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Abstract

We consider the heat equation

∂•t u+ u∇M(t) · v −∆M(t)u = 0

u(x, 0) = u0 x ∈M(0)

on an evolving curve which forms a “kink” in finite time. We describe the be-

haviour of the solution at the singularity and look to continue the solution past the

singularity. We perturb the heat equation and study the effects of a deterministic

perturbation and a stochastic perturbation on the solution, before the singularity.

We then consider the heat equation on an evolving surface that forms a “cone” sin-

gularity in finite time and study the behaviour of the solution at the singularity. We

then look to continue the solution past the singularity, in some probabilistic sense.

Finally, we consider the heat equation on an evolving curve, where the evolution of

the curve is coupled to the solution of the equation on the curve. We prove existence

and uniqueness of the solution for small times, before any singularity can occur.
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Chapter 1

Introduction

Partial Differential Equations (PDEs) on evolving or stationary surfaces are ubiqui-

tous in the mathematical modelling of real world phenomena. Problems in biology,

engineering and image analysis all benefit from the rich mathematical literature on

such objects. For example, Neilson et al. [2011] studies chemotaxis in cells and uses

a non-linear PDE system to describe the evolution of the quantities on an evolv-

ing curve. Moreover, the evolution of the curve is strongly coupled to dynamics of

the quantities. Surface dissolution (which has applications in the mining of gold,

for example), is modelled by an evolving surface whose evolution is coupled to a

non-linear surface PDE (Eilks and Elliott [2008]). In image analysis, motion by

mean curvature has been used to describe the graph of a surface which represents

an image, to recover the image (Faugeras and Keriven [2002]).

When the surface evolution is a priori known and smooth, meaning that no

geometrical singularities nor topological changes occur, the analysis of existence,

uniqueness and properties of the solution to the PDE on the surface is standard.

(See, for example, Dziuk and Elliott [2007]). Indeed, one may use the method of

finite elements to analyse the problem, as in Dziuk and Elliott [2007], or one may

map the equation onto a time independent, diffeomorphically equivalent surface. In

the case of Stochastic PDEs on an evolving surface, the latter is covered in Scott

[2011].

What is not covered in the mathematical literature, to the best of the author’s

knowledge, is the analysis of a PDE on a surface which undergoes some sort of

geometric singularity and the effects this singularity has on the solution of the PDE.

To this end, we consider three problems in this thesis. We give a full descrip-

tion of the results obtained in Section 1.2 and the reader is referred to Chapter 2 for

the definition of the differential operators. The numbering of the equations below
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agrees with the numbering used in the relevant part of the thesis. In the following,

it should be noted that α > 0.

Problem I: Here we study the heat equation1

∂•t U + U∇Ct · v −∆CtU = 0 (2.6.3)

with initial condition U(x, 0) := U0(x) on an evolving curve Ct = Cαt
given by

Cαt := {(x, y) ∈ R2 | y ≥ 0, y2−x2 = (1− t)2α}, 0 ≤ t ≤ 1. (3.1.1)

Here, a “kink” forms in finite time (t = 1). We analyse the solution

at the singularity and look to continue the solution, in some sense,

onto

Cα,cont
t := {(x, y) ∈ R2 |x ≥ 0, x2 − y2 = (t− 1)2α} 1 ≤ t ≤ T.

(3.1.2)

Problem II: We again study the heat equation (2.6.3), however this time we look

at the equation on an evolving surface

Sαt := {(x, y, z) ∈ R3 |x2 + y2− z2 = (1− t)2α}, 0 ≤ t ≤ 1 (7.0.1)

which forms a “cone” singularity at finite time. We analyse the

solution at the singularity and look to continue the solution, in some

sense, onto

Sα,cont
t := {(x, y, z) ∈ R3 | z2 − x2 − y2 = (t− 1)2α} 1 ≤ t ≤ T.

(9.0.1)

Problem III: Finally, we return to studying (2.6.3) on an evolving curve

Ct := {(x, y) ∈ R2 | y ≥ 0, y2 − x2 = f(t)}, 0 ≤ t ≤ T, (10.1.1)

for some T small enough, where the evolution of the curve is coupled

to the solution of (2.6.3); that is, f is some functional of the solu-

tion of (2.6.3). Here we analyse the existence and uniqueness of the

1One should note that the heat equation is taken in the evolving surface sense (Dziuk and Elliott
[2007]). In a differential geometrical sense, the heat operator is taken as ∂t −∆M(t), where M(t)
is the evolving manifold and ∆M(t) is the Laplace-Beltrami operator (Lee [1997]).
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solution for small times away from any possible singularity.

In Problem III, the resulting PDE is a non-linear parabolic PDE. Since we

only seek short time existence, the equation is not singular and so we use standard

analytical tools to tackle the question of existence and uniquess to the problem.

However, in Problems I and II, the resulting PDE is a linear singular parabolic

PDE. The behaviour of the solution at the singularity interestingly depends on the

parameter α introduced in the definition of the curve Cαt and the surface Sαt . The

parameter models how fast one enters (and so leaves) the singularity and the analyt-

ical techniques used depend heavily on α. One should note that the choice of PDE

on the curve and surface is natural, for it is derived from a conservation law. Indeed,

(2.6.3) models surface concentration of some physical quantity which is conserved

and is therefore of physical importance.

Thus, the problems in this thesis sit in the area of linear singular parabolic

PDEs, but one should consider the problems as a subclass of surface PDEs in which

the underlying surface singularity gives rise to singular coefficients in the PDE,

which affect the solution of the PDE. In the following, we review the mathematical

literature on linear singular parabolic PDEs. In Section 1.2 we outline the results

obtained in each of the different problems.

1.1 Literature Review

Although, as far as the author can find, the mathematical literature is devoid of

the analysis of surface PDEs in which the underlying surface singularity (through

topology change for example) gives rise to singular coefficients, when one parame-

terises the surface and transforms the problem into a PDE on a fixed state space,

the mathematical literature is rich with such problems. However, as we shall see,

none of the problems considered below fit perfectly into the problems that we con-

sider in this thesis. We will not review the literature on the non–linear equations,

but mention there has been and continues to be extensive research in this area. For

example, an important set of papers on the physically relevant mean curvature flow

includes Evans and Spruck [1991, 1992a,b, 1995].

When one transforms (2.6.3) onto a fixed phase–space R × [0, 1) using arc–

length parameterisation, one derives the following equation

∂u

∂t
=
∂2u

∂l2
+ α(1− t)α−1 ∂

∂l

(
G(l(1− t)−α)u

)
u(l, 0) = U0(X(l, 0)).

(3.2.3)
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The full derivation is given in Chapter 3 together with all the properties of the coef-

ficients. Here, l is the arclength parameter and X is the arclength parameterisation.

The function G is given in Chapter 3, equation (3.2.4), but all the reader needs to

know at this point is that it is bounded. Using the chain rule, one sees that some of

the coefficients of the PDE become singular as t→ 1−, even if α > 1. The literature

available on analysing the equation at a singular finite time is, in the author’s opin-

ion, scarce. Most of the literature considers equations that are either immediately

singular or are immediately degenerate. Indeed, the distinction between “singular”

and “degenerate” is blurred and some do not specify initial conditions where the

singularity occurs.

In the following, we will consider various papers on degenerate and/or sin-

gular PDE. The following is not an exhaustive literature review and the reader is

encouraged to refer to the references given in the cited papers. The following is

a snapshot of the current mathematical standing on the theory of linear singular

and/or degenerate parabolic second order PDE in order to state where the results

of this thesis sits in the mathematical literature.

We begin our review with Baiocchi [1967]. Here the following equation is

studied
d

dt
(Bu) +Au(t) = f(t)

in an appropriate Hilbert space with initial condition Bu(0) = u0. Existence and

uniqueness of the solution is established, but this equation is degenerate at t = 0, not

singular. This is because B−1 might not exist and at t = 0, one only has knowledge

of Bu(0), not u(0). A similar equation posed in a Banach space X is studied in

Favini [1974]

Bu′(t) +Au(t) = f(t)

with initial condition u0 and we require that limt→0+ ‖u(t) − u0‖Y = 0 where Y is

Banach space different from X. Again, existence and uniqueness for the equation

are given. On the other hand, Sobolevski [1971] studies

a(t)v′(t) +Av(t) = f(t)

in a suitable Banach space where a is scalar valued, satisfies a(0) = 0 and∫ 1

0
a(s)−1 ds = +∞.

Here A is “nice” in the sense that it generates the analytic semigroup exp(−tA).
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An example of such an A would be −∆, the Laplace operator. No initial condition

is given and on dividing the studied equation by a(·) one has a singular equation.

Having no initial condition raises the question of uniqueness. However, this is ad-

dressed and it is shown that under some appropriate growth assumption on a at 0,

that there is a unique solution for given f in suitable Hölder spaces.

A more explicit example of an a is given in Lewis and Parenti [1982], with

a(t) = t, but A is still time independent and the problem is set in a Hilbert space.

In this paper, flat solutions are sought; which asks that all the time derivatives of

the solution at t = 0 vanish. The reader is referred to this paper and references

within. A generalisation of Lewis and Parenti [1982] is given in Dore and Venni

[1985] where the same equation is considered, but now in a Banach space setting.

Here existence, uniqueness as well as regularity properties are given.

The reader will notice that it all the cases above, the operator A is time–

independent. However, it turns out that Problem I, II and III all have time–

dependent operators. For time–dependent operators, arguably the most influential

early paper on an abstract approach to singular parabolic equations comes from

Lions and Raviart [1967], where the now classical approach to linear parabolic PDE

is adapted to take care of time singularities in the equation at the initial time. The

problem is set in an abstract Hilbert space triple V ⊂ H ⊂ V ∗ and a bilinear form

a(t;u, v) := (A(t)u, v) is given. Here (·, ·) is the Hilbert space H inner product and

if | · | denotes the H norm and ‖ · ‖ denotes the V norm, it is required that there

exists λ(t) ∈ L1(0, T ;R) such that

Re[a(t; v, v)] + λ(t)|v|2 ≥ α‖v‖2

where α > 0 and this holds for every v ∈ V . One also asks that there ex-

ists θ ∈ (0, 1) such that u(t) 7→ A(t)u(t), A∗(t)u(t) is continuous as a map from

L2(0, T ;V )∩L∞(0, T ;H)→ L2(0, T ;V ∗) +L
2

1+θ (0, T ;V −1+θ) where L2(0, T ;V ∗) +

L
2

1+θ (0, T ;V −1+θ) is given from the topology of the dual of

L2(0, T ;V ) + L
2

1−θ (0, T ;V 1−θ).

Under the above assumptions, Lions and Raviart [1967] establishes the existence

and uniqueness of u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) such that

u′(t) +A(t)u = f(t)

subject to the initial condition u(0) = u0 where u0 is a given function in H and
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f ∈ L2(0, T ;V ∗) is also given. However, this paper does not cover the case where a

singularity forms in finite time.

Other papers that consider degenerate time–dependent operators include

Friedman and Schuss [1971] where they consider

c1(t)
du

dt
+ c2(t)A(t)u = f(t) (1.1.1)

in a Hilbert spaceX where c1(t) ≥ 0, c2(t) ≥ 0 are scalar functions and c1(t)+c2(t) >

0. It is assumed that A(t) is an unbounded linear operator satisfying the standard

assumptions which ensure that the Cauchy problem

du

dt
+A(t)u = f(t)

u(0) = u0

has a unique solution. Again, no initial conditions are explicitly given on the equa-

tion involving the ci, but u0 does feature in their definition of a weak solution.

The paper proves existence, uniqueness and differentiability theorems for solutions

to (1.1.1), under the additional restriction that c2(t) ≡ 1 and that c1(t), f(t) and

A(t) have k continuous derivatives. Further, a coercivity result similar to Lions and

Raviart [1967] is required along with the assumption that there exist µk such that

‖[A(t)− λI]−1‖L(X;X) ≤
const

1 + |λ|

for every Reλ ≤ µk. With this, it is proven that for every ε > 0 the weak solution

belongs to Hk([ε, T ];X). In Schuss [1972], they remove these restrictions and prove

that the solution u is infinitely differentiable when c1(t), f(t) and A(t) are C∞. The

case of c1(0) = 0 and c′1(0) > 0 is considered, giving continuity of the solution u at

t = 0 along with a formula for the solution. In Baiocchi and Baouendi [1977], the

special case of c1(t) = t is studied in a Hilbert space setting, with applications to

equations such as
∂u

∂t
+ λ(x, t)t−1u− β(t)∆xu = f

on Ω× [0, T ] where λ is a bounded function, β is strictly positive on (0, T ] but may

vanish or become infinite at t = 0 and Ω is a smooth compact Riemannian manifold

without boundary. They prove, amongst other results, that there exists a unique
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solution u ∈ C∞(Ω× [0, T ]) to

∂u

∂t
+ λ(x, t)t−1u−∆xu = g

u(x, 0) = u0(x)

where g ∈ C∞(Ω × [0, T ]) and u0 ∈ C∞ are given, if and only if λ(x, 0)u0(x) ≡ 0.

This demonstrates that u0 can be arbitrarily chosen if λ(x, 0) ≡ 0, while u0 must

vanish where λ(x, 0) does not. Considering (1.1.1), a specific case of c1(t) = t

and c2(t) = 1 is considered in Dore and Guidetti [1986] and Guidetti [1987] in

the setting of Banach spaces, however Guidetti [1987] does not require that A(t)

are densely defined. Both papers establish the existence of a unique solution in a

suitable Banach space, with no initial conditions specified in Dore and Venni [1985].

In Guidetti [1987] they show the existence and uniqueness in a space that forces all

k−1 ∈ N derivatives of the solution to vanish at 0. Some additional assumptions on

the spectrum of the operator are given. The reader is directed to Guidetti [1987],

page 493 for the exact conditions. We thus see that the singularity in both cases in

fact governs what initial data one can take. We will see in Chapter 5 of this thesis

that the “natural” choice for the initial data, is attained in the classical and mild

sense, again depending on the singularity.

In Favini [1985], the above problem of Friedman and Schuss [1971] and Schuss

[1972] is considered, but now in a Banach space setting. Here they consider

(A1(t)u(t))′ +A0(t)u(t) = f(t)

lim
t→0+

A1(t)u(t) = 0.

which generalises Friedman and Schuss [1971] and Schuss [1972] not only because

Favini [1985] considers a Banach space setting, but A1 is a suitable closed linear

operator between Banach spaces; not just a multiplication operator as in Friedman

and Schuss [1971] and Schuss [1972]. Existence and uniqueness of the solution is

given, along with (amongst other results) an application to initial-boundary value

problems.

Moving slightly away from the abstract equations, Favini et al. [2005] and

Favini et al. [2008] consider an Lp approach to singular linear parabolic equations in

bounded domains. Here they consider a bounded domain Ω ⊂ Rn with a boundary

7



of class C2 and the following equation

Dt[m(x)u(x, t)] +A(x,Dx)u(x, t) = f(x, t) (x, t) ∈ Ω× [0, T ]

u(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ]

m(x)u(x, t)→ m(x)u0(x) a.e x ∈ Ω, as t→ 0+.

Here

A(x,Dx) = −
n∑

i,j=1

Dxj (aij(x)Dxi) +

n∑
j=1

aj(x)Dxj + a0(x).

In Favini et al. [2005], aj ≡ 0 and so Favini et al. [2008] is a generalisation of Favini

et al. [2005] to include lower order terms. It is assumed that for each x ∈ Ω̄ we have

(aij(x)) is a positive definite matrix. The existence and uniqueness of the solution

are given, however, A is not time dependent and Ω is bounded and so the paper

does not sit within our regime.

For a problem considering time depending coefficients, we consider Kutev

et al. [2010]. Here they consider the solvability of

Lu = ut −
(
aij(x, t)uxi

)
xj

+ bi(x, t)uxi = 0

in Q := Ω×(−t1, t2) with Ω ⊂ Rn bounded and ti > 0. They ask for u(x, t) = ϕ(x, t)

on the parabolic boundary of Q. They prove the existence and uniqueness of a

classical solution, where it is assumed that the aij satisfy

a(t)|ξ|2 ≤ aij(x, t)ξiξj ≤ Λa(t)|ξ|2

for all (x, t) in a larger cylinder Q′, for every ξ ∈ Rn and a(t) ≥ 0 with a ∈
C([−t1, t2];R). Here Λ > 0 is a positive constant. Their model equation is

ut − tkuxx + a1t
mux = 0

in (−L,L)× (−t1, t2) with the assumption that k ≤ 2m+1. Indeed, for k > 2m+1,

the equation is not locally solvable for some boundary data, even in the distributional

sense. This equation does not quite fit our problems as it does not have a creation

term; the coefficient of u is 0. Also, a bounded domain is also considered, whereas

the problems in this thesis are considered in an unbounded domain.

The abstract settings all consider singularities that arise from time. However,

8



in Chapter 9 of this thesis we consider the following equation

∂J

∂t
=
∂2J

∂l2
− ∂

∂l

((
t−α

coth g√
cosh 2g

+ αtα−1G

)
J

)
J(l, 0) =

√
2

2
|l|u0(l) =: J∗(l).

(9.1.4)

In Remark 9.1.3 we show that the singularities that we consider are not only in

time, but also in the spacial variable. Such examples of a spacial singularity include

the Bessel operator

A :=
∂2

∂z2
+

2ν + 1

z

∂

∂z

with ν > −1
2 . Operators such as these are considered in a series of papers Gorodet-

skii and Martynyuk [2010a,b] and Gorodetskii and Tupkalo [2011]. Since we do

not use classical PDE techniques in Chapter 9 we refer the reader to the relevant

references in the mentioned papers and others where Bessel functions are considered.

Interestingly, none of the above papers allow singularities to form in a finite

time s ∈ (0, T ) or at t = T . Formulation of a singularity at time t = T is precisely

the case of Chapter 3 and Chapter 8 of this thesis. However, in Bernardi [1981] such

problems are considered. Here, the setting is the Schrödinger equation

u′(t) + iA(t)u(t) = f(t)

where A(t) is a linear operator between suitable Hilbert spaces. They consider a

complex Hilbert space triple V ⊂ H ⊂ V ∗, ask that V ⊂ H is dense and A(t) ∈
W 1,1

loc ((0, T ];L(V ;V ∗)) where L(V ;V ∗) is the vector space of all continuous linear

mappings from V to V ∗. With some coercivity assumptions on A(t), boundedness

of the bilinear form (A(t)u, v) with the bound depending on t and boundedness

of the bilinear form (A′(t)u, v) with the bound depending on t they show that

limt→0+ u(t) = 0 strongly in V ∗, but also that this limit holds strongly in H and V .

It is discussed how to modify the conditions to consider problems with singularities

in an interior point of (0, T ), or even at T . However, all our equations in this thesis

are real and we go further than the abstract setting in the sense that we are able to

describe exactly how the solution behaves near the singularity, when a singularity

occurs.

With regards to the behaviour of the solution to (3.2.3) at the singularity as

t → 1−, one may rescale the equation using y = l(1 − t)−α and τ = − log(1 − t)
if α ≤ 1

2 and taking y = l(1 − t)−
1
2 if α > 1

2 . This corresponds to considering

stabilisation of solutions of the Cauchy problem, as we are interested in the behaviour

9



of the solution as τ → +∞. Such problem is considered in Eidelman et al. [2009]

by means of convergence of solutions to the Cauchy problem

∂u

∂t
=

N∑
i.j=1

∂

∂xi

(
aij(x, t)

∂u

∂xj

)
(x, t) ∈ RN × R+

u(x, 0) = u0(x), x ∈ RN

with N ≥ 2. It is assumed that there exists Λ1,Λ2 > 0 such that

Λ1(1 + |x|)α|ξ|2 ≤
N∑

i,j=1

aij(x, t)ξiξj ≤ Λ2(1 + |x|)α|ξ|2

with −N < α < 2. With the assumption that the initial data is bounded, they

prove that u(x, t)→ A as t→∞ uniformly in x ∈ G if and only if

lim
ρ→∞

1

|Bρ(0)|

∫
Bρ(0)

u0(y) dy = A.

Here G is any compact subset of RN . The following condition on aij is needed: for

any i, j = 1, · · · , N

ρ−N−2

∫ ρ2−α

0

∫
|x|<ρ

|x|−α
(
aij(x, t)− δij |x|α

)2
dx dt→ 0

as ρ→∞. Here δij is the Kronecker delta. If we consider this equation as a rescaling

of another equation that forms a singularity in finite time, we see that the behaviour

of the initial condition affects the behaviour of the solution at the singular time.

However, the work of Eidelman et al. [2009] does not quite fit with our problems,

as there are no creation terms; again the coefficient of u is zero, and their problem

is set in RN with N ≥ 2; our problems are all one dimensional. However, Eidelman

et al. [2009] clearly demonstrates the dependence of the initial data on the long term

solution of the equation.

As a concluding note, we mention that papers do exist that consider first

order equations, such as Alinhac [1974] and the reader is directed to the references

therein. Furthermore, in the weak setting to these singular problems, analogous

to the non-singular case, one can consider variational inequalities and perform an

analysis using weighted spaces (see Luterotti [1993] and the references therein).

The results of this thesis can be seen as a generalisation of the above, in

the sense that we demonstrate how the solution behaves at the singularity and in

10



a neighbourhood of the singularity. Further, we show that for a “natural” choice

of the initial condition for the continued PDE, that in the case of the curve, we

have classical, weak or mild attainment of the data (according to the parameter α

introduced in the definition of Cαt and Cα,cont
t in (3.1.1) and (3.1.2) respectively).

We further give a probabilistic interpretation of the continued problem for the case

of the surface in Chapter 9 which is not considered in the PDE literature. Further,

the techniques employed in this thesis range from probabilistic methods, that yield

deep connections between PDE theory and stochastic analysis and stochastic pro-

cesses, through to the classical use of the Banach fixed point argument and classical

techniques in PDE theory. Such an approach to studying these problems in this

context has not, as far as the author is aware, been used before. They yield easy

to analyse representation formulas in the pointwise sense for the solution to PDEs

and together with the analysis of suitable stochastic processes, the methods yield

qualitative results about classical solutions to PDEs.

1.2 Outline and results of the thesis

This thesis is organised in the following way. In Chapter 2 we introduce the back-

ground material. Here we start with definitions and results from calculus and

progress onto the basic theory of classical partial differential equations. Since we will

use probabilistic techniques in this thesis, we introduce stochastic differential equa-

tions along with some basic existence and uniqueness results and some properties

of Itō diffusions. This allows us to introduce stochastic representation of solutions

to partial differential equations, where the key results and ideas are given in order

to analyse the problems in this thesis. We introduce the Fokker–Planck equation

which will enable us to show existence of solutions to a certain class of PDEs. We

conclude this chapter by giving a self–contained introduction to partial differential

equations on evolving surfaces; deriving the equation of central study

∂•t u+ u∇M(t) · v −∆M(t)u = 0

u(x, 0) = u0 x ∈M(0).
(2.6.3)

In Chapter 3 we define the hyperbola

Cαt := {(x, y) ∈ R2 | y ≥ 0, y2 − x2 = (1− t)2α}, 0 ≤ t ≤ 1 (3.1.1)

on which equation (2.6.3) is posed. We formulate the problem in an arc–length

11



parameter l that sees us considering the problem as a PDE on R× [0, 1):

∂u

∂t
=
∂2u

∂l2
+ α(1− t)α−1 ∂

∂l

(
G(l(1− t)−α)u

)
u(l, 0) = U0(X(l, 0)).

(3.2.3)

We do this in a way so that l = 0 and t = 1 is where the singularity occurs.

We also formulate the problem using so–called flow lines, which will enable easier

analysis of the problem in certain regimes of α. We conclude the chapter by further

transforming (3.2.3) with the use of so–called self–similar coordinates. Here we

take y := l(1 − t)−α and τ := − log(1 − t). We analyse the scaling properties of

the resulting PDE and conclude that there are three regimes of interest: α < 1
2 ,

α = 1
2 and α > 1

2 . We refer to the regimes as subcritical, critical and supercritical,

respectively. The methods of analysis vary depending on the value of α.

In Chapter 4 we seek to analyse the effects of the geometric singularity of

(3.1.1) on the solution to (2.6.3). We achieve this by means of analysing the solu-

tion to (3.2.3) as t → 1− for l = 0 and l close to zero. We first consider α < 1
2 in

Section 4.1 and prove in Theorem 4.1.1 that the solution, u, to (3.2.3) is not only

uniformly bounded, but in fact u(0, t) −→ 0 as t → 1−. We achieve this by using

a probabilistic technique which yields a stochastic representation formula for the

solution, when (3.2.3) is transformed using the self–similar coordinates. In Theo-

rem 4.1.3 we describe how the solution u behaves in a neighbourhood of l = 0 and

t = 1 by using the flow line formulation and guessing, using a heuristic asymptotic

analysis method, as to how the solution should behave near the singularity. We then

use a probabilistic technique to give the result.

In Section 4.2 we consider α = 1
2 and note that some of the techniques of

Section 4.1 fail for α = 1
2 . We thus employ a functional analytic technique to gain

pointwise bounds of the solution in self–similar coordinates (Theorem 4.2.3). From

this, we deduce in Theorem 4.2.4 that the solution u to (3.2.3) vanishes at the sin-

gularity at an algebraically fast rate and (from Remark 4.2.5) that the solution is

uniformly bounded. As regards the behaviour of u in a neighbourhood of the singu-

larity, we prove a partial result in Theorem 4.2.6, improving this via Theorem 4.2.10

by utilising sub and super–solutions and the Feynman–Kac formula.

We finally consider α > 1
2 in Section 4.3. The analysis of this section is mainly

classical and we consider the problem as a perturbation of the heat equation. Using

a generalised Gronwall inequality (Lemma 4.3.1) we prove in Theorem 4.3.3 that

the solution u to (3.2.3) is uniformly bounded in l and t. We achieve this by using

the variation of constants formula and treating (3.2.3) as a perturbation of the heat
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equation. We note that this technique fails if α ≤ 1
2 . Interestingly, unlike the case

of α ≤ 1
2 , we see that the solution need not vanish at the singularity. This is proven

in Theorem 4.3.6 by means of Lemma 4.3.5 where a probabilistic technique is used.

Indeed, we remark that for initial data u0 ≡ 1 the solution u does not vanish at the

singularity (Remark 4.3.7).

In Chapter 5 we consider continuing the solution onto

Cα,cont
t = {(x, y) ∈ R2 |x ≥ 0, x2 − y2 = (t− 1)2α}, 1 ≤ t ≤ T, (5.0.1)

by means of

∂•t V + V∇Γ · v −∆ΓV = 0 x ∈ Γ := Cα,cont
t

V (x, 1) = U(Bx, 1) x ∈ Cα,cont
1 .

(5.0.2)

Here, B : Cα,cont
1 → Cα1 is a linear map and we derive the equation that the solution

must satisfy on R× (1, T ] and rescale time t 7→ t− 1 giving the following equation

posed on R× (0, T ]:

∂v

∂t
=
∂2v

∂l2
− αtα−1 ∂

∂l

(
G(lt−α)v

)
(l, t) ∈ R× (0, T )

v(l, 0) = v0(l) l ∈ R.
(5.0.3)

We see that the equation is now initially singular, as some of the coefficients are

singular at t = 0. We must now show that a solution exists and attains the ini-

tial data in some sense. The initial data is taken as the solution u to (3.2.3) for

t = 1 chosen up to suitable subsequence if needed. We first consider α < 1
2 in

Section 5.1 where we consider (5.0.3) transformed into flow–variables. We make an

ansatz for the solution and observe that the resulting equation is a Fokker–Planck

equation. Thus, using probabilistic techniques and transforming the result back to

the arc–length coordinates, we show that there exists a classical solution to (5.0.3)

(Theorem 5.1.2). Finally, in Theorem 5.1.5 we show that the initial data is attained

pointwise using a stochastic representation formula by means of the Feynman–Kac

formula.

For the case of α = 1
2 , covered in Section 5.2, we observe that (5.0.3) is also2

of Fokker–Planck type. We thus show that there exists a unique strong adapted so-

lution to the corresponding stochastic differential equation in Theorem 5.2.1 which

allows us to conclude that there is a classical solution to (5.0.3) for t > 0 (Re-

mark 5.2.2). Bounds on the trajectory of the solution to the corresponding SDE

are proven in Proposition 5.2.3 which yield the weak attainment of the initial data

2In fact this is true for any α > 0.
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(Remark 5.2.5).

To conclude Chapter 5 we finally consider α > 1
2 in Section 5.3. Here, the

techniques of the previous sections fail and indeed the techniques we employ in

Section 5.3 fail for the cases of α ≤ 1
2 . We treat (5.0.3) as a perturbation of the heat

equation and prove in Theorem 5.3.1 that there exists a unique solution to (5.0.3)

in the mild sense, which attains the initial data in the sense that

lim
t→0+

|v(l, t)− v0(l)| = 0,

for every l ∈ R. We achieve this by selecting the correct Banach space X and

defining a contractive linear map F : X → X. The main tool which is used is the

Banach fixed point theorem.

In Chapter 6, we return our attention to (3.2.3) for α < 1
2 , with deterministic

and stochastic forcing and ask whether the same results, suitably adapted, hold as in

Chapter 4. When perturbing, we use a two–parameter family semigroup to solve the

equation. Thus, we start this chapter by considering (3.2.3) started at a time s with

rough initial conditions, f(·, s), where s ∈ (0, 1) and run the equation for s ≤ t < 1.

We assume that f(·, s) ∈ L∞(R) for every s ∈ (0, 1) and prove boundedness of the

solution u in Theorem 6.1.1. We discuss the challenges of taking f(·, s) ∈ Lq(R)

where q 6=∞ in Remark 6.1.3.

In Section 6.2 we consider perturbing (3.2.3) by studying

∂u

∂t
=
∂2u

∂l2
+ α(1− t)α−1 ∂

∂l

(
G(l(1− t)−α)u

)
+ f

u(l, 0) = u0(l),

(6.2.1)

where we take f ∈ C(0, 1;L∞(R)). In Theorem 6.2.3 we prove that the solution has

all the properties of the non–perturbed case. In Remark 6.2.5 we state that the same

results would also hold if f ∈ L1(0, 1;L∞(R)) and (1−s)−α‖f(·, s)‖L∞ ∈ L1(0, 1;R).

We conclude Chapter 6 by stochastically perturbing (3.2.3) in Section 6.3

and so considering a stochastic partial differential equation. For reasons outlined

in Section 6.3.1 we only consider a white in time–constant in space perturbation, a

coloured in space–white in time perturbation, and space–time white noise with finite

rank covariance operator perturbation. The results are given in Theorem 6.3.3 which

yield the analogous results to the unperturbed case. However, since we are stochas-

tically perturbing the problem, the results are given in terms of the expectation of

the solution squared; pointwise estimates are not available.

We now consider the problem of analysing the solution to (2.6.3) on a surface
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that forms a singularity in finite time, with Problem II. In Chapter 7 we consider

(2.6.3) on the surface3 Sαt as given by

Sαt := {(x, y, z) ∈ R3 |x2 + y2 − z2 = (1− t)2α} (7.0.1)

and formulate the central equation of study for problem II

∂u

∂t
=

1√
|h|
∇ ·
(√
|h|h−1∇u

)
+ α(1− t)α−1 ∂

∂l

(
G(l(1− t)−α)u

)
+ α(1− t)−1 sech 2g(l(1− t)−α)u

u(l, 0, t) = u(l, 2π, t)

u(l, θ, 0) = U0(X(l, θ, 0)) =: u0(l, θ).

(7.1.5)

However, we observe that the integral of the solution u to (7.1.5) is not conserved

in the sense that
d

dt

∫
K
u(l, θ, t) dldθ 6= 0,

where K := R × [0, 2π). On the other hand, by Proposition 7.1.6, we see that the

integral of J := u
√
|h| is conserved. Here

√
|h| is the change of area measure from

Sαt onto R2 and we call J the density. We thus consider the equation J solves

∂J

∂t
= ∇ ·

(√
|h|h−1∇

(
J√
|h|

))
+ α(1− t)α−1 ∂

∂l
(GJ)

J(l, 0, t) = J(l, 2π, t)

J(l, θ, 0) = u0(l, θ) cosh g(l)

(7.1.6)

and take the simplifying assumption that the initial condition is independent of θ.

Our central equations of study are thus

∂J

∂t
=
∂2J

∂l2
− (1− t)−α ∂

∂l

(
tanh g√
cosh 2g

J

)
+ α(1− t)α−1 ∂

∂l
(GJ)

J(l, 0) = u0(l) cosh g(l)

(7.1.7)

for the density J and

∂u

∂t
=
∂2u

∂l2
+ (1− t)−α tanh g√

cosh 2g

∂u

∂l
+ α(1− t)α−1 ∂

∂l
(Gu) + α(1− t)−1 sech 2g u

u(l, 0) = u0(l)

(7.1.8)

3which is a hyperboloid of one sheet
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for u. We conclude this chapter by considering, in Section 7.2, the scaling properties

of (7.1.7) and (7.1.8) for a self–similar coordinate change of y := l(1 − t)−α and

τ = − log(1 − t). This scaling is well defined if α ≤ 1
2 , but becomes unusable if

α > 1
2 . In this case, we take y := l(1− t)−α but τ := (1− t)1−2α. We thus have the

same subcritical, critical and supercritical cases of α as with the curve.

Our analysis of problem II is given in Chapter 8 and we first consider α < 1
2

in Section 8.1. In Theorem 8.1.1 we prove the uniform boundedness and vanishing

of the solution, J , to (7.1.7). We transform the equation using the self–similar

coordinates and use a probabilistic technique that is similar to the approach of the

curve. How J behaves near the singularity is given in Theorem 8.1.4 where we

again guess an ansatz for the solution near to the singularity and use probabilistic

techniques to give the result. The method is very similar to the case of the curve.

With regards to the solution u to (7.1.8), we show that u is uniformly bounded

as a corollary to the above results for J in Corollary 8.1.5. We finally show, in

Theorem 8.1.6 via a probabilistic technique, that the solution u to (7.1.8) need not

vanish. We remark that this is at odds with the case of the curve for α < 1
2 .

For the case of α = 1
2 , we show that the solution u to (7.1.8) is bounded in a

time–dependent decreasing neighbourhood of l = 0, we also show that u is bounded

above by a certain function of |l| for |l| > y0

√
1− t and we conjecture that this

function is bounded. Furthermore, we prove a power law for J , analogous to that

of Section 4.2 and show that J vanishes at the singularity. The results are given in

Theorem 8.2.1 where we use a perturbation argument for the equation of u to prove

the result along with functional analytical and comparison principle techniques. The

boundedness result of u is not as strong as in the case of α < 1
2 and we are unable

to prove the uniform boundedness of J .

The case of α > 1
2 becomes even more challenging, where we can only show

the boundedness of the solution J to (7.1.7) in a time–dependent decreasing neigh-

bourhood of l = 0 and that J vanishes at the singularity (Theorem 8.3.2). We can

show that the solution u to (7.1.8) has a worst–case blow up estimate. That is,

we show in Lemma 8.3.1 if the solution u is singular at t = 1, then the solution is

bounded above by some negative power of (1− t). The challenges that prevent more

from being proven are given at the start of Section 8.3 and we conclude this chapter

with an heuristic argument for the boundedness of J .

In Chapter 9 we look into continuing the solution obtained in Chapter 8,

onto the hyperboloid of two sheets defined by

Sα,cont
t := {(x, y, z) ∈ R3 | z2 − x2 − y2 = (t− 1)2α}. (9.0.1)
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We derive the continued equation for the solution u to (7.1.8) as

∂u

∂t
=
∂2u

∂l2
+ t−α

coth g(lt−α)√
cosh 2g(lt−α)

∂u

∂l
− αtα−1G(lt−α)

∂u

∂l

+ αt−1(sech 2g(lt−α) + sech2 2g(lt−α))u

u(l, 0) = U(X(l, θ, 1), 1) =: u0(l)

(9.1.3)

and we also derive the continued equation for the solution J to (7.1.7) as

∂J

∂t
=
∂2J

∂l2
− ∂

∂l

((
t−α

coth g√
cosh 2g

+ αtα−1G

)
J

)
J(l, 0) =

√
2

2
|l|u0(l) =: J∗(l).

(9.1.4)

The singularity of the drift in equation (9.1.4) is analysed in Remark 9.1.3. Since

(9.1.4) is of Fokker–Planck type, it is sensible to consider the problem as continuing

a stochastic process, analogous to what was given in Chapter 5. We thus seek a

unique strong solution to

dXt =

(
t−α

coth g(Xtt
−α)√

cosh 2g(Xtt−α)
+ αtα−1G(Xtt

−α)

)
dt+

√
2 dBt

X0 = Z

(9.2.1)

whereB• is a standard Brownian motion and Z has density J∗. Such a unique, strong

solution is given, up to a suitable stopping time, by Theorem 9.2.1. The proof uses

estimates on certain stochastic processes and modifying the coefficients of (9.2.1)

accordingly. Different regimes of α are considered in the proof. The stopping time

is needed due to the singular drift in (9.2.1). But we show in Theorem 9.2.3 that,

with probability 1, one can extend the solution for all future times, regardless of the

value of α ∈ (0,∞). The proof uses a Lyapunov function approach and is similar

to showing that a two–dimensional Bessel process never touches the origin. We

conclude the chapter by giving in Theorem 9.2.4 the existence of a unique classical

solution to equation (9.1.4) and show that the initial data is attained in the weak

sense.

