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Abstract

Continuous Time Random Walks (CTRWs) are used widely for modelling anomalous

diffusion. This thesis is the first research which focuses on optimal control of CTRWs, their

modifications and their position dependent extensions. We derive the equation which may

be called a fractional Hamilton Jacobi Bellman equation (FHJB), as it is similar to the HJB

equation for controlled Markov processes. We present our original analysis of the FHJB

equation, firstly working with its simpler linear version and obtaining useful regularity prop-

erties, and secondly, deriving the mild form of the FHJB, exploring its regularity properties

and well-posedness. We present our novel theorems proving rigorous convergence for optimal

payoffs of the scaled stochastic processes of our interest and give an interpretation of the

solution of the FHJB equation as a solution to an optimization problem.
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Chapter 1

Introduction

1.1 Outline of the thesis

This thesis focuses on stochastic optimal control models such that the dynamics of the con-

trolled system is a Continuous Time Random Walk (CTRW) with waiting times that have

non-exponential distributions. CTRWs and their scaling limits model anomalous diffusion.

Our work is the first research development on the new field of controlled anomalous diffu-

sion systems. The main novel results presented here are the derivation of the new Fractional

Hamilton Jacobi Bellman (FHJB) equation from a macroscopic model of a controlled CTRW;

the derivation of an appropriate mild form for a FHJB equation; existence and uniqueness

of a solution to a mild form of the FHJB equation and to the HJB itself, as well as various

interesting regularity properties; the rigorous convergence theorems and an interpretation of

the solution of the FHJB equation as a solution to an optimization problem. We present two

derivations of the FHJB. The first derivation is carried out heuristically in analogy with the

standard heuristic derivation of the Bellman dynamic programming equation. It is heuristic

in the sense that we assume existence of all the limits that occur in our scaling limit. The full

rigorous justification of the limiting procedure is based on a completely different reasoning.

Here is the explanation of the structure for this thesis. Chapter 1 focuses on the theo-

retical background and the mathematical description of the process we study, with important

preliminary definitions, in particular relating fractional integral and differential operators

with probabilistic concepts. Chapter 2 concentrates on scaling and control of the CTRW
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process, introducing the notions of an embedded Markov process and a corresponding payoff

function. Then, in a heuristic manner, it presents our results concerning the limiting payoff

function. It also extends the scenario to the setting with time and position dependence, as

well as an extension to multiple stability parameter dependence. In Chapter 3, after a brief

overview of existing theory, the reader can acquaint themselves with our original results on

well-posedness and regularity properties of the solution to the mild form of a linear version

for the FHJB equation. In Chapter 4 we present our novel important convergence results

and a corresponding verification theorem. Here the limiting scaled CTRW is viewed as a

component of a Markov process, unlike in the previous chapters. Such representation allows

to see the model within the framework of controlled Markov processes for which the theory

is well-developed, see [1]. Following this is a chapter on further developments, highlighting

other ideas and potential applications. For example, this includes our novel conjecture about

the limiting scaled CTRW process, linking it to stochastic differential equations (SDEs). The

appendix presents some of the important theorems used to obtain our results.

1.2 Background and literature review

In this section we present the background theory which allows the reader to see how the

results in this thesis fit into the wide mathematical picture as the interface of anomalous

diffusion models, control theory and fractional calculus.

Diffusion is one of the key mechanisms for material transport in physics, biology

and chemistry. The well-established mathematical model for particle diffusion is Brown-

ian motion. One of its characteristic features is the following mean-squared displacement:

E[(x(t)− x0)2] ∝ t. The distribution P (x, t) of the Brownian motion W x0
t started at a point

x0 ∈ (−∞,∞) is a Normal (Gaussian) distribution:

P (x, t) =
1√

4πDt
exp{−(x− x0)2/4Dt} (1.1)

for x ∈ (−∞,∞), t ≥ 0 and D > 0. It can be shown that P (x, t) in (1.1) is the solution to

the Cauchy problem
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ut −Duxx = 0, for t > 0, (1.2)

with u(0, x) = δ(x), where δ(x) is the Dirac delta function, and D > 0 is the diffusion

constant. This means that the probability of finding the Brownian particle at x at time t > 0

is given by the Gaussian probability density function (1.1) which satisfies (1.2).

Since the original results presented in [2] in 1905, other models for diffusion have been

proposed, capturing more general and anomalous particle behaviour patterns in comparison

to Brownian motion. One of the models developed for anomalous diffusion is the Continuous

Time Random Walk (CTRW) model. CTRWs form a class of processes which are continuous

from the right with left hand limits (càdlàg). The book [3] provides a thorough and concise

exposition of key convergence results for càdlàg processes which includes families of scaled

CTRWs. A CTRW has been introduced for the first time in [4] to study random walks

on a lattice. Models of CTRWs are ubiquitous in describing numerous natural phenomena,

see [5], [6], [7], [8] and [9]. For example a CTRW approach has been taken to model the

dynamics of supercooled liquids and prices of financial assets, see [10], [11] and [12]. We

focus on CTRWs with non-exponential waiting times between displacements and with jump

distributions exhibiting some stable law properties. Most of the background information for

the CTRW that we use in this thesis can be found in [5] and [13].

For the first time a symmetric stable law, with the stability parameter α = 3/2,

appears in a paper dated 1919 in a stellar model, see [14]. More precisely, it is a model for the

distribution of the gravitational force due to an infinite number of stars which are uniformly

distributed in R3. This distribution is now referred to as Holtsmark and has extensive uses

in physics, see [13] and references therein. As a class, stable laws were characterised for the

first time by P. Lévy in 1920’s. Much later, in the 1960’s, B. Mandelbrot and his successors

wrote a series of papers where stable laws were used in specific economic models. Since

then there has been an expansion of areas where stable laws have arisen, see [15]. Similarly

to (1.2) for the Gaussian law, stable distributions appear as solutions to integro-differential

equations, see [15]. Due to the lack of closed formulas for most stable probability densities
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it was difficult to use them for mathematical modelling for a long time, however research

and recent programming advances now allow to compute properties of those, paving the road

for direct applications, see [16]. Stable laws have recently manifested themselves in many

different physical and social phenomena. One of the reasons to employ stable distributions is

the Generalized Central Limit Theorem (GCLT). It states that the only limits of scaled and

centered sums of i.i.d. random variables are stable laws with the stability parameter α ∈ (0, 2].

When α = 2 the GCLT is the Central Limit Theorem. This reason is strengthened empirically

by large data sets that demonstrate heavy tail behaviour and a skewness property, see [16]

and references therein. Although β-stable laws with β ∈ (0, 1) feature an infinite mean

and an infinite variance, which is unrealistic for real-life data, they may still be used in

modelling. If one can find a reason why a considered quantity of interest has a minimal

value, the corresponding distribution may be cut-off at that point. In case a stable law is

an appropriate approximation for the distribution in a large time interval before the cut-off

point, the sum of the i.i.d. random variables from this distribution for a long time may be

modelled by the stable one without cut-offs, see [17]. Due to the reasoning above and that

we mostly deal with finite time intervals and finite data, we may use stable laws yielding

infinite first and second moments for the random variables modelling the waiting times and

the jumps, without being unrealistic.

Stable distributions for jumps exhibit power law behaviour for large distances, apart

from the normal distribution for which the stability parameter is α = 2. We look at even

broader range of distributions than stable laws, namely, assume jump distributions belonging

to the domain of attraction of a stable law. When data shows asymmetry and heavy tail

behaviour and the considered motion may be modelled by a CTRW, the GCLT may be em-

ployed to justify the use of domains of attraction of α-stable laws as appropriate distributions

in a realistic complete mathematical model for the observed motion, see [18]. The Pareto

distribution with a parameter α < 2 is in the DOA of an α-stable law. Also the Mittag-Leffler

distribution with the parameter β ∈ (0, 1) is in the DOA of a β-stable law, for example see

[19], [20] and references therein. Note that every stable distribution is in the DOA of itself.

Any finite variance distribution belongs to the DOA of the Gaussian distribution by the

Central Limit Theorem (CLT). The rigorous definitions, the mathematical details for stable
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laws and DOA of a stable law, as well as the detailed explanation of the relation to CTRWs

in this thesis, will follow in section 1.3. Here we mention just one specific example where

non-exponential waiting times have appeared. Analysis of high-frequency data for daily price

changes in 800 companies at the Japanese market in a 27 year interval showed that the wait-

ing times between daily price changes follow a power law. Further details may be found in

[21]. The explanation for such behaviour has been proposed in [22], see also [23].

CTRWs may be scaled appropriately to obtain a microscopic model, which is some-

times more convenient for specific purposes. A scaled CTRW with correlated jumps in the

limit yields the microscopic model of fractional Brownian motion, see [24]. Another example

of the scaled CTRW limiting process is a stable-Lévy motion with a random time change,

see [25]. CTRW limit processes have been studied extensively in [26] and references therein.

In a rich class of financial, biophysical, air and hydro-dynamics phenomena one ob-

serves constant time periods, which are referred to as trapping events, [27]. To model this

pattern a random time change is introduced. This idea was initiated by Bochner in 1949.

In essence, the real time of a process is replaced by some non-decreasing process which has

independent increments. In some models this external process is the Brownian motion, which

in that case may be looked at as a distribution limit of some CTRW, see [27] and references

therein. Time changed Lévy processes, inverse stable processes, subordinators and inverse

subordinators are standard processes used for modelling the random time change. The reader

is referred to [28] and references therein for specific examples. In this thesis we study CTRWs

with a random time change. From the microscopic viewpoint of the CTRW model, in this

thesis the processes in consideration will have the β-stable Lévy motion for the time process,

where β ∈ (0, 1).

Research results presented in [29], [30], [31] and [32] relate CTRWs to fractional

differential equations (FDEs). The strong connection between CTRWs and FDEs is explored

for example in [5], [33], [34] and [35]. In essence, FDEs appear in mathematical descriptions

of CTRW scaling limits, and the order of the derivatives in a FDE depends on the probability

density functions for jump lengths and the waiting times of the CTRW.

Fractional calculus generalises the classical calculus to study integral and differential

operators of non-integer order. Fractional differential equations are closely related to mod-

5



elling processes with memory and spatial non-local properties, see [36], [37], [38], [39] for

extensive descriptions of models where history impacts the future of the process. Without

being exhaustive we name few fields where fractional calculus has recently been useful - vis-

coelasticity, hydrology, cosmology, finance as well as fire propagation dynamics and plasma

turbulence, see [40], [41], [42], [11], [43] and [44] respectively. For example, porous structure

and chemical heterogeneity of media such as in geological formations lead to space and time

non-local dependency for solute transport, see [45].

Often it is possible for humans to intervene in a dynamical process in order to regulate

the behaviour so as to profit the most from the control. The goal may be represented

as an optimisation of a payoff/cost function. The methods for stochastic optimal control

problems are the Bellman’s dynamical programming and Pontryagin’s principle, see [46] and

[47] respectively. An example of an optimal stochastic control application is controlling a

linearly fuelled satellite following a diffusion, with the aim to keep it above a critical level, see

[48]. Theory for stochastic optimal control problems is presented in [1] and references therein.

However the existing stochastic control theory does not cover controlled CTRWs and their

scaling limits. This thesis extends to the scenario where for the first time CTRW processes

can be controlled. We also present generalizations of controlled CTRWs by including time

and position dependence.

We establish that control of CTRWs with waiting times in the DOA of a β-stable

law gives rise to a new kind of equations in control theory. These are fractional in time

Hamilton-Jacobi-Bellman (HJB) equations:

D∗β0,tf(t, y) = H(t, y,Dyf(t, y)), (1.3)

where (t, y) ∈ Q, D∗β0,t is a fractional time derivative, which we will define in section 1.3, and

H is a continuous function on Q̄ × Rn. It is called the Hamiltonian and contains all the

control related terms. In section 1.3 we will discuss fractional derivatives in more detail. In

case β = 1, D∗β0,t = d
dt . Equations such as (1.3) with β = 1 have been extensively studied, for

example see [1].
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A solution f(t, y) to a partial differential equation (PDE) is said to be classical when it

is differentiable as many times as necessary for the PDE to make sense. Most HJB equations

do not have classical solutions and for such cases the theory of viscosity solutions becomes

useful, see [1]. However, under certain restrictions and conditions on the Hamiltonian H in

(1.3) a classical solution exists. The case without control, when β = 1 is studied in [13]. In

this thesis the reader will find the literature review for the analysis of FDEs. Further, we

work with a mild form of the fractional HJB (FHJB) and present our original well-posedness

and regularity results.

A recent paper [49] studies equations with a fractional Laplacian and proves existence

of weak solutions in a fractional Sobolev space under specified boundary data and the frac-

tional index parameter conditions. It also applies the results to an optimal control problem.

More precisely, it proves the existence of optimal processes in the fractional Sobolev space

for the optimal control problem associated to the weak formulation of the following FDE

(−∆)α/2z(x) = Gz(x, z(x), u(x)) in Ω (1.4)

for some non-linearity Gz, with the fixed interior boundary condition z(x) = v(x) in Rn \ Ω

and the integral cost functional

J(z, u) =

∫
Ω

Φ(x, z(x), u(x))dx, (1.5)

with specific conditions on Φ and the control set U , and α ∈ (1, 2).

This thesis considers a broader range of FDEs than (1.4) and we look primarily for

a mild solution to (1.3). We take a different approach to the optimal control problem,

however paper [49] is an interesting development in the direction of fractional optimal control

problems.

The theory of controlled Random Walks (RW) is only in the beginning of development.

The introduction of control paves the road for applications of CTRW processes in the wide

range of problems. For example, a recently proposed project in telecommunications industry
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focuses in particular on applying CTRW models with non-exponential waiting times to model

non-standard information transport, as well as understanding to what extent such processes

may be controlled, see [50] for details. It is anticipated that the work done in this thesis will

be of high value for this project and its further developments. This thesis presents ideas on

how the CTRW theory presented here could be applied to game theory and to limit order

book modelling.

Various papers presenting convergence results for CTRWs with random time changes

prove convergence of the time and the jump processes separately, and then use the continuous

mapping theorem (CMT) to prove convergence of the time changed CTRW to a time changed

limiting process, [25], [28]. Independent and identical distribution of jumps is a necessary

assumption in such papers. The random variables representing the jumps are non i.i.d. when

the jumps become controlled. The presence of control in our stochastic processes makes it

impossible to use their methods, and we take a different approach.

Limits of controlled scaled CTRWs that we study are non-Markov processes, however

enlarging the state space in certain ways enables to present them as components of pair

Markov processes. Theory of controlled Markov processes is well studied, see for example [1].

Such an approach enables to view the CTRW in a more general setting and obtain interesting

novel results.

1.3 Preliminaries

In this section we introduce the key definitions for describing and understanding the stochastic

model which is central in our research. We also discuss some properties of the defined

mathematical objects and cite important references.

Definition 1. Let (γ1, ξ1), (γ2, ξ2), . . . be a sequence of independent and identically distributed

(i.i.d.) pairs of independent random variables (r.v.’s) such that the distribution of each γi,

i ∈ N, is given by the probability measure ν(dr), and the distribution of jump sizes ξi, i ∈ N,

is given by the probability measure µ(dξ). Let X(n) =
∑n

i=1 γi and Y (n) =
∑n

i=1 ξi. Define
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the renewal process M(t):

M(t)∑
i=1

γi ≤ t <
M(t)+1∑
i=1

γi, for t > 0. (1.6)

Note that for t > 0, M(t) = infn{n : X(n) > t} and M(0) = 0. We will refer to M(t) as an

inverse time process. A CTRW η(t) with jumps ξi ∈ Rd and waiting times γi ∈ R+ is defined

as

η(t) = Y (M(t)) =

M(t)∑
i=1

ξi. (1.7)

Definition 2. A random variable X is said to have a stable distribution if for any positive

numbers A and B, there is a positive number C and a real number D such that

AX1 +BX2 =d CX +D (1.8)

where X1 and X2 are independent copies of X, and where ” =d ” denotes equality in distri-

bution, [51].

If a distribution is stable then there exists an α ∈ (0, 2], called the index of stability,

such that the following holds for the corresponding characteristic function φ:

log φα(y) = i(b, y) +

∫ ∞
0

∫
Sd−1

(
ei(y,ξ) − 1− i(y, ξ)

1 + ξ2

)
d|ξ|
|ξ|1+α

µ(ds) (1.9)

where µ is some finite measure in Sd−1, see theorem 1.4.3 in [13] and for the proof see

[51]. In case α = 2 the distribution is normal.

Stable distributions depend on four parameters: α ∈ (0, 2], σ ≥ 0, b ∈ [−1, 1],m ∈ Rd.

These are the stability, the scale, the skewness and the shift parameters respectively. Hence,

the notation for a stable distribution is often of the form Sα(σ, b,m). We will use this notation

where necessary. A distribution S is symmetric α-stable if b = 0 and m = 0̄. For α 6= 1

a distribution Sα(σ, b,m) is strictly stable iff b = 0. In case α = 1, S1(σ, b,m) is strictly

stable iff b = 0. The case α = 2, σ = 1, b = 0,m = 0 corresponds to the standard Normal
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distribution, [51].

In our research, when referring to the domain of attraction (DOA) of a stable law,

strictly speaking we will refer to the domain of normal attraction of a stable law. This is

done for simplicity of notation. The precise definition of DOA is presented just below and is

as in [52].

Definition 3. Let ξk, k ≥ 1, be i.i.d. random variables with the (cumulative) distribution

function F (x). We say that F (x) belongs to the domain of normal attraction of the distribu-

tion function V (x), if for some a > 0 and some An the following relation holds:

lim
n→∞

P

(
1

an1/α

(
n∑
k=1

ξk

)
−An ≤ x

)
= V (x) (1.10)

for every x ∈ Rd. Here α is the characteristic exponent (stability parameter/index) of the law

V (x).

We say that f ∼ g if

lim
n→∞

f(n)

g(n)
= 1. (1.11)

Let us assume that for i ∈ N, the probability distributions of r.v.’s γi and ξi introduced in

definition 1 belong to the domains of attraction (DOA) of stable distributions Sβ(σ, 1, 0) and

Sα(σ, 0, 0) respectively, with β ∈ (0, 1) and α ∈ (1, 2]. More precisely, assume that for n→∞

∫
|r|>n

ν(dr) ∼ 1

Γ[1− β]nβ
, (1.12)

for β ∈ (0, 1) and for every Borel Ω ∈ Sd−1

∫
|y|>n

1(y/|y|∈Ω)µ(dy) ∼ 1

Γ(1− α)nα

∫
Ω
dσ(ξ), (1.13)

where α ∈ (1, 2), and σ is a centrally symmetric finite Borel measure on the sphere Sd−1.

Definition 4. An α-stable Lévy motion E(t), 0 < α ≤ 2, is a process {X(t), t ∈ R} with

stationary independent increments E(t)−E(s) having a strictly α-stable distribution Sα((t−

s)1/α, b, 0), for any 0 ≤ s < t <∞, where b ∈ [−1, 1], [51].
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For ζi ∈ DOA(Z), where Z is stable with the stability index α ∈ (1, 2], as n→∞

n−1/α

bntc∑
i=1

ζi −An


t≥0

⇒ {D(t)}t≥0, (1.14)

in distribution, for some An, where D(t) is a stable Lévy motion with stability parameter

α ∈ (1, 2], [5], [53]. A stable Lévy motion is uniquely described by its infinitesimal generator,

which is of a fractional derivative form, [54], [13], which we will discuss after presenting more

details about stable laws and DOAs. Stable Lévy motion is used for modelling anomalous

diffusion, because of the power law probability tails for the jumps ζi, see [53] and references

therein.

Below are two graphs of stable Lévy motions with stability parameters α = 0.7 and

α = 1.7. When α = 2 the stable Lévy motion is called the Brownian motion. The graphs

here show that as α increases, the number of very large jumps decreases and the motion

resembles the Brownian motion more, which supports the theory.
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Several useful theorems giving necessary and sufficient conditions for a probability

distribution to belong to the normal domain of attraction of a stable law with the stability

index in the interval (0, 2] are presented, for example, in the books [52] and [51]. In the book

[55] there are descriptions of models with random variables in DOA of stable laws. The book

[55] also provides a detailed overview of analytic properties of stable laws. Other manuscripts

that present necessary and sufficient conditions of random variables belonging to DOA of a

stably distributed r.v. include [56] and references therein.

