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Summary

One of the methods for building an automatic visual system is to borrow the
properties of the human visual system (HVS). Artificial neural networks are based on
this doctrine and they have been applied to image processing and computer vision.
This work focused on the plausibility of using a class of Hopfield neural networks for
edge detection and image restoration.

To this end, a quadratic energy minimization framework is presented. Central
to this framework are relaxation operations, which can be implemented using the
class of Hopfield neural networks. The role of the uncertainty principle in vision
is described, which imposes a limit on the simultaneous localisation in both class
and position space. It is shown how a multiresolution approach allows the trade-
off between position and class resolution and ensures both robustness in noise and
efficiency of computation. As edge detection and image restoration are ill-posed,
some a priori knowledge is needed to regularize these problems. A multiresolution
network is proposed to tackle the uncertainty problem and the regularization of these
ill-posed image processing problems. For edge detection, orientation information is
used to construct a compatibility function for the strength of the links of the proposed
Hopfield neural network.

Edge detection results are presented for a number of synthetic and natural images
which show that the iterative network gives robust results at low signal-to-noise ratios
(0 dB) and is at least as good as many previous methods at capturing complex region
shapes. For restoration, mean square error is used as the quadratic energy function of
the Hopfield neural network. The results of the edge detection are used for adaptive
restoration. Also shown are the results of restoration using the proposed iterative

network framework.
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Chapter 1

Introduction

1.1 Introductory Remarks

In the past three decades, many researchers have been striving for a computer vision
system which can automate many tasks involving seeing. The task is to use image
capturing equipment in place of human eyes, and a computer and algorithms in place
of the little understood human brain. While computer vision systems may have a
degree of success in a controlled environment in the recognition of simple p'arts such
as bolts and cogs, in the general case, the system is far ’frorn the performance of the
human visual system (HVS). Seeing seems to us so natural that its complexity is
easily underestimated. Take a look at figure 1.1. A human being has no difficulty in
recognising ghis picture as lake scenery, even if he or she has not seen the image before.
While using a digital computer, to the author’s knowledge, there is no computer

vision system which can possibly come up with a ‘correct’ interpretation in a couple

of seconds.
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(b)

Figure 1.1: (a) Lake scenery (b) A part of the ‘lake’ scene (in a different resolution).

While the central nervous system may not be the only information processing
system that can accomplish seeing so successfully, it is nevertheless the most robust
and versatile system known to humans. It is thus not surprising that much progress in
computer vision and image processing is the direct result of borrowing the properties
of the HVS. For example, the use of the ‘masking effect’ of the HVS improves the

effectiveness of image compression and restoration algorithms [71] [4] [16].

Naturally, there are also direct attempts in building up biological-like networks
(artificial neural networks) to solve some image processing and vision problems [141]
[40] [87] [135]. Although such networks are still crude, they have achieved some
success recently. This work will focus on the plausibility of using a class of artificial

neural networks for edge detection and image restoration.
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1.2 The Nature of Images

An image of a scene is formed by projecting part of the three dimensional (3-D)
material world onto a two dimensional (2-D) plane. Hence the image records certain
properties of the material world, which are responsible for the nature of imdges. The
3-D world consists of objects which tend to exhibit some degree of coherence in a
range of apprdpriate scales (ie. hierarchical organization), as a consequence of the
cohesiveness of matter. This entails that the image consists of a background and
images of objects which appear to be near constant or slow varying intensity regions
under appropriate lighting conditions, and that objects appear to be more or less
similar when inspected over a range of scales (see figure 1.1, the sail and the trees

appear similar at two scales).

This property that the material world is hierarchically organized also implies that
objects in images occur over a range of scales and that a natural image more or less

exhibits a similar structure and appearance (in a general sense) whatever the area

under inspection.

Apparently, given an appropriate scale, some §bjects in an image will appear
large and their boundaries can be approximated by lines which are characterized by
their positions and orientations. This implies that to extract boundaries of objects
adequately, the scale should be take into account. In other words, features in a
given scale will respond maximally to a filter with the corresponding window size.
This suggesté a multiresolution(or multiscale) analysis, which will be examined more

’

closely in chapter 2.
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As the properties of an image are the results of the underlying physical laws, any
image processing system will have to utilize them to extract the information about the
corresponding part of the 3-D world. It is thus not surprising that physiological and
psychophysical experiments showed that the mammalian visual system has visual
cells tuned for particular orientation and scales in the retinal image [54] [55]. It
would be expected that if an image model is of some utility, it should also exhibit

such properties.

1.3 Noise, Ill-posedness and Uncertainty

The purpose of image processing techniques such as image restoration is to recover
information from 2-D images; that is, they are inverse problems. As an image is
typically formed by projecting a 3-D scene on a 2-D image plane, a consequence is
the loss of information in the process of forming the image. This implies that an image
may correspond to an infinite number of possible scenes. Such problems are ill-posed,
in the sense that they do not have unique solutions [104]. A common approach to
these problems is to assume that they do not require domain-dependent knowledge,
but only generic constraints about the physical world, such as continuity. Such an

approach is known as regularization theory. This notion will be discussed in more

detail in Section 3.5.

Another form of ill-posedness is caused by the fact that the image formed is in-
evitably corrupted with random noise and sometimes blurred. A common type of

noise can be modelled as Gaussian white noise, and can be reduced by a smoothing
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operation. To reduce the effect of blurring, which can be viewed as a smoothing op-
eration, a common approach is to apply an inverse operation. However, the inverse
operation is in genéra_l a kind of highpass filter which will amplify broadband noise
as well; in other words, a small amount noise or error in the data can produce an
extremely large error in the solution. Thus, there is a conflict in the operations to
reduce blurring and noise. This phenomenon is analogous to the uncertainty principle
in vision, which is an inevitable consequence of the inherently contradictory nature
" of the requirements of vision — an inference process concerning the recognition of
| ‘what’ is ‘where’ [129] [131] [130], for example, in image segmentation, the trade-off
between the resolutions of the class space and the position space [131]. Instances of

the uncertainty principle will be given in chapter 2 and of deblurring in chapter 5.
1.4 Image Modelling and Optimization Techniques

To deal with the image processing problems effectively usiﬂg a minimal set of as-
sumptions, it is necéssary to use statistical methods, which represent image structure
probabilistically rather than in terms of ‘real world’ constraints. In this approach to
image processing, usually digital images are regarded as samples from a 2-D grid of
random variables (pixels). The set of random variables is usually as large as 512 x 512
and 1024 x 1024 ié not uncommon. To process such large amounts of data efficiently,
it 1s prefefable to have an urnderlying model which explains the statistical character-
istics of the given data. In other words, if an image model is to be of use, it should

have the ability to render the properties of images, that is, both to describe images

observed and to generate synthetic images from model parameters.
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As noted in section 1.2, a natural image usually consists of a collection of more
or less constant areas. It is therefore reasonable to assume that the grey-level at a
pixel is statistically dependent on some of its neighbours. Indeed, the use of neigh-
bourhoods is ineséapable when dealing with ambiguity and noise in image processing.
It provides a geometric framework where pixels are classified using their contezt or
neighbourbood. Based on this, ad hoc and heuristic methods, such as relaxation la-
belling, have been developed for edge detection and segmentation [142] [41] [137]. The
main idea in relaxation labelling is to define ‘compatibility functions’ which are much
like statistical correlations and are used to quantify local constraints. The process
usually is implemented as a network of local computations which are intended to be
homogéneous and can be performed in parallel. This approach is similar to the edge

detection method used in this work (chapter 4).

Let {zi;,0 < i,j < M} be the grey-level image, of size M by M pixels. One
way to describe the statistical dependence among neighbouring pixels in an image
is to represent ;; as a linear weighted combination of pixels in the neighbourhood
of z;;. Using the assumption that ‘images are wide sense stationary, fast algorithms
based on this class of image models have been developed for image restoration, edge
detection and image compression [60] [61]. The estimates of the model parameters
are usually obtrained from training data using a minimum mean square error (MMSE)
or Maximum Likelihood method. However, the lack of a facility to describe scale in

this class of models motivated the development of a class of multiresolution linear

models. This will be discussed in chapter 2.

Alternatively, the local dependence characteristics of an image are formulated using
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the concept of Markovian random fields(MRF) [133]. Formally, an image is said to

be a Markovian random field if its conditional density p(-|-) satisfies
P3| at, 020<M ()N M80)2)) = P(2is|Tat, 1) €N A ) # ) (1)

where A is the neighbourhood of (¢,7) which determines the order of the MRF.

Markovian random fields have been applied to image restoration and edge de-
tection [35] [9] [34] [125]. In principle, such an approach enables the two different
problems to be combined under the framework of Bayesian inference [35]. An obvious
criterion for the choice of the solution of such problems is probability of error, which
gives as a solution that having overall maximum probability, given the image data.
More specifically, given thé set of observations Y = {¥00--Yij--Ymm} , the mazimum a
posteriori (MAP) estimate X of the true image X = {oo..Z;j..Tmm} is the vector X

which maximizes the joint & posteriori probability distribution as follows
X = arg(mXaxP();’lY) = P(Y|X)P(X)/P(Y)) (1.2)

As‘the denominator P(Y’) can be ignored in the maximization, only knowledge of
P(X) - the a priori probabilities of the label configurations and P(Y|X) - the con-
ditional probability distribution of the observation given the true image, must be
known. They are usually assumed to be a certain distribution (eg. Gaussian distri-
bution) and their parameters are estimated from training data (eg. [35] [9]). The
global MAP estimate, however, is computationally demanding because of the need

to search for the optimal estimate over all the possible configurations. To tackle this
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difficulty, various methods which decompose the global optimizaﬁion into an iterative

network of local computations have been introduced.

Perhaps the simplest way is to add more restrictions to design a subclass of MRF,
for example Markov mesh models proposed by Abend et al. [2]. However, Markov
mesh models have a causal Markovian dependence in the image plane. Hence they

are not natural in a spatial context and can be too restrictive.

Uéing the theorem that an MRF with respect to a.neighbourhood N is equiv-
alent to the sample space of a Gibbs distribution, Geman and Geman proposed a
stochastic relaxation algorithm for MAP image restoration {35]. This stochastic re-
laxation algorithm has its roots in simulated annealing and the Metropolis algorithm
for optimization [9]. More specifically, it is an iterative application of the Metropolis
algorithm with a gradually decreasing temperature (a procedure reminiscent of the
cooling process for metal or chemical substances, hence the name simulated anneal-
ing). Stochastic relaxation will converge to the equilibrium distribution which gives
the wanted configuration of minimum energy. This approach has inspired a few re-
searchers to construct energy functions and cast image processing problems as energy
minimisation problems using the simulated annealing technique (eg. edge detection

[119], segmentation {74]).

The simulated annealing scheme is, however, notorious for its need for a slow tem-
perature decrease, which usually requires hundreds of visits to each pixel. Because
of this weakness, various methods for speeding convergence have been proposed. In

solving combinatorial optimization problems, instead of simulating stochastic anneal-
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ing, it is possible to estimate its mean behaviour using mean field theory {22]. The
mean field annealing algorithm is a deterministic relaxation procedure which exhibits
faster convergence while often preserving the quality of the solution afforded by the
simulated annealing approach. There is, of course, no lack of applications of the mean

field theory for edge detection [45] [139] [140].

Another optimization scheme, called Iterative Conditional Modes(ICM), was pro-
“posed by Besag [9], which is exactly equivalent to ‘instantaneous’ freezing in simulated
annealing. Thus, it will not guarantee to find the MAP but it does converge to a
local minimum. Nevertheless, ICM is appealing because of its fast convergence. In
the application of grouping and closing gaps in edges, Urago et al. modelled edge
images as MRFs and defined the Gibbs distribution associated with it [125]). They
also introduced an energy function which reflects the structure of edges and used ICM

relaxation to minimise the energy function.

There have also been attempts to accelerate the convergence of Geman’s stochas-
tic relaxation algorithm using multigrid techniques such as the renormalisation group
technidue [37). In [37], Gidas proposed a Renormalisation Group (RG) method for
image restoration. When the RG algorithm is combined with the simulated anneal-
ing technique, it is called Renormalisation Group simulated annealing(RGSA). The
RGSA algorithm provides a multiscale, coarse-to-fine framework, which reduces the
computation of processing by combining local processing at different scales with an

interscale transfer of information.

In short, since image features may occur at various scales and because of the



CHAPTER 1. INTRODUCTION ' 10

inherently contradictory nature of the requirements of vision, there is a need to com-
bine global information and local information, so that a coherent solution can be
obtained. The processing of combinations of global and local information can be cast
as an optimization problem which can be solved efficiently by combining iterative and

multiresolution techniques.

1.5 Neural Networks for Image Processing

The past decade has also seen various artificial neural networks applied to image
processing problems [141] [27] [70] [8] [122]. An artificial neural network(ANN) is a
network of processing nodes which are interconnected with adjustable, weighted links.
A review of some generic models for image processing is presented in this section.
Instead of considering the modelling of biological neural networks(cf. chapter 3),

the purpose of this section is to highlight the significant features of ANNs for image

processing.

One of the motivations for the application of artificial neural networks to ilma.ge
processing problems is the hope that an adaptive computer vision system can be
built by adopting the architectures and algorithms used by the brain, whose ability
in association, generalisation, classification, feature extraction and optimization has
not been duplicated using conventional computational techniques. The brain is a
hierarchical layered neural network and each layer operates in parallel. A class of
artificial neural networks which captures these features is the feedforward networks

(see figure 1.2). Given a set of training data, a feedforward neural network adjusts
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neuron Output layer

Hidden layer

Input layer

Figure 1.2: A feedforward network.

its link weights so that it implements a mapping which either matches the training
data as closely as possible or transforms the training data into uncorrelated outputs.

After training, the feedforward network is used to classify input data or decorrelate

input data.

There are of course learning mechanisms based on different criteria (eg. the prin-
ciple of maximum information preservation by Linsker [80] or the least mean squares
(LMS) [112]) for the adaptive abilities of linear and nonlinear feedforward networks.
Using the LMS criterion, Daugman suggested a three layéred artificial neural network
for transforming two dimensional images into generalised nonorthogonal 2-D Gabor
representations for image analysis, segmentation and compression [27]. A single-layer
linear feedforward neural network, proposed by Sanger [112] has weights which will
converge to the first few eigenvectdrs of the autocorrelation matrix of the input data.
Like the Karhunen-Loéve transformation, this single-layer linear feedforward neural
network was applied to some simple tasks in image coding, texture analysis and fea-

ture extraction {112]. Obviously, feedforward networks provide alternative methods
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Feedforward neural network

x(k) x(k-1) x(k-nj
-1 -1 -1 -1
x(k) Z YA A . —_— 7

Figure 1.3: A time delay neural network.

for the implementation of simple image transformations.

Feedforward networks with only one’hidcilen layer using any squashing functions
have been proved to be able to approximate any Borel measurable function to any
desired degree of accuracy [51]. It is not surprising that feedforward networks are used
for nonlinear filtering [98], and pattern recognition problems [99]. Equipped with a
tapped delay line, feedforward networks are also capable of modelling systems where
the output has a finite temporal dependence on the input. Such an architecture
is often referred as a Time Delay Neural Network (TDNN)(see figure 1.3). When
the feedforward neural network is linear, this structure is equivalent to a linear finite
impulse response filter (FIR). Applications of TDNNs to speech synthesis, recognition

and nonlinear prediction were reported with good results [115] [75] [76]. =

Currently, much work on feedforward networks has concentrated on fast learning
algorithms and on improving their generalisation abilities [57). Compared with con-
ventional image processing techniques, it seems that feedforward neural networks are

attractive for their abilities in ‘learning’ and their comparatively simple architectures.

While feedback is common in the brain, there is no feedback mechanism in feed-
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y(k)

Feedforward neural network

x(K) x(k-1) x(k-n) J y(k-m) y(k-1)

x(k) z z |... \ Z

Figure 1.4: An output feedback neural network.

forward networks. Networks which possess feedback connections are called recurrent
networks and are inherently recursive [57]. Recurrent networks fall into two categories:
(a) output feedback and (b) state feedback. Output feedback recurrent networks have
an archiitecture shown in figure 1.4. Apparently, when the feedforward neural network
is linear, this structure is equivalent to a linear recursive filter. This class of output
feedback networks has been applied to nonlinear system identification and control

problems (eg. [95]).

The state feedback recurrent networks are generally single-layer networks with
feedback connections between nodes (see figure 1.5). If any node can be viewed ;s
input or output node, this class of networks is perhaps the most geheral. Intuitively,
state feedback networks can be easily constructed for representing the interaction of
competitive and cooperative constraints for solving image processing problems (eg.

Grossberg used a competitive network for boundary grouping[40}).

The most popular state feedback network for image processing problems is proba-
bly the Hopfield network. Hopfield networks have been applied to image restoration

[141], segmentation [137]‘ and edge detection [135]. Details of the Hopfield type of net-
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output

link| ‘h ‘neuron’
Z4 s

A Al
| \

input

Figure 1.5: A state feedback neural network.

works will be presented in chapter 3 and a hierarchical Hopfield network is proposed

for edge detection and image restoration.

A generalisation of the Hopfield network is the Boltzmann neural network, which
uses simulated annealing for locating th;e global minimum of its energy function. It
is similar in spirit to the stochastic relaxation algorithm of Geman and Geman [33).
While the stochastic relaxation is in the same world as the Boltzmann neural model,
the ICM is related to the Hopfield network model. Hopfield and Boltzmann networks

therefore have the added attraction of a clear connection to the stochastic models
which underlie most rigorous solutions to image processing problems. And there is
no lack of applications of the Boltzmann neural model, for example, Sejnowski and

Hinton [114] reported its use for separating figures from background.

1.6 Requirements for Image Models

From the discussion of the previous sections, there are several issues involved in solv-
ing general image processing problems. As natural images consist of more or less

slowly varying grey level regions, an eflective image model must have a mechanism
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for expressing smoothness and discontinuity. The fact that the world is hierarchically
organized entails that the underlying model should be able to rendef ob jects of differ-
ent scales as well. Equally important, a facility is needed to cope with the uncertainty
principle in vision. Finally, because of different distortions and information lost in
the process of forming images, a priori knowledge may be required to recover the

information.

This thesis examines the use of artificial neural networks for edge detection and
image restoration. For this purpose, there are several requirements that will be con-

sidered next.
1.6.1 Requirements of Edge detection

A simple approach to edge detection is to apply a pair of highpass (gradient) filters,
followed by an edge connection process (eg. [89]). However, when noise is present,

problems arise. An effective algorithm for edge detection must address the following

requirements:

1. Local processing/high position resolution: edges are the places where image
properties change abruptly. Thus, it is required to have a high position resolution
for edges. This implies that a small size of window is required. Apparently, edge

detection is an intrinsically local opefation, which may enable computation in

parallel.

2. Noise immunity: when noise is present, the highpass filtering operation will

amplify it. It is thus necessary to use a larger window for reducing the effect of
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noise. The requirements of noise immunity and the high position resolution are

incompatible and need a scheme for trade-off.

3. Boundary continuity: in grouping edge pixels, it is necessary to assume that
boundaries of objects are piecewise continuous plane curves, ie. they do not

contain too many corners.

4. Flexibility: When a priori knowledge is available, the algorithm should be readily

extended to incorporate it for better performance.

