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my colleague Daniel Sprague. The research was instigated, designed and prototyped

by myself with Daniel advising on the implementation and calibration of the Markov

Chain Monte Carlo (MCMC). Daniel also implemented a faster version of the algorithm

using the ‘PyMC’ Python library which was used to produce the figures in Chapter 8 and

the Akakie Information Criterion (AIC) method for comparing unnormalised multivariate

probability distributions.

The research in Chapters 2, 3 and 8 have been submitted for publication in Finance

journals and I am currently awaiting feedback.
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Summary

This thesis examines the Leverage Effect in stocks, stock indices and stock options. The

Leverage Effect refers to the observed negative correlation between an asset’s return and

its volatility. Part I presents an examination of the Leverage Effect at the stock level.

The research provides the first investigation of stock returns, volatility and trading vol-

umes from an information theoretic perspective. It finds support for trading volumes as

an explanation for the stock level Leverage Effect and shows that index returns are also

an important factor. It also analyses how trading behaviour is influenced by an investor’s

risk preference and how this relates to return-volume correlation. Predictions of an an-

alytical model of trading behaviour are verified empirically using a range of stocks and

institutional trades in S&P500 stocks. Part II examines the Leverage Effect at the index

level. The research supports previous findings that the Leverage Effect is far larger at

the index level and decays more quickly. Again using an information theoretic analysis,

it shows that it is driven by a combination of trading volumes and an asymmetric rela-

tionship between index returns and stock return correlations. Part III examines the time

variation of the Leverage Effect at the stock and index levels. It shows that they are both

time dependent and discusses the relationship between the stock and index levels. It also

documents changes in market behaviour since the 2008 financial crisis. Part IV exam-

ines the Leverage Effect in stock options by developing a descriptive statistical model of

implied volatility using multivariate q-Gaussian distributions. This is the first research to

show that implied volatility can be modelled using q-Gaussian distributions and provides

a tool for trading and risk management. It also shows how the multivariate q-Gaussian

distribution could be used to generate virtual data for scenario testing and option pric-

ing using a simple Markov Chain or Auto-regressive process. Finally PartV presents the

conclusions of the thesis and avenues for future research.
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Abbreviations

ATMF At-The-Money-Forward

EMI Effective Mutual Information

IV Implied Volatility

IVS Implied Volatility Surface

MCMC Makov-Chain Monte Carlo

MI Mutual Information

MLE Maximum Likelihood Estimation

PMI Partial Mutual Information

PT Prospect Theory

TE Transfer Entropy
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Part I

The Leverage Effect in Stocks
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Chapter 1

Literature Review: The Stock Level

Leverage Effect

1.1 Introduction

The Leverage Effect refers to the negative correlation between an asset’s return and its

volatility. The effect was first documented by Black (1976) and it is to this work that

the effect lends its name. The effect has subsequently been evidenced by many authors

and is now regarded as a stylised fact (Cont, 2001). The effect may also be referred

to as return-volatility asymmetry or simply volatility asymmetry. The effect may seem

obvious, since volatility is defined as a relative quantity; it naturally increases when the

price decreases simply because the price appears in the denominator. However, despite

nearly four decades since its identification there remains significant disagreement as to

both the cause and the direction of causation i.e. does a drop in an asset’s price trigger

greater volatility or does an increase in volatility lead to a fall in an asset’s price? Many

authors have also suggested that the effect is contemporaneous. The size of the Leverage

Effect also appears to vary between different types of assets. For instance, it appears far

stronger at the index level than at the stock level. Different models have been proposed to

explain the Leverage Effect but with varying success.

In this chapter I review the proposed models for the Leverage Effect at the stock
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level. The ‘Leverage Hypothesis’ (Section 1.2), proposed by Black (1976), speculates that

the Leverage Effect is the result of changes in a firm’s financial leverage which leads to

changes in expectations over a firm’s risk and hence its volatility. The ‘Volatility Feedback

Hypothesis’ (Section 1.3) has been considered by numerous authors, including Campbell

and Hentschel (1992), Bekaert and Wu (2000) and Aydemir et al. (2006). This conjectures

that when news enters the market there is an increase in market volatility. As a result

investors’ expectations of future returns increase and the price consequently decreases.

The ‘Retarded Volatility Hypothesis’ (Section 1.4) developed by Bouchaud et al. (2001).

This proposes that the Leverage Effect has no economic significance but is the result of

a lagged response to price changes. Finally, the ‘Volume Hypothesis’ which conjectures

that the Leverage Effect can be explained by investors’ trading behaviour (Section 1.5). I

then present a summary of the findings in Section 1.6.

1.2 Leverage Hypothesis

The negative correlation between a stock’s return and its volatility was first identified by

Black (1976). He proposed that a drop in the value of a firm’s equity will cause a negative

return and thus increase the stock’s leverage (i.e. its debt/equity ratio), this increase in

leverage will, in turn, lead to a rise in the volatility of the stock. A similar effect may

arise even if the firm has almost no debt because of ‘operating leverage’. These are fixed

costs that cannot be eliminated, at least in the short run, hence when expected revenues

fall, profit margins decline as well. The effect therefore became known as the Leverage

Effect. I will now summarise the empirical evidence.

Black (1976) - studied 30 US Stocks (1964-1975), at the monthly frequency, using

the linear regression:

σ t+1−σ t

σ t
= a0 +a1rt + ε t+1 (1.1)

where rt is the stock return at time, t, and σt is the volatility at time, t (calculated as

the square root of the sum of daily squared returns).
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Although, Black did not report detailed results of his regressions he found that a1 < 0

and usually a1 <−1.

Christie (1982) - studied 379 US Stocks (1962 - 1978), at the quarterly frequency,

using the linear regression:

ln
(

σ t+1

σ t

)
= a0 +a1rt + ε t+1 (1.2)

where rt is the daily returns at time, t, and σt is the volatility at time, t.

Christie found that E(a1)=−0.23. This was supported by Figlewski and Wang (2000)

at the monthly and quarterly frequency using 100 US Stocks (1977-1996). Christie (1982)

also found that a1 was strongly negatively correlated with financial leverage (Debt/Equity

Ratio). Thus he concluded that leverage was the dominant factor but probably not the sole

factor in determining a1.

Cheung and Ng (1992) - studied 251 US Stocks (1962-1989), at the daily frequency,

using an exponential Generalised Auto-Regressive Conditional Heteroskedacity (eGARCH)

model:

ln(σt) = a0 +a1rt−1 +a2|rt−1|+a3 ln(σt−1) (1.3)

where the conditional volatility, σt , depends upon the lagged volatility, σt−1, the

lagged absolute returns, |rt−1| and the lagged returns, rt−1.

The shock to the stock return, εt , on day, t, is given by

εt = σtrt (1.4)

Cheung and Ng (1992) found that a1 < 0 for over 95% of the firms and confirmed the

negative correlation between a1 and financial leverage. They also found a strong positive

correlation between a1 and firm size.

Duffee (1995) - studied 2,500 US Stocks (he separates continuously traded firms)

(1977-1991), at the daily and monthly frequency, using a linear regression similar to

Christie (1982) and the contemporaneous relationships:
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ln(σ t) = b0 +b1rt + ε t,1 (1.5)

ln(σ t+1) = b0 +b2rt + ε t+1,2 (1.6)

the usual lagged stock return coefficient is the difference, a1 ≡ b2−b1.

Duffee made several findings 1) for a ‘typical firm’, b1 is strongly positive whilst the

sign of b2 is dependent upon the frequency over which the relations are estimated; it is

positive at the daily frequency and negative at the monthly frequency. However, regard-

less of the sign of b2, it is always the case that b1 > b2, implying that a1 < 0. 2) The

negative relationship between a1 and financial leverage is confirmed only with monthly

data, for the subset of continuously traded firms. For a larger sample of firms, without sur-

vivorship bias, the correlation between turns positive. 3) a1 is positively correlated with

size but b1 and b2 are negatively correlated with size. Therefore, the positive correlation

of a1 with size is a consequence of the fact that the size effect in b1 is stronger than in

b2. This conflicts with the results of Cheung and Ng (1992) but Duffee suggests that this

may be because their eGARCH model produces far smoother estimates of stock volatility

than absolute daily returns; more akin to the monthly data. 4) The contemporaneous rela-

tion between returns and volatility is much greater for firms that are eventually delisted.

Duffee concludes that the standard interpretation for a1 < 0 , that an increase in rt corre-

sponds to a decrease in σt+1, is incorrect. Rather the effect is mainly due to the positive

contemporaneous relationship between returns and volatility. He argues that since the

‘Leverage Hypothesis’ has no implications for the strength of the contemporaneous re-

lationship, there must be another reason for at least part of the correlation between firm

debt/equity ratios and the regression coefficient, a1. Using longer period lagged returns,

Hasanhodzic and Lo (2011) and Daouk and Ng (2011) claim to show that this relationship

is not contemporaneous. However, this simply shows that the effect is persistent as shown

by Bouchaud et al. (2001).

Hasanhodzic and Lo (2011) - studied >700 US Stocks (they separated all-equity
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and all-debt financed firms) (1972-2008), at the daily and monthly frequency, using the

regressions of Black (1976), Christie (1982) and Duffee (1995).

They found that all-equity financed firms generally have a more negative value for a1

than the all-debt financed firms. Hence they concluded that the Leverage Effect was not

the result of leverage and instead favour the ‘Volatility Feedback Hypothesis’ (Section

1.3) or ‘Behavioural Models’ (Section 1.5).

Figlewski and Wang (2000) - studied 100 US Stocks (1977-1996), at the monthly

and quarterly frequency, testing several implications of the ‘Leverage Hypothesis’:

1) A positive return should decrease leverage and volatility by the same amount as it

increases it for a negative return of the same size. To examine this they used the following

regression to separate up and down markets effects:

ln
(

σ t+1

σ t

)
= b0 +b1rt +b2 ftrt (1.7)

where ft is a dummy variable ( ft = 1 for rt < 0 and ft = 0 otherwise). The leverage

effect is measured by b1 in an up market and (b1 + b2) in a down market. They found

that b2 is far more negative than b1 and is statistically significant. This implies that there

is a strong impact on volatility when stock prices fall and a much weaker effect or even

positive when they rise. This led Figlewski and Wang (2000) to propose a new label

for the Leverage Effect,: the ‘down-market effect’. Interestingly, b1 is generally positive

which implies that volatility increases when the stock price increases. However, Daouk

and Ng (2011) say this is because they do not account for the Auto-Regressive Conditional

Heteroskedacity (ARCH) effect. They state that “When positive returns are large, ARCH

effect pushes volatility higher while the Leverage Effect pushes volatility lower. Since

ARCH is the dominant effect, volatility increases. It does not mean that the Leverage

Effect is not important”.

2) The amount of leverage in the firm’s financial structure should determine the volatil-

ity and not the change in leverage. Hence a permanent change in leverage should produce

a permanent change in volatility. To examine if the change in volatility related to price

changes is permanent or dies out over time they used the following regression:
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ln
(

σ t+1

σ t

)
= b0 +b1rt +b2rt−1 +b3rt−2 (1.8)

If the Leverage Effect was entirely due to the actual change in firm leverage associated

with a change in the stock price, the estimates for b1, b2, and b3 should be of approxi-

mately equal size. By contrast, a spike in volatility resulting from a non-permanent factor,

such as a burst of ‘irrational exuberance’ in the market, may be expected to die out once

the market calms down. This can then be modified to allow for an asymmetry between up

and down moves:

ln
(

σ t+1

σ t

)
= b0 +b1rt +b2rt−1 +b3rt−2 +b4 ftrt +b5 ft−1rt−1 +b6 ft−2rt−2 (1.9)

They found that the effect tends to die out over time.

3) The mechanism through which leverage changes should be unimportant i.e. altering

the level of debt or shares outstanding should have the same effect on volatility as stock

price changes. In order to conduct this analysis they analysed the following regression:

ln
(

σ t+1

σ t−3

)
= b0 +b1k4D+b2k4N +b3krt +b4k ft4D+b5k ft4N +b6k ftrt (1.10)

where ΔD is the quarterly change in the log of the book value of the firm debt, ΔN

is the change in the log of the number of shares outstanding and k is a multiplicative

constant. They found that changes in stock prices in the market seem to account for

the entire Leverage Effect with combined influence (b3 + b6) being greater than 1. In

fact, if there is any impact from share or debt issuance, these results suggest that the

effect is positive. This finding is in accordance with the commonly accepted behavioural

interpretation. This states that firms issue equity when it is overvalued (decrease leverage)

and retire equity when it is undervalued (increase leverage). The former is seen as negative

and the price tends to fall whilst the latter is positive and the price tends to rally. This

is in accordance with the findings of Pontiff and Woodgate (2008). They found that
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during the post-1970 time period, share issuance is strongly correlated with future returns

ranging from one month to three years. In the case of annual share issuance, statistical

significance is greater than the previously documented predictability attributed to book-

to-market, size, and momentum.

Daouk and Ng (2011) - studied >1400 US Stocks (1987-2003), at the monthly fre-

quency, using several methods for unlevering stocks using the market price of debt. They

found that the Leverage Effect was generally not statistically significant once the stocks

were unlevered. They also found that effect of financial leverage is negative and signif-

icant at the 1% level but there does not seem to be any significant relationship between

operating leverage and the Leverage Effect.

Kogan (2004) found that firm investment activity and firm characteristics, particularly

the book-to-market ratio might lead to the Leverage Effect. He developed this hypothesis

through the development of a production economy model in which real investment is

irreversible and subject to convex adjustment costs. However, Daouk and Ng (2011)

found no observable relation between the Leverage Effect and beta or book-to-market

value at the firm-level.

Hens and Steude (2009) - studied 24 students in an experimental stock market with

an artificial stock that had no leverage. The stock paid a dividend (the true stochastic

nature of which was unknown to participants) at the end of each period, through a double

auction mechanism. The experimental design was based upon the consumption based

asset pricing model of Breeden (1979).

The Leverage Effect naturally emerges in the four experimental markets. Using Crv(τ)=

Corr
(
rt ,r2

t+τ

)
, they discovered Crv(1) =−0.26(0.0158),−0.44(0.0000),−0.52(0.0000)

and −0.39(0.0026); with associated p-values shown in brackets. Crv is negative and sta-

tistically significant at the 5% level in all four markets. However, only two of the series

exhibit leverage with two or three lags and these are not statistically significant. Their

three control experiments also demonstrated leverage although not to the same degree

Crv(1) = −0.03;−0.24;−0.04 - this may be because they were run for shorter periods -

which shows that the exact generating process has no influence on the Leverage Effect.
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1.3 Volatility Feedback Hypothesis

Black termed this the ‘reverse causation effect’ and it refers to the causal relationship

from volatility changes to stock returns; it is also known as the time-varying risk premium

hypothesis. This hypothesis speculates that an increase in volatility implies an increase

in the future required expected return of the stock, hence a decline in the current stock

price. In addition, due to the persistent nature of volatility (large realizations of either

good or bad news increase both current and future volatility), a feedback loop is created:

the increased current volatility raises expected future volatility and therefore, expected

future returns, causing stock prices to fall now.

Smith and Yamagata (2011) – studied 242 US Stocks (1973-2007), at the monthly

frequency using panel vector auto-regression. They found that volatility feedback effects

are present at the firm level due to market and firm effects with market effects being

significantly stronger. They also identify significant leverage effects which persist for

three to four months. Aydemir et al. (2006) developed a general equilibrium model that

generates macroeconomic conditions that led to realistic dynamics for the risk-less rate

and the market price of risk. In this model the economy is driven by the counter-cyclical

risk-aversion caused by external habit formation in the representative agent’s preferences.

They conclude that at the stock level, financial leverage is an important driver of stock

volatility dynamics but in bad times they are still driven by the market conditions. Daouk

and Ng (2011) claim that this is in line with their empirical investigations. Most of the

other research on the volatility feedback hypothesis has focussed on stock market indices

or portfolios of stocks. Bekaert and Wu (2000) aggregated individuals stocks into small

portfolios but, as Daouk and Ng (2011) state, this aggregation process diminishes the

importance of the Leverage Effect at the firm-level.

1.4 Retarded Volatility Hypothesis

Bouchaud et al. (2001) argue that the stock level Leverage Effect can be interpreted within

a ‘retarded’ model where the amplitude of the price changes does not follow the instan-
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taneous price level but rather absolute price changes are related to an average level of the

past price. This reflects the lag with which market operators change their behaviour (order

volumes, bid-ask spreads, transaction costs etc.) when the price evolves. Bouchaud et al.

(2001) state that “although it is true that on the long run, price increments tend to be pro-

portional to prices themselves, this is not reasonable at short time scales. Locally, prices

evolve in discrete steps (ticks), following buy or sell orders that can only be expressed as

an integer number of contracts. The mechanisms leading to price changes are therefore

not expected to vary continuously as prices evolve, but rather to adapt only progressively

if prices are seen to rise (or decrease) significantly over a certain time window”.

Bouchaud et al. (2001) - studied 437 US stocks, 500 European stocks and 300 Japanese

stocks (1990–2000) at the daily frequency using the cross-correlation function, Crv:

Crv(τ) =
Corr

(
r2
t+τ ,rt

)(
r2
t
)2 (1.11)

where rt is the return at time, t, τ is the time lag.

Using the exponential fit:

Crv(τ) =−Ae(−τ/T ) (1.12)

where A is the amplitude and T is the decay time, they find that: US stocks (A = 1.9

and T = 69 days), European stocks (A = 1.96 and T = 38 days) and Japanese stocks

(A = 1.5 and T = 47 days).

The authors remark “this exponential decay should be contrasted with the very slow,

power-law like decay of the volatility correlation function, which cannot be characterized

by a unique decay time. Therefore, a new time scale seems to be present in financial

markets, intermediate between the very high frequency time scale seen on the correlation

function of returns (several minutes) and the very low frequency time scales appearing

in the volatility correlation function”. They only found significant correlations for τ > 1

which implies that correlation exists between future volatilities and past price changes or

conversely that volatility changes do not convey any useful information on future price

29



changes.

They then developed a simple ‘retarded’ model where the change of prices are cali-

brated not on the instantaneous value of the price but on an exponential moving average

of the price. The model predicts that Crv(τ → 0) =−2 which fits reasonably well for the

US and European markets but not for the Japanese markets.

1.5 Volume Hypothesis

Avramov et al. (2006) propose that the Leverage Effect can be fully explained by the in-

teraction between contrarian and herding investors. Their analysis shows that when stock

prices fall, herd (uniformed) investors govern the next period volatility. Since they act in

the direction of price change they exacerbate the move and cause volatility to increase.

However, when the stock price rises, contrarian (informed) investors, govern the next pe-

riod volatility which causes a reduction in volatility because they trade in the opposite

direction to the price change.

They calculate the following regressions for each stock and then group them into

quintiles by size:

rt =
5

∑
k=1

akDk,t +
12

∑
k=1

bkrt−k + c
St

Nt
+ εt (1.13)

where rt is the stock return at time, t; Dkt are the day-of-the-week dummy variables,

St is the number of sell transactions at time, t, and Nt is the total number of trades at time,

t. |εt | is then the volatility measure for:

|εt |= a0 +a1Mt +
12

∑
k=1

bk |εt−k|+ cNt +

(
δ0 +δ1

St−1

Nt−1

)
εt−1 +ηt (1.14)

where Mt is the Monday dummy variable. 12 lags are used as independent variables

to account for the persistence in volatility. The total number of trades, N, is used as an

explanatory variable to proxy for the trading volume. The coefficient δ0 (with δ1 = 0) has

traditionally be been used to study the impact of stock price changes on future volatility.

Here they have only considered sell trades but the buy trades can be estimated separately.
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When δ1 = 0, the results show that E [δ0] < 0 for each of the quintiles and for all

stocks. This implies that the Leverage Effect is present and strong at the daily frequency.

When δ1 is not restricted to 0, E [δ0] > 0 and E [δ1] < 0. A negative δ1 suggests that the

asymmetric volatility effect is time varying with selling activity. The results also indicate

that in the presence of a negative unexpected return, selling activity increases next day

volatility. Whilst with a positive unexpected return, selling activity leads to a decrease

in the next day volatility. These results are robust to the contemporaneous relationship

between selling activity and stock price declines because the variable St/Nt ensures that

they are orthogonal. The authors conclude “A negative δ1 combined with a positive δ0

suggests that the well-documented negative coefficient in the regression of volatility on

lagged return, or the asymmetric volatility effect, is entirely attributable to the interaction

between selling activity and return”.

Having shown the importance of trading activity to the Leverage Effect they then

proceed to examine the empirical evidence for their herding/contrarian hypothesis. Sell

trades in the presence of positive (negative) unexpected returns were designated contrarian

(herding) trades. Formally, the contrarian trades were denoted as, St/Nt ∗ (εt ≥ 0), where

(εt ≥ 0) is a dummy variable that is equal to one when the unexpected return is non-

negative and zero otherwise. The herding trades were denoted as, St/Nt ∗ (εt < 0), where

(εt < 0) is a dummy variable that is equal to one when the unexpected return is negative

and zero otherwise. The notion is that sell trades in the presence of decreasing prices are

designated as herding trades and sell trades in the presence of rising prices are designated

as contrarian trades. They assess the impact of contrarian and herding sell trades on

volatility using the following specification:

|εt |= a0 +a1Mt +
12

∑
k=1

bk |εt−k|+ cNt + . . .

(
δ0 +δ1

St−1

Nt−1
∗ (εt−1 ≥ 0)+δ2

St−1

Nt−1
∗ (εt−1 < 0)

)
εt−1 +ηt (1.15)

This specification separates the impact of sell trades by conditioning on positive and
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negative unexpected returns. Whilst, it is expected that δ1 + δ2 < 0, the two variables

should also each be negative because contrarian sell trades should reduce volatility with

εt−1≥ 0, and herding sell trades should increase volatility with εt−1 < 0. The results show

that δ2 is significantly negative across each quintile for both the number of shares sold

and the number of sell trades. This means that when the stock price declines, volatility

increases and the increase is attributed to herding sell trades (large and small investors).

When selling activity is measured in terms of shares, representing actions of large traders,

δ1 is also significantly negative across all quintiles. This implies that selling activity

of large investors leads to a decrease in stock volatility. In addition, since δ2 > δ1, this

implies that selling activity has a larger impact on volatility when conditioned on negative

unexpected returns. [δ1 is statistically insignificant when sales are measured in terms

of the number of transactions]. The negative coefficient on the herding selling activity

and the negative or zero coefficient on the contrarian selling activity combine to give

the negative coefficient on the overall selling activity, thereby explaining the asymmetric

volatility phenomenon.

They also link herding traders with uniformed traders and contrarian traders with in-

formed traders. They propose that uninformed traders increase volatility whilst informed

traders decrease volatility; based upon the works of Hellwig (1980) and Wang (1994).

To make the distinction between informed and uninformed traders, they use the theory

of Campbell et al. (1993). This posits that sell and buy trades that lead to price rever-

sals can be classed as non-informational trades whilst those that preceded an unchanged

stock price are informed trades. The results of this analysis are consistent with that of the

contrarian and herding hypothesis. Finally, they analysed the effect of trade size, since

Easley and O’Hara (1987) suggests that informed traders are more likely to submit larger

orders. Their analysis supports this view and they find that small uninformed trades in-

crease volatility by more than large uniformed trades. Similarly large informed trades

reduce volatility by more than small informed trades.
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1.5.1 Returns and Volume

The return-volume relation has been studied extensively over the years both at the indi-

vidual stock and aggregate levels, with much of the early research focused on the contem-

poraneous relationship. Most of this research focused on well developed markets, usually

in the US (Saatcioglu and Starks, 1998). A detailed review of these analyses has been

conducted by Karpoff (1987) and Gallant et al. (1992). Whilst Granger and Morgenstern

(1963) and Godfrey et al. (1964) were unable to identify any relationships, Ying (1996)

discovered that returns and volumes were positively related. This finding has been sup-

ported by subsequent research [Epps and Epps (1976), Harris and Gurel (1986), Morgan

(1976), Rogalski (1979) and Smirlock and Starks (1988)]. However, some of this re-

search may be misleading because they simply analysed the mean correlation and not the

distribution of correlations.

Other research has found that trading volumes can be a useful metric to predict future

stock returns. Antoniewicz (1993) found that returns of individual stocks on high volume

days are more sustainable than returns on low volume days. Stickel and Verrecchia (1994)

found that when earnings announcements are accompanied by higher volume, returns are

more sustainable in the following days. Chordia and Swaminathan (2000) found that the

returns of stocks with high trading volumes lead those with small volumes. Llorente et al.

(2002) found that the returns of stocks of smaller firms show positive auto-correlation

and larger stocks show return reversal. Llorente et al. (2002) was able to explain these

results by suggesting that hedging (contrarian) trades generate negatively auto-correlated

returns and speculative (herding) trades generate positively auto-correlated returns. They

also went further to relate this to informational asymmetry. Smaller stocks have more

information asymmetry and hence more subject to speculative trading.

Recent research has focused on causality and the dynamic relationship between re-

turns and volume. Chuang et al. (2009) state that this is more informative for prediction

and risk management. The majority of this research has found a bi-directional relation-

ship between returns and volume. These include Hiemstra and Jones (1994) who used

both linear and non-linear Granger causality to examine stocks on the NYSE and Chen
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et al. (2001) who examined the effect across nine international stock markets. Chuang

et al. (2009) noted that examining Granger causality of distribution means (or variances)

may lead to misleading results. Hence they examined quantile relationships of the dis-

tribution. Using this method they also found two way Granger causality for the NYSE

and S&P500 but only volume Granger causes returns on the FTSE100 and not vice versa.

Saatcioglu and Starks (1998) in a study of Latin American markets also found that volume

causes price changes and not vice versa. However, these results were in conflict with the

results of Lee and Rui (2002) who found that volume did not Granger cause returns on

the New York, Tokyo or London exchanges.

1.5.2 Volume and Volatility

As reviewed by Karpoff (1987) and Gallant et al. (1992), numerous authors have doc-

umented a strong positive relationship between volume and volatility. Crouch (1970a),

Crouch (1970b), Karpoff (1987), Wood et al. (1985) and Mulherin and Gerety (1988)

found positive correlations between the absolute values of daily price changes and daily

volumes. Harris (1983) found similar results for squared values of daily price changes.

Whilst Morgan (1976), Westerfield (1977) and Epps and Epps (1976) document that the

variance of price changes are positively correlated with volumes. Using evidence of lin-

ear and non-linear Granger causality tests, Brooks (1998) found evidence of bi-directional

causality with volatility dominating. HoweverJones et al. (1994a)found that the positive

volatility-volume relation actually reflects the positive relation between volatility and the

number of transactions whilst Chan and Fong (2000a) find that the size of trades and order

imbalance play an important role.

There have been models proposed to explain the effect which also apply to the return-

volume relationship. The first are based upon differences in investor opinions and expec-

tations. Wang (1994) developed a rational expectations model which linked trading vol-

ume to stock price volatility under asymmetric information, whilst He and Wang (1995)

developed a multi-period model with heterogeneous investors and differential informa-

tion. Harris and Raviv (1993) developed Difference of Opinions theory which assumes

34



that investors are homogenous with respect to their prior beliefs and the new information

they receive. The second are information based models. The Mixture of Distributions

Hypothesis conjectures that the time series of market returns is drawn from a mixture of

conditional distributions with varying degrees of efficiency in generating the expected re-

turn. Another model is the sequential information arrival model where Copeland (1976),

Copeland (1977) and Jennings et al. (1981) proposed models with asymmetric dissemi-

nation of information.

1.5.3 Behavioural Biases and Heuristics

If the Leverage Effect arises due to investor trading behaviour it is also likely that it is

influenced by a behavioural process. This proposition is supported by Hens and Steude

(2009) and Hasanhodzic and Lo (2011) who state “these results lead us to conclude that

rather than being the result of leverage, the inverse relationship between average return

and volatility is due to human cognitive perceptions of risk”. They suggest that investor

behaviour is shaped by their recent experiences which alter their perceptions of risk and

hence give rise to changes in demand for risky assets. Hibbert et al. (2008) examined

the relationship between stock-market returns and changes in implied volatility (derived

from option prices) at both the daily and intraday level. They found that neither the

‘Leverage Hypothesis’ nor the ‘Volatility Feedback Hypothesis’ adequately explained the

results. They also suggest that their empirical results are consistent with concepts from

behavioural finance. However, these behavioural models have only ever been discussed

in informal terms.

Gennaioli and Shleifer (2010) have modelled biased perceptions of risk where individ-

uals combine current information with past experiences that are the most representative of

the current situation. Such judgments will be biased not only because the representative

scenarios that come to mind depend on the situation being evaluated but also because the

scenarios that first come to mind tend to be stereotypical ones. In the market context, the

first memory that comes to mind for an investor who has experienced significant financial

loss is despair. As a result, emotions take hold, prompting the investor to quickly reverse
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their positions. The view that our recent experiences can have substantial effects on our

future behaviour is also backed by Lleras et al. (2009). They show that memories of past

experiences affect the kinds of information we pay attention to today. In particular, they

compare the effects on the attention system of externally-attributed rewards and penalties

to the memory-driven effects that arise when subjects repeatedly perform a task. They

find that in both cases the attention system is affected in analogous ways. This leads them

to conclude that memories are tainted (positively or negatively) by implicit assessments of

our past performance. Other biases of particular relevance are the Representativeness and

Affect heuristics (rules of thumb or mental short cuts) and Extrapolation bias. Shefrin

(2007) gives an example of Representativeness as when investors judge the risk-return

relation for stocks to be negative (based on survey results), since investors view high re-

turn and low risk to be representative of a good investment. Hibbert et al. (2008) suggest

that this concept can be extended to the market such that larger negative (positive) re-

turns and larger (smaller) risk or volatility are viewed as related characteristics of market

behaviour. Finucane et al. (2000a) discusses the ‘Affect’ heuristic and shows how the la-

bels generated can strongly affect people’s decisions. The ‘Affect’ characteristic is where

people form emotional associations with activities, with a positive ‘Affect’ label being

considered good and a negative ‘Affect’ label being bad. Finally, Extrapolation bias is

the extrapolation of past events to form a forecast in combination with those who believe

that recent events are representative of the future. Another model that has frequently been

used to ascertain how individuals make trading decisions is Prospect Theory. This was

developed by Kahneman and Tversky (1979), and posits that investors care about relative

changes in wealth rather than absolute wealth and that investors perceive losses and gains

differently; losses being more harshly felt than gains (loss-aversion).
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1.6 Summary

In this chapter I presented the current research on the Leverage Effect - the negative cor-

relation between an asset’s return and its volatility - at the stock level and the evidence

for the proposed models. The research, which has largely been focused on western mar-

kets, shows that the Leverage Effect is observable at the daily, monthly and quarterly

time scales. The main models proposed to explain the Leverage Effect, ‘Leverage Hy-

pothesis’ (Black, 1976), the ‘Volatility Feedback Hypothesis’ (numerous authors includ-

ing Campbell and Hentschel (1992)) and the ‘Retarded Volatility Hypothesis’ (Bouchaud

et al., 2001) all present significant anomalies. The most promising research has been

based upon trading volumes. Avramov et al. (2006) propose that, at the stock level, the

Leverage Effect arises due to the interaction between contrarian (informed) and herding

(uniformed) investors. Herding (uniformed) investors buy stock when the price rises and

sell when the price falls which leads to an increase in volatility because they trade in the

direction of the price change. It was posited that they govern the volatility dynamics when

the stock price falls. Whereas contrarian (informed) investors sell stock when the price

rises and buy stock when the price falls which causes a reduction in volatility because

they trade in the opposite direction to the price change. It is posited that they govern the

volatility dynamics when the stock price rises. This explanation is also consistent with a

behavioural based explanation as suggested by Hasanhodzic and Lo (2011) and Hens and

Steude (2009), however, this has only ever been discussed informally.

In Chapter 2 I will examine the evidence for trading volumes as an explanation for

the Leverage Effect using information theory before analysing a behavioural model in

Chapter 3.
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Chapter 2

An Information Theoretic Analysis of

Stock Returns, Volatility & Trading

Volumes

2.1 Introduction

In Chapter 1 I outlined the current research on the Leverage Effect at the stock level. The

Leverage Effect refers to the observed negative correlation between an asset’s return and

its volatility; first documented by Black (1976). Unfortunately, the main economic mod-

els, the ‘Leverage Hypothesis’, the ‘Volatility Feedback Hypothesis’ and the ‘Retarded

Volatility Hypothesis’, all present significant anomalies. The most promising research

(Avramov et al., 2006) asserts that the Leverage Effect can be fully explained by trading

volumes. In this chapter I further examine how trading volumes relate to stock returns

and volatility for S&P500 stocks. I not only examine the cross-covariance functions, as

done by Bouchaud et al. (2001), but also conduct causal inference. Traditionally causal

inference has been examined using Granger causality within linear auto-regressive mod-

els or non-linear extensions such as those developed by Hiemstra and Jones (1994); this is

commonly used among practitioners in finance and economics. Unfortunately, Diks and

Panchenko (2005) show that the Hiemstra and Jones (1994) test may not in fact measure
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Granger causality and can lead to spurious results. Consequently, I take an alternative ap-

proach and use information theory. This is particularly apposite in this context due to its

ability to deal with non-linear relationships such as those identified in returns and trading

volumes (Hiemstra and Jones, 1994). Furthermore, Barnett et al. (2009) and Hlaváčková-

Schindler and Paluš (2007) show that Transfer Entropy (T E), a particular information

theoretic measure, is equivalent to Granger causality for a range of distributions. My

results highlight the dominant role played by trading volumes in all of the relationships

and supports the findings of Avramov et al. (2006) that the Leverage Effect is driven by

trading volumes; although I also find that index returns play an important role.