There are only three classes of stable distributions with known explicit expressions

for the probability density functions (pdf’s). Denote by µ and σ the mean and the variance

for the random variable with a specified distribution. Here are the three stable distributions

with known pdf’s, [51].

• The Gaussian distribution S2(σ, 0, µ), corresponding to α = 2, with the pdf

f(x) = (2σ
√
π)−1e−(x−µ)2/4σ2

; (1.15)
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• The Lévy distribution S1/2(σ, 1, µ), corresponding to α = 1/2, whose pdf is

f(x) =
( σ

2π

)1/2 1

(x− µ)3/2
exp

{
−σ

2(x− µ)

}
; (1.16)

• The Cauchy distribution S1(σ, 0, µ), corresponding to α = 1, whose pdf is

f(x) =
σ

π((x− µ)2 + σ2)
. (1.17)

Despite the lack of stable pdf expressions, for any stability parameter α ∈ (0, 2] there

is an analytic expression for the characteristic function, [15]. In this thesis we concentrate on

the case α ∈ (1, 2). The case α = 2 is simpler and is omitted here, apart from the analysis

results Chapter.

Now, relating back to (1.14) which relates attracted distributions with fractional op-

erators, we present several definitions and properties of fractional operators. Let us denote

the space of functions f(t, y) which are differentiable in t and twice differentiable in y by

C1,2(R+ × Rd). Denote by Aβ the infinitesimal generator of a β-stable Lévy motion X̃ with

β ∈ (0, 1):

Aβf(t, y) = − 1

Γ[−β]

∫ ∞
0

(f(t+ r, y)− f(t, y))
dr

r1+β
, (1.18)

for f ∈ C1,2(R+ × Rd) regular enough and with f(t, y) = 0 for t < 0, y ∈ R. The dual

operator for A is the fractional Caputo derivative D∗β0,t defined below, [13], [57]. Here dual is

understood in the sense that for all f, g in the domain of A, (f,A∗g) = (Af, g), where (·, ·)

is the dual pairing. Let us write C1 ([0,∞)) for the space of functions which are continuous

and with a continuous first derivative.

Definition 5. The left-sided Caputo fractional derivative for β ∈ (0, 1) is defined for f ∈

C1 ([0,∞)) regular enough by

D∗β0+,xf(x) =
1

Γ[1− β]

∫ x

0

df(y)

dy
(x− y)−βdy. (1.19)

The fractional derivative in (1.19) is named after M. Caputo who used this operator

in 1967.
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Definition 6. The fractional Laplacian −(−∆)α/2 with α ∈ (0, 2] is defined for f regular

enough as

−(−∆)α/2f(t, y) = p.v.cd,s

∫
Rd

f(t, y)− f(t, ξ)

|y − ξ|d+α
dξ, (1.20)

where p.v. stands for ”principal value” and cd,s is a normalising constant, which ensures that

the following Fourier transform in space relation holds

F ((−∆)α/2f)(t, p) = |p|αF (f)(t, p), (1.21)

see [13], [51].

The symmetric α-stable Lévy motion has the fractional Laplacian −(−∆)α/2 as its

infinitesimal generator [13].

Definition 7. The left-sided Riemann-Liouville fractional derivative for β ∈ (0, 1) is defined

for f ∈ C1 ([0,∞)) regular enough as follows:

Dβ
0+,xf(x) =

1

Γ[1− β]

d

dx

∫ x

0
f(y)(x− y)−βdy. (1.22)

Both the Riemann-Liouville and the Caputo fractional derivatives are special cases

of the more general Dzhrbashyan-Nersesyan fractional derivative, which first appeared in

publications in 1968, see [58].

Definition 8. The antiderivative for Dβ
0+,x is the Riemann-Liouville integral

Iβ0,xf(x) =
1

Γ(β)

∫ x

0
f(t)(x− t)β−1dt. (1.23)

The following relation between Dβ
0+,x

and I1−β
0+,x

holds for β ∈ (0, 1):

Dβ
0+,xf(x) =

d

dx
I1−β

0+,xf(x). (1.24)

We shall only deal with left-sided fractional Caputo and Riemann-Liouville derivatives;

so we drop the terminology left-sided from now on.
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Definition 9. The generator form of the Caputo fractional differential operator for every f

from the Schwartz space S(R) is defined as:

dβf(x)

dxβ
=

1

Γ[−β]

∫ ∞
0

(f(x− y)− f(x))
dy

y1+β
, β ∈ (0, 1). (1.25)

In case f(x) = 0 for x < 0, the generator form is equivalent to the Caputo, but

not to the Riemann-Liouville one. This is discussed in more detail for example in [5]. The

Riemann-Liouville (1.22) and the Caputo derivatives (1.19) are related by the formula [57]:

Dβ
0,tf(t) = D∗β0,tf(t) +

t−βf(0)

Γ[1− β]
. (1.26)

The physical interpretations of fractional Caputo and Riemann-Liouville derivatives

may be found in [36] and in [59].
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Chapter 2

Control and Scaling of the

Continuous Time Random Walk

2.1 Controlled CTRW and the payoff function.

Let us assume that an agent in charge of the stochastic system described in section 1.3 can

control the distribution of jumps ξi, i ∈ N. Let us denote the set of all possible controls during

any jump by U . It is assumed to be a closed convex subset in Rd. By Ũ we denote the set of

sequences:

Ũ = {ũ = (u1, u2, . . .)}, ui ∈ U, i ∈ N. (2.1)

Since ξi become dependent on control, we shall write ξi(ui). Control brings about dependence

of the probability measure µ on u ∈ U , hence the notation µu(dξ) appearing later. Now

Y (M(t), ũ) =

M(t)∑
i=1

ξi(ui) (2.2)

is a controlled CTRW. For simplicity of notation we write

η(t, ũ) = Y (M(t), ũ). (2.3)
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We assume that the effect the control has on the jumps may be represented as follows

∫
|y|>n

1(y/|y|∈Ω)µ(dy) ∼ ω(u)

Γ(1− α)nα

∫
Ω
dσ(ξ), (2.4)

with some continuous and bounded from above and from below function ω(u).

We are not going to control the distribution of waiting times, so M(t) remains inde-

pendent of u ∈ U . Let us study the process Yu(M(t)) only at times when jumps take place.

This is an embedded Markov process. Let the terminal payoff S(t = 0, y) at any y ∈ Rd be

given by a known bounded function S(t = 0, y) = S0(y).

Assume that there is a cost for jumping as well as for arriving at a new state. Let us

represent the running cost due to jumping by the function f(u, y, ξ). Assume also that there

is payoff due to waiting which is g(u, y) per time unit. Then the optimal payoff function (the

value function) S(t, y) for the process Yu(M(t)) considered at jump times only is defined as

follows:

S(t, y) = inf
ũ∈Ũ

E
[
S0(y+η(t, ũ))+

M(t)∑
i=1

γig(ui, y+Y (i−1))+

M(t)∑
i=1

f(ui, y+Y (i−1), ξi(ui))

]
(2.5)

for t ≥ 0. It is convenient and physically appropriate to assume that for all t < 0, S(t, y) = 0.

The object defined in (2.5) represents the minimal cost that the agent pays when the time

until the end of the process is t ≥ 0 and the agent is at position y ∈ Rd. Due to the law of

total expectation

inf
ũ∈Ũ

ES0(y + η(t, ũ))

= inf
ũ∈Ũ

(
E(S(t, y)

∣∣no jump)P (no jump)

+E(S(t, y)
∣∣jump occurred)P (jump occured)

)
.

Given that a jump ξ takes place at a time r ∈ [0, t], the conditional expectation of the

payoff S at time t− r ∈ R+ is given by the integral
∫
Rd S(t− r, y+ ξ)µu(dξ) where 0 < r < t,
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r = t− γ. Consequently, S(t, y) satisfies the following dynamic programming equation:

S(t, y) = inf
u∈U

[
S0(y)P [γ > t] +

∫ t

0
ES(t− r, y + ξ(u)|γ = r)ν(dr)

]

= inf
u∈U

[
S0(y)

∫ ∞
t

ν(dr) +

∫ t

0

∫
Rd
S(t− r, y + ξ)µu(dξ)ν(dr)

+

∫ t

0

∫
Rd
g(u, y)rµu(dξ)ν(dr) + t

∫ ∞
t

g(u, y)ν(dr) +

∫ t

0

∫
Rd
f(u, y, ξ)µu(dξ)ν(dr)

]
. (2.6)

2.2 Scaling.

Let us make the following scaling which is standard in CTRW theory: γi 7→ γiτ
1/β and

ξi 7→ ξiτ
1/α, i ∈ N, where τ > 0, see [25], [19]. Denote by Xτ the scaled X:

Xτ (n) =

n∑
i=1

τ1/βγi = Xτ (n− 1) + τ1/βγn. (2.7)

Also, by Y τ denote the scaled Y :

Y τ (n) =

n∑
i=1

τ1/αξi(ui) = Y τ (n− 1) + τ1/αξn(un). (2.8)

Define M τ (t) = M(tτ−1/β) similarly to (1.6) by

τ1/β

Mτ (t)∑
i=1

γi ≤ t < τ1/β

Mτ (t)+1∑
i=1

γi. (2.9)

And similarly to (1.7)

Y τ (M τ (t), ũ) =

Mτ (t)∑
i=1

τ1/αξi(ui) (2.10)

with n replaced by M τ (t).

Analogously to (2.5) we will denote the optimal payoff at time t, where t ≥ 0, and at

position y ∈ Rd by Sτ (t, y):

Sτ (t, y) = inf
ũ∈Ũ

E
[
S0(y+ητ (t, ũ))+

Mτ (t)∑
i=1

γig(ui, y+Y (i−1))+

Mτ (t)∑
i=1

f(ui, y+Y (i−1), ξi(ui))

]
.
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The function S(t, y) defined in (2.5) is S1(t, y). Now the scaled analogue of the dynamic

programming equation (2.6) for Sτ (t, y) becomes

Sτ (t, y) = inf
u∈U

[
S0(y)

∫ ∞
t

ν(dr/τ1/β)

+

∫ t

0

∫
Rd

[Sτ (t− r, y + ξ) + f(u, y, ξ)]µu(dξ/τ1/α)ν(dr/τ1/β)

+ t

∫ ∞
t

g(u, y)ν(dr/τ1/β) +

∫ t

0

∫
Rd
g(u, y)rµu(dξ/τ1/α)ν(dr/τ1/β)

]
. (2.11)

The scaled measures µ(dξ/τ1/α) and ν(dr/τ1/β) can be defined by their integrals with con-

tinuous functions ∫
Rd
h1(ξ)µ(dξ/τ1/α) =

∫
Rd
h1(τ1/αξ)µ(dξ), (2.12)

∫ ∞
0

h2(r)ν(dr/τ1/β) =

∫ ∞
0

h2(τ1/βr)ν(dr), (2.13)

for any continuous functions h1 and h2 on Rd and R+ respectively.

2.3 Heuristic results.

Assume further that as τ → 0, for t ≥ 0 and y ∈ Rd:

Sτ (t, y)→ S̃(t, y) (2.14)

in an appropriate sense, the limit S̃(t, y) belongs to C1,2(R+ × Rd) and decays at infinity in

the spatial variable.

For f ∈ C1,2(R+ × Rd) which decays at infinity in the spatial variable, let Lαu be

defined as

Lαuf(t, y) = p.v.cd,α

∫
Rd

f(t, y)− f(t, ξ)

|y − ξ|d+α
w(u)dξ, (2.15)

and let A∗β be the dual for the generator Aβ defined in (1.18). Here duality should be

understood in the sense that (f,A∗βg) = (Aβf, g) for any f, g in the domain of Aβ and (·, ·)

is the dual pairing. Note that Aβ and A∗β are defined for f ∈ C1,2(R+ × Rd) and regular
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enough. Assume that for any ρ ∈ R+

f(u, y, ρξ) = ραf(u, y, ξ), (2.16)

i.e., f is homogeneous of order α. We will use this assumption in the case ρ = τ1/α. Let us

show that under the above assumptions the function S̃(t, y) satisfies an equation of the form

t−β

Γ[1− β]
S0(y) +A∗βt S̃(t, y)

+ inf
u∈U

[
Lαu S̃(t, y) + F (u, y) + 2g(u, y)

(
t1−β

Γ[1− β]

)]
= 0. (2.17)

Remark 1. In the case without control this equation appears in different forms for example

in [25], [39], [60].

We write the dynamic programming equation (2.11) in the form

Sτ (t, y) = inf
u∈U

[
S0(y)

∫ ∞
tτ−1/β

ν(dr) +

∫ tτ−1/β

0

∫
Rd
f(u, y, ξτ1/α)µu(dξ)ν(dr)

+

∫ tτ−1/β

0

∫
Rd

[
Sτ (t− rτ1/β, y + ξτ1/α)

]
µu(dξ)ν(dr)

+ t

∫ ∞
tτ−1/β

g(u, y)ν(dr) +

∫ tτ−1/β

0

∫
Rd
g(u, y)rτ1/βµu(dξ)ν(dr)

]
(2.18)

or equivalently

Sτ (t, y) = inf
u∈U

[
S0(y)

∫ ∞
tτ−1/β

ν(dr)

+τ

∫ tτ−1/β

0

∫
Rd

[
Sτ (t− rτ1/β , y + ξτ1/α)− Sτ (t− rτ1/β , y)

τ

]
µu(dξ)ν(dr)

+τ

∫ tτ−1/β

0

∫
Rd

[
Sτ (t− rτ1/β , y)− Sτ (t, y)

τ

]
µu(dξ)ν(dr)

+

∫ tτ−1/β

0

∫
Rd
Sτ (t, y)µu(dξ)ν(dr) + t

∫ ∞
tτ−1/β

g(u, y)ν(dr)

+

∫ tτ−1/β

0

∫
Rd
g(u, y)rτ1/βµu(dξ)ν(dr) +

∫ tτ−1/β

0

∫
Rd
f(u, y, ξτ1/α)µu(dξ)ν(dr)

]
(2.19)
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Let us represent one of the summands as follows:

∫ tτ−1/β

0

∫
Rd

[
Sτ (t− rτ1/β, y)− Sτ (t, y)

τ

]
µu(dξ)ν(dr)

=

∫ ∞
0

∫
Rd

[
Sτ (t− rτ1/β, y)− Sτ (t, y)

τ

]
µu(dξ)ν(dr)

−
∫ ∞
tτ−1/β

∫
Rd

[
Sτ (t− rτ1/β, y)− Sτ (t, y)

τ

]
µu(dξ)ν(dr). (2.20)

Note that ∫ ∞
tτ−1/β

∫
Rd
Sτ (t− rτ1/β, y)µu(dξ)ν(dr) = 0 (2.21)

because t − rτ1/β ∈ (−∞, t − tτ−1/β], and Sτ (s, y) = 0 for s < 0. Next, by the well-known

property of A∗β ∫ ∞
0

[
h(t− rτ1/β)− h(t)

τ

]
ν(dr)→ A∗βh(t), (2.22)

for h ∈ C1(R+). Hence under appropriate assumptions on the convergence of Sτ to S̃ as

τ → 0 ∫ ∞
0

[
Sτ (t− rτ1/β, y)− Sτ (t, y)

τ

]
ν(dr)→ A∗βS̃(t, y). (2.23)

This is the main part that makes our deduction heuristic. Let us also re-write

∫ tτ−1/β

0

∫
Rd
Sτ (t, y)µu(dξ)ν(dr)

=

∫ ∞
0

∫
Rd
Sτ (t, y)µu(dξ)ν(dr)−

∫ ∞
tτ−1/β

∫
Rd
Sτ (t, y)µu(dξ)ν(dr). (2.24)

The first term in (2.24) cancels out with Sτ (t, y) on the left hand side (LHS) and the second

term in (2.24) cancels out with the last term in (2.20). Also we write

∫ tτ−1/β

0

∫
Rd

[
Sτ (t− rτ1/β, y + ξτ1/α)− Sτ (t− rτ1/β, y)

τ

]
µu(dξ)ν(dr)

=

∫ ∞
0

∫
Rd

[
Sτ (t− rτ1/β, y + ξτ1/α)− Sτ (t− rτ1/β, y)

τ

]
µu(dξ)ν(dr)
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−
∫ ∞
tτ−1/β

∫
Rd

[
Sτ (t− rτ1/β, y + ξτ1/α)− Sτ (t− rτ1/β, y)

τ

]
µu(dξ)ν(dr). (2.25)

And similarly to (2.23) it follows that

∫ ∞
0

∫
Rd

[
Sτ (t− rτ1/β, y + ξτ1/α)− Sτ (t− rτ1/β, y)

τ

]
µu(dξ)ν(dr)→ LαS̃(t, y), (2.26)

Meanwhile

τ

∫ ∞
tτ−1/β

∫
Rd

[
Sτ (t− rτ1/β, y + ξτ1/α)− Sτ (t− rτ1/β, y)

τ

]
µu(dξ)ν(dr) = 0, (2.27)

since we assume that Sτ (t, y) = 0 for t < 0. For convenience, denote

F (u, y) =

∫
Rd
f(u, y, ξ)µu(dξ). (2.28)

Now using (2.16) and the notation above we write

lim
τ→0

1

τ

∫ tτ−1/β

0

∫
Rd
f(u, y, τ1/αξ)µ(dξ)ν(dr)

= lim
τ→0

∫ tτ−1/β

0

∫
Rd
f(u, y, ξ)µ(dξ)ν(dr)

= lim
τ→0

F (u, y)

(
1− (tτ−1/β)−β

Γ[1− β]

)
= F (u, y). (2.29)

Terms with g yield in the limit:

lim
τ→0

1

τ
t

∫ ∞
t

g(u, y)ν(dr/τ1/β) = lim
τ→0

1

τ
t

∫ ∞
tτ−1/β

g(u, y)ν(dr)

= lim
τ→0

t

τ
g(u, y)

∫ ∞
tτ−1/β

ν(dr) =
t1−β

Γ[1− β]
g(u, y), (2.30)

and

1

τ

∫ t

0

∫
Rd
g(u, y)rµu(dξ/τ1/α)ν(dr/τ1/β)

=
1

τ

∫ tτ−1/β

0
g(u, y)τ1/βrµu(dξ)ν(dr) =

t1−β

Γ[1− β]
g(u, y). (2.31)
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Here in (2.31) we have used that in the limit n→∞ the measure ν(dr) behaves as r−β−1

Γ[1−β]dr,

since
∫∞
|r|>n ν(dr) behaves as n−β

Γ[1−β] in the limit n → ∞. Here we let n = tτ−1/β and take

τ → 0. Together (2.18), (2.23), (2.26), (2.29), (2.30) and (2.31) yield the theorem result

(2.17).

