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Nick Torr and Jordi Garra Ticó except for where indicated by citing the original

source.

xvi



Abstract

A model-independent measurement of the charm mixing parameters xD

and yD in the D0 ! KS⇡+⇡� decay mode is presented. The method uses ratios

of yields in symmetric bins of the Dalitz plot and is binned in decay time. This is

an alternative approach that does not require the knowledge of the phase-space

model of the decay. It also preserves good sensitivity to xD and to the relative sign

between xD and yD. Charm mixing parameters are an important step to measuring

CP violation in charm mixing. The measured values of the mixing parameters are

xD = (1.89±0.43±0.21±0.51)% and yD = (�2.59±1.36±1.13±3.12)% where the

uncertainties are statistical, systematic, and due to input parameters respectively.
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Introduction

In particle physics, the oscillation of neutral particles into anti-particles and
vice versa (also known as “mixing”) has been long known to occur in nature and
has been observed in K mesons and B mesons some time ago. The minute scope
of mixing in D mesons predicted by the Standard Model makes the observation of
mixing in the charm sector more difficult.

A related, and arguably more important, phenomenon is the violation of
the Charge-Parity combined symmetry which is necessary for Baryogenesisa - a
necessary component for the explanation the origin of matter in the Universe. The
scientific consensus is that the Standard Model does not contain enough CP vio-
lating effects to satisfy this condition and thus the search for CP violation is an
excellent probe of new physics.

The most precise measurement of charm oscillations, as of early 2014, has
been released by LHCb [2] which confirmed mixing in D mesons, excluding the
no-mixing hypothesis with a very high statistical significance (more than 10� con-
fidence level). However, this observation is thanks to a very good precision of the
measurement of the yD mixing parameter, while the xD mixing parameter is still
consistent with zerob.

The LHCb experiment is uniquely equipped to measure the charm mixing
parameters and to search for CP violation in the charm sector thanks to a very
large charm cross-section and extremely good vertex resolution close to the pri-
mary interaction point. This allows for a very good time resolution necessary for
measurements such as this.

This analysis is performed on the 2011 dataset collected at LHCb. There are
continuations of this analysis being performed on the 2012 dataset which improves
the effective yields by almost an order of magnitude. While this analysis is unlikely

aCP violation is one of the three Sakharov conditions required for Baryogenesis [1].
bThe dimensionless mixing parameters xD and yD are the standard parametrisation of meson

mixing, for detailed treatment, see chapter 1
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to be sensitive to CP violation, the continuations with the entire Run 1 dataset from
LHCb are in fact quite likely to be sufficiently sensitive to improve the world aver-
ages.

The channel chosen in this thesis has useful properties that make it a good
candidate for a complementary study to the more canonical mixing measurements.
Thanks to the knowledge of strong phase in the decay, the mixing parameters are
recovered directly, rather than rotated and more importantly, the relative sign be-
tween xD and yD can be obtained. Currently there have been several results from
this channel published by charm factories (BaBar, Belle, CLEO) mostly on fitting
the amplitude model to the Dalitz plot of the decay. The measurements of xD and
yD collated by the Heavy Flavour World Averaging Group can be seen in fig. 1 [3].
Recently a paper was published by the Belle Collaboration with the most precise
measurement of mixing parameters in the D0 ! KS⇡+⇡� yet (not included in
Figure 1) with xD = 0.56± 0.19 and yD = 0.30± 0.15 (see Table 1) [4].

(a) Measurements of xD (b) Measurements of yD

Figure 1: World average of charm mixing parameters in the D0 ! KS⇡+⇡� chan-
nel. Adapted from [3].

This thesis discusses a model independent way of measuring the mixing
parameters (which was pioneered by several analyses originally intending to mea-
sure the � unitary angle using the B ! DK, D ! KShh decays) which has several
advantages over other methods. It’s model-independent, therefore isn’t subject to
model related systematic uncertainties (but is subject to systematic uncertainties
due to strong phase input parameters), is not subject to time-biases and it sacrifices
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Table 1: Measurement of charm mixing parameters in the D0 ! KS⇡+⇡� channel
using a full amplitude fit by the Belle Collaboration published in early 2014 [4].

sensitivity to yD in favour of xD.

Given that the analysis described in this thesis was performed in collabo-
ration with several colleagues, it is salient to enumerate contributions of my col-
leagues to the work in this thesis:

• Trigger definitions and selection development.

• Swimming formalism and development.

• Monte Carlo Sample 5 as described in section 3.2

• Decay Tree Fitter constraints
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Chapter 1

Theory

1.1 Standard Model

The Standard Model (SM) is a non-Abelian quantum field gauge theory that
forms the basis of particle physics [5]. It was formed throughout the second half of
the 20

th century and describes what we believe are fundamental particles and four
of the five fundamental interactions. It should be noted that the Higgs interaction is
still being explored and the gravitational interaction is not included in the Standard
Model.

The Standard Model contains fundamental fermions (spin 1/2 particles) and
bosons (spin 1 particles). The fundamental fermions can be seen in Table 1.1 and
consist of six quarks and six leptons arranged into three generations. The first gen-
eration of fermions (up, down, electron and electron neutrino) composes ordinary
matter while higher generations are only observed in high-energy phenomenona
such as cosmic rays and particle accelerators. The successive generations of funda-
mental fermions differ only in flavour and mass, with third generation being the
heaviest (see Figure 1.1). Every fermion also has an antimatter counterpart with
same mass and opposite quantum numbers (such as electromagnetic charge).

The fundamental bosons that mediate interactions are listed in Table 1.2.
The photon is the carrier of the electromagnetic force described by quantum elec-
trodynamics, the W and Z bosons carry the weak force which is described by the
unification of EM and weak force theories into electro-weak theory. The gluons
carry the strong force which is described by quantum chromodynamics. The name
originates from the use of colour to denote the strong charge. The QCD theory is a
SU(3) symmetric theory, with red, green and blue being the charge values (the sum

1



Generation of matter Fermion Electric Charge Mass(MeV/c2)

I Up +

2/3 2.5± 0.8
Down �1/3 5.0± 0.9

Electron �1 0.5119989 . . .
Electron Neutrino 0 < 2⇥ 10

�6

II Charm +

2/3 1290± 110

Strange �1/3 100± 30

Muon �1 105.658367 . . .
Muon Neutrino 0 < 0.19

III Truth +

2/3 172900± 900

Beauty �1/3 4190± 180

Tau �1 1776.82± 0.16
Tau Neutrino 0 < 18.2

Table 1.1: The fundamental fermions in the Standard model. Masses are taken from
the Particle Data Group [6].

of red, blue and green is white or zero), which gives rise to eight distinct gluons.
The last force is mediated by the Higgs boson and is called the Higgs interaction
after the proponent of the theory. This interaction is responsible for the mass of all
fundamental particles.

The fundamental quarks can never be observed outside of hadrons, such as
meson and baryons - this principle is called colour confinement. It arises from the
fact that the magnitude of strong interaction is so large that the release of energy by
breaking the interaction is sufficient for quark-pair creation [8]. Mesons are com-
binations of a quark and an anti-quark while baryons are combinations of three
quarks. In each case, the total colour of the resulting particle is zero.

There is a large number of hadrons known to current science. In fact the
large number of what were originally considered elementary particles drove physi-
cists to create categories for these, i.e. the “Eight-fold” Way - somewhat similar to
Mendeleev’s Periodic Tablea, and to theorise that hadrons might constitute various
combinations of fewer, more-fundamental particles. We currently speak of light-
unflavoured, strange, charmed, bottom hadrons to indicate the presence of strange,
charm and beauty quarks or to indicate the absence of these. There are no known
hadrons containing the truth quark because of its short lifetime and currently there

aThe Eight-fold Way proposed independently by Gell-Mann and Ne’eman organised the known
mesons and baryons of spin 1

/2 into two octets and spin 3
/2 baryons into a decuplet [9]. A missing

particle ⌦� was predicted and was discovered two years later [10].
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Figure 1.1: Relative fundamental fermion masses. Adapted from [7] .

Interaction Boson Electric Charge Mass(GeV/c2)

Electromagnetic Photon 0 massless

Weak W± ±1 80.399± 0.023
Z 0 91.1876± 0.0021

Strong Gluon 0 massless

Higgs Higgs 0 125.9± 0.4

Table 1.2: The fundamental bosons in the Standard Model. The masses are taken
from the Particle Data Group [6].

are several searches for t¯t resonances underway at major experiments [11] [12].

1.1.1 Lagrangian

As a quantum field theory, the Standard Model is constructed by first iden-
tifying desirable symmetries of the system and then constructing the most general
Lagrangian density L such that the fields composing the Lagrangian density obey
the given symmetries. The symmetries required are the global Poincaré symme-
try (rotational, translational and special relativity reference frame invariance) and
internal gauge symmetry.

Using a perturbative approach, the Lagrangian can be decomposed into
terms for free fields and terms for the coupling between fermionic and bosonic

3



fields due to various interactions. We assume that, in the absence of interactions,
the free fields are described purely by kinetic free terms

L = LEW + LQCD + LH + LY U (1.1)

where LEW describes the Dirac fermion term, Electro-Weak boson field terms and
their Electro-Weak coupling term, LQCD describes Dirac spinors (quarks) and the
interaction with gluons, LH describes the Higgs Field and LY U is the Yukawa in-
teraction between fermions and the Higgs field which allows for fermion mass.

1.1.2 Higgs Field

The Higgs mechanism in the Standard Model generates fermionic and
bosonic mass. Trying to implement simple mass terms arising from the Dirac or
Schrödinger equations are not satisfactory:

• Dirac mass terms arising from the basic Dirac Lagrangian are invariant under
electroweak symmetry

• Schrödinger Lagrangian is not Lorentz invariant

• Bosonic mass term depends on the choice of gauge.

The simplest renormalizable solution is adding a scalar field

� =

1p
2

✓

�+

�0

◆

(1.2)

with a Lagrangian

LH =

⇥�

@µ � igW a
µ t

a � ig0Y�Bµ

�

�
⇤2

+ µ2�†�� �
⇣

�†�
⌘2

(1.3)

where v =

p

�µ2/� ⇡ 246 GeV is the vacuum expectation value and mH =

p�2µ ⇡ 125GeV is the mass of the Higgs boson [13]. The term

µ2�†�� �
⇣

�†�
⌘2

(1.4)

describes the Higgs Potential in the shape of a “Mexican hat” in the complex plane
of � (see Figure 1.2) which is minimised at a circle of points with constant |�| rather
than � = 0 [14].
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Figure 1.2: Illustration of the Higgs potential in complex plane [15].

The Higgs field permeates the universe and its vacuum expectation value
means that the vacuum is no longer empty. The potential spontaneously breaks
three out of four degrees of freedom in the electroweak SU(2) ⇥ U(1) group which
couple to the weak bosons (W�,W+, Z0) introducing mass. The last degree of free-
dom becomes a massive boson - the Higgs boson [13].

1.1.3 CKM Matrix and Quark Mixing

The weak force can violate quark flavour, i.e. up-type quarks can transform
to down type quarks and vice versa, mediated by the charged weak bosons W+

and W�. This arises from the Yukawa couplings that provide mass to fermions.
The Yukawa Lagrangian (for first generation of matter) can be written as

LY U = �ye ¯EL�eR + yd ¯QL�dR + yu ¯QL�uR + h.c. (1.5)

where the left hand chiral fermionic fields are doublets

EL ⌘
✓

⌫e
e�

◆

, QL =

✓

u

d

◆

while the right handed fields are singlets

(e�)R, (u)R, (d)R

This construction implies that the charged weak bosons interact with only the left
handed chiral fields. Each Yukawa term is invariant under both SU(2) and U(1)Y
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transformations. The Yukawa coupling gives fermions their mass through the in-
teraction with the Higgs field with mf / yf which changes the free parameters of
the SM from fermion masses to strengths of Yukawa couplings.

Generalising this to three generations introduces interactions between the
different generations of quarks which means yd and yu are now 3 ⇥ 3 complex
matrices (by construction we allow the generations to mix), but the couplings can
be diagonalised by choosing a new basis for the quark fields

yd ! UL†
d ydU

R
d (1.6)

and similarly for yu. The UL and UR transform the quark fields

diR ! (UR
d )

ijdjR diL ! (UL
d )

ijdjL

uiR ! (UR
u )

ijujR uiL ! (UL
u )

ijujL (1.7)

This transformation cancels in all kinematical terms of the Lagrangian and in all
interactions apart from W+ and W� interaction terms where the W boson current
reads

J+µ
=

1p
2

ūiL�
µdiL ! 1p

2

ūiL�
µ
(UL†

u UL
d )

ijdjL (1.8)

Where V ⌘ (UL†
u UL

d )
ij does not cancel and is a 3 ⇥ 3 matrix. The matrix has to

be unitary, each quark field can absorb one complex phase and the overall global
phase is immaterial due to phase invariance of the Lagrangian. These constraints
reduce the number of free parameters of V to four which can be chosen to be three
Euler angles and one complex phase. The resulting matrix V (eq. 1.9) is called the
Cabibbo-Kobayashi-Masakawa (CKM) mixing matrix [16] and the mixing angles
determine the probability of a given quark flavour being changed in an interaction
(see Figure 1.3). It can be written as

V =

0

B

@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

C

A

=

0

B

@

c12c13 s12c13 s13e�i�

�s12c13 � c12s23s13e�i� c12c13 � s12s23s13e�i� s23c13

s12c13 � c12s23s13e�i� �c12s13 � s12c23s13e�i� c23c13

1

C

A

(1.9)

where c13 ⌘ cos ✓13, s12 ⌘ sin ✓12 etc. for the three rotation angles ✓12, ✓13, ✓23 and
� being the complex phase that allows for CP violation in the weak interactions
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(which is the only hitherto confirmed source of CP violation)b.

Figure 1.3: Transitions between quark flavours as described by the CKM matrix.

The CKM matrix can be parametrised using the Wolfenstein parametrisa-
tion [17] which is more convenient for expressing the apparent hierarchy among
flavour-changing weak interactions shown in Figure 1.3 as

V =

0

B

@

1� �2/2 � A�3(⇢� i⌘)

�� 1� �2/2 A�2

A�3(1� ⇢� i⌘) �A�2 1

1

C

A

(1.10)

with � = s12, A�2 = s23 and A�3(⇢� i⌘) = s13e�i� which is correct up to O(�3).

The unitarity of the CKM matrix can be expressed as

X

k

VikV
⇤
jk = 0 (1.11)

for all like-charged quarks i, j, i 6= j which, given that each term describes a
complex number, is an equation for a triangle (called a unitarity triangle) such
as one shown in Figure 1.4. This particular triangle is popularc because of its
importance in B physics, especially B meson mixing since it describes the rela-
tionship between b and d quarks which compose neutral B mesons and because
VudV ⇤

ub ⇠ VcdV ⇤
cb ⇠ VtdV ⇤

tb ⇠ O(�3) leading to a triangle with comparable sides.
Given that the angles of this triangles represent degrees of freedom of the CKM

bThe symmetry of the combined CP (charge conjugation and parity) operation and breaking
thereof is discussed in section 1.3 of this chapter.

cThis triangle is often referred to as The Unitarity Triangle
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matrix, measuring the angles of the triangle in Figure 1.4 is a good way of obtain-
ing information about the CKM matrix.

In comparison, if one were to construct a unitarity triangle corresponding
to charm physics, one would obtain

VcdV
⇤
ud + VcsV

⇤
us + VcbV

⇤
ub = 1 (1.12)

where VcdV ⇤
ud ⇠ �VcsV ⇤

us ⇠ O(�) and VcbV ⇤
ub ⇠ O(�5) which would represent a

very acute triangle with one side much much shorter than the other two. Thus this
would not be an ideal choice for extracting information about the CKM matrix.

Figure 1.4: The CKM Unitarity triangle that describes the unitarity condition 1.11
for i = d, j = b. Here ⇢̄ ⇡ ⇢

⇣

1� �2

2

⌘

, ⌘̄ ⇡ ⌘
⇣

1� �2

2

⌘

. Adopted from [17].

1.1.4 Beyond SM

While the Standard Model is one of the most successful theories in the his-
tory of physics, verified by the comparison of post-dictions and predictions to ex-
perimental measurements to an unparallelled degree, it fails to explain several im-
portant phenomena observed in the universe or address several concerns of theo-
retical physics, some of which are listed below.

• Existence of matter dominated universe (see §1.3).

• Neutrino mass and oscillations.

• The arbitrary number of generations of matter.

• The presence of dark matter and compatibility with the Standard Model of
Astrophysics.
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• Quantum Gravity.

• Hierarchy due to Higgs mechanismd.

• Strong CP problem (see §1.3)

• Large number of free parameters fixed by experiments rather than theory.

This is a strong indication that there is either a more fundamental theory,
or at least some yet unproven extension of the Standard Model explaining these
phenomena. There are many candidate theories and extensions that attempt to do
so, such as supersymmetry and string theory.

1.2 Neutral Meson Mixing

Given that flavour is not conserved in weak interactions, a meson may
“transform” into an anti-meson provided the rest of the quantum numbers apart
from flavour are identical between the two particles. This is true for neutral mesons
and the process is known as “oscillation” or “mixing”e.

Phenomenologically, the meson mixing can occur via “long range” or via
“short range” processes. Long range involves re-scattering of intermediate particles
such as K or ⇡ (see Figure 1.5). These processes are hard to model theoretically and
due to the fact that they are the dominant contribution to charm mixing in SM the
theoretical predictions for charm mixing have large uncertainties [19].

The short range process is a “box”-diagram involving an exchange of W

bosons and virtual quarks. Specifically for charm, this diagram contributes O(10

�5
)

to mixing but could be enhanced by new physics. Similarly, any observation of CPV
in charm mixing at the current experimental levels would be immediate evidence
of new physics.

dThe Hierarchy problem is a question that asks why the weak force is 1032 times stronger than
gravity since both involve empirical constants of nature (Fermi’s constant for weak force and New-
ton’s gravitational constant). If one were to use the Standard Model to calculate radiative corrections
to the Fermi’s constant, it would appear much closer in scale to the Newton’s constant. Equivalently
this can be posited as quadratic radiative corrections to the Higgs mass �2H ⇡ � |�f |2

8⇡2 [�UV + . . . ],
where �f is the Yukawa coupling of a given fermion, diverge if the scale ⇤UV is chosen to be the
Planck scale [18]. These depend on the mass of the fermion due to the Yukawa coupling so the most
massive fermions will contribute the most to the corrections. The worry is that in future extensions
of the SM that allow the calculation of the Higgs mass, these corrections will have to be fine-tuned
out and the Higgs mass would be unstable. And no-one likes fine-tuning.

eNote that neutral meson mixing and quark mixing are different concepts.
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Figure 1.5: Diagrams illustrating mixing mechanisms - short range on the left and
long range on the right. Short range is a single weak interaction described by a
Feynman diagram, long range shows lots of complicated processes involving light
meson pairs and triplets.

The formalism of neutral meson mixing in the Standard Model can be de-
scribed starting from the difference between Hamiltonian eigenstates (|D1i, |D2i)
corresponding to physical propagating states of neutral mesons and the flavour
eigenstates (|D0i,| ¯D0i) which represent the pure quark content which enters weak
interactions. We can use the flavour eigenstates to form a basis

�

�D0
↵

=

 

1

0

!

,
�

� ¯D0
↵

=

 

0

1

!

. (1.13)

Then we can express the Hamiltonian eigenstates as the linear combination of the
flavour eigenstates. The Schrödinger equation describing the time evolution of a
meson in the flavour basis becomes

i
d

dt

 

a

b

!

= H
 

a

b

!

⌘
✓

Mij �
i

2

�ij

◆

 

a

b

!

, (1.14)

where the mass matrix Mij and the decay width matrix �ij are Hermitian but H is
not Hermitian and is called the effective Hamiltonian. The CPT invariancef requires
that H11 = H22. The off-diagonal elements of the effective Hamiltonian describe the
absorptive (M12) and dispersive (�12) elements of meson mixing. The eigenstates
of the effective Hamiltonian are given by

 

M11 � i
2�11 M12 � i

2�12

M?
12 � i

2�
?
12 M11 � i

2�11

! 

p

q

!

= �1,2

 

p

q

!

, (1.15)

and the eigenvalues �1,2 ⌘ m1,2 � i
2�1,2. Taking a ratio of elements of the eigenvec-

fIt is assumed that CPT (charge conjugation, parity and time reversal) is conserved as per the
CPT theorem which predicts that every Lorentz invariant quantum field theory (such as SM) with a
Hermitian Hamiltonian (eigenvalues of Hamiltonian are real) must observe CPT symmetry [20].
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tors one can find

± q

p
= ±

s

M?
12 � i

2�
?
12

M12 � i
2�12

(1.16)

with |p|2 + |q|2 = 1. Mass eigenstates can then be expressed as

|D1,2i = p
�

�D0
↵

± q
�

� ¯D0
↵

. (1.17)

We define for convenience the dimensionless quantities

� =

�1 + �2

2

, x =

m1 �m2

�

, y =

�1 � �2
2�

, (1.18)

where mi,�i are the mass and the width of the i-th eigenstate and � is the aver-
age width of the two eigenstates. These are called the mixing parametersg. The time
evolution of a Hamiltonian eigenstate is given byh

|D1,2(t)i = e�
�t
2 h1,2(t) |D1,2i , (1.19)

with
h1,2(t) = e⌥

(y+ix)�t
2 . (1.20)

1.2.1 Methods to extract mixing parameters

There are several methods of measuring the mixing parameters, each with
its own advantages and disadvantages. Given that the mixing parameters repre-
sent a perturbation from the default unmixed state, one generally has to measure a
deviation compared to the null state, such as measuring the perturbation of an ex-
ponential of the decay probability due to mixing. This might introduce uncertainty
based on the knowledge of the null state.

When the mixing parameters are large, such as in strange and beauty mix-
ing, the effect can be observed directly as an asymmetry between the number of
decayed mesons and anti-mesons to semileptonic modes in a clean production
environment. Alternatively, and more precisely, one can measure the time depen-
dent oscillation of the asymmetry of the mixed and unmixed decay rate of neutral
mesons in flavour specific modes (see Figure 1.6 and 1.7). This requires extremely

gThe mixing parameter xD (subscript D denotes the neutral charm meson D

0) represents the nor-
malised difference between the masses of the two physical eigenstates. The parameter yD represents
the normalised difference between the decay widths of the two physical eigenstates.

hFor a detailed derivation please see [6].
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good resolution of the B decay vertex and good momentum resolution as well as
an efficient tagging mechanism with the disadvantage that the fit is sensitive to x

only. The B0
d mixing extraction neglects yB which is assumed to be small compared

to xB (< 1%, see 1.3.1) as the effect of such small magnitude of yB on the decay rate
would be almost indistinguishable from time resolution effects.

