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Abstract

The main aim of the thesis is to explore the interaction between pattern
and process in vegetation ecology using a variety of mathematical and statistical
methods. Of particular interest is what information about the dynamics of the
underlying system can be gained through a single spatial snapshot, such as an aerial
photograph or satellite image. The hypotheses are related to seagrass ecology, whose
growth is primarily clonal and broadly exists as a monoculture and thus makes it an
ideal candidate to study these interactions. The thesis broadly concerns two forms
of spatial pattern and the underlying dynamics that give rise to them. The first
concerns regular pattern formation, where the pattern has a characteristic length
scale. Examples are abundant in natural systems, such as mussel beds, semi-arid
ecosystems as well as seagrass. The developments concerned with regular pattern
formation include methods of detection in a large spatial dataset, a novel stochastic
model of vegetation that produces regular pattern with plausible mechanisms, the
development of a new methodology to fit regular spatial pattern data to the model
and the impact as well as evolutionary mechanisms of regular patterning in the
presence of disease.

The second form of spatial pattern exhibited in a wide variety of sessile species
is scale-free or fractal patterning. Certain scaling heuristics, such as the bound-
ary dimension of a vegetation cluster or the power-law exponent of the patch-size
distribution have been used to infer properties of the dynamics. We explore these
heuristics using a variety of plausible models of vegetation growth and find the cir-
cumstances under which there is a clear relationship between the spatial heuristics
and the dynamics. These are then supplemented by viewing vegetation growth as
an aggregation process. A novel model of vegetation aggregation with death is pro-
duced to find the origin of the ubiquitous power-law patch-size distribution found
in nature. Finally the impact of scaling on the spread of disease is explored.
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Chapter 1

Introduction

[W]e must find ways to quantify patterns of variability in space and time,

to understand how patterns change with scale. . . , and to understand the

causes and consequences of pattern. . .

(Simon A. Levin)



1.1 Motivation

Traditional survey techniques of a marine vegetation systems involve longitudi-

nal studies with local sampling techniques such as quadrat sampling [Duarte and

Kirkman, 2001; Pringle, 1984; Shears and Babcock, 2002]. These techniques rely on

the assumption that the relevant scale of reference is of the order of the size of the

quadrat (normally 1m2) and will often miss processes occurring at larger scales, such

at the scale of whole ecosystems. The time-scale over which longitudinal, quadrat

sampling occurs is also an issue. For a perennial plant species that has a turn-over

rate greater than 2 years a study could typically last decades in order to collect

sufficient data to answer questions on the dynamics of the ecosystem [Bull et al.,

2012].

Often the assumption of spatial homogeneity is used to simplify mathematical

analysis. Vegetation ecosystems are rarely completely homogeneous, often forming

patchy landscapes with non-smooth boundaries [Adler et al., 2001; Wiens, 1989].

Processes such as dispersal of organisms, disease spread, persistence and coloni-

sation depend on the form of these spatial patterns that the vegetation exhibits

[Bertness and Callaway, 1994; Jolles et al., 2002; Nathan and Muller-Landau, 2000;

Tilman, 1994]. For the management of ecosystems, it is therefore important to

have techniques that can describe vegetation spatial patterns as well as techniques

to understand their formation and their underlying dynamics. In order to probe

the relationship between pattern and process, ecosystems where a single vegetation

species dominates can be explored. One such species is seagrass [Hemminga and

Duarte, 2000].

Seagrass exists largely as a monoculture exhibiting both clonal and sexual repro-

duction in the form of shooting and seeding respectively [Kendrick et al., 2012].

It exhibits long and short-range feedback processes in the form of sedimentation;

retardation of currents; crowding and anchoring from the growth of clonal mats [Ab-

delrhman, 2003; Larkum et al., 2006]. It forms a number of different spatial patterns

at a range of scales including banding and can display fractal meadow boundaries as

well as scale-free patch-size distributions [Cunha and Santos, 2009; Van Der Heide

et al., 2010]. As such it is an ideal species candidate to test the relationship between

spatial pattern and dynamics.

Seagrass provides a number of ecosystem services that make it of significant eco-

nomic and ecological relevance [Costanza et al., 1998]. It is involved in coastline
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stabilisation, by raising the seabed relative to the baseline level [Wright and Jones,

2006]. This breaks the wave before the coastline, thus reducing erosion from wave

action. It can engineer its own environment, meaning it’s able to reduce currents

significantly whilst also increasing deposition of sand giving protection and more

access to light. The rhizome structure is an important carbon sink and recycles or-

ganic nitrogen [Duarte et al., 2005; Touchette and Burkholder, 2000]. The meadows

themselves provide an ecosystem for a large number of organisms and biodiversity

is typically high with species of many different phyla including molluscs, fish and

waterfowl [Beck et al., 2001]. Due to the economic and ecological importance and

their rapid loss in recent years it is of pressing concern to study and understand

the extent of seagrass losses, their ability to persist as meadows and their general

efficacy as ecosystem service providers.

In recent years there has been a huge increase in the amount of spatial data

obtained from remote sensing techniques available for ecological analysis [Kerr and

Ostrovsky, 2003]. Data in the form of satellite imagery and aerial photographs

have been used to identify species habitat, spatial extent and variability and how

cofactors such as anthropogenic influences can change the resulting distribution

[Buermann et al., 2008; Hansen et al., 2010; Lefsky et al., 2002]. This relatively new

form of data in ecology requires new methodologies that will allow it to supplement

more traditional data sources such as quadrat-based surveys. In particular the

main hypothesis is that information on the dynamics of a vegetation system can

be gained through analysing a single spatial snapshot. The gain in knowledge from

the spatial pattern alone would represent a significant improvement over current

surveying techniques.

1.2 Related efforts

Objects in nature such as boundaries between water and land (coastlines, lakes

rivers etc.), vegetation boundaries and clouds are difficult to describe using classical

geometry [Mandelbrot, 1983]. This is due to their apparent lack of scale when

viewed at increasing levels of resolution. The classic question raised by Mandelbrot,

“How long is a coastline?” highlights the issue [Mandelbrot, 1967]. If a ten meter

ruler were used to measure a section of coastline a different answer may be obtained

than if a one meter ruler were used to measure it. This is due to undulations in the

coastline that exist on all scales, while some may be too small for the ten meter ruler

to measure, the one meter ruler could measure them, thus the coastline appears to
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grow in length the smaller you make the measurements. The development of this

is to observe how the length of the object being studied grows as the length of the

measurements decreases. This produces a power law, with an exponent that defines

the Fractal Dimension of an object [Falconer, 2013].

Fractal Theory has had a number of applications in vegetation ecology [Sugihara

and M May, 1990]. Questions arising from studying patchy landscapes such as the

size of habitat that can sustain a species population and the length of interfaces

between two forms of vegetation have a natural setting in fractal theory. Often

processes can dominate over a finite range of scales leading to processes that domi-

nate for a different range of scales. This is why the term scaling theory has become

more popular in recent years, circumventing some of the strict formalism laid out

by Fractal theory [Halley et al., 2004]. The local scaling dimension of vegetation

has been shown to affect species distributions, but relatively little work has been

done on discerning the underlying mechanisms of what gives rise to these species

distributions [Green et al., 2003; Wilson et al., 2004].

How the dynamics of a vegetative process gives rise to its shape has been discussed

and originally proposed by Sugihara and M May [1990]. Vegetation is viewed broadly

as a diffusion process with both dynamic and spatial scaling that are inter-related.

This is quantified using a modified Brownian diffusion process with a tunable pa-

rameter representing the persistence or anti-persistence of the process [Mandelbrot,

1979]. This parameter, known as the Hurst Exponent has then been used to charac-

terise different vegetative spatial patterns and used as a heuristic for dynamics such

as succession [Hastings et al., 1982]. Being a phenomenological model however, it

still remains unclear where the mechanistic link is between the dynamics and the

resulting spatial pattern.

Other spatial statistics that have been explored include the size and shape of

patches [Seuront, 2009]. These can take a number of forms including estimating

the patch perimeter, its area and its radius of gyration [Li, 2000]. Of particular

importance is the area of a patch. The distribution of which has been well studied

and under certain conditions can have a power law tail [Kéfi et al., 2011]. Power

laws in patch-size distributions were originally studied by Korcak, where he observed

them in size distributions of Aegean islands. Since then there has been a lot of

research into using these distributions to define an exponent known as the Korcak

exponent after its discoverer.
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The Korcak exponent has been applied to several ecological processes including:

correlating with grazing pressure on a landscape [Xin et al., 1999]; providing an

estimate of patchiness and re-forestation [Imre et al., 2011]; relating to the cover

between two species [Erlandsson et al., 2011] and providing a measure of persistence

[Pascual et al., 2002]. There has been tantalising glimpses that varying Korcak

exponents can give different vegetative dynamics and hence the Korcak exponent

can be used as a measure of the vegetative dynamics and in particular its persistence

[Cunha and Santos, 2009]. However, up to now there has been no research to

demonstrate this relationship between dynamics and the Korcak exponent in situ.

A patch-size distribution displaying scale-free behaviour intuitively has fractal

properties. As the distribution is a power law there is no relevant scale at which

to observe the patches and hence there is a self-similar property over certain length

scales. This has lead to discussion over how the patch-size scale free property can be

related to the self-affine properties of the boundary of the patches. Various authors

have looked at this relationship, but as yet there is no clear picture as to how they

do relate if at all in a vegetative process [Hastings and Sugihara, 1993; Imre et al.,

2012; Sugihara and M May, 1990].

The origin of such vegetation distributions has also gained much interest recently.

Pattern formation concerns the emergence of regular patterns from homogeneous

starting conditions and has broadly been studied using reaction-diffusion type sys-

tems to characterise the necessary symmetry-breaking bifurcations needed for pat-

tern formation to occur. In sessile ecology there are numerous examples of pattern

formation in semi-arid ecosystems [Lejeune and Tlidi, 1999], mussel beds [van de

Koppel et al., 2005], coral reefs [Mistr and Bercovici, 2003] etc.

As a vegetative system evolves, certain parameters have a stronger influence over

the nature of the dynamics than others. In semi-arid ecosystems, parameters such as

rainfall determine whether the system is driven to a steady-state of high vegetation

density or a steady-state of low vegetation density [Schwinning et al., 2004]. As

a system approaches this point through variation of its parameters it undergoes

a tipping point or bifurcation, where there is a qualitative change in the system

dynamics. Often vegetative systems will display hysteresis, with the barren state

persisting even if rainfall is increased [Von Hardenberg et al., 2001].

As a dynamic system approaches a bifurcation a number of predictable changes

occur that can be seen in an observable of the system such as density or variance
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[Scheffer et al., 2009]. These measures can then be used as an indicator of whether

a system is close to a catastrophe or not and hence can inform ecosystem managers

to prevent a complete collapse of the system [Guttal and Jayaprakash, 2009]. These

measures are applicable when the system is close to a bifurcation point, however

if a system is far from equilibrium or not close to a tipping point then it is not

clear what spatial indicators are suitable in order to establish the persistence of the

ecosystem.

Indicators of bifurcation in vegetative spatial patterns have recently received much

attention [Dakos et al., 2010, 2011; Kéfi et al., 2014]. If the underlying mechanisms

of a vegetative process are well understood then the system undergoes a predictable

series of changes to the the spatial pattern as it moves from the vegetative state to

the barren state [Rietkerk et al., 2004]. These spatial indicators could then provide

a way of rapidly assessing how close an ecosystem is to a bifurcation. It remains

unclear, however, whether spatial indicators can be detected in a real system and

what the nature of them would be for a system with many scales of interaction.

The related efforts naturally lead to a number of hypotheses that shall be explored

in this thesis. The primary of which is what the relationship is between temporal

and spatial persistence. This can be broken down into a number of further hypothe-

ses. Specifically, can the Korcak exponent, boundary dimension and other fractal

measures of a spatial vegetation distribution be used as an effective heuristic in

measuring the dynamic persistence in a real or simulated ecological system. What

is the theoretical origin of the power-law scaling of the patch-size distribution and

how does this exponent relate to underlying physical and ecological processes. Does

the Korcak exponent change continuously with parameters of a system or is there

an abrupt transition. Further hypotheses that shall be explored shall be whether a

mechanistic model can both reproduce regular pattern formation and scale-free pat-

tern formation. Is it possible to fit parameters to a single spatial snapshot using this

model. Finally, how does the heterogeneity and pattern of a vegetation landscape

impact other processes that may be occurring on said landscape, such as species

dispersion or disease spread.

1.3 Summary of main development of thesis

The main developments of this thesis have been the following:
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A key finding has been the exploration of the relationship between persistence in

the form of the return rate and spatial pattern in the form of the Korcak exponent.

These results are a combination of analysis of seagrass datasets as well as from

numerical simulation.

Current modelling of regular spatial pattern in vegetation is done using continuous

deterministic models such as reaction diffusion. These models provide a good quali-

tative description of how certain underlying mechanisms lead to pattern formation,

however are difficult to apply directly to data. A novel model of regular pattern

formation in vegetation is explored where the vegetation is modelled as individual

units occupying a lattice. This allows direct comparison between the simulated spa-

tial pattern and data. A novel technique of performing Bayesian model inference

on vegetation spatial pattern data has also been constructed and explored in this

thesis. This technique provides a way of taking a single snapshot of a spatial pattern

and inferring a plausible model of vegetation growth with competition to it.

The spatial work has been supplemented by viewing vegetation as an aggregation

process. This leads to a theoretical origin for the power law tail of the patch-size

distribution as well as an explanation for the onset of an exponential tail observed

in multiple spatial ecological systems such as mussel beds and semi-arid ecosystems.

Finally the role of pattern on process was explored by analysing how fractal and

regular pattern properties of a vegetation affect the spread of disease through the

vegetation. Heterogeneity of the distribution was found to slow down the progres-

sion of the disease. While regular patterns in the form of banding was also found to

regulate the progression and persistence of the disease and vegetation. The hypoth-

esis explored was then whether regular patterns could have evolved in the presence

of disease. It was found that under a wide-range of conditions, in particular when

the disease has a high level of virulence, then the regular pattern trait dominates.

1.4 Outline of remainder of thesis

The structure of the thesis is as follows. The next chapter covers the background

of related efforts in the field of vegetation spatial pattern analysis. In particular,

the origin of certain types of pattern commonly found in vegetation ecosystems

as well as efforts related to interpreting these spatial patterns in relation to the

extinction risk of the community and other dynamical indicators. The next chapter

7



discusses seagrass, which is used as a particular vegetation community where ideas

developed in the thesis can be explored. Then spatial analysis is conducted on

the seagrass dataset to ascertain the types of spatial pattern present in the data

that will then be interpreted in coming chapters. Particular forms of pattern are

discussed and various models that are both based on reasonable assumptions about

the underlying biology in the next chapter. Following on, specific ways of relating

the spatial pattern of a vegetation to its persistence are discussed including a number

of modelling approaches and specifically applying to the seagrass data in order to

ascertain its validity. The next chapter deals with model fitting to a spatial pattern,

when the spatial pattern has a regular structure. A way of interpreting the patch-

size distribution using aggregation is then explored. Finally, the thesis ends with an

exploration of disease on a vegetation pattern, including how the fractal properties

of the spatial pattern impact the spread of disease as well as how regular banding

can regulate disease spread.
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Chapter 2

Background

. . . when he sees in a snail, or nautilus, or tiny foraminiferal or radiolarian

shell a close approach to sphere or spiral, he is prone of old habit to

believe that after all it is something more than a spiral or a sphere, and

that in this “something more” there lies what neither mathematics nor

physics can explain.

(D’Arcy W. Thompson -On Growth and Form)
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2.1 Introduction

Ecosystems such as marine, semi-arid and tropical are predominantly defined via

the composition and distribution of their vegetation. Vegetation can colonise barren

land and through successional species lead to a composition of species that appear

in equilibrium with their environment. The vegetation species of many ecosystems

therefore are pivotal in the sustainability and resilience of the overall system and an

understanding of their dynamics is vital.

Resource increase
Stress decrease

Community

Resource decrease
Stress increase

Short-range
activation

Long-range
inhibition

Autocatalysis

Figure 2.1: General mechanism for an activator-inhibitor system in vegetation. Lo-
cally positive interaction occurs due to increase in resources and decrease stress.
On larger spatial scales inhibition occurs through resource depletion and increase in
stress (Adapted from [Rietkerk and Van de Koppel, 2008]).

Many processes affect the persistence and pattern of the vegetation including:

grazing, disease, environment and fire. These processes will often be mediated at

a range of scales: on larger scales composition of the vegetation is predominantly

determined by the environment, which determines the viability of where vegetation

can occupy. On smaller scales feedback processes such as through environmental

factors such as soil composition and ground water determine the finer structure of

the vegetation community. At even finer scales on the level of individuals stochastic

processes dominate: these processes include growth of new plants from the under-

lying seed bank; clonal growth from rhizomal propagation and shooting; and death.

This highlights the importance of scale in the vegetation community. If observing

at a particular scale, identifying what processes dominate at those spatial ranges

is vital. It is also important to identify if such a process is acting at a particular
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characteristic length or if it is operating over a range of scales.

This chapter contains an outline of the modelling and theoretical research carried

out to address the hypotheses outlined here. An outline of regular pattern formation

in vegetation is carried out in the next section. This is where processes between

vegetation and its environment create spatial patterns at a characteristic length

scale. Patterns where there is no characteristic length scale, such as power law

patch-size distributions are then reviewed. This leads on to stochastic patterns of

vegetation with rough boundaries that are indicative of fractal phenomena. A review

of the explanations of these phenomena are then given.

2.2 Pattern formation

Figure 2.2: Various examples of regu-
lar pattern formation in vegetation. Ex-
amples are (a) semi-arid vegetation (b)
shrubs & trees in Siberia (c) spotted vege-
tation in Niger (d) mussel beds (e) reef is-
lands (f) ribbon forests (g) marine benthic
diatoms and (h) sedge (Reproduced from
[Rietkerk and Van de Koppel, 2008]).

In order to understand how persis-

tence influences spatial pattern and vice

versa, we must first understand the

broad range of spatial patterns that ex-

ist in vegetation ecosystems. Rietkerk

and Van de Koppel [2008] provides a re-

view of well-established regular spatial

patterns that exist in ecology. The lead-

ing explanation of how patterns of char-

acteristic length scale arise from vege-

tation dynamics is that of Turing pat-

terns [Murray, 2001]. In the seminal

paper Turing [1952] proposes a mech-

anism of symmetry-breaking that leads

to stable patterns in space. The mech-

anism under which this occurs is based

on the interaction between two chem-

ical species: an activator and an in-

hibitor. The activator is in a positive

feedback loop with itself, while it also

produces an inhibitor. The inhibitor in-

hibits the further production of the ac-

tivator (Fig. 2.1). For a spatially ho-

mogeneous system, these dynamics lead
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to a stable fixed point with a non-zero concentration of activator and inhibitor.

However, when space is introduced, via a diffusion operator on the inhibitor and

activator, small spatial perturbations can lead to the system moving away from the

homogeneous fixed point to one of stable spatial patterns (when the diffusion con-

stant of the inhibitor is sufficiently larger than the diffusion operator of the activator

).

The resulting patterns are due to the separation of scales between activator

and inhibitor. On small scales, the activator is able to diffuse to reinforce the local

high concentration of activator. On larger scales the inhibitor prevents the further

diffusion of the activator leading to patterns of a fixed length scale such a spots,

stripes and labyrinths. This activator-inhibitor mechanism provides an allegory for

vegetation and its environment, where vegetation is dominated by positive local

feedback on small scales, but negative feedback on larger spatial scales.

These regular patterns have been found in a number of ecosystems including

wetlands [Foster et al., 1983; Sakaguchi, 1980; Swanson and Grigal, 1988], Savanna

[Lejeune et al., 2002], Mussel beds [Bertness and Grosholz, 1985; Okamura, 1986;

van de Koppel et al., 2005], coral reefs [Mistr and Bercovici, 2003] and intertidal

mudflats [Blanchard et al., 2000; De Brouwer et al., 2000] (See Fig. 2.2). For marine

systems such as mussel beds, intertidal mudflats and coral reefs mechanisms that

induce spatial patterning are associated with the interplay between currents; the

density of vegetation and other species; and the environment by way of nutrients,

sediment and algae concentrations. The resulting spatial patterns give an indication

as to the underlying model parameters that gave rise to such patterns.

Turing bifurcations are not the only pattern-inducing transitions known to occur

in vegetation ecosystems. Shnerb et al. [2003] identified a model where formation

of patches in an irregular pattern is due to a non-Turing mechanism. Growth was

divided into two seasons: summer and winter. Although growth in the first season

was modelled by equations with a stable homogeneous fixed point, the dynamics

of the second season, where vegetation is depleted depending on a fixed size cut-

off, keeps the system away from the equilibrium state. Thus the system develops

characteristics of a glassy system more commonly associated with lattice dynamics

in physics. These are systems where there is some fixed random structure in the

assemblage of the individual units that are held in place due to the system being

trapped in an energy well far from equilibrium.
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Another type of non-Turing pattern was introduced by D’Odorico et al. [2007].

They considered a model of vegetation in the presence of random fire events where

the vegetation has logarithmic growth and spatial diffusion. In the presence of

no stochastic term, this is the regular Fisher equation, which produces no Turing

bifurcation. An added stochastic term in the form of a Poisson process was used

to model disturbances due to fires. The resulting spatial patterns produced are

transient in nature and do not have a regular length-scale. This provides caution

that although if a particular spatial pattern is observed, it is not necessarily the

case that the pattern forming process can be immediately identified from the spatial

pattern alone and the underlying mechanisms must also be discerned.

