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Abstract

The rational operator-based approach to depth from defocus (DfD) using pill-box

point spread function (PSF) enables texture-invariant 3-dimensional (3D) surface

reconstructions. However, pill-box PSF produces errors when the amount of lens

diffraction and aberrations varies. This thesis proposes two DfD methods, one using

the Gaussian PSF that addresses the situation when diffraction and aberrations are

dominant, and the second based on the generalised Gaussian PSF that deals with

any levels of the problem. The accuracy of DfD can be severely reduced by elliptical

lens distortion. This thesis also presents two correction methods, correction by

distortion cancellation and correction by least squares fit. Each method is followed

by a smoothing algorithm to address the low-texture problem of DfD.

Most existing human activity recognition systems pay little attention to an

effective way to obtain training silhouettes. This thesis presents an algorithm to

obtain silhouettes from any view using 3D data produced by Vicon Nexus. Existing

background subtraction algorithms produce moving shadow that has a significant

impact on silhouette-based recognition system. Shadow removal methods based on

colour and texture fail when the surrounding background has similar colour or tex-

ture. This thesis proposes an algorithm based on known position of the sun to

remove shadow in outdoor environment, which is able to remove essential part of

the shadow to suffice recognition purpose. Unlike most recognition systems that are

either speed-variant, temporal-order-variant, inefficient or computational expensive,

this thesis presents a near real-time system based on embedded silhouettes. Silhou-

ettes are first embedded with isometric feature mapping, and the transformation

is learned by radial basis function. Complex human activities are then learnt with

spatial objects created from the patterns of embedded silhouettes.
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Chapter 1

Introduction

This thesis presents the investigation into two topics that are important in 3-

dimensional (3D) computer vision: the 3D surface reconstruction approach of depth

from defocus (DfD), and a manifold learning-based method for human activity recog-

nition that uses a 3D technique to obtain its training data. This chapter starts with

Section 1.1 by giving an overview of existing 3D surface reconstruction approaches.

Section 1.2 introduces DfD, Section 1.3 introduces human activity recognition sys-

tem, and finally Section 1.4 presents the thesis organisation.

1.1 Overview of Surface Reconstruction Approaches

As shown in Fig. 1.1, surface reconstruction techniques can be roughly divided

into contact-based and non-contact-based [1]. Non-contact techniques are further

categorised into active and passive techniques.

1.1.1 Contact-based techniques

Contact-based techniques require physical contact with the target by a solid object,

such as a touch probe. An example of such a system is the coordinate measuring

machine (CMM), where a touch probe is used to find and calculate the distance

of each point of a target object. Fig. 1.2 illustrates a CMM. During measurement,

component 7 is first moved along the y direction. Component 6 (the touch probe)

is also moved in both x and z directions. Its location in terms of x, y and z are

recorded as it is making contact with the object numbered as 12.
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1.1. OVERVIEW OF SURFACE RECONSTRUCTION APPROACHES

Figure 1.1: 3D surface reconstruction techniques.

Figure 1.2: CMM adapted from [2].
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Non-contact techniques use electromagnetic waves or acoustic waves instead

of a solid object. Electromagnetic waves include Gamma-ray, X-ray, visible light and

infrared. Acoustic waves include ultrasound. Gamma-ray, X-ray and ultrasound

have short wave-length and can easily penetrate object, they are thus primarily

used for inspecting interior structure of an object [3]. Visible light and infrared

have median wavelength and cannot normally penetrate object, they are thus used

to reconstruct the outer surface.

(a) (b)

Figure 1.3: LiDAR-based surface reconstruction: (a) Schematic diagram (adapted
from [4]) and (b) reconstruction of Rhode Island (adapted from [5]).

1.1.2 Active techniques

Active techniques require the operator or the instrument to provide a source of waves

that is used for distant measurement. Popular examples include time-of-flight, tri-

angulation and structured light. In time-of-flight-based techniques, a pulse of laser

is emitted onto the target point, reflected by the target and received by a sensor.

The time interval for the process is used to calculate the distance. Time-of-flight is

capable of operating over very long range up to 800 metres with 1 centimetre accu-

racy [6]. They are thus mainly used for scanning buildings and geographic features

[4]. Light detection and ranging (LiDAR) is a typical example of these techniques.

Fig. 1.3(a) illustrates the working principle of an airborne LiDAR carried by an

aircraft. The LiDAR constantly scans left and right downwards as the aircraft pro-

ceeds. The system obtains the x,y,z position with GPS, and the motion information

from the inertial measurement unit (IMU) to obtain the 3D terrain surface recon-

3



1.1. OVERVIEW OF SURFACE RECONSTRUCTION APPROACHES

struction. Fig. 1.3(b) shows a pseudo-coloured surface reconstruction of the Rhode

Island in spring 2011.

In triangulation-based techniques, the light source, the camera and the object

are placed in three different locations, forming a triangle. When the light source is

fixed, the position of the reflected light in the image indicates how far the object is

from the camera. Triangulation-based techniques provide very high accuracy up to

2.25 micrometres [6]. Applications include inspecting surface defects and precision

measurement. Fig. 1.4 illustrates two common types of triangulation techniques,

i.e., the single point laser scanner and the slit laser scanner. The single point

scanner shown in (a) works by projecting a single ray of laser onto the object with

known orientation. A camera with known configuration and orientation captures

the image of the reflected ray as a sharp point. Finally the depth is computed using

the location of the sharp point in the image. This process is repeated many times at

different locations of the target object so that a depth map is obtained. Instead of

projecting a single ray, the slit scanner in (b) projects a slit of rays onto the object,

which considerably increase the reconstruction speed.

(a) (b)

Figure 1.4: An illustration of the triangulation laser scanner (adapted from [6]): (a)
Single point and (b) slit laser scanner.

In structured-light approach, a pattern of light is projected onto the object,

and the reflected pattern indicates the distance [7]. Fig. 1.5 illustrates an example of

surface reconstruction using a structured-light technique. Patterns of parallel lines

are projected onto the object as shown on the left. Regions with lines having larger

separation correspond to greater depth and vice versa. The reconstruction result
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1.1. OVERVIEW OF SURFACE RECONSTRUCTION APPROACHES

Figure 1.5: Structured-light-based 3D surface reconstruction (adapted from [10]).

is shown on the right by 3D surface rendering. Structured light approach provides

lower accuracy than triangulation, but it is capable of producing smooth surface

reconstruction at video rate [6]. Hence, it is ideal for human body measurements

where absolute accuracy is not important. Real-time system has been developed,

e.g., Microsoft Kinect sensor which uses infrared as the light source [8]. Stereoscopic

systems with structured-light are also commercially available. Two cameras are used

in such a system, the locations of the projected pattern in their field of view are

used to calculate distance [9].

1.1.3 Passive techniques

Passive surface reconstruction techniques do not require any active light projection.

Instead, the natural radiance, colour and textures of the target surface are used

for distance measurement. Shape from shading and shape from motion are famous

examples. Depth from stereo, depth from focus (DfF) and DfD are also passive if

no active projection is performed. Shape from shading is based on the fact that

the surface shape affects the reflectance property [11] as illustrated in Fig. 1.6. The

reflection distribution, viewing direction and the light source are used as input.

High-quality lighting is required for accurate result. Shape from shading will not

work for a random scene where no information is obtained for the light source.

Figure 1.6: Artist’s drawings of 3D shapes (adapted from [12]).

In shape from motion, either the camera or the target is moved while images

are captured. Every set of corresponding points in these images are found. Their

locations in the images and the movement of the camera/target are then used to
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estimate the 3D information. Fig. 1.7 illustrates an implementation of shape from

motion on a smart phone, where the orientation and displacement of the camera

are obtained with the internal sensors of the camera. Depth from stereo is a sim-

ilar technique, where two images are captured by two cameras at different views.

Fig. 1.8(a) illustrates the working principle of a stereoscopic system. Two cameras

with known orientation and baseline capture images of an object. The images of

the object points from the two cameras are in different locations. The difference in

locations, known as disparity, is larger if the object is closer to the camera. Thus,

disparity is computed to infer depth.

Figure 1.7: An implementation of shape from motion on a smart phone (adapted
from [13]).

(a) (b)

Figure 1.8: Depth from stereo: (a) working principle (adapted from [14]) and (b) a
commercially available active stereoscopic system (adapted from [15]).

The biggest problem with shape from motion or depth from stereo is finding

point correspondences, i.e. which two pixels correspond to the same object point,

and this requires large computational cost and is not always possible. Correspon-

dence cannot be found if a point only appears in one of the images but is occluded

in the other. If correspondence cannot be found, the depth cannot be recovered.
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1.2. DEPTH FROM DEFOCUS

Fig. 1.8(b) shows an example of an active stereoscopic system, where a projector

projects a pattern of light rays onto the object to aid the correspondence search.

Passive DfF computes distance by analysing camera parameters after the

image is in focus. When the image is in focus, the focal length, and sensor to lens

distance are used to calculate depth. The challenge of DfF is in deciding when the

object is in focus. Auto focus has become commercially available, but its operational

speed is limited to up to few frames per second. Thus, a dense depth map using

DfF is very unlikely to be achieved in real-time.

1.2 Depth from Defocus

In this thesis, depth is the distance from a target object to the viewer, and defocus

is the artefact of image blurring. Thus, DfD is a 3D surface reconstruction approach

based on image blurring effect. DfD can take either a single image, two images, or

more than two images as its input. Techniques using a single image analyses the

frequency content near sharp edges. However, they have an inherent difficulty in

distinguishing whether low frequency regions correspond to blurred sharp edges or

focused smooth surfaces. Thus they are primarily used when only one input image

is available. Most existing DfD methods use two images as input that effectively

addresses the above-mentioned ambiguity problem. More images can be used which

impose over-constraints, thus improving the reconstruction accuracy.

This thesis is concerned with DfD using two images. Fig. 1.9 illustrates

the workflow of the DfD approach. First, two images of a scene are captured by

a digital camera with different but known focus settings, where focus settings or

optical settings refer to aperture size, sensor to lens distance and focal length. In

the top image, the background sandpaper is the furthest object in the scene, and it is

in focus. Thus, this image is called the far-focused image. In the bottom image, the

nearest bottom wooden chunk is in focus, this image is thus called the near-focused

image.

Far/near-focused image pair is often used as the input to DfD methods, but

it is not the only option. Other means of obtaining the image pair include changing

aperture size and focal length. The single-channel (greyscale) image pair obtained

by averaging the multi-channel (colour) image pair is used in this thesis as the cases

in [16; 17]. A DfD method estimates the depth, pixel by pixel, and generates a

result that can be presented as a depth map or a mesh plot. In Fig. 1.9 a radiance

coded mesh-plot is produced as seen on the right. Please refer to Appendix B for

the difference between depth map, mesh plot, 3D surface and volumetric rendering.
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1.2. DEPTH FROM DEFOCUS

Figure 1.9: Overview of DfD using 2 images.

1.2.1 Mathematical background

Fig. 1.10 shows an image of flowers. It is clear that the flowers which are closer to

the camera are sharper than those further away, or the closer flowers are less blurred

than the further ones. This is the basis for DfD, where the amount of blur infers

distance. The blurring effect is modelled mathematically as the convolution of the

point spread function (PSF) with a focused image, i.e.

I = H ∗M , (1.1)

where M is the focused image, H is the PSF and I is the blurred image. The PSF is

associated with a parameter indicating the amount of blurring, which is the defocus

parameter. For example, the Gaussian PSF is given by [18]

H(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (1.2)

where σ is the standard deviation (SD) or the defocus parameter of the PSF, x and

y are the horizontal and vertical indices respectively. The larger the SD, the more

blurred the resulting image becomes. Note also that circular symmetry applies for

all PSFs assuming the lens has a non-distorted circular symmetrical shape.

Figure 1.10: Blur and depth [19].
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Please also note the mathematical notations used in the thesis: v (lower-

case italic letter) denotes a scalar variable, V (upper-case letter) denotes a scalar

constant, ~v (arrow overhead) denotes a 1-dimensional (1D) array of elements, V

(bold upper-case) denotes a 2-dimensional (2D) array of elements, matrix or digital

image, and V̌ (check overhead) denotes the magnitude frequency response (MFR)

of V.

Fig. 1.11 shows an example of modelling blur with the Gaussian PSF. The

first row shows an all-focused image where every pixel in the image is in focus. The

second row shows Gaussian PSFs with SD of 1, 1.3 and 2.5, respectively from left to

right. The third row shows the resulting blurred images. As the figure shows, the

blurring effect is higher for large value of SD. Hence, when Gaussian PSF is used,

the SD is estimated to obtain depth.

Figure 1.11: An example of blur modelling with Gaussian PSF. Row1: the original
image (adapted from [20]). Row 2: surface plot of the PSF with different SD. Row
3: the blurred images.

There are numerous DfD methods. The generic DfD method, i.e., the Sub-

barao’s method [18] is based on estimating depth from the amount of defocus, which

is represented by the defocus parameter of PSF. The defocus parameter is computed

by solving a system of equations involving input pixel values and optical parame-

ters such as focal length, aperture diameter and sensor-to-lens distance. An outline

description of the generic DfD method, i.e., the Subbarao’s method, is presented in

Appendix C. Although the generic DfD offers a general clue for estimating depth

with PSF modelling, the result is very noisy and inaccurate due to lack of filtering
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1.2. DEPTH FROM DEFOCUS

and failure to consider the frequency dependency problem, which states that dif-

ferent frequency components have different depth responses. In [16], a number of

spatial filters, called rational filters or rational operators (ROs) were designed to

address this problem.

Fig. 1.12 illustrates the DfD image acquisition system with telecentric optics1.

The light rays from an object point pass through the telecentric aperture of radius

a. The focused image point is tagged at a position between the far-focused position

l1 and the near-focused image position l2. The normalised depth α is -1 at l1 and 1

at l2. The distance between the focused point and l1 is (1 + α)e and that between

the focused point and l2 is (1− α)e. u is the distance between an object point and

the lens and F is the focal length. First, the f-number of the lens

Fe =
F

2a
. (1.3)

The optical transfer function (OTF) (please see Appendix C for its definition) of

the frequency-dependant pill-box

Ȟ(fr, α) =
2Fe

π(1 + α)efr
J1

(
π(1 + α)e

Fe
fr

)
, (1.4)

where, J1 is the first-order Bessel function of the first kind, and fr denotes the radial

frequency.

Figure 1.12: The telecentric DfD system.

1Telecentric optics involves placing an external aperture on a lens in order to eliminate im-
age magnification when obtaining the DfD input images. See Appendix D for a more detailed
description.
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The normalised image ratio (NIR) or the M/P ratio is given by:

M̌

P̌
(fr, α) =

Ȟ1(fr, α)− Ȟ2(fr, α)

Ȟ1(fr, α) + Ȟ2(fr, α)
, (1.5)

where Ȟ1 and Ȟ2 are the OTFs of the far-focused and near-focused image, respec-

tively. Eqn. (1.5) was modelled as a third order polynomial of the depth α[16],

i.e.,
M̌

P̌
(fr, α) =

Ǧp1(fr)

Ǧm1(fr)
α+

Ǧp2(fr)

Ǧm1(fr)
α3 , (1.6)

where the coefficients are expressed as rational forms; Ǧm1, Ǧp1 and Ǧp2 are the

Fourier transform of the ROs.

For offline preparation, Eqn. (1.4) and (1.5) were first used to obtain the

NIR. least squares fit was then used to find the first and third order coefficient in

Eqn. (1.6). After Ǧm1 was initialised to be a band-pass filter, the other two filters

Ǧp1 and Ǧp2 were computed with the coefficients. The corresponding spatial filters

are denoted by Gm1, Gp1 and Gp2, respectively, which are the rational filters or

ROs.

During run-time, the difference image M and sum image P were computed

first using

M = (I2 − I1) ∗Q (1.7)

P = (I2 + I1) ∗Q , (1.8)

where Q is a pre-filter that removes the frequency components that degrade surface

reconstruction. Denoting A as the depth map and using Eqn. (1.6),

Gm1 ∗M = (Gp1 ∗P) ·A + (Gp2 ∗P) ·A3 , (1.9)

where · denotes the dot product. Solving Eqn. (1.9) gives the depth map.

This DfD method performs detailed analysis on every frequency component

from the input images by obtaining the frequency-variant expression of the OTF

and the NIR using Eqn. (1.4) - (1.6). The run-time computation is linear with

only 5 convolutions as shown using Eqn. (1.7) - (1.9). Thus, this method is both

accurate and of low computational cost, and it is ideal for real-time 3D surface

reconstruction for human activity analysis. In [16], the ROs were designed with a

non-linear optimisation technique. A simplified algorithm to design these operators

was presented in [17].
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1.2.2 Motivation

The interest in DfD is motivated by its advantages over other 3D reconstruction

techniques and its potential applications. Contact-based techniques provide mi-

crometre precision. However, they are very slow with speed of up to few hundred

object points per second. They are also not suitable for delicate object which might

be damaged or modified. Their applications include measurement of the surface of

a flat object, and objects with simple curvature in manufacturing industry. Active

techniques provide high accuracy and higher speed than contact-based ones. DfD

with structured-light is studied by researchers, where the amount of blurring of the

projected pattern is used to calculate depth. However, active techniques require

dedicated hardware, professional calibration and are usually very expensive.

Passive techniques provide considerably lower accuracy than contact-based

active techniques, and thus cannot be used for high precision measurement. How-

ever, their implementations are much faster and cheaper since active illumination is

not required. Amongst these techniques, DfD is capable of producing dense depth

map with high speed, does not have the correspondence problem associated with

depth from stereo since only one view is used, and it can adapt to various lighting

conditions by changing sensor exposure time or aperture diameters. Recently DfD

was applied in Panasonic Lumix GH4 digital camera for rapid auto-focus [21], which

was significantly faster than traditional DfF-based technique. In contrast with depth

from stereo that requires two lenses, DfD requires only one lens to capture input

images, thus it is ideal for applications where the input device needs to be minia-

turised, such as 3D endoscopy. Other potential applications include 3D-modelling,

human-computer interaction and human activity analysis where active illumination

hardware is not available or practical.

1.2.3 Challenges and contributions

As discussed in Section 1.2.1, the DfD method in [16] is accurate and fast. However,

it suffers the following serious drawbacks that must be addressed. First, it assumes

no aberrations or diffraction, and thus uses a pill-box PSF. However, this is not true

for most of the off-the-shelf lenses. Second, the designed pre-filter fails to remove

significant amount of frequency components which lead to suboptimal reconstruc-

tion. Third, spurious assumptions are made in the unnecessarily complex design

procedure for the ROs. Finally, an elliptical depth distortion resulting from optical

lens is not addressed which leads to a distorted depth map.

To address these drawbacks, we propose a DfD system with Gaussian ROs

and generalised Gaussian ROs. The Gaussian ROs are designed with Gaussian
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PSF for the imaging environment when aberrations and diffraction are significant,

and the generalised Gaussian ROs with generalised Gaussian PSF2 is applied to the

environment with any amount of aberrations and diffraction. Frequency components

containing low gradient along with the zero gradient are removed with the proposed

pre-filter. Only one cost function is formed during filter optimisation without the

need of any assumption. The elliptical depth distortion is addressed by the proposed

two correction methods: correction by distortion cancellation (CDC) that works by

cancelling the distortion with a known similar distortion, and correction by least

squares fit (CLSF) where a mapping from the distorted value to the corrected value

at a given location and distance is learnt efficiently by least squares fit.

1.3 Human Activity Recognition

Thus far, a number of common 3D surface reconstruction techniques has been briefly

introduced in Section 1.1, and an introduction on the first topic of our thesis, i.e.

DfD, has been given in Section 1.2 along with its advantages over the alternative

techniques and its major problems. In this section, an introduction of human activity

recognition system that is the second topic of the thesis is provided. The proposed

system makes uses of a 3D reconstruction technique to obtain the training data.

Video-based human activity recognition is one of the current most important

topic of computer vision research. In recent years, it has attracted the interest of

many researchers from academia, industry, consumer agencies and security agencies.

A recognition system aims at the automatic analysis of an activity performed by a

person or multiple persons captured in a video or image sequence. In the simplest

case where a video sequence is segmented to contain only a person performing one

activity, the system is expected to classify this activity as one of the learnt categories.

There is no consensus terminology for an activity and an action [22]. We

thus define an action primitive as a sequence of individual postures of a single body

part such as rising arm and kicking. We define an action as a periodic movement

comprising a number of primitives, such as jumping and hand-clapping. We define

an activity as a sequence of individual actions that serves a goal, such as walking

while using a mobile phone, and a sequence of digging towards different direction.

In this thesis we limit our research to full body of a single human subject using

silhouettes. Therefore, recognition of hand gestures and group activities are beyond

the scope of this thesis.

Research in video-based activity recognition is preceded by research in ob-

2Refer to Appendix E for a description on generalised Gaussian PSF.
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ject recognition and speech recognition before digital video hardware became widely

available. Thus, it is significantly inspired by both preceding recognition systems.

Systems that are inspired by the former consider a video as a spatio-temporal vol-

ume, which is a 3D volume created by combining the frames from consecutive time

instances, and 2D object feature analysis is extended into the 3D case. Examples

include a system that incorporates 3D interest points extraction [23] and a system

that uses 3D convolutional neural network (CNN) [24]. Systems inspired by the

latter is based on sequential analysis of features extracted from every frame of the

video, and they often use techniques that have been successfully implemented in

the speech recognition systems such as the hidden Markov model (HMM) [25] and

dynamic time warping (DTW) [26].

The spatio-temporal approach to activity recognition is illustrated in Fig. 1.13.

This approach involves a training process and a learning process. The training in-

cludes: generating a spatio-temporal volume from each of a number of videos con-

taining different classes of activities; and generating an activity model by extracting

features from the volume. During learning, the similarity between different activity

models is defined using measures such as Euclidean distance, Mahalanobis distance

and subspace angles. When a video containing an unknown activity is to be recog-

nised, similar processes as in training are performed. A classification algorithm, e.g.,

nearest-neighbour and Support Vector Machine (SVM), is then performed to label

the video as one of the learnt categories based on the defined distance measure.

The sequential approach is illustrated in Fig. 1.14. Raw data such as sil-

houettes and body joints are extracted from the video frame by frame. A feature

vector is created by extracting features from each frame of raw data, and an activity

model is generated from the feature vectors. Finally the learning and classification

procedures are similar to those in the spatio-temporal approach.

Human activities contain complex information and are of high dimension-

ality. Thus, there is a need for dimensionality reduction techniques to retain only

the discriminating features of human activities. Examples of popular dimension-

ality reduction techniques include principal component analysis (PCA) [28], multi-

dimensional scaling [29], locally linear embedding (LLE) [30] and isometric feature

mapping (Isomap) [31].

Fig. 1.15(a) illustrates LLE for feature extraction, where high dimensional

images of human faces are embedded into a 2D space. The horizontal dimension is

related to the amount of relaxation of the facial expression and the vertical dimension

is related to the direction of the face. Fig. 1.15(b) illustrates Isomap where a different
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Figure 1.13: Spatio-temporal approach to human activity recognition (adapted from
[27]).

Figure 1.14: Sequential approach to human activity recognition (adapted from [27]).
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(a)

(b)

Figure 1.15: An illustration of dimensionality reduction techniques for feature ex-
traction: (a) LLE (adapted from [30]; and (b) Isomap (adapted from [31]).
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set of face images are embedded into a 2D space. The horizontal axis represents left

or right pose of the head, and the vertical axis represents up and down pose of the

head.

During training, a number of feature vectors are embedded and stored. Dur-

ing testing, a new feature vector needs to be embedded as well in order so as to

match it with the stored vectors. Manifold learning involves learning the mapping

from original space to the embedded space. Previous recognition systems made use

of linear methods such as PCA [32], where new input vectors could be embedded

by direct projection onto the principal axioms generated by the Singular Value De-

composition (SVD) applied to the training data. However, human activity is highly

complex and non-linear. A significant improvement was thus made using non-linear

dimensionality reduction methods including Isomap and LLE [33; 34; 35].

1.3.1 Motivation

The interest in human activity recognition is motivated by several important appli-

cations, including content-based video analysis, human-machine interaction, patient

monitoring, safety monitoring, and security and surveillance [36]. Content-based

video analysis aims to categorise a video according to its contents containing hu-

mans performing activities. This has become a very important application for video

sharing websites, which may have the need to automatically assort or evaluate their

videos. This is also very important for sport videos [37], such as one containing a

football match, where the match statistics require accurate identifications of passing

ball, shooting, and etc.

Human-machine interaction is the mutual action between human and ma-

chine, which involves both input (human to machine) and output (machine to hu-

man) communication. Traditional input methods include switching switches, turn-

ing knobs, pressing buttons and typing with keyboards, and output methods include

acoustic and optical ones. However, these methods are often not intuitive and diffi-

cult to learn. Recent success in object recognition and speech recognition has made

it easier for human users to use machine. For example, fingerprint devices have

been widely available which save users from typing password, and speech recogni-

tion systems allows users to control machines by simply talking to them. Similarly,

activity recognition would encourage users to use machines by performing an action

or an activity. However, the required technique for human-machine interaction is

not sufficiently mature and thus it is still an active research area.

Hospitals may require constant monitoring of patients in the absence of med-

ical staff, or when patients are recuperating at home. This is particularly useful for
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patients with chronic disease who need to take medicine regularly for a long period.

This is also important for patients in critical conditions who may not be able to

contact medical staff. It is inevitable that continuous monitoring of patients leads

to monitoring staff’s physical or mental fatigue, thus an automatic system is highly

beneficial for monitoring or surveillance application. Highly hazardous environment

can cause injury or death if a dangerous activity is performed, e.g., smoking in

a petrol station and entering a biomedical laboratory without wearing protective

clothing. An automatic system that identifies dangerous human activities can po-

tentially reduce such fatal incidents. Traditional security and surveillance systems

require a number of video cameras monitored by a human operator. Due to fatigue

caused by repetitive nature of the work, abnormal behaviours often go unnoticed.

In addition, with the decrease in the cost of high quality video cameras and the in-

crease in the cost of employing human operators, an automatic system that is both

accurate and cost effective has gained a lot of interest from security agencies and

other researchers. Another similar application is to automatically identify a target

activity from a large video database.

1.3.2 Challenges and contributions

Hitherto, there has been little interest in developing an efficient and accurate means

of obtaining 3D training data for activity recognition [38]. For most recognition sys-

tems based on silhouettes, the training data is generated with a camera, or multiple

cameras if more views are required. This is impractical if a large number of views are

required, and errors occur in manual camera placement. DfD is potentially useful

for this application, where a 3D human body model can be obtained with only two

cameras with one facing another and the subject in between. However, our current

DfD system is neither portable nor incorporate real-time automatic input video ac-

quisition. Therefore, we propose a method for generating silhouettes from any view

using 3D body coordinates (extracted using Vicon Nexus [39], of each marker placed

on an actor while performing an activity) and a triangulation technique for 3D sur-

face reconstruction of the activity. Shadows are inevitably present in real scenes

and are difficult to remove reliably from a silhouette [40]. To address this issue we

propose a shadow removal method for outdoor scenes based on an estimate of the

current position of the sun and 3D analysis of shadow formation.

Various problems are also encountered by an activity recognition system.

When the temporal order of the actions comprising an activity is changed, new

training data is required for that activity to be recognised, e.g., as in sequential

methods that model activities with the HMM [25; 33]. When the speed in which
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an activity is performed is changed, the template used for its recognition has to

be changed as in the space-time volume approach [41; 42]. Real-time operation

with high accuracy and robustness are often necessary. However, methods based

on space-time trajectory [43; 44] are very slow because they require accurate 3D

modelling of a large number of body parts. They also have problem dealing with

occlusion of joints. We address these problems by proposing an embedded pattern

learning (EPL) algorithm which uses a spatial object created from the coordinates

of embedded silhouettes to denote an activity. The spatial object takes into account

the speed variation of the actions and is invariant to their temporal order. The

algorithm is fast due to its linear nature. Our main contributions on human activity

recognition are: (a) a method for generating training silhouettes from a 3D human

model; (b) manifold learning using Isomap [31], where the radial basis function

(RBF) learning process is significantly simplified compared to the work in [34]; (c)

a reliable shadow removal method; (d) and EPL for recognising activities.

1.4 Thesis organisation

Chapter 2 and Chapter 3 respectively provide literature reviews on a number of

most important and well-known passive DfD techniques and human activity recog-

nition methods. These chapters aim to provide the basic working principles and

methodologies of different and state of the art methods.

Chapter 4 presents the experimental procedures for acquiring DfD input

images, and this includes a description of the designed hardware and software en-

vironment. Chapter 5 proposes a RO-based DfD (RO-DfD) algorithm using Gaus-

sian PSF and generalised Gaussian PSF in order to cope with different amount of

lens aberrations and diffraction. This work has been published in [45]. Chapter 6

presents two DfD correction methods which address the elliptical distortion problem

in DfD, where experiments are performed on seven objects with four existing DfD

methods to demonstrate their potential in adapting all other DfD methods. This

work has been submitted to a journal [46].

Chapter 7 proposes a silhouette generation technique with 3D data obtained

by Vicon Nexus system, which enables efficient acquisition of training silhouettes for

any view. Chapter 8 presents a reliable shadow removal technique for outdoor envi-

ronment using known current position of the sun. As more information is obtained

from time, location and camera orientation that are used to estimate the length

and angle of the shadow, assumptions on colour and texture are not required, and

this increases the robustness of the shadow removal technique. Chapter 9 presents a

manifold learning-based algorithm using embedded silhouettes for fast human activ-
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ity recognition, which is speed-invariant, temporal-order-variant and efficient. The

works in Chapter 7 to Chapter 9 have been submitted as a single article to a journal

[47]. Chapter 10 concludes the thesis and discusses possible future work.
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Chapter 2

Literature review on Depth

from defocus

2.1 Introduction

This chapter is split into two sections. The first section is the review on passive DfD

techniques using a single image, which generally compute depth by analysing the

frequency contents of the image. The second section reviews the techniques that

use two images, which estimate depth maps with more sophisticated approaches

resulting in more accurate results. Individual reviews are arranged in time order

with respect to the researcher(s)’s first publication date.