Figure 1.6: Mixing in the strange sector, illustration of the asymmetry of decay rates
(left) and measurement by CPLEAR (right). Adopted from [21].

Extracting mixing parameters in the charm sector uses different methods.
Due to the small size of the mixing parameters one requires an extremely good tag
compared to beauty mixing. The commonly used decay of D⇤

(2010)

+ ! D0⇡+ has
a mistag rate of ⇠ 0.1%.

Using semileptonic decays where the final state is only accessible via mix-
ing, one can extract the rate of mixing (defined as RM ⌘ (x2+y2)

2 ) directly from the
decay rate

r (t) ⇡ e�t

4

(x2 + y2) (1.21)

assuming no CP violation. This is not very sensitive to mixing parameters due to
the fact that the mixing parameters appear in quadratic.

Alternatively one can use decays to hadronic non-CP eigenstates (such as
K+⇡� where the unmixed decay is doubly-Cabibbo-suppressed (DCS) and the
mixed decay is Cabibbo-favoured (CF) leading to a ratio of decay rates, in absence
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Figure 1.7: Mixing in the beauty sector, illustration of the asymmetry of decay rates
(left) and measurement by BELLE (right). Adopted from [22].

of CP violation

r(t)WS

r(t)RS
⇡
✓

RD +

p

(RD)y
0t+

1

2

RM t2
◆

(1.22)

with WS and RS denoting the so-called “wrong sign” decay (DCS decay) and “right
sign” decay (CF decay) of the mother particle with RD denoting the ratio of sup-
pressed to favoured decay rates [2]. Here the parameters are transformed by the
strong phase difference between the decay amplitudes

x0 ⌘ x cos �K⇡ + y sin �K⇡

y0 ⌘ x cos �K⇡ � y sin �K⇡ (1.23)

giving
x02 + y02 = x2 + y2 (1.24)

and the fit parameters become RD, y0 and x02. One can integrate r(t) to get the
time-integrated rate

R = RD +

p

RDy
0
+RM (1.25)

which is more readily available experimentally but generally carries less statistical
power because of poor independent knowledge of RD

i. It should be noted that this
method of extracting mixing parameters requires knowledge of the relative strong

iOne can extract RD from the time-dependent fit to the WS/RS ratio as the intercept of the x-axis.
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phase �K⇡ between the CF and DCS decaysj, it does not provide information about
the relative sign of x and y and generally is less sensitive to x due to a quadratic
relationshipk.

Should one choose to use three-body (or more) decays to extract mixing pa-
rameters (such as D0 ! K+⇡�⇡0) the mixing equations apply separately across the
phase-space with the relative strong phase varying with position in phase-space.
This can be mitigated by binning the phase-space such that the relative strong
phase is approximately constant in each bin and extracting the values of the rel-
ative strong phase with a separate analysis of quantum correlated decays, such as
a  (3770) ! D0

¯D0. However RD will still vary with phase-space.

Decays to CP eigenstates such as K+K� can be used in comparison with
decays to K�⇡+ to extract the yCP parameter

yCP =

�(D0 ! ⇡+⇡�)

�(D0 ! K�⇡+)
� 1 =

�(D0 ! K+K�
)

�(D0 ! K�⇡+)
� 1 (1.26)

yCP =

1

2

✓

�

�

�

�

q

p

�

�

�

�

+

�

�

�

�

p

q

�

�

�

�

◆

y cos�� 1

2

✓

�

�

�

�

q

p

�

�

�

�

�
�

�

�

�

p

q

�

�

�

�

◆

x sin� (1.27)

yCP ⇡ y cos��AMx sin� (1.28)

with � being the complex argument of q
p . The yCP parameter measures mixing

and CP violation in mixing (specifically in difference of decay widths). By taking
the ratio of decay rates, one can cancel lifetime bias (assuming any such bias is
common to both decay modes). In the limit of CP conservation, yCP = y and thus
with good independent knowledge of y, this allows to probe CP violation in charm
mixing.

Should one use decays to a three-body self-conjugate final state, such as
KSh+h� in this analysis, the mixing equations will hold at every point of Dalitz
space. Furthermore, one can compare the expected number of events in symmet-
ric parts of the Dalitz plot as indicated in chapter 6 to extract mixing information
without knowledge of the Dalitz plot distribution.

It is also possible to use coherent D0
¯D0 production at e+e� collisions to de-

termine x, y and RD simultaneously using decays of  (3770) decaying into quan-
tum correlated D0

¯D0 pairs. Thanks to this correlation, the time-integrated rates
jThe relative strong phase information can be obtained from quantum correlated decays of

 (3770) ! D

0
D̄

0 readily produced at charm factories.
kHaving defined RM as RM ⌘ x2+y2

2 the equation 1.25 depends on y

0 and x

2 and consequently
can measure y

0 to much better precision than x
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of decay are sensitive to interference due to amplitude from indistinguishable fi-
nal states. This interference is dominated by individual decay amplitudes but has
a contribution due to mixing. These can be either single-tagged or double-tagged
(for example using semileptonic decays).

1.2.2 D0 ! KSh+h� decay channel

The decay channel D0 ! KSh+h� offers both advantages and disadvan-
tages when extracting mixing and CPV parameters. The decay has a three-body
final state which means the phase-space can be described by a Dalitz plot (see ap-
pendix A) and the decay amplitude is phase-space dependent. This offers more
information for fitting, but makes the analysis more complicated by introducing a
decay model that has to be accounted for.

As a three body decay, the triggering at LHCb is more complicated than a
two-body decay such as D0 ! h+h� leading to a considerably reduced dataset in
comparison.

The model-dependent full-amplitude fit allows for the extraction of the
phase-space dependent relative strong phase between the amplitudes (�KS⇡+⇡�)
which is useful for some mixing extraction methods outlined earlier. Furthermore,
this means that the mixing parameters are accessed directly (not rotated by the
strong phase). This allows for several important measurements such as the rela-
tive sign of x and y and comparison of y and yCP . A good measurement of x is
also important since the current world average has x consistent with null hypoth-
esis within ⇠ 2� (see 1.3.2) and this channel provides access to non-rotated x with
good precision.

As an alternative to a full-amplitude fit, one can perform a fit binned in
phase-space if one has access to strong-phase information measured by a differ-
ent analysis. This fit can be time-dependent, time-binned or time-integrated. This
thesis uses a time-binned, phase-space binned fit as described in chapter 6.
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1.3 CP Violation

After P symmetry was proven to be broken l it was proposed that laws of
physics were invariant under the combined CP (that is charge-conjugation and par-
ity) operation. However we now recognize this is not the case.

We recognise three different types of violation of this symmetry:

1. CP violation in decay.

2. CP violation in mixing.

3. CP violation in the interference between decay and mixing.

The first is the difference between the decay rates of a particle and antiparti-
cle to a specific set of CP conjugate final states or a single self-conjugate final state.
The second is the difference in the rate of oscillation of a meson to anti-meson
compared to the reverse. The measurement of CPV parameters in mixing gener-
ally depends on the measurement of the mixing parameters themselves. The third
kind of CP violation can be observed in the interference between direct decays and
decays after the mother meson has mixed. One example of a potential occurence
of this kind of CP violation is the measuremnt of mixing parameters using the
interference of Cabibbo-favoured mixed decays and doubly-Cabibbo-suppressed
unmixed decays in the “Wrong-sign” to “Right-sign” ratio fit (see eq. 1.22).

The importance of CP violation searches can be motivated by one of the
shortcomings of the Standard Model. There is far more matter observed in the
known universe than antimatter. This can be explained by several hypothesesm

such as the Electroweak Baryogenesis [25]. In general, Baryogenesis requires three
Sakharov Conditions to occur [1], one of which is presence of CP violating pro-
cesses in Nature. Currently theorists agree that the quark sector of the Standard

lIn the famous ✓ � ⌧ puzzle, the two particles were thought to be different even though they had
the same mass and lifetime and were otherwise indistinguishable except they decayed into 2 ⇡ and
3⇡ respectively. This breaks parity symmetry which was assumed to hold. When it was proven in
1956 that parity could be violated [23] in weak decays it became obvious the ✓ and ⌧ are the same
particle.

mSuch as: Leptogenesis [24] which adds right-handed neutrinos and gives them mass via the See-
Saw mechanism and proposes that the matter-antimatter asymmetry is due to a lepton asymmetry
generated by the otherwise sterile right-handed heavy neutrinos - this theory was popular in the last
decade because of its relative simplicity and emerging measurements of neutrino mass and oscil-
lations; Electro-weak Baryogenesis [25] which postulates that the asymmetry was produced by CP
violating processes in the electro-weak sector; GUT (Grand Unified Theory) Baryogenesis [26] which
assumes that the baryon asymmetry is due to decays of various GUT bosons.
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model does not contain enough CP violating processes to satisfy the Sakharov con-
ditionsn.

Another unanswered question in the Standard Model is the absence of CP
violation in the strong interactions. The general version of QCD Lagrangian

L = �1

4

Fµ⌫F
µ⌫ � nfg2✓

32⇡2
Fµ⌫

˜Fµ⌫
+

¯�(i�µDµ �mei↵�5) (1.29)

violates CP for non-zero angle ✓ and chiral mass phase ↵. The experimental lower
boundary from neutron electric dipole measurements are extremely small (cur-
rently |dn| < 2.9⇥10

�26ecm [27]) which implies that these parameters take vanish-
ing value (✓ < 10

�10rad [27]) in Nature. This is either an example of “fine tuning”
or alternatively could be explained by the existence of theoretical (and hitherto un-
observed) “axions” to cancel CP violation in QCD processes [28].

1.3.1 Mixing and CP Violation in beauty and strange sector

The meson mixing in strange sector is historically the first instance of me-
son mixing observed [29]. The Hamiltonian eigenstates are very closely aligned
with CP eigenstates which means that the major modes of decay of K1 and K2 will
be 3⇡ and 2⇡ respectively. The fact that the mass of K1 is just a little larger than the
combination of three pions means that the decay is a factor 600 slower compared
to K2 ! 2⇡ because of the restricted phase-space. Quantitatively the mixing pa-
rameters are: xK = 0.942 ± 0.007 and yK ⇡ �1 [6] (yK ⌘ �KL

��KS
�KL

+�KS
). The natural

labelling of the Hamiltonian eigenstates thusly becomes KS for “K-short” and KL

for “K-long” because the decay time is a clear experimental difference.

The mixing in the beauty sector has been well established for a few decades
now [30]. The mixing parameter yB for B0 mesons is assumed to be zero or insignif-
icanto i.e. there is no difference in decay times for the two Hamiltonian eigenstates.
The mass difference is however significant with xB = 0.775 ± 0.007 [3] leading to
the labelling of the eigenstates as BH and BL for the heavy and light eigenstate
respectively.

nGiven the quantity of matter in the universe and using the Cosmic Microwave Background one
can estimate what fraction of matter remained post-annihilation.

oWhile M12 and thus x gets most contribution from the short range “box-diagram” mixing, �12

and therefore y gets most contribution from the long range mixing with exchange of mesonic self-
conjugate states such as ⇡+

⇡

�, K+
K

� and D

+
D

� mesons. Hence magnitude of y is restricted by the
the branching fractions of the mother meson to these states. While for D0 and B

0
s these are reasonably

common, B0
d does not decay into these favourably [6].
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In the beauty-strange sector, meson mixing for neutral Bs mesons has been
observed only recently [31]. The current values of mixing parameters are xBs =

26.82 ± 0.23 [3] and yBs = 0.093 ± 0.010 [6]p [32]. The large difference between x

and y again lends itself for labelling the eigenstates “light” and “heavy”.

The CP symmetry was proven to not hold in 1964 [33] when KL was shown
to decay into 2⇡ which is a CP-forbidden state. This is an example of CP violation in
mixing. The first observation of CPV in decay came in the kaon system in 1999 [34].

The CP symmetry violation has been observed in the beauty system as well
in 2001 [35]. The current world average is sin 2� = 0.68 ± 0.02 (see Figure 1.8). In
the limit of CP conservation sin 2� = 0. This is another example of the interference
between decay and mixing.

Figure 1.8: Preliminary world average fit of the CP violating parameter sin 2� for
2012. In the limit of CP conservation sin 2� = 0. Adopted from [3].

pThe quantity denoted ��s/�s in the PDG summary in fact corresponds to ��s rather than 2yBs

as the summary indicates.
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1.3.2 Mixing and CP Violation in charm sector

The charm sector differs from both strange and beauty in the magnitude of
the mixing amongst others. The current world average of mixing parameters for
charm mesons are x = (0.39 ± 0.17)% and y = (0.67 ± 0.17)% [3] (see Figures 1.9
and 1.10), which establishes a significant difference in lifetimes but x is consistent
with the null hypothesis. The minute scope of mixing in the charm sector explains
why the observation of charm mixing came only recently, significantly later than in
the beauty sector.

Figure 1.9: World average fit contours of x and y mixing parameters for charm
mesons allowing for CP violation. Adopted from [3].

The current world averages of CP violation in the charm sector are very
consistent with the null hypothesis, however there are promising avenues of ex-
ploration, such as the comparison of yCP and y and one of the reasons why charm
mixing is interesting that any CP violation in charm mixing would be a strong in-
dication of new physics.
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Figure 1.10: World average fit contours of x and y mixing parameters for charm
mesons disallowing any CP violation. Adopted from [3].
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Chapter 2

The LHCb Experiment

2.1 The LHC Ring

The Large Hadron Collider beauty (LHCb) experiment is one of the four
main experiments located on the circumference and utilising the accelerator facili-
ties of the Large Hadron Collider. The LHC is a two-ring accelerator located on the
Swiss-French border near Geneva, Switzerland in the old LEP tunnel and its 26.7
km long circumference at a depth of 45-170 m crosses both countries. The collider
uses older accelerators for injection purposes as seen in Figure 2.1. The acceleration
process begins with the linear particle accelerator LINAC2 which produces protons
at 50MeV which are injected into the Proton Synchrotron Booster (PBS) where the
protons are accelerated to 1.4 GeV . Further on the Proton Synchrotron (PS) accel-
erates the beams to 26 GeV and finally the the Super Proton Synchrotron reaches
the energy of 450 GeV . At this point the protons can be injected into the two LHC
rings which facilitate the final acceleration to collision energy. The collisions last for
several hours until the proton bunches are depleted and the luminosity drops be-
low an effectivity threshold at which point the beams are dumped, reinjected and
reaccelerated. A single iteration of beam injection to beam dump is called a fill.

The LHC achieved collision energy
p
s = 7 TeV in 2010 and

p
s = 8 TeV

in 2012 [36]. The design specifications intend the LHC to operate at centre-of-mass
energy

p
s = 14TeV and peak luminosity of 1034 cm�2s�1 (2080 bunches per beam

spaced 25 ns apart) after a set of upgrades is performed [37]. The collider facili-
tates four main experiments (ATLAS, CMS, LHCb, ALICE) and is operated by the
European Centre for Nuclear Research (CERN).
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Figure 2.1: The scheme of the Large Hadron Collider complex with injection accel-
erators and experiments (the PBS is labelled BOOSTER in this scheme) [38].

The luminosity can be related to the beam parameters by

L = fn
N1N2

A
(2.1)

with f being the revolution frequency, n the number of proton bunches in a circu-
lating beam, N being the number of protons in a bunch for respective beams and
A is the cross-section area of the proton bunch. The luminosity recorded by LHCb
through the first run can be seen in Figure 2.2.
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Figure 2.2: Integrated recorded LHCb luminosity throughout the first run of data-
taking [39].

2.2 LHCb Detector

The LHCb detector is a forward arm spectrometer (see Figure 2.3) with an
angular acceptance of 10 � 250 mrad in the vertical and 10 � 300 mrad in the
horizontal plane (The horizontal plane is the bending plane of the magnet). The
geometry uses a right handed coordinate system located at the Interaction Point
with z-axis pointing downstream, y-axis pointing vertically upwards and the x-
axis completing the Cartesian system. The primary aim of the LHCb experiment is
to measure Standard Model parameters with high precision and look for evidence
of new physics and CP violation by studying heavy flavour physics, particularly
decays of hadrons produced in b¯b and cc̄ pair-production.

The LHCb design is based on an expected luminosity of 2 ⇥ 10

32 cm�2s�1

with 10

7 b¯b pairs and 10

12 cc̄ pairs produced annually [40]. This means that the
average number of pp collisions per bunch crossing is ⇠ 1, compared to ⇠ 40 for
ATLAS or CMS. This greatly reduces the complexity of event analysis. The lower
luminosity is achieved by a controlled misalignment of beams such that the shared
cross-section of the bunches is lower. The advantage of this approach is that the
luminosity is kept constant throughout the fill since the effectivity threshold that
triggers a refill is higher than the LHCb delivered luminosity, see Figure 2.4. The
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Figure 2.3: The geometry of the LHCb detector as viewed in the y-z plane cross-
section. The individual sub-detectors are indicated.

2011 data-taking run has seen luminosity above the design specifications, consis-
tently at 3⇥ 10

32 cm�2s�1 [39].

The design of the detector was motivated by the chief area of physics it
studies. The majority of the b¯b pairs are produced close to the beam-line as shown
in Figure 2.5. The angular acceptance of ⇠ 4% of the 4⇡ solid angle allows for de-
tection of ⇠ 40% of b¯b produced. The Vertex Locator along with very good tracking
provide excellent time resolution necessary for flavour physics. Particle identifica-
tion using Cherenkov detectors allows for excellent ⇡�K separation which is vital
in many channels.

The LHCb detector consists of (starting from the interaction point) Vertex
Locator (VELO), Ring Imaging Cherenkov Detectors (RICH1 and RICH2), Tracker
Turicensis (TT), Magnet, Inner Tracker (IT), Outer Tracker (OT), Scintillator Pad
Detector (SPD), Pre-Shower Detector (PS), Electromagnetic Calorimeter (ECAL),
Hadronic Calorimeter (HCAL) and Muon Chambers (M1 - M5). The Trigger and
Software is described in this chapter as well.
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Figure 2.4: Instantaneous luminosity at ATLAS (blue), CMS (black) and LHCb
(red). Shows that LHCb luminosity remains constant throughout the fill thanks to
luminosity levelling. The turn on shape of the luminosity for LHCb is again due to
the levelling. First the beams are completely misaligned and the levelling algorithm
moves them closer together until the desired instantaneous luminosity is achieved.
Adopted from [41]
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Figure 2.5: The angular distribution of b¯b pair production and LHCb acceptance in
red. Adopted from [42]
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2.3 Vertex Locator

The Vertex Locator (VELO) is a silicon strip detector that encloses the inter-
action point. When fully closed, the VELO is located 8.2 mm from the interaction
point. Due to the proximity to the beam line, the VELO is evacuated - it shares the
beam-pipe vacuum. The fact that LHCb surrounds an injection point for the LHC
required the VELO to be retracted out of position at 30mm while the injection takes
place. The geometry takes advantage of the narrow phase-space characteristics of
b¯b pair production and consists of 42 sensor modules with alternating semicircle-
shaped radial (R) and azimuthal (�) silicon micro-strip detectors consisting of 2048
readout channels each. There are also four R modules further upstream (VETO) to
roughly determine the number of pp interactions in the event. The full length of the
VELO is 600 mm.

The acceptance of the VELO is 2 < ⌘ < 5 where ⌘ is the pseudo-rapidity
and is defined as

⌘ =

1

2

ln

✓

|p|+ pz
|p|� pz

◆

(2.2)

Furthermore, a track inside the angular acceptance has to cross at least 3 VELO
sensors, this requires sensors to be spaced by 5 cm or 3.5 cm near the interaction
point to account for the possibility of missing hits on one sensor. The full angular
acceptance was ensured by overlapping sensors in the x-y plane when the VELO
is closed, to this effect the two sides of the VELO are shifted with respect to each
other by 1.5 cm as shown on Figure 2.6.

2.3.1 RF foil

The Vertex Locator is shielded from the powerful RF field emitted by the
beam by means of an aluminium corrugated foil that encloses the sensors in a Fara-
day cage. The foil rests 2 mm from the sensors which are under potential difference
of 400V . The foil alignment is checked using beam-gas material interactions, which
are used to map the VELO and the RF foil when in operation [44].

2.3.2 Sensors

The sensor modules are pairs of silicon micro-strip detectors, each contain-
ing both the R sensor from one side and the � sensor from the other. The sensors
have a thickness of 300 µm and a radius of 42mm with 2048 readout channels. The
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Figure 2.6: The positioning of VELO sensor modules with R (red) and � sensors
(blue). Shows both retracted and closed positions. Also shows 4 pile-up sensors
downstream. [43]

R sensor is subdivided into 4 sectors and measures the transverse distance from the
beam-line (where transverse means x and y coordinate added in quadrature). The
� sensor detects the azimuthal angle around the beam-line and is subdivided into
inner and outer region to better deal with large occupancies and to prevent large
differences between inner and outer channel widths. The � sensors are skewed to
improve pattern recognition with successive strips being skewed in different direc-
tions. Cylindrical polar geometry was preferred thanks to faster reconstruction of
tracks and vertices compared to a Cartesian coordinate scheme. Together the sen-
sors can provide complete 3 dimensional position for hits. The layout of the sensors
can be seen in Figure 2.7.

2.3.3 VELO/Tracking Performance

The VELO uses analogue readout electronics which allows for resolution
better than digital equivalent (resolution smaller than the individual strip size). The
single-hit resolution is a comparison between the intercept of a reconstructed track
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Figure 2.7: Scheme of R (Left) and � (Right) sensors with readout channels [43].

with the sensor and the actual measurement the sensor provided. This resolution
is of the order of 1 � 10 µm depending on charge sharing between adjacent VELO
clusters and on angle of incidence of the track on the sensor. The resolution for a
typical 40-track Primary Vertex is ⇠ 10 µm in the x-y plane and ⇠ 50 µm in the
z-axis. The distance of the track from the Primary Vertex is generally called the
Impact Parameter (IP). Its resolution in LHCb is ⇠ 20 µm for a typical track with
p ⇠ 1GeV/c, see Figure 2.8.
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Figure 2.8: The Impact Parameter resolution of VELO depending on transverse mo-
mentum of the particle. Resolution in x axis (Left) and in y axis (Right) shown. [45]

2.4 Ring Imaging Cherenkov Detectors

The Ring Cherenkov Imagining Detectors (RICH) are a pair of Cherenkov
detectors used for particle identification, especially ⇡�K separation. The scheme of
these is shown in Figure 2.9. The principle of Cherenkov radiation is that particles
travelling through a medium faster than the local speed of light emit a cone of
light with incident angle governed by eq. 2.3 where n is the refraction index of the
medium, c is the speed of light and v is the speed of the particle

✓c =
c

nv
. (2.3)

The RICH 1 is located immediately downstream from the Vertex Locator.
It consists of two chambers filled with an aerogel and the C4F10 gas Cherenkov
scintilation mediaa and a set of mirrors that reflect the scintillation light to Hy-
brid Photon Detectors (HPD) which are outside the LHCb acceptance and do not
interfere with the detected particles. This design was motivated by tight material
budget inside the LHCb acceptance cone and heavy supports needed to suspend
the HPD arrays as well as heavy shielding from the nearby magnet. The lower an-
gular acceptance of RICH 1 is 25 mrad due to the beampipe, the higher acceptance
is 300(250) mrad in the horizontal (vertical) plane and the momentum acceptance
is 1� 60MeV .

