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Summary 

One of the methods for building an automatic visual system is to borrow the 
properties of the human visual system (HVS). Artificial neural networks are based on 
this doctrine and they have been applied to image processing and computer vision. 
This work focused on the plausibility of using a class of Hopfield neural networks for 
edge detection and image restoration. 

To this end, a quadratic energy minimization framework is presented. Central 
to this framework are relaxation operations, which can be implemented using the 
class of Hopfield neural networks. The role of the uncertainty principle in vision 
is described, which imposes a limit on the simultaneous localisation in both class 
and position space. It is shown how a multiresolution approach allows the trade­
off between position and class resolution and ensures both robustness in noise and 
efficiency of computation. As edge detection and image restoration are ill-posed, 
some a priori knowledge is needed to regularize these problems. A multiresolution 
network is proposed to tackle the uncertainty problem and the regularization of these 
ill-posed image processing problems. For edge detection, orientation information is 
used to construct a compatibility function for the strength of the links of the proposed 
Hopfield neural network. 

Edge detection 'results are presented for a number of synthetic and natural images 
which show that the iterative network gives robust results at low signal-to-noise ratios 
(0 dB) and is at least as good as many previous methods at capturing complex region 
shapes. For restoration, mean square error is used as the quadratic energy function of 
the Hopfield neural network. The results of the edge detection are used for adaptive 
restoration. Also shown are the results of restoration using the proposed iterative 
network framework. 
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1 



Contents 

1 Introduction 
1.1 Introductory Remarks ....... . 
1.2 The Nature of Images ........ . 
1.3 Noise, Ill-posedness and Uncertainty 
1.4 Image Modelling and Optimization Techniques. 
1.5 Neural Networks for Image Processing 
1.6 Requirements for Image Models . . . . 

1.6.1 Requirements of Edge detection 
1.6.2 Requirements of Restoration . 

1. 7 Thesis Outline. . . . . . . . . . . . . . 

2 Multiresolution Image Models 
2.1 Introduction .............. . 
2.2 Stochastic Image Models ....... . 

2.2.1 One Dimensional Image Models 
2.2.2 Two Dimensional Image models 

2.3 Towards Multiresolution Image Models 
2.3.1 Motivation............ 
2.3.2 Multiresolution Representations 
2.3.3 Linear Multiresolution Models . 

2.4 A Processing Model for Image Restoration 
2.4.1 Iterative Methods . . . . : . . . . . 
2.4.2 A ~Iultiresolution Iterative Restoration ~Iodel 

2.5 Summary . . . . . . . . . . . . . . . . . . 

3 Biological and Artificial Neural Networks 
3.1 Introduction................ 
3.2 Properties of the Human Visual System. 

3.2.1 Biological Neurons .... . 
3.2.2 The Human Visual System ... . 
3.2.3 Summary . . . . . . . . . . . . 

3.3 Modelling Diological Neural Networks. 

11 

1 
1 
3 
4 
5 

10 
14 
15 
16 
17 

19 
19 
20 
21 
22 
23 
23 
25 
30 
33 
33 
35 
39 

40 
40 
41 
41 
42 
50 
51 



3.3.1 The Computational Neuron 51 
3.3.2 Learning and Adaptation. . 54 

3.4 Hopfield Neural Networks ..... 55 
3.5 Regularization and Hierarchical Neural Networks for Multiresolution 

Models. . . . . . . . . . . . . . . . . . 59 
3.5.1 Regularization Theory . . . . . 59 
3.5.2 Hierarchical Hopfield Networks 62 

4 Multiresolution Edge Detection Networks 65 
4.1 Introduction....... .. . . . . . . . . . 65 
4.2 Edge Detection . . . . . . . . . . . . . . . 66 
4.3 Edge Detection as an Optimization Problem 69 

4.3.1 The Design of a Combinatorial Energy Function 71 
4.4 Orientation Estimation and Edge Detection ...... 83 

4.4.1 Multiresolution Hopfield Networks for Edge Detection. 88 
4.4.2 Coarse-to-fine Refinement 92 
4.4.3 Network Dynamics 95 

4.5 Results and Discussion . . . . . . 97 

5 Neural Networks for Restoration 109 
5.1 Introduction............ 109 
5.2 Image Restoration and Regularization. . 
5.3 Multiresolution Networks for Restoration 

5.3.1 Hopfield Networks for Restoration. 
5.3.2 Multiresolution Hopfield Networks for Restoration . 

5.4 Adaptive Restoration Using Hopfield Networks .. 
5.4.1 Adaptive Image Enhancement ...... . 
5.4.2 Adaptive Networks for Image Restoration 

5.5 Discussion...................... 

6 Conclusions and Future Work 
6.1 Thesis Summary and Contributions 
6.2 Limitations and Future \:York 

. 6.3 Concluding remarks. . . . . . 

A Conference Paper 

References 

III 

110 
113 
113 
120 
130 
130 
134 
142 

143 
143 
151 
153 

155 

158 



List of Figures 

1.1 (a) Lake scenery (b) A part of the' lake' scene 2 
1.2 A feedforward network. ....... 11 
1.3 A time delay neural network. 12 
1.4 An output feedback neural network. 13 
1.5 A state feedback neural network. 14 

2.1 A quadtree structure . . . . . . . 25 
2.2 A pyramid tree structure . . . . . 26 
2.3 A realization of a quad tree model and a pyramid model . 32 
2.4 The restoration scheme. ...... 38 

3.1 A neuron schematic representation 43 
3.2 A schematic representation of the human visual path. 43 
3.3 A schematic representation of ganglion cells' receptive field 46 
3.4 Cortex layers . . . . . . . . . . . . . . 47 
3.5 A suggested simple cell receptive field . . . . . . . . . . . . 48 
3.6 The cortex map . . . . . . . . . . . . . . . . . . . . . . . . 50 
3.7 McCulloch-Pitts neuron model and nonlinear output functions. . 52 
3.8 The Hopfield neural network structure 56 
3.9 A hierarchical Hopfield neural network 64 

4.1 The setting of reinforcement links 75 
4.2 The link setting for a step edge. . 79 
4.3 The link setting for a right angle corner. 80 
4.4 The link setting for an acute angle corner. 81 
4.5 The energies of a node under different edge configurations 82 
4.6 The 'table' image and resultant edge map. . . . 84 
4.7 The 'boats' image and resultant edge map. . . . . 85 
4.8 The noisy 'table' image and resultant edge map. . 86 
4.9 The noisy 'boats' image and resultant edge map. . 87 
4.10 The structure of edge detection using a Hopfield network 89 
4.11 The pyramids of the 'shapes' images ........... 91 
4.12 The orientation field of the 'table' image and resultant edge map. 101 
4.13 The edge maps of 'table' after different iterations. . . . . . . . . . 102 

IV 



4.14 The 'Barbara' images ................... . 
4.15 The edge map of OdB 'Barbara' ............. . 
4.16 The edge maps of OdB 'Barbara' after various iterations. 
4.17 The 'table' image of lOdB SNR and the resultant edge map. 
4.18 The 'table' image of OdB SNR and the resultant edge map. 
4.19 The edge map of the 'shapes' image (SNR=lOdB). 
4.20 The edge map of the 'shapes' image (SNR=OdB). 

103 
104 
105 
106 
107 
108 
108 

5.1 The 'Lena' images. . . . . . . . . . . . . . . . . . 119 
5.2 The restored 'Lena' images. . . . . . . . . . . . . 119 
5.3 The MSE improvement versus the iteration number in Zhou's scheme. 121 
5.4 The conceptual relation between restoration errors and the regulariza-

tion parameter .............................. 122 
5.5 The parameter values versus their performance in Zhou's scheme. .. 123 
5.6 The regularization parameter values versus the performance of the mul-

tiresolution regularization scheme.. . . . . . . . . . . . . . . . . . .. 131 
5.7 The profiles of a horizontal line of the 'Lena' images. . . . . . . . .. 132 
5.8 A schematic representation of a general adaptive restoration method. 133 
5.9 Test images. . . . . . . . . . . . . . . . 137 
5.10 Prefiltering restored 'Lena' images. . . . . . . . 138 
5.11 The adaptively restored 'Lena' images ..... 140 
5.12 The profiles of a horizontal line of 'Lena' images 141 

6.1 A possible refinement of the edge and restoration model 152 

v 



List of Tables 

4.1 . Wilson's 3 x 3 edge detection kernels ... 
4.2 The number of iterations in different levels 

90 
99 

5.1 The iteration numbers of Zhou's and the multiresolution schemes. 130 
5.2 The SNRs of the degraded 'Lena' images and the restored images using 

the adaptive multiresolution scheme. ........ . . . . . . . . .. 139 

VI 



Acknowledgements 

This work was conducted within the Image and Signal Processing Research Group 
in the Department of Computer Science at Warwick University. I am grateful to the 
Ministry of Education of the Republic of China on Taiwan for its financial support. 

I would like to thank all the staff at the Computer Science Department. In par­
ticular, thanks go to all my friends and colleagues, past and present, of the Image 
and Signal Processing Group at Warwick: Abhir Bhalerao, Andrew Calway, Simon 
Clippingdale, Nicola Cross, Andrew Davies, Wooi Boon Goh, Tao-I Hsu, Andrew 
King, Peter Meulemans, Edward Pearson, Hugh Scott, Tim Shuttleworth, Martin 
Todd and June, vVong. They have made numerous contributions and have provided a 
stimulating and friendly environment in which to work. Thanks also to Jeff Smith for 
providing essential software support. Moreover, they have made my stay in England 
a precious and memorable experience. 

I am particularly indebted to my supervisor Dr. Roland vVilson, without whose 
ideas, enthusiasm, profound expertise in the subject and patience in correcting my 
English, this work would not have been possible. 

Vll 



Declaration 

I declare that, except where specifically acknowledged, the !Ylaterial contained in this 

thesis is my own work and that it has neither been previously published nor submitted 

elsewhere for the purpose of obtaining an academic degree. 

Homg-Chang Yang 



Chapter 1 

Introduction 

1.1 Introductory Remarks 

In the past three decades, many researchers have been striving for a computer vision 

system which can automate many tasks involving seeing. The task is to use image 

capturing equipment in place of human eyes, and a computer and algorithms in place 

of the little understood human brain. 'While computer vision systems may have a 

degree of success in a controlled environment in the recognition of simple parts such 

as bolts and cogs, in the general case, the system is far from the performance of the 

human visual system (HVS). Seeing seems to us so natural that its complexity is 

easily underestimated. Take a look at figure 1.1. A human being has no difficulty in 

recognising this picture as lake scenery, even if he or she has not seen the image before. 

\Vhile using a digita.l computer, to the author's knowledge, there i~ no computer 

vision system which can possibly come up with a. 'correct' interpretation in a couple 

of seconds. 

1 
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(a) (b) 

Figure 1.1: (a) Lake s en ry (b) A part of th ' lake's ne (in a diff rent resolution). 

Whil th central n rvous system may not be th only information processing 

sys tem that an ac omplish s eing so su cessfully, it is nev rtheless th most robust 

and v rsatile sys t m known to humans. It is thus not surprising that much progress in 

omput r vision and image processing is th dir ct result of borrowing th prop rties 

of th HVS. For example, th use of the 'masking eif ct' of th HVS improves the 

if ctiv n ss of imag ompression and r storation algorithms [71J [4J [16J . 

Naturally ther ar also direct attempts in building up biological-like networks 

(artifi ial n ural n tworks) to solve some imag processing a,nd vision problems [141J 

[40J [87J [135J. Although such networks ar still crude, th -y have achiev d som 

su c ss r cently. This work will fo us on the plausibility of using a class of artificial 

n ural networks for dg d t ction and image restoration. 
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1.2 The Nature of Images 

An image of a scene is formed by projecting part of the three dimensional (3-D) 

material world onto a two dimensional (2-D) plane. Hence the image records certain 

properties of the material world, which are responsible for the nature of images. The 

3-D world consists of objects which tend to exhibit some degree of coherence in a 

range of appropriate scales (ie. hierarchical organization), as a consequence of the 

cohesiveness of matter. This entails that the image consists of a background and 

images of objects which appear to be near constant or slow varying intensity regions 

under appropriate lighting conditions, and that objects appear to be more or less 

similar when inspected over a range of scales (see figure 1.1, the sail and the trees 

appear similar at two scales). 

This property that the material world is hierarchically organized also implies that 

objects in images occur over a range of scales and that a natural image more or less 

exhibits a similar structure and appearance (in a general sense) whatever the area 

under inspection. 

Apparently, gIven an appropriate· scale, some objects m an image will appear 

large and their boundaries can be approximated by lines which are characterized by 

their positions and orientations. This implies that t.o extract boundaries of objects 

adequately, the scale should be take into account. In other words, features in a 

given scale will respond maximally to a filter with the corresponding window size. 

This suggests a multiresolution(or multiscale) analysis, which will be examined more 

closely in chapter 2. 
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As the properties of an image are the results of the underlying physical laws, any 

image processing system will have to utilize them to extract the information about the 

corresponding part of the 3-D world. It is thus not surprising that physiological and 

psychophysical experiments showed that the mammalian visual system has visual 

cells tuned for particular orientation and scales in the retinal image [54] [55]. It 

would be expected that if an image model is of some utility, it should also exhibit 

such properties. 

1.3 Noise, Ill-posedness and Uncertainty 

The purpose of image processing techniques such as image restoration is to recover 

information from 2-D images; that is, they are inverse problems. As an image is 

typically formed by projecting a 3-D scene on a 2-D image plane, a consequence is 

the loss of information in the process of forming the image. This implies that an image 

may' correspond to an infinite number of possible scenes. Such problems are ill-posed, 

in the sense that they do not have unique solutions [104]. A common approach to 

these problems is to assume that they do not require domain-dependent knowledge, 

but only generic constraints about the physical world, such as continuity. Such an 

approach is known as regularization theory. This notion will be discussed in more 

deta.il in Section 3.5. 

Another form of ill-posedness is caused by the fact that the image formed is in­

evitably corrupted with random noise and sometimes blurred. A common type of 

noise can be modelled as Gaussian white noise" and can be reduced by a smoothing 
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operation. To reduce the effect of blurring, which can be viewed as a smoothing op­

eration, a common approach is to apply an inverse operation. However, the inverse 

operation is in general a kind of highpass filter which will amplify broadband noise 

as well; in other words, . a small amount noise or error in the data can produce an 

extremely large error in the solution. Thus, there is a conflict in the operations to 

reduce blurring and noise. This phenomenon is analogous to the uncertainty principle 

in vision, which is an inevitable consequence of the inherently contradictory nature 

of the requirements of vision - an inference process concerning the recognition of 

'what' is 'where' [129] [131] [130], for example, in image segmentation, the trade-off 

between the resolutions of the class space and the position space [131]. Instances of 

the uncertainty principle will be given in chapter 2 and of deblurring in chapter 5. 

1.4 Image Modelling and Optimization Techniques 

To deal with the image processing problems effectively using a minimal set of as­

sumptions, it is necessary to use statistical methods, which represent image structure 

probabilistically rather than in terms of 'real world' constraints. In this approach to 

image processing, usually digital images are regarded as samples from a 2-D grid of 

random variables (pixels). The set of random variables is usually as large as 512 x 512 

and 1024 x 1024 is not uncommon. To process such large amounts of data efficiently, 

it is preferable to have an underlying model which explains the statistical character­

istics of the given data. In other words, if an image model is to be of use, it should 

have the ability to render the properties of images, that is, both to describe images 

observed and to generate synthetic images from model parameters. 
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As noted in section 1.2, a natural image usually consists of a collection of more 

or less constant areas. It is therefore reasonable to assume that the grey-level at a 

pixel is statistically dependent on some of its neighbours. Indeed, the use of neigh­

bourhoods is inescapable when dealing with ambiguity and noise in image processing. 

It provides a geometric framework where pixels are classified using their context or 

neighbourbood. Based on this, ad hoc and heuristic methods, such as relaxation la­

belling, have been developed for edge detection and segmentation [142] [41] [137]. The 

main idea in relaxation labelling is to define 'compatibility functions' which are much 

like statistical correlations and are used to quantify local constraints. The process 

usually is implemented as a network of local computations which are intended to be 

homogeneous and can be performed in parallel. This approach is similar to the edge 

detection method used in this work (chapter 4). 

Let {Xij,O ~ i,j < .M} be the grey-level image, of size M by 1\1 pixels. One 

way to describe the statistical dependence among neighbouring pixels in an image 

is to represent Xij as a linear weighted combination of pixels in the neighbourhood 

of Xij' Using the assumption that images are wide sense stationary, fast algorithms 

based on this class of image models have been developed for image restoration, edge 

detection and image compression [60] [61]. The estimates of the model parameters 

are usually obtained from training data using a minimum mean square error (l\Il\ISE) 

or Maximum Likelihood method. However, the lack of a facility to describe scale in 

this class of models motivated the development of a class of multiresolution linear 

models. This will be discussed in chapter 2. 

Alternatively, the local dependence characteristics of an image are formulated using 
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the concept of Markovian random fields(MRF) [133]. Formally, an image is said to 

be a Markovian random field if its conditional density p( ·1·) satisfies 

where N' is the neighbourhood of (i,j) which determines the order of the MRF. 

Markovian random fields have been applied to image restoration and edge de-

tection [35] [9] [34] [125]. In principle, such an approach enables the two different 

problems to be combined under the framework of Bayesian inference [35]. An obvious 

criterion for the choice of the solution of such problems is probability of error, which 

gives as a solution that having overall maximum probability, given the image data. 

More specifically, given the set of observations Y = {YoO •• Yij •• Ymm} , the maximum a 

posteriori (MAP) estimate X of the true image X = {XOO .• Xij •• X mm } is the vector X 

which maximizes the joint a posteriori probability distribution as follows 

x = arg(m~xP(XIY) = P(YIX)P(X)/P(Y)) 
x 

(1.2) 

As the denominator P(Y) can be ignored in the maximization, only knowledge of 

P(X) - the a priori probabilities of the label configurations and P(YIX) - the con-

ditional probability distribution of the observation given the true image, must be 

known. They are usually assumed to be a certain distribution (eg. Gaussian distri-

bution) and their parameters are estimated from training data (eg. [35] [9]). The 

global MAP estimate, however, is computationally demanding because of the need 

to ~earch for the optimal estimate over all the possible configurations. To tackle this 
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difficulty, various methods which decompose the global optimization into an iterative 

network of local computations have been introduced. 

Perhaps the simplest way is to add more restrictions to design a subclass of MRF, 

for example Markov mesh models proposed by Abend et al. [2]. However, Markov 

mesh models have a causal Markovian dependence in the image plane. Hence they 

are not natural in a spatial context and can be too restrictive. 

Using the theorem that an MRF with respect to a neighbourhood .N is equiv­

alent to the sample space of a Gibbs distribution, Geman and Geman proposed a 

stochastic relaxation algorithm for :MAP image restoration [35]. This stochastic re­

laxation algorithm has its roots in simulated annealing and the Metropolis algorithm 

for optimization [9]. More specifically, it is an iterative application of the :Metropolis 

algorithm with a gradually decreasing temperature (a procedure reminiscent of the 

cooling process for metal or chemical substances, hence the name simulated anneal­

ing). Stochastic relaxation will converge to the equilibrium distribution which gives 

the wanted configuration of minimum energy. This approach has inspired a few re­

searchers to construct energy functions and cast image processing problems as energy 

minimisation problems using the simulated annealing technique (eg. edge detection 

[119], segmentation [74]). 

The simulated annealing scheme is, however, notorious for its need for a slow tem­

perature decrease, which usually requires hundreds of visits to each pixel. Because 

of this weakness, various methods for speeding convergence have been proposed. In 

solving combinatorial optimization problems, instead of simulating stochastic anneal-
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ing, it is possible to estimate its mean behaviour using mean field theory [22]. The 

mean field annealing algorithm is a deterministic relaxation procedure which exhibits 

faster convergence while often preserving the quality of the solution afforded by the 

simulated annealing approach. There is, of course, no lack of applications of the mean 

field theory for edge detection [45] [139] [140]. 

Another optimization scheme, called Iterative Conditional Modes(ICM), was pro­

posed by Besag [9], which is exactly equivalent to 'instantaneous' freezing in simulated 

annealing. Thus, it will not guarantee to find the MAP but it does converge to a 

local minimum. Nevertheless, ICM is appealing because of its fast convergence. In 

the application of grouping and closing gaps in edges, Urago et al. modelled edge 

images as MRFs and defined the Gibbs distribution associated with it [125]. They 

also introduced an energy function which reflects the structure of edges and used lCM 

relaxation to minimise the energy function. 