Now we describe a modification of the scaled CTRW process. We present related

optimal payoff function equation for the embedded Markov processes and present the equation

for S̃(t, y) in cases with and without running costs due to jumping and waiting. Let us keep

all the previous assumptions about the CTRW and also assume there is a stochastic motion

during waiting times. This motion may be an arbitrary Feller process Ku
t (y). We assume

that its generator is Bu and the control is of Markov type. We will refer to the additional

deterministic part of the CTRW as the inner motion. In [61] such a process with inner

motion is referred to as a process with a semi-Markov chance interference. In case without

running costs our dynamic programming equation for the optimal payoff function obtains the

following form:

Sτ (t, y) = inf
u∈U

[(E[Sτ (Ku
t (y))P (τ > t)]

+

∫ t

0

∫
Rd

E (Sτ (t− r,Ku
t (y) + ξ) |γ = r)µu(dξ/τ1/α)ν(dr/τ1/β)

]
. (2.32)

We scale the waiting times for this inner motion by τ1/β, and use the following convenient

notation

E[Sτ (Ku
r (y) + ξ, t− r)] =

∫
Rd
Sτ (z + ξ, t− r)Pr(y, dz). (2.33)
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So after the scaling (2.32) may be written as:

Sτ (t, y) = inf
u∈U

[∫ ∞
t

∫
Rd
Sτ (z)Pt(y, dz)ν(dr/τ1/β)

+

∫ t

0

∫
Rd

∫
Rd
Sτ (z + ξ, t− r)Pr(y, dz)µu(dξ/τ1/α)ν(dr/τ1/β)

]
= inf
u∈U

[∫ ∞
tτ−1/β

∫
Rd
Sτ (z)Ptτ1/β (y, dz)ν(dr)

+

∫ tτ−1/β

0

∫
Rd

∫
Rd
Sτ (z + ξτ1/α, t− rτ1/β)Prτ1/β (y, dz)µu(dξ)ν(dr)

]

= inf
u∈U

[∫ ∞
tτ−1/β

∫
Rd
Sτ (z)Ptτ1/β (y, dz)ν(dr)

+

∫ tτ−1/β

0

τ

∫
Rd

∫
Rd S

τ (z + ξτ1/α, t− rτ1/β)Prτ1/β (y, dz)− Sτ (y, t− rτ1/β)

τ
µu(dξ)ν(dr)

+

∫ tτ−1/β

0

(
τ
Sτ (y, t− rτ1/β)− Sτ (t, y)

τ
+ Sτ (t, y)

)
ν(dr)

]
. (2.34)

Hence,

1

τ

[∫ ∞
tτ−1/β

Sτ (t, y)ν(dr)−
∫ ∞
tτ−1/β

∫
Rd
Sτ (z)Ptτ1/β (y, dz)ν(dr)

]
= inf
u∈U

[∫ tτ−1/β

0

Sτ (t− rτ1/β , y)− Sτ (t, y)

τ
ν(dr)

+

∫ tτ−1/β

0

∫
Rd

∫
Rd

Sτ (t− rτ1/β , z + ξτ1/α)− Sτ (t− rτ1/β , z)
τ

Prτ1/β (y, dz)µu(dξ)ν(dr)

+

∫ tτ−1/β

0

∫
Rd

Sτ (t− rτ1/β , z)− Sτ (t− rτ1/β , y)

τ
Prτ1/β (y, dz)ν(dr)

]
. (2.35)

The last summand can be represented in the form:

∫ tτ−1/β

0

∫
Rd

Sτ (t− rτ1/β, z)− Sτ (t− rτ1/β, y)

τ
Prτ1/β (y, dz)ν(dr)

=

∫ ∞
0

∫
Rd

Sτ (t− rτ1/β, z)− Sτ (t− rτ1/β, y)

τ
Prτ1/β (y, dz)

−
∫ ∞
tτ−1/β

∫
Rd

Sτ (t− rτ1/β, z)− Sτ (t− rτ1/β, y)

τ
Prτ1/β (y, dz)ν(dr). (2.36)

As τ → 0, due to the boundary condition the two terms in the second integral are 0’s and

the first integral satisfies:

∫ ∞
0

∫
Rd

Sτ (t− rτ1/β, z)− Sτ (t− rτ1/β, y)

τ
Prτ1/β (y, dz)ν(dr)→ BuS̃(t, y) (2.37)
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As for the term

1

τ

∫ ∞
tτ−1/β

∫
Rd
Sτ (z)Ptτ1/β (y, dz)ν(dr), (2.38)

we add and subtract

1

τ

∫ ∞
tτ−1/β

S0(y)ν(dr) (2.39)

and this gives us:

1

τ

∫ ∞
tτ−1/β

∫
Rd
Sτ (z)Ptτ1/β (y, dz)ν(dr)

=

∫ ∞
tτ−1/β

[∫
Rd S

τ (z)Ptτ1/β (y, dz)− S0(y)
]

τ
ν(dr)

+
1

τ

∫ ∞
tτ−1/β

S0(y)ν(dr). (2.40)

Now,

∫ ∞
tτ−1/β

tτ1/β−1

∫
Rd

Sτ (z)− S0(y)

tτ1/β
Ptτ1/β (y, dz)ν(dr)

→
∫ ∞
tτ−1/β

tτ1/β−1BuS0(y)ν(dr)→ 0, (2.41)

and

1

τ

∫ ∞
tτ−1/β

S0(y)ν(dr) ∼ t−β

Γ(1− β)
S0(y), (2.42)

Assuming that the limit S̃(t, y) := limτ→0 S
τ (t, y) exists in an appropriate sense, it follows

1

Γ(1− β)
t−βS0(y)

+ inf
u∈U

[
LuαS̃(t, z) +BuS̃(t, y)

]
+A∗βS̃(t, y) = 0. (2.43)

If we also add the costs for jumping and costs for waiting, then the extra terms with gu,t(y)

and F (u, y) appear as in the previous version of the process, yielding the following equation
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for S̃(t, y):

1

Γ(1− β)
t−βS0(y) +A∗βS̃(t, y)

+ inf
u∈U

[
LuαS̃(t, z) +BuS̃(t, y) + 2gu,t(y)t1−β + F (u, y)

]
= 0. (2.44)

2.4 Process description forward in time.

Sometimes it is appropriate to describe the motion time-forwards, rather than time-backwards,

i.e., t > 0 represents time elapsed since the beginning of the walk, rather than until its termi-

nation. In particular, this is convenient when jump or waiting time distributions are position

dependent. Let us denote by T the time we finish observing the process. Then what used to be

denoted by t becomes T − t in the new notation. The terminal payoff is now S(T, y) = ST (y).

Define M τ (T − t) by

τ1/β

Mτ (T−t)∑
i=1

γi ≤ T − t < τ1/β

Mτ (T−t)+1∑
i=1

γi. (2.45)

Then

ητ (T − t, ũ) = Y τ (M τ (T − t, ũ)) = τ1/α

Mτ (T−t)∑
i=1

ξi(ui). (2.46)

Then the new definition of the optimal payoff Sτ (t, y) is

Sτ (t, y) = inf
ũ∈Ũ

E
[
ST (y + ητ (T − t, ũ)) +

Mτ (T−t)∑
i=1

γig(ui, y + Y (i− 1))

+

Mτ (T−t)∑
i=1

f(u, y + Y (i− 1), ξi(ui))

]
, (2.47)

We now assume that Sτ (t, y) = 0 for t > T , replacing the assumption in the previous process

formulation: Sτ (t, y) = 0 for t < 0.

Assume again that Sτ (·)→ S̃(·) in the appropriate sense and Lαu is as before. Let us

show that as τ →∞ the function S̃(t, y) should satisfy the equation

(T − t)−βST (y)

Γ[1− β]
+AβS̃(t, y)
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+ inf
u∈U

[
Lαu S̃(t, y) + 2g(u, y)

(T − t)1−β

Γ[1− β]
+ F (u, y)

]
= 0. (2.48)

Analogously to the previous derivation, we derive from the law of total expectation that

Sτ (t, y) defined in (2.47) satisfies the following:

Sτ (t, y) = inf
u∈U

[
ST (y)

∫ ∞
(T−t)τ−1/β

ν(dr) +

∫ (T−t)τ−1/β

0

∫
Rd
Sτ (t, y)µu(dξ)ν(dr)

+ τ

∫ (T−t)τ−1/β

0

∫
Rd

Sτ (t+ rτ1/β, y + ξτ1/α)− Sτ (t+ rτ1/β, y)

τ
µu(dξ)ν(dr)

+ τ

∫ (T−t)τ−1/β

0

∫
Rd

Sτ (t+ rτ1/β, y)− Sτ (t, y)

τ
µu(dξ)ν(dr)

]
. (2.49)

Next we carry out the same procedures as for the previous derivation and obtain equation

(2.4). Note that (2.4) may be written in the form

AβS̃(t, y) + inf
u∈U

(Lαu S̃(t, y) + h(t, u, y)) = 0 (2.50)

or

AβS̃(t, y) + inf
u∈U

H
(
S̃(t, y), t, u, y)

)
= 0. (2.51)

The next section will concentrate on the scenario where jump sizes depend on the

current position of the agent, and for every i ≥ 1 waiting time γi depends on
∑i−1

j=1 γj . There

we use the forwards-in-time description that we have just introduced.

2.5 Time and position dependent extensions of CTRWs.

In this section we present position dependent extensions of controlled CTRW models studied

in the previous sections of this Chapter, and corresponding limiting payoff function theorems.

These position dependent CTRWs are Markov Chains with nonexponential waiting times.

Here we generalize the fractional operators to generators of Feller processes. These include the
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Brownian motion, all Lévy processes as well as solutions to Stochastic Differential Equations

(SDEs) with Lipschitz continuous coefficients. The definitions, properties and a detailed

exposition of Feller processes is presented for example in [54].

Let Lu be an infinitesimal generator of a Feller process, and A be an infinitesimal

generator of an increasing Feller process. Let the dynamics of the process Y τ (M τ (t)) be

determined by


Y τ (n) = Y τ (n− 1) + ξτn(Y τ (n− 1)),

Xτ (n) = Xτ (n− 1) + γτn(Xτ (n− 1)),

M τ (t) = inf
n
{n : Xτ (n) > t} − 1,

for every n ∈ N; and for i ∈ N the r.v.’s ξi, γi obey probability laws µu,τ (dξ) and

ντ (dr) respectively, such that as τ → 0 the following convergence holds:

∫ ∞
0

f(t+ r, y)− f(t, y)

τ
ντ (dr)→ A f(t, y) (2.52)

for any f(t, y) in the domain of A , and

∫
Rd

f(t, y + ξ)− f(t, y)

τ
µu,τ (dξ)→ Luf(t, y), (2.53)

for any f(t, y) in the domain of Lu.

Let us consider Y τ (M τ (t)) at jump times only. Define the payoff for this dynamics:

Sτ (t, y) = inf
ũ∈Ũ

E
[
ST (y + Y τ

Mτ (T−t))

+

Mτ (T−t)∑
i=1

γτi g(ui, y + Y τ
i−1) +

Mτ (T−t)∑
i=1

f(ui, y + Y τ
i−1, ξi)

]
, (2.54)

where ST (y) = S(T, y) is a known bounded function, Sτ (t, y) = 0 for all t > T ; g(u, y)

and f(u, y, ξ) are the running cost functions corresponding to waiting and jumping costs

respectively. Assume also that as τ → 0, Sτ (·)→ S̃(·) in an appropriate sense, where S̃(t, y)

belongs to domains of the operators Lu and A . Denote the dual operator for A by A ∗. Let
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us show that the equation for S̃(t, y) becomes

A S̃(t, y)−A ∗1(T−t>0)ST (y) + inf
u∈U

[
LuS̃(t, y)

+g(u, y)A ∗((T − t)1(T−t>0))− F (u, y)A ∗1(T−t>0)

]
= 0. (2.55)

Remark 2. It is well-known that if there is no control, then the Markov chains Xτ
[t/τ ], Y

τ
[t/τ ]

converge to Feller processes with generators A and L respectively as τ → 0, see e.g. [54]. In

the case without control the equation (2.55) is a well-known result for the limits of functions

of scaled CTRW, see e.g. [13], [62].

Due to the law of total expectation, analogously to (2.47), the optimal payoff defined

in (2.54) satisfies:

Sτ (t, y) = inf
u∈U

[
[ST (y) + g(u, y)(T − t)]

∫ ∞
T−t

ντ (dr)

+

∫ T−t

0

∫
Rd

[Sτ (t+ r, y + ξ) + g(u, y)r + f(y + ξ, u)]µu,τ (dξ)ντ (dr)

]
. (2.56)

Let us re-write (2.56) as

Sτ (t, y) = inf
u∈U

[
ST (y)

∫ ∞
t

ντ (dr) + τ

∫ T−t

0

∫
Rd

Sτ (t+ r, y + ξ)− S(t+ r, y)

τ
µu,τ (dξ)ντ (dr)

+τ

∫ T−t

0

∫
Rd

Sτ (t+ r, y)− Sτ (t, y)

τ
µu,τ (dξ)ντ (dr) +

∫ T−t

0

∫
Rd
Sτ (t, y)µu,τ (dξ)ντ (dr)

g(u, y)(T − t)
∫ ∞
T−t

ντ (dr) +

∫ T−t

0

∫
Rd
rµu,τ (dξ)ντ (dr) +

∫ T−t

0

∫
Rd
f(y + ξ, u)µu,τ (dξ)ντ (dr)

]
.

(2.57)

Now, to show (2.55) we follow the same method as in proving (2.17). Let us re-write

τ

∫ T−t

0

∫
Rd

Sτ (t+ r, y + ξ)− Sτ (t+ r, y)

τ
µu,τ (dξ)ντ (dr)

= τ

∫ ∞
0

∫
Rd

Sτ (t+ r, y + ξ)− Sτ (t+ r, y)

τ
µu,τ (dξ)ντ (dr)

−τ
∫ ∞
T−t

∫
Rd

Sτ (t+ r, y + ξ)− Sτ (t+ r, y)

τ
µu,τ (dξ)ντ (dr). (2.58)
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The double integral that we are subtracting is equal to 0 because we have assumed Sτ (t, y) = 0

for t > T . Due to (2.53), our assumption that Sτ → S̃ in an appropriate sense, and due to

the properties of the generators A and Lu, it follows that

lim
τ→0

∫ ∞
0

L S̃(t+ r, y)−L S(t, y)

τ
ντ (dr) = A (L S̃(t, y)), (2.59)

so

lim
τ→0

∫ ∞
0

L S̃(t+ r, y)ντ (dr) = lim
τ→0

(∫ ∞
0

L S̃(t, y)ντ (dr) + τA (L S̃(t, y))

)

= lim
τ→0

∫ ∞
0

L S̃(t, y)ντ (dr) = L S̃(t, y), (2.60)

similarly to (2.59) it follows that as τ → 0

∫
Rd

Sτ (t+ r, y + ξ)− Sτ (t+ r, y)

τ
µu,τ (dξ)→ LuS̃(t, y). (2.61)

Now express

τ

∫ T−t

0

∫
Rd

Sτ (t+ r, y)− Sτ (t, y)

τ
µu,τ (dξ)ντ (dr)

= τ

∫ ∞
0

∫
Rd

Sτ (t+ r, y)− Sτ (t, y)

τ
µu,τ (dξ)ντ (dr)

−τ
∫ ∞
T−t

∫
Rd

Sτ (t+ r, y)− Sτ (t, y)

τ
µu,τ (dξ)ντ (dr). (2.62)

Due to the definition of A and (2.52) and the assumption Sτ → S̃, as τ → 0, similarly to

how (2.59) and (2.61) have arisen earlier, it follows that

∫ ∞
0

Sτ (t+ r, y)− Sτ (t, y)

τ
ντ (dr)→ A S̃(t, y). (2.63)

The first term in the double integral that we subtract is equal to 0, as we have assumed

Sτ (t, y) = 0 for t > T . Now,

∫ T−t

0

∫
Rd
Sτ (t, y)µu,τ (dξ)ντ (dr)

=

∫ ∞
0

∫
Rd
Sτ (t, y)µu,τ (dξ)ντ (dr)−

∫ ∞
T−t

∫
Rd
Sτ (t, y)µu,τ (dξ)ντ (dr). (2.64)
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The double integral we subtract here cancels out with the last term in (2.62), and the first

cancels out with Sτ (t, y) on LHS. As for the running cost terms the following calculations

prove to be useful:

A ∗1(T−t>0) = − lim
τ→0

∫ ∞
0

(
1(T−t−r>0) − 1(T−t>0)

)
ντ (dr)

= lim
τ→0

∫ ∞
T−t

1(T−t>0)ντ (dr) = lim
τ→0

∫ ∞
T−t

ντ (dr), (2.65)

as we assume T − t ≥ 0. Also,

A ∗
(
(T − t)1(T−t>0)

)
= − lim

τ→0

∫ ∞
0

(
(T − t− r)1(T−t−r>0) − (T − t)1(T−t>0)

)
ντ (dr)

= lim
τ→0

∫ ∞
0

(
−(T − t)(1(T−t−r>0) − 1(T−t>0)) + r1(T−t−r>0)

)
ντ (dr)

= lim
τ→0

∫ T−t

0

rντ (dr) + (T − t)A ∗(1(T−t>0)). (2.66)

Hence terms with g(u, y) yield:

lim
τ→0

(
g(u, y)(T − t)

∫ ∞
T−t

ντ (dr) + g(u, y)

∫ T−t

0
rντ (dr)

)

= g(u, y)A ∗
(
(T − t)1(T−t>0)

)
. (2.67)

The term with f becomes in the limit

lim
τ→0

∫ ∞
T−t

∫
Rd
f(y + ξ, u)µu,τ (dξ)ντ (dr) = −F (y, u)A ∗(1(T−t>0)), (2.68)

in analogy to the more specific case (2.29). The result (2.55) follows. In the particular case

when we assume L =
∑n

j=1 L
αj
u for αj ∈ (0, 2) and assume A =

∑n
j=1A

βj for βj ∈ (0, 1),

j ∈ [1, · · · , n], the limiting equation has the form

n∑
j=1

Aβj S̃(t, y)−
n∑
j=1

A∗βj (1{T−t>0})ST (y)

+ inf
u∈U

[ n∑
j=1

Lαju S̃(t, y) + g(u, y)

n∑
j=1

A∗βj ((T − t)1T−t>0)− F (u, y)

n∑
j=1

A∗βj1T−t>0

]
= 0, (2.69)

where L
αj
u is defined as in (2.15) for each j ∈ [1, · · · , n]. Physically this corresponds to the
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situation where each of the jumps ξi depends on n different stable laws. I.e. each jump size

belongs to the normal domain of attraction on n different stable r.v.’s, representing n factors

affecting the sizes on jumps ξi, i ∈ N. Similarly, the second assumption models the scenario

in which the waiting times γi depend on n different stable laws. For example, if n = 2, and

α2 = 1, the measure µα1(dξ) is independent of control, and β is fixed for j ∈ [1, 2], then

Lα2 = −w(u) ddy , the drift operator. In case when there are no running costs, the equation

for S̃(t, y), written backwards in time, has the form

A∗βS̃(t, y)−A∗βS0(y) + inf
u∈U

[(
Lα1 + w(u)

d

dy

)
S̃(t, y)

]
= 0. (2.70)

Using the definition of the Caputo derivative D∗β0,t in (1.19), equation (2.70) can be presented

in the form

D∗,β
0+,t

S̃(t, y) = Lα1S̃(t, y) +H
(
t, y,DyS̃(t, y)

)
, (2.71)

where H contains all the control related terms and the initial value term. Analysis of well-

posedness for a mild form of (2.71) in case Lα1 = −(−∆)α/2 with α ∈ (1, 2] is presented

in the next Chapter, together with various regularity properties. The rigorous proof for

Sτ (t, y)→ S̃(t, y) as τ → 0 is presented in Chapter 6.
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Chapter 3

Wellposedness

The purpose of this Chapter is to present our results concerning well-posedness of the Cauchy

problem for the non-linear fractional in time and space differential equation

D∗β0,tf(t, y) = −a(−∆)α/2f(t, y) +H(t, y,∇f(t, y)) (3.1)

where y ∈ Rd, t ≥ 0, β ∈ (0, 1), α ∈ (1, 2], H(t, y, p) is a Lipschitz function in all of

its variables, f(0, y) = f0(y) is known and bounded, and a is a constant, a > 0. Here ∇

denotes the gradient with respect to the spatial variable. For a function dependent on several

spatial variables, say x, y, we may occasionally indicate the variable with respect to which

the gradient is taken, by a subscript, ∇x. For the readers’ convenience, below we write the

definitions of the Caputo and Laplacian fractional operators. The Caputo derivative D∗β0,t is

defined for f ∈ C1,2(R+ × Rd) regular enough as

D∗β0,tf(t, y) =
1

Γ(1− β)

∫ t

0

df(s, y)

ds
(t− s)−βds, (3.2)

whilst −(−∆)α/2 is the fractional Laplacian

−(−∆)α/2f(t, y) = p.v.Cd,α

∫
Rd

f(t, y)− f(t, x)

|y − x|d+α
dx, (3.3)

defined for f ∈ C1,2(R+ ×Rd) and decaying at infinity in y, and where Cd,α is a normalizing

constant and p.v. stands for the ”principal value”. The extension of our results for (3.1) to
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the case where H = H(t, y, f(t, y),∇f(t, y)) is straightforward and we omit it here.

As a preliminary analysis we establish the regularity properties for solutions of the

linear equations such as

D∗β0,tf(t, y) = −a(−∆)α/2f(t, y) + h(t, y), (3.4)

with a given function h, an initial condition f(0, y) = f0(y), β ∈ (0, 1), α ∈ (1, 2], and

a constant a > 0. This allows one to reduce the analysis of (3.1) to a fixed point problem.

Firstly we study the linear problem (3.4) and secondly we formulate and prove our main

results for equation (3.1).

Our regularity estimates for Gβ and Sβ,1 have already been applied to analysis of SIR

systems described with Caputo time derivatives and fractional Laplacians. The paper proves

existence of a global solution and establishes solution time bounds, see [63].

Before the fractional Cauchy problem analysis we present a literature review for recent

developments in analysis of fractional differential equations (FDEs). Among researchers who

studied solutions to FDEs are [64], [36], [65], [66], [67], [57], [68], [69], [37], [70], [71]. More

results and reviews can be found in references therein. FDEs appear for example in modelling

processes with memory, see [39], [38], [72], [73].