Regular spatial patterns are one class of patterning that is ubiquitous in vegetation

ecosystems. Another type are scale-free spatial patterns, which in contrast to regular

patterns do not have a characteristic length-scale. Usually there is some property

of the pattern, such as the roughness of cluster boundaries or the size distribution

of clusters that has a scale free or power-law distribution where the cluster size s is

related to its frequency via the relationship

N(s) ∼ s−γ , (2.1)

where γ is the exponent of the power-law distribution. An explanation for the

formation of these scale-free patterns comes from the the idea put forward by Bak

et al. [1987], known as self-organised criticality. This is where, without fine-tuning

of parameters or starting from a particular initial state, an extended spatial system

with many degrees of freedom evolves towards a critical state. In this critical state,

the system is barely stable and small perturbations can lead to dissipations on all

length-scales. A concrete, relevant example of a system that displays self-organised

criticality is the forest fire model [Drossel and Schwabl, 1992]. The model is an

abstraction of a forest that can be colonised with a single species and is subject

to random disturbances in the form of fire that can burn through the vegetation

leading to barren states that can be occupied again. The model is specified as a

probabilistic cellular automata on a square lattice, where each cell can either be

empty, occupied or burning. The model is updated at each time-step using four

rules

1. A burning site becomes an empty site with probability 1.

2. An occupied site becomes burning if one of its neighbours is in a burning state.
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3. An empty site becomes occupied with probability p.

4. An occupied site can become burning with probability f .

Time can be rescaled so there is a single parameter on which the dynamics depends

p/f . For a suitable parameter range, there is a cascade of fire events, where the

total size of a forest fire has a power-law distribution. This critical state is reached

regardless of initial conditions and for a large range of the parameter. The model

dynamics evolve the system to a state where disturbance cascades of any size can

occur (if the system size is suitably larger than the range of scales considered).

2.2.1 Semi-arid ecosystems

Semi-arid ecosystems have produced a large amount of research into regular pat-

tern formation, where the competition for water dominates growth of vegetation.

Modelling has taken two forms. Thiery et al. [1995] introduces a model of pattern

formation in arid ecosystems via a deterministic cellular automata model. Space is

divided up into a lattice and each lattice site contains the quantity Si,j,t represent-

ing the quantity of vegetation at site i, j at time t. The deterministic dynamics are

then updated according to a convolution, which mediates the local and long-range

cooperation and competition effects. The dynamics are then summarised as

Si,j,t+1 = Si,j,t + max{−1,min{1, (A ∗ S)i,j}}, (2.2)

∗ is the convolution operator and A is a matrix representing the cooperation and

competition between plants. Thiery considers a simplified interaction matrix with

two parameters representing interactions in the presence of a gentle slope and the

resulting spatial patterns are qualitatively consistent with observations from aerial

photographs. The interaction being locally positive and negative at long-range is

again important for vegetation bands to occur. Although the spatial patterns pro-

duced are striking, the model is purely phenomenological in its description and no

quantitative parameter fitting was performed.

Lefever and Lejeune [1997] also consider a deterministic model of vegetation

growth with long-range spatial competition that induces regular spatial patterns.

The kinetic equation has three components F1 represents the growth of vegetation

density c due to facilitation and local dispersal. F2 is a competition term that limits

the growth of the c term. The final term, F3 represents mortality and leads to a

decrease in c. Lejeune and Tlidi [1999] further analysed this model to find that the

length-scale of reproduction must be shorter than the length-scale of competition
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in order for pattern formation to occur. Increasing of the death rate leads to a pre-

dictable change in the resulting spatial pattern: from vegetation with regular gaps,

to a banded labyrinth structure, to vegetation spots until finally reaching the barren

state for high mortality. The deterministic nature of the kinetic model however leads

to regular patterns, which are difficult to observe in the field due to heterogeneity of

the environment and other stochastic processes associated with vegetation growth

and death. Klausmeier [1999] introduces a model of vegetation growth where the

concentration of ground water is explicitly modelled via a reaction-diffusion equa-

tion. The model produces stripes that are perpendicular to the direction of flow of

the ground water. The resulting regular patterns are dynamic and move uphill. The

wavelength of the bands are connected with the parameters of the system; the wave-

length of stripes decrease for increasing water input rate and plant loss rate. Stripes

occur as a boundary between the barren state, where there is no vegetation present

and the homogeneous state, where there are no regular spatial patterns. This model

indicates the applicability of inferring parameters from spatial pattern, although if

it were purely done from wavelength a family of parameter values would be appli-

cable, hence other parameters such as water input would need to be inferred by

other means. Sherratt [2005] extended the analysis of the model to the other model

parameters. They found a square root relationship between the wavelength of the

stripes and the gradient of the slope. This again shows the applicability of inferring

parameters from spatial snapshots if other parameters are known. HilleRisLambers

et al. [2001] extended the model again to include dynamics of surface water without

the presence of a slope (no ground water current term). The resulting model is a

three-dimensional reaction-diffusion equation that has a large region of parameter

space where banding exists. This is contrasted with Klausmeier [1999] where an

environmental gradient was necessary to induce banding. Kéfi et al. [2010] further

extends the model of HilleRisLambers et al. [2001]; Rietkerk et al. [2002] to include

new non-linearities in the interaction between vegetation density and surface water.

The resulting equations admit a bistable region, where both vegetation and the bar-

ren state can coexist. Both Turing and non-Turing spatial patterns are observed and

the resulting spatial patterns occur in the region where the spatially-homogeneous

system is bistable. This indicates in this model at least that certain spatial patterns

can be associated with a bistable region and hence imminent desertification. These

conclusions do rely on the underlying model being valid as we have seen that other

models produce similar spatial patterns without the need to be bistable.
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The interaction between vegetation and its environment producing regular pat-

terns is particularly well-studied in the field of ecohydrology, where there is competi-

tion between vegetation units for ground water inducing spatial pattern. Borgogno

et al. [2009] reviews the main mechanisms proposed to pattern formation in ecohy-

drology including both deterministic and stochastic models. They conclude with a

set of open challenges in the field. These include under what conditions pattern can

form in a noisy environment and what form of model validation can occur purely

on observations of spatial pattern when many mechanisms are known to generate

similar spatial patterns.

2.3 Critical phenomena

Criticality is the phenomena exhibited in many systems where small changes in the

underlying parameters of the system lead to large-scale qualitative system changes.

The classically studied forms of criticality have been those of thermodynamics such

as the liquid-gas phase transition. For a slight temperature increase there is a large-

scale observable change in the qualitative properties of the matter being heated. At

the critical point, both phases exist simultaneously and spatial correlations decay

algebraically. This introduces the idea of using spatial statistics, such as spatial

correlation functions to detect the presence of a critical point. These spatial statis-

tics are known as order parameters due to their characterisation of order near phase

transitions, where there is a sudden change in the order of the system. Many ecolog-

ical systems exhibit patchiness and scale-free behaviour in their spatial distribution

near a critical point. Pascual and Guichard [2005] identify three types of criticality:

classical, self-organised and robust. Classical have been discussed previously as with

the liquid-gas phase transition, when a system has an order parameter that varies

dramatically with an external parameter over a single point, the order parameter

is considered to not affect the external parameter. Self-organised criticality (SOC)

on the other hand occurs when a system evolves freely towards its critical point

without any external fine-tuning [Bak, 1997; Pascual et al., 2002]. The prototypical

example of SOC is the sand-pile model introduced by Bak et al. [1987]. The idea

is to imagine a flat surface where sand is dropped at constant rate but in random

points causing sand-piles to emerge. The abstraction of this process is a cellular au-

tomata where a one-dimensional grid of infinite length is set-up with initially empty

sites. Sand is modelled as single units that are placed randomly onto the length of

the grid. Relaxation occurs when a sand unit lands on a site; the neighbouring sites

values are checked against the centre one, if the difference between the site and its
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neighbours is greater than one then the sand particle jumps into the lower site. The

new site, where the sand has jumped to, is again checked to see if the difference

in particles between itself and its neighbours is greater than one and the relaxation

dynamics continue until this inequality is satisfied. After a certain relaxation period

it is found that the length of these relaxation events or avalanches that occur can

be arbitrary in size; the distribution of avalanche sizes is in fact a power law. The

system is thus one that has freely evolved into a state of criticality. Other models

that exhibit SOC have also been produced such as an evolutionary model, where

extinction events have a power law distribution [Sneppen et al., 1995]. The final

form of criticality proposed is robust criticality, where there is scale-invariance and

long-range correlations for a wide-range of parameters in the system (for an exam-

ple see [Guichard et al., 2003]). The review also states that three or more states

are required for robust criticality to occur. Obvious questions arise about why this

number of states is necessary for robust criticality to emerge and how the power-law

observations depend upon the parameters in the critical region.

The theory of systems near criticality is well-established for physical systems,

where criticality is associated with the presence of a second order phase transition

[Stanley, 1987]. For more biological systems there is little general theory of systems

near criticality, Scheffer et al. [2009] provides some examples of indicators that

occur as a system approaches a threshold. An example of this general theory comes

from imagining a system with a smooth potential. The potential has two local

minima with a potential barrier separating the two. For the ecosystem case these

two minima could represent a vegetated and barren state. We imagine that there

is some parameter (e.g. rainfall) that is able to change the height of the potential

barrier. When the barrier is high, perturbations in the system quickly decay as the

local minima is distinct and it would require a large perturbation to leave the local

minima. When the barrier is lowered, the gradient of the potential well also reduces,

thus perturbations decay at a slower rate. At the critical point, perturbations can

take an arbitrarily long time to decay. These dynamics translate into population

time-series statistics as an increasing variance and skewness in the time-series as

a system approaches a critical point. Flickering phenomena is also seen to occur

where, if the potential barrier is low enough, small perturbations can allow a system

to jump between local minima and thus the time-series appears to have two stable

points with random switching between the two. Thus the three hallmarks of a system

at criticality are increased variance; spiking in skewness and flickering phenomena.

For a spatially-explicit system where regular spatial patterns occur, predictable
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spatial patterns can form near a critical bifurcation [Rietkerk et al., 2004]. However,

[Scheffer et al., 2009] notes that these change in spatial pattern are model-specific

and thus the conclusions of how the spatial pattern predicts the critical transition is

only true insofar as the underlying model is an adequate description of the system

in question.

The work on detection of criticality in the observations of natural systems has

mainly focused on the temporal characteristics of the system. Guttal and Jayaprakash

[2009] proposes a methodology where the spatial characteristics of a signal spatial

snapshot can be used to detect when an ecological system is close to criticality. They

consider a vegetation with logistic growth, various dispersal mechanisms including

local diffusion and heavy-tailed spatial kernels as well as a stochastic grazing pres-

sure that leads to the vegetation being bistable between the barren and vegetated

states. Spatial variance was shown to increase and spatial skewness spikes near the

critical point. They also demonstrate that intervention based on use of these spatial

statistics can lead to recovery of the ecosystem that would otherwise collapse under

constant grazing pressure. Although a wide variety of models were proposed where

variance and skewness were good indicators of crititical transitions in the sense that

acting on them was able to avert the collapse of a population, Hastings and Wysham

[2010] shows this is not always the case. They constructed two models based on the

Ricker equation of population growth in order to demonstrate the limitations of

these indicators. Whereas Guttal and Jayaprakash [2009] had model equations with

smooth potentials around the critical transition points, the Hastings and Wysham

model does not and thus the general argument of population fluctuations near a

transition point do not hold. This leads to no warning of a dramatic population

shift from the fluctuation statistics. Thus model-specific assumptions are vital to

understand when applying general theory to real ecological data.

2.4 Scaling

Scaling in spatial ecology has been recognised as an important link between pattern

and process [Levin, 1995]. The idea that an underlying generative process can lead

to patterns that hold a particular scaling that are invariant began with fractals.

Fractal theory began as a purely descriptive science for characterising the patchy

and irregular patterns in nature. Since then it has had an increasing number of

applications in Ecology. Sugihara and May [1990] lay out the claim that there is a
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connection between the patterns generated by an underlying process and the process

itself. They give an example of the fractional Brownian motion (fBm) to highlight

this claim. Standard Brownian motion was originally proposed as a model for how

grains of pollen diffuse in a liquid being buffeted by random forces. The motion of

the particle is described in one dimension by a displacement X(t). For standard

Brownian motion the root mean squared of the particle distance scales as√
E[(X(t)−X(0))2] ∼ t1/2. (2.3)

In fractional Brownian motion this relationship is generalised where the scaling of

root mean squared is replaced by an exponent H, known as the Hurst exponent. i.e.√
E[(X(t)−X(0))2] ∼ tH . (2.4)

There are three main domains for the Hurst parameter: 0 < H < 1/2,H = 1/2 and

1/2 < H < 1. When 0 < H < 1/2 the trajectory is known as anti-persistent, where

the future trajectory of the particle is anti-correlated with its current displacement.

For 1/2 < H < 1 the fBm is described as persistent; the trajectory is correlated with

its past displacements and a realisation of the process is smoother than for lower

values of the Hurst exponent. H = 1/2 is the classical Brownian motion where the

process is memoryless and the future trajectory is uncorrelated with its past. This

model is traditionally used to detect the presence of memory in time-series analysis.

The process can also be generalised to more than one dimension, in three dimensions

level-sets of the process have been employed as neutral models of patchy landscapes

[Hastings et al., 1982; Keitt, 2000]. These patches have a resulting fractal dimension

defined by the parameter H. This is a tantalising clue that spatial pattern can be

analysed to determine the underlying process.

There are however issues when applying fractal theory to real data. Fractal

definitions are defined as limits that can go arbitrarily small [Falconer, 2013]. In

other words, in order to perform fractal analysis the data set in question would have

to have an infinite number of scales. This is clearly not possible and hence instead

fractal analysis is usually performed by considering a range of scales over which some

power law relationship holds [Seuront, 2009]. This leads to issues such as biases in

the linear regression performed or if the range over which the scaling occurs is too

narrow. Indeed, there is confusion and dispute over the definitions of the various

fractal measures and their relationship to one another [Halley et al., 2004].
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Figure 2.3: Measuring the Korcak exponent k from an aerial photograph of vege-
tation clusters in the Kalahari. The image is converted into counts of patch sizes,
which is used to estimate the patch-size distribution, P (A ≥ a), the probability that
a randomly chosen patch is greater than size a. On a log-log scale the distribution
is approximately linear and can be fitted using linear regression. The gradient of
the fitted line is the estimate of the Korcak exponent. Reproduced from Scanlon
et al. [2007].

Another widely used fractal measure used in spatial ecology to characterise the

patchiness of landscapes is the Korcak dimension. Originally, it was introduced by

Korčák [1938] studying the size distribution of Aegean islands. Mandelbrot [1983]

further developed the theory of the dimension and how it could be applied to analyse

certain fractal models. If the sizes of patches follows the distribution

N(A ≥ a) = na−k. (2.5)

Then the Korcak dimension Dk is defined to be

Dk = 2k. (2.6)

Mandelbrot [1983] explored the possibilities of using this as a measure of fragmen-

tation in a vegetation landscape. The Korcak dimension was proposed as a first

degree measure of succession for a vegetation species [Hastings et al., 1982]. More

recently it has been used to measure patchiness and reforestation [Imre et al., 2011,

2012].

Scaling of power-law distributions has been observed in the semi-arid vegetation

over a wide range of environmental conditions [Scanlon et al., 2007]. There was

found to be variation in the power-law exponent of the patch-size distribution as
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rainfall varied in different locations. A binary cellular automata model was used to

explain this distribution where there was a global term based on overall rainfall and

a local positive feedback term. It was found that the positive feedback term was

necessary to induce power-law behaviour, but the behaviour was robust to a range

of local feedback parameters. Although the model does reproduce the distribution

well, the relationship between the scaling exponent of the power-law distribution

and the ability of the system to persist still remains an open problem.

Kéfi et al. [2007a] analysed patch-size distributions in the presence of various graz-

ing pressures. Under high grazing pressure the patch-size distribution deviated from

a power law characterised by a distribution with exponential cut-off. They propose a

model of vegetation growth where growth has a local positive feedback mechanism

and grazing is modelled as a spatially homogeneous rate at which cells die. The

model was found to reproduce the broad features of the observed vegetation patches

including the power-law meltdown for increased grazing pressure. Maestre and Es-

cudero [2009] tested whether deviations from a power-law patch-size distribution

are indicative of immediate desertification. They found that deviations as measured

by fitting a truncated power law were not positively correlated with desertification

variables, but vegetation cover was. Kéfi et al. [2011] provides further restrictions

on when the meltdown of power-law structures in robust critical systems occurs

when the system is under an increased amount of stress. They analysed four models

that display robust criticality from an arid ecosystem model [Kéfi et al., 2007b], a

mussel bed model [Guichard et al., 2003] , predator-prey model [Durrett and Levin,

1994; Pascual et al., 2002] and a null model where there is no spatial dependency.

Although there is a certain universality to the meltdown of the power-law patch size

distribution near a critical transition, no single indicator provides an overall picture

of the distance to a critical transition and measurements must be taken relevant to

each other. Also no experimental work on real ecosystems has been used to ver-

ify these claims, hence there are still gaps in the knowledge of how the patch-size

distribution can be used in the practical application of measuring extinction risk.

Guichard et al. [2003] explored patch-size dynamics in a mussel bed system. Mus-

sels attach to rock and conspecifics, thus facilitating local positive interaction. How-

ever, they are also vulnerable to disturbance from wave action, which can buffet

mussels leading to uprooting and disturbance. This system was again modelled as a

lattice where each site could be in one of three states: empty, occupied or disturbed.

The occupied sites spread through into empty sites through positive density depen-
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dence. The disturbed sites are also assumed to have a density dependent feedback,

where the disturbance can spread locally. The resulting dynamics leads to robust

criticality, where there is a large region of parameter space where power-law scal-

ing of the patch-size distribution is observed. The exponent of the distribution was

found to almost be independent of the parameters however. This raises the question

as to what conditions the exponent is indicative of the underlying parameters and

ultimately the dynamics.

One particular application of fractal theory is in invasion fronts of vegetation.

Cannas et al. [2006] introduce a model of vegetation growth with long-range dispersal

and show that the fractal boundary of the front increases with increasing dispersal

length under certain model assumptions. This indicates that it is theoretically

possible to capture some broad features of an invasion front from the underlying

dynamics. How general this relationship is in the presence of environmental feedback

is still an open problem, however. Recent evidence suggests that fractal roughening

of a vegetation invasion front can be detected in an experimental system [Allstadt

et al., 2014].

The concept of scale and spatial variability in vegetation spatial patterns leads

naturally to the idea of multifractals. Intuitively we can consider multifractals as

a description of a spatial pattern with scale-invariance like in the standard fractal

case, but the scale-invariance changes locally in space. This extends the standard

definition of a fractal dimension to include a range of fractal dimensions or Rényi

Dimensions with parameter q. Multifractal methodology has had some applica-

tion in vegetation patterns, including the use of it to classify the varying dispersal

length-scales for two competing vegetation species Scheuring and Riedi [1994]. A

multifractal distribution of vegetation has also been interpreted as evidence for self-

organised criticality in the system [Solé and Manrubia, 1995a]. Theoretically, the

multifractal measure seems to be an elegant solution to the problem of characteris-

ing both scale and variability in a vegetation landscape. However, there has been

some criticism surrounding how the measure can be applied to noisy ecological data

and the validity of the results based on these measurements [Zamir, 2003].

Kubo et al. [1996] introduced the idea of using the Ising model to characterise

the observed spatial features of the canopy dynamics. The Ising model, although

sharing features with other cellular automata such as being based on a finite lattice

with a finite state space differs in dynamics as it is a continuous-time process,
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whereas cellular automata are discrete. The Ising model considers a state space

where each lattice site is in one of two states {+1,−1}. The total lattice S therefore

has 2N×N configurations, where each configuration is denoted as σ. The probability

of a configuration being in state x is given by

P (σ = x) =
1

Z
exp

β∑
i∼j

xixj + h
∑
i

xi

 , (2.7)

where i ∼ j denotes the neighbours of j. β is the interaction strength between

neighbours and h is a forcing term that represents the tendency to favour the occu-

pied (+1) state. When the parameters h and β are fine-tuned, critical phenomena

occurs such as algebraic decay of spatial correlation and power-law size distributions

of the +1 and −1 state, which is indicative of a phase transition.