There have also been attempts to accelerate the convergence of Geman's stochas­

tic relaxation algorithm using multigrid techniques such as the renormalisation group 

technique [37]. In [37], Gidas proposed a Renormalisation Group (RG) method for 

image restoration. \Vhen the RG algorithm is combined with the simulated anneal­

ing technique, it is called Renormalisation Group simulated annea.ling(RGSA). The 

RGSA algorithm provides a multiscale, coarse-to-fine framework, which reduces the 

computation of processing by combining local processing at different scales with an 

interscaIe transfer of information. 

In short, since image features may occur at varIOUS scales and because of the 
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inherently contradictory nature of the requirements of vision, there is a need to com­

bine global information and local information, so that a coherent solution can be 

obtained. The processing of combinations of global and local information can be cast 

as an optimization problem which can be solved efficiently by combining iterative and 

multiresolution techniques. 

1.5 Neural Networks for Image Processing 

The past decade has also seen various artificial neural networks applied to image 

processing problems [141] [27] [70] [8] [122]. An artificial neural network(ANN) is a 

network of processing nodes which are interconnected with adjustable, weighted links. 

A review of some generic models for image processing is presented in this section. 

Instead of considering the modelling of biological neural networks( d. chapter 3), 

the purpose of this section is to highlight the significant features of ANNs for image 

processmg. 

One of the motivations for the application of artificial neural networks to image 

processing problems is the hope that an adaptive computer vision system can be 

built by adopting the architectures and algorithms used by the brain, whose ability 

in association, generalisation, classification, feature extraction and optimization has 

not been duplicated using conventional computational techniques. The brain is a 

hierarchical layered neural network and each layer operates in parallel. A class of 

artificial neural networks which captures these features is the feedforward networks 

(see figure 1.2). Given a set of training data, a feedforward neural network adjusts 
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Output layer 

Hidden layer 

Input layer 

Figure 1.2: A feedforward network. 

its link weights so that it implements a mapping which either matches the training 

data as closely as possible or transforms the training data into uncorrelated outputs. 

After training, the feedforward network is used to classify input data or decorrelate 

input data. 

There are of course learning mechanisms based on different criteria (eg. the prin­

ciple of maximum information preservation by Linsker [80] or the least mean squares 

(LMS) [112]) for the adaptive abilities of linear and nonlinear feedforward networks. 

Using the L1\1S criterion, Daugman suggested a three layered artificial neural network 

for transforming two dimensional images into generalised nonorthogonal 2-D Gabor 

representations for image analysis, segmentation and compression [27]. A single-layer 

linear feedforward neural network, proposed by Sanger [112] has weights which will 

converge to the first few eigenvectors of the autocorrelation matrix of the input data. 

Like the Karhunen-Loeve transformation, this single-layer linear feedforward neural 

network was applied to some simple tasks in image coding, texture analysis and fea­

ture extraction [112]. Obviously, feedforward networks provide alternative methods 
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Feedforward neural network 

x(k) 

x(k) 

Figure 1.3: A time delay neural network. 

for the implementation of simple image transformations. 

12 

Feedforward networks with only one hidden layer using any squashing functions 

have been proved to be able to approximate any Borel measurable function to any 

desired degree of accuracy [51]. It is not surprising that feedforward networks are used 

for nonlinear filtering [98], and pattern recognition problems [99]. Equipped with a 

tapped delay line, feedforward networks are also capable of modelling systems where 

the output has a finite temporal dependence on the input. Such an architecture 

is often referred as a Time Delay Neural Network (TDNN)(see figure 1.3). 'When 

the feedforward neural network is linear, this structure is equivalent to a linear finite 

impulse response filter (FIR). Applications of TDNNs to speech synthesis, recognition 

and nonlinear prediction were reported with good results [115] [75] [76]. 

Currently, much work on feedforward networks has concentrated on fast learning 

algorithms and on improving their generalisation abilities [57]. Compared with con­

ventional image processing techniques, it seems that feedforward neural networks are 

attractive for their abilities in 'learning' and their comparatively simple architectures. 

'While feedback is common in the brain, there is no feedback mechanism in feed-
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y(k) 

Feedforward neural network 

x(k) 

x(k) 

Figure 1.4: An output feedback neural network. 

forward networks. Networks which possess feedback connections are called recurrent 

networks and are inherently recursive [57]. Recurrent networks fall into two categories: 

(a) output feedback and (b) state feedback. Output feedback recurrent networks have 

an architecture shown in figure 1.4. Apparently, when the feedforward neural network 

is linear, this structure is equivalent to a linear recursive filter. This class of output 

feedback networks has been applied to nonlinear system identification and control 

problems (eg. [95]). 

The state feedback recurrent networks are generally single-layer networks with 

feedback connections between nodes (see figure 1.5). If any node can be viewed as 

input or output node, this class of networks is perhaps the most general. Intuitively, 

state feedback networks can be easily constructed for representing the interaction of 

competitive and cooperative constraints for solving image processing problems (eg. 

Grossberg used a competitive network for boundary grouping[40]). 

The most popular state feedback network for image processing problems is proba­

bly the Hopfield network. Hopfield networks have been applied to image restoration 

[141], segmentation [137]' and edge detection [135]. Details of the Hopfield type of net-
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output 

link 'neuron' 

input 

Figure 1.5: A state feedback neural network. 

works will be presented in chapter 3 and a hierarchical Hopfield network is proposed 

for edge detection and image restoration. 

A generalisation of the Hopfield network is the Boltzmann neural network, which 

uses simulated annealing for locating the global minimum of its energy function. It 

is similar in spirit to the stochastic relaxation algorithm of Geman and Geman [35]. 

While the stochastic relaxation is in the same world as the Boltzmann neural model, 

the reM is related to the Hopfield network model. Hopfield and Boltzmann networks 

therefore have the added attraction of a clear connection to the stochastic ~odels 

which underlie most rigorous solutions to image processing problems. And there is 

no lack of applications of the Boltzmann neural model, for example, Sejnowski and 

Hinton [114] reported its use for separating figures from background. 

1.6 Requirements for Image Models 

From the discussion of the previous sections, there are several issues involved in solv­

ing general image processing problems. As natural images consist of more or less 

slowly varying grey level regions, an effective image model must have a mechanism 
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for expressing smoothness and discontinuity. The fact that the world is hierarchically 

organized entails that the underlying model should be able to render objects of differ­

ent scales as well. Equally important, a facility is needed to cope with the uncertainty 

principle in vision. Finally, because of different distortions and information lost in 

the process of forming images, a priori knowledge may be required to recover the 

information. 

This thesis examines the use of artificial neural networks for edge detection and 

image restoration. For this purpose, there are several requirements that will be con­

sidered next. 

1.6.1 Requirements of Edge detection 

A simple approach to edge detection is to apply a pair of highpass (gradient) filters, 

followed by an edge connection process (eg. [89]). However, when noise is present, 

problems arise. An effective algorithm for edge detection must address the following 

requirements: 

1. Local processing/high position resolution: edges are the places where image 

properties change abruptly. Thus, it is required to have a high position resolution 

for edges. This implies that a small size of window is required. Apparently, edge 

detection is an intrinsically local operation, which may enable computation in 

parallel. 

2. Noise immunity: when noise is present, the highpass filtering operation will 

amplify it. It is thus necessary to use a larger window for reducing the effect of 



CHAPTER 1. INTRODUCTION 16 

nOIse. The requirements of noise immunity and the high position resolution are 

incompatible and need a scheme for trade-off. 

3. Boundary continuity: in grouping edge pixels, it is necessary to assume that 

boundaries of objects are piecewise continuous plane curves, ie. they do not 

contain too many corners. 

4. Flexibility: When a priori knowledge is available, the algorithm should be readily 

extended to incorporate it for better performance. 

1.6.2 Requirements of Restoration 

For restoration of image~ dis'torted by known blurring and noise, an effective algorithm 

has to consider the following issues : 

1. Ill-posedness/regularization: Since the blurring usually is in an ill-conditioned 

matrix form, its inverse may not exist or may be error-sensitive. Thus a direct 

application of the blur matrix inverse may not be possible. Certain assumptions 

are needed to regularize the solution space. 
, , 

2. Edge enhancement: Edge information is so important in perception that to a 

human, an image with sharper edges but a lower signal noise ratio are usually 

more pleasant than an i~age with blurred edg~s but a higher signal noise ratio. 

Thus, identification of edges should be included for edge enhancement. 

3. Noise smoothing: In smooth areas, noise is much more noticeable and may result 

. spurious edges. Hence, it is necessary to filter noise in slowing varying or constant 
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grey level areas 

4. Flexibility: \Vhen a priori knowledge is available, the algorithm should be able 

to incorporate it for better performance, but the results should be robust, ie. 

not too sensitive to small changes in parameters. 

A great deal of recent work has shown how image data and world knowledge can 

be integrated within the framework of minimisation of energy functions [104] [120]. 

If it is possible to design an energy function which reflects the quality of solutions, 

then a Hopfield network can be employed to find a solution. 

1.7 Thesis Outline 

This work attempts to demonstrate that the combination of a multiresolution model 

and regularization theory can provide an effective framework for image processing 

and a class of image processing problems can be solved using a hierarchical Hopfield 

network, which is an effective implementation of this model. 

This thesis is organized as follows: in chapter 2, stochastic modelling of images 

is discussed. In particular, a class of linear multiresolution image models will be 

introduced. It is emphasized that a natural way to deal with the uncertainty problem 

is the use of a multiresolution representation. This chapter is concluded with a 

multiresolution iterative model for image processing. 

Chapter 3 is an introduction to the properties of neural networks, which are rel­

evant to edge detection. An interesting observation is that the HVS uses a priori 
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knowledge for vision tasks. This is the basis on which regularization theory is built. 

A hierarchical Hopfield network is proposed to implement the multiresolution iterative 

model of chapter 2, which encapsulates the iterative and smoothness regularization 

ideas. 

Chapter 4 will detail an algorithm for edge detection using the proposed hierar-

chical neural network. The idea is to specify the spatial relations of edge properties 

of pixels in terms of energy. When they correspond to an edge, the energy term will 

decrease. The energy function is minimized by using a Hopfield network which con-

verges to the edge map. Results of applying this scheme to a variety of test images 
.} " 

are presented and discussed. 

It is shown that a class of image restoration problems can be regarded as energy 

minimization problem~ in chapter 5. . Again, a cost function whose minimisation 

will reflect the desirable solution is specified as the energy function of the proposed 

hierarchical Hopfield network. An adaptive restoration scheme consisting of the edge 
, . 

detection method proposed in chapter 4 and an adaptive filtering method is proposed 

and results of tests are presented. The implications of these tests for the approach 

used are discussed. 

Finally, a summary and the contribution of this work is presented in chapter 6. 

A discussion of the limitations of the model and the proposed hierarchical Hopfield 

neural network is also summarised. 



Chapter 2 

Multiresolution . Image Models 

2.1' Introduction 

Image models give a quantitative description of images whose formation is prone to 

noise and distortion. Over the past three decades, researchers have proposed different 

image models in order to provide a framework within which various image processing 

techniques can be considered and analyzed, hence enhanced. As an example, Wiener 

filters in restoration problems are derived from a stationary statistical model which 

characterizes images by their covariance functions[61]. To permit characterization of 

local properties of pixels, a linear system describing the relationship between a group 

of pixels by a difference equation and forced by white noise with a known power 

spectrum is a useful approach for representing the ensemble of images. Depending 

o~ their pixel neighbo~rhoods, such models are categorized into three groups, namely 

causal, semicausal and noncausal models. ' 

In this chapter, a description of stochastic image models is presented. Emphasis is 

19 . 
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put on noncausal multi resolution models, which have been successfully applied to var­

ious areas in image processing and computer vision, (eg., feature extraction[18], data 

compression [86][121]). Particularly, a multiresolution model which is a generalized 

model from [23] is introduced for edge detection and image restoration. 

2.2 Stochastic Image Models 

The stochastic modelling of images treats the spatial coordinates of an image as time­

like indices. Modelling images as stochastic processes is not new: there are many 

models found in such areas as data compression [61]. An example is a simple I-D 

causal autoregressive(AR) model, borrowed from work on l-D signals such as speech 

and applied to images via a raster line scan; which is found in most image capture and 

display systems. Based on AR models, the differential pulse code modulation(DPCM) 

coding methods are used in data transmission applications [61]. A DPCM method 

works because in general adjacent pixels in an image have high correlation. Models 

which can capture the correlation property of images may give huge reductions in the 

volume of information which it is required to transmit. 

Although I-D causal models are simple and they have had a degree of success, 

such line-by-line methods force an essentially 2-D image into l-D signals, so that 

those spatial structures inherent in the image are difficult to take into account. In 

applications where whole images are available, there is no good reason to impose 

causality artificially and it is natural to consider other data structures and models to 

characterize 2-D images. 
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Among other methods, Markov random fields and 2-D noncausal prediction models 

are general image models which can reflect the local properties of images [35][61]. 

However, they may demand more computation. Recently, a class of multiresolution 

imag~' models which combine the simplicity of anAR model and the effectiveness of 

different scale features description have emerged to give efficient solutions to many 

image processing problems. This section will be an account of image models as 

the prelude to a multi resolution model. A multiresolution model which combines a 

propagation process and a lateral interaction process will be introduced and used as 

the framework for edge detection and image restoration. 

2.2.1 One Dimensional Image Models 

An autoregressive process of order p is a zero mean random process x( I) which can 

be generated by equation (2.1). Let x(l) be the signal and w(l) be the innovation 

term which is assumed to be a sample of white noise, then a stationary pth order AR 

model is given by 
p . 

x(1) = ~ aix(l- i) + w(l) (2.1) 
. i=1 

The AR models are sometimes called causal minimum variance representation (MVR), 

for the signal estimator 
p 

x(l) = ~ aix(l- i) (2.2) 
i=1 

is the linear estimator which gives minimum mean square prediction error[61]. Given 
'< : 

x( 1), aj can be determined by the Yule-\Valker equations. It can be also solved 

by Levinson's algorithm which is in a recursive form and is easy to implement[lOl]. 

Apparently, by introducing a scan the above model can be used as a model for images, 
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but the introduction of a scan path is not fully justified in many image processing 

applications. 

2.2.2 Two Dimensional Image models 

Features in an image are characterized by their spatial structures, which cannot be 

exploited by the line-by-line models mentioned in the previous section. For example, 

in an edge area, pixels which are scanned in the direction of the edge are highly 

correlated, but when scanned across the edge they are less correlated. Thus an edge 

not along the scan direction will be treated uncorrelated but in reality it is correlated. 

Naturally, a straightforward approach to model 2-D image is to generalize the I-D 

stochastic signal models [~1]. Thus, an image is expressed by a 2-D stochastic process, 

or random field and the image is the output of a linear system driven by noise, as 

Xij = Xij + Wij = L amnXj-m,j-n + Wjj 
mnEN 

(2.3) 

whf're {xiil is the random field,{xjj} is the linear estimator of {Xjj} and N denotes 

a neighborhood of (i,j). There are three types of linear prediction models, according 

to the definition of N, namely, 

{-p ~ m ~ p, 1 <n ~ q} U {1 ~ m ~ p,n = O} 
(-p ~ m ~ p,O ~ n ~ q,(m,n) =I (O,O)} 
{-p ~ m ~ p, -q ~ n ~ q, (m, n) =I (O,O)} 

causal 
semicausal 
noncausal 

(2.4) 
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If {Wij} denotes for the prediction error and {Xij} is set to be a minimum variance 

predictor, the representation is a :MVR which is equivalent to a Bayesian estimate in 

a Gaussian Markovian random field[133]. 

Although these 2-D models do take account of inter-line correlation, it is not hard 

to see that the causal and semi causal models are biased by their scanning directions. 

And all the three types of model lack the facility to take account of features of 

different scales, even though a noncausal model combined with iterative techniques, 

such as relaxation methods, can capture global features [35]. Nevertheless, such 

approaches are usually slow and expensive in computation. Next, a new class of 

general linear models will be presented. The models are causal in scale space and 

non-causal in the two dimensional spatial plane. This allows a recursive estimator to 

be implemented[24]. 

2.3 Towards Multiresolution Image Models 

2.3.1 Motivation 

In the 1940s, Gabor in his classic paper on audio analysis pointed out that the tra­

ditional Fourier frequency decomposition of a signal is limited by a signal property 

known as the uncertainty principle[32]. In a different context, \Vilson and Granlund 

used the uncertainty principle to explain some inherent properties in vision [129]. 

Later, \Vilson and Spann used a similar argument in discussing the problem of seg­

mentation, which is illustrated in the following. 
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A basic question in image processing and computer vision is to estimate 'what' is 

'where' in the image[88]. A fundamental problem in this field is edge and boundary 

detection, in which the boundary properties( ego orientation) are 'what', while their 

location is 'where'. A simple solution to the edge detection problem is to convolve the 

image with a set of fixed sized filters and apply a threshold to a function of the set 

of convolved images. Such an approach leads to a less satisfactory result because the 

features we perceive and find meaningful vary enormously in a range of scales [88]. 

Furthermore, when the input image is corrupted with white noise, the above solution 

will be riddled with false edges and missing edges. To deal with such cases, the image 

is first smoothed, then the set of kernels is applied. Although the effects of noise 

can be reduced, a new problem arises: the positions of the edges are 'blurred'. The 

more the image is smoothed, the fewer spurious edges will appear. Unfortunately, 

the certainty of the edge positions is reduced correspondingly (see also Canny[20]) . 

It is clear this dilemma is analogous to the uncertainty principle [131]. 

\Vilson and Spann pointed out this trade off between 'spatial' resolution and 'class 

space' resolution and proposed the use of a multiresolution approach to overcome this 

difficulty[131J. The multiresolution model of \Vilson and Spann is based on a quadtree 

structure(s('c Figure 2.1). They used an iterative clustering method to decide the 

classes ill an image and a coarse-to-fine boundary estimation scheme. 

Anoth{'r h{'nefit of multiresolution models is their ability to represent image fea­

ture'S over a range of scales. For example, in the pyramid representation, an image is 

described by coarse features and progressively refined till the image plane is reached. 

In this contcxt, data compression is possible [129] [17]. This coarse-to-fine recon-
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Figure 2.1: A quadtree structure 
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struction process is the very property which underlies a class of linear multi resolution 

models [24]. Also in the coarse-to-fine reconstruction, the features in the coarse res-

olution intuitively can be regarded to be accurate with high confidence. Thus, these 

features can be used to control or 'regularize' the reconstruction of features in the 

finer resolution [135] [37]. 

2.3.2 Multiresolution Representations 

In a multiresolution representation, different scales give similar but different descrip-

tions of an image. Thus, if such representations are to be useful, the problem of 

combining information across scales must be dealt with effectively. Before discussing 

this 'scale consistency' problem[132], it is perhaps worth giving a brief description of 

various multi resolution representations. 
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Figure 2.2: (a) A pyramid tree structure for I-D signal (b) its 2-D counterpart. 
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1. Scale space 

This representation was proposed by Witkin[132]. In I-D, the space-scale representa­

tion of a signal f( x) is constructed by smoothing the signal with a family offunctions 

of a continuous scale parameter 0', such as Gaussian functions g( x, 0') of increasing 

width, so that the scale-space representation F (x, 0') of the signal is also a function 

of 0', which can be written as 

F(x, 0') = f{x) * g(x, 0-) (2.5) 

where * is a convolution operator. This family of derived images can also be viewed 

as the solution of the heat diffusion equation with the initial condition 

F(x,O) = f(x) (2.6) 

Thus, the techniques used in the study of heat diffusion can be readily borrowed [103] 

[68]. Koenderick [68] and Lindeberg[79] have further developed the theory of scale 

space representations and the generalization to 2-D is straightforward. 

2. Pyramids 

A pyramid structure of an image is a tree constructed by smoothing the image and 

then subsampling the smoothed image. This operation is carried on recursively until 

there is one node, called the root left. Usually the scale space axis is logarithmic 

(base 2) so that the size of each level in the pyramid is 4 times that of its parent 

level. About 30% extra memory space is needed to construct the pyramid. Because 

of the smoothing and decimation operations, each level in the pyramid represents a 
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different resolution of the image. The pyramid structure can be written 

(2.7) 

mn 

where !ij(l) is the image data at level I and Aijmn(l) represents a filter. Note that 

a child node !mn(l) can have several parents. Figure 2.2 is an example of a pyramid 

structure. A special case of the pyramid is a quadtree structure, in which 

k. (1)- {1/4 if(m,n) E {(2i+s,2j+t),s=O,1,t=O,1} 
'3mn - 0 otherwise (2.8) 

In other words, each child node has only one parent node (see figure 2.1). More 

explicitly, the quadtree is constructed using the following equation 

3. Wavelet Transforms 

While a pyramid structure needs about 30% extra memory to represent an image, 

an orthonormal wavelet transform of an image will need exactly the same amount of 

memory space to represent the image. A wavelet transform representation is also con-

structed by successive filtering and decimation operations. A 1-D wavelet transform 

representation of a 1-D signal !i is given as follows, 

!i(l) = L h2i- k !k(l + 1) (2.10) 
k 
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di(l) = L,92i-kfk(1 + 1) (2.11 ) 
k 

where h(·) and g(.) form a conjugate mirror filter pair [26] The reconstruction of the 

signalJi from its wavelet transform representation { di(l)} is simply 

!i(l + 1) = L, h2k-dk(1) + L,92k-idd 1) (2.12) 
k k 

An important feature of such wavelet representations is that the set of wavelets used 

is orthonormal. The set of wavelets, is partially dilation and shift invariant, in other 

words, each member can be obtained by dilating and shifting another member in the 

basis. The 2-D wavelet transform is generalized from the 1-D case (cf. [86]), normally 

by using a Cartesian separable transform. 

