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Abstract

This thesis comprises of five chapters. The first chapter gives a brief introduc-

tion on the existing literature about the optimal trading order execution problem,

the concept of limit order book, market impact models and their underlying market

microstructure. We will also provide some brief review on the regularity problem

of market impact model and the resilience effect of the LOB market. Some no-

tions about the limit order book trading will also be introduced in this chapter.

The second chapter, a game theoretical model given by Rosu [74] is introduced and

the same side and opposite side resilience are reinterpreted for this model. The

solution structure of a Markov equilibrium of this model is obtained for the same

side resilience by providing a rigourous mathematical analysis. We also provide a

sufficient condition for the existence of real-valued solutions under this situation.

We also reproduce the results in Rosu [74] about the opposite side resilience in

this LOB model. In the third chapter, we extend the LOB market impact model

in Obizhaeva and Wang [65] by introducing two sides resilience and a general LOB

shape function. Two existing LOB market impact models are then replicated by our

extended model, allowing the cross-impact resilience rate going to zero and infinity

respectively. In the last two chapters, we conduct two applications of our extended

market impact model. These two applications are able to help us study the optimal

execution problem and the market regularity issues. We find out that the minimum

cost of the zero-spread LOB model is a lower bound of the minimum cost of our

extended market impact LOB model and those models with zero bid-ask spread

have weaker regularity conditions than those with a non-zero bid-ask spread.
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Chapter 1

Introduction

In section 1.1, we will briefly review the existing literature about the optimal

trading order execution problem, the concept of limit order book (LOB), market

impact models and the market microstructure underlying these models. Moreover,

we will also provide some brief review on the regularity problem of market impact

model and the resilience effect of the LOB market. Since our research is conducted

on the limit order book structure, some notions about the order book trading will

be introduced in section 1.2. These notions are used throughout this thesis. Then

in section 1.3, we would like to present the motivation of this research. Finally, in

section ??, we will give the structure of this thesis and our main contributions.

1.1 Literature review

1.1.1 Optimal trading order execution problem

With or without private information, there are some cases in which a trader

needs to liquidate a large amount of some asset. As proposed in Brunnermeier and

Pedersen [19] some examples are hedge funds with margin calls, traders who uses

portfolio insurance, stop loss options, or other risk management strategies, a short
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seller who may need to respond to the price increases1. Because of the limited

liquidity in the financial market, trading a large amount of any asset has an impact

on its prices, and usually this price shift is against the trader’s interest. This trading

incurred price shift is called the price impact.

The basic observation is that the costs of the price impact of a large trade

can be reduced significantly by splitting the large trade into a sequence of smaller

trades. To this end, we adopt the view of Bertsimas and Lo [13] and Gatheral

[33] about the order execution process. They suggested that the trading process

is separated into three layers: The first layer is called macro-trader and this layer

decides about the timing of trading and about the order sizes; The second layer

called micro-trader. Given a slice of the order placed by the macro-trader, the

second layer decides whether to place market orders or limit orders. If a limit order

is placed, at which price to trade; The third layer is the smart order router. Here a

decision is made about which trading venue to send the orders to.

Although it is desirable to have an integrable model for all layers of the

trading process, such a model might be overly complex as suggested in Bertsimas and

Lo [13]. The market impact models we consider in this thesis are models developed

for solving the first layer optimal execution problem. We will review the market

impact models in detail in the section 1.1.2. Apart from the market impact models,

there are other first layer related studies focusing on optimal trading times, such as

Kharroubi and Pham [51] and Lehalle et al. [59], or the studies focusing on order

split between transparent and hidden, such as Buti and Rindi [20], Cebiroǧlu and

Horst [22], Esser and Mönch [29] and Kratz and Schöneborn [55]. The second layer

execution usually involves limit order placement, such as Avellaneda and Stoikov

[10], Bayraktar and Ludkovski [11], Guéant and Lehalle [41], Guéant et al. [42],

Harris [45], Hollifield et al. [47], Kovaleva and Iori [54]. There is also some research

which combines both the first and the second layer, for example Guibaud and Pham

1
As stated in Madhavan [62], this is the case that ‘issues of how investors trade are decoupled

from issues of why they trade’. Even though an ideal framework should combine the optimal trading

strategy problem and dynamic portfolio problem, it is very helpful to have a full understanding on

the trading part itself at first.

2



[43], Guilbaud and Pham [44], Huitema [50], Naujokat and Westray [64]. For the

layer of smart order router, one can refer to Cont and Kukanov [24] and Laruelle

et al. [57] and the references therein.

1.1.2 The market microstructure underlying market impact models

The market microstructure endogenously explain the formation of the price

impact, and the motivation of trading activities, etc. To build a both mathematically

tractable and well rounded market impact model, it is desirable to gain a better

understanding of the endogenous market microstructure that underlies the market

impact models. Some recent books and articles, such as Biais et al. [15], Lehalle

[58], Madhavan [62], O’Hara [66], summarised the market microstructure literature

from the aspects of theoretical, empirical and experimental study.

In a market impact model, the relation between the transacted order volume

and the consequent price shift is described by the price impact function. The price

impact function is an abstract microstructure description of the interactions between

traders and the liquidity in the market. In other words, it does not model the

dynamics of price impact via interactions of trades at a microscopic level as in a

market microstructure model, but emphasise on a direct relation between a large

order and the price dynamics. As in Alfonsi et al. [5], Almgren and Chriss [9],

Gatheral [32] and Obizhaeva and Wang [65], the asset price in a market impact

model is in the form of

St = S
0
t + Price impact function

where S
0 is an exogenously given process to describe the asset price when it is

unaffected by the price impact.

Both the unaffected price process and the price impact function are required

to be specified in a market impact model. As suggested in Gatheral and Schied [35]

and Schied and Slynko [78], there are two generations of market impact models. The

3



first generation market impact models distinguish between two price impact compo-

nents, namely the temporary impact and permanent impact. The second generation

market impact models is based on the subsequently decay of price impact, which

is called the transient impact. In the rest of this section, we will briefly review the

market microstructure that underline the first and the second generations of market

impact models.

The first generation market impact models and dealer market

Madhavan [62] attributes the cause of temporary and permanent price impact

to three types of costs when one trades in a dealer market. On a dealer market,

liquidity is provided by a specialist who is contractually obliged to always stand

ready to buy at quoted bid and sell at quoted ask. Price is determined via the

specialist’s auction and the trader’s bidding.

The temporary price impact reflects the transitory cost of demanding liq-

uidity, such as order handling fee in Roll [72] and inventory cost in Stoll [81]. The

temporary price impact only affects the individual transaction that has triggered it.

The permanent price impact reflects the specialist’s price update based the

information transmitted to the market by the buy/sell order flows. Thus the perma-

nent price impact is due to the costs of being adversely selected by informed traders

as discussed in Easley and O’Hara [28], Glosten and Milgrom [38], Kyle [56]. The

permanent impact does not only influence the price of the current trade but also

the prices of all subsequent trades.

This kind of market impact models are first introduced in Bertsimas and Lo

[13], Almgren and Chriss [9] and Almgren [8]. The framework of Almgren and Chriss

[9] has now been a basis for practical applications used in the financial industry.

Some variants of the Almgren-Chriss framework are:

1. Adapting the optimal execution strategy for various risk criteria, such as the

mean-variance optimisation utilised in Almgren [8] and Huberman and Stanzl

4



[49] and the expected utility maximisation applied in Schied et al. [79] and

Schied and Schöneborn [77].

2. Introducing the optimal adaptive strategy, for example, Lorenz and Almgren

[61];

3. Applying more general unaffected price processes, other than the Bachelier

model, such as the geometric Brownian motion applied in the work of Schied

[76] and Gatheral and Schied [34].

The second generation market impact models and LOB market

On a LOB market, there is no designated liquidity provider. Liquidity is

offered in a self-organised way. In other words, any agent can choose, at any instant

of time, to either provide liquidity or consume liquidity. A satisfactory LOB mi-

crostructure model should be able to include the interactions of different traders and

explain how the bid and ask prices are affected by the interactions. Particularly in

this thesis, it is desirable to reflect the same side and opposite side resilience effect

in a LOB model.

We list some survey papers focusing on the market microstructure of the

LOB. They are Bouchaud et al. [18], Gould et al. [40] and Parlour and Seppi [68].

Following the view of Abergel and Jedidi [1] on the classification of LOB microstruc-

ture models, two research methods could be outlined. The first method is a game

theory approach, such as Foucault et al. [30], Goettler and Rajan [39], Parlour [67],

Rosu [74] and Rosu [75]. Among these, the effect of asymmetric information on LOB

trading activities is considered in Bloomfield et al. [16], Goettler and Rajan [39],

Harris [45] and Rosu [75]. In such a trading game, traders are assumed to arrive at

the LOB market randomly and trade strategically by endogenously choosing their

trading decisions as solutions to individual utility maximisation problems. The LOB

dynamics is then the collections of equilibrium strategies of all active traders.

The other method focuses on modelling the LOB microstructure in the zero-

5



intelligence models, such as Abergel and Jedidi [1], Cont and Larrard [25], Cont and

Larrard [25], Smith et al. [80] and Toke [82]. Zero-intelligence means the focus of this

approach is more on reproducing the mechanics properties of the order book without

assuming the strategic interactions between agents. The arrivals of different order

flows are assumed to be independently and identically distributed point processes.

More empirical studies suggest that price impact is transient, but is not sep-

arated into two parts, namely the permanent price impact and temporary price

impact. In other words, an order creates some immediate price impact that subse-

quently decays over time. Bouchaud et al. [17], Bouchaud et al. [18], Potters and

Bouchaud [70], Weber and Rosenow [85], Wyart et al. [87] are among those empiri-

cal LOB studies which support this transient decay idea. Obizhaeva and Wang [65]

adopted the transient price impact with the same side resilience into the market

impact models. In their research, the LOB is defined via a block shaped and time

independent function. The same side resilience factor was defined via a determinis-

tic exponential function. In recent years, there are some research extended the work

of Obizhaeva and Wang [65]:

1. In Gatheral et al. [37] and Alfonsi et al. [6], the same side resilience factor

follows other deterministic functions.

2. In Alfonsi et al. [4], Alfonsi and Schied [3], Predoiu et al. [71] and Alfonsi

et al. [5], the shape function of the LOB is also defined as a time independent

function but not in block shape.

3. In Alfonsi and Acevdeo [2] and Fruth et al. [31], the LOB shape function is

assumed to be a block shaped function but not independent with time.

4. In Fruth et al. [31] and Weiss [86], the same side resilience factor is considered

to be stochastic.

5. More general unaffected price process is applied in Lorenz and Schied [60].

6



1.1.3 Regularity of market impact models

The optimisation problem brings us the issue of regularity of a market im-

pact model. A minimal regularity condition is the existence of admissible optimal

execution strategy. This existence of an optimal solution is guaranteed by the ab-

sence of the price manipulation strategy (PMS) and the positivity of liquidation cost

(PLC). Moreover, the resulting optimal strategies should be well-behaved. For in-

stance, we do not want to follow a trading strategy that strongly oscillates between

buy and sell since there is usually additional fees for trading market order. This

oscillation strategy can be excluded by the absence of the transaction-triggered price

manipulation (TTPM) in a market impact model. The notions of these irregularity

conditions of market impact model will be introduced in section 3.3.

However, we should note that these arbitrage opportunities in market im-

pact models are different from the arbitrage in derivative pricing models and are

also distinguished from the arbitrage opportunities generated by asymmetric infor-

mation as discussed in Allen and Gorton [7]. So even a martingale assumption on

the unaffected price process will not exclude these irregularities in market impact

models.

Huberman and Stanzl [48] initiate the research on arbitrage opportunity in

market impact models and link this to the arbitrage in derivative pricing framework

via so called quasi-arbitrage. They find that the linearity of the permanent price

impact function is a necessary condition for the absence of the PMS. Their results

are further confirmed in transient models of Gatheral [32] and Gatheral et al. [36].

Alfonsi et al. [6] and Gatheral et al. [37] both research on linear transient LOB model

with general decay factor. They find out a necessary condition on the decay factor for

absence of both PMS and TTPM. Alfonsi and Schied [3] and Klöck [52] represent two

extensions of the linear transient impact model. Alfonsi and Schied [3] generalise

their results with the non-linear price impact function. Klöck [52] introduce the

effect of stochastic linear price impact into market irregularity investigation and

propose the notion of PLC.

7



1.1.4 The resilience of the market impact

In this section, we provide an overview of some theoretical and empirical

studies on the order book resilience. In market impact modelling framework, the

resilience means the price impact induced by a large trade can be reduced if extra

time is given for the market to recover. The resiliency in a LOB is quantified in

three respects:

1. Magnitude, i.e. how much will the best bid or ask price recover.

2. Speed, i.e. how quick will the best or ask price recover.

3. Direction, i.e. same side resilience or opposite side resilience2.

In particular, we will have a discussion on the same side and opposite side resilience

after a trade incurs price impact.

Theoretical studies on the resilience of the market impact

The resilience study in Bouchaud et al. [17] and Bouchaud et al. [18] is

conducted via analysing the diffusive behaviour of mid-price (average of the best

bid price and the best ask price) process. They claim that the market observed

mean-reverting mid-price process holds if and only if the price impact decays slowly.

They offer the rational behind price mean-reverting as: the liquidity provider needs

to close their position at a later time without trading at a much higher price. So

the liquidity provider needs to mean-revert their limit order prices after a large

order. The recovery direction is not clarified and their view about the time scale of

resilience is that the mean reversion cannot take place too quickly.

Via a study on high frequency (HF) trader’s optimal market making (i.e.

supplying liquidity with limit orders) strategy, Cartea et al. [21] offer evidence on

opposite resilience in a LOB market on short time scale. The optimal solution

implies that the HF trader should correct the market making strategy in order to

2
See section 1.2 for a detailed discussion
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mitigate the risk of being adverse selected, and exploit the short-term mid-price

deviation via directional strategy. In other words, after a large market buy order,

the HF trader posts further away from the mid-price on the ask side (avoid being

adversely selected) and puts closer to the mid-price on the bid side (exploiting the

short-term deviation by directional strategy). That is to say, HF market maker’s

directional strategy supports the opposite side resiliency of the order book on short

time scale.

Foucault et al. [30] applied a game theory to study continuous-time order

submission problem. To measure the resiliency they use two definitions, namely the

reservation spread and the competitive spread. Reservation spread is the smallest

price improvement by which a limit order trader could make a non-negative profit.

Competitive spread is the patient traders’ reservation spread. Resiliency is then

measured as the probability that the spread reverts to ‘competitive spread’ before

the next transaction. They find out that when traders have the same reservation

spread, the resilience is the fastest and when traders are heterogeneous, the more

the patient traders there are, the faster the price impact decays. There is no clear

results about the resiliency direction.

Empirical studies on resilience of the market impact

Ponzi et al. [69] and Tóth et al. [83] are two empirical studies via event study

based on an order book. They both observe a power lay decay of price impact. In

other words, new limit orders are not placed simply in a way that immediately

reverts the spread back to its original value, but they are sequentially placed close

to the current best price and this leads to a slow decay of the spread. However, the

study of Ponzi et al. [69] does not distinguish the resilience between the same side

and the opposite side recovery. Tóth et al. [83] separately measure the number of

queuing orders on each side of the order book before and after a large market order.

They show for price drop on the bid side the number of queuing limit buy orders

decreases to about half of the usual value. At the same time on the ask side the
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number of queuing limit sell orders increases and even stays very high for a long time

after the event. That is just the two-side resilience effect which will be explained in

more detail in next section.

Another two important empirical study on order book resilience are: Biais

et al. [14] and Degryse et al. [27]. Biais et al. [14] find new in-spread limit orders

on the ask (bid) side of the market are particularly frequent after large market sell

(market buy) orders. This empirical observation is an evidence of opposite side

resilience. They attribute the co-movement effect to information, in the sense that

part of the resilience in the same side could be mechanical, but the resilience in the

opposite side is believed to be due to the information arising from the shift in the

expected fundamental value. Degryse et al. [27] extend the work of Biais et al. [14]

by studying not only the next incoming limit order after the large market order but

also the sequential orders. They conduct a descriptive event study and they observe

that for small stocks the best ask price jumps up after a large market buy order,

while the best bid price increases as well but without a jump. So does after a large

market sell order. The resilience of two sides of the order book are different to the

same large market order..

1.2 LOB and its execution rules

In most of the published literature on LOB, the following terminology has

been adopted. They will be widely used in this thesis too.

Market order and limit order

A limit order is an order to buy or sell some specified quantity of an asset

at a price specified by the trader. It is not executed immediately, instead it enters

the queue of outstanding limit orders. A market order of a given size is an order

that results in an immediate execution at the best available price upon submission.

Thus for market order traders, they only specify the amount to buy or sell without
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explicitly specifying a trading price. Market order is executed against the existing

limit orders. This is the interaction between market and limit orders.

Large order and child order

According to an empirical paper Biais et al. [14], trades are distinguished

by trading direction (buy or sell) and aggressiveness (patience for order execution).

The most aggressive order is placed via a market order to trade a large quantity of

shares which usually demand the execution of more limit orders than that available

at the best price.

In market impact models, a large order corresponds the most aggressive order

in market. In particular, it specifies a large amount of shares which is needed to

be split into smaller orders, so that the adverse price impact incurred by it can be

reduced. This sequential smaller order is called the child order.

Bid side and ask side

A LOB for a single asset is the collection of all active buy and sell limit orders

with the corresponding prices and volumes information. We call the collection of

limit buy orders the bid side of the LOB and the collection of limit sell orders the

ask side of the LOB. A snapshot of an order book is shown in Figure 1.1.

Order execution rules

Execution of outstanding limit orders by market orders is settled according

to a set of priority rules. Prevailing ones are price-time rule and pro-rata rule.

In this thesis, it is assumed that the LOB follows the price-time priority

rule. Price-time priority LOB markets give priority to orders submitted at more

competitive prices and to displayed orders over hidden orders at the same price level.

Orders with the same display status and submission price are usually matched on a
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Figure 1.1: A LOB Snapshot of AMZN on June 21, 2012.

first-come-first-serve basis. As a result, the price-time priority order execution rules

are:

1. When a market buy order arrives, limit sell orders in the ask side of the

LOB are executed, starting from the orders with the lowest price to the more

expensive ones until the total number of shares ordered is reached.

2. When a market sell order arrives, limit buy orders in the bid side of the LOB

are executed, starting from the most expensive orders to the less expensive

ones until the total number of shares ordered is reached.

Discrete price grids

In a real LOB, orders are placed at a pre-fixed discrete price grids. The grid

step is the smallest interval between two prices and it is called the tick size. The

tick sizes are different between the exchanges and trading assets.
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LOB dynamics and order flow

The order book evolves over time according to the arrival of new orders. The

price is therefore the result of the interactions between the order book and order

flow. The dynamics of the LOB would be mainly affected by the following four order

flow processes, namely market orders, limit orders placed in the bid-ask spread, limit

orders placed at prices worse than the best price and cancellation of limit orders.

Same side resilience and opposite side resilience

The same side resilience describes the following market situations:

1. After a market buy order, the ask side of the order book will be recovering to

its original status.

2. After a market sell order, the bid side of the order book will be recovering to

its original status.

Likewise, the opposite side resilience describes the following market situa-

tions:

1. After a market buy order, the bid side of the order book will be recovering to

its original status.

2. After a market sell order, the ask side of the order book will be recovering to

its original status.

In terms of order flow, the same side resilience means that:

1. After the arrival of a market buy order, there are new incoming limit sell

orders placed within the current bid-ask spread.

2. After the arrival of a market sell order, there are new incoming limit buy

orders placed within the current bid-ask spread.

Likewise, in terms of order flow, the opposite side resilience means that:
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1. After the arrival of a market buy order, there are new incoming limit buy

orders placed within the current bid-ask spread.

2. After the arrival of a market sell order, there are new incoming limit sell orders

placed within the current bid-ask spread.

Two sides resilience means that, after the arrival of any market order, there are new

incoming limit buy and sell orders placed within the current bid-ask spread.

1.3 Motivations

As demonstrated in the section 1.1.4, empirical evidences of the same side

and opposite side resilience of the market impact are discovered in trading actives.

We believe that these resilience effects are important academically and practically.

But because of the complexity of these features, they are still not well researched. In

Rosu [74], a microstructure LOB model is provided and to the best of our knowledge,

among other LOB models, this model can theoretically replicate the effect of two-

side market impact resilience due to its mathematical tractability.

Different from the microstructure LOB model provided by Rosu [74], a mar-

ket impact model based on the LOB is introduced by Obizhaeva and Wang [65]. As

reviewed in the last part of the section 1.1.2, the work of Obizhaeva and Wang [65]

is very popular in recent years and there are various modifications or generalisations

conducted by other academics. However, all these studies did not consider two sides

resilience. Usually, they simplify their models by zero-spread assumption or focusing

on only one-side of the order book.

This thesis fills a gap in literature by providing a mathematically rigourous

proof for the existence of the same side and the opposite side resilience in the

microstructure LOB model of Rosu [74]. Moreover, to the best of our knowledge,

there is no published evidence which examines the effects of the two sides resilience

in a market impact model. As a consequence, this thesis also fills another gap that
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considering two sides resilience effects with a non-zero bid-ask spread under the

Obizhaeva and Wang [65] market impact model.

After providing a generalised Obizhaeva andWang [65] market impact model,

which we call a cross-impact LOB model, research on the optimal execution problem

and the market regularity issues under this model is conducted for two reasons.

Firstly, Klöck [52] and Fruth et al. [31] claimed, but did not prove, that the market

impact models with zero bid-ask spread has weaker regularity conditions than the

models with a non-zero bid-ask spread. So, we would like to verify this argument

in our cross-impact LOB model. Secondly, we want to investigate the effects of two

sides resilience on the first layer optimal execution strategy, which has long been

neglected in the literature.
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Chapter 2

Resilience in LOB

microstructure model

In this chapter, our aim is to show the presence of same side resilience and

opposite side resilience in an order book market. We base our analysis on a game

theoretical model given by Rosu [74]. Compared to other game theoretical models

summarised in Section 1.1.2, there are several reasons to work on the model of

Rosu [74]. First, it allows for a flexible spread of the order book and for explicit

measurement of resiliency with enough mathematical tractability, compared to the

models of Parlour [67], Foucault et al. [30] and Goettler and Rajan [39]. Second, the

direction of the resilience is able to be reflected and modelled in this model, while

it is assumed a fixed one tick size spread in Parlour [67]. Third, the motivation

of trading is exogenous to the model, namely the effect of asymmetric information

is not modelled. Rosu [75] provides an alternative model in which the information

effect is considered. Fourth, it includes the execution time risk of limit orders into

the model formulation, as in Foucault et al. [30].

In Section 2.1 we summarise the model of Rosu [74]. It starts by reviewing

the main characteristics of this continuous time trading game proposed in Rosu [74].

We then introduce the construction of the rigid, competitive Markovian equilibrium
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in the one-side book case, since this case is quite intuitive and admits closed-from

equilibrium strategies. It turns out that the properties of one-side case can be easily

extended to the two-side case.

We present our main results in Section 2.2. In Section 2.2.1 we reinterpret

the same side resilience and opposite side resilience by notions of Rosu [74]’s trading

model. The same side resilience is reflected by the positivity of the difference between

same side temporary price impact and permanent price impact caused by a same

side market order. The opposite side resilience is measured by the positivity of the

non-execution side permanent price impact. This is an essential step since the price

adjustment in this continuous time trading game is taking place instantaneously,

while the transient resilience is a time-dependent feature of a LOB. Section 2.2.2

deals with the solutions of the Markov equilibrium obtained in the one-side order

book case. We present the solution structure in our Proposition 2.2.2 which is

distinguished from the results of Rosu [74]. In Section 2.2.3, we provide a rigourous

proof of the same side resilience by looking at the asymptotic behaviour of the

price impact functions under the assumption of fast decay arrival rates. We also

construct a counterexample of the same side resilient in Proposition 2.2.4 where the

fast decaying assumption did not hold. Section 2.2.4 reproduce the results in Rosu

[74] about the opposite side resilience in this LOB model.

2.1 The model description

2.1.1 Characteristics of the LOB trading game

The limit order book is of one asset with no dividend. The game is happening

on time interval [0,∞), and trading takes place in continuous time1. The tick size

of price grid is zero, i.e. the prices can take any real value. We take the reason to

trade for all traders to be exogenous to the model. All information about the order

1
Since there is no universally accepted model of continuous time stochastic game and related

definitions, we follow Rosu [74] that adopts and extends the continuous time framework of Bergin

and Macleod [12] and Rosu [73].
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book and trader strategy are publicly available. Traders can choose between market

order and limit order. The execution of limit orders is subject to the price-time

priority rule as discussed in the Section 1.2. The limit order can be cancelled or

revised at will with no cost. After order execution, the agents exit the order book

forever. There is no delay in trading, in the sense that submitting or execution

happens instantaneously.

The players form a countable set. They are distinguished by the patience

and trading directions of buy or sell. More precisely, there are four types of traders

considered here: patient buyer, patient seller, impatient buyer, and impatient seller.

Each player’s choice of buy or sell, patience and amount of trading orders are ex-

ogenously given outside of the model and stay the same during the trading game.

For simplicity, it is assumed that the impatient traders only submit market order,

which is automatically executed against existing limit orders. Patient traders choose

strategically between market and limit order and the price to submit if a limit order

is used. The price of a limit sell order, PS , and the price of a limit buy order, PB,

is constrained to lie between [P , P ]. Moreover, it is assumed that there is an infinite

supply (demand) at price P (P ) which is provided exogenously. Patient traders ar-

rive with only one unit to trade. Impatient traders can submit up to k-unit market

orders for some constant k ≥ 1.

The arrivals of traders at the order book are modelled according to indepen-

dent Poisson processes with constant, exogenous intensity rates. Denote the arrival

rates for different type of traders as following:






For i ≤ k, µi > 0 is the arrival rate of i-unit impatient buyer. If i > k, µi = 0;

For i ≤ k, λi > 0 is the arrival rate of i-unit impatient seller. If i > k, λi = 0;

µ > 0, arrival rate of patient seller;

λ > 0, arrival rate of patient buyer.

The utility function is a trade-off between higher execution price and lower wait-
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ing costs. More specifically, the utility function for market order traders is the

instantaneous best prices at the submitting time, since they do not need to wait for

execution. The expected utility functions for limit order seller and buyer at time

t ∈ [0,∞) are defined respectively as

f(PS
, t) := Et[P

S − r(τ − t)]

and

g(PB
, t) := −Et[−P

B − r(τ − t)],

where τ > t is the random execution time and r is the waiting cost discount factor

for patient agents. That is, limit order traders bear the execution time risk. There

are a few things we should note about these utility functions. First, −g represents

the expected utility of a buyer since the higher utility is obtained for a buyer by

lowering the price to pay. The sign ‘−’ was moved to the right hand side so that it

is convenient to maximise both f and g for buyer and seller at any time. Second,

by assuming a linear relationship between the execution price and the discounted

waiting cost, there is possibility that the utility becomes negative. One could instead

consider an alternative form of utility functions

f(PS
, t) := E

�
S
Pe

−r(τ−t)
�

and

f(PB
, t) := E

�
P

B
e
−r(τ−t)

�
.

However, the model is already too complicated to add more complexity from the

utility function. To this end, we can always choose the waiting cost discount factor r

such that the utility is positive. In fact, we will see in the sequel that in equilibrium

the utility has a positive constant lower bound.

The players can respond immediately in this continuous time trading setting.

In other words, the trader will keep the current order as long as the other agents

stays unchanged, but if some other agents deviate from the current state at some
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time t, this trader will immediately undercut her order price at t.

2.1.2 One-side order book game

In this section, we will consider firstly one-side of the order book. Without

loss of generality, we focus on the ask side of a LOB. For the ask side, the best bid

price is the reservation value of the limit order sellers, as they can always submit a

market sell order at the best bid price and exit the trading. So we set the lowest

price P to be the best bid price for sellers.

For description simplicity, we set Σ := lim
k→∞

�k
i=1 µi and introduce the fol-

lowing notations:

m: the number of limit order sellers in the order book;

am(i): the ask price of the ith limit sell order counted from the best ask price, in

an order book with m limit order sellers with i = 1, ...,m;

am: the best ask price for a m limit order seller order book.

Firstly, we review the construction of the competitive Markovian equilibrium

in Rosu [74]. At the beginning, the order book is empty, i.e. m = 0. At some time t

patient seller 1 comes and places a limit order at the maximum price level a1 = P .

This is required by the Nash equilibrium since P is the highest price as long as

seller 1 is the only one in the order book. Suppose then a second patient seller 2

arrives. If immediate response is not allowed, seller 2 would secure earlier execution

by placing a limit order at a2 = a1− δ for some very small δ > 0. The limit order of

seller 2 gets executed before that of seller 1 with only infinitesimal price sacrifice, the

expected utility of seller 2 is strictly higher than that of seller 1. However, seller 1 is

allowed to undercut his limit order instantaneously to a1−2δ. So a price war would

follow. As the limit order price gets undercut, the utility for both of them decreases.

Therefore, in equilibrium, seller 2 should submit a limit order at a2 < a1 = P such

that both sellers have the same expected utility.
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The same idea works for m-seller order book as well. In equilibrium, the

sellers have their limit orders placed at different prices but get the same expected

utility; otherwise, they would be undercut by each other. The same-utility property

reflects the assumption that the seller with a higher limit order price needs to wait

longer. As a result, we could show that in equilibrium the utility of limit order seller

depends only on the number of active sellers in the book m. Thereafter, we denote

the seller’s expected utility by fm. Since the arrival of patient sellers is modelled by

exogenously given independent Poisson processes, the state variable m is exogenous

and follows a Markov process. According to the definition of Markov strategy in

Maskin and Tirole [63], the state m utility function fm and the trading strategy

form a Markovian perfect equilibrium.

Apart from determining the price strategies in equilibrium, we also need to

know how limit sell order traders revise their orders when someone in the book

deviates. To this end, Rosu [74] applied the notion of competitive2 equilibrium,

in which a local deviation from one trader can be stopped by any other trader’s

immediate undercutting, assuming that the rest of the equilibrium does not change.

The features of large amount trader and instantaneous response make the choice of

competitive equilibrium natural3.

Then we consider some properties of the utility function fm, i.e. the boundary

conditions of fm. We should note that the state variable m is the only state member

and must be finite. Suppose m → ∞, the expected execution time for the top seller,

i.e. the seller with the highest ask price, would be E[τ ] → ∞. Hence the top seller’s

expected utility is E[am(m)− r(τ − t)] → −∞. Instead, the top seller could at least

improve her trading by submitting a market order with price P which gives him the

reservation utility.

2
An example of non-competitive equilibrium is given in the NASDAQ dealer market study by

Christie and Schults [23].
3
By Rosu [73], an Markovian equilibrium is competitive if a restriction of the strategies on time

interval (t, t+ δ) is still a Markov equilibrium. This restriction can be made because of the Markov

condition with which pay-off related history is reduced to the limit of outcomes at a single time

point.
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In addition, from the economic point of view, we obtain that the expected

utility function fm decreases with m and the best ask price am is decreasing with m

(since more limit order sellers incur longer waiting time). Meanwhile, the minimum

value of a limit sell order should be no less than the reservation value P . In other

words, when the utility of waiting till execution is less than the utility of submitting

a market sell order at P (recall that P is defined to be the best bid price), some

seller would just cancel their limit orders and place market orders at P . Then

it is reasonable to define a maximum capacity M := max{m : fm ≥ P}4 and a

mixed strategy in which limit order trader randomly switches to a market order

with Poisson(ν). There are four types of mixed strategies that could happen when

there are M sellers. These are introduced in Proposition 12 and Corollary 2 in

Rosu [74]. In particular, the notion of rigid equilibrium is constructed here. Rigid

equilibrium means that if some agents have mixed strategies, mixing is done only

by the agents with the most competitive limit orders (highest bid or lowest ask).