2.2 Depth from Defocus using a Single Image

The first idea of DfD was proposed in [48]. It stated that DfD had two major

advantages: it provided similar accuracy to stereo vision while not requiring any

correspondence search; unlike DfF, the best focus point location was not required.

In [49], two DfD methods were presented. One of them used Gaussian PSF and the

sharp discontinuities (edges) in a single defocused image to recover depth. First the

edges were analysed within every local region by a Laplacian filter. As a result, the

SD σ of the PSF was obtained. The final estimate of the depth was given by

u =
Fs

s− F − σFe
, (2.1)

where F is the focal length, s is the sensor to lens distance and Fe is the f-number

of the lens. To produce a dense depth map with high resolution, each of the input

images was divided equally into small local regions with a size of at least 2× 2. The

21



2.2. DEPTH FROM DEFOCUS USING A SINGLE IMAGE

depth value within one region was assumed to be the same and was then computed.

This process is repeated for all regions to obtain the depth map. In this thesis,

we use the term “local image region”, “patch”, “window” and “neighbourhood”

interchangeably. Experiments with a real image showed that the depths of the

region near the sharp edges were recovered. The edges could be categorised into

high, medium and low in terms of depth. However, a complete depth map could not

be computed with this method.

In [50], a simplified version of the method in [49] was presented. A term

called “spread parameter” σl was introduced, which indicated the defocus degree of

an edge. Hence it is a 1D analogue to the SD σ of the Gaussian PSF. The depth

was found with an equation which related σl and camera parameters to depth.

Experiments were performed with a cardboard paper, the surface of which was

drawn with black and white strips. Higher accuracy was achieved for objects closer

to the camera than further ones. The working distance was reported to be about 8

feet.

In [51], the method using a single image in [49] was generalised. The edge

orientation that was important for [49] was not required. In addition, a new method

was developed to estimate the SD of the PSF so that the approach was less sensitive

to noise disturbance. An average error rate of 5% was reported using real images.

This approach could be applied to both step edges and ramp edges. However, the

computational cost was high for ramp edges.

Also based on the work in [49], a DfD method was proposed in [52] using

moment preservation and proportion of edge pixels in local regions. The image

sensor was pre-adjusted to be behind the nearest focused points, thus only one

image was required. A gradient image was then obtained using a Sobel filter. The

diameter of the blur circle used to determine depth was found proportional to the

edge pixels in a corresponding local region in this gradient image, which was used

to calculate depth. The first three moments of the local region were then computed

in terms of the proportion of the diameter and the local region. Therefore the

proportion could be determined which in turn determines the depth. Furthermore,

an artificial neural network (ANN) was used to deal with optical errors. However,

the method required a circular local region with a radius of 35 pixels, which would

only provide a limited depth resolution.

A DfD method using endoscopic video was proposed in [53]. Traditional

DfD methods captured one or two images of the target scene at the same view. In

contrast, this method used multiple images from different views with frames from

a video. First, the depth map for sharp edges in every frame was estimated using
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Laplacian filtering and Sobel filtering. By assuming the location of the camera was

known during recording, a complete 3D model was then reconstructed from all the

edge depth maps using triangulation.

In [54], a conventional camera was modified by placing a coded aperture in

front of the lens (see Fig. 2.1) to achieve better performance. Fig. 2.2 illustrates the

working principle using a PSF at 3 different scales and the corresponding frequency

domain representation.

(a) (b)

Figure 2.1: Coded aperture illustration adapted from [54]. Left: a coded aperture
placed in front of the lens; right: the resulting blur pattern.

Figure 2.2: PSFs at different scales and their frequency response adapted from [54].

The idea behind the method is to consider the zero-crossing of the frequency.

For example, f1 is less blurred compared to f2, therefore the zero-crossing ω1 is

larger than ω2. In other words, the scale in the frequency domain infers depth. The

probability distributions of the focused image and blurred image at different scales

were formulated with the zero-crossing idea. For aperture design, the Kullback-

Leibler divergence was maximised for the distributions of the PSF at different scales

thus providing higher distinguishability. The focused image was found first by max-

imising a probability distribution model. The depth was then estimated in closed

form. As a result, a layered depth map was formed as shown in Fig. 2.3.

Instead of modelling the blur analytically, the DfD method in [55] was based

on supervised machine learning. The training dataset contained a number of images
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(a) (b)

Figure 2.3: An illustration of the layered depth map from [54]. Left: original image;
right: layered depth map.

of various scenes and the corresponding depth maps obtained from a laser scanner.

It argued that local feature alone was not sufficient to estimate depth, and the global

context should have also been considered. Thus, a hierarchical Markov random field

(MRF) was used to find the depth relationship between different points in the image.

The MRF [56] is an undirected graph (e.g., an image or a depth map) of random

variables having the Markov property, i.e., in the depth estimation case the blur

operation in a local region depends on its adjacent regions. An average root mean

square error (RMSE) of 0.09 on log scale was obtained. Although the performance

of this approach was lower than earlier DfD methods such as [50] and [51], the

target scenes were much more complex and the input images were obtained from

uncontrolled environment. The computing speed was not given, but the complex

nature of the approach implies it is unlikely to be a fast algorithm.

In [57], the input image was re-blurred using a Gaussian kernel. The amount

of blur near the sharp edges was estimated from the ratio between original image and

the re-blurred image. As a result, a defocus map for all sharp edges was acquired.

By interpolating the edge defocus map in 3D space, a defocus map was obtained. A

full depth map was estimated from the defocus map with camera parameters. The

results demonstrated that high definition defocus maps could be obtained with low

computational cost.

2.3 Depth from Defocus using Two Images

We group these approaches into five categories. First, Fourier domain approach

extracts the defocus parameter with Fourier transform of the input images. Second,

spatial-filtering approach computes depth by convolving the input image with digital

filters in spatial domain. Third, probabilistic approach attempts to estimate the

focused image and the depth map with statistical model of the radiance or depth.
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The general procedure comprises three stages: a statistical model is first applied to

the focused image and the depth map; an estimator/cost function is then formulated

with its property, with the arguments being the focused image and the defocus

parameter or depth; finally the result is obtained by optimising the estimator/cost

function iteratively. Fourth, machine learning approach stores a number of patterns

and their corresponding depth values. When an input patch is given, it matches

with the stored library to determine depth. Fifth, other approaches that do not fall

into any of the above four categories.

2.3.1 Fourier domain approach

One of the methods in [49] estimated depth using two images at the same view,

one of which was captured with a pin-hole camera. Gaussian PSF was used and

its SD was computed first. The image captured from an ideal pin-hole camera was

all focused. The SD was thus zero throughout the image. Fourier transform was

performed for a small local region in both images. As a result, the SD of the second

image was obtained. This method could be implemented efficiently with fast Fourier

transform (FFT). Experiments showed that the accuracy was comparable to that

achieved by depth from stereo or depth from motion.

The DfD method in [18] generalised the method in [49] which required one

image to be captured with a pin-hole camera. The two images could be captured

with any different set of camera parameters, including aperture size, sensor-to-lens

distance and focal length. Gaussian PSF was used and its SD was used to calculate

depth. The SD was expressed in terms of the camera parameters and depth. Every

local region in the image pairs were converted to the frequency domain by Fourier

transform. The depth was estimated within the frequency domain. This method was

considerably more accurate than that in [49] and [58] when sensor-to-lens distance

was varied to obtain the input images, which avoided the noise associated with using

a pin-hole camera set-up.

The method in [59] was based on 1D Fourier transform instead of 2D Fourier

transform as in [18]. 1D Fourier transform is faster to compute than the 2D Fourier

transform, and it is also robust in the presence of zero-mean noise. First the two

input image-patches were summed row-wise to obtain two 1D sequences, which were

then normalised with respect to brightness. The first 6 discrete Fourier coefficients

were then used to create a computed table that corresponds to a specific depth.

This table was created in a lookup table fashion which was searched during run-

time depth estimation. Experiments showed a 6% error.

The method in [60] argued that the method in [49] required low-order re-
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gression fit in the frequency domain of every local region in order to calculate the

defocus parameter, and thus was not well suited to the optical system. Instead, the

entropy concept was applied to overcome this problem. As entropy is a measure of

information content, a blurred image has less entropy than its focused version. It

was used to derive the defocus parameter as a function of the input images without

regression. The experiments showed that the method outperformed the method in

[49]. However, one of the input images was still obtained by a pin-hole camera.

The method in [61; 62] argued that previous DfD methods assumed the depth

to be constant over fairly large local region, and considered the blurring to be shift-

invariant over those local regions, which leaded to errors when the neighbourhood

regions were not considered. This problem occurred since the blurred image could

not be simply modelled as the convolution between a shift-invariant PSF and the

focused image due to the blurring from the neighbourhood pixels. Two methods

were proposed to address this problem. The first method modelled the DfD system

as block shift-variant, where the PSF incorporated the interaction of the blur from

the surrounding regions. The second method was based on the space-frequency

representation of the local regions. The space-frequency representation is the exten-

sion of time-frequency representation [63] in image domain. The Short-time Fourier

transform and the Wigner distribution are famous examples of time-frequency rep-

resentation. The second method applied the space-frequency representation of the

local region instead of the Fourier transform to allow the blur operation to be shift-

variant. An experiment on simulated image compared these two methods with the

one in [18]. It showed that the RMSE of these two methods and [18] are 47%, 14%

and 6%, respectively. Experiments were also performed on real images with the

object placed between 90 and 120 cm away from the camera, which showed that the

RMSEs of these two methods were 7.43 cm and 6.18 cm, respectively.

The windowing effect is an artefact produced during Fourier transform of the

local image regions, or windows. This leads to spurious high-frequency components

at the region boundary. Xiong and Shafer [64] proposed moment filters to address

the windowing effect. Gaussian PSF was used but the method was claimed to

be applicable to any model. The moment filters were expressed as a function of

exponential function whose coefficient was the generalised Laguerre’s polynomial.

The nth moment could be thought of nth derivative of the Gaussian PSF, hence the

filters were used to replace the single first order Gaussian PSF. By a complex analysis

in frequency domain, an equation was derived for estimating the defocus parameter.

They reported that the finite window problem and the shift variance problem were

effectively solved. Experiments showed a RMSE of 0.0003 was achieved compared
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to 0.07 by Subbarao’s method [18]. Speed information was not provided. However,

this method required five times as many convolutions was needed for a typical filter

bank method, which made it computationally expensive.

2.3.2 Spatial-filtering approach

The method in [65; 66] was based on the “sharpness map” computed with Laplacian

and Gaussian pyramid. The sharpness map indicated the sharpness of an input

image. Interestingly, PSF was not used to model the depth. Instead, the focus

point was estimated by comparing sharpness maps of images generated with different

sensor-to-lens distances. The depth was then recovered using the lens law which

was what DfF is based on. However, more than two images were required for higher

depth resolution. Experiments showed that the sharpness map could be generated

in every 1/8 second. The method took 10 seconds to compute a 64×64 depth maps

with 10 input images.

In [58], the Fourier transformation used in [49] was avoided by using Par-

sevel’s theorem [67], which stated that the sum of squared terms over the spatial

domain is equal to the sum of the squared terms in the Fourier domain. In the

implementation, the image was initially passed through a band pass filter (e.g., a

Laplacian filter) to remove frequencies that degrade the depth estimation. The terms

were squared and their average was obtained using a Gaussian filter. The average

was matched against a pre-computed lookup table of depth values to estimate the

depth. A standard error of 2.5% was reported. Nevertheless, the pin-hole camera

image was still required which leaded to high diffraction.

The work in [68; 69] claimed that inverse filtering (calculating defocus pa-

rameters in frequency domain) used by the methods in [49] and [58] leaded to in-

accuracies in finding the frequency domain representation, windowing effects, and

border effects. A term called convolutional ratio was thus proposed which relates

to depth in spatial domain. The convolutional ratio was expressed as a matrix and

was a ratio between one DfD input image to another. Neither of these two images

had to be focused. Before depth computation, a lookup table was created which

contained the correspondence of convolutional ratio and depth. At run-time, the

convolutional ratio was first computed with the two images, where regularisation

in spatial domain improved the shape of the ratio. A RMSE of 1.3% was achieved

which outperformed the method in [49]. The limitation of the method was its high

computational cost.

The DfD method in [70; 71; 72] was based on a spatial-domain convolu-

tion/deconvolution transform, or the S-transform. First, a local image region was
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smoothed by a differentiation filter so that it became a third order polynomial. The

S-transform was derived which was used to recover the focused image from defocused

image, and to estimate depth. This method inherited the advantage of the previous

one, i.e., it could use two images with any different set of camera parameters. The

use of pre-filtering and fast spatial domain computation made this method less sen-

sitive to noise and faster than the previous one. An average error rate of 2.3% was

achieved.

In Xiong’s first paper on DfD [73], a method based on the Maximal Resem-

blance Estimation was used to address the windowing problem. First, one image

was blurred iteratively to resemble the other. Curve fitting was then used to find

the defocus parameter that maximises the resemblance. The experimental results

showed that a depth relative error of 1/200 was achieved when the target was 100

inches away.

A real-time DfD method using rational filters was proposed in [16], where a

pill-box PSF was used but it claimed that other models could also be used. Dif-

ferent frequency components were analysed in detail so that the ambiguity between

inherent smoothness and optical blur was better dealt with. The implementation

was done in spatial domain by convolution with a pre-filter and three rational fil-

ters. The method was thus both accurate and efficient. Experiments on real images

showed that the RMSE was 0.4% ∼ 0.8% for a close object and 0.8% ∼ 1.2% for

an object further than 880 mm from the camera. The entire method could be exe-

cuted in 0.16 sec to obtain a 512x480 depth map. This approach was insensitive to

scene textures. However, according to [17], an iterative minimisation technique was

required to compute the rational filters which was unnecessarily complicated. Thus,

a simple procedure was proposed in [17] to determine the coefficients of the rational

filters. This involved separating the M/P ratio into a linear and a cubic error cor-

rection model. First, a straight line was fit for the ratio as a function of the depth.

The error between the line and the ratio was accommodated by an error correction

scheme. Experiments showed that this method produced better M/P ratio with an

RMSE of 1.18% compared to 1.54% in [16].

2.3.3 Probabilistic approach

A DfD method based on MRF was proposed in [74; 75] to address the shift-invariant

problem. Both the focused image and the depth map were produced. A maximum

a posteriori (MAP) estimate was formulated with the property of MRF. The results

were obtained with respect to the estimate by evaluating iteratively with simulated

annealing (a global optimisation technique).
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An iterative method to recover both the focused image and the depth map

was presented in [76]. This method used the near/far-focused image pair, and PSF

was used to model the blur operation with a defocus parameter. Both focused image

and depth map were estimated by alternately minimising a cost function associated

with the information divergence between the true blur image and the estimated fo-

cused image convolved with the PSF. During the alternation, the estimated focused

image was first initialised to be one of the input images. The cost function was

then minimised with respect to the defocus parameter. In the next iteration, it was

minimised with respect to the focused image. This process was repeated, and five

iterations were reported to produce the best result.

The equifocal assumption stated that the target surface was locally parallel to

the lens. The work in [77; 78] reported that this assumption which was used by most

previous methods produced problematic results when the target surface was not

perfectly parallel to the lens. This problem arised even locally since a patch was not

flat no matter how small it was. Subsequently, the PSF was shift-varying, or varying

from point to point. In addition, the focused point appeared slightly blurred due to

its blurred neighbour which leaded to problem when recovering depth. To address

this problem, they forwent the equifocal assumption and approximated the target

surface by tangent planes. Both focused image and the depth map were recovered

by minimising a cost function with the alternating minimisation algorithm in [76].

In addition, the depth was recovered by minimising the cost function with gradient

descent flow incorporating a partial differential equation [79]. Only pictorial results

were shown and no speed information was given.

While traditional DfD methods such as [16; 18; 49; 58; 64; 73; 75] used PSF

and convolution to model blur, the method in [80; 81] modelled it as an analogue to

heat diffusion. Heat diffusion for a single point is the diffusion of the inner energy

to its surroundings which resembles the blurring of a focused object point. The

most characteristic of this work was that only the depth was recovered without

the focused image. This owed to the relative blur which was used to describe the

blur difference between the input images. The relative blur enabled the depth

estimation without knowing the focused image that was effectively cancelled out

during calculation. The heat equation [82] instead of PSF was used to model the

blur, where its time variable and the diffusion coefficient reflected the amount of blur

which were analogue to the defocus parameter. In addition, to address the equifocal

problem, the inhomogeneous diffusion equation was generated by modifying the

isotropic heat equation, with a space-varying diffusion coefficient instead of the

original diffusion coefficient. By doing so, the diffusion was allowed to be shift-
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varying thus solving the equifocal problem. The depth estimation was based on

iterative minimisation of a cost function with gradient flow. Experiments showed

that the results were very similar to that obtained in [16] which however could not

easily incorporate regularisation. Speed information was not given.

DfD using two images requires them to be taken at the same view without

magnification. However, this requirement is violated when the camera location,

zoom and aperture change during image capture. The work in [83] addressed this

problem by formulating an MAP equation. When the camera location, zoom and

aperture changes were given, a MAP estimate was solved iteratively to estimate

depth using belief propagation. A smoothness constraint was imposed onto such

a process making adjacent pixels have similar depth values. At sharp depth dis-

continuities, colour-image segmentation and plane-fitting were employed to produce

acceptable results. Only pictorial results were shown without quantitative evalua-

tion.

2.3.4 Machine learning-based approach

A supervised machine learning-based DfD method was presented in [84; 85; 86].

The local image region and the PSF are analysed in Hilbert Space, a special case of

inner product space1. This is because the convolution between an image patch and

the PSF is effectively the inner product operation. They claimed that by exploiting

the Hilbert space the blur analysis became simple and intuitive. An orthogonal

projector matrix2 was computed for each patch with SVD. Thus, each projector

matrix corresponded to a unique depth value. Fig. 2.4 illustrates the algorithm.

During training, every set of patches of different patterns but corresponding to

the same depth is concatenated and proceeded to SVD to calculate an orthogonal

projector matrix. During testing, an input patch multiplies with every projector

matrix. The depth estimation is depth n when the product with projector n is

exactly zero. In fact, zeros product is only produced when the input patch is identical

to one of the training patches. Thus the estimated depth is obtained when the

product is minimised. The most important feature of this method was its robustness,

not only could one learn the blurring with one camera for depth recovery, but one

could learn the blurring with synthetic images and then used it to estimate depth of

real images. The average absolute reconstruction error was slightly lower than 0.02

with two input images. The accuracy became higher when more than two images

1The inner product space is a vector space with an additional structure called inner product,
which means the inner product of two vectors in this space produces a single scalar [87].

2The orthogonal projector of an image patch is a matrix which produces zero when multiplied
with the patch. It spans the null-space of the patch due to the product of zero [85].
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were used. The depth estimation at each pixel required 510KFlops. However, there

was a potential for real-time operation since estimation at different pixels could be

done independently.

Figure 2.4: Asymmetric aperture pair from [85].

An ANN-based DfD method was proposed in [88]. First, a multi-resolution

scheme used for edge detection in [89; 90] was applied to segment the image into

foreground and background. This method operated as follows. A multi-resolution

pyramid was used to reduce the resolution of any one of the input image, reducing the

depth uncertainty and the burden of the ANN. An unsupervised fuzzy clustering

technique was then applied to isolate the foreground from the background. The

feature vectors that were related to depth were extracted from every image region

and used by a pre-trained ANN to determine depth. Experiments showed that the

segmentation error for an image whose resolution was reduced to 64× 64 is 0.637%

and the time taken was 253.8 s using a PC with 600 MHz processor. Accuracies

were also given for some objects placed in front of a flat background.
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2.3.5 Other approach

A DfD method based on the Hermite polynomial was reported in [91; 92]. The

Hermite polynomial was computed using the more blurred image as a function of the

partial derivatives of the other image and the blur difference. The blur difference was

thus computed by resolving a number of equations. Finally, the blur difference was

used to estimate depth with camera parameters. The performance of the algorithm

was studied with flat surfaces, step edges, line edges and junctions. Experiments

showed that the method was able to avoid uncertain depth results such as those

occurring at low frequency regions (or regions that are lack of textures). It also

showed that the method outperformed the one in [72].

In [93], the wavelet power was used to measure the defocus difference between

the two input image. First, the wavelet transform of a local region was computed.

The wavelet power was then calculated using the Parseval’s theorem [67]. Finally,

the power was used to estimate depth. Experiments on a slanted planar object with

the 200×200 input images showed that the method outperformed the Fourier domain

[59], spatial domain [72], and Laplacian filter-based methods [16]. In addition, it

was many time faster than Fourier domain and spatial domain methods. A similar

work is reported in [94] which measured the defocus difference with a ratio obtained

from the wavelet coefficients.

The work in [95; 96] stated that circular apertures used in classical DfD

methods considerably restricted the accuracy. Instead, a pair of two coded aper-

tures was used to capture the two input images. A criterion was proposed which

was optimised to find the best coded pattern, i.e., the asymmetric coded aperture

pair (shown in Fig. 2.5). Both focused image and the depth map were recovered.

Experiments showed that the method significantly outperformed methods based on

circular aperture while only taking 15 seconds for an image pair of size 1024× 768.

Figure 2.5: Asymmetric aperture pair from [95].

In [97], a DfD method based on unscented Kalman filter was proposed. The

Kalman filter is an algorithm that produces a more accurate (filtering) state based

on a sequence of measurements and a mathematical model [98]. It can also be used
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for state prediction. For example, the state can be the current location of a car

moving with constant speed; the measurements are the previous car locations; the

mathematical model is displacement = speed× time. The estimates that based on

both measurements and model are theoretically more accurate than using only one

of them. However, The Kalman filter can only be applied to linear model, such as

displacement = speed × time. It cannot apply to non-linear model, e.g., blurred

image intensity as a function of the defocus parameter. A variant of the Kalman

filter, the unscented Kalman filter addressed non-linear models [99]. The defocus

parameter was measured by gradient descent, and the mathematical model was

the convolution between focused image and the PSF. The Kalman filter requires

the probability distribution of the state, which was derived with the property of

the discontinuity adaptive MRF [100]. Both motion blur and optical blur were

considered in this study. These two blurring operations were decoupled by modelling

them as convolution with the PSF due to optical blur, and then with the PSF due

to motion blur. Experiments performed on simulated images showed a 4% error. No

numerical results were shown for real images. Speed information was not provided.

2.4 Summary

Only limited information can be obtained with DfD methods using a single image,

which is insufficient to obtain accurate result. In order to estimate a full depth map,

assumptions need to be made on the global feature. The most significant problem

of these methods is the ambiguity that the cause of low frequencies can be due to

both optical blur or lack of texture [68]. For example, a faraway sharp object and

a close smooth object produce similar images. They thus often assume the objects

have similar sharpness.

For DfD methods using two images, few achieve frequency independence

without a complex statistical model or training/testing-based algorithm, i.e., the

estimated depth is only related to the blur size rather than the pattern of the

blurred object. A solution is to incorporate a frequency parameter into the PSF as

suggested in [16]. For most existing methods, the depth is estimated from the ratio

of two images with different degree of blur at a particular frequency. In contrast,

RO-DfD computes depth using the NIR, or the M/P ratio which is a function of both

depth and frequency. The NIR is the ratio between the difference in the magnitude

of two images at all frequencies and the sum of the magnitude of them. Due to the

complex and iterative optimisation procedure used for the RO design in [16], the

method proposed in [17] simplifies the design and improves the depth estimation.
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Chapter 3

Literature Review on Human

Activity Recognition

3.1 Introduction

A video-based single-person activity recognition system consists of the following four

major stages [36]:

• Pre-processing the input video, such as frame-by-frame image segmentation;

• low-level feature extraction from the pre-processed input, such as obtaining

interest points;

• mid-level action description with a temporal sequence of low-level features;

• high-level activity description with action descriptions, which copes with com-

plex activities comprising a number of different actions.

We group activity recognition systems into two major categories according to the sec-

ond stage: the spatio-temporal approaches and the sequential approaches. The for-

mer analyses activities directly or indirectly with a XYT volume or spatio-temporal

volume created by concatenating all frames of a video, which are further divided into

body volume-based, interest points-based and optical flow-based approaches. The

latter approaches extract frame-by-frame features and analyse the action/activity

as a sequence of features, which are further divided into state model-based approach

and exemplar one.
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3.2 Spatio-Temporal Approaches

3.2.1 Body volume-based approach

A real-time action recognition system proposed in [101] described actions by motion

history image (MHI) and motion energy image (MEI). First, a simple background

subtraction operation was used to obtain foreground silhouettes of the moving person

or his/her body parts. MHI and MEI were used to describe an action as illustrated

in Fig. 3.1, where each row is an example action. MEI is a binary image, where the

white pixels indicate where the action takes place. MHI is a grey-scaled image, with

low-grey level representing events occurred earlier and vice versa. Thus, MHI is

effectively a body volume created by concatenating multiple frames of body silhou-

ettes. During training, the MEIs and MHIs were obtained from training videos of

different actions. Seven Hu moments [102] were used to generate statistical descrip-

tions of MEIs and MHIs. When the input moment was obtained, its Mahalanobis

distance1 from every set of the training actions was computed for classification. To

address variation in speed, the MHI was normalised to the range [0,1]. An appli-

cation called the KIDSROOM was suggested, where a child was asked to perform

actions that have been taught earlier.

Figure 3.1: An illustration of MEI and MHI from [101]. Row 1-3: example actions.

A spatio-temporal shape-based action descriptor was proposed in [27]. Sil-

houettes were first extracted from an input video of a person performing an action,

which were then used to construct a volumetric spatio-temporal action shape as

illustrated in Fig. 3.2. The work in [104] for analysing 2D shapes was generalised

1A good explanation with examples can be found in [103].
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Figure 3.2: An illustration of the volumetric spatio-temporal action shape from [27]:
left: jumping; middle: walking; right: running

to deal with the volumetric shapes. Both spatio-temporal local features and global

features were extracted using the properties of Poisson equation, which included lo-

cal space-time saliency, action dynamics, shape structure and orientation. A simple

nearest neighbour classifier was used for action classification. Experiment demon-

strates that the method was fast, and was able to deal with partial occlusions,

non-rigid deformation, significant changes in scale and viewpoint, high irregularities

in action performance and low video quality. The work also introduced the pub-

licly available Weizmann dataset which had been used extensively by researchers in

actions recognition for performance comparison.

A recognition system based on over-segmented spatio-temporal volumes was

proposed in [41]. A spatio-temporal volume was constructed by concatenating all

frames from a video sequence, the three dimensions of which were horizontal, vertical

and time. Once the volume was constructed, mean shift [105] was used to cluster

the spatio-temporal volume into regions. Since it was impossible to segment the

volume correctly without high level semantic knowledge, pyramid regions were seg-

mented from the volume by changing kernel size of the mean shift filter2. The shape

rather than the value of the segmented regions was analysed. Fig. 3.3 illustrates

the volumetric matching algorithm. The input video volume V was first segmented

into a number of sub-volume Vi, where i = 1, 2, 3, ..., 11. The set of sub-volumes

was selected to match the template denoted in bold, which is V4, V5, V7, V8, with

minimal distance represented by the shaded region. In order to find the optimal

kernel size, which produced small distance and without too many sub-volumes, the

distance was minimised with a penalty for the number of sub-volumes.

Since shape-based matching algorithms performed well for low-texture region

and bad for high-texture region, and conversely for flow-based ones, the matching

algorithm operated in combination with a flow-based correlation algorithm in [106].

During recognition, a number of action templates were manually constructed, each

2First, the volume is segmented using the largest kernel size into segments with largest size; then
the volume is segmented using smaller kernel size into segments with smaller size. This process
repeats by reducing kernel size until the optimal kernel size is found.
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Figure 3.3: An illustration of volumetric matching and kernel size selection from
[41].

of which contained one cycle of the periodic action. The correlation score was

computed between every frame of the input video and each action template, and

the frame was classified as one of the action accordingly. When all frames had been

classified, the recognised action was the one with the majority votes.

A 3D CNN-based recognition system was presented in [24]. It stated that

most existing methods were problematic and impractical, since they were based on

complex hand-crafted features computed from the raw input rather than directly

from the raw input itself. The problem was addressed by using CNN that had

been successfully applied to object recognition [107]. In the first layer of a CNN,

a number of feature maps, such as horizontal-edge maps and vertical-edge maps,

were computed by discrete convolutions with relevant kernels (or filters). In order

to enable the CNN for spatio-temporal recognition, the 2D convolution was replaced

by 3D convolution. During testing, a human detector was used to obtain the raw

input. A number of 3D kernels were applied to the input frames to generate a

number of features. The output of the 3D CNN was a feature vector containing

the motion information in the input frames. The one-against-all linear SVM was

learned and used for classification.

3.2.2 Interest points-based approach

2D interest points provide compact representation of an image. The work in [23; 108]

extended the concept to the 3D spatio-temporal domain and demonstrated its use-

fulness in representing actions in video data. Specifically, the Harris and Förstner

interest point detection algorithm [109; 110] was extended to spatio-temporal do-

main. A 2D interest point is a local image region with large variation in image

intensity. Similarly, a space-time interest point is found by requiring the image

values in space-time to have significant variation in both the spatial and temporal

dimensions. Fig. 3.4(a-b) illustrate extraction of interest points from a video of a
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Figure 3.4: An illustration of the extraction of space-time interest points from [108]:
(a) interest points detected from the volume of a pair of walking leg (upside down);
(b) interest points detected from sample frames; and (c) cuboid features extracted
by the method in [111].

pair of walking legs. When the interest points were extracted in terms of their co-

ordinates and neighbourhood, they were used to classify similar events in a video.

