in the Eifel Mountains in Germany.[81] However, the majority of mullite materials are

produced synthetically, enabling the formation of families of materials with the nominal

stoichiometric form:

Al2[Al2+2xSi2−2x]O10−x 0.2 < x < 0.9. (6.1)

The most common series of mullite ceramics encountered are when x = 0.25 [3Al2O3 :

2SiO2], and x = 0.4 [2Al2O3 : SiO2], so called 3:2 and 2:1 mullite series respectively.

The structure of mullite is closely related to the crystalline aluminosilicate sil-

limanite, Al2SiO5. In a similar manner to the sillimanite structure, the mullite motif
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Figure 6.1: Crystal structure of mullite derived from the crystalline sillimanite ac-
cording to the substitution mechanism: O2− + 2Si4+ = 2Al3+ + 2. White and black
arrows indicate the migration direction of the T to AlT∗ position and the displacement
of O3, respectively, resulting in a new oxygen site O4. (a) In sillimanite octahedral
chains (blue) are linked by tetrahedral groups (green). (b) In mullite octahedral chains
are linked by tetrahedral groups or by tri-cluster of tetrahedra. Oxygen vacancies are
indicated by squares.[81, 200]

consists of chains of aluminium octahedra (AlO6) running down the crystallographic

c-axis, with Al and Si tetrahedra (TO4) cross linking these octahedral chains. The

mullite system is characterised by a fundamental difference since there exits an excess

of Al with respect to Si, with some of the corner shared O linking the tetrahedral SiO4

sites being removed due to charge compensation:

O2− + 2Si4+ → 2Al3+ + 2 (6.2)

consequently leaving behind an oxygen vacancy (2). The removal of this oxygen results

in an orientational rearrangement where one tetrahedra ‘flips back’ to facilitate the

formation of a 3 coordinated O environment. This ultimately results in the formation

of a new site, the so called tri-cluster (AlT*) site. The structure of mullite is shown in

Figure 6.1 along with the associated vacancy formation mechanism.

Although the general structure of mullite is thought to be well established

there still remain some disputes relating to its structure, which is why the mate-

rial has been the focus of numerous studies using a wide variety of spectroscopic
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methods.[80, 81, 201, 202]. Owing to the underlying disorder in mullite due to this

substitution mechanism, solid state NMR has remained one of the key structural tools,

enabling further insight into the structure of mullite to be determined.[92–95, 203].

Early publications using solid state NMR to investigate mullite materials focused on

29Si and 27Al single pulse MAS experiments. The structure is believed to consist of

three Al positions, a 6 coordinated AlO6 moiety, a 4 coordinated AlO4 moiety and the

proposed AlT* species, with the identification of the AlO4 and AlO6 sites presenting a

trivial problem using 27Al MAS NMR. In contrast, the presence of the tri-cluster AlT*

site has proven more difficult to characterise with Merwin et al. reporting marginal

evidence of this 27Al resonance using single pulse MAS NMR techniques, and later

Kunath-Fandrei et al. used satellite transition (SATRAS) NMR methods in order to

infer its presence.[92, 203] To date the only direct observation of this elusive AlT* site

remains the work by Bodart et al. on a 2:1 mullite system displaying its presence via

27Al 3QMAS NMR.[97] Previous 29Si MAS NMR studies have shown that the mullite

structure possesses numerous Si sites, with an array of distinct 29Si resonances being

reported.[92–94, 96] The common consensus is that the most intense 29Si resonance at

∼ −86 ppm is attributed to a sillimanite-type environment,[92–94, 96] with the accom-

panying resonances present being attributed to changes in the next-nearest-neighbour

environment of each SiO4 tetrahedra, determined by calculations as shown by Ban and

Okada.[93]

A fundamental question surrounding the mullite structure pertains to the spe-

cific structure of the tri-cluster; i.e. whether Si actually takes part in the tri-cluster for-

mation, or whether this species only accommodates participation by the AlO4 cations.

Ban and Okada attributed two resonances in their 29Si spectrum to a (Si, Al, Al*)

type cluster which previously was deemed unlikely to occur.[93] However, a year later

Kunath-Fandrei et al. claimed no Si is involved in tri-clusters, due to the proportion

of T* (atom next to the oxygen vacancy) and T′(the atom linked to the T*) reso-

nances measured by 27Al MAS NMR, implying that Si involvement in tri-clusters is

not possible.[203] Other studies have argued for and against the presence of Si within

the tri-cluster, with no real consensus being reached.[95, 201, 204] Another fundamental

aspect of the mullite structure that remains unresolved relates to the ordering of the

AlO4 and SiO4 tetrahedra. The sillimanite structure possesses alternating AlO4 and
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SiO4 species, however owing to the O vacancies present in mullite the same cannot be

true. Angel et al. showed that the mullite structure has a well-defined ordering scheme,

and Schmücker et al. showed by 29Si NMR and simulations, that the Al/Si distribution

of tetrahedra is not strictly random but there is little tendency to de-mix.[96, 201] This

aspect remains a subject of much debate.

Due to the mullite structure being able to accommodate a wide variety of differ-

ent dopant cations, attention is not solely limited to pure aluminosilicate mullites.[205]

B doped mullites, bridge the gap between pure aluminosilicate mullite and that of alu-

minoborates and have been the subject of many studies in recent years.[86, 206, 207]

Pure Al borates, such as Al18B4O33 and Al6−xBxO9, have a wide range of uses including

reinforcement for uses in metal matrix composites owing to their high strength,[208] re-

fractory linings due to high resistance to B rich glass melts, and components in nuclear

reactors because of their neutron absorbing capabilities.[80, 85, 86, 90, 205, 209, 210]

In comparison, aluminosilicate mullites have excellent mechanical and thermal proper-

ties, such as low thermal expansion coefficients, low thermal conductivity, and excellent

creep resistance. Hence, the combination of these two materials means B doped mullite

has great potential for uses in a very wide range of material science and engineering

applications.

Structural studies on B incorporation into mullite structures have shown that

there are significant changes upon the lattice parameters, thus clearly evidencing the

incorporation of B into the mullite framework.[86, 89, 206] Griesser et al. showed

that B is in a BO3 coordination,[86] and subsequent studies by Lührs et al. further

showed that this incorporation occurs as BO3 units substituting for the tetrahedral

units, cross-linking the octahedral chains perpendicular to the c-axis.[206] This occurs

via the substitution mechanism;

O2− + 2Si4+ → 2B3+ + 2 (6.3)

and these studies were supported by Rietveld refinements with difference Fourier cal-

culations and gridsearch analysis of neutron diffraction data, along with 11B MAS

NMR.[207] This substitution scheme is illustrated in Figure 6.2.

Owing to the recent experimental advances in solid state MAS NMR instrumen-
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Figure 6.2: Crystal structure of B doped mullite showing the Si B substitution mech-
anism. Only one site of B incorporation and one tri-cluster site is shown for clarity.
Figure taken from the work carried out in [206].
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tation and techniques a thorough multinuclear solid state NMR investigation into the

structure of mullite is provided. This study uses an array of different NMR experimen-

tal methodologies to help further prove and clarify details of the mullite structure, and

B incorporation therein.

6.2 Experimental Details

Samples starting from the 3:2 mullite composition (Al4.5Si1.5O9.75) with increasing B

contents (1, 4, 6 mol% B2O3) along with labelled samples were synthesised as indicated

in Lührs et al. see Table 6.1.[206] An additional sample of pure 2:1 mullite was obtained

as single crystal form which was then crushed before carrying out NMR measurements.