The RICH 2 has a larger but similar design, filled with CF4 and is located
downstream from the magnet and the Inner Tracker. The angular acceptance of

aDesired properties are low speed of light in the medium (refractive index) to promote Cherenkov
radiation and high interaction length to not cause the passing particles to decay.
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RICH 2 is 15� 100 mrad in the horizontal and 15� 120 mrad in the vertical plane
and the momentum acceptance is ⇠ 15�100MeV . This is due to several limitations
such as material budget requiring HPDs outside the acceptance, secondary mirrors
to reduce z-length. The HPDs are also shielded from the nearby magnet [40].

Figure 2.9: Scheme of RICH 1 in a y-axis direction (Left) and RICH 2 in x-axis di-
rection (Right) [43].

The HPDs used in both detectors are vacuum photoelectron detectors using
silicon strips and 20 keV acceleration potential.

Together the RICH detectors provide particle identification when combined
with momentum information measured by the tracking. The system also uses a
neural network to provide a more comprehensive discriminator for particle iden-
tification. The kaon identification efficiency is ⇠ 95% with ⇡ mis-ID fraction of
⇠ 10% [43]. Figure 2.10 shows the dependence of Cherenkov angle on momentum
for different types of particles.
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Figure 2.10: A plot of Cherenkov angle depending on the particle momentum for
different long-lived particles. The plot shows Aerogel, CF4 and C4F10 gases as
mediums [43].

2.5 Magnet

The LHCb uses a warm magnet shown in Figure 2.11 which provides a mag-
netic field for momentum measurement using the tracking stations in the angular
acceptance of 250 mrad vertically and 300 mrad horizontally. The motivation for
a warm magnet were economic and construction reasons [40]. The magnet consists
of two coils aligned in the x-z plane and angled at 45� in the y-z plane producing
B field mostly in the y direction making the horizontal plane the bending plane
(see Figure 2.12). The coil has a nominal current of 5.85 kA and can be switched
so that the polarity of the magnet can be reversed (polarities are known as Mag-
Down By < 0 and MagUp By > 0). The nominal path-integrated magnetic field is
4 Tm [43].
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Figure 2.11: The LHCb magnet. Dimensions are in mm. [40]
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Figure 2.12: Magnetic field in T as a function of z-distance along the x = y = 0 axis
(x = y = z = 0 is the Interaction Point) for MagDown polarity [43].
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2.6 Tracking

The tracking in the LHCb experiment comprises of several sections: the
VELO, the Silicon Tracker (ST) and the Outer Tracker (OT). The Silicon Tracker con-
sists of the Tracker Turicensis (renamed after Trigger Tracker became a misnomer)
which is located upstream from the Magnet and the Inner Tracker which comprises
the inner part of the three tracking stations downstream from the Magnet. The lo-
cations of the individual tracking stations are shown in Figure 2.3.

2.6.1 Silicon Tracker

The Silicon Tracker has two main parts, Tracker Turicensis and the Inner
Tracker. They both utilise silicon micro-strip technology with strip pitch of 200 µm
to detect particle hits. The TT is upstream from the Magnet and covers the entire
LHCb acceptance with 150cm width and 130cm height. It consists of four planes of
silicon strips separated by 30 cm which are alternatingly skewed by a stereo angle
±5

� as shown in Figure 2.13. The individual strips have a thickness of 500 µm,
dimensions of 10⇥ 10 cm and carry 512 readout channels.

The IT is located in the centre of the three tracking stations downstream
from the magnet and has four sets of seven sensors arranged around the beam-
pipe in the region of high occupancy as seen in Figure 2.14. Each sensor carries 384
readout channels. Adjacent ST strips within the same detection plane are staggered
in the z and x planes to help eliminate acceptance gaps.

2.6.2 Outer Tracker

The Outer tracker is located in the three tracking stations T1-T3 downstream
from the Magnet, around the Inner Tracker. With the IT, the OT completes the track-
ing stations as shown in Figure 2.15. It consists of drift-time detectors in the form
of straw tubes filled with a mixture of Argon (70%) and CO2 (30%) to guarantee a
fast drift time td < 50 ns and a good drift coordinate resolution of 200 µm. Each
tracking stations consists of four layers of the OT arranged with a skew of ±5

� in
the third and fourth layer. The arrangement of straw tubes in a layer is shown in
Figure 2.16. The signal is read out from the ends of the tubes.
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Figure 2.13: The Tracker Turicensis plane with a 5

� skew. The three different colours
(red, orange, yellow) indicate three sectors the TT is divided into (M,L,K) from the
inside out [43].

2.6.3 LHCb Tracking

Track reconstruction starts with hits in the VELO which are used to build so
called “VELO-seeds”, track candidates. Additionally there are seeds from tracking
stations, T-seeds. This is because the magnetic field is weak in these segments so
tracks reconstruct as straight lines. VELO seeds or T-seeds can be promoted to a
long track if the position and gradient of a VELO seed and a T-seed match. Alter-
natively an algorithm picks a VELO seed and an associated hit in a tracking station
based on a rough extrapolation of the trajectory. The algorithm will search for more
hits in the tracking stations and after a sufficient number has been found, the track
is promoted to a long track. If a T-seed has hits in TT but cannot be extrapolated
into a long track, it remains a Downstream track. Similarly if a VELO seed cannot
be associated with hits in tracking stations past TT, the track remains an Upstream
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Figure 2.14: The Inner Tracker consisting of four sets of seven sensors arranged
around the beam-pipe. Located in the centre of the three tracking stations T1-T3
[43].

track. Clone tracks are killed by comparing similar hits and then tracks are fitted
using a Kalman filter that accesses the detector description to account for multiple
scattering and energy loss due to material interaction. The �2 of the tracks is used
to monitor the quality of the event reconstruction. The schema of the different track
types can be seen in Figure 2.17.

2.6.4 Tracking performance

The best way to monitor the performance of the track reconstruction is by
the efficiency of track finding and by the momentum resolution. Efficiency can be
determined by a tag-and-probe technique with two-body decays such as J/ ! µµ

where one daughter is well-reconstructed (tag) while the other is partially recon-
structed (probe) and the efficiency expresses the probability of matching the probe
to the tag. The 2011 average datataking efficiency was ⇠ 96% which is in line with
the design specifications [39].

The momentum resolution is important for determining the mass of mother
particles as well as for correct particle identification. The average long track mo-
mentum resolution for 20GeV tracks is ⇠ 0.5% while for a 150GeV track the reso-
lution is ⇠ 1% [43].
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Figure 2.15: Arrangement of Inner Tracker and Outer Tracker in the Tracking Sta-
tions T1-T3 [43].

Figure 2.16: The Outer Tracker layer consisting of an arrangement of straw tubes.
Measurements are in cm [40]
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Figure 2.17: Different types of tracks observed in LHCb [43].
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2.7 Calorimeters

The main purposes of the calorimeters are to differentiate between electrons,
photons and hadrons, to provide a measurement of their energies (although, except
for photons, the momentum resolution is generally better than the energy resolu-
tion), to help reconstruct neutral particles such as � and ⇡0 as well as to provide fast
triggering information, especially for electron triggers [40]. The Calorimeter covers
the entire LHCb acceptance and consists of Scintillator Pad Detector (SPD), Pre-
Shower Detector (PS), the Electromagnetic Calorimeter (ECAL) and the Hadronic
Calorimeter (HCAL) and which can be seen in Figure 2.3.

The most immediate task of the Calorimeter is to identify electrons at the L0
trigger speed to veto 99% of the inelastic pp collisions and enrich the data with b

events by a factor of 15. For this, the Calorimeter triggers on electrons and hadrons
with high transverse energy ET

b. All components of the Calorimeter have vari-
able cell granularities to account for higher occupancies near the beamline as seen
in Figure 2.18. The ECAL is segmented into three regions with PS and SPD being
segmented projectively, i.e. the size of the calorimeter elements scales with the dis-
tance from the interaction point. The HCAL has only two regions with much larger
granularity compared to the ECAL because of the large size and energy of hadronic
showers.

Figure 2.18: Calorimeter schemes indicating the sections with different granulari-
ties for ECAL and PS/SPD (Left) and for the HCAL (Right). One quadrant of the
Calorimeter is shown, the rest are symmetric. The black region is the beampipe
region not in the Calorimeter acceptance [43].

All Calorimeter sections use photo multiplier tubes (PMT) which collect
scintillation photons from the showering particles using wavelength shifting fi-

bTransverse energy is defined as ET =
p

E

2
x + E

2
y . Due to the rough symmetry of the detector

geometry and of the event production, we use transverse momentum pT and transverse energy ET

rather than the x and y components.
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bres. The PMT signal is then used in the trigger and for further online and offline
analysis.

2.7.1 Scintillator Pad Detector and Pre-Shower Detector

The chief purpose of the SPD and the PS Detector is to separate photons
from neutral hadrons such as ⇡0. The SPD and the PS are almost identical, 15mm

thick, high-granularity scintillator pads with a 15 mm thick lead (Pb) converter
placed in between. They are also segmented in the same way as outlined earlier
with SPD being projectively smaller than the PS which is smaller than the ECAL
etc. The SPD registers hits from charged particles, which identifies projected en-
ergy deposits that did not originate from neutral particles (electron-pion separa-
tion) and also can be used as a veto due to high occupancy. The PS allows for
separation of electromagnetic showers in the z-direction and helps discriminate
between charged and neutral pions based on the combined shape of the shower in
PS and ECAL. The electron identification efficiency is ⇠ 95% while the ⇡0 mis-ID
rate is < 5% from the Calorimeter alone. This can be refined with inclusion of RICH
information [43].

2.7.2 Electromagnetic Calorimeter

The ECAL is segmented into three sections due to varying occupancies de-
pending on distance from the beamline. The calorimeter is composed of scintillator
pads separated by layers of lead both to promote showering and act as an energy
absorber. The lead layer is 2 mm thick with the scintillator pads made of 4 mm

thick polystyrene. Each module contains 66 scintillator pads. The inner acceptance
of the ECAL is 25 mrad, limited by the high radiation region around the beampipe.
The relative energy resolution of the ECAL is (8 � 10/

p
E ± 0.9)% where E is in

GeV [43].

2.7.3 Hadron Calorimeter

The HCAL is similar to the ECAL in composition with modules made of
polystyrene scintillator and iron (Fe) for absorber in an alternating fashion. The
orientation of the scintillators is parallel to the particle flow as shown on 2.19. Each
module is composed of iron plates 10 mm thick with 3 mm thick scintillator pads
slotted in. The length of the HCAL module corresponds to 5.6 hadronic interaction
lengths in steel and the robustness of the construction corresponds to the size of
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the hadronic showers it has to contain. The relative energy resolution of the HCAL
is (69/

p
E ± 9)% with E in GeV [43].

Figure 2.19: The implementation of a HCAL module shows the unusual orienta-
tion with respect to the particle flow. The absorber is iron and the scintillator is
polystyrene [43].

2.8 Muon Chambers

The Muon Chambers (see Figure 2.20 are of great importance to a heavy
flavour experiment because muons are present in many flavour hadron decays of
interest. The presence of muons in a decay generally correlates with a much re-
duced background compared to hadronic decays making the events experimen-
tally cleaner. A high-pT muon trigger helps eliminate QCD background from the
primary interaction and enriches the data with b and c events - that is to say events
with b and c quarks have an increased probability of producing energetic muons
than events with only light flavours. This means the muon chamber is used for
triggering as well as offline analysis [43].

The Muon system at LHCb consists of five chambers M1-M5 where M1 is
located upstream of the Calorimeter and the M2-M5 are downstream at the end of
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the detector as shown in Figure 2.3. This separation results in an improved trans-
verse momentum resolution important for the muon trigger. The angular accep-
tance of the muon Chambers is 16 � 258 mrad in the vertical and 20 � 306 mrad

in the horizontal plane. The muon stations are separated by 80 cm thick iron ab-
sorber sections to select highly penetrating muons and to get a measurement of the
penetrating energy. Muons of momentum ⇠ 5 GeV/c will be able to reach the 5th
muon station. The muon stations increase in size projectively to keep the angular
acceptance. The M1-M3 stations have good x-resolution thanks to a high granular-
ity of sensors to get a good measurement of the particle momentum, especially in
the bending plane. They are divided into four regions according to radial distance
from the beamline to account for varying occupancy. The M4-M5 stations are used
mainly to help select highly penetrating muons. The muon stations use Multi-Wire
Proportional Chambers (MWPC) except for central regions of M1 which uses triple
Gas Electron Multiplier (GEM) due to the high occupancy and serious radiation
damage in the region.

High efficiency for muon identification and low muon mis-ID ratec is es-
sential for rare decays with muons (such as Bs ! µ+µ�). The muon identification
extrapolates good tracks from the tracking system towards the muon stations. The
track is identified as a muon if sufficient hits are found in a region around the
extrapolated track. This region is parametrized using the track momentum and
is different for the four regions of the muon chambers to optimize the efficiency
and reduce the mistag rate. The efficiency of the muon system is studied using the
J/ ! µ+µ� decay while the mistag rate is determined using ⇤ ! p⇡� decays
and two-body D0 decays. The muon tag efficiency depends weakly on the momen-
tum and transverse momentum and is > 95% for particles of pT > 1.0 GeV and
p ⇠ 10GeV [43].

There are two reasons for hadron to muon mis-ID. A hadron track could
be coincidental with muon hits in the muon chambers or the hadron can actually
decay in flight into a muon which will most likely lead to the association of the
muon hits with the hadron track. The mis-ID of protons is solely due to the first
reason and is well below 1% for tracks of sufficient pT and p. The kaon/pion misID
occurs for both reasons and the mis-ID rate is < 1% for particles of ⇠ 20GeV . The
muon identification efficiency and the hadron mis-ID depends on the momentum
and transverse momentum and in fact drops with increasing p and pT because the

cMis-ID or mistag rate is the probability that a wrong particle is incorrectly identified/tagged
(false positive rate). Compare with ID/tagging efficiency which is the probability that the corrent
particle is tagged/identified correctly.
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region of interest for matching muon hits to an extrapolated track narrows with
increasing p and pT .

Figure 2.20: Side view of the Muon Chambers. [40]

2.9 LHCb Trigger

The design luminosity of 2⇥ 10

32cm�2s�1 (about a factor 40 less compared
to ATLAS or CMS) results in about 10MHz rate of events with at least two charged
tracks with enough hits in the VELO and Tracking to be reconstructed into long
tracks [43]. The purpose of the trigger is to reduce this rate to ⇠ 3 kHz which is
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written to tape for offline analysis while enriching the selected data with events
of high interest (see Figure 2.21). Within this, 300 Hz has been allocated to charm
physics and the charm production at LHCb is factor ⇠ 10 larger than b productiond.
The trigger is separated into a custom-electronics hardware L0 trigger operating
synchronously with collisions and a software High Level Trigger run on a processor
farm. The original design also included a hardware L1 trigger which has since been
absorbed into the other two.

Functionally there are three eventualities with a signal chain present (i.e. not
pure combinatoric background) that can result in a trigger accepting the event:

• Trigger On Signal (TOS)

• Trigger Independent of Signal (TIS)

• Trigger On Both (TOB)

The TOS is the case where the signal chain in the event has been recognized
by the trigger which fired.

In the TIS case, the signal chain is present but something else in the event
caused the trigger to fire. This should result in data that is unbiased by trigger
decisions provided that the cause of the trigger firing is independent of the signal
chain.

The TOB case results from both the signal chain and some other part of
the event causing the trigger to fire. The TOB events are notoriously difficult to
analyse due to correlations and provided the number of TOB events is small, they
are usually removed from the dataset and neglected.

2.9.1 L0

The L0 is an extremely fast trigger implemented on custom-built hardware
aimed at fast rejection of uninteresting events. It reduces the rate of the events from
the collision rate to less than 1.1MHze. The L0 is composed of the L0 Calorimeter
trigger, the L0 Muon trigger and L0 Pileup. The Calorimeter and Muon L0 trig-
gers select events with large transverse momentum and energy, which are com-
mon characteristics in many heavy flavour topologies. Specifically the Calorimeter

dThis means that the charm trigger must be highly selective, and the offline selection for charm
analyses is generally only marginally tighter than what is used in the trigger [46].

eThis is the rate at which the full detector can be read out [43].
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Figure 2.21: Diagram showing the trigger implementation at LHCb. Adapted from
[43]

trigger combines information from all sections of the Calorimeter, the transverse
energy (ET ) sum in HCAL is used to veto events with no visible interactions and
the SPD count is used to determine track multiplicity. The Muon trigger selects one
or two muon tracks with highest pT in each quadrant. The Pileup estimates the
overall number of pp interactions (the number of Primary Vertices) in the event.
The L0 Decision Unit (L0DU) collates this information and combines it into a sin-
gle L0 Decision. The time between the collision and an L0 Decision being accepted
in the Front End (FE) electronics is 4 µs including time of flight of particles, cable
delay, and delays in FE electronics [43].

2.9.2 High Level Trigger

The High Level Trigger (HLT) is a C++ built application running on a filter
farm of several thousand CPU nodes. Divided into two parts the HLT1 and HLT2 it
reduces the event rate from 1.1MHz to 3kHz. It is completely software based, with
configuration facilitated by the use of Trigger Configuration Keys (TCK) which al-
lows for modularity and for complete rerunning of the HLT offline. This is also
used in a deferred trigger (implemented in 2012) which writes a portion of the
events which are not immediately processed by the HLT to disk. These events are
processed by the HLT during time between individual fills. The HLT is split into
HLT1 which is used to confirm L0 decisions and partially reconstruct tracks and
HLT2 which contains more complicated topological trigger conditions and dedi-
cated settings for for individual analyses.
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HLT1

The main feature of HLT1 is partial event reconstruction with full VELO
track reconstruction. The VELO tracks are used to find vertices with at least 5 tracks
originating from them and such vertices within 300mm around the bunch crossing
point are considered primary vertices. Cuts are applied on the quality of VELO
tracks and signal-like VELO tracks are associated with track hits. HLT1 also has
a Muon trigger where VELO tracks are extrapolated to M3 and hits are searched
for in a window of interest around the extrapolation. The track is then flagged
as a muon if there is at least one extra hit in M2, M4 and M5. The track is then
reconstructed using the VELO seed, the Tracking and potential Muon hits and the
momentum and the Impact Parameter (IP) are determined. The HLT1 lines used in
this analysis are discussed in section 3.3.

HLT2

With the output of HLT1 low enough to allow for offline track reconstruc-
tion, the HTL2 uses a loose selection on momentum and on the IP of a track before
categorising tracks as individual particles and using them to create common reso-
nances (for example K0

S ! ⇡+⇡�). These are used for the reconstruction of decays
and an invariant mass cut is generally applied. The HLT2 lines used for this analy-
sis are discussed in section 3.3.

2.10 Reconstruction Software

LHCb uses several software packages to process data. The simulated (MCf)
and real data are treated, as far as possible, identically. This generally involves a
sequential processing of events where MC is produced using simulation packages
and then digitised into detector hits. From there the same packages are used for
reconstruction, triggering and offline analysis of both real data and digitised MC.

2.10.1 Simulation

LHCb uses the PYTHIA [47] [48] physics generator to simulate initial
pp collisions with appropriate settings. The MC produced for 2011 analyses

fMC stands for Monte Carlo, it is a simulation method named after the famous Monte Carlo
Casino because the method uses repeated random sampling and resembles gambling and recording
results in a real casino.
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used PYTHIA 6.0 written using FORTRAN but LHCb is now moving towards
PYTHIA 8.0 which is implemented in C++. The heavy flavour products of colli-
sions generated by PYTHIA are decayed using the EVTGEN package [49] which
is described in appendix C. This is all facilitated by the LHCb package GAUSS [50]
[51]. The creation of detector hits and material interactions including multiple scat-
tering is performed using GEANT4 [52]. A good description of the detector includ-
ing geometry and material is essential for a good match between MC and real data.
In fact in the MC sample used in this analysis there is still a ⇠ 10% IP resolution
discrepancy between LHCb MC and data which is thought to originate partly from
an imperfect detector geometry description such as the VELO RF foil shape [53].
The digitised hits are processed using the LHCb package BOOLE [54] that simulates
the detector response to the generated detector interactions, including the readout
electronics and the L0 trigger. At this point the Raw Data output is of the same
format as real data and can be processed by the same methods.

2.10.2 High Level Trigger

The HLT is facilitated using the MOORE [55] package. It is implemented
fully using software which provides several advantages over a hybrid or hardware
implementation. The modular configuration using Trigger Configuration Keys
(TCK) allows for changing the trigger settings fairly easily, the trigger can be re-
run on real data or MC offline allowing for lifetime bias corrections (see appendix
B).

2.10.3 Reconstruction

The Raw Data is reconstructed using the BRUNEL [56] package to deter-
mine or fit for physical quantities such as vertices, momenta, particle identification
probabilities, energies etc. The output of Brunel is a Data Summary Table (DST)
containing all information about the event in the form of particles, tracks, vertices,
etc. and is used for offline analysis.

