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Abstract

Isogenic bacterial populations can consist of cells displaying heterogeneous physiological
traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-
tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we
show that the sSRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can
suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifical-
ly, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the
cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the
abrB promoter. This behavior is consistent with existing mathematical models of SRNA ac-
tion, thus suggesting that induction of protein expression noise could be a new general as-
pect of sSRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB
levels generates heterogeneity in growth rates during the exponential growth phase. Based
on these findings, we hypothesize that the resulting subpopulations of fast- and slow-grow-
ing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of

unfavorable conditions.

Author Summary

Bacterial cells that share the same genetic information can display very different pheno-
types, even if they grow under identical conditions. Despite the relevance of this popula-
tion heterogeneity for processes like drug resistance and development, the molecular
players that induce heterogenic phenotypes are often not known. Here we report that in
the Gram-positive model bacterium Bacillus subtilis a small regulatory RNA (sRNA) can
induce heterogeneity in growth rates by increasing cell-to-cell variation in the levels of the
transcriptional regulator AbrB, which is important for rapid growth. Remarkably, the ob-
served variation in AbrB levels is induced post-transcriptionally because of AbrB’s
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collection and analysis, decision to publish, or

preparation of the manuscript. negative autoregulation, and is not observed at the abrB promoter level. We show that our
Competing Interests: The authors have declared observations are consistent with mathematical models of sSRNA action, thus suggesting
that no competing interests exist. that induction of protein expression noise could be a new general aspect of sSRNA regula-

tion. Since a low growth rate can be beneficial for cellular survival, we propose that the ob-
served subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging
strategy for enhanced survival of unfavorable conditions.

Introduction

In their natural habitats, bacteria constantly adapt to changing environmental conditions while
simultaneously anticipating further disturbances. To efficiently cope with these changes, intri-
cate interlinked metabolic and genetic regulation has evolved [1]. This complex regulatory net-
work includes the action of small regulatory RNAs (sSRNAs) [2]. sSRNAs are a widespread
means for bacterial cells to coordinate (stress) responses by fine-tuning levels of mRNAs or
proteins, and they have been studied in great detail in Gram-negative bacteria [3]. Regulation
by some sRNAs takes place by short complementary base pairing to their target mRNA mole-
cules, for instance in the region of the ribosome-binding site (RBS) to inhibit translation or
trigger mRNA degradation. In Gram-negative bacteria many of these SRNA-mRNA interac-
tions are mediated by the RNA chaperone Hfq [4]. However, the Hfq homologue in the Gram-
positive model bacterium Bacillus subtilis has no effect on the regulation of the eight sSRNA tar-
gets reported in this species so far [5-7]. Owing to the complexity of sSRNA regulation, only a
relatively small number of studies have focused specifically on the physiological necessity of
sRNA-target interactions. This is again particularly true for Gram-positive bacteria, such as B.
subtilis, despite the fact that many potential SRNAs have been identified [8, 9].

Within a bacterial population, genes and proteins can be expressed with a large variability,
with high expression levels in some cells and low expression levels in others [10]. Examples of
expression heterogeneity in B. subtilis are the extensively studied development of natural com-
petence for DNA binding and uptake and the differentiation into spores [11-13]. In both cases,
expression heterogeneity is generated by positive feedback loops, and results in bistable or ON-
OFF expression of crucial regulators [14]. Distinctly from bistability, proteins can also be ex-
pressed with large cell-to-cell variability. This variation in expression levels, or noise, can origi-
nate from intrinsic or extrinsic sources [15, 16]. Extrinsic noise is related to cell-to-cell
fluctuations in numbers of RNA polymerase, numbers of genome copies, or numbers of free ri-
bosomes. Conversely, intrinsic noise is caused by factors directly involved in the transcription
or translation of the respective gene or protein. Interestingly, particularly noisy genes are often
found to be regulators of development and bacterial persistence [12, 17, 18]. Because of the im-
portance of noise in protein expression, cells have evolved mechanisms to regulate the noise
levels of at least some proteins [10]. Reducing noise levels has been suggested as an important
explanation why many transcriptional regulators in bacteria (40% in E. coli [19]) autorepress
the transcription of their own promoter (i.e. negative autoregulation (NAR)).

AbrB is a global transcriptional regulator in Gram-positive bacteria, including the important
human pathogens Bacillus anthracis and Listeria monocytogenes [20, 21]. B. subtilis AbrB posi-
tively regulates some genes when carbon catabolite repression (CCR) is relieved [22], and nega-
tively regulates the expression of over two hundred genes in the exponential growth phase [23].
Transcription of abrB is negatively autoregulated by binding of AbrB tetramers to the abrB
promoter [24, 25]. Upon entry into stationary phase, abrB transcription is repressed via in-
creasing levels of SpoOA-P and AbrB is inactivated by AbbA [26, 27]. The resulting AbrB
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depletion is consequently followed by activation of AbrB repressed genes, which are often im-
portant for stationary phase processes. Notably, because of its role in the elaborate sporulation
and competence decision making network [26, 27], AbrB has mainly been studied in the con-
text of entry into stationary phase while much less is known about its exact role in the exponen-
tial growth phase.

We selected putative sSRNAs from a rich tiling array dataset of 1583 potentially regulatory
RNAs [9]. This selection was made for evolutionary conserved putative SRNAs with a high ex-
pression level on defined minimal medium. Deletion strains of these putative B. subtilis SRNAs
were subsequently tested for growth phenotypes. One SRNA—RnaC/S1022—stood out since
the mutant strain displayed a strongly increased final optical density on minimal medium with
sucrose as the sole carbon source. The present study was therefore aimed at determining how
RnaC/S1022 influences the growth of B. subtilis. Inspection of consistently observed predicted
RnaC/S1022 targets indicated that the aberrant growth phenotype could relate to elevated
AbrB levels. Here we show that, under certain conditions, B. subtilis employs RnaC/S1022 to
post-transcriptionally modulate AbrB protein expression noise. The observed noise in AbrB
protein levels is remarkable, because the abrB gene displays low transcriptional noise consistent
with its NAR. Importantly, the SRNA-induced noise in the AbrB protein levels generates
growth rate heterogeneity in the exponential phase.

Results
RnaC/S1022 deletion enhances growth on minimal medium

RnaC/S1022 was first identified in a systematic screening of B. subtilis intergenic regions with
an oligonucleotide microarray [28]. RnaC/S1022 is located in between yrhK, a gene of un-
known function, and cypB, encoding cytochrome P450 NADPH-cytochrome P450 reductase
(also known as yrhJ). We tested the conservation of the B. subtilis RnaC/S1022 sequence with
BLAST analysis against a set of 62 Bacillus genomes, and found evolutionary conservation in a
clade of the phylogenetic tree including 19 B. subtilis, Bacillus atrophaeus, and Bacillus amyloli-
quefaciens genomes (Fig. 1A and S1 Fig. for extensive alignments). Within these 19 genomes,
the 5" and 3’ ends of the RnaC/S1022 sequence are conserved, but the core sequence is dis-
rupted in all 9 B. amyloliquefaciens genomes (S1 Fig.). Notably, the RnaC/S1022 from B. atro-
pheus 1942 seems to represent an in-between form of RnaC/S1022 that mostly resembles the
RnaC/S1022 sequences from the B. amyloliquefaciens sp. genomes. Therefore, an alignment of
only the RnaC/S1022 sequences from the 9 remaining B. subtilis genomes was used to predict
the RnaC/S1022 secondary structure using the LocARNA tool [29] (Fig. 1B, S1 Fig.). These
analyses predict RnaC/S1022 to fold into a stable structure with a Gibbs free energy for the se-
quence shown in Fig. 1B of —38.5 kcal/mol, as calculated with RNAfold [30].