Pure crystalline sillimanite of gem quality was also used. Purity of the samples was

checked by XRD before NMR studies were conducted.

All 27Al single pulse MAS NMR measurements were performed at 9.4 T using a

Bruker Avance-400 spectrometer, 11.75 T using a Bruker Avance III-500 spectrometer

and 14.1 T using a Bruker Avance II-600 spectrometer, at Larmor frequencies of 103.92

MHz, 130.31 MHz, and 156.18 MHz, respectively. All 27Al MAS NMR experiments

utilised a Bruker 3.2 mm HX probe which enabled MAS frequencies of 15 kHz. The

multifield data was used to constrain quantitative estimates of the proportion of each Al

site present, and also to constrain the quadrupole NMR parameters upon simulation of

the data. Flip angle calibration was performed on a 1.1 M Al(NO3)3 solution from which

a ‘non-selective’ (solution) π/2 pulse time of 19.8 µs was measured. This corresponds to

a ‘selective’ (solid) pulse time of 6.6 µs for the I = 5/2 27Al nucleus. All measurements

were undertaken with a π/12 tip angle (‘selective’) pulse of 1.1 µs to ensure quantitative

estimates of the different 27Al species present, along with a delay between subsequent

pulses of 5 s. All 27Al centre of gravity (apparent) shifts were reported against the

IUPAC recommended primary reference of Al(NO3)3 (in D2O 1.1 M, δ 0.0 ppm), via a

solid yttrium aluminium garnet (YAG) secondary in which the six coordinate resonance

is a known shift of δ 0.7 ppm.[101, 150]

27Al 3QMAS experiments were performed at 9.4 T and 14.1 T, using the three

pulse amplitude modulated Z -filtered sequence.[132] Triple quantum excitation and

reconversion pulses of 4.2 µs 1.4 µs (9.4 T), 2.25 µs 0.75 µs (14.1 T) respectively, were
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Reference Name Mol % Al2O3 Mol % SiO2 Mol % B2O3

3:2 mullite (29Si Labelled) 60 40 0
1 % B doped 3:2 mullite 61 38 1
4 % B doped 3:2 mullite 62 34 4
6 % B doped 3:2 mullite 64 30 6

6 % B doped 3:2 mullite (29Si Labelled) 64 30 6
2:1 mullite 66.5 33.5 0
Sillimanite 50 50 0

Table 6.1: Compositions of samples under investigation in this study. Composition
shown is the initial composition of the gel before synthesis.

implemented while the soft π/2 Z -filter pulse was set to 26 µs (9.4 T) and 22 µs (14.1

T). A maximum of 720 transients were co-added for between 128 and 256 t1 increments.

All 11B solid state MAS NMR measurements were performed at a B0 field of

14.1 T using a Bruker Avance II-600 spectrometer, at a 11B Larmor frequency of 192.30

MHz. These measurements utilised a Bruker 4 mm HX MAS probe at MAS frequencies

of 12 kHz. A recycle delay of 6 s was common to all experiments. The acquired 11B

MAS NMR data were referenced to the IUPAC primary standard BF3.Et2O at δ 0

ppm, via a secondary solid reference of NaBH4 at δ −42.06 ppm.[150, 211] Pulse time

calibrations were performed on NaBH4 and a ‘non-selective (solution) π/2 pulse time

of 6 µs was obtained which corresponded to a ‘selective (solid) pulse time of 3 µs; all

single pulse experiments used a pulse time of 1 µs corresponding to a tip angle of π/6.

An additional experiment with an empty MAS NMR rotor was performed in order to

subtract the background signal arising from the boron nitride stator material in the

probe.

11B 3QMAS data was obtained on the sample containing the highest B content,

using the amplitude modulated Z -filter experiment (p1 - t1(3Q evolution) - p2 - τ - p3

- t2(acquire)).[132] The optimized pulse lengths of the triple quantum excitation (p1)

and reconversion (p2) pulses were p1 = 3.6 µs and p2 = 1 µs, respectively, implemented

with an rf power of 125 kHz, while the soft π/2 Z -filter (p3) pulse was set to 22 µs

which was delivered with an rf power of 11 kHz. 1536 transients were co-added for 28

t1 slices, with the Z -filter τ period set to 20 µs.

Owing to the fact 29Si has a nuclear spin of I = 1/2 and thus experiences no

quadrupole broadening, experiments were carried out at the lower B0 field of 7.05 T

using a Varian/Chemagnetics InfinityPlus spectrometer, at the 29Si Larmor frequency

of 59.62 MHz. However, due to its low natural abundance (4.7 %) experiments were
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performed using a Bruker 7 mm HX probe with 5 kHz MAS, to enable maximum sample

volume. A 3 µs pulse corresponding to a flip angle of π/4 was used. Owing to the long

T1’s of the 29Si nucleus in these systems it was not possible to leave the 29Si natural

abundance samples long enough to enable quantitative estimates of the different sites

present. However, a pulse delay of 120 s with about 800 scans was used to enable

maximum silicon signal, whilst still trying to achieve as much quantification as possible

in a realistic experimental time scale (experimental time 26 hours). Chemical shifts

were referenced to the IUPAC primary standard TMS (δ 0 ppm) via a secondary solid

reference of Kaolinite (δ -92 ppm), which was also used for flip angle calibration.[150,

212]

Labelled 29Si samples, of an undoped and one doped mullite, were synthesised

using SiO2 with 100 % 29Si content, in order to be able to quantify the sites present

ensuring no saturation occurs. This was again carried out at 7.05 T using a Var-

ian/Chemagnetics InfinityPlus spectrometer, at the 29Si Larmor frequency of 59.62

MHz. A 3 µs pulse corresponding to a flip angle of π/4, and 1800 s delay between

subsequent pulses, with only 32 transients required to be co-added in order to gain

sufficient signal to noise (experimental time 16 hours).

In order to further gain information on the connectivity of the mullite structure a

1D 29Si refocused INADEQUATE was carried out, which would not have been possible

without the 29Si labelling of the samples.[114, 115] The 1D refocused INADEQUATE

experiment was carried out at 14.1 T using a Bruker Avance II-600 spectrometer, on

both the undoped and 6 % B doped 3:2 mullite, using a Bruker HX 4 mm probe at 12.5

kHz MAS. A delay between subsequent transients of 30 s was deemed to be sufficient,

owing to the lack of quantification of the DQ excitation and conversion of this type

of experiment. An optimum τ/2 delay of 1 ms was used providing maximum signal

intensity.

{29Si}-27Al J -HMQC experiments, using the sequence by Massiot et al., was

carried out on the 29Si labelled mullite samples at 11.75 T using a Bruker Avance

III-500 spectrometer, at Larmor frequencies of 99.35 MHz and 130.31 MHz for the

29Si and 27Al nuclei, respectively. A MAS frequency of 20 kHz was used, with a

Bruker 3.2 mm HXY probe.[125] The rf field strengths were kept low for 27Al to ensure

selective excitation of the central transition (40 kHz for both 27Al and 29Si). Detection
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was carried out on the 27Al channel owing to the shorter T1 of the quadrupolar 27Al

nucleus, with a delay between subsequent transients of 5 s. A total of 64 transients

were co-added for each of the 256 t1 slices with a τ/2 delay of 8 ms.