Using the periodically repeating property of walking, an algorithm in [23; 108] was

able to detect a walking person in scenes with occlusions and dynamic background.

The method in [112] extended the work in [23] to recognise complex actions.

In order to capture the information of spatio-temporal neighbourhoods of every in-

terest point, a term called spatio-temporal jets was computed which is essentially the

Gaussian derivative of each interest point. To enable invariance to camera motion

and scale changes, the neighbourhood was transformed with respect to estimated

velocity values before computing the spatio-temporal jets. In the training set, all the

jets were clustered with K-means clustering, which were then used to build a feature

histogram as an action descriptor for recognition. Finally SVM [113] was used to

classify actions described by the feature histograms. The work also introduced the

publicly available KTH dataset which had been widely used by researchers in action

recognition for performance comparison.

A new space-time interest point detector was proposed in [111] for the recog-

nition of human and animal actions. The detector was designed especially for local

periodic actions, and it generated a sparse collection of interest points from a video.

Each interest point was associated by a small neighbouring 3D volume called cuboid

as shown in Fig. 3.4(c). A termed called flattened vector of brightness gradients gen-

erated from the interest points was used as the feature vector. A large number of

training cuboid features were clustered with K-means, and each action was described

as a histogram of cuboid types, i.e., bag-of-words. The system was able to recognise

facial expressions, mouse behaviours, and body actions.
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A system based on unsupervised learning of human actions was presented in

[114]. The space-time interest points were first extracted from a video by the detec-

tor in [111]. They were then clustered into a number of spatio-temporal words (or

codewords) by K-means algorithm with Euclidean distance as the clustering metric.

An action was thus represented by a set of codewords from the codebook. A single

codebook was created for all actions, which was a collection of all the codewords

obtained by all interest points extracted from all action videos. A simple illustration

of a codebook is shown in Fig. 3.5 which contains 3 codewords and 2 actions. The

probability distribution of actions was learnt using one of probabilistic Latent Se-

mantic Analysis [115] and Latent Dirichlet Allocation [116], which were previously

used in the field of text mining. Thus, spatio-temporal words, action categories and

videos were analogue to text words, text topics and text documents respectively. To

recognise an action from a video, a posterior probability was maximised taking all

the interest points as input. The system was able to deal with noisy feature points

resulted from moving cameras and dynamic background.

Figure 3.5: A illustration of action codebook in [114]. Key: cross - a interest point;
circle - a codeword; and rectangular box - an action.

3.2.3 Optical flow-based approach

Optical flow was the pattern of motion of objects in a visual scene due to the

relative motion between the observer, such as an eye or a camera, and the scene

[117]. Fig. 3.6 illustrates the optical flow (right) created from the original scene

(left), which are denoted by arrows. These arrows reveal the velocity information of

different body parts including both direction (denoted by the direction of an arrow)

and speed (denoted by the length of the arrow).

Figure 3.6: Illustration of optical flow with a running footballer from [118].
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One of the earliest optical flow-based recognition system was proposed in

[118]. A simple normalised-correlation-based tracker was used to track a human

subject in a video. A figure-centric spatio-temporal volume centred at the subject

is computed. The optical flow with x and y components was computed using the

method in [119]. A motion descriptor comprising four blurred channels was created

from the optical flow and wavelet transform. The process was done frame by frame

to obtain a sequence of motion descriptors. To find the similarity between an in-

put sequence and a stored sequence, the similarity matrix was computed based on

frame-by-frame correlation. The system was able to recognise movements of a ballet

dancer, a tennis player and football players.

A recognition method proposed in [120] utilised kinematic features obtained

from the optical flow of an image sequence. It was claimed the kinematic features

allowed more discriminative representation of complex human actions. A set of

kinematic features includes divergence, vorticity, symmetric and antisymmetric flow

fields, and etc., each of which captures a different aspect of optical flow. A kinematic

mode representing an action was computed from the spatio-temporal kinematic

features volumes using PCA [121]. For activity classification, the multiple instance

learning algorithm was used to address the problem when a complex action required

more than one kinematic modes to represent its dynamics.

The work in [43; 44] was based on dense trajectories. It stated that dense

interest point samplings resulted in higher accuracy than sparse sampling. First, a

dense set of feature points were sampled from each frame. Their trajectories were

tracked with a dense optical flow algorithm. The influence from camera motion

was reduced by a descriptor based on motion boundaries computed by a derivative

operation on the optical flow field. Action classification was achieved using a bag-

of-features representation and a SVM classifier.

3.3 Sequential Approaches

3.3.1 State model-based approach

In action recognition, state models are statistical graphical models used to represent

an action or an activity, where each distinct observation is associated with a state.

The most popular state model for recognition is the HMM. A HMM is a statistical

system comprising a number of hidden states and their outputs [122; 123; 124; 125;

126]. The hidden states are not directly visible, but their output can be observed. A

HMM consists of three key parameters, start probability (or initial state probability)

matrix, transition probability matrix and emission probability (or symbol output
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probability) matrix. The start probability matrix contains the probabilities from

the initial state to all hidden states. The transition probability matrix contains

the probabilities from every hidden state to all other hidden states. The emission

probability matrix contains the probabilities from every hidden state to the outputs.

During training, the output observations are ordered in time order. The HMM

parameters are then estimated by Baun-Welch algorithm with the observations as

input. During testing, the forward algorithm [127] is used to compute the similarity

between a test activity and the gallery activities, in terms of the probability of a set

of parameters given the test output observations.

The action recognition system that first employed a HMM was presented

in [25]. In that system, each video frame was transformed into a feature vector

with mesh-grid, which was then clustered, with each centre being a codeword. Each

codeword corresponded to an output symbol in HMM, and every feature vector was

assigned to its nearest symbol. For a test video, the forward-algorithm was used to

estimate the similarity between the symbol sequence and the gallery activities.

The method in [128] analysed multi-person activity with a HMM. First, the

background subtraction algorithm in [129] based on the Gaussian mixture model was

used to extract the moving human subjects. The mean-shift tracker [105] was applied

to track individual human subject. An image moment-based shape descriptor was

introduced to convert the silhouettes into feature vectors. Posture was defined as a

sequence of silhouettes, and postures were recognised by HMM. The interval algebra

in [130] was applied to analyse the interaction of different subjects performing a

sequence of identified postures.

The method in [131] was also based on HMM. Silhouettes were first extracted

from video frames, which were converted into feature vectors by R-transform [132],

i.e., a 1D version of the radon transform [133]. PCA was then applied to all the

gallery feature vectors to further reduce their dimensionality. A HMM was applied

to these dimensionality-reduced feature vectors. A similar work was reported in [33],

where PCA was replaced by kernel discriminant analysis [134] that allows non-linear

mapping to be learnt.

The paradigm of Layered HMM (LHMM) was first presented in [135], where

two layers were used. The work illustrated the classification of human activities

in office environment of using microphones, a video camera, keyboard and mouse.

These activities included phone conversation, user’s presence, engagement in some

other activities, distant conversation and presence of nobody. The bottom layer

classifies atomic actions with signals obtained with the input devices. The output

classification of the bottom layer becomes the input of the top layer that in turn
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classifies an activity. The major advantage of LHMM is that only the bottom layer

requires retraining when the office environment is changed.

Another similar work using LHMM was reported in [136], which was called

hierarchical HMM, where two layers were used. It aimed to classify indoor activities

that included taking a small meal, having snack and taking a normal meal. Each

one was described as a trajectory of the human subject in a video, obtained by

Rao-Blackwellised particle filter [137]. The recognition system in [138] constructed

a multi-layered HMM to recognise group activities. The system is also composed of

two layers of HMMs. The bottom layer recognises atomic actions such as speaking,

writing and idling. With the bottom layer’s output as input, the top layer recognises

group activities such as monologue, discussion and presentation.

Since HMM-based methods assume Markov property which means each ob-

servation is only dependant on its immediate previous one. As a result, a sequence of

observations is intra-independent, and this is not the case for activities consisting de-

pendent observations. Conditional random field (CRF)-based methods handle this

problem by modelling a conditional distribution of action labels given the observa-

tions. One of the major disadvantages of CRF is that they require considerably more

training data to reliably estimate all parameters. In [139], CRF was studied where

a set of statistical model was created for the conditional dependencies amongst the

observations. Learning was implemented using convex optimisation and recognition

was archived by dynamic programming. As a result, CRF was found outperforming

HMM that failed to consider the contextual dependences between observations. A

similar work was found in [140] where the input silhouettes were represented more

compactly by kernel PCA. Their experiments showed that the system was robust

and was able to handle noise, partial occlusion and irregularities in motion styles.

Another CRF-based method in [141] aimed to cope with large variation in orienta-

tion and scale of the subject. Both shape (i.e. edges) and optical flows were used

as the low level features, and they claimed that this worked better than either of

them along. A more recent CRF-based system was proposed in [142] that indented

to provide a guaranteed global optimisation during the learning process.

3.3.2 Exemplar-based approach

Exemplar-based approach to activity recognition obtains a feature vector from every

frame, and then creates a motion template with multiple of such vectors to describe

an action or an activity. Classification techniques such as K-nearest-neighbour are

used to recognise the action or activity using the templates.

A hand gesture recognition system based on view-based representation of
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Figure 3.7: An illustration of DTW.

object and DTW was presented in [26]. First, a set of view-models was constructed

for a given object, each of which corresponded to a specific transformation, such

as a view angle and a scaling coefficient. The correlation scores were a sequence of

correlation values, obtained by computing the correlation between every view-model

and a training video with a match filter. The mean and variance of these scores

were calculated as a function of time, which was the template for that video. In

order to achieve speed invariance, DTW [143] was used to compute the similarity

between an input video and the video library. DTW is an algorithm for measuring

similarity between two time series or sequences which may vary in speed. It was

successfully used in speech recognition where the input signal varies significantly in

speed [144]. As an illustration, consider two time sequences A = {1, 1, 1, 10, 2, 3}
and B = {1, 1, 1, 2, 10, 3} in Fig. 3.7. They have high similarity with only a slight

difference in speed. If one to one correspondence is used to compute their difference,

A(4) = 10 corresponds to B(4) = 2, and A(5) = 2 corresponds to B(5) = 10, and

this leads to very large distance or low similarity. DTW solves the problem by

warping each signal in the temporal dimension such that the highest similarity is

obtained. Experiments show that hello and good-bye gestures were successfully

recognised. With specific hardware, a recognition rate of 10 Hz was achieved.

A system with a combination of Isomap and DTW was proposed in [145].

First, silhouettes of a moving human subject were extracted with a simple back-

ground subtraction operation. A bounding box was then generated that encom-

passes every silhouette. The silhouettes were then aligned with respect to their

centre. To cope with different subject size and clothing variance, each silhouette

was smoothed by being converted to a grey-scale image with the distance transfor-

mation in [34]. Isomap [31] was applied to embed the smoothed silhouettes library

into the manifold space. The RBF in [34] was used to learn the mapping from the

input silhouettes to the embedded silhouettes. During recognition, the smoothed sil-
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houettes obtained from the input video were embedded. The sequence of embedded

coordinates was matched with the library using DTW and the nearest neighbour

classification scheme.

One of the earlies methods using body joints trajectory was presented in

[146], which demonstrated the ability to recognise 9 action primitives in a ballet.

Fig. 3.8 illustrates one such primitive with six key postures. Recognition of a prim-

itive was successful if its key postures were identified without those from other

primitives. Fourteen markers were placed on the dancer’s joints, and parameters

such as torso height and joint angles were used to describe a pose, which spanned a

phase space. Every possible pair of parameters was found for each primitive, which

formed a number of point plotted in 2D space as illustrated in Fig. 3.9, where the

two axioms represent the two parameters. The trajectory of an example primitive

was denoted by ×, where a cubic polynomial was fitted taking one of the parameters

as input and another as output. During recognition of a pose, the cubic function

took one parameter as input and computes the other. If the output was not far

from the output parameter used for the polynomial fit, it was determined as a part

of the primitive.

Figure 3.8: An illustration of an action primitive recognised (from [146]), with 14
markers on the actor’s clothing.

A recognition system based on PCA and manifold learning was presented in

[32]. First, body parts were tracked by using the algorithm in [147]. Their motion

parameters computed from every frame were concatenated to form a single column

vector that represents one activity. Column vectors corresponding to all examples

of the activities were then concatenated and input to PCA using SVD. All video

sequences were initially assumed to be of the same length and were temporally

aligned. When the input activity video was converted to the column vector, it

was projected onto the principal axioms with the orthogonal matrix obtained by

SVD. The system then used a set of affine transformations to cope with length and

speed variations. Finally, the nearest neighbour classification algorithm was used

for activity recognition.

A system for 3D pose inferring from 2D silhouettes based on manifold learn-

ing with LLE was reported in [34]. A silhouette was first extracted with a back-
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Figure 3.9: An illustration of the trajectories of parameter pairs of 9 primitives
(from [146]).

ground subtraction operation. It was then converted to a grey-scale image with

respect to the distance between every pixel and the silhouette contour. During

training, the grey-scale image was embedded to the manifold space with LLE [30].

Since any input image could not be directly mapped to the manifold space, the

mapping was learnt by RBF [148]. The 3D pose was represented by a set of joint

angles. The mapping from the manifold to the pose space was also learnt by RBF.

During recognition, the input grey-scale image was first embedded by RBF, which

was in turn mapped to the pose space by another RBF mapping.

The recognition system in [149] modelled human actions in 4-dimensional

(4D) space, XYZT, where X and Y are the horizontal dimensions, Z is the vertical

dimension, or height, and T is the temporal dimension, as illustrated in Fig. 3.10. An

affine transformation was used to project the 4D points onto XYT space. A matrix

was created by concatenating all body points at all the time instances during an

action. During testing, the subspace angle between the input matrix and every

stored matrix was computed. The difference between the angle and 180 degree

was minimised to obtain the action category. Experiments showed that the system

was able to deal with variation in viewpoint, execution rate and anthropometry

of actors. A similar method was proposed in [150] which recognised action videos

acquired from moving cameras.

The work in [151] stated that most current recognition systems were based

on local spatio-temporal features which limit the ability to recognise long and com-
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Figure 3.10: An illustration of 4D trajectories of parameter pairs from [149]: (a)
XYZ plot of an action, where vertical axis represents height; and (b) XYT plot of
the action, where the vertical axis represents time.

plex actions. The problem was handled by describing an activity by the dynamic

subspace angles computed from an activity video. First, feature sequences such

as interest points or silhouettes were extracted from the video in temporal order.

A Hankel matrix was generated for the sequence. The dynamic subspace was then

computed from columns of the matrix. To find the similarity between two activities,

their dynamic subspace angle was computed by the canonical correlation between

the subspaces. If the activities were identical, this angle was 0 since the outputs

of the same activity lay in the same subspace. Finally, a multi-class SVM was

constructed for classification.

3.4 Summary

In this chapter, a number of different action/activity recognition systems are re-

viewed. Spatio-temporal approaches can effectively recognise simple and periodic

actions such as those in the KTH dataset [112] and the Weizmann dataset [27]. Body

volume-based methods provide straightforward solutions but they cannot normally

deal with motion speed variations. Interest points-based methods are very robust

against noise and illumination changes without background subtraction or body-part

modelling. Their major limitation is that they cannot recognise complex actions or

non-periodic actions. View-invariance is another unsolved problem which they need

to address. Optical flow-based methods are computational efficient and are able to

handle camera motion. Nonetheless, they have inherent difficulty in dealing with
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variation in action speed.

Sequential approaches generally analyse temporal relations between frame-

by-frame features, and this enables them to recognise non-periodic activities and

more complex activities than most spatio-temporal methods. State-based methods

use probabilistic analysis of activities. They compute a posterior probability of

the activity category given an input video, thus enable easy incorporation of other

algorithms. These systems can also be trained with new data without the original

data [152]. The major limitation of the state-based methods is that they normally

require a large number of training data. Exemplar-based methods are more flexible

in that the frame-by-frame feature vectors can be arranged in any manner to suit

a particular application. In addition, methods based on the DTW algorithm can

effectively cope with speed variations. Moreover, exemplar-based methods require

less training data than state-based methods.
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Chapter 4

Experimental Procedures for

Acquiring DfD Input Images

4.1 Introduction

The far-focused and the near-focused image pair is the input of many DfD methods

such as [16; 77; 85; 97; 153]. They are generated by focusing a camera at the furthest

and the nearest measurable distances of the scene, respectively. Focusing is achieved

by fixing the lens and shifting the sensor along the optical axis. Fig. 4.1 illustrates

a procedure for capturing DfD image pairs. First, the furthest measurable distance,

or the far-focused object distance u1 is determined. The lens law [154] states that

1

F
=

1

u
+

1

w
, (4.1)

where F is the focal length (a constant provided by the lens manufacturer), u is the

object distance and w is the distance between the lens and the focused image, or

the focused image distance. Thus the far-focused image distance

w1 =
1

1
F −

1
u1

. (4.2)

Similarly, the near-focused object distance u2 is defined, and the near-focused image

distance w2 is computed using the lens law. Finally, to obtain the far-focused and

near-focused images for any object, the sensor is respectively moved to w1 and w2

away from the lens.

Although this procedure is theoretically correct, in practice w1 and w2 cannot

normally be directly and accurately measured for an off-the-shelf camera. Thus,

high-precision tools are also needed to move the sensor. To obtain images for DfD,
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Figure 4.1: Far-focused (top) and near-focused (bottom) images capturing. Dash
lines denote the optical axis.

Figure 4.2: Raj’s camera system from [155]: a 35 mm lens (left) and a 50 mm lens
(right).

a focus ring control was used in [17; 155] as shown in Fig. 4.2. The focus ring as

illustrated in Fig. 4.3 was used to focus the target at different distances. When

the focus ring is turned, the sensor-lens distance is changed. This is equivalent to

moving the lens in the thin lens model in Fig. 4.1 along the optical axis. To obtain

a far-focused image, the focus ring is adjusted such that the image for the far object

is focused. Similarly, the focus ring is adjusted to focus on the near object to obtain

the near-focused image.

The focus ring control “remembers” the two positions so that more DfD

image pairs can be generated easily. This memory function is achieved by its two

plastic rings. One of them (Ring 1) is firmly attached on the focus ring and the other

(Ring 2) on a fixed position on the lens. Ring 1 is turned with the focus ring. Ring 2

has two protruding screws on its edge which mark the two focus ring positions. They

stop Ring 1 from turning at the two positions where the near/far-focused images

are respectively captured. However, this system has a serious drawback. When the

focus ring is turned while the sensor is fixed, not only the sensor-to lens position w
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Figure 4.3: The 50 mm lens used in [155; 17].

is changed, the object distance u is also modified. This means the measured depth

is ambiguous, since the image pair no longer corresponds to the same object scene.

To address this problem, two practical camera systems are proposed in this

thesis: the single micrometer controlled (SMC) system, and the double micrometers

controlled (DMC) system. In both systems, the lens is fixed and only the sensor

is moved to generate the images. In SMC, a funnel holder is used to fix the lens,

and a micrometer of 10 µm precision allows fine adjustment of the sensor-to-lens

distance. In DMC, the funnel holder in the first design is replaced by one controlled

by a micrometer with other components for finer adjustment. We have also imple-

mented a graphical user interface (GUI) programme DfDtool using MATLAB 2008

for efficient image acquisition.

This chapter is organised as follows. Section 4.2 presents the design of SMC

and Section 4.3 describes the DMC. The experimental procedure of capturing DfD

image pairs is presented in Section 4.4. Section 4.5 describes DfDtool and its benefits.

Finally Section 4.6 summarises this chapter.

4.2 The Single Micrometer Controlled System

Fig. 4.4 shows the SMC where some important components are tagged. Fig. 4.5(a)

is another view of the SMC where the lens holder grabber is highlighted. The

camera system consists of a Nikkor 50 mm manual-focus lens [156], a AVT Guppy

FireWire charge-coupled device (CCD) sensor [157] connected to a standard desktop

PC running on Pentium 4 processor at 3.20GHz and 1 GHz memory, by a FireWire

or IEEE 1394a cable [158].

Fig. 4.5(b) is a close view of the grabber showing three of its most important

components. Screw A allows the vertical position of the grabber to be changed and

fixed; screw B enables the horizontal position to be changed and fixed. Both screws

are adjusted by Allen key (or hex key). The lens can be firmly fixed by the tap.

When the lens is positioned at the designated location, it is not allowed to move

50



4.2. THE SINGLE MICROMETER CONTROLLED SYSTEM

Figure 4.4: Side view of the SMC.

(a) (b)

Figure 4.5: The lens holder grabber of SMC: (a) isometric view; with (b) components
highlighted.

during image capture. Fig. 4.6 illustrates how the vertical position of the sensor is

adjusted. The screw is loosened to allow the metal cylinder to move vertically with

the sensor. The screw is then tightened to fix the position.

The sensor is fixed onto a base controlled by the micrometer as shown in

Fig. 4.4. A closer view of the micrometer is shown in Fig. 4.7. When the microme-

ter roller is turned forward, the lens holder is pushed to the left; when it is turned

backward, the sensor holder is pushed back by an internal spring. The microme-

ter produces a reading which varies when the micrometer is turned. This reading

indicates the location of the sensor on the optical axis.
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Figure 4.6: Close view of vertical position control of the sensor.

Figure 4.7: Close view of the micrometer.

Figure 4.8: Major and minor reading of the micrometer.

The micrometer has the major reading and minor reading as shown in Fig. 4.8.

The major reading consists of higher digits and lower digits. Each higher digit is

1 mm equally divided into two lower digits. Thus, each lower digit is 0.5 mm. A

rotation of the minor reading by 360 degree leads to one lower digit change in the

major reading. The minor reading also consists of higher digits and lower digits.

Every higher digit is 50 micrometres equally divided into five lower digits. Thus,

each lower digit in the minor reading is 10 micrometres.
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4.3 The Double Micrometers Controlled System

Fig. 4.9 shows several views of the lens holder design, where the lens (in sky-blue)

is attached to an external telecentric aperture (in purple). The vertical lens holder

stand is in cyan and the sensor in violet. The lens holder base (in yellow) is on a

tilt control platform (in brown). The platform is on another micrometer (in green),

which is fixed on the optical bench (in light-green). Other components of the SMC

are shown in grey. Fig. 4.10 shows the DMC with the fabricated lens holder. Since

this design has two micrometers, we call the micrometer under the sensor Micrometer

A and the one under the lens holder Micrometer B.

(a) (b) (c)

(d) (e)

Figure 4.9: 3D model of the camera system designed with SolidWorks 2012 [159]:
(a) front view ; (b) back view ; (c) top view ; (d) side view; and (e) the isometric
view.

This design has several advantages. First, Micrometer B is introduced which

allows precise horizontal adjustment of the lens. Second, the central screw in the

holder base allows rotational movement of the lens in the horizontal plane. Third,
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Figure 4.10: The camera system with the fabricated lens holder: side view (left)
and isometric view (right).

(a) (b) (c)

(d) (e)

Figure 4.11: Assembly procedure for the lens holder.

the three small screws (in red) on the holder base and the control platform (in

brown) enable tilt control of the lens.

Fig. 4.11 shows the assembly of the DMC system. First, Micrometer B is

secured on the optical bench with two screws as shown in Fig. 4.11 (a). Second,

the tilt control platform is fixed on Micrometer B with another two screws as in

(b). Third, the lens holder base is attached on top of the platform with the central

magenta screw as in (c), where a spring is inserted between the screw hat and the

base (not shown) for double securing. Fourth, the lens holder base is attached to

the lens holder stand as in (d). Finally, the lens is inserted to the lens holder hole

and secured with the two screws (in red) as in (e).
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4.4 Image Capture Procedure

The procedure for image capture using either SMC or DMC requires the user to

provide the maximum blur circle radius, which determines the working range along

with other optical parameters. The furthest measurable distance is determined

first, and the nearest measurable distance is computed accordingly. During image

acquisition, the micrometer is adjusted to focus on these two distances to capture

the far- and near-focused images, respectively. The following four steps are involved:

1. Define the furthest measurable distance u1, or the far-focused object distance.

Place a flat surface at that distance away from the lens.

2. Move the sensor along the optical axis by turning Micrometer A. When the

image is focused, record the reading of the micrometer as m1.

3. Compute w2 − w1, which is how far the sensor should be moved to generate

the near-focused image (refer to Fig. 4.1), by

(w2 − w1) =
2FRmax

d
, (4.3)

where Rmax is the predefined maximum blur circle radius that is normally

10 micrometres [16; 17], and d is the aperture diameter. The near-focused

reading

m2 = m1 + w2 − w1. (4.4)

4. To capture the DfD image pair, turn Micrometer A to m1 and m2 for the

far-focused and near-focused images, respectively.

Note that the procedure is similar when the nearest measurable distance is deter-

mined first.

4.5 DfDtool

DfDtool is a self-contained MATLAB-based GUI program to facilitate efficient DfD

experiments. It has four major benefits. First, it allows precise search of the most

focused image which is required in the far/near-focused position determination.

Second, it allows frame grabbing and the frame can be saved as an image file to be

used later. Third, it enables calculation and display of the depth map when the DfD

image pair is captured. Finally, it contains a parameter calculation module which

estimates the experimental settings for generating far- and near-focused images.
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4.5.1 Graphical interface

DfDtool contains seven modules as shown in Fig. 4.12. The configuration module

enables the user to configure the output directory of the saved image, turn the

display of the FFT value on and off, and set the depth map patch size and post

median filtering (PMF) kernel size.

Figure 4.12: The DfDtool GUI: configuration module (red box), FFT value (or-
ange box), control module (yellow box), parameter calculation module (light green
box), status module (green box), live image display (light blue box), and depth-map
display (dark blue box).

The FFT display module shows the current FFT value

vfft =

0.25Y∑
y

0.25X∑
x

Ǐ(x, y) , (4.5)

where Ǐ is the absolute values matrix of 2D FFT of the input image I. x and y are

the row and column indices, respectively. X and Y are the row number and column

number respectively. vfft is effectively the sum of high-frequency components of the

image and is maximised when the image is most focused. Our experiments show

that this process is faster than computing variance as in [72] while as effective. It

takes less than 0.1 seconds per 640 × 480 image for a standard desktop computer

with a Pentium 4 processor and 1 GB memory.

The control module consists of four buttons. When the “Start Camera”

button is pressed, the camera starts to record (i.e., image capture) and the “Save

Image 1” button is enabled. At the same time, the name “Start Camera” is changed
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into “Stop Camera” which when pressed will stop the recording immediately.

When the “Save Image 1” button is pressed, the far-focused image is saved

into both memory (as a variable) and the disk (as a file), uniquely named according

to the current date and time. The “Save Image 2” button is also enabled as a

result, which when pressed will save the near-focused image. The “Raw Depth

Map” button is enabled after this action, which when pressed will display the raw

depth map using Watanabe’s method [16].

The parameter calculation module computes the near-focused Micrometer A

setting. When a user has entered the focal length, aperture diameter, far-focused

object distance, Micrometer A major reading, minor reading and then pressed the

“Compute settings” button, the major and minor readings required for near-focused

setting are displayed. The working range in millimetre is also displayed. The status

module shows the current status of the program. Finally, the live image display

module shows the live recording of the camera.

4.5.2 DfD calibration and image acquisition with DfDtool

In this thesis, calibration means finding the far/near-focused optical settings includ-

ing far/near-focused object distances and Micrometer A readings. The first step

of the procedure is illustrated in Fig. 4.13, where the far-focused object distance is

determined as 800 mm. A flat surface covered by sandpaper is used as the object

for calibration and placed at this distance from the lens. After the “Start Camera”

button is pressed, the live image and the corresponding FFT value are displayed

by DfDtool. The user then needs to adjust Micrometer A to find the far-focused

reading m1 by maximising the FFT value.

Figure 4.13: DfD calibration using DfDtool : left: object used for calibration; right:
the DfDtool interface.

For a predefined maximum blur circle radius (2.703 pixels in this case), the

focal length (50 mm), aperture diameter (12.8 mm), far-focused object distance (800

mm), major Micrometer A reading (5mm) and minor micrometer reading (0.17 mm)
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(a) (b)

(c) (d)

Figure 4.14: DfD image acquisition and raw depth map computation with DfDtool :
(a) test object with camera, (b) the DfDtool interface, (c) the saved image files, and
(d) the interface with the computed depth map.

are entered in the parameter calculation module. The near-focused Micrometer A

reading m2 is then computed according to Eqn. (4.3) and displayed on the DfDtool

interface.

In Fig. 4.14(a), a test object (a wooden staircase) is placed in the camera

view. Micrometer A is turned to m1 and “Save Image 1” button is pressed in (b).

Micrometer A is then turned to m2 and “Save Image 2” button is pressed. The

image pair is saved on disk shown in (c). When the “Raw Depth Map” button is

pressed, a depth map is computed and shown on the right of the interface in (d),

where brighter pixels represent larger depth and vice versa.