RnaC/S1022 was recently included in a screen for possible functions of conserved putative
sRNAs identified by Nicolas et al. [9] that are highly expressed on M9 minimal medium sup-
plemented with different carbon sources. Here, the RnaC/S1022 mutant stood out, because it
consistently grew to a higher optical density (OD) in M9 minimal medium supplemented with
sucrose (M9S) than the parental strain (Fig. 1C). To distinguish effects on the growth rate and
growth yield, lin-log plots of these growth profiles are presented in S2 Fig., which show that the
growth rate was only slightly influenced by the RnaC/S1022 deletion while the growth yield
was strongly increased. Compared to M9S, the growth phenotype was less pronounced in M9
with glucose (M9G). Since transcription of RnaC/S1022 is exclusively regulated by SigD [28],
we also tested a sigD mutant for growth under these conditions. Interestingly, the AsigD mutant
displayed similar growth characteristics as the ARnaC/S1022 mutant (Fig. 1C). Differential
growth and increased competitiveness were previously reported for a sigD mutant [31], and
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Fig 1. The RnaC/S1022 growth phenotype is linked to the evolutionary target prediction of abrB. A) Phylogenetic tree of Bacillus genomes. The tree
was constructed based on an alignment of rpoB (present in 60 of the 62 genomes; except for two Bacillus coagulans genomes for which no significant rooB
nBLAST hits were found). The outer (black) box indicates 19 genomes in which RnaC/S1022 is present. The inner (red) box indicates 10 genomes in which
the predicted RnaC/S1022-abrB interaction is consistently observed. A significant nBLAST hit for AbrB was not obtained for the species shaded in grey. B)
LocARNA structural conservation alignment of RnaC/S1022 based on the sequence published by Schmalisch et al. [28]. The alignment includes RnaC/
S$1022 sequences from genomes in which the RnaC/S1022-abrB interaction is consistently observed (marked in the red box in panel A), except the RnaC/
S1022 from B. atrophaeus (see also S1 Fig.). Numbers indicate the coordinates of S1022 defined by Nicolas et al. [9]. The arrow highlights the uracil base
that is required for the interaction with abrB. C) Growth curves of parental strain 168", ARnaC/S1022, AsigD, and the ARnaC/S1022 amyE::RnaC/S1022
complemented strain grown on LB, M9G or M9S. Each experiment was repeated at least three times in 96-well plates and shake flasks. Averages from
triplicates from a representative 96-well plate experiment are shown. The ODggo Wwas monitored every 10 min. One in two time-points were plotted. D)
Overview of the predicted RnaC/S1022-abrB interaction. “Genome”, name of the bacterium in which the interaction was predicted. “Conservation start’, the
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base of the RnaC/S1022 sequence as defined by Nicolas et al. [9] where the significant nBLAST hit starts. “Conservation end”, end coordinate of the
significant nBLAST hit. “Identity”, fraction of identity of the conserved RnaC/S1022 sequence compared to RnaC/S1022 of B. subtilis 168. “Target Rank” the
ranking of the abrB target in the predicted RnaC/S1022 targets for the respective genome. “TargetRNA P value” TargetRNA_v1 prediction P-value.
“sRNA_start”, start coordinate of RnaC/S1022 homologue in the predicted target interaction. “sRNA_stop”, end coordinate of RnaC/S1022 homologue in the
predicted target interaction. “abrB mRNA_start”, start coordinate of abrB in the predicted target interaction relative to its start codon. “abrB mRNA_stop”, end
coordinate of abrB in the predicted target interaction relative to its start codon.

doi:10.1371/journal.pgen.1005046.g001

our observations suggest that in some conditions the increased final OD of the AsigD strain is
partly due to deregulation of RnaC/S1022.

AbrB is a consistently predicted target of RnaC/S1022

We wondered whether deregulation of an sSRNA target was responsible for the remarkable
growth phenotype observed for the ARnaC/S1022 mutant and decided to perform exploratory
target predictions using TargetRNA [32]. Predicting SRNA targets can be successful, but target
verification is complicated by the large number of false-positively predicted targets. We argued
that additional information about the likelihood of a true target could be obtained by determin-
ing whether the predicted interaction is conserved over evolutionary time. To identify pre-
dicted RnaC/S1022-target interactions that are conserved, a bioinformatics pipeline was
established that predicts SRNA targets in genomes in which the RnaC/S1022 sequence is con-
served. Since we were interested in finding true B. subtilis SRNA targets, we only considered
targets also predicted in B. subtilis, and these are listed in S1 Table. This analysis reduced the
number of considered RnaC/S1022 targets to 47 (from 147 predicted targets for TargetRNA_v1
predictions with P value < 0.01 on the B. subtilis 168 genome). These 47 predicted targets in-
cluded seven sporulation-related genes (phrA, spoVAD, spolIM, spollIAG, cotO, sspG, spsI).
The sigma factor sigM was also consistently predicted but, since a sighl mutant strain only dis-
plays a growth phenotype under conditions of high salinity [33], this seemed unrelated to the
observed growth phenotype of the ARnaC/S1022 mutant on M9 medium. In addition, two con-
sistently predicted targets are involved in cell division (racA and ftsW), but we observed no spe-
cific cell-division abnormalities of the ARnaC/S1022 strain by live-imaging microscopy.
Furthermore, the TCA cycle genes citB and citZ were predicted targets and tested by Western
blot analysis, but no deregulation was observed. The last consistently predicted target of initial
interest was the gene for the transition state regulator AbrB (Fig. 1D). Reviewing the literature
on abrB pointed us to an interesting observation where a spo0A mutant was reported to display
increased growth rates on media similar to our M9 medium [22]. Furthermore, it had been re-
ported that AbrB has an additional role in modulating the expression of some genes during
slow growth in suboptimal environments [34], which we argued could also be relevant to the
MO9S growth condition. Since abrB is a consistently predicted target of RnaC/S1022 (Fig. 1D),
we checked whether the presence of this SRNA coincides with the presence of the abrB gene.
Indeed, abrB is conserved in 53 out of 62 available Bacillus genomes, and RnaC/S1022 is pres-
ent in 19 of these 53 genomes (Fig. 1A). In addition, we identified no genomes that contain
RnaC/1022 but lack the abrB gene (Fig. 1A). Accordingly, we hypothesized that RnaC/S1022
might be a regulator of AbrB.

AbrB levels are elevated in an RnaC/S1022 mutant

The combined clues from bioinformatics analyses and literature suggested that the growth phe-
notype of the ARnaC/S1022 mutant could relate to elevated AbrB levels. To test whether AbrB
levels are indeed altered in this mutant, we performed Western blot and Northern blot analy-
ses. This indeed revealed a strong trend towards higher AbrB protein and mRNA levels in the
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Fig 2. AbrB levels are dependent on the presence of RnaC/S1022. A) AbrB Western blot analysis. The position of AbrB is indicated. The bar diagrams
show the relative AbrB levels, with the level in the parental strain (wt) set at 100%. All AbrB levels were corrected for the internal control protein BdbD. Error
bars represent the standard deviation between triplicate experiments. The effect of RnaC/S1022 absence is most pronounced in cells grown on M9G and
M9S, which corresponds to higher expression levels under these growth conditions. Statistical data analyis was performed with a one-sided Welch two-
sample t-test (Hy: AbrB/abrB levels in ARnaC/S1022 > than in the parental strain and the RnaC/S1022 complementation strain). The respective p-values are
either indicated, or marked with asterisks (* p-value <0.05; ** p-value <0.01). B) abrB Northern blot analysis. Equal amounts of RNA were loaded in each
lane. The bar diagrams show the relative abrB mRNA levels, with the level in the parental strain (wt) set at 100%. Quantifications are based on minimally two
independent experiments. Error bars represent the standard deviation between experiments. Data was analyzed for significance as in A.