NMR parameters are obtained from simulating the 27Al data using the quadfit

software package, and for 11B and 29Si using DMFit software package.[152, 153]

6.3 Results

6.3.1 27Al MAS NMR

Figure 6.3 shows the 27Al MAS NMR data acquired at three different B0 fields using

single pulse methods for each of the 3:2 mullite systems. Multiple field data enables

more quantitative estimates of the NMR parameters and relative intensities of each

site, along with small tip angles trying to achieve uniform excitation independent of

the quadrupolar effect of each site. It can be seen from the raw data that there are

clearly a number of sites present, however the exact number is difficult to ascertain

due to the broad 27Al linewidths. As mentioned in previous chapters the broadening

of these resonances originates from two main phenomena; (a) the positional disorder

in the mullite structure induces a chemical shift dispersion and a distribution of 27Al

quadrupole parameters (i.e., distributions in δiso, CQ, and η), and (b) the second order

quadrupolar broadening is not completely averaged to zero by conventional MAS tech-

niques alone. The tailing of each 27Al resonance to higher field (or more negative ppm)

is highly characteristic of the disorder phenomenon influencing these data.[92, 203] This

data can be directly compared to the 27Al single pulse MAS NMR data of crystalline

sillimanite shown in Figure 6.4, which shows resonances in the same spectral region as

that of the mullite samples, however crystalline sillimanite exhibits very distinct sec-

ond order broadened quadrupole lineshapes, emanating from the discrete tetrahedral

(AlO4) and octahedral (AlO6) Al positions in the unit cell. This broadening of the 1D

27Al MAS NMR data casts some ambiguity over the analysis in the mullite samples of

the number of resonances actually present, as it is not immediately determined with

certainty, as has been demonstrated in other 27Al MAS NMR studies of mullites.[92, 94]

Hence, some recourse to more advanced 2D MAS NMR techniques is required.

Figure 6.5 shows 3QMAS data acquired at 9.4 and 14.1 T from the 3:2 mullite
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Figure 6.3: Multifield single pulse 27Al MAS NMR spectra along with simulated fits
of 3:2 mullite samples, using 15 kHz MAS. (a)-(c) undoped 3:2 mullite, (d)-(f) 1% B
doped mullite, (g)-(i)4% B doped mullite, (j)-(l)6% B doped mullite.
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Peak δ(ppm) CQ Centre CQ Width η Int (%)
(MHz) (MHz) (± 0.05) (± 1)

Sillimanite
1 3.8±1.0 8.9±0.1 - 0.4 47 AlO6

2 63.8±0.4 7.0±0.1 - 0.4 53 AlO4

3:2 Mullite
(29Si Labelled)

1 9.3±2.2 7.25±0.1 4.71±1.1 0.1 39 AlO6

2 22.8±2.8 7.0±1.3 4.5±0.1 0.1 7 AlO5

3 52.1±1.2 5.9±0.1 4.4±0.1 0.1 25 AlT*
4 67.1±0.3 5.2±0.1 4.7±0.1 0.1 29 AlO4

1% B doped
3:2 Mullite

1 9.4±0.5 7.7±1.1 4.71±0.1 0.1 40 AlO6

2 25.4±2.3 7.0±1.2 5.0±0.9 0.1 5 AlO5

3 50.9±1.4 5.7±0.1 4.3±0.1 0.1 25 AlT*
4 66.1±1.0 5.3±0.1 4.7±0.1 0.1 30 AlO4

4% B doped
3:2 Mullite

1 9.5±0.4 7.3±0.4 4.7±0.1 0.1 40 AlO6

2 23.1±1.3 6.2±0.3 4.5±0.1 0.1 5 AlO5

3 51.1±1.3 5.8±0.1 4.3±0.1 0.1 25 AlT*
4 66.8±0.8 5.2±0.1 4.7±0.1 0.1 30 AlO4

6% B doped
3:2 Mullite

1 10.1±0.4 7.4±0.4 4.2±0.2 0.1 38 AlO6

2 22.8±1.7 6.5±0.1 4.5±0.1 0.1 5 AlO5

3 51.9±0.8 6.3±0.2 4.5±0.1 0.1 27 AlT*
4 66.6±0.3 5.2±0.1 4.7±0.1 0.1 30 AlO4

2:1
Mullite

1 8.2±0.6 7.2±0.1 5.4±0.1 0.1 46 AlO6

2 53.1±0.6 6.4±0.1 4.3±0.1 0.1 29 AlT*
3 66.6±0.1 5.2±0.1 4.7±0.1 0.1 25 AlO4

Table 6.2: 27Al MAS NMR parameters from simulation of single pulse NMR spectra.
Parameters constrained from multiple field fitting, using Quadfit software package.[153]
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Figure 6.4: Multifield single pulse 27Al MAS NMR spectra along with simulated fits of
sillimanite, using 15 kHz MAS.

system and each of the B-doped 3:2 mullite systems. These data clearly demonstrate

the existence of three Al positions within each of the mullite systems. The assignment

of the two dominant resonances to the AlO4 and AlO6 sites is trivial from comparison of

the sillimanite 27Al MAS NMR data.[92, 95, 97] However, the 3QMAS clearly shows the

presence of another resonance near the tetrahedral AlO4 resonance, and this is assigned

to the Al participating in the tri-cluster species (AlT*). The presence of this resonance

has been postulated to be present in this location; however, these 3QMAS NMR results

provide the first unequivocal evidence of its actual existence for a 3:2 mullite, with a

similar resonance observed in a 2:1 mullite system by Bodart et al..[92, 97, 203] Using

the average chemical shifts of these resonances from the 3QMAS data it was then

possible to go back to the quantitative single pulse data in order to simulate the 1D 27Al

MAS NMR lineshapes accurately. The corresponding simulation parameters elucidated

from the analysis are shown in Table 6.2. The presence of a small AlO5 impurity (∼5 %)

was also required to permit accurate simulation of the 27Al MAS NMR resonances, as

has been shown by McManus et al. for amorphous aluminosilicates with approximately

mullite composition.[213] This is clearly evidenced from the 9.4 T 27Al single pulse
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Figure 6.5: Multifield 3QMAS 27Al spectra of 3:2 mullite samples, using 15 kHz
MAS.(a)-(b) undoped 3:2 mullite, (c)-(d) 1% B doped mullite, (e)-(f)4% B doped mul-
lite, (g)-(h)6% B doped mullite.
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MAS NMR data, with its lack of observation from the MQMAS data attributed to the

difficulty in exciting triple quantum coherence of distorted resonances with large CQ

values and the low contribution of this site to the overall structure.[214] Owing to its

small contribution it is not considered integral to the mullite structure.

The assignment of the Al position contributing to the tri-cluster species AlT*

can be further tested by studying a related 2:1 mullite system, as shown previously

by Bodard et al..[97] Corresponding 1D 27Al MAS NMR and 2D 27Al 3QMAS data

measured from a 2:1 mullite sample is shown in Figure 6.6 where some changes from

the 3:2 mullite data can be detected. Upon increasing Al content in the nominal

stoichiometry of the mullite composition scheme as described in Equation 6.2, results

in x increasing from 0.25 (for the 3:2 mullite)to 0.4 (for the 2:1 mullite)to ensure charge

compensation. This results in more O vacancies, and hence more AlT* tri-cluster

species being formed. This is corroborated by the 2:1 mullite exhibiting a greater

measured tri-cluster presence (29 %) in comparison to the 3:2 mullite (25 %), which is

accompanied by a concomitant decrease in the AlO4 content by a similar amount (as

would be expected).