The chapter initially presents a literature review of Granger causality and information

theory (Section 2.2) before detailing the data and model calibration (Section 2.3). The

results are shown in Section 2.4 with the conclusions given in Section 2.5.

2.2 Literature Review

2.2.1 Granger Causality

Much of the causal inference analysis in the financial and economics literature has relied

upon Granger causality. This is based upon the premise that the process X strictly Granger

causes another process Y if future values of Y can be better predicted using past values

of X rather than only past values of Y . This notion was originally introduced by Wiener

(1956) and later formalised in terms of linear auto-regression by Granger (1969). As

stated by Barnett et al. (2009), identifying Granger causality is not identical to identifying

a physically instantiated causal interaction in a system; this can only be unambiguously

identified by perturbing the system. Instead, it is a causal relation in a statistical sense.

Hiemstra and Jones (1994) state a condition for instantaneous Granger causality but due

to problems in distinguishing between instantaneous causality and instantaneous feed-

back they only consider strict Granger causality; this is consistent with other research.

A major problem with Granger causality is that most real problems, such as the return-

volume relation are non-linear (Hiemstra and Jones (1994) and Chuang et al. (2009)).
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This led researchers such as Baek and Brock (1992) and Hiemstra and Jones (1994) to

develop non-linear extensions to Granger causality. The Hiemstra and Jones (1994) test

is now the most commonly used method among practitioners in finance and economics.

Unfortunately, Diks and Panchenko (2005) show that this measure may not actually test

Granger causality and identify numerous situations in which the test actually fails. An

alternative approach is to use a truly non-linear and non-parametric method such as infor-

mation theory.

Information theory was originally developed to examine properties in signal process-

ing such as data compression by Shannon (1948). However, it is now widely used in

the physical sciences for problems such as statistical inference due to its ability to anal-

yse non-linear statistical dependencies. Mutual Information (MI) is a popular measure

in the field of information theory. MI gives the mutual reduction in uncertainty of one

variable given another. For example, one can calculate the reduction in uncertainty of the

daily return at time, t, by knowing the daily volume at time, t. If there is no reduction

in uncertainty then the daily returns and volumes are statistically independent. Unfortu-

nately, since this measure is symmetric under the exchange of variables it is only able to

determine if two variables are related. However, if one wishes to imply causation one

can simply add a time-lag to one variable; this assumes that the causal effect cannot back

propagate through time. For example, one can find the reduction in uncertainty in the

daily return at time, t +1, given the daily volume at time, t and vice versa. If there is only

a reduction in uncertainty in one direction or one is substantially larger, then one variable

must be strongly influencing or causing the changes in the other variable. Alternatively,

one can use an asymmetric measure such as T E (Schreiber, 2000), an information theo-

retic measure of time directed information transfer between jointly dependent processes.

Barnett et al. (2009) states that T E is not framed in terms of prediction but in terms of

resolution of uncertainty. The T E from Y to X is the degree to which Y disambiguates the

future of X beyond the degree to which X already disambiguates its own future. This par-

allels the notion of Granger causality. In fact Barnett et al. (2009) show that T E is equiv-

alent to Granger causality for Gaussian distributed variables and Hlaváčková-Schindler
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(2011) extended this to variables distributed as exponential Weinmans, log-normals and

certain parametrisations of Generalised Gaussians.

2.2.2 Information Theory

For a continuous random variable, X , with probability density, p(x), the differential en-

tropy - the continuous version of the Shannon entropy - is defined as:

H(X) =−
ˆ

x
p(x) ln p(x)dx (2.1)

this is measured in terms of nats as it uses natural logarithms.

To understand the relationship between two variables one must examine the informa-

tion transmitted between them. To do this I use MI which for two random variables X and

Y is given by:

MI(X ,Y ) = H(X)+H(Y )−H(X ,Y ) (2.2)

where H(X ,Y ) is obtained from the joint distribution p(x,y) of (X ,Y ).

MI is i) symmetric MI(X ,Y )=MI(Y,X), ii) bounded, 0≤MI(X ,Y )≤min{H(X),H(Y )},

where MI(X ,Y ) = 0 only if X and Y are independent, and iii) MI(X ,Y ) = H(Y ) only if

Y is a function of X . Since MI is symmetric it is necessary to use a time lag (τ) to see

how information is transferred through time i.e. X(t)→ Y (t + τ) and Y (t)→ X(t + τ).

Assuming that the effects do not back propagate through time, this method can be used to

imply causation between X and Y . The time lagged mutual information, MI (X ;Y )t,τ , is

given by:

MI (X ;Y )t,τ =

ˆ
p(xt ,yt+τ) ln

(
p(xt ,yt+τ)

p(xt) p(yt+τ)

)
dxdy (2.3)

Unfortunately, the problem is often complicated by the interaction of additional vari-

ables. In order to overcome this problem one can use Partial Mutual Information (PMI),

also known as conditional mutual information, which was developed by Frenzel and

Pompe (2007). It is based upon the premise of partial correlations which allow one to
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establish the correlation between two variables, (X ,Y ), whilst controlling for additional

variables, (Z). PMI can be seen diagrammatically in Figure 2.1, where the measure of

interest is the shaded area, MI(X ,Y | Z).

Figure 2.1: Partial Mutual Information (PMI) Diagram

Shows how the Partial Mutual Information, MI(X ,Y |Z) (shaded area). It shows the relationship between
the entropies, H, of variables X , Y and Z.

The PMI is given by

MI(X ,Y | Z) = H(X ,Z)+H(Y,Z)−H(Z)−H(X ,Y,Z) (2.4)

which corresponds to

MI(X ,Y | Z) =
ˆ

p(x,y,z) ln
p(x,y,z)p(z)
p(x,z)p(y,z)

dxdydz (2.5)

where p(x,y,z) is the joint probability of (X ,Y,Z). PMI is symmetric under the same

condition Z, MI(X ,Y | Z) = MI(Y,X | Z) and MI(X ,Y | Z)≥ 0; zero is only obtained if X

and Y are independent under condition Z. PMI can be very useful in controlling for indi-

rect effects. For example, one can examine the relationship between returns and volatility

- here represented as X and Y - whilst controlling for trading volumes - represented by Z -

or one can examine the persistence in the relationship between returns, (X), and volumes,

(Y ), whilst controlling for auto-information, (Z).

One can also infer causation using a truly asymmetric measure such as T E which gives

the time directed information transfer between jointly dependent processes and is a form
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of Kullback-Leibler divergence (Kullback and Leibler, 1951). Hlaváčková-Schindler and

Paluš (2007) show that this is equivalent to a specification of PMI. The T E from Y to X

is given by:

T E (Y → X)t,τ = ∑ p(xt+τ ,xt , ...,xt−m+2,yt−1, ...,yt−l+1) . . .

ln
p(xt+τ | xt , . . . ,xt−m+1,yt−1, . . . ,yt−l+1)

p(xt+τ | xt , ...,xt−m+1)
(2.6)

where m and l are the lengths of the vectors X and Y respectively and τ is the time lag.

I have made a slight modification to the standard T E formula to condition only on past

values of Y . This is consistent with Hiemstra and Jones (1994) who identify between strict

and instantaneous Granger causality, with the former only conditioning on past values of

Y .

The T E can also be written as:

T E (Y → X)
τ
=−H (Wτ ,X ,Y )+H (Wτ ,X)+H (X ,Y )−H (X) (2.7)

where Wτ ≡ xt+τ . T E ≥ 0 and is not symmetric under the exchange of X and Y . T E =

0 if X and Y are independent. The Transfer Entropy from Y to X gives the information

about a future observation of x obtained from the simultaneous observation of some past

of both x and y, minus the information about the future of x obtained from the past of x

alone.

In a comparative analysis of MI estimators Papana and Kugiumtzis (2009) show that

the k-nearest neighbour method is the most stable estimator, being less affected by model-

specific parameters. The k-nearest neighbour algorithm is a method used to estimate the

probability density. In the k-nearest neighbour method we grow the volume surrounding

the estimation point x until it encloses a total of k data points. The density then becomes:

p(x) =
k

NcdεD
k (x)

(2.8)
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where εD
k (x) is the distance between the estimation point x and its k-th closest neigh-

bour. This can be calculated using a distance measure such as the Euclidian distance. cd

is the volume of the unit sphere in D dimensions equal to:

cd =


1

(D/2)!π
D/2

1
(D/2)!π

(D−1)/22D (D−1
2

)
!

i f D is even

i f D is odd
(2.9)

As outlined by Frenzel and Pompe (2007), this method can be used to calculate the MI

for two dimensions (X ,Y ) - which could be returns and volumes or returns and volatility

- as follows: For a given number of neighbours, k, calculate the maximum distance in the

joint distribution, ε2
k . Then for each time point, t, in the marginal distributions, calculate

the number of nearest neighbours, N(t); these are points with the most similar values. This

allows one to calculate the harmonic number, hN(t)which is given by:

hNx(t) =−
N

∑
n=1

n−1 (2.10)

The harmonic numbers may then be used to calculate the MI:

MI(X ,Y ) =
〈

hNx(t) +hNy(t)

〉
−hNk−1−hNT−1 (2.11)

where 〈〉 indicates a time average, T is the number of observations and k is the pre-

specified number of neighbours. The PMI can also be calculated as:

MI(X ,Y | Z) =
〈

hNxz(t) +hNyz(t)−hNz(t)

〉
−hNk−1 (2.12)

It is important to select the appropriate value for k because if k is too small then the

estimator will be prone to sampling error but if k is too large then the estimator can be

exposed to bias.
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2.3 Methodology

2.3.1 The Data

The data is sourced from Bloomberg and covers daily stock returns and volumes for 488

stocks from the S&P500 during the period 1980-2012. The stocks have a daily mean

return of 0.0410%, a daily mean standard deviation of 0.0259 and a mean daily volume

of 2.2493M shares. The data is not corrected for stocks that have been added/removed

from the indices. Since the data represents the constituent stocks as of 2012, the data set

is prone to survivorship bias. Stocks that have ceased to trade or have dropped out of

the index over this time may display different dynamics/relationships hence this research

makes no statement about these stocks. This may be an interesting area of future research.

All statistics and results have been calculated at the individual stock level and then av-

eraged to give a value for the overall index. The significance levels have been estimated

by calculating the various measures using surrogate data sets with similar statistical prop-

erties but without the inter-relationships; this is consistent with similar research.

2.3.2 Calibrating the Model

First, let me define the variables with which I will conduct the analysis (these are at the

daily frequency):

Returns:

rt = ln [Pt ]− ln [Pt−1] (2.13)

where Pt is the stock price at time, t.

Normalised Returns:

r̂t =
rt

σr
(2.14)

where σr is the standard deviation of the returns.

Volatility:
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vt = r2
t (2.15)

Normalised Volatility:

v̂t =
vt

σv
(2.16)

where σv is the standard deviation of the volatility.

Normalised Volume:

x̂t =
xt

σx
(2.17)

where xt is the stock volume at time, t, and σx is the standard deviation of the volumes.

Here I have normalised variables by dividing by the standard deviation of the whole

sample of the stock data. The purpose of this is to set each stock to unit variance so that

they can easily be compared and to improve the convergence of the estimators. By taking

this approach it may bias some techniques because one is influencing historic returns by

future volatility. However, the MI estimator should in principle be independent of scale

factors.

The results are shown with stretched exponential curve fits:

f (x) = Aexp
(
−x1/T

)
(2.18)

where A is the amplitude, T is the decay rate in days.

In order to calibrate the algorithm it is necessary to ascertain the number of nearest

neighbours, k, and the number of observations required to generate stable results. Fig-

ure 2.2 shows the MI (r̂t , v̂t+1), MI (r̂t , x̂t+1) and MI (x̂t , v̂t+1). Figure 2.2 (Top) shows

that the MI converges as the number of nearest neighbours, k, increases for each of the

measures. It indicates that the measures have largely converged for k ≈ 100. Figure 2.2

(Bottom) shows the MI for varying data lengths from 250− 2500 days; k = 100. The

MI appears stable over the data lengths examined which implies that over these periods
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the mean MI is stationary; this is a requirement to estimate stable and consistent results.

Consequently, in the following analysis I will use k = 100 and exclude stocks with less

than 250 observations.
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Figure 2.2: Mutual Information Calibration for Stocks at the Daily Frequency

(Top) Shows the mean MI for S&P500 stocks as a function of the number of nearest neighbours, k. The
blue stars with dashed line is the MI (r̂t , v̂t+1), the red diamonds with solid line is the MI (r̂t , x̂t+1) and the
green squares with dot-dashed line is MI (x̂t , v̂t+1). These are given with associated one standard errors
and exponential curve fits. The results appear to show that the MI converges as the number of nearest
neighbours increases and that k ≈ 100 should be sufficient to produce stable results. (Bottom) Shows the
mean MI for S&P500 stocks across a range of data lengths (days). The blue stars with dashed line is the
MI (r̂t , v̂t+1), the red diamonds with solid line is the MI (r̂t , x̂t+1) and the green squares with dot-dashed
line is the MI (x̂t , v̂t+1). These are given with associated one standard errors and k = 100. The results
indicate that the MI does not vary considerably for observation periods between 250 - 2500 days. This
suggests that the mean MI is stationary over the time periods considered.
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2.4 Results

2.4.1 Persistence of Returns, Volatility and Volumes

The first step to understanding the properties of stock returns, volatility and trading vol-

umes is to analyse their auto-mutual information and auto-covariance functions. These

functions indicate how the variables persist over time. Figure 2.3 shows the auto-mutual

information (Top) and auto-covariance functions (Bottom) for returns, volatility and vol-

umes for S&P500 stocks. It shows that they all exhibit statistically significant auto-

information. It also shows that the auto-information for volumes is significantly larger

than for returns or volatility. The auto-covariance functions for volumes and volatility

also show that they are highly persistent and statistically significant; with the former be-

ing of a larger magnitude. The notable difference is the lack of auto-covariance in returns;

this has been documented previously (Cont, 2001). This difference could be an indication

that the lower order moments are arbitraged out in the market. This is important as it

could lead to spurious results when using linear causality analysis.

- Returns, Volatility and Volumes all display Auto-Information
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Figure 2.3: Auto-Mutual Information and Auto-Covariance for Stocks at the Daily Fre-
quency

Shows the auto-mutual information (Top) and normalised auto-covariance (Bottom) functions. They are
calculated for returns (blue stars with dashed lines), volatility (green squares with dot-dashed lines) and
volumes (red diamonds with solid lines). These are given with associated one standard errors, exponential
curve fits and 95% Significance Levels (black dashed lines). The MI is statistically significant for returns,
volatility and volumes with the MI for volumes significantly larger than for returns or volatility. The
auto-covariance function exhibits many of the same properties as the auto-mutual information function
except that the auto-covariance for returns is not statistically significant at any time horizon.
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2.4.2 Returns and Volumes

Figure 2.4 shows the cross-mutual information (Top) and normalised cross-covariance

(Bottom) functions for returns and volume. It shows that both the MI (r̂t , x̂t+τ) and

MI (x̂t , r̂t+τ) are statistically significant and persistent. MI (r̂t , x̂t+τ) > MI (x̂t , r̂t+τ) 1 6

τ 6 3 but equal for τ > 4. Hence the MI implies a bi-directional information flow between

returns and volumes. These results contrast with those of the cross-covariance function

which only shows structure for Cov(rt ,xt+τ); this is only statistically significant for τ 6 2.

In the past, some authors have found this asymmetry sufficient to imply causation. This

would imply that returns cause volumes.

However, when determining causation, the cross-mutual information function can be

misleading due to indirect effects such as auto-information. For example, if there is a

significant MI between returns at time, t, and volume at time, t, then there could be MI

between returns at time, t, and volume at time, t + 1, indirectly due to a significant MI

between volume at time, t, and volume at time, t + 1. To correct for auto-information I

calculate the partial cross-mutual information function, where I control for the variable

Z =
[

ĵt , ..., ĵt+τ−1
]
for τ ≥ 1 where ĵ is the normalised returns for MI (x̂t , r̂t+τ |Z) and the

normalised volumes for MI (r̂t , x̂t+τ |Z). Figure 2.5 (Top) shows the partial cross-mutual

information function for returns and volume. It shows that only the MI (x̂t , r̂t+1|r̂t) is

statistically significant at the 95% confidence level. Hence, the PMI implies that volumes

cause returns and not vice versa. In addition, since neither MI is statistically significant

for τ > 1, the PMI also implies that the persistence is due to auto-information.

Unfortunately, strong and persistent linear correlations, such as those observed in Fig-

ure 2.3, can still influence the PMI at shorter time horizons. To correct for this I consider

the T E over longer time horizons as suggested by Schreiber (2000). Figure 2.5 (Bot-

tom) shows the cross-transfer entropy function for returns and volumes. This shows that

T E (x̂t → r̂t+τ)> T E (r̂t → x̂t+τ) for all τ . However, they only support the PMI for τ < 3

because beyond this point, T E (r̂t → x̂t+τ) is statistically significant. Hence the PMI may

be unduly influenced by the persistence of the linear correlations. The T E implies bi-

directional (Granger) causality between volumes and returns with volumes dominating.
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- Persistence in the return-volume relation is driven by auto-information

- There is bi-directional (Granger) causality between returns and volumes

with volumes dominating
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Figure 2.4: Cross-Mutual Information and Cross-Covariance Functions for Stock Returns
and Volume at the Daily Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions between
returns and volume. The blue squares with solid lines show the MI (x̂t , r̂t+τ) and Corr (xt ,rt+τ). The green
diamonds with dot-dashed lines show the MI (r̂t , x̂t+τ) and Corr (rt ,xt+τ). These are given with associated
one standard errors, stretched exponential curve fits and 95% Significance Levels (dashed black lines). The
MI is statistically significant and persistent in both directions with MI (r̂t , x̂t+τ)> MI (x̂t , r̂t+τ) for
1 6 τ 6 3 but approximately equal for τ > 4. This indicates bi-directional causality between returns and
volumes. However, the cross-covariance function shows that there is only structure for Corr (rt ,xt+τ) and
this is only statistically significant for τ 6 2. This could indicate that returns cause volumes and not vice
versa.

51



0 1 2 3 4 5 6 7 8 9 10 11
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

P
ar

tia
l M

ut
ua

l I
nf

or
m

at
io

n

Returns/Volume Cross−Mutual Information (ex Auto) for S&P500 Stocks

Time Lags (τ) / days

 

 

 MI ( r
t
,x

t+τ | Z )  (R2=0.91)

 MI ( x
t
,r

t+τ | Z )  (R2=0.99)

95% Significance Level

0 50 100 150
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

T
ra

ns
fe

r 
E

nt
ro

py

Return/Volume Cross−Transfer Entropy for S&P500 Stocks

Time Lag (τ) / days

 

 

 TE ( r
t
 → x

t+τ ) 

 TE ( x
t
 → r

t+τ ) 

95% Significance Level  ( r
t
 → x

t+τ ) 

95% Significance Level  ( x
t
 → r

t+τ ) 

Figure 2.5: Partial Cross-Mutual Information and Cross-Transfer Entropy Functions for
Stock Returns and Volumes at the Daily Frequency

(Top) Shows the partial cross-mutual information function for returns and volume, where I have controlled
for auto-information. The green diamonds with dot-dashed lines represent the MI (r̂t , x̂t+τ |Z) where
Z =

[
ĵt , ..., ĵt+τ−1

]
for τ > 1 and ĵ are the normalised volumes. The blue squares with solid lines represent

the MI (x̂t , r̂t+τ |Z) where Z =
[

ĵt , ..., ĵt+τ−1
]

for τ > 1 and ĵ are the normalised returns. It is given with
associated one standard errors, stretched exponential curve fits and a 95% Significance Level (dashed
black line). It shows that only the MI (x̂t , r̂t+1|r̂t) is statistically significant at the 95% confidence level.
Hence, the PMI implies that volumes cause returns and not vice versa. In addition, since neither MI is
statistically significant for τ > 1, the PMI also implies that the persistence is due to auto-information.
(Bottom) Shows the cross-transfer entropy function for returns and volumes. The green diamonds
represent T E (r̂t → x̂t+τ) and the blue squares represent the T E (x̂t → r̂t+τ). This is given with associated
one standard errors and 95% Significance Levels which are represented by the green dot-dashed line for
T E (r̂t → x̂t+τ) and the dashed blue line for T E (x̂t → r̂t+τ). The T E results show that
T E (x̂t → r̂t+τ)> T E (r̂t → x̂t+τ) for all τ . However, they only support the PMI results for τ < 3 because
beyond this point, T E (r̂t → x̂t+τ) is statistically significant. This indicates that the PMI may be unduly
influenced by the persistence in the linear correlations. The T E implies bi-directional (Granger) causality
between volumes and returns with volumes dominating.
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2.4.3 Volume and Volatility

Figure 2.6 shows the cross-mutual information (Top) and normalised cross-covariance

(Bottom) functions for volumes and volatility. The first thing that you will notice is

the similarities between Figures 2.4 and 2.6. This is because the volatility is simply

the square of the returns, so the MI struggles to differentiate between the two variables.

Again, the MI (v̂t , x̂t+τ) and MI (x̂t , v̂t+τ) are both statistically significant and persistent.

MI (v̂t , x̂t+τ) > MI (x̂t , v̂t+τ) for 1 6 τ 6 3 but for τ ≥ 4 they are of equal magnitudes.

This implies a bi-directional information flow between volumes and volatility. The re-

sults of the cross-mutual information are consistent with those of the cross-covariance

which show that the Cov(vt ,xt+τ) and Cov(xt ,vt+τ) are both positive and statistically

significant for τ . 22. It is also evident that Cov(vt ,xt+τ)>Cov(xt ,vt+τ) for τ . 15.

Figure 2.7 (Top) shows the partial cross-mutual information function for volumes and

volatility, where I have controlled for auto-information. It shows that the MI is only

statistically significant for MI (x̂t , v̂t+1 | v̂t). Hence the PMI implies that volumes cause

volatility and not vice versa. Again, since neither MI is statistically significant for τ > 1,

the PMI also implies that the persistence is due to auto-information. The cross-transfer

entropy function (Figure 2.7 (Bottom)), indicates that the PMI results are again likely

the result of persistent linear correlations because the T E (v̂t → x̂t+τ) is statistically sig-

nificant for τ & 20. Therefore the T E results indicate bi-directional (Granger) causality

between volumes and volatility with volumes dominating.

- Persistence in the volume-volatility relation is driven by auto-information

- There is bi-directional (Granger) causality between volatility and volumes

with volumes dominating
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Figure 2.6: Cross-Mutual Information and Cross-Covariance Functions for Stock Volatil-
ity and Volume at the Daily Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions for
volumes and volatility. The green diamonds with dot-dashed lines represent the MI (v̂t , x̂t+τ) and the
Cov(vt ,xt+τ). The blue squares with solid lines represent the MI (x̂t , v̂t+τ) and the Cov(xt ,vt+τ). Both
graphs are given with associated one standard errors, stretched exponential curve fits and 95% Significance
Levels (black dashed lines). The MI is statistically significant and persistent in both directions with
MI (v̂t , x̂t+τ)> MI (x̂t , v̂t+τ) for 1 6 τ 6 3 but approximately equal for τ > 4. This indicates bi-directional
causality between volume and volatility. This is consistent with the results of the cross-covariance function
which shows that Cov(vt ,xt+τ) and Cov(xt ,vt+τ) are positive and statistically significant for τ . 22. It is
also evident that Cov(vt ,xt+τ)>Cov(xt ,vt+τ) for τ . 15.
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Figure 2.7: Partial Cross-Mutual Information and Cross-Transfer Entropy Functions for
Stock Volatility and Volumes at the Daily Frequency

(Top) Shows the partial cross-mutual information function for volumes and volatility where I have
controlled for auto-information. The green diamonds with dot-dashed lines represent the MI (v̂t , x̂t+τ |Z)
where Z =

[
ĵt , ..., ĵt+τ−1

]
for τ ≥ 1 and ĵ are the normalised volumes. The blue squares with solid lines

represent the MI (x̂t , v̂t+τ |Z) where Z =
[

ĵt , ..., ĵt+τ−1
]

for τ ≥ 1 and ĵ are the normalised volatility. It is
given with associated one standard errors, stretched exponential curve fits and a 95% Significance Level
(black dashed line). The MI is only statistically significant for MI (x̂t , v̂t+1 | v̂t) which indicates that
volumes cause volatility and not vice versa. Since neither MI is statistically significant for τ > 1, the PMI
also implies that the persistence is due to auto-information.. (Bottom) Shows the cross-transfer entropy
function for volumes and volatility. The green diamonds represent T E (v̂t → x̂t+τ) and the blue squares
represent T E (x̂t → v̂t+τ). This is given with associated one standard errors and 95% Significance Levels
where the green dot-dashed line is for the T E (v̂t → x̂t+τ) and the dashed blue line is for the
T E (x̂t → v̂t+τ). This shows that T E (x̂t → v̂t+τ)> T E (v̂t → x̂t+τ) for all τ . However, they only support
the results of the PMI for τ . 20 because beyond this point, T E (v̂t → x̂t+τ) is statistically significant.
This indicates that the PMI may be unduly influenced by the persistence of the linear correlations. The T E
implies bi-directional (Granger) causality between volumes and volatility with volumes dominating.
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2.4.4 Returns and Volatility

Figure 2.8 shows the cross-mutual information (Top) and normalised cross-covariance

(Bottom) functions for returns and volatility. The cross-mutual information function

shows that the MI (r̂t , v̂t+τ) and the MI (v̂t , r̂t+τ) are both statistically significant and per-

sistent. It also shows that MI (r̂t , v̂t+τ) ≈ MI (v̂t , r̂t+τ), as mentioned previously, this is

because the MI struggles to differentiate the variables since volatility is simply the square

of the returns. This implies a bi-directional information flow between returns and volatil-

ity. The Leverage Effect is clearly identifiable in the cross-covariance function by the

negative covariance between returns and volatility. The cross-covariance function only

shows structure for Cov(rt ,vt+τ); which is statistically significant for τ . 9. This led

authors, such as Bouchaud et al. (2001), to imply causation from returns to volatility.

Figure 2.9 (Top) shows the partial cross-mutual information function for returns and

volatility where I have controlled for auto-information. The PMI estimate is overstated

because it is not possible to control for the auto-information from the variables when τ = 1

because the volatility is directly calculated from the returns and hence controlling for one

indirectly controls for the other. Again the PMI is unable to separate returns and volatility

but they are now only statistically significant for τ ≤ 2 which indicates the persistence is

due to auto-information. The T E (Figure 2.9 (Bottom)) on the other hand does manage

to separate the returns and volatility. It shows that T E (v̂t → r̂t+τ) > T E (r̂t → v̂t+τ) but

whilst T E (r̂t → v̂t+τ) is only statistically significant for τ ≈ 10 days, T E (v̂t → r̂t+τ) is

statistically significant for τ > 50 days. This implies bi-directional (Granger) causality

between volatility and returns with volatility dominating.

- Persistence in the return-volatility relation is driven by auto-information

- There is bi-directional (Granger) causality between returns and volatility at

the daily frequency
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Figure 2.8: Cross-Mutual Information and Cross-Covariance Functions for Stock Returns
and Volatility at the Daily Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions for returns
and volatility. The green diamonds with dot-dashed lines represent the MI (r̂t , v̂t+τ) and the Cov(rt ,vt+τ).
The blue squares with solid lines represent the MI (v̂t , r̂t+τ) and the Cov(vt ,rt+τ). Both graphs are given
with associated one standard errors, stretched exponential curve fits and 95% Significance Levels (black
dashed lines). The cross-mutual information function shows that MI (r̂t , v̂t+τ) and MI (v̂t , r̂t+τ) are both
statistically significant and persistent. It also shows that MI (r̂t , v̂t+τ)≈MI (v̂t , r̂t+τ), this is because the MI
struggles to differentiate the variables since the volatility is simply the square of the returns. This implies
a bi-directional information flow between returns and volatility. However, the cross-covariance function
only shows structure for Cov(rt ,vt+τ); which is statistically significant for τ . 9. Some authors have found
this sufficient to imply causation from returns to volatility. The negative correlation between returns and
volatility is commonly known as the Leverage Effect.
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Figure 2.9: Partial Cross-Mutual Information and Cross-Transfer Entropy Functions for
Stock Returns and Volatility at the Daily Frequency

(Top) Shows the partial cross-mutual information function for returns and volatility where I have con-
trolled for auto-information. The green diamonds with dot-dashed lines represent the MI (r̂t , v̂t+τ |Z) where
Z =

[
ĵt , ..., ĵt+τ−1

]
for τ ≥ 2 and ĵ are the normalised volatilities. The blue squares with solid lines rep-

resent the MI (v̂t , r̂t+τ |Z) where Z =
[

ĵt , ..., ĵt+τ−1
]

for τ ≥ 2 and ĵ are the normalised returns. It is given
with associated one standard errors, stretched exponential curve fits and a 95% Significance Level (black
dashed lines). The PMI is unable to separate returns and volatility but the MI is only statistically significant
for τ ≤ 2 which indicates the persistence is due to auto-information. (Bottom) Shows the cross-transfer
entropy function for returns and volatility. The green diamonds represent the T E (r̂t → v̂t+τ) and the blue
squares represent T E (v̂t → r̂t+τ). This is given with associated one standard errors and 95% Significance
Levels which are represented by the green dot-dashed line for T E (r̂t → v̂t+τ) and the dashed blue line for
T E (v̂t → r̂t+τ). It shows that T E (v̂t → r̂t+τ) > T E (r̂t → v̂t+τ) but whilst T E (r̂t → v̂t+τ) is only statisti-
cally significant for around τ ≈ 10 days, T E (v̂t → r̂t+τ) is statistically significant for τ > 50 days. This
implies bi-directional (Granger) causality between volatility and returns with volatility dominating.
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In order to decouple the returns and volatility I examined the effects at the weekly

frequency where I have defined the volatility as the sum of the squared daily returns over

the week. Figure 2.10 shows the cross-mutual information (Top) and normalised cross-

covariance (Bottom) functions for returns and volatility at the weekly frequency. Firstly,

the cross-covariance function exhibits very similar features at the daily and weekly fre-

quencies, only exhibiting structure for Cov(rt ,vt+τ). Christie (1982), amongst others, has

identified a negative correlation between returns and volatility (Leverage Effect) up to

the quarterly frequency. Secondly, the MI has started to separate the returns and volatil-

ity with MI (r̂t , v̂t+τ) > MI (v̂t , r̂t+τ) for τ . 12. Since both are statistically significant

this implies a bi-directional information flow between returns and volatility. However, the

PMI and T E are more interesting. Figure 2.11 (Top) shows the partial cross-mutual infor-

mation function for returns and volatility at the weekly frequency where I have controlled

for auto-information. MI (v̂t , r̂t+τ |Z)> MI (r̂t , v̂t+τ |Z) for τ < 6, with only MI (v̂t , r̂t+1|r̂t)

statistically significant. This implies that volatility causes returns and not vice versa. This

is supported by the T E (Figure 2.11 (Bottom)) but the T E (v̂t → r̂t+τ) is statistically sig-

nificant for τ > 24 weeks. These results indicate that volatility (Granger) cause returns at

the weekly frequency and not vice versa. This could also be true at the daily frequency

but in order to prove this one must consider aggregating high frequency data to decouple

returns and volatility.

- Volatility (Granger) cause returns at the weekly frequency
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Figure 2.10: Cross-Mutual Information and Cross-Covariance Functions for Stock Re-
turns and Volatility at the Weekly Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions for re-
turns and volatility at the weekly frequency. The green diamonds with dot-dashed lines represent the
MI (r̂t , v̂t+τ) and the Cov(rt ,vt+τ). The blue squares with solid lines represent the MI (v̂t , r̂t+τ) and the
Cov(vt ,rt+τ). Both graphs are given with associated one standard errors, stretched exponential curve
fits and 95% Significance Levels (black dashed lines). The cross-mutual information function shows that
MI (r̂t , v̂t+τ)> MI (v̂t , r̂t+τ) for τ . 12 but they are both statistically significant and persistent. This implies
a bi-directional information flow between returns and volatility. The cross-covariance function only shows
structure for Cov(rt ,vt+τ) which is statistically significant for τ < 5. This shows that the Leverage Effect is
also observable at the weekly frequency.
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Figure 2.11: Partial Cross-Mutual Information and Cross-Transfer Entropy Functions for
Stock Returns and Volatility at the Weekly Frequency

(Top) Shows the partial cross-mutual information function for returns and volatility at the weekly frequency.
The green diamonds with dot-dashed lines represent the MI (r̂t , v̂t+τ |Z) where Z =

[
ĵt , ..., ĵt+τ−1

]
for τ ≥ 1

and ĵ are the normalised volatilities. The blue squares with solid lines represent the MI (v̂t , r̂t+τ |Z) where
Z =

[
ĵt , ..., ĵt+τ−1

]
for τ ≥ 1 and ĵ are the normalised returns. These are given with associated one stan-

dard errors, stretched exponential curve fits and a 95% Significance Level (dashed black line). It shows
that the MI (v̂t , r̂t+τ |Z) > MI (r̂t , v̂t+τ |Z) for τ < 6 with only MI (v̂t , r̂t+1|r̂t) statistically significant. This
indicates that volatility cause returns at the weekly frequency and not vice versa. (Bottom) Shows the cross-
transfer entropy functions for returns and volatility at the weekly frequency. The green diamonds represent
the T E (r̂t → v̂t+τ) and the blue squares represent the T E (v̂t → r̂t+τ). These are given with associated
one standard errors and 95% Significance Levels which are represented by the green dot-dashed line for
T E (r̂t → v̂t+τ) and the dashed blue line for T E (v̂t → r̂t+τ). The T E results support those of the PMI but
the T E (v̂t → r̂t+τ) is now statistically significant for τ > 24 weeks. This indicates that volatility (Granger)
cause returns at the weekly frequency and not vice versa.
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To examine the impact of trading volumes on the Leverage Effect I examine the MI

using MI (r̂t , v̂t+1|x̂t , x̂t+1) (or MI (v̂t , r̂t+1|x̂t , x̂t+1) since they are equivalent at the daily

frequency). I extend the MI measure to be an Effective Mutual Information (EMI) mea-

sure where the MI from a secondary ‘random’ process is subtracted from the MI to give

the ‘significant’ information transfer. Table 2.1 shows that trading volumes account for

49.47% of the EMI between returns and volatility at the 1 day time lag. However, the

EMI is still statistically significant. Hence, I also examine if the Leverage Effect is af-

fected by systemic effects by also controlling for the normalised index returns, r̂i,t , i.e.