Our final problem, Problem III, is outlined and analysed in Chapter 10.

Here, we consider (2.6.3) on a curve, but assume that the curve evolution is coupled

to the solution of the equation on the curve. The problem here is motivated by
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mathematical biology and we consider the curve Ct as given by

Ct := {(x, y) ∈ R2 | y ≥ 0, y2 − x2 = f(t)}, 0 ≤ t ≤ T, (10.1.1)

for some T small enough. Here f is some functional of u, which we specify. The

equation (2.6.3) is transformed using arc–length parameterisation into

∂u

∂t
=
∂2u

∂l2
− ḟ(t)

2
√
f(t)

∂

∂l

(
G(lf(t)−

1
2 )u
)

u(l, 0) = U0(X(l, 0)).

(10.1.6)

This equation is now non–linear due to the dependence of f on u. In Theorem 10.2.1

we show short time existence and uniqueness of a solution in a suitable Banach

space and we do not consider any possible singularity. We treat the problem as

a perturbation of the heat equation to gain the result. In Remark 10.2.2 we give

a heuristic argument for the behaviour of the solution at any possible singularity

and remark that considering a singularity in this setting is extremely challenging.

We remark that a more general f with suitable regularity conditions may also be

considered, but we do not do this in this thesis.

The thesis is concluded by Chapter 11 where open problems raised in the

thesis are discussed along with the problems encountered. We also look at some

natural questions that are raised from this thesis to guide future work. The appen-

dices contain important results that are referred to throughout this thesis.
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Chapter 2

Background Material

This chapter is designed to set up the notation, definitions and results to be used

in the thesis, and to provide the reader with a background of these areas as needed.

References are given where appropriate.

2.1 Basic Definitions

2.1.1 Calculus on R

Definition 2.1.1. Let g : R → R and k ∈ N ∪ {0}. If k > 0 then g ∈ Ck(R)

if and only if g is k times differentiable with continuous derivative. If k = 0 then

g ∈ C0(R) if and only if g is continuous. In this case, we drop the superscript 0 and

write g ∈ C(R).

Definition 2.1.1 has a natural generalisation to “time” dependent functions.

Definition 2.1.2. Let a, b ∈ R with a < b, k,m ∈ N ∪ {0} and f : R× (a, b) → R.

We say that f ∈ Ck,m(R × (a, b);R) if and only if the partial derivatives exist and

f(x, ·) ∈ Ck(R;R) and f(·, t) ∈ Cm((a, b);R).

Definition 2.1.3. Let f : R → R be continuous. Then the support of f , denoted

supp(f) is defined as

supp(f) := {x ∈ R | f(x) 6= 0}.

Definition 2.1.4. We define C∞c (R) to be the collection of all f ∈ C∞(R) with

compact support.
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2.1.2 Calculus on a Banach Space

Definition 2.1.5. Let p ∈ [1,∞], q ∈ [1,∞] and T ∈ (0,∞). Then we define for

1 ≤ p <∞

Lp([0, T );Lq(R)) :=

f : [0, T )→ Lq(R) measurable |
(∫ T

0
‖f(s)‖pLq ds

) 1
p

<∞


and for when p =∞

L∞([0, T );Lq(R)) :=

{
f : [0, T )→ Lq(R) measurable | ess sup

s∈[0,T )
‖f(s)‖Lq <∞

}
.

We define

C([0, T );Lq(R)) :=

{
f : [0, T )→ Lq(R) continuous | sup

s∈[0,T )
‖f(s)‖Lq(R) <∞

}

2.2 Classical Partial Differential Equations

Consider the following Cauchy problem for (x, t) ∈ R× (0, T ) where T ∈ (0,∞),

∂u

∂t
(x, t) = A(x, t)u(x, t)

u(x, 0) = u0(x)

(2.2.1)

where

A(x, t) =
∂2

∂x2
+ b(x, t)

∂

∂x
− c(x, t)

with b and c are smooth in both arguments and c ≥ 0 (the latter condition can be

neglected). We assume that the initial data, u0, has u0 ∈ C∞c (R). We will use the

following notions of solution.

Definition 2.2.1. We say that u ∈ C2,1(R × [0, T );R) is a classical solution of

(2.2.1) if and only if u satisfies (2.2.1) pointwise with

u(x, 0) = u0(x)

for every x ∈ R and is unique.

Remark 2.2.2. In the case that one can only prove that u ∈ C2,1(R × (0, T );R),

we will require that limt→0 u(x, t) = u0(x) for every x ∈ R.
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Definition 2.2.3. We say that u ∈ C([0, T );L∞(R)) is a mild solution of (2.2.1)

if and only if u is the unique solution to

u = Fu

in C([0, T );L∞(R)) where for v ∈ C([0, T );L∞(R))

Fv(t) = S(t)u0 +

∫ t

0
S(t− s)B(s)v(s) ds

and

B(s)v(s)(x) := b(x, s)
∂v(s)(x)

∂x
− c(x, s)v(s)(x).

Here S(t) : L∞(R)→ L∞(R) is the heat semigroup defined by

(S(t)v)(x) :=
1√
4πt

∫
R
e−

(x−y)2

4t v(y) dy

and it is understood that one performs an integration by parts in the definition of

F .

We have the following existence and uniqueness theorem for (2.2.1).

Theorem 2.2.4. Consider (2.2.1) and suppose that b(·, t) and c(·, t) are bounded

for every t ∈ [0, T ) and globally Hölder continuous, uniformly in t. Suppose also

that the first spatial derivative of b is bounded, continuous and is globally Hölder

continuous, uniform in t. Then there exists a unique classical solution u to (2.2.1)

which is also the unique mild solution.

Proof. Since the coefficients of A are smooth, bounded and globally Hölder con-

tinuous uniformly in t along with the second–order term being uniformly elliptic,

Theorem 12, page 25 of Friedman [1964] applies so that (2.2.1) is satisfied. Unique-

ness follows from Theorem 16, page 29 of Friedman [1964] and the argument that

the classical solution is a mild solution is standard. (See, for example, Sell and You

[2002]).

2.3 Stochastic Differential Equations

Of use will be the classical theory for Stochastic Differential Equations. Detailed

below are some standard results. We will refer to the adequate text or provide an

alternative proof if and when the standard theory is inadequate for our problem.
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Let (Ω,F ,P) be a filtered probability space, rich enough to support Brownian

motion. Let the filtration (Ft)t∈[0,T ] be right–continuous and increasing in the sense

that s < t implies Fs ⊂ Ft. Let Wt denote the Gaussian process such that

1. W0 = 0 P− a.s,

2. t 7→Wt is P− a.s continuous,

3. Wt −Ws ∼ N(0, t− s) for every s < t,

4. W has independent increments, so that if a1 < a2 < a3 < a4 then Wa2 −Wa1

and Wa4 −Wa3 are independent random variables.

By standard results of probability theory, such a process exists (Øksendal [2003],

Section 2.2). Consider the following Stochastic Differential Equation on R

dXt = a(Xt, t) dt+ b(Xt, t) dWt

X0 = x
(2.3.1)

where x ∈ R and t ∈ [0, T ] for some T ∈ (0,∞). We note that (2.3.1) is interpreted

in the following integral equation sense that P− a.s

Xt = x+

∫ t

0
a(Xs, s) ds+

∫ t

0
b(Xs, s) dWs,

where ∫ t

0
b(Xs, s) dWs

is the stochastic integral, interpreted in the Itō sense (Øksendal [2003]).

Definition 2.3.1. We say that the stochastic process (Xt)t∈[0,T ] is a strong solution

to (2.3.1) if and only if P− a.s we have

Xt = x+

∫ t

0
a(Xs, s) ds+

∫ t

0
b(Xs, s) dWs.

The most standard existence and uniqueness result for strong solutions to

(2.3.1) is given below.

Theorem 2.3.2. Let T > 0 and a, b : R × [0, T ] → R be measurable functions

satisfying there exists Ci > 0 (i = 1, 2) such that

|a(x, t)|+ |b(x, t)| ≤ C1(1 + |x|)
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for every (x, t) ∈ R× [0, T ] and such that

|a(x, t)− a(y, t)|+ |b(x, t)− b(y, t)| ≤ C2|x− y|

for every x, y ∈ R, t ∈ [0, T ]. Then, the Stochastic Differential Equation (2.3.1)

has a unique t−continuous solution Xt, with the property that Xt is adapted to the

filtration generated by Ws; s ≤ t and

E
[∫ T

0
|Xt|dt

]
<∞.

Proof. The proof can be found in Øksendal [2003], pp. 69 – 71. There, a more

general statement is given concerning the initial data and the dimension of the state

space. Since we will only consider one spatial dimension, the above suffices.

We have only discussed the Itō stochastic integral above. Of importance will

be the Stratonovich interpretation. Indeed, we have the following. See (Øksendal

[2003] p.84), for example.

Definition 2.3.3. Given the Itō Stochastic Differential Equation

dXt = b(Xt, t)dt+ σ(Xt, t) dWt,

this is interpreted in the Stratonovich sense as

dXt =

(
b(Xt, t)−

1

2
σ(Xt, t)

∂σ

∂y
(Xt, t)

)
dt+ σ(Xt, t) ◦ dWt.

The converse also holds and we say that

−1

2
σ(Xt, t)

∂σ

∂y
(Xt, t) dt

is the Itō–Stratonovich correction term.

The following formula, referred to as Itō’s formula, is crucial in many calcu-

lations.

Lemma 2.3.4. Suppose (Xt) is the strong solution to the following Itō Stochastic

Differential Equation

dXt = b(Xt, t) dt+ σ(Xt, t) dWt.
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Let f ∈ C2,1(R× [0, T ];R) and define Yt := f(Xt, t). Then

dYt =
∂f

∂t
(Xt, t)dt+

∂f

∂y
(Xt, t)dXt +

1

2

∂f2

∂y2
(Xt, t)σ

2(Xt, t) dt.

Proof. A proof of the one–dimensional case and the n dimensional case when b and

σ are independent of time is given in Øksendal [2003], p.44 and p.48 respectively.

For the case of b and σ dependent on time as well as state space, we refer the reader

to Friedman [1975] p.81.

Lemma 2.3.5. Let (Ω,F ,P) be a probability space and (Bt) be standard Brownian

motion. Let (Ft) be the canonical filtration generated by (Bt). Suppose

f : [0,∞)× Ω→ R

satisfies the following conditions.

i) (t, ω) 7→ f(t, ω) is B ×F-measurable, where B is the Borel σ-algebra on [0,∞);

ii) f(t, ω) is Ft-adapted;

iii) E
[∫ T
S f(t, ω)2 dt

]
<∞, where S, T ∈ [0,∞) with S < T .

Then

E

[(∫ T

S
f(t, ω) dBt

)2
]

= E
[∫ T

S
f(t, ω)2 dt

]
. (2.3.2)

Equation (2.3.2) is referred to as the “Itō Isometry”. If f is independent of ω, then

E

[(∫ T

S
f(t) dBt

)2
]

=

∫ T

S
f(t)2 dt.

Proof. A proof is given in Øksendal [2003], p. 29.

Remark 2.3.6. Of importance to note is that (2.3.1) also makes sense, via the

scaling properties of Brownian motion, for negative times. By this, we mean that

we may start the Stochastic Differential Equation at time t = −τ for some τ > 0

and run the equation forward for t ∈ (−τ, 0]. Indeed, this notion will be useful

when we considering the stochastic representation of solutions to Partial Differential

Equations.
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2.4 Stochastic Representation of Solutions to Partial

Differential Equations

Of particular interest in the analysis of Partial Differential Equations is pointwise

behaviour of the solution. In order to analyse this, we need a representation formula.

Classically, one solves the PDE to get the fundamental solution, or perhaps uses the

parametrix method as given in Friedman [1964]. However, usually this is hard to

do and a much cleaner approach is to use the Feynman–Kac formula. We describe

this as follows. Consider
∂u

∂t
(x, t) = A(x, t)u(x, t)

u(x, 0) = u0(x)

(2.4.1)

where

A(x, t) =
D(x, t)

2

∂2

∂x2
+ b(x, t)

∂

∂x
− c(x, t)

and suppose the hypotheses on b and c as in Theorem 2.2.4 hold, along withD(x, t) >

0 for every (x, t) ∈ R × [0, T ]. Suppose that the initial data has u0 ∈ C∞c (R).

Consider the Stochastic Differential Equation

dYs = b(Ys,−s) ds+
√
D(Ys,−s) dWs

Y−t = x
(2.4.2)

where x ∈ R and −t ≤ s ≤ 0. We have the following Theorem.

Theorem 2.4.1 (The Feynman–Kac representation Theorem). Suppose there is a

unique classical solution, u, to (2.4.1) and suppose that one has a unique strong

solution, (Ys)s≥−t to (2.4.2). Then the solution u is given by

u(x, t) = E(−t,x)

[
exp

(
−
∫ 0

−t
c(Ys,−s) ds

)
u0(Y0)

]
(2.4.3)

Here E(−t,x)[ · ] denotes the conditional expectation, conditioned on Y−t = x.

Proof. The proof can be found in Friedman [1975], Theorem 5.3, p.148. It is stan-

dard to have a terminal condition for the Partial Differential Equation, however a

simple change of time can modify this for our purpose.

Remark 2.4.2. We also call (2.4.3) the “Feynman–Kac Formula”.

When b , c and D become time–independent, one has the following.
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Theorem 2.4.3. Suppose b, c and D in (2.4.1) are time independent. Assume that

all the other hypotheses on b , c and D hold with u0 ∈ C∞c (R) and that there exists a

unique classical solution u to (2.4.1). Assume one can find a unique strong solution,

(Ys)0≤s≤T , to

dYs = b(Ys) ds+
√
D(Ys) dWs

Y0 = x
(2.4.4)

where x ∈ R and 0 ≤ t ≤ T . Then the solution u is given by

u(x, t) = E(x)

[
exp

(
−
∫ t

0
c(Ys) ds

)
u0(Yt)

]
.

Here E(x)[ · ] denotes the conditional expectation, conditioned on Y0 = x.

Proof. The proof can be found, for example, in Øksendal [2003], p. 143.

2.5 The Fokker–Planck Equation

The Fokker–Planck equation, or Forward Kolmogorov equation, describes the time

evolution of the probability density function of a stochastic process satisfying an Itō

SDE. More precisely we have the following.

Theorem 2.5.1. Let (Xt)0≤t≤T be the unique strong solution of the Ito SDE

dXt = b(Xt, t) dt+
√

2σ(Xt, t) dWt

X0 = Z.
(2.5.1)

If (Xt) has a smooth density, ρ, with respect to the Lebesgue measure, dy, then if

a(y, t) := σ(y, t)2,
∂a

∂y
(y, t), b(y, t),

∂b

∂y
(y, t)

are bounded, continuous and globally Hölder continuous uniformly in t with σ2 uni-

formly elliptic, then ρ classically solves the Fokker–Planck equation

∂ρ

∂t
=

∂2

∂y2
(a(y, t)ρ(y, t))− ∂

∂y
(b(y, t)ρ(y, t)) (2.5.2)

Proof. The proof is given in Friedman [1975], Theorem 5.4, page 149.

Note that the theorem asserts nothing about attainment of the initial data.
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Remark 2.5.2. The question of whether a density actually exists and is smooth is

very delicate. A sufficient condition is given by the probabilistic version of Horman-

der’s Theorem, presented in Malliavin [1978]. Indeed, if b is smooth and bounded

in (2.5.1) with σ uniformly elliptic then the strong solution to (2.5.1) has a smooth

density.

However, if σ is not uniformly elliptic we have the following.

Theorem 2.5.3 (Probabilistic version of Hörmander’s Theorem). Suppose there is

a unique strong solution to the following Stratonovich SDE (Øksendal [2003])

dXt = V0(Xt) dt+ V1(Xt) ◦ dWt. (2.5.3)

Define

V0 := {V1}

and iteratively

Vk+1 := Vk ∪ {[U, Vj ] |U ∈ Vk & j ≥ 0},

where the commutator [A,B] is defined as

[A,B](x) := DB(x)A(x)−DA(x)B(x)

and DB is the derivative of B with respect to x. Define

Vk(x) := Span{V (x) |V ∈ Vk}

and suppose that

R =
⋃
k≥1

Vk(x)

for every x ∈ R. Then the solution to (2.5.3) has a smooth density with respect to

Lebesgue measure.

Proof. For a clear explanation of the proof, which considers general dimensions,

see Hairer [2011]. The original proof was given in the landmark paper Malliavin

[1978].

Remark 2.5.4. One should recall the classical deterministic Hormander’s Theorem

(Hörmander [1967]) which states that for a hypoelliptic operator on Rn

P := X0 +

p∑
i=1

X2
i
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where p < n and the vector fields Xi, [Xi, Xj ], [Xk, [Xi, Xj ]], ... span Rn, then every

distributional solution to ∂tu = Pu has u ∈ C∞(Rn).

Remark 2.5.5. Theorem 2.5.3 holds true for Vi dependent on t as well as x and if

V1 is a constant, depending only on t, then the Itō and Stratonovich interpretations

of the Stochastic Integral agree. The conclusion of the above theorem still holds in

these cases.

If V0 = 0 identically, then Vk = V0 for every k ≥ 1 and so we only require

V1(x, t) to be finite at each (x, t).

Further, if we restrict to where only Hörmander’s condition holds, i.e

A := {x ∈ R |R = ∪k≥1Vk(x)}

satisfies A 6= ∅ and A 6= R, then Hörmander’s Theorem is said to hold in A and so

for x ∈ A a smooth density exists.

Importantly, this theorem says nothing about attainment of any initial data.

Indeed, for such σ that are not uniformly bounded we need the following

modification of Theorem 2.5.1.

Theorem 2.5.6. Suppose b and σ satisfy the conditions in Theorem 2.3.2 so that a

unique strong solution exists to the SDE in (2.5.1). Suppose also that a smooth den-

sity, ρ, exists (for example, by satisfying Theorem 2.5.3). Then ρ satisfies (2.5.2).

Proof. For f ∈ C∞c (R) and (Xt) the unique strong solution to (2.5.1), define Yt :=

f(Xt). Then, by Itō’s formula (omitting the arguments of σ and b for typographic

clarity)

f(Xt) = f(y) +

∫ t

0

(
f ′(Xs)b+ σ2f ′′(Xs)

)
ds+

∫ t

0

√
2f ′(Xs)σ dWs,

where y ∈ R is a realisation of Z. Taking expectations we have

E[f(Xt)] = f(y) + E
[∫ t

0

(
f ′(Xs)b+ σ2f ′′(Xs)

)
ds

]
+ E

[∫ t

0

√
2f ′(Xs)σ dWs

]
.

However, f ∈ C∞c (R) and so it follows, as σ grows at most linearly, that there exists

M > 0 such that

|f ′(y)σ(y, t)| ≤M

for every y ∈ R and every t ∈ [0, T ]. Thus, since any uniformly bounded functional,
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h, of an Itō process (Zt) has

E
[∫ t

0
h(Zs) dWs

]
= 0

(Karatzas and Shreve [1991]) it follows that we have the following, which is referred

to as “Dynkin’s Formula” (Øksendal [2003]):

E[f(Xt)] = f(y) + E
[∫ t

0

(
f ′(Xs)b(Xs, s) + σ2(Xs, s)f

′′(Xs)
)

ds

]
. (2.5.4)

Using that

Ef(Xt) =

∫
R
f(x)ρ(x, t) dx,

Fubini’s Theorem, integration by parts and differentiating under the integral, we

conclude that for every f ∈ C∞c (R)∫
R
f(x)

∂ρ

∂t
(x, t) dx =

∫
R
f(x)

(
− ∂

∂x
(b(x, t)ρ(x, t)) +

∂2

∂x2

(
σ2(x, t)ρ(x, t)

))
dx

and so (2.5.2) holds.

We call a PDE of the type (2.5.2) a Fokker–Planck equation. Theorem 2.5.6

will give us existence of a classical solution to (2.5.2). However, one will have to

show “by hand” that the equation attains its initial data.

2.6 Surface Partial Differential Equations

Our central object of study is the heat equation on an evolving curve and surface. In

the following, we introduce the concept of partial differential equations on moving

surfaces and derive the equation, which arises from a conservation law, that will be

the subject of study throughout this thesis.

LetM(t) be a hypersurface for each time t ∈ [0, T ] where T ∈ (0,∞) is fixed.

We need some notion of what it means to have such an object. Unless otherwise

stated, the definitions and proofs are found in Deckelnick et al. [2005].

Definition 2.6.1. Let k ∈ N. A subset Γ ⊂ Rn+1 is called a Ck-hypersurface if for

each point x0 ∈ Γ there exists an open set U ⊂ Rn+1 containing x0 and a function

φ ∈ Ck(U) such that

U ∩ Γ = {x ∈ U |φ(x) = 0} and ∇φ(x) 6= 0 for every x ∈ U ∩ Γ.
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This allows us to define what it means for a function on Γ to be differentiable.

Definition 2.6.2. Let Γ ⊂ Rn+1 be a C1-hypersurface, x ∈ Γ. A function f :

Γ → R is called differentiable at x if f ◦ X is differentiable at X−1(x) for each

parameterisation X : Θ→ Rn+1 of Γ with x ∈ X(Θ).

The following lemma shows us how to interpret the above definition in terms of

functions defined on the ambient space.

Lemma 2.6.3. Let Γ ⊂ Rn+1 be a C1-hypersurface with x ∈ Γ. A function f : Γ→
R is differentiable at x if and only if there exists an open neighbourhood U in Rn+1

and a function f̃ : U → R which is differentiable at x and satisfies f̃ |Γ∩U = f .

With the notion of differentiable functions on Γ we now define the tangential gradi-

ent, which is the form of the differential operator we will be considering.

Definition 2.6.4. Let Γ ⊂ Rn+1 be a C1-hypersurface, x ∈ Γ and f : Γ → R
differentiable at x. We define the tangential gradient of f at x by

∇Γf(x) := ∇f̃(x)−
(
∇f̃(x) · ν(x)

)
ν(x).

Here f̃ is as in Lemma 2.6.3, ∇ denotes the usual gradient in Rn+1 and ν(x) is a

unit normal at x.

This leads to the definition of the Laplace–Beltrami operator on Γ(t),

∆Γ(t)f := ∇Γ(t) · ∇Γ(t)f.

Before stating the conservation law and deriving the PDE, we need to define a time

derivative that takes into account the evolution of the surface, generalise integration

by parts and give the so-called transport Theorem.

Definition 2.6.5. Suppose Γ(t) is evolving with normal velocity vν . Define the

material velocity field v := vν + vτ where vτ is the tangential velocity field. The

material derivative of a scalar function f = f(x, t) defined on GT := ∪t∈[0,T ]Γ(t)×{t}
is given as

∂•t f :=
∂f

∂t
+ v · ∇f.

We now give a generalisation of integration by parts for a hypersurface Γ,

the proof of which is found in Gilbarg and Trudinger [2001].
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Theorem 2.6.6. Let Γ be a compact C2-hypersurface with boundary. Suppose that

f ∈W 1,1(Γ;Rn+1). Then∫
Γ
∇Γ · f dHn =

∫
Γ
f ·Hν dHn +

∫
∂Γ
f · ν∂Γ dHn−1,

where H = ∇Γ · ν is the mean curvature and ν∂Γ is the co-normal.

This leads us nicely onto the following lemma which is referred to as the transport

Theorem, whose proof is given in Dziuk and Elliott [2007].

Lemma 2.6.7. Let C(t) be an evolving surface portion of Γ(t) with normal velocity

vν . Let vτ be a tangential velocity field on C(t). Let the boundary ∂C(t) evolve with

the velocity v = vν + vτ . Assume that f is a function such that all the following

quantities exist. Then

d

dt

∫
C(t)

f =

∫
C(t)

∂•t f + f∇Γ · v.

We now have all the necessary theory to formulate an advection-diffusion equation

from the following conservation law.

Let u be the density of a scalar quantity on Γ(t) and suppose there is a

surface flux q. Consider an arbitrary portion C(t) of Γ(t), which is the image of a

portion C(0) of Γ(0), evolving with the prescribed velocity vν . The law is that, for

every C(t),
d

dt

∫
C(t)

u = −
∫
∂C(t)

q · ν∂Γ, (2.6.1)

along with the surface integral of u being conserved. That is,

d

dt

∫
M(t)

u(z, t) dσ(z) = 0. (2.6.2)

Observing that components of q normal to C(t) do not contribute to the flux, we

may assume that q is a tangent vector. With this assumption, Theorem 2.6.6 and

Lemma 2.6.7 together with defining the flux q := uvτ −∇Γ(t)u, one has the PDE

∂•t u+ u∇Γ(t) · v −∆Γ(t)u = 0.

We now take Γ(t) =M(t) and arrive at the following model PDE on M(t)

∂•t u+ u∇M(t) · v −∆M(t)u = 0

u(x, 0) = u0 x ∈M(0).
(2.6.3)
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Chapter 3

Statement and formulation of

Problem I

We are now in a position to consider the first problem. We set the problem and for-

mulate it in an appropriate way to perform the analysis as outlined in the subsequent

chapter.

3.1 The Problem

Fix α ∈ (0,∞) and consider the two hyperbolae

Cαt := {(x, y) ∈ R2 | y ≥ 0, y2 − x2 = (1− t)2α}, 0 ≤ t ≤ 1, (3.1.1)

and

Cα,cont
t := {(x, y) ∈ R2 |x ≥ 0, x2 − y2 = (t− 1)2α}, 1 ≤ t ≤ T, (3.1.2)

where T ∈ (1,∞). Figure 3.1 highlights Cαt (along with the lower half of the hyper-

bola) for α = 0.5 and various t ∈ [0, 1] near to the origin whilst Figure 3.2 highlights

Cα,cont
t (again, along with the “left” half of the hyperbola) for α = 0.5 and various

t ∈ [1, 2], near to the origin.

For Cαt and 0 ≤ t ≤ 1, denote by φ : R2 × [0, 1] → R, the level set function

of Cαt defined by φ(x, y, t) := y2 − x2 − (1− t)2α. It can be seen that {φ = 0} = Cαt
and that the curve undergoes a “kink” at time t = 1 at x = 0 and so the regularity

of the curve decreases. Figure 3.1 shows this for α = 0.5 by means of the brown

central cross in the graph, whereas Figure 3.2 shows this for α = 0.5 by means of a

blue central cross in the graph. In particular, one cannot define the tangent space at
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Figure 3.1: Plot of Cαt for α = 0.5 and various t ∈ [0, 1].

(0, 0) nor the mean curvature at this point. We are interested in the effects of this

geometric singularity to the solution to the following PDE on Cαt , which is derived

from a conservation law (Section 2.6).

∂•t U + U∇Γ · v −∆ΓU = 0 x ∈ Γ := Cαt
U(x, 0) = U0(x) x ∈ Cα0

(3.1.3)

where

v :=
φt
|∇φ|

ν

is the prescribed normal velocity of the curve, with the outward pointing unit normal

given by

ν := − ∇φ
|∇φ|

.

The time-derivative like term, ∂•t , is called the material derivative. An introduction

to surface Partial Differential Equations is given in Section 2.6.

We are interested in whether the solution can be continued onto Cα,cont
t for

t ≥ 1 (see Chapter 5) and whether any stochastic perturbation of (3.1.3) for 0 ≤
t < 1 leads to different qualitative results for the solution at the singularity (see

Chapter 6).

We will assume that the initial data U0 is smooth and bounded. Further, we

assume that U0 is also prescribed on the other half of the hyperbola along with the

same PDE, making sure that the continuation of the solution is a sensible notion.
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Figure 3.2: Plot of Cα,cont
t for α = 0.5 and various t ∈ [1, 2].

3.2 Formulation of the Problem in arc-length parame-

ter.

In the following, we transform (3.1.3) into an equation on R× [0, 1) using arc-length

parameterisation. This is motivated by the fact that the zero level sets of φ describe

the curve, but in order to arrive at a nice expression for the Laplace-Beltrami term

∆Cαt , we will use arc-length parameterisation. We pay the price by introducing a

non-physical drift term into the equation, as we will see below.

Let Y : R × [0, 1] → R2 be defined by Y (p, t) = (1 − t)α(sinh p, cosh p).

Denote by Yp the partial derivative of Y with respect to p. Then by standard

hyperbolic identities, we see that Y is a smooth parameterisation of Cαt . Define

l :=
∫ p

0 |Yp(u, t)| du. Then

l

(1− t)α
=

∫ p

0

√
cosh 2u du

for t ∈ [0, 1). We see that l = 0 corresponds to where the singularity occurs.

Definition 3.2.1. Let g : R→ R be the inverse of the map p 7→
∫ p

0

√
cosh 2udu.

Remark 3.2.2. By the inverse function theorem it follows that, for every s ∈ R,

g′(s) =
1√

cosh 2g(s)
,

g(0) = 0.

(3.2.1)
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Also, one should note that g(−s) = −g(s) for every s ∈ R. A plot is given in

Figure 3.3.

Figure 3.3: Plot of g(s) (vertical axis) for s ∈ [−10, 10] (horizontal axis).

Define the arc-length parameterisation of Cαt , denoted by X : R× [0, 1]→ R2, by

X(l, t) = (1− t)α
(
sinh g(l(1− t)−α), cosh g(l(1− t)−α)

)
. (3.2.2)

We now transform (3.1.3) into a PDE on R × [0, 1) ready for subsequent

analysis. In order to transform (3.1.3) we write u(l, t) = U(X(l, t), t) and compute

to find (using the definition of the material derivative in the second equality)

∂u

∂t
=
∂U

∂t
+∇U ·Xt = ∇U · (Xt − v) + ∂•t U

and
∂u

∂l
= ∇U ·Xl.

Noting that v is in the normal direction only, and noting the sign1 of the normal

vector, we have that (Dziuk and Elliott [2007], Appendix A)

∇Γ · v = V H

1Usually one has ∇Γ · v = −V H, however this is for a curve oriented such that ∇φ/|∇φ| is the
unit normal. This is not the case for our curve.
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where

V :=
φt
|∇φ|

and H :=
−1

|∇φ|

2∑
i,j=1

(
δij −

φxiφxj
|∇φ|2

)
φxixj .

Finally,

∆ΓU(X(l, t), t) =
∂2u

∂l2
(l, t)

as |Xl| = 1. (See Dziuk and Elliott [2007]). We observe that Xt − v = βτ̂ where τ̂

is the unit tangent vector, τ̂ = ±Xl. This is because

Xt ·ν− v ·ν =
1

|∇φ|
(Xt · (−∇φ)− φt) =

1

|∇φ|
(
2α(1− t)2α−1 − 2α(1− t)2α−1

)
= 0.

Thus, β = Xt · τ̂ and so for any orientation of τ̂ we have

∇U · (Xt − v) = Xt ·Xl
∂u

∂l

which is the artificial drift due to the difference in the arc-length parameterisation

and the prescribed normal velocity of the curve. One computes and sees that

Xt ·Xl = α(1− t)α−1

(
l

(1− t)α
− sinh 2g(l(1− t)−α)√

cosh 2g(l(1− t)−α)

)

and

V H =
α

1− t
sech2 2g(l(1− t)−α).

One notes that there is no α−dependence in the coefficient of sech2 on the power of

1− t above and that

∂

∂l
(Xt ·Xl) = −α(1− t)−1 sech2 2g(l(1− t)−α).

Thus, equation (3.1.3) becomes

∂u

∂t
=
∂2u

∂l2
+ α(1− t)α−1 ∂

∂l

(
G(l(1− t)−α)u

)
u(l, 0) = U0(X(l, 0))

(3.2.3)

where for s ∈ R
G(s) := s− sinh 2g(s)√

cosh 2g(s)
. (3.2.4)

Using Proposition A.0.2 one sees that G ∈ L∞(R) and by Proposition A.0.1 we have

sech2 2g(z) ≤ O(z−4) as |z| → ∞.
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Remark 3.2.3. One notes that changing α > 0 still yields a singular curve, but

for α ≥ 1 the resulting PDE seems non-singular as (1 − t)α−1 → 0 as t → 1−

for α ≥ 1. However, the spatial derivative of Xt ·Xl hides the fact that the purely

geometric term, V H, has coefficient independent of α. Changing α changes the speed

at which one enters the singularity, as can be seen in the definition of V . However,

these changes are quite important, as we shall see, the different values of α means

different methods of analysis of the PDE.

Remark 3.2.4. We will suppose that u0(l) := U(X(l, 0)) has u0 ∈ C∞c (R) with∫
R u0(l) dl = 1.

Standard parabolic theory (Theorem 2.2.4) implies that there exists a smooth

solution u ∈ C2,1(R× [0, 1)) that solves (3.2.3).

3.3 Formulation of the Problem along flow lines

Although the problem in arc-length parameterisation yields a nice constant coeffi-

cient second-order term, we will see that it will be be useful in the analysis of the

problem for certain α, to have a formulation of the PDE along the flow lines.

Precisely, from basic hyperbolic geometry, if y2 − x2 = const then the curve

xy = const is normal to this curve. Thus we define

z(l, t) : = X1(l, t)X2(l, t)

=
1

2
(1− t)2α sinh 2g(l(1− t)−α),

where Xi are the ith components of the arc-length parameterisation given by (3.2.2).

We write u(l, t) = w(z(l, t), t) so that if u solves (3.2.3), it follows after a set of

standard calculations that w solves

∂w

∂t
=
√

(1− t)4α + 4z2
∂2w

∂z2
− α (1− t)4α−1

(1− t)4α + 4z2
w +

2z√
(1− t)4α + 4z2

∂w

∂z

w(z, 0) = w0(z)

(3.3.1)

where

w0(·) := u0(g−1(1/2 arcsinh(2·))) ∈ L∞(R).

3.4 Scaling Properties of the PDE

We will vary the value of α and see how the solution behaves around the singularity.
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Before we look at specific α, we will get some intuition as to what should

occur to the solution to (3.2.3). Naturally, we choose the self–similar coordinate

change of

y =
l

(1− t)α
, τ = − log(1− t)

and write v(y, τ) = u(l, t), where u satisfies (3.2.3). Using the chain rule, one

concludes that v satisfies

∂v

∂τ
= e−(1−2α)τ ∂

2v

∂y2
− αy∂v

∂y
− α sech2 2g(y)v + αG(y)

∂v

∂y
.

Thus if α < 1
2 , the diffusion term exponentially vanishes as τ → ∞ and only the

drift has an effect. However, if α > 1
2 , the diffusion term exponentially explodes as

τ →∞ and so this was the wrong scaling. In this case, we let

y =
l√

1− t
, τ = − log(1− t)

and write v(y, τ) = u(l, t) to see that v satisfies (omitting the arguments of G and

sech 2g for typographic clarity)

∂v

∂τ
=
∂2v

∂y2
− y

2

∂v

∂y
− α sech2 2gv + αe−(α− 1

2
)τG

∂v

∂y
.

and so the G∂v
∂y term exponentially vanishes as τ →∞ and only the diffusion takes

effect.

We note that the α = 1
2 case yields

∂v

∂τ
=
∂2v

∂y2
− y

2

∂v

∂y
− 1

2
sech2 2g(y)v +

1

2
G(y)

∂v

∂y

which is arguably the critical case of α.

From these scaling arguments we expect that if α < 1
2 , the solution u will

vanish at the singularity, whereas for α > 1
2 we expect that this is not the case.

These expectations are explained via the scaling above, along with the “shearing”

effect of the drift in the case of α < 1
2 , which is not present in the α > 1

2 case.

However, in the case of α = 1
2 it is not a priori obvious what will happen to the

solution at the singularity.

We will refer to the α < 1
2 case as the Sub–Critical Regime, the α = 1

2 case

as the Critical Regime and the α > 1
2 case as the Super–Critical Regime. The words

regime and case will be interchanged as needed and are understood to mean the
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same.

To conclude this section, we have the following proposition concerning the

properties of the functions present in the self–similar scaled PDE above.

Proposition 3.4.1. i). Let F (y) := α sech2 2g(y). Then F is bounded, uniformly

Lipschitz, strictly increasing on R−, strictly decreasing on R+ with a global

maximum at y = 0. Further, for large |y|, F (y) ≤ O(|y|−4);

ii). Let G(y) = y− sinh 2g(y)√
cosh 2g(y)

as in equation (3.2.4). Then G is bounded, G(0) = 0

and G is uniformly Lipschitz;

iii). Let H(y) = y − G(y), where G is given in ii) above. Then H grows at most

linearly at ±∞, H(0) = 0 and H(y) → ±∞ as y → ±∞. Further, H is

globally Lipschitz.