Upon inspection of the NMR parameters summarised in Table 6.2 which have

been elucidated from the 27Al MAS NMR data presented in Figure 6.3 no significant

changes or trends are observed from B incorporation into the 3:2 mullite framework.

Lührs et al. used neutron diffraction techniques to determine split positions for two

O atoms in the AlO6 octahedron induced by B atoms entering into a corner sharing

arrangement with the AlO6 species.[207] From the 27Al MAS NMR data of Figures 6.3

and 6.5 this distortion cannot be detected as inherent linewidths do not permit a degree

of sensitivity able to describe the minor distortion and rotation of the AlO6 octahedra

caused by this interaction.

6.3.2 11B MAS NMR

The 11B MAS NMR technique is a vital tool in order to further understand the con-

sequences of doping B into the 3:2 mullite framework. Figure 6.7 depicts the single

pulse 11B MAS NMR data from the 1, 4 and 6 % B doped systems characterised by a

well defined second order quadrupole broadened resonance and isotropic chemical shifts

typical of a BO3 coordination. Simulations of the 11B MAS NMR data are presented
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Figure 6.6: Multifield 27Al MAS NMR spectra of 2:1 mullite. (a) and (b) Single pulse
with corresponding simulated fits at 11.75 T and 14.1 T, respectively. (c) 3QMAS at
14.1 T, all using 15 kHz MAS.
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Figure 6.7: 11B MAS NMR spectra at 14.1 T using 12 kHz MAS. Single pulse (a) 1%
B doped mullite, (b) 4% B doped mullite, (c) 6% B doped mullite. (d) 3QMAS of 6%
B doped mullite.
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δiso(ppm) CQ (MHz) η Environment

1 % B doped 3:2 mullite 22.1±0.5 2.6±0.1 0.15±0.01 BO3

4 % B doped 3:2 mullite 21.9±0.5 2.6±0.1 0.15±0.01 BO3

6 % B doped 3:2 Mullite 21.8±0.5 2.6±0.1 0.16±0.01 BO3

Table 6.3: 11B MAS NMR parameters obtained from simulating single pulse 11B MAS
NMR data, using the DMFit software package. [152]

in Figure 6.7 along with the corresponding simulation parameters in Table 6.3. Unlike

for the 27Al MAS NMR data where the apparent disorder in the Al positions neces-

sitates the simulation using a distribution of quadrupole parameters (the CQ width

parameter), the 11B MAS NMR simulations were simulated using one distinct second

order quadrupole broadened lineshape, thus displaying the more local order occupied

by the B species. Nevertheless a 11B 3QMAS experiment was performed on the 6 %

B doped system, displayed in Figure 6.7. Despite the presence of a distinct second

order quadrupole broadened lineshape for the 11B MAS NMR data, the 3QMAS data

displays a slight disorder in the B environment evidenced by the contour in the 3QMAS

being slightly offset from parallel with respect to the F2 axis, as one may expect from

one distinct ordered B environment. Therefore, this 11B 3QMAS data indicates that a

slight distribution of B bond angles and subsequently bond lengths are occupied within

the B doped mullite framework.

6.3.3 29Si MAS NMR

Figure 6.8 shows the single pulse 29Si MAS NMR data for the undoped and the 1, 4 and

6 % B doped 3:2 mullite systems. The undoped and 6 % systems are 29Si labelled and

only these samples provide a realistic opportunity to measure quantitative data since

the 29Si T1’s are in excess of 1800 s. These data show that 8 distinct 29Si resonances

can be identified (see Table 6.4), which is greater than the 3-5 resonances reported in

previous studies.[92, 93, 95, 96] The assignment of some of the Si resonances has been

previously attempted and reported in the literature,[92, 93, 95, 96], however the 29Si

labelling of some samples can assist in deducing more reliable assignments. The most
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Figure 6.8: 29Si single pulse MAS NMR spectra of sillimanite along with 3:2 mullites.
Simulated fits are shown below the experimental data. Experiments were carried out
at 7.05 T using 5 kHz MAS.

logical and convenient place to start when assigning these data is to look at the 29Si

spectrum of sillimanite, which is characterised by a single resonance at ∼ -87 ppm. This

resonance represents a Si site with three neighbouring AlO4 tetrahedra. This structural

position is denoted AAA, where A represents an aluminium neighbour. From this we

can then infer that the resonance at the same chemical shift in the mullite data is due

to the same local arrangement (see Table 6.4). It is then logical to assume that the next

three sites moving upfield to more negative ppm is due to the increasing substitution of

Si in place of neighbouring AlO4 tetrahedra thus inducing increased electronegativity

to yield the series AAA, SAA, SSA, SSS, (see Table 6.4) [96] It can also be observed

that some of the 29Si spectra in Figure 6.8 show a broad resonance in the -107 to -111

ppm region, that can be attributed to unreacted silica that isn’t involved in the mullite

structure.[215]

The resonances observed downfield at more positive chemical shifts ∼ -80 and

-82 ppm have only been observed previously by Jaymes et al. and Ban and Okada, and

were assigned to the rare and unexpected Si sites involved in tri-cluster formation; these
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δ(ppm) Int (%) Environment
±0.5 ppm ±1%

Sillimanite 1 -86.9 100 AAA

Undoped 1 -80.6 3 (3) AAAA
3:2 mullite 2 -82.7 1 (1) SAAA

29Si Labelled 3 -87.1 35 (40) AAA
4 -89.2 24 (27) SAA
5 -91.5 15 (17) SSA
6 -94.9 9 (10) SSS
7 -97.4 2 (2) SS2
8 -107.0 11 Silica

1 % B doped 1 -81.2 7 AAAA
3:2 mullite 2 -83.1 6 SAAA

3 -87.3 29 AAA
4 -90.2 36 SAA
5 -91.8 6 SSA
6 -94.9 8 SSS
7 -96.3 1 SS2
8 -109.9 7 Silica

4 % B doped 1 -79.5 2 AAAA
3:2 mullite 2 -82.3 2 SAAA

3 -87.2 41 AAA
4 -89.8 21 SAA
5 -91.5 19 SSA
6 -94.9 9 SSS
7 -97.0 1 SS2
8 -111.7 5 Silica

6 % B doped 1 -80.5 7 AAAA
3:2 mullite 2 -83.5 4 SAAA

3 -87.6 45 AAA
4 -90.4 16 SAA
5 -91.7 15 SSA
6 -94.8 12 SSS
7 -97.5 1 SS2

6 % B doped 1 -81.6 5 AAAA
3:2 mullite 2 -83.5 3 SAAA

29Si Labelled 3 -87.3 40 AAA
4 -90.0 23 SAA
5 -91.9 15 SSA
6 -94.8 13 SSS
7 -97.4 1 SS2

Table 6.4: Simulation parameters derived from the 29Si MAS NMR data from the 3:2
mullite systems carried out at 7.05 T. Simulations were performed using the DMFit
software package.[152] Numbers in parentheses indicate when silica is not considered,
enabling direct comparison between 29Si labelled systems.
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are denoted AAAA and SAAA and their presence is clear from the 29Si MAS NMR

data in Figure 6.8.[93, 94] It can be observed that the relative number of Si atoms

occupying these positions is only small, which could explain the lack of any observation

of Si involvement within tri-cluster formation in many other studies.[92, 96] There is

a slight increase in the sites when B is incorporated, however this change is probably

within experimental error ranges.