1.6.2 Requirements of Restoration

For restoration of xir'na‘gési disfbftéd by known blurring and noise, an effective algorithm

has to consider the following issues :

1. Ill-posedness/regularization: Since the blurring usually is in an ill-conditioned
" matrix form, its inverse may not exist or may be error-sensitive. Thus a direct
application of the blur matrix inverse may not be possible. Certain assumptions

. are needed to regularize the solution space. _

2. Edge enhancement: Edge informa_f{ion is so important in perception that to a
human, an image with sharper edges but a lower signal noise ratio are usually
more pleasant than an irﬁage with blurred edges but a higher signal noise ratio.

* Thus, identification of edges should be included for edge enhancement.

3. Noise smoothing: In smooth areas, noise is much more noticeable and may result

- spurious edges. Hence, it is necessary to filter noise in slowing varying or constant
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grey level areas

4. Flexibility: When a priori knowledgé‘is available, the algvorithm should be able
to inéorporate it for better performance, but the results should be robust, ie.

not too sensitive to small changes in parameters.

- A great deal of recent work has shown how image data and world knowledge can
be integrated within the framework of minimisation of energy functions [104] [120].
If it is possible to design an energy function which reflects the quality of solutions,

then a Hopfield network can be employed to find a sqlution.
1.7 Thesis Outline

This work attempté to demonstrate that the combination of a multiresolution model
and regularization theory can provide an effective framework for image processing
and a class of ima.ge processing problems can be solved using a hierarchical Hopfield

“network, which is an effective implementation of this model.

This thesis is organized as follows: in chapter 2, stochastic modelling of images
1s discussed. In particular, a class of linear multiresolution image models will be
introduced. It is emphasized that a natural way to deal with the uncertainty problem

is the use of a multiresolution representation.  This chapter is concluded with a

multiresolution iterative model for image processing.

Chapter 3 is an introduction to the properties of neural networks, which are rel-

evant to edge detection. An interesting observation is that the HVS uses a priori
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knowledge for vision tasks. This is the basis on which regularization theory is built.
A hierarchical Hopfield network is proposed to implement the multiresolution iterative
model of chapter 2, which encapsulates the iterative and smoothness regularization

ideas.

Chapter 4 will detail an algorithm for edge detection using the proposed hierar-
chlcal neural network. The idea i is to specrfy the spatral relatlons of edge properties
of pxxels in terms of energy When they correspond to an edge the energy term will
decrease. The energy function is minimized by using a Hopfield network which con-
verges to ‘the edge map. Results of applying this scheme to a variety of test images

are presented and discussed.

- It is shown that a class.' of image restoration problems can be regarded as energy
minimization problems in chapter 5. ‘Again, a cost function whose minimisation
will reflect the desirable solution is speeiﬁed as the energy function of the proposed
hierarchical Hopfield network. An adaptive restoration scheme consisting of the edge
detection method proposed in chapter 4. and an adaptive ﬁlt'ering' method is proposed

and results of tests are presented. The implications of these tests for the approach

used are discussed.

Flnally, a summary and the contr1but10n of this work is presented in chapter 6.

A dxscussmn of the hmltatlons of the model and the proposed hxerarchlcal Hopﬁeld

neural network is also _summansed.



Chapter 2
Multiresolution ’ﬂImag?e Models

2.1° Introduction

Image models give ; quantitative description of images whose formation is prone to
noise and distortion. Over the past three decades, researchers have proposed different
image models in order to provide a framework Within which various image processing
techniques can be considered and analyzed, hence enhanced. As an example, Wiener
filters in restoration problems are derived from a stationary statistical model which
characterizes images by their covariance functions[61]. To permit characterization of
local propertxes of plxels, a linear system descrlbmg the relatlonsh1p between a group
of plxels by a dlﬁ'erence equatlon and forced by wh1te noise W1th a known power
spectrum is a useful approach for representmg the ensemble of 1mages Dependxng

on their plxel nelghbourhoods, such models are categorxzed into three groups, namely

causal, semicausal and noncausal models.

In this chapter, a description of stochastic image models is presented. Emphasis is

19 -
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put on noncausal multiresolution models, which have been successfully applied to var-
ious areas in image processing and computer vision, (eg., feature extraction[18], data
compression [86][121]). Particularly, a multiresolution model which is a generalized

model from [23] is introduced for edge detection and image restoration.

2.2 Stochastic Image Models

The stochastic modelling of images treats the spatial coordinates of an image as time-
like indices. Modelling images as stochastic processes is not new: there are many
models found in such areas as data compression [61]. An example is a simple 1-D
causal autbfegresSiue(AR) model,"berrowed from work on 1-D signals such as speech
and applied to images via a raster line scan, which is found in most image capture and
display systems. Based on AR models, the differential pulse code modula:tvion(:DPCM)
coding methods are used in data transmission apphcatlons [61). A DPCM method
works because in general adjacent plxels in an 1mage have hlgh correlatxon Models
which can capture the correlation property of images may give huge reductlons}m the

volume of information which it is required to transmit.

Although 1-D causal modeis are simﬁie and they have he(‘i\a; degree of success,
such line-by-line methods force an essentlally 2-D xmage into 1-D signals, so that
those spatial structures inherent in the 1mage are difficult to take into account. In
apphcatlons where whole 1mages are avaﬂable, there is no good reason to nhinose
causallty artlﬁcmlly and it is natural to consider other data structures and models to

‘

characterxze 2.D i 1mages.



CHAPTER 2. MULTIRESOLUTION IMAGE MODELS 21

- Among other methods, Markov random fields and 2-D noncausal prediction models
are general image models which can reflect the local properties of images [35][61].
However, they may demand more compuﬁation. Recently, a class of multiresolution
ima.gé(mod.els Wthh combixfe the éimplicity of an‘AR model and the effectiveness of
different scale features description have emerged to give efficient solutions to many
image zl;rocessing problems. This section wi11>be an account of image models as
the preludel to a multiresolufibn model. A mﬁltirésolution model which combines a
propagaéion prdcess and a laéeral interaction procésé will be introduced and used as

the framework for edgé detection and imégé restoration.
2.2.1 One Dimensional Image Models

An autoregressive process of order p is a zero mean random process z(l) which can
be generated by equation (21) Let z(l) be the signal and w(l) be the innovafion
term which is assumed to be a sample of white noise, then a stationary pth order AR
model is given by
| }:a,x(l—z)+w(l) o (21)
Thé AR ﬁlod‘elé are somet;mes called causal minimum variance representaﬁon (MVR),
for the signal estimator
() = Ep:a,-:c(l - 1) (2.2)
is the lmear estimator whlch nges minimum mean square pred1ctxon error[61] G1ven
a:(l), a; can be determmed by the \ le-\Vall\er equatlons It can be also solved

by Levinson’s algorithm which is in a recursive form and is easy to implement[101].

Apparently, by introducing a scan the above model can be used as a model for images,
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but the introduction of a scan path is not fully justified in many image processing

applications.

2.2.2 Two Dimensional Image models

Features in an image are characterized by their spatial structures, which cannot be
exploited by the line-by-line models mentioned in the previous section. For example,
in an edge area, pixels which are scanned in the direction of the edge are highly
correlated, but when scanned across the edge they are less correlated. Thus an edge
not along the scan direction will be treated uncorrelated but in reality it is correlated.
Naturally, a straightforward approach to model 2-D image is to generalize the 1-D
stochastic signal models [61]. Thus, an image is expressed by a 2-D stochastic process,

or random field and the image is the output of a linear system driven by noise, as

Tij=8ij+Wi; = ) GmaTicm,jon + Wij (2.3)
mneN

where {z,;} is the random field,{#;;} is the linear estimator of {x;;} and A denotes
a neighborhood of (¢,7). There are three types of linear prediction models, according

to the definition of A/, namely,

{(-p<m<p1<n<qlU{l <m<pn=0} causal
N=¢ {-p<m<p,0<n<q,(mn)#(0,0)} semicausal (2.4)
{-p<m<p,—¢g<n<Lq,(mn)+#(0,0)} noncausal
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If {wi;} denotes for the prediction error and {Z,;} is set to be a minimum variance
predictor, the representation is a MVR which is equivalent to a Bayesian estimate in

a Gaussian Markovian random field[133].

Although these 2-D models do take account of inter-line correlation, it is not hard
to see that the causal and semicausal models are biased by their scanning directions.
And all the three types of model lack the facility to take account of features of
- different scales, even though a noncausal model combined with iterati';re techniques,

such as relaxation methods, can capture global features [35]. Nevertheless, such
approaches are usually slow and expensive in computation. Néxt, a new class of
| general linear models will be presented. | The models are causal in scale space and
non-causal in the two dimensional spatial plane. This allows a recursive estimator to

be implemented[24].

2.3 Towards Multiresolution Image Models

2.3.1 DMotivation

(3

In the 1940s, Gabor in his classic paper on audio analysis pointed out that the tra-
ditional Fourier frequency decomposition of a signal is limited by a signa.l property
known as the uncertainty principle[32]. In a different context, Wilson and Granlund
used the uncertainty principle to explain some inherent properties in vision [129].
Later, Wilson and Spann used a similar argument in discussing the problem of seg-

mentation, which is illustrated in the following.
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A basic question in image processing and computer vision is to estimate ‘what’ is
‘where’ in the image[88]. A fundamental problem in this field is edge and boundary
detection, in which the boundary properties(eg. orientation) are ‘what’, while their
location is ‘where’. A simple solution to the edge detection problem is to convolve the
image with a set of fixed sized filters and apply a threshold to a function of the set
of convolved images. Such an approach leads to a less satisfactory result because the
features we perceive and find meaningful vary enormously in a range of scales [88].
Furthermore, when the input image is corrupted with white noise, the above solution
will be riddled with false edges and missing edges. To deal with such cases, the image
is first smoothed, then the set of kernels is applied. Although the effects of noise
can be reduced, a new problem arises: the positions of the edges are ‘blurred’. The
more the image is smoothed, the fewer spurious edges will appear. Unfortunately,
the certainty of the edge positions is reduced correspondingly (see also Canny(20]) .

It is clear this dilemma is analogous to the uncertainty principle [131].

Wilson and Spann pointed out this trade off between ‘spatial’ resolution and ‘class
space’ resolution and proposed the use of a multiresolution approach to overcome this
difficulty(131). The multiresolution model of Wilson and Spann is based on a quadtree
structure(sec Figure 2.1). They used an iterative clustering method to decide the

classes in an image and a coarse-to-fine boundary estimation scheme.

Anotlier benefit of multiresolution models is their ability to represent image fea-
tures over a range of scales. For example, in the pyramid representation, an image is
described by coarse features and progressively refined till the image plane is reached.

In this context, data compression is possible [129] [17]. This coarse-to-fine recon-
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Figure 2.1: A quadtree structure

struction process is the very property which underlies a class of linear multiresolution
models [24]. Also in the coarse-to-fine reconstruction, the features in the coarse res-
olution intuitively can be regarded to be accurate with high confidence. Thus, these

features can be used to control or ‘regularize’ the reconstruction of features in the

finer resolution [135] [37].
2.3.2 Multiresolution Representations

In a multiresolution representation, different scales give similar but different descrip-
tions of an image. Thus, if such representations are to be useful, the problem of
combining information across scales must be dealt with effectively. Before discussing
this ‘scale consistency’ problem([132], it is perhaps worth giving a brief description of

various multiresolution representations.
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Figure 2.2: (a) A pyramid tree structure for 1-D signal (b) its 2-D counterpart.
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1. Scale space

This representation was proposed by Witkin[132]. In 1-D, the space-scale representa-
tion of a signal f(z) is constructed by smoothing the signal with a family of functions
of a continuous scale parameter o, such as Gaussian functions g(z, o) of increasing
width, so that the scale-space representation F(z,c) of the signal is also a function

of o, which can be written as

F(z,0) = f(z) * g(z,0) (2.5)

where * is a convolution operator. This family of derived images can also be viewed

as the solution of the heat diffusion equation with the initial condition

F(z,0) = f(x) (2.6)

Thus, the techniques used in the study of heat diffusion can be readily borrowed [103]
[68]. Koenderick [68] and Lindeberg[79] have further developed the theory of scale
space representations and the generalization to 2-D is straightforward.

2. Pyramids

A pyramid structure of an image is a tree constructed by smoothing the image and
then subsampling the smoothed image. This operation is carried on recursively until
there is one node, called the root left. Usually the scale space axis is logarithmic
(base 2) so that the size of each level in the pyramid is 4 times that of its parent
level. About 30% extra memory space is needed to construct the pyramid. Because

of the smoothing and decimation operations, each level in the pyramid represents a
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different resolution of the image. The pyramid structure can be written

fi(M) = fi

2.7
ft](l_l) = ZAijmn(l)fmn(l) ( )

where f;;(1) is the image data at level [ and A;j;,,.(!) represents a filter. Note that
a child node f,,.(!) can have several parents. Figure 2.2 is an example of a pyramid
structure. A special case of the pyramid is a quadtree structure, in which

1/4 if (m,n) € {(21+s,25 +t),s=0,1,t = 0,1}

Aijmn(l) = { 0 OtheI‘WiSe (28)

In other words, each child node has only one parent node (see figure 2.1). More

explicitly, the quadtree is constructed using the following equation

fij(1—1) = ji'(fzi,zj(l) + faizj+1(D) + faiv1,25(1)) + faivr,2541(1)) (2.9)

3. Wavelet Transforms
While a pyramid structure needs about 30% extra memory to represent an image,
an orthonormal wavelet transform of an image will need exactly the same amount of
memory space to represent the image. A wavelet transform representation is also con-

structed by successive filtering and decimation operations. A 1-D wavelet transform

representation of a 1-D signal f; is given as follows,

fi)y =Y hauifil +1) (2.10)
k
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di(1) = gaici fi(1 + 1) (2.11)
%

where h(-) and ¢(-) form a conjugate mirror filter pair [26] The reconstruction of the

signal f; from its wavelet transform representation{d;(!)} is simply

fil+1) thk ifx(1) +Zg2k~ di(1) (2.12)

An important feature of such wavelet representations is that the set of wavelets used
is orthonormal. The set of wavelets, i1s partially dilation and shift invariant, in other
words, each member can be obtained by dilating and shifting another member in the
basis. The 2-D wavelet transform is generalized from the 1-D case (cf. [86]), normally

by using a Cartesian separable transform.

The above multiresolution representations are all designed to deal with the uncer-
tainty problem in signal and image processing and obvious properties of images, such
as structures spanning a range of scales. The pyramid structure also leads to effec-
tive image modelling. The pyramid structure was, perhaps, first used by Rosenfeld
and Thurston for edge detection [110]. Although the orthonormality property of the
wavelets leads to compact representations and efficient decomposition of an image,
it only provides a partial solution to the uncertainty problem. More sophisticated
structures, such as Multiresolution Fourier Transform(MFT) have been proposed for

image analysis [18] and texture segmentation [52].
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2.3.3 Linear Multiresolution Models

Among the pioneering works of stochastic multiresolution image modeling, perhaps
Clippingdale and Wilson [24] were the first who considered the scale ixlldex to be
time-like and derived an AR model in the scale space. Their model is a special case
of a generalized linear multiresolution model which is also proposed by Clippingdale
[23]. The same stochastic modelling in scale space is also used by Basseville et al.
[6] in the wavelet transform representation. There are also works which treat the
scale space as a Markov chain [10] and use the MAP(usually nonlinear) criterion to

combine information between successive levels [37)].

The class of general linear multiresolution models proposed by Clippingdale can

be recursively defined in a matrix notation as

S(0) = B(0O)W(0)

L
—_—

b
S

I

CAMDSI-1)+BOWI),1<I<M (2.13)

where [ is the level index, S(I) and W(l) are the lexicographically ordered vector
representations of the signal and the innovation at level [ respectively, A(!) and B(!)

are filter matrices. In image processing, writing the linear operator explicitly, it takes

the form

8i5(1) = Y Aijmn(D)$mn(l = 1) + 3 Bijpq(1)wpq(1) (2.14)

where s;;(l) is the image (or features) at level [ and wy, is the innovation term. The



CHAPTER 2. MULTIRESOLUTION IMAGE MODELS 31

initial condition is
Notice the equation is similar to equation (2.1), and thus a MMSE estimator can be

derived using the well-established techniques for state-space methods[101]. Using this

approach, given the set of noisy data,
.§,'j(l) = Sij + V5 (216)

an estimator for this general linear model is expressed by a linear combination of data

on the current level and the vertical propagation, or ‘prediction’ as follows

8ii(1) = 2 Aijma()3mn(1 = 1) + (1 = ai;(1))3;; (2.17)

where «;j(l) is a combination coefficient to trade off the reliability of data and the

propagation ‘prediction’.
A special case of the general linear multiresolution model is based on the quadtree
representation, which takes the form

(1 =1) + wij (2.18)

sij(l) = 854

One of the distinguishing characters of this model is that the image is tessellated
into inhomogeneous blocks of different sizes. The implication is that each region
(block) represents one feature; in other words, various local image structures are

represented at different scales in this model. A scheme to model curves based on the
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Figure 2.3: (a) A realization of a quadtree model and (b) a realization of a pyramid

model.

quadtree model can be found in [18]. It is not hard to see that such a model leads
to a simple structure and when applied to estimation problems, an exact minimum
mean square error estimator can be derived using the same techniques from 1-D
AR models (see Clippingdale and Wilson [24]). However, the very non-overlapping
tessellation property of the quadtree model causes unwanted blocking effects which
must be overcome. Such a problem can be overcome by allowing a child to be shared,
i.e. a pyramid model,

$ii(1) = Y Aijmn(1)s

mn

4l = 1) + w3 (2.19)

i
2

Figure 2.2 is a pyramid structure first used by Rosenfeld and Thurston for edge
detection [110]. In figure 2.3, images generated by quadtree and pyramid models are

shown. Comparing figure 2.3(a) with figure 2.3(b), a pyramid model is more natural,
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although its vertical propagation requires more computations.

Following Clippingdale and Wilson’s work based on a quadtree representation,
a variety of linear multiresolution models in different representations are used in
estimation [23], coding [121], segmentation [10] and curve extraction problems [18]
[28]. Different representations utilize different strategies which are realized by A;jmn(!)
and Bijps(l). Apparently, the coarse-to-fine refinement procedure in this general linear
multiresolution model is an effective method to combine local and global information.

In addition, it has the ability to render features of different scales.

2.4 A Processing Model for Image Restoration

2.4.1 Iterative Methods

A given signal model may be more or less effective at capturing image structure,but
it will only be useful if it leads to computationally practicable solutions to problems.
This aspect must now be considered. As noted in Chapter 1, many image processing
problems can be formulated as optimization problems, so that the solution

E(z) = {illlei}.’)l} E(2') (2.20)

where E(-) is a cost function or an energy function related to the quality of the solu-
tions and ) is the solution space. Often, a direct computation for the optimal solution
of a problem involves a huge matrix inverse operation, so that it is impractical. In

search of the optimal solution, an alternative is to use local iterative methods, such



CHAPTER 2. MULTIRESOLUTION IMAGE MODELS 34

as gradient descent methods, based on the MSE criterion or relaxation using a MAP
criterion [35], in which costs or energies are minimized at each pixel on each itera-
tion. This greatly reduces the computational cost and because of the local updating
schemes, it is easy to use different strategies depending on local properties of the
image, ie. adaptive methods. Another benefit of this local updating is a possible
parallel implementation. However, a drawback is that local updating may lead to a
local minimum only. Much effort has been devoted to overcome this drawback. One
interesting approach is to use probabilistic schemes, such as stochastic relaxation al-
gorithms (simulated annealing). Such an approach has now been widely applied to

various image processing problems[35](34].

