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Abstract

It is now routine to consider the full probability distribution of downturns in
many sectors. In the financial services sector regulators (both internal and external)
require corporations not only to measure their risk, but also to hold a sufficient
amount of capital to cover potential losses given that risk. Another example is in
emergency service vehicle routing, where one needs to be able to reliably get to
a destination within a fixed limit of time, rather than taking a route which may
have a shorter expected travel time but could, under certain travel conditions, take
significantly longer [Samaranayake et al., 2012]. Further examples can be found
in food hygiene [Pouillot et al., 2007] and technology infrastructure [Buyya et al.,
2009].

In the first part of the thesis we consider the implications of risk in portfolio
optimisation. We construct an algorithm which allows for the efficient optimisation
of a portfolio at various risk points. During this work we assume that the value at
risk can only be estimated via sampling; this is because it would be near impossible
to analytically capture the probability distribution of a large portfolio. We focus
initially on optimising a single risk point but later expand the work to the optimi-
sation of multiple risk points. We study the ensemble defined by the algorithm, and
also various approximations of it are then used to both improve the algorithm but
also to question exactly what we should be optimising when we wish to minimise
risk. The key challenge in constructing such an algorithm is to consider how much
the optimisation method biases the samples used to estimate the value at risk. We
wish to select genuinely better solutions; not just solutions which were somehow
lucky, and hence treated more favourably, during the optimisation process.

In the second part of the thesis we switch our focus to considering how
we can understand when large losses will occur. In the financial services sector
this translates to asking the question: under what market conditions will I make
a (very) significant loss, or even go bankrupt? We consider various methods of
answering this question. The initial algorithm relies heavily on an understanding of
how our portfolio is modelled but we work to extend this algorithm so that no prior
knowledge of the system is required.

In the final chapter we discuss some further implications and possible future
directions of this work.
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Chapter 1

Introduction

In this thesis we will study the optimisation of risk across a variety of systems.

We will draw on ideas from mathematics and physics and find applications in fi-

nance. The thesis focuses on the examples of portfolio optimisation and reverse

stress testing, both of which are introduced in sections 1.2 and 1.3.

The thesis considers several example problems from finance and then tackles

them using a combination of tools from both the physical and mathematical litera-

tures. The thesis attempts to draw these literatures closer together as part of this

process.

This combination of techniques leads to several highly successful results. The

developed algorithms provide a fast and efficient method for solving the given finan-

cial problems. The results are generally found by gaining an intuitive understanding

of the problem in question. This intuitive understanding then underpins the devel-

opment of the new algorithms.

1.1 Thesis Structure

The thesis is formed of eight chapters, five of which contain new research. The thesis

is broadly split into two parts.

Chapters 3, 4 and 5 discuss how to optimise a given system at a specified

level of risk. This is motivated by portfolio optimisation where optimising returns at

the mean may not be the best solution (1.2). Over the course of these chapters we

will investigate and develop algorithms which are well suited to solving this class of

problem. We will test these algorithms numerically, by using simple examples taken

from portfolio optimisation. All of the annealing algorithms used in these chapters

are summarised in appendix A.
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Chapters 6 and 7 switch the focus to reverse stress testing (1.3). These

chapters will consider how to estimate the probability of extreme events for various

common financial models. We introduce some of the thematic tensions of reverse

stress testing in section 1.3 and then suggest some answers to these tensions in the

thesis conclusion (chapter 8). This discussion also leads to suggested further work

in the field of reverse stress testing.

More specifically, chapter 2 contains information on the definitions and tech-

niques required to fully understand this thesis. That said, it should be possible

to gain a thematic and intuitive understanding of the thesis without reading this

chapter.

Chapter 3 considers the basic risk optimisation problem where one wishes

to optimise a stochastic system at a given level of risk. This is in contrast to

the usual types of optimisation problems where it tends to be the expectation or

mean of the system that is optimised. The chapter builds up an understanding

of both the problem and proposed optimisation technique used to solve it. This

foundation is used to develop a new algorithm to quickly solve this particular style

of optimisation problem. It is numerically tested on a high dimensional portfolio

optimisation problem from finance.

Chapter 4 considers the same problem, but from a more physical perspective.

Various approximations, which are common in physics, are applied to the problem

to gain further insight in how to improve the algorithm. These insights are tested

on a problem similar to that in chapter 3. The chapter also touches on some of the

purely physical properties of the system, such as the energy.

Chapter 5 combines the work from chapters 3 and 4 to expand the algorithm

to a wider class of problems. Rather than just optimising a system at a single risk

point, as in the two previous chapters, we will consider the optimisation of a system

at multiple risk points. This is done by further developing the previous analytic

results. As before, the resulting algorithm is demonstrated on a financial portfolio

optimisation example.

Chapter 6 uses an intuitive understanding of the Normal Inverse Gaussian

distribution (2.3.9) to find an effective method for estimating the probability of

extreme events. The resulting algorithm is applied to a sample problem from finance

(reverse stress testing).

Chapter 7 continues the work of chapter 6 on reverse stress testing. In this

chapter an adaptation of thermal integration (a technique from physics) is applied

to a reverse stress testing problem. The method shows encouraging results under

certain conditions, however the tuning of such a method proves difficult.

2



The thesis is concluded in chapter 8. This chapter reviews the work under-

taken throughout the thesis and extends the discussions at the end of the individual

chapters. We also spend considerable time discussing some of the thematic ideas of

reverse stress testing introduced in section 1.3 and continued in chapters 6 and 7.

Avenues of future work are also discussed in this chapter.

1.2 Portfolio Optimisation

The idea of portfolio optimisation was first formularised by Markovitz [Markowitz,

1952]. The essential idea was to select a set of assets (stocks) which achieved the

best risk return for the purchaser. Since stock returns are stochastic in nature some

thought needed to be given as to the best target for optimisation. Should it sim-

ply be the expectation, or should one also consider the risk associated with the

constructed portfolio? In Markovitz’s original work he chose to select the stock(s)

which had the best return after normalising for the variance. The work also allowed

for the covariance of the stocks. When Markovitz’s work was first produced, com-

puting power was highly limited and so a very simple approach needed to be taken.

Markovitz received a noble prize in 1990 for his work on portfolio selection.

The major criticism associated with Markovitz’s original research is that it

is based on a Gaussian understanding of stock returns, which is now thought to

be highly unlikely [Taleb, 2007]. Furthermore, the resulting portfolio had a high

dependence on the covariance matrix which is problematic to correctly estimate.

Due to this, many alternatives to Markovitz’s approach have been introduced [Kolm

et al., 2014].

There are several alternative definitions of the problem which we could use

to find the optimal choice of portfolio. These include minimising the risk and max-

imising the returns using a specified risk aversion factor, minimising the risk with no

regard to the return and maximising or minimising the expected return [Fernando,

2000].

The level of risk proves to be an important consideration. Kelly’s paper

in 1956, [Kelly, 1956], lead to the introduction of Kelly’s criterion. This essentially

states that the higher the level of risk undertaken, the lower the percentage of capital

that should be used to invest in it. Kelly’s criterion has gained further importance

in recent years after it emerged that it was used by Warren Buffet, a world famous

investor [Pabrai, 2007].

During this thesis we will primarily attempt to solve the problem where we

wish to minimise the portfolio risk. This could be in the context of hedging where

3



we wish to effectively close out the risk with respect to a particular risk class (for

example foreign exchange rates) or where we are a seller of a variety of financial

instruments and wish to reduce our risk in the simplest way possible.

Later in the thesis we will extend these ideas to allow us to calculate the

optimal portfolio which both maximises the expected return and minimises the risk

according to some risk aversion factor.

This thesis presumes that the most reliable way of stock returns is to use ran-

domly chosen (normalised) historical samples, as opposed to constructing a model

from which to draw samples or make observations. This view point is mainly driven

by the author’s industrial experience. The author appreciates that many financial

models are essential in the calculation of market prices and that in many specific

cases models are an improvement. The challenge of which model to use however can

become highly complex. That said, this preferred approach significantly reduces the

number of data points available to estimate the risk, and hence a model may have

to be used. When a model is needed, we will generally model stock returns using a

generalised hyperbolic distribution (see section 2.3). These distributions have had

significant exposure in the literature as a viable model of stock returns in recent

years [Venter and de Jongh, 2002; Schmidt et al., 2006; Eberlein and Prause, 1998].

During the thesis we will need to estimate the value of various (small) quan-

tiles using sampled data. We will do this using either R−1
T or R−2

T samples, where

we wish to estimate the value of the quantile at RT%. R−1
T is clearly the minimal

number of samples required and R−2
T should prove to be the maximum number of

samples one would reasonably expect to be required. The actual number of samples

required is dependent on the true distribution of the samples (often unknown), the

desired relative accuracy (usually 5%) and the mean of the distribution (also gener-

ally unknown). Both [Mazzocchi, 2008] and [Deming, 1990] contain more details and

examples. Wilks [Wilks, 1941] took a different approach and constructed a frame-

work which allowed the calculation of the minimum number of samples required to

ensure that (at some confidence level) a value worse than that of a specified quan-

tile would exist within a sample. For standard confidence level choices (95%) these

choices of n fall in between R−1
T and R−2

T for the choices of RT we use. For example,

according to Wilks, 59 samples are required to ensure that we have at least one

sample with a value lower than the 5% quantile.

4



1.3 Reverse Stress Testing

Stress testing has been part of a risk manager’s tool kit for a long time, however

it has gained increased prominence following the recent financial crisis. This has

been highlighted by the recent (and ongoing) stress tests carried out by the various

financial regulators. These include the Supervisory Capital Assessment Program

(Federal Reserve), Comprehensive Capital Analysis and Review (Federal Reserve)

and the European Union Banking Stress Test Exercise (European Banking Author-

ity) [Schuermann, 2012; Ong et al., 2010].

Reverse stress testing was introduced by the Financial Services Authority

(FSA) as a regulatory requirement from the 14th December 2010 with the below

definition.

We introduce reverse stress-testing requirements for firms to identify and

assess scenarios most likely to cause their current business models to

become unviable. We address concerns about proportionality in relation

to these requirements by describing the range of approaches that firms

might take. [F.S.A., 2009]

Reverse stress testing aims to find the scenarios which lead to a ‘business

failure’. This is in contrast to regular stress testing where the scenarios with which

a portfolio is shocked are chosen by experts or taken from historical data. [Worrell,

2010]

Both quantitative and qualitative stress tests are required to tackle such a

broad problem. In this work we deal with the more quantitative tests/methods

looking at market risk.

There is a sparse academic literature on reverse stress testing in market

risk, with each paper containing a different formal definition of what constitutes a

business failure or a reverse stress test. We summarise the majority of the existing

work and give a common mathematical framework for simple comparison.

A small portion of the literature also considers ‘credit risk breaking points’.

In this literature the relationship between the capital adequacy ratio of a financial

institution and the loan default rate (or another suitable risk factor) is calculated.

It is then possible to find the point at which a financial institution would need to

recapitalise (i.e. when the bank has become insolvent). This method differs from

the type of reverse stress covered in the market risk literature, as described below,

because it is limited to only one risk factor. It rapidly becomes infeasible to do this

type of analysis as the number of risk factors increases. See Worrell [Worrell, 2010]

5



and Ong [Ong et al., 2010] for further details.

We first attempt to identify what constitutes a business or regulatory failure.

One could take the definition of [Grundke, 2011, 2012] and consider a failure situa-

tion to be one where a bank makes an unexpected loss on a portfolio (beyond any

expected loss) coupled with a rise in the bank’s capital requirements (such that the

bank can no longer meet them). We could also take the more simplistic approach of

[Glasserman et al., 2012] and consider only the loss in value of the portfolio with no

regard for any current, or future, regulatory requirements. Skoglund takes a more

heuristic approach that uses a similar metric to that of Glasserman [Skoglund and

Chen, 2009].

Mathematically, we consider V (P, t2|Xt1) to be a random variable for the

value of a portfolio P at time t2 given (multidimensional) market data Xt1 recorded

at time t1 (t1 < t2). We further take EC(P, t1) to be a function describing the eco-

nomic capital requirement at time t1 given the same parameters as for V (P, t2|Xt1).

Grundke’s definition of a failure, given a tolerance (TOL), could be written as

〈V (P, t2|Xt1)〉 − 〈V (P, t1)〉 + EC(P, t1) ≤ TOL. That is the change in expected

value and the economic capital requirement at time t1. In contrast Glasserman’s

definition could be given by 〈V (P, t1)〉 ≤ TOL. Both are calculated at time t1.

When considering a definition for a failure function we must also take into

account the user of these stress tests. A regulator is probably more interested in

a reverse stress test that captures all of the bank’s liabilities (including regulatory

capital). Conversely, an individual trader is probably much more concerned with

possible down turn events on only his portfolio. Different users may also have

interests in different time horizons. You would expect a regulator to take a more

long term view than the leadership team of an individual bank.

Having decided on a loss/failure function one also needs to consider what

the scenarios of interest are. Grundke suggests that we need only be concerned

with the scenarios along the boundary of failure, whereas Glasserman considers

all scenarios that lead to a failure. Mathematically, Grundke considers SGr :=

{Xt|M(P,Xt) = TOL} and Glasserman SGl := {Xt|M(P,Xt) ≤ TOL} where

M(P,Xt) is the metric used to classify the bank’s financial position. M(P,Xt) could

be either of the definitions above. Grundke’s approach implicitly requires some form

of continuity constraint on M(P,Xt) to ensure that it captures all of the appropriate

scenarios. This seems unlikely in the context of complex options that would lead to

a discontinuous pay-off function. Grundke’s method also implies that the likelihood

of individual scenarios versus the value of the portfolio under that scenario is strictly

increasing (at least on the boundary locus).

6



Both Grundke and Glasserman highlight the importance of discovering the

most likely scenario that causes failure as being the main aim of reverse stress

testing (arg maxXt∈S P (Xt)). Glasserman however goes on to discuss the method

of drawing scenarios from the set SGl, where the scenarios are weighted according

to their likelihood. To do this he makes some broad assumptions that are discussed

later in the introduction. Grundke’s method for calculating the reverse stress test

first requires finding all of SGr and so he examines each of the scenarios he finds.

Skoglund takes a differing approach in that he uses (Kulback) information

theory to find the scenarios most indicative of a financial failure. This enables

him to make statements that are more generic about the regions of concern. The

main body of his paper involves applying information theory to the portfolio value

given the value of the underlying risk factors. This allows him to identify the most

‘informative’ risk factors. He argues that this heuristic can be used to highlight

dangerous scenarios in a more loose sense. This method is less vulnerable to model

errors, which may occur in extreme events. His method does appear to assume that

the important risk factors are the same for whatever the region of risk factor space

you are currently in. This seems unlikely as it is in large loss situations when hedges

often fail - which would lead to a change in the ‘key’ risk factors in a portfolio.

Both Grundke and Glasserman state the importance of a bottom up ap-

proach. A bottom up approach involves modelling the underlying instruments and

risk factors and then calculating the portfolio value (deterministically) from these.

Further information can be found in [Rebonato, 2010; Grundke, 2011; Breuer et al.,

2010; Ong et al., 2010].

Grundke uses a grid search combined with a Monte Carlo simulation at each

point to find SGr. Once he has found SGr in its entirety he assumes that the risk

factors follow a normal distribution to get a probability of each scenario occurring.

This is a very computational intensive process and is infeasible for a large number

of risk factors.

Glasserman uses an empirical likelihood estimator to estimate the conditional

mean of market factors given large losses. Then, by assuming a linear loss function,

he scales these means appropriately to give the result for his reverse stress test.

It is worth noting that (as highlighted in his paper) a linear assumption is only

valid in the case when there is only one large loss region. Another potential issue

is that at the mean the bank may actually be solvent. Consider a risk factor which

causes a bank to fail when it has an extremely low or high value. If both extreme

events have an equal chance of occurring then the mean would be a ‘normal’ value

of the risk factor. Glasserman also creates confidence intervals for the most likely
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scenario leading to a large loss. Using these intervals he generates further scenarios

which lead to large losses. The sampling method encapsulates the probability of

the scenario occurring in some sense. However it does this heuristically as there is

no clear reason why these confidence intervals should relate to the actual marginal

distributions involved.

In this thesis we will focus on the idea that reverse stress testing focuses

solely on the direct losses of a portfolio and not the losses inferred from changing

capital requirements. This is partly because it is unlikely that a regulator would

force a bank or similar institution to fail in these circumstances. We will focus on

the estimation of the probability of extreme values occurring for stocks modelled

using well known distributions. In the conclusion we will return our focus to some

of the more thematic questions raised in this introduction.
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Chapter 2

Background

2.1 Introduction

In this chapter various background definitions and results, which are helpful in

understanding the thesis, are provided. Initially, there is a description of some

common mathematical tools and definitions, including the definition of a Markov

chain, which will be key to understanding the majority of the thesis.

Four further introductory sections are then provided. These cover several

statistical distributions, basic approximations, sampling methods and finally opti-

misation under uncertainty.

Some limited grouping of the background is provided in this chapter. The

relevance and connections between the different ideas introduced in this chapter

should become clear as the reader progresses through the thesis.

2.2 Definitions

Several key definitions and ideas are provided in this section. Knowledge of these

definitions is required for a clear understanding of the thesis.

2.2.1 Markov Chains

A stochastic process is a sequence of random variables, which are indexed by time.

This sequence of random variables usually contains some history and time depen-

dence. A stochastic process might be formally defined as {Xt : t ∈ N} on some state

space S. A Markov chain is a discrete time stochastic process where the next state

is only dependent on the current state (Xt) and not the entire historical path of the

chain, {Xt′ : t′ ≤ t}.
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Definition 2.2.1 (Markov Chain). A Markov chain, X, is a sequence of random

variables which obeys the Markov property [Finch, 1963]. A discrete time stochastic

process X := {Xt : t ∈ N} on a state space S is a Markov chain if

P (Xt ∈ A|X0 = x0, X1 = x1, . . . , Xt−1 = xt−1, t) = P (Xt ∈ A|Xt−1 = xt−1, t)

holds ∀A ⊂ S,∀x1, . . . , xt−1 ∈ S and ∀t ∈ N.

Furthermore, we only consider time-homogeneous Markov chains. This means

that the chain moves have no time dependence.

Definition 2.2.2 (Time-Homogeneous Markov Chain). A Markov chain X :=

{Xt : t ∈ N} on a state space S is a Time-Homogeneous Markov chain if

P (Xt ∈ A|X0 = x0, X1 = x1, . . . , Xt−1 = xt−1, t) = P (Xt ∈ A|Xt−1 = xt−1)

holds ∀A ⊂ S,∀x1, . . . , xt−1 ∈ S and ∀t ∈ N.

A full discussion on Markov chains can be found in [Rubinstein and Kroese,

2008].

2.2.2 The Gamma and Beta Functions

Knowledge of the Gamma and Beta functions will aid us in various integration

problems later in the thesis.

Definition 2.2.3 (The Gamma Function). The Gamma Function, denoted Γ(z), is

defined to be

Γ(z) =

∫ ∞
0

xz−1e−xdx

for any choice of z ∈ C. If t ∈ N, the definition can be simplified to Γ(t) = (t− 1)!.

Γ(z) converges absolutely for any choice of z such that Re(z) > 0.

Proposition 2.2.4 (Stirling’s Approximation). Stirling’s Approximation gives an

estimate of the Gamma Function (2.2.3). The approximation is given by

Γ(z) = zz−
1
2 e−z
√

2πγ(z) where

γ(z) =

(
1 +

1

12z
+

1

288z2
− 139

51840z3
− 571

2488320z4
+O

(
1

z5

))
.

A proof can be found in [Feller, 1968].
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Definition 2.2.5 (The Beta Function). The Beta Function, denoted B(x, y), is

defined to be

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)

for any choice of x, y ∈ C such that Re(x), Re(y) > 0.

2.3 Distributions

The definitions of the three distinct distributions that are used during this thesis

are provided in this section. Brief definitions of the Normal and Boltzmann distri-

butions are provided, although it is largely assumed that the reader will be familiar

with these distributions. More detail is provided regarding the Generalised Hyper-

bolic distributions, as it is likely the reader will be less familiar with this class of

distribution.

In the definitions below we use the convention that an emphasised (bold)

variable represents a random variable.

2.3.1 Normal Distribution

The Normal (or Gaussian) distribution is one of the most well known statistical

distributions. Many sources can be used to find further information, for example

[Glasserman, 2004]. The Normal distribution has been applied to a vast variety

of problems. During the course of this thesis we will use both the univariate and

multivariate definition.

Definition 2.3.1 (Normal Distribution). A normal distribution is classified by µ ∈
R and σ2 ∈ R>0. It has a probability density function of

φµ,σ(x) =
1√
2πσ

e−
1

2σ2 (x−µ)2

and cumulative distribution function

Φµ,σ(x) =
1√
2π

∫ x−µ
σ

−∞
e−

1
2
u2
du.

We will use the common notation that φ(x) = φ0,1(x) and Φ(x) = Φ0,1(x).

Definition 2.3.2 (Multivariate Normal Distribution). A k dimensional normal

distribution is classified by a mean, µ ∈ Rk, and a covariance matrix variance,
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Σ ∈ Rk×k>0 . It has density

φµ,Σ(x) =
1

(2π)
k
2 |Σ|

1
2

e−
1
2

(x−µ)TΣ−1(x−µ)

where x ∈ Rk.

2.3.2 Boltzmann Distribution

The Boltzmann distribution is ubiquitous in physics. It is also known as the Gibbs

distribution. Further information can be found in [Minlos, 1999]. The Boltzmann

distribution will play a central role in the optimisation methods used during the

thesis.

Definition 2.3.3 (Boltzmann Distribution). Given a constant, k ∈ R>0, a tem-

perature, T ∈ R>0, and an energy function, E(x), the Boltzmann distribution is

the probability distribution over the possible states of the system. Each state has

weight

W (x) = e−
1
kT
E(x).

During the course of the thesis we will relabel kT as β−1.

2.3.3 Generalised Hyperbolic Distributions

Generalised hyperbolic distributions were first studied by Barndorff-Nielsen in [Barndorff-

Nielsen, 1977; Barndorff-Nielsen et al., 1982]. This class of distributions was initially

applied to grain size distributions of blown sand [Barndorff-Nielsen, 1977; Olbricht,

1991]. More recently, these distributions have also been extensively applied to fi-

nancial asset returns, first in [Enerlein and Keller, 1995], and later in [Venter and

de Jongh, 2002; Schmidt et al., 2006; Eberlein and Prause, 1998].

One of the plausible intuitions behind the use of these distributions in finance

is the idea of market time. In this ideology we can imagine that stock returns

are normally distributed with respect to the market’s internal clock, however the

relationship between market and ‘real’ time is itself stochastic. This stochastic shift

in time could be considered to be the market’s rate of response to new information.

We assume that the market time is common across all stocks. There is empirical

evidence for correlation in the market that supports this assumption. Some authors

have gone further to consider the idea of each stock having its own time, but this
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is beyond the scope of this work. These ideas are further explored in [Luciano and

Semeraro, 2008].

In order to formally define the generalised hyperbolic class of distributions,

we need to first define both the generalised inverse Gaussian distribution and normal

variance-mean mixture models.

Definition 2.3.4 (Generalised Inverse Gaussian). A random variable X is said to

have a Generalised Inverse Gaussian (GIG) distribution if its density function is

given by

f(x) =

(
ψ

χ

)λ
2 xλ−1

2Kλ(
√
χψ)

e−
1
2(χx+ψx)

where χ > 0, ψ ≥ 0 for λ < 0, χ ≥ 0, ψ > 0 for λ = 0 and χ > 0, ψ > 0 for λ < 0,

ψ, χ, λ ∈ R are parameters. Kλ is the Modified Bessel Function of the third kind1.

Definition 2.3.5 (Inverse Gaussian). A random variable X is said to have an

Inverse Gaussian (IG) distribution if it has a GIG distribution with λ = −1
2 . The

cumulative distribution function of the IG distribution is given by

F (x) = Φ

(
x
√
ψ −√χ
√
x

)
+ e
√

4ψχΦ

(
−x
√
ψ −√χ
√
x

)
where Φ is the normal cumulative distribution function.

We further define normal variance-mean mixture models, of which generalised

hyperbolic distributions are a subclass.

Definition 2.3.6 (Normal Variance-Mean Mixture). A random variable X ∈ Rd is

said to have a normal variance-mean mixture model distribution if

X := µ+ Wγ +
√

WAZ

where

• µ, γ ∈ Rd are drift parameters,

• A ∈ Rd×k are correlation parameters,

• Z is a k dimensional normal distributed variable (Z ∼ Nk(0, Ik)) and

• W is a positive, scalar valued random variable which is independent of Z.

1A Modified Bessel Function of the third kind has integral representation (for x > 0) Kλ(x) =
1
2

∫∞
0

wλ−1e−
1
2
x(w+w−1)dw.
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Remark 2.3.7. From the definition it is easy to see that for a normal variance-mean

mixture model we have that

X|W ∼ Nd(µ+ Wγ,WΣ)

where Σ = AA′.

Definition 2.3.8 (Generalised Hyperbolic Distribution). A random variable X is

said to have a Generalised Hyperbolic (GH) distribution if it is a Normal Variance-

Mean Mixture distribution with a mixing variable, W, that is distributed according

to a GIG distribution. This is denoted X ∼ GH(λ, χ, ψ, µ,Σ, γ) where the parame-

ters are as described in 2.3.4, 2.3.6 and 2.3.7.

The GH class of distributions also has some special cases, which are defined

below.

Definition 2.3.9 (Normal Inverse Gaussian). A random variable X is said to have a

Normal Inverse Gaussian (NIG) distribution if it has a GH distribution with λ = −1
2 .

In this case the mixture distribution is an IG distribution (see definition 2.3.5).

Definition 2.3.10 (Hyperbolic Distribution). A random variable X is said to have

a (d-dimensional) Hyperbolic distribution if it has a GH distribution with λ = d+1
2 .

Definition 2.3.11 (Skewed t). A random variable X is said to have a Skewed-t

distribution if has a GH distribution with λ = −ν, χ = ν and ψ = 0, for some

parameter ν.

Each of these distributions (Normal Inverse Gaussian, Hyperbolic and Skewed

t) are being used increasingly in finance to model stock returns [Hu and Kercheval,

2007].

We further note that the GH class of distributions are closed under linear

transformations.

Proposition 2.3.12. If X ∼ GHd(λ, χ, ψ, µ,Σ, γ) and Y ∼ BX + b where B ∈
Rk×d and b ∈ Rk, then Y ∼ GHk(λ, χ, ψ,Bµ+ b, BΣB′, Bγ).

Proof. A proof can be found in [Breymann and Luthi, 2013].

Proposition 2.3.13. Generalised Inverse Gaussian Mean If X ∼ GIG(λ, χ, ψ)

then the expectation of X is given by

E[X] =

√
χ

ψ

Kλ+1

(√
χψ
)

Kλ

(√
χψ
)
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Figure 2.1: The ratio of the Generalised Hyperbolic probability density function, f ,
when λ = 2 and λ = −2. The remaining parameters are constant, with χ = 1

2 , ψ =
2, µ = 0, σ = 1, γ = 0. The exponentially increasing ratio between the two density
functions indicates that the distribution given by λ = 2 has significantly heavier
tails.

where Kλ is the Modified Bessel Function of the third kind.

Proof. A proof can be found in [Breymann and Luthi, 2013].

Figure 2.1 shows the significant impact on the tail shape of the Generalised

Hyperbolic distribution that larger choices of λ have. In our real world examples

we cover cases with a wide variety of parameter choices.

2.4 Approximations

In this section two common physical approximations are provided, along with some

proof. These will each prove essential in understanding and developing results

throughout the thesis.

Notationally, both here and throughout the thesis we use ≈ to denote an ap-

proximation whose error goes to zero in the limit stated (or inferred from a preceding

result). (We reserve ∼ for being distributed as.)

Proposition 2.4.1 (Laplace’s Method). For a given function f(x), that is twice

differentiable on the real interval [a, b], maximised at x0 ∈ (a, b), f(x0) 6= 0 and has
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f ′′(x0) < 0 we have that ∫ b

a
eβf(x)dx ≈

√
2π√

−βf ′′(x0)
eβf(x0)

where β ∈ R>0. This becomes equality in the limit of large β (as β →∞).

Proof. Variants of the proof can be found in [Azevedo-Filho and Shachter, 1994;

Wong, 2001; Gajjar, 2010; Barndorff-Nielsen and Cox, 1989].

Remark 2.4.2 (Laplace’s Method: Leading Order). To leading order this becomes∫ b

a
eβf(x)dx +

√
2π√
β
eβf(x0)

where + represents a leading order approximation for the logarithm of the right

hand side of proposition 2.4.1.

Corollary 2.4.3. For a given choice of p ≥ 1, x < 0 and β ∈ R>0 we have∫ x

−∞
e−β|x

′|pdx′ ≈ e−β|x|
p

βp|x|p−1 .

This becomes equality in the limit of large β (as β →∞).

Proof. Note that d
dx (|x|p) = −p|x|p−1 (as x < 0). Proof then follows from [Gaj-

jar, 2010] with variants of the proof contained in [Wong, 2001; Azevedo-Filho and

Shachter, 1994; Barndorff-Nielsen and Cox, 1989].

2.5 Sampling Methods

In this section we provide background on a variety of techniques used to sample

probability distributions.

2.5.1 Monte Carlo Sampling

Monte Carlo sampling at its simplest level is the estimation of an expectation of

a distribution by drawing random samples from the distribution. For example, we

could estimate the mean of a normal distribution (if we did not already know it)

by µ̂ = 1
n

∑n
i=1 xi where xi ∼ N(0, 1). Further information can be found in [Liang

et al., 2010; Frenkel and Smit, 2002; Gamerman and Lopes, 2006].
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2.5.2 Importance Sampling

Importance sampling is a well known variance reduction method for Monte Carlo

sampling. It has been applied to a large variety of problems, from physics to finance

[Glasserman, 2004; Asmussen and Glynn, 2007; Rubinstein and Kroese, 2008].

Importance sampling works to reduce the variance (error) of a sampled ex-

pectation by adjusting the probability measure used to select the random samples.

This new probability measure ensures that we sample the area of interest (which

generally contains most variance) more frequently than we would using the orig-

inal distribution [Glasserman, 2004; Asmussen and Glynn, 2007]. In other words

importance sampling allows us to focus our search.

Mathematically, suppose we wish to estimate the expectation of a function,

V (X), over a probability distribution with density f(x). By expanding the expec-

tation we see that

〈V (X)〉f =

∫
X
V (x)f(x)dx.

We further assume V (X) is dominated by the probable values of another density

function, g(x), and require that g(x) = 0 =⇒ V (x)f(x) = 0. We can then rewrite

the expectation above as

〈V (X)〉f =

∫
X
V (x)

f(x)

g(x)
g(x)dx =

〈
V (X)

f(X)

g(X)

〉
g

.

The ratio between the probability densities, f(x)
g(x) , is known as the likelihood ratio

[Rubinstein and Kroese, 2008]. This means we can now randomly draw samples

from g(x) and yet still obtain an estimate of 〈V (X)〉f .