The last outstanding assignment involves the very small resonance at -97 ppm.

Previous predictions by Ban and Okada assigned a resonance at -92 to -92.5 ppm to

represent a Si position that is predominately surrounded by other Si sites.[93] Their

work also noted a silicon site next to an oxygen vacancy exhibits a more upfield or more

negative chemical shift. Although the shift observed in this work is much more negative

than those quoted by Ban and Okada, they do not account for a Si position surrounded

by all Si tetrahedra which are subsequently near O vacancies denoted SS2, this could

account for the more negative shift observed in this work. While this assignment is

speculative and lacks further corroboration, it represents a small contribution at the

∼ 1-2 % level (see the quantitative data from the undoped and 6 % B doped mullite

systems Table 6.4) to the overall 3:2 mullite framework.

As previously mentioned above strict quantitative comparisons can only be made

between the two 29Si labelled systems (i.e. undoped and 6 % B doped mullites). As ex-

pected the Si positions participating in the SSA, SAA, and SSS moieties become more

prevalent as the composition digresses from the crystalline parent sillimanite structure

with increasing B incorporation. This reflects increasing disorder in the mullite struc-

ture, however this increasing disorder is not observed from the corresponding 27Al MAS

NMR studies as these effects are lost in the disorder broadened linewidths representing

the AlO6 and AlO4 moieties. These differences between the level of disorder reflected

by the 27Al MAS NMR and 29Si MAS NMR studies are more accentuated in the cor-

responding results for the 2:1 mullite system. The minor perturbations observed in the

27Al MAS NMR data (see Figure 6.6) are accompanied by extremely large changes in

the corresponding 29Si MAS NMR data of Figure 6.9. The increasing Al content in

the 2:1 system causes a more comprehensive departure from the speciation character-

ising the sillimanite structure (i.e. AAA units) to a system which is now completely

dominated by SSA, SAA and SSS units.

144



40 0 -40 -80 -120 -160 -200
δ(29Si) / ppm

2:1 Mullite

3:2 Mullite

Figure 6.9: Comparison of 29Si single pulse MAS NMR spectra of 2:1 mullite (top) and
3:2 mullite (bottom), at 7.05 T using 5 kHz MAS.

The nature of the tri-cluster species itself can be inferred from the high quality

NMR data presented, with both the 27Al MAS NMR and 29Si MAS NMR data as previ-

ously mentioned indicating its presence with the involvement of Al and Si, respectively.

There appears to be evidence for the existence of multiple tri-cluster environments

being formed although they are not equally probable. The most dominant tri-cluster

statistically reflected by the 27Al MAS NMR data is the AlT* moiety comprised of three

AlO4 tetrahedra; this is observed in the simulated data displayed in Table 6.2, which

indicates ∼ 25 to 27 % AlT* being present. However, the 29Si MAS NMR data shown

in Figure 6.8 and Table 6.4 also indicates that Si is directly involved in the tri-cluster

formation, although they are not as statistically prevalent (i.e. they appear only at

the ∼ 2 to 5 % level). From the assignments and simulations of the 29Si MAS NMR

data in Figure 6.8 and Table 6.4 it can be observed that tri-clusters composed of two

Al one Si (AAAA) are more favoured than the scenario of one Al two Si (SAAA). As

evidenced by the intensities of these 29Si resonances particularly from the 29Si labelled

samples where quantitative measurements have been undertaken.

6.3.4 29Si refocused INADEQUATE

In order to further corroborate the suggested 29Si assignments discussed in the previous

section, which directly impinge upon the proposed structures comprising the tri-cluster
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species, some recourse is made to more advanced NMR techniques to substantiate these

data. This is especially important here for the 3:2 mullite system as these 29Si MAS

NMR studies reveal a multitude of resolved and partially resolved resonances. For

the structural characterisation of these systems the use of correlation experiments is

necessary to help assist and confirm the proposed assignments that are important for

the analysis. The refocused INADEQUATE experiment produces signals only from

bonded homonuclear spins, so in theory this approach should be able to delineate

which resonances represent these Si positions that participate in Si-O-Si linkages within

the mullite framework, providing the J couplings are large enough and T2 relaxation

times not too short.[114, 115] Figure 6.10 shows the 1D 29Si refocused INADEQUATE

spectrum of the undoped and 6 % B doped 3:2 mullite, showing the presence of three

resonances at -91, -94 and -97 ppm representing the SSA, SSS and SS2 moieties,

respectively. The presence of the first two resonances is expected from the assignments

above, with both the SSA and SSS moieties inferring multiple Si-O-Si linkages. In

addition the presence of the -97 ppm resonance further supports its assignment from

29Si MAS NMR as SS2, suggesting again multiple Si-O-Si linkages. Furthermore, the

low intensity of this resonance implying its low statistical occurrence corroborates the

assignment of a Si tetrahedra near a vacancy, which is further supported by its greater

intensity in the refocused INADEQUATE in Figure 6.10 of the 6 % B doped system;

i.e. where greater O vacancy concentration is expected.

Perhaps one surprise from looking at the Si assignments is the absence of a

signal in the refocused INADEQUATE spectrum from the resonance at ∼ -89/-90

ppm, assigned to be SAA environment, as it would be expected that one Si-O-Si bond

might be present. The lack of this resonance is most likely attributed to the magnitude

of the corresponding J coupling being too weak to result in an observable double

quantum signal. The nature of the one Si-O-Si tetrahedral bond within the SAA unit

probably contains a Si-O-Si bond cross linking the octahedral chains (as opposed to

silicon linkages along the c-axis) having a small corresponding J coupling. Further

Si incorporation leads to the formation of SSA and SSS units having additional Si-

O-Si linkages along the c-axis, the J couplings of which are much larger, and thus

explain the signal observed from the refocused INADEQUATE experiment. Further

work to corroborate this involving DFT calculations would help in the assignment of
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Figure 6.10: 1D 29Si refocused INADEQUATE of 3:2 undoped (left) and 6 % B doped
mullite (right) along with their respective 29Si single pulse MAS NMR data, carried
out at 14.1 T using 12.5 kHz MAS and τ/2 = 1 ms. The observation of resonances in
the refocused INADEQUATE experiment indicates Si-O-Si linkages present.

the Si resonances made, along with corresponding predictions of J couplings for each

individual Si environment, thus further supporting this reasoning.

6.3.5 {29Si}-27Al J -HMQC

In addition to Si-O-Si linkages, it’s clear that Al-O-Si linkages are fundamental to the

mullite structure. In contrast to the refocused INADEQUATE experiment, which elu-

cidates signals through homonuclear J couplings between like nuclei, the heteronuclear

J -HMQC experiment should identify correlations when Si-O-Al linkages are present.

Figure 6.11 shows the {29Si}-27Al J -HMQC data for both the undoped and 6 % B

doped 3:2 mullites. The most striking observation is the presence of correlations be-

tween the SiO4 tetrahedra and the AlO4 tetrahedra as predicted by the structure.