Z = [x̂t , x̂t+1, r̂i,t , r̂i,t+1]. Table 2.1 shows that controlling for trading volumes and index

returns accounts for 92.63% of the EMI between returns and volatility at the 1 day time

lag. These results indicate that the relationship between returns and volatility is driven by

trading volumes and index returns (evidence of a index level feedback effect).

- Trading volumes are a driver of the return-volatility relation

- Index returns are a driver of the return-volatility relation
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Table 2.1: Effective Mutual Information for the Stock Level

Leverage Effect Controlling for Trading Volumes and Index

Returns

Index No. of

Stocks

EMI

(r̂t , v̂t+1)

EMI

(r̂t , v̂t+1 | x̂t , x̂t+1)

EMI

(r̂t , v̂t+1 | x̂t , x̂t+1, r̂i,t , r̂i,t+1)

S&P500 488 0.0095 ± 0.0008 0.0048 ± 0.0005 0.0007 ± 0.0003

Shows the EMI (r̂t , v̂t+1) for S&P500 stocks at the daily frequency. EMI (r̂t , v̂t+1 | x̂t , x̂t+1) shows that

trading volumes account for 49.47% of the EMI between returns and volatility at the 1 day time lag.

Controlling for index feedback effects using index returns, r̂i,t , r̂i,t+1. The EMI (v̂t , r̂t+1 | x̂t , x̂t+1, r̂i,t , r̂i,t+1)

is now only 0.0007 ± 0.0003 which means that trading volumes and index returns account for 92.63% of

the EMI between returns and volatility at the 1 day time lag. These results indicate that the relationship

between returns and volatility is driven by trading volumes and index feedback effects. [Since the EMI

cannot differentiate between EMI (r̂t , v̂t+1) and EMI (v̂t , r̂t+1) at the daily frequency, the results presented

in this table are equivalent].
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2.5 Conclusions

In this chapter I examined the impact of trading volumes on stock returns and volatility

for S&P500 stocks. The results highlighted the dominant role played by trading volumes

in these relationships. In analysing the Leverage Effect I found that trading volumes

accounted for 50% of the EMI between returns and volatility. I also found that a further

43% of the EMI could be attributed to feedback effects from the index level.

The research also produced a number of stylised facts, from an information theoretic

perspective, which may give insights into the functioning of the financial markets:

1) Returns, volatility and volumes all display auto-information.

2) There is bi-directional (Granger) causality between volumes and stock returns but

volumes dominate. This supports the findings of Hiemstra and Jones (1994) and Chuang

et al. (2009) who also identify bi-directional Granger causality using linear and non-linear

Granger methods.

3) At the daily frequency, there is bi-directional (Granger) causality between returns

and volatility - with volatility dominating - but at the weekly frequency, volatility (Granger)

causes returns and not vice versa.

4) There is bi-directional (Granger) causality between volumes and volatility but vol-

umes dominate. Brooks (1998) also found bi-directional causality using linear and non-

linear Granger causality but he found that volatility dominates.

5) The persistence in the relationships between returns, volatility and volumes are

driven by auto-information.

6) Appendix A shows that at the weekly frequency volumes (Granger) cause volatility.

These results are consistent across a range of international markets (Appendix B).

The importance of trading volumes has several implications. Firstly, it implies that

we can learn more about the stock market by studying the joint dynamics of stock prices

and trading volumes than the univariate dynamics alone; consistent with Gallant et al.

(1992). Secondly, we must better understand how investors make trading decisions in

order to fully understand the Leverage Effect. Therefore, in the next chapter I investigate

the affect of trading behaviour on the relationship between returns and trading volumes.
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Chapter 3

Return-Volume Correlation and its

Behavioural Origins

3.1 Introduction

In the previous chapter I showed the importance of trading volumes in explaining the

stock level Leverage Effect. This means we must understand how we make trading deci-

sions and how these decisions affect stock returns and volatility. In this chapter I use an

analytical model to show that the contemporaneous correlation between stock returns and

trading volumes is governed by the optimal trading strategy. I also demonstrate that the

optimal trading strategy is itself governed by expected stock returns, the standard devia-

tions of returns and investor preferences. I verify these findings empirically using a broad

range of developed and emerging market stocks and the trading activity of institutional

investors in S&P500 stocks. My findings complement those of Llorente et al. (2002) who

show that contrarian (hedging) trades lead to negatively auto-correlated returns whilst

herding (speculative) trades lead to positively auto-correlated returns.

In order to examine the impact of the optimal trading strategy, I utilise the analytical

model of Barberis and Xiong (2009). The model allows me to calculate the optimal

trading strategy for investors with Prospect Theory (PT) preferences in a complete market.

PT is a model of decision under uncertainty developed by Kahneman and Tversky (1979)
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which posits that individuals care about changes in wealth rather than absolute wealth

and perceive gains and losses differently. Using this model, I find that return-volume

correlation exists when investors have Prospect Theory preferences but not when they

have linear preferences. I also find that both negative and positive correlations may exist

but they are driven by different trading strategies. Negative return-volume correlation,

which is the most prevalent, is generated by a contrarian trading strategy. This is where

investors buy as the stock price falls and sell as the stock price rises. The rationale is

that since investors are risk-seeking in the loss domain, they increase their stock position

when the stock price falls and since they are risk-averse in the gain domain, they reduce

their stock position when the stock price rises. On the other hand, positive return-volume

correlation is generated by a herding strategy. This is where investors buy as the stock

price rises and sell as the stock price falls. This strategy appears optimal when expected

returns are high and the standard deviation of returns is low. The rationale is that due to the

high expected returns and little downside risk - low standard deviation - they aggressively

buy when the stock rises to try to benefit from the rising price.

From the model I draw several predictions that are verified empirically for a broad

range of stocks. Return-volume correlation increases as 1) the Sharpe Ratio increases, 2)

investors move from contrarian to herding strategies, 3) the curvature of an individual’s

utility function decreases and 4) the degree of loss-aversion increases. I also re-examine

the empirical evidence for the contemporaneous return-volume correlation and extend

previous research to a broader range of emerging markets. Whilst the results generally

support previous findings of a positive return-volume correlation (summarised in Karpoff

(1987) and Gallant et al. (1992)), I also find evidence of negative return-volume correla-

tion; as predicted by the model. The negative correlation appears more prevalent in the US

and European markets and at longer time horizons. The reason for this discrepancy is that

much of the previous research has focussed on the mean correlation and not considered

the distribution of correlations.

The chapter begins by reviewing relevant literature (Section 2.2) and then proceeds

to outline the Barberis and Xiong (2009) model and how it relates to return-volume cor-
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relation (Section 3.3). The empirical investigation of return-volume correlation and the

model predictions is then presented in Section 3.5 with the conclusions in Section 3.6.

3.2 Literature Review

3.2.1 Prospect Theory

Prospect Theory, developed by Kahneman and Tversky (1979), posits that investors care

about relative changes in wealth rather than absolute wealth and that investors perceive

losses and gains differently; losses being more harshly felt than gains (loss-aversion).

Hence it provides a framework to understand how individuals make decisions under un-

certainty. It has frequently been used to ascertain how individuals make trading decisions.

Consider the gamble ( f , p;g,q), to be read as ‘gain f with probability p and g with

probability q, independent of other risks’ where f ≤ 0≤ g and p+q = 1.

In the expected utility framework, an investor with utility function U(·) evaluates this

risk by computing:

U(p,(W + f );q,(W +g)) = pu(W + f )+qu(W +g) (3.1)

where W is his/her current wealth.

By contrast, in the Prospect Theory framework, the investor assigns the gamble the

value:

V (p, f ;q,g) = φ(p)v( f )+φ(q)v(g) (3.2)

where v(·) and φ(·) are known as the value function and the probability weighting

function respectively. These functions satisfy ν(0) = 0, φ(0) = 0 and φ(1) = 1.

An individual’s utility function is then parametrised in the following way:

v( f ) =


f α

−λ (− f )β

f or
f ≥ 0

f < 0
(3.3)
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for α,β ∈ (0,1) and λ > 1.

The utility function is concave in the gain domain which implies that investors are

risk-averse with gains because additional utility per unit of gain decreases with the size

of the gain. The concavity in the gain domain is governed by α . Conversely the func-

tion is convex in the loss domain which implies that investors are risk-seeking with losses

because the negative utility per unit of loss decreases with the size of the loss. The con-

vexity in the loss domain is governed by β . It also shows that investors are loss-averse,

with losses being more heavily felt than gains (λ > 1).

Experimentally Kahneman and Tversky (1979) find that α = β = 0.88 and λ = 2.25,

which implies that the concavity/convexity is mild but there is a strong sense of loss-

aversion, with losses felt more than twice as harshly as gains. Interestingly, Abdellaoui

et al. (2011) find that finance professionals have utility functions defined by α = 0.71 and

β = 0.93. This parametrisation increases the concavity in the gain domain and reduces

the convexity in the loss domain. This implies that professionals are more risk-averse in

the gain domain but less risk-seeking in the loss domain. Their results for loss-aversion,

λ , were mixed but the median value was 1.31, which is significantly less loss-averse than

the subjects of Kahneman and Tversky (1979) (Figure 3.1).
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Figure 3.1: Prospect Theory Utility Curve

This shows the shape of the utility function for different parametrisations. The black dashed line shows a
linear utility function and the blue stars and red squares represent the utility function for students (Kahne-
man and Tversky, 1979) and professionals (Abdellaoui et al., 2011) respectively. It shows that individuals
are risk-averse in the gain domain - function is concave in the gain domain - and risk-seeking in the loss
domain - function is convex in the loss domain. The function is also asymmetric, with losses more heavily
felt than gains (loss-aversion). It is clear that professionals and students have different utility functions; the
former being more risk-averse in the gain domain and more risk-seeking in the loss domain.
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3.3 Model (Barberis and Xiong, 2009)

Barberis and Xiong (2009) developed an analytically tractable model of the optimal trad-

ing strategy for investors with Prospect Theory preferences. The model assumes a com-

plete market, where the complete set of all possible gambles on future states-of-the-world

can be constructed with existing assets, without friction. They built upon the insights of

Cox and Huang (1989), who demonstrated that in a complete market, an investor’s dy-

namic optimization problem may be rewritten as a static problem in which he/she directly

chooses his/her wealth in the different possible states, at the final date. An optimal trading

strategy is then one that generates these optimal wealth allocations; in a complete market

such a trading strategy always exists. I will now briefly outline the basis of the model but

for an in-depth discussion I refer the reader to the original article.

Consider a portfolio choice setting with dates, t = [0,1, ...,T ], and two assets. A risk-

free asset, which earns a gross return of r f ≥ 1 in each period, and a risky asset. The price

of the risky asset, which may be thought of as an individual stock, evolves as a binomial

tree with a transition probability of 1
2 , so there is an equal probability of the stock rising

or falling.

To find the optimal strategy, Equation 3.4 maximises the investor’s Prospect Theory

utility over the period, T (this is taken to be 1 year):

V ∗ = max
kε{1,...,T}

( k

∑
l=1

q
− α

1−α

T,l πT,l

)1−α( T+1

∑
l=k+1

qT,lπT,l

)α

−λ

T+1

∑
l=k+1

πT,l

 (3.4)

where T is the final time, q is the price density at node, l, and π is the ex-ante prob-

ability of reaching node, l, in the binomial tree. λ is the loss-aversion parameter and α

governs the curvature of the utility function (Equation 3.3). The ex-ante probability, πt, j,

of reaching node, j, t is given by:

πt, j =
t!2−t

(t− j+1)!( j−1)!
(3.5)
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and qt, j is the state price density at node, j, t:

qt, j = qt− j+1
u q j−1

d (3.6)

where qu =
2(R f−Rd)
R f (Ru−Rd)

,qd =
2(Ru−R f )
R f (Ru−Rd)

and Ru/d = µ
1
T ±

[(
µ2 +σ2) 1

T −
(
µ2) 1

T

] 1
2

where

R f is the risk-free return, µ annual gross expected return and σ the standard deviation of

the risky asset.

To find the optimal wealth allocations, Wt, j, and share holdings of the risky asset,

xt, j, at each node, (t, j), in the tree, one must evaluate the value function (and calculate

backwards).

For V ∗ > 0, the optimal wealth allocation, WT, j, in node, j, at final date, T , is given

by:

WT, j =


W0rT

f

[
1+q

− α

1−α

T, j

(
∑

T+1
l=k∗+1 qT,lπT,l

∑
k∗
l=1 q

− α
1−α

T,l πT,l

)]

0

i f
j ≤ k∗

j > k∗
(3.7)

whilst for V ∗ ≤ 0

WT, j =W0rT
f j = 1, ...,T +1 (3.8)

where W0 is the initial investment and rT
f is the risk-free return over the period T .

Intermediate wealth allocations (Wt) and share holdings (xt) are calculated by working

backwards from date, T :

Wt, j =
1
2Wt+1, jqt+1, j +

1
2Wt+1, j+1qt+1, j+1

qt, j

 f or
0≤ t ≤ T −1

1≤ j ≤ t +1
(3.9)

xt, j =
Wt+1, j−Wt+1, j+1

P0

(
Rt− j+1

u R j−1
d −Rt− j+1

u R j
d

)
 f or

0≤ t ≤ T −1

1≤ j ≤ t +1
(3.10)

where P0 is the initial stock price.
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In the case that a strategy offers a non-positive utility, the investor chooses a wealth

level of W0rT
f in all final states; as in Equation 3.8. Otherwise, the investor adopts a

threshold strategy where he/she allocates a wealth level greater than the risk-free return

over the period T to the k∗, date, T , nodes with the lowest state price densities and a

wealth level of zero to the remaining date T nodes; as in Equation 3.7.

This model assumes that α = β which is consistent with the results of Kahneman

and Tversky (1979). For simplicity, the model also ignores the probability weighting

function, φ (•) . However, the authors state that this should not affect the analysis because

its primary effect is to over-weight low probabilities and this mainly affects assets with

highly skewed returns, which stocks are not.

3.3.1 Simulations

In order to examine this model, I simulate N = 100,000 investors trading a stock over a

one year period. The investors receive Prospect Theory utility at the end of this period.

I use a trading frequency T = 126 which equates to a trading frequency of nearly every

other day for a year. T=126 was chosen so that there were a sufficient number of trades

by each investor but not so large as to significantly increase the calculation time. [The

results do not appear to vary significantly with the trading frequency].

I analyse the degree of return-volume correlation, Crx, by calculating the correlation

between the stock return, r, and the change in share holding, δx, over the period t to t+1,

given by:

Crx = corr (rt,t+1,δxt,t+1) (3.11)

where

δxt,t+1 = ln
(

xt+1

xt

)
(3.12)

In order to evaluate the mechanism driving the volume dynamics, I also calculate the

proportion of buy orders, Z, that are placed when the stock price rises (falls), as follows:
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Zi =
Number o f Buy Orders

Total Number o f Orders
(3.13)

where i indicates the loss or gain domain i.e. when the stock price falls or rises. When

Zi > 0.5, investors are more likely to buy stock. Whereas when Zi < 0.5 they are more

likely to sell stock.

I now define a metric for the overall trading strategy, S:

S = Zgain−Zloss (3.14)

When S > 0 investors are using a herding strategy whilst when S < 0 they are using a

contrarian strategy.

3.3.2 The Effect of Expected Return and Standard Deviation

For the linear utility function (λ = 1.00 and α = 1.00), there is essentially no correlation

between returns and volume for any of the expected returns, µ , or standard deviations,

σ , measured (Figure 3.2 (Top)). However, a utility function with Prospect Theory prefer-

ences - using the parametrisation (λ = 2.25 and α = 0.88) which is equivalent to that of

Kahneman and Tversky (1979) - shows that return-volume correlation does emerge and

its degree varies with µ and σ (Figure 3.2 (Bottom)). The fact that return-volume correla-

tion only exists in the case where an investor has Prospect Theory preferences is evidence

that return-volume correlation is influenced by ones preferences.

Figure 3.2 (Bottom) shows that negative return-volume correlation (dark regions) ex-

ists when the Sharpe Ratio,
(

µ

σ

)
, is small and positive return-volume correlation (light

regions) when the Sharpe Ratio is large.

Hypothesis 1 : Return-Volume Correlation increases as the Sharpe Ratio
(

µ

σ

)
increases
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Figure 3.2: Return-Volume Correlation calculated using the Barberis and Xiong (2009)
model for Linear and Prospect Theory Preferences

(Top) Shows the degree of return-volume correlation generated by a linear utility function, for a range of
expected returns and standard deviations of returns. There is almost no correlation between returns and vol-
ume for the parameter values examined. (Bottom) Shows the degree of return-volume correlation generated
by a Prospect Theory utility function, for a range of expected returns and standard deviations. Negative
return-volume correlation (blue regions) exists below the diagonal and persist provided σ is sufficient to
dominate µ; otherwise positive return-volume correlation (red and yellow regions) exist. This contrasts
with the linear utility function which shows no return-volume correlation. This implies that return-volume
correlation is generated by an investor’s preferences.

To determine the cause of this return-volume correlation I examine the trading be-

haviour in the loss and gain domains. Figure 3.3 shows the proportion of buy trades in

the loss (Top) and gain (Bottom) domains. The light regions show where investors are
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more likely to buy (Z > 0.5) and the dark regions where the investors are more likely to

sell (Z < 0.5). In the loss domain (Top) investors are more likely to buy when the Sharpe

Ratio is small and more likely sell when the Sharpe Ratio is large; effect is reversed in

gain domain (Bottom).
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Figure 3.3: Trading Behaviour calculated using the Barberis and Xiong (2009) Model for
Linear and Prospect Theory Preferences

Shows the proportion of buy orders in the loss (Top) and gain (Bottom) domains, for a range of expected
returns and standard deviations. The red and yellow regions show where buy orders dominate and the blue
regions where the sell orders dominate. The buy orders dominate in the high volatility and low expected
return regimes in the loss domain (Top) but in the low volatility and high expected returns in the gain domain
(Bottom). Shows the trading behaviour which results in the return-volume correlation shown in Figure 3.2
(Bottom).
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It implies that the return-volume correlation arises due to the imbalance between trad-

ing volumes in the loss and gain domains. Negative return-volume correlation arises from

contrarian trading strategies where an investor buys stock (or does not sell) when the

price falls and sells stock (or does not buy) when the price rises. This arises naturally

with Prospect Theory preferences as investors are generally risk-averse in the gain do-

main and risk-seeking in the loss domain. In the contrarian strategies, buying stock after

the price falls dominates. In this case the trading metric, S, is negative. On the other

hand, positive return-volume correlation arises from herding strategies. This is when an

investor buys stock (or does not sell) when the price rises and sells stock (or does not buy)

when the price falls. The herding strategy appears to be optimal when the Sharpe Ratio is

large. Since the mechanism is driven by buy orders (after the stock price rises), this may

be because high expected returns give a good chance of benefiting from a positive return

with little downside risk due to the low relative standard deviation. In this case the trading

metric, S, is positive.

Hypothesis 2: Return-Volume Correlation increases as Investors move from Con-

trarian to Herding Strategies (i.e. as S increases)
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3.3.3 The Effect of the Utility Function

First I examine the affect of the curvature of the utility function on return-volume correla-

tion. In the model α = β , as found by Kahneman and Tversky (1979), so any adjustment

to curvature in the gain domain is mirrored by that in the loss domain. The effect of

curvature on the utility function is shown in Figure 3.4.

Figure 3.4: Prospect Theory Utility Curve for Varying Curvature

This shows the affect of changing the curvature (α,β ) on the shape of the utility function; (λ = 2.25).
α = β = 0.81 (blue stars), α = β = 0.88 (red squares), α = β = 0.95 (green diamonds) and the dashed
black line shows a linear utility function. Decreasing the parameter values leads to an increase in the
concavity (convexity) of the utility function over gains (losses).

The affect of curvature on the degree of return-volume correlation is shown in Figure

3.5 (Top). (λ = 1.00 so that the impact of the convexity adjustment between the gain and

loss domains is not asymmetric). At low values of α the investor is strongly risk-averse in

the gain domain and strongly risk-seeking in the loss domain. This means that it is always

preferable to implement a contrarian trading strategy which gives rise to negative return-

volume correlation. The return-volume correlation starts to increase beyond α > 0.70; the

increase is rapid from α > 0.80. This is because the investor becomes less risk-seeking

(risk-averse) in the loss (gain) domain which means herding strategies become more at-

tractive. The two effects are in balance around α = 0.85. As α = β → 1 , the degree of

return-volume correlation tends back towards zero which is consistent with the previous
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finding for a linear utility function. We can infer that an increase in α increases the im-

pact of high Sharpe Ratios, which drive herding strategies, and reduces the prevalence of

contrarian strategies which are associated with negative return-volume correlation.

Hypothesis 3: Return-Volume Correlation increases as the Curvature of an Indi-

vidual’s Utility Function decreases (i.e. as α increases)

Next I examine the affect of loss-aversion, λ , on return-volume correlation. The de-

gree of return-volume correlation increases approximately linearly with the degree of loss-

aversion, λ , (Figure 3.5 (Bottom)). This is because increasing the degree of loss-aversion,

λ , serves to reduce the impact of convexity in the loss domain and hence increases the

degree of return-volume correlation.

Hypothesis 4: Return-Volume Correlation increases as the degree of Loss-Aversion

(λ ) increases
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Figure 3.5: Effect of Varying Curvature and Loss Aversion on Return-Volume Correlation
in the Barberis and Xiong (2009) Model

(Top) This shows the effect of different curvatures on return-volume correlation. The degree of return-
volume correlation appears to be relatively unaffected by the curvature until (α = β > 0.82) at which point
it increases dramatically. As α = β → 1 the return-volume correlation disappears as shown in Figure 3.2 for
a linear utility function .[T = 126, σ = 0.3, µ = 1.03, λ = 2.25, N = 100,000]. (Bottom) This shows the
effect of loss-aversion (λ ) on return-volume correlation. The degree of return-volume correlation appears
to be positively correlated with λ and observes a linear relationship. [T = 126, σ = 0.3, µ = 1.03, α =

β = 0.88, N = 100,000]
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3.4 Methodology

3.4.1 The Data

In order to conduct the analysis I have sourced daily price and volume data from Bloomberg

for stocks from a range of global indices. These stocks have then been separated into

developed and emerging markets. The developed markets consist of Australia (ASX),

Canada (TSX), Europe (ESTX), France (CAC), Germany (DAX), Holland (AEX), Hong

Kong (HSI), Italy (MIB), Japan (NIKKEI), South Korea (KOSPI), Spain (IBEX), Swe-

den (OMX), Switzerland (SMI), UK (FTSE) and the US (DJIA, NASDAQ, S&P500). The

emerging markets consist of Argentina (MERVAL), Brazil (BOVESPA), China (SHANG-

HAI, SHENZEN, HSCEI), India (SENSEX) and Mexico (MEXBOL). The data covers the

period 2003-2013. I also have data for the weekly aggregate buy/sell orders executed by

institutional shareholders in S&P500 stocks over the period 2010-2014 and the implied

volatility data for the S&P500, individual S&P500 stocks and the VIX for the period

2005-2014.

The data is not corrected for stocks that have been added/removed from the indices.

Since the data represents the stocks from different indices as of 2012, the data set is prone

to survivorship bias. Stocks that have ceased to trade or have dropped out of the index

over this time may display different dynamics/relationships hence this research makes no

statement about these stocks. This may be an interesting area of future research. The

only filter that has been used, is to remove stocks that have an insufficient number of

observations for the required observation frequency.
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3.5 Results

3.5.1 Return-Volume Correlation

Firstly, it is often useful to view the data. Figure 3.6 shows the density plots for the return-

volume correlation grouped by developed and emerging market stocks. It is separated into

annual, quarterly and monthly timescales. From these plots several features are apparent.

Firstly, both positive and negative return-volume asymmetry exist at all scales. Hence it

can be misleading to simply quote the mean return-volume correlation as has been done

in previous research (see Section 2.2). Secondly, the return-volume correlation is more

positively skewed in emerging market stocks than developed market stocks and thirdly,

the range of return-volume correlation increases with observation frequency. I will now

proceed to examine the model predictions.
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Figure 3.6: Density Plots of Return-Volume Correlation for Developed and Emerging
Market Stocks

This shows the density plots of the of the return-volume correlation for developed (left) and emerging
(right) market stocks. They have been separated by observation scale, annual (Top), quarterly (Middle)
and monthly (Bottom). From these plots several features are readily apparent. Firstly, both positive and
negative return-volume asymmetry exist at all scales. Secondly, the return-volume correlation is more
positively skewed in emerging market stocks than developed market stocks. Thirdly, the range of return-
volume correlation increases with observation frequency.
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3.5.2 Model Predictions

Hypothesis 1: Return-Volume Correlation increases as the Sharpe Ratio
(

µ

σ

)
in-

creases

To examine the affect of the Sharpe Ratio on return-volume correlation I analyse the

linear regression:

Crx,i = a0 +a1
ri

σi
+ ε (3.15)

where Crx,i is the degree of return-volume correlation for a particular index, i, and is

calculated as the correlation between returns at time, t, and volumes at time, t. r and σ

are the mean daily returns and the standard deviations of daily returns respectively, over

the given period.

Table 3.1 shows the regression coefficients for stocks across a broad range of interna-

tional equity markets. Panels A, B and C are for annual, quarterly and monthly observa-

tions respectively. In each index, return-volume correlation is correlated positively with

the Sharpe Ratio and this correlation is highly statistically significant; t-values are shown

in brackets. This is entirely consistent with the model predictions.
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Table 3.1: Regression for Return-Volume Correlation and

Sharpe Ratio for Developed Market Indices

Panel A: Annual Data

Summary Statistics Regression Results

Index No.

of

Stocks

No.

of

Obs.

Daily µ̄

(%)

Daily

σ̄

Daily x̄

(M)

C̄rx Constant Sharpe

Ratio

ASX 200 1656 0.032 0.027 0.611 0.036 0.021(6.0) 0.864(16.7)

TSX 246 1956 0.038 0.024 3.442 0.035 0.018(5.8) 0.762(16.2)

ESTX 50 495 0.012 0.020 1.386 -0.015 −0.029(−5.4) 0.952(10.4)

CAC 40 388 0.010 0.021 6.413 -0.013 −0.029(−4.5) 1.192(10.6)

DAX 30 297 0.030 0.021 1.386 -0.010 −0.039(−4.9) 1.254(9.9)

AEX 24 221 0.010 0.021 1.048 -0.026 −0.043(−4.4) 1.267(7.6)

HSI 49 394 0.056 0.024 5.212 0.064 0.034(4.4) 0.959(9.4)

MIB 40 337 -0.008 0.020 7.776 0.050 0.046(7.1) 0.674(6.2)

NIKKEI 225 1945 -0.005 0.023 1.585 0.101 0.095(35.5) 1.500(32.5)

IBEX 35 289 0.000 0.020 50.733 0.004 −0.002(−0.2) 0.347(3.8)

OMX 30 262 0.035 0.022 10.970 -0.006 −0.030(−3.3) 1.092(7.8)

KOSPI 760 5856 0.026 0.031 0.033 0.132 0.123(68.0) 0.908(33.1)

SMI 20 166 0.016 0.019 0.797 -0.022 −0.044(−3.8) 1.337(6.9)

FTSE 99 923 0.032 0.020 10.483 0.006 −0.018(−3.9) 1.018(11.9)

DJIA 30 270 0.016 0.018 3.472 -0.043 −0.066(−7.1) 1.296(7.7)

NASDAQ 97 793 0.060 0.025 7.208 -0.009 −0.059(−9.5) 1.913(18.6)

S&P500 488 4145 0.030 0.022 1.137 -0.022 −0.050(−20.0)1.289(30.1)
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Panel B: Quarterly Data

Summary Statistics Regression Results

Index No.

of

Stocks

No.

of

Obs.

Daily µ̄

(%)

Daily

σ̄

Daily x̄

(M)

C̄rx Constant Sharpe

Ratio

ASX 200 6,868 0.029 0.026 0.447 0.046 0.030(12.7) 0.774(39.3)

TSX 248 8,445 0.035 0.023 2.794 0.050 0.030(14.0) 0.701(40.5)

ESTX 50 1,987 0.011 0.019 1.180 -0.001 −0.023(−5.4) 1.001(26.7)

CAC 40 1,561 0.010 0.021 6.690 0.003 −0.020(−4.1) 1.140(26.0)

DAX 30 1,190 0.031 0.020 1.180 0.011 −0.021(−3.4) 1.002(21.8)

AEX 25 891 0.010 0.020 1.198 0.002 −0.022(−3.1) 1.141(18.7)

HSI 49 1,701 0.054 0.022 5.059 0.073 0.036(7.4) 1.163(30.3)

MIB 40 1,370 -0.006 0.020 5.200 0.067 0.055(10.3) 0.900(21.8)

NIKKEI 225 8,220 -0.004 0.022 1.824 0.103 0.096(47.9) 1.109(66.2)

IBEX 35 1,166 0.001 0.019 30.793 0.012 −0.000(−0.0) 0.565(13.8)

OMX 30 1,134 0.037 0.021 9.380 0.017 −0.021(−3.1) 1.217(21.2)

KOSPI 771 25,243 0.025 0.030 0.002 0.140 0.134(100.4) 0.921(84.8)

SMI 20 720 0.020 0.018 0.544 0.016 −0.021(−2.7) 1.244(19.7)

FTSE 101 3,730 0.032 0.020 8.282 0.029 0.001(0.2) 0.858(30.0)

DJIA 30 1,170 0.021 0.017 2.283 -0.008 −0.041(−6.7) 1.151(22.9)

NASDAQ 99 3,438 0.059 0.024 4.467 0.023 −0.031(−7.1) 1.559(43.1)

S&P500 499 17,988 0.033 0.021 0.938 0.010 −0.029(−16.7)1.166(82.6)
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Panel C: Monthly Data

Summary Statistics Regression Results

Index No.

of

Stocks

No.

of

Obs.

Daily µ̄

(%)

Daily

σ̄

Daily x̄

(M)

C̄rx Constant Sharpe

Ratio

ASX 200 20,736 0.030 0.025 0.888 0.052 0.038(20.3) 0.635(69.1)

TSX 248 25,744 0.037 0.022 3.119 0.060 0.042(24.7) 0.564(70.2)

ESTX 50 6,001 0.013 0.019 0.908 0.016 −0.008(−2.2) 0.831(48.5)

CAC 40 4,724 0.012 0.020 3.473 0.025 0.001(0.1) 0.949(47.4)

DAX 30 3,601 0.032 0.020 0.908 0.027 −0.004(−0.7) 0.812(38.4)

AEX 25 2,699 0.011 0.020 0.819 0.021 −0.005(−1.0) 0.907(34.7)

HSI 49 5,122 0.054 0.022 4.569 0.080 0.047(12.4) 1.027(56.8)

MIB 40 4,118 -0.006 0.019 4.709 0.083 0.068(15.6) 0.742(39.1)

NIKKEI 225 25,082 -0.007 0.022 1.439 0.110 0.101(59.7) 0.800(106.0)

IBEX 35 3,514 0.003 0.019 17.412 0.030 0.015(3.4) 0.564(27.4)

OMX 30 3,459 0.037 0.021 5.240 0.026 −0.003(−0.5) 0.800(31.7)

KOSPI 774 76,369 0.026 0.029 0.003 0.132 0.129(120.4) 0.822(166.3)

SMI 20 2,198 0.021 0.018 0.364 0.029 −0.002(−0.3) 0.930(33.7)

FTSE 101 11,216 0.032 0.019 11.539 0.039 0.015(5.6) 0.656(50.9)

DJIA 30 3,570 0.021 0.016 1.660 0.006 −0.022(−4.7) 0.867(40.2)

NASDAQ 100 10,496 0.059 0.023 3.736 0.039 0.001(0.3) 1.003(70.6)

S&P500 500 54,881 0.034 0.020 0.444 0.023 −0.007(−5.7) 0.840(143.3)

Shows the linear regression: Crx = a0 +a1
r
σ
+ ε for a range of developed market indices (2002-2012),

where Crx is the correlation between returns at time, t, and volumes at time, t. r and σ are the returns and

the standard deviations of returns respectively, over the given period. t-values are shown in brackets.