Proof. i). Since sech(x) ≤ 1 for every x ∈ R, the boundedness of F follows. We

calculate F ′(y) = −4α sech
5
2 2g(y) tanh 2g(y) which is uniformly bounded. The

uniform Lipschitz property follows. Also, F ′(y) < 0 for y > 0 and F ′(y) > 0 for

y < 0, hence the monotone properties on R− and R+ follow. Hence, by conti-

nuity, F is maximal at y = 0. The asymptotic follows from Proposition A.0.1.

ii). That G is bounded follows from Proposition A.0.1. Since g(0) = 0 and

sinh(0) = 0 the fact that G(0) = 0 follows. Moreover, G′(y) = − sech2 2g(y),

which is uniformly bounded. Hence the uniform Lipschitz property follows.

iii). Finally, Proposition A.0.1 implies that H(y) = sgn(y)(|y| + κ) + R(y) where

κ > 0 and R(y) ≤ O(y−2) for large |y|, which shows that H grows at most

linearly at ±∞. H(0) = 0 follows from G(0) = 0. That H(y) → ±∞ as y →
±∞ follows as sgn(x)|x| = x for every x ∈ R. Finally, H ′(y) = 1 + sech2 2g(y)

and so |H ′(y)| ≤ 2 for every y ∈ R.
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Chapter 4

Analysis of Problem I: Before

the Singularity

We now analyse the solution u ∈ C2,1(R× [0, 1)) to (3.2.3) as t→ 1− for l = 0 and

l close to 0, according to the three different regimes outlined in Section 3.4. We will

see that the three distinct regimes of α demand different tools from analysis and

probability.

4.1 Sub–Critical Regime

4.1.1 Vanishing and boundedness of the solution

Consider (3.2.3) with α < 1
2 . We perform the following change of variables. Let

y =
l

(1− t)α
, τ = − log(1− t),

and write v(y, τ) = u(l, t). Then, as in Section 3.4, we see that v satisfies

∂v

∂τ
= e−βτ

∂2v

∂y2
+ α (G(y)− y)

∂v

∂y
− α sech2 2g(y)v

v(y, 0) = u0(y)

(4.1.1)

where β = 1− 2α > 0. Thus, we have a vanishing diffusion term and so an efficient

way to analyse the qualitative behaviour of this PDE at the singularity is via the

Feynman-Kac formula (Theorem 2.4.1).
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Consider the following SDE

dXs = −αH(Xs)ds+
√

2e
β
2
sdWs

X−τ = y,
(4.1.2)

where H(y) = y −G(y). If there is a strong solution to (4.1.2), then the Feynman-

Kac formula (Theorem 2.4.1) implies that

v(y, τ) := E(−τ,y)

[
exp

(
−α

∫ 0

−τ
sech2 2g(Xs) ds

)
u0(X0)

]
(4.1.3)

solves (4.1.1), given that there exists a unique solution u to (3.2.3) on R× [0, 1) and

so such a unique solution v to (4.1.1) on R× [0,∞).

In the following, let F (y) := α sech2 2g(y) and E(−τ,y)[ · ] denotes the condi-

tional expectation, conditioned on X−τ = y. Any analysis of (4.1.1) will take place

using (4.1.3).

We have the following theorem, which is the main results of this thesis.

Theorem 4.1.1. Let u0 ∈ C∞c (R) and let u be the unique smooth solution to (3.2.3)

with α < 1
2 . Then the solution u is bounded; there exists C > 0 such that

|u(l, t)| ≤ C

for every (l, t) ∈ R × [0, 1). Furthermore, the solution vanishes at the singularity.

That is,

u(0, t)→ 0 as t→ 1−.

Proof. The proof is straightforward once we work with the (y, τ) coordinates. We

will first show that the solution v vanishes at y = 0 as τ →∞. Boundedness of the

solution will be seen to be true from the following proof.

We first note that by Proposition 3.4.1, H is globally Lipschitz and there

exists k > 0 such that

|H(y)| ≤ k(1 + |y|)

for every y ∈ R. Also, since −τ ≤ s ≤ 0, we have that eβs/2 < 1 and thus

appealing to the standard theory of existence and uniqueness of a strong solution

to SDEs (Section 2.3), we have that such a unique strong solution exists to (4.1.2)

(Theorem 2.3.2).
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Consider (4.1.3). Observe that as F (y) = α sech2 2g(y) > 0, we have that

|v(y, τ)| =
∣∣∣∣E(−τ,y)

[
exp

(
−
∫ 0

−τ
F (Xs) ds

)
u0(X0)

]∣∣∣∣ ≤ ‖u0‖L∞(R)

and so the solution is bounded.

Remark 4.1.2. One should note that the above argument is still true if α = 1
2 .

We proceed to show that limt→1− u(0, t) = 0. Indeed, just how u vanishes as

a function of l and t is covered in Theorem 4.1.3.

Working in the (y, τ) coordinates, we see from Proposition 3.4.1 that F is

even, F is strictly increasing on R− and strictly decreasing on R+ with a global

maximum at y = 0. With this in mind, define for some γ > 0 to be chosen later,

Ω1 := {ω ∈ Ω : |Xs| < γ, ∀ − τ ≤ s ≤ 0}

and

Ω2 := Ω \ Ω1 = {ω ∈ Ω : ∃s0 ∈ [−τ, 0] s.t |Xs0 | ≥ γ}.

Splitting the expectation over Ω1 and Ω2 respectively, we see that if ω ∈ Ω1 then

F (Xs) > F (γ) for every −τ ≤ s ≤ 0. Thus,∣∣∣∣E(−τ,0)

[
exp

(
−
∫ 0

−τ
F (Xs) ds

)
u0(X0)χΩ1

]∣∣∣∣ ≤ e−τF (γ)‖u0‖L∞

and ∣∣∣∣E(−τ,0)

[
exp

(
−
∫ 0

−τ
F (Xs) ds

)
u0(X0)χΩ2

]∣∣∣∣ ≤ ‖u0‖L∞ P [Ω2] .

We have that as γ →∞
P [Ω2] −→ 0,

uniformly in τ . To see this, we note that P−a.s the strong solution to (4.1.2) with

y = 0 is given by

Xs := α

∫ s

−τ
e−αseαrG(Xr) dr +B2e−2αs(es−e−τ ).

Here we have used the time change Theorem for martingales (4.6 Theorem, Karatzas

and Shreve [1991], p. 174) for the Itō integral, the definition of H (Proposition 3.4.1)

and B• is a standard Brownian motion. Noting that for suitably large γ > 0,

γ ≤ |Xs0 | =⇒ γ ≤ ‖G‖L∞ + |BΓ(s0,τ)|,
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where

Γ(s, τ) := 2e−2αs(es − e−τ ).

We have

P [Ω2] ≤ P
[
|BΓ(s0,τ)| ≥ γ − ‖G‖L∞

]
where we have taken γ > ‖G‖L∞ . Observing that for a Gaussian random variable

Z with zero mean and b > 0 we have

P[|Z| > b] = P[{Z > b} ∪ {Z < −b}] ≤ 2P[Z > b]

one concludes that

P [Ω2] ≤ 2P[BΓ(s0,τ) ≥ γ − ‖G‖L∞ ] =

√
2

π

∫ +∞

γ−‖G‖√
Γ(s0,τ)

e−
x2

2 dx.

The norm in the lower limit of integration is the L∞(R) norm. We now recall that

if b > a > 0 then ∫ ∞
b

e−
x2

2 dx <

∫ ∞
a

e−
x2

2 dx.

With this in mind, since Γ(s0, τ) ≤ 2e(1−2α)s0 , α < 1
2 and s0 ≤ 0 it follows that

Γ(s0, τ) ≤ 2 for every τ > 0 implying that

γ − ‖G‖L∞√
Γ(s0, τ)

>
γ − ‖G‖L∞√

2

and so

P [Ω2] ≤
√

2

π

∫ +∞

γ−‖G‖√
2

e−
x2

2 dx.

Since τ ≥ 0 was arbitrary, we now see the claim that as γ →∞

P [Ω2] −→ 0,

uniformly in τ . From this, given ε > 0 chose γ0 > 0 such that γ > γ0 implies

γ − ‖G‖L∞ > 0 and

P [Ω2] <
ε

2‖u0‖L∞
.

Thus, if γ > γ0 then by the above expression for v(0, τ) we have

|v(0, τ)| ≤ e−τF (γ)‖u0‖L∞ +
ε

2
.
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Now take τ0 > 0 such that τ > τ0 implies

e−τF (γ) <
ε

2‖u0‖L∞
.

Thus, we have that for every τ > τ0

|v(0, τ)| < ε

so there exists δ > 0 such that 0 < 1− t < δ implies

|u(0, t)| < ε.

4.1.2 Power law for the behaviour of the solution near the singu-

larity

Our aim in this section is to formulate a power law in the arc-length parameter for

the solution to (3.2.3) with α < 1
2 . In order to do this, we will use the flow-line

formulation of the problem to gather some insight into the problem. However, in

the end, we will have a power law in the arc-length parameter.

To gain some insight into the problem, consider (3.3.1) and set τ∗ = (1− t)
and relabel z as z∗. Define

Lv :=
√
τ4α
∗ + 4z2

∗
∂2v

∂z2
∗
− α τ4α−1

∗
τ4α
∗ + 4z2

∗
v +

2z∗√
τ4α
∗ + 4z2

∗

∂v

∂z∗
+
∂v

∂τ∗

and fix some z ∈ R \ {0} and τ ∈ (0, 1] and ε > 0. Let τ∗ = ετ and z∗ = ε2αz. Write

v̄(z, τ) = v(z∗, τ∗) and supposing that Lv = 0 we have Lv̄ = 0 and thus a direct

computation reveals that

0 = ε1−2α
√
τ4α + 4z2

∂2v̄

∂z2
− α τ4α−1

τ4α + 4z2
v̄ + 2ε1−2α z√

τ4α + 4z2

∂v̄

∂z
+
∂v̄

∂τ
.

Since α < 1
2 , one may send ε → 0, which suggests (but does not prove) that the

behaviour of the solution v near the singularity is governed by the equation

∂v̄

∂τ
= α

τ4α−1

τ4α + 4z2
v̄
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whose solution, up to a suitable function A : R→ R, is given by

v̄(z, τ) = A(z)(τ4α + 4z2)
1
4 .

Noting that in arc-length coordinates

(τ4α + 4z2)
1
4 = (1− t)α

√
cosh 2g(l(1− t)−α)

we make the ansatz that

u(l, t) = (1− t)α
√

cosh 2g(l(1− t)−α)ϕ∗(l, t)

for some function ϕ∗, solves (3.2.3). If we show that ϕ∗ is uniformly bounded then

one has a power law in arc-length parameterisation by Proposition A.0.1. Indeed,

we have the following.

Theorem 4.1.3. Let u0 ∈ C∞c (R) and suppose that u is the unique solution to

(3.2.3) with initial data u0. Then there exists C > 0 such that, for every (l, t) ∈
R× [0, 1),

|u(l, t)| ≤ C‖u0‖L∞(|l|+ κ(1− t)α),

where κ > 0.

Remark 4.1.4. Theorem 4.1.1 implies that u is uniformly bounded in space and

time and so Theorem 4.1.3 gives no information for large l. However, for small l,

it yields information as to how u vanishes at (l, t) = (0, 1).

Proof of Theorem 4.1.3. We begin the proof by assuming that u solves (3.2.3) and

is given by

u(l, t) = (1− t)α
√

cosh 2g(l(1− t)−α)ϕ∗(l, t)

for some ϕ∗ to be determined. For ease of calculations, take y = l(1 − t)−α and

τ = − log(1− t). Write v(y, τ) = u(l, t) and ϕ(y, τ) = ϕ∗(l, t) so that

v(y, τ) = e−ατ (cosh 2g(y))
1
2ϕ(y, τ).

Thus, as u solves (3.2.3) we have that v satisfies (4.1.1). Thus, the equation for ϕ
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reads

∂ϕ

∂τ
= e−βτ

∂2ϕ

∂y2
+
∂ϕ

∂y

(
α(G(y)− y) + 2e−βτ

tanh 2g(y)√
cosh 2g(y)

)
+

+

(
α+ 2e−βτ sech3 2g(y) + α(G(y)− y)

tanh 2g(y)√
cosh 2g(y)

− α sech2 2g(y)

)
ϕ

where β = 1− 2α > 0. However,

G(y)− y = − sinh 2g(y)√
cosh 2g(y)

= −H(y)

and so the coefficient of ϕ is equal to 2e−βτ sech3 2g(y), by standard hyperbolic

identities. The PDE for ϕ that we must analyse is

∂ϕ

∂τ
= e−βτ

∂2ϕ

∂y2
+
∂ϕ

∂y

(
−αH(y) + 2e−βτ

tanh 2g(y)√
cosh 2g(y)

)
+ 2e−βτ sech3 2g(y)ϕ

ϕ(y, 0) =
v(y, 0)√

cosh 2g(y)
=

u0(y)√
cosh 2g(y)

=: ϕ0(y).

(4.1.4)

One should note that ϕ0 ∈ L∞(R) and that a unique classical solution to (4.1.4)

exists1. In order to show that ϕ is uniformly bounded, we will use the Feynman-Kac

formula. Thus, consider the following SDE

dYs =

(
−αH(Ys) + 2eβs

tanh 2g(Ys)√
cosh 2g(Ys)

)
ds+

√
2e

β
2
s dWs

Y−τ = y

(4.1.5)

for −τ ≤ s ≤ 0. By Proposition 3.4.1 we know that H is globally Lipschitz. Define

b(y) :=
tanh 2g(y)√
cosh 2g(y)

;

then

b′(y) =
3 sech2 2g(y)− 1

cosh 2g(y)
∈ L∞(R)

and so the drift and diffusion of (4.1.5) are globally Lipschitz. Further, by Propo-

1One may wish to use the formulation along flow lines and write the resulting PDE as a Fokker-
Planck equation and use the probabilistic version of Hörmander’s Theorem (Theorem 2.5.3), as
we do in Section 5.1 for the continued PDE. The details are, modulo sign, identical to those in
Section 5.1.
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sition 3.4.1 one has ∣∣∣∣∣−αH(y) + 2eβs
tanh 2g(y)√
cosh 2g(y)

∣∣∣∣∣ ≤ C(|y|+ 1)

for every (y, s) ∈ R × [−τ, 0]. Hence the drift and diffusion of (4.1.5) satisfy the

standard growth estimate and so there exists a unique strong solution (Ys)s≥−τ on

[−τ, 0] for every τ ≥ 0 to (4.1.5) (Theorem 2.3.2). We now apply the Feynman-Kac

formula, which says that the unique solution to (4.1.4) is given by

ϕ(y, τ) = E(−τ,y)

[
exp

(
2

∫ 0

−τ
eβs sech3 2g(Ys) ds

)
ϕ0(Y0)

]
.

Hence

|ϕ(y, τ)| ≤ exp

(
2

∫ 0

−τ
eβs ds

)
‖ϕ0‖L∞(R) ≤ e

2
β ‖u0‖L∞(R).

Thus, by transforming back into the (l, t) coordinates, we have that, for every (l, t) ∈
R× [0, 1),

|u(l, t)| = |v(y, τ)| = e−ατ
√

cosh 2g(y)|ϕ(y, τ)|

≤ C‖u0‖L∞(R)(1− t)α
√

cosh 2g(l(1− t)−α).

To conclude the proof, we note from Proposition A.0.1 that there exists κ > 0 such

that for every s ∈ R,

cosh 2g(s) = (|s|+ κ)2 +R(s)

where R(s) ≤ O(|s|−2) as |s| → ∞. So,

√
cosh 2g(s) = (|s|+ κ)

√
1 +

R(s)

(|s|+ κ)2
≤ C(|s|+ κ)

for every s ∈ R.

Remark 4.1.5. Note that by the estimates above, limτ→∞ ϕ(0, τ) exists up to a

suitable subsequence. This will be useful in the continuation of the solution.
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4.2 Critical Regime

Consider (3.2.3) with α = 1
2 . We perform the following change of variables into

self–similar coordinates. Let

y =
l√

1− t
, τ = − log(1− t).

Write v(y, τ) = u(l, t). Then, as in Section 3.4 we see that v satisfies

∂v

∂τ
=
∂2v

∂y2
− v

2
sech2 2g(y)− 1

2
H(y)

∂v

∂y

v(y, 0) = u0(y)

(4.2.1)

where H(y) = y−G(y). We will refer to (4.2.1) as the “time-homogeneous problem”.

To aid the typography later, we define

−Āv :=
∂2v

∂y2
− v

2
sech2 2g(y)− 1

2
H(y)

∂v

∂y
(4.2.2)

and refer to −Ā as the “time-homogeneous operator”.

We note that this operator is not self–adjoint on L2(R). A standard trick

for such operators in mathematical physics is to perform a so–called ground state

transformation. This transforms (4.2.1) into a Schrödinger equation which is self–

adjoint on L2(R). The calculations can be found in Appendix B. This allows easier

analysis of the properties of the operator −Ā such as the type of spectrum it has

and what asymptotic properties the eigenfunctions possess. Indeed, we have the

following important theorem which will be of use later.

Theorem 4.2.1. The spectrum of −Ā is purely discrete. Further if λ ∈ σ(−Ā) with

corresponding eigenfunction vλ then the following asymptotic holds as |y| → ∞ :

vλ(y) = C0(|y|+ κ)−2λ(1 + o(1)).

Proof. The discreteness of the spectrum follows from Theorem C.0.4. For the asymp-

totic estimate, we prove the case of y > 0. The remaining case is easily obtained

from this. Since

−Āvλ = λvλ

we have that

Āvλ = −λvλ.
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Writing vλ(y) = ϕ(y)wλ(y) with ϕ as in (B.0.1) we have that

Ãwλ = −λwλ

where Ã is given in (B.0.3) and so by Theorem C.0.4, multiplying by ϕ, given in

Appendix B, we have, as y →∞,

vλ(y) = C̄0(y + κ)−2λϕ(y) exp

(
−1

8
(y + κ)2

)
(1 + o(1)).

The proof will be complete once we show that

C2(y) := ϕ(y) exp

(
−1

8
(y + κ)2

)
is bounded. Indeed, by Proposition A.0.1 and the definition of ϕ and H we have

ϕ(y) exp

(
−1

8
(y + κ)2

)
= exp

(
1

4

∫ y

0
H(s) ds− 1

8
(y + κ)2

)
= exp

(
1

8
(cosh 2g(y)− 1)− 1

8
(y + κ)2

)
= exp

(
1

8
(y + κ)2 − 1

8
+ R̄2(y)− 1

8
(y + κ)2

)
= exp

(
R̄2(y)− 1

8

)
where, for large enough y

|R̄2(y)| ≤ C|y|−2.

Thus, it follows that

lim
y→∞

ϕ(y) exp

(
−1

8
(y + κ)2

)
exists and so C2(·) is bounded.

Remark 4.2.2. Suppose that λ ∈ σ(Ā). By considering the Lebesgue space

L2(R,dµ(y);R) with weight

dµ(y) = exp

(
−1

2

∫ y

0
H(s) ds

)
dy,

it follows via the definition of the inner product and an integration by parts that

λ > 0. Thus, it follows that the maximal eigenvalue of −Ā, defined as µ, has µ < 0.

The calculation is a simple application of the integration by parts formula and is so
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omitted.

4.2.1 Vanishing of the solution and a power law

We are now ready to prove that the solution u to (3.2.3) vanishes at the singularity

and obeys a power law in a neighbourhood of the singularity. As in the sub–critical

case, we will work in the (y, τ) self–similar coordinates. Indeed, the long–term

dynamics of (4.2.1) at y = 0 will tell us how the solution u to (3.2.3) behaves. For

y 6= 0, the long–term dynamics of (4.2.1) will yield a power law in the arc–length

parameter for the solution u in a neighbourhood of the singularity, depending on

time.

The α = 1
2 case causes some problems with the analysis. The methods of

Section 4.1 fail as α = 1
2 is where quantities there are no longer integrable. It is

also true that the methods we will employ in Section 4.3 also fail. Thus, for this

section, we employ a functional analytical technique that shows that the solution

multiplied by some time–dependent factor, converges to the projection of the first

eigenfunction of an operator, with respect to a certain norm. We then use a Sobolev

embedding to yield pointwise estimates on the solution.

We set H = −Ã where −Ã is the ground state transformation of −Ā as given

in equation (B.0.3) and denote the domain of H as D(H). We denote the norm with

respect to D(H) as ‖ · ‖H and note that D(H) ⊂ H1(R).

We have the following estimate on the solution v to (4.2.1).

Theorem 4.2.3. Let u0 ∈ C∞c (R) and suppose that v is the unique smooth solution

to (4.2.1). Then, there exists C1, C2 > 0 and µ1, µ2 > 0 such that, for every y ∈ R
and τ > 0, ∣∣v(y, τ)− C1e

−µ1τh1(y)
∣∣ ≤ C2‖u0‖He−µ2τϕ(y), (4.2.3)

where µ1 > 0 is the minimal eigenvalue of Ā, µ2 > µ1 is the second eigenvalue, h1

is the eigenfunction of Ā corresponding to the minimal eigenvalue µ1 and

ϕ(y) = exp

(
1

4

∫ y

0
H(s) ds

)
.

Proof. Recalling the ground state transformation of Appendix B, we have that if v

solves (4.2.1) then by writing v(y, τ) = ϕ(y)w(y, τ) with ϕ as above, it follows that

w solves
∂w

∂τ
= −Ãw

w(y, 0) = ϕ−1(y)u0(y).

(4.2.4)
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We note that Ã is self-adjoint on L2(R) and

Ã = − ∂2

∂y2
+ V

with V(y) ≥ −1
4 for every y ∈ R and V(y) → +∞ as |y| → ∞. Thus, by Reed and

Simon [1978] Theorem XIII.67, p.249, Ã has a discrete spectrum and a complete

orthonormal basis in D(Ã). Let {µj}j∈N be such eigenvalues of Ã, ordered such that

0 < µ1 < µ2 < · · · with corresponding eigenfunctions {ej}j∈N in D(Ã). (Indeed,

by Remark 4.2.2 one can check that µj > 0 for every j ∈ N.) We now express the

solution w in terms of the eigenbasis and using the spectral mapping Theorem it

follows that

w(τ) =
∑
j∈N

αje
−µjτej

solves (4.2.4) where {αj}j∈N are such that w(0) =
∑

j∈N αjej . Thus, bounding

−µj < −µ2 for every j ≥ 3 we have

‖w − α1e1e
−µ1τ‖H ≤ C‖u0‖He−µ2τ

since ϕ−1 ∈ L∞(R). Observing that D(H) ⊂ H1(R), we use Sobolev embedding

(Grafakos [2009], for example, which states that H1(R) embeds into L∞(R)) to

conclude that, for the a.e continuous version of w − α1e1e
−µ1τ ,

|w(y, τ)− α1e1(y) e−µ1τ | ≤ C‖u0‖He−µ2τ

for every y ∈ R and every τ > 0. Reversing the ground-state transformation via

w(y, τ) = ϕ−1(y)v(y, τ) and e1(y) = ϕ−1(y)h1(y) we conclude the result on multi-

plying through by ϕ.

As a consequence, we immediately have the vanishing of the solution u to

(3.2.3) by putting y = 0 into the above theorem, noting that u0 ∈ C∞c (R) implies

u0 ∈ D(H):

Theorem 4.2.4. Let u : R× [0, 1)→ R be the smooth solution to (3.2.3) with initial

data u0 ∈ C∞c (R). Then

u(0, t) −→ 0 as t −→ 1−

at an algebraically fast rate.

51



Remark 4.2.5. Appealing to Theorem 4.1.1 with α = 1
2 , we see that the theorem

still holds true for the boundedness of the solution via the Feynman-Kac formula.

Indeed,

|u(l, t)| ≤ ‖u0‖L∞

for every (l, t) ∈ R× [0, 1).

The natural question that now arises is whether a power–law which is anal-

ogous to that of Theorem 4.1.3 holds.

Due to the exponential weight, ϕ, in the estimate (4.2.3) we need to make

sure that |y| is bounded. The weight is needed to make sure that the resulting

ground-state transformation is self-adjoint on L2(R). Indeed, any other weight fails

to yield this property. If ϕ was polynomial with zero constant term, we may have

been able to exploit the exponential decay in τ . As it is, we have the following which

yields information about the solution in a time–dependent neighbourhood of l = 0.

Theorem 4.2.6. Let u : R× [0, 1)→ R be the smooth solution to (3.2.3) with initial

data u0 ∈ C∞c (R). Then, there exists C > 0 such that

|u(l, t)| ≤ C(1 + ‖u0‖H)(1− t)µ1 (4.2.5)

for every |l| ≤
√

1− t, where µ1 > 0 is given in Theorem 4.2.3.

Proof. By Theorem 4.2.3 above (working in the (y, τ) coordinates) and the triangle

inequality, we have, for every y ∈ R and τ > 0,

|v(y, τ)| ≤ C1h1(y)e−µ1τ + C2‖u0‖He−µ2τϕ(y).

Now take |y| ≤ 1, recalling that µ2 > µ1 and using the continuity of y 7→ h1(y), we

conclude that

|v(y, τ)| ≤ C(1 + ‖u0‖H)e−µ1τ .

However, we now change back into the (l, t) coordinates to conclude the result.

Remark 4.2.7. This may be considered as a partial result, as the arc-length param-

eter that is considered decreases in size as t→ 1−.

Remark 4.2.8. If the initial data u0 is such that ϕ−1u0 ∈ linspan{e1, · · · , eN} for

some N ∈ N, then by the above

w − α1e
−µ1τ =

N∑
j=2

αje
−µjτej
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and so using the above with Theorem 4.2.1 it follows that, for every |y| > y0 and

τ ≥ 0,

|v(y, τ)− α1e
−µ1τh1(y)| ≤

N∑
j=2

|Cj |(|y|+ κ)2µje−µjτ ,

where y0 depends on N . A power law follows on changing back to the (l, t) coordi-

nates. Unfortunately, we have no control over the Cj.

Indeed, asking that ϕ−1u0 ∈ linspan{e1, · · · , eN} for some N ∈ N is quite a

strong condition. We can do better by means of sub and super solutions. We first

need an auxiliary lemma.

Lemma 4.2.9. Consider the self–adjoint operator

H := − ∂

∂y
+ V (y)

where V : R → R. Suppose there exists c ∈ R such that V (y) ≥ c for every

y ∈ R. Suppose further that V ∈ L1
loc(R). Let λ1 be the minimum eigenvalue with

eigenfunction e1 ∈ L2(R). Then, e1 is continuous, satisfies e1(y) > 0 for every

y ∈ R and e1 is locally bounded away from 0.

Proof. That e1 is continuous follows from Proposition 3.3 of Carmona [1979]. The

argument that shows e1 is locally bounded away from 0 is given in Remark 4.4 of

Carmona [1979]. That λ1 exists is a consequence of Theorem XIII.67, p.249 of Reed

and Simon [1978].

We have the following main result.

Theorem 4.2.10. Suppose u : R× [0, 1)→ R is the smooth solution to (3.2.3) with

initial data u0 ∈ C∞c (R). Then, there exists C, y0 > 0 such that

|u(l, t)| ≤ C‖u0‖L∞ |l|2µ1

for every |l| > y0

√
1− t, where µ1 is the minimal eigenvalue of Ā and 0 < µ1 ≤ 1

2 .

Proof. Let e1 be the eigenfunction of Ã with minimal eigenvalue µ1 > 0 as in the

proof of Theorem 4.2.3. Considering the ground–state transformation, Ã, one has

that the potential V(y) has V(y) ≥ −1
4 for every y ∈ R, V ∈ L1

loc(R) and e1 ∈ L2(R).

It thus follows from Lemma 4.2.9 that e1(y) > 0 for every y ∈ R and e1 is locally

bounded away from 0. Thus, as h1(y) = ϕ(y)e1(y) and ϕ is the exponential function,

it follows that h1(y) > 0 for every y ∈ R and h1 is locally bounded away from 0.
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Further, ṽ(y, τ) := h1(y)e−µ1τ solves

∂ṽ

∂τ
= −Āṽ (y, τ) ∈ R× (0,∞)

ṽ(y, 0) = h1(y) y ∈ R.

Take u to be the unique classical solution to (3.2.3) with initial condition u0, con-

verting to (y, τ) coordinates, we have that v(y, τ) = u(l, t) solves

∂v

∂τ
= −Āv (y, τ) ∈ R× (0,∞)

v(y, 0) = u0(y) y ∈ R.

Now consider the following: for any unique classical solution of

∂ṽ

∂τ
= −Āṽ (y, τ) ∈ R× (0,∞)

ṽ(y, 0) = z0(y) y ∈ R.
(4.2.6)

with |z0(y)| ≤ A exp
(
a|y|2

)
(for some constants A, a > 0), the Feynman–Kac for-

mula (Theorem 2.4.3) yields that the solution is given by the stochastic representa-

tion

ṽ(y, τ) = Ey
[
exp

(
−1

2

∫ τ

0
sech2 2g(Xs) ds

)
z0(Xτ )

]
. (4.2.7)

Here, (Xs)0≤s≤τ is the unique strong solution to

dXs = −1

2
H(Xs) ds+

√
2 dBs

X0 = y

for 0 ≤ s ≤ τ . Since H ′(y) = 1 + sech2 2g(y), it follows from the standard theory

of existence and uniqueness of strong solutions to SDEs (Theorem 2.3.2) that such

a process (Xs)0≤s≤τ exists. We will now create sub– and super–solutions to bound

our solution v and use the Feynman–Kac formula above. To this end, let w1(y, τ) =

h1(y)e−µ1τ − v(y, τ). Then w1 solves (4.2.6) with z0(y) = h1(y) − u0(y). Thus,

if z0(y) ≥ 0 for every y ∈ R it follows from (4.2.7) that w1(y, τ) ≥ 0 for every

(y, τ) ∈ R× [0,∞) and so

v(y, τ) ≤ h1(y)e−µ1τ

holds for every (y, τ) ∈ R × [0,∞). We repeat this argument with w2(y, τ) :=

v(y, τ)+h1(y)e−µ1τ , which solves (4.2.6) with initial condition z0(y) = u0(y)+h1(y).
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Thus, if z0(y) ≥ 0 for every y ∈ R it follows from (4.2.7) that

v(y, τ) ≥ −h1(y)e−µ1τ

holds for every (y, τ) ∈ R×[0,∞). So, as h1(y) > 0 for every y ∈ R, if |u0(y)| ≤ h1(y)

holds for every y ∈ R, then the above implies

|v(y, τ)| ≤ h1(y)e−µ1τ

for every (y, τ) ∈ R×[0,∞). Finally, Theorem 4.2.1 implies the existence of C, y0 > 0

such that |y| > y0 implies h1(y) ≤ C(|y|+ κ)2µ1 . Thus, |y| > y0 implies

|v(y, τ)| ≤ C(|y|+ κ)2µ1e−µ1τ

for every τ ≥ 0. Suppose now that u0 ∈ C∞c (R) is arbitrary. Since supp(u0) is

compact and h1 is continuous, there exists a ∈ (0,∞) such that h1(y) ≥ a for every

y ∈ supp(u0). Let

K =
2

a
‖u0‖L∞

then
|u0(y)|
K

=
a

2

|u0(y)|
‖u0‖L∞

≤ a

2
< a ≤ h1(y)

for every y ∈ supp(u0) and
|u0(y)|
K

= 0 < h1(y)

for every y ∈ R \ supp(u0). Thus, v0(y) := u0(y)
K ∈ C∞c (R) has |v0(y)| ≤ h1(y) for

every y ∈ R. We now solve (4.2.6) with z0 = v0. From the Feynman–Kac formula

(4.2.7) and the argument above, we have that, for every |y| > y0 and τ ≥ 0,∣∣∣∣Ey [exp

(
−1

2

∫ τ

0
sech2 2g(Xs) ds

)
u0(Xτ )

K

]∣∣∣∣ ≤ C(|y|+ κ)2µ1e−µ1τ

and so recalling our definition of K > 0 and absorbing the 2/a term into the constant

C leads to∣∣∣∣Ey [exp

(
−1

2

∫ τ

0
sech2 2g(Xs) ds

)
u0(Xτ )

]∣∣∣∣ ≤ C‖u0‖L∞(|y|+ κ)2µ1e−µ1τ .

However,

v(y, τ) := Ey
[
exp

(
−1

2

∫ τ

0
sech2 2g(Xs) ds

)
u0(Xτ )

]
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is precisely the solution to (4.2.6) with z0 = u0. Thus

|v(y, τ)| ≤ C‖u0‖L∞(|y|+ κ)2µ1e−µ1τ

for every |y| > y0 and every τ ≥ 0. We now switch coordinates back to the (l, t)

coordinates and take √
1− t ≤ |l|

y0

to see the result. The estimate on the maximum size of µ1 follows from Theo-

rem D.0.5.

Remark 4.2.11. Theorem 4.2.10 and Theorem 4.2.6 together describe the behaviour

of the solution u to (3.2.3) for |l| small and t close to 1−.

4.3 Super–Critical Regime

4.3.1 Boundedness of the solution

Consider (3.2.3) with α > 1
2 . Let S(t) : L∞(R)→ L∞(R) denote the heat semigroup

(Engel and Nagel [2006]). Then for v ∈ L∞(R)

(S(t)v)(l) :=
1√
4πt

∫
R
e−

(l−y)2

4t v(y) dy

and

‖S(t)v‖L∞ ≤ ‖v‖L∞ .

By Duhamel’s principle

u(l, t) = (S(t)u0)(l)+α

∫ t

0

∫
R

(1−s)α−1K(l, y; t−s) ∂
∂y

(
G(l(1− s)−α)u(y, s)

)
dy ds

(4.3.1)

solves (3.2.3) in the mild sense of Definition 2.2.3. Here

K(l, y; t− s) =
1√

4π(t− s)
e
− (l−y)2

4(t−s)

is the classical heat kernel.

In the following, we will drop the arguments of G and u to make the presen-

tation clearer. We will show that the mild solution u is bounded for every t ∈ [0, 1].

Before we do this, we need the following important lemma concerning a Gronwall

inequality.
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Lemma 4.3.1. Let u : [0, 1]→ R+ be such that there exists A,B > 0 with

u(t) ≤ A+B

∫ t

0
(t− s)−

1
2 (1− s)α−1u(s) ds

where α > 1
2 . Then there exists C > 0 such that

u(t) ≤ C

for every t ∈ [0, 1].

Proof. Let J =
∫ t

0 (t− s)−
1
2 (1− s)α−1u(s) ds. Suppose first that α ≥ 1. Then by

Hölder’s inequality with p, q ∈ (1,∞) and Hölder conjugate:

J ≤
(∫ t

0
(t− s)−

p
2 ds

) 1
p
(∫ t

0
uq(s) ds

) 1
q

.

However, if 1 < p < 2 then ∫ t

0
(t− s)−

p
2 ds =

1

1− p
2

t1−
p
2

and 1 − p
2 > 0. So with 1 < p < 2 and q ∈ (1,∞) Hölder conjugate to p and since

t < 1

J ≤ C(p)t
1
p
− 1

2

(∫ t

0
uq(s) ds

) 1
q

≤ C(p)

(∫ t

0
uq(s) ds

) 1
q

.

Hence,

uq(t) ≤ 2q−1

(
Aq +BqC(p)q

∫ t

0
uq(s) ds

)
= C1 + C2

∫ t

0
uq(s) ds.

Thus Gronwall’s inequality (Gronwall [1919]) implies

uq(t) ≤ C1(1 + C2te
C2t).

Taking 1
q th powers and bounding t above by 1 concludes the result.

Now suppose 1
2 < α < 1. Then by Hölder’s inequality with p, q ∈ (1,∞)

and Hölder conjugate and noting that for any γ > 0 and 0 ≤ s < t it holds that

(1− s)−γ ≤ (t− s)−γ , we have

J ≤
(∫ t

0
(t− s)p(α−3/2) ds

) 1
p
(∫ t

0
uq(s) ds

) 1
q
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Provided that p < (3
2 − α)−1 we have that∫ t

0
(t− s)p(α−3/2) ds = C(α, p) t1+p(α−3/2).

We note that for α ∈ (1
2 , 1) we have (3

2 − α)−1 > 1 and so if 1 < p < (3
2 − α)−1 and

q ∈ (1,∞) Hölder conjugate to p then bounding t above by 1

J ≤ C(α, p)

(∫ t

0
uq(s) ds

) 1
q

.

The argument is now identical to the α ≥ 1 case.

Remark 4.3.2. The above proof does not work if α ≤ 1
2 .

We now have the following, which is the main results of this thesis.

Theorem 4.3.3. Let u be the unique solution to (3.2.3) with α > 1
2 . Suppose that

u0 ∈ C∞c (R). Then

sup
t∈[0,1]

‖u(·, t)‖L∞ <∞,

limt→1− u(l, t) exists for every l ∈ R and

v0(l) := lim
t→1−

u(l, t)

defines a continuous function on R.

Proof. By (4.3.1), an integration by parts and noting that G ∈ L∞(R), we have that

|u(l, t)| ≤ ‖u0‖L∞ + C

∫ t

0

∫
R
|∇yK(l, y; t− s)| ‖u(·, s)‖L∞(1− s)α−1 dy ds.