However, there is a clear absence of any correlation to the octahedral AlO6 moieties,

even though there exists an unambiguous structural link between the AlO6 and SiO4

moieties in the mullite structure. This {29Si}-27Al J -HMQC experiment was attempted

with many different τ/2 delays to reflect some sampling of a spread of heteronuclear

J coupling values, but the same result was obtained. As previously mentioned when

discussing the refocused INADEQUATE results, the lack of a correlation is most likely

indicative of a small J coupling of a magnitude insufficient to induce a double quantum
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Figure 6.11: {29Si}-27Al J -HMQC of (a) 3:2 undoped and (b) 6 % B doped mullites
carried out at 11.75 T using 20 kHz MAS. 64 transients are co-added for 256 t1 slices,
with a τ/2 delay of 8 ms. Single pulse MAS NMR projections are used to aid in
characterisation of sites present.
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signal. Therefore, the lack of a correlation between the AlO6 octahedra and the SiO4

tetrahedral moieties is not totally unsurprising, due to the less covalent nature of the

AlO6 bonding than that of the tetrahedral AlO4 and hence a smaller J coupling for this

site. The absence of this expected AlO6 SiO4 correlation from the J -HMQC data helps

indirectly justify the assignment of the SAA 29Si resonance and its lack of observation

from the refocused INADEQUATE experiment, as again a correlation is not observed

that is undoubtedly present within the mullite structure. Thus, from these correlation

experiments caution must be taken when making assignments, in that the lack of ob-

servation of a correlation does not always rule out the presence of a connectivity, as

clearly demonstrated here.

An important feature of the {29Si}-27Al J -HMQC data shown in Figure 6.11 can

be observed by a direct comparison of the results obtained from the undoped and 6 % B

doped mullite systems. These data show that for the undoped 3:2 mullite sample there

exists two correlations linking the AlO4 tetrahedra with SiO4 tetrahedra, and these SiO4

environments correspond to SAA and AAA moieties; both of these relationships are

easily rationalised. In the 6 % B doped sample these same two correlations are present,

however with an additional correlation with SSA also observed. This correlation is

also easily rationalised (and anticipated), however it is only observed in the 6 % B

doped structure and not from the undoped mullite structure. Therefore, only in the

6 % B doped sample are all of the correlations that would be anticipated from the

AAA, SAA, SSA assignments actually observed. The observation of the SSA moiety

for the 6 % B doped sample cannot be explained by an increase in the intensity of

this site when compared to that of the undoped sample, as from the 29Si simulation

parameters shown in Table 6.4, the SSA resonance represents (within error ranges) the

same contribution in both mullite species. Thus B doping must be directly influencing

the structure within the vicinity of the SSA site itself. These structural changes are

evidentially resulting in changes to the J couplings thus bringing the couplings into

a magnitude regime that is able to be detected by the J -HMQC experiment. This is

evidentially providing a fingerprint as to the location of the B incorporation within the

mullite framework, showing it to preferentially locate within the near vicinity of the

SSA moiety.
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6.4 Discussion and Conclusion

Tri-cluster species have been observed by MQMAS NMR in other structures, most

notably in using 17O MAS NMR,[126, 216] in addition to 27Al 3QMAS measurements

on a 2:1 mullite by Bodart et al..[97]. The 27Al 3QMAS NMR experiments performed

on both undoped and B doped 3:2 mullite structures in this study have unequivocally

provided further confirmation as to the existence, and provided insight into the nature,

of these Al tri-cluster environments. Occurrence of Si within the tri-cluster species

has additionally been identified from the high quality 29Si MAS NMR obtained, the

existence of which has been a subject for debate for some time. The 29Si resonances

observed at ∼ -80 to -81 and -82 to -83 ppm have been subsequently assigned to AAAA

and SAAA, respectively, associated with the Si involvement within tri-clusters, the low

occupancy of which illustrating the lack of prior observations of these Si tri-cluster sites.

Thus, the nature of the tri-cluster species has been determined to be predominately

comprised of three AlO4 moieties, with the presence of tri-clusters comprised of one

SiO4 two AlO4 and then two SiO4 one AlO4 becoming statistically less prevalent within

the mullite framework, with their presence indicated from the 29Si and 27Al MAS NMR

data.

Determining ordering of the Si and Al tetrahedra within the mullite structure

is best observed by comparing the data obtained to that of sillimanite, with its reg-

ular ordering of tetrahedra, A S A S A. From the 29Si MAS NMR it is clear that Si

occupies a vast number of environments within the mullite framework in comparison

to sillimanite’s well ordered one distinct environment. In addition, 27Al MAS NMR

shows that for sillimanite the two second order quadrupolar broadened lineshapes are

representing two well-ordered Al speciations. However, in the mullite structure it can

be observed that the 27Al MAS NMR resonances are broad with tails characteristic

of a distribution of environments displaying a range of quadrupole parameters, as ev-

idenced by the CQ widths, which are not insignificant when compared to the overall

CQ value. The 27Al 3QMAS data also indicates a significant chemical shift dispersion

present, with the resonances in the F 1 (vertical) axis slightly offset from being parallel

to the F 2 axis, thus representing a range of Al sites with varying bond angles, bond

lengths, and nearest neighbours. Therefore, it can be concluded that there is a lack of
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any complete ordering on the short scale within the mullite structure, and any ordering

present will ultimately lead to a large unit cell.

Incorporation of B into the mullite structure is well evidenced, due to the ob-

served changes in the lattice parameters, as shown in Lührs et al. and Griesser et

al.[86, 206] These studies also inferred the presence of B in BO3 coordination using

FTIR spectroscopic techniques, with the 11B MAS NMR data within this study sup-

porting these findings. Lührs et al. have suggested the incorporation of B being due to

a substitution with Si according to Equation 6.3, with the B cross linking the octahedral

Al chains. This is further corroborated by the 11B MAS NMR data, in particular due to

the low ηQ value of 0.15 suggesting a near-three fold axis of rotation, as expected for a

slightly distorted trigonal planar BO3 environment. Although the resonances observed

are due to one B environment which has a distinct second order quadrupole lineshape,

there is a slight disorder evidenced in the contours of the 3QMAS, due to it being

not perfectly horizontal. This is implying that even though the B is occupying one

environment within the mullite structure, there is most likely a range of bond angles

and bond lengths associated with this site, as would be expected due to the vacancies

present.

From the {29Si}-27Al J -HMQC correlation experiment the incorporation of B

into the 3:2 mullite structure can be attributed to be occurring in close proximity to

the SSA moiety. Evidence of this is given from the presence of a correlation between

the SSA Si moiety and the AlO4 moiety within the 6 % B doped mullite, unlike in the

case of the undoped mullite, thus the B incorporation is clearly changing the local SSA

environment. A {29Si}-11B J -HMQC correlation experiment, similar to the {29Si}-27Al

J -HMQC correlation experiment, was attempted on the 29Si labelled sample, to provide

further insight regarding the B incorporation within the Si network, however this was

unsuccessful with no signal observed. The difficulty in this experiment emanates from

the low B content within these systems, however further complications may arise from

J coupling values being too small to achieve double quantum correlation signals, as

was observed for the AlO6 and SiO4 correlations.

Solid state NMR has been shown to be a key tool in the structural character-

isation of mullite type materials, here helping to tackle the key unanswered questions

regarding these complex structures. Attempts to provide further clarity to these data
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involving the implementation of DFT calculations using the CASTEP code are in their

early stages. This should support the assignments made for the 29Si resonances within

this study, along with providing further conclusive evidence to that nature of the tri-

cluster species. The main difficulties with this approach remains in constructing a super

cell of the mullite structure, which due to its disordered nature will have to be very large

to accurately predict reliable NMR results. In addition, 17O NMR would also provide

further insight into the nature of the tri-cluster species, with this quadrupolar nucleus

being a diagnostic tool in structural characterisation. However, the major limitation

here is not with the NMR itself, and is in fact with the method of enriching the sample

with 17O, due to its very low natural abundance.
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Chapter 7

Summary

7.1 Phosphate Bioactive Glasses

A significant proportion of this thesis has focused on using solid state MAS NMR

methods to investigate the structure of phosphate based glasses for potential uses as

biomaterials. Due to their disordered nature, NMR has been the natural choice for

many studies in the development of these technologically promising materials. It has

long been known that the bioactivity of these systems is strongly correlated to their

atomic structure, thus making structural knowledge paramount in being able to tailor

bioactivity for their specific functions.