4.6 Summary

This chapter presents the processes involved in obtaining DfD image pairs. Two sys-

tems are proposed. The SMS provides precise control of the sensor-to-lens distance

with a micrometer. The DMS allows finer lens position adjustment for a dedicated

lens holder. In addition, DfDtool enables convenient DfD calibration and image

capture. The current limitations of the system include that the lens and the sensor

cannot be aligned perfectly with the optical axis. Finer vertical adjustment is also

58



4.6. SUMMARY

required for higher-quality image acquisition. Two DfD correction algorithms pre-

sented in Chapter 6 are used to address this problem and to eliminate an elliptical

distortion problem.
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Chapter 5

Depth from Defocus based on

Rational Operators

5.1 Introduction

DfD and DfF are methods for recovering 3D shape of a scene. DfF (e.g., [160; 161])

is based on the lens law [154], i.e.,

1

F
=

1

u
+

1

w
, (5.1)

where F is the focal length, w is the distance between the lens and the image plane

when the image is in focus, and u is the distance between an object point P and the

lens as shown in Fig. 5.1. Thus, if w is known then u, i.e., the depth of the object

point can be recovered. However, for an object with continuous change in depth, at

least ten images are required to estimate the object depth map [162]. The challenge

of DfF is deciding when the object is in focus. Recent methods to address this

challenge include those in [160; 161]. DfD requires only two images captured with

different focus setting, hence it is more suitable than DfF for real-time applications.

In Pentland’s DfD scheme [49], the first image was captured with a large depth-of-

field so that its pixels had minimal defocus, while there was considerable blur in the

second image. The depth of each pixel and thus its coordinates in 3D space were

recovered by measuring the difference in blur. A more general DfD method in [18]

uses two images that do not have to be captured with large depth-of-field.

Image blur can be modelled as a 2D convolution of a focused image with

a PSF. By modelling the PSF as a downturn quadratic function, and representing

it as a look-up-table of the convolution ratio, the corresponding image depth can

be found. The method in [69] computes the convolutional ratio of sub-images using
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Figure 5.1: The telecentric DfD system.

regularisation, and searches the table iteratively to determine the depth for each sub-

image. In [64], the PSFs are modelled as the derivatives of a Gaussian using moment

and hyper-geometric filters. In [75] the intensity and depth values of every image

pixel were modelled as an MRF and a MAP was maximised using simultaneous

annealing to obtain the optimal depth estimation.

An orthogonal projector that spans the null-space of an image of a certain

depth was used in [85]. For each depth, a number of different images were cap-

tured by a camera and the corresponding orthogonal projector was created, not

requiring any PSF. Each projector was multiplied with each sub-image, and the

depth corresponding to the projector with the minimal product gave the optimal

depth estimation. Image segmentation was used to separate the object from the

background together with a three-layered neural network in [88] to achieve high ac-

curacy. However, the use of segmentation implies that the algorithm is only suitable

for objects on a flat surface.

Recent DfD methods also include those based on coded aperture (e.g., [54;

96]) which customise the PSF by modifying the aperture shape, and most use a

complex statistical model which is computationally expensive. In [163] the image

blurring effect was described by oriented heat-flows diffusion, whose direction was

determined from the local coherence geometry, and the diffusion strength corre-

sponded to the amount of blur. Using this method, ridge-like artefacts on sharp

edges were eliminated. In [164], an improvement on DfD was achieved by manip-

ulating exposure time and guided filtering. In [165], improvement was achieved by

minimising, via geometric optics regularisation, the information divergence between
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the estimated and actual blurred images.

None of the above-mentioned methods achieves frequency independence with-

out a complex statistical model or training/testing-based algorithm, i.e., the esti-

mated depth is only related to the blur size rather than the pattern of the blurred

object. A solution is to incorporate a frequency parameter into the PSF as suggested

in [16]. For most existing methods, the depth is estimated from the ratio of two

images with different degrees of blur at a particular frequency. In contrast, RO-DfD

computes depth using the NIR, or the M/P ratio which is a function of both depth

and frequency. The NIR is the ratio between the difference in the magnitude of two

images at all frequencies (M for minus) and the sum of the magnitude of them (P

for plus). Due to the complex and iterative optimisation procedure used for the RO

design in [16], a simpler procedure has been proposed in [17] which also improves

the depth estimation.

For convolved DfD, the telecentric optics described in [166] prevent an image

magnification effect that limits DfD. The telecentric RO-DfD system is illustrated

in Fig. 5.1. The light rays from an object point P pass through the telecentric

aperture of radius A, and then through a circular part of radius A′ on the lens. The

focused image of P is at l, a position between the far-focused position l1 and the

near-focused image position l2. The normalised depth α is -1 at l1 and 1 at l2. The

distance between l and l1 is (1 + α)e and that between l and l2 is (1− α)e. A blur

circle of radius R1 and another of radius R2 are formed at l1 and l2, respectively.

The other parameters are denoted as follows: u is the distance between an object

point and the lens; F is the focal length; s1 is the distance between the lens and l1;

and s2 is the distance between the lens and l2.

Two images are captured: image I1 at l1, and image I2 at l2. When P is

at far-focused position, its focused image P ′ is at l1. Similarly, when P is at near-

focused position, its focused image is at l2. Hence the working range of the RO-DfD

system is from the far-focused object position to the near-focused object position.

The NIR or the M/P ratio is defined as [166]

M̌

P̌
(fr, α) =

Ȟ1(fr, α)− Ȟ2(fr, α)

Ȟ1(fr, α) + Ȟ2(fr, α)
, (5.2)

where Ȟ1 and Ȟ2 are respectively the OTFs of I1 and I2, α is the normalised depth

which is -1 when the focused image is on l1 and changes linearly from l1 to l2 so

that it becomes 1 when it reaches l2, and fr is the radial frequency parameter in

Hz. Using Eqn. (5.2) and the Pillbox PSFs, curves representing the NIR changing

with α are shown in Fig. 5.2(a), each of which corresponds to a different discrete
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(a) (b) (c)

Figure 5.2: (a) The Pillbox NIR varies with the normalised depth. (b) Gaussian
NIR with k=0.4578. (c) Generalised Gaussian NIR with p=4 and k=0.5091. For
each plot, the radial frequency of each curve increases in the direction of the arrow.
All the frequencies are shown as their ranges are within [-1 1].

frequency. Each curve is modelled as a third order polynomial of NIR with respect

to the depth, as described by [166]

M̌

P̌
(fr, α) =

Ǧp1(fr)

Ǧm1(fr)
α+

Ǧp2(fr)

Ǧm1(fr)
α3, (5.3)

where the first order and third order coefficients are expressed as Ǧp1/Ǧm1 and

Ǧp2/Ǧm1, respectively. The corresponding spatial filters (the ROs) are then com-

puted. During run-time, these ROs are convolved with (I1−I2)(I1 +I2) in a specific

order as in [16] followed by a coefficient smoothing procedure and a 7x7 PMF.

The advantages of RO-based DfD in [16] include: (a) ability to produce a

dense depth map in real time with parallel hardware implementation; (b) the 3D

reconstruction is invariant to textures; and (c) the depth error can be as low as

1.18%. Therefore a RO based method is feasible for real-time applications such as

robotics and endoscopy. Its drawbacks are: (a) using Pillbox PSF is only valid when

the lens induced aberrations and diffraction are small compared to the radius of the

blur circle [167]; (b) a problematic filter design procedure used in the Levenberg-

Marquardt algorithm (see Section 5.2.2); (c) lack of careful consideration on the

NIR leads to the presence of some adverse frequency components. To address these

drawbacks, we propose two RO-based methods: the Gaussian rational operator

(GRO) based on the Gaussian PSF and the generalised Gaussian rational operator

(GGRO) based on the generalised Gaussian PSF.

The novelties of the proposed methods are: (1) the GROs address the sit-

uation when the lens aberrations and diffraction are significant, producing smaller

RMSE; (2) a practical calibration method finds the linear relationship between the
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radius of the blur circle and the SD of the Gaussian or the generalised Gaussian PSF;

(3) GGROs can be automatically configured to deal with the any levels of diffrac-

tion and aberrations; (4) the ROs are designed with a new and simpler method; (5)

the pre-filter is redesigned to achieve better stability; and (6) an accurate and effi-

cient DfD correction method is presented in Section 5.3 to reduce the severe circular

distortion encountered in any DfD algorithm.

This chapter is organised as follows. Section 5.2 presents the proposed GRO

and GGRO including the method for their calibration, a method for configuring

GGRO, and the pre-filter. Section 5.3 presents the DfD correction procedure. The

experiments on real images and discussion are presented in Section 5.4, and Sec-

tion 5.5 concludes the chapter.

5.2 The Proposed Rational Operators

The design of our proposed ROs involves three steps. The first step determines

either the Gaussian NIR or the Generalised Gaussian NIR. The second formulates

the kernels of the ROs from the corresponding NIR. The third formulates the pre-

filter for both types of ROs.

5.2.1 The Gaussian NIR

When the aberrations and diffraction of the camera lens used in DfD are significant

when compared to the radius of the blur circle, the Gaussian PSF is a better model

than the Pillbox PSF for modelling the image blur [167]. While the depth-related

parameter of the Pillbox model is the radius of the blur circle, that of the Gaussian

model is the SD. The SD is related to the radius of the blur circle R by σ = kR

[72], where k is measured for the camera system used. Hence, unlike the Pillbox

ROs that are generic for every camera, the Gaussian ROs requires calibration for a

specific camera system.

The 2D Gaussian PSF is [18]

H(x, y) =
1

2πσ2
exp

[
−(x− x)2 + (y − y)2

2σ2

]
, (5.4)

where x− x and y − y are the distances between a point at (x, y) and the reference

point (x, y), which is the centre of the PSF. The corresponding OTF is the Fourier

transform of the PSF, i.e.,

Ȟ(u, v) =

∫ ∫
1

2πσ2
exp[C1] exp[−jux− jvy] dx dy, (5.5)
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where C1 = − (x−x)2+(y−y)2

2σ2 . Rewriting the inner integral of Eqn. (5.5) as a quadratic

function of x, and using the quadratic exponential integration formula gives

Ȟ(u, v) =

∫
C2 exp[C3 + C4]dy, (5.6)

where C2 = 1√
2πσ2

, C3 = 1
2

[
1
σx− juσ

]2
, and C4 = − 1

2σ2x
2 − 1

2σ2 (y − y)2 − jvy.
Similarly, rewriting the integral as a quadratic function of y and using the quadratic

exponential integration formula gives

Ȟ(u, v) = exp

[
−1

2
σ2(u2 + v2)− j(xu+ yv)

]
= exp

[
(−1

2
σ2(u2 + v2)

]
exp[−j(xu+ yv)]. (5.7)

In polar coordinates, the OTF is

Ȟ(r, θ) = r exp[−jθ], (5.8)

where the magnitude r = exp[−1
2σ

2(u2 +v2)], and the angle θ = xu+yv. Assuming

the OTF to be circular symmetric, it does not depend on angles and thus

Ȟ(u, v, σ) = exp

[
−1

2
σ2(u2 + v2)

]
. (5.9)

σ is related to the blur circle radius R by [72]

σ = kR, (5.10)

where k is a camera constant obtained by measurement. In this chapter k is obtained

as follows:

1. Place a flat test pattern, i.e. a flat surface fully covered by a piece of sandpaper,

in front of the camera and perpendicular to the optical axis.

2. Focus the camera by computing its Fourier transform, where the image with

the largest high-frequency magnitude is chosen as the sharpest (i.e., most

focused). Denote the position of the camera sensor as l1 (i.e., the far-focused

sensor position) and the image as I1 (i.e., the far-focused image).

3. Move the sensor along the optical axis and away from l1 to the position of l2,

such that l2− l1 = 2e, where e is a constant as shown in Fig. 5.1. Capture the

image as I2 (i.e., the near-focused image) at l2 (i.e., the near-focused position).
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Note that I1 is in focus and I2 is blurred by a radius R = (1 + α)e/(2Fe).

4. Convolve image I1 with a Gaussian PSF of SD σt to generate image I′2t, i.e.,

I′2t = I1 ∗G(σt). The mean square error is ~ε(t) = mean(I2 − I′2t)
2.

5. Repeat step (4) with a number of σt values. The estimated SD is given by

σ1 = arg minσt ~ε(t).

6. Repeat steps 1-5 by making I2 in focus and I1 blurred to get another approxi-

mation of the SD σ2. The final estimated SD is σ = (σ1 +σ2)/2, and k is σ/R.

This is because when the image is in focus on I1, the SD of the blur circle on

I2 is the same as that on I1 when the image is in focus on I2.

Using trigonometric similarity in Fig. 5.1 gives

2R1

(1 + α)e
=

2A′

w
,

where the effective f-number Fe is w/(2A′), so that

2R1

(1 + α)e
=

1

Fe

⇒ R1 =
(1 + α)e

2Fe
. (5.11)

Substituting Eqn. (5.11) in Eqn. (5.10) and then in Eqn. (5.9) gives the far-focused

OTF:

Ȟ1(u, v, α) = exp

[
−1

2

(
k(1 + α)e

Fe

)2

(u2 + v2)

]
. (5.12)

The near-focused OTF is similarly obtained as

Ȟ2(u, v, α) = exp

[
−1

2

(
k(1− α)e

Fe

)2

(u2 + v2)

]
. (5.13)

Note that the maximum radius of the blur circle is chosen to be 2.703 pixels,

or 20 micrometres since the sensor size is 7.4 × 7.4 micrometres per pixel. The sensor

is the same as the one used in [17], i.e. an AVT Guppy FireWire CCD sensor. Thus

according to Eqn. (5.11), the f-number (focal length divided by aperture diameter)

controls the sensor separation 2e which in turn controls the working range, where

by definition α = 1 when the radius is maximised on l1. This is explained as

follows. It is noted from Eqn. (5.1) that a larger 2e results in a larger difference in

image position w between the far-focused and near-focused conditions. This leads

to a larger difference between the far and near object positions, i.e. the working
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range. This means a larger f-number results in a larger working range and vice

versa. However, a larger f-number will generate a higher noise level in the data due

to higher level of diffractions [18]. Notably, only the choices of maximum radius and

the f-number will change the experimental set-up, while the value e is determined

by the radius and the f-number selected according to Eqn. (5.12).

An example Gaussian NIR graph is shown in Fig. 5.2(b), where k = 0.4578

as measured for the camera system used to obtain the subsequently reported results.

Unlike the Pillbox NIR shown in Fig. 5.2(a), even the high-frequency curves of the

Gaussian NIR increase monotonically with depth. However, this does not mean

they will not generate any adverse effects. A discussion of this is presented in

Section 5.2.4.

5.2.2 The Generalised Gaussian NIR

A 1D generalised Gaussian PSF, generated using a combination of the Pill-box and

Gaussian models with an adjustable parameter p is proposed in [168]. When p = 2,

it is equivalent to a Gaussian PSF, and when p→∞ it is equivalent to the Pillbox

PSF. The 1-D generalised Gaussian PSF is [168]

H(x) =
p

1− 1
p

2σΓ
(

1
p

) exp

[
−1

p

|x− x|p

σp

]
, (5.14)

where Γ() is the Gamma function, σ is the SD such that σ = kR, x is the spatial

index and x is the centre of the PSF. The method for determining k in Section 5.2.1

is effectively a 1-D search, and the calculated value of p, i.e. pest, is obtained here

by a 2-D search, with each loop being an 1-D search of k for a test value of p. This

process is described as follows:

1. Beginning with a very small value of p (e.g. p=1), find the mean square error

~ε(t) for every attempted σ(t). Store the minimum of ε as ~εm(p), and the

corresponding k value as ~km(p).

2. Repeat the previous step with a slightly larger p value (e.g., 0.1 larger), until

the minimum of ~εm(p) is identified. The calculated p value is given by pest =

arg minp~εm(p), and the corresponding k value is given by kest = ~km(pest)

Denoting C5 = 2σΓ
(

1
p

)
p

1
p
−1

, Eqn. (5.14) becomes

H(x) =
1

C5
exp

[
−1

p

|x− x|p

σp

]
, (5.15)
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The equivalent 2D PSF is

H(x, y) =
p

2− 2
p

4σ2Γ2
(

1
p

) exp

[
−1

p

|(x− x)2 + (y − y)2|
p
2

σp

]
, (5.16)

The OTF can be derived by the 2D Fourier transform of Eqn. (5.16), but no closed

formed OTF can be obtained. To address this problem, numerical methods such

as Adaptive Simpson Quadrature [169] can be used to calculate the OTF. FFT is

a possible alternative but it should be used with care. This is because when the

SD is small, it fails to produce accurate OTF values, whereas the Fourier transform

by numerical integration almost always give accurate results but is much slower to

compute. Fig. 5.2(c) shows an example of the NIR graph generated using p=4 and

k=0.5091. As a result of the Pillbox-Gaussian combination, each curve in the NIR

graph has a smaller range than the Pillbox NIR while the high-frequency curves do

not increase monotonically with depth.

5.2.3 Design of the Rational Operators Kernels

Sections 5.2.1-5.2.2 present the methods for finding the NIRs as given by Eqn. (5.3).

The first and third order coefficients can be found by performing a least squares

fit of the NIR. The procedure used in [16] first sets Ǧp1 as the MFR of a Log of

Gaussian (LOG) band-pass filter and then derives the other terms accordingly. The

proposed method adapts this procedure by using a different method to estimate the

corresponding spatial filters, i.e., the ROs.

In [16] and [17], the frequencies within [-0.5 0.5] Nyquist are divided into 32

discrete portions to allow the polynomial coefficients to be found. Since the ROs

operate in the spatial domain, their MFRs must be converted to the corresponding

spatial filters. Since depth estimation is based on spatial filtering, i.e. several con-

volutions between the input images and the 2D filters (or effectively matrices), no

filter is allowed to contain imaginary values. Therefore, inverse Fourier transform

producing imaginary values is not applicable. In [16], the two operators Gm1 and

Gp2 are acquired by the Levenberg-Marquardt algorithm, where only one cost func-

tion is used to find both Gm1 and Gp2. However, P̌(u, v;α) in [16] is assumed to be

the MFR of a fractal image, which corresponds to Brownian motion. This may not

be a good approximation since P̌(u, v;α) is the MFR of the sum of the two input

images, and thus cannot be a constant. Moreover, our experiments show that the

weighting factor used in their method significantly affects the optimisation result.

We solve this problem with a different cost function, which is the difference
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between the left hand side and right hand side of Eqn. (5.2), i.e., to find the ROs,

the MFRs of which best fit the NIR curves (this is also the final target of the ROs’

design in [16; 17]). Denoting

M̌
′

P̌
′ (u, v, α) =

Ǧ
′
p1(u, v)

Ǧ
′
m1(u, v)

α+
Ǧ
′
p2(u, v)

Ǧ
′
m1(u, v)

α3, (5.17)

where (u, v) is the frequency index such that fr =
√
u2 + v2, Ǧ

′
p1, Ǧ

′
m1 and Ǧ

′
p2 are

the MFRs of the ROs Gp1, Gm1 and Gp2 respectively, the cost function is given by:

ε2 =
∑
u,v,α

(∣∣∣∣M̌P̌ (u, v, α)

∣∣∣∣ · |Q̌(u, v)| −
∣∣∣∣M̌′
P̌
′ (u, v, α)

∣∣∣∣
)2

, (5.18)

where M̌
P̌

is the NIR calculated using Eqn. (5.2) and Q̌ is MFR of the pre-filter used

to filter the input images before DfD computation (see Section 5.2.4). Thus the ROs

are estimated as

[Gp1,Gm1,Gp2] = arg min
Gp1,Gm1,Gp2

ε2. (5.19)

Therefore, all three ROs are estimated simultaneously, without approximating P̌(u, v;α).

In addition, the weight is set to be the same for every frequency index without the

need to compute it as a specific matrix as in [16]. This is because every frequency

component has even contribution to minimise the overall cost function of Eqn. (5.18).

This results in the right hand side of Eqn. (5.18) not having a denominator.

Eqn. (5.18) and (5.19) can be implemented with any non-linear optimisa-

tion algorithm such as the Gauss-Newton algorithm, gradient descent algorithm or

Levenberg-Marquardt algorithm. A crucial step is the initialisation of ROs Gm1

and Gp2. As mentioned earlier, Gp1 is initialised as a LOG filter, then its MFR Ǧp1

is calculated. Ǧm1 and Ǧp2 are then computed with the estimated first and third

order coefficients. The Parks-McClellan FIR filter design algorithm and McClellan

transformation are then used to find the initial guess for Gm1 and Gp2 [170; 171].

The procedure to initialise Gm1 and Gp2 is as follows: 1) Generate a 1D

vector ~ftar by sampling 6 values of the RO’s MFR (Ǧm1 or Ǧp2) across 6 equally

spaced frequency indices from 0 to 0.5 Hz.; 2) Use ~ftar and the corresponding fre-

quency indices vector as input to the Parks-McClellan algorithm to find the 1D

spatial filter ~f1d; 3) Use ~f1d as input to the McClellan Transformation algorithm to

get the corresponding 2D filter, which is the initial guess for the RO (Gm1 or Gp2).
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5.2.4 The pre-filter

The purpose of the pre-filter is to remove the frequency components which adversely

affect the accuracy and stability of the 3D reconstruction. To design the pre-filter

appropriately, these adverse frequency components are identified using a NIR graph,

e.g., as is shown in Fig. 5.2(b), as follows. For each frequency, the variable repre-

sented by the vertical axis in Fig. 5.2(b) (i.e., the NIR) is used as the input argument,

and the output is the variable represented by the horizontal axis.

The pill-box PSF was used in [16; 17] that had a depth response as shown

in Fig. 5.2(a). Due to non-monotonicity of the high frequency components, one

input NIR value corresponded to more than one output depth values. This created

an ambiguity during depth measurement. Thus, their pre-filters aimed to remove

the high-frequency components. However, we have discovered that low-gradient

components also introduced significant errors.

Note that if the input varies even slightly, the resulting output depth will

be highly unstable. For example, for the second lowest frequency of 0.1963 Hz,

represented by the curve just next to the horizontal line, if the input varies within

±0.1, the output will vary across the entire depth range. Similarly, some high-

frequency components also suffer from this problem since some parts of them are

almost horizontal. Thus, a lack of consideration on this problem can result in

significant depth variation, requiring larger coefficient smoothing and larger median

filtering kernels (our experiments show that a 3x3 median filtering kernel is typically

enough to remove most high-frequency noise, but it can be larger if the noise power

increases significantly) which slow down the processing.

The frequency components containing a large proportion of low-gradient or

negative gradient (corresponding to non-monotonicity) should thus be removed.

This is achieved by minimising the cost function

ε2 =
∑
u,v

(
Q̌(u, v)− Q̌

′
(u, v)

Z(u, v)

)2

, (5.20)

where Q̌ is the target MFR (to be determined later), Q̌
′

is the MFR of the esti-

mated pre-filter and Z is the weight matrix (to be determined later). In order to

obtain a pre-filter that effectively remove the components that introduce significant

instability, which corresponds to the NIR curves that contain parts with small or

negative gradient, the corresponding elements of Q̌ need to be set small enough

while maintaining Q̌ to be smooth. In addition, the weight matrix needs also be set

in a way that the optimisation is focused on obtaining small values for the adverse
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frequency components.

The optimal Q̌ is obtained as follows:

1. Compute the gradients along each curve of the NIRs at different depths;

2. Find the smallest gradient for each curve which corresponds to a unique radial

frequency fr;

3. Each element of Q̌ is assigned by the smallest gradient value (0 if negative) of

corresponding curve with the same radial frequency fr =
√
u2 + v2, resulting

in small values for the adverse components while enforcing smoothness of the

filter;

4. Q̌ is then divided by its maximum value to give a unity gain filter;

5. Z(u, v) is set to be Q̌ incremented by a small value (e.g., 0.05) so that it

does not contain zero, resulting in the optimisation focused on the adverse

components. The optimisation can be implemented by one of the non-linear

optimisation methods, initialised with the same method as the ROs as pre-

sented in Section 5.2.3.

5.3 DfD Correction Method

During tens of experiments using three different lenses (a professional 50 mm lens,

a 35 mm lens, and a widely available 1 mm Webcam lens), a common and severe

problem was observed using all the DfD algorithms mentioned in Section 5.1. Such

a problem is illustrated in Fig. 5.3. Here a hill-like result is generated from a flat

plane that is perpendicular to the optical axis. The hill is more or less circularly

symmetric which is similar to the surface of a common lens. Also its centre deviates

from the centre of the map due to the focus adjustment during the experiment.

An analysis of the experiment reveals the following concern. When an image

is defocused by moving the sensor, it cannot be defocused evenly across the image,

where some parts are more blurred than the others (the shape of the defocused

pattern is similar to the distorted depth map in Fig. 5.3(a), where the varying grey

levels denote the uneven surface). In addition, the small f-number used results in

a narrow depth of field, making the problem easily observed. In other words, the

distorted blur field leads to a distorted depth map. Note that both results are

generated with the same scale using Watanabe’s [16] DfD method. The expected

depth map should be flat with a value of 933 mm.
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(a) (b) (c) (d) (e)

Figure 5.3: An example DfD correction problem. Grey-coded depth maps of a flat
surface: (a) without correction and (b) after correction. (c) The grey-bar of (a) and
(b). Mesh plots: (d) the side view of (a); and (e) the side view of (b), where the
horizontal units are in pixel and the vertical units are in mm. The horizontal lines
in (d) and (e) represent the expected depth.

Generally, it is possible to correct either the input images or the output

depth map. The former is considered not practical due to the complex measurement

involved, so the proposed method is based on correcting the output depth maps.

An immediate thought is to subtract any depth map by a calibration pattern (i.e.,

the depth map generated for the far-focused object position) and then minus the

expected depth of that pattern (the depth offset). However, our experiments show

that the appropriate calibration pattern is depth dependent. Thus, a closed-form

solution is needed to find the correction factor for each element of the pattern.

The offset T at the location defined by the Cartesian coordinates (x, y) is

modelled as a third order polynomial of the coordinates x and y and the correspond-

ing raw depth Uraw(x, y), i.e.,

T(x, y) = ~c1(1) +
4∑
i=2

~c1(i)xi−1 +
7∑
i=5

~c1(i)yi−4 +
10∑
i=8

~c1(i)(Uraw(x, y))i−7. (5.21)

Third order is chosen since our experiments showed that first and second order led to

lower accuracy, and fourth order and above did not produce significant improvement

while increasing the computational cost.

Samples of T and Uraw are obtained by capturing a pair of DfD images

of a test flat surface at a location within the working range, e.g., T is -1, when

the surface is at the far-focused object point, and Uraw is thus the corresponding

computed depth map. The coefficient vector ~c1 is in turn obtained using least

squares fit. The correction factor is given by

Uc(x, y) = ~c2(1) +

4∑
i=2

~c2(i)xi−1 +

7∑
i=5

~c2(i)yi−4 +

10∑
i=8

~c2(i)(T(x, y))i−7, (5.22)

where Uc(x, y) is equivalent to Uraw(x, y), and T(x, y) is found by the previous step
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and the coefficient vector ~c2 is similarly computed with a least square fit. Finally,

to correct any depth result at a specific location (x, y), the following procedure is

required:

1. The location coordinate (x, y) and the uncorrected result Uraw are substituted

into Eqn. (5.21) to get the offset T(x, y).

2. The location coordinate (x, y) and Uc(x, y) are substituted into Eqn. (5.22)

to compute the correction factor Uc(x, y).

3. The corrected depth is thus estimated by Ucorrected(x, y) = Uraw(x, y) −
Uc(x, y) + T(x, y).

An example of the corrected depth map is shown in Fig. 5.3(b) and (e), where

the working range is within [886.8 933] mm away from the lens. To show that the

correction method works with any RO-DfD, the depth results are generated using

Watanabe’s ROs [16]. While the local noise level is not visibly magnified, the general

shape of the hill has been restored to be flat. A typical correction of a depth map

only accounts for 4-8% of the total RO-DfD computational time, hence it is suitable

for real-time applications.

5.4 Experiments

Since the proposed RO-DfD methods are based on different PSFs than those used

in [16] and [17], experiments with simulated images are not of any use because they

are generated with a specific PSF. Thus we only discuss the depth results using real

images. In addition, since the ROs in the Raj’s method [17] produce better results

than the ROs in [16], the comparison is made between the state-of-the-art Raj’s

method and the proposed method.

A professional 50 mm lens is used with a telecentric aperture whose diameter

is 12.8 mm. The f-number Fe is thus obtained by dividing the focal length F = 50

mm by the aperture diameter 2A = 12.8 mm, which is 3.9063. The side-length

of each CCD sensor element is 7.4 µm. The maximum radius of the blur circle is

2.703 pixels. Hence the radius of the blur circle is 2.703× 7.4−3 = 0.0200 mm The

far-focused object position u1 is set 933 mm away from the lens.

The working range is computed as follows:

1. When radius of the blur circle on l1 is 0 the scene is far-focused such that

s1 = w, substituting u = u1 = 933 mm and F = 50 mm into Eqn. (5.1) gives

the far-focused sensor-lens separation s1 = w = 52.8313 mm.
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2. When radii of the blur circles on l1 and l2 are respectively of 0.02000 (the

maximum) mm and 0 (the minimum), substituting R1 = 0.0200 mm, α = 1

(this is true when R1 reaches its maximum) and Fe = 3.9063 into Eqn. (5.11)

gives the sensor separation 2e = 0.1563 mm, such that the near focused sensor-

lens separation is s2 = s1 + 2e = 52.9876 mm.

3. When radius of the blur circle on l2 is 0 as in step 2, substituting w = s2 =

52.9876 mm and F = 50 mm into Eqn. (5.1) gives the near-focused object

position u2 = u = 886.8 mm. Thus the working range is [886.8 933] mm away

from the camera.

The input image resolution is 640 × 480. The proposed RO-DfD method is

implemented on a computer with an Intel Pentium Dual-Core 2.16 GHz processor.

A flat surface covered with sandpaper is used as the test pattern for evaluation.

It is set perpendicular to the optical axis and shifted from the far-focused object

position to the near-focused position, with successive locations separated equally by

46.18/23 mm. 24 pairs of images are thus captured and 24 depth maps computed.

A 7× 7 window is used for coefficient smoothing. For comparison with Raj’s

method, the RMSE is measured between the estimated depth map and the ideal flat

depth map for each pair of inputs. A set of 24 measurements is obtained for each one

of Raj’s method, GRO and GGRO. Here the k value for GRO is estimated as 0.4578

using the method presented in Section 5.2.1; p and k for GGRO are respectively

estimated as 1.8 and 0.4802 using the method presented in Section 5.2.2.