However, by Davies [1989], Theorem 6, case 1, we have

|∇yK(l, y; t− s)| ≤ C(t− s)−1

(
1 +

(l − y)2

t− s

)
e
− (l−y)2

4(t−s) .

Hence

I : =

∫ t

0

∫
R
|∇yK(l, y; t− s)| ‖u(·, s)‖L∞(1− s)α−1 dy ds

≤ C
∫ t

0
‖u(·, s)‖L∞(1− s)α−1(t− s)−1

∫
R

(
1 +

(l − y)2

t− s

)
e
− (l−y)2

4(t−s) dy ds.
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However, if

z =
(l − y)√
t− s

then ∫
R

(
1 +

(l − y)2

t− s

)
e
− (l−y)2

4(t−s) dy =

∫
R

(1 + z2)e−
z2

4 dz(t− s)
1
2 = C(t− s)

1
2 .

Thus,

I ≤ C
∫ t

0
(t− s)−

1
2 (1− s)α−1‖u(·, s)‖L∞ ds.

Putting all this together we have that

‖u(·, t)‖L∞ ≤ ‖u0‖L∞ + C

∫ t

0
(t− s)−

1
2 (1− s)α−1‖u(·, s)‖L∞ ds

and so by Lemma 4.3.1 we conclude that there exists K > 0 such that

‖u(·, t)‖L∞ ≤ K

for every t ∈ [0, 1], which establishes the uniform bound on u. For the second part

of the theorem, define T (t) : L∞(R)→ L∞(R) by

T (t)(g)(l) :=

∫
R
∇yK(l − y, t)g(y) dy.

Then,

u(l, t) = S(t)u0(l)− α
∫ t

0
T (t− s)(Gu)(1− s)α−1 ds(l).

Since S(·) and T (·) are defined for every time t, it remains to show that

lim
t→1−

∫ t

0
T (t− s)(Gu)(1− s)α−1 ds

exists. To this end, by the above result for u, the bound on the derivative of the

heat kernel and the techniques above, we have

∣∣χ[0,t](s)T (t− s)(Gu)(1− s)α−1
∣∣ ≤ Cχ[0,t](s)(t− s)−

1
2 (1− s)α−1.

However, the right–hand side of this inequality belongs to L1([0, 1], ds;R) for every
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t ∈ [0, 1] and so the dominated convergence theorem yields that

lim
t→1−

∫ t

0
T (t− s)(Gu)(1− s)α−1 ds =

∫ 1

0
T (1− s)(Gu)(1− s)α−1 ds.

Thus, v0 exists and

v0(l) = S(1)(u0)(l)− α
∫ 1

0
T (1− s)(Gu)(1− s)α−1 ds(l).

The continuity of l 7→ S(1)(u0)(l) is clear from the smoothing property of the

heat kernel. Recalling that T (t)(g)(l) = (∇yK(·, t) ∗ g)(l), where ∗ is the spatial

convolution operator, the bounds on the derivative of the heat kernel, together with

the continuity of l 7→ ∇yK(l − y, 1 − s) and the dominated convergence theorem

applied twice establishes the continuity of

l 7→
∫ 1

0
T (1− s)(Gu)(1− s)α−1 ds (l).

Remark 4.3.4. It will be important in the continuation of the solution in Section 5.3

that the limiting function above, v0, has v0 ∈ C(R).

4.3.2 Behaviour of the solution at the singularity

To see how the solution u of (3.2.3) behaves at the singularity, we change variables.

Consider (3.2.3) and let

y =
l√

1− t
, τ = − log(1− t).

Writing v(y, τ) = u(l, t), we see that v satisfies

∂v

∂τ
=
∂2v

∂y2
− y

2

∂v

∂y
− α sech2 2g(yeβτ )v + αe−βτG(yeβτ )

∂v

∂y

v(y, 0) = u0(y).

(4.3.2)

Here β = α− 1
2 > 0. Since there exists a unique solution u to (3.2.3) on R× [0, 1) it

follows that a unique solution to (4.3.2) exists on R× [0,∞). By the Feynman-Kac

60



formula one has that

v(y, τ) = E(−τ,y)

[
exp

(
−
∫ 0

−τ
F (Xse

−βs) ds

)
u0(X0)

]
, (4.3.3)

where (Xs)s≥−τ is the unique strong solution to

dXs =

(
−Xs

2
+ αeβsG(Xse

−βs)

)
ds+

√
2 dWs

X−τ = y

(4.3.4)

for −τ ≤ s ≤ 0. Here F (y) = α sech2 2g(y) ≤ O(|y|−4) for large |y|. The following

lemma will be of use.

Lemma 4.3.5. There exists a unique strong solution to (4.3.4) for every y ∈ R.

Furthermore, for y = 0, P−a.s

0 <

∫ 0

−∞
F (Xse

−βs) ds <∞

and hence, depending of course on u0, v(0, τ) need not vanish as τ →∞.

Proof. Let b(x, s) := −x/2 + αeβsG(xe−βs), where (x, s) ∈ R× [−τ, 0]. Then

∂b

∂x
= −1

2
− α sech2 2g(xe−βs),

which is bounded uniformly in x and s. Further, |b(x, s)| ≤ C(1 + |x|) for every

(x, s) ∈ R× [−τ, 0]. Thus, the standard existence and uniqueness theorem for SDEs

(Theorem 2.3.2) implies the existence and uniqueness of such a strong solution to

(4.3.4). Positivity of the integral follows as F (y) > 0 for every y ∈ R. To see the

finiteness of the integral, it suffices to show that

E
[∫ 0

−∞
F (Xse

−βs) ds

]
<∞.

To achieve this we will show that∫ 0

−∞
E
[
F (Xse

−βs)
]

ds <∞

and use Tonelli’s Theorem.

To this end, we consider splitting

E[F (Xse
−βs)] = E[F (Xse

−βs)χΩA ] + E[F (Xse
−βs)χΩB ]
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where

ΩA = {ω ∈ Ω : |Xse
−βs| ≤ e−γs}

for some γ > 0 to be chosen later, and

ΩB = Ω \ ΩA.

By the definition and asymptotics of F it follows that for s < 0 and |s| large enough

E[F (Xse
−βs)] ≤ C

(
P[|Xs| ≤ e(β−γ)s] + e4γs

)
.

Since G is bounded and s ≤ 0, consider the solution Ys to

dYs = −Ys
2

ds+
√

2 dWs

Y−τ = 0.

Then Ys is the classical Ornstien-Uhlenbeck (OU) process. Let Zs = Xs − Ys and

we see that Zs solves

dZs = −Zs
2

ds+ αeβsG(Xse
−βs) ds

with initial data Z−τ = 0. The solution to this ODE with random coefficients is

given by

Zs = α

∫ s

−τ
e−

1
2

(s−r)eβrG(Xse
−βr) dr.

It is easily seen that the following estimate holds, using the boundedness of G

|Zs| ≤ C(eβs + e−βτ )

where C > 0 is deterministic. We will use this to estimate the probability above.

Since Xs = Ys + Zs it follows that

P[|Xs| ≤ e(β−γ)s] ≤ P[|Ys| ≤ e(β−γ)s + C(eβs + e−βτ )].

Recall Ys is a classical OU process, which is Gaussian. Thus we have for any b > 0

P[|Ys| ≤ b] =
1√

4π(1− e−τe−s)

∫ b

−b
exp

(
− x2

4(1− e−τe−s)

)
dx.
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Hence observing that ∫ b

−b
exp

(
− x2

4(1− e−τe−s)

)
dx ≤ 2b

we have

P [|Xs| ≤ e(β−γ)s] ≤ C

(
e(β−γ)s + eβs + e−βτ√

1− e−τe−s

)
.

Choosing γ = β
2 > 0 we have

∫ 0

−τ
E[F (Xse

−βs)] ds ≤ C

(∫ 0

−τ

e
β
2
s + eβs + e−βτ√

1− e−τe−s
ds+ 1− e−2βτ

)
.

Via a standard argument but lengthy calculation, one concludes that for any ζ > 0,∫ 0

−τ

eζs√
1− e−τe−s

ds ≤ Cζ−1

((
1− e−

τ
2

)− 1
2

+ 1

)
and ∫ 0

−τ

e−βτ√
1− e−τe−s

ds ≤ C(τ + 1)e−βτ (1− e−
τ
2 )−

1
2 .

Thus, one concludes that ∫ 0

−∞
E[F (Xse

−βs)] ds <∞,

and so by Tonelli’s Theorem,

E
[∫ 0

−∞
F (Xse

−βs) ds

]
<∞

thus P− a.s ∫ 0

−∞
F (Xse

−βs) ds <∞.

We now have the following theorem that describes the behaviour of the solution to

(3.2.3) at the singularity, for a specific initial data.

Theorem 4.3.6. There exists u0 ∈ L∞(R) such that the unique solution to (3.2.3),

u, does not vanish at the singularity.

Proof. By the change of variables as above and the Feynman-Kac formula, it suffices

to show that v(0, τ) does not tend to 0 as τ → ∞, for some specified initial data
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u0. One takes u0(l) = 1 for every l ∈ R. Then, from Lemma 4.3.5 we see that

v(0, τ) ≥ 1 for every τ ∈ [0,∞).

Remark 4.3.7. By the finiteness of the integral in Lemma 4.3.5, we see that for

initial data u0(l) = 1, the solution to (3.2.3) does not vanish at l = 0 as t → 1−.

By Theorem 2.3.2, such a solution with that initial data exists, is smooth and by

Theorem 4.3.3 is uniformly bounded.

Remark 4.3.8. For the super–critical regime the behaviour of the initial condition

at the singularity dictates what happens to the solution at the singularity. We have

seen in Section 4.1 and Section 4.2 that this is not the case for the other regimes.

The possibility of the solution not vanishing at the singularity presents a

slight technicality. Recall Chapter 3 and suppose the initial data was not symmetric

about y > 0 and y < 0 for the curve Cαt . Then, by the above we have that at t = 1,

a multivalued function is defined at the singularity. Thus, any notion of continuing

the solution is ill-defined. Indeed, this was one of the reasons why we always assume

that the initial data is symmetric about y > 0 and y < 0. Hence Section 5.3 will

make sense as no multivalued functions are taken as initial data since the value at

the singularity for y > 0 and y < 0 agree, by symmetry.
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Chapter 5

Analysis of Problem I: After the

Singularity

Our goal is to show that we can continue the solution in all regimes past the singu-

larity. Recall

Cαt = {(x, y) ∈ R2 | y ≥ 0, y2 − x2 = (1− t)2α}, 0 ≤ t ≤ 1.

Now, the subsequent motion of the curve for t ≥ 1 is given by

Cα,cont
t = {(x, y) ∈ R2 |x ≥ 0, x2 − y2 = (t− 1)2α}, 1 ≤ t ≤ T (5.0.1)

for some T ∈ (1,∞). Figure 3.2 illustrates Cα,cont
t for α = 0.5 and various values of

t ∈ [1, 2]. Using the level set φ(x, y, t) = x2 − y2 − (t− 1)2α we take

ν =
∇φ
|∇φ|

as the inward pointing unit normal. We let

Y : R× [1, T ]→ R2

be a parameterisation of Cα,cont
t defined by

Y (p, t) = (t− 1)α (cosh p, sinh p) .

Let Yp denote the partial derivative with respect to p and define

l :=

∫ p

0
|Yp(u, t)| du.
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So for t > 1
l

(t− 1)α
=

∫ p

0

√
cosh 2udu.

As before, denote by g the inverse of the map

p 7→
∫ p

0

√
cosh 2udu

as in Definition 3.2.1. The arc-length parameterisation of Cα,cont
t is given by

X(l, t) = (t− 1)α
(
cosh g(l(t− 1)−α), sinh g(l(t− 1)−α)

)
.

We wish to continue the solution to (3.1.3), and thus we wish to study

∂•t V + V∇Γ · v −∆ΓV = 0 x ∈ Γ := Cα,cont
t

V (x, 1) = U(Bx, 1) x ∈ Cα,cont
1 .

(5.0.2)

where

v :=
φt
|∇φ|

ν

is the prescribed normal velocity of the curve with ν given above and U(Bx, 1) is the

solution to (3.1.3) at time t = 1 in the sense of Chapter 4. Here, B : Cα,cont
1 → Cα1

is a linear map. Since v is in the normal direction only, it follows as before that

∇Γ · v = V H

with

V =
φt
|∇φ|

and

−H =
1

|∇φ|

2∑
i,j=1

(
δij −

φxiφxj

|∇φ|2

)
φxixj ,

since ν is the inward pointing normal. A direct computation reveals that

V H = −α(t− 1)−1 sech2 2g(l(t− 1)−α).

As in the motion of the curve for t < 1 we have the following non-physical correction

drift coefficient to yield a nice constant-coefficient second order term,

Xt ·Xl = α(t− 1)α−1

(
− l

(t− 1)α
+

sinh 2g(l(t− 1)−α)√
cosh 2g(l(t− 1)−α)

)
.
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One should compare this with the expression for the motion of the curve for t < 1.

We now write v(l, t) = V (X(l, t), t) and see that v satisfies

∂v

∂t
=
∂2v

∂l2
− αtα−1 ∂

∂l

(
G(lt−α)v

)
(l, t) ∈ R× (0, T )

v(l, 0) = v0(l) l ∈ R.
(5.0.3)

where G is given in (3.2.4), v0(l) = u(l, 1) with u the limit (up to a suitable subse-

quence) as in Chapter 4 and we have made the substitution t 7→ t− 1.

A major problem is that (5.0.3) is initially singular, whereas the problem

before was that (3.2.3) was singular in the limit as t → 1−. We now look at the

analysis of (5.0.3) in each of the different regimes. As the reader will see, the

methods of analysis vary depending on the regime.

5.1 Sub–Critical Regime

We adopt a probabilistic approach in showing existence of a continuation of the

solution. To this end, consider (5.0.3) and note that by Theorem 4.1.1 we have that

the initial data, v0 is bounded.

In the following, we will use the flow line formulation to show that there

exists a unique solution to (5.0.3), but the solution may not attain the initial data

of (5.0.3). Indeed, we prove the attainment of the initial data by using a suitable

ansatz for the solution v of (5.0.3).

Let z(l, t) = 1
2 t

2α sinh 2g(lt−α) and write w(z, t) = v(l, t). Then, by standard

calculations it follows that w solves

∂w

∂t
=
√
t4α + 4z2

∂2w

∂z2
+ α

t4α−1

t4α + 4z2
w +

2z√
t4α + 4z2

∂w

∂z

w(z, 0) = w0(z)

(5.1.1)

where w0(z) = v0(2
√
|z|) ∈ L∞(R).

We note that this equation is the same as equation (3.3.1), but with (1− t)
replaced by t and the sign of the coefficient of w reversed.

By the same asymptotic analysis process as in Section 4.1.2, the important

equation near the singularity is

∂w̃

∂t
= α

t4α−1

t4α + 4z2
w̃

67



whose solution, up to some function A : R→ R, is given by

w̃(z, t) = A(z)(t4α + 4z2)1/4.

This provides us with a guess as to what the solution looks like near the singularity.

We now write w(z, t) = (t4α + 4z2)1/4ϕ(z, t) and so ϕ solves

∂ϕ

∂t
=
√
t4α + 4z2

∂2ϕ

∂z2
+

2t4α

(t4α + 4z2)3/2
ϕ+

6z√
t4α + 4z2

∂ϕ

∂z

ϕ(z, 0) =
w(z, 0)

|z|1/2
√

2
=: ϕ0(z).

(5.1.2)

By Theorem 4.1.3 we have ϕ0 ∈ L∞(R) and note that by Remark 4.1.5 we have that

lim
z→0

ϕ0(z)

exists and is finite.

Remark 5.1.1 (On the method of analysis for the existence of a solution to (5.1.2)).

We note that (5.1.2) is not uniformly elliptic. Indeed, it is the author’s opinion

that the method employed in the proof of Theorem 5.1.2 is the best way to treat

this equation. This is because the equation is of Fokker–Planck type as given in

equation (2.5.2) and so the probabilistic approach is the most natural. One should

note that the Fokker–Planck approach is only applicable when the equation is of

Fokker–Planck type. When the equation is not of this type, the methods in this

thesis are not applicable and standard PDE theory should be used. For a discussion

of some classical methods of existence in the weak sense, the reader is referred to

the relevant references of Section 1.1.

We have the following existence theorem.

Theorem 5.1.2. There exists a solution ϕ ∈ C2,1(R× (0, T ];R) to (5.1.2) for every

0 < T < ∞ and so, by changing coordinates from (z, t) to (l, t), there exists a

solution v ∈ C2,1(R× (0, T ];R) to (5.0.3) for every 0 < T <∞.

Remark 5.1.3. The following proof does not guarantee that the initial condition is

attained. Later, we will show that the initial data is attained and so ensuring the

uniqueness of such a solution.
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Proof of Theorem 5.1.2. Observe that one may rewrite (5.1.2) as

∂ϕ

∂t
=

∂2

∂z2

(
(t4α + 4z2)1/2ϕ

)
− ∂

∂z

(
2z(t4α + 4z2)−1/2ϕ

)
ϕ(z, 0) = ϕ0(z)

which is a Fokker-Planck equation. Let D(z, t) = (t4α + 4z2)1/2 and µ(z, t) =

2z(t4α + 4z2)−1/2 and consider the SDE in Itō form

dXt = µ(Xt, t) dt+
√

2D(Xt, t) dWt

X0 = Φ

where Φ ∼ ϕ0 which means that Φ is distributed according to ϕ0. Indeed, we assume

that Φ has a density with respect to the Lebesgue measure, and that density is given

by ϕ0.

Calculating the drift and diffusion in the above SDE we see that

dXt = 2Xt(t
4α + 4X2

t )−
1
2 dt+

√
2 (t4α + 4X2

t )1/4 dWt

X0 = Φ.
(5.1.3)

We note that P(Φ = 0) = 0 and so since Φ is independent of the Brownian motion

W•, we may consider Φ = y for some y ∈ R \ {0}. Without loss of generally, assume

y > 0. The argument for y < 0 is analogous. Fix δ > 0 such that 0 < δ < y and

define

b(t, z) :=

2δ(t4α + 4δ2)−
1
2 if −∞ < z < δ

2z(t4α + 4z2)−
1
2 if δ ≤ z <∞

and

σ(t, z) :=


√

2 (t4α + 4δ2)1/4 if −∞ < z < δ
√

2 (t4α + 4z2)1/4 if δ ≤ z <∞.

Then, for every t ≥ 0, z 7→ σ(t, z) is globally Lipschitz, with at most linear growth

at infinity. The same holds for z 7→ b(t, z) and so the standard theory of existence

and uniqueness of a strong solution (Theorem 2.3.2) implies

Xt = y +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs

for every t ≥ 0. If τ := inf{t ≥ 0 |Xt ≤ δ} then t < τ implies Xt > δ and so

b(t,Xt) = 2Xt(t
4α + 4X2

t )−
1
2 , σ(t,Xt) =

√
2 (t4α + 4X2

t )1/4.
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We thus deduce short time existence to (5.1.3). One stops the evolution at a time

t ∈ (0, τ/2) and restarts the evolution so giving existence and uniqueness to a strong

solution of (5.1.3) for t ∈ [0, T ]. This procedure works since for t > 0, the coefficients

µ and D satisfy the standard conditions for existence and uniqueness of a strong

solution. It remains to show that P(τ = 0) = 0. For t > 0,

P(τ < t) ≤ P( inf
0≤s≤t

Xs ≤ δ)

and so by the continuity of

t 7→ inf
0≤s≤t

Xs

one concludes that

lim
t→0

inf
0≤s≤t

Xs = y > δ

and so P(τ < t)→ 0 as t→ 0.

Finally, we note that (5.1.3) becomes the following when interpreted in the

Stratonovich sense:

dXt =

(
µ(Xt, t)−

1

2

∂

∂z
D(z, t)|z=Xt

)
dt−

√
2D(Xt, t) ◦ dWt

X0 = Φ

(5.1.4)

where µ and D are given above. In this case, one may check that

µ(z, t)− 1

2

∂D

∂z
(z, t) = 0

for every (z, t) ∈ R × (0, T ]. Thus, appealing to Theorem 2.5.3 and Remark 2.5.5

one takes V0(z, t) = 0 and V1(z, t) =
√

2(t4α + 4z2)
1
4 to see that Vk = V0 for every

k ≥ 1. This implies that Vk(z, t) = Span{V1(z, t)}. Thus, for fixed (z, t) ∈ R×(0, T ],

given y ∈ R, there exists α ∈ R such that y = αV1(z, t). Thus, by Theorem 2.5.3

and Remark 2.5.5 there exists ϕ ∈ C2,1(R× (0, T ];R) such that (5.1.2) is satisfied.

Hence a solution to (5.0.3) exists.

One should note that the theorem says nothing about the attainment of

initial data; this issue is addressed in the next theorem. In order to show that the

initial data is attained, one would like to use the Feynman-Kac formula, applied to
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the process which solves the SDE

dYs =
6Ys

((−s)4α + 4Y 2
s )1/2

ds+
√

2 ((−s)4α + 4Y 2
s )1/4 dWs

Y−t = z.

However, standard techniques of using local Lipschitz continuity of the coefficients

only yield a solution to the above SDE for −t ≤ s < 0. Indeed, there is no a priori

way to define the solution at s = 0. As the Feynman-Kac formula relies on at least

knowing the law of X0, one should look for a different approach.

This problem is remedied if we use the original (l, t) coordinates. Recall that

(t4α + 4z2)1/4 = tα(cosh 2g(lt−α))1/2. So, for (5.0.3) we make the ansatz

v(l, t) = tα(cosh 2g(lt−α))1/2ϕ(l, t).

The approach is now to show that considering the equation ϕ must satisfy, there

exists a solution and that ϕ attains its initial data. If this is true, the following

lemma shows that v(l, t)→ v0(l) as t→ 0 for every l ∈ R.

Lemma 5.1.4. For every l ∈ R,

lim
t→0

tα(cosh 2g(lt−α))1/2 = |l|.

Proof. If l = 0 then cosh 2g(lt−α) = 1 and so the result is obvious. Suppose that

l 6= 0. Then Proposition A.0.1 implies

(cosh 2g(lt−α))1/2 =

[(
|l|
tα

+ κ

)2

+R(lt−α)

]1/2

where R(y) ≤ O(|y|−4) for large |y|. Thus, rearranging this expression, one has

tα(cosh 2g(lt−α))1/2 =
[
(|l|+ κtα)2 + t2αR(lt−α)

]1/2
.

One sends t→ 0 to conclude the result.

From our ansatz of v(l, t) = tα(cosh 2g(lt−α))1/2ϕ(l, t), a simple calculation
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shows that ϕ solves

∂ϕ

∂t
=
∂2ϕ

∂l2
+

[
2t−α

tanh 2g(lt−α)√
cosh 2g(lt−α)

− αtα−1G(lt−α)

]
∂ϕ

∂l
+ 2t−2α sech3 2g(lt−α)ϕ

ϕ(l, 0) =
v0(l)

|l|
=: ϕ0(l). (5.1.5)

Indeed, Remark 4.1.5 implies that liml→0 ϕ0(l) exists1, is finite and Theorem 4.1.3

implies that ϕ0 ∈ L∞(R). We now have one of the main results of this thesis.

Theorem 5.1.5. There exists a unique solution to (5.0.3) and for every l ∈ R,

lim
t→0

v(l, t) = v0(l).

Proof. Consider the ansatz v(l, t) = tα(cosh 2g(lt−α))1/2ϕ(l, t). Such a ϕ exists by

Theorem 5.1.2 and so such a v exists. We will show that ϕ attains its initial data in

(5.1.5). We will appeal to the Feynman-Kac formula in the following. To this end,

we want to show that there exists a unique strong solution to

dXs =

(
2(−s)−α tanh 2g(Xs (−s)−α)√

cosh 2g(Xs (−s)−α)
− α(−s)α−1G(Xs (−s)−α)

)
ds+

√
2 dWs

X−t = l

(5.1.6)

for −t ≤ s ≤ 0. To this end, define

b(y, s) :=

(
2(−s)−α tanh 2g(y (−s)−α)√

cosh 2g(y (−s)−α)
− α(−s)α−1G(y (−s)−α)

)

for (y, s) ∈ R× [−t, 0). Then

∂b

∂y
(y, s) = α(−s)−1 sech2 2g(y(−s)−α)+

+ 2(−s)−2α(2 sech3 2g(y(−s)−α)− tanh2 2g(y(−s)−α) sech 2g(y(−s)−α)).

Thus, it follows that y 7→ b(y, s) is globally Lipschitz for every −t ≤ s < 0. Further,

by the asymptotics ofG (Proposition A.0.2) it follows that there exists C = C(n) > 0

where n ∈ N such that

|b(y, s)| ≤ C(1 + |y|)

for every y ∈ R and every − t
2n ≤ s ≤ − t

2n+1 for every n ∈ N. Hence, by the

1We must, of course, take the suitable subsequence in defining v0(l).
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standard existence and uniqueness Theorem for strong solutions (Friedman [1975])

to (5.1.6), one concludes there exists a unique strong solution to (5.1.6), and the

solution is given by

Xs = l +

∫ s

−t
b(Xr, r) dr +

√
2(Bs −B−t)

for every −t ≤ s < 0. We show that the solution can be extended to −t ≤ s ≤ 0.

Define

Y := l +

∫ 0

−t
b(Xr, r) dr −

√
2B−t.

Then, by the definition of b and the fact that tanh and G are bounded we have

|Y | ≤ |l|+ C

∫ 0

−t
(−r)−α + (−r)α−1 dr +

√
2 |B−t|.

Since α < 1
2 , it follows that ∫ 0

−t
(−r)−α dr =

t1−α

1− α

and ∫ 0

−t
(−r)α−1 dr =

tα

α
.

Thus, |Y | <∞, P−a.s. Also, P−a.s

|Xs − Y | ≤ Cα((−s)1−α + (−s)α) +
√

2|Bs| −→ 0

as s→ 0−. Thus

Xs = l +

∫ s

−t
b(Xr, r) dr +

√
2(Bs −B−t)

exists for every −t ≤ s ≤ 0 and also satisfies (5.1.6) for every −t ≤ s ≤ 0.

The Feynman-Kac formula yields that

ϕ(l, t) = E(−t,l)
[
exp

(
2

∫ 0

−t
(−s)−2α sech3 2g(Xs(−s)−α) ds

)
ϕ0(X0)

]
solves (5.1.5). Note that as α < 1

2 we have

0 ≤ 2

∫ 0

−t
(−s)−2α sech3 2g(Xs(−s)−α) ds ≤ 2

∫ 0

−t
(−s)−2α ds =

2t1−2α

1− 2α
−→ 0
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as t→ 0. So by continuity of y 7→ exp(y) we have that

exp

(
2

∫ 0

−t
(−s)−2α sech3 2g(Xs(−s)−α) ds

)
−→ 1

as t→ 0. We thus conclude by the Dominated Convergence Theorem, that for every

l ∈ R,

ϕ(l, t) −→ ϕ0(l)

as t→ 0. Recall

v(l, t) = tα(cosh 2g(lt−α))1/2 ϕ(l, t)

so that by Lemma 5.1.4 above, the product of limits and the definition of ϕ0, we

conclude that for every l ∈ R

v(l, t) −→ |l|ϕ0(l) = v0(l).

Thus, such a solution v to (5.0.3) exists and attains its initial data. Unique-

ness follows for if there were two solutions then the difference would have initial

data 0. The Feynman-Kac formula implies that the difference of the solutions is

zero everywhere and so the two solutions are equal.

5.2 Critical Regime

5.2.1 Short–Time Existence

We seek short–time existence to (5.0.3) with α = 1
2 . Since, for t > 0 the coefficients

of (5.0.3) are bounded and smooth, one can naturally extend the solution to some

arbitrary time T ∈ (0,∞).

In the following, recall that G ∈ L∞(R). The main idea for short time exis-

tence to (5.0.3) is to look at the equation as a Fokker-Planck equation and establish

short-time existence for the associated Stochastic Differential Equation (SDE). It is

standard, via the probabilistic version of Hörmander’s Theorem (Theorem 2.5.3) to

establish a smooth density and Dynkin’s formula (2.5.4), that if a smooth density

function exists then it is the solution to the Fokker-Planck equation, or Forward

Kolmogorov equation.
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To this end, consider (5.0.3), rewritten here as

∂v

∂t
=
∂2v

∂l2
− ∂

∂l

(
1

2
√
t
G(l t−

1
2 )v

)
v(l, 0) = v0(l).

(5.2.1)

As mentioned above, the Fokker-Planck PDE, or forward Kolmogorov equation,

describes the evolution of the probability density function of the Markov process

(Xt) satisfying the SDE

dXt =
1

2
√
t
G(Xt t

− 1
2 ) dt+

√
2 dBt

X0 = Z

(5.2.2)

where Z has probability density v0. Here (Xt) satisfies the SDE in the strong sense

and Bt is standard Brownian motion. Since the coefficient of the noise is constant,

the Itō and Stratonovich definition of the stochastic integral coincide.

The idea is now to establish short-time existence to (5.2.2), which yields

a Markov process with density that will satisfy (5.2.1) and so showing short-time

existence for (5.2.1). Uniqueness is then standard as the L1 norm is preserved.

Theorem 5.2.1. There exists a unique strong adapted solution to (5.2.2) for all

times.

Proof. Since Z is independent of Bt we may consider (5.2.2) with Z = y with y ∈ R
fixed. We note that P(Z = 0) = 0. So, suppose first that y > 0. The argument for

y < 0 is analogous. Fix δ > 0 such that 0 < δ < y. Define

H(z, t) :=

G(δ t−
1
2 ), if −∞ < z < δ

G(z t−
1
2 ), if δ ≤ z <∞.

Then, by Proposition A.0.2 we have that there exists Cδ > 0 such that, for every

x, y ∈ R,

|H(x, t)−H(y, t)| ≤ tCδ|x− y|.

Standard Picard iteration for the solution to SDEs (Øksendal [2003]) yields a unique

adapted process (Xt) such that P-a.s and for every t > 0

Xt = y +

∫ t

0

1

2
√
s
H(Xs, s) ds+

√
2Bt.

Let τ := inf{t > 0 |Xt ≤ δ}; then for every t < τ we have Xt > δ and hence
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H(Xt, t) = G(Xt t
− 1

2 ). We thus arrive at

Xt = y +

∫ t

0

1

2
√
s
G(Xs s

− 1
2 ) ds+

√
2Bt,

which establishes short-time existence and uniqueness to (5.2.2). Long-time exis-

tence and uniqueness follows as the drift term is non-singular in time and space

after t > 0. It remains to show that

P(τ = 0) = 0.

For t > 0 it follows that

P(τ < t) ≤ P( inf
0≤s≤t

Xs ≤ δ).

However,

inf
0≤s≤t

Xs ≤ δ =⇒ inf
0≤s≤t

(∫ s

0

1

2
√
r
H(Xr, r) dr +

√
2Bs

)
≤ δ − y

=⇒ − inf
0≤s≤t

Bs ≥
y − δ√

2
− c
√
t,

where c = 1
2‖G‖L∞(R) ∈ (0,∞). Thus

P
(

inf
0≤s≤t

Xs ≤ δ
)
≤ P

(
− inf

0≤s≤t
Bs ≥

y − δ√
2
− c
√
t

)
= P

(
sup

0≤s≤t
Bs ≥

y − δ√
2
− c
√
t

)
as

− inf
0≤s≤t

Bs
d
= sup

0≤s≤t
Bs.

The reflection principle of Brownian motion (Karatzas and Shreve [1991], p.79) gives

that

P
(

sup
0≤s≤t

Bs ≥
y − δ√

2
− c
√
t

)
= 2P

(
Bt ≥

y − δ√
2
− c
√
t

)
and since Bt is a Gaussian random variable with mean zero and variance

√
t we have

2P
(
Bt ≥

y − δ√
2
− c
√
t

)
=

√
2

π

∫ ∞
y−δ√

2t
−c
e−

x2

2 dx.
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Putting these all together we have that

P(τ < t) ≤
√

2

π

∫ ∞
y−δ√

2t
−c
e−

x2

2 dx

and since y − δ > 0 it follows that√
2

π

∫ ∞
y−δ√

2t
−c
e−

x2

2 dx −→ 0

as t→ 0+ and so P(τ = 0) = 0.

Remark 5.2.2. We note that all the derivatives of G are bounded. It now follows

from Theorem 2.5.3 and Remark 2.5.5 that there exists a density v ∈ C2,1(R ×
(0, T ];R) such that (5.2.1) is satisfied for t > 0. The aim of the following section is

to describe the behaviour of the solution for small times.

5.2.2 Bounds on the trajectories of the SDE

Although the probabilistic version of Hörmander’s Theorem (Theorem 2.5.3) gives

existence to such a density u, it cannot tell us whether v(l, t)→ v0(l) as t→ 0.

Here, we prove a bound on the trajectories of the SDE in (5.2.2), which

essentially tells us that nothing pathological can happen at the level of the trajecto-

ries. This does not imply the stronger result of convergence of the density, however

we will show that we have weak convergence of the density to the initial condition.

The stronger result was obtained in Section 5.1 and will be seen to be also true in

Section 5.3. We conjecture that the result is also true in critical case. However,

since α = 1
2 , our analytic and probabilistic tools of Section 5.1 and Section 5.3 fail

to produce any results.

Proposition 5.2.3. Let f ∈ C∞c (R) and let (Xt) be the strong solution to (5.2.2)

with initial state Z that is assumed to be distributed according to v0. Then

lim
t→0

E|f(Xt)− f(Z)| = 0.

Proof. Observe that from (5.2.2) and the fact that |Bt| is distributed as
√
t |W |

where W is a N (0, 1) random variable, we have

E|Xt − Z| ≤ Ct
1
2 .
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So for fixed f ∈ C∞c (R) one has by the uniform Lipschitz continuity of f that

E|f(Xt)− f(Z)| ≤ CfE|Xt − Z| ≤ Ct
1
2 .

The proof is completed by sending t→ 0.

Remark 5.2.4. Heuristically, one should expect there to be no problem with the

density v as t approaches 0, by the following argument. We may think of a particle

on R, whose position is modelled by Yt with density v, before the singularity. The-

orem 4.2.4 implies that P(Y1 = 0) = 0 and so with zero probability the particle is at

the singularity. So when we restart the evolution, the particle shouldn’t “feel” the

singularity.

Remark 5.2.5. From Remark 5.2.2 it follows that a density u ∈ C2,1(R× (0, T ];R)

exists and solves (5.2.1). But, u(·, t) is precisely the density of (Xt) and thus by

above, since v0 is the density of Z,

Ef(Xt) =

∫
R
f(x)u(x, t) dx→

∫
R
f(x)v0(x) dx = Ef(Z)

as t → 0, for every f ∈ C∞c . This precisely shows the weak convergence of the

solution to (5.2.1) to the initial data.

5.3 Super–Critical Regime

We note that the methods employed in this section fail in the case of α ≤ 1
2 . Consider

(5.0.3) with α > 1
2 . By Theorem 4.3.3 it follows that v0 ∈ L∞(R) ∩ C(R). The fact

that v0 ∈ C(R) will be extremely important in the proof of Theorem 5.3.1 below.

Indeed, the problem is now that (5.0.3) is initially singular and so we wish to show

that there is a unique solution which attains the initial data. This is provided by

the following theorem.

Theorem 5.3.1. There exists a unique mild solution to (5.0.3) that attains the

initial data v0, in the pointwise sense.

Proof. As in Section 4.3, let S(t) : L∞(R) → L∞(R) denote the heat semigroup.

We wish to solve the following integral equation in C((0, T ];L∞(R)):

v(l, t) = (S(t)v0)(l)− α
∫ t

0

∫
R
K(l, y; t− s)sα−1 ∂

∂y

(
G(ys−α)v(y, s)

)
dy ds.
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To do this, we solve in X := C((0, T∗];L
∞(R)) for T∗ > 0 small enough with norm

‖ϕ‖X := sup
t∈(0,T∗]

‖ϕ(·, t)‖L∞ ,

using a fixed point argument, observing that (X, ‖ · ‖X) is a Banach space. Observing

that the coefficients of (5.0.3) are smooth and bounded for t > T∗ one extends the

solution for t ∈ (0, T ) in the usual fashion.

Define F : X → X by

Fw(t) = S(t)v0 − α
∫ t

0

∫
R
K(l, y; t− s)sα−1 ∂

∂y
(Gw) dy ds,

where K is the heat kernel is given in Section 4.3. Since v0 ∈ L∞(R) we have, using

the estimate of |∇yK| by Davies [1989] as in Section 4.3

|Fw(t)| ≤ ‖v0‖L∞ + C‖w‖X
∫ t

0

∫
R

(t− s)−1sα−1

(
1 +

(l − y)2

t− s

)
e
− (l−y)2

4(t−s) dy ds

≤ ‖v0‖L∞ + C‖w‖X
∫ t

0
(t− s)−

1
2 sα−1 ds.

Now, using z = s
t∫ t

0
(t− s)−

1
2 sα−1 ds = tα−

1
2

∫ 1

0
(1− z)−

1
2 zα−1 dz.