It was found that although the Ising model can recover some of the properties

of the observed gap dynamics [Kizaki and Katori, 1999], in general the Ising model

does not provide a good fit to the observed data due to forest gap dynamics being

a far from equilibrium process [Schlicht and Iwasa, 2004]. One example of where

multifractal methodologies have been applied is to forest gap dynamics. Forests

have been observed to have power-law distributions in their gap sizes. A cellular

automata model of growth with gap formation was considered where births and

deaths are random with independent probabilities. Each individual grows according

to the light resources available in its immediate surroundings, this is determined by

the total height of the immediate neighbours of the individual and an interaction

parameter γ. The resulting multifractal spectrum was then computed and compared

to data of forest gap distributions taken from an aerial photographic survey of

Barro Colorado Island, Panama. A region of parameter space shows power-law

distribution in the gap sizes as well as a broad multifractal spectrum indicative

of a self-organised critical process [Manrubia and Solé, 1996; Solé and Manrubia,

1995a,b]. As the multifractal spectrum varies throughout the parameter space,

there would be a possibility of using it for parameter estimation of a single spatial

snapshot, although estimations of probability of death and birth were taken from

studies and only the interaction parameter was varied to fit to data, this does at

least give the plausibility of performing some form of parameter estimation on a

single spatial snapshot.
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2.5 Conclusion

In this review a wide variety of spatial mechanisms that induce pattern formation in

vegetation ecology have been explored, with the focus on the relationship between

spatial pattern and persistence. The types of spatial pattern belong roughly to two

classes: scale-free and regular. Although there have been many models proposed to

explain these phenomena in various ecosystems there are some similarities between

them. Regular spatial patterns are often seen as a sign of local positive feedback pro-

cesses along with long-range inhibition mediated by the environment either through

competition for resources or some other long-range mechanism. Regular spatial

patterns can also be viewed as transient states as a system moves towards either a

barren or vegetated equilibrium. This can also occur where the system is somehow

kept far from equilibrium, hence although it appears the system is moving towards

an equilibrium point it may take an arbitrarily long time in order to reach it.

Scale-free patterning in the form of power law patch-size distributions are also

a ubiquitous characteristic of vegetation ecosystems. The meltdown of the power-

law distribution has been found to be a robust indicator as to whether a system is

close to a tipping point. Although questions remain over what systems this form of

behaviour is exhibited and indeed if there are other indicators that can be used on

single spatial snapshots to determine if a system is close to criticality. The other

indicators proposed include the exponent of the patch-size distribution itself, which

is often referred to as the Korcak exponent. It is not clear what the origin of this

scale-free behaviour is in these systems or whether the exponent is related to the

dynamic persistence of the system (although it does provide a measure of the spatial

persistence).

Scale-free behaviour in the form of fractal boundaries of a growing vegetation

cluster can also give insight into the underlying dispersal mechanisms that produce

the spatial pattern, although the effect is conflated by a heterogeneous environment.

Therefore what mechanisms lead to the roughening of a vegetation boundary in a

heterogeneous environment and how this roughening relates to dynamics remains an

open problem. A scale-free patch-size distribution has also been observed in many

ecosystems and has been numerically confirmed using cellular automata models of

vegetation growth. The origin of these power-law structures in vegetation growth is

still a mystery as is the truncation of the power-law to an exponential distribution

under increased environmental stress.
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Both scale-free and regular patterns are exhibited in seagrass ecosystems. Seagrass

exists as a monoculture and has strong feedback loops with its environment. As

such it is an ideal candidate to study the interaction between pattern and process.

Although a certain amount of modelling research has been performed on seagrass

ecosystems, models have not been produced that exhibit both types of pattern

phenomena and can be used to determine how spatial pattern impacts persistence.

Ecosystems that are capable of producing regular spatial pattern are also capable

of producing scale-free patterns. Indeed the underlying mechanisms such as local

positive-feedback are similar for inducing both scale-free and characteristic length-

scale patterns. If there are similar mechanisms for both, then are models able to

produce both types of behaviour depending on model parameters. If this is the case

is there a sharp transition between the two states or is there a smooth transition

leading to a region of parameter space where there is a coexistence of the two

states. Also in such a model what do both spatial patterns indicate about the

temporal persistence. Do regular patterns only form when the system is under a

large amount of stress and equally is a scale-free pattern indicative of a system far

from some tipping point. These are the questions that shall be addressed in the

coming chapters.
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Chapter 3

Seagrass

Stretch’d on her mossy couch, in trackless deeps,

Queen of the coral groves, Zostera sleeps;

The silvery sea-weed matted round her bed,

And distant surges murmuring o’er her head.

(Erasmus Darwin)
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3.1 Introduction

Vegetation-based ecosystems, where an ecosystem is described by a single or assem-

blage of sessile species, represent a large class of vital communities that are found

globally. Examples of these ecosystems dominated by an assemblage include wet

woodland [Peterken, 1996], temperate bogs [Scheffer et al., 2001], coral reefs [Hus-

ton, 1985] and tropical mangrove swamps [Lugo and Snedaker, 1974]. In chapter 2,

we considered the variety of pattern formation processes that have been observed

and the modelling efforts that have been performed in order to understand the ori-

gins of pattern formation in vegetation-based ecosystems. The efforts shall be to

understand how pattern and dynamics are linked through modelling work that will

be introduced in chapter 5 and further developed in chapters 6 & 7. In order to

assess the validity of this modelling work, we shall refer to a test case of a marine

vegetation ecosystem. This test case allows us to apply hypotheses directly to a real

ecosystem for which we have data in order to test their validity.

The system that shall be considered is Seagrass, which is a class of marine flow-

ering plants that are found globally in coastal areas and contribute a significant

number of ecosystem services. In this chapter their biology and ecology will be

described with specific reference to how they relate to pattern formation and per-

sistence. A set of field studies taken from seagrass habitats in the Isles of Scilly,

UK will then be described along with specific field work carried out to confirm the

nature of the observed spatial patterns. The author personally participated in the

field study in the summer of 2013 and was involved with data collection, assisting

survey work as well as devising and participating the the banding study. These

field studies shall be used to test key hypotheses laid out in the introduction on

the nature of dynamic and temporal persistence in a vegetation community as well

as the various observed spatial patterns taken from an aerial photographic survey

conducted in conjunction with the longitudinal study.

3.2 Biology & ecology

Seagrasses represent a broad class of sixty marine flowering plants that are divided

into four separate families: Posidoniaceae, Zosteraceae, Hydrocharitaceae and Cy-

modoceaceae. They evolved from terrestrial grasses approximately 100 million years

ago to have an entirely aquatic life history and have number of adaptations that

make them suitable for aquatic life [Hemminga and Duarte, 2000]. They are both a

pioneer and climax species, being able to colonise soft substrate such as sand or mud
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Figure 3.1: The global distribution of Seagrass species. Reproduced from Orth et al.
[2006].

and producing a large-scale habitat often referred to as a meadow due to their re-

semblance to terrestrial grassland. They are environmental engineers, by producing

an interwoven root and rhizome structure that is able to retain sediment. Shoots

reduce water current allowing the capture of suspended sediment and decreasing the

risk of damage due to hydrological scouring. Their presence is also able to modify

nutrient concentrations and fundamentally alter the local food web. Although orig-

inally thought not to be a food source for many species due to their low nutritional

content, it has been discovered that they are a vital food source for tropical her-

bivores such as sea turtles, dugongs, manatees as well as wild fowl [Thayer et al.,

1984]. Further, they provide a habitat for a large number and diversity of species

including both recreationally and commercially important fish species[Beck et al.,

2001]. The rhizome layer also represents an important form of carbon sequestra-

tion, where atmospheric carbon is converted into organic carbon that remains in the

seabed [Fourqurean et al., 2012].

Seagrasses are found globally in sheltered coastlines and estuaries from as far south

as the southern tip of New Zealand (46◦S) to as far north as Iceland and Greenland

(66◦N) occupying tropical, temperate and polar climates (Fig. 3.1). Their life-cycle

is dependent upon local adaptations to climate, though they are often perennial

with a stronger growing season in the summer for temperate species and significant

die-back of shoots in the winter. Flowering occurs throughout the year and can be
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triggered by temperature. Pollination then occurs through water action, but there

is evidence to suggest that certain crustacean and fish species could also be involved

in the pollination process [Sumoski and Orth, 2012; van Tussenbroek et al., 2012].

This is followed by production and dispersion of seeds that occurs both locally or

long-range due to uprooted leaves being suspended in the water column [Kendrick

et al., 2012].

Seagrass is under direct threat from anthropogenic factors through industry coastal

development projects and land reclamation. These influences have accelerated the

losses of seagrass globally and there are many areas where they are under direct

threat. For instance, coastline development in Cockburn Sands, Australia lead to

large scale losses in the 1990s and density remains low today [Walker et al., 2006].

Losses were also identified in Gibraltar [Bull et al., 2010]. There was a dramatic

decline in numbers between 1993 and 2009 to the extent that two species are lo-

cally extinct in the area. The cause of this dramatic decline was attributed to high

anthropogenic stress due to large developments and land reclamation. It caused a

vast amount of silt to be suspended in the surrounding waters, thus destroying the

seagrasses’ potential to colonise.

Seagrass is also under threat from wasting disease, whose causative agent is a

slime-mould protist Labyrinthula zosterae [Muehlstein et al., 1991]. A large-scale

epidemic in the 1930s severely reduced the number of Atlantic seagrass leading

to the collapse of the scallop industry; a dramatic decrease in waterfowl numbers

and the extinction of at least one species of marine gastropod [Rasmussen, 1977].

Numbers may not have fully recovered from the epidemic and many open questions

remain as to how the spread of the disease occurred and what conditions lead to

the rapid spread of the disease [Den Hartog, 1987]. The protist infects leaves of the

plant producing dark patches of necrotic tissue. The infection then spreads along

the leaf eventually destroying its photosynthetic ability, which can lead to the death

of the whole plant. Experiments have suggested that an infection event occurs due

to direct leaf-to-leaf contact [Muehlstein et al., 1991], but infected leaves can be

severed from the main plant and float, thus facilitating more long-range infection

events [Vergeer and Den Hartog, 1991]. It is believed that infection spreads when

seagrass is under stress and a healthy plant is not susceptible to infection[Orth et al.,

2006]. Temperature is also believed to be associated with an increase in the number

of infected plants [Rasmussen, 1977].
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Current understanding of seagrass vegetation dynamics comes from broad-scale

monitoring of extent often having to span several years and large scales [Waycott

et al., 2009]. A number of studies also only consider small plots [Cambridge and

McComb, 1984; Deslous-Paoli et al., 2001] or through experimental work by manip-

ulating certain environmental variables that affect growth [Tomasko and Lapointe,

1991]. What makes the Isles of Scilly study unique is the combination of long time

scale measurements spanning several sites having their own unique set of condi-

tions with a large scale, high-resolution mapping of the distribution in the whole

archipelago. These combine together to form a powerful set of data suitable to test

how seagrass dynamics relate to its overall distribution.

3.3 Isles of Scilly

Figure 3.2: Old Grimsby Harbour (2013). A seagrass habitat highly stressed due to
anthropogenic disturbance.

The Isles of Scilly is an archipelago of 200 islands approximately 40km of the

south west coast of the UK mainland. The cluster of islands are mainly formed of

granite with shallow seas in between the islands. The sea bed itself is composed of
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a variety of pebbles and sand with a size distribution that changes from the more

sheltered waters in the East to the more exposed waters in the West. The Isles

are composed of five main islands: St. Mary’s the largest island, which is also the

location of the largest settlement in the archipelago, St. Martin’s, Tresco, Bryher

and St. Agnes. The islands are home to various bays used for recreational boat

mooring and there are also farming, fishing and tourist activities on the islands.

Despite this there is relatively little agriculture and industry on the islands. This

combined with a strong tidal action means that there is relatively little pollution

making the site an ideal place to study the vegetation in isolation of other effects.

Local exposure varies throughout the area, with the most extreme areas being along

the Western islands, where there is a rocky shoreline and strong wave action from the

open ocean. The eastern islands, which have a large amount of sediment deposition,

are more protected.

The isles are the habitat of a wide-variety of flora and fauna with some unique

species not observed on the UK mainland and are also home to a large colony of

Atlantic grey seal (Fig. 3.7). There are three species of seagrass found in the waters

around the Isles of Scilly: Zostera noltii, Zostera angustifolia and Zostera marina

also known as eelgrass due to the elongated shape of its leaves. Annual surveying of

eelgrass in Scilly goes as far back as 1984. However, it was only until 1992 when large

scale surveying financed by Natural England began. This was in response to the

appearance of wasting disease in the early 1990s, which had previously been absent

in the waters [Fowler, 1992]. Initially, only two sites were chosen to be surveyed:

Higher Town Bay and Old Grimsby Harbour. However, since then the sites of West

Broad Ledges, Broad Ledges Tresco and then Little Arthur in the Eastern Isles were

added to the list of sites annually surveyed. Apart from two points, all five sites

have been monitored every year from 1992 to the latest survey, which occurred in

July 2014.

3.4 Mapping

The spatial section of the data comes from an aerial survey conducted on behalf

of Natural England [Jackson et al., 2011]. The main purpose of the project was

to use aerial photography and Geographic Information System analysis to map the

distribution of eelgrass in the Isles of Scilly. The study was split into two phases. The

first being the acquisition of both RGB and infra-red digital aerial photographs to a

10× 10cm2 resolution. Unsupervised learning was then conducted on the resulting
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Figure 3.3: Final distribution of eelgrass produced from the 2008 mapping study.
The five sites that have been regularly surveyed by dive teams are also highlighted
with key:blt- Broad Ledges Tresco; htb- Higher Town Bay; la- Little Arthur; ogh-
Old Grimsby Harbour; wbl - West Broad Ledges. Reproduced from Jackson et al.
[2011].

photographs to identify a number of classes that could then undergo ground truthing

for the second phase. An aerial photographic survey using a 90 Mega-pixel camera

took place on 26th September between 0925 and 1155 BST. The survey took place

when there was little cloud cover and eelgrass coverage was at its highest (eelgrass

shoot density has strong seasonality and there is a significant die-back in winter).

Since eelgrass is sub-tidal and typically resides at depths greater than one metre,

the infra-red data could not be utilised as infra-red is only able to penetrate a few

cm of water.

The resulting RGB images form a number of overlapping mosaics that were spliced

together to form one single continuous image. The Iterative Self-Organising Data

Analysis Technique (ISODATA), which is an unsupervised classification algorithm,

was then performed on the image set to classify each pixel into one of thirty cate-

gories. With these classifications, ground truthing occurred in the summer of 2009
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to provide a data set for supervised learning to determine which pixels were occu-

pied with eelgrass. Each chosen site was ground truthed either visually for shallow

waters or by using an underwater video camera for deeper sites. It was noted where

seagrass was sighted along with the percentage cover. The information from the

ground truth survey together with records of the distribution of eelgrass was then

used to find training areas that were suitable for classification. Adopting a maxi-

mum likelihood technique, each pixel was assigned a classification using a probability

density function based on the training data set. This results in a distribution of the

presence or absence of eelgrass based upon the supervised learning algorithm.

The final stage was to validate whether the pixels were correctly classified and

changing the classification of pixels that were incorrect. Some places, such as the

north coasts, were removed as eelgrass is unlikely to exist there due to the presence

of rocky substrate and exposure. Pixels that were below the 5m in sea depth were

also removed as local knowledge and expert opinion consented that eelgrass is unable

to survive in the waters around the Isles of Scilly below 5m due to the lack of light.

A Kappa statistic was then used to assess the agreement between classifications.

The kappa statistic is defined as

κ =
P (A)− P (E)

1− P (E)
, (3.1)

where P (A) is the proportion of correctly classified pixels and P (E) is the proportion

of correctly classified pixels when classification occurred at random. The lowest

kappa statistics were found on the north and south coasts of St. Martin’s. The

highest were observed at St. Mary’s harbour, the area between Tresco and St.

Martin’s and the Eastern Isles.

The final stage was to apply a high-pass filter to the digital image to remove

isolated pixels classified as eelgrass, based on the fact that it is highly unlikely to

have an isolated 10 × 10cm2 patch of eelgrass. The resulting smoothed map was

then converted to a polygon table.

3.5 Survey

The five sites surveyed are Old Grimsby Harbour, Tresco (49◦57.611′N 06◦19.784′W)

; Higher Town Bay, St. Martin’s (49◦57.428′N 06◦16.448′W) ; Broad Ledge, Tresco

(49◦56.327′N 06◦19.773′W) ; West Broad Ledge, St. Martin’s (49◦57.418′N 06◦18.264′W)
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(a) An example of eelgrass shoots taken
from survey. Both healthy and diseased
leaves are present along with epiphyte
coverage on several leaves. Reproduced
from Cook and Paver [2007]

(b) Surveying of eelgrass using quadrat
central datum line method. Reproduced
from Cook and Paver [2007]

Figure 3.4: Isles of Scilly surveying methodology

and Little Arthur, Eastern Isles (49◦56.961′N 06◦15.932′W). Surveys performed an-

nually during summer either in the last week of July or the first week of August

using a central datum marker method. At each site, a central line is lowered to the

sea floor to be used as a central marker. The central marker varied from year to

year due to the boat’s anchorage point being located over barren sand so as not

to disturb the seagrass habitat. Pairs of divers then took random bearings and

distances between 0 and 30m from the central line. These bearings are measured

using a compass and the distance measured using a tape measure. Having moved

to the required position, a 0.5× 0.5m2 quadrat is placed onto the seabed. After the

quadrat is properly placed, all leaves within the bottom left of the quadrat were cut

above the rhizome in order for the plant to be able to survive with the rhizomal

mass intact (Fig. 3.4b). These leaves were then bagged and marked for identification

once ashore.

For each chosen quadrat site the bearing and distance, number of leaves, maximum

leaf length, amount of wasting disease cover, epiphyte cover, number of flowering
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plants and number of eggs on leaves were all recorded on land. The wasting disease

coverage (Fig. 3.4a) was measured by eye by observing the amount of blackened tis-

sue on the leaf and noting the percentage cover [Burdick et al., 1993]. The resulting

density estimates for the five meadows was produced by combining the total number

of leaves taken for all the randomly selected quadrat sites. Disease prevalence at

each of the meadows was also calculated by taking the average disease leaf coverage

over all quadrat sites. The resulting eelgrass densities and disease prevalence are

shown in Fig. 3.5.

Figure 3.5: Data produced from dive survey for 1998-2008. (a) The overall densities
of eelgrass for each site. (b) Disease coverage with a fitted spline shown in red.
Reproduced from Bull et al. [2012]

3.5.1 Banding survey

During the survey in 2013, a study was conducted first to determine the validity of

banding patterns observed in the data. Banding sites were also assessed for their

vegetation distribution, including whether the edges were sharply defined going from

high density vegetation to none and also how the substrate co-occurred with the

presence of the bands.

The study was performed by isolating three separate areas where banding was

present (Fig. 3.6). These sites were chosen by inspection such that they contained
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(a) Location one: wbl. In Lati-
tude Longitude degrees decimal minutes
49◦57.5′N, 06◦18.4′W. Scale is 1:1,000.
width of band is approximately 8 metres

(b) Location two: blt. In Lat
Long, Degrees minutes and seconds
49◦56.1′N6◦19.79′W. Scale is 1:1,000.
width of band is approximately 16 metres

(c) Location three: South West of htb
In Lat Long, Degrees minutes and sec-
onds 49◦57.0′N6◦16.6′W. Scale is 1:1,000.
width of band spacing is approximately
16 metres and width of band approxi-
mately 24 metres.

Figure 3.6: Sites identified from aerial survey data used to investigate banding
phenomena.

banding and were close to the locations of the dive sites to allow easy investigation

of the site. The first location is at West Broad Ledges (49◦57.5′N, 06◦18.4′W). Veg-

etation covers the extent of the site with regular interspersed gaps, with the width of

the banding being approximately 8 metres. The gaps however, are not continuous,

and have smaller regular gaps towards the eastern edge of the site. The second lo-

cation is at Broad Ledges Tresco (49◦56.1′N6◦19.79′W). Bands are larger compared

to the first site, with width approximately 16 metres. The vegetation site is more

patchy (being composed of several patches that interlock together to form the global

banded structure). There is also a gradient in the vegetation coverage from west

to east. The third location is south west of Higher Town Bay (49◦57.0′N6◦16.6′W).

Banding is less apparent in this site, but there is still an anisotropic distribution of

vegetation running west-east. Bands are not regular in size even though gap spacing

of the larger band is approximately 16 metres and band width is approximately 24

metres. It is apparent from these three sites that anisotropic pattern observed in
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the eelgrass distribution is not dominated by a single scale, but rather changes from

site to site.

Due to time-constraints, only one site was studied for the presence of banding.

The study was conducted by starting from the centre co-ordinates of the site and

moving in a transect perpendicular to the banding. The eelgrass was observed both

by visual inspection on the side of the boat and through the use of underwater

cameras. Further to the transect observations, diving took place to observe the

banding edges.

Regular elongated patches of eelgrass, interrupted by barren sand, were seen along

the transect. The edges of the bands were seen to be distinct and vegetation within

the band appeared continuous at a similar density throughout. Diving confirmed

the distinct transition between bands of vegetation and barren sand. A raise in

the sea bed from where vegetation was present was also noted. This confirms the

pattern detected in the digital image and provides evidence towards the validity of

observed banding patterns in sub-tidal seagrass.

3.6 Modelling

Seagrass is a marine flowering plant that can either exist inter-tidally as in the case

of Z. noltii or sub-tidally as is the case with Z. marina. Species are found globally

across coastlines and provide an ecosystem vital to a large number of important

species [Larkum et al., 2006]. It is estimated that seagrass ecosystems are compa-

rable with coral reefs in their ecosystem services [Costanza et al., 1997], however

their numbers have been rapidly declining in recent years [Orth et al., 2006]. Due

to the fact that seagrass exists as a monoculture, it is an ideal candidate to study

the interaction between process and pattern. It can also be used as a system to test

hypotheses associated with inferring dynamics from spatial pattern.