Several authors solve FDEs using Laplace transforms in time, see [66], [37] and [67]

for example.

The book [57] covers analysis for Caputo time-fractional differential equations with

the parameter β > 0, for example

D∗β0,ty(x) = −µy(x) + q(x), (3.5)

with y(0) = y
(0)
0 , Dy(0) = y

(1)
0 , β ∈ (1, 2), µ > 0.

In [65] the theory for FDEs in Lp spaces is developed. Well-posedness of (3.4) in Lp

may be deduced from there.

In [64] the authors consider classical solutions for fractional Cauchy problems in

bounded domains D ⊂ Rd with Dirichlet boundary conditions.
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In [74] one may find the analysis for the non-local Cauchy problem in a Banach space,

where instead of −(−∆)α/2 there is a general infinitesimal generator of a strongly continuous

semigroup of bounded linear operators. The authors present conditions that need to hold to

ensure existence of mild forms of the FDEs.

The paper [75] establishes asymptotic estimates of solutions to the following FDE and

its similar versions:

D∗α0,tu(x, t) = a2d
2u(x, t)

dx2
, (3.6)

for t > 0, x ∈ R, α ∈ (0, 1), u(x, 0) = φ(x), lim|x|→+∞ u(x, t) = 0, however the case of

the spatial fractional Laplacian is not included and there is no h(x, t) term on the right hand

side (RHS).

In [76] the author studies the uniqueness of a solution to

D∗α0,tu(t) = Au(t), (3.7)

where t > 0, u(0) = u0, and A is an unbounded closed operator in a Banach space, α ∈ (0, 1).

However there is no non-homogeneity term h(t) on the RHS. For solvability of linear FDEs

in Banach spaces one may see [77], where

D∗α0,tx(t) = Ax(t), for m− 1 < α ≤ m ∈ N, (3.8)

and dk

dtk
x(t)|t=0 = ξk, for k = 0, . . . ,m − 1. The authors give sufficient conditions under

which the set of initial data ξk for k = 0, . . . ,m − 1 provides a solution to (3.8) of the form∑m−1
k=0 t

kEα,k+1(Atα)ξk. In particular, these conditions depend on Roumieu, Gevrey and

Beurling spaces related to the operator A.

In [78] the authors use fixed point theorems to prove existence and uniqueness of a

positive solution for the problem
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Dα
0,tx(t) = f(t, x(t),−Dβ

0,tx(t)), t ∈ (0, 1), (3.9)

with non-local Riemann-Stieltjes integral condition

Dβ
0,tx(0) = Dβ+1

0,t x(0) = 0, (3.10)

and Dβ
0,tx(1) =

∫ 1
0 D

β
0,tx(s)dA(s), where A is a function of bounded variation, α ∈ (2, 3], β ∈

(0, 1), α−β > 2. In [78] there are references to papers where FDEs are inspected with the help

of various fixed point theorems. Our analysis also includes a fixed point theorem, however

its use and the problem itself are different from the one in [78].

In [69] there is a construction and investigation of a fundamental solution for the

Cauchy problem with a regularised fractional derivative Dα
0,t,reg, and α ∈ (0, 1) defined by

Dα
0,t,regu(t, x) =

1

Γ(1− α)

[
∂

∂t

∫ t

0
(t− τ)−αu(τ, x)dτ − t−αu(0, x)

]
. (3.11)

Note that

Dα
0,tu(t, x) =

1

Γ(1− α)

∂

∂t

∫ t

0
(t− τ)−αu(τ, x)dτ (3.12)

is the definition of the Riemann-Liouville fractional derivative. Since D∗α0,tf(t, x) =

Dα
0,tf(t, x) − t−α

Γ(1−α)f(0, x), the regularised derivative in (3.11) is in fact identical to our

definition of the Caputo derivative in (3.2).

The problem studied there is

Dα
0,t,regu(t, x)−Bu(t, x) = f(t, x), (3.13)

t ∈ (0, T ], x ∈ Rn, where
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B =

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
j=1

bj(x)
∂

∂xj
+ c(x) (3.14)

with bounded real-valued coefficients. Our analysis goes beyond to include B = −a(−∆)α/2,

with a > 0. Theorems 3, 6 and 7 concerning the case α = 2 are obtainable from the results

in [69] by slightly different arguments.

The paper [79] presents in particular the fundamental solution to the multi-time FDE

m∑
k=1

λkD
∗βku(t, y)−∆xu(t, y) = f(t, y), (3.15)

for t = (t1, . . . , tn) ∈ Rn, y = (y1, . . . , ym) ∈ Rm, and λ = (λ1, . . . , λm) ∈ Rm, whilst ∆x is the

standard Laplacian operator and βk ∈ (0, 1) for all 1 ≥ k ≤ m. There is also the proof of that

the fundamental solution for (3.15) is unique. The uniqueness result covers a more broad

range of FDEs involving Dzhrbashyan-Nersesyan fractional in time differential equations. In

our case there are fractional operators with respect to both spatial and temporal variables.

Denote a bounded domain by D. Taking α ∈ (0, 2), β ∈ (0, 1) the paper [80] explores

strong solutions to the equation

D∗β0,tu(t, x) = ∆α/2
x u(t, x), (3.16)

for x ∈ D, t > 0, u(0, x) = f(x) for x ∈ D and u(t, x) = 0 for x ∈ Dc, t > 0.

Our approach to the non-linear FDE is different and includes the fractional Laplacian

−(−∆)α/2 instead of the standard one ∆y. We extend to the scenario with the RHS term in-

cluding H(t, y,∇f(t, y)). We concentrate on the case with only one fractional time derivative

D∗β0,t.

In [81] the authors present conditions under which a Caputo FDE has a classical

solution. However, their equation considers a fractional derivative in time only, whilst the

spatial operator is the Laplacian. Also, apart from the fractional time operator, their equation

of interest involves a Laplacian in time.
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3.1 The mild form for the linear fractional dynamics

Our analysis of equation (3.4) is based on the Fourier transform in space, where for a function

g(y) its Fourier transform will be defined in the following way

ĝ(p) =

∫
Rd
e−i〈p,y〉g(y)dy, (3.17)

where 〈·, ·〉 is the scalar product. Applying the Fourier transform in y to (3.4) yields

D∗β0,tf̂(t, p) = −a|p|αf̂(t, p) + ĥ(t, p). (3.18)

This is a standard linear equation with the Caputo fractional derivative. For contin-

uous h its solution is given by

f̂(t, p) = f̂0(p)Eβ,1(−a|p|αtβ) +

∫ t

0
(t− s)β−1Eβ,β(−a(t− s)β|p|α))ĥ(s, p)ds, (3.19)

where Eβ,1 and Eβ,β are Mittag-Leffler functions, see formulas (7.3)− (7.4) in [57].

Let us recall that the Mittag-Leffler functions are defined for Re(β) > 0, and γ, z ∈ C:

Eβ,γ(z) =
∞∑
k=1

zk

Γ(βk + γ)
. (3.20)

We will use the following connection between Eβ,β and Eβ,1:

xβ−1Eβ,β(−a|p|αxβ) = − 1

a|p|α
d

dx
Eβ,1(−a|p|αxβ). (3.21)

To prove (3.21) one may use the representation of Eβ,1(−a|p|αxβ) in (3.20) and differentiate

with respect to x term by term. Now we present two convenient notations for further analysis.
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Let us denote

Sβ,1(t, y) =
1

(2π)d

∫
Rd
ei〈p,y〉Eβ,1(−a|p|αtβ)dp (3.22)

and

Gβ(t, y) :=
tβ−1

(2π)d

∫
Rd
ei〈p,y〉Eβ,β(−a|p|αtβ)dp. (3.23)

Using (3.21) we can re-write (3.23) as

Gβ(t, y) := − 1

(2π)d

∫
Rd
ei〈p,y〉

1

a|p|α
d

dt
Eβ,1(−a|p|αtβ)dp. (3.24)

Applying the inverse Fourier transform to (3.19) we obtain:

f(t, y) =

∫
Rd
Sβ,1(t, y − x)f0(x)dx+

∫ t

0

∫
Rd
Gβ(t− s, y − x)h(s, x)dxds. (3.25)

It is natural to call this integral equation the mild form of the fractional linear equation

(3.4). In particular we see that the function Sβ,1(t, y − y0) is the solution of equation (3.4)

with f0(y) = δ(y− y0) and h(t, y) = 0. The function Gβ(t− t0, y− y0) is the solution of (3.4)

with f0(y) = 0 and h(t, y) = δ(t− t0, y − y0). Thus the functions Sβ,1 and Gβ may be called

Green functions of the corresponding Cauchy problems. Notice the crucial difference with

the usual evolution corresponding to β = 1 where Gβ and Sβ,1 coincide.

In order to clarify the properties of f in (3.25) we are now going to carefully analyse

properties of the integral kernels Sβ,1(t, y) and Gβ(t, y).

3.2 Regularity properties of Sβ,1 and Gβ

For d ≥ 1 let us define the symmetric stable density g in Rd as the Fourier transform of the

corresponding characteristic function
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g(y;α, σ, γ = 0) =
1

(2π)d

∫
Rd

exp{−i〈p, y〉 − aσ|p|α}dp, (3.26)

where α is the stability parameter, σ is the scaling parameter and γ is the skewness

parameter which is γ = 0 for symmetric stable densities. In d = 1 and α 6= 1 we define the

fully skewed density with γ = 1 and without scaling:

w(x;α, 1) =
1

2π
Re

∫ ∞
−∞

exp
{
−ipx− |p|α exp

{
−iπ

2
K(α)

}}
dp, (3.27)

where K(α) = α − 1 + sign(1 − α). The function w(x;α, 1) is infinitely differentiable and

vanishes identically for x < 0, see [15], theorem C.3 and §2.2, equation (2.2.1a).

The starting point of the analysis of Sβ,1, Gβ is the following representation of the

Mittag-Leffler function due to [15], see chapter 2.10, Theorem 2.10.2, equations (2.10.8 −

2.10.9). For β ∈ (0, 1)

Eβ,1(−aλ) =
1

β

∫ ∞
0

exp(−aλx)x−1−1/βw(x−1/β, β, 1)dx. (3.28)

Substitute λ = |p|αtβ:

Eβ,1(−a|p|αtβ) =
1

β

∫ ∞
0

exp(−a|p|αtβx)x−1−1/βw(x−1/β, β, 1)dx. (3.29)

So then

tβ−1Eβ,β(−a|p|αtβ) =
−1

a|p|α
d

dt
Eβ,1(−a|p|αtβ)

= tβ−1

∫ ∞
0

x−1/β exp(−a|p|αtβx)w(x−1/β, β, 1)dx, (3.30)

implying
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Gβ(t, y) =
1

(2π)d

∫
Rd
ei〈p,y〉Eβ,β(−a|p|αtβ)tβ−1dp

=
tβ−1

(2π)d

∫ ∞
0

∫
Rd
ei〈p,y〉 exp{−a|p|αtβx}x−1/βw(x−1/β, β, 1)dpdx

= tβ−1

∫ ∞
0

x−1/βw(x−1/β, β, 1)g(−y, α, tβx)dx, (3.31)

where g is as in (3.26) and w is as in (3.27).

Sβ,1(t, y) =
1

(2π)d

∫
Rd
ei〈p,y〉Eβ,1(−a|p|αtβ)dp

=
1

β(2π)d

∫ ∞
0

∫
Rd
ei〈p,y〉e−a|p|

αtβxx−1−1/βw(x−1/β, β, 1)dpdx

=
1

β(2π)d

∫ ∞
0

x−1−1/βw(x−1/β, β, 1)g(−y, α, tβx)dx. (3.32)

Throughout this paper we shall denote by C various constants that may be different

from formula to formula and line to line.

Theorem 1. For β ∈ (0, 1), α ∈ (1, 2) and Gβ(t, y) defined in (3.23)

∫
Rd
|Gβ(t, y)|dy ≤ Ctβ−1, (3.33)

where C > 0 is a constant.

Proof. Let us write the integral representing Gβ(t, y) as the sum of two, so that

Gβ(t, y) = IA + IB, (3.34)
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where

IA =
tβ−1

(2π)d

∫ ∞
|y|αt−β

∫
Rd
ei〈p,y〉 exp{−a|p|αtβx}x−1/βw(x−1/β, β, 1)dpdx

= tβ−1

∫ ∞
|y|αt−β

x−1/βw(x−1/β, β, 1)g(−y, α, tβx)dx (3.35)

and

IB =
tβ−1

(2π)d

∫ |y|αt−β
0

∫
Rd
ei〈p,y〉 exp{−a|p|αtβx}x−1/βw(x−1/β, β, 1)dpdx

= tβ−1

∫ |y|αt−β
0

x−1/βw(x−1/β, β, 1)g(−y, α, tβx)dx. (3.36)

To estimate |IA| and |IB|, let us examine cases |y| > tβ/α and |y| ≤ tβ/α and start

with |y| > tβ/α. Note that the asymptotic expansions for g(y, α, σ) and g(−y, α, σ), namely,

(7.2) and (7.6) appearing in the Appendix, are the same, by inspection. Since x > |y|αt−β in

IA we may use the asymptotic for |y|/x1/αtβ/α → 0, see (7.2). We also use that for x→∞,

x−1/β → 0, so for x → ∞ we have w(x−1/β, β, 1) ∼ C, where C ≥ 0 is a constant. Thus we

have

|IA| ≤

∣∣∣∣∣
∫ ∞
|y|αt−β

x−1/β−d/αw(x−1/β, β, 1)A0t
β−1−dβ/αdx

∣∣∣∣∣
≤ Ctβ−1−dβ/α|A0|

(|y|αt−β)1−1/β−d/α

|1− 1/β − d/α|

≤ Ctβ−1−dβ/α |A0|
|1− 1/β − d/α|

(|y|αt−β)1−1/β−d/α

≤ Ctβ−1+1−β|y|α−α/β−d. (3.37)

Now, let us study IB in case |y| > tβ/α. Here we use the asymptotic expansion for

|y|/x1/αtβ/α → ∞ as it appears in (7.6) in the Appendix and take the first term only. Here

we use the change of variables z = x−1/β.
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|IB| ≤

∣∣∣∣∣A1t
β−1

∫ |y|αt−β
0

x−1/βw(x−1/β, β, 1)|y|−d−αtβxdx

∣∣∣∣∣
≤ Ct2β−1|y|−d−α

∫ ∞
|y|−α/βt

z−2βw(z, β, 1)dz. (3.38)

We split this integral into two parts: z ∈ [1,∞) and z ∈ (|y|−α/βt, 1). Firstly,

t2β−1|y|−d−α
∫ ∞

1
z−2βw(z, β, 1)dz

≤ t2β−1|y|−d−α
∫ ∞

0
w(z, β, 1)dz ≤ Ct2β−1|y|−d−α, (3.39)

In case z ∈ (|y|−α/βt, 1) we may use that z is small and so z−2βw(z, β, 1) < Cz−2β+q−3,

for any q > 1. So

t2β−1|y|−d−α
∫ 1

|y|−α/βt
z−2βw(z, β, 1)dz ≤ Ct2β−1|y|−d−α

∫ 1

|y|−α/β
z−2β+q−3dz

= Ct2β−1|y|−d−α
(

1− (|y|−α/βt)−2β+q−2
)
. (3.40)

Now let us study the case |y| ≤ tβ/α. For IA we use that x is large, so x−1/β is small,

and that for q ≥ 4 we have x−d/α−1/βw(x−1/β) < Cx
−d/α−( q−2

β
)
. Here |y|α ≤ tβ and we

obtain

|IA| ≤ Ctβ−1−dβ/α

∣∣∣∣∣
∫ ∞
|y|αt−β

A0x
−d/α− q−2

β dx

∣∣∣∣∣
≤ tβ−1−βd/α

(
yαt−β

)−d/α− q−2
β

+1
C

≤ tβ−1−dβ/αt−dβ/α−(q−2)+β+dβ/α+(q−2)−βC

≤ tβ−1−dβ/αC. (3.41)

As for IB in case |y| ≤ tβ/α,
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|IB| ≤ C
∫ |y|αt−β

0
x1−1/βw(x−1/β, β, 1)t2β−1|y|−d−αdx

≤ C|y|−d−αt2β−1

∫ |y|αt−β
0

x1−1/β(x−1/β)−1−βdx ≤ C|y|2α−dt−β−1. (3.42)

Integrating (3.37) in polar coordinates gives

∫
|y|>tβ/α

|IA|dy ≤ C
∫
|r|>tβ/α

|r|α−α/β−d+d−1d|r| ≤ (tβ/α)α−α/βC = tβ−1C, (3.43)

Integration of (3.40) in polar coordinates gives

∫
|y|>tβ/α

|IB|dy ≤ Ct2β−1

∫
|r|>tβ/α

|r|−d−α+d−1dr

+Ct2β−1

∫
|r|>tβ/α

|r|d−1−d−α|r|2αt−2βdr

= Ct2β−1(tβ/α)−α + Ct2β−1−2β(tβ/α)α = Ctβ−1. (3.44)

Integration of (3.41) gives

∫
|y|≤tβ/α

|IA|dy ≤ Ctβ−1−dβ/α
∫
|r|≤tβ/α

|r|d−1d|r|

≤ tdβ/α−dβ/α+β−1C|A0|
|d|

≤ tβ−1 |A0|C
d

. (3.45)

Integration of (3.42) yields

∫
|y|≤tβ/α

|IB|dy ≤ C
∫
|r|≤tβ/α

t−β−1|r|−d+2α+d−1dr ≤ Ct−β−1(tβ/α)2α = Ctβ−1. (3.46)

Combining (3.43)–(3.46) yields (3.33).
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Theorem 2. For β ∈ (0, 1), α ∈ (1, 2) and Gβ(t, y) defined in (3.23)

∫
Rd
|∇Gβ(t, y)|dy ≤ tβ−1−β/αC. (3.47)

Proof. In case |y| > tβ/α, we have |y|−1 < t−β/α and so differentiation with respect to y yields

|∇IA| ≤ Ct−β/α|IA| (3.48)

and

|∇IB| ≤ Ct−β/α|IB|. (3.49)

In case |y| ≤ tβ/α we need to take into account the second term of the asymptotic

expansion, since the first term is independent of |y|. Consequently,

|∇IA| ≤ C
∫ ∞
|y|αt−β

x−d/αt−dβ/α|y|(xtβ)−2/αx−1/βtβ−1dx

≤ C
∫ ∞
|y|αt−β

x−d/α−2/α−1/βt−dβ/α−2β/α+β−1dx

≤ Ct−dβ/α−2β/α+β−1|y| − C(|y|αt−β)−d/α−2/α−1/β+1tβ/α

= Ct−dβ/α−2β/α+β−1|y| − Ctβ/α|y|−d−2−α/β+α. (3.50)

Integration of the first term in (3.50) yields

C

∫
|r|≤tβ/α

t−dβ/α−2β/α+β−1|r|d−1+1dr

≤ Ct−dβ/α−β/α+β−1+dβ/α ≤ Ctβ−1−β/α. (3.51)

Integration of the second term in (3.50) gives
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∫
|y|≤tβ/α

tβ/α|y|−d+d−3−α/β+αdy

≤ tβ/α(tβ/α)−2−α/β+α ≤ tβ−1−β/α. (3.52)

Combining (3.51) and (3.52)

∫
|y|≤tβ/α

|∇IA|dy ≤ Ctβ−1−β/α. (3.53)

As for |∇IB| for |y| ≤ tβ/α

|∇IB| ≤ Ct2β−1|y|−d−α−1

∫ |y|αt−β
0

ξ1−1/βw(ξ−1/β, β, 1)dξ

≤ Ct2β−1|y|−d−α−1

∫ |y|αt−β
0

ξ1−1/β(ξ−1/β)−1−βdξ

≤ Ct2β−1|y|−d−α−1(|y|αt−β)3 ≤ Ct−β−1|y|−d+2α−1. (3.54)

Integration gives

∫
|y|≤tβ/α

|∇IB|dy ≤ C
∫
|y|≤tβ/α

t−β−1|y|−d+d+2α−2dy ≤ Ct−β−1−β/α. (3.55)

So

∫
|y|≤tβ/α

|∇IB|dy ≤ Ctβ−1−β/α. (3.56)

Since

∫
Rd
|∇Gβ(t, y)|dy ≤

∫
Rd
|∇IA|dy +

∫
Rd
|∇IB|dy (3.57)

combining results (3.48), (3.49), (3.53) and (3.56) we obtain
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∫
Rd
|∇Gβ(t, y)|dy ≤ Ctβ−1−β/α. (3.58)

which proves (3.47).

Now let us consider the case α = 2.

Theorem 3. Let Gβ(t, y) be as in (3.23) and (3.31). For α = 2 and any β ∈ (0, 1):

•
∫ t

0

∫
Rd |Gβ(t, y)|dyds ≤ Ctβ,

•
∫ t

0

∫
Rd |∇Gβ(t, y)|dyds ≤ Ctβ/2.

Proof. Note that

∫
Rd

exp{−aσp2 − i〈y, p〉}dp =

(√
π√
σ

)d
exp

{
− y2

4aσ

}
, (3.59)

where in our case σ = xtβ. Substitute this into (3.31) to obtain

Gβ(t, y) =
tβ−1

(2π)d

∫ ∞
0

x−1/βw(x−1/β, β, 1)

( √
π√
tβx

)d
exp

{
−y2

4atβx

}
dx (3.60)

where y2 = y2
1 + y2

2 + . . .+ y2
d. We are interested in

∫ t
0

∫
Rd |Gβ(t, y)|dyds. Integrating

y-dependent terms in Gβ with respect to y gives

∫
Rd

exp
{
−|y|2/4axtβ

}
dy = (4πxtβ)d/2 = Cxd/2tβd/2. (3.61)

The term xd/2tβd/2 cancels out with
(

1√
tβx

)d
and we obtain

∫
Rd
|Gβ(t, y)|dy = I(t) = C

∫ ∞
0

x−1/βw(x−1/β, β, 1)tβ−1dx. (3.62)
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Now we split the integral I(t) into 2 parts: Ia(t) for x > 1 and Ib(t) for 0 ≤ x ≤ 1. In Ia(t),

x > 1 and so x−1/β < 1 and w(x−1/β, β, 1) ∼ C, so we have

Ia(t) =

∫ ∞
1

Ctβ−1x−1/βw(x−1/β, β, 1)dx

≤ tβ−1

∫ ∞
1

x−1/βCdx ≤ C11−1/βtβ−1 = Ctβ−1. (3.63)

Integrating with respect to s gives

∫ t

0
|Ia(t− s)|ds ≤

∫ t

0
C(t− s)β−1ds = Ctβ. (3.64)

For Ib(t), x ≤ 1, so x−1/β ≥ 1 and w(x−1/β, β, 1) ∼ (x−1/β)−1−β = x1+1/β and

Ib(t) =

∫ 1

0
Cx−1/βw(x−1/β, β, 1)tβ−1dx

≤ Ctβ−1

∫ 1

0
x−1/β+1/β+1dx ≤ C. (3.65)

with a constant C2 > 0. Now we integrate with respect to s

∫ t

0
|Ib(t− s)|ds =

∫ t

0
C(t− s)β−1ds = Ctβ. (3.66)

Together with (3.63) and (3.64) this yields the first statement of the theorem.

Differentiating Gβ with respect to y gives us

I1(t) =

∫
Rd
|∇Gβ(t, y)|dy

=

∫ ∞
0

∫
Rd
tβ−β−1−βd/2x−1−1/β−d/2|y| exp{−|y|2/4axtβ}w(x−1/β, β, 1)dydx. (3.67)

Since
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∫
Rd
|y| exp{−|y|2/4axtβ}dy = Cxtβ(

√
xtβ)d−1 = Cx

d+1
2 t

β(d+1)
2 , (3.68)

we have

I1(t) =

∫ ∞
0

∫
Rd
tβ−β−1−βd/2x−1−1/β−d/2|y| exp{−|y|2/4axtβ}w(x−1/β, β, 1)dydx

= C

∫ ∞
0

t−1+β/2x−1/2−1/βw(x−1/β, β, 1)dx. (3.69)

Now we split the integral I1(t) into parts corresponding to x ∈ (0, 1) and x ∈ [1,∞):

I2(t) =

∫ 1

0
t−1+β/2x−1/2−1/βw(x−1/β, β, 1)dx (3.70)

and

I3(t) =

∫ ∞
1

t−1+β/2x−1/2−1/βw(x−1/β, β, 1)dx. (3.71)

Let us examine I2(t). Since x ∈ (0, 1), we have w(x−1/β, β, 1) ∼ (x−1/β)−1−β, so

I2(t) =

∫ 1

0
t−1+β/2x−1/2−1/βw(x−1/β, β, 1)dx

=

∫ 1

0
t−1+β/2x−1/2−1/β+1+1/βdx = 2t−1+β/2/3. (3.72)

Integrating

∫ t

0
|I2(t− s)|ds ≤

∫ t

0
(t− s)−1+β/2ds = tβ/2. (3.73)

Now, for I3(t) we use that x−1/β ≤ 1 and so w(x−1/β, β, 1) ∼ C.
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|I3(t)| ≤

∣∣∣∣∣
∫ ∞

1
t−1+β/2x−1/2−1/βw(x−1/β, β, 1)dx

∣∣∣∣∣
≤ Ct−1+β/2

∣∣∣∣∣
∫ ∞

1
x−1/2−1/βdx

∣∣∣∣∣ = Ct−1+β/2. (3.74)

Integrating with respect to s

∫ t

0
|I3(t− s)|ds ≤

∫ t

0
(t− s)β/2−1ds = Ctβ/2. (3.75)

Note that β/2 = β−β/α for α = 2. So for α = 2 the form of the estimate is the same

as for α ∈ (1, 2).

The following corollary is a consequence of the previous theorem.

Corollary 1. For α = 2 and β ∈ (0, 1)

∫ t

0

∫
Rd

(|∇Gβ(t, y)|+ |Gβ(t, y)|) dyds ≤ Ctβ/2. (3.76)

Proof. Since β/2 < β, we take the minimum power, β/2, to write the common estimate of

the terms
∫
Rd |∇Gβ(t, y)|dy and

∫
Rd |Gβ(t, y)|dy, obtaining

∫
Rd

(|∇Gβ(t, y)|+ |Gβ(t, y)|) dy ≤ Ctβ/2−1, (3.77)

substitute t by t− s and we use that

∫ t

0
(t− s)β/2−1ds = Ctβ/2, (3.78)

which yields the result (3.76).

Here we present several theorems regarding Sβ,1(t, y) which are particularly useful for
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the well-posedness analysis of (3.4) and (3.1).

Theorem 4. For α ∈ (1, 2) and β ∈ (0, 1) the first term from the RHS of (3.4) satisfies

∣∣∣∣∫
Rd
Sβ,1(t, y − x)f0(x)dx

∣∣∣∣ ≤ Ct0. (3.79)

Proof. Using (3.22) and (3.29) we represent Sβ,1(t, y) as

I =
1

β(2π)d

∫
Rd

∫ ∞
0

ei〈p,y〉 exp{−a|p|αtβξ}ξ−1−1/βw(ξ−1/β, β, 1)dξdp (3.80)

and use the assumption |f0(y)| < C. We split the integral I into two parts: IA for

ξ ∈ [|y|αt−β,∞) and IB for ξ ∈ (0, |y|αtβ). There are 2 cases for each of the integrals:

|y| ≤ tβ/α and |y| > tβ/α. Let us study |IB| in the case |y| ≤ tβ/α.

|IB| ≤ C
∫ |y|αt−β

0
ξ−1−1/βw(ξ−1/β, β, 1)|y|−d−αtβξdξ

≤ C
∫ |y|αt−β

0
ξ−1/β(ξ−1/β)−1−βtβ|y|−d−αdξ

≤ C
∫ |y|αt−β

0
ξtβ|y|−d−αdξ

= C(|y|αt−β)2|y|−d−αtβ = Ct−β|y|−d+α. (3.81)

Now, integrating gives

∫
|y|≤tβ/α

|IB|dy ≤ C
∫
|y|≤tβ/α

t−β|y|−d+α+d−1dy = Ct−β(tβ/α)α ≤ Ct0. (3.82)

Let us study |IB| in case |y| > tβ/α. Here we split the integral IB into 2 parts: when ξ ∈ (0, 1]

and when ξ ∈ (1, |y|αt−β).

|IB| ≤ C
∫ |y|αt−β

0
ξ−1/βw(ξ−1/β, β, 1)tβ|y|−d−αdξ, (3.83)
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so since for ξ ≤ 1, w(ξ−1/β, β, 1) ∼ (ξ−1/β)−1−β, we have

∫ 1

0
ξ−1/βw(ξ−1/β, β, 1)tβ|y|−d−αdξ ≤ C|y|−d−αtβ. (3.84)

Integration yields

∫
|y|>tβ/α

tβ|y|−d−α+d−1dy = tβ(tβ/α)−α ≤ Ct0. (3.85)

When ξ ∈ (1, |y|αt−β)

∫ |y|αt−β
1

ξ−1/βw(ξ−1/β, β, 1)tβ|y|−d−αdξ ≤ Cq
∫ |y|αt−β

1
ξ−1/βξ−q/βtβ|y|−d−αdξ

≤ Cqtβ|y|−d−α
(

(|y|αt−β)−1/β−q/β+1 − 1
)

≤ Cq
(
t1+q+β−β|y|−d−α−α/β−qα/β+α − tβ|y|−d−α

)
. (3.86)

Integration gives

∫
|y|>tβ/α

t1+q|y|−α/β−qα/β−1dy = t1+q(tβ/α)−α/β−qα/β = t0, (3.87)

and

∫
|y|>tβ/α

|y|−d−α+d−1tβdy = tβ(tβ/α)−α ≤ Ct0. (3.88)

Combining (3.85), (3.87) and (3.88) gives

∫
Rd
|IB|dy ≤ Ct0. (3.89)

Let us study |IA| case |y| > tβ/α. Here ξ−1/β is small, so w(ξ−1/β, β, 1) ∼ C, where C is a

constant.
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|IA| ≤ C
∫ ∞
|y|αt−β

ξ−1−1/βw(ξ−1/β, β, 1)t−dβ/αξ−d/αdξ

= C

∫ ∞
|y|αt−β

ξ−1−1/βt−βd/αξ−d/αdξ

≤ Ct−βd/α(|y|αt−β)−1/β−d/α ≤ C|y|−α/β−dt, (3.90)

Integrating gives

∫
|y|>tβ/α

|IA|dy ≤ C
∫
|y|>tβ/α

|y|−d−α/β+d−1tdy = Ct(tβ/α)−α/β ≤ Ct0. (3.91)

Let us study |IA|, case |y| ≤ tβ/α. Here we need to split the integral IA into 2 parts. The

first one is

∫ ∞
1

ξ−d/αξ−1−1/βt−βd/αw(ξ−1/β, β, 1)dξ. (3.92)

Here ξ is large, so ξ−1/β is small, so w(ξ−1/β, β, 1) ≤ Cq(ξ−1/β)q, for all q > 1, which enables

us to estimate (3.92) by

Cq

∫ ∞
1

ξ−d/αt−βd/αξ−1−1/βξ−q/βdξ = Cqt
−βd/α

∫ ∞
1

ξ−d/α−1−1/β−q/βdξ

≤ Ct−βd/α
(

lim
K→∞

K−d/α−1/β−q/β − 1

)
= Ct−βd/α. (3.93)

Integrating gives

∫
|y|≤tβ/α

t−βd/α|y|d−1dy = t−βd/α(tβ/α)d ≤ Ct0. (3.94)

The second part of IA is

∫ 1

|y|αt−β
ξ−1−1/βw(ξ−1/β, β, 1)ξ−d/αt−βd/αdξ. (3.95)

Since ξ < 1, ξ−1/β > 1, so w(ξ−1/β, β, 1) ∼ (ξ−1/β)−1−β, so we re-write (3.95) and estimate
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it as follows

∫ 1

|y|αt−β
ξ−d/αt−βd/αξ−1−1/β+1+1/βdξ

≤
∫ 1

|y|αt−β
ξ−d/αt−βd/αdξ = Ct−βd/α(1− |y|αt−β). (3.96)

Integrating (3.96) in polar coordinates

C

∫
|y|≤tβ/α

|y|d−1
(
t−βd/α − |y|αt−βt−βd/α

)
dy

≤ Ct−βd/αtβd/α − Ctβ+dβ/α−β−βd/α = Ct0. (3.97)

Combining (3.97) and (3.94) gives that for |y| ≤ tβ/α

∫
Rd
|IA|dy ≤ Ct0. (3.98)

Using the assumption |f0(y)| < C and putting together estimates (3.89) and (3.98) yields the

theorem statement (3.79).

Theorem 5. For α ∈ (1, 2), β ∈ (0, 1), Sβ,1(t, y) defined in (3.22) and a bounded function

f0(y)

∫
Rd
∇Sβ,1(t, y)f0(x− y)dy ≤ Ct−β/α. (3.99)

Proof. We differentiate Sβ,1(t, y) with respect to y

|∇Sβ,1(t, y)| =

∣∣∣∣∣ 1

β(2π)d
∇
∫
Rd

∫ ∞
0

ei〈p,y〉 exp{−a|p|αtβx}x−1−1/βw(x−1/β, β, 1)dxdp

∣∣∣∣∣
=

1

β(2π)d

∫
Rd

∫ ∞
0
|ip|ei〈p,y〉 exp{−a|p|αtβx}x−1−1/βw(x−1/β, β, 1)dxdp

=
1

β(2π)d

∫
Rd

∫ ∞
0
|p|ei〈p,y〉 exp{−a|p|αtβx}x−1−1/βw(x−1/β, β, 1)dxdp. (3.100)

Here we use the asymptotic expansions from Theorems 7.2.1 and 7.2.2 and Theorem 7.3.2,

which are in the appendix as equations (7.2) and (7.6), and we use the inequality (7.40) in
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[82], which also appears in the appendix for reader’s convenience, as (7.11) and (7.12). For

IA in case |y| > tβ/α we use that for ξ > 1, ξ−1/β < 1 and w(ξ−1/β, β, 1) < Cq(ξ
−1/β)q, for

any q > 1. Then

|∇IA| ≤ C
∫ ∞
|y|αt−β

ξ−1/α−1−1/β−d/αw(ξ−1/β, β, 1)t−β/α−dβ/αdξ

≤ Ct−β/α−dβ/α(|y|αt−β)−1/α−d/α−1/β−q/β ≤ Ct1+q|y|−1−qα/β−α/β−d. (3.101)

Integrating gives

∫
|y|>tβ/α

|∇IA| dy ≤ C
∫
|y|>tβ/α

t1+q|y|−d+d−1−1−qα/β−α/βdy

= Ct1+q−β/α−q−1 = Ct−β/α. (3.102)

Now, let us look at IB in case |y| > tβ/α. Proposition 1 in the Appendix and the change of

variables ξ−1/β = z yield

|∇IB| ≤ C
∫ |y|αt−β

0
ξ−1−1/βw(ξ−1/β, β, 1)t−βξ−1|y|−α−1|y|−d−αtβξdξ

≤ C|y|−d−1

∫ ∞
|y|−α/βt

w(z, β, 1)dz ≤ C|y|−d−1. (3.103)

Integration gives

∫
|y|>tβ/α

|∇IB| dy ≤ C
∫
|y|>tβ/α

|y|−d+d−1−1dy ≤ Ct−β/α. (3.104)

Now, let us look at IA in case |y| < tβ/α.

|∇IA| ≤ C
∫ ∞
|y|αt−β

ξ−1−1/βw(ξ−1/β, β, 1)t−β/αξ−1/αt−βd/αξ−d/αdξ. (3.105)

We split this integral into cases ξ ∈ (|y|αt−β, 1) and ξ ∈ [1,∞). For ξ ∈ (|y|αt−β, 1), ξ−1/β > 1
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and we may use that w(ξ−1/β, β, 1) ∼ (x−1/β)−1−β. So

|∇IA| ≤ C
∫ 1

|y|αt−β
ξ−1−1/βw(ξ−1/β, β, 1)t−β/αξ−1/αt−βd/αξ−d/αdξ

≤ C
∫ ∞
|y|αt−β

t−β/α−βd/αξ−1/α−d/αdξ

= Ct−β/α−βd/α − Ct−β|y|−1−d+α. (3.106)

Integration yields

∫
|y|≤tβ/α

|∇IA| dy ≤ C
∫
|y|≤tβ/α

yd−1t−β/α−βd/αdy

+C

∫
|y|≤tα/β

t−β|y|−1−α−1−d+ddy

≤ Ct−β/α + Ct−β(tβ/α)−1+α ≤ Ct−β/α. (3.107)

As for ξ ∈ [1,∞), then ξ−1/β < 1 and so w(ξ−1/β, β, 1) ∼ C and

∫ ∞
1

ξ−2−1/βCξ−d/αt−β/α−βd/αdξ

≤ t−β/α−βd/αC
∫ ∞

1
ξ−2−1/β−d/αdξ

≤ t−β/α−βd/αC
(

1− lim
K→∞

1

K

)
= Ct−β/α−βd/α. (3.108)

Integration yields

∫
|y|<tβ/α

t−β/α−βd/α|y|d−1dy ≤ Ct−β/α−βd/αtβd/α = Ct−β/α. (3.109)
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Finally, the estimate for |∇IB| in case |y| ≤ tβ/α is

|∇IB| ≤ C
∫ |y|αt−β

0
ξ−1−1/βw(ξ−1/β, β, 1)ξ−1t−β|y|α−1|y|−d−αtβξdξ

≤ C
∫ |y|αt−β

0
ξ−1−1/βw(ξ−1/β, β, 1)|y|−1−ddξ

≤ C
∫ |y|αt−β

0
ξ−1−1/β(ξ−1/β)−1−β|y|−1−ddξ

≤ C|y|−1−d−αt−β. (3.110)

Integration yields

∫
|y|≤tβ/α

|∇IB| dy ≤ C
∫
|y|≤tβ/α

|y|α−1−1−d+dt−βdy

= Ct−β(tβ/α)α−1 = Ct−β/α. (3.111)

Hence (3.102), (3.104), (3.107), (3.109) and (3.111) together with the assumption |f0(y)| < C

yield (3.98).

Theorem 6. For α = 2, Sβ,1 defined as in (3.22) and assuming |f0(y)| < C

∫
Rd
Sβ,1(t, y − x)f0(x)dx ≤ Ct0. (3.112)

Proof. Using (3.61)

∫
Rd
Sβ,1(t, y)dy =

∫ ∞
0

∫
Rd

(xtβ)−d/2 exp{−y2/(4axtβ)}x−1−1/βw(x−1/β, β, 1)dydx

= C

∫ ∞
0

x−1−1/βw(x−1/β, β, 1)dx. (3.113)

We split this integral into two parts: x ∈ [0, 1] and x ∈ (1,∞). In the first case x ≤ 1 and

x−1/β > 1 so we may use w(x−1/β, β, 1) ∼ (x−1/β)−1−β. In case x > 1 we may use that

w(x−1/β, β, 1) ∼ C. So we obtain

∫ 1

0
x−1−1/βw(x−1/β, β, 1)dx = C

∫ 1

0
dx = C, (3.114)
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and

∫ ∞
1

x−1−1/βw(x−1/β, β, 1)dx =

∫ ∞
1

x−1−1/βCdx

= C

(
lim
K→∞

K−1/β − 1−1/β

)
= C. (3.115)

Together with the assumption |f0(y)| < C, the result (3.112) follows.

Theorem 7. For α = 2, β ∈ (0, 1), Sβ,1(t, y) defined in (3.22) and assuming |f0(y)| < C

∫
Rd
∇Sβ,1(t, y)f0(x− y)dy ≤ Ct−β/2. (3.116)

Proof. We use the representation of Sβ,1(t, y) in (3.80) and write

∫
Rd
∇Sβ,1(t, y)dy

=

∫ ∞
0

x−3/2−1/βt−β/2w(x−1/β, β, 1)dx. (3.117)

We split the above integral into two: for x ∈ [0, 1] and for x > 1. In case x ∈ [0, 1] we use

that w(x−1/β, β, 1) ∼ (x−1/β)−1−β. In case x > 1 we use that w(x−1/β, β, 1) ∼ C. So we get

t−β/2
∫ 1

0
x−3/2−1/βw(x−1/β, β, 1)dx = t−β/2

∫ 1

0
x−1/2dx = t−β/2/2 (3.118)

and

t−β/2
∫ ∞

1
x−3/2−1/βw(x−1/β, β, 1)dx = t−β/2. (3.119)

So from (3.118) and (3.119) and that |f0(y)| < C and we obtain (3.116).

3.3 Smoothing properties for the linear equation

Let us denote by Cp(Rd) the space of p times continuously differentiable in y functions f(t, y).

By C1
∞(Rd) we shall denote functions f in C1(Rd) such that f(t, y) and ∇f(t, y) are rapidly

decreasing continuous functions on Rd, with the sum of sup-norms of the function and all
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of its derivatives up to and including the order p as the corresponding norm. Let us denote

by Hp
1 the Sobolev space of functions f(t, y) with generalised spatial derivative up to and

including p, being in L1(Rd). For f ∈ Hp
1 (Rd) the sup-norm is ‖f‖ = supt∈[0,T ] ‖f(t, y)‖Hp

1

and for f ∈ Cp(Rd) the sup-norm is ‖f‖ = supt∈[0,T ] ‖f(t, y)‖Cp . Here and in what follows

we often identify the function f0(y) with the function g(t, y) := f0(y), ∀t ≥ 0, ∀y ∈ Rd.

Theorem 8 (Solution regularity). For α ∈ (1, 2] and β ∈ (0, 1) the resolving operator

Ψt(f0) =

∫
Rd
Sβ,1(t, y − x)f0(x)dx+

∫ t

0

∫
Rd
Gβ(t− s, y − x)h(s, x)dxds (3.120)

where Sβ,1(t, y) and Gβ(t, y) are as in (3.22) and (3.23), satisfies the following properties

• Ψt : Cp(Rd) 7→ Cp(Rd), and ‖Ψt‖Cp < C(t),

• Ψt : Hp
1 (Rd) 7→ Hp

1 (Rd) and ‖Ψt‖Hp
1
< C(t).

Proof. We look at the Cp norm of Ψtf0 and use Theorems 1 and 4

‖Ψt(f0)‖Cp(Rd) ≤
∫
Rd
Sβ,1(t, y)|f (p)

0 |dy + Ctβ sup
s∈[0,t]

‖h(s, ·)‖Cp(Rd)

≤ C‖f0‖Cp(Rd) + Ctβ sup
t∈[0,t]

‖h(s, ·)‖Cp(Rd), (3.121)

for some constant C > 0. Analogously,

‖Ψtf0‖Hp
1 (Rd) ≤

∫
Rd
Sβ,1(t, y)|f (p)

0 |dy + Ctβ sup
s∈[0,t]

‖h(s, ·)‖Hp
1 (Rd)

≤ C‖f0‖Hp
1 (Rd) + Ctβ sup

s∈[0,t]
‖h‖Hp

1 (Rd). (3.122)

Theorem 9 (Solution smoothing). For α ∈ (1, 2] and β ∈ (0, 1) the resolving operator

(3.120) satisfies the following smoothing properties

• If f0, h ∈ Cp(Rd) uniformly in time, then f ∈ Cp+1(Rd) and for any t ∈ (0, T ]

‖Ψt(f0)‖Cp+1(Rd) ≤ Ct−β/α‖f0‖Cp(Rd) + Ctβ−β/α‖h‖Cp(Rd) (3.123)
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• If f0, h ∈ Hp
1 (Rd) uniformly in time, then f ∈ Hp+1

1 (Rd) and for any t ∈ (0, T ]

‖Ψt(f0)‖
Hp+1

1 (Rd)
≤ Ct−β/α‖f0‖Hp

1 (Rd) + Ctβ−β/α‖h‖Hp
1 (Rd). (3.124)

In particular we may choose p = 0, when H0
1 (Rd) = L1(Rd).

Proof. We study the Cp+1(Rd) norm of Ψt(f0) and use theorems 1, 2, 4 and 5

‖Ψt(f0)‖Cp+1 ≤ sup
x∈Rd

∫
Rd

∣∣∣∣∣∇xSβ,1(t, x− y)f
(p)
0 (y)

∣∣∣∣∣dy
+ sup
x∈Rd

∫ t

0

∫
Rd

∣∣∣∣∣∇xGβ(t− s, x− y)h(p)
y (s, y)

∣∣∣∣∣dyds
≤ Ct−β/α sup

x∈Rd
|f (p)

0 (x)|+ C sup
x∈Rd

|h(p)(s, x)|
∫ t

0
(t− s)β−β/α−1ds

≤ Ct−β/α‖f0‖Cp + Ctβ−β/α‖h‖Cp . (3.125)

The proof for (3.124) is analogous.

3.4 Well-posedness

Now we study well-posedness of the full non-linear equation (3.1):

D∗β0,tf(t, y) = −a(−∆)−α/2f(t, y) +H(t, y,∇f(t, y)), (3.126)

with the initial condition f(0, y) = f0(y), and a > 0 is a constant. This FDE has the following

mild form:

f(t, y) =

∫
Rd
f0(x)Sβ,1(t, y − x)dx+

∫ t

0

∫
Rd
Gβ(t− s, y − x)H(s, x,∇f(s, x))dxds, (3.127)

which follows from (3.19).

Lemma 1. Let us define by C([0, T ], C1
∞(Rd)) the space of functions f(t, y), t ∈ [0, T ], y ∈ Rd

such that f(t, y) is continuous in t and f(t, ·) ∈ C1
∞(Rd) for all t. Denote by BT

f0
the closed

convex subset of C([0, T ], C1
∞(Rd)) consisting of functions with f(0, ·)) = f0(·) = S0(·) for
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some given function S0. Let us define a non-linear mapping f → {Ψt(f)} defined for f ∈ BT
f0

:

Ψt(f)(y) =

∫
Rd
f0(x)Sβ,1(t, y − x)dx

+

∫ t

0

∫
Rd
Gβ(t− s, y − x)H(s, x,∇f(s, x))dxds. (3.128)

Suppose H(s, y, p) is Lipschitz in p with the Lipschitz constant L. Let us take f1, f2 ∈ BT
f0

.

Then for K = 1
β−β/α and for any t ∈ [0, T ]:

‖Ψn
t (f1)−Ψn

t (f2)‖C1 ≤
(β − β/α)Ln(Kt(β−β/α))n

nnβ−nβ/α+1
sup
s∈[0,t]

‖f1(s)− f2(s)‖C1 . (3.129)

Proof. Due to regularity estimates for Sβ,1 and Gβ:

‖Ψt(f1)−Ψt(f2)‖C1 ≤ CLtβ−β/α sup
s∈[0,t]

‖f1(s)− f2(s)‖C1 . (3.130)

and

‖Ψ2
t (f1)−Ψ2

t (f2)‖C1 ≤ C2L2 sup
s∈[0,t]

‖f1(s)− f2(s)‖C1

∫ t

0
(t− s)β−β/α−1sβ−β/αds. (3.131)

We calculate the integral above using the change of variables z = s/t:

∫ t

0
(t− s)β−β/α−1sβ−β/αds

=

∫ 1

0
tβ−β/α−1(1− z)β−β/α−1zβ−β/αtβ−β/α+1dz

= t2β−2β/αB(β − β/α+ 1, β − β/α). (3.132)

Now, when we estimate ‖Ψ3
t (f1)−Ψ3

t (f2)‖C1 we calculate

∫ t

0
s2β−2β/α(t− s)β−β/α−1ds

= tβ−β/α−1

∫ 1

0
t2β−2β/α+1z2β−2β/α(1− z)β−β/α−1dz

= t3(β−β/α)B(2β − 2β/α+ 1, β − β/α). (3.133)
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This yields

‖Ψ3
t (f1)−Ψ3

t (f2)‖C1

≤ C3L3t3β−3β/αB(2β − 2β/α+ 1, β − β/α) sup
s∈[0,t]

‖f1(s)− f2(s)‖C1 . (3.134)

As the inductive step, assume that the following is true for some n ∈ N:

‖Ψn
t (f1)−Ψn

t (f2)‖C1

≤ CnLntnβ−nβ/α (Γ(β − β/α))n−1Γ(β − β/α+ 1)

Γ(nβ − nβ/α+ 1)
sup
s∈[0,t]

‖f1(s)− f2(s)‖C1 . (3.135)

Let us check that then (3.135) holds for k = n+ 1.

‖Ψn+1
t (f1)−Ψn+1

t (f2)‖C1

=

∣∣∣∣∣
∣∣∣∣∣
∫ t

0

∫
Rd
Gβ(t− s, x− y) (H(s, y,∇Ψn

t (f1))−H(s, y,∇Ψn
t (f2)))

∣∣∣∣∣
∣∣∣∣∣
C1

≤ CL
∫ t

0
(t− s)β−β/α−1ds‖Ψn

t (f1)−Ψn
t (f2)‖C1

≤ Cn+1Ln+1tnβ−nβ/αMn

∫ t

0
(t− s)β−β/α−1snβ−nβ/αds sup

s∈[0,t]
‖f1(s)− f2(s)‖C1

≤ Cn+1Ln+1tnβ−nβ/αMnBn sup
s∈[0,T ]

‖f1(s)− f2(s)‖C1

≤ Cn+1Ln+1tnβ−nβ/αMn+1 sup
s∈[0,t]

‖f1(s)− f2(s)‖C1 , (3.136)

where

Mn =
(Γ(β − β/α))n−1Γ(β − β/α+ 1)

Γ(nβ − nβ/α+ 1)
, (3.137)

Mn+1 is as in (3.137) with n replaced by n+ 1, and Bn is the Beta function

Bn = B(nβ − nβ/α+ 1, β − β/α). (3.138)

The inequality (3.136) is (3.135) with k = n replaced by k = n+ 1. We have shown (3.135)

is true for k = 1 and k = 2. So by induction on k we obtain (3.135) for any k ∈ N. Using
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that g(x) = xn is a convex function for n ∈ N and substituting x = Γ(β − β/α), it may be

shown by Jensen’s inequality that

(Γ(β − β/α))n ≤ Γ(nβ − nβ/α− n+ 1)

nnβ−nβ/α−n+1
, (3.139)

and using Stirling’s formula we obtain the quotient approximation

Γ(n(β − β/α) +B)

Γ(n(β − β/α) +A)
≈ (n(β − β/α))B−A . (3.140)

Let us substitute A = 1 and B = −n+ 1. Then

‖Ψn
t (f1)−Ψn

t (f2)‖C1

≤ Γ(1 + β − β/α)tnβ−nβ/α

nnβ−nβ/α+1(β − β/α)nΓ(β − β/α)
sup
s∈[0,t]

‖f1(s)− f2(s)‖C1

≤ tnβ−nβ/α

nnβ−nβ/α+1(β − β/α)n−1
sup
s∈[0,t]

‖f1(s)− f2(s)‖C1 , (3.141)

so (3.129) holds.

Theorem 10. Assume that

• H(s, y, p) is Lipschitz in p with the Lipschitz constant L independent of y.

• |H(s, y, 0)| ≤ h, for a constant h independent of y.

• f0(y) ∈ C1
∞(Rd).

Then the equation (3.127) has a unique solution S(t, y) ∈ C1(Rd).

Proof. Let us denote by C([0, T ], C1
∞(Rd)) and BT

f0
as in Lemma 1. Let Ψt(f) be defined as

in (3.128). Take f1(s, x), f2(s, x) ∈ BT
f0

. Note that due to our choice of f1, f2,

∫
Rd
f1(0, x)Sβ,1(t, y − x)dx =

∫
Rd
f2(0, x)Sβ,1(t, y − x)dx. (3.142)

We would like to prove the existence and uniqueness result for all t ≤ T and any

T ≥ 0. For this we use (3.129) in Lemma 1. As n → ∞, nn grows faster than mn for any
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fixed m > 0. Hence for any t ≥ 0

‖Ψn
t (f1)−Ψn

t (f2)‖C1 ≤
Ln(tβ−β/α(β − β/α)−1)n(β − β/α)

nnβ−nβ/α+1
sup
s∈[0,t]

‖f1(s)− f2(s)‖C1 .

(3.143)

The sum
∑∞

n=1
(tβ−β/α(β−β/α)−1)n

nn(β−β/α)+1 is convergent by the ratio test. By Weissinger’s

fixed point theorem, see [57] Theorem D.7, Ψt has a unique fixed point f∗ such that for any

f1 ∈ BT
f0

‖Ψn
t (f1)− f∗‖C1 ≤

∞∑
k=n

(tβ−β/α(β − β/α)−1)n(β − β/α)

nnβ−nβ/α+1
‖Ψt(f1)− f1‖C1 . (3.144)

So S(t, y) = f∗ is the solution of (3.127) of class C1(Rd).

Theorem 11. Assume that

• H(s, y, p) is Lipschitz in p with the Lipschitz constant L1 independent of y.

• H is Lipschitz in y independently of p, with a Lipschitz constant L2

|H(s, y1, p)−H(s, y2, p)| ≤ L2|y1 − y2|(1 + |p|) (3.145)

• |H(s, y, 0)| ≤ h, for a constant h independent of y.

• f0(y) ∈ C2
∞(Rd).

Then there exists a unique solution f∗(t, y) of the FDE equation (3.126) for β ∈ (0, 1) and

α ∈ (1, 2], and f∗ satisfies

ess sup
y
|∇2(f∗(t, y))| < C. (3.146)

Proof. Let us work with the mild form of the equation (3.126). Let BT,2
f0

denote the subset

of BT
f0

which is twice continuously differentiable in y and with f0(y) = f0(y), for all y ∈ Rd.

Let the mapping Ψt on BT,2
f0

be defined as in (3.128). Take f0 ∈ BT,2
f0

, which continues
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f0(y) = S0(y) to all t ≥ 0. Then

‖Ψt(f0)‖C2 ≤ tβ−β/α sup
s∈[0,t]

‖H(s, x,∇f0(x))‖C1

+‖
∫
Rd
Sβ,1(t, y − x)f0(x)dx‖C2

≤ tβ−β/αL1 sup
s∈[0,t]

‖f0‖C2 + tβ−β/αL2 sup
s∈[0,t]

‖f0‖C1 + Ctβ−β/α‖∇f0(x)‖C0 + C3

≤ Ltβ−β/α sup
s∈[0,t]

‖f0‖C2 + Ctβ−β/α sup
s∈[0,t]

‖f0(x)‖C1 + C3

≤ Ctβ−β/α
(

sup
s∈[0,t]

‖f0‖C2 + 1

)
+ C3. (3.147)

Iterations and induction yield

‖Ψn
t (f0)‖C2 ≤ C3

n∑
m=1

tmβ−mβ/αKm +

n∑
m=1

tm(β−β/α)Cm

(
1 + sup

s∈[0,t]
‖f0‖C2

)
, (3.148)

for constants Km = B2 × · · · ×Bm−1 and Cm = B2 × · · · ×Bm, where Bk = B(kβ − kβ/α+

1, β − β/α), for any k ∈ N. We use that for x large and y fixed B(x, y) ∼ Γ(y)x−y to

obtain that Bm+1 < Bm, for all m ∈ N which yields that the sums
∑n

m=1 t
mβ−mβ/αKm and∑n

m=1 t
mβ−mβ/αCm are convergent as n→∞. So for some constants A1, A2, Cf0 > 0,

‖Ψn
t f0‖C2 < A1 +A2 sup

s∈[0,t]
‖f0‖C2 < Cf0 . (3.149)

Hence, ∀n ∈ N

‖∇(Ψn
t f0)‖Lip < Cf0 . (3.150)

Hence we obtain

‖ lim
n→∞

∇(Ψn
t f0)‖Lip < 2Cf0 . (3.151)

By Rademacher’s theorem it follows that limn→∞(∇2(Ψn
t (f0)) exists almost everywhere. We

invite the reader to see [83] for the Rademacher’s theorem and its proof. From the previous

theorem limn→∞Ψn
t (f0) = f∗. The limit is understood in the sense of convergence in C1(Rd).
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Therefore f∗ satisfies (3.146).

Theorem 12. Assume that

• H(s, y, p) is Lipschitz in p with the Lipschitz constant L independent of y.

• H is Lipschitz in y independently of p, with a Lipschitz constant L2

|H(s, y1, p)−H(s, y2, p)| ≤ L2|y1 − y2|(1 + |p|) (3.152)

• |H(s, y, 0)| ≤ h, for a constant h independent of y.

• f0(y) ∈ C2
∞(Rd).

Then a solution to the mild form

f(t, y) =

∫
Rd
Sβ,1(t, x− y)f0(y)dy +

∫ t

0

∫
Rd
Gβ(t− s, x− y)H(s, y,∇f(s, y))dsdy (3.153)

which satisfies (3.146), is a classical solution to

D∗β0,tf(t, y) = −(−∆)α/2f(t, y) +H(t, y,∇f(t, y)). (3.154)

Proof. Let us define Ψt(f) as in (3.128). By [57]

f̂(t, p) = f̂0(p)Eβ,1(−a|p|αtβ) +

∫ t

0
(t− s)β−1Eβ,β(−a(t− s)β|p|α))Ĥ(s, y, p)ds, (3.155)

is equivalent to

D∗β0,tf̂(t, p) = −a|p|αf̂(t, p) + Ĥ(t, y,∇f(t, y)), (3.156)

which in turn is equivalent to (3.154) as its Fourier transform. Also, (3.153) is equivalent to

(3.19) as its inverse Fourier transform. Therefore (3.153) is equivalent to (3.154). We may
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carry out these equivalence procedures when D∗β0,tΨt(f) and −(−∆)α/2f are defined for f

satisfying (3.146). Due to theorem assumptions:

|H(s, y,∇f(s, ·))| ≤ h+ L|∇f(s, ·)| <∞. (3.157)

So

D∗β0,t

(∫ t

0

∫
Rd
Gβ(t, y)H(s, y,∇f(s, y))dyds

)
≤ C

Γ[1− β]

∫ t

0
(t− s)−βsβds ≤ C1

∫ 1

0
(t− tz)−ββ(tz)β−1tdz

≤ C1β

∫ 1

0
(1− z)1−β−1zβ−1dz ≤ C1βB(1− β, β) <∞. (3.158)

Similarly

D∗β0,t

∫
Rd
Sβ,1(t, x− y)f0(y)dy

(3.159)

exists when f0(y) gives dependence of
∫
Rd Sβ,1(t, x−y)f0(y)dy on t such as tk, where k > −1.

This is because

∫ t

0
(t− s)−β

(
d

ds
sk
)
ds

= tk+1−β
∫ 1

0
(1− z)−βzk−1dz = tk+1−βB(1− β, k + 1), (3.160)

where for any β ∈ (0, 1) the Beta function B(1 − β, k + 1) is defined for k + 1 > 0. Hence,

due to (3.157), (3.158) and (3.159), D∗β0,tΨt(f) is defined for the solution f for (3.154). For

f satisfying (3.146), when α ∈ (1, 2], −(−∆)α/2f is defined. Now, let us study the solution

f∗(t, y)

f∗(t, y) =

∫ t

0

∫
Rd
Gβ(t− s, y − x)H(s, x,∇f∗(t, x))dxds

+

∫
Rd
Sβ,1(t, y − x)f0(x)dx. (3.161)
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Differentiating (3.161) twice w.r.t. y gives:

∇2

∫ t

0

∫
Rd
Gβ(t− s, y − x)H(s, x,∇f∗(s, x))dxds

=

∫ t

0

∫
Rd
∇yGβ(t− s, y − x)∇xH(s, x,∇f∗(s, x))dxds. (3.162)

From the representations of Gβ(t, y) and ∇Gβ(t, y) used in theorems (1), (2) it is clear that

∇Gβ(t, y) exists and is continuous in t and in y. From theorem 10 we know ∇f∗ exists and

is Lipschitz continuous. Since we assumed H to be Lipschitz, it follows from Rademacher’s

theorem that ∇xH(s, x,∇f∗(s, x)) is almost everywhere defined and bounded. Hence (3.162)

represents a continuous function in y and in t. Since f0 ∈ C2
∞(Rd) and due to theorem 4

∇2

∫
Rd
Sβ,1(t, y − x)f0(x)dx

=

∫
Rd
Sβ,1(t, x)∇2f0(y − x)dx <∞. (3.163)

Thus, ∇2f∗(t, y) exists and so f∗(t, y) ∈ C2(Rd). This completes the necessary requirements

for the solution of the mild form (3.153) to be the solution of (3.154) of class C2(Rd). For f∗

to be a classical solution to the original FDE, we also need to prove that f∗ decays at infinity

in y. This follows from the representations of Sβ,1 and Gβ in (3.80) and (3.31). Since they

are written in terms of a stable density g which decays spatially at infinity, so do Sβ,1 and

Gβ decay and hence the solution f∗ also decays rapidly enough as a function of y. Therefore

f∗ is of class C2
∞(Rd) and so is a solution to the original FDE (3.1) in the classical sense.