2.10.4 Stripping and Offline Selection - DaVinci

The offline analysis in LHCb uses the DAVINCI [57] package to preselect
signal candidates from full data using a series of pre-configured selections called
stripping with loose cuts to reduce the dataset to a manageable level. Each individ-
ual analysis will generally have their own stripping selection for the production
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of their dataset and the stripping is performed centrally using the LHC Grid re-
sources. The individual analyses will then use DaVinci to produce ROOT tuples
and custom written tools to perform the analysis.
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Chapter 3

Data Selection

3.1 Dataset Description

This analysis uses the 2011 LHCb dataset which has an integrated luminos-
ity of 1fb�1. The D0 candidates are reconstructed from D?± decays where the D?±

originates from the primary vertex of the event. The good resolution of the primary
vertex and the D0 decay vertex provided by the VELO enables the LHCb to achieve
a very good decay time resolution. This is one of the requirements for any probe
into the charm mixing phenomenona. The D?± mother is required to decay into

D?+ ! D0⇡+s

D?� ! ¯D0⇡�s
(3.1)

where the subscript s on the pion stands for “soft” due to the restricted phase-space
of the decay limiting its momentum. The charge of the soft pion acts as a tag for the
flavour of the produced D0 meson.b The D0 meson is then required to decay into

D0 ! KS⇡
+⇡� (3.2)

which is a self-conjugate three-body decay. This places extra importance on the
tag of the D0 as both meson and anti-meson decay into the same final state. On

aGiven that charm mixing is expected to be O(1%) this would mean a deviation from the mean D

0

decay time by O(10�15) s. Leveraging clever techniques enables the extraction of mixing with much
poorer resolution than would be otherwise required for a direct measurement but the magnitude
illustrates why fine decay time resolution is necessary.

bThis is the common D

0 tag used in charm measurements, the nominal mistag rate in current
experiments is ⇠ 0.1% [6], also see section 7.5.
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the other hand, this simplifies the selection process as one treats both D0 and ¯D0

datasets simultaneously. The strange meson decays into two pions: KS ! ⇡+⇡�.

The D?± production cross-section at LHCb is 677 ± 74 µb [58] with the
branching fraction of D?± ! D0⇡± being (67 ± 0.5)% [6] and the branching frac-
tion for D0 ! KS⇡+⇡� being (2.83 ± 0.20)%. This nominally yields ⇠ 1.28 ⇥ 10

10

D0 decays of interest produced in the 2011 run of the LHCb. The data is however
selected in several stages to remove background. These include trigger which is run
online during the detector operation before the data is saved to tape (see 2.9) and
stripping which is run centrally on all LHCb data and which creates actual candi-
dates from daughter tracks (see 2.10.4). The offline selection is undertaken using
custom written C++ application with the use of ROOT libraries.

3.2 Monte Carlo description

The Monte Carlo simulation (MC) is produced centrally at LHCb to ensure
the transparency and repeatability of data analyses. The MC is produced with con-
ditions as close to real data as possible, see section 2.10.

Several different samples generatd using diferent modelsc are used at dif-
ferent points of the analysis. These are listed in table 3.1. All of the samples used
were generated purely as signal, that is, every event generated contained the signal
decay chain. However, as the sample is digitised and reconstructed, due to the re-
construction efficiency, some of the events were not reconstructed and because the
trigger may misfire on combintoric events, some ghost events are thusly created

cA brief note on the models used:
The flat phase-space model is very useful in determining how phase-space is disturbed by various
operations on the dataset, such as selection, but does not actually contain the phase-space informa-
tion of the decay and thus cannot be used for more advanced purposes such as fit validation. For
resonant MC, we used the BaBar 2010 model which is the newest model to date. The advantage of
such MC is that it can be used to validate the fitter as it most closely approximates the phase-space
of real data. In terms of production and amount of information simulated, we use simple toy, full toy
and full simulation. Simple toy contains only yields generated in each bin separately using a given
PDF. This is quick to do and can be generated by the fitter directly but potentially loses some infor-
mation due to the binning of the PDF before the generation. The full toy generates full phase-space
information along with the correct decay time according to the full amplitude model. This is much
more precise than simple toy but much harder to perform and generally not done on the spot but
produced centrally for the entire analysis. The full simulation is the most difficult to perform and is
done centrally for the LHCb by the MC group. It contains the simulation of the whole detector. In
terms of filtering, the techniques used were generation-level filtering which is easy to perform and
requires very little added processing power but care must be taken such that the filtering does not
remove events that would have been potentially accepted. Reconstruction-level filtering or “final”-
filtering only saves those events which are signal and therefore achieves perfect density of events but
the disadvantage is large amounts of additional processing power required.
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and included in the final sample. No detector noise and random triggers are added
arteficially to the sample.

Sample number of events post selection

1. Flat phase-space, gen-filtered 5M 5.8k
2. Resonant, mix., gen-filtered 10M 11.6k
3. Resonant, mix., final-filtered 200k 25k
4. Resonant, mix., simple-toy 80M 80M
5. Resonant, mix., full-toy 100M 100M

Table 3.1: List of Monte Carlo samples used in the analysis. “Gen-filtered” repre-
sents generation level filtering while “final-filtered” represents filtering done after
full simulation of the event.

The Sample 1 is generated using a flat phase-space decay model for D0 and
has generator cuts applied (see appendix D) to boost statistics of the sample post
selection. This sample was used to determine the effect of the selection process on
the phase-space of the decay (see section 6.5).

The Sample 2 was generated using BaBar 2010 D0 decay model [59] with
mixing parameters set at xD = yD = 1%. This sample was used to validate the
fitters for the different methods. After selection was applied, it was determined
that the retention rate was not high enough and more statistics were required.

The Sample 3 was produced with the same method as Sample 2 but addi-
tionally using filtering at the final stage of the selection guaranteeing that all the
events in the sample pass the selection process. Due to some mis-implementation
of the trigger, the sample retains only ⇠ 12.5% events after truth-matching is ap-
plied. This is due to ⇠ 50% contamination with downstream KS candidates (see
below) and due to a factor of ⇠ 4 reduction by trigger efficiency.

The Sample 4 is a toy sample generated in 16 CLEO bins (CLEO binning is
a way of binning the phase-space to integrate out the strong phase, see sec. 6.2.1).
The sample is a distribution of the D0 decay time t selected independently in each
CLEO bin i from the PDF described by eq 6.9. The central values of the yields in
CLEO bins are chosen by forcing the yield divided by the time-integral of the eq.
6.9 to be constant across CLEO bins. The total yield is also representative of the
dataset yield as extracted in chapter 4. This sample is used to validate the fitter as
described in section 6.4.

The Sample 5 is a toy sample generated using the 2008 BaBar model [60]
with full phase-space treatment. The events in the sample contain the D0 position
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in the phase-space and the D0 decay time. It’s also used to validate the fitter as
described in section 6.4.

3.3 Trigger Configuration

The trigger configuration for this analysis consists of a set of trigger require-
ments designed specifically to select KS⇡+⇡� combinations. For HLT1 (see section
2.9.2) the D0 candidate is required to have resulted in a TOS decision for the single
track trigger line Hlt1TrackAllL0, the requirements of which are described in
table 3.2. This selection is run on all events in LHCb that trigger L0 to validate the
presence of a displaced hadron track [46].

Property Cut

Track IP > 0.1 mm
Number VELO hits per track > 9
Number missed VELO hits per track < 3
Number OT+ITx2 hits per track > 16
Track IP�2 > 16
Track pT > 1.7 GeV
Track p > 10 GeV
Track �2/DoF < 2.5

Table 3.2: List of conditions for the Hlt1TrackAllL0 trigger line. This line is run
on all L0 events to validate the L0 decision [46].

For HLT2, the D0 candidate has have resulted in a TOS decision for the line
Hlt2CharmHadD02HHKs which is described in table 3.3 and is specific for this
analysis.

The KS reconstruction can use candidates that decayed in the VELO (see
section 2.3) which are called “LongLong” or “LL” (they result in two “long” tracks,
see section 2.6) or it can use candidates that decay downstream from the VELO in
which case they are called “DownDown” or “DD” (they leave two “down” tracks).
The LL KS candidates have better track resolution compared to the DD candidates
owing to the VELO hits. Due to a misconfiguration of the trigger no DD candidates
were saved in the 2011 run reducing the potential dataset.

The trigger configuration was fixed throughout the duration of the 2011 run
but the changes to the trigger software require multiple processing runs when eval-
uating trigger efficiencies or when performing swimming d. Various improvements

dThe swimming technique requires that all selection criteria that are potentially decay time bias-
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Property Cut

D0 daughter ⇡ pT > 1000.0 MeV
D0 daughter ⇡ p > 1500.0 MeV
D0 daughter ⇡ track �2/DoF < 5.0
D0 decay vertex �2/DoF < 10.0
D0 decay vertex displacement w.r.t PV > 2.0 mm

KS daughter ⇡ p > 2000.0 MeV
KS daughter ⇡ �2

IP w.r.t PV > 9.0
KS daughter ⇡ track �2/DoF < 20.0

KS mass window (w.r.t PDG value) ± 50.0 MeV (before vertexing)
± 11.4 MeV (after vertexing)

KS vertex displacement w.r.t PV < 650.0 mm
KS vertex displacement �2 w.r.t PV > 100.0
KS DIRA > 0.9999

D0 decay vertex �2/DoF < 20.0
D0 pT > 2000.0 MeV
D0 mass window (w.r.t PDG value) ± 100.0 MeV
D0 DIRA > 0.0

Number of tracks in an event < 120

Table 3.3: List of conditions for the Hlt2CharmHadD02HHKs trigger line that result
in a TOS decision. This list only applies to LL KS reconstruction.

to the High Level Trigger (see 2.9.2) in 2012, especially a specialised topological
trigger and inclusion of KS downstream tracks led to a significant increase in avail-
able yield from the 2012 data taking compared to the 2011 run. This analysis uses
only the 2011 dataset (see chapter 4).

3.4 Stripping Selection

This analysis uses a single stripping line which is included in the stripping
software run centrally on all LHCb data. All events from the charm trigger stream
are required to pass the StrippingDstarD2KShh line described in table 3.4.

ing are rerun multiple times by the swimming algorithm which examines the resulting acceptance
function. Due to the early development stages of the swimming framework, only rectangular cuts
could be swum. With more development, in further analyses, using a multivariate selection while
retaining swimming should be possible.

Given that the swimming technique requires rerunning of the trigger, should the trigger change,
the swimming algorithm must be run separately on the old trigger and the new trigger, in other
words the dataset needs to be partitioned and swimming rerun on all sections separately. This be-
comes tedious when the trigger undergoes numerous changes throughout the data taking. For a brief
outline of the swimming technique see appendix B
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Property Cut

D0 daughter ⇡ p > 1500 MeV
D0 daughter ⇡ track �2/DoF < 4.0
D0 daughter ⇡ (DLLe - DLL⇡) < 10.0
D0 daughter ⇡ (DLLp - DLL⇡) < 15.0
D0 daughter ⇡ (DLLK - DLL⇡) < -1.0

KS DIRA > 0.9997
KS mass window (w.r.t PDG) ± 11.4 MeV
KS vertex displacement �2 w.r.t PV > 100.0

D0 decay time > 0.3 ps
D0 vertex �2/DoF < 13.0
D0 DIRA > 0.0
D0 pT > 1500 MeV

D0 mass window (w.r.t PDG) ± 130.0 MeV (before vertexing)
± 110.0 MeV (after vertexing)

D?+ pT > 2200 MeV
D?+ vertex �2/DoF < 20.0

⇡+soft (DLLe - DLL⇡) < 5.0

�m window > 0.0 MeV
< 15.0 MeV

Number of tracks in an event < 150

Table 3.4: Requirements for the StrippingDstarD2KShh line used in this analy-
sis.

The stripping software reconstructs shortlived particles from longlived
tracks in the same way as the trigger software. After the line reconstructs the can-
didates and filters them using a series of cuts it writes them to a dedicated output
stream. Since the dataset only contains KS LL candidates, the stripping too only re-
constructs D0 using KS LL daughters. The number of events that pass the stripping
selection in the 2011 dataset is ⇠ 4.80⇥ 10

5. This indicates a combined efficiency of
reconstruction, trigger and stripping of 3.75⇥ 10

�5.

Should an event contain multiple candidates, one of them is chosen at ran-
dom (the first one in the event record). This is motivated by the implementation
of swimming which was unable to select a different candidate apart from the first
one in the event record. Future improvements to the swimming framework should
allow for a minor improvement in the data quality by enabling a better choice of
best candidate.
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3.5 Offline Selection

The offline selection is performed using a custom C++ application written
with the use of ROOT libraries. Due to the requirements of swimming (see section
B) and the fact that the data purity is reasonably high before introducing a selection
(see fig. 3.8) rectangular cuts were chosen as the method of background reduction.
The cuts used are shown in table 3.5.

The signal mass windows are shown in table 3.6. The central values for the
mass windows are slightly shifted from their PDG values, however the mD win-
dow is wide enough for this to cause no effect in the final measurement, while for
the �m window it is in fact desirable to have an asymmetric window given the
asymmetric distribution. The central values of the window cuts are not treated as
constraints on the parameters for the PDF models of the�m and mD distributions.

The selection was optimised using a signal window signal purity criterion,
investigating each cut independenently using the sPlot technique e to determine
the distributions of each variable of interest for peaking and non-peaking compo-
nents of the mass spectrum. The cut values were optimised manually using these
distributions to minimize background and maximize retained signal.

Property Cut

D0 Ln(�2
IP ) (w.r.t to PV)f < 3.2

D0 decay time < 10.0 ps
D0 flight distance (w.r.t PV) > 2.0 mm
KS flight distance (w.r.t D0 end vertex) > 10.0 mm
⇡s PID (DLLe - DLL⇡) < 2.0
⇡s ghost probability < 0.7
DecayTreeFitter DoF > 0

Table 3.5: List of rectangular cuts used in the offline selection. This does not include
mass windows which are listed in table 3.6

.

eThe sPlot technique is a statistical method of predicting the distribution of property x for sub-
classes A and B of some sample if one has access to the distribution of some control variable y for
the subclasses and the distribution of x for the entire sample. The mechanism works if x and y are
independent and usually the mass of the D

0 meson and the difference in masses between the D

?±

mother and the D

0 daughter are good control variables [61]
eNote that the D

0 log(�2
IP ) cut is applied in the final selection (see chapter 5) only in the method

described in this thesis and not in the additional methods in this anlysis.
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Property Window Cut

D0 mass (w.r.t to 1865.9MeV ) < 21.9 MeV
�m (w.r.t to to 145.75MeV ) < 1.75 MeV

Table 3.6: Signal window cuts on mD and �m used in the offline selection. The
central values for the window cuts are indicated.

3.6 Kinematic Constraints

There are two kinematic constraints that are useful to improve the resolu-
tion of key variables used in the analysis. First, it’s useful to constrain the mass of
the D0 mother to the world average value and use Dalitz coordinates under this
constraint. Secondly, one can constrain the ⇡s to originate from the primary ver-
texg. The LHCb software package DecayTreeFitter [62] (DTF)h can be used to
refit the signal decay tree in the event given constraints and extract key variables
under these constraints. This refitting is not perfect and, especially in the case of
secondary D0 candidates or in the case of combinatorial background, the refit can
fail. These events have to be accounted for and removed from the dataset, but they
are primarily composed of non-signal events (see section 3.7 and section 5.4).

3.6.1 Constraining ⇡s to Primary Vertex

If one constrains the ⇡s to come from the primary vertex, one is also con-
straining the D?± origin vertex to PV by the virtue of particle reconstruction. This
has the effect of improving the resolution of the �m spectrum considerably (see
fig. 3.1) since the resolution of the PV is significantly better than the resolution of
the D?± vertex if one only uses the kinematic information of D0 and ⇡s particles.

gOn the determination of the primary vertex:
First seeds are formed by clustering tracks and merging clusters that are significantly close together.
Seeds with low track multiplicity are vetoed. For each seed, the position of the PV is determined
by minimizing the sum of impact parameter significances of all the associated tracks. This is done
iteratively while discarding tracks with IP that is too large until all the tracks point to the PV position.
Vertices with low resulting track multiplicity are discarded.

hThis method was originally developed on BaBar. The canonical way of reconstructing a decay
chain is from bottom up, where one fits decay vertices of the grand-daughters first, before fitting
daughters and finally the mother. This has issues with propagating constraints and fitting informa-
tion from top down, such as constraining the mass of the mother. Some particle decays cannot be
reconstructed in the normal way at all since they depend on mother constraints too much such as
KS ! ⇡

0
⇡

0. The DTF was developed as a complementary way of fitting the decay chain, where it
parametrises the chain in terms of decay lengths, vertex positions and momentum parameters and
fits the whole parameter space at once, while taking constraints into account. To perform the fit more
efficiently, a Kalman filter is used.
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Figure 3.1: The distribution of �m before (red) and after (blue) constraining the
⇡s to the PV. The DecayTreeFitter refit is forced to converge by requiring
�2
DTF /DoF < 10. An effect of earlier�m window cut can be seen on the red plot at
�m ⇠ 0.155 MeV/c2. The data used is the full 2011 dataset.

3.6.2 Constraining D0 mass

Constraining the D0 mass to the PDG value is useful for constraining the
Dalitz plot coordinates to lie within the kinematic boundary of the Dalitz plot. The
resolution of the D0 mass spectrum of the dataset causes the boundary of the Dalitz
plot to be “fuzzy” (see fig. 3.2) which can cause problems for an amplitude fit with
events in a kinematically forbidden region. At the same time the allowed region
close to the boundary is artificially depleted which requires further corrections.
Applying the DTF results in a sharp kinematic boundary (see fig. 3.3).
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Figure 3.2: The distribution of candidates without mD constraint in the phase-space
forms a Dalitz plot with a “fuzzy” boundary. The data used is the full 2011 dataset.
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Figure 3.3: The distribution of candidates after DecayTreeFitter refitting with
a mD constraint and forcing the refit to converge by requiring �2

DTF /DoF < 10.
The phase-space forms a Dalitz plot with a clear, sharp boundary (any remaining
“fuzziness” is due to rectangular binning. The data used is the full 2011 dataset.
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3.7 DecayTreeFitter fit quality

The DecayTreeFitter does not converge perfectly for all events that pass
the selection. The number of events where the fit fails can be seen in table 3.7. One
can define quality-of-fit variables such as �2

mD
which is the �2 of the decay tree

refit under the mD constraint and similarly for the �m constraint and divide them
by their respective numbers of degrees of freedom for normalization. The resulting
variables can be used to determine how well the DecayTreeFitter converged.
The distribution of �2

mD
/DoFmD compared to the distribution of �2

�m
/DoF�m can

be seen in fig. 3.4.

DTF constraint fit failure Number of Events

D0 mass 508
⇡s to PV 499
D0 mass and ⇡s to PV 62

Good convergence 189732

Table 3.7: Number of events that pass the offline selection, are in signal windows,
and fail the DecayTreeFitter refit. The criterion for convergence is �2/DoF <
10.

Given that the majority of the events that fail the DecayTreeFitter are
secondary and background events (see section 5.4) they can be cut from the dataset
without the loss of signal.
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Figure 3.4: Fit quality scatter-plot for DecayTreeFitter refits with different con-
straints. The x-axis is the mD constraint refit quality and the y-axis is the ⇡s refit
quality. The good fit requirement is a square window �2

DTF /DoF < 10 for both
mD and�m. The data is the full 2011 dataset. There is a strong correlation between
the two quality constraints.

3.8 Selection Efficiency

Using the method for extracting yields described in chapter 4 one can de-
termine the efficiency of the offline selection by performing the extraction before
and after the selection is applied. This determines not only the retention rate of
the selection but also the purity and the purity increase due to selection. For the
purposes of this analysis, a simple mD fit was used to determine the peaking and
non-peaking composition of the dataset for selection optimisation.

The number of events retained before and after applying the offline selec-
tion with their respective retention rates can be seen in table 3.8. The simple fits to
the datasets before and after the offline selection is applied can be seen in fig 3.5.
These fits are performed on the full 2011 LHCb dataset with no�m signal window
applied.

The discrepancy between the output of stripping and input to selection is
due to a small preselection on mD and �m that is much wider than the signal
window but is used to define the domain of the yield fits.
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Event Category No selection Sel. w/ signal window Retention rate

Peaking 278022 198579 0.714
Non-peaking 40303 7366 0.123

Purity 87.3% 96.4% -

Table 3.8: Number of events in different categories retained at different stages of
the offline selection. Data is the full 2011 LHCb dataset with constraints discussed
in section 3.6.

62



 / [GeV]0D
1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96

Ev
en

ts

0

5000

10000

15000

20000

25000

30000

 mass distribution0D

(a) Before selection

 / [GeV]0D
1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96

Ev
en

ts

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

 mass distribution0D

(b) After selection

Figure 3.5: Simple fits to mD spectrum for selection optimisation, before applying
the offline selection (a) and after applying the selection (b). The data is the full 2011
LHCb dataset. The yields and purities in the signal window are shown in table 3.8.
Note the dataset has no�m window applied.
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Chapter 4

Yield Extraction

After applying the selection, the dataset is composed of several different
categories with prompt and secondary subcategories where indicated. The yields
of each of these are extracted using a fit to the D0 candidate mass (mD) and D⇤�D0

mass difference (�m). The differentiation between subcategories of signal and mis-
tagged events is done using the D0 candidate impact parameter �2 distribution
(�2

IP ).

4.1 Signal and Background categorisation

We recognise four different categories of data in our sample as shown in
Table 4.1.

Category Component Subcategory

1 Signal a. Prompt
b. Secondary

2 Misreconstructed ⇡soft
a. Prompt
b. Secondary

3 Reflection background
4 Combinatoric background

Table 4.1: The categorisation of signal and background components of the dataset.

The signal sample consists of real D0 with a real ⇡s. This means the sample
exhibits a signal-like peak for both mD and �m. The prompt subcategory contains
D0 originating from D⇤ that were produced at the Primary Vertex. The secondary
subcategory is produced in decays of other particles, such as B mesons and differs
in the shape of the�m peak which is wider than the prompt signal peak due to the
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fact that DecayTreeFitter assumes that the D0 meson originated at the PV, and
weakly depends on the lifetime of the D0 mother.

The misreconstructed ⇡s sample consists of real D0 candidates that have a
random soft pion assigned. This means the sample behaves as combinatoric back-
ground in the �m spectrum but as signal in the D0 mass spectruma. The D0 can-
didates in this category may come from both prompt and secondary origins. The
sample lacks a reliable D0 tag which means it has to be treated as background even
though the D0 candidates are correctly reconstructed.

The reflected background consists of D0 candidates decaying into a differ-
ent final state, such as K�⇡+KS where one of the daughters is misreconstructed
from kaon to pion or vice versa. This yields a non-peaking mD spectrum but a
peaking �m spectrum since the D⇤ mass reconstruction depends on the D0 mass
reconstructionb.

The combinatoric background consists of both misreconstructed D0 and ⇡s

meaning that it peaks in neither mD or �m distributions.