If α ∈ (1
2 , 1) then ∫ 1

0
(1− z)−

1
2 zα−1 dz = B(1/2, α)

where B(γ1, γ2) is the beta function. Indeed, B(1
2 , α) < ∞ for every α > 1

2 . For

α > 1 this integral above is clearly bounded. Thus

‖Fw‖X ≤ ‖v0‖L∞ + CT
α− 1

2
∗ ‖w‖X ,

for every α > 1
2 . The continuity of t 7→ Fw(t) follows from the fact that the

semigroup T (t) : L∞(R)→ L∞(R) defined by

(T (t)w(·, t))(l) =

∫
R
∇yK(l, y; t)w(y, t) dy =

∫
R

−1√
4πt

e−
(l−y)2

4t
(l − y)

2t
w(y, t) dy

for w(·, t) ∈ L∞(R) is continuous2 at t0 for every t0 ∈ (0, T∗]. Indeed, one may also

2Indeed, one can show that ‖T (t)‖op ≤ C√
t
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conclude the continuity of t 7→ Fw(t) via the Dominated Convergence Theorem.

From this we conclude that F : X → X.

We now show that F is a strict contraction. Fix u, v ∈ X. Then

|Fu−Fv| = α

∣∣∣∣∫ t

0

∫
R
K(l, y; t− s)sα−1 ∂

∂y
(G(u− v)) dy ds

∣∣∣∣
≤ C‖u− v‖X

∫ t

0
(t− s)−

1
2 sα−1 ds ≤ Ctα−

1
2 ‖u− v‖X ,

by exactly the same argument as above. Thus

‖Fu−Fv‖X ≤ CT
α− 1

2
∗ ‖u− v‖X .

Choosing T∗ > 0 such that CT
α− 1

2
∗ < 1 yields that F is a strict contraction and so

by the Contraction Mapping Theorem, there exists a unique v ∈ X such that

v = Fv.

We now show that the initial data is attained. By exactly the same argument as

above

|v(l, t)− (S(t)v0)(l)| ≤ Ctα−
1
2 .

From Theorem 4.3.3 we have that v0 ∈ C(R). Hence,

|S(t)v0(l)− v0(l)| → 0

as t→ 0+ and so we conclude the result by the triangle inequality.
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Chapter 6

Pertubations of Problem I

The analysis presented thus far is for the unperturbed equation (3.2.3). As this

was derived from a conservation law, of interest is what happens to the solution at

the singularity when one adds extra energy. We are not interested in continuing

the solution past the singularity; only whether noise can disturb the fact that the

solution vanishes at the singularity in the sub–critical regime. For the critical regime,

we recall that we need u0 ∈ D(H). This is not satisfied if, for example, u0 ∈ L∞(R)

with no assumptions on whether u0 is differentiable or not. Indeed, it can be argued

that the α < 1
2 case is more complete than α = 1

2 and, moreover, the α > 1
2 case has

that the solution need not vanish at the singularity. Therefore, we do not consider

the critical regime of α = 1
2 .

In order to carry out the analysis, we model the influx of energy by placing

a space-time function on the right hand side of (3.2.3). Since one wants to use a

two-parameter semigroup approach for the solution, by appealing to the variation

of constants formula, it is clear that we need to look at rougher initial data started

at a time s ∈ [0, 1) and so that we run (3.2.3) for t ∈ [s, 1). We aim to arrive at

analogous results to that of Theorem 4.1.1 and Theorem 4.1.3 for the sub–critical

regime with rougher initial conditions and when the equation is suitably perturbed.

The perturbation will be based on what we can prove about the solution

with rougher initial conditions. For this reason, we include a section below where

one does not necessarily assume that the initial data is smooth.

6.1 Rougher Initial Conditions

Until now, we have only considered initial data u0 ∈ C∞c (R) for (3.2.3). In order

to perturb (3.2.3), one must consider (3.2.3) with initial condition started at t = s
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where s ∈ [0, 1) and analyse the results. We will only consider the sub–critical

regime.

6.1.1 Sub–Critical Regime

Consider

∂u

∂t
=
∂2u

∂l2
+ α(1− t)α−1 ∂

∂l

(
G(l(1− t)−α)u

)
, (l, t) ∈ R× [s, 1),

u(l, s) = f(l, s),

(6.1.1)

where s ∈ [0, 1) and α < 1
2 . Note that we are only running the equation for t ∈ [s, 1)

where s ∈ [0, 1) is fixed. For f being suitably integrable or bounded, Theorem 2.2.4

implies the existence of a unique solution u ∈ C2,1(R × [s, 1)). With this in mind,

the results are presented in the following theorem.

Theorem 6.1.1. For each fixed s ∈ [0, 1), consider the unique solution, u, to (6.1.1)

and assume that f(·, s) ∈ L∞(R). Then we have that

i) |u(l, t)| ≤ ‖f(·, s)‖L∞ for every (l, t) ∈ R× [s, 1);

ii) u(0, t)→ 0 as t→ 1−;

iii) |u(l, t)| ≤ (1 − s)−α‖f(·, s)‖L∞(1 − t)α
√

cosh 2g(l(1− t)−α) for every (l, t) ∈
R× [s, 1).

Remark 6.1.2. One may make use of the asymptotics of cosh 2g(x) to derive a

power law in the arc-length parameter from iii) in the above theorem. This is anal-

ogous to the proof of Theorem 4.1.3 and so we omit the details.

Proof of Theorem 6.1.1. The reader should read this proof in close comparison with

the proofs of Theorem 4.1.1 and Theorem 4.1.3.

i) Following the proof and set up of Theorem 4.1.1, changing coordinates via

y = l(1− t)−α and τ = − log(1− t) we have

f(l, s) = f(ye−ατs , 1− e−τs),

where τs = − log(1−s). Hence, using the Feynman-Kac representation formula

for the solution in (y, τ) coordinates, just as in the proof of Theorem 4.1.1 one
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concludes that

|u(l, t)| = |v(y, τ)| =
∣∣∣∣E(−τ,y) exp

(
−
∫ −τs
−τ

F (Xr) dr

)
f(X−τse

−ατs , 1− e−ατs)
∣∣∣∣

≤ ‖f(·, s)‖L∞ .

ii) This follows from the proof of Theorem 4.1.1 with ‖f(·, s)‖L∞ in place of

‖u0‖L∞ .

iii) Working in (y, τ) coordinates we follow the proof of Theorem 4.1.3 and make

the ansatz

v(y, τ) = e−ατ
√

cosh 2g(y)ϕ(y, τ)

where we take initial condition for ϕ as

ϕ(y, τs) = eατs
f(ye−ατs , 1− e−τs)√

cosh 2g(ye−ατs)
.

It follows that ϕ solves (4.1.4) with initial condition ϕ(y, τs) and so via the

Feynman-Kac representation formula,

|ϕ(y, τ)| ≤ eατs‖f(·, 1− e−τs)‖L∞ .

Switching back to (l, t) coordinates, we see that

|u(l, t)| ≤ (1− s)−α‖f(·, s)‖L∞ (1− t)α
√

cosh 2g(l(1− t)−α)

for every (l, t) ∈ R× [s, 1).

Remark 6.1.3 (On integrable initial data). The reader will notice that we have not

considered the case of f(·, s) ∈ Lq(R) for every s ∈ [0, 1) where q ∈ [1,∞). This

is due to the fact that the method we employ to prove Theorem 6.1.1 in the q = ∞
case cannot be easily modified for the q ∈ [1,∞) case.

We thus restrict ourselves to the q =∞ case for the rest of this chapter and

leave the case of q ∈ [1,∞) to further research. This is not detrimental, for the

motivation of this section for perturbing the equation really has stochastic perturba-

tion in mind where will be perturb with continuous functions (that turn out to be

uniformly bounded).
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6.2 Deterministic Perturbation

We will consider the following equation

∂u

∂t
=
∂2u

∂l2
+ α(1− t)α−1 ∂

∂l

(
G(l(1− t)−α)u

)
+ f

u(l, 0) = u0(l),

(6.2.1)

where f : R× [0, 1]→ R is measurable and α < 1
2 .

Definition 6.2.1. Let u0 ∈ C∞c (R) and suppose f is regular enough so that (6.1.1)

has a classical solution for every s ∈ [0, 1). Then we define the unique mild to

(6.2.1) as

u(l, t) = U(t, 0)u0(l) +

∫ t

0
U(t, s)f(·, s)(l) ds (6.2.2)

where for 0 ≤ s ≤ t < 1 we define U as v(l, t) := U(t, s)g(·, s)(l) to be the unique

solution to (6.1.1) for s ≤ t < 1 with initial data v(l, s) = g(l, s).

Remark 6.2.2. One can easily check using the estimates in Theorem 6.1.1 that

for f and u0 with suitable regularity, equation (6.2.2) does in fact define the unique

classical solution to (6.2.1).

6.2.1 Sub–Critical Regime

Consider (6.2.1) with α < 1
2 . We aim to prove the analogue of Theorem 4.1.1 and

Theorem 4.1.3 for this equation. Indeed, we have the following.

Theorem 6.2.3. Let u0 ∈ C∞0 (R) and suppose that f ∈ C([0, 1];L∞(R)). Then the

unique classical solution, u, given in (6.2.2) satisfies

i) There exists C > 0 such that |u(l, t)| ≤ C for every (l, t) ∈ R× [0, 1) ;

ii) It holds that u(0, t)→ 0 as t→ 1−;

iii) There exists C = C(u0, f) > 0 such that

|u(l, t)| ≤ C(1− t)α
√

cosh 2g(l(1− t)−α)

for every (l, t) ∈ R× [0, 1).

Remark 6.2.4. Again, as in Theorem 6.1.1, one may use the asymptotics of

cosh 2g(x) in iii) above to deduce a power law in the arc-length parameter; anal-

ogous to Theorem 4.1.3.
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Proof of Theorem 6.2.3. Using (6.2.2) we have

u(l, t) = U(t, 0)u0(l) +

∫ t

0
U(t, s)f(·, s)(l) ds.

i) By Theorem 6.1.1,

|u(l, t)| ≤ ‖u0‖L∞ + sup
s∈[0,1]

‖f(·, s)‖L∞ .

ii) Since f ∈ C(0, 1;L∞(R)) then

|u(0, t)| ≤ |U(t, 0)u0(0)|+
∫ 1

0
|U(t, s)f(·, s)(0)|χ[0,t](s) ds.

Theorem 6.1.1 implies that

|U(t, s)f(·, s)(0)|χ[0,t](s) ≤ ‖f(·, s)‖L∞ ≤ sup
s∈[0,1]

‖f(·, s)‖L∞ ∈ L1(0, 1;R),

lim
t→1−

|U(t, s)f(·, s)(0)|χ[0,t](s) = 0

for every s ∈ [0, 1) and

lim
t→1−

|U(t, 0)u0(0)| = 0.

Applying the Dominated Convergence Theorem yields the result.

iii) By the proof of Theorem 6.1.1, one concludes that

|u(l, t)| ≤ Cψ(l, t)

(
‖u0‖L∞ + sup

s∈[0,1]
‖f(·, s)‖L∞

∫ t

0
(1− s)−α ds

)
,

where

ψ(l, t) := (1− t)α
√

cosh 2g(l(1− t)−α.

However, since α < 1
2 it follows that 1− α > 1

2 and so∣∣∣∣∫ t

0
(1− s)−α ds

∣∣∣∣ < 1

1− α
<∞.

Thus

|u(l, t)| ≤ C(1− t)α
√

cosh 2g(l(1− t)−α
(
‖u0‖L∞ + sup

s∈[0,1]
‖f(·, s)‖L∞

)
.
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Remark 6.2.5. The reader should note that instead of taking f ∈ C([0, 1];L∞(R)),

one could of course take f ∈ L1(0, 1;L∞(R)) to conclude the results of i) and ii)

above. If we add the additional assumption that (1 − s)−α‖f(·, s)‖L∞ ∈ L1(0, 1;R)

one may conclude iii). The argument is omitted.

6.3 Stochastic Perturbation

Until now, we have only considered deterministic perturbations. In the following,

we will perturb using a stochastic term. In order to get qualitative results, we will

follow the approach of Da Prato and Zabczyk [1992]. In this approach, we need to

set the stochastic PDE in a Hilbert space setting. We also want to make sure we

have bounded solutions in space. The following lemma is of use.

Lemma 6.3.1. Let f ∈ Hr(R) with r > 1
2 . Then there exists f̃ ∈ C(R) with

f̃ ∈ L∞(R), uniformly continuous with f = f̃ a.e.

Proof. For a proof, the reader is directed to, for example, Grafakos [2009] Theo-

rem 6.2.4.

Considering U(t, s) in Definition 6.2.1 as a two-parameter strongly continu-

ous semigroup, we have seen that U(t, s) : Cb(R) → Cb(R) for 0 < s ≤ t < 1. It

is natural to ask whether U(t, s) : H1(R) → H1(R) for every 0 ≤ s ≤ t ≤ 1. In

the following, we will take a heuristic exploration into what noise we can actually

take, given we have not been able to show that U(t, s) : H1(R) → H1(R) for every

0 ≤ s ≤ t ≤ 1.

6.3.1 A Heuristic exploration into the noise

Let W (t) be a H1(R) valued Q−Wiener process with Q = I. Let {βj(t)}j∈N be a

sequence of real-valued independent Brownian motions such that

〈W (t), u〉 =
∑
j∈N
〈ej , u〉βj(t)

for every u ∈ H1(R) and for every t ≥ 0. Here {ej}j∈N is an orthonormal basis of

H1(R). Hence, for u = ej we conclude that βj = 〈W (t), ej〉.
Let

A(t) :=
∂2

∂l2
+ α(1− t)α−1 ∂

∂l
(G(l(1− t)α)·)
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and consider the Stochastic Partial Differential Equation (SPDE), written as an

infinite dimensional SDE (Prévôt and Röckner [2007])

dv = A(t)v dt+ dW (t)

v(0) = u0.

Then

v(t) = U(t, 0)u0 +

∫ t

0
U(t, s) dW (s)

is the mild solution. However, a major problem is that we do not know whether∫ t

0
U(t, s) dW (s) ∈ H1(R).

Indeed, if βj(t) = 〈W (t), ej〉 then∫ t

0
U(t, s) dW (s) =

∫ t

0

∑
j∈N
U(t, s)ej dβj(s) =

∑
j∈N

∫ t

0
U(t, s)ej dβj(s). (6.3.1)

We have formally interchanged the sum and the integral. We note that
∫ t

0 • dβj(s)

is a real Stochastic integral in the Itō sense and ej ∈ H1(R). Let ẽj denote the a.e

continuous version of ej . Then, by Lemma 6.3.1 we may consider

U(t, s)ej = U(t, s)ẽj

a.e with U(t, s)ẽj ∈ C2,1(R×[s, 1)) for every s ∈ [0, 1) and since ẽj ∈ L∞(R) it follows

that U(t, s)ẽj ∈ L∞(R × [s, 1)) for every t ∈ [s, 1) for every s ∈ [0, 1). However, it

does not follow that U(t, s)ẽj ∈ H1(R) for every 0 ≤ s ≤ t ≤ 1; integrability is not

guaranteed.

With regard to (6.3.1), it doesn’t follow that the above sum is finite. Usually,

there is some link between ej and A(t) such as the ej being eigenfunctions of A(t),

with eigenvalues λj . This would yield that U(t, s)ej = e−λjej , and so the sum would

converge. In this case, ej and λj would be time dependent, but we would hope for

some spectral mapping theorem to relate U(t, s)ej andA(t)ej , via U(t, s)ej = e−λjej .

Since A(t) is not self-adjoint, there is no hope for such a theorem.

We remark that the main problem is really not knowing how U(t, s) behaves

when acting on an orthonormal basis of H1(R). Of course, if we were considering a

bounded domain Γ ⊂ R, then we would immediately have U(t, s) : H1(Γ)→ H1(Γ),

since integrability is no longer an issue. However, convergence of the sum in (6.3.1)

87



would still be an issue. Thus, we need to weight the expression for the Wiener process

W with something that we know is square summable, or take a finite number of

terms in the sum for W . This corresponds to taking coloured in space noise or a

finite rank covariance operator, Q, respectively. This will guarantee convergence of

the sum in (6.3.1).

To see how weighting the expression for W helps, suppose Q : H1(R) →
H1(R) is a positive definite bounded linear map. Let {ej}j∈N be an eigen-basis for

Q in H1(R); that is, we assume

Qej =
√
λjej

where λj > 0 and assume there exists C > 0 such that |ẽj(l)| ≤ C for every j ∈ N
and l ∈ R, where ẽj is the uniformly continuous and bounded representative of ej

as given by Lemma 6.3.1. Then∫ t

0
U(t, s) dW (s) =

∑
j∈N

√
λj

∫ t

0
U(t, s)ej dβj(s).

This series converges in L2(Ω,F ,P) since, for n, p ∈ N arbitrary,

E

∣∣∣∣∣∣
n+p∑
j=n+1

√
λj

∫ t

0
U(t, s)ej dβj(s)

∣∣∣∣∣∣
2

≤
n+p∑
j=n+1

λj

∫ t

0
|U(t, s)ej |2 ds

by the Itō isometry. However, a.e we have ej = ẽj and so by Theorem 6.1.1 we have

that a.e

E

∣∣∣∣∣∣
n+p∑
j=n+1

√
λj

∫ t

0
U(t, s)ej dβj(s)

∣∣∣∣∣∣
2

≤ C2
n+p∑
j=n+1

λj ≤ C2
∞∑
j=1

λj <∞

as λj ∈ `1(N;R).

6.3.2 Sub–Critical Regime

We will consider three possibilities for the stochastic perturbation:

A) White in time perturbation, constant in space: Here we consider

∂u

∂t
=
∂2u

∂l2
+ α(1− t)α−1 ∂

∂l

(
G(l(1− t)−α)u

)
+

dβ

dt
(t)

u(l, 0) = u0(l)

(6.3.2)
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where u0 ∈ C∞c (R), β(t) is real-valued Brownian motion and dβ
dt (t) is the dis-

tributional derivative of Brownian motion. The unique mild solution is given

by

u(l, t) = U(t, 0)u0(l) +

∫ t

0
U(t, s)(1)(l) dβ(s). (6.3.3)

Here the integral is the real stochastic integral in the sense of Itō.

Remark 6.3.2 (On the expression (6.3.3)). The reason why we write U(t, s)(1)(l)

in the real valued Itō integral, is because in the definition of the stochastic in-

tegral, we take the one-dimensional Wiener process W (t) = β(t) where β(·) is

one-dimensional Brownian motion. Thus, U(t, s) acts on the function 1, the

resulting function, U(t, s)(1) is continuous and so is to be evaluated at l.

B) Coloured in space - white in time: Here we consider the following SDE in H1(R):

du(t) = A(t)u(t) dt+ dW1(s)

u(0) = u0

(6.3.4)

where u0 ∈ C∞c (R) and A(t) is defined for u(t) ∈ D(A(t)) := C2,1
b (R) with

t ∈ [0, 1) by

A(t)u(t)(l) =
∂2u

∂l2
(l, t) + α(1− t)α−1 ∂

∂l

(
G(l(1− t)−α)u(l, t)

)
.

Here, W1(t) is given by the Karhunen-Loeve expansion

W1(t) =
∞∑
j=1

√
λjejβj(t)

where {βj(t)}j∈N are independent real-valued Brownian motions, λj ∈ `1(N;R)

and {ej}j∈N is an orthonormal basis for H1(R) such that there exists C > 0

such that |ẽj(l)| ≤ C for every j ∈ N, l ∈ R. Here {ẽj} are the a.e uniformly

continuous, bounded version of the {ej} as given in Lemma 6.3.1. For this

reason, we will considerW1 but with ej replaced by ẽj . Indeed, for the remainder,

we assume that the noise is defined via ẽj and not ej . This will make sure that

the mild solution is uniquely given by

u(t)(l) = U(t, 0)u0(l) +

∫ t

0
U(t, s) dW1(s)(l)
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which is interpreted as

u(t)(l) = U(t, 0)u0(l) +
∑
j∈N

√
λj

∫ t

0
U(t, s)ẽj(l) dβj(s) (6.3.5)

where the series converges in L2(Ω,F ,P). However, the resulting solution may

not be in H1(R).

C) Space-Time white noise with finite rank covariance operator. Here we consider

du(t) = A(t)u(t) dt+ dW2(s)

u(0) = u0

(6.3.6)

where u0 ∈ C∞c (R) and A(t) is defined in case B) above. For the noise,

W2(t) =
N∑
j=1

ej βj(t)

where N ∈ N with N ≥ 2. Here, {ej} and {βj(t)} are given in case B) above.

We will, as in case B) consider the noise defined with ẽj instead of ej . The mild

solution is uniquely given by

u(t)(l) = U(t, 0)u0(l) +

∫ t

0
U(t, s) dW2(s)

which is interpreted as

u(t)(l) = U(t, 0)u0(l) +

N∑
j=1

∫ t

0
U(t, s)ẽj(l) dβj(s). (6.3.7)

Since N <∞, the series automatically makes sense in L2(Ω,F ,P).

We now have the following theorem which details the results.

Theorem 6.3.3. Let u0 ∈ C∞0 (R) and consider the unique mild solution u to case

A, B or C. Then in each of the cases,

I) There exists C = C(u0) > 0 such that

E|u(l, t)|2 ≤ C

for every (l, t) ∈ R× [0, 1);
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II) It holds that

E|u(0, t)|2 → 0

as t→ 1−;

III) There exists C = C(u0) > 0 uniform in j such that

E|u(l, t)|2 ≤ C(1− t)2α cosh 2g(l(1− t)−α)

for every (l, t) ∈ R× [0, 1).

Proof. The main ingredients are the results of Theorem 6.1.1 and the Itō isometry

(Lemma 2.3.5).

I) A) Consider (6.3.3). Then

E|u(l, t)|2 ≤ 2‖u0‖2L∞ + 2

∫ t

0
|U(t, s)(1)(l)|2 ds ≤ 2(‖u0‖2L∞ + 1).

B) Consider (6.3.5). Then

E|u(l, t)|2 ≤ 2‖u0‖2L∞ + 2
∑
j∈N

λj

∫ t

0
|U(t, s)ẽj(l)|2 ds ≤ C

(
‖u0‖2L∞ + 1

)
,

where C contains the `1 norm of λ = {λj}j∈N.

C) Consider (6.3.7). Then

E|u(l, t)|2 ≤ 2‖u0‖2L∞ + 2
N∑
j=1

∫ t

0
|U(t, s)ẽj(l)|2 ds ≤ 2‖u0‖2L∞ + 2C2

N∑
j=1

1

= 2‖u0‖2L∞ +NC2(N + 1).

II) A) Consider (6.3.3). Then

E|u(0, t)|2 ≤ 2|U(t, 0)u0(0)|2 + 2

∫ t

0
|U(t, s)(1)(0)|2 ds.

However, U(t, 0)u0(0) → 0 as t → 1− and U(t, s)(1)(0) → 0 as t → 1− for

every s ∈ [0, 1). Further,

|U(t, s)(1)(0)|χ[0,t](s) ≤ 1
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for every s ∈ [0, 1). Thus the dominated convergence theorem implies

E|u(0, t)|2 → 0

as t→ 1−.

B) Consider (6.3.5). Then

E|u(0, t)|2 ≤ 2|U(t, 0)u0(0)|2 + 2
∑
j∈N

λj

∫ t

0
|U(t, s)ẽj(0)|2 ds.

Again, U(t, 0)u0(0)→ 0 as t→ 1− and U(t, s)ẽj(0)→ 0 as t→ 1−. Also,

|λj |
∫ t

0
|U(t, s)ẽj(0)|2 ds ≤ C2|λj | ∈ `1(N;R)

for each fixed t ∈ [0, 1) with

|U(t, s)ẽj(0)|2χ[0,t](s) ≤ C2 ∈ L1(0, 1; ds;R)

for each fixed t ∈ [0, 1). So, applying the dominated convergence theorem

twice reveals that

lim
t→1−

∑
j∈N

λj

∫ t

0
|U(t, s)ẽj(0)|2 ds = 0.

The result now follows.

C) Consider (6.3.7). The proof is completely analogous to that of II) B)

without the need to use the dominated convergence Theorem twice, as we

are considering a finite sum.

III) A) Consider (6.3.3). Then, applying Theorem 6.1.1,

E|u(l, t)|2 ≤ 2|U(t, 0)u0(0)|2 + 2

∫ t

0
|U(t, s)(1)(l)|2 ds

≤ C(1− t)2α cosh 2g(l(1− t)−α)

(
‖u0‖2L∞ +

∫ t

0
(1− s)−2α ds

)
.

However, as α < 1
2 the following integral is finite uniformly in t with∫ t

0
(1− s)−2α ds =

1

1− 2α
(1− (1− t)1−2α) ≤ 1

1− 2α
.
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Hence

E|u(l, t)|2 ≤ C
(
‖u0‖2L∞ + 1

)
(1− t)2α cosh 2g(l(1− t)−α)

for every (l, t) ∈ R× [0, 1).

B) Consider (6.3.5). Analogously we have

E|u(l, t)|2 ≤ C

(
‖u0‖2L∞ + sup

j∈N
‖ẽj‖2L∞

)
(1− t)2α cosh 2g(l(1− t)−α)

for every (l, t) ∈ R× [0, 1), where we have used that λj ∈ `1(N;R) and that

we have a bound uniform in j on the ẽj .

C) Finally, consider (6.3.7). It follows from exactly the same proof as in II)

B) above that for every (l, t) ∈ R× [0, 1)

E|u(l, t)|2 ≤ C(N)

(
‖u0‖2L∞ + sup

1≤j≤N
‖ẽj‖L∞

)
(1−t)2α cosh 2g(l(1−t)−α).

Remark 6.3.4. It may be argued that the noise chosen is not natural. Since we

are ultimately considering a time-dependent curve, it can be argued that the basis

functions should depend on time. If we have this and the assumption that

sup
s∈[0,1]

sup
j∈N
‖ẽj(s)‖L∞ <∞

where ẽj(t), t ∈ [0, 1], are some uniformly continuous, bounded version of some

orthonormal basis {ej(t)}j∈N with t ∈ [0, 1] of H1(R), then it is clear that all the

proofs of Theorem 6.3.3 carry through. Of course, one can construct these ej(t)

from some orthonormal basis of H1(Ct).
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Chapter 7

Statement and formulation of

Problem II

We will now consider the same problem as Chapter 3, but we will replace the curve

Cαt with a surface. To this end, fix α ∈ (0,∞) and consider the hyperboloid of one

sheet,

Sαt := {(x, y, z) ∈ R3 |x2 + y2 − z2 = (1− t)2α}. (7.0.1)

Figure 7.1 shows Sαt with α = 0.5 and t = 0.75. At t = 1 we have that Sα1 is

the cone, which extends to infinity in either z-direction. Thus, at x = y = 0 there

is no way to define the tangent space. Figure 7.2 illustrates this for α = 0.5 and

t = 1. For a parameterisation-free description of Sαt , we define φ : R3× [0, 1]→ R by

φ(x, y, z, t) = x2 + y2− z2− (1− t)2α so that Sαt = {(x, y, z) ∈ R3 |φ(x, y, z, t) = 0}.
We are interested in the effects of the geometric singularity forming as t→ 1−

on the solution to the following PDE on Sαt , which is derived from a conservation

law (Section 2.6).

∂•t U + U∇Γ · v −∆ΓU = 0 x ∈ Γ := Sαt t ∈ [0, 1).

U(x, 0) = U0(x) x ∈ Sα0 .
(7.0.2)

Here,

v :=
φt
|∇φ|

ν

is the prescribed normal velocity of the surface, with inward pointing unit normal ν

defined

ν := − ∇φ
|∇φ|

.

The time–derivative like term, ∂•t , is called the material derivative. The reader is

94



Figure 7.1: Plot of Sαt for α = 0.5 and t = 0.75.

directed to Section 2.6.

We are interested in the qualitative behaviour of the solution as t→ 1−. As

with the earlier chapters, we expect that the qualitative results depend on the value

of α.

7.1 Parameterisation of the Problem

Since Sαt is a surface of revolution, it makes sense to parameterise the hyperbola in

the (x, z) plane using arc–length parameterisation. The following were given earlier

but are repeated here for convenience.

Definition 7.1.1. Let g : R→ R be the inverse of the map p 7→
∫ p

0

√
cosh 2udu.

Remark 7.1.2. By the inverse function Theorem it follows that for every s ∈ R

g′(s) =
1√

cosh 2g(s)

g(0) = 0.

(7.1.1)

Also, one should note that g(−s) = −g(s) for every s ∈ R.
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Figure 7.2: Plot of Sαt for α = 0.5 and t = 1.

We parameterise Sαt with X : R× [0, 2π)× [0, 1)→ R3, defined as

X(l, θ, t) := (1− t)α (cosh g(z) cos θ, cosh g(z) sin θ, sinh g(z)) (7.1.2)

where

z = l(1− t)−α.

Proposition 7.1.3. The following results will be of use. The arguments of g, l(1−
t)−α, are omitted for typographical clarity.

Xl :=
∂X

∂l
= g′ (sinh g cos θ, sinh g sin θ, cosh g)

Xθ :=
∂X

∂θ
= (1− t)α (− cosh g sin θ, cosh g cos θ, 0)

Xt :=
∂X

∂t
=

 cos θ(αl(1− t)−1g′ sinh g − α(1− t)α−1 cosh g)

sin θ(αl(1− t)−1g′ sinh g − α(1− t)α−1 cosh g)

αl(1− t)−1g′ cosh g − α(1− t)α−1 sinh g


T

Proof. This is a standard calculation and exercise in using the chain rule.

Definition 7.1.4. Given a parametrisation X : R× [0, 2π)× [0, 1)→ R3, define the

96



metric tensor h : R× [0, 2π)× [0, 1) −→ R2×2
sym by

h :=

(
|Xl|2 Xl ·Xθ

Xθ ·Xl |Xθ|2

)
.

Proposition 7.1.5. The metric tensor h for Sαt with parameterisation X as given

in (7.1.2) is given by

h =

(
1 0

0 (1− t)2α cosh2 g

)
with determinant |h| := det(h) = (1− t)2α cosh2 g. The inverse is given by

h−1 =

(
1 0

0 (1− t)−2α sech2 g

)
.

Proof. Follows from the definition of h and Proposition 7.1.3.

We are now in a position to set up the problem.

Let u(l, θ, t) = U(X(l, θ, t), t). Then

∂u

∂t
= ∇U · (Xt − v) + ∂•t U.

If τ (1) := ±Xl and τ (2) := ± Xθ
|Xθ| denote the orthogonal unit tangent vectors and if

Xt − v = β1τ
(1) + β2τ

(2) + β3ν,

then a simple calculation using Proposition 7.1.3 reveals that β2 = β3 = 0 and that

β1 = Xt · τ (1) so that for any orientation of τ (1) we have

Xt − v = (Xt ·Xl)Xl.

The reader should note that this term is the analogue to the problem considered on

the curve of Chapter 3. Noting that

∂u

∂l
= ∇U ·Xl

we conclude that
∂u

∂t
= (Xt ·Xl)

∂u

∂l
+ ∂•t U.
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A simple calculation using Proposition 7.1.3 yields

Xt ·Xl = α(1− t)α−1

(
l

(1− t)α
− sinh 2g(l(1− t)−α)√

cosh 2g(l(1− t)−α)

)

and thus it is natural to define

G(y) := y − sinh 2g(y)√
cosh 2g(y)

. (7.1.3)

The reader should again notice that this is analogous to the curve case. Turning

our attention to the Laplace-Beltrami term, ∆ΓU , we have

∆ΓU =
1√
|h|
∇ ·
(√
|h|h−1∇u

)
(7.1.4)

where the gradient is given in local coordinates as

∇ =

(
∂

∂l
,
∂

∂θ

)
.

Finally, the surface divergence of the velocity, ∇Γ · v, is calculated as

∇Γ · v = V H

where

V =
φt
|∇φ|

is the normal velocity and H is the mean curvature defined, in terms of the level set

φ as

H :=
−1

|∇φ|

3∑
i,j=1

(
δij −

φxiφxj
|∇φ|2

)
φxixj

with the convention that φx1 ≡ φx, φx2 ≡ φy and φx3 ≡ φz. The prefactor of

−1 present in the definition of H arises due to the orientation of ν. The reader

should note that ∇Γ · v = V H since the prescribed velocity of the surface is in the

normal direction. See Dziuk and Elliott [2007], Appendix A for an alternative (yet

equivalent) definition.

One calculates to see that

V H = α(1− t)−1
(
sech2 2g − sech 2g

)
where the argument of g is omitted. Noting that G′(y) = − sech2 2g(y) we thus
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study the following PDE on R× [0, 2π)

∂u

∂t
=

1√
|h|
∇ ·
(√
|h|h−1∇u

)
+ α(1− t)α−1 ∂

∂l

(
G(l(1− t)−α)u

)
+ α(1− t)−1 sech 2g(l(1− t)−α)u

u(l, 0, t) = u(l, 2π, t)

u(l, θ, 0) = U0(X(l, θ, 0)) =: u0(l, θ).

(7.1.5)

From (7.1.5) we see that the integral of u is not conserved. In fact, the correct quan-

tity that is conserved is the integral of u(l, θ, t)
√
|h| = u(l, θ, t)(1− t)α cosh g(l(1−

t)−α).

Proposition 7.1.6. Let J(l, θ, t) := u(l, θ, t)
√
|h| and K := R× [0, 2π). Then

d

dt

∫
K
J(l, θ, t) dl dθ =

d

dt

∫
Sαt
U(z, t) dσ(z) = 0.

Proof. This follows from the definition of the change of area measure and the fact

that
d

dt

∫
Sαt
U(z, t) dσ(z) = 0

from equation (2.6.2).

Remark 7.1.7. Although the proof of Proposition 7.1.6 follows from the conversa-

tion law given in equation 2.6.2, assuming enough regularity so that the following is

valid, one may directly calculate to see that by the definition of J ,∫
K
J(l, θ, t) dl dθ =

∫
Sαt
U(z, t) dσ(z)

since the surface measure σ(z) =
√
|h| in local coordinates. Thus

d

dt

∫
K
J(l, θ, t) dl dθ =

∫
K

∂J

∂t
dl dθ =

∫
K

(
∂u

∂t

√
|h|+ u

∂

∂t

√
|h|
)

dl dθ.

Substituting for ∂u
∂t in (7.1.5), using the Divergence Theorem and integrating by parts

yields

d

dt

∫
K
J(l, θ, t) dl dθ = α(1− t)α−1

∫
K

(tanh 2g sinh g + sech 2g cosh g − cosh g)udl dθ

= 0
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since

coshx ≡ tanh 2x sinhx+ sech 2x coshx,

for every x ∈ R.

In light of Proposition 7.1.6, if J(l, θ, t) = u(l, θ, t)
√
|h| then J solves

∂J

∂t
= ∇ ·

(√
|h|h−1∇

(
J√
|h|

))
+ α(1− t)α−1 ∂

∂l
(GJ)

J(l, 0, t) = J(l, 2π, t)

J(l, θ, 0) = u0(l, θ) cosh g(l).

(7.1.6)

Since Sαt is a surface of revolution, it is natural to assume the following.

Assumption 7.1.8. We assume that the initial condition u0 is independent of θ.

This assumption will be in place throughout the rest of this thesis.

With Assumption 7.1.8, equation (7.1.6) becomes a PDE in one spatial di-

mension:

∂J

∂t
=
∂2J

∂l2
− (1− t)−α ∂

∂l

(
tanh g√
cosh 2g

J

)
+ α(1− t)α−1 ∂

∂l
(GJ)

J(l, 0) = u0(l) cosh g(l),

(7.1.7)

which we will refer to as the density equation.

One should compare this equation with the equation derived in Chapter 3

for the curve. We see that we have an extra creation and drift term given by

−(1− t)−α ∂
∂l

(
tanh g√
cosh 2g

J

)
,

which comes from the Laplace-Beltrami operator. We thus have the following equa-

tion for u which we will refer to as the heat equation:

∂u

∂t
=
∂2u

∂l2
+ (1− t)−α tanh g√

cosh 2g

∂u

∂l
+ α(1− t)α−1 ∂

∂l
(Gu) + α(1− t)−1 sech 2g u

u(l, 0) = u0(l).

(7.1.8)

Remark 7.1.9 (On the growth of the initial data). We note that Proposition 7.1.6

implies that ∫
R
J(l, t) dl =

∫
R
J(l, 0) dl =

∫
R
u0(l) cosh g(l) dl
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for every t ∈ [0, 1]. We need ∫
R
u0(l) cosh g(l) dl <∞

which is guaranteed if, for example, supp(u0) is compact. Indeed, any function

u0 : R→ R such that lim|l|→∞ u0(l) cosh g(l) = 0 sufficiently fast will suffice.

Remark 7.1.10. Throughout we will assume that u0 ∈ C∞c (R) and so, as cosh g(·) ∈
C∞(R) it follows that J(l, 0) ∈ C∞c (R). Indeed, Theorem 2.2.4 implies there exists

J, u ∈ C2,1(R× [0, 1)) such that (7.1.7) and (7.1.8) are respectively satisfied.