Here is an example of H(u, p) which is Lipschitz in p and the control space U is

compact:

H(u, p) = inf
u∈U

[u2 − u+ 2sin(p)− p], (3.164)

with U = (0, 1) and p = Dyf(t, y).
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Chapter 4

Convergence theorems

4.0.1 Process description

In this Chapter we present our new convergence results for the position dependent controlled

CTRW. In this section we describe the general stochastic process these convergence results

apply to. For i ∈ N let γi be i.i.d. waiting times, whose distribution belongs to the domain of

attraction of a β-stable law with β ∈ (0, 1). For n ≥ 1 let ξn denote the jump occurring after

the waiting time γn. Since the jumps depend on control, they are not identically distributed.

Assume that the jump distributions are independent from the waiting time distribution.

Assume that the jumps occur instantaneously. For n ≥ 1 let


Xn = t+

∑n
j=1 γi,

Yn = Yn−1 + ξ(Yn−1, u(n− 1, Xn−1, Yn−1)),

where (X0, Y0) = (t, y) and u(·) is a given control function taking values in the set U . For

n ≥ 1, at the n-th jump the function u(·) is dependent on n − 1, on the previous position

y ∈ Rd of the process Yn−1 and on the state x ∈ R+ of Xn−1. Denote Ũ := {u((n− 1), x, y) :

R+× [0, T ]×Rd → U}. The sets U and Ũ will be specified in appropriate theorems. Assume

that

Ef
(
x+ τ1/β, y + ξ(u, x, y)

)
− f(x, y)

τ
→
(
L1
x + L2

y

)
f(x, y). (4.1)
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Then the limiting process (limτ→0X
τ (t), limτ→0 Y

τ
[t/τ ] exists. Let X(t) := limτ→0X

τ (t) and

Y u(·)(t) := limτ→0 Y
τ

[t/τ ]. The limiting pair (X(t), Y u(·)(t)) is a Markov process and its gen-

erating family is Lx,y,u(t,x,y) = L1
X + L2

Y,u(t,x,y) = L1
x + L2

x,y,u(t,x,y). Denote for any τ > 0 the

inverse process for Xτ (t) by MXτ (t) and similarly denote by MX(t) the inverse process for

the limiting process X(t). The controlled processes we are interested in are Y τ,u(·)(MXτ (t))

and Y u(·)(MX(t)) := limτ→0 Y
τ,u(·)(MXτ (t)). For ease of notation from now on for any τ > 0

the process MXτ (t) will be denoted by M τ (t). The definition of the optimal payoff (value)

function Sτ (t, y) without running costs is:

Sτ (t, y) = inf
u∈Ũ

EtS0

(
y + Y

τ,u(·)
[Mτ (t)/τ ]

)
(4.2)

and with running costs it is

Sτ (t, y) = inf
u∈Ũ

EtS0

(
y + Y

τ,u(·)
[Mτ (t)/τ ] +

∫ t

0
R
(
Y
τ,u(·)

[Mτ (t)/τ ]

)
ds

)
. (4.3)

For simplicity of notation we will write Y τ,u(·)(M τ (t)) instead of Y
τ,u(·)

[Mτ (t)/τ ]. Corollaries

1, 2 and the theorem 16 will concern the definition 4.3.

4.0.2 Main results

Before we present the main convergence results, we state preliminary results, definitions and a

theorem that we use. Let µ, ν be two arbitrary elements in the space of probability measures

P (Ω) for some Polish space Ω.

Definition 10. The bounded Lipschitz distance between two measures µ and ν is:

ρb Lip(µ, ν) = sup{|(µ, f)− (ν, f)| : ||f ||∞ + ||f ||Lip ≤ 1}. (4.4)

There are several ways to metrize weak convergence, and one of them is using the

above definition of the bounded Lipschitz distance, see [84] for details. The next theorem is

the bounded Lipschitz distance convergence theorem, [84].

Theorem 13. Let (Ω,m) be a Polish space with a metric m. Let {µτ}τ≥0 and µ be measures
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in P (Ω). Convergence ρb Lip(µτ , µ) → 0 as τ → 0 is equivalent to the weak convergence of

measures µτ → µ.

Lemma 2. Let s̄ = (s1, · · · , sn) ∈ Rn+ and ȳ = (y1, · · · , yn) ∈ Rnd with each yi ∈ Rd for

i ∈ [1, · · · , n]. Let the probability kernels {P τ}τ≥0, P in P(Rnd) and {ντ}τ≥0, ν in P(Rn+) be

such that as τ → 0 for any fixed s̄, P τ (s̄, dȳ) → P (s̄, dȳ) and ντ (ds̄) → ν(ds̄) weakly. Then

the following holds uniformly for f which is both bounded and Lipschitz, ||f ||∞ ≤ C1 and

||f ||Lip ≤ C2:

∫
Rn+

∫
Rnd

f(s̄, ȳ)P τ (s̄, x̄, dȳ)ντ (ds̄)→
∫
Rn+

∫
Rnd

f(s̄, ȳ)P (s̄, x̄, dȳ)ν(ds̄). (4.5)

Proof.

∫
Rnd

∫
Rn+
f(s̄, ȳ)P τ (s̄, x̄, dy1 · · · dyn)ντ (ds1 · · · dsn)

−
∫
Rnd

∫
Rn+
f(s̄, ȳ)P (s̄, x̄, dy1 · · · dyn)ν(ds1 · · · dsn)

=

∫
Rnd

(∫
Rn+
f(s̄, ȳ)ντ (ds1, · · · , dsn) (4.6)

−
∫
Rn+
f(s̄, ȳ)ν(ds1, · · · , dsn)

)
P τ (s̄, x̄, dy1, · · · , dyn)

+

∫
Rn+

(∫
Rnd

f(s̄, ȳ)P τ (s̄, x̄, dy1, · · · , dyn)

−
∫
Rnd

f(s̄, ȳ)P (s̄, x̄, dy1, · · · dyn)

)
ν(ds1, · · · , dsn).
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By theorem 13 it follows that as τ → 0

ρb Lip(P τ , P )→ 0 and ρb Lip(ντ , ν)→ 0. (4.7)

Now, due to the definition of ρb Lip and the assumption that f is bounded and Lipschitz,

(4.7) implies that uniformly for all such f

∫
Rn+
f(s̄, ȳ)ντ (ds1, · · · , dsn)−

∫
Rn+
f(s̄, ȳ)ν(ds1, · · · , dsn)→ 0 (4.8)

and

∫
Rnd

f(s̄, ȳ)P τ (s̄, x̄, dy1, · · · , dyn)−
∫
Rnd

f(s̄, ȳ)P (s̄, x̄, dy1, · · · dyn)→ 0. (4.9)

Since P τ and ν are probability measures, it follows that both summands in (4.6) converge to

0 uniformly in f . Therefore

∫
Rn+

∫
Rnd

f(s̄, ȳ)P τ (s̄, x̄, dy1 · · · dyn)ντ (ds1 · · · dsn)

−
∫
Rn+

∫
Rnd

f(s̄, ȳ)P (s̄, x̄, dy1 · · · dyn)ν(ds1 · · · dsn)→ 0, (4.10)

uniformly for all f satisfying ||f ||Lip ≤ C2 and ||f ||∞ ≤ C1.

The Skorokhod space D of càdlàg functions is a Polish space with respect to the

standard metric d. We invite the reader to see [85] for the definition of d and more about the

Skorokhod space. This makes the definition 10, theorem 13 and lemma 2 applicable to study

convergence of càdlàg function sequences. Since CTRWs are càdlàg, the theory applies for

scaled CTRWs too. Here we present the novel application to CTRW processes discussed in

the subsection 4.0.1.

Theorem 14. Assume the processes Xτ (r), X(r), Y τ (r), Y (r), M τ (r) and M(r) are defined

as before in subsection 4.0.1, but there is no control. Let us take any t1, · · · , tn ∈ [0, T ] such

that ti 6= tj for i 6= j. Then for any initial positions yi ∈ Rd, i ∈ [1, · · · , n], and any f

Lipschitz in the spatial variable, with the Lipschitz constant L ∈ R+, as τ → 0 the following
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convergence holds uniformly in f :

Et1,··· ,tnf
(
Y τ (M τ (t1)),M τ (t1), t1, · · · , Y τ (M τ (tn)),M τ (tn), tn

)
→ Et1,··· ,tnf

(
Y (M(t1)),M(t1), t1, · · · , Y (M(tn)),M(tn), tn

)
. (4.11)

Proof. Denote

P τ (s̄, x̄, dȳ) = P

(
Y τ (M τ (s1)) ∈ x1 + dy1, · · · , Y τ (M τ (sn)) ∈ xn + dyn

)
(4.12)

and

ντ (s1, · · · , sn) = P (M τ (s1) < a1, · · · ,M τ (sn) < an)

= P (Xτ
a1 > s1, · · · , Xτ

an > sn). (4.13)

By our assumption on the distribution of γi it follows that ν does not have any atoms. Now,

since

P (Xτ
a1 > s1, · · · , Xτ

an > sn)→ P (Xa1 > s1, · · · , Xan > sn) (4.14)

pointwise, it follows that ντ (s1, · · · , sn)→ ν(s1, · · · , sn). Since for every τ > 0

Et1,··· ,tnf
(
Y τ (M τ (t1)),M τ (t1), t1, · · · , Y τ (M τ (tn)),M τ (tn), tn

)
=

∫
Rnd

∫
Rn+
f(ȳ, s̄)P τ (s̄, x̄, dȳ)ντ (ds̄), (4.15)

the proof follows from the application of Lemma 2.

Theorem 15. Let the processes Xτ , X, Y τ , Y , M τ and M be defined as before and with

control. Take any t1, · · · , tn ∈ [0, T ]. Let the position dependent control function

u

(
t,M(t), Y (M(t))

)
(4.16)

be uniformly Lipschitz in all variables. Denote by U ⊂ R+ × Rd a compact set where the
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control function u takes its values, and denote by ŨL ⊂ Ũ the compact set of all Lipschitz

functions u ∈ Ũ which have the same Lipschitz constant L ∈ R+. Assume f(Y,M, u) is

Lipschitz in Y , M and u. Denote the Lipschitz constant for f in u by L. Then the following

convergence holds:

inf
u∈ŨL

Et1,··· ,tn,0f
(
t1, Y

τ (Mτ (t1)),Mτ (t1), u (t1,M
τ (t1), Y τ (Mτ (t1))) , · · · ,

tn, Y
τ (Mτ (tn)),Mτ (tn), u (tn,M

τ (tn), Y τ (Mτ (tn)))

)
→ inf

u∈ŨL

Et1,··· ,tn,0f
(
t1, Y (M(t1)),M(t1), u (t1,M(t1), Y (M(t1))) , · · · ,

tn, Y (M(tn)),M(tn), u (tn,M(tn), Y (M(tn)))

)
. (4.17)

Proof. To make some of our formulas shorter let us set x̄ = (Ȳ , M̄ , t̄) and

F (x̄, u(t̄, x̄)) := f
(
t1, Y

τ (M τ (t1)),M τ (t1), u(t1, Y
τ (M τ (t1)),M τ (t1)) , · · · ,

tn, Y
τ (M τ (tn)),M τ (tn), u(tn, Y

τ (M τ (tn)),M τ (tn))
)
. (4.18)

Then due to Lipschitz assumptions on f and u:

|F
(
x̄1, u(t̄1, x̄1)

)
− F

(
x̄2, u(t̄2, x̄2)

)
|

≤ L(1 + L )

(
|x̄1 − x̄2|

)
, (4.19)

where |x̄1 − x̄2| = |Ȳ1 − Ȳ2| + |M1 −M2| + |t̄1 − t̄2|. Hence F is uniformly Lipschitz. Note

that for any real-valued functions a(u), b(u):

| inf
u∈ŨL

a(u)− inf
u∈ŨL

b(u)| ≤ sup
u∈ŨL

|a(u)− b(u)|. (4.20)

Let

a(u) = Ey1,··· ,yn,0f
(
t1,M

τ (t1), Y τ (M τ (t1)), u (t1,M
τ (t1), Y τ (M τ (t1))) , · · · ,

tn,M
τ (tn), Y τ (M τ (tn)), u (M τ (tn), Y τ (M τ (tn)))

)
(4.21)
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and

b(u) = Ey1,··· ,yn,0f
(
t1, Y

(
M(t1)),M(t1), u (t1,M(t1), Y (M(t1)))

)
, · · · ,

tn, Y
(
M(tn),M(tn), u (tn,M(tn), Y (M(tn)))

))
. (4.22)

Substituting these into (4.20) enables us to write

∣∣∣∣ inf
u∈ŨL

Et1,··· ,tnf
(
t̄, M̄ τ (t), Ȳ τ (M τ (t)), u

(
t̄, M̄ τ (t), Ȳ τ (M τ (t))

))
− inf
u∈ŨL

Et1,··· ,tnf
(
t̄, M̄(t), Ȳ (M(t)), u

(
t,M(t), Ȳ (M(t))

))∣∣∣∣
≤ sup

u∈ŨL

∣∣∣∣Ex1,··· ,xnf(t̄, M̄ τ (t), Ȳ τ (M τ (t)), u
(
t̄, M̄ τ (t), Ȳ τ (M τ (t))

))
−Et1,··· ,tnF

(
t̄, M̄(t), Ȳ (M(t)), u

(
t̄, M̄(t), Ȳ (M(t))

))∣∣∣∣ . (4.23)

Since F is uniformly Lipschitz and bounded, we may use Lemma 2 to deduce that

sup
u∈ŨL

∣∣∣∣Et1,··· ,tnf(t̄, M̄ τ (t), Ȳ τ (M τ (t)), u
(
t̄, M̄ τ (t), Ȳ τ (M τ (t))

))
−Et1,··· ,tnf

(
t̄, M̄(t), Ȳ (M(t)), u

(
t̄, M̄(t), Ȳ (M(t))

))∣∣∣∣→ 0 (4.24)

and hence that

∣∣∣∣ inf
u∈ŨL

Et1,··· ,tnf
(
t̄, M̄ τ (t), Ȳ τ (M τ (t)), u

(
t̄, M̄ τ (t), Ȳ τ (M τ (t))

))
− inf
u∈ŨL

Et1,··· ,tnf
(
t̄, M̄(t), Ȳ (M(t)), u

(
t̄, M̄(t), Ȳ (M(t))

))∣∣∣∣→ 0. (4.25)

Corollary 1. Take arbitrary t1, · · · , tn ∈ [0, T ] such that ti 6= tj for i 6= j. Let the as-

sumptions of the previous theorem hold. Then as τ → 0 the following convergence result is
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true:

inf
u∈ŨL

Et1,··· ,tnS0

(
y1 + Y τ,u(·)(M τ (t1)),M τ (t1), t1, · · · , yn + Y τ,u(·)(M τ (tn)),M τ (tn), tn

)
→ inf

u∈ŨL

Et1··· ,tnS0

(
y1 + Y u(·)(M(t1)),M τ (t1), t1 · · · , yn + Y u(·)(M(tn)),M(tn), tn

)
.

(4.26)

Proof. The proof is analogous to the proof for the previous theorem, with S0(y + ·) taking

the role of f(·).

The next theorems deal with a more general payoff which includes running costs.

Theorem 16. Let us keep assumptions of theorem 15 and also assume that the running cost

function is of the following form

n∑
i=1

R
(
Y τ,u(·)(M τ (si))

)
, (4.27)

where R(·) is a Lipschitz function with the Lipschitz constant L and n ∈ N. Then as τ → 0

the following convergence result holds:

inf
u∈ŨL

E
n∑
i=1

R
(
Y τ,u(·)(M τ (si))

)
→ inf

u∈ŨL

E
n∑
i=1

R
(
Y u(·)(M(si))

)
. (4.28)

Proof. Note that the sum in equation (4.27) is of the form

f
(
Y τ,u(·)(s1), Y τ,u(·)(s2), · · · , Y τ,u(·)(sm)

)
(4.29)

where f is Lipschitz in all variables. Therefore, we may apply theorem 15 and result follows.

Corollary 2. Let us keep assumptions of theorem 16. Let us assume that the function

R
(
Y τ,u(·)(M τ (s))

)
models the running cost associated to the process. Assume the optimal
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payoff function (the value function) is

Sτ (t, y) = inf
u∈ŨL

Et
[ n∑
i=1

R(Y τ,u(·)(M τ (si))) + S0

(
y + Y τ,u(·)(M τ (t))

)]
, (4.30)

where y is the initial position of the process at time t = 0. Then as τ → 0 the following

convergence result holds:

Sτ (t, y)→ inf
u∈ŨL

Et
[ n∑
i=1

R
(
Y u(·)(M(si))

)
+ S0

(
y + Y u(·)(M(t))

)]
. (4.31)

Proof. The proof combines the one for theorem 15 with the one for theorem 16, as in this case

f
(
Y τ,u(·)(M τ (t))

)
= S0(y + Y τ,u(·)(M τ (t))) +

∑n
i=1R(Y τ,u(·)(M τ (si))), and the mentioned

theorems deal with the two summands separately.

Theorem 17. Let the controlled stochastic processes be as in the previous theorems. Let us

assume that the cost function is of the form

Sτ (t, y) = inf
u∈UL

E
[∫ t

0
R
(
Y τ,u(·)(M τ (s)),M τ (s), s

)
ds+ S0

(
y + Y τ,u(·)(M τ (t))

)]
. (4.32)

Then the following convergence holds:

Sτ (t, y)→ inf
u∈UL

E
[∫ t

0
R
(
Y u(·)(M(s)),M(s), s

)
ds+ S0

(
y + Y u(·)(M(t))

)]
. (4.33)

Proof. The proof is based on the same ideas as in the previous theorems and on the inter-

changeability of the integral with respect to time and the expectation.

77



∣∣∣∣ inf
u∈UL

E
[∫ t

0
R(Y τ,u(·)(M τ (s)),M τ (s), s)ds+ S0(y + Y τ,u(·)(M τ (t))

]
− inf
u∈UL

E
[∫ t

0
R(Y u(·)(M(s)),M(s), s)ds+ S0(y + Y u(·)(M(t))

]∣∣∣∣
≤ sup

u∈UL

∣∣∣∣E∫ t

0
R(Y τ,u(·)(M τ (s)),M τ (s), s)ds− E

∫ t

0
R(Y u(·)(M(s)),M(s), s)ds

+ES0(y + Y τ,u(·)(M τ (t))− ES0(y + Y u(·)(M(t))

∣∣∣∣
≤ sup

u∈UL

∫ t

0

∣∣∣∣E(Y τ,u(·)(M τ (s)),M τ (s), s)

)
− E

(
Y u(·)(M(s)),M(s), s)

)∣∣∣∣ds
+ sup
u∈UL

∣∣∣∣S0(y + Y τ,u(·)(M τ (t))− S0(y + Y u(·)(M(t))

∣∣∣∣
≤ t sup

u∈UL

sup
s∈[0,t]

∣∣∣∣E(Y τ,u(·)(M τ (s)),M τ (s), s)

)
− E

(
Y u(·)(M(s)),M(s), s)

)∣∣∣∣
+ sup
u∈UL

∣∣∣∣ES0(y + Y τ,u(·)(M τ (t))− ES0(y + Y u(·)(M(t))

∣∣∣∣→ 0, (4.34)

since

∣∣∣∣E(Y τ,u(·)(M τ (s)),M τ (s), s)

)
− E

(
Y u(·)(M(s)),M(s), s)

)∣∣∣∣ → 0 and by the previous

theorems

∣∣∣∣ES0(y + Y τ,u(·)(M τ (t))− ES0(y + Y u(·)(M(t))

∣∣∣∣→ 0.

The following theorem is an application of a verification theorem in [1] to the limiting

process in our framework.

4.0.3 A verification theorem

The limiting process (t + X(r), y + Y u(·)(r)) in the subsection 4.0.1 is Markov and assume

has the generating family

LG = L1
x + L2

y = D∗β0,r + ω(u, y)Dy − (−∆)α/2. (4.35)

We observe the process until t + X(r) = T . At this moment the state of the process

is (T, Y u(·)(M(T − t))). The goal of controlling the process is to minimise

J(t, x, y;u) = E
{∫ T

t
R(x(s), y(s), u(s, x(s), y(s)))ds+ g(T, y + Y (M(T − t)))

}
, (4.36)
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where the function g represents the terminal payoff function.