The above multiresolution representations are all designed to deal with the uncer-

tainty problem in signal and image processing and obvious properties of images, such 

as structures spanning a range of scales. The pyramid structure also leads to effec-

tive image modelling. The pyramid structure was, perhaps, first used by Rosenfeld 

and Thurston for edge detection [110]. Although the orthonormality property of the 

wavelets leads to compact representations and efficient decomposition of an image, 

it only provides a partial solution to the uncertainty problem. More sophisticated 

structures, such as Multiresolution Fourier Transform(MFT) have been proposed for 

image analysis [18] and texture segmentation [52]. 
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2.3.3 Linear Multiresolution Models 

Among the pioneering works of stochastic multiresolution image modeling, perhaps 

Clippingdale and Wilson [24] were the first who considered the scale index to be 

time-like and derived an AR model in the scale space. Their model is a special case 

of a generalized linear multiresolution model which is also proposed by Clippingdale 

[23]. The same stochastic modelling in scale space is also used by Basseville et al. 

[6] in the wavelet transform representation. There are also works which treat the 

scale space as a Markov chain [10] and use the MAP(usually nonlinear) criterion to 

combine information between successive levels [37]. 

The class of general linear multiresolution models proposed by Clippingdale can 

be recursively defined in a matrix notation as 

S(O) = B(O)W(O) 

S(l) - A(l)S(l- 1) + B(l)W(J), 1 < 1 ~ M (2.13) 

where 1 is the level index, S(l) and W(l) are the lexicographically ordered vector 

representations of the signal and the innovation at level 1 respectively, A( I) and B( 1) 

are filter matrices. In image processing, writing the linear operator explicitly, it takes 

the form 

(2.14) 
mn pq 

where Sij( 1) is the image (or features) at levelland Wpq is the innovation term. The 
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initial condition is 

Soo(O) = Boooo(O)woo(O) (2.15) 

Notice the equation is similar to equation (2.1)' and thus a MMSE estimator can be 

derived using the well-established techniques for state-space methods[101]. Using this 

approach, given the set of noisy data, 

(2.16) 

an estimator for this general linear model is expressed by a linear combination of data 

on the current level and the vertical propagation, or 'prediction' as follows 

Sjj(1) = L A jjmn (1)smn(l- 1) + (1 - Qij(l))Sij (2.17) 
mn 

where Qij( 1) is a combination coefficient to trade off the reliability of data and the 

propagation 'prediction'. 

A special case of the general linear multi resolution model is based on the quad tree 

representation, which takes the form 

8jj(1) = 8u(l-1) + Wjj 
22 

(2.18) 

One of the distinguishing characters of this model is that the image is tessellated 

into inhomogeneous blocks of different sizes. The implication is that each region 

(block) represents one feature; in other words, various local image structures are 

represented at different scales in this model. A scheme to model curves based on the 
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Figure 2.3: (a) A r alization of a quadtre model and (b) a realization of a pyrami 1 
mod 1. 

quadtr model can b found in [18]. It is not hard to s e that such a modell ads 

to a simpl structure and when applied to e timation probl ms, an xact minimum 

mean square ITor stimator an b d rived using the same technique from 1-D 

AR mod Is (s Clippingdale and Wilson [24]). How v r , the very non-overlapping 

t ss llation property of th quadtre model auses unwanted blocking eff cts which 

must b ov rcom . Su h a probl m an be overcom by allowing a child to be shar d, 

i . . a pyramid mod I 

i,j(l) = L::Aijmn (l) sf+m,t+Il (l - 1) + Wi,j (2.19) 
mn 

Figur 2.2 is a pyramid stru tur first us d by Rosenf ld and Thurston for dg 

d t ction [110]. In figur 2.3, imag s gen rat 1 by quadtr e and pyramid models ar 

shown. Comparing figur 2.3(a) with figure 2.3(b), a pyramid model is more natural , 
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although its vertical propagation requires more computations. 

Following Clippingdale and Wilson's work based on a quadtree representation, 

a variety of linear multiresolution models in different representations are used in 

estimation [23], coding [121], segmentation [10] and curve extraction problems [18] 

[28]. Different representations utilize different strategies which are realized by Aijmn( 1) 

and Bjjpq(l). Apparently, the coarse-to-fine refinement procedure in this general linear 

multiresolution model is an effective method to combine local and global information. 

In addition, it has the ability to render features of different scales. 

2.4 A Processing Model for Image Restoration 

2.4.1 Iterative Methods 

A given signal model may be more or less effective at capturing image structure,but 

it will only be useful if it leads to computationally practicable solutions to problems. 

This aspect must now be considered. As noted in Chapter 1, many image processing 

problems can be formulated as optimization problems, so that the solution 

E(x) = min E(x') 
{x/eo} 

(2.20) 

where E(·) is a cost function or an energy function related to the quality of the solu-

tions and n is the solution space. Often, a direct computation for the optimal solution 

of a problem involves a huge matrix inverse operation, so that it is impractical. In 

search of the optimal solution, an alternative is to use local iterative methods, such 
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as gradient descent methods, based on the MSE criterion or relaxation using a MAP 

criterion [35], in which costs or energies are minimized at each pixel on each itera-

tion. This greatly reduces the computational cost and because of the local updating 

schemes, it is easy to use different strategies depending on local properties of the 

image, ie. adaptive methods. Another benefit of this local updating is a possible 

parallel implementation. However, a drawback is that local updating may lead to a 

local minimum only. Much effort has been devoted to overcome this drawback. One 

interesting approach is to use probabilistic schemes, such as stochastic relaxation al-

gorithms (simulated annealing). Such an approach has now been widely applied to 

various image processing problems[35][34J. 

Because images are often formed by projecting 3-D scenes on 2-D planes, and 

usually corrupted by some noise and distortion, many image processing problems 

are ill-posed (see section 3.4). One way to solve an ill-posed problem is to define a 

criterion to select an approximate solution from a set of admissible solutions. This 

criterion so defined is called a regularization term, which reflects prior knowledge of 

the problem. The solution to the problem can then be rewritten as 

min (E(x') + aEs(X')) 
{X/EO} 

(2.21 ) 

where Es(-) is the regularization term. Using an iterative method, it is possible to 

control 0' according to local properties, such as edges [65]. Another way of incorpo-

rating prior knowledge is to impose constraints, so that only feasible solutions are 

accepted, ego as the method of projection onto convex sets (POeS) does [65J. Both 
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regularization and poes can be easily embodied in iterative methods. The ideas of 

adaptation and regularization are taken to form a multiresolution model for image 

restoration which will be described next 

2.4.2 A Multiresolution Iterative Restoration Model 

The general linear multi resolution models described in section 2.3 can be used for 

edge detection and image restoration. The pyramid structure mentioned is used as 

it avoids difficulties, such as a spatial difference operator missing edges which lie on 

the borders of adjacent blocks [42]. 

The adaptive restoration algorithm consists of two stages: (1) an edge detection 

process (2) the restoration process. Both processes start from a certain low resolu­

tion in which noise is sufficiently reduced due to the lowpass nature of the pyramid 

representation. For each resolution, a lateral relaxation scheme is used to enhance 

long range characteristics. The obtained solution in coarser resolutions is propagated 

down and used to regularize the search of the solution space in finer resolutions. In 

short, there are three steps for both processes:{l) construction of input pyramids (2) 

lateral relaxation (3) vertical propagation. 

1. Construction of input pyramids 

To outline the algorithm, the first task in hand is to clarify what are represented 

by the models so that pyramids can be built. Since an edge controlled restoration 

scheme is desired, the model must be able to represent boundaries, orientation and 

gray level structures effectively. Three pyramids are built; they are (a) the gray level 
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pyramid of the input image, (b) its orientation pyramid and (c) its edge map pyramid. 

The grey level pyramid is first built as the input for the restoration algorithm. The 

lowpass kernel to construct the pyramid should be isotropic to avoid introducing 

bias in orientation which is important characteristic of an edge and is used for edge 

determination[127] [135]. The orientation pyramid is constructed next by applying 

a pair of odd size kernels to the grey level pyramid. The orientation representation 

is double angled which is detailed in chapter 4. Finally, the edge map pyramid is 

obtained using a Hopfield network also detailed in chapter 4. The edge representation 

is similar to Bhalerao's work[10]' but the difference is that edges in the model are 

represented by a set of edge pixels, 

X(l) = {x;j{l)l(i,j) is a vertex site, 0 ~ I ~ M} (2.22) 

rather than the polygon model used by Bhalerao; in other words, a binary edge map 

is used. 

2. Lateral relaxation 

Many estimates and decisions in image processing problems are the results of inter­

action of many simultaneous local mutual constraints. To give a coherent solution, 

iterative methods outlined in section 2.4.1 are used to update a set of hypotheses (eg. 

there is an edge in location (i, j)). The local constraints are formulated as excitatory 

and inhibitory weights and the local decision (for edge detection) and estimates (for 

restoration) are made using the sum of all the local weighted constraints so that a 

globally consistent solution can be reached after a small number of iterations. Both 
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lateral relaxations used in the edge detection process and the restoration process use 

odd size windows to gather local clues. The minimization of a cost or energy function 

is the basis of the two processes. The best fit to the data is sought within the priori 

knowledge and constraints. 

3. Vertical propagation 

The uncertainty principle asserts the trade-off between 'what' and 'where' [129J. Thus, 

the estimate obtained in the coarser resolution of the pyramid, where noise has been 

reduced by pyramidal smoothing, will be more reliable but its spatial resolution is 

low. To recover the spatial solution while maintaining the estimation reliability, the 

estimates in coarser resolutions are recursively propagated down using the stochas­

tic linear multiresolution model expressed by equation (2.13). The propagation is 

achieved by a linear combination of the estimate obtained using lateral relaxation 

and the data in the immediately finer resolution. The linear combination is an aver­

age which has the effect that consistent features will be emphasized while noise which 

is uncorrelated will be reduced. 

Figure 2.4 is a summary of the scheme. Note that information flows vertically and 

horizontally in this model which is reminiscent of the HVS (d. Chapter 3) A full 

description of the edge process will be given in the chapter 4, and the restoratioll in 

chapter 5. 
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Figure 2.4: The restoration scheme. 
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2.5 Summary 

The past decade has seen an ever growing interest in image multiresolution represen­

tation and modelling. This chapter has given a brief account of this development and 

proposed a framework which is general enough for various image processing prob­

lems. Its application to an adaptive image restoration was outlined. This framework 

combines the idea of regularization and iterative refinement based on a linear mul­

tiresolution model which includes multiple feature prototypes. It consists of two 

processes: a coarse-to-fine process and a lateral iterative optimization process, which 

will be further detailed when applied to practical edge detection and image restoration 

problems. 



Chapter 3 

Biological and Artificial Neural 
Networks 

3.1 Introduction 

It is interesting to know why a collection of much slower neurons is faster than a 

modern 'number crunching' digital computer, in particular when it comes to visual 

tasks. To understand the reasons may help researchers to design more robust algo-

rithms which will eventually lead to an automatic visual system. This approach to 

artificial intelligence, and in particular computer vision, is not new. In the 1950s and 

1960s, researchers using such methods tried to mimic human vision [91]. After a gap 

of about ten years, this line of research was revived in the early 80s. In this chapter, 

the research outcomes from the neurophysiology and psychophysics of vision will be 

examined and a class of artificial neural networks which have potential applications 

to visual tasks will be discussed. 

40 
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3.2 Properties of the Human Visual System 

Early models of the human brain led to a Von Neumann type computer, which con­

tains a powerful CPU for processing data. While this type of computer is very suc­

cessful in numerical computations, it is less effective in vision, which is so natural to 

human beings that its complexity tends to be underestimated. Although there was 

some success with the traditional approaches, a visual system as robust as the human 

visual system is still elusive, even after research of several decades since the sequential 

digital computer emerged. Re-examining the vision problem, researchers have agreed 

that vision in the HVS is the result of interaction of several adaptive visual processes 

which are highly parallel [111] [56]. Unfortunately, the solution to vision provided by 

evolution is far from being understood, even though a lot is known about the early 

stages of vision. Indeed, the human brain contains over a hundred types of neurons 

and in total, about 1012 nerve cells. This huge number of neurons and their complex 

connection networks yield a system which is fault-tolerant and highly parallel, but 

also difficult to analyze. However, with advances in neurophysiology, some details 

of biological networks have been revealed. Better algorithms are made possible by 

taking into account these properties found in the human visual system. With this in 

mind, it is worth having a brief review of the HVS. 

3.2.1 Biological Neurons 

The basic building blocks of a biological neural network are neurons. A neuron 

typically consists of nucleus, cell membrane, axon and dendrites (see figure 3.1). The 
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axon is the channel through which the neuron relays its activity to other neurons. 

The activity is transferred in the form of a train of impulses1
; in other words, it is 

frequency coded. There are gaps between the terminals of the axon and dendrites of 

other neurons. These gaps, called synapses, have been suggested to provide one of 

the mechanisms for adaptation [43]. Across a synapse, the activity of the presynaptic 

neuron is conveyed by means of chemical transmitters to the postsynaptic neuron. 

The chemical transmitters make the postsynaptic neuron either more or less likely 

to fire impulses. If the change is positive, the synapse is excitatory; otherwise, it is 

inhibitory. 

In general, the activity2 of a neuron is determined by the totality of excitatory 

and inhibitory signals exerted by other neurons through the synapses. When the 

stimulus to the neuron is great enough, the neuron in turn will fire impulses3 to relay 

the information to other neurons. Figure 3.1 shows the relation between the firing 

frequency and the cell potential of a neuron. For more detail, see [96]. 

3.2.2 The Human Visual System 

Figure 3.2 shows the schematic structure of the human visual system. Much less is 

known when it comes to the whole system. The following is a summary of the human 

visual pathway(for more details, see [53]) , in particular, those properties concerning 

edge detection and shape recognition [44]. 

lThere are cells, for example, horizontal cells in the retina, which have no all-or-none action 
potential [96] 

2The integrated potential 
3the action potential is all or none . 
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The Retina 

The front end of the visual system, the retina, contains several layers of cells, which 

are mainly photoreceptors, horizontal cells, bipolar cells, amacrine cells and ganglion 

,cells [53]. The photoreceptors are sensory cells which are the input end of the retina 

and convert light from the environment into electrical signals, whilst the rest of nerve 

cells in the retina process the electrical signals into a more structured form, which 

is transferred to the primary cortex via ganglion cells, which are the output end of 

the retina. Information flows in the retina both vertically (from one layer to the next 

layer) and horizontally (among neighbour cells in the same layer). 

A crucial function of the re~ina is adaptation, which enables the brain to see objects 

in different lighting environments ranging from a starlit night to a bright noon. To 

achieve this, the retina employs several mechanisms. First, two different photorecep­

tors with different sensitivity to light intensities are used. Rods are sensitive to lower 

light levels, whilst cones respond to higher light levels and colours. The sensitivity 

to light intensity of the cones can be altered chemically by the long-term average 

brightness in a scene. Furthermore, horizontal cells receive signals directly from the 

photoreceptors and they also connect to their neighbour horizontal cells and bipolar 

cells. Experiments show that the response of a horizontal cell is proportional to the 

local spatial average of light intensities and it also feeds back to the photoreceptors 

which form its receptive field [126]. 

The output of the photoreceptors and horizontal cells is fed to bipolar cells. The 

bipolar cells are excited by the photoreceptors and inhibited by the horizontal cells. 
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Because the photoreceptor and the horizontal cells have logarithmic responses to light 

intensity, the output of a bipolar cell is the ratio of local light intensity to background 

intensity. In other words, bipolar cells respond to normalized light intensities rather 

than the absolute light intensity. The implication of this local adaptation is that the 

retina not only ensures reliable signalling of small changes in image brightness but 

also enhances features in images. Knowing these properties of the three layers of the 

retina, Mahowald and Mead built a silicon adaptive retina whose behavior is similar 

to that of the biological system [85]. 

The output end of the retina is the ganglion cells, whose axons form the optical 

fibres heading to the lateral genicular body. There are no photoreceptors at the place 

where the optical fibres come to form a bundle and head to the primary visual cortex. 

Psychophysiological experiments show that when an object falls into that spot, it 

cannot be seen. However, an object such as a line which runs across the spot will 

not appear broken. In other words, there may be a mechanism in the higher levels of 

vision which fills the gap. It also seems to imply that the visual system uses a priori 

knowledge [25]. 

The distinct characteristics of ganglion cells are that they respond to moving ob­

jects and their receptive fields have a center-surround structure, so that they respond 

maximally to change of light intensities and minimally to uniform light intensities. 

There are at least two types of ganglion cells. One type of ganglion cell responds to 

a center-on-surround-off receptive field, while another type of ganglion cell has the 

opposite receptive field, that is, center-off-and-surround-on (See figure 3.3). Study of 

optical illusions suggests that the human retina plays the role of reducing the band-
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(a) The cross-section of the recptive field of a ganglion cell 

Figure 3.3: A schematic representation of ganglion cells' receptive field 

width of visual data and extracting only these essential features of an image. Illusions 

are created because the retina selectively encodes information. Marr thus proposed 

that a 2~-D primal sketch is used by the human visual system [88]. Marr suggested 

that these center-on-surround-off cells together can detect zero-crossings, which cor­

respond to edge locations [88]. Furthermore, Marr suggested a 'raw primal sketch' 

built upon these zero-crossing locations. The center-on-surround-off characteristics 

were also suggested as the mechanism for orientation preferences of simple cells found 

in the visual cortex [53] (see figure 3.5). 

The Primary Visual Cortex 

In the previous subsection, an account was given of the functional structures of the 

retina. The optical fibres convey the encoded information to the next stage of the 

visual pathway, the lateral geniculate body (LGN). The lateral geniculate nuclei fur-
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ther transmit information to the primary visual cortex(the striate cortex) and they 

also receive feedback from the primary visual cortex. Very little about the functions 

of this body is known. Further into the visual cortex, structures become complex 

and the degree of abstraction also increases. The neurons start to show highly task-

specific characteristics. Two major transformations of information are accomplished 

in the visual cortex. The first one is the rearrangement of incoming information, so 

that most of its cells respond not to spots of light, but to specifically oriented line 

or edge segments. There are cells which are orientation specific and their complexity 

varies. Anatomically, the visual cortex consists of 6 layers of cells(see figure 3.4). The 

axons from the geniculate body terminate at the layer IV. Cells in this layer have 

center-surround receptive field structures like those of ganglion cells. A layer further, 

cells possess different receptive fields and their complexity also increases. Cells with 

simple orientation-specific receptive fields are called simple cells[55]. It is suggested 

that simple cells behave as if they received their input directly from several cells with 
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Figure 3.5: A suggested simple cell receptive field 

center-surround circularly symmetrical fields, which are found in layer IV [53]. The 

suggested scheme is illustrated in figure 3.5. Cells in the next stage are called complex 

cells, which share with the simple cells the quality of responding only to specifically 

oriented lines. However, instead of responding to an appropriately oriented stationary 

line, complex cells respond to an appropriately oriented moving line independently 

of its position within their receptive field. Some complex cells also show directional 

selectivity, i.e. they only respond to oriented lines moving in one direction but not 

in the opposite direction. Unfortunately, how these orientation-sensitive cells are 

organized to produce boundary representations of the world is unknown. 

Among different models, Hoffman proposed the Lie transformation group model 

of neuropsychology to represent and explain the locally smooth processes observed 

in the visual field and their integration to the global field of visual phenomena [47] 

[30]. In chapter 4, integration of local boundary segments in an image is used for 
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edge detection. 

Another important feature found in the striate cortex is the presence of end­

stopped cells. Cells with end-stopping properties are suggested to relate with end­

point detection. Dobbins et al. proposed such cells are used for coarse curvature 

estimates [29]. 

The visual cortex contains systematic 2-D maps of the world which it represents. 