7.2 Scaling properties of the PDEs

7.2.1 Scaling of the heat equation

As with the curve, the following scaling is important. Suppose u solves (7.1.8) and

let y = l(1− t)−α, τ = − log(1− t) and write u(l, t) = v(y, τ). Then v solves

∂v

∂τ
= e−βτ

∂2v

∂y2
+ e−βτ

tanh g(y)√
cosh 2g(y)

∂v

∂y
+ α(G(y)− y)

∂v

∂y

+ α(sech 2g(y)− sech2 2g(y))v

v(y, 0) = u0(y),

(7.2.1)

where β = 1− 2α. Thus, if α < 1
2 we have that β > 0 and so exponential decay of

the diffusion term arising from the Laplace–Beltrami term occurs. We are almost in

the case of the curve but crucially, the creation term is positive. This was not the

case when considering the curve, and so it is a priori unknown what will happen at

the singularity as τ →∞.

If α = 1
2 then β = 0 and so the problem is time–homogeneous and an

interplay of the Laplace–Beltrami term and the drift term will occur. Again, a

priori it is unclear what will happen at the singularity.

Finally, if α > 1
2 , exponential explosion of the problem occurs and so this

was the incorrect scaling. In this case, we let y = l(1 − t)−α, τ = (1 − t)1−2α and

γ = 2α − 1 > 0. If u solves (7.1.8), then writing u(l, t) = v(y, τ) we have that v
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solves the following on R× [1,∞)

∂v

∂τ
= γ−1∂

2v

∂y2
+ γ−1 tanh g(y)√

cosh 2g(y)

∂v

∂y

+ αγ−1τ−1(G(y)− y)
∂v

∂y
+ αγ−1τ−1(sech 2g(y)− sech2 2g(y))v

v(y, 1) = u0(y).

(7.2.2)

We see from this that the drift and creation term vanish as τ →∞, leaving the diffu-

sion and drift term from the Laplace–Beltrami term. This scaling was not employed

in the curve case and so a priori it is unclear how v behaves at the singularity.

7.2.2 Scaling of the density equation

Consider (7.1.7) and let y = l(1−t)−α while τ = − log(1−t). Write q(y, τ) = J(l, t).

Then, if J satisfies (7.1.7), then q satisfies

∂q

∂τ
= e−(1−2α)τ ∂

2q

∂y2
− e−(1−2α)τ tanh g(y)√

cosh 2g(y)

∂q

∂y

− e−(1−2α)τ ∂

∂y

(
tanh g(y)√
cosh 2g(y)

)
q + α(G(y)− y)

∂q

∂y
− α sech2 2g(y) q

q(y, 0) = J0(y).

(7.2.3)

One observes that if α < 1
2 , then exponential decay of the diffusion term along

with a creation term occurs leading to an equation which we expect will have the

same qualitative properties as the curve. If α = 1
2 we have a time-homogeneous

problem, however it is a priori unclear what the behaviour of the solution will be at

the singularity.

However, if α > 1
2 , then the exponential terms blow up as τ →∞ and so this

was the incorrect scaling. In this case, we take y = l(1− t)−α and τ = (1− t)1−2α.

Let q(y, τ) = J(l, t) so if J solves (7.1.7), it follows that q solves

∂q

∂τ
= γ−1 ∂

2q

∂y2
− γ−1 ∂

∂y

(
tanh g(y)√
cosh 2g(y)

q

)
+ αγ−1τ−1 ∂

∂y
(G(y)q)

− αγ−1yτ−1 ∂q

∂y

q(y, 1) = J0(y)

(7.2.4)

where γ = 2α − 1 > 0 and (y, τ) ∈ R × [1,∞). We clearly see that the creation
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term and one of the drift terms vanish as τ → ∞, leaving a diffusive term and a

drift term. Again this scaling was not employed in the curve case and so a priori it

is unclear how q behaves at the singularity.
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Chapter 8

Analysis of Problem II: Before

the Singularity

As in Chapter 4, we now analyse the problem depending on α. We still refer to

α < 1
2 as the sub-critical regime, α = 1

2 as the critical regime and finally α > 1
2 as

the super-critical regime. We will interchange the word case and regime with the

understanding that they mean the same.

8.1 Sub–Critical Regime

In the following we set α < 1
2 . We study the qualitative properties of the solution

u to (7.1.8) via the equation satisfied by J in (7.1.7). To that end, we have the

following theorem

Theorem 8.1.1. Let u0 ∈ C∞c (R) and suppose J is the unique solution to (7.1.7)

with initial data J0(l) := u0(l) cosh g(l). Then, J is uniform bounded and

J(0, t) −→ 0

as t→ 1−.

Remark 8.1.2. How J behaves as a function of l and t close to the singularity is

discussed in Theorem 8.1.4.

Proof of Theorem 8.1.1. We will work in the (y, τ) coordinates. To this end, let

y = l(1− t)−α and τ = − log(1− t). Write q(y, τ) = J(l, t) so that q solves (7.2.3).

Such a solution is guaranteed by Theorem 2.2.4. By the Feynman-Kac representation
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formula (Theorem 2.4.1) the solution is given by

q(y, τ) = E(−τ,y)

[
exp

(
−
∫ 0

−τ
F1(Xs) ds

)
exp

(
−
∫ 0

−τ
eβsF2(Xs) ds

)
J0(X0)

]
(8.1.1)

where

F1(y) := α sech2 2g(y) ≥ 0, β := 1− 2α > 0,

F2(y) := sech 2g(y)
(
sech2 g(y)− tanh g(y) tanh 2g(y)

)
.

Remark 8.1.3. The reader should note that the proof below is analogous to Theo-

rem 4.1.1, except for the introduction of a further creation term, −eβsF2(y), in the

Feynman–Kac formula above and an additional bounded drift term −eβs tanh g(y)√
cosh 2g(y)

into the SDE in (8.1.2).

Returning to equation (8.1.1), we note that (Xs)s≥−τ is the unique strong

solution to the SDE

dXs =

(
−eβs tanh g(Xs)√

cosh 2g(Xs)
+ α(G(Xs)−Xs)

)
ds+

√
2e

β
2
s dWs

X−τ = y.

(8.1.2)

Here −τ ≤ s ≤ 0. If b(y, s) := −eβs tanh g(y)√
cosh 2g(y)

+ α(G(y)− y) then

∂b

∂y
(y, s) = −eβs sech 2g(y)

(
sech2 g(y)− tanh g(y) tanh 2g(y)

)
− α sech2 2g(y)− α

which is uniformly bounded in (y, s) ∈ R × (−∞, 0] and so b is globally Lipschitz

with at most linear growth at infinity. Further since s ≤ 0 and β > 0 it follows

that |
√

2e
β
2
s| ≤

√
2 for every s ∈ (−∞, 0]. Thus, the standard existence and unique-

ness result for the unique strong solutions to SDEs (Theorem 2.3.2) implies that

such a unique strong solution (Xs)s≥−τ exists to (8.1.2). Hence, considering the

representation formula, one has

|q(y, τ)| ≤ exp

(
C

∫ 0

−τ
eβs ds

)
‖J0‖L∞ ≤ e

c
β ‖J0‖L∞

for every (y, τ) ∈ R × [0,∞), which establishes, after reverting back to the (l, t)

coordinates, the uniformly boundedness of J .

To see that J(0, t) vanishes as t→ 1−, we again work in the (y, τ) coordinates.
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Noting that l = 0 implies y = 0, we set y = 0 and note that

Xs =

∫ s

−τ
−e−α(s−r) e

βr tanh g(Xr)√
cosh 2g(Xr)

+ αe−α(s−r)G(Xr) dr +
√

2

∫ s

−τ
e−α(s−r)e

β
2
r dWr

is the unique strong solution to (8.1.2). By definition of F2 we have

|q(0, τ)| ≤ exp

(
C

∫ 0

−τ
eβs ds

)
E(−τ,0)

[
exp

(
−
∫ 0

−τ
F1(Xs) ds

)
|J0(X0)|

]
≤ C E(−τ,0)

[
exp

(
−
∫ 0

−τ
F1(Xs) ds

)
|J0(X0)|

]
.

We now follow the same method as in the proof of Theorem 4.1.1. Let γ > 0 to be

determined later and define

Ω1 := {ω ∈ Ω | |Xs| < γ ∀ − τ ≤ s ≤ 0}

Ω2 := Ω \ Ω1 = {ω ∈ Ω | ∃ s0 ∈ [−τ, 0] : |Xs| ≥ γ}.

We note that if ω ∈ Ω1, then F1(Xs) > F1(γ) and so splitting the above expectation

over the Ωi we have

E(−τ,0)

[
exp

(
−
∫ 0

−τ
F1(Xs) ds

)
|J0(X0)|χΩ1

]
≤ e−F1(γ)τ‖J0‖L∞ ,

E(−τ,0)

[
exp

(
−
∫ 0

−τ
F1(Xs) ds

)
|J0(X0)|χΩ2

]
≤ ‖J0‖L∞ P[Ω2].

We now show that P[Ω2]→ 0 as γ →∞, uniformly in τ .

If there exists s0 ∈ [−τ, 0] such that |Xs0 | ≥ γ then

γ ≤ ‖G‖L∞ + α−1 + |Zs0 |

where

Zs0 :=
√

2

∫ s0

−τ
e−αs0eαre

β
2
r dWr

which is a Gaussian random variable with mean zero and variance

E|Zs0 |2 = 2e−2αs0

∫ s0

−τ
e(2α+β)r dr = 2e−2αs0

(
es0 − e−τ

)
≤ 2e(1−2α)s0 ≤ 2.

The last inequality follows as α < 1
2 and s0 ≤ 0. Thus

P[Ω2] ≤ P[|Zs0 | ≥ γ − ‖G‖L∞ − α−1] ≤ 2P[Zs0 ≥ γ − ‖G‖L∞ − α−1]
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where the last inequality holds since Zs0 is a Gaussian random variable with zero

mean. Because of this, we have that for some C > 0 independent of γ and τ

2P[Zs0 ≥ γ − ‖G‖L∞ − α−1] = C

∫ ∞
γ−α−1−‖G‖√

2e−2αs0 (es0−e−τ )

e−
x2

2 dx.

We recall that if b > a > 0 then∫ ∞
b

e−
x2

2 dx <

∫ ∞
a

e−
x2

2 dx.

In light of this, take γ > ‖G‖L∞ +α−1. Observe that for every s0 ∈ [−τ, 0], and for

every τ > 0 √
2e−2αs0(es0 − e−τ ) <

√
2

by the above and so

γ − α−1 − ‖G‖L∞√
2e−2αs0(es0 − e−τ )

>
γ − α−1 − ‖G‖L∞√

2

which implies

P[Ω2] ≤ C
∫ ∞
γ−α−1−‖G‖L∞√

2

e−
x2

2 dx

for every τ ≥ 0. Given ε > 0, choose γ0 > 0 such that γ > γ0 implies that

γ − ‖G‖L∞ − α−1 > 0 and

P[Ω2] <
ε

2C‖J0‖L∞
.

Now choose τ0 > 0 such that τ > τ0 implies

e−τF1(γ) <
ε

2C‖J0‖L∞
.

So, τ > τ0 implies

|q(0, τ)| < ε.

Thus, changing back into the (l, t) coordinates, given ε > 0 there exists δ > 0 such

that 0 < 1− t < δ implies

|J(0, t)| < ε.

The question remains as to how J behaves as a function of l and t for (l, t)

close to (0, 1).
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Theorem 8.1.4. Let u0 ∈ C∞c (R) and suppose J is the unique smooth solution to

(7.1.7) with initial data J0(l) := u0(l) cosh g(l). Then there exists C > 0 such that

|J(l, t)| ≤ C‖u0‖L∞(1− t)α
√

cosh 2g(l(1− t)−α)

for every (l, t) ∈ R× [0, 1).

Proof. Inspired by the analogous theorem (Theorem 4.1.3) for the curve, we make

the ansatz

J(l, t) = (1− t)α
√

cosh 2g(l(1− t)−α)ϕ∗(l, t).

Then, after a long but standard calculation, one can show that ϕ∗ solves

∂ϕ∗
∂t

=
∂2ϕ∗
∂l2

+

(
(1− t)−α

(
2

tanh 2g√
cosh 2g

− tanh g√
cosh 2g

)
+ α(1− t)α−1G

)
∂ϕ∗
∂l

+
(
2(1− t)−2α sech3 2g − (1− t)−2α sech2 g sech 2g

)
ϕ∗

ϕ∗(l, 0) =
J0(l)

cosh
1
2 2g(l)

=
u0(l) cosh g(l)

cosh
1
2 2g(l)

.

(8.1.3)

We have omitted the arguments of g and G for typographical clarity. We note

that ϕ∗(·, 0) ∈ L∞(R), with ‖ϕ∗(·, 0)‖L∞ ≤ ‖u0‖L∞ and such a solution ϕ∗ ∈
C2,1(R × [0, 1)) exists by Theorem 2.2.4. The reader will observe that the proof is

complete once we show that ϕ∗ is uniformly bounded. To this end, we switch to

working in the (y, τ) coordinates. Let y = l(1− t)−α and τ = − log(1− t) and write

ϕ(y, τ) = ϕ∗(l, t). Then ϕ solves

∂ϕ

∂τ
= e−βτ

∂2ϕ

∂y2
+ e−βτ

(
2

tanh 2g(y)√
cosh 2g(y)

− tanh g(y)√
cosh 2g(y)

)
∂ϕ

∂y
+ α(G(y)− y)

∂ϕ

∂y

+ 2e−βτ sech3 2g(y)ϕ− e−βτ sech2 g(y) sech 2g(y)ϕ

ϕ(y, 0) = ϕ∗(y, 0).

Here, β = 1 − 2α > 0. Since such a ϕ exists, one may use the Feynman-Kac

representation formula which says that the solution ϕ is given by

ϕ(y, τ) = E(−τ,y)

[
exp

(∫ 0

−τ
eβsB(Xs) ds

)
ϕ0(X0)

]
where we define

B(y) := sech 2g(y)
(
2 sech2 2g(y)− sech2 g(y)

)
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and (Xs)s≥−τ is the unique strong solution to the SDE

dXs =
(
eβsµ(Xs) + α(G(Xs)−Xs)

)
ds+

√
2e

β
2
s dWs

X−τ = y,

with

µ(y) := 2
tanh 2g(y)√
cosh 2g(y)

− tanh g(y)√
cosh 2g(y)

.

Noting that µ ∈ L∞(R) with uniformly bounded derivative µ′, one may use the

standard theory of existence and uniqueness of strong solutions to SDEs (Theo-

rem 2.3.2) to establish such a strong solution. This is because the drift is globally

Lipschitz and grows at most linear at infinity. (The argument is analogous to before

and so omitted). Since B ∈ L∞(R) we have

|ϕ(y, τ)| ≤ exp

(
C

∫ 0

−τ
eβs ds

)
‖ϕ0‖L∞

= exp

(
C

β

(
1− e−βτ

))
‖ϕ0‖L∞ .

However, α < 1
2 and β = 1− 2α > 0 so it follows that

|ϕ(y, τ)| ≤ C‖ϕ0‖L∞ ≤ C‖u0‖L∞

and so, switching back into the (l, t) coordinates

|J(l, t)| ≤ C‖u0‖L∞(1− t)α
√

cosh 2g(l(1− t)−α).

The previous theorem yields the following information about the solution u

to (7.1.8).

Corollary 8.1.5. Let u0 ∈ C∞c (R) and suppose u is the unique smooth solution to

(7.1.8) with initial data u0. Then there exists C > 0 such that

|u(l, t)| ≤ C‖u0‖L∞

for every (l, t) ∈ R× [0, 1].

Proof. Recalling the definition of J and the result of Theorem 8.1.4 above, one has

|J(l, t)| = |u(l, t)|(1−t)α cosh g(l(1−t)−α) ≤ C‖u0‖L∞(1−t)α
√

cosh 2g(l(1− t)−α).
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Hence,

|u(l, t)| ≤ C‖u0‖L∞
√

cosh 2g(l(1− t)−α)

cosh g(l(1− t)−α)
.

Now, for every x ∈ R,

√
cosh 2x

coshx
=

√
2 cosh2 x− 1

cosh2 x
≤
√

2.

Although the density J(0, t) → 0 as t → 1−, the following shows that there

exists admissible initial data u0, for which the solution u to (7.1.8) does not vanish

at the singularity.

Theorem 8.1.6. There exists u0 ∈ L∞(R) which is radially symmetric with∫
R
u0(l) cosh g(l) dl <∞

such that the unique smooth solution u, with such initial data u0, does not vanish

at the singularity as t → 1−. That is, there exists C > 0 and δ > 0 such that

0 < 1− t < δ implies

u(0, t) ≥ C.

Remark 8.1.7. The reader should note that this theorem is in fact valid for α ≤ 1
2 .

Proof of Theorem 8.1.6. We will work in the (y, τ) coordinates. To this end, let

y = l(1− t)−α and τ = − log(1− t). Write v(y, τ) = u(l, t). Then, v solves

∂v

∂τ
= e−βτ

∂2v

∂y2
+ e−βτ

tanh g(y)√
cosh 2g(y)

∂v

∂y
+ α(G(y)− y)

∂v

∂y

+ α(sech 2g(y)− sech2 2g(y))v

v(y, 0) = u0(y),

(8.1.4)

where β = 1 − 2α > 0. We note that standard parabolic theory (Theorem 2.2.4)

implies that such a v ∈ C2,1(R × [0,∞);R) exists and so by the Feynman-Kac

representation formula, the solution is given by

v(y, τ) = E(−τ,y)

[
exp

(∫ 0

−τ
α(sech 2g(Xs)− sech2 2g(Xs)) ds

)
u0(X0)

]
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where (Xs)s≥−τ is the unique strong solution to the SDE

dXs =

(
eβs

tanh g(Xs)√
cosh 2g(Xs)

+ α(G(Xs)−Xs)

)
ds+

√
2e

β
2
s dWs

X−τ = y.

(8.1.5)

The arguments above can be modified for this equation to show that such a unique

strong solution exists (Theorem 2.3.2). We make the crucial observation that for

every x ∈ R,

sech 2g(x)− sech2 2g(x) = sech 2g(x)(1− sech 2g(x)) ≥ 0.

For the initial data, u0, we take

u0(l) =

1 if |l| ≤ K

0 if |l| > K

for some K ∈ (0,∞) to be determined later. We have∫
R
u0(l) cosh g(l) dl =

∫ K

−K
cosh g(l) dl <∞

and so such u0 is admissible. We note that Theorem 2.2.4 implies that there exists

a u ∈ C2,1(R × [0, 1)) such that (7.1.8) is satisfied. Working in (y, τ) coordinates

and splitting the above expectation over

Ω1 := {ω ∈ Ω | |X0| ≤ K}

and

Ω2 := Ω \ Ω1

yields

v(0, τ) ≥ E(−τ,0)u0(X0)χΩ1 = P[Ω1] = 1− P[|X0| > K].

However,

X0 =

∫ 0

−τ
eαreβr

tanh g(Xr)√
cosh 2g(Xr)

+ αeαrG(Xr) dr +
√

2

∫ 0

−τ
eαre

β
2
r dWr

and so

K < |X0| =⇒ K <
1

α
+ ‖G‖L∞ + |Z0|
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by definition of X0, where

Z0 :=
√

2

∫ 0

−τ
eαre

β
2
r dWr

is a Gaussian random variable with mean zero and variance

E|Z0|2 = 2(1− e−τ ) ≤ 2.

Thus

P[|X0| > K] ≤ 2P[Z0 > K − α−1 − ‖G‖L∞ ] =

√
2

π

∫ ∞
K− 1

α−‖G‖√
2(1−e−τ )

e−
x2

2 dx

≤
√

2

π

∫ ∞
K− 1

α−‖G‖√
2

e−
x2

2 dx.

Now choose K0 > 0 such that K > K0 implies K − α−1 − ‖G‖L∞ > 0 and∫ ∞
K− 1

α−‖G‖√
2

e−
x2

2 dx <
1

2

√
π

2
.

Hence, for K > K0

P[|X0| > K] <
1

2

and so

P[Ω1] = P[|X0| ≤ K] > 1− 1

2
=

1

2
.

Hence, working back in the (l, t) coordinates and noting that y = 0 implies l = 0 we

have that for every t ∈ [0, 1],

u(0, t) = v(0, τ) ≥ P[Ω1] = P[|X0| ≤ K] > 1− 1

2
=

1

2
.

Remark 8.1.8. The reader will note that u0 /∈ C∞(R). However, since it is bounded

with compact support, the proof of Theorem 8.1.4 is exactly the same and so Corol-

lary 8.1.5 still holds true. We thus conclude in general that the solution u is bounded,

but need not vanish at the singularity. This is at odds with α < 1
2 for the curve (The-

orem 4.1.1) where the solution always vanishes at the singularity, regardless of the

admissible initial data.
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8.2 Critical Regime

We now show that the solution, u, to (7.1.8) with compactly supported initial data

in the case of α = 1
2 is bounded in a time–dependent neighbourhood of l = 0. The

reader will note that Theorem 8.1.6, where we establish that there exists bounded

radially symmetric initial data such that the solution does not vanish at the singu-

larity, still holds true in the α = 1
2 case. To show boundedness of the solution u, we

use a perturbation argument, improve on the estimates used in Section 4.2 and use

the functional analytic and comparison methods of Section 4.2.

In the following, consider (7.2.1) and (7.2.3) and set

−Ā0 : =
∂2

∂y2
+

(
1

2
(G(y)− y)− tanh g(y)√

cosh 2g(y)

)
∂

∂y

+ sech 2g(y)

(
tanh g(y) tanh 2g(y)− sech2 g(y)− 1

2
sech 2g(y)

)
.

Theorem 8.2.1. Let u0 ∈ C∞c (R) and suppose u is the unique smooth solution to

(7.1.8) with α = 1
2 and initial data u0. Then, there exists C, y0 > 0 such that, for

every t ∈ [0, 1),

|u(l, t)| ≤ C(1 + ‖u0‖L∞)

for every |l| ≤
√

1− t and

|u(l, t)| ≤ C‖u0‖L∞ |l|2µ̄1−1,

for every |l| > y0

√
1− t. Further, if J is the solution to (7.1.7) with initial data

J0(l) = u0(l) cosh g(l) then

|J(l, t)| ≤ C‖J0‖L∞ |l|2µ̄1 ,

for every |l| > y0

√
1− t and

|J(l, t)| ≤ C(1 + ‖J0‖H0)(1− t)µ̄1 ,

for every |l| ≤
√

1− t. In particular,

J(0, t) −→ 0

as t→ 1−. Here, H0 = −Ã0 where −Ã0 is the ground–state transformation of −Ā0

above. The norm ‖ · ‖H0 is the D(H0) norm and µ̄1 > 0 is the minimal eigenvalue
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of Ā0.

Proof. Let y = l(1− t)−
1
2 and τ = − log(1− t). Write u(l, t) = v(y, τ), so that if u

solves (7.1.8) then v solves (8.1.4) with α = 1
2 and so β = 0. Consider

∂w

∂τ
=
∂2w

∂y2
+

tanh g(y)√
cosh 2g(y)

∂w

∂y
+

1

2
(G(y)− y)

∂w

∂y
− 1

2
sech2 2g(y)w

w(y, 0) = w0(y)

(8.2.1)

where w0 ∈ C∞(R) ∩ L∞(R). We see that (8.1.4) is a perturbation of (8.2.1)

and note that such a w ∈ C2,1(R × [0,∞);R) exists by standard parabolic theory

(Theorem 2.2.4). We may use the Feynman–Kac representation formula to see that

the solution w is given by

w(y, τ) = Ey
[
exp

(
−1

2

∫ τ

0
sech2 2g(Xs) ds

)
w0(Xτ )

]
where (Xs)0≤s≤τ is the unique strong solution to

dXs =

(
tanh g(Xs)√
cosh 2g(Xs)

+
1

2
(G(Xs)−Xs)

)
ds+

√
2 dWs

X0 = y.

One may check that the drift and diffusion terms are globally Lipschitz and so

standard theory of existence and uniqueness of such a solution may be used (Theo-

rem 2.3.2). Indeed, implicitly the solution is given by

Xs = e−
1
2
sy +

∫ s

0
e−

1
2

(s−r)

(
tanh g(Xr)√
cosh 2g(Xr)

+
1

2
G(Xr)

)
dr +

√
2

∫ s

0
e−

1
2

(s−r) dWr

for 0 ≤ s ≤ τ for any τ > 0.

We now show that there exists some f ∈ L1(0,∞;R) with

|w(y, τ)| ≤ f(τ)‖w0‖L∞ ,

for every |y| < 1. This estimate is needed, since if S0(τ)v0(y) =: w(y, τ) solves

(8.2.1) with initial data v0(y) = u0(y) then the solution v to (8.1.4) with α = 1
2 is

given by

v(y, τ) = S0(τ)v0(y) +

∫ τ

0
S0(τ − s)1

2
sech 2g(·) ds (8.2.2)

and so it is clear that we need some integrability of the operator norm of S0(·) as a
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map from L∞(R)→ L∞(R).

Let Ω1 = {ω ∈ Ω : |Xs| ≤ τp ∀ s ∈ [0, τ ]} for some p ∈ (0,∞) to be chosen

later and Ω2 := Ω \ Ω1 = {ω ∈ Ω : ∃ s0 ∈ [0, τ ] : |Xs0 | > τp}. Then, splitting the

expectation over Ω1 and Ω2 we have

|w(y, τ)| ≤
(
e−τF (τp) + P[Ω2]

)
‖w0‖L∞

for every y ∈ R and every τ ∈ [0,∞). Here, F (y) := 1
2 sech2 2g(y). Observe that if

ω ∈ Ω2 then τp < |Xs0 |. However, from our implicit solution we have

|Xs0 | ≤ e−
1
2
s0 |y|+ C

∫ s0

0
e−

1
2

(s0−r) dr + |Zs0 | ≤ |y|+ C + |Zs0 |,

where Zs0 is a Gaussian random variable with mean zero and variance

E|Zs0 |2 = 2

∫ s0

0
e−(s0−r) dr = 2(1− e−s0) ≤ 2.

Thus, ω ∈ Ω2 implies, by the above, τp − |y| − C < |Zs0 | and so as Zs0 is a mean

zero Gaussian random variable

P[Ω2] ≤ P[|Zs0 | > τp − |y| − C] ≤ 2P[Zs0 > τp − |y| − C].

Thus as Var(Zs0) ≤ 2, if |y| < 1 it follows for τ > 0 large enough, that

P[Ω2] ≤ C
∫ ∞
τp−1−C√

2

exp

(
−x

2

2

)
dx.

We thus conclude that for τ > 0 large enough

|w(y, τ)| ≤ C

(
e−τF (τp) +

∫ ∞
τp−C√

2

exp

(
−x

2

2

)
dx

)
‖w0‖L∞

for every |y| < 1, where we have incorporated the bound on y in the integrand limits

into one constant. We now choose p ∈ (0,∞). From Proposition A.0.1 we conclude

that

−τF (τp) = − τ1−4p

2
((

1− c1
τp

)2
+ R̃(τ)

τ2p

)2

where R̃(τ) ≤ O(τ−2) for large enough τ . Thus choosing p = 1
8 , there exists τ0 > 0
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such that τ > τ0 implies
1((

1− c1
τp

)2
+ R̃(τ)

τ2p

)2 >
1

2

for our choice of p. We thus conclude

e−τF (τ
1
8 ) ≤ e−

√
τ

4

for every τ > τ0. We also note that there exists C, x0 > 0 such that x > x0 implies∫ ∞
x

exp

(
−z

2

2

)
dz ≤ C exp

(
−x

2

2

)
.

Putting all this together, we conclude that there exists τ0 > 0 such that τ > τ0

implies

|w(y, τ)| ≤ C
(
e−
√
τ

4 + e−
( 8√τ−C)2

4

)
‖w0‖L∞ ,

for every |y| < 1. Indeed, a naive estimate using the Feynman–Kac representation

formula implies that, for every y ∈ R and every τ > 0,

|w(y, τ)| ≤ ‖w0‖L∞ .

Thus if we take

f(τ) :=


1 if τ ≤ τ0

C

(
e−
√
τ

4 + e−
( 8√τ−C)2

4

)
if τ > τ0

we see that f ∈ L1(0,∞;R) and satisfies what we need.

We now return to our solution v to (8.1.4) given by (8.2.2). Recall

v(y, τ) = S0(τ)u0(y) +
1

2

∫ τ

0
S0(τ − s) sech 2g(·) ds.

Now suppose that |y| < 1 and that τ > 0 is arbitrary. Then, by the above

|v(y, τ)| ≤ ‖u0‖L∞ +
1

2
‖ sech 2g(·)‖L∞

∫ τ

0
f(τ − s) ds

≤ ‖u0‖L∞ +
1

2
‖f‖L1

≤ C(1 + ‖u0‖L∞).
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Changing back into the (l, t) coordinates,

|u(l, t)| ≤ C(1 + ‖u0‖L∞)

for every |l| <
√

1− t, for every t ∈ [0, 1).

To see that J vanishes at the singularity, recall that

J(l, t) = u(l, t)
√

1− t cosh g(l(1− t)−
1
2 ).

Setting l = 0 and using the above estimate on u(l, t) we conclude that

|J(0, t)| ≤ C(1 + ‖u0‖L∞)
√

1− t.

The result follows after sending t→ 1−.

We now proceed to prove the bounds on J . This will enable us to prove the

bound on u. Using the (y, τ) coordinates, we analyse the solution q to (7.2.3). By

writing q(y, τ) = ϕ0(y)w(y, τ) with

ϕ0(y) :=
√

cosh g(y) exp

(
1

8
(cosh 2g(y)− 1)

)
we have that w solves

∂w

∂τ
= −Ã0w

where

−Ã0 :=
∂2

∂y2
−
(

1

16
H2

0 −
1

4
H ′0 − F

)
,

H0(y) := y −G(y) + 2
tanh g(y)√
cosh 2g(y)

and

F (y) := sech 2g(y)

(
tanh g(y) tanh 2g(y)− sech2 g(y)− 1

2
sech 2g(y)

)
.

We say that −Ã0 is the groundstate transformation of −Ā0 and one can check that

there exists V0 > 0 such that

V0(y) :=
1

16
H2

0 (y)− 1

4
H ′0(y)− F (y) ≥ V0

for every y ∈ R and V0(y) → +∞ as |y| → ∞. Thus, as before (Section 4.2) this

implies that the spectrum of Ã0 is discrete with minimal eigenvalue µ̄1 > 0, thus the
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spectrum of Ā0 is also discrete with the same minimal eigenvalue µ̄1. Further, fol-

lowing the analysis of Section 4.2 one concludes that if λ ∈ σ(Ā0) with corresponding

eigenfunction vλ, then there exists y0 > 0 such that |y| > y0 implies

0 < vλ(y) ≤ C(|y|+ κ)2λ

and vλ is locally bounded away from 0. (The proof is identical to Section 4.2 and

so is omitted). Thus, using the functional analytical techniques from Section 4.2 we

conclude that for every y ∈ R and every τ > 0

|q(y, τ)| ≤ Cg0
1(y)e−µ̄1τϕ0(y) + Cϕ0(y)‖J0‖H0e

−µ̄1τ

where g0
1(y) is the eigenfunction of Ā0 with corresponding eigenvalue µ̄1. Using the

triangle inequality with (|y|+κ)2µ̄1 for |y| ≤ 1 and changing back to (l, t) coordinates

we conclude

|J(l, t)| ≤ C
(
(|l|+ κ

√
1− t)2µ̄1 + (1− t)µ̄1(1 + ‖J0‖H0)

)
≤ C(1 + ‖J0‖H0)(1− t)µ̄1

for every |l| ≤
√

1− t. To see the bound on J for |l| > y0

√
1− t, one uses the (y, τ)

coordinates and the comparison principle as given in the proof of Theorem 4.2.10

(noting that the Feyman–Kac formula works, with suitable modification to the

stochastic process used) to conclude that

|q(y, τ)| ≤ g0
1(y)e−µ̄1τ

for every y ∈ R and every τ > 0, provided

|q(y, 0)| ≤ g0
1(y)

for every y ∈ R. However, since q(y, 0) has compact support, we thus conclude as

we did before that

|q(y, τ)| ≤ C‖J0‖L∞g0
1(y)e−µ̄1τ

for every (y, τ) ∈ R× (0,∞). However, for |y| > y0, we have that

g0
1(y) ≤ C(|y|+ κ)2µ̄1

and so working back in the (l, t) coordinates, for every |l| > y0

√
1− t

|J(l, t)| ≤ C‖J0‖L∞(|l|+ κ
√

1− t)2µ̄1 ≤ C‖J0‖L∞ |l|2µ̄1 .
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Finally, the bound on u for |l| > y0

√
1− t now follows from the above bound on q

since

q(y, τ) = v(y, τ)e−
1
2
τ cosh g(y)

and so

|v(y, τ)| ≤ C‖u0‖L∞e(
1
2
−µ̄1)τ g0

1(y)

cosh g(y)
(8.2.3)

for every (y, τ) ∈ R× (0,∞). However, for every |y| > y0 we have

g0
1(y)

cosh g(y)
≤ C(|y|+ κ)2µ̄1−1

and so, switching back to (l, t) coordinates

|u(l, t)| ≤ C‖u0‖L∞(|l|+ κ
√

1− t)2µ̄1−1 ≤ ‖u0‖L∞ |l|2µ̄1−1

for every |l| > y0

√
1− t, since 2µ̄1 − 1 ≤ 0 (see Remark 8.2.3). The proof is now

complete.

Remark 8.2.2. Indeed, the proof of Theorem 8.2.1 is also true if we take |y| ≤ 1.

Remark 8.2.3 (On the sign of 2µ̄1 − 1.). Recall that Theorem 8.1.6 still holds and

so 2µ̄1− 1 ≤ 0, since otherwise we would be able to show that u(0, t)→ 0 as t→ 1−

from equation (8.2.3) by setting y = 0, which is a contradiction. Indeed, recalling

that V0(y) ≥ V0 for every y ∈ R, numerically one can compute that V0 ≈ 0.107 and

so using a crude estimate in the definition of µ̄1 being an eigenvalue for Ã0 one has

that 0.107 < µ̄1 ≤ 1
2 .

In light of this, we have the following conjecture.

Conjecture 8.2.4. We conjecture that µ̄1 = 1
2 .

8.3 Super–Critical Regime

If α > 1
2 , then the scaling of y = l(1 − t)−α and τ = − log(1 − t) fails; exponential

blow up of the coefficients occur. This is primarily due to the additional drift term

that arises due to the Laplace–Beltrami term.

To remedy this, we take y = l(1−t)−α and τ = (1−t)1−2α. Let γ = 2α−1 > 0

and write u(l, t) = v(y, τ). Then, if u solves (7.1.8) it follows that v solves the
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following on R× [1,∞) :

∂v

∂τ
= γ−1∂

2v

∂y2
+ γ−1 tanh g(y)√

cosh 2g(y)

∂v

∂y

+ αγ−1τ−1(G(y)− y)
∂v

∂y
+ αγ−1τ−1(sech 2g(y)− sech2 2g(y))v

v(y, 1) = u0(y).

(8.3.1)

We wish to show that the solution v to (8.3.1) is uniformly bounded. Since (8.1.4)

was a perturbed OU-process, it was fairly straightforward to use probabilistic meth-

ods to achieve this. However, now we have a positive creation term with a function

of time that is not integrable as a coefficient. Indeed, using the approach of the heat

semigroup fails, so does any approach, as far as the author is aware, where one incor-

porates the homogeneous drift term into the equation. Probabilistic methods also

fail due to the nature of the creation term, even when one transforms the equation

by a ground-state-like transformation; the form of the resulting potential is hard to

analyse as well as problems with the underlying stochastic process that has variance

blow-up. Thus, although a bounded lower bound is possible (see Remark 8.3.3), it

seems that a bounded upper-bound has evaded us at every turn.

All is not lost; we turn our attention to the conserved quantity

J(l, t) = u(l, t)(1− t)α cosh g(l(1− t)−α).

In (y, τ) coordinates, we write q(y, τ) = J(l, t) so that

q(y, τ) = v(y, τ)τ−αγ
−1

cosh g(y),

where v solves (8.3.1). The following lemma is of use and gives an upper bound on

any blow–up of v, should it occur.

Lemma 8.3.1. Let v be the solution to (8.3.1), which exists by standard parabolic

theory (Theorem 2.2.4). If u0 ∈ C∞c (R) then

|v(y, τ)| ≤ ‖u0‖L∞τρ

for every τ ≥ 1, y ∈ R, where ρ := αγ−1

4 .

Proof. Since such solution v exists, by the Feynman–Kac representation formula,

v(y, τ) = E(−τ,y)

[
exp

(
αγ−1

∫ −1

−τ
(−s)−1B(Xs) ds

)
u0(X−1)

]
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where

B(y) := sech 2g(y)− sech2 2g(y).