Then, we derive a recursive system of utility functions fm to compute the

equilibrium strategy. For a book of m < M sellers in equilibrium, the market can

go to: state m+1 if a new limit order seller arrives with probability µ
µ+Σ , or to state

m− i with i = 1, ..., k if an i-unit market order buyer arrives with probability µi
µ+Σ ,

where Σ =
�

µi. Apart from this, patient sellers lost utility in a way proportional

to expected waiting time with discount factor r. One obtains the formula

fm =
µ

µ+ Σ
fm+1 +

k�

i=1

µi

µ+ Σ
fm−i −

r

µ+ Σ
.

Furthermore, we construct the individual limit sell order prices am(i) for i =

1, . . . ,min{m, k}. With rate µi, an impatient buyer arrives and places an i unit

market order. The ith seller will receives am(i). The non-executed sellers will have

4
If fM < P , some of the sellers could always improve their utility by submitting a market order

directly at price P and get a better utility P > fM . This is a contradiction with the optimisation

of each trading strategy. If fM > P , let us consider what happens in state M + 1. If one agent

accepted h = P at some time and exited the game, the utility of the other agents would be fM > P .

The utility for the agent who accepts h is lower than fM . So no seller would accept h and everybody

waits. But this is in contradiction with M being the largest state in which agents wait.
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the same utility which is equal to fm−i with probability µi
Σ . Since all sellers must

have the same expected utility in equilibrium, the ith price in a m-seller order book

am(i) must be equal to the expectation of all possible utilities, i.e.

am(i) =

�
j≥i µjfm−j�

j≥i µj
. (2.1.1)

Define by convention that fi = P for i ≤ 0.5

When the order book reaches its maximum capacity M , the arrival of a new

patient seller does not affect the state of the order book since in equilibrium the new

arrival will immediately place a market order at price P and exit. With probability

µi
ν+Σ an i-unit market order buyer arrives, the system would go to state M − i. Or

with probability ν
ν+Σ the bottom seller, i.e. the seller with the lowest ask price,

switches to a market order at P and exits by the rule of rigid equilibrium. Similarly

one obtains a formula for state M utility, which is

fM =
ν

ν + Σ
fM−1 +

k�

i=1

µi

ν + Σ
fM−i −

r

ν + Σ
.

Theorem 2 in Rosu [74] provides the strategy in equilibrium: if m = 1, then place a

limit order at a1(1) = P ; If m = 2, ...,M−1, look at the bottom k levels (or at all m

levels if m < k), which are am(1), ..., am(k). If any of them is not occupied, occupy

it. Anything above am(k) does not matter; if m = M , the strategy is the same as

for m = 2, ...,M − 1, except for the bottom seller at aM (1), who exits (by placing

a market order at P ) after the first arrival in a Poisson process with intensity ν; If

m > M , then immediately place a market order at P . The equilibrium is unique

in the class of rigid equilibria, in the sense that any other rigid equilibrium leads to

the same evolution of the state variables.
5
This can be seen by equation (2.1.1) and a1 = P . It is technically required that a1 = a1(1) =�

j≥1 µjfm−j�
j≥1 µj

= P , although for i ≤ 0 fi has no practical meaning.
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2.1.3 Two-side order book game

Now we are ready to review the two-side case in Rosu [74], since the derivation

of the opposite-side resilience depends on the knowledge of the best prices am,n and

bm,n. Similarly as in the one-side case, we will familiarize ourselves with the possible

trading activities, the set of state variables (m,n) where m is the number of patient

sellers and n the number of patient buyers in the book, and the recursive system of

utility functions fm,n and gm,n. Thereafter, if given a solution of the recursive system

of f , g, according to Definition 4 in Rosu [74] one can then obtain the formulas for

best prices am,n and bm,n.

For simplicity in the two-side game, we assume that the impatient traders

can only submit one-unit order, i.e. µi = 0 and λi = 0 if i > 1, and will denote by

m : the number of limit order sellers in the order book;

n: the number of limit order buyers in the order book;

am,n: the best ask price in a m limit sell and n limit buy order book;

bm,n: the best bid price in a m limit sell and n limit buy order book.

For illustration, let us see the trading activities for example at state (1, 0).

The market may go to:

(0, 0) if either an impatient buyer arrives after time T1 ∼ exp(µ1) and buy with a

market order at price a1,0 = P , since a1,0 = P is the highest possible sell price

to achieve for the patient seller in the range [P , P ]; or after some random time

T2 ∼ exp(λ) a patient buyer arrives and submits a limit buy order at price

h. The existing patient seller accepts to trade at h if the expected utility

of waiting till next arrival of a new agent is less than h according to the

Proposition 12 in Rosu [74].

(1, 1) if after some random time T2 ∼ exp(λ) a patient buyer arrives and submits a

limit buy order at price h, but the existing seller does not accept h. Then the
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patient buyer stays and behaves as a monopolist at the bid side by changing

bid price from h to a lowest buy price at B immediately.

(2, 0) if another impatient seller arrives after time T3 ∼ exp(λ1).

As in the one-side case, if an order book with m limit order sellers and n

limit order buyers is in equilibrium, all the m sellers must have the same expected

utility denoted by fm,n, and all the n buyers must have the same (minus) expected

utility denoted by gm,n. It is defined that the state region Ω as the set of all states

(m,n) where in equilibrium agents wait in expectation for some positive time. The

state variable m,n are finite because of the same reason as stated in the one-side

case.

Thereafter, we can summarize all possible trading activities. For any state

(m,n) ∈ Ω, the system can go to the following neighbouring states:

Activity A: leading to (m − 1, n), (1) if an impatient buyer arrives, or (2) if a

patient buyer arrives and place a market order to trade with the bottom limit

order seller at the best ask price am,n, or (3) if a patient seller cancels the limit

order and submits a market order at P when n = 0;

Activity B: leading to (m + 1, n), if a patient seller arrives and submits a limit

order;

Activity C: leading to (m,n − 1), (1) if an impatient seller arrives, or (2) if a

patient seller arrives and place a market order to trade with the top limit

order buyer at the best bid price bm,n, or (3) if a patient buyer cancels the

limit order and places a market order at P when m = 0;

Activity D: leading to (m,n + 1), if a patient buyer arrives and submits a limit

order;

Activity E: leading to (m − 1, n − 1), (1) if the existing bottom patient seller

switches to a limit order at a lower than best ask (bid) price h such that

h = fm,n = gm,n, and the existing top patient buyer immediately accepts it
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by placing a market order; (2) if the existing top patient buyer switches to a

limit order at a higher than best bid price h such that h = fm,n = gm,n, and

the existing bottom patient seller immediately accepts it by placing a market

order.

Now we are ready to define the mixed strategies under this two-side case.

First of all, it is observed from Proposition 12 case (1) that it must be fm,n > gm,n

if all traders prefer to wait in the order book. Otherwise, in state (m,n) with

fm,n < gm,n, the patient sellers could improve their utility by placing a limit order

at some price level h ∈ [fm,n, gm,n] and some patient buyer immediately accepts one

of the offers by placing a market order. This is feasible by noting that −gm,n is

the expected utility for buyers. This reflects the fact that as new patient buyers

and sellers arrive, they place limit orders on both sides until it is better off to trade

immediately rather than wait. In case of state (m,n) with fm,n = gm,n, the order

book is defined to be full and the traders on both sides play a game of attrition. By

Proposition 12 and Corollary 2 in Rosu [74], according to a Poisson process with

intensity νm,n traders on both sides might apply mixed strategies. More specifically,

they are one of the following four cases of mixed strategies: A(3), C(3) and E(1),

E(2). The set of the states (m,n) at which mixed strategies take place is defined as

the boundary γ of Ω.

In the two-side limit order book, some typical points in Ω can be summarised

as in Figure 2.1, in which the big dots are boundary and small dots are the interior

of the state region. Notations in this figure follow those in Rosu [74]. We should

note that Ω does not have to be that specific shape.

For each point (m,n) in the state region, we can get a coupled system for

fm,n and gm,n and corresponding equations for am,n and bm,n. Recall that k is the

maximum units that a market order can trade with and r is the waiting discount

factor. For each boundary point (m,n) ∈ γ, a corresponding number νm,n ≥ 0 is the

intensity of a Poisson process with which some traders will have mixed strategies.

Let ν be the collection of all νm,n. Set Σ1 = µ+ λ+ µ1 + λ1, and Σ2 = µ+ λ+ λ1.
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Type 3a

Figure 2.1: Types of points in the state region Ω cited from Rosu [74]. The points
at boundary are types 3a, 3b, 4a, 4b, 5. The types 0, 1, 2a, 2b are interior points.

Then define the recursive system associated to (Ω, k, ν) by considering the following

set of equations for each state (m,n) ∈ Ω .

First, we consider the interior points at which there are no mixed strategies.

If (m,n) is of type 0, as illustrated in Figure 2.1, we have m = 0 and n = 0. Then

we define by convention f0,0 = P and g0,0 = P . If (m,n) is of type 1, there are

four possible trading activities which can affect the state. They are activities A(1),

C(1), B and D. One obtains the recursive equations

fm,n =
1

Σ1
[fm+1,nµ+ fm,n+1λ+ fm−1,nλ1 + fm,n−1µ1 − r]

and

gm,n =
1

Σ1
[gm+1,nµ+ gm,n+1λ+ gm−1,nλ1 + gm,n−1µ1 + r] .

If (m,n) is of type 2a, this is the state where there is no existing limit order sellers.

As illustrated in Figure 2.1, we have m = 0. Then set f0,n = P . The arrivals of

patient seller, patient buyer and impatient seller might incur respectively activities
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B, D and C(1). One obtains the formula for g0,n as

g0,n =
1

Σ2
[g1,nµ+ g0,n+1λ+ g0,n−1λ1 + r] .

For type 2b, as illustrated in Figure 2.1, we have n = 0. So the recursive equations

under this situation, fm,0 and gm,0, are similar to those for type 2a.

Next, we look at the boundary states when mixed strategies might happen.

If state (m,n) is of type 3a, set by convention f0,n = P . Since the capacity of limit

order buyers reaches its maximum and there is no existing limit order sellers, event

E(2) is not possible but C(3) might happen at price P . The arrivals of new patient

seller will place a limit order and stay in the book, which implies activity B not

A(1). The arrival of new impatient seller incurs activity C(1). Thus, one get the

formula for limit order sellers’ utility

g0,n =
1

µ+ ν0,n + λ1
[g1,nµ+ g0,n−1ν0,n + g0,n−1λ1 + r] .

If (m,n) is of type 4a, existing limit order sellers reach its maximum capacity.

Therefore the limit order sellers will not wait but trade following activity E(1). If a

new patient seller arrives, she will immediately submit a market sell order and trade

with the top limit order buyer at bm,n. This implies that activity C(2) might happen.

If a fnew patient buyer arrives, it is still better to wait than trade immediately for

him. So event D is possible. The trading of impatient buyer and seller will incur

event A(1) and C(1). One obtains the utility functions

fm,n =
1

Σ1 + νm,n
[fm,n−1µ+ fm,n+1λ+ fm−1,nµ1

+ fm,n−1λ1 − r + fm−1,n−1νm,n]

and

gm,n =
1

Σ1 + νm,n
[gm,n−1µ+ gm,n+1λ+ gm−1,nµ1

+ gm,n−1λ1 + r + gm−1,n−1νm,n].
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If (m,n) is of type 5, in the case of impatient traders arrival, they trade as normal

with market orders, which are events B and D. In the case of patient traders arrival,

the order book is in a state where it is better to trade immediately than wait. So

patient traders will either do E(1), E(2) or do A(2), C(2). Thus, one obtains the

formula

fm,n =
1

Σ1 + 2νm,n
[fm,n−1µ+ fm−1,nλ+ fm−1,nµ1

+ fm,n−1λ1 − r + 2fm−1,n−1νm,n]

and

gm,n =
1

Σ1 + 2νm,n
[gm,n−1µ+ gm−1,nλ+ gm−1,nµ1

+ gm,n−1λ1 + r + 2gm−1,n−1νm,n].

We can define am,n and bm,n based on the ideas of the same expected utility

in equilibrium as in the one-side case. More specifically, the one who is getting

executed must have the same expected utility as the other traders in the book on

the same side. They are given by the following formulas:






am,n = fm−1,n and bm,n = gm,n−1, if (m,n) is of type 1;

a0,n = P and b0,n = g0,n−1, if (m,n) is of type 2a;

am,0 = fm−1,0 and bm,0 = P , if (m,n) is of type 2b.

For those points on the boundary, without loss of generality, we will give the

derivation of am,n at state of type 5. There are three situations where the existing

bottom limit order seller gets executed: trade to a market buy order in cases of

A(1), A(2) or do mixed strategy E(1). With probability µ1+λ
µ1+λ+νm,n

, the bottom

seller trades to market buy order and receives am,n, while the other limit order

sellers get fm−1,n. With probability νm,n

µ1+λ+νm,n
, the bottom seller switches to a limit

order at some lower level h, and the top limit order buyer immediately switches to

a market buy order and accepts the offer at h. This price h should be one such
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that for both the bottom seller and top buyer not losing utility than fm,n and gm,n

respectively. So it has to be that h = fm,n = gm,n. All the other sellers now get

utility fm−1,n−1. The same expected utility for all sellers leads to the relationship

am,n(µ1 + λ) + νm,nfm,n = fm−1,n(µ1 + λ) + νm,nfm−1,n−1.

Thereafter, we get the formulas

am,n = fm−1,n +
νm,n

λ+ µ1
(fm−1,n−1 − fm,n)

and

bm,n = gm,n−1 +
νm,n

λ+ µ1
(gm−1,n−1 − gm,n).

The derivations for other types of boundary points are similar.

Theorem 3 in Rosu [74] gives the existence of a rigid, competitive Markovian

equilibrium in the two-side case. We summarise it here: If (m,n) is in the interior

of set Ω, the bottom seller places a limit sell order at am,n, and the top buyer places

a limit buy order at bm,n. If (m,n) ∈ γ, then the strategy is the same as the one

above, except that with the first arrival in a Poisson process with intensity (νm,n)

the bottom seller changes the limit order from am,n to h = fm,n = gm,n, and the

top buyer immediately accepts it via a market buy order; the top buyer would not

accept any higher limit sell order. If (m,n) /∈ Ω and m,n > 0, then the bottom seller

places a limit order at h = fm,n = gm,n and the top buyer immediately accepts it

via a market order. If (m,n) /∈ Ω and n = 0, then the bottom seller places a market

order at P and exists the game.

2.2 Price impact and resilience

We present some of our main contributions in this section, we firstly translate

the definitions of the price impact and the price overshoot in Rosu [74] by notions of

two-side resilience correspondingly. Secondly, for the equilibrium strategies in one-
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side case, we give a rigourous proof of the theorem 2 in Rosu [74] by introducing the

proposition 2.2.2. Thirdly, we provide a rigourous proof for same side resilience in

the Proposition 2.2.3. Finally, we also provide an counterexample of the conjecture

in Rosu [74], which stated that the same side resilience exists without the restriction

on arrival rates µi and µ.

2.2.1 Resilience measurement

Recall that the same side resilience is the decay of the price impact on the

same side of the large market order. The opposite side resilience is the decay of the

price impact on the opposite side of the large order.

When an i−unit market buy order is submitted to the order book of m limit

order sellers, this market order clears the sell orders from the lowest one to the

lowest ith order. The lowest (i+1)th limit sell order immediately becomes the new

best ask order in the order book. This is the immediate price impact incurred by

the large order. Since the agents are fully strategic, they instantly regroup to adjust

to the new state with m− i sellers. The second best ask price changes corresponds

to the transit decay of the first price change.

In Rosu’s model [74], these two price changes take place instantaneously,

and are described by the notions of temporary and permanent impact. However,

as stated in Chapter 1, the permanent price impact is observed in the long term

time. To prevent misunderstanding, in this thesis the permanent price impact is

the second price change and the temporary price impact is the first price change

as discussed above. Without loss of generality, we will define the temporary and

permanent price impact on the ask side of the order book. These definitions could

be extended to the bid side in a similar way.

Definition 2.2.1: Consider the limit order book with only patient sellers and impa-

tient buyers who can submit a market order of size at most k-unit for some k > 1.

In the state of m patient sellers, denote by am(j) the ask price of the jth limit sell
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order starting from the best ask price am(1) for j ≤ m. Denote by i0 := min{k,m}.

The temporary price impact on the ask side caused by a buy market order of size

i ≤ i0 is defined as the difference

I
A
m(i) := am(i+ 1)− am(1), (2.2.1)

which is the difference between the i+ 1�st offer am(i+ 1) from the bottom and the

best ask price am(1).

The permanent price impact on the ask side caused by a buy market order of

size i ≤ i0 is given by

P
A
m(i) := am−i(1)− am(1), (2.2.2)

which is the difference between the best ask price am−i(1) in the state with m − i

sellers and the best ask price am(1) before the market order was submitted.

If use the superscription A for the ask side and B for the bid side, we say

there is the same side resilience if the difference between same side temporary impact

and permanent impact is positive, i.e. I
A
m(i) − P

A
m(i) > 0 and I

B
m(i) − P

B
m (i) > 0.

The opposite side resilience is measured by the positivity of the opposite side, or

non-execution side, permanent impact, i.e. P
B
m (i) > 0 if IAm(i) is non-negative and

P
A
m(i) > 0 if IBm(i) is non-negative.

2.2.2 Solution of the recursive system in the one-side case

In this part, we will discuss the properties of the solution of the recursive

system proposed in the one-side order book case. This is an important step in

proving the same side resilience and opposite side resilience. In general, it is difficult

to get an explicit solution of the coupled recursive system in the two-side case.

Consider the limit order book with only patient sellers and impatient buyers who

can submit up to k-unit market orders for some k > 1, placing orders between the
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price range [P , P ]; patient sellers arrive at rate µ > 0 and have waiting cost discount

factor r > 0; impatient buyers who submit i-unit market orders arrive at rate µi > 0

if i ≤ k and µi = 0 if i > k. Let us recall the recursive equations of the sellers’

expected utility fm with the boundary conditions given by






fi = P if i ≤ 0,
�
1 + Σ

µ

�
fm = fm+1 +

�
i≥1

µi
µ fm−i − r

µ for 1 ≤ m ≤ M − 1,

�
1 + Σ

ν

�
fM = fM−1 +

�
i≥1

µi
ν fM−i − r

ν ,

fM = P ,

(2.2.3)

where Σ =
�

i≥1 µi and µj = 0 if j > k.

The structure of the solution for the recursive system (2.2.3) is presented in

Proposition 2.2.2.

Proposition 2.2.2: Given the difference equation

�
1 +

Σ

µ

�
fm = fm+1 +

�

i≥1

µi

µ
fm−i −

r

µ
for 1 ≤ m ≤ M − 1

with Σ =
�

i≥1 µi and µj = 0 if j > k. Assume that µ >
�

i≥1 iµi. The structure

of the solution to this difference equation is given by

fm = C0 + C1α1(m) + . . .+ Ckαk(m) +
r

µ−
�

i≥1 iµi
m

where α0 = 1 and α1(m), . . . ,αk(m) are the corresponding ansatz solutions of the

difference equation (2.2.2). αi(m) are functions of m and µ, µ1, ..., µk.

The constants C0, . . . , Ck and M are determined by the boundary conditions

fi = P if i ≤ 0, fM = P and the state M difference equation

�
1 +

Σ

ν

�
fM = fM−1 +

�

i≥1

µi

ν
fM−i −

r

ν
. (2.2.4)
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2.2.3 Same side resilience

As proposed in Assumption 1 and Proposition 8 by Rosu [74], the same side

resilience is obtained under the assumption that the market order arrival rate of

i ≥ 2-unit is much smaller than the arrival rate of one-unit order. One possible

reason behind this assumption is due to the large order splitting behaviour in the

market. Traders usually like to use small size order to eliminate the adverse price

change. Thus, it is natural to make this assumption and study the market under it.

Besides, we will test the attempt to relax this assumption in the end of this section.

It is shown there that if the arrival rates of impatient traders satisfy are all the

same, there does not exists the same side resilience in this microstructure model.

Before providing a mathematically rigorous proof of the same side resilience,

we base on and improve the notation in Rosu [74]. For i ≥ 2, denote by

µi = �φiµ1 with �i ≥ 0 and 0 ≤ φi < ∞.

The numbers φi are called the relative arrival rates. The utility function fm and

the ask prices am(i) are now functions of µ, µ1, � and φi>1.

Recall that the same side resilience is measured by the positivity of the

difference between same side temporary impact and permanent impact, i.e. IAm(i)−

P
A
m(i) > 0. The presence of the same side resilience6 is summarised in the following

proposition.

Proposition 2.2.3: Consider the limit order book with only patient sellers and

impatient buyers who can submit up to k-unit market orders for some k > 1, placing

orders between the price range [P , P ]; patient sellers arrive at rate µ > 0 and have

waiting cost discount factor r > 0; impatient buyers who submit i-unit market orders

arrive at rate µi > 0 if i ≤ k and µi = 0 if i > k. If the arrival rates of the impatient

6
The rational behind the same side resilience effect given by Rosu [74], is that in order to

take advantage of larger incoming market orders, the patient sellers stay higher price in the book.

Once an i-unit market order hits the order book, the rest of patient sellers readjust because of the

(off-equilibrium) competitive behaviour.
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buyers satisfy the following conditions:

1. µ >
�

i≥1 iµi, i.e. patient sellers arrive faster than the units demanded by the

impatient buyers,

2. � → 0+, i.e. the arrival rates µi>1 are much smaller than µ1,

the temporary price impact IAm(i) is larger than the permanent price impact PA
m(i).

A sketch of the proof: step 1, one proves the continuity of the ansatz solutions

(α0,α1, ...,αk) ∈ Rk+1 of the difference equation 2.2.2 at the point (µ, µ1, 0, ..., 0) ∈

Rk+1; step 2, one needs to find the limit lim
�→0+

fm for any m ≤ M ; step 3, one proves

the limit of the consecutive difference of fm is positive; step 4, one estimates the

asymptotic behaviour of the differences am−i(1)− fm−i−1 and am(i+ 1)− fm−i−1.

Conjectured in Rosu [74], he speculated that the same side resilience holds

without the assumption on fast decaying arrival rates µi for i ≥ 2. However, by the

following counterexample, it is shown that this conjecture does not hold when the

arrival rates µi are all the same for i ≥ 1.

Proposition 2.2.4: Consider the limit order book with only patient sellers and

impatient buyers who can submit up to k-unit market orders for some k > 1, placing

orders between the price range [P , P ]; patient sellers arrive at rate µ > 0 and have

waiting cost discount factor r > 0; impatient buyers who submit i-unit market orders

arrive at rate µi > 0 if i ≤ k and µi = 0 if i > k.

If the arrival rates µi = µi+1 for i = 1, ..., k− 1, then there does not exist the

same side resilience in this trading game.

2.2.4 Opposite side resilience

Recalling that in the two side order book case, we only consider k = 1, i.e.

only one-unit market orders are considered. The opposite side resilience is measured

by the positivity of the opposite side permanent impact given there are temporary

impact on the same side of the larger order.
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In order to prove the opposite side resilience, Rosu [74] suggests to regard the

limit order book as the collection of the ask side and bid side. The reservation value

for each side is given by the best price on the other side. Without loss of generality

in state (m+ 1, n), the sell side of the book can be considered as a one-side model

with lower bound of price range P = bm+1,n, i.e. the best bid price. When the

best bid price P moves down to P − ∆ for some ∆ > 0, which is caused by an

one-unit market order, one can observe a fall of the ask price am+1,n too in this

model. The Proposition 10 in Rosu [74] gives an approximation of the magnitude

of the opposite side resilience. We review and prove it here again for consistency

reason. From the proof, we should also note that this proposition works when the

order book is not full, i.e. the interior of the state region Ω. This is due to an

approximation expression of am+1,n by fm,n.

Proposition 2.2.5: Suppose the limit order book is in the state with m+ 1 sellers

and n buyers, where (m+1, n) is not on the boundary set γ. Assume that λ = µ, and

λ1 = µ1 satisfying c = µ
µ1

> 1 and λi = µi = 0 for i > 1. Then if a market sell order

moves the best bid price down by ∆, the best ask price moves down approximately by

∆(1− 1
cm ). Therefore, there exists the opposite side resilience in this LOB model.

2.3 Proofs

Proof of Proposition 2.2.2. The difference equation (2.2.2) can be rewritten as

(µ+ Σ)fm + r = µfm+1 + µ1fm−1 + . . .+ µkfm−k.

The corresponding homogeneous equation is

µfm+1 − (µ+ Σ)fm + µ1fm−1 + . . .+ µkfm−k = 0.

36



The auxiliary equation is given by

Pk+1(x) = µx
k+1 − (µ+ Σ)xk + µ1x

k−1 + . . .+ µk.

Since all µi are positive for i = 1, ..., k, the roots β0 = 1, ...,βk of the auxiliary

equation Pk+1(x) are all not zero. Considering the possibilities of complex roots

and repeated roots, we denote by αi with i = 0, ..., k the ansatz solutions of the

difference equation (2.2.2). The general solution of the homogeneous equation can

be expressed as

fm = C0 + C1α1 + . . .+ Ckαk.

Also it is easy to check that r
µ−

�k
i=1 iµi

m is a special solution for the difference

equation (2.2.2).

Step 1: prove the continuity of (1, a,α2, ...,αk) at the point (µ, µ1, 0, ..., 0)

Recall that β0,β1, ...,βk are the roots of the auxiliary polynomial Pk+1(x) and

α0,α1, ...,αk are the corresponding ansatz solutions of the difference equation (2.2.2).

We want to know the behaviour of αi for i = 1, 2, · · · , k as � → 0+.

We will apply the continuity theorem of the roots of a polynomial given in

Cucker and Corbalan [26].

Theorem 2.3.1: Let Pn(x) = x
n+a1x

n−1+. . .+an be a monic complex polynomial,

and let ξ1, . . . , ξn be its roots. Given a real number ω > 0, there is a real number δ >

0 such that for every monic polynomial Qn(x) = x
n+b1x

n−1+. . .+bn, if |bj−aj | < δ

for 1 ≤ j ≤ n, then there are ζ1, . . . , ζn ∈ C such that Qn(x) =
�

1≤j≤n(x− ζj) and

|ζj − ξj | < ω for 1 ≤ j ≤ n.

Lemma 2.3.2: Under the assumptions of Proposition 2.2.2, let (β0, ...,βk) be the

roots of the polynomial Pk+1(x) = µx
k+1 − (µ +

�k
i=1 µi)xk +

�k
i=1 µix

k−i. Given

the polynomial Qk+1(x) = µx
k+1 − (µ+ µ1)xk + µ1x

k−1 with roots (b0, ..., bk), if the
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condition (2) of Proposition 2.2.3 is satisfied, namely the arrival rate of more-than-

one units orders µi>1 are much smaller than arrival rate of one-unit order µ1, then

the roots (β0, ...,βk) is continuous at the point (µ, µ1, 0, ..., 0), and as � → 0+ the

roots (β0, ...,βk) tends to
�
1, µ1

µ , 0, . . . , 0
�
which is the roots of polynomial Qk+1.

Moreover, the corresponding ansatz solutions α0(m), ...,αk(m) of the differ-

ence equation (2.2.2) are continuous at the point (µ, µ1, 0, ..., 0) and tend to the point
�
1,
�
µ1
µ

�m
, 0, . . . , 0

�
.

Proof. As � → 0+, the coefficients of polynomial Pk+1(x) approaches to the coeffi-

cients of polynomial Qk+1(x). One can easily solve the equation Qk+1(x) = 0 and

get the roots as
�
1, µ1

µ , 0, . . . , 0
�
. By Theorem 2.3.1, we immediately obtain the

continuity of (β0, ...,βk) at the point (µ, µ1, 0, ..., 0).

The guessed corresponding solutions αi are power functions of βi or linear

combination of power functions of βi. Thus, the (α0, ...,αk) is continuous at the point

(µ, µ1, 0, ..., 0). And for all m ≤ M , one has lim
�→0+

α0(m) = 1, lim
�→0+

α1(m) =
�
µ1
µ

�m

and lim
�→0+

αi(m) = 0 for i > 1.

Step 2: find the limit of fm as � → 0+ for any m ≤ M

Lemma 2.3.3: Under the assumptions of Proposition 2.2.2, one has

lim
�→0+

fm = P + C

��
µ1

µ

�m

− 1

�
+

r

µ− µ1
m. (2.3.1)

The constant C is given by

C =
r

µ− µ1

µ+ν
µ1+ν�

µ1
µ

�M−1 �
1− µ1

µ

� .

Proof. For j = 0, 1, . . . , k − 1, the boundary conditions associated with difference
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equation (2.2.2) are

C0 + C1α1(−j) + . . .+ Ckαk(−j) = P + j
r

µ−
�

iµi
(2.3.2)

and

C0 + C1α1(M) + . . .+ Ckαk(M) = P −M
r

µ−
�

iµi
.

As � → 0+, one gets αi(j) → 0 for i > 1 by Lemma 2.3.2. So the limit αi(−j) → ∞

for i > 1 as � → 0+ holds. We find that the limit of the RHS of equation (2.3.2) is

finite as � becomes very small. Then, for i > 1 it has to be lim�→0+ Ci < ∞ such

that Ci = o(αi(j)). Thus, we get

lim
�→0+

fm = lim
�→0+

�
C0 + C1α1(m) + C2α2(m) + . . .+ Ckαk(m) +

r

µ−
�

iµi
m

�

= C0 + C1 lim
�→0+

α1(m) + lim
�→0+

C2 lim
�→0+

α2(m) + . . .+ lim
�→0+

Ck lim
�→0+

αk(m) +
r

µ− µ1
m

= C0 + C1

�
µ1

µ

�m

+
r

µ− µ1
m.

Since Ci = o(αi(j)) for i > 1, the asymptotic behaviour of the boundary conditions

implies

lim
�→0+

f0 = lim
�→0+

(C0 + C1 + . . .+ Ck) = C0 + C1 = P

and

lim
�→0+

fM − r

µ− µ1
M = lim

�→0+
C0 + C1α1(M) + . . .+ Ckαk(M) = C0 + C1

�
µ1

µ

�M

= P .

We solve the above boundary conditions and get

C1 =
P − P + r

µ−µ1
M

1−
�
µ1
µ

�M
< ∞ and C0 =

P − P

�
µ1
µ

�M
− r

µ−µ1
M

1−
�
µ1
µ

�M
< ∞.

Thereafter, the limit of the utility function fm can be rewritten as

fm = P + C

��
µ1

µ

�m

− 1

�
+

r

µ− µ1
m,
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where the constant C is given by

C =
r

µ− µ1

µ+ν
µ1+ν�

µ1
µ

�M−1 �
1− µ1

µ

� .