Regular pattern formation has been exhibited in seagrass vegetation. There is

a strong association between the shear velocity profile of current and the resulting

localised density of seagrass [Fonseca et al., 1983]. Meadows in the presence of

low tidal regimes were found to be homogeneous, whereas in the presence of high

currents, seagrass is spatially organised into elongated patches. The interaction

between sediment and seagrass vegetation was found to also be strongly linked to

the presence of bands in strong currents, where strong currents raised the surface bed
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around seagrass vegetation. Frederiksen et al. [2004] performed a study by analysing

a series of aerial photographs of the Wadden Sea with different physical factors.

They found that the presence of elongated patches or bands was associated with a

strong presence of wave dynamics. Marba and Duarte [1995] studied the interplay of

sand dunes and seagrasses and found there was a strong cross-correlation between

the height of sediment and dynamics of the elongated patch. More recently, the

interaction between seagrass and soft sediment in the presence of wave action has

been explicitly modelled. The modelling produces bands of seagrass, whose spatial

structure are in agreement with data collected from an inter-tidal species of seagrass

whose environment is dominated by wave action [Van Der Heide et al., 2010].

More explicit modelling work has taken place to identify the characteristic growth

properties of a growing cluster of seagrass [Sintes et al., 2005, 2006]. Seagrass

propagates as rhizomes that branch off from shoots, where further shoots form from

the rhizomal layer. The model explicitly involving these two interactions found that

there were two phases to the growth pattern. The geometry of the boundary of

the growing cluster changed from being strongly asymmetric with rough boundaries

in the early time period, to a smooth disc like growth phase. The model does not

explicitly take into account interaction with the environment and other individuals

of the same species, hence it is difficult to conclude how these growth properties

might be interpreted in situ.

Finally fractal theory has been used to some extent in seagrass ecology [Cunha

and Santos, 2009]. The impact of changes of a coastal inlet on the distribution of sea-

grass was assessed by estimating the Korcak dimension for a number of time-points.

Cunha and Santos [2009] used the Hurst exponent to characterise the persistence of

the spatial pattern, however there was no accompanying work performed on estimat-

ing the temporal persistence of the seagrass meadow and only the spatial persistence

is mentioned. This leaves the question as to whether or not temporal persistence is

measurable from the fractal characteristics of a spatial distribution.

3.7 Conclusion

Seagrass represents a diverse class of marine vegetation involved with a number of

important coastal and ecological processes. These include acting as a nursery habitat

for fish; carbon sequestration and reducing coastal erosion. There are a number

of interesting aspects to seagrass dynamics that make it an interesting test case to
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Figure 3.7: A grey seal belonging to a colony that inhabit the Isles of Scilly. Photo
courtesy of T. Reid

study. Firstly, it acts as an ecosystem engineer, both raising the seabed by capturing

suspended sediment and reducing the water flow around the bed. Thus on a local-

scale there are a number of positive feedback loops present. Seagrass reproduces both

sexually and asexually. Asexual reproduction occurs through growth of rhizomes and

is primarily local, whilst sexual reproduction occurs through production of seeds,

which can be carried on currents and thus can be dispersed over large ranges.

The Isles of Scilly eelgrass represents a distinct monoculture that exists in isolation

of the mainland. That combined with the lack of large-scale agriculture and industry

on the islands makes the eelgrass dataset an ideal case to study the interaction

vegetation and its environment in isolation. Further the study combines a large-

scale mapping project of seagrass vegetation to very high resolution (0.1 × 0.1m2)

with a longitudinal survey spanning over two decades and across several distinct

meadows each with a unique combination of exposure, wave action, aspect and

anthropogenic influences. These two studies combined represent a unique dataset

that where both spatial scale and temporal scale can be investigated in terms of the

underlying persistence of the vegetation. Of particular interest is the relationship

between dynamic and spatial persistence, which shall be investigated using these

dataset combined with theory and modelling work in chapter 6.
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Banding field work was carried out based upon results shown in the mapping

data, which identified areas of vegetation displaying a high amount of anisotropy.

The field work confirmed the presence of banding for one of these sites. The bands

were shown to be distinct patches of continuous vegetation with a sharp contrast

to uncolonised sand, the raising of the seabed was also observed at the edge of the

vegetation patch. This banding phenomena forms the focus of chapters 4 & 5 where

both the spatial properties and the origin of the banding shall be investigated.
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Chapter 4

Spatial analysis

He had bought a large map representing the sea,

Without the least vestige of land:

And the crew were much pleased when they found it to be

A map they could all understand.

(Lewis Caroll - The Hunting of the Snark)
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4.1 Introduction

In order to determine the spatial characteristics that are relevant for understanding

pattern formation and persistence in plant Ecology we must first consider the num-

ber of techniques used to characterise spatial patterns in Ecology and other Life

Sciences. This includes determining their applicability, various merits and disad-

vantages for use on our dataset.

To infer properties of spatial pattern and how they relate to underlying dynam-

ics, which we shall come on to in later chapters, we must first determine the spatial

properties of the vegetative patterns in a statistically robust manner. We will then

concentrate our analysis on the seagrass dataset collected from the Isles of Scilly,

UK, although the analysis would be equally applicable to other forms of vegeta-

tive pattern. The Scilly dataset was collected from an aerial photographic survey

conducted in August, 2008 and prepared to produce a binary dataset of Seagrass

patches. Using standard techniques, locations of seagrass occupation were resolved

to a 10cm2 grid size (See chapter 3). Five distinct seagrass meadows were sampled

from this dataset in order to compare to the time-series data. GPS positions of these

meadows are: Broad Ledges, Tresco (blt : 49◦56.4′N, 06◦19.6′W ); Higher Town Bay,

St. Martin’s (htb: 49◦57.2′N, 06◦16.6′W ); Little Arthur (la: 49◦56.9′N, 06◦15.9′W ,

depth: 1.0m); Old Grimsby Harbour, Tresco (ogh: 49◦57.6′N, 06◦19.8′W ); and West

Broad Ledges (wbl : 49◦57.5′N, 06◦18.4′W ). We used a 700m bounding box around

the centre of each of these sites to produce five datasets. These datasets are ex-

plored in this chapter using a variety of scaling and anisotropy statistics. Initially,

we consider the monofractal scaling properties of the datasets. This then leads on

to a discussion of the multifractal properties as well as the lacunarity. Finally, we

consider the anisotropic properties of the whole Scilly dataset.

4.2 Monofractal

To study the fractal properties of a set we must first define what a fractal is. This

is done by considering the Haussdorff dimension. Although the definition is rather

technical, we shall only consider it in a theoretical context and introduce the box-

counting dimension afterwards, which gives a much more intuitive sense of dimen-

sion. We should briefly here discuss an intuitive idea of what dimension is. For

simple Euclidean objects the idea of dimension seems obvious and we can appeal to

the linear algebra definition for a dimension as the size of the basis set i.e. how many

co-ordinates you would need to describe a position in a set. For example a circle is
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a one-dimensional object as only one co-ordinate, namely the angle θ is needed to

describe the position.

To make the ideas of dimension more explicit consider the prototypical example

of fractal: the Cantor set. First, consider the unit interval [0, 1]. The construction

is iterative; in the first step the middle third is removed leaving a disjoint union

of two intervals [0, 1
3 ] ∪ [2

3 , 1]. At this stage we have two identical copies of the

original set, the procedure continues by removing the middle third of each of the

intervals, leaving [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]. This iteration continues

to infinity leaving the resulting Cantor set. Now we may ask the question how many

co-ordinates are needed in order to describe the set, this can be done by considering

how it was constructed. Consider a point in the Cantor set, at each stage of the

construction there is a choice over whether the point is in the left third or the right

third of the set being divided, which can be represented as a co-ordinate that takes

the value 0 or 1. Hence a point that has the co-ordinates (0, 1, 1 . . .) will be in the

interval [8/27, 1/3]. The problem then comes as to describe a point in the Cantor set

it appears you need an infinite number of co-ordinates. On the other hand, we know

that the Cantor set is a subset of the unit interval which has dimension one. For a

definition of dimension to hold we would require that if the sets E ⊂ F ⊂ G then

the dimension of each satisfies dim(E) ≤ dim(F ) ≤ dim(G). We would also desire

a definition of dimension to coincide with the dimension of an Euclidean space. In

the next section we will explore two such dimensions: The Hausdorff dimension and

the Box-Counting dimension.

The idea behind the Haussdorff Dimension is to consider various coverings

for a set and consider the sum of the size of these coverings raised to a power s. The

sum is minimised over all coverings of size δ. As the size of the coverings reduces as

the sum increases, they reach a supremum as δ → 0. This provides the Haussdorff

measure. More formally, let F be a set with a δ-covering {Ui} i.e. |Ui| < δ for all i

and F ⊂ ∪∞i=0Ui, then the s-dimensional Haussdorff measure is defined as

Hs(F ) = lim
δ→0

inf

{ ∞∑
i=0

|Ui|s : {Ui} is a δ-cover of F

}
. (4.1)

The Haussdorff dimension is defined from the s-dimensional Haussdorff measure as

dimHF = inf{s ≥ 0 : Hs(F ) = 0}. (4.2)
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As an example of a calculation of the Haussdorff dimension consider the unit interval

[0, 1]. A minimal δ-covering for this set would be n = d1/δe. Hence,

n∑
i=0

|Ui|s =

d1/δe∑
i=0

|Ui|s

=

d1/δe∑
i=0

δs = δs−1, (4.3)

where we assume that 1/δ has an integer value. As δ → 0 we can see that

Hs(F ) =

{
∞ : s < 1

0 : s > 1
. (4.4)

The corresponding Haussdorff dimension is calculated directly from definition as

dimH [0, 1] = 1. In general, the Haussdorff dimension need not take an integer value,

as for the Cantor set the Haussdorff dimension is log(3)/ log(2) [Falconer, 2013].

Although the Haussdorff dimension is appealing from a theoretical point

of view, it is in general intractable to calculate for real data. The box-counting or

Minkowski-Boulingand dimension is defined on a set F embedded in a Euclidean

space Rn. For our purposes we should only concern ourselves with sets embedded in

R2 , since we are considering vegetation occupancy patterns. The box-counting di-

mension is calculated via the box-counting algorithm. Boxes of length ε are placed

in a regular grid fashion over the space. The number of boxes of length ε that

intersect the set F is denoted N(ε). The box-counting dimension is then defined as

dimBC(F ) := lim
ε→0

logN(ε)

log(1/ε)
. (4.5)

For instance for the Cantor set, if we take a box size of length (1/3)n, then the num-

ber of boxes that are filled are 2n. It is then straightforward to calculate dimBC(F )

as

dimBC(Cantor set) = lim
n→∞

log(2n)

log(3n)

= lim
n→∞

n log(2)

n log(3)
=

log(2)

log(3)
, (4.6)

which is the same value as the Haussdorff dimension. The Haussdorff dimension

often gives an equivalent value as the box-counting dimension, however they are not
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the same and in general the box-counting dimension is greater than or equal to the

Haussdorff dimension.

There are various definitions of a fractal set. It is often defined as a set that

roughly repeats itself on finer scales [Gisiger, 2001; Hastings and Sugihara, 1993].

Mandelbrot [1983] gave the definition of a fractal as a set whose Haussdorff Dimen-

sion strictly exceeds its Topological Dimension. For our purposes, we define a set to

be fractal if the number of non-empty boxes of length ε scales as a power-law over

some range of ε. This does mean that certain trivial sets such as the empty set or

the spatial Poisson Process would be classed as fractals under this definition. We

shouldn’t necessarily be concerned with the definition of fractal and non-fractal too

much, as we are more focused on being able to robustly measure scaling properties

such as the box-counting dimension. A set that we class as non-fractal is then one

where the developed fractal analyses such as the box-counting dimension are not

applicable.

4.2.1 Measuring monofractality from data

In the previous section, we have concerned ourselves with what theoretical measure-

ments we wish to apply to data in order to detect the underlying scaling properties.

This lead to establishing the box-counting dimension as a measure that can be ef-

ficiently calculated and easily applied to several different types of data including

time-series and occupancy. The standard method of calculating the box-counting

dimension is to measure the number of boxes of length ε that are occupied and plot

it against 1/ε on a log-log plot. The relationship between the two for a fractal is

linear on the plot and the gradient is taken to be the box-counting dimension. For

real data, there is an issue that the same type of scaling might not be present over

all ranges being considered. As an example, over smaller spatial scales seagrass is

buffeted by small currents and wave action and is also undergoing turnover in the

form of clonal and seed spreading. Over larger ranges, patches form and these coag-

ulate into meadows. On even larger scales, the vegetation is affected by large-scale

currents and geographic features such as coastline and coastal shelf. It is therefore

not expected that there should be a similar scaling throughout the entirety of the

spatial scales. In order to deal with this problem, a number of ideas can be pro-

posed. The first is to use splines to fit to the log-log plot in order to detect different

forms of scaling. There are a few issues with this: firstly, there may be a smooth

transition between one form of scaling and another making it difficult to find the

optimal scale to place the spline; secondly, it may not be obvious how many forms
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of scaling and thus how many splines should be used to fit to the data.

The second method is to find an appropriate range of scales over which the power

law relationship does hold for a single dimension. It is this method that shall be

employed to analyse the Isles of Scilly data. The method we use is outlined in

Seuront [2009]; for all ranges of log(δ) where the number of δ points is 5, fit a line

by linear regression and calculate the coefficient of determination r2 and the sum

of squared residuals (SSR). Then, find the range that minimises the SSR and see

if this range corresponds with the range that maximises the r2. If it does, then

use the gradient calculated by linear regression from this range to determine the

box-counting dimension. If the ranges do not match up, there is no best-fit for any

range and we say that the data is non-fractal as it has no range over which the

scaling is constant.

4.3 Fractional Brownian motion
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Figure 4.1: Realisations of fBm for a range of power spectrum scaling β = 1 +
2H as defined in Eq. 4.8. The calculated boundary dimension (db) for a number
of realisations is given in the top figure, whilst the bottom figure gives example
realisations at different β levels. db scales linearly with β over a small range due to
finite size effects.

In studies of spatial analysis, it is useful to be able to construct a neutral

landscape model where certain statistical properties of the landscape are at specific

62



values, whilst other properties are allowed to vary randomly. Fractional Brownian

Motion is one of the canonical examples of a neutral landscape model [Keitt, 2000].

The idea is to construct a two-dimensional random field X, where level sets of the

random field form boundaries that have the desired fractal properties. Fractional

Brownian motion (fBm) is a unique probability distribution with independent incre-

ments, stationarity and finite variance and is controlled by the Hurst exponent H.

For (x, y) ∈ R2, we define a random field X(x, y) such that the following conditions

are satisfied:

1. X(0, 0) = 0 with probability 1.

2. X(x, y) is a continuous function.

3. The height increments X(x + h, y + k) − X(x, y) have a normal distribution

with zero mean and variance (h2 + k2)H for (x, y), (h, k) ∈ R2 .

The model then has one parameter H and this can be interpreted as the persis-

tence of the process. If H = 1
2 , the increments become uncorrelated. With H > 1

2 ,

correlations are positive and realisations of the surface are smoother or more per-

sistent. Conversely for H < 1
2 points are anti-correlated and realisations become

rougher or anti-persistent. Fractal Brownian patches are then defined as a level set

of this process, i.e. X−1(c) = {(x, y) : X(x, y) = c}, which defines the boundaries

of the patches. Note that, in this context when talking about persistence or anti-

persistence, it is about the spatial process only and has nothing to say about the

underlying dynamics that caused it. fBm can be easily generalised to n-dimensions

and thus can produce spatio-temporal models of vegetation patches, however each

dimension may have its own Hurst exponent and hence spatial persistence may be

independent of dynamic persistence for this general statistical model. However,

fBm does have some desirable properties. The graph of fBm (referring to the set

{(x, y, z) : x, y ∈ R, z ∈ X(x, y)} as opposed to the trail of fBm which only refers

to the set {z : z ∈ X(x, y)}) can be shown to have both Haussdorff and box-

counting dimension 3−H. This has lead to the assumption that the box-counting

dimensions and the Hurst exponent are the same, even though this only applies to

fBm and other derivatives of this model. In general the Hurst exponent may be

different or even independent of the box-conting dimension [Gneiting and Schlather,

2004]. The level-set of a fBm X−1(c) has box-counting dimension one less than the

box-counting dimension of the corresponding fBm field. This then provides a rela-

tionship between the Hurst exponent for the underlying fBm and the box-counting

dimension as

dimBC(X−1(c)) = 2−H. (4.7)
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Note that this only refers to the collection of boundaries of the level set that has

this fractal property. A single patch boundary may have a different dimension due

to finite-size effects. It also only refers to the boundary as opposed to the patch

itself, which will necessarily have a box-counting dimension 2.

A realisation of fBm can be simulated by considering the spectral properties

of the field. It can be shown via the WienerKhinchin theorem that a fBm generated

with Hurst exponent H has the power spectrum

S(f) ∼ 1/f1+2H (4.8)

This formula gives insight into the scaling properties of fBm, for example when

H = 0, the process has 1/f noise. Also note that white noise corresponds to

a constant power spectrum or 1/f0, which means that the corresponding Hurst

exponent would be H = −1/2. Although this is not defined for the model it does

give insight into how the model changes smoothly from Brownian motion H = 1/2

to Gaussian noise H = −1/2, where there is a transition from the path being

continuous to discontinuous at H = 0.

An approximate realsiation of fBm can be constructed via a spectral method

[Hastings and Sugihara, 1993; Peitgen et al., 1988]. For an N × N grid an i.i.d.

Gaussian white noise process is simulated for each point. A discrete two-dimensional

Fourier transform can then be taken on this grid. The Fourier transformed Gaussian

noise can then be multiplied by 1/(f2
x + f2

y )β/2, where fx,fy are the wavelengths of

the x and y component respectively. The corresponding power spectrum then has

power law scaling of β. The inverse Fourier can be taken and the absolute value used

as an approximation to the fBm process. Examples of level set of this can be seen

in Fig. 4.1. Notice that due to finite size effects, there is a range of corresponding

Hurst values for each value of β, this can be used to characterise the error in the

estimation of a Hurst exponent using the box-counting dimension of the boundary.

Since the simulated realisations of fBm can have a level set at any value, we may

vary the constant continuously until the desired density is reached (for Fig. 4.1 all

outputs are held constant with density at a half). We may, therefore, use this to

simulate landscapes with the desired density and Hurst exponent, but with other

properties allowed to vary randomly.
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4.4 Lacunarity

Fractal Dimension can give insight into the complexity of a geometric object. How-

ever, this is one particular aspect of shape relevant to ecology. Another important

concept is lacunarity, derived from the Latin for ”lake” or ”gap”, which was first

proposed by Mandelbrot [1983] as an complementary way of analysing surfaces and

textures other than the fractal dimension. It has since received interest in Ecology,

as a way of characterising the heterogeneity of a spatial pattern on a variety of

length-scales. [Plotnick et al., 1996].

Lacunarity is calculated in a similar fashion to the box-counting dimension. A

mesh of boxes of size ε is laid over the spatial data and points are counted up inside

each box. sε(i, j) shall denote the point count in the box of size ε in the (i, j) position

of the mesh. The spatial moments can then be taken and the lacunarity Λ at size ε

is given by

Λ(ε) =
〈s2
ε 〉

〈sε〉2
. (4.9)

Essentially it is the second moment normalised by the mean squared. Λ(ε) has

dependence on three variables: The density ρ of the spatial data, the size ε of the

boxes and the complexity of the spatial data. If a pattern is highly heterogeneous

on a scale ε then it would be expected that the second moment of the s is high

compared to the first moment. It is also worth noting that in a pattern that is

monofractal we would expect Λ(ε) to scale as a power law for increasing ε. It has

been shown [Mandelbrot, 1983] that the slope of a lacunarity curve on a log-log plot

for a monofractal is equal to D −E, where D is the fractal dimension and E is the

Euclidean dimension (in our case this is 2). Notice that the slope is related to the

Hurst Exponent by D−E = −H. Hence, if the curve deviates from a straight line,

we may also use the measure to detect multifractal scaling and identify under which

scales the relevant processes become dominant.

4.5 Multifractality

Monofractal techniques such as the box-counting dimension give insight into the

scaling processes occurring in a vegetative landscape, however they do not provide

information about the heterogeneity of the landscape. In this section, the multi-

fractal formalism is introduced by first defining the local scaling of a spatial pattern

and then using these local scaling laws to define sets of points that have the same

local scaling. These sets also develop fractal scaling and thus have a Haussdorff or
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Figure 4.2: An example of clipping for a boundary. When box-counting is not
centred on the mass of a fractal, spurious relationships form between the length-
scale and the box-count due to boxes below a certain cut-off being empty.

box-counting dimension. The resulting analysis produces a spectrum of dimensions

for each local scaling dimension and hence has the name multifractal spectrum. This

technique is relatively easy to understand from a theoretical standpoint, despite

being difficult to implement for reasons that shall be briefly discussed. Instead of

using the local scaling properties to get at the multifractal spectrum, it is possible

to study the multifractal properties by analysing the moments of the occupancy

of boxes as they scale with box size. The scaling of these generalised dimensions

define the Rényi dimensions Dq. These generalised dimensions can then be related

to the multifracal spectrum via a Legendre transform. How this new multifractal

formalism differs from the previously defined one shall be briefly discussed as will

its limitations and problems on a binary dataset.

The Hölder exponent provides a description of the local scaling of a spatial pattern.