Here, (Xs) is the unique strong solution to

dXs = γ−1

(
tanh g(Xs)√
cosh 2g(Xs)

+ α(−s)−1(G(Xs)−Xs)

)
ds+

√
2γ−1 dBs

X−τ = y,

for −τ ≤ s ≤ −1. Such process exists by an adaption of the proof that a strong

solution to (8.1.2) exists, noting that (−s)−1 ≤ 1 for every −τ ≤ s ≤ −1. To

conclude the proof, we note that

0 < B(y) ≤ 1

4

for every y ∈ R and so with ρ as in the statement of the lemma,

|v(y, τ)| ≤ ‖u0‖L∞ exp

(
ρ

∫ −1

−τ
(−s)−1 ds

)
= ‖u0‖L∞τρ.

This lemma allows easy proof of the following theorem, which may be seen

as a partial result.

Theorem 8.3.2. Let u0 ∈ C∞c (R) and suppose J is the unique solution to (7.1.7).

Then, there exists C > 0 such that

|J(l, t)| ≤ C‖u0‖L∞

for every |l| ≤ (1− t)α and

|J(0, t)| −→ 0

as t→ 1−.

Proof. The proof is straightforward in the (y, τ) coordinates. For |y| ≤ 1 we have

|q(y, τ)| ≤ cosh g(1)|v(y, τ)|τ−αγ−1
= cosh g(1)|v(y, τ)|τ−4ρ.

We now use Lemma 8.3.1 to conclude that

|q(y, τ)| ≤ cosh g(1)‖u0‖L∞τ−3ρ.
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However, letting y = 0, which corresponds to l = 0 and sending τ →∞, noting that

ρ > 0, we have

|J(0, t)| −→ 0

as t→ 1−.

Remark 8.3.3. One should now be able to see, using the Feynman–Kac represen-

tation formula in the proof of Lemma 8.3.1, that for u0 ≡ 1 we have (after changing

back to the (l, t) coordinates) u(l, t) ≥ 1 for every (l, t) ∈ R × [0, 1). Indeed, such

a solution to the equation with that initial condition is standard (Theorem 2.2.4)

and the existence of a strong solution to the associated SDE is also standard (The-

orem 2.3.2). Although the initial data is not admissible in the sense of Chapter 7,

u0(l) = 1 is a perfectly good initial condition from a PDE point of view. We thus

conclude that for α > 1
2 , the solution need not vanish at the singularity.

However, the density J , does vanish at the singularity, just as it does in the

α ≤ 1
2 cases.

A heuristic argument for the boundedness of the solution.

Here we give an heuristic argument as to why we believe that the solution J to

(7.1.7) is uniformly bounded in l and t. We outline the challenges of turning this

into a proof.

In the following, let z = g(l(1− t)−α) and τ = (1− t)1−2α. Write w(z, τ) =

J(l, t), then a short but standard calculation reveals that w solves

∂w

∂τ
= γ−1 sech 2z

∂2w

∂z2
− γ−1

(
tanh 2z sech 2z + tanh z sech 2z + ατ−1 tanh 2z

) ∂w
∂z

+ γ−1
(
tanh z tanh 2z sech 2z − sech2 z sech 2z − ατ−1 sech2 2z

)
w

w(z, 1) = J0(z).

(8.3.2)

Here γ = 2α−1 > 0. Using a probabilistic approach, consider the following SDE, for

which it is easy to verify that there exists a unique strong solution for −τ ≤ s ≤ −1,

dXs = −γ−1
(
tanh 2Xs sech 2Xs + tanhXs sech 2Xs + α(−s)−1 tanh 2Xs

)
ds

+
√

2γ−1 sech 2Xs dBs

X−τ = z.

(8.3.3)

By standard parabolic theory (Theorem 2.2.4) there exists a unique classical solution
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to (8.3.2) and so by the Feynman-Kac representation formula we have that the

solution has the stochastic representation

w(z, τ) = E(−τ,z)
[
exp

(
γ−1

∫ −1

−τ
b(Xs, s) ds

)
J0(X−1)

]
.

where

b(z, s) = tanh z tanh 2z sech 2z − sech2 z sech 2z − α(−s)−1 sech2 2z.

The idea is to argue that P−a.s, for every τ > 1,∫ −1

−τ
b(Xs, s) ds < 0

for every initial value z. The following heuristic suggests that this is true, but we

are far from a proof. The argument is thus; consider the SDE (8.3.3). Since the

drift is always negative for positive values of Xs and positive for negative values of

Xs, non–zero initial conditions lead to the solution approaching and passing through

zero, for bounded τ . Within a positive and relatively small distance from 0, the noise

kicks in and makes the solution fluctuate about zero. The sign of the drift always

makes sure we are approaching zero. The noise is extremely small for large values of

the process and so we conclude that the process always eventually fluctuates around

zero. Figure 8.1 shows one such sample path for z = 5 starting at −τ = −500.

Consider b in the above representation formula. It has a global minimum at

0 and two local maxima, either side of zero and the absolute value of the minima

is large compared with the maxima. Figure 8.2 illustrates this for (z, s) ∈ [−3, 3]×
{−350} with α = 0.75. Thus, as the solution to the SDE fluctuates about zero,

b picks up mainly negative contributions. Figure 8.3 graphs s versus b(Xs, s) for

the sample path given in Figure 8.1. One can clearly see that the process picks up

mainly negative contributions. A trapezium rule estimate for the integral yields an

approximate value of −12.00. Indeed, if the solution was bounded away from 0,

the drift would eventually pull it back towards zero. Any positive contribution is

cancelled out by the negative value of the creation term b near 0. We thus conclude,

heuristically, that P−a.s, for every τ > 1,∫ −1

−τ
b(Xs, s) ds < 0.

However, one should note that it is unclear whether the above is true for very large
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Figure 8.1: A plot of a sample path of the solution to (8.3.3) with z = 5, τ = 500
and α = 0.75. The horizontal axis is s which corresponds to the time variable of
the SDE whereas the vertical axis is the value of the solution.

z and very large τ . Due to the nature of the drift and diffusion, the process may

have the tendency to stay where it is. For example, Figure 8.4 shows a sample path

for the initial condition z = 100 starting at −τ = −50000, with α = 0.75. Here

we see that the initial condition is large enough so that the noise is effectively zero.

Thus, the evolution of the path is now deterministic and we can see that it will take

a long time for the solution to be in a small neighbourhood of 0. However, for such

z, the integrand b is extremely close to zero. Thus, it is not clear that the solution

will then approach 0 and fluctuate as described above, as we increase z and τ .

With regards to non–probabilistic methods, using a semigroup approach

based on the equation
∂v

∂τ
= γ−1 sech 2z

∂2v

∂z2

does not work as the time is unbounded; we have a logarithmic divergence at infinity

for (8.3.2) in τ when we integrate in time. To conclude this chapter, we leave the

following as a conjecture.

Conjecture 8.3.4. Let u0 ∈ C∞c (R) and suppose J is the unique smooth solution

to (7.1.7) for α > 1
2 with initial condition J0(l) = u0(l) cosh g(l). Then there exists
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Figure 8.2: A plot of b(z, s) for (z, s) ∈ [−3, 3]× {−350} with α = 0.75.

C > 0 such that

|J(l, t)| ≤ C for every (l, t) ∈ R× [0, 1].
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Figure 8.3: A plot of b(Xs, s) for the sample path given in Figure 8.1.
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Figure 8.4: A plot of a sample path of the solution to (8.3.3) with z = 100, τ = 50000
and α = 0.75.
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Chapter 9

Analysis of Problem II: After

the Singularity

Our goal is to show that we can continue the solution U of (7.0.2), in some sense,

past the singularity onto

Sα,cont
t := {(x, y, z) ∈ R3 | z2 − x2 − y2 = (t− 1)2α}. (9.0.1)

Figure 9.1 illustrates Sα,cont
t for α = 0.5 and t = 1.25. We can see that Sα,cont

t is a

hyperboloid of two–sheets. In the following, we shall only consider z ≥ 0; that is,

the upper part of Sα,cont
t .

Figure 9.1: Plot of Sα,cont
t for α = 0.5 and t = 1.25.
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9.1 Formulation of the Continuation of the Solution

Using the level set function φ(x, y, z, t) := x2 +y2−z2 +(t−1)2α we take the inward

pointing normal as ν := − ∇φ|∇φ| . We parameterise our surface by

X(l, θ, t) := (t− 1)α (sinh g(z) cos θ, sinh g(z) sin θ, cosh g(z))

where g : R→ R is given in Definition 7.1.1 and

z := l(t− 1)−α.

We now take the metric tensor as

h :=

(
1 0

0 (t− 1)2α sinh2 g

)
. (9.1.1)

so that

|h| := det(h) = (t− 1)2α sinh2 g(l(t− 1)−α).

We are considering the continuation of equation (7.0.2) on Sα,cont
t ; that is

∂•t V + V∇Γ · v −∆ΓV = 0 x ∈ Γ := Sα,cont
t , t ∈ [1, T ],

V (x, 0) = U(Bx, 1), x ∈ Sα,cont
1 ,

(9.1.2)

where U is the solution to (7.0.2) at time t = 1 (taken up to some suitable subse-

quence if necessary) and B : Sα,cont
1 → Sα1 is some bounded linear map. Here,

v :=
φt
|∇φ|

ν

is the prescribed normal velocity.

From the results of Chapter 8, equation (9.1.2) is really only well defined if

α < 1
2 , in the sense that we can prove the existence of the initial data. However,

we will see that a probabilistic approach means that we can make sense of the

continuation for every α, if we consider a stochastic interpretation of the problem;

namely, the existence of a diffusion process on the subsequent surface.

Recalling that U was radially symmetric, a standard set of calculations, anal-

129



ogous to those before shows that u(l, t) = u(l, θ, t) := V (X(l, θ, t), t) solves

∂u

∂t
=
∂2u

∂l2
+ t−α

coth g(lt−α)√
cosh 2g(lt−α)

∂u

∂l
− αtα−1G(lt−α)

∂u

∂l

+ αt−1(sech 2g(lt−α) + sech2 2g(lt−α))u

u(l, 0) = U(X(l, θ, 1), 1) =: u0(l).

(9.1.3)

We have taken t 7→ t − 1 in the above for better presentation and remark that

Assumption 7.1.8 still holds so that u0 is radially symmetric. We also note that G

is given in (3.2.4).

Remark 9.1.1. The major problem now is that the PDE in (9.1.3) is initially

singular, whereas before, (7.1.8) was eventually singular. Another problem is that

coth is always singular; this is a consequence of the parameterisation taken. It is

also the problem found when one uses polar spherical coordinates to parameterise

the sphere. Remark 9.1.3 below analyses the singularity involving coth.

We see that the integral of u is not conserved. However, as before, we take

J(l, t) := u(l, t)
√
|h|. A standard calculation shows that J solves

∂J

∂t
=
∂2J

∂l2
− ∂

∂l

((
t−α

coth g√
cosh 2g

+ αtα−1G

)
J

)
J(l, 0) =

√
2

2
|l|u0(l) =: J∗(l).

(9.1.4)

Remark 9.1.2. Note that it follows from Proposition A.0.1 that

lim
t→0

√
|h| =

√
2

2
|l|.

We thus see that J is conserved. It is because of this that we consider (9.1.4)

as the Fokker–Planck equation of some diffusion process. Thus, if we show that

the diffusion process exists, a candidate solution to (9.1.4) is the probability density

function (p.d.f) of such a process.

Remark 9.1.3 (On the singularity of the drift in equation (9.1.3)). We briefly

describe the nature of the singularity posed by coth g(lt−α). Indeed, it is easy to see

from the definition of coth that

lim
s→0

sinh g(s) coth g(s) = 1.
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Via the Mean Value Theorem

h(s) := sinh g(s) = h′(s0)s

for some s0 ∈ (−s, s) \ {0}. One calculates to see that

h′(s) =
cosh g(s)√
cosh 2g(s)

and a straightforward calculation shows that, for every s ∈ R,

√
2

2
< h′(s) ≤ 1.

This bound together with the definition of the limit shows that there exists δ > 0 and

m1,m2 > 0 such that

m1 < s coth g(s) < m2

for every s ∈ (−δ, δ) \ {0}. With respect to the drift of equation (9.1.3) (and so

of equation (9.1.4)) we now have three cases. In the following, suppose l > 0.

Analogous cases and results there–of remain true for l < 0.

i) If l� tα then lt−α � 1 and so

m1

l
< t−α coth g(lt−α) <

m2

l

holds. If t is small, then t−α coth g(lt−α) behaves like const.
l . This is also the

case if t is large but l is much smaller than tα.

ii) If lt−α = 1 then t−α coth g(lt−α) = coth g(1)
l . This is problematic when l =

tα and t is small. But if l = tα and t is large, then the above shows that

t−α coth g(lt−α) will be small.

iii) Finally, if l � tα then lt−α � 1. Recall that coth z → ±1 as z → ±∞.

So if t is small then coth g(lt−α) is of order 1, however t−α is large and so

t−α coth g(lt−α) is of order const
tα . However, if t is large, then t−α coth g(lt−α)

is small.

The above cases, although given heuristically, highlight the different regimes the

t−α coth g(lt−α) term exhibits. Thus t−α coth g(lt−α) cannot always be approximated

with a const
l term, order 1 term, small order term or t−α order term. We deal with

this problem in the following section.
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9.2 Existence of a continued Stochastic Process

The idea here is to view (9.1.4) as a Fokker–Planck equation, or Kolmogorov Forward

equation. Consider the following SDE for 0 ≤ t ≤ T for some T ∈ (0,∞) fixed:

dXt =

(
t−α

coth g(Xtt
−α)√

cosh 2g(Xtt−α)
+ αtα−1G(Xtt

−α)

)
dt+

√
2 dBt

X0 = Z.

(9.2.1)

Here, B• is a standard Brownian motion and Z has density J∗. Here, J∗ is taken

as the limit of the solution before the singularity as t → 1−, up to a suitable

subsequence as needed. In Chapter 8 we showed that such J∗ was uniformly bounded

if α < 1
2 , and in all cases of α, we showed that J∗(0) = 0. For α ≥ 1

2 we will assume

that such a density exists since for α < 1
2 we already have existence.

As mentioned above, a candidate solution to (9.1.4) is the p.d.f of the process

which satisfies (9.2.1) in the strong sense. This is assuming that such a strong

solution exists and has a smooth density. Whether a diffusion process has a smooth

density is covered by the probabilistic version of Hörmander’s Theorem (Malliavin

[1978]) (Theorem 2.5.3). Indeed, it follows that where Hörmander’s Theorem holds1,

a smooth density exists and so by Dynkin’s Formula (2.5.4) satisfies (9.2.1). Thus,

we are concerned with the existence of a strong solution to (9.2.1).

We first show that there exists a solution for small times. The major issue

here is that the coefficients of (9.2.1) are initially singular in time, but also the

problem with the coth singularity occurs for every t > 0. Finally we show that we can

extend the solution to the whole of [0, T ] for any given T ∈ (0,∞) (Theorem 9.2.3).

Theorem 9.2.1. Consider (9.2.1) with α ∈ (0,∞) fixed. Then, there exists a

unique strong solution to (9.2.1) up to a stopping time τ with P(τ = 0) = 0.

Proof. Fix s > 0 and consider

dXs
t =

(
t−α

coth g(Xs
t t
−α)√

cosh 2g(Xs
t t
−α)

+ αtα−1G(Xs
t t
−α)

)
dt+

√
2 dBt

Xs
s = Z

(9.2.2)

where Z is distributed according to J∗ and s ≤ t ≤ T . Since Z is independent of

B•, we can assume that Z = y for some y ∈ R. Since P(Z = 0) = 0, we may

take y ∈ R \ {0}. Assume that y > 0. An analogous argument works for y < 0

1See Remark 2.5.5
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and such argument is left to the reader, however, some of the details are given in

Remark 9.2.2.

Fix δ > 0 such that 0 < δ < y. Define, for y ∈ R

b1(y) :=
coth g(y)√
cosh 2g(y)

, b2(y) := G(y).

Then

b′1(y) =
(
1− coth2 g(y)− coth g(y) tanh 2g(y)

)
sech 2g(y)

and so by the methods of the proof of Proposition A.0.2, one concludes that if

y ∈ R \Bδ(0) then there exists Cδ > 0 such that

|b′1(y)| ≤ Cδ|y|−2.

Thus, adapting the proof of Proposition A.0.2 for b1 with the above estimate on b′1,

we conclude that if zi ∈ R\Bδ(0) (i = 1, 2) with sgn(z1) = sgn(z2) then there exists

C
(1)
δ > 0 such that, for every t ∈ [0, T ],

|b1(z1t
−α)− b1(z2t

−α)| ≤ C(1)
δ |z1 − z2|. (9.2.3)

Using Proposition A.0.2 directly, we have that if zi ∈ R \ Bδ(0) (i = 1, 2) with

sgn(z1) = sgn(z2) then there exists C
(2)
δ > 0 such that, for every t ∈ [0, T ],

|b2(z1t
−α)− b2(z2t

−α)| ≤ C(2)
δ t2α|z1 − z2|. (9.2.4)

To this end, we define

b̃1(z, t) :=

b1(δt−α) if −∞ < z < δ

b1(zt−α) if δ ≤ z <∞,

and

b̃2(z, t) :=

b2(δt−α) if −∞ < z < δ

b2(zt−α) if δ ≤ z <∞.

We now consider the following modification of (9.2.2)

dXs
t =

(
t−α b̃1(Xs

t , t) + αtα−1 b̃2(Xs
t , t)

)
dt+

√
2 dBt

Xs
s = y.

(9.2.5)
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It follows from (9.2.3) and (9.2.4) that there exists C
(i)
δ > 0 where i = 1, 2 such that

for every x, y ∈ R and every t ∈ [0, T ]

t−α
∣∣∣b̃1(x, t)− b̃1(y, t)

∣∣∣ ≤ s−αC(1)
δ |x− y|

and

αtα−1
∣∣∣b̃2(x, t)− b̃2(y, t)

∣∣∣ ≤ t3α−1C
(2)
δ |x− y|.

We bound t3α−1 from above in the following way:

t3α−1 ≤


T 3α−1 if α > 1

3

1 if α = 1
3

s3α−1 if α < 1
3 .

Hence, standard Picard iteration for the solution to SDEs (Øksendal [2003]) yields

a unique adapted process (Xs
t )t∈[s,T ] which is the unique strong solution to (9.2.5),

such that P−a.s and, for every t ≥ s,

Xs
t = y +

∫ t

s
r−αb̃1(Xs

r , r) + αrα−1b̃2(Xs
r , r) dr +

√
2(Bt −Bs).

We note that the proof of the existence of such a Xs
t has been independent of the

value of α. The idea is to now send s→ 0 in the above expression for Xs
t .

Define

Xt = y +

∫ t

0
r−αb̃1(Xr, r) + αrα−1b̃2(Xr, r) dr +

√
2Bt.

We will split up the cases of α to show that |Xt| < ∞ P−a.s. First, let α ≤ 1
2 .

Noting that b̃i are bounded functions in space and time, and α ≤ 1
2 we have that

|Xt| ≤ |y|+ (1− α)−1 sup
0≤r≤T

‖b̃1(·, r)‖L∞t1−α + sup
0≤r≤T

‖b̃2(·, r)‖L∞tα +
√

2|Bt|

so that |Xt| <∞ P−a.s. Further, P-a.s as s→ 0,

|Xt −Xs
t | ≤ C(δ, α)(s1−α + sα) +

√
2|Bs| −→ 0.
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Thus it follows that Xt is the unique strong solution to

dXt =
(
t−α b̃1(Xt, t) + αtα−1 b̃2(Xt, t)

)
dt+

√
2 dBt

X0 = y
(9.2.6)

for t ∈ [0, T ].

We now turn our attention to α > 1
2 . From the proof of Proposition A.0.2,

we have that there exists Cδ > 0 such that, for every z ∈ R and every r > 0,

|b̃1(z, r)| ≤ Cδrα.

This follows from the asymptotics of sech 2g(·) and the proof is an adaption of that

of Proposition A.0.2. Thus, defining Xt as above, and using this bound for b̃1 we

have

|Xt| ≤ |y|+ Cδt+ C(δ, α)tα +
√

2|Bt|

and so |Xt| <∞ P−a.s. Further, P−a.s as s→ 0

|Xt −Xs
t | ≤ Cδs+ C(δ, α)sα +

√
2|Bs| −→ 0.

Thus, for any α > 0 we have that (Xt) is the unique strong solution (9.2.6) for

t ∈ [0, T ], for any T > 0.

Let τ = τ δ := inf{t ∈ (0, T ] |Xt ≤ δ}. If t < τ then Xt > δ and so

b̃i(Xr, r) = bi(Xrr
−α)

for every 0 ≤ r ≤ t and i = 1, 2. Thus, for t < τ , Xt is the unique strong solution

to (9.2.1), for any α > 0.

We will finally show that P(τ = 0) = 0. For t > 0 and α ∈ (0,∞),

τ < t =⇒ inf
0≤s≤t

Xs ≤ δ.

We observe that as b̃1(z, t) ≥ 0 for every (z, t) ∈ R × [0, T ] and δ > 0 and that

b̃2(z, t) ≥ −κ2 for every (z, t) ∈ R× [0, T ], where

κ2 :=
√
π

Γ(3/4)

Γ(1/4)
> 0.
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We thus have that for every s ∈ [0, T ]

Xs ≥ y − κ2sα +
√

2Bs.

Hence

P(τ < t) ≤ P
(

inf
0≤s≤t

√
2Bs − κ2sα ≤ δ − y

)
≤ P

(
inf

0≤s≤t
Bs ≤

δ − y√
2

+
κ2

√
2
tα
)

= P
(

sup
0≤s≤t

Bs ≥
y − δ√

2
− κ2

√
2
tα
)
.

The last equality follows as

− inf
0≤s≤t

Bs
d
= sup

0≤s≤t
Bs.

By the reflection principle (Karatzas and Shreve [1991], p.79) it follows that

P
(

sup
0≤s≤t

Bs ≥ b
)

= 2P(Bt ≥ b) =

√
π

2

∫ ∞
bt−

1
2

e−
x2

2 dx,

for any b ∈ R. Thus,

P(τ < t) ≤
√
π

2

∫ ∞
y−δ√

2t
− κ2
√

2
tα−

1
2

e−
x2

2 dx.

However,
y − δ√

2t
− κ2

√
2
tα−

1
2 = t−

1
2

(
y − δ√

2
− κ2

√
2
tα
)

and y− δ > 0. Thus, the lower limit of the above integration goes to +∞ as t→ 0+

and so it follows that P(τ < t)→ 0 as t→ 0+.

Remark 9.2.2 (Details for the case of y < 0). Fix δ > 0 such that y < −δ < 0 and

take b̃i as the following:

b̃1(z, t) :=

b1(zt−α) if −∞ < z < −δ

b1(−δt−α) if − δ ≤ z <∞,
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and

b̃2(z, t) :=

b2(zt−α) if −∞ < z < −δ

b2(−δt−α) if − δ ≤ z <∞.

The reader will note that the proof of existence and uniqueness of (Xt) does not

depend on the sign of y, only the definition of the stopping time τ and the proof

that P(τ = 0) = 0. Thus, let τ = τ δ := inf{t ∈ (0, T ] |Xt > −δ}. If τ δ < t then

sup0≤s≤tXs ≥ −δ. Since

Xs = y +

∫ s

0
r−αb̃1(Xr, r) + αrα−1b̃2(Xr, r) dr +

√
2Bs

and b̃1(z, t) ≤ 0 and b̃2(z, t) ≤ κ2 for every (z, t) ∈ R × [0, T ] for every δ > 0 it

follows that

Xs ≤ y + κ2tα +
√

2 sup
0≤s≤t

Bs

and so

P(τ δ < t) ≤ P( sup
0≤s≤t

Bs ≥
−y − δ√

2
− κ2

√
2
tα).

The proof now continues as in the case of y > 0, noting that −y − δ > 0.

Theorem 9.2.3. With probability 1, the solution (Xt) to (9.2.1) exists for every

t ∈ [0, T ], where T ∈ (0,∞) is arbitrary.

Proof. Again, we will consider the case of y > 0. The argument for y < 0 is

analogous. Recall for the initial condition y > 0, τ = τ δ = inf{t ∈ (0, T ] |Xt ≤ δ}.
We need to show that P(τ δ < T ) → 0 as δ → 0, so that our solution Xt built in

Theorem 9.2.1 exists, with probability 1, on [0, T ]. To this end, we use a Lyapunov

function method. Let V : [0,∞)→ [1,∞) be defined by

V (z) :=


W (z) if 0 < z < c

smoothly decreasing if c ≤ z < c+ 1

1 if z ≥ c+ 1,

(9.2.7)

where

W (z) := arctanh

(
cosh g(z)√
cosh 2g(z)

)
−
√

2 log
(√

2 cosh g(z) +
√

cosh 2g(z)
)
.

We can easily extend this definition for the case of initial data y < 0, by defining,

for z < 0, V (z) := V (−z). We make sure that V is defined in such a way that
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V ∈ C∞(R). The value of c is taken so that

W (z) = arctanh

(
cosh g(z)√
cosh 2g(z)

)
−
√

2 log
(√

2 cosh g(z) +
√

cosh 2g(z)
)
≥ 2

for every 0 < z < c. We observe that for 0 < z < c we have

V ′(z) = − 1

sinh g(z)
, V ′′(z) =

coth g(z)

sinh g(z)
√

cosh 2g(z)
.

Suppose 0 ≤ t < τ δ and define Yt := V (Xtt
−α). By Itō’s formula (Lemma 2.3.4),

one has

dYt = −αXtt
−α−1V ′(Xtt

−α) dt+ t−αV ′(Xtt
−α) dXt + t−2αV ′′(Xtt

−α) dt.

Recalling that G(z) = z − sinh 2g(z)√
cosh 2g(z)

we have the following SDE for Yt:

dYt = t−2α coth g(Xtt
−α)√

cosh 2g(Xtt−α)
V ′(Xtt

−α) dt+ t−2αV ′′(Xtt
−α) dt

− αt−1 sinh 2g(Xtt
−α)√

cosh 2g(Xtt−α)
V ′(Xtt

−α) dt+
√

2t−αV ′(Xtt
−α) dBt

Y0 = 1.

We note that X0 = y > 0 and so limt→0Xtt
−α = +∞ and so the initial condition

for Yt is Y0 = 1.

For t < τ δ with Xtt
−α > c + 1, we have V ′ = V ′′ = 0 and so E[Yt] ≤ T for

such t. The first t such that t < τ δ and c ≤ Xtt
−α < c + 1 (call it t1) has t1 > 0.

Thus, for such t1 < t < τ δ with c ≤ Xtt
−α < c + 1 has V ′ and V ′′ bounded and

since t > t1 one has control over the t−2α and t−1 terms in the definition of dYt.

Thus, for t1 < t < τ δ we have

E[Yt] ≤ C(1)
T .

Finally, the first time t with t < τ δ and Xtt
−α < c (call it t2) has t2 > 0. For

t2 < t < τ δ, by definition of V we have

dYt = αt−1 sinh 2g(Xtt
−α)

sinh g(Xtt−α)
√

cosh 2g(Xtt−α)
dt−

√
2

t−α

sinh g(Xtt−α)
dBt.

Thus, as t2 > 0 and
sinh 2x

sinhx
√

cosh 2x
≤ 2
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for every x ∈ R, we have that

E[Yt] ≤ C(2)
T .

Thus, considering [0, τ δ) as a whole, there exists CT > 0 such that

E[Yt] ≤ CT .

We have used the fact (Karatzas and Shreve [1991]) that if f is some uniformly

bounded function of an Itō process Xt and 0 ≤ t∗ < t∗ <∞ then

E

[∫ t∗

t∗

f(Xs, s) dBs

]
= 0.

We are now ready to show that P(τ δ < T ) → 0 as δ → 0. In the following, we will

denote τ δ by τ . We have

P(τ < T ) = P(Xτ ≤ δ) = P(τ−αXτ ≤ δτ−α).

From the proof of Theorem 9.2.1 we have, for some β > 0 to be chosen,

P(τ < δβ) ≤
√
π

2

∫ ∞
Fα,β(δ)

e−
x2

2 dx

where

Fα,β(δ) := δ−
β
2

(
y − δ√

2
− κ2

√
2
δαβ
)
.

(Indeed, one replaces t with δβ in the proof there. For the case of y < 0, we replace

y here with −y. See Remark 9.2.2). We thus see that

P(τ < δβ)→ 0

as δ → 0. Observe that {
τ < δβ

}
=
{
τ−α > δ−αβ

}
.

Observe further that

Ω =
{
τ−α > δ−αβ

}
∪
{
τ−α ≤ δ−αβ

}
.
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Thus we have

{
τ−αXτ ≤ δτ−α

}
=
{
τ−αXτ ≤ δτ−α

}
∩
({
τ−α ≤ δ−αβ

}
∪
{
τ−α > δ−αβ

})
⊂
{
τ−αXτ ≤ δ1−αβ

}
∪
{
τ−α > δ−αβ

}
.

Thus, as V is decreasing, we have by the observation above, Markov’s inequality

and the results above that

P(τ < T ) ≤ P
(
V (τ−αXτ ) ≥ V (δ1−αβ)

)
+ P(τ−α > δ−αβ)

≤ E[Yτ ]

V (δ1−αβ)
+ P(τ < δβ)

≤ CT
V (δ1−αβ)

+ P(τ < δβ).

We now pick β > 0 such that 1− αβ > 0 to see that

P(τ < T ) −→ 0

as δ → 0, since

lim
z→0+

W (z) = lim
z→0+

arctanh

(
cosh g(z)√
cosh 2g(z)

)
= +∞,

as g(0) = 0, cosh(0) = 1 and limx→1− arctanh(x) = +∞.

We regards to attainment of the initial data for the solution to (9.1.4) we

have the following.

Theorem 9.2.4. There exists a unique classical solution, J , to (9.1.4) which attains

its initial data in the weak sense. That is,∫
R
J(y, t)f(y) dy −→

∫
R
J∗(y)f(y) dy

as t→ 0+ for every f ∈ C∞c (R).

Proof. A simple calculation reveals that, for f ∈ C∞c (R),

|Ef(Xt)− Ef(Z)| ≤ C(t+ tα + E|Bt|) ≤ C(t+ tα + t
1
2 ) −→ 0

as t → 0. So, where the probabilistic version of Hörmander’s Theorem (Malliavin
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[1978]) holds (that is, outside |l| = 0), a density exists and so if J(·, t) is the density

of Xt and J∗ is the density of Z, it follows that∫
R
J(y, t)f(y) dy −→

∫
R
J∗(y)f(y) dy

as t→ 0, for every f ∈ C∞c (R). We note that J satisfies (9.1.4) where Hörmander’s

Theorem holds. This shows the weak convergence of the density to the initial density.
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Chapter 10

Formulation and Analysis of

Problem III

Until now, the evolution of the curve or surface has been completely determined by

some time dependent function, which is independent of any equation that actually

lives on the curve or surface.

Of interest in mathematical biology is describing cell motion in the presence

of another cell emitting some chemotactic signal. Indeed, the following video shows

a white blood cell chasing a bacterium:

http://www.youtube.com/watch?v=JnlULOjUhSQ

Figure 10.1 is a snapshot of the video which shows that the white blood cell “A”

changes its shape according to the presence of the bacterium “B”. The stationary

objects “C” are the red blood cells.

Figure 10.1: Snapshot of video. Here “A” is the white blood cell, “B” is the bac-
terium and “C” is one of the stationary red blood cells.
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There have been several mathematical models to describe the evolution of a

cell in the presence of a chemotactic signal. For example, in Neilson et al. [2011], the

authors use a surface partial differential equation with some noise and couple the

evolution of the curve to the solution of this equation. This presents many math-

ematical challenges with respect to showing existence and uniqueness of solutions;

even deciding in which space a solution may exist is not clear!

The aim of this chapter is to present a toy model of this sort of problem. We

take the hyperbola Ct := {(x, y) ∈ R2 | y ≥ 0, y2 − x2 = f(t)} where f depends on

the solution to the heat equation on Ct as before.

The resulting equation is non-linear and by the choice of f , the non-linearity

turns out to be time-dependent only. We set out to show short time existence and

uniqueness of a mild solution. We do not attempt to analyse the equation at any

singularity that may or may not exist, but defer such an analysis to further research.

10.1 The Problem

Consider the curve

Ct := {(x, y) ∈ R2 | y ≥ 0, y2 − x2 = f(t)}, 0 ≤ t ≤ T, (10.1.1)

for some T > 0 to be chosen, where

ḟ(t) = −u(0, t)2

f(0) = ϕ
(10.1.2)

with ϕ > 0 and u ∈ C(0, T ;L∞(R)), for some T ∈ (0,∞).

For Ct and 0 ≤ t ≤ T , denote by φ : R2×[0, T ]→ R, the level set function of Ct
defined by φ(x, y, t) := y2−x2−f(t). We are interested in existence and uniqueness

of a solution to the following PDE on Ct, which is derived from a conservation law

(Section 2.6).

∂•t U + U∇Γ · v −∆ΓU = 0 x ∈ Γ := Ct
U(x, 0) = U0(x) x ∈ C0

(10.1.3)

where

v :=
φt
|∇φ|

ν

is the prescribed normal velocity of the curve, with the outward pointing unit normal

given by

ν := − ∇φ
|∇φ|

.

143



We will assume that the initial data U0 is smooth, bounded and suitably integrable.

10.1.1 Formulation of the Problem in arc-length parameter.

In the following, we transform (10.1.3) into an equation on R×[0, T ] using arc-length

parameterisation.

Let Y : R× [0, T ]→ R2 be defined by Y (p, t) =
√
f(t) (sinh p, cosh p). Then

by standard hyperbolic identities, we see that Y is a smooth parameterisation of Ct.
We also assume that t is sufficiently small to ensure that f(t) > 0. Let Yp denote

the partial derivative of Y with respect to p and define l :=
∫ p

0 |Yp(u, t)| du. Then

l√
f(t)

=

∫ p

0

√
cosh 2udu

for t ∈ [0, T ]. Define the arc-length parameterisation of Ct, denoted by X : R ×
[0, T ]→ R2, by

X(l, t) =
√
f(t)

(
sinh g

(
lf(t)−

1
2

)
, cosh g

(
lf(t)−

1
2

))
. (10.1.4)

Here, g : R→ R is the inverse of the map p 7→
∫ p

0

√
cosh 2udu, as introduced earlier.

Remark 10.1.1. The same properties of g are true as in Chapter 3 and Chapter 7.

See, for example, Remark 3.2.2.

We now transform (10.1.3) into a PDE on R × [0, T ] ready for subsequent

analysis. In order to transform (10.1.3) we write u(l, t) = U(X(l, t), t) and compute

to find
∂u

∂t
= ∇U · (Xt − v) + ∂•t U

and
∂u

∂l
= ∇U ·Xl.

Noting that v is in the normal direction only, and noting the sign of the normal

vector, we have that (Dziuk and Elliott [2007], Appendix A)

∇Γ · v = V H

where

V :=
φt
|∇φ|

and H :=
−1

|∇φ|

2∑
i,j=1

(
δij −

φxiφxj
|∇φ|2

)
φxixj .
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Finally,

∆ΓU(X(l, t), t) =
∂2u

∂l2
(l, t)

as |Xl| = 1. (See Dziuk and Elliott [2007]). We observe that Xt − v = βτ̂ where τ̂

is the unit tangent vector, τ̂ = ±Xl. This is because

Xt · ν − v · ν =
1

|∇φ|
(Xt · (−∇φ)− φt) =

1

2|∇φ|
√
f

(
−ḟ + ḟ

)
= 0.

Thus, β = Xt · τ̂ and so for any orientation of τ̂ we have

∇U · (Xt − v) = Xt ·Xl
∂u

∂l
.

One computes and sees that

Xt ·Xl =
ḟ(t)

2
√
f(t)

 sinh 2g(lf(t)−
1
2 )√

cosh 2g(lf(t)−
1
2 )

− l√
f(t)


and

V H = − ḟ(t)

2f(t)
sech2 2g(lf(t)−

1
2 ).

One notes that

∂

∂l

(
G(lf(t)−

1
2 )u
)

= G(lf(t)−
1
2 )
∂u

∂l
− 1√

f(t)
sech2 2g(lf(t)−

1
2 )u

where for s ∈ R
G(s) = s− sinh 2g(s)√

cosh 2g(s)
. (10.1.5)

Thus, equation (10.1.3) becomes

∂u

∂t
=
∂2u

∂l2
− ḟ(t)

2
√
f(t)

∂

∂l

(
G(lf(t)−

1
2 )u
)

u(l, 0) = U0(X(l, 0)).

(10.1.6)

Using Proposition A.0.2 one sees that G ∈ L∞(R) and by Proposition A.0.1 that

sech2 2g(z) ≤ O(z−4) as |z| → ∞.

Remark 10.1.2. We make the ansatz that the solution to (10.1.6) is in the Banach

space C(0, T ;L∞(R)) and that f depends on the solution. Thus, (10.1.6) is a non–

linear parabolic PDE. We proceed to show that there is a unique mild solution to

(10.1.6) in this Banach space.
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10.2 Analysis of the Problem

We have the following main result.