This follows from the fact that neighbouring neuron cells in this area have neighbour­

ing receptive fields. This topographical mapping, or retinotopic map, has attracted 

much attention[69]. Figure 3.6 is the schematic representation of an example of such 

a topographically organized map. Cells responding to similarly oriented lines are 

neighbours. Also, this schematic representation of the primary visual cortex shows 

the periodicity of ocular dominance: the combination of information from two eyes 

to give depth perception is not a concern of the present work, however. Readers who 

are interested in this can find details in references [53] [63]. 

Beyond Striate Cortex 

The cells in the striate cortex further project into the prestriate cortex and other 

parts of the brain. How the cortex integrates the low level information to represent 

its surrounding world and recognize objects is currently an area under intensive study. 

By examining a few visual cortex-damaged patients, it has been suggested that the 

visual cortex is divided into several task-specific parts and that each part contributes 

to visual perception [138]. Damage of a special part of visual cortex will cause the 



CHAPTER 3. BIOLOGICAL AND ARTIFICIAL NEURAL NETWORKS 50 

L 
R 

/// 
L 

Preferred orientation 

Figure 3.6: The cortex map; Left and right ocular dominate and orientation specific 
columns 

patient to suffer certain disabilities of vision and perception[138]. The study also 

suggests that the higher level processes have some influence on the low level processes. 

3.2.3 Summary 

A distinct property of the visual pathway is that cells in higher levels appear to 

'see' a greater perspective than those at an earlier level and have increased ability to 

abstract [63] [53]. This suggests a hierarchical structure for artificial neural networks. 

At all stages of the visual pathway (retina to cortex), there are cells with different 

sizes of receptive fields [53]. This fact is used to support the use of multi resolution 

representations and models for image processing and computer vision. 

It is arguable that a biological neural network is the only efficient solution to the 

vision problem. However, it seems reasonable to borrow these techniques invented 
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by evolution. Thus, the question is what are the essential characteristics that make 

a biological network better than an traditional computer algorithm? Apparently, 

the learning and adaptation abilities of biological neural networks are responsible for 

their robust performance in a changing environment. Psychological studies show that 

cultural differences influence human visual perception [44J. This seems to support 

the idea that learning plays an important role in perception and vision. 

Consequently, it would be helpful to know what is the mechanism for adaptation 

and plasticity or learning. The mechanism for learning is unfortunately, little known, 

although suggestions that synapses are the ~andidates for learning have been made 

[53]. For adaptation, it seems that competition is responsible for adaptation and 

lateral inhibition is naturally the device which enables competition among neurons. 

3.3 Modelling Biological Neural Networks 

3.3.1 The Computational Neuron 

The most realistic model should model every observed biophysical behaviour from 

real neurons. However, the details of electro-chemical processes in a neuron are very 

complicated and there are over a hundred different types of neurons. A detailed 

model may not be useful in better understanding the overall network behaviour. 

Indeed, the detailed model may have too many parameters, making analysis difficult, 

if not impossible. Thus, simpler versions of the neuron model are widely used in 

the artificial neural network community. Figure 3.7 shows a McCulloch-Pitts neural 

model, which is a typical neuron model. Also shown are typical limiting functions. 
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Figure 3.7: (a)McCulloch-Pitts neuron model. (b), (c) and (d) nonlinear output 
functions. 
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Generally, an artificial neuron is a first approximation of a real neuron and is 

a simple computational unit, which responds to stimuli in the following fashion: a 

neuron's activity is the sum of a bias and a set inputs which are the products of 

the connection weights and signals channelled in through the respective connections. 

Then, the output of the neuron is a function of its activity. Usually the mapping 

will be a nonlinear one (see figure 3.7). The neuron's activity Yi is described by the 

following linear differential equation, 

(3.1 ) 

where x j is the input signal channelled in through weight Wij, Oi is a bias value and '7 a 

scale factor. Several versions of this equation can be found in [39J. Further simplifying 

the neuron's activity model by dropping the decay term -Yi gives the commonly used 

neuron activity model, McCulloch-Pitts model, used in computer simulations, 

Yi = L XjWjj + fJ j 

j 

(3.2) 

An important generalization of the additive model (equation (3.1)) is the shunting 

model, which mirrors the underlying physiology of single nerve cell dynamics (see 

Hodgkin-Huxley [46]). 

As noted, the neuron is a simple computational unit and equation (3.2) can be 

viewed as a match operation between input signal vector X and the weight vector tV 
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as follows 

Yi = LXjWij = X· Wi = IIXIIIIWiIICOS(X, Wd 
j 

(3.3) 

Equation (3.3) can also be considered as a linear filter operation in image process-

ing. Hence, a network of such neurons with their connection weights set properly 

will be able to perform many image processing tasks. For example, combined with 

competitive training, Kohonen proposed a network for adaptive coding [69J. 

While the McCulloch-Pitts model has been applied to many neural computing 

systems successfully, it is an over-simplified version of a true neuron. Many aspects of 

a biological neuron remain to be explored. For example, time dependent properties of 

biological neurons are common and are likely to be important to their computationa.l 

abilities. 

3.3.2 Learning and Adaptation 

How a biological neural network learns has not been exactly pinned down yet, but it 

is a common opinion now that synapses are one of the lea.rning mechanisms in the 

neural networks. Hebb in his classical book [43] -"The Organization of Behaviour", 

gave his conjecture of neural learning: 

When the axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it , some growth process or metabolic change 

take places place in one or both cells such that A's efficiency, as one of the 

cells firing B, is increased. 
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Hebb also suggested that changes in the efficacy of synapses could take place via 

growth of synaptic knobs. However, such growth has not been commonly observed 

to happen in adult animals. Recent discoveries suggest that different rules are used 

to modify the strength and patterns of connections between neurons [117][62J. Thus. 

many alternative mechanisms have been proposed for changing synaptic efficacy. And 

there has been just as wide- a variety of mathematical rules proposed for such modi­

fication. Nevertheless, Hebb's conjecture of neural learning has been widely adopted 

to train artificial neural networks, including Hopfield networks. As learning may be 

much influenced by higher level cognitive processes, the reader can see [90J for more 

details. 

3.4 Hopfield Neural Networks 

As mentioned in section 1.5, a Hopfield neural network is a single layer recurrent 

network (see figure 3.8). Originally, the Hopfield neural network is related to the Ising­

spin model used for describing the binary spins of magnetic atoms and was proposed 

as a form of associative address memory [48]. This type of network is useful in 

pattern recognition (ego OCR), although it has been proved that the network's storage 

capacity is as low as about 15% of its total number of units [92J. Later, Hopfield and 

Tank proposed using the Hopfield network to solve combinatorial problems [50J. Such 

an approach relies on defining proper connection weights and is adapted to solve image 

processing problems which can be cast as quadratic optimization problems [141J [134J 

[58J. 
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Figure 3.8: The Hopfield neural network structure 

A Hopfield net of n nodes is a fully connected network which can be represented 

by a graph G = (V, T) where V = {Vi ... Vn } is a n-tuple vector whose element V; 

represents the output of node i, and T = {Tll ... Tij ... Tnn } is a n X n symmetric matrix 

whose element Tij represents the link weight between node i and node j. The output 

V of these nodes is a function of their potentials U. This function can be continuous 

or binary. 

The Continuous Model 

The continuous Hopfield network was proposed for VLSI implementation [49]. It 

consists of nodes whose potentials are described by 

dUo 
C·_' = -nU· + ~ T. .. v,. + B-, dt 'f I ~ ')) , 

) 

(3.4) 
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where Bi is- the bias input, and Ci and TJ are parameters. The outputs of these nodes 

are 

Vi = f(Ui ) 

where f(·) is a differentiable function, for example a sigmoid function 

1 
f(Ui ) = 1 + e-VdT 

(3.5) 

(3.6) 

For the evolution of the network, Hopfield defined an energy function E which is a 

Lyapunov function when Tij is symmetric[49]. It is as follows: 

However, the term L:i Jri'i g-l(Vi)dVi is usually neglected by setting 11 = O. 

The Discrete Model 

In a discrete Hopfield net, the output function f(·) is a step function 

f(U j ) = { ~ if Uj ~ 0.5 
if Uj < 0.5 

In addition, Uj is updated in discrete time steps, 

n 

Ui(t + 1) = 2: TijYj(t) + Bi 
j=1 

(3.7) 

(3.8) 

(3.9) 
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that is, the potential of node i at time step t + 1 is the linear weighted sum of elements 

of V at time step t. The energy function for a discrete model is 

1 n n 

E = -2 L LTijvi~'i - L Bill; 
;=1 j=l i 

(3.10 ) 

The dynamic evolution of the Hopfield neural networks is in the direction of re-

ducing the energy function. However, the convergence properties and stability of 

Hopfield networks depend on the update mode and the structure of the matrix T of 

connection weights [13]. For the continuous model, it is possible to use asynchronous 

or synchronous update. For the discrete model, Hopfield proposed an asynchronous 

update scheme, which is summarised as follows: 

1. Randomly choose a node. 

2. The activity of the chosen node is computed using equations 3.9 and 3.8. 

3. If the total energy of the system decreases then the neuron's state is changed; 

otherwise, its state is not changed. 

4. Repeat 1-3 until there is no more change. 

The above update scheme is a serial model. The convergence property of updating in 

a parallel or synchronous model for the discrete Hopfield model was also investigated 

by Bruck [13] and Paik [97]. 

From equation (3.9) and (3.10), it can be seen that a Hopfield net performs a 

kind of gradient-descent search in its energy landscape, which only gives a local 

minimum of the energy function. A Hopfield network using simulated annealing 
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methods for dynamic evolution, also known as a Boltzmann machine, may achieve 

a better performance, but with a price in computation time [1]. Nevertheless one 

of the main attractions of the Hopfield network for low level vision is that it uses 

'neurons' in a well defined way, to minimize an energy function. It therefore has 

the potential to exploit the neural metaphor of computation in a way which is well 

founded mathematically. 

3.5 Regularization and Hierarchical Neural Net­
works for Multiresolution Models 

3.5.1 Regularization Theory 

As discussed in Chapter 1, image processing systems, whether biological or artificial, 

are often used to extract information from available image data. Because of noise and 

the loss of information in the imaging process, inverse processes which try to recover 

the information from 2-D images are ill-posed, i.e. there is no unique solution [104]. 

This ill-posed problem is often formulated as follows [104]: 

Given data Y and a transformation A find X such that AX = Y. 

A direct inverse matrix computation X = A-I Y is often impractical when the matrix 

is large. In ill-posed cases, when A is singular, only an approximate solution, which 

minimizes the following quadrature cost function E is usually sought, 

E(X) = IIAX - YW (3.11) 
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where II . II is a norm. Furthermore, when A is ill-conditioned, the solution from a 

direct inverse matrix computation is usually unstable, i.e. a small change in data 

Y will make a huge change in the solution. This is to say that the method is not 

robust. In order to make an ill-posed problem well-posed, the admissible solutions 

must be restricted by introducing suitable constraints, or a priori knowledge. A 

priori knowledge can be given, for example, in the form of variational principles or 

statistical properties of the solution space. Recently, Poggio proposed regularization 

theory as a theoretical framework to unify work in various early vision processes 

[104]. In regularization theory, one technique is to integrate image data and various 

constraints using the framework of minimizing an 'energy' or cost function [64]. In 

such approaches, the relation between each clue or constraint is expressed by a cost 

function in such a way that compatible constraints and clues will reduce the energy 

function while incompatible ones will increase the energy function. The solution will 

be the one which minimizes the energy function. 

One way to restrict the possible solution space is to find X that minimizes 

E(X) = II AX - Y 112 + A II P X 112 (3.12) 

where P X is a regularization term, and >. is a so-called regularization parameter 

which controls the trade off between data fidelity and constraints. A large>. means 

that the solution is forced to pay more attention to the constraints than to the data, 

Y. 
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If A is a linear operator, the norm quadratic and P linear, the paradigm is called 

a standard regularization by Poggio et ai. [104]. Standard regularization under 

some mild conditions can be shown to have a convex solution space and, therefore, a 

unique solution exists. However, the physical plausibility of the solution, rather than 

its uniqueness, is the most important concern in regularization analysis. Naturally, 

non-quadratic cost functions may be needed to impose correct physical constraints. 

However, the solution space is then no longer convex and there may be many local 

mInIma. 

This energy minimization paradigm is general and its effectiveness in a particular 

problem depends on the formulation of the cost functions corresponding to each clue. 

Because images usually consist of textures or structured objects, pixels in a neighbour­

hood tend to have high correlation. Thus it seems reasonable to construct an energy 

function corresponding to such properties. Consequently, a natural choice among a 

variety of minimization techniques is that which best reflects such local interactions 

among pixels. To implement the minimization, it is common to use iterative methods 

like relaxation, simulated annealing and optimization networks [22]. Certainly, these 

techniques are related, but with some differences and they have all been successfully 

applied to various problems (eg. [143] [35] [50]). As suggested in previous sections, 

the use of artificial neural networks may be an efficient way to solve image processing 

problems. There are also theories that suggest the brain behaves to optimize a single 

variable, even though such claims have been challenged [77]. The utility of neural 

networks in optimization is still an appealing idea. Since the energy function of a Hop­

field network and a ~tandard regularization equation are both quadratic, Poggio and 
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colleagues[104] suggested that the Hopfield neural network can be used to solve stan­

dard regularization problems after a careful mapping between the Hopfield network 

and the standard regularization. It is one of the best understood parallel methods to 

implement regularization and hardware implementations are available [58]. There are 

many researchers using Hopfield networks for image processing. For example, Zhou 

et al. [141] applied a Hopfield network to an image restoration problem. Psarrou and 

Buxton combined Geman and Geman's line process with a Hopfield net for optical 

flow estimation [105] [35]. 

3.5.2 Hierarchical Hopfield Networks 

From chapter 2 and the previous part of this chapter, it has been suggested that 

combining local and global information is important both for a computer program 

and a biological system in image processing and vision. Since both a multiresolution 

model and a layered neural network can be represented by hierarchical structures, a 

layered neural network is easily adapted to implement a multiresolution model. A 

simple way to implement a multiresolution model using neural networks is to create a 

neural network for each resolution. Among the various artificial neural networks, the 

Hopfield network is easily extended to be hierarchical and embody a multiresolution 

model. Such an approach has been used by a few researchers{eg. [134] [31] [7] [5] 

[27]). Wu formulated an optical flow reconstruction as a optimization problem based 

on a regularization theory and employed a hierarchical Hopfield neural network to 

find the solution[134]. While using the same principles, however, Battiti employed a 

multilayer percept ron and used a multiresolution pyramid for computational efficiency 
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in optical flow reconstruction[7]. The benefit of such a combination is to increase the 

convergence rate of the neural network as well as to enhance the computation power 

of the multiresolution model through local interactions. 

A hierarchical Hopfield neural network which implements a multiresolution model 

to solve image tasks, such as image restoration, usually needs self-looped connections. 

This implies that an asynchronous network would not be guaranteed to converge with­

out checking the change of its energy function [141]. Several researchers have studied 

algorithms to eliminate this problem [97] [136]. It is reported that a binary Hopfield 

network will converge to a fixed point provided that its connection weights matrix is 

symmetric with non-negative diagonal entries and it operates in a sequential mode[14]. 

Paik and Katsaggelos also investigated the convergence properties of a binary Hopfield 

network using different updating rules when applied to image restoration problems 

[97]. Their result is an improvement and extension of that of Zhou et al. 

Although the connection matrices of a Hopfield network often contain negative 

diagonal entries when using standard regularization techniques to solve an image 

restoration problem, this is not a severe problem. Figure 3.9 illustrates the aforemen­

tioned hierarchical Hopfield neural network, which corresponds to a pyramid. Finally, 

the multiresolution Hopfield network may have the benefit of fast computation. A 

multiresolution neural network architecture with coarse-to-fine computation can im­

prove the convergence rate of the Hopfield network[93]. For all of these reasons, the 

network chosen for the work reported here employs the structure shown in figure 3.9. 
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Figure 3.9: A hierarchical Hopfield neural network 



Chapter 4 

Multiresolution Edge Detection 
Networks 

4.1 Introduction 

As mentioned earlier, boundaries, along with some other properties, are used by a 

visual system to represent its environment. The task of boundary extraction is to 

transform an intensity image into a binary labelled edge map of the image. Edge 

detection is the first step of the boundary feature extraction process. Previous work 

on edge detection ranges from the earliest gradient operators [61] to more recent 

model-based methods using relaxation [41] [142] or multiresolution representations 

[18] [87]. In this chapter, it will be shown that gray level edge detection can be done 

well with a biologically inspired approach. This approach is based on the fran1ework 

of minimization of an energy function which corresponds to edge configurations in 

the image. Using a multiresolution model to enhance orientation information, the 

minimization is implemented by mapping the cost function into the energy function 

of the hierarchical Hopfield neural network proposed in chapter 3. 

65 
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4.2 Edge Detection 

The aim of edge detection is to register possible boundaries of objects in a given image 

for higher level visual processes to represent objects. Since the terms, 'boundary' and 

'edge' are often used interchangeably, it is not surprising that there is not yet an 

generally agreed definition of 'edge'. However, it is hard to disagree that an edge 

is, roughly speaking, a location where image properties such as intensity, colour, or 

texture, change abruptly. 

Although simple and intuitive, this definition is fuzzy. Further examination of 

the definition and comparing edge drawings of images by humans, it is not hard 

to see that an edge map produced by strictly following the above edge definition 

can be very different from edges perceived by a human observer. It is thus not 

surprising that giving an image to two individuals, they may produce two similar 

but not identical edge drawings. This is because individuals may draw boundaries 

which are the contours of objects perceived in higher level visual processes, but not 

those fine details such as texture and shadows, which also mark abrupt changes of 

image properties. The point here is that edge detection is the first step of boundary 

extraction. Hence, it is reasonable to postulate that good edge detection should give 

an edge drawing as close as possible to the boundaries of objects in an image and to 

incorporate some a priori knowledge to enhance the performance of an edge detection 

algorithm. 

The above definition implies that edges occur at the locations of large intensity 

gradient. This observation naturally leads to the earliest gradient schemes [61] and 
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later a class of optimal filtering edge detectors [38][67][20]. However, the inherently 

differential nature of edge detection makes it very sensitive to noise. As Poggio 

pointed out [104], the edge detection problem is ill-posed, in the sense that a small 

amount of noise will cause a large change in the resultant edge map. Indeed, noise 

will cause large gradients, which disrupt the small scale edges. To be insensitive to 

noise, a straightforward approach is to apply lowpass filters to the image first before 

applying a differentiation operator. Unfortunately, such operations will also increase 

the uncertainty of the location of edges [38] [20] [131]. Thus, difficulties arise in 

optimal filtering detectors, because of the compound problem that edges which are 

perceived and found meaningful often exist in a range of scales [88] [132] and images 

are often blurred and corrupted with noise. To tackle noise sensitivity and maiu­

tain the accuracy of edge locations, multi resolution techniques have been employed 

[110][132][127]. Witkin proposed the scaJe-space filtering scheme to cope with the so 

called scale consistency problem and alleviate noise sensitivity. The scale consistency 

problem, however, has to be tackled efficiently in order to produce an unambiguous 

result. To this end, various methods for the combination of information between 

scales have recently been proposed. Gidas used the RG method to generate a multi­

scale structure and related the scales to one another via the RG transformation [37] 

Another approach is to model scale space using a stochastic process. Notable are the 

work of Clippingdale and Wilson [24] on a quadtree structure and that of Basseville 

et al. [6] on a wavelet representation (cf. chapter 2). Using a pyramidal representa­

tion and a stochastic multiresolution model which is based on Clippingdale's work, 

Bhalerao [10] proposed a scheme which achieved some degree of success in extracting 

edges. 
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Edge maps obtained by applying derivative operators are followed by a group­

mg process which takes orientation information into account to give a set of edge 

chains [66]. For example, a classical clustering method, the Hough transform, [59] 

maps potential edge pixels of a local region into a parameter space of curves, and 

an edge chain is formed by selecting the maximum peak in the parameter space and 

represented by piecewise analytic curves such as straight or spline lines. The Hough 

transform, however, requires a search for peaks, which is time consuming, especially 

if the resolution required is high. 

Another classical approach of grouping edge pixels is to cast the edge grouping 

problem as an optimization problem. The idea is to formulate a cost function of an 

edge structure such as, local position, orientation and curvature, and to find a solution 

by using minimization techniques such as the relaxation labelling used Parent and 

Zucker [102], and Haddon and Boyce [41], dynamic programming [3] or simulated 

annealing [119]. 

Obviously, the major issue in edge grouping is to regularize the ill-posed edge 

detection problem. In other words, knowledge of edge structure is used in order to 

achieve noise immunity. Therefore, the relevant properties of edges warrant further 

investigation. 