The idea is very similar to the box-counting dimension, however with the Hölder

exponent a dimension is given for each point in the set as opposed to the set itself.

Let N(ε, x) be the number of points contained in the box of width ε centred at x.

Then the corresponding Hölder exponent is defined as

dimloc(F, x) = lim
ε→0

logN(ε, x)

log(1/ε)
. (4.10)

Due to the finite scale cut-off of data, the exponent is calculated by plot N(ε, x)

against 1/ε on a log-log plot and calculating the gradient via linear regression simi-

larly to the box-counting dimension.
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For a large dataset the number of linear regressions needed to be taken is large

making computation slow. A novel way of increasing the efficiency of the algorithm,

therefore, is to compute the corresponding regression matrix over all data points

and use this matrix to perform the regression calculation. Using matrix notation,

linear regression can be defined using the design matrix X defined as

X :=


1 − log(ε1)

1 − log(ε2)
...

...

1 − log(εn)

 (4.11)

for box sizes ε1, ε2, . . . , εn. The response variable y is y = (N(ε1, x), N(ε2, x), . . . , N(εn, x))ᵀ

for an arbitrary x. The parameter vector can then be estimated using ordinary least

squares regression as

β̂ := (XᵀX)−1Xᵀy. (4.12)

Instead of performing this calculation for every single point in the dataset x ∈ F ,

we observed that the design matrix for each of the points is the same. Thus by

indexing all the points in the dataset as x1, x2, . . . , xm, we construct a matrix Y as

Y :=


N(ε1, x1) N(ε1, x2) · · · N(ε1, xm)

N(ε2, x1) N(ε2, x2) · · · N(ε2, xm)
...

...
. . .

...

N(εn, x1) N(εn, x2) · · · N(εn, xm)

 . (4.13)

The parameter matrix can then be similarly defined using ordinary least squares as

B̂ := (XᵀX)−1XᵀY. (4.14)

This produces a 2×m matrix where the Hölder exponent can be read off from the

second row. Now we have a single matrix calculation, which can provide a significant

speed-up compared with performing linear regression on each point separately.

Having defined the Hölder exponent, we can now introduce the multifractal for-

malism also known as fine multifractal analysis [Falconer, 2013]. The idea is to

compute the Hölder exponent for all points in a set F and then define sets that have

the same Hölder exponent. Let the set Eα be

Eα := {x ∈ F : dimloc(F, c) = α}. (4.15)
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This produces sets covering a range of values from αmin to αmax. As these are

also binary sets, the box-counting dimension can be taken on each to give the fine

multifractal spectrum

f(α) = dimBC(Eα). (4.16)

The multifractal spectrum gives an indication of the heterogeneity in the scaling of

the spatial pattern. For a monofractal spatial pattern the scaling is homogeneous,

hence a single set Eα is defined and the multifractal spectrum is a single point. A

pattern that is more multifractal will generally have a wider spectrum. There are,

however, issues with this calculation for data. Firstly the resolution may not be fine

enough to produce sets Eα that can have their box-counting dimension accurately

inferred. Secondly, it is not necessarily clear how the sets Eα should be defined.

A range of α values may be close together due to error in regression or sampling

technique etc. and so it is not clear whether a point should be included in one set

or should form an independent set with that value of the Hölder exponent. We can

circumvent these issues by introducing another type of multifractal approach.

The idea is to construct a measure for the spatial pattern F and calculate how the

moments of the measure scale for increasing length. We define the measure to be the

probability of occupancy. This is the ratio of the number of points in a box divided

by the total number of points. It can be seen that this satisfies the properties of a

measure. the generalised moments of P (x, ε) can then be calculated as

Mq(ε) =
∑
x∈F

P (x, ε)q. (4.17)

The scaling of these moments is assumed to be a power-law i.e. Mq ∼ ε−β(q), where

β(q) is defined as

β(q) := lim
ε→0

logMq(ε)

log(1/ε)
. (4.18)

β(q) can also be used to define the Rényi dimensions Dq via the following formula

Dq :=
1

1− q
β(q) =

1

1− q
lim
ε→0

logMq(ε)

log(1/ε)
(4.19)

where D0 is the familiar box-counting dimension. D1 can be derived in the limit as

q → 1 using L’hopital’s rule as

Dq := lim
q→1

1

1− q
β(q) = lim

ε→0

−
∑

x P (x, ε) logP (x, ε)

log(1/ε)
, (4.20)
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which is the definition of entropy for a probability measure P divided by the log of

the box length. D1 is, therefore, referred to as the information dimension. Higher

orders of q can be taken until the limit as q → ∞ where the contribution to the

sum comes only from those boxes which are maximally filled, hence D∞ provides

information on how the densest regions of the set F scales. Dq can also be defined

for q < 0, with boxes that contribute towards the sum in Eq. 4.17, which are

sparse. Thus, in the limit D−∞ gives insight into how the sparsest parts of the set

F scale. We can see intuitively how the concept of the Rényi dimension relates to

the fine multifractal spectrum, however in order to produce something comparable

the Legendre transform needs to be taken.

The Lengendre transform takes the extensive pairing (q, β(q)) and converts it into

the intensive pairing (α, f(α)) using the following form

f(α) = inf
−∞<q<∞

{β(q) + αq}. (4.21)

Assuming differentiability of β(q) the multifractal spectrum (α, f(α)) can be calcu-

lated by minimising β(q) + αq over q, i.e.

α(q) = −β′(q), (4.22)

f(α(q)) = β(q) + qβ′(q). (4.23)

The multifractal spectrum then produces a concave curve with a single peak at α(0)

corresponding to the box-counting dimension. It can also be noted by differentiating

f with respect to α using the chain rule that df
dα = q. The multifractal spectrum

therefore admits a single stationary point at α(0), which is a maximum.

4.5.1 The multifractal spectrum: density against occupancy data

For the purposes of calculating the multifractal spectrum, care must be taken over

the form of the data being used and whether the underlying data is indeed mul-

tifractal in the sense that it has moments Mq defined in Eq. 4.17 that scale as a

power-law. If not, then the multifractal spectrum is not an adequate measure of

the heterogeneity in the spatial pattern and other techniques should be considered

instead.

For density data, the form of the measure used to compute the multifractal spec-

trum can be taken by normalising the density values over the whole space. The
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measure of a box of length ε then becomes a sum of the normalised density of that

box. This can then lead to a calculation of the spectrum by calculating the moments

and then following the Legendre approach.

For occupancy data the situation is less clear. A probability measure can be

constructed once again by dividing each occupancy point by the total number of

occupied lattice points. The probability measure is then calculated by summing the

total number of occupied lattice points in a box of size ε and dividing by the total

number of points. The issue with this lie with how the support of measure should

be formed.

The support is defined as having a non-zero measure everywhere. At the boundary

of a measure however, boxes are not centred on a point and hence will give spurious

values when the negative moments are calculated. This phenomena is known as

clipping (Fig. 4.2). This can be circumvented by only taking boxes centred over a

measure and ignoring all others. The second drawback of the multifractal measure

is having a more obscure interpretation than other scaling methods.

4.5.2 Pattern anisotropy

In the previous sections, we have concentrated on the scaling of spatial pattern,

that is how certain quantities such as patch-size or box-occupancy grow or decay

with increasing size. Another method of analysing spatial pattern in vegetation is to

consider how certain quantities change with angle. Anisotropy for spatial patterns

is defined as the variation in density for changing angle. If the spatial pattern is

statistically invariant under rotation then the pattern is described to be isotropic.

Anisotropy in vegetation has been of great interest [Haase, 2001; Purves and Law,

2002; Watt, 1947]. However, few statistically robust methods exist for characterising

the anisotropy if the spatial pattern is regular, where the vegetation is formed into

regular stripes or bands. Two-dimensional Fourier spectral analysis can then be

used to detect the dominant direction of the spatial pattern. The discrete two-

dimensional Fourier transform is similar to its one-dimensional counter-part and

conceptually, compares the spatial pattern to sine and cosine functions of varying

scale. A term where there is a strong overlap between the function and the data leads

to a larger contribution than when there is little overlap. For spatially-discrete two-

dimensional data xi,j with spatial co-ordinates i, j, the discrete Fourier transform is
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given as

Xk,l =
N−1∑
n1=0

e−2πiln1/N
N−1∑
n2=0

e−2πikn2/Nxi,j , (4.24)

where the size of the space is N×N . The transform takes the data xi,j in the spatial

domain and converts it into Xk,l in the frequency domain. Since the Discrete Fourier

Transform is complex, the absolute value can be taken by multiplying it with its

conjugate in order to obtain the two-dimensional power spectrum. This can then

be used to analyse the dominant frequencies in the spatial pattern. There are a

number of problems with this approach for two-dimensional occupancy data. The

test functions that are being compared to the data e2πik, although discrete in space,

take on continuous values whereas the data has only binary values 0 or 1 if the site is

occupied or not. The test functions also assume underlying periodicity in the data,

which may not be the case. The basis for the function is in the x- and y-direction

only and as such it is not clear how the measure of anisotropy would change is

the data was rotated. These problems can be overcome by using wavelet analysis,

which has had a number of applications in Ecology in recent years [Bradshaw and

McIntosh, 1994; Bradshaw and Spies, 1992; Cazelles et al., 2008; Dale and Mah,

1998; Nakken, 1999; Perry et al., 2002]

Wavelet Analysis is similar to Fourier Analysis in the sense that the data is com-

pared to test functions of varying scale. In contrast to the Fourier Transform,

wavelets have compact support, which means strength at location as well as scale

can be measured. There is also larger freedom with wavelet analysis by being able

to choose a certain form of a wavelet for the task, whichever is more appropriate.

For the purposes of detecting regular spatial pattern in the Isles of Scilly data,

we employ a method along the lines of Rosenberg [2004]. Wavelet functions used in

wavelet analysis often satisfy a number of technical conditions, but in general they

can have variety and a large number of families of wavelets exist. The wavelet used

in the analysis is known as the French Top Hat, although other wavelet families

have been used in the analysis of vegetation spatial pattern such as the Mexican

Hat wavelet [Dale and Mah, 1998]. The French Top Hat wavelet is given by the

following formula:

g(x) =


−1 if 1/2 < |x| < 3/2,

2 if |x| < 1/2,

0 otherwise.

(4.25)
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Produces a single discrete wave shape with a flat top. This creates a shape that is

ideal for fitting to occupancy data. The wavelet function can be translated via a

parameter a and stretched by a parameter b by taking x→ x−a
b . These parameters

provide a way of finding both the scale and position of a strong banded pattern.

The wavelet transform at position a and scale b is defined as

W (b, a) =
1

b

n∑
j=1

y(θj)g

(
θj − a
b

)
, (4.26)

where n is the number of transects taken and y(θj) is the data at transect point

θj . The overall variance over all scales b can then be easily calculated at a given

transect position

P (θi) =
1

m

m∑
k=1

W 2(bk, θi), (4.27)

wherem is the largest length scale considered (half the total distance of the transect).

P (xi) is then maximised when the shape of the wavelet g(x) best fits the data for

that transect, in other words, when there is strong banding present. This is due to

occupied sites being sparse if a transect runs along a gap, whereas sites are dense

if a transect runs perpendicular to the banding. This produces a distinct change

in variation around certain angle transects and can also determine the angle width

over which the banding occurs.

The analysis in Rosenberg [2004] has been adapted from point process data to

site occupancy data. This is done by approximating the occupancy data as a point

pattern if a box is in the occupied state taking its centre as the point. This is

an approximation as on the smallest scale we have no knowledge over whether the

occupied box represents a single individual, a cluster of vegetation or even a con-

tinuous mass of vegetation. For larger scales, this approximation does not bias the

data as a transect would in general be much larger than a single box, thus where

the box is occupied is inconsequential. The problem as to whether a box is occupied

with a single point or a cluster of points can be overcome by taking the box size

small enough such that no more than a single clonal unit could occupy the box. It

is still not clear for a continuous mass of vegetation where the distinction between

individual or cluster should be made. Our analysis, however, is simply to look at

the overall variation in spatial pattern and as such this distinction should not affect

the overall results. This approximation therefore seems an appropriate one to make.

The analysis can then proceed in the same way as outlined by Rosenberg [2004].

Each site contains a number of occupied sites, each occupied site can have the same
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wavelet analysis performed on it in order to produce the statistic P (θi). The P (θi)

can then be averaged over all occupied sites producing an overall variation P (θi) for

the whole site. The maximum peak can then be recorded and used to compare to

the other sites in order to detect where the vegetation is strongly anisotropic.

4.6 Results

4.6.1 Box-counting dimension

Site ρ db range (m)

blt 0.4612 1.9916 25.6-409.6
htb 0.1463 1.5949 6.4-409.6
la 0.2013 1.6827 3.2-51.2
ogh 0.0679 1.6101 1.6-51.2
wbl 0.1832 1.9275 12.8-204.8

Table 4.1: Computed values for the density of occupied sites ρ, the box-counting db
dimension and the range over which scaling was computed to be constant.

All sites passed the R2− SSR criterion for fractality, except for the site wbl

where the estimated box dimension failed the test. However, this site just failed,

in the sense that the set which maximised the r2 had an almost equivalent value of

the SSR as for the set that minimised the SSR. A possible explanation for why

this site would fail would be the strong anisotropy introduced from the observed

banding. Banding introduces a characteristic length scale that violates the scale-

free definition of fractality. The test also gives estimates for the range of scaling

that approximates a fractal closest. These are: blt: 25.6-409.6m , ogh: 1.6-51.2m,

wbl: 12.8-204.8m,htb: 6.4-409.6m,la: 3.2-51.2m. The two lowest fractal values also

interestingly have the smallest range reaching a maximum of only 51.2m. The

smaller ranges of la and ogh is due to the size of the meadows being smaller than

in the other meadow sites. The estimated box-counting dimension values are given

in Table 4.1. Sites blt and wbl have the highest box-counting dimensions, whereas

ogh and htb have the lowest box-counting dimensions. Visually comparing the

spatial maps of the vegetation distribution (Fig. 4.7), it is difficult to ascertain the

general nature of the boundaries of the patches. Hence, the box-counting dimension

provides a description of the spatial properties of the system beyond what can be

done through eye-balling the data.
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Figure 4.3: The lacunarity calculated from box-counting for each study site.

4.6.2 Lacunarity

Lacunarity analysis was performed on each of the five sites over a range of approx-

imately 500m2. The lacunarity was calculated using a box-counting method with

periodic boundary conditions to avoid clipping [Feagin et al., 2007]. Estimates of

the error were calculated by repeating the lacunarity analysis over images that were

transformed with a random offset. The results can be seen in Fig. 4.3. All the

study sites have a change in scaling around ε ≈ 102m that is indicative of a clus-

tered distribution with cluster size around 102m as it can be observed from visual

analysis of the images. The scaling change is less pronounced in blt and wbl, where

the bounding box of the image is contained in the patch, thus leading to less of a

change in scale.

Comparing to the null model

The lacunarity plots were compared to a null model where spatial correlation is

ignored. This is done by considering the same lattice size as the data and mod-

elling each point as a Bernoulli trial with probability p equals to the density of the

original data. Note that for this model and for an infinite lattice, the lacunarity at

the smallest box size (the size of the lattice) can be calculated explicitly since the
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variance and the mean of the boxes is just the variance and mean of the Bernoulli

distribution. Therefore

Λ(1) = 1 +
Var(X)

E(X)2
= 1 +

p(1− p)
p2

= p−1.

Hence Λ(1) is the inverse of the density. For box-sizes larger than one, the lacunarity

can also be calculated as a box of length ε contains ε × ε Bernoulli trials and the

count is a Binomial distribution with parameters ε× ε and p. Hence in general for

an infinite lattice size the lacunarity calculation is for the box-count X ∼ B(ε2, p)

Λ(ε) = 1 +
Var(X)

E(X)2
= 1 +

np(1− p)
n2p2

= 1 +
1

ε2
(p−1 − 1). (4.28)

The lacunarity decays to 1 for increasing box-size ε at O(ε−2). For a large occu-

pation probability the resulting distribution would be relatively uniform, leading

to (p−1 − 1) � 1, thus a lacunarity that is close to one for all box-sizes. A small

probability of occupation would lead to some boxes being occupied with many not

being occupied. This would lead to a more heterogeneous spatial pattern and as

such a lacunarity that is large (although still scaling as ε−2. A high lacunarity

then may not indicate structure anymore interesting than just a low occupation

probability. The simple occupation model therefore, can be used as a null model

to test for statistical significance on the lacunarity plots. Each site’s probability of

occupation p is used to generate 103 realisations of the model with the same lattice

size. The lacunarity analysis is then performed on each realisation and the upper

and lower percentiles are compared with the lacunarity of the original plots to check

for statistical significance. Note that we perform the statistical significance test in

this manner as opposed to using the theoretically derived results in Eq. 4.28 as the

lattice sizes are finite and needs to be accounted for. The results show (Fig. 4.4)

significant lacunarity from the null model for each of the five sites. Blt shows the

lowest lacunarity of the five sites, although its scaling can be seen to be significantly

different to the null model indicating the presence of spatial correlation.

4.6.3 Anisotropy

The anisotropy of the seagrass distribution was measured for the entire data set

of the Isles of Scilly by partitioning the data into a 322 × 322 grid where each

grid represented an area of approximately 15m × 15m. The wavelet analysis was

performed on each box and the maximum point was taken as a measure of the

strength and direction of the anisotropy. The results were then overlayed on a
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Figure 4.4: Comparison of the lacunarity plots to the null model where spatial cor-
relations are ignored. All sites show a significance divergence from the null model
(95% confidence intervals were plotted, but are completely contained in data mark-
ers). The null model scaling on the log-log scale is exponential with exponent −2
as expected from the analytic result in Eq. 4.28

map of the Isles (See Fig. 4.5). Areas where the strength of the anisotropy were

highest were found to have a strong banded structure in the occupation of vegetation.

Regular bands of similar width ,approximately 1−5m, were found everywhere there

was a strong region of anisotropy. The method appears to be able to pick out

areas where vegetation banding is strong. Fig. 4.6 displays the anisotropy analysis

as directors (headless vectors) with a length proportional to the magnitude of the

dominant directionality. Each director was averaged around a box size of 10 × 10

of the original analyses so that it can be displayed clearly in the figure. There is a

clear East-West directionality for the wavelet anisotropy running perpendicular to

the dominant currents in the Isles of Scilly (which run North to South). Fig. 4.6
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Figure 4.5: Anisotropy analysis of the seagrass spatial pattern. Contains Ordnance
Survey data c© Crown copyright and database right 2011

is derived by averaging over a number of sites where the analysis was performed.

The original distribution of dominant angles in the wavelet analysis also reveals the

strong East-West direction.

4.6.4 Hölder exponent

The Hölder exponent was used to test how scaling varies with space across the five

sites. This was calculated by taking the occupancy data Ω, where Ω is an m × n
matrix with values 0 or 1 depending on whether the site was occupied or not. The

Hölder exponent was then calculated according to the method outlined in section 4.5.

Each of the five meadows surveyed displayed a large range of values for the Hölder

exponent, between 1 and 2.5 (Fig. 4.8). Each site has a unimodal distribution of

exponents with a peak of approximately 2, representing the interior of the meadows.

All four sites have very similar distributions with the exception of wbl, where the
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distribution contained more mass in the left tail (between 2 and 1) than for the

other sites. Whereas in the other sites that contain large patches with an interior,

wbl is more fragmented, thus introducing areas where the Hölder exponent is lower.

All sites have values greater than 2, although theoretically this is not possible as

the maximum a box of length ε can be occupied is ε2, where there may be a sharp

change in the scaling around an area (such as by a patch border) this can lead to

a sharp change in the scaling. As linear regression is being performed over all the

scales this leads to some sites that have unexpectedly high Hölder exponents.

In order to compare the Hölder exponent with the local density where the expo-

nent was calculated the box of length half of that over which regression was taken

was used to determine if there is a strong correlation between the exponent and the

average density (Fig. 4.9). All five meadows sites’ exponents have a medium corre-

lation coefficients (0 < r < 0.5) with the average density indicating the exponent

is providing more information than just density alone. Although there is a degree

of correlation with the average density, by comparing to the plots between the two,

there is no clear trend.

4.7 Discussion

In this chapter we have laid out the significant body of work in descriptive statistics

for spatial ecology. The work includes scaling statistics, such as the box-counting

dimension and Hölder exponent, as well as measures of anisotropy and heterogeneity

in the distribution of vegetation. The merits of each have been considered for use in

measuring disturbance and patchiness in the vegetation ecosystem. Later chapters

will compare these measurements to the underlying dynamics of the vegetation

community using both modelling techniques as well as direct comparison with a

quadrat-based survey of the five sites.

The five sites used in the seagrass study for the Isles of Scilly, UK were found to

have a number of interesting spatial features. Their heterogeneity as defined by the

lacunarity was found to be significantly higher than the lacunarity of a spatially un-

correlated landscape. Each site also showed a degree of power law scaling in both the

patch-size distribution and the boundary dimension defined through box-counting.

These results show there is a significant degree of fractality in the vegetative com-

munity and hence the hypothesis that there is fractal scaling in seagrass vegetation

is valid.
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It was found that strong anisotropic patterns exist in a number of locations in

the Isles of Scilly dataset. The patterning was found to be bands of vegetation

regularly spaced in a vegetation cluster. This banding was found to be prevalent in

most of the sites in the study. Banding was also found to be perpendicular to the

dominant currents. The origin of these bands and their impact on the dynamics of

the Seagrass and vegetation in general is an interesting problem and one that will

be the focus of the next chapter as well as Chapter 7 and Chapter 9.