Panels A, B and C reflect the annual, quarterly and monthly observations respectively. Crx is correlated

positively with the Sharpe Ratio for all markets at each observation frequency and is highly statistically

significant. Results are consistent with the model predictions. The summary statistics are shown as

averages denoted by the symbol.
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Table 3.2: Regression for Return-Volume Correlation and

Sharpe Ratio for Emerging Market Indices

Panel A: Annual Data

Summary Statistics Regression Results

Index No.

of

Stocks

No.

of

Obs.

Daily µ̄

(%)

Daily

σ̄

Daily x̄

(M)

C̄rx Constant Sharpe

Ratio

MERVAL 12 94 0.072 0.028 0.039 0.093 0.073(4.6) 0.749(3.9)

BOVESPA 69 497 0.059 0.028 18.532 0.048 0.033(6.3) 0.585(8.1)

HSCEI 38 240 0.068 0.030 6.681 0.094 0.075(9.5) 0.681(6.5)

SHANGHAI 957 7585 0.012 0.030 85.535 0.214 0.214(190.1) 0.193(12.3)

SHENZEN 1378 6553 -0.003 0.031 0.710 0.202 0.203(172.3) 0.290(17.3)

SENSEX 30 253 0.098 0.024 0.142 0.073 0.028(3.1) 1.021(9.1)

MEXBOL 34 266 0.080 0.021 17.982 0.067 0.050(5.6) 0.376(3.5)

Panel B: Quarterly Data

Summary Statistics Regression Results

Index No.

of

Stocks

No.

of

Obs.

Daily µ̄

(%)

Daily

σ̄

Daily x̄

(M)

C̄rx Constant Sharpe

Ratio

MERVAL 12 402 0.063 0.027 0.084 0.125 0.101(10.5) 0.856(12.3)

BOVESPA 69 2,126 0.056 0.026 21.023 0.064 0.044(11.2) 0.603(19.8)

HSCEI 40 1,040 0.058 0.028 7.455 0.103 0.078(13.5) 1.006(22.1)

SHANGHAI 985 31,530 0.006 0.029 50.404 0.219 0.222(241.4) 0.418(61.2)

SHENZEN 1,520 28,372 -0.010 0.030 0.572 0.204 0.209(217.6) 0.459(62.6)

SENSEX 30 1,097 0.090 0.023 0.150 0.092 0.044(7.0) 0.999(21.7)

MEXBOL 35 1,099 0.080 0.020 16.027 0.092 0.065(10.3) 0.509(11.3)
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Panel C: Monthly Data

Summary Statistics Regression Results

Index No.

of

Stocks

No.

of

Obs.

Daily µ̄

(%)

Daily

σ̄

Daily x̄

(M)

C̄rx Constant Sharpe

Ratio

MERVAL 12 1,213 0.062 0.026 0.036 0.133 0.112(14.2) 0.690(20.0)

BOVESPA 69 6,419 0.057 0.026 15.517 0.072 0.052(15.9) 0.587(39.6)

HSCEI 40 3,155 0.057 0.028 7.702 0.097 0.076(15.6) 0.960(42.9)

SHANGHAI 992 95,606 0.005 0.028 42.533 0.210 0.210(229.6) 0.031(33.0)

SHENZEN 1,549 86,629 -0.011 0.029 1.091 0.192 0.195(229.0) 0.598(163.0)

SENSEX 30 3,318 0.089 0.022 0.079 0.118 0.076(15.4) 0.794(36.7)

MEXBOL 35 3,322 0.079 0.020 16.951 0.100 0.073(14.8) 0.477(22.7)

Shows the linear regression: Crx = a0 +a1
r
σ
+ ε , for a range of emerging market indices (2002-2012),

where Crx is the correlation between returns at time, t, and volumes at time, t. r and σ are the returns and

the standard deviations of returns respectively, over the given period. t-values are shown in brackets.

Panels A, B and C reflect the annual, quarterly and monthly observations respectively. Crx is correlated

positively with the Sharpe Ratio for all markets at each observation frequency and is highly statistically

significant. Results are consistent with the model predictions. The summary statistics are shown as

averages denoted by the symbol.

In this analysis I have time-series data for a range of stocks. Two-dimensional data

sets of this type are often referred to as panel data. Since effects may not be indepen-

dent across time or across stocks it is necessary to control for these effects. To do this

one may use panel regressions where the standard errors are clustered by index and time

(Thompson, 2011). These are shown in Table 3.3 where the t-values are given in brackets

for each of the regressions. The results shows that the Sharpe Ratio remains positive at

each timescale and is highly statistically significant for all the regressions, except at the

monthly timescale, where the standard errors are clustered by date and index and only by

index. These findings are also consistent with the model predictions.
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Table 3.3: Panel Regression for Return-Volume Correlation

and Sharpe Ratio

Fixed

Effects?

Annual Quarterly Monthly

Time Index Constant Sharpe

Ratio

Constant Sharpe

Ratio

Constant Sharpe

Ratio

Coefficient

Estimate

Y Y −0.043 0.707 −0.030 0.779 0.106 0.131

t-stat (Std. Errors

clustered by Index

and Time)

Y Y (−5.0) (5.7) (−5.2) (8.1) (11.9) (1.3)

t-stat (Std. Errors

clustered by Index)

Y Y [−9.6] [5.8] [−3.56] [8.4] [6.3] [1.3]

t-stat (Std. Errors

clustered by Time)

Y Y {−2.9} {12.7} {−3.5} {21.5} {14.2} {2.1}

r2(%) Y Y 40.89 30.57 12.17

Shows the linear regression between return-volume correlation and the Sharpe Ratio for combined

developed and emerging market stocks (2002-2012), at the annual, quarterly and monthly timescales. It

shows the t-values for the regressions when the standard errors are clustered by date and by index. All

regressions control for both time and index fixed effects. The results show that the return-volume

correlation and the Sharpe Ratio are positively correlated at each timescale. The correlation is statistically

significant for all regressions except at the monthly scale when the standard errors are clustered by index

and date effects and by only index. Results are consistent with the model predictions.
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Hypothesis 2: Return-Volume Correlation increases as Investors move from Con-

trarian to Herding Strategies (i.e. as S increases)

To analyse the trading behaviour associated return-volume correlation I can examine

the aggregate buy/sell orders executed by institutional shareholders. I estimate the aggre-

gate trading strategy used by institutional investors on a weekly basis over a given period

and estimate the following linear regression:

Crx = a0 +a1S+ ε (3.16)

where Crx is the degree of return-volume correlation, calculated as the correlation

between returns at time, t, and volumes at time, t. S is the trading strategy metric which is

positive for a herding strategy and negative for a contrarian strategy; it is estimated from

Equation 3.14.

Table 3.4 shows the regression coefficients for the S&P500 with annual, quarterly and

monthly observations. The t-values are shown in brackets. This shows that S increases

with Crx at each timescale and that these correlations are highly statistically significant.

This is consistent with the model predictions.
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Table 3.4: Regression for Return-Volume Correlation and

Trading Strategy (S) for S&P500 Institutional Trading

Summary Statistics Regression Results

Data No.

of

Stocks

No.

of

Obs.

Daily

µ̄ (%)

Daily

σ̄

Daily x̄

(M)

C̄rx Constant S r2 (%)

Annual 494 4,130 0.030 0.021 1.924 −0.020 −0.059

(−17.6)

0.179

(6.4)

2.10

Quarterly 499 16,627 0.031 0.020 1.920 0.003 −0.034

(−12.4)

0.172

(16.3)

3.39

Monthly 499 50,788 0.032 0.019 1.906 0.009 −0.034

(−16.2)

0.181

(35.1)

5.10

Shows the linear regression: Crx = a0 +a1S+ ε , for S&P500 stocks (2010-2014), where Crx is the

correlation between returns at time, t, and volumes at time, t. S is the trading metric which is positive for a

herding strategy and negative for a contrarian strategy; it is estimated from Equation 3.14. The t-values are

shown in brackets. At each time horizon, the return-volume correlation is positively correlated with the

trading strategy metric, S. The results are statistically significant at both the quarterly and monthly

timescales. Results are consistent with the model predictions. The summary statistics are shown as

averages denoted by the symbol.

91



Hypotheses 3 and 4: Return-Volume Correlation increases as the Curvature of

an Individual’s Utility Function decreases (i.e. as α increases) and as the degree of

Loss-Aversion (λ ) increases

Ascertaining the impact of the utility function is significantly more challenging since

it is not obvious how to extrapolate the aggregate utility function active in empirical

stock data. One possibility is to segment the stocks based upon the proportion of ac-

tive professional investors. This is because it has been shown that professionals and

non-professionals (students) have different shaped utility functions and degrees of loss-

aversion; the former being more risk-averse in the gain domain and more risk-seeking in

the loss domain due to lower loss-aversion (Abdellaoui et al., 2011). Hence, the degree

of return-volume correlation should be smaller in markets with higher proportions of pro-

fessional investors. This should be evident by comparing developed and emerging market

stocks since professional investors are more active in the former. Table 3.5 shows the

mean return-volume correlation on a per market basis grouped into developed and emerg-

ing markets. It is clear from these results that the developed market indices have lower

degrees of return-volume correlation. However, as stated previously, it can be misleading

to simply look at mean values. Hence, Figure 3.6 also shows us that the distribution of the

return-volume correlations is more positively skewed for emerging market stocks. These

results are consistent with the proposition that there are more active professional investors

in developed markets and the model predictions.

The fact that return-volume correlation decreases with the proportion of professional

investors is consistent with the findings of Talpsepp and Reiger (2010). They studied the

Leverage Effect in 49 countries and found that it is more negative in more developed coun-

tries. However, they posit that this is caused by a larger number of private investors which

they estimate by analysing the number of households owning stock. Unfortunately, they

fail to account for the fact that these private investors represent a far smaller proportion of

the daily trading activity in developed markets.
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Table 3.5: Return-Volume Correlation Grouped into Devel-

oped and Emerging Markets

Annual Data Quarterly Data Monthly Data

Developed Emerging Developed Emerging Developed Emerging

KOSPI[0.132] SHANGHAI[0.214]KOSPI[0.140] SHANGHAI[0.219]KOSPI[0.132] SHANGHAI[0.210]

NIKKEI[0.101]SHENZEN[0.202] NIKKEI[0.103]SHENZEN[0.204] NIKKEI[0.110]SHENZEN[0.192]

HSI[0.064] HSCEI[0.094] HSI[0.073] MERVAL[0.125] MIB[0.083] MERVAL[0.133]

MIB[0.050] MERVAL[0.093] MIB[0.067] HSCEI[0.103] HSI[0.080] SENSEX[0.118]

ASX[0.036] SENSEX[0.073] TSX[0.050] MEXBOL[0.092] TSX[0.060] MEXBOL[0.100]

TSX[0.035] MEXBOL[0.067] ASX[0.046] SENSEX[0.092] ASX[0.052] HSCEI[0.097]

FTSE[0.006] BOVESPA[0.048] FTSE[0.029] BOVESPA[0.064] FTSE[0.039] BOVESPA[0.072]

IBEX[0.004] NASDAQ[0.023] NASDAQ[0.039]

OMX[−0.006] OMX[0.017] IBEX[0.030]

NASDAQ[−0.009] SMI[0.016] SMI[0.029]

DAX[−0.010] IBEX[0.012] DAX[0.027]

CAC[−0.013] DAX[0.011] CAC [0.026]

EUROSTOXX[−0.015] S&P500[0.010] OMX[0.026]

S&P500[−0.022] CAC[0.003] S&P500[0.023]

SMI[−0.022] AEX[0.002] AEX[0.021]

AEX[−0.026] EUROSTOXX[−0.001] EUROSTOXX[0.016]

DJIA[−0.043] DJIA[−0.008] DJIA[0.006]

Shows mean return-volume correlation grouped into developed and emerging markets. It is lower in the

developed markets which is consistent with the predictions of the model given that developed markets

have a larger proportion of professional investors who are more prone to contrarian trading strategies. This

was inferred from Abdellaoui et al. (2011) who showed professional investors to be more risk-averse in the

gain domain and more risk-seeking in the loss domain, when considering lower degrees of loss-aversion.
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Hypothesis 4: Return-Volume Correlation increases as the degree of Loss-Aversion

(λ ) increases

I examine loss-aversion, λ , indirectly through the use a proxy variable such as the VIX

index; this is commonly used a proxy for the degree of ‘fear’ in the market. I also use

the at-the-money forward (ATMF) implied volatility for the S&P500 and the individual

stock. All of these proxy measures should act in a similar fashion to loss-aversion, λ , and

hence be positively correlated with the degree of return-volume correlation, Crx. I test this

using the following linear regression:

Crx = a0 +a1
r
σ
+a2L+ ε (3.17)

where Crx is the degree of return-volume correlation and is calculated by the correla-

tion between returns at time, t, and volumes at time, t. r and σ are the returns and the

standard deviations of returns respectively, over the given period. L is the proxy measure

for loss-aversion which can be the VIX, the ATMF IV of the individual stock or the ATMF

IV of the S&P500.

Table 3.6 shows the regression coefficients for S&P500 stocks for each proxy mea-

sure; the t-values are given in brackets. It shows that all of the proxy measures, L, are

positively correlated with Crx and are statistically significant. This is also consistent with

the model predictions.
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Table 3.6: Regression for Return-Volume Correlation and

Loss-Aversion (λ ) for S&P500 Stocks

Panel A: Annual Data Regression Results

Summary

Statistics

Regression Results

Loss-Aversion

Proxies

No. of

Stocks

Obs. Constant Sharpe

Ratio

L r2

(%)

Individual Stock

ATMF IV

494 4,055 −0.120(−19.8) 1.100(28.0) 0.002(13.5) 17.04

S&P500 ATMF IV 494 4,055 −0.090(−11.5) 1.045(25.7) 0.002(6.1) 14.10

VIX 494 4,055 −0.089(−12.0) 1.053(25.8) 0.002(6.3) 14.73

Panel B: Quarterly Data Regression Results

Summary

Statistics

Regression Results

Loss-Aversion

Proxies

No. of

Stocks

Obs. Constant Sharpe

Ratio

L r2

(%)

Individual Stock

ATMF IV

494 16,388 −0.106(−26.3) 1.118(76.5) 0.002(19.7) 26.46

S&P500 ATMF IV 494 16,388 −0.079(−16.8) 1.098(74.2) 0.002(10.3) 25.20

VIX 494 16,388 −0.075(−17.5) 1.102(74.1) 0.002(10.5) 25.22
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Panel C: Monthly Data Regression Results

Summary Statistics Regression Results

Loss-Aversion

Proxies

No. of

Stocks

Obs. Constant Sharpe

Ratio

L r2

(%)

Individual Stock

ATMF IV

499 50,031 −0.083(−24.8) 0.799(133.0) 0.002(24.2) 26.23

S&P500 ATMF IV 499 50,031 −0.059(−17.5) 0.793(131.02) 0.002(12.7) 25.61

VIX 499 50,031 −0.054(−17.8) 0.794(131.1) 0.002(12.6) 25.60

Shows the linear regression: Crx = a0 +a1
r
σ
+a2L+ ε for S&P500 stocks (2005-2014), where Crx is the

correlation between returns at time, t, and volumes at time, t. r and σ are the returns and standard

deviations of returns respectively, over the given period, P is a proxy measure for loss-aversion which can

be the VIX, the ATMF IV of the individual stock or the ATMF IV of the S&P500. The t-values are shown

in brackets. Results are separated into Panels A, B and C to reflect annual, quarterly and monthly

observations respectively. The return-volume correlation is positively correlated with the Sharpe Ratio, the

VIX and the ATMF implied volatilities of the S&P500 and the individual stock. This is seen at each

observation frequency and is highly statistically significant. Results are consistent with the model

predictions.
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3.6 Conclusions

Using an analytical model, developed by Barberis and Xiong (2009), I showed that the

contemporaneous return-volume is governed by the optimal trading strategy. Negative

correlations were found to be associated with contrarian strategies and positive correla-

tions with herding strategies. The optimal trading strategy was found to be governed by

expected stock returns, the standard deviations of returns and investor preferences. These

findings were verified empirically using a broad range of developed and emerging market

stocks and the trading activity of institutional investors on S&P500 stocks.

The findings of this research support those of Avramov et al. (2006) in so far as identi-

fying the importance of herding and contrarian strategies in the Leverage Effect. However,

the manner in which these trading strategies manifest are different. They hypothesised that

it was the interplay between the two strategies that generated the Leverage Effect, whereas

this model suggests that the two strategies lead to different types of effect i.e. positive and

negative Leverage Effect. In addition, I have provided a direct mechanism through which

these strategies manifest and shown under what conditions they are optimal.

There are several features which do not make the Barberis and Xiong (2009) model

directly applicable to the real world. Most importantly it assumes a complete market,

which means that the entire price path is known and there is no friction to transacting.

These assumptions are clearly unrealistic since in practice it is extremely difficult to pre-

dict the evolution of the stock price and in order to trade one must pay transaction fees.

These assumptions are made to make the problem analytically tractable. The model also

makes no predictions when the expected returns are below the risk-free return because in

this scenario an investor would not invest in the stock. Barberis and Xiong (2009) also

note several differences in the trading behaviour of this model compared to actual trading

behaviour. Firstly, the trading behaviour in the model involves partial adjustments to risky

asset holdings rather than selling entire positions. Secondly, assuming that the stock re-

turns are binomially distributed leads investors to use leverage. The binomial distribution

makes the model more tractable but it specifies a positive lower bound on the gross stock

return which leads to aggressive allocations. They found that using a log normal return
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distribution leads to far less leverage. Whilst these two factors may be a concern for retail

investors they may actually be more appropriate for professional investors.

As I have shown that return-volume correlation is dependent upon an individual’s

preferences, it is highly likely that it is also affected by other behavioural biases. For in-

stance, the ‘House Money’ Effect suggests that an individual’s preferences may vary over

time because investors are less concerned with losing profits than they are with losing

initial capital. This means that after periods of positive returns, where they have amassed

wealth, they will be more risk-seeking. Whereas, when they have endured periods of

losses, future losses become more painful and so they become more risk-averse. Further-

more, investors may try to project current trends into the future (hindsight bias) and hence

alter their trading behaviour accordingly; this would mean that return-volume correlation

would lead returns. In Part II I move on to examine the Leverage Effect at the index level.
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Part II

The Leverage Effect in Stock Indices
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Chapter 4

Literature Review: The Index Level

Leverage Effect

4.1 Introduction

This chapter examines the current literature on the Leverage Effect in stock indices. This

research has historically taken two approaches. The first is a bottom up approach where

stock level effects are aggregated to the index level and examined in the context of Black’s

‘Leverage Hypothesis’ (Section 4.2) and Bouchaud et al. (2001) ‘Retarded Volatility Hy-

pothesis’ (Section 4.4). The second is a top down approach, using the ‘Volatility Feedback

Hypothesis’ (Section 4.3) and ‘Collective Behaviour Hypothesis’ (Section 4.6). Other

effects that are also often associated with the index level Leverage Effect are trading vol-

umes (Section 4.5) and stock correlation asymmetry (Section 4.7).

4.2 Leverage Hypothesis

Figlewski and Wang (2000) - studied the S&P 100 index (1977-1996), at the monthly

and quarterly frequency, using the regression in Equation 1.7. From Table 4.1 it is evident

that a1 is far larger at the index level than at the stock level but the t-statistic (shown in

brackets) shows that it is not statistically significant.
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Table 4.1: Leverage Effect at the Stock and Index Levels

from Figlewski and Wang (2000)

Frequency Index Level (a1) Stock Level(a1)

Monthly −0.452(−0.710) −0.340(−14.218)

Quarterly −0.644(−1.206) −0.254(−8409)

This compares the Leverage Effect at the index and stock levels as estimated by Figlewski and Wang

(2000) using the regression in Equation 1.7. The t-values are shown in brackets. The results show that the

Leverage Effect at the index level is far larger but less statistically significant.

An examination of the up and down market effects using the regression in Equation

1.8 shows that a1 > 0 and a2 < 0. This indicates that when the market falls, volatility

increases but as the market rises volatility also increases, with the ‘down market’ effect

dominating. Using the regressions in Equations 1.9 and 1.10 they also find that changes

in volatility die out over time which is inconsistent with the premise that a permanent

change in leverage should lead to a permanent change in volatility.

Daouk and Ng (2011) - studied equally weighted portfolios based on stocks in the

S&P400, S&P500 and S&P600. They found that the Leverage Effect is significant for

both the index and the portfolio; with the former being far larger. However, once the

assets are unlevered, the effect in the index is only reduced by 11% but in the portfolios it

is reduced by 77%. This implies that leverage is not responsible for the Leverage Effect

observed at the index level. They also document a ‘down market’ effect for the index with

volatility rising by 4.64% more when the market falls by 1% than when it rises by 1%.

Hasanhodzic and Lo (2011) - studied equally weighted portfolios. Using Equations

1.1 and 1.2 they find a strong inverse relationship between a firm’s returns and the result-

ing change in volatility. They also find that the effect is larger for all equity financed firms

than all debt financed firms and that the effect persists over time. However, they have not

explicitly compared the aggregated data to that of the index level.
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4.3 Volatility Feedback Hypothesis

As outlined in Chapter 1, this relies upon two properties. Firstly, volatility must be per-

sistent so that a large realisation of news increases both current and future volatility and

secondly, that there is a positive inter-temporal relation between expected return and con-

ditional variance. Therefore, an increase in volatility leads to an increase in expected

returns and hence a decrease in the current stock price. This dampens volatility in the

case of good news and increases volatility in the case of bad news. However, research

regarding the ‘Volatility Feedback Hypothesis’ at the index level has generated conflict-

ing results with French et al. (1987) and Campbell and Hentschel (1992) finding that the

relation between volatility and expected return is positive, whilst Turner et al. (1989),

Glosten et al. (1993) and Nelson (1991) found that the relation is negative. Commenting

on this conflict, Bekaert and Wu (2000) state that “often the coefficient linking volatility

to returns is statistically insignificant” and that “if the relation between market conditional

volatility and market expected return is not positive then the validity of the time varying

risk premium is in doubt”.

One of the main mechanisms for investigating the volatility feedback hypothesis has

been through the use of pricing and equilibrium models. Campbell and Hentschel (1992)

were the first to develop a formal model of volatility feedback. They modelled stock

dividends as a quadratic GARCH process and linked the dividend volatility to returns; as-

suming a linear relationship. The model is able to generate asymmetric volatility, negative

skewness and excess kurtosis.

Wu (2001) developed a feedback model that shows that both the Leverage Effect and

Volatility Feedback are statistically significant but the Leverage Effect contributes more

than twice as much to the negative correlation between return and volatility. However,

whilst the Volatility Feedback only appears to play a minor role during stable market

conditions it appears to have a big impact during volatile periods.

However, Bollerslev et al. (2006), who identified the Leverage Effect in high fre-

quency data, notes that risk based explanations, such as those by Campbell and Hentschel

(1992), are thought of as applying to much coarser time intervals; monthly or quarterly.

102



Therefore it is not clear that a risk based explanation can adequately account for the

Leverage Effect detected at the intraday level.

4.4 Retarded Volatility Hypothesis

Bouchaud et al. (2001) analysed seven international stock markets from the US, Europe

and Asia (1990-2000), at the daily frequency, using the cross-correlation function (Equa-

tion 1.11). They found that there exists a different time decay for stock indices (approx-

imately 10 days) than for individual stocks (approximately 50 days) and that the ampli-

tude of the correlation is much stronger for indices. As at the stock level, they also state

that the cross-correlation function is well fitted by an exponential curve. However, the

Retarded Volatility Hypothesis (as outlined in Section 1.4) cannot hold, as the estimate

Crv(τ → 0) =−2, is out by more than an order of magnitude.

4.5 Volume Hypothesis

At the stock level I showed compelling evidence that the Leverage Effect is caused by

trading volumes which is consistent with the research of Avramov et al. (2006). Gallant

et al. (1992) proposed that trading volumes also explain the Leverage Effect at the index

level. They studied the S&P composite index (1928-1985) at the daily frequency using a

semi-nonparametric model (Gallant and Tauchen (1989) and Gallant and Tauchen (1993))

of the conditional joint density of returns and volumes. They found that:

1) The market is equally likely to rise or fall on heavy volumes

2) Days of high volume are associated with high volatility

3) The Leverage Effect is not apparent in the bivariate distribution (only the univariate

distribution)

Hence they conclude that the Leverage Effect can be fully explained by trading vol-

umes.
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4.6 Models of Collective Behaviour

A number of authors have attempted to replicate stylised facts using models of collective

behaviour. Donangelo et al. (2006) developed the Fear Factor Model which was able to

replicate gain-loss asymmetry which refers to losses tending to have larger magnitudes

than gains. In the Fear Factor Model investors synchronise their actions during falling

markets i.e. there are stronger stock-stock correlations during falling markets than rising

ones. This simulates risk-aversion, where the utility loss of negative returns is larger than

the utility gain for positive returns. This model is supported by the empirical research of

Balogh et al. (2010), who concluded that the observed correlation asymmetry suggests

a constant fear factor among stockholders. Ahlgren et al. (2007) extend the Fear Fac-

tor model to develop the Frustration Governed Market Model which also replicates the

Leverage Effect. This model allows for the stock dynamics to be controlled via a time-

dependent stock volatility. The Frustration Governed Market Model is constructed in the

following way:

The index value, It , may be constructed according to:

It =
1
N

N

∑
i=1

exp [Pi,t ] (4.1)

where Pi,t is the log price of stock i at time, t and N is the number of constituent

stocks. All stocks are assumed to perform geometrical Brownian motions with common

volatility, σt , and uncorrelated Gaussian distributed idiosyncrasies, εi,t .

Pi,t = Pi,t−1 + ε i,tσ t (4.2)

In a downward trending market, the investors may find it necessary to replace some of

their investments in order to adapt to an unfavourable situation; depending on the magni-

tude of the move and their stop-loss strategy etc. One may say that during these periods

of falling prices, investors get frustrated and as a consequence the volatility of the stocks,

σt , increase. On the other hand, when the trend is upwards, there is little point in altering

a profitable position. Hence ‘excited frustrated states’ are gradually relaxed by lowering,
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σt , towards a more fundamental long term level, σ0. The dynamics of the volatility, σt ,

are given by:

∂σt

∂ t
=−σ t−σ0

κ
−A ftrt (4.3)

where rt is the index return at time, t, ft is a dummy variable ( ft = 1 for rt < 0

and ft = 0 otherwise), κ is the characteristic volatility decay time and A is a positive

amplitude.

4.7 Stock Correlation Hypothesis

Reigneron et al. (2011) state that “the volatility of an index in fact reflects both the volatil-

ity of the underlying single stocks and the average correlation between these stocks. The

increased Leverage Effect for indices (as opposed to stocks) must therefore mean that

both of the quantities are sensitive to a downward move of the market”. Whilst Bekaert

and Wu (2000) conclude that for Volatility Feedback Hypothesis to explain the Lever-

age Effect, negative shocks at the index level must lead to an increase in the conditional

covariances.

4.7.1 Empirical Evidence

Ang and Chen (2002) conduct an empirical investigation of stock correlations and noted

the following properties:

1. Asymmetries between upside and downside correlation exists between stocks across

international stock-markets.

2. Correlation asymmetries are greater for extreme downward moves.

3. Smaller stocks exhibit greater correlation asymmetry than larger stocks.

4. Value stocks demonstrate more asymmetry than growth stocks.

5. Stocks that have experienced recent loses have higher asymmetry.
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6. Higher risk stocks, as measured by their betas, have a smaller degree of asymmetry

than traditional defensive stocks.

7. There is no correlation between leverage and correlation asymmetries (controlling

the size).

Reigneron et al. (2011) decomposed the Leverage Effect into two contributions: one from

the dependence of the average stock volatility on the past returns of the index and a second

one describing the average correlation. They find that:

1. The two contributions to the index leverage are of the same order of magnitude.

2. The correlation effect is stronger at short time scales but decays faster than the

volatility effect.

3. The sum of the two fitted exponentials reproduces satisfactorily the full Leverage

Effect, although the latter is underestimated at short times.

These findings are consistent with those of Daouk and Ng (2011) who show that while

stock level unlevered volatility stays the same in a down market, index level unlevered

volatility is higher due to the higher covariance between stocks.

4.7.2 Relationship between the Index and Stock Levels

Having established that stock correlation asymmetry exists, it is important to understand

why the effect emerges and how this stock level property relates to the index level. Kwon

and Oh (2012) used (discrete) T E to examine the amount of information that was trans-

mitted between stocks and the index. They found that more information is sent from the

index to the stocks than vice versa and that developed markets exhibit a larger asymme-

try than emerging markets. In another study, Pan and Sinha (2007) studied the National

Stock Exchange (NSE) of India by means of Random Matrix Theory, and found strong

stock correlations, as well as strong correlations between the stocks and a market mode

(a ‘Market Index’ constructed according to the leading eigenvector of the correlation ma-

trix). They propose that the existence of such strong correlations between the stocks and
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the market variable is a characteristic feature of emerging markets. However, in a study of

the S&P500 and Tel Aviv markets, Shapira et al. (2009) show that the effect of the index

is more intricate. They use partial correlations to identify the strongest mediating variable

in an index. They find that the effect of the index is an order of magnitude larger than

the effect of any other stock. They posit that the observed strong correlations between

the various stocks are mainly a reflection of the correlation of each one with the index.

They also showed that the index provided additional latent information in the correlation

matrix and that this varies significantly over time (Kenett et al., 2010).

4.8 Summary

This review showed evidence of the Leverage Effect at the index level and showed that it

is far stronger than at the stock level. It has been identified at the daily and monthly fre-

quencies and even in high frequency data. Through the use of cross-correlation functions,

Bouchaud et al. (2001), Ahlgren et al. (2007) and Bollerslev et al. (2006) also claim that

returns affect volatility and not vice versa. Bouchaud et al. (2001) also showed that the

effect decayed approximately exponentially over a period of around 10 days which is far

less than the approximately 50 days they observed at the stock level.

It appears that the index level Leverage Effect is the combination of several factors.

The first is the aggregated Leverage Effect present in the constituent stocks and the second

is a feedback mechanism which originates at the index level and manifests as a change in

the stock correlations. The stock correlation asymmetry is consistent with the ‘Volatility

Feedback Hypothesis’ and ‘Models of Collective Behaviour’. It also appears that trading

volumes play an important role.

In the next chapter, I will examine the effect of stock correlation asymmetry and trad-

ing volumes on the Leverage Effect from an information theoretic perspective.
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Chapter 5

An Information Theoretic Analysis of

Index Returns, Volatility and Trading

Volumes

5.1 Introduction

Chapter 4 examined the Leverage Effect at the index level. It showed that the ‘Leverage

Hypothesis’ and the ‘Retarded Volatility Model’ were both unable to replicate the mag-

nitude of the effect whilst the ‘Volatility Feedback Hypothesis’ only appeared significant

during volatile periods. The most promising research is based upon trading volumes (Gal-

lant et al., 1992), similar to the stock level, and stock correlation asymmetry (Reigneron

et al., 2011). Stock correlation asymmetry posits that when the market declines a larger

proportion of the stocks also decline than rise when the market rises. This leads to a mag-

nification of the stock level Leverage Effect. In this chapter I examine the evidence for

these hypotheses from an information theoretic perspective - the methodology is based

upon Chapter 2 - and find that both play an important role in the Leverage Effect.

The chapter initially details the data and model calibration in Section 5.2 further in-

formation on the methods can be found in Section 2.2. The results are shown in Section

5.3 with the conclusions given in Section 5.4.
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5.2 Methodology

5.2.1 The Data

The data is sourced from Bloomberg and covers daily returns and volumes for devel-

oped stock indices covering the period 1980-2012. The indices include Australia (ASX),

Canada (TSX), France (CAC), Germany (DAX), Holland (AEX), Hong Kong (HSI), Italy

(MIB), Japan (NKY), South Korea (KOSPI), Spain (IBEX), Sweden (OMX), Switzerland

(SMI), UK (FTSE), USA (DJIA, NDX and SPX). The trading volume metric is given as

the sum of the daily volumes of the constituent stocks. Hence, the following research

does not consider the impact of derivatives such as futures and forwards on the underly-

ing index properties. Derivatives volumes are likely to have an impact on the underlying

index returns and volatility as groups of stocks are often traded against futures and other

derivatives. This is certainly an interesting area for future research.

All statistics and results have been calculated at the individual index level and then

averaged to give a mean value for all indices. The significance levels have been estimated

by calculating the various measures using surrogate data sets with similar statistical prop-

erties but without the inter-relationships; this is consistent with similar research.

5.2.2 Calibrating the Model

First, let me define the variables with which I will conduct the analysis (these are at the

daily frequency):

Returns:

rt = ln [It ]− ln [It−1] (5.1)

where It is the index value at time, t.

Normalised Returns:

r̂t =
rt

σr
(5.2)

109



where σr is the standard deviation of the returns.

Volatility:

vt = r2
t (5.3)

Normalised Volatility:

v̂t =
vt

σv
(5.4)

where σv is the standard deviation of the volatility.

Normalised Volume:

x̂t =
ln(xt)− ln(x̄)

σx
(5.5)

where xt is the index volume at time, t, and σx is the standard deviation of the volumes.