doi:10.1371/journal.pgen.1005046.9002

RnaC/S1022 mutant and for cells grown in M9G or M9S this effect was statistically significant
(Fig. 2). Importantly, the growth phenotype as well as AbrB protein and mRNA levels returned
to wild-type (wt) by ectopic expression of RnaC/S1022 under control of its native promoter
from the amyE locus (Fig. 1C and 2). We also tested the effects of a Aspo0A mutation by West-
ern and Northern blot analyses. Interestingly, the combined deletion of RnaC/S1022 and
spoOA seemed to lead to a further increase in the AbrB protein and mRNA levels compared to
the already elevated levels in the spo0A mutant background. Lastly, we observed a three-fold re-
duced natural competence of the ARnaC/S1022 mutant, which is expected when the AbrB lev-
els are elevated [35] (S3 Fig.).
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To test whether the AbrB levels were directly dependent on RnaC/S1022 levels, we placed
the RnaC/S1022 complementation cassette in the amyE locus of the parental strain and used
Western and Northern blotting to measure AbrB protein and mRNA levels. These analyses
showed a trend towards reduction of both the AbrB protein and mRNA levels in cells grown
on M9G and M9S, which would be consistent with elevated RnaC/S1022 expression and in-
creased abrB regulation (Fig. 2). Since the amount of AbrB was apparently correlated to the
amount of RnaC/S1022, this suggested a stoichiometric relationship between these
two molecules.

Before testing whether there could be a direct interaction between RnaC/S1022 and the
abrB mRNA, we decided to investigate the fate of the abrB mRNA in the presence or absence
of RnaC/S1022. For this purpose, we assayed the levels of the abrB mRNA at different time
points after blocking transcription initiation with rifampicin in the RnaC/S1022 mutant strain
and in the strain with two chromosomal copies of RnaC/S1022. This analysis showed that the
abrB mRNA level decreased significantly faster in the presence of RnaC/S1022 than in its ab-
sence (54 Fig.). In case of a direct interaction between RnaC/S1022 and the abrB mRNA, the
observed difference could relate to an RnaC/S1022-triggered degradation of the abrB mRNA.
Alternatively, this difference could be due to an RnaC/S1022-precluded protection of the abrB
mRNA by elongating ribosomes [36].

The RnaC/S1022 sRNA regulates AbrB by a direct sSRNA-mRNA
interaction

The apparently stoichiometric relationship between AbrB and the SRNA RnaC/S1022 is sug-
gestive of a direct SRNA—target interaction. The predicted interaction region in B. subtilis 168
spans a region from the RBS of abrB (-10) until 19 bp after the start of the abrB ORF of which
the strongest consecutive stretch of predicted base-pair interactions are present from +7 bp

till +19 bp (left top panel in Fig. 3). In addition, only this region within the abrB-encoding se-
quence is part of the conserved predicted interaction region in B. atrophaeus and B. subtilis spi-
zinenzii (Fig. 1D). It has been reported that loop-exposed bases of SRNAs are more often
responsible for regulation than bases in stems [37]. Two predicted loop regions of RnaC/S1022
are complementary with the predicted abrB interaction region (one of two basepairs and one
of seven basepairs; bases 51-52 and 57-63 in Fig. 1B and 3). We therefore decided to introduce
a point-mutation by a U to A substitution in the predicted 7-bp loop of RnaC/S1022 encoded
by plasmid pRM3 and a compensatory mutation in a plasmid pRM15-borne truncated abrB-
gfp reporter construct (abrB,,,,-gfp). Strains containing different combinations of the respec-
tive plasmids were grown on M9G and assayed by Flow Cytometry (FC) in the exponential
growth phase. Cells containing one of the abrB,,,,,,.-gfp constructs in combination with the
empty pRM3 plasmid displayed a unimodal distribution in GFP levels (Fig. 3, lower panels).
However, when the wt abrB,,,,,,.-gfp was assayed in combination with the wt RnaC/S1022, a bi-
modal distribution in AbrBy,,.-GFP levels was observed, including a new peak of lowered
fluorescence intensity (Fig. 3, top left). Interestingly, a unimodal fluorescence distribution was
found when the wt abrB,,,,,,.-gfp construct was combined with point-mutated RnaC/S1022*
(Fig. 3, middle left) or the mutated abrB*,,,,,.-gfp with the wt RnaC/S1022 (Fig. 3, top right). In
the case of the point-mutated abrB*-gfp construct, however, a bimodal fluorescence distribu-
tion was only observed when this construct was combined with the mutated RnaC/S1022*
(Fig. 3, middle right). This implies that a direct mRNA-sRNA interaction takes place between
abrB and RnaC/S1022.
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pRM3 empty). All combinations of these constructs were assayed by FC and one representative histogram per combination is shown. Base-pairs high-
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regulating due to the absence of base-pairing. Boxed regions in the abrB mRNA indicate the coding sequence, and boxed regions in the sRNA (RnaC/
S$1022) indicate predicted exposed bases in the structure shown in Fig. 1B. The base pair found to be essential for sRNA regulation corresponds to U59 in a
predicted RnaC/S1022 loop region (RnaC/S1022* U59A) and the 1 1" base in the abrB-encoding region (abrB*A11U).

doi:10.1371/journal.pgen.1005046.g003

RnaC/S1022 sRNA is condition-dependently expressed

Studying the condition-dependency of sSRNA expression can give clues to its function and tar-
gets. To obtain high-resolution expression profiles, we constructed an integrative RnaC/S1022
promoter-gfp fusion [38]. As expected, the presence of this Prnac/s1022-gfp fusion caused GFP
fluorescence in wild-type cells, but not in cells with a sigD mutation (Fig. 4D). Next, a live cell
array approach was used to compare the Pr,ac/s1022-gfp activity with that of another SigD-de-
pendent promoter, Pj,,,, which drives flagellin expression. These promoter fusion strains re-
vealed that the expression of hag was consistently ~ 4 fold higher than that of RnaC/S1022
(Fig. 4), which is in agreement with previously published expression data [9]. On LB medium,
the expression of both RnaC/S1022 and hag peaked in the late exponential and transition
phase, while on both tested minimal media the peak in expression occurred in early exponen-
tial phase (Fig. 4). This higher RnaC/S1022 expression level in the exponential phase on M9
relative to that in LB is in concordance with the stronger effect of ARnaC/S1022 on AbrB levels,
as indicated by the Northern and Western blot analyses.

The RnaC/S1022 sRNA modulates protein expression noise of AbrB-
GFP

Experimental methods that measure average protein levels in a population obscure possible
cell-to-cell variation. To further study the cell-to-cell variation of AbrB-GFP in the exponential
growth phase (as observed in Fig. 3), we therefore employed a full-length translational abrB-
gfpmut3 fusion that was integrated into the chromosome via single cross-over (Campbell-type)
recombination. Specifically, this integration resulted in a duplication of abrB where one full-
length copy of abrB was expressed from its own promoter and fused in-frame to gfp, while the
downstream abrB copy was truncated lacking the start codon required for translation [39]. In
this AbrB-GFP strain all AbrB monomers have a C-terminally attached GFP molecule. While
AbrB-GFP still localized to the nucleoid (S5 Fig.), this AbrB-GFP strain displayed a somewhat
reduced growth rate on media where AbrB is required for rapid growth. Since the translational
abrB-gfp fusion is chromosomally integrated at the abrB locus, this system is insensitive to fluc-
tuations in noise levels by plasmid copy number variation and its chromosomal location in the
division cycle.

We first used the AbrB-GFP fusion to test whether B. subtilis Hfq might have an effect of
the RnaC/1022-abrB interaction. Consistent with previous studies on other SRNA targets of B.
subtilis [5-7], the direct RnaC/S1022-abrB regulation was found to be independent of Hfq
since comparable FC profiles for AbrB-GFP expression were obtained for the parental strain
and the hfg deletion mutant (S6 Fig.).