The next chapter begins the discussion of modelling vegetation communities with

strong spatial structure. The modelling shall try to consider in particular two dif-

ferent form of spatial pattern exhibited: the power-law scaling structure in the

patch-size distribution and boundary; and the anisotropy of the spatial pattern

characterised by banding perpendicular to the main flow of currents.
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1km

Figure 4.6: Anisotropy analysis of the vegetation spatial pattern using the wavelet
method. The directors in the graph represent the direction of the dominant varia-
tion in the spatial pattern with it’s length proportional to the strength of the spatial
pattern. Results were averaged for box sizes and a vector of the Scilly Isles was ap-
proximately overlayed on top. Contains Ordnance Survey data c© Crown copyright
and database right 2011
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Figure 4.7: Estimating the Box Dimension from the five locations. The spatial data
for patches A-E are displayed around the central figure. Values of 1 representing the
presence of Seagrass are shown in green and values of 0 representing no Seagrass are
shown in blue. The main figure shows how the number of occupied boxes N scales
inversely with the length of the box L on a log-log plot. We find that the power law
scaling is remarkably clear over a wide range of L, with only slight deviations as L
becomes small for sites A and D. We also note a strong difference for site B. For a
large range of L the values of N deviate greatly from the other sites.
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Figure 4.8: The Hölder exponents (dH) calculated for the five meadows blt,htb,la,ogh
and wbl. Distribution of the exponents is given in the top left figure and their
locations are given in the surrounding figures for each meadow. All meadows were
found to have broadly similar unimodal distributions of exponents. wbl however,
is an outlier with a heavier left-tail due to the more fragmented structure of the
spatial distribution of vegetation.
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Figure 4.9: correlation plots of Hölder exponents against the density of box with
the average length for each of the five meadows. Each site explored had a medium
strength correlation (less than 0.5) between the box density and the Hölder exponent
providing evidence that the exponent is providing more information than just the
average density alone. The density of points is given as a heat map with outliers
shown in white.

83



Bibliography

GA Bradshaw and BA McIntosh. Detecting climate-induced patterns using wavelet

analysis. Environmental Pollution, 83(1):135–142, 1994.

GA Bradshaw and Thomas A Spies. Characterizing canopy gap structure in forests

using wavelet analysis. Journal of ecology, pages 205–215, 1992.

Bernard Cazelles, Mario Chavez, Dominique Berteaux, Frédéric Ménard, Jon Olav
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Chapter 5

Modelling

Chaos is found in greatest abundance wherever order is being sought.

It always defeats order, because it is better organized.

(Terry Pratchett -Interesting Times)
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5.1 Introduction

In Chapter 4 a number of spatial features were discovered for the eelgrass dataset.

We found that seagrass exhibits strong regular patterns in the form of bands that, in

general, are perpendicular to the dominant currents. The focus of this chapter will

be on exploring the mechanisms that underpin these spatial patterns and what set

of parameters control the strength and scale of the banding pattern. In Section 5.2

the modelling is constructed from reaction-diffusion type equations. In Section 5.4

the role of stochasticity is explored to see what contributes to the strength and

maintenance of regular spatial patterns in vegetative communities. Stochasticity is

further explored in Chapter 6

Figure 5.1: A caricature of the process of
hydrological scouring in a seagrass bed.
current flow (shown as black arrows) over
the vegetation (in green) causing turbu-
lent flow down-current of the vegetation
that scours the bed lowering the probabil-
ity of new growth.

Eelgrass is subject to a number of dif-

ferent environmental factors that need

to be considered in a modelling context

[Moore and Short, 2006]. Propagation

occurs through local clonal growth in

the form of rhizomes that grow through-

out the year. It is a sub-tidal species of

seagrass and is found in estuaries and

along coastlines in shallow waters. It is

characterised by long, broad leaves that

can grow to 30-60cm in length [Kuo and

Den Hartog, 2001]. The resulting mor-

phology of the plant structure is affected

by substrate type [Short, 1983], temper-

ature [Moore et al., 1996], light and nu-

trient availability [Marba et al., 1996],

and tide and wave regimes [Fonseca and

Bell, 1998]. Dense clusters of foliage can

act as a filter, trapping and binding sed-

iment and dampening wave and current

energy. This also facilitates the accumulation of organic material in the sediments

leading to an increased concentration of nutrients.

There are potentially a huge number of effects that can affect growth and would

potentially need to be modelled. We are therefore presented with a choice between

realism and abstraction. A realistic model would explicitly model all factors associ-
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ated with growth such as nutrient cycles, individual shoot and rhizome propagation,

current and wave action, as well as sediment interaction and seasonal cycles. An ab-

stract model would contain only a small number of features that would be associated

with eelgrass growth laid out in very general terms, such as a functional response

to local density and general environmental conditions. A realistic model suffers

from analytic and computational intractability as well as difficulty in parameter

fitting, whereas an abstract model suffers from lack of predicting power and real-

ism. Therefore, we have proceeded with a compromise between the two, by taking

only the salient aspects of colonisation and interaction and ignoring other possible

interactions. This also allows the model to be more general and thus applicable

to a wider number of ecosystems. For now we will also ignore distributed distur-

bance effects, such as disease or grazing, and focus on seagrass and its interaction

with the environment. There are clear positive local interactions through sediment

deposition; nutrient production and deposition, and mutual sheltering. Negative

interaction between vegetation occurs through competition for nutrients and hydro-

logical scouring; where a raised dense bed of vegetation induces turbulent flow that

scours the seabed down current of the vegetation patch (Fig. 5.1). Interaction is

therefore mediated by the environment through sediment, nutrient concentrations,

and through density of vegetation itself. These mechanisms are explored using a

variety of modelling frameworks.

This chapter begins with an introduction to reaction-diffusion equations applied to

vegetation-environment interaction. A novel attempt to characterise this system is

explored as well as discussion of similar efforts that have been made in the literature.

The next section explores continuous models, where long-range interaction occurs via

integral terms in the kinetic equation. A model of tiger bush [Lefever and Lejeune,

1997] is adapted to our system and a novel derivation of this model is given. In order

to explore how stochasticity interacts with pattern formation in later chapters, the

continuous kinetic equation is adapted into a probabilistic cellular automata, where

the rates of the system relate to the rates given in the continuous model. Pattern

formation is then explored in this model via simulation.

5.2 Reaction-diffusion equations

The main purpose of this section shall be to derive a parsimonious set of reaction-

diffusion equations that will explicitly model the vegetation’s interaction with itself

in the form of spatial diffusion and competition, and the environment in the form of
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a substrate density that provides protection to the vegetation and aides its growth.

The vegetation density u(t, x, y) and the environmental substrate v(t, x, y) shall

therefore be explicitly modelled in the domain [0, T ]× R2 for some time T .

The general approach to reaction-diffusion equations in ecological systems is out-

lined in Dieckmann et al. [2000], although a brief summary is given here. The

strategy is to find stable homogeneous fixed points of the equation. Small spatial

perturbations are added to the homogeneous solution and the set of wavelengths

that are unstable i.e. the wavelengths of a perturbation that grow in time are cal-

culated. If the unstable wavelengths occupy a finite range and are greater than

zero then the reaction-diffusion system is said to have a Turing bifurcation. We

begin with a general model of a reaction-diffusion equation with 2 species each with

concentration ui (note that ui depends both on space x and time t, but these depen-

dencies are not shown to save on notation) in one spatial dimension. The general

equation is then

∂u1

∂t
= u1f1(u) + µ1

∂2u1

∂x2
, (5.1a)

∂u2

∂t
= u2f2(u) + µ2

∂2u2

∂x2
, (5.1b)

where f1 and f2 are the density dependent growth rates for species 1 and 2. µ1

and µ2 are the diffusion rates for both species respectively. A homogeneous solution

ū = (ū1, ū2) is one with no time or spatial dependency and satisfies the set of

simultaneous equations

f1(ū) = 0, (5.2a)

f2(ū) = 0. (5.2b)

The conditions under which this homogeneous solution is stable can be found by

linearising around ū. This transforms Eq. 5.1 into

∂u1

∂t
= (Au)1 + µ1

∂2u1

∂x2
, (5.3a)

∂u2

∂t
= (Au)2 + µ2

∂2u2

∂x2
, (5.3b)

where Au is the linearised form of f(u) around the fixed point ū. In order for this

fixed point to be stable it is required that the eigenvalues of A have negative real
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part. This occurs when

Tr(A) = a11 + a22 < 0, (5.4a)

Det(A) = a11a22 − a12a21 > 0. (5.4b)

In order to test whether the solution is stable in the presence of spatial fluctuations a

test function of the form u = ū+exp(λt) cos(kx) is applied to Eq. 5.3 and calculating

the real part of λ in order to determine if the spatial fluctuations increase in time.

This leads to the following condition

µ1a22 + µ2a11 > 2
√
µ1µ2Det(A). (5.5)

Hence if the system satisfies Eq 5.4a, Eq 5.4b and Eq 5.5 then the system sustains

regular spatial patterns. It is important to note that Turing patterns are not the

only path to pattern formation in reaction-diffusion equations and so called global

patterns can also exist [Kéfi et al., 2010].

We begin by explicitly modelling the vegetation with its interaction on the

environment. The vegetation propagates clonally and hence has a local dispersion

process characterised by diffusion. The growth rate of the vegetation is assumed

to be directly proportional to the concentration of substrate v. Local growth of

the vegetation is logistic with carrying capacity K(v) = 1 + βv. The vegetation

is therefore assumed to be able to be sustained when there is no substrate present

(v = 0), this also avoids a singularity when no substrate is present. β controls the

dependency of the vegetation carrying capacity on the substrate. The substrate

dynamics are dominated by currents that are dependent on both the vegetation and

the substrate and a diffusion term that again both depends on the vegetation and

substrate. The kinetic equations are therefore

∂u

∂t
= f(u, v) +D1∇2u, (5.6a)

∂v

∂t
= g(u, v) +∇.(−j(u, v) +D2(u, v)∇v), (5.6b)

where f has the form

f(u, v) = ruv

(
1− u

1 + βv

)
, (5.7)

where r is the intrinsic growth rate, rv is the actual growth rate in the presence

of the substrate, j is the current of the substrate, D1 is the diffusion coefficient of

vegetation and D2 is the diffusion coefficient of the substrate that may depend on

the local concentration on substrate and vegetation. g(u, v) is harder to understand.
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We can classify it as having its own intrinsic growth rate µ and carrying capacity

K that are both affected by the presence of vegetation only. Hence

g(u, v) = µu
(

1− u

K

)
. (5.8)

Before considering the form of the current term j(u, v) and the environmental diffu-

sion term D2(u, v), we may consider the spatially homogeneous fixed point solution

of this system (u∗, v∗) by setting f, g = 0. Eq. 5.7 gives

f(u∗, v∗) =ruv

(
1− u

1 + βv

)
= 0

=⇒ u∗ = 0 or v∗ = 0 or v∗ = β−1(u∗ − 1), (5.9)

using the non-zero solution and setting g to zero we obtain from Eq. 5.8

g(u∗, v∗) =µu
(

1− u

K

)
= 0,

=⇒ u∗ = 0 or u∗ = K.

Hence the spatially homogeneous solutions are (0, 0), (1, 0), (0,−β) and

(K,β−1(K − 1)). There is immediately a problem with these solutions. Although

the non-zero solution is positive (if K > 1), there is a pathological solution (0,−β),

although in the absence of vegetation g ≥ 0 and hence this fixed point is never

reached if the initial conditions are in the positive cone (u0 > 0, v0 > 0). The fixed

point (1, 0) is also concerning as this suggests that the vegetation can sustain itself

without the presence of environmental substrate.

We perform stability analysis on the fixed point (K,β−1(K − 1)) by calcu-

lating the Jacobian(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)
=

(
rv
(

1− u
1+βv

)
− ruv ru

(
1− u

1+βv

)
+ rβuv

(1+βv)2

µ
(
1− u

K

)
− µ

Ku 0

)
. (5.10)

Taking the determinant of the Jacobian at the fixed points (u∗, v∗) = (K,β−1(K−1))

det J = 0− rµu
(

1− 2
u∗

K

)(
1− u∗

1 + βv
+ β

v∗

(1 + βv∗)2

)
,

= µrK(1− 2)

(
1− K

1 +K − 1
+

K − 1

(1 +K − 1)2

)
,

= −µrK
(

1− 1

K2

)
. (5.11)
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Since it is assumed that µ, r,K > 0, the condition that the fixed point is stable

when the determinant of the Jacobian is positive occurs when

1− 1

K2
< 0,

=⇒ 1 <
1

K2
,

=⇒ K < 1. (5.12)

However, it is always assumed that the carrying capacity K is greater than one to

avoid the environmental growth rate g being negative. Also note that the trace of

the Jacobian should be negative if the fixed point is stable and hence

trJ = − r
β
K(K − 1) < 0. (5.13)

As such for the fixed point to be stable K > 1, however for the determinant to

be positive K < 1. Hence both conditions cannot be satisfied and the fixed point

is never stable. We seek an instability in the spatially inhomogeneous solution in

order to detect a Turing bifurcation that would lead to pattern formation. First the

spatial components of Eq. 5.6 shall be simplified.

In order to simplify the spatial components we define new spatial co-ordinates x′,

y′ that are rotations of the co-ordinates x, y such that the current j lies in the x′

direction and has no y′ component. We may also reduce the number of parameters

by rescaling the new co-ordinates x′,y′ by D1
−1/2 and introducing the new diffusion

parameter d(u) and current term j(u) for the environmental substrate. In the new

co-ordinate system Eq. 5.6 becomes

∂u

∂t
= f(u, v) +∇2u, (5.14a)

∂v

∂t
= g(u, v) +∇.(−j(u)(1, 0)T + d(u)∇v). (5.14b)

If the diffusion and flux dependence on u is linear we may take the functional forms

of these to be

d(u) = d
(

1− u

K

)
, (5.15a)

j(u) = K − u. (5.15b)
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This ensures that when u is maximised, both the diffusion and flux of the environ-

mental quality v is 0. Inserting these forms of d and j into Eq. 5.14 gives

∂u

∂t
= f(u, v) +∇2u, (5.16a)

∂v

∂t
= g(u, v)− ∂u

∂x
− d

K
(∇u).(∇v) + d

(
1− u

K

)
∇2v. (5.16b)

As the previous form of f and g did not produce a stable homogeneous solution in

the interior (u, v > 0) we must consider a more general form of g. Consider g as a

polynomial of order n;

g(u) = a0 + a1u+ a2u
2 + . . .+ anu

n. (5.17)

The environmental quality should decrease in the absence of vegetation, hence

g(0) < 0 and so a0 < 0. We also desire the environmental quality to saturate

at a certain carrying capacity, thus limiting the growth of the vegetation. Hence we

desire g(K) = 0. As there are only two conditions that are imposed the minimal

degree of g is 2. Take a = −a0, so a is positive and b = a1. Then a and b can be

determined by considering the equation g(K) = 0

K2 + bK − a = 0,

K2 + bK = a,

K(K + b) = a,

b =
a

K
−K. (5.18)

Hence g has the form

g(u) = µ
[
u2 +

( a
K
−K

)
u− a

]
, (5.19)

and the interior fixed point is now (u∗, v∗) = (K,β−1(K− 1)). The Jacobian at this

fixed point is calculated to be

J =

(
− r
β (K − 1) r

β (K − 1)

µ(K + a
K ) 0

)
. (5.20)
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In order to deduce the conditions for the fixed point to be stable we desire det J > 0

and tr J < 0. As such the conditions for stability are

−rβµ(K − 1)
(
K +

a

K

)
> 0, (5.21a)

− r
β

(K − 1) < 0. (5.21b)

The condition in Eq. 5.21a is never satisfied as all parameters are assumed posi-

tive. Eq. 5.21b is satisfied if K > 1. Hence we may conclude that the fixed point

(K,β−1(K − 1)) is never stable.

With the spatially homogeneous case dealt with we now seek a Turing bi-

furcation by analysing a small spatial perturbation around the fixed point. If the

spatial perturbation increases over time then the spatially homogeneous solution

is unstable in the sense spatial perturbations of certain characteristic wavelength

will lead to the solution moving away from the homogeneous state. We therefore

introduce the ansatz perturbation solution

u = u∗ + uε, uε = a(t) cos(kx) cos(ly), (5.22a)

v = v∗ + vε, vε = b(t) cos(kx) cos(ly). (5.22b)

Linearising around (a, b) we obtain the linear equation

d

dt

(
a

b

)
= A

(
a

b

)
, (5.23)

where the matrix A is

A =

(
k2 + l2 + rβ−1(K − 1)(1− 2K) 0

2µK + a
K −K d(k2 + l2)

)
. (5.24)

Note there is no dependency on the flux j as the term (∇u).(∇v) only has a non-

linear part. We again consider the determinant and trace of this matrix to determine

the stability of this solution, where we also for simplicity write the sum squares of

the wave numbers as k2 + l2 = x2

detA = d
[
rβ(K − 1)(1− 2K) + x2

]
x2, (5.25a)

tr A = rβ−1(K − 1)(1− 2K) + (1 + d)x2. (5.25b)

To determine the eigenvalues of A we solve the equation λ2 − (tr A)λ+ detA = 0.

These have positive real values if either detA < 0 or tr A > 0. For the determinant
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to be negative we would require that

rβ(K − 1)(1− 2K) + x2 < 0,

=⇒ x2 < −rβ(K − 1)(1− 2K).

Since −rβ(K − 1)(1 − 2K) > 0 this is possible for certain values. For tr A > 0 we

require that

rβ−1(K − 1)(1− 2K) + (1 + d)x2 > 0,

=⇒ −rβ−1(K − 1)(1− 2K)

1 + d
< x2.

We therefore have conditions under which small scale spatial perturbations would

be unstable leading to pattern formation. Unfortunately, however, due to the fact

that the interior fixed point is never stable, there are no pattern forming Turing

bifurcations in this system.

5.2.1 A Short deviation into the literature

For the types of systems we have considered there has been no Turing bifurcation

due to the interior fixed point never being stable. It is not obvious what functional

form the reaction terms need to take for a bifurcation to exist. There is an issue with

choosing the reaction terms without specific knowledge of what form they should

take as this would lead to a model that may have similar pattern characteristics,

but would have poor predictive power. Many such model mechanisms do exist in

the literature, as an example from semi-arid ecosystems [Sherratt, 2005] where the

environment is explicitly modelled via groundwater, an equation that does lead to

stripe pattern formation is

∂u

∂t
= u2v − au+∇2u, (5.26a)

∂v

∂t
= b− v − u2v + c

∂v

∂x
+ d∇2v, (5.26b)

where the environmental parameter has a flux controlled by the parameter c in

the x direction. In Sherratt [2005] the authors do not consider diffusion of the

environment, however this can be added in as has been done in Hille Ris Lambers

et al. [2001]. The term u2v represents plant growth subject to the environmental

variable v. The term −au represents vegetation mortality and is assumed constant.

There is also a diffusion term (where the diffusion coefficient has been absorbed
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by the spatial variables to reduce the number of parameters). The environmental

parameter has a constant rate of improvement b; for the semi-arid ecosystem this

is interpreted as constant rainfall, but we can consider this more generally as any

independent process that improves the environment such as influx of nutrients, soft-

sediment, organic matter etc. The environment is also subject to depletion, −v,

and a transfer to vegetation, −u2v. This term represents the absorption of water,

nutrients or other aspects of environmental quality in the process of vegetative

growth. The system is of an activator-inhibitor type, where the environment inhibits

the further growth of vegetation.

We may consider the vegetation growth term u2v and assume that there is only

linear dependency on the density of vegetation so the system of equations would be

∂u

∂t
= uv − au+∇2u, (5.27a)

∂v

∂t
= b− v − uv + c

∂v

∂x
+ d∇2v. (5.27b)

However, there is an issue with this system. There does exist an interior stable

point at (u∗, v∗) =
(
b−a
a , a

)
when b > a. However, by performing the standard

spatial perturbation analysis to detect a Turing phase transition the trace of the

dynamic matrix linearised around the stable fixed point is always negative and hence

for there to be a Turing phase transition we would require the determinant to be

negative. This can only happen if a > b, hence contradicting the stability condition

and so no Turing phase transition can occur. This shows that the non-linearity of

the vegetation growth term is a requirement to induce a phase transition that would

lead to pattern formation.

The stripe patterns that result from Eq. 5.26 are perpendicular to the environmen-

tal gradient induced by the c ∂v∂x term. The bands also move up the environmental

gradient with a velocity that is increasing with the strength of the environmental

gradient c. In the case of seagrass, the environmental gradient is induced by the

strength of the prevailing current. Hence c will be a function of the local current

strength.

5.2.2 Conclusion

Although reaction-diffusion equations can produce regular spatial patterns in the

form of banding and these bands can align perpendicular to an environmental flux,
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we have in the process had to be very general about the form of the environmental

reaction term g in order for banding to occur. It is difficult to, from first principles,

deduce what the nature of this function g should be without proper experimentation.

If the environment was simply due to the density of soft sediment then an experiment

could potentially be devised. However, the term v includes other aspects of the

environment that allow the vegetation to persist, which may be difficult to capture.