Here I have normalised variables by dividing by the standard deviation of the whole

sample of the stock data. The purpose of this is to set each stock to unit variance so that

they can easily be compared and to improve the convergence of the estimators. By taking

this approach it may bias some techniques because one is influencing historic returns by

future volatility. However, the MI estimator should in principle be independent of scale

factors.

The daily correlation between the constituent stocks, Ct , is calculated as:

For positive index returns:

Ct =
1
N

N

∑
i=1

Λi (5.6)

For negative index returns:

Ct = 1− 1
N

N

∑
i=1

Λi (5.7)

where
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Λi =


1

0
f or

ri > 0

ri < 0
(5.8)

N is the total number of stocks in the index and ri is the daily stock return. Therefore,

one is simply taking the proportion of stocks that move in the same direction as the index

on any given day.

The results are given using the stretched exponential function given in Equation 2.18.

In order to calibrate the algorithm it is necessary to ascertain the number of nearest

neighbours, k, which is used to estimate the probability density and the number of obser-

vations required to generate stable results. Figure 5.1 shows the MI (r̂t , v̂t+1), MI (r̂t , x̂t+1)

and MI (x̂t , v̂t+1). Figure 5.1 (Top) shows that the MI converges as the number of nearest

neighbours, k, increases for each of the measures. It indicates that the measures have

largely converged for k ≈ 75. Figure 5.1 (Bottom) shows the MI for varying data lengths

from 250− 2500 days; k = 75. The MI appears stable for data lengths greater than

1500− 2500 which implies that over these periods the mean MI is stationary; this is

a requirement to estimate stable and consistent results. Consequently, in the following

analysis I will use k = 75 and exclude indices with less than 1500 observations.
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Figure 5.1: Mutual Information Calibration for Indices at the Daily Frequency

(Top) Shows the mean MI for developed market indices as a function of the number of nearest neighbours,
k. The blue stars with dashed line is the MI (r̂t , v̂t+1), the red diamonds with solid line is the MI (r̂t , x̂t+1)

and the green squares with dot-dashed line is MI (x̂t , v̂t+1). These are given with associated one standard
errors and exponential curve fits. The results appear to show that the MI converges as the number of nearest
neighbours increases and that k ≈ 75 should be sufficient to produce stable results. (Bottom) Shows the
mean MI for developed market indices across a range of data lengths (days). The blue stars with dashed
line is the MI (r̂t , v̂t+1), the red diamonds with solid line is the MI (r̂t , x̂t+1) and the green squares with
dot-dashed line is the MI (x̂t , v̂t+1). These are given with associated one standard errors and k = 75. The
results indicate that the MI does not vary considerably for observation periods between 1500 - 2500 days.
This suggests that the mean MI is stationary over this time period.
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5.3 Results

5.3.1 Persistence of Returns, Volatility and Volumes

The first step to understanding the properties of index returns, volatility and trading vol-

umes is to analyse their auto-mutual information and auto-covariance functions. These

functions indicate how the variables persist over time. Figure 5.2 shows the auto-mutual

information (Top) and auto-covariance functions (Bottom) for returns, volatility and vol-

umes for developed market indices. It shows that the MI for returns and volatility is statis-

tically significant for τ < 20 days but the MI for volume is significantly larger and persists

for τ > 30 days. The notable difference from the stock level is that the auto-mutual in-

formation for volatility is smaller and consequently becomes statistically insignificant in

a shorter period of time. The auto-covariance functions for volumes and volatility also

show that they are highly persistent and statistically significant; with the former being of

a larger magnitude. The notable difference is the lack of auto-covariance in returns; this

has been documented previously (Cont, 2001). This difference could be an indication that

the lower order moments are arbitraged out in the market. This is important as it could

lead to spurious results when using linear causality analysis.

- Returns, Volatility and Volumes all display Auto-Information
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Figure 5.2: Auto-Mutual Information and Auto-Covariance Functions for Indices at the
Daily Frequency

Shows the auto-mutual information (Top) and normalised auto-covariance (Bottom) functions. They are
calculated for returns (blue stars with dashed lines), volatility (green squares with dot-dashed lines) and
volumes (red diamonds with solid lines). These are given with associated one standard errors, exponential
curve fits and 95% Significance Levels (black dashed lines). The MI is statistically significant for returns
and volatility for approximately 20 days whilst the MI for volumes significantly larger and is persistent for
longer than 30 days. The auto-covariance function exhibits many of the same properties as the auto-mutual
information function except that the auto-covariance for returns is not statistically significant at any time
horizon.
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5.3.2 Returns and Volumes

Figure 5.3 shows the cross-mutual information (Top) and normalised cross-covariance

(Bottom) functions for returns and volume. It shows that both the MI (r̂t , x̂t+τ) and

MI (x̂t , r̂t+τ) are statistically significant and persistent. MI (r̂t , x̂t+1) > MI (x̂t , r̂t+1) but

equal for τ > 1. Hence the MI implies a bi-directional information flow between returns

and volumes. These results contrast with those of the cross-covariance function which

shows that the covariance is not statistically significant in either direction. This also differs

from the stock level which shows statistically significant covariances for Cov(rt ,xt+τ).

Figure 5.4 (Top) shows the partial cross-mutual information function for returns and

volume where I have controlled for auto-information. It shows that only the MI (x̂t , r̂t+τ |Z)

for 1 6 τ 6 3 is statistically significant at the 95% confidence level. This implies that vol-

umes cause returns and not vice versa. In addition, since the PMI decays far more quickly

than the MI it also implies that the persistence is due to auto-information. The results for

the T E (Figure 5.4 (Bottom)) shows that T E (x̂t → r̂t+τ) > T E (r̂t → x̂t+τ) for τ . 100.

However, they only support the results of the PMI for τ < 4 because beyond this point,

T E (r̂t → x̂t+τ) is statistically significant. This indicates that the PMI may be unduly

influenced by the persistence of the linear correlations. The T E implies bi-directional

(Granger) causality between volumes and returns with volumes dominating.

- Persistence in the return-volume relation is driven by auto-information

- There is bi-directional (Granger) causality between returns and volumes

with volumes dominating
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Figure 5.3: Cross-Mutual Information and Cross-Covariance Functions for Index Returns
and Volume at the Daily Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions between
returns and volume. The blue squares with solid lines show the MI (x̂t , r̂t+τ) and Corr (xt ,rt+τ). The
green diamonds with dot-dashed lines show the MI (r̂t , x̂t+τ) and Corr (rt ,xt+τ). These are given with
associated one standard errors, stretched exponential curve fits and 95% Significance Levels (dashed black
lines). The MI is statistically significant and persistent in both directions with MI (r̂t , x̂t+1) > MI (x̂t , r̂t+1)

but approximately equal for τ > 1. This indicates bi-directional causality between returns and volumes.
However, the cross-covariance function shows no statistically significant covariance in either direction.
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Figure 5.4: Partial Cross-Mutual Information and Cross-Transfer Entropy Functions for
Index Returns and Volume at the Daily Frequency

(Top) Shows the partial cross-mutual information function for returns and volume, where I have controlled
for auto-information. The green diamonds with dot-dashed lines represent the MI (r̂t , x̂t+τ |Z) where Z =[

ĵt , ..., ĵt+τ−1
]

for τ > 1 and ĵ are the normalised volumes. The blue squares with solid lines represent
the MI (x̂t , r̂t+τ |Z) where Z =

[
ĵt , ..., ĵt+τ−1

]
for τ > 1 and ĵ are the normalised returns. It is given with

associated one standard errors, stretched exponential curve fits and a 95% Significance Level (dashed black
line). It shows that only the MI (x̂t , r̂t+τ |Z) is statistically significant at the 95% confidence level for τ < 4.
Hence, the PMI implies that volumes cause returns and not vice versa. In addition, since both PMI decay
more quickly than the MI it also implies that the persistence is due to auto-information. (Bottom) Shows
the cross-transfer entropy function for returns and volumes. The green diamonds represent T E (r̂t → x̂t+τ)

and the blue squares represent the T E (x̂t → r̂t+τ). This is given with associated one standard errors and
95% Significance Levels which are represented by the green dot-dashed line for T E (r̂t → x̂t+τ) and the
dashed blue line for T E (x̂t → r̂t+τ). The T E results show that T E (x̂t → r̂t+τ) > T E (r̂t → x̂t+τ) for all
τ . 100. However, they only support the PMI results for τ < 4 because beyond this point, T E (r̂t → x̂t+τ)

is statistically significant. This indicates that the PMI may be unduly influenced by the persistence in the
linear correlations. The T E implies bi-directional (Granger) causality between volumes and returns with
volumes dominating.
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5.3.3 Volume and Volatility

Figure 5.5 shows the cross-mutual information (Top) and normalised cross-covariance

(Bottom) functions for volumes and volatility. Again Figures 5.3 and 5.5 are similar be-

cause the volatility is simply the square of the returns, so the MI struggles to differentiate

between the two variables. MI (v̂t , x̂t+τ) and MI (x̂t , v̂t+τ) are both statistically significant

and persistent with MI (v̂t , x̂t+1) > MI (x̂t , v̂t+1) but for τ > 1 they are of equal magni-

tudes. This implies a bi-directional information flow between volumes and volatility. The

results of the cross-mutual information are consistent with those of the cross-covariance

which show that the Cov(vt ,xt+τ) and Cov(xt ,vt+τ) are both positive, of equal magnitude

and statistically significant for τ > 30.

Figure 5.6 (Top) shows the partial cross-mutual information function for volumes and

volatility, where I have controlled for auto-information. It shows that the MI is only

statistically significant for MI (x̂t , v̂t+τ | Z) for τ < 4. Hence the PMI implies that volumes

cause volatility and not vice versa. Again, since the PMI decays more quickly than the MI

it also implies that the persistence is due to auto-information. The cross-transfer entropy

function (Figure 5.6 (Bottom)), indicates that the PMI results are again likely the result

of persistent linear correlations because the T E (v̂t → x̂t+τ) is statistically significant for

τ & 20. Therefore the T E results indicate bi-directional (Granger) causality between

volumes and volatility with volumes dominating.

- Persistence in the volume-volatility relation is driven by auto-information

- There is bi-directional (Granger) causality between volatility and volumes

with volumes dominating
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Figure 5.5: Cross-Mutual Information and Cross-Covariance Functions for Index Volatil-
ity and Volume at the Daily Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions for vol-
umes and volatility. The green diamonds with dot-dashed lines represent the MI (v̂t , x̂t+τ) and the
Cov(vt ,xt+τ). The blue squares with solid lines represent the MI (x̂t , v̂t+τ) and the Cov(xt ,vt+τ). Both
graphs are given with associated one standard errors, stretched exponential curve fits and 95% Signifi-
cance Levels (black dashed lines). The MI is statistically significant and persistent in both directions with
MI (v̂t , x̂t+1) > MI (x̂t , v̂t+1) but approximately equal for τ > 1. This indicates bi-directional causality be-
tween volume and volatility. This is consistent with the results of the cross-covariance function which
shows that Cov(vt ,xt+τ) and Cov(xt ,vt+τ) are positive, of equal magnitude and statistically significant for
τ > 30.
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Figure 5.6: Partial Cross-Mutual Information and Cross-Transfer Entropy Functions for
Index Volatility and Volume at the Daily Frequency

(Top) Shows the partial cross-mutual information function for volumes and volatility where I have con-
trolled for auto-information. The green diamonds with dot-dashed lines represent the MI (v̂t , x̂t+τ |Z) where
Z =

[
ĵt , ..., ĵt+τ−1

]
for τ ≥ 1 and ĵ are the normalised volumes. The blue squares with solid lines repre-

sent the MI (x̂t , v̂t+τ |Z) where Z =
[

ĵt , ..., ĵt+τ−1
]

for τ ≥ 1 and ĵ are the normalised volatility. It is given
with associated one standard errors, stretched exponential curve fits and a 95% Significance Level (black
dashed line). The MI is only statistically significant for MI (x̂t , v̂t+τ | Z) for τ < 4 which indicates that
volumes cause volatility and not vice versa. Since the PMI decays more quickly than the MI it also im-
plies that the persistence is due to auto-information.. (Bottom) Shows the cross-transfer entropy function
for volumes and volatility. The green diamonds represent T E (v̂t → x̂t+τ) and the blue squares represent
T E (x̂t → v̂t+τ). This is given with associated one standard errors and 95% Significance Levels where the
green dot-dashed line is for the T E (v̂t → x̂t+τ) and the dashed blue line is for the T E (x̂t → v̂t+τ). This
shows that T E (x̂t → v̂t+τ) > T E (v̂t → x̂t+τ) for all τ . However, they only support the results of the PMI
for τ . 20 because beyond this point, T E (v̂t → x̂t+τ) is statistically significant. This indicates that the
PMI may be unduly influenced by the persistence of the linear correlations. The T E implies bi-directional
(Granger) causality between volumes and volatility with volumes dominating.
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5.3.4 Returns and Volatility

Figure 5.7 shows the cross-mutual information (Top) and normalised cross-covariance

(Bottom) functions for returns and volatility. The cross-mutual information function

shows that the MI (r̂t , v̂t+τ) > MI (v̂t , r̂t+τ) for τ < 3 and statistically significant. For

τ > 3 MI (r̂t , v̂t+τ)≈ MI (v̂t , r̂t+τ) and neither are statistically significant beyond τ & 25.

The MI is of similar magnitude to the stock level but the decay rate is faster. Unusually,

the MI for τ = 2 is greater than for τ = 1. The MI function implies a bi-directional infor-

mation flow between returns and volatility. The Leverage Effect is clearly identifiable in

the cross-covariance function with structure for Cov(rt ,vt+τ); this is statistically signifi-

cant for τ . 15. Some authors, such as Bouchaud et al. (2001), have found this sufficient

to imply causation from returns to volatility. As documented previously the magnitude of

the Leverage Effect at the index level is twice that at the stock level.

Figure 5.8 (Top) shows the partial cross-mutual information function for returns and

volatility where I have controlled for auto-information. The PMI estimate is overstated

because it is not possible to control for the auto-information from the variables when

τ = 1 because the volatility is directly calculated from the returns and hence controlling

for one indirectly controls for the other. The PMI shows bi-directional information and

that the persistence is caused by auto-information due to the faster decay. The T E also

shows bi-directional information flow (Figure 5.8 (Bottom)).

- Persistence in the return-volatility relation is driven by auto-information

- There is bi-directional (Granger) causality between returns and volatility
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Figure 5.7: Cross-Mutual Information and Cross-Covariance Functions for Index Returns
and Volatility at the Daily Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions for returns
and volatility. The green diamonds with dot-dashed lines represent the MI (r̂t , v̂t+τ) and the Cov(rt ,vt+τ).
The blue squares with solid lines represent the MI (v̂t , r̂t+τ) and the Cov(vt ,rt+τ). Both graphs are given
with associated one standard errors, stretched exponential curve fits and 95% Significance Levels (black
dashed lines). The cross-mutual information function shows that MI (r̂t , v̂t+τ) and MI (v̂t , r̂t+τ) are both
statistically significant. It also shows that MI (r̂t , v̂t+τ)> MI (v̂t , r̂t+τ), for τ < 3. It implies a bi-directional
information flow between returns and volatility. The Leverage Effect is clearly identifiable in the cross-
covariance function which only show structure for Cov(rt ,vt+τ); which is statistically significant for τ . 15.
Some authors have found this sufficient to imply causation from returns to volatility. The magnitude of the
Leverage Effect is twice that at the stock level whilst the MI is of similar magnitude.
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Figure 5.8: Partial Cross-Mutual Information and Cross-Transfer Entropy Functions for
Index Returns and Volatility at the Daily Frequency

(Top) Shows the partial cross-mutual information function for returns and volatility where I have con-
trolled for auto-information. The green diamonds with dot-dashed lines represent the MI (r̂t , v̂t+τ |Z) where
Z =

[
ĵt , ..., ĵt+τ−1

]
for τ ≥ 2 and ĵ are the normalised volatilities. The blue squares with solid lines rep-

resent the MI (v̂t , r̂t+τ |Z) where Z =
[

ĵt , ..., ĵt+τ−1
]

for τ ≥ 2 and ĵ are the normalised returns. It is given
with associated one standard errors, stretched exponential curve fits and a 95% Significance Level (black
dashed lines). The PMI indicates bi-directional information flow and that the persistence is due to auto-
information. (Bottom) Shows the cross-transfer entropy function for returns and volatility. The green
diamonds represent the T E (r̂t → v̂t+τ) and the blue squares represent T E (v̂t → r̂t+τ). This is given with
associated one standard errors and 95% Significance Levels which are represented by the green dot-dashed
line for T E (r̂t → v̂t+τ) and the dashed blue line for T E (v̂t → r̂t+τ). The T E also shows bi-directional in-
formation flow. This implies bi-directional (Granger) causality between volatility and returns with volatility
dominating.
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I now examine the impact of trading volumes and correlation asymmetry on the Lever-

age Effect using PMI (Table 5.1). Here I consider the 1 and 2 day time lags because the MI is

actually larger at the 2 day lag. A number of interesting features are identifiable. Firstly, the MI is

of a similar magnitude to the stock level (Table 2.1). This may seem surprising since it has been

widely documented (using correlations/covariances) that the Leverage Effect is far larger at the

index level. Secondly, controlling for trading volumes has little or no effect on the MI between

returns and volatility. Thirdly, controlling for correlation asymmetry actually increases the MI

by two orders of magnitude. Fourthly, when controlling for trading volumes and correlation

asymmetry the MI increases by only an order of magnitude.

These results imply that the MI function simply sees the index level Leverage Effect

as an aggregation of the stock level Leverage Effect. However, controlling for correlation

asymmetry removes the diversification effect revealing a much larger Leverage Effect.

Then trading volumes also become important, accounting for 61.48% of the MI between

returns and volatility. Unfortunately, the MI remains statistically significant but we cannot

control for individual stock effects due to the high dimensionality of the problem.

- Correlation asymmetry acts as a dampening mechanism for the MI between

returns and volatility

- Trading volumes are a driver for the return-volatility relation
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Table 5.1: Mutual Information for the Index Level Lever-

age Effect Controlling for Trading Volumes and Correlation

Asymmetry

MI (r̂, v̂) MI (r̂, v̂ | x̂) MI (r̂, v̂ | ĉ,) MI (r̂, v̂ | x̂, ĉ,)

(rt ,vt+1) 0.006 ± 0.001

(0.005)

0.007 ± 0.001

(0.004)

0.135 ± 0.020

(<0.001)

0.052 ± 0.009

(<0.001)

(vt ,rt+1) 0.003 ± 0.001

(0.112)

0.005 ± 0.001

(0.016)

0.134 ± 0.020

(<0.001)

0.051 ± 0.009

(<0.001)

(rt ,vt+2) 0.012 ± 0.001

(<0.001)

0.012 ± 0.001

(<0.001)

0.128 ± 0.020

(<0.001)

0.054 ± 0.010

(<0.001)

(vt ,rt+2) 0.008 ± 0.001

(0.003)

0.010 ± 0.001

(0.001)

0.126 ± 0.020

(<0.001)

0.053 ± 0.010

(<0.001)

Shows the MI between returns and volatility at the 1 and 2 day time lags for developed market indices.

The p-values are shown in brackets. Controlling for trading volumes alone has no effect on the MI

between returns and volatility but correlation asymmetry is shown to dampen the MI by two orders of

magnitude. Controlling for correlation asymmetry and trading volumes increases the MI between returns

and volatility by an order of magnitude. These results indicate that correlation asymmetry actually

dampens the MI between returns and volatility but once this has been accounted for trading volumes

become an important driver of the Leverage Effect.
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5.4 Conclusions

In this chapter I identified the index level Leverage Effect in the cross-covariance func-

tion and showed the magnitude to be twice as large as at the stock level; consistent with

previous research. However, the MI (r̂, v̂) was found to be similar to that at the stock level

which indicated that in general it could be considered as the average of the stock level

effect. The reason for this discrepancy appears to be because correlation asymmetry acts

as a diversification factor and is a suppressing variable. Having controlled for this diver-

sification effect, trading volumes then account for 62% of the MI between returns and

volatility.

The chapter also produced a number of stylised facts, from an information theoretic

perspective, which may give insights into the functioning of the financial markets:

1) Returns, volatility and volumes all display auto-information.

2) There is bi-directional (Granger) causality between volumes and stock returns but

volumes dominate.

3) There is bi-directional (Granger) causality between returns and volatility.

4) There is bi-directional (Granger) causality between volumes and volatility but vol-

umes dominate.

5) The persistence in the relationships between returns, volatility and volumes are

driven by auto-information.

6) Appendix A shows that at the weekly frequency volumes (Granger) cause returns

and volatility whilst volatility (Granger) cause returns.

These results are also found to be generally consistent with emerging market indices

(Appendix C).

Chapters 5 and 3 have highlighted the importance of time dependence in the return-

volume correlation at the stock level and the Leverage Effect at the index level respec-

tively. In the next chapter I examine the time dependence of these effects and the relation-

ship between the stock and index levels.
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Part III

Time Variation of the Leverage Effect
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Chapter 6

Time-Series Analysis of the Leverage

Effect

6.1 Introduction

In Parts I and II, I examined the Leverage Effect at the index and stock levels and asso-

ciated effects such as stock correlation asymmetry and return-volume correlation. This

examination suggests that these effects may in fact be time dependent. For example, in

Chapter 3 I showed that return-volume correlation is governed by the optimal trading

strategy. This in turn is governed by expected returns, the standard deviation of returns

and investors risk preferences, all of which vary with time. Whilst in Chapter 5 I showed

that the MI in the index level Leverage Effect is suppressed by stock correlation asymme-

try. This is consistent with previous findings that ‘The Volatility Feedback Hypothesis’ is

important in periods of distress but less so during quiet periods. In this chapter I examine

how these effects vary over time and how they are related. Surprisingly there has been

little previous research in this area. I find that all the effects are time dependent and coher-

ent. It is shown that return-volume correlation leads the stock and index level Leverage

Effects which is consistent with the notion that the Leverage Effect is driven by trading

activity. It also shows that the stock and index level Leverage Effects and stock corre-

lation asymmetry all move in phase during volatile periods when there is also a larger
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information transfer from the index to the stock level. This indicates that during these

periods investors are more focussed on systemic factors.

The chapter will initially detail the data and methods used in Section 6.2; see Chapter

2.2 for details on T E. It then proceeds to present an empirical investigation of the time

variation of the Leverage Effect at the stock and index levels in Section 6.3. Finally, I

summarise my findings in Section 6.4.

6.2 Methodology

6.2.1 The Data

The data is sourced from Bloomberg and covers daily stock returns and volumes for 488

stocks from the S&P500 during the period 2000-2012. The stocks have a daily mean

return of 0.0410%, a daily mean standard deviation of 0.0259 and a mean daily volume

of 2.2493M shares. Since the data represents the constituent stocks as of 2012, the data

set is prone to survivorship bias. Stocks that have ceased to trade or have dropped out of

the index over this time may display different dynamics/relationships hence this research

makes no statement about these stocks. This may be an interesting area of future research.

The data has been segmented into annual periods (252 day) and calculated on a weekly

(5 day) rolling basis. It is necessary to use over-lapping time windows in order to produce

enough data points to analyse but this does induce correlations/coherence between the

time points. The stock level results are calculated at the individual stock level and then

averaged to give a value for the overall index and associated standard errors. The index

levels are shown as calculated without error estimates since there is only one realisation.

6.2.2 What are Wavelets?

Wavelets are mathematical functions used to represent data or other functions in a similar

way to sine and cosine functions in Fourier Analysis. However, unlike sine and cosine

functions, wavelets are ’local’ which means they can examine signals at different reso-

lutions or scales. This is particularly useful in many real world systems which are often
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non-stationary and require analysis at the local scale. To conduct wavelet analysis it is

necessary to choose a prototype wavelet, often called a ’mother’ wavelet. This ’mother’

wavelet is then rescaled to examine different properties of the signal. A high frequency

version is used for temporal analysis and a low frequency version for frequency analysis.

The choice of ’mother’ wavelet is a challenging one and often resorts to a trial and error

approach in determining which wavelet shape most accurately reflects your data; this is

generally done by visually examining the wavelet transform (discussed below). In the

following analysis I use the cgau3 wavelet (Mathworks, 2014).

Dilations and translations of the ’mother’ function, Φ(x), define an orthogonal basis,

our wavelet basis:

Φ(a,b)(x) = 2−
a
2 Φ
(
2−ax−b

)
(6.1)

where x is a real valued time-series, a is the scale index and indicates the wavelet’s

width and b is the location index which gives the position. To span the data domain at

different resolutions, the analysing wavelet is used in a scaling equation:

W (x) =
N−2

∑
k=−1

(−1)kck+1Φ(2x+ k) (6.2)

where W (x) is the scaling function for the ’mother’ function, Φ, and ck are the wavelet

coefficients.

Wavelet coefficients must satisfy linear and quadratic constraints of the form:

N−1

∑
k=0

ck = 2 (6.3)

N−1

∑
k=0

ckck+2b = 2δb,0 (6.4)

where δ is the delta function and b is the location index. The original signal or func-

tion can then be represented as a wavelet expansion using coefficients in a linear com-

bination of the wavelet functions. The wavelet coefficients act as a filter and act in two
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ways, one bringing out the detail in the signal and the second smoothing the signal. Ap-

ply the coefficients to a signal using a transformation matrix results in a wavelet transform

denoted by Cx(a,b).

We can use the wavelet transform to examine the relationship between multiple time-

series using wavelet coherence, where one can calculate the modulus and phase angles of

the coherence of the two signals. This is calculated via the wavelet cross-spectrum which

is given by:

Cxy(a,b) =Cx(a,b)Cy(a,b) (6.5)

where z̄ denotes the complex conjugate of z.

This empirical wavelet coherence is then given as:

Coherence =
K (Cxy(a,b))√

K (|Cx(a,b)|)2
√

K (|Cy(a,b)|)2
(6.6)

where K is a smoothing kernel.

For a further discussion on wavelets I refer the reader to Graps (1995) from which

these notes were taken and Torrence and Campo (1998).

6.3 Results

6.3.1 Stock Level Effects

In Chapter 3 I showed that return-volume correlation is governed by the expected stock

returns and the standard deviation of returns. Figure 6.1 shows how the Sharpe Ratio

(µ/σ) and the return-volume correlation vary over time. The middle and bottom plots

represent the modulus and phase angle of the wavelet coherence respectively. The scale

parameter, a, is shown on the vertical axes (in weeks) and the location parameter, b, is on

the horizontal axes. To interpret the modulus we can see that it is red across both scale

and location which means the signals are strongly coherent; this is probably due to the

overlapping time windows. The phase angle is far more interesting showing a range of
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negative (blue) and positive (yellow/red) regions across both scale and location. It appears

to show that return-volume correlation lead the Sharpe Ratio prior to the 2008 financial

crisis this is observed by the blue regions for at 20-40 week wavelengths. This is con-

sistent with using expected returns, but lags after the crisis. However, after the crisis the

relationship reversed; identified by the yellow regions at 15-30 week wavelengths. This

reversal could indicate that investors are exposed to hindsight bias where they are extrap-

olating past returns into the future; in this case they have been influenced by the financial

crisis. The return-volume correlation was also found to be dependent upon an individ-

ual’s preferences which are also time dependent. The ‘House Money’ Effect suggests that

an individual’s preferences may vary over time because investors are less concerned with

losing profits than they are with losing initial capital. This means that after periods of pos-

itive returns, where they have amassed wealth, they will be more risk-seeking. Whereas,

when they have endured periods of losses, future losses become more painful and so they

become more risk-averse. However, the ‘House Money’ Effect it is not readily apparent

in Figure 6.1. This may be because it is not a factor or because the effect of the Sharpe

Ratio dominates or because the required frequency is below the annual level.
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Figure 6.1: Time Variation of Return-Volume Correlation and the Sharpe Ratio

Time Variation of the Sharpe Ratio and Return-Volume Correlation. (Top) shows that the Sharpe Ratio
(blue squares with dashed line) and the Leverage Effect (green diamonds with solid line) are generally
both negative. (Middle) shows that the signals are coherent (red regions). (Bottom) shows that return-
volume correlation tends to lead the Sharpe Ratio (negative regions) prior to the 2008 financial crisis but
subsequently lags behind (positive regions).
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Figure 6.2 examines the time varying relationship between the stock level Leverage

Effect and return-volume correlation. It shows that they are both generally negative and

coherent with return-volume correlation leading the Leverage Effect. This is consistent

with the notion that trading volumes drive the stock level Leverage Effect. During the

financial crisis they move out of phase with the Leverage Effect becoming more positive

and the return-volume correlation becoming more negative.
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Figure 6.2: Time Variation of the Stock Level Leverage Effect and Return-Volume Cor-
relation

Time Variation of the Stock Level Leverage Effect and Return-Volume Correlation. (Top) shows that the
return-volume correlation (blue squares with solid line) and the Leverage Effect (green diamonds with
dashed line) are generally both negative. (Middle) shows that the signals are coherent (red regions). (Bot-
tom) shows that return-volume correlation tends to lead the Leverage Effect (positive regions) especially
prior to and during the 2008 financial crisis.
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6.3.2 Index Level Effects

Figure 6.3 examines the time varying relationship between the index level Leverage Effect

and return-volume correlation. It shows that they are both generally negative and coherent

with return-volume correlation leading the Leverage Effect. This is consistent with the

notion that trading volumes drive the index level Leverage Effect. It is again identifiable

that they move out of phase during the financial crisis where the Leverage Effect becomes

more positive and the return-volume correlation becomes more negative.
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Figure 6.3: Time Variation of the Index Level Leverage Effect and Return-Volume Cor-
relation

Time Variation of the Index Level Leverage Effect and Return-Volume Correlation. (Top) shows that the
return-volume correlation (blue squares with solid line) and the Leverage Effect (green diamonds with
dashed line) are generally both negative. However, they depart markedly around the time of the 2008 finan-
cial crisis when the return-volume correlation becomes more negative whilst the Leverage Effect actually
becomes positive. (Middle) shows that the signals are coherent (red regions). (Bottom) shows that return-
volume correlation tends to lead the Leverage Effect (positive regions) especially prior to and during the
2008 financial crisis.
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6.3.3 Index and Stock Level Effects

Figure 6.4 examines the stock and index level Leverage Effects. It is apparent that they

are coherent but the index level effect is far larger. It can also be seen that the stock

level effect leads the index level until the 2008 financial crisis when they move in phase.

Figures 6.5 and 6.6 show that the Leverage Effects lead correlation asymmetry until the

2008 financial crisis when they all move in phase. This regime change can clearly be seen

in Figure 6.7 where there is a significant increase in the T E from index returns to stock

returns and volatility after the crisis. This could indicate that the investors were more

focussed on macro/systemic risks.
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Figure 6.4: Time Variation of the Index and Stock Level Leverage Effects

Time Variation of the Index and Stock Level Leverage Effects. (Top) shows the index level Leverage
Effect (blue squares with solid line) and the stock Leverage Effect (green diamonds with dashed line) are
generally both negative but the index level effect is far larger. (Middle) shows that the signals are coherent
(red regions). (Bottom) shows that the stock level Leverage Effect (positive regions) tends to to lead the
index level effect except around the 2008 financial crisis when they move in phase.
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Figure 6.5: Time Variation of the Index Level Leverage Effect and Correlation Asymme-
try

Time Variation of the Index Level Leverage Effect and Correlation Asymmetry. (Top) shows that the corre-
lation asymmetry (blue squares with solid line) and the Leverage Effect (green diamonds with dashed line)
are generally both negative except around the time of the 2008 financial crisis when they both turn posi-
tive. (Middle) shows that the signals are coherent (red regions). (Bottom) the results show that generally the
Leverage Effect leads the correlation asymmetry (positive regions) but around the time of the 2008 financial
crisis they move in phase.
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Figure 6.6: Time Variation of the Stock Level Leverage Effect and Correlation Asymme-
try

Time Variation of the Stock Level Leverage Effect and Correlation Asymmetry. (Top) shows that the cor-
relation asymmetry (blue squares with solid line) and the Leverage Effect (green diamonds with dashed
line) are generally both negative except around the time of the 2008 financial crisis when the correlation
asymmetry turns positive. It is also clear that the correlation asymmetry is far larger than the stock level
Leverage Effect. (Middle) shows that the signals are coherent (red regions). (Bottom) the results show that
the stock level Leverage Effect generally leads the correlation asymmetry (positive regions) except around
the time of the 2008 financial crisis when they move in phase.
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Figure 6.7: Time Variation of the Transfer Entropy from the Index to Stock Level

Transfer Entropy between Index and Stock Levels. Index returns appear to transmit a similar amount
of information to stock returns, T E (Ir→ Sr) (red diamonds with dot-dashed line), as to stock volatil-
ity T E (Ir→ Sv) (blue squares with a solid line). The index returns do not appear to transmit significant
information to stock volumes as evidenced by T E (Ir→ Sx) (green pentagrams with dashed line). The
information transfer appears far higher subsequent to the 2008 financial crisis.
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6.4 Conclusions

In this chapter I have shown that the Leverage Effects, return-volume correlation and

correlation asymmetry all vary with time. Return-volume correlation was found to lead

the Leverage Effect at the index and stock levels which is consistent with the notion

that the Leverage Effect is driven by trading activity. It also showed that the stock level

Leverage Effect leads the index Leverage Effect and both lead the correlation asymmetry

except during volatile periods, such as the financial crisis, when they all move in phase.