Fig. 5.4 shows the comparisons of RMSE between Raj’s ROs [17] and the

ROs (i.e., the Gaussian-based and the Generalised Gaussian-based) of the proposed

method. Note that the proposed DfD correction method only deals with the general

shape of the depth map, e.g., it restores a noisy hill to a noisy flat surface, main-

taining the local noise level as illustrated in Fig. 5.3. In addition, experiments show

that the RMSE before correction is dominated by the general shape and depends

on the local noise level after correction. Furthermore, the general shape distortion

is worse for the smaller depths than the larger ones, while the local noise level is

worse for the larger depths than the smaller ones. Thus, for the uncorrected results

shown in Fig. 5.4 the RMSE is higher for the smaller depths than the larger depths,

while the RMSE after correction is higher for larger depths than smaller depths.

Despite all these general RO-DfD problems, the results before correction of

the proposed ROs are more accurate than using Raj’s ROs for depths larger than

890.8 mm while GGROs produce the least overall RMSE. Moreover, for the results

after correction, the proposed methods outperform the Raj’s method across the

entire working range.
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Figure 5.4: Comparison of RMSE of Raj’s and the proposed methods. Key: ♦ -
Raj; © - GRO uncorrected; ∗ - GGRO uncorrected; � - GRO corrected; and + -
GGRO corrected.

Fig. 5.5 show the four real test scenes comprising different shaped objects

for evaluating the performance of the proposed method qualitatively. Note that our

experiments show that 3x3 PMF is typically sufficient to remove most noise while

preserving the depth discontinuity for scenes that are not reflective and having

visible textures. However the results in the third column are generated using 5x5

PMF instead of 3x3 PMF. This is because the associated scene of the fingers is

considerably more reflective than the others and does not have sufficient textures

to enable DfD to work with blurring. For a scene with no or little texture, there

is little different in blur with the two captured images. When the pre-filter fails to

remove some adverse frequency components, e.g., low frequencies corresponding to

little texture, high noise level is perceived (see Section 5.2.4). For the staircase and

cone scene in the first column, there is less noise in the reconstructed surface and the

circular distortion is eliminated. The wooden temple results in the second column

test the algorithms with complex objects that do not span the full working range,

where the expected range of the temple is significantly lower than than the working

range. Similar results are obtained. The third column shows the advantage of the

smoothing nature of the GRO, which removes much of the low-frequency components

(due to the reflective hand surface) while preserving the depth discontinuity. The
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.5: Mesh-plots of the results using Raj’s and the proposed methods with the
test objects. Row 1 - the test scenes. Mesh plots of 3D scene reconstructions using:
row 2 - Raj’s method; row 3 - GRO; and row 4 - GGRO. Note that the results in
column 3 are generated using 5x5 PMF whereas the others are obtained using 3x3
median filtering.
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object with a conical depression shown in the last column is used to demonstrate

the ability of the DfD correction method to cope with multiple depths. Here not

only the background is corrected, the foreground objects are also corrected.

Table 5.1 and 5.2 show the numerical comparisons based on the four sets

of results. In these tables, the acronym SC, TP, HD and CD respectively stand

for Staircase and Cone, Temple, Hand and Conical depression that are shown in

Fig. 5.5(a)-(d), respectively.

Table 5.1: The mean RMSE of all the flat surfaces in the reconstruction results of
the test scenes in Fig. 5.5, before and after correction. All units are in mm.

SC TP HD CD

Raj 6.46 7.23 6.59 8.59
GRO before 4.59 5.43 6.03 8.02
GGRO before 4.17 5.14 6.19 7.88
GRO after 3.90 2.91 4.35 4.20
GGRO after 3.63 2.89 4.11 4.19

Table 5.2: The mean SD of all the flat surfaces in the reconstruction results of the
test scenes in Fig. 5.5, before and after correction. All units are in mm.

SC TP HD CD

Raj 3.14 3.21 11.78 3.20
GRO before 2.49 2.75 6.88 2.45
GGRO before 2.21 2.36 6.32 2.29
GRO after 3.00 3.12 7.68 3.14
GGRO after 2.79 2.96 7.23 2.95

Table 5.1 shows the comparison of the RMSE between Raj’s results and the

proposed ones, generated from the four sets of results. The RMSE for each test scene

is measured as follows. For each flat surface that is perpendicular to the optical axis,

the RMSE is calculated between the estimated depth and the actual depth which

is measured with a vernier calliper. The average of these RMSEs is used as the

RMSE for the scene. The table shows that both GRO and GGRO produce smaller

RMSE than Raj’s method, while GGRO produces the smallest RMSE. Moreover,

the correction method manages to reduce the RMSE significantly.

Table 5.2 compares the noise levels between Raj’s results and those of the

proposed methods, which are measured by the average SD of the flat surfaces of the

four sets of results. For example, for the scene in the first column of Fig. 5.5, the SD

is evaluated for each step surface of the staircase, the surface of the wooden chunk

at the bottom, and the background. The average of these SDs is used to indicate

the noise level of the depth result. The table shows that both GRO and GGRO
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produce less noise than Raj’s method, while GGRO generates the least noise. In

addition, the correction method has little influence on the noise level.

In terms of the computing time, the proposed depth estimation and depth

correction only take typically 0.35 second. If a parallel hardware implementation

is used, a real-time DfD processing is also achievable. Therefore the proposed DfD

method can be very useful for robotic and medical applications.

5.5 Summary

Lens aberrations and diffraction are two undesirable and unavoidable imperfection in

image acquisition where 3D object reconstruction techniques including DfD suffers.

The former occurs when sub-quality lenses are used and the latter occurs when

small aperture is used or the image centre is misaligned with the optical axis. This

chapter presents two novel RO-DfD methods, one using Gaussian PSF and another

using Generalised Gaussian PSF. The GROs cope well in situations where the lens

aberrations and diffraction are significant compared to the blur radius. The GGROs

can cope with any levels of aberrations and diffraction. In addition, the pre-filter

is designed to take into account of the instability in the measurement of depth as

well as its monotonicity. Moreover, the ROs are designed to speed up the filters

generation process.

This chapter also presents a practical DfD correction method that addresses

the circular lens distortion and misalignment between the image centre and the

optical axis. Experiments on real images with both quantitative and qualitative

results show that the GROs and the GGROs together with the proposed correction

algorithm respectively produce more accurate results than the state-of-the-art Raj’s

ROs. Furthermore, the proposed methods are fast with the effective and efficient

correction stage eliminating the hill-like depth map distortion generated by existing

DfD methods.

The proposed DfD method works well because: 1) GROs use Gaussian model

that is more suitable than the Pillbox model for defocusing that is dominated by

aberrations and diffraction; 2) GGROs use generalised Gaussian model that gener-

alises the RO-DfD method to deal with any levels of aberrations/diffraction; 3) Input

frequency components are analysed using the NIR and removed with a pre-filter; 4)

The ROs are designed with a simpler method achieving comparable accuracy than

[16; 17]; 5) A simple DfD correction procedure is devised to eliminate the strong

circular distortion originated from image acquisition.

Although the DfD method works effectively, the general shape of the NIR

cannot be reproduced without error and the adverse frequency components cannot
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be removed completely due to the small-sized broad-band ROs. Thus a possible

future work is the use of coded aperture to produce a PSF suitable for small ROs.

Moreover, the current implementation of the proposed method requires the sensor to

be moved from one position to another with typical precision of 5 µm. One possible

way to increase the precision is to use of a step motor or a batch of piezoelectric-

electric materials to control the movement. If the size of the camera system is not

an issue, two sensors and a half mirror could be used to remove the need to move

the sensors.
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Chapter 6

Correction Algorithms for

Depth from Defocus

6.1 Introduction

Section 5.1 describes a number of DfD methods. One problem with these methods is

that they assume that the blurring effect is uniform across an entire image, so that

the same DfD framework can be used for every pixel or sub-image. However, this

assumption is violated for most off-the-shelf camera lenses [172; 173], which causes

the depth map of a flat surface to be approximately a 3D quadratic surface, i.e.,

the depth map is severely distorted by the surface peripheral that is of considerably

high curvature. Using a 50 mm professional lens, a 35 mm professional lens and a

common 1 mm web-cam camera, our experiments show that the quadratic surface

is dependent on depth.

A correction method based on two-step least squares fit is incorporated in

our DfD method presented in Chapter 5 and published in [45]. First, the depth

offset is modelled as a third order polynomial of the x coordinate, y coordinate and

the input (distorted) depth value, i.e.

D(x, y) = ~c1(1) +

4∑
i=2

~c1(i)xi−1 +

7∑
i=5

~c1(i)yi−4 +

10∑
i=8

~c1(i)(Uraw(x, y))i−7,

where the set of coefficients c1 is found by least squares fit, and Uraw is the distorted

depth. Second, the corrected depth is modelled as another third order polynomial
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of the x coordinate, y coordinate and the depth offset value, i.e.,

Uc(x, y) = c2(1) +
4∑
i=2

c2(i)xi−1 +
7∑
i=5

c2(i)yi−4 +
10∑
i=8

c2(i)(D(x, y))i−7, (6.1)

where the set of coefficients c2 is found by another least squares fit. The corrected

depth is finally computed using Eqn. (6.1). The method as published in [45] has

not been shown to be suitable for other DfD methods. Also, we found that the two

steps involved are unnecessary and produce accumulative errors. This is because

the errors generated from the first fit in Eqn. (6.1) propagates to the second fit in

Eqn. (6.1), which generates additional errors.

In this chapter, we propose two correction methods: CDC and CLSF. The

first method works by obtaining a number of correction patterns that are used to

cancel out the distortion. The second works by finding a map from the distorted

depth value and its expected depth value by least squares fit. The other main con-

tribution is that the methods also address the distortion problem which is spatially

variant in terms of 3 dimensions: horizontal and vertical dimensions of the depth

map and the depth of each pixel. Experiments are performed with four different DfD

methods to demonstrate that the correction methods can potentially be adapted to

all other DfD approaches.

This chapter is organised as follows. Section 6.2 introduces the distortion

problem. Section 6.3 and Section 6.4 present CDC and CLSF, respectively. Sec-

tion 6.5 proposes a post-processing algorithm which addresses the low-texture prob-

lem of the input images. Section 6.6 presents both quantitative and qualitative

evaluation of the two correction methods. Finally Section 6.7 summarises the chap-

ter.

6.2 The Depth-Variant Elliptical Distortion Problem

The grey levels of the grey-coded depth map of a flat surface without any distortion

should be uniformly distributed. Fig. 6.1 illustrates the distortion problem using

Subbarao’s method [18]. The working range is set to be within [933, 887] mm away

from the lens. The depth map of a flat surface which is 933 mm away from the lens

(i.e., furthest away) shown in Fig. 6.1(a) has very strong elliptical distortion, which

is centred at the bottom right corner due to inaccurate optical alignment mentioned

in Section 4.6. The distortion may be eliminated by subtracting the depth map from

the depth map of a flat surface at the specific depth (i.e., the correction pattern),

then adding the distance corresponding to that pattern (the offset), thus flattening
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Figure 6.1: Grey-coded depth maps illustrating the distortion problem and the depth
independence problem with Subbarao’s method [18]: (a) the furthest flat surface
with distortion; (b) surface (a) corrected using the furthest correction pattern; (c)
surface (a) corrected using the nearest correction pattern; (d) the nearest flat surface
with distortion; (e) surface (d) corrected using the nearest pattern; and (f) surface
(d) corrected using the furthest pattern.

the general shape while correcting the depth. Note that in Fig. 6.1(a)-(c) the depth

maps are plotted with the same scale, where the darkest and the brightest represent

the depth of 925 mm 940 mm, respectively. Fig. 6.1(d)-(f) are also plotted with

the same scale, where the darkest and the brightest represent 880 mm and 900 mm,

respectively.

Fig. 6.1(b) shows that the surface in (a) is effectively corrected by the pattern

at the furthest point, as seen by the relatively uniform distribution of the grey

levels. It is assumed that the correction patterns within the working range have the

same shape. Fig. 6.1(c) shows that this assumption is invalid when the surface in

(a) is corrected by the correction pattern at the nearest point, which exacerbates

the distortion. Similar results are shown in Fig. 6.1(d-e) where the depth map at

the nearest point is distorted, corrected by the nearest correction pattern and the

furthest correction pattern, respectively. Similar depth maps are also obtained using

Favaro’s method [85] and Raj’s method [17], i.e., the distortion problem is depth

dependent and the above correction method is inadequate.
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6.3 Correction by Distortion Cancellation

One means of removing the depth-variant distortion of a DfD method is to cancel

the distortion with the stored distortion. We refer this method as CDC. Each

correction pattern is a depth map acquired by the DfD method, with a flat surface

placed at different distance to the camera. The patterns are obtained from the

furthest working limit with equal incrementing distance to the camera until the

closest working limit. The patterns are numbered as 1,2,3 ... M from the furthest

limit to the closest limit, where M is the total number of patterns. We refer these

numbers as correction pattern indices (CPI), and their corresponding depth as the

depth offset. The depth value of every location of each pattern is called correction

pattern value (CPV).

Correction is achieved by subtracting the distorted depth value at every

location in the depth map, i.e., Ui, by the corresponding CPV of a correction

pattern Uc with the most suitable CPI, v, plus the depth offset ~w(v), i.e.,

Uo(x, y) = Ui(x, y)−Uc(x, y, v) + ~w(v), (6.2)

where (x, y) is the spatial index of the current pixel being corrected, and Uo is

the output corrected depth. The CPI v which corresponds to depth nearest to the

distorted depth is given by

v = argmin
v∈[1,M ]

|Uo(x, y)−Uc(x, y, v)|. (6.3)

Using Eqn. (6.3) to search for the nearest CPV may give inaccurate results

since the single distorted depth may be an unreliable input to Eqn. (6.2). To reduce

inaccuracy, the optimal CPV is found within a local region R of size (2N + 1) ×
(2N + 1) centred at the current location (x, y), i.e.,

v = argmin
v∈[1,M ]

N∑
i=−N

N∑
j=−N

|Uo(x, y)−Uc(x− i, y − j, v)|. (6.4)

In practical applications, N = 1 is a good choice. Eqn. (6.4) may not always produce

the minimum residual (i.e., its argument of argmin) that is close to zero, i.e., no

pixels in the local region are quite similar to the current input pixel. Thus, this

problem is addressed by interpolation using the two nearby residuals.

The interpolation process is illustrated in Fig. 6.2(a) for the case where the

residual of the left neighbouring CPI is smaller than the right neighbouring CPI,

and similarly for the opposite case. First, the minimal residual and the residuals
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Figure 6.2: (a) Interpolation to find the improved CPI. Key: stem plot with as-
terisks - the smallest residual value and its two nearest values; dashed lines - the
interpolated curve; circle - the minimal of the curve. (b) The second step of inter-
polation. Key: stem plots with asterisks - the CPV where the estimated index falls
in between; dashed line - the straight line connecting both CPV’s coordinates; circle
- the estimated CPV.

for its two adjacent CPIs are found. In this example, the minimal residual of 2.1 is

found at CPI being 4. The two adjacent CPIs are 3 and 4, and their residuals are

3.2 and 5.7, respectively.

Second, the gradient of the line passing through the minimal CPI vmin and

the CPI with larger residual vlarg is given by

g =
rlarg − rmin
vlarg − vmin

, (6.5)

where

rlarg =
N∑

i=−N

N∑
j=−N

|Uo(x, y)−Uc(x− i, y − j, vlarg)|, (6.6)

rmin =
N∑

i=−N

N∑
j=−N

|Uo(x, y)−Uc(x− i, y − j, vmin)|. (6.7)

In this example, it is the gradient of the line passing CPI=4 and CPI=5 on the

right. This gives the equation of the line

y = gx+ rmin − gvmin. (6.8)

Third, a line with the negative gradient that passes through the other adja-

cent CPI vsmall is plotted, the equation of which is

y = −gx+ rsmall + gvsmall, (6.9)
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where

rsmall =
N∑

i=−N

N∑
j=−N

|Uo(x, y)−Uc(x− i, y − j, vsmall)|. (6.10)

In this example, it is the line on the left. Fourth, the interpolated CPI is the

horizontal coordinates of the intersection of the two lines with Eqn. (6.8) and (6.9).

Finally, since the interpolated CPI is in-between the CPI with smallest resid-

ual (4 in this case) and the one with second smallest residual (3 in this case), and

the CPVs of them are known (810 for CPI=3 and 816 for CPI=4 as shown in

Fig. 6.2(b)), the final estimate of the CPV can be found by a simple linear interpo-

lation as illustrated in the figure. The depth offset ~w(v) is found by another similar

interpolation. In cases where the minimal CPI does not have left or right adjacent

values, the estimated CPI is the minimal CPI itself.

Note that the system parameters M and N have significant influences on

the correction performance. A larger M results in higher accuracy at the cost of

lower speed. Thus we suggest the number to be between 20 and 30 for a reasonable

trade-off. A larger N provides more neighbouring pixels to search the optimal CPI

with. On the other hand, it also means there is a risk that the CPI is determined by

pixels that are far away from the current pixel and hence fail to be representative.

For a good balance, we suggest N to be between 1/100 and 1/50 of the shorter one

of the height and width of the depth map.

6.4 Correction by Least Squares Fit

In [45], we presented a correction method based on least squares fit as part of Li’s

DfD method. First, the CPI is found by least squares fit and CPV is then found

by another least squares fit. Not only are the two fitting procedures unnecessary,

accumulative errors are generated that distort the resulting depth map. In this

chapter, we propose another correction method by least squares fit, CLSF, which

finds the mapping from the distorted depth to the corrected depth directly.

The corrected depth is modelled as a third order polynomial of the spatial

indices and the distorted depth Ui, i.e., the corrected depth

Uo(x, y) = ~c1(1) +

4∑
i=2

~c1(i)xi−1 +

7∑
i=5

~c1(i)yi−4 +

10∑
i=8

~c1(i)(Ui(x, y))i−7 , (6.11)

where ~c1 is the set of coefficients of the fitted polynomial when sufficient samples are

collected for Uo and Ui. In contrast with the correction method in [45], CLSF only

requires one least squares fit, and thus avoids any accumulative error. However, the
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output depth may not be a perfect third order polynomial of the spatial indices.

To address this problem, the entire depth map is divided into a number of equal-

sized regions, and appropriate sets of coefficients are used. Large regions (i.e. 2×2)

may not be sufficiently valid for all locations, and small regions (e.g. 10×10) contain

inadequate number of samples for the fit. In our experiments, the number of regions

is set to 3×3, or 9 which yields good results.

6.5 Post-Processing for Low-Texture Region

When the target object surface has little texture, there is insufficient information

to retrieve depth. Thus, spurious results are produced such as an extremely low

or an extremely high depth value. We assume the low-texture region to have high

correlation with its rich-texture neighbourhood and address the problem with the

following three steps: (1) A confidence map is produced to identify low-texture

regions in the input depth map D; (2) Every individual region is identified and set

to no-value; and (3) Each region is filled with 2D least squares fit.

In the first step, the NIR map [16] used to calculate depth map is computed

by

R =
I1 − I2

I1 + I2
, (6.12)

where I1 and I2 are the far-focused and near-focused images respectively. A confi-

dence map is then produced by evaluating the variance of every local region of the

ratio map Rloc, i.e.,

g =
1

N

N∑
i=1

(~r(i)− µ)2 , (6.13)

where N is its total number of elements, µ is the mean of ~r, and ~r is the 1D vector

created by concatenating every row of Rloc, i.e.,

~r(Ncol(i− 1) + j) = Rloc(i, j), (6.14)

andNcol is the number of columns in Rloc. The variance g is computed for every local

region to form the confidence map G. In this way, low-texture regions corresponding

to low variances are readily identified.

In the second step, a mask matrix B is initialised as a zero matrix of the

same size as G by

B(x, y) =

1, if G(x, y) > T

0, otherwise,
(6.15)
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where T is the variance threshold which is set typically to 0.0144. Since the NIR

ranges from 0 to 1, we empirically define the low-texture region to have SD of less

than 0.12, which corresponds to a variance of 0.0144. B indicates the locations

of the low-texture pixels. Pixels of the corresponding locations of the input depth

map D are set to be no-value, which are re-estimated later. There may be several

unconnected low-texture regions that need to be addressed separately. With B as

its input, Moore-Neighbour tracing [174] is used to find all unconnected low-texture

regions defined by their boundary pixels’ coordinates.

In the third step, 2D linear regression is used to model the depth values of

each region as a third order polynomial of x and y coordinates, i.e.,

D̂(x, y) = ~c2(1) +

4∑
i=2

~c2(i)xi−1 +

7∑
i=5

~c2(i)yi−4,

∀ D(x, y) 6= no-value, (6.16)

where D̂ is the a rectangular region of B which completely covers the low-texture

region, and ~c2 is the set of coefficient obtained by least squares fit.

Figure 6.3: An example of using Moore-Neighbour algorithm to find input samples
for least squares fit: left: input binary image with a single low-texture region de-
noted in white; middle: boundary pixels in grey are identified; right: grey region is
identified as the input samples.

Fig. 6.3 illustrates the identification of D̂. In this example, B is a 7 × 7

binary image, where the white pixels correspond to the low-texture region, as shown

in the left plot. There is only one such region for simplicity in illustration. Moore-

Neighbour tracing algorithm uses this image as input and returns the indices of all

the boundary pixels, which are drawn in grey in the middle plot. D̂ is then selected

as the rectangle that fully covers this region leaving one-pixel margin around its

boundaries, as shown in the non-black region in the right plot. We leave this margin

because if the region was rectangular, there would be no sampling data for the least

squares fit. After ~c2 is estimated, Eqn. (6.16) is used to re-estimate the depth of the

no-value pixels. This process is repeated for all remaining low-texture regions.
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6.6 Experiments

6.6.1 Experiments condition

A 50 mm professional lens with an aperture of 12.8 mm was used for the DfD

reconstruction of objects, which determined the working range to be [887,933] mm

away from the lens. The working range was set taking consideration of the length

of the optical bench (i.e. 1 metre), the focal length of the lens and the size of the

experimental objects (typically 5×5×5 centimetres). A PC with an Intel Core i7

@ 3.40 GHz processor was used for data processing. Four Matlab programs were

written for the four DfD methods to evaluate the correction algorithm. The first is

the classical generic Subbarao’s method [18], the second is learning based Favaro’s

method [85], the third is the RO based Raj’s method [17], and the fourth is the Li’s

method [45].

Input grey-level images with a resolution of 640 x 480 pixels are used. Each

image pair for DfD is divided into a number of contiguous 7 × 7 sub-image pairs

where each iteration of DfD estimation is performed. Thus the resolution of the

depth map is 68×91 pixels. A flat surface covered with sandpaper was moved along

the optical axis from 933 mm to 887 mm away from the camera, with an increment

of 2 mm. Thus, 24 pairs of DfD input images were captured and 24 correction

patterns were generated, while the corresponding offsets are from 933 mm to 887

mm incremented by 2 mm.

6.6.2 Quantitative experiments

The correction methods, CDC and CLSF, are applied to the four DfD methods

mentioned in Section 6.6.1. Fig. 6.4 shows the results where 9 distorted depth maps

are used as the inputs, which were obtained with a flat surface moved from 933 mm

to 887 mm away from the camera. The plots in the first row are obtained by averag-

ing the value of each depth map; those in the second row are obtained by calculating

the RMSE between the estimated and expected depth for each pixel and taking the

average over each depth map; those in the third row are generated by evaluating

the variance of each depth map. Thus, the first row shows the average accuracy, the

second row indicates the accuracy over the depth map and the third row shows the

noise performance.

Note that the experiments are to evaluate the performance of the two correc-

tion methods, i.e., not to compare the four DfD methods where the basic difference

is whether a PSF model is used or the PSFs used. PSF parameter calibration is

involved in [18] and [45], while no calibration is required for the others. Thus, these
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Figure 6.4: Quantitative evaluation of the correction method using Subbarao’s
method [18] (column 1), Favaro’s method [85] (column 2), Raj’s method [17] (col-
umn 3) and Li’s method [45] (column 4). Key: � - expected depth; ∗ - uncorrected
result; ◦ - corrected with CDC; O - corrected with CLSF. Row 1: estimated depth
(vertical axis) against expected depth in mm (horizontal axis). Row 2: RMSE in
mm against depth. Row 3: variance in mm2 against depth.

methods produce the better accuracy. This is verified in the first and fourth column

of Fig. 6.4 as the calibration methods bring the estimated depth much closer to the

expected depth.

The results also show that the RMSE and variance of the uncorrected results

are dominated by its general shape, i.e., an elliptical surface with high curvature,

and those of the uncorrected result are dominated by the high-frequency noises. The

RMSE and the variance of the uncorrected results generally decrease while those of

the corrected ones increase with depth. Despite of this general DfD problem, it can

be seen in the second and the third rows of Fig. 6.4 that both correction methods

effectively reduce the overall RMSE and the noise level in the DfD reconstruction.

Notably, for results using the methods of Subbarao, Favaro and Raj, CDC generally

produces smaller RMSE and less noise than the CLSF. However, CLSF produces

slightly better reconstruction than CDC for Li’s results.
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6.6.3 Qualitative experiments

In order to generate 3D surface reconstruction to enable a qualitative visual com-

parison between the DfD results before and after correction, we have chosen two

sets of test scenes: Set A comprises two simple objects and Set B comprises realistic

complex objects. Subbarao’s, Favaro’s, Raj’s and Li’s methods are used to compare

both sets of results. Set A comprises one scene with wooden staircases (Stair) and

one scene of a circular depression on a wooden block (Circular) as shown in Fig. 6.5.

Stair contains depths across the entire working range.

Figure 6.5: Test scenes of Set A: (a), (b) and their near-focused images (c) and (d),
respectively.

Figure 6.6: Test scenes of Set B: (a)-(h): near-focused images of 8 views of House ;
(i)-(l): near-focused image of Lion, Soldier, Shell, and Bird, respectively.

In order to evaluate the correction methods for smaller depths, Circular is

moved towards the camera so that its rear is beyond the background. Fig. 6.6 shows

the test scenes of Set B: a stone house model (House), a wooden lion stature (Lion),

a painted metallic soldier-on-house (Soldier) stature, a mussel shell (Shell) and a

wooden bird stature (Bird). The set includes 8 views of House and one view from
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the remaining objects.

Fig. 6.7 shows the results of Stair before and after correction for the four

DfD methods. The uncorrected result of Subbarao’s method in column 1 shows

heavy spike-like noises throughout the plot, which are sufficiently severe that the

global elliptical distortion centred at the bottom right part of the plot is hardly

visible. After correction, the noises are considerable reduced and the distortion

is also removed. In the uncorrected result of Favaro’s method in column 2, the

distortion is more visible in the background, which is removed after correction.

Figure 6.7: Mesh-plots of Stair: column 1-4: Subbarao, Favaro, Raj, and Li. Row
1: Original; row 2: corrected using CDC; row 3: corrected using CLSF.

In the uncorrected result of the Raj’s method in column 3, the distortion is visible in

both the background and foreground, which is effectively removed after correction.

In the uncorrected result of the Li’s method in column 4, the distortion is not

visible and the correction methods make no significant changes to the reconstruction.

Furthermore, for all these methods, CDC produces lower noise levels than CLSF.

Fig. 6.8 shows the results for Circular. In the uncorrected result of the Sub-

barao’s method in column 1, the elliptical distortion makes the top left part further

away than it should be. The spike-like noises are also present. After correction,

these artefacts are considerably reduced. In the uncorrected result of the Favaro’s

method in column 2, a distortion makes the left part of the background further than

the right part of the background, which is reduced after correction. In the uncor-

rected result of the Raj’s method in column 3, there is a small hill-like distortion

with its peak centred at the bottom right part. It is reduced after correction. In
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Figure 6.8: Mesh-plots of Circular: column 1-4: Subbarao, Favaro, Raj, and Li.
Row 1: Original; row 2: corrected using CDC; row 3: corrected using CLSF.

the uncorrected result of the Li’s method in column 4, the distortion is not visible

and the correction methods make no significant changes to the reconstruction. In

addition, CDC manages to remove noises in the background, and the foreground

flat surfaces.

Fig. 6.9 shows the results of the front view of House before and after cor-

rection. The spike-like noises throughout the uncorrected result of the Subbarao’s

method in column 1, are effectively reduced after correction. In the uncorrected

results of the Favaro’s method in column 2 and Li’s method in column 4, there is

no visible distortion and the correction methods make no significant changes to the

reconstruction. In the uncorrected result of the Raj’s method in column 3, a strong

elliptical distortion in the background makes the top-left corner further away than

it should be. The distortion also appears at the front of the house. The distortion is

significantly reduced after correction. In addition, CDC produces lower noise level

than CLSF.

Fig. 6.10 shows the results of eight views of House using Li’s method cor-

rected by CDC. Although the background is not perfectly flat, and some of the

flat surfaces on the wall are bumpy, no spike-like noise and elliptical distortion are

visible. Overall, these plots show that CDC produces good quality reconstructions

for House.

Fig. 6.11 shows the results of Lion before and after correction. The spike-like

noises throughout the plot of the uncorrected result of the Subbarao’s method in

column 1 are effectively reduced after correction. In the uncorrected result of the
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Figure 6.9: Mesh-plots of the front view of House: column 1-4: Subbarao, Favaro,
Raj, and Li, respectively. Row 1: Original; row 2: corrected using CDC; row 3:
corrected using CLSF.

Figure 6.10: Mesh-plots of eight views of the house using Li’s method after CDC.

