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ABSTRACT

We study the Allen-Cahn equation

ut = ε2uxx + f (u) + εγẆ

with an additive noise term εγẆ for small ε > 0, and in particular the limit
ε → 0. This is a reaction-diffusion equation, where f (∙) is the negative derivative
of a symmetric double-well potential.

We study this equation in the interval (0, 1) with symmetric boundary con-
ditions, and relatively general initial conditions, for Ẇ we take space-time white
noise.

Brassesco et al., Funaki and other authors showed (with different boundary
conditions) that if we can project the solution of the equation to an energy-
optimal deterministic solution with just one zero, then in the sharp interface
limit ε → 0 of the solution appropriately rescaled in time is a standard Brownian
motion.

In this work, we extend these results to a much more general case: We
start with fairly general initial conditions, show that after some time we are
able to project the solution onto energy-optimal deterministic solutions with
finitely many zeroes, after which we derive a semimartingale representation for
the interfaces; this representation holds until two interfaces get close to each
other and annihilate. In the sharp interface limit ε → 0, the appropriately
time-rescaled interface position of the solution converges weakly to annihilating
independent standard Brownian motions. We also derive an analogous result for
smooth noise with trace-class covariance operator, in this case the phenomenon
happens on a different timescale than for space-time white noise.



1. INTRODUCTION AND OVERVIEW OF RESULTS

The Allen-Cahn equation was first studied in [AC79] as a microscopic diffusional
theory for the motion of a curved antiphase boundary. It is one of the most
simple ways to model phase separation, and is commonly used as a simplification
of other models of phase separation, for example of the Cahn-Hilliard equation,
which essentially behaves in the same way, but with energy conservation. In
this work we study the effect of small noise on this equation, and derive some
new results on the dynamics in one space-dimension, in particular of a scaling
limit known as the sharp interface limit. Heuristically speaking, the classical
way of deriving the Allen-Cahn equation is to derive the L2-gradient flow of the
Ginzburg-Landau-Wilson free energy functional.

In the deterministic equation for fixed ε > 0, this is a parameter of the equa-
tion that loosely speaking determines the width of the interfaces; the solution
will after an initial ”relaxation time” have a modulus of approximately 1 in
most of the range; in one space dimension this leaves a discrete set of interfaces,
where each interface moves towards its nearest neighbour at an exponentially
slow speed until they are sufficiently close to annihilate within order | log ε| time.
In N ≥ 2 space dimensions the interfaces form a manifold of dimension N − 1
and in the sharp interface limit perform mean curvature flow. A reference in
one dimension is [Che04], and in higher dimensions [Che92].

In this chapter we formulate the equation, define the coordinate system used
to find a better description of it and give an overview of the results presented
in this work.

1.1 Deterministic equation

For a physical system which attains values in [−1, 1], but mostly close to ±1 a
natural choice is the following potential energy:

∫
F (u (x)) dx

where F (∙) is a symmetric double-well potential with minima at ±1, a classical
example would be F (u) = 1

4

(
u2 − 1

)2
. This description of the physical phe-

nomena is quite local and needs another term to smoothen out the otherwise
quite rough transitions from ±1 to ∓1 with a kinetic energy:

∫
1
2
ε2 |∇u|2 dx,
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the energy functional thus becomes

E (u) =
∫

1
2
ε2 |∇u|2 dx +

∫
F (u (x)) dx.

In order to now arrive at an equation for u, the assumption is made that the
system is quickly drawn towards its energy minimisers, i.e.

d

dt
u = −

∂

∂u
E (u) = −

∂

∂u
[
∫

1
2
ε2 |∇u|2 dx +

∫
F (u(x))dx]

= −
∂

∂u

[

−
∫

1
2
ε2uΔudx +

∫
F (u (x)) dx

]

= ε2Δu − F ′ (u) .

This yields the Allen-Cahn equation:

∂tu (x, t) = ε2Δu (x, t) − F ′ (u (x, t)) .

Alternatively, one may note that

∂

∂t
E (u) = −

∫
ε2Δu ∙utdx+

∫
F ′ (u (x)) utdx = −

∫ (
ε2Δu − F ′ (u (x))

)
utdx.

Mathematically speaking, this is the L2 gradient flow of the energy E (u),
since for all t > 0 we have the weak characterisation

〈∂tu, u〉L2 = −〈E′(u), u〉L2 .

While one could indeed consider the case |u| > 1, this is not meaningful
to physicists who tend to be interested in systems with values in [−1, +1], and
indeed any bounded initial configuration u0 will have the property |u| ≤ 1+O (ε)
after a time of order |log ε|. We will for this reason not restrict our solution to
[−1, +1] when introducing the noise.

As a remark, if one was to choose the H−1-inner product rather than L2

one would obtain the Cahn-Hilliard equation as the gradient flow of the energy,
which was introduced at an earlier point in [CH58]:

∂tu = Δ(Δu − F ′ (u)) .

So far this discussion was valid in arbitrarily many space-dimensions. From now
on we talk about the case of one space-dimension.

We now give an overview of the behaviour of the Allen-Cahn equation for
small ε. The obvious first observation is that u (x) = +1 and u (x) = −1
minimise the energy. If we have a solution that needs to pass from −1 to +1 at
some point and is fixed to these values at its boundaries we observe

E (u) =
∫ 1

0

(
1
2
ε2 (∂xu (x))2 + F (u (x))

)

dx

=
∫ 1

0

(
1
2

(
ε∂xu(x) +

√
2F (u (x))

)2

− ε
√

2F (u (x))

)

∂xudx
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≥
∫ 1

−1

√
2F (u)du = S∞.

For F (u) = 1
4

(
u2 − 1

)2
we have S∞ = 2

√
2

3 . One way to view S∞ is as the
minimum energy required for a transition from ±1 to ∓1.

This is obtained exactly when

ε∂xu (x) +
√

2F (u (x)) = 0

or equivalently
ε2∂xxu (x) − F ′ (u (x)) = 0,

i.e. it is a time-invariant solution of the Allen-Cahn equation.
For F (u) = 1

4

(
u2 − 1

)2
these solutions take the explicit form uh (x) =

tanh
(

x−h√
2ε

)
if the equation is posed on the real line:

E
(
tanh

(
x−h√

2ε

))

=
∫∞
−∞

[
1
2ε2
(
∂x tanh

(
x−h√

2ε

))2

+ 1
4

((
tanh

(
x−h√

2ε

))2

− 1

)2
]

dx

=
∫∞
−∞

[
1
2ε2 ∙ 1

2ε2

(

1 −
(
tanh

(
x−h√

2ε

))2
)2

+ 1
4

((
tanh

(
x−h√

2ε

))2

− 1

)2
]

dx

=
∫∞
−∞

(
3
4

((
tanh

(
x−h√

2ε

))2

− 1

)2

dx =
∫∞
−∞

3
4

(
sech

(
x−h√

2ε

))4
)

dx = S∞.

As E (u) is non-negative, this clearly shows that tanh
(

x−h√
2ε

)
is an energy

minimiser.
A key notion introduced in section 1.2 will be to ”glue” these invariant

solutions (or energy minimisers) together to obtain quasi-invariant solutions
indexed by the position of their zeroes, onto which we can project the actual
solution, given it is close enough. Except for a size kε neighbourhood of h, uh

is in a neighbourhood of ±1 that is exponentially small in ε, so most energy is
concentrated around such an interface.

Using this idea of quasi-invariant solutions, we can at a hand-waving level
explain the behaviour of the equation as initially being quickly drawn to a
neighbourhood of a quasi-invariant solution (with N zeroes) exponentially small
in ε, the energy will then be almost constant at about NS∞ for a time of order
e

−d
ε , where d is the minimum distance of two neighbouring interfaces. Then

we quickly see the annihilation of two interfaces to obtain the new energy of
approximately (N − 2) S∞, and see the same dynamics again until we finally
reach either one or no interfaces. A very detailed account of these dynamics
can be found in [Che04]. For the motion of well-separated zeroes the ideas and
notations in [CP89] have also been very influential in this present work. In
[OR07] similar deterministic results are obtained using energy techniques.

What happens in the Cahn-Hilliard equation in one space-dimension (with
Neumann boundary conditions) is related, but not completely identical and
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more complicated, as there is ”mass conservation”, i.e. the integral of the so-
lution of the interval stays constant: While we do also see exponentially slow
motion for well separated interfaces, the system of ordinary differential equation
for the interface positions is (up to small errors) essentially the same, except
that the crucial terms gets divided by the distance to the next interfaces - this
is barely noticeable for well-separated interfaces, but leads to a notably differ-
ent behaviour at short distances. For a detailed reference on the Cahn-Hilliard
equation, see, e.g., [BX94] and [BX95].

1.2 Stochastic equation

We formulate the Stochastic Allen-Cahn equation for x ∈ (0, 1) , t > 0 as

ut (x, t) = ε2uxx (x, t) + f (u (x, t)) + εγẆ (1.1)

with periodic boundary conditions

u (x, t) = u (x + 1, t) for t ≥ 0.

Ẇ is space-time white noise defined as the derivative of a cylindrical Wiener
process W . We have γ > 2.

f ∈ C2 (R) is a function such that
(a) f (±1) = f (0) = 0 are the only zeros
(b) f (x) = −f (−x)
(c) ∃c1, c2, p > 0 s.t. |f(x)| ≤ c1 (1 + |x|p) and f ′ (x) ≤ c2 ∀x ∈ R
(d) f ′ (1) = f ′ (−1) < 0
(e) f ′ (x) ≤ f ′ (0) ∀x ∈ R

Condition (e) is not needed in principle, but in place to make the sketch
of the argument of phase separation in chapter 2 less involved. Condition (b),
while not necessary for fixed finite ε, is needed to take the sharp interface limit
(otherwise the deterministic part of the drift does not converge to 0); this is
indeed the typical definition of the reaction term in the (stochastic) Allen-Cahn
equation found in the literature and identical to the negative derivative of a
symmetric double-well potential.

Later on we will rescale time to t′ = S−1
∞ ε2γ+1t (for S∞ as defined before)

to take the limit.
The associated potential is −F (x), s.t. dF (x)

dx = −f (x) and F (−1) =
F (1) = 0.

A typical example is f (u) = u − u3:
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Remark:
The reason that we require γ > 2 is that in order to take the sharp inter-

face limit in chapter 3, we need the drift of the stochastic differential equation
converging to 0. Given that we only have control over the L2-norm and not the
L∞-norm of v (the quasi-orthogonal distance to the slow manifold - see next
section), ‖v‖ may not be greater or equal than ε3/2. A qualitative way to think
of this is that in most of chapter 3, ‖v‖ is roughly the same size as the L2-norm
of the linearisation of (1.1) starting from a profile constant at 0 on timescales
polynomial in ε−1. This however is exactly the case when γ > 2.

The results should also hold in the more general case γ > 3/2 since the drift
converges to 0 if ‖v‖∞ is not greater or equal than ε3/2, proving the results in
such generality however is beyond the scope of this work, as it would require
control over the L∞-norm of v throughout the motion studied in chapter 3.
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1.3 The approximate slow manifold

We now introduce the natural coordinate system for studying this problem. We
follow the approach of [CP89] quite closely, which at its core is about joining
invariant solutions together to form quasi-invariant solutions, which (together
with the approximately orthogonal distance) we will use as the coordinate sys-
tem; given a sufficiently small distance to the manifold of these quasi-invariant
solutions we can indeed map onto the coordinate system smoothly. This is
very elegant in our case, since despite our equation being perturbed by infinite-
dimensional noise, we have a smooth coordinate system.

We consider a > 0 such that f ′ (u) < 0 ∀u s.t. |u ± 1| < a. Then, given
an ε > 0, for l sufficiently large a unique solution φ = φ (x, l,±1) exists for the
following stationary Dirichlet problem

ε2φxx − f (φ) = 0 (1.2)

φ = 0 at x = ±l/2,

which satisfies:

(a) φ (x, l, +1) > 0 for |x| < l/2 and |φ(0) − 1| < a

(b) φ (x, l,−1) < 0 for |x| < l/2 and |φ(0) + 1| < a

A proof can be found e.g. in [CP89]. Schematically, these solutions have the
following shape on the relevant interval:

However, φ is a periodic function on the real line with period 2l, we have
φ (x) = −φ (x + l).

Consider the slowly evolving solutions to the PDE (no noise) case with N
well separated layers and define the set of admissible positions h of interfaces
as Ωl.

Denote by S a circle of circumference 1 and with h1 the first interface of an
up-front (change from −1 to +1) in the anti-clockwise direction from 0. Then

h ∈ Ωl := SN and l > hj − hj−1 (1.3)



1. Introduction and overview of results 12

for 1 ≤ j ≤ N + 1.
While the vector h includes the coordinates of h1, ..., hN we additionally

define the recursion h1+N = h1+1 ∀N ∈ Z so that the profile is indeed periodic.
Any statements made from now on involving h are ommitting mod 1 in the

coordinates; this is to make the statements easier to read.
These interfaces evolve in time and are expected to have a width of order ε.

Therefore the distance between interfaces should be bounded below by ρε for
some ρ > ρ∗∗ > ρ∗ where ρ∗ = supl

{
ρ : φ (ρε − 1/2, l, +1) = 3

4

}
(cf. [Che04]

Theorem 7.1 for the analogous on the real line). The constant ρ∗∗ must be large
enough for Claim 3.7 to hold true.

Denote the midpoints between the interfaces by mj := hj−1+hj

2 for j =
1, ..., N + 1.

Furthermore, we define the function uh on each interval Ij := [mj ,mj+1] as

uh (x) =

[

1 − χ

(
x − hj

ε

)]

∙ φ
(
x − mj , hj − hj−1, (−1)j

)

+χ

(
x − hj

ε

)

∙ φ
(
x − mj+1, hj+1 − hj , (−1)j+1

)

on Ij := [mj ,mj+1 ],
where χ : R→ [0, 1] is a C∞ cut-off function s.t. χ = 1 on [1,∞) and χ = 0

on (−∞,−1] ; we denote the first up-front in clockwise direction from ”twelve
o’clock” as h1.

Due to the appropriate use of indicator functions in the expression uh is
smooth, which would not be the case if one was to position invariant solutions
of different interval lengths next to each other.

This function uh (x) schematically has the following shape:
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Definition 1.1. The approximate slow manifold of the solution to the stochastic
Allen-Cahn equation is defined as

Mε :=
{
uh : h ∈ Ωρ∗∗ε

}
.

We use the following coordinate system around M : u → (h, v) , where we write
u as the sum

u (∙) := uh (∙) + v (∙) (1.4)

with
〈
v, τh

j

〉
= 0 for j = 1, ..., N, where we define τh

j as

τh
j := −γj (x) uh

x (x) ,

with
γj (x) = χ ((x − mj − ε) /ε) [1 − χ ((x − mj+1 + ε) /ε)] .

We furthermore use the notation

uh
j (x) :=

∂uh

∂hj
, uh

jk =
∂2uh

∂hj∂hk
, uh

jkl =
∂3uh

∂hj∂hk∂hl
.

The use of τh
j in the definition in the same spirit as in [CP89], and in par-

ticular, had we used uh
j (which is approximately the same), we had to prove

the existence of a mapping ourselves rather than use the theorem of [CP89],
and this proof would also have been more involved. This is not an orthogonal
projection onto the manifold, but a ”quasi-orthogonal” one, i.e. up to small
error terms the two projections are the same.

If the L2-norm between u and uh is bounded above by cε for some small
ε > 0, there exists a smooth mapping from the set of such u to the approximate
slow manifold.

We call this mapping
H : Γ′

ε → Ωρε.

Γ′
ε is defined to be

{
u : we can denote u = uh + v with h ∈ Ωρ∗∗ε,

‖v‖ ≤ Cmapε
1/2,

〈
v, τh

j

〉
= 0 ∀j

}

The existence of this mapping is proved in Claim 7.7.
Since uh(x) is pieced together of time-invariant solutions of the PDE prob-

lem, one can view this as a decomposition into a part uh(x), which is quasi-
invariant under the deterministic flow, and a small approximately orthogonal
component v.

Remark: The name “slow manifold” is used in analogy to the PDE case, in
which the solution converges to an exponentially small neighbourhood of exactly
this slow manifold, after which an exponentially slow motion occurs until two
interfaces are sufficiently close to each other to annihilate.
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Definition 1.2. W is a cylindric Wiener process in the underlying Hilbert space
H = L2 (0, 1) (cf. [DPZ92]),the covariance operator is the identity operator. For
an orthonormal basis of H denoted {ej (∙)}∞j=1 and a sequence of independent
standard Brownian motions {βj (t)}∞j=1we can therefore denote

W (t) =
∞∑

k=1

βk (t) ek.

For simplicity of presentation we also denote dV = εγdW.
Notation . From now on, ‖∙‖ refers to the L2 inner product in space.
Now we define the slow channel and extended slow channel; a solution will

need to be in the extended slow channel so that we can denote its interfaces as a
semimartingale and in the slow channel so that we can take the sharp interface
limit.

Definition 1.3. Denote

Γc,ε :=
{

uh + v : h ∈ Ωc, ‖v‖ ≤ ε3/2+δ
}

.

for some fixed δ > 0 s.t. γ − 2 > δ > 0.
We define ξε = (2γ+β)ε|log ε|√

−f ′(1)
for some small 1 > β > 0.

The slow channel is defined as Γξε,ε.

Definition 1.4. The extended slow channel is defined as

Γ′
ε := { u : we can denote u = uh + v with h ∈ Ωρ∗∗ε, ‖v‖ ≤ Cmapε

1/2,
〈
v, τh

j

〉
= 0 ∀j } .

1.4 Literature review

The first works of the stochastic equation can be found in the Physics commu-
nity, i.e. [KO82], the results are not completely rigorous however. The first
rigorous results can be found in [Fun95] and [BB98], Brassesco subsequently
published further works with varying coauthors. These works concern the sharp
interface limit of a solution with one interface. Subsequent works, i.e. [Web10],
[OWW13] have considered the case of several interfaces (the latter on expo-
nentially large intervals), however only the invariant measure. The invariant
measure of the Allen-Cahn equation is in fact a Gibbs measure with respect
to a Brownian motion of the appropriate boundary conditions, which is a nice
further perspective from which to view the stochastic Allen-Cahn equation

One key idea is presented in [ABK12] to obtain the motion of several inter-
faces in the Cahn-Hilliard equation with noise of high spatial regularity, upon
which chapter 3 in this work builds. An interesting recent preprint [Bar12] stud-
ies the transition from one constant profile ±1 to ∓1 on exponential timescales,
which can be viewed as a first step towards rigorously understanding the nucle-
ation of interface pairs on exponential timescales.



1. Introduction and overview of results 15

Besides the previously mentioned phase separation (see also [Bra91]), there
are other physical interpretations/applications to this equation, i.e. the be-
haviour of an elastic string in a viscous stochastic environment submitted to a
potential, see [Fun83] - note that in this interpretation our space variable be-
comes a parameter of the string. There are also interpretations in quantum field
theory, see for example [FJL82], [COP86]. Another interpretation would be that
for certain initial conditions a suitable random function on the one-dimensional
Glauber spin flip process converges to the solution of the stochastic Allen-Cahn
equation, for a reference see [GLP98]. For existence and uniqueness there are a
number of possible references, for example [Zab89], [DPZ92], [DPZ96] or [GP93],
we will also present a simplified sketch of argument in 7.2.

1.5 Choice and motivation of noise

The most classical choice of noise is, taking applications in mind, typically white
noise, for what reason this was chosen for the main result of this work. It is
also intuitively easier to understand, as it can be viewed as the limit of a many-
particle system with independent interactions.

However, if one was to consider problems in statistical mechanics with ex-
ternal fields, then the noise may have strong correlations to the extent that the
covariance operator is trace class. For that reason chapter 6 considers the case
of smooth noise. Interestingly, the time-scale on which we may take the sharp
interface limit is different to the one for space-time white noise.

While there are examples in the literature where equations of this type were
studied with more exotic forms of noise (e.g. Levy noise, fractional Brownian
motion, or even fractional Brownian motion with jumps), not much is known
of how this relates to applications. Thus, nothing in this direction was pursued
further in this work.

The reason of studying the noise-perturbed equation in the first place is mo-
tivated by applications, some references are given in the previous section. In
particular, in the classical example of phase separation, computations of den-
drites showed that models with thermal noise give much better approximation
to the real phenomenon than determinisic computations, cf. [NDG05].

1.6 Overview of results

If our solution initially satisfies the condition u0 (x) ∈ Xh,0
ε (cf. chapter 2 for the

definition - essentially we are in an ε-neighbourhood of a differentiable function
independent of ε), the solution u (x, t) to the Stochastic Allen-Cahn Equation is
in separated phases (i.e. except for O (ε)-neighbourhoods of the interfaces the
modulus is bounded below by 1/2) after an O (|log ε|) time, and after further
O (|log ε|) time enters Γξε,ε, in which it follows the following semimartingale
representation (the error bounds being in the L∞ norm) until two interfaces are
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ξε near each other:

dhk = o
(
ε2γ+1

)
dt + εγ

〈
ε

S∞
uh

k + o
(
ε1/2

)
, dW

〉

.

The bound on the drift requires the fact that
∥
∥v
∥
∥≤ o

(
ε3/2

)
. This is the reason

why the results are only shown for γ > 2.
We have S∞ =

∫ 1

−1

√
−2F (u)du, which for f (u) = u − u3 is S∞ = 2

√
2

3 .
The order terms are in the L∞-norm and in the sense that with a probability
converging to 1 as ε → 0 they hold true.

These dynamics are with a high probability stable until two interfaces are
ξε near each other, which w.h.p. takes a time of order O

(
ε−2γ−1

)
; then w.h.p.

they annihilate each other in O
(
ε−2γ+1−κ

)
time (for some small κ > 0), after

which we are back in the regime of the semimartingale.
After a timechange to the fast timescale t′ = S−1

∞ ε2γ+1t we do obtain annihi-
lating Brownian motions in the sharp interface limit ε → 0. The intuition of this

result is that the only thing not converging to 0 is
∫ 〈 √

ε√
S∞

uh
k , dW

〉
, which in

the limit can be thought of as the square root of a Dirac Delta function centred
at hk integrated up against space-time white noise.

For a more detailed exposition of the results, the reader shall refer to chapter
2 for the process of entering Γξε,ε, chapter 3 for the motion in the slow channel,
chapter 4 for the annihilation of interfaces and chapter 5 for the sharp interface
limit.

In chapter 6 the analogous results for noise that is smooth in space may be
found.



2. ATTRACTIVITY OF THE MANIFOLD

As outlined in the previous chapter, the solution of the stochastic Allen-Cahn
equation needs to be sufficiently close to the slow manifold in order to be pro-
jected orthogonally onto it, thus allowing the problem to be solved in the new
coordinate system.

In this chapter, we obtain the necessary results to show that if at t = 0, u =
u0 (∙) is inside an ε-neighbourhood of a periodic function in C1 (0, 1) indepen-
dent of ε with finitely many x ∈ (0, 1) s.t. u0 (x) = 0, u will be in the slow
channel Γξε,ε after O (|log ε|) time with a probability converging to 1 as ε → 0.
The idea behind the sketch of arguments is a simple perturbation argument:
On timescales of order 1 we have very good control over the L∞-norms of the
stochastic Allen-Cahn equation, linearised at its stable points. Subtracting this
linearisation from the actual stochastic Allen-Cahn equation yields the deter-
ministic Allen-Cahn equation perturbed by the linearisation of the stochastic
Allen-Cahn equation. We can then iteratively apply the deterministic results
(which we know on the real line from [Che04], while the necessary results for
us are only slightly different), to reach the point where for a fixed ε we have
achieved the required distance in L∞-norm and then apply the deterministic
result on the short last interval to obtain a time for ε arbitrarily small, due to
the exponential rate of convergence, this time will be of logarithmic order in ε.

Denote

Ch
0,C1 = { u | u ∈ C1

(
S1
)
, u′ (0) = u′ (1) and u having finitely many zeroes,

located at h; we have |u(x)| + |u′(x)| > 0 ∀x },

C0,ε =

{

u|u is a continuous function s.t.
‖u‖∞

ε
→ 0 and u (0) = u (1)

}

.

We thus construct our set of initial conditions

Xh,0
ε =

{
u0,C1 + u0,ε|u0,C1 ∈ Ch

0,C1 and u0,ε ∈ C0,ε

}

and our set of phase-separated solutions

Xh,ρ
ε =

{
φ ∈ C

((
S1
)
→ [−2, 2]

)
| |φ| ≥ 1/2 on (0, 1) \ ∪i (hi − ρε, hi + ρε)

}

for ρ > 0.
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We now state our main result, the sketch of argument being split up into
Claims 2.2 and 2.3.

Denote δh = min {|hj − hj+1| for j = 0, ...N}.

Claim 2.1. fix h0 ∈ [0, 1]N and let u (∙, t) for t > 0 solve (1.1).
Then there exists a suitable C ≥ 1

|f ′(0)| depending only on f (∙) and h0 and
a function Cp depending only on f (∙), s.t. for t1 = C |log ε| we have

sup
u0∈X

h0,0
ε

P [u (∙, t1) /∈ Γξε,ε] ≤ Cpε
p,

h′ = H (u (∙, t1)) associated to u (∙, t1) ∈ Γξε,ε fulfils

P

[

max
0≤i≤N

∣
∣hi

0 − h′i
∣
∣ > kε

√
|log ε|

]

≤ Cpε
p

for some k > 0.

Sketch of Argument. This is a consequence of Claims 2.3 and 2.4 since our initial
profile satisfies exactly the conditions for applying Claim 2.3, which in turn leads
to a solution in Xh,ρ

ε for some h, ρ, which has w.h.p. a modulus bounded by 2,
However it is easy to see that Claim 2.3 in fact also holds for all larger

constants 1 > c > 0 instead of 1
2 , thus upon applying Claim 2.3 we have a

profile u
(
∙, |log ε|

|f ′(0)|

)
s.t.

∣
∣
∣u
(
∙, |log ε|

|f ′(0)|

)∣∣
∣→ε→0 1 outside a finite number of neigh-

bourhoods of size ρε, in which the profile is bounded by 2 with high prob-

ability. Hence
∥
∥
∥u
(
∙, |log ε|

|f ′(0)|

)∥∥
∥→ε→0 0, and in particular there exists uh′

s.t.
∥
∥
∥u
(
∙, |log ε|

|f ′(0)|

)
− uh′

∥
∥
∥→ε→0 0.

Thus we may apply Claim 2.4 and obtain the result.

We consider as a linearisation of the stochastic Allen-Cahn equation at its
stable points the stochastic heat equation

∂z

∂t
= ε2

∂2z

∂x2
+ f ′ (1) z + εγẆ (2.1)

where x ∈ (0, 1) with periodic boundary conditions and the same noise as
(1.1).

Denote ū = u − z so that

∂ū

∂t
= ε2

∂2ū

∂x2
+ f (ū + z) − f ′ (1) z (2.2)

for x ∈ (0, 1).
Let at t = 0 the initial profile of z be z0 (∙) = 0.
We note that with a probability converging to 1 as ε → 0 we have that

‖u (∙, t)‖∞ is of order O(1) on polynomial timescales (cf. eg. [Fen06]), and
‖z (∙, t)‖∞ is of smaller order (see Claim 2.2) in ε, for what reason ‖ū(∙, t)‖∞ is
of order O (1) on polynomial timescales.
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Claim 2.2. Let z (∙, 0) be constantly equal to 0 and z (∙, t) solve (2.1) for t > 0.
For all ν, q, r > 0 there exist Cr,ν , Dq,r,ν > 0 independent of ε s.t.

P



 sup
t∈[0,rε−(2γ+1)]

‖z(∙, t)‖∞ > Cr,νεγ−1/2−ν



 ≤ Dq,r,νεq ∀q > 0. (2.3)

Remark: This obviously also holds in L2 norm.

Sketch of Argument. The solution is the following stochastic convolution:

z (x, t) = εγ

∫ t

0

e(t−s)(ε2∂xx+f ′(1))dW (x, s) (2.4)

This is clearly a Gaussian process, since our initial profile is constantly equal

to 0. Firstly we show supt≤rε−2γ−1 E
[
‖z‖2

]
≤ Cε2γ−1 by taking the Fourier

transform of (2.1):

∂ẑ

∂t
=
(
f ′ (1) − k2ε2

)
ẑ + εγ ˙̂

W (k, t)

However, similarly to the classical Ornstein-Uhlenbeck process, this equation
has the explicit solution

ẑ (k, t) = εγ

∫ t

0

e(k2ε2−f ′(1))(s−t)d ˆ̇W (k, t) ,

which is normally distributed with mean f ′(1)
k2ε2 (1 − exp(−k2ε2t)) and variance

ε2γ−2

2k2ε2

(
1 − exp(−2k2ε2t)

)
.

Therefore we have by the properties of Gaussian processes that

sup
t≤rε−2γ−1

E
[
‖z (x, t)‖2

]
≤ sup

t≤rε−2γ−1

∑

k 6=0

E
[
(ẑ (h, t))2

]
≤ C ′ε2γ−1

for some C ′ > 0 independent of ε.
We now show that E

[
supt≤rε−2γ−1 ‖z‖∞

]
≤ Cεγ−1/2:

Firstly, we prove the result on time 1. To do so, we note that by [Adl90]
Corollary 4.15 we have

E

[

sup
0≤t≤1

‖z‖∞

]

≤ K

∫ ∞

0

{log Nε(r)}
1/2dr,

where N(r) is the minimal number of balls of radius r needed to cover {(x, t) :
x ∈ (0, 1), 0 ≤ t ≤ 1} with the following metric:

d((x, t), (y, s)) =

√

E
[
(z(x, t) − z(y, s))2

]
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It can be shown (cf. eg. [Wal81] Prop. 4.2) that

E
[
(z(x, t) − z(y, t))2

]
≤ c1ε

2γ−1 |x − y| ∀t ≥ 0; x, y ∈ (0, 1)

and

E
[
(z(x, s) − z(x, t))2

]
≤ c2ε

2γ−1 |t − s|1/2 ∀x, y ∈ (0, 1), |s|, |t| ≤ T > 0.

Using these bounds we can now easily see that there exists k ≥ 0 s.t.

Nε(r) ≤ max
{

1, kε3γ−3/2r−3
}

.

Thus (combining this with the previous expression) we know that there exists
C > 0 s.t.

E

[

sup
0≤t≤1

‖z‖∞

]

≤ Cεγ−1/2.

We note that if z(∙, 0) is Gaussian with

‖z(∙, 0)‖ε−γ+1/2+ν →ε→0 0 ∀ν > 0,

the result also holds, since the solution may be expressed as

z(x, t) = et(ε2∂xx+f ′(1))z0 + εγ

∫ t

0

e(t−s)(ε2∂xx+f ′(1))dW (x, s).

This is because et(ε2∂xx+f ′(1)) is a strongly continuous semigroup, so the
expression is the sum of two terms which we can bound, which means that we
have the bound on all time intervals of the form [i, i + 1] where i > 0. The
bound on ‖z(∙, i)‖∞ follows inductively from the bound on sup0≤t≤1 ‖z(∙, t)‖∞
obtained above. To see this we note that since we have the bound at time 1, we
in particular also have it at time 1/2. This then means that over the interval
[0, 2] we obtain the bound exp(−f(1)/2)Cεγ−1/2 + Cεγ−1/2; the rest follows
iteratively.

Due to Gaussianity we then conclude that

E

[

sup
[i,i+1]

‖z‖p
∞

]

≤ Cpε
(γ−1/2)p.

Now we note since for finite p > 0 we have ‖ ∙ ‖l∞ ≤ ‖ ∙ ‖lp the following:

E

[

sup
t≤rε−2γ−1

‖z‖∞

]

≤ E












brε−2γ−1c∑

i=0

sup
i≤t≤i+1

‖z‖p
∞






1/p
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≤





E






brε−2γ−1c∑

i=0

sup
i≤t≤i+1

‖z‖p
∞











1/p

=






brε−2γ−1c∑

i=0

E

[

sup
i≤t≤i+1

‖z‖p
∞

]





1/p

≤






brε−2γ−1c∑

i=0

Cpε
(γ−1/2)p






1/p

=
(
rε−2γ−1

)1/p
C ′

pε
γ−1/2

= C ′
pr

1/pεγ−1/2− 2γ−1
p →p→∞ C ′

pε
γ−1/2.

Using Borell’s inequality (cf. eg. [Adl90]) we conclude that

P



 sup
t∈[0,rε−(2γ+1)]

‖z(∙, t)‖ > Cr,νεγ−1/2−ν



 ≤ Dq,r,νεqν ∀ν, q > 0. (2.5)

We now have all the ingredients for a perturbative sketch of argument of the
following claim, where we use a deterministic result that may be found in the
appendix.

Claim 2.3. Phase separation
Fix h0 ∈ [0, 1]N and let u (∙, t) for t > 0 solve (1.1).
Then there exist h ∈ [0, 1]N and ρ > 0, both depending only on u0 (∙) and

f (∙) and a function Cq only depending on u0 (∙) and f (∙), s.t.

sup
u0∈X

h0,0
ε

P

[

u

(
|log ε|
|f ′(0)|

)

/∈ Xh,ρ
ε

]

≤ Cqε
q ∀q > 0.

We have
P
[
|h − h0| > k′ε

√
|log ε|

]
≤ Cqε

q ∀q > 0

for some k′ > 0.

Sketch of Argument. As in (2.2) we have for ū = u − z

∂ū

∂t
= ε2

∂2ū

∂x2
+ f (ū + z) − f ′ (1) z

= ε2
∂2ū

∂x2
+ f (ū) + C (x, t) z

with C (x, t) being bounded by C ′ with a probability converging to 1 as ε → 0.
Denoting by w (∙, t) the solution to the deterministic Allen-Cahn equation

with the same initial condition u0 (∙), we get

∂ (ū − w)
∂t

= ε2
∂2 (ū − w)

∂x2
+ f (ū) − f (w) + C (x, t) z
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so that using subdifferentials leads to an expression for the time-derivative of
the L∞-norm:

∂ ‖ū − w‖∞
∂t

≤ sup
l∈∂‖ū−w‖

〈

l, ε2
∂2 (ū − w)

∂x2
+ f (ū) − f (w) + C (x, t) z

〉

≤ sup
l∈∂‖ū−w‖

〈l, f (w + (ū − w)) − f (w) + C ′z〉

≤ |f ′(0)| ‖ū − w‖∞ + C ′ ‖z‖∞ .

The convex analysis technique employed here may be found, for example, in
[MIT03].

This expression allows the use of Gronwall’s inequality so that

‖(ū − w) (t)‖∞ ≤ C sup
0≤s≤t

{‖z(s)‖∞} exp (|f ′(0)| t) ,

thus, at t = |log ε|
|f ′(0)| we get the estimate

‖(ū − w) (t)‖∞ ≤ C sup
0≤s≤t

‖z(s)‖∞ ε−1.

Then, using Claim 7.1 and Claim 2.2 (which tells us that sup0≤s≤t ‖z‖∞ <

O
(
εγ−1/2

)
w.h.p.), the result follows for C1 initial conditions with finitely

many zeroes. This is because γ > 2, and thus with a high probability we
have

∥
∥ū − w‖∞ ≤ Cε1/2 .

To now finally prove the result in an ε-Neighbourhood of a C1-function, we
consider the stochastic Allen-Cahn equation with two different initial conditions:
u0,C1 ∈ C1 (0, 1) and v0 = u0,C1 + u0,ε, where u0,ε ∈ C (0, 1) with |u0,ε| ≤ o(ε):

As before, we denote their SPDEs at time t by

∂tu = ε2∂xxu + f (u) + εγẆ

and
∂tv = ε2∂xxv + f (v) + εγẆ .

We then immediately have

∂t (u − v) = ε2∂xx (u − v) + f (v + (u − v)) − f (v) .

Due to the smoothing of the Laplacian in space, ‖u − v‖∞ is differentiable in
time.

By the definition of the subdifferential and the fact that u−v is (for positive
times) twice differentiable in space we know that at the x-value of its supremum
its second derivative is negative, thus implying the following:

∂t ‖u − v‖∞ = sup
l∈∂‖u−v‖∞

〈
l, ε2∂xx (u − v) + f (v + (u − v)) − f (v)

〉
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≤ sup
l∈∂‖u−v‖∞

〈l, f (v + (u − v)) − f (v)〉 ≤ |f ′(0)| ‖u − v‖∞

Using Gronwall’s inequality this gives

‖u − v‖∞ ≤ ‖u0,ε‖∞ e|f
′(0)|t.

Therefore we obtain for t = |log ε|
|f ′(0)| the following bound:

∥
∥
∥
∥(u − v)

(
|log ε|
|f ′(0)|

)∥∥
∥
∥
∞

≤ ‖u0,ε‖∞ ε−1

And hence (by the definition of C0,ε) we have
∥
∥
∥
∥(u − v)

(
|log ε|
|f ′(0)|

)∥∥
∥
∥
∞

→ε→0 0,

which proves the result for fixed u0. Taking the supremum over Xh0,0
ε completes

the sketch of argument.

Claim 2.4. Generation of metastable patterns

Let u0 (∙) ∈ Xh0,ρ
ε with ρ as in Claim 2.3 so that

∥
∥
∥u0 (∙) − uh′

(∙)
∥
∥
∥ →ε→0 0

for some uh′
(∙) being the orthogonal projection of u0 (∙) in the L2 norm.

Let t2 = C |log ε| for a suitable C (depending only on f (∙) and ρ), u (∙, t)
solves (1.1) for t > 0.

Then there exists a function Cq depending only on f (∙) and ρ such that

sup
u0∈X

h0,ρ
ε

P [u (∙, t2) /∈ Γξε,ε] ≤ Cqε
q ∀q > 0,

h′ = H (u (t2)) associated to u (t2) ∈ Γξε,ε fulfils

P

[

max
i∈N

∣
∣hi

0 − h′i
∣
∣ > kε |log ε|

]

≤ Cqε
q ∀q > 0

for some k > 0 depending.

Sketch of Argument. Our random PDE used for proving the result is the de-

terministic Allen-Cahn equation with an O
(
supt∈[0,ε−r ] ‖z‖∞

)
= O

(
εγ−1/2−ν

)

perturbation w.h.p. As in (2.2) we have for ū = u − z

∂ū

∂t
= ε2

∂2ū

∂x2
+ f (ū + z) − f ′ (1) z

= ε2
∂2ū

∂x2
+ f (ū) + C (x, t) z

for a function C (x, t) bounded by the constant C ′ with a probability converging
to 1 as ε → 0.
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Since ū − w (where w is the deterministic Allen-Cahn equation) has the
property

∂t (ū − w) = ε2∂xx (ū − w) + f (w + (ū − w)) − f (w) + C (x, t) z =

= ε2∂xx (ū − w) + C ′(x, t) (ū − w) + C (x, t) z

where C ′ (x, t) is bounded by a constant, we note that ‖ū − w‖∞ converges to 0
as ε → 0. Due to the smoothing property of the Laplacian in space, ‖ū − w‖∞
is differentiable as a function of time.

Clearly, by the definition of subdifferentials and the fact that a twice differ-
entiable function has a negative second derivative at its maximum we have

∂ ‖ū − w‖∞
∂t

≤ sup
l∈∂‖ū−w‖∞

〈
l, ε2∂xx (ū − w) + f (w + (ū − w)) − f (w) + C (x, t) z

〉

≤ |f ′(0)| ‖ū − w‖∞ + C ′ ‖z‖∞ ,

so that Gronwall’s inequality implies

‖(ū − w) (t)‖∞ ≤ C sup
0≤s≤t

‖z(s)‖∞ e|f
′(0)|t.

Since w.h.p. sup0≤s≤t ‖z‖ ≤ εγ−1/2−μ ∀μ > 0, this means that for a time

up to |log ε|δ̂
|f ′(0)| for 0 < δ̂ < γ − 2 the error between the orthogonal distance to the

slow manifold of the deterministic and stochastic equation is smaller than the
size of the orthogonal distance to the slow manifold in the slow channel, and
thus small enough to ”track” the behaviour of the stochastic equation using the
deterministic one. We may use Claim 7.4 due to the assumption made on the
initial profile.

Claim 7.4 implies directly that there is a deterministic time τ after which
we have

∥
∥w (τ, ∙) − wH(u(τ,∙)) (∙)

∥
∥ ≤ 1

2

∥
∥w0 (∙) − wH(u0(∙)) (∙)

∥
∥.

Thus (due to Claim 2.2) with a probability converging to 1 as ε → 0 after
this time τ , we have the same property for the random PDE and can iteratively
apply the result.

Denote the original distance in L2-norm by d. Until we have∥
∥u (T, ∙) − uH(u(T,∙))(T, ∙)

∥
∥ ≤ ε3/2+δ, the n-th step yields a distance d

2n in
the deterministic equation; we note that this term converges to 0 as n → ∞,
and thus there is a finite time T , after which

P
[∥∥ū (T, ∙) − ūH(ū(T,∙)) (T, ∙)

∥
∥ < d

2n < ε3/2+δ
]
≤ Cqε

q for a fixed ε. This will
be after C |log ε| iterations, for some C > 0.

In the last step, the same exponential rate of Claim 7.4 lets us go from a
distance of order 1 to a distance of polynomial order in ε in a time of order |log ε|.

To avoid blowup, we iterate the result on time-intervals smaller than |log ε|δ̂
|f ′(0)| for
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some 0 < δ̂ < γ−2. As explained earlier, up to this time the difference between
stochastic and deterministic equation is small enough, at the end of it we restart
the ”determinstic approximation” with the the solution of the stochastic Allen-
Cahn equation at that point. We continue this until the solution has entered
the slow channel.

Noting that by Claim 2.2, the difference between u and ū is with high proba-
bility of order εγ−1/2 on timescales of logarithmic order in ε with high probability
completes the sketch of argument that P [u (t2) /∈ Γξε,ε] ≤ Cqε

q ∀q > 0. Taking
the supremum over Xh0,ρ

ε yields the first inequality.
P [maxi∈N |hi − h′

i| > kε |log ε|] ≤ Cqε
q ∀q > 0 similarly follows from the

deterministic equation by applying the same iteration scheme.
Finally, by the existence of a mapping (see [Che04] Theorem 5.1 and [Che04]

Theorem 7.1) the result follows.



3. INTERFACE MOTION IN THE SLOW CHANNEL

In this chapter, we obtain, based on the ideas presented in [ABK12] - but
presented in a different context and extended, an explicit description of the
multi-kink behaviour of the Stochastic Allen-Cahn equation while the solution
is near the slow manifold. In the sharp interface limit on the fast timescale this
will be the only phenomenon whose duration does not converge to 0.

We recall the critical distance after which annihilation occurs (with a prob-
ability converging to 1 as ε → 0) as ξε = |log ε|(2γ+β)ε√

−f ′(1)
; as in last chapter z is the

solution of the linearisation of (1.1) with an initial profile constantly equal to 0.
We now state the main result, which is a consequence of the somewhat

lengthy cleim in Section 3.1:

Claim 3.1. Sharp interface limit in the slow channel
Let our initial profile u0(∙) at t = 0 be inside Γξε,ε. Denote its interface

configuration at t = 0 by h0 = H (u0 (∙)). For t > 0 u (∙, t) solves (1.1). We
assume that δh0 ≥ ξε with all other distances between neighbouring interfaces
bounded below by c > 0.

Denote the interfaces on the fast timescale as ĥ (t) = h
(
S∞ε−1−2γt

)
=

H
(
u
(
S∞ε−1−2γt, ∙

))
and let C > 0.

Then ĥ (t) stopped at

τ̂∗ = C ∧ inf { t > 0 : δĥ(t) = ξε or ‖v(t)‖ > ε3/2+δ

or ‖v(t)‖∞ ≥ 1 or ‖z(t)‖ > ε3/2+δ } ,

converge in law to standard Brownian motions on S starting at h0 and stopped
at C ∧ μ, where μ is the first hitting time of two neighbouring interfaces.

Sketch of Argument. All initial conditions fulfil the second part of Claim 3.2, of
which this result is the special case of the limit ε → 0.

3.1 The Semimartingale representation

In essence, the following Claim gives us the semimartingale notation of our
interfaces inside the extended slow channel, and in particular the convergence
to Brownian motion if we are inside the slow channel. We recall that in order
to uniquely map u → uh + v we require ‖v‖ ≤ Cmapε

1/2.
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Claim 3.2. Interface motion inside the slow channel
Let Tε = CS∞ε−2γ−1, for a large C > 0 independent of ε. Let furthermore

our initial profile u0 (∙) at t = 0 be inside Γ′
ε. Denote its interfaces at t = 0 by

h0 = H (u0 (∙)). For t > 0 u (∙, t) solves (1.1). We assume that δh0 ≥ ρ∗∗ε with
all other distances of neighbouring interfaces bounded below by c > 0.

Then up to the first exit time

τ∗∗ = Tε ∧ inf { t > 0 : δh(t) = ερ∗∗

or ‖v‖ > Cmapε
1/2 or ‖v|∞ ≥ 1 or ‖z‖ > ε3/2+δ }

the interface position of u, defined as h = H (u (∙, t ∧ τ∗∗)) , is a semimartin-
gale on [0, τ∗∗] given by

dhk = bk (h, v) dt + εγ 〈σk (h, v) , dW 〉

where

σr (h, v) =
∑

i

A−1
ri (h, v) τh

i

and

br (h, v) =
∑

i

A−1
ri (v, h)

〈
L
(
uh + v

)
, τh

i

〉

+ε2γ
∑

i,l,k

A−1
ri (v, h)

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

〈σk (h, v) , σl (h, v)〉

+ε2γ
∑

i

A−1
ri (h, v)

∑

j

〈
τh
ij , σj (h, v)

〉
.

We have L(u) := ε2uxx + f (u) and A−1
ri (h, v) being the inverse matrix of

Ari (h, v) =
〈
uh

r , τh
i

〉
−
〈
v, τh

ri

〉
.

We have the following probability:

P
[
‖v (τ∗∗)‖ > Cmapε

1/2 or ‖v (τ∗∗)‖∞ ≥ 1
]
≤ Cqε

q ∀q > 0,

where the function Cq depends only on f (∙).
Now define

τ∗ = Tε∧inf
{

t > 0 : δh(t) = ξε or ‖v‖ > ε3/2+δ or ‖v‖∞ ≥ 1 or ‖z‖ > ε3/2+δ
}

.

If at t = 0 our u0 (∙) is in Γξε,ε we can write down the behaviour of its
interfaces h (t ∧ τ∗) up to τ∗ by the same semimartingale notation as above.

Before the stopping time the following determinstic bound holds:

|br(h, v)| ≤ kε exp

{
−
√

f ′ (1)δh

ε

}

+ o
(
ε2γ+1

)
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for some k > 0 independent of ε.
After the time-change ĥk (t) = hk

(
S∞ε−1−2γt

)
, the stopping time becomes

τ̂∗ = S−1
∞ ε1+2γτ∗ and the equation becomes

dĥk =
S∞bk

(
ĥ, v
)

ε2γ+1
dt′ +

〈√
S∞√
ε

σk

(
ĥ, v
)

, dW

〉

where the deterministic bound

sup
t∈[0,τ∗]

∥
∥
∥
∥

√
S∞√
ε

σk

(
ĥ, v
)
−

√
ε

√
S∞

uh
k

∥
∥
∥
∥
∞

≤ Fε1/2

for some F > 0 independent of ε holds up to τ∗, as we are inside the slow
channel.

In the sharp interface limit as ε → 0, the law of
(
ĥ1, ...ĥN

)
stopped at τ̂∗

converges weakly to that of independent Brownian motions (M1, ...,MN ) stopped
at the minimum of their first hitting time and C.

Sketch of Argument. The derivation of the semimartingale expression, based on
the assumption that the interfaces are a semimartingale, is in the section after
this sketch of argument. The sketch of argument of the assumption that the
interfaces have a semimartingale notation is given after the sketch of argument
of Claim 3.7.

Starting in Γ′
ε the asymptotically small probability of leaving the slow chan-

nel other than by reaching the critical distance (or time S∞Cε−2γ−1) follows
from Claim 4.4. This completes the sketch of argument of the first part of the
Claim where we are in Γ′

ε.
Whenever we are from now on in this sketch of argument applying Claim

3.7, we use the special case of τ∗ = ψξε instead of the general ψd.
From now on, we consider the regime starting in Γξε,ε, which allows us to

use the Claims from section 3.2. The asymptotic expansion of the ”diffusion
coefficient” σ (h, v) follows from Claim 3.8 combined with Claim 3.7; for the
drift b (h, v) the bound follows from Claim 3.9 combined with Claim 3.7. The
stability of this system is a consequence of Claim 3.7, i.e. the probability of
‖v‖ > ε3/2+δ or ‖v‖∞ ≥ 1 or ‖z‖ > ε3/2+δ is asymptotically small.

We now show that after a time-rescaling onto t′ = S−1
∞ ε2γ+1t the hk weakly

converge in law to a Brownian motion starting at h0 stopped at τ̂∗ = S−1
∞ ε2γ+1τ∗.

The intuition of it is that
(√

εuh
r

)2
is close to a Dirac delta in the limit ε → 0,

so that since our noise is white in space, integrating it against the square root
of a Dirac delta function leads to a Brownian motion.

Denote by ĥk (t) = hk

(
S∞ε−2γ−1t

)
and τ̂∗ = S−1

∞ ε2γ+1τ∗ our interfaces and
the stopping time on the fast timescale.

We firstly show that ĥk stopped at τ∗ is tight on C ([0, τ̂∗] , S) :
Let t, s > 0 and p > 0 be even. Then

E
[∣∣
∣ĥk (t ∧ τ̂∗) − ĥk (s ∧ τ̂∗)

∣
∣
∣
p]
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= E








∫ t∧τ̂∗

s∧τ̂∗

S∞bk

(
ĥ, v
)

ε2γ+1
dr +

∫ t∧τ̂∗

s∧τ̂∗

〈√
S∞√
ε

σk

(
ĥ, v
)

, dW (x, r)

〉




p



≤ CpE








∫ t∧τ̂∗

s∧τ̂∗

S∞bk

(
ĥ, v
)

ε2γ+1
dr)p + (

∫ t∧τ̂∗

s∧τ̂∗

〈√
S∞√
ε

σk

(
ĥ, v
)

, dW (x, r)

〉




p



≤ CpE







|t ∧ τ̂∗ − s ∧ τ̂∗| sup
r∈[s∧τ̂∗,t∧τ̂∗]

∣
∣
∣
∣
∣
∣

S∞bk

(
ĥ, v
)

ε2γ+1

∣
∣
∣
∣
∣
∣





p

+
∫ t∧τ̂∗

s∧τ̂∗

(
S∞

ε

〈
σk

(
ĥ, v
)

, σk

(
ĥ, v
)〉)p/2

dt

]

≤ CpE







|t ∧ τ̂∗ − s ∧ τ̂∗| sup
r∈[s∧τ̂∗,t∧τ̂∗]

∣
∣
∣
∣
∣
∣

S∞bk

(
ĥ, v
)

ε2γ+1

∣
∣
∣
∣
∣
∣





p

+
(
C ′

p |t ∧ τ̂∗ − s ∧ τ̂∗|
)p/2

]

(the bound on the stochastic integral follows using the Burkholder-Davis-Gundy
inequality)

≤ Dp |t ∧ C − s ∧ C|p/2
.

The last inequality follows because τ∗ ≤ C.

We used Claim 3.9 to bound

∣
∣
∣
∣
S∞bk(ĥ,v)

ε2γ+1

∣
∣
∣
∣ (since we are inside Γξε,ε) and the

fact that τ̂∗ ≤ C (by definition of τ∗) on the fast timescale to obtain the bound.
We can therefore apply the Kolmogorov continuity theorem to obtain tight-

ness and hence the existence of a convergent subsequence. Subsequently, we will
show that all convergent subsequences have the same limit, and thus, the limit
ε → 0 is unique.

The following stochastic process is clearly a martingale:

M ε
k (t) = ĥk (t ∧ τ̂∗) −

∫ t∧τ̂∗

0

S∞bk

(
ĥ, v
)

ε2γ+1
ds

However, as we are on the fast timescale, this means for times 0 ≤ t′ ≤ τ̂∗

that

∣
∣
∣ĥk (t ∧ τ̂∗) − M ε

k (t)
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∫ t

0

S∞bk

(
ĥ, v
)

ε2γ+1
ds

∣
∣
∣
∣
∣
∣
≤ τ̂∗ sup

s∈[0,τ∗]

∣
∣
∣
∣
∣
∣

S∞bk

(
ĥ, v
)

ε2γ+1

∣
∣
∣
∣
∣
∣

Thus using Claim 3.9 and Claim 3.7 we get for some C ′ > 0 that

P

[

sup
t′∈[0,τ∗]

∣
∣
∣ĥk (t′) − M ε

k (t′)
∣
∣
∣ > C ′

{
εβ + εδ

}
]

≤ Cqε
q ∀q > 0
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and hence ĥk has a subsequence that weakly converges to the same limit as
M ε

k(t) in the sharp interface limit, which is a martingale we shall call Mk.
The fact that it is a martingale follows (c.f. e.g. [EK09] Theorem 8.10 in

the chapter ”Generators and Markov Processes”) because for s > 0 we have

E

[
S∞

ε

〈
σk

(
ĥ ((t + s ∧ τ̂∗)) , v

)
, σk

(
ĥ ((t + s ∧ τ̂∗)) , v

)〉

−
S∞

ε

〈
σk

(
ĥ (t ∧ τ̂∗) , v

)
, σk

(
ĥ (t ∧ τ̂∗) , v

)〉]

= E

[
S∞

ε

∫ 1

0

[
ε

S∞
τhk(t+s∧τ̂∗) + π (t + s ∧ τ̂∗, ε)

]2
dx

−
S∞

ε

∫ 1

0

(
ε

S∞
τhk(t∧τ̂∗) + π (t ∧ τ̂∗, ε)

)2

dx

]

= E

[
S∞

ε

ε2

S2
∞

S∞

ε
+ o (π (t + s ∧ τ̂∗, ε)) −

S∞

ε

ε2

S2
∞

S∞

ε
+ o (π (t ∧ τ̂∗, ε))

]

≤ o (ε) →ε→0 0

(we used Claim 3.8; π has the property supt |π (t, ε)| ≤ o (ε) ,
which means that the inner product of the diffusion with itself converges to

a constant as ε → 0, which is required to apply the theorem from [EK09].
We now want to prove convergence to a stopped Brownian motion by show-

ing that the extension of the limiting process beyond its stopping time by a
Brownian motion is a Brownian motion; for this we use the Levy characterisa-
tion.

Denote by τ the weak limit of τ̂∗ as ε → 0. We will show in the end of
the sketch of argument that this limit exists. Now we consider the following
stochastic processes:

Zk (t) =

{
Mk (t) for t ≤ τ

Mk (τ) + Bk (t − τ) for t > τ

Hk (t) =

{
ĥk (t) for t ≤ τ

ĥk (τ) + Bk (t − τ) for t > τ

where Bk(t) are independent standard Brownian motions.
We observe that for j 6= k the quadratic covariation for times t < τ̂∗ is

(
dĥk, dĥj

)

=

(
S∞bk (h, v)

ε2γ+1
dt′ +

〈√
S∞√
ε

σk (h, v) , dW

〉

,
S∞bj (h, v)

ε2γ+1
dt′ +

〈√
S∞√
ε

σj (h, v) , dW

〉)
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=

(〈√
S∞√
ε

σk (h, v) , dW

〉

,

〈√
S∞√
ε

σj (h, v) , dW

〉)

= ε−1S∞ 〈σk (h, v) , σj (h, v)〉 dt′

Noting that using the time-rescaled version of Claim 3.8 and Claim 3.7 we
have

P

[

sup
t∈[0,τ∗]

∥
∥
∥
∥S

1/2
∞ ε−1/2σk (h, v) −

√
ε

√
S∞

τh
k

∥
∥
∥
∥
∞

≥ F
√

ε

]

≤ Cqε
q ∀q > 0

and that inside the slow channel by [CP89] Proposition 2.3 we have for k 6= j
that

ε

S∞

〈
τh
k , τh

j

〉
<

ε

S∞
Cε2γ−3/2,

it follows that ∀T > 0

P

[∣∣
∣
∣
∣

∫ T

0

(dHk, dHj)

∣
∣
∣
∣
∣
≥ F ′ε1/2

]

≤ Cqε
q

for some F ′ > 0. If on the other hand we have k = j and use Claim 3.3 and
Claim 3.7 we get ∀T > 0

P

[∣∣
∣
∣
∣

∫ T∧τ∗

0

(dHk, dHk) − T ∧ τ∗

∣
∣
∣
∣
∣
≥ ε1/2

]

= P

[∣∣
∣
∣
∣

∫ T∧τ∗

0

S∞ε−1 〈σk (h, v) , σk (h, v)〉 dt′

−T ∧ τ∗ − ((T − T ∧ τ∗) − (T − T ∧ τ∗)) ≥ ε1/2 ≤ Cqε
q.

We note using Levy’s characterisation of N -dimensional Brownian motion
that (Z1 (t) , ..., ZN (t)) is an N -dimensional Brownian motion.

This is implies that
(
ĥ1 (t) , ..., ĥN (t)

)
stopped at τ̂∗ weakly converges to an

N -dimensional Brownian motion stopped at τ , which is their first hitting time,
unless C is smaller.

We now prove that it is not a later hitting time, since if one has a minimum
distance g (ε) > ξε (greater than the stopping distance but still with the property
limε→0 g (ε) → 0) before the stopping time, we have the following:

Denote ψj (t) = g (ε)+
∫ t

0
ε−1/2

〈
σj+1

(
ĥ, v
)
− σj(ĥ, v), dW

〉
; this is approx-

imately the difference between the position of the j+1-th and the j-th interface,
started at g (ε) and without the drift.

We note that this is nothing else than a time-changed Brownian motion
starting at g (ε), i.e. if B (∙) is a standard Brownian motion, we can denote ψj

as g (ε) + B
(
ε−1

∫ t

0

[〈
σj+1

(
ĥ, v
)

, σj+1

(
ĥ, v
)〉

−2
〈
σj+1

(
ĥ, v
)

, σj

(
ĥ, v
)
〉 +

〈
σj

(
ĥ, v
)

, σj

(
ĥ, v
)
〉
]
ds
)
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For shorthand notation, we denote

Yε = ε−1
∫ t

0

[〈
σj+1

(
ĥ, v
)

, σj+1

(
ĥ, v
)〉

−2
〈
σj+1

(
ĥ, v
)

, σj

(
ĥ, v
)〉

+
〈
σj

(
ĥ, v
)

, σj

(
ĥ, v
)〉

ds.

We will show that with a probability converging to 1 as ε → 0, the minimum
of this quantity after time (g (ε))2−κ for some small κ > 0 is ξε, while the
probability of this quantity becoming O (1) large converges to 0 as ε → 0.

Since Brownian fluctuations scale like square roots of their time increments,
it is sufficient to show that with high probability ψj (t) will hit ξε after time
(g (ε))2−κ (plus a term accounting for the difference between this expression
and the actual difference between the interfaaces) for some small κ > 0, with
its maximum converging to 0 as ε → 0.

By [RY99] V§1 together with the fact that in the slow channel we have
0 < Yε ≤ K2ε (using Claim 3.8) and applying Doob’s martingale inequality we
have for some small κ > 0:

P




 inf

t∈
[
0,(g(ε))2−κ+

[
C sups∈[0,C]

∣
∣
∣
∣

S∞bk(ĥ,v)
ε2γ+1

∣
∣
∣
∣

]2−κ

∧τ̂∗

]ψj (t) ≤ ξε − C sup
s∈[0,C]

∣
∣
∣
∣
∣
∣

S∞bk

(
ĥ, v
)

ε2γ+1

∣
∣
∣
∣
∣
∣






≥ 1 − Cqε
q ∀q > 0.

However we note that by Claim 3.7 if ĥj+1 − ĥj has the same initial value
as ψj(t) where

P





 sup

t∈
[
0,(g(ε))2−κ+

[
C sups∈[0,C]

∣
∣
∣
∣

S∞bk(ĥ,v)
ε2γ+1

∣
∣
∣
∣

]2−κ

∧τ̂∗

]

∣
∣
∣ψj (t) −

(
ĥj+1 − ĥj

)∣∣
∣

≤ C sup
s∈[0,C]

∣
∣
∣
∣
∣
∣

S∞bk

(
ĥ, v
)

ε2γ+1

∣
∣
∣
∣
∣
∣



 ≥ 1 − Cqε
q ∀q > 0,

and hence

P




 inf

t∈
[
0,(g(ε))2−κ+

[
C sups∈[0,C]

∣
∣
∣
∣

S∞bk(ĥ,v)
ε2γ+1

∣
∣
∣
∣

]2−κ

∧τ̂

] ĥj+1 − ĥj ≤ ξε




 ≥ 1−Cqε

q ∀q > 0,

which trivially implies

P

[

inf
t∈[0,τ̂∗]

ĥj+1 − ĥj ≤ ξε

]

≥ 1 − Cqε
q ∀q > 0.
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Therefore, as ε → 0, any starting configuration with the minimum distance
converging to 0 as ε → 0 ends up at the critical stopping distance ξε with high
probability within a time that converges to 0 on the fast timescale in the sharp
interface limit. Thus it is necessarily the first hitting time (unless C is smaller
than the first hitting time).

We now show the convergence of τ̂∗ to a limit τ in the sharp interface limit:
Firstly we recall the definition

τ̂∗ = C ∧ inf

{

t > 0 : min
i 6=j

∣
∣
∣ĥi (t) − ĥj (t)

∣
∣
∣ = ξε

or ‖v‖ > ε3/2+δ or ‖v‖∞ ≥ 1 or ‖z‖ > ε3/2+δ
}

and note that since the probability of ‖v‖ > ε3/2+δ or ‖v‖∞ ≥ 1 or ‖z‖ >
ε3/2+δ is asymptotically small in ε, and converges to 0 as ε → 0, the limit of τ̂∗ - if

it exists - is the same as the limit of C∧inf
{

t > 0 : mini 6=j

∣
∣
∣ĥi (t) − ĥj (t)

∣
∣
∣ = ξε

}
.

Secondly define

Σ0 (f1 (∙) , ..., fN (∙)) = inf

{

t : min
i 6=j

|fi (t) − fj (t) mod 1| = 0

}

.

We also define Ξ = inf{t : δh ≤ 4γε|log ε|√
−f ′(1)

}.

Then for all ε > 0 we trivially have (2γ + β) ε |log ε| < 4γε |log ε| and hence
we have by Claim 3.7

P
[
τ̂∗ ≥ Σ0

(
ĥ1 (t ∧ τ̂∗ ∧ Ξ) , ..., ĥN (t ∧ τ̂∗ ∧ Ξ)

)
∧ C

]
≥ 1 − Cqε

q ∀q > 0,

since this event could only happen if ‖v (τ̂∗)‖ > ε3/2+δ or ‖v (τ̂∗)‖∞ ≥ 1.

We note that Σ0

(
ĥ1 (t ∧ Ξ ∧ τ̂∗) , ..., ĥN (t ∧ Ξ ∧ τ∗)

)
→ε→0 Σ0 (M1, ...,MN )

weakly, since Σ0 (M1, ...,MN ) is only discontinuous on a set of Lebesgue measure
0 so we may apply [Bil99] Theorem 2.7.

Hence in the limit

P [τ ≥ C ∧ Σ0 (M1, ...,MN )] = 1.

However we also have 0 < (2γ + β) ε |log ε| for ε > 0 and thus by the same
argument

P
[
C ∧ Σ0

(
ĥ1, ..., ĥN

)
≥ τ̂∗

]
≥ 1 − Cqε

q ∀q > 0,

which implies in the limit that

P [C ∧ Σ0 (M1, ...,MN ) ≥ τ ] = 1.

We have now shown that

P [C ∧ Σ0 (M1, ...,MN ) = τ ] = 1,
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i.e. that τ̂∗ weakly converges to C ∧ Σ0 (M1, ...,MN ), which is the first hitting
time, unless C is smaller.

We now finally note that τ is positive and finite: This is an easy observation,
since the definition gives the upper bound τ̂∗ ≤ C on the fast timescale, while
due to the finite moments of Mk it almost surely takes at least finite time for
two interfaces to attain the distance 0. Therefore τ is positive and finite with
probability 1.

Notation
For the ease of presentation, we denote the quadratic covariation of x and y

as (dx, dy).
Derivation of the semimartingale expression
We assume that the interfaces hk have a semimartingale notation. This will

be properly proven after the sketch of argument of Claim 3.7, to first be able
to guess what this semimartingale notation is we assume this and prove it later
on.

dhk = bk (h, v) dt + 〈σk (h, v) , dV 〉

By the Itô formula, we have

du =
N∑

j=1

uh
j dhj +

1
2

∑

1≤k,l≤N

uh
kl (dhk, dhl) + dv (3.1)

with uh
kl = ∂2uh

∂hk∂hl
.

We now take the inner product in space of (1.1) with τh
i to get for any

i = 1, ..., N

〈
τh
i , du

〉
=
〈
L (u) , τh

i

〉
dt +

〈
τh
i , dV

〉
,

where we defined L (u) := ε2uxx + f (u).
Taking the inner product with (3.1), we obtain

〈
τh
i , du

〉
=

N∑

j=1

〈
uh

j , τh
i

〉
dhj +

1
2

∑

1≤k,l≤N

〈
uh

kl, τ
h
i

〉
(dhk, dhl) +

〈
τh
i , dv

〉
. (3.2)

In the remainder of this chapter, any summation is on 1, 2, ..., N for any index.
To eliminate dv, we apply the Itô-formula to the orthogonality condition〈

v, τh
i

〉
= 0, and obtain

〈
τh
i , dv

〉
= −

〈
v, dτh

i

〉
−
〈
dv, dτh

i

〉

= −
∑

j

〈
v, τh

ij

〉
dhj −

1
2

∑

j,k

〈
v, τh

ijk

〉
(dhj , dhk) −

∑

j

〈
τh
ij , dv

〉
dhj .

Now we use dv = du − duh and (dt, dt) = 0 as well as (dV, dt) = 0, i.e.
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−
∑

j

(〈
τh
ij , dv

〉
, dhj

)

= −
∑

j

(〈
τh
ij , du

〉
, dhj

)
+
∑

j

(〈
τh
ij , duh

〉
, dhj

)

= −
∑

j

〈
τh
ij ,L (u)

〉
(dt, dhj) −

∑

j

(〈
τh
ij , dV

〉
, dhj

)
+
∑

j,k

〈
τh
ij , u

h
k

〉
(dhk, dhj)

= −
∑

j

(〈
τh
ij , dV

〉
, dhj

)
+
∑

j,k

〈
τh
ij , u

h
k

〉
(dhk, dhj) , (3.3)

where the inner product of the stochastic Allen-Cahn equation with uh
ij was

taken and the following used:

(dhj , dt) = bj (h, v) (dt, dt) + (〈σj(h, v), dV 〉 , dt) = 0.

Hence we have

〈
τh
i , dv

〉
= −

∑

j

〈
v, τh

ij

〉
dhj −

1
2

∑

j,k

〈
v, τh

ijk

〉
(dhj , dhk)

−
∑

j

(〈
dV, τh

ij

〉
, dhj

)
+
∑

j,k

〈
uh

k , τh
ij

〉
(dhj , dhk) . (3.4)

Combining this with (3.2) and (3.3) yields

∑

j

[〈
uh

j , τh
i

〉
−
〈
v, τh

ij

〉]
dhj =

〈
L (u) , τh

i

〉
dt

+
∑

l,k

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

(dhl, dhk)

+
∑

j

(〈
dV, τh

ij

〉
, dhj

)
+
〈
τh
i , dV

〉
. (3.5)

Claim 3.3. For all k, l ≤ N we have

(〈σk (h, v) , dV 〉 , 〈σl (h, v) , dV 〉) = ε2γ 〈σk (h, v) , σl (h, v)〉 dt.

Sketch of Argument. Since (dβj , dβi) = δijdt and W (t) =
∑∞

k=1 βk (t) ek for an
orthonormal basis {ek (∙)}∞k=1 of L2 (0, 1) and independent Brownian motions
{βk}

∞
k=1, Parseval’s identity yields the following:

(〈σk (h, v) , dV 〉 , 〈σl (h, v) , dV 〉)

= ε2γ
∑

i,j

〈σk (h, v) , ei〉 〈σl (h, v) , ej〉 (dβj , dβi)
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= ε2γ
∑

j

〈αk (h, v) , ej〉 〈σl (h, v) , ej〉 dt

= ε2γ
∑

j

〈σk (h, v) , ej〉 〈σl (h, v) , ej〉 dt = ε2γ 〈σk (h, v) , σl (h, v)〉 dt.

In an analogous way to this claim one can easily obtain (using (dt, dV ) = 0)
(〈

τh
ij , dV

〉
, dhj

)
=
(〈

τh
ij , dV

〉
, 〈σj(h, v), dV 〉

)
= ε2γ

〈
τh
ij , σj (h, v)

〉
dt.

For short-hand notation, we define the matrix A (h, v) = (Aij (h, v)) ∈
RN×N by

Aij (h, v) =
〈
uh

j , τh
i

〉
−
〈
v, τh

ij

〉
, (3.6)

For an invertibility condition of this matrix, see Claim 3.6; the stability shown in
Claim 4.4 implies that the condition of Claim 3.6 does indeed hold true in Γ ′

ε with
a probability converging to 1 as ε → 0 until two interfaces are at distance ξε. The
inverse matrix of A (h, v) is then denoted by A−1 (h, v) =

(
A−1

ij (h, v)
)
∈ RN×N .

We now arrive for all i ∈ {1, ..., N} at
∑

j

Aij (h, v) dhj

=
〈
L
(
uh + v

)
, τh

i

〉
dt+

∑

l,k

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

ε2γ 〈σk (h, v) , σl (h, v)〉 dt

+
∑

j

ε2γ
〈
uh

ij , σj (h, v)
〉
dt +

〈
τh
i , dV

〉
.

To obtain the equation for dh we use that dh = A (h, v)−1
A (h, v) dh.

Therefore the final equation for h (given that u is inside the slow channel)
is given for any r = 1, ...N by

dhr =
∑

i

A−1
ri (h, v)

〈
L
(
uh + v

)
, τh

i

〉
dt

+ε2γ
∑

i,l,k

A−1
ri (h, v)

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

〈σk (h, v) , σl (h, v)〉 dt

+ε2γ
∑

i

A−1
ri (h, v)

∑

j

〈
τh
ij , σj (h, v)

〉
dt +

∑

i

A−1
ri (h, v)

〈
τh
i , dV

〉
. (3.7)

Relating this to the original ansatz means

σr (h, v) =
∑

i

A−1
ri (h, v) τh

i . (3.8)

Therefore one can write down br (h, v) in terms of σj (h, v):

br (h, v) =
∑

i

A−1
ri (h, v)

〈
L
(
uh + v

)
, τh

i

〉
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+
∑

i,l,k

A−1
ri (h, v)

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

ε2γ 〈σk(h, v), σl(h, v)〉

+
∑

i

A−1
ri (h, v) ε2γ

∑

j

〈
τh
ij , σj (h, v)

〉
(3.9)

3.2 Stability of the manifold

This section gives many key ingredients to the sketch of argument of Claim 3.2.
Recall ξε = (2γ+β)ε|log ε|√

−f ′(1)
and that the slow channel Γξε,ε is defined

Γξε,ε :=
{

uh + v : h ∈ Ωξε
, ‖v‖ ≤ ε3/2+δ

}
.

for some fixed δ > 0 s.t. γ − 1/2 < 3/2 + δ
We will now give sufficient conditions for the derivation in the previous step

to actually hold true under the assumption of h being a semimartingale, namely
invertibility of the matrix A (h, v); further to this an asymptotic expansion of
the drift and diffusion ”coefficients” will be obtained inside the slow channel.
Finally it will be shown that the probability of u leaving the slow channel Γξε,ε

before two interfaces are at distance ξε is asymptotically small in ε; afterwards
we will also show that h is indeed a semimartingale and thus the derivation in
the previous part was valid. The more general stability for δh > ρ∗∗ε is shown
in Claim 4.4.

Now we recall the definition of τ∗ as the first exit time (below the threshold
Tε) of u from Γξε,ε, which is the stopping time

τ∗ = CS∞ε−2γ−1 ∧ inf
{

t > 0 : δh = ξε or ‖v‖ > ε3/2+δ

or ‖v‖∞ ≥ 1 or ‖z‖ > ε3/2+δ
}

.

Definition 3.4. We say that a term is O(eε) if it is asymptotically smaller than
any polynomial uniformly for times t ≤ τ∗.

Definition 3.5. lj = hj − hj−1, l := min {l1, ..., lN} , r := ε/l, β := 1 −

φ (0, l, +) and α (r) := F (φ (0, l, +)) , φj (x) := φ
(
x − mj , lj , (−1)j

)
, rj :=

ε/lj
βj (r) := β (rj) and β (r) := maxj βj (r) .
αj (r) := α (rj) and α (r) := maxj αj (r) .

Note that α, β, ‖L(uh)‖∞ are O(1) if δh > ρ∗∗ε and O(ε2γ) for δh > ξε (cf.
[CP89] Theorem 3.5).

Claim 3.6. Suppose h ∈ Ωρ∗∗ε for ρ∗∗ large enough and ‖v‖ ≤ ζε1/2 for some
Cmap > ζ > 0 small enough; then we have for δh > ρ∗∗ε the expansion

Aij (h, v) =






1
ε S∞ + O

(

ζε−1 + ε−1 exp

{
−
√

f ′(1)δh

2ε

})

if i = j

o
(
ζε−1

)
if i 6= j
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and the matrix is invertible, with

A−1
ij (h, v) =






ε

S∞+O
(

ζ+C exp

{
−
√

f′(1)δh
2ε

}) if i = j.

o (ζε) if i 6= j.

We have S∞ =
∫ 1

−1

√
−2F (u)du, which in our typical case f(u) = u− u3 is

S∞ =
2
√

2
3

.

Sketch of Argument. We recall Aij =
〈
uh

j , τh
i

〉
−
〈
v, τh

ij

〉
.

We have from [CP89] Theorem 3.5, Proposition 3.4 (note that in this publi-
cation the constant ρ denotes the inverse of our constant ρ in ρε so that ρ → 0+

has the equivalent effect as ε → 0) that

〈
uh

j , τh
j

〉
= S∞ε−1 + O

(
ε−1e−

√
f ′(1)δh/2ε

)
,

and by [CP89] Theorem 3.5 for |j − k| = 1 that

∣
∣〈uh

j , τh
k

〉∣∣ ≤ Cε−1e−
√

f ′(1)δh/2ε,

and by [CP89] Theorem 3.5 that for |j − k| > 1 we have
∣
∣〈uh

j , τh
k

〉∣∣ = 0.

Using that (cf. [CP89] Proposition 2.3)
∥
∥τh

jj

∥
∥ ≤ Cε−3/2 for some C > 0, and

if j 6= k,
∥
∥
∥τh

jk

∥
∥
∥ ≤ o(1)ε−3/2 (by [CP89] Proposition 2.3), we obtain for j = k

that ∣
∣〈v, τh

ij

〉∣∣ ≤ O
(
ζε−1

)

and for j 6= k that ∣
∣〈v, τh

ij

〉∣∣ ≤ o
(
ζε−1

)
.

We hence have the expressions

Aii = S∞ε−1 + O
(
ε−1e−

√
f ′(1)δh/2ε

)
+ O

(
ζε−1

)
,

Aij = O
(
ε−1e−

√
f ′(1)δh/2ε

)
+ o

(
ζε−1

)
if |i − j| = 1,

Aij = o
(
ζε−1

)
if |i − j| > 1.

This gives invertibility of the matrix and the stated formula for its inverse.

Let ψd = CS∞ε−2γ−1 ∧ inf
{
t > 0 : δh(t) = d or ‖v‖ > ε3/2+δ

‖v‖∞ ≥ 1 or ‖z‖ > ε3/2+δ
}

where d ≥ 2ε| log ε|√
f ′(1)

.
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Claim 3.7. Suppose u0 ∈ Γξε,ε. Let u(x, t) = uh(x, t) + v(x, t) solve (1.1) for
t > 0; τ∗ is as previously defined.

Then there exist constants C ′
p, Dp depending only on f(∙) such that the fol-

lowing inequalities hold:

E [‖v(ψd)‖
p] ≤ E[‖v(0)‖p] + C ′

pε
−2γ−1ε(3/2+δ)p ≤ Dpε

−2γ−1ε(3/2+δ)p ∀p ≥ 2

for some C ′
p, Dp > 0 independent of ε and dependent on p, as well as

P(‖v(ψd)‖ > ε3/2+δ or ‖z(ψd)‖ > ε3/2+δ) ≤ Drε
−2γ−1ε2δr ∀r ≥ 2,

P(‖v(ψd)‖ > ε3/2+δ or ‖z(ψd)‖ > ε3/2+δ or ‖v(ψd)‖∞ ≥ 1)

≤ Drε
−2γ−1ε2δr ∀r ≥ 2,

for some small δ > 0.

Remark: The second inequality implies that the probability of exiting the
slow channel within the O(ε−2γ−1) time needed for two interfaces to have ξε

distance is asymptotically small.
Before proving this, we collect some claims that will ease the sketch of ar-

gument:

Claim 3.8. Let u = uh + v ∈ Γξε,ε and r = 1, ..., N, then there exists C > 0
independent of ε s.t. it holds uniformly in ε that

∥
∥
∥
∥σr(h, v) −

ε

S∞
τh
r

∥
∥
∥
∥
∞

≤ o(ε)

and

‖σr(h, v)‖ = C
√

ε + o(ε1/2).

If instead we only have u = uh + v ∈ Γ′
ε then we have

∥
∥
∥
∥σr(h, v) −

ε

S∞
τh
r

∥
∥
∥
∥
∞

≤ O(1)

and
‖σr(h, v)‖ ≤ O(ε1/2).

Sketch of Argument. In the first case we have ‖v‖ ≤ ε3/2+δ and δh ≥ ξε. Upon
recalling that σr(h, v) =

∑
i A−1

ri (h, v)τh
i , we can apply Claim 3.6 to get

σr(h, v) =

(
ε

S∞ + O
(
ε5/2+δ + εγ

)

)

τh
r +

∑

i 6=r

o
(
ε2+δ

)
τh
i .

Thus, upon noting that
∣
∣τh

i

∣
∣ ≤ O(ε−1) we have

∥
∥σr(h, v) − εS−1

∞ τh
r

∥
∥
∞
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=

∥
∥
∥
∥
∥
∥

(
ε

S∞ + O
(
εγ + ε5/2+δ

) − εS−1
∞

)

τh
r +

∑

i 6=r

o
(
ε2+δ

)
τh
i

∥
∥
∥
∥
∥
∥
∞

≤ o(ε).

The L2 norm follows similarly, upon noting that ‖τh
i ‖ ≤ O(ε−1/2) :

‖σr(h, v)‖−
∥
∥
∥ ε

S∞
τh
r

∥
∥
∥ =

∥
∥
∥ ε

S∞+Cεγ+ε2 τh
r +

∑
i 6=r o(ε)τh

i

∥
∥
∥−
∥
∥
∥ ε

S∞
τh
r

∥
∥
∥ ≤ o(ε1/2),

clearly, by [CP89] Proposition 2.3,
∥
∥
∥ ε

S∞
τh
r

∥
∥
∥ = Cε1/2 + o(ε1/2). This gives the

bound on the inner product.
If instead we only have ‖v‖ ≤ Cmapε

1/2 then Claim 3.6 implies

σr(h, v) =
(
εS−1

∞ + O(ε)
)
τh
r +

∑

i 6=r

o(ε)τh
i .

Once again, recalling that ‖τh
i ‖∞ ≤ O(ε−1) and ‖τh

i ‖ ≤ O(ε−1/2) gives

∥
∥σr(h, v) − εS−1

∞ τh
r

∥
∥
∞

=

∥
∥
∥
∥
∥
∥
O(ε)τh

r +
∑

i 6=r

o(ε)τh
i

∥
∥
∥
∥
∥
∥
∞

≤ O
(
ε1/2

)

and

‖σr(h, v)‖ =

∥
∥
∥
∥
∥
∥

(
εS−1

∞ + O(ε)
)
τh
r +

∑

i 6=r

o(ε)τh
i

∥
∥
∥
∥
∥
∥
≤ O

(
ε1/2

)
.

We now define (just like [CP89]) wj for each interval [mj ,mj+1] as

wj(x) = w
(
x − mj , hj − hj−1, (−1)j

)
,

where for x ∈ [−l, l] we have w defined as

2φl(x, l ± 1) = −(sgn(x))φx(x, l,±1) + 2w(x, l,±1).

We will from now on denote derivatives w.r.t. hj as ∂
∂hj

f = fj .

Claim 3.9. Let uh + v ∈ Γ 2ε| log ε|√
−f′(1)

,ε
, then we have the following pointwise esti-

mate:

|br(h, v)| ≤ kεe−
√

f ′(1)δh/ε + O
(
ε2γ+1+β

)

for any r = 1, ..., N, some C > 0 and a small β > 0. As a special case, if we
have uh + v ∈ Γξε,ε we also have the following uniform estimate:

sup
h∈Ωξε

|br(h, v)| ≤ Cε2γ+1+β (3.10)
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Sketch of Argument. We recall

br(h, v) =
∑

i

A−1
ri (h, v)

〈
L(uh + v), τh

i

〉

+
∑

i,l,k

A−1
ri (h, v)

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

ε2γ 〈σk(h, v), σl(h, v)〉

+
∑

i

A−1
ri (h, v)

∑

j

ε2γ
〈
τh
ij , σj(h, v)

〉
.

It is easy to check that unless we have r = i = l = k all contributing terms
in the second two sums are O(ε2γ+1+β).

We quote [CP89] Lemma 8.1 and recall the definition of uh for the following:
uh

j = −uh
x + (1 − χj)wj − χjwj+1 for x ∈ Ij .

We know from [CP89] Lemma 7.9, Proposition 3.4, that wj ≤ O(ε) and from

[CP89] Lemma 7.10, Proposition 3.4 that wj
x ≤ O

(
| log ε|

ε

)
for δh ≥ 2| log ε|√

−f ′(0)
.

We also have
uh

jx = −uh
xx + (1 − χj)wj

x − χj
xwj − χj

xwj+1 − χjwj+1
x

for x ∈ Ij .
Evidently,

uh
ii = −uh

xi − χi
iw

i +
(
1 − χi

)
wi

i − χi
iw

i+1 − χiwi+1
i

= −uh
xx +

(
1 − χi

)
wi

x − χi
xwi − χi

xwi+1 − χiwi+1
x

−χi
iw

i +
(
1 − χi

)
wi

i − χi
iw

i+1 − χiwi+1
i .

We recall τh
j = γjuh

x (which is clearly equal to 0 outside of Ij) where

γj = χ ((x − mj)/ε − 1) [1 − χ((x − mj+1) /ε − 1)] ,

and quote from [CP89] p. 564 that

τh
ii = −γi

iu
h
x−γiuh

xi = −γi
iu

h
x−γi

(
−uh

xx +
(
1 − χi

)
wi

x − χi
xwi − χi

xwi+1 − χiwx

)

= uh
xx − γi

iu
h
x +

(
γi − 1

)
uh

xx − γi
((

1 − χi
)
wi

x − χi
xwi − χi

xwi+1 − χiwx

)
,

which is nothing else than τh
ii = γiui

xx + O
(
ε−1
)
.

uh =
(
1 − χj

)
φj + χjφj+1

For r = i = k = l we obtain the following expressions:

〈
τh
jj , u

h
j

〉
=
∫ mj+1

mj

τh
jju

h
j dx

=
∫ mj+2ε

mj

τh
jju

h
j dx +

∫ mj+1−2ε

mj+2ε

uh
jju

h
j dx +

∫ mj+1

mj+1−2ε

τh
jju

h
j dx,
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〈
uh

jj , τ
h
j

〉
=
∫ mj+1

mj

uh
jjτ

h
j dx

=
∫ mj+2ε

mj

uh
jjτ

h
j dx +

∫ mj+1−2ε

mj+2ε

uh
jju

h
j dx +

∫ mj+1

mj+1−2ε

uh
jjτ

h
j dx.

We calculate further that

∫ mj+1−2ε

mj+2ε

uh
jju

h
j dx

=
∫ mj+1−2ε

mj+2ε

[
−uh

xj − χj
jw

j +
(
1 − χj

)
wj

j − χj
jw

j+1 − χjwj+1
]
uh

j dx

=
∫ mj+1−2ε

mj+2ε

−uh
xju

h
j dx

+
∫ mj+1−2ε

mj+2ε

[
−χj

jw
j +

(
1 − χj

)
wj

j − χj
jw

j+1 − χjwj+1
]
uh

j dx

=

[

−
1
2

(
uh

i

)2
]mj+1−2ε

mj+2ε

+
∫ mj+1−2ε

mj+2ε

[
−χj

jw
j +

(
1 − χj

)
wj

j − χj
jw

j+1 − χjwj+1
]

∙
[(

1 − χj
)
φj

j + χjφj+1
j + χj

x

(
φj − φj+1

)]
dx,

but
[

−
1
2

(
uh

j

)2
]mj+1−2ε

mj+2ε

= −
1
2

((
uh

j (mj+1 − 2ε)
)2

−
(
uh

j (mj + 2ε)
)2)

=
1
2

((
φj+1

x (mj+1 − 2ε) + wj+1 (mj+1 − 2ε)
))2

−
1
2

(
2
(
−φj

x (mj + 2ε) + wj ((mj + 2ε))
)

+ φj+1
x (mj + 2ε) − wj+1(mj + 2ε

)2

≤ (O (ε))2 ≤ O
(
ε2
)
,

(the end works in a similar manner to [CP89] Lemma 7.9) and

∫ mj+1−2ε

mj+2ε

[
−χj

jw
j +

(
1 − χj

)
wj

j − χj
jw

j+1 − χjwj+1
]
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∙
[(

1 − χj
)
φj

j + χjφj+1
j + χj

x

(
φj − φj+1

)]
dx

=
∫ hj−ε∨mj+1−2ε

mj+2ε

wj
jφ

j
jdx+

+
∫ hj+ε∧mj+1−2ε

hj−ε∨mj+1−2ε

[
−χj

jw
j +

(
1 − χj

)
wj

j − χj
jw

j+1 − χjwj+1
]

∙
[(

1 − χj
)
φj

j + χjφj+1
j + χj

x

(
φj − φj+1

)]
dx

+
∫ mj+1−2ε

hj+ε∧mj+1−2ε

−wj+1φj+1
j dx = O

(
ε−1+β

)

(cf. [CP89] sections 7 and 8 for more details on how to do the arithmetic).
Now,

∫ mi+2ε

mi

τh
iiu

h
i dx =

∫ mi+2ε

mi

(
−γi

iφ
i
x + γiφi

xx − γiwi
x

) (
−φi

x + wi
)
dx =

−
∫ mi+2ε

mi

γiφi
xφi

xxdx

+
∫ mi+2ε

mi

[(
−γi

iφ
i
x + γiφi

xx − γiwi
x

)
wi +

(
−γi

iφ
i
x − γiwi

x

) (
−φi

x + wi
)]

dx

= O(ε−1+β).

But in a similar manner we may bound

∫ mi+2ε

mi

uh
iiτ

h
i dx,

∫ mi+1

mi+1−2ε

τh
iiu

h
i dx,

∫ mi+1

mi+1−2ε

uh
iiτ

h
i dx,

so that we may conclude that
∣
∣〈τh

ii, u
h
i

〉∣∣ ,
∣
∣〈uh

ii, τ
h
i

〉∣∣ ≤ o
(
ε−1
)
.

We used [CP89] Lemma 7.9 to bound wj , wj+1 and [CP89] Lemma 7.10 to
bound wj

j , w
j+1
j .

We now calculate

τh
iii = −γi

iiu
h
x − γi

ixuh
i − γi

iu
h
xi − γiuh

xii.

But

uh
xii =

∂

∂x
uh

ii
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=
∂

∂x

[
−uh

xx +
(
1 − χi

)
wi

x − χi
xwi − χi

xwi+1 − χiwi+1
x

−χi
iw

i +
(
1 − χi

)
wi

i − χi
iw

i+1 − χiwi+1
i

]

= −uh
xxx+O

(
ε−2
)
.

However we also have
∥
∥uh

xxx

∥
∥

=
∥
∥−χj

xxxφj − 3χj
xxφj

x − 3χj
xφj

xx − χjφj
xxx

+χj
xxxφj+1 + 3χj

xxφj+1
x + 3χj

xφj+1
xx + χjφj+1

xxx

∥
∥

≤ O(ε−5/2)

since

φj
xxx = −

1
ε2

f ′
(
φj
)
φj

x.

Combining the fact that in the slow channel we have ‖v‖ ≤ ε3/2+δ and that
(cf. [CP89] Proposition 2.3) we have

∥
∥τh

iii

∥
∥ ≤

∥
∥γi

iiu
h
x

∥
∥+
∥
∥γi

ixuh
i

∥
∥+
∥
∥γi

iu
h
xi

∥
∥+
∥
∥γiuh

xii

∥
∥

≤ O
(
ε−2
) ∥∥uh

x

∥
∥+ O

(
ε−2
) ∥∥uh

i

∥
∥+ O

(
ε−1
) ∥∥uh

xi

∥
∥+ O (1)

∥
∥−uh

xxx + O(ε−2)
∥
∥

≤ O
(
ε−2
)
O
(
ε−1/2

)
+O

(
ε−2
)
O
(
ε−1/2

)
+O

(
ε−1
)
O
(
ε−3/2

)
+O (1)

∥
∥uh

xxx

∥
∥+O

(
ε−2
)

≤ O
(
ε−5/2

)
+O

(
ε−5/2

)
≤ O

(
ε−5/2

)
,

we get ∣
∣〈v, τh

iii

〉∣∣ ≤ O
(
ε−1+β

)
.

Observe that (combining [CP89] Theorem 6.1, Lemma 3.3, Proposition 3.4)
∥
∥
∥
∥
∥

∑

i

A−1
ri (h, v)

〈
L
(
uh + v

)
, ui

〉
∥
∥
∥
∥
∥
∞

≤ O
(
εe−

√
f ′(1)δh/ε

)
.

Since ‖σk‖ = O(ε1/2) and A−1
ij = O(ε) we thus obtain

‖br(h, v)‖∞ ≤ O
(
ε2γ+1+β

)
+O(ε)

(
O
(
ε−1+β

)
+ O

(
ε4γ−2

))
ε2γε+O(ε)ε2γO

(
ε4γ−2

)

≤ Cε2γ+1+β

uniformly in ε and pointwise

|br(h, v)| ≤ O
(
εe−

√
f ′(1)δh/ε

)
+O(ε)

(
O
(
ε−1+β

)
+ O

(
ε4γ−2

))
ε2γε+O (ε) ε2γO

(
ε4γ−2

)

≤ O
(
εe−

√
f ′(1)δh/ε

)
+ O

(
ε2γ+1+β

)
.
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Sketch of Argument of Claim 3.7. Substituting u(x, t) = uh(t)(x) + v(x, t) into
the stochastic Allen-Cahn equation upon applying the Itô formula to the LHS
yields

∑

i

uh
i dhi +

1
2

∑

i,j

uh
ij (dhi, dhj) + dv =

[
Luh + Lv + f2v

2
]
dt + dV

where L = ε2∂xx + f ′(uh) and f2 =
∫ 1

0
(1 − τ)f ′′

(
uh + τv

)
dτ.

By Claim 3.3, this is the same as

∑

i

uh
i dhi+

1
2

∑

i,j

uh
ijε

2γ 〈σi(h, v), σj(h, v)〉 dt+dv =
[
Luh + Lv + f2v

2
]
dt+εγdW.

Recall the definition of the SPDE for z on (0, 1) with periodic boundary
conditions:

dz =
(
ε2∂xx + f ′(1)

)
zdt + εγdW

Claim 2.2 implies that with a probability converging to 1 as ε → 0, ‖z‖ ≤
Cεγ−1/2−ν ∀ν > 0 for times rε−2γ−1 where r > 0 is arbitrary, for some C > 0
independent of ε. Note that we can choose ν small enough so that γ−1/2−ν >
3/2.

Therefore by writing v̄ = v − z we obtain

∑

i

uh
i dhi +

1
2

∑

i,j

uh
ijε

2 〈σi(h, v), σj(h, v)〉 dt

+dv̄ =
[
Luh + Lv̄ +

(
−f ′(1) − f ′

(
uh
))

z + f2(v)2
]
dt,

where f2 =
∫ 1

0
(1 − τ)f ′′

(
uh + τv

)
dτ .

Rearranging this gives the following random PDE perturbed by finite-dimensional
noise:

dv̄ =



Luh + Lv̄ −
(
f ′(1) + f ′

(
uh
))

z + f2(v)2 −
1
2

∑

i,j

uh
ijε

2γ 〈σi(h, v), σj(h, v)〉

−
∑

i

uh
i bi(h, v)

]

dt − ε2γ
∑

i

uh
i 〈σi(h, v), dW 〉

Since the Itô formula yields d‖v̄‖2 = d〈v̄, v̄〉 = 〈dv̄, v̄〉+ 〈v̄, dv̄〉+ 〈(dv̄, dv̄)〉 =
2〈v̄, dv̄〉 + 〈1, (dv̄, dv̄)〉 we get

d‖v̄‖2 = 2
〈
v̄,Luh + L(v − z) −

(
f ′(1) + f ′

(
uh
))

z + f2v
2
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−
1
2

∑

i,j

uh
ijε

2γ〈σi(h, v), σj(h, v)〉 −
∑

i

uh
i bi(h, v)

〉

dt

−2

〈

v̄, ε2γ
∑

i

uh
i 〈σi(h, v), dW 〉

〉

+ ε4γ
∑

i,j

〈
uh

i , uh
j

〉
〈σi(h, v), σj(h, v)〉 dt.

Since we are in the slow channel we know that ‖v‖ ≤ ε3/2+δ, ‖z‖ ≤ ε3/2+δ

and Claim 3.8 tells us that ‖σr(h, v)‖ = C
√

ε+ o (
√

ε) , while Claim 3.9 gives us
|br(h, v)| ≤ Cε2γ+1, so this becomes

d‖v̄‖2 ≤ ε3/2+δ
(
B
∥
∥Luh

∥
∥+ Cε3/2+δ + Dε3+2δ

)
dt−2

∑

i

〈
v̄, εuh

i

〉
〈σi(h, v), dW 〉.

In this expansion,
∫ 1

0
(1 − τ)f ′′

(
uh + τv

)
dτ < C for some C > 0 is the

case, as long as supt∈[0,ψd] ‖v‖∞ ≤ 1, which we have due to the definition of our
stopping time. Taking expectations (noting that the expectation of a stochastic
integral is 0) and integrating up to our stopping time gives

E
[
‖v̄(ψd)‖

2
]
≤ E

[
‖v(0)‖2

]
+ CS∞ε−2γ−1ε3+2δ.

We used [CP89] Theorem 3.5 to bound
∥
∥Luh

∥
∥ ≤ Cε2γ+1/2.

By applying the Itô formula we similarly have for p ≥ 3 that

d‖v̄‖p =
p

2
‖v̄‖p−2d‖v̄‖2

+
p(p − 1)

8
‖v̄‖p−4

∑

i,j

〈
v̄, ε2uh

i

〉 〈
v̄, ε2uh

j

〉
〈σi(h, v), σi(h, v)〉 dt,

and thus

E [‖v̄‖p (ψd)] − E [‖v̄‖p (0)] =

E

[∫ τ∗

0

p

2
‖v̄‖p−22

〈
v̄,Luh + Lv̄ −

(
f ′(1) + f ′

(
uh
))

z + f2v
2

−
1
2

∑

i,j

uh
ijε

2 〈σi(h, v), σj(h, v)〉 −
∑

i

uh
i bi(h, v)〉dt





+E




∫ τ∗

0



p

2
‖v̄‖p−2ε4

∑

i,j

〈
uh

i , uh
j

〉
〈σi(h, v), σj(h, v)〉 dt

+
p(p − 1)

8
‖v̄‖p−4

∑

i,j

〈
v̄, ε2uh

i

〉 〈
v̄, ε2uh

j

〉
〈σi(h, v), σi(h, v)〉



 dt
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and therefore combining all estimates from claims 2.2, 3.8 and 3.9 as well as
[CP89] Theorem 3.5 as before and noting that ‖v̄‖ = ‖v − z‖ ≤ ‖v‖ + ‖z‖ ≤
2ε3/2+δ we conclude

E [‖v̄ (ψd)‖
p] ≤ E[‖v(0)‖p] + Cpε

−2γ−1ε(3/2+δ)p

for all p ≥ 2.
Markov’s inequality then yields

P
(
‖v(ψd)‖ ≥ ε3/2+δ

)
≤ Cqε

−2γ−1ε2δq ∀q ≥ 2.

We note that since the probability of ‖v(ψd)‖∞ ≥ 1 is exponentially small (cf.
eg. [Fen06] for the fact that the probability of ‖u(ψd)‖∞ ≥ 2 being exponentially
small, while ‖uh‖∞ ≤ 1 by definition), we have in particular

P
(
‖v(ψd)‖ ≥ ε3/2+δ or ‖v(ψd)‖∞ ≥ 1 or ‖z(ψd)‖ ≥ ε3/2+δ

)
≤ Cqε

q ∀q > 0.

Sketch of argument that the interface position is a semimartingale. In the begin-
ning of this chapter we made the assumption that h is a semimartingale. We
now prove that this assumption is indeed true. Firstly, we observe that the
coupled system for h and v has a solution:

Up to our stopping time τ∗, our drift has a bound of the form

|bk(h, v)| ≤ Cε ∀k

for some C > 0. Showing this works in the same way as the sketch of argument
of Claim 3.9, except that here we only have ‖v‖ ≤ Cmapε

1/2 and δh ≥ ρ∗∗ε.
Further, we have

‖σk(h, v)‖∞ ≤ C

for some C > 0. This is a consequence of Claim 3.8 and the fact that τh
k ≤ C ′ε−1

for some C ′ > 0.
We recall that the equation for v is

dv =

= L
(
uh + v

)
dt −

∑

i

uh
i [bi (h, v) dt + εγ 〈σi(h, v), dW 〉]

−
1
2

∑

i,j

uh
ijε

2γ 〈σi(h, v), σj(h, v)〉 dt + εγdW.

Up to our stopping time, the term L(uh + v), is, as we know from [CP89]
Theorem 3.5, bounded by a constant in the L∞-norm.

Combining what we just saw for h with the fact that uh
i ≤ Cε−1 for some

C > 0, we have that
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∥
∥
∥
∥
∥

∑

i

uh
i bi(h, v)

∥
∥
∥
∥
∥
∞

≤ C.

We also easily see that
∥
∥
∥
∥
∥
∥

∑

i,j

uh
ijε

2γ 〈σi(h, v), σj(h, v)〉

∥
∥
∥
∥
∥
∥
∞

≤ Cε2γ ,

for some C > 0 and that the quadratic variation of
∑

i uh
i εγ〈σi(h, v), dW 〉 has

the same bound in L∞-norm.
Now clearly,

|bi(h1, v) − bi(h2, v)| ≤ C ′|h1 − h2|

and
‖σi(h1, v) − σi(h2, v)‖∞ ≤ C ′′|h1 − h2|.

Similarly, for di(h, v, x) = L(uh+v)−
∑

i uh
i bi(h, v)− 1

2

∑
i,j uh

ijε
2γ 〈σi(h, v), σj(h, v)〉

we have
|di(h, v, x) − di(h, v, y)| ≤ C|x − y|

while the quadratic variation of
∑

i uh
i εγ〈σi(h, v), dW 〉 is in the slow channel

nothing else than

∑

i

ε2γ
〈
uh

i , uh
i

〉
〈Qσi(h, v), σi(h, v)〉 dt+o

(
ε2γ+1

)
=
∑

i

ε2γ+1S∞q(0)+o
(
ε2γ+1

)
,

so that we may conclude that we have necessary bounds on∑
i uh

i εγ〈σi(h, v), dW 〉 and εγ .
We have these L∞-bounds up to τ∗ with all terms being almost surely con-

tinuous, in fact Lipschitz continuous (as we are on the interval).
Now we note that we may consider the coupled system of (v, h1, ..., hN ) as an
SPDE in N + 1 space-dimensions, where in the second to N + 1st space dimen-
sions the noise and solution are constant in space. Applying [DPZ92] Theorem
7.4 then gives existence and uniqueness (up to equivalence) of our coupled sys-
tem.

Secondly, we establish that we do indeed have
〈
v, τh

i

〉
= 0 ∀i, so that uh + v

solves the equation:
Recall that for h we have that

dhr =
∑

i

A−1
ri (h, v)

〈
L(uh + v), τh

i

〉
dt

+ε2
∑

i,l,k

A−1
ri (h, v)

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
− 〈uh

k , τh
il 〉

]

〈σk(h, v), σl(h, v)〉 dt
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+ε2
∑

i

A−1
ri (h, v)

∑

j

〈
τh
ij , σj(h, v)

〉
dt +

∑

i

A−1
ri (h, v)

〈
τh
i , dV

〉
.

Applying A(h, v) on both sides gives

∑

i

Aij(h, v)dhj = 〈L(uh + v), τh
i 〉dt+

ε2
∑

l,k

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

〈σk(h, v), σl(h, v)〉 dt

+ε2
∑

j

〈
uh

ij , σj(h, v)
〉
dt +

〈
τh
i , dV

〉
.

Applying Claim 3.3 and the definition of A we can rewrite this as

∑

j

[〈
τh
i , uh

j

〉
−
〈
v, τh

ij

〉]
dhj =

〈
L
(
uh + v

)
, τh

i

〉
dt

+ε2
∑

l,k

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

(dhl, dhk)

+
∑

j

〈
dV, τh

ij

〉
dhj +

〈
τh
i , dV

〉

Now, taking the inner product of τh
i and the left hand side of our SPDE

du =
∑

j

uh
j dhj +

1
2

∑

k,l

uh
kl (dhk, dhl) + dv

gives

〈
τh
i , du

〉
=
∑

j

〈
τh
i , uh

j

〉
dhj +

1
2

∑

k,l

〈
uh

kl, τ
h
i

〉
(dhk, dhl) +

〈
τh
i , dv

〉
.

On the other hand applying the Itô formula gives

d〈τh
i , v〉 = 〈τh

i , dv〉 + 〈v, dτh
i 〉 + 〈dv, dτh

i 〉

= 〈τh
i , dv〉+

∑

j

〈v, τh
ij〉dhj +

1
2

∑

j,k

〈
v, τh

ijk

〉
(dhj , dhk)+

∑

j

〈
τh
ij , dv

〉
dhj

But since dv = du − duh we have

∑

j

〈τhij , dv〉 dhj =
∑

j

(〈
τh
ij , dV

〉
, dhj

)
−
∑

j,k

〈
τh
ij , u

h
k

〉
(dhk, dhj)

Furthermore taking the inner product of τh
i and the right hand side of the

SPDE gives



3. Interface motion in the slow channel 50

〈
τh
i , du

〉
=
〈
L(u), τh

i

〉
dt +

〈
τh
i , dV

〉

Combining the last equations yields

d
〈
τh
i , v

〉
=
〈
L(u), τh

i

〉
dt+

〈
τh
i , dV

〉
−
∑

j

〈
τh
i , uh

j

〉
dhj

−
1
2

∑

k,l

〈
uh

kl, τ
h
i

〉
(dhk, dhl) +

∑

j

〈
v, τh

ij

〉
dhj +

1
2

∑

j,k

〈
v, τh

ijk

〉
(dhj , dhk)

+
∑

j

(〈
τh
ij , dV

〉
, dhj

)
−
∑

j,k

〈
τh
ij , u

h
k

〉
(dhk, dhj)

=
〈
L(u), τh

i

〉
dt +

〈
τh
i , dV

〉
−
∑

j

Aij(h, v)dhj +
∑

j

(〈
τh
ij , dV

〉
, dhj

)

+
∑

j,k

[
1
2

〈
v, τh

ijk

〉
−

1
2

〈
uh

kj , τ
h
i

〉
−
〈
τh
ij , u

h
k

〉
]

(dhk, dhj)

=
〈
L(u), τh

i

〉
dt+

〈
τh
i , dV

〉
−




〈
L(u), τh

i

〉
dt +

〈
τh
i , dV

〉
−
∑

j

Aij(h, v)dhj

+
∑

j

(〈
τh
ij , dV

〉
, dhj

)
+
∑

j,k

[
1
2

〈
v, τh

ijk

〉
−

1
2

〈
uh

kj , τ
h
i

〉
−
〈
τh
ij , u

h
k

〉
]

(dhk, dhj)





+
∑

j

(
〈τh

ij , dV 〉, dhj

)
+
∑

j,k

[
1
2

〈
v, τh

ijk

〉
−

1
2

〈
uh

kj , τ
h
i

〉
−
〈
τh
ij , u

h
k

〉
]

(dhk, dhj) = 0

This completes the sketch of argument that h is indeed a semimartingale.



4. ANNIHILATION

In this chapter we show that once the critical distance ξε = (2γ+β)ε| log ε|√
−f ′(1)

has been reached between a pair of interfaces of the solution of the stochastic
Allen-Cahn equation, they will annihilate w.h.p. within a time converging to 0
on the fast timescale, after which the interfaces of the solution are in a small
neighbourhood of the initial configuration without the annihilated pair.

Recall that Γξε,ε is defined to be
{
uh + v : h ∈ Ωξε

, ‖v‖ ≤ ε3/2+δ
}

for some
fixed δ > 0 s.t. γ − 1/2 < 3/2 + δ. We state our main result, followed by the
Claims needed to prove it, to ultimately prove this result.
Claim 4.1. Annihilation

Let u0 ∈ Γξε,ε where exactly two neighbouring interfaces have distance δh0 =
ξε to each other, and all other interfaces have a distance bounded below by
cε1/2−κ for some 1

2 ≥ κ > 0 and some c > 0. For t > 0, u(∙, t) solves (1.1).
With a probability converging to 1 as ε → 0, one has that within ε−2γ+1−ι (for

some small κ > ι > 0) time these two interfaces will be annihilated leading to
the new interface configuration h′ = H

(
u
(

1
ε2γ−1+ι

))
; with the same probability,

the solution reenters Γξε,ε within this time.
With a probability converging to 1 as ε → 0 this new configuration h′ is

inside a neighbourhood of size c′ε (for some c′ > 0) of the initial configuration
h, but without the annihilated interfaces.

Before proving this, we collect some ingredients of the sketch of argument.
Firstly, two claims that ensure that the drift is negative below a nearby

threshold and blows up to −∞ as ε → 0:

Claim 4.2. Suppose ε| log ε|√
−f ′(1)

≤ δh < 2γε log ε√
−f ′(1)

and the other interface pairs have

a distance bounded below by ε1/2−κ for 1
2 ≥ κ > 0 and u = uh + v ∈ Γ ε| log ε|√

−f′(1)
,ε
.

Then if one denotes the two interfaces between which the minimum distance
δh is attained by hj and hj+1, we have the following:

∑

i

A−1
ri (h, v)

〈
L
(
uh + v

)
, τh

i

〉
∣
∣
∣
∣
∣
r=j+1

−
∑

i

A−1
ri (h, v)

〈
L(uh + v), τh

i

〉
∣
∣
∣
∣
∣
r=j

=
ε

S∞

[
−2a exp

{
−
√
−f ′(1)δh/ε

}]
+ o

(
ε2γ+1

)
. (4.1)
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We have

a = −

[

exp

{∫ 1

0

( √
−f ′(1)

(2F (t))1/2
−

1
(1 − t)

)

dt

}]2

f ′(1),

and the uniform bound

sup
uh+v∈Γ′

ε s.t. ε| log ε|√
−f′(1)

≤δh≤
2γε log ε√

−f′(1)

bj+1(h, v) − bj(h, v)
S∞ε2γ+1

→ε→0 k < 0.

Sketch of Argument. The formulae for
∑

i A−1
ri (h, v)〈L(uh + v), τh

i 〉 follow from
combing [CP89] Theorem 6.1, Lemma 3.3, Proposition 3.4. As f ′(1) < 0, we

have a > 0, and therefore ε
S∞

[
−2a exp

{
−
√
−f ′(1)δh/ε

}]
< 0.

We recall that

br(h, v) =
∑

i

A−1
ri (h, v)

〈
L(uh + v), τh

i

〉

+
∑

i,l,k

A−1
ri (h, v)

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

ε2γ 〈σk(h, v), σl(h, v)〉

+
∑

i

A−1
ri (h, v)

∑

j

ε2γ
〈
τh
ij , σj(h, v)

〉
= T1 + T2 + T3

Since u ∈ Γ ε| log ε|√
−f′(1)

,ε
, we have that ‖v‖ ≤ ε3/2+δ, for what reason we may use

the same bounds for T2 and T3 as obtained in the sketch of argument of Claim
3.9:

|T2|+ |T3| ≤ O(ε)
(
o
(
ε−1
)

+ O
(
ε4γ−2

))
ε2γε+O(ε)ε2γO

(
ε4γ−2

)
≤ o

(
ε2γ+1

)

The further limits follow from the asymptotic expansion (4.1), which we
therefore also have for bj+1(h, v) − bj(h, v).

Claim 4.3. Suppose ρ∗∗ε ≤ δh < ε| log ε|√
−f ′(1)

and uh + v ∈ Γ′
ε.

Then, if one denotes the two interfaces between which the minimum distance
is attained by hj and hj+1, we have the same asymptotic expansion as in (4.1).

We have

sup
uh+v∈Γ′

ε s.t. ρ∗∗ε≤δh<
ε| log ε|√
−f′(1)

bj+1(h, v) − bj(h, v)
S∞ε2γ+1

→ε→0 −∞.

Sketch of Argument. The formulae for T1 follow from combing [CP89] Theorem
6.1, Lemma 3.3, Proposition 3.4.

We recall the expression for the drift bj(h, v).
By our assumption, we have ‖v‖ ≤ Cmapε

1/2.
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Thus the T2 term of the drift thus can be estimated in the following way
similarly to Claim 3.9:

|T2| ≤ O(ε)
(
O
(
ε−2

)
+O

(
ε−2

)
+O

(
ε−2
))

ε2γO(ε) ≤ O
(
ε2γ
)
.

The term T3 has exactly the same bounds as in Claim 3.9 and we can note that
|T3| ≤ Cε3/2.

The limits on the fast timescale follow from the asymptotic expansion (4.1),
which we therefore also have for bj+1(h, v) − bj(h, v).

Now we show that the probability of having minimum distance between the
interfaces larger than ρ∗∗ε when exiting the extended slow channel Γ′

ε is very
small:

Claim 4.4. Suppose u0 = uh + v ∈ Γ′
ε where ‖v‖ ≤ Cε1/2 for some C < Cmap

and Tε < Kε−2γ−1 K > 0 independent of ε, and suppose that E [‖v(0)‖p] ≤
Cpε

p/2 ∀p ≥ 2 for some Cp > 0. Let τ∗∗ be as in Chapter 3.
Then we have

P
[
δh(τ∗∗) > ρ∗∗ε

]
≤ Cqε

q ∀q > 0.

Sketch of Argument. Consider the linearised Allen-Cahn SPDE starting at 0,
i.e.

∂tz = ε2∂xxz + f ′(1)z + εγẆ

Then for ū = u − z we have

∂tū = ε2∂xxū + f(ū + z) − f ′(1)z = ε2∂xxū + f(ū) + C(x, t)z

for some bounded function C(x, t).
Except for the last term, which we can view as a perturbation on O(1)

timescales, this is exactly the same as the deterministic Allen-Cahn equation.
We will use the fact, that with high probability, the last term is small on O(1)
times, to show that with high probability we have the same behaviour as in the
deterministic case.

With w we shall now denote the deterministic Allen-Cahn equation starting
from the initial profile u0.

If we indeed have δh(τ∗∗) > ρ∗∗ε, then at t = 0 ∨ (τ∗∗ − 1) we have
δh(0∨(τ∗∗−1)) > ρ∗∗ε and ‖v(0 ∨ (τ∗∗ − 1))‖ < Cmapε

1/2. However, we know
from [CP89] Theorem 5.3 (5.6), that as long as we can map onto the slow
manifold, we have for some ν0, C0 > 0 the expression

‖w(t ∨ τ∗∗) − uH(w(t∨τ∗∗))
∞ ≤ ε1/2

√√
√
√C ′

N∑

j=1

〈
L(uh), τh

j

〉2
+ exp

(

−
1
2
C ′′t

)

C ′′′.
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But since
∥
∥w(t ∨ τ∗∗) − uH(w(t∨τ∗∗))

∥
∥ ≤

∥
∥w(t ∨ τ∗∗) − uH(w(t∨τ∗∗))

∥
∥
∞

, the same
inequality follows in L2-norm.

Claim 2.2 tells us that for all ν > 0 we have

P

[

sup
t∈[0,C′]

‖z‖∞ ≤ εγ−1/2−ν

]

≤ 1 − Cqε
q ∀q > 0.

Thus on O(1) times we have (since L2 bounds are smaller than L∞ bounds
and u = ū + z)

P
[
‖w − ū‖ ≤ εγ−1/2−ν

]
≤ 1 − Cqε

q ∀q > 0.

Since ‖v(τ∗∗)‖ ≤
∥
∥ū(τ∗∗) − uH(ū(τ∗∗))

∥
∥ + ‖z(τ∗∗)‖, this implies that at τ∗∗ we

have

P
[
‖v(τ∗∗)‖ ≥ Cmapε

1/2
]
≤ Cqε

q ∀q > 0,

since (as noted above) for minimal distances larger than ρ∗∗ε, ‖v‖ is bounded
above by a term smaller than Cmapε

1/2.
This however means that we did with probability 1 −Cqε

q ∀q > 0 not reach
τ∗∗ for a different reason than the minimal distance becoming ρ∗∗ε.

This however is a contradiction, and thus we have proven that with proba-
bility 1 − Cqε

q ∀q > 0 we reach τ∗∗ because of the minimum distance reaching
ρ∗∗ε.

Let K > 0 be large. Define the stopping time ν = Kε−2γ−1 ∧ inf{t > 0 :
δh0 = 2ε| log ε|√

−f ′(1)
or ‖v‖ ≥ ε3/2+δ or ‖v‖∞ ≥ 1 or ‖z‖ ≥ ε3/2} for some small

δ > 0.

Claim 4.5. Suppose u0 ∈ Γ 2ε| log ε|√
−f′(1)

,ε
and Tε < Kε−2γ−1, K > 0 independent of

ε, and suppose that E [‖v(0)‖p] ≤ Cpε
(3/2+δ)p ∀p ≥ 2 for some δ > 0, Cp > 0.

Let u(x, t) = uh(x, t) + v(x, t) solve (1.1) for t > 0; ν is as previously defined.
Then the following inequalities hold:

E [‖v(ν)‖p] ≤ E [‖v(0)‖p] + C ′
pTεε

(3/2+δ)p ≤ DpTεε
(3/2+δ)p ∀p ≥ 2

for some C ′
p, Dp > 0 independent of ε and dependent on p, as well as

P
(
‖v(τ∗)‖ ≥ ε3/2+δ or ‖z(ν)‖ > ε3/2+δ

)
≤ DrTεε

2δr ∀r ≥ 2,

P
(
‖v(ν)‖ ≥ ε3/2+δ or ‖v(ν)‖∞ ≥ 1 or ‖z(ν)‖ > ε3/2+δ

)
= O(eε).

Sketch of Argument. This is a special case of Claim 3.7, where we take ψ 2ε| log ε|√
−f′(1)

instead of ψd.
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Now, crucially, we show that the time it takes from having a minimum
distance ξε between our interfaces to having ρ∗∗ε converges to 0 on the fast
timescale:

Claim 4.6. Let for t = 0 u0 = uh
0 + v ∈ Γξε,ε with δh0 = ξε and all other

distances between neighbouring interfaces bounded below by ε1/2−κ for some 1
2 ≥

κ > 0. Then, with a probability converging to 1 as ε → 0, we have at τ∗∗ that
u(τ∗∗) = uh + v ∈ Γ′

ε with δh = ρ∗∗ε. Furthermore, for all k > 0, μ > 0 we have

P
[
ε2γ−1+μτ∗∗ < k

]
≥ 1 − Cq,k,μεq ∀q > 0.

Sketch of Argument. Claims 4.2, 4.3 and 4.4 give us an asymptotic expansion
of the semimartingale expression for δh ≤ 2γε| log ε|√

−f ′(1)
and a probability asymptot-

ically small in ε of it leaving Γ′
ε before the critical distance is reached.

Recall from Claim 3.2 that our semimartingale expression is

dhk = bk(h, v)dt + εγ〈σk(h, v), dW 〉

Clearly,

Hk(t) = hk(0) +
∫ t

0

εγ〈σk(h, v), dW (x, s)〉 = hk(t) −
∫ t

0

bk(h, v)dt

is a martingale. Then by the Dambis-Dubins-Schwartz theorem, we can denote
Hk(t) as a time-changed Brownian motion

Hk(t) − Hk(0) = B

(

ε2γ

∫ t

0

〈σk(h, v), σk(h, v)〉ds

)

,

where B(∙) is a standard Brownian motion. But from Claims 4.2, 4.3, 4.4 we
know that our drift points strictly into the direction of the neighbouring interface
if we are below the distance 2γε| log ε|√

−f ′(1)
; this means that bk(h, v) − bk−1(h, v) is

strictly negative in this case; Claim 3.9 and Claim 3.7 tell us that the drift is
with high probability small for larger distances, so we get

P
[
|(hk(t) − hk−1(t)) − (Hk(t) − Hk−1(t))| ≥ Cε2γ+1

]
≤ Cqε

q.

Clearly, Ĥk(t) = Hk(t) − Hk−1(t) can also be denoted as a time-changed
Brownian motion B(ε2γ

∫ t

0
‖σk(h, v) − σk−1(h, v)‖2ds) starting at ξε.

We note from the second part of Claim 3.8 that ∀k

P

[∣∣
∣
∣
∣

∫ t

0
‖σk(h, v) − σk−1(h, v)‖2

ds

ε

∣
∣
∣
∣
∣
< C

]

≥ 1 − Cqε
q ∀q > 0

for some C > 0 while

P

[∣∣
∣
∣
∣

∫ t

0
‖σk(h, v) − σk−1(h, v)‖2

ds

εp

∣
∣
∣
∣
∣
> M

]

≥ 1 − Cqε
q ∀q > 0 ∀p > 1 ∀M > 0.
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We observe that τ∗∗∗, the first time Ĥk(t) hits the level ρ∗∗ε is strictly greater
than τ∗∗, unless τ∗∗ occurs because of leaving the slow channel other than by
achieving the critical distance. However, this would happen with a probability
asymptotically small in ε (cf. Claim 3.2).

Let μ > 0. Using Doob’s martingale inequality applied to Ĥk (c.f. e.g.
[RY99]), we note that for all k > 0 we have

P
[
ε2γ−1+μτ∗∗∗ < k

]
≥ 1 − Cq,kεq ∀q > 0.

However, this immediately implies

P
[
ε2γ−1+μτ∗∗ < C

]
≥ 1 − Cqε

q ∀q > 0,

which completes the sketch of argument.

Sketch of argument of Claim 4.1. Initially, u is still in Γξε,ε and we can write
down the semimartingale expression of its interfaces given in Claim 3.2 by Claim
4.4.

Using Claim 4.6 we note that with a probability converging to 1 as ε → 0,
the two interfaces of initial distance ξε are moving towards each other until they
reach the distance ρ∗∗ε. The time taken for this converges to 0 on the fast
timescale.

We now have a profile of u where one interface pair has the distance ρ∗∗ε,
while all other interface pairs are bounded below by cε1/2−κ for some 1

2 >
κ > 0, c > 0; indeed the probability of two interface pairs having distance ρ∗∗ε
converges to 0 as ε → 0.

In a similar manner to chapter 2, we now consider the difference between
the stochastic Allen-Cahn equation and the linear stochastic heat equation:

∂ū

∂t
= ε2

∂2ū

∂x2
+ f(ū) + (f ′(ū) − f ′(1)) z + z2

∫ 1

0

(1 − τ)f ′′ (ū + τz) dτ

Like in chapter 2, we denote by w the solution to the deterministic Allen-
Cahn PDE and now note

∂‖ū − w‖∞
∂t

= sup
l∈∂‖ū−w‖

〈l, ε2
∂2(ū − w)

∂x2
+ f(ū) − f(w) + C(x, t)z〉

≤ sup
l∈∂‖ū−w‖

〈l, f(w + (ū − w)) − f(w) + Cz〉

≤ |f ′(0)| ‖ū − w‖∞ + C‖z‖∞.

Gronwall’s inequality implies

‖ū − w‖∞ ≤ C‖z‖∞e|f
′(0)|t,

at the time δ| log ε|
|f ′(0)| for some δ < γ − 2 this becomes
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‖ū − w‖∞ ≤ C‖z‖ε−δ,

so on times of order 1 or up to δ̂| log ε|
|f ′(0)| for some δ̂ < γ − 2 the difference

between the two is a term within the size of the orthogonal distance in the slow
channel - the two are roughly behaving in the same way. This is because with
high probability (converging to 1 as ε → 0) ‖z‖ ≤ εγ−1/2−μ for μ > 0 arbitrarily
small, so that with high probability we have ‖ū − w‖∞ ≤ Cεγ−1/2−μ−δ̂ =
Cε3/2+π, where π > 0 can be arbitrarily small, provided that δ̂ > 0 is small
enough. Since this term is smaller than the orthogonal distance to the slow
manifold in the slow channel, this means that we can ”track” the distance to the
slow manifold of our actual solution approximately by w with high probability.

Our initial profile is (with probability converging to 1 as ε → 0) in L2 norm
at an O(ε2) distance to the slow manifold, except for a ρ∗∗ε neighbourhood,
whose L2 norm is clearly O(ε) since the solution is bounded by 2 with high

probability and therefore there exists uh′
s.t.

∥
∥
∥u0 − uh′

∥
∥
∥→ε→0 0, thus our pro-

file fulfills the conditions of Claim 7.4; therefore Claim 7.4 immediately implies
that there exists an O(1) time after which the distance of w in L2 norm to a slow
manifold configuration is d

2 , if we denote the original distance by d. Iterating
this eventually leads to a distance smaller than ε3/2; for the last interval solving
the exponential error bound for time like in the sketch of argument of Claim

2.4 yields that after C| log ε| time (C > 0) we have
∥
∥
∥w(x) − uh′

(x)
∥
∥
∥ ≤ ε3/2+δ,

where h′ denotes the interface configuration of the new slow manifold element
with configuration h′ = H (w(C| log ε|)) which is in a neighbourhood of size
ε1/2−k (for some k > 0) of the original configuration. We now use Claim 2.2
and the bound on ‖ū − w‖∞ to obtain

P
[∥∥
∥ū(x) − uh′

(x)
∥
∥
∥ < ε3/2+δ

]
≥ 1 − Cpε

p

for some Cp > 0. The logarithmic time in the end is split up into intervals
of size δ| log ε|

|f ′(0)| for δ < γ − 2: after each interval we restart the ”approximation
using the deterministic equation” with the current solution to the stochastic
Allen-Cahn equation as initial profile. This way our error terms never get larger
than the orthogonal distance to the slow manifold in the slow channel, and the
exponential contraction of Claim 7.4 will eventually yield that the solution of
the stochastic Allen-Cahn equation is in the slow channel.

Since by the virtue of Claim 2.2, u is w.h.p the same as ū on each time-
interval, the result follows.

For the statement of the interfaces, the fact that the new configuration does
not include the annihilated interface pair is trivial. To show that the remaining
interfaces are in a neighbourhood of size c′ε1−k for some small k > 0, c′ of their
initial position, we note, similarly to the sketch of argument of Claim 3.2, that
a martingale approximation of the interfaces will with a probability converging
to 1 as ε → 0 only move by a distance bounded by ε2−k ∀k > 0 while the
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critical interface pair reaches the distance ρ∗∗ε. Once the critical interface pair
has reached the distance ρ∗∗ε, we note that each time we apply Claim 7.4 the
new interfaces are in a neighbourhood of size ρε around the old interfaces for
some ρ > 0, while the ”stochastic component” only contributes changes of order
ε3/2+δ for some δ > 0. Thus the statement follows.



5. SHARP INTERFACE LIMIT

In this chapter we consider the time-rescaled solution to the stochastic Allen-
Cahn equation, to finally obtain the main result of this work, i.e. that in the
sharp interface limit the interfaces weakly converge to annihilating Brownian
motions.

We now rescale time onto the previously mentioned timescale t′ = S−1
∞ ε2γ+1t

to obtain that the phase separation and generation of metastable patterns take
a time of order o(1) with high probability.

From Claim 3.2 we know that the interface motion inside the slow channel
converges weakly in law to a Brownian motion stopped at the first hitting time
as ε → 0 on the timescale t′.

On the fast timescale, with a probability converging to 1 as ε → 0, annihila-
tions take a time of order o(1).

We now set up the notation:
Firstly, for each 2N -dimensional initial interface position h0 we define Bh0,1(t)

to be a 2N -dimensional standard Brownian motion on S1 starting at h0; sim-
ilarly, we define (independently from it) Bh′

0,2(t) to be a 2N − 2-dimensional
standard Brownian motion on S1 starting at h′

0 and carry on defining and
denoting independent standard Brownian motions in this way until we reach
dimension 2.

We define the first hitting time of Bh0,i started at h0 as

σh0,i = infj 6=k

{
t : Bh0,i

j (t) = Bh0,i
k (t)

}

and h′
0

(
σh0,i

)
= Bh0,i

(
σh0,i

)
\
{

Bh0,i
K

(
σh0,i

)
, Bh0,i

J

(
σh0,i

)}
, where Bh0,i

K

(
σh0,i

)
=

Bh0,i
J

(
σh0,i

)
for some K = J .

We define the limiting process of u
(
S∞ε−2γ−1t

)
:

For 0 ≤ t ≤ σh0,1 we have

us(x, t) =






... ...

−1 for Bh0,1
2N − 1 ≤ x < Bh0,1

1 (t)
1 for Bh0,1

1 ≤ x < Bh0,1
2 (t)

... ...

Similarly, for σh0,1 ≤ t ≤ σh0,1 + σh′
0(σ

h0,1),2 we have

us(x, t) =






... ...

−1 for B
h′
0(σh0,1),2

2N − 1 ≤ x < B
h′
0(σh0,1),2

1 (t)

1 for B
h′
0(σh0,1),2

1 ≤ x < B
h′
0(σh0 ,1),2

2 (t)
... ...
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Etc.
We now define a mapping I which maps the function onto the slow manifold

if possible, and otherwise gives the last known such interface configuration.
For u ∈ Γξε,ε we define the mapping simply as

I(u) = H(u),

at the initial stage where u ∈ Xh0,0
ε we define I as

I(u0) = h0.

Finally, whenever u leaves Γξε,ε, we define I(u) to be the last defined value
H(u).

Claim 5.1. Sharp interface limit
Given u0(x) ∈ Xh0,0

ε , for t > 0 we have that u(t) solves (1.1).
In the limit ε → 0, its time-rescaled process u

(
S∞ε−2γ−1t

)
weakly converges

to us(t) in law in the L2 topology for positive times. Between time zero and
positive times there is possibly a discontinuity, however not in the position of
the interfaces.

In particular, with a probability converging to 1 as ε → 0, within a finite
time the solution obtains a constant profile of either +1 or −1 with fluctuations
converging to 0 as ε → 0.

Sketch of Argument. We prove this by induction.
Firstly, suppose u0 ∈ X∅,0

ε has no sign-changing interfaces, i.e. (for ε → 0)
we have u0 ≥ 0 ∀x ∈ (0, 1) or u0 ≤ 0 ∀x ∈ (0, 1). Then we may apply Claim 2.1
to obtain that there exists a suitable C ≥ 1

|f ′(0)| , s.t. for t1 = C| log ε| we have

sup
u0∈X∅,0

ε

P [u(t1) /∈ Γξε,ε] ≤ Cεε
p.

However we note that in this case, Γξε,ε =
{
±1 + v : ‖v‖ ≤ ε3/2+δ

}
.

We note that the time-rescaled solution u
(
S∞ε−2γ−1t

)
we are considering

is thus in the limit ε → 0 instantly converging to ±1 with probability 1, as the
time becomes C| log ε|ε2γ+1, which converges to 0 as ε → 0.

We are now in the position to apply Claim 3.1, which tells us that in the
limit ε → 0 the minimum of an arbitrarily chosen constant C > 0 and the first
hitting time of the interfaces (which is ∞, as there are no interfaces) the (non-
existing) interfaces perform independent Brownian motions. Hence we will see
a constant profile ±1 until the time 1.

We have shown that in the limit ε → 0, the expression u
(
S∞ε−2γ−1t

)
in-

stantly converges to ±1, and stays constant up to an arbitrarily chosen finite
positive stopping time. The sign depends on limε→0 u0: if limε→0 u0 is non-
negative, then we converge to 1; if limε→0 u0 is non-positive, we converge to
−1.

Thus, we have proven the statement for 0 initial sign-changes.
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Now suppose the statement is true for u0 ∈ Xh0,0
ε with |h0| = 2K, i.e. 2K

initial sign-changes.

Consider u0 ∈ X
h′
0,0

ε where |h′
0| = 2K + 2.

We may apply Claim 2.1 to obtain that there exists a suitable C ≥ 1
|f ′(0)| ,

s.t. for t1 = C| log ε| we have

sup
u0∈X

h′
0,0

ε

P [u(t1) /∈ Γξε,ε] ≤ Cpε
p.

In the limit ε → 0, we have that u
(
S∞ε−2γ−1t

)
is instantly inside Γξε,ε ={

uh + v : ‖v‖ ≤ ε3/2+δ
}
, as the time becomes C| log ε|ε2γ+1 after rescaling. But

we know (c.f. e.g. [CP89]) that outside a neighbourhood of size 2ξε of h′
0(which

is a set of Lebesgue measure zero in the limit ε → 0) , uh converges to ±1,
the sign depending on which sign limε→0 u0 has in the interval between the
sign-changes. This is exactly the definition of the shape of us at this stage.

We are now in the position to apply Claim 3.1 together with Skorokhod’s
representation theorem, which tells us that in the limit ε → 0, the interfaces
h
(
S∞ε−2γ−1t

)
= I

(
u
(
S∞ε−2γ−1t

))
converge with probability 1 to annihilating

Brownian motions stopped at the minimum of their first hitting time and an
arbitrary constant. Since during this period (by Claim 3.2) we may denote
u(x, t) = uh(t) + v(x, t), where ‖v‖ ≤ ε3/2+δ and uh(t) converging to ±1 (the
sign being the same as the sign of u in this interval) outside a neighbourhood
of h of size 2ξε (which is in the limit ε → 0 a set of Lebesgue measure 0), it
follows that in the the limit ε → 0 the term u

(
S∞ε−2γ−1t

)
converges weakly to

us stopped at σh′
0 with probability 1 in the L2 topology.

For finite ε, at the stopping time we obtain (with a probability converg-
ing to 1 as ε → 0) that u ∈ Γξε,ε where exactly one pair of the interfaces
h
(
S∞ε−2γ−1t

)
= I

(
u
(
S∞ε−2γ−1t

))
has distance ξε to each other.

We are now in the position to apply Claim 4.1, to note that with a probability
converging to 1 as ε → 0 one has that within o(1) (for some small ι > 0) time
these two interfaces will be annihilated to obtain a new interface configuration
h′; with the same probability, the solution reenters Γξε,ε within this time.

With a probability converging to 1 as ε → 0 this new configuration h′ is
inside a neighbourhood of size ε1/2−κ (for some 1/2 > κ > 0) of the initial
configuration h, but without the annihilated interfaces. Therefore, in the sharp
interfaces limit, we instantly see how the two hitting interfaces disappear and
all other interfaces stay the same. Thus u

(
S∞ε−2γ−1t

)
instantly converges to

us(t) with probability 1 in the L2 topology. We note that now |I(us(t))| = 2K.
Hence, by induction, it follows that the statement it true for all even numbers

of sign-changes in the initial condition. This completes the sketch of argument.



6. CORRELATED NOISE

In this work we considered the Allen-Cahn equation perturbed by space-time
white noise. However, one could have other forms of noise as well, in particular,
noise with a trace class covariance operator.

For some general background of such noise, [Blö05] is a nice reference.
Quite interestingly, to take the sharp interface limit in this case, the time-

scale onto which we need to rescale will be different for such smooth noise.
Similarly to the white noise case, the asymptotic analysis for noise with

trace-class covariance operator (we will later take slightly more regularity) gives
us

dhk = o
(
ε2γ+2

)
dt + εγ

〈
ε

S∞
uh

k + o(ε), dW

〉

,

where the error terms are w.h.p. in the L∞ norm. Thus, the only term con-
tributing to the limit is

εγ+1

〈
uh

S∞
, dW

〉

.

Now, depending on the type of noise chosen, dW can have a scaling behaviour in
space ranging from a square-root (space-time white noise) to a linear mapping
(trace-class). We know that in the space-time white noise case the correct
timescale is t′ = S−1

∞ ε2γ+1t. For noise smooth in space, in order to see the sharp
interface limit, it will be t′ = S−2

∞ SQε2γ+2t for some and each interface becomes
a standard Brownian motion up to the stopping time (correlated to the other
interfaces).

The reason we rescale in such a fashion is qualitatively that for space-time
white noise, we want to integrate the noise in space against the square root of a
Dirac Delta (because of the spatial scaling effect of the noise) to obtain a finite
limit, while for noise with strong correlations in space we want to to integrate
in space against an actual Dirac Delta. Hence the choice of the powers of ε
in the time-scales. The constants are chosen so that each interface performs a
Brownian motion of diffusion coefficient 1.

More generally, let us denote space-time white noise as N(x, t), and our noise
perturbing the equation as W (x, t) = Q1/2N(x, t). Then

εγ+1

〈
uh

S∞
, dW

〉

εγ+1

〈
uh

S∞
, dW

〉

= ε2γ+2

〈
Quh

S∞
,

uh

S∞

〉

dt ≈
SQ

S2
∞

ε2γ+1+Cdt,
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where C depends on Q.
For space-time white noise, we have C = 1 (the maximal value) and for

trace-class noise C = 0 (the minimal value). Depending on how the eigenvalues
of Q decay, all other values in between are possible.

The timescale on which we then see annihilating correlated Brownian mo-
tions in the sharp interface limit will clearly be t′ = S−2

∞ SQε2γ+2t.
In other words, the timescale on which our interface motion converges to

something finite depends on the choice of noise.
We shall now derive rigorous results for noise with a trace-class covariance

operator:

Definition 6.1. Definition of the noise
W is a Wiener process in the underlying Hilbert space H = L2(0, 1) (cf.

[DPZ92]),the covariance operator is denoted Q. For an orthonormal basis of H
denoted {ej(∙)}∞j=1 and a sequence of independent standard Brownian motions
{βj(t)}∞j=1we can denote

W (t) =
∞∑

k=1

αkβk(t)ek.

where
Qek = α2

kek,
∑∞

k=1 kα2
k < ∞.

Remark: Our results would probably still be true for traceQ =
∑∞

k=1 α2
k <

∞, however the sketch of argument of convergence would become very technical.
Similarly to white noise, we use a little claim for our various results (although

in theory we could do without it, as we can use Itô calculus):
We have

γ > 1.

The following section corresponds to chapter 2:

As before, but with different noise, we denote

∂tz = ε2∂xxz + f ′(1)z + εγẆ .

Claim 6.2. Let z(∙, t) be constantly equal to 0 at time 0.
For all ν, q, r > 0 there exist C,D > 0 independent of ε, ν, r s.t.

P



 sup
t∈[0,rε−(2γ+2)]

‖z(∙, t)‖ > Dq,r,νεγ−ν



 ≤ Cq,r,νεq ∀q > 0 (6.1)

and

P



 sup
t∈[0,rε−(2γ+2)]

‖z(∙, t)‖∞ > Dq,r,νεγ−ν



 ≤ Cq,r,νεq ∀q > 0. (6.2)
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Sketch of Argument. In the same way as Claim 2.2.

We now come to the first proper result, which is very similar, due to the
deterministic flow dominating:

Define the new critical distance ξ′ε = (2γ+2+β)ε| log ε|√
−f ′(1)

for some small 2 > β >

0.
Denote

Γ′′
c,ε :=

{
uh + v : h ∈ Ωc, ‖v‖ ≤ ε1+δ

}

for some fixed δ > 0 s.t. γ − 1 > δ > 0.
Our slow channel is defined as Γ′′

ξ′
ε,ε.

Claim 6.3. Let u0(∙) ∈ Xh0,0
ε and u(∙, t) for t > 0 solve (1.1).

Then there exists a suitable C ≥ 1
|f ′(0)| , s.t. for t1 = C| log ε| we have

sup
u0∈X

h0,0
ε

P
[
u (∙, t1) /∈ Γ′′

ξ′
ε,ε

]
≤ Cpε

p

h′ = H (u(∙, t1)) associated to u(∙, t1) ∈ Γ′′
ξ′

ε,ε fulfils

P

[

max
1≤i≤N

|hi − h′
i mod 1| > kε

√
| log ε|

]

≤ Cpε
p.

Sketch of Argument. In the same way as Claim 2.1, except that we use Claim
6.2 rather than Claim 2.2.

This section corresponds to chapter 3:

The ”heart” of the work is the main difference in results compared to the
white-noise case. We firstly derive the semimartingale expression, based on the
the assumption that the interfaces are a semimartingale; later we will prove this.

Derivation of the semimartingale notation
The interfaces hk are a semimartingale as denoted above. This will be prop-

erly proven in the sketch of argument of Claim 6.7, to first be able to guess what
this semimartingale notation is we assume this and prove it later on.

dhk = bk(h, v)dt + 〈σk(h, v), dV 〉

By the Itô formula, we have

du =
N∑

j=1

uh
j dhj +

1
2

∑

1≤k,l≤N

uh
kl(dhk, dhl) + dv (6.3)

with uh
kl = ∂2uh

∂hk∂hl
.
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We now take the inner product in space of (1.1) with τh
i to get for any

i = 1, ..., N

〈
τh
i , du

〉
=
〈
L(u), τh

i

〉
dt +

〈
τh
i , dV

〉
,

where we defined L(u) := ε2uxx + f(u).
Taking the inner product with (6.3), we obtain

〈
τh
i , du

〉
=

N∑

j=1

〈
uh

j , τh
i

〉
dhj +

1
2

∑

1≤k,l≤N

〈
uh

kl, τ
h
i

〉
(dhk, dhl) +

〈
τh
i , dv

〉
(6.4)

In the remainder of this , any summation is on 1, 2, ..., N for any index.
To eliminate dv, we apply the Itô-formula to the orthogonality condition〈

v, τh
i

〉
= 0, and obtain

〈
τh
i , dv

〉
= −

〈
v, dτh

i

〉
−
〈
dv, dτh

i

〉

= −
∑

j

〈
v, τh

ij

〉
dhj −

1
2

∑

j,k

〈
v, τh

ijk

〉
(dhj , dhk) −

∑

j

〈
τh
ij , dv

〉
dhj .

Now we use dv = du − duh and (dt, dt) = 0 as well as (dV, dt) = 0, i.e.

−
∑

j

(〈
τh
ij , dv

〉
, dhj

)

= −
∑

j

(〈
τh
ij , du

〉
, dhj

)
+
∑

j

(〈
τh
ij , duh

〉
, dhj

)

= −
∑

j

〈
τh
ij ,L(u)

〉
(dt, dhj) −

∑

j

(〈
τh
ij , dV

〉
, dhj

)
+
∑

j,k

〈
τh
ij , u

h
k

〉
(dhk, dhj)

= −
∑

j

(〈
τh
ij , dV

〉
, dhj

)
+
∑

j,k

〈
τh
ij , u

h
k

〉
(dhk, dhj) (6.5)

where the inner product of the stochastic Allen-Cahn equation with uh
ij was

taken and the following used:

(dhj , dt) = bj (h, v)(dt, dt) + (〈σj(h, v), dV 〉 , dt) = 0.

Hence we have

〈
τh
i , dv

〉
= −

∑

j

〈
v, τh

ij

〉
dhj −

1
2

∑

j,k

〈
v, τh

ijk

〉
(dhj , dhk)

−
∑

j

(〈
dV, τh

ij

〉
, dhj

)
+
∑

j,k

〈
uh

k , τh
ij

〉
(dhj , dhk) . (6.6)
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Combining this with (24) and (25) yields

∑

j

[〈
uh

j , τh
i

〉
−
〈
v, τh

ij

〉]
dhj =

〈
L(u), τh

i

〉
dt

+
∑

l,k

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

(dhl, dhk)

+
∑

j

(〈
dV, τh

ij

〉
, dhj

)
+
〈
τh
i , dV

〉
. (6.7)

Claim 6.4. For all k, l ≤ N we have

(〈σk(h, v), dV 〉, 〈σl(h, v), dV 〉) = ε2γ〈Qσk(h, v), σl(h, v)〉dt.

Sketch of Argument. Since (dβj , dβi) = δijdt and W (t) =
∑∞

k=1 αkβk(t)ek for
an orthonormal basis {ek(∙)}∞k=1 of L2(0, 1) and independent Brownian motions
{βk}∞k=1, Parseval’s identity yields the following:

(〈σk(h, v), dV 〉, 〈σl(h, v), dV 〉)

= ε2γ
∑

i,j

〈σk(h, v), αiei〉〈σl(h, v), αjej〉(dβj , dβi)

= ε2γ
∑

j

α2
j 〈σk(h, v), ej〉〈σl(h, v), ej〉dt = ε2γ〈Qσk(h, v), σl(h, v)〉dt.

In an analogous way to this claim one can easily obtain (using (dt, dV ) = 0)
(〈

τh
ij , dV

〉
, dhj

)
=
(〈

τh
ij , dV

〉
, 〈σj(h, v), dV 〉

)
= ε2γ

〈
Qτh

ij , σj(h, v)
〉
dt.

For short-hand notation, we define the matrix A(h, v) = (Aij(h, v)) ∈ RN×N

by
Aij(h, v) =

〈
uh

j , τh
i

〉
−
〈
v, τh

ij

〉
, (6.8)

For an invertibility condition of this matrix, see Claim 3.6; the stability shown in
Claim 6.5 implies that the condition of Claim 3.6 does indeed hold true in Γ ′

ε with
a probability converging to 1 as ε → 0 until two interfaces are at distance ξ′ε. The
inverse matrix of A(h, v) is then denoted by A−1(h, v) =

(
A−1

ij (h, v)
)
∈ RN×N .

We now arrive for all i ∈ {1, ..., N} at

∑

j

Aij(h, v)dhj

= 〈L(uh+v), τh
i 〉dt+

∑

l,k

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

ε2γ 〈Qσk(h, v), σl(h, v)〉 dt
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+
∑

j

ε2γ
〈
Quh

ij , σj(h, v)
〉
dt + 〈τh

i , dV 〉.

To obtain the equation for dh we use that dh = A(h, v)−1A(h, v)dh.
Therefore the final equation for h (given that u is inside the slow channel)

is given for any r = 1, ...N by

dhr =
∑

i

A−1
ri (h, v)〈L(uh+v), τh

i 〉dt

+ε2γ
∑

i,l,k

A−1
ri (h, v)

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

〈Qσk(h, v), σl(h, v)〉dt

+ε2γ
∑

i

A−1
ri (h, v)

∑

j

〈
Qτh

ij , σj(h, v)
〉
dt +

∑

i

A−1
ri (h, v)

〈
τh
i , dV

〉
. (6.9)

Relating this to the original ansatz means

σr(h, v) =
∑

i

A−1
ri (h, v)τh

i . (6.10)

Therefore one can write down br(h, v) in terms of σj(h, v):

br(h, v) =
∑

i

A−1
ri (h, v)〈L(uh+v), τh

i 〉

+
∑

i,l,k

A−1
ri (h, v)

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

ε2γ〈Qσk(h, v), σl(h, v)〉

+
∑

i

A−1
ri (h, v)ε2γ

∑

j

〈
Qτh

ij , σj(h, v)
〉

(6.11)

Claim 6.5. Sharp interface limit in the slow channel
Let our initial condition u0(∙) at t = 0 be inside Γ′′

ξ′
ε,ε. Denote its interface

configuration at t = 0 by h0 = H(u0(∙)). For t > 0, u(∙, t) solves (1.1). We
assume that δh0 ≥ ξ′ε with all other distances of neighbouring interfaces bounded
below by c > 0.

Denote ĥ(t) = H
(
u
(
SQS−2

∞ ε2+2γt, ∙
))

and let C > 0 be large.

Then as ε → 0, ĥ(t) stopped at τ̂∗ = C∧ inf
{
t > 0 : δh(t) = ξ′ε or ‖v‖ > ε1+δ

or ‖v‖∞ ≥ 1 or ‖z‖ > ε1+δ
}
, converge in law to correlated Brownian motions

on S1 starting at h0 and stopped at C ∧ μ, where μ is the first hitting time of
two neighbouring interfaces.

Their generator is given as

G =
∑

i,k,l

SQklS
−1
Q α2

i (−1)k+lei(hk)ei(hl)∂
2
kl.

We used the notation
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SQkmS−1
Q = 4S−1

Q

∞∑

r=1

α2
rer(hk − hm)

SQ = 4
∞∑

r=1

α2
rer(0) .

The sketch of argument is a consequence of the more detailed Claim on the
semimartingale representation. Note that the sketch of argument of this claim
makes extensive use of claims presented afterwards in this section.

Claim 6.6. Interface motion inside the slow channel
Let Tε = CS−1

Q S∞ε−2γ−2, C > 0 be large and independent of ε. Let further-
more the initial profile u0(∙) at t = 0 be inside Γ′

ε. Denote its interfaces at t = 0
by h0 = H(u0(∙)). For t > 0, u(∙, t) solves (1.1). We assume that δh0 ≥ ρ∗∗ε
with all other distances of neighbouring interfaces bounded below by c > 0.

Then up to the first exit time

τ∗∗ = CS2
∞

SQ
∧ inf {t > 0 : δh0 = ερ∗∗ or

u /∈ Γ′
ε with

〈
v, τh

j

〉
= 0 ∀j or ‖v‖∞ ≥ 1 or ‖z‖ > ε1+δ

}

we have that the interfaces of u, h = H(u(∙, t ∧ τ∗∗)) are a semimartingale
denoted by

dhk = bk(h, v)dt + εγ〈σk(h, v), dW 〉

where

σr(h, v) =
∑

i

A−1
ri (h, v)uh

i

and

br(h, v) =
∑

i

A−1
ri (v, h)〈L(uh + v), uh

i 〉

+ε2γ
∑

i,l,k

A−1
ri (v, h)

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

〈Qσk(h, v), σl(h, v)〉

+ε2γ
∑

i

A−1
ri (h, v)

∑

j

〈
Qτh

ij , σj(h, v)
〉
.

We have L(u) := ε2uxx +f(u) and A−1
ri (h, v) being the inverse of Ari(h, v) =

〈uh
r , τh

i 〉 − 〈v, τh
ri〉.

We have the following probability:

P
[
‖v(τ∗∗)‖ > Cmapε

1/2 or ‖v(τ∗∗)‖∞ ≥ 1
]
≤ Cqε

q ∀q > 0.

Now define

τ∗ =
CS2

∞

SQ
∧ inf

{
t > 0 : δh0 = ξ′ε or ‖v‖ > ε1+δ or ‖v‖∞ ≥ 1 or ‖z‖ > ε1+δ

}
.
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If at t = 0, the initial profile u0(∙) is in Γ′′
ξ′

ε,ε, then we can express the
behaviour of its interfaces H(u(t ∧ τ∗, ∙)) up to τ∗ as before, and before the
stopping time the following deterministic result holds:

|br(h, v)| ≤ Dεe−
√

−f ′(1)δh/ε + o
(
ε2γ+2

)

for some D > 0 independent of ε.
Define

SQ = lim
ε→0

∫ 1

0

(∫ 1

0

∞∑

r=1

α2
rer(y) τh

k (x − y)dy

)

τh
k (x)dx = 4

∞∑

r=1

α2
rer(0).

After the time-change ĥk(t′) = hk

(
S−2
∞ SQε2+2γt

)
, the time-rescaled stop-

ping time τ̂∗ = S−2
∞ SQε2+2γτ∗ is finite and the equation becomes

dĥk =
S2
∞bk

(
ĥ, v
)

SQε2+2γ
dt′ +

〈
S∞

ε
√

SQ
σk

(
ĥ, v
)

, dW

〉

with the following deterministic bound up to τ̂∗:

sup
t∈[0,τ̂∗]

∥
∥
∥
∥

S∞√
SQε

σk

(
ĥ, v
)
−

ε
√

SQ
uh

k

∥
∥
∥
∥
∞

≤ Fε1/2

for some F > 0 independent of ε.

In the sharp interface limit as ε → 0, the law of
(
ĥ1, ..., ĥN

)
stopped at τ̂∗

converges weakly to that of correlated Brownian motions (M1, ...,MN )
stopped at the minimum of their first hitting time and C.
Mk and Mm have the correlation

SQkmS−1
Q = 4S−1

Q

∞∑

r=1

α2
rer(hk − hm),

where

SQ =
∞∑

r=1

4α2
rer(0).

The generator is given as

G =
∑

SQklS
−1
Q α2

i (−1)k+lei(hk)ei(hl)∂
2
kl.

Sketch of Argument. The fact that the interfaces are a semimartingale, which
is exactly as stated here, follows from the derivation (based on the assumption
that the interfaces are a semimartingale) and the sketch of argument that the
interfaces are a semimartingale, given later in this section.

Starting in Γ′
ε the asymptotically small probability of leaving the slow chan-

nel other than by reaching the critical distance (or time CS−2
∞ SQε−2γ−2) follows
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from Claim 6.11 later in this . This completes the sketch of argument of the
first part of the Claim.

Whenever we will in the remainder of this sketch of argument apply Claim
6.7, we will apply it by setting d = ξ′ε in the definition of ψd.

From now on, we consider the regime starting in Γ′′
ξ′

ε,ε, which allows us to
use a number of Claims. The asymptotic expansion of the diffusion coefficient σ
follows from Claim 3.8 combined with Claim 6.7; for the drift b it follows from
Claim 6.8 combined with Claim 6.7. The stability of this system is a consequence
of Claim 6.7, i.e. the probability of ‖v‖ ≥ ε1+δ or ‖v‖∞ ≥ 1 or ‖z‖ > ε1+δ is
asymptotically small.

We now show that after a time-rescaling onto t′ = SQS−2
∞ ε2γ+2t the hk

weakly converge in law to Brownian motions with correlation structure SQkjS
−1
Q

stopped at τ∗. The intuition of it is that uh
r is close to a Dirac delta in the limit

ε → 0, so that since our noise is smooth in space, integrating it against a Dirac
delta function leads to a Brownian motion.

Denote by ĥk(t) = hk

(
SQS−2

∞ ε2γ+2t
)

and τ̂∗ = SQS−2
∞ ε2γ+2τ∗ our interfaces

and the stopping time on the fast timescale.
We firstly show that ĥk stopped at τ∗ is tight on C

(
[0, T ], S1

)
:

Let t, s > 0 and p > 0 be even. Then

E
[∣∣
∣ĥk (t ∧ τ̂∗) − ĥk (s ∧ τ̂∗)

∣
∣
∣
p]

= E








∫ t∧τ̂∗

s∧τ̂∗

bk

(
ĥ, v
)

SQS−2
∞ ε2γ+2

dr +
∫ t∧τ̂∗

s∧τ̂∗

〈
S∞√
SQε

σk

(
ĥ, v
)

, dW (x, r)

〉




p



≤ CpE








∫ t∧τ̂∗

s∧τ̂∗

bk

(
ĥ, v
)

SQS−2
∞ ε2γ+2

dr





p

+

(∫ t∧τ̂∗

s∧τ̂∗

〈
1

√
SQS−1

∞ ε
σk

(
ĥ, v
)

, dW (x, r)

〉)p




≤ CpE








∫ t∧τ̂∗

s∧τ̂∗

bk

(
ĥ, v
)

SQS−2
∞ ε2γ+2

dr





p

+

(∫ t∧τ̂∗

s∧τ̂∗

1

SQS−1
∞ ε2

〈
σk

(
ĥ, v
)

,Qσk

(
ĥ, v
)〉

dt

)p/2




≤ CpE







|t ∧ τ̂∗ − s ∧ τ̂∗| sup
r∈[s∧τ̂∗,t∧τ̂∗]

∣
∣
∣
∣
∣
∣

bk

(
ĥ, v
)

SQS−2
∞ ε2γ+2

∣
∣
∣
∣
∣
∣





p

+
(
C ′

p |t ∧ τ̂∗ − s ∧ τ̂∗|
)p/2





(the bound on the stochastic integral follows using the Burkholder-Davis-Gundy
inequality)

≤ Dp |t ∧ C − s ∧ C|p/2

(the last inequality follows because τ∗ ≤ C).

We used Claim 6.8 to bound

∣
∣
∣
∣

bk(ĥ,v)
S−2
∞ SQε2γ+2

∣
∣
∣
∣ (since we are inside Γ′′

ξ′
ε,ε) and the

fact that τ̂∗ ≤ C (by definition of τ∗) on the fast timescale to obtain the bound.
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We can therefore apply the Kolmogorov continuity theorem to obtain tight-
ness and hence the existence of a convergent subsequence. Subsequently, we will
show that all convergent subsequences have the same limit, and thus, the limit
ε → 0 is unique.

The following stochastic process is clearly a martingale:

M ε
k (t′) = ĥk(t′) −

∫ t′

0

bk

(
ĥ, v
)

S−2
∞ SQε2γ+2

ds

However, as we are on the fast timescale, this means for times 0 ≤ t′ ≤ τ̂∗

that

∣
∣
∣ĥk(t′) − M ε

k(t′)
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∫ t′

0

bk

(
ĥ, v
)

S−2
∞ SQε2γ+2

ds

∣
∣
∣
∣
∣
∣
≤ τ̂∗ sup

s∈[0,τ̂∗]

∣
∣
∣
∣
∣
∣

bk

(
ĥ, v
)

S−2
∞ SQε2γ+2

∣
∣
∣
∣
∣
∣

Thus using Claim 3.9 and Claim 3.7 we get for some C ′ > 0 that

P

[

sup
t′∈[0,τ̂∗]

∣
∣
∣ĥk(t′) − M ε

k(t′)
∣
∣
∣ > C ′

{
εβ + εδ

}
]

≤ Cqε
q ∀q > 0

and hence ĥk has a subsequence that weakly converges to the same limit as
M ε

k(t) in the sharp interface limit, which is a martingale we shall call Mk.
Thus using Claim 6.8 and Claim 6.7 we get for some C ′ > 0 that

P

[

sup
t′∈[0,t′′]

∣
∣
∣ĥk(t′) − M ε

k(t′)
∣
∣
∣ > C ′εδ

]

≤ Cqε
q ∀q > 0

for some δ > 0 and hence ĥk has a subsequence that weakly converges to the
same limit as M ε

k(t′) in the sharp interface limit, which is a martingale we shall
call Mk.

The fact that it is a martingale follows (c.f. e.g. [EK09] 8.10) because for
s > 0 we have

E

[
1

S−2
∞ SQε2

〈
σk

(
ĥ ((t + s ∧ τ∗)) , v

)
, σk

(
ĥ ((t + s ∧ τ∗)) , v

)〉

−
1

S−2
∞ SQε2

〈
σk

(
ĥ (t ∧ τ∗) , v

)
, σk

(
ĥ (t ∧ τ∗) , v

)〉]

= E

[
1

S−2
∞ SQε2

∫ 1

0

[
ε

S∞
τhk(t+s∧τ∗) + π (t + s ∧ τ∗, ε)

]2
dx

−
1

S−2
∞ SQε2

∫ 1

0

[
ε

S∞
τhk(t∧τ∗) + o (t ∧ τ∗, ε)

]2
dx

]
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= E

[
1

S−2
∞ SQε2

ε2

S2
∞

S∞

ε
+ o(1) −

1

S−2
∞ SQε2

ε2

S2
∞

S∞

ε
+ o(1)

]

≤ o(1) →ε→0 0

(we used Claim 3.8, π has the property |π(t, x)| ≤ o(ε) in the slow channel).
We now want to prove convergence to a stopped Brownian motion by show-

ing that the extension of the limiting process beyond its stopping time by a
Brownian motion is a Brownian motion; for this we use the Levy characterisa-
tion for each coordinate (in general our interfaces are correlated!).

Denote by τ the limit as ε → 0 of τ̂∗. We will show in the end of the sketch
of argument that this limit exists. Now we consider the following stochastic
process:

Zk(t) =

{
Mk(t) for t ≤ τ

Mk(τ) + Bk(t − τ) for t > τ

where Bk(t) are Brownian motions with correlations SQjkS−1
Q .

If we have k = j and use Claim 3.6 and Claim 6.7 we get ∀T > 0

P

[∣∣
∣
∣
∣

∫ T∧τ̂∗

0

(
dĥk, dĥk

)
− T ∧ τ̂∗

∣
∣
∣
∣
∣
≥ ε1/2

]

= P

[∣∣
∣
∣
∣

∫ T∧τ̂∗

0

S−1
Q ε−2 〈Qσk(h, v), σk(h, v)〉 dt′ − T ∧ τ̂∗

∣
∣
∣
∣
∣
≥ ε1/2

]

≤ Cqε
q

with a probability converging to 1 as ε → 0.
We used that inside the slow channel we have by Claim 3.8 that

ε−2 〈Qσk(h, v), σk(h, v)〉 = ε−2
〈
Q
[
ετh

k + o(ε)
]
, ετh

k + o(ε)
〉

=
〈
Qτh

k , τh
k

〉
+ o(1) =

〈
q ∗ τh

k , τh
k

〉
+ o(1),

where q(x) =
∑∞

i=1 α2
i e

2
i (x) is the kernel of Q. We used the following:

〈
q ∗ τh

k , τh
k

〉
=
∫ mj+2ε

mj

(
q ∗ τh

k

)
τh
k dx +

∫ mj+1−2ε

mj+2ε

(
q ∗ τh

k

)
(

−
duh

dx

)

dx

+
∫ mj+1

mj+1−2ε

(
q ∗ τh

k

)
τh
k dx

uh
j = −uh

x +
(
1 − χj

)
wj − χjwj+1

τh
j = γjuh

x

q ∗τh
k =

∫ mj+1

mj

q(t)τh
k (x− t)dt

=
∫ mj+2ε

mj

q(t)τh
k (x − t)dt +

∫ mj+1−2ε

mj+2ε

q(t)

(

−
duh

dx
(x − t)

)

dt
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+
∫ mj+1

mj+1−2ε

q(t)τh
k (x − t)dt

But (by a similar argument to [CP89] Lemma 8.1 combined with [CP89]
Lemma 7.9)

∣
∣
∣
∣
∣

∫ mj+2ε

mj

q(t)τh
k (x − t)dt

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

∫ mj+1

mj+1−2ε

q(t)τh
k (x − t)dt

∣
∣
∣
∣
∣

≤ Cε−1α ≤ Cε−1ε2γ+2+β →ε→0 0.

Now, we note by the definition of uh that

duh

dx
=
(
1 − χj

)
φj

x − χj
xφj + χjφj+1

x + χj
xφj+1.

Due to the definition of χj we have

∫ mj+1−2ε

mj+2ε

q(t)

(

−
duh

dx
(x − t)

)

dt

=
∫ hj−ε

mj+2ε

q(t)
(
−φj

x(x − t)
)
dt

+
∫ hj+ε

hj−ε

q(t)
(
−
(
1 − χj

)
φj

x(x − t) + χj
xφj(x − t) − χjφj+1

x (x − t) − χj
xφj+1(x − t)

)
dt

+
∫ mj+1−2ε

hj+ε

q(t)
(
−φj+1

x (x − t)
)
dt.

[CP89] Lemma 8.2 tells us that in [hj − ε, hj + ε] we have
∣
∣φj − φj+1

∣
∣ ,
∣
∣φj

x − φj+1
x

∣
∣ ≤

Cε−1 |αj − αj+1| ≤ C ′ε2γ+1+β so that
∫ hj+ε

hj−ε
q(t)

(
−
(
1 − χj

)
φj

x + χj
xφj(x − t) − χjφj+1

x (x − t) − χj
xφj+1(x−t)

)
dt =

∫ hj+ε

hj−ε
q(t)

(
−φj

x(x − t) + O
(
ε2γ+1+β

))
dt.

Since φj is monotone on [mj , hj ], [hj ,mj+1] and |φ ± 1| < δ by [CP89]
Lemma 7.2, we can conclude that |φj

x| ≤ C on these intervals for a suitable
C > 0. However as ε → 0, this constant becomes arbitrarily small. Thus∣
∣
∣
∫ hj−ε

mj+2ε
q(t)

(
−φj

x(x − t)
)
dt
∣
∣
∣ ,
∣
∣
∣
∫mj+1−2ε

hj+ε
q(t)

(
−φj+1

x (x − t)
)
dt
∣
∣
∣→ε→0 0.

To show that q ∗ τh
k = −2q (x − hk) , we approximate q in the interval [hk −

ε, hk + ε] as q(hk):
We note that for each c > 0, there exists a small enough ε > 0 s.t. |t−hk| ≥ c

implies
〈
q(hk),−φj

x(x − t)
〉

= q(hk)
∫ hj+ε

hj−ε

−φj
x(x − t)dx = 0

while
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〈
q(hk),−φj

x(x − hk)
〉

= q(hk)
∫ hj+ε

hj−ε

−φj
x(x − t)dx = −2q(hk).

Since as ε → 0, the constant approximation of q converges to q, this shows that

q ∗ τh
k →ε→0 q (x − hk) .

To complete the sketch of argument, we now only need to show that
∫ mj+1−2ε

mj+2ε

2q(x − hk)
duh

dx
dx →ε→0 q(0).

Similarly to before, we have that for each c > 0 there exists ε > 0 small enough
s.t. duh

dx < c outside of [hj − ε, hj + ε]. Thus it suffices to show that

∫ hj+ε

hj−ε

2q(x − hk)
duh

dx
dx →ε→0 4q(0).

By employing the same argument as before of constantly approximating q in
[hj − ε, hj + ε] we conclude that

〈Qσk(h, v), σk(h, v)〉ε→04q(0)

in the slow channel.
We note using Levy’s characterisation of Brownian motion that Zk(t) is a

Brownian motion.
We note for each pair j, k that ∀T > 0

P

[∣∣
∣
∣
∣

∫ T

0

(
dĥj , dĥk

)
− SQjkSQT

∣
∣
∣
∣
∣
≥ ε1/2

]

=

= P

[∣∣
∣
∣
∣

∫ T

0

S−1
Q ε−2〈Qσj(h, v), σk(h, v)〉dt′ − SQjkSQT

∣
∣
∣
∣
∣
≥ ε1/2

]

≤ Cqε
q,

in addition the generator of this diffusion is Lipschitz and thus weakly con-
verges to a unique solution of a stochastic differential equation.

This is implies that (ĥ1(t), ..., ĥN (t)) stopped at τ̂∗ weakly converges to an
N -dimensional Brownian motion with correlations SQkjS

−1
Q between the k-th

and j-th coordinate stopped at τ , which is a hitting time, unless SQS−2
∞ C is

smaller.
We now prove that it is not a later hitting time, since if one has a minimum

distance g(ε) > ξ′ε (greater than the stopping distance but still with the property
limε→0 g(ε) → 0) before the stopping time, we have the following:

Denote ψj(t) = g(ε) +
∫ t

0
ε−1

〈
σj+1

(
ĥ, v
)
− σj

(
ĥ, v
)

, dW
〉
, this is essen-

tially the difference between the position of the j + 1-th interface and the j-th
interface starting at g(ε), but without the (basically irrelevant) drift.
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We now show that this will with a probability converging to 1 as ε → 0 have
a minimum value of ξ′ε after time (g (ε))2−κ while the probability of becoming
O(1) large converges to 0 as ε → 0:

We note that this is nothing else than a time-changed Brownian motion
starting at g(ε), i.e. if B(∙) is a standard Brownian motion, we can denote ψj

as

g(ε) + B

(

ε−2

∫ t

0

[〈
Qσj+1

(
ĥ, v
)

, σj+1

(
ĥ, v
)〉

−2
〈
Qσj+1

(
ĥ, v
)

, σj

(
ĥ, v
)〉

+
〈
Qσj

(
ĥ, v
)

, σj

(
ĥ, v
)〉

dt

Since Brownian fluctuations scale like square roots of their time increments,
it is sufficient to show that with high probability ψj(t) will hit ξ′ε after time
(g (ε))2−κ (plus an aditional term for the difference between this martingale
and the actual difference between the interfaces) for some small κ > 0.

By [RY 99] V §1 (together with the fact that in the slow channel we have

0 <

∫ t

0

〈
Qσj+1

(
ĥ, v
)

, σj+1

(
ĥ, v
)〉

− 2
〈
Qσj+1

(
ĥ, v
)

, σj

(
ĥ, v
)〉

+
〈
Qσj

(
ĥ, v
)

, σj

(
ĥ, v
)〉

dt = O(ε)

using Claim 3.8 and Claim 6.7) we have for some small κ > 0 that

P




 min

t∈
[
0,(g(ε))2−κ+

[
C sups∈[0,C]

∣
∣
∣
∣

S2
∞bk(ĥ,v)
SQε2γ+2

∣
∣
∣
∣

]2−κ

∧τ̂∗

]ψj(t) ≤ ξ′ε − C sup
s∈[0,C]

∣
∣
∣
∣
∣
∣

S2
∞bk

(
ĥ, v
)

SQε2γ+2

∣
∣
∣
∣
∣
∣






≥ 1−Cqε
q ∀q > 0.

However we note that by Claim 6.7 that

P





 sup

t∈
[
0,(g(ε))2−κ+

[
C sups∈[0,C]

∣
∣
∣
∣

S2
∞bk(ĥ,v)
SQε2γ+2

∣
∣
∣
∣

]2−κ

∧τ̂∗

]

∣
∣
∣ψj(t) −

(
ĥj+1 − ĥj

)∣∣
∣ ≤ C (g (ε))2−κ







≥ 1−Cqε
q ∀q > 0

and hence

P

[

min
t∈[0,(g(ε))2−κ∧τ̂∗]

ĥj+1 − ĥj ≤ ξε

]

≥ 1 − Cqε
q ∀q > 0,

which trivially implies

P

[

min
t∈[0,τ̂∗]

ĥj+1 − ĥj ≤ ξε

]

≥ 1 − Cqε
q ∀q > 0.
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Therefore, as ε → 0, any starting configuration with the minimum distance
converging to 0 as ε → 0 ends up at the critical stopping distance ξ′ε with high
probability within a time that converges to 0 on the fast timescale in the sharp
interface limit. Thus it is necessarily the first hitting time (unless C is smaller
than the first hitting time).

We now show the convergence of τ̂∗ to a limit τ in the sharp interface limit:
Firstly we recall the definition

τ̂∗ = C ∧ inf
{

t > 0 : δĥ(t) = ξ′ε or ‖v‖ > ε1+δ or ‖v‖∞ ≥ 1 or ‖z‖ > ε1+δ
}

and note that since the probability of ‖v‖ > ε1+δ or ‖v‖∞ ≥ 1 or ‖z‖ > ε1+δ

is asymptotically small in ε, and converges to 0 as ε → 0, the limit of τ̂∗ - if it

exists - is the same as the limit of C ∧ inf
{

t > 0 : δĥ(t) = ξ′ε

}
.

Secondly define Σa(f1(∙), ..., fN (∙)) = inf {t : mini 6=j |fi(t) − fj(t) mod 1| = a}.
Then for all ε > 0 we have (2γ + 2 + β)ε| log ε| < 4γε| log ε| and hence we have
by Claim 6.7

P

[

τ̂∗ ≥ C ∧ Σ0

(

ĥ1(t ∧ Σ 4γε| log ε|√
−f′(1)

), ..., ĥN (t ∧ Σ 4γε| log ε|√
−f′(1)

)

)]

≤ Cqε
q ∀q > 0,

since this event could only happen if ‖v(τ̂∗)‖ ≥ ε1+δ or ‖v(τ̂∗)‖∞ ≥ 1 or ‖z‖ >
ε1+δ.

We note that Σ0

(

ĥ1(t ∧ Σ 4γε| log ε|√
−f′(1)

), ..., ĥN (t ∧ Σ 4γε| log ε|√
−f′(1)

)

)

weakly, since Σ0(M1, ...,MN )

is only discontinuous on a set of Lebesgue measure 0; this follows from [Bil99]
Theorem 2.7.

Hence in the limit

P [τ ≥ C ∧ Σ0(M1, ...,MN )] = 1.

However we also have 0 < (2γ + 2 + β)ε| log ε| for ε > 0 and thus by the same
argument

P
[
C ∧ Σ0

(
ĥ1, ..., ĥN

)
≥ τ̂∗

]
≤ Cqε

q ∀q > 0,

which implies in the limit that

P [C ∧ Σ0(M1, ...,MN ) ≥ τ ] = 1.

In both cases we used Lebesgue’s dominated convergence theorem to obtain
convergence to the limit.

We have now shown that

P[C ∧ Σ0(M1, ...,MN ) = τ ] = 1,

i.e. that
τ̂∗ →ε→0 C ∧ Σ0(M1, ...,MN ) weakly;

this limit is the first hitting time, unless C is smaller.
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We now finally note that τ is positive and finite: This is an easy observation,
since the definition gives the upper bound τ̂∗ ≤ C on the fast timescale, while
due to the finite moments of Mk it almost surely takes at least finite time for
two interfaces to attain the distance 0. Therefore τ is positive and finite with
probability 1.

In the beginning of this we made the assumption that h is a semimartingale.
We now prove that this assumption is indeed true. Firstly, we observe that the
coupled system for h and v has a solution. This works in the exact same way
as for space-time white noise: We note that all terms are bounded up to the
stopping times and Lipschitz continuous. Considering the couples system as an
SPDE with several space-dimensions then gives existence and uniqueness by the
use of [DPZ92] Theorem 7.4.

We prove this in the same way as we did for white noise, except that we use
the appropriate bounds on drift and diffusion.

Secondly, we establish that we do indeed have 〈v, τh
i 〉 = 0 ∀i, so that u =

uh + v solves the equation:
Recall that for h we have

dhr =
∑

i

A−1
ri (h, v)〈L(uh +v), τh

i 〉dt

+ε2γ
∑

i,l,k

A−1
ri (h, v)

[
1
2
〈v, τh

ilk〉 −
1
2
〈uh

kl, τ
h
i 〉 − 〈uh

k , τh
il〉

]

〈σk(h, v), σl(h, v)〉dt

+ε2γ
∑

i

A−1
ri (h, v)

∑

j

〈
τh
ij , σj(h, v)

〉
dt +

∑

i

A−1
ri (h, v)〈τh

i , dV 〉.

Applying A(h, v) on both sides gives

∑

i

Aij(h, v)dhj = 〈L(uh + v), τh
i 〉dt+

ε2γ
∑

l,k

[
1
2
〈v, τh

ilk〉 −
1
2
〈uh

kl, τ
h
i 〉 − 〈uh

k , τh
il〉

]

〈Qσk(h, v), σl(h, v)〉dt

+ε2γ
∑

j

〈
Quh

ij , σj(h, v)
〉
dt +

〈
τh
i , dV

〉
.

Applying Claim 6.4 and the definition of A we can rewrite this as

∑

j

[〈
τh
i , uh

j

〉
−
〈
v, τh

ij

〉]
dhj = 〈L(uh + v), τh

i 〉dt

+ε2γ
∑

l,k

[
1
2
〈v, τh

ilk〉 −
1
2
〈uh

kl, τ
h
i 〉 − 〈uh

k , τh
il〉

]

(dhl, dhk)

+
∑

j

〈
dV, τh

ij

〉
dhj + 〈τh

i , dV 〉
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Now, taking the inner product of τh
i and the left hand side of our SPDE

du =
∑

j

uh
j dhj +

1
2

∑

k,l

uh
kl(dhk, dhl) + dv

gives

〈τh
i , du〉 =

∑

j

〈
τh
i , uh

j

〉
dhj +

1
2

∑

k,l

〈uh
kl, τ

h
i 〉(dhk, dhl) + 〈τh

i , dv〉.

On the other hand applying the Itô formula gives

d〈τh
i , v〉 = 〈τh

i , dv〉 + 〈v, dτh
i 〉 + 〈dv, dτh

i 〉

= 〈τh
i , dv〉+

∑

j

〈
v, τh

ij

〉
dhj+

1
2

∑

j,k

〈
v, τh

ijk

〉
(dhj , dhk)+

∑

j

〈
τh
ij , dv

〉
dhj

But since dv = du − duh we have

∑

j

〈τhij , dv〉 dhj =
∑

j

(〈
τh
ij , dV

〉
, dhj

)
−
∑

j,k

〈
τh
ij , u

h
k

〉
(dhk, dhj)

Furthermore taking the inner product of τh
i and the right hand side of the

SPDE gives

〈τh
i , du〉 = 〈L(u), τh

i 〉dt + 〈τh
i , dV 〉

Combining the last equations yields

d〈τh
i , v〉 = 〈L(u), τh

i 〉dt+〈τh
i , dV 〉−

∑

j

〈τh
i , uh

j 〉dhj

−
1
2

∑

k,l

〈uh
kl, τ

h
i 〉(dhk, dhl) +

∑

j

〈
v, τh

ij

〉
dhj +

1
2

∑

j,k

〈
v, τh

ijk

〉
(dhj , dhk)

+
∑

j

(〈
τh
ij , dV

〉
, dhj

)
−
∑

j,k

〈
τh
ij , u

h
k

〉
(dhk, dhj)

= 〈L(u), τh
i 〉dt + 〈τh

i , dV 〉 −
∑

j

Aij(h, v)dhj +
∑

j

(〈
τh
ij , dV

〉
, dhj

)

+
∑

j,k

[
1
2

〈
v, τh

ijk

〉
−

1
2

〈
uh

kj , τ
h
i

〉
−
〈
τh
ij , u

h
k

〉
]

(dhk, dhj)

= 〈L(u), τh
i 〉dt + 〈τh

i , dV 〉 −



〈L(u), τh
i 〉dt + 〈τh

i , dV 〉 −
∑

j

Aij(h, v)dhj
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+
∑

j

(〈
τh
ij , dV

〉
, dhj

)
+
∑

j,k

[
1
2

〈
v, τh

ijk

〉
−

1
2

〈
uh

kj , τ
h
i

〉
−
〈
τh
ij , u

h
k

〉
]

(dhk, dhj)





+
∑

j

(〈
τh
ij , dV

〉
, dhj

)
+
∑

j,k

[
1
2

〈
v, τh

ijk

〉
−

1
2

〈
uh

kj , τ
h
i

〉
−
〈
τh
ij , u

h
k

〉
]

(dhk, dhj) = 0

This completes the sketch of argument that h is indeed a semimartingale
notation.

Define

ψd =
CS2

∞

SQ
∧ inf

{
t > 0 : δh0 = d or ‖v‖ > ε1+δ or ‖v‖∞ ≥ 1 or ‖z‖ > ε1+δ

}

where ψd ≥ ε| log ε|√
−f ′(1)

.

Claim 6.7. Suppose u0 ∈ Γ′′
ξ′

ε,ε. Let u(x, t) = uh(x, t) + v(x, t) solve (1.1) for
t > 0.

Then the following inequalities hold:

E [‖v(ψd)‖
p] ≤ E [‖v(0)‖p] + C ′

pε
−2γ−2εpγ ≤ Dpε

−2γ−2ε(1+δ)p ∀p ≥ 2

for some C ′
p, Dp > 0 independent of ε and polynomial in p, as well as

P
(
‖v(ψd)‖ ≥ ε1+δ

)
≤ Drε

−2γ−2ε2δr ∀r ≥ 2,

P
(
‖v(ψd)‖ ≥ ε1+δ or ‖v(ψd)‖∞ ≥ 1

)
≤ Drε

−2γ−2ε2δr ∀r ≥ 2.

Remark: The second inequality implies that the probability of exiting the
slow channel within the O

(
ε−2γ−2

)
time needed for two interfaces to have ξ′ε

distance is asymptotically small.

Claim 6.8. Let u = uh + v ∈ Γ′′
ξ′

ε,ε, then we have uniformly in ε that

|br(h, v)| ≤ Cε2γ+2+β (6.12)

for any r = 1, ..., N, some C > 0. We also have the following pointwise estimate:

|br(h, v)| ≤ Cεe−δh/ε + O
(
ε2γ+2+β

)

Sketch of Argument. We recall

br(h, v) =
∑

i

A−1
ri (h, v)

〈
L(uh + v), τh

i

〉

+
∑

i,l,k

A−1
ri (h, v)

[
1
2

〈
v, τh

ilk

〉
−

1
2

〈
uh

kl, τ
h
i

〉
−
〈
uh

k , τh
il

〉
]

ε2γ〈Qσk(h, v), σl(h, v)〉
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+
∑

i

A−1
ri (h, v)

∑

j

ε2γ
〈
Qτh

ij , σj(h, v)
〉
.

It is easy to check that unless we have r = i = l = k all contributing terms
in the second two sums are O

(
ε2γ+2+β

)
.

We also have
uh

jx = −uh
xx +

(
1 − χj

)
wj

x − χj
xwj − χj

xwj+1 − χjwj+1
x

for x ∈ Ij .
Evidently,

uh
ii = −uh

xi − χi
iw

i + (1− χi)wi
i − χi

iw
i+1 − χiwi+1

i

= −uh
xx+

(
1 − χi

)
wi

x−χi
xwi−χi

xwi+1−χiwi+1
x −χi

iw
i+
(
1 − χi

)
wi

i−χi
iw

i+1−χiwi+1
i .

We recall τh
j = γjuh

x (which is clearly equal to 0 outside of Ij) where

γj = χ ((x − mj)/ε − 1) [1 − χ((x − mj+1)/ε − 1)] ,

and quote from [CP89] p. 564 that

τh
ii = −γi

iu
h
x−γiuh

xi = −γi
iu

h
x−γi

(
−uh

xx +
(
1 − χi

)
wi

x − χi
xwi − χi

xwi+1 − χiwx

)

= uh
xx − γi

iu
h
x +

(
γi − 1

)
uh

xx − γi
((

1 − χi
)
wi

x − χi
xwi − χi

xwi+1 − χiwx

)
,

which is nothing else than τh
ii = γiui

xx + O
(
ε−1
)
.

uh =
(
1 − χj

)
φj + χjφj+1

For r = i = k = l we obtain the following expressions:

〈
τh
ii, u

h
i

〉
=
∫ mj+1

mj

τh
iiu

h
i dx =

∫ mj+2ε

mj

τh
iiu

h
i dx+

∫ mj+1−2ε

mj+2ε

uh
iiu

h
i dx+

∫ mj+1

mj+1−2ε

τh
iiu

h
i dx,

〈
uh

ii, τ
h
i

〉
=
∫ mj+1

mj

uh
iiτ

h
i dx =

∫ mj+2ε

mj

uh
iiτ

h
i dx+

∫ mj+1−2ε

mj+2ε

uh
iiu

h
i dx+

∫ mj+1

mj+1−2ε

uh
iiτ

h
i dx.

We calculate further that

∫ mj+1−2ε

mj+2ε

uh
iiu

h
i dx =

∫ mj+1−2ε

mj+2ε

[
−uh

xj − χj
jw

j +
(
1 − χj

)
wj

j − χj
jw

j+1 − χjwj+1
]
uh

j dx

=
∫ mj+1−2ε

mj+2ε

−uh
xju

h
j dx+

∫ mj+1−2ε

mj+2ε

[
−χj

jw
j +

(
1 − χj

)
wj

j − χj
jw

j+1 − χjwj+1
]
uh

j dx

=

[

−
1
2

(
uh

i

)2
]mj+1−2ε

mj+2ε

+
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+
∫ mj+1−2ε

mj+2ε

[
−χj

jw
j +

(
1 − χj

)
wj

j − χj
jw

j+1 − χjwj+1
]

∙
[(

1 − χj
)
φj

j + χjφj+1
j + χj

x

(
φj − φj+1

)]
dx,

but
[

−
1
2

(
uh

j

)2
]mj+1−2ε

mj+2ε

= −
1
2

((
uh

j (mj+1 − 2ε)
)2

−
(
uh

j (mj + 2ε)
)2)

=
1
2

((
φj+1

x (mj+1 − 2ε) + wj+1 (mj+1 − 2ε)
))2

−
1
2

(
2
(
−φj

x(mj + 2ε) + wj(mj + 2ε)
))

+ φj+1
x (mj + 2ε) − wj+1(mj + 2ε))2

≤ (O (ε))2 ≤ O
(
ε2
)

(the end works in a similar manner to [CP89] Lemma 7.9) and

∫ mj+1−2ε

mj+2ε

[
−χj

jw
j +

(
1 − χj

)
wj

j − χj
jw

j+1 − χjwj+1
]

∙
[(

1 − χj
)
φj

j + χjφj+1
j + χj

x

(
φj − φj+1

)]
dx

=
∫ hj−ε∨mj+1−2ε

mj+2ε

wj
jφ

j
jdx+

+
∫ hj+ε∧mj+1−2ε

hj−ε∨mj+1−2ε

[
−χj

jw
j +

(
1 − χj

)
wj

j − χj
jw

j+1 − χjwj+1
]

[
(
1 − χj

)
φj

j+χjφj+1
j +χj

x

(
φj − φj+1

)
dx

+
∫ mj+1−2ε

hj+ε∧mj+1−2ε

−wj+1φj+1
j dx = O

(
ε−1+β

)

(cf. [CP89] sections 7 and 8 for more details on how to do the arithmetic).
Now,

∫ mi+2ε

mi

τh
iiu

h
i dx =

∫ mi+2ε

mi

(
−γi

iφ
i
x + γiφi

xx − γiwi
x

) (
−φi

x + wi
)
dx =

−
∫ mi+2ε

mi

γiφi
xφi

xxdx

+
∫ mi+2ε

mi

[(
−γi

iφ
i
x + γiφi

xx − γiwi
x

)
wi +

(
−γi

iφ
i
x − γiwi

x

) (
−φi

x + wi
)]

dx
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= O
(
ε−1+β

)
.

But in a similar manner we may bound∫mi+2ε

mi
uh

iiτ
h
i dx,

∫mi+1

mi+1−2ε
τh
iiu

h
i dx,

∫mi+1

mi+1−2ε
uh

iiτ
h
i dx, so that we may conclude

that ∣
∣〈τh

ii, u
h
i

〉∣∣ ,
∣
∣〈uh

ii, τ
h
i

〉∣∣ ≤ O
(
ε−1+β

)
.

We used [CP89] Lemma 7.9 to bound wj , wj+1 and [CP89] Lemma 7.10 to
bound wj

j , w
j+1
j .

We now calculate

τh
iii = −γi

iiu
h
x − γi

ixuh
i − γi

iu
h
xi − γiuh

xii.

But

uh
xii =

∂

∂x
uh

ii

=
∂

∂x

[
−uh

xx +
(
1 − χi

)
wi

x − χi
xwi − χi

xwi+1 − χiwi+1
x

−χi
iw

i+
(
1 − χi

)
wi

i−χi
iw

i+1−χiwi+1
i

= −uh
xxx+O

(
ε−2
)
.

However,
∥
∥uh

xxx

∥
∥

=
∥
∥−χj

xxxφj − 3χj
xxφj

x − 3χj
xφj

xx − χjφj
xxx + χj

xxxφj+1 + 3χj
xxφj+1

x + 3χj
xφj+1

xx + χjφj+1
xxx

∥
∥

≤ O
(
ε−5/2

)

since

φj
xxx = −

1
ε2

f ′
(
φj
)
φj

x.

Combining the fact that in the slow channel we have ‖v‖ ≤ ε1+δ and that
(cf. [CP89] Proposition 2.3) we have

∥
∥τh

iii

∥
∥ ≤

∥
∥γi

iiu
h
x

∥
∥+
∥
∥γi

ixuh
i

∥
∥+
∥
∥γi

iu
h
xi

∥
∥+
∥
∥γiuh

xii

∥
∥

≤ O
(
ε−2
) ∥∥uh

x

∥
∥+O

(
ε−2
) ∥∥uh

i

∥
∥+O

(
ε−1
) ∥∥uh

xi

∥
∥+O(1)

∥
∥−uh

xxx + O
(
ε−2
)∥∥

≤ O
(
ε−2
)
O
(
ε−1/2

)
+O

(
ε−2
)
O
(
ε−1/2

)
+O

(
ε−1
)
O
(
ε−3/2

)
+O(1)

∥
∥uh

xxx

∥
∥+O

(
ε−2
)

≤ O
(
ε−5/2

)
+ O

(
ε−5/2

)
≤ O

(
ε−5/2

)
,

we get
∣
∣〈v, τh

iii

〉∣∣ ≤ O
(
ε−3/2+δ

)
.
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Observe that (combing [CP89] Theorem 6.1, Lemma 3.3, Proposition 3.4)
∣
∣
∣
∣
∣

∑

i

A−1
ri (h, v)

〈
L(uh + v), ui

〉
∣
∣
∣
∣
∣
≤ O

(
εe−δh/ε

)
.

In a similar manner to how we showed in the sketch of argument of Claim
6.5 that

〈
Qτh

i , τh
i

〉
→ε→0 4q(0) we note that

〈Qσk(h, v), σl(h, v)〉 ≤ O
(
ε2
)
.

We now calculate our last necessary bound: In the slow channel we have

ε−1
〈
Qτh

ij , σk(h, v)
〉

= ε−1

〈

Qτh
ij ,

ε

S∞
τh
k + o(ε)

〉

=
1

S∞

〈
τh
ij ,Qτh

k

〉
+ o(ε) =

1
S∞

〈
τh
ij , q ∗ τh

k

〉
+ o(1),

we showed in the sketch of argument of Claim 6.5 that q∗τh
k →ε→0 2q(x−hk),

so it suffices to show that 1
S∞

〈
τh
ij , 2q(x − hk)

〉
→ε→0 0.

This is (since τh
ij is defined on Ij) the same as

∣
∣
∣
∣
∣

∫ mj+1

mj

1
S∞

τh
ij(x)2q(x − hk)dx

∣
∣
∣
∣
∣
≤ |
∫ mj+1

mj

1
S∞

τh
ii(x)2q(x − hi)dx|.

We note that due to the definition of τh
i this is the same as

∫ mj+2ε

mj

1
S∞

τh
ii(x)2q(x − hi)dx +

∫ mj+1−2ε

mj+2ε

1
S∞

(
−d2uh

dx2

)

2q(x − hi)dx

+
∫ mj+1

mj+1−2ε

1
S∞

τh
ii(x)2q(x − hi)dx.

We recall

τh
ii = −γi

iu
h
x−γiuh

xi = −γi
iu

h
x−γi

(
−uh

xx +
(
1 − χi

)
wi

x − χi
xwi − χi

xwi+1 − χiwx

)

= uh
xx − γi

iu
h
x +

(
γi − 1

)
uh

xx − γi
((

1 − χi
)
wi

x − χi
xwi − χi

xwi+1 − χiwx

)

= γiuh
xx + o

(
ε−1
)
,

but similarly to [CP89] Lemma 8.1, we have on the intervals [mj ,mj + 2ε] , [mj+1 − 2ε,mj+1]
that ∣

∣uh
xx

∣
∣ ≤ O

(
ε−1 max

{
wj , wj+1

})
≤ O

(
ε−1α

)
≤ o

(
ε−1
)
,

which means that in those interval we have |τh
ii| ≤ o(ε−1), and in particular

that
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∣
∣
∣
∣
∣

∫ mj+2ε

mj

1
S∞

τh
ii(x)2q(x − hi)dx

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

∫ mj+1

mj+1−2ε

1
S∞

τh
ii(x)2q(x − hi)dx

∣
∣
∣
∣
∣

≤ 2ε
1

S∞
o
(
ε−1
)
O(1) →ε→0 0.

Now since uh =
(
1 − χj

)
φj + χjφj+1 we have

d2uh

dx2
= χj

xx

(
φj+1 − φj

)
+ 2χj

x

(
φj+1

x − φj
x

)
+ χj

(
φj+1

xx − φj
xx

)
− φj

xx.

However using [CP89] Lemma 8.2 for
∣
∣φj+1 − φj

∣
∣ and

∣
∣φj+1

x − φj
x

∣
∣ and a

similar argument for φj+1
xx − φj

xx yields

d2uh

dx2
= −φj

xx + o(1),

while φj
xx is a function that integrates up to 0 up to an o(1) error. As with φj

x,
we note that this function is arbitrarily small outside the interval [hj −ε, hj +ε],
so that the term we are interested in has the same limit as ε → 0 as

∫ hj+ε

hj−ε

−
1

S∞
φj

xx2q(x − hi)dx,

if we approximate q(x − hi) on [hj − ε, hj + ε] as q(0), the expression has the
limit 0, however as this approximation converges to q as ε → 0, we have shown
that

ε−1
〈
Qτh

ij , σk(h, v)
〉
→ε→0 0.

Recall that A−1
ij = O(ε) so that we finally obtain

|br(h, v)| ≤ O
(
εe−δh/ε

)
+ O(ε)

(
O
(
ε−1+β

)
+ O

(
ε4γ−2

))
ε2γε2 + O(ε)ε2γo(ε)

≤ Cεe−δh/ε + o
(
ε2γ+2+β

)

uniformly in ε and pointwise

|br(h, v)| ≤ O
(
ε2γ+2+δ

)
+ O(ε)

(
O
(
ε−1+β

)
+ O

(
ε4γ−2

))
ε2γε2 + O(ε)ε2γo(ε)

≤ o
(
ε2γ+2+β

)
.

Sketch of argument of Claim 6.7. Substituting u(x, t) = uh(t)(x) + v(x, t) into
the stochastic Allen-Cahn equation upon applying the Itô formula to the LHS
yields



6. Correlated noise 85

∑

i

uh
i dhi +

1
2

∑

i,j

uh
ij(dhi, dhj) + dv =

[
Luh + Lv + f2v

2
]
dt + dV

where L = ε2∂xx + f ′
(
uh
)

and f2 =
∫ 1

0
(1 − τ)f ′′

(
uh + τv

)
dτ.

By Claim 3.3, this is the same as

∑

i

uh
i dhi+

1
2

∑

i,j

uh
ijε

2γ〈σi(h, v), σj(h, v)〉dt+dv =
[
Luh + Lv + f2v

2
]
dt+εγdW,

this may be rearranged to

dv =
[
Luh + Lv + f2v

2
]
dt−

∑

i

uh
i dhi−

1
2

∑

i,j

uh
ijε

2γ 〈σi(h, v), σj(h, v)〉 dt+εγdW,

Since the Itô formula yields d‖v‖2 = d〈v, v〉 = 〈dv, v〉+ 〈v, dv〉+ 〈(dv, dv)〉 =
2〈v, dv〉 + 〈1, (dv, dv)〉 we get

d‖v‖2 = 2〈v,Luh + Lv + f ′(1)v + f2v
2

−
1
2

∑

i,j

uh
ijε

2γ〈Qσi(h, v), σj(h, v)〉 −
∑

i

uh
i bi(h, v)〉dt

−2〈v, ε2γ
∑

i

uh
i 〈σi(h, v), dW 〉 + εγdW 〉

+ε4γ
∑

i,j

〈
uh

i , uh
j

〉
〈Qσi(h, v), σj(h, v)〉 dt+trQε2γdt

Since we are in the slow channel we know that ‖v‖ ≤ ε1+δ for some δ > 0
and Claim 3.3 tells us that ‖σr(h, v)‖ = C

√
ε + o(ε), while Claim 6.8 gives us

|br(h, v)| ≤ Cε2γ+2; therefore upon taking expectations and integrating up to
our stopping time this becomes

E
[
‖v(τ∗∗)‖2

]
≤ E

[
‖v(0)‖2

]
+ C ′ε−2γ−2ε2γ+δ

for some C ′ > 0.
In this expansion,

∫ 1

0
(1−τ)f ′′(uh +τv)dτ < C for some C > 0 is the case, as

long as supt∈[0,τ∗] ‖v‖∞ ≤ 1, which we have due to the definition of our stopping
time. By applying the Itô formula we similarly have for p ≥ 3 that

d‖v‖p =
p

2
‖v‖p−2d‖v‖2

+
p(p − 1)

8
‖v‖p−4(

∑

i,j

〈v, ε2γuh
i 〉
〈
v, ε2γuh

j

〉
〈Qσi(h, v), σi(h, v)〉 + 〈v, v〉ε4γ
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+ε4γ
∑

i

〈uh
i , v〉〈σi(h, v), v〉trQ)dt,

and thus

E[‖v‖p(τ∗)] − E[‖v‖p(0)] =

E

[∫ τ∗

0

p

2
‖v‖p−22

〈
v,Luh + Lv + f ′(1)v + f2v

2

−
1
2

∑

i,j

uh
ijε

2γ 〈Qσi(h, v), σj(h, v)〉 −
∑

i

uh
i bi(h, v)

〉

dt





+E




∫ τ∗

0



p

2
‖v‖p−2ε4γ

∑

i,j

〈
uh

i , uh
j

〉
〈Qσi(h, v), σj(h, v)〉 dt

+
p(p − 1)

8
‖v‖p−4(

∑

i,j

〈v, ε2γuh
i 〉
〈
v, ε2γuh

j

〉
〈Qσi(h, v), σi(h, v)〉 + 〈v, v〉ε4γ

+ε4γ
∑

i

〈uh
i , v〉〈σi(h, v), v〉trQ)〉dt

)]

and therefore combining all estimates from Claim 6.2, 3.3 and 3.4 as well as
[CP89] Theorem 3.5 we conclude

E [‖v(ψd)‖
p] ≤ E[‖v(0)‖p] + Cpε

−2γ−2ε(1+δ)p

for all p ≥ 2.
Markov’s inequality then yields

P(‖v(ψd)‖ ≥ ε1+δ) ≤ CpTεε
2δq ∀p ≥ 2.

We note that since the probability of ‖v(ψd)‖∞ ≥ 1 is exponentially small (cf.
eg. [Fen06] for the fact that the probability of ‖u(ψd)‖∞ ≥ 2 being exponentially
small, while ‖uh‖∞ ≤ 1 by definition), we have in particular

P(‖v(ψd)‖ ≥ ε1+δ or ‖v(ψd)‖∞ ≥ 1) ≤ Cqε
q ∀q > 0

and we clearly also have

P(‖v(ψd)‖ ≥ ε1+δ or ‖v(ψd)‖∞ ≥ 1 or ‖z(ψd)‖ > ε1+δ) ≤ Cqε
q ∀q > 0.

The following corresponds to chapter 4:
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Claim 6.9. Annihilation
Let u0 ∈ Γ′′

ξ′
ε
where exactly two neighbouring interfaces have distance δh0 = ξ′ε

to each other, and all other interfaces have a distance bounded below by ε1/2−κ

for some 1
2 ≥ κ > 0. For t > 0, u(∙, t) solves (1.1).

With a probability converging to 1 as ε → 0 one has that within ε−2γ−ι (for
some small κ > ι > 0) time these two interfaces will be annihilated leading to
the new interface configuration h′ = H

(
u
(

1
ε2γ+ι

))
; with the same probability,

the solution reenters Γ′′
ξ′

ε,ε within this time.
With a probability converging to 1 as ε → 0 this new configuration h′ is

inside a neighbourhood of size kε (for some k > 0) of the initial configuration
h0, but without the annihilated interfaces.

Before proving this, we collect some ingredients of the sketch of argument:

Claim 6.10. Suppose ερ∗∗ ≤ δh < (2γ+2)ε| log ε|√
f ′(1)

and the other interface distances

bounded below by ε1/2−κ for 1
2 ≥ κ > 0 and u = uh + v ∈ Γ′

ε.
Then if one denotes the two interfaces between which the minimum distance

δh is attained by hj and hj+1, we have the following:

∑

i

A−1
ri (h, v)〈L(uh + v), τh

i 〉

∣
∣
∣
∣
∣
r=j+1

−
∑

i

A−1
ri (h, v)〈L(uh + v), τh

i 〉

∣
∣
∣
∣
∣
r=j

=
ε

S∞

[
−2a exp

{
−
√
−f ′(1)δh/ε

}]
+ o

(
ε2γ+2

)
. (6.13)

This bound is uniformly in ε.
We have

a = −

[

exp

{∫ 1

0

( √
−f ′(1)

(2F (t))1/2
−

1
(1 − t)

)

dt

}]2

f ′(1).

In addition, we have

sup
uh+v∈Γ′

ε s.t. ρ∗∗ε=δh

bj+1(h, v) − bj(h, v)

S−2
∞ SQε2γ+2

→ε→0 −∞.

Sketch of Argument. The formulae for
∑

i A−1
ri (h, v)〈L(uh + v), τh

i 〉 follow from
combing [CP89] Theorem 6.1, Lemma 3.3, Proposition 3.4.

We recall that

br(h, v) =
∑

i

A−1
ri (h, v)〈L(uh+v), τh

i 〉

+
∑

i,l,k

A−1
ri (h, v)

[
1
2
〈v, τh

ilk〉 −
1
2
〈uh

kl, τ
h
i 〉 − 〈uh

k , τh
il〉

]

ε2γ〈Qσk(h, v), σl(h, v)〉
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+
∑

i

A−1
ri (h, v)

∑

j

ε2γ
〈
Qτh

ij , σj(h, v)
〉

= T1 + T2 + T3

We can bound T2 and T3 in a similar way to how it was done in Claim 6.8,
except for the different bound on ‖v‖ and differences arising from the shorter
minimal distance:

|T2| ≤ o
(
ε2γ+2

)

Similarly, we have
|T3| ≤ o

(
ε2γ+2

)
, which completes the sketch of argument of our bound.

The further limits on the fast timescale follow from the asymptotic expansion
(6.13), which we therefore also have for bj+1(h, v) − bj(h, v).

The following Claim tells us that the probability of exiting the extended slow
channel is small, unless the critical distance ρ∗∗ε is achieved:

Claim 6.11. Suppose u0 = uh + v ∈ Γ′
ε with ‖v‖ ≤ Cε1/2 for some C < Cmap

and Tε < Kε−2γ−2, K > 0 independent of ε, and suppose that E[‖v(0)‖p] ≤
Cpε

p/2 ∀p ≥ 2 for some δ > 0, Cp > 0. Let τ∗∗ be as in Chapter 3.
Then we have

P
[
δh(τ∗∗) > ρ∗∗ε

]
≤ Cqε

q ∀q > 0.

Sketch of argument of Claim 6.11. Consider the linearised Allen-Cahn SPDE
starting at 0, i.e.

∂tz = ε2∂xxz + f ′(1)z + εγẆ

Then for ū = u − z we have

∂tū = ε2∂xxū + f(ū + z) − f ′(1)z = ε2∂xxū + f(ū) + C(x, t)z

for some bounded function C(x, t).
Except for the last term, which we can view as a perturbation on O(1)

timescales, this is exactly the same as the deterministic Allen-Cahn equation.
We will use the fact, that with high probability, the last term is small on O(1)
times, to show that with high probability we have the same behaviour as in the
deterministic case.

With w we shall now denote the deterministic Allen-Cahn equation started
at u0.

If we indeed have δh(τ∗∗) > ρ∗∗ε, then at t = 0∨(τ∗∗−1) we have δh(0∨(τ∗∗−1)) >

ρ∗ε and ‖v(0 ∨ (τ∗∗ − 1))‖ < Cmapε
1/2. However, we know from [CP89] Theo-

rem 5.3 (5.6), that up to O(1) times we have for some ν0, C0 > 0 the expression

∥
∥
∥w(t) − uH(w(t))

∥
∥
∥
∞

≤ ε1/2

√√
√
√C0

N∑

j=1

〈
L(uh), τh

j

〉2
+ exp

(

−
1
2
ν0t

)

C ′.
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But since ‖ ∙ ‖ ≤ ‖ ∙ ‖∞ we also have this for the L2-norm.
Claim 6.2 tells us that for all ν > 0 we have

P

[

sup
t∈[0,1]

‖z‖∞ > εγ−ν

]

≤ Cqε
q ∀q > 0.

Thus on O(1) times we have

P[‖w − ū‖∞ ≥ εγ ] ≤ Cqε
q ∀q > 0.

Since ‖v(τ∗∗)‖ ≤ ‖v(τ∗∗)‖∞ ≤
∥
∥ū(τ∗∗) − uH(ū(τ∗∗))

∥
∥
∞

+‖z(τ∗∗)‖∞, this implies
that at τ∗∗ we have

P
[
‖v(τ∗∗)‖ ≤ Cmapε

1/2
]
≤ Cqε

q ∀q > 0.

The following Claim tells us that with a probability asymptotically close to
1, it takes a time that converges to 0 on the fast timescale to go from the initial
minimum distance δh = ξε to the minimum distance δh = ρ∗∗ε.

Claim 6.12. Let for t = 0 u0 = uh + v ∈ Γ′′
ξ′

ε,ε with δh = ξε and all other

distances between neighbouring interfaces bounded below by ε1/2−κ for some 1
2 ≥

κ > 0. Then, with a probability converging to 1 as ε → 0, we have at τ∗∗ that
u(τ∗∗) = uh + v ∈ Γ′

ε with δh = ρ∗∗ε. Furthermore, for all k > 0 we have

P
[
ε2γ+μτ∗∗ < k

]
≥ 1 − Cq,kεq ∀q > 0 ∀μ > 0.

Sketch of Argument. Claims 6.8 and 6.9 (combined with Claim 6.11) give us
an asymptotic expansion of the semimartingale expression and a probability
asymptotically small in ε of it leaving Γ′

ε before the critical distance is reached.
Recall from Claim 6.6 that our semimartingale expression is

dhk = bk(h, v)dt + εγ〈σk(h, v), dW 〉.

Clearly,

Hk(t) = hk(0) +
∫ t

0

εγ〈σk(h, v), dW (x, s)〉 = hk(t) −
∫ t

0

bk(h, v)dt

is a martingale. Then by the Dambis-Dubins-Schwartz theorem, we can denote
Hk(t) as a time-changed Brownian motion:

Hk(t) − Hk(0) = B

(

ε2γ

∫ t

0

〈σk(h, v), σk(h, v)〉ds

)

,

where B(∙) is a standard Brownian motion. But from Claims 6.8, 6.9 (combined
with Claim 6.11) we know that our drift points strictly into the direction of
the neighbouring interface if we are below the critical distance, this means that
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bk(h, v) − bk−1(h, v) is strictly negative; Claim 6.8 and Claim 6.7 tell us that it
is with high probability small for larger distances, so we get

P
[
|(hk(t) − hk−1(t)) − (Hk(t) − Hk−1(t))| ≥ Cε2γ+2

]
≤ Cqε

q.

Clearly, Ĥk(t) = Hk(t)−Hk−1(t) can also be denoted as time-changed Brow-

nian motion B
(
ε2
∫ t

0
‖σk(h, v) − σk−1(h, v)‖2

ds
)

starting at ξε. Clearly, we

have hk(t) − hk−1(t) ≤ Hk(t) − Hk−1(t).
We note from the second part of Claim 3.3 that ∀k

P

[

|

∫ t

0
‖σk(h, v) − σk−1(h, v)‖2ds

ε
| < C

]

≥ 1 − Cqε
q ∀q > 0

for some C > 0 while

P

[

|

∫ t

0
‖σk(h, v) − σk−1(h, v)‖2ds

εp
| > M

]

≥ 1 − Cqε
q ∀q > 0 ∀p > 1 ∀M > 0.

We observe that τ∗∗∗, the first time Hk(t) hits the level ρ∗∗ε is strictly greater
than τ∗∗, unless τ∗∗ occurs because of leaving the slow channel other than by
achieving the critical distance. However, this would happen with a probability
asymptotically small in ε (cf. Claim 6.6).

Let μ > 0. Using standard results about time-changed Brownian motion,
(c.f. e.g. [RY99]), Doob’s martingale inequality in particular, we note that for
some C > 0 we have

P
[
ε2γ−1+μτ∗∗∗ < C

]
≥ 1 − Cqε

q ∀q > 0.

However, this immediately implies

P
[
ε2γ−1+μτ∗∗ < C

]
≥ 1 − Cqε

q ∀q > 0,

which completes the sketch of argument.

Sketch of argument of Claim 6.9. Initially, u is still in Γξε,ε and we can write
down the semimartingale expression of the interfaces by Claim 6.6.

Using Claims 6.11 and 6.12 we note that with a probability converging to 1
as ε → 0, the two interfaces of initial distance ξε are moving towards each other
until they reach the distance ρ∗∗ε.

In a similar manner to phase separation and convergence to the slow mani-
fold, we now consider the difference between the stochastic Allen-Cahn equation
and the linear stochastic heat equation:

∂ū

∂t
= ε2

∂2ū

∂x2
+ f(ū) + (f ′(ū) − f ′(1)) z + z2

∫ 1

0

(1 − τ)f ′′(ū + τz)dτ

Like before, we denote by w the solution to the deterministic Allen-Cahn
PDE and now note
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∂‖ū − w‖∞
∂t

= sup
l∈∂‖ū−w‖

〈

l, ε2
∂2(ū − w)

∂x2
+ f(ū) − f(w) + C(x, t)z

〉

≤ sup
l∈∂‖ū−w‖

〈l, f(w + (ū − w)) − f(w) + Cz〉

≤ |f ′(0)|‖ū − w‖∞ + C‖z‖∞.

Gronwall’s inequality implies

‖ū − w‖∞ ≤ C‖z‖∞e|f
′(0)|t.

Our initial condition is with high probability bounded by 2 in modulus, at an
O(ε2) distance to the slow manifold in L2 norm except for an O(ε), thus there

exists uh′
s.t.

∥
∥
∥u0 − uh′

∥
∥
∥ →ε→0 0 ; thus Claim 7.4 immediately implies that

there exists an O(1) time after which the distance in L2 norm of w to the slow
manifold is d

2 , if we denote the original distance by d. Iterating this and for the
last interval solving for time like in the sketch of argument of Claim 6.2 yields

that after C| log ε| time (C > 0) we have
∥
∥
∥w(x) − uh′

(x)
∥
∥
∥ < ε, where h′ denotes

the interface configuration of the new slow manifold element with configuration
h′ = H(w(C| log ε|)) which is in a neighbourhood of size ε1/2−κ (1/2 > κ > 0)
of the original configuration. To avoid blowup, the final time interval is being
split up into intervals of size up to | log ε|δ

|f ′(0)| for δ < γ − 1, the reason is the same
as in the sketch of argument of Claim 4.1

We now use Claim 6.2 and the bound on ‖ū − w‖∞ to obtain

P
[∥∥
∥u(x) − uh′

(x)
∥
∥
∥ < ε

]
≥ 1 − Cpε

p

for some Cp > 0.
Since by the virtue of Claim 6.2, u is w.h.p the same as ū, the result follows.

The statement about the interfaces follows in the same way.

The following corresponds to chapter 5:
Let R be the set of integer-valued measures on our circle S1, where each

measure μ has a total variation bounded by 2 and the property
∫

μ = 0.
We now define the correlated annihilating Brownian motion to which our

interfaces converge in the limit.
Their generator is given as

G =
∑

i,k,l

SQklS
−1
Q α2

i (−1)k+lei(hk)ei(hl)∂
2
kl.

We used the notation

SQkmS−1
Q = 4S−1

Q

∞∑

r=1

α2
rer(Bk − Bm)
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SQ = 4
∞∑

r=1

α2
rer(0) .

We now set up the notation:
Firstly, for each initial interface position h0 we define Bh0,1(t) to be a 2N -

dimensional Brownian motion with generator G on S1 starting at h0; similarly,
we define (independently from it) Bh′

0,2(t) to be a 2N − 2-dimensional inde-
pendent Brownian motion with generator G on S1 starting at h′

0 and carry on
defining and denoting independent Brownian motions with generator G in this
way until we reach dimension 2.

We define the first hitting time of Bh0,i started at h0 as

σh0,i = infj 6=k

{
t : Bh0,i

j (t) = Bh0,i
k (t)

}

and h′
0

(
σh0,i

)
= Bh0,i

(
σh0,i

)
\
{

Bh0,i
K

(
σh0,i

)
, Bh0,i

J

(
σh0,i

)}
, where Bh0,i

K

(
σh0,i

)
=

Bh0,i
J

(
σh0,i

)
for some K = J .

We define the limiting process of u
(
S∞ε−2γ−1t

)
:

For 0 ≤ t ≤ σh0,1 we have

us(x, t) =






... ...

−1 for Bh0,1
2N − 1 ≤ x < Bh0,1

1 (t)
1 for Bh0,1

1 ≤ x < Bh0,1
2 (t)

... ...

Similarly, for σh0,1 ≤ t ≤ σh0,1 + σh′
0(σh0,1),2 we have

us(x, t) =






... ...

−1 for B
h′
0(σh0,1),2

2N − 1 ≤ x < B
h′
0(σh0,1),2

1 (t)

1 for B
h′
0(σh0,1),2

1 ≤ x < B
h′
0(σh0 ,1),2

2 (t)
... ...

Etc.
We now define a mapping I which maps the function onto the slow manifold

if possible, and otherwise gives the last known such interface configuration.
For u ∈ Γξε,ε we define the mapping simply as

I(u) = H(u),

at the initial stage where u ∈ Xh0,0
ε we define I as

I(u0) = h0.

Finally, whenever u leaves Γξε,ε, we define I(u) to be the last defined value
H(u).

Claim 6.13. Sharp interface limit
Given u0(x) ∈ Xh0,0

ε , for t > 0 we have that u(t) solves (1.1).

In the limit ε → 0, its time-rescaled process u
(

S2
∞t

SQε2γ+2

)
weakly converges

to us(t) in law with probability 1 in the L2 topology for positive times. Between
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time 0 and positive times there is a possible discontinuity (although not for the
interfaces).

In particular, with a probability converging to 1 as ε → 0, within a finite
time the solution obtains a constant profile of either +1 or −1 with fluctuations
converging to 0 as ε → 0.

Sketch of Argument. This works like the sketch of argument of Claim 5.1. The

differences are that we are on the timescale S2
∞t

SQε2γ+2 rather than S∞t
ε2γ+1 , and the

interfaces perform annihilating Brownian motions with generator G rather than
independent standard Brownian motions.

Instead of Claim 2.1, we use Claim 6.6; instead of Claim 3.1 and Claim 3.2
we use Claim 6.9 and Claim 6.10. For the annihilation we use Claim 6.9 rather
than Claim 2.4.

6.1 Noise that neither has a trace-class covariance operator nor is
white

Firstly, it is clear that the semimartingale representation is the same as for the
smooth noise case presented in section 6.2.

As before, the noise is defined to be

W (x, t) =
∞∑

j=1

αjβj(t)ej(x)

where β1, β2, ... are independent standard Brownian motions and {e1(∙), e2(∙), ...}
is an orthonormal basis of L2(0, 1).

Define the ”noise strength” as

KQ = min

{

1, sup

{

j > 0 : lim
k→∞

kjαk < ∞

}}

.

We conjecture that the appropriate timescale on which a sharp interface
limit may be taken is

t′ = SQS−2
∞ ε2γ+1+KQt

with

SQ = lim
ε→0

ε1−KQ
〈
Quh

j , uh
j

〉
.

We conjecture that in the limit ε → 0 the interfaces converge weakly to
independent Brownian motions. This is because the following correlation terms
appear to converge to 0 for j 6= k:

SQkj = lim
ε→0

ε1−KQ
〈
Quh

k , uh
j

〉
.



7. APPENDIX

7.1 Results (and generalisations) from [Che04]

The following results concern the solution of the deterministic Allen-Cahn equa-
tion:

∂tu = ε2∂xxu + f(u), (7.1)

where u(∙, 0) = u0(∙).
The equation is posed on R in the case of Claim 7.1, Claim 7.2, 7.3,7.5, 7.6.
Otherwise the equation is posed in the interval (0, 1) with periodic boundary

conditions.
The following is based on [Che04] Theorem 2.1:

Claim 7.1. Assume that u0(x) satisfies u0 ∈ C1(0, 1) with u0(0) = u0(1) and
u0x(0) = u0x(1), is independent of ε and bounded, we require finitely many roots.
We require |u0(x)| + |u′

0(x)| > 0 ∀x.
Let h0 =

(
h1

0, ..., h
n
0

)
be all roots to u0(∙) = 0, arranged in increasing order.

Then there exists a positive constant ρ, depending only on f , such that for every
sufficiently small positive

ε, u(∙, t1) ∈
{
u(x) : |u(x)| > 1/2 on (0, 1) \ ∪i

(
h1

i − ρε, h1
i + ρε

)}
for t1 =

| log ε|
|f ′(0)| and some h = h0 + O

(
ε
√

| log ε|
)
.

To prove this, we need some claims:
”Decomposition” into reaction and diffusion.

Claim 7.2. Let W (t) be a solution to

Wt = f(W )

W (a, 0) = a

The following holds:
(i) W ∈ C2(R× [0,∞)) and Wa := ∂

∂aW (a, t) > 0 for all a ∈ R and t ≥ 0;

(ii) For all ε ∈ (0, 1],±W
(
a, | log ε|

|f ′(0)|

)
≥ 1

2 if ±a ≥ a∗ε where

a∗ = exp

{∫ 1/2

−1/2

|f(s) − f ′(0)s|
|f(s)s|

ds

}

;

(iii) For every m ≥ 1, there exists M0(m) > 0 such that
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∣
∣
∣
∣
Waa(a, t)
Wa(a, t)

∣
∣
∣
∣ ≤ M0(m)

(
e|f

′(0)|t − 1
)

∀a ∈ [−m,m], t ≥ 0.

Claim 7.3. Let U(x, t) = W (g(x, t), t). Then U(x, t) is a subsolution/ super-
solution to ut − ε2uxx − f(u) = 0 if and only if

gt − ε2gxx + ε2
Waa(g, t)
Wa(g, t)

g2
x ≤ 0 / ≥ 0.

Sketch of argument of Claim 7.2. The choice of f(∙) implies f > 0 in (−∞,−1)∪
(0, 1) and f < 0 in (−1, 0)∪ (1,∞). Hence, for ±a > 0,W (a, t) → ±1 monoton-
ically as t → ∞. In addition, W ∈ C2([R× [0,∞)).

Differentiating Wt = f(W ) w.r.t. a and solving the obtained equation, we

get Wa = exp
{∫ t

0
f ′(W (a, τ ))dτ

}
, as well as property (i).

If |a| ≥ 1/2,±W (a, t) ≥ 1/2 for all t ≥ 0. If |a| ∈ (0, 1/2), we have

W (a, t) = a exp(f ′(0)t) exp(β(t)), β(t) :=
∫ W

a

f(s) − f ′(0)s
f(s)s

ds.

This is because

W = a exp(f ′(0)t)
W

a
exp(−f ′(0)t)

= a exp(f ′(0)t) exp

(∫ W

a

1
s
ds

)

exp

(∫ t

0

−f(s)
f ′(0)
f(s)

ds

)

= a exp(f ′(0)t) exp

(∫ W

a

1
s
ds

)

exp

(∫ t

0

−
f ′(0)
f(W )

Wrdr

)

= a exp(f ′(0)t) exp

(∫ W

a

1
s
ds

)

exp

(∫ W

a

−
f ′(0)
f(s)

ds

)

= a exp(f ′(0)t) exp

(∫ W

a

f(s) − f ′(0)s
f(s)s

ds

)

.

Property (ii) then follows by the definition of a∗.
Now we differentiate t = −

∫W

a
ds

f(s) w.r.t. a to get

Waa

Wa
=

{
1

f(a)

∫W

a
f ′′(s)ds if f(a) 6= 0,

f ′′(a)
f ′(a) (exp {f ′(a)t} − 1) if f(a) = 0.

One can easily check that β(t) is bounded above, uniformly in a ∈ [−m,m].
Property (iii) can now be verified: If f(a) = 0, then on [−m,m] we have
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∣
∣
∣Waa

Wa

∣
∣
∣ =

∣
∣
∣ f

′′(a)
f ′(a) (exp {f ′(a)t} − 1)

∣
∣
∣ ≤ M(m) (exp (|f ′(0)| t) − 1) by the prop-

erties of f(∙), exp(∙) and the properties of continuous functions.
If f(a) 6= 0, then

∣
∣
∣
∣
Waa

Wa

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

1
f(a)

∫ W (t)

a

f ′′(s)ds

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

1
f(a)

[f ′(r)]W (t)
a

∣
∣
∣
∣ =

∣
∣
∣
∣

1
f(a)

(f ′(W (t)) − f ′(a))

∣
∣
∣
∣ =

∣
∣
∣
∣
f ′(a + [a exp(f ′(0)t) exp(β(t)) − a]) − f ′(a)

f(a)

∣
∣
∣
∣

≤ M ′(m) (exp (|f ′(0)| t) − 1)

by the properties of f(∙) and by considering the Taylor expansion around the
points a = 0,±1.

Sketch of argument of Claim 7.3. Differentiation and noting that Wt = f(W )
leads to

Ut − ε2Uxx − f(U) = Wa

(

gt − ε2gxx + ε2
Waa

Wa
g2

x

)

.

However we have that Wa > 0, and hence the sketch of argument is complete.

A diffusion problem
Let u0 satisfy the conditions of Claim 7.1. We look at the heat equation{

ūτ = ūxx for x ∈ (0, 1), τ > 0
ū (x, 0) = u0(x) for x ∈ (0, 1).

with periodic boundary conditions.
Our aim is to consider the zero level set of ū. One can easily check that we

have for all x ∈ (0, 1) and τ > 0,

ū(x, τ ) :=
∫ 1

0

K (y, τ ) u0(x − y)dy =
∫ 1

0

K (η, 1) u0

(
x −

√
τη
)
dη,

where K(y, τ ) is the fundamental solution of Kτ = Kyy.
Denote m0 = ‖u0‖∞ and m1 = ‖u′

0‖∞. Then ‖ū‖C0([0,1]×[0,∞)) ≤ m0.
But due to the continuity of ūx(x, τ ) we note that ‖ūx‖C0([0,1]×[0,∞)) ≤ m1.
We now denote by h1

0, ..., h
n
0 the zeroes of u0 where it changes its sign. Due

to the assumptions made on u0 in Claim 7.1, we get (−1)iu′
0(h

i
0) > 0. Due to

continuity, we obtain the existence of a constant η > 0 and continuous functions
x̄i(∙) such that x̄i(0) = hi

0 as well as

ū(x̄i(τ), τ ) = 0, (−1)iūx > η in [x̄i(τ) − η, x̄i(τ) + η] ∀i = 1, ..., n

(−1)iū > η2 in (x̄i(τ) + η, x̄i+1(τ) − η) ∀i = 1, ..., n
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for all τ ∈ [0, η]; we define x̄0 = x̄n − 1 and x̄n+1 = x̄1 + 1 . As ūxx =
1√
τ

∫ 1

0
Kη(η, 1)u′

0(x−
√

τη)dη, we have ‖ūτ (∙, τ )‖∞ ≤ m1√
πτ

for all τ > 0. Hence,

by the Implicit Function Theorem,
∣
∣ d
dτ x̄i

∣
∣ ≤ C1√

τ
with C1 = m1

η
√

π
. Consequently,

∣
∣x̄i(τ) − xi

0

∣
∣ ≤ 2C1

√
τ for all τ ∈ [0, η] and all i = 1, ..., n.

Similarly, if u0 ∈ C2(R), then d
dτ x̄i is bounded and

∣
∣x̄i(τ) − zi

0

∣
∣ = O(τ) for

all τ ∈ [0, η1].

Sketch of argument of Claim 7.1. Define

g±(x, t) =
min
max

{

±m0, ū
(
x, ε2t

)
± ε2m2

1M0(m0)
exp(|f ′(0)|t)−1

|f ′(0)|

}

∀x ∈ [0, 1], t ∈

[0,∞) with m0,m1 as defined above and M0 as in the statement of Claim 7.2.
Using Claim 7.2 (iii), we obtain that g± is a super/sub-solution to the equal-

ity in the statement of Claim 7.2. Thus,

W (g−(x, t), t) ≤ u(x, t) ≤ W
(
g+(x, t), t

)
∀x ∈ (0, 1), t ∈ [0,∞).

We now complete the sketch of argument by using Claim 7.3 (ii): We note
that

∥
∥
∥
∥g

+

(

∙,
| log ε|
|f ′(0)|

)

− ū

(

∙,
| log ε|
|f ′(0)|

)∥∥
∥
∥
∞

≤ C2ε; C2 :=
m2

1M0(m0)
|f ′(0)|

.

Due to the obtained property for ū, we have for sufficiently small ε > 0

(−1)iū

(

∙, ε2
| log ε|
|f ′(0)|

)

> (a∗ + C2)ε

in

(

x̄i

(

ε2
| log ε|
|f ′(0)|

)

+
a∗ + C2

η
ε, x̄i+1

(

ε2
| log ε|
|f ′(0)|

)

−
a∗ + C2

η
ε

)

.

This implies that (−1)ig±
(
∙, | log ε|

|f ′(0)|

)
> a∗ε in the interval

(
x̄i
(
ε2 | log ε|

|f ′(0)|

)
+ a∗+C2

η , xi+1
(
ε2 | log ε|

|f ′(0)|

)
− a∗+C2

η ε
)

. However the assumption

of the claim, with hi = x̄i
(
ε2 | log ε|

|f ′(0)|

)
and C = 2a∗+C2

η follows from the previous

inequality for W and Claim 7.2 (ii).

The following is based on [Che04] Theorem 3.1. Note that there is a
typographical error in the statement of the theorem in [Che04], the maximum
value of the valid time interval should be divided by ε.

Claim 7.4. Suppose
∥
∥
∥φ(∙, 0) − uh′

(∙)
∥
∥
∥→ε→0 0 for some uh′

(∙) being the orthog-

onal projection of φ(∙, 0) in the L2 norm.
u(∙, t) has the initial profile φ(∙, 0) and solves (1.1) for positive t.
There exist positive constants ν0, κ0, C0 and ρ0, all depending only on f(∙)

and a positive constant K0 ≥ 1, depending on f(∙) and ρ, such that the following
holds:
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For ε ∈ (0, 1], let u be the solution to (7.1) with initial condition u0(x) ∈
Xh0,ρ

ε for some ρ > 0 and h0 satisfying mini |h
i+1
0 − hi

0 mod 1| > 2ρε. Set

I :=
{
i ∈ {1, ..., n}|u0(h

i − ρε)u0(h
i + ρε) < 0

}
= {i1, ..., in}.

Then there exists (hi1 , ..., hin) depending on h0, ρ, f(∙) such that

max
i∈I

|hi − hi
0| ≤ (ρ + ρ0)ε,

∥
∥u(∙, t) − uh(∙)

∥
∥ ≤ K0

∥
∥u0 − uh(∙)

∥
∥ e−ν0t + C0e

−C/ε

for all t ∈
[
0, κ0

(
δhε−1 − 2ρ

)
/ε
]
,

for some C > 0 depending on f(∙) and the number of interfaces.
If I = ∅ (i.e. no sign-changes in the initial profile), then |uh| = 1.

Sketch of argument of Claim 7.4. Take any i ∈ {1, ..., N}.
We set φ(y, t) = u(hi

0 + y), a = hi−1
0 − hi

0 + ρ and b = hi+1
0 − hi

0 − ρ. Ap-

plying Claim 7.6 with r =
δh0
2 − ρ we can now conclude

∥
∥φ(y, t) − uh(y)

∥
∥ ≤

K0

∥
∥φ0 − uh(y)

∥
∥ e−ν0t + KFMe−D/ε−ν′t for all x ∈

(
h

i−1/2
0 , h

i+1/2
0

)
and t ∈

[
0,
(
κ0δh0ε

−1 − 2ρ
)
ε−1
]
. As we are on the interval rather than the real line, we

obtain the error term C0e
−C/ε in our expression. The term uh we used here

is the invariant solution of (7.1) on each interval, and thus up to exponentially
small errors the same as uh in chapter 1. This completes the sketch of argument.

In the following two claims we denote the solution of the deterministic Allen-
Cahn equation as φ(x, t) to underline that we are in the single-interface case.

This is based on [Che04] Proposition 3.1 ; in [Che04] however the sketch
of argument of the statement just refers to [FM77], which in fact only proves
the convergence to the standing wave but not to constant profiles.

Claim 7.5. Suppose
∥
∥
∥φ(∙, 0) − uh′

(∙)
∥
∥
∥→ε→0 0 for some uh′

(∙) being the orthog-

onal projection of φ(∙, 0) in the L2 norm.
There exist positive constants ν0, ν

′ and ρ0, C,D, c, ν ′, depending only on
f(∙) as well as h = h0 + α(t) with |h| ≤ (ρ + ρ0)ε, |α(t)| ≤ εce−ν′t and K ≥ 1,
depending on f(∙) and ρ, such that if

φ0 ∈
{
φ ∈ C(−∞,∞) → [−2, 2])||φ| ≥ 1

2 on R \ (−ρε, ρε)
}

for some ρ > 0,
then the solution φ of (7.1)

satisfies
∥
∥φ(∙, t) − uh(∙)

∥
∥ ≤ K

∥
∥φ(∙, 0) − uh(∙)

∥
∥ e−ν0t + Ce−D/ε ∀t ≥ 0;

if h = ∅, then uh = 1.
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Sketch of Argument. This result relies on knowing that φ converges to the stand-
ing wave, which is proven on the real line in [FM77]. To obtain it here, we simply
apply the result to our initial condition, which we constantly extrapolate; up to
an exponentially small error the same result thus holds.

The paper [FM77] does not show the case of convergence to ±1, however
this may easily be shown by replacing the wave profiles with ±1 in their sketch
of argument.

We denote y(x, t) = φ(x, t) − φ∗(x − h) where h = h0 + α(t) and φ∗ is the
invariant solution.

If there is no sign-change, then uh = ±1, if there is a sign-change this is
defined so that

〈
y, uh

x

〉
= 0 for large times .

Since we have

∂tφ = ε2∂xxφ + f(φ)

we thus obtain the following equation for y:

yt = φt + α′
(
uh
)′

= ε2φxx + f(φ) − ε2
(
uh
)′′

− f
(
uh
)

+ α′
(
uh
)′

= ε2yxx + f ′
(
uh
)
y + α′

(
uh
)′

+ O
(
y2
)

Now we set Ly = −ε2yxx−f ′
(
uh
)
y with appropriate domain in L2(−∞,∞),

this operator is self-adjoint and has a continuous strictly positive spectrum to
the right of −f ′(1) and a discrete spectrum to the left, we also know that 0 lies
in the discrete spectrum (e.g. by differentiating the equation for the invariant
solution) with eigenfunction uh; due to the constant sign of its derivative, 0
must be simple and the least eigenvalue; y is clearly included in L2(−∞,∞).

We now integrate the equation up against y to obtain due to the orthogo-
nality

〈
y, uh

x

〉
= 0 that

1
2

d

dt
‖y‖2 ≤ (−Ly, y) + O

(
‖y‖3

)
.

But y is orthogonal to the eigenfunction (uh)′ corresponding to the zero
eigenvalue of L, so (to see that the ε2 term disappears we rescale space onto
x′ = ε−1x, approximate the operator as (−(−∂xx − f ′(uh))y, y) ≤ −M‖y‖2 and
then rescale back) this becomes

1
2

d

dt
‖y‖2 ≤ −M‖y‖2 + O

(
‖y‖3

)
,

where M > 0 is a constant independent of t. Since we have y → 0 uniformly as
t → ∞ and for small enough ε > 0 ‖y‖ will itself be small enough we finally get

‖y(t)‖
d‖y(t)‖

dt
=

1
2

d

dt
‖y(t)‖2 ≤ −M ′‖y(t)‖2.

for some M ′ > 0.
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This means for ‖y(t)‖ > 0 that

d‖y(t)‖
dt

≤ −M ′‖y(t)‖.

Integrating this equation yields

‖y(t)‖ ≤ K ′‖y0‖e
−νt

for some K ′ ≥ 1, ν > 0.
Reworking the sketch of argument in [FM77] with appropriate scaling shows

that |α(t)| ≤ εce−ν′t for some c, ν ′ > 0. The final expression follows because of
the exponentially small error between φ∗ and uh.

This is inspired by [Che04] Lemma 3.1 (in [Che04] the interval sizes are
slightly wrong: in his scaling it should be

[
ε−1a, ε−1b

]
rather than [a, b]):

Claim 7.6. Suppose
∥
∥
∥φ(∙, 0) − uh′

(∙)
∥
∥
∥→ε→0 0 for some uh′

(∙) being the orthog-

onal projection of φ(∙, 0) in the L2 norm.
There exist positive constants κ0, ν0, ρ0, C

′, C depending only on f(∙) and a
positive constant K0 ≥ 1 depending on f(∙) and ρ, and h depending on h0, ρ, f(∙)
with|h| ≤ (ρ + ρ0)ε, s.t. if

φ0 ∈
{
φ ∈ C(R) → [−2, 2]||φ| ≥ 1

2 on [a, b]\ (−ρε, ρε)
}

with min{−a, b} >
ρ > 0, the solution φ to the equation of (7.1) satisfies, for any r ∈ [0, min{−a, b}],

√∫ b−rε

a+rε

|φ(y, t) − uh(y)|2 dy ≤ K0

∥
∥(φ0 − uh(∙))

∥
∥ e−ν0t+C ′e−C/ε ∀t ∈

[

0,
2κ0r

ε

]

Sketch of Argument. Let φ̃ be the solution to the equation of Claim 3.1 with
initial profile φ̃(y, 0) = φ0(y) for y ∈ (a, b), = sgn(φ(a)) for y ≤ a, and =
sgn(φ0(b)) for y ≥ b. Then, φ̃(∙, 0) ∈ Xρ,0

ε . Hence, by Claim 7.5, φ̃ satisfies the
inequality of Claim 7.5. We now need to estimate the quantity v := φ − φ̃ to
obtain the desired result:

Firstly we observe that vt = ε2vyy+a(y, t)v for some a(y, t) ≤ maxs∈[−2,2] {−f ′(s)} ≤
|f ′(0)| for all y ∈ R and t ≥ 0.

Therefore, by the comparison principle for positive solutions of the heat
equation we have

|v(y, t)| ≤ e|f
′(0)|t

∫ ∞

−∞
K(z, t)|v(y − z, 0)|dz,

where K(z, t) = (4π)−1/2e
−z2

ε24t is the usual heat kernel of our equation.
This straightforwardly implies through squaring and integrating over the

interval [aε + rε, bε − rε] that√∫ b−rε

a+rε
|v(y, t)|2dy ≤

√∫ b−rε

a+rε
e2|f ′(0)|t(

∫∞
−∞ K(y − z, t)|v(y − z, 0)|dz)2dy.
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Given the definition of φ as the difference between the actual solution of our
equation and the one with an initial profile set to ±1 outside [a, b], we easily
observe that v(y, 0) = 0 for all y ∈ [a, b].

Then (using the Cauchy-Schwartz inequality) we have
√∫ b−rε

a+rε

|v(y, t)|2dy ≤ e|f
′(0)|t‖v(∙, 0)‖

∫

|z|≥r

K(z, t)dz

≤ ‖v(∙, 0)‖e|f
′(0)|t−r2/(4ε2t).

But now it follows for all t ≥ 0 that
√∫ b−rε

a+εr

|φ(y, t) − uh(y)|2 dy

≤ KFM

∥
∥φ(∙, 0) − uh(∙)

∥
∥ e−ν0t + C ′′e−D/ε + ‖v(∙, 0)‖e|f

′(0)|t−r2/(4ε2t)

for some C ′′, D > 0.
We now choose κ0 = [16(A + ν0)]−1/2. This implies At − r2/(4ε2t) ≤ −ν0t

for all t ∈ (0, 2κ0r
ε ].

We note that
‖v(∙, 0)‖ ≤

∥
∥φ(∙, 0) − uh(∙)

∥
∥ +

∥
∥I(−∞,a)∪(b,∞) − uh(∙)

∥
∥ ≤

∥
∥φ(∙, 0) − uh(∙)

∥
∥ +

C ′e−C/ε for some C,C ′ > 0, the exponential correction appears because φ(∙, 0)
can be closer to uh than ±1 outside [a, b].

If we now choose K0 in such a way that K0 ≥ KFM + 1, and add the
aforementioned exponential correction term the assertion of our Claim follows.

This is inspired by [CP89] Theorem 2.4 :

Claim 7.7. For some 0 < ρ < ρ∗∗ and Cmap > 0 independent of ε there exists
a smooth function (depending on ε) H : Γ′

ε → Ωρε and a constant C > 0 such
that provided h = H(u) we have

〈
u − uh, τh

j

〉
= 0 for j = 1, ..., N

and ∥
∥u − uh

∥
∥ ≤ C

{∥∥u − uk
∥
∥ : k ∈ Ωρ

}
.

Sketch of Argument. We will achieve this sketch of argument through using the
implicit function theorem. For this we prove the local result stated in Claim
7.8:

H(u) will be determined from a zero of the function

F : Ωρ∗∗ε × Γ′
ε → [0, 1]N given by F(h, u) =

(〈
uh − u, τh

j

〉)
.
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F is clearly smooth in (h, u) and F
(
h, uh

)
= 0 for all h ∈ Ωρ∗∗ε. We will

apply a contraction mapping principle in the first argument of the function
G : Ωρ∗∗ × Γ′

ε × Ωρ → [0, 1]N given by

G(h, u, h∗) = h − (DF∗)
−1F(h, u),

where

(DF∗)jk =
∂Fj

∂hk

(
h∗, uh∗

)
=
〈
uh∗

k , τh∗

j

〉
.

From the estimates of [CP89] subsestion 2.5 and 3.2, if ρ∗∗ is sufficiently
large we may estimate the Lipschitz constant of G by estimating

∣
∣
∣
∣
∂G

∂h

∣
∣
∣
∣ ≤

∣
∣(DF∗)

−1
∣
∣ ∙
∣
∣
∣
(〈

uh∗

k , τh∗

j

〉
−
〈
uh

k , τh
j

〉
+
〈
u − uh, τh

jk

〉)∣∣
∣

≤ C
(
b′(ρ) +

∥
∥u − uh

∥
∥ ε−1/2

)

where b′(ρ) = o(1) as ρ → ∞.
From the estimate

∥
∥uh − uh∗∥∥ ≤ Cε−1/2|h − h∗| which follows from [CP89]

subsection 2.5, we have
∣
∣
∣
∣
∂G

∂h

∣
∣
∣
∣ ≤ C

(
b′(ρ∗∗) +

∥
∥
∥u − uh∗

∥
∥
∥ ε−1/2 + ε−1|h − h∗|

)
.

If
∥
∥u − uh∗

‖ ≤ Cmapε
1/2, |h − h∗| < εb and 1

ρ∗∗ , Cmap, b are sufficiently small

(independent of ε), we find
∣
∣∂G

∂h

∣
∣ < 1

4 . If ρ∗∗ is sufficiently large, G(∙, u, h∗) is
defined for all h ∈ Bεb(h∗) (a ball of radius εb around h∗), and

|G(h, u, h∗) − h∗|

≤
∣
∣
∣G(h, u, h∗) − G

(
h, uh∗

, h∗
)∣∣
∣+
∣
∣
∣G
(
h, uh∗

, h∗
)
− G

(
h∗, uh∗

, h∗
)∣∣
∣

≤
∣
∣(DF∗)

−1
∣
∣
∣
∣
∣
∣

〈
uh∗

− u, τh
j

〉
| +

1
4
|h − h∗|

≤ C
∥
∥
∥u − uh∗

∥
∥
∥max

j

∥
∥τh

j

∥
∥+

1
4
εb ≤ ε

(

C ∙ Cmap +
1
4
b

)

<
1
2
εb,

provided Cmap < b
4C . Thus we have a local result by applying the contrac-

tion mapping principle.
Global control follows from Claim 7.9.

Claim 7.8. Assume ρ, ρ∗∗, Cmap and b are as required above; then if h∗ ∈ Ωρ

and u ∈ Γ′
ε, there exists a unique solution h = H(u, h∗) to F(h, u) = 0 in

Bεb(h∗). (In fact, |h − h∗| < 1
2εb). This function H(u, h∗) is smooth in its first

argument. (Here the notation Bσ(w) means {u ∈ L∞|‖u − w‖∞ < σ} .)
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Claim 7.9. Given b as above, if ρ is sufficiently large, there exists C ′
map,

0 < C ′
map ≤ Cmap, such that if h∗ and h∗∗ lie in Ωρ∗∗ and

∥
∥uh∗

− uh∗∗∥∥ ≤
2C ′

mapε
1/2, then |h∗ − h∗∗| < 1

2 εb.

Sketch of Argument. We may take ρ > b−1 so that hj − hj−1 > εb for h ∈ Ωρ.
We claim that if ρ∗∗ and ρ are sufficiently large, then for each k ∈ {1, ..., N}

there exists a unique j(k) ∈ {1, ..., N} such that
∣
∣
∣h∗

k − h∗∗
j(k)

∣
∣
∣ < 1

2εb.

To show this, we argue as follows. There exists c > 0 s.t. |Φ(x)| > c
(Φ is the invariant solution of the PDE on the real line with interface 0) if
|x| > 1

2 εb. Choose δ1 = 1/2, H1 large, δ2 with 0 < 2δ2 < c, and apply
[CP89] Proposition 2.2. Set C ′

map = 1
2 min

(
δ2,

1
2

)
. From [CP89] subsection

2.3 it follows that if ρ is sufficiently large, h ∈ Ωρ, and |x − hj | ≥ 1
2εb for

all j, then
∥
∥uh(x)

∥
∥ > 2C ′

mapε
1/2. Now if

∣
∣h∗

k − h∗∗
j

∣
∣ ≥ 1

2εb for all j, then∥
∥(uh∗

− uh∗∗)
(h∗

k)
∥
∥ > 2C ′

mapε
1/2 contradicting the hypothesis, thus establish-

ing the claim, since h∗∗
j − h∗∗

j−1 > εb for all j yields uniqueness. The mapping
k → j(k) is one to one, hence onto, and it is increasing, so k = j(k). Hence
|h∗ − h∗∗| < 1

2εb, as desired.
Now to define H(u) in Claim 7.7, take Cmap = C ′

map. Given u ∈ Γ′
ε, there

exists h∗ ∈ Ωρ with
∥
∥u − uh∗∥∥ < C ′

mapε
1/2; we set H(u) = H(u, h∗). To show

that this is well-defined, suppose also h∗∗ ∈ Ωρ with
∥
∥u − uh∗∗∥∥ < C ′

mapε
1/2.

To see that H(u, h∗) = H(u, h∗∗), it suffices to show that |H(u, h∗∗) − h∗| < εb
by the uniqueness assertion of Claim 7.8. But

|H(u, h∗∗) − h∗∗| + |h∗∗ − h∗| <
1
2
εb +

1
2
εb

as required, since
∥
∥uh∗

− uh∗∗∥∥ < 2C ′
mapε

1/2. The claim is proved.

7.2 Existence and uniqueness of the stochastic Allen-Cahn
equation

For the convenience of the reader, we here review existence and uniqueness of
the stochastic Allen-Cahn equation. These results are relatively well known and
can in better detail, for example, be found in [Zab89], [DPZ92], [DPZ96] or
[GP93].

We consider the system

ut = ε2uxx + f(u) + εγẆ x ∈ (0, 1)

u(∙, 0) = u0(∙), u(x) = u(x + 1).

f is as defined in section 1.2, W is a cylindric Wiener process as in definition
1.2. We may view this equation as a stochastic differential equation in some
infinite-dimensional function space. A problem in interpreting the ”meaning”
of this equation is that Ẇ is a not a function, but rather an object that attains
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values in some distribution space. To avoid this problem of interpreting the
equation, we can pose it in mild form

u(∙, t) = S(t)u0 + εγ

∫ t

0

S(t − s)dW (s) +
∫ t

0

S(t − s)f(u(s))ds.

S(t) denotes the associated heat semigroup, i.e. S(t)w0 solves wt = ε2wxx;
w(∙, 0) = w0(∙), w(x) = w(x + 1).

The formula written down can be viewed as a stochastic analogue of the vari-
ations of constants formula. Even though our noise takes values in a ”rougher”
space, the stochastic convolution takes values in the space of continuous func-
tions due to the smoothing properties of S(t). The solution to the nonlinear
equation then works using a fixed point argument in this space. One danger of
this approach is that our mild form only formally corresponds to the equation,
and particular care needs to be taken, if one wants to apply Itô’s formula.

Before we show its existence and uniqueness, we will look at the linear case:

zt = ε2zxx + εγẆ

As in chapter 1, we denote by {ej(∙)}∞j=1 an orthonormal basis of L2[0, 1]
consisting of the eigenvectors of the Laplacian with periodic boundary condi-
tions so that the associated eigenvalues are λk = −(kεπ)2. Then we have
z =

∑j=∞
j=1 xk(t)ek(x) where

dxk(t) = −λkxkdt + εγdW k(t)

where we denote W k = 〈W (t), ek〉, which are independent Brownian motions.
The convergence of the sum z =

∑
xkek in C([0, T ], L2[0, 1])follows immedi-

ately by use of a maximal inequality; application of the Kolmogorov-Chentsov
criterion gives convergence in C([0, T ], C0[0, 1]). We will obtain that z(x, t) are
locally α-Hölder-continuous in x for all α < 1

2 for fixed t and locally β-Hölder-
continuous in t for all β < 1

4 for fixed x. Unlike for an Ornstein-Uhlenbeck
process in finite dimensions, for each x ∈ (0, 1), (z(x, t), t ≥ 0) is not a semi-
martingale. However, the process is reversible, and the reversible measure is a

normal distribution N
(
0, ε2γ

2λk

)
; this in turn implies that the entire process is

a normal distribution on L2 with covariance operator (−Δ)−1, which may be
interpreted as a Brownian bridge. We may write down the solution also in the
mild solution form

z = S(t)z0 + εγ

∫ t

0

S(t − s)dWs.

Denoting the heat semigroup in terms of its eigenvector basis, we can verify that
this is the same as the solution above.

Now we shall consider the nonlinear case. Our nonlinearity defines a con-
tinuous operator from C0 onto itself. To be precise, we have the following: If u
and v satisfy ‖u‖∞, ‖v‖∞ ≤ C, C > 0, then one has for all x ∈ [0, 1] that

|f(u(x)) − f(v(x))| ≤ sup
|w|≤C

|f ′(w)| 2C,
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so that the operator F : C0[−1, 1] → C0[−1, 1] defined by F(u)(x) = f(u(x)) is
locally Lipschitz. Now, we define the operator H : C0[−1, 1] → R by H(u) =
−
∫ 1

−1
F (u(x))dx; we may interpret F as the L2-gradient: H is Frechet-differentiable,

and for each u, h ∈ C0[−1, 1] one has

DH [u](h) := lim
δ→0

H(u + δh) − H(u)
δ

=
∫ 1

−1

f(u(x))h(x)dx = −〈F(u), h〉.

Let us now construct a global solution. We shall inspect the mild solution
starting at v0 rather than u0, i.e. v s.t.

v(t) = S(t)v0 + εγ

∫ t

0

S(t − s)dWs +
∫ t

0

S(t − s)f(u(s))ds

To obtain local existence we choose the path z(t) = S(t)v0 + εγ
∫ t

0
S(t −

s)dWs ∈ C([0, T ], C0[−1, 1]), we have continuity because εγ
∫ t

0
S(t − s)dWs is

a Gaussian process (cf. e.g. [Adl90] for the continuity of Gaussian processes)
and S(t)v0 is the solution to the heat equation started at v0 (c.f. [Eva10] for
its continuity); we look for solutions of the mild equation in a pathwise manner.
Observe that the mapping

Θv(t) = z(t) +
∫ t

0

S(t − s)f(u(s))ds

maps C([0, T ], C0[−1, 1]) onto itself. Because of the maximum principle one has
‖S(t)‖C0→C0 ≤ 1, and hence can conclude

‖Θv(t) − z(t)‖∞ ≤
∫ t

0

‖f(u(s))‖∞ds.

Together with the Lipschitz property of f this means that for a fixed C and
T = T (C) small enough Θ maps

B̄r(z) =

{

u(t)([0, T ], C0[−1, 1]) : sup
t∈[0,T ]

‖u(t) − z(t)‖ ≤ C

}

into itself. Similarly, for u, v ∈ B̄r(z), the lipschitz property gives

‖Θ(u(t))−Θ(v(t))‖∞ ≤
∫ t

0

‖F(u(s))−F(v(s))‖∞ds ≤ C ′t sup
s∈[0,t]

‖u(s)−v(s)‖∞

so that (potentially involving a smaller choice of t) Θ is a contraction. By the
Banach Fixed Point Theorem we then have local existence and uniqueness of
mild solutions. To obtain global uniqueness, it is sufficient to show that on a
finite time interval [0, T ] our norm ‖u(t)‖∞ cannot blow up. Now for a fixed
path z(t) denote v̄ = v− z. On a formal level, we want to conclude that v̄ solves
the random PDE

v̄t(x, t) = ε2v̄xx(x, t) + f(v̄(x, t) + z) + z(x, t).
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Since f(u) obtains only negative values for |u| sufficiently large, one could con-
clude non-blow-up of ‖v̄‖∞ on [0, T ] using a comparison principle.

However, since we only know that the mild formulation of the equation holds,
we do not know if this formulation of the equation holds. To complete the sketch
of argument, we replace the laplacian in the mild formulation by the Yoshida
approximation. Then one can proceed to prove non-blow-up of these regularized
solutions. The maximum principle will be replaced by the Hille-Yoshida theorem
yielding that the Yoshida approximation of the laplacian generates a contrac-
tion semigroup on C0[−1, 1]. Since the solutions of the approximated equations
converge to the solution of the original equation, we may finally conclude non-
blow-up for the original equation. In [DPZ92] these calculations can be found in
detail. The Markov property then follows from the pathwise uniqueness property.

7.3 Open problems

While this work has given the first general view of the stochastic Allen-Cahn
equation with finitely many interfaces, there are still some optimisations that
could be done and related open problems:

- The results proven for white noise should also hold for slightly stronger
noise, i.e. γ > 3

2 instead of γ > 2. This should be achievable by replacing the
condition ‖v‖ ≤ Cmapε

1/2 with ‖v‖∞ ≤ cmap for some cmap > 0 and formulate
and prove the Theorems and lemmas accordingly in terms of this norm.

- The results should also hold for the initial condition simply being a continu-
ous bounded function satisfying periodic boundary conditions. Since a determin-
istic result of this exists in [Che04], this should be possible through generalising
the proof found in [Che04].

- One could prove the results using energy methods, that have already led to
very detailed knowledge of the invariant measure; an interesting approach for
this could be the one taken in [OR07].

- A very challenging problem is proving that on exponential timescales nu-
cleation of interface pairs occurs. One work in this direction is [Bar12].

- What exactly happens if the white noise is so strong (i.e. γ ≤ 3
2) that the

sharp interface limit does not yield annihilating Brownian motions, but (pre-
sumably) something like the marked Brownian web? See [FINR04] for more
about the (marked) Brownian web.

- Using [OW14], it should be possible to extend the results of [ABK12] to
something similar to chapter 6.

- Related to fractional Brownian motion is the question of the interface be-
haviour in the Cahn-Hilliard equation perturbed by white noise. In [BBB14] the
behaviour of one interface has been derived, and an extension similar to what
was done in this work would be very interesting.
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