4.2 Neglected background categories

During the characterisation of the background data, several categories were
examined and determined to not contribute significantly to the final sample of the
data, these are shown in Table 4.2. The potential backgrounds to investigate were
obtained by the analysis of the possible decay products of D0 while consulting
previous charm analyses [2] as well as examining a minimum bias sample of Monte
Carlo.

The most common way of eliminating a given background is a choice of
selection cuts. The effect of these on the given background was determined using
Monte Carlo samples generated to emulate given backgroundsc.

All reflected backgrounds are suppressed by tight particle identification
cuts. Singly reflected backgrounds (one particle is misidentified) peak under a tail

aThe ⇡s is a D

0 sibling and does not enter the D

0 mass hypothesis in any way. It merely acts as
the tag for the flavour of the D

0 meson. It also has a large impoct on the �m distribution since the
�m distribution effectively describes the leftover kinetic energy after the D

?± meson decays into the
D

0 daughter and the ⇡s.
bAnother view is to consider that in the D

⇤ rest frame, the �m is proportional to the opening
angle between the D

⇤ daughters and since a wrong mass hypothesis doesn’t alter the opening angle,
the �m remains peaking.

cThese samples are used as signal samples for other analyses which examine those decay chan-
nels, thus “Yesterday’s signal has become Today’s background noise.”
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of the mD distribution, thus any significant contribution will destabilise the fit and
coversely a goot fit to the tails of the�m distribution provides evidence for the lack
of singly reflected backgrounds. Doubly reflected backgrounds could peak under
both mD and �m but requires two particles to be misindentified, one misinden-
tified as a heavier particle and one as a lighter particle. This is a common back-
ground for decays containing K⇡ pairs which can be mutually misidentified and
the resulting mD distribution remains unchanged. For this analysis, tight cuts on
KS reconstruction limit the potential for it to be misidentifiedd. A potential decay to
KSKe was investigated for double reflection and it does not contribute to the final
decay sample due to very low branching fraction and low ⇡ to e misidentification
probability.

A possible peaking background from direct decays of D0 ! 4⇡ could con-
taminate the final sample since it shares the final decay products with the signal
chain. A tight cut on the KS minimum flight distance however requires the origin
vertex of two of the final pions to be significantly removed from the D0 decay ver-
tex, so any such reconstructed decays will not come from real D0 mesons and thus
will not peak in mD.

Background Behaviour
D0 ! KSK⇡ Peak in �m and under a tail of mD

D0 ! 4⇡ Peak in �m and in mD if the decay chain matches
D+ ! K⇡⇡0 Peak in both mD and �m
D0 ! KSKe Peak in both mD and �m

Table 4.2: Background categories which were determined not to contribute to the
final dataset.

Any residual contribution by these backgrounds reflects in the poorer qual-
ity of the fit which estimates yields and backgrounds and therefore is transparently
included in the systematic error due to the uncertainty on the background estima-
tion.

4.3 Characterisation of mD signal and background distri-
butions

The probability density functions (PDF) for individual components of the
mD distribution are summarised in Table 4.3 and shown in Figure 4.1. They are

d
⇡

0 ! ee was examined as a potential candidate but the particle identification cuts suppress this
significantly

66



mostly chosen empirically to best represent the data.

Category 1 & 2 Double Gaussian, shared mean
Category 3 & 4 Quadratic Chebyshev polynomial

Table 4.3: The parametrisation of the mD distribution components.
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(b) Reflected and Combinatoric Background

Figure 4.1: Illustrations of the PDF models used to fit the respective categories in
the mD spectrum.

The signal peak component for categories one and two is parametrised sim-
ply using a double Gaussian and the PDF is shared among category one and two
components. A triple Gaussian was considered but the net gain in fit quality was
negligible. Both prompt and secondary subcategories share the same PDF because
the width increase of the distribution for the secondary component was not found
significant enough to require a separate PDF.

Category three and four samples are non-peaking in the mD distribution
and are parametrised using quadratic Chebyshev polynomialse with no constraints
on the parameters. The Chebyshev polynomials were chosen because the offset of
the characteristic mass of the fit to 1860 MeV coupled with low yields of back-
ground caused minor instabilities with a standard polynomial formulation.

eChebyshev polynomials form a basis spanning the set of all polynomial functions, which is dif-
ferent to the standard basis of axn. Thus all polynomial functions can be expressed as a linear com-
bination of Chebyshev polynomials and in turn Chebyshev polynomial basis can be expressed in the
standard ax

n basis. The motivation for this choice of basis for the polynomial PDF is purely practical,
it was observed that this results in a more stable fit.
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4.4 Characterisation of �m distributions

The �m distribution components are characterised using the PDFs shown
in Table 4.4 with illustrations shown in fig 4.2. Again, the PDFs are chosen empiri-
cally to achieve best fit quality.

Category 1a Triple Gaussian with a shared mean
Category 1b Double Gaussian with a shared mean (independent of mean of 1a)
Category 2 Quadratic Chebyshev Polynomial (share parameters with 4)
Category 3 Double Gaussian with a shared mean (share parameters with 1b)
Category 4 Quadratic Chebyshev Polynomial (share parameters with 2)

Table 4.4: The characterisation of the�m distribution components

The prompt signal component is characterised by a triple Gaussian, the sec-
ondary signal component is a double Gaussian with a separate mean from the
prompt. The triple Gaussian for the prompt signal is necessary to achieve good
fit quality for the signal peak, but the secondary component is wider and the fit
contains less information which led to the choice of a double Gaussian for the sec-
ondary peak.

Category three component peaks in�m distribution and is characterised by
the same form as secondary signal given that the resolution is worse compared to
the signal peak due to the wrong mass hypothesis for the D0 daughters. The pa-
rameters are shared since the yields of the reflected background are small enough
that a difference from the parametrisation of the secondary component is negligi-
ble.

The shape of the combinatoric and misreconstructed ⇡s background is ap-
proximated using a simple quadratic Chebyshev polynomial. While the common
method of fitting charm �m background is with a phase-space dependent model
that mimics the background of two daughters incorrectly assumed to come from a
common mother [63], it was found that in the case of low yields for combinatoric
background the data can be well approximated using a simple Chebyshev polyno-
mial which is computationally simpler. The model underestimates the background
at the extreme lower edge of the phase-space but this effect is negligible.
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(b) Secondary Signal events and Reflected Back-
ground
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(c) Misreconstructed ⇡s Combinatoric Back-
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Figure 4.2: Illustrations of the PDF models used to fit the respective categories in
the �m spectrum.

4.5 Characterisation of Ln(�2

IP ) distribution

The Ln(�2
IP ) variable describes the fit quality of the event if one requires

that the D⇤ originated in the Primary Vertex. This allows one to distinguish be-
tween prompt events and secondary events that originate in decays of other
hadrons such as B0 mesons. It’s also a better choice of discriminator compared
to the impact parameter because it accounts for the error on the measurement of
the impact parameter as well as the magnitude. The PDFs fitted to the Ln(�2

IP ) dis-
tribution for different categories are described in Table 4.5 and illustrated in Figure
4.3.

The prompt signal component is characterised using a bifurcated Gaussian
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Category 1a Double Gaussian with bifurcated Gaussian, mean invariant of decay timeCategory 2a
Category 1b Double Gaussian with bifurcated Gaussian, mean depends on timeCategory 2b
Category 3 Bifurcated Gaussian, mean and sigma depend on timeCategory 4

Table 4.5: The characterisation of the Ln(�2
IP ) PDF components.

added to a double Gaussianf. The parameters of the prompt signal PDF do not
depend on the D0 decay time.

The secondary signal component shares the PDF with prompt signal, but
the mean of the secondary PDF depends on the lifetime of D0. This dependence
is parametrised in Table 4.6. The widths of the bifurcated Gaussian are also mul-
tiplied by a scaling factor representing the fact that the secondary component is
more poorly resolved than the prompt component.

Since category 2 events are real D0 candidates, they share the Ln(�2
IP ) PDFs

with category 1 events and are not distinguishable using the Ln(�2
IP ) distribution.

Category 3 and 4 events contain misreconstructed D0 candidates and share
the same Ln(IP�2) PDF. They are characterised using a bifurcated Gaussian with
parameters depending on time as shown in Table 4.6.

Category 1b,2b mean Quadratic polynomial
Category 4 mean Quadratic polynomial
Category 4 left sigma Linear polynomial
Category 4 right sigma Linear polynomial

Table 4.6: The time dependence of the �2
IP PDF component parameters.

fThe expected form of the distribution is well approximated by the bifurcated Gaussian. The dou-
ble Gaussian has a physical significance as a resolution function. That is why a scaling factor is ap-
plied for the secondary component, it is expected the secondary component has poorer resolution on
the impact parameter due to the fact that the tracks are further removed from the primary vertex.
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Figure 4.3: Illustrations of the PDF models used to fit the respective categories in
the Ln(�2

IP ) spectrum.

4.6 Fitting Strategy

The mD and �m PDFs are fitted using an unbinned maximum likelihood
function to a 2D mD-�m distribution with an extended fit. The total PDF fitted is a
sum of the components multiplied by their yields as shown in equation 4.1 with pi

representing the PDF of category i and ni represents the yield of the corresponding
category of events.

ntot · p�m · pmD
=n1a · p�m

1a · pmD
1a + n1b · p�m

1b · pmD
1b + n2a · p�m

2a · pmD
2a +

n2b · p�m
2b · pmD

2b + n3 · p�m
3 · pmD

3 + n4 · p�m
4 · pmD

4 (4.1)

The yields of n1b and n2b are determined using the Ln(�2
IP ) distribution and

fixed in the fit. The n1b yield is shown on figures 4.5 and 4.6 for illustration.
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The Ln(�2
IP ) distribution is fitted using a separate unbinned maximum like-

lihood fit. To determine the form of the lifetime dependence of the parameters that
do depend on lifetime, the distribution is binned in lifetime and the fit is simultane-
ous in all the bins of lifetime. Adaptive binning algorithm is performed to choose
the binning scheme such that each bin contains at least 6000 eventsg. The extracted
secondary yield integrated in the signal window is then used as an input in the
mD-�m 2D fit and fixed to describe the secondary component of Category 1 and
2. Since the fit uses the same PDF for Category 1a and 2a and similarly the same
PDF to describe 1b and 2b, the extracted number of secondary events is the sum
of yields of categories 1b and 2b. Nevertheless, the 2D fit can distinguish between
categories 1 and 2 and therefore can extract the correct proportions.

The fit is simultaneous in 15 bins of lifetime and has 8 global degrees of
freedom and 3 degrees of freedom per decay time bin. This is 53 degrees of free-
dom in total. The shape of the Ln(�2

IP ) distribution for signal events is well known
for previous charm analyses [2]. The shape of the distribution for the background
events is extracted from mass sidebands. The fit was validated for quality by good
covergence in each time bin and for stability by varying the adaptive binning target
bin size. The errors on the estimation of the yields for secondary components are
propagated to the systematic errors on the final fit, see chapter 7.

4.7 Extracted Yields

The resulting fit to Ln(�2
IP ) distribution can be seen in Figure 4.4. This is

the sum of the simultaneous fits in time bins to give the impression of the overall
distribution rather than a projection of a single total PDF.

The pull shown on the same figure is generally contained within the 2�

boundaries drawn horizontally on the plot. One can observe a structure in low
Ln(�2

IP ) where the fit first underestimates and then overestimates the number of
events. This effect is negligible due to the low number of events in the region and
the location in the distribution - all events in that region are prompt. The second
observable structure is at 2 < Ln(�2

IP ) < 5 where all three components are present
gThe algorithm is simple, the data is binned with an extremely fine binning such that on average

there are fewer than 1 event per microbin. Then the algorithm aggregates the bins from start to finish
and whenever the cumulative event counter overflows the specified number of events, the cumu-
lative counter is reset and the lower microbin edge is used as a bin boundary. Last bin is forced to
contain at least half of the specified number of events or else the last two bins are merged. Then the
entire sample is rebinned using the binning thusly obtained.
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with similar yields. This fluctuation is irreducible as the introduction of more com-
plicated models for component PDFs destabilises the fit. Given that the fluctuation
is generally contained within the 2� boundary, the effect is neglected. The projec-
tions of the fit within individual bins are shown in appendix E and they show that
the pulls of each individual fit are all within the 2� boundaries. These structures
and the fact that the plot is a composition of independent fits explains the relatively
large value of the minimized �2/dof function

The projections of the simultaneous fits in each bin can be found in appendix
E. The extracted number of prompt and secondary events can be seen in Table 4.7.
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Figure 4.4: Fit to the Ln(�2
IP ) distribution. The prompt subcategory is blue, sec-

ondary subcategory is green while the background categories (3 and 4) are charac-
terised by the red component. Note that this projection was created by combining
simultaneous fits in bins of decay time that can be found in appendix E.

Category Raw fit data Ln(�2
IP ) signal window

1a + 2a 197253 194892
1b + 2b 10017 3624.2
3 + 4 15852 4770.3

Table 4.7: The yield of subcategories A and B as extracted from the fit to the Ln(�2
IP )

distribution. Note that the subcategory yields are combined in categories 1 and 2.

The mD and �m distributions of the full dataset described in section 3.1 is
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fitted using the models introduced in sections 4.3 and 4.4. The results of the fit can
be seen in figures 4.5 and 4.6.

One should note that since these are projections of the full 2D distributions
on their respective axes, the standard mD and �m window cuts are not applied.
The two dimensional fit allows for a good fit of category 2 and 3 which would be
much more difficult with sequential 1D fits.

The yields are obtained by integrating the PDF in the signal window and
multiplying by the appropriate fit fraction. The yields as obtained from the mD

and �m distributions are shown in Table 4.8.

Category Raw fit data mD and �m signal window
1a 194566 185839
2a 31936 10340
1b+2b 3974.5 3540.4
3 2606.7 988.9
4 23212.5 2985.2

Purity 75.91% 91.23%

Table 4.8: The yield of different categories of events as extracted from fits to mD

and�m distributions. Purity is defined as the ratio of Category 1 events over over
the total yield.
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Figure 4.5: Projections of the 2D fit to the distributions of mD (left) and �m (right)
with the full 2011 dataset. The yields are integrated in the signal window over�m
and mD respectively. Categories 1,2,3 and 4 are represented by blue, green, cyan
and red respectively.
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Figure 4.6: Projections of the 2D fit to the distributions of mD (left) and �m (right)
with the full 2011 dataset. The yields are integrated in the signal window over�m
and mD respectively. Categories 1,2,3 and 4 are represented by blue, green, cyan
and red respectively. Note that the red lines on the pull plot indicate a 2� boundary.
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Chapter 5

Background Treatment

This chapter outlines the treatment of the different types of background as
they are outlined in section 4.1. All three categories of the background, including
the secondary contamination are treated in a similar way - the ultimate goal is to
subtract the number of background events in each CLEO bin i and each time bin ja.
Because of this, a mD-�m fit is performed in each CLEO bin separately. This gives
a good estimate of how yields of different categories vary across the CLEO bins. At
the same time, the time-binned Ln(�2

IP ) fit (see section 4.6) is used to extract the
time-dependence of the yields of individual categories.

5.1 mD– �m fit Results

The results of the individual fits to the 2D spectrum of mD and �m in
each phase-space bin can be seen in Tables 5.1 for D0 ! KS⇡+⇡� and 5.2 for
¯D0 ! KS⇡+⇡� with the plots of individual fits shown in appendix F. It’s obvi-
ous that the background contamination is not independent of the position within
Dalitz plot. In the tables, the combinatorial background (category 4) and the re-
flected background (category 3) are grouped together because they behave simi-
larly in the mass spectrum and thus the time evolution fits extract the combination
of these rather than each separately. Due to the low yields of reflected background,
any biases due to this simplified treatment can be safely neglected.

The misreconstructed ⇡s background (category 2) should be compared to
signal because this component consists of real D0 mesons and thus should behave

aEach CLEO bin i has a different time binning scheme, see section 6.3
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very similarly to the signal in the time distribution, or at the very least, the propor-
tion of misreconstructed ⇡s events to signal events should not vary in time. This
proportion can be extracted from the 2D mD- �m fit in each phase-space bin and
applied in each time bin separately.

Phase-space (CLEO) bin Signal Misreconstructed ⇡s Background
1 16231.4 677.9 339.4
2 6315.6 264.0 118.3
3 4528.8 221.8 92.0
4 2006.5 98.0 44.7
5 5988.9 315.9 145.5
6 5576.5 226.1 89.6
7 13380.3 510.5 138.8
8 12693.3 497.7 173.6
-1 8638.1 707.6 255.3
-2 1825.4 213.0 83.0
-3 2093.5 160.7 64.6
-4 1712.7 100.5 35.1
-5 4312.3 245.7 119.4
-6 1389.5 181.7 53.9
-7 1481.6 351.5 72.9
-8 3163.1 395.9 106.1

Table 5.1: The extracted yields of D0 ! KS⇡+⇡� within signal windows in indi-
vidual phase-space bins. The Background column contains both the combinatorial
yield and the yields of the reflected background (category 3 and 4).
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Phase-space (CLEO) bin Signal Misreconstructed ⇡s Background
1 16606.1 757.2 375.6
2 6374.2 261.7 127.9
3 4590.5 259.6 104.8
4 1976.7 127.3 57.3
5 6086.7 285.4 147.4
6 5582.0 234.4 121.0
7 13313.3 485.1 151.1
8 12995.5 430.6 169.1
-1 8975.8 609.1 269.7
-2 1906.7 197.1 66.1
-3 2010.6 184.8 85.0
-4 1777.4 80.5 46.4
-5 4231.6 257.6 141.9
-6 1410.0 177.6 43.7
-7 1549.8 302.7 60.7
-8 3147.6 412.6 104.8

Table 5.2: The extracted yields of ¯D0 ! KS⇡+⇡� within signal windows in indi-
vidual phase-space bins. The Background column contains both the combinatorial
yield and the yields of the reflected background (category 3 and 4).

5.2 Ln(�2

IP ) Results and Fitted Model

In general, the yields of the different categories of events will depend on
time. In particular the purity of the data decreases with increasing decay time. The
yields of the secondary subcategories of signal and misreconstructed ⇡s compo-
nents as well as the time depedence of the combinatorial background can be esti-
mated using the Ln(�2

IP ) distribution. The method of fitting to this distribution is
described in section 4.5.

The time-dependence of the combinatoric background is already fixed in
the Ln(�2

IP ) fit and the same information can be used assuming that the form of
the time-dependence doesn’t depend on the position in the Dalitz plotb. In this
case we extract a function of decay time shown in eq. 5.1, chosen empirically to
obtain a good fit. The extracted function is normalised to the time-integrated yield

bThe position in the Dalitz plot depends entirely on the steradian opening angle of the D

0 decay.
The decay time of the D0 meson depends mostly on the flight distance (and momentum) of the meson
from the PV. The probability of a combinatoric event being accepted depends mostly on the possible
combination space which mostly depends on the flight distance (more possible particles the closer
the decay vertex is to PV). The dependence of the yield of the combinatoric events on the decay time
should not change with different D0 daughter opening angles.
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of combinatorial and reflected background.

n3+4(t)

n3+4
= Ae(

t�B
C

)2
+Dt3 + Et2 + Ft+G (5.1)

The resulting fit is then normalized in each phase-space bin to the estimated total
yield of combinatorial and reflected background and integrated in each time-bin
during the final fit to get an estimate of these two components for each time bin.

The secondary contamination of both signal and misreconstructed ⇡s back-
ground is similarly dependent on D0 decay time. The combined yield of secondary
subcategories of both components normalised to the total number of events is ex-
tracted from the results of the Ln(�2

IP ) fit and its time dependence is parametrised
with equation 5.2, chosen empirically for a good fit. The fit does not describe the
distribution well past 2 ps in decay time, but the decay time domain in the fit does
not extend beyond that point.

n1b+2b

n
(t) = Ax2 +Bx+ C (5.2)

This normalised fraction is used directly in the final fit to determine the proportion
of the secondary contamination of the signal component bin by bin. It’s assumed
here that signal and misreconstructed ⇡s have the same proportions of secondary
contamination as prompt signal and that this holds for all decay times since they
both represent real D0 mesons.

The results of the fits to both functions can be seen in Figure 5.1.
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Figure 5.1: Auxiliary fits of time evolution of combinatorial yield (left) and sec-
ondary yield (right). The combinatorial yield is normalised globally to the time-
integrated combinatorial yield. The data points used in the fit are taken in 2D mD-
�m sidebands by fitting the combinatorial yields in bins of time, the identical data
points used in the Ln(�2

IP ) fit for combinatorial component (see section 5.2). The
secondary yield is normalised to the total yield in each time bin.

5.3 Extracted Background Yields

The procedure to extract yields of contaminants in each CLEO bin and in
each time bin involves several steps. The time binning j in each CLEO bin i is
performed as outlined in section 6.3. The population of each CLEO bin is fitted
with a 2D mD- �m fit to get the total yields of different categories.

The yield of category 3 and category 4 is together set as the total integral
of the extracted time-development function for these categories (eq. 5.1) - the time
evolution of category 3 and 4 is treated in the same way. The integral of this func-
tion between the start and the end of a given time bin then gives the expected
number of combinatoric and reflected background in the time bin.

Category 2 is easiest to estimate as it’s expected that category 2 events be-
have like signal due to the fact they are real D0 mesons. As such, one can calculate
the ratio of category 2 to sum of categories 1 and 2 ⌘⇡s

⌘⇡s =
Ni,2

Ni,1 +Ni,2
, (5.3)

where Ni,k is the yield of category k in CLEO bin i. The estimate of category 2
events is simply the remaining yield of the events (after removing categories 3 and
4) in a given time bin multiplied by this ratio.

The integral of the function describing the time evolution of subcategories
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1b and 2b (eq 5.2) cancels in the final PDF (this can be seen in ratio 6.21). This is due
to the fact that the ratio of the secondary events to prompt events does not depend
on the position in the Dalitz plot and furthermore, the time-dependence of this
ratio doesn’t depend on the position in the Dalitz plot. However it’s still important
to determine the level of the contamination of such that a systematic uncertainty
can be determined due to the Poisson fluctuation of the secondary yield in each bin
(see section 7.4).

After determining the estimated yield of each category of background in
each time bin these are simply subtracted from the total yield to obtain the signal
yield in each time bin which is used in the fit.

5.4 Correlation between Decay Tree Fitter and Ln(�2

IP )

The use of DecayTreeFitter (DTF) necessitates additional convergence
requirements in the selection to ensure data quality. The convergence can be de-
fined as

�2
DTF /DoFDTF < 10 (5.4)

andc

DoFDTF > 0. (5.5)

The �2
DTF /DoFDTF variable is also referred to as the “DTF quality” in the text (note

that low values represent high “DTF quality” and vice versa). These criteria are
applied for both the ⇡s constraint and the mD constraint separately.