While noise and fine texture usually result in random short line segments, most 

physical boundaries of interesting regions are more or less smooth and continuous. It is 

thus desirable that edges should also be smooth and continuous. Such a characteristic 

can be used to distinguish an edge from short line segments caused by fine texture 
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and noise, by discarding incoherent or isolated short line segments, or connecting 

neighbouring short line segments which have similar orientations. This is a widely 

used criterion for edge grouping. For example, Boldt et al. [12] considered short lines 

as tokens and used geometrical relations for line grouping. 

Although the magnitude of a gradient is strongly influenced by illumination, its 

orientation is relatively independent of the illumination and provides shape informa­

tion. With the discoveries of simple cells [55] which respond to linear features whose 

orientations lie within a narrow angular band, it is not surprising to see that this es­

sential parameter of edges is important in edge detection. Furthermore, psychologists 

have suggested that the human visual system seems to use the Gestalt laws in parti­

tioning elements into groups; these include proximity, similarity, closedness and good 

continuity [88]. In short, in addition to magnitude, there are four essential properties 

which can be used to discriminate edges from noise. They are (a) orientation, (b) 

thinness, (c) continuity and (d) length. These properties should be included in the 

design of an edge detection algorithm. 

4.3 Edge Detection as an Optimization Problem 

As mentioned earlier, edges can be defined as the locations of boundaries across which 

one or more image attributes are discontinuous. It is nevertheless difficult to quantify 

what is an edge in an image since the perception of edges by the HVS is very complex 

and is strongly influenced by prior knowledge [88]. A simple way to find edges in an 

image is to filter the image and threshold the result. However appealing its simplicity, 
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this approach fails to take structural properties into account and is not robust when 

noise and fine texture is present [61] [132]. This leads to a range of algorithms which 

further group edge pixels into connected lines using curve fitting, sequential contour 

tracing techniques or cost minimization techniques, in which the edge discrimination 

problem is cast as an optimization problem. 

The idea of formulating the edge detection problem as an optimization problem 

is appealing, for a large family of optimization techniques can then be utilised. The 

main theme is to formulate an energy or cost function which will reflect the charac­

teristics of an edge or a boundary. For example, Parent and Zucker use the concept 

of cocircularity to define interactions between edge pixels and the sum of these inter­

actions is used as the global energy function which is minimized, using a relaxation 

labelling method, to give the edge configuration [102]. Using the same idea, Amini 

et al. applied dynamic programming techniques to solve the problem. Also using 

dynamic programming for curve inference, Shaashua and Ullman [116] proposed a 

uniform network of locally connected processing elements to compute the structural 

saliency in an image. Later, Montesinos and Fabre [94] modified the technique used 

by Shaashua and Ullman [116] also for grouping edge elements which, unlike the line 

segments used by Shaashua and UlIma, included dots. In practice, these optimiza­

tion techniques may only give local minima and the goodness of the solution provided 

depends on the initial guess. 

The essential task in casting an edge detection problem as an optimization problem 

is to derive a cost function which reflects the edge structures and is easy to compute. It 

is also desired that the energy function should be easily embodied in a multiresolution 
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model so that a good initial guess can be made at a low resolution and a better solution 

can be obtained by refining it at smaller scales. 

4.3.1 The Design of a Combinatorial Energy Function 

A great deal of work has been done since Hopfield neural networks were applied to 

optimization problems [50][141][137]. The attraction of using a Hopfield neural net-

work is that optimization problems can be solved in a parallel manner and hardware 

implementation is readily available [49]. In image processing, many problems can be 

cast as optimization problems and Hopfield neural networks are used to find solu-

tions. It is convenient to map pixels to nodes one-to-one, so that the interaction and 

constraints between pixels are easily implemented by the strength of their links and 

some a priori constraints can be also implemented as bias terms. 

For the sake of convenience, the energy function of the Hopfield network is rewrit-

ten here (d. equation (3.10)) 

1 
E = -"2 2: 2: Tij V; Vj - 2: Bi V; 

• J • 

V; = 1(2: Tij Vj + Bi) 
j 

(4.1 ) 

( 4.2) 

Obviously, if orientation information, to which the simple and complex cells respond, 

is used to decide the strength of interaction, Tij , it should give the sum Lj Tij V; a 

meaningful result. Indeed, this is a logical way to counter noise by a simple smoothing 

operation. However, to facilitate a smoothing operation taking orientation informa-

tion into account, the orientation representation should be implemented carefully, 
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so that the average can be used as a 'certainty' measure of the presence of an edge 

pixel. To this end, an interesting orientation representation known as the double angle 

representation, first proposed by Granlund[38], is adopted in this work. The reason 

for using this representation is twofold: (a) to avoid ambiguity and (b) for efficient 

smoothing. 

There are a variety of orientation estimation and subsequent smoothing methods 

in the literature. This is due to the fact that a variety of orientation representations 

were adopted. In the early days, the orientation vector field of an image f(·r, y) 

was often represented by the gradient field (¥X, *) rotated by ~ [61]. Although this 

representation is simple, there is an intrinsic ambiguity in this representation scheme 

since the same orientation can be represented by a vector with either positive or 

negative sign. To filter out noise, a simple smoothing operation is to average the 

orientation field within an isotropic weighting window. However, the two problems 

together will not allow the smoothing operation to produce a meaningful average 

[128]. 

One remedy for these problems is to represent orientation by doubling the angle 

of each gradient vector. Thus, given an image f(x, y) and a pair of orthogonal masks 

ko , kh the gradient field (go, gd is given by 

go(:r, y) f ( x, y) * ko ( x , y ) ( 4.3) 

f (x, y) * kl (x, y) ( 4.4) 
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where * is the convolution operation and f( x, y) is the intensity image. The double 

angled orientation vector d(x,y) of a pixel (x,y) may be computed as follows: Let 

which is equivalent to 

g(x,y) = (95(X,y) -gl(x,y)) 
2go(X,y)gl(X,y) 

2 ( cos20 ) g(x, y) = r (x, y) sin20 

where r(x,y) is the magnitude of vector (go(X,y),gl(X,y)) [10]. Then, 

~ ( cos20 ) d(x,y)=r(x,y) sin20 

( 4.5) 

( 4.6) 

(4.7) 

In this representation, there is no sign ambiguity, so smoothing can be performed 

easily. It is shown by Knutsson [67] that this representation is equivalent to the use 

of a tensor representation. Note the orientation vector field is the continuous one, 

as opposed to a discrete one advocated by Zucker [143]. The advantage of using a 

continuous representation is to allow a simple local smoothing and avoid quantization 

errors. From the neuropsychological viewpoint, it is also suggested by Hoffman [47], 

and later Dodwell [30] that the integration of local orientation information in the 

visual cortex is to consider the cortex as a vector manifold (ie. a continuous vector 

field), 'on which vector fields operate, and to model the integration process as a 

function of the postulated vector fields and their global properties. 
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Compatibility Measurement 

The properties of edges outlined in section 4.2 are used to define a measure of com-

patibility Tij for two pixels in a window. If a Hopfield neural network is used, those 

structural properties have to be imposed as constraints as follows: 

Vi = fC'L.TijVj - Bi ) 
j 

(4.8) 

where Vi is the output of a node, which is considered as the degree of confidence about 

an edge element presenting in pixel (Xi, yd, and f(·) is a decision function, usually 

nonlinear. It is desired that, within the window, with a proper choice of parameters, 

isolated edge pixels should be removed and small gaps should be filled and the links 

Tjj of the ith neuron form a lateral inhibition function to give thin edges, when the 

orientation field in this window is homogeneous. Equation (4.8) however, only defines 

edge elements using information in a given window. The global energy function 

(4.9) 

is used for the selection of edges. It is not hard to see that in an ideal case, edges of 

length at least 2 elements are preferred, for such a configuration will reduce the term 

-Tij ViVj in the energy function. The bias term Bi vi can be used to introduce some 

a priori knowledge to regularize the edge configurations. 

Thus far, edge detection has been formulated as an optimization problem. The 

problem on hand is how to determine the compatibility function and to search for 
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the solution. The compatibility measure between two pixels should reflect the idea 

that when two pixels are in the same shape, the measure is high; otherwise it should 

be low. A good measure for two pixels' membership in a shape, or 'co-shape' is the 

angle difference between the displacement vector between them and the sum of the 

two orientation vectors of the two pixels. This is illustrated in Fig 4.1. In Fig 4.1 (a), 

a straight edge passes through pixels (Xl, yd and (X2, Y2). The angle of the vector 

sum of the orientation vector A and the orientation vector B is the same to that of 

the displacement vector C, which is from (xl,yd to (X2' Y2). Figure 4.1(b) shows that 

in an ideal circle, the magnitude of orientation vector A of pixel (:1'1, Y1) is the same 

as that of orientation vector jj of pixel (X2' Y2). and it is obvious that again, A and 

jj is the same as that of coordinate vector C. In other words, 

( 4.10) 

where arg(·) gives the angle of a vector. The compatibility measure underlies the 

collinear concept. In an ideal case, this is similar to the concept of co-circularity of 

Zucker [143], but does not take curvature into account explicitly. 

To ensure that the resultant edge is as thin as possible, the compatibility measure 

should give lateral inhibition, so that the winner of a competition between pixels 

across the direction of the edge is selected as the edge. A good candidate for both 

the measure of 'co-shape' and the competition is the second derivative of a Gaussian 

function. Since the interactions between pixels are local, distance should be also 

taken into account, that is, the measure should be proportional to distance between 
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two pixels. A reasonable choice is a lowpass-like weighting function like the cos ( .) 

function. Finally, the magnitude of the orientation vector also plays an important 

role: the more certain is the orientation, the stronger should be the link. 

Hence, let Vi be the orientation estimate at pixel (;rj, Yi); the compatibility be­

tween two neurons i and j which correspond to pixel (:ri' Yi) and pixel (:rj, Yj) will be 

measured as follows 

(4.11) 

where k and c are constants, w is the window size, Ilij is the magnitude of iii + t~, (j 

depends on w (in this work, (j is 0.7) and 

where 

I}ij = ~[arg(vi + vj) - 2· arg((xi - Xj,Yi - Yj))] 

lij = V(Xi - Xj)2 + (Yi - Yj)2 

In other words, the compatibility between two edge components is separable into 

a function perpendicular to the edge, expressing lateral inhibition and one parallel to 

the edge, expressing continuity and proximity. To give an idea how the links setting 

will be, figure 4.2 shows the link strengths in a 5 X 5 window oriented horizontally 

and figure 4.3 and 4.4 are the link strengths of a right angle corner and 45 degrees 
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acute angle corner. Note how this shows excitation along the feature orientation and 

inhibition in the perpendicular direction in figure 4.2. Unfortunately, the positive 

strengths do not follow corners exactly as shown in figure 4.3 and figure 4.4. This 

causes some defects in corners, which will also be discussed in section 4.5. Given 

various states of its neighbour nodes, figure 4.5{b) shows the energy of a node with 

the link settings shown in figures 4.2, 4.3 and 4.4. It is not hard to see that when 

the network output configuration corresponds to the orientation which underlies the 

link settings of the marked node, the energy of the marked node will be large. It is 

maximal for the line and right angle configurations, but for the acute angle, which 

fits the underlying collinear model least well, the largest energy is associated with a 

straight line, not the corner. 

Having defined the compatibility function between two pixels, a technique to search 

the solution space is required. This is done by mapping the cost function to the energy 

function of a Hopfield neural net and the compatibility function to the link strength 

between two nodes. Some modification of the original Hopfield neural net, however, 

is required, for in this version there will be a self-feedback link for each node. The 

self-feedback, however, is set to be positive so that the net will converge. It is then 

necessary to check the change of the energy function each time a node is updated 

[97]. The implication is that the net will need extra computation for energy checking, 

which is, of course, a drawback. Nevertheless, with careful choice of parameters, it 

may be possible to avoid the checking [97] . 

• 

The Hopfield network is applied to two clean images, 'table' and 'boats', to demon­

strate its capacity(see figure 4.6 and figure 4.7). Figure 4.6(b) and figure 4. 7)(b) are 
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CHAPTER 4. MULTIRESOLUTION EDGE DETECTION NETWORKS 83 

the resultant edge maps obtained by applying the Hopfield network to the test images. 

Compared with Canny's edge detector followed by a thinning process [20], the results 

are better. than Canny's edge detector without hysteretic thresholding (figure 4.6(c), 

figure 4.7)(c)) and have about equal quality to Canny's edge detector with hysteretic 

thresholding (figure 4.6(d), figure 4.7)(d)). The network produces fewer responses to 

the small texture features in the 'boats' image, however. 

The Hopfield network is also applied to the 'table' and 'boats' images at a sig­

nal to noise ratio 10dB and the resultant edge images are shown in figure 4.8 and 

figure 4.9 .. Because the 5 x 5 window can be more or less regarded as a short line 

template, the network gives some spurious short lines. However, the iteration pro­

vides line refinement, which will fill small gaps and follow smooth curves. Note that 

Canny's edge detector with window size of 9 and hysteretic thresholding also gives 

some spurious short lines and Canny's edge detector relies on human intervention for 

choosing its parameters. In the following section, the above formulation is combined 

with multiresolution techniques to give an efficient and robust algorithm. 

4.4 Orientation Estimation and Edge Detection 

The construction of a suitable compatibility measurement enables the mapping of 

the edge grouping problem into an energy minimization problem. The relaxation 

technique has the same principle and has long been used for edge detection [143]. 

Using a stochastic relaxation scheme, Geman and Geman [35] proposed applying a 

line process to edges. Their line process idea was adopted by Zerubia and Chellappa 
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( ) (d) 

Figur 4.6: (a) Th table imag (b) th I' sultant dg obtained u ing the Hopfi ld 
n twol'k. ( ) Canny dg clete tor without hy tel' tie thr sholding (thr sholcl va.lue 
= h magnitude 1 low whi h 90 o/c pixels Ii ), window size 9 pix 1 (d) Canny dg 
d t etor with hyst r ti thr sholding ( high threshold valu = the magnitud below 
whi h 90 o/c pixel Ii , low thr shold value = 1/2 high thr hold value) , window iz 9 
pix Is 
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(c) (d) 

Figur 4.7: (a) Th boat' imag (b) Its r ultant dg using the Hopfield net. ( ) 
The r sultant dg map from Canny edg d t ctor without hyst retic thresholding 
(thr shold valu = th magnitud blow whi h 70o/c pixels Ii ), window size 9 pix 1 
(d) Th r ultant dg map from Canny dg d tector with hyst r ti thre holding 
( high thr shold valu = th magnitud below which 70o/c pix Is lie 1 w thre hold 
value = 1/2 high thr sholl valu ), window iz 9 pixel 
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( ) (d) 

Figur 4.8: Th noisy ' table' image(SNR= 10dB). (b) The resultant dge map ob­
tain d using th Hopfi ld n t. ( ) The resultant dge map using Canny edge detector 
wi th hyst r ti thl' holding ( high threshold value = th magni tud - below which 
70% pix Is Ii , low thl' shold value = 1/2 high thre hold valu ), window siz 9 pixels 
(d) The r sultant dg map using Canny edg detector with hysteretic thresholding 
( high thl' shold valu = the magnitude below which 70% pixels Ii , low thl' hold 
value = 1/2 high thr shold valu ), window size 17 pixels and deviation = 2 pixels. ' 
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( ) (d) 

Figur 4.9: (a) The noisy boats' image(SNR= 10dB). (b) The resultant edg map 
obtain d using th Hopfi ld n t. (c) Th r sultant dge map using Canny dg 
d t tor with ut hy t r ti thr sholding ( high thr shold value = th magnitude 
below whi h 70o/c pix Is Ii , low thr sholl valu = 1/2 high threshold valu ), window 
iz 9 pix Is (d) Th resultant dg map using Canny edge d tector with hyst retic 

thr sholcling ( high thr shold valu = th magnitucl b low which 70o/c pix Is Ii ) low 
thr shold va lu = 1/2 high thr shold valu )) window size 17 pixels and deviation = 
2 pix Is. 
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[140] for edge detection. A related idea is to construct a locally connected network 

for edge detection, for example the works of Shaashua and Ullman [116J. Herault and 

Horaud [45] also proposed a locally connected network, but they used the mean-field 

theory for finding the solution, which is related to the Ising model. The Hopfield 

network which is related to the mean field theory is easily implemented and is widely 

used, ego [135J. 

All the techniques mentioned above use iterative schemes to search for solutions. 

The convergence rate is therefore an issue. A possible technique to improve the 

convergence rate is to use a multi resolution modeP, which also suitable for dealing 

with the scale problem. Furthermore, multiresolution techniques are able to reduce 

noise efficiently, so that the combination will give a robust edge detection scheme. 

4.4.1 Multiresolution Hopfteld Networks for Edge Detec­
tion 

An image usually contains features over a range of scales. To deal with the scale 

problem, it is natural to use multiresolution techniques [88] [132]. The edge detection 

developed in the previous section can be combined with multiresolution techniques. 

Figure 4.10 illustrates the overall edge detection algorithm. There are four processes: 

1. Construction of a lowpass gray level pyramid. 

2. Initial orientation estimation. 

3. Orientation directed edge detection using the Hopfield neural network. 

1 In solving differential equations, it is called the multigrid method 
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gray level pyramid 

Orientation estimate 

input image 

orientation pyramid 

estimated orientation and 

detected edge 

Figure 4.10: The structure of edge detection using a Hopfield network 

4. Recursive top-down propagation of orientation estimates and detected edges. 

Although construction of a gray level pyramid is a straightforward process, it is 

worth mentioning that a kernel with a circularly symmetric response is favoured, so 

that less orientation bias will be introduced to subsequent levels [128]. Given an 

image f(i,j) and a kernel W mn , the construction process is 

fij(k) = LL W mnhi-m,2j-n(k + 1) ( 4.12) 
m n 

where fij(k) is the image on level k , fij(M) = f(i,j). Note that if the kernel size is 

even, the subsequent levels are shifted by one half pixel, as in a quad-tree. 

To demonstrate the effect of the pyramidal smoothing, a synthesized image of 

shapes whose foreground grey level JLI and background gray level JL2 are 170 and 150 
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-.0741 -.0955 0 0 .0955 .0741 
-.0955 0 .0955 -.0955 0 .0955 

0 .0955 .0741 -.0741 -.0955 0 

Table 4.1: Wilson's 3 x 3 edge detection kernels 

respectively (see figure 4.11(a)) is used. Gaussian white noise with a variance of 400 

, is added to the synthesized 'shapes' image, giving an image whose signal to noise 

ratio is OdB (figure 4.11{b)). The SNR for the 'shapes' image is calculated as 

( 4.13) 

Note that at the level of size 32 x 32, most noise is effectively removed by pyramid 

smoothing. 

The construction of an orientation pyramid proceeds by convolving the image at 

each level with a pair of partial derivative kernels (Table 4.1). As described in section 

4.3, the double-angle representation is adopted. These kernels are oriented at angles 

of 1 and -1 respectively; thus a rotation of ~ is applied so that the orientation field 

is properly aligned. Orientation estimation using the above 3 x 3 kernels is cheap 

and sufficient for images which consist of homogeneous regions separated by clear 

boundaries. However, when lines and texture edges are involved, more complicated 

filters should be used (see [67]). An orientation pyramid is shown in figure 4.11(c) 

and (d). Note that the double angle representation is used. 
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(a) (b) 

( ) (d) 

Figur 4.11: (a) Th 1 an 'shapes nnag (b) Th OdB 'shapes ' image (c) Its orien­
tation (d) Th pyramid of th OdB hap ' and its ori ntation pyramid. ote that 
hu orr pond t ri ntation and valu (intensity) to magnitud in (c) and (d). 
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4.4.2 . Coarse-to-fine Refinement 

Having built the orientation pyramid, the edge detection scheme will start at a level 

in which the noise is removed or reduced to a negligible level by pyramid smoothing. 

A Hopfield neural network as described in section 4.3 is set for edge detection. After 

the network converges, those nodes which are 'on' are edge pixels. Hence, the image 

is classified into edge pixels and non-edge pixels. The orientation estimates at edge 

regions are enhanced as follows 

i;j(k) = L L Wi-m,j-m 2mn(k) ( 4.14) 
n m 

where 2(.) is the double angled vector estimate at level k and w(·) is an isotropic 

lowpass weighting function (cf. equation (4.7). For w(·), see [127]). 

Now comes the problem of how to combine estimates of orientation information 

across scales. A characteristic in images that can be exploited for this purpose is 

that salient features tend to exist over more than one scale. Thus, a simple averaging 

between levels will emphasise consistent features and reduce uncorrelated noise. This 

is because the data in coarser levels is more reliable but has less detail, while data in 

finer levels is more detailed but less reliable. 