Step 3: find the consecutive difference of fm.

Lemma 2.3.4: Under the assumptions of Proposition 2.2.2, one obtains lim
�→0+

(fm−1−

fm) > 0.

Proof. We estimate the consecutive difference of fm as follows

lim
�→0+

(fm−1 − fm) = C

�
µ1

µ

�m−1�
1− µ1

µ

�
− r

µ− µ1

=
r

µ− µ1

µ+ν
µ1+ν�

µ1
µ

�M−1 �
1− µ1

µ

�
�
µ1

µ

�m−1�
1− µ1

µ

�
− r

µ− µ1

=
r

µ− µ1

�
µ+ ν

µ1 + ν

�
µ1

µ

�m−M

− 1

�

> 0.

The last inequality holds as the assumption of µ > µ1.

Denote by La,b = lim�→0+(fa − fb) for all 0 < a < b ≤ M . Since fa − fb =

(fa − fa+1) + (fa+1 − fa+2) + . . . + (fb−1 − fb), we then get the general difference

given by

lim
�→0+

(fa − fb) = La,a+1 + . . .+ Lb−1,b > 0.

Step 4: estimate the differences am−i(1)− fm−i−1 and am(i+ 1)− fm−i−1

Recall that the ask prices in equilibrium are given by am(i) =
�

j≥i µjfm−j�
j≥i µj

,

and the arrival rates of market order for more than one unit are denoted by µi =
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�µ1φi with � ≥ 0 and 0 ≤ φi < ∞.

Lemma 2.3.5: Under the assumption of Proposition 2.2.2, if the arrival rates µi>1

are much smaller than µ1, namely � tends to the zero from right, the difference

am−i(1)− fm−i−1 is estimated as 0 < am−i(1)− fm−i−1 < o(1).

Proof. According to Lemma 2.3.2 and Lemma 2.3.3, the difference am−i(1)−fm−i−1

is continuous at the point (µ, µ1, 0, ..., 0). We can then compute the limit of the

difference am−i(1)− fm−i−1 as follows

lim
�→0+

(am−i(1)− fm−i−1)

= lim
�→0+

µ1fm−i−1 + . . .+ �φkµ1fm−i−k

µ1 + �µ1(φ2 + . . .+ φk)
− µ1fm−i−1 + �µ1(φ2 + . . .+ φk)fm−i−1

µ1 + �µ1(φ2 + . . .+ φk)

= lim
�→0+

�

1 + �(φ2 + . . .+ φk)
(φ2(fm−i−2 − fm−i−1) + . . .+ φk(fm−i−k − fm−i−1))

= lim
�→0+

�

1 + �(φ2 + . . .+ φk)
lim
�→0+

[φ2(fm−i−2 − fm−i−1) + . . .+ φk(fm−i−k − fm−i−1)]

= 0.

The last equation holds because of Lemma 2.3.4.

Lemma 2.3.6: Under the assumption of Proposition 2.2.2, if the arrival rates µi>1

are much smaller than µ1, one has lim
�→0+

(am(i+ 1)− fm−i−1) > 0.

Proof. First, we note that for any � > 0, the difference is positive, i.e.

am(i+ 1)− fm−i−1 =
φkfm−k + . . .+ φi+1fm−i−1

φk + . . .+ φi+1
− fm−i−1

=
1

φk + . . .+ φi+1
[φk(fm−k − fm−i−1) + . . .

+ φi+1(fm−i−1 − fm−i−1)] > 0.

Since fm is decreasing with m, for i + 1 ≤ j ≤ k, m − k ≤ m − j ≤ m − i − 1 one

has fm−k ≥ fm−j ≥ fm−i−1. Thus the last inequality holds.

Next, we look at the asymptotic behaviour of the difference am(i+1)−fm−i−1
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when � → 0+. By Lemma 2.3.4, one gets

lim
�→0+

(am(i+ 1)− fm−i−1)

= lim
�→0+

1

φk + . . .+ φi+1
[φk(fm−k − fm−i−1) + . . .+ φi+1(fm−i−1 − fm−i−1)]

=
1

φk + . . .+ φi+1
[φkLm−k,m−i−1 + . . .+ φi+1Lm−i−1,m−i−1] > 0.

Step 5: to prove the same side resilience

Proof of Proposition 2.2.3. There is same side resilience if and only if IAm(i) = am(i+

1)− am(1) > am−i(1)− am(1) = P
A
m(i), which is equivalent to establish am(i+1) >

am−i(1).

By Lemma 2.3.5, we know lim
�→0+

(am−i(1) − fm−i−1) = 0. That implies that

for ∀θ > 0, there is δ > 0 such that for all 0 < µi < δ with i > 1, one has

|am−i(1) − fm−i−1| < θ. Furthermore, since the ask price am−i(1) can be regarded

as a weighted average of a decreasing sequence fm−i−k, fm−i−k+1,· · · , fm−i−1, one

getsam−i(1) > fm−i−1, which implies am−i(1) < fm−i−1 + θ.

By Lemma 2.3.6, lim
�→0+

(am(i+1)− fm−i−1) > 0 implies that there are θ > 0,

for ∀δ > 0, there are some µi with i > 1 satisfying 0 < µi < δ such that am(i+1) >

fm−i−1 + θ.

Therefore, the statement IAm(i) > P
A
m(i) holds.

Proof of Proposition 2.2.4. We prove by showing contradiction. Suppose µi = µi+1

for i = 1, ..., k − 1. Substituting to the ask prices am(i + 1) and am−i(1), we then

get

am(i+ 1) =
fm−k + . . .+ fm−i−1

k − i

and

am−i(1) =
fm−i−k + · · ·+ fm−i−1

k
.
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We want to see if the difference am(i+ 1) > am−i(1) is positive. So we compute

k(k − i)(am(i+ 1)− am−i(1))

= kfm−k + ...+ kfm−i−1 − (k − i)fm−i−k − ...− (k − i)fm−k − ...− (k − i)fm−i−1

= i(fm−k + ...+ fm−i−1)− (k − i)[fm−i−k + ...+ fm−k+1]

= i

��
1− k

i

�
(fm−i−k + ...+ fm−k+1) + fm−k + ...+ fm−i−1

�

< i

�
fm−i−k

�
1− k

i
+ k − i

�
+

�
1− k

i

�
(fm−i−k+1 + ...+ fm−k+1)

�
.

When i = 1 the RHS of the inequality is negative. This is a contradiction to the

same side resilience.

Proof of Proposition 2.2.5. For any state (m+1, n) in the interior of the state region

Ω, one has the best ask price am+1,n approximately equals fm,n with the dependence

of f on n being omitted.

The temporary price impact of an one-unit market sell order is given by

I
B
m+1(1) = bm+1(2)− bm+1(1). As the best bid price (or the reservation price for the

ask side traders) changes, the utility of limit order sellers changes by approximately

I
B
m+1(1)×

dfm
dP .

The dependence is computed as follows. By Proposition 2.2.2, for k = 1 and

m = M the expected utility function fM is given by fM = P +C(cM −1)+ r
µ+µ1

M ,

where C = r
µ−µ1

µ+ν
µ1+ν

1
cM−1−cM

. At the same time by boundary condition fM = P ,

one has

P = P + C(cM − 1) +
r

µ+ µ1
M. (2.3.3)

Differentiating equation (2.3.3) with respect to P , one gets

1 =
dC

dP
(cM − 1).

Then the expected utility function fm depends on reservation value P in the follow-
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ing way:

dfm

dP
=

1− c
m

1− cM
.

One can then approximate lim
M→∞

dfm
dP = 1 − 1

cm . Thus, the approximated

opposite side resilience is given by ∆
�
1− 1

cm
�

44



Chapter 3

The cross-impact LOB model

and definitions of market

irregularities

This chapter is our main contribution, which is the formulation of the cross

impact LOB model. It is an extension of the LOB model of Obizhaeva and Wang

[65]. The main difference and contribution compared to Obizhaeva and Wang [65]

is that we include the same side resilience and opposite side resilience into the LOB

market impact modelling framework and model a more general time-varying shape

function. The model formulation is provided in Section 3.1.

Two existing LOB market impact models considered in Section 3.2.1 and

Section 3.2.2 correspond to limiting cases of our cross-impact model developed in

Section 3.1. We provide the derivations of these two existing models from our cross-

impact model. Utilising the separation of the same side and opposite side resilience

in our cross-impact model, a non-zero spread in a market impact model is achieved.

In particular, the spread is an endogenous results of the two sides resilience effect

instead of being exogenously given.

Finally, in Section 3.3, three market irregularity notions are provided. Two
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relationships about the absence of the three market irregularities are presented in

Proposition 3.3.4 and Proposition 3.3.5, followed by two examples showing these

hierarchy relationship are not invertible.

3.1 The model formulation

The optimal execution problem is characterised by the following standard

assumptions in the LOB based transient market impact model framework. It is

assumed there is only one large trader whose trading incurs price impact. All other

traders are noise traders, whose trading activities determine the dynamics of the

LOB when the large trader is not active. We do not presume the large trader has

private information about the trading asset. There is some amount Q > 0 (Q < 0)

of one asset to be bought (or sold) within a certain time period [0, T ] with T < ∞.

The reason to trade is exogenously given outside of the optimal execution problem.

The large trader wants to minimise the trading costs by splitting the large order

Q into smaller pieces of market orders. We will use the superscription A and B to

denote the ‘ask’ and ‘bid’ side for variables.

Trading strategy

In the rest of this thesis, we focus our effort on the set of deterministic execu-

tion strategies. Although it might be suboptimal in some circumstances according

to Klöck [52] and Lorenz and Almgren [61], the deterministic strategy is a standard

assumption and provides some very delightful insights on optimal execution prob-

lem and market irregularity issues, as shown in most of the market impact model

literature where they focus on deterministic strategy as well. One can regard the

deterministic strategy as sample paths of the stochastic strategy.

Define a trading strategy X to be composed of two non-decreasing processes

X
A
t and X

B
t , which respectively represents the number of accumulative large buy

and sell orders by large-order trader up to time t ∈ [0, T ]. The trading strategy
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process Xt is defined via X
A
t and X

B
t as

Xt =

� t

0
dX

A
s −

� t

0
dX

B
s , with X0 = 0.

The admissible trading strategy set is defined by

A(Q) :=
�
(XA

, X
B) : [0, T+] → R2

+

�� Xi
0 = 0, XT+ = Q, X

i is non-decreasing

and bounded variation for i = A,B
�
,

where Q > 0 (Q < 0) corresponds to a trading program of buying (selling) |Q|

shares of an asset.

In the case that trading takes place at discrete trading times T := {t0, t1, ..., tN}

with 0 ≤ t0 < t1 < ... < tN ≤ T , we constrain the admissible strategy set to

AN (Q) :=
�
(XA

, X
B) ∈ A(Q)

�� Xi
t = X

i
tn+ a.e. on (tn, tn+1] for n = 0, 1, ..., N − 1

�

⊂ A(Q).

Another subset of A(Q) which is important for the absence of market irregularity

is the pure buy (sell) strategy set

AP (Q) :=
�
(XA

, X
B) ∈ A(Q)

�� XB
t = 0 (XA

t = 0) a.e. ∀t ∈ [0, T ]
�

⊂ A(Q).

Both impulse trading and continuous trading are allowed in a trading strategy. For

i = A,B, let us denote by dX
i
t the continuous strategy and by ∆X

i
t := X

i
t+ − X

i
t

the jumps of Xi at time t. Especially, we will denote the discrete buy (sell) order

at time tn by Θi
n := ∆X

i
tn . We assume at a single point in time, only buy or sell

order can be submitted, in the sense that ∆X
A
t ∆X

B
t = 0 and dX

A
t dX

B
t = 0 for all

t ∈ [0, T ]. Otherwise, only the net position is considered 1.

1
If at time t, both buy and sell orders ∆XA

t and ∆XB
t are submitted by one large trader. Only a

buy order of size (∆XA
t −∆XB

t ) ∆XA
t −∆XB

t >0, or a sell order of size (∆XB
t −∆XA

t ) ∆XB
t −∆XA

t >0

would be taken.
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Best bid and ask price

In market impact models, it is a standard assumption that the actual trading

price is decomposed into two parts, namely an unaffected price process which de-

scribes the price dynamics when the large trader is not trading and the price impact

caused by the large trader. We denote by (A0
t )t∈[0,T ] the unaffected best ask price

process and by (B0
t )t∈[0,T ] the unaffected best bid price process. They are exoge-

nously assumed to be martingales on a given filtered probability space (Ω,F , (Ft),P)

satisfying B
0
t ≤ A

0
t .

The price impact caused by strategy (XA
, X

B) on the ask and bid side are

denoted respectively by s
A and s

B. Therefore, when the large trader trades following

strategy (XA
, X

B), the best ask price At and the best bid price Bt are defined as

At = A
0
t + s

A
t (X

A
t , X

B
t ),

and

Bt = B
0
t − s

B
t (X

A
t , X

B
t ).

Without loss of generality, we set A0
0 = A0 and B

0
0 = B0. The dynamics of the price

impact sA and s
B will be given in the sequel.

Shape function

The shape function is an abstract description of the dynamics of limit order

volumes at different prices. We will adopt the continuous shape function assumption

as in most market impact models. The continuity assumption enables us to keep

mathematical tractability and at the same time it makes good approximation of the

real order book. The discrete tick size of real order book will result in the shape

function being piece-wise constant. By approximation of the piece-wide constant

step function with a smooth function, we can reach any degree of smoothness.

Assume that the ask side (bid side) shape function f
A(t, x) (fB(t, x)) is
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strictly positive, deterministic and twice continuous differentiable. The volume of

limit sell and buy orders at time t between prices a and b is given respectively by
� b
a f

A(t, x)dx and
� b
a f

B(t, x)dx.

Dynamics of price impact and volume impact

We introduce two sides resilience effect into the market impact modelling,

which are the same side resilience and the opposite side resilience introduced in

Section 1.2. We reinterpret them with notions of price impact in the following.

When a market buy order is matched against the limit sell orders on the ask

side, the best ask price decreases. This reflects the price impact on the same side of

the market order. We will denote by D
A
t the accumulative same side price impact

caused by previous market buy orders up to time t and byD
B
t the accumulative same

side price impact caused by previous market sell orders up to t. Set by convention

D
A
0 = 0 and D

B
0 = 0.

Let us now turn to look at the evolution of the same side price impact. More

specifically, one assumes that the same side price impact exponentially decays when

the large trader is inactive. This exponential decay assumption is a natural and

computational efficient one following the line of research of Obizhaeva and Wang

[65] and Alfonsi et al. [5], though empirical studies suggested some other choices,

such as power-law decay in Weber and Rosenow [85], Gatheral [32]. We denote by

ρt the same side resilience rate for t ∈ [0, T ]. It is assumed to be deterministic,

positive and continuous differentiable. That is to say, given a trading strategy

(XA
, X

B) ∈ A(Q), the same side price impact DA recovers exponentially at rate ρt

dD
A
t = −ρtD

A
t dt+

dX
A
t

f(t,DA
t )

, (3.1.1)

and the same side price impact DB recovers exponentially at rate ρt

dD
B
t = −ρtD

B
t dt+

dX
B
t

f(t,DB
t )

, (3.1.2)
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where f
A and f

B are the strictly positive shape functions of the ask and bid side of

the order book.

In addition, we know that a market buy order incurs price changes not only

on the ask side, but also has an impact on the bid side. This reflects the price

impact on the opposite side of the market order, and is called the cross price impact.

Following the notation rule that superscription A is for variables on the ask side,

and superscription B is for variables on the bid side, we denote by L
A
t the ask side

cross price impact incurred by all previous market sell orders up to time t, and by

L
B
t the bid side cross price impact incurred by all previous market buy orders up to

time t. More precisely, they are functions of the form

L
A
t : = L

A
t (X

B
t )

and

L
B
t : = L

B
t (X

A
t ),

with L
A
0 = 0 and L

B
0 = 0.

The creative part of this thesis is that we assume the size of cross price

impact depends on the size of the same side price impact and exponentially decays

by the cross impact resilience rate of β > 0. The dynamics of the cross price impact

L
A and L

B are given as follows

dL
A
t = −(β + ρt)L

A
t dt+ βD

B
t dt, (3.1.3)

and

dL
B
t = −(β + ρt)L

B
t dt+ βD

A
t dt. (3.1.4)

Combining both the same side price impact and cross price impact into the

best bid and ask price, one obtains the expressions for the price impact sA and s
B
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given by

s
A
t (X

A
, X

B) = D
A
t (X

A)− L
A
t (X

B)

and

s
B
t (X

A
, X

B) = D
B
t (X

B)− L
B
t (X

A)

with s
A
0 = s

B
0 = 0. In the sequel, to distinguish from the same side impact and cross

impact, we will call sA and s
B the total price impact.

As suggested in Alfonsi et al. [5] and Alfonsi and Acevdeo [2], there is another

natural way to describe the market order execution and the transient decay in LOB

based market impact model, namely it is assumed a volume impact reversion.

When a market buy order is submitted to the ask side, the existing limit

sell orders are consumed by this market order. This reflects the volume impact on

the same side of the market order. We denote by E
A
t the accumulative volume of

limit sell orders consumed by all previous market buy orders up to time t and E
B
t

the accumulative volume of limit buy orders consumed by all previous market sell

orders up to time t. Set by convention that EA
0 = 0 and E

B
0 = 0. We call EA and

E
B the same side volume impact.

It is assumed here that the same side volume impact decays exponentially

by the rate of ρt when the large trader is not active. The same side resilience rate

ρt is assumed to be deterministic, positive and continuous differentiable. Given a

trading strategy (XA
, X

B) ∈ A(Q), the dynamics of the same side volume impact

E
A and E

B are given by

dE
A
t = −ρtE

A
t dt+ dX

A
t ,

and

dE
B
t = −ρtE

B
t dt+ dX

B
t .

At the same time, the opposite side volume impact is described by by J
A
t
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and J
B
t . We call them the cross volume impact, which reflect the reactions on the

opposite side of the market order in terms of volume of new limit sell and buy order.

Following the same notation rule of the superscription A and B, we denote by J
A
t

the ask side cross volume impact incurred by all previous market sell orders up to

time t, and by J
B
t the bid side cross volume impact incurred by all previous market

buy orders up to time t. Given a trading strategy (XA
, X

B), the dynamics of the

cross volume impact follow the way

dJ
A
t = −(β + ρt)J

A
t dt+ βE

B
t dt

and

dJ
B
t = −(β + ρt)J

B
t dt+ βE

A
t dt

where β is the cross impact resilience rate and the initial conditions J
A
0 = 0 and

J
B
0 = 0.

Combining both the same side volume impact and cross volume impact, one

obtains the expressions for the total volume impact V A and V
B

V
A
t (XA

, X
B) = E

A
t (X

A)− J
A
t (XB)

and

V
B
t (XA

, X
B) = E

B
t (XB)− J

B
t (XA)

with V
A
0 = V

B
0 = 0.

Via the shape functions f
A and f

B, the relationship between total price

impact and total volume impact can be expressed as

V
A
t =

� sAt

0
f
A(t, x)dx (3.1.5a)

and

V
B
t =

� 0

−sBt

f
B(t, x)dx. (3.1.5b)

An example of trading and resilience in discrete time are illustrated in Figure 3.1
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and Figure 3.2. The strategy used is: buy size x0 at time t0 and wait until time

t1 at which buy another x1 shares. Explanations of each trading activity is given

under the plot.

Cost function

Now we are ready to look at the trading costs given a strategy X ∈ A(Q).

The following two assumptions are helpful to simplify the expressions of the cost

functions.

Assumption 3.1.1: We assume F
A(t, x) and F

B(t, x) are functions such that

F
A(t, 0) = F

B(t, 0) = 0 for all t ∈ [0, T ],

F
A(t, x) =

� x

0
f
A(t, p)dp, F

B(t, x) =

� 0

−x
f
B(t, p)dp,

and

lim
x→∞

F
A(t, x) = ∞, lim

x→∞
F

B(t, x) = −∞.

Denote the first derivative of F i(t, x) on t by η
i(t, x), i.e. ∂F i

∂t (t, x) = η
i(t, x) for

i = A,B.

Assumption 3.1.2: For each fixed time t ∈ [0, T ] and i = A,B, the function

F
i(t, x) is assumed to be invertible on x. Or equivalently, assume there exist func-

tions g
i(t, x) such that F i(t, gi(t, x)) = x.

With the functions F i and g
i, the relationship between the total price impact

s
A, sB and the total volume impact V A, V B can be rewritten as

V
i
t = F

i(t, sit) and s
i
t = g

i(t, V i
t ). (3.1.6a)

Before we derive the cost function, the following notations are needed. For

∀x ∈ R+, one takes

F̃
A(t, x) =

� x

0
yf

A(t, y)dy, G
A(t, x) = F̃

A(t, gA(t, x)) (3.1.7)
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(a) From time 0 to t0, the status of the order book without any
large trader activity.
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(b) At time t0+ a market buy order of size x0 is executed against
the existing limit sell orders on the ask side. The volume con-
sumed is denoted by the shadow area E

A
0+.
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(c) Up to time t1, there is no large trade during (t0, t1). Both
sides of the order book are recovering. Reacted to market buy
order x0, the limit buy orders regenerate by volume of JB

1 and
the ask side volume impact decreases to E

A
1

Figure 3.1: LOB dynamics with strategy of buying x0 at time t0 and then waiting
until t1.
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(a) At time t1+, another buy order of size x1 is placed. It con-
sumes a volume of EA

1+ limit sell orders. The best ask prices
jumps from A1 to A1+.

N
u

m
b

e
r 

o
f 

sh
a

re
s

fA(t
2
,x)

fB(t
2
,x)

0
B

2
0 B

2
A

2
0 A

2
A

1+
Price per share

E
2J

2

B

(b) During time (t1, t2), there is no large order trading. Both
sides continue to recover. The bid side volume at time t2 in-
creases by J

B
2 . The ask side recovers to new best ask price A2.

Figure 3.2: Continued LOB dynamics with strategy of buying x1 at time t1 and
then waiting until t2.
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and

F̃
B(t, x) =

� 0

−x
yf

B(t, y)dy, G
B(t, x) = F̃

B(t, gB(t, x)). (3.1.8)

Furthermore, one can derive some regularity properties of GA(t, x) and G
B(t, x) as

summarised in the following.

Lemma 3.1.3: For i = A,B, suppose F
i(t, x) satisfies Assumption 3.1.1 and As-

sumption 3.1.2, the partial derivative on x of function G
i(t, x) is given by ∂Gi

∂x (t, x) =

g
i(t, x).

The partial derivatives of gi(t, x) with i = A,B are given as:

∂g
i

∂t
(t, x) = −

�
∂

∂gi

�
F

i(t, gi)− x
��−1

∂

∂t
(F i(t, gi)− x) = −η

i(t, gi(t, x))

f i(t, gi(t, x))

and

∂g
i

∂x
(t, x) = −

�
∂

∂gi

�
F

i(t, gi)− x
��−1

∂

∂x
(F i(t, gi)− x) =

1

f i(t, gi(t, x))
.

Lemma 3.1.4: For i = A,B, assume gi(t, x) is the inverse function of F i(t, x) such

that F i(t, gi(t, x)) = x and F
i(t, x) satisfy Assumption 3.1.1 and Assumption 3.1.2.

Then the functions g
i(t, x) are strictly increasing with respect to x for all x ∈ R at

some fixed time t.

Since the best price takes the form of the sum of unaffected price and price

impact, the expected trading cost Cβ must be equal to the sum of the expected cost

caused by the unaffected price and the expected cost caused by price impact. Let

us first look at the expected costs caused by the unaffected price martingale. For a

deterministic trading strategy (XA
, X

B) ∈ A(Q), using integration by parts to the

expected cost function E
�� T

0 A
0
tdX

A
t

�
, one obtains

E
�� T

0
A

0
tdX

A
t −B

0
t dX

B
t

�
= E[A0

T+X
A
T+ −A

0
0X

A
0 ]− E[B0

T+X
B
T+ −B

0
0X

B
0 ]

= E[A0
T+X

A
T+ −B

0
T+X

B
T+] = A

0
0(X

A
T+ −X

B
T+) = A

0
0Q

since by definition we have X
A
0 = X

B
0 = 0, XA

T+ −X
B
T+ = Q, A0

0 = B
0
0 and A

0
, B

0
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are martingales.

Moreover, since only deterministic strategies are considered and the shape

function, two sides resilience rates are all deterministic functions, the trading cost

caused by price impact is actually deterministic. Therefore, in the rest of this thesis,

without loss of generality we can set A0 = B
0 ≡ 0 on time interval [0, T ] and denote

by Cβ the deterministic trading cost caused by price impact.

The costs of singular buy and sell trade∆X
A
t and∆X

B
t are given respectively

by

Cβ(∆X
A
t ) =

� DA
t+−LB

t

DA
t −LB

t

xf
A(t, x)dx

=

� gA(t,EA
t +∆XA

t −JB
t )

gA(t,EA
t −JB

t )
xf

A(t, x)dx

= G
A(t, EA

t +∆X
A
t − J

B
t )−G

A(t, EA
t − J

B
t )

and

Cβ(∆X
B
t ) =

� −DB
t +LA

t

−DB
t++LA

t

xf
B(t, x)dx

=

� −gB(t,EB
t −JA

t )

−gB(t,EB
t −∆XB

t −JA
t )

xf
B(t, x)dx

=
�
G

B(t, EB
t −∆X

B
t − J

A
t )−G

B(t, EB
t − J

A
t )

�
.

The trading cost on [0, T ] of a continuous strategy dX
A is given by

� T

0
Cβ(dXA

t ) =

� T

0

�
G

A(t, EA
t − J

A
t + dX

A
t )−G

A(t, EA
t − J

A
t )

�

=

� T

0
g
A(t, EA

t − J
A
t )dXA

t .

The last equation holds because of Lemma 3.1.3. Similarly, we obtain the cost of

continuous strategy dX
B

� T

0
Cβ(dXB

t ) =

� T

0
G

B(t, EB
t − J

b
t − dX

B
t )−G

B(t, EB
t − J

b
t )

57



=

� T

0
g
B(t, EB

t − J
B
t )dXB

t .

For any deterministic trading strategy X = (XA
, X

B) ∈ A(Q), the trading cost

function is then defined as

Cβ(X) =

� T

0
g
A(t, V A

t )dXA
t +

�

t≤T

�
G

A(t, V A
t +∆X

A
t )−G

A(t, V A
t )

�

+

� T

0
g
B(t, V B

t )dXB
t +

�

t≤T

�
G

B(t, V B
t −∆X

B
t )−G

B(t, V B
t )

�
. (3.1.9)

Since both price impact reversion and volume impact reversion models are defined,

it is convenient to write the cost function in terms of price impact sit as well. It is

given by

Cβ(X) =

� T

0
s
A
t dX

A
t +

�

t≤T

�
G

A(t, FA(t, sAt ) +∆X
A
t )−G

A(t, FA(t, sAt ))
�

+

� T

0
s
B
t dX

B
t +

�

t≤T

�
G

B(t, FB(t, sBt )−∆X
B
t )−G

B(t, FB(t, sBt ))
�
.

(3.1.10)

3.2 Two limiting cases as the cross resilience rate β → ∞

and β → 0

In this section, we review two existing frameworks of LOB based market

impact models and show that our cross-impact LOB model in Section 3.1 could

reproduce their results by making β → ∞ and β → 0 respectively.

3.2.1 Zero-spread LOB model

Zero-spread assumption is widely used in different market impact models,

like Almgren and Chriss [9], Alfonsi et al. [5], Gatheral et al. [37], Gatheral [32] and

Alfonsi and Acevdeo [2]. The corresponding microstructure mechanics behind the
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zero-spread assumption is that once a market buy (sell) order is executed, the hole

on the ask (bid)-side can be replenished by the incoming limit buy (sell) orders at

an infinite speed. In terms of resilience, that is to say the opposite side resilience

rate is infinite, i.e. β → ∞. The price impact reversion in these zero-spread models

can be reinterpret as a finite same side resilience rate, i.e. ρt < ∞ for all t ∈ [0, T ].

Now, we derive the cost function in the zero-spread LOB model by sending

β → ∞. As the cross impact resilience rate β → ∞, one obtains the cross price

impact on ask side L
A equals the same side price impact on bid side D

B, i.e. LA
t =

D
B
t . Similarly, one gets the relationships LB

t = D
A
t , J

A
t = E

B
t , and J

B
t = E

A
t .

Denote by s
A,∞
t , sB,∞

t the total price impact in zero-spread framework and

V
A,∞
t , V B,∞

t the total volume impact. They are expressed as

s
A,∞
t = D

A
t −D

B
t = −s

B,∞
t

and

V
A,∞
t = E

A
t − E

B
t = −V

B,∞
t .

Substituting s
A,∞, sB,∞, V A,∞ and V

B,∞ into the cost function (3.1.9), we then

obtain

C∞(X) =

� T

0
s
A,∞
t dX

A
t +

�

t≤T

�
G

A(t, V A,∞
t +∆X

A
t )−G

A(t, V A,∞
t )

�

+

� T

0
s
B,∞
t dX

B
t +

�

t≤T

�
G

B(t, V B,∞
t −∆X

B
t )−G

B(t, V B,∞
t )

�
. (3.2.1)

We will show how our cost function (3.2.1) coincides the zero-spread cost functions

as given in Alfonsi et al. [5]. The key steps are to show f
A(t, x) = f

B(t, x) and

then G
A(t, x) = G

B(t,−x). These can be proved by working on the relationship of

s
A,∞
t = −s

B,∞
t and V

A,∞
t = −V

B,∞
t . This is because equation

V
A,∞
t = F

A(t, sA,∞
t ) = −V

B,∞
t = −F

B(t, sB,∞
t ) = −F

B(t,−s
A,∞
t )
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implies equation F
A(t, x) = −F

B(t,−x). Rewriting F
A and F

B via shape functions

f
A and f

B, one has

� x

0
f
A(t, p)dp = −

� 0

x
f
B(t, p)dp =

� x

0
f
B(t, p)dp.

Since both f
A and f

B are defined on the whole real line, the equality f
A = f

B holds

and also the equation F̃
A(t, x) = F̃

B(t, x) holds. Furthermore, the relationship

s
A,∞
t = g

A(t, V A,∞
t ) = −s

B,∞
t = g

B(t,−V
A,∞
t )

implies gA(t, x) = g
B(t,−x).

Recall the notation for i = A,B one has G
i(t, x) := F̃

i(t, gi(t, x)). The

equation g
A(t, x) = g

B(t,−x) implies the equation

G
A(t, x) = F̃

A(t, gA(t, x)) = F̃
A(t, gB(t,−x))

= F̃
B(t, gB(t,−x)) = G

B(t,−x)

=: G(t, x).

We can define a function F (t, x) in a similar way as in cross-impact LOB model

case. Set the shape function f(t, x) := f
A(t, y).

Assumption 3.2.1: Define function F (t, x) by F (t, x) :=
� x
0 f(t, y)dy, and assume

that F (t, 0) = 0 for all t ∈ [0, T ],

lim
x→−∞

F (t, x) = −∞

and

lim
x→∞

F (t, x) = ∞.

Its first derivative on t is denoted by η(t, x), i.e. ∂F
∂t (t, x) = η(t, x).

Assumption 3.2.2: For each fixed time t ∈ [0, T ], the function F (t, x) is assumed

to be invertible on x. Or equivalently, assume there is a function g(t, x) such that
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F (t, g(t, x)) = x.