Relaxing the ⇡s constraint convergence criteria leads to destabilisation of
the fit to the�m spectrum due to the DTF extracted�m values being unreliable as
can be seen in Figure 5.2.

There exists a strong correlation between the ⇡s DTF quality distribution
and the Ln(�2

IP ) distribution, as can be seen in Figure 5.3. Events with high
Ln(�2

IP ) are more likely to fail the DTF quality criteria than events with low
Ln(�2

IP ). This is because the events with high Ln(�2
IP ) are much more likely to

be secondary and therefore constraining their origin to PV is much more likely to
fail. It’s also the case that the selection cut of Ln(�2

IP ) < 3.2 removes almost all
events which fail the DTF quality criterion.

Given that this cut was removed from selection, a different way of stabilis-
ing the �m spectrum fit had to be found. Using the DTF quality as a rectangular

cRequiring more than 0 degrees of freedom is a technical constraint to ensure the refit actually
converged.
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Figure 5.2: Fit to �m distribution with DTF quality cuts disabled. The pull clearly
demonstrates the deterioriation of the fit quality.

cut is undesirable due to previously shown correlation. After some consideration,
it seems that performing a 2D mD-�m fit instead yields satisfactory results even
without DTF quality criteria, see section 4.5.
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Chapter 6

Model Independent Formalism
and Fit Strategy

The approach to extracting the mixing parameters from the D0 ! KS⇡+⇡�

channel discussed in this thesis is independent of the choice of the amplitude
model. The principal motivation behind this is to eliminate the systematic error
due to choice of the model and, instead of this, accruing the systematic uncertainty
due to the error on the measurement of the integrated phase difference between D0

and ¯D0 amplitudes. At the same time the analysis technique is greatly simplified
compared to a full amplitude fit.

6.1 Decay PDF Formalism

The choice of sign convention for x and y is shown in 6.1 so that the notation
is consistent with the CLEO research. The mixing parameters under this convention
become (as shown in section 1.2)

xD ⌘ M2 �M1

�

yD ⌘ �2 � �1
2�

rCP e
i↵CP ⌘ q

p
(6.1)

The decay amplitude of D0 ! Ks⇡+⇡� can be expressed as

AD0(m2
+,m

2
�) ⌘ a(m2

+,m2
�)e

�(m2
+,m2

�) , AD̄0(m2
+,m

2
�) ⌘ ā(m2

+,m2
�)e

�̄(m2
+,m2

�) , (6.2)

where m2
+ and m2

� denote the invariant mass squared m2
Ks⇡+ ,m2

Ks⇡� of the Ks⇡+

and Ks⇡� daughter combinations respectively, and �(m2
+,m2

�) is the strong phase at
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a given point in phasespace. Assuming no direct CP violation and due to the fact
that the final state is self-conjugatea

ā(m2
+,m2

�)e
�̄(m2

+,m2
�)

= a(m2
�,m2

+)e
�(m2

�,m2
+) (6.3)

Then one can write the time-dependent PDF [6]b as
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where we factorised the time-dependent part into g±(t) ⌘ 1
2(e

�iz1t ± e�iz2t
) with

z1,2 ⌘ M1,2�i�1,2

2 and � =

1
2(�1 + �2). This follows from section 1.2. Expanding the

PDF and ignoring terms of O(x2D),O(y2D),O(xD · yD) and higher, we can rewrite
the PDF as
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��t
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We can apply binning to the Dalitz plot and integrate the PDF within a given Dalitz
plot bin i
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(6.5)
aThis means that, assuming no CP violation, if we overlay D

0 Dalitz plot and D̄

0 Dalitz plot, the
result will be entirely symmetric. In other words there is no way to distinguish between D

0 and D̄

0

based on the decay products.
bStrictly speaking, this is not a PDF due to the missing normalization constant, and due to a

missing factor of 2 coming from combining D

0 and D̄

0 data. However, the method fits a ratio as is
explained later in section 6.3 and the normalization cancels.
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And we can define integrals of amplitude-weighted cosine and sine of phase dif-
ference ci and si respectively
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(6.6)

with the integrals of amplitude Ti and T�i defined as

Ti ⌘
Z

i
a2(m2

+,m2
�)dm

2
+dm

2
�

T�i ⌘
Z

i
a2(m2

�,m2
+)dm

2
+dm

2
�

(6.7)

Substituting these into eq. 6.4 we get

Pi,D0(t) = �e��t
h

Ti + rCP�t
p

TiT�i⇥ {yD [si sin(↵CP ) + ci cos(↵CP )]

+xD [si cos(↵CP )� ci sin(↵CP )]}]
(6.8)

This would be the formalism used to investigate both mixing and indirect CP vio-
lation parametrised by xD, yD and rCP ,↵CP respectively. Assuming no indirect CP
violation (that is rCP = 1 and ↵CP = 0) we can reduce this PDF to the final form

Pi,D0(t) = �e��t
h

Ti + �t
p

TiT�i(yDci + xDsi)
i

Pi,D̄0(t) = �e��t
h

T�i + �t
p

TiT�i(yDci � xDsi)
i (6.9)

These are analogous to the two body case of D0 ! K⇡ [2] except that the mixing
ratio RD now becomes Ri = T�i/Ti, and cos �K⇡ and sin �K⇡ become ci and si

respectively, dependent on the phase-space (see section 6.3).

6.2 CLEO Strong-Phase Information

The integrated strong phase information can be obtained using previous
analyses performed by the CLEO-c collaborationc. The production of  (3770) and
the decay into a quantum correlated D0

¯D0 pair allows the opposite side tagging
of the CP content of one of the daughters [65]. Such analysis can provide informa-
tion about the strong phase-difference��Ks⇡+⇡� between D0 and ¯D0 decaying into

cBES-III showed preliminary results of their analysis of the same channel at a conference [64] with
40% improved statistical precision. These are not used in this analysis.
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KS⇡+⇡�.

Originally, the model independent method discussed in this thesis was de-
veloped for extracting the angle � of the Unitarity triangle in a B ! DK, D0 !
KS⇡+⇡� channel [66]. Later, it was shown that choosing a Dalitz plot binning such
that the variation of the strong phase is minimised in the area of each bin improves
the sensitivity of the methodd. It was also shown that this method can be used to
extract mixing information in the D0 ! KS⇡+⇡� channel [67]. Lastly, it was shown
that binning optimized for sensitivity to � also has good sensitivity to charm mix-
ing and the sensitivity of the method was evaluated using toy studies. It was de-
termined that the current knowledge of the ci and si parameters are sufficient to
enable a measurement competitive with the full amplitude fit using the 2011 LHCb
dataset. For larger datasets, the improvement of the measurement of ci and si by
next-generation charm factories would be necessary [68].

6.2.1 CLEO binning

Several non-uniform binning options were investigated for the purporse of
integrating out the strong phase information. The salient criterion for the choice of
binning is that it should provide good sensitivity to si. With this in mind, bins were
chosen such that the range of ��Ks⇡+⇡� in each bin would be equal and the vari-
ation in each bin minimal. This is equal-�� binning constructed using the BaBar
2008 model [67] and can be seen in figure 6.1.

The binning is symmetric in m2
+ = m2

� axis with bins �(N)  i  (N) and
no null bin. For bin i and �i the following hold

ci = c�i, si = �s�i (6.10)

The limits on��Ks⇡+⇡� in each bin are given by

2⇡(i� 1/2)/N < ��Ks⇡+⇡�(m2
+,m

2
�) < 2⇡(i+ 1/2)/N (6.11)

where N is the chosen number of CLEO bins. The asymmetric bin shape is imple-
mented by the use of a map of square microbins of size 0.0054 ⇥ 0.0054 GeV 2/c4.
Each microbin has an associated CLEO bin.

dWhile the binning is chosen according to model predictions, this does not introduce a model
systematic error but rather reduces the statistical power of the sample [65].
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Figure 6.1: Equal-�� binning scheme designed to improve sensitivity to ��Ks⇡+⇡�

extraction [67]. The colours denote the bin number in the binning scheme.

6.2.2 Measuring CLEO parameters

The ci and si parameters used in this analysis were obtained by an analysis
of CLEO data performed by the CLEO collaboration [65]. Since the coefficients are
crucial for this measurement, the analysis is summarised here. The CLEO analysis
is based on the quantum correlated decays of  (3770) ! D0

¯D0, D0 ! KS⇡+⇡�.
Given that CP ( (3770)) = �1, if one reconstructs the companion D0 in a CP eigen-
state, one gets immediate information about the CP content of the signal ¯D0 candi-
date. With a CP tag and assuming no direct CP violation, the decay amplitude of
¯D0 ! KS⇡+⇡� is given by

aCP±
(m2

+,m2
�)

=

1p
2

⇣

a(m2
+,m2

�) ± a(m2
�,m2

+)

⌘

(6.12)

for the CP-even (+) and CP-odd (-) states of ¯D0 ! KS⇡+⇡� decay. The number of
events in the bin i of a CP-tagged Dalitz plot is then

M±
i = h±CP (Ti ± 2ci

p

TiT�i + T�i) (6.13)

where h±CP = S±/2Sf is a normalization factor with Sf being the number of flavour
tagged signal decays and S± is the number of D0 mesons decaying into a CP eigen-
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state irrespective of the other D meson (corrected for efficiencies). Alternatively,
one can use the branching fractions of D0 to a flavour tag (Bf ) and to a CP eigen-
state (B±) to get the normalization factor h±CP = B±/2Bf . This makes the sample
single-tagged. This way, one can gain access to ci by measuring the number of
events M±i in a CP-tagged Dalitz plot and the number of events Ti in a flavour-
tagged Dalitz plot.

The extraction of si is enabled by looking at both D0
&

¯D0 ! KS⇡+⇡� in
 (3770) ! D0

¯D0 events (double decays). In this case the amplitude becomes

aCP±
(m2

+,m2
�,m

02
+ ,m

02
� )

=

a(m2
+,m2

�)a(m02
� ,m

02
+ )

� a
(m

02
+ ,m

02
� )
a(m2

�,m2
+)

p
2

(6.14)

where the primed and unprimed coordinates correspond to the first and the second
¯D0 ! KS⇡+⇡� respectively. Defining Mij to be the number of events in bin i of first
Dalitz plot and bin j of the second Dalitz plot respectively

Mij = hcorr(TiT�j + T�iTj � 2

p

TiT�jT�iTj(cicj + sisj)) (6.15)

with the normalization factor hcorr = NDD̄/2S
2
f = NDD̄/8B2

f , NDD̄ being the num-
ber of D ¯D pairs and Sf being the number of signal flavour-tagged events as before.
The sign of si can be obtained using weak model assumptions.

The values for Ri, ci, and si measured by CLEO and used in this analysis
can be seen in appendix H. The fit of the ci and si parameters, as well as the 2008
BaBar model prediction can be seen in figure 6.2 where the unit circle c2i + s2i = 1 is
also indicated.

6.2.3 Comparison of CLEO model with 2010 BaBar model

The study that developed the binning used the BaBar 2008 model [60] to
predict the bin boundaries based on the phase difference content. Since then, an
improved model became available, denoted the BaBar 2010 model [59].

An analysis of the statistical power of the binning under the BaBar 2010
model shows minimal degradation compared to the 2008 model [65] suggesting
negligible impact on the mixing parameter extraction.
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Figure 6.2: The fit of ci and si parameters performed in the CLEO analysis [65]. The
BaBar 2008 model predictions are indicated by blue stars. The unit circle c2i +s2i = 1

is also shown. Adopted from [65].

6.3 Fit Strategy

The fitting strategy uses a �2 minimization fit of a modifiede time-binned
ratio of numbers of events in bin i and bin �i. The fitted variable is

R(t) =
N�i,sig(t)

Ni,sig(t)
(6.16)

where R is binned in D0 decay time and Ni,sig is the background-subtracted num-
ber of events in bin i.

eThe method tries to fit a ratio of time-dependent PDFs describing the signal yields in bin i and
�i. The ratio is simplified by the use of Taylor expansion with higher order terms dropped. It’s fitted
to the measured ratio of background subtracted yields.
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This approach requires the binning of the R distribution to be sufficiently
fine so that the integration of Pi is not necessary in the fit bin. This analysis uses
adaptive binning with the condition that Ni,j + N�i,j > 350 in each CLEO bin i

and decay time bin j. This means that each bin i will have a different decay time
binning scheme j.

The choice of the fitted ratio is motivated by the predicted shape of the ratios
of the dataset and due to simplification in algebra

R(t) =
T�i +

p
TiT�i�t(ciyD � sixD)

Ti +
p
TiT�i�t(ciyD + sixD))

(6.17)

or, substituting Ri ⌘ T�i/Ti (values for Ri can be seen in appendix H)

R(t) =
Ri +

p
Ri�t(ciyD � sixD)

1 +

p
Ri�t(ciyD + sixD)

(6.18)

This reduces the number of CLEO parameters by 8 and improves the fit stability.
One can also use Taylor Expansion which simplifies the fitted formulation to

R = Ri+

p

Ri�t[(ciyD�sixD)�Ri(ciyD+sixD)]+Ri�
2t2(c2i y

2
D�s2ix

2
D)+. . . (6.19)

in regions of parameter space where the following holds, assuming xD ⇠ yD ⇠
O(0.01) and ci ⇠ si ⇠ O(1) and 0  �t  15

p

Ri�t(ciyD + sixD) ⌧ 1

p

Ri ⌧
50

�t
p

Ri ⌧ 3.34

(6.20)

This requires Ri to be reasonably small, but it’s expected that the T�i  Ti, Ri 
1 due to the Cabibbo suppression (see section 1.2.1). We can then neglect the
O(x2),O(y2) terms to get the final form

R = Ri +

p

Ri�t[(ciyD � sixD)�Ri(ciyD + sixD)]

R = Ri +

p

Ri�t[(1�Ri)ciyD � (1 +Ri)sixD]
(6.21)
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The final form of the fitted function is linear as can be seen from eq. 6.21.
Also, given that Ri ⇠ 0.5 on average, the fitted pdf indicates that this method will
be more sensitive to xD than yD by a factor of approximately 3

f.

The fit is performed simultaneously in all CLEO bins and decay time bins,
with Ri being specific CLEO bin i, ci and si fixed, and all other parameters being
global. The interdependence of ci and si is included transparently in the systematic
effect due to the their uncertainty.

6.3.1 CLEO penalty term

There are two approaches that can be used to constrain the ci, si and Ri pa-
rameters used as input to the fit. One can simply fix the values obtained using the
CLEO analysis. The advantage of this is a much more stable fit while the disad-
vantage is that the uncertainty due to limited knowledge these parameters is not
propagated automatically through to the final fit and has to be obtained in a differ-
ent way.

The second possibility is to use a multi-dimensional Gaussian constraint
evaluated using the covariance matrix and add this as the penalty term to the min-
imized �2. The advantage is that the associated systematic uncertainty is automat-
ically propagated through to the final fit, however the fit stability suffers.

The covariant constraint term �2
CLEO can be formulated as

�2
ci,si ⌘

16
X

ij

(pi � p̄i)⌃ij(pj � p̄j), (6.22)

where i, j run from 1 to 16, pi represents ci for i < 8 and si�8 for i > 8, ⌃ij is the
covariance matrix for ci and si as measured originally by CLEO, and p̄i is the value
of pi measured by CLEO. The penalty term for Ri parameters are calculated using
a Gaussian constraint

�2
Ri

⌘
8
X

i

(Ri � ¯Ri)
2

�2Ri

, (6.23)

where the variance of ratio �2Ri
is calculated using simple propagation of errors for

ratios

�2Ri
= R2

i

 

�2Ti

T 2
i

+

�2T�i

T 2
�i

!

. (6.24)

fThe ratio of Ri is generally constrained in (0, 1). The final PDF depends on (1 � Ri)ciyD � (1 +
Ri)sixD . Doing a naive calculation, assuming ci = si, Ri ⇠ 0.5 on average, we’re left with the PDF
depending on 0.5yD � 1.5xD which suggests better sensitivity to xD rather than yD
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Then the complete penalty term is

�2
CLEO ⌘ �2

ci,si + �2
Ri

(6.25)

After careful testing, the fit staility was considered more important and
therefore the method presented uses fixed CLEO parameters and evaluates the
systematic uncertainty associated with the input parameters using a data driven
method in chapter 8.

6.3.2 Minimization function

The minimization function is a simple �2 binned in Dalitz space (index i)
and D0 decay time (index j)

�2
data ⌘

X

i

X

j

[Ri(¯ti,j)� Ni,j

N�i,j
]

2

�2i,j
(6.26)

where Ni,j is the number of signal events in time bin j in a Dalitz bin g i, ¯ti,j is the
mean D0 lifetime in bin i, j and �i,j is the combined Poisson error in bin i, j

�i,j = Ri,j

s

1

Ni,j
+

1

N�i,j
. (6.27)

The full function that is minimized by varying xD and yD (and other input param-
eters varied within their contraints) is then simply the sum

�2 ⌘ �2
CLEO + �2

data. (6.28)

The fit performed on a toy MC sample with the same yield as the dataset used in
this analysis can be seen in Figures 6.3, 6.4, 6.5 and 6.6.

6.3.3 Treatment of Data Contamination

The purity of the dataset is very good (see section 4.7) and the residual con-
tamination can be simply subtracted on a bin by bin basis from the total number of
events in the bin to get Ni,j,sig. Integrating the functional forms for ncat(t) obtained
in chapter 4, one gets the expected yield of background events in each bin Ni,j,bg

which is simply subtracted from the total number of events in bin i, j.
gRecall that each bin i has its own time-binning scheme j
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(a) CLEO bin 1 fit to R(t)

(b) CLEO bin 2 fit to R(t)

(c) CLEO bin 3 fit to R(t)

(d) CLEO bin 4 fit to R(t)

Figure 6.3: Simultaneous fit to R(t) on a toy MC sample with yield of 166k events
in CLEO bins 1-4 for D0 ! KS⇡+⇡� events. The decay time on the x-axis is in
logarithmic scale. Fit result is blue, reference fit with xD = yD = 1% is in magenta.
Pulls are shown on the right for both fits.
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(a) CLEO bin 5 fit to R(t)

(b) CLEO bin 6 fit to R(t)

(c) CLEO bin 7 fit to R(t)

(d) CLEO bin 8 fit to R(t)

Figure 6.4: Simultaneous fit to R(t) on a toy MC sample with yield of 166k events
in CLEO bins 5-8 for D0 ! KS⇡+⇡� events. The decay time on the x-axis is in
logarithmic scale. Fit result is blue, reference fit with xD = yD = 1% is in magenta.
Pulls are shown on the right for both fits.
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(a) CLEO bin 1 fit to R(t)

(b) CLEO bin 2 fit to R(t)

(c) CLEO bin 3 fit to R(t)

(d) CLEO bin 4 fit to R(t)

Figure 6.5: Simultaneous fit to R(t) on a toy MC sample with yield of 166k events
in CLEO bins 1-4 for ¯D0 ! KS⇡+⇡� events. The decay time on the x-axis is in
logarithmic scale. Fit result is blue, reference fit with xD = yD = 1% is in magenta.
Pulls are shown on the right for both fits.
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(a) CLEO bin 5 fit to R(t)

(b) CLEO bin 6 fit to R(t)

(c) CLEO bin 7 fit to R(t)

(d) CLEO bin 8 fit to R(t)

Figure 6.6: Simultaneous fit to R(t) on a toy MC sample with yield of 166k events
in CLEO bins 5-8 for ¯D0 ! KS⇡+⇡� events. The decay time on the x-axis is in
logarithmic scale. Fit result is blue, reference fit with xD = yD = 1% is in magenta.
Pulls are shown on the right for both fits.
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6.4 Fit Robustness

The fit was evaluated for stability using different versions of toy Monte
Carlo (for MC samples used and the method of generation see section 3.2). First,
the fit was evaluated on 500 different samples generated using the PDF described
by equation 6.9h using an accept-reject method (up to a Poisson fluctuated yield) to
get a decay time distribution of events in each CLEO bin. These samples were then
binned using the adaptive binning and treated in the same way as real data. The fit
results (absolute values of xD, yD and their respecive pulls) can be seen in Figure
6.7. Ideally, the pull plots should be centered at zero with unit width. The biases
indicated by the means of the Gaussians fitted to the pull distributions are small
enough to be safely neglected. The width of the pull gaussians indicates that the fit-
ter overestimates the statistical error on the mixing parameters by a factor of ⇠ 1.8.
This is not well understood but presumably is due to the method of generation
used to produce the toy MC sample.

The fit was then validated using a second sample of Monte Carlo, produced
using the BaBar 2010 full amplitude model. The fit results (absolute values and
pulls of xD and yD) can be seen in Figure 6.8. The pulls are reasonably well centered
on the origin, with the pulls introducing a small bias into the measurement at 13%
of �yD and 9% of �xD which, when added in quadrature, can be neglected. This pull
is most likely caused by the fact that the toys were generated by the BaBar 2010
model but were fitted with the CLEO values for the CLEO parameters. Similarly,
the width of the pull of the xD parameter suggests the fit overestimates the error on
this parameter. This is not properly understood but is associated with the method
of production for the MC sample.i

Additionally the �2 profile based on full amplitude MC can be seen in the
Figure 6.9. The profile shows a single minimum, indicating the fit is stable. The �2

profile also shows that the method is more sensitive to xD than yD by a factor of
⇠ 3 as seen in section 6.3.

hIn these, the x and y were set to 1% and the decay time was fixed to the world average [6]
iThis effect was investigated at length and amongts the potential causes were excluded: choice

of CLEO parameter values, CLEO parameter uncertainties, CLEO parameter correlations, approxi-
mations in the PDF formulation, interdependence of CLEO bins, decay time uncertainty, choice of
amplitude model. Given that the fitter overestimates errors rather than underestimates them it is not
considered a serious problem but an avenue of exploration for further analyses.
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Figure 6.7: Absolute values and pulls of 500 fits to simple toy MC.
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Figure 6.8: Absolute values and pulls of 600 fits to full amplitude toy MC.
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Figure 6.9: The �2 profile of a fit to a full amplitude MC sample. The profile shows a
single minimum. The contours do not correspond to any scale and simply illustrate
the well behaved range of the fit.
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6.5 Efficiency variation across the Dalitz plot

Due to the binning described in section 6.2.1 the strong phase �D informa-
tion is integrated over an area in the Dalitz plot. The binning was chosen to min-
imise the �D variation within each bin. If the reconstruction efficiency depends on
the Dalitz coordinates of the event, this could enhance variation of �D across each
bin in non-trivial way, potentially biasing the final fit. For this purpose, the estima-
tion of the phase-space dependent efficiency ✏(m2

12,m
2
13) is necessary. The actual

estimation of the systematic effect of the selection on the measurement is shown in
section 7.3. This section describes the way the efficiency model was obtained.