It has been argued that this likelihood ratio degenerates when it is over a

high dimensional random variable, X. [Rubinstein and Glynn, 2009; Rubinstein and

Kroese, 2008]. The argument is constructed by assuming that the components of X

are i.i.d. with respect to both f and g. This implies that both f and g are formed by

multiplying their marginal probabilities f1, . . . , fn and g1, . . . , gn respectively. Using

this information we can write the likelihood ratio, W (X), as

W (X) = e
∑n
i=1 ln

fi(Xi)

gi(Xi) = e
∑n
i=1 ln

f1(Xi)

g1(Xi)

where Xi are the components of X, given that all components have the same
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marginal. By the law of large numbers this is expected to approach

W (X) ≈ e
−n
〈
− ln

f1(X1)
g1(X1)

〉
g1

as n become large. Since we know by Jensen’s inequality [Jensen, 1906] that

〈
− ln

f1(X1)

g1(X1)

〉
g1

≥ − ln

(〈
f1(X1)

g1(X1)

〉
g1

)
= − ln 1 = 0,

and given we do not expect this bound to be reached, we can see that W (X) → 0

as n → ∞. However, by definition E[W (X)] = 1, implying that W (X) becomes

very skewed for large n. A consequence of this skew is that the variance of W (X)

may become very high [Rubinstein and Kroese, 2008]. This in turn will drive up

the variance of our estimator for 〈V (X)〉f .

2.5.3 Rare Event Sampling

Rare event sampling allows for the calculation of extreme probabilities, often of the

form P (S(X) > γ) where X is a set of N random variables. There is a significant

literature covering this field. The basic test problems often consist of either esti-

mating P
(∑N

i=1Xi > γ
)

or considering a simple bridge network [Chan and Kroese,

2011].

Asmussen [Asmussen and Glynn, 2007] provide further background on rare

event sampling. Asmussen describes a variety of algorithms used in rare event

sampling, the most prevalent being multi-level sampling, which is beyond the scope

of this thesis.

The ideas of Chan [Chan and Kroese, 2011] are developed as part of this

thesis. Chan considers the probability that the sum of d heavy tailed (Pareto)

distributions has a very large value. He notes that the probability of a rare event

in this problem is likely to be driven by a single variable (due to its heavy tailed

nature), rather than multiple variables. This simple insight is then used to derive

estimators that have reduced variance, compared to a simple likelihood ratio. This

can be done as the cumulative distribution function is known for a one dimensional

Pareto distribution. The application of such an argument to other distributions will

be considered later in the thesis.

For example, imagine that there are n heavy tailed (Pareto) random vari-

ables, Xi for 1 ≤ i ≤ n, and that we wish to calculate P (
∑n

i=1Xi > L). By drawing

random samples from the first n − 1 random variables, xi ∼ Xi, we can calculate
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the value required from the last random variable for the sum to be greater than

L, label this v = L −
∑n−1

i=1 xi. Since the one dimensional cumulative distribu-

tion function is known, we can calculate the probability of Xn having a value of v or

greater, i.e. P (
∑n

i=1Xi > L|x1, . . . , xn−1) = P (Xn > v). Averaging this calculation

over a large number of samples will give an estimate of the conditional probability

P (
∑n

i=1Xi > L|X1, . . . , Xn−1). Repeating this process for each choice of random

variable, Xi, will give similar conditional probabilities for each random variable. By

the key observation above, these conditional probabilities should quickly converge

and summing them should give a good estimate of P (
∑n

i=1Xi > L). Note that such

a method is closely linked to the Rao-Blackwell Theorem [Gelfand and Smith, 1991].

2.5.4 Thermal Integration

Thermal integration is most commonly used in physics to study the solid-liquid

transition [Frenkel and Smit, 2002].

The process works by considering two different systems, A and B, and their

associated potentials, UA and UB respectively. The two systems are then coupled to

form a new potential U = UA+λ(UB−UA), where 0 ≤ λ ≤ 1. The delta between the

free energy of the systems can then be calculated as F (B)− F (A) =
∫ 1

0 dλ
〈
dU(λ)
dλ

〉
where the expectation is over the Boltzman distribution with potential U(λ). Note

that the partition function of a system is effectively the normalisation constant of the

potential function over all possible configurations. The free energy is proportional

to the natural logarithm of the partition function.

The result allows the calculation of unknown free energies, assuming a similar

system has a known free energy. In the example above (solid-liquid transition) the

solid state free energy was known but the liquid state free energy was not.

A much more detailed explanation, alongside physical examples, can be found

in [Frenkel and Smit, 2002; White and Meirovitch, 2004].

2.5.5 Extreme Value Theory

Extreme Value Theory focuses on the tails of a distribution.

There are two main types of extreme value models. The first are block

maxima models. These model the maximum value in a block of values. For example,

if we were to record daily losses this type of model could be used to estimate the

largest daily loss to occur in a given quarter or year.

The second set of models are known as Peak Over Threshold (POT) models.

These model the distribution of samples which exceed a certain threshold. For
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example, this could be the distribution of losses which exceed a certain value. This

method uses data more effectively than the block maxima method (i.e. less data is

required to fit the model) and hence appears to have become preferred [Gilli and

Kellezi, 2006].

A full description of how these models are constructed can be found in [Gilli

and Kellezi, 2006; Neves and Alves, 2008].

Whilst these methods are very well established, they force a top down mod-

elling approach for financial portfolios. This has two critical consequences:

1. It becomes very hard to drill down into where risk is coming from. Whilst

knowing the extreme values a particular portfolio might take in the next quar-

ter is useful, if you do not know what is causing the risk then there is little

you can do about it!

2. The models cannot be aggregated in a sensible way. That is, the predicted

extreme risks cannot be aggregated across a set of portfolios as the different

portfolios may contain correlations which might reduce (or increase) the risk

of an extreme loss.

The above arguments mean that separate models would need to be fitted to

each layer of possible aggregation. This obviously creates a huge amount of work

and the resulting models might not be self-consistent (depending on the data used).

This additional modelling burden is further complicated by the fact that there is no

standard way to calculate the optimal threshold (for POT models) [Wong and Li,

2010].

In chapters 6 and 7 on reverse stress testing we instead take a bottom up

approach to modelling extreme risk. In these chapters we model each stock individ-

ually (although not independently) before combing individual models to generate a

model for a portfolio. In chapter 7 we begin to discuss how the described methods

could be used to efficiently search a risk space to locate the source of different risks.

The methods used also allow us to use the same model to look at either the portfolio

risk, or the individual stock’s risk, without the need to fit further models.

2.6 Optimisation Under Uncertainty

Performing optimisation under uncertainty has become an increasingly important

challenge in the optimisation literature. The challenge here is to optimise a function

which can be only be estimated or sampled for some given choice of design. This is
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often true whenever we wish to optimise a real system. It is hard to find a ‘real life’

decision that is devoid of uncertainty, and hence risk [Better et al., 2008].

There are a huge number of possible optimisation problems and associated

techniques to solve them [Press et al., 2007]. In this thesis we focus on problems

where we wish to find the global optimum, or at least a good local optimum, within

a large search space and only have access to estimates of the objective function.

The work of [Beyer and Sendhoff, 2007] splits the common approaches to

optimisation under uncertainty into three broad categories (and provides further

details):

1. Monte Carlo Strategies: Given a fixed design point, various statistics are cal-

culate (such as expectation) and then a deterministic optimisation method is

used.

2. Meta-Model Approach: A meta-model is constructed using a set of carefully

chosen design points. The meta-model is then optimised.

3. Estimates of the objective function are used directly in an optimisation algo-

rithm that is specifically designed for noisy optimisation.

We note that methods in the first category are likely to be biased to design

points that receive unusually good sampling (as they are more likely to be selected).

This can be explicitly seen later in chapter 5, when we attempt to optimise the

expected outcome of a portfolio. This is of particular concern if the error distribution

is not the same for each design point.

Meta-Model optimisation can be effective when the search space is small but

such methods often struggle for larger spaces [El-Beltagy et al., 1999]. Furthermore,

even fitting the model to the underlying objective function is a problem of interest.

A high level of confidence is needed in the meta-model to ensure that the problem

has been correctly optimised [Beyer and Sendhoff, 2007].

Due to these issues we will focus on developing an algorithm which works

directly with noisy estimates of the objective function. To this end, we provide

further background on some methods that are designed specifically for optimisation

under uncertainty.

2.6.1 Stochastic Approximation Techniques

Stochastic approximation techniques are akin to gradient search methods in deter-

ministic optimisation. The ideology behind these techniques was first published in

the 1950s by [Robbins and Monro, 1951].
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Essentially, the method solves the problem where we wish to find the maxi-

mum of an unknown function, M(x). The method assumes that we have a function,

N(x), that provides observations of M(x) such that 〈N(x)〉 = M(x).

The algorithm then follows the below (gradient like) method (for some sen-

sible choice of x0) with each iteration generated as

xi+1 = xi + ai

(
N(xi + ci)−N(xi − ci)

ci

)
where the sequences {ci} and {ai} specify the finite difference widths and the positive

step sizes taken in that direction respectively.

It can be shown that such an algorithm converges to a local maximum (after

making some quite stringent assumptions on M(x)) but that convergence is very

slow [Papadrakakis et al., 2005]. Due to these challenges it is not a suitable method

for our proposed problem as there may well be local maxima in the space and we

wish to find a global maximum.

2.6.2 Pattern Search Methods

Pattern search methods are an adaptation of gradient search methods that do not

require the estimation of the gradient of the objective function. They instead gen-

erate search points according to a pattern and accept those points that appear as

improvements over the prior search points. A review of the different patterns used

can be found in [Wright, 1995].

A noisy adaptation of pattern search methods has been formulated in [An-

derson and Ferris, 2001] alongside a proof of convergence. However, the proof is

based on the assumption that the standard deviation of the noise reduces faster

than the step size when approaching the optimum (and that the error is normally

distributed). Theoretical investigation as to the solution quality in the case that

the noise does not decrease (as is normally the case) has not been done [Beyer and

Sendhoff, 2007].

Unfortunately, pattern search methods do not perform well on highly com-

plex or high dimensional problems [Wen et al., 2013]. Given we are focusing on

problems that are both complex and high dimensional we do not discuss pattern

search methods further.
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2.6.3 Evolutionary Algorithms

Evolutionary algorithms were originally developed for deterministic systems but

have now been extended to noisy problems. [Eiben and Smith, 2007] provide a full

introduction to (deterministic) Evolutionary Algorithms and a summary is provided

below.

Evolutionary algorithms are based on the principles of biological evolution.

Starting with an initial population of candidate designs and the corresponding ob-

served objective function values, an offspring population of designs is created from

the parents using various operators. These operators can both combine (known

as recombination) and mutate the parent candidates. The candidates which show

best fit with regards to the objective function then survive and go on to form the

next generation. The bad candidates ’die’. This (repeated) process creates a set of

evolved solutions, which should have good fitness to the given objective function.

Deterministic evolutionary algorithms could be simply used to solve noisy

optimisation problems as a type of “Monte Carlo Strategy” (see above), however,

numerous efforts have been made to adapt the algorithm specifically to noisy prob-

lems. Most of these adaptations rely on resampling methods which gradually reduce

the noise of the chosen estimator of the objective function. The immediate question

these algorithms attempt to solve is how many samples of the noisy system should

be taken and for which candidates. [Beyer and Sendhoff, 2007] provides an extensive

list of examples where noisy evolutionary algorithms have been constructed.

It should be noted that simulated annealing (see below) could be seen as a

type of evolutionary algorithm that has only one member in each generation.

2.6.4 Simulated Annealing

Simulated annealing is based on annealing in metallurgy [Cerny, 1985; Kirkpatrick

et al., 1983]. The basis of the method is that a physical system which is cooled

quickly will generally not reach an optimal energy configuration, and will be prone

to defects. By contrast, a physical system which is cooled slowly is much more likely

to reach a globally optimal energy configuration and be without defects.

The simulated annealing algorithm applies the same idea to numerical prob-

lems. At the start of the optimisation, moves through the search space that lead to

a solution which is worse than the current solution are readily accepted. As the op-

timisation progresses the likelihood of accepting these bad moves reduces. This idea

is akin to gradually reducing the temperature of the system. At a high temperature

the optimisation is free to move around the search space, irrespective of the quality
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of the moves. However, as the temperature reduces the mobility of the optimisation

reduces and it is likely to only accept moves that show an improvement over the

current choice (state).

To define the algorithm more formally, consider an optimisation where we

wish to minimise a function, f(x), over x ∈ A ⊂ Rd. First, we consider how to

sample from the distribution described by the (relative) density g(x) = e−βf(x) for

some fixed β ∈ R. Markov Chain Monte Carlo sampling techniques can be used to

draw samples from this distribution.

To construct such a chain we must define a transition density between two

points in the state space, q(x → y), where x, y ∈ A. This transition density is

composed of two components. The first is the probability of attempting a move to

a particular point; we label this the perturbation density, h(x → y). The second

is the probability of accepting such a move, labelled a(x → y). We then have that

q(x → y) = h(x → y)a(x → y). In other words, the transition density is equal to

the probability density of considering a move and then accepting that move.

Since we already know the distribution we wish our chain to follow, we can

use this to define our choice of acceptance function. The most common choice for

a(x→ y) in this case is the Metropolis acceptance function. This is defined to be

a(x→ y) = min

(
g(y)h(y → x)

g(x)h(x→ y)
, 1

)
where g(x) is the density we wish to be sample. Justification as to why a chain using

this acceptance function has a stationary distribution with relative density g(x) is

provided in [Roberts and Rosenthal, 2004].

In most cases h(x→ y) is chosen to be symmetrical, for example, h(x→ y) =

φ(x − y), where φ is the density function of the normal distribution. If h(x → y)

is symmetric and we set g(x) = e−βf(x) (as above) then the Metropolis acceptance

function in our case becomes

a(x→ y|β) = min
(
e−β(f(y)−f(x)), 1

)
.

In simulated annealing we initially run this chain for a fixed amount of time

(for some initial choice of β). We then reduce the temperature (i.e. β ↑) and run the

chain for a further block of time. Each new chain is initiated using the last value of x

accepted by the previous chain. To define this precisely we further require a function

which defines how the (inverse) temperature of our system changes, b(k); the number

of temperature changes, M ; the number of iterations for each temperature change,
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L; and an initial state, x0. The simulated annealing algorithm is then as defined in

algorithm 2.1.

The resulting algorithm will, given enough time, converge (in probability) to

the global minima of the object function (f(x)) [Henderson et al., 2003]. [Gelfand

and Mitter, 1989] further showed convergence (in probability) to the global optimum

when f(x) could only be estimated and the resulting estimates had a Gaussian error

distribution. [Gutjahr and Pflug, 1996] further showed convergence as long as the

error distribution was both symmetric and suitably peaked around the correct value.

However, in all of these proofs the required rate of cooling would take too long to be

feasible in practice and so convergence to the global minima cannot be guaranteed.

As described above, we know the exact chain explored for fixed temperature (β−1).

However, each time the temperature changes it will take some time for the chain

to return to the equilibrium distribution. The behaviour of the chain during this

period is unknown.

Algorithm 2.1 Simulated Annealing Algorithm

1: x := x0, v := f(x) and β = 0
2: for 1 ≤ k ≤M do
3: β := b(k)
4: for L steps do
5: Pick x̃ subject to h(x→ x̃)
6: if a(x→ x̃|β) > u s.t. u ∼ U(0, 1) then
7: x := x̃
8: return x

Picking an appropriate choice of cooling schedule (as encompassed by b(k))

is a known problem of interest. Two common strategies are to either cool the

system linearly (b(k) = β0 + kw where β0, w ∈ R), or to cool the system exponen-

tially (b(k) = α−kβ0 where α ∈ [0, 1] and β0 ∈ R) [Chen et al., 2007; Guoa and

Zhengb, 2005]. It is worth noting that [Strenski and Kirkpatrick, 1991] do not find

any measurable difference between the performance of linear and geometric cooling

schedules. However, for convergence to be certain (in probability) a logarithmic

cooling schedule needs to be used (b(k) = log(k+d)
c where c, d ∈ R although normally

d = 1). Unfortunately, this strategy is too slow for normal usage [Nourani and

Andresen, 1998].

Another consideration is how often to cool the system. In the simple al-

gorithm above the system is cooled every L steps. This is a static schedule. An

adaptive schedule could also be used. An adaptive schedule varies the cooling rate

using information obtained during the algorithm’s execution [Henderson et al., 2003].
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For example, the system could instead be cooled every L accepted moves instead of

every L attempted moves.

There is no commonly accepted cooling method [Henderson et al., 2003]. In

reality, the optimal cooling schedule is often problem specific. Examples of further

problem specific cooling schedules can be found in [Kolonko, 1999; Bertsimas and

Tsitsiklis, 1993; Thompson and Dowsland, 1998].

During the course of this work we will focus on simple cooling problems.

As discussed above, our intention is to consider the scenario when f(x) cannot be

calculated exactly and there is some associated error. Ideas similar to this have

previously been considered in [Ball et al., 2003].
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Chapter 3

Optimising Quantile Risk

3.1 Introduction

In this and the following chapters we discuss and develop ideas on how to optimise a

system at a given level of risk. This optimisation, as highlighted in the introduction,

allows for the robust decision making in a variety of areas.

The key aim is to optimise a quantile of a stochastic variable where only an

estimate of the quantile can be obtained at each step. We do not generally know

how good this estimate is, but we can improve this estimate by performing more

work.

More specifically, we take the distribution of the random variable to be

parametrised by a set of parameters, encapsulated by D. We wish to optimise

in the sense of finding the choice of D that leads to the highest value of the quantile

at RT%. Since we do not have access to an inverse cumulative distribution function

for the random variable, we are forced to estimate this optimisation quantity using

sampling.

This problem has direct links to finance. It is equivalently the optimisation

of the Value at Risk (at a specified risk level, 1− RT ) of a portfolio. We note that

in the financial literature a Value at Risk of (1−RT )% is equivalent to the quantile

at RT%. For example, “95% VaR” is the loss which will be exceeded (on average)

5% of the time, or equivalently, once in every twenty days. In chapter 5 we extend

this optimisation problem to include an acceptable risk-reward ratio.

It is now routine in financial services and related sectors to consider the full

probability distribution of out-turns, for example for the change in value of a port-

folio of investments or of a whole company, projected to some future point in time.

Regulators will often impose the requirement to hold a matching amount of capital
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to the amount of risk (at a specified level) the institution is currently undertaking,

which significantly adds to the cost of risky trading. The connection of value at risk

to these capital adequacy requirements is enshrined in leading international accords

[Ban, 2011; Cuocoa and Liu, 2006] and national regulatory frameworks.

This thesis will focus on examples from finance but the same methodology

could be applied to a wide range of fields from emergency service vehicle routing

[Samaranayake et al., 2012] to stock management [Gallego and Ryzin, 1994]. Further

examples exist in food hygiene [Pouillot et al., 2007] and technology infrastructure

[Buyya et al., 2009].

As is common in complexity science we take inspiration from a variety of

fields. Over the course of the next three chapters we look at solving the above

optimisation problem with simulated annealing.

In this chapter we build an analytical understanding of the proposed optimi-

sation method. Initially, we define the Markov Chain such an optimisation would

follow. Using this result we are able to derive further results, based on the chain, to

allow us to create a highly productive feedback loop into our optimisation method.

Using these results we construct a new algorithm (based on simulated annealing)

which leads to significant time and accuracy gains over the basic algorithm.

In chapter 4 we build on the results contained in this chapter. We explore

the thermodynamic ensemble created by the above optimisation method. We use

the insights gained from this analysis to drive further improvement of the algorithm

proposed in this chapter.

Finally, in chapter 5 we build on the strong foundations constructed in chap-

ters 3 and 4 to further improve and refine our algorithm. These refinements allow

us to solve a wider range of problems.

In this chapter we first set up a mathematical description of the problem we

are tasked with solving. Using this description we derive the Markov chain that the

annealing of this problem would create.

Using this chain we can calculate two key results: the level of risk we are

truly optimising at (given the stochastic nature of our estimator) and an estimator

of how this risk level changes with the number of portfolio evaluations performed at

each step.

With these results in hand we are able to construct an improved annealing

algorithm to increase the speed of our optimisation problem. We then discuss some

implementation concerns and finally show some numerical results, which show the

improvements to be highly effective.
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3.2 Problem Definition

In this chapter we wish to optimise the choice of parameters for a random variable

such that the value of a specified quantile of the distribution of the random variable

is maximised. As highlighted in the introduction, this has relevance in many fields

including finance and vehicle routing.

Mathematically, we consider a design space D of possible designs. Each

member of this design space, D ∈ D, parametrises the probability density for a

real valued random variable FD. We assume D to be a highly multidimensional

continuous measurable space. We define VD(R) to be the Rth quantile of the dis-

tribution of FD, that is the outcome value of FD which we have an R% chance of

undershooting, or more formally, VD(R) = inf {x ∈ R : GD(x) ≥ R} where GD(x) is

the cumulative distribution function of FD (0 ≤ R ≤ 1). Note that should GD(x)

fail to be injective then this definition of VD(R) will choose the smallest choice of x

which satisfies GD(x) = R. We anticipate that typically we will not have a closed

analytical form for VD(R).

We now define the hedging problem as follows

Definition 3.2.1 (The Quantile Optimisation Problem). Given a design space D
and a fixed choice of RT ∈ [0, 1] we wish to find arg maxD∈D VD(RT ); i.e. the value

of D that maximises VD(RT ).

For example, if a choice of D and FD describes the contents and the possible

values of a portfolio (respectively) at a fixed future point in time we find the choice

of D which maximises the (1 − RT )% Value at Risk. In this case D could have a

significant number of dimensions. For example, D might describe the quantities of

certain stock or options owned.

An alternative example is a choice of route D where FD describes the possible

times the chosen route could take. We then might aim to find the route that has

the shortest arrival time at the 10% quantile. In other words, we wish to minimise

VD(0.10). In a simple scenario there may be two routes. One of these is a rural

route, which always takes 10 minutes and the second is a more urban route, which

on average takes 8 minutes, but takes 12 minutes 20% of the time. An optimisation

on the expected value would select the urban route as it has the lowest average

time (8 minutes). However, as described in the problem above, we would select the

rural route as it has the shortest travel time at the 10% quantile (10 minutes). In

other words, we choose to increase our expected travel time so that we can be more

confident of what our individual realisation of the travel time will be.
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During this work we further assume that VD(RT ) cannot be calculated through

any practicable formula, so consequently the most economical evaluation of VD(RT )

is via sampling of the distribution of FD. The number of samples required to make

such an estimation is discussed at the end of section 1.2.

The method we will use to solve this problem is simulated annealing. Simu-

lated annealing had been extensively introduced in section 2.6.4. Our work studies

how simulated annealing will operate when faced with the hedging problem, as

defined above (3.2.1). We then leverage this knowledge to improve the time and

effectiveness of the simulated annealing method.

Simulated annealing is used as we have assumed that D is high dimensional

and hence covers a huge number of scenarios. Grid search (or similar) approaches

are unusable for this class of problem due to the large amount of time they would

take to run.

3.3 The Markov Chain

In this section we find an analytic description for the Markov chain that our optimi-

sation process will follow (at least when it is at thermal equilibrium). We use this

result in later sections as a foundation for further key results, which, as highlighted

in the introduction, allow for very effective control of our optimisation process. We

use a combination of (noisy) simulated annealing and underlying data samples to

perform the quantile optimisation. In this section we assume that inverse tempera-

ture β, and the sample size n used to estimate VD(RT ), are both fixed.

As discussed in the previous section, we assume that we are optimising the

design of a random variable, FD, at a certain risk (or probability) level, RT . During

the optimisation process we will always search D using a symmetric proposal density,

i.e. h(D → D′) = h(D′ → D). Consequently, if we could calculate VD(RT ) precisely

at each step, the relative probability density for each design in a simulated annealing

process when using the Metropolis acceptance function at fixed β, would be πa(D) =

eβVD(RT ). Note that this is the Boltzmann distribution, as defined in definition 2.2.5,

with E = −VD.

We now further assume that FD is composed from m underlying real valued

random variables whose joint distribution is independent of D. In other words, it

is only this composition of random variables to form FD which is dependent on D.

These underlying random variables are not required to be independent from each

other. We then consider X to be a sample set of n independent, m dimensional,

elements each drawn from the distribution of the m random variables from which
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FD is composed. We consider X to be the space of all possible choices of X.

Since VD(RT ) is estimated using sampling it will inherently have some error

associated with it. The precise error will depend on the specific sample set used.

Due to this we can now instead consider a Markov chain which operates over the

joint space of D and X (instead of just D) where β and n are fixed.

We denote the estimate of VD(RT ) using X as V̂D(k,X) for some (given)

choice of k. We define V̂D(k,X) to be the kth ranked value of VD obtained from the

n elements contained in the sample set X. We would naively expect an appropriate

choice of k to be bRTnc, however, as we shall see, this may not always be the best

choice. More specifically, V̂D(k,X) is calculated by composing the n sample elements

contained in the sample set X into n samples drawn from the distribution of FD

using the composition parametrised by D. These samples from the distribution

of FD are then put in ascending order and the kth ordered point selected to be

V̂D(k,X).

We will use a similar Metropolis acceptance function for this new Markov

chain. That is, for fixed β and k, the probability of accepting a move is

a(D,X→ D′,X′) = min
(

1, eβ(V̂D′ (k,X
′)−V̂D(k,X))

)
. (3.1)

Furthermore, the proposal densities for both D and X will be mutually independent

of each other

h(D,X→ D′,X′) = h(D → D′)h(X→ X′), (3.2)

and, as before, for D, the proposal density will be symmetric,

h(D → D′) = h(D′ → D). (3.3)

The proposal density for X will reflect the underlying densities of the random

variables from which FD is composed. A candidate sample set X′ will be constructed

by taking n new randomly drawn samples from these underlying distributions. Al-

ternatively, l, where 0 < l < n, randomly selected elements of the current sample set

X will be replaced by l newly drawn elements. The method used will be consistent

throughout a simulation. Hence, by construction, the proposal density for X will

satisfy

h(X→ X′)

h(X′ → X)
=
H(X′)

H(X)
(3.4)
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where H(X) = Πx∈Xη(x) and η(x) is the joint probability density of all the m

random variables which are composed to form FD. Note that the product is over

the n sample elements which are contained in the sample set X ∈ X . It should be

clear that each sample element, x ∈ X, will itself be m dimensional.

Proposition 3.3.1. The relative probability density of the resulting Markov chain

in the space of (D,X ) will hence be

π(D,X) = H(X)eβV̂D(k,X).

for a fixed choice of β, n and k.

Proof. [Roberts and Rosenthal, 2004] state that given a factorisation of the proposal

densities (equations 3.2, 3.3, 3.4) and acceptance probabilities (equation 3.1) the

relative probability density of the Markov chain is as stated in the proposition,

provided that the detailed balance condition can be proved. That is, we are required

to show that

π(D,X)q(D,X→ D′,X′) = π(D′,X′)q(D′,X′ → D,X) (3.5)

where q(D,X → D′,X′) = a(D,X → D′,X′)h(D,X → D′,X′). Starting from the

left hand side and substituting equations 3.2, 3.3, 3.1 and 3.4 leads to

π(D,X)q(D,X→ D′,X′)

= π(D,X)h(D,X→ D′,X′)a(D,X→ D′,X′)

= π(D,X) min

(
h(D,X→ D′,X′), h(D′,X′ → D,X)

H(X′)

H(X)
eβ(V̂D′ (k,X

′)−V̂D(k,X))
)

= min
(
π(D,X)h(D,X→ D′,X′), π(D′,X′)h(D′,X′ → D,X)

)
which is symmetric under the interchange of (D,X) and (D′,X′) and hence we have

shown the required equality (equation 3.5).

We can now use the inversion method to project the stationary density from

(D,X ) to (D, [0, 1]n). We can then further project the stationary density onto

(D, [0, 1]). This allows for a more interpretable description of the relative probability

density.

To do this, we first note that V̂D(k,X) must equal VD(Rk) for corresponding

choices of Rk ∈ [0, 1] for all possible choices of k. Here Rk is the kth ranked of n

samples of the uniform distribution on the unit interval (by the inversion method).
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Such an equivalence must exist by construction of V̂D(k,X). Proof and further

details can be found in [Devroye, 1986].

The projected relative density would then become

π(D,R1. . . . , Rn) = ζ(R1, . . . , Rn)eβVD(Rk)

where ζ(R1, . . . , Rn) is the joint density function for all of the Rks. If we can then

find the relative probability density of Rk we can further project the density to

π(D,Rk) = ζk(Rk)e
βVD(Rk) (3.6)

π(D) =

∫ 1

0
dRkζk(Rk)e

βVD(Rk) (3.7)

The first statement is a result of integrating π(D,R1. . . . , Rn) with respect to Ri

∀i 6= k. The second statement is the result of integrating π(D,Rk) with respect to

Rk. These integrals will always exist when VD(.) is upper bounded on [0, 1].

The relative density of the Rks can be easily calculated since these Rk relate

to uniform draws from [0, 1] by the inversion method. We can use the binomial dis-

tribution to calculate their joint a priori probabilities of occurrence. The probability

density of Rk, labelled ζk(Rk), is then given by

P (k − 1 samples are less than Rk)

×P (n− k samples are greater than Rk)

×n (Possible choices for the kth sample)

×
(
n− 1

k − 1

)
(Possible permutations of the remaining samples).

By substituting the correct binomial probabilities into the above calculation and

simplifying, we find that

ζk(Rk) =

(
n

k

)
kRk−1

k (1−Rk)n−k. (3.8)

We note that Rk has a Beta distribution with parameters α = k and β = n− k+ 1.

Remark 3.3.2. In order to consider expectations over this chain we will need to

assume that the normalisation constant for the above relative densities exist, i.e.

N(β, n, k) =

∫
D
dD

∫ 1

0
dRkζk(Rk)e

βVD(Rk) <∞. (3.9)
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Clearly existence of the normalisation constant is dependent on the choice

of VD(.), which as previously discussed is unlikely to be known in closed form (if at

all). However, if we further assume that D is bounded and that VD(.) is bounded

in the region near RT then it seems reasonable to expect that the integral will exist

for a sufficiently large choice of n and equivalent choice of k = bRTnc.

It is worth noting that the two factors in π(D,Rk) above will attempt to push

〈Rk〉 in different directions. The ζk(Rk) term will seek to select values of Rk near

to k
n , whereas the eβVD(Rk) term will seek to bias the chain towards larger choices

of Rk. This is because it will give more weight to overestimates of VD(RT ) than to

underestimates of VD(RT ). The pressure each term exerts on the choices of Rk will

be driven by β and n respectively. This tension will mean that in practice 〈Rk〉 will

almost always exceed k
n .

In this section we have found the Markov chain weights for our optimisation

process. In later sections we build on the above results to prove some of the key

results contained in this chapter.

3.4 Calculating the Risk

In this section we analytically prove several key statistics, which we will use in later

sections to accurately control our optimisation process. We use the Markov chain

results from the previous section to relate observable statistics with unobservable,

but more understandable, statistics. This gives us a way of calculating the level

of risk we are actually optimising (on average) given a fixed choice of n and k.

Using these results we can significantly reduce the number of samples required to

optimise an extreme quantile compared to a more traditional approach. Figure 3.1

demonstrates this point. Accurately estimating the quantile at each step would

require a huge number of samples of FD, the exact number of which is generally

unknown and, as discussed at the end of the last section, as β grows a larger number

of samples will be required. If we can calculate 〈Rk〉 during the algorithm we can

limit the number of samples used in each iteration to the absolute minimum required,

saving both time and computational resources. Without such an estimator we would

either be forced to use a much larger choice of n, or not use sufficient n and find

that we actually optimised a much higher quantile.

We continue to use the notation that was set up in the previous section.

These results are recapitulated and numerically tested in section 3.5.