Figure 6.11: Mesh-plots of Lion: column 1-4: Subbarao, Favaro, Raj, and Li, re-
spectively. Row 1: Original; row 2: corrected using CDC; row 3: corrected using
CLSF. 93
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Favaro’s method in column 2, a small distortion in the background makes the left

part further away than the right. The distortion is reduced after correction. More-

over, CDC produces lower noise level than CLSF. In the uncorrected result of the

Raj’s method in column 3, a strong elliptical distortion in the background makes

the top-left corner further away than it should be. The distortion also appears at

the front of the house. The distortion is significantly reduced after correction. In

addition, CDC produces lower noise level than CLSF. In the uncorrected result of

the Li’s method in column 4, a small distortion in the background, makes the top

right slightly closer than it should be. The distortion is removed after correction.

Fig. 6.12 shows the results of Soldier before and after correction. In the un-

corrected result of the Subbarao’s method in column 1, the spike-like noise is present

throughout the plot. Some parts of the soldier are very smooth causing reflections

and lack of textures, leading to reconstruction failure on some parts of the soldier’s

body. These artefacts are effectively reduced after correction. In the uncorrected

result of the Favaro’s method in column 2, a strong distortion in the background

makes the left part much further away than the right part. This distortion is re-

moved after correction. In addition, CDC produces smoother result than CLSF. In

the uncorrected result of the Raj’s method in column 3, a strong elliptical distortion

throughout the plot makes the top-left part of the background further away than it

should be. The house also appears too close to the viewer. These distortions are

significantly reduced after correction. In the uncorrected result of the Li’s method in

column 4, there is no visible distortion. The correction methods make no significant

changes to the reconstruction. But CDC improves the smoothness of the surface.

Fig. 6.13 shows the results of Shell before and after correction. In the uncor-

rected result of the Subbarao’s method in column 1, the spike-like noise is present

throughout the plot. A very sharp noise is also present at the top right part of the

plot due to lack of textures. These artefacts are effectively reduced after correction.

In the uncorrected results of the Favaro’s method in column 2 and Li’s method in

column 4, there is no visible distortion and the correction methods make no signif-

icant changes to the reconstruction. In the uncorrected result of the Raj’s method

in column 3, the small elliptical distortion throughout the plot makes the top-left

corner further away than it should be, and the bottom right part closer than it

should be. These distortions are significantly reduced after correction.

Fig. 6.14 shows the results of Bird before and after correction. In the uncor-

rected result of the Subbarao’s method in column 1, the spike-like noise is present

throughout the plot. The smoothness of the object causes lack of textures which

leads to sharp noises on the bird’s body. These artefacts are effectively reduced after
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Figure 6.12: Mesh-plots of Soldier: row 1-4: Subbarao, Favaro, Raj, and Li, respec-
tively. Column 1: Original; column 2: corrected using CDC; column 3: corrected
using CLSF.

Figure 6.13: Shell: row 1-4: Subbarao, Favaro, Raj, and Li, respectively. Column
1: Original; column 2: corrected using CDC; column 3: corrected using CLSF.

Figure 6.14: Bird: row 1-4: Subbarao, Favaro, Raj, and Li, respectively. Column 1:
Original; column 2: corrected using CDC; column 3: corrected using CLSF.
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correction. In the uncorrected result of the Favaro’s method in column 2, no sig-

nificant distortion is visible since the right part of the flat background is mostly

occluded by the bird. However, the poor reconstruction makes it difficult to deter-

mine whether the bottom right corner of the plot is the bird or the background.

After correction, it is clear that the bottom right corner is part of the background.

The quality of the reconstruction is also considerably improved as a result. In the

uncorrected result of the Raj’s method in column 3, a strong distortion makes the

background not flat and the reconstruction of the bird is poor. After correction, the

background is made flat and the reconstruction is improved. CDC also produces

smaller noise level than CLSF. In the uncorrected result of the Li’s method in col-

umn 4, no significant distortion is visible. Thus, no significant changes are made to

the reconstruction after correction, except CDC reduces the local noises.

As the experimental results illustrate, both CDC and CLSF are able to elim-

inate the elliptical distortion effectively. In combination with the post-processing

algorithm, both methods significantly mitigate the unstable depth results due to

low-texture regions. CDC improves the smoothness of the flat and smooth surfaces.

However, it is complex which involves a number of iterative searching procedures.

CLSF is very efficient with a closed form equation in Eqn. (6.11). However it pro-

duces coarser correction result than CDC.

6.6.4 Computational cost

In terms of processing time taken to correct a 63 × 86 depth map, CDC requires

994 milliseconds and CLSF requires 5.87 milliseconds without post-processing. The

additional 443 milliseconds is typically required for the post-processing. Thus, CLSF

is faster than CDC at a cost of lower accuracy and smoothness. The correction

method in [45] which does not involve post-processing takes 10.3 milliseconds. Note

that each of these results is obtained by averaging five independent measurements.

6.7 Summary

This chapter presents two DfD correction methods to address the depth-variant el-

liptical distortion that often occurs during DfD computation. The methods correct

the depth estimation generated by any DfD algorithm using a number of correction

patterns generated by the correction method. CDC finds the nearest CPV to cancel

out the distortion at every location and further improves the accuracy with con-

sideration of the local region and interpolation. CLSF finds the mapping from the

distorted to the corrected results directly and further improves the accuracy by di-
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viding the depth maps into a number of regions sharing separate sets of coefficients.

CDC produces better reconstructions than CLSF but at the expense of much lower

speed. Both quantitative and qualitative experiments on real images show that the

proposed methods effectively remove the distortion and other noise.

One possible future work is to explore the applicability of both CDC and

CLSF on DfD using a single image and active DfD. Another is to investigate mod-

elling techniques that are more sophisticated than least squares fit to further im-

prove the reconstruction accuracy. Furthermore, machine learning techniques could

be considered for distortion removal.
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Chapter 7

Training Silhouettes from any

View

7.1 Introduction

Until now, the first topic of this thesis, i.e. passive DfD, has been presented in

Chapter 4 - 6. From this chapter forward, the proposed human activity recognition

system is described. The system is divided into three parts, which are training data

generation, run-time data improvement(shadow removal) and recognition algorithm,

and they are respectively reported in Chapter 7 - 9. Training data generation aims to

efficiently create a library of silhouettes data which allows the recognition algorithm

to embed any input silhouette. Shadow removal intends to improve the run-time

input silhouettes used by the recognition algorithm.

One approach to view-invariant recognition is to provide training silhouettes

captured from different views. However, there has been little interest in finding an

efficient and accurate way of obtaining 3D silhouettes as training data [38]. For

most recognition system based on silhouettes, the training data is generated with

a camera, or multiple cameras if more views are required. This can be impractical

for numerous views, where error in camera placement and manual set-up effort are

inevitable.

Real-time 3D object reconstruction methods based on shape from silhouettes,

e.g., [175], require complex camera calibration and intensive computation. DfD is

potentially useful for this application, where a 3D human body model can be ob-

tained with only two cameras with one facing another and the subject in between.

However, our current DfD system is neither portable nor incorporate real-time au-

tomatic input video acquisition. Thus, we use 3D coordinates of a human body
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Figure 7.1: Vicon Nexus data-capturing hardware environment.

extracted using Vicon Nexus [39] and markers placed on an actor while performing

an activity. A silhouette generation algorithm is introduced which converts the 3D-

coordinate data for each frame into a 2D silhouette for a user-specified projection

angle (or view). Very similar silhouettes associated with an activity are removed

using a selection algorithm and the remaining silhouettes form the gallery (training)

silhouettes.

Vicon Nexus uses multiple infrared cameras and is the gold standard in

human motion analysis due to its accurate position information [38]. It records

several markers placed on a subject during an activity. Its main limitation is its

inability to track markers when they are occluded. We address this limitation by

appropriate placement of the markers and post manual editing.

Fig. 7.1 shows the hardware environment. Six of the infrared motion cameras

are indicated with red lines. Each camera has a number of infrared light emitting

diodes (LEDs) which emit infrared, and its sensor picks up any reflections from the

body markers. The advantages of infrared cameras include [176]: (1) infrared is

not visible, thus has little disturbance on the subjects’ performance; (2) infrared

cameras have low sensitivity to visible light, thus capture fewer interferences than

video cameras; (3) infrared LEDs are low-power sources and thus do not cause

harmful radiation to human body. Five of the body markers placed on the subject’s

clothing are indicated with yellow lines. The area which can be seen by all cameras
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are indicated by the blue rectangle. There are two thermal radiators indicated by

the black lines which maintain the room temperature to allow natural performance

of the subject.

This chapter is organised as follows. Section 7.2 presents the theory and

methodology of our method for generating training silhouettes. Section 7.3 demon-

strates the usefulness of the method with experiments. Finally Section 7.4 sum-

marises this chapter.

7.2 Theory

7.2.1 Placement of the markers

To obtain the marker correspondence in video sequence, we created a body template

for Vicon Nexus using 36 markers placed on a jacket, 32 markers placed on a trouser,

5 markers on the head cover and 2 markers on each hand glove. Fig. 7.2 shows the

placement of markers on the jacket, trouser, head cover and gloves. Note that the

markers are positioned to allow reconstruction of the body volume hull. Fig. 7.3

shows an actor (whose face is obscured to mask his identity) wearing such clothing.

As the figure shows, there are sufficient markers on the clothing to reconstruct the

volume hull of the human body. We also create templates for a bag, spade, short

gun and long gun which use 9, 10, 4 and 6 markers, respectively as shown in Fig. 7.4.

Figure 7.2: Positions of markers on subject’s clothing: (a) jacket front; (b) jacket
back; (c) head cover(c); (d) trouser front; (e) trouser back; and (f) left and right
gloves.

100



7.2. THEORY

Figure 7.3: Position of markers on an actor’s clothing: top left: jacket front; top
right: trouser front; bottom left: jacket back; and bottom right: trouser back.

(a) (b)

(c) (d)

Figure 7.4: Position of markers on (a) bag, (b) spade, (c) short gun and (d) long
gun.
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7.2.2 Generating silhouettes from any view

The extracted marker points are grouped according to their category, and each

category has 3 points which define a triangular surface on the body. These surfaces

are projected to a plane according to the view angle specified. Silhouettes are formed

if sufficient number of surfaces is created. This silhouette generation algorithm

consists of 3 steps.

In step 1, each marker point is classified into its category, where each corre-

sponds to a body part, i.e., forearm with hand, arm, head, upper torso (i.e., chest

and shoulder), lower (i.e., remaining) torso, thigh, or leg with feet. The classification

is simply achieved by the known positions of the markers on the subject’s clothing.

Each category is considered rigid and any change in its shape makes little difference

to the overall body posture.

In step 2, all possible triplets of points of one category are found by exhaustive

search. They are then used for generating triangular surfaces. All possible triplets

instead of only those that are necessary to form the volume hull are used because

marker points are sometimes occluded which results in missing surfaces, which in-

turn leads to broken volume hull and silhouette. By using all triplets, the resulting

redundant surfaces are used to fill any gaps. Fig. 7.5 (a) shows a volume hull created

where the lower torso and right leg are broken due to occlusion of marker points,

which are essential to create the volume hull. Fig. 7.5 (b) shows the volume hull

where all possible triangular surfaces are plot within each category, where the broken

parts are filled by redundant surfaces.

Figure 7.5: The usefulness of using all triplets: (a) a broken volume hull and (b)
after redundant triangular surfaces are added.

In step 3, three MATLAB functions are used. trisurf () is used to generate

the triangular surfaces from the triplet indices and their coordinates. The view

angle is determined by view(). getframe() is used to convert each plot of triangular

surfaces to a silhouette image. Fig. 7.6 illustrates the silhouette generation for four

views of a walking posture.
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Figure 7.6: Generating training silhouettes (column 3 and 6) from projected volume
hull (column 2 and 5) obtained by 3D marker points (column 1 and 4). (a)-(c):
Front view: (d)-(f): right view; (g)-(i): back view; and (j)-(l): left view.

Figure 7.7: Axis rotation about the x-axis (left), y-axis (middle) and z-axis (right).
Footer 1 and 2 denote the original axis and the rotated axis respectively.

If MATLAB is not available, the following algorithm replaces step 3. First,

given the view as a set of rotational angles about the x, y and z axis of a marker

point, the new coordinates of the marker points are found. Consider Fig. 7.7 where

the x-y plane represents the ground, and the z axis is the upright direction. The

view position is defined by angles α, β and γ, that correspond to the rotation angle

about the x, y and z axis, respectively. According to the Euler’s rotation theorem

[177], the rotational matrices about the three axes are given by

Rx =


1 0 0

0 cosα − sinα

0 sinα cosα

 , Ry =


cosβ 0 sinβ

0 1 0

− sinβ 0 cosα

 and Rz =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 .
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Thus, the rotated coordinate of each point (x, y, z) is x̂

ŷ

ẑ

 = Rx ×Ry ×Rz ×

 x

y

z

 . (7.1)

This process is repeated for every marker points for a given view.

The x-z plane is chosen to be the viewing plane such that the y coordinate

is removed (n.b. the y-z plane can also be the viewing plane when the x coordinate

is removed, but this corresponds to a different set of rotational angles α, β and γ).

Thus, the 2D coordinate of the projected object is (x̂, ẑ). Each group of three points

are set to 1 in a M ×N binary image C containing zeros, where

M =
gy
D

, N =
gx
D

, (7.2)

gx and gy are respectively the range of the x coordinate and the y coordinate of a

point, and D is the number square millimetres sharing one pixel. A hollow triangle

is created for each group of points, where each edge, or pixels that link each pair

of points are set to 1 using Bresenham’s line-drawing algorithm [178]. The hollow

triangles are filled as follows. For each row and scanning from left to right, the

first pixel with a value of 1 is detected (considered as a left edge pixel), and all

subsequent pixels are set to 1 until the right edge pixel with a value of 1 is detected.

7.2.3 Removal of redundant silhouettes

Since Vicon Nexus produces data at high frame-rate, many of the silhouettes ob-

tained are similar and are thus removed as follows. Denote a N × N difference

matrix

M(x, y) =

C∑
c=1

R∑
r=1

Ix(c, r)− Iy(c, r) , (7.3)

where x, y ∈ [1, N ] are image indices, Ix and Iy are respectively the xth and yth

silhouettes, C and R are respectively number of columns and rows per image, c ∈
[1, C] and r ∈ [1, R] are respectively the column and row index. The diagonal terms

of M are set to positive infinity. Instead of computing M every time a silhouette

with minimal difference is removed (which is time consuming), M is computed once,

where the index of minimal value

x̃, ỹ = argmin
x,y

M(x, y) (7.4)
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is computed iteratively. For odd iteration remove Ix̃ and set all elements of xth row

to positive infinity. For even iteration remove Iỹ and set the yth column to positive

infinity. The iteration ends when the desired number of silhouettes is removed.

7.3 Experiments

In order to demonstrate view-invariance, we obtain test data from 9 views by di-

viding the horizontal plane of the scene equally into 8 portions. Due to difficulty

in obtaining data from more than one elevation, data from only one elevation, at

zero elevation angle, is obtained. Fig. 7.8 illustrates the 8 views with respect to the

walking direction used to capture test data, with the centre where an activity is

performed denoted by ×. For the training silhouettes we use one actor to perform

the ten activities in Table 7.1, which are specified by our sponsor, Defence Science

and Technology Laboratory. Note that we allow the actor to move around the centre

or change direction during an activity.

Figure 7.8: Experiment set-up for test data acquisition.

Fig. 7.9 shows the silhouettes generated from one silhouette for each activity.

The size of every silhouette is normalised, thus the Crouch silhouette is large in

comparison. Fig. 7.10 shows the silhouettes generated for the 10 activities. It can

be seen there is not much detail of the reconstructed head. This is because only

limited number of markers is placed on the head, and markers are only placed on

the actor’s hat with none placed on the face. Despite of this minor issue, high

quality silhouettes are generated which are visually distinguishable. In addition, it

should be noted that our activity recognition system presented in Chapter 9 does

not require accurate silhouette matching. Therefore, the quality is adequate for the

subsequent processing.
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Table 7.1: Activities and their description.
Activity Description

Walk Walk and pass centre.

Drop Walk to centre with a large bag, drop the
bag into a large bin and continue walking.

Crouch Walk to centre, crouch and place
or pick-up objects, and continue walking.

Peer Walk towards a wall near centre, peer
over the wall twice and walk back.

Mobile While talking to a mobile phone, walk to
centre, circulate centre, and walk straight on.

Place Walk to centre, place 6 small indicators one
at a time onto different locations near centre,
and continue walking.

Bag Walk with a large bag passing centre.

Shoot Walk to centre, raise up a small gun, shoot
three times and then continue walking.

Gun Walk to centre with a long gun, circulate
centre and then continue walking straight.

Dig Walk to centre with a spade, dig the ground
several times, and continue walking.

Figure 7.9: Generating training silhouettes for a posture of each activity. Row 1:
projected marker points; row2: volume hulls; and row 3: projected volume hulls
(i.e., silhouettes).
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Figure 7.10: 8 views of the 3D silhouettes. Row 1-10: the 10 activities in Table 7.1;
column 1-8: view 1-8 respectively.
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7.4 Summary

This chapter presents a novel methodology that involves using Vicon Nexus and

appropriate placements of marks on an actor’s clothing that generates training sil-

houettes generation from any view. The methodology avoids the effort of capturing

training data with many cameras and the need to address the associated calibration

errors. It involves firstly the determination of the category of each detected marker

point. Second, all possible triplets of points of each category are found. Third,

all triangular surfaces are found within each category, which are then plotted and

projected according to the view specified to form the silhouette. Finally, a simple

and fast algorithm is presented to remove redundant silhouettes.
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Chapter 8

Shadow Removal

8.1 Introduction

In the previous section, a training silhouette acquisition algorithm has been pre-

sented that enables efficient generation of the silhouette library of the recognition

algorithm, and it is executed off-line. The run-time input to the proposed recogni-

tion algorithm is a sequence of silhouettes of a person, and every silhouette often

contains his/her shadow having a negative influence on the system performance.

Thus, a shadow removal algorithm that improves the input data for the recognition

algorithm is needed.

Silhouettes can be extracted from video using background subtraction func-

tions in OpenCV [179] based on [180; 181; 182]. Although some of these methods

incorporate shadow removal, shadow cannot be completely removed when it has

similar colour saturation or textures as the surrounding background. Shadow de-

tection methods can be based on geometry, chromaticity, physical knowledge and

texture [40]. Only the large region texture-based method [40] can completely remove

a shadow, but it requires large computational effort. Thus, we propose a shadow

removal method based on known position of the sun rather than image information.

The method comprises four steps: (1) the length of the shadow and its inclination

angle to the horizon are computed; (2) projection of the shadow on the camera plane

is estimated; (3) the rotational angle and its variance required to remove the shadow

is calculated; finally (4) the shadow is removed. This chapter is organised as follows.

Section 8.2 presents the theory of the proposed shadow removal algorithm. Exper-

iments and comparison with other methods are presented in Section 8.3. Finally

Section 8.4 summarises the chapter.
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Figure 8.1: Modelling shadow: N - north, S - south, E - East, W - west, and U -
upward.

8.2 Theory

8.2.1 Step 1: Determining shadow

Fig. 8.1 shows the isometric view of a shadow at a specific time and location, where

the sun is in the south-west and the shadow is towards the north-east. The elevation

angle θ is between the sun light and the ground [183]. The angle ψ from the south

to the shadow is the solar azimuth angle. The shadow angle ε is measured from

east to the shadow. The west-east component and north-south component of the

shadow are respectively sx and sy.

The length of the shadow is determined first, given by

s =
H

tan(θ)
, (8.1)

where H is the average height of the human subject (its variation on the subsequent

analysis is discussed in Section 8.2.3),

θ = arcsin (sinκs sinκl + cosκs cosκl cos ξ) , (8.2)

and κl is local latitude. The Solar Declination Angle

κs = arcsin

[
sin

(
23.45π

180

)
sin

(
2π

365
(d− 81)

)]
, (8.3)

where d is the number of days since the beginning of the year. The Hour Angle and

Local Solar Time are respectively

ξ =
π

12
(ts − 12) (8.4)
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ts = t+
tc
60

, (8.5)

where the Time Correction Factor

tc = 4(λl − λs) + te , (8.6)

λl is local longitude, the Local Standard Time Meridian

λs =
π

12
· (t− tg) , (8.7)

and t and tg are respectively the current time and Greenwich Mean Time in hour.

The Equation of Time

te = 9.87 sin (2b1)− 7.53 cos (b1)− 1.5 sin (b1) , (8.8)

where b1 = 2π
365 · (d− 81). This is followed by computing the shadow angle

ε =
3

2
π − ψ , (8.9)

where

ψ = arccos

[
sinκs cosκl − cosκs sinκl cos ξ

cos θ

]
, when ts ≤ 12

ψ = 2π − ψ, when ts > 12 . (8.10)

Thus the horizontal x and vertical y component of the shadow are respectively

sx = s cos(ε) , sy = s sin(ε) . (8.11)

When the camera is not facing north, but rotated anticlockwise by an azimuth

angle α, to estimate the rotated shadow components the new x-axis and y-axis are

computed by

~axr = R× [1, 0]T , ~ayr = R× [0, 1]T ,

where R =

 cosα − sinα

sinα cosα

 (8.12)

according to Euler’s rotation theorem [177]. The rotated shadow components are

the projections onto the new axes

rx = [sx, sy] · ~axr , ry = [sx, sy] · ~ayr . (8.13)
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Figure 8.2: Shadow projection on the image plane, looking from side of the camera.

8.2.2 Step 2: Estimating shadow projection

Fig. 8.2 shows shadow projection onto side-view of a scene. If the camera has a

large depth of field, all the light ray from one point passing through the lens will be

focused at a single point in the image (i.e., the sensor plane). Using properties of

similar triangles, the height of the subject image and the vertical component of the

length of the shadow image are respectively

Hi = H × v

u
(8.14)

my = Hcv

(
1

u+ ry
− 1

u

)
if ry >

2Hcv

Hs
− u , (8.15)

where Hc is the height of the camera measured from the ground to the centre of

the sensor, v is the separation between the lens and the sensor, u is the distance

between the subject and the lens, and Hs is the height of the sensor.

The condition for ry prevents the problem when the shadow is too close to

the camera. Note that my is above the horizontal axis when it is negative and vice

versa since the vertical axis is reversed in an image/matrix’s coordinate system.

According to lens law [154]
1

f
=

1

u
+

1

v
, (8.16)

where f is the focal length of the lens. When u is large compared to f , v is approx-

imately equal to f . This is the case for practical surveillance systems, where u is

normally larger than 2 metres and f is approximately less than 5 mm for a wide

angle view. Since the input is 2D video without depth information, u is estimated

from the width of the silhouette of the person’s haed, assuming the top part of the

silhouette is the head. This estimation is illustrated in Fig. 8.3, where w is the
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Figure 8.3: Estimating subject’s distance from camera lens.

average width of the head, and wi is the width of the head’s image, i.e.,

u =
w · v
wi

, (8.17)

where wi = wp × q, wp is the width of the top part of the extracted silhouette in

terms of number of pixels and q is the pixel width in metres. This approximation is

valid if the top of the shadow is well below the head in the image. The variation of

u on the subsequent analysis is discussed in Section 8.2.3.

Referring to Fig. 8.3 and using properties of similar triangles, the projected

x-component of the shadow

mx =
rx · v
u

if ry >
2Hcv

Hs
− u . (8.18)

When ry ≤ 2Hcv/Hs − u, the vertical component of the shadow on the sensor will

always be 2Hcv/Hs − u. In order to keep the shadow’s orientation unchanged, rx

should change accordingly so that ry and rx respectively become

r′y =
2Hcv

Hs
− u , r′x =

rx
ry
×
(

2Hcv

Hs
− u
)
. (8.19)

8.2.3 Step 3: Computing rotational angle and its variance

When the shadow is not pointing vertically downward, the rotation-cutting process

is used to remove the shadow. Fig. 8.4 illustrates the process when the shadow

appears on the right side of the subject, i.e., mx > 0. The silhouette in Fig. 8.4(a) is

first rotated clockwise by an angle β so that the shadow edge has a negative gradient

and the body a positive gradient as shown in Fig. 8.4(b). For this to be always the

case, y-axis must lies within the angle between the subject and the shadow after

rotation as illustrated in Fig. 8.5. We make y-axis bisect this angle so that the
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vertical projection is the longest, which is convenient for the gradient analysis of the

bottom edge. Thus the shadow angle and rotational angle are respectively

η = arctan

(
my

mx

)
, β =

3

4
π − 1

2
η . (8.20)

Figure 8.4: Removing shadow: (a) Original silhouette with shadow; (b) original sil-
houette rotated; (c) rotated silhouette with shadow removed; (d) silhouette rotated
back.

Figure 8.5: Silhouette rotation for shadow removal. Key: bold arrow: standing
subject; bold line: shadow; dashed bold arrow: subject after rotation; and dashed
bold line: shadow after rotation.

The rotation point of the silhouette is identified and left of that point is

considered the shadow, and is removed (Fig. 8.4(c)). The silhouette is then rotated

back (Fig. 8.4(d)). The case when mx ≤ 0 is dealt with by a flip of the silhouette

along the horizontal axis, and followed by another flip along the same axis after

shadow removal.

The variation in H, u and the remaining input measurements affect mx and

my, which leads to variation in β. This is addressed by analysing β iteratively

within the variation range of β. Denote σ2
x for the variance of a variable x. When

σ2
H , σ2

Hc
, σ2

Hi
, σ2

Hs
, σ2

θ , σ
2
α, σ2

w, σ2
wi , σ

2
v , σ

2
t , σ

2
d, σ

2
λl

,σ2
κl

are given, σ2
mx , σ2

my and

σ2
β are derived using the error proportion formula [184]. For linear combination of

variables Y =
∑

iAixi,

σ2
Y =

∑
i

A2
iσ

2
xi . (8.21)
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For non-linear combination of variables Y = f(x1, x2, x3, ...),

σ2
Y =

∑
i

(
∂Y

∂xi

)2

σ2
xi . (8.22)

Using Eqn. (8.2) - (8.10), the variances of κs, te, ξ, θ, ψ are:

σ2
κs =

(
b2b3 cos(b3d− b4)√

1− (b2 sin(b3d− b4))2

)2

σ2
d , (8.23)

where b2 = sin(
23.45π

180
), b3 =

2π

365
, b4 =

162π

365
;

σ2
te = b23σ

2
d[384.16 cos2(2b1) + 56.7009 sin2(b1) + 2.25 cos2(b1)] (8.24)

σ2
ξ =

( π
12

)2
[
σ2
t +

1

3600
(16σ2

λl
+ σ2

te)

]
(8.25)

σ2
θ =

1

1− b25

[
b25σ

2
κs + b26σ

2
κl

+ b27σ
2
ξ

]
, (8.26)

where

b5 = sin(κl) cos(κs)− cos(κl) cos(ξ) sin(κs),

b6 = sin(κs) cos(κl)− cos(κs) cos(ξ) sin(κl),

b7 = cos(κs) cos(κl) sin(ξ) ;

σ2
ψ =

1

(1− b28) cos2(θ)

[
b29σ

2
κs + b210σ

2
κl

+ b211σ
2
ξ + b212σ

2
θ

]
(8.27)

where b8 =
sin(κs) cos(κl)− cos(κs) sin(κl) cos(ξ)

cos(θ)
,

b9 = cos(κl)cos(κs) + sin(κl) cos(ξ) sin(κs) ,

b10 = sin(κs) sin(κl) + cos(κs) cos(ξ) cos(κl) ,

b11 = cos(κs) sin (κl) sin(ξ) ,

b12 = [sin(κs) cos (κl)− cos (κs) sin(κl) cos(ξ)] tan(θ) .

Since only σ2
θ and σ2

ψ are used for subsequent calculations, when prior knowl-

edge or appropriate assumption is acquired for them, their computation using Eqn. (8.26)

and (8.27) are not necessary. Using Eqn. (8.1) gives

σ2
s =

(
H sec2(θ)

tan2(θ)

)2

σ2
θ +

(
1

tan(θ)

)2

σ2
H . (8.28)
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Using Eqn. (8.11), the variance of sx and sy are respectively

σ2
sx = s2 sin2(ε)σ2

ψ + cos2(ε)σ2
s (8.29)

σ2
sy = s2 cos2(ε)σ2

ψ + sin2(ε)σ2
s . (8.30)

The variances of rx, ry, r
′
y and r′x are then derived as

σ2
rx =

(
σ2
sx + s2

yσ
2
α

)
cos2(α) +

(
σ2
sy + s2

xσ
2
α

)
sin2(α) (8.31)

σ2
ry =

(
σ2
sy + s2

xσ
2
α

)
cos2(α) +

(
σ2
sx + s2

yσ
2
α

)
sin2(α) (8.32)

σ2
r′y

=

(
2v

Hs

)2

σ2
Hc +

(
2Hc

Hs

)2

σ2
v +

(
2Hcv

H2
s

)2

σ2
Hs + σ2

u (8.33)

σ2
r′x

= (r′y)
2

[(
1

ry

)2

σ2
rx +

(
rx
r2
y

)2

σ2
ry

]
+

(
rx
ry

)2

σ2
r′y
. (8.34)

Note that the term σ2
r′x

and σ2
r′y

respectively replace σ2
rx and σ2

ry if ry >

2Hcv/Hs − u−
√
σ2
ry . The variances of mx, my and β are in turn obtained as

σ2
mx =

(v
u

)2
σ2
rx +

(rx
u

)2
σ2
v +

(rxv
u2

)2
σ2
u (8.35)

σ2
my =

(
1

u+ ry
− 1

u

)2 (
v2σ2

Hc +H2
c σ

2
v

)
+

(
1

u4
+

1

(u+ ry)4

)
H2
c v

2σ2
u +

H2
c v

2σ2
ry

(u+ ry)4
.