Because images are often formed by projecting 3-D scenes on 2-D planes, and
usually corrupted by some noise and distortion, many image processing problems
are ill-posed (see section 3.4). One way to solve an ill-posed problem is to define a
criterion to select an approximate solution from a set of admissible solutions. This
criterion so defined is called a regularization term, which reflects prior knowledge of
the problem. The solution to the problem can then be rewritten as

{glgg}(E(z') + aFE,(z')) (2.21)

where E,(-) is the regularization term. Using an iterative method, it is possible to
control a according to local properties, such as edges [65]. Another way of incorpo-
rating prior knowledge is to impose constraints, so that only feasible solutions are

accepted, eg. as the method of projection onto convex sets (POCS) does [65]. Both
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regularization and POCS can be easily embodied in iterative methods. The ideas of
adaptation and regularization are taken to form a multiresolution model for image

restoration which will be described next
2.4.2 A Multiresolution Iterative Restoration Model

The general linear multiresolution models described in section 2.3 can be used for
edge detection and image restoration. The pyramid structure mentioned is used as
it avoids difficulties, such as a spatial difference operator missing edges which lie on

the borders of adjacent blocks [42].

The adaptive restoration algorithm consists of two stages: (1) an edge detection
process (2) the restoration process. Both processes start from a certain low resolu-
tion in which noise is sufficiently reduced due to the lowpass nature of the pyramid
representation. For each resolution, a lateral relaxation scheme is used to enhance
long range characteristics. The obtained solution in coarser resolutions is propagated
down and used to regularize the search of the solution space in finer resolutions. In

short, there are three steps for both processes:(1) construction of input pyramids (2)

lateral relaxation (3) vertical propagation.

1. Construction of input pyramids

To outline the algorithm, the first task in hand is to clarify what are represented
by the models so that pyramids can be built. Since an edge controlled restoration
scheme is desired, the model must be able to represent boundaries, orientation and

gray level structures effectively. Three pyramids are built; they are (a) the gray level
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pyramid of the input image, (b) its orientation pyramid and (c) its edge map pyramid.
The grey level pyramid is first built as the input for the restoration algorithm. The
lowpass kernel to construct the pyramid should be isotropic to avoid introducing
bias in orientation which is important characteristic of an edge and is used for edge
determination[127] [135]. The orientation pyramid is constructed next by applying
a pair of odd size kernels to the grey level pyramid. The orientation representation
is double angled which is detailed in chapter 4. Finally, the edge map pyramid is
obtained using a Hopfield network also detailed in chapter 4. The edge representation

is similar to Bhalerao’s work[10], but the difference is that edges in the model are

represented by a set of edge pixels,
X() = {zij(D|(2,7) is a vertex site,0 < I < M} (2.22)

rather than the polygon model used by Bhalerao; in other words, a binary edge map

is used.

2. Lateral relaxation

Many estimates and decisions in image processing problems are the results of inter-
action of many simultaneous local mutual constraints. To give a coherent solution,
iterative methods outlined in section 2.4.1 are used to update a set of hypotheses (eg.
there is an edge in location (z,7)). The local constraints are formulated as excitatory
and inhibitory weights and the local decision (for edge detection) and estimates (for
restoration) are made using the sum of all the local weighted constraints so that a

globally consistent solution can be reached after a small number of iterations. Both
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lateral relaxations used in the edge detection process and the restoration process use
odd size windows to gather local clues. The minimization of a cost or energy function
is the basis of the two processes. The best fit to the data is sought within the priori

knowledge and constraints.

3. Vertical propagation

The uncertainty principle asserts the trade-off between ‘what’ and ‘where’ [129]. Thus,
the estimate obtained in the coarser resolution of the pyramid, where noise has been
reduced by pyramidal smoothing, will be more reliable but its spatial resolution is
low. To recover the spatial solution while maintaining the estimation reliability, the
estimates in coarser resolutions are recursively propagated down using the stochas-
tic linear multiresolution model expressed by equation (2.13). The propagation is
achieved by a linear combination of the estimate obtained using lateral relaxation
and the data in the immediately finer resolution. The linear combination is an aver-

age which has the effect that consistent features will be emphasized while noise which

is uncorrelated will be reduced.

Figure 2.4 is a summary of the scheme. Note that information flows vertically and
horizontally in this model which is reminiscent of the HVS (cf. Chapter 3) A full

description of the edge process will be given in the chapter 4, and the restoration in

chapter 3.



CHAPTER 2. MULTIRESOLUTION IMAGE MODELS

Orientation
pyramid

Iteration : @

Edge
pyramid ——— . Control direction
l : Coarse-to-fine
propagation

Relaxation

Grey-level
pyramid

Figure 2.4: The restoration scheme.
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2.5 Summary

The past decade has seen an ever growing interest in image multiresolution represen-
tation and modelling. This chapter has given a brief account of this development and
proposed a framework which is general enough for various image processing prob-
lems. Its application to an adaptive image restoration was outlined. This framework
combines the idea of regularization and iterative refinement based on a linear mul-
tiresolution model which includes multiple feature prototypes. It consists of two
processes: a coarse-to-fine process and a lateral iterative optimization process, which
will be further detailed when applied to practical edge detection and image restoration

problems.



Chapter 3

Biological and Artificial Neural
Networks

3.1 Introduction

It is interesting to know why a collection of much slower neurons is faster than a
modern ‘number crunching’ digital computer, in particular when it comes to visual
tasks. To understand the reasons may help researchers to design more robust algo-
rithms which will eventually lead to an automatic visual system. This approach to
artificial intelligence, and in particular computer vision , is not new. In the 1950s and
1960s, researchers using such methods tried to mimic human vision [91]. After a gap
of about ten years, this line of research was revived in the early 80s. In this chapter,
the research outcomes from the neurophysiology and psychophysics of vision will be

examined and a class of artificial neural networks which have potential applications

to visual tasks will be discussed.

40
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3.2 Properties of the Human Visual System

Early models of the human brain led to a Von Neumann type computer, which con-
tains a powerful CPU for processing data. While this type of computer is very suc-
cessful in numerical computations, it is less effective in vision, which is so natural to
human beings that its complexity tends to be underestimated. Although there was
some success with the traditional approaches, a visual system as robust as the human
visual system is still elusive, even after research of several decades since the sequential
digital computer emerged. Re-examining the vision problem, researchers have agreed
that vision in the HVS is the result of interaction of several adaptive visual processes
which are highly parallel {111] [56]. Unfortunately, the solution to vision provided by
evolution is far from being understood, even though a lot is known about the early
stages of vision. Indeed, the human brain contains over a hundred types of neurons
and in total, about 102 nerve cells. This huge number of neurons and their complex
connection networks yield a system which is fault-tolerant and highly parallel, but
also difficult to analyze. However, with advances in neurophysiology, some details
of biological networks have been revealed. Better algorithms are made possible by
taking into account these properties found in the human visual system. With this in

mind, it is worth having a brief review of the HVS.

3.2.1 Biological Neurons

The basic building blocks of a biological neural network are neurons. A neuron

typically consists of nucleus, cell membrane, axon and dendrites (see figure 3.1). The
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axon is the channel through which the neuron relays its activity to other neurons.
The activity is transferred in the form of a train of impulses’; in other words, it is
frequency coded. There are gaps between the terminals of the axon and dendrites of
other neurons. These gaps, called synapses, have been suggested to provide one of
the mechanisms for adaptation [43]. Across a synapse, the activity of the presynaptic
neuron is conveyed by means of chemical transmitters to the postsynaptic neuron.
The chemical transmitters make the postsynaptic neuron either more or less likely
to fire impulses. If the change is positive, the synapse is excitatory; otherwise, it is

inhibitory.

In general, the activity? of a neuron is determined by the totality of excitatory
and inhibitory signals exerted by other neurons through the synapses. When the
stimulus to the neuron is great enough, the neuron in turn will fire impulses® to relay
the information to other neurons. Figure 3.1 shows the relation between the firing

frequency and the cell potential of a neuron. For more detail, see [96].

3.2.2 The Human Visual System

Figure 3.2 shows the schematic structure of the human visual system. Much less is
known when it comes to the whole system. The following is a summary of the human
visual pathway(for more details, see [53]) , in particular, those properties concerning

edge detection and shape recognition [44].

1There are cells, for example, horizontal cells in the retina, which have no all-or-none action
potential [96]

2The integrated potential

3the action potential is all or none .
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Figure 3.2: A schematic representation of the human visual path.
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The Retina

The front end of the visual system, the retina, contains several layers of cells, which
are mainly photoreceptors, horizontal cells, bipolar cells, amacrine cells and ganglion
cells [53]. The photoreceptors are sensory cells which are the input end of the retina
and convert light from the environment into electrical signals, whilst the rest of nerve
cells in the retina process the electrical signals into a more structured form, which
is transferred to the primary cortex via ganglion cells, which are the output end of
the retina. Information flows in the retina both vertically (from one layer to the next

layer) and horizontally (among neighbour cells in the same layer).

A crucial function of the retina is adaptation, which enables the brain to see objects
in different lighting environments ranging from a starlit night to a bright noon. To
achieve this, the retina employs several mechanisms. First, two different photorecep-
tors with different sensitivity to light intensities are used. Rods are sensitive to lower
light levels, whilst cones respond to higher light levels and colours. The sensitivity
to light intensity of the cones can be altered chemically by the long-term average
brightness in a scene. Furthermore, horizontal cells receive signals directly from the
photoreceptors and they also connect to their neighbour horizontal cells and bipolar
cells. Experiments show that the response of a horizontal cell is proportional to the

local spatial average of light intensities and it also feeds back to the photoreceptors

which form its receptive field [126].

The output of the photoreceptors and horizontal cells is fed to bipolar cells. The

bipolar cells are excited by the photoreceptors and inhibited by the horizontal cells.
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Because the photoreceptor and the horizontal cells have logarithmic responses to light
intensity, the output of a bipolar cell is the ratio of local light intensity to background
intensity. In other words, bipolar cells respond to normalized light intensities rather
than the absolute light intensity. The implication of this local adaptation is that the
retina not only ensures reliable signalling of small changes in image brightness but
also enhances features in images. Knowing these properties of the three layers of the
retina, Mahowald and Mead built a silicon adaptive retina whose behavior is similar

to that of the biological system {85].

The output end of the retina is the ganglion cells, whose axons form the optical
fibres heading to the lateral genicular body. There are no photoreceptors at the place
where the optical fibres come to form a bundle and head to the primary visual cortex.
Psychophysiological experiments show that when an object falls into that spot, it
cannot be seen. However, an object such as a line which runs across the spot will
not appear broken. In other words, there may be a mechanism in the higher levels of

vision which fills the gap. It also seems to imply that the visual system uses a priori

knowledge [25].

The distinct characteristics of ganglion cells are that they respond to moving ob-
jects and their receptive fields have a center-surround structure, so that they respond
maximally to change of light intensities and minimally to uniform light intensities.
There are at least two types of ganglion cells. One type of ganglion cell responds to
a center-on-surround-off receptive field, while another type of ganglion cell has the
opposite receptive field, that is, center-off-and-surround-on (See figure 3.3). Study of

optical illusions suggests that the human retina plays the role of reducing the band-



CHAPTER 3. BIOLOGICAL AND ARTIFICIAL NEURAL NETWORKS 46

®)

-~/ | N\~

(©)
(a) The cross-section of the recptive field of a ganglion cell

Figure 3.3: A schematic representation of ganglion cells’ receptive field

width of visual data and extracting only these essential features of an image. Illusions
are created because the retina selectively encodes information. Marr thus proposed
that a 21-D primal sketch is used by the human visual system [88]. Marr suggested
that these center-on-surround-off cells together can detect zero-crossings, which cor-
respond to edge locations [88]. Furthermore, Marr suggested a ‘raw primal sketch’
built upon these zero-crossing locations. The center-on-surround-off characteristics

were also suggested as the mechanism for orientation preferences of simple cells found

in the visual cortex [53] (see figure 3.5).

The Primary Visual Cortex

In the previous subsection, an account was given of the functional structures of the
retina. The optical fibres convey the encoded information to the next stage of the

visual pathway, the lateral geniculate body (LGN). The lateral geniculate nuclei fur-
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ther transmit information to the primary visual cortex(the striate cortex) and they
also receive feedback from the primary visual cortex. Very little about the functions
of this body is known. Further into the visual cortex, structures become complex
and the degree of abstraction also increases. The neurons start to show highly task-
specific characteristics. Two major transformations of information are accomplished
in the visual cortex. The first one is the rearrangement of incoming information, so
that most of its cells respond not to spots of light, but to specifically oriented line
or edge segments. There are cells which are orientation specific and their complexity
varies. Anatomically, the visual cortex consists of 6 layers of cells(see figure 3.4). The
axons from the geniculate body terminate at the layer IV. Cells in this layer have
center-surround receptive field structures like those of ganglion cells. A layer further,
cells possess different receptive fields and their complexity also increases. Cells with
simple orientation-specific receptive fields are called simple cells[35]. It is suggested

that simple cells behave as if they received their input directly from several cells with
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Figure 3.5: A suggested simple cell receptive field

center-surround circularly symmetrical fields, which are found in layer IV [53]. The
suggested scheme is illustrated in figure 3.5. Cells in the next stage are called complex
cells, which share with the simple cells the quality of responding only to specifically
oriented lines. However, instead of responding to an appropriately oriented stationary
line, complex cells respond to an appropriately oriented moving line independently
of its position within their receptive field. Some complex cells also show directional
selectivity, i.e. they only respond to oriented lines moving in one direction but not
in the opposite direction. Unfortunately, how these orientation-sensitive cells are

organized to produce boundary representations of the world is unknown.

Among different models, Hoffman proposed the Lie transformation group model
of neuropsychology to represent and explain the locally smooth processes observed
in the visual field and their integration to the global field of visual phenomena [47]

[30]. In chapter 4, integration of local boundary segments in an image is used for
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edge detection.

Another important feature found in the striate cortex is the presence of end-
stopped cells. Cells with end-stopping properties are suggested to relate with end-
point detection. Dobbins et al. proposed such cells are used for coarse curvature

estimates [29].

The visual cortex contains systematic 2-D maps of the world which it represents.
This follows from the fact that neighbouring neuron cells in this area have neighbour-
ing receptive fields. This topographical mapping, or retinotopic map, has attracted
much attention[69]. Figure 3.6 is the schematic representation of an example of such
a topographically organized map. Cells responding to similarly oriented lines are
neighbours. Also, this schematic representation of the primary visual cortex shows
the periodicity of ocular dominance: the combination of information from two eyes
to give depth perception is not a concern of the present work, however. Readers who

are interested in this can find details in references [53] [63].

Beyond Striate Cortex

The cells in the striate cortex further project into the prestriate cortex and other
parts of the brain. How the cortex integrates the low level information to represent
its surrounding world and recognize objects is currently an area under intensive study.
By examining a few visual cortex-damaged patients, it has been suggested that the
visual cortex is divided into several task-specific parts and that each part contributes

to visual perception [138]. Damage of a special part of visual cortex will cause the
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patient to suffer certain disabilities of vision and perception[138]. The study also

suggests that the higher level processes have some influence on the low level processes.

3.2.3 Summary

A distinct property of the visual pathway is that cells in higher levels appear to
‘see’ a greater perspective than those at an earlier level and have increased ability to
abstract [63] [53]). This suggests a hierarchical structure for artificial neural networks.
At all stages of the visual pathway (retina to cortex), there are cells with different
sizes of receptive fields [53]. This fact is used to support the use of multiresolution

representations and models for image processing and computer vision.

It is arguable that a biological neural network is the only efficient solution to the

vision problem. However, it seems reasonable to borrow these techniques invented
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by evolution. Thus, the question is what are the essential characteristics that make
a biological network better than an traditional computer algorithm? Apparently,
the learning and adaptation abilities of biological neural networks are responsible for
their robust performance in a changing environment. Psychological studies show that
cultural differences influence human visual perception [44]. This seems to support

the idea that learning plays an important role in perception and vision.

Consequently, it would be helpful to know what is the mechanism for adaptation
and plasticity or learning. The mechanism for learning is unfortunately, little known,
although suggestions that synapses are the candidates for learning have been made
[53]. For adaptation, it seems that competition is responsible for adaptation and

lateral inhibition is naturally the device which enables competition among neurons.

3.3 Modelling Biological Neural Networks

3.3.1 The Computational Neuron

The most realistic model should model every observed biophysical behaviour from
real neurons. However, the details of electro-chemical processes in a neuron are very
complicated and there are over a hundred different types of neurons. A detailed
model may not be useful in better understanding the overall network behaviour.
Indeed, the detailed model may have too many parameters, making analysis difficult,
if not impossible. Thus, simpler versions of the neuron model are widely used in
the artificial neural network community. Figure 3.7 shows a McCulloch-Pitts neural

model, which is a typical neuron model. Also shown are typical limiting functions.
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Figure 3.7: (a)McCulloch-Pitts neuron model. (b), (c) and (d) nonlinear output
functions.
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Generally, an artificial neuron is a first approximation of a real neuron and is
a simple computational unit, which responds to stimuli in the following fashion: a
neuron’s activity is the sum of a bias and a set inputs which are the products of
the connection weights and signals channelled in through the respective connections.
Then, the output of the neuron is a function of its activity. Usually the mapping
will be a nonlinear one (see figure 3.7). The neuron’s activity y, is described by the

following linear differential equation,

dy;
-(# = —-nyi + [Z zjw;; + 6;] (3.1)
j
where z; is the input signal channelled in through weight w;;, 8; is a bias value and 7 a
scale factor. Several versions of this equation can be found in [39]. Further simplifying
the neuron’s activity model by dropping the decay term —y; gives the commonly used

neuron activity model, McCulloch-Pitts model, used in computer simulations,
yi = Y zwij + 6 (3.2)
J

An important generalization of the additive model (equation (3.1)) is the shunting

model, which mirrors the underlying physiology of single nerve cell dynamics (see

Hodgkin-Huxley [46]).

As noted, the neuron is a simple computational unit and equation (3.2) can be

viewed as a match operation between input signal vector X and the weight vector W
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as follows

v = wjwig = X - Wi = | X||[|Willcos(X, W;) (3.3)
J

Equation (3.3) can also be considered as a linear filter operation in image process-
ing. Hence, a network of such neurons with their connection weights set properly
will be able to perform many image processing tasks. For example, combined with

competitive training, Kohonen proposed a network for adaptive coding [69].

While the McCulloch-Pitts model has been applied to many neural computing
systems successfully, it is an over-simplified version of a true neuron. Many aspects of
a biological neuron remain to be explored. For example, time dependent properties of

biological neurons are common and are likely to be important to their computational

abilities.
3.3.2 Learning and Adaptation

How a biological neural network learns has not been exactly pinned down yet, but it
is a common opinion now that synapses are one of the learning mechanisms in the
neural networks. Hebb in his classical book [43] ~“The Organization of Behaviour”,

gave his conjecture of neural learning:

When the azon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it , some growth process or metabolic change
take places place in one or both cells such that A’s efficiency, as one of the

cells firing B, is increased.
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Hebb also suggested that changes in the efficacy of synapses could take place via
growth of synaptic knobs. However, such growth has not been commonly observed
to happen in adult animals. Recent discoveries suggest that different rules are used
to modify the strength and patterns of connections between neurons [117][62]. Thus.
many alternative mechanisms have been proposed for changing synaptic efficacy. And
there has been just as wide-a variety of mathematical rules proposed for such modi-
fication. Nevertheless, Hebb’s conjecture of neural learning has been widely adopted
to train artificial neural networks, including Hopfield networks. As learning may be
much influenced by higher level cognitive processes, the reader can see [90] for more

details.