To facilitate this coarse-to-fine propagation, the model originated by Clippingdale 

and Wilson [24] is adopted. The variation of orientation across scales is modelled in 
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the form of a linear multiresolution equation 

(4.15) 

where J;j (k + 1) is the orientation vector of pixel (i, j) at level k + 1, Ajjmn is a scalar 

interpolation function and vjj(k + 1) is an innovation vector. In its simplest form, the 

model is 

(4.16) 

which is used by Clippingdale [24] on a quadtree. Given the set of noisy data 

( 4.17) 

Clippingdale showed that the MMSE estimator d~j{ k) for level k is a linear combina-

tion of the estimator a level above and the observed noisy data at level k as follows 

( 4.18) 

The model, of course, compounds the refinement of the orientation estimate and the 

assumption of scale consistency. Its MMSE estimator, however, has a defect, due to 

being spatially invariant, which tends to blur important features such as lines and 

edges in images. A refined model also proposed by Clippingdale [23] is to use a 

spatially variant coefficient for the estimate 

( 4.19) 
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where D:jj(k) is a function of local and global signal to noise estimates. Bhalerao [10] 

further modified the estimator for pyramidal structures as 

£j(k + 1) = D:jj(k) L L Ajjmnd~_m,~_n(k) + (1 - ajj(k))~j(k + 1) ( 4.20) 
m n 

U sing this model, the enhanced orientation estimate is propagated down, according 

to a linear equation of the form 

(4.21 ) 

where (i,j, k) E B(k) and 

B(k) = {(s, t, k + 1)1(8 - 2p)2 + (t - 2q)2 < 4, (p, q, k) = edge pixel} (4.22) 

The orientation estimates of those pixels in BC( k)( complement of B( k)) are set to be 

zero. In other words, only those orientation estimates at edge pixels are propagated 

down. It is not hard to see that the new estimate of the orientation is a spatially vari-

ant linear combination of the propagated orientation field and the noisy observation, 

that is 

( 4.23) 

where 

{ 
0 (i,j) f/. B(K) 

D:jAk) = .,.2(k+l . . , 
D'2(k+1)+D'~(k) (z,}) E B(/i) 

( 4.24) 

where q2( k) is the normalised noise variance. In other words, it is assumed that the 

signal on two levels is identical and the noise is uncorrelated. These conditions are 
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close to being met in this case. 

The estimate of (T2( k) is obtained with the assumption that those pixels which are 

labelled edges are signal plus noise and the rest is noise. The edge area from the 

level above is projected down to give an initial guess of the edge area(i.e B(k)) for 

the estimation of (T2( k). After the initial orientation field estimate is obtained, the 

Hopfield neural network is used to detect edges in level k + 1. The resulting edge map 

at level k is used as a bias to regularize the solution and to reinforce scale consistency. 

The whole process proceeds recursively until the bottom of the pyramid is reached 

(see figure 4.10). 

4.4.3 Network Dynamics 

The original Hopfield network updates its nodes asynchronously [48]. Because of 

the self-feedback links, the· Hopfield network must check the change of energy. A 

well-established property of the Hopfield network is that it will converge to a stable 

state when operating in a serial mode (update only one node at any time interval) 

with a symmetric nonnegative diagonal connection matrix [13]. When operating in 

full parallel mode(update all nodes at every time interval), the Hopfield network 

with a symmetric nonnegative diagonal connection matrix will converge to a cycle of 

length at most 2. This suggests a synchronous update, which is convenient for digital 

hardware implementation. Both updating ~ethods have been tried in this work and 

synchronous update seems to give better results, although it is not clear why. The 

steps of the edge detection algorithm are summarised in the following pseudo code. 
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procedure 

begin 

EdgeDetectionUsingHopfieldNet 

start at level k of the orientation pyramid 

end 

while (k<=M) 

begin 

end 

Using the orientation estimate to 

initialise the Hopfield neural network. 

While not converged 

begin 

run Hopfield neural network 

end 

re-estimate the orientation 

propagate the orientation estimate 

k • k+l 

estimate signal to noise ratio at level k 

combine the initial estimate and the propagated 

estimate 

set the father level as the bias input 
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4.5 Results and Discussion 

The scheme described in section 4.4 has been implemented and the results are dis­

cussed here. To show the effect of this multiresolution scheme, it is applied to several 

images of different SNRs. Figure 4.12{a) shows the orientation field pyramid of the 

'table' image which is shown in figure 4.6(a). The resultant edge map for each level is 

shown in figure 4.12(b). Compared with figure 4.6(b), several weak edges have been 

missed. This is because when an edge is weak and not classified as a feature, the 

combination of estimates between levels further weakens the edge information unless, 

at a certain level, the edge becomes salient and is classified as a: feature. The problem 

is also illustrated in figure 4.14 and figure 4.15. Figure 4.14((c) and (d)) is the the 

result of applying the multiresolution Hopfield network to the 0 dB 'Barbara' image. 

The coarse-to-fine process starts from the level of size 64 while figure 4.14 is the re­

sult of starting from size 32. Obviously, there are certain edges missing in figure 4.14. 

Nevertheless, this problem is not severe, as it is noted that the model allows new 

features to emerge in the coarse-to-fine refinement of the edge pyramid and salient 

features tend to exist across several scales. Bearing in mind the simplicity of the pro­

cessing at each scale and the robustness to noise, these results seem better then those 

reported elsewhere [45] [66]. Also shown in figure 4.13 and figure 4.16 are the edge 

maps of 'table' and OdB 'Barbara' after iteration 1, 2, and 4 respectively. Apparently, 

the network recovers weaker edges segments in a process which is reminiscent of the 

associative memory. 

For comparison, the multiresolution Hopfield network is applied to two noisy 'table' 
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Images. The resultant edge maps are shown in figure 4.17{b) and figure 4.18(b). 

Comparing figure 4.17(b) with figure 4.8, the noise is effectively reduced with the 

computation cost less than a factor of 2. Although there are also several edges missed, 

the result seems better than those from the Canny edge detector. The reader is 

reminded that the results of Canny edge detector rely on an appropriate choice of 

the thresholding values. The multiresolution scheme is robust even when the SNR 

of an input image is as low as OdB. Note that in figure 4.18 the result from the 

multiresolution scheme is as good as those from a Canny edge detector with window 

size as large as 19. 

Further to test the network's performance at corners when white noise is present, 

the synthesized image 'shapes' (see figure 4.11) is used. Figure 4.19 shows the edge 

detection result of SNR 10 dB 'shapes' image. Because the compatibility measure 

is designed for tracking straight lines and low curvature curves, its performance at 

corners is defective. When a corner is acute, the scheme will miss the corner because 

of the ambiguity of the orientation information at the corner area. As is shown, the 

corners of the crescent are not linked and the lower one is lengthened or overshot. 

This is because the corner is very sharp. Thus, the end point of the corner is excited 

by both lines, and due to lateral inhibition, those pixels of the inner edge (with a 

larger curvature) of a sharp corner will be turned off, as is seen in the result. If the 

corner is less acute, the network will try to follow a smooth curve which ends up with 

a round corner (see the corners of the square). 

As noted earlier, the 5 x 5 kernel can be, more or less, viewed as a template of a 

short line. It thus resembles a template edge detection in the sense that it determines 



CHAPTER 4. MULTIRESOLUTION EDGE DETECTION NETWORKS 99 

Image level 8 level 7 level 6 level 5 
table 7 19 31 24 

table (10dB) 7 8 22 13 
table (Odb) 6 18 13 18 

Barbara(OdB) 10 15 15 18 
shapes( OdB) 7 9 17 12 

Table 4.2: The number of iterations in different levels (level 8 is the size 256) 

a line in a small window. However, iteration of the network provides line refinement 

which a template edge detection lacks. Notice the edges in all the edge maps are one 

or two pixels wide. If an edge is too flat perpendicularly to its direction, the edge 

may have a ghost(see the figure 4.20). The problem is caused by the lateral inhibition 

links. 

Finally, the multiresolution Hopfield network usually requires about 20 iterations 

to converge. Table 4.2 shows the number of iterations in different levels for the test 

Images. 

To sum up, the network provides (a) a simple local computation for edge group-

ing, (b) small gap filling is possible, (c) in general, only about 10-20 iterations are 

needed. The orientation estimation represents some improvement over techniques 

employing simpler enhancement strategies (eg. Clippingdale[23], Wilson et al.[128]). 

Nevertheless, it would appear that if more global context can be taken into account, 

(eg Bhalerao[10]) it may be possible further to improve the result. Moreover, the 

system is highly robust - no manual adjustment of parameters is required to get good 

results across a wide range of input signal-noise ratios. Finally, it shows that a net-

work of simple neural units can indeed be used to produce an effective system for the 
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extraction of boundary contours in a way which is amenable to parallel computation. 
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(b) 

Figur 4.12: (a)(upp r haIf)Th ori ntation fi Id of th 'table ' image. (b)(1ower half) 
th r sultant dg map. 
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(b) 

( ) 

Figur 4.13: Th dg map of'tabl ' aft r (a) 1 it ration , (b) 2 iterations and (c) 4 
it ration . Th final r . nIt i hown in figur 4.12. 
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( ) (d) 

Figure 4.1 4: (a)Th Barbara' imag (SNR= OdB ). (b)Its orientation field. (c)The 
r sultant f'dg map. (d) It doubl angled ori ntation field and edge map at diff rent 
I vels. 
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(a) (b) 

igur 4.15: Th map f OdB Barbara (starting from the level of size 64). 
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(b) 

( ) 

Figure 4.16: TIl e Ig mal f OdB 'Barbara' aft r (a) 1 iteration, (b)2 iterations and 
( ) 4 i rati 11 . (8 artin fr m th 1 v l of iz 64) Th final resul t is hown in figure 

4.15. 
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(b) 

imag f 10dB SNR. (b) Th dgc map from the multir so-
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(b) 

( ) ( d) 

Figur 4.1 f OdE SNR (b) Th dg map from th multir s-
luti n H pfi. ld 11 • (.) he 19 map from anny dg d t or u ing igma = 2.4 

win 1 w size 19 n 1 with ut h . t r i thr holding (thr hold valu = magnitud 
b 1 w which th f 90% 1 ixC'ls Ii ) ( l)Th dg mal from Canny dg d t tor 
using sigma = 2.4 win 1 w iz 19 and with hy t r ti thr holding (high thre hold 
valu = ma nitud b 1 w whi h tho of 90o/c pix 1 Ii , and 1 w threshold valu - = 
1/2 high thr hold valu ). 
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Fignr 4.19: Th 19 map f th 'shapes' imag (S R= 10dB). 

Fi ur 4.20: Th dg map f th 'shap s' imag (S TR = OdB). 



Chapter 5 

Neural Networks for Restoration 

5.1 Introduction 

The constrained least squares (CLS) method is a technique for restoring images de­

graded by blurring and additive white noise [109]. The CLS technique, which usually 

uses 'smoothness' as a constraint or a 'regularization term', is a form of regularization 

technique [104]. This method finds the solution which minimizes a quadratic error 

function. One way to find the solution is to use a quadratic error function as the en­

ergy function of a Hopfield network, so that the solution is obtained as the output of 

the Hopfield network [104][141]. In this chapter, a multiresolution Hopfield network is 

proposed for image restoration. The attraction of this approach is that the 'coarser' 

resolution solutions can be used in a regularization term and they can be also used to 

segment the images in the higher resolutions into regions of different activity, so that 

coarse-to-fine adaptive noise filtering is possible [23]. To further improve the per­

formance of the multiresolution restoration scheme, an adaptive restoration scheme 

which uses the edge map obtained by applying the Hopfield network detailed in the 

109 
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previous chapter is also proposed. 

5.2 Image Restoration and Regularization 

An imaging system inevitably introduces some distortion into images due to turbu-

lence of the environment and the physical limitations of the imaging system. AI-

though these degradation processes are generally nonlinear, the distortions are often 

adequately modelled by a linear finite blurring plus additive Gaussain white noise, as 

follows, 

Yij = L hmnXi-m,j-n + nij (5.1 ) 
(mn}EN 

where {hmn } denotes the point spread function of the blur, N is the support of the 

point spread function and nij is the additive white noise. Equation (5.1) can be 

written in a matrix notation, 

Y = HX +N {5.2} 

where H is the matrix representation of the blurring and Y, X and N are, respec-

tively, the lexicographically ordered vector representations of the observed image, the 

original image and white noise. In this work, only linear shift invariant (LSI) blur is 

considered. 

A classical method to restore the degraded image is to apply a Wiener filter to 

it. The Wiener filter is based on a stationary stochastic assumption, so that it does 

not adapt to salient features like lines and edges[7S]. Alternatively, filters based on a 

statistical image model such as the Kalman filter, can be exploited [61]. This method, 

however introduces some bias in certain directions due to the causality requirement 
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mentioned in chapter 2. Both Wiener and Kalman filters have been extended into 

adaptive versions [61]. 

If the degradation is only blurring, a straightforward method is to apply a matrix 

inverse operation to the observed image Y, which gives the source image ~t = H-1y 

(or X = (HtHtIHY if H is singular or ill-conditioned). Although simple in theory, 

in practice the size of the matrix causes computational problems. Moreover, with the 

presence of noise, an inverse operation will also indiscriminately amplify white noise 

so that the restored image is overrun by noise. Instead of direct matrix inversion, 

iterative schemes are employed for searching the solution space, which minimize 

E(X) =11 Y - HX 112 (5.3) 

where II . II is a vector norm. It has been reported that for such methods, white noise 

is magnified proportionately to the number of iterations [11]. However, iterative 

algorithms under a cost minimization framework are suitable for including a priori 

knowledge as penalty functions to prevent the magnification of noise [65] [73]. In such 

approaches, an 'energy' function is designed so that it combines posterior constraints 

(image data Y) and prior constraints, or regularization terms, to stabilise the solution. 

It is also possible to include cost functions for discontinuities. Hence, iterative schemes 

can be readily extended for adaptive restoration. 

As discussed in section 3.5.1, the problem of restoring a distorted image is ill-posed, 

in the sense that its solution is not unique or does not depend continuously on the 

data [104]. To solve this problem, a priori knowledge is used to restrict the solution 
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space and reduce the instability of the solution so that the problem becomes a well-

posed one. The standard regularization method for the image restoration problem 

IS 

E( X) = II Y - HX 112 + A II DX 112 ( 5.4) 

where A is the regularization parameter and D is, typically, a high pass filter, such 

as the Laplacian operator. The solution for this problem is the estimate .t which 

minimizes the error function E, and can be found by solving the linear system 

(HtH + ADtD).Y = Hty (5.5) 

The above is a deterministic solution. Alternatively the image X can be considered 

as a Markov field 

X=LV (5.6) ... 
where V is a zero mean white noise field. The optimal solution to the degradation 

model (equation 5.2) is the Wiener filtered data 

where ~~ and b~ are the variance of white noise nij and signal Vij. Putting 

AD'D = cS~ L'L 
62 

v 

(5.7) 

( 5.8) 

it is obvious that the classical Wiener filter is a special case of the regularization 

equation (5.4) [36] [108]. Equation (5.4) expresses the trade-off between data fidelity, 
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which is dictated by the term IIY - HXI1 2 and smoothness by II DX 112. The regu­

larization parameter A, which usually depends on the variance of noise in the image, 

is used to select the trade-off. A common technique for choosing A is maximum 

likelihood, but recently cross validation has also been used [33]. 

The above regularization method is a quadratic method cost minimization prob­

lem, which can be solved using the Hopfield neural network [104][141]. The Hopfield 

neural network model has a connection to the Ising model, which was refined by 

Geman and Geman for restoration [35]. Based on the same coupled MRF model of 

Geman and Geman, Bedini and Tonazzini [8] used a Hopfield network to find the 

minimum of a parameter function, which corresponds to the MAP solution of the 

MRF model for image restoration. A Hopfield network was investigated by Zhou et 

al. [141], who proposed a modified Hopfield network for image restoration using equa­

tion (5.4) as the energy function. Paik and Katsaggelos [97] further investigated the 

convergence properties of the modified Hopfield network and explicitly incorporated 

set theoretic constants. All the above methods rely on a quadratic energy function. 

Using the same error function (5.4), a multiresolution Hopfield network is proposed 

in the next section. 

5.3 Multiresolution Networks for Restoration 

5.3.1 Hopfield Networks for Restoration 

In this section, the work of Zhou et al. [141] is reviewed. Based on their work, a 

multiresolution Hopfield network is proposed for coarse-to-fine restoration, in which 
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an adaptive noise filtering is easily implemented( see section 5.4). 

To use a Hopfield network for image restoration, the first task is to represent a 

grey level image using nodes. Because of the binary nature of nodes in the Hopfield 

network, a total of S2 X AI mutually connected nodes is needed to represent a digital 

N x N image of maximum grey levellY. These nodes are divided into N x N groups 

of size "'1. The grey level of each pixel is represented by the sum of the activities of 

its corresponding group. Let 

(5.9) 

be the set of neurons used for representing a digital image. Then, the pixel value Xsi 

is represented by tIl(' sum of the activities of a group of nodes as follows 

where i = (.q - 1) x N + t. 

M 

Xllt = L Vik 
k=l 

(5.10) 

Let Tikjl bt' th(' connection weights hetween the node (i, k) and node (j, I). The 

energy function of til(> Hopficld net is then: 

(5.11) 

where Bik is the bias input. 

The activity of a neuron is determined by its input and its bias. Each neuron 
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receives an input (cf. equation (4.1), (4.2)) 

N2 M 

Uik = L L TikjlVjl + Bik 
j=I'=1 

Its output is a result of a threshold function of this input: 

'Vik = g(Uik) 

The threshold function g(.r) is of the form of 

g(x) = { ~ if x ~ 0 
if x < 0 
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(5.12) 

(5.13) 

(5.14) 

As the solution to equation (5.4) does not change when it is divided by 2, the error 

function can be halved and mapped to equation (5.11). Expanding equation (5.4), 

replacing each pixel by the sum of its corresponding nodes as shown by equation 

(5.10), gives 

1 N2 N2 N2 N2 

E = 2(~)Y' - L h,i Xi)2 + A L(L d,i Xi)2) 
.=1 .=1 .=1 i=1 

1 N2 N2 M M 

+ 2 L L L L h8i h.j Vik Vil 
i=1 j=1 k=ll=1 

1 N' N' N2 M M 

+ 2A L L L L L d.id,jVikVil 
.=1 i=1 j=1 k=1 1=1 

(5.15) 
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where hij and dij are the elements of the matrices Hand D. respectively. By com-

paring the terms in equation (5.11) to the corresponding terms in equation (5.15). 

the parameters of the Hopfield net are determined as 

N2 N2 

Tikjl = - L hllih llj - A L dl/idllj (5.16) 
11=1 11=1 

and 
N2 

Bik = LYllhlli (5.17) 
11=1 

If this Hopfield llt~t is directly implemented, a memory of O( N4 Af2) is required 

and the time complexity is O(N4 M2I\), where K is the number of iterations. It is 

difficult to simulate the Hopfield net 011 a conventional computer even for a 128 x 128 

image. However, a practi('al simulation is possible if the blur function Hand D 

are local and shift-invariant. for the connection strengths only depend on H, the 

constraint 0 and A, and it is therefore sufficient to store only the bias term a.nd those 

nonzero connection weights for each node. Furthermore, a pixel ca.n be represented 

by a multivalm·d node, sin('e each bina.ry llod<, which belongs to a given pixel has the 

same connection w(·ights. 

The updat<' rule for each multivalued node :ri can be written as: 

.(t 1) _ { x. ·i(t) + ~Vik if ~E < 0 
J' •. + - Xi(t) if ~E 2 0 (5.18) 

where ~tlik is 1,0, or -1 corresponding to the input Xi of positive,zero or negative. 

Zhou's algorithm is summarised as follows: 
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1. Initialise the multivalued nodes to the degraded image. 

2. Sequentially visit each node and update it repeatedly until there is no further 

change. Then move to the next node. 

3. At the end of each iteration, check if the energy function has changed; if there 

is no change, then a restored image is obtained. Otherwise , go back to step 2 

for another iteration. 

It is obvious that sequential scanning of nodes enforces a preferred direction. In 

addition, the energy function has to be checked to ensure its convergence since the 

weight of Tikik may be less than O. These two properties are undesirable, for it is 

almost impossible to parallelize the algorithm. A remedy for the energy checking 

problem is proposed by Paik and Katsaggelos [97]. Their update rule is modified to 

where 

and 

where 

g(v) = { ~ 
255 

ifv<O 
if 0 ::; v ::; 255 
if v > 255 

{

-I 

~Ti = di{ud = ~ 
Hi < Tii 

Tii ~ lli ::; - Tii 

llj ~ -Tjj 

fI 

Uj = Bj + L Tjj.rj(t) 

j=1 

(5.19) 

(5.20) 

(5.21 ) 

(5.22) 

This update rule guarantees energy reduction with negat.ive aut.oconllectiolls Tijij 

when the sequential updates are used. A similar result is also demonstrated by Yeh 



CHAPTER 5. NEURAL NETWORKS FOR RESTORATION 118 

et al. [136]. Paik and Katsaggelos also proposed a parallel updating algorithm. 