The investigation also uncovered marked differences in the market dynamics prior to

and after the 2008 financial crisis. It was found that subsequent to the 2008 financial

crisis, stock returns and volatility were much more heavily influenced by index returns.

This indicates that investors were more focussed on systemic risks. This is probably

why the stock and index level Leverage Effects move in phase during these periods. It

was also found that return-volume correlation led the Sharpe Ratio prior to the crisis

which is consistent with the model predictions in Chapter 3 that suggested investors use

expected stock returns and standard deviations. However, after the crisis this relationship

flipped which could indicate that investors are exposed to hindsight bias where they are

extrapolating past returns into the future. In this case they may have been ‘fearful’ after

the crisis.
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Part IV

The Leverage Effect in Stock Options
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Chapter 7

Literature Review: The Implied

Leverage Effect

Options are a type of financial instrument known as a derivative. An option gives one the

right (but not the obligation) to buy or sell an asset, such as a stock, at a given price at a

certain time in the future. They are actively traded in the financial markets and commonly

priced using the Black and Scholes (1973) formula. The only unknown parameter in

the Black-Scholes (BS) formula is the standard deviation of the underlying asset; this

is known as the implied volatility (IV). However, whilst the BS framework assumes a

constant volatility, Campa and Chang (1995) show that the IV varies as a function of time

to expiration. Furthermore Canina and Figlewski (1993), Rubinstein (1994) and Foresi

and Wu (2005) show that IV is asymmetric across option strikes, exhibiting a ‘smile’ or

‘smirk’; this is also referred to as the skew. The dependence of IV upon both option

strike and expiry leads to the construction of an implied volatility surface (IVS); this has

also be shown to evolve over time (Cont and da Fonseca, 2002). It is these dynamics

which are of particular interest for this thesis because there is a documented negative

correlation between stock returns and the at-the-money (ATM) IV, an Implied Leverage

Effect. This has been studied by such authors as Ciliberti et al. (2009) who have examined

the relationship between the Leverage Effect and the Implied Leverage Effect.

In this chapter I present a review of the recent research on IV. Section 7.1 describes
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several of the empirical findings on IV and Section 7.2 outlines several models that at-

tempt to capture these properties. Section 7.3 presents several of the proposed expla-

nations for the Implied Leverage Effect and Section 7.4 is a summary. For a detailed

examination of the models, I refer the reader to Lee (2005).

7.1 Properties of Implied Volatility

It is important to understand the stylised facts of IV in order to develop better models and

for risk management and trading purposes. As mentioned previously it has been widely

documented that the implied volatility varies systematically with both strike and time to

expiry. A great deal of research has also been conducted on the relationship between

implied and realised volatility and on predicting implied volatility. Harvey and Whaley

(1992) use regressions of the changes in implied volatility on information variables that

include day-of-the-week dummy variables, lagged implied volatilities, interest rate mea-

sures and the lagged index return. They conclude that one-day-ahead volatility forecasts

are statistically precise but do not help with devising profitable trading strategies once

transaction costs are taken into account. This is consistent with the findings of Goncalves

and Guidolin (2006). However Goyal and Saretto (2007) and Noh et al. (1994) were

able to generate economically significant patterns even after transaction costs. The latter

used a GARCH(1,1) model applied to daily changes in weighted IV. However they used

a generalised least squares procedure (Day and Lewis, 1988) to compress the entire daily

IVS into a single volume-weighted volatility index which Goncalves and Guidolin (2006)

argue make their results less reliable.

The traditional diffusion models specify the dynamics of the spot price and its in-

stantaneous volatility. An alternative approach is to model the dynamics of the implied

volatility itself. Skiadopoulos et al. (2000) use PCA analysis, on individual smiles and

the whole volatility surface, to show that 60% of the variance in the IVS can be explained

by two factors: a parallel shift and a Z-shaped shift. Whilst Kamal and Derman (1997)

find that three components explain 95% of the variance of the volatility surface: the level

of volatility, the term structure and the skew. The first to directly model the dynamics of
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the IVS were Cont and da Fonseca (2002). In a study of the dynamical features of the

IVS’ of the S&P500 and FTSE, they show that the IVS can be described as a randomly

fluctuating surface driven by a small number of factors. They also study the shapes of

these factors and their dynamics. Finally, they model the IVS as a stationary random field

with a covariance structure matching the empirical observations.

In explaining the dynamics of the ‘smile’, Daglish et al. (2007) documents two ‘rules

of thumb’ that are commonly used in the market practice: ‘Sticky-Strike’ and ‘Sticky-

Delta/Sticky-Moneyness’. ‘Sticky-Strike’ assumes that the implied volatility of an option

is only a function of the strike and does not depend upon the price of the underlying.

Whereas ‘Sticky-Moneyness’ assumes that the ‘smile’ moves with the underlying, so the

IV of a given ‘moneyness’ does not change. Ciliberti et al. (2009) find that empirically

the ‘smile’ dynamics are somewhere between these two states.

7.2 Models

Local Volatility Models

The most common method for accommodating the ‘smile’ is to use a local volatility (LV)

model such as those developed by Dupire (1994) and Derman et al. (1996). These rely

on relaxing the BS assumption of constant volatility by allowing the volatility to be a

function of both time and spot price; known as ‘local volatility’. However, Hagan et al.

(2002) finds that the dynamics of the ‘smile’ predicted by LV models are opposite to that

observed in the market. LV models predict that when the price of the underlying asset

decreases the smile shifts to higher prices and vice versa. Whilst Dumas et al. (1998)

examine the predictive and hedging performance of LV models and find they are no better

than an ad hoc procedure that merely smooths the IV across strike and expiry. Ciliberti

et al. (2009) state that “from a more fundamental point of view, local volatility models

cannot possibly represent a plausible dynamics for the underlying”.
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Models with Realistic Stock Dynamics

Ciliberti et al. (2009) favour models with more realistic dynamics and mention the Jump

Diffusion and Levy Processes Models (Cont and Tankov, 2003), GARCH and Stochastic

Volatility Models (Gatheral (2006) and Henry-Labordere (2008)) and Multifractal Mod-

els (Muzy et al. (2000) and Borland et al. (2005)). Bakshi et al. (1997) advocate using

stochastic volatility models with jumps for valuing S&P500 options but Bates (2000)

shows that they require unrealistic assumptions for parameter estimates.

These models predict a certain term structure for the skewness and kurtosis of the re-

turn distribution over different time scales. Having a realistic model of the stock dynamics

is useful because they predict certain term structures for the skewness and kurtosis of the

return distribution which can be used to estimate the smile of near-the-money options at

different maturities Hagan et al. (2002), Backus et al. (1997) and Potters et al. (1998) and

Bouchaud and Potters (2004). For example, iid random variables predict the skewness to

decay as T−1/2 whilst the kurtosis decays as T−1. However, Ciliberti et al. (2009) state

that the Leverage Effect leads to a richer term structure for skewness whilst volatility

clustering leads to a non-trivial term structure for kurtosis.

Equilibrium Models

Guidolin and Timmermann (2003) show that many of the empirical biases of the BS

option pricing model may be explained by Bayesian learning effects. The underlying

asset price process is determined by embedding the learning mechanism in a general

equilibrium model. In the model, the dividend news is allowed to evolve on a binomial

lattice with unknown transition probabilities that are recursively updated using Bayes’

rule. From this model they derive closed-form pricing formulas for European options and

find that learning generates asymmetric skews in the IVS and systematic patterns in the

term structure of option prices.
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7.3 What drives the Implied Leverage Effect?

A significant factor in explaining the Implied Leverage Effect is likely to be the stock/index

level Leverage Effect. Ciliberti et al. (2009) find that the stock/index level Leverage Effect

gives rise to non-trivial smile dynamics and naturally explains the anomalous dependence

of the skew as a function of option expiry. They also find that option markets overesti-

mate the Implied Leverage Effect by a large factor, particularly for long dated options.

This overestimation of the Implied Leverage Effect may be due to behavioural biases as

suggested by Hibbert et al. (2008) and Jackwerth (2000) who recovers risk aversion func-

tions from S&P500 options. As we saw previously, behavioural explanations are depen-

dent upon trading behaviour and this has been studied in US stock options and S&P500

index options by Bollen and Whaley (2004). They find that changes in IV are directly

related to net buying pressure from public order flow. In indices there is strong demand

for put options and with no natural sellers, market makers facilitate supply and push up

option prices (IV). Whereas, option writing strategies force down call option prices (IV).

They also find that index options are dominated by put option trading whilst stock options

are dominated by call option trading. They suggest this is why the implied volatility skew

is steeper in indices than stocks.

Hibbert et al. (2008) study the Implied Leverage Effect at both the daily and intra-

day level and find that neither the ‘Leverage Hypothesis’ nor the ‘Volatility Feedback

Hypothesis’ were able to adequately explain their results. Whilst Pena et al. (1999) use

regressions and linear and non-linear Granger causality to examine ‘smile’ of IBEX op-

tion prices at the intraday frequency. They find that transaction costs, variables related

to uncertainty about the return of the underlying asset and relative market momentum

are key determinants in explaining the skew. Furthermore, they find non-linear causality

effects in the dynamic interrelations between these variables and the ‘smile’. In an exam-

ination of FTSE, NIKKEI and S&P500 options, Gemmill and Kamiyama (1997) find that

changes in the IV in a specific market are driven by the previous period changes of IV

in another market. This lagged spillover effect is also documented by Konstantinidi et al.

(2008).
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7.4 Summary

This chapter has outlined some of the recent research on IV for stock and index options.

Importantly for this thesis, the explanation for the manifestation of Implied Leverage Ef-

fect seems reasonable, being a combination of trading activity and the stock/index level

Leverage Effect. However, there remain a number of open problems. Firstly, it has proven

very difficult to develop a model that exhibits realistic stock dynamics and precludes arbi-

trage opportunities. Secondly, there appears to be scope for more sophisticated models of

the dynamics of the IVS. This seems an achievable goal since Kamal and Derman (1997)

found that just three components explain 95% of the variance of the volatility surface.

Hence, in the next chapter I will attempt to develop a statistical model of the IVS.
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Chapter 8

Modelling Implied Volatilities using

Multivariate q-Gaussian Distributions

8.1 Introduction

Cont and da Fonseca (2002) were the first to directly model the dynamics of the IVS.

They modelled the IVS as a randomly fluctuating surface driven by a small number of

factors. It is in this vein that I develop a descriptive statistical model of the IVS using

a multivariate q-Gaussian distribution. The q-Gaussian distribution, an extension of the

Gaussian distribution, naturally arises from models with multiplicative noise such as the

financial markets. It has also been shown to be very useful in modelling heavy tailed

data such as stock returns. I show that stock returns and IV’s are well modelled by q-

Gaussian distributions and identify the Implied Leverage Effect. Furthermore, I show

the model may be used in practice for risk management by calculating the most probable

IV changes for given stock returns. I also estimate the probability of these stock returns

within a framework that is common to market practitioners but naturally allows for ‘fat

tails’. This could be very useful in stress testing for both vanilla and exotic derivatives.

The chapter begins by briefly discussing q-Gaussian distributions (Section 8.2) before

detailing the data and calibrating the model (Section 8.3). It then proceeds to fit the q-

Gaussian distribution to empirical data for S&P500 stocks (Section 8.4.1) and identifies
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the Implied Leverage Effect (Section 8.4.2). Section 8.4.3 then discusses how the model

can be used for stress-testing before Section 8.4.4 shows how to generate virtual data

for scenario testing and option pricing using a simple Markov Chain or Auto-regressive

process. Finally conclusions are presented in Section 8.5.

This research has been conducted in collaboration with Daniel Sprague. The exact

responsibilities are outlined in the Declaration at the beginning of the thesis.

8.2 q-Gaussian Distributions

Tsallis (1994) developed a generalisation of Boltzmann-Gibbs thermostatistics based on

the scaling properties of multifractals. He introduced a new entropy measure (or entropy

functional) which was non-additive (for certain parametrisations), unlike the Boltzmann-

Gibbs entropy. It is sometimes known as the Tsallis entropy. Non-extensivity arises in

these systems because the entropy is not proportional to the number of elements; this

is required for a system to be extensive. The financial markets are an example of such

a system due to the strong correlations between assets. Financial asset returns are also

characterised by intermittency and multifractal scaling for which Ramos et al. (2001) has

shown the q parameter, which defines Tsallis entropy, is an objective measure.

Maximising the Tsallis entropy, under certain constraints, leads to the q-Gaussian

distribution which can be considered as an extension or generalisation of the Gaussian

distribution. It is characterised by it’s heavy-tails (for certain parametrisations). The

univariate q-Gaussian distribution is given by:

p(x|q,β ) =
(
1+β (q−1)x2) 1

1−q

Zq
(8.1)

where q and β are parameters to be estimated and x is the data.

The normalisation factor, Zq, is given by:

Zq = (β (q−1))
1
2

Γ
(1

2

)
Γ

(
1

1−q −
1
2

)
Γ

(
1

q−1

) (8.2)
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This distribution is defined for q < 3 and β > 0, and it has finite variance for q ∈

(−∞, 5
3). For q > 1 it is ‘heavy tailed’ and approaches a Gaussian distribution as q→

1. Figure 8.1 shows the probability density function for a q-Gaussian distribution with

varying values for q and β . It shows that increasing q increases the ‘heavy tailedness’ of

the distribution whilst increasing β appears to decrease the width of the distribution.

Some may ask why use the q-Gaussian distribution rather than another heavy tailed

distribution? For example, Mandlebrot used the scaling property and the observation of

power-law tails in a time series of cotton prices to propose a stable Levy distribution

(with infinite variance) for financial returns. However Osorio et al. (2004) state that “Re-

cent studies of data sets of high-frequency individual stock returns (Gopikrishnan et al.

(2000) and Pleru et al. (1999)) suggest both that their variances are finite and the exponent

in the power-law tail falls outside the stable Levy interval. Which opens the door to the

consideration of other models to describe these distributions”. The q-Gaussian distribu-

tion has been applied recently with remarkable success to describe returns of exchange

rates Ramos et al. (2001) and high frequency asset returns Drozdz et al. (2007); in both

the central regime and the power-law tails. Sato (2012) also computed q-Gaussian VaR

measures for unconditional distributions of Japanese stocks and confirmed that returns are

well fitted by q-Gaussian distributions using the Kolmogorov-Smirnov test.
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Figure 8.1: Univariate q-Gaussian Distribution

This shows the Gaussian (dashed black line) and q-Gaussian distributions for a range of q and β . The
q-Gaussian distribution is clearly more ‘heavy tailed’ than a Gaussian distribution (which is a special case
of a q-Gaussian where q = 1).

Fitting q-Gaussian Distributions

In order to fit a multivariate q-Gaussian distribution one uses maximum likelihood esti-

mation (MLE) which in low dimensions may be calculated using numerical integration.

Unfortunately, estimating the normalisation factor using numerical integration becomes

computationally infeasible in higher dimensions. To overcome this problem, one uses

Markov-Chain Monte Carlo (MCMC) to sample from a target distribution, which is pro-

portional to the desired distribution and then constructs a normalised probability density

function.

Here I use the standard Metropolis-Hastings algorithm where the target distribution is
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a multivariate q-Gaussian distribution:

p(x|q,β ) ∝
(
1+β (q−1)x′Σ−1x

) 1
1−q (8.3)

where q and β are parameters, Σ is the covariance matrix and x is the data set. The

covariance matrix, Σ, is estimated from the stock data and I use a multivariate Gaussian

for the proposal distribution.

Unfortunately, since one does not know the normalisation factor, one must use an ap-

proach known as Monte Carlo Maximum Likelihood Estimation (Geyer, 1991) to estimate

the model parameters.

For a family of probability densities { fθ} with respect to some measure, µ , where the

densities are known only up to a normalising constant:

fθ (x) =
1

z(θ)
hθ (x) (8.4)

where hθ is a known function for each θ but nothing is known about z except that:

z(θ) =
ˆ

hθ (x)dµ(x) (8.5)

the integral being analytically intractable.

One can avoid calculating z by estimating the log likelihood ratio. To do this one

samples a Markov Chain from any φ in parameter space and compare this to our target

parameters, θ .

L(θ) = log
(

hθ (x)
hφ (x)

)
−nlog

(
z(θ)
z(φ)

)
(8.6)

which can be rewritten as:

L(θ) = log
(

hθ (x)
hφ (x)

)
−nlog

(
E
(

hθ (Xi)

hφ (Xi)

))
(8.7)

where x is the data and Xi is a sample from the Markov Chain. One then minimises

the negative log likelihood to estimate the model parameters.
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8.3 Methodology

8.3.1 The Data

The data consists of daily prices and At-The-Money (ATM) implied volatilities for 3, 6,

12 and 18 months for S&P500 stocks during the period 2009-2014. No adjustments have

been made to the data.

Figure 8.2 shows how the ATM IV varies over time, at each expiry, for Goldman Sachs

(GS) stock; there are 1,984 observations. As evidenced by previous studies, the IV clearly

varies over time and appears to be negatively correlated with the stock price, as observed

by the IV spike when the stock drops significantly around 800 days.

Figure 8.3 shows that stock returns and changes in implied volatility for GS are all

susceptible to very large tails; which can be well modelled by a q-Gaussian distribution.

The proceeding results are calculated for Goldman Sachs (GS) shares but a range of

other stocks have also been examined with similar findings (Appendix D).
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Figure 8.2: Time Variation of the Goldman Sachs Stock Price and At-The-Money Implied
Volatility

This shows the time variation of the GS stock price and 3, 6, 12 and 18 month at-the-money implied volatil-
ities. It clearly shows that implied volatilities vary over time and they appear to be negatively correlated
with the stock price.
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Figure 8.3: Time Variation of Goldman Sachs Stock Returns and Changes in At-The-
Money Implied Volatility

This shows the time variation is GS stock returns and changes in 6, 12 and 18 at-the-money implied volatil-
ities. It is clear that the implied volatility varies over time and that it exhibits very large changes.

8.3.2 Calibrating the Model

The q-Gaussian distribution is fitted using the MCMC algorithm in the ‘PyMC’ python

library (Fonnesbeck et al., 2013). 100,000 samples were generated with a burn-in period

of 10,000 and a thinning of 10. The burn-in period relates to generating a number of

samples prior to recording the Markov Chain. The purpose of this is to reduce the impact

of the chain starting in a low probability region of the distribution. The thinning relates to

only sampling the Markov Chain every given number of observations in order to reduce

auto-correlation. Both of these methods assist in reducing the convergence time of the

Markov Chain. The reference values were βφ = 1.50 and qφ = 1.30. These were chosen
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to generate a more heavy tailed distribution than the data. This is important to ensure that

we sample from across the entire distribution. Calibration of these parameters may often

be necessary to achieve optimal convergence of the Markov Chain.

Figure 8.4 shows the trace and auto-correlation of the MCMC. It shows that the sam-

ples span a wide range and are not auto-correlated.
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Figure 8.4: MCMC Calibration for Multivariate q-Gaussian

This shows the samples generated from the MCMC for GS. This is generated from a multivariate q-Gaussian
distribution. (Left) the trace for the samples shows that the MCMC is sampling from a broad range. (Right)
the auto-correlation for the samples shows that they are not highly autocorrelated.

8.4 Results

8.4.1 Fitting the q-Gaussian Distribution

The fitted multivariate q-Gaussian distribution has parameters: βθ = 4.02 and qθ = 1.25.

Figure 8.5 shows the fit of the marginal distributions, with the Gaussian distribution shown

for reference. Qualitatively, the results show that the q-Gaussian distribution fits the data

far better than the Gaussian distribution for both returns and changes in implied volatility.

The q-Gaussian appears to very closely match the actual data in the tails of the distribu-

tion. For fits of other US stocks please see Appendix D.

Figure 8.6 (Left) shows the joint distribution between returns and changes in 3 month

implied volatility. The Implied Leverage Effect is clearly identifiable by the negative
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correlation between the returns and the changes in implied volatility. Figure 8.6 (Right)

shows the joint distribution between changes in 6 and 12 month implied volatility. There

is a strong positive correlation between the implied volatilities. Both of these distributions

exhibit heavy tails which are more suited to a q-Gaussian distribution.
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Figure 8.5: Univariate q-Gaussian Fits of Returns and Implied Volatility Changes for
Goldman Sachs

This shows the fitted marginal distributions for returns and 6, 12 and 18 month implied volatility for GS.
It is clear that the q-Gaussian distribution (blue lines) fits the data far better than the Gaussian distribution.
Qualitatively it also appears to fit the tails of the distribution very well.
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Figure 8.6: Bivariate q-Gaussian Fits of Returns and Implied Volatility Changes for Gold-
man Sachs

This shows the fitted bivariate distributions for GS. (Left) this shows the joint distribution between returns
and changes in 3 month implied volatility. The Leverage Effect is identifiable by the negative correlation
between the returns and implied volatility. (Right) this shows the joint distribution between changes in 6
and 12 month implied volatility. It is clear that the changes in implied volatility are strongly positively
correlated. Qualitatively the q-Gaussian distributions appear to fit the data reasonably well and are certainly
able to capture the tails of the distribution better than a Gaussian distribution.
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Figure 8.7: Fitted q-Gaussian Parameters for S&P500 Stocks

This shows the fitted parameters, (q,β ), for multivariate q-Gaussian distributions for stock returns and 3, 6,
12 and 18 month at-the-money implied volatility for S&P500 stocks. The parameters appear to be strongly
positively correlated.
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Figure 8.7 shows the high positive correlation between fitted values of β and q for all

of the S&P 500 stocks. Averaged over all the stocks, the fitted values are β̄ = 3.27±1.77

and q̄ = 1.24±0.04.

As well as appearing to be qualitatively a better model, the q-Gaussian distribution is

also quantitatively a better model for returns and changes in IV as shown by the Akaike

Information Criterion (AIC). This measure allows a comparison between the quality of

models with different numbers of parameters; a lower AIC value indicates a better model.

The AIC difference between two models is calculated using:

∆AIC = 2(k1− k2)−2(lnL1− lnL2) (8.8)

where ki and Li are the number of parameters and the likelihood of model i respec-

tively. Please see Appendix D for further discussion of the AIC calculation for these

models.

Figure 8.8 shows a histogram of the AIC difference for S&P500 stocks. The AIC value

for each stock is significantly below 0, which indicates that the q-Gaussian distribution is

a far better model for the empirical data than the Gaussian distribution.
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Figure 8.8: Histogram of the Akaike Information Criterion for S&P500 stocks

This shows a histogram for the AIC difference between a Gaussian and a q-Gaussian for S&P500 stocks.
All of the stocks exhibit a negative AIC difference which means that they are better fitted by a q-Gaussian
than a Gaussian distribution.
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We can examine the variability of the q-Gaussian parameters over time by fitting the

distribution to individual time windows. Figure 8.9 shows q and β for the multivariate

q-Gaussian distribution fitted to GS stock returns and changes in 3, 6, 12 and 18 month

IV for 50% overlapping time windows of 198 days. It shows that whilst q and β vary

over time, they appear to do so in phase and the actual range for the q values is reasonably

small given that q = 1 is a Gaussian distribution and q = 1.67 is the upper limit for a finite

second moment.
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Figure 8.9: Time variation of q and β for Goldman Sachs Stock

This shows the time variation of the q-Gaussian distribution parameters when fitted to 50% overlapping
time windows of 198 days for the GS stock. It shows that \beta and q move in phase and the actual range of
the parameters is actually quite small.
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8.4.2 The Implied Leverage Effect

Figure 8.10 shows the most probable change in implied volatility conditioned on stock

returns. The Implied Leverage Effect is clearly identifiable at each expiry by the negative

correlation between returns and changes in implied volatility. It is also clear that the

Implied Leverage Effect decreases with expiry. The decay of the Implied Leverage Effect

with expiry is also shown in Figure 8.11. Here I have calculated the instantaneous skew at

each expiry. This is the difference in implied volatility just above and below 0% returns.

It is clear that the effect decays far more slowly than T−1/2 which is predicted by the

Black-Scholes option pricing framework.
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Figure 8.10: Implied Leverage Effect for Goldman Sachs Stock

This shows the most likely change in implied volatility for a given stock return for GS. The Leverage Effect
is identifiable by the negative correlation between returns and changes in implied volatility. The probability
intervals for the returns as calculated by the q-Gaussian are overlayed to show the probability of a given
change in implied volatility.
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Figure 8.11: Decay of the Instantaneous Skew for Goldman Sachs Stock

This shows the instantaneous skew - the difference in implied volatility above and below the at-the-money
strike - for GS (blue line). The results show that the instantaneous skew decays far more slowly than 1/

√
t

as predicted in the Black-Scholes framework.

8.4.3 Stressing the Implied Volatility Surface

It is common for market practitioners to stress their derivative portfolios in order to cal-

culate their ‘Profit and Loss’ and ‘Greek’ exposures - these represent the sensitivity of

the price of a derivative to a change in underlying parameters - at different market lev-

els. However, this can be a challenging task because the changes in the ATM IV are not

constant across expires and are dependent upon the stock return itself. One can use the

implied volatility dynamics in Figure 8.10 to improve on current methodologies, which

tend to only consider a parallel or weighted shift of the IVS, to account for these factors.

I have also included probability intervals that have been calculated in terms of standard

deviations. Although standard deviations are not associated with q-Gaussian distribu-

tions, they are common in the financial markets and this makes the results comparable to

standard derivative frameworks. A market practitioner can now reprice their derivative

portfolio, at each market level, using these changes in IV to ascertain their ‘Profit and

Loss’ and ‘Greek’ exposures. Some may argue that this does not take into considera-

tion changes in the ‘Skew/Smile’ however it is very simple to add additional IV’s with

different ‘moneyness’ to this model and imply the changes in the ‘Skew/Smile’.
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8.4.4 Virtual Data Generation

Figure 8.12 shows that neither the GS stock returns nor the IV’s are autocorrelated. In

this case it is straightforward to generate virtual data via a simple Markov process:

Xt+1 = Xt + ε (8.9)

where Xt is a vector representing stock price and the ATM IV’s at time, t. ε is a

vector of i.i.d random variables generated from the multivariate q-Gaussian distribution.

Figure 8.13 shows that qualitatively, the virtual data displays many of the same properties

observed previously in the actual stock data.
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Figure 8.12: Goldman Sachs Autocorrelations

Autocorrelation of Goldman Sachs returns and changes in at-the-money implied volatility for 3, 6 and 18
month expires.
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Figure 8.13: Virtual Data Generation

Time variation of the virtually generated stock price and at-the-money implied volatility for 3, 6, 12 and 18
month expires using a multivariate q-Gaussian distribution with βθ = 4.02 and qθ = 1.25. The thinning is
set to 500 to remove any autocorrelation in the MCMC.

If there are auto-correlations or cross-correlations we can incorporate them by using

a vector autoregressive (VAR) framework as follows:

Xt+1 = Xt +
L

∑
j=0

Xt−jBj + εt (8.10)

where B j is the lag correlation matrix between t+1 and t− j, and εt ∼QG(0,∑,β ,q)

is the q-Gaussian model for the noise. By choosing the lag correlation matrix we can

reproduce the observed autocorrelation and cross-correlation for any lag.
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8.5 Conclusions

In this chapter I developed a descriptive statistical model of stock returns and implied

volatility using a multivariate q-Gaussian distribution. Although the q-Gaussian distribu-

tion has previously been shown to fit stock returns well, this is the first time it has been

used to model implied volatilities. Using empirical data for S&P500 stocks, I showed that

the multivariate q-Gaussian distribution fits the stock data better than an equivalent mul-

tivariate Gaussian distribution. I then identified the Implied Leverage Effect and showed

how the model could be used to estimate the probability of implied volatility changes. I

also showed how this could be used for stress-testing in order to estimate portfolio ‘Profit

and Loss’ and ‘Greek’ exposures. This was developed within a standard framework that

could be utilised by market practitioners. In addition, I have shown how the multivari-

ate q-Gaussian distribution could be used to generate virtual data for scenario testing and

option pricing using a simple Markov Chain or Auto-regressive process. Although this

analysis has only considered changes in the at-the-money implied volatility it can eas-

ily be extended to options with different ‘moneyness’ to account for skew and convexity

effects in the implied volatility surface.
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Part V

Conclusions
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This thesis presented original research on the Leverage Effect in stocks, stock indices

and stock options. The Leverage Effect refers to the negative correlation between an

asset’s return and its volatility; first documented by Black (1976). The research validated

previous findings in identifying the Leverage Effect in stocks and stock indices. Contrary

to the findings of Bouchaud et al. (2001), I showed that one does not need to consider the

entire cross-correlation function to characterise the Leverage Effect since the persistence

is actually caused by auto-information in the volatility. Furthermore, by conducting the

first information theoretic analysis of the Leverage Effect, I showed that it can in fact be

misleading to imply causation by simply examining cross-correlations. I also provided

the first comprehensive analysis of the time varying nature of the Leverage Effect. This

showed that the index level Leverage Effect was dominated by short volatile periods. This

is why some authors have documented a far larger effect at the index level whilst others

have questioned its statistical significance.

In ascertaining the cause of the stock level Leverage Effect I found that 50% of the

information transfer between returns and volatility could be attributed to trading volumes

and 42% due to an index level feedback effect. The importance of trading volumes sup-

ports the findings of Avramov et al. (2006) although they stated that the Leverage Effect

could be fully explained by trading volumes. The discrepancy could arise because they

only consider linear correlations. These findings were corroborated by the time variation

analysis. This showed that prior to the 2008 financial crisis, the return-volume correlation

led the Leverage Effect and the stock level Leverage Effect led the index level Leverage

Effect. However, during and after the crisis the stock and index level Leverage Effects be-

gan to move in phase. It also showed that there was a larger information transfer from the

index to the stocks during and after the crisis. This is consistent with the proposition that

generally the stock Leverage Effect is driven by trading volumes but in volatile periods it

is driven by systemic effects.

At the index level, a number of authors, such as Reigneron et al. (2011), have argued

that the Leverage Effect is generated by stock correlation asymmetry. This posits that

when the market declines a larger proportion of the stocks also decline than rise when
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the market rises. However, Gallant et al. (1992) claimed it could be explained by trading

volumes. An information theoretic analysis showed that both of these factors played an

important role with trading volumes accounting for 62% of the mutual information from

returns to volatility when also conditioned on correlation asymmetry. The time variation

analysis showed that prior to the 2008 financial crisis the stock level Leverage Effect

led the index level Leverage Effect and both led correlation asymmetry. However, they

all began move in phase during the crisis and subsequently. Therefore the correlation

asymmetry could well be the mechanism by which the index level effect is amplified.

This is consistent with behavioural models such as that proposed by Ahlgren et al. (2007)

which they show can faithfully reproduce the index level Leverage Effect..

In order to understand how trading behaviour affects trading volumes and in turn the

Leverage Effect, I utilised the model of Barberis and Xiong (2009). This allowed me to

calculate the optimal trading strategy for an investor with Prospect Theory preferences. It

was found that return-volume correlation is governed by the optimal trading strategy and

this in turn is governed by expected returns, the standard deviation of returns and investor

preferences. I validated the model predictions with a comprehensive empirical investi-

gation of a broad range of international stocks and the trades of institutional investors in

S&P500 stocks. This is one of the first pieces of research to directly link observed stylised

properties with behavioural mechanisms. Prior to the 2008 financial crisis, it was found

that the return-volume correlation led the Sharpe Ratio which is consistent with investors

trading on the basis of expected returns and standard deviations. However, after the cri-

sis the Sharpe Ratio led which could indicate that investors are subject to hindsight bias

where they are projecting past returns into the future. This could indicate that the crisis

had made the investors ‘fearful’ and given them negative expectations of future returns.

Finally, I developed a descriptive statistical model of stock returns and implied volatil-

ity using a multivariate q-Gaussian distribution. The q-Gaussian distribution is an exten-

sion of the Gaussian distribution that allows for better modelling of heavy tailed data.

Although the q-Gaussian distribution has previously been shown to fit stock returns well,

this is the first time it has been used to model implied volatilities. Using empirical data for
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S&P500 stocks, I showed that the multivariate q-Gaussian distribution fits the stock data

better than an equivalent multivariate Gaussian distribution. I then identified the Implied

Leverage Effect and showed how the model could be used to estimate the probability of

implied volatility changes. I showed how this could be used for stress-testing in order to

estimate portfolio ‘Profit and Loss’ and ‘Greek’ exposures. This was developed within a

standard framework that could be utilised by market practitioners. I have also shown how

the multivariate q-Gaussian distribution could be used to generate virtual data for scenario

testing and option pricing using a simple Markov Chain or Auto-regressive process.

One of the most interesting findings of this research is the direct link between investor

preferences and certain stylised properties of financial asset returns. Further investigation

is required in this area to understand if investors actually behave in this manner and if so

what other stylised properties are affected. This has important implications not only to

investing and risk management but also to the stability of the financial system. Hens and

Steude (2009) use an experimental stock market to examine the Leverage Effect. These

are useful mechanisms for investigating behavioural traits as subjects behaviours can be

analysed under laboratory conditions. Unfortunately, most of the experimental trading

platforms - that I have seen - are not particularly realistic and do not allow participants to

make informed decisions. To this end I have developed my own trading platform which

has been trialled and is now ready for implementation. In association with the Psychology

Department at the University of Warwick, I have constructed an experiment to examine

the affect of trading behaviour on return-volume correlation. We hope that in the future,

when we have sufficient funding and time, we will be able to conduct this experiment and

shed further light on the impact of trading behaviour.