(8.36)

σ2
β =

m2
xσ

2
my +m2

yσ
2
mx

4(m2
x +m2

y)
2

. (8.37)

Thus, β varies in the range
[
β −

√
σ2
β, β +

√
σ2
β

]
. Note that Eqn. (8.23) - (8.37)

are our derivation.

Eqn. (8.28) shows that the variation in subject height causes variation in

shadow length σ2
s . σ

2
s causes σ2

sx (Eqn. (8.29)) and σ2
sy (Eqn. (8.30)). These cause

σ2
rx (Eqn. (8.31)) and σ2

ry (Eqn. (8.32)), which lead to σ2
mx (Eqn. (8.35)) and σ2

my

(Eqn. (8.36)), and finally lead to σ2
β (Eqn. (8.37)). Eqn. (8.35) also shows that the

variation in subject distance σ2
u causes σ2

mx which affects σ2
β. Thus, both variation

in subject height and distance are addressed.
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8.2.4 Step 4: Removing shadow from silhouette

At this stage, the silhouette rotational angle and its variation range are determined.

All that remains to do is to determine the optimal rotational angle within its varia-

tion range and remove the shadow. The coordinates of every pixel of an silhouette

image rotated by an angle β are x′
y′

 =

 cosβ − sinβ

sinβ cosβ

×
 x
y

 , (8.38)

where (x, y) is the pixel coordinate before rotation. When β is less than π, it is set

to be π.

The following process is iterated for the rotational angle βj = β −
√
σ2
β to

βj = β +
√
σ2
β, where subscript j is iteration index and the incrementing value is

10◦:

1. Rotate the silhouette by βj .

2. Compute gradient vector of bottom edge of the rotated silhouette and smooth

it with a unity-gain low pass filter.

3. Find rotation point of the bottom edge, by determining the end of the sequence

within the gradient vector with maximum number of successive negative ele-

ments, i.e., Uj .

The optimal value of βj is when Uj is maximised, or when the rotation point is most

noticeable.

When η is close to 90◦, or when the shadow is pointing vertically downwards,

the rotation point is hardly identifiable. Thus, the identification of this point is

difficult. However, with the estimates of Hi and my, the shadow are simply removed

by removing the bottom my/q number of pixels of the extracted silhouette. However,

when the subject bends down, the change in H introduces a significant variance in

Hi and my, thus this simple procedure is not used for all other η values.

8.3 Experiments

A background subtraction function in OpenCV 2.4.8 based on the work in [181] is

used to extract the test silhouettes. The proposed shadow removal algorithm is then

used to remove the shadows. For comparison, we used the shadow detection pro-

gram in [40] to generate the results for five different methods based on: chromacity
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(Chrm), physical (Phy), geometry (Geo), short-range (SR) texture, long-range (LR)

texture. Since our method requires location and time which are not provided by

public datasets, we captured the test video in outdoor scene.

Fig. 8.6 shows the comparison results for five scenes. The input parameters

are: local longitude = 52.38◦; local latitude = −1.56◦; number of days since year

start in Eqn. (8.3) = 174; time in hour = 11.5; camera angle in Eqn. (8.12) = 140◦;

and camera height = 0.8m. Chrm incorrectly identifies large part of the silhouettes

as shadow while not completely removes the shadow on ground. Phy removes less

incorrect shadow but fails to remove the shadow on ground. Geo manages to remove

the majority of the shadow pixels on ground but also removes large parts of the

silhouette as shown in the 3rd and 4th rows of Fig. 8.6. SR and LR are not reliable

as large part of the silhouettes is removed. In comparison, the proposed algorithm

produces silhouettes with the lowest incorrect identification while the majority of

the shadow on ground is removed. In addition, it does not leave isolated shadow

pixels that are far away from the body (e.g. second scene using LR) which cause

problem in silhouette alignment, an important procedure in silhouette embedding.

Figure 8.6: Shadow removal: column 1: original frame; column 2: ground truth;
column 3-8: results using Chrm, Phy, Geo, SR, LR and the proposed method,
respectively.

Table 8.1 shows that on average the proposed method removes the most

118



8.4. SUMMARY

Table 8.1: Shadow pixels removed as a percentage of total shadow pixels. Sn are
scene numbers.

S1 S2 S3 S4 S5 Avg.

Chrm 38.5 37.2 38.5 24.7 30.1 33.8
Phy 10.5 28.0 25.8 31.4 24.3 24.0
Geo 82.7 82.7 50.5 56.7 59.6 66.4
SR 1.2 55.9 55.5 96.0 32.6 48.2
LR 0.7 78.5 64.9 79.4 73.2 59.3

Proposed 68.6 63.8 48.1 88.1 85.9 70.9

Table 8.2: Shadow pixels incorrectly removed as a percentage of total silhouette
pixels. Sn are scene numbers.

S1 S2 S3 S4 S5 Avg.

Chrm 41.8 51.4 52.6 41.0 39.2 45.2
Phy 6.3 12.5 14.2 6.4 7.0 9.3
Geo 1.6 4.4 20.4 8.2 0.0 6.9
SR 0.9 53.7 54.6 52.7 34.0 39.2
LR 0.8 47.2 45.5 36.6 51.7 36.4

Proposed 0.7 1.9 3.2 2.7 4.1 2.5

shadow pixels. Table 8.2 shows it also removes the least number of shadow pixels

incorrectly. Thus, the proposed algorithm is both effective in removing shadow and

reliable in retaining the original silhouette.

8.4 Summary

In this chapter, a shadow removal algorithm based on known position of the sun

is presented. First, the shadow is determined with the current time and location

information. Second, the shadow is projected onto the image plane. Third, the entire

silhouette is then rotated by an angle estimated with the shadow information, and

the shadow part of the silhouette is removed. This algorithm uses known position

of the sun rather than the texture and colour information used by most alternative

algorithms. Hence it can cope with the problem when the shadow has similar texture

and colour saturation as the surrounding background. Moreover, it leaves no isolated

shadow pixels that are far away from the body. Experiments show that the proposed

algorithm removes high portion of the shadow and low potion of the body compared

to five existing algorithms.
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Chapter 9

Human Activity Recognition

using Embedded Silhouettes

9.1 Introduction

Up to now, training silhouette generation for off-line preparation and shadow re-

moval for run-time input improvement have been respectively presented in Chap-

ter 7 and 8. This chapter describes the main component of the recognition system,

i.e. the recognition algorithm.

A video-based human activity recognition system aims to categorise activities

captured in video sequences [185], and has been an active research area, e.g., for

visual surveillance, patient monitoring in hospitals and human-machine interaction.

Various problems are encountered by an activity recognition system. When the

temporal order of the actions comprising an activity is changed, new training data

is required for that activity to be recognised, e.g., as in sequential methods that

model activities with the HMM [25; 33]. When the speed in which an activity is

performed is changing, the template used for its recognition has to be altered [22] as

in the spatio-temporal volume approaches [41; 42]. Real-time operation with high

accuracy and robustness are often necessary. However, methods based on space-

time trajectory [43; 44] are very slow because they require accurate 3D modelling

of a large number of body parts. They also have problem dealing with occlusion of

joints.

We address these problems by proposing the EPL algorithm which uses a

spatial object created from the coordinates of embedded silhouettes to denote an

activity. The spatial object takes into account the speed variation of the actions

and is invariant to their temporal order. The algorithm is fast due to its linear
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nature. The chapter is organised as follows. Previous related work is presented in

Section 9.2. The theory of our algorithm is presented in Section 9.3. Section 9.4

presents the experimental results while Section 9.5 summarises the chapter.

9.2 Related Work

The dimensionality of the information associated with human activity is high. Thus,

dimensionality reduction is needed that preserves the discriminating data and re-

moves noise. Previous activity recognition methods have adopted linear dimension-

ality reduction methods, e.g., PCA [28] and locality preserving projections [186].

These methods generate direct mapping to an embedding space. However, hu-

man activity is highly complex and non-linear. Non-linear dimensionality reduction

methods including Isomap [31] and Local Linear Embedding [30] provided consid-

erable improvement for recognition in [33; 34; 35].

The silhouettes after dimensionality reduction, i.e., the embedded silhouettes,

need to be configured as the activity model. The system in [25] employs a HMM,

where each video frame is transformed into a feature vector with mesh-grid, which

are then clustered, with each centre being the codeword. Each codeword corresponds

to an output symbol in the HMM and every feature vector is assigned to its nearest

symbol. For a test video, the forward-algorithm is used to estimate the similarity

between the symbol sequence and the gallery activities. Latter HMM based systems

include those in [128; 187]. However, many activities are non-deterministic, where

elements of an activity can be in any temporal order [188], thus requiring more

training data for different orders. The two alternatives to HMM are linear dynamical

system and non-linear dynamic system [22]. A linear dynamical system is a more

general form of HMMs where the state space can take continuous values. Non-

linear dynamic system is a more general form of linear dynamical system which is a

combination of several linear dynamical systems. Thus, these alternatives are more

complex than HMM. We propose the use of pattern of embedded silhouettes for

activity recognition.

9.3 Theory

The major steps of the proposed recognition system are: (1) silhouettes are extracted

from a video containing a person performing an activity; (2) shadows are removed

from the silhouettes with the algorithm in Chapter 8; (3) shadow-free silhouettes

are embedded to a low-dimensional space; (4) the activity is classified with pattern

of the embedded silhouettes.
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9.3.1 Silhouette embedding

For efficient activity recognition, we transform silhouettes to a lower dimensional

space to generate embedded silhouettes, and determine a mapping that maps an

unknown silhouette onto this space. Fig. 9.1 shows an overview of the embedding

algorithm. First, the gallery (training) silhouettes, obtained by the algorithm in

Chapter 7, are processed by the centroid distance function of a shape descriptor

to form the silhouette feature-vectors. This set of vectors is further processed by

Isomap. RBF [148] is used to learn the mapping from the high-dimensional vector

space to the corresponding low-dimensional which produces a set of RBF parameters.

During testing (i.e., recognising an activity), a silhouette is extracted from each

frame of a test video, and its shaped described and embedded to the low-dimensional

space with the RBF mapping.

Figure 9.1: Learning for frame-by-frame silhouette embedding. Top: training; and
bottom: testing.

Low-dimensional representation of silhouettes

The silhouettes are first scaled to a 100×100 binary image B. The centroid distance

function, a function of the distance between the centroid of a shape to its boundary

points at all angles, is used as the shape descriptor to convert B into 1×360 feature

vector ~v for real-time performance. The angles are divided equally by 360 degrees,
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and the horizontal and vertical indices of boundary pixels are found using Moore-

Neighbour tracing [174].

Any broken silhouettes make the tracing algorithm return multiple sets of

boundaries. To address this problem, only the outermost boundary point at every

angle is used to compute centroid distance function. Fig. 9.2 shows some centroid

distance functions and their corresponding silhouette. The horizontal axis of each

function represents the angle [1◦,360◦] and the vertical axis represents the normalised

distance [0, 0.7]. All functions are generated using the same scale. They are signifi-

cantly different for different silhouettes, and their general shape is maintained even

if the silhouettes are severely broken.

Figure 9.2: Silhouettes (row 1) and their centroid distance function (row 2). Odd
columns: original silhouettes; and even columns: broken silhouettes.

Ns training silhouettes are converted into Ns feature vectors and combined

into an Ns × 360 matrix X. Isomap is then applied to reduce its dimensionality to

D, i.e.,

f : RNs×360 7→ RNs×D , (9.1)

to generate the embedded silhouettes Ns ×D matrix

Y = f(X) . (9.2)

Fig. 9.3 shows the embedded data (denoted by dots) generated using 8 views cor-

responding to 1500 feature vectors. For simplicity, a 2D plot is generated with the

first two dimensions. Some silhouettes are also superimposed near their correspond-

ing location to illustrate that Isomap makes similar silhouettes to be close to one

another.
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Figure 9.3: The embedded data generated using Isomap.

Learn the embedding mapping with RBF

A test silhouette needs to be transformed onto the embedding space so that it can

be compared with the embedded gallery silhouettes to determine its activity. We

use RBF to learn the mapping f in Eqn. (9.1) and (9.2), i.e.,

~y =

M∑
m=1

~w(m) · β(γ|~x− ~cm|2) , (9.3)

where ~y and ~x are respectively an example of Y and X, ~cm is mth centre point in the

feature-vector space, M is number of centre points, ~w(m) is weight associated with

~cm, β() is the basis function and γ is the coefficient of β(). |~x−~cm|2 is the Euclidean

distance between ~x and ~cm. The RBS parameters ~cm, ~w and γ are determined during

training using X and Y. Since β() has coefficient γ and β() is a function of ~x and

~cm, it is rewritten as βγ(~x,~c) for simplicity. Let ~yn denote the nth sample of Y, and

Eqn. (9.3) is rewritten as
~y1

~y2

...

~yN

 =


βγ(~x1,~c1) βγ(~x1,~c2) ... βγ(~x1,~cM )

βγ(~x2,~c1) βγ(~x2,~c2) ... βγ(~x2,~cM )

... ... ... ...

βγ(~xN ,~c1) βγ(~xN ,~c2) ... βγ(~xN ,~cM )

×

w1

w2

...

wM

 . (9.4)
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However, Eqn. (9.4) is only suitable if the dimensionality of ~y is 1. To address this,

let ~wm denote the 1×D weight vector associated with mth centre point to give
~y1

~y2

...

~yN

 =


βγ(~x1,~c1) βγ(~x1,~c2) ... βγ(~x1,~cM )

βγ(~x2,~c1) βγ(~x2,~c2) ... βγ(~x2,~cM )

... ... ... ...

βγ(~xN ,~c1) βγ(~xN ,~c2) ... βγ(~xN ,~cM )

×

~w1

~w2

...

~wM

 (9.5)

Y = B×W . (9.6)

The training process is as follows. The M number of centre points in the

feature-vector space are found using k-means clustering to compute B. For higher

accuracy, we use all samples of X as the centre points. Among basis functions,

e.g., Gaussian, biharmonic and trihamonic spline, we found Gaussian gives good

results, where its coefficient γ is determined using 10-fold cross-validation. Finally

the weight matrix

W = B−1 ×Y , (9.7)

where B−1 is the inverse of B if B is a square matrix or the pseudo-inverse if

otherwise. Note that during testing, B is calculated first, and followed by Eqn. (9.6).

9.3.2 Embedded pattern learning

Fig. 9.4 outlines the EPL. During training, all silhouettes are embedded using RBF.

All embedded silhouettes of each activity form a pattern of embedded silhouette

(PES). Each PES is converted to a gallery spatial object. During testing, the PES

and test spatial object of an unknown activity are similarly obtained from a test

video. The test spatial object is then compared with the gallery spatial objects

using k-nearest-neighbour classifier to identify its activity.

Patterns of embedded silhouettes

Fig. 9.5 illustrates the PESs of six activities which are shown as black dots. The

background embedded silhouettes in each sub-figure shown in grey dots are the same

as those in Fig. 9.3 and are drawn to the same scale. Thus refer to Fig. 9.3 for the

following description of activities. Walk contains the least variety of silhouettes,

which is narrowly distributed near the walking posture region. Drop contains bend-

ing, dropping and walking postures. Crou contains crouching and walking postures

as well as some bending postures. Bag contains bag carrying and walking postures.

Shoot contains shooting postures. Dig contains a variety of postures include walk-
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Figure 9.4: Training (left) and testing (right) using EPL.

Figure 9.5: PES for (a) Walk, (b) Drop, (c) Crou, (d) Bag, (e) Shoot, and (f) Dig.

ing, bending and leaning down. Note that the PES of one activity is distinguishable

from another.

Spatial object formation and activity recognition

Let D denote the dimensionality of each embedded point, and ~ef denote a 1 × D
vector containing the embedded data for frame f and F denote the frame number.

The matrix form of the PES for one video sample, i.e., embedded pattern matrix

(EPM) is

E = [~e1 ~e2 ... ~eF ]T , (9.8)

where T is the transpose operator. Note that F can be different for different video.

Let Ev denote the vth EPM and V denote the number of EPMs in each
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activity category, the dataset for one category

G = [E1 E2 ... EV ]T . (9.9)

Let Ga denote the ath category dataset and A denote the number of categories, the

overall dataset H is

H = [G1 G2 ... GA]T . (9.10)

Every EPM is first discretised, which makes each value to the index of the closest

member in a predefined group of numbers. Each member of the group is

pn =
nR

Nt
+ minY, ∀n = 1, 2, ..., Nt , (9.11)

where Nt is the number of members, R is the range of the embedded silhouettes Y.

Small Nt increases the robustness against noise but at the cost of lower sensitiv-

ity, and larger Nt increases the sensitivity but compromises on noise performance.

Nt is determined by cross-validation to achieve a reasonable robustness and noise

performance.

Each element of Ev is assigned the index n of the closest pn. Let the corre-

sponding discretised matrix be Êv, where each of its elements is

Êv(f, d) = argmin
Pn

|Ev(f, d)− pn| , (9.12)

and d is the dimension index. As an illustration, an image is used as a spatial

object, which is initialised as a Nt×Nt zero matrix O. For the extracted silhouette

of each frame of a video, i.e., each row of Êv, its first and the second element are

respectively the horizontal and vertical index of a pixel in spatial object O to be set

to 1, i.e.,

O
(
Êv(f, 1), Êv(f, 2)

)
= 1, ∀f = 1, 2, ..., F . (9.13)

This indicates that the frame number F only affects how many pixels in O is 1

rather than its size. This process is repeated for all Ev.

Fig. 9.6 illustrates the spatial objects that correspond to the PESs in Fig. 9.5,

where black pixels denote 1’s and grey pixels denote the background silhouettes.

Note that the shape of each spatial object maintains the distinguishable features of

an activity. Every Êv is transformed to a 1×N2
t vector ~̂ev. All ~̂ev for the PESs of

each activity are then concatenated to give

Ĝ =
[
~̂e1
~̂e2 ... ~̂eV

]T
. (9.14)
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Figure 9.6: Spatial objects (denoted in black) with embedded silhouettes (denoted
in grey) for (a) Walk, (b) Drop, (c) Crou, (d) Bag, (e) Shoot, and (f) Dig.

Note that the embedded silhouettes are neither shift-invariant nor rotational-invariant.

Thus, any shift or rotation of an embedded data point will make it a different pos-

ture which in turn generates a PES which corresponds to a different activity. Thus,

shape descriptors based on these two properties cannot be used. Furthermore, for an

illustration only two dimensions are plotted while in practice more dimensions are

needed to identify numerous activities. In order to generalise the solution for any

dimensions and keep it simple, we do not use any shape descriptor before further

processing.

Every Ĝa for different activities, where the subscript a is the activity label,

is combined to form the gallery embedded activity matrix

Ĥ =
[
Ĝ1 Ĝ2 ... ĜA

]T
. (9.15)

During testing (i.e. recognising an activity), all frames of a video are embedded with

RBF. Every resulting PES is converted into a spatial object Êt which is transformed

to ~̂et. The k-nearest-neighbour classifier [189] is then used to classify ~̂et within Ĥ.

More identical discretised PESs are produced for the same activity performed

at low speed than at high speed. However, the same discretised PES is only regis-

tered once in the spatial object as shown in Eqn. (9.13). Thus, the PES for the same

activity at low and high speed is identical as long as all the associate silhouettes are

obtained. Hence EPL is speed-invariant. Since time label is not used in Eqn. (9.13),

the PES for the same activity with different temporal order of actions is identical.

Thus, EPL is also invariant to the temporal order of actions.
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9.4 Experiments and Discussions

The proposed activity recognition system is implemented on a standard desktop

computer with Core i7-2600 processor at 3.40 GHz and 4.00 GB memory. An

OpenCV function based on the work in [181] is used for background subtraction.

The other components of the system are implemented on MATLAB R2013b. Sil-

houettes of size 100 × 100 generated by the algorithm in Chapter 7 are used as

training data. The centres of the RBFs are chosen as the same as the input vectors.

The coefficient γ of the Gaussian basis function for RBF is evaluated with 10-fold

cross-validation. The number of neighbours in Isomap is set to be the same as the

total number of training vectors. The reduced dimension is set to 3, since our exper-

iments showed that smaller values failed to distinguish all activities well, and any

value above 4 inclusive did not provide significant improvement.

For performance evaluation of EPL, 64% [108; 112] of the subjects from a

given video database is used to determine the resolution of the spatial object Nt in

Eqn. (9.11) using 10-fold cross-validation. The remaining 36% is used for evaluation

of the overall accuracy. Let N denotes the number of subjects in evaluation set.

EPL is first trained with N − 1 subjects and then tested on the remaining subjects.

As a result, N sets of accuracy results are generated, which are then averaged to

give the overall set of accuracy results. In other words, we adopt leave-one-out cross

validation.

Our dataset

Publicly available datasets for complex activities are not usable since the background

subtraction requires the subject not to appear at the beginning of the video. Thus,

we created our own dataset. Our dataset includes 21 actors performing the ten ac-

tivities in Table 7.1 captured by four cameras at 4 views. Each video is of resolution

640 × 480. The video length varies between 8-30 seconds. One sample frame from

each activity is shown in Fig. 9.7. For RBF training, 1500 silhouettes are selected

as the training data. γ is found to be 1 × 10−4. For EPL, Nt in Eqn. (9.11) are

respectively found to be 15, 9 and 9 for the first, second and third dimension. Since

this dataset is obtained in-door and no shadow is observed in the test silhouettes,

no shadow removal is required.

Table 9.1 shows the confusion matrix which represents the performance of the

proposed system. Drop is sometimes mis-classified as Bag because both activities

involve carrying a bag, and the subject’s arm is occluded during dropping the bag.

It is mis-classified as Wall since both activities contain the postures of raising one’s
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Figure 9.7: Sample frame of activities. (a)-(j): Walk, Drop, Crou, Peer, Mbl, Place,
Bag, Shoot, Gun and Dig.

Table 9.1: Confusion matrix using Proposed on our dataset.
Walk Drop Crou Wall Mbl Place Bag Shoot Gun Dig

Walk 88.8 0.0 0.0 0.0 0.0 3.2 0.0 4.9 3.1 0.0

Drop 0.0 60.2 0.0 5.8 9.8 5.8 15.0 0.0 0.0 3.3

Crou 0.0 0.0 94.8 0.0 0.0 5.2 0.0 0.0 0.0 0.0

Peer 1.7 1.7 0.0 80.4 3.2 0.0 6.5 1.7 0.0 4.9

Mbl 13.9 0.0 0.0 0.0 71.9 0.0 2.0 8.0 4.2 0.0

Place 4.6 4.6 0.0 0.0 4.6 76.9 0.0 4.6 1.5 3.1

Bag 0.0 4.7 0.0 2.5 2.5 0.0 90.3 0.0 0.0 0.0

Shoot 17.2 0.0 0.0 0.0 4.7 0.0 0.0 73.8 4.2 0.0

Gun 8.0 0.0 0.0 0.0 6.9 0.0 0.0 8.0 77.1 0.0

Dig 0.0 3.6 0.0 0.0 7.3 12.9 2.0 0.0 0.0 74.2
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arm. Drop is also mis-classified as Mbl possibly due to both activities contain

walking postures. Mbl is sometimes mis-classified as Walk because there is only

subtle difference between the two activities. Mbl is also mis-classified as Shoot since

both activities contain raising one’s arm. Shoot is sometimes mis-classified as Walk

due to the body shape of different actors. Dig is mis-classified as Place occasionally,

because both activities involve bending posture. Despite these problems, the overall

recognition accuracy of 78.8% is encouraging considering the complex activities.

KTH and Weizmann datasets

KTH dataset [112] contains 6 actions of Walk, Jog, Run, Box, Hand-wave (Hwv)

and Hand-clap (Hcp). These actions are performed with 4 scene variations by 25

subjects. For Walk, Jog and Run the silhouettes are extracted using the algorithm in

[190], and for the other actions the silhouettes are extracted by a simple thresholding

in colour-space. Since we do not have the Vicon Nexus data for all the actions in

KTH, 1500 silhouettes are selected from all extracted silhouettes including those

generated using Vicon Nexus to form the training data for silhouette embedding.

For RBF training, γ is found to be 1 × 10−5. For EPL, Nt are respectively found

to be 9, 9 and 9 for the first, second and third dimension. For some videos where

strong shadow are present in outdoor such as Jog of actor 10, the proposed shadow

removal is used where the rotation angle is manually measured from the video.

Table 9.2 shows the confusion matrix. The proposed system performs better

for the last three actions. This is because when compared to the first three actions,

the silhouettes of these three actions are significantly more distinguishable. For

the other three actions: Walk is sometimes misclassified as Jog; Jog is sometimes

misclassified as Run; and Run is sometimes misclassified as Jog. These errors are

reasonable since even humans sometimes find it difficult to distinguish these actions,

and the system is able to produce a mean accuracy of 87.4%.

Table 9.2: Confusion matrix using Proposed on KTH dataset.
Walk Jog Run Box Hwv Hcp

Walk 73.3 18.6 5.8 2.3 0.0 0.0

Jog 0.0 76.4 22.5 0.0 1.1 0.0

Run 0.0 10.6 87.2 0.0 2.1 0.0

Box 0.0 4.7 1.6 92.2 0.0 1.6

Hwv 0.0 0.0 0.0 0.0 98.6 1.4

Hcp 0.0 0.0 0.0 2.2 1.1 96.7

The Weizmann dataset [104] contains 10 actions performed by 9 subjects in-

cluding Bend, Jump-jack (Jack), Jump-forward-on-two-legs (Jump), Jump-in-place-
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Table 9.3: Confusion matrix using Proposed on Weizmann dataset.
Bend Jack Jump Pjp Run Side Skip Walk Wv1 Wv2

Bend 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Jack 0.0 91.7 0.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0

Jump 11.9 0.0 79.8 8.3 0.0 0.0 0.0 0.0 0.0 0.0

Pjp 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0

Run 0.0 0.0 0.0 0.0 85.7 0.0 14.3 0.0 0.0 0.0

Side 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0

Skip 0.0 0.0 10.7 0.0 0.0 0.0 89.3 0.0 0.0 0.0

Walk 0.0 0.0 0.0 0.0 0.0 14.3 0.0 85.7 0.0 0.0

Wv1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0

Wv2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

on-two-legs (Pjp), Run, Gallop-sideways (Side), Skip, Walk, Wave-one-hand (Wv1)

and Wave-two-hands (Wv2). It provides silhouettes. 1000 silhouettes are selected as

training data for silhouette embedding. For RBF training, γ is found to be 1×10−8.

For EPL, Nt are respectively found to be 9, 9 and 9 for the first, second and third

dimension.

Table 9.3 shows the mean confusion matrix. Jump is occasionally misclassi-

fied as Bend since both actions include bending. Run is sometimes misclassified as

Skip when their subtle difference is not detected. Skip is sometimes misclassified as

Jump, a similar action. Walk is sometimes misclassified as Side due to their similar

nature. Despite these errors, a mean accuracy of 93.2% is achieved.

9.4.1 Computational cost

The training on our dataset requires approximately 30 hours. For testing, data pre-

processing including background subtraction and silhouette centring requires 38.3

milliseconds per frame. If strong shadow is present in outdoor scenes, the proposed

shadow removal method in Chapter 8 requires 283.8 milliseconds per frame for a

20◦ increment on β in Eqn. (8.20). The time for embedding the silhouette is 51.5

milliseconds per frame. EPL requires 11.1 milliseconds per frame. Therefore the

total testing time is 384.7 milliseconds per frame including shadow removal, or 100.9

milliseconds per frame excluding shadow removal.

The algorithm in [120] involves calculating optical flow, kinematic features,

kinematic modes and embedding the kinematic modes. All these processes take at

least 1.22 seconds per frame. The typical run-time speed of [44] is 1.8 frames per

second, which is equivalent to 566.7 millisends per frame. The computational cost

of the algorithms in [151] and [24] are not given in [151; 24].
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Table 9.4: Perfomance of 5 methods on KTH dataset.
Mtd. Walk Jog Run Box Hwv Hcp Avg.

[120] 89.1 86.2 91.5 88.5 84.5 86.4 87.7
[151] 97.2 100 83.3 97.2 86.1 94.4 93.1
[44] - - - - - - 95.3
[24] 97 84 79 90 97 94 90.2

Ours 73.3 76.4 87.2 92.2 98.6 96.7 87.4

9.4.2 Comparison with state-of-the-art methods

We compare the proposed system with four methods based on space-time interest

points [151], optical flow [120], body point trajectory [44] and CNN [24]. Table 9.4

shows the comparison using KTH dataset. Overall, the performance of the proposed

system for Box, Hwv and Hcp are higher or comparable to the other methods, but

lower for Walk, Jog and Run. This is because the proposed system does not use speed

or temporal information unlike the other methods. The method in [151] extracts

and tracks body features such as moving hands. Since the changing speed for these

features is lower for Walk than Jog, the resulting Hankel matrix of extracted interest

points used for action classification is considerably different. The method in [120]

extracts kinematic features of divergence, vorticity, symmetric and antisymmetric

flow fields, etc., for classification and is thus capable of distinguishing actions based

on speed. The method in [44] uses dense trajectories that are tracked with a dense

optical flow algorithm. The 3D CNN in [24] uses feature vectors containing motion

information. Nevertheless, the average accuracy of 87.4% achieved by the propose

system is comparable to the others.

Of the four methods being compared, only the method in [120] is also evalu-

ated on the Weismann dataset, with an overall accuracies of 94.8%. The accuracy of

the proposed system is 93.2%, and is thus comparable. Note however the following.

For more complex activities, more interest points are required for the method in

[151] which increases their computational cost considerably. The method in [120]

can only cope with simple periodic actions. The method in [44] is slow since it

requires sampling and tracking of dense interest points. Finally, the method in [24],

which only uses 7 or 9 selected frames, cannot recognise more complex activities.