Initially we find the relationship between ζk(R) and ζj(R). As a reminder,

ζk(Rk) is the probability density that a sample of rank k out of n samples from
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Figure 3.1: The figure above shows how ζk(Rk) changes as n increases, with k =
b0.1nc in each case. We can see that as n increases not only does the dominant
value rapidly approach 0.1 but also that the relative dominance of the dominant
value increases. In traditional simulations one would be forced to use a (very) large
choice of n to ensure that the optimisation optimised the correct quantile. We aim
to be able to calculate the actual 〈Rk〉 used during the simulation so that we can
fine tune the number of samples that are needed. This enables us to reduce the
work required and ensure that we are using a sufficient number of samples for each
iteration. An insufficient number of samples would potentially mean that we would
actually optimise a higher quantile due to the upward pressure from the eβVD(Rk)

term in the weight.

the distribution of FD corresponds to cumulative probability R. Without loss of

generality we will assume that k < j (for the sake of simplicity).

Proposition 3.4.1. Given fixed k and j, with k < j, we find that

ζj(R) =
(n− k)!(k − 1)!

(n− j)!(j − 1)!

(
R

1−R

)j−k
ζk(R).

Proof. The proof follows directly from the definition of ζk(R) and ζj(R).

We now calculate the relationship between several statistics of the Markov

chain at equilibrium for fixed β and n. Notationally, we take 〈.〉k to be the arithmetic
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mean over a Markov chain which is searched using point k in the n ordered samples.

The first result allows us to introspect the level of risk the Markov chain is

sampling at without assuming any knowledge of VD(.) (as opposed to the cruder

estimation of k/n which is not valid for small n).

Theorem 3.4.2 (Risk Estimation). Given fixed β, n, k and j we find that

〈
eβ(VD(Rj)−VD(Rk))

〉
k

=
(n− k)!(k − 1)!

(n− j)!(j − 1)!

〈
Rj−kj (1−Rk)k−j

〉
k

where N(β, n, k) exists and the expectations are finite.

Proof. We first expand the definition of
〈
eβ(VD(Rj)−VD(Rk))

〉
k
,

〈
eβ(VD(Rj)−VD(Rk))

〉
k

=

∫
D
dD

1∫
0

dR1 . . .
1∫
0

dRne
β(VD(Rj)−VD(Rk))π(D,R1, . . . , Rn)

N(β, n, k)
.

By expanding π(D,R1, . . . , Rn) using conditional probability, integrating unused

terms and substituting in the formula for π(D,Rk) (from equation 3.7) we find

=

∫
D

dD

1∫
0

dRj

1∫
0

dRke
β(VD(Rj)−VD(Rk))ζk(Rj |Rk)

ζk(Rk)e
βVD(Rk)

N(β, n, k)

where ζk(Rj |Rk) is the relative density for the conditional distribution. Moving the

normalisation constant outside the integrand and cancelling terms gives

=
1

N(β, n, k)

∫
D

dD

1∫
0

dRj

1∫
0

dRke
βVD(Rj)ζ(Rj |Rk)ζk(Rk).

Integrating out Rk and using the substitution for ζj(.) found in proposition 3.4.1

results in

=
(n− k)!(k − 1)!

(n− j)!(j − 1)!

1

N(β, n, k)

∫
D

dD

1∫
0

dRjR
j−k
j (1−Rj)k−j eβVD(Rj)ζk(Rj).

By observing that Rj is just a variable of integration, we can relabel it to Rk to get
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=
(n− k)!(k − 1)!

(n− j)!(j − 1)!

1

N(β, n, k)

∫
D

dD

1∫
0

dRkR
j−k
k (1−Rk)k−j eβVD(Rk)ζk(Rk).

However, this is simply an expectation,
〈
Rj−kk (1−Rk)k−j

〉
k
, multiplied by a con-

stant, giving the result.

Example 3.4.3. In the case when j = k + 1 we have that

〈
eβ(VD(Rk+1)−VD(Rk))

〉
k

=
n− k
k

〈
Rk

1−Rk

〉
k

. (3.10)

We now have a method for identifying the level of risk the Markov chain is

actually optimising, using only the kth and (k + 1)th ranked sample of FD. No

knowledge of VD(.) or Rk is required. This crucial result allows us to greatly reduce

the number of samples required during the optimisation process.

The second result in this section allows us to calculate an approximation for

the derivative of d〈Rk〉
dn and make the above approximation more exact. Estimating

this derivative will enable us to adjust the number of samples used to allow us to

perform an optimisation at the desired level of risk, whilst using the minimal number

of samples.

Theorem 3.4.4. Given fixed β, n, k and a choice of p such that 0 ≤ p ≤ n,

〈f(Rk)〉k,n−p =
〈f(Rk)(1−Rk)−p〉k,n〈(

Rk
1−Rk + 1

)p〉
k,n

where N(β, n, k) exists and the expectations are finite and where 〈.〉k,n is an average

computed over a Markov chain optimising at point k and using n samples at each

step.

Proof. Expanding 〈f(r)〉k,n−p according to its definition gives
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〈f(Rk)〉n−p =
1

N(β, n, k)

∫
D

dD

1∫
0

dRkf(Rk)π(D,Rk)

∣∣∣∣∣∣
n=n−p

=

∫
D
dD

1∫
0

dRkf(Rk)
(
n−p
k

)
kRk−1

k (1−Rk)n−p−keβVD(Rk)

∫
D
dD

1∫
0

dRk
(
n−p
k

)
kRk−1

k (1−Rk)n−p−keβVD(Rk)

.

Multiplying both numerator and denominator by
(nk)

(n−pk )
and separating out (1−Rk)−p

results in

=

∫
D
dD

1∫
0

dRkf(Rk)(1−Rk)−pπ(D,Rk)

∫
D
dD

1∫
0

dRk(1−Rk)−pπ(D,Rk)

.

Dividing both the numerator and denominator by N(β, n, k) gives

=
〈f(Rk)(1−Rk)−p〉k,n
〈(1−Rk)−p〉k,n

.

By substituting 1
1−Rk = Rk

1−Rk + 1 we reach the final result

=
〈f(Rk)(1−Rk)−p〉k,n〈(

Rk
1−Rk + 1

)p〉
k,n

.

Corollary 3.4.5. Given fixed β, n, k, with k small, we have
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〈
Rk

1−Rk

〉
k,n

−
〈

Rk
1−Rk

〉
k,n−1

=(
k

n−k
〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

)2
− k(k+1)

(n−k)(n−k−1)

〈
eβ(VD(Rk+2)−VD(Rk))

〉
k,n

1 + k
n−k

〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

where N(β, n, k) exists and the expectations are finite.

Proof. We expand the left hand side by applying Theorem 3.4.4 to f(Rk) = Rk
1−Rk ,

with p = 1, to get

〈
Rk

1−Rk

〉
k,n−1

=

〈
Rk

1−Rk (1−Rk)−1
〉
k,n∑1

i=0

(
1
i

)〈(
Rk

1−Rk

)i〉
k,n

=

〈
Rk

(1−Rk)2

〉
k,n

1 +
〈

Rk
1−Rk

〉
k,n

.

By substituting 1
1−Rk = Rk

1−Rk + 1 into the numerator we get

=

〈(
Rk

1−Rk

)2
+ Rk

1−Rk

〉
k,n

1 +
〈

Rk
1−Rk

〉
k,n

.

We are now able to expand
〈

Rk
1−Rk

〉
k,n
−
〈

Rk
1−Rk

〉
k,n−1

by substituting the above

expansion. This results in

〈
Rk

1−Rk

〉
k,n

−
〈

Rk
1−Rk

〉
k,n−1

=

〈
Rk

1−Rk

〉
k,n

−

〈(
Rk

1−Rk

)2
+ Rk

1−Rk

〉
k,n

1 +
〈

Rk
1−Rk

〉
k,n

=

(〈
Rk

1−Rk

〉
k,n

)2

−
〈(

Rk
1−Rk

)2
〉
k,n

1 +
〈

Rk
1−Rk

〉
k,n

.

By applying Theorem 3.4.2 we get an (observable) expression in terms of exponential

averages, given by
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=

(
k

n−k
〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

)2
− k(k+1)

(n−k)(n−k−1)

〈
eβ(VD(Rk+2)−VD(Rk))

〉
k,n

1 + k
n−k

〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

.

Furthermore, we can approximate d〈Rk〉
dn using finite differences. If we assume

small k and large n we have that

d 〈Rk〉
dn

≈ 〈Rk〉k,n − 〈Rk〉k,n−1 ≈
〈

Rk
1−Rk

〉
k,n

−
〈

Rk
1−Rk

〉
k,n−1

. (3.11)

Note that this becomes equality to leading (first) order in R in the limit of large n

(as n→∞). Then by corollary 3.4.5 we have

d〈Rk〉
dn

≈

(
k

n−k
〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

)2
− k(k+1)

(n−k)(n−k−1)

〈
eβ(VD(Rk+2)−VD(Rk))

〉
k,n

1 + k
n−k

〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

(3.12)

assuming N(β, n, k) exists and the expectations are finite.

It is worth noting that by using similar methods to those above we can actu-

ally find a more accurate analytic approximation for d〈Rk〉
dn . However, the resulting

expression is much more complex and hence is unlikely to converge quickly. This

would make it unsuitable for use in an efficient algorithm. These expressions could

be found by following a similar logic to that of corollary 3.4.6.

Finally, we note that in theorem 3.4.2 we found an observable estimator for〈
Rk

1−Rk

〉
k,n

, however ideally we wish to estimate 〈Rk〉k,n as it is a much more clearly

interpretable quantity. When Rk is small we would expect both expectations to

be approximately equal, however this does not hold for larger Rk. In the following

corollary we find an upper bound on 〈Rk〉k,n for all Rk, based on
〈

Rk
1−Rk

〉
k,n

.

Corollary 3.4.6 (Bounding the Risk). Given fixed β, n, k

〈Rk〉k,n ≤
k

n−k
〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

1 + k
n−k

〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

when N(β, n, k) exists and the expectations are finite.

Proof. By applying Theorem 3.4.4 to f(Rk) = Rk with p = 1 we get
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〈Rk〉k,n−1 =

〈
Rk

1−Rk

〉
k,n

1 +
〈

Rk
1−Rk

〉
k,n

.

By applying Theorem 3.4.2 we get an (observable) expression in terms of exponential

averages, given by

=

k
n−k

〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

1 + k
n−k

〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

.

Finally we note that 〈Rk〉k,n ≤ 〈Rk〉k,n−1 and thus obtain the final result.

The results found in this section give us a powerful set of tools that can be

used when designing an optimisation algorithm in later sections (3.6). Critically,

since we know the level of risk any given point in our ordered samples is operating

at, we can reduce the size of the sample set required in two ways. Firstly, we no

longer need to take the (standard) brute force approach of using a fixed size, as we

can dynamically calculate the sufficient size of our sample set to optimise at the

correct level of risk. Secondly, we can move away from estimating a level of risk,

RT , by the (RTn) ranked point in our sample set to using, for example, the worst

point in the sample set. This again greatly reduces the samples required and is

underpinned by the above results which allow us to identify the level of risk of a

specific point.

3.5 Numerical Convergence of Estimators

In this section we investigate the numerical behaviour of the estimators found in

the previous section (3.4). We know that the estimators must eventually converge

over a long time assuming a given system is at equilibrium. However, we wish to

investigate the estimator’s responsiveness when these assumptions may not be the

case.

Our primary purpose in this section is to determine how long the estima-

tors might take to converge in different systems. We will also look for any other

observations that could be used to help develop a suitable algorithm based on these

results.
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In this section we focus on the estimators for

〈Rk〉k,n ≤
k

n−k
〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

1 + k
n−k

〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

(see 3.4.6) and

d 〈Rk〉
dn

≈

(
k

n−k
〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

)2

1 + k
n−k

〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

−
k(k+1)

(n−k)(n−k−1)

〈
eβ(VD(Rk+2)−VD(Rk))

〉
k,n

1 + k
n−k

〈
eβ(VD(Rk+1)−VD(Rk))

〉
k,n

(as per 3.12).

We evaluate the estimators using a simple, one dimensional, toy model. We

choose VD(R) to be the inverse cumulative distribution function of a standard normal

distribution. In this example there is only one possible design. Mathematically, we

explore the system which has relative density ζk(Rk)e
βΦ−1(Rk). The design element

does not appear in these weights as we have fixed it to be the standard normal

distribution (so there is only one possible design). In this example, FD is equal to

a random variable which has a standard normal distribution.

We use the methodology as described in section 3.3 to sample the Markov

chain. We attempt to replace all the samples contained in X at each step. Clearly,

the design, D, is not perturbed as there is only one possible choice.

As the mathematics exposes, we expect our chain to have two tensions un-

derpinning it. The first is that the randomly drawn samples from the normal distri-

bution select in favour of 〈Rk〉 close to k
n . The second is that eβVD(Rk) = eβΦ−1(Rk)

will seek to push 〈Rk〉 up. This term will bias our chain towards sets of “lucky”

samples of X which have an abnormally high kth member when ordered. As we

increase n we would expect 〈Rk〉 to move closer to k
n . Conversely, as we increase

β we would expect the second factor to have an increased effect and hence would

expect to see 〈Rk〉 >> k
n .

Since we know VD(Rk) in this example we can calculate the true value of

〈Rk〉 a given chain explores. We compare this exact estimate with our estimator for

〈Rk〉 from the previous section.

Figure 3.2 shows the convergence of our estimator for a variety of choices of

β and n. The graphs show the value of the estimator (against the true 〈Rk〉) for

a chain that has a certain number of accepted moves since starting from a random

condition. The second half of each set of accepted moves was used to calculate the

estimator.

All of the graphs in figure 3.2 demonstrate good convergence of the estimator

(for 〈Rk〉) over most parameter settings β. However as β increases the estimator
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Figure 3.2: The above charts show the convergence of the estimator for 〈Rk〉 as
defined in corollary 3.4.6. R̂k denotes this estimator. 〈Rk〉 denotes the true expected
value of Rk as calculated explicitly using the known V −1

D (V ) = Φ(V ). k was set
to max(1, 0.01n) (targeting 1% risk when n ≥ 100). The estimator shows excellent
convergence for all choices of n and β. The convergence is slower for larger choices
of β when coupled with small n, however we should not be operating in this regime
as it will also have high expected Rk. The graphs also show that the estimator is
indeed an upper bound and is therefore a reliable measure to ensure our chain is
operating at the target risk level RT%.

performs less well. As expected, small n and large β suffer the most. It is worth

noting that when β = 5, 〈Rk〉 has been pushed up significantly for n = 10 and

n = 100. In these cases 〈Rk〉 = 36.6% and 〈Rk〉 = 3.1% respectively. In both cases

this is approximately three times larger than the level of 〈Rk〉
(
= k

n

)
one might

expect. We also note that, crucially, our estimator always over estimates the true

value of 〈Rk〉. This means it can be used as a reliable safety check to ensure we

have enough samples to search at the target level of risk RT .

We also note that our estimator for 〈Rk〉 (as defined in corollary 3.4.6) ap-

pears to converge more quickly than when using a known V −1
D (V ) = Φ(V ) to calcu-

late the expected risk level. Figure 3.3 demonstrates this for the case when n = 100

and β = 1.

Figure 3.4 shows the result of the estimator for d〈Rk〉
dn versus a pointwise
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Figure 3.3: The above figure shows the convergence of the estimator for 〈Rk〉 for a
specific choice of n = 100 and β = 1. The notional estimate of 〈Rk〉 was calculated
using VD(Rk) (which was known in this example). The binomial estimate was
calculated as shown in corollary 3.4.6. We see improved convergence using our
estimator over the raw calculation.

estimate of d〈Rk〉dn using the known VD(Rk). We note that the value of
R̂′k
R′k

=

(
ˆd〈Rk〉
dn

d〈Rk〉
dn

)
generally requires more samples to achieve the same relative change in 〈Rk〉 as β

increases (for fixed n). This is to be expected, since as β increases more samples will

be required to hold 〈Rk〉 down and therefore a greater change in n will be required

to reduce 〈Rk〉 by the same (relative) amount. As before the estimator begins to

suffer when β is high and n is small, however this is not a regime we intend to

operate in.

The above results show that the estimators found in the previous section per-

form very well and should provide a good building block for our algorithm. In the

next section we use the intuition developed both here and in previous sections to de-

sign an improved annealing algorithm for our class of problem. We then numerically

test this algorithm in the following sections.

Finally, we note that, although the results are not included for the sake of

brevity, the convergence for other forms for VD was tested and found to have similar

results as the standard normal case shown above.
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Figure 3.4: The above figures show the convergence of the estimator for d〈Rk〉
dn (as

defined in equation 3.12). R̂′k denotes this estimator. R′k denotes the true d〈Rk〉
dn

which was pointwise estimated using the known V −1
D (V ) = Φ(V ) to calculate 〈Rk〉

at nearby n. As before, k was set to max(1, 0.01n). The results generally show that
the estimator convergences quickly to the correct value. When n is fixed we see that
d〈Rk〉
dn increases with increasing with β (at least for small n). This at first seems

counter intuitive as we expect it to be harder to push 〈Rk〉 down as β increases.
However, we need to remember that 〈Rk〉 has also significantly increased with β and
hence to decrease 〈Rk〉 by the same relative amount would require significantly more
samples for higher β. This supports our initial argument that for high β we need to
fight harder (and perform more sampling) to keep 〈Rk〉 low and that to obtain the
same relative reduction of 〈Rk〉 requires significantly more samples (as compared to
a smaller choice of β). The estimator demonstrates some degradation at low n and
high β.
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3.6 Algorithm

In this section we build on the intuition built in the previous two sections (3.4

and 3.5) to improve the basic annealing algorithm to allow it to more quickly solve

the style of problem discussed in section 3.2. We focus on how we can use the

previous results to extend the algorithm. As discussed in the section 2.6.4, the

choice of cooling schedule for stochastic annealing is problematic. A wide variety

of different methodologies are discussed in the literature [Kolonko, 1999; Bertsimas

and Tsitsiklis, 1993; Thompson and Dowsland, 1998], however we stick to a very

simple schedule of linearly increasing β every N accepted design changes and instead

focus our discussion on optimising the new features we have introduced. All of the

annealing algorithms used in this thesis are summarised in appendix A.

In order to define the algorithm we assume we have a predefined cooling

schedule which is defined by a sequence of inverse temperatures, β1, . . . , βm, at

points N1, . . . , Nm. As a reminder of notation (from sections 3.2 and 3.3); FD is a

random variable which is parametrised by a choice of D ∈ D. FD is composed of

m underlying random variables whose individual distributions are independent of

D. For example, the underlying random variables could encapsulate possible future

asset prices and D the design of a portfolio which contains these assets. V̂D(k,X) is

the estimate of VD(RT ) based on the kth smallest sample of the resultant distribution

of FD. X is a samples set where each individual sample (element) is independently

drawn from the distributions of the underlying random variables of FD. Label X as

the joint distribution of the distributions of the underlying random variables which

are composed to form FD.

Finally, we define |X| to be the cardinality (size) of the set X, dye to represent

the smallest integer greater than y and byc to represent the largest integer smaller

than y.

We initialise the algorithms with an initial condition for D (D0) and provide

some method for drawing samples from the distributions of the underlying random

variables. We wish to optimise the design of the random variable FD at it’s RT

percentile.

Algorithm 3.1 defines a simple brute force version of the proposed algorithm.

This algorithm shows how the cooling scheme defined above is used. The algorithm is

a standard simulated annealing algorithm and essentially assumes that the estimate

of VD(RT ) is correct and no biasing of the quantile from the eβVD(Rk) term occurs.

Each iteration the algorithm draws n =
⌊
R−2
T

⌋
samples from X, to form a sample

set, and then uses the elements of this sample set to estimate VD̃(R), where D̃ is a
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perturbation of D. The new design choice is then accepted with a probability given

by the Metropolis acceptance function. This function uses the estimate of VD̃(R)

and the current estimate of VD(RT ). (VD(RT ) is not re-estimated each step.) The

system is cooled used the cooling schedule defined above.

Algorithm 3.1 Brute Force

1: D := D0, n :=

⌈(
1
RT

)2
⌉

and k := max(1, bnRT c)

2: X := n samples drawn from X
3: V := V̂D(k,X)
4: for 1 ≤ i ≤ m do . For each cooling step
5: j := 0
6: while j ≤ Ni do . For each iteration
7: D̃ := a perturbation of D
8: X̃ := n (new) samples from X
9: Ṽ := V̂D̃(k, X̃)

10: p := min(1, e−βi(V−Ṽ )) . Metropolis Acceptance Function
11: if p ≥ u where u ∼ U(0, 1) then
12: V := Ṽ , D := D̃ and X := X̃
13: j := j + 1

14: Result is D

Algorithm 3.2 defines the algorithm when we wish to change n with β. c(n)

is a (functional) parameter which governs how much we perturb the random sam-

ples used to estimate VD(RT ) per attempted perturbation of D. In this algorithm

we use the estimators for 〈Rk〉 and d〈Rk〉
dn , as found in the preceding sections, to

carefully tune the number of samples, and hence portfolio evaluations, required at

each step. This should allow us to gain a significant time saving over the traditional

method in which a fixed number of samples would be used at each step to estimate

VD(RT ). This would then be considered an accurate estimate and a standard an-

nealing method could be applied. In our results in the next section we show that

this assumption is not always correct.

In this algorithm we use the same X to evaluate both the original and per-

turbed design and we then alternate between perturbing D and perturbing X each

iteration. The reason we do this, instead of perturbing them together, is to im-

prove acceptance rates. The disadvantage of using a smaller sample size to estimate

VD(RT ) is that we are more vulnerable to lucky sampling of X giving a large overes-

timate of VD(RT ). This would mean although the system is in equilibrium, frequent

lucky sets of samples of X could reduce the rate of movement through the system.

(In other words, it will take much longer to fairly sample the equilibrium system
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Algorithm 3.2 Simulated Annealing on n

1: D := D0, n := 100 and k := max(1, bnRT c)
2: X := n samples drawn from X
3: V := V̂D(k,X)
4: for 1 ≤ i ≤ m do . For each cooling step
5: for 1 ≤ b ≤ 2 do . Split the iterations in two
6: j := 0
7: while j ≤ Ni/2 do . For half of the iterations
8: D̃ := a perturbation of D
9: Ṽ := V̂D̃(k,X)

10: p := min(1, e−βi(V−Ṽ )) . Metropolis Acceptance Function
11: if p ≥ u where u ∼ U(0, 1) then
12: V := Ṽ and D := D̃
13: j := j + 1

14: A := k
n−ke

β(VD(Rk+1)−VD(Rk))

15: B := k(k+1)
(n−k)(n−k−1)e

β(VD(Rk+2)−VD(Rk))

16: R̂ := 1
j

(
(j − 1)R̂+ A

1+A

)
. Calculate the estimator for 〈Rk〉

17: d̂R := 1
j

(
(j − 1)d̂R+ A2−B

1+A

)
. Calculate the estimator for d〈Rk〉

dn

18: for 1 ≤ l ≤ c(n) do . Perturb X c(n) times
19: X̃ := X
20: Replace one element of X̃ with a new random sample from X
21: Ṽ := V̂D̃(k,X)

22: p := min(1, e−βi(V−Ṽ )) . Metropolis Acceptance Function
23: if p ≥ u where u ∼ U(0, 1) then
24: V := Ṽ and X := X̃
25: if R̂ > RT then . Check the level of risk we have been optimising

26: n := min
(

2000, n+
⌈
RT−R̂
d̂R

⌉)
. Increase n to push 〈Rk〉 down

27: k := max(1, bnRT c)
28: while |X| < n do . Add new random samples to X
29: Draw a random sample from X and add it to X

30: V := V̂D(k,X).

31: R̂ := 0 . Reset estimators for 〈Rk〉 and d〈Rk〉
dn

32: d̂R := 0
33: Result is D
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than if we encourage quicker acceptance rates by perturbing X and D separately.)

We perturb X by considering 100 independent swaps of a randomly selected element

of the current sample set with a new sample drawn from X. We perturb each sam-

ple in X independently as it does not increase the number of portfolio evaluations

required, but should improve the acceptance rate for these perturbations.

We check our estimators for 〈Rk〉 when we change the temperature and once

in between changing temperatures. We check if R̂k > RT and if so we increase n.

How we increase n depends on the variant of the algorithm used (see below).

We start with a sample set containing a hundred members as it easily allows

us to provide initial risk estimates for target risk levels as low as 1%. Furthermore,

as discussed in the previous section, using only a small sample set size is likely to

increase the movement of the system as it does not allow for a good estimate of

VD(RT ). As n increases we rescale k to be bnRT c (see line 27). This suggests that

we should further increase n as the estimator for d〈Rk〉
dn is for fixed k, however we

anticipate this change being minor and therefore expect limited impact from each

change in n. The algorithm will self correct over the course of the chain and so any

error created by changing k should have limited impact.

We wish to attempt to ensure that each time we perturb X we have some

impact on VD(Rk,X). For this to be the case (on average) we need to perturb at

least n
k elements of the sample set. We take c(n) = 100 because for small n (when β

is low) we would expect c(n) > n
k . However, once n grows large c(n) may be less than

n
k . This is not a problem as at this point β will be high and the move acceptance rate

for D greatly reduced. We would therefore still expect that VD(Rk,X) would change

between accepted design perturbations. We could set c(n) = n but we wish to limit

the amount of work the algorithm requires and a higher number of perturbations to

X should not be needed.

Based on the numerical results in section 3.5 the cooling intervals, Ni, should

be at least a hundred steps to ensure the estimators used have time to converge.

Aside from the comments above the algorithm should be a natural extension

of the Brute Force algorithm (3.1). Clearly, the annealing schedule could be adjusted

to work on another metric. For example, the number of accepted moves, as used in

the previous section. A simulated tempering algorithm could also be used in place of

simulated annealing. Furthermore, the acceptance function could be replaced with

a different Metropolis-Hastings acceptance function.

We note that the algorithm as defined above is actually a type of single com-

ponent Metropolis Hastings algorithm, rather than the simple Metropolis Hastings

algorithm discussed in earlier sections (which used a single update step). The chain
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will converge to the same stationary distribution and an analogous proof is possible

[Gilks et al., 1996].

As previously discussed, if we fixed n, this algorithm would be a deterministic

simulated annealing algorithm in the space of (D, [0, 1]) and hence with a suitable

cooling schedule should find the global maximum of ζk(Rk)e
βVD(Rk) [Henderson

et al., 2003]. For a choice of VD(.) that is bounded on [0, 1] and continuous in the

region around RT we would further expect that for a sufficiently large choice of n

the value of D that maximised ζk(Rk)e
βVD(Rk) would also maximise eβVD(RT ) and

hence maximise VD(RT ). It is then plausible that one could prove that, under the

conditions above, a version of the above algorithm that used a logarithmic cooling

schedule and incremented n in some particular way, would converge (with probability

1) to maxD (VD(RT )). However, since we do not intend to cool the temperature

logarithmically and our current method of increasing n is not analytically dependant

on VD(.) it is highly unlikely we could prove the algorithm (as is) will converge to

a global maximum of VD(RT ). That said, by virtue of the above argument, we

would reasonably expect (as a heuristic) that algorithm 3.2 will find, at worst, a

(relatively) good local maximum of VD(RT ).

In the next section we will apply the above algorithm to a test problem from

finance before concluding the chapter in section 3.8.

3.7 Results

In this section we apply the algorithm outlined in the previous section (3.6) to a

simple portfolio selection problem from finance.

In order to study the algorithm several variants were compared. These are

outlined below. As before RT is the target risk level and n is the number of samples

used at each step to estimate VD(RT ). The algorithms are:

BF A standard brute force algorithm using n =
⌊
R−2
T

⌋
samples to estimate VD(R).

This is the algorithm as described in 3.1.

SBF A standard brute force algorithm using n =
⌊
R−1
T

⌋
samples to estimate VD(R).

This is the algorithm as described in 3.1, except on line 1 set n←
⌈

1
RT

⌉
.

SA1 In this algorithm n is increased by a fixed amount every Ni accepted D moves,

irrespective of the estimated value of 〈Rk〉. This is as algorithm 3.2, except

on line 28 set the condition to always true and on line 26 set n← n+ 50.
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SA2 In this algorithm we check if R̂k > RT every Ni
2 accepted D moves. If R̂k is

larger than the target value (RT ) then we increase n by a fixed amount. This

is as algorithm 3.2, except on line 26 set n← n+ 50.

SA3 In this algorithm we check if R̂k > RT every Ni
2 accepted D moves. If R̂k is

larger than the target value (RT ) then we increase n by an amount dictated

by
ˆd〈Rk〉
dn . This is algorithm 3.2.

All of the annealing algorithms used in this thesis are summarised in appendix A.

SBF and BF were both considered so that the effect of the bias, induced

by the eβVD(Rk) term, could be considered for different fixed sample sizes. This

comparison should allow us to highlight the difficulty in selecting an appropriate

sample size. The three different SA algorithms will enable us to compare the impact

of each of the estimators on the number of portfolio evaluations required and the

final result. Clearly, if all else is equal, SA3 is the most useful algorithm as it requires

the least prior knowledge.

The same annealing schedule we used across all the algorithms. The al-

gorithms started at β = 250 and increased beta by 250 every hundred accepted

perturbations of D. The algorithms were allowed a maximum of 60, 000 attempted

moves in D.

D was perturbed consistently across the algorithms. Each time D was per-

turbed each element was changed by a uniform random number from the region

[−0.025, 0.025], subject to the constraints on each dimensions. The perturbation

to D was then renormalised and a further check made to ensure the individual

constraints held, if they did not the process was restarted.

A portfolio of ten stocks was optimised at the RT percentile. The algorithm

was tested for RT equal to 1%, 5% and 10% (equivalent to the 99%, 95% and 90%

Value at Risk respectively).

We later discuss the specifics of how the individual stocks were modelled and

the interpretation of the design space. Mathematically, the design space was taken

to be D =
{
D ∈ [−5, 5]10 :

∑
di∈D = 1

}
.

The code was developed in MATLAB and then run on a grid computing

platform at the University of Warwick. Each algorithm was run 48 times for each

choice of RT to find both the expected solution and standard error.
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Portfolio Evaluations

P
ro

fi
t

p
er

£
a
t

1
%

102 104 106 108

−0.045

−0.04

−0.035

−0.03 BF

SBF

SA 1

SA 2

SA 3

(a) The above figure shows the convergence of the different algorithms. We can see that
the new SA algorithms all find a better solution than BF. Furthermore, the SA algorithms
are always at a better solution given a fixed number of portfolio evaluations (although
it is close around 107.2 evaluations). Finally, we note that the SA algorithms are able
to get within 10% of the final brute force solution with half a magnitude less samples
than BF. This is a saving of 106.5 portfolio evaluations. SBF generally does very poorly
as expected. Note the true value of VD(RT ) is plotted rather than the value estimated
during the simulation
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(b) In the figure above we see how the value of R̂k at which the algorithms are operating
changes as the anneal progresses. SBF never gets close to 1% and is driven even higher as
the algorithm progresses. The SA algorithms all start high, but quickly adjust to a low
value of R̂k and remain at that value. BF starts low, but struggles to maintain a low level
of R̂k towards the end of the anneal. The SA algorithms do not appear to quite reach
1%. This is likely due to the fact we increase k (and sometimes β) at the same time as
increasing n meaning the system can never quite get n high enough.
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(c) In this figure we can see the number of samples each algorithm used to estimate
VD(RT ) as it progressed. SBF and BF remain fixed at their initial values and SA rises
steadily (to above 104 samples).