Next, we analyzed all AbrB-GFP strains by FC in the exponential phase on both LB and
MOG. Noise measurements were not performed on M9S because of the strong growth differ-
ence between the parental and ARnaC/S1022 strains on this medium (Fig. 1C). We observed
that the difference between cells expressing AbrB-GFP at the highest level and those at the low-
est level was large (Fig. 5A). This means that AbrB-GFP is expressed with high noise (quanti-
fied as the coefficient of variation; CV%). Interestingly, we observed lower AbrB-GFP noise in
strains lacking RnaC/S1022 and, crucially, the presence of an additional genomic RnaC/S1022
copy further increased AbrB-GFP noise. Remarkably, increased RnaC/S1022 levels only
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doi:10.1371/journal.pgen.1005046.9004

reduced the minimal expression level of the distribution while not affecting the maximum
AbrB-GFP expression level (Fig. 5A), which is consistent with the data presented in Fig. 3.
There was a statistically significant positive linear correlation between RnaC/S1022 levels (0, 1
or 2 genomic copies) and AbrB-GFP noise (on LB for pooled data points from Aspo0A and pa-
rental backgrounds R? 0.48, P-value <0.001, and M9G R? 0.43, P-value <0.001) (Fig. 5B). Di-
rect statistical comparisons between AbrB-GFP noise levels at different SRNA levels also
revealed significant changes (Fig. 5). The noise increase therefore seems correlated to the level
of RnaC/S1022. Notably, this relation was also observed for noise measurements in a spo0A de-
letion background, even though the mean AbrB-GFP expression was between 1.37 and 2.32
fold (for LB and M9G respectively, p = 1.79) higher in Aspo0A strains. This suggests that
RnaC/S1022 has a specific role in noise modulation of AbrB-GFP.

RnaC/S1022 has no indirect effect on the abrB promoter and is
expressed homogeneously

After observing that RnaC/S1022 specifically increases AbrB-GFP expression noise, we aimed
to elucidate the origin of this AbrB-GFP noise. Three possibilities for noise generation by an

PLOS Genetics | DOI:10.1371/journal.pgen.1005046 March 19,2015 10/27
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AspoOA mutation. Please note the increase in the width of the distribution with increasing RnaC/S1022 gene dosage. B) Quantification of AbrB-GFP noise
(left panel) and mean expression data (right panel) from three independent experiments with cells grown on M9G. Shaded areas indicate the noise increase
(ACV%) from 0 to 2 sSRNA copies in the spoOA-proficient background (wt) and the AspoOA mutant background. Statistical significance of the comparisons of
data obtained for spoOA-proficient or -deficient strains containing 0 to 2 sRNA copies are indicated with asterisks in the legend (* p-value <0.05; ** p-value
<0.01; ANOVA with Tukey HSD test). Error bars represent the standard deviation. C) Quantification of P,,,5-gfp noise (left panel) and mean P,,,5-gfp activity
data (right panel) from three independent experiments with cells grown on M9G. Statistical significance of the comparisons of data obtained for spo0OA-
proficient or -deficient strains containing 0 to 2 SRNA copies are indicated with asterisks in the legend (* p-value <0.05; n.s. means not significant; ANOVA
with Tukey HSD test). Error bars represent the standard deviation.

doi:10.1371/journal.pgen.1005046.9005

sRNA are conceivable. Firstly RnaC/S1022 could have an additional indirect effect on abrB ex-
pression, leading to noisy expression from the abrB promoter and subsequent propagation of
this noise to the AbrB protein level. Secondly, RnaC/S1022 may itself be expressed either in bi-
modal fashion or with high noise. The third possibility would be an AbrB-dependent repres-
sion of the RnaC/S1022 promoter and subsequent repression of AbrB protein levels by RnaC/
$1022. This double negative repression would correspond to positive feedback on the AbrB
protein level, and positive feedback is a known source of expression heterogeneity [40].

To study the distribution of the abrB promoter, we integrated the pBaSysBioll plasmid [38]
directly behind the SpoOA binding site in the promoter region of abrB [41], resulting in a sin-
gle-copy promoter fusion at the native genomic locus (P,5; -41bp of the abrB start codon).
This location was selected to include the effect of AbrB autorepression and SpoOA(-P) repres-
sion, while excluding RnaC/S1022 regulation. We observed no bimodal or particularly noisy
expression of this abrB promoter fusion, showing that transcription from the abrB promoter is
homogeneous in the exponential phase (Fig. 5C). Of note, bimodal or noisy expression of P;,5
would have been surprising since transcription of abrB is autorepressed and it is generally
found that this NAR reduces the noise of promoter expression [42, 43]. Interestingly, the ex-
pression from the abrB promoter rises with increasing levels of RnaC/S1022. This observation
can be explained by AbrB autorepression and noise. There are more cells with low AbrB levels
when the levels of RnaC/S1022 are increased. On average, this will lead to lowered repression
of the abrB promoter, leading to a higher level of expression (but not more noise) from the
abrB promoter (Fig. 5C). This higher expression from the abrB promoter is apparently com-
pensated for at the protein level by the elevated regulation of RnaC/S1022 (Fig. 2 and 5B).
Since we observed only a slight increase in abrB promoter noise specific to RnaC/S1022
(Fig. 5C), the hypothesis that AbrB-GFP noise promotion originates from an additional effect
of RnaC/S1022 on the abrB promoter can be rejected.

A second possibility of noise promotion by RnaC/S1022 is that it is itself expressed with
large noise similar to the SigD-dependent hag gene [44]. In this case, large cell-to-cell variation
in SRNA levels would only lead to regulation in cells that have above-threshold sSRNA levels,
and this could generate the variation in AbrB-GFP levels. We tested this at the promoter level
by FC analysis of the integrative RnaC/S1022 promoter-gfp fusion (Prpacysio22; Fig. 4) and
found this promoter fusion to be homogenously expressed with a tight distribution of GFP lev-
els (CV% of 64% for the M9G condition; Fig. 4D). Furthermore, we argued that the relatively
low expression of Pryac/sioz2 could result in threshold-level regulation where the sSRNA is only
involved in regulating abrB in cells with above-threshold levels of RnaC/S1022. However, this
is not consistent with the observation of further increased noise levels in cells with two genomic
copies of RnaC/S1022 (Fig. 5B). We therefore consider the possibility of AbrB noise promotion
via heterogeneous expression of RnaC/S1022 unlikely. It cannot be excluded, however, that
variation in the levels of RnaC/S1022 might be introduced further downstream, for instance
via mRNA degradation, or via regulation by a dedicated RNA chaperone.
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The third option would be a double-negative feedback loop consisting of SRNA repression
of AbrB levels and AbrB repression of sSRNA levels, which would ultimately lead to an increase
in AbrB protein expression noise. This would thus depend on repression of the RnaC/S1022
promoter by AbrB, in addition to the confirmed negative regulation of abrB by RnaC/S1022.
Together this would lead to a decrease in AbrB protein levels in cells that start with below-
threshold AbrB levels. First of all, we found no indication for AbrB binding sites in the region
upstream of RnaC/S1022 in the dataset of Chumsakul et al., where the binding sites of AbrB
were mapped genome-wide [24]. To test whether the RnaC/S1022 promoter is indeed not di-
rectly controlled by AbrB, or possibly under indirect control of AbrB, we deleted the abrB gene
from the above-mentioned Pgyac/s1022 promoter fusion strain. As expected, the RnaC/S1022
promoter activity levels were not detectably affected by the abrB deletion (S7 Fig.), showing
that it is unlikely that there is a negative feedback loop consisting of AbrB-dependent RnaC/
§1022 repression and RnaC/S1022-dependent abrB repression.

sRNA-induced protein expression noise is consistent with mathematical
models of SRNA regulation

Since the experimental data presented above pointed to a direct role of the RnaC/S1022 sRNA
in AbrB protein noise promotion, we wondered whether this possibility is consistent with
mathematical models of SRNA regulation. To verify this, we considered a simple model of
RNA regulation with two independently transcribed RNA species (SRNA and mRNA) [45-47].
In this model, these molecules are synthesized with constant transcription rates o and oy, re-
spectively. Translation of mRNA into protein Q, and the degradation of sSRNA, mRNA, and
protein molecules were modeled as linear processes that occur with rates 8. B, B, and v, re-
spectively. The sSRNA-mRNA duplex formation was assumed to be an irreversible second-
order process that occurs with a rate x. In the model, molecules in the sSRNA-mRNA duplex
were removed from the dynamical system. A summary of all reactions and the master equation
used in the model can be found in Fig. 6.

We first implemented model parameters used in an earlier SRNA modeling study by Jia
etal. [47] (Set I; Fig. 6A and D). Of note, these parameters were essentially the same as those of
Levine et al. [45]. In all cases the sSRNA transcription rate (o) was a free variable to capture the
effect of 0, 1, or 2 genomic copies of RnaC/S1022. In addition, for each set of parameters we in-
cluded two possible o, values to model the effect in the Spo0A deletion strain where the abrB
transcription rate (0,,) is approximately two-fold higher than in the parental strain (as deter-
mined with P,,,3-gfp). Varying extrinsic noise in the abrB transcription rate had no effect on
the general modeling outcome (S8 Fig.) and the intermediate o.,, CV% level of 40% was select-
ed for plots in the main text. After running the model with parameters from Set I, we observed
that model-predicted protein noise strongly increased with increasing o. This trend of increas-
ing protein noise with increasing sSRNA transcription rates was similar to what we observed for
the genomic AbrB-GFP fusion (Fig. 5A and B). Importantly, doubling o, (two-fold higher
mRNA transcription rate) resulted in a more gradual noise increase with increasing o, just as
was observed in the Aspo0A mutant with the AbrB-GFP fusion (Fig. 5).

We next sought to determine the effect of changing modeling parameters on the modeling
outcome, because the selected mRNA half-life of ~ 35 min (B, 0.02) in parameter Set I would
only be relevant for a subset of mRNA molecules as shown experimentally by Hambraeus et al.
[48] (with a relation between these of mean lifetime from Fig. 6A * In 2 = half-life). We therefore
constructed a second set of modeling parameters (Set II), which gave the mRNA and sRNA spe-
cies a half-life of ~ 3.5 min (B,, and B, 0.20) while keeping protein half-life at ~35 min. In
addition, o, was increased from 2 transcripts per minute to 4 per minute, and & was doubled
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doi:10.1371/journal.pgen.1005046.g006

to 2 synthesized proteins per minute. Although the maximum noise level from these Set IT simu-
lations was markedly different, it again clearly showed the trend of increasing protein noise with
increasing sSRNA transcription rates. We can therefore conclude that the modeling results robust-
ly support the idea that SRNA regulation can generate noise at the protein level. This noise
would be induced locally at the level of mRNA degradation or translation initiation, and the cor-
responding fluctuations would subsequently be propagated to the protein level. Recently, the the-
oretical background of this concept was also reported by Jost et al., who stated that such behavior
is especially expected when the levels of the srRNA and the mRNA are approximately equal [49].
Altogether, our experimental data and the modeling approach are consistent with the view that
RnaC/S$1022 is an intrinsic noise generator for AbrB-GEFP at the post-transcriptional level.
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RnaC/S1022-induced AbrB expression noise generates diversity in
growth speeds in the exponential phase

After defining the experimental and theoretical framework for noise promotion by the RnaC/
$1022 sRNA, we wondered what the physiological relevance of this regulation might be. Since
we and others (Fig. 1A; [22]) have reported an effect of AbrB levels on the growth of B. subtilis,
a growth-related function seemed obvious. We therefore tested whether AbrB levels are a direct
determinant of growth rate and yield under the relevant conditions. To do this, we placed the
abrB gene under control of an isopropyl $3-D-1-thiogalactopyranoside (IPTG)-inducible pro-
moter in the amyE locus using plasmid pDR111 [50], and subsequently deleted the abrB gene
from its native locus in this strain. We first verified the IPTG-dependent expression of AbrB
from this construct by growing the parental strain, the AabrB strain, and the AabrB amyE::abrB
strain on LB medium and, in the case of the AabrB amyE::abrB strain, the medium was supple-
mented with increasing IPTG concentrations. Subsequently, AbrB production was assessed by
Western blot analysis (Fig. 7A), which showed that AbrB production in the AabrB amyE::abrB
strain was indeed IPTG-dependent. Notably, the abrB mutant strain displays a growth pheno-
type on LB medium, but this is only apparent in the late exponential growth phase [51]. To an-
alyze the effect of differing AbrB levels on growth under conditions that are more relevant for
the RnaC/S1022—abrB interaction, we grew the same strains on M9G, which was supple-
mented with differing amounts of IPTG for the AabrB amyE::abrB strain. As shown in Fig. 7B,
the abrB deletion mutant did not grow in this medium. Importantly however, IPTG-induced
expression of abrB in this mutant repaired the growth phenotype in a dose-dependent manner.
This shows that the AbrB levels determine the growth rate and yield when cells are cultured on
MoG.

We next aimed to unravel the effect of sSRNA-induced AbrB heterogeneity on growth. This
requires the tracking of cells with low and high AbrB-GFP levels over time. To do this, we per-
formed a live imaging experiment with the Aspo0A AbrB-GFP strain either containing zero
sRNA copies due to the ARnaC/S1022 mutation, or two genomic copies due to the insertion of
an additional RnaC/S1022 copy in amyE. The AspoOA background was used to elevate AbrB-
GEFP levels and thereby to facilitate fluorescence measurements. Cells were pre-cultured in
MOG as was done for the FC measurements and applied to agarose pads (at ODggo ~0.15) es-
sentially as was described by Piersma et al. [52]. From these experiments, and consistent with
FC data in Fig. 5, it was apparent that there was a larger variation in AbrB-GFP levels in the
strain with two genomic RnaC/S1022 copies, compared to the strain lacking RnaC/S1022
(Fig. 8B; S1 Movie). In addition, this variation in AbrB-GFP levels was correlated to the varia-
tion in growth rates (quantified as the specific cell length increase) observed during the first 20
min of each live imaging run (Fig. 8A). We excluded the possibility that this growth rate differ-
ence was dependent on the position on, or quality of the slide. Instead, it was solely linked to
the cellular level of AbrB-GFP (Fig. 8C; S1 Movie).

Notably, in the two example cells from Fig. 8C (S1 Movie) AbrB-GFP levels gradually in-
crease in the cell with a low start level (i.e. high level of SRNA repression), which would be
consistent with a gradual reduction in RnaC/S1022 expression on this solid agarose medium
(S9 Fig.). However, our experimental setting determines the effect of AbrB-GFP on growth be-
fore this reduction in RnaC/S1022 becomes relevant (e.g. the first 5 pictures, or 20 min)

(Fig. 8A). Beyond this, the increase in AbrB-GFP levels observed later (>>150 min) in the live
imaging experiment seems coupled to a concomitant increase in growth rate (S9 Fig.). This is
again consistent with the positive correlation of AbrB-GFP levels with growth rate. Interesting-
ly, while we observed a few cells switching their AbrB-GFP expression state from high to low,
the AbrB-GEFP levels were generally stable throughout a cell’s lineage. Combined, these analyses
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Fig 7. AbrB levels determine the growth rate and growth yield on M9 minimal medium. A)
Representative Western blot data for AbrB production by the indicated strains grown on LB medium as a test
for IPTG-dependent AbrB production from the amyE::abrB construct. At the lowest level of IPTG induction
(0.01 mM), the AbrB production remained below the detection level. BdbD was used as a loading control.
AbrB and BdbD were visualized with specific antibodies. B) Growth profiles on M9G determined for the
strains from panel A. The abrB mutant is unable to grow on this medium, but its growth defect is rescued by
IPTG-induced AbrB expression from the amyE::abrB construct. Averages of triplicate measurements from
one representative 96-well plate experiment are shown.

doi:10.1371/journal.pgen.1005046.g007

show that the RnaC/S1022-induced heterogeneity in the AbrB-GFP expression levels generates
diversity in growth rates within the exponential phase of growth.

Discussion

In this study we show that B. subtilis employs the RnaC/S1022 sRNA to post-transcriptionally
regulate AbrB and that this regulation results in increased heterogeneity in growth rates during
the exponential phase of growth. RnaC/S1022 is the third sSRNA in B. subtilis for which a direct
target has been reported and this study reveals the value of evolutionary target predictions to
identify true sSRNA targets for this species.

The observed growth rate heterogeneity induced by RnaC/S1022 is conceivably of physio-
logical relevance since slowly growing bacterial cells are generally less susceptible to antibiotics
and other environmental insults than fast growing cells [53-55]. Specifically, it was noted for
hip strains of E. coli that slowly growing cells within a population will develop into persister
cells when challenged with ampicillin [17]. Notably, in this system, the initial heterogeneity in
growth rates was reported to be dependent on the HipAB toxin-antitoxin module [56].
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Fig 8. RnaC/S1022-induced variation in AbrB-GFP levels leads to heterogeneity in growth rates. A) Tracing of growth and AbrB-GFP levels of 71
individual micro-colonies from Aspo0OA AbrB-GFP strains with either zero or two chromosomal copies of RnaC/S1022. Data originates from three
independent experiments. Cell growth is expressed as the cell length (Feret's diameter) increase per hour as determined in the first 20 min after spotting of
the cells onto agarose slides. The plotted AbrB-GFP level is the average of fluorescence in the first and second picture. B) Distribution of AbrB-GFP start
levels for both strains. Note that two genomic RnaC/S1022 copies lead to a wider distribution of AbrB-GFP levels. C) Montage of the two adjacent dividing
cells from the S1 Movie. The white outline marks the contours of the cell. The positions of these cells in panel A are marked with an O. Individual cells were
cropped for illustration purposes only.

doi:10.1371/journal.pgen.1005046.g008

Analogously, it is conceivable that a B. subtilis toxin-antitoxin module under negative AbrB
control could be responsible for the heterogeneity observed in the present study. Another per-
haps more likely possibility is that low AbrB levels cause the premature activation of transition-
or stationary phase genes, thereby slowing down growth and causing premature stationary
phase entry. AbrB has also been implicated in the activation of some genes when CCR is re-
lieved [22, 23], and this could be related to the stronger growth phenotype observed on M9S
compared to M9G. However, the AbrB level also determines growth rates on MG (this study;
[22]), when CCR is active and AbrB is not known to have an activating role [22].

The initially observed growth phenotype of the ARnaC/S1022 mutant can be explained by
the present observation that AbrB is an important determinant for growth on M9 medium,
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and that RnaC/S1022 regulation of AbrB is specifically linked to increasing AbrB noise. Specifi-
cally, the absence of RnaC/S1022 will reduce the number of cells expressing AbrB at a low level.
Growth of the ARnaC/S1022 population will therefore be more homogeneous and, when in-
spected as an average, the population will enter stationary phase later than the parental strain.
Beyond the mechanism of AbrB-mediated growth regulation, we show that noisy regulation of
a growth regulator can also cause heterogeneity in growth rates. This suggests that the AbrB
noise level has been fine-tuned in evolution, possibly as a bet-hedging strategy to deal with
environmental insults.

Two other questions addressed by this study are the origin of AbrB expression noise, and
the likely reason why this noise is generated at the post-transcriptional level. The origin of
AbrB expression noise via triggering of abrB mRNA degradation and/or inhibition of abrB
translation fits the definition of an intrinsic noise source where the absence of RnaC/S1022 re-
duces the number of sources for intrinsic noise by one, and therefore results in lower protein
expression noise. This specific noise-generating capacity of sSRNA regulation might be due to
the specific kinetics of the RnaC/S1022- abrB mRNA interaction. It is currently unclear wheth-
er this feature of SRNA-mediated regulation can be extended to other sSRNA-mRNA pairs. Spe-
cifically, subtle consequences of sSRNA regulation, such as noise generation, may have been
overlooked in previous studies due to the use of plasmid-encoded translational fusions with
fluorescent proteins expressed from strong non-native promoters as reporters. We therefore
expressed all RnaC/S1022 and AbrB-GFP constructs from their native genomic location, from
their native promoters, and assayed the effects in the relevant growth phase.

NAR of AbrB seems to be the answer to the second question why noise is generated post-
transcriptionally and not at the promoter level. AbrB’s NAR is important for its functioning in
the stationary phase sporulation network [26, 27] and is therefore likely a constraint for evolu-
tionary optimization of AbrB expression in the exponential phase, which is the growth phase
addressed in this study. In turn, NAR is a clear constraint on noise generation since it is gener-
ally believed to dampen noise [42, 43]. Consistent with this view, we observed only a slight in-
crease in P,z promoter noise upon increasing AbrB protein noise, suggesting that AbrB NAR
is responsible for minimizing promoter noise. Besides reducing noise, NAR has been implicat-
ed in decreasing the response time of a genetic circuit, linearizing the dose response of an in-
ducer, and increasing the input dynamic range of a transcriptional circuit [19]. Individually,
and in combination, these mechanistic aspects of NAR could explain why NAR is such a wide-
spread phenomenon in transcriptional regulation. Besides this, the idea that AbrB and AbrB
NAR are more widely conserved than RnaC/S1022 would be in line with the idea that AbrB ex-
pression in B. subtilis 168 has become fine-tuned by an additional regulator, which has evolved
later in time. Lastly, on a more general note, the inconsistency between the abrB promoter and
AbrB protein noise measurements make it clear that it is premature to draw conclusions about
homogeneity or heterogeneity of protein expression when only data is gathered at the promoter
level, especially for genes under a NAR regime.

In conclusion, we have identified a novel direct sSRNA target in the important B. subtilis
transcriptional regulator abrB. Specifically, we provide functionally and physiologically rele-
vant explanations for the evolution of the noise-generation aspects of this regulation in gener-
ating heterogeneity in growth rates. This noise is induced at the post-transcriptional level due
to AbrB NAR. Based on our present observations, we hypothesize that the resulting subpopula-
tions of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced sur-
vival of unfavorable conditions.
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Materials and Methods
Bacterial strain construction

E. coli and B. subtilis strains and plasmids used in this study are listed in S2 Table and oligonu-
cleotides in S3 Table. E. coli TG1 was used for all cloning procedures. All B. subtilis strains were
based on the trpC2-proficient parental strain 168 [1]. B. subtilis transformations were per-
formed as described previously [57]. The isogenic RnaC/S1022 mutant was constructed ac-
cording to the method described by Tanaka et al. [58]. pRMC was derived from pXTC [59] by
Circular Polymerase Extension Cloning (CPEC) [60] with primers ORM0054 and ORMO0055
using pXTC as PCR template and ORMO0056 to circularize this PCR fragment in the final
CPEC reaction. In this manner, the xylose-inducible promoter of pXTC was replaced with the
Ascl Ligation Independent Cloning (LIC; [61]) site from pMUTIN-GFP [39]. As a conse-
quence, pRMC carries a cassette that can be integrated into the amyE locus via double cross-
over recombination, allowing ectopic expression of genes in single copy from their native pro-
moter. RnaC/S1022 was cloned in pRMC under control of its native promoter as identified by
Schmalisch et al. [28], and the subsequent integration of RnaC/S1022 into the amyE locus via
double cross-over recombination was confirmed by verifying the absence of o-amylase activity
on starch plates. The LIC plasmid pRM3+P,,; RnaC/S1022, which is a derivative of plasmid
pHB201 [51], was used to express RnaC/S1022 under control of its native promoter. For IPTG-
inducible expression of abrB, the abrB gene was cloned into pDR111 [50], and subsequently
placed in the amyE locus via homologous recombination. Deletion alleles were introduced into
this and other strains by transformation with chromosomal DNA containing the respective
mutations. The RnaC/S1022, hag and abrB promoter gfp fusions were constructed at the native
chromosomal locus by single cross-over integration of the pBaSysBioll plasmid [38]. A mini-
mum of three clones were checked to exclude possible multi-copy integration of the plasmid.