3.4 Hopfield Neural Networks

As mentioned in section 1.5, a Hopfield neural network is a single layer recurrent
network (see figure 3.8). Originally, the Hopfield neural network is related to the Ising-
spin model used for describing the binary spins of magnetic atoms and was proposed
as a form of associative address memory [48]. This type of network is useful in
pattern recognition (eg. OCR), although it has been proved that the network’s storage
capacity is as low as about 15% of its total number of units [92]. Later, Hopfield and
Tank proposed using the Hopfield network to solve combinatorial problems [50]. Such
an approach relies on defining proper connection weights and is adapted to solve image

processing problems which can be cast as quadratic optimization problems [141] [134]

[58).
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Figure 3.8: The Hopfield neural network structure

A Hopfield net of n nodes is a fully connected network which can be represented
by a graph G = (V,T) where V = {V1...V;} is a n-tuple vector whose element V;
represents the output of node 7, and T = {Tn1...T;j... Tpn} is a n X n symmetric matrix

whose element T;; represents the link weight between node i and node j. The output
V of these nodes is a function of their potentials U. This function can be continuous

or binary.

The Continuous Model

The continuous Hopfield network was proposed for VLSI implementation [49]. It

consists of nodes whose potentials are described by

dU;
C,‘gt— = —qU; + Z T;;V; + B; (3.4)
J
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where B; is the bias input, and C; and 5 are parameters. The outputs of these nodes

are

Vi = f(Uy) (3.5)

where f(-) is a differentiable function, for example a sigmoid function

1

= o (3.6)

f(U;)

For the evolution of the network, Hopfield defined an energy function F which is a

Lyapunov function when T;; is symmetric[49]. It is as follows:
1 Vi
E=-s STV - L VB0 Y [ £ (Voav, (3.7)
0J i i

However, the term ¥; fy g~ (Vi)dV; is usually neglected by setting n = 0.

The Discrete Model

In a discrete Hopfield net, the output function f(-) is a step function

fwoz{l fU >0.5

0 iU, <05

In addition, U; is updated in discrete time steps,

Uit +1) = STy V;(0) + B (39)
1=1
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that is, the potential of node ¢ at time step t+1 is the linear weighted sum of elements
of V at time step t. The energy function for a discrete model is

E=-3Y Y T,V - Y BY, (3.10)

i=1 7=1

The dynamic evolution of the Hopfield neural networks is in the direction of re-
ducing the energy function. However, the convergence properties and stability of
Hopfield networks depend on the update mode and the structure of the matrix T of
connection weights [13]. For the continuous model, it is possible to use asynchronous
or synchronous update. For the discrete model, Hopfield proposed an asynchronous

update scheme, which is summarised as follows:

1. Randomly choose a node.
2. The activity of the chosen node is computed using equations 3.9 and 3.8.

3. If the total energy of the system decreases then the neuron’s state is changed,;

otherwise, its state is not changed.

4. Repeat 1-3 until there is no more change.

The above update scheme is a serial model. The convergence property of updating in

a parallel or synchronous model for the discrete Hopfield model was also investigated

by Bruck [13] and Paik [97].

From equation (3.9) and (3.10), it can be seen that a Hopfield net performs a
kind of gradient-descent search in its energy landscape, which only gives a local

minimum of the energy function. A Hopfield network using simulated annealing
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methods for dynamic evolution, also known as a Boltzmann machine, may achieve
a better performance, but with a price in computation time [1]. Nevertheless one
of the main attractions of the Hopfield network for low level vision is that it uses
‘neurons’ in a well defined way, to minimize an energy function. It therefore has
the potential to exploit the neural metaphor of computation in a way which is well

founded mathematically.

3.5 Regularization and Hierarchical Neural Net-
works for Multiresolution Models

3.5.1 Regularization Theory

As discussed in Chapter 1, image processing systems, whether biological or artificial,
are often used to extract information from available image data. Because of noise and
the loss of information in the imaging process, inverse processes which try to recover
the information from 2-D images are ill-posed, i.e. there is no unique solution [104].

This ill-posed problem is often formulated as follows [104]:
Given data Y and a transformation A find X such that AX =Y.

A direct inverse matrix computation X = A~'Y is often impractical when the matrix
is large. In ill-posed cases, when A is singular, only an approximate solution, which

minimizes the following quadrature cost function E is usually sought,

E(X)=||AX -Y]|? (3.11)
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where || - || is a norm. Furthermore, when A is ill-conditioned, the solution from a
direct inverse matrix computation is usually unstable, i.e. a small change in data
Y will make a huge change in the solution. This is to say that the method is not
robust. In order to make an ill-posed problem well-posed, the admissible solutions
must be restricted by introducing suitable constraints, or a prior: knowledge. A
priori knowledge can be given, for example, in the form of variational principles or
statistical properties of the solution space. Recently, Poggio proposed regularization
theory as a theoretical framework to unify work in various early vision processes
[104]. In regularization theory, one technique is to integrate image data and various
constraints using the framework of minimizing an ‘energy’ or cost function [64]. In
such approaches, the relation between each clue or constraint is expressed by a cost
function in such a way that compatible constraints and clues will reduce the energy
function while incompatible ones will increase the energy function. The solution will

be the one which minimizes the energy function.

One way to restrict the possible solution space is to find X that minimizes

EX)=|AX Y |* 42| PX || (3.12)

where PX is a regularization term, and A is a so-called regularization parameter
which controls the trade off between data fidelity and constraints. A large A means

that the solution is forced to pay more attention to the constraints than to the data,

Y.
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If A is a linear operator, the norm quadratic and P linear, the paradigm is called
a standard regularization by Poggio et al. [104]. Standard regularization under
some mild conditions can be shown to have a convex solution space and, therefore, a
unique solution exists. However, the physical plausibility of the solution, rather than
its uniqueness, is the most important concern in regularization analysis. Naturally,
non-quadratic cost functions may be needed to impose correct physical constraints.

However, the solution space is then no longer convex and there may be many local

minima.

This energy minimization paradigm is general and its effectiveness in a particular
problem depends on the formulation of the cost functions corresponding to each clue.
Because images usually consist of textures or structured objects, pixels in a neighbour-
hood tend to have high correlation. Thus it seems reasonable to construct an energy
function corresponding to such properties. Conseduently, a natural choice among a
variety of minimization techniques is that which best reflects such local interactions
among pixels. To implement the minimization, it is common to use iterative methods
like relaxation, simulated annealing and optimization networks [22]. Certainly, these
techniques are related, but with some differences and they have all been successfully
applied to various problems (eg. [143] [35] [50]). As suggested in previous sections,
the use of artificial neural networks may be an efficient way to solve image processing
problems. There are also theories that suggest the brain behaves to optimize a single
variable, even though such claims have been challenged [77]. The utility of neural
networks in optimization is still an appealing idea. Since the energy function of a Hop-

field network and a standard regularization equation are both quadratic, Poggio and
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colleagues[104] suggested that the Hopfield neural network can be used to solve stan-
dard regularization problems after a careful mapping between the Hopfield network
and the standard regularization. It is one of the best understood parallel methods to
implement regularization and hardware implementations are available [58]. There are
many researchers using Hopfield networks for image processing. For example, Zhou
et al. [141] applied a Hopfield network to an image restoration problem. Psarrou and
Buxton combined Geman and Geman’s line process with a Hopfield net for optical

flow estimation [105] [35].
3.5.2 Hierarchical Hopfield Networks

From chapter 2 and the previous part of this chapter, it has been suggested that
combining local and global information is important both for a computer program
and a biological system in image processing and vision. Since both a multiresolution
model and a layered neural network can be represented by hierarchical structures, a
layered neural network is easily adapted to implement a multiresolution model. A
simple way to implement a multiresolution model using neural networks is to create a
neural network for each resolution. Among the various artificial neural networks, the
Hopfield network is easily extended to be hierarchical and embody a multiresolution
. modél. Such an approach has been used by a few researchers(eg. [134] [31] [7] [5]
[27]). Wu formulated an optical flow reconstruction as a optimization problem based
on a regularization theory and employed a hierarchical Hopfield neural network to
find the solution[134]. While using the same principles, however, Battiti employed a

multilayer perceptron and used a multiresolution pyramid for computational efficiency
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in optical flow reconstruction{7]. The benefit of such a combination is to increase the
convergence rate of the neural network as well as to enhance the computation power

of the multiresolution model through local interactions.

A hierarchical Hopfield neural network which implements a multiresolution model
to solve image tasks, such as image restoration, usually needs self-looped connections.
This implies that an asynchronous network would not be guaranteed to converge with-
out checking the change of its energy function [141]. Several researchers have studied
algorithms to eliminate this problem [97] [136]. It is reported that a binary Hopfield
network will converge to a fixed point provided that its connection weights matrix is
symmetric with non-negative diagonal entries and it operates in a sequential mode[14].
Paik and Katsaggelos also investigated the convergence properties of a binary Hopfield
network using different updating rules when applied to image restoration problems

[97]). Their result is an improvement and extension of that of Zhou et al.

Although the connection matrices of a Hopfield network often contain negative
diagonal entries when using standard regularization techniques to solve an image
restoration problem, this is not a severe problem. Figure 3.9 illustrates the aforemen-
tioned hierarchical Hopfield neural network, which corresponds to a pyramid. Finally,
the multiresolution Hopfield network may have the benefit of fast computation. A
multiresolution neural network architecture with coarse-to-fine computation can im-
prove the convergence rate of the Hopfield network[93]. For all of these reasons, the

network chosen for the work reported here employs the structure shown in figure 3.9.
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Chapter 4

Multiresolution Edge Detection
Networks

4.1 Introduction

As mentioned earlier, boundaries, along with some other properties, are used by a
visual system to represent its environment. The task of boundary extraction is to
transform an intensity image into a binary labelled edge map of the image. Edge
detection is the first step of the boundary feature extraction process. Previous work
on edge detection ranges from the earliest gradient operators [61] to more recent
model-based methods using relaxation [41] [142] or multiresolution representations
[18] [87]. In this chapter, it will be shown that gray level edge detection can be done
well with a biologically inspired approach. This approach is based on the framework
of minimization of an energy function which corresponds to edge configurations in
the image. Using a multiresolution model to enhance orientation information, the
minimization is implemented by mapping the cost function into the energy function

of the hierarchical Hopfield neural network proposed in chapter 3.
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4.2 Edge Detection

The aim of edge detection is to register possible boundaries of objects in a given image
for higher level visual processes to represent objects. Since the terms, ‘boundary’ and
‘edge’ are often used interchangeably, it is not surprising that there is not yet an
generally agreed definition of ‘edge’. However, it is hard to disagree that an edge
is, roughly speaking, a location where image properties such as intensity, colour, or

texture, change abruptly.

Although simple and intuitive, this definition is fuzzy. Further examination of
the definition and comparing edge drawings of images by humans, it is not hard
to see that an edge map produced by strictly following the above edge definition
can be very different from edges perceived by a human observer. It is thus not
surprising that giving an image to two individuals, they may produce two similar
but not identical edge drawings. This is because individuals may draw boundaries
which are the contours of objects perceived in higher level visual processes, but not
those fine details such as texture and shadows, which also mark abrupt changes of
image properties. The point here is that edge detection is the first step of boundary
extraction. Hence, it is reasonable to postulate that good edge detection should give
an edge drawing as close as possible to the boundaries of objects in an image and to

incorporate some a priori knowledge to enhance the performance of an edge detection

algorithm.

The above definition implies that edges occur at the locations of large intensity

gradient. This observation naturally leads to the earliest gradient schemes [61] and
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later a class of optimal filtering edge detectors [38][67][20]. However, the inherently
differential nature of edge detection makes it very sensitive to noise. As Poggio
pointed out [104], the edge detection problem is ill-posed, in the sense that a small
amount of noise will cause a large change in the resultant edge map. Indeed, noise
will cause large gradients, which disrupt the small scale edges. To be insensitive to
noise, a straightforward approach is to apply lowpass filters to the image first before
applying a differentiation operator. Unfortunately, such operations will also increase
the uncertainty of the location of edges [38] [20] [131]. Thus, difficulties arise in
optimal filtering detectors, because of the compound problem that edges which are
perceived and found meaningful often exist in a range of scales [88] [132] and images
are often blurred and corrupted with noise. To tackle noise sensitivity and main-
tain the accuracy of edge locations, multiresolution techniques have been employed
[110][132][127]. Witkin proposed the scale-space filtering scheme to cope with the so
called scale consistency problem and alleviate noise sensitivity. The scale consistency
problem, however, has to be tackled efficiently in order to produce an unambiguous
result. To this end, various methods for the combination of information between
scales have recently been proposed. Gidas used the RG method to generate a multi-
scale structure and related the scales to one another via the RG transformation [37]
Another approach is to model scale space using a stochastic process. Notable are the
work of Clippingdale and Wilson [24] on a quadtree structure and that of Basseville
et al. [6] on a wavelet representation (cf. chapter 2). Using a pyramidal representa-
tion and a stochastic multiresolution model which is based on Clippingdale’s work,
Bhalerao [10] proposed a scheme which achieved some degree of success in extracting

edges.
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Edge maps obtained by applying derivative operators are followed by a group-
ing process which takes orientation information into account to give a set of edge
chains [66]. For example, a classical clustering method, the Hough transform, [59]
maps potential edge pixels of a local region into a parameter space of curves, and
an edge chain is formed by selecting the maximum peak in the parameter space and
represented by piecewise analytic curves such as straight or spline lines. The Hough
transform, however, requires a search for peaks, which is time consuming, especially

if the resolution required is high.

Another classical approach of grouping edge pixels is to cast the edge grouping
problem as an optimization problem. The idea is to formulate a cost function of an
edge structure such as, local position, orientation and curvature, and to find a solution
by using minimization techniques such as the relaxation labelling used Parent and
Zucker [102], and Haddon and Boyce [41], dynamic programming [3] or simulated

annealing [119].

Obviously, the major issue in edge grouping is to regularize the ill-posed edge
detection problem. In other words, knowledge of edge structure is used in order to
achieve noise immunity. Therefore, the relevant properties of edges warrant further

investigation.

While noise and fine texture usually result in random short line segments, most
physical boundaries of interesting regions are more or less smooth and continuous. Itis
thus desirable that edges should also be smooth and continuous. Such a characteristic

can be used to distinguish an edge from short line segments caused by fine texture
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and noise, by discarding incoherent or isolated short line segments, or connecting
neighbouring short line segments which have similar orientations. This is a widely
used criterion for edge grouping. For example, Boldt et al. [12] considered short lines

as tokens and used geometrical relations for line grouping.

Although the magnitude of a gradient is strongly influenced by illumination, its
orientation is relatively independent of the illumination and provides shape informa-
tion. With the discoveries of simple cells [55] which respond to linear features whose
orientations lie within a narrow angular band, it is not surprising to see that this es-
sential parameter of edges is important in edge detection. Furthermore, psychologists
have suggested that the human visual system seems to use the Gestalt laws in parti-
tioning elements into groups; these include proximity, similarity, closedness and good
continuity [88]. In short, in addition to magnitude, there are four essential properties
which can be used to discriminate edges from noise. They are (a) orientation, (b)

thinness, (c) continuity and (d) length. These properties should be included in the

design of an edge detection algorithm.

4.3 Edge Detection as an Optimization Problem

As mentioned earlier, edges can be defined as the locations of boundaries across which
one or more image attributes are discontinuous. It is nevertheless difficult to quantify
what is an edge in an image since the perception of edges by the HVS is very complex
and is stroﬁgly influenced by prior knowledge [88]. A simple way to find edges in an

image is to filter the image and threshold the result. However appealing its simplicity,
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this approach fails to take structural properties into account and is not robust when
noise and fine texture is present [61] [132]. This leads to a range of algorithms which
further group edge pixels into connected lines using curve fitting, sequential contour
tracing techniques or cost minimization techniques, in which the edge discrimination

problem is cast as an optimization problem.

The idea of formulating the edge detection problem as an optimization problem
is appealing, for a large family of optimization techniques can then be utilised. The
main theme is to formulate an energy or cost function which will reflect the charac-
teristics of an edge or a boundary. For example, Parent and Zucker use the concept
of cocircularity to define interactions between edge pixels and the sum of these inter-
actions is used as the global energy function which is minimized, using a relaxation
labelling method, to give the edge configuration [102]. Using the same idea, Amini
et al. applied dynamic programming techniques to solve the problem. Also using
dynamic programming for curve inference, Shaashua and Ullman [116] proposed a
uniform network of locally connected processing elements to compute the structural
saliency in an image. Later, Montesinos and Fabre [94] modified the technique used
by Shadshua and Ullman [116] also for grouping edge elements which, unlike the line
segments used by Shaashua and Ullma, included dots. In practice, these optimiza-

tion techniques may only give local minima and the goodness of the solution provided

depends on the initial guess.

The essential task in casting an edge detection problem as an optimization problem
is to derive a cost function which reflects the edge structures and is easy to compute. It

is also desired that the energy function should be easily embodied in a multiresolution
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model so that a good initial guess can be made at a low resolution and a better solution

can be obtained by refining it at smaller scales.

4.3.1 The Design of a Combinatorial Energy Function

A great deal of work has been done since Hopfield neural networks were applied to
optimization problems [50)[141][137]. The attraction of using a Hopfield neural net-
work is that optimization problems can be solved in a parallel manner and hardware
implementation is readily available [49]. In image processing, many problems can be
cast as optimization problems and Hopfield neural networks are used to find solu-
tions. It is convenient to map pixels to nodes one-to-one, so that the interaction and
constraints between pixels are easily implemented by the strength of their links and

some a priori constraints can be also implemented as bias terms.

For the sake of convenience, the energy function of the Hopfield network is rewrit-

ten here (cf. equation (3.10))
=Y Y I,W; - BV, (41)
i :

Vi= f(L. TV + B) (4.2)

Obviously, if orientation information, to which the simple and complex cells respond,
is used to decide the strength of interaction, Tj;, it should give the sum ¥, T;;Vi a
meaningful result. Indeed, this is a logical way to counter noise by a simple smoothing
operation. However, to facilitate a smoothing operation taking orientation informa-

tion into account, the orientation representation should be implemented carefully,
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so that the average can be used as a ‘certainty’ measure of the presence of an edge
pixel. To this end, an interesting orientation representation known as the double angle
representation, first proposed by Granlund[38], is adopted in this work. The reason
for using this representation is twofold: (a) to avoid ambiguity and (b) for efficient

smoothing.

There are a variety of orientation estimation and subsequent smoothing methods
in the literature. This is due to the fact that a variety of orientation representations
were adopted. In the early days, the orientation vector field of an image f(r,y)
was often represented by the gradient field (gﬁ, %5) rotated by 7 [61]. Although this
representation is simple, there is an intrinsic ambiguity in this representation scheme
since the same orientation can be represented by a vector with either positive or
negative sign. To filter out noise, a simple smoothing operation is to average the
orientation field within an isotropic weighting window. However, the two problems

together will not allow the smoothing operation to produce a meaningful average

[128].