Theorem 10.2.1. Let u0 ∈ C∞c (R). Then, for T > 0 small enough, there exists a

unique mild solution to (10.1.6) for t ∈ [0, T ] with

sup
t∈[0,T ]

‖u(·, t)‖L∞ <∞.

Proof. Let T ∈ (0,∞) to be chosen later. Define the normed vector space

X := C([0, T ];L∞(R))

with norm

‖v‖X := sup
t∈[0,T ]

‖v(·, t)‖L∞(R).

Then, (X, ‖ · ‖X) is a Banach space. Define F : X −→ X by

Fv(l, t) := S(t)u0(l)− 1

2

∫ t

0
S(t− s) ḟ(s)√

f(s)

∂

∂l

(
G(· f(s)−

1
2 )v
)

ds

where

S(t) : L∞(R) −→ L∞(R)

is the standard heat semigroup (Engel and Nagel [2006]). For R ∈ (0,∞), define

the closed ball in X as

BR := {x ∈ X | ‖x‖X ≤ R}.

Note by definition of f that |ḟ(s)| ≤ ‖u‖2X and if u ∈ BR then, denoting the

dependence of u on f by fu we have

1√
ϕ+ tR

≤ 1√
fu(t)

≤ 1√
ϕ− tR

which is valid, provided t < ϕR−1. We will now show that F : BR −→ BR for some

choice of R and that F is a contraction there.

First, an integration by parts and using Davies [1989], Theorem 6, Case 1
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we have for v ∈ BR

|Fv| ≤ ‖u0‖L∞ + CR

∫ t

0
(t− s)−

1
2 (ϕ− sR)−

1
2 ds

= ‖u0‖L∞ + CR
1
2

∫ t

0
(t− s)−

1
2 (ϕR−1 − s)−

1
2 ds.

If t < 1
2ϕR

−1 then (ϕR−1 − s)−
1
2 <

√
2

2 ϕ
− 1

2R
1
2 and so∫ t

0
(t− s)−

1
2 (ϕR−1 − s)−

1
2 ds ≤ Cϕ−

1
2R

1
2T

1
2 .

Thus,

‖Fv‖X ≤ ‖u0‖L∞ + CRϕ−
1
2T

1
2 .

We recall that t < 1
2ϕR

−1 and so T
1
2 < Cϕ

1
2R−

1
2 and so

‖Fv‖X ≤ ‖u0‖L∞ + CR
1
2 .

We thus want to chose R > 0 such that ‖u0‖L∞ + CR
1
2 ≤ R. Letting p = R

1
2 , this

translates into wanting to find p > 0 such that

−p2 + Cp+ ‖u0‖L∞ ≤ 0. (10.2.1)

However, there exists p0 > 0 such that p > p0 implies (10.2.1) holds true. Hence,

for this choice of R, we have that F : BR → BR.

To show that F is a contraction, let u, v ∈ BR be arbitrary. Then

Fu−Fv =
1

2

∫ t

0
S(t− s)

((
ḟv√
fv
− ḟu√

fu

)
∂

∂l
(Gv) +

ḟu√
fu

∂

∂l
(G(v − u))

)
ds.

An integration by parts and arguing as before by using Davies [1989], Theorem 6,

Case 1 we have

|Fu−Fv| ≤ C(R)

(∫ t

0
(t− s)−

1
2

∣∣∣∣∣ ḟu√fu − ḟv√
fv

∣∣∣∣∣ ds+

∣∣∣∣∣ ḟu√fu
∣∣∣∣∣ ‖u− v‖Xt 1

2

)
.

By the estimate on 1√
fw

for t ∈ [0, 1
2ϕR

−1] it follows that there exists K1,K2 > 0

such that

K1
ḟw√
ϕ
≤ ḟw√

fw
≤ K2

ḟw√
ϕ

for every w ∈ X, recalling that T < 1
2ϕR

−1. It follows that there exists C > 0 such
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that ∣∣∣∣∣ ḟu√fu − ḟv√
fv

∣∣∣∣∣ ≤ C
√
ϕ

∣∣∣ḟu − ḟv∣∣∣
for every u, v ∈ X. Also, for u, v ∈ BR,

|ḟu − ḟv| = |u(0, t)2 − v(0, t)2| = |u(0, t)− v(0, t)||u(0, t) + v(0, t)| ≤ 2R‖u− v‖X .

Thus, we conclude that for u, v ∈ BR arbitrary,

|Fu−Fv| ≤ C(R,ϕ)

(
T

1
2 +

∫ t

0
(t− s)−

1
2 ds

)
‖u− v‖X ≤ C(R,ϕ)T

1
2 ‖u− v‖X .

Hence

‖Fu−Fv‖X <
1

2
‖u− v‖X

for every u, v ∈ BR, provided T is chosen small enough. Thus, by the contraction

mapping Theorem, there exists a unique u ∈ X such that

u = Fu.

This is precisely the definition of a unique mild solution.

Remark 10.2.2 (On the possible behaviour of the solution at a singularity). Recall

Chapter 4 where one takes f(t) = (1− t)2α and so ḟ(t) = −2α(1− t)2α−1. We recall

that if α ≤ 1
2 then u(0, t)→ 0 as t→ 1−, whereas if α > 1

2 we have that u need not

tend to 0. These cases correspond to ḟ(t) → −∞ if α < 1
2 or ḟ(t) → −1 if α = 1

2

as t → 1− and ḟ(t) → 0 if α > 1
2 as t → 1− respectively. In the case of Problem

III, if u(0, t)2 → ∞ then ḟ(t) → −∞ and so we would expect that u(0, t) → 0 (as

in Chapter 4). However, if u(0, t)→ 0 then ḟ(t)→ 0 and so we would expect u not

necessarily to converge to 0 (again, as in Chapter 4). In the case that u(0, t)2 → C

where C > 0, then we have ḟ(t)→ −C with −C 6= 0 and so following Chapter 4 we

would expect that u(0, t) → 0. Thus it is perhaps possible by the above arguments

that a singularity does not occur in finite time. However, the behaviour of u(0, t) as

t approaches some singular time is not clear a priori.
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Chapter 11

Further Research

In the following and final chapter we detail the open questions raised in this thesis.

We also look at some problems that are still to be addressed in the area of surface

PDEs on evolving surfaces; namely where the evolution of the surface is coupled to

the solution to the surface PDE.

11.1 Open problems raised in the thesis

11.1.1 Problem I: Before the singularity

The result of Theorem 4.2.6 is considered partial as the domain in which the result

holds decreases with time (Remark 4.2.7). However, together with the results of

Theorem 4.2.10 we infer information on the solution in a time–independent neigh-

bourhood of (0, 1). The downside is that the proof of Theorem 4.2.10 relied strongly

on the compact support of the initial data u0, otherwise, one needs some growth as-

sumption globally on the initial data in terms of the first eigenfunction of Ā. Indeed,

this leads us to the following.

Further Research Problem 1. Prove that Theorem 4.2.6 and Theorem 4.2.10

both hold for initial data that need not have compact support, with estimates involving

norms that are weaker than the D(H) norm as given in Theorem 4.2.6.

A weaker norm will allow extension to the perturbation of the problem.

11.1.2 Problem I: After the singularity

For the α = 1
2 case, we were only able to show that the initial data to the continued

PDE (5.0.3) was attained in the weak sense (Remark 5.2.5). This is at odds with

the α < 1
2 and α > 1

2 cases, where we showed that the initial data was attained

149



in the classical and mild senses respectively (Theorem 5.1.5 and Theorem 5.3.1

respectively). Naturally, we have

Further Research Problem 2. Prove an analogous version of Theorem 5.1.5 or

Theorem 5.3.1 as appropriate for the α = 1
2 case.

As discussed in Chapter 5 the α = 1
2 case is when the arguments in Sec-

tion 5.1 and Section 5.3 break down. Thus, the result of Remark 5.2.5 sits naturally

between the two cases. However, it is expected that one should be able to prove the

attainment of the initial data in a classical sense, however the techniques outlined

in this thesis fail to produce the result.

11.1.3 Perturbation of Problem I

We have the following.

Further Research Problem 3. Attain analogous results to those of Sections 6.1

and 6.2 for initial data f(·, s) ∈ Lq(R) and perturbation f(·, s) ∈ Lq(R) where

q ∈ [1,∞).

With regards to perturbation, we only considered the case where α < 1
2 due

to the restriction of having the initial data in the α = 1
2 case belong to a suitable

subset of differentiable functions. We would thus want the following.

Further Research Problem 4. Attain all the results of Further Research Prob-

lem 3, for α = 1
2 .

Linking on from this, we note that in Section 6.3 that we did not take space–

time white noise as the stochastic perturbation. This leads onto the following natural

problem:

Further Research Problem 5. Take space–time white noise as the stochastic

perturbation in Section 6.3.

Tackling this problem will be hard; we need to know more information about

the two–parameter semigroup as introduced in Definition 6.2.1, such as whether it

maps H1(R) into itself. This was discussed in Section 6.3.1.

11.1.4 Problem II: Before the singularity

In Problem II, we considered the natural conserved quantity J , in Proposition 7.1.6.

In the case of α < 1
2 we were able to prove that J was uniformly bounded in space
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and time. However, we were unable to establish this result for α ≥ 1
2 . Further, the

upper bound on u in Theorem 8.2.1 for |l| > y0

√
1− t requires that one knows the

value of µ̄1. We naturally have

Further Research Problem 6. Prove that for every α ≥ 1
2 , there exists C > 0

such that

|J(l, t)| ≤ C

for every (l, t) ∈ R × [0, 1]. Prove further and/or estimate the value of µ̄1 more

accurately.

The limitation of proving this result for the α = 1
2 case was requiring that,

when one is working in the (y, τ) coordinates, we needed that y was bounded (see

the proof of Theorem 8.2.1. In particular, the boundedness of y is needed in the

probabilistic argument presented there). Also, the functional analytic techniques

did not naturally yield L∞ bounds and the crude estimates on µ̄1 are not very

useful. It is conjectured that µ̄1 = 1
2 in Conjecture 8.2.4. For the boundedness of J

when α > 1
2 , discussion is given in Section 8.3 and so omitted here.

We note that the uniform boundedness of J is needed to rule out singularities

that behave in the following way: One could have that

lim
t→1−

∫
R
|J(l, t)|dl exists

and is finite, but

lim
t→1−

sup
l∈R
|J(l, t)| = +∞.

Figure 11.1 shows an example of such a J in the limit. The singularities at ±0.02

are approached at an order of |l|−1/2 and the tails (not shown) fall like |l|−2. Thus,

the function is integrable, but is not uniformly bounded. One should immediately

note that the bounds in Theorem 8.2.1 rule this figure out for α = 1
2 , but do not

rule out such a problem happening “at infinity”. However, it is still open as to what

happens if α > 1
2 .

Indeed, a solution to Further Research Problem 6 would rule out such prob-

lems “at infinity” for α = 1
2 and in general for the case of α > 1

2 . For l 6= 0, Sαt
is smooth for all t ∈ [0, 1], and we expect that J is indeed uniformly bounded for

every α ≥ 1
2 .
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Figure 11.1: Plot of an example of such a limiting J .

11.1.5 Problem II: After the singularity

A major problem with this section was the coth singularity in the parameterisation

of the surface.

Further Research Problem 7. When considering Problem II after the singularity,

reformulate and analyse the problem using an alternative method, such as a graph

approach.

This problem was considered, but the coefficients of the PDE were analyti-

cally intractable.

We managed to show that the initial data was attained in a weak sense for

every α ∈ (0,∞). In conjunction with the above Further Research Problem, we

pose the following.

Further Research Problem 8. Show the attainment of the initial data to (9.1.4)

is achieved in a classical or mild sense (as appropriate) for a given α ∈ (0,∞).

As noted, this should be tackled using an alternative formulation, as the

method of “flow variables” as in the curve case fails due to coth being unbounded.

The singularity of coth also destroys any argument when one considers (9.1.4) as a

perturbation of the heat equation.

11.1.6 Problem III

In problem III, we only considered small times before any singularity occurred.

Naturally, we have
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Further Research Problem 9. Analyse and gain understanding about whether a

singularity occurs in finite time or not. If one does, how many occur and can we

continue the solution past the singularity in some sense?

It is important to note that equation (10.1.6) is a non–linear PDE and so

we cannot use the Feynman–Kac formula together with the Backwards Kolmogorov

equation as we did in the linear case, to analyse the behaviour, as it stands. We

would have to use a perturbation of the heat equation argument as we did in The-

orem 10.2.1, but the argument is limited by the a priori unknown behaviour of
1√
f(t)

.

If any singularity occurs, to continue the solution past the singularity, we

cannot use the Fokker–Planck equation approach due to the non-linearity of (10.1.6).

Again, we would have to use a perturbation of the heat equation argument and the

a priori unknown behaviour of 1√
f(t)

near the singular time limits the argument.

11.2 Future research problems

The reader will notice that in the case of a surface, we only considered a hyperboloid

of one sheet evolving into a hyperboloid of two sheets. Of course, one could consider a

hyperboloid of two sheets evolving into a hyperboloid of one sheet. A major problem

here is the one realised in Chapter 9; the parameterisation in the arclength parameter

is singular. Thus the following problem links into Further Research Problem 7.

Further Research Problem 10. Find and prove analogous results to those of

Chapters 8 and 9 for a hyperboloid of two sheets evolving into a hyperboloid of one

sheet.

With regards to the type of singularities one can find for a smooth curve

evolving in the plane, there are only two; a “kink” and a “cusp”. An example of

each is given in Figure 11.2.

For the curve, we have only been considering a curve that forms a “kink“ in finite

time and not a cusp. Naturally, this leads to the following.

Further Research Problem 11. Investigate the effects of a cusp singularity form-

ing in finite time on the heat equation (2.6.3) for a curve and a surface of revolution.

The major problem is finding a suitable curve that forms a cusp with a

parameterisation that is analytically tractable.

Finally, linking into Chapter 10:
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Figure 11.2: An example of a “kink” (left) and a “cusp” (right).

Further Research Problem 12. Investigate the mathematical theory needed for

the problem of the evolution of a surface, where the evolution is coupled to the surface

PDE on the surface.

In this thesis, we only considered the case of a curve, for small times away

from any singularity. The mathematical theory would focus on problems of well-

posedness and long term properties of the solution to the surface PDE and surface

evolution. An example of such a problem would be forced mean curvature flow

where the normal velocity, V , of the surface evolves according to

V = −H + U

where H is the mean curvature and U is the solution to some reaction–diffusion

equation such as the heat equation (2.6.3). Such models arise in nature, for example

in modelling the movement of a white blood cell in the presence of a bacterium

emitting a chemotactic signal (Neilson et al. [2011]).

One would have to establish in what sense we have a solution to these equa-

tions, what space the solution is in, whether the solution exists, whether such a

solution is unique and the long term properties of solutions to both equations.

We end this thesis with some concluding remarks.
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11.3 Concluding remarks

In the author’s opinion, this thesis adds to the mathematical knowledge and demon-

strates interesting and technically hard problems in the area of linear singular

parabolic PDEs that arise from problems in surface PDEs, where the underlying

surface undergoes some sort of geometric singularity. The open problems identified

at the end of this thesis form a substantial area of future research for the author,

but also for the mathematical community as a whole. Indeed, this thesis may be

regarded as a starting point in the investigation to singular linear parabolic PDEs

arising from underlying geometric singularities.

The areas of mathematics used in this thesis further consolidate the fact that

mathematics benefits from different research areas and the interplay of analysis and

probability theory here demonstrates this.
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Appendix A

Asymptotic Analysis of

Functions of the Arc–Length

Parameterisation

In the following we prove some asymptotic analysis results for functions of g : R→ R
as defined in Definition 3.2.1, which prove to be of utter importance to the analysis

of the various problems in this thesis.

Proposition A.0.1. There exists R̃i : R → R (i = 1, 2) measurable such that for

every s ∈ R

(i) sinh 2g(s) = sgn(s)(|s|+ κ)2 + R̃1(s);

(ii) cosh 2g(s) = (|s|+ κ)2 + R̃2(s)

where for i = 1, 2 and large |s|

R̃i(s) ≤ O(s−2).

The constant κ is given by

κ := −c1 := −
(∫ ∞

0

(√
cosh 2u− eu√

2

)
du− 1√

2

)
=

√
π Γ
(

3
4

)
Γ
(

1
4

) ≈ 0.5991.

Proof. In the following, set c1 = −κ. We will first consider s > 0 noting that

g(−s) = −g(s). We recall that g is the inverse of the map x 7→
∫ x

0

√
cosh 2udu. So,

set

s = s(x) =

∫ x

0

√
cosh 2u du.
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Then, by Taylor’s Theorem

√
cosh 2u =

eu√
2

(
1 +

e−4u

2
− e−8u

8
(1 + ξL(u))−

3
2

)
for every u > 0,

where ξL(u) ∈ (0, e−4u). Thus we have for every x > 0∣∣∣∣∫ x

0

√
cosh 2udu− c1 −

ex√
2

+
1

6
√

2
e−3x

∣∣∣∣ ≤ c2e
−7x,

where

c1 =

∫ ∞
0

(√
cosh 2u− eu√

2

)
du− 1√

2
< 0,

and c2 > 0 whose value we do not care about. Thus, we conclude that

s = c1 +
ex√

2
+ r0(x)

where

|r0(x)| ≤ c3e
−3x

gives a first order approximation to s. Write y = ex and we see that

y =
√

2(s− c1) + r(y)

with

|r(y)| ≤ c3y
−3.

However,

|r(y)| ≤ c3(
√

2(s− c1) + r(y))−3

so writing

y =
√

2(s− c1) + r1(s)

we conclude that r(y) = r1(s) and so

|r1(s)| ≤ c3(
√

2(s− c1) + r1(s))−3

which is equivalent to the following holding for every s > 0(√
2|r1(s)|

1
3 (s− c1) + |r1(s)|

1
3 r1(s)

)3
≤ c3.
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In order for this to hold, we need that

|r1(s)| ≤ K1|s|−3

for some K1 > 0, noting that r1(s) is already bounded by a constant. We thus

conclude that to first order

y =
√

2(s− c1) + r1(s)

with r1 bounded as above. We now give a second order approximation

y√
2
− 1

6
√

2
y−3 = (s− c1) +R2(y)

with

|R2(y)| ≤ c2y
−7.

Using the above expression for y we conclude that

y =
√

2(s− c1) +
1

6
(
√

2(s− c1) + r1(s))−3 +R2(y)

and so writing

y =
√

2(s− c1) +
1

6
(
√

2(s− c1) + r1(s))−3 + r2(s)

as before, we conclude that

|r2(s)| ≤ K2|s|−7.

To deal with the second term in the expression for y we observe that

1

6
(
√

2(s− c1) + r1(s))−3 =
1

6
(
√

2(s− c1))−3 + r3(s)

where

r3(s) =
1

6
(
√

2(s− c1) + r1(s))−3 − 1

6
(
√

2(s− c1))−3

= −1

6

[
3(
√

2(s− c1))2r1(s) + 3(
√

2(s− c1))r2
1(s)− r3

1(s)

(
√

2(s− c1) + r1(s))(
√

2(s− c1))3

]
.

Hence, by the definition of r1 we have

|r3(s)| ≤ K3s
−6
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for s sufficiently large. We thus conclude that

y =
√

2(s− c1) +
1

6
(
√

2(s− c1))−3 + r3(s).

Taking the logarithm and recalling that x = g(s) we conclude that for every s > 0

g(s) = log

[√
2(s− c1) +

1

6
(
√

2(s− c1))−3 + r3(s)

]
.

We are now in a position to prove assertions (i) and (ii). Recall that

sinh 2g(s) =
e2g(s) − e−2g(s)

2

and

cosh 2g(s) =
e2g(s) + e−2g(s)

2
.

With this in mind, and using the above expression for g(·) we have that

sinh 2g(s) = (s− c1)2 +
1

6
(
√

2(s− c1))−2 + r4(s)+

− 1

2

(
(s− c1)2 +

1

6
(
√

2(s− c1))−2 + r4(s)

)−1

where, for large enough s > 0,

|r4(s)| ≤ K4|s|−5.

Taking into consideration the fourth term of this expression, we conclude that

sinh 2g(s) = (s− c1)2 + r5(s)

with, for large enough s > 0,

|r5(s)| ≤ K5s
−2.

This yields (i) for s > 0. A similar approach yields (ii) for s > 0. We note that

by symmetry and the fact that g(−s) = −g(s) that (i) and (ii) follow for every

s ∈ R.

Proposition A.0.2. Let

H̃(z) :=
sinh 2g(z)√
cosh 2g(z)

− z.
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Then the following hold

i) H̃ ∈ L∞(R) and is globally Lipschitz;

ii) H̃ ′(z) = sech2 2g(z) for every z ∈ R;

iii) Fix δ > 0. Let x, y ∈ R \Bδ(0) with sgn(x) = sgn(y) and suppose s > 0. Then

there exists Cδ > 0 depending only on δ such that∣∣∣H̃(x/
√
s)− H̃(y/

√
s)
∣∣∣ ≤ sCδ |x− y| .

Proof. i) From Proposition A.0.1 one concludes that for every z ∈ R

H̃(z) + z =
sgn(z)(|z| − c1)2 +R1(z)√

(|z| − c1)2 +R2(z)

with Ri ≤ O(z−2) as |z| → ∞. We now simplify and Taylor expand the

denominator to see that

H̃(z) + z = sgn(z)(|z| − c1) +R(z)

with R ≤ O(|z|−3) as |z| → ∞ and so

H̃(z) = sgn(z)|z| − z − sgn(z)c1 +R(z).

However, sgn(z)|z| − z = 0 for every z ∈ R and so

H̃(z) = −sgn(z)c1 +R(z).

Using the original definition of H̃ we have that H̃(0) = 0. Noting that R is

smooth we have that H̃ ∈ L∞(R).

The global Lipschitz continuity property follows from (ii) below.

ii) Recalling from (3.2.1) that

g′(z) =
1√

cosh 2g(z)

we directly compute H̃ ′ to find that

H̃ ′(z) =
2 cosh 2g(z)− tanh 2g(z) sinh 2g(z)

cosh 2g(z)
− 1 = 1− tanh2 2g(z).
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It is now standard that 1− tanh2 2g(z) = sech2 2g(z).

The global Lipschitz continuity of H̃ follows from the mean value theorem and

the fact that H̃ ′(z) ≤ 1 for every z ∈ R.

iii) For this proof, we are more careful in bounding the derivative of H̃. Let δ > 0

and suppose x, y ∈ R \ Bδ(0) with sgn(x) = sgn(y). Then |x| > δ and |y| > δ.

Without loss of generality, assume x < y. The mean value theorem implies that

there exists cxy ∈ (x, y) such that, for every s > 0,

|H̃(x/
√
s)− H̃(y/

√
s)| = 1

s
|H̃ ′(cxy/

√
s)||x− y|.

Since sgn(x) = sgn(y) and |x| > δ, |y| > δ it follows that cxy 6= 0. Using

Proposition A.0.1 we have that, for every z ∈ R,

|H̃ ′(z)| = 1[
(|z| − c1)2 + R̂(z)

]2

where, for large z,

R̂(z) ≤ O(z−2).

So as −c1 > 0, for |z| > 0,

|H̃ ′(z)| ≤ 1

|z|4

(
1

1 + R̄(z)

)2

with

R̄(z) =
R̂(z)

(|z| − c1)2

and thus for large z we have R̄(z) ≤ O(z−4). However, since(
1

1 + R̄(z)

)2

−→ 1

as |z| → ∞ and, by Proposition A.0.1,(
1

1 + R̄(z)

)2

=
(|z| − c1)4

cosh2 2g(z)
≤ (|z| − c1)4

which is bounded for bounded z, it follows that there exists M > 0 such that,

for every z ∈ R, (
1

1 + R̄(z)

)2

≤M.
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Hence, for every |z| > 0 we have

|H̃ ′(z)| ≤ M

|z|4
.

Thus, taking z = cxy/
√
s and observing that |cxy| > δ, one has

|H̃ ′(cxy/
√
s)| ≤ M

|cxy|4
s2 ≤ s2Cδ

and so the claim follows.
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Appendix B

Transformation of the

Self–Similar Critical Regime for

Problem I

Consider (4.2.1) and let v(y, τ) = ϕ(y)w(y, τ). Then, a direct computation reveals

that

∂2v

∂y2
= ϕ

∂2w

∂y2
+ 2ϕ′

∂w

∂y
+ ϕ′′w,

−1

2
H(y)

∂v

∂y
= −1

2
H(y)ϕ

∂w

∂y
− 1

2
H(y)ϕ′w,

−1

2
sech2 2g(y)v = −1

2
sech2 2g(y)ϕw.

Thus, if v solves (4.2.1) then w solves

∂w

∂τ
=
∂2w

∂y2
+
∂w

∂y

[
2
ϕ′

ϕ
− 1

2
H(y)

]
+ w

[
ϕ′′

ϕ
− 1

2
H(y)

ϕ′

ϕ
− 1

2
sech2 2g(y)

]
.

We choose ϕ such that the coefficient of the drift term above is zero. That is, we

choose ϕ such that, for any y ∈ R,

ϕ′

ϕ
− 1

4
H(y) = 0.

It is easy to see that

ϕ(y) := exp

(
1

4

∫ y

0
H(s) ds

)
(B.0.1)
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yields this. Calculating the coefficient of w we see that we have transformed (4.2.1)

into the following PDE

∂w

∂τ
=
∂2w

∂y2
+ w

[
1

4
H ′(y)− 1

16
H2(y)− 1

2
sech2 2g(y)

]
. (B.0.2)

Since one has

H ′(s) = 1 + sech2 2g(s) H2(s) = tanh 2g(s) sinh 2g(s),

we define

−Ã :=
∂2

∂y2
−
[

1

16
tanh 2g(y) sinh 2g(y)− 1

4
+

1

4
sech2 2g(y)

]
(B.0.3)

and call −Ã the “Schrödinger operator” so that

∂w

∂τ
= −Ãw

is referred to as the “Schrödinger equation”. We define the potential associated to

the equation as

V(y) :=
1

16
tanh 2g(y) sinh 2g(y)− 1

4
+

1

4
sech2 2g(y). (B.0.4)
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Appendix C

Analysis of The Eigenfunctions

of the Schrödinger Operator for

Problem I

Recall V from (B.0.4). In order to analyse the asymptotics of the eigenfunctions of

−Ā we must analyse the asymptotics of the eigenfunctions of Ã defined above. The

following Lemma is of use.

Lemma C.0.3. For every y ∈ R we have that

V(y) =
1

16
(|y|+ κ)2 − 1

4
+R(y)

where, for, large enough y,

|R(y)| ≤ Cy−2.

Proof. Set

R(y) := V(y)−
[

1

16
(|y|+ κ)2 − 1

4

]
.

Using the result of Proposition A.0.1 with c1 = −κ and the remainder terms as

given in the proof there, we have that for every s > 0

V(s) =
1

16

(
(s− c1)2 + 2r5(s) + r2

5(s)(s− c1)−2
)

1 + r6(s)(s− c1)−2
− 1

4
+

1

4
((s− c1)2 + r6(s))−2

=
1

16
(s− c1)2 − 1

4
+ r7(s)

where, for large enough s > 0,

|r7(s)| ≤ K7s
−2.
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By symmetry, the above holds for s < 0 and so evaluating at s = y we see that

|R(y)| ≤ K7y
−2

for large enough y.

In light of Lemma C.0.3 we have that

Ã = −∂
2w

∂y2
(y) +

(
1

16
(|y| − c1)2 − 1

4
+R(y)

)
,

where R(y) ≤ O(|y|−2).

We will now follow Berezin and Shubin [1991] pp. 69-85 to prove the follow-

ing.

Theorem C.0.4. The spectrum of Ã is discrete and for every λ ∈ σ(Ã) with cor-

responding eigenfunction wλ there exists C̄0 = C̄0(y0, λ) > 0 such that the following

asymptotic holds

wλ(y) = C̄0(|y|+ κ)2λ exp

(
−1

8
(|y|+ κ)2

)
(1 + o(1)) as |y| → +∞.

Proof. The discreteness of the spectrum follows from Theorem XIII.67 of Reed and

Simon [1978], since the potential is bounded below and tends to +∞ as |y| → ∞.

We present the proof for the y > 0 case. The y < 0 case is analogous. Set c1 = −κ.

We have

Ãwλ = λwλ

and so

−∂
2wλ
∂y2

+ wλ

(
1

16
(|y| − c1)2 +R(y)

)
=

(
λ+

1

4

)
wλ.

One can easily check that λ > 0 and so k2 := λ+ 1
4 has k ∈ R. Define

V (y) :=
1

16
(|y| − c1)2 +R(y)

and choose y > 0 large enough so that

Φ(y) :=
√
V (y)− k2

has Φ(y) ∈ R. Call this lower bound ỹ0 and assume ỹ0 is large enough so that y > ỹ0

implies

|R(y)| ≤ C|y|−2.
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Since V (y)− k2 →∞ as y →∞, there exists some y1 > 0 such that y > y1 implies

V (y)− k2 > 1 and so ∫ ∞
y0

√
V (y)− k2 dy >∞.

Thus ∫ ∞
y0

Φ(y) dy = +∞,

where y0 = max{ỹ0, y1}. In order to use Theorem 4.6 of Berezin and Shubin [1991],

p.84, we need to show that∫ ∞
y0

∣∣∣∣ Φ′′

2Φ2
− 3

4

(Φ′)2

Φ3

∣∣∣∣ dy <∞.

One computes and sees that∣∣∣∣ Φ′′

2Φ2
− 3

4

(Φ′)2

Φ3

∣∣∣∣ ≤ 11

16

|V ′|2

|V − k2|
5
2

+
1

4

|V ′′|
|V − k2|

3
2

. (C.0.1)

However, computing the derivatives for V when V is given as the hyperbolic func-

tions we see that

V ′(y) = − tanh 2g(y) sech
5
2 2g(y) +

1

8

sinh 2g(y)√
cosh 2g(y)

(1 + sech2 2g(y))

and so by Proposition A.0.1 we have that V ′(y) = O(|y|−3) as y →∞ and V ′(0) = 0.

In a similar fashion, we compute V ′′ and see

V ′′(y) = −2 sech5 2g(y) + 5 tanh2 2g(y) sech3 2g(y)− 1

2
sinh2 2g(y) sech4 2g(y)

+
1

8

(
1 + sech2 2g(y)

)2
.

Again, by Proposition A.0.1 we conclude that |V ′′(y)|/(V − k2)3/2 = O(y−3) as

y →∞ and V ′′(0) <∞. Thus we see that the right hand side of (C.0.1) is in L1(R)

and appealing to Theorem 4.6 of Berezin and Shubin [1991] we conclude that

wλ(y) = (V (y))−
1
4 exp

(
−
∫ y

y0

√
V (s)− k2 ds

)
(1 + o(1)) as y → +∞. (C.0.2)

The idea is now to Taylor expand the various expressions involving V for y > y0 to

give the result.
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Firstly,

√
V (y)− k2 =

√
V (y)

√
1− k2

V (y)
=
√
V (y)

(
1− k2

2V (y)
− k4

8V (y)2
L(y)

)
where

L(y) := (1− ξL(V (y)))−
3
2

and

ξL(V (y)) ∈
(

0,
k2

2V (y)

)
.

Thus simplifying this and Taylor expanding (V (y))±
1
2 we have, for every y > y0,

√
V (y)− k2 =

1

4
(y−c1)+R1(y)− k

2

2

(
4

y − c1
+R2(y)

)
− k4

8V (y)
3
2

(1−ξL(V (y)))−
3
2

with, for, large enough y,

|R1(y)| ≤ C|y|−3

and

|R2(y)| ≤ C|y|−5.

Using the same technique we Taylor expand (V (y))−
1
4 to see, for y > y0,

(V (y))−
1
4 =

2√
y − c1

+R3(y)

with, for, large enough y,

|R3(y)| ≤ C|y|−
9
2 .

Substituting this result into (C.0.2) we conclude that, as y →∞,

wλ(y) =
2√
y − c1

exp

(
−
∫ y

y0

(
1

4
(s− c1)− 2k2(s− c1)−1

)
ds

)
C1(y)(1 + o(1))

+R3(y) exp

(
−
∫ y

y0

(
1

4
(s− c1)− 2k2(s− c1)−1

)
ds

)
C1(y)(1 + o(1)),

where

C1(y) = exp

(
−
∫ y

y0

(
R1(s)− k2

2
R2(s)− 1

8
(V (s))−

3
2 (1− ξL(V (s)))−

3
2

)
ds

)
.

168



By definition of the Ri we have that

lim
y→∞

C1(y) = `0

exists with `0 ∈ (0,∞).

Now

exp

(
−
∫ y

y0

(
1

4
(s− c1)− 2k2(s− c1)−1

)
ds

)
= C̃0(y0, λ) exp

(
−1

8
(y − c1)2 + log(y − c1)2k2

)
= C̃0(y0, λ)(y − c1)2k2

exp

(
−1

8
(y − c1)2

)
.

Substituting this in we have as y →∞

wλ(y) = 2C1(y)C̃0(y − c1)2k2− 1
2 exp

(
−1

8
(y − c1)2

)
(1 + o(1))+

+ C̃0R3(y)C1(y)(y − c1)2k2
exp

(
−1

8
(y − c1)2

)
(1 + o(1)).

The result follows by recalling that k2 = λ+ 1
4 and so 2k2 = 2λ+ 1

2 . We now bound

C1 above and drop the last term as the estimation is equivalent and no better than

with the term present.
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Appendix D

Upper Bound on the Exponent

in the power law in the Critical

Case for Problem I

Consider Theorem 4.2.6. We wish to ascertain an upper bound for the exponent,

2µ1, in Theorem 4.2.6.

Theorem D.0.5. Consider Theorem 4.2.6. Then

2µ1 ≤ 1.

Proof. We have that µ1 is the minimal eigenvalue of the time-homogeneous operator,

Ā, in (4.2.2) and so by the ground-state transformation of Section B, µ1 is also the

minimal eigenvalue of Ã, (B.0.3), written below for convenience as

Ã = − ∂2

∂y2
+ V(y)

where

V(y) =
1

16
tanh 2g(y) sinh 2g(y)− 1

4
+

1

4
sech2 2g(y).

Observe that Ã is self-adjoint on L2(R) and since

V(y) =
sinh2 2g(y)

16 cosh 2g(y)
− 1

4
+

1

4
sech2 2g(y) ≥ −1

4

170



for every y ∈ R, we have that Ã is semi-bounded. I.e, for every ϕ ∈ D(Ã),

〈Ãϕ, ϕ〉 = 〈ϕ′, ϕ′〉+ 〈Vϕ,ϕ〉 ≥
∫
R
V(y)|ϕ(y)|2 dy ≥ −1

4

∫
R
|ϕ(y)|2 dy = −1

4
‖ϕ‖2L2 .

We may appeal to Theorem XIII.3 of Reed and Simon [1978] p.82 to conclude that

µ1 ≤ 〈Ãψ, ψ〉

where ψ ∈ D(Ã) with ‖ψ‖2L2 = 1. In order to make this upper bound sharp, we

should take ψ related to the eigenfunction of ψ. Inspired by the asymptotic results

of Theorem C.0.4, take

ψ(y) :=
1

Z
exp

(
−γ
∫ y

0
H(s) ds

)
,

where γ > 0 is to chosen, H is defined as

H(s) =
sinh 2g(s)√
cosh 2g(s)

and Z is the normalisation constant given by

Z :=

(∫
R

exp

(
−2γ

∫ y

0
H(s) ds

)
dy

) 1
2

.

Notice that by definition of H and Proposition A.0.1 we see that ψ ∈ L2(R). Ele-

mentary calculations reveal that

Ãψ =
(
γH ′(y)− γ2H2(y) + V(y)

)
ψ

with

H ′(y) = 2− tanh2 2g(y).

Simplifying, we see that

Ãψ =

(
2γ − (γ +

1

4
) tanh2 2g(y) +

(
1

16
− γ2

)
sinh2 2g(y)

cosh 2g(y)

)
ψ.

One is tempted to take γ = −1
4 ; the resulting ψ fails to be in L2(R). Thus, take

γ = 1
4 so that

Ãψ =
1

2
sech2 2g(y)ψ
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and so

〈Ãψ, ψ〉 =
1

2Z2

∫
R

sech2 2g(y) exp

(
−1

2

∫ y

0
H(s) ds

)
dy.

However, sech2 2g(y) ≤ 1 for every y ∈ R and

Z2 =

∫
R

exp

(
−1

2

∫ y

0
H(s) ds

)
dy.

Hence

〈Ãψ, ψ〉 ≤ 1

2

∫
R exp

(
−1

2

∫ y
0 H(s) ds

)
dy∫

R exp
(
−1

2

∫ y
0 H(s) ds

)
dy

=
1

2
.

Thus

µ1 ≤ 〈Ãψ, ψ〉 ≤
1

2
.
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