Figure 3.5: The algorithms have all optimised a portfolio at 1%, or equivalently, the
99% Value at Risk.
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Portfolio Evaluations
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(a) The above figure shows the convergence of the different algorithms. We can see
that the SA algorithms all find a significantly improved solution when compared to BF.
However, in this case the SA algorithms are not always at a better solution for any choice
of portfolio evaluations. They are generally at a slightly better solution for the initial
anneal and then surpassed by BF until the later stage of the anneals shown above. That
said there is nothing like the magnitude of difference seen in the 1% case. SBF does very
poorly as expected.
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(b) The above figure demonstrates how the value of R̂k at which the algorithms are
operating changes as the anneal progresses. SBF never gets close to 5% and is driven
even higher as the algorithm progresses. The SA algorithms all start high, but quickly
adjust to a low value of R̂k and remain at that value. BF starts low, but struggles to
maintain a low level of R̂k from about halfway through the anneal.
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(c) In this figure we can see the number of samples each algorithm used to estimate
VD(RT ) as it progressed. SBF and BF remain fixed at their initial values and SA rises
steadily (to above 104 samples). It is surprising that this increase in |X| matches that of
1% (figure 3.5c). This suggests that β has a much stronger impact on the size of |X| than
RT .

Figure 3.6: The algorithms have each optimised a portfolio at 5%, or equivalently,
the 95% Value at Risk. 53
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Figure 3.7: The above figure shows the result for RT = 10% (equivalent to 90%
Value at Risk). We can see a similar performance as compared to the case when
RT = 5%. BF is initially quicker, but is significantly outperformed by the final
result of the SA algorithms.

Figure 3.5 contains the key results when RT = 1%. Firstly, we can see from

figure 3.5a that the SA algorithms all perform well. However, as expected, SBF fails

to reach a good solution. This is because SBF simply doesn’t use enough samples of

X to counteract the pull of eβVD(RT ). The poor solution is unlikely to be caused by

the annealing schedule as the annealing schedule is reasonably adaptive to how the

optimisation is progressing. We also see that the new algorithm variants (SA1-SA3)

actually find a significantly (outside error bars) better final result than BF. This is

a highly encouraging result.

Figure 3.5b plots R̂k for each algorithm. As we would expect, BF maintains

1% constantly for most of the simulation. More surprisingly, BF’s 104 sample size is

not sufficient to stop R̂k increasing significantly towards the end of the anneal. This

potentially explains why SA1 - SA3 are able to reach a better solution than BF. We

also note that SBF has an ever increasing R̂k which reaches values as high as 60%.

As discussed previously, this is likely to have lead to the sub-optimal solution found

by SBF. The SA algorithms do not get R̂k as low as we would like. This is likely due

to the fact that whenever we increase n we also increase k which will negate part of

the increase in n. Additionally, we often increase β at the same time as increasing

n meaning the system is often trying to catch up with the current value of β.

Figure 3.5c shows how n = (|X|) changes during the simulation. It appears

we made a fortuitous choice of how to increase the samples in SA1 as it broadly

tracks SA2 and SA3. As highlighted above, this also demonstrates the effectiveness
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of both SA2 and SA3 as they were both able to self tune. This self tuning ability

is ideal in any algorithm. SA3 was able to select both when to increment n and

the desired magnitude of such an increment. In contrast, SA2 only selected when

to increment n. If we assume that the increment of n available to SA2 is always

sufficient to maintain a low value of R̂k, we would expect SA2 to be able to match

the final result of SA3, although SA2 might take longer to find it. This is because

for SA2 it is likely that n will be increased by a relatively large amount whenever

R̂k gets too high. In contrast, SA3 will be able to choose a smaller increment when

R̂k gets high, but n will need to be increased more regularly. This means that SA3

should be able to track the optimal curve for n more accurately than SA2 (given a

choice of β). In contrast, we would expect SA2 to use a choice of n that is higher

than the optimal value. This improved tracking of the optimal choice of n should

lead to a faster performance by SA3.

We also note that the new algorithms require significantly less samples from

X in their early stages. This could have a significant advantage when it is either

very difficult or very expensive to draw samples from X. This is relevant in financial

problems when there is limited historical data available for the underlying assets and

it is not possible to construct a model to generate further sample points.

Overall, our new algorithms have performed very well at 1% and all the met-

rics/estimators have performed as predicted. This is a very strong and encouraging

result.

Figures 3.6 and 3.7 show the results for RT = 5% and RT = 10% respectively.

The indicators for RT = 10% (not included) demonstrate the same patterns of those

for RT = 5%.

For the higher values of RT we see a slightly different behaviour compared to

the 1% case. Whilst the SA algorithms continue to show a better final result versus

BF, they take (marginally) longer to do it. This means the SA algorithms are not

as efficient at finding a reasonable solution, given a strongly constrained number of

portfolio evaluations. SBF consistently performs very badly at these risk levels and

will not be discussed further.

Figure 3.6b shows how R̂k varies over the anneal. The results are largely

similar to the 1% case. However, we do see R̂k rising much more quickly in the BF

case, which would corroborate with its lower final performance.

The most surprising result is in figure 3.6c which shows the number of samples

of X required as the algorithm progresses. The number of samples required at each

point roughly matches that of the 1% case. This implies that the number of samples

required to correctly evaluate VD(RT ) is much more reliant on the size of β than
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the notional choice of RT .

As discussed above, the results for RT = 10% closely mirror those of the 5%

case. We see that whilst the performance of the final result is further improved,

the SA algorithms reach a less adequate result for a constrained number of portfolio

evaluations.

3.7.1 Example Specific Comments

We now discuss the specific financial model used and some of the surrounding details.

We wish to find a distribution that can represent the tail risk of the individual stocks,

and hence the tail risk of the whole portfolio. We would like such a model to include

correlations as we expect there to be potential hedges in the portfolio. One option

would be to use historical data. This is, in some sense, the most representative

model of likely future returns. The problem with this is that if you are using daily

returns as your historical data you need to decide how far back in time you believe

to be relevant. Assuming there are approximately 250 trading days per year, 2 years

of data would give you 500 historical samples and 5 years 1250 samples. These are

unlikely to be a sufficient number of samples for the algorithm to use so we must

fall back to a fitted model of some form. We describe one such model below.

We generate a model of X by fitting the daily (percentage) returns of the

ten stocks (ABF.L, ADN.L, ADM.L, AGK.L, AMEC.L, AAL.L, ANTO.L, ARM.L,

AZN.L, AV.L) from 2012 to a ten dimensional multivariate skewed Student-t dis-

tribution. This model is gaining credence in the literature, as highlighted in the

introduction. See [Enerlein and Keller, 1995; Venter and de Jongh, 2002; Schmidt

et al., 2006; Eberlein and Prause, 1998] for further information. This model captures

both heavy tails (if they exist) and the correlations between the stocks. The data

was fitted to the distribution using a Multi Cycle, Expectation, Conditional Expec-

tation (MCECM) algorithm as implemented in the R package ghyp [Breymann and

Luthi, 2013]. More information on MCECM can be found in [McNiel et al., 2005].

As described above, the design space is mathematically defined as D ={
D ∈ [−5, 5]10 :

∑
di∈D = 1

}
. Such a design space states that we allow short selling

of stock and that we require we spend exactly £1 on our portfolio. It is possible to

pick a portfolio that sells £2 of one stock and buys £3 of another. For the sake of

simplicity, it was assumed that pounds were infinitely divisible.

The results have been largely described above; however, we come back to the

question of using historical data to perform the optimisation. We previously dis-

cussed that the SA algorithms require significantly fewer samples in the early stages

of the optimisation process. Unfortunately, to get even an approximate result using
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these algorithms still required a sample set containing more than 1250 elements,

which equates to over 5 years of historical data. In later chapters we attempt to

reduce this requirement on the sample set size.

In this section we have explored a range of numerical results allowing us to

make several key observations. The results have consistently been strong and highly

encouraging.

3.8 Discussion

In this chapter we have studied the implications of using simulated annealing to

optimise a simple risk problem. We initially analysed the problem analytically to

find the expected Markov Chain the optimisation would follow (see section 3.3).

Using this knowledge we were able to find two key indicators of the process in

section 3.4. We tested these indicators in section 3.5 before adapting the annealing

algorithm to take advantage of them in section 3.6. We studied a simple financial

example in section 3.7 that demonstrated strong results.

The discovery of the indicators and their adaptation into the annealing al-

gorithm has proved to be an effective combination. We have consistently seen im-

proved final results and in certain cases seen these results reached more quickly than

traditional methods.

The challenge remains to find an optimisation method that can significantly

reduce the number of samples of X (the joint distribution of the random variables

that are composed to form FD) required. Ideally, this would be an effective method

for n < 500, as this would allow market data from the previous two years to be used

as a representative sample. We pursue this challenge further in the next chapter,

where we will study the system from a physical standpoint and some of the intuition

that flows from this will allow us to reduce k (as suggested at the end of section

3.4).

The most surprising result of the chapter came in the discovery that n (= |X|)
appears to be very closely linked to β. This appears to be the case almost to the

complete exclusion of the choice of RT . We will delve into this question more deeply

in the next chapter (4) where we discuss the scaling relationship between some of

the parameters.

It is also worth noting some of the current limitations of the method. As of

yet we cannot apply the method to risk-reward style problems which would be more

typical of portfolio optimisation problems. In these cases, each extra unit of risk

must be supported by an increased expected return. The ratio between the expected
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return and risk level is set by the user. We probe into some of these problems in

chapter 5.

It is also possible to use our method to solve some Service Level Agreement

(SLA) style problems. On the surface, the problem described in section 3.2 appears

very similar to that of a SLA problem. However, in a regular SLA problem we

would expect the user to set a function describing both the implementation cost

of a given design, for example c(D), and a penalty function if a certain threshold

was hit, for example p(D). An example of this would be a requirement that 95%

of calls to a call centre should be answered within 5 minutes. We would then

seek to optimise arg minD (c(D)− 〈p(D)〉) in order to maximise profits. In this

case calculating 〈p(D)〉 would rely on an estimate of the quantile at which call

time exceeds 5 minutes and not the value of the quantile at a specific level of

risk. We cannot currently tackle this particular class of SLA problem, although

it may be possible to define an alternative Markov Chain that would. We can

however relate the two problems if we assume that the choice of p(D) is such that

the cost of constructing the system is significantly less than the penalty of failure,

that the failures are independent and that the risk of failure is proportional to

the cost of the design. Under these assumptions, we could rewrite the problem

as arg minD (c(D)− 〈p(D)〉) ≈ arg minD (c(D))|VD(RT )<TOL for some choice of RT

(which would be given by the penalty clause) and VD(RT ) which measures the

indicator (at a specified level of risk) which must not exceed some tolerance, TOL.

It is likely that this would be equivalent to arg minD (c(D))|VD(RT )=TOL, which with

some work could be mapped on to the class of problem the algorithm currently works

on. To do this we would require some of the ideas we will develop in chapter 5, when

we consider multi point optimisation problems (in this case we wish both low c(D)

and VD(RT )).

Finally, we note that the combination of the new algorithm with the intuition

gained from the analytic derivations has resulted in a very successful new method.

The method has proved very effective at providing improved solutions over that of

traditional approaches. This has been coupled with the ability to gain deep insight

into how such an optimisation process would work.

This strong foundation will be built on in the following chapters to further

investigate, improve and tease out greater intuition into the proposed algorithm. In

chapter 4 we will approach the problem from a physicist’s perspective and in chapter

5 we will show how this method could be extended to other problems.
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Chapter 4

Optimising Quantile Risk:

Interpreting the Physics

4.1 Introduction

In this chapter we continue to discuss and develop ideas on how to optimise a system

at a given level of risk. Each of chapters 3 - 5 examines the same fundamental system.

The first two chapters, 3 and 4, consider the construction of the method and it’s

asymptotic behaviour. Chapter 5 then draws on both of these initial chapters to

further extend the work.

In this chapter we examine the various physical properties of the newly cre-

ated ensemble. We consider several simplifications to observe asymptotic behaviour

and also look at how the latent energy in the system changes.

The most intriguing result of this chapter is that when we frame our prob-

lem in thermodynamic terms we can directly calculate the entropy of the ensemble

without resorting to a myriad of relatively complex techniques.

As previously discussed we wish to optimise a criterion on a random variable

which is parametrised by a set of parameters (encapsulated by D). Specifically, we

wish to find the choice of D which leads to the highest value of the RT% quantile of

the random variable. Since we do not have access to an inverse cumulative distribu-

tion function for the random variable, we are forced to estimate this optimisation

quantity using sampling. Motivation for such a problem can be found in 3.1 and

1.2.

We start off by simplifying the Markov weights found in the previous chapter

into a more manageable form by using a Poisson approximation.

Using the Poisson approximation we find a clear and fruitful interpretation of
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the consequence of the optimising using sampled estimates of the quantile desired:

that our system finds the solution that has the best projected worst case scenario.

Additionally, we find that the targeted risk-level of the system and the measured

risk-level can be combined to get a better risk estimate. This means that we do not

need to work our system quite so hard to achieve the same level of optimisation.

In order to exploit the above approximations in our algorithm, we will need

to change which of the ordered samples we use for the optimisation. In the previous

chapter we always used the k = bnRT cth ordered sample. However, the approxima-

tions we will make in this chapter will encourage us to reduce k to one and hence

simply use the lowest valued sample. Unfortunately, the estimators we originally

developed for 〈Rk〉 and d〈Rk〉
dn may not work so well in this context. Due to this, we

will construct alternative estimators for these expectations in section 4.4.

For both of these approximations we show the viability of the estimate using

a model (parametrised) choice of inverse cumulative distribution function (which

is heavy tailed) for our random variable. We also provide some derivations (where

possible) to further support these approximations.

We then use both of these approximations to further improve and enhance

the algorithm proposed in chapter 3. We numerically test these improvements.

At the end of the chapter we briefly consider the scaling properties of the

system. The result has limited impact on our algorithm but proves interesting none

the less.

We finally conclude the chapter in section 4.8 and in context with the rest

of the work in chapter 8.

4.2 Problem Definition

We briefly summarise the problem definition. The full problem definition can be

found in section 3.2.

Our eventual aim is to maximise the quantile of a random variable at a

given level of risk, RT ∈ [0, 1]. This random variable is parametrised by a choice of

design, D ∈ D, and it’s distribution has an associated inverse cumulative distribution

function, VD(.). We assume VD(.) cannot be found analytically and can only be

estimated by sampling. We wish to maximise VD(RT ), by changing D, for a fixed

choice of RT . Simulated annealing is used to perform the optimisation.

This style of problem has applications in both finance and vehicle routing.

We could imagine that D encapsulates the design of a portfolio and VD(.) its risk

curve. We wish to maximise the value of the portfolio at a specific level of (tail)
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risk.

In this chapter we wish to study the thermal system that is created by this

optimisation (when the temperature is fixed). We first consider the Markov (or ther-

mal) weights of this system and then various approximations of these weights. These

approximations allow us to gain insight into how the system operates. Furthermore,

as we consider each approximation, we also discuss if there are any algorithmic

implications on the original simulated annealing algorithm.

4.3 Markov Chain

In this section we describe the Markov weights of the simulated annealing process at

each step (where the inverse temperature, β, is fixed). A brief (intuitive) argument

is contained in this section. A full discussion of how these weights can be found is

contained in chapter 3.

We wish to focus on the case where we expect the risk level we are optimising

at, RT , to be small. As previously discussed, we assume that VD(.) (the inverse

cumulative distribution function) cannot be calculated analytically and so must be

estimated via sampling. We use n to denote the size of the sample set used to

estimate VD(RT ) and we further assume that n is large (n ≥ 100). We calculate the

Markov weights for the resulting chain at fixed temperature β−1.

We consider an ensemble where the weights are based on stochastic estimates

of VD(RT ). These estimates are found by drawing samples from the distribution of

the random variable FD, ordering the samples and selecting the kth ranked sample.

We can then parametrise this kth ranked sample in terms of the true quantile that

its value corresponds to, denoted Rk. The power of this step is that Rk itself has a

simple probability density ζk(Rk) which we know exactly. The resulting weights for

a given design are then given by

WB(D|k, n, β) =

∫ 1

0
eβVD(Rk)ζk(Rk)dRk.

As a reminder, we note that X denotes the joint distribution of the distributions of

the underlying random variables which are composed to form FD.

As one would expect, ζk(Rk) is dominated by Rk = k
n . However, we would

expect the chain weight to be dominated by Rk ≥ k
n , for fixed k, because the

thermal term will seek to drive Rk up, as an increased Rk would result in a perceived

improvement of VD(Rk). It should be clear at this point that as β increases so must

n if order to hold Rk down.
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We can approximate ζk(Rk) by considering the number (or rate) of samples

that will have a probability of occurrence less thanRk. We would expect (on average)

this number, or rate, to be RTn, assuming we are taking n samples. Given that

ζk(Rk) is the relative probability density that the kth sample (of n) has probability of

occurrence RT , we require that (k−1) of the samples have probability of occurrence

less than Rk. This construction leads to a Poisson distribution. This implies ζk(R) ∝
(Rkn)k−1e−Rkn. This conclusion (and result) is reached more formally in section 3.3.

By combining the above results we have an expected Markov weight for a

given design of

WP (D|k, n, β) =

∫ ∞
0

(Rkn)k−1eβVD(Rk)−RkndRk (4.1)

for some choice of k. We also note that the Poisson approximation above effectively

removes the upper bound on Rk, and because of this we integrate over the full range

of R ∈ [0,∞]. This approximation induces an error of at most O (e−n).

We appear to have no direct estimator of 〈Rk〉 in this system, without which

we would expect 〈Rk〉 to be very difficult to calculate. This is similar to the case of

entropy in a regular thermal ensemble. The calculation of entropy usually requires

running a sequence of related Markov chains and then (effectively) normalising the

results from each chain. However, although we optimise the system using just the

kth ordered sample, we can use the remaining samples to gain further information

on what is happening.

The above idea makes it possible to find results which allow us to simply

estimate 〈Rk〉 and d〈Rk〉
dn . By considering the expectation

〈
eβVD(Rk+1)−βVD(Rk)

〉
and

the ratio between the probability densities ζk(R) and ζk+1(R) we can expand and

rearrange the expectation to find that〈
eβVD(Rk+1)−βVD(Rk)

〉
= 〈Rkn〉 .

Full detail of this calculation can be found in section 3.4.

In this section we have constructed the Markov weights of our optimisation

from a very intuitive (and physical) perspective. We further develop the approximate

solution found here in later sections in order to derive several highly interesting and

helpful results.
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4.4 New Risk Estimators

As discussed in the introduction (4.1), the approximations we will make in the next

two sections (4.5 and 4.6) will cause us to optimise the lowest valued sample (k = 1).

This is in contrast to the previous chapter where we optimised the k = bnRT cth
ranked sample.

Unfortunately, the estimators we developed for 〈Rk〉 and d〈Rk〉
dn in the previous

chapter (3.4) (and briefly discussed in section 4.3) may not work so well when

k = 1. This is because the estimator in this case becomes
〈
eβVD(R2)−βVD(R1)

〉
=

n 〈R1〉. This estimator has the unfortunate property that such an estimator is

(exponentially) dominated by small values of VD(R1), which we expect to occur

very rarely when β is high due to the strong upward bias from eβVD(R1). This is

likely to result in the estimator underestimating 〈R1〉 for high β as it will struggle

to sample any small values of VD(R1). This was not such a concern when k was

high, as the same choice of β would have implicitly required a larger choice of n, and

this would in turn have reduced the gap between VD(Rk+1) and VD(Rk) and hence

made it much easier for the estimators to converge, despite the eβVD(Rk) term.

In light of the above comments we now consider alternative estimators for

〈Rk〉 and d〈Rk〉
dn . Assume we take a sample of n′ draws of X, which we label Y =

{xi ∼ X : 1 ≤ i ≤ n′}. We label the value of R induced by each member of this

sample set to be RYi
(
= V −1

D (fD(xi))
)
. By considering how many of these have

VD(RYi ) < VD(Rk), for a fixed choice of k, D and X (which implicitly fixes Rk),

we can estimate Rk = 1
n′
∑n′

i=1 I
(
VD(RYi ) < VD(Rk)

)
where I() is the indicator

function. (As a reminder, X is the set of samples used to estimate VD(RT )). We

can extend this to calculate an estimate of 〈Rk〉 over l steps of the chain, which

gives

R̂′k =
1

ln′

l∑
j=1

n′∑
i=1

I
(
VD(RYi ) < VD(Rk,j)

)
, (4.2)

where Rk,j is the value of Rk at step j. We use R̂′k to denote the result of this new

estimator.

We can also find an estimator for
〈
R2
k

〉
. We know (from binomial statistics)

that
〈
h2
〉
−〈h〉2 = n′(Rk(1−Rk)), where h =

∑n′

i=1 I
(
VD(RYi ) < VD(Rk)

)
, for fixed

k, D and X. We can rearrange this to see that
〈
h2
〉

= n′(Rk(1−Rk))+〈h〉2. We can

then substitute 〈h〉 = n′Rk and further rearrange to find that R2
k =
〈h2〉−〈h〉
n′(n′−1) . This

can again be extended to calculate an estimate of
〈
R2
k

〉
over l steps of the chain.
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This results in

R̂′k
2 =

1

ln′2(n′ − 1)

l∑
j=1

(
H2
j −Hj

)
, (4.3)

where Hj =
∑n′

i=1 I
(
VD(RYi ) < VD(Rk,j)

)
.

Finally, we note that
d〈R′k〉
dn ≈ R̂′k

2
− R̂′2k. This can be seen by applying the

same arguments as in theorem 3.4.4 and used to find equation 3.12 to the Poisson

approximation of the Markov chain induced by the approximation. Combining this

result with the above results means that we now have alternative estimators for

both 〈Rk〉 and d〈Rk〉
dn .

These estimators should be effective and converge quickly as they are very

closely based on binomial statistics. They do however provide limitations on how

the algorithm is constructed. Nominally, it would appear we need to perform an

additional n′ portfolio evaluations per iteration, which could quickly prove expensive.

However, if we assume that we only ever perturb X using new independent samples

from X, then we can reduce the impact of the extra evaluations by reusing the

elements of the sample set used to calculate the estimators as candidate elements

for the attempted perturbations of X. Algorithm 3.2 allows us to do this but we

cannot then make any further improvements to how we perturb X.

We will utilise the above estimators for 〈Rk〉 and d〈Rk〉
dn when we develop

adapted optimisation algorithms in sections 4.5 and 4.6.

4.5 Bias to Zero Risk

4.5.1 The Approximation

In this extended section we explore some of the unexpected properties of the weights

found in the previous section. We investigate where these properties apply through

various analytical and numerical results. Finally we discuss algorithmic implications

and provide numerical results.

We apply a steepest descent argument to the weight in equation 4.1 for the

case when k = 1. If we assume the integral with respect to Rk is dominated by a

particular value, say R̂, then we have βV ′D(R̂)−n = 0. This is found by maximising

the exponent of e. Our steepest descent assumption implies this relation can be

solved for a (single) global maximum. This gives an equation for R̂. Substituting
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Figure 4.1: The figure above shows the implicit bias to zero risk that occurs when
we use the worst of n samples to estimate VD(RT ). The plot shows a simple choice
of VD(RT ) which we are attempting to optimise at the 5% quantile (95% Value at
Risk). The result in equation 4.4 conjectures that we actually bias our chain towards
choices of D where the system’s (tangential) view of 0% risk is maximised, marked
as V ∗, instead of VD(.05).

this back into the weight gives

WP (D|k, n, β) + eβ(VD(R̂)−R̂V ′D(R̂)) = eβV
∗
D(R̂) (4.4)

where V ∗D(R̂) = VD(R̂)− R̂V ′D(R̂). We define WS(D|k, n, β) := eβV
∗
D(R̂).

This result crucially implies that our system is actually seeking to minimise

the random variable, FD, at the estimated (tangential) 0% risk. In other words,

our system is finding the solution that has the best projected worst case scenario.

Furthermore, since β and n control the depth of sampling, these parameters control

the perception the chain has of the worst case scenario for a given random variable

FD.

Figure 4.1 shows this pictorially. We can see how this bias operates and the

impact that β and n have on the depth of sampling. If we were to increase n at

fixed β we would drive down R1 and consequently be able to better estimate the

zero risk point. Conversely, if we were to increase β whilst fixing n, we would drive
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up R1 and reduce the quality of our estimate of the zero risk point. These comments

assume that V ′′D(R1) < 0, but this is highly likely to be the case in most real world

problems in the risk tail.

This result is particularly interesting because we can argue that this is what

you would naturally wish to do if you had no computation constraints. The decision

to optimise at the 95% or 99% Value at Risk (the 5% or 1% quantile respectively)

is often an arbitrary choice. The choice is based on of what is thought to be a

reasonable, yet still calculable, representation of zero risk. In the above description,

we have simply disregarded any notion of the quantile and focus solely on the amount

of work to be invested in the problem.

The critical question we have yet to discuss is under which conditions such

an approximation might be valid. In the next two subsections we provide various

analytic and heuristic arguments that demonstrate this bias is taking place and

attempt to isolate the conditions under which the steepest descent approximation

behind it might be valid. In sections 4.5.4 and 4.5.5 we consider the algorithmic

implications of this result and apply the resulting algorithm to a test problem.

4.5.2 An Example VD(R)

In this section we use a plausible example of VD(R) in order to further investigate

when this bias to zero risk, as uncovered in section 4.5.1, might occur. We assume

FD is distributed with an exponential distribution of the form dR
dV = V −1

0 e
V
ε , where

V0 is a parameter. We can then integrate dR
dV with respect to V and rearrange to find

that VD(R) = ε log
(
R
R0

)
, where R0 = ε−1V0. For this particular choice of VD(R), a

given choice of the design variable, D, is encapsulated by both ε(D) and R0(D).

Given this choice for VD(R), we can analytically integrate the Markov weights

with respect to R1. Below we calculate these for each of the Markov weights found

thus far. We consider the Binomial weights found in section 3.3, the Poisson weights

found in section 4.3 and finally the steepest descent weights found in section 4.5.1.

We are also able to find analytic expressions for each of the moments of R1

in the Binomial and Poisson cases. For the steepest descent case we can calculate

the value of R1 we expect to be dominant.

We then use these weights to evaluate how the relative (and implicitly the

absolute) error of the various approximations changes. We use the variance and

expectation of R1 to support this discussion. The expectation of R1 also proves

useful in the next section when we study a numerical example.

Given a choice of VD(R) = ε log
(
R
R0

)
and k > 0 we then find Markov weights
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of

WB(D|k, n, β) ∝ R−βε0

Γ(βε+ k)

Γ(n+ βε+ 1)
(4.5)

WP (D|k, n, β) ∝ (nR0)−βεΓ(βε+ k) (4.6)

WS(D|k, n, β) ∝
(
βε+ k − 1

nR0

)βε
(βε+ k − 1)k−1 e−(βε+k−1)

√
βε+ k − 1 (4.7)

where WB(D|k, n, β) is the Markov weight calculated using the Binomial weights

(3.3), WP (D|k, n, β) the Poisson weights (4.3) and WS(D|k, n, β) the steepest de-

scent weights (4.5).

Furthermore, the moments in R, for j ≥ 1 and fixed ε, k and n, are given by〈
Rjk

〉
B

=
Γ(βε+ j + k)Γ(n+ βε+ 1)

Γ(βε+ k)Γ(n+ j + βε+ 1)
(4.8)〈

Rjk

〉
P

=
Γ(βε+ j + k)

Γ(βε+ k)
n−j (4.9)

where
〈
Rjk

〉
B

is the expectation of Rjk with respect to the Binomial weights (3.3)

and
〈
Rjk

〉
P

the Poisson weights (4.3).

Finally, we expect the steepest descent case to be dominated by

R̂ =
βε+ k − 1

n
. (4.10)

We outline the evaluation for the Binomial weights as follows. We consider

WB(D|k, j, n, β) =

1∫
0

Rjk

(
n

k

)
kRk−1

k (1−R)n−keβVD(Rk)dRk,

for some choice of j ≥ 0. Substituting VD(Rk) = ε log
(
Rk
R0

)
and rearranging gives

=

1∫
0

Rjk

(
n

k

)
kRk−1

k (1−Rk)n−k
(
Rk
R0

)βε
dRk.

By collating Rk terms and moving constants outside the integral, we see that this
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is equivalent to

=

(
n

k

)
kR−βε0

1∫
0

(1−Rk)n−kRβε+j+k−1
k dRk.

This integral is now in the form of the Beta function, with arguments βε + j + k

and n− k+ 1, assuming βε+ j + k > 0. We can rewrite the Beta function in terms

of Γ functions to get (see definition 2.2.5)

=

(
n

k

)
kR−βε0

Γ(βε+ j + k)Γ(n− k + 1)

Γ(n+ j + βε+ 1)
.

Since we wish to calculate our results with respect to both the design (ε and R0)

and j, we can disregard all terms not containing these variables. This gives that the

above is proportional to

∝ R−βε0

Γ(βε+ j + k)

Γ(n+ j + βε+ 1)
.

When j = 0 this gives us the Markov weight of

WB(D|k, n, β) ∝ R−βε0

Γ(βε+ k)

Γ(n+ βε+ 1)
.

Finally, we can find the moments of R by selecting different values of j. This gives

that

〈
Rjk

〉
B

=
R−βε0

Γ(βε+j+k)
Γ(n+j+βε+1)

WB(D)
=

Γ(βε+ j + k)Γ(n+ βε+ 1)

Γ(βε+ k)Γ(n+ j + βε+ 1)
.

The results for the other weights follow analogously. In the Poisson case the

integration leads directly to a Γ function for the moments.

In the steepest descent case we use the weight given by the second order

Taylor’s expansion (WS(D|k, n, β) = eβV
∗
D(R̂)

(
−βV ′′D(R̂)

)− 1
2

for k = 1). To find

the quantile that dominates the steepest descent case, when k = 1, we substitute

V ′D(R) = ε
R into βV ′D(R̂)− n = 0 and solve for R̂. (The second equation is derived

at the start of section 4.5). This means for k = 1 we find that R̂ = βε
n . For k > 1

the proof is analogous.

Using the weights calculated above we are able to calculate how the relative

(and consequently absolute) errors change with respect to n, β, ε and R0. This is

done in the corollary below.
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The expressions for WP (D|k, n, β) and WB(D|k, n, β) lead directly to

WP (D|k, n, β)

WB(D|k, n, β)
∝ n−βεΓ (n+ βε+ 1)

Similarly we obtain

WS(D|k, n, β)

WP (D|k, n, β)
∝ (βε+ k − 1)βε

(βε+ k − 1)k−1 e−(βε+k−1)

Γ(βε+ k)

√
βε+ k − 1.

We can approximate Γ(βε+k) using Stirling’s Approximation (see proposition 2.2.4)

to get (for large n+ βε+ 1)

= (βε+ k − 1)βε
(βε+ k − 1)k−1 e−(βε+k−1)

(βε+ k)βε+k−
1
2 e−(βε+k)

√
2π

√
βε+ k − 1.

By rearranging the above equation we see that

=
(βε+ k − 1)βε+k−1 e1

√
βε+ k − 1

(βε+ k)βε+k−1 (βε+ k)
1
2
√

2πγ(βε+ k)

=

(
1 +

−1

1 + βε+ k − 1

)βε+k−1 e1
√
βε+ k − 1

(βε+ k)
1
2
√

2π
.

For βε >> 1 this simplifies to

≈ e−1 e1

√
2π
.

Finally, we note that we can remove the
√

2π as we are only finding the result up

to proportionality. This gives

WS(D|k, n, β)

WP (D|k, n, β)
∝ 1

for large βε.

It then trivially also follows that

WS(D|k, n, β)

WB(D|k, n, β)
∝ n−βεΓ (n+ βε+ 1)

for large βε.