However, their parallel scheme is not guaranteed to converge to a local minimum of 

the energy function of their Hopfield network. The restored image using the network 

of Zhou et al. is known to correspond to a local minimum of the energy function. To 

find the global minimum, a stochastic decision rule such as simulated annealing can 

be used [35]. 

To show how the algorithm works, figure 5.1(a) shows the original 'Lena' image of 

size 256 x 256 with 256 grey levels and figure 5.1(b) is this image degraded by a 5 x 5 

uniform blur function and 30dB additive Gaussian white noise (The variance a~ of 

the additive Gaussian white noise is set such that 30dB = 10 log =tdB, where a; is the 
iT" 

variance of the original 'Lena' image. Hereinafter, this is used to specify the variances 

of additive Gaussian white noise used in the test images.) Figure 5.2( a) is the result 

obtained after 59 iterations. This degraded image is taken as the initial value for 

restoration. Note the ringing errors manifest at the border areas and edge areas. It 

is well known that the restoration errors mainly consist of the regularization error 

and the noise magnification error [73]. Lagendijk pointed out that the regularization 

error is a function of the source image and this error is related to the local structure 

of the images, in particular at the edges [73]. The relation between the regularization 

parameter and restoration errors has been investigated [73][33] and this relation is 

shown in figure 5.4. Since the regularization error is a monotonic nondecreasing 

function of the regularization parameter A and the noise magnification error is a 

monotonic decreasing one, this implies an optimal choice of ,\ which can be easily seen 

from figure 5.5. Zhou's scheme was further tested with the blurred image corrupted 
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( a) (b) 

Figure 5.1: (a) The clean 'L na' imag. (b) Th 'Lena ' image blurred by a. 5 x 5 
uniform window and corrupted with 30dB white noise. 

(a) (b) 

Figure 5.2: (a )The r stor d imag using Zhou 's scheme. (b) The restor d image using 
the propos d multiresolution seh me. 
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with a range of additive white noise. Figure 5.5 shows its performance with a set of 

different values of regularization parameter A. As shown, the regularization parameter 

A is used to control the trade-off between the two conflicting operations - deblurring 

and white-noise reduction. When A is large, the network mainly performs smoothing, 

so that the SNR of restored images decreases slowly because of the constraint window 

size. It was observed in the experiment that when the regularization parameter lies in 

a certain range, the regularization error is mainly caused by the ringing effect, which 

is due to the bandpass nature of the regularized filter. When the parameter exceeds 

a certain level, the ringing effect is replaced by blurring. Figure 5.5 shows that the 

optimal value of the regularization parameter increases while the image is getting 

more noisy, and finally the regularization parameter is so large that the deblurring is 

negligible. 

As the behaviour of a Hopfield network is very dependent on its connection weights 

and bias, it is not surprising that the restored images using Zhou's scheme are not far 

from those restored images obtained from iterative constrained least squares filtering 

methods [651. Depending on the connection weights and the initial guess, Zhou's 

scheme requires several tens of iterations to converge (see Table 5.1). However, the 

main MSE improvement occurs in the first ten iterations, as shown figure 5.3. 

5.3.2 Multiresolution Hopfield Networks for Restoration 

In iterative methods, the initial estimate of the solution may affect the convergence 

behaviour of these methods and possibly improve the restoration results [123J. The 

Hopfield network proposed by Zhou et al. used the degraded image as initial estimate 
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(mainly blurring error) 
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Noise error 

regularisation parameter A 

Figure 5.4: The conceptual relation between restoration errors and the regularization 
parameter 
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of the original image. This is fine when the degradation is mainly caused by blurring 

and the goal is to sharpen the degraded image. When the image is corrupted down 

to a low SNR, it is possible to get a better result by using a simple filtering to get a 

rough estimate as the initial guess of the original image, so that the result obtained by 

the Hopfield network may be better and the convergence rate is improved. This idea 

is used by Qian et al. [106] for restoring Gamma Camera-Bremsstrahlung medical 

images using a Hopfield network with an order statistic filter for the pre-filtering of 

noise. For noise removal, a multiresolution technique is an efficient tool [24]. The 

coarser solutions can be used as the regularization terms. Hence, it seems sensible to 

combine a multi resolution technique with a Hopfield neural network for a coarse-to­

fine restoration. 

A variety of multiresolution techniques [118J [24J [37] [15J have been developed for 

image restoration. Bruneau et al. [15] studied a particular problem in which the blur 

function is a scale function of a biorthogonal multiresolution analysis. They suggested 

that a family of efficient regularizations can be obtained from the convolution operator 

alone. For noise removal, the work of Clippingdale [24] is an efficient way to filter 

out white noise while maintaining the sharpness of edges. Hence, a coarse-to-fine 

filtering which looks like the model of Clippingdale is adapted to combine with a 

hierarchical Hopfield network. By the above argument, it is apparent that combining 

a multi resolution technique with the Hopfield neural network may also have a possible 

convergence rate improvement if the initial smoothed estimate is closer to the solution. 

In addition, it will be a flexible scheme for restoration, in the sense that adaptive 

filtering is easily implemented. 
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To use the multiresolution technique, a pyramid of the blurred image is built. 

Then, a coarse-to-fine restoration is employed. Before the algorithm is outlined, the 

effects of smoothing and subsampling operations in building a pyramid of the blur 

image need to be investigated. 

It is well known that if the sampling rate is less than the Nyquist frequency, aliasing 

is introduced [100j. If the decimation factor is 2 in each dimension, a low pass filter 

whose cutoff frequency is about I is applied to the image before subsampling to 

alleviate the aliasing problem [127] . 

Apparently, the subsampling by a factor of 2 will reduce the effective window size 

of the blur by 2 approximately. Therefore, to some extent, the coarser image looks 

less blurred or sharper, even if there is less information contained. This implies that 

the coarser solution may be restored more easily as there is less noise and blur in the 

coarser image. After successive applications of smoothing and subsampling, the blur 

kernel b(m, n) can be approximated by an impulse 6(m, n). Using this observation, 

La.gendijk and Biemond [72] in their work of identification of a large blurring speeded 

up the identification by using a technique based on a pyramid. 

Ha.ving built the pyramid of the blurred image, the coarse to fine restoration is 

summarised as follows: 

step 1 Start from level k where the support of the blur can be approximated by a 

3 x 3 window. 

step 2 While (k :5 M) do (M is the bot tom level) 
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step 3 

step 4 

step 5 

step 6 

initialise the Hopfield neural network links, using the level 

above and the current level to construct the regularization terms. 

While (not converged) run the Hopfield network. 

Propagate the estimate and form the initial estimate 

for next level. 

k=k+1 ; 

126 

In step 1, the problem is to determine how many levels to go up so that it is safe to 

assume the noise is sufficiently reduced. Theoretically, the coarse-to-fine restoration 

should start from the root level. However, it is not meaningful to start from such a 

level, for the data at very coarse levels may not be sufficient for estimating statistics 

reliably. Experiments showed that it should be sufficient to start from a level of size 

of 64 X 64 for a blur size of 5 x 5. The initial estimate for the level is the linear 

combination of the image at this level and the estimate of the level above. This is a 

reasonable estimate, for the combination should reduce the effect of noise [23]. 

The initialisation of the hierarchical Hopfield network is the same as that of Zhou 

et al., described in the previous section. However, the smoothness constraint term 

is replaced by the square sum of the differences between the current level and the 

estimate of thp currpnt level obtained by interpolating the estimate from the level 

above. This difference can be used to control the value of the regularization parameter 

for an adaptive restoration, as will be discussed in the next section. 

Let l"(l), 8(1) and X(l) be, respectively, the observed data, the blur kernel and 

the estimate at level 1 of the blurred image pyramid. The regularization equation is 
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formulated as follows 

E = ~ II Y(l) - H(l)X(l) 112 + ~;l) II X(l) - ~Y(l) 112 (5.23) 

where X(l) is the propagated estimate for level I from level I - 1. Note that the 

constraint parameter ~(l) is dependent on the pyramid level. It is not hard to see 

that the constraint is an approximation of a Laplacian operator used by Burt and 

Adelson [17J. 

Expanding equation (5.23) gives 

E(l) 

1 N 2 N2 N2 1 N2 N2 N2 

- 2 2: y.(l)2 - 2: 2: y.(l)h •• (l)Xi(l) + 2 L L L h/li(l)h/l j (l)x.(I)x A l) 
.=1 .=1 i=1 .=1 i=1 j=l 

~(l N2 N2 N2 

+ ~(2:xII(l)2 - 22: x.(I)x.(l) + L(;ra(l))2) 
11=1 .=1 .=1 

(5.24) 

Again, comparing with the energy function of the Hopfield network at levell, 

1 N2 M N2 M 

E(l) = -- 2: 2: Tikjl(l)V.k(l)tljl(l) - L 2: Bik(l)vidl) (5.25) 
2 i.j=1 k.l=1 .=1 k=l 

and disregarding the constant terms II Y(l) 112 and lI .. t(l) 11 2, the connection weights 
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of the hierarchical Hopfield network are given by 

N2 

Tikj1(l) = - L h.i(l)h.j(l) - >'(l)bij (5.26) 
3=1 

and its bias term by 
N 2 

8 i k = LYIJ(1)h.i(l) + ,\(1).1-;(1) (5.27) 
.=1 

Note that the bia.') term in equation (5.27) is reminiscent of the noise filtering 

operation which is used by Clippingdale[23J. The proposed multiresolution scheme 

can be approximately considered as using the smoothed image to guide the inverse 

filtering of thr hlurred image. The regularization parameter is added to the autocon-

nections of thr network. It is not hard to see that when the regularization is large, 

the conned ions will be dominated by the autoconnections. This implies that the 

solution is approximatf'iy the smoothed estimate and the network will converge in 

several iterations. 

After the convergence of the hierarchical Hopfield network at level 1 , the solution is 

propagated down and the initial estimate is obtained by the linear combination of the 

propagated solution and the degraded image at level I + 1. The process is repeated 

until the bottom level of the pyramid is reached. 

The multiresolution Hopfield network wa.o; tested using the same set of images used 

to test Zhou's scheme and its performance with a range of values of the regularization 

parameter is shown in figure 5.6. Comparing with figure 5.5, the performance of the 

multiresolution scheme is slightly worse than that of Zhou's, in terms of SNR. Note 
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that the performance of the multiresolution scheme is much worse when the value of 

the regularization parameter is large. This is because when). is large, the coefficients 

of the window used for the Hopfield network approximate to an impulse. Hence, the 

result is close to the interpolation of the starting coarse resolution image. Apparently 

the multiresolution scheme is more sensitive to the regularization parameter. 

Figure 5.2(b) is the image obtained after 56 iterations using the multiresolution 

Hopfield network. The iteration saving is not impressive, because the degradation is 

mainly blurring, for which the multiresolution scheme is of limited value. 

Visually, it is difficult to tell which is better. Further examining the two results, 

the multiresolution sdwIlle tends to give a slightly smoother solution. This is demon­

strated in figure 5.7. Figure 5. 7( a) shows the profiles of the clean Lena, the blurred 

image with 30dB additive noise and the restored image using Zhou's scheme, while 

figure 5. 7(b) is the same profiles, except that the image restored using the multires­

olution scheme replaces that of Zhou's scheme. Note the main difference of the two 

schemes is at the area about index 40, where the multi resolution Hopfield network 

gives a smoother result. As the profiles show, errors in edge areas are larger and only 

adaptive restoration could achieve a better result. Table 5.1 shows the iteratiollllum­

hers of both Zhou's and the multiresolution scheme. Although in the blurred image 

with 20dB additive white noise, Zhou's scheme seems to converge faster, the mul­

tiresolution scheme has a marginal improvement in convergence rate generally. Note 

that the number of iterations of the mutiresolution scheme is much smaller when the 

regularization parameter is large. The performance of the multiresolution scheme can 

be improved using the difference between the restored and degraded image at coarser 
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noise/input SNR Zhou multiresolution 
A I iteration I SNR A I iteration I SNR 

30dB / 14.1805dB 0.05 59 18.8600dB 0.025 56 18.0524dB 
20dB /13. 2856dB 0.50 20 16.3849dB 0.100 25 15.8278dB 
lOdB /8.67043dB 4.00 25 13.8377dB 0.350 13 13.3932dB 
OdB/O.21889dB 10.0 35 9.7542dB 1.000 4 9.6767dB 

Table 5.1: The iteration numbers of Zhou's and the multiresolution schemes applied 
to a 5 x 5 blurred image with a range of additive white noise. The regularization 
parameter A is about the optimal value. 

levels to control the regulariza tion parameter as will be shown in next section. 

5.4 Adaptive Restoration Using Hopfield Networks 

5.4.1 Adaptive Image Enhancement 

In the LSI regularizat.ion n'storation scheme, the bandpass natur.e of the regularized 

inverse filter usually causes the ringing phenomenon [731 and magnifying noise in the 

smooth rpgiolls to be grainy. llld('ed, the global smoothness regularization term is 

not suitable for many images of interest which contain discontinuities. To reduce 

the ringing phenomenon and the noise in smoothly varying regions, edge areas and 

smooth areas mllSt. be treatf'd differently. Moreover, as the restored image is usually 

produced for human users, tIl(' properties of the HVS should be taken into account 

in order to get a better subje(·tive quality. The HVS is sensitive to edges, so that a 

human would prefer an image with sharper edges but a lower MSE to an image with 

blurred image and a higher MSE. 

Various methods have been proposed to retain information which is vital to human 
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Figure 5.8: A schematic representation of a general adaptive restoration method. 

vision. Perhaps, one of the most used visual properties is the masking effect [19][4], 

which is the phenomenon that the contrast sensitivity of the human visual system 

at a sharp transition in an image decreases with the sharpness of the transition and 

increases as a function of spatial distance from the transition. This observation is used 

in various guises, such as the 'visibility' function proposed by Anderson and Netravali 

[4], the orientation estimate used by Knutsson et al. [67] and the spatial activity used 

in deblurring by Rajala and deFigueiredo [107J. All of the above methods use local 

measures which more or less indicate edges to control the restoration. A summary 

of a general adaptive restoration system is shown in figure 5.8. Depending on which 

specific measure is used to represent local image details, a number of algorithms have 

been developed [124][67] [65]. 
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5.4.2 Adaptive Networks for Image Restoration 

Adaptive Prefiltering 

In adaptive restoration, it is important to identify local characteristics in the blurred 

image. A simple way to segment the blurred image is to compare the restored image 

and the blurred image. It is observed that in the smooth regions, the difference is 

small, but it is large in the edge areas. Therefore, it is possible to segment a blurred 

image into different regions and use the obtained information for adaptive restoration. 

Based on this idea, the restored image in the level I of the multiresolution Hopfield 

network is compared with the degraded images in that level and the difference between 

the two images is used to control smoothing of the noisy image in the next level. 

The adaptively smoothed image is then used as the observed image and is restored 

by the network. Let t1 (I) < t2(l) ... < t n - 1 (I). The difference image between the 

restored image and the observed image at level 1 is propagated down to level I + 1 

and thresholded into n classes. The observed image at level I + 1 is simply classified 

into n classes according to the difference image. Each class is smoothed as follows 

(5.28) 

where 0 ~ 01 (I) ~ .. 0i(1) .. On-l (I) ~ 1 are scalar coefficients, and Xi(l) and Xi (1- 1) 

are the sets of pixels of class i in the image of level I and the propagated image 

X(I-I) respectively. This idea of using first a standard CLS algorithm to restore the 

blurred image for region segmentation for later adaptive restoration is also used in [84]. 
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However, the coarse-to-fine scheme is appealing for computation efficiency compared 

to Maeda's method[84]. A shortcoming of the multiresolution scheme is that the 

segmentation is not accurate, but this is always the case, as the blurred image does 

not provide such information - otherwise the deblurring problem is readily solved. 

A range of experiments were conducted to test the performance of the adaptive 

pre-smoothing method. Two 5 X 5 uniform blurred 'Lena' images with 20dB and 

lOdB additive noise respectively shown in figure 5.9 are used for the test. The result 

of applying the adaptive pre-smoothing method to the two degraded 'Lena' images 

is shown in figure 5.10. The background noise of figure 5.1O(a) and (c) is less visible 

in the smoothly varying areas than that of figure 5.1O(b) and (d) obtained by using 

Zhou's scheme. The edges area of figure 5.10(a) appear to be as good as those in 

figure 5.10(b). However, as the edges of nose and mouth are not there, the face of 

the restored 'Lena' seems blurred. In general, the prefiltering scheme does improve 

the subjective quality and MSE of blurred images in the experiments conducted. 

Although the adaptive smoothing scheme improves the quality of the restored image, 

the simple classification of the blurred image into different classes causes a defect on 

the shoulder area (see figure 5.1O(a)). The restored images can be further improved 

with more accurate edge information provided by a more sophisticated edge det~ction 

scheme such as that proposed in chapter 4. The design of an adaptive Hopfield 

network for restoration can be achieved by imposing various constraints as costs, 

pixel by pixel or block by block, and mapping the costs to the energy function of the 

Hopfield network. This can be accomplished by varying the regularization parameters 
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according to the a priori knowledge at each pixel as follows 

E = L !3i(Yi - L hik X k)2 + L Ai(L dik X k)2 (5.29) 
i k k 

where !3i and Ai are scalars which correspond to a local character measurement such 

as edges. 

In equation (5.29), multiplying each pixel by a weighted coefficient is equivalent to 

a weighted vector norm, which has been widely used for adaptive image restoration 

[73][120]. Following the notation used by Lagendijk and Biemond[73], the standard 

regularization for the proposed multiresolution Hopfield network can be written as 

follows 

L ,8i(l)(Yi(1) - L hik (1)xk(l))2 =11 Y(l) - H(l)X(l) II~ 
i k 

= (Y(l) - H(l)x(l)fS(Y(l) - H(I)X(l)) (5.30) 

L Ai(L dik Xk)2 =11 DX II!= xTnTwnx (5.31) 
k 

where Sand Ware diagonal matrices. The diagonal entries of S are Sii = !3i(l), 0 $; 

,8i(1) $; 1, the propagated difference between the restored image and the observed 

image at level 1 - 1. The diagonal entry of W is a function of the edge map of the 

blurred image of level 1 (for example Ai = cos(ei) where ei is the pixel value in the 

corresponding edge map). 

Using the weight vector norm notation, the adaptive CLS criterion used as the 
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Figure 5.9: T st imag s (a) Th 5 x 5 blUlT d 'L na' with 20dB whit noise (b)Th 

5 X 5 liurr d 'L na' with lOdB white 110is 
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( ) (d) 

Figure 5.10: (a) The r tored 20dB L na' using pr -smoothing. (b) Th r stored 
20dB Lena' using Zhou s scheme. (c)Th r stor d 10dB 'Lena' using pre- moothing. 
(d) Th r . tor d 10dB 'L na' u ing Zhou's s h m . 
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additive noise Input SNR Output SNR A Iteration 
20dB 13.2856dB 16.4542dB 0.07 34 
10dB 8.67043dB 13.9742dB 0.25 16 
8dB 7.13479dB 13.3528dB 0.3 13 

Table 5.2: The SNRs of the degraded 'Lena' images and the restored images using 
the adaptive multi resolution scheme. The regularization parameter A is about the 
optimal value. 

energy function for the multiresolution Hopfield network is 

E(l) = 1/2(IIY(l) - H(l)X(l)II~ + IIX(l) - X(l)II~) (5.32) 

The weighted CLS criterion is mapped to the energy function of the multiresolution 

Hopfield network for the network initialisation. 

The result of applying the adaptive Hopfield network to the blurred Lena images 

with 20dB and 10 dB additive white noise are illustrated in figure 5.11{a) and (c). 

Figure 5.11(b) and (d) are the edge maps used to control the regularization parameter, 

which are obtained using the edge detector proposed in cha.pter 4 and then blurred 

by a. 5 x 5 window to reduce the overshooting of restored edges. Also shown in 

figure 5.12 are horizontal profiles of restored images using Zhou's scheme and the 

adaptive multiresolution scheme. Table 5.2 summarises the SNR improvement of 

applying this scheme to the blurred image with a range of different white noise. 