Remark 3.2.3 (Special cases of F and g): 1) Zero-spread time independent shape

function as in Alfonsi and Schied [3]: f(t, x) := f(x). The anti-derivative function

is F (t, x) := F (x) =
� x
0 f(y)dy and it inverse function is g(t, x) := F

−1(x).

2) Zero-spread time-varying separable shape function as in Alfonsi and Acevdeo

[2]: f(t, x) := q(t)h(x). The corresponding F and g are F (t, x) = q(t)F (x) where

F (x) =
� x
0 f(y)dy and g(t, x) = F

−1
�

x
q(t)

�
.

The admissible set of trading strategies under the zero-spread LOB model is

defined as

A∞(Q) :=

�
Xt : [0, T+] → R

���� Xt =

� t

0
dX

A
t −

� t

0
dX

B
t

∀(XA
t , X

B
t ) ∈ A(Q), X0 = 0, and XT+ = Q

�
.

The zero-spread discrete admissible strategy set can be defined as

A∞
N (Q) :=

�
Xt ∈ A∞(Q)

�� Xt = Xtn+ on (tn, tn+1] for n = 0, 1, ..., N
�
.

Denote by ξt := ∆Xt and short by ξn := ξtn . The zero-spread cost function (3.2.1)

of strategy X ∈ A∞(Q) can be rewritten as

C∞(X) =

� T

0
(DA

t −D
B
t )dXt +

�

t∈[0,T ]

�
G(t, EA

t − E
B
t +∆Xt)−G(t, EA

t − E
B
t )

�
.

(3.2.2)

3.2.2 One-side LOB model

We call the LOB model proposed in Fruth et al. [31] by the one-side LOB

model. By ‘one-side’, we mean there is no opposite side resilience modelled, namely

β = 0. In the following, we remind the readers briefly the model of Fruth et al. [31].

Readers might have noticed that in Fruth et al. [31], at the very beginning
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both bid and ask sides of the order book were modelled. More specifically translated

into our notation, the equations (1) and (2) in Fruth et al. [31] implies that for any

t ∈ [0, T ] the best ask and best bid prices are

At = A
0
t + s

A
t

and

Bt = B
0
t − s

B
t ,

where

s
A
t = γX

A
t +D

A
t − γ

� t

0

�
1− e

−
� t
s ρudu

�
dX

B
s

and

s
B
t = γX

B
t +D

B
t − γ

� t

0

�
1− e

−
� t
s ρudu

�
dX

A
s ,

for the permanent impact factor γ. The price impact s
A
t , s

B
t are determined by

both buy and sell trades via the permanent impact factor γ. However later in their

Proposition 3.3, they claim only temporary impact should be considered. So they

set the permanent impact factor γ = 0 for the rest of the analysis. By doing this,

their LOB model only includes the same side resilience effect. Thus, in this thesis we

call it one-side LOB model. However we should note that, when it is restricted that

only buy (sell) order can be traded, there is no difference between the cross-impact

LOB model and one-side LOB model.

Now let us derive the cost function in the one-side LOB model. As the cross

impact resilience rate β = 0, one gets the cross price impact LA
t = 0, LB

t = 0 and the

cross volume impact JA
t = 0, JB

t = 0 for all t ∈ [0, T ]. Denote the total price impact

in one-side LOB model by s
A,0
t , sB,0

t , which are given by s
A,0
t = D

A
t , s

B,0
t = D

B
t .

Simply substituting s
A,0
t and s

B,0
t into cost function formula (3.1.10), we
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obtain the cost function of the one-side LOB model as

C0(X) =

� T

0
D

A
t dX

A
t +

�

t≤T

�
G

A(t, EA
t +∆X

A
t )−G

A(t, EA
t )

�

+

� T

0
D

B
t dX

B
t +

�

t≤T

�
G

B(t, EB
t −∆X

B
t )−G

B(t, EB
t )

�
. (3.2.3)

This expression coincides with the cost function in Fruth et al. [31].

3.3 Market irregularity definitions

In this section, we introduce three widely studied market irregularity notions

in market impact model and some hierarchy relationships between them. More

studies on the presence and absence conditions of these market irregularities will be

presented in Chapter 5.

Note that as stated in Section 3.1, the effect of the unaffected price on the

trading costs is not considered. We will recapitulate the original definition in terms

of our notions. We drop the superscription ∞, β and 0 of the cost function unless

stated otherwise, so that these definitions are not model dependent.

Definition 3.3.1: A market impact model does not admit price manipulation (PMS)

strategy if

inf
X∈A(0)

C(X) ≥ 0,

where A(0) is the set of the round trip strategies which means the total amount to

trade is zero, i.e. XT+ = 0.

The notion of price manipulation strategy is first proposed in Huberman

and Stanzl [48]. According to Gatheral and Schied [35], an optimal solution of the

optimal execution problem does not exist if it is profitable to exploit some PMS

strategy to a given strategy.

63



Definition 3.3.2: A market impact model has positive liquidation costs (PLC) if

for ∀Q ∈ R, and every corresponding order execution strategy

inf
X∈A(Q)

C(X) ≥ 0,

where A(Q) is the admissible set of trading strategies that to get a total amount of

Q shares.

Note that for round trips, PLC and absence of PMS are equivalent. However,

PLC is defined on a bigger set of execution strategies.

Positive liquidation cost is first defined in Klöck et al. [53]. In its original

paper, the condition is presented as infX∈A(Q) C(X)+A0Q ≥ A0Q over allX ∈ A(Q)

given A0 = B0. This PLC condition rules out the situation that on average the

trader can make a profit beyond the face value A0Q of a position out of the price

impact incurred by his own trades.

Definition 3.3.3: A market model does not admit transaction-triggered price ma-

nipulation (TTPM) strategy if for any Q ∈ R,

inf
X∈A(Q)

C(X) = inf
X∈AP (Q)

C(X),

where AP (Q) is the set of the pure trading strategies.

The TTPM strategy is first found in Alfonsi et al. [6]. It describes the

situation in which the execution costs of a a buy (resp. sell) program can be reduced

by intermediate sell (resp. buy) orders. For those models which admit TTPM

strategy, optimal execution strategies may oscillate strongly between buy and sell

orders, which implies the instability of the market impact models.

As preparation for the study of absence and presence condition of market

irregularity in Chapter 5, we start with some hierarchy relationships between these

three market irregularity definitions followed by some examples showing these rela-

tionships are not invertible.
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Proposition 3.3.4: In cross-impact LOB model with cost function (3.1.9), the

absence of the transaction-triggered price manipulation implies the model has positive

liquidation cost. Moreover, the existence of positive liquidation cost implies the

absence of price manipulation strategies.

We note that in the proof of the hierarchy relationship of market irregularity,

a specific LOB model is required. Suppose given a general LOB model, the hierarchy

relationship turns to be the one given in Proposition 3.3.5.

Proposition 3.3.5: The absence of the transaction-triggered price manipulation

implies the absence of price manipulation strategy.

In the following, we will present some examples and show the above hierarchy

relationships are not invertible.

Example 3.3.6 (No PMS but not PLC): By this example we will demonstrate a

constant time-varying zero-spread LOB model that excludes the PMS but does not

have the PLC under some circumstances.

Assume the shape function is of the form f(t, p) = q(t)f(x) where we set

f(x) = 1 and q(t) = 1− bt+ at
2. Let trading times be T = {0, 1, 2}. For the trading

strategy (x, y,Q− x− y), we have the trading cost

C∞ =
x
2

2q(0)
+

y

2

�
y

2
+ 2e−ρ x

q(0)

�

+
Q− x− y

2

�
Q− x− y

q(2)
+ 2e−2ρ x

q(0)
+ 2e−ρ y

q(1)

�
.

Using the software Mathematica, one obtains C∞ ≥ 0 for Q = 0 under some specific

combinations of the coefficients a, b, ρ. One example is taking a = 21.5 and b =

−19.5, ρ = log(2).

However, with the same coefficients a, b, ρ and for any Q �= 0, one obtains

inf C∞ → −∞, which implies the violation of the definition of positive liquidation

cost.

Example 3.3.7 (PLC but TTPM): We will present an example of a zero-spread
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LOB model which has PLC but admits the TTPM. Consider a purchase program to

buy 50 shares of some stock. Suppose that the resilience rate is ρ = 1, cross impact

resilience rate is β → ∞ and trading times T = {t0 = 0, t1 = 0.05, t2 = 0.1}, the

shape function is of the form f(t, x) = q(t) where q(t) = 4 + cos(2πt). We fix the

first trading size to be ξ0 = 20.

As we change the size of the second trade ξ1 and the final trade ξ2 accordingly

such that a total size of Q = 50 is bought in the end, the change of the trading cost of

strategy {ξ0, ξ1, ξ2} is shown in Figure 3.3. As we can observe, the optimal strategy

ξ1 is negative in some cases (shown by the negative part of ξ1). In particularly,

the minimum of the trading cost is obtained when ξ1 = −5 and accordingly ξ2 =

50 − ξ1 − ξ2 = 35. As a result, this model admits the TTPM. But this model has

PLC by Proposition 5.3.2 in Chapter 5.

3.4 Proofs

Proof of Lemma 3.1.3. Using the integration by parts formula xF (x) =
� x
0 ydF (y)+

� x
0 F (y)dy, for each fixed time t ∈ [0, T ] we could write

G
A(t, x) =

� gA(t,x)

0
ydF

A(t, y)

= g
A(t, x)FA(t, gA(t, x))−

� gA(t,x)

0
F

A(t, y)dy

=

� gA(t,x)

0

�
x− F

A(t, y)
�
dy

=

� gA(t,x)

0

� x

FA(t,y)
dzdy

=

� x

0

� gA(t,z)

0
dydz

and

G
B(t, x) =

� 0

−gB(t,x)
ydF

B(t, y)

= g
B(t, x)FB(t, gB(t, x))−

� 0

−gB(t,x)
F

B(t, y)dy
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Figure 3.3: The change of the liquidation cost against the trade size ξ1 at time t1.
The vertical line is ξ1 = 0.
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=

� 0

−gB(t,x)
(x− F

B(t, y))dy

=

� 0

−gB(t,x)

� x

FB(t,y)
dzdy

=

� x

0

� 0

−gB(t,z)
dydz.

The last step in equations of GA and G
B are both true because of the fact that the

symmetric difference of the sets

�
(z, y)

�� z ∈ [FA(t, y), x] and ∈ [0, gA(t, x)]
�
,

�
(z, y)

�� z ∈ [0, x] and y ∈ [0, gA(t, z)]
�
,

�
(z, y)

�� z ∈ [FB(t, y), x] and y ∈ [−g
B(t, x), 0]

�

and
�
(z, y)

�� z ∈ [0, x] and y ∈ [−g
B(t, z), 0]

�

are both at most a countable union of line segments. Thus the two-dimensional

Lebesgue measure is zero. Therefore, Gi(t, x) =
� x
0 g

i(t, z)dz and ∂Gi

∂x (t, x) = g
i(t, x).

Proof of Lemma 3.1.4. Ask side: Suppose x2 < x1 ≤ ∞. For some fixed time

t ∈ [0, T ], choose y1, y2 such that F
A(t, y1) − x1 = 0 and F

A(t, y2) − x2 = 0.

Thus we get FA(t, y1) > F
A(t, y2) since FA(t, x) is non-decreasing on x by Assump-

tion 3.1.1. The inequality F
A(t, y1) > F

A(t, y2) can be rewritten as
� y1
0 f

A(t, x)dx >

� y2
0 f

A(t, x)dx. The positivity of the shape function f
A(t, x) implies y1 > y2, i.e.

g
A(t, x1) > g

A(t, x2).

Bid side: For x2 < x1 ≤ ∞. Choose y1, y2 such that F
B(t, y1) − x1 = 0

and F
B(t, y2)− x2 = 0. Thus we have F

B(t, y1) > F
B(t, y2), i.e.

� 0
−y1

f
B(t, x)dx >

� 0
−y2

f
B(t, x)dx. By the positivity of the shape function, we obtain y1 > y2, i.e.

g
B(t, x1) > g

B(t, x2).
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Proof of Proposition 3.3.4. Part One: We prove the proposition under the price

impact reversion and volume impact reversion respectively. Without loss of general-

ity, we will consider a pure buy strategy (XA
, 0) ∈ AP (Q). Recall the cost function

of a cross-impact LOB model for pure strategy

Cβ(XA
t , 0) =

� T

0
s
A
dX

A
t +

�

t∈[0,T ]

�
G

A(t, V A
t +∆X

A
t )−G

A(t, V A
t )

�
≥ 0.

Case of price impact reversion: The total price impacts caused by strat-

egy (XA
, 0) are s

A
t > 0 and s

B
t = 0 for all t ∈ [0, T ]. This is because the cross price

impact L
A(XB) of a pure buy strategy is zero, namely s

A
t = D

A
t for all t ∈ [0, T ].

Considering the initial condition D
A
0 = 0, the dynamics (3.1.1) and and X

A is non-

decreasing, one gets sAt > 0. Via the relationship equation (3.1.6), the corresponding

volume impact are given by V
A
t = F

A(t, sAt ) > 0 and V
B
t = 0.

By Lemma 3.1.3 and Lemma 3.1.4, we know G
A(t, x) is non-decreasing on x

for some fixed t ∈ [0, T ]. Therefore, for ∆X
A
t > 0 and V

A
t > 0, GA(t, V A

t +∆X
A
t )−

G
A(t, V A

t ) ≥ 0 for t ∈ [0, T ]. In addition, since dX
A
t is a positive measure on [0, T ],

one obtains the first term in cost function is positive, i.e.
� T
0 s

A
t dX

A
t ≥ 0.

The trading cost of arbitrary pure buy strategy (XA
, 0) is then positive. So

for any pure strategy one obtains infX∈AP (Q) Cβ(X) ≥ 0.

The absence of TTPM implies that infX∈A(Q) Cβ(X) = infX∈AP (Q) Cβ(X) ≥

0. Therefore, the absence of TTPM implies the positive liquidation costs.

Case of volume impact reversion: The total volume impacts are V
A
t =

� t
0 e

−ρ(t−r)
dX

A
r > 0 and V

B
t = 0 since XA is an increasing process. By the relation-

ship equation (3.1.6), the corresponding price impact are given by s
A
t = g

A(t, V A
t ) >

0 and s
B
t = 0 for all t ∈ [0, T ] since g

A(t, x) is increasing on x.

Therefore, for∆X
A
t > 0 and V

A
t > 0, one hasGA(t, V A

t +∆X
A
t )−G

A(t, V A
t ) ≥

0 for t ∈ [0, T ]. Furthermore, dXA
t is a positive measure on [0, T ], which implies

� T
0 s

A
t dX

A
t ≥ 0.
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As a result, the trading cost of an arbitrary pure buy strategy is positive,

namely Cβ(XA
t , 0) ≥ 0. So for any pure strategy we have infX∈AP (Q) Cβ(X) ≥ 0.

In particular, by absence of the TTPM strategy in cross-impact model, one ob-

tains infX∈A(Q) Cβ(X) = infX∈AP (Q) Cβ(X) ≥ 0. Therefore, the absence of TTPM

strategy implies the positive liquidation costs.

Part Two: For a round trip i.e. Q = 0, the model admits positive liquidation cost

implies

inf
X∈A(0)

Cβ(X) ≥ 0,

which is just the definition of absence of price manipulation strategy.

Proof of Proposition 3.3.5. In this proof, we drop the superscription β, ∞ and 0 of

the cost functions. By doing this, we show that the following arguments hold under

all three models.

If we could prove that the existence of price manipulation strategy leads to

transaction-triggered price manipulation, then the assertion holds.

On one hand, the existence of PM strategies implies that there is at least a

round trip X ∈ A(0) such that C(X) < 0, namely infX∈A(0) C(X) < 0.

On the other hand, the absence of TTPM strategies implies that for Q = 0

one has infX∈A(0) C(X) = infX∈AP (0) C(X). While for a round trip, the pure strategy

could only take the form of Xt ≡ 0 for all t ∈ [0, T ]. As a result, the cost of a trading

strategy X ∈ AP (0) is always zero.

If the TTPM strategies are excluded, one has infX∈A(0) C(X) = infX∈AP (0) C(X) =

0. This is a contradiction to the existence of PMS which states infX∈A(0) C(X) < 0.

Thus the TTPM strategy can not be excluded. Then the assertion holds.
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Chapter 4

Application I: Optimal market

order trading strategy

As a natural application of the cross impact LOB model, in Section 4.1 we

will solve the optimal execution problem in a more general context. The complex-

ity brought by modelling the two sides resilience ρ,β and a general time-dependent

shape function f(t, x) makes it hard to prove the existence of optimal strategy.

Exploiting the Proposition 4.1.2 and Corollary 4.1.3, we can transfer the problem

of existence of optimal solution of the cross-impact LOB model to the problem of

existence of optimal strategy in zero-spread LOB model. Proposition 4.1.2 and

Corollary 4.1.3 respectively states that for any strategy in the admissible set A(Q),

the zero-spread cost C∞ is a lower bound of the cross-impact cost Cβ , and further-

more the minimum cost of the zero-spread LOB model is a lower bound of the

minimum cost of the cross-impact LOB model.

We closely follow the line offered in Alfonsi and Schied [3] and Alfonsi and

Acevdeo [2], where the price impact reversion and volume impact reversion are

both considered. Firstly, we use Euler-Lagrange formalism to find the discrete-time

optimal trading strategy. Then, by taking each trading interval [ti, ti+1) to be very

small approaching zero, one obtains a candidate continuous-time optimal strategy.
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Then the verification of optimality is done by direct calculation. Therefore, in the

sequel we will discuss the optimal execution strategy under four cases of zero-spread

LOB model, namely reversion of the volume impact process in discrete time (Et

Dis) and continuous time (Et Cts), reversion of the price impact process in discrete

(Dt Dis) and continuous time (Dt Cts) setting.

We also obtain sufficient conditions for absence of TTPM under all four

cases, which are summarised in Table 4.1. An overview of the contributions in this

chapter is: Our results generalise the results in Alfonsi and Acevdeo [2] in terms of

optimal strategy (Proposition 4.1.5, 4.1.6, 4.1.10, and 4.1.11) and absence condition

of transaction-triggered price manipulation (Corollary 4.1.7 and 4.1.12). For the

zero-spread LOB model in Alfonsi and Acevdeo [2], the sufficient conditions on

absence of TTPM is independent on shape function. While, in our case with more

general shape function, the condition in Corollary 4.1.7 is more restrictive than that

in Alfonsi and Acevdeo [2].

Section 4.2 is devoted to constant time varying shape function of cross impact

LOB model. There, we will present some numerical examples of our cross-impact

LOB optimal execution strategies. It is further assumed that the shape function

is of the form f(t, x) = q(t). Comparative analysis on the shape function, same

side resilience rate ρ and cross-impact resilience rate β are conducted. Figure 4.4

suggests that the bigger the cross impact resilience rate, the more volatile the optimal

strategy alternating between buy and sell. As shown in Figure 4.6, the bigger the

same side resilience rate, the more pure buy (sell) orders are used and the smaller

size for each child order.
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4.1 Construction of optimal trading strategy

Let us summarise the optimal execution problem that we consider in this

chapter. The cross-impact cost function Cβ(XA
, X

B) is defined as

Cβ(XA
, X

B) =

� T

0
(DA

t − L
A
t )dX

A
t +

�

t≤T

�
G

A(t, EA
t − J

A
t +∆X

A
t )

−G
A(t, EA

t − J
A
t )

�
+

� T

0
(DB

t − L
B
t )dX

B
t +

�

t≤T

�
G

B(t, EB
t − J

B
t

−∆X
B
t )−G(t, EB

t − J
B
t )

�
, (4.1.1)

where D
A, DB are the same side price impact, LA

t , L
B
t are the cross price impact,

E
A
t , E

B
t are the same side volume impact, and J

A
t , JB

t are the cross volume impact.

They are related by formula (3.1.6) in Chapter 3. Recall the following functions

too. g
A(t, x) and g

B(t, x) are inverse functions of FA(t, x) and F
B(t, x) such that

g
A(t, FA(t, x)) = x and g

B(t, FB(t, x)) = x. F
A(t, x) and F

B(t, x) are functions

satisfying

∂F
i

∂t
(t, x) = η

i(t, x),

F
A(t, x) =

� x

0
f
A(t, y)dy

and

F
B(t, x) =

� 0

−x
f
B(t, y)dy.

where f
A(t, x) is ask side shape function and f

B(t, x) is bid side shape function.

The auxiliary function G
A(t, x) and G

B(t, x) are defined as

F̃
A(t, x) =

� x

0
yf

A(t, y)dy, G
A(t, x) = F̃

A(t, gA(t, x)),

and

F̃
B(t, x) =

� 0

−x
yf

B(t, y)dy, G
B(t, x) = F̃

B(t, gB(t, x)).
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The admissible set is given by

A(Q) =

�
(XA

, X
B) ∈ R2

+

���� X
A
0 = X

B
0 = 0,

� T+

0
dX

A
s −

� T+

0
dX

B
s = Q,

X
A
t ≥ X

A
s , X

B
t ≥ X

B
s for any t ≥ s,

and X
A
, X

B are bounded variation.

�
. (4.1.2)

The admissible set A(Q) is closed, convex but not bounded. In this case, we make

use of the notion of a coercive function.

Definition 4.1.1: A function f(x) : Rn → R is said to be coercive if for every

sequence {xν} ⊂ Rn for which �xν� → ∞ it must be the case that f(xν) → +∞

as well. That is, for any constant M > 0 there is a constant R(M) > 0 such that

�f(xν)� > M whenever �xν� > R(M).

It turns out that Proposition 4.1.2 and Corollary 4.1.3 enable us to simplify

the task of proving the existence of optimal solution in cross-impact LOB model.

Proposition 4.1.2: Given the cost functional C∞ for zero-spread LOB model, Cβ

with 0 < β < ∞ for cross-impact LOB model and C0 for one-side LOB model, for

any strategy X ∈ A(Q) these cost functions satisfy the following relationship

C∞(X) ≤ Cβ(X) ≤ C0(X).

Moreover, for all pure strategies X ∈ AP (Q), the three cost functionals coincide i.e.

C∞(X) = Cβ(X) = C0(X).

The optimal execution problem under the zero-spread LOB model is formu-

lated as follows. Minimise the zero-spread cost functional

C∞ =

� T

0
(DA

t −D
B
t )dXt +

�

t∈[0,T ]

[G(t, EA
t − E

B
t +∆Xt)−G(t, EA

t − E
B
t )]

(4.1.3)
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over the admissible set

A∞(Q) :=

�
Xt : [0, T+] → R

���� X0 = 0, XT+ = Q and Xt =

� t

0
dX

A
s −

� t

0
dX

B
s

for any (XA
t , X

B
t ) ∈ A(Q)

�
.

From the analysis of section 3.2.1, we know the function G(t, x) is defined by

G(t, x) = G
A(t, x) and F (t, x) =

� x
0 f(t, y)dy, η(t, x) = ∂F

∂t (t, x) and g(t, x) the

inverse function of F (t, x) satisfying g(t, F (t, x)) = x.

Corollary 4.1.3: If there is an optimal solution X
∗,β for the optimal execution

problem (4.1.1) and an optimal solution X
∗,∞ for problem (4.1.3), one obtains the

following relationship

C∞(X∗,∞) ≤ Cβ(X∗,β) over A(Q).

As a result, we can restrict our attention to the existence of optimal solution

in zero-spread LOB model. In the discrete time case, we will demonstrate the

existence by proving the coerciveness of the cost functionals and then we construct

a semi closed-form optimal execution strategy. By taking the time step of trading

strategies to zero, we get a candidate solution. In this way, we can transfer the

results from discrete to continuous time.

Before stepping into the detailed discussion, we will make a simplification

assumption that the same side and opposite resilience rate are constant, i.e. ρt = ρ

for all t ∈ [0, T ] in this chapter. All results can be extended to the deterministic

resilience rate case in the same way. Besides, in the rest of this section only, we will

drop the superscription and denote by C = C∞.
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4.1.1 Model of volume impact reversion in discrete time

Denote by an = e
−ρ(tn−tn−1) for 1 ≤ n ≤ N . The dynamics of the volume

impact process in discrete time are summarised by equations

E0 = 0, En =
n−1�

i=0

ξie
−ρ(tn−ti) for n = 1, . . . , N

and

E0+ = ξ0, En+ =
n−1�

i=0

ξie
−ρ(tn−ti) + ξn for n = 1, . . . , N,

where ξi is the trade size at each trading time ti ∈ T .

We rewrite the zero-spread cost function (4.1.3) in discrete time setting by

C(ξ) =
N�

n=0

[G(tn, En + ξn)−G(tn, En)]

=
N−1�

n=0

[G(tn, En + ξtn)−G(tn+1, En+1)] +G(tN , EN + ξN )

=
N−1�

n=0

[G(tn, En + ξn)−G(tn+1, an+1(En + ξn))] +G(tN , EN + ξN ). (4.1.4)

In order to construct a discrete time optimal strategy in Proposition 4.1.5, we need

the following Assumption 4.1.4 and auxiliary function:

hi+1(x) =
g(ti, x)− ai+1g(ti+1, ai+1x)

1− ai+1
, for x ∈ R and 0 ≤ i ≤ N − 1. (4.1.5)

Assumption 4.1.4: For ∀t ∈ [0, T ], the shape function f(t, x) satisfies the condi-

tions x
∂f
∂x (t, x) ≤ 0 and η(t, x) ≥ 0.

Proposition 4.1.5: Under Assumption 4.1.4, the auxiliary function (4.1.5) is bi-

jective and we denote by h
−1
i its inverse function. Construct a trading strategy ξ

∗
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as follows

ξ
∗
0 = h

−1
1 (ν),

ξ
∗
i = h

−1
i+1(ν)− aih

−1
i (ν), 1 ≤ i ≤ N − 1

ξ
∗
N = F (tN , ν)− aNh

−1
N (ν),

(4.1.6)

where ν is the unique solution of the following equation

Q =
N�

i=1

ξti = (1− a1)h
−1
1 (ν) + . . .+ (1− aN )h−1

N (ν) + F (tN , ν).

Strategy (4.1.6) is the unique minimiser for the cost functional (4.1.4) over A∞
N (Q).

Moreover, this zero-spread LOB model does not admit PMS. The first and the last

trades have the same sign as Q. The intermediate strategies ξ
∗
i , 1 ≤ i ≤ N − 1 has

the same sign as Q, if the following condition

ai + ai+1 ≤ 1 for 1 ≤ i ≤ N − 1 (4.1.7)

is satisfied.

In other words, Assumption 4.1.4 and condition (4.1.7) are the sufficient

conditions for absence of TTPM. The condition (4.1.7) does not depend on the

shape function f(t, x), but only on the resilience rate ρ. With this condition, we

can tell that the bigger the resilience rate ρ, the less profitable to use the TTPM

strategies in this discrete time volume impact reversion model.

The condition (4.1.7) for absence of TTPM strategy is more restrictive than

the condition (33) in Theorem 2.3 of Alfonsi and Acevdeo [2], where the shape

function takes the form f(t, x) = q(t)f(x). In that case, condition (4.1.7) is satisfied.

This is proved in Lemma 4.3.4.
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4.1.2 Model of volume impact resilience in continuous time

For continuous time case, we utilise the optimal execution strategy obtained

in discrete time set-up, and provide a verification argument that the corresponding

continuous analogy strategy is an optimal solution. We propose a continuous time

auxiliary function

ht(x) = g(t, x) + x
∂g

∂x
(t, x)− 1

ρ

∂g

∂t
(t, x), (4.1.8)

We assume the shape function f(t, x) to be such that the auxiliary function (4.1.8)

is bijective on R and has positive first derivative on x is positive, namely ∂ht
∂x (x) > 0.

Later in Corollary 4.1.7 we will show that the auxiliary function ht(x) is bijective

and strictly increasing on R if Assumption 4.1.4 and condition (4.1.10) are satisfied.

Proposition 4.1.6: Assume a continuous differentiable shape function f(t, x) such

that the auxiliary function (4.1.8) is bijective and ∂ht
∂x (x) > 0 on R. Denote by

h
−1
t (x) the inverse function of ht(x). Construct a trading trading strategy X

∗ in the

following way: Trade at time t = 0 a singular order of size ξ
∗
0 ; then continuously

trade with rate ξ
∗
t on time interval (0, T ); finally at time T submit a singular order

of ξ∗T . The trade sizes are determined by

ξ
∗
0 = ζ0,

ξ
∗
t =

dζt

dt
+ ρζt

and

ξ
∗
T = F (T, ν)− aNζT ,

where we set ζt := h
−1
t (ν) and ν ∈ R uniquely solves the equation

Q =

� T

0
ρh

−1
t (ν)dt+ F (T, ν). (4.1.9)

Then the cost function 4.1.3 is non-negative and has a minimiser X
∗ over A∞(Q).

Moreover, the initial trade ξ
∗
0 and the last trade ξ

∗
T have the same sign as Q which
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is positive if it is a buy program and is negative if it is a sell program.

Now let us discuss the sign of the trades given by the optimal strategy. A

sufficient condition of absence of TTPM is summarised in Corollary 4.1.7.

Corollary 4.1.7: Under Assumption 4.1.4, the auxiliary function ht(x) is contin-

uous differentiable in x, bijective on R and strictly increasing if

∂

∂x

�
η

f

�
(t, x) > 0. (4.1.10)

Thus, the results of Proposition 4.1.6 hold. Moreover, if

�
2ρζt

∂f

∂t
+ 2

∂f

∂t
η + ρfη + 2ρ2ζtf − f

∂η

∂t

�
(t, g(t, ζt)) ≥ 0 (4.1.11)

also holds where ζt takes values as that in Proposition 4.1.6, ξ∗t has the same sign

as Q for any 0 < t < T , which excludes TTPM.

We should note that the condition (4.1.11) is not a time continuous analog

of the absence condition (4.1.7) in discrete time case and is not a sharp condition as

we can see from the proofs. Our results from Corollary 4.1.7 is more restrictive than

the condition (22) in Alfonsi and Acevdeo [2] in a way that our results is depend

on the shape function. In particular, in Lemma 4.3.6 we provide a proof that our

condition (4.1.11) implies the condition (22). Furthermore, it turns out that as long

as the shape function takes the form of f(t, x) = q(t)f(x), the condition (22) in

Alfonsi and Acevdeo [2] holds under arbitrary function f(x).

4.1.3 Model of price impact reversion in discrete time

Recall that for 1 ≤ n ≤ N , we set an = e
−ρ(tn−tn−1). The dynamics of the

price impact process Dt in discrete time are given by

D0 = 0, Dn = ang(tn−1, F (tn−1, Dn−1) + ξn−1) for 1 < i ≤ N
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and

D0+ = g(0, ξ0), Dn+ = g(tn, F (tn, Dn) + ξn) for 1 < i ≤ N,

where g(t, x) is the inverse function of F (t, x) =
� x
0 f(t, y)dy such that g(t, F (t, x)) =

x.