168



Bibliography

Abdellaoui, M., Bleichrodt, H., Kammoun, H., Oct. 2011. Do Financial Professionals

Behave According to Prospect Theory? An Experimental Study. Theory and Decision

74 (3), 411–429.

Ahlgren, P., Jensen, M., Simonsen, I., Donangelo, R., Sneppen, K., 2007. Frustration

Driven Stock Market Dynamics: Leverage Effect and Asymmetry. Physica A: Statisti-

cal Mechanics and its Applications 383 (1), 1–4.

Allez, R., Bouchaud, J.-P., 2011. Individual and Collective Stock Dynamics: intra-day

Seasonalities. New Journal of Physics 13 (2), 025010.

Aloui, C., 2007. Price and Volatility Spillovers between Exchange Rates and Stock In-

dexes for the Pre-and Post-Euro Period. Quantitative Finance 7 (6), 669–685.

Amblard, P., Michel, O., Dec. 2012. The Relation between Granger Causality and Di-

rected Information Theory: A Review. Entropy 15 (1), 113–143.

Amihud, Y., Mendelson, H., 1986. Asset Pricing and the Bid-Ask Spread. Journal of

Financial Economics 17 (2), 223–249.

Ang, A., Chen, J., 2002. Asymmetric Correlations of Equity Portfolios. Journal of Finan-

cial Economics 63 (3), 443–494.

Ang, A., Chen, J., Xing, Y., 2006. Downside Risk. Review of Financial Studies 19 (4),

1191–1239.

Antoniewicz, R. L., 1993. Relative Volume and Subsequent Stock Price Movements.

Board of Governors, Federal Reserve System, Washington, DC.

Atkins, A., Dyl, E., 1997. Transactions Costs and Holding Periods for Common Stocks.

The Journal of Finance 52 (1), 309–325.

Avramov, D., Chordia, T., Goyal, A., Mar. 2006. The Impact of Trades on Daily Volatility.

Review of Financial Studies 19 (4), 1241–1277.

169



Aydemir, A., Gallmeyer, M., Hollifield, B., 2006. Financial Leverage Does Not Cause the

Leverage Effect. AFA 2007 Chicago Meetings.

Backus, D., Foresi, S., Li, K., Wu, L., 1997. Accounting for Biases in Black-Scholes.

CRIF Working Paper Series 30.

Baek, E., Brock, W., 1992. A General Test for Nonlinear Granger Causality: Bivariate

Model. Iowa State University and University of Wisconsin at Madison Working Paper.

Bakshi, G., Cao, C., Chen, Z., 1997. Empirical Performance of Alternative Option Pricing

Models. The Journal of Finance 52 (5), 2003–2049.

Balogh, E., Simonsen, I., Nagy, B., Zoltan, N., 2010. Persistent Collective Trend in Stock

Markets. Physical Review E 82 (6), 066113.

Barberis, N., Xiong, W., Apr. 2009. What Drives the Disposition Effect? An Analysis of a

Long-Standing Preference-Based Explanation. The Journal of Finance 64 (2), 751–784.

Barclay, M., Kandel, E., Marx, L., 1998. The Effects of Transaction Costs on Stock Prices

and Trading Volume. Journal of Financial Intermediation 7 (2), 130–150.

Barnett, L., Barrett, A. B., Seth, A. K., 2009. Granger Causality and Transfer Entropy are

Equivalent for Gaussian Variables. Physical Review Letters 103 (23), 238701.

Barnett, L., Bossomaier, T., Sep. 2012. Transfer Entropy as a Log-Likelihood Ratio. Phys-

ical Review Letters 109 (13), 138105.

Baruchi, I., Grossman, D., Volman, V., Shein, M., Hunter, J., Towle, V., Ben-Jacob, E.,

2006. Functional Holography Analysis: Simplifying the Complexity of Dynamical Net-

works. Chaos: An Interdisciplinary Journal of Nonlinear Science 16 (1), 015112.

Bates, S., 2000. Post-’87 Crash Fears in the S&P500 Futures Option Market. Journal of

Econometrics 94 (1), 181–238.

Baur, D., Lucey, B., 2009. Flights and Contagion - An Empirical Analysis of Stock-Bond

Correlations. Journal of Financial Stability 5 (4), 339–352.

170



Bekaert, G., Wu, G., 2000. Asymmetric Volatility and Risk in Equity Markets. Review of

Financial Studies 13 (1), 1–42.

Black, F., 1976. Studies of Stock Market Volatility Changes. In: Proceedings of the Amer-

ican Statistical Association, Business and Economics Section. pp. 177 – 181.

Black, F., Scholes, M., 1973. The Pricing of Options and Corporate Liabilities. Journal of

Political Economy 81, 673–654.

Bollen, N., Whaley, R., 2004. Does Net Buying Pressure Affect the Shape of Implied

Volatility Functions? The Journal of Finance 59 (2), 711–753.

Bollerslev, T., 1986. Generalised Autoregressive Conditional Heteroskedasticity. Journal

of Econometrics 31 (3), 307–327.

Bollerslev, T., Litvinova, J., Tauchen, G., May 2006. Leverage and Volatility Feedback

Effects in High-Frequency Data. Journal of Financial Econometrics 4 (3), 353–384.

Bollerslev, T., Sizova, N., Tauchen, G., 2012. Volatility in Equilibrium: Asymmetries and

Dynamic Dependencies. Review of Finance 16, 31–80.

Bollerslev, T., Tauchen, G., Zhou, H., Feb. 2009. Expected Stock Returns and Variance

Risk Premia. Review of Financial Studies 22 (11), 4463–4492.

Borland, L., Bouchaud, J.-P., Muzy, J.-F., Zumbach, G., 2005. The Dynamics of Financial

Markets: Mandelbrot’s Multifractal Cascades and Beyond. Wilmott Magazine.

Botev, Z., Grotowski, J., Kroese, D., 2010. Kernel Density Estimation via Diffusion. The

Annals of Statistics 38 (5), 2916–2957.

Bouchaud, J. P., Matacz, A., Potters, M., 2001. Leverage Effect in Financial Markets: The

Retarded Volatility Model. Physical Review Letters 87 (22), 228701.

Bouchaud, J. P., Potters, M., 2001. More Stylized Facts of Financial Markets: Leverage

Effect and Downside Correlations. Physica A: Statistical Mechanics and its Applica-

tions 299 (1), 60–70.

171



Bouchaud, J.-P., Potters, M., 2004. Theory of Financial Risk and Derivative Pricing.

Breeden, D. T., 1979. An Intertemporal Asset Pricing Model with Stochastic Consump-

tion and Investment Opportunities. Journal of Financial Economics 7 (3), 265–296.

Brooks, C., 1998. Predicting Stock Index Volatility : Can Market Volume Help? Journal

of Forecasting 17 (1), 59–80.

Campa, J., Chang, P., 1995. Testing the Expectations Hypothesis on the Term Structure

of Volatilities. The Journal of Finance 50 (2), 529–547.

Campbell, J. Y., Grossman, S. J., Wang, J., Nov. 1993. Trading Volume and Serial Corre-

lation in Stock Returns. The Quarterly Journal of Economics 108 (4), 905–939.

Campbell, J. Y., Hentschel, L., 1992. No News is Good News: An Asymmetric Model of

Changing Volatility in Stock Returns. Journal of Financial Economics 31 (3), 281–318.

Canina, L., Figlewski, S., 1993. The Informational Content of Implied Volatility. Review

of Financial Studies 6 (3), 659–681.

Chan, K., Fong, W.-M., 2000a. Trade Size, Order Imbalance and the Volatility-Volume

Relation. Journal of Financial Economics 57 (2), 247–273.

Chan, K., Fong, W.-M., 2000b. Trade Size, Order Imbalance and the Volatility-Volume

Relation. Journal of Financial Economics 57 (2), 247–273.

Chen, G.-M., Firth, M., Rui, O. M., Aug. 2001. The Dynamic Relation Between Stock

Returns, Trading Volume, and Volatility. The Financial Review 36 (3), 153–174.

Cheung, Y.-W., Ng, L. K., 1992. Stock Price Dynamics and Firm Size: An Empirical

Investigation. The Journal of Finance 47 (5), 1985–1997.

Chordia, T., Swaminathan, B., 2000. Trading Volume and Cross-Autocorrelations in

Stock Returns. The Journal of Finance 55 (2), 913–935.

Chou, R., 1988. Volatility Persistence and Stock Valuations: Some Empirical Evidence

using GARCH. Journal of Applied Econometrics 3 (4), 279–294.

172



Christie, A., 1982. The Stochastic Behavior of Common Stock Variances: Value, Lever-

age and Interest Rate Effects. Journal of Financial Economics 10 (4), 407–432.

Chuang, C.-C., Kuan, C.-M., Lin, H.-Y., Jul. 2009. Causality in Quantiles and Dynamic

Stock Return-Volume Relations. Journal of Banking & Finance 33 (7), 1351–1360.

Ciliberti, S., Bouchaud, J.-P., Potters, M., 2009. Smile Dynamics: A Theory of the Im-

plied Leverage Effect. Wilmott Journal 1 (2), 87–94.

Clauset, A., Shalizi, C., Newman, M., 2009. Power Law Distributions in Empirical Data.

SIAM review 51 (4), 661–703.

Cont, R., 2001. Empirical Properties of Asset Returns: Stylized Facts and Statistical Is-

sues. Journal of Quantitative Finance 1 (2), 223–236.

Cont, R., da Fonseca, J., 2002. Dynamics of Implied Volatility Surfaces. Quantitative

Finance 2 (1), 45–60.

Cont, R., Tankov, P., 2003. Financial Modelling with Jump Processes.

Copeland, T. E., 1976. A Model of Asset Trading under the Assumption Of Sequential

Information Arrival. The Journal of Finance 31 (4), 1149–1168.

Copeland, T. E., 1977. A Probability Model of Asset Trading. Journal of Financial and

Quantitative Analysis 12 (4), 563–578.

Cox, J. C., Huang, C.-F., Oct. 1989. Optimal Consumption and Portfolio Policies when

Asset Prices follow a Diffusion Process. Journal of Economic Theory 49 (1), 33–83.

Crouch, R. L., 1970a. A Nonlinear Test of the Random-Walk Hypothesis. American Eco-

nomic Review 60 (1), 199–202.

Crouch, R. L., 1970b. The Volume of Transactions and Price Changes on the New York

Stock Exchange. Financial Analysts Journal 26 (4), 104–109.

Daglish, T., Hull, J., Suo, W., 2007. Volatility Surfaces: Theory, Rules of Thumb and

Empirical Evidence. Quantitative Finance 7 (507).

173



Daouk, H., Ng, D., 2011. Is Unlevered Firm Volatility Asymmetric? Journal of Empirical

Finance 18 (4), 634–651.

Day, T., Lewis, C., 1988. The Behavior of the Volatility Implicit in the Prices of Stock

Index Options. Journal of Financial Economics 22 (1), 103–122.

Dennis, P., Mayhew, S., Stivers, C., 2006. Stock returns, implied volatility innovations,

and the asymmetric volatility phenomenon. Journal of Financial and Quantitative Anal-

ysis 41 (2), 381–406.

Derman, E., Kani, I., Zou, J., 1996. The Local Volatility Surface: Unlocking the Informa-

tion in Index Option Prices. Financial Analysts Journal 52 (4), 25–36.

Diks, C., Panchenko, V., 2005. A note on the Hiemstra-Jones test for Granger non-

causality. Studies in Nonlinear Dynamics and Econometrics 9 (2), 1558–3708.

Diks, C., Panchenko, V., Sep. 2006. A New Statistic and Practical Guidelines for Non-

Parametric Granger Causality Testing. Journal of Economic Dynamics and Control

30 (9-10), 1647–1669.

Donangelo, R., Jensen, M., Simonsen, I., Sneppen, K., 2006. Synchronization Model

for Stock Market Asymmetry. Journal of Statistical Mechanics: Theory and Experi-

ment (11), L11001.

Drozdz, S., Forczek, M., Kwapie, J., Rak, R., Others, 2007. Stock Market Return Dis-

tributions: From Past to Present. Physica A: Statistical Mechanics and its Applications

383 (1), 59–64.

Duffee, G., 1995. Stock Returns and Volatility A Firm-Level Analysis. Journal of Finan-

cial Economics 37 (3), 399–420.

Dumas, R., Fleming, J., Whaley, R., 1998. Implied Volatility Functions: Empirical Tests.

The Journal of Finance 53 (6), 2059–2106.

Dupire, B., 1994. Pricing with a Smile. Risk Magazine 7, 18–20.

174



Easley, D., O’Hara, M., 1987. Price, Trade Size and Information in Securities Markets.

Journal of Financial Economics 19 (1), 69–90.

Eisler, Z., Kertesz, J., 2004. Multifractal Model of Asset Returns with Leverage Effect.

Physica A: Statistical Mechanics and its Applications 343, 603–622.

Engle, R., 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the

Variance of United Kingdom Inflation. Econometrica: Journal of the Econometric So-

ciety 50 (4), 987–1007.

Epps, T. W., Epps, M. L., 1976. The Stochastic Dependence of Security Price Changes

and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis.

Econometrica: Journal of the Econometric Society 44 (2), 305–321.

Erb, C., Campbell, H., Tadas, V., 1994. Forecasting International Equity Correlations.

Financial Analysts Journal 50 (6), 32–45.

Fama, E., French, K., 1993. Common Risk Factors in the Returns on Stocks and Bonds.

Journal of Financial Economics 33 (1), 3–56.

Fellner, G., Maciejovsky, B., 2007. Risk Attitude and Market Behaviour: Evidence from

Experimental Asset Markets. Journal of Economic Psychology 28 (3), 338–350.

Figlewski, S., Wang, X., 2000. Is the ’ Leverage Effect’ a Leverage Effect? Finance

Working Paper NYU.

Finucane, F., Alhakami, A., Slovic, P., 2000a. The Affect Heuristic in Judgements of

Risks and Benefits. Journal of Behavioural Decision Making 13 (1), 1–17.

Finucane, M., Alhakami, A., Slovic, P., Johnson, S., 2000b. The Affect Heuristic in Judge-

ments of Risks and Benefits. Journal of Behavioural Decision Making 13 (1), 1–17.

Fonnesbeck, C., Patil, A., Huard, D., Salvatier, J., 2013. PyMC Python Module.

URL http://github.com/pymc-devs/pymc

175



Foresi, S., Wu, L., 2005. Crash-o-phobia: A Domestic Fear or Worldwide Concern? The

Journal of Derivatives 13 (2), 8–21.

French, K., Roll, R., 1986. Stock Return Variances: The Arrival of Information and the

Reaction of Traders. Journal of Financial Economics 17 (1), 5–16.

French, K., Schwert, G., Stambaugh, R., 1987. Expected Stock Returns and Volatility.

Journal of Financial Economics 19 (1), 3–29.

Frenzel, S., Pompe, B., 2007. Partial Mutual Information for Coupling Analysis of Mul-

tivariate Time Series. Physical Review Letters 99 (20), 204101.

Gallant, A., Tauchen, G., 1989. Seminonparametric Estimation of Conditionally Con-

strained Heterogeneous Processes: Asset Pricing Applications. Econometrica: Journal

of the Econometric Society 57 (5), 1091–1120.

Gallant, A., Tauchen, G., 1993. A Nonparametric Approach to Nonlinear Time Series

Analysis: Estimation and Simulation.

Gallant, A. R., Rossi, P., Tauchen, G., Apr. 1992. Stock Prices and Volume. Review of

Financial Studies 5 (2), 199–242.

Garas, A., Argyrakis, P., 2007. Correlation Study of the Athens Stock Exchange. Physica

A: Statistical Mechanics and its Applications 380, 399–410.

Gatheral, J., 2006. The Volatility Surface: a Practitioner’s Guide.

Gemmill, G., Kamiyama, N., 1997. International Transmission of Option Volatility and

Skewness: When You’re Smiling, Does the Whole World Smile. City University Busi-

ness School, Working Paper.

Gennaioli, N., Shleifer, A., 2010. What Comes to Mind. The Quarterly Journal of Eco-

nomics 125 (4), 1399–1433.

Geyer, C., 1991. Markov Chain Monte Carlo Maximum Likelihood. In: Computing Sci-

ence and Statistics, Proceedings of the 23rd Symposium on the Interface. pp. 156–163.

176



Ghoshdastidar, D., Dukkipati, A., Bhatnagar, S., 2012. q-Gaussian based Smoothed Func-

tional Algorithms for Stochastic Optimization. Information Theory Proceedings, 1059–

1063.

Giraitis, L., Leipus, R., Robinson, P., Surgailis, D., 2004. LARCH, Leverage and Long

Memory. Journal of Financial Econometrics 2 (2), 177–210.

Girard, E., Biswas, R., 2007. Trading Volume and Market Volatility: Developed versus

Emerging Stock Markets. Financial Review 42 (3), 429–459.

Glosten, L., Jaganathan, R., Runkle, D., 1993. On the Relation between the Expected

Value and the Volatility of the Nominal Excess Return on Stocks. The Journal of Fi-

nance 48 (5), 1779–1801.

Godfrey, M., Granger, C., Morgenstern, O., 1964. The Random Walk Hypothesis of Stock

Market Behaviour. Kyklos 17 (1), 1–30.

Gomez-Herrero, G., Wu, W., 2010. Assessing Coupling Dynamics from an Ensemble of

Time Series. arXiv preprint arXiv:1008.0539.

Goncalves, S., Guidolin, M., 2006. Predictable Dynamics in the S&P500 Index Options

Implied Volatility Surface. The Journal of Business 79 (3), 1591–1635.

Gopikrishnan, P., Pleru, V., Gabaix, X., Stanley, H., 2000. Scaling and Correlation in

Financial Time Series. Physica A 287, 362–373.

Goyal, A., Saretto, A., 2007. Option Returns and Volatility Mispricing. Purdue University,

Working Paper.

Graham, J., Harvey, C., 2001. Expectations of Equity Risk Premia, Volatility and Asym-

metry from a Corporate Finance Perspective. National Bureau of Economic Research.

Granger, C., Morgenstern, O., 1963. Spectral Analysis of New York Stock Market Prices.

Kyklos 16 (1), 1–27.

177



Granger, C. W. J., 1969. Investigating Causal Relations by Econometric Models and

Cross-Spectral Methods. Econometrica: Journal of the Econometric Society 37 (3),

424–438.

Graps, A., 1995. An Introduction to Wavelets. Computational Science & Engineering,

IEEE 2 (2), 50–61.

Guidolin, M., Timmermann, A., 2003. Option Prices Under Bayesian Learning: Implied

Volatility Dynamics and Predictive Densities. Journal of Economic Dynamics and Con-

trol 27 (5), 717–769.

Hagan, P., Kumar, D., Lesniewski, A., 2002. Managing Smile Risk. Wilmott Magazine,

84–108.

Harris, L., 1983. The Joint Distribution of Speculative Prices and of Daily Trading Vol-

ume. Unpublished Manuscript, University of Southern California.

Harris, L., Gurel, E., 1986. Price and Volume Effects Associated with Changes in the S&P

500 List: New Evidence for the Existence of Price Pressures. The Journal of Finance

41 (4), 815–829.

Harris, M., Raviv, A., 1993. Differences of Opinion make a Horse Race. Review of Fi-

nancial Studies 6 (3), 473–506.

Harvey, C., Whaley, R., 1992. Market Volatility Prediction and the Efficiency of the

S&P100 Index Option Market. Journal of Financial Economics 31 (1), 43–73.

Hasanhodzic, J., Lo, A., Feb. 2011. Black’s Leverage Effect is not due to Leverage. SSRN

Electronic Journal.

He, H., Wang, J., 1995. Differential Informational and Dynamic Behavior of Stock Trad-

ing Volume. Review of Financial Studies 8 (4), 919–972.

Hellwig, M., 1980. On the Aggregation of Information in Competitive Markets. Journal

of Economic Theory 22 (3), 477–498.

178



Henry-Labordere, P., 2008. Analysis, Geometry and Modelling in Finance: Advanced

Methods in Option Pricing.

Hens, T., Steude, S. C., Jun. 2009. The Leverage Effect Without Leverage. Finance Re-

search Letters 6 (2), 83–94.

Heston, S., Nandi, S., 2000. A Closed-Form GARCH Option Valuation Model. Review

of Financial Studies 13 (3), 585–625.

Hibbert, A.-M., Daigler, R. T., Dupoyet, B., Oct. 2008. A Behavioral Explanation for

the Negative Asymmetric Return-Volatility Relation. Journal of Banking & Finance

32 (10), 2254–2266.

Hiemstra, C., Jones, J. D., Dec. 1994. Testing for Linear and Nonlinear Granger Causality

in the Stock Price-Volume Relation. The Journal of Finance 49 (5), 1639–1664.
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Appendix A

An Information Theoretic Analysis of

Returns, Volatility and Trading

Volumes at the Weekly Frequency

In Chapters 2 and 5 I examined the dynamic relationships between returns, volatility and

trading volumes at the daily frequency for stocks and stock indices respectively. The

problem with analysing the data at the daily frequency is that the MI struggles to differ-

entiate volatility and returns. This is because volatility is simply defined as the square of

the daily returns. Here I repeat the analysis in Chapters 2 and 5 at the weekly frequency.

This enables me to decouple returns and volatility by defining volatility as the sum of the

daily squared returns over the week. Section A.1 examines the stock level effect - the

return-volatility relationship is examined in Chapter 2 - whilst Chapter A.2 examines the

index level effect.
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A.1 Stock Results

A.1.1 Calibrating the Model
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Figure A.1: Mutual Information Calibration for Stocks at the Weekly Frequency

Shows the mean MI for S&P500 stocks, at the weekly frequency, as a function of the number of nearest
neighbours, k. The blue stars with dashed line is the MI (r̂t , v̂t+1), the red diamonds with solid line is the
MI (r̂t , x̂t+1) and the green squares with dot-dashed line is MI (x̂t , v̂t+1). These are given with associated
one standard errors. The results appear to show that the MI converges as the number of nearest neighbours
increases and that k ≈ 75 should be sufficient to produce stable results.
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A.1.2 Persistence of Returns, Volatility and Volumes
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Figure A.2: Auto-Mutual Information and Auto-Covariance Functions for Stocks at the
Weekly Frequency

Shows the auto-mutual information (Top) and normalised auto-covariance (Bottom) functions. They are
calculated for returns (blue stars with dashed lines), volatility (green squares with dot-dashed lines) and
volumes (red diamonds with solid lines). These are given with associated one standard errors, exponential
curve fits and 95% Significance Levels (black dashed lines). The MI is statistically significant and
persistent for volatility and volumes with the MI for volumes significantly larger than volatility. The MI is
only statistically significant for returns for the first 4 weeks. The auto-covariance function exhibits similar
properties to the auto-mutual information function.
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A.1.3 Returns and Volume
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Figure A.3: Cross-Mutual Information and Cross-Covariance Functions for Stock Returns
and Volume at the Weekly Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions between
returns and volume. The blue squares with solid lines show the MI (x̂t , r̂t+τ) and Corr (xt ,rt+τ). The green
diamonds with dot-dashed lines show the MI (r̂t , x̂t+τ) and Corr (rt ,xt+τ). These are given with associated
one standard errors, stretched exponential curve fits and 95% Significance Levels (dashed black lines). The
MI is statistically significant only for MI (r̂t , x̂t+τ) for τ < 4. This indicates returns cause volumes and not
vice versa. This is consistent with the cross-covariance function which only shows structure for
Corr (rt ,xt+τ) although this is not statistically significant.
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Figure A.4: Cross-Partial Mutual Information and Cross-Transfer Entropy Functions for
Stock Returns and Volume at the Weekly Frequency

(Top) Shows the partial cross-mutual information function for returns and volume, where I have controlled
for auto-information. The green diamonds with dot-dashed lines represent the MI (r̂t , x̂t+τ |Z) where
Z =

[
ĵt , ..., ĵt+τ−1

]
for τ > 1 and ĵ are the normalised volumes. The blue squares with solid lines represent

the MI (x̂t , r̂t+τ |Z) where Z =
[

ĵt , ..., ĵt+τ−1
]

for τ > 1 and ĵ are the normalised returns. It is given with
associated one standard errors, stretched exponential curve fits and a 95% Significance Level (dashed
black line). The PMI is not statistically significant in either direction. (Bottom) Shows the cross-transfer
entropy function for returns and volumes. The green diamonds represent T E (r̂t → x̂t+τ) and the blue
squares represent the T E (x̂t → r̂t+τ). This is given with associated one standard errors and 95%
Significance Levels which are represented by the green dot-dashed line for T E (r̂t → x̂t+τ) and the dashed
blue line for T E (x̂t → r̂t+τ). The T E shows that T E (x̂t → r̂t+τ)> T E (r̂t → x̂t+τ) for all τ but neither are
not statistically significant.
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A.1.4 Volume and Volatility
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Figure A.5: Cross-Mutual Information and Cross-Covariance Functions for Stock Volatil-
ity and Volume at the Weekly Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions for
volumes and volatility. The green diamonds with dot-dashed lines represent the MI (v̂t , x̂t+τ) and the
Cov(vt ,xt+τ). The blue squares with solid lines represent the MI (x̂t , v̂t+τ) and the Cov(xt ,vt+τ). Both
graphs are given with associated one standard errors, stretched exponential curve fits and 95% Significance
Levels (black dashed lines). The MI is statistically significant and persistent in both directions with
MI (v̂t , x̂t+1)> MI (x̂t , v̂t+1) but approximately equal for τ > 2. This indicates bi-directional causality
between volume and volatility. This is consistent with the results of the cross-covariance function although
Cov(vt ,xt+τ) and Cov(xt ,vt+τ) are only statistically significant for τ . 4.
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Figure A.6: Cross-Partial Mutual Information and Cross-Transfer Entropy Functions for
Stock Volatility and Volume at the Weekly Frequency

(Top) Shows the partial cross-mutual information function for volumes and volatility where I have
controlled for auto-information. The green diamonds with dot-dashed lines represent the MI (v̂t , x̂t+τ |Z)
where Z =

[
ĵt , ..., ĵt+τ−1

]
for τ ≥ 1 and ĵ are the normalised volumes. The blue squares with solid lines

represent the MI (x̂t , v̂t+τ |Z) where Z =
[

ĵt , ..., ĵt+τ−1
]

for τ ≥ 1 and ĵ are the normalised volatility. It is
given with associated one standard errors, stretched exponential curve fits and a 95% Significance Level
(black dashed line). The MI just statistically significant for MI (x̂t , v̂t+1 | v̂t) which indicates that volumes
cause volatility and not vice versa. Since neither MI is statistically significant for τ > 1, the PMI also
implies that the persistence is due to auto-information.. (Bottom) Shows the cross-transfer entropy
function for volumes and volatility. The green diamonds represent T E (v̂t → x̂t+τ) and the blue squares
represent T E (x̂t → v̂t+τ). This is given with associated one standard errors and 95% Significance Levels
where the green dot-dashed line is for the T E (v̂t → x̂t+τ) and the dashed blue line is for the
T E (x̂t → v̂t+τ). This shows that T E (x̂t → v̂t+τ)> T E (v̂t → x̂t+τ) for all τ and statistically significant
which implies volumes (Granger) cause volatility and not vice versa.
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A.2 Index Results

A.2.1 Calibrating the Model
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Figure A.7: Mutual Information Calibration for Indices at the Weekly Frequency

Shows the mean MI for developed market indices, at the weekly frequency, as a function of the number of
nearest neighbours, k. The blue stars with dashed line is the MI (r̂t , v̂t+1), the red diamonds with solid line
is the MI (r̂t , x̂t+1) and the green squares with dot-dashed line is MI (x̂t , v̂t+1). These are given with
associated one standard errors. The results appear to show that the MI converges as the number of nearest
neighbours increases and that k ≈ 75 should be sufficient to produce stable results.
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A.2.2 Persistence of Returns, Volatility and Volumes
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Figure A.8: Auto-Mutual Information and Auto-Covariance Functions for Indices at the
Weekly Frequency

Shows the auto-mutual information (Top) and normalised auto-covariance (Bottom) functions. They are
calculated for returns (blue stars with dashed lines), volatility (green squares with dot-dashed lines) and
volumes (red diamonds with solid lines). These are given with associated one standard errors, exponential
curve fits and 95% Significance Levels (black dashed lines). The MI is statistically significant and
persistent for volatility and volumes with the MI for volumes significantly larger than volatility. The MI is
only statistically significant for returns for the first 10 weeks. The auto-covariance function shows that the
volumes are highly persistent but the volatility decays within 15 weeks whilst the returns are not
statistically significant at any time horizon.
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A.2.3 Returns and Volume
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Figure A.9: Cross-Mutual Information and Cross-Covariance Functions for Index Returns
and Volume at the Weekly Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions between
returns and volume. The blue squares with solid lines show the MI (x̂t , r̂t+τ) and Corr (xt ,rt+τ). The green
diamonds with dot-dashed lines show the MI (r̂t , x̂t+τ) and Corr (rt ,xt+τ). These are given with associated
one standard errors, exponential curve fits and 95% Significance Levels (dashed black lines). The MI is
statistically significant and persistent which implies bi-directional causality. This contrasts with the
cross-covariance function which is not statistically significant at any time horizon.
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Figure A.10: Cross-Partial Mutual Information and Cross-Transfer Entropy Functions for
Index Returns and Volume at the Weekly Frequency

(Top) Shows the partial cross-mutual information function for returns and volume, where I have controlled
for auto-information. The green diamonds with dot-dashed lines represent the MI (r̂t , x̂t+τ |Z) where
Z =

[
ĵt , ..., ĵt+τ−1

]
for τ > 1 and ĵ are the normalised volumes. The blue squares with solid lines represent

the MI (x̂t , r̂t+τ |Z) where Z =
[

ĵt , ..., ĵt+τ−1
]

for τ > 1 and ĵ are the normalised returns. It is given with
associated one standard errors, exponential curve fits and a 95% Significance Level (dashed black line).
The PMI is only statistically significant for MI (x̂t , r̂t+1|r̂t) which implies volumes (Granger) cause returns
and not vice versa. Since neither MI is statistically significant for τ > 1, the PMI also implies that the
persistence is due to auto-information. (Bottom) Shows the cross-transfer entropy function for returns and
volumes. The green diamonds represent T E (r̂t → x̂t+τ) and the blue squares represent the T E (x̂t → r̂t+τ).
This is given with associated one standard errors and 95% Significance Levels which are represented by
the green dot-dashed line for T E (r̂t → x̂t+τ) and the dashed blue line for T E (x̂t → r̂t+τ). The T E shows
that T E (x̂t → r̂t+τ)> T E (r̂t → x̂t+τ) for all τ and statistically significant. This implies volumes
(Granger) cause returns and not vice versa.
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A.2.4 Volume and Volatility
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Figure A.11: Cross-Mutual Information and Cross-Covariance Functions for Stock
Volatility and Volume at the Weekly Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions for
volumes and volatility. The green diamonds with dot-dashed lines represent the MI (v̂t , x̂t+τ) and the
Cov(vt ,xt+τ). The blue squares with solid lines represent the MI (x̂t , v̂t+τ) and the Cov(xt ,vt+τ). Both
graphs are given with associated one standard errors, exponential curve fits and 95% Significance Levels
(black dashed lines). The MI is statistically significant and persistent in both directions with
MI (v̂t , x̂t+1)≈ MI (x̂t , v̂t+1). This indicates bi-directional causality between volume and volatility. This is
consistent with the results of the cross-covariance function, although Cov(vt ,xt+τ) and Cov(xt ,vt+τ) are
only statistically significant for around 5 weeks.
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Figure A.12: Cross-Partial Mutual Information and Cross-Transfer Entropy Functions for
Index Volatility and Volume at the Weekly Frequency

(Top) Shows the partial cross-mutual information function for volumes and volatility where I have
controlled for auto-information. The green diamonds with dot-dashed lines represent the MI (v̂t , x̂t+τ |Z)
where Z =

[
ĵt , ..., ĵt+τ−1

]
for τ ≥ 1 and ĵ are the normalised volumes. The blue squares with solid lines

represent the MI (x̂t , v̂t+τ |Z) where Z =
[

ĵt , ..., ĵt+τ−1
]

for τ ≥ 1 and ĵ are the normalised volatility. It is
given with associated one standard errors, exponential curve fits and a 95% Significance Level (black
dashed line). The MI is only statistically significant for MI (x̂t , v̂t+τ | Z) for τ < 3 which indicates that
volumes cause volatility and not vice versa. Since neither MI is statistically significant for τ > 4, the PMI
also implies that the persistence is due to auto-information. (Bottom) Shows the cross-transfer entropy
function for volumes and volatility. The green diamonds represent T E (v̂t → x̂t+τ) and the blue squares
represent T E (x̂t → v̂t+τ). This is given with associated one standard errors and 95% Significance Levels
where the green dot-dashed line is for the T E (v̂t → x̂t+τ) and the dashed blue line is for the
T E (x̂t → v̂t+τ). This shows that T E (x̂t → v̂t+τ)> T E (v̂t → x̂t+τ) for all τ and statistically significant
which implies volumes (Granger) cause volatility and not vice versa.
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A.2.5 Returns and Volatility
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Figure A.13: Cross-Mutual Information and Cross-Covariance Functions for Index Re-
turns and Volatility at the Weekly Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions for returns
and volatility at the weekly frequency. The green diamonds with dot-dashed lines represent the MI (r̂t , v̂t+τ)

and the Cov(rt ,vt+τ). The blue squares with solid lines represent the MI (v̂t , r̂t+τ) and the Cov(vt ,rt+τ).
Both graphs are given with associated one standard errors, exponential curve fits and 95% Significance
Levels (black dashed lines). The cross-mutual information function shows that MI (r̂t , v̂t+τ)> MI (v̂t , r̂t+τ)

for τ . 8 but they are both statistically significant. This implies a bi-directional information flow between
returns and volatility. The cross-covariance function only shows structure for Cov(rt ,vt+τ) which is statis-
tically significant for τ < 3. This shows that the Leverage Effect is also observable at the weekly frequency.
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Figure A.14: Cross-Partial Mutual Information and Cross-Transfer Entropy Functions for
Index Returns and Volatility at the Weekly Frequency

(Top) Shows the partial cross-mutual information function for returns and volatility at the weekly frequency.
The green diamonds with dot-dashed lines represent the MI (r̂t , v̂t+τ |Z) where Z =

[
ĵt , ..., ĵt+τ−1

]
for τ ≥ 1

and ĵ are the normalised volatilities. The blue squares with solid lines represent the MI (v̂t , r̂t+τ |Z) where
Z =

[
ĵt , ..., ĵt+τ−1

]
for τ ≥ 1 and ĵ are the normalised returns. These are given with associated one standard

errors, exponential curve fits and a 95% Significance Level (dashed black line). It shows that MI (v̂t , r̂t+τ |Z)
for τ < 4 is statistically significant as is MI (r̂t , v̂t+1|Z). This is a stronger indication that volatility cause
returns at the weekly frequency and not vice versa. (Bottom) Shows the cross-transfer entropy functions
for returns and volatility at the weekly frequency. The green diamonds represent the T E (r̂t → v̂t+τ) and
the blue squares represent the T E (v̂t → r̂t+τ). These are given with associated one standard errors and
95% Significance Levels which are represented by the green dot-dashed line for T E (r̂t → v̂t+τ) and the
dashed blue line for T E (v̂t → r̂t+τ). The T E results support those of the PMI but the T E (v̂t → r̂t+τ) is
now statistically significant for τ > 20 weeks. This indicates that volatility (Granger) cause returns at the
weekly frequency and not vice versa.
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Appendix B

Information Theoretic Analysis of

Returns, Volatility and Trading

Volumes by Index

In Chapter 2 I examined the dynamic relationships between stock returns, volatility and

trading volumes for S&P500 stocks. Here I extend that analysis to consider stocks from a

broad range of global indices. The results are generally consistent with previous findings.