One remedy for these problems is to represent orientation by doubling the angle
of each gradient vector. Thus, given an image f(z,y) and a pair of orthogonal masks

ko , ki, the gradient field (g0, 1) is given by

go(z,y) = flz,y)*ko(zx,y) (4.3)

g1(:l:,y) = f(rc,y)*kl(:t,y) (44)
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where * is the convolution operation and f(z,y) is the intensity image. The double

-

angled orientation vector d(z,y) of a pixel (z,y) may be computed as follows: Let

_ [ 95z, y) — gi(z,y)
g(x,y)—( 290(2.9) g (2:9) ) (4.5)

which is equivalent to

26
o() = (o) ( ooy ) (4.5)
where r(z,y) is the magnitude of vector (go(z,y), 91(z,y)) {10]. Then,
7 26
fo)=rte ( 7050 ) (@)

In this representation, there is no sign ambiguity, so smoothing can be performed
easily. It is shown by Knutsson [67] that this representation is equivalent to the use
of a tensor representation. Note the orientation vector field is the continuous one,
as opposed to a discrete one advocated by Zucker [143]. The advantage of using a
continuous representation is to allow a simple local smoothing and avoid quantization
errors. From the neuropsychological viewpoint, it is also suggested by Hoffman [47],
and later Dodwell [30] that the integration of local orientation information in the
visual cortex is to consider the cortex as a vector manifold (ie. a continuous vector
field), ‘on which vector fields operate, and to model the integration process as a

function of the postulated vector fields and their global properties.
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Compatibility Measurement

The properties of edges outlined in section 4.2 are used to define a measure of com-
patibility T;; for two pixels in a window. If a Hopfield neural network is used, those

structural properties have to be imposed as constraints as follows:
Vi = f(S TV, - Bi) (4.8)
J

where V; is the output of a node, which 1s considered as the degree of confidence about
an edge element presenting in pixel (z;,¥;), and f(-) is a decision function, usually
nonlinear. It is desired that, within the window, with a proper choice of parameters,
isolated edge pixels should be removed and small gaps should be filled and the links
T;; of the ith neuron form a lateral inhibition function to give thin edges, when the
orientation field in this window is homogeneous. Equation (4.8) however, only defines

edge elements using information in a given window. The global energy function

E=-3Y ST, - X B (4.9)
PR 1

is used for the selection of edges. It is not hard to see that in an ideal case, edges of
length at least 2 elements are preferred, for such a configuration will reduce the term
~T;;ViV; in the energy function. The bias term B;V; can be used to introduce some

a priori knowledge to regularize the edge configurations.

Thus far, edge detection has been formulated as an optimization problem. The

problem on hand is how to determine the compatibility function and to search for
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the solution. The compatibility measure between two pixels should reflect the idea
that when two pixels are in the same shape, the measure is high; otherwise it should
be low. A good measure for two pixels’ membership in a shape, or ‘co-shape’ is the
angle difference between the displacement vector between them and the sum of ‘the
two orientation vectors of the two pixels. This is illustrated in Fig 4.1. In Fig 4.1 (a),
a straight edge passes through pixels (21,y1) and (z,,y,). The angle of the vector
sum of the orientation vector A and the orientation vector B is the same to that of
the displacement vector 6, which is from (z1,y1) to (z2,y2). Figure 4.1(b) shows that
in an ideal circle, the magnitude of orientation vector A of pixel (x1,y;) is the same
as that of orientation vector B of pixel (z3,y2). and it is obvious that again, A and

B is the same as that of coordinate vector C. In other words,
arg(./i'—{- ﬁ) = arg(C-") (4.10)

where arg(-) gives the angle of a vector. The compatibility measure underlies the
collinear concept. In an ideal case, this is similar to the concept of co-circularity of

Zucker [143], but does not take curvature into account explicitly.

To ensure that the resultant edge is as thin as possible, the compatibility measure
should give lateral inhibition, so that the winner of a competition between pixels
across the direction of the edge is selected as the edge. A good candidate for both
the measure of ‘co-shape’ and the competition is the second derivative of a Gaussian
function. Since the interactions between pixels are local, distance should be also

taken into account, that is, the measure should be proportional to distance between
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two pixels. A reasonable choice is a lowpass-like weighting function like the cos(-)
function. Finally, the magnitude of the orientation vector also plays an important

role: the more certain is the orientation, the stronger should be the link.

Hence, let v; be the orientation estimate at pixel (x;,y;); the compatibility be-
tween two neurons : and j which correspond to pixel (x;,y;) and pixel (z;,y;) will be

measured as follows

T;; = k(o? — b?j)exp(—b?j/202) - cos(2maij/(cw — 1)) - pj (4.11)

where k and c are constants, w is the window size, y;; is the magnitude of v; + v}, o

depends on w (in this work, ¢ is 0.7) and

ai; = vijcos(6;;)

bi; = ~ijsin(6;;)
where

8;; = =[arg(v; + v;) — 2- arg((xi — x5, ¥ — y;))]

[ 3

i = (i — )2 + (3 — 95)?

In other words, the compatibility between two edge components is separable into
a function perpendicular to the edge, expressing lateral inhibition and one parallel to
the edge, expressing continuity and proximity. To give an idea how the links setting
will be, figure 4.2 shows the link strengths in a 5 x 5 window oriented horizontally

and figure 4.3 and 4.4 are the link strengths of a right angle corner and 45 degrees
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acute angle corner. Note how this shows excitation along the feature orientation and
inhibition in the perpendicular direction in figure 4.2. Unfortunately, the positive
strengthsydo not follow corners exactly as shown in figure 4.3 and figure 4.4. This
causes some defects in corners, which will also be discussed in section 4.5. Given
various states of its neighbour nodes, figure 4.5(b) shows the energy of a node with
the link settings shown in figures 4.2, 4.3 and 4.4. It is not hard to see that when
the network output configuration corresponds to the orientation which underlies the
link settings of the marked node, the energy of the marked node will be large. It is
maximal for the line and right angle configurations, but for the acute angle, which
fits the underlying collinear model least well, the largest energy is associated with a

straight line, not the corner.

Having defined the compatibility function between two pixels, a technique to search
the solution space is required. This is done by mapping the cost function to the energy
function of a Hopfield neural net and the compatibility function to the link strength
between two nodes. Some modification of the original Hopfield neural net, however,
is required, fof in this version there will be a self-feedback link for each node. The
self-feedback, however, is set to be positive so that the net will converge. It is then
necessary to check the change of the energy function each time a node is updated
[97]. The implication is that the net will need extra computation for energy checking,

which is, of course, a drawback. Nevertheless, with careful choice of parameters, it

may be possible to avoid the checking [97].

[ ]

The Hopfield network is applied to two clean images, ‘table’ and ‘boats’, to demon-

strate its capacity(see figure 4.6 and figure 4.7). Figure 4.6(b) and figure 4.7)(b) are
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(b)
X
-0.364 | -0.428 | -0.450 | -0.428 | -0.364
-0.782 | -0.919 | -0.966 | -0.919 | -0.782
1.463 | 1.720 [ 1.809 | 1.720 | 1.463
-0.391 | -0.459 | -0.483 | -0.459 | -0.391
-0.364 | -0.428 | -0.450 | -0.428 | -0.364
(d)

Figure 4.2: The link setting for a step edge.(a) An ideal step edge. (b) Its orientation.
(¢) A plot of the link strengths between a pixel and its neighbours. (d) The link

strengths between this pixel and its neighbours.
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0.630 | -0.011 | -0.733 | -0.397 | -0.073

1.000 | 0.490 | -0.413 | -1.039 | -0.397

y [ -0.250 | 0.769 | 2.000 | -0.413 | -0.733

-0.397 | -0.812 | 0.769 | 0.490 | -0.011

-0.073 | -0.397 | -0.250 | 1.000 | 0.630

(d)

Figure 4.3: The link setting for a right angle corner. (a) A right corner of an ideal
step edge. (b) Its orientation. (c) A plot of the link strengths between this corner
and its neighbours. (d) The link strengths between this corner and its neighbours.
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: -0.426 | -0.482 | -0.400 | -0.258 | -0.132
0.317 | -0.245 | -0.618 | -0.717 | -0.510
y| 0.480 | 0.541 | 1.468 | -0.010 0.203
0.624 | 0.260 | -0.010 | 0.230 | 0.317
-0.389 | -0.271 | -0.156 | 0.359 | -0.426
(c) (d)

Figure 4.4: The link setting for an acute angle corner(a) A 45 degree corner of an ideal
step edge. (b) Its orientation. (c) A plot of the link strengths between this corner
and its neighbours. (d) The link strengths between this corner and its neighbours.
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avy V) %))

Type I II 111 1A% Vv VI

Line | 8.175 | -0.540 | -0.397 | 4.059 | 4.169 | -0.803

Right angle | 1.473 | 1.373 | 0.013 | 3.038 | 1.634 | 5.259
Acute angle | 2.682 | 0.284 | 0.490 | 2.223 | 2.360 | 1.889

(b)

Figure 4.5: (a) The energies of a node under different edge configurations:(I) horizon-
tal edge, (II) vertical edge, (II1) diagonal edge and (IV) a right angle corner (V) a 45
degree corner (VI) a curve. Note the cells with shaded circles have magnitude 1 and
cells without shaded circles have magnitude 0. (b) This table shows the responses of
the node in three different link settings, which are shown in figure 4.2, 4.3 and 4.4.
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the resultant edge maps obtained by applying the Hopfield network to the test images.
Compared with Canny’s edge detector followed by a thinning process [20], the results
are better than Canny’s edge detector without hysteretic thresholding (figure 4.6(c),
figure 4.7)(c)) and have about equal quality to Canny’s edge detector with hysteretic
thresholding (figure 4.6(d), figure 4.7)(d)). The network produces fewer responses to

the small texture features in the ‘boats’ image, however.

The Hopfield network is also applied to the ‘table’ and ‘boats’ images at a sig-
nal to noise ratio 10dB and the resultant edge images are shown in figure 4.8 and
figure 4.9. Because the 5 x 5 window can be more or less regarded as a short line
template, the network gives some spurious short lines. However, the iteration pro-
vides line refinement, which will fill small gaps and follow smooth curves. Note that
Canny’s edge detector with window size of 9 and hysteretic thresholding also gives
some spurious short lines and Canny’s edge detector relies on human intervention for
choosing its parameters. In the following section, the above formulation is combined

with multiresolution techniques to give an efficient and robust algorithm.

4.4 Orientation Estimation and Edge Detection

The construction of a suitable compatibility measurement enables the mapping of
the edge grouping problem into an energy minimization problem. The relaxation
technique has the same principle and has long been used for edge detection [143].
Using a stochastic relaxation scheme, Geman and Geman [35] proposed applying a

line process to edges. Their line process idea was adopted by Zerubia and Chellappa
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(c) (d)
Figure 4.6: (a) The ‘table’ image (b) the resultant edge obtained using the Hopfield
network. (¢) Canny edge detector without hysteretic thresholding (threshold value

= the magnitude below which 90% pixels lie), window size 9 pixels (d) Canny edge
detector with hysteretic thresholding ( high threshold value = the magnitude below
which 90% pixels lie, low threshold value = 1/2 high threshold value), window size 9

pixels
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Figure 4.7: (a) The ‘boats’ image (b) Its resultant edge using the Hopfield net. (c)
The resultant edge map from Canny edge detector without hysteretic thresholding
(threshold value = the magnitude below which 70% pixels lie), window size 9 pixels
(d) The resultant edge map from Canny edge detector with hysteretic thresholding
( high threshold value = the magnitude below which 70% pixels lie, low threshold
value = 1/2 high threshold value), window size 9 pixels
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(d)

Figure 4.8: The noisy ‘table’ image(SNR=10dB). (b) The resultant edge map ob-
tained using the Hopfield net. (c¢) The resultant edge map using Canny edge detector
with hysteretic thresholding ( high threshold value = the magnitude below which
70% pixels lie, low threshold value = 1/2 high threshold value), window size 9 pixels
(d) The resultant edge map using Canny edge detector with hysteretic thresholding
( high threshold value = the magnitude below which 70% pixels lie, low threshold
value = 1/2 high threshold value), window size 17 pixels and deviation = 2 pixels.
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Figure 4.9: (a) The noisy ‘boats’ image(SNR=10dB). (b) The resultant edge map
obtained using the Hopfield net. (c) The resultant edge map using Canny edge
detector without hysteretic thresholding ( high threshold value = the magnitude
below which 70% pixels lie, low threshold value = 1/2 high threshold value), window
size 9 pixels (d) The resultant edge map using Canny edge detector with hysteretic
thresholding ( high threshold value = the magnitude below which 70% pixels lie, low
threshold value = 1/2 high threshold value), window size 17 pixels and deviation =
2 pixels.
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[140] for edge detection. A related idea is to construct a locally connected network
for edge detection, for example the works of Shadshua and Ullman [116]. Herault and
Horaud [45] also proposed a locally connected network, but they used the mean-field
theory for finding the solution, which is related to the Ising model. The Hopfield
network which is related to the mean field theory is easily implemented and is widely

used, eg. [135].

All the techniques mentioned above use iterative schemes to search for solutions.
The convergence rate is therefore an issue. A possible technique to improve the
convergence rate is to use a multiresolution model’, which also suitable for dealing
with the scale problem. Furthermore, multiresolution techniques are able to reduce

noise efficiently, so that the combination will give a robust edge detection scheme.

4.4.1 Multiresolution Hopfield Networks for Edge Detec-
tion

An image usually contains features over a range of scales. To deal with the scale
problem, it is natural to use multiresolution techniques [88] [132]. The edge detection
developed in the previous section can be combined with multiresolution techniques.

Figure 4.10 illustrates the overall edge detection algorithm. There are four processes:

1. Construction of a lowpass gray level pyramid.
2. Initial orientation estimation.

3. Orientation directed edge detection using the Hopfield neural network.

n solving differential equations, it is called the multigrid method
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orientation pyramid

gray level pyramid
Orientation estimate

input image estimated orientation and
detected edge

Figure 4.10: The structure of edge detection using a Hopfield network
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4. Recursive top-down propagation of orientation estimates and detected edges.

Although construction of a gray level pyramid is a straightforward process, it is

worth mentioning that a kernel with a circularly symmetric response is favoured, so

that less orientation bias will be introduced to subsequent levels [128]. Given an

image f(¢,7) and a kernel w,,,, the construction process is

Fi(B) = 323" Wmnfrimm2j-n(k +1)

(4.12)

where f;;(k) is the image on level k , f;;(M) = f(i, 7). Note that if the kernel size is

even, the subsequent levels are shifted by one half pixel, as in a quad-tree.

To demonstrate the effect of the pyramidal smoothing, a synthesized image of

shapes whose foreground grey level y; and background gray level p; are 170 and 150
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-.0741 | -.0955 0 0| .0955 | .0741
-.0955 0 {.0935 -.0955 0 {.0955
0} .0955 | .0741 -.0741 | -.0955 0

Table 4.1: Wilson’s 3 x 3 edge detection kernels

respectively (see figure 4.11(a)) is used. Gaussian white noise with a variance of 400
is added to the synthesized ‘shapes’ image, giving an image whose signal to noise

ratio is 0dB (figure 4.11(b)). The SNR for the ‘shapes’ image is calculated as

SNR = 101ogm("‘a— Fzy2 (4.13)

n

Note that at the level of size 32 x 32, most noise is effectively removed by pyramid

smoothing.

The construction of an orientation pyramid proceeds by convolving the image at
each level with a pair of partial derivative kernels (Table 4.1). As described in section
4.3, the double-angle representation is adopted. These kernels are oriented at angles
of £ and —% respectively; thus a rotation of £ is applied so that the orientation field
is properly aligned. Orientation estimation using the above 3 x 3 kernels is cheap
and sufficient for images which consist of homogeneous regions separated by clear
boundaries. However, when lines and texture edges are involved, more complicated
filters should be used (see [67]). An orientation pyramid is shown in figure 4.11(c)

and (d). Note that the double angle representation is used.
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(c) (d)

Figure 4.11: (a) The clean ‘shapes’ image (b) The 0dB ‘shapes’ image (c¢) Its orien-
tation (d) The pyramid of the 0dB ‘shapes’ and its orientation pyramid. Note that
hue corresponds to orientation and value (intensity) to magnitude in (c) and (d).
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4.4.2 Coarse-to-fine Refinement

Having built the orientation pyramid, the edge detection scheme will start at a level
in which the noise is removed or reduced to a negligible level by pyramid smoothing.
A Hopfield neural network as described in section 4.3 is set for edge detection. After
the network converges, those nodes which are ‘on’ are edge pixels. Hence, the image
is classified into edge pixels and non-edge pixels. The orientation estimates at edge

regions are enhanced as follows

Gi(k) = 33" wiem j-mEmn(k) (4.14)

where é‘() is the double angled vector estimate at level k¥ and w(-) is an isotropic

lowpass weighting function (cf. equation (4.7). For w(-), see [127]).

Now comes the problem of how to combine estimates of orientation information
across scales. A characteristic in images that can be exploited for this purpose is
that salient features tend to exist over more than one scale. Thus, a simple averaging
between levels will emphasise consistent features and reduce uncorrelated noise. This
is because the data in coarser levels is more reliable but .has less detail, while data in

finer levels is more detailed but less reliable.

To facilitate this coarse-to-fine propagation, the model originated by Clippingdale

and Wilson [24] is adopted. The variation of orientation across scales is modelled in
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the form of a linear multiresolution equation

dij(k+1) = 303 Aijmnds_py o (K) + Pk + 1) (4.15)

m n

where J:J(k + 1) is the orientation vector of pixel (¢, 7) at level k + 1, Aijmn 18 a scalar

interpolation function and 7;;(k 4 1) is an innovation vector. In its simplest form, the

model is

- D

dig(k +1) = di 4 (k) + 75k + 1) (4.16)

L
2 b

which is used by Clippingdale [24] on a quadtree. Given the set of noisy data

dij(k) = dij(k) + 713 (k) (4.17)
Clippingdale showed that the MMSE estimator (;:,( k) for level k is a linear combina-

tion of the estimator a level above and the observed noisy data at level k as follows

A
-

dij(k +1) = a(k)dy 4 (k) + (1 - a(k))d;;(k +1) (4.18)

>
Nt

The model, of course, compounds the refinement of the orientation estimate and the
assumption of scale consistency. Its MMSE estimator, however, has a defect, due to
being spatially invariant, which tends to blur important features such as lines and
edges in images. A refined model also proposed by Clippingdale [23] is to use a

spatially variant coefficient for the estimate

- A
- -

dij(k +1) = ass(k)d 4 (k) + (1 = aij(R))diy(k +1) (4.19)

[
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where ;;(k) is a function of local and global signal to noise estimates. Bhalerao [10]

further modified the estimator for pyramidal structures as

sk +1) = 0 () 3 Aijmnd __m;__n(k)+(1—a;,-(k))ci;j(k—i-l) (4.20)

Using this model, the enhanced orientation estimate is propagated down, according

to a linear equation of the form
sk +1) = 3 Amdy_p 4 (F) (421)
where (¢, j, k) € B(k) and
B(k) = {(s,t,k +1)|(s — 2p)® + (t — 2¢)* < 4, (p, ¢, k) = edge pixel} (4.22)

The orientation estimates of those pixels in B°(k)(complement of B(k)) are set to be
zero. In other words, only those orientation estimates at edge pixels are propagated
down. It is not hard to see that the new estimate of the orientation is a spatially vari-

ant linear combination of the propagated orientation field and the noisy observation,

that is
Gilk +1) = aij(k)&;(k + 1) + (1 = i (k)55 (k) (4.23)
where
0 (4,7) € B(K)
(0 794 = o2(k+1 .. - 2
(&) {;fafﬁi—ﬁm (4,7) € B(K) (4.24)

where o%(k) is the normalised noise variance. In other words, it is assumed that the

signal on two levels is identical and the noise is uncorrelated. These conditions are
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close to being met in this case.