This means that the form of g would always be a phenomenological one and would

lack a mechanistic underpinning. The conclusion is that pure reaction-diffusion

equations provide a good step in explaining the origin of regular pattern formation in

a vegetative community with environmental feedback, however for a full mechanistic

underpinning further modelling work must be sought.

5.3 Integro-differential equations

Partial Differential Equations have been effective in capturing salient details of veg-

etative systems [Holmes et al., 1994]. Vegetation is modelled as a density function

ρ(x, t) that is dependent on space and time. It is assumed that this function remains

positive everywhere and furthermore it has an upper bound K denoting its carry-

ing capacity. Spatial patterning such as patches and banding have been observed

in such details and been successfully applied to vegetative patterns, namely Tiger

Bush [Lefever and Lejeune, 1997].

Here a kinetic equation is introduced for the evolution of ρ(x, t) taking into account

processes which contribute to growth and death of a vegetation patch. The equation

is given by

∂tρ(x, t) = F1 × F2 − F3. (5.28)

The kinetic equation encapsulates aspects of growth and death that are dependent

not only on the local density, ρ, at x, but on long-range densities. This is a departure

from normal reaction diffusion dynamics, where only local interactions are included

via the diffusion operator.

F1 represents growth due to reproduction (with intrinsic growth rate λ), this

can include sexual reproduction via the production of gametes or clonal growth via

propagules such as rhizomes, tubers or cuttings. In the case of local clonal growth

this shall mainly be a local interaction term, however the extent of rhizome networks

in vegetation such as seagrass is largely unknown and hence could involve longer

range dynamics. Sexual reproduction such as via seed dispersal can be very long-
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range, this would be a classic example of where nearest neighbour dynamics would

break down. There is also mutual interaction, with rate Ω, due to sheltering and

attachment that increases the growth rate when density is high. Spatial asymmetry

can also be a factor due to prevailing winds, currents or animal migration patterns

directing seed dispersal. These spatial processes are captured by a spatial kernel,

k1(x).

F2 encapsulates interaction between vegetation and its environment. The envi-

ronment can limit the growth of a plant in a variety of ways such as competition

between plants for nutrients, water and sunlight leading to a carrying capacity K.

However the environment can additionally affect growth in more subtle ways. High

density of vegetation can funnel and change wind and wave action, inhibiting growth

in other surrounding areas by creating barriers that can change the dynamics of the

environment. Again there is a local range to this interaction as well as a long range

one in this term that must be taken into account with a spatial kernel k2(x).

F3 represents ambient death, which depends on a number of factors related to

the environment as well as local density. The simplest form of this is to assume

death occurs everywhere at a constant rate η, with a spatial kernel that is the Dirac

delta function w3(x) = δ(x). Although we wish for this equation to have the fullest

generality possible, for now we shall concentrate on how they relate to the modelling

of seagrass dynamics. The resulting forms of F1, F2 and F3 are

F1(x, t) =

∫
dyλk1(y)ρ(x + y, t)(1 + Ωρ(x + y, t)), (5.29a)

F2(x, t) =

∫
dyk2(y)(1− ρ(x + y, t)/K), (5.29b)

F3(x, t) =

∫
dyηk3(y)ρ(x + y, t) = ηρ(x, t). (5.29c)

5.3.1 Derivation

We begin by modelling the environment as a separate variable E(x, t), with its

own kinetic equation dependent on vegetation density S(x, t). We assume that the

dynamics of this environmental variable (soft matter and nutrients) is dominated

by the density of vegetation. In full generality we have two processes affecting the

quality of the environment at a certain location. The first term in the rate equation

for the environment variable E is the diffusion of soft sediment etc. due to the

presence of seagrass, this is controlled by the kernel k3. The second term is the

process by which sediment is prevented from piling up, this is controlled by the
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absence of seagrass and the kernel k4. The whole rate of the process is controlled

by the parameter ε, which represents the rate at which this process occurs relative

to the seagrass dynamics. Hence the resulting equations are

∂tE(x, t) =
1

ε

(
−E

∫
dyk3(y)S(x + y, t)/K + (1− E)

∫
dyk4(y)(1− S(x + y, t)/K)

)
,

∂tS(x, t) = β

∫
dyk1(y)S(x + y, t)×

∫
dyk2(y)E(x + y, t)− ηS(x, t). (5.30)

We assume that the environmental dynamics are fast relative to the dynamics of

the seagrass.Hence the leading order parameter ε can be assumed to be small and

in the limit ε→ 0 we have

E =

∫
dyk4(y)(1− S(x + y, t))∫

dy (k3(y)− k4(y))S(x + y, t) +
∫
dyk4(y)

. (5.31)

We must consider the denominator of this equation (5.31). Note it is of the form

(a + x)−1, where x is small. We may hence apply a Taylor expansion (a + x)−1 =

a−1(1− x
a +O(x2)). Denote the integral

∫
dyk4(y) = α. Hence

E = α−1

(∫
dyk4(y)(1− S(x + y, t))

)(
1− α−1

∫
dy (k3(y)− k4(y))S(x + y, t)

)
.

(5.32)

Let us return to the discussion of the kernels k3 and k4 for a moment. The two

kernels relate to the process of sand diffusion and sand deposition respectively. We

have assumed until now that these two processes have different kernels. However,

it is likely that they are on the same length scale, hence we use the simplifying

assumption k3 = k4. Substituting this into equation (5.30),

∂tS(x, t) = α−1β

∫
dyk1(y)S(x + y, t)×

∫
dy

∫
dzk2(y)k4(z)(1− S(x + y + z, t)/K)

− ηS(x, t). (5.33)
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Concentrating on the double integral term, which can be simplified using a convo-

lution ∗ and noting their associativity

P (x) =

∫
dy

∫
dzk2(y)k4(z)(1− S(x + y + z, t)/K),

=

∫
dy

∫
dzk2(ζ − z)k4 ∗ (1− S/K)(x + y),

=k2 ∗ (k4 ∗ (1− S/K))(x) = (k2 ∗ k4) ∗ (1− S/K)(x),

=

∫
dζ(k2 ∗ k4)(ζ)(1− S(x + ζ, t)/K). (5.34)

There remains a convoluted kernel k2∗k4. It is desirable for these kernels to have the

usual properties of a probability distribution, namely being non-negative everywhere

and integrating to 1. Assuming all kernels are Gaussian, then the convolution of

the two is another Gaussian with a transformed variance. This is denoted as h(y).

Also denote the leading rate as λ = α−1β, where this can be interpreted as the birth

rate. Finally denoting k1 = k, gives the final form as

∂tS(x, t) = λ

∫
dyk(y)S(x + y, t)×

∫
h(y)(1− S(x + y, t)/K)− ηS(x, t). (5.35)

This equation coincides with Eq. 5.28 when the death kernel is a delta-function.

This equation therefore models the interaction between vegetation and environment

when there is a separation of time scales between the environmental processes and

the vegetation turnover.

5.3.2 Kernels

Let us briefly discuss the interaction kernels and their interpretation. The kernels

describe the range of the processes for reproduction and competition. The simplest

form of these would be a Gaussian kernel

k(x) =
1√

2πσ2
exp

(
− 1

2σ2

(
x2 + y2

))
(5.36)

We may extend this to include processes, that are anisotropic which may be induced

by currents, wind and other environmental factors. The simplest way of doing this

is via the skewed Gaussian, which has skewness parameter α;

k(x) =
1√

2πσ2
exp

(
− 1

2σ2

(
x2 + y2

))(
1 + erf

(
α

x

σ
√

2

))
. (5.37)
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Longer range, sub-exponential processes may also be considered, such as power law

scaling. This means the kernel would decrease proportional to some power α. The

kernel would then be a Pareto distribution of the form

k(x) =

{
αxαmx

−(α+1) for x ≥ xm
0 if x < xm

.

5.3.3 Anisotropy

The previous section was concerned with kernels whose domain of interaction was

located over the vegetation. Environmental forces such as currents, tides and wave

action introduce anisotropy into the system. We may analyse this anisotropy by con-

sidering when the competition kernel is offset i.e. the competition of the vegetation

is felt by the competing vegetation at distance o away. For simplicity of analysis as-

sume that this offset is always in the x-direction. The resulting non-dimensionalised

kinetic equations are

∂

∂t
S(x, t) =

[∫
e−[x′21 +x′22 ]/2L2

S(x + x′)dx′
] [

1−
∫
e−[(x′1−o)2+x′22 ]/2S(x + x′)dx′

]
− µS(x, t) (5.38)

Assuming Gaussian kernels, Lefever and Lejeune [1997] showed that the homoge-

neous solution matches the isotropic case, and the corresponding eigenvalues for a

small perturbation of wavelength k = (kx, ky)
T is

ωk =− µ+ µe−L
2|k|2/2 − (1− µ) cos(okx)e−|k|

2/2

− i(1− µ) sin(okx)e−|k|
2/2. (5.39)

Using this dispersion relationship, the unstable wavelengths can be estimated. un-

stable wavelengths appear for L < 1

5.4 Probabilistic cellular automata

In the previous section we defined a continuous time continuous space model that

describes the kinetic evolution of seagrass interacting with its possibly inhomoge-

neous environment. Although the continuous limit model can be appealing, we

should be aware of the plethora of interesting spatial patterning due to finite size

effects. In particular, we wish to focus our attention on fractals, banding and clus-
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tering patterns. This can be done by introducing a probabilistic cellular automata

[Balzter et al., 1998; Ermentrout and Edelstein-Keshet, 1993; Hogeweg, 1988] based

on the rates described in Eq. 5.35. A probabilistic cellular automata is a stochastic

lattice model where the probability of transitioning to a new state of the lattice is

dependent on the current state only, hence the model can be viewed of as a Markov

chain.

The domain of the model shall be the square lattice of size N. Each lattice site

shall either be occupied or not and hence the total possible number of states is

2N×N . The system is described at time t by

S = {sij : sij ∈ {0, 1}, i, j ∈ Z}. (5.40)

A master equation based upon the previous continuous model can be written down

P (S, t+ 1) = P (S, t) +
∑
S′

[
w(S|S′)P (S′, t)− w(S′|S)P (S, t)

]
(5.41)

where w(S|S′) are the transition rates from state S′ to state S and can be defined

using the birth and death rates B, D

w(S′|S) =

∫
B(x, S)S′(x)∆(S + δx − S′)dx +

∫
D(x, S)S(x)∆(S − δx − S′)dx,

(5.42)

where ∆ is the delta-function defined as

∆(A) =

{
1 if A=0

0 otherwise
, (5.43)

the birth and death rates are equivalent to the continuous model case with an added

density-independent birth rate r0,

B(x, S) =

∫
k(y)S(x + y)dy ×

∫
h(y)(1− S(x + y)/K)dy + r0, (5.44a)

D(x, S) = µ. (5.44b)

Due to the large state space, analytical treatment of the preceding model is difficult.

We therefore proceed using simulation.
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5.5 Simulation

In order to perform fast simulations on the stochastic process defined in the previous

section a number of approximations can be made. The model system at time t is

described by the matrix in Eq. 5.40, where each lattice site sij is either occupied

(1) or empty (0). The sites are updated synchronously where at each time-step, the

transition probabilities for each of the birth and death events are calculated from

Eq. 5.44. To calculate the birth probabilities two convolutions need to be performed

for each site. If the kernels are the same size as the system, then for large system sizes

this computation becomes infeasible. Since both kernels are Gaussian, their support

is over the whole system. Both Gaussian kernels are approximated by having a finite

cut-off where the probability is less than 10−4. All the probabilities, once calculated,

were multiplied by an ε term, where ε = 0.01. This was used to reduce the number of

sites updating per time step, in order to reduce the number of correlations occurring

in the updating process. First the probabilities for transitions on the empty sites

were computed, then there is a birth at each site according to those probabilities.

Then the probabilities of sites transitioning to the empty state were computed.

Deaths were then assigned randomly according to these probabilities and the whole

lattice is updated producing the system St+1.

5.6 Results

Simulations were performed on a 256 × 1024 grid with fixed boundary conditions.

The East boundary was fixed with occupied sites and the North,West and South

boundary were fixed with empty sites. The rectangular lattice sized and fixed bound-

ary were implemented in order to increase the strength of the banded pattern in order

to study it using spectral methods. Each simulation was allowed to run until suffi-

cient time where as to reach statistical stationarity. Each time-step is recorded and

the average over the previous 100 time-steps is then taken, this provides a smoother

data sequence to which spectral methods can be performed. A Fourier transform

implemented using the Fast Fourier Transform (FFT) was performed for each i on

the series yi = (xij)j=1,...1024 to produce the Fourier transformed series F(yi). The

Fourier transform is complex-valued representing both sine and cosine components

of the Fourier series decomposition of the data yi. Taking the absolute value of

F(yi) gives the power spectrum, which provides an estimation of the power at vary-

ing wavelengths in the signal. These power spectra can be averaged so a smooth

estimation of the power spectrum for the spatial distribution is found.
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Figure 5.2: The effect of the offset parameter o on the strength and wavelength of
vegetation banding. Top: wavelength (blue dashed line) and power (green dotted
line) of banding for increasing offset parameters. Bottom: spatial snapshots of the
resulting banding for three offset values. Colour represents the proportion of time
spent occupied in 100 time-steps.

It was found that for all simulations where strong banding was visually present

produce a single-peak power spectrum, therefore the wavelength and the power of

the spectrum of the maximal peak were recorded to represent the banding of the

spatial pattern.

For fixed kernel and demographic parameters, the offset parameter o was varied

in the x-direction (Fig. 5.2). For small offset values (o < 1) the power of the largest

peak is low, leading to the wavelength of the largest peak being subject to stochastic

effects. In contrast as the offset parameter increases, both the wavelength and the

power of the spatial pattern increase in an approximately linear fashion. For offsets

greater than 23 the power of the banding dramatically decreases. The larger bands

are therefore unable to be sustained when the offset reaches a size that is on the

same length-scale of the whole system.

r0 represents the ambient birth probability in the environment; that is the proba-

bility of a birth event on an empty site not including births due to the local spreading

term. This term can therefore be interpreted as births due to seeding if the seed-

dispersal process is sufficiently long-range on the scale of the system size. The effect

of ambient reproduction on banding was studied by performing a number of simula-
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tions for various values of r0, keeping other model parameters fixed at constants that

lead to banding when ambient reproduction is not present (K = 1.6, o = 15, α = 1).

r0 strongly affects the power of the banding pattern. In the absence of any ambi-

ent births, the power of the pattern is around 0.1, this increases to around 0.4 for

r0 > 0.05. Even for small values of r0 there is still a significant impact on the spatial

pattern. The number of topological defects in the banding pattern resulting from

bands not being fully aligned is also reduced for increasing r0 values. This leads

to strong uniform bands of vegetation that are static at the centre and have small

boundaries where the probability of remaining occupied is lower than in the case of

lower ambient reproduction, where the probability of persisting varies more contin-

uously through the band (Fig. 5.3). It was found that varying the α parameter had

little or no affect on the resulting strength or length scale of banding.

Figure 5.3: The strength of banding for simulations with varying r0. Increasing r0

leads to strong uniform bands with fewer topological defects. Example snapshots
are given for varying r0 parameters and colours represent the proportion of being
occupied over 100 time-steps and can be interpreted as the survival probability at
each lattice site.
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5.6.1 Geometry

Figure 5.4: Banding in the presence of
a geographic feature that does not al-
low vegetation to grow. Although here
the competition kernel is offset along the
diagonal of the system, the direction of
the vegetation (shown in green) locally is
more strongly affected by the geometry of
the geographic feature (shown in grey).
The other parameters of the system are
K = 1, r0 = 0, µ = 0.1, l1 = 1, l2 = 2.

In the previous section a number of nu-

merical experiments were ran where the

boundary of the domain was fixed with

occupied vegetation sites along the East

boundary. For each simulation the off-

set of the competition kernel was per-

pendicular to the line of constant vege-

tation. However, there can of course be

situations where the offset of the compe-

tition kernel is not perpendicular to the

geometry of the boundary, which can

lead to frustration between the band of

constant vegetation and the direction of

the offset (Fig. 5.4). This can provide

some insight into expected spatial pat-

terns along coastlines, where there is a

strong tendency for bands of vegetation

to align along the coast, but dominant

currents may flow in a different direction.

5.7 Conclusion

A variety of models of spatial vegetative processes have been presented and analysed.

Of specific interest is the interaction between environment and vegetation that leads

to regular spatial patterns such as banding. Whilst investigating these specific

features, we have also tried to keep the resulting equations at the fullest generality

possible. This has included keeping the number of parameters in the model to a

minimum and also proposing a general model of vegetation with interaction from

its environment.

The interaction between environment and vegetation is in particular a spatial

one. As such, the first step in the analysis of mechanisms that generate spatial pat-

terns was to generate a number of reaction-diffusion models that explicitly model

the interaction between vegetation and its environment. Marine vegetation is af-

fected by a number of non-local processes such a currents and wave actions, however

these were ignored in the initial approach. Instead soft sediment was modelled via
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a transport-diffusion process, where both the transport term and diffusion term are

affected by the density of vegetation. The growth of vegetation itself depends on

both the current density of vegetation and the presence of soft sediment that allows

the vegetation to root and provides protection from other environmental forces.

With these considerations and for specific growth terms regular patterns can form

via a symmetry breaking Turing bifurcation. Although the reaction-diffusion ap-

proach has some appeal, it lacks a mechanistic underpinning for seagrass ecology in

particular.

The limitations of the reaction-diffusion approach can be overcome by considering

a form of vegetative growth involving an integro-differential equation, where kernels

mediate both the growth and competition felt by the vegetation species. We have

shown that this equation is the limiting case of a system where both environment

and vegetation are explicitly modelled via integro-differential equations. The result-

ing model overcomes the previous limitations by allowing arbitrary choice over the

spatial extent of the growth and competition terms.

The integro-differential equation provides the necessary broad spatial distribution

as observed, however fails to capture the boundaries between vegetation and bare

sea floor. These are due to small numbers of vegetative units near the boundaries

leading to the continuous assumption breaking down. The integro-differential model

was therefore converted into a discrete-time Markov process. This model still has

the regular pattern formation associated with the integro-differential equation and

also had the stochastic properties of the boundaries between vegetation and empty

states. This model then qualitatively fits the properties of the seagrass-environment

system with plausible underlying mechanisms. We may therefore use this model to

explore the relationship between spatial pattern and persistence (Chapter 6); how

we may validate the model by fitting to spatial pattern data (Chapter 7) and how

disease impacts the dynamics and spatial pattern of vegetation (Chapter 9).
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Chapter 6

Fractal heuristics of return rate

. . . once you know what the question actually is, you’ll know what the

answer means.

(Douglas Adams - The Hitch-hikers Guide to the Galaxy)
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6.1 Introduction

Ecology produces a wealth of spatial patterns, including regular [Rietkerk and

Van de Koppel, 2008] and scale-free [Pascual and Guichard, 2005]. Perhaps surpris-

ingly a wide-range of environmental and underlying processes can give rise to very

similar spatial patterns [Valentin et al., 1999]. Broadly speaking, a spatio-temporal

system (such as a spatial vegetative system) will typically have many degrees of free-

dom and a model to predict individual locations would quickly become intractable

for all, but trivial system sizes. This introduces the idea of using spatial observables

or summary statistics to encapsulate information about the underlying dynamics of

an ecological growth process [Dieckmann and Law, 2000]. The idea is that for an

initial spatial pattern, a large number of the degrees of freedom will decay and the

system will evolve on a sub-manifold of slow-moving parameters. This manifold is

referred to as the Relaxation Manifold as the system can be described by a subset

of spatial statistics. We can then apply the assumption that if the transient dy-

namics are quick, the dynamics depend entirely upon this subset of statistics. This

assumption is known as a relaxation projection. An example of this is the mean field

dynamics in a spatial birth-death process. The mean field assumes that the system

depends entirely the mean density at a particular time ρ(t) and ignores all spatial

correlations. The relaxation manifold for this system is a one-dimensional interval

on the positive real line. Nearest neighbour pair correlations can also be considered

and hence the relaxation manifold would be four-dimensional, made up of the den-

sity and the three pair-correlations. Higher order correlations (triplets, quadruplets

etc.) may also be considered should the dynamics still not be sufficiently explained.

However, as more correlations are considered, less information on the global dy-

namics is generally gained for each new observable. There then exists an optimum

number of statistics where the dynamics of the spatial system are almost entirely

described by the list of statistics. This viewpoint shall be more thoroughly explored

in Chapter 7. Another class of spatial statistics that can be considered are scaling

statistics, such as the patch-size distribution or box-occupancy for increasing box

size. Again, initially these distributions may have many degrees of freedom, how-

ever as the system evolves they relax onto a low-dimensional manifold where their

distribution can be described by a few or even one exponent. The purpose here shall

be to ascertain how these exponents relate back to the model parameters that gave

rise to them and ultimately to the dynamical persistence of the system.

The theory of fractals has had a number of applications in the past thirty years in

Ecology. The theory originally proposed by Mandelbrot was used to explain certain
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seemingly ubiquitous patterns in nature Mandelbrot [1983]. Since, there has been

tantalising speculation over using fractal theory to elucidate certain ecologically

meaningful parameters from spatial patterns. The Hurst exponent (H) has been

hypothesised as a first order approximation to succession in a vegetative community

Hastings et al. [1982]. These approaches were summarised by Sugihara and May

[1990]. The link between static and dynamic scaling has also been explored for an

invading percolation cluster [Cannas et al., 2004, 2006].