Media and growth conditions

Lysogeny Broth (LB) consisted of 1% tryptone, 0.5% yeast extract and 1% NaCl, pH 7.4. M9
medium supplemented with either 0.3% glucose (M9G) or 0.3% sucrose (M9S) was freshly pre-
pared from separate stock solutions on the day of the experiment as previously described [9].
For live cell imaging experiments, the M9 medium was filtered through a 0.2 pm Whatman fil-
ter (GE Healthcare). Strains were grown with vigorous agitation at 37°C in either Luria LB or
M9 medium using an orbital shaker or a Biotek Synergy 2 plate reader at maximal shaking.
Growth was recorded by optical density readings at 600 nm (ODgo). For all growth experi-
ments, overnight B. subtilis cultures in LB with antibiotics were diluted >1:50 in fresh pre-
warmed LB medium and grown for approximately 2.5 hours. This served as the pre-culture for
all experiments with cells grown on LB medium. For experiments with cells grown on M9 me-
dium, the LB pre-culture was subsequently diluted 1:20 in pre-warmed M9 medium and incu-
bated for approximately 2.5 hours, which corresponds to mid- or early exponential growth.
This culture then served as the pre-culture for experiments with cells grown on M9 medium.
When required, media for E. coli were supplemented with ampicillin (100 pug ml™") or chloram-
phenicol (10 ug ml™"); media for B. subtilis were supplemented with phleomycin (4 ug ml™),
kanamycin (20 pug ml™"), tetracyclin (5 ug ml™"), chloramphenicol (10 ug ml™"), erythromycin
(2 ug ml™"), and spectinomycin (100 pg ml™") or combinations thereof.

Evolutionary conservation analysis of RnaC/S1022 targets

In order to find predicted targets co-conserved with RnaC/S1022, we used the 62 Bacillus ge-
nomes available in Genbank (as of January 31, 2013). On each of these genomes a BLAST
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search (Blastn v2.2.26 with default parameters) was conducted with the B. subtilis 168 RnaC/
§1022 sequence as identified in Nicolas et al. [9]. Genomes where a homologue of RnaC/S1022
(E-value < 0.001) was found were then subjected to TargetRNA_v1 search with extended set-
tings around the 5’UTR (=75 bp; +50 bp around the start codon and additional command line
arguments “-z 250 -y 2 -1 6”) using as query the sequence of the first high-scoring-pair of the
first BLAST hit in that particular genome. A bidirectional best hit criterion (based on Blastp
v2.2.26 with default parameters and E-value cut-off 0.001) was used to compare the predicted
targets in each genome with the predicted targets in the reference B. subtilis 168 genome (Gen-
bank: AL009126-3). The data was tabulated and subsetted for B. subtilis 168 genes predicted
for RnaC/S1022 in 8 or more genomes.

The Bacillaceae phylogenetic tree was computed based on an alignment of the rpoB gene
BLAST result from the same set of genomes mentioned above. RpoB was reported to be a better
determinant of evolutionary relatedness for Bacillus species than 16S rRNA [62].

Western blot, RNA isolation and northern blot

Cultures grown on LB, M9G, or M9S were sampled in mid-exponential growth phase (ODgg
0.4-0.6) and were directly harvested in killing buffer and processed as previously described [9].
Northern blot analysis was carried out as described previously [63]. The digoxigenin-labeled
RNA probe was synthesized by in vitro transcription with T7 RNA polymerase and an abrB
specific PCR product as template. 5 ug of total RNA per lane was separated on 1.2% agarose
gels. Chemiluminescence signals were detected using a ChemoCam Imager (Intas Science
Image Instruments GmbH, Géttingen, Germany).

Western blot analysis was performed as described [64] using crude whole cell lysates. To
prepare lysates, cell pellets were resuspended in LDS-sample buffer with reducing agent (Life
technologies), and disrupted with glass beads in a bead beater (3 x 30 sec at 6500 rpm with
30 sec intermittences). Before loading on Novex nuPAGE 10% Bis-Tris gels (Life technologies),
samples were boiled for 10 min and centrifuged to pellet the glass beads and cell debris. Equal
OD units were loaded on gel and the intensity of the AbrB band was corrected with the intensi-
ty for the unrelated BdbD control.

Data from Northern blots and Western blots were quantified Image] software (available via
http://rsbweb.nih.gov/ij/).

Analysis of mMRNA decay

Rifampicin (Sigma Aldrich) was added to 100 ml of exponentially growing M9G culture to a
final concentration of 150 pg/ml from a 100x stock solution in methanol stored at —20°C. Just
before the rifampicin addition and at 1, 2, 4, 6, 8 and 10 min after rifampicin addition, 10 ml of
cells were harvested in killing buffer as described previously [9]. Cell pellets were washed once
with 1 ml killing buffer and frozen in liquid nitrogen. RNA was extracted according to the hot
phenol method as described previously [63]. Quantitative PCR was performed as described by
Reilman et al. [51]. The Ct value corresponds to the PCR cycle at which the signal came

above background.

We analyzed the four mRNA decay time-series (two strains and two replicates) with a non-
linear model of mRNA concentration described in [65] that aims at capturing initial exponen-
tial decay followed by a plateau. The rate of the initial decay is supposed to correspond to the
physiological degradation of the mRNA. In contrast, the final plateau can be contributed by
several factors, such as background noise in measurement, a stable subpopulation of molecules,
or a higher stability of the mRNAs at the end of the dynamic. In our context, we assumed that
the mRNA concentration is proportional to 2" and thus we fitted (with the nls function of the
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R package stats) the model-Cy(t;) = log,(A* (o exp(-yit)+0)) + €, fori=1...7 (t;=0, 1,2, 4, 6,
8, 10 min) with A>0, o;>0, 0,,>0, y;>0,0,+0,, = 0 and €; a Gaussian white noise. The esti-
mates of the y; parameters of the first model were compared between the two genetic back-
grounds (0 genomic copies vs. 2 copies of RnaC/S1022) with a student t-test after a log-
transformation to stabilize the variance. For the 2-copy background, we also examined a sec-
ond model that involves two exponential decay terms as would for instance arise when two
sub-populations of mRNAs with distinct degradation rates coexist. It writes-Cy(t;) = log,(A*

(o exp(-y1t)+onexp(-vat)+03)) + € with A>0, 0;>0, 0,>0, 03>0, v, >7,>0, and oy +0,+03 =
0. For each pair of background and model, we plotted a “consensus” line whose parameters
were obtained from the geometric mean between the two replicate experiments.

Computation of promoter activity

Promoter activity was monitored every 10 min from cells grown in 96-well plates in a Biotek
Synergy 2 plate reader. Promoter activity was computed by subtracting the fluorescence of the
previous time-point from that of the measured time-point (as in Botella et al. [38]). Moving av-
erage filtering (filter function in R with filter = rep(1/5, 5) was applied for smoothing of the
promoter activity plots.

Flow cytometry and noise measurements

Cultures grown on LB, M9G, or M9S were sampled in mid-exponential growth phase ODgyo
0.4-0.5 and were directly analyzed in an Accuri C6 flow cytometer. The number of recorded
events within a gate set with growth medium was 15,000. The coefficient of variation (i.e. rela-
tive standard deviation) (CV%; standard deviation / mean * 100%) was used as a measure of
the width of the distribution, or protein/promoter expression noise.