The estimate of o%(k) is obtained with the assumption that those pixels which are
labelled edges are signal plus noise and the rest is noise. The edge area from the
level above is projected down to give an initial guess of the edge area(i.e B(k)) for
the estimation of o?(k). After the initial orientation field estimate is obtained, the
Hopfield neural network is used to detect edges in level k+1. The resulting edge map
at level k is used as a bias to regularize the solution and to reinforce scale consistency.
The whole process proceeds recursively until the bottom of the pyramid is reached

(see figure 4.10).

4.4.3 Network Dynamics

The original Hopfield network updates its nodes asynchronously [48]. Because of
the self-feedback links, the Hopfield network must check the change of energy. A
well-established property of the Hopfield network is that it will converge to a stable
state when operating in a serial mode (update only one node at any time interval)
with a symmetric nonnegative diagonal connection matrix [13]. When operating in
full parallel mode(update all nodes at every time interval), the Hopfield network
with a symmetric nonnegative diagonal connection matrix will converge to a cycle of
length at most 2. This suggests a synchronous update, which is convenient for digital
hardware implementation. Both updating methods have been tried in this work and
synchronous update seems to give better results, although it is not clear why. The

steps of the edge detection algorithm are summarised in the following pseudo code.
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procedure EdgeDetectionUsingHopfieldNet
begin
start at level k of the orientation pyramid
while (k<=M)
begin
Using the orientation estimate to
initialise the Hopfield neural network.
While not converged
begin
run Hopfield neural network
end
re-estimate the orientation
propagate the orientation estimate
k = k+l
estimate signal to noise ratio at level k
combine the initial estimate and the propagated
estimate
set the father level as the bias input
end

end
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4.5 Results and Discussion

The scheme described in section 4.4 has been implemented and the results are dis-
cussed here. To show the effect of this multiresolution scheme, it is applied to several
images of different SNRs. Figure 4.12(a) shows the orientation field pyramid of the
‘table’ image which is shown in figure 4.6(a). The resultant edge map for each level is
shown in figure 4.12(b). Compared with figure 4.6(b), several weak edges have been
missed. This is because when an edge is weak and not classified as a feature, the
combination of estimates between levels further weakens the edge information unless,
at a certain level, the edge becomes salient and is classified as a feature. The problem
is also illustrated in figure 4.14 and figure 4.15. Figure 4.14((c) and (d)) is the the
result of applying the multiresolution Hopfield network to the 0 dB ‘Barbara’ image.
The coarse-to-fine process starts from the level of size 64 while figure 4.14 is the re-
sult of starting from size 32. Obviously, there are certain edges missing in figure 4.14.
Nevertheless, this problem is not severe, as it is noted that the model allows new
features to emerge in the coarse-to-fine refinement of the edge pyramid and salient
features tend to exist across several scales. Bearing in mind the simplicity of the pro-
cessing at each scale and the robustness to noise, these results seem better then those
reported elsewhere [45] [66]. Also shown in figure 4.13 and figure 4.16 are the edge
maps of ‘table’ and 0dB ‘Barbara’ after iteration 1, 2, and 4 respectively. Apparently,

the network recovers weaker edges segments in a process which is reminiscent of the

associative memory.

For comparison, the multiresolution Hopfield network is applied to two noisy ‘table’
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images. The resultant edge maps are shown in figure 4.17(b) and figure 4.18(b).
Comparing figure 4.17(b) with figure 4.8, the noise is effectively reduced with the
computation cost less than a factor of 2. Although there are also several edges missed,
the result seems better than those from the Canny edge detector. The reader is
reminded that the results of Canny edge detector rely on an appropriate choice of
the thresholding values. The multiresolution scheme is robust even when the SNR
of an input image is as low as 0dB. Note that in figure 4.18 the result from the

multiresolution scheme is as good as those from a Canny edge detector with window

size as large as 19.

Further to test the network’s performance at corners when white noise is present,
the synthesized image ‘shapes’ (see figure 4.11) is used. Figure 4.19 shows the edge
detection result of SNR 10 dB ‘shapes’ image. Because the compatibility measure
is designed for tracking straight lines and low curvature curves, its performance at
corners is defective. When a corner is acute, the scheme will miss the corner because
of the ambiguity of the ortentation information at the corner area. As is shown, the
corners of the crescent are not linked and the lower one is lengthened or overshot.
This is because the corner is very sharp. Thus, the end point of the corner is excited
by both lines, and due to lateral inhibition, those pixels of the inner edge (with a
larger curvature) of a sharp corner will be turned off, as is seen in the result. If the

corner is less acute, the network will try to follow a smooth curve which ends up with

a round corner (see the corners of the square).

As noted earlier, the 5 x 5 kernel can be, more or less, viewed as a template of a

short line. It thus resembles a template edge detection in the sense that it determines
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image | level 8 | level 7 | level 6 | level 5

table 7 19 31 24

table (10dB) 7 8 22 13
table (0db) 6 18 13 18
‘Barbara(0dB) 10 15 15 18
shapes(0dB) 7 9 17 12

Table 4.2: The number of iterations in different levels(level 8 is the size 256)

a line in a small window. However, iteration of the network provides line refinement
which a template edge detection lacks. Notice the edges in all the edge maps are one
or two pixels wide. If an edge is too flat perpendicularly to its direction, the edge

may have a ghost(see the figure 4.20). The problem is caused by the lateral inhibition

links.

Finally, the multiresolution Hopfield network usually requires about 20 iterations

to converge. Table 4.2 shows the number of iterations in different levels for the test

images.

To sum up, the network provides (a) a simple local computation for edge group-
ing, (b) small gap filling is possible, (c) in general, only about 10-20 iterations are
needed. The orientation estimation represents some improvement over techniques
employing simpler enhancement strategies (eg. Clippingdale[23], Wilson et al.[128]).
Nevertheless, it would appear that if more global context can be taken into account,
(eg Bhalerao[10]) it may be possible further to improve the result. Moreover, the
system is highly robust - no manual adjustment of parameters is required to get good
results across a wide range of input signal-noise ratios. Finally, it shows that a net-

work of simple neural units can indeed be used to produce an effective system for the
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extraction of boundary contours in a way which is amenable to parallel computation.
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(]))

Figure 4.12: (a)(upper half)The orientation field of the ‘table’ image. (b)(lower half)

the resultant edge map.
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(¢)

Figure 4.13: The edge maps of ‘table’ after (a) 1 iteration, (b) 2 iterations and (c) 4
iterations. The final result is shown in figure 4.12.
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Figure 4.14: (a)The ‘Barbara’ image (SNR=0dB). (b)Its orientation field. (c)The
resultant edge map. (d) Its double angled orientation field and edge map at different
levels.
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(
Figure 4.15: The edge map of 0dB ‘Barbara’ (starting from the level of size 64).
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Figure 4.16: The edge maps of 0dB ‘Barbara’ after (a) 1 iteration, (b)2 iterations and
(¢) 4 iterations. (starting from the level of size 64) The final result is shown in figure
4.15.
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(a) | (b)

Figure 4.17: The ‘table’ image of 10dB SNR. (b) The edge map from the multireso-
lution Hopfield net.
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J

(c) (d)

Figure 4.18: (a) The ‘table’ image of 0dB SNR (b) The edge map from the multires-
olution Hopfield net. (¢) The edge map from Canny edge detector using sigma = 2.4
window size 19 and without hysteretic thresholding (threshold value = magnitude
below which those of 90% pixels lie) (d)The edge map from Canny edge detector
using sigma = 2.4 window size 19 and with hysteretic thresholding (high threshold
value = magnitude below which those of 90% pixels lie, and low threshold value =

1/2 high threshold value).
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Figure 4.19: The edge map of the ‘shapes’ image (SNR=10dB).

Figure 4.20: The edge map of the ‘shapes’ image (SNR=0dB).



Chapter 5

Neural Networks for Restoration

5.1 Introduction

The constrained least squares (CLS) method is a technique for restoring images de-
graded by blurring and additive white noise [109]. The CLS technique, which usually
uses ‘smoothness’ as a constraint or a ‘regularization term’, is a form of regularization
technique [104]. This method finds the solution which minimizes a quadratic error
function. One way to find the solution is to use a quadratic error function as the en-
ergy function of a Hopfield network, so that the solution is obtained as the output of
the Hopfield network [104][141]. In this chapter, a multiresolution Hopfield network is
proposed for image restoration. The attraction of this approach is that the ‘coarser’
resolution solutions can be used in a regularization term and they can be also used to
segment the images in the higher resolutions into regions of different activity, so that
coarse-to-fine adaptive noise filtering is possible [23]. To further improve the per-
formance of the multiresolution restoration scheme, an adaptive restoration scheme

which uses the edge map obtained by applying the Hopfield network detailed in the

109
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previous chapter is also proposed.

5.2 Image Restoration and Regularization

An imaging system inevitably introduces some distortion into images due to turbu-
lence of the environment and the physical limitations of the imaging system. Al-
though these degradation processes are generally nonlinear, the distortions are often
adequately modelled by a linear finite blurring plus additive Gaussain white noise, as

follows,

Yij = Z: hmn-ri—m,j—n + Ny (51)
(mn)eN

where {h..,} denotes the point spread function of the blur, A is the support of the

point spread function and n;; is the additive white noise. Equation (5.1) can be

written in a matrix notation,

Y=HX+N (5.2)

where H is the matrix representation of the blurring and Y, X and N are, respec-
tively, the lexicographically ordered vector representations of the observed image, the

original image and white noise. In this work, only linear shift invariant (LSI) blur is

considered.

A classical method to restore the degraded image is to apply a Wiener filter to
it. The Wiener filter is based on a stationary stochastic assumption, so that it does
not adapt to salient features like lines and edges[78]. Alternatively, filters based on a
statistical image model such as the Kalman filter, can be exploited [61]. This method,

however introduces some bias in certain directions due to the causality requirement
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mentioned in chapter 2. Both Wiener and Kalman filters have been extended into

adaptive versions [61].

If the degradation is only blurring, a straightforward method is to apply a matrix
inverse operation to the observed image Y, which gives the source image X = H-'Y
(or X = (H'H)"'HY if H is singular or ill-conditioned). Although simple in theory,
in practice the size of the matrix causes computational problems. Moreover, with the
presence of noise, an inverse operation will also indiscriminately amplify white noise
so that the restored image is overrun by noise. Instead of direct matrix inversion,

iterative schemes are employed for searching the solution space, which minimize
E(X)=||Y -HX | (5.3)

where || - || is a vector norm. It has been reported that for such methods, white noise
is magnified proportionately to the number of iterations [11]. However, iterative
algorithms under a cost minimization framework are suitable for including a prior:
knowledge as penalty functions to prevent the magnification of noise [65] [73]. In such
approaches, an ‘energy’ function is designed so that it combines posterior constraints
(image data Y') and prior constraints, or regularization terms, to stabilise the solution.
It is also possible to include cost functions for discontinuities. Hence, iterative schemes

can be readily extended for adaptive restoration.

As discussed in section 3.5.1, the problem of restoring a distorted image is ill-posed,
in the sense that its solution is not unique or does not depend continuously on the

data [104]. To solve this problem, a priori knowledge is used to restrict the solution
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space and reduce the instability of the solution so that the problem becomes a well-
posed one. The standard regularization method for the image restoration problem
is

E(X)=[Y -HX |* +) || DX |’ (5.4)
where ) is the regularization parameter and D is, typically, a high pass filter, such
as the Laplacian operator. The solution for this problem is the estimate X which

minimizes the error function E, and can be found by solving the linear system

(H'H + A\AD'D)X = H'Y (5.5)

The above is a deterministic solution. Alternatively the image X can be considered

as a Markov field
X =LV (5.6)

where V is a zero mean white noise field. The optimal solution to the degradation

model (equation 5.2) is the Wiener filtered data
. §°
X=(HH+ -6—;L‘L)“H'Y (5.7)

where 62 and é? are the variance of white noise n,; and signal v;;. Putting

62
AD'D = SL'L (5.8)

it is obvious that the classical Wiener filter is a special case of the regularization

equation (5.4) [36] [108]. Equation (5.4) expresses the trade-off between data fidelity,
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which is dictated by the term ||Y — HX||?> and smoothness by | DX ||2. The regu-
larization parameter A, which usually depends on the variance of noise in the image,
is used to select the trade-off. A common technique for choosing A is maximum

likelihood, but recently cross validation has also been used [33].

The above regularization method is a quadratic method cost minimization prob-
lem, which can be solved using the Hopfield neural network [104][141]. The Hopfield
neural network model has a connection to the Ising model, which was refined by
Geman and Geman for restoration [35]. Based on the same coupled MRF model of
Geman and Geman, Bedini and Tonazzini [8] used a Hopfield network to find the
minimum of a parameter function, which corresponds to the MAP solution of the
MRF model for image restoration. A Hopfield network was investigated by Zhou et
al. [141], who proposed a modified Hopfield network for image restoration using equa-
tion (5.4) as the energy function. Paik and Katsaggelos [97] further investigated the
convergence properties of the modified Hopfield network and explicitly incorporated
set theoretic constants. All the above methods rely on a quadratic energy function.

Using the same error function (5.4), a multiresolution Hopfield network is proposed

in the next section.

5.3 Multiresolution Networks for Restoration

5.3.1 Hopfield Networks for Restoration

In this section, the work of Zhou et al. [141] is reviewed. Based on their work, a

multiresolution Hopfield network is proposed for coarse-to-fine restoration, in which
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an adaptive noise filtering is easily implemented(see section 5.4).

To use a Hopfield network for image restoration, the first task is to represent a
grey level image using nodes. Because of the binary nature of nodes in the Hopfield
network, a total of N2 x M mutually connected nodes is needed to represent a digital
N x N image of maximum grey level M. These nodes are divided into N x N groups
of size M. The grey level of each pixel is represented by the sum of the activities of

its corresponding group. Let
Vo= {oa v € {0,1},1 <i < N1 <k < M} (5.9)

be the set of neurons used for representing a digital image. Then, the pixel value z,,

is represented by the sum of the activities of a group of nodes as follows
M
Ty = Z Uik (510)
k=1

wherei = (s — 1) x N + ¢.

Let Ty, be the connection weights between the node (z,k) and node (j.1). The

energy function of the Hopfield net is then:

| MM N? A
E=-3 Y. 3 Tugrvavi = > Y Bava (5.11)
i5=1 k=1 i=1 k=1

where B,; is the bias input.

The activity of a neuron is determined by its input and its bias. Each neuron
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receives an input (cf. equation (4.1), (4.2))

Ny M
uik = 3 3 Tiejivas + Bix (5.12)

J=1l=1

Its output is a result of a threshold function of this input:
Vi = g(u,-k) (5.13)

The threshold function g(r) is of the form of

1 fz>0
mﬂ={0 iz <0 (5.14)

As the solution to equation (5.4) does not change when it is divided by 2, the error

function can be halved and mapped to equation (5.11). Expanding equation (5.4),

replacing each pixel by the sum of its corresponding nodes as shown by equation

(5.10), gives

1 N2 N2 N2

N2
E = -2-(2(!/. - Z htn':i’i)2 + A Z(Z dn’-i'i)2)

s=1 s=1 i=1

N2 N2 M

1
= 2 Z 3/.2 - Z Z Z Yshaivik

=1 8=1 i=1 k=1

P NN MM
+3 Y 3NN huihijviva
1=1 j=1 k=1 I=1

1 N? N? N?

M
+ 5/\222 2.3 duid,jvivi (5.15)

s=1i=1 y=1 k=1 =1
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where h;; and d,; are the elements of the matrices H and D, respectively. By com-
paring the terms in equation (5.11) to the corresponding terms in equation (5.15),

the parameters of the Hopfield net are determined as

]\72 N2
Tiji = — Y hoihg — XD dyid,; (5.16)
s=1 s=1
and
1V2
Bik = Zyshsi (517)
s=1

If this Hopfield net is directly implemented, a memory of O(N*M?) is required
and the time complexity is O(N*M?K’), where K is the number of iterations. It is
difficult to simnulate the Hopfield net on a conventional computer even for a 128 x 128
image. However, a practical simulation is possible if the blur function H and D
are local and shift-invariant, for the connection strengths only depend on H, the
constraint D and ), and it is therefore sufficient to store only the bias term and those
nonzero connection weights for each node. Furthermore, a pixel can be represented

by a multivalued node, since each binary node which belongs to a given pixel has the

same connection weights.

The update rule for each multivalued node z; can be written as:

_ .r,'(t) + Avy f AE <0
rft+1) = { (1) it AE >0 (5.18)

where Av;; is 1,0, or -1 corresponding to the input x, of positive,zero or negative.

Zhou'’s algorithm is summarised as follows:
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1. Initialise the multivalued nodes to the degraded image.

2. Sequentially visit each node and update it repeatedly until there is no further

change. Then move to the next node.

3. At the end of each iteration, check if the energy function has changed; if there
is no change, then a restored image is obtained. Otherwise , go back to step 2

for another iteration.

It is obvious that sequential scanning of nodes enforces a preferred direction. In
addition, the energy function has to be checked to ensure its convergence since the
weight of Tirix may be less than 0. These two properties are undesirable, for it is
almost impossible to parallelize the algorithm. A remedy for the energy checking

problem is proposed by Paik and Katsaggelos [97]. Their update rule is modified to

xi(t+ 1) = g(zi(t) + Azy) (5.19)
where
0 fv<o
glv)=¢ v if0<v<255 (5.20)
255 if v > 255
and
-1 u; < T
Ari=di(v;))=¢ 0 T 2u; <-T; (5.21)
1w, 2 =T
where
u;, = B,’ + Z T,‘]'.Tj(t) (522)
Jj=1

This update rule guarantees energy reduction with negative autoconnections T;j;

when the sequential updates are used. A similar result is also demonstrated by Yeh
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et al. [136]. Paik and Katsaggelos also proposed a parallel updating algorithm.
However, their parallel scheme is not guaranteed to converge to a local minimum of
the energy function of their Hopfield network. The restored image using the network
of Zhou et al. is known to correspond to a local minimum of the energy function. To

find the global minimum, a stochastic decision rule such as simulated annealing can

be used [35].

To show how the algorithm works, figure 5.1(a) shows the original ‘Lena’ image of
size 256 x 256 with 256 grey levels and figure 5.1(b) is this image degraded by a 5 x 5
uniform blur function and 30dB additive Gaussian white noise (The variance o2 of
the additive Gaussian white noise is set such that 30dB = 10log fg-dB, where o? is the
variance of the original ‘Lena’ image. Hereinafter, this is used to specify the variances
of additive Gaussian white noise used in the test images.) Figure 5.2(a) is the result
obtained after 59 iterations. This degraded image is taken as the initial value for
restoration. Note the ringing errors manifest at the border areas and edge areas. It
is well known that the restoration errors mainly consist of the regularization error
and the noise magnification error [73]. Lagendijk pointed out that the regularization
error is a function of the source image and this error is related to the local structure
of the images, in particular at the edges [73]. The relation between the regularization
parameter and restoration errors has been investigated [73][33] and this relation is
shown in figure 5.4. Since the regularization error is a monotonic nondecreasing
function of the regularization parameter A and the noise magnification error is a
monotonic decreasing one, this implies an optimal choice of A which can be easily seen

from figure 5.5. Zhou's scheme was further tested with the blurred image corrupted
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(a) (b)

Figure 5.1: (a) The clean ‘Lena’ image. (b) The ‘Lena’ image blurred by a 5 X 5

uniform window and corrupted with 30dB white noise.