The efficiency is extracted using Monte Carlo generated with a flat phase-
space model that is subsequently passed through trigger and selection. The curva-
ture of the shape of the phase-space after reconstruction in Figure 6.10 indicates the
efficiency due to position in the Dalitz plot.

Figure 6.10: The flat phase-space Monte Carlo after reconstruction shows non-flat
distribution due to the reconstruction and selection efficiency. The colour scale de-
notes the number of events in the sqaure phase-space bin.
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The model to parametrize the efficiency

✏(m2
+,m

2
�) =au3 + bu2 + cu2v + du+ euv + fv + gv2 + hv3

u =(m2
+ +m2

�), v = |m2
+ �m2

�|
(6.29)

was chosen from several candidate polynomials of different orders by comparing
the �2 per degree of freedom. Note that this model is symmetric under the m2

+ $
m2

� transformation by construction.

The illustration of the model and the pull of the fit are shown in Figures 6.11
and 6.12. The bins with pull over 3� are edge bins with low statistics where Poisson
approximation of standard deviation breaks down.

Figure 6.11: The efficiency model fitted to the Monte Carlo.

Due to the slow variation of the efficiency across the phase-space, it is not
expected that it will have a large impact on the systematic error of the final mea-
surement. This is evaluated in more detail in chapter 7.
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Figure 6.12: The pull of the efficiency model fit to the Monte Carlo. Bins with large
pulls are low-statistics boundary bins.
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Chapter 7

Sources of Systematic Uncertainty

This chapter discusses the sources of systematic uncertainty for the mea-
surement, and how the magnitudes of the systematic uncertainties are determined.
A summary of the systematic uncertainties can be seen in Table 7.1.

Source of uncertainty xD(%) yD(%)

Fitter bias 0.09 0.34
Decay time bias 0.07 0.71

Sel. Efficiency asymmetry 0.05 0.09
Sel. Efficiency model 0.02 0.01
Efficiency effect on binning 0.08 0.07
PID MC-data discrepancy Negl. Negl.

Combinatoric background 0.14 0.80
Misreconstructed ⇡s 0.03 0.08
Secondary contamination 0.04 0.07

Total systematic uncertainty 0.21 1.13

Table 7.1: Summary of all absolute systematic uncertainties estimated in this anal-
ysis.

7.1 Fitter bias

The stability of the fitter that minimizes the function described in section
6.3.2 was investigated in section 6.4 and was found to be stable. Based on toy MC
studies, a small bias on the extracted mixing parameters was found and the abso-
lute magnitude of this bias is applied as an associated systematic uncertainty on
the extraction of the mixing parameters.
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While the bias in theory could be corrected for, based on estimates, the fit
bias is not a dominant systematic uncertainty and thus can be left uncorrected.

7.2 CLEO Strong-Phase Information

A significant source of the systematic uncertainty is the limited knowledge
of the strong phase difference as determined by CLEO [65]. The magnitude of the
uncertainty can be determined by performing parallel fits with toy MC as shown
in section 6.4 with constrained CLEO parameters. The uncertainty determined is
the combination of the statistical uncertainty and the systematic uncertainty due to
CLEO parameter constraint. One can remove the statistical uncertainty in quadra-
ture (to get the statistical uncertainty, the same set of fits is performed with the
CLEO parameters fixed to their central values) yielding purely the systematic un-
certainty due to the CLEO parameter constraint.

Alternatively, one can perform repeated fit to data with CLEO parame-
ters fluctuated using a multi-dimensional Gaussian constraint. The extracted val-
ues of mixing parameters can be plotted and fitted with a Gaussian distribution.
The width of the distribution represents the systematic uncertainty due to limited
knowledge of the CLEO parameters. This is shown in chapter 8.

The toy MC fits with CLEO parameters fixed and fluctuated within con-
straint can be seen in Figure 7.1 and the corresponding uncertainties are shown in
Table 7.2.

Uncertainty xD(%) yD(%)

Combined 0.38 1.49
Statistical 0.38 1.36

Systematic 0.05 0.60

Table 7.2: Table of absolute uncertainties due to knowledge of CLEO parameters.

There is no significant bias when fitting with the CLEO parameters fixed.
The systematic uncertainty coming from the CLEO parameters is however also
evaluated on data and is found to be significantly different from the result from
toy MC. This is attributed to the fact that the toys are generated with different val-
ues of CLEO parameters compared to those extracted by the CLEO analysis and
that the degree of fluctuation of the CLEO parameters in toys is difficult to repli-
cate. Therefore this analysis uses the data-driven method to assign the systematic
uncertainty as shown in chapter 8.
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Figure 7.1: Absolute values of 600 fits to full amplitude toy MC with fluctuated
CLEO parameters (left) and fixed CLEO parameters (right).

For the analysis of the combined dataset at LHCb from 2011 and 2012, the
systematic error due to the knowledge of CLEO parameters will most likely be the
dominant uncertainty [68]. The analysis of quantum correlated  (3770) decays at
BES-III should provide better precision on the measurement of the ci and si param-
eters in the future.

7.3 Selection

The selection used to purify the dataset is described in chapter 3. The ap-
plication of the selection can in general bias the resulting Dalitz plot distribution
which would in turn introduce a bias into the measurement.

The measurement is performed by fitting the time dependent ratio of yields
in CLEO bin i and bin �i, thus a Dalitz plot bias that is asymmetric in the m2

+ = m2
�
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reflection axis is a source of systematic uncertainty. This potential bias was already
investigated in section 6.5 where a symmetric model was fitted to the Dalitz plot of
a MC sample after performing the selection.

The systematic uncertainty arising due to this asymmetry can be evaluated
by applying the efficiency model (normalised such that the maximum of the effi-
ciency is unity) as a correction on the signal yield in each CLEO bin and time bina

and performing the measurement on suchly modified simulated data. This can be
safely performed on a toy MC sample that is used to validate the fitter, this has the
benefit of being able to repeat the fit 600 times and obtain a much clearer picture
of the bias. The change in the distribution of the measurements compared to the
original set of measurements performed for fit stability will reveal potential bias
due to selection efficiency.

The selection also contains particle identification cuts (see sections 2.4 and
3.4). While these are in theory included in the previous estimates as a part of the se-
lection, there is a systematic uncertainty coming from the fact that the LHCb Monte
Carlo is not perfect at describing the PID performance of the detector. This can
cause a systematic bias if the PID performance is not symmetric in the m2

+ = m2
�

reflection axis in the Dalitz plot as before. Given the nature of the cuts, this is equiv-
alent to PID efficiency being different for ⇡+ and ⇡�. To determine the magnitude
of this effect, one can plot the PID performance for the data (as a function of p and
pT of the particle), reduce the inefficiency by the PID inefficiency determined from
MC (to correct for the systematic uncertainty already accounted for previously),
use this map to weigh the symmetric efficiency model due to position in Dalitz plot
and use the resulting map as an efficiency correction in toy MC fits. The resulting
bias is the systematic effect due to the discrepancy between the PID performance
in MC and in data.

The efficiency due to the selection is not constant across the CLEO bin and
therefore a systematic effect can arise if the population of a given CLEO bin is de-
pleted in a non-uniform way. To quantify this effect, each CLEO bin is subdivided
into three partitions with equal area (see Figure 7.2 for illustration), the fit ratio is
evaluated in each sub-bin and a population weighed average is used instead of full
population ratio. The modified ratio is then used in the standard fit with an asym-
metric efficiency model and the pull is compared to the pull on normal binning
result. The difference is assigned as the systematic uncertainty due to the Dalitz
plot binning.

aAlternatively it can be used as a per event weight (especially if the fitting approach requires more
information than simple yields.
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Figure 7.2: Illustration of the sub-binning across the Dalitz plot. The CLEO binning
is not visible, but the boundaries between different sub-bins are indicated by the
change of colour, otherwise the colour scale is immaterial. The areas of the three
sub-bins are equal.

The estimated systematic uncertainties on the measurement due to the se-
lection process are shown in Table 7.3. They are well under the sensitivity limit of
the methods to obtain them and therefore can be safely neglected.

Source of syst. uncertainty xD(%) yD(%)

Efficiency asymmetry 0.05 0.09
Efficiency model 0.02 0.01
PID MC-data discrepancy Negl. Negl.
Efficiency effect on binning 0.08 0.07

Table 7.3: The absolute systematic uncertainties on the measurement of the mixing
parameters due to the selection.

7.4 Background contamination

A significant source of systematic uncertainty is due to the contamination
of the signal with background events. To reduce this effect, the background is re-
moved from the dataset by the use of selection (chapter 3) and yield estimation and
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subtraction (chapter 5). Nevertheless the function estimating the background is not
perfect, some contamination remains and a systematic bias has to be evaluated.

The combinatorial background is removed in each time bin and CLEO
bin separately, the time-evolution of the combinatorial background (the choice of
model and goodness of fit) as well as the uncertainty on the total yield will prop-
agate as a systematic error on the measurement. To estimate the magnitude of the
effect one can propagate the uncertainty onto the yields of signal events in each bin
and fit the dataset. The increase in uncertainty can be removed in quadrature to get
the effect due to the combinatorial background estimation technique.

The systematic effect due to misreconstructed ⇡s can be estimated by prop-
agating the error on the fraction of the misreconstructed ⇡s component through to
the yields on each bin and removing the statistical error in quadrature.

The systematic error due to the secondary background is more tricky to de-
termine. The fit to data assumes that the secondary events behave like signal. This
is an incorrect assumption, but it sets an upper bound on the decay times of the
true secondary component. One can determine the lower bound on the decay time
by assuming that secondaries do not mix [2]. To achieve such a dataset, one can add
toy MC with standard mixing and toy MC with no mixing in the time dependent
proportion determined by the fit to the Ln(�2

IP ) distribution (see section 4.5). The
difference in the bias of toy fits to both datasets is the systematic uncertainty due
to the secondary contamination.

The systematic uncertainties on the measurement of the mixing parameters
due to the background estimation and contamination can be seen collected in Table
7.4.

Source of syst. uncertainty xD yD

Combinatoric background 0.14 0.80
Misreconstructed ⇡s 0.03 0.08
Secondary contamination 0.04 0.07

Table 7.4: Absolute systematic uncertainties on the measurement of the mixing pa-
rameters due to the background estimation and contamination.

7.5 Tag efficiency

The efficiency of the tag does not cause a systematic uncertainty since the
events with a wrong tag are contained entirely in the Category 2 dataset component
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(Misreconstructed ⇡s). Since the fraction of Category 2 events is determined using
real data independently in each CLEO bin, this covers any potential asymmetry in
the tagging mechanism. See the previous subsection for a systematic uncertainty
associated with the contamination due to Category 2 events.

7.6 Decay time bias

Potential bias on the decay time of the D0 candidate can cause a systematic
effect if this bias is not symmetric on the opposite sides of the Dalitz plot. This is is
assumed to be true for the signal candidates but would be difficult to determine for
combinatorial background and secondary contamination. A systematic uncertainty
is assigned due to this issue by extracting per-event weights using the swimming
technique (see appendix B) in the form of top-hat functions that determine the part
of the decay time domain where the event would be accepted. An accept-reject
MC algorithm chooses a random top-hat from this distribution for each event and
checks whether the decay time of the candidate lies within the top hat. The event is
rejected if it does not. A toy study accounting for the acceptance in this way shows
a minor bias which is used as a systematic uncertainty. Interestingly, it’s mostly the
measurement of yD that is affected by the bias rather than the measurement of xD
which is unbiased. This could be consistent with the fact that yD is the difference
in decay widths of the two flavour eigenstates while xD is the difference in mass.

7.7 Systematic uncertainty cross-checks

The effects listed in table 7.5 were investigated and were found to have no
effect on the final measurement and therefore do not contribute a systematic un-
certainty to the final measurement.
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Source of syst. uncertainty Cross-check method

mD model Add bifurcated Gaussian to the model.
�m model Add bifurcated Gaussian to the model.
Ln(�2

IP ) binning Modify the bin size for the adaptive binning
Ln(�2

IP ) model Add a Gaussian to each category
Taylor expansion in fit PDF Fit without the Taylor expansion
Wrong PV association Randomly associate events with a different PV

Domain size Validated with MC with x & y sampled
from a large domain

Table 7.5: Table of effects that were found to not contribute a systematic effect to the
final measurement. Each potential source of uncertainty has an associated method
of cross-cheking that was performed and no effect on the final fit was observed.
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Chapter 8

Results

The final fit to the data is illustrated in Figure 8.3, 8.4, 8.5 and 8.6. The col-
lected uncertainties are shown in Table 8.1. The systematic uncertainty due to the
CLEO parameters is determined by repeated fits to the dataset with the CLEO pa-
rameters fluctuated using an accept-reject MC method with the covariant multi-
dimensional Gaussian constraint as the distribution. Fitting a Gaussian PDF to the
resulting distribution of results yields the systematic uncertainty due to CLEO pa-
rameters as the width of the Gaussian PDF. This is shown in figure 8.1 and the
respective values are shown in Table 8.1.
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Figure 8.1: Fit of a Gaussian PDF to the distribution of 600 results with perturbed
CLEO input parameters. The rest of the fit is identical to the final fit. Fit results of
the Gaussian PDF are indicated.
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Source of uncertainty xD(%) yD(%)

Uncertainty due to CLEO parameters 0.51 3.12
Statistical 0.43 1.36
Other Systematic 0.21 1.13

Total 0.70 3.59

Table 8.1: Table of absolute uncertainties on the measurement of the mixing param-
eters in data.

The measured values of the mixing parameters along with their uncertain-
ties are shown in Table 8.2

Parameters value ± (stat.) ± (CLEO) ± (syst.)

xD 1.89± 0.43± 0.51± 0.21
yD �2.59± 1.36± 3.12± 1.13

Table 8.2: Mixing parameters measured in this analysis. Uncertainties are the statis-
tical uncertainty, uncertainty due to the CLEO input parameters and the systematic
uncertainty respectively.

The contours of the fit showing standard deviations due to statistical un-
certainty can be seen in Figure 8.2. The statistical uncertainties of xD and yD are
clearly uncorrelated.
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Figure 8.2: The fit countours showing the 1, 2, and 3 � levels of the statistical un-
certainty obtained from the final fit to the data. The statistical uncertainties of xD
and yD are not correlated. The ��2 definition for the contours is n2 where n is the
number of statistical deviations from the result.
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(a) CLEO bin 1 fit to R(t)

(b) CLEO bin 2 fit to R(t)

(c) CLEO bin 3 fit to R(t)

(d) CLEO bin 4 fit to R(t)

Figure 8.3: Simultaneous fit to R(t) on the full dataset. CLEO bins 1-4 for D0 !
KS⇡+⇡� events. The decay time on the x-axis is in logarithmic scale. Fit result is
blue, reference fit with xD = yD = 1% is in magenta. Pulls are shown on the right
for both fits.
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(a) CLEO bin 5 fit to R(t)

(b) CLEO bin 6 fit to R(t)

(c) CLEO bin 7 fit to R(t)

(d) CLEO bin 8 fit to R(t)

Figure 8.4: Simultaneous fit to R(t) on the full dataset in CLEO bins 5-8 for D0 !
KS⇡+⇡� events. The decay time on the x-axis is in logarithmic scale. Fit result is
blue, reference fit with xD = yD = 1% is in magenta. Pulls are shown on the right
for both fits.
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(a) CLEO bin 1 fit to R(t)

(b) CLEO bin 2 fit to R(t)

(c) CLEO bin 3 fit to R(t)

(d) CLEO bin 4 fit to R(t)

Figure 8.5: Simultaneous fit to R(t) on the full dataset in CLEO bins 1-4 for ¯D0 !
KS⇡+⇡� events. The decay time on the x-axis is in logarithmic scale. Fit result is
blue, reference fit with xD = yD = 1% is in magenta. Pulls are shown on the right
for both fits.
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(a) CLEO bin 5 fit to R(t)

(b) CLEO bin 6 fit to R(t)

(c) CLEO bin 7 fit to R(t)

(d) CLEO bin 8 fit to R(t)

Figure 8.6: Simultaneous fit to R(t) on the full dataset in CLEO bins 5-8 for ¯D0 !
KS⇡+⇡� events. The decay time on the x-axis is in logarithmic scale. Fit result is
blue, reference fit with xD = yD = 1% is in magenta. Pulls are shown on the right
for both fits.

120



Chapter 9

Discussion

The analysis discussed in this thesis presents a model independent ap-
proach to extracting the charm mixing parameters in a three-body decay. It elimi-
nates the systematic uncertainty due to the model assumptions which is in general
difficult to assess and difficult to quantify the degree to which it can be suppressed.
On the other hand this method accrues a systematic uncertainty due to the limited
knowledge of the integrated amplitude-weighed strong phase difference parame-
ters. The knowledge of these will however be improved in the future by the BES-III
experiment and the relationship between the knowledge on the strong-phase dif-
ference parameters and the mixing parameters is much more readily understood.

The results presented in this thesis are consistent with the current world
averages of measurements as determined by the HFAG within two standard devi-
ations, see Table ??. While the results obtained here do not improve the knowledge
of the mixing parameters significantly, the method presented is a valuable tool in
determining mixing parameters in a model-independent way. In particular, the sen-
sistivity to the mixing parameter xD makes this approach interesting for analyses
with larger datasets which should be able to improve the measurement of xD and
potentially perform searches for CP violation in charm mixing.

Parameter xD(%) yD(%)

Result of the analysis 1.89± 0.43± 0.51± 0.21 �2.59± 1.36± 3.12± 1.13
World Average 0.419± 0.211 (0.456± 0.186

Table 9.1: Comparison of the obtained results with the world averages as presented
by the Heavy Flavour World Averaging Group [3].

An interesting observation is the way in which a non-flat efficiency affects
the sensitivity to the mixing parameters in a non-uniform way. A feasibility study
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should be performed to determine if the development of a trigger and stripping
lines with a phase-space flat efficiency would overall improve the sensitivity to the
desired parameter.

It should also be noted that this analysis includes two more approaches
which, when finished, will be cross-checked to compare the extracted values, pre-
cision and potential systematics. Notably, while the method described in this thesis
is not sensitive enough to float both the strong-phase difference parameters (con-
strained by the available CLEO-c information) and the mixing parameters in the
same fit, the other approaches used in the analysis should allow for floating all
parameters using a global set of constraints.

The input parameters obtained using CLEO analyses contribute a signifi-
cant uncertainty to the measurement, more than predicted by previous studies [68].
It is unclear why this is the case but a comparison with the other methods used in
the analysis should determine if it’s an effect associated with the presented method
of mixing extraction.

This analysis was performed with the 2011 LHCb dataset. It can be extended
to the combined 2011 and 2012 dataset which would guarantee an order of magni-
tude increase in yields thanks to exteded data-taking and improvements in trigger
and stripping lines.
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[37] O. S. Brüning et al., LHC Design Report, CERN, Geneva, 2004.

125

http://dx.doi.org/10.1088/1367-2630/14/12/125003
http://dx.doi.org/10.1088/1367-2630/14/12/125003
http://arxiv.org/abs/1206.2942
http://dx.doi.org/10.1103/PhysRevLett.77.4290
http://arxiv.org/abs/hep-ph/9606260
http://dx.doi.org/10.1103/PhysRevLett.97.131801
http://arxiv.org/abs/hep-ex/0602020
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRev.97.1387
http://dx.doi.org/10.1016/0370-2693(87)91177-4
http://dx.doi.org/10.1016/0370-2693(87)91177-4
http://dx.doi.org/10.1103/PhysRevLett.97.242003
http://arxiv.org/abs/hep-ex/0609040
http://dx.doi.org/10.1103/PhysRevLett.108.101803
http://arxiv.org/abs/1112.3183
http://dx.doi.org/10.1103/PhysRevLett.13.138
http://dx.doi.org/10.1016/S0370-2693(99)01030-8
http://arxiv.org/abs/hep-ex/9909022
http://dx.doi.org/10.1103/PhysRevLett.87.091801
http://arxiv.org/abs/hep-ex/0107013
https://lhc-statistics.web.cern.ch/LHC-Statistics/#
https://lhc-statistics.web.cern.ch/LHC-Statistics/#


[38] J. Haffner, The CERN accelerator complex. Complexe des accélérateurs du CERN, ,
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Appendix A

Three-body decay kinematics and
Dalitz Plot Formalism

This appendix briefly discusses the kinematics of a three-body decay of a
particle and the formalism of Dalitz plots. A much deeper discussion can be found
in [1]. Note that we assume natural unit system with ~ = c = 1.

A.1 Basic kinematics

A particle with energy E, 3-momentum p and mass m has a 4-vector mo-
mentum pµ = (E,p). The square of a 4-vector is the Minkowski inner product
p2 = pµ⌘

µ
⌫ p⌫ = E2 � |p|2 = m2 where

⌘⌫µ =

0

B

B

B

B

@

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1

C

C

C

C

A

(A.1)

is the Minkowski metric. Suppose the particle is viewed from a frame moving with
a velocity �x = px/E in the x-axis direction. The apparent momentum and energy
(E0,p0

) of the particle would be

 

E0

p0x

!

=

 

�x ��x�x
��x�x �x

! 

E

px

!

, p0y = py, p0z = pz (A.2)

where �x = 1/
p

1� �2x. Other 4-vectors follow the same transformations. The
Minkowski inner products of 4-vectors are invariant under Lorentz transforma-
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tions.

For a collision of two particles we can express the total energy in a Lorentz
invariant form, in the Center of Mass (CoM) frame

Etot =
p

(E1 + E2)
2 � (p1 + p2)

2

=

q

m2
1 +m2

2 + 2E1E2(1� �1�2 cos ✓),
(A.3)

where ✓ is the angle between the particles or in the rest frame of particle 1 (Lab)

Etot =

q

m2
1 +m2

2 + 2E2,labm2
1. (A.4)

Given that these two are expressions of a Lorentz invariant quantity, they have to
be equal.

If a particle decays into n daughters in it’s rest frame, the decay rate is given
by

d� =

16⇡4

2M
|M|2d�n(P ; p1, ..., pn), (A.5)

where |M|2 is the square of the Lorentz invariant amplitude �iM and d�n is the
infinitesimal element of the n-dimensional phase-space given by

d�n(P ; p1, ..., pn) = �4(P �
n
X

i=1

pi))
n
Y

i=1

d3pi
(2⇡)32Ei

. (A.6)

A.2 Dalitz plot

Figure A.1: Illustration of a three body decay of a mother particle. Adopted
from [1].