We translate the cost function (4.1.3) with price impact resilience as

C(ξ) =
N�

n=0

[G(tn, F (tn, Dn) + ξn)−G(tn, F (tn, Dn))]

= G(tN , F (tN , DN ) + ξN ) +
N−1�

n=0

[G(tn, F (tn, Dn) + ξn)−G(tn+1, F (tn+1, Dn+1))]

= F̃ (tN , g(tN , F (tN , DN ) + ξN ))

+
N−1�

n=0

�
F̃ (tn, g(tn, F (tn, Dn) + ξn))− F̃ (tn+1, an+1g(tn, F (tn, Dn) + ξn))

�
,

(4.1.12)

where F̃ is defined by F̃ (t, x) =
� x
0 yf(t, x)dy. Similarly in order to solve the optimal

execution problem in this model, we will need Assumption 4.1.8 and construct an

auxiliary function

pi+1(x) = x

1
ai+1

− ai+1f(ti+1, x)
∂g
∂x

�
ti, F

�
ti,

x
ai+1

��

1− ai+1f(ti+1, x)
∂g
∂x

�
ti, F

�
ti,

x
ai+1

�� . (4.1.13)

Assumption 4.1.8: For each fixed t ∈ [0, T ] and all x ∈ R, the shape function

f(t, x) needs to satisfy:

1. x
∂f
∂x (t, x) ≥ 0;

2. ∂η
∂t (t, x) ≤ 0 and x

�
f

∂2f
∂t∂x − ∂f

∂t
∂f
∂x

�
≥ 0;

3. x → x
∂xf(t,x)
f(t,x) is non-decreasing on R− and non-increasing on R+.

Remark 4.1.9: By analysing the Assumption 4.1.8 item 1 and 3, it is observed that

the set of functions satisfying this assumption should be of the form f(t, x) = λ(t),
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or equivalently ∂xf(t, x) = 0 for all x ∈ R. This is due to the fact that function

x
∂xf(t,x)
f(t,x) = 0 at x = 0.

This observation is also reflected by the Assumption 2.2 in Alfonsi and Acevdeo

[2] and by Corollary 2.6 in Alfonsi and Acevdeo [2]. Assumption 2.2 is a restriction

of our Assumption 4.1.8 with the shape function of the form f(t, x) = f(x)λ(t).

The functions that satisfy that assumption are constant functions on R. The suffi-

cient conditions of absence of TTPM in Corollary 2.6 for general separable shape

functions coincides with those for constant shape functions, which is trivial from the

Assumption 2.2.

Nevertheless, when finding optimal solution(s) for discrete time price impact

reversion, one should not restrict on the set of constant shape functions. Our proof

in the discrete time relies on Lagrange multiplies which requires to show first that

the cost function has a minimum. In addition, the candidates of optimal strategy in

continuous time are obtained from the discrete time optimal solutions shown in the

following Proposition 4.1.10.

When stating the continuous time optimal strategy, we slightly relax Assump-

tion 4.1.8 since the proof of the continuous time case relies on a verification argu-

ment. In Example 4.1.13 we will show the existence of optimal solutions of time-

varying non-constant shape function LOB models and conditions to exclude the PMS

and TTPM.

Proposition 4.1.10: Under Assumption 4.1.8, the auxiliary function (4.1.13) is

bijective and we denote by p
−1
i its inverse function. Construct a trading strategy ξ

∗

as follows

ξ
∗
0 = F

�
t0,

p
−1
1 (ν)

a1

�
,

ξ
∗
i = F

�
ti,

p
−1
i+1(ν)

ai+1

�
− F

�
ti, p

−1
i (ν)

�
, 1 ≤ i ≤ N − 1 (4.1.14)

and

ξ
∗
N = F (tN , ν)− F

�
tN , p

−1
N (ν)

�
,
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where ν is the unique solution of the following equation

Q =
N�

i=1

�
F

�
ti−1,

p
−1
i (ν)

ai

�
− F

�
ti, p

−1
i (ν)

��
+ F (tN , ν).

Strategy (4.1.14) is the unique minimiser for the cost function (4.1.12) over A∞
N (Q).

The cost functional C(ξ) is non-negative and the first and the last trades have the

same sign as Q.

Not like in the case of discrete time volume resilience model, it is difficult

to find a more restrict condition than sgn(v)F

�
ti,

p−1
i+1(ν)

ai+1

�
− F

�
ti, p

−1
i (ν)

�
≥ 0 to

make the trades ξ∗i have the same sign as Q.

4.1.4 Model of price impact reversion in continuous time

We propose the continuous auxiliary function

pt(x) = x
2ρf(t, x)− ∂tf(t, x) + ρx∂xf(t, x)

ρf(t, x)− ∂tf(t, x) + ρx∂xf(t, x)
. (4.1.15)

Now we are ready to show that no PMS exists and that there is a unique

optimal execution strategy if the auxiliary functions for t ∈ [0, T ] are bijective on R

with a positive first derivative on x.

Proposition 4.1.11: Assume the shape function f(t, x) ∈ C
2([0, T ] × R,R+) sat-

isfies the condition

ρf(t, x) + ρx
∂f

∂x
(t, x)− ∂η

∂x
(t, x) > 0, (4.1.16)

and is such that the auxiliary function (4.1.15) is bijective on R with positive first

derivative ∂xpt(x) > 0. Denote by p
−1
t (x) the inverse function of pt(x). Construct

a trading strategy X
∗ in the following way: Trade at time t = 0 a singular order of

size ξ
∗
0 ; then continuously trade with rate ξ

∗
t in time (0, T ); finally at time T submit
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a singular order of ξ∗T . The trade sizes are determined by

ξ
∗
0 = F (t0, ζ0),

ξ
∗
t = f(t, ζt)

�
dζt

dt
+ ρζt

�

and

ξ
∗
T = F (tN , ν)− F (tN , ζT ),

where we set ζt := p
−1
t (ν) and ν ∈ R uniquely solve the equation

Q = F (T, ν) +

� T

0

�
ρp

−1
t (ν)f(t, p−1

t (ν))− η(t, p−1
t (ν))

�
dt. (4.1.17)

Then the strategy X
∗ is the minimiser of the cost function (4.1.3) and PMS does

not exist. The initial trade ξ
∗
0 has the same sign as Q.

In the following Corollary 4.1.12, we show that if the Assumption 4.1.8 holds,

the increasing, bijection condition of the auxiliary function pt is automatically sat-

isfied.

Corollary 4.1.12: Let f be twice continuous differentiable. Under Assumption 4.1.8,

if the condition ρf(t, x) + ρx
∂f
∂x (t, x)−

∂η
∂x(t, x) > 0 holds, the function pt is C

1, bi-

jective and strictly increasing. Thus, the results of Proposition 4.1.11 hold and the

last trade ξ
∗
T has the same sign as Q. Besides, if

ρx∂t

�
∂xf

f
(t, x)

�
− ∂t

�
∂tf

f
(t, x)

�
+

�
ρ− ∂tf

f
(t, x)

��
2ρ− ∂tf

f
(t, x)

�
> 0

(4.1.18)

also holds, ξ∗t has the same sign as Q for any 0 < t < T , which rules out TTPM.

As stated in Remark 4.1.9, due to Assumption 4.1.8, the results of Corol-

lary 4.1.12 coincides with the condition (30) in Corollary 2.6 of Alfonsi and Acevdeo

[2] for absence of PMS and TTPM. From the proof of this corollary, we should note

that the condition (4.1.18) is not sharp. In the following, we study the absence

of PMS and existence of optimal solution for a LOB model with a non-separable
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time-varying shape function.

Example 4.1.13: Consider a shape function of the form

f(t, x) = tx
2 + a, for some positive constant a > 0.

In this case, ∂f
∂t (t, x) = x

2 and ∂f
∂x (t, x) = 2tx. The auxiliary function pt(x) and its

derivative on x are then respectively given by

pt(x) = x
(4ρt− 1)x2 + 2aρ

(3ρt− 1)x2 + aρ

and

∂xpt(x) =
1

(3ρt− 1)x2 + aρ

�
x
4(4ρt− 1)(3ρt− 1) + aρx

2(6ρt− 1) + 2a2ρ2
�
.

Thus, pt(x) is bijective and strictly increasing if and only if

3ρt− 1 ≥ 0.

We can apply the results of Proposition 4.1.11 in this case. The LOB model with

this non-separable, time-varying shape function admits a unique optimal execution

strategy, which can be numerically computed.

4.2 Numerical examples of discrete optimal trading strat-

egy in cross-impact LOB model

In this section, we are going to look at some numerical examples of optimal

trading strategies in discrete time cross-impact LOB model. We will further assume

that the shape function takes the form f
A(t, x) = f

B(t, x) = q(t) where the depth

function q(t) is assumed to be deterministic, twice continuous differentiable and

strictly positive.

Substituting the shape function q(t) into the cross impact cost function (4.1.1),
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one gets

Cβ(XA
, X

B) =

� T

0
(DA

t − L
A
t )dX

A
t +

� T

0
(DB

t − L
B
t )dX

B
t +

�

t≤T

�
(∆X

A
t )

2

2q(t)
+

(∆X
B
t )2

2q(t)

�
.

(4.2.1)

In particular, before specifying the dynamics of price impact and volume impact, we

substitute the constant shape function into equation (3.1.6) and obtain the relation

equation between the price impact s
A, sB and volume impact V

A, V B, which is

given by

s
i
t =

V
i
t

q(t)
, for i = A,B.

By considering a shape function q̂(t) = q(T − t) and trading times t̂N−i = T −

ti, It turns out that the price impact reversion model in constant shape model is

mathematically the same as the volume impact reversion model. Without loss of

generality, we will only derive the optimal problem under the assumption of price

impact reversion in the rest of this section.

Let us introduce the following notations:

ΘA = (θA0 , θ
A
1 , . . . , θ

A
N ) ∈ RN+1

,

ΘB = (θB0 , θ
B
1 , . . . , θ

B
N ) ∈ RN+1

,

ai,j : =
e
−ρ(tj−ti)

q(ti)
,

ãi,j : =
e
−(ρ+β)(tj−ti)

q(ti)
,

A : = ai,j {i<j}

Ã : = ãi,j {i<j},

Ā : = ai,j {i<j} +
ai,j

2 {i=j},

B =
1

2
(ĀT + Ā),

D = A− Ã,
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z : = (ΘA
,ΘB),

and

M : =



 B −D

−D B



 .

The cost function of a discrete trading strategy (ΘA
,ΘB) can be expressed as

Cβ(ΘA
,ΘB) = �ΘA

, ĀΘA� − �ΘB
, AΘA�+ �ΘB

, ÃΘA�+ �ΘB
, ĀΘB�

− �ΘA
, AΘB�+ �ΘA

, ÃΘB�

= �ΘA
, BΘA� − �ΘB

, DΘA�+ �ΘB
, BΘB� − �ΘA

, DΘB�

= �z,Mz�,

where �·, ·� : RN+1 × RN+1 → R is an inner product.

By introducing a skew-symmetric matrix M̄ =



 0 D−DT

2

D−DT

2 0



, the cost

function can be further simplified to be

Cβ(ΘA
,ΘB) = �z,Mz� = �z, (M + M̄)z� = 1

2
�z, (M +M

T )z� = 1

2
�z,Hz�, (4.2.2)

where H := M +M
T is a symmetric matrix. Thus the optimal problem in constant

shape cross-impact LOB model now is to minimise the cost functional

�z,Hz�,

subject to z ≥ 0 and �e, z� = Q, where e
T = (1, ..., 1,−1, ...,−1).

The object of Figure 4.1 is to study the changes of the minimal costs of a

cross-impact LOB model against the cross impact resilience rate β. The star line

describes the minimal costs under the cross-impact LOB model. The horizontal line

is the minimal costs of a zero-spread LOB model with the same parameters, except

that it is independent on the cross impact resilience rate. One observes that as

β increases from 0 to 50, the cross-impact minimum cost approaches to the zero-
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spread minimum cost from above. This is agreeable with the definitions of the cost

functions in these two models and the Proposition 4.1.2 that lim
β→∞

C∗,β = C∗,∞ over

X ∈ A(Q).

Figure 4.2 are two bar graphs illustrating respectively the optimal strategies

under a cross-impact LOB model with volume impact revision and with price impact

revision. They are plotted against a regular time grid ti = t0 + iτ with τ = T
N . The

bars above the horizontal line ξ = 0 stands for buy orders, while the bars under

this line for sell orders. The common features of these two plots are: the optimal

strategy for both models are not pure strategies; the first and last order are two

lumps which are much bigger than the intermediate orders; there are some time in

the trading interval when it is better not to trade. Another interesting observation

is that the optimal strategies are showing symmetry in the sense that X
s
i = X

V
N−i

if we denote by X
s and X

V the optimal strategies under price impact reversion and

volume impact reversion model respectively.

Next, we will have a look at how different shape functions affect the optimal

trading strategy under the cross-impact LOB framework. Keep other parameters

constant, four examples of shape functions are tested, e.g. reverting depth q(t) =

2+ cos(2πt), increasing depth q(t) = 1+ 2t, constant depth q(t) = 5 and decreasing

depth q(t) = 2
0.5+t . Figure 4.3 consist of four plots showing optimal strategies under

different shape functions, which are represented by dashed lines. Plot (a), (c) and

(d) show lump orders at the beginning and end of trade time. In plot (b) under

increasing depth though, only the end order is relatively much bigger than other

orders. Focusing on plot (b), (c) and (d), there exists a positive correlation between

the order book depth and optimal order sizes. Specifically, when the depth function

q(t) is increasing (decreasing, or constant), the intermediate optimal trading sizes

are increasing (decreasing, or constant). Compared to the rest of the plots, plot

(a)’s optimal strategies show oscillation between buy and sell orders.

Inspired by the observation in Figure 4.3, the existence of the transaction-

triggered price manipulations depends on the shape function of the order book.
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Figure 4.1: The change of the minimal cost C∗ of a cross impact LOB model against
the cross impact resilience rate β, with Q = 50 shares, T = 1, N = 20, ρ = 2 and
q(t) = 2 + cos(2πt). The horizontal line is the minimum cost of a zero-spread LOB
model with the same parameters, which is independent on β.
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(a) The optimal execution strategies with the volume impact resilience.
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(b) The optimal execution strategies with the price impact resilience.

Figure 4.2: The optimal execution strategies for buying 50 shares on a regular time
grid with the volume and price impact resilience, with T = 1, N = 50, ρ = 2, β = 10
and q(t) = 2 + cos(2πt). The dashed line is the plot of the depth function q(t).
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(a) q(t) = 2 + cos(2πt)
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(b) q(t) = 1 + 2t
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(c) q(t) = 5

0 5 10 15 20 25
0

5

10

15

20

25

Time

O
rd

e
r 

s
iz

e

(d) q(t) = 2
0.5+t

Figure 4.3: The optimal execution strategies for buying 50 shares on a regular time
grid with four different depth function q(t) (plotted in dashed lines). For each
sub-figure, the corresponding depth functions is indicated in its sub-caption. Other
parameters are identical for each of the four plots, i.e. T = 1, N = 20, ρ = 2 and
β = 5.
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Especially when taking the cross impact resilience rate β = 5, the optimal strategy

is not pure strategy under reverting depth function, meanwhile there are pure buy

optimal strategies for increasing, constant and decreasing depth function. There-

after, in the following Figure 4.4, we fixed the depth function as q(t) = 2+ cos(2πt)

and compute the optimal trading orders by setting the cross impact resilience rate

β to be 1, 10, 100 and tends to ∞ respectively. It is shown that when β = 1, the

TTPM can be excluded (by showing pure optimal strategy). As the cross impact

resilience rate taking bigger values, more sell orders are used in this purchase pro-

gram, namely more volatile between buy and sell orders. However, this feature is

not true for the model with depth q(t) = 2
0.5+t while keeping other parameter the

same. In Figure 4.5, there does not exist TTPM strategy for all four values of β.

Finally, we want to study the effect of the same side resilience rate ρ on the

optimal strategies. We can achieve this by controlling three parameters at the same

time, namely the same side resilience rate ρ, the cross impact resilience rate β and

the depth q(t). In Figure 4.6 on the same row of plots, from the left column to the

right column, only ρ is increased from 2 to 20. As the same side resilience rate ρ

increases, the optimal strategies are less volatile. This is reflected in three aspects:

the lump order becomes smaller, as shown in all subplots; the intermediate orders

are more evenly distributed, as shown from plot (a) to (b) and from plot (g) to (h);

there are less opposite side orders, as shown from plot (c), (e) to plot (d), (f).

4.3 Proofs

Lemma 4.3.1: Given the admissible set A(Q) is defined by equation 4.1.2, A(Q)

is a convex set.

Proof of Lemma 4.3.1. For any (XA
1 , X

B
1 ), (XA

2 , X
B
2 ) ∈ A(Q) and ∀λ ∈ (0, 1), we

check the following three conditions. For i = A,B,
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(a) β = 1
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(b) β = 10
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(c) β = 100
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(d) β → ∞, i.e. the zero-spread optimal strategy

Figure 4.4: The optimal execution strategies for buying 50 shares on a regular time
grid with four values of cross impact resilience rate β. For each sub-figure, the
corresponding β is indicated in its sub-caption. Other parameters are identical for
each of the four plots, i.e. T = 1, N = 20, ρ = 2 and q(t) = 2+ cos(2πt) (plotted in
dashed lines).
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(a) β = 1
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(b) β = 10
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(c) β = 100
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(d) β → ∞, i.e. the zero-spread optimal strategy

Figure 4.5: The optimal execution strategies for buying 50 shares on a regular time
grid with four values of cross impact resilience rate β. For each sub-figure, the
corresponding β is indicated in its sub-caption. Other parameters are identical for
each of the four plots, i.e. T = 1, N = 20, ρ = 2 and q(t) = 2

0.5+t (plotted in dashed
lines).
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(a) q(t) = 2 + cos(2πt), ρ = 2, β = 1
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(b) q(t) = 2 + cos(2πt), ρ = 20, β = 1
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(c) q(t) = 2 + cos(2πt), ρ = 2, β = 10
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(d) q(t) = 2 + cos(2πt), ρ = 20, β = 10

0 10 20 30 40 50 60
−15

−10

−5

0

5

10

15

Time

O
rd

e
r 

s
iz

e

(e) q(t) = 2 + cos(2πt), ρ = 2, β → ∞
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(f) q(t) = 2 + cos(2πt), ρ = 20, β → ∞
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(g) q(t) = 2t+ 1, ρ = 2, β = 10
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(h) q(t) = 2t+ 1, ρ = 20, β = 10

Figure 4.6: Optimal execution strategy to buy 50 shares on a regular time grid, with
T = 1, N = 50. The dashed lines are the plot of shape functions.
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1)

λX
i
1(0) + (1− λ)Xi

2(0) = 0,

λX1(T+) + (1− λ)X2(T+) = λQ+ (1− λ)Q = Q.

2) For any s < t, we have X
i
1(s) ≤ X

i
1(t) and X

i
2(s) ≤ X

i
2(t). Therefore the non-

decreasing property holds, i.e.

λX
i
1(s) + (1− λ)Xi

2(s) ≤ λX
i
1(t) + (1− λ)Xi

2(t).

3) The total variation of λXi
1(s) + (1− λ)Xi

2(s) is also finite and bounded.

Proof of Proposition 4.1.2. Recall that the cost functions of cross-impact, zero-spread

and one-side LOB models are respectively given by

Cβ(X) =

� T

0
(DA

t − L
A
t )dX

A
t +

�

t≤T

�
G

A(t, EA
t − J

A
t +∆X

A
t )−G

A(t, EA
t − J

A
t )

�

+

� T

0
(DB

t − L
B
t )dX

B
t +

�

t≤T

�
G

B(t, EB
t − J

B
t −∆X

B
t )−G(t, EB

t − J
B
t )

�
,

(4.3.1)

C∞(X) =

� T

0
(DA

t −D
B
t )dX

A
t +

�

t≤T

�
G

A(t, EA
t − E

B
t +∆X

A
t )−G

A(t, EA
t − E

B
t )

�

+

� T

0
(DB

t −D
A
t )dX

B
t +

�

t≤T

�
G

B(t, EB
t − E

A
t −∆X

B
t )−G(t, EB

t − E
A
t )

�

(4.3.2)

and

C0(X) =

� T

0
D

A
t dX

A
t +

�

t≤T

�
G

A(t, EA
t +∆X

A
t )−G

A(t, EA
t )

�

+

� T

0
D

B
t dX

B
t +

�

t≤T

�
G

B(t, EB
t −∆X

B
t )−G(t, EB

t )
�
. (4.3.3)

For all pure strategies X ∈ AP (Q), the three cost functionals are the same since

only either ask side or bid side is involved. The equality part of this proposition is
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easy to get.

Next, we prove the inequality C∞(X) < Cβ(X) < C0(X) for ∀X ∈ A(Q)\AP (Q)

in two steps.

Step 1: prove C∞
< Cβ .

In the case of modelling price impact reversion, given the shape function f
A

and f
B, the cross impact resilience rate 0 < β < ∞, the same side resilience rate

0 < ρt < ∞, let us recall the dynamics of same side price impact and cross price

impact respectively,

dD
A
t = −ρtD

A
t dt+

dX
A
t

f(t,DA
t )

,

dD
B
t = −ρtD

B
t dt+

dX
B
t

f(t,DB
t )

,

dL
A
t = −(β + ρt)L

A
t dt+ βD

B
t dt,

dL
B
t = −(β + ρt)L

B
t dt+ βD

A
t dt.

To simplify the illustration, we introduce the processes D̃A and D̃
B satisfying

the equations

dD̃
A
t = −(ρt + β)D̃A

t dt+
dX

A
t

f(t,DA
t )

,

dD̃
B
t = −(ρt + β)D̃B

t dt+
dX

B
t

f(t,DB
t )

.

Thereafter, the cross price impact processes LA and L
B can be expressed by formulas

L
A
t = D

B
t − D̃

B
t ,

L
B
t = D

A
t − D̃

A
t .

Since the admissible strategies X
A
t , X

B
t are non-decreasing and D̃

A, D̃
B

follow exponential decay, one gets the relationships between the cross price impact
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and same side price impact

L
A
t < D

B
t

and

L
B
t < D

A
t .

Thereafter, the ask side price impact sAt = D
A
t − L

A
t and the bid side price impact

s
B
t = D

B
t − L

B
t satisfy

D
A
t −D

B
t < s

A
t (4.3.4a)

and

D
B
t −D

A
t < s

B
t . (4.3.4b)

Via the relationship equation (3.1.6), we can express the ask side volume impact

V
A
t = E

A
t − J

A
t and the bid side volume impact V B

t = E
B
t − J

B
t as

V
A
t = F

A(t, sAt ), V
B
t = F

B(t, sBt ).

Since F
i(t, x) are increasing on x for i = A,B, equation (4.3.4) implies that

E
A
t − E

B
t = F

A(t,DA
t −D

B
t ) < V

A
t

and

E
B
t − E

A
t = F

B(t,DB
t −D

A
t ) < V

B
t .

In the case of modelling volume impact reversion, given the same side re-

silience rate ρt and cross impact resilience rate β < ∞, for all t ∈ [0, T ], the dynam-

ics of same side volume impact process and cross volume impact process are given

by

dE
A
t = −ρtE

A
t dt+ dX

A
t ,

98



dE
B
t = −ρtE

B
t dt+ dX

B
t ,

dJ
A
t = −(β + ρt)J

A
t dt+ βE

B
t dt,

dJ
B
t = −(β + ρt)J

B
t dt+ βE

A
t dt.

Similarly, we introduce two processes ẼA andẼB evolving as follows

dẼ
A
t = −(ρt + β)ẼA

t dt+ dX
A
t ,

dẼ
B
t = −(ρt + β)ẼB

t dt+ dX
B
t .

Thereafter, the cross price impact processes JA and J
B can be expressed by formulas

J
A
t = E

B
t − Ẽ

B
t ,

J
B
t = E

A
t − Ẽ

A
t .

Since the admissible strategies X
A
t , X

B
t are non-decreasing and Ẽ

A, Ẽ
B

follow exponential decay, one gets the relationships between the cross price impact

and same side price impact

J
A
t < E

B
t

and

J
B
t < E

A
t .

Thereafter, the ask side volume impact V
A
t = E

A
t − J

A
t and the bid side volume

impact V B
t = E

B
t − J

B
t satisfy

E
A
t − E

B
t < V

A
t (4.3.5a)

and

E
B
t − E

A
t < V

B
t . (4.3.5b)

Via the relationship equation (3.1.6), we can express the ask side price impact
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s
A
t = D

A
t − L

A
t and the bid side price impact sBt = D

B
t − L

B
t as

V
A
t = g

A(t, sAt )

and

V
B
t = g

B(t, sBt ).

Since g
i(t, x) are increasing on x for i = A,B by Lemma 3.1.4, equation (4.3.5a)

implies that

D
A
t −D

B
t = g

A(t, EA
t − E

B
t ) < s

A
t

and

D
B
t −D

A
t = g

B(t, EB
t − E

A
t ) < s

B
t .

In both cases, since Gi(t, x) is convex in x by Lemma 3.1.3 and Lemma 3.1.4,

one obtains

G
A(t, EA

t − E
B
t +∆X

A
t )−G

A(t, EA
t − E

B
t )

∆X
A
t

<
G

A(t, EA
t − J

A
t +∆X

A
t )−G

A(t, EA
t − J

A
t )

∆X
A
t

and

G
B(t, EB

t − E
A
t −∆X

B
t )−G

B(t, EB
t − E

A
t )

∆X
B
t

<
G

B(t, EB
t − J

B
t −∆X

B
t )−G

B(t, EB
t − J

B
t )

∆X
B
t

.

From these two inequalities, one obtains C∞
< Cβ .

Step 2: prove Cβ
< C0.

Simply since the cross volume impact is positive, i.e. J
i
t ≥ 0 for i = A,B,

the convexity of Gi on x implies the following inequalities

G
A(t, EA

t − J
A
t +∆X

A
t )−G

A(t, EA
t − J

A
t )

∆X
A
t

<
G

A(t, EA
t +∆X

A
t )−G(t, EA

t )

∆X
A
t
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and

G
B(t, EB

t − J
B
t −∆X

B
t )−G

B(t, EB
t − J

B
t )

∆X
B
t

<
G

B(t, EB
t −∆X

B
t )−G(t, EB

t )

∆X
B
t

.

In addition, since the cross price impact is positive, i.e. L
i
t ≥ 0 for i = A,B, the

inequality Cβ
< C0 holds.

Proof of Corollary 4.1.3. Since X
∗,∞ is a minimiser of C∞, one has

C∞(X∗,∞) ≤ C∞(X∗,β).

At the same time, for strategy X
∗,β Proposition 4.1.2 implies that

C∞(X∗,β) ≤ Cβ(X∗,β).

Therefore, we obtain C∞(X∗,∞) ≤ Cβ(X∗,β) over A(Q).

Lemma 4.3.2: Given the volume impact dynamics

En =
n−1�

i=0

ξie
−ρ(tn−ti)

and the discrete time cost functional (4.1.4), we have ∂C
∂ξN

= g(tN , EN + ξN ) and for

i = 0, . . . , N − 1,

∂C
∂ξi

− e
−ρ(ti+1−ti) ∂C

∂ξi+1
= g(ti, Ei + ξi)− e

−ρ(ti+1−ti)g(ti+1, Ei+1). (4.3.6)

Proof. We have ∂En
∂ξi

= 0 if i ≥ n, and ∂En
∂ξi

= e
−ρ(tn−ti) if i < n. Thus, we get

∂C
∂ξi

= g(ti, Ei + ξi) +
N�

n=i+1

e
−ρ(tn−ti)(g(tn, En + ξn)− g(tn, En))

= g(ti, Ei + ξi)− e
−ρ(ti+1−ti)g(ti+1, Ei+1) + e

−ρ(ti+1−ti)

�
g(ti+1, Ei+1 + ξi+1)

+
N�

n=i+2

e
−ρ(tn−ti+1)(g(tn, En + ξn)− g(tn, En))

�
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= g(ti, Ei + ξi)− e
−ρ(ti+1−ti)g(ti+1, Ei+1) + e

−ρ(ti+1−ti) ∂C
∂ξi+1

.

Lemma 4.3.3: Under Assumption 4.1.4, one obtains:

1. for i ∈ {0, . . . , N − 1}, the auxiliary function hi+1(x) by equation 4.1.5 is an

increasing bijection on R;

2. if condition (4.1.7) holds, we have sgn(x)h−1
i+1(x) ≥ sgn(x)aih

−1
i (x) for i ∈

{0, . . . , N − 1};

3. sgn(x)F (tN , x) ≥ sgn(x)aNh
−1
N (x).

Proof of Lemma 4.3.3. We will prove each point of this lemma in sequence.

• point 1:

Since the resilience rate ρ is positive, we have 0 < ai < 1. By Assump-

tion 4.1.4, xη(t, x) ≥ 0 implies f(ti, x) < f(ti+1, x) on R and x
∂f
∂x ≤ 0 implies f is

non-decreasing on R− and non-increasing on R+. By Lemma 3.1.4 we know g(t, x)

is increasing on x, i.e. g(ti, ai+1x) < g(ti, x) on R+ and g(ti, ai+1x) > g(ti, x) on

R−.

Thus we compute ∂hi+1

∂x (x) and obtain

∂hi+1

∂x
(x) =

∂xg(ti, x)− a
2
i+1∂xg(ti+1, ai+1x)

1− ai+1

=
1

1− ai+1

�
1

f(ti, g(ti, x))
− a

2
i+1

1

f(ti+1, g(ti+1, ai+1x))

�

≥
1− a

2
i+1

1− ai+1

1

f(ti, g(ti, x))
> 0.

• point 2:

We set ĝ(t, x) = ∂xg(t, x) = 1/f(t, g(t, x)). By Assumption 4.1.4 and Lemma 3.1.4,

we know ĝ is positive, non-increasing on R− and non-decreasing on R+. Take ν ≥ 0

and y = h
−1
i+1(ν). We note that y ≥ 0 because hi+1(0) = 0 and hi+1 is increasing by
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the first point of this lemma. Thus, we have

ν =
g(ti, y)− ai+1g(ti+1, ai+1y)

1− ai+1

= g(ti+1, ai+1y) +
g(ti, y)

1− ai+1

≤ g(ti, y) +
1

1− ai+1

� y

0
ĝ(ti, r)dr

≤ g(ti, y) +
1

1− ai+1
yĝ(ti, y)

=: Ri+1(y).

Hence we obtain that Ri+1 is increasing on R+ and then y ≥ R
−1
i+1(ν). Take z =

aih
−1
i (ν). We have

ν =
g

�
ti−1,

z
ai

�
− aig(ti, z)

1− ai

= g(ti, z) +
g

�
ti−1,

z
ai

�
− g(ti, z)

1− ai

≥ g(ti, z) +
1

1− ai

� z
ai

z
ĝ(ti, r)dr

≥ g(ti, z) +
1
ai

− 1

1− ai
zĝ(ti, z)

=: R̄i(z).

Therefore, if

1
ai

− 1

1− ai
≥ 1

1− ai+1
(4.3.7)

or equivalently the condition (4.1.7) holds, we get that Ri+1(x) ≤ R̄i(x) for all x ≥ 0.

That is to say one gets R−1
i+1(x) ≥ R̄

−1
i (x) and therefore

y ≥ R
−1
i+1(ν) ≥ R̄

−1
i (ν) ≥ z.

The same arguments for ν ≤ 0 give y ≤ R
−1
i+1(ν) ≤ R̄

−1
i (ν) ≤ z.
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• point 3:

Using the above notations, we have sgn(x)R̄N (x) ≥ sgn(x)g(tN , x), and

therefore we get

sgn(ν)F (tN , ν) ≥ sgn(ν)R̄−1
N (ν) ≥ sgn(ν)z = sgn(ν)aNh

−1
N (ν).