(a) (b)

Figure 5.2: (a)The restored image using Zhou's scheme. (b) The restored image using

the proposed multiresolution scheme.
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with a range of additive white noise. Figure 5.5 shows its performance with a set of
different values of regularization parameter A. As shown, the regularization parameter
A is used to control the trade-off between the two conflicting operations — deblurring
and white-noise reduction. When X is large, the network mainly performs smoothing,
so that the SNR of restored images decreases slowly because of the constraint window
size. It was observed in the experiment that when the regularization parameter lies in
a certain range, the regularization error is mainly caused by the ringing effect, which
is due to the bandpass nature of the regularized filter. When the parameter exceeds
a certain level, the ringing effect is replaced by blurring. Figure 5.5 shows that the
optimal value of the regularization parameter increases while the image is getting
more noisy, and finally the regularization parameter is so large that the deblurring is

negligible.

As the behaviour of a Hopfield network is very dependent on its connection weights
and bias, it is not surprising that the restored images using Zhou’s scheme are not far
from those restored images obtained from iterative constrained least squares filtering
methods [65]. Depending on the connection weights and the initial guess, Zhou’s
scheme requires several tens of iterations to converge (see Table 5.1). However, the

main MSE improvement occurs in the first ten iterations, as shown figure 5.3.

5.3.2 Multiresolution Hopfield Networks for Restoration

In iterative methods, the initial estimate of the solution may affect the convergence
behaviour of these methods and possibly improve the restoration results [123]. The

Hopfield network proposed by Zhou et al. used the degraded image as initial estimate
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Figure 5.3: The MSE improvement versus the iteration number in Zhou's scheme.
— 0 —, —0— and —O— are for the 5 x 5 uniform blurred Lena images with 30dB,
20dB and 10dB additive white noise respectively.
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of the original image. This is fine when the degradation is mainly caused by blurring
and the goal is to sharpen the degraded image . When the image is corrupted down
to a low SNR, it is possible to get a better result by using a simple filtering to get a
rough estimate as the initial guess of the original image, so that the result obtained by
the Hopfield network may be better and the convergence rate is improved. This idea
is used by Qian et al. [106] for restoring Gamma Camera-Bremsstrahlung medical
images using a Hopfield network with an order statistic filter for the pre-filtering of
noise. For noise removal, a multiresolution technique is an efficient tool [24]. The
coarser solutions can be used as the regularization terms. Hence, it seems sensible to
combine a multiresolution technique with a Hopfield neural network for a coarse-to-

fine restoration.

A variety of multiresolution techniques [118] [24] [37] [15] have been developed for
image restoration. Bruneau et al. [15] studied a particular problem in which the blur
function is a scale function of a biorthogonal multiresolution analysis. They suggested
that a family of efficient regularizations can be obtained from the convolution operator
alone. For noise removal, the work of Clippingdale {24] is an efficient way to filter
out white noise while maintaining the sharpness of edges. Hence, a coarse-to-fine
filtering which looks like the model of Clippingdale is adapted to combine with a
hierarchical Hopfield network. By the above argument, it is apparent that combining
a multiresolution technique with the Hopfield neural network may also have a possible
convergence rate improvement if the initial smoothed estimate is closer to the solution.
In addition, it will be a flexible scheme for restoration, in the sense that adaptive

filtering is easily implemented.
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To use the multiresolution technique, a pyramid of the blurred image is built.
Then, a coarse-to-fine restoration is employed. Before the algorithm is outlined, the
effects of smoothing and subsampling operations in building a pyramid of the blur

image need to be investigated.

It is well known that if the sampling rate is less than the Nyquist frequency, aliasing
is introduced [100]. If the decimation factor is 2 in each dimension, a low pass filter
whose cutoff frequency is about % is applied to the image before subsampling to

2

alleviate the aliasing problem [127] .

Apparently, the subsampling by a factor of 2 will reduce the effective window size
of the blur by 2 approximately. Therefore, to some extent, the coarser image looks
less blurred or sharper, even if there is less information contained. This implies that
the coarser solution may be restored more easily as there is less noise and blur in the
coarser image. After successive applications of smoothing and subsampling, the blur
kernel 5(m,n) can be approximated by an impulse §(m,n). Using this observation,
Lagendijk and Biemond [72] in their work of identification of a large blurring speeded

up the identification by using a technique based on a pyramid.

Having built the pyramid of the blurred image, the coarse to fine restoration is

summarised as follows:

step 1 Start from level k where the support of the blur can be approximated by a

3 x 3 window.

step 2 While (k < M) do (M is the bottom level)
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step 3 initialise the Hopfield neural network links, using the level

above and the current level to construct the regularization terms.
step 4 While (not converged) run the Hopfield network.
step 5 Propagate the estimate and form the initial estimate

for next level.

step 6 k=k+1 ;

In step 1, the problem is to determine how many levels to go up so that it is safe to
assume the noise is sufficiently reduced. Theoretically, the coarse-to-fine restoration
should start from the root level. However, it is not meaningful to start from such a
level, for the data at very coarse levels may not be sufficient for estimating statistics
reliably. Experiments showed that it should be sufficient to start from a level of size
of 64 x 64 for a blur size of 5 x 5. The initial estimate for the level is the linear
combination of the image at this level and the estimate of the level above. This is a

reasonable estimate, for the combination should reduce the effect of noise [23].

The initialisation of the hierarchical Hopfield network is the same as that of Zhou
¢t al., described in the previous section. However, the smoothness constraint term
is replaced by the square sum of the differences between the current level and the
estimate of the current level obtained by interpolating the estimate from the level
above. This difference can be used to control the value of the regularization parameter

for an adaptive restoration, as will be discussed in the next section.

Let Y(1), H(1) and X(I) be, respectively, the observed data, the blur kernel and

the estimate at level | of the blurred image pyramid. The regularization equation is
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formulated as follows
=2 1y -HOX) I+ 2 | xm - 20 ¢ (5.23)

where X (I ) is the propagated estimate for level ! from level | — 1. Note that the
constraint parameter A(!) is dependent on the pyramid level. It is not hard to see

that the constraint is an approximation of a Laplacian operator used by Burt and

Adelson [17].

Expanding equation (5.23) gives

1 N? N2 . /\(1) N2 ) )
B() = (X)) = X hulDzD) + 2 S(ill) = a(1)
=1 i=1 =1
1 N? N’ N2 Nz N2 N2
= ;250" zzy. Vhoi(Dzil) + 5 ZZEhu(l Pi(Dzi(Dz;(1)
=] s=1i=1 s—l =1 y=1
N2 N?
+ @ 221‘, z,(1) + T (&(D)?)
s=1

(5.24)

Again, comparing with the energy function of the Hopfield network at level /,

N2 M

N M
Z Z it (Nwik(Dva(l) ZZB-L vik(l) (5.25)

=1 k=1

E(l) = -

t\)ln—-

X (1) ||?, the connection weights

and disregarding the constant terms || Y'(I) ||
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of the hierarchical Hopfield network are given by

N2
Tije(l) = = 3 hai(Dhyj(1) = A(1)6;; (5.26)
s=1
and its bias term by
N2
Bi = 3 yaD)haill) + A(D:(1) (5.27)
s=1

Note that the bias term in equation (5.27) is reminiscent of the noise filtering
operation which is used by Clippingdale[23]. The proposed multiresolution scheme
can be approximately considered as using the smoothed image to guide the inverse
filtering of the blurred image. The regularization parameter is added to the autocon-
nections of the network. It is not hard to see that when the regularization is large,
the connections will be dominated by the autoconnections. This implies that the

solution is approximately the smoothed estimate and the network will converge in

several iterations.

After the convergence of the hierarchical Hopfield network at level [, the solution is
propagated down and the initial estimate is obtained by the linear combination of the
propagated solution and the degraded image at level [ + 1. The process is repeated

until the bottomn level of the pyramid is reached.

The multiresolution Hopfield network was tested using the same set of images used
to test Zhou’s scheme and its performance with a range of values of the regularization
parameter is shown in figure 5.6. Comparing with figure 5.5, the performance of the

multiresolution scheme is slightly worse than that of Zhou’s, in terms of SNR. Note
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that the performance of the multiresolution scheme is much worse when the value of
the regularization parameter is large. This is because when ) is large, the coefficients
of the window used for the Hopfield network approximate to an impulse. Hence, the
result is close to the interpolation of the starting coarse resolution image. Apparently

the multiresolution scheme is more sensitive to the regularization parameter.

Figure 5.2(b) is the image obtained after 56 iterations using the multiresolution
Hopfield network. The iteration saving is not impressive, because the degradation is

mainly blurring, for which the multiresolution scheme is of limited value.

Visually, it is difficult to tell which is better. Further examining the two results,
the multiresolution scheme tends to give a slightly smoother solution. This is demon-
strated in figure 5.7. Figure 5.7(a) shows the profiles of the clean Lena, the blurred
image with 30dB additive noise and the restored image using Zhou’s scheme, while
figure 5.7(b) is the same profiles, except that the image restored using the multires-
olution scheme replaces that of Zhou’s scheme. Note the main difference of the two
schemes is at the area about index 40, where the multiresolution Hopfield network
gives a smoother result. As the profiles show, errors in edge areas are larger and only
adaptive restoration could achieve a better result. Table 5.1 shows the iteration num-
bers of both Zhou's and the multiresolution scheme. Although in the blurred image
with 20dB additive white noise, Zhou’s scheme seems to converge faster, the mul-
tiresolution scheme has a marginal improvement in convergence rate generally. Note
that the number of iterations of the mutiresolution scheme is much smaller when the
regularization parameter is large. The performance of the multiresolution scheme can

be improved using the difference between the restored and degraded image at coarser
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noise/input SNR Zhou multiresolution
A | iteration |  SNR X | iteration | SNR
30dB/14.1805dB | 0.05 59 18.8600dB | 0.025 56 18.0524dB
20dB/13.2856dB | 0.50 20 16.3849dB | 0.100 25 15.8278dB
10dB/8.67043dB | 4.00 25 13.8377dB | 0.350 13 13.3932dB
0dB/0.21889dB | 10.0 35 9.7542dB | 1.000 4 9.6767dB

Table 5.1: The iteration numbers of Zhou’s and the multiresolution schemes applied
to a 5 x 5 blurred image with a range of additive white noise. The regularization

parameter ) is about the optimal value.

levels to control the regularization parameter as will be shown in next section.

5.4 Adaptive Restoration Using Hopfield Networks
5.4.1 Adaptive Image Enhancement

In the LSI regularization restoration scheme, the bandpass nature of the regularized
inverse filter usually causes the ringing phenomenon [73] and magnifying noise in the
smooth regions to be grainy. Indecd, the global smoothness regularization term is
not suitable for many images of interest which contain discontinuities. To reduce
the ringing phenomenon and the noise in smoothly varying regions, edge areas and
smooth areas must be treated differently. Moreover, as the restored image is usually
produced for human users, the properties of the HVS should be taken into account
in order to get a bhetter subjective quality. The HVS is sensitive to edges, so that a

human would prefer an image with sharper edges but a lower MSE to an image with

blurred image and a higher MSE.

Various methods have been proposed to retain information which is vital to human
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Figure 5.6: The regularization parameter values versus the performance of the mul-
tiresolution regularization scheme. -0-, —0—, —O—, and —A— are for the images
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Figure 5.7: (a)The profiles of a horizontal line (130,50)-(130,100) of the original ‘Lena’
image, the 5x5 uniform blurred with 30dB additive white noise, and the restored image
using Zhou'’s scheme. The darkest line is from the original, the lightest line from the
deblurred, and the middle dark line from the blurred. (b) The same profiles with the
multiresolution scheme in place of Zhou’s scheme.
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Figure 5.8: A schematic representation of a general adaptive restoration method.

vision. Perhaps, one of the most used visual properties is the masking effect [19}[4],
which is the phenomenon that the contrast sensitivity of the human visual system
at a sharp transition in an image decreases with the sharpness of the transition and
increases as a function of spatial distance from the transition. This observation is used
in various guises, such as the ‘visibility’ function proposed by Anderson and Netravali
[4], the orientation estimate used by Knutsson et al. [67] and the spatial activity used
in deblurring by Rajala and deFigueiredo [107]. All of the above methods use local
measures which more or less indicate edges to control the restoration. A summary
of a general adaptive restoration system is shown in figure 5.8. Depending on which

specific measure is used to represent local image details, a number of algorithms have

been developed [124][67] [65).
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5.4.2 Adaptive Networks for Image Restoration

Adaptive Prefiltering

In adaptive restoration, it is important to identify local characteristics in the blurred
image. A simple way to segment the blurred image is to compare the restored image
and the blurred image. It is observed that in the smooth regions, the difference is
small, but it is large in the edge areas. Therefore, it is possible to segment a blurred
image into different regions and use the obtained information for adaptive restoration.
Based on this idea, the restored image in the level ! of the multiresolution Hopfield
network is compared with the degraded images in that level and the difference between
the two images is used to control smoothing of the noisy image in the next level.
The adaptively smoothed image is then used as the observed image and is restored
by the network. Let t;(I) < t2(I)... < to_1(!). The difference image between the
restored image and the observed image at level ! is propagated down to level [ + 1
and thresholded into n classes. The observed image at level I + 1 is simply classified

into n classes according to the difference image. Each class is smoothed as follows
X' = ai(HX() + (1 — ()X (1= 1) (5.28)

where 0 < a1 (1) < ..ai(l)..an-1(1) < 1 are scalar coefficients, and X*(!) and Xi(1-1)
are the sets of pixels of class ¢ in the image of level [ and the propagated image
X(I-1) respectively. This idea of using first a standard CLS algorithm to restore the

blurred image for region segmentation for later adaptive restoration is also used in [84].
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However, the coarse-to-fine scheme is appealing for computation efficiency compared
to Maeda’s method[84]. A shortcoming of the multiresolution scheme is that the
segmentation is not accurate, but this is always the case, as the blurred image does

not provide such information - otherwise the deblurring problem is readily solved.

A range of experiments were conducted to test the performance of the adaptive
pre-smoothing method. Two 5 X 5 uniform blurred ‘Lena’ images with 20dB and
10dB additive noise respectively shown in figure 5.9 are used for the test. The result
of applying the adaptive pre-smoothing method to the two degraded ‘Lena’ images
is shown in figure 5.10. The background noise of figure 5.10(a) and (c) is less visible
in the smoothly varying areas than that of figure 5.10(b) and (d) obt'ained by using
Zhou’s scheme. The edges area of figure 5.10(a) appear to be as good as those in
figure 5.10(b). However, as the edges of nose and mouth are not there, the face of
the restored ‘Lena’ seems blurred. In general, the prefiltering scheme does improve
the subjective quality and MSE of blurred images in the experiments conducted.
Although the adaptive smoothing scheme improves the quality of the restored image,
the simple classification of the blurred image into different classes causes a defect on
the shoulder area (see figure 5.10(a)). The restored images can be further improved
with more accurate edge information provided by a more sophisticated edge detgction
scheme such as that proposed in chapter 4. The design of an adaptive Hopfield
network for restoration can be achieved by imposing various constraints as costs,
pixel by pixel or block by block, and mapping the costs to the energy function of the

Hopfield network. This can be accomplished by varying the regularization parameters
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according to the a priori knowledge at each pixel as follows
E=Y Bilyi— Y hawai)? + D XD dui)? (5.29)
i k i k

where f3; and ); are scalars which correspond to a local character measurement such

as edges.

In equation (5.29), multiplying each pixel by a weighted coefficient is equivalent to
a weighted vector norm, which has been widely used for adaptive image restoration
[73][120]. Following the notation used by Lagendijk and Biemond[73], the standard
regularization for the proposed multiresolution Hopfield network can be written as

follows

2B (w) - Ek: ha(Dze(D)? =|| Y (1) - HOX() |12

= (Y() - HO)X())"s(Y () - HO)X(1)) (5.30)

3 M(Y diaw)? =|| DX |I2= XTDTWDX (5.31)
k

where S and W are diagonal matrices. The diagonal entries of S are S;; = Bi(1),0 <
Bi(1) < 1, the propagated difference between the restored image and the observed
image at level | — 1. The diagonal entry of W is a function of the edge map of the

blurred image of level I (for example \; = cos(e;) where ¢; is the pixel value in the

corresponding edge map).

Using the weight vector norm notation, the adaptive CLS criterion used as the
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(a)

Figure 5.9: Test images (a) The 5 x 5 blurred ‘Lena’ with 20dB white noise (b)The
5 % 5 blurred ‘Lena’ with 10dB white noise
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The restored
The restored 10dB ‘Lena’ using pre-smoothing.

(d) The restored 10dB ‘Lena’ using Zhou's scheme.

Figure 5.10: (a) The restored 20dB ‘Lena’ using pre-smoothing. (b)
90dB ‘Lena’ using Zhou’s scheme. (c)
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additive noise | Input SNR | Output SNR A | Iteration
20dB | 13.2856dB 16.4542dB | 0.07 34

10dB | 8.67043dB 13.9742dB | 0.25 16

8dB | 7.13479dB 13.3528dB | 0.3 13

Table 5.2: The SNRs of the degraded ‘Lena’ images and the restored images using
the adaptive multiresolution scheme. The regularization parameter ) is about the
optimal value.

energy function for the multiresolution Hopfield network is
E(l) = 1/2(||lY (1) - HOXOI + 11X (1) = XOIIL) (5.32)

The weighted CLS criterion is mapped to the energy function of the multiresolution

Hopfield network for the network initialisation.

The result of applying the adaptive Hopfield network to the blurred Lena images
with 20dB and 10 dB additive white noise are ilhlmtra,ted in figure 5.11(a) and (c).
Figure 5.11(b) and (d) are the edge maps used to control the regularization parameter,
which are obtained using the edge detector proposed in chapter 4 and then blurred
by a 5 x 5 window to reduce the overshooting of restored edges. Also shown in
figure 5.12 are horizontal profiles of restored images using Zhou’s scheme and the
adaptive multiresolution scheme. Table 5.2 summarises the SNR improvement of
applying this scheme to the blurred image with a range of different white noise-
Apparently, the use of the edge information further improves the performance of the
network at the edge area. As the edge numbers constitute a small portion of an image;

the improvement of MSE is only marginal in terms of SNR. However, the subjective

quality is much improved.
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Figure 5.11: The restored ‘Lena’ images using the adaptive scheme. (a) The restored
20dB ‘Lena’ image. (b) The edge map from the 20dB ‘Lena’ image. (c) The restored
10dB ‘Lena’ image. (d) The edge map from the 10dB ‘Lena’ image.
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Figure 5.12: (a)The profiles of a horizontal line (130,50)-(130,100) of the original
‘Lena’ image, the 5x5 uniform blurred with 20 dB additive white noise, and the
restored image using Zhou's scheme. The darkest line is from the original, the lightest
line from the deblurred, and the middle dark line from the blurred. (b) The same
profiles with the adaptive multiresolution scheme in place of Zhou’s scheme.
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5.5 Discussion

In this chapter, the restoration of images degraded by LSI blur and additive Gaussian
white noise using a Hopfield network was investigated. A multiresolution Hopfield
network is proposed for deblurring, in which images obtained in coarser resolutions
are used as the regularization term for adaptive restoration. It is well known that
the performance of constrained (regularized) least squares methods are affected by
the choice of the regularization operation [108]. In the experiments conducted in
this chapter, the combination of mutiresolution technique and the CLS provides a
flexible restoration scheme. The determination of ‘busy’ areas is straightforward and
it is shown that the use of the information can improve both the subjective quality
and MSE of the restored image. Unfortunately, the convergence rate of a Hopfield
network does strongly depend on its bias input and connection weights. As an image
at level [ is a lowpassed version of the image at level ! + 1 and the setting of this
Hopfield network is entirely determined by the observed images, it is not surprising
that the multiresolution scheme does not improve the convergence rate of the network
much at high SNR’s. At low SNR's, however, both convergence rate and output SNR
are considerably improved by the multiresolution technique. Moreover, the scheme
is easily made adaptive by incorporating variation of the regularization parameters
based on the edges detected using the method described in Chapter 4. This scheme

can give an acceptable estimate of the local activity hence an adaptive restoration

scheme with little extra computation.