The results above allow us to explore when the steepest descent (and Poisson)
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approximations are valid. The first key observation is that R0 has no impact on

any of the errors, although it does shape the distribution. This means that the

(normalised) weights from either approximation will be correct for a choice of design

space which holds ε fixed and only varies R0.

We further consider the error induced by the Poisson approximation. If we

apply Stirling’s approximation we get

WP (D|k, n, β)

WB(D|k, n, β)
≈ n−βε (n+ βε+ 1)(n+βε+ 1

2) e−(n+βε+1).

For n >> βε we can further approximate this to WP
WB
∝ e−βε and hence expect

the Poisson weights to bias against large ε. If we instead assume that n << βε

then our approximation becomes WP
WB
∝ n−βε (βε)βε e−βε and we now expect the

Poisson weights to bias against small ε. We expect n to have limited direct impact

under either regime. The error in the weights will increase disproportionately for

higher values of ε and hence the normalised distribution (across D) will become

increasingly distorted as β increases, compared to the true normalised distribution.

(This assumes that the design space, D, contains different values of ε.) Figures 4.2a

and 4.2b show this visually.

Finally, the additional bias induced by the steepest descent approximation is

minimal. We can easily see that the error is entirely independent of n and reduces

as β increases. Figures 4.3a and 4.3b show this numerically. It is important to note

that as β grows in our system the steepest descent weights are largely driven by
√
βε

rather than eβV
∗
D(R̂). If we were to assume that the weights were solely driven by

eβV
∗
D(R̂) then the error with respect to the Poisson distribution would increase with

β. This view is further supported by considering the moments found in proposition

4.8. We can easily see that the variance of R1 will reduce as n increases, but that

the variance will increase as β increases. As the variance of R1 increases it becomes

more unlikely that the original Poisson integral is dominated by a single value.

In this section we have discussed the parameter regimes where we expect

the steepest descent (and Poisson) approximations to hold. However, we have not

discussed when this bias to zero risk will actually have an impact! It is entirely

plausible that during an optimisation such a bias would still lead to the same choice

of design. Mathematically, we may have that arg maxD VD(RT ) = arg maxD V
∗
D(RT )

for a given choice of R. Figure 4.4 shows this visually. We discuss this question

further in the next section (4.5.3).
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(a) The ratio increases with β. There
is a transition in the rate of the ratio’s
growth at β = 8. This is when βε ≈ ne
(taking ε = 10 as the dominant value).
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(b) The ratio initially reduces with n
but as n grows the impact is greatly
reduced.

Figure 4.2: The above figures show how the ratio between the Binomial and Poisson
weights changes over time with respect to β and n. R0 = 1. In figure 4.2a n = 40
and in figure 4.2b β = 5. The weights are numerically integrated over ε ∈ [1, 10]
(for fixed β and n).
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(a) The ratio reduces as β increases.
However, it is worth noting that this
convergence is significantly influenced
by the

√
βε term in the steepest descent

weight, rather than by the bias to zero
risk term
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)
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(b) The relative ratio induced by the
steepest descent approximation is al-
most entirely unaffected by n.

Figure 4.3: The above figures show how the ratio between the Poisson and the bias
to zero risk weights changes over time with respect to β and n. R0 = 1. In figure
4.3a n = 40 and in figure 4.3b β = 5. The weights are numerically integrated over
ε ∈ [1, 10] (for fixed β and n).
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Figure 4.4: An implicit bias to zero risk may not always have an impact on the
optimisation process. The above figures show two different systems, each with 3
different possible design choices. Both VD(R) and V ∗D(R) are plotted. We can see in
the problem to the left that arg maxD VD(0.1) = arg maxD V

∗
D(0.1), whereas in the

right hand problem arg maxD VD(0.1) 6= arg maxD V
∗
D(0.1). We do not necessarily

require that both maximisations lead to separate solutions, but it is an important
consideration if we wish to be able to discuss the relevance of this bias to zero risk
and observe it during an optimisation process.
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4.5.3 Numerical Results

In this section we use our example VD(R) to find and numerically demonstrate this

bias to zero risk at work. As a reminder, we have chosen VD(R) = ε log
(
R
R0

)
as

this is representative of a parametrised inverse cumulative distribution function for

a class of exponential distributions. In this example the design is encapsulated by

ε(D) and R0(D).

As touched on at the end of the previous section (4.5.2), in order to observe

this bias at work we need to identify a class of VD(R) such that arg maxD VD(RT ) 6=
arg maxD V

∗
D(RT ) for a given choice of RT . If the maximisations lead to the same

solution then the bias should have no observable effect. Figure 4.4 shows how one

solution might be true under either maximisation.

Given that VD(R) = ε log
(
R
R0

)
, we can find that V ∗D(R) = ε log

(
R
R0

)
− ε.

We can rearrange this to find that V ∗D(R) = VD
(
R
e

)
.

This suggests that for our choice of VD(R) we require that arg maxD VD(R)

changes for different choices of R. To do this we must make R0 a function of ε (or

vice versa) as otherwise we would always require ε to be as small as possible for

a given choice of RT and R0 > 1. We assume that R0(ε) = eεa+b. This leads to

VD(R) = ε (log(R)− b− εa). This suggests that ε is driven high when RT > eb and

low when RT < eb. In the case of V ∗D(R) this change is moved to RT = eb+1. The

exact value of arg maxD VD(RT ) is log(RT )−b
2a (a controls how quickly the value of

arg maxD VD(RT ) changes with respect to RT ).

We assume that ε ∈ [0, 1] and pick b = log(0.03) and a = 0.5. Using these

parameter choices and the expectation for R1 as found in equation 4.8 we find con-

figurations of β and n where RT = 0.05. The weights under this configuration

should favour low ε for a system optimising VD(RT ) which uses sampling to esti-

mate VD(RT ) (which in effect optimises V ∗D(RT )), and high ε for a system directly

optimising VD(RT ) (without any sampling bias). Figure 4.5 shows the selection of

suitable n and β.

Figure 4.6 shows how this bias will effect our choice of VD(.). We can clearly

see that the chain without any sampling bias is dominated by a larger choice of ε

when compared to the chain which does have sampling bias. Increasing n (and β)

appears to increase the dominance of this bias on the system.

We have successfully shown this bias to zero risk taking place in a toy system.

In the previous sections we also explored the parameter regimes where we expect

this bias to take place. In the next section, we use the intuition developed in these

subsections to exploit this bias and improve our optimisation results.
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Figure 4.5: The above figure shows how 〈R1〉 varies with n and β for a simple system.
The expectation was calculated using proposition 4.8 with numerical integration
over ε. The blue plane contains the points where 〈R1〉 = 0.05. The points of
intersection between the two surfaces give the values of β and n which select a value
of 〈R1〉 = 0.05. Note how 〈R1〉 is pushed up by β and down by n (k = 1).
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Figure 4.6: The above figures show a system that is biased towards zero risk. In
both graphs VD(R) = ε (log(R)− b− aε). The figures show the probability of a
given value of ε occurring. From this it can be seen that maximising eβV

∗
D(RT )

pushes ε down whereas maximising eβVD(RT ) (no sampling bias) pushes ε up. When
we increase n (and consequently β to hold 〈R1〉 fixed) we see this bias has a more
pronounced effect.
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4.5.4 Algorithmic Implications

In this section we consider the algorithmic implications of this bias to zero risk

effect. Fundamentally, we can vary the size of n at each temperature change to

ensure we are optimising VD(RT ) at the correct (given) level of risk. This can be

done in the algorithm using the results found at the end of section 4.3. We take the

same approach in the previous chapter (see section 3.6).

Naively we would assume that if we wanted to optimise VD(RT ) at RT%

risk we would use the k = bRTncth ordered point to estimate VD(RT ). However,

since we fully expect the rank k = bRTnc ordered point to have a level of risk much

greater than RT for small n, we could simply set k = 1. We would then expect

the number of samples (n) needed to be lower than in the case when k = bnRT c.
By using the above results we could ensure that the worst point in the sample is at

RT% risk, rather than the kth point. This should mean that our optimisation has

this bias to zero risk, and that we are able to operate in this paradigm were we are

really specifying a depth of sampling, or alternatively an amount of work to be done

to best estimate VD(0).

This can be done by adapting the algorithm described in section 3.6 to hold

k = 1 rather than increasing k with n. This would mean that on line 1 and line 27

of algorithm 3.2 we set k = 1 instead of k = max(1, bnRT c). We label these adapted

algorithms as

WSA1 n is increased by a fixed percentage every Ni accepted D moves, irrespective of

the estimated value of 〈R1〉. This is the algorithm as described above, except

that on line 28 we set the condition to always true and on line 26 we set

n := 1.2n.

WSA2 In this algorithm we check if R̂1 > RT every Ni
2 accepted D moves. If R̂′1 is

larger than the target value (RT ) then we increase n by a fixed percentage.

This is the algorithm as described above, except that on line 26 we set n :=

1.2n.

WSA3 In this algorithm we check if R̂1 > RT every Ni
2 accepted D moves. If R̂′1 is

larger than the target value (RT ) then we increase n by an amount dictated by

the estimator for d〈R1〉
dn equal to R̂k

2 − R̂2
k. This is the algorithm as described

above with no further modifications.

The above algorithms all use the estimators originally developed in chapter

3 and discussed in section 4.3. All of the annealing algorithms used in this thesis

are summarised in appendix A.
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Algorithm 4.1 Simulated Annealing on n

1: D := D0, n := 100
2: X := n samples drawn from X
3: V := V̂D(1,X)
4: for 1 ≤ i ≤ m do . For each cooling step
5: for 1 ≤ l ≤ 2 do . Split the iterations in two
6: j := 0
7: while j ≤ Ni/2 do . For half of the iterations
8: D̃ := a perturbation of D
9: Ṽ := V̂D̃(1,X)

10: p := min(1, e−βi(V−Ṽ )) . Metropolis Acceptance Function
11: if p ≥ u where u ∼ U(0, 1) then
12: V := Ṽ and D := D̃
13: j := j + 1

14: {ya}na=0 := n samples drawn from X
15: Va := fD(ya) for all ya
16: for 1 ≤ a ≤ n do . Perturb X n times
17: h :=

∑n
i=1 I (Va < VD(R1))

18: A := A+ 1
nh . Calculate the estimator for 〈R′1〉

19: B := B + 1
n

(
h2 − h

)
. Calculate the estimator for

d〈R′1〉
dn

20: X̃ := X
21: Replace one element of X̃ with ya
22: Ṽ := V̂D̃(1,X) . Can use Va to avoid a portfolio evaluation

23: p := min(1, e−βi(V−Ṽ )) . Metropolis Acceptance Function
24: if p ≥ u where u ∼ U(0, 1) then
25: V := Ṽ and X := X̃
26: R̂ := 2

nNi
A

27: d̂R := R̂2 − 2
n2(1−n)Ni

B

28: if R̂ > RT then . Check the level of risk we have been optimising

29: n := min
(

2000, n+
⌈
RT−R̂
d̂R

⌉)
. Increase n to push 〈R′1〉 down

30: while |X| < n do . Add new random samples to X
31: Draw a random sample from X and add it to X

32: V := V̂D(1,X).

33: A := 0 . Reset estimators for 〈R1〉 and d〈R1〉
dn

34: B := 0
35: Result is D
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We now consider how we could use the new estimators for 〈Rk〉 and d〈Rk〉
dn

developed in section 4.4. Algorithm 4.1 describes how such an algorithm would

work. We use the same notation as in algorithm 3.2. As a reminder, we define

V̂D(1,X) to be the estimate of VD(RT ) obtained by calculating {FD(x) : x ∈ X},
and then picking the worst valued point. X is a set of samples drawn from X, i.e.

∀x ∈ X, x ∼ X. The exact value of R1 is not required by this estimate. n = |X| is

the cardinality (size) of the set X.

The key change from algorithm 3.2 (apart from setting k = 1) is to use the

new estimators. As discussed in section 4.4, we can evaluate these new estimators

very cheaply. This is because we can use the same portfolio calculations that we use

to perturb X to calculate the estimators at each step. In this updated algorithm we

attempt a greater number of perturbations of X between each design perturbation,

which does slightly increase the work at each step. We perform more perturbations

of X to ensure that we have a sufficient number of samples with which to evaluate

the (new) estimators.

In summary, the resulting algorithm mostly comprises of a simple anneal.

The twist is that we additionally measure estimates for 〈R′〉 and
〈
R′2
〉

during

the optimisation. These expectations allow us to accurately control the number of

samples to use at each step and hence to ensure the anneal has a reliable estimate

of VD(RT ) to optimise with at each step.

We consider two different variants of this new algorithm. These are

qWSA2 In this algorithm we use the new estimators from section 4.4. We then check

if R̂′1 > RT every Ni accepted D moves. If R̂′1 is larger than the target value

then we increase n by a fixed percentage. This is algorithm 4.1, except that

on line 29 we set n := 1.2n.

qWSA3 In this algorithm we check if R̂′1 > RT every Ni accepted D moves. If R̂′1
is larger than the target value then we increase n by an amount dictated by
d〈R1〉
dn . This is algorithm 4.1 with no modifications.)

In the next section we apply both of these algorithms to a sample problem,

and then consider some numerical results.
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Figure 4.7: The above figure shows the implicit bias to zero risk that occurs for
each (single) option our optimisation process could select. The optimisation process
could also select fractional amounts of each option, as long as it sells a net total of
£1 worth. It should be clear that, at least for the ten individual cases plotted, the
best option is to select option 9 if optimising VD(0.05) and option 4 if optimising
V ∗D(0.05). There could potentially be a better solution to both problems which
combines different stocks. The two dotted lines highlight R = 5% and R = 3.5%.

4.5.5 Results

We consider a user who wishes to sell £1 of call options spread over ten stocks

(the same stocks as the previous chapter). We assume that these options can be

infinitely divided and that there is an open market on which they can be traded.

As in the previous chapters the stocks are modelled using a multivariate skewed-t

distribution (the same model as in chapter 3). The (one day) option prices were

calculated using Black Scholes [Glasserman, 2004]. Figure 4.7 shows the tail of the

cumulative distribution function (VD(0.05)) of the different portfolios, where only

a single option is sold. The system could decide to sell fractional units of multiple

options, making the possible design space nine dimensional, D = [0, 1]9. Table 4.1

shows the stocks and the strike prices used.

As previously discussed, in this work we focus on the additional complications

introduced by estimating VD(R) through sampling. Finding the optimal cooling

schedule for a given simulated annealing problem is a well known and discussed
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Stock Current Price (p) Strike Price (p)

ABF.L 1550.0 1568.9
ADN.L 381.6 390.7
ADM.L 1198.0 1228.4
AGK.L 1749.0 1789.6

AMEC.L 1035.0 1060.5
AAL.L 2000.5 2060.5

ANTO.L 1322.0 1366.6
ARM.L 799.5 821.7
AZN.L 2985.0 3025.5
AV.L 388.4 401.9

Table 4.1: The above table defines the stock and strike prices used for the call options
to be sold. (The current price is the price of the stocks on Monday, 7 January 2013.)
As before, the returns model used was fitted to daily returns from 2012.

problem. During our numerical tests we assume a very simple choice of cooling

schedule. We increase β by 0.125 after every 200 accepted perturbations of D. β is

initially set to 1. D was perturbed in the same way as in previous examples (3.7).

The system is optimised at RT = 0.05. 48 identical optimisations were run

for each method, the results were then averaged, and the standard error calculated.

We expect the (q)WSA algorithms will in fact optimise V ∗D(0.05).

Figures 4.8 to 4.12 show the results and demonstrate the bias to zero risk in

action, when using qWSA2 and qWSA3.

Figure 4.8 shows the performance of the algorithms against VD(0.05). We

would expect a brute force algorithm to optimise VD(0.05) and the (q)WSA algo-

rithms to optimise V ∗D(0.05). We see that BF10000 (a brute force algorithm using

10, 000 samples) finds the best solution to arg maxD VD(0.05). In contrast, BF400

fails to find a good solution, again highlighting the difficulty of choosing the cor-

rect number of samples to estimate a quantile during an optimisation process. We

see that none of the (q)WSA algorithms perform as well as BF10000 at optimising

VD(0.05), but most beat BF400. This is to be expected as we do not expect these

algorithms to optimise VD(0.05).

Figure 4.9 shows the performance of the algorithms against V ∗D(0.05). Whilst

both qWSA algorithms do find a relatively better result than BF10000, the final

result has not changed much from the starting point. This suggests that while a

bias is taking place, it is not a strong one. The WSA algorithms both perform

poorly when compared in terms of V ∗D(0.05).

Figure 4.10 shows how both estimators for 〈R1〉 evolve during the optimisa-
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Figure 4.8: The above figure shows the average result for each algorithm. We see
that qWSA2, BF400 and WSA3 all perform poorly. The other algorithms all obtain
similar results. It is surprising that BF400 does not do well, but this underlines
the challenge of naively selecting a suitable number of samples when optimising at
a particular risk level. We would expect all of the (q)WSA algorithms to perform
badly as compared to VD(0.05) as we hypothesised that they would in fact optimise
V ∗D(0.05). Consequently, it is more surprising that WSA2 and qWSA3 performed
(relatively) well. We will look at this further in the later results.

tions. We see that, as predicted, the original estimator (from chapter 3 and section

4.3) appears to be significantly more noisy than the new estimator for R̂′1. We can

see that the WSA algorithms actually optimise the system at a risk point signif-

icantly higher than 5%, leading to their bad results. In contrast we can see that

both qWSA algorithms retain tight control of R̂′1 in that R̂′1 does not become too

high or too low. It is important to note that in all cases R̂′1 remains above 3.5%

and hence the algorithms did not inadvertently optimise V ∗D(0.05) by optimising

VD(R′T ), where R′T < 0.03.

Figures 4.11 and 4.12 dig deeper in to the performance of the (q)WSA al-

gorithms in their optimisation of V ∗D(0.05). We note that the results of the opti-

misations are actually bimodal. One mode represents the optimisation of V ∗D(0.05)

and the other VD(0.05). The majority of the optimisation runs actually optimise

V ∗D(0.05) (see figure 4.11). We see a low average for V ∗D(0.05) in figure 4.9 because

the downward change in V ∗D(0.05) when VD(0.05) is optimised is significantly larger

than the upward change when V ∗D(0.05) is optimised (as one would expect). This

means that when we take an average over V ∗D(0.05) in figure 4.9 we misrepresent the

majority of the samples.

We have successfully observed the bias to zero risk in a real world problem.

The bias to zero risk approximation states that the (q)WSA algorithms, which aim

to optimise VD(RT ), will in fact attempt to optimise V ∗D(R̂) = VD(R̂)−R̂V ′D(R̂). We

have also demonstrated the use of an alternative algorithm which allows for a much
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Figure 4.9: The above plot shows the average result for V ∗D(RT ) for each algorithm.
We see that both qWSA2 and qWSA3 perform well (as compared to brute force).
However, we might have hoped to see more improvement in V ∗D(0.05) as the chain
progressed, rather than just a better performance when compared to brute force.

smaller number of samples to be used. Finally, we have developed new indicators for

〈R1〉 and d〈R1〉
dn and shown them to be more effective than the previous estimators

when k = 1. They do however constrain how we perturb the samples (X ) used to

estimate VD(RT ). In the next section we will look at an alternative approximation,

which covers a larger variety of situations. This new approximation will lead to

similar conclusions, but will not prove as elegant.
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WSA2 and WSA3 optimise the
system at risk points well above
5%, potentially, explaining their
bad performance. In contrast,
qWSA2 and qWSA3 both main-
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Figure 4.10: The above figures show how both the estimators of 〈R1〉 change over
the course of the optimisations. As a reminder, 〈R1〉 is calculated using the results
in chapter 3 and section 4.3, whereas 〈R′1〉 is calculated using the method found in
section 4.5.4.
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Figure 4.11: The above figures show that the final solution for VD(0.05) from the
qWSA2 algorithm actually represents a bimodal distribution. The histogram (left)
shows the final value of VD(0.05), over all 48 simulations. We see a mode at around
−1 and −5. The plot on the right shows how VD(0.05) evolves over the chain for
10 independent runs. Several of the chains can be seen jumping between the two
modes.
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Figure 4.12: The above graphs show the comparative results of qWSA2 and qWSA3
for each mode, in terms of VD(0.05) and V ∗D(0.05). From the left hand figures, we can
see that over the course of the simulation qWSA2 shows significant improvement
with respect to V ∗D(0.05) when the final VD(0.05) < −3. This is the dominant
mode of the results. qWSA3 also shows improvement. The graphs on the right
show how the second mode, where the final VD(0.05) ≥ −3, optimises VD(0.05) and
consequently has significantly worse performance with respect to V ∗D(0.05). There
are significantly more results which find the solution where VD(0.05) < −3 than
where VD(0.05) ≥ −3.

83



4.6 Adapting k

4.6.1 The α Approximation

In this section we wish to move to a different paradigm from that of the previous

section. In the previous section we deliberately held k = 1 in order to exploit a bias

to zero risk and whilst this proved effective, it is still plausible that we really do

wish to optimise a system at a specific percentile and not at a particular depth of

sampling.

As previously discussed, in an unbiased system, we should set k = bRTnc.
We now consider a new variable, s := k−1

n . This is the level of risk implied by k and

n. When there is no induced bias in the system s = RT .

Using this variable we can find an alternative approximation to the chain.

Given that the Poisson weights are

WP (D|k, n, β) ∝
∫ ∞

0

1

(k − 1)!
(Rkn)k−1eβVD(Rk)−RkndRk,

We substitute k = sn+1 and apply Stirling’s Approximation (2.2.4) on the factorial

(which is really only a change in normalisation as independent of D) to get

WP (D|k, n, β) ∝
∞∫

0

eβVD(Rk)−nRk+sn log(nRk)−sn log(sn)+sndRk

∝
∞∫

0

e
βVD(Rk)+sn

(
1−Rk

s
+log

(
Rk
s

))
dRk.

If we Taylor expand 1 − Rk
s + log

(
Rk
s

)
around Rk

s = 1 we can see that 1 − Rk
s +

log
(
Rk
s

)
is approximately −1

2

(
Rk
s − 1

)2
. Substituting back into the weight gives

that

WP (D|k, n, β) ∝
∞∫

0

e
βVD(Rk)− sn

2

(
Rk
s
−1
)2

dRk.

If we now consider a steepest descent argument, we see that n
(
R′′

s − 1
)

= βV ′D(R′′)

for some R′′. By substituting this back into the weight, and taking a linear approx-
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imation we get that

WAS(D|k, n, β) := e
β
(
VD

(
R′′+s

2

))
. (4.11)

This approximation suggests that our upward biasing by β may not have

as significant an impact as we originally thought (at least to some approximation).

We can use this result to better tune the size of sample we use; either directly, as

an improved test for whether we should increase the sample size used to estimate

VD(RT ), or indirectly by using this result to reduce k without changing the sampling

level, to improve our estimate of VD(RT ).

4.6.2 An Example VD(R)

We can consider how the error of this approximation changes for an example choice

of VD(R). As before, we take VD(R) to be ε log
(
R
R0

)
(as discussed in section 4.5.2).

In this example we can find an expression for the weights in terms of s, n

and β. We can then compare this result with the Poisson weight found in equation

4.6, to see how the error changes with respect to both β and n.

We need to find the value of R′′ which the steepest descent argument specifies

when VD(R) = ε log
(
R
R0

)
. Substituting this choice of VD(R) into n

(
R′′

s − 1
)

=

βV ′D(R′′) results in a quadratic expression in R′′. We can then take the positive

root as, by definition, R′′ ≥ 0. This gives R′′ =
s+
√
s2+ 4βεs

n

2 . Substituting this value

of R′′ back into equation 4.11 gives

WAS(D|k, n, β) ∝

(
s

4R0

(
3 +

√
1 +

4βε

ns

))βε

where WAS(D,n, β) is the Markov weight for this chain calculated according to the

weight defined in equation 4.11.

By applying a similar argument to earlier we can see that

WAS

WP
=

sn
(

3 +
√

1 + 4βεn

)
4(βε+ sn)


βε

.

It should be clear from this expression that changing n has very little impact on

the ratio between the different approximations of the weight. However, as with the

bias to zero risk approximation, increasing β will increasingly bias large values of
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Figure 4.13: The above figures show how the ratio between the Poisson and floating
k weights change over time with respect to n and β. R0 = 1. In figure 4.13a n = 40
and in figure 4.13b β = 5. The weights are numerically integrated over ε ∈ [1, 10]
(for fixed n and β).

ε. If the design space being considered includes various different choices of ε then

the normalised distribution across D, as calculated using this approximation, will

become increasingly distorted. Figures 4.13a and 4.13b show this visually.

4.6.3 Algorithmic Implications

As discussed at the end of section 4.6.1, the above approximation suggests we could

relax the rate at which we increase n, choose some k < RTn, or do a combination

of both to help ensure we actually optimise a given system at RT . We use the

algorithms proposed in sections 3.6 and 4.5.4, with the only refinement being that

we increase n when 1
2

(
R̂k + k

n

)
> RT . Clearly if k = RTn, this reduces to the

previous case where n increases if R̂k > RT . In the algorithm variants that use
ˆd〈Rk〉
dn

to adjust n, we also only increase n when 1
2

(
R̂k + k

n

)
> RT instead of increasing n

when R̂k > RT .

To avoid the degradation when k = RTn we again hold k = 1. If we assume n

is large, then our condition for increasing n becomes R̂k > 2RT . This suggests that

we will actually optimise the system at Rk
2 , when k = 1. It is worth noting that in

this example we can no longer expect
(
RT
s − 1

)
to be small (an assumption made in
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Figure 4.14: The above figure shows the tail of the c.d.f. for each (single) option our
optimisation process could select. The optimisation process could also select frac-
tional amounts of each stock, as long as it sells exactly £1 worth. It should be clear
in this context that the bias to zero risk has minimal explanatory power. For the ten
individual cases plotted, the best option is to select any stock if optimising VD(0.1)
and stock 10 if optimising VD(0.05)

(
= VD

(
1
2 × 0.1

))
. There could potentially be a

better solution to both problems which combines different stocks.

the approximation) as we are explicitly expecting s > RT . However this expression

is still of O(1) and hence we would still expect to see the same qualitative behaviour

that our approximation dictates. We will discuss this further in the discussion at

the end of the chapter (section 4.8).

4.6.4 Results

In this section, we wish to evaluate the above approximation when k = 1, using a

problem in which the bias to zero risk approximation does not hold. We continue to

consider a user who wishes to sell £1 of call options. We assume that these options

can be infinitely divided and that there is an open market on which they can be

traded. The options prices were calculated using Black Scholes [Glasserman, 2004].

As in the previous chapter the stocks are modelled using a multivariate skewed-t

distribution. Table 4.2 shows the stocks and the strike prices used.

We wish to find a portfolio containing some combination of the stocks in

figure 4.14 that optimises the risk at 5%. We will do this by optimising VD(0.1)
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Stock Current Price (p) Strike Price (p)

ABF.L 1550.0 1569.0
ADN.L 381.6 390.7
ADM.L 1198.0 1228.3
AGK.L 1749.0 1785.2

AMEC.L 1035.0 1060.5
AAL.L 2000.5 2060.5

ANTO.L 1322.0 1366.6
ARM.L 799.5 821.6
AZN.L 2985.0 3027.7
AV.L 388.4 401.9

Table 4.2: The above table defines the stock and strike prices used for the call options
to be sold. (The current price is the price of the stocks on Monday, 7 January 2013.)
As before, the returns model used was fitted to daily returns from 2012.

using algorithms 3.2 and 4.1. By the above approximation, this should be equivalent

to optimising at 5% risk. As can be seen from the figure, the descriptive power of the

bias to zero risk approximation is limited in this context, as a system optimised using

V ∗D(0.1) would just result in an almost random set of stocks (which excluded stock

1). This is unsurprising given that the bias to zero risk approximation implicitly

requires V ′D(0.1) > 0, which is not always the case in this problem.

We use the same simple style of cooling schedule as in the previous results

sections. We increase β by 0.125 after every 200 accepted perturbations of D. β is

initially set to 1. The design space is D = [0, 1]9. 48 identical optimisations were run

for each method, the results were then averaged, and the standard error calculated.

D was perturbed in the same way as in previous examples (3.7).
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Figure 4.15: The above figure shows the convergence of the different algorithms,
versus their value at the 10% risk point. This is the point the algorithms nominally
optimised. The (q)WSA algorithms generally find a better solution for a given fixed
number of portfolio evaluations. We note that the brute force algorithm that one
would nominally use for such a problem is BF100, which in this scenario appears
to significantly under perform the other algorithms. WSA3 also fails to find a good
solution. This is due to the estimator for d〈R1〉

dn not converging correctly.
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Figure 4.16: The above figure shows the convergence of the different algorithms,
in terms of their value at the 5% risk point. This is the point we expected the
(q)WSA algorithms to actually optimise. The (q)WSA algorithms generally find a
better solution for a given fixed number of portfolio evaluations, but do not manage
to reach the same final solution as a brute force algorithm which seeks to directly
optimise the 5% risk point (BR10000 (5%)). The (q)WSA algorithms final solutions
(except for WSA3) are better than either of the brute force algorithms that optimised
the 10% risk point. This demonstrates the above bias is occurring and that the
approximation is valid.
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Figure 4.17: In this figure we can see the number of samples each algorithm used
to estimate VD(R) as it progressed. Since BF100 and BF10000 remain fixed at
their initial values we do not show them here. As described above, we can see that
WSA3 fails to significantly increase n. This is because the estimator for d〈R1〉

dn is not
converging correctly. All the other algorithms show comparable results.

Figures 4.15, 4.16 and 4.17 show the results and demonstrate the expected

bias occurring. The new algorithms generally all perform well, except for WSA3,

in which the indicator for d〈R1〉
dn struggles to converge. Figure 4.15 shows that the

remaining (q)WSA algorithms all perform very well at the 10% risk point and that

they reach the same solution as BF10000 (a brute force algorithm which uses 10,

000 samples per step). The figure also shows that the naive choice for brute force

in this case, BF100, fails to converge to a good solution. Figure 4.16 shows how the

same algorithms performed at the 5% risk point (even though they were nominally

optimising at 10%). We see that all of the (q)WSA algorithms (except for WSA3)

outperformed BR10000 (10%) at this point (both in terms of work and final result).

This strongly corroborates that the above bias exists and that the resulting approx-

imation is a reasonable one. That said, a brute force algorithm directly optimising

at the 5% risk point does obtain a better final solution (BF10000 (5%)), although

it takes almost two orders of magnitude of additional moves to achieve this.

Figure 4.17 shows the number of samples required to achieve the optimisa-

tions. It is worth noting that the number of samples used by the (q)WSA is an

order of magnitude less than is required for BF10000. This in itself might make the

algorithms highly desirable in certain circumstances, either when it is very expen-

sive, or simply impossible, to obtain large samples of X. We previously discussed

this at the end of section 3.7 and will return to this topic in the final discussion in

chapter 8.

In this section we have observed that a system which has k < nRT may not be

as affected by the upward pressure induced by eβVD(RT ) as when k = nRT . We found

that W (D) ∝ e
β
(
VD

(
R′′+s

2

))
(equation 4.11) and then (successfully) numerically
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tested it for the case when k = 1. We also note that, as in section 4.5, the new

indicators appear to provide better estimates of 〈Rk〉 and d〈Rk〉
dn (at least when k = 1)

and hence allow for more robust algorithms in this case.

4.7 System Scaling

In this section we study the expected scaling relation between the system parameters

β and n. Previously we have calculated several key results to allow us to correctly

increase n as β increases (as part of the annealing process). However, beyond these

estimators and empirical observations we have not investigated any possible scaling

relations. We use the results in this section to confirm our previous intuition.