Proof of Proposition 4.1.5. We rewrite the cost function (4.1.4) as follows

C(ξ) = G

�
tN ,

N�

i=0

ξtie
−ρ(tN−ti)

�
+

N−1�

n=0

�
G

�
tn,

n�

i=0

ξtie
−ρ(tn−ti)

�

−G

�
tn+1, e

−ρ(tn+1−tn)
n�

i=0

ξtie
−ρ(tn−ti)

��
.

Define the linear map T1 : RN+1 → RN+1 by (T1ξ)n =
�n

i=0 ξtie
−ρ(tn−ti). Further

rewrite the cost function

C(ξ) = G(tN , (T1ξ)N ) +
N−1�

n=0

[G(tn, (T1ξ)n)−G(tn+1, an+1(T1ξ)n)].

Note that T1 is a linear bijection. Thus one obtains |T1ξ| → +∞ as |ξ| → +∞.

Moreover, one can get the following inequality

� an+1x

0
g(tn+1, y)dy ≤ an+1

� x

0
g(tn+1, y)dy ≤ an+1

� x

0
g(tn, y)dy.

The first ≤ sign holds since G(t, x) is convex on x and ∂G
∂x (t, x) = g(t, x). The

second ≤ sign holds because of η(t, x) ≥ 0 and ∂g
∂t (t, x) = − η(t,x)

f(t,x) on R+. Equiv-

alently, that is G(tn+1, an+1x) ≤ an+1G(tn, x). We then have G(tn, (T1ξ)n) −

G(tn+1, an+1(T1ξ)n) ≥ G(tn, (T1ξ)n)(1− an+1). Since the function G is convex on x

and G(t, 0) = 0, we have G(t, x) ≥ 0 for all x ∈ R and lim
x→∞

G(t, x) = ∞. Therefore

C(ξ) ≥ 0 and C(ξ) → +∞ as |ξ| → +∞ since g is increasing and lim
x→+∞

F (t, x) = +∞.

To find the candidate optimal solution, we consider the Lagrangian L defined
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as

L(X, ν) = C(X)− ν(
N�

i=0

ξi −Q).

By setting ∂L
∂ξi

= 0, we get the relationships

ν(1− ai+1) = g(ti, Eti + ξti)− e
−ρ(ti+1−ti)g(ti+1, Eti+1) for i = 0, ..., N and

ν = g(tN , EtN + ξtN ).

Thus the Lagrange multiplier ν satisfies,

ν = hi+1(Eti + ξti), for i = 0, . . . , N − 1, and ν = g(tN , EtN + ξtN ). (4.3.8)

By Lemma 4.3.3, we know the auxiliary function hi(x) is bijective and invertible. Let

us denote it by h
−1
i (x). Thereafter, we have Eti + ξ

∗
ti = h

−1
i+1(ν) and then Eti+1 =

ai+1h
−1
i+1(ν) (the dynamics of volume impact process En = e

−ρ(tn−tn−1)(En−1 +

ξn−1)). We then summarise the candidate optimal strategy as

ξ
∗
0 = (h1)

−1 (ν),

ξ
∗
i = (hi+1)

−1 (ν)− ai (hi)
−1 (ν), 1 ≤ i ≤ N − 1

and

ξ
∗
N = F (tN , ν)− aN (hN )−1 (ν),

where ν solves the equation

Q =
N�

i=1

ξ
∗
ti = (1− a1)h

−1
1 (ν) + . . .+ (1− aN )h−1

N (ν) + F (tN , ν).

By Lemma 4.3.3 the right side is an increasing bijection on R, and we deduce that

there is only one ν ∈ R which satisfies the above equation. This gives the uniqueness

of the minimiser.

Moreover, the functions g(t, x) and hi(x) vanish at x = 0 and ν has the same
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sign as Q, which implies that ξ∗0 and ξ
∗
N have the same sign as Q by Lemma 4.3.3.

Besides, by Lemma 4.3.3 if (4.1.7) holds, the trades ξ
∗
i have also the same sign as

Q.

Lemma 4.3.4: Given xη(t, x) ≥ 0 for x ∈ R, ∀t ≥ 0 the condition ai + ai+1 ≤ 1

implies that

1

ãi

1− ãi

1− ai
≥ 1− ãi+1

1− ai+1
,

where ãi = ai
q(ti−1)
q(ti)

, and f(t, x) = q(t)f(x), η(t) = q�(t)
q(t) .

Proof. Assume a separable shape function f(t, x) = q(t)f(x). By Assumption 3.2.1

of ∂F
∂t (t, x) = η(t, x), we compute correspondingly η(t, x) = q(t)η(t)F (x) where

F (x) :=
� x
0 f(y)dy. Since q(t) and F (x) ≥ 0, we have

xη(t, x) ≥ 0 ⇔ η(t) ≥ 0 ⇔ q(ti) ≥ q(ti−1)

and then

0 < ãi = ai
q(ti−1)

q(ti)
≤ ai < 1.

In addition, we note that inequality ai + ai+1 ≤ 1 is the same as the inequality
1
ai

−1

1−ai
≥ 1

1−ai+1
. One then has

1
ai

− 1

1− ai
≥ 1

1− ai+1
⇒ 1− ai

1− ai+1
≤ 1

ai
(1− ai) ≤

1

ai
(1− ãi).

Now look at the following inequalities

ãi
1− ai

1− ai+1
≤ ai

1− ai

1− ai+1
≤ 1− ãi ≤

(1− ãi)

1− ãi+1
.

As a result, we get

ãi
1− ai

1− ai+1
≤ 1− ãi

1− ãi+1
⇔ 1

ãi

1− ãi

1− ai
≥ 1− ãi+1

1− ai+1
.
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Lemma 4.3.5: Given a time continuous function

ht(x) = g(t, x) + x
∂g

∂x
(t, x)− 1

ρ

∂g

∂t
(t, x)

and a time discrete function

hi(x) =
g(ti, x)− ai+1g(ti+1, ai1x)

1− ai+1
,

where ti ∈ {t0, t1, ..., tN} satisfying ti+1− ti = ti− ti−1 and tN = T , and set τ := T
N ,

we have lim
τ→0

hi(x) = ht(x).

Proof. On time grid {t0, t1, ..., tN} , we set ai ≡ e
−ρτ := a. We do the following

calculation

ht(x) = lim
τ→0

g(t, x)− ag(t+ τ, ax)

1− a
= lim

τ→0

∂τ [g(t, x)− ag(t+ τ, ax)]

∂τ (1− a)

= lim
τ→0

ρe
−ρτ

g(t+ τ, ax)− e
−ρτ

�
∂g
∂t (t+ τ, ax) + ∂g

∂x(t+ τ, ax) ∂
∂τ (e

−ρτ
x)
�

ρe−ρτ

= g(t, x) + x
∂g

∂x
(t, x)− 1

ρ

∂g

∂t
(t, x).

Proof of Proposition 4.1.6. Since ht(x) is bijective, denote its inverse function by

h
−1
t . For 0 ≤ t ≤ T , set

C(t, T, Et, Xt) = [G(t, ζt)−G(t, Et)] +

� T

t
g(u, ζu)ξudu+ [G(T, F (T, ν))−G(T, ζT )]

where we set ζu = h
−1
u (ν), ξu = dζu

du + ρζu and ν ∈ R solves the equation

−Et +

� T

t
ρh

−1
u (ν)du+ F (T, ν) = Q−Xt. (4.3.9)

We should note that the function ν →
� T
t ρh

−1
u (ν)du + F (T, ν) is bijective and
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increasing since ht(x) and F (t, x) are both increasing and bijective on x. So ν

uniquely solves the equation (4.3.9).

Remind that the volume impact function Et is the solution of dEt = dXt −

ρEtdt. Set

Ct =

� t

0
g(s, Es)dXs +

�

0≤s<t

[G(s, Es +∆Xs)−G(s, Es)] + C(t, T, Et, Xt)

with CT = C(X) and C0 = C(0, T, 0, Q).

• Step 1: show C(0, T, 0, Q) ≥ 0.

Given the boundary value C(T, T,ET , XT ) = G(T,ET+(Q−XT ))−G(T,ET ),

let us substitute ξu into C(t, T, Et, Xt) and then apply integration by parts. We get

C(t, T, Et, Xt)

=[G(t, ζt)−G(t, Et)] + [G(T, F (T, ν))−G(T, ζT )]

+

� T

t
g(u, ζu)dζu + ρ

� T

t
g(u, ζu)ζudu

=[G(t, ζt)−G(t, Et)] + [G(T, F (T, ν))−G(T, ζT )] + ρ

� T

t
g(u, ζu)ζudu

+

� T

t

�
dG(u, ζu)−

∂G

∂u
(u, ζu)du

�

=−G(t, Et) +G(T, F (T, ν)) +

� T

t

�
ρg(u, ζu)ζu − ∂G

∂u
(u, ζu)

�
du.

Since G(0, E0) = G(0, 0) = 0 and G(t, x) ≥ 0, it is sufficient to check that the

function ζ → ρζg(t, ζ)− ∂G
∂t (t, ζ) is non-negative.

Since f(t, x) is continuous differentiable, we can do the following calculation

∂G

∂t
(t, x) =

∂g

∂t
(t, x)g(t, x)f(t, g(t, x)) +

� g(t,x)

0
y
∂f

∂t
(t, y)dy.

By definition we know g(t, 0) = 0 for all t ∈ [0, T ]. Thus the function ζ → ρζg(t, ζ)−
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∂G
∂t (t, ζ) vanishes at zero and its derivative is given by

∂

∂ζ

�
ρζg(t, ζ)− ∂G

∂t
(t, ζ)

�
= ρg(t, ζ) + ρζ

∂g

∂x
(t, ζ)− ∂

2
G

∂t∂x
(t, ζ)

= ρg(t, ζ) + ρζ
∂g

∂x
(t, ζ)− ∂g

∂t
(t, ζ) = ρht(ζ),

which has the same sigh as ζ.

• Step 2: show dCt ≥ 0, and that dCt = 0 holds only for X∗.

First, we consider the case of a jump ∆Xt > 0. The corresponding change

of Ct is given by

∆Ct = G(t, Et +∆Xt)−G(t, Et) + C(t+, T, Et+, Xt+)− C(t, T, Et, Xt).

Since Et+ − Et = ∆Xt, the solution νt of equation (4.3.9) also solves −Et+ +
� T
t ρh

−1
u (νt)du+ F (T, νt) = Q−Xt+ and then ∆Ct = 0. Denote by

V (t, T, Et, Xt, ν) =−G(t, Et) +G(T, F (T, ν))

+

� T

t
ρg

�
u, h

−1
u (ν)

�
du−

� T

t

∂G

∂t

�
u, h

−1
u (ν)

�
du

and we compute

∂V

∂ν
(t, T, Et, Xt, ν)

=
∂G

∂x
(T, F (T, ν))

∂F

∂x
(T, ν)−

� T

t

∂
2
G

∂t∂x

�
u, h

−1
u (ν)

�
∂x

�
h
−1
u

�
(ν)du

+

� T

t
ρ

�
∂x

�
h
−1
u

�
(ν)g

�
u, h

−1
u (ν)

�
+ h

−1
u (ν)

∂g

∂x

�
u, h

−1
u (ν)

�
∂x(h

−1
u )(ν)

�
du

= ρν∂x(h
−1
u )(ν) + νf(T, ν).

Since d(Et−Xt) =
�� T

t ρ∂x(h−1
u )(νt)du+ f(T, νt)

�
dνt−ρh

−1
t (νt)dt, we could rewrite

∂νV (t, T, Et, Xt, ν) = ρν(h−1
t (ν)Et)dt. The differential of Ct is

dCt = g(t, Et)dXt +
dC

dt
(t, T, Et, Xt)
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= g(t, Et)dXt −
∂G

∂t
(t, Et)dt−

∂G

∂x
(t, Et)dEt − ρg(t, ζt)ζtdt

+
∂G

∂t
(t, ζt)dt+

∂V

∂ν
(t, T, Et, Xt, νt)dνt

= −∂G

∂t
(t, Et)dt+ ρg(t, Et)dt− ρg(t, ζt)ζtdt

+
∂G

∂t
(t, ζt)dt+ ρht(ζt)(ζt − Et)dt

:= θt(ζ).

The function θt(ζ) := −∂G
∂t (t, Et)+ρg(t, Et)dt−ρg(t, ζ)ζ+ ∂G

∂t (t, ζ)+ρht(ζ)(ζ−Et)

vanishes at ζ = Et and its derivative ∂xθt(ζ) = −ρg(t, ζ) − ρζ
∂g
∂x(t, ζ) +

∂g
∂t (t, ζ) +

∂xht(ζ)ρ(ζ − Et) + ρh(ζ) = ρ∂xht(ζ)(ζ − Et) is positive for ζ �= Et. This implies

that C(X) ≥ 0 for X ∈ A∞(Q) and dCt = 0 only holds for X∗.

If X is another optimal strategy, we necessarily have ζt = Et, dt − a.e..

Differentiating Xt −Q−Et +
� T
t ρh

−1
u (νt)du+ F (T, νt) = 0 on νt, one obtains that

�� T
t ρ∂xh

−1
u (νt)du+ f(T, νt)

�
dνt = 0, which implies dνt = 0 since ∂xh−1

u (x) > 0 and

f > 0. Thus we get that νt = ν where ν is the solution of (4.1.9). Thereafter, we

get ∆X0 = E0+ = (h0)−1(ν) = ∆X
∗
0 and then X = X

∗, which gives the uniqueness

of the optimal strategy.

We observe that ν has the same sign as Q and thus ξ
∗
0 = ζ0 = h

−1
0 (ν)

has the same sign as Q. Remind that ∂g
∂t = − η(t,g)

f(t,g) and ∂g
∂x = 1

f(t,g) which are

both positive by assumption. Thus we have sgn(x)ht(x) ≥ sgn(x)g(t, x) which

implies that aNsgn(x)h−1
t (x) ≤ sgn(x)h−1

t (x) ≤ sgn(x)F (t, x). Thus the last trade

ξ
∗
T = F (t, ν)− aNh

−1
N (ν) has the same sign as Q.

Proof of Corollary 4.1.7. ζt has the same sign as Q, and g(t, ζt) has the same sign

as Q since g(t, 0) = 0 and g is increasing on R. It is sufficient to check that ξ∗t ≥ 0.

Since −x∂xf(t, x) ≥ 0 by Assumption 4.1.4 and ∂
∂x

�
η
f

�
> 0, dropping the

arguments for g = g(t, x) we get

∂ht

∂x
(x) = 2

∂g

∂x
− x

1

(f(t, g))2
∂f

∂x
(t, g)

∂g

∂x
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+
1

ρ

∂η
∂x(t, g)

∂g
∂xf(t, g)− η(t, g)∂f∂x (t, g)

∂g
∂x

(f(t, g))2

=

�
2

f
− x∂xf

f3
+

∂xηf − η∂xf

ρf3

�
(t, g)

> 0.

We also have dζt
dt = − 1

∂xht(ζt)
dht
dt (ζt). Thus the strategy

ξ
∗
t =

1

∂xht(ζt)

�
−dht

dt
(ζt) + ρζt∂xht(ζt)

�

=
1

∂xht(ζt)

�
η(t, g)

f(t, g)
+

ζt

f(t, g)2

�
∂f

∂t
(t, g)− ∂f

∂x
(t, g)

η(t, g)

f(t, g)

�
− 1

ρf(t, g)

�
∂tη(t, g)

− ∂tf(t, g)
η(t, g)

f(t, g)

�
+

η(t, g)

ρf(t, g)2

�
∂f

∂t
(t, g)− ∂f

∂x
(t, g)

η(t, g)

f(t, g)

�
+ ρζt∂xht(ζt)

�

=
1

∂xht(ζt)

�
−

ζt
∂f
∂x (t, g)

f(t, g)3
(ρζt + η(t, g))2

ρζt
+

2∂f
∂t (t, g)

f(t, g)2
ρζt + η(t, g)

ρ

+
1

f(t, g)

ρη(t, g) + 2ρ2ζt − ∂η
∂t (t, g)

ρ

�
.

is non-negative if condition (4.1.11) holds since ∂xht > 0 and −ζt
∂f
∂x (t, g(t, ζt)) > 0.

Lemma 4.3.6: Under Assumption 4.1.4, condition (4.1.11) implies

d

dt

�
ρ

2ρ+ ηt

�
+ ρ

�
ρ+ ηt

2ρ+ ηt

�
≥ 0,

where f(t, x) = q(t)f(x), ηt =
q�(t)
q(t) .

Proof. In the case of separable shape function f(t, x) = q(t)f(x), we have

F (t, x) = q(t)F (x) with F (x) =

� x

0
f(y)dy,

η(t, x) = q(t)ηtF (x),

∂f

∂t
(t, x) = q(t)ηtf(x),

∂η

∂t
(t, x) =

�
η
�
t + η

2
t

�
q(t)F (x)
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and

g(t, x) = F
−1

�
x

q(t)

�
.

Recall also the notation in Alfonsi and Acevdeo [2] that ζ̄t := h
−1
V,t(ν) where ν is the

unique solution of
� T
0 q(t)ρh−1

V,t(ν)dt + q(T )F (ν) = Q and the auxiliary function is

given by h
−1
V,t(x) = F

−1(x) + ρ+ηt
ρ

x
f(F−1(x)) .

Next, we will show ht(q(t)x) = hV,t(x), or equivalently ζt = q(t)ζ̄t. Substi-

tuting x
q(t) = y into ht(x), we get

ht(q(t)y) = g(t, x) + x
1

f(t, g(t, x))
+

1

ρ

η(t, g(t, x))

f(t, g(t, x))

= F
−1(y) + q(t)y

1

q(t)f(F−1(y))
+

1

ρ

q(t)ηtF (F−1(y))

q(t)f(F−1(y))

= hV,t(y).

Now we can conclude that

�
2ρζt

∂f

∂t
+ 2

∂f

∂t
η + ρfη + 2ρ2ζtf − f

∂η

∂t

�
(t, g(t, ζt))

= 2ρq2(t)ζ̄tηtf(ζ̄t) + 2q2(t)η2t ζ̄tf(ζ̄) + 2ρ2q(t)ζ̄tf(ζ̄t)

+ ρq
2(t)ηtζ̄tf(ζ̄t)− q

2(t)ζ̄t(η
�
t + η

2
t )f(ζ̄t)

= ζ̄tf(ζ̄t)q
2(t)(2ρηt + η

2
t + 2ρ2 + ρηt − η

�
t)

= ζ̄tf(ζ̄t)q
2(t)

�
(ρ+ ηt)(2ρ+ ηt)− η

�
t

�
≥ 0

⇔ d

dt

�
ρ

2ρ+ ηt

�
+ ρ

�
ρ+ ηt

2ρ+ ηt

�
≥ 0.

Lemma 4.3.7: Given the cost function (4.1.12), for i = 0, ..., N − 1, we have

∂C
∂ξi

= g(ti, F (ti, Di) + ξi)

+

�
∂C

∂ξi+1
−Di+1

�
f(ti+1, Di+1)ai+1

∂g

∂x
(ti, F (ti, Di) + ξi).
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Proof. The derivative ∂Dn
∂ξi

is given by

∂Dn

∂ξi
=






0, if i ≥ n

an
∂g
∂x(tn−1, F (tn−1, Dn−1) + ξn−1), if i = n− 1

.

If 1 ≤ i ≤ n− 2, we can calculate that

∂Dn

∂ξi
= an

∂g

∂x
(tn−1, F (tn−1, Dn−1) + ξn−1)f(tn−1, Dn−1)

∂Dn−1

∂ξi

= ai+1f(ti+1, Di+1)
∂g

∂x
(ti, F (ti, Di) + ξi)

∂Dn

∂ξi+1
.

Thereafter, we have

∂C
∂ξi

= g(ti, F (ti, Di) + ξi) +
N�

n=i+1

[g(tn, F (tn, Dn) + ξn)−Dn] f(tn, Dn)
∂Dn

∂ξi

= g(ti, F (ti, Di) + ξi)

+ [g(ti+1, F (ti+1, Di+1) + ξi+1)−Di+1] f(ti+1, Di+1)ai+1
∂g

∂x
(ti, F (ti, Di) + ξi)

+

�
∂C

∂ξi+1
− g(ti+1, F (ti+1, Di+1) + ξi+1)

�
ai+1f(ti+1, Di+1)

∂g

∂x
(ti, F (ti, Di) + ξi)

= g(ti, F (ti, Di) + ξi) +

�
∂C

∂ξi+1
−Di+1

�
f(ti+1, Di+1)ai+1

∂g

∂x
(ti, F (ti, Di) + ξi).

Lemma 4.3.8: Under Assumption 4.1.8, we have that:

1. the function x → xf(t, x) is increasing on R, or equivalently F̃ (t, x) =
� x
0 yf(t, y)dy

is convex on x;

2. f

�
ti,

x
ai+1

�
− ai+1f(ti+1, x) > 0 for i = 0, . . . , N − 1;

3. The auxiliary function

pi+1(x) = x

a
−1
i+1 − ai+1

f(ti+1,x)

f
�
ti,

x
ai+1

�

1− ai+1
f(ti+1,x)

f
�
ti,

x
ai+1

�

113



is well-defined, bijective and increasing and satisfies sgn(x)pi(x) ≥ |x|.

Proof. • point 1: Since f(t, x) > 0 for ∀x ∈ R and ∀t ∈ [0, T ] and x∂xf(t, x) ≥ 0 by

Assumption 4.1.8, one gets

∂

∂x
xf(t, x) = f(t, x) + x∂xf(t, x) > 0.

• point 2: Since ∂η
∂x(t, x) ≤ 0 by Assumption 4.1.8, we have

f

�
ti,

x

ai+1

�
≥ f

�
ti+1,

x

ai+1

�
.

Also, the assumption that x∂f
∂x (t, x) ≥ 0 and ai+1 < 1 for i = 0, ..., N − 1 implies

f

�
ti+1,

x

ai+1

�
≥ f(ti+1, x) > ai+1f(ti+1, x).

As a result, we get

f

�
ti,

x

ai+1

�
> ai+1f(ti+1, x).

• point 3: Denote by H := f(ti+1,x)

f
�
ti,

x
ai+1

� and we know ai+1H ≤ 1 by the second point

of this lemma. Rewrite the auxiliary function (4.1.13) and we get

pi+1(x) = x

�
1 +

a
−1
i+1 − 1

1− ai+1H

�
.

Since ai+1 < 1, it is easy to check that pi is well-defined and satisfies sgn(x)pi(x) ≥

|x|. Then we compute the derivative of pi(x) as

∂xpi(x) =

�
1 +

a
−1
i+1 − 1

1− ai+1H

�
+ x

1− ai+1

ai+1

ai+1

(1− ai+1H)2
∂xH

=
ai+1

(1− ai+1H)2
�
(1− ai+1H)(1− a

2
i+1H) + x(1− ai+1)ai+1∂xH

�
.
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The derivative ∂xH is given by

∂xH = ∂x



 f(ti+1, x)

f

�
ti,

x
ai+1

�



 =
∂xf(ti+1, x)f

�
ti,

x
ai+1

�
− 1

ai+1
f(ti+1, x)∂xf

�
ti,

x
ai+1

�

f

�
ti,

x
ai+1

�2 .

Thereafter, it is sufficient to check that x∂xH ≥ 0, or equivalently

x
∂xf(ti+1, x)

f(ti+1, x)
≥ x

ai+1

∂xf

�
ti,

x
ai+1

�

f

�
ti,

x
ai+1

� .

Since ai+1 < 1, one has

x
∂xf(ti+1, x)

f(ti+1, x)
≥ x

ai+1

∂xf(ti+1, x/ai+1)

f(ti+1, x/ai+1)
.

Moreover, since x
�

∂2f
∂x∂t −

∂f
∂t

∂f
∂x

�
≥ 0 by assumption, we have x∂t

�
∂xf
f

�
≥ 0. Thus,

one could derive that

x

ai+1

∂xf

�
ti+1,

x
ai+1

�

f

�
ti+1,

x
ai+1

� ≥ x

ai+1

∂xf

�
ti,

x
ai+1

�

f

�
ti,

x
ai+1

� .

Proof of Proposition 4.1.10. Since F̃ (t, x) is convex on x and F̃ (t, 0) = 0, we have

F̃ (tn+1, an+1g(tn, F (tn, Dn) + ξn)) ≤ an+1F̃ (tn+1, g(tn, F (tn, Dn) + ξn)) for all x ∈ R

Moreover, we have F̃ (tn, x) ≥ F̃ (tn+1, x) by the second condition 2) in Assump-

tion 4.1.8. Thus, the cost function (4.1.12) satisfies

C(ξ) ≥ F̃ (tn, g(tN , F (tN , DN ) + ξN )) +
N−1�

n=0

F̃ (tn, g(tn, F (tn, Dn)) + ξn)(1− an+1).

Set T2(ξ) = (ξ0, F (t1, D1) + ξ1, . . . , F (tN , DN ) + ξN ). Since lim
x→∞

F (t, x) = ∞, one

has that |T2(ξ)| → ∞ as |ξ| → ∞, which immediately implies that C(ξ) → ∞ as
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|ξ| → ∞.

We denote by ν a Lagrange multiplier such that

ν = pi+1(Di+1), for i = 0, . . . , N − 1 and ν = g(tN , F (tN , DN ) + ξN ).

By Lemma 4.3.8, we know that pi is invertible and we denote by p
−1
i its inverse

function. We then get

ξ
∗
0 = F

�
t0,

p
−1
1 (ν)

a1

�
,

ξ
∗
i = F

�
ti,

p
−1
i+1(ν)

ai+1

�
− F

�
ti, p

−1
i (ν)

�
, for i = 1, . . . , N − 1

and

ξ
∗
N = F (tN , ν)− F

�
tN , p

−1
N (ν)

�
.

Besides, ν solves the equation

F (tN , ν) +
N�

i=1

�
F

�
ti−1,

p
−1
i (ν)

ai

�
− F

�
ti, p

−1
i (ν)

��
= Q. (4.3.10)

Since F and pi is increasing and bijective in x and the function y → F

�
ti−1,

y
ai

�
−

F (ti, y) is increasing (its derivative is positive by Lemma 4.3.8), ν is the unique

solution to equation (4.3.10), and has the same sign as Q. Thus ξ
∗ is the unique

optimal solution. Moreover, the initial and last trade have the same sign as Q since

sgn(x)pi(x) ≥ |x|.

Lemma 4.3.9: Given a time continuous function

pt(x) = x
2ρf(t, x)− ∂tf(t, x) + ρx∂xf(t, x)

ρf(t, x)− ∂tf(t, x) + ρx∂xf(t, x)

and a time discrete function

pi+1(x) = x

1
ai+1

− ai+1f(ti+1, x)
∂g
∂x

�
ti, F

�
ti,

x
ai+1

��

1− ai+1f(ti+1, x)
∂g
∂x

�
ti, F

�
ti,

x
ai+1

�� ,
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where ti ∈ {t0, t1, ..., tN} satisfying ti+1− ti = ti− ti−1 and tN = T , and set τ := T
N ,

we have lim
τ→

pi(x) = pt(x).

Proof. In a regular time grid {t0, t1, ..., tN} such that ti+1−ti = ti−ti−1 and tN = T ,

set τ := T
N and a ≡ e

−ρτ . We do the following calculation

pt(x) = x lim
τ→0

a
−1 − af(t+ τ, x) ∂g∂x

�
t, F

�
t,

x
a

��

1− af(t+ τ, x) ∂g∂x
�
t, F

�
t,

x
a

��

= x lim
τ→0

a
−1 − a

f(t+τ,x)

f(t,xa)

1− a
f(t+τ,x)

f(t,xa )

= x lim
τ→0

f(t, eρτx)eρτ − f(t+ τ, x)e−ρτ

f(t, eρτx)− f(t+ τ, x)e−ρτ

= x lim
τ→0

ρe
ρτ
f(t, eρτx) + e

ρτ
∂xf(t, eρτx)ρeρτx+ ρe

−ρτ
f(t+ τ, x)− ∂tf(t+ τ, x)e−ρτ

∂xf(t, eρτx)ρeρτx+ ρe−ρτf(t+ τ, x)− ∂tf(t+ τ, x)e−ρτ

= x
2ρf(t, x)− ∂tf(t, x) + ρx∂xf(t, x)

ρf(t, x)− ∂tf(t, x) + ρx∂xf(t, x)
.

Proof of Proposition 4.1.11. Since pt(s) is bijective, we can denote by p
−1(x) its

inverse function. For 0 ≤ t ≤ T , we introduce

C(t, T,Dt, Xt) = [F̃ (t, ζt)− F̃ (t,Dt)] +

� T

t
ζuξudu+ [F̃ (T, ν)− F̃ (T, ζT )],

(4.3.11)

where ζu = p
−1
u (ν), ξu = f(u, ζu)

�
dζu
du + ρζu

�
and ν ∈ R, solving the equation

−Et +

� T

t

�
ρp

−1
u (ν)f

�
u, p

−1
u (ν)

�
− η

�
u, p

−1
u (ν)

��
du+ F (T, ν) = Q−Xt. (4.3.12)

We should note that the function x → ρxf(t, x)− η(t, x) is increasing and bijective,

since its derivative is equal to ρf(t, x) + ρx
∂f
∂x (t, x) −

∂η
∂x(t, x) and is positive by

assumption. Thus ν uniquely solves equation (4.3.12).

Recall that the price impact function Dt and volume impact function Et
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satisfy Et = F (t,Dt) and dDt = −ρDtdt. So we can solve Et satisfying

dEt = dXt +
∂F

∂t
(t,Dt)dt+

∂F

∂x
(t,Dt)dDt

= dXt + [η(t,Dt)− ρDtf(t,Dt)] dt

= dXt + η(t, g(t, Et))dt− ρg(t, Et)f(t, g(t, Et))dt.

We set

Ct =

� t

0
DsdXs +

�

0≤s<t

[G(s, Es +∆Xs)−G(s, Es)] + C(t, T,Dt, Xt)

with CT = C(X) and C0 = C(0, T, 0, Q).

• Step 1: show C(0, T, 0, Q) ≥ 0.

Given that C(T, T,DT , XT ) = G(T,Q−XT +ET )−G(T,ET ), let us substi-

tute ξu into C(t, T,Dt, Xt) and then apply integration by parts. We get

C(t, T,Dt, Xt) = F̃ (T, ν)− F̃ (t,Dt) +

� T

t

�
ρζ

2
uf(u, ζu)−

∂F̃

∂t
(u, ζu)

�
du. (4.3.13)

Since F̃ (0, D0) = F̃ (0, 0) = 0 and F̃ (t, x) ≥ 0, it is sufficient to show that the

function ζ → ρf(t, ζ)ζ2 − ∂F̃
∂t (t, ζ) is non-negative.

It is obvious that this function vanishes at ζ = 0. Its derivative is equal to

2ζρf(t, ζ) + ρζ
2 ∂f
∂x (t, ζ)− ζ

∂η
∂x(t, ζ) and has the same sign as ζ by assumption.

• Step 2: show dCt ≥ 0, and that dCt = 0 holds only for X∗.