Suppose a particle decays into three daughters in the rest frame of the
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mother particle such as in Figure A.1. We can define the 4-vector sum pij = pi + pj

and the Lorentz invariant mass square combination m2
ij = p2ij . Then m2

12 + m2
13 +

m2
23 = M2

+m2
1+m2

2+m2
3 and m2

12 = (P �p3)2 = M2
+m2

3�2ME3 with E3 being
the energy of daughter 3 in the rest frame of the mother particle. In this frame the
3-momenta of the daughters lie in a plane and the system can be specified using
three Euler angles. The decay rate becomes

d� =

1

16M(2⇡)5
|M|2dE1dE2d↵d(cos�)d� (A.7)

or
d� =

1

16M(2⇡)5
|M|2|p⇤

1||p3|dm12d⌦
⇤
1d⌦3 (A.8)

where (p⇤
1,⌦

⇤
1) is the momentum of the particle 1 in the rest frame of the combina-

tion of particles 1 and 2 and ⌦3 is the angle of the particle 3 in the rest frame of the
mother particle. The variables |p⇤

1| and |p3| are given by

|p⇤
1| =

p

(m2
12 � (m1 +m2)

2
)(m2

12 � (m1 �m2)
2
)

2m12
,

|p3| =
p

(M2 � (m12 +m3)
2
)(M2 � (m12 �m3)

2
)

2M
.

(A.9)

After averaging over spins (or if the mother is a scalar particle) and inte-
grating over the three of the angles, the decay rate becomes

d� =

1

(2⇡)332M3
¯|M|2dm2

12dm
2
13 (A.10)

which has two degrees of freedom and can be projected onto a two dimensional
scatter-plot with axes being m2

12 and m2
13. If |M|2 is constant, the scatter-plot will

be uniformly populated (flat). Therefore any structure observed in the scatter-plot
offers information about the complex amplitude of the process, generally in the
form of bands with constant mij that indicate resonances. This scatter-plot is called
the Dalitz plota.

The minimum and maximum of m2
12 is given by the kinematic constraints

aNamed after Richard Dalitz who invented this formalism to examine K ! 3⇡ decays [2].
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of the decay

maxm
2
12 = (E⇤

2 + E⇤
3)

2 �
✓

q

E⇤2
2 �m2

2 �
q

E⇤2
3 �m2

3

◆2

minm
2
12 = (E⇤

2 + E⇤
3)

2 �
✓

q

E⇤2
2 �m2

2 +

q

E⇤2
3 �m2

3

◆2
(A.11)

where E⇤
2 = (m2

12 � m2
1 + m2

2)/2m12 and E⇤
3 = (M2 � m2

12 � m2
3)/2m12 are the

energies of particle 2 and 3 in the m12 rest frame. The illustration of a Dalitz plot
with kinematic boundaries indicated is shown in Figure A.2.

Figure A.2: Illustration of a Dalitz plot with the kinematic boundaries indicated.
Adopted from [1].
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Appendix B

Swimming Formalism

Swimming is a data-driven mechanism developed to correct the decay time
bias of reconstructed particles cause by the trigger. It has been originally developed
at DELPHI [3] and CDF [4] and the LHCb experiment is well suited to exploit this
mechanism thanks to modular trigger that can be rerun entirely offline and due to
the nature of typical trigger requirements for events analysed [5]. The technique
can be extended for the correction of decay time bias introduced by stripping and
selection as well.

The main body of the algorithm lies in scanning the decay time domain of
each event by simulating the PV moving along the flight path of the candidate and
sampling the trigger (stripping or selection) decision along the entire domain (see
Figure B.1). A step function indicating where in the decay time domain the can-
didate would be and wouldn’t be accepted is obtained. The step function is then
used as a per-event weight when performing the decay time fit with an overall
Bayesian normalisation applied to normalize the weights. In general it’s sufficient
to only consider the first (and longest) “top-hat” in the step function which con-
sists of only two relevant points - TP1 which is the point where the step function
starts (i.e. the acceptance begins) and TPdiff which is the length of the acceptance
interval.

Suppose that a candidates have a decay time distribution

P (t) =
1

⌧
e�t/⌧ (B.1)

and a decay acceptance from tmin to tmax as illustrated in Figure B.2. The probabil-
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Figure B.1: Illustration of the determination of a top-hat acceptance function for an
event.

ity of an event lying within an acceptance range can be written as

P (t, tmin, tmax) = P (ti|ti 2 [tmin, tmax]) · Ai

=

1
⌧ e

�ti
⌧

R tmax,i

tmin,i
e

�t0
i

⌧ dt0
· Ai

=

1
⌧ e

�ti
⌧

e
�t0

min,i
⌧ � e

�t0
max,i
⌧

· Ai

(B.2)

where Ai is the acceptance function for event i and we assume that there is only
one “top-hat” in the acceptance function.

This weighing is performed on a per-event basis and normalized againts the
sum of all weights.
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Figure B.2: Time acceptance for a sample event.
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Appendix C

EvtGen MC Generator

EVTGEN is a heavy flavour physics generator developed originally by An-
ders Ryd and David Lange [6] for the BaBar and CLEO Collaborations. Since then
it has been used at CERN, Fermilab, KEK and many other locations. The current
development team for the EvtGen MC generator is located at the University of War-
wick [7]. A very good in-depth overview of MC generators used in particle physics
is given in [1].

Several advantages that EVTGEN offers are:

Modularity — Decay models are modular classes that can be added or modified
without changing the EVTGEN core.

Decay Amplitudes — The generator uses decay amplitudes rather than probabilities
at every node of a decay tree, including all angular correlations.

Decay tables — The decays of individual particles are specified using decay tables
listing possible decays of the mother particle along with associated branch-
ing fractions and decay models. These are user friendly and can be specified
without changing the EVTGEN code.

CP violation and neutral meson oscillations — These effects are correctly imple-
mented for K,D, and B sectors.

In general there are two ways to implement a MC generation algorithm at
the highest level of abstraction. One can calculate the total amplitude for all pa-
rameter space, square to get the probability and use an accept-reject mechanism to
generate an event. This has serious drawbacks because one needs to know the max-
imum probability of the decay chain which is logistically difficult for B decays with
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hundreds of decay modes. A second drawback is that accept-reject at top level is in-
efficient for large parameter spaces as the whole decay chain has to be regenerated
on reject and the accept probability is small. For these reasons, EVTGEN generates
the decay tree as a sequence of sub-decays.

At the LHC experiment, the process starts by using the PYTHIA generator
to get the initial pp collision and hadronization. The generation proceeds from sig-
nal mother particle to a single decay mode selected from a decay table based on
branching fractions used as probabilities. Having chosen the mode, the generator
uses the associated decay model to generate kinematics, including angular correla-
tions, mixing, CP violation and any associated effects. The PHOTOS [8] generator
is used for initial state and final state radiation corrections where applicable. For
decays of the tau lepton, the external TAUOLA [9] generator is called. Parts of
the decay tables are incomplete and some hadrons have a chance of being passed
back to PYTHIA for further hadronization. This whole step is repeated for every
particle in the signal tree until only long-lived particles remain (particles with no
decays defined in the EVTGEN decay table). If one uses the models that preserve
the angular correlations for individual sub-decays, the whole decay tree preserves
the correlations.

This versatility of this process is limited by two factors: the complexity of
the decay models and the completeness of the decay tables. The decay models are
encapsulated in C++ classes that are loaded into the EVTGEN base as modules and
currently there are three base classes: models that calculate decay amplitude, mod-
els that calculate decay probability and models that create unpolarized daughters
(see Figure C.1). This allows dynamic creation of more intelligent models by the
users whenever required. The decay tables fall into two categories: the master de-
cay table encapsulated in a single file called DECAY.DEC and user decay tables
that override a small, selected part of the master decay table to force a decay into
a single desired decay tree (or a cocktail of decay trees, or an entirely inclusive
selection).

The master decay table contains every single mother particle to be decayed
and every single mode the mother decays into, including models and branching
fractions. A decay table for a sample particle looks like this:

Decay D⇤+
0 . 6 7 D0 pi+ VSS ;
0 . 3 3 D+ pi0 VSS ;
Enddecay
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Figure C.1: Illustration of the templated virtual base classes that are extended into
decay models in EVTGEN. The three classes derive into models that use decay am-
plitude, decay probability or return unpolarized daughters. Adopted from [6].

which uses the VSS model to decay the D⇤+ mother into either D0⇡+ or D+⇡0.
The VSS model requires a vector mother to decay into two scalar or pseudoscalar
particles. Since the master decay table determines all the possible decays and their
branching fractions, it has to be regularly updated with the newest branching frac-
tions as averaged by the Particle Data Group [1]. This effort is generally undertaken
every two years and as the part of my studies I have developed an automated tool
that should reduce the time requirements for any future updates.
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Appendix D

MC Filtering

Monte Carlo filtering is a technique employed to increase the statistical sig-
nificance of the MC sample without using more storage space by performing a
selection while the sample is being generated and only saving events which pass
the selection process. Given the modular nature of the MC production at LHCb
(see section 2.10.1) there are two natural places where the filtering can be applied,
at the generator-level or at the reconstruction-level.

Only a small number of event properties are available at the generation
stage and thus the full selection cannot be performed a. The advantage is that CPU
time can be saved on not digitizing and reconstructing events that are not pass-
ing through generator-level selection. These cuts are introduced into Gauss in two
ways, either by adding a C++ module into the Gauss package which is then ref-
erenced in the user written DecFile or by using LoKi::GenCutTool and adding the
code directly into the DecFile itself. The former method is marginally more pow-
erful and better documented, but requires the central release of a new version of
the Gauss package while the latter only requires the release of a new version of
DecFiles package. This analysis uses the cuts shown in Table D.1

Using the LOKI::GENCUTTOOL the cuts can be encoded as follows
gen = Generation ( )
gen . S i g n a l P l a i n . addTool ( LoKi GenCutTool , ’ TightCut ’ )
t ightCut = gen . S i g n a l P l a i n . TightCut
t ightCut . Decay = ’ ˆ [ D⇤(2010)+ �> ˆ ( D0 => ˆ ( KS0 => ˆ pi+ ˆ pi� ) ˆ pi+ ˆ pi� ) ˆ pi +]CC’
t ightCut . Preambulo += [

’GVZ = LoKi . GenVertices . Posi t ionZ ( ) ’ ,
’ from GaudiKernel . SystemOfUnits import m i l l i m e t e r ’ ,
’ inAcc = in range ( 0 .005 , GTHETA , 0 .400 ) ’ ,

aFor example the KS decay time is determined during digitization when the material interac-
tions are taken into account and therefore it’s impossible to use generator-level filtering to remove
candidates where the KS decays outside of VELO (i.e. a “downstream” KS).
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Property Cut

All ⇡± azimuthal angle 0.005 < ✓ < 0.4
D0pT > 2 GeV
D0⌧ > 0.25 ps
D0 end vertex z-position < 8 m
D0 and KS daughter p > 1.5 GeV
D0 and KS daughter PID ⇡±

N. of hard ⇡± with p > 2.2 GeV and pT > 1.4 GeV > 0.5
2D D⇤+pT vs. D⇤+p cut (7/300)p+ 7/3 MeV> pT > 0.3p

Table D.1: List of cuts applied for generator level filtering.

’goodD0 = ( GPT > 2000 ⇤ MeV) & (GTIME > 0 . 075 ⇤ m i l l i m e t e r )
& (GFAEVX( abs ( GVZ ) , 0 ) < 8000 .0 ⇤ m i l l i m e t e r ) ’ ,

’ pioncuts = ( GNINTREE( ( ‘ ‘ pi + ’ ’ == GABSID ) & (GP > 1500 ⇤ MeV) , 4 ) > 3 . 5 ) ’ ,
’goodKS = ( GFAEVX( abs ( GVZ ) , 0 ) < 800 .0 ⇤ m i l l i m e t e r ) ’ ,
’ goodDst = ( (GPT > 1500 ⇤ MeV) & (GPT < (3 ⇤ GP / 1 0 ) ) & (GPT > (7⇤GP/300 � 7/3) ) ) ’ ,
’ t r i g g e r = ( GNINTREE( ( ‘ ‘ pi + ’ ’ == GABSID) & (GPT > 1400 ⇤ MeV )

& (GP > 2700 ⇤ MeV) , 4 ) > 0 . 5 ) ’ ,
]

t ightCut . Cuts = {
’ [ pi +] cc ’ : ’ inAcc ’ ,
’ [D0] cc ’ : ’goodD0 & pioncuts & t r i g g e r ’ ,
’ [D⇤ (2010)+] cc ’ : ’ goodDst ’ ,
’KS0 ’ : ’goodKS ’ ,

}

The reconstruction-level filtering allows the application of the entire selec-
tion after the reconstruction of an event has been performed to determine if the
event should be keptb. This method applies the entire stripping and selection at
the final step of the production and therefore saves no CPU time but does save
disk space. It should be noted that even this method of production is not perfectly
efficient and the number of truth matched candidates in the final MC sample is
smaller than the total yield of the sample. This method is performed by passing a
python filtering script to the DA VINCI framework during the reconstruction.

Utilized together, these methods can be used to save both CPU time and
disk space when producing MC and, given that those are the practical limitations
during the production, it can increase the statistical power of the sample produced.

bAlternatively, the stripping is performed in pass-through, meaning that the events that fail are
not removed but only flagged.
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Appendix E

Results of the simultaneous fit to
Ln(�2IP ) distribution

The results of the simultaneous fit to the Ln(�2
IP ) distribution in each decay

time bin are shown in this appendix. Each plot includes a legend with the decay
time interval (units of ps are implied) that the events in the fit lie within as well
as the yields of the relevant components in the signal window of the Ln(�2

IP ) dis-
tribution. Each plot also shows a distribution of pulls with lines indicating ±2�

interval from the fit.
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Figure E.1: Fit projections of the simultaneous fit to the Ln(�2
IP ) distribution in

decay time bins 1-2. The decay time intervals of the time bins and the yields of
components within the signal window are shown in the plots.
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Figure E.2: Fit projections of the simultaneous fit to the Ln(�2
IP ) distribution in

decay time bins 3-4. The decay time intervals of the time bins and the yields of
components within the signal window are shown in the plots.
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Figure E.3: Fit projections of the simultaneous fit to the Ln(�2
IP ) distribution in

decay time bins 5-6. The decay time intervals of the time bins and the yields of
components within the signal window are shown in the plots.
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Figure E.4: Fit projections of the simultaneous fit to the Ln(�2
IP ) distribution in

decay time bins 7-8. The decay time intervals of the time bins and the yields of
components within the signal window are shown in the plots.
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Figure E.5: Fit projections of the simultaneous fit to the Ln(�2
IP ) distribution in

decay time bins 9-10. The decay time intervals of the time bins and the yields of
components within the signal window are shown in the plots.
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Figure E.6: Fit projections of the simultaneous fit to the Ln(�2
IP ) distribution in

decay time bins 11-12. The decay time intervals of the time bins and the yields of
components within the signal window are shown in the plots.
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Figure E.7: Fit projections of the simultaneous fit to the Ln(�2
IP ) distribution in

decay time bins 13-14. The decay time intervals of the time bins and the yields of
components within the signal window are shown in the plots.
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Figure E.8: Fit projections of the simultaneous fit to the Ln(�2
IP ) distribution in

decay time bin 15. The decay time intervals of the time bin and the yields of com-
ponents within the signal window are shown in the plot.
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Appendix F

Results of the 2D mD- �m fits in
individual bins of phase-space.

The plots of mD and�m projections of the 2D mD-�m fit to all CLEO bins
i are shown here. The plots shown in Figure F.1 through F.8 are the D0 ! KS⇡+⇡�

data in individual phase-space bins while the Figure F.9 through F.16 show the
¯D0 ! KS⇡+⇡� data in phase-space bins.
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Appendix G

Alternative choice of fit ratio

There are several issues with formulation of the fit variable that is used in
chapter 6.3. It’s possible to not know which of the numerator or denominator is
vanishing if one doesn’t have good prior information about the phase-space of
the decay model of D0 meson, the choice of R to be Ti/T�i or T�i/Ti changes the
subsequent algebra enough to be inconvenient. Thus one can choose a symmetric
ratio such as

˜Ri ⌘
PiP�i

P2
i + P2

�i

=

Ni,sigN�i,sig

N2
i,sig +N2

�i,sig

(G.1)

which has the following benefits

lim

Ti⌧T�i

˜R = Ti/T�i

lim

T�i⌧Ti

˜R = T�i/Ti.
(G.2)

The numerator and denominator of the expression for ˜R then evaluates into

Ni,sigN�i,sig = e�2�t
n

TiT�i +
p

TiT�i�t [Ti(ciyD � sixD) + T�i(ciyD + sixD)]

+ TiT�i�
2t2(c2i y

2
D � s2i y

2
D)
 

N2
i,sig +N2

�i,sig = e�2�t
n

T 2
i + T 2

�i + 2

p

TiT�i�t [Ti(ciyD + sixD) + T�i(ciyD � sixD)]

+ 2TiT�i�
2t2(c2i y

2
D + s2i y

2
D)
 

.

(G.3)

Neglecting the terms O(x2),O(y2), the expression reduces to

˜Ri =
TiT�i +

p
TiT�i�t [Ti(ciyD � sixD) + T�i(ciyD + sixD)]

T 2
i + T 2

�i + 2

p
TiT�i�t [Ti(ciyD + sixD) + T�i(ciyD � sixD)]

(G.4)
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Which can be approximated using Taylor series to leading order as

˜Ri =
TiT�i

T 2
i + T 2

�i

⇢

1 +

�tp
TiT�i

[Ti(ciyD � sixD) + T�i(ciyD + sixD)]

�

·

·
⇢

1� 2

p

TiT�i�t
Ti(ciyD + sixD) + T�i(ciyD � sixD)

T 2
i + T 2

�i

� (G.5)

if the following assumption holds

T 2
i + T 2

�ip
TiT�i

� Ti(ciyD + sixD) + T�i(ciyD � sixD) (G.6)

One can check that this assumption holds if Ti ⌧ T�i or T�i ⌧ Ti and when
Ti ⇡ T�i we have

2TiciyD ⌧ 2T 2
i

Ti

ciyd ⌧ 1

(G.7)

which holds given that ci  1 and yD ⇠ 0.01. This lets us use equation G.5 and
neglect O(x2),O(y2) terms again to get

˜Ri =
TiT�i

T 2
i + T 2

�i

⇢

1 +

�tp
TiT�i

[Ti(ciyD � sixD) + T�i(ciyD + sixD)]�

� 2

TiT�i�t

T 2
i + T 2

�i

[Ti(ciyD + sixD) + T�i(ciyD � sixD)]

� (G.8)

or, substituting Ri ⌘ T�i/Ti

˜Ri =
Ri

1 +R2
i

⇢

1 +

�tp
Ri

[Ri(ciyD + sixD) + (ciyD � sixD)

� 2Ri

1 +R2
i

[(ciyD + sixD) +Ri(ciyD � sixD)]

�� (G.9)

The final form of the fitted function is linear as can be seen from eq. G.9.

The propagated Poisson error for ˜R can be calculated using the leading or-
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der multivariate Taylor expansion for independent variables

�̃2i,j ⌘
 

@ ˜Ri,j

@Ni,j

!2

Ni,j +

 

@ ˜Ri,j

@N�i,j

!2

N�i,j

�̃2i,j ⌘
"

N�i,j(N2
i,j +N2

�i,j)� 2N2
i,jN�i,j

(N2
i,j +N2

�i,j)
2

#2

Ni,j

+

"

Ni,j(N2
i,j +N2

�i,j)� 2Ni,jN2
�i,j

(N2
i,j +N2

�i,j)
2

#2

N�i,j

(G.10)

This approach has a major drawback in that the following limit

lim

Ti!T�i

˜R ! 1

2

(G.11)

maximizes the function, and more importantly, at maximum the simple propagated
error for ˜R vanishes

lim

Ti!T�i

�̃ = 0 (G.12)

as seen from equation G.10. A different way to obtain the propagated error for
the ˜R fit function is to use a Monte Carlo efficiency estimation or a Bayesian error
estimation in a similar way to propagating errors for efficiencies [10]. However
since the fit described in chapter 6 is stable and unbiased, this approach was not
pursued further.
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Appendix H

Values of the CLEO parameters
used in this analysis

The parameters extracted in the quantum correlated (3770) CLEO analysis
[11] for the equal-��KS⇡+⇡� BaBar 2008 binning can be seen in tables H.1 and H.2
and the statistical and systematic correlation matrices for ci and si can be seen in
tables H.3 and H.4.

CLEO bin ci± (stat.) ± (syst.) si± (stat.) ± (syst.)

1 0.655± 0.036± 0.042 �0.025± 0.098± 0.043
2 0.511± 0.067± 0.063 0.141± 0.183± 0.066
3 0.024± 0.140± 0.080 1.111± 0.131± 0.044
4 �0.569± 0.118± 0.098 0.328± 0.202± 0.072
5 �0.903± 0.045± 0.042 �0.181± 0.131± 0.026
6 �0.616± 0.103± 0.072 �0.520± 0.196± 0.059
7 0.100± 0.106± 0.124 �1.129± 0.120± 0.096
8 0.422± 0.069± 0.075 �0.350± 0.151± 0.045

Table H.1: The values of integrated amplitude weighed phase difference ci and si
extracted in the CLEO analysis [11] used in the model independent fit in this thesis.
The uncertainties are statistical and systematic respectively.
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CLEO bin Ti± (stat.) [%] T�i± (stat.) [%] Ri± (stat.)

1 9.0± 0.4 2.6± 0.2 0.485± 0.028
2 14.4± 0.5 0.5± 0.1 0.238± 0.027
3 14.7± 0.5 0.3± 0.1 0.279± 0.032
4 9.9± 0.4 5.9± 0.3 0.671± 0.094
5 5.7± 0.3 3.3± 0.2 0.597± 0.044
6 7.5± 0.4 0.5± 0.1 0.235± 0.034
7 10.9± 0.4 5.5± 0.3 0.096± 0.015
8 2.2± 0.2 6.9± 0.3 0.193± 0.017

Table H.2: The values of integrated amplitude extracted in the CLEO analysis [11]
used in the model independent fit in this thesis. The Ti and T�i parameters are mul-
tiplied by normalization constant to get the number of events in the corresponding
bin. The value of Ri is absolute as the normalization constant cancels. The errors
are statistical only.
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