B.1 The Data

The data is sourced from Bloomberg and covers daily returns and volumes for a range of

global stocks during the period 1980-2012. The data is not corrected for stocks that have

been added/removed from the indices. However, I do not believe that this unduly affects

the results. All statistics and results have been calculated at the individual stock level and

then averaged to give a value for the overall index. The summary statistics are shown in

Table B.1.
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Table B.1: Summary Statistics by Index

Country Index No. of

Stocks

Mean Return Mean Std Mean Volume

Argentina MERVAL 10 0.021% 0.034 0.907

Australia ASX 176 0.033% 0.033 2.343

Brazil BOVESPA 50 0.042% 0.034 1.890

Canada TSX 216 0.041% 0.031 0.574

China SHANGHAI 846 0.014% 0.032 7.378

France CAC 40 0.014% 0.032 2.316

Germany DAX 30 0.014% 0.032 3.357

Holland AEX 22 0.014% 0.032 3.724

Hong

Kong

HSI 43 0.016% 0.032 38.034

India SENSEX 28 0.017% 0.032 2.305

Italy MIB 33 0.014% 0.032 11.419

Japan NKY 214 0.002% 0.025 3.702

Korea KOSPI 620 0.015% 0.037 0.340

Mexico MEXBOL 28 0.068% 0.027 5.612

Spain IBEX 30 0.020% 0.021 5.591

Sweden OMX 28 0.039% 0.024 3.679

Switzerland SMI 18 0.026% 0.022 2.858

UK FTSE 93 0.035% 0.023 8.819

USA NDX 87 0.066% 0.035 5.982

USA SPX 454 0.041% 0.026 2.300

Shows the number of stocks, the mean daily return, standard deviation and volume for each index in the data set.
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B.2 Results by Index

B.2.1 Returns and Volume

Table B.2: Summary of the Stock Level Return-Volume Re-

lation by Index

Index No.

of

Stocks

Corr (r̂t , x̂t+1) Corr (x̂t , r̂t+1) MI (r̂t , x̂t+1) MI (x̂t , r̂t+1)
T E (r̂→ x̂)

τ = 25

T E (x̂→ r̂)

τ = 25

MERVAL 10 0.036 ±

0.013

0.029 ±

0.007

0.015 ±

0.003

0.005 ±

0.002

0.003 ±

0.002

0.001 ±

0.001

ASX 176 -0.008 ±

0.004

0.005 ±

0.002

0.027 ±

0.003

0.026 ±

0.003

0.010 ±

0.001

0.009 ±

0.001

BOVESPA 50 -0.004 ±

0.005

0.014 ±

0.003

0.009 ±

0.001

0.008 ±

0.002

0.007 ±

0.001

0.004 ±

0.001

TSX 216 -0.009 ±

0.002

0.007 ±

0.001

0.026 ±

0.002

0.024 ±

0.002

0.009 ±

0.001

0.008 ±

0.001

SHANGHAI 846 0.206 ±

0.001

0.003 ±

0.001

0.047 ±

0.001

0.017 ±

0.000

0.000 ±

0.000

0.005 ±

0.000

CAC 40 -0.038 ±

0.004

0.002 ±

0.002

0.018 ±

0.002

0.009 ±

0.002

0.004 ±

0.001

0.003 ±

0.001

DAX 30 -0.034 ±

0.005

-0.004 ±

0.003

0.017 ±

0.002

0.010 ±

0.002

0.007 ±

0.001

0.004 ±

0.001

AEX 22 -0.034 ±

0.007

0.000 ±

0.003

0.024 ±

0.004

0.015 ±

0.003

0.002 ±

0.001

0.003 ±

0.001

HSI 43 0.026 ±

0.007

0.006 ±

0.004

0.028 ±

0.002

0.010 ±

0.001

0.001 ±

0.001

0.003 ±

0.000

SENSEX 28 0.052 ±

0.008

0.007 ±

0.004

0.019 ±

0.002

0.008 ±

0.001

0.000 ±

0.001

0.002 ±

0.001
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MIB 33 -0.004 ±

0.007

-0.007 ±

0.003

0.013 ±

0.002

0.006 ±

0.002

0.005 ±

0.001

0.003 ±

0.001

NKY 214 0.087 ±

0.004

0.004 ±

0.001

0.024 ±

0.001

0.016 ±

0.001

0.008 ±

0.000

0.004 ±

0.000

KOSPI 620 0.113 ±

0.002

-0.018 ±

0.001

0.028 ±

0.001

0.018 ±

0.000

0.002 ±

0.000

0.004 ±

0.000

MEXBOL 28 0.002 ±

0.007

0.017 ±

0.005

0.009 ±

0.002

0.005 ±

0.001

0.003 ±

0.001

0.002 ±

0.000

IBEX 30 -0.011 ±

0.005

-0.003 ±

0.003

0.011 ±

0.002

0.005 ±

0.001

0.001 ±

0.001

0.002 ±

0.001

OMX 28 -0.014 ±

0.005

0.007 ±

0.004

0.012 ±

0.002

0.006 ±

0.001

0.004 ±

0.001

0.002 ±

0.000

SMI 18 -0.037 ±

0.009

0.009 ±

0.005

0.021 ±

0.004

0.010 ±

0.003

0.003 ±

0.001

0.003 ±

0.001

FTSE 93 -0.020 ±

0.003

0.005 ±

0.002

0.011 ±

0.001

0.007 ±

0.001

0.003 ±

0.000

0.003 ±

0.000

NDX 87 -0.017 ±

0.005

0.002 ±

0.003

0.033 ±

0.002

0.021 ±

0.002

0.004 ±

0.001

0.008 ±

0.001

SPX 454 -0.036 ±

0.002

0.008 ±

0.001

0.026 ±

0.001

0.018 ±

0.001

0.005 ±

0.000

0.006 ±

0.000

Shows the relationship between returns and volume for stocks across a range of global indices. The

Corr (r̂t , x̂t+1) is generally negative for most of the western market stocks but insignificant or positive for

eastern and emerging market stocks. Stocks on the Shanghai index exhibit a strongly positive correlation

which is an order of magnitude larger than other stocks . This is probably because of the t +1 trading rule

in China which prevents investors from buying and selling the same stock on the same day. The

Corr (x̂t , r̂t+1) is generally insignificant except in Central and Latin America where it is stronger than the

Corr (r̂t , x̂t+1). Generally, MI (r̂t , x̂t+1)> MI (x̂t , r̂t+1) but the T E shows that the information transfer is

either bi-directional or statistically insignificant.
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B.2.2 Volume and Volatility

Table B.3: Summary of the Stock Level Volume-Volatility

Relation by Index

Index No.

of

Stocks

Corr (x̂t , ˆvt+1) Corr (v̂t , x̂t+1) MI (x̂t , v̂t+1) MI (v̂t , x̂t+1)
T E (x̂→ v̂)

τ = 25

T E (v̂→ x̂)

τ = 25

MERVAL 10 0.069 ±

0.025

0.123 ±

0.034

0.006 ±

0.003

0.015 ±

0.003

0.002 ±

0.001

0.000 ±

0.001

ASX 176 0.030 ±

0.006

0.088 ±

0.008

0.025 ±

0.003

0.027 ±

0.002

0.012 ±

0.001

0.008 ±

0.001

BOVESPA 50 0.016 ±

0.008

0.072 ±

0.013

0.008 ±

0.002

0.010 ±

0.002

0.005 ±

0.001

0.006 ±

0.001

TSX 216 0.034 ±

0.004

0.084 ±

0.006

0.022 ±

0.002

0.024 ±

0.002

0.010 ±

0.001

0.007 ±

0.001

SHANGHAI 846 0.129 ±

0.002

0.210 ±

0.003

0.018 ±

0.000

0.029 ±

0.000

0.006 ±

0.000

0.000 ±

0.000

CAC 40 0.111 ±

0.013

0.209 ±

0.013

0.010 ±

0.002

0.018 ±

0.002

0.005 ±

0.001

0.004 ±

0.001

DAX 30 0.099 ±

0.018

0.208 ±

0.016

0.013 ±

0.002

0.018 ±

0.003

0.008 ±

0.001

0.005 ±

0.001

AEX 22 0.103 ±

0.017

0.209 ±

0.018

0.015 ±

0.003

0.025 ±

0.004

0.006 ±

0.002

0.003 ±

0.001

HSI 43 0.117 ±

0.011

0.210 ±

0.013

0.008 ±

0.001

0.025 ±

0.002

0.002 ±

0.001

0.001 ±

0.000

SENSEX 28 0.122 ±

0.012

0.210 ±

0.016

0.010 ±

0.002

0.019 ±

0.002

0.002 ±

0.001

0.000 ±

0.001

MIB 33 0.085 ±

0.014

0.209 ±

0.015

0.007 ±

0.002

0.015 ±

0.003

0.004 ±

0.001

0.004 ±

0.001
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NKY 214 0.091 ±

0.004

0.182 ±

0.005

0.014 ±

0.001

0.019 ±

0.001

0.005 ±

0.000

0.006 ±

0.000

KOSPI 620 0.163 ±

0.004

0.255 ±

0.005

0.019 ±

0.001

0.027 ±

0.001

0.005 ±

0.000

0.003 ±

0.000

MEXBOL 28 0.033 ±

0.008

0.065 ±

0.013

0.004 ±

0.001

0.007 ±

0.001

0.003 ±

0.001

0.003 ±

0.001

IBEX 30 0.055 ±

0.009

0.099 ±

0.012

0.007 ±

0.001

0.011 ±

0.002

0.002 ±

0.001

0.001 ±

0.000

OMX 28 0.067 ±

0.012

0.138 ±

0.015

0.006 ±

0.001

0.012 ±

0.002

0.003 ±

0.001

0.003 ±

0.000

SMI 18 0.128 ±

0.023

0.175 ±

0.024

0.013 ±

0.002

0.023 ±

0.004

0.004 ±

0.001

0.002 ±

0.001

FTSE 93 0.060 ±

0.006

0.116 ±

0.007

0.007 ±

0.001

0.010 ±

0.001

0.003 ±

0.000

0.002 ±

0.000

NDX 87 0.102 ±

0.007

0.187 ±

0.010

0.022 ±

0.002

0.034 ±

0.002

0.009 ±

0.001

0.004 ±

0.001

SPX 454 0.092 ±

0.003

0.177 ±

0.004

0.015 ±

0.001

0.023 ±

0.001

0.006 ±

0.000

0.004 ±

0.000

Shows the relationship between volume and volatility for stocks across a range of global indices. The

Corr (x̂t , v̂t+1) and Corr (v̂t , x̂t+1) are both strongly positive with the latter being stronger; this is consistent

with the MI results. The T E shows that the information transfer is either bi-directional or statistically

insignificant.
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B.2.3 Returns and Volatility

Table B.4: Summary of the Stock Level Return-Volatility

Relation by Index

Index No.

of

Stocks

Corr (r̂t , v̂t+1) Corr (v̂t , r̂t+1) MI (r̂t , v̂t+1) MI (v̂t , r̂t+1)
T E (r̂→ v̂)

τ = 25

T E (v̂→ r̂)

τ = 25

MERVAL 10 -0.045 ±

0.031

0.074 ±

0.034

0.016 ±

0.004

0.017 ±

0.005

0.001 ±

0.001

0.004 ±

0.001

ASX 176 -0.031 ±

0.004

0.007 ±

0.004

0.037 ±

0.004

0.037 ±

0.004

0.005 ±

0.001

0.004 ±

0.000

BOVESPA 50 -0.048 ±

0.008

0.049 ±

0.006

0.011 ±

0.001

0.011 ±

0.001

0.001 ±

0.000

0.002 ±

0.000

TSX 216 -0.021 ±

0.004

-0.002 ±

0.004

0.030 ±

0.002

0.029 ±

0.002

0.003 ±

0.000

0.003 ±

0.000

SHANGHAI 846 -0.005 ±

0.002

0.014 ±

0.002

0.007 ±

0.000

0.008 ±

0.000

0.000 ±

0.000

0.002 ±

0.000

CAC 40 -0.043 ±

0.006

0.016 ±

0.005

0.007 ±

0.001

0.006 ±

0.001

0.000 ±

0.000

0.002 ±

0.000

DAX 30 -0.050 ±

0.006

0.003 ±

0.006

0.008 ±

0.001

0.008 ±

0.001

0.001 ±

0.000

0.004 ±

0.000

AEX 22 -0.043 ±

0.009

0.001 ±

0.007

0.012 ±

0.002

0.012 ±

0.002

0.001 ±

0.001

0.003 ±

0.001

HSI 43 -0.064 ±

0.009

0.025 ±

0.007

0.013 ±

0.001

0.013 ±

0.001

0.003 ±

0.001

0.004 ±

0.000

SENSEX 28 -0.022 ±

0.007

0.011 ±

0.008

0.008 ±

0.001

0.008 ±

0.001

0.000 ±

0.000

0.001 ±

0.000

MIB 33 -0.038 ±

0.008

0.015 ±

0.006

0.011 ±

0.004

0.009 ±

0.004

0.000 ±

0.001

0.003 ±

0.000
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NKY 214 -0.031 ±

0.002

0.032 ±

0.002

0.015 ±

0.001

0.015 ±

0.001

0.002 ±

0.000

0.002 ±

0.000

KOSPI 620 0.013 ±

0.002

0.007 ±

0.002

0.032 ±

0.001

0.032 ±

0.001

0.002 ±

0.000

0.003 ±

0.000

MEXBOL 28 -0.038 ±

0.013

0.011 ±

0.013

0.015 ±

0.002

0.014 ±

0.002

0.000 ±

0.001

0.002 ±

0.000

IBEX 30 -0.023 ±

0.008

0.008 ±

0.006

0.008 ±

0.001

0.008 ±

0.001

0.000 ±

0.001

0.002 ±

0.001

OMX 28 -0.027 ±

0.007

0.018 ±

0.009

0.010 ±

0.001

0.009 ±

0.001

0.001 ±

0.001

0.003 ±

0.001

SMI 18 -0.041 ±

0.012

0.008 ±

0.013

0.010 ±

0.002

0.010 ±

0.002

0.001 ±

0.001

0.003 ±

0.001

FTSE 93 -0.031 ±

0.005

0.011 ±

0.005

0.011 ±

0.001

0.010 ±

0.001

0.001 ±

0.000

0.003 ±

0.000

NDX 87 -0.030 ±

0.005

0.018 ±

0.005

0.016 ±

0.001

0.016 ±

0.001

0.003 ±

0.000

0.004 ±

0.000

SPX 454 -0.047 ±

0.002

0.022 ±

0.002

0.014 ±

0.001

0.013 ±

0.001

0.002 ±

0.000

0.003 ±

0.000

Shows the relationship between return and volatility for stocks across a range of global indices. The

Leverage Effect is clearly identifiable in all the markets by the negative Corr (r̂t , v̂t+1), except for the

South Korean (KOSPI) stocks. However, the Corr (v̂t , r̂t+1) is positive. MI (r̂t , v̂t+1)≈ MI (v̂t , r̂t+1) but the

TE is not statistically significant over this period.
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Controlling for Trading Volumes and Correlation

Table B.5: Effective Mutual Information for the Stock Level

Leverage Effect by Index Controlling for Trading Volumes

and Index Returns

Index No.

of

Stocks

EMI (r̂t , v̂t+1) EMI (r̂t , v̂t+1 | x̂t , x̂t+1) EMI (r̂t , v̂t+1 | x̂t , x̂t+1, r̂I,t , r̂i,t+1)

MERVAL 10 0.012 ± 0.004 0.005 ± 0.001 (42%) 0.000 ± 0.001 (0%)

ASX 176 0.033 ± 0.004 0.018 ± 0.002 (55%) 0.006 ± 0.001 (18%)

BOVESPA 50 0.007 ± 0.001 0.006 ± 0.001 (86%) 0.001 ± 0.000 (14%)

TSX 216 0.026 ± 0.002 0.012 ± 0.001 (46%) 0.004 ± 0.000 (15%)

SHANGHAI 846 0.003 ± 0.000 0.003 ± 0.000 (100%) 0.000 ± 0.000 (0%)

CAC 40 0.003 ± 0.001 0.005 ± 0.001 (167%) 0.002 ± 0.000 (67%)

DAX 30 0.004 ± 0.001 0.006 ± 0.001 (150%) 0.001 ± 0.001 (25%)

AEX 22 0.008 ± 0.002 0.005 ± 0.001 (63%) 0.000 ± 0.001 (0%)

HSI 43 0.009 ± 0.001 0.004 ± 0.001 (44%) 0.000 ± 0.000 (0%)

SENSEX 28 0.004 ± 0.001 0.001 ± 0.001 (25%) 0.001 ± 0.001 (25%)

MIB 33 0.007 ± 0.004 0.008 ± 0.002 (114%) 0.001 ± 0.001 (14%)

NKY 214 0.011 ± 0.001 0.007 ± 0.000 (64%) 0.004 ± 0.000 (36%)

KOSPI 620 0.028 ± 0.001 0.019 ± 0.001 (68%) 0.007 ± 0.000 (25%)

MEXBOL 28 0.011 ± 0.002 0.008 ± 0.002 (73%) 0.002 ± 0.001 (18%)

IBEX 30 0.004 ± 0.001 0.004 ± 0.001 (100%) 0.000 ± 0.001 (0%)

OMX 28 0.006 ± 0.001 0.005 ± 0.001 (83%) 0.001 ± 0.000 (17%)

SMI 18 0.006 ± 0.002 0.004 ± 0.001 (67%) 0.000 ± 0.001 (0%)

FTSE 93 0.007 ± 0.001 0.006 ± 0.000 (86%) 0.001 ± 0.000 (14%)

NDX 87 0.012 ± 0.001 0.006 ± 0.001 (50%) 0.002 ± 0.000 (17%)

SPX 454 0.009 ± 0.001 0.005 ± 0.000 (56%) 0.001 ± 0.000 (11%)
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Shows the EMI (r̂t , v̂t+1) and the EMI (r̂t , v̂t+1|Z) controlling for trading volumes, x̂, and index returns, r̂i,

for stocks across a range of global indices. The percentage of unexplained EMI is shown in brackets. It

shows that most of the EMI can be explained by trading volumes and index returns. The impact of trading

volumes varies across markets but on average it appears to account for 40-50% of the EMI.
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Appendix C

An Information Theoretic Analysis of

Returns, Volatility and Trading

Volumes for Emerging Market Indices

In Chapter 5 I examined the dynamic relationships between returns, volatility and trading

volumes for developed market indices. Here I extend this analysis to a range of emerging

market indices.

C.0.4 The Data

The data is sourced from Bloomberg and covers daily returns and volumes for developed

stock indices covering the period 1980-2012. The indices include Argentina (MERVAL),

Brazil (BOVESPA), China (SHANGHAI), India (SENSEX) and Mexico (MEXBOL).

The data has not been corrected for stocks that have been added/removed from the indices.

However, I do not believe that this unduly affects the results.

All statistics and results have been calculated at the individual index level and then

averaged to give a mean value for all indices. The significance levels have been estimated

by calculating the various measures using surrogate data sets with similar statistical prop-

erties but without the inter-relationships; this is consistent with similar research.
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C.1 Emerging Markets Results

C.1.1 Persistence of Returns, Volatility and Volumes
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Figure C.1: Auto-Mutual Information and Auto-Covariance Functions for Emerging Mar-
ket Indices at the Daily Frequency

Shows the auto-mutual information (Top) and normalised auto-covariance (Bottom) functions. They are
calculated for returns (blue stars with dashed lines), volatility (green squares with dot-dashed lines) and
volumes (red diamonds with solid lines). These are given with associated one standard errors, exponential
curve fits and 95% Significance Levels (black dashed lines). The MI is statistically significant and
persistent for volumes but it is only statistically significant for 4 days for volatility and not at all for
returns. The auto-covariance function shows that both volumes and volatility are statistically significant
and persistent but returns are not statistically significant at any time horizon.
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C.1.2 Returns and Volume
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Figure C.2: Cross-Mutual Information and Cross-Covariance Functions for Emerging
Market Index Returns and Volume at the Daily Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions between
returns and volume. The blue squares with solid lines show the MI (x̂t , r̂t+τ) and Corr (xt ,rt+τ). The green
diamonds with dot-dashed lines show the MI (r̂t , x̂t+τ) and Corr (rt ,xt+τ). These are given with associated
one standard errors, exponential curve fits and 95% Significance Levels (dashed black lines). The MI is
statistically significant and persistent which implies bi-directional causality. This contrasts with the
cross-covariance function which only shows Corr (rt ,xt+1) as statistically significant. Interestingly, the
correlation is positive which contrasts with previous results. This is likely because of the t +1 trading rule
on the Shanghai stock market which prevents investors from buying and selling the same stock on the
same day.
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Figure C.3: Cross-Partial Mutual Information and Cross-Transfer Entropy Functions for
Emerging Market Index Returns and Volume at the Daily Frequency

(Top) Shows the partial cross-mutual information function for returns and volume, where I have controlled
for auto-information. The green diamonds with dot-dashed lines represent the MI (r̂t , x̂t+τ |Z) where
Z =

[
ĵt , ..., ĵt+τ−1

]
for τ > 1 and ĵ are the normalised volumes. The blue squares with solid lines represent

the MI (x̂t , r̂t+τ |Z) where Z =
[

ĵt , ..., ĵt+τ−1
]

for τ > 1 and ĵ are the normalised returns. It is given with
associated one standard errors, exponential curve fits and a 95% Significance Level (dashed black line).
The PMI is statistically significant in both directions for τ < 3 which bi-directional causality. Since
neither MI is statistically significant for τ > 5, the PMI also implies that the persistence is due to
auto-information. (Bottom) Shows the cross-transfer entropy function for returns and volumes. The green
diamonds represent T E (r̂t → x̂t+τ) and the blue squares represent the T E (x̂t → r̂t+τ). This is given with
associated one standard errors and 95% Significance Levels which are represented by the green dot-dashed
line for T E (r̂t → x̂t+τ) and the dashed blue line for T E (x̂t → r̂t+τ). The T E shows that
T E (x̂t → r̂t+τ)> T E (r̂t → x̂t+τ) for τ < 5 and statistically significant but equal for τ > 5. Again this
implies bi-directional (Granger) causality.
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C.1.3 Volume and Volatility
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Figure C.4: Cross-Mutual Information and Cross-Covariance Functions for Emerging
Market Index Volatility and Volume at the Daily Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions for
volumes and volatility. The green diamonds with dot-dashed lines represent the MI (v̂t , x̂t+τ) and the
Cov(vt ,xt+τ). The blue squares with solid lines represent the MI (x̂t , v̂t+τ) and the Cov(xt ,vt+τ). Both
graphs are given with associated one standard errors, exponential curve fits and 95% Significance Levels
(black dashed lines). The MI is statistically significant in both directions with MI (v̂t , x̂t+1)≈ MI (x̂t , v̂t+1).
This indicates bi-directional causality between volume and volatility. However, the cross-covariance is
only statistically significant for 1 day in either direction.
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Figure C.5: Cross-Partial Mutual Information and Cross-Transfer Entropy Functions for
Emerging Market Index Volatility and Volume at the Daily Frequency

(Top) Shows the partial cross-mutual information function for volumes and volatility where I have
controlled for auto-information. The green diamonds with dot-dashed lines represent the MI (v̂t , x̂t+τ |Z)
where Z =

[
ĵt , ..., ĵt+τ−1

]
for τ ≥ 1 and ĵ are the normalised volumes. The blue squares with solid lines

represent the MI (x̂t , v̂t+τ |Z) where Z =
[

ĵt , ..., ĵt+τ−1
]

for τ ≥ 1 and ĵ are the normalised volatility. It is
given with associated one standard errors, exponential curve fits and a 95% Significance Level (black
dashed line). The MI is only statistically significant for 1-2 days in both directions This indicates
bi-directional causality and since neither MI is statistically significant for τ > 2, the PMI also implies that
the persistence is due to auto-information. (Bottom) Shows the cross-transfer entropy function for volumes
and volatility. The green diamonds represent T E (v̂t → x̂t+τ) and the blue squares represent
T E (x̂t → v̂t+τ). This is given with associated one standard errors and 95% Significance Levels where the
green dot-dashed line is for the T E (v̂t → x̂t+τ) and the dashed blue line is for the T E (x̂t → v̂t+τ). The
results for the TE are mixed but overall it appears that there is bi-directional (Granger) causality between
volume and volatility.
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C.1.4 Returns and Volatility
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Figure C.6: Cross-Mutual Information and Cross-Covariance Functions for Emerging
Market Index Returns and Volatility at the Daily Frequency

Shows the cross-mutual information (Top) and normalised cross-covariance (Bottom) functions for returns
and volatility. The green diamonds with dot-dashed lines represent the MI (r̂t , v̂t+τ) and the Cov(rt ,vt+τ).
The blue squares with solid lines represent the MI (v̂t , r̂t+τ) and the Cov(vt ,rt+τ). Both graphs are given
with associated one standard errors, exponential curve fits and 95% Significance Levels (black dashed
lines). The MI only appears statistically significant in either direction for a few days and of equal magnitude
(within the margin of error). This implies a bi-directional information flow between returns and volatility.
However, the relationship is much clearer in the cross-covariance function where the Leverage Effect is
statistically significant for around 5 days.
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Figure C.7: Cross-Partial Mutual Information and Cross-Transfer Entropy Functions for
Emerging Market Index Returns and Volatility at the Daily Frequency

(Top) Shows the partial cross-mutual information function for returns and volatility. The green diamonds
with dot-dashed lines represent the MI (r̂t , v̂t+τ |Z) where Z =

[
ĵt , ..., ĵt+τ−1

]
for τ ≥ 1 and ĵ are the nor-

malised volatilities. The blue squares with solid lines represent the MI (v̂t , r̂t+τ |Z) where Z =
[

ĵt , ..., ĵt+τ−1
]

for τ ≥ 1 and ĵ are the normalised returns. These are given with associated one standard errors, exponential
curve fits and a 95% Significance Level (dashed black line). As with the cross-mutual information function
there is evidence of bi-directional information flow but the results are not clear. (Bottom) Shows the cross-
transfer entropy functions for returns and volatility. The green diamonds represent the T E (r̂t → v̂t+τ) and
the blue squares represent the T E (v̂t → r̂t+τ). These are given with associated one standard errors and 95%
Significance Levels which are represented by the green dot-dashed line for T E (r̂t → v̂t+τ) and the dashed
blue line for T E (v̂t → r̂t+τ). The T E gives evidence of bi-directional (Granger) causality between returns
and volatility but it is not clear.
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Controlling for Trading Volumes and Correlation

Table C.1: Mutual Information for the Emerging Market In-

dex Level Leverage Effect Controlling for Trading Volumes

and Correlation Asymmetry

MI (r̂, v̂) MI (r̂, v̂ | x̂) MI (r̂, v̂ | ĉ,) MI (r̂, v̂ | x̂, ĉ,)

(rt ,vt+1) 0.004 ± 0.003

(0.001)

0.010 ± 0.001

(<0.001)

0.189 ± 0.075

(<0.001)

0.067 ± 0.017

(<0.001)

(vt ,rt+1) 0.000 ± 0.001

(1.000)

0.006 ± 0.001

(<0.001)

0.190 ± 0.074

(<0.001)

0.067 ± 0.017

(<0.001)

(rt ,vt+2) 0.007 ± 0.003

(<0.001)

0.010 ± 0.001

(<0.001)

0.174 ± 0.060

(<0.001)

0.084 ± 0.030

(<0.001)

(vt ,rt+2) 0.004 ± 0.002

(0.001)

0.009 ± 0.002

(<0.001)

0.180 ± 0.068

(<0.001)

0.082 ± 0.029

(<0.001)

Shows the MI between returns and volatility at the 1 and 2 day time lags for emerging market indices. The

p-values are shown in brackets. Controlling for trading volumes alone has no effect on the MI between

returns and volatility but correlation asymmetry is shown to dampen the MI by two orders of magnitude.

Controlling for correlation asymmetry and trading volumes increases the MI between returns and volatility

by an order of magnitude. These results indicate that correlation asymmetry actually dampens the MI

between returns and volatility but once this has been accounted for trading volumes become an important

driver of the Leverage Effect. This is consistent with the results for developed market indices.
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Appendix D

Fitting the Multivariate q-Gaussian

Distribution

In Chapter 8 I showed how multivariate q-Gaussian distributions could be used to model

the IVS for Goldman Sachs. Figure D.1 shows the fitted marginal distributions for returns

and 3, 6, 12 and 18 month implied volatility for several large US stocks. It is clear that the

q-Gaussian distribution (blue lines) fits the data far better than the Gaussian distribution

(black lines). Qualitatively it also appears to fit the tails of the distribution very well.

These results are consistent with those for Goldman Sachs.
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Figure D.1: Univariate q-Gaussian Fits of Returns and Implied Volatility Changes for US
Stocks

This shows the fitted marginal distributions for returns and 3, 6, 12 and 18 month implied volatility for
General Electric, Microsoft, Proctor and Gamble and Exxon Mobile (Left to Right). It is clear that the
q-Gaussian distribution fits (blue lines) fit the data far better than the Gaussian distribution. Qualitatively
it also appears to fit the tails of the distribution very well. These results are consistent with those shown
previously for Goldman Sachs.

Calculating the AIC for the q-Gaussian model directly requires knowing the normal-

ising constant, which is difficult to calculate in high dimensions. Instead, we use the

fact that a q-Gaussian with β = 0.5, q→ 1 becomes the Gaussian distribution; the log-

likelihood difference between a q-Gaussian and a Gaussian can then be calculated with
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Equation 8.7, where φ = (0.5, 1+ ε) and ε � 1. This log-likelihood difference can then

be inserted into Equation 8.8.

We can test this method for calculating the AIC difference by applying it to various

data sets simulated from q-Gaussian models with different values of q, shown in Figure

D.2. For values of q close to 1 the AIC favours the Gaussian distribution - it has fewer

parameters, and the q-Gaussian fit is very close to a Gaussian. As q increases and the

simulated data becomes heavier tailed, the q-Gaussian fit becomes better and the AIC

difference drops below 0, favouring it over the Gaussian.

1.00 1.05 1.10 1.15 1.20
q-value of simulated data

7000

6000

5000

4000

3000

2000

1000

0

1000

A
IC

 d
iff

er
en

ce
 b

et
w

ee
n 

q-
G

au
ss

ia
n 

m
od

el
 a

nd
 G

au
ss

ia
n

Figure D.2: Akaike Information Criterion difference between the Gaussian and q-
Gaussian Models

This shows the AIC difference between the Gaussian and q-Gaussian models when fitted to simulated data
with different values of q. For values of q close to 1 the AIC favours the Gaussian distribution - it has
fewer parameters, and the q-Gaussian fit is very close to a Gaussian. As q increases and the simulated data
becomes heavier tailed, the q-Gaussian fit becomes better and the AIC difference drops below 0, favouring
it over the Gaussian.
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