Define the value function Vu := infu∈ŨL
J(x, y;u(t, x, y)), and denote by u∗(·) an

optimal control strategy and by (x∗(·), y∗(·)) the corresponding trajectory.

Theorem 18. Let us study the process (t+X(r), y+Y u(·)(r)) defined above. Assume the set

of admissible control functions ŨL for the process (t+X(r), y+Y u(·)(r)) is compact. Assume

also that the process starts at a point (x, y) in R+×Rd. Let R be a running cost function on

R+ × Rd × ŨL , which is Lipschitz and bounded. Assume g to be continuous and bounded on

R+ × Rd.

Let W ∈ C1,2(R+ × Rd) be a solution to

H(x, y, LGV ) = 0, (4.37)

with

H(x, y, LGV ) = inf
u∈ŨLG

[R(t, s, x(s), y(s), u(s, x(s), y(s))) + LGV ] (4.38)

and with the boundary condition V (T, y) = g(T, y) for y ∈ Rd. Then for every (x, y) ∈

(R+ × Rd):

1. W (x, y) ≤ J(x, y;u) for any admissible measurable control process u(·).

2. Suppose that there exists u∗(·) ∈ ŨL such that

u∗(t, x, y) ∈ argmin [LGW (x∗(t), y∗(t)) +R(x∗(t), y∗(t))] . (4.39)

Then W (x, y) = J(x, y;u∗), where J is as defined in (4.36).

Proof. The proof is analogous to that of the verification theorem for the infinite horizon

problem for a controlled Markov diffusion in [1], Chapter IV, Theorem 5.1.

Theorem 18 verifies that the solution to the fractional HJB equation (4.37) is a solution

to the optimisation problem described in the beginning of the subsection 4.0.3. Previous

theorems 14, 15, 16 and related corollaries give general convergence of Sτ (t, y) to solutions of
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optimisation problems as τ → 0. Note that (4.37), (2.50), (2.51) and (2.69) are of the same

form. Together with the verification theorem 18 these convergence results yield convergence

of Sτ (t, y) in (4.32) to the solution of (4.37), which exists and is unique by our well-posedness

analysis in Chapter 3.
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Chapter 5

Further developments

In this Chapter we present several ideas about alternative approaches to analysing different

aspects of the model presented in this thesis. The first one is related to analysis of solutions

Sτ (t, y) to the pre-limiting dynamic programming equations without running costs. We found

the approach presented in the earlier Chapters more straightforward, so this line of thought

was not continued. However it resulted in a property for Sτ (t, y) which we will present in

the subsection 5.0.4, and it is interesting in its own right. The second idea is a stochastic

differential equation (SDE) approach to the limiting controlled processes with random time

changes. The third idea is an application of the CTRW to a many particle system modelling

and we extend this even further to a model of competing particle systems. The last further

development idea is a suggestion to apply a CTRW model to limit order book modelling.

5.0.4 Analysis

Let us study the position dependent model described in the subsection 4.0.1. Assume that

S0(y) is Lipschitz in y with the Lipschitz constant L0. Then for fixed τ, t, Sτ defined in (4.2)

is Lipschitz in y.

The reasoning follows from the definition (4.2)

Sτ (t, y) = inf
u∈U

E[S0(y + Y τ (M τ (t)))]. (5.1)

Using (4.20) we obtain

81



|Sτ (t, y1)− Sτ (t, y2)|

≤ sup
u∈U

[E(S0(y1 + Y τ (M τ (t)))− S0(y2 + Y τ (M τ (t))))]

≤ L0 sup
u∈U

[Y τ (M τ (t), y1)− Y τ (M τ (t), y2)] ≤ L0C(t)|y1 − y2|. (5.2)

Let us study the optimal payoff functions Sτ (t, y) as they appear earlier in the Chapter.

As τ → 0 the functions Sτ (t, y) converge to a limit S̃(t, y) for every t ≥ 0, y ∈ Rd. Here we

present the reasoning. Let us recall that Sτ (t, y) satisfies:

Sτ (t, y) =

∫ ∞
tτ−1/β

ν(dr)S0(y) + sup
u∈U

∫ tτ−1/β

0

∫
Rd
Sτ (t− rτ1/β, y + ξτ1/α)µu(dξ)ν(dr).

Due to the definition of Sτ (t, y), for y1, y2 ∈ Rd:

|Sτ (t, y1)− Sτ (t, y2)| ≤ |S0(y1)− S0(y2)|

+ sup
u∈U

∫ tτ−1/β

0

∫
Rd

∣∣∣Sτ (t− rτ1/β, y1 + ξτ1/α)

−Sτ (t− rτ1/β, y2 + ξτ1/α)
∣∣∣µu(dξ)ν(dr)

≤ |S0(y1)− S0(y2)|+
∫ tτ−1/β

0

∫
Rd
Lτ,t−rτ

1/β |y1 − y2|µu(dξ)ν(dr), (5.3)

where Lτ,t is the Lipschitz constant for Sτ (t, y). Dividing through by |y1 − y2|:

Lτ,t ≤ L0 +

∫ tτ−1/β

0
Lτ,t−tτ

1/β
ν(dr) ≤ L0 +

∫ t

0
Lτ,t−rν(dr/τ1/β).

Now Gronwall’s inequality gives us uniform boundedness of Lτ,t.

For fixed τ > 0, t ≥ 0, Sτ (t, y) defined in (4.2) for the model in the subsection 4.0.1

and re-written in (5.1) is equicontinuous in y. Here we present the reasoning.

Let us take δ > 0. Let |y1 − y2| < δ. Then

|Sτ (t, y1)− Sτ (t, y2)| ≤ |S0(y1)− S0(y2)|
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+|y1 − y2|
∫ tτ−1/β

0
Lτ,t−rτ

1/β
ν(dr)

≤ L0δ + δ

∫ tτ−1/β

0
Lτ,t−rτ

1/β
ν(dr)

≤ δ
(
L0 +

∫ tτ−1/β

0
L0C(t)ν(dr)

)
≤ δL0(1 + C(t)). (5.4)

Here we have used the uniform boundedness of Lτ,t ≤ L0C(t) discussed earlier.

So for any ε > 0 there exists δε = ε
L0(1+C(t)) s.t. |y1−y2| < δ⇒ |Sτ (t, y1)−Sτ (t, y2)| <

ε. Hence Sτ (t, y) is equicontinuous.

Therefore by Arzela-Ascoli theorem for any fixed t ∈ R+ there exists a sequence

{τn}n≥1 such that Sτn(t, y) → S̃(t, y) for some S̃(t, y). Then S̃ is Lipschitz too with the

Lipschitz constant L0C(t) for some C(t), and moreover, by Rademacher’s theorem S̃(t, y) is

differentiable in y.

5.0.5 Linear quadratic control

Let us assume that the Hamiltonian H has the following form

H(t, y, p) = inf
u∈U

(fp+ g)

= inf
u∈U

(
(au+ by) p−

(
ru2 + suy + wy2

))
, (5.5)

Minimising over the control parameter u, i.e. differentiating the function inside the infimum

with respect to u, gives us optimal control u∗ = ap−sy
2r , substituting it we have

H∗(t, y, p) =

(
a

(
ap− sy

2r

)
+ by

)
p

−

(
r

(
ap− sy

2r

)2

+ s

(
ap− sy

2r

)
y + wy2

)
, (5.6)
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i.e. the control is linear quadratic. Now assume that S(t, y) = h(t)y2 and L = y2

2
d2

dy2
. Then

the FHJB equation reduces to

y2D∗β0,th(t) = h(t)y2 + 2y2a
2

α
h2(t) + 2bh(t)y2

−y
2

4r

(
4a2h2(t)− 4ash(t) + s2

)
−sah(t)y2

r
+
s2y2

2r
− wy2. (5.7)

The term y2 cancels out and we are left with a fractional Riccati equation for h(t), with

constant coefficients. If L = 1
2
d2

dy2
instead then the coefficients will depend on y, however the

equation is for the function h(t) and so powers of y in the coefficients can still be treated as

constants, since they do not depend on t. This leaves us with a fractional Riccati equation

for h(t):

D∗β0,th(t) = Ah2(t) +Bh(t) + C, (5.8)

for some A,B,C independent of the time parameter t.

Different numerical methods for fractional Riccati equations have been proposed re-

cently, however yet there is no proof of well-posedness. The paper [86] presents numerical

results for the case A = 1, B = 0, C = −1.

5.0.6 Stochastic Differential Equations for the limiting processes

Here we propose an alternative description of the limiting process via Stochastic Differential

Equations (SDEs). Stochastic processes are solutions of SDEs. For example, the solution to

dX(t) = µdt+ σdW (t) (5.9)

where W (t) denotes the Wiener process, is a Gaussian process with mean µt and

variance σ2t. The solution to
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dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t) (5.10)

for t1 ≤ t ≤ t2 with the initial data X(t) = x is pathwise unique and is a Markov

diffusion process, please see the book by [1] and references therein. In case of a controlled

Markov diffusion, X(t) is the solution to an SDE of the form

dX(t) = f(s,X(s), u(s))ds+ g(s,X(s), u(s))dW (s), (5.11)

where u(·) is the admissible control function. Under specific conditions on the func-

tions f , g and u there exists a unique solution to (5.11). Recent developments extend to

theory for solutions to SDEs for which the term dWt is replaced by dLαt , where Lαt is an

α-stable Lévy motion. We invite the reader to see for example [87] and [88] for more details.

So far there is no research on the SDE approach to controlled stable processes with

random time changes. Following ideas in [1], [89], [90] and [91], we make the following

conjecture:

Conjecture 1. An α-stable Lévy motion Lα(t) subordinated to Sβ(t) an inverse of a β-stable

Lévy motion is a solution to the following stochastic differential equation (SDE):

dYt = F (Yt)dSβ(t) + σ(Yt)dLα(Sβ(t)). (5.12)

In the case when the process Lα(Sβ(t)) is controlled, we propose that the corresponding

SDE is of the form

dYt = F (Yt, u)dSβ(t) + σ(Yt, u)dLα(Sβ(t)), (5.13)

where u is the control parameter.
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5.0.7 Mean field game application

We looked at the application of the CTRW model to interacting particle systems. This work

was then handed over to E. Hernández-Hernández and the reader is invited to read [92] for

interesting results in this direction. Here we present the model we have looked at. It is based

on the work developed in this thesis and on the nonlinear Markov game models presented in

[93].

Often to obtain a description for a stochastic system with |N | particles where |N |

is large, it is easier to approximate it by the analogous system with an infinite number of

particles. Assume that there is a large number |N | of particles, and they are of d types. For

example, in industry there could be |N | robots of d different types with the same controller.

Let us denote by S the state space in Zd. It is the sequence of length d with each element

ni, i ∈ {1, . . . , d} representing the number of particles of the i-th type. We denote this

sequence by N = (n1, . . . , nd). Denote by |N | = n1 + . . .+ nd the total number of particles.

Assume the system evolves as particles jump one at a time and each jump is a transformation

of a particle from one type to another. If the system is at a state N
|N | and a particle of type

i transforms to type j, where i 6= j, we denote the new state of the system by N ij

|N | . Assume

there are no jumps from type i to type i, i.e. a transformation must be a change in type.

Assume the waiting times γi, i ∈ N between the jumps belong to the DOA of a β-stable

law with β ∈ (0, 1). By Q(u, t, y) we denote the rate matrices. These may depend on a control

parameter u ∈ U as we may control the jumps to optimise the system’s payoff. Assume the

particles can not control their jumps themselves, and that controlling the evolution is only

possible to the unique controlling agent. Each matrix element Qij in Q(u, t, y) is the rate

with which a particle can jump/transform from i-th type to the j-th type.

Denote X(n) :=
∑n

i=1 γi. Let ZX(t) = infn∈N{n : X(n) > t} − 1 and let Y (t) =

Y (ZX(t)) be the process of the system evolution with time. Assume that as N → ∞,

N/|N | → y for y ∈ Rd. Let a payoff function for the whole system with an infinite number

of participants represent the total cost for the system to be at a particular position y at any

given time t ≥ 0. The aim of the system coordinator is to optimise the payoff. By S
(
N
|N | , t

)
we shall denote the value of the payoff function at the state N

|N | and at time t until the end
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of the process. Assume that there are no costs for jumping and for waiting, only for arriving

at a new state and at a terminal state.

Let the scaling parameter be τ = 1
|N | . Let us scale the waiting times by τ1/β and scale

the configuration N by τ . We propose that as τ → 0 the limiting equation for S obtains the

following form:

A∗S(y, t) + sup
u∈U

 d∑
i,j=1,i 6=j

Cij
(
dS(y, t)

dyj
− dS(y, t)

dyi

)+ S0(y)
t−β

Γ[1− β]
= 0, (5.14)

where Cij = |N | Qij∑
k nk|Qkk|

= Rij

|N | i 6= j. Here A∗ = −D∗β0,t is the dual of the generator

A.

However we did not go ahead with this research direction. A result similar to the

one proposed above has recently been derived heuristically by E. Hernández-Hernández for

a slightly different system of interacting particles, see [92] for details. The rigorous proof is

also ongoing research of V. Kolokoltsov and E. Hernández-Hernández.

We also looked at two competing controlled systems, each behaving as a CTRW

such as the one described above. Assume there are two agents each controlling a system

of many particles. The goal of each of the two agents is to optimise their own payoff.Let

N
|N | = 1

|N |(n1, n2, . . . , nd) denote the state of the system controlled by the first agent and

M
|M | = 1

|M |(m1,m2, . . . ,md) denote the state of the system controlled by the second agent.

Denote by U and V the control sets for the first and the second agent. The control parameter

u ∈ U depends on the state of the other agent’s system M
|M | and the control parameter v ∈ V

depends on the state N
|N | of the opposing agent’s particle system. Assume that the only payoff

is due to arriving to a new state and the terminal payoff. Let Q(t, u, x) and P (t, v, y) denote

the rate matrices which depend on position and control, bringing non-linearity into the game.

Let the scaling parameter be τ = 1
|N ||M | . Then, after the scaling, the value function equation

obtains the following form:
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S

(
N

|N |
,
M

|M |
, t

)
= S0

(
N

|N |
,
M

|M |
, t

)∫ ∞
tτ−1/β

ν(dr)

+ sup
u∈U

inf
v∈V

 d∑
i,j=1,i 6=j

∫ tτ−1/β

0

niQij∑d
i=1 |Qii|ni

S

(
N ij

|N |
,
M

|M |
, t− rτ1/β

)
ν(dr)

+

d∑
i,j=1,i 6=j

∫ tτ−1/β

0

miPij∑d
i=1 |Pii|mi

S

(
N

|N |
,
M ij

|M |
, t− rτ1/β

)
ν(dr)

 . (5.15)

We propose that the limiting equation will have a similar form to (5.14).

5.0.8 Application to finance

Together with A. V. Chertok we proposed to apply the CTRW model studied in [94] for

the net flow of orders in a limit order book in a liquid market. We invite the reader to see

[95] for the background theory on stochastic limit order book modelling. The authors of the

paper comment on the potential usefulness of heavy-tailed distributions in limit order book

stochastic modelling, and we tried to develop this idea further. This work did not go ahead

due to specific properties of the limit order book behaviour which could not be captured by

our methods. The key property to allow for in an accurate model of limit orders was the

tendency for the CTRW to frequently reach the zero level.

Here we present the model we had in mind. Let γi ∈ DOA (β-stable law) denote

waiting times between order arrivals, β ∈ (0, 1). Let ξi ∈ DOA (α-stable law) be the sizes

or orders, α ∈ (1, 2]. Define the inverse process MX(t) = inf{n :
∑n

i=1 γi > t} − 1. Then

Y (t) =
∑MX(t)

i=1 ξi may model the net flow of orders. Let us scale the waiting times by τ1/β

and the jumps by τ1/α. It is possible to describe the distribution of the limiting process after

scaling and letting τ → 0 via fractional distributions:

g(t, x, y) =

∫ ∞
0

Gα,θ(xs
β/α)dGβ,1(s), (5.16)
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where Gα,θ is the stable distribution with the characteristic function of the form

g(α, θ) = exp

{
−|s|αexp

(
−iπαθ

2
sign(s)

)}
, (5.17)

and Gβ,1 is the stable distribution with the characteristic function of the form

g(β, 1) = exp

{
−|s|βexp

(
−iπβ

2
sign(s)

)}
. (5.18)

In the view of controlled diffusion models in reinsurance studied by [96], we propose

that the controlled CTRW model is potentially useful in this field too.
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Chapter 6

Conclusions

In this thesis we presented the first research on controlled Continuous Time Random Walks

(CTRWs). Using one heuristic and one rigorous approach we derived that for such a dynamics

the optimal payoff will satisfy a fractional Hamilton Jacobi Bellman (FHJB) type equation.

We have also studied extensions of the CTRW models and derived more general equations

for the corresponding optimal payoffs. We focused on the analysis of the FHJB equation,

for the first time deriving the mild form of the FHJB and studying its well-posedness and

regularity properties. We have also expressed the solution to the FHJB equation as a solution

to an optimization problem, which may also be extended to a more general scenario where

the operators are generators of Feller processes.
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Chapter 7

Appendix

Let us recall the asymptotic properties of stable densities defined in (3.26)

g(y, α, σ) =
1

(2π)d

∫
Rd

exp{−σ|p|α}e−ipydp, (7.1)

see [82] for details. For |y|/σ1/α → 0 the following asymptotic expansion for g holds

g(y, α, σ) ∼ |Sd−2|
(2πσ1/α)d

∞∑
k=0

(−1)k

(2k)!
ak

(
|y|
σ1/α

)2k

, (7.2)

where

ak = α−1Γ

(
2k + d

α

)
B

(
k +

1

2
,
d− 1

2

)
, (7.3)

where

B(q, p) =

∫ 1

0
xp−1(1− x)qdx =

Γ(p)Γ(q)

Γ(p+ q)
(7.4)

is the Beta function, and
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|Sd−2| = 2
π(d−1)/2

Γ(d−1
2 )

(7.5)

and |S0| = 2, see [82] for the proof.

For |y|/σ1/α →∞ the following asymptotic expansion holds

g(y;α, σ) ∼ (2π)−(d+1)/2 2

|y|d
∞∑
k=1

ak
k!

(σ|y|−α)k (7.6)

where

ak = (−1)k+1 sin

(
kπα

2

)∫ ∞
0

ξαk+(d−1)/2W0, d
2
−1(2ξ)dξ (7.7)

and W0,n(z) is the Whittaker function

W0,n(z) =
e−z/2

Γ(n+ 1/2)

∫ ∞
0

[t(1 + t/z)]n−1/2e−tdt, (7.8)

see [82] for the proof. We refer the interested reader to [97] for background information

on asymptotic expansions.

In case d = 1 the stable density function w(x, β, 1) defined in (3.27) is infinitely smooth

for x = 0 and w(x, β, 1) = 0 for x < 0. Hence w grows at 0 slower than any power. This gives

rise to the inequalities such as w(x, β, 1) < Cqx
q−1 for any q > 1, for x < 1. The property

w(x) ∼ x−1−β for x >> 1, may be found for example in [82]. This may be deduced from the

asymptotic expansions in equations 7.7 and 7.9 in [82] with γ = 1.

The following result is part of the proposition 7.3.2 from [82]:

Proposition 1. Let
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φ(y, α, β, σ) =
1

(2π)d

∫
Rd
|p|βexp{−i(p, y)− σ|p|−α}dp, (7.9)

so that

∂φ

∂β
(y, α, β, σ) =

1

(2π)d

∫
Rd
|p|βlog|p|exp{−i(p, y)− σ|p|−α}dp. (7.10)

Then if |y|
σ1/α ≤ K

|φ(y, α, β, σ)| ≤ cσ−β/αg(y, α, σ) (7.11)

and if |y|
σ1/α > K

|φ(y, α, β, σ)| ≤ cσ−1|y|α−βg(y, α, σ), (7.12)

where g is as in (7.1) and (3.26).

Definition 11. For an open set Ω ⊂ Rn a fractional Sobolev space Hp,1(Ω) is defined as

Hp,1(Ω) :=

{
u ∈ L1(Ω) :

|u(x)− u(y)|
|x− y|n+p

∈ L1(Ω× Ω)

}
(7.13)

with the norm

||u||Hp,1(Ω) :=

∫
Ω
|u|dx+

∫
Ω

∫
Ω

|u(x)− u(y)|
|x− y|n+p

dxdy. (7.14)
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