Understanding the processes underlying the production of fractal structure has

been another large area of research. Certain mechanisms have been identified to

produce fractals including: self-organised criticality, where a system evolves into

a critical state without fine-tuning of the parameters [Bak et al., 1988] ; robust

criticality, where critical scaling is observed over a range of parameters in phase

space [Pascual and Guichard, 2005] ; multi-scaled randomness [Halley and Kunin,

1999] ; Iterated maps/ successive branching rules [Turcotte, 1997] ; diffusion-limited

aggregation [Witten Jr and Sander, 1981] ; power-law dispersal of species such as

Lévy Flights [Harnos et al., 2000] ; birth-death processes, where birth is random,

but death is spatially aggregated or vice versa [Shapir et al., 2000] ; and multiplica-

tive with additive noise, this is where a combination of mulitplicative and additive

noise in the system produces intermittency and anomalous scaling in the time-series

[Sornette, 1998], as well as in the spatial field [Benzi et al., 1993]. It is important

to note that a spatial pattern without knowledge of the underlying system does not

give a clear indication of what process caused it. Therefore a strong mechanistic

explanation is essential.

This chapter begins with an overview of fractal growth in systems that are out of

equilibrium with particular reference to how scaling in spatial statistics relates to the

dynamic scaling properties of the system. The models considered have traditionally

been applied to physical problems such as crystal growth and polymer formation,

but it is emphasised throughout how these models can be applied to the context of

vegetation growth. The next section describes several possible measures for dynamic

persistence and measuring of spatial scaling for a single snapshot of vegetation based

upon previous theoretical work. These measures are then applied to various plausible

models of vegetation growth in various settings where the spatial environment is

homogeneous, has a static noise term or is composed of a gradient and noise term.

As a way of testing these measures, the simulation studies are compared to the Isles

of Scilly seagrass dataset discussed in chapter 3. The applicability of using these
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static measures to gain insight into the underlying persistence of the vegetation

system are then discussed.

6.2 Theoretical background

Perhaps the simplest model of spatial plant growth is percolation. There are two

types of Percolation: bond percolation and site percolation- the latter of the two

shall be concentrated on here due to its relevance to vegetation spatial pattern.

Percolation is defined on a discrete lattice of infinite size, where each site on the

lattice can be occupied with probability p and empty with probability 1−p. For the

purposes here an occupied site represents a location of a vegetative species. Each site

has an independent probability of being occupied conditional on its neighbouring

sites. This is obviously a simplification of a vegetative process, but it can still provide

insights into more complex situations (epidemics, forest fires etc. [Bak et al., 1990;

Sander et al., 2003]).

For low p the lattice is sparsely occupied and clusters, defined as sites connected

by neighbours, are generally small and finite. At a certain critical point pc, there is

a phase transition, where a cluster of infinite size has a probability of forming. Pinf

is defined to be the probability of a randomly chosen site being connected to the

cluster of infinite size known as the infinite spanning cluster. For the probability of

occupancy p less than the critical probability pc, the probability of a site being in the

infinite spanning cluster is zero. however for p > pc, Pinf is non-zero and increases to

one when p = 1. Hence Pinf defines an order parameter for the percolation system.

The percolation cluster has a number of interesting scaling properties, the most

salient of which is the fractal property. A percolation cluster at criticality takes on

the form of a fractal cluster, where the cluster is invariant under a certain scaling.

This can be defined by considering the number of occupied sites M in a box of length

l. For certain length scales and range of p there is the following scaling relation

M(l) ∼ ldf , (6.1)

where df is known as the mass fractal dimension of the percolation cluster. Although

there are many other dimension characteristics of the percolation cluster that exist.

df defines a static exponent of the percolation cluster, however dynamic exponents

may also be defined.
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The simplest dynamic model in a disordered system is the random diffusion of

particles. A random walk can be defined on a percolation cluster, where the walker

hops randomly around nearest neighbour sites only updating and jumping to a new

site if it randomly selects a site that is occupied. If several random walkers are

started from the same position and evolve over time, then the statistical properties

of the random walker can be measured. A generalisation of Fick’s law of diffusion

for the expected mean squared displacement r2(t) can be found

〈r2(t)〉 ∼ t2/dw , (6.2)

where dw is the generalised diffusion exponent and describes the scaling at which

a growth front of diffusing particles would grow. Remarkably, there is a connec-

tion between this dimension and the previously defined Mass fractal dimension df

according to the Alexander-Orbach conjecture (Alexander and Orbach [1982])

dw =
3

2
df . (6.3)

Applied to the context of a growing vegetative system this implies that a higher mass

fractal dimension df leads to a slower diffusion rate. To conclude, for the percolation

model there is a strong link between static scaling properties of the cluster and the

underlying dynamics that lead to such a pattern. In fact, it has more recently been

shown that the Alexander-Orbach conjecture only holds for certain cases [Kozma

and Nachmias, 2009] and in general dw is bounded by df as opposed to attaining

equality, [Barlow, 2004]. Nevertheless a correlation between the static fractal scaling

properties and the dynamic scaling does exist.

6.2.1 Fractal growth and boundaries

Fractal growth phenomena is a very general and well-studied concept in the realms

of Physics, Chemistry and Biology [Barabási, 1995]. Fractal growth deals with out

of equilibrium systems where there is an irreversible growth process leading to a

rough front that follows some scaling law. An example of this process is given

by the Eden model, which is defined on a binary lattice with an initial random

seed. From the initial seed there is a constant probability of growth p in any

of the neighbouring sites that are occupied. At each time-step a site neighbour-

ing the cluster is chosen and becomes part of the cluster. This model is out of

equilibrium in the sense that the number of particles is always increasing at each

time-step. Note also that there is a constant probability of a site becoming occu-
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pied along the whole edge of the growing cluster, this means that holes and fjords

tend to be filled in and hence the dimension of the whole cluster is equal to the

embedding dimension of the space, which would be two in the case of a 2D lattice.

i

hi

Figure 6.1: Eden model for a particular
configuration at time t. The occupied sites
are in blue (grey) and the potential growth
sites at time t+ 1 are highlighted with an
x. The ith column is highlighted with its
current height hi. For this configuration
the height at i would be 4.

The natural scaling in the system to

study then is the boundary. Consider

the model when the initial seed is a strip

running along the horizontal length of

the lattice. For each point along the

horizontal line a height can be defined as

the maximum occupied site in the ver-

tical direction. An average height can

then be defined as

h =
1

N

N∑
i=1

hi, (6.4)

where N is the length of the system size

being considered and hi is the height

for each strip of the lattice i (Fig. 6.1).

Note the particular scaling of interest

is the boundary as opposed to the bulk

or mass scaling in percolation in sec-

tion 6.2. A relationship that connects the dynamic scaling to the static scaling

can be found by firstly defining the width of the growing boundary

σ(L, t) =

[
1

L

L∑
i=1

(h̄− hi)2

]1/2

, (6.5)

where the system is measured over the length L. The Family-Viscek scaling law

[Family and Vicsek, 1985] gives the following form of the boundary width

σ(L, t) =

Lα(t/Lz)β if t < Lz

Lα if t > Lz.

The parameter α is the roughness exponent of the system and represents the static

scaling of the boundary. This can be related to the boundary dimension by α =

2 − db. β is the early-time growth rate of the boundary and z is the dynamic

exponent, which sets the time at which the scaling of the width saturates. These
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exponents are not unrelated and for the Eden process has a simple relationship,

which defines its universality class [Kardar et al., 1986].

z = α/β, (6.6a)

α+ z = 2, (6.6b)

α = 1/2. (6.6c)

The system has a single exponent (α = 1/2) that defines the scaling of the dynamic

and growth exponent. This phenomena is known as universality, where the large-

scale properties of the system are not dependent on the underlying neighbourhood

interactions [Feigenbaum, 1983]. From the context of a growing vegetation front, the

Eden model captures a homogeneous environment with a single growth rate and zero

death rate. Although this may be an oversimplification, it does give some interesting

results notably an exponent for a null model for comparing against growth in a

heterogeneous environment.

Analytical treatment of the Eden model and other similar probabilistic cellular

automata models came in the form of deriving a Langevin equation to describe the

evolution of the surface growth. The Langevin approach is to model the surface

growth as a continuous-time variable u, subject to a force term F and a stochastic

term η that describes the microscopic noise. The first such approach, known as

the Edwards-Wilkinson (EW) equation [Edwards and Wilkinson, 1982] modelled

the growth of a surface u(x, t) where stochastic growth is uncorrelated in space and

time, but the surface is able to smooth out roughness. The resulting EW Langevin

equation is
∂u

∂t
= ∇2u+ η(x, t), (6.7)

where u represents a growing front under the action of diffusion (∇2) and a white

noise term η with the correlation structure E[η(x′, t′)η(x, t)] = δ(x−x′)δ(t−t′). The

model was extended by Kardar et al. [1986] to include a surface relaxation term

∂u

∂t
= ν∇2u+ (λ/2)(∇u)2 + η(x, t). (6.8)

This is often referred to as the Kardar-Parisi-Zhang equation (KPZ equation). The

first term represents surface relaxation or diffusion as in Eq. 6.7. The second term

is growth normal to the surface and the third term is a white noise term. The

inclusion of the white noise term is the same as in Eq. 6.7. For a growing vegetative

species, the second term represents shooting into unoccupied substrate and the first
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term represents clonal spreading. There has been success in modelling the growth of

bacterial colonies with this class of equation [Vicsek et al., 1990]. The KPZ equation

has the same scaling laws as the ones for the Eden model

z = α/β, (6.9a)

α+ α/β = 2, (6.9b)

α = 1/2. (6.9c)

In fact these scaling laws hold for a wide variety of models [Barabási, 1995], hence

any that have the same scaling exponents are referred to as belonging to the KPZ

universality class. The KPZ also assumes a homogeneous environment with each

individual growth unit being indistinguishable from one another. Hence the only

source of variation is from the stochasticity is due to random effects in space and

time.

At a basic level, models of vegetative growth can broadly be described as diffusion

processes. These can be realised as a number of particles performing a random walk

in two dimensional space. Each single random walker is defined as a process X(t)

whereX is a location of vegetative species at time t. A walker waits for a certain time

τ according to a distribution P (τ) and then jumps with a magnitude of k according

to a distribution Q(k). A number of these non-interacting random walkers can be

considered together and their trail produces a diffusion growth front. This model of

vegetative growth is rather skeletal however, as certain processes in growth can be

strongly directional such as in the presence of a resource gradient. The production

of ramets as well produces a directed jump, where the parent plant is stationary

and the daughter plant appears at the end of the ramet. Nevertheless, this model is

instructive in providing insight between dynamic and static scaling for a situation

that is more complex than a simple random walk. If we define a density of particles

of a species at time t to be X(t), then the standard deviation of these particles obeys

a generalised Fick’s law (Metzler and Klafter [2004])

〈X2(t)〉 = Dαt
α. (6.10)

As Fick’s law is a consequence of the Central Limit Theorem, a break down of this

would lead to deviating diffusion power laws. If we were to unpick the parts of

the criteria for the central limit theorem to hold then we find there are two main

plausible explanations as to why a natural system might violate it. These are 1.

broad distributions in the waiting time or jump size and 2. the existence of long-
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range correlations. In the context of a vegetative growth process, a long waiting

time relates to a growth process that might be constrained by environmental factors

and life history of the species. A long jump size can occur with a process such

as current-distributed seeding, where new colonies can form long distances from

their original source. Finally, the existence of long-range correlations could relate

to a number of possible factors, such a correlation in the underlying environment

attributing to growth rates of specific locations as well as external factors, such as

weather, leading to a correlated disturbance across a large spatial range.

Anomalous diffusion has been widely studied in recent years [Klafler and Sokolov,

2005]. This is where the mean squared displacement of a growth front is non-linear in

time. For example, a heterogeneous environment leads to a form of diffusion where

the increase in variance is slower than expected in a homogeneous environment. The

growth process of the interface can then be described by the following Langevin

equation [Metzler and Klafter, 2000]

∂

∂t
h(x, t) =

∂ν

∂‖x‖ν
h(x, t) + η(x, t). (6.11)

Here h(x, t) is the height of the growth front compared to some reference point (such

as the centre of a patch), x is the spatial reference of the growth interface. The

diffusion part of the process is given by the Riesz fractional derivative [Agrawal,

2007]. The parameter ν essentially determines the correlations in the diffusion

process. When ν is a non-integer value the process becomes non-markovian i.e.

the system has memory of its past states. η is a white noise process, which can be

uncorrelated or correlated, and drives the growth of the boundary.

Anomalous diffusion processes as described in the previous paragraph can be

formulated as fractional diffusion processes. This is where the standard diffusion

operator ∇2 is replaced by a more generalised version of the differential operator.

A fractal growth process with general waiting time distribution characterised by a

power law tail with exponent γ and jump size distribution with a power law tail of

exponent ν can be formulated as a Langevin equation of the following type

∂γh

∂tγ
= k

∂νh

∂|x|ν
+ η(x, t), (6.12)

where k is a diffusion constant and η is a white noise term with 0 mean and

covariance of the form 〈η(x, t)η(x′, t′)〉 = 2Dδ(x−x′)δ(t′−t). Where D is a constant
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and δ()̇ is a delta function. The details of these pseudo-differential operators shall

not be discussed here (See Leith [2003] for a review). The important property to note

is that the differential operators are non-local and hence take into account longer

range correlations than in the standard diffusion process. This equation is divided

into two cases to review its scaling properties; the first is when γ = 1. This recovers

the usual time derivative of a diffusion equation and hence the anomalous aspect

come from the spatial operator characterised by ν, where 0 < ν ≤ 2. The second

case is when ν = 2; this is where there is a standard spatial diffusion operator and

the anomalous behaviour is purely from the time derivative. Each case produces

characteristically different behaviour, the first is known as super-diffusion, where

there exists longer range jumps than normal diffusion and hence the diffusion rate is

greater. The second case is known as sub-diffusion where there exists longer waiting

time between jumps than standard diffusion leading to a slower diffusion rate. The

results can be summarised by the roughness exponent α

0 < α < 1/2 sub-diffusion, (6.13a)

α = 1/2 normal diffusion, (6.13b)

1/2 < α < 1 super-diffusion. (6.13c)

(6.13d)

Sub-diffusion leads to a rougher boundary than expected and super-diffusion leads

to a smoother boundary than expected from standard diffusion.

Scaling analysis may be performed on Eq. 6.12 in order to determine the relation-

ship between the dynamic and static parameters. This is where an ansatz solution

of the form h(x, t) ∼ tβf(x/t1/z) for some function f is assumed. The exponents

α,β and z completely determine the fractal growth process of the boundary. β is the

growth exponent as h(t) ∼ tβ for early time. z is the dynamic scaling exponent, and

controls the time to saturation of the growth interface. Finally, α is the roughness

exponent and characterises how the boundary fluctuates in the spatial component.

Scale analysis can be carried out on Eq. 6.11. This leads to the following exponents

α =
ν − 1

2
, β =

ν − 1

2ν
, z = ν. (6.14)

ν completely determines all the scaling parameters. Hence once one scale parameter

is found the rest are necessarily determined. α is related to the fractal box-counting
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dimension of the boundary db via the simple relationship

α = 2− db. (6.15)

A similar scaling analysis can be performed on Eq. 6.12 with ν = 2 to give the

following exponents [Leith, 2003]

α =
3

2
− 1

γ
, β =

3γ

4
− 1

2
, z =

2

γ
. (6.16)

Anomalous diffusion can lead to a one- or many-parameter class that defines the

relationships between the static and dynamic exponents of a growing front. The

continuous parameters ν and γ can be used to explain the apparent variation of a

growth front for different environmental conditions. Note that this is in contrast to

the EW and KPZ equation (ν = 2, γ = 1) where there is no dependency on a free

parameter and hence the roughness of the boundary is constant in the limit for any

realisation of the system. The key idea here is that if the underlying mechanism

is the same then relationships such a those in Eq. (6.16) and Eq. (6.14) should be

resolvable with enough data.

6.2.2 Relative patchiness

Vegetation dynamics due to demographic and environmental factors produce spatial

patterns comprised of patches of varying sizes. It has often been observed that these

patterns can produce power laws in both patch size distributions, patch-perimeter

distributions and the patch radius of gyration distributions. Power law patch size

distributions have been observed in Mussel beds [Guichard et al., 2003], power law

gap size distributions in wind-disturbed forests [Kizaki and Katori, 1999] and power

law patch size of fire-disturbed forests [Malamud et al., 1998]. The Korcak exponent

is defined by considering the patch-size distribution. If this is of the form of a power

law i.e.

N(A ≥ a) = ka−K , (6.17)

K is defined to be the Korcak exponent, where 0 ≤ K ≤ 1. The Korcak relationship

Mandelbrot [1983] gives the following relationship to the Hausdoff dimension

K =
DH

DE
, (6.18)

where DE is the Euclidean dimension of the embedding space, hence would be 2 in

this context.
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Recent studies have shown that in general the Korcak relationship does not hold

[Imre et al., 2012]. Although studies indicated previously that there is a class of self-

iterating maps for which the relationship does exist [Hastings and Sugihara, 1993],

and this claim has been made in several other articles [Seuront, 2009]. This leads

to the conclusion that although the Korcak exponent does relate to the Hausdorff

dimensions in certain cases, there is no universal relationship.

6.3 Models

6.3.1 Introduction

Two plausible models of vegetation growth are introduced in this section in order to

ascertain how more realistic vegetation growth than simply percolation and other

models discussed in the background impacts the relationship between persistence

characteristics and scaling heuristics such a the boundary dimension and the patch-

size distribution. The first model is equivalent to the PCA model discussed in

Chapter 5, where the probability of a birth at an unoccupied site is dependent on

a growth kernel and a competition kernel. For brevity, an offset to the competition

kernel is not considered here.

The second model includes a third state where the vegetation is in a degraded or

recovering state. The first state is an active phase where the plant is established and

able to seed or shoot in order to reproduce. The second is a rested or dead phase,

where the plant has lost the ability to reproduce, but still occupies the site preventing

invasion from surrounding vegetation. An example of this in coral, where a coral

can undergo an acute disturbance known as bleaching. When in the bleached state

a coral can recover, but suffers from higher mortality during this process [Brown,

1997].

6.3.2 Two-state model

The model is derived in chapter 5 and based upon similar assumptions to the hydro-

dynamic model of vegetative growth given in Lefever and Lejeune [1997], however

a summary of it shall also be given here. The model is defined on a square N ×N
lattice denoted Ω, where each site can either be occupied (1 for short-hand) or unoc-

cupied (0). Dirichlet boundary conditions are implemented such that the boundary

is held constant at 0 for any site outside of Ω. The model is updated synchronously,

hence at each time step there is a certain probability of each site flipping states.
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Death is considered to be constant i.e. for each site that is occupied there is a con-

stant probability of death µ. For a state to become occupied there are two factors

that are included in the model: local reproduction, which is mediated by a Gaussian

kernel with 0 mean and variance σB; and long-range competition, which is medi-

ated by another Gaussian kernel with mean 0 and variance σC . For a site that is

unoccupied; the probability of transitioning to an occupied state at the next time

step is

(kB ∗ Ω)(1− k(kC ∗ Ω)), (6.19)

where the two-dimensional discrete convolution term f ∗ g is defined as

(f ∗ g)[x, y] =
N−1∑
nx=0

N−1∑
ny=0

f [nx, ny]× g[x− nx, y − ny]. (6.20)

The dynamics can then be summarised as follows

P (0→ 1) = (kB ∗ Ω)(1− k(kC ∗ Ω)), (6.21a)

P (1→ 0) = µ. (6.21b)

6.3.3 Three-state model

Many growth processes involving sessile units such as mussels, coral and semi-arid

ecosystems [Guichard et al., 2003; Hoegh-Guldberg, 1999; Kéfi et al., 2007] exhibit

three-stages of colonisation: empty, occupied and resting/disturbed. An empty

site is where no vegetation exists, but is susceptible to becoming colonised. The

occupied stage is where vegetation has shoots and taken root and represents the

entire active stages of the vegetation. The resting state is where vegetation has

died back, but new shooting or growth cannot take place due to conditions left by

previously occupied vegetation. In the context of seagrass clonal growth the three

states may therefore be interpreted as

1. Unoccupied soft substrate state, where seagrass has the ability to invade (S).

2. Seagrass has invaded the soft substrate with rhizomes and shooting (I).

3. Shooting has died back leaving dead or dormant rhizomes layer that is not

able to invade by new seagrass shooting (R).

The three states correspond similarly to the three states in the Susceptible-Infected-

Recovered epidemic modelling [Anderson and May, 1991]. Here the modelling is
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conducted on a lattice L = N ×N , with a state space Ω = {S, I,R}2N and a set of

probabilities describing the transitions of the system as follows

P (S(x)→ I(x)) = λ(x)×
∑
y∈n(x)

I(y), (6.22a)

P (I(x)→ R(x)) = µ1, (6.22b)

P (R(x)→ S(x)) = µ2, (6.22c)

where n(x) are the neighbours of x using the Von Neumann neighbourhood struc-

ture. The fecundity rate λ(x) is a static environment variable representing the vari-

ability of the environment. This is taken as the inverse of a waiting time distribution

that is heavy-tailed. i.e.

λ(x) =
1

w(x)
where w(x) ∼ Pareto(θ, w0 = 1). