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Abstract: The production of χb mesons in proton-proton collisions is studied using a data

sample collected by the LHCb detector, at centre-of-mass energies of
√
s = 7 and 8 TeV

and corresponding to an integrated luminosity of 3.0 fb−1. The χb mesons are identified

through their decays to Υ(1S)γ and Υ(2S)γ using photons that converted to e+e− pairs

in the detector. The relative prompt production rate of χb1(1P ) and χb2(1P ) mesons

is measured as a function of the Υ(1S) transverse momentum in the χb rapidity range

2.0 < y < 4.5. A precise measurement of the χb(3P ) mass is also performed. Assuming a

mass splitting between the χb1(3P ) and the χb2(3P ) states of 10.5 MeV/c2, the measured

mass of the χb1(3P ) meson is

m(χb1(3P )) = 10515.7+2.2
−3.9(stat)+1.5

−2.1(syst) MeV/c2.
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1 Introduction

The study of production and properties of heavy quark-antiquark bound states (quarkonia)

provides an important test of the underlying mechanisms described by quantum chromo-

dynamics (QCD). The quarkonium (cc and bb) states in which quarks have parallel spins

include the S-wave (J/ψ , Υ ) and the P -wave (χc, χb) states, where each of the latter com-

prises a closely spaced triplet of J = 0, 1, 2 spin states (χcJ , χbJ). In high-energy proton-

proton collisions at the LHC, qq pairs (q = c, b) are expected to be produced predominantly

via a hard gluon-gluon interaction followed by the formation of bound quarkonium states.

The production of the qq pair is described by perturbative QCD, while non-perturbative

QCD is needed for the description of the evolution of the qq pair to the bound state. Sev-

eral models have been developed for this non-perturbative part such as the colour singlet

model [1–3] and the non-relativistic QCD (NRQCD) model [4, 5], which also includes the

production of quarkonium via the colour octet mechanism. Recent studies support the lead-

ing role of the colour singlet mechanism [6, 7]. Measurements of the relative rate of J = 1

and J = 2 states provide information on the colour octet contribution. This relative rate

is also predicted to have the same dependence on the meson transverse momentum (pT) in

χb and χc states, once the pT of the χb meson is scaled by the ratio of χc and χb masses [8].
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Measurements of χc production and the ratio of the χc1 and χc2 production cross-

sections have been made previously using various particle beams and energies [9–13]. All

the χb states are below the BB threshold (where B stands for b mesons) and therefore

can be studied through their radiative decays to the Υ mesons, in the same way as the χc
states were studied through their radiative decays to the J/ψ meson [13].

In this paper we report a measurement of the ratio of χb2(1P ) to χb1(1P ) production

cross-sections σ(pp→ χb2(1P )X)/σ(pp→ χb1(1P )X) at centre-of-mass energies of
√
s = 7

and 8 TeV in the rapidity range 2.0 < y < 4.5 as a function of the Υ (1S) transverse momen-

tum from 5 to 25 GeV/c. The full LHCb sample is used, corresponding to an integrated

luminosity of 3.0 fb−1. The observation in LHCb data of the recently observed χb(3P )

state [14, 15] is also presented. The measurement of its mass and of the mass splitting

between the χbJ(1P ) states (J = 1 and J = 2) provide useful information for testing QCD

models [16–18].

The kinematically allowed transitions χb(1P )→ Υ (1S)γ, χb(2P )→ Υ (1S)γ, χb(3P )→
Υ (1S)γ and χb(3P )→ Υ (2S)γ are studied. The Υ (mS) (m = 1, 2) meson is reconstructed

in the dimuon final state and only photons that convert in the detector material are used.

The converted photons are reconstructed using e+ and e− tracks, allowing a separation of

the χb1 and χb2 mass peaks, due to the improved energy resolution of converted photons

with respect to that of photons identified with the calorimeter. Any contribution from the

χb0 mesons decays is neglected, as their radiative decay rate is expected to be suppressed

by an order of magnitude compared to that of the χb2 meson [17, 19].

2 Detector and data samples

The LHCb detector [20] is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, designed for the study of particles containing b or c quarks. The detec-

tor includes a high-precision tracking system consisting of a silicon-strip vertex detector

(VELO) surrounding the pp interaction region, a large-area silicon-strip detector station

located upstream of a dipole magnet with a bending power of about 4 Tm, and three sta-

tions of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The

tracking system provides a measurement of momentum, p, with a relative uncertainty that

varies from 0.4% at low momentum to 0.6% at 100 GeV/c. The total material before the

first tracking station corresponds to about 25% of a radiation length. The minimum dis-

tance of a track to a primary vertex, the impact parameter, is measured with a resolution

of (15 + 29/pT)µm, where pT is in GeV/c. Different types of charged hadrons are distin-

guished using information from two ring-imaging Cherenkov detectors. Photon, electron

and hadron candidates are identified by a calorimeter system consisting of scintillating-pad

and preshower detectors, an electromagnetic calorimeter (ECAL) and a hadronic calorime-

ter. The reconstruction of converted photons is described in section 3. Muons are identified

by a system composed of alternating layers of iron and multiwire proportional chambers.

The LHCb coordinate system is right-handed with its origin at the nominal interaction

point, the z axis aligned along the beam line towards the magnet and the y axis pointing

upwards. The magnetic field is oriented along the y axis.
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The trigger consists of a hardware stage, based on information from the calorimeter

and muon systems, followed by a software stage, which applies a full event reconstruction.

Events used in this analysis are first required to pass a hardware trigger that selects muon

candidates with pT > 1.76 GeV/c or dimuon candidates with a product of their pT larger

than (1.6 GeV/c)2. In the software trigger both muons are required to have pT > 0.5 GeV/c,

total momentum p > 6 GeV/c, and dimuon invariant mass greater than 4.7 GeV/c2.

In the simulation, pp collisions are generated using Pythia [21, 22] with a specific

LHCb configuration [23]. Decays of hadronic particles are described by EvtGen [24],

in which final state radiation is generated using Photos [25]. The interaction of the

generated particles with the detector and its response are implemented using the Geant4

toolkit [26, 27] as described in ref. [28]. The simulated samples consist of events containing

at least one Υ meson that is forced to decay to two muons. In a sample used for background

studies, no restriction on the Υ meson production mechanism is imposed. This sample is

referred to as inclusive Υ in the following. In another sample, used for the estimation of

signal efficiencies and parametrisation, the Υ is required to originate from a χb meson. This

simulated sample is about 10 times larger than the data sample.

3 Event reconstruction and selection

The reconstruction and selection of χb candidates closely follows ref. [13]. Photons that

convert in the detector material are reconstructed from pairs of oppositely charged electron

candidates. Since the acceptance is lower for photons that convert in the VELO and the

energy resolution is worse, only γ → e+e− candidates without VELO hits are considered.

This selection strongly favours conversions that occur between the downstream end of the

VELO and the first tracking station upstream of the magnet. The e+e− candidates are

required to be within the ECAL acceptance and to produce electromagnetic clusters that

have compatible coordinates in the non bending plane. Any photon whose position in

the ECAL is compatible with a straight line extrapolation of the electron track from the

first tracking station is considered as a bremstrahlung photon. Its energy is added to the

electron energy. If the same bremsstrahlung candidate is found for both the e+ and the e−,

the photon energy is added randomly to one of the tracks. The e+ and e− tracks (corrected

for bremsstrahlung) are then extrapolated backwards in order to determine the conversion

point and a vertex fit is performed to reconstruct the photon momentum. The transverse

momentum of the photon candidate (pγT) is required to be larger than 600 MeV/c and the

invariant mass of the e+e− pair is required to be less than 50 MeV/c2, which removes most

of the combinatorial background. The resulting purity of the photon sample is determined

from simulation to be about 99%.

The Υ candidate is reconstructed in its decay to the µ+µ− final state. Each track must

be identified as a muon with pT > 2 GeV/c and p > 8 GeV/c. The two muons must originate

from a common vertex with vertex fit χ2/ndf smaller than 25. Only Υ candidates with

transverse momentum (pΥT) greater than 4 GeV/c are kept. Figure 1 shows the invariant

mass of Υ candidates. The mass resolution is about 43 MeV/c2. The accepted mass ranges

for the Υ (1S) and for the Υ (2S) candidates are given in table 1.
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(n,m) (1,1) (2,1) (3,1) (3,2)

pΥT ( GeV/c) > 4.0 > 4.0 > 5.0 > 6.0

pγT ( GeV/c) > 0.6 > 0.9 > 1.3 > 0.7

Υ mass range ( MeV/c2) 9360 < m(µ+µ−) < 9560 9960 < m(µ+µ−) < 10100

Low mass SB range ( MeV/c2) 9000 < m(µ+µ−) < 9200 9650 < m(µ+µ−) < 9850

High mass SB range ( MeV/c2) 9650 < m(µ+µ−) < 9850 10150 < m(µ+µ−) < 10250

Table 1. Selection criteria for each χb(nP )→ Υ(mS)γ transition. SB indicates sideband.

The Υ and γ candidates are each associated with the primary vertex (PV) relative to

which they have the smallest impact parameter χ2, defined as the difference between the χ2

of the PV reconstructed with and without the considered tracks. They are then combined

to form a χb candidate. The χb decay time has to be smaller than 0.1 ps (about 5 times the

observed resolution). Loose requirements are applied in order to reject combinatorial back-

ground and poorly reconstructed candidates using the following variables: the difference in

z-positions of the primary vertices associated with the Υ and γ candidates, the χ2 of the χb
candidate vertex fit and the difference between the χ2 of the PV fitted with and without

the χb candidate. These requirements remove about 30% of the background and 8% of

the signal. The cosine of the angle between the photon momentum in the χb rest frame

and the χb momentum is required to be positive. This requirement halves the background

while preserving 92% of the signal. The χb candidates are selected in the rapidity range

2.0 < y < 4.5.

The χb candidates’ mass is defined as m∗(µ+µ−γ) ≡ m(µ+µ−γ)−m(µ+µ−) +m(Υ ),

where m(Υ (1S)) = 9460.3 ± 0.3 MeV/c2 and m(Υ (2S)) = 10023.3 ± 0.3 MeV/c2 are the

known Υ mass values [19]. This allows a nearly exact cancellation of the uncertainty due

to the Υ mass resolution and any possible bias on the Υ candidates mass. The χb mass

resolution is therefore dominated by the resolution on the photon energy. The requirements

on pΥT and pγT and the Υ signal mass ranges used for each χb(nP )→ Υ (mS)γ decay mode

are given in table 1.

4 Sample composition and fit model

Two background sources are considered in the sample of χb candidates. One source is the

non-Υ background originating mainly from the Drell-Yan process where the dimuon pair

is combined with a photon. The second source is the combinatorial background where a

genuine Υ is combined with a random photon. The functions used for the fits are the sums

of a background and signal functions.

The χb1 and χb2 peaks are each parametrised with a double sided Crystal Ball (CB)

function [29]:

CBi(m
∗) ∝ exp

(
− 1

2

(
m∗ −mi

σi

)2)
if − αL <

m∗ −mi

σi
< αR
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Figure 1. Invariant dimuon mass of the Υ candidates after the event selection requirements and

before the Υ mass range requirement. The distribution is fitted with the sum (blue line) of a

double-sided Crystal Ball function for each Υ state (dashed red line for Υ (1S), dotted pink line for

Υ (2S), dash-dotted green line for Υ (3S)) and a second-order polynomial for the background (not

shown). The hatched red bands show the signal regions and the hatched blue bands show the mass

sidebands used for background studies.

CBi(m
∗) ∝

(nL/αL)nLexp(−1
2α

2
L)

(nL/αL − αL − (m∗ −mi)/σi)nL
if

m∗ −mi

σi
< −αL (4.1)

CBi(m
∗) ∝

(nR/αR)nRexp(−1
2α

2
R)

(nR/αR − αR + (m∗ −mi)/σi)nR
if

m∗ −mi

σi
> αR,

where the index i = 1(2) refers to the χb1 (χb2) CB function. The CB left tail accounts

for events with unreconstructed bremsstrahlung, while the right tail accounts for events

with overcorrected bremsstrahlung. Simulation shows that the same tail parameters αR

and nL,R can be used for all the χbi(nP ) states, nL = nR = 2.5 and αR = 1.0, while

different values of αL have to be used: αL = 0.20, 0.25 and 0.30, for the χbi(1P ), χbi(2P )

and χbi(3P ) shapes, respectively. Since in the study of χc states it was found that the CB

tail parameters were similar in data and simulation [13], the values found with simulation

are used for the χb. The CB width, σ, increases with the mass difference between the

considered χb and Υ states. Fits to the mass distributions of χb(1P ) → Υ (1S)γ and

χb(2P ) → Υ (1S)γ candidates indicate that the width is 10% − 20% larger in data than

in simulation. Therefore, the CB width is fixed to the value found with simulated events

increased by 10% and it is varied by ±10% for studies of the systematic effects.

The shape of the non-Υ background and its amplitude are estimated using the Υ mass

sidebands shown in figure 1 and given in table 1. The mass distribution of these candidates

is fitted with an empirical function

fbkg(m∗) ∝ arctan

(
m∗ −m0

c

)
+ b

(
m∗

m0
− 1

)
+ a , (4.2)
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where m0, a, b and c are free parameters. This function is then used to parametrise the

non-Υ background contribution with all parameters fixed to the fitted values. The shape

of the combinatorial background is estimated using the inclusive Υ simulated sample and

parametrised with eq. (4.2). All parameters are fixed to the values found with simulation

except for the normalisation. In the case of the χb(3P ) → Υ (2S)γ transition, this shape

does not reproduce the data properly and the value of the m0 parameter is therefore left

free in the fit. This discrepancy is due to mismodeling of the pΥT spectrum in simulation

and is accounted for in the systematic uncertainties.

The fits have at most six free parameters: the mean mass value for the χb1 peak m1,

the mass difference between the χb2 and χb1 peaks ∆m12, the normalisation of the χb1 CB

function A1, the ratio of the χb2 to χb1 CB amplitudes r12, the normalisation of the combi-

natorial background Acomb and the m0 parameter for the combinatorial background shape.

5 χb meson masses

5.1 Mass measurements

The masses of the χb mesons are determined using unbinned maximum likelihood fits to the

χb mass distributions using the parametrisation described in section 4. Figures 2 (a) and

(b) show the mass distributions for the χb(1P ) → Υ (1S)γ and χb(2P ) → Υ (1S)γ decays

with the fit results overlaid. In these fits the free parameters are m1, A1, ∆m12, r12 and

Acomb. Table 2 reports the resulting mass determinations for these states compared to the

world average values [19]. A small bias is expected on the measured masses, attributed to

unreconstructed bremsstrahlung of the e+e− pair. This bias is proportional to the Q-value

of the transition and is expected, from simulation, to be about −0.5 and −1.5 MeV/c2

for the χb(1P ) → Υ (1S)γ and χb(2P ) → Υ (1S)γ decays, respectively. The measurements

given in table 2 are not corrected for this bias and are consistent with such a bias. On the

other hand the χb(3P ) mass measured using the χb(3P )→ Υ (mS)γ transitions is corrected

for the bias estimated with simulation, −3.0±2.0 MeV/c2 and −0.5±0.5 MeV/c2 for m = 1

and m = 2, respectively, where the uncertainties cover possible discrepancies between data

and simulation.

In the case of the χb(3P ) meson, the mass splitting and the relative yields are also

fixed, as the spin-1 and spin-2 peaks cannot be separated. Theory predictions vary from 9

to 12 MeV/c2 [16, 17] for ∆m12 and this parameter is fixed to 10.5 MeV/c2. The value of r12
is fixed based on theoretical predictions [17] and our experimental measurement. It can be

expressed as the product of the ratio of branching fractions to Υγ and of the ratio of produc-

tion cross-sections of the χb2(3P ) and χb1(3P ) states. Predictions for branching fractions

are found in refs. [17, 18]. The predictions from ref. [17] agree well with the experimental

measurements for the χb(1P ) and the χb(2P ) mesons. The model of ref. [17] predicts sim-

ilar values for the two transitions, B(χb2(3P )→ Υ (mS)γ))/B(χb1(3P )→ Υ (mS)γ) ≈ 0.47

(m = 1, 2). According to ref. [8] the ratio of production cross-sections is expected to be

the same for the χb(3P ) and χb(1P ) mesons and thus, using the measurement detailed in

section 6, we obtain σ(χb2(nP ))/σ(χb1(nP )) = 0.9± 0.2.
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(n,m) (1,1) (2,1)

m1 9892.3± 0.5 10254.7± 1.3

m1 world average 9892.8± 0.4 10255.5± 0.6

∆m12 19.81± 0.65 12.3± 2.6

∆m12 world average 19.43± 0.37 13.5± 0.6

Table 2. Fitted values of the χb(nP ) (n = 1, 2) masses (in MeV/c2) from the χb(nP ) → Υ (1S)γ

transitions, compared to the world average values. The uncertainties are statistical only.

(n,m) (3,1) (3,2) (3,1)+(3,2)

m1 10509.0+5.0
−2.6 10518.5+1.9

−1.3 10515.7+2.2
−3.9

∆m12 10.5 (fixed) 10.5 (fixed) 10.5 (fixed)

N(χb) 107± 19 41± 12 169± 25

Table 3. Fitted values of the χb(3P ) mass (in MeV/c2) for the χb(3P )→ Υ (mS)γ (m = 1, 2) tran-

sitions. The last column gives the result of the simultaneous fit to the two transitions. The values

are corrected for the mass bias (−3 MeV/c2 and −0.5 MeV/c2 for the Υ (1S) and Υ (2S) transitions,

respectively). The last row gives the total χb yields. The uncertainties are statistical only.

To summarise, the value r12 = 0.47 × 0.9 = 0.42 is used in the fits to the mass

distributions associated with the transitions of the χb(3P ) meson to Υ (1S) and Υ (2S)

mesons. Table 3 gives the result of the fits to the mass distributions for the χb(3P ) →
Υ (1S)γ and χb(3P )→ Υ (2S)γ transitions. A simultaneous fit to these two distributions is

also performed and the result is reported in the last column of table 3. Figure 2 shows the

results of these fits. The χb(3P ) → Υ (1S)γ and χb(3P ) → Υ (2S)γ decays are seen with

a statistical significance, determined from the likelihood ratio of the fits with background

only and with signal plus background hypotheses, of 6.0σ and 3.6σ respectively. The total

statistical significance determined with the simultaneous fit is 6.9σ.

5.2 Systematic uncertainties

The systematic uncertainties on the measurement of the χb(nP ) (n = 1, 2) mass splitting

and of the χb(3P ) mass are detailed as follows.

First the systematic uncertainties related to the signal parametrisation are considered.

The χb0 contribution is expected to be small because its branching fraction to Υ (1S)γ is less

than 2% for χb(1P ) and χb(2P ) mesons [19]. In order to estimate the systematic uncertainty

due to the presence of a χb0 or another unknown state, a third CB function is added to

the fit, with a peak position fixed to the world average value for the χb(nP ) for n = 1, 2

and left free for the χb(3P ). The resulting yield of χb0 mesons is compatible with zero.

The Gaussian width of the CB function is varied within ±10% to cover possible differences

between data and simulation. For these two fit variations, the differences between results of

the nominal and alternative fits are taken as systematic uncertainties, added in quadrature

and referred to as signal uncertainty in table 4.
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Figure 2. Distribution of m∗(µ+µ−γ) ≡ m(µ+µ−γ) −m(µ+µ−) + m(Υ ) for χb candidates with

fit projections overlaid for (a) χb(1P ) → Υ (1S)γ, (b) χb(2P ) → Υ (1S)γ, (c,e) χb(3P ) → Υ (1S)γ

and (d,f) χb(3P ) → Υ (2S)γ channels. The result of the simultaneous fit to the χb(3P ) → Υ (1S)γ

and χb(3P )→ Υ (2S)γ mass distributions is shown in (e) and (f). The cyan dotted line shows the

non-Υ background, the grey dashed line shows the combinatorial background, the red dashed line

the χb1 contribution, the green dash-dotted line the χb2 contribution, and the blue full line the sum

of all these contributions.
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Imperfect modelling of the background is also considered as a possible source of sys-

tematic uncertainty. The normalisation of the non-Υ background is varied within the

uncertainty of the estimated number of background events under the Υ peak (typically

10%). Negligible variations are observed when the shape of this background is determined

using only the low or the high mass sideband. Therefore no systematic uncertainty is as-

signed from the non-Υ background modelling. The shape of the combinatorial background

is particularly sensitive to the m0 value, therefore this parameter is varied within twice

its uncertainty. In the case of the χb(3P ) → Υ (2S)γ transition, where the value of m0 is

left free in the fit, the value found in simulation is used in an alternative fit, leading to a

change of 0.1 MeV/c2 on the χb(3P ) mass. The fit range is also varied by ±100 MeV/c2 on

both sides. The differences between results of the nominal fit and these two alternative fits

are taken as systematic uncertainties and added in quadrature. The resulting systematic

uncertainty is referred to as background uncertainty.

The uncertainty on the mass bias (2.0 and 0.5 MeV/c2 for the χb(3P ) mass measure-

ment based on the transition to Υ (1S) and Υ (2S) respectively) is assigned as systematic

uncertainty. For the simultaneous fit to the two χb(3P ) mass distributions, the two bi-

ases are varied independently within their uncertainties and the largest variation is taken

as systematic uncertainty. A small bias is expected on the χb(1P ) mass splitting and is

estimated to be at most 0.10 MeV/c2, which is added as a systematic uncertainty. No

significant bias on the χb(nP ) mass splitting is expected from the fit procedure.

For the determination of the χb(3P ) mass, the ∆m12 and r12 parameters are fixed

in the nominal fit. They are varied independently within their expected uncertainties in

order to evaluate the associated systematic uncertainties. The mass splitting, ∆m12, is

varied between 9 and 12 MeV/c2 and the r12 parameter is varied by ±30%, which includes

theoretical uncertainties and the precision on the χb(1P ) production ratio measured in this

work and used to estimate r12.

Finally, the 0.3 MeV/c2 uncertainty on the world-average values of the Υ (1S) and Υ (2S)

masses is added as a systematic uncertainty to the χb(3P ) mass.

Table 4 lists the individual systematic uncertainties. The total systematic uncertainty

is the quadratic sum of all individual uncertainties.

6 Relative rate of χb2(1P ) and χb1(1P ) production

6.1 Measurement of the relative rates

The production cross-section ratio of the χb2(1P ) and χb1(1P ) mesons is measured in three

pΥT ranges of different size (the bin limits are given in table 5) using

σ(χb2)

σ(χb1)
=
Nχb2

Nχb1

εχb1

εχb2

B(χb1 → Υ (1S)γ)

B(χb2 → Υ (1S)γ)
, (6.1)

where σ(χbJ) (J = 1, 2) is the χbJ(1P ) meson production cross-section; NχbJ
is the χbJ(1P )

yield; εχbJ
is the efficiency to trigger, detect, reconstruct and select a χbJ meson including

the contribution from the approximately 20% probability for a photon to convert upstream
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∆m12(1P) ∆m12(2P) m(χb1(3P)) m(χb1(3P)) m(χb1(3P))

from Υ (1S) from Υ (2S) combined

Signal ±0.16 ±0.5 ±0.3 ±0.1 ±0.6

Background ±0.08 ±0.3 ±0.2 ±0.1 ±0.2

Bias ±0.10 ±0.1 ±2.0 ±0.5 +1.2
−1.6

r12 - - +0.7
−0.4

+0.1
−0.2

+0.6
−1.1

∆m12 - - ±1.2 ±0.1 ±0.3

m(Υ ) - - ±0.3 ±0.3 ±0.3

Total ±0.20 ±0.6 +2.5
−2.4 ±0.6 +1.5

−2.1

Table 4. Summary of the systematic uncertainties on the χb(nP ) (n = 1, 2) mass splitting and on

the χb1(3P ) mass in MeV/c2. The last column refers to the simultaneous fit to the two transitions.

pΥT bin ( GeV/c) 5–10 10–15 15–25

N(χb2)/N(χb1) 0.61± 0.15 0.57± 0.15 0.52± 0.15

ε(χb1)/ε(χb2) 1.01± 0.03 0.90± 0.05 1.18± 0.11

Table 5. Relative rate of χb1(1P ) and χb2(1P ) production and ratio of total efficiency (in the three

pΥT ranges). Uncertainties only refer to the statistical contributions.

of the first tracking station; and B(χb1(1P )→ Υ (1S)γ) = (33.9± 2.2)% and B(χb2(1P )→
Υ (1S)γ) = (19.1± 1.2)% are the known branching fractions [19] .

The inefficiency is dominated by the converted photon acceptance and reconstruction:

low-energy photons produce low-energy electrons, which have a high chance to escape the

detector due to the magnetic field. The efficiency of converted photon reconstruction and

selection relative to non-converted photons is measured in ref. [13] and ranges from about

1% at pγT of 600 MeV/c to 3% at pγT of 2000 MeV/c. These numbers include the conversion

probability. Due to the correlation between the pT of the photon and that of the Υ meson,

the efficiency is lower for low pΥT. The ratio of efficiencies is given in table 5. This ratio

differs from unity because the pΥT spectrum is different for χb1 and χb2 in Pythia 8, as

expected [8]. The ratio of efficiencies is also calculated assuming equal pT spectra. It is

still slightly different from unity due to the small difference in the χb1 and χb2 masses.

The mass distribution of χb candidates in each pΥT bin is fitted using the signal and

background functions described in section 4. In these fits the mass of the χb1 state and the

mass splitting are fixed to the values found from the fit to the whole data set (see table 2)

and then varied within their uncertainties for systematic studies. The result of the fit is

shown in figure 3 and the ratio of yields is given in table 5 for each pΥT range.

6.2 Systematic uncertainties

The same sources of systematic uncertainties as for the mass measurements (see section 5.2)

are investigated and reported in table 6. Additional systematic checks relevant only for

the relative rates of χb2(1P ) and χb1(1P ) are detailed as follows.
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Figure 3. Distribution of m∗(µ+µ−γ) ≡ m(µ+µ−γ) − m(µ+µ−) + m(Υ ) for χb(1P ) candidates

with fit projections overlaid for each of the three ranges in pΥT: (a) 5–10 GeV/c, (b) 10–15 GeV/c

and (c) 15–25 GeV/c. The cyan dotted line show the non-Υ background, the grey dashed line shows

the combinatorial background, the red dashed line the χb1 contribution, the green dash-dotted line

the χb2 contribution and the blue full line the sum of all these contributions.

The dominant uncertainty on the ratio of efficiencies is due to the limited knowledge

of the efficiency for reconstructing converted photons, which is estimated following ref. [13]

and amounts to 4% on the relative rates. This uncertainty is added in quadrature to the

uncertainty due to the limited size of the simulated sample.

Due to the large size of the pT bins, the efficiency depends on the choice of the pT
spectrum of χb production as discussed in section 6.1. In order to assess the uncertainty

due to the shape of the pT spectrum, the simulated χb2 (χb1) spectrum is changed to

be identical to the simulated χb1 (χb2) spectrum. The relative difference in the ratio of

efficiencies is taken as a systematic uncertainty.

The fit is also performed on simulated data and a mean bias of (−4± 4)% is observed

on the relative yields. A systematic uncertainty of ±4% is added to take the possible bias

into account. The values of the χb1(1P ) mass m1 and of the mass splitting ∆m12 are

also varied within their uncertainties from table 2. The variation of the result is taken as

systematic uncertainty and is added in quadrature to the uncertainty referred to as signal.
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pΥT bin ( GeV/c) 5–10 10–15 15–25

Signal ±0.05 ±0.08 ±0.08

Background ±0.06 ±0.04 ±0.03

Fit bias ±0.04 ±0.04 ±0.04

Efficiency ±0.05 ±0.06 ±0.10

pT model −0.13 −0.05 −0.04

Total +0.10
−0.16

+0.12
−0.13

+0.13
−0.14

Table 6. Summary of the systematic uncertainties on the χb(1P ) relative rates, expressed as

fractions of the relative rate.

Table 6 lists the systematic uncertainties on the relative rates. The total systematic

uncertainty is the quadratic sum of all individual uncertainties. The ratio of cross-sections

is also affected by the uncertainties on the branching fraction of χb(1P )→ Υ (1S)γ, leading

to an additional systematic uncertainty of 9.0% [19].

7 Results

The results for the χb(1, 2P ) mass splittings between the J = 1 and J = 2 states

∆m12(1P ) = 19.81± 0.65(stat)± 0.20(syst) MeV/c2

∆m12(2P ) = 12.3± 2.6(stat)± 0.6(syst) MeV/c2

are in agreement with the world average values, ∆m12(1P ) = 19.43 ± 0.37 MeV/c2 and

∆m12(2P ) = 13.5± 0.6 MeV/c2 [19]. A measurement of the χb1(3P ) mass,

m(χb1(3P )) = 10509.0+5.0
−2.6(stat)+2.5

−2.4(syst) MeV/c2,

is derived from the radiative transition to the Υ (1S) meson, where the χb(3P ) is observed

with a statistical significance of 6.0σ. Another measurement,

m(χb1(3P )) = 10518.5+1.9
−1.3(stat)± 0.6(syst) MeV/c2,

is derived from the radiative transition to the Υ (2S) transition, where evidence is found for

the χb(3P ) with a statistical significance of 3.6σ. The systematic uncertainty related to r12
is largely uncorrelated between the Υ (2S) and Υ (1S) channels as the branching fractions

of χbi to final states involving Υ (1S) and to Υ (2S) mesons can be different. By treating

the systematic uncertainties related to the mass splitting and to the mass bias as fully

correlated and all other uncertainties as uncorrelated, the two results for the χb1(3P ) mass

differ by 9.3+3.2
−5.2(stat)± 2.0(syst) MeV/c2. A combined fit is performed leading to

m(χb1(3P )) = 10515.7+2.2
−3.9(stat)+1.5

−2.1(syst) MeV/c2.

In these measurements, the relative rate of χb2 to χb1, is assumed to be r12 = 0.42 for

the two transitions. The χb1(3P ) mass result exhibits a linear dependence on the assumed
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pΥT bin ( GeV/c) σ(χb2)/σ(χb1)

5–10 1.09± 0.27(stat)+0.11
−0.18(syst)± 0.10 (B)

10–15 0.91± 0.24(stat)+0.10
−0.12(syst)± 0.08 (B)

15–25 1.09± 0.31(stat)+0.14
−0.15(syst)± 0.10 (B)

Table 7. Relative production cross section of χb1 to χb2 mesons for the 1P state for each pΥT bin.

The first uncertainty is statistical, the second is the systematic uncertainty and the third is due to

the uncertainty on the branching fractions.

fraction of χb1 decays and varies from 10517.6 to 10515.2 when the χb2/χb1 yield ratio

changes from zero to 0.5. This result is compatible with and significantly more precise than

that reported by the ATLAS experiment, m(χb(3P )) = 10530 ± 5(stat) ± 9(syst) MeV/c2

for r12 = 1 and ∆m12 = 12 MeV/c2, where m(χb(3P )) is the average mass of χb1 and χb2
states [14]. The LHCb result is also compatible with the D0 measurement, m(χb(3P )) =

10551± 14(stat)± 17(syst) MeV/c2 [15].

The ratio of the χb2 to χb1 production cross-sections is measured in three pΥT ranges

using eq. (6.1). The results are given in table 7. Figure 4 (a) shows a comparison of

the measured values with LO NRQCD predictions from ref. [8]. The common systematic

uncertainty (9.0%) due to the branching fraction of χb → Υ (1S)γ is not shown. Theory

predicts the χc and χb ratio of production cross-section to be the same when the χc pT
value is scaled by the ratio of the χb and χc masses [8]. As the χb(χc) and Υ (J/ψ ) pT are

strongly correlated, this is assumed to be valid when replacing the χb(χc) by the Υ (J/ψ )

pT. The measurement obtained by LHCb for the χc production ratio [13] with the pT axis

scaled accordingly is also shown for comparison. The χb results are in good agreement with

the scaled χc results. These results are not precise enough to establish the deviation from

unity predicted by theory at low pT, but the agreement is better with a flat dependence.

Our results are also in agreement with the CMS results [30] as shown on figure 4 (b).

8 Conclusion

The radiative decays of χb mesons to Υ mesons are reconstructed with photons converting

in the detector material. Owing to the good energy resolution obtained with converted

photons, the χb(1P ) states are separated and the mass splitting between the χb1(1P ) and

χb2(1P ) is measured. The χb(3P ) mass is measured using its radiative decays to the Υ (1S)

and Υ (2S) mesons yielding,

m(χb1(3P )) = 10515.7+2.2
−3.9(stat)+1.5

−2.1(syst) MeV/c2.

This result is compatible with the measurement performed by LHCb with the radia-

tive decays to the Υ (3S) meson that uses non-converted photons [31], m(χb1(3P )) =

10511.3 ± 1.7(stat) ± 2.5(syst) MeV/c2. Since the photon reconstruction is based on dif-

ferent subdetectors, the experimental systematic uncertainties are uncorrelated, while the
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Figure 4. Relative production cross-sections of χb1 to χb2 mesons as a function of pΥT. Panel

(a) shows the comparison of this measurement (the hatched rectangles show the statistical uncer-

tainties and the red crosses the total experimental uncertainty) to the LO NRQCD prediction [8]

(green band), and to the LHCb χc result (blue crosses), where the pT axis has been scaled by

m(χb)/m(χc) = 2.8. Panel (b) compares this measurement (empty squares) to CMS results [30]

(filled squares) and to the scaled LHCb χc results (empty circles). The error bars are the total

experimental uncertainties and do not include the uncertainties on the branching fractions.

uncertainty related to the model used for summing the J = 1 and J = 2 contributions

(parametrised with the mass splitting ∆m12 and the relative rates r12) are fully correlated.

The combined value is

m(χb1(3P )) = 10512.1± 2.1(exp)± 0.9(model) MeV/c2,

where the first uncertainty is experimental (statistical and systematic) and the second

accounts for varying ∆m12 from 9.0 to 12.0 MeV/c2 and r12 by ±30%. This result is in

agreement with the theoretical prediction of ref. [17], m(χb1(3P )) = 10516 MeV/c2.

The first measurement of the relative ratio of χb1 to χb2 cross-sections is performed

for the χb(1P ) state in the rapidity range 2.0 < y < 4.5 for pΥT from 5 to 25 GeV/c.

The results agree with CMS results [30] and with theory expectation based on LHCb

χc measurements [13]. The data indicate a deviation from the rise predicted by the LO

NRQCD model at low pT and show a better agreement with a flat dependence.
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6 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
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h Università di Urbino, Urbino, Italy

– 20 –



J
H
E
P
1
0
(
2
0
1
4
)
0
8
8

i Università di Modena e Reggio Emilia, Modena, Italy
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