In order to study this scaling relation we use a class of VD(R) which en-

compasses our current test case. We assume that dR
dV ∝ e−|V |

p

. By application of

corollary 2.4.3 we see that

R ∝ e−|V |
p

|V |p−1 (4.12)

for |V | >> 1. Furthermore, we note that in this example V ′D(R) ∝ e|V |
p

(found by

inverting dR
dV ).

In section 3.3 we found the weight of the chain, for fixed β and n, to be

W (D) =

1∫
0

dRk

(
n

k

)
kRk−1

k (1−Rk)n−keβVD(Rk).

By applying a steepest descent argument to this (akin to the argument made in

section 4.5) we find

V ′D(Rk) =
1

β

(
(n− 1)Rk − k + 1

Rk(1−Rk)

)
.

If we substitute our assumption for V ′D(Rk) (from above) and take the log of both

sides we get

|V |p ∝ ln

(
1

β

(
(n− 1)Rk − k + 1

Rk(1−Rk)

))
.
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Substituting the above result into equation 4.12 results in

Rk ∝ β
(

(n− 1)Rk − k + 1

Rk(1−Rk)

)−1(
ln

(
1

β

(n− 1)Rk − k + 1

Rk(1−Rk)

))− p−1
p

.

This can be rearranged to find

β ∝
(

(n− 1)Rk − k + 1

(1−Rk)

)(
ln

(
1

β

(n− 1)Rk − k + 1

Rk(1−Rk)

)) p−1
p

.

From this relation we can see that any increase in β would need to be sup-

ported by an increase in n or an increase in Rk (as we expect nRk to be much larger

than k) since the impact of the logarithm term will be very limited. Equivalently

this relation suggests that an increase in β that is not supported by a suitable in-

crease in n will drive up Rk. The choice of k does not have a major impact on the

scaling relation.

This increase in Rk will mean we are no longer optimising our random vari-

able at the correct level of risk. Furthermore, it will increase the bias in the sampling

of X towards the current choice of D. This in turn could have a potential impact on

the acceptance rates of D, slowing the optimisation. This reduction in acceptance

rates is because it is likely that it will become harder for a perturbation of D to be

accepted as X becomes more tailored to the current (specific) choice of D.

These analytical observations match our previous empirical results and in-

tuitive understanding. Unfortunately they do not provide any significant further

understanding beyond this particular choice of VD(Rk), and so it is unclear how

they could be used to improve the algorithm as it stands. The effects described

above could have significantly more impact if both D and X were perturbed simul-

taneously.

4.8 Discussion

In this chapter we have considered two different physical approximations and various

properties of the (thermal) system created when simulated annealing is used to

solve a simple risk problem. The two approximation we considered for the chain

were eβV
∗
D(R̂) where V ∗D(R̂) = VD(R̂) − R̂V ′D(R̂) and R̂ was the dominant quantile

explored (section 4.5); and e
βVD

(
Rk+s

2

)
where s = k

n (section 4.6).

We initially analysed the problem from a physical perspective to calculate

an approximation to the resulting Markov chain. We then layered two other ap-

proximations on top of this to gain insight into how the system operated and then

92



used these insights to adapt the simulated annealing algorithm. For both of these

approximations we considered the error induced by them (for an example choice

of VD(R)) and successfully demonstrated the effect of the algorithmic changes. In

the final section we considered some of the scaling properties of the system which

supported our results.

It should be clear, especially since the two approximations discussed describe

the same system, that their interpretations are similar. The first approximation,

which showed a bias to zero risk, was based on a steepest descent argument and

revealed that an optimisation process would be biased towards solutions that had

the smallest (at least as perceived by the chain) zero risk point. The second approx-

imation built on this argument by applying a linear approximation to VD(.) (and

expanding the argument more clearly to larger choices of k). This suggests that the

optimisation process would equivalently optimise the system at VD

(
Rk
2

)
. Whilst

the second approximation is very sensitive to the actual VD (.) in its interpretation,

it should be clear that optimising V ∗D(R̂) is likely to be equivalent to optimising

VD(R′), for some choice of 0 < R′ < RT . This was explicitly seen to be the case for

our choice of VD(.) in section 4.5.2, where V ∗D(R̂) = VD

(
RT
e

)
≈ VD

(
Rk
2

)
.

In section 4.4 we also found new estimators for 〈Rk〉 and d〈Rk〉
dn . The various

numerical results demonstrated that these new estimators appeared to give more

reliable results than the estimators found in the previous chapter. However, this

improvement came at a cost: to use them efficiently we had to constrain how we

perturbed X. This meant we were unable to use them to measure the performance

of the brute force algorithms. It may also slow down the optimisation process in a

highly complex problem, where it becomes important to change the sample set X

by basing new elements of X on current elements of X, rather than just taking new

draws from X.

During the course of this chapter we have used an example choice of VD(.)

which is akin to an exponential distribution to evaluate the various approximations.

It would have been nice to consider other choices of VD(.) (similar to when we con-

sidered how the system might scale in section 4.7). Unfortunately we would not

have been able to perform the various integrations and error calculations as easily if

we had chosen a VD(.) which represented a normal distribution. We could have cal-

culated such a VD(.) in two ways. If we were to assume dR
dV was normally distributed

then we would have had dR
dV ∝ V −1

0 e−
1
2
V 2

. By applying a similar argument to that

of proposition 2.4.3, we could integrate this to find that R ≈ (2V0V )−1 e−
1
2
V 2

. Re-

arranging this expression for V gives

VD(R) =
√

2
√
− log (2V0R)− log (VD(R)). We could now iteratively solve for VD(R),
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however the resulting approximation would not be malleable enough to calculate

analytically the various weights involved. A second approach would be to directly

approximate the inverse error function. This could (very approximately) lead to a

choice of VD(R) such that VD(R) = ε log
(
R−R2

R0

)
. This approximation would have

allowed us to calculate some, but not all, of the weights we have considered.

We also note that we could formally have proved that as n increases 〈Rk〉 →
k
n = RT (at least for a sensible choice of VD(.)). However, such a proof is un-

likely to have yielded any further information on the rate of convergence of the

approximations unless the exact form of VD(.) was known. At most, such a proof

would show that the various approximations (for certain classes of VD(.)) do indeed

get arbitrarily close to the true weights, for a sufficiently large choice of n, rather

than coinciding only at the limit. It should be possible to see that this is at least

approximately true by observation.

We could have further considered an array of physical properties of the sys-

tem, including both the energy and the intensivity and extensivity of the various

variables. However it is unclear, beyond mere curiosity, the impact such results

would have. If we consider the system in terms of entropy, it should be clear that

increasing either n or β reduces the entropy, and hence the energy, of the implied

thermal system.

In the course of this chapter we have shown two different approximations of

the annealed system. The first, which showed a bias to zero risk, was shown to have

a direct impact on a real world numerical problem and represented a significant

paradigm shift. The second, which showed we could assume that the attempted

level of risk, RT , still had some impact on the risk, allowed us to further relax our

annealing algorithm to reduce work, but still achieve solid results.

We will discuss the ideas from both this and the preceding chapter further

in the final discussion.
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Chapter 5

Further Extensions: Optimising

Quantile Risk

5.1 Introduction

In this short chapter we build on the fundamental ideas developed in chapters 3

and 4. These ideas were used to develop an algorithm to optimise a system at a

given level of risk. In this chapter we draw ideas from both of the previous chapters.

In chapters 3 and 4 we defined the Markov chain (and ensemble) we expect our

optimisation method to follow. We now push these ideas further so that we can

extend the algorithm to cover a wider variety of problems.

We consider two possible extensions to the algorithm to allow it to tackle

further use cases. The first extension allows for only a risk reward optimisation and

the second for optimisation at multiple quantiles.

The risk reward optimisation allows for a Markovitz style optimisation. In

this scenario the user specifies how much extra expected gain they require before

accepting further predicted risk in the solution. This quantity is generally a linear

ratio and is known as the risk reward ratio. We show that analogous proofs to those

in chapters 3 and 4 can be found along with some basic numerical results.

The multi quantile optimisation method allows the user to specify two quan-

tiles to optimise at and the weighting to give each one. This could be the median and

some specified risk level to give a similar optimisation as to the previous method.

Alternatively, it could be used to tightly control the shape of the risk tail of the

resulting random variable.

We conclude the chapter in section 5.5 and in context with the rest of the

work in chapter 8.
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5.2 Problem Definition

In this chapter we wish to consider the optimisation of

arg maxD
∫ 1

0 VD(R)w(R)dR, for some choice of w(R). If we take w(R) = 1 when

R = RT and 0 elsewhere then we recover the case where we wish to optimise a single

quantile. w(R) could represent a wide range of choices including the mean of FD,

the interquartile range of FD, or even allow for the detailed specification of part (or

all) of a desired risk curve. Ideally, we would like to consider any choice of w(R),

however, practicalities will require us to only consider the optimisation of the mean

alongside some quantile, or just two separate quantiles.

Mathematically, we consider the following two choices of w(R);

w1(R) =
1

n
+ αδ (RT −R) and

w2(R) = δ (R− r1) + αδ (R− r2) ,

where α, RT , r1 and r2 are parameters and δ(x) is the Dirac delta function. Thus

a system using w1(R) or w2(R) will find arg maxD µD + αVD(RT ), where µD is the

mean of FD, and arg maxD VD(r1) + αVD(r2) respectively.

5.3 Adding a Mean

In this section we add the mean to our optimisation. This addition turns out to

be relatively simple. As discussed in the previous section (5.2), we wish to solve

arg maxD µD + αVD(RT ) for a specified choice of RT and α. If we assume that µD

can be accurately calculated from the same samples used to estimate VD(R), with-

out any bias, then the calculations from sections 3.3 and 3.4 largely hold without

any significant adjustments. While this assumption is not strictly true, it should

be provide a reasonable approximation during the annealing process. Indeed, this

assumption is often implicitly used whenever a mean value (which is somehow esti-

mated at each step) is optimised.

The relative density for a given design, D, extends to include the mean,

giving

πm(D,Rk) =

(
n

k

)
kRk−1

k (1−Rk)n−keβ(µD+αVD(Rk)) and

πm(D) =

1∫
0

dRk

(
n

k

)
kRk−1

k (1−Rk)n−keβ(µD+αVD(Rk)).

96



The results to estimate 〈Rk〉 and d〈Rk〉
dn then become

〈Rk〉k,n ≤
k

n−k
〈
eβα(VD(Rk+1)−VD(Rk))

〉
k,n

1 + k
n−k

〈
eβα(VD(Rk+1)−VD(Rk))

〉
k,n

(see 3.4.6) and

d 〈Rk〉
dn

≈

(
k

n−k
〈
eβα(VD(Rk+1)−VD(Rk))

〉
k,n

)2

1 + k
n−k

〈
eβα(VD(Rk+1)−VD(Rk))

〉
k,n

−
k(k+1)

(n−k)(n−k−1)

〈
eβα(VD(Rk+2)−VD(Rk))

〉
k,n

1 + k
n−k

〈
eβα(VD(Rk+1)−VD(Rk))

〉
k,n

(see 3.12).

5.3.1 Algorithmic Implications

Since the estimators do not include eβµD we can largely reuse algorithm 3.2 for

the optimisation. The key changes we need to make are to adjust the acceptance

probability and the estimators for 〈Rk〉. The acceptance probability, p, becomes

p = min
(

1, eβi(µ̃D−µD+α(Ṽ−V ))
)

where µD is the mean calculated using X and D and µ̃D is the mean calculated

from X̃ and D̃. The estimators for 〈Rk〉 and d〈Rk〉
dn in the algorithm are replaced

with those given above (α added).

We also note that we can use an adaptation of algorithm 4.1. The estimator

for 〈Rk〉 in this algorithm continues to hold, regardless of the optimisation target.

We do however adjust the algorithm slightly to use different values of k (rather than

just k = 1). We adjust k in the same way as in algorithm 3.2. We also now perform

just 100 perturbations of X per design perturbation. (This is the same as algorithm

4.1, however, in algorithm 4.1 we perturbed X n times as k was fixed at one.) We

label this adaptation qSA2 (where we just use the estimator for 〈R〉 to control n).

We cannot use the estimator for d〈Rk〉
dn in algorithm 4.1 in this context as it will no

longer be correct.

A table summarising the basic algorithms used for one quantile (before the

above adaptation) can be found in appendix A.

5.3.2 Results

We test the above algorithms and related assumptions using a simple portfolio. The

particular stocks and models used are the same as those in section 3.7. We require

the optimisation to select the best combination of ten stocks to buy. We consider

the best portfolio to be one which maximises µD + αVD(0.05). We consider when
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Figure 5.1: The above figure shows the optimisation results when α = 0.5. We see
very similar results to chapters 3 and 4. The (q)SA algorithms all find a better
result as compared to the naive choice of brute force algorithm (BF400), but do
take slightly longer to run. They appear to find the most optimal solution (which
is likely to be found by BF10000).
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Figure 5.2: The above figure shows the optimisation results when α = 0.1. The
(q)SA algorithms fail to find a good solution as compared to both the naive choice
of brute force algorithm (BF400) and the long run brute force algorithm (BF10000).

α = 0.5 and α = 0.1. We test these two values of α because we suspect that when

α becomes small, our optimisation methods will become more sensitive to the error

induced by the estimation of µD. When α = 0.5 the optimisation will be dominated

by VD(0.05). At α = 0.1 both terms in the optimisation will have broadly equal

magnitude (due to the relative magnitude of µD and VD(0.05)).

As in previous chapters the stocks are modelled using a multivariate skewed-

t distribution. We also use the same simple style of cooling schedule as in the

previous results sections. When α = 0.5, we increase β by 250 after every 200

accepted perturbations of D. β is initially set to 250. When we reduce α to 0.1,

we increment β by 500 and start at 2, 000. As in previous cases, the design space is

D = [0, 1]9. 48 identical optimisations were run for each method, the results were

then averaged, and the standard error calculated. D is perturbed as in section 3.7.
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Figures 5.1 and 5.2 show the results. These results are largely as one might

expect. We do well when the VD(RT ) is dominant in the optimisation (when α = 0.5)

but when α gets smaller we struggle to find a good solution. This is probably due

to a bias induced by the optimisation in the estimation of µD.

There is no difference in performance (in either case) between qSA2 and SA2.

In the next section we attempt to solve this estimation bias of µD by opti-

mising using the median.

5.4 Two Quantile Optimisation

In this section we aim to rectify the issue from the last section that the estimation

of µD is likely to be biased. We consider the case when we wish to optimise two

risk points. We will mainly consider the median (representing an average) and some

other risk point. Mathematically, we wish to optimise arg maxD VD(r1) + αVD(r2)

for parameters r1, r2 ∈ [0, 1] and α ∈ R. We will normally take r1 = 1
2 .

5.4.1 Markov Chain

In this section we find the Markov chain the above optimisation process will follow

(at least when β and n are fixed). The argument used is an adaptation of that found

in sections 3.3 and 3.4 and hence is only briefly covered here.

In this new chain we need to consider the joint probability density of the

data points which we use to estimate VD(r1) and VD(r2). This is because, by using

a similar argument to that of section 3.3, we find for j < k (and fixed β, n) that the

relative probability density of a specific design, D, is

π2(D) =

∫ 1

0

∫ 1

0
ζj,k(Rj , Rk)e

β(VD(Rk)+αVD(Rj))dRjdRk (5.1)

where ζj,k(Rj , Rk) is the relative joint probability density of the points in positions

j and k of n ordered samples having values Rj and Rk respectively.

In order to calculate this joint density, we note that

ζj,k(Rj , Rk) = ζj,k(Rj |Rk)ζk(Rk). We know that ζk(Rk) =
(
n
k

)
kRk−1

k (1 − Rk)n−k

(see equation 3.8). By definition ζj,k(Rj |Rk) is the density of the jth sample (of

k − 1 samples) having value Rj ∈ [0, Rk) (we still assume j < k). This means

that the original argument used in section 3.3 still holds, except that in this case n

should be replaced with k − 1, R rescaled to
Rj
Rk

and the expression renormalised.

This results in ζj,k(Rj |Rk) =
(
k−1
j

)
j
(
Rj
Rk

)j−1 (
1− Rj

Rk

)k−1−j
1
Rk

. Combining both
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of these expressions gives that

ζj,k(Rj , Rk) =

(
k − 1

j

)
j

(
Rj
Rk

)j−1(
1− Rj

Rk

)k−1−j 1

Rk

(
n

k

)
kRk−1

k (1−Rk)n−k.

The above expression can then be arranged and the assumption that j < k explicitly

added to find that

ζj,k(Rj , Rk) =


(
k−1
j

)(
n
k

)
jkRj−1

j (Rk −Rj)k−1−j (1−Rk)n−k j < k

0 otherwise
. (5.2)

Substituting this expression back into equation 5.1 would give a complete expression

for the weight of a given design.

Similarly to chapter 3, we can find expressions which allow us to estimate

the values of 〈Rk〉 and 〈Rj〉 which the chain is actually exploring. These are helpful

because they will allow us to monitor the optimisation process and ensure that we

are optimising the correct risk points. This is a concern because we expect the

eβ(VD(Rk)+αVD(Rj)) term in the density (weight) to induce a bias towards higher

valued samples for high β and α and hence push up 〈Rk〉 and 〈Rj〉 if n is not

sufficient.

A similar relation as to the single quantities for these densities can also be

found (see 5.2); these are

ζj,k(Rj , Rk) =
j

k − 1− j
Rk −Rj
Rj

ζj+1,k(Rj , Rk) and

ζj,k(Rj , Rk) =
k − j
n− k

1−Rk
Rk −Rj

ζj,k+1(Rj , Rk).

Furthermore, we can find additional expectation relationship for the resulting

chain. These are given by Given fixed β, α, n, k and j we have that〈
eβα(VD(Rj+1)−VD(Rj))

〉
=
k − 1− j

j

〈
Rj

Rk −Rj

〉
and〈

eβ(VD(Rk+1)−VD(Rk))
〉

=
n− k
k − j

〈
Rk −Rj
1−Rk

〉
.

The expectations are taken over an ensemble with weights as given by equation 5.1.

The conditions and proof are akin to that of theorem 3.4.2.

Unfortunately, the above expressions are not immediately helpful. To make

these expressions more usable, we assume that we can separate the expectations into

terms of 〈Rk〉 and 〈Rj〉. This allows us to solve the two equations to find estimators
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for 〈Rk〉 and 〈Rj〉. This assumption is hard to justify mathematically, however we

shall see in the results that the resulting estimators do prove to be effective. It

is plausible that an argument could be made stating that the random variables of

concern become independent in the limit of n→∞ and hence that this assumption

holds in the limit of large n. Making this assumption gives, for fixed β, α, n, k and

j, that

〈Rk〉 ≈
B(1 +A)

B(1 +A) + 1
and (5.3)

〈Rj〉 ≈
A 〈Rk〉
1 +A

(5.4)

where

A =
j

k − 1− j

〈
eβα(VD(Rj+1)−VD(Rj))

〉
and

B =
k − j
n− k

〈
eβ(VD(Rk+1)−VD(Rk))

〉
.

It has not been possible to find estimators for d〈Rk〉
dn or

d〈Rj〉
dn (unlike in chapter

3). This means we will have to increase n more arbitrarily when Rk or Rj drop too

low. The consequence of this is that we are less able to track the minimum required

n for each choice of β. We will instead use (marginally) more samples than needed

for the majority of choices of β. That said, we would still expect to see significant

improvement over a brute force algorithm.

We will numerically test these estimators in the next section (5.4.2) before

using them to develop a new algorithm in the following sections (5.4.3 and 5.4.4).

5.4.2 Numerical Convergence of Estimators

In this section we investigate the convergence and accuracy of the estimators defined

in the previous section. For the estimators to be useful in a potential algorithm

they must converge quickly and not over a long time. We will also take note of any

features that might be relevant when constructing an algorithm.

We evaluate the estimators using a simple, one dimensional, model. As in

section 3.5 we take VD(.) to be the inverse cumulative distribution function of the

normal distribution. This implicitly means that there is only one possible choice of

design.

We expect to exhibit the same two tensions as in the case when we only

optimise on one quantile. The eβ(VD(Rk)+αVD(Rj)) term will seek to drive up Rk and

Rj , whereas the samples will seek to keep Rk and Rj at the correct values.
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Figure 5.3: The above charts show the accuracy and convergence of the estimators
for 〈Rk〉 and 〈Rj〉 as defined in equations 5.3 and 5.4. R̂k and R̂j denote the
estimators. 〈Rk〉 and 〈Rj〉 denote the true expected value of Rk and Rj as calculated
explicitly using the known V −1

D (V ) = Φ(V ). j was set to max(1, 0.01n) (targeting
1% risk when n ≥ 100) and k = b0.5nc. In all cases α = 0.5. The estimator
shows good convergence for most choices of n and β. The estimators appear to
lose accuracy when the system becomes too dominated by the exponential term (for
example, when n = 10 and β = 5), however we should not be operating in this regime
as it will also have high expected Rk and/or Rj . The graphs also (unfortunately)
show that these estimators are not necessarily an upper bound on 〈Rk〉 and〈Rj〉.

Figure 5.3 shows the convergence of the various estimators. The estimators

appear to converge quickly in all cases, however their accuracy suffers when β is high

and n is low. Fortunately, we do not intend to operate in this regime and hence our

estimators should provide a helpful and reliable tool to allow the algorithm to self

tune.

In the next section we use these new estimators to design an improved algo-

rithm which solves optimisation problems over two quantiles.

5.4.3 Algorithm

We can largely use the previously discussed algorithms (3.2 and 4.1), with similar

adaptations to those introduced in section 5.3.1. In both of the main algorithms
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we simply need to calculate the estimators for both 〈Rk〉 and 〈Rj〉 rather than just

〈Rk〉. In algorithm 4.1 the estimators for both 〈Rk〉 and 〈Rj〉 can be calculated in

each case by using the same technique as in the original algorithm.

The major change is in how we manage to keep both quantiles at the correct

level of risk. For this, we use the same method of increasing n (the number of

samples used for the estimations) to control 〈Rj〉. To control 〈Rk〉 we simply adjust

the value of k (if needed) at the same time as we check whether we need to increase

n. Specifically, we set k ← k +
(
r1 − R̂k

)
n
2 . This effectively approximates d〈Rk〉

dk

to be 2
n . We choose this value (a likely overestimate) as we want to limit the

fluctuations of k in case the estimators do not converge correctly. The optimisation

process should have enough opportunities to adjust k (and n) to ensure that we are

operating at the correct levels of risk.

A table summarising the basic algorithms used for one quantile (before the

above adaptations) can be found in appendix A.

5.4.4 Results

We use the same problem and parameter choices as in section 5.3.2 to test these

new algorithms.
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(a) The above figure shows the convergence of the algorithms when α = 0.5. As in the
case when the mean was used we see good results. We beat BF400 and appear to find
the optimal solution.

Portfolio Evaluations

R̂

102 104 106 108
0.00

0.25

0.50

0.75

SA2

qSA2

BF400

BF10000

(b) The above graph shows the estimator for 〈R〉 over the course of the optimisation when
α = 0.5. We display the estimators developed in section 5.4.1, however both estimation
methods give the same results. We see we manage both values of R̂ well. BF400 struggles
to hold both R̂s low, which explains its (relatively) bad convergence.
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(c) The above plot shows how we adjusted k over the course of the algorithm. It can be
seen that for the majority of the algorithm we used a choice of k that was equivalent to
49%.

Figure 5.4: Results for the case when α = 0.5.
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(a) The above figure shows the convergence of the algorithms when α = 0.1. In contrast
to the case when the mean was used we see good results. We substantially beat BF400
and perform slightly better than BF10000.
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(b) The above graph shows the estimator for 〈R〉 over the course of the optimisation when
α = 0.1. Both values of R̂ are controlled well. Both BF400 (and to some extent BF10000)
struggle to hold R̂ low, which explains their (relatively) bad convergence.
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(c) The above plot shows how we adjusted k over the course of the algorithm. It can be
seen that for the majority of the algorithm we used a choice of k that was equivalent to
47%. This is lower than when α = 0.5. This change is due to the increased dependence
on VD(0.5) when α = 0.1. This is likely to explain the particularly poor performance
of BF400 in this case as VD(0.5) is more susceptible to biasing, for the relatively larger
choice of alpha.

Figure 5.5: Results for the case when α = 0.1.

Figures 5.4 and 5.5 show the results. When α = 0.5 we see results similar to

those in section 5.3 and the previous chapters. We do see that we need to change k
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slightly to completely control 〈Rk〉, but the resulting bias is not huge.

When α = 0.1 we see substantial improvement over the previous section,

where we used the mean instead of the median. We can see from figure 5.5c that

we have to work significantly harder to counteract the bias in R̂k to control the

optimisation (than when α = 0.5). This effort pays off in the convergence results

(figure 5.5a) where we outperform both brute force algorithms and in the case of

BF10000 take less time to do it.

Thus we have (albeit briefly) shown that we can successfully control an op-

timisation that requires two quantiles. We have shown that this control is often

critical as the naive choice of brute force algorithm (which uses 1
r2
2

samples) rarely

finds the best solution.

5.5 Discussion

This chapter contains some interesting insights in how to extend the work from the

two preceding chapters (3 and 4) to cover a wider variety of use cases. We have

shown that the various estimators we have developed can be (reasonably) simply

extended to further use cases. We have also shown that whilst we could assume

that the statistics over all the samples are unbiased, this does not appear to be true

(section 5.3), especially towards the end of the optimisations.

This chapter helps to open the door to many aspects of possible future work.

As discussed in section 3.8, the work developed in this chapter should enable us to

solve SLA style questions. We also note that whilst we would struggle to extend

the estimators we original developed in chapter 3 to more than two quantiles, the

estimators developed in chapter 4 should allow us to consider every single risk point

should we so wish. This would mean we were able to optimise any given choice of

w(R) (section 5.2).

It is also possible that by using the estimators from chapter 4 we could find

new estimators for both d〈Rk〉
dk and d〈Rk〉

dn to provide even greater algorithmic control.

Finally, in this chapter we operated by adjusting both n and k to control

the quantiles we wished to optimise. One could imagine, for a choice of w(R)

which uses a large number of quantiles (for example the mean), using a form of

importance sampling for the estimation. The importance sampling would be based

on the estimators from chapter 4, as these provide access to the entire risk curve.

The notable achievement of this chapter was to take the work previously

developed and expand it to two quantiles. This required some mathematical work

to adapt the estimators previously used to the Markov chains induced by the new
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optimisation problem. The numerical results were highly encouraging and showed

a very strong performance for the new algorithm (section 5.4). This supported the

assumption, made when constructing equations 5.3 and 5.4, that the expectations

for 〈Rj〉 and 〈Rk〉 could be separated.

The hope of this chapter was to open the door to many avenues of future

research. Some of these are described above and some of the overarching themes

and extensions will be discussed in the final discussion in chapter 8.
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Chapter 6

Estimating Extreme Risk

6.1 Introduction

In this (and the following) chapter we delve into the estimation and understanding

of extreme risk.

There are a vast variety of problems in which the estimation of extreme risk

plays a critical role, from reducing the loss of network packets to finance. We provide

a new method for tackling this style of problem, with examples based in finance and

reverse stress testing (1.3).

We refer to, and then extend, ideas pre-existing in the physical, statistical,

computational and financial literatures. We aim to contrast, improve and transfer

these ideas amongst the fields involved.

In this chapter we consider the ideas of [Chan and Kroese, 2011] and expand

them to the Normal Inverse Gaussian distribution. This is a particularly relevant

strategy when there is an understanding of the key (underlying) stochastic vari-

able(s) driving a problem. To do this, we must first calculate the conditional prob-

abilities of the NIG distribution. Using these, we define an algorithm to calculate

the probabilities of extreme events quickly.

The central concept behind these ideas is that by understanding the asymp-

totic behaviour of a distribution, we can design an efficient sampling scheme. [Chan

and Kroese, 2011] apply this intuition to a bridge network and the normal copula

model used in finance for estimating credit risk.

This algorithm is applied to two distinct classes of problems, both of which

are taken directly from a financial context. Firstly, we calculate the probabilities of

extreme events in an example one dimensional NIG distribution. We then use the

same ideas to calculate the probability of an extreme return in a single stock. This
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is then expanded to calculating the likelihood of an extreme return for an entire

portfolio of stocks.

The chapter is concluded in section 6.6.

In the following chapter (7) we consider the challenges involved when there

may be no such understanding of the (underlying) stochastic variable(s) which drive

a given problem. With the developed tool kit we are able to investigate both expo-

nentially and algebraically tailed risk problems.

In the conclusion (chapter 8) we consider the impact of changing our focus.

We consider moving away from the estimation of the risk at a particular point in

state space to a more holistic approach. We discuss the implications of a method

that attempts to understand all the causes and drivers of the risk in a particular

problem.

6.2 Methodology

In this section we build on the ideas of [Chan and Kroese, 2011], as covered in section

2.5.3, in order to estimate the probabilities of extreme events for random variables

which are Normal Inverse Gaussian (NIG) distributed. This is most directly applied

to estimating the probability of a large loss of a financial stock.

By considering the functional form of the Normal Inverse Gaussian distri-

bution (2.3.6), we note that when γ < 0, (sufficiently) large negative values will

overwhelmingly be driven by extreme draws of W, rather than Z. This is because

for X to have an extreme value, we require either large W, or, alternatively, ex-

treme values of both W and Z. However, these scenarios do not have the same

chance of occurrence. The heavy tailed nature of the Inverse Gaussian distribution

(W) implies it has a much higher likelihood of taking a high value than the Normal

distribution (Z), during an extreme event. Furthermore, the heavy tail makes it

significantly more likely that only W is large, as opposed to both W and Z being

large, due to the rate of ’decay’ in the tail versus the growth in magnitude required.

We use this intuition to calculate the probabilities for rare events of random

variables which are NIG distributed (predominantly when γ < 0).

To allow us to do this we need to calculate the conditional probabilities

associated with the NIG distribution. These are P (X < x|z), where (fixed) z ∼ Z

and P (X < x|w), where (fixed) w ∼W.
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6.2.1 Conditional Probabilities

Proposition 6.2.1. If X ∼ GH1(λ, χ, ψ, µ, σ2, γ) (a one dimensional GH distribu-

tion), then

P (X < x|w) = Φ

(
x− µ− wγ√

wσ

)
.

Proof. This result is a trivial application of 2.3.7.

Proposition 6.2.2. If X ∼ GH1(λ, χ, ψ, µ, σ2, γ) (a one dimensional GH distribu-

tion), then when γ < 0,

P (X < x|z) =


1− FW (w−) if µ ≥ x

FW (w+) + 1− FW (w−) if µ < x, (σz)2 > 4γ(µ− x), z > 0

1µ<x otherwise

when γ = 0,

P (X < x|z) =


FW

((x−µ
σz

)2)
if x−µ

σz ≥ 0, z > 0

1− FW
((x−µ

σz

)2)
if x−µ

σz ≥ 0, z < 0

1µ<x otherwise

and when γ > 0,

P (X < x|z) =


FW (w+) if µ ≤ x

FW (w+)− FW (w−) if µ > x, (σz)2 > 4γ(µ− x), z < 0

1µ<x otherwise

where FW is the cumulative distribution function of W and

w+ =

(
−σz +

√
(σz)2 − 4γ(µ− x)

2γ

)2

and

w− =

(
−σz −

√
(σz)2 − 4γ(µ− x)

2γ

)2

.

Proof. We first consider the case when γ < 0.