The advantages of phosphate based bioactive glasses over their silica counter-

parts, lies mainly in the similarity in their composition to that of hydroxyapatite found

in bone, in addition to their much quicker breakdown rates in situ.. However, the

increase in dissolution rates can sometimes provide a limitation, being too quick for

the desired function. Therefore, attempts have been focused on strengthening the

phosphate network to provide much more favourable dissolution times. The work by

Manupriya et al., showing Al to favourably decrease the glass dissolution rates, has

been further investigated using solid state MAS NMR techniques in Chapter 4.[75] The

strengthening of the glass network by the incorporation of Al ions has been supported

by the 27Al solid state one pulse MAS NMR showing the change in Al from initially

octahedral to the more network former tetrahedral coordination, strengthening the

phosphate network. The strengthening of the network is also supported by the 23Na

solid state one pulse MAS NMR data showing the Na ions becoming more shielded, as
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the network becomes more condensed upon Al incorporation.

In Chapter 5 Ga doped phosphate based glasses were investigated using solid

state MAS NMR techniques, with the intention that Ga may have a similar structural

role to that of Al within the glass network, but with the additional benefit of the an-

tibacterial properties of Ga3+ cations. 71Ga solid state one pulse MAS NMR helped

support this assumption, with Ga, like Al, entering the glass network in octahedral

coordination subsequently taking up a tetrahedral coordination upon its higher incor-

poration. Although no studies on bioactivity or dissolution rates of these exact glass

compositions are found in the literature, it can be expected that the results may mirror

that of the Al glasses, however further research in this area would prove insightful.

Successful 17O isotopic labelling was completed enabling 17O solid state MAS

NMR to be exploited on one series of the Ga doped glasses. This provided greater

insight into the structure of the network, allowing the distinction between NBO and BO

resonances. However, the observation of the latter resonance was not straightforward,

with difficultly in observing the BO resonance from MQMAS due to the resonance being

very broad, indicating the care that is needed when using 17O NMR to determine the

number of resonances and NMR parameters.

The implementation of the 31P 2D REINE experiment, the first time this has

been demonstrated on a coherent suite of samples, has provided a much deeper insight

into the disordered nature of the phosphate network. The decrease of the J coupling

upon the incorporation of Al, has provided further evidence to support the condensing

of the Al doped phosphate glass network in Chapter 4. In addition, the distribution

of J couplings permitted by the pixel by pixel fitting method provides a much greater

insight into the distribution of phosphate sites present within the glass. For the Ga

doped glass however, the REINE results indicated very little change in the average J

coupling throughout the incorporation of Ga, demonstrating that the effect of the two

cations within the glass structure is evidently not strictly identical.

Overall the results obtained from the REINE experiment provided insightful

information on the J couplings within the phosphate network permitting far more de-

tail than would be obtained from the implementation of the conventional spin echo

experiment alone. Despite the drawbacks of the REINE technique, including the long

experimental time required which may limit its wide accessibility, the results in this
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thesis clearly evidence its suitability as a tool for probing disorder particularly in phos-

phate materials.

7.2 Mullites

The results presented in Chapter 6 show one of the most comprehensive studies using

a multinuclear solid state MAS NMR approach in investigating the mullite structure

to date. Recent advances in the field of solid state NMR, both in hardware, permitting

much faster MAS rates and higher magnetic fields helping to provide higher resolution

spectra, along with the development of more complex pulse sequences such as the

MQMAS and correlation experiments, have enabled further insight into the structure,

which was not obtainable prior to these advances.

Many of the unanswered questions in the complex mullite structure have been

successfully addressed with this NMR approach. Firstly the presence of the tri-cluster

species, central to the mullite structure has long been proposed, with all structural

studies pertaining to its central role.[80, 83, 84] Bodart et al. have provided the best

evidence to date of the Al tri-cluster species from 27Al 3QMAS data on a 2:1 mullite

system.[97] The 27Al 3QMAS results shown in Chapter 6, corroborate this assignment

resulting in a clear and unambiguous observation of the Al tri-cluster site for the 3:2

mullite systems investigated in this study.

29Si solid state MAS NMR on mullite materials has been widely reported in the

literature, however the capability of using 100 % 29Si labelled samples in this study

has enabled high resolution quantitative results to be obtained. The assignments of

the many 29Si resonances have been conducted with the additional aid of correlation

experiments, in order to confirm connectivities within the aluminosilicate network. Fur-

thermore, the data has provided explicit evidence for the composition of the tri-cluster

site, with a tri-cluster comprised of three AlO4 moieties being the most prevalent, with

the presence of tri-clusters comprised of two AlO4 one SiO4, and one AlO4 two SiO4

moieties becoming statistically less prevalent. A lack of ordering in the Al Si tetrahe-

dral network has been shown, due to the broad nature and chemical shift dispersion

of the 27Al resonances, thus suggesting a wide range of sites occupied by Al, due to a

range of nearest neighbours, bond angles and bond lengths. This results in the appar-
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ent ‘disorder’ in the mullite structure, pertaining to a very large unit cell. Attempts

are currently being made to construct an accurate unit cell, by collaborators at the

University of Bremen using x-ray and neutron diffraction data, along with the NMR

data presented here. Upon creation of the cell, DFT CASTEP calculations will then be

attempted, if the size of the unit cell permits this. This approach will provide unequiv-

ocal confirmation of the assignments of the 29Si solid state MAS NMR data presented

here, along with supporting the composition of the tri-cluster proposed.

In addition to providing valuable insight into the ‘conventional’ 3:2 mullite struc-

ture, the effect of B doping to a 3:2 mullite system has been determined using 11B MAS

NMR. The results of Lührs et al. have been corroborated, with B confirmed to occupy

a BO3 coordination, with a second order quadrupole lineshape observed, indicating one

occupied site.[207] Although a slight dispersion in the F1 dimension of the 11B 3QMAS

experiment indicates a slight range of bond lengths, and or bond angles. The nature

of the incorporation of B into the 3:2 mullite strucutre previously determined to be

cross linking the octahedral Al chains has been confirmed,[207] with the {29Si}-27Al

J -HMQC correlation experiment indirectly providing a much deeper insight into this

occupation of B, in that it is clearly in the near vicinity of the SAA Si moiety. This

is evidenced by the observation of the SSA resonance from the J -HMQC correlation

experiment for the 6 % B doped system, with a lack of this signal in the undoped 3:2

mullite, thus indicating changes to the local SSA environment dependant upon B.