Apparently, the use of the edge information further improves the performance of the 

network at the edge area. As the edge numbers constitute a small portion of an image, 

the improvement of MSE is only marginal in terms of SNR. However, the subjective 

quality is much improved. 
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Figur 5. 11 : The r stor d L na images using the adaptive scheme. (a) The restor d 
20dB 'Lena' image. (b) The dge map from the 20dB 'L na ' image. (c) Th r stored 
10dB 'Lena image. (d) Th dge map from the 10dB 'L na ' imag . 
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Figur 5.12: (a)Th profil f a horizontal lin (130,50)- (130,100) of the original 
'L na imag , th 5x5 uniform blurr d with 20 dB additive whit noi , and the 
r t r d imag u ing Zhou 's eh m . Th dark t lin i from the riginal, th lightest 
lin fr m th d blurr d, and th middl dark lin fr m th blurr d . (b) The sam 
profil s with th adaptiv multir oluti n h m in pIa of Zhou s h m . 
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5.5 Discussion 

In this chapter, the restoration of images degraded by LSI blur and additive Gaussian 

white noise using a Hopfield network was investigated. A multiresolution Hopfield 

network is proposed for deblurring, in which images obtained in coarser resolutions 

are used as the regularization term for adaptive restoration. It is well known that 

the performance of constrained (regularized) least squares methods are affected by 

the choice of the regularization operation [108]. In the experiments conducted in 

this chapter, the combination of mutiresolution technique and the CLS provides a 

flexible restoration scheme. The determination of 'busy' areas is straightforward and 

it is shown that the use of the information can improve both the subjective quality 

and MSE of the restored image. Unfortunately, the convergence rate of a Hopfield 

network does strongly depend on its bias input and connection weights. As an image 

at level I is a lowpassed version of the image at level 1 + 1 and the setting of this 

Hopfield network is entirely determined by the observed images, it is not surprising 

that the multiresolution scheme does not improve the convergence rate of the network 

much at high SNR's. At low SNR's, however, both convergence rate and output SNR 

are considerably improved by the multiresolution technique. Moreover, the scheme 

is easily made adaptive by incorporating variation of the regularization parameters 

based on the edges detected using the method described in Chapter 4. This scheme 

can give an acceptable estimate of the local activity hence an adaptive restoration 

scheme with little extra computation. 



Chapter 6 

Conclusions and Future Work 

6.1 Thesis Summary and Contributions 

This work investigated a quadratic energy minimization framework for two image 

processing problems: edge detection and image restoration. Central to this framework 

are relaxation operations, which can be implemented using a recurrent network. A 

multiresolution network was proposed to tackle the uncertainty principle problem and 

the regularization of ill-posed image processing problems. 

In chapter 1, the generic properties of images were discussed and it was empha­

sized that any general image processing system would need to tackle the uncertainty 

problem, scale and distortion, and to apply domain knowledge for 'regularizing' ill­

posedness. An interesting approach to incorporate priori knowledge is to use an energy 

function to specify relations between structures and select a solution that gives the 

minimum of the energy function [104] [113]. This principle of regularization theory 

was adopted to solve ill-posed problems. 
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Since the HVS outperforms many conventional algorithms, it was argued that the 

methods used by the HVS may provide insights into developing a robust computer 

vision system. Following this argument, models, though still crude, have been devel­

oped for a better understanding of the HVS [80] [81] and the use of ANNs for image 

processing is fruitful and expanding rapidly. A survey of ANN s and their application 

to image processing was given and the advantages of such an approach in contrast to 

conventional algorithms were discussed. 

Chapter 1 was concluded with a need to unify a set of requirements into a model 

for computer vision and image processing, which include 

1. Tackling the uncertainty problem: How to trade-off localisation and noise im­

munity in different resolutions. 

2. The use of a priori knowledge: How to incorporate prior knowledge. 

3. Global/local processing: How to compute local features and incorporate them 

into a globally coherent description. 

4. Flexibility: The developed model should be readily extensible. 

In chapter 2, various image models were reviewed, in particular a class of mul­

tiresolution models was emphasized, in view of the need to deal with the uncertainty 

problem in image processing and vision [129]. A multiresolution algorithm combined 

with an iterative scheme was proposed for edge detection and image restora.tion. 

An image model provides a framework within which various image processing 
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techniques can be designed and analyzed. Stochastic modelling of images treats the 

spatial coordinates of an image as time-like indices so that models for 1-D signals 

can be borrowed by introducing raster scanning. 1-D stochastic models, however, 

lack the facility to take into account the spatial structure inherent in a two dimen­

sional image. In 2-D stochastic modelling of images, the local spatial structures of 

the image can be modelled using a Markov random field. Alternatively, Gaussian 

Markov random fields can be represented as the outputs of linear systems described 

by difference equations, whose inputs are random fields with known or desired prop­

erties. Although these 2-D models do take the spatial features into account, they 

lack a proper method for describing features in different scales. Moreover, the un­

certainty problem naturally leads to a multi resolution representation, in which small 

features are modelled at higher resolutions while large features are modelled at lower 

resolutions. An important feature of multiresolution representations is their ability 

to render features which span a range of scales and which are essential for percep­

tion. As features may appear at different locations at different resolutions and they 

may also disappear at several resolutions- a method is needed to combine informa­

tion obtained in different resolutions, if multiresolution representations are used [82]. 

This is the so called scale consistency problem [132]. To tackle these problems, a 

class of stochastic multiresolution models which were based on representations such 

as pyramids and wavelets were recently proposed [24] [21]. Such modelling is able to 

render a variety of images adequately and provides an efficient estimation procedure 

for applications such as estimation[23], segmentation[lO], optical flow [83] and feature 

extraction[18]. This class of stochastic multiresolution models is causal in the scale 

axis, which entails a coarse-to-fine estimate for restoration and feature tracking for 
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edge detection, but they are noncausal in the spatial coordinates. 

The generalised multiresolution model on a pyramidal representation used in [10] 

was adapted and an algorithm based on this representation was outlined for edge 

detection and adaptive image restoration. The use of relaxation in a multiresolution 

model improves long-range characteristics of the model. The information in coarser 

resolutions is used to regularize the solution in successive finer resolutions until the 

highest resolution is reached. Vertical propagation is also used, with the aim of 

emphasizing consistent features and reducing uncorrelated noise. For each resolution, 

a relaxation scheme based on an energy minimization framework is used to update 

the confidences of the initial estimate and decisions. Information flows vertically and 

horizontally in the model, which is reminiscent of the information processing in the 

HVS[85]. 

Having outlined the model, the implementation is equally important because dif­

ferent architectures will affect the implementation [88]. The HVS, which is an ap­

propriate computational model for vision, and the most successful implementation 

ever known to man, was examined in Chapter 3, with the hope that its properties 

would bring insights to the problem of computer image processing and vision. The 

HVS's sensor is the retina, which can adapt to a wide range of lighting conditions 

using temporal mechanisms [53] . In addition to adaptation, study of optical illusions 

has shown that the retina reduces the bandwidth of visual data and extracts only 

the essential features of an image. Thus, Marr suggested that a primal sketch is used 

by the HVS [88]. Although the retina contains a blind spot, psychophysical experi­

ments show that a line across the blind spot will appear unbroken. The implication 
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is that the visual system uses a priori knowledge [25] . In the visual cortex, structures 

become more complex and the degree of abstraction increases. There are simple cells 

which respond to edges and lines [55] and end-stopped cells which were suggested to 

implement end-point detection [29]. Moreover, study of patients with partial visual 

cortex damage shows that visual cortex is divided into several task-specific regions 

[138]. This suggests that visual perception is the result of several different processes. 

To encapsulate these features of HVS, a hierarchical Hopfield network was pro­

posed. This network implements the image model proposed in chapter 2, in which 

each resolution corresponds to a Hopfield network. The solution for each resolution 

is obtained after the Hopfield network converges. This work shows that the mul­

tiresolution model can easily incorporate smoothness constraints to regularize the 

solution space. In Chapter 3, it was concluded that the benefits of using a multi res­

olution Hopfield network are fourfold: (1) to speed up its convergence rate, (2) using 

lateral interaction to reflect the intrinsic local structures of images, (3) smoothness 

constraints and (4) noise immunity. 

In chapter 4, an edge detection scheme was detailed, based on the multiresolution 

model outlined in chapter 2 and was implemented using the proposed hierarchical 

Hopfield neural network. There are two steps in the edge detection algorithm. The 

first step in the edge detection scheme is to construct the orientation vector field pyra­

mid of an input image. The second step is to construct a compatibility function for 

the interaction of two neighbouring pixels and an energy function based on the com­

patibility function as the energy function of the Hopfield network. The compatibility 

function is defined to reflect the fact that when two pixels are in the same shape, the 
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measure is high; otherwise it should be low. This was achieved using local orientation 

information to group edge pixels. In other words the compatibility function reinforces 

continuity and smoothness of edges. To ensure that the resultant edge is as thin as 

possible, the compatibility measure also includes lateral inhibition so that the winner 

of a competition among pixels across the direction of the edge is selected as the edge. 

The compatibility measure also takes distance between two pixels into account using 

a lowpass-like weighting function. Finally, the magnitude of the orientation vector 

also plays an important role: the more certain is the orientation, the stronger should 

be the link. In short, the compatibility measure between two edge components is 

separable into a function parallel to the edge, expressing continuity and proximity 

and one perpendicular to the edge, expressing lateral inhibition. 

After the setting of the Hopfield neural network for level I , the edge map of level 

1 is obtained when the Hopfield neural network converges. Using the resulting edge 

map, the orientation estimate is refined and it is propagated down to level I + 1 to 

refine the estimate by a linear combination of estimates in the two levels. The new 

estimate of orientation for level 1 + 1 is then used to set the energy function of the 

hierarchical Hopfield network for this level and the edge map for levell is used as bias 

for the Hopfield neural network. Again the edge map for level 1 is obtained, once the 

Hopfield neural network converges. The coarse-to-fine process proceeds recursively 

until the bottom of the pyramid is reached. 

The application of the Hopfield network to several test images showed that this 

simple coarse-to-fine process with lateral interaction is robust and gives results of at 

least as good a quality as those from a Canny hysteretic edge detector with thinning. 
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Compared with the results of Herauld and Horaud [45], it seems that the results of 

this work are more robust, for the coarse-to-fine process provides an effective immu­

nity facility to noise, although there is no quantitative comparison here. Moreover, 

the Hopfield network requires no parameter tuning and is amenable to parallel im­

plementation. 

In chapter 5, the proposed hierarchical Hopfield neural network is used for image 

restoration. It is shown that in the hierarchical Hopfield neural network approach, the 

'coarser' resolution solutions can be used in a regularization term and they can be also 

used to segment the images in the higher resolutions into regions of different activity 

so that a coarse-to-fine adaptive noise filtering is possible [23]. To further improve 

the performance of the multiresolution restoration scheme, an adaptive restoration 

scheme which uses the edge map obtained by applying the Hopfield network detailed 

in chapter 4 was proposed. 

The first task in using a Hopfield network for image restoration is to construct a 

suitable energy function for the Hopfield network. This work adopted the methods of 

Zhou et al. [141] and used a quadratic regularization function as the energy function 

of a Hopfield network. The convergence rate of Zhou's scheme was shown to be 

somewhat improved. As restoration of blur and additive noise is considered, the 

effect of of smoothing and subs amp ling operations in building a pyramid of the blur 

image was discussed. 

In the hierarchical Hopfield network, the difference between the interpolation of 

the solution in the level above and the solution of the current level approximates a 
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Laplacian operator [17], and a linear combination between the coarser solution and 

the current data as the initial estimate may be closer to the solution in the sense that 

noise is reduced, hence reducing the number of iterations. An experiment was also 

conducted to test the performance of the hierarchical Hopfield network. It was shown 

that the convergence rate is improved if noise is the main source of corruption. The 

reason is that the multiresolution model is effective in noise filtering. 

The phenomenon that there is less noise and less blur in the coarser resolutions was 

exploited for adaptive filtering. A simple way to segment the blurred image was used 

by comparing the restored image and the blurred image. It was observed that in the 

smooth regions, the difference was small, but it is large in the edge areas. Therefore, 

a scheme which roughly segments a blurred image into different regions and uses the 

information for an adaptive noise suppression was proposed. The restored images 

can be further improved with more accurate edge information provided by a more 

sophisticated edge detection scheme, such as that proposed in chapter 4. 

The design of an adaptive Hopfield network for restoration can be achieved by 

imposing various constraints as costs, pixel by pixel or block by block, and mapping 

the costs to the energy function of the Hopfield network. This was accomplished by 

varying the regularization parameters according to the estimated properties at each 

pixel. This chapter was concluded with the results of this restoration scheme. 
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6.2 Limitations and Future Work 

The results presented in this work were based on a multiresolution optimization frame­

work, implemented by a hierarchical Hopfield neural network. Although they show 

the effectiveness of this approach, a number of issues about the model and algorithms 

need to be considered further, so that its potential and limits can be fully realised. 

The proposed model consists of two processes: a coarse-to-fine process and a lat­

eral iterative optimization process for each different task. The model may be further 

improved to allow the interaction between different task processes: the edge detection 

process and the restoration process. Although edges were used for adaptive restora­

tion and when there is no blur in the input images, the edge detection process is 

effective. However, as shown in chapter 5, when the input image is distorted by blur 

as well as noise, it seems that the deblurred image can be used as input for edge 

detection so that a more accurate result can be obtained. In short, the information 

used for the lateral iteration is mainly of one type. There is a feeling that there 

should be a co-operation between lateral processes which extract or estimate differ­

ent characteristics of images, such as edge, grey level and texture (eg. Bhalerao[10]). 

Figure 6.1 shows the idea. 

A number of algorithmic and implementation considerations also are indicated by 

the analysis of the results. First, in the edge detection scheme, they are: 

1. Estimation of coefficients for cross level averages: the coefficients of the linear 

multiresolution model for cross level refinement for levell and 1 + 1 is a function 
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Figure 6.1: A possible refinement of the edge and restoration model 
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of the edge map obtained at levell and signal to noise ratio of both levels. This 

setting will suppress noise as well as new weak edges at levell + 1. Consequently, 

it is possible that the edge scheme will miss weak edges. (cf. figure 4.4 and 

figure 4.11). A possible remedy may take orientation structure at level 1 + 1 

for determination of the cross-level combination coefficients. This remains to be 

investigated. 

2. Image properties used for edge determination: the edge detection scheme pro­

posed in this work utilises mainly a 5 x 5 support of orientation information 

to detect edges. The network provides an iterative local computation for edge 

grouping. It is apparent that such an iterative scheme may slowly integrate lo­

cal clues to form a consistent global edge map and the multiresolution may help 

to speed up this process. However, the scheme has some defects in registering 

corners and junctions properly because it uses only correlation, while corners 
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and junctions require higher order relations to be determined. To use the same 

Hopfield network structure, such information can be fed in using the bias term. 

Another thought is to use a more complex network which exploits higher or­

der spatial relations, for example [93]. Another defect of this scheme is that it 

may give spurious (ie. parallel lines) or thick edges for blurred edges, depending 

on the width of the window used. This is, however, a defect of the underlying 

sequential scan Hopfield network algorithm. 

For the adaptive restoration scheme, the segmentation and the cross level combi­

nation coefficients are chosen heuristically. There is a need to make both of these 

choices more rigorous. However, its attraction is its simplicity and to some extent, it 

is robust. 

6.3 Concluding remarks 

This work has tried to unify into a framework a number of different ideas which have 

been used in various image processing problems and computer vision, in particular, 

edge detection and image restoration. Multiresolution analysis and regularization 

theory are the theoretical tools used. The results presented show that these techniques 

are an effective and robust way of using neural networks for solving the problems of 

image processing and low-level vision. 

Through evolution, nature has come up with a solution to vision problems: the 

HVS. It is, thus sensible to borrow some of the principles used in the HVS - the 

most powerful vision system known. Not surprisingly, study of the HVS has already 
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had an impact on algorithm development for computer vision and image processing. 

An important feature of neural networks is that they process information iteratively, 

which together with multiresolution analysis and regularization theory inspired the 

hierarchical Hopfield network for edge detection. What is clear is that much work is 

still to be done in the area of how to integrate consistent and contradictory clues to 

give a globally coherent solution. 

Of course, there are many aspects of neural networks that need to be investigated 

and put into use in computer vision. Among them, the learning capacity of neural 

networks may be a key factor in the various remarkable abilities of the HVS. No 

doubt learned knowledge can be used as a priori knowledge to regularize the ill-posed 

early vision processes in an adaptive vision system. It is hoped that in the future, a 

learning scheme can be incorporated to give a more robust system. 



Appendix A 

Conference Paper 

This paper has been presented on the eighth IEEE workshop on Image and Multidi­

mensional Signal Processing[135]. 
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Abstract 
A Hopfield neural network can solve image processing tasks which can be posed as optimization problems(eg. 

[3]). In this work, edge detection is formulated as an optimization problem. A multiresolution image model, 
combined with local interaction in each level of resolution, is used for the edge detection problem. The model is 
implemented by a hierarchical Hopfield neural network. We show that edge detection can be done well by the 
coarse-to-fine Hopfield network whose connections are orientation-tuned, which has strong motivation from mam­
malian visual systems[l]. 

1 Method 
Combined with a multiresolution model, a hirerarchical Hopfield neural network is shown to be efficient 
for edge detection. the edge detection problem is formulated as an optimization problem; Thus a cost 
function is defined and used as the energy function of the Hopfield neural network. The algorithm consists 
of two stages. In the first stage a grey level pyramid of an input image is built. An orientation pyramid is 
then built of the image by applying a pair of high pass filters to the grey level pyramid. These filters are 
specially designed to reduce orientation bias. The orientation field is a double angled one, which eliminates 
ambiguity in the gradient representation of orientation[2]. 

The second stage can be best summarized by the following pseudo code; 
1 from level k in the orientation pyramid. (* the image plane is level 0*) 
2 while (k ~ O){ 
3 initialize the Hopfield neural net using the orientation estimate; 
4 while not converged{ 

run Hopfield neural net, using level k+l as bias}. 
5 refine the orientation estimates using the egde map obtained from the network. 
6 estimate signal to noise ratio at level k; 
7 if(k ~ 1){ 
8 estimate signal to noise at level k-l; 
9 linearly combine the initial estimate at level k-l and the propagated 

estimate from k to give the refined orientation estimate;} 
10 k = k-l.} 
Note each pixel is represented by a unit in the Hopfield neural network. In step 3, a measure of compatibility 

. between two pixels is defined as follows: Let i be the i-th neuron in the Hopfield network and vi be the 
double-angled orientation estimate at pixel (Xi, Yi); the compatibility between two pixels i and j will be 
measured as follows 

Cij = k(0'2 - b2)exp( _b2 /20'2)cos(27ra/(2w - 1» 
where k is a constant, w is the window size, 0' is a function of wand 

a = rcos() 

b = rsin() 

where 

() = ~arg(v-; + vj) - arg«Xi - Xj, Yi - Yj» 

r = .j(Xi - Xj)2 + (Yi - Yj)2 

(1) 

In other words, the compatibility between two edge components is separable into a function parallel to 
the edge, expressing continuity and one perpendicular to-the edge, expressing lateral inhibition. After the 
Hopfield network converges, those pixels whose corresponding units are on, are chosen as edge locations. 



Figur 1: (a) a 2 6x256 t t imag of Odb R (produced by an HP laserprinter, dithered) (b) its edge 
map obtain d by th Hopfi Id neural n twork. 

1'h'imag in thi I v I is, thu divid d into dg ar as and noisy background . The orientation e t imates at 

r fin d in u h a way that th timat in Iloisy ar as ar av rag d i otropi ally whi l the estimat s in 
th dg ar ar av rag d ill th' dir tion of their ori ntation (step 5). Only tho. e ori ntation c timaLes 
in h clg· ar' ar propagaL d down. h 11 in thi. I v I i. e timated as the ratio of the varianc of 
th ori Illation v tors in dg ar as and that of noi y ar aJ. To g tab tter timat of S 11 at the n xl 
I v I, h dg map i pr pagat d and th imag i accordingly divided into 'noi e' areas and 'signal' ar a: . 
Th m i nl for th lin ar ombination of th initial ori Iltation timat and th propagated Umate 
is imply th ra i of Rk/( Ilk-J+ 11k). [n bort, th noi i r the initial timate is, the more come 
fr m th pr pagat'd timat fr 111 which nois has b en filt r I. Th above steps ar r p at d down to 
th imag plan. 

2 R suits and on Iu ions 

I igur la,. h w a l t ima 256 x 256. White noi i add d to give an S R of Odb. Figure lb. 
is th dg map obtain d wh n th Hopfi Id n lIral network onv rg d . The window size 1I d i 7 pixel. 
Typi Ally th n tw rk will onv rg in a,bout - 10 it ration. Th 7 x 7 window 1I d is, more 01' I 
a l mplal fa hort lin. Th w i ,ht d um of input r iv d by each n uron in th Hopfield network 
thu i vi w d a < m' lIT f rtainty of a lin bing pr s nt. Tn addition, the iteration of th n twork 
pr vid lin r fin 111 nt; h n urv an b d t t d. Th r ult r pr nt a significan improv ment 
ov r t chniqll mploying impl r I1hal1 m nL strat gi (g.[2)). 
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