Chapter 6

Conclusions and Future Work

6.1 Thesis Summary and Contributions

This work investigated a quadratic energy minimization framework for two image
processing problems: edge detection and image restoration. Central to this framework
are relaxation operations, which can be implemented using a recurrent network. A

multiresolution network was proposed to tackle the uncertainty principle problem and

the regularization of ill-posed image processing problems.

In chapter 1, the generic properties of images were discussed and it was empha-
sized that any general image processing system would need to tackle the uncertainty
problem, scale and distortion, and to apply domain knowledge for ‘regularizing’ ill-
posedness. An interesting approach to incorporate priori knowledge is to use an energy
function to specify relations between structures and select a solution that gives the
minimum of the energy function [104] [113). This principle of regularization theory

was adopted to solve ill-posed problems.

143
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Since the HVS outperforms many conventional algorithms, it was argued that the
methods used by the HVS may provide insights into developing a robust computer
vision system. Following this argument, models, though still crude, have been devel-
oped for a better understanding of the HVS [80] [81] and the use of ANNs for image
processing is fruitful and expanding rapidly. A survey of ANNs and their application
to image processing was given and the advantages of such an approach in contrast to

conventional algorithms were discussed.

Chapter 1 was concluded with a need to unify a set of requirements into a model

for computer vision and image processing, which include

1. Tackling the uncertainty problem: How to trade-off localisation and noise im-

munity in different resolutions.
2. The use of a priori knowledge: How to incorporate prior knowledge.

3. Global/local processing: How to compute local features and incorporate them

into a globally coherent description.

4. Flexibility : The developed model should be readily extensible.

In chapter 2, various image models were reviewed, in particular a class of mul-
tiresolution models was emphasized, in view of the need to deal with the uncertainty
problem in image processing and vision [129]. A multiresolution algorithm combined

with an iterative scheme was proposed for edge detection and image restoration.

An image model provides a framework within which various image processing
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techniques can be designed and analyzed. Stochastic modelling of images treats the
spatial coordinates of an image as time-like indices so that models for 1-D signals
can be borrowed by introducing raster scanning. 1-D stochastic models, however,
lack the facility to take into account the spatial structure inherent in a two dimen-
sional image. In 2-D stochastic modelling of images, the local spatial structures of
the image can be modelled using a Markov random field. Alternatively, Gaussian
Markov random fields can be represented as the outputs of linear systems described
by difference equations, whose inputs are random fields with known or desired prop-
erties. Although these 2-D models do take the spatial features into account, they
lack a proper method for describing features in different scales. Moreover, the un-
certainty problem naturally leads to a multiresolution representation, in which small
features are modelled at higher resolutions while large features are modelled at lower
resolutions. An important feature of multiresolution representations is their ability
to render features which span a range of scales and which are essential for percep-
tion. As features may appear at different locations at different resolutions and they
may also disappear at several resolutions— a method is needed to combine informa-
tion obtained in different resolutions, if multiresolution representations are used [82].
This is the so called scale consistency problem [132]. To tackle these problems, a
class of stochastic multiresolution models which were based on representations such
as pyramids and wavelets were recently proposed [24] [21]. Such modelling is able to
render a variety of images adequately and provides an efficient estimation procedure
for applications such as estimation[23], segmentation[10], optical flow [83] and feature
extraction[18]. This class of stochastic multiresolution models is causal in the scale

axis, which entails a coarse-to-fine estimate for restoration and feature tracking for
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edge detection, but they are noncausal in the spatial coordinates.

The generalised multiresolution model on a pyramidal representation used in [10]
was adapted and an algorithm based on this representation was outlined for edge
detection and adaptive image restoration. The use of relaxation in a multiresolution
model improves long-range characteristics of the model. The information in coarser
resolutions is used to regularize the solution in successive finer resolutions until the
highest resolution is reached. Vertical propagation is also used, with the aim of
emphasizing consistent features and reducing uncorrelated noise. For each resolution,
a relaxation scheme based on an energy minimization framework is used to update
the confidences of the initial estimate and decisions. Information flows vertically and
horizontally in the model, which is reminiscent of the information processing in the

HVS[85].

Having outlined the model, the implementation is equally important because dif-
ferent architectures will affect the implementation [88]. The HVS, which is an ap-
propriate computational model for vision, and the most successful implementation
ever known to man, was examined in Chapter 3, with the hope that its properties
would bring insights to the problem of computer image processing and vision. The
HVS’s sensor is the retina, which can adapt to a wide range of lighting conditions
using temporal mechanisms [53] . In addition to adaptation, study of optical illusions
has shown that the retina reduces the bandwidth of visual data and extracts only
the essential features of an image. Thus, Marr suggested that a primal sketch is used
by the HVS [88]. Although the retina contains a blind spot, psychophysical experi-

ments show that a line across the blind spot will appear unbroken. The implication
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is that the visual system uses a priori knowledge[25]. In the visual cortex, structures
become more complex and the degree of abstraction increases. There are simple cells
which respond to edges and lines [55] and end-stopped cells which were suggested to
implement end-point detection [29]. Moreover, study of patients with partial visual
cortex damage shows that visual cortex is divided into several task-specific regions

[138]. This suggests that visual perception is the result of several different processes.

To encapsulate these features of HVS, a hierarchical Hopfield network was pro-
posed. This network implements the image model proposed in chapter 2, in which
each resolution corresponds to a Hopfield netwbrk. The solution for each resolution
is obtained after the Hopfield network converges. This work shows that the mul-
tiresolution model can easily incorporate smoothness constraints to regularize the
solution space. In Chapter 3, it was concluded that the benefits of using a multires-
olution Hopfield network are fourfold: (1) to speed up its convergence rate, (2) using

lateral interaction to reflect the intrinsic local structures of images, (3) smoothness

constraints and (4) noise immunity.

In chapter 4, an edge detection scheme was detailed, based on the multiresolution
model outlined in chapter 2 and was implemented using the proposed hierarchical
Hopfield neural network. There are two steps in the edge detection algorithm. The
first step in the edge detection scheme is to construct the orientation vector field pyra-
mid of an input image. The second step is to construct a compatibility function for
the interaction of two neighbouring pixels and an energy function based on the com-
patibility function as the energy function of the Hopfield network. The compatibility

function is defined to reflect the fact that when two pixels are in the same shape, the
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measure is high; otherwise it should be low. This was achieved using local orientation
information to group edge pixels. In other words the compatibility function reinforces
continuity and smoothness of edges. To ensure that the resultant edge is as thin as
possible, the compatibility measure also includes lateral inhibition so that the winner
of a competition among pixels across the direction of the edge is selected as the edge.
The compatibility measure also takes distance between two pixels into account using
a lowpass-like weighting function. Finally, the magnitude of the orientation vector
also plays an important role: the more certain is the orientation, the stronger should
be the link. In short, the compatibility measure between two edge components is
separable into a function parallel to the edge, expressing continuity and proximity

and one perpendicular to the edge, expressing lateral inhibition.

After the setting of the Hopfield neural network for level I , the edge map of level
| is obtained when the Hopfield neural network converges. Using the resulting edge
map, the orientation estimate is refined and it is propagated down to level [ + 1 to
refine the estimate by a linear combination of estimates in the two levels. The new
estimate of orientation for level I + 1 is then used to set the energy function of the
hierarchical Hopfield network for this level and the edge map for level [ is used as bias
for the Hopfield neural network. Again the edge map for level [ is obtained, once the

Hopfield neural network converges. The coarse-to-fine process proceeds recursively

until the bottom of the pyramid is reached.

The application of the Hopfield network to several test images showed that this
simple coarse-to-fine process with lateral interaction is robust and gives results of at

least as good a quality as those from a Canny hysteretic edge detector with thinning.
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Compared with the results of Hérauld and Horaud [45], it seems that the results of
this work are more robust, for the coarse-to-fine process provides an effective immu-
nity facility to noise, although there is no quantitative comparison here. Moreover,
the Hopfield network requires no parameter tuning and is amenable to parallel im-

plementation.

In chapter 5, the proposed hierarchical Hopfield neural network is used for image
restoration. It is shown that in the hierarchical Hopfield neural network approach, the
‘coarser’ resolution solutions can be used in a regularization term and they can be also
used to segment the images in the higher resolutions into regions of different activity
so that a coarse-to-fine adaptive noise filtering is possible [23]. To further improve
the performance of the multiresolution restoration scheme, an adaptive restoration

scheme which uses the edge map obtained by applying the Hopfield network detailed

in chapter 4 was proposed.

The first task in using a Hopfield network for image restoration is to construct a
suitable energy function for the Hopfield network. This work adopted the methods of
Zhou et al. [141] and used a quadratic regularization function as the energy function
of a Hopfield network. The convergence rate of Zhou’s scheme was shown to be
somewhat improved. As restoration of blur and additive noise is considered, the

effect of of smoothing and subsampling operations in building a pyramid of the blur

image was discussed.

In the hierarchical Hopfield network, the difference between the interpolation of

the solution in the level above and the solution of the current level approximates a
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Laplacian operator [17], and a linear combination between the coarser solution and
the current data as the initial estimate may be closer to the solution in the sense that
noise is reduced, hence reducing the number of iterations. An experiment was also
conducted to test the performance of the hierarchical Hopfield network. It was shown
that the convergence rate is improved if noise is the main source of corruption. The

reason is that the multiresolution model is effective in noise filtering.

‘The phenomenon that there is less noise and less blur in the coarser resolutions was
exploited for adaptive filtering. A simple way to segment the blurred image was used
by comparing the restored image and the blurred image. It was observed that in the
smooth regions, the difference was small, but it is large in the edge areas. Therefore,
a scheme which roughly segments a blurred image into different regions and uses the
information for an adaptive noise suppression was proposed. The restored images
can be further improved with more accurate edge information provided by a more

sophisticated edge detection scheme, such as that proposed in chapter 4.

The design of an adaptive Hopfield network for restoration can be achieved by
imposing various constraints as costs, pixel by pixel or block by block, and mapping
the costs to the energy function of the Hopfield network. This was accomplished by
varying the regularization parameters according to the estimated properties at each

pixel. This chapter was concluded with the results of this restoration scheme.
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6.2 Limitations and Future Work

The results presented in this work were based on a multiresolution optimization frame-
work, implemented by a hierarchical Hopfield neural network. Although they show
the effectiveness of this approach, a number of issues about the model and algorithms

need to be considered further, so that its potential and limits can be fully realised.

The proposed model consists of two processes: a coarse-to-fine process and a lat-
eral iterative optimization process for each different task. The model may be further
improved to allow the interaction between different task prdcesses: the edge detection
process and the restoration process. Although edges were used for adaptive restora-
tion and when there is no blur in the input images, the edge detection process is
effective. However, as shown in chapter 5, when the input image is distorted by blur
as well as noise, it seems that the deblurred image can be used as input for edge
detection so that a more accurate result can be obtained. In short, the information
used for the lateral iteration is mainly of one type. There is a feeling that there
should be a co-operation between lateral processes which extract or estimate differ-
ent characteristics of images, such as edge, grey level and texture (eg. Bhalerao[10]).

Figure 6.1 shows the idea.
A number of algorithmic and implementation considerations also are indicated by

the analysis of the results. First, in the edge detection scheme, they are:

1. Estimation of coefficients for cross level averages: the coefficients of the linear

multiresolution model for cross level refinement for level / and [ + 1 is a function
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Edge detection
process

Restoration

process

Orientation pyramid Gray level pyarmid

Figure 6.1: A possible refinement of the edge and restoration model

of the edge map obtained at level ! and signal to noise ratio of both levels. This
setting will suppress noise as well as new weak edges at level [+ 1. Consequently,
it is possible that the edge scheme will miss weak edges. (cf. figure 4.4 and
figure 4.11). A possible remedy may take orientation structure at level ! + 1

for determination of the cross-level combination coefficients. This remains to be

investigated.

2. Image properties used for edge determination: the edge detection scheme pro-
posed in this work utilises mainly a 5 X 5 support of orientation information
to detect edges. The network provides aﬁ iterative local computation for edge
grouping. It is aﬁparent that such an iterative scheme may slowly integrate lo-
cal clues to form a consistent global edge map and the multiresolution may help
to speed up this process. However, the scheme has some défects in registering

corners and junctions properly because it uses only correlation, while corners
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and junctions require higher order relations to be determined. To use the same
Hopfield network structure, such information can be fed in using the bias term.
Another thought is to use a more complex network which exploits higher or-
der spatial relations, for example [93]. Another defect of this scheme is that it
may give spurious (ie. parallel lines) or thick edges for blurred edges, depending
on the width of the window used. This is, however, a defect of the underlying

sequential scan Hopfield network algorithm.

For the adaptive restoration scheme, the segmentation and the cross level combi-
nation coefficients are chosen heuristically. There is a need to make both of these
choices more rigorous. However, its attraction is its simplicity and to some extent, it

is robust.

6.3 Concluding remarks

This work has tried to unify into a framework a number of different ideas which have
been used in various image processing problems and computer vision, in particular,
edge detection and image restoration. Multiresolution analysis and regularization
theory are the theoretical tools used. The results presented show that these techniques

are an effective and robust way of using neural networks for solving the problems of

image processing and low-level vision.

Through evolution, nature has come up with a solution to vision problems: the
HVS. It is, thus sensible to borrow some of the principles used in the HVS - the

most powerful vision system known. Not surprisingly, study of the HVS has already
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had an impact on algorithm development for computer vision and image processing.
An important feature of neural networks is that they process information iteratively,
which together with multiresolution analysis and regularization theory inspired the
hierarchical Hopfield network for edge detection. What is clear is that much work is
still to be done in the area of how to integrate consistent and contradictory clues to

give a globally coherent solution.

Of course, there are many aspects of neural networks that need to be investigated
and put into use in computer vision. Among them, the learning capacity of neural
networks may be a key factor in the various remarkable abilities of the HVS. No
doubt learned knowledge can be used as a priori knowledge to regularize the ill-posed
early vision processes in an adaptive vision system. It is hoped that in the future, a

learning scheme can be incorporated to give a more robust system.



Appendix A

Conference Paper

This paper has been presented on the eighth IEEE workshop on Image and Multidi-

mensional Signal Processing[135].
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Orientation-directed edge detection using a Hopfield neural
network

H. C. Yang, R. Wilson
University of Warwick,UK

Abstract
A Hopfield neural network can solve image processing tasks which can be posed as optimization problems(eg.
[3]). In this work, edge detection is formulated as an optimization problem. A multiresolution image model,
combined with local interaction in each level of resolution, is used for the edge detection problem. The model is
implemented by a hierarchical Hopfield neural network. We show that edge detection can be done well by the
coarse-to-fine Hopfield network whose connections are orientation-tuned, which has strong motivation from mam-

malian visual systems[1].

1 Method

Combined with a multiresolution model, a hirerarchical Hopfield neural network is shown to be efficient
for edge detection. the edge detection problem is formulated as an optimization problem; Thus a cost
function is defined and used as the energy function of the Hopfield neural network. The algorithm consists
of two stages. In the first stage a grey level pyramid of an input image is built. An orientation pyramid is
then built of the image by applying a pair of highpass filters to the grey level pyramid. These filters are
specially designed to reduce orientation bias. The orientation field is a double angled one, which eliminates
ambiguity in the gradient representation of orientation[2].

The second stage can be best summarized by the following pseudo code;
1  from level k in the orientation pyramid. (* the image plane is level 0*)
2 while (k > 0){
3 initialize the Hopfield neural net using the orientation estimate;
4 while not converged {

run Hopfield neural net, using level k+1 as bias}.
refine the orientation estimates using the egde map obtained from the network.
estimate signal to noise ratio at level k;
if (k > 1){

estimate signal to noise at level k-1;

linearly combine the initial estimate at level k-1 and the propagated

estimate from k to give the refined orientation estimate;}
10 k=k1.}
Note each pixel is represented by a unit in the Hopfield neural network. In step 3, a measure of compatibility
-between two pixels is defined as follows: Let i be the i-th neuron in the Hopfield network and v; be the
double-angled orientation estimate at pixel (z;,y:); the compatibility between two pixels i and j will be
measured as follows

© O I

cij = k(o? — bz)e:gp(—b2/2a'2)cos(27ra/(2w -1)) (1)
where k is a constant, w is the window size, ¢ is a function of w and
a = ycosf
b= ysinf

where 1
= —2-arg(6.°- + v;) — arg((z; — 2;,y; — y;))

v= /(2 2)? + (i - y)?

In other words, the compatibility between two edge components is separable into a function parallel to
the edge, expressing continuity and one perpendicular to-the edge, expressing lateral inhibition. After the
Hopfield network converges, those pixels whose corresponding units are on, are chosen as edge locations.




Figure 1: (a) a 256x256 test image of 0db SNR (produced by an HP laserprinter, dithered) (b) its edge
map obtained by the Hopfield neural network.

The image in this level is, thus divided into edge areas and noisy background. The orientation estimates are
refined in such a way that these estimates in noisy areas are averaged isotropically while the estimates in
the edge areas are averaged in the direction of their orientations(step 5). Only those orientation estimates
in the edge areas are propagated down. The SNR in this level is estimated as the ratio of the variance of
the orientation vectors in edge areas and that of noisy areas. To get a better estimate of SNR at the next
level, the edge map is propagated and the image is accordingly divided into ‘noise’ areas and ’signal’ areas.
The coefficient for the linear combination of the initial orientation estimate and the propagated estimate
is simply the ratio of SNR;. /(SNR;-1+SNRy). In short, the noisier the initial estimate is, the more comes
from the propagated estimate from which noise has been filtered. The above steps are repeated down to

the image plane.

2 Results and conclusions

Figure la, shows a test image of size 256 x 256. White noise is added to give an SNR of 0db. Figure 1b.
is the edge map obtained when the Hopfield neural network converged. The window size used is 7 pixels.
Typically the network will converge in about 8-10 iterations. The 7 x 7 window used is, more or less,
a template of a short line. The weighted sum of input received by each neuron in the Hopfield network
thus is viewed as a measure of certainty of a line being present. In addition, the iteration of the network
provides line refinement; hence curves can be detected. The results represent a significant improvement

over techniques employing simpler enhancement strategies(eg.[2]).
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