We first consider the case of a jump ∆Xt > 0. The corresponding change of

Ct is given by

∆Ct = [G(t, Et +∆Xt)−G(t, Et)] + C(t, T,Dt+, Xt+)− C(t, T,Dt, Xt).
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Since Et+ − Et = ∆Xt, the solution νt of equation (4.3.12) also solves

−Et+ +

� T

t

�
ρp

−1
u (νt)f

�
u, p

−1
u (νt)

�
− η

�
u, p

−1
u (νt)

��
du+ F (T, νt) = Q−Xt+.

Thus ∆Ct = 0 since F̃ (t,Dt) = G(t, Et). Denote by

V (t, T,Dt, Xt, v) = F̃ (T, v)− F̃ (t,Dt)

+

� T

t

�
ρ
�
p
−1
u (v)

�2
f
�
u, p

−1
u (v)

�
− ∂F̃

∂t

�
u, p

−1
u (v)

�
�
du

and we compute

∂V

∂v
(t, T,Dt, Xt, v)

= ∂xF̃ (T, v) +

� T

t
∂x

�
p
−1
u

�
(v)

�
2ρp−1

u (v)f
�
u, p

−1
u (v)

��
du

+

� T

t
∂x

�
p
−1
u

�
(v)

�
ρ
�
p
−1
u (v)

�2
∂xf

�
u, p

−1
u (v)

�
− ∂x∂tF̃

�
u, p

−1
u (v)

��
du

= vf(T, v) +

� T

t
∂x

�
p
−1
u

�
(v)p−1

u (v)
�
2ρf

�
u, p

−1
u (v)

��
du

+

� T

t
∂x

�
p
−1
u

�
(v)p−1

u (v)
�
ρp

−1
u (v)∂xf

�
u, p

−1
u (v)

�
− ∂tf

�
u, p

−1
u (v)

��
du

= v

�
f(T, v) +

� T

t
∂x

�
p
−1
u

�
(v)

�
ρf

�
u, p

−1
u (v)

��
du

�

+ v

�� T

t
∂x

�
p
−1
u

�
(v)

�
ρp

−1
u (v)∂xf

�
u, p

−1
u (v)

�
− ∂tf

�
u, p

−1
u (v)

��
du

�
.

Since d(Et −Xt) = [η(t,Dt)− ρDtf(t,Dt)]dt, we get from equation (4.3.12) that

�� T

t
∂x

�
p
−1
u

�
(v)

�
ρf

�
u, p

−1
u (v)

�
+ ρp

−1
u (v)∂xf

�
u, p

−1
u (v)

�
− ∂xη

�
u, p

−1
u (v)

��
du

�
dvt

+

�� T

t
∂xF (T, v)du

�
dvt −

�
ρp

−1
t (v)f

�
t, p

−1
t (v)

�
− η

�
t, p

−1
t (v)

��
dt

= [η(t,Dt)− ρDtf(t,Dt)]dt. (4.3.14)
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Thereafter, we can rewrite ∂vV (t, T,Dt, Xt, v) as

∂C̃

∂v
(t, T,Dt, Xt, v)dvt = vt[η(t,Dt)− η(t, ζt) + ρζtf(t, ζt)− ρDtf(t,Dt)].

Since dDt = −ρtDtdt+
dXt

f(t,Dt)
, the differential of Ct is given by

dCt = DtdXt −
∂F̃

∂t
(t,Dt)dt+ ρD

2
t f(t,Dt)dt−DtdXt − ρζ

2
t f(t, ζt)dt

+
∂F̃

∂t
(t, ζt)dt+

∂C̃

∂v
(t, T,Dt, Xt, v)dvt

=
∂F̃

∂t
(t, ζt)dt−

∂F̃

∂t
(t,Dt)dt+ ρD

2
t f(t,Dt)dt− ρζ

2
t f(t, ζt)dt

+ pt(ζt)[η(t,Dt)− η(t, ζt) + ρζtf(t, ζt)− ρDtf(t,Dt)]dt

=: ψt(ζt)dt.

We have ψt(Dt) = 0 and can compute its derivative as

∂xψt(ζ) = ∂xpt(ζ)[η(t,Dt)− η(t, ζ) + ρζf(t, ζ)− ρDtf(t,Dt)].

Since ∂xpt(ζ) > 0, it is sufficient to look at the term αt(x) := η(t,Dt) − η(t, x) +

ρxf(t, x)−ρDtf(t,Dt). We then compute its derivative ∂xαt(x) given by ρx∂xf(t, x)+

ρf(t, x)−∂xη(t, x). The function αt(x) is positive on ζ > Dt, and negative on ζ < Dt

since ∂xαt(x) is positive by assumption. Thus, Dt is the unique minimiser of ψt:

ψt(Dt) = 0 and ψt(ζ) > 0 for ζ �= Dt.

If X is an optimal strategy, we necessarily have ζt = Dt dt − a.e.. From

equation (4.3.14), one obtains that

� � T

t
∂x

�
p
−1
u

�
(ν)

�
ρf

�
u, p

−1
u (ν)

�
+ ρup

−1
u (ν)∂xf

�
u, p

−1
u (ν)

�

− ∂xη
�
u, p

−1
u (ν)

� �
du

�
dνt = 0,

which implies dνt = 0 since ∂xp−1
u (x) > 0 and ∂xαt(x) > 0. Thus we get that νt = ν

where ν is the solution of (4.3.12). Thereafter, we get ∆X0 = F (t0, ζ0) = ∆X
∗
0 and
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then X = X
∗, which gives the uniqueness of the optimal strategy.

Since ν has the same sign as Q, pt(x) is bijective and F (t, x) is increasing

along R, one obtains that ξ∗0 = F (t0, ζ0) has the same sign as Q.

Proof of Corollary 4.1.12. Set ∆ := ρ

�
1 + x∂xf(t,x)

f(t,x)

�
− ∂tf(t,x)

f(t,x) . First, dropping the

arguments for f(t, x), we can rewrite the auxiliary function pt(x) as

pt(x) = x
2ρf − ∂tf + ρx∂xf

ρf − ∂tf + ρx∂xf

= x

�
ρ

ρ+ x
∂xf
f − ∂tf

f

+ 1

�
= x

�
ρ

∆
+ 1

�
.

We then compute its derivative

∂pt

∂x
(x) =

�
1 +

ρ

∆

�
− xρ

∆2

∂∆

∂x
=

1

∆2
(∆2 + ρ∆− xρ

∂∆

∂x
)

=
1

∆2

�
∆2 + ρ∆− ρ

2
x∂x

�
x∂xf

f

�
+ ρx∂x

�
∂tf

f

��
.

By Assumption 4.1.16, we have x∂x

�
x∂xf
f

�
≤ 0, x ∂

∂x

�
∂tf
f

�
≥ 0 and also we assume

∆ > 0, which implies ∂xpt(x) > 0. Since ∆ > 0 and pt(0) = 0, we also have pt is

bijective and sgn(x)pt(x) ≥ |x|. We then could deduce that sgn(x)p−1
t (x) ≤ |x|,

which implies that the last trade ξ∗T has the same sign as Q since F (t, x) is increasing

in x.

We also know dζt
dt = − 1

∂xpt(ζt)
dpt
dt (ζt) and the first derivative

d

dt
pt(x) = − xρ

∆2

∂∆

∂t

= − xρ

∆2

�
ρx∂t

�
∂xf

f

�
− ∂t

�
∂tf

f

��
.

Thus the strategy

ξ
∗
t = f (t, ζt)

�
dζt

dt
+ ρζt

�

= f(t, ζt)

�
1

∂xpt(ζt)

ζtρ

∆2

�
ρζt∂t

�
∂xf

f

�
− ∂t

�
∂tf

f

��
+ ρζt

�
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=
ρζtf(t, ζt)

∂xpt(ζt)∆2

�
ρζt∂t

�
∂xf

f

�
− ∂t

�
∂tf

f

�
+ ∂xpt(ζt)∆

2

�

=
ρζtf(t, ζt)

∂xpt(ζt)∆2

�
ρζt∂t

�
∂xf

f

�
− ∂t

�
∂tf

f

�
+∆2 + ρ∆− ρ

2
ζt∂x

�
x∂xf

f

�
+ ρζt∂x

�
∂tf

f

��

≥ ρζtf(t, ζt)

∂xpt(ζt)∆2

�
ρζt∂t

�
∂xf

f

�
− ∂t

�
∂tf

f

�
+∆2 + ρ∆

�

≥ ρζtf(t, ζt)

∂xpt(ζt)∆2

�
ρζt∂t

�
∂xf

f

�
− ∂t

�
∂tf

f

�
+

�
ρ− ∂tf

f

��
2ρ− ∂tf

f

��

≥ 0.

The first inequality holds by the last two items of Assumption 4.1.8 and the second

inequality does by the first item of Assumption 4.1.8. Moreover, the last inequality

holds if condition (4.1.18) holds.

Lemma 4.3.10: Under Assumption 4.1.8, if ρ
�
1 + x∂xf(t,x)

f(t,x)

�
− ∂tf(t,x)

f(t,x) ≥ 0 condi-

tion (4.1.18) implies

d

dt

�
ρ− ηt

2ρ− ηt

�
+ ρ

�
ρ− ηt

2ρ− ηt

�
≥ 0

where f(t, x) = q(t)f(x) and ηt =
q�(t)
q(t) .

Proof. In the case of separable shape function f(t, x) = q(t)f(x), we have

F (t, x) = q(t)F (x) with F (x) =

� x

0
f(y)dy,

η(t, x) = q(t)ηtF (x),

∂f

∂t
(t, x) = q(t)ηtf(x),

∂η

∂t
(t, x) =

�
η
�
t + η

2
t

�
q(t)F (x)

and

g(t, x) = F
−1

�
x

q(t)

�
.

Now we can conclude that

ρx∂t

�
∂xf

f

�
− ∂t

�
∂tf

f

�
+

�
ρ− ∂tf

f

��
2ρ− ∂tf

f

�
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= − η
�
t + (ρ− ηt)(2ρ− ηt) ≥ 0

⇔ d

dt

�
ρ− ηt

2ρ− ηt

�
+ ρ

�
ρ− ηt

2ρ− ηt

�
≥ 0.
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Chapter 5

Application II: Absence and

presence of market irregularity

conditions

Another application of our cross impact LOB model is to study the market

impact model regularities when one cannot get closed-form optimal solutions of the

execution problem. Our goal is to understand whether and how the dynamics of

the LOB, specifically the depth and resilience of the order book, will create market

irregularities. In particularly, we will research how the cross impact resilience factor

β affects the market irregularity absence and presence conditions.

Some theoretical studies of market manipulations in market impact models,

such as Huberman and Stanzl [48], Alfonsi et al. [6], Gatheral [32] and Klöck [52],

address the market irregularity problem merely on models without spread. Fruth

et al. [31] argues that in models without spread it might appear that there are price

manipulations while in practice the spread precludes these price manipulations. At

first sight, this statement is quite trivial since traders would not make profits from

a round-trip if there is a cost to cross the spread. However, as we can see in the

sequel, our cross impact model possesses non-zero spread too but it is possible that
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all three market irregularities exist.

All of these inspire us to think of the inclusion of two sides resilience into the

analysis of market irregularity issues and think of the profitability depending on two

sides resilience of the order book. Indeed, the cross impact LOB model provides us

new insights about the market irregularity. Our Proposition 5.1.1, Proposition 5.1.2,

Proposition 5.2.1, Proposition 5.3.1 and Proposition 5.3.2 show that the market

irregularity conditions in models without spread is weaker than that in the cross-

impact LOB model and the conditions in cross-impact model is weaker than that in

one-side LOB model. All the results about this weaker relationship between zero-

spread and cross-impact are due to the argument we made in Proposition 4.1.2 that

for an arbitrary strategy X ∈ A(Q), the costs under zero-spread model is always

less than or equal to the costs under the cross-impact model.

Moreover, we provide necessary conditions for absence of PMS, TTPM and

existence of PLC under the cross-impact LOB model. Particularly, the necessary

condition (5.3.2) becomes sufficient for zero-spread models.

In this chapter, we assume a constant time-varying shape function of the

form f
A(t, x) = f

B(t, x) = q(t) unless specifically stated. The depth function q(t) :

[0, T ] → (0,∞) is deterministic and twice continuous differentiable. For simplicity,

the same side resilience rate ρ and cross impact resilience rate β are assumed to

be constant. In this constant shape function setting-up, as discussed in section 4.2,

we will focus on the models with price impact resilience. We remind the reader the

main notations here.

Given a constant shape function q(t), the same side price impact D
A
t , D

B
t

and cross price impact LA
t , L

B
t take the following forms:

D
A
t (X

A
t ) =

�

[0,t)

e
−ρ(t−s)

q(s)
dX

A
s ,

D
B
t (X

B
t ) =

�

[0,t)

e
−ρ(t−s)

q(s)
dX

B
s ,
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L
B
t (X

A
t ) =

�

[0,t)

e
−ρ(t−s)

q(s)

�
1− e

−β(t−s)
�
dX

A
s

and

L
A
t (X

B
t ) =

�

[0,t)

e
−ρ(t−s)

q(s)

�
1− e

−β(t−s)
�
dX

B
s .

The cost function of the cross impact LOB model is

Cβ =

� T

0
(DA

t − L
A
t )dX

A
t +

� T

0
(DB

t − L
B
t )dX

B
t +

�

t≤T

�
(∆X

A
t )

2

2q(t)
+

(∆X
B
t )2

2q(t)

�
.

(5.0.1)

The cost function of the one-side LOB model is

C0 =

� T

0
D

A
t dX

A
t +

� T

0
D

B
t dX

B
t +

�

t≤T

�
(∆X

A
t )

2

2q(t)
+

(∆X
B
t )2

2q(t)

�
. (5.0.2)

The cost function of the zero-spread LOB model is

C∞ =

� T

0
DtdXt +

�

t≤T

∆X
2
t

2q(t)
, (5.0.3)

where

Dt :=

�

[0,t)

e
−ρ(t−s)

q(s)
dX

A
s −

�

[0,t)

e
−ρ(t−s)

q(s)
dX

B
s

and

Xt :=

�

[0,t)
dX

A
s −

�

[0,t)
dX

B
s .

The structure of this chapter is: section 5.1, 5.2 and 5.3 present conditions for

the absence and presence of three irregularities TTPM, PMS and PLC respectively.

We will review the definition of each market irregularity first, and then look at how

each of them is affected by our cross-impact resilience rate β. It is followed by

absence and presence conditions of each irregularity. The section 5.4 show some

examples of price impact dynamics generated by three different LOB models which

admits PMS.
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5.1 Absence of transaction-triggered price manipula-

tion strategies (TTPM)

Recall that a market impact model does not admit transaction-triggered price

manipulation (TTPM) if for any Q ∈ R, there is

inf
X∈A(Q)

C(X) = inf
X∈AP (Q)

C(X),

where AP (Q) is the admissible set of the pure strategy. By the hierarchy Propo-

sition 3.3.4, we know that once the transaction-triggered price manipulation is ex-

cluded, the standard price manipulation strategy is impossible and the liquidation

cost is positive. So we will first have a look at the transaction triggered price ma-

nipulation.

5.1.1 Absence of TTPM strategies on cross-impact resilience β

From the numerical example Figure 4.6 in section 4.2, we observe that if there

is TTPM in zero-spread model (corresponds to the left column in the figure), TTPM

is also likely to exist when β < ∞ is big but less possible to exist when β is small;

when the zero-spread model excludes TTPM (corresponds to the right column), no

matter what value β < ∞ is, TTPM does not present. So we conjecture that: the

smaller the cross impact resilience rate β, the less profitable to apply transaction-

triggered price manipulation strategies.

We start by proving that the one-side LOB model which corresponds to a

β = 0 does not admit the TTPM.

Proposition 5.1.1: Consider a cross-impact LOB model (3.1.10) with a constant

time-varying shape function f(t, x) = q(t), if the cross impact resilience rate β = 0,

the model excludes transaction-triggered price manipulation.

As the cross impact resilience rate becomes bigger, i.e. β > 0, we get the
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following property about TTPM between models of zero-spread (corresponds to

β = ∞ ) and cross-impact. Note that the Proposition 5.1.2 works for any shape

function f(t, x) which is twice continuous differentiable, deterministic and strictly

positive.

Proposition 5.1.2: Consider a cross-impact LOB model (3.1.10) with a constant

time-varying shape function f(t, x) = q(t), if there is no transaction-triggered price

manipulation in the LOB model with β = ∞, then the cross-impact LOB model with

0 < β < ∞ does not admit transaction-triggered price manipulation.

The economics interpretation of this cross-impact resilience rate dependent

absence condition of TTPM is that: The key step for the success of the market ma-

nipulation in the real financial market is to make the market believe the misleading

trading and then to create extra supply on the opposite side of the order book. If

the opposite side is not responding (i.e. β = 0), it is not beneficial to trade on both

sides of the order book. As the cross impact resilience rate β becomes smaller, the

ability to create extra liquidity via manipulations drops.

Predoiu et al. [71] and Fruth et al. [31] are two which obtain the same results

as our Proposition 5.1.1 without solving the optimal execution problem. We extend

their results about the absence of TTPM. Although not explicitly stated out in their

wor, Predoiu et al. [71] and Fruth et al. [31] can be regarded as our β = 0 one-side

LOB model. Predoiu et al. [71] works with a time-independent shape function.

Fruth et al. [31] studies a constant shape function with stochastic depth and they

believe that it is the non-zero spread that precludes the TTPM. In particular, our

cross impact time varying LOB model possessing a non-zero spread, admits the

TTPM under some circumstances. This implies that the non-zero spread is not the

reason to exclude the TTPM, but the way of modelling the two sides resilience of

the order book.
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5.1.2 A sufficient condition for absence of TTPM

The cost function of pure strategy under the zero-spread, cross-impact and

one-side LOB model is the same by Proposition 4.1.2. Without loss of generality,

given a pure buy strategy XP ∈ AP (Q), the cost function of pure strategy is given

by

CP (XP ) =

� T

0
D

A
t dX

A
t +

�

t≤T

(∆X
A
t )

2

2q(t)
. (5.1.1)

For an arbitrary strategy X ∈ A(Q), the cross-impact cost function is

Cβ(XA
, X

B) =

� T

0
(DA

t − L
A
t +

∆X
A
t

2q(t)
)dXA

t +

� T

0
(DB

t − L
B
t +

∆X
B
t

2q(t)
)dXB

t

=

�� T

0
(DA

t − L
B
t )dX

A
t + (DB

t − L
A
t )dX

B
t

�

� �� �
=E1

+

�� T

0

∆X
A
t

2q(t)
dX

A
t +

� T

0

∆X
B
t

2q(t)
dX

B
t

�
.

� �� �
=E2

Since X
B
t is an increasing process in the sense that ∆X

B
t ≥ 0 and dX

B
t ≥ 0 for all

t ∈ [0, T ], we have

E2 ≥
� T

0

∆X
A
t

2q(t)
dX

A
t =

�

t≤T

(∆X
A
t )

2

2q(t)
. (5.1.2)

In addition, we can rewrite E1 as

E1 =

� T

0
D

A
t dX

A
t +

� T

0
D

B
t dX

B
t

� �� �
=E3

−
� T

0
L
A
t dX

A
t

� �� �
=E4

−
� T

0
L
B
t dX

B
t

� �� �
=E5

. (5.1.3)

By definition of TTPM, if for any X ∈ A(Q) there are XP ∈ AP (Q) such that

Cβ(X) ≥ CP (XP ), the cross-impact LOB model does not admit TTPM. It is suf-

ficient to say that if E3 − E4 − E5 ≥ 0, there is no TTPM. Note however that

E3 − E4 − E5 ≥ 0 is not a sharp condition. In particular, when E4− E5− E6 < 0
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there might not admit TTPM if for any strategy (XA
, X

B) one has

� T

0

∆X
B
t

2q(t)
dX

B
t + E3 − E4 − E5 > 0.

In the following, we illustrate an example of increasing depth function under the

cross-impact LOB model and show how one could check the absence of TTPM by

using the condition E3 − E4 − E5 ≥ 0.

Example 5.1.3: Suppose that the depth function is q(t) = e
αt with α ≥ 0. Consider

a strategy where shares are accumulated continuously at the positive constant rate

v1 on time interval [0, τ ] and then liquidated continuously at the positive constant

rate v2 during the rest of time (τ, T ] such that at the end of trading, Q shares are

purchased. The time τ is one such that v1τ − v2(T − τ) = Q. So one gets

τ =
Tv2 +Q

v1 + v2
.

Now we calculate E3, E4 and E5 as follows:

E3 =

� T

τ
v2

� t

0

e
−ρ(t−s)

eαs
dX

B
s dt = v

2
2

� T

τ

� t

τ
e
−ρt

e
s(ρ−α)

dsdt

=
v
2
2

ρ− α

� T

τ
e
−ρt(et(ρ−α) − e

τ(ρ−α))dt

=
v
2
2

ρ− α

�
e
−ατ − e

−αT

α
+

e
τ(ρ−α)

ρ

�
e
−Tρ − e

−τρ
�
�

=
v
2
2

ρ− α
[l(α)− e

τ(ρ−α)
l(ρ)]

> 0,

E4 =

� τ

0
v1

� t

0

e
−ρ(t−s)

eαs
(1− e

−β(t−s))dXB
s dt

= 0,

and

E5 =

� T

τ
v2

� t

0
e
−ρ(t−s)−αs(1− e

β(t−s))dXA
s dt

= v2

� T

τ
v2

� τ

0
e
−ρ(t−s)−αs(1− e

β(t−s))v1dsdt
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= v1v2

� T

τ
e
−ρt

� τ

0
e
(ρ−α)s(1− e

−β(t−s))dsdt

=
v1v2

ρ(ρ− α)

�
e
−τρ − e

−Tρ
� �

e
τ(ρ−α) − 1

�

− v1v2

(ρ+ β)(ρ+ β − α)

�
e
−τ(ρ+β) − e

−T (ρ+β)
��

e
τ(ρ+β−α) − 1

�

= v1v2l(ρ)m(ρ− α)− v1v2m(ρ+ β − α)l(ρ+ β)

> 0,

where functions l(·) and m(·) in the last equation are defined as

l(x) :=
e
−τx − e

−Tx

x

and

m(x) :=
e
τx − 1

x
.

Thereafter, we obtain

E3 − E4 − E5 = E3 − E5

=
v2

ρ− α

�
v2l(α)− v2e

τ(ρ−α)
l(ρ)− v1e

τ(ρ−α)
l(ρ) + v1l(ρ)

�

+ v1v2l(ρ+ β)m(ρ+ β − α) := H + v1v2l(ρ+ β)m(ρ+ β − α).

Before checking the condition E3−E5 ≥ 0, we derive some properties about functions

l and m. The function m(x) > 0 for all τ > 0 and x ∈ R. l(x) is positive and non-

increasing on R since its derivative is

∂l

∂x
=

1

x2
[e−Tx(Tx+ 1)− e

−τx(τx+ 1)] =
1

x2
[h(T )− h(τ)],

where h(t) = e
−tx(tx+ 1) and ∂h

∂t = −tx
2
e
−tx

< 0, ∀t > 0.

• Case 1: v1 ≤ v2.
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Since 1
ρ−α [l(α)− e

τ(ρ−α)
l(ρ)] > 0, we have

H =
v2

ρ− α

�
v2l(α)− v2e

τ(ρ−α)
l(ρ)

�
− v2

ρ− α

�
v1e

τ(ρ−α)
l(ρ)− v1l(ρ)

�

≥ v2v1

ρ− α

�
l(α)− 2eτ(ρ−α)

l(ρ) + l(ρ)
�

=
v2v1

l(ρ)

l(α)
l(ρ) + 1− 2eτ(ρ−α)

ρ− α

> 0,

if v2v1
l(ρ)

l(α)
l(ρ)+1−2eτ(ρ−α)

ρ−α > 0. This implies E3−E5 > 0 since m(x) and l(x) are positive

∀τ ∈ [0, T ] and x ∈ R.

If H < 0 and ρ− α < ρ+ β − α < 0, we then have E3 − E5 > 0 since

E3 − E5 = H + v1v2l(ρ+ β)m(ρ+ β − α)

=
v2

ρ− α

�
v2

�
l(α)− l(ρ)eτ(ρ−α)

��
− v1v2l(ρ)m(ρ− α)

+ v1v2l(ρ+ β)m(ρ+ β − α)

≥ v2

ρ− α

�
v1

�
l(α)− l(ρ)eτ(ρ−α)

��
− v1v2l(ρ)m(ρ− α)

+ v1v2l(ρ+ β)m(ρ+ β − α)

≥
v1v2

�
l(ρ)

�
1− e

τ(ρ−α)
�
+ l(ρ+ β)

�
e
τ(ρ+β−α) − 1

��

ρ+ β − α

×
v1v2

�
l(α)− l(ρ)eτ(ρ−α)

�

ρ+ β − α

=
v1v2

ρ+ β − α

�
l(α) + l(ρ) + l(ρ+ β)

�
e
τ(ρ+β−α) − 1

�
− 2l(ρ)eτ(ρ−α)

�

> 0.

• Case 2: v1 > v2. There is no easier condition found to exclude the TTPM other

than asking for

v2

ρ− α

�
v2l(α)− v2e

τ(ρ−α)
l(ρ)

�
− v2

ρ− α

�
v1e

τ(ρ−α)
l(ρ)− v1l(ρ)

�
> 0
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or

v2

ρ− α

�
v2l(α)− v2e

τ(ρ−α)
l(ρ)− v1e

τ(ρ−α)
l(ρ) + v1l(ρ)

�
+ l(ρ+ β)m(ρ+ β − α) ≥ 0.

5.1.3 Absence of TTPM strategies with time-independent shape

function

In this section only, we do not assume a constant shape function. A time-

independent shape function takes the form of f(t, x) = f(x).

Some zero-spread LOB models (i.e. β = ∞), such as Alfonsi et al. [6], Alfonsi

et al. [5] and Alfonsi et al. [4], work under assumption of time-independent shape

function. Their results are that the time independent shape limit order book model

with zero spread precludes the TTPM.

Here we extend their results to the cross impact modelling where the opposite

side resilience rate β is finite. We then claim that the TTPM is impossible under the

cross-impact LOB model in case of time-independent shape function. Suppose there

is a minimiser strategy X
∗,∞ for zero-spread LOB cost function and a minimiser

strategy X
∗,β for cross-impact LOB cost function, Proposition 5.1.2 implies that if

X
∗,∞ is a pure strategy, then the optimal strategy under cross impact model X∗,β

is also a pure strategy. That is to say, the TTPM is absent under all three LOB

modes when the shape function is time-independent.

5.1.4 Absence of TTPM strategies on trading frequency

An interesting property of the optimal strategy under the assumption of time

independent shape function is that the optimal strategy consists in a sequence of

market orders that consume exactly that amount of shares by which the LOB has

recovered since the proceeding market order due to the resilience effect. If this is

true for time-varying shape function as well, the TTPM can be excluded by checking

the resilience of the order book. We then find this relationship does not hold if the
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shape function is time-dependent. We will show one example that Eti+−Eti+1 �= ξi+1

under the zero-spread LOB model.

Recall that the shape function is given by f(t, x) = q(t). Given the trading

interval [0, T ], the discrete time trading times are ti := t0+ iτ for i = 0, ..., N where

τ = T
N . Let us denote by ai = e

−ρ(ti−ti−1) and âi = ai
q(ti)

q(ti−1)
for 1 ≤ i ≤ N . Note

that ti and âi are functions of N .

In zero-spread LOB model framework, the optimal execution problem admits

a unique optimal strategy ξ
∗ ∈ A(Q) which is explicitly given by






ξ
∗
0 = Q

K q(t0)
1−â1

1−a1â1
,

ξ
∗
i = Q

K q(ti)
�

ai
1−aiâi

(âi − 1) + 1−âi+1

1−ai+1âi+1

�
, 1 ≤ i ≤ N − 1

ξ
∗
N = Q

K q(tN ) 1−aN
1−aN âN

,

(5.1.4)

where

K =
q(tN )(1− 2aN ) + q(tN−1)

αN (1− aN âN )
+

N−2�

i=0

q(ti)
(1− âi+1)2

(1− ai+1âi+1)
.

We find that the optimal strategy is not perfectly using the resilient amount of the

order book during each small trading interval. The resilience amount over time

interval (ti, ti+1) is

Eti+ − Eti+1 =
Q

K

1− âi+1

1− ai+1âi+1
(q(ti)− ai+1q(ti+1)).

The optimal trading size during this same interval is

ξ
∗
i+1 = q(ti+1)

1− âi+2

1− ai+2âi+2
− q(ti+1)ai+1

1− âi+1

1− ai+1âi+1
�= Eti+ − Eti+1 .

Furthermore, one need to note that the length of each small trading interval

still has an affect on the presence of transaction-triggered price manipulation. We

will have a look at two examples under the framework of zero-spread LOB model
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Figure 5.1: The optimal execution strategies for buying 50 shares on a regular time
grid with N = 20 (plots in left column) and N = 80 (plots in right column). For
each sub-figure, fix T = 1, ρ = 2 and β → ∞. Both plots in the first row illustrate
the strategies with q(t) = 4+cos(2πt) (plotted in dashed lines) and both plots in the
second row illustrate the strategies with q(t) = 4 + 2

0.5+t (plotted in dashed lines).
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Figure 5.2: The optimal execution strategies for buying 50 shares on a regular time
grid with T = 1 (plots in left column) and T = 5 (plots in right column). For each
sub-figure, fix N = 20, ρ = 2 and β → ∞. Both plots in the first row illustrate the
strategies with q(t) = 4 + cos(2πt) (plotted in dashed lines) and both plots in the
second row illustrate the strategies with q(t) = 4 + 2

0.5+t (plotted in dashed lines).
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with time-varying, constant shape function. In Figure 5.1 we change each trading

times by fixing the trading time interval T and changing the trading frequency from

20 to 80. The lump orders at the beginning and the end of T have no change, but the

intermediate orders becomes smaller as N increases. In Figure 5.2 we fix the trading

frequency N = 20 and change the trading time interval T from 1 to 5. Focusing

on the upper row plots, when T is increasing, the optimal strategy becomes a pure

strategy. For the models excluding the TTPM (lower row plots), the sizes of the

first and last order become smaller and the child orders are more evenly distributed.

5.2 Absence and presence of price manipulation strate-

gies (PMS)

Recall that a market impact model dose not admit price manipulation strat-

egy (PMS) if infX∈A(0) C(X) ≥ 0 where A(0) is the set of the round-trip strategies

which are to buy the total amount of zero shares. From the analysis of TTPM ab-

sence section 5.1 and irregularity hierarchy relationship Proposition 3.3.4, all three

market irregularities can be excluded under the one-side LOB model. Thus we only

study the cross-impact and zero-spread models in this section for price manipulation

strategy and the next section for positive liquidation cost.

5.2.1 Absence of PM strategy on β

Proposition 4.1.2 shows that given a trading strategy, the cost under the

zero-spread model is a lower bound of the cost under cross-impact model, and the

cost under the one-side model is an upper bound of the cross-impact cost. In terms

of the price manipulation, this proposition implies that the profitable round trips

under the cross-impact model also make non-negative costs under the zero-spread

model. Note that this PMS property holds even for a general shape function.

Proposition 5.2.1: Consider Cβ the cross-impact cost function (3.1.10) and C∞
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the zero-spread cost function (3.2.2), if there is round trip strategy X ∈ A(0) such

that Cβ(X) < 0, we have C∞(X) < 0.