Consider x = µ + γw + σ
√
wz. By rearranging and consequently using the
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quadratic formulae we can solve for
√
w,

x = µ+ γw + σ
√
wz

=⇒ (µ− x) + γw + σ
√
wz = 0

=⇒
√
w =

−σz ±
√

(σz)2 − 4γ(µ− x)

2γ
. (6.1)

For convenience, we define w+ and w− to be the two roots of 6.1, squared,

assuming they exist, as defined above (in the proposition).

Since we only want real solutions of w, we need only consider positive roots

of equation 6.1. For any positive roots to exist we require that

(σz)2 > 4γ(µ− x) (6.2)

and for an individual root to be positive we need (since γ < 0)

±
√

(σz)2 − 4γ(µ− x) < σz. (6.3)

We first consider the situations under which two positive roots of equation

6.1 will exist. For condition 6.3 to be satisfied for both roots, we require that z ≥ 0,

as one root is positive. However for there to be two unique roots we require z > 0, as

when z = 0 the solution will degenerate to one unique root. Furthermore, we require

4γ(µ−x) > 0, so that the positive root is less than σz (as
√
y2 − ε < y ⇐⇒ ε > 0,

∀y ∈ R). Given that γ < 0, this simplifies to −(µ − x) > 0, which rearranges

to x > µ. We also need to ensure condition 6.2 is true. Note that under these

conditions w+ < w−.

If there are two roots, µ+ γw+ σ
√
wz will be less than x when w < w+ and

when w > w−. This statement follows from the asymptotic behaviour of X with

respect to w. As w →∞, µ+ γw+ σ
√
wz → −∞ < x for any (fixed) choice of x or

z (when γ < 0).

This implies P (X < x|z) = FW (w+) + 1 − FW (w−) when µ < x, (σz)2 >

4γ(µ− x), z > 0.

We now consider the conditions under which only one positive root of equa-

tion 6.1 will exist. If only one root exists it must be w−. We can see this by

considering the opposing case and finding a contradiction; if only the root of equa-

tion 6.1 linked to w+ was positive we would have +
√

(σz)2 − 4γ(µ− x) ≤ σz <

−
√

(σz)2 − 4γ(µ− x), by condition 6.3, which is a contradiction for any choice of

z.
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For just w− to be positive we require 4γ(µ− x) ≤ 0 (from condition 6.3). If

this condition is true then condition 6.2 must also be satisfied. Given γ < 0 this

requires µ− x ≥ 0, or alternatively µ ≥ x.

By the same argument as for the two root case, µ+ γw + σ
√
wz will be less

than x when w > w−. This implies P (X < x|z) = 1− FW (w−) when µ ≥ x.

Finally we consider the case when there are zero roots (which must be every

case not covered above). This means that the outcome of condition (µ + γw +

σ
√
wz < x) must be constant for all choices of w. When w = 0, the condition

reduces to µ < x, implying P (X < X|z) = 1µ<x.

For the case when γ > 0 a symmetric argument applies (which we do not

provide here).

When γ = 0, we have x = µ+ σ
√
wz, which rearranges to

√
w = x−µ

σz . Since

we require
√
w > 0, we only have a solution when x−µ

σz > 0. Hence, the value of

P (X < x|z) depends on the sign of z (by the same arguments as for γ < 0). We

have

P (X < x|z) =


FW

((x−µ
σz

)2)
if x−µ

σz ≥ 0, z > 0

1− FW
((x−µ

σz

)2)
if x−µ

σz ≥ 0, z < 0

1µ<x otherwise.

6.2.2 Estimating Extreme Risk in the NIG Distribution

Using the conditional probabilities defined above, we can construct a scheme for

estimating P (X ≤ x), for choices of x which give a very low probability (conditional

on Z). The scheme works as follows:

1. Generate N samples from Z, denote them {zi}Ni=1.

2. Estimate P (X < x) using 1
NΣN

i=1P (X ≤ x|zi).

It should be clear that this estimator would converge to the correct value, given

sufficient N . However it is not an unbiased estimator as it will underweight the

probabilities that either both W and Z are extreme, or that Z << 0. However as

discussed in the introduction, when γ < 0 we expect very little contribution from

these cases. We will explore this hypothesis in the early results.

In the first example we also consider the opposite idea, where instead of using

P (X ≤ x|zi) we use P (X ≤ x|wi) and random samples from W (conditional on W).

We examine this in order to confirm our original intuition.
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6.2.3 Extending to d Dimensions

We can also apply the above method to a linear combination of the individual

dimensions of a d dimensional NIG distribution. This would allow us to apply the

method to a portfolio of stocks, rather than just a single stock. We can do this by

applying proposition 2.3.12 to compress this d dimensional problem down to one

dimension and hence apply the method above.

Mathematically, we consider the estimation of P (Y ≤ y) where

Y :=
∑d

i=1wiXi, X ∼ GHd(−1
2 , χ, ψ, µ,Σ, γ) and wi ∈ R>0 for 1 ≤ i ≤ d. We note

that by taking B = {w1, . . . , wd} we can apply proposition 2.3.12 to find that

Y ∼ GH1(−1
2 , χ, ψ,Bµ,BΣB′, Bγ). We can now apply the method in the previous

section (6.2.2) to calculate the probabilities of a large loss.

This method is numerically tested in the third example by applying it to a

simple basket of stocks.

In the following sections we apply this method (and hypothesis) to a simple

test case and then to two financial examples, as outlined in the introduction (6.1).

6.3 Simple Test Case

In this section we apply the algorithm, as outlined above (6.2.2), to a simple one

dimensional case. We choose a standard NIG distribution and vary the choice of γ

so we can observe the performance of the algorithm in different contexts.

For this simple case we pick an arbitrary set of parameters which cover the

different behaviours and probabilities of the NIG class of distributions. We choose

χ = 1
2 , ψ = 2, µ = 0, σ = 1 and γ ∈ {−5, 0, 5}. The probability densities for the

different γ are sketched in figure 6.1. It is possible to see the significant impact γ

has on the skewness of the random variable W. It is this skewness that we aim to

exploit in the algorithm.

Given these example distributions, we calculate a range of different likeli-

hoods for a set of given values. These values are (empirically) chosen to cover a

wide range of probabilities.

Each of the three estimation techniques (standard Monte Carlo and the meth-

ods conditional on Z and W respectively) runs for 1, 000 samples and the results

are then compared to the true likelihoods, as calculated using a significantly longer

Monte Carlo simulation. The simulations were performed using MATLAB.

We present the results in table 6.1. We show both the true error and an esti-

mation of the statistical error for each method. The statistical error was calculated
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Figure 6.1: The Normal Inverse Gaussian probability density function, f(x), for a
range of γ. The remaining parameters are constant, with χ = 1

2 , ψ = 2, µ = 0, σ = 1.
It is the heavy skewness, which γ induces, that we take advantage of in our algorithm.
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Figure 6.2: The new method demonstrates significantly faster convergence for γ ≤ 0.
The graph shows how the error in the likelihood estimate (l − l̃) changes for each
method as the number of samples increases (for one run). The standard error on
the estimator is also plotted. The NIG parameters are constant with χ = 1

2 , ψ =
2, µ = 0, σ = 1 and γ = −5.
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v l
Monte Carlo Conditional Monte Carlo (on Z) Conditional Monte Carlo (on W)

l − l̃ SE l − l̃ SE l − l̃ SE

-1.0 7.10× 10−1 7.64× 10−3 5.10× 10−3 −3.42× 10−4 1.52× 10−3 −6.02× 10−3 8.19× 10−3

-10.0 2.25× 10−2 1.15× 10−3 1.56× 10−3 −5.06× 10−5 8.14× 10−5 −5.97× 10−3 4.62× 10−3

-20.0 1.41× 10−3 1.09× 10−4 3.99× 10−4 −8.27× 10−7 6.60× 10−6 −9.79× 10−4 1.32× 10−3

-30.0 1.19× 10−4 −1.81× 10−4 1.70× 10−4 −1.12× 10−6 6.50× 10−7 1.19× 10−4 1.07× 10−13

-40.0 1.14× 10−5 ? ? 2.86× 10−8 6.66× 10−8 1.14× 10−5 3.54× 10−12

-50.0 1.19× 10−6 ? ? 7.75× 10−9 7.63× 10−9 1.19× 10−6 8.36× 10−27

(a) γ = −5

v l
Monte Carlo Conditional Monte Carlo (on Z) Conditional Monte Carlo (on W)

l − l̃ SE l − l̃ SE l − l̃ SE

0.0 5.00× 10−1 9.70× 10−3 4.30× 10−3 8.90× 10−3 4.89× 10−3 8.92× 10−7 0
-1.0 6.55× 10−2 2.25× 10−3 2.53× 10−3 −9.63× 10−4 1.40× 10−3 1.19× 10−3 2.04× 10−3

-2.0 8.39× 10−3 −1.91× 10−3 1.08× 10−3 1.58× 10−4 3.68× 10−4 7.61× 10−4 6.31× 10−4

-4.0 2.19× 10−4 −1.81× 10−4 2.41× 10−4 −2.11× 10−5 2.50× 10−5 −7.57× 10−5 8.09× 10−5

-6.0 7.61× 10−6 ? ? 1.11× 10−6 1.38× 10−6 −1.10× 10−5 1.55× 10−5

-8.0 3.02× 10−7 ? ? 8.60× 10−8 7.98× 10−8 −7.05× 10−7 7.41× 10−7

(b) γ = 0

[Table Continued Overleaf]
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v l
Monte Carlo Conditional Monte Carlo (on Z) Conditional Monte Carlo (on W)

l − l̃ SE l − l̃ SE l − l̃ SE

0.5 1.15× 10−1 −5.79× 10−3 2.84× 10−3 −8.04× 10−4 1.27× 10−3 −2.14× 10−3 5.53× 10−3

0.2 3.87× 10−2 1.51× 10−3 1.70× 10−3 2.19× 10−3 7.53× 10−4 −6.45× 10−4 2.23× 10−3

-0.1 6.59× 10−3 5.88× 10−4 7.14× 10−4 2.08× 10−4 4.06× 10−4 −5.80× 10−5 3.65× 10−4

-0.4 5.70× 10−4 −2.30× 10−4 2.98× 10−4 6.44× 10−5 1.33× 10−4 3.36× 10−6 2.18× 10−5

-0.7 3.24× 10−5 ? ? ? ? 5.53× 10−7 9.86× 10−7

-1.0 1.52× 10−6 ? ? ? ? −1.12× 10−7 4.57× 10−8

(c) γ = 5

Table 6.1: Performance of the proposed algorithm (Conditional Monte Carlo (on W)) versus regular Monte Carlo sampling. The
algorithm performs very strongly for all likelihoods when γ = −5 and smaller likelihoods when γ ≥ 0. Results are also provided
for Conditional Monte Carlo (on Z) which performs very poorly (except when γ > 0). These results are as predicted in section
6.2.2. Results marked with a ? indicate the algorithm failed to calculate a prediction. l is the true likelihood and l̂ is the likelihood
estimate found using each method. SE is the standard error as predicted by the method.
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using the standard error ( σ√
50

), where the variance (σ2) was calculated by bucketing

the individual estimates into fifty buckets.

Table 6.1a (γ = −5) shows that the new method (Conditional Monte Carlo

(on Z)) significantly outperforms regular Monte Carlo for all likelihoods considered

(71% to 10−6%). The method generally reaches a result that is up to a thousand

times more accurate. (Note that for likelihoods smaller than 10−4 regular Monte

Carlo fails to get a reasonable estimate.) The improved accuracy implies a much

faster convergence. Figure 6.2 supports this significantly faster convergence (when

γ = −5). In this example Conditional Monte Carlo (on Z) has converged within

500 samples, whereas regular Monte Carlo is still converging after 5000 samples.

Table 6.1b (γ = 0) shows similar results to the previous case when v ≤ −1 (or,

alternatively, when the probability is less then 6.5%). This suggests that the method

reduces in effectiveness as γ increases but increases in effectiveness as the probability

reduces. It is surprising that the method performs so well in this situation. At γ = 0

the asymptotic behaviour of the distribution is different compared to when γ < 0

and so our original intuition into the problem does not hold.

Table 6.1c (γ = 5) shows that the new method has a similar performance to

regular Monte Carlo for all likelihoods (both methods fail to produce any reasonable

results for v < −0.1). This is as expected as in this case the lower risk tail should

be dominated by the normal distribution.

In contrast, the ‘mirrored’ method (Conditional Monte Carlo (on W)) per-

forms poorly for γ ≤ 0, as expected from the intuition provided in the previous

section (6.2). Its strong performance when γ = 5 is more surprising. We do not

further consider CMC on W in later sections as it becomes incalculable in higher

dimensional problems.

Finally, we note that for all choices of γ the true error is consistently bounded

by the statistical errors for the Conditional Monte Carlo (on Z) method. This implies

that there is very low bias in the estimator for any choice of γ. The same cannot

always be said for the Conditional Monte Carlo (on W) method. In this case there

is clearly a systematic error at work, making it very hard to predict the true error

when this method is used.

These empirical results largely support the intuition provided in section 6.2.

They show that the method is particularly effective for γ ≤ 0 but less effective for

positive γ. Additionally, the results have shown that the quality of the estimation

at worst matches that of regular Monte Carlo and that the standard error is a good

estimator for the true error.

In this section we have shown that the method is effective in a simple example.
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In later sections we will apply this method to two financial examples.

6.4 Large Single Stock Loss

As highlighted in the introduction, we now apply the Conditional Monte Carlo

method to a selection of different stocks.

Stock returns can be calculated both logarithmically (Xt) and by a simple

ratio (Yt). For a stock with historical prices St, t ≥ 0, we can consider either

Xt = logSt − logSt−1 or

Yt =
St − St−1

St−1
.

A significant number of authors prefer Xt as it allows for continuous compounding

(i.e. for a period of n then the sum is simply Xt = logSt+n−1 − logSt−1). We also

note that both methods of calculating the rate of return are actually very similar

in value (Yt − Xt = 1
2X

2
t + 1

6X
3
t + . . . where Xt is typically of order 10−2 orders)

[Enerlein and Keller, 1995].

We use Yt in the example below. Although it would be possible to use either

return series in the single stock case, it is much simpler to apply Yt in the portfolio

example in the next section.

For data fitting we use the Multi Cycle, Expectation, Conditional Expecta-

tion (MCECM) algorithm as implemented in the R package ghyp [Breymann and

Luthi, 2013]. More information on this algorithm can be found in [McNiel et al.,

2005].

We consider the stocks of three major global banks; Goldman Sachs (GS),

Morgan Stanley (MS) and Credit Suisse (CS). We use stock return data from 2010

to fit our NIG distribution and then run the method to calculate the various risks.

We make reference to the Monte Carlo case in our comparisons and leave questions

of the validity of the NIG distribution to stocks returns at different probability levels

to other authors, for example [Bingham et al., 2001].

The parameters resulting from the data fitting to the NIG distribution can

be found in table 6.2. We then calculate the probabilities of various returns on these

distributions in tables 6.3, 6.4 and 6.5. As in the previous example, we run each

method for 1, 000 samples and the results are compared to the true likelihoods, as

calculated using a significantly longer Monte Carlo simulation. The simulations were

performed using MATLAB. The results are displayed in the same form as previously.

In the results v represents a percentage return. For example, the chance of
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Stock χ ψ µ σ γ

Goldman Sachs (GS) 1.16 1.16 1.79× 10−3 1.85× 10−2 −1.61× 10−3

Morgan Stanley (MS) 8.71 8.71 −2.69× 10−3 2.10× 10−2 2.58× 10−3

Credit Suisse (CS) 1.15 1.15 2.36× 10−2 2.36× 10−2 −3.25× 10−3

Table 6.2: The parameters (of the NIG distribution) resulting from the data fitting
to the various stocks using the MCECM algorithm [McNiel et al., 2005] and 2010
return data. We note we have a variety of γ values.

v l
Monte Carlo CMC (on Z)

l − l̃ SE l − l̃ SE

0.01 7.36× 10−1 3.70× 10−3 1.52× 10−2 1.88× 10−2 1.49× 10−2

-0.02 1.13× 10−1 −6.12× 10−3 1.09× 10−2 2.71× 10−3 6.95× 10−3

-0.05 1.12× 10−2 2.22× 10−3 2.74× 10−3 1.70× 10−3 1.17× 10−3

-0.08 1.35× 10−3 −6.46× 10−4 1.40× 10−3 −1.90× 10−4 2.90× 10−4

-0.11 1.85× 10−4 ? ? 3.03× 10−5 3.80× 10−5

-0.14 2.72× 10−5 ? ? 3.72× 10−6 1.18× 10−5

Table 6.3: The results of the likelihood estimation for Goldman Sachs. Conditional
Monte Carlo (CMC) shows an order of magnitude improvement verses Monte Carlo
for probabilities less than 1%. Results marked with a ? indicate the algorithm failed
to calculate a prediction.

the GS stock losing at least 2% of its value is approximately 11%.

The results for the financial stocks echo the results in the simple example

(6.3). For GS and CS (where γ ≤ 0) the Conditional Monte Carlo provides improved

results over regular Monte Carlo, generally with an order of magnitude improvement

in both the estimation and standard error for likelihoods (l) less than 1%. For

greater cumulative probabilities Conditional Monte Carlo matches the performance

of traditional Monte Carlo.

For MS (where γ > 0) we see less encouraging results. The method has

similar performance to regular Monte Carlo, however for more extreme events the

standard error reports a much higher accuracy than has actually been obtained

(although this is also true of regular Monte Carlo). This implies that there could

be a stronger systematic basis at work for this case. Despite this, the method still

shows there is at least some probability of the event occurring whereas regular Monte

Carlo appears to show with absolute certainty the event would never occur (and has

a standard error of 0).

In this example we have shown that the method is effective in a real situation,
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v l
Monte Carlo Conditional Monte Carlo (on Z)

l − l̃ SE l − l̃ SE

0.01 6.93× 10−1 −1.18× 10−2 1.66× 10−2 −2.23× 10−2 1.60× 10−2

-0.02 1.65× 10−1 −1.09× 10−2 1.32× 10−2 −7.95× 10−3 1.29× 10−2

-0.05 9.85× 10−3 8.47× 10−4 3.41× 10−3 3.35× 10−3 1.71× 10−3

-0.08 2.49× 10−4 ? ? 2.00× 10−4 2.78× 10−5

-0.11 4.21× 10−6 ? ? 4.14× 10−6 3.94× 10−8

-0.14 5.94× 10−8 ? ? 5.94× 10−8 2.34× 10−17

Table 6.4: The results of the likelihood estimation for Morgan Stanley. Conditional
Monte Carlo (CMC) has similar performance to that of Monte Carlo. However it
does indicate there is some probability weight for lower probability events, where
Monte Carlo shows no weight. Results marked with a ? indicate the algorithm failed
to calculate a prediction.

v l
Monte Carlo Conditional Monte Carlo (on Z)

l − l̃ SE l − l̃ SE

-0.02 1.66× 10−1 1.79× 10−2 9.58× 10−3 1.01× 10−2 8.72× 10−3

-0.05 2.79× 10−2 8.89× 10−4 4.78× 10−3 −1.17× 10−3 3.05× 10−3

-0.08 5.32× 10−3 −6.79× 10−4 2.32× 10−3 −6.14× 10−5 7.97× 10−4

-0.11 1.12× 10−3 −1.88× 10−3 1.70× 10−3 −4.14× 10−5 2.10× 10−4

-0.14 2.54× 10−4 −7.46× 10−4 1.00× 10−3 −3.23× 10−5 8.80× 10−5

-0.17 6.01× 10−5 ? ? −4.28× 10−6 2.02× 10−5

Table 6.5: The results of the likelihood estimation for Credit Suisse. Conditional
Monte Carlo (CMC) shows an order of magnitude improvement verses Monte Carlo
for probabilities less than 1%. Results marked with a ? indicate the algorithm failed
to calculate a prediction.

when γ ≤ 0. We have, however, found that there may be some concerns for the

method when γ > 0. This is to be expected given the original intuition that underlies

the method. In the final example we consider a portfolio that contains all three

stocks.

6.5 Large Portfolio Loss

In this final example we show the method can be applied to a portfolio (or basket)

of stocks. We use the same data as in the previous example (6.4). We fit the returns

of the three stocks to a multivariate NIG distribution using the MCECM algorithm

and then apply the ideas from section 6.2.3.
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v l
Monte Carlo CMC (on Z)

l − l̃ SE l − l̃ SE

0.00 4.28× 10−1 1.89× 10−2 1.45× 10−2 −6.18× 10−3 4.38× 10−3

-0.01 9.38× 10−4 −1.06× 10−3 1.40× 10−3 1.53× 10−5 1.41× 10−5

-0.02 7.48× 10−6 ? ? −2.29× 10−7 2.26× 10−7

-0.03 8.05× 10−8 ? ? 1.60× 10−9 2.29× 10−9

-0.04 1.00× 10−9 ? ? −2.52× 10−11 3.35× 10−11

Table 6.6: The results for a portfolio consisting of 25% of GS stock, 25% of MS Stock
and 50% of CS Stock. CMC outperforms MC by one or two orders of magnitude for
all the probabilities tested. Results marked with a ? indicate the algorithm failed
to calculate a prediction.

We consider a portfolio which contains 25% of GS stock, 25% of MS Stock and

50% of CS Stock (so that there is an even stock weighting between global regions).

By fitting the data to a 3-dimensional NIG distribution and applying the relevant

transformations from proposition 2.3.12 we get a one dimensional NIG distribution

for the whole portfolio, with parameters χ = 1.81, ψ = 1.81, µ = 1.21 × 10−3,

σ = 3.92× 10−4 and γ = −1.44× 10−3.

Running both Conditional Monte Carlo (CMC) and Monte Carlo (MC) for

1, 000 iterations gives the results shown in table 6.6. We see very impressive results

for all choices of v. CMC outperforms MC by one or two orders of magnitude for

all the probabilities tested. We note that since the portfolio overall had negative

gamma we would expect strong results.

In this (final) example we have further demonstrated both the effectiveness

of the method and shown its possible application to calculating portfolio returns.

6.6 Discussion

In this chapter we have demonstrated the effectiveness of our new method (under

certain conditions) for calculating the likelihoods of rare events modelled using a

Normal Inverse Gaussian (NIG) distribution. We have further applied this method

to two separate financial situations. We have consistently shown that when γ ≤ 0

an adapted method from that of [Chan and Kroese, 2011] shows, at worst, an order

of magnitude of improvement over regular Monte Carlo for rare events.

We believe the extension of this method to the NIG distribution and the

application to a financial portfolio to both be new and novel results.

It would be an interesting extension to consider logarithmic stock returns.
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This is relatively simple for a single stock, but would be more challenging for the

portfolio case as it would require using a numerical solver. This is because we would

not be able to use proposition 2.3.12 and would need to solve an expression of the

form
∑n

i=1 e
µi+γiW+zi for W in order to calculate the conditional probabilities.

In later chapters we will begin to challenge the assumptions made in this

chapter and consider alternative ideas for calculating the likelihood of extreme

events. In this chapter we relied heavily on both the availability of the cumula-

tive distribution function for the Inverse Gaussian distribution (W) and on our

intuition informing us of the dominant variable driving the system. These assump-

tions may not always be valid and hence we dispose of the first assumption in the

following chapter (7) and both assumptions when we discuss the ideas further in

chapter 8.
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Chapter 7

Estimating Extreme Risk:

Thermal Integration

7.1 Introduction

In this set of chapters we are considering the estimation and understanding of ex-

treme risk.

In the previous chapter (6) we developed an effective method for calculating

the likelihood of rare events in Normal Inverse Gaussian distributed random vari-

ables. This method required knowledge of the cumulative distribution function and

an intuition into the driving variables of the distribution.

In this chapter we consider the challenges involved when we do not have

a relevant cumulative distribution function available. We take the ideas used in

thermal integration (in physics) and adapt them to the problem at hand. With the

developed tools we are able to explore a wider set of financial problems than in the

previous chapter.

As discussed in section 2.5.5, we do not consider extreme value theory to be

applicable to the style of problem we wish to solve in this chapter and hence do not

discuss it further.

In the conclusion (chapter 8), we will consider a change of focus. We will

consider taking a more holistic approach in an effort to understand the causes and

drivers of the risk in a given problem. This should allow us to drop our second

key assumption; we would no longer need to have an understanding of the variables

driving a given problem.

In this chapter we estimate the probability of certain extreme events by

building up a sequence of conditional probability estimates. These estimates are
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then combined to give an overall estimate of the probability. This, at least in theory,

should provide an improved estimate compared to a single, large scale, simulation.

The fundamental idea is that if we can efficiently estimate these conditional

probability estimates we should be able to design an algorithm which requiresO(p−1)

samples instead of O(p−2) samples that a regular Monte Carlo chain would require

to estimate the likelihood of an event with probability p of occurring.

However, as with most heuristic methods, there is a multitude of different

options to consider. For simplicity, we construct and consequently evaluate just two

such methods.

We will show that both of these methods are more effective than regular

Monte Carlo, both in a simple test problem and in several real world financial

problems.

7.2 Methodology

In this section we extend the ideas of thermal integration (see 2.5.4) to a method

of estimating the likelihood of rare events of Generalised Hyperbolic distributed

random variables.

In this chapter we have assumed we no longer have an analytic inverse cumu-

lative distribution function for the mean term of the normal mean-variance mixture

distribution (W) and must therefore take a different approach to the previous chap-

ter. In the last chapter we used the c.d.f. to design a scheme by which we did not

need to randomly sample from the ‘mean term’ (W) but could simply estimate the

likelihoods using normal samples (Z). By contrast, in this chapter we consider the

use of importance sampling to drive our sampler deep into the risk tail and use the

resulting samples to estimate the probability of rare events efficiently.

Consider a random variable, Y, with state space ΩY and an associated value

function which maps an element y ∈ ΩY to the real line, V (y) : Ω→ R. We wish to

calculate the probability of a relatively rare value of V (Y) occurring, P (V (Y) < v).

Note that in this case ΩY may be uncountable. This probability can be trivially

expanded to

P (V < v) = P (V < v|V < vn−1)

(
n−1∏
i=1

P (V < vi|V < vi−1)

)
P (V < v0)

where V = V (Y) and {vi}n−1
i=0 ∈ R is a decreasing sequence, with vn−1 > v. We can

consider P (V < v|V < vn−1) to be the estimation term and(∏n−1
i=1 P (V < vi|V < vi−1)

)
P (V < v0) to be the renormalizing term to the true
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probability distribution, as given by Y. We hypothesise that this separation of the

problem should allow for a more effective estimation of the likelihood of rare events.

Assuming we can estimate the conditional probabilities, as above, in a more

effective way than just taking samples from the whole distribution, there should be

a significant performance increase in likelihood estimation for extreme events using

this method. We consider two such methods for the Generalised Hyperbolic class of

distributions.

Our aim is to construct importance samplers which can estimate the condi-

tional probabilities outlined above, e.g. P (V < v2|V < v1), with O(100) samples

as opposed to the O(P (V < v2)−2) usually required by regular Monte Carlo ap-

proaches. For sufficiently rare events, this should lead to a very significant perfor-

mance increase. These performance estimates are detailed in section 7.2.2.

Both our estimation methods rely on a similar intuition to the previous

chapter for Normal Inverse Gaussian distributions. By considering the functional

form of the Generalised Hyperbolic distributions (2.3.6), we note that when γ < 0

(sufficiently) large negative values must be driven by extreme draws of W, rather

than Z. Further discussion of this intuition can be found in section 6.2.

7.2.1 The Algorithm

We use the same algorithm for both methods. For a target GH distributed random

variable, X, we estimate P (V < v) as below:

1. Generate N samples from X. Estimate the q0 quantile of V (X) from the

samples and set v0 equal to it (i.e. P (V < v0) = q0).

2. Set i = 1.

3. If i > imax go to step 8 or if vi < v go to step 7.

4. Draw N samples from an appropriate importance sampler, Xi (two samplers

are given below). Calculate the qi quantile of V (X) from the samples and set

vi equal to it (i.e. PXi
(V < vi) = qi).

5. Estimate P (V < vi|V < vi−1) by reweighing the samples (as in regular impor-

tance sampling).

6. Set i = i+ 1 and go to step 3.

7. If i < imax take an additional N(imax − i)/i samples for each Xi and update

the conditional probability estimates.
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8. Estimate P (V < v) using

P (V < v|V < vi−1)

i−1∏
j=1

P (V < vj |V < vj−1)

P (V < v0).

N, imax ∈ N and qi ∀0 ≤ i ≤ imax are parameters of the method.

As previously discussed, assuming sufficiently good importance samplers we

should significantly outperform regular Monte Carlo when estimating extreme risks,

particularly when γ > 0.

We now consider the potential performance increase from such a method,

before considering two different possible importance samples for the generalised

hyperbolic distribution.

7.2.2 Expected Performance

We can predict the expected performance increase by estimating the number of

samples, N , required by both regular Monte Carlo and the proposed method to

estimate a given probability, p, with a fixed level of accuracy, a.

For regular Monte Carlo we can assume that the samples follow a binomial

distribution with probability p. This should lead to a probability estimate of p̂ =
µ̂
N ±

σ̂
N . Substituting for µ̂ (estimated mean) and σ̂ (estimated standard deviation)

using standard binomial statistics and rearranging gives p̂ = p(1 ± 1√
Np

). Thus,

to achieve an accuracy of a% we require N = O
(

1
a2p

)
. We further note that in

practice N = O
(

1
p2

)
is often used.

In contrast, for the proposed method we assume that each iteration need

only consider probabilities of 10%. This means we require − log10(p) iterations.

Furthermore, any errors in the estimation will compound from the individual it-

erations. Consequently if we require an overall accuracy of a%, each individual

iteration requires an accuracy of − log10(p)
√

(a+ 1)− 1. Assuming each iteration uses

the same method of calculating the number of samples required as regular Monte

Carlo, then the method requires N = O

(
− log10(p) 10(

− log10(p)
√

(a+1)−1
)2

)
samples,

or N = O (− log10(p)100) if we use the common convention for regular Monte Carlo.

To put this in perspective, we should only require O(102) to O(104) samples

to estimate a probability of 0.1%, within a 10% accuracy, whereas a standard Monte

Carlo approach would require between O(105) to O(106) samples. Figure 7.1 shows

the number of samples required for both methods for a variety of probabilities.
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Figure 7.1: An estimate of the number of samples required for regular Monte Carlo
and the newly proposed algorithm for a variety of different probabilities. Significant
improvement is seen for p ≤ 10−3.

We now consider two different importance sampling techniques. We con-

sider replacing the Generalised Inverse Gaussian (GIG) distribution with both a log

normal distribution and an alternative GIG distribution.

7.2.3 Sampler: Log Normal Distribution

We define Xi to be a Mean-Variance model where Wi has a log normal distribution

(instead of the GIG distribution in the GH case). The log normal distribution was

chosen as it matches the requirements of W in the definition (positive and scalar

valued) and is heavy tailed so it should exhibit similar behaviour.

It is worth noting that it is also much cheaper (computationally) to produce

log normal samples as compared to generating GIG samples. (A log normal sampler

requires approximately half the amount of uniform random inputs compared to a

GIG sampler.)

The new importance sampler was designed to sample a range of values that

would cover the previous cut off (vi−1) in one tail and significantly rarer outcomes

in the opposite tail.