In contrast, the proposed system is designed for fast recognition of more complex

activities such as those in Table 7.1. It does not require the activity to be performed

periodically. It is simple and fast with speed of up to 100.9 milliseconds per frame

with serial implementation. Immediate recognition is potentially possible with a

parallel implementation.
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9.5 Summary

In this chapter, a silhouette-based human activity recognition system is presented.

The system includes an improved version of the centroid distance function as the

shape descriptor for the training silhouettes, which is robust against broken silhou-

ettes. The use of Isomap captures the global characteristic and nonlinearity of the

embedded silhouettes. The required mapping from silhouettes to embedded ones is

evaluated with a simplified version of RBF. The embedded patterns are then learned

with the proposed EPL, which is invariant to the speed in which an activity is per-

formed and the temporal order of its actions. It is also able to recognise activities

more complex than simple periodic actions that are often used to evaluate existing

action recognition systems.

The current limitations of the proposed system include the following. Sudden

change of illumination and reflections often cause problems in background subtrac-

tion. The essential part of the silhouettes such as head and feet are sometimes

treated as noise and thus removed. Finally the system is only applicable to single

subject. Possible future work thus includes the following investigations: use of a

more robust background subtraction based on depth video; extending the activity

recognition to multiple subjects; optimising the input parameters of Isomap with

a method such as [191] or exploring other dimensionality reduction methods that

are more effective than Isomap; and the use of layered EPL to recognise even more

complex activities.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions

In this thesis, two important areas of 3D computer vision have been studied, namely

3D surface reconstruction based on passive RO-based DfD, and a human activity

recognition system based on manifold learning. Chapter 1 has introduced both areas

and presents our motivations to undertake the study. The research interest on RO-

DfD is motivated by its advantages over other surface reconstruction techniques:

(1) it does not require active pattern projections and hence it is cheaper and easier

to implement; (2) it is able to produce dense depth map with low computational

costs and does not involve problems that occurs in other passive techniques such as

illumination changes and correspondence searching. (3) it enables detailed analysis

of the input frequency components which makes it produce relatively high accuracy.

The research interest on manifold-learning-based human activity recognition system

is motivated by its potential applications including content-based video analysis,

human-machine interaction, patients monitoring, safety, security and surveillance.

Chapter 2 has provided a thorough literature review on passive DfD tech-

niques. DfD methods using a single image fails to produce high accuracy since it does

not have sufficient information to determine the source of blur. DfD methods using

two images thus provide significant improvement. Fourier domain approach com-

putes depth by extracting the defocus parameter using Fourier transform. Spatial-

filtering approach computes the defocus map in spatial domain with 2D convolutions.

Probabilistic approach obtains a depth map by first creating a cost function using a

specific statistical model and then computes depths iteratively. Machine learning-

based approach creates a library of sample image pairs with known depth values

and computes the depth of an input image pair by a form of matching operation.

Except RO-DfD, none of these methods address the frequency dependency problem
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with low computational costs.

Chapter 3 has presented a literature review on human action/activity recog-

nition approaches classified into two categories, i.e. the spatio-temporal approach

and the sequential one. The spatio-temporal approach analyses a video as a 3D

volume using body volumes, interest points or optical flows. It achieves acceptable

performance for simple and periodic actions. The sequential approach extracts fea-

ture vectors from every frame and considers the video as a sequence of features, and

effectively handles the non-periodicity of actions/activities. It is further divided

into state model-based approach that achieve high accuracy while requiring large

amount of training data, and the sequential approach where frame-by-frame features

can be flexibly organised to form an action template. Amongst these approaches,

manifold-learning based approach is designed for the high dimensionality of human

activities and can be implemented with low computational costs.

Chapter 4 has described the proposed experimental procedures involved in

obtaining DfD image pairs, i.e., the far-focused image and near-focused images.

The image acquisition requires the lens-to-sensor distance to be adjusted with high

precision (typically higher than 10 micrometres). However, the distance cannot be

precisely measured and controlled with a standard camera system. In addition, we

argue that the implementation in [155] is problematic since the object distance is

changed during input images capture. To address this problem, we have proposed

two optical systems. The SMS allows precise control of the distance by a micrometer

attached to the base of the sensor holder, while the lens being decoupled from the

sensor is held by a funnel holder. The DMS is a more advanced version where the

funnel holder is replaced by another micrometer-controlled lens holder that allows

more precise calibrations. In addition, in order to enable convenient DfD calibration

and image capture, we have developed a MATLAB GUI software called DfDtool. The

experimental procedures using DfDtool, SMS and DMS have also been presented in

this chapter. SMS, DMS and DfDtool has been extensively used throughout our

DfD experiments, where one pair of input images normally took 5-10 seconds to

capture, and focusing the camera at a specific distance took 10-15 seconds. They are

especially convenient when large amount of accuracy-testing images and correction

patterns need to be acquired.

Chapter 5 has presented a new RO-based passive DfD technique. The pill-

box PSF used in [16] and [17] is not valid when lens aberrations and diffraction

are significant compared to the diameter of the blurred circle, two varieties of DfD

approaches have thus been proposed to address this problem. The GRO using Gaus-

sian PSF was designed for when lens aberrations and diffraction were dominant, and

136



10.1. CONCLUSIONS

the GGRO using generalised Gaussian PSF could adapt to any amount of aberra-

tions and diffraction levels. An experimental procedure has also been developed to

calculate the value of k, which was a ratio of the defocus parameter to the radius

of a blurred circle, by a 1D search. Another produce was presented to calculate the

value of p for GGRO by a 2D search, each loop of which was a 1D search of k. Apart

from the monotonicity, the low-gradient components of the NIR also have a negative

influence due to its high depth variation in the presence of noise. Thus, the pre-filter

was redesigned to address this problem. We argued that the ROs design procedure

in [16] was problematic and unnecessarily complicated. Hence we formed a new cost

function according to the definition of the NIR, and this was able to produce the

estimates of all the ROs simultaneously. A depth map distortion has been found

which led to the depth map of a flat surface to be a curved surface. This problem

refuted the assumption made by most DfD methods that the blurring effect was

uniform across the image. To handle this problem, a DfD correction method based

one two-step least squares fit was incorporated to GRO and GGRO. Experiments

on real images have shown that GGRO achieved higher accuracy than GRO, which

was in turn more accurate than Raj’s method [17]. They have also shown that the

correction algorithm made a considerable improvement.

Two different DfD correction methods have been presented in Chapter 6 to

address the depth-variant elliptical distortion that often occurred due to optical

distortion. They were designed to correct the depth estimation generated by any

DfD algorithm using a number of correction patterns computed by the correction

method. CDC searches for the optimal CPV to cancel out the distortion at every

pixel location. It further improves the accuracy of reconstruction by considering the

neighbourhood region and interpolation of CPI and CPV. CLSF finds the mapping

from the distorted to the corrected reconstruction results directly. The accuracy is

further improved by dividing the depth maps into a number of equal-sized regions

sharing separate sets of coefficients. We suggest the parameter M in Eqn. (6.3) to be

set within [20, 30], and N in Eqn. (6.4) to be within [1/100,1/50] of the shorter one

of the width and height of the depth map in terms of pixels. In order to deal with the

large depth variation in low-texture region, both CDC and CLSF were incorporated

with an interpolation algorithm that was based on variance analysis and hole-filling.

With experiments using four different DfD methods on seven sets of real scenes,

we have demonstrated their potentials of being adapted to all DfD methods. In

addition, we have found that CDC generally produced better reconstructions than

CLSF, where the reconstructed flat surfaces were flatter, at the cost of much lower

speed. Experiments have also revealed that the sharp local noises at low-texture
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regions were effectively mitigated.

Chapter 7 has proposed a method to efficiently generate training silhouettes

from any view. Although there existed 3D silhouette generation techniques with

multiple cameras, errors occur during the placement of cameras and high compu-

tational costs were involved. DfD is able to produce the surface reconstruction of

one view of any object. Hence a complete 3D model can be built by stitching two

views together. Hence DfD is potentially useful for this application where only two

cameras are needed with one facing another and the subject in between. Since our

current DfD system is not portable and cannot acquire input images in real-time,

we have proposed a method to generate silhouettes from any view by using real-time

data of a set of 3D coordinates of markers placed on the subject clothing while per-

forming activities. The markers should be placed in a way that a volume hull of the

body can be easily reconstructed. The coordinates are extracted by Vicon Nexus.

This silhouette generation method first determines all possible triplets of point on

every rigid body part. It then draws the corresponding 3D triangular surfaces. This

is followed by projecting the 3D surfaces according to the view specified to create

a 2D silhouette. The projection can also be obtained directly using the trisurf()

function on MATLAB taking all possible triples as input. Finally, a simple and fast

algorithm was proposed to remove very similar silhouettes. The silhouettes gener-

ated by this method has been used as the training data in Chapter 9. Note that we

did not aim for accurate silhouette-to-silhouette matching. The training silhouettes

were only used for low-level frame-by-frame manifold embedding. The high-level

training data for activity recognition was obtained from sequences of embedded sil-

houettes, which had been extracted in advance with background subtraction that

was also used at run-time for input silhouettes extraction.

Chapter 8 have presented a novel shadow removal algorithm based on known

position of the sun. Most existing works were based on geometry, chromaticity, phys-

ical knowledge and texture [40], where only the large region texture-based method

[40] was found to completely remove a shadow, but it required large computational

effort. The proposed method for outdoor scenes avoids analysing such image in-

formation and determines the shadow using the known position of the sun. Using

solar information rather than image information, it is thus able to avert the prob-

lem when the shadow has similar texture or colour saturation as the surrounding

background. The algorithm contains three steps. First, shadow length and orien-

tation are computed according to current time and location. Second, the shadow

is projected onto the image plane. Third, the entire silhouette including shadow is

rotated by an angle calculated with the shadow information, and the shadow part
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of the silhouette is removed. Since there are significant variation on the subject

height, head width and other input parameters, the variance of the angle of rotation

is calculated with the error propagation formula. Hence instead of being rotated

by an exact angle, the shadow is iteratively rotate within its variation range. Note

that this algorithm only applies in outdoor sunny day or indoor environment with

a single known light source, and it assumes the top part of the silhouette is the

person’s head. Experiments have demonstrated that the proposed method removed

high portion of the shadow and low portion of the body compared to five existing

methods. Moreover, no isolated shadow pixel region that was far away from the

body was left. The shadow removal algorithm has been used to remove the shadow

in KTH dataset during performance evaluation of the EPL algorithm in Chapter 9.

Since input information including date and location of capture was not known, the

projection of shadow angle was measured by hand.

Chapter 9 have presented a silhouette-based human activity recognition sys-

tem. Various problems were encountered by existing activity recognition systems,

such as temporal order-variant, speed-variant, cannot handle complex activities or

inefficient. The proposed system operates on silhouettes extracted by a fast back-

ground subtraction algorithm available from openCV. It then transforms every sil-

houette into a feature vector using the proposed improved version of the centroid

distance function that is robust against broken silhouettes. All training silhouettes

obtained by the algorithm in Chapter 7 are embedded into the manifold space by

Isomap. The mapping from feature vector space to manifold space is learnt efficiently

by the proposed simplified version of RBF, which produces a set of parameters used

during run-time silhouette embedding. During activity recognition, all silhouettes

from an input video are embedded by RBF. The EPL algorithm then transforms the

embedded pattern of the silhouettes into a spatial object, which is the motion tem-

plate. The spatial object is invariant to the order of the sub-events (or actions) that

comprises an activity, and the speed of execution of the activity. The order of the

spatial object can be determined by cross-validation, but we found that third order

was usually enough for 10 activities. Experiments have shown that the recognition

system was able to produce good accuracy for our dataset contained 10 complex

activities, most of which were non-periodic. In addition, using KTH and Weizmann

dataset, the proposed method produced similar accuracies compared to a number of

recent recognition methods. Furthermore, not using any parallel implementation, it

has been implemented in near-real-time, i.e. 384.7 milliseconds per frame including

shadow removal and 100.9 milliseconds excluding shadow removal.
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10.2 Future work

The performance of the proposed DfD method is limited by two problems due to

the small-sized ROs. First, the shape of the NIR cannot be reproduced without

error. Second, the adverse frequency components cannot be removed completely.

A possible solution is to investigate the use of a coded aperture to produce a PSF

suitable for small ROs. In addition, the current optical system requires manual

adjustment of sensor-to-lens distance with a precision of 5 micrometres. For real-

time implementation, this adjustment mechanism can be replaced by a step motor.

Another possible solution is to place a half mirror behind the lens which splits light

into two halves received by two sensors. The real-time implementation can also

be used to generate 3D silhouettes more efficiently than the proposed algorithm in

Chapter 7, which has the problem of occasional occlusion of the markers during

their coordinates recording.

For the DfD correction methods, one possible future work is to investigate the

applicability of both CDC and CLSF on DfD approaches using a single image and

active DfD. Another is to explore curve fitting techniques that are more sophisticated

than least squares fit to further improve the correction accuracy. Furthermore,

machine learning algorithms can also be exploited for distortion removal.

The major limitations of the proposed shadow removal algorithm includes:

the significant variance resulting from an estimate of the subject height and the

distance between the subject and the camera. These two problems can be addressed

by using a range camera which is able to measure the distance and the height.

There are four major limitations of the EPL algorithm. First, sudden change

of illumination and reflections often leads to silhouettes of very poor quality. Sec-

ond, the essential parts of the subject such as head and feet are sometimes treated

as noise and thus removed. Third, the background subtraction algorithm cannot

deal with moving camera. Fourth, EPL currently only works with single subject

performing an activity in one segmented video. Therefore, the future research in-

cludes: designing a new background subtraction algorithm that is robust against

illumination changes and reflections (possibly with a human tracker), and is able

to handle moving camera (by utilising other feature extraction techniques such as

those in [118; 44]); investigating other dimensionality reduction techniques other

than Isomap or exploit algorithms that provide optimal parameter for Isomap such

as [191]; extending the algorithm to multiple subjects possibly with a human de-

tector such as that used in [128]; transform EPL into an action or activity detector

so that the algorithm is able to handle un-segmented video; use layered EPL to

recognise more complex activities.
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Appendix A

Terms Used Interchangeably

• Shape from shading/motion/stereo/depth/focus,

depth from shading/motion/stereo/depth/focus

• Shape from stereo, depth from stereo, stereoscopic system

• Camera parameters, lens parameters, optical settings, focus settings

• Sharp discontinuity, edge

• Blur, defocus

• Depth, object distance, distance

• Image distance, sensor-to-lens distance

• Training data(silhouettes), gallery data(silhouettes), data library

• Local image region, patch, sub-image, window

• Normalised Image Ratio (NIR), M/P ratio

• Rational operator, rational filter

• Windowing effect, shift-invariant blurring, equifocal assumption

• Frequency response, Fourier transform, frequency-domain representation

• Least squares fit, linear regression, least squares regression, regression

• Subject, actor, person

• Furthest/nearest measurable distance, far/near-focused object distance
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Appendix B

3D Representations

DfD uses images captured from a single view to obtain a depth map. In order

to understand the final output of DfD, a number of 3D representation techniques

including defocus map, depth map, mesh-plot, and 3D volumetric rendering along

with their relationships and differences are discussed.

A digital image is a matrix of radiances of sample points in the camera view,

such as shown in Fig. B.1(a), where brighter pixels represent high radiances and

vice versa. A defocus map is a matrix of defocus amounts of sample points in the

camera view, and a depth map is the corresponding matrix of depths (distances to

the camera) calculated from the defocus values. An example grey-coded defocus map

obtained from Fig. B.1(a) is shown in Fig. B.1(b), where brighter pixels represent

larger defocus amount and vice versa.

(a) (b) (c) (d)

Figure B.1: Depth map and mesh-plot: (a) A digital image of an object; (b) the
defocus map; (c) the depth map; (d) the mesh-plot.

The grey-coded depth map obtained from the defocus map is shown in

Fig. B.1(c), where brighter pixels represent larger depths and vice versa. Note

that the furthest background is chosen to be focused such that the greater the blur

the nearer the object is. The foreground can also be focused but in this case the

greater blur means smaller depth.
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The shape of the object can be perceived directly from the grey-coded mesh-

plot shown in Fig. B.1(d). Since depth map is obtained from one view, the depth

map and the mesh-plot cannot reveal any occluded part. Thus, the mesh-plot would

be wrong if the depth change from the top of the wooden object to the background

is not vertical.

Apart from depth map and mesh-plot, volumetric rendering is another popu-

lar 3D representation technique where depth information is available from any views

as data is captured from more than one view. Thus, occlusion will not normally

present. An example of 3D surface rendering is shown in Fig. B.2 (a), where the

source of 3D perception is the shading of different parts of the object. An example

of 3D volumetric rendering is shown in Fig. B.2 (b) obtained with X-ray computed

tomography, where the interior structure of the skull is also reconstructed.

(a) (b)

Figure B.2: Examples of volumetric rendering. (a) Surface rendering of a turtle
adapted from [192]. (b) Volumetric rendering of a skull from [193].

Notably, depth maps from multiple views can be stitched together to obtain

a 3D surface rendered graph [1]. In this thesis, we discuss the use of DfD to obtain

depth map from a single view only. Thus, graphical results such as those generated

as shown in Fig. B.2 are not presented.
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Appendix C

Generic Depth from Defocus

Fig. C.1 illustrates the principle of DfD with a point object. The object is u away

from the lens, the lens has an aperture of diameter d, and the distance between the

lens and the sensor is s. When the focus point is not on the sensor, the image of

the object point is a blurred circle on the sensor with diameter a. The Gaussian

PSF is used, and its standard deviation (SD) is determined by camera parameters,

including focal length F , aperture d and sensor-to-lens distance s, as illustrated in

Fig. C.1, and is given by

σ = kd× (
1

F
− 1

u
− 1

s
) , (C.1)

where k is a camera constant obtained by calibration and is equal to the blur circle

diameter a divided by σ, and u is the depth to be estimated. Taking the Fourier

transformation of both side of Eqn. (1.1) gives

Ǐ = Ȟ× M̌ , (C.2)

where Ǐ, Ȟ and M̌ are the Fourier transform of I, H and M, respectively. Ȟ is also

called the optical transfer function (OTF).

Figure C.1: A simple DfD optical system.
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Two images are captured with different parameters, i.e.

Ǐ1 = Ȟ1 × M̌ , (C.3)

Ǐ2 = Ȟ1 × M̌ . (C.4)

Dividing Eqn. (C.3) by Eqn. (C.4) gives

Ǐ1

Ǐ2

=
Ȟ1

Ȟ2

. (C.5)

If only the sensor separation s is different for the two images, and F and d are

known, Eqn. (1.2), (C.1) and (C.5) can be used to compute the depth u. Similarly,

the aperture d can also be different for the two images.

To produce a dense depth map with high resolution, each of the input images

is divided equally into small local regions with a size of at least 2×2. The depth value

within one region is assumed to be the same and is then computed. This process

is repeated for all regions to obtain the depth map. In this thesis, we use the term

“local image region”, “patch”, “window” and “neighbourhood” interchangeably.
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Telecentric Optics

The size of the image is changed during DfD image capture for near/far-focused

images if telecentric optics is not used [194] [166]. As discussed in Section 1.2.2

there should be no correspondence problem for DfD, or any pixel at a location of

the first image must correspond to the pixel at the same location of the second

image. However, this size-changing problem results in both input images to be

scaled differently. Hence the pixel-to-pixel correspondence becomes invalid which

leads to inaccurate depth map.

Figure D.1: The problem of image magnification when aperture-to-lens distance is
smaller than the focal length.

Fig. D.1 illustrates the problem when the aperture to lens distance is smaller

than the focal length F . In order to understand the change in size, the light rays

from two points on the object are used for illustration. Both of them are principal

rays which pass through the centre of the aperture. Other rays emitted from these

points can be neglected because they are only related to the degree of blur rather

than size. Because the aperture-to-lens distance is not equal to focal length, the

principal rays will not be parallel to the optical axis when they have passed through
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Figure D.2: The problem of image magnification when aperture-to-lens distance is
larger than the focal length.

(a)

Figure D.3: The telecentric system.

the lens. As a result, images taken at l1 and l2 are of different size.

Fig. D.2 illustrates the problem when the aperture to lens distance is larger

than the focal length F . Again, images taken at I1 and I2 are of different sizes.

Fig. D.3 illustrates the telecentric optics to address the problem. The aperture-to-

lens distance is equal to focal length, thus the principal rays become parallel to each

other when they pass through the lens. As a result, images taken at I1 and I2 are

of the same size.
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Generalised Gaussian PSF

There are a number of other point spread functions (PSFs) other than the Gaussian

PSF, such as the pill-box PSF, the generalised Gaussian PSF, Fermi-Dirac PSF, etc.

For a pill-box PSF, its value is 1 within its radius parameter and 0 otherwise.

(a) (b)

(c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

Figure E.1: Gaussian PSF: (a) The pill box PSF with radius equal to 3. (b)
The Gaussian PSF when σ = 3. (c-l): The generalised Gaussian PSF when
p = 1, 2, 3, 4, 5, 7, 10, 20, 50 and 120 and σ = 3.

Fig. E.1(a) shows an example of the pill-box PSF. Pill-box PSF is a good

model for blur when the blur is uniform. However, due to aberrations, diffraction

and other effects the Gaussian PSF is a better model of blur [18]. The generalised

Gaussian proposed in [168], which is a combination between those two can adapt

situations with any amount of aberrations and diffraction. The generalised Gaussian
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PSF is

~h(x) =
p

1− 1
p

2σΓ
(

1
p

) exp

[
−1

p

|x− x|p

σp

]
, (E.1)

where Γ() is the Gamma function, σ is the SD, x is the spatial index, p is a parameter

such that when it is 2 the PSF is a Gaussian and when it is positive infinity the

PSF is pill-box. The 2-dimensional version is

H(x, y) =
p

2− 2
p

4σ2Γ2
(

1
p

) exp

[
−1

p

|(x− x)2 + (y − y)2|
p
2

σp

]
. (E.2)

Fig. E.1 illustrates the generalised Gaussian PSF with comparison to the

pill-box PSF and the Gaussian PSF. All plots are of the same size of 17 × 17 and

are generated with the same scale. Fig. E.1(a) shows the pill-box PSF with radius

equal to 3. Fig. E.1(b) shows the Gaussian PSF with σ = 3 equal to 3. Fig. E.1(c-l)

shows the generalised Gaussian PSF when σ = 3 and p = 1 to p = 120. The figure

shows that the generalised Gaussian PSF is identical to the Gaussian PSF when

p = 2. As the value of p increases, the PSF becomes more and more similar to a

pill-box PSF. At p = 120, the PSF is visually identical to the pill-box one.

149



Bibliography

[1] Brian Curless. From range scans to 3D models. ACM SIGGRAPH Computer

Graphics, 33(4):38–41, 1999.

[2] Thomas Guth and Bernd Czepan. Coordinate measurement device and

method for controlling same. U.S. Patent: 6587810, issued date 2003.

[3] Carlo G. Someda. Electromagnetic Waves. CRC Press, 2006.

[4] LiDAR basics. In Ohio Department of Transportation. Retrieved 11:29,

9/6/2014, from http://www.dot.state.oh.us/Divisions/Engineering/

CaddMapping/RemoteSensingandMapping/Pages/LiDAR-Basics.aspx.

[5] Spring 2011 Rhode island statewide LiDAR data. In Rhode Island Geographic

Information System. Retrieved 11:19, 9/6/2014, from http://www.edc.uri.

edu/rigis/data/download/lidar/2011USGS.

[6] François Blais. Review of 20 years of range sensor development. Journal of

Electronic Imaging, 13(1):231–243, 2004.

[7] Song Zhang. Recent progresses on real-time 3D shape measurement using dig-

ital fringe projection techniques. Optics and Lasers in Engineering, 48(2):149–

158, 2010.

[8] Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE MultiMedia,

19(2):4–10, 2012.

[9] David Marr and Tomaso Poggio. Cooperative computation of stereo disparity.

Science, 194(4262):283–287, 1976.

[10] 3D photography and geometry processing. In Taubin Group. Retrieved 14:57,

9/8/2014, from http://mesh.brown.edu/3dpgp-2009/homework/hw2/hw2.

html.

150



[11] Alex Paul Pentland. Local shading analysis. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-6(2):170–187, March 1984.

[12] Basic shading. Retrieved 12:22, 9/6/2014, from http://hippie.nu/

~unicorn/tut/xhtml-chunked/ch05.html.

[13] Transform your smartphone into a mobile 3D scanner. In ETHzurich De-

partment of Computer Science. Retrieved 11:15, 9/6/2014, from http://www.

inf.ethz.ch/news-and-events/spotlights/mobile_3dscanner.html.

[14] G. Calin and V. O. Roda. Real-time disparity map extraction in a dual head

stereo vision system. Latin American Applied Research, 37:1, 2007.

[15] Zscanner 700PX. In 3DSystems. Retrieved 11:39, 9/6/2014, from http://

www.zcorp.com/documents/380_ZScanner700_PX_SpecSheet_HiRes.pdf.

[16] Masahiro Watanabe and Shree K Nayar. Rational filters for passive depth from

defocus. International Journal of Computer Vision, 27(3):203–225, 1998.

[17] Alex N. J. Raj and Richard C. Staunton. Rational filter design for depth from

defocus. Pattern Recognition, 45:198–207, 2011.

[18] Murali Subbarao. Parallel depth recovery by changing camera parameters. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,

1988.

[19] Frangipani trees. In How To Garden. Retrieved 14:15, 25/7/2014, from http:

//howto-garden.com.au/selecting-plants/frangipani-trees/.

[20] Neuschwanstein castle, Germany. In 8ThingsToDo. Retrieved 07:19, 7/6/2014,

from http://www.8thingstodo.com/neuschwanstein-castle-germany.

[21] What is dfd (depth from defocus) technology? In Panasonic. Re-

trieved 15:32, 28/7/2014, from http://eng.faq.panasonic.com/app/

answers/detail/a_id/26478/~/what-is-dfd-(depth-from-defocus)

-technology%3F---dmc-gh4.

[22] J. K. Aggarwal and Michael S. Ryoo. Human activity analysis: A review.

ACM Computing Surveys (CSUR), 43(3):16, 2011.

[23] I. Laptev and T. Lindeberg. Space-time interest points. In Proceedings of

International Conference on Computer Vision, pages 432–439, 2003.

151



[24] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3D convolutional neural net-

works for human action recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 35(1):221–231, 2013.

[25] Junji Yamato, Jun Ohya, and Kenichiro Ishii. Recognizing human action in

time-sequential images using hidden Markov model. In Proceedings of IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,

pages 379–385. IEEE, 1992.

[26] Trevor Darrell and Alex Pentland. Space-time gestures. In Proceedings of

IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition, pages 335–340. IEEE, 1993.

[27] Moshe Blank, Lena Gorelick, Eli Shechtman, Michal Irani, and Ronen Basri.

Actions as space-time shapes. In Proceedings of International Conference on

Computer Vision, volume 2, pages 1395–1402. IEEE, 2005.

[28] Osama Masoud and Nikos Papanikolopoulos. A method for human action

recognition. Image and Vision Computing, 21(8):729–743, 2003.

[29] Joseph B. Kruskal. Multidimensional scaling by optimizing goodness of fit to

a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[30] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by

locally linear embedding. Science, 290(5500):2323–2326, 2000.

[31] Joshua B. Tenenbaum, Vin De Silva, and John C. Langford. A global

geometric framework for nonlinear dimensionality reduction. Science,

290(5500):2319–2323, 2000.

[32] Yaser Yacoob and Michael J Black. Parameterized modeling and recognition

of activities. In Proceedings of IEEE International Conference on Computer

Vision, pages 120–127. IEEE, 1998.

[33] Z. A. Khan and W. Sohn. Hierarchical human activity recognition system

based on R-transform and nonlinear kernel discriminant features. Electronics

Letters, 48(18):1119–1120, 2012.

[34] Ahmed Elgammal and Chan-Su Lee. Inferring 3D body pose from silhouettes

using activity manifold learning. In Proceedings of IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, volume 2, pages

II–681. IEEE, 2004.

152



[35] Xiaoyu Deng, Xiao Liu, Mingli Song, Jun Cheng, Jiajun Bu, and Chun Chen.

LF-EME: Local features with elastic manifold embedding for human action

recognition. Neurocomputing, 99:144–153, 2013.

[36] Pavan Turaga, Rama Chellappa, Venkatramana S. Subrahmanian, and Oc-

tavian Udrea. Machine recognition of human activities: A survey. IEEE

Transactions on Circuits and Systems for Video Technology, 18(11):1473–

1488, 2008.

[37] Shih-Fu Chang. The holy grail of content-based media analysis. IEEE Multi-

Media, 9(2):6–10, 2002.

[38] Huiyu Zhou and Huosheng Hu. Human motion tracking for rehabilitation – a

survey. Biomedical Signal Processing and Control, 3(1):1–18, 2008.

[39] Bonita. In 3D Vicon. Retrieved 10:12, 9/5/2014, from http://www.vicon.

com/System/Bonita.

[40] Andres Sanin, Conrad Sanderson, and Brian C. Lovell. Shadow detection: A

survey and comparative evaluation of recent methods. Pattern Recognition,

45(4):1684–1695, 2012.

[41] Yan Ke, R. Sukthankar, and M. Hebert. Spatio-temporal shape and flow

correlation for action recognition. In Proceedings of IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pages 1–8, June

2007.

[42] M. D. Rodriguez, J. Ahmed, and M. Shah. Action MACH a spatio-temporal

maximum average correlation height filter for action recognition. In Proceed-

ings of IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 1–8, June 2008.

[43] Heng Wang, Alexander Klaser, Cordelia Schmid, and Cheng-Lin Liu. Action

recognition by dense trajectories. In Proceedings of IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pages 3169–3176.

IEEE, 2011.
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