In other words, if PMS is impossible in zero-spread LOB model, then there

is no PMS in cross-impact LOB model. However, in general, the converse does not

hold. We will present in Example 5.2.2 the possibility of C∞
< 0 ≤ Cβ .

Example 5.2.2: Consider a round trip X = (∆X
A
ti ,∆X

B
tj ) = (m,m) with ti < tj <

T . The cross impact cost function of this strategy is given by

Cβ(X) =

�
m

2

2q(ti)
+

m
2

2q(tj)

�
− m

2
e
−ρ(tj−ti)

q(ti)

�
1− e

−β(tj−ti)
�

= m
2

��
1

2q(ti)
+

1

2q(tj)

�
− a

q(ti)
(1− c)

�

=
m

2

2q(ti)
(b+ 1− 2a+ 2ac),

where a = e
−ρ(tj−ti), b = q(ti)

q(tj)
and c = e

−β(tj−ti).

Applying the same strategy X = (m,m) to the zero-spread cost function (5.0.3),

one obtains the zero-spread cost function

C∞(X) = m
2

��
1

2q(ti)
+

1

2q(tj)

�
− a

q(ti)

�

=
m

2

2q(ti)
(b+ 1− 2a).

If ρ, β and α are such that β ≤ 1
tj−ti

ln 2a
−(b+1−2a) and b + 1 − 2a < 0, one obtains

m2

2q(ti)
(b + 1 − 2a) < 0 ≤ m2

2q(ti)
(b + 1 − 2a + 2ac). An economics interpretation of

the condition β ≤ 1
tj−ti

ln 2a
−(b+1−2a) is that: As the cross-impact factor β becomes

smaller, from ∞ to less than 1
tj−ti

ln 2a
−(b+1−2a) , the opposite side resilience becomes

slower. This results in smaller opposite side price recovery, and then the profits of

the round trip is smaller, e.g. after a buy order, one might sell at a lower price if

the opposite side resilience is smaller.
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5.2.2 Conditions for absence of PM strategies

In this section, we will first present two necessary conditions for absence of

PMS under the cross-impact model.

Proposition 5.2.3: Consider a cross-impact LOB model (3.1.10) with a constant

time-varying shape function f(t, x) = q(t), if the cross-impact LOB model does not

admit the price manipulation strategy, then for any s < t the depth function satisfies

q(s)

q(t)
≥ 2e−ρ(t−s) − 1− 2e−(ρ+β)(t−s)

. (5.2.1)

Corollary 5.2.4: Consider a cross-impact LOB model (3.1.10) with a constant

time-varying shape function f(t, x) = q(t), if the price manipulation strategy is ex-

cluded in the cross-impact LOB model, then the cross-impact resilience rate satisfies

β(t− s) ≤ ln 2 for any s < t.

An extreme example of this Corollary 5.2.4 is that if β = 0, we are then in

the one-side LOB world, and we know PMS is not possible.

Next, let us consider the corresponding results for zero-spread model. By

sending the cross impact resilience rate β to ∞, one obtains the necessary condition

for LOB model with zero spread, which is given by

q(s)

q(t)
≥ 2e−ρ(t−s) − 1. (5.2.2)

In general, condition (5.2.1) and condition (5.2.2) are not sufficient. We will present

in the following example that for a depth function q(t) satisfying condition (5.2.2),

the zero-spread LOB model still admits price manipulation strategy.

Example 5.2.5: Let us consider a three-trade round trip strategy under zero spread

LOB model (i.e. the cross-impact resilience rate β = ∞). Trading times are T =

{t0, t1, t2} and total trading size is Q = 0.

Given a depth function q(t) = (1+t)2 and a same side resilience rate ρ = 0.4,
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one has

q(ti)

q(tj)
=

�
1 + ti

1 + tj

�2

= 1− 2(tj − ti)

1 + tj
+

�
tj − ti

1 + tj

�2

> 1− 2(tj − ti)

1 + tj

and

1− (tj − ti)

1 + tj
≥ 1 +

tj

1 + tj
> 1 ≥ e

−ρ(tj−ti).

Thus, given 1− (tj−ti)
1+tj

> e
−ρ(tj−ti), we obtain that

1− 2(tj − ti)

1 + tj
≥ 2e−ρ(tj−ti) − 1,

which implies that condition (5.2.1) is satisfied. Now, let us look at the cost function

of round trip (x0, x1,−x0 − x1), which is in the form of

C∞(x0, x1,−x0 − x1) = −(x0 + x1)

�
1

9
(−x0 − x1) + 0.4493x0 + 0.1676x1

�

+ x0(0.4493(−x0 − x1) + x0 + 0.6703x1)

+ x1(0.1676(−x0 − x1) + 0.6703x0 + x1/4).

Then we solve the inequality C∞(x0, x1,−x0 − x1) < 0 and the solutions are

x0 < 0 and −6.34906x0 − 5.66648|x0| < x1 < −6.34906x0 + 5.66648|x0|

or

x0 > 0 and −6.34906x0 − 5.66648|x0| < x1 < −6.34906x0 + 5.66648|x0|.

5.3 Conditions for the positive liquidation cost (PLC)

Recall first that a market impact model has positive liquidation costs (PLC)

if for ∀Q ∈ R, there is

inf
X∈A(Q)

C(X) ≥ 0.
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First, we try to derive a discrete-time necessary and sufficient condition for PLC.

Recall the cross-impact cost function (4.2.2) with constant shape function

C
β(ΘA

,ΘB) =
1

2
�z,Hz�, (5.3.1)

where

ΘA ∈ AN (Q), Θ∈AN (Q),

ai,j :=
e
−ρ(tj−ti)

q(ti)
, ãi,j :=

e
−(ρ+β)(tj−ti)

q(ti)
,

A := ai,j {i<j}, Ã := ãi,j {i<j}, Ā := ai,j {i<j} +
ai,j

2 {i=j},

B =
1

2
(ĀT + Ā), D = A− Ã,

and

z := (ΘA
,ΘB), M :=



 B −D

−D B



 , H = M +M
T
.

In this case, we have positive liquidation cost if and only if the depth function q(t)

is such that the matrix H is co-positive. A discussion of criteria for co-positive

matrices can be found in Väliaho [84] and Hiriart-Urruty and Seeger [46] and the

references therein.

In general, this co-positivity matrix condition for PLC is not very practical

since it is not easy to check the co-positivity. We then derive a necessary condition

for PLC under cross-impact LOB model.

Proposition 5.3.1: Consider a cross-impact LOB model (3.1.10) with a constant

time-varying shape function f(t, x) = q(t), if the cross impact LOB model has posi-

tive expected liquidation cost, then for any s < t the depth function satisfies

q(s)

q(t)
≥ e

−2ρ(t−s)(1− e
−β(t−s))2. (5.3.2)

Next, we will derive a necessary and sufficient condition for PLC under zero-
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spread LOB model. Note that this condition (5.3.3) is a sufficient condition for PLC

under cross-impact model by Proposition 4.1.2. When the cross-impact resilience

rate β → ∞, one obtains the cost function of the zero-spread LOB model

C∞(ξ) =
1

2
�ξ,Λξ�,

where ξ ∈ A∞
N (Q) and Λi,j =

e−ρ|tj−ti|

q(ti∧tj) for 0 ≤ i, j ≤ N with (m∧n) taking minimum

between m and n.

Proposition 5.3.2: Consider a zero-spread LOB model (3.2.2) with a constant

time-varying shape function f(t, x) = q(t), the zero spread LOB model has positive

liquidation costs if and only if q(t) satisfies

q(s) ≥ q(t)e−2ρ(t−s)
, (5.3.3)

for any s < t.

5.4 Examples of models admitting PM strategies

In this section, we will show examples of price impact dynamics A − A
0

and B − B
0 generated by three LOB models which admit PMS. The three LOB

models are: the zero-spread increasing depth LOB model, the zero-spread reverting

depth LOB model and the cross-impact increasing LOB model. The objective is to

understand that how a price manipulation strategy works under different trading

times, depth function q(t) and cross resilience rate β.

The base assumptions for all three examples are: a round trip strategy with

two discrete trades is considered, i.e. the buy strategy isXA = (0, ..., 0,∆X
A
t1 , 0, ..., 0)

and the sell strategy is X
B = (0, ..., 0,∆X

B
t2 , 0, ..., 0) with t1 < t2 and ∆X

A
t1 =

∆X
B
t2 := m. Take trading time interval T = 1. Thereafter, the cost function of such

a round trip can be expressed as a function of trading time t1, t2, the depth function
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q(t) and the cross-impact resilience rate β

C(t1, t2,β, q(t)) =
m

2
�
q(t1)
q(t2)

+ 1 + 2e−(ρ+β)(t2−t1) − 2eρ(t2−t1)
�

2q(t1)
. (5.4.1)

Example 5.4.1 (Zero-spread and increasing depth LOB model): Consider an ex-

ponential depth function q(t) = q(0)eαt. First, we investigate that how the costs

change against trading time t1 and t2. When t1 is fixed, like in Figure 5.3 where

we set t1 = 0.2, we see that placing the sell order at different t2 might lead to nega-

tive costs, which means this particular LOB model admits PMS. In other words, in

order to create negative costs the trader should submit the sell order between time

(0.2, 0.7).

Next, we look at how the ask side and bid side price impact dynamics behave.

Figure 5.4 and Figure 5.5 illustrate two price impact dynamic examples when trading

times are t1 = 0.2, t2 = 0.4 and t1 = 0.2, t2 = 0.8 respectively.

The price impact dynamics can be described as: before first buy order at t1,

there is no price impact incurred on both sides. At time t1 a buy order of size m

pushes the best ask price up and makes a hole in the order book. This is reflected

by the vertical line at time t1 in plots of A− A
0. The bid side refills the hole at an

infinite speed (i.e. β → ∞), which is illustrated by the vertical line at t1 in plots of

B−B
0. During time (t1, t2), price impact decays on both sides. At time t2, another

sell order further drags back the best bid price and makes a hole in the order book.

This is reflected by the vertical line at t2 in plots of B −B
0. The infinite resilience

of the ask side refills the hole at once, which is illustrated by the vertical line at t2

in plots of A−A
0.

Because of the infinite cross impact resilience, the ask side dynamic and the

bid side dynamic are the same. The position of two midpoints on the two vertical

lines in each plot shows whether the cost of this round trip with trading time t1, t2

is negative or non-negative. In Figure 5.4, midpoint + is lower than the midpoint

� implies the average buy price is lower than the average sell price. Thus, the total
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Figure 5.3: The change of the cost function against t2 when t1 = 0.2, q(t) = q(0)eαt

with q(0) = 2, α = 3, ρ = 1, β → ∞ and m = 50/3.
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cost of t1 = 0.2, t2 = 0.4 strategy is negative. While in Figure 5.5, midpoint + is

higher than the midpoint � implies the total cost of t1 = 0.2, t2 = 0.8 strategy is

positive.

Example 5.4.2 (Zero-spread and reverting depth LOB model): Consider a re-

verting depth function q(t) = 2 − cos(2πt). Similarly, Figure 5.12 shows how

the cost (5.4.1) changes with respect to t2 for fixed time t1 = 0.2. We also ob-

serve the price manipulation opportunities where the cost function is below zero for

t2 ∈ (0.2, 0.46).

The interpretation of price impact dynamics in Figure 5.6 and Figure 5.7 is

the same as in Example 5.4.1. The way to detect PMS is the same as in Exam-

ple 5.4.1 too. The difference between this LOB model and the one in Example 5.4.1

is the depth function. At the same time t2 = 0.8, the different depths q(t2) generate

two different price impact dynamics as shown in Figure 5.5 and Figure 5.7.

Example 5.4.3 (Cross-impact increasing depth LOB model): In this example, it

is assumed that the depth function takes the form q(t) = q(0)eαt. Figure 5.8 illus-

trates how the cross-impact cost are affected by the trading time t2 when t1 is fixed

and by the cross-impact resilience rate β. As the cross impact resilience rate β be-

comes smaller, the negative cost time interval becomes smaller and the profits −Cβ

is smaller. This observation coincides with Corollary 5.2.4 and Proposition 5.2.1

about the relationship between irregularity and cross-impact resilience rate.

Three cases of price impact dynamics are presented in Figure 5.9, Figure 5.10

and Figure 5.11 respectively. The two trading times are fixed to be t1 = 0.2 and

t2 = 0.5. Compared with the price impact dynamics in Example 5.4.1, for the bid

side price impact, after the first trade at time t1 there is no instantaneously refill

in the sense that it is not a vertical line at t1. The transient opposite resilience is

reflected in the ask side price dynamics at time t2 as well.

Compare the price impact dynamics in Figure 5.9 and Figure 5.10. They are

distinguished by different cross impact resilience rate β. Without loss of generality,
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Figure 5.4: The ask side price impact (left) and the bid side price impact (right)
dynamics on time interval [0, 1] with t1 = 0.2 and t2 = 0.4.
For each plot, ρ = 1, β → ∞, q(t) = q(0)eαt with q(0) = 2 and α = 3, m = 50/3.
The point + is the midpoint of the vertical line at time t1. The point � is the
midpoint of the vertical line at time t2.
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Figure 5.5: The ask side price impact (left) and the bid side price impact (right)
dynamics on time interval [0, 1] with t1 = 0.2 and t2 = 0.8.
For each plot, ρ = 1, β → ∞, q(t) = q(0)eαt with q(0) = 2 and α = 3, m = 50/3.
The point + is the midpoint of the vertical line at time t1. The point � is the
midpoint of the vertical line at time t2.
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Figure 5.6: The ask side price impact (left) and the bid side price impact (right)
dynamics on time interval [0, 1] with t1 = 0.2 and t2 = 0.3.
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Figure 5.7: The ask side price impact (left) and the bid side price impact (right)
dynamics on time interval [0, 1] with t1 = 0.2 and t2 = 0.8.
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Figure 5.8: The change of the cost function against t2 with β → ∞ (left) and
β = 15 (right) when t1 = 0.2. For each plots, ρ = 1, m = 50/3, q(t) = q(0)eαt with
q(0) = 10 and α = 3.
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Figure 5.9: The ask side price impact (left) and the bid side price impact (right)
dynamics on time interval [0, 1] with ρ = 1 and β = 15.
For each plot, q(t) = q(0)eαt with q(0) = 10 and α = 3, m = 50/3, t1 = 0.2 and
t2 = 0.5.
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Figure 5.10: The ask side price impact (left) and the bid side price impact (right)
dynamics on time interval [0, 1] with ρ = 1 and β = 60.
For each plot, q(t) = q(0)eαt with q(0) = 10 and α = 3, m = 50/3, t1 = 0.2 and
t2 = 0.5.
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Figure 5.11: The ask side price impact (left) and the bid side price impact (right)
dynamics on time interval [0, 1] with ρ = 5 and β = 15.
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Figure 5.12: The change of the cost function against t2 when t1 = 0.2, ρ = 1,
β → ∞, q(t) = 2− cos(2πt) and m = 50/3.
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we look at the bid side price impact plot. As β become larger, the opposite side

refills the hole faster. This is reflected in the plot by the shorter time that it takes

to reach the maximum bid side price impact, whose economics interpretation is the

minimum bid-ask spread after the trade at t1. The same analysis applies to ask side

price impact during time (t2, 1].

Compare the price impact dynamics in Figure 5.9 and Figure 5.11. There are

different same side resilience rate ρ in these two figures. Without loss of generality,

let us focus on the price impact dynamics on time interval (t1, t2). After a buy

market order at t1, the ask side (i.e. same side of buy market order) decays faster

if the ρ is bigger. Correspondingly, on the same time interval (t1, t2) at the bid

side, the cross price impact incurred by the buy order at t1 is smaller than that in

Figure 5.9.

Recall that one can see the profitability of round trip strategies by investigating

the levels of average buy and sell prices. In order to compare the average buy and

sell prices, we do the phase portrait of the coupled system of best ask and best bid in

Figure 5.13. The trade at time t1 corresponds to the jump from 0 to 0.92 along the

A − A
0 axis. The sell order at time t2 is the B − B

0 jump from 0.69 to 0.3 in the

opposite direction of B − B
0 axis. The point + is the projection of the midpoint of

A − A
0 jump onto the line x = y. The point � is the projection of the midpoint of

B − B
0 jump onto the line x = y. Similar to the analysis in Example 5.4.1, if the

point � is higher than the point +, it implies the strategy is a PMS.

5.5 Proofs

Proof of Proposition 5.1.1. Without loss of generality, we consider a purchase pro-

gram. Given β = 0 in the sense that the one-side LOB model is considered, the cost

function (5.0.2) can be rewritten as

C0(XA
, X

B) =

� T

0

�
D

A
t +

∆X
A
t

2q(t)

�
dX

A
t +

� T

0

�
D

B
t +

∆X
B
t

2q(t)

�
dX

B
t .
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Figure 5.13: The phase portrait of the coupled system of ask side price impact
against bid side price impact. ρ = 1, β = 15, q(t) = q(0)eαt with q(0) = 10 and
α = 3, m = 50/3, t1 = 0.2 and t2 = 0.5.
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Since D
B
t ≥ 0 and X

B
t is an increasing process along time, one obtains

C0(XA
, X

B) ≥
� T

0

�
D

A
t +

∆X
A
t

2q(t)

�
dX

A
t . (5.5.1)

The right hand side of inequality (5.5.1) is the cost function of a pure buy strategy

(XA
t , 0) to buy a total amount of XA

T+ > Q since Q = X
A
T+−X

B
T+. If we replace the

pure buy strategy X
A
t by min{XA

t , Q} for all t ∈ [0, T ], we obtain a feasible pure buy

strategy in AP (Q) whose total cost is less than or equal to
� T
0

�
D

A
t + ∆XA

t
2q(t)

�
dX

A
t .

Therefore, the transaction-triggered price manipulation is excluded.

Proof of Proposition 5.1.2. Given that there is no TTPM under the zero-spread

LOB model, by the definition of transaction-triggered price manipulation, one has

the following relationship

inf
X∈A(Q)

C∞(X) = inf
X∈AP (Q)

C∞(X).

Next, let us consider the minimum costs C∗,∞ := infX∈A(Q) C∞(X) and C∗,β :=

infX∈A(Q) Cβ(X). By Corollary 4.1.3, we have

C∗,∞ ≤ C∗,β
.

Furthermore, Proposition 4.1.2 states that pure strategies X ∈ AP (Q) give out the

same cost functions for all three LOB models. That is to say

inf
X∈AP (Q)

C∞(X) = inf
X∈AP (Q)

Cβ(X).

These three equations above imply that

inf
X∈AP (Q)

Cβ(X) ≤ inf
X∈A(Q)

Cβ(X).
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At the same time, since AP (Q) ⊂ A(Q), we have

inf
X∈A(Q)

Cβ(X) ≤ inf
X∈AP (Q)

Cβ(X).

Therefore, we have the equality infX∈A(Q) Cβ(X) = infX∈AP (Q) Cβ(X).

Proof of Proposition 5.2.3. Consider a round trip trading strategy: buy first XA =

(0, . . . , 0, xti , 0, . . . , 0), and then sell XB = (0, . . . , 0, xtj , 0, . . . , 0) with ti < tj and

xti = xtj > 0. We can compute the same side and opposite side price impact

dynamics and then obtain the cross-impact cost function

Cβ(XA
, X

B) =
xtixtj

q(ti)
e
ρ(tj−ti)

�
e
−β(tj−ti) − 1

�
+

�
x
2
ti

2q(ti)
+

x
2
tj

2q(tj)

�

=
m

2

2q(ti)
(b+ 1− 2a(1− c)),

where we set xti = m > 0 and a = e
−ρ(tj−ti), b = q(ti)

q(tj)
and c = e

−β(tj−ti).

Suppose that condition (5.2.1) does not hold i.e. b < 2a(1− c)− 1, the cross

impact cost is then negative Cβ(XA
, X

B) < 0. Therefore, for any trading strategy

X ∈ A(Q) there is

inf
X∈A(0)

Cβ(X) ≤ Cβ(XA
, X

B) < 0.

This is a contradiction to the definition of absence of price manipulation strategy.

Proof of Corollary 5.2.4. Adapting the notations from the Proof of Proposition 5.2.3,

we have a = e
−ρ(tj−ti), b = q(ti)

q(tj)
and c = e

−β(tj−ti). Then condition (5.2.1)

can be rewritten as b ≥ 2a − 1 − 2ac. If c ≥ 1
2 , and since a < 1, one obtains

b− 2a+ 1 + 2ac ≥ b+ 1− a > 0. Therefore the assertion holds.

Proof of Proposition 5.3.1. Let us consider a buy program totally to buy Q > 0

shares. Consider a trading strategy: sell following X
B = (0, . . . , 0, xti , 0, . . . , 0),
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and then buy X
A = (0, . . . , 0, xtj , 0, ..., 0) with ti < tj . Here we set xti = m > 0,

xtj = m+Q, a = e
−ρ(tj−ti), b = q(ti)

q(tj)
, c = e

−β(tj−ti) and

L(m) = m
2(b+ 1− 2a(1− c)) + 2mQ(b− a(1− c)) + bQ

2
.

Then we compute the both sides price impact dynamics and then obtain the cross-

impact cost function

Cβ(XA
, X

B) =
xtixtj

q(ti)
e
−ρ(tj−ti)

�
e
−β(tj−ti) − 1

�
+

�
x
2
ti

2q(ti)
+

x
2
tj

2q(tj)

�

=
2m(Q+m)a(c− 1) +m

2

2q(ti)
+

(Q+m)2

2q(tj)

=
1

2q(ti)
[m2(b+ 1− 2a(1− c)) + 2mQ(b− a(1− c)) + bQ

2]

=
1

2q(ti)
L(m).

Look at the quadratic equation L(m) = 0. If the condition (5.3.2) does not hold in

the sense that ∆ := (b− a(1− c))2 − b(b+ 1− 2a(1− c)) = a
2(1− c)2 − b > 0, then

the quadratic equation L(m) = 0 has two distinct solutions, which are given by

m1 = Q
ω1 −

√
∆

mω2

and

m2 = Q
ω1 +

√
∆

mω2
,

where ω1 = a(1− c)− b and ω2 = b+ 1− 2a(1− c).

• Case 1: if ω2 > 0.

Since a < 1 and c < 1, one has 0 < 1 − c < 1 and then a(1 − c) < 1. The

∆ > 0 implies b < a
2(1 − c)2 < a(1 − c) which implies ω1 > 0. If ω2 > 0, we have

ω1 >
√
∆ since

ω
2
1 −∆2 = (a(1− c)− b)2 − a

2(1− c)2 + b = b(b− 2a(1− c) + 1) > 0.
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Then the two solutions satisfies 0 < m1 < m2. For any m ∈ (m1,m2), by property

of quadratic equation we have Cβ(m) = L(m)
2q(ti)

< 0. Thereafter, for any trading

strategy X ∈ A(Q) there is

inf
X∈A(Q)

Cβ(X) < inf
m∈(m1,m2)

Cβ(m) < 0.

In other words, by constructing a purchase trade strategy by selling quantity m ∈

(m1,m2) first and then buying back Q+m, one could get negative liquidation cost.

• Case 2: ω2 < 0.

ω2 < 0 implies the necessary condition (5.2.1) for absence of PMS is violated.

By the hierarchy Proposition 3.3.4, the cross-impact LOB model does not admit

PLC.

Proof of Proposition 5.3.2. The proof will be conducted in two steps. On one hand,

let us prove that q(s) ≥ q(t)e−2ρ(t−s) is the sufficient condition for the zero spread

LOB model having positive liquidation costs.

The condition q(s) ≥ q(t)e−2ρ(t−s) implies that for discrete times {t0, t1, ..., tN}

one has q(ti−1) ≥ q(ti)e−ρ(ti−ti−1), or equivalently aiãi < 1 for ∀i ∈ {1, . . . , N},

where ai = e
−ρ(ti−ti−1) and ãi = ai

q(ti)
q(ti−1)

. Then, we can define vectors v0 and vi to

be

v0 =
e0�
q(t0)

and

vi = ãivi−1 +
ei�
q(ti)

�
1− aiãi,

where 1 ≤ i ≤ N and e0, . . . , eN are the canonical basis of RN+1. Note that vi for

1 ≤ i ≤ N are linearly independent. We have the matrix Λij = �vi, vj� as their

Gram matrix. Thus Λ is positive definite and then the zero-spread cost function

C∞ ≥ 0.
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On the other hand, let us prove that the zero spread LOB model having

positive liquidation costs is the sufficient condition for a constant time varying shape

function q(t), satisfying q(s) ≥ q(t)e−2ρ(t−s).

If the matrix Λ is positive definite, its minors

det((Λi,j)0≤i,j≤n) =
1

q(t0)

n�

i=1

1

q(ti)
(1− aiãi), 1 ≤ n ≤ N

are positive, which implies the condition (5.3.3).
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Chapter 6

Conclusion

6.1 Concluding remarks

In this thesis, there were two main parts of research involved. First, in Chap-

ter 2, the study was set up to explore the LOB resilience. The analysis was based

on a market microstructure model proposed by Rosu [74]. Rather few investigations

dealt with the resilience effect in the framework of a LOB from a game theoretical

point of view. Second, in Chapter 3, 4 and 5, we worked on a new cross-impact LOB

model by extending the LOB-based market impact model proposed by Obizhaeva

and Wang [65] to include the two-side resilience. The difference between the ex-

isting LOB based market impact model and our cross-impact LOB model was the

inclusion of the resilience effect on both bid and ask sides of the order book. In

addition, our cross impact LOB model is the first to incorporate the bid-ask spread

into the optimal execution strategy and market irregularity.

Chapter 2 verified order book resilience under a game theoretical model. We

recapitulated the stochastic trading game in both the one-side case and the general

case formulated in Rosu [74]. The main contribution of this chapter was that we

proved the existence of the same side resilience in Proposition 2.2.3 in a mathe-

matically rigourous way, by reinterpreting the same side resilience and the opposite
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side resilience in terms of the temporary price impact and permanent price impact.

That was an essential step for verifying the existence of the resilience, since the price

adjustment in this continuous time stochastic trading game is taking place instanta-

neously, while the resilience effect is a time-related feature of a LOB. We rewrote the

solution for the recursive system of the sellers’ utility function in Proposition 2.2.2

and then provided a proof of same side resilience in four steps by investigating

the asymptotic behaviour of the difference of the price impact functions under the

assumption of fast decaying arrival rates of impatient buyers who submitted more

than one-unit order. We also constructed a counterexample of the same side resilient

where the fast decaying assumption did not hold.

In Chapter 3, we formulate of the cross-impact LOB model. Apart from

defining a trading strategy, a time-varying shape function and cost function, a crucial

part of the model formulation was the introduction of the limit order regeneration

on both ask and bid sides after a price shift created by market order. The same side

price impact was described by processes DA or DB with a same side resilience rate ρ.

The opposite side price impact was represented by processes LA or LB with a cross

impact resilience rate β. The total price impacts were then linear combinations of

the same side and opposite side price impacts. This new model successfully allowed

an endogenous non-zero bid-ask spread in the LOB based market impact models.

To the best of our knowledge, this model was the first one to model non-zero spread

and two-side resilience effect in the market impact model framework. Moreover, in

section 3.2 we indicated the generality of the cross-impact LOB model by replicating

two existing LOB models under our model setting-ups. By sending the cross impact

resilience rate β to infinity, we succeeded in replicating the zero-spread LOB model.

The one-sided LOB model was also replicated here if the cross impact resilience

rate β was set to be zero. At the end of this chapter, we provided three market

irregularity definitions. We proved that for cross-impact LOB models, the absence

of transaction-triggered price manipulation (TTPM) implied the positivity of the

liquidity costs (PLC) and the positivity of liquidity cost lead to the absence of price

manipulation strategy (PMS) in Proposition 3.3.4.
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In Chapter 4 we applied the cross-impact LOB model for studying the opti-

mal execution problem. We proved the existence of optimal execution strategy under

the cross-impact LOB framework in four cases: model of volume impact reversion in

discrete time, model of volume impact reversion in continuous time, model of price

impact reversion in discrete time and model of price impact reversion in continuous

time. We found that for any strategy in the admissible set, the zero-spread cost is

a lower bound of the cross-impact cost. Furthermore, we proved that the minimum

costs of the zero-spread LOB model is a lower bound of the minimum cost of the

cross-impact LOB model. The relationship between cost functions of zero-spread

LOB model and cross-impact LOB model was presented in Proposition 4.1.2 and

Corollary 4.1.3. With the help of the costs relationship between models, we trans-

ferred the problem of proving existence of optimal solution under the cross-impact

LOB model to the existence problem under the zero-spread LOB model. For dis-

crete time cases, we proved the coerciveness of cost functions and solved the optimal

strategy by the method of Lagrange multiplier. Then we took the continuous ana-

log of the discrete time optimal strategy and proved the optimality via verification

argument. A by-product of this process was that we obtained sufficient conditions

for absence of PMS and TTPM under the zero-spread LOB model. They were

summarised in Table 4.1. Our results contributed to the zero-spread LOB model

literature by generalising the optimal trading strategy and absence conditions of

market irregularities since a general form of shape function was used. Under the

assumption of a constant time-varying shape function, we presented some numerical

examples of optimal strategies under the cross-impact LOB model. As a result, the

relationships between respectively the optimal strategy and the depth function, the

cross impact resilience rate, the same side resilience rate were explicitly investigated.

Figure 4.4 suggested that as the cross impact resilience rate increased, more opposite

side orders were used under the LOB model with TTPM. Figure 4.6 suggested that

as the same side resilience rate increased, the optimal strategies were less volatile.

In Chapter 5 we addressed the regularity problems of market impact model

when one cannot obtain closed-form optimal solutions of the execution problem like
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in Chapter 4. We answered the questions raised by Fruth et al. [31]: might it be

true that the LOB model with non-zero spread exclude these price manipulations.

We found that the cross-impact LOB models possess non-zero spread, but it is still

profitable to manipulate prices. We proved that the profitability of the price ma-

nipulation strategies depends on the resiliency of the order book and the dynamics

of the shape function. The conditions of the absence of three market irregularities

were presented in Proposition 5.1.1, Proposition 5.1.2, Proposition 5.2.1, Propo-

sition 5.3.1 and Proposition 5.3.2. According to these propositions, we concluded

that market irregularity conditions under zero-spread LOB models were weaker than

those under the cross-impact LOB models.

6.2 Further research

We have argued in Chapter 1 and Chapter 2 that there are both the same side

resilience and opposite side resilience in the limit order book market, nevertheless,

there are much less theoretical studies on the resilience effect than on other features

of the order book. The game theoretical models are still introducing a rather large

amount of free parameters, most of which cannot be measured directly. We may

resort to the stochastic models of the limit order book. It would be desirable to be

able to model the dynamic bid-ask spread endogenously, via the various order flows

of the trading within. More market microstructure research are needed to help with

explaining and identifying the after-shock price formation.

From perspective of optimal execution problem, it is certainly a challenge

to come up with a mathematically tractable model that cover all three layers of

order splitting. A first step could be to add the choice of limit order into the

optimal execution strategy. Apart from the studies about the second layer execution

discussed in Chapter 1, we believe that the combination usage of limit orders and/or

dark liquidity inside the spread can be a research direction. Indeed, the resilience

effect is the process of regeneration of limit orders inside the after-price-shock spread.
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There is still a gap for this optimisation problem.
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