The parameters for the log normal distribution used for sampling were cal-

culated using the mean and variance of W in the tail of the previous sample, with

respect to the original distribution. Mathematically, consider p0(w) to be the prob-
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ability density function (p.d.f.) of W of the original distribution, X0, and pi(w) to

be the p.d.f.s of W in the various importance samplers and associated distributions,

Xi, used by the algorithm. We then have that

m′i =
〈
wi−11V (xi−1)<vi−1

〉
X0

and

v2
i = V arX0

(
wi−11V (xi−1)<vi−1

)
where 〈−〉X0

and V arX0(−) are calculated with respect to X0 . This is estimated by

appropriately reweighting the samples drawn from the importance sampler, using

the relation 〈w〉X0
=
〈
p0(w)
pi(w)

〉
Xi

.

The mean is then further shifted into the tail using the variance (mi =

m′i + 2v2
i ). Both m and vi can then be converted into the log normal parameters

µi = log

 m2
i√

vi +m2
i

 and (7.1)

σi =

√
log

(
vi

m2
i + 1

)
. (7.2)

The resulting Mean-Variance distribution (Xi), which is based on Wi, should

cover a wide range of values. Our intuition that large W leads to rare events suggests

that one tail will contain values around vi−1 and the other tail significantly rarer

events (with a coverage of approximately 4σ).

This sampler was used, in combination with the algorithm above (7.2.1), in

a variety of situations, including some real world examples. The results section of

this chapter contains further information.

7.2.4 Sampler: Chi Adjustment

This sampler used a Generalised Hyperbolic distribution as our importance sampler

with an adjusted choice of χ to shift the mean. All other parameters remained the

same.

For each iteration we estimated the expected value of W which occurred in

the tail of the previous sampler (when V < vi−1). This is m′i in the description above

(equation 7.1). We then numerically solved for χi such that m′i = 〈Wi(λ, χi, ψ)〉,
using the expression in proposition 2.3.13. Given m′i is always greater than zero we

can be confident such a χi exists.

This sampler was tested against a range of scenarios when used with the

algorithm outlined above. These examples can be seen in the results section.
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7.2.5 Algorithm Parameters

In order to compare the methods across a range of situations, one set of parameters

(N , imax and qi for 1 ≤ i ≤ imax) were chosen for all the different test cases. This

also allowed us to ensure that the methods were not optimised for each specific test

case.

We gave each sampling method a fixed budget of 1, 250 samples. They could

use up to 5 iterations (imax = 4, N = 250). qi was set to 0.1 for all i. The methods

were compared to a Monte Carlo estimate that also used 1, 250 samples.

The results from 50 runs were then averaged and the standard error calcu-

lated. We would expect regular Monte Carlo to perform well for probabilities as

small as 10−3 but begin to suffer after this. As outlined above our two sampling

methods should be able to estimate significantly smaller probabilities.

7.3 Example 1: 1D NIG Distribution

In this section we apply the algorithm, with the two samplers, to a simple one

dimensional test problem. We choose the same standard NIG distribution as used

in the previous chapter (6.3) so that the results are comparable. The probability

densities for each of the cases considered can be seen in figure 6.1.

As in previous numerical examples, the values considered were empirically

selected to cover a wide range of probabilities. All the simulations were performed

in MATLAB.

The results are presented in table 7.1. The algorithm parameters used are

as described in section 7.2.5.

Table 7.1a (γ = −5) shows a solid performance for both methods. The

Chi adjustment method however performs best. It shows an order of magnitude

improvement for probabilities smaller than 10−3 compared to regular Monte Carlo.

In contrast, the log-normal sampler struggles to outperform regular Monte Carlo for

low probabilities. For probabilities smaller than 10−5 regular Monte Carlo fails to

get any estimate of the risk. This gives the opportunity for both samplers to come

into their own. They achieve reasonable estimates for probabilities as small as 10−9.

Table 7.1b (γ = 0) shows a reasonable performance for both methods. The

Chi adjustment method however maintains its increased performance. The perfor-

mance of both methods is not quite as good as regular Monte Carlo for probabilities

greater than 10−5, although the Chi adjustment method mostly manages to match

Monte Carlo. However, as before, for probabilities smaller than 10−5 regular Monte

Carlo fails to get any estimate of the risk whereas both samplers at least obtain an
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v l
Monte Carlo Thermal Integration: Log N Thermal Integration: Chi

l − l̃ SE l − l̃ SE l − l̃ SE

-10.00 1.16× 10−1 1.09× 10−3 1.15× 10−3 −2.98× 10−4 1.27× 10−3 2.23× 10−3 1.12× 10−3

-20.00 1.30× 10−2 −2.73× 10−4 4.32× 10−4 −8.34× 10−3 1.81× 10−3 2.99× 10−4 3.36× 10−4

-30.00 1.56× 10−3 7.80× 10−6 1.57× 10−4 −1.09× 10−3 2.65× 10−4 1.17× 10−5 7.19× 10−5

-40.00 1.95× 10−4 3.48× 10−5 4.57× 10−5 −2.01× 10−4 1.52× 10−4 6.93× 10−6 8.64× 10−6

-50.00 2.49× 10−5 8.89× 10−6 1.60× 10−5 −6.86× 10−5 3.26× 10−5 1.09× 10−7 2.02× 10−6

-60.00 3.23× 10−6 ? ? −1.06× 10−6 8.80× 10−7 1.05× 10−7 2.03× 10−7

-70.00 4.23× 10−7 ? ? −1.67× 10−6 1.26× 10−6 −1.89× 10−8 3.22× 10−8

-80.00 5.66× 10−8 ? ? −5.82× 10−8 5.35× 10−8 −5.44× 10−9 5.66× 10−9

-90.00 7.59× 10−9 ? ? −1.45× 10−8 8.82× 10−9 −1.21× 10−9 7.11× 10−10

(a) γ = −5

v l
Monte Carlo Thermal Integration: Log N Thermal Integration: Chi

l − l̃ SE l − l̃ SE l − l̃ SE

-1.00 1.28× 10−1 1.17× 10−3 1.24× 10−3 3.06× 10−3 1.37× 10−3 −4.10× 10−5 1.43× 10−3

-2.00 2.77× 10−2 3.00× 10−4 6.75× 10−4 −1.68× 10−2 2.83× 10−3 −3.17× 10−3 1.60× 10−3

-3.00 6.04× 10−3 −6.31× 10−4 3.30× 10−4 −1.04× 10−2 1.57× 10−3 −8.04× 10−4 7.09× 10−4

-5.00 3.00× 10−4 −1.97× 10−5 6.86× 10−5 −3.98× 10−3 6.97× 10−4 −3.24× 10−4 1.17× 10−4

-6.00 6.81× 10−5 4.12× 10−6 3.10× 10−5 −1.41× 10−3 2.70× 10−4 −1.03× 10−4 7.61× 10−5

-8.00 3.58× 10−6 ? ? −2.87× 10−4 9.24× 10−5 −2.50× 10−6 3.58× 10−6

-9.00 8.31× 10−7 ? ? −1.03× 10−4 4.49× 10−5 −8.64× 10−7 1.19× 10−6

(b) γ = 0

[Table Continued Overleaf]
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v l
Monte Carlo Thermal Integration: Log N Thermal Integration: Chi

l − l̃ SE l − l̃ SE l − l̃ SE

0.50 3.07× 10−2 −3.66× 10−4 6.15× 10−4 6.05× 10−4 8.04× 10−4 −2.48× 10−4 9.52× 10−4

0.20 9.55× 10−3 1.30× 10−4 3.35× 10−4 1.25× 10−3 3.85× 10−4 −4.26× 10−4 4.08× 10−4

-0.20 8.37× 10−4 5.27× 10−5 1.24× 10−4 1.50× 10−4 9.97× 10−5 1.42× 10−4 1.28× 10−4

-0.50 7.39× 10−5 5.79× 10−5 1.60× 10−5 6.73× 10−5 4.63× 10−6 1.75× 10−5 3.99× 10−5

-0.80 4.83× 10−6 ? ? ? ? ? ?
-1.00 7.16× 10−7 ? ? ? ? ? ?

(c) γ = 5

Table 7.1: Performance of the adapted thermal integration algorithm for the two samplers. Results marked with a ? indicate the
algorithm failed to calculate a prediction. Both algorithms performed very well compared to regular Monte Carlo for γ ≤ 0. For
γ = 5 the new methods estimate probabilities which are up to 10−4 times smaller in the cases where regular Monte Carlo has
failed to generate any estimate. The closer fit of the Adjusted Chi sampler has led it to outperform the log normal sample by
one or two orders of magnitude in most cases. l is the true likelihood and l̂ is the likelihood estimate found using each method.
SE is the standard error as predicted by the method.
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estimate. The log-normal method has significant relative errors compared to the

true value.

Table 7.1c (γ = 5) show similar performance to Monte Carlo for all likeli-

hoods. This supports the hypothesis that our method is most effective when γ ≤ 0.

For all choices of γ the standard error provides a reasonable estimate of the

actual error. This is encouraging as it suggests there is no (major) systematic error

in the methodology.

Overall, these empirical results are very encouraging. The areas where we

would expect strong performance have shown a very clear performance jump over

regular Monte Carlo. We still struggle to beat Monte Carlo when γ > 0, as predicted.

When γ > 0 both distributions have a significant impact on rare events and so we

can no longer disregard the normal distribution.

The Chi adjustment method has generally matched or exceeded regular

Monte Carlo. This means it could safely be used anywhere we use Monte Carlo

without performance degradation concerns.

The log-normal sampler doesn’t perform as well and in some cases is worse

than Monte Carlo. It is worth reiterating that the log normal sampler uses signif-

icantly less compute time to generate samples. However the overall impact of this

may be minimal if the majority of the simulation time is spent evaluating V .

In later sections we will apply these methods to real world financial situations.

7.4 Example 2: Financial Stocks (one dimension)

In this section we consider three individual stocks. In contrast to the last chapter

we consider logarithmic returns for our stocks. This is because we no longer require

V (x) to be a linear combination of the dimensions of the sample, in fact V (x) can

now take any functional form.

At this stage we also expand our horizon beyond NIG distributions. We fit

the same three stocks as before to the Generalised Hyperbolic distribution, which

is a significantly larger class of distributions and allows for an additional degree of

freedom. The stocks are fitted using the same algorithm as before (MCECM). More

information can be found in section 6.4. As established in the previous chapter,

this is a well known and utilised fitting method for this type of distribution and has

been used extensively in the finance literature. See [Breymann and Luthi, 2013] and

[McNiel et al., 2005] for further information.

Stock data from 2010 is used to fit and estimate risk on three banks: Goldman

Sachs (GS), Morgan Stanley (MS) and Credit Suisse (CS). As before, our comparison

132



Stock χ ψ µ σ γ λ

GS 3.1 3.2× 10−4 3.2× 10−3 1.8× 10−2 −3.1× 10−3 −2.6
MS 7.1 9.9 1.2× 10−3 2.1× 10−2 −1.5× 10−3 1.0
CS 4.0× 10−6 2.7 3.3× 10−3 2.4× 10−2 −4.1× 10−3 1.4

Table 7.2: The parameters (of the GH distribution) resulting from the data fitting
to the various log stock returns using the MCECM algorithm [McNiel et al., 2005]
and 2010 return data. The Morgan Stanley (MS) returns were fitted to a hyperbolic
distribution as a valid GH fit could not be found.

is to regular Monte Carlo. The validity of these models at different risk levels is

beyond the scope of this work.

Table 7.2 shows the resulting parameters from the fitting. Unfortunately we

could not fit the MS returns to a Generalised Hyperbolic distribution and so they

were instead fitted to a Hyperbolic distribution (λ = 1). We used the same settings

as previously outlined in the method (7.2.5) and preceding example (6.3).

The results for the financial stocks are displayed in table 7.3. They generally

mirror those of the original test case. The Chi adjustment method always matches

the performance of Monte Carlo for larger probabilities, but also shows good results

for probabilities one to three magnitudes smaller than those which Monte Carlo can

reach.

The Chi adjustment method was particularly effective for the CS stock. This

could be due to the higher λ in this case, leading to heavier tails and therefore

exacerbating the effects we are exploiting.

The results for the extreme probabilities do have a high relative error (up to

80%) however this is still a significant improvement over Monte Carlo.

The log normal sampler is indicative that areas of risk exist, where Monte

Carlo shows zero risk, however it has huge errors at certain points. These errors are

likely in part due to numerical errors from the calculation of the various weighted

expectations. This suggests that the log normal and Generalised Inverse Gaussian

may not have as significant an overlap as hoped once we move into the risk tail.

7.5 Example 3: Financial Portfolio (n dimensions)

In this final results section we apply the method to a portfolio of stocks. We consider

a portfolio of three stocks whose logarithmic returns are modelled using a three

dimensional generalised hyperbolic distribution.

The portfolio contained 25% of both GS and MS stocks and 50% CS stock.
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v l
Monte Carlo Thermal Integration: Log N Thermal Integration: Chi

l − l̃ SE l − l̃ SE l − l̃ SE

0.05 9.94× 10−1 2.06× 10−4 3.38× 10−4 −3.06× 10−4 3.41× 10−4 1.90× 10−4 3.26× 10−4

-0.02 1.10× 10−1 −1.46× 10−3 9.47× 10−4 −1.71× 10−3 1.33× 10−3 7.86× 10−4 1.36× 10−3

-0.06 5.83× 10−3 −7.32× 10−4 3.44× 10−4 −3.22× 10−2 4.02× 10−3 −1.14× 10−3 6.55× 10−4

-0.10 8.45× 10−4 −3.09× 10−6 1.08× 10−4 −1.78× 10−2 3.30× 10−3 −4.43× 10−4 1.22× 10−4

-0.18 8.19× 10−5 1.79× 10−5 3.85× 10−5 −5.79× 10−3 1.92× 10−3 −6.59× 10−5 1.76× 10−5

-0.34 6.55× 10−6 −9.45× 10−6 1.60× 10−5 −2.44× 10−3 1.61× 10−3 −8.37× 10−6 2.71× 10−6

-0.54 9.32× 10−7 ? ? −1.02× 10−3 4.84× 10−4 −2.43× 10−7 4.26× 10−7

(a) Goldman Sachs

v l
Monte Carlo Thermal Integration: Log N Thermal Integration: Chi

l − l̃ SE l − l̃ SE l − l̃ SE

0.05 9.89× 10−1 3.72× 10−4 5.09× 10−4 2.60× 10−4 4.25× 10−4 −3.32× 10−4 4.61× 10−4

-0.01 3.14× 10−1 9.43× 10−4 1.77× 10−3 −1.81× 10−3 2.00× 10−3 2.09× 10−3 2.06× 10−3

-0.03 7.39× 10−2 −5.18× 10−4 9.66× 10−4 −1.24× 10−4 2.30× 10−3 7.98× 10−4 2.27× 10−3

-0.06 3.04× 10−3 2.23× 10−4 2.21× 10−4 −4.70× 10−3 1.57× 10−3 −3.20× 10−4 4.67× 10−4

-0.08 2.30× 10−4 7.02× 10−5 4.57× 10−5 −6.18× 10−4 2.87× 10−4 −2.23× 10−5 1.11× 10−4

-0.10 1.38× 10−5 −2.25× 10−6 1.60× 10−5 −1.03× 10−4 6.80× 10−5 −3.27× 10−7 9.73× 10−6

-0.11 3.13× 10−6 ? ? −3.06× 10−7 3.44× 10−6 2.52× 10−6 6.14× 10−7

(b) Morgan Stanley

[Table Continued Overleaf]
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v l
Monte Carlo Thermal Integration: Log N Thermal Integration: Chi

l − l̃ SE l − l̃ SE l − l̃ SE

0.05 9.80× 10−1 −1.89× 10−4 5.63× 10−4 −5.25× 10−4 5.45× 10−4 1.11× 10−3 5.45× 10−4

0.01 7.06× 10−1 −4.99× 10−4 1.81× 10−3 1.32× 10−3 2.01× 10−3 −1.57× 10−3 1.68× 10−3

-0.03 9.53× 10−2 −2.54× 10−4 1.14× 10−3 −3.62× 10−4 1.53× 10−3 3.95× 10−3 1.44× 10−3

-0.07 8.24× 10−3 3.34× 10−5 3.03× 10−4 −1.00× 10−2 1.29× 10−3 −8.03× 10−4 7.03× 10−4

-0.11 5.93× 10−4 2.57× 10−4 7.26× 10−5 −3.98× 10−3 5.75× 10−4 1.27× 10−5 7.95× 10−5

-0.15 3.64× 10−5 2.04× 10−5 1.60× 10−5 −7.63× 10−4 1.38× 10−4 −1.99× 10−5 1.72× 10−5

-0.19 1.91× 10−6 ? ? −9.32× 10−5 2.50× 10−5 −3.38× 10−6 4.60× 10−6

-0.22 1.88× 10−7 ? ? −2.36× 10−5 1.04× 10−5 −4.40× 10−7 6.28× 10−7

(c) Credit Suisse

Table 7.3: Performance of the adapted thermal integration algorithm for the two samplers on financial test cases. Results marked
with a ? indicate the algorithm failed to calculate a prediction. Both algorithms performed well. They were both able to estimate
significantly smaller likelihoods than standard Monte Carlo. The Chi adjusted sampler however significantly outperformed the
log normal sampler in terms of accuracy.
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This creates a portfolio which is balanced across two continents and so should be

somewhat hedged. In this case the stocks were fitted to a multivariate Generalised

Hyperbolic distribution. The MCECM algorithm was used to fit the returns to the

distribution. The resulting parameters where χ = 2.5, λ = −2.1, ψ = 0.08,

µ =

 1.4

−1.3

3.2

 10−3, γ =

−1.2

1.2

−3.7

 10−3 and Σ =

3.5 3.1 2.6

3.1 5.0 3.8

2.6 3.8 6.1

 10−4.

The results for the portfolio of stocks are displayed in table 7.4. The results

yet again show a strong performance by the new algorithm and generally reflect

those of the individual stocks.

Both samplers explore events significantly further into the tail than regular

Monte Carlo. The Chi adjustment method however has significantly smaller errors.

We again note the high absolute value of λ in this case, which leads to heavier tails

and therefore exacerbates the effects we are exploiting.

7.6 Discussion

In this chapter we have developed and explored two new methods for estimating the

likelihood of rare events. We have applied these methods to a simple test case and

two differing financial examples.

The Chi adjustment method has proved consistently effective. It has always

matched performance of Monte Carlo (MC) sampling and has often significantly

surpassed the performance of MC methods. This is particularly true for low proba-

bilities where regular MC has failed to get any estimate for the probability.

The log-normal method has not shown as good a performance in terms of

predictive power, but has been able to detect regions where some probability mass

exists. In these regions MC methods showed there was no probability weight.

The challenge with this class of methods is in finding an effective way of

generating sequential importance samplers. If the samplers are not a good fit to

the distribution being searched (in this case GH/GIG distributions) it will struggle

to estimate the conditional probabilities. Furthermore, if two (or more) of the

sequential samplers do not overlap we will get significant errors in our estimation

process as the conditional probability estimate will not be accurate.

An interesting result has been the ability of both methods to indicate which

areas of the state space do contain weight. This information alone could potentially

help guide a risk analyst when considering a given problem.
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v l
Monte Carlo Thermal Integration: Log N Thermal Integration: Chi

l − l̃ SE l − l̃ SE l − l̃ SE

0.05 9.89× 10−1 2.49× 10−4 4.67× 10−4 4.13× 10−5 4.21× 10−4 3.45× 10−4 4.36× 10−4

0.01 7.24× 10−1 3.10× 10−6 2.03× 10−3 1.01× 10−3 1.89× 10−3 −3.49× 10−4 2.02× 10−3

-0.03 5.76× 10−2 −9.02× 10−4 1.02× 10−3 −2.35× 10−2 2.33× 10−3 7.19× 10−4 1.50× 10−3

-0.06 7.30× 10−3 −1.71× 10−4 3.25× 10−4 −2.96× 10−2 3.49× 10−3 −2.09× 10−3 6.52× 10−4

-0.10 9.33× 10−4 8.51× 10−5 1.01× 10−4 −1.73× 10−2 2.53× 10−3 −6.18× 10−4 1.18× 10−4

-0.16 9.25× 10−5 −1.95× 10−5 3.97× 10−5 −4.38× 10−3 1.10× 10−3 −7.37× 10−5 2.55× 10−5

-0.24 7.63× 10−6 ? ? −2.20× 10−3 8.20× 10−4 −6.87× 10−6 5.44× 10−6

-0.34 4.53× 10−7 ? ? −8.78× 10−4 2.21× 10−4 8.73× 10−8 3.66× 10−7

-0.44 2.64× 10−8 ? ? −3.54× 10−4 1.04× 10−4 −4.23× 10−8 6.87× 10−8

Table 7.4: Performance of the adapted thermal integration algorithm for the two samplers on a portfolio test case. Results marked
with a ? indicate the algorithm failed to calculate a prediction. Both algorithms performed well. They were both able to estimate
significantly smaller likelihoods than standard Monte Carlo. The chi adjusted sampler however significantly outperformed the
log normal sampler in terms of accuracy.
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We believe this extension of thermal integration, alongside the associated

importance samplers, to be a new and novel method for estimating extreme risk in

the Generalised Hyperbolic class of distributions.

In this chapter we have relied on an underlying understanding of how the

process worked. However, a sufficiently convoluted choice of value function could

break this intuition and, as we have seen, the intuition does not hold for all parameter

choices.

An interesting extension of this method would be to consider using different

qi for each step. It is plausible that the early iterations could reliably use a smaller

quantile (qi), increasing the algorithm’s ‘reach’. Coupled with this idea, we could

use a different number of samples for each step, possibly driven by current error

estimates. This would allow us to target extra samples to the sampler that has the

largest contribution to the overall (estimated) error.

In the conclusion (chapter 8) we will consider some further ideas on how to

estimate the likelihood of extreme events when there is no underlying intuition to

guide us.
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Chapter 8

Conclusion

As promised at the start of this thesis, we have discussed problems relating to

both quantile optimisation and reverse stress testing. In this chapter we will not

only review the work completed thus far, but also look ahead to questions as yet

unanswered and consider the potential for future work.

In chapters 3, 4 and 5 we constructed a variety of new algorithms for solv-

ing several different styles of quantile optimisation problem. These enabled the

optimisation of a system at either a single quantile (as in chapter 3), at the worst

case scenario (chapter 4) or at multiple quantiles (chapter 5). We underpinned the

design of each algorithm with an analytical foundation. The algorithms were then

successfully tested on real world financial problems. Chapters 3 and 5 focused on the

development of the proposed optimisation process. In contrast, chapter 4 focused

on how the optimisation process would actually behave under different conditions.

One of the more surprising results from these chapters was the bad performance of

BF400 in chapters 4 and 5. Our naive (but generally accepted) assumption was that

400 samples should be sufficient to reliably optimise a system at 95% risk, however

this was (numerically) proved to not be the case. This failure of BF400 highlights

the importance of this work.

Whilst good algorithms were constructed in each of these chapters, little dis-

cussion was given to how these algorithms could be developed and further improved.

The most obvious adaptation would be to consider adding a form of either simulated

tempering or parallel tempering to the algorithm. Both methods are more likely to

find a global maximum than regular simulated annealing. Simulated tempering uses

a single chain that varies temperature (β−1) as it progresses (according to some pre-

set probability distribution). Parallel tempering uses multiple chains that are run

at different temperatures. These chains then have the opportunity to swap designs
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between themselves. The advantage of parallel tempering is that it is easier to cal-

culate the correct swap probabilities (between chains) and hence preserve detailed

balance without having to use an arbitrary distribution for temperature. Both of

these methods could be applied either directly or in variants where the level of risk

or the number of samples is varied. Each of these adaptations should increase mo-

bility of the optimisation method and help ensure the best global solution is found.

However, for these methods to work we would have to consider how to reduce the

number of samples (n) used to estimate VD(RT ). Currently we only change n by

increasing it if 〈Rk〉 becomes too large.

An additional extension would be to consider an adaptation of the ideas of

[Calafiore and Campi, 2005] to this problem. [Calafiore and Campi, 2005] suggest

using a fixed set of samples throughout the simulation (in the context of convex

optimisation). This reduces the noisy optimisation problem to a deterministic one.

[Calafiore and Campi, 2005] provides results to calculate the precise number of

samples needed in the convex case but since we do not operate on that domain

careful thought would be required as to how best select the number of samples

required. It would be further interesting if it was still possible to increase the

samples required as the simulation progressed so as to reduce the computational

burden. Such a method would also reduce the biasing effect on X of the simulation.

One of the ongoing questions we considered was how to minimise the number

of samples required by the optimisation methods. This was so that raw historical

data could be used directly without the added complication of fitting a model.

Unfortunately, almost all the methods required a significant number of samples to

operate. The one exception was the example used in section 4.6 where we notionally

optimised at 90% risk, but in fact optimised at 95% risk. In this example around

600 samples were needed, which in financial problems is approximately 2.5 years of

historical data. It would be nice to reduce this further but it is not clear, at least

yet, how this could be done. That said, we could reduce the number of samples

required in chapter 5 by applying some more of the ideas from chapter 4 to the

algorithms (for example, by fixing k or j equal to 1).

We also note that the estimators for 〈Rk〉 developed in chapter 4 could be

further utilised. Using the method described in that chapter we actually find a

description for the entire risk curve. This could be utilised in various ways. For

example, it could be used in the context of chapter 5 to better control how we

change k when we are optimising two quantiles. This is because it should allow

for a reasonably quick estimate of d〈Rk〉
dk . Linked to this, it would be interesting if

this estimate of the whole risk curve could be used to find a way of optimising a
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combination of µD and VD(RT ), for some choice of RT , which counteracted any bias

induced by the eβ(µD+VD(Rk)) term. This could be trivially done if FD was known

to be symmetric.

We successfully applied the described algorithms to a variety of financial

problems. That said, it would be interesting to consider the application of the

algorithms to other problems. One particular example is that of optimising how to

provide for a service level agreement. This was originally discussed in section 3.8 as

being infeasible, however by using the tools developed in chapter 5 it should now

be possible to find a suitable methodology for solving this class of problem. This

would allow the work to be applied to a far greater selection of situations.

Finally, we note that a significant amount of this work has been based on

fitting complex systems to various models and then using these models to make

observations or decisions about the system. Discussion on the validity of the models

has generally been considered beyond the scope of this work; however, it is worth

briefly mentioning concerns around overfitting, specifically in terms of the various

covariance matrices. This problem has been highlighted in biology where a small

amount of gene sequencing data was often used to fit a huge covariance matrix

[Felsenstein, 1988]. Any results determined from such a matrix are highly likely to

be biased by the samples used to fit the model. There is an open question if we too

have pushed the models further than they are capable of going during the course

of this work. In the optimisation of quantile risk work this question sits around

the variance. Have we pushed so far into the tail that the variance of the system

is strongly biased by the samples used to fit the original data model? The second,

more interesting, question is can we stop, or even harness, this bias to better find a

solution? It may be possible to incorporate an additional layer of error awareness

into the optimisation methods we have developed, in order to increase the weight in

areas of the model that have little data.

In chapters 6 and 7 we focused on the estimation of the likelihood of extreme

events. We applied the resulting algorithms to reverse stress testing problems. This

was done using intuition into the statistical models used. The methods proved

to be very successful under the correct conditions when compared to Monte Carlo

methods.

In both chapters it would have been nice to get a firmer analytic handle on

when the methods would work best and the likely errors they would each induce.

Unfortunately, the complexities of doing this proved to be too great and so the

results were largely numerically driven. It would be nice to add an improved analytic

framework to this style of problem, but it is hard to see how to do this with a
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Figure 8.1: The above figure shows the impact of using an algorithm similar to that
of chapters 6 and 7 which biases the distribution at each iteration using a thermal
weighting. The test problem is the sum of two identical Pareto distributions. The
chart shows the relative error in estimating the likelihood of this sum exceeding a
certain value for each method. The errors are plotted against the true likelihood.
Each method used the same number of samples. The results show that the adapted
method described above performs well versus a Monte Carlo method already reliant
on a Gibbs sampler (Gibbs Monte Carlo), but not versus a Monte Carlo method
which has access to a more efficient (distribution specific) sampler.

significant number of simplifying assumptions.

We also note that in both methods we could have been smarter in how we

used the budgeted number of samples. It would have been relatively trivial to run

an initial likelihood estimate to better tune the different distributions used in the

final estimation. Alternatively, an initial sample could be found and then extra

samples targeted at the distribution which most contributed to the statistical error

of the overall likelihood estimate. Coupled with this, once all the samples have been

taken it should be possible to optimise the placement of the transition points (qi)

to minimise the statistical error.

Both of these methods also relied on an intuitive understanding of the system.

It is possible to forgo this assumption by using thermal distributions. If one wished

to find the likelihood of an extreme outcome of a financial portfolio then one could

bias the sequential estimators using the value of the portfolio, e.g. one could con-

struct a sequence of distributions biased by eβ1V (x), . . . , eβnV (x). This would mean

we would no longer require intuition into how the underlying system works. That

said, such a method might struggle if the likelihood of exceeding a certain value is

actually split across multiple regions of the search space. To combat this, parallel

tempering (or similar) could be used to ensure good likelihood estimates at each

temperature level. As before, each choice of β could be calculated by the method,

making it entirely self tuning. The second problem with such a method is that it
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forces the use of a Gibbs sampler (or similar) to generate random samples. This is in

contrast to chapters 6 and 7, where we were able to use distributions for our biased

likelihood estimators that we could easily draw independent samples from. Unfor-

tunately, a Gibbs sampler is a relatively inefficient method of drawing samples when

compared to a distribution specific sampler. Figure 8.1 shows the resulting tension

for a very simple problem. We can see that while this adapted method, which uses

this sequence of thermal biases, comfortably beats a Monte Carlo estimator which

already has to draw samples using a Gibbs sampler, it is beaten by a Monte Carlo

sampler that has an alternative (easier) way of drawing samples. It would be a nice

extension to see if either; given a sufficient number of dimensions this variant of

thermal integration eventually beats regular Monte Carlo, or if such a method could

be adapted to simply warn of dangerous regions more efficiently than regular Monte

Carlo.
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Appendix A | Annealing Algorithms Used

Algorithm
Estimators Used n

k
R̂k R̂2

k R̂′k R̂′2k Initial Value When Incremented Increment Amount

SA1 - - - - Varies After fixed number of steps Fixed per problem k = max (bnRT c, 1)
SA2 - - - Varies When R̂k > RT Fixed per problem k = max (bnRT c, 1)

SA3 - - Varies When R̂k > RT Dependant on
ˆd〈Rk〉
dn k = max (bnRT c, 1)

WSA1 - - - - Varies After fixed number of steps Fixed per problem k = 1
WSA2 - - - Varies When R̂k > RT Fixed per problem k = 1

WSA3 - - Varies When R̂k > RT Dependant on
ˆd〈Rk〉
dn k = 1

qSA2 - - - Varies When R̂′k > RT Fixed per problem k = max (bnRT c, 1)

qSA3 - - Varies When R̂′k > RT Dependant on
ˆd〈R′k〉
dn k = max (bnRT c, 1)

qWSA2 - - - Varies When R̂′k > RT Fixed per problem k = 1

qWSA3 - - Varies When R̂′k > RT Dependant on
ˆd〈R′k〉
dn k = 1

BF - - - -
⌈
R−2
T

⌉
Never n/a k = max (bnRT c, 1)

BF10000 - - - - 10000 Never n/a k = max (bnRT c, 1)

Table A.1: The above table shows the different algorithms used during chapters 3 and 4. RT is the target value of risk which is

being optimised. n is the number of samples used to estimate VD(R). R̂k, R̂
2
k and

ˆd〈Rk〉
dn are defined in chapter 3. R̂′k, R̂′

2
k and

ˆd〈R′k〉
dn are defined in chapter 4.
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