Microscopy and live imaging

To inspect co-localization of AbrB-GFP with the nucleoid, cells were cultured until the expo-
nential growth phase, pelleted by centrifugation, resuspended in 400ul phosphate-buffered sa-
line (PBS) containing 1ul 500 ng/pl 4',6-diamidino-2-phenylindole (DAPI), and incubated for
10 min on ice. After this, the cells were washed once with PBS and slides were prepared

for microscopy.

Live imaging analysis was conducted on aerated agarose cover slips as described previously
[52]. Segmentation, calculation of Feret diameter, and auto-fluorescence correction for every
microcolony were performed with Image]J also as described by Piersma et al. [52]. Subsequent
computations and plotting was done with R. The specific cell length (Feret diameter) increase
per hour was computed as follows: ((cumulative Feret diameter at ty ,;, / number of cells at
to min) — (cumulative Feret diameter at t, ,;,, / number of cells at ty min)) / ((t20 min—to min) /
60 min).

Modeling noise

Noise promoting dynamics by sSRNA regulation was modeled in a stochastic simulation model
[45-47]. The considered reactions, employed parameters, and the master equation are listed in
Fig. 6. The master equation was numerically integrated by employing an in-house developed
implementation of the Gillespie algorithm [66] for each combination of model parameters.
The stochastic simulations were started without any molecules and were run until a quasi-sta-
tionary state was reached. To capture the inherent stochasticity of the model we performed, for
each set of model parameters, 50 x 10,000 simulation replicates (i.e. 500,000 in total). This can
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be interpreted as 50 experiments involving 10,000 cells each. Mean, standard deviation, and
the median was computed for every molecular species in the population of 10,000 cells.

Supporting Information

S1 Fig. Sequence analysis of the RnaC/S1022 and abrB interaction. A) LocaRNA alignment
of nine RnaC/S1022 sequences corresponding to the secondary structure predicted and shown
in Fig. 1B. These sequences are derived from the B. subtilis genomes for which the interaction
between RnaC/S1022 and abrB is predicted (genomes within the red box in Fig. 1A). Note that
the diverging RnaC/S1022 sequence from the B. atropheus 1942 genome was excluded, because
it would have added a large degree of uncertainty to the consensus structure presented in

Fig. 1B, as is shown in panels E and F of this S1 Fig.. The mutated nucleotide that is essential
for the interaction with abrB mRNA is indicated with an arrow. B) RN Afold [30] centroid
structure based solely on the S1022 sequence from Nicolas et al. [28]. As indicated in the main
text, this sequence is longer than that in Fig. 1B, but the predicted structure in the region that
will interact with abrB is the same as the consensus sequence in Fig. 1B. The mutated nucleo-
tide essential for the interaction with abrB mRNA is indicated with an arrow. C) T-COFFEE
(http://www.tcoffee.org/) sequence alignment as visualized with Jalview (http://www.jalview.
org/) of the abrB interaction region (-10 till +19 from the B. subtilis 168 abrB start codon) in all
19 species in which RnaC/S1022 is conserved (marked in the black box in Fig. 1A). The nucleo-
tide essential for the interaction with RnaC/S1022 is indicated with an arrow and is conserved
in all the genomes in which RnaC/S1022 is conserved. D) T-COFFEE alignment as visualized
with Jalview of 19 conserved RnaC/S1022 sequences (genomes within the black box in

Fig. 1A). The RnaC/S1022 hit from B. atropheus 1942 represents an in-between form of RnaC/
$1022 since its sequence is most similar to that from the B. amyloliquefaciens sp. genomes
while abrB is still predicted as a direct RnaC/S1022 target. The mutated nucleotide essential for
the interaction with abrB mRNA is indicated with an arrow. E) LocaRNA sequence alignment
of the same RnaC/S1022 sequences that were aligned in panel D. Due to the low level of simi-
larity between these sequences no meaningful secondary structure can be predicted from this
alignment as can be seen in panel E of this S1 Fig.. The mutated nucleotide essential for the in-
teraction of B. subtilis 168 RnaC/S1022 with abrB mRNA is indicated with an arrow. F)
LocaRNA structure prediction based on the RnaC/S1022 sequence alignment shown in panel
E. This can be interpreted as a ‘nonsense structure’ due to the low level of similarity between
the aligned sequences.

(TTF)

$2 Fig. Growth phenotypes of cells lacking RnaC/S1022. The same growth curves as shown
in Fig. 1C are presented as lin-log plots to distinguish between effects of the RnaC/S1022 muta-
tion on growth rates and growth yields. When cells are grown on M9S, which results in the
most drastic growth phenotype of RnaC/S1022 mutant cells, the growth rate is only slightly
influenced by the RnaC/S1022 deletion while the growth yield is strongly increased.

(TTF)

$3 Fig. Competence is decreased in an RnaC/S1022 mutant. Competence was assayed by
transformation with plasmid pHB201. Error bars represent the standard deviation between

three replicate experiments.
(TIF)

$4 Fig. abrB mRNA is more stable in the absence of RnaC/S1022. Decreases in abrB mRNA
levels after rifampicin addition were determined by qPCR using equal amounts of RNA per
strain and time-point. The RNA from the RnaC/S1022 deletion strain (blue symbols) was
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compared with RNA from the strain with two chromosomal RnaC/S1022 copies (green sym-
bols). Two non-linear models were fitted to these data: a first model with a single decay rate fol-
lowed by a plateau (fit illustrated with plain line); a second model with two decay rates (fit
illustrated with interrupted line). The initial decay rate (as estimated by the y, parameter of the
first model) was significantly higher in the strain with two copies of RnaC/S1022 (Students t-
test, p-value <0.05). The second model provided a better fit to the data of the strain with two
genomic copies of RnaC/S1022, and leads to even higher estimates of the initial decay rate
(they; parameter of the second model).

(TTF)

S5 Fig. AbrB-GFP localizes to the nucleoid. Fluorescence microscopy images of the Aspo0A
AbrB-GFP strain (left panels) and the amyE::P,,. GFP strain (right panels). DAPI was used to
stain the DNA. As shown in the image overlay, AbrB-GFP fluorescence colocalizes with the
DAPI-stained nucleoid as expected from the fact that AbrB is a DNA-binding protein.

(TIF)

S6 Fig. B. subtilis Hfq has no effect on expression of the AbrB-GFP reporter. Representative
FC histograms of AbrB-GFP expression by cells of the parental B. subtilis strain 168, a Ahfg
mutant, and a Ahfq ARnaC/S1022 double mutant grown on M9G. The profile of AbrB-GFP ex-
pression in the hfg mutant strain is identical to that in the parental strain, indicating that Hfq
has no role in mediating the direct interaction between RnaC/S1022 and abrB.

(TIF)

S7 Fig. AbrB does not regulate the RnaC/S1022 promoter. Representative FC histograms of
the parental strain B. subtilis 168 and the AabrB strain carrying the Prac/s1022-gfp construct.
These experiments were performed with cells grown on LB, because of the MIG/M9S growth
phenotypes of abrB mutant strains.

(TIF)

S8 Fig. Modeling outcomes for both sets of parameters at variable extrinsic noise levels.
Modeling outcomes as described in Fig. 6 for all five considered intrinsic noise levels obtained
with parameter Sets I and II. Different intrinsic noise levels are marked with differently
colored symbols.

(TIF)

S9 Fig. Growth and AbrB-GFP levels of colonies from Fig. 8C and the S1 Movie. Cell growth
is expressed as the cumulative cell length (Feret’s diameter). Cell #1 with a higher initial AbrB-
GFP level grows faster than cell #2 with a lower initial AbrB-GFP level.

(TTF)

S1 Table. Conserved predicted targets of RnaC/S1022.
(XLSX)

S2 Table. Strains used in this study.
(XLSX)

§3 Table. Primers used in this study.
(XLSX)

S1 Movie. Original movie of the two adjacent cells shown in Fig. 8C and S8 Fig. The white
outlines mark the contours of the cell.
(AVI)
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