Overall the NMR data presented in Chapter 6 has provided valuable insight

into the complex structure of 3:2 mullite systems, with the advances in the field of

solid state NMR demonstrating its effectiveness, hopefully stimulating more research

in this area in the near future. Further research is being planned, with attempts to 17O

isotopically label 3:2 mullite systems, with the hope that this informative nucleus can

provide further insight into the mullite structure. This should open up a whole new

range of experiments that could be conducted, including both correlation experiments

and MQMAS, to further investigate the tri-cluster moiety in particular.
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Appendix A

Appendix

A.1 Reduced Wigner rotation matrix elements djkl(β)
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A.2 Coefficients for the Second Order Quadrupole Inter-

action along with MQMAS ratio

Spin (I) Transition (m) C0 (rank 0) C2 (rank 2) C4 (rank 4) k

3/2 1/2 3 24 54 N/A
3/2 3/2 -9 0 -42 -7/9

5/2 1/2 8 64 144 N/A
5/2 3/2 6 120 228 19/12
5/2 5/2 -50 -40 -300 -25/12

Table A.1: Coefficients for the Second Order Quadrupole Interaction for spin 3/2 and
5/2 nuclei. The MQMAS ratio k relates to the rank 4 term. The table is taken from
Frydman and Harwood J. Am. Chem. Soc., Vol. 117, No. 19, 1995, in their ground
breaking paper on MQMAS.

A.3 23Na MAS NMR parameters from simulation of Al

doped bioactive glasses single pulse NMR spectra.

Peak δ(ppm) CQ Center CQ Width η
(± 0.5) (MHz) (MHz) (± 0.05)

(± 0.3) (± 0.5)

0Al11Na -6.4 2.7 1.5 0.1

3Al8Na -8.8 2.4 1.6 0.1

5Al6Na -10.5 2.2 2.0 0.1

8Al3Na -11.6 2.1 1.7 0.1

Table A.2: 23Na MAS NMR parameters from simulation of single pulse MAS NMR
spectra. Parameters constrained from multiple field fitting, using Quadfit software
package. [153]
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A.4 Simulation parameters from 31P MAS NMR data of

Al phosphate glasses.

δ(ppm) Int (%) Environment
±0.1 ppm ±0.5%

0Al11Na
1 -8.0 17 Q1

2 -24.5 83 Q2

3Al8Na
1 -10.1 19.5 Q1

2 -24.2 80 Q2

5Al6Na
1 -11.5 20 Q1

2 -24.3 80 Q2

8Al3Na
1 -12.3 18 Q1

2 -24.3 82 Q2

Table A.3: Fitting parameters from 31P NMR of Al glass samples carried out at 7.05
T. Simulations carried out using DmFit software package.[152]
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A.5 Fitting Results from Time-Domain spin echo fits of
31P REINE curves for Q1 − Q1 and Q1 − Q2 peaks of

Al phosphate glasses

Peak ε2 Fitted Parameters Correlation Coefficient
(2JQQ in Hz, T ′2 in ms)

0Al11Na Q1 −Q1 36.3x10−3 2JQ1Q1= 11.9 ± 0.7 T ′2 - 2JQ1Q1 : -0.0323
T ′2=38.8 ± 3.7

Q1 −Q2 18.0x10−3 2JQ1Q2= 16.8 ± 0.3 T ′2 - 2JQ1Q2 : -0.0046
T ′2=40.1 ± 2.0

3Al8Na Q1 −Q1 34.1x10−3 2JQ1Q1= 11.1 ± 0.7 T ′2 - 2JQ1Q1 : 0.2425
T ′2=31.8 ± 3.1

Q1 −Q2 25.4x10−3 2JQ1Q2= 15.0 ± 0.5 T ′2 - 2JQ1Q2 : 0.0060
T ′2=31.9 ± 2.1

5Al6Na Q1 −Q1 57.6x10−3 2JQ1Q1= 10.6 ± 0.7 T ′2 - 2JQ1Q1 : 0.1027
T ′2=42.0 ± 5.0

Q1 −Q2 44.0x10−3 2JQ1Q2= 13.6 ± 0.6 T ′2 - 2JQ1Q2 : 0.0521
T ′2=34.0 ± 3.0

8Al3Na Q1 −Q2 15.8x10−3 2JQ1Q2= 13.1 ± 0.6 T ′2 - 2JQ1Q2 : 0.0534
T ′2=31.0 ± 2.2

Table A.4: Fitting Results from Time-Domain spin echo fits of 31P REINE curves for
Q1 −Q1 and Q1 −Q2 peaks (7.05 T with 12.5 kHz MAS)
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A.6 Fitting Results from Time-Domain spin echo fits of
31P REINE curves for Q2 −Q2 peaks of Al phosphate

glasses

Peak ε2 Fitted Parameters Correlation Coefficient
(2JQQ in Hz, T ′2 in ms)

0Al11Na Q2 −Q2 5.2x10−3 2JQ2Q2= 10.2 ± 0.5 T ′2 - 2JQ2Q2 : 0.4632
T ′2=23.5 ± 1.5

3Al8Na Q2 −Q2 5.3x10−3 2JQ2Q2= 10.1 ± 0.4 T ′2 - 2JQ2Q2 : 0.5907
T ′2=26.5 ± 1.6

5Al6Na Q2 −Q2 2.3x10−3 2JQ1Q2= 12.1 ± 0.5 T ′2 - 2JQ1Q2 : 0.6678
2JQ2Q2= 7.5 ± 0.7 T ′2 - 2JQ2Q2 : 0.4618
T ′2=15.8 ± 1.0 2JQ1Q2 - 2JQ2Q2 : -0.038

8Al3Na Q2 −Q2 27x10−3 2JQ1Q2= 13.2 ± 0.1 T ′2 - 2JQ1Q2 : 0.7247
2JQ2Q2= 6.0 ± 0.3 T ′2 - 2JQ2Q2 : 0.5560
T ′2=14.8 ± 0.3 2JQ1Q2 - 2JQ2Q2 : 0.2949

Table A.5: Fitting Results from Time-Domain spin echo fits of 31P REINE curves for
Q2 −Q2 peaks (7.05 T with 12.5 kHz MAS).
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A.7 Fitting Results from Time-Domain spin echo fits of
31P REINE curves for Q1 − Q2 and Q2 − Q2 peaks of

Ga phosphate glasses

Peak ε2 Fitted Parameters Correlation Coefficient
(2JQQ in Hz, T ′2 in ms)

P45Ga1 Q1 −Q2 16.7x10−3 2JQ1Q2= 16.1 ± 0.1 T ′2 - 2JQ1Q2 : -0.0031
T ′2=31.5 ± 1.7

Q2 −Q2 3.3x10−3 2JQ2Q2= 10.9 ± 0.4 T ′2 - 2JQ2Q2 : 0.6589
T ′2=21.3 ± 1.0

P45Ga3 Q1 −Q2 13.1x10−3 2JQ1Q2= 16.4 ± 0.5 T ′2 - 2JQ1Q2 : -0.1081
T ′2=31.4 ± 1.8

Q2 −Q2 6.6x10−3 2JQ2Q2= 11.5 ± 0.6 T ′2 - 2JQ2Q2 : 0.4001
T ′2=22.1± 1.6

P45Ga5 Q1 −Q2 26.2x10−3 2JQ1Q2= 15.5 ± 0.6 T ′2 - 2JQ1Q2 : 0.0454
T ′2=27.6 ± 2.0

Q2 −Q2 18.0x10−3 2JQ2Q2= 11.0 ± 0.8 T ′2 - 2JQ2Q2 : 0.5077
T ′2=24.5 ± 2.5

Table A.6: Fitting Results from Time-Domain spin echo fits of 31P REINE curves for
Q1 −Q2 and Q2 −Q2 peaks (7.05 T with 12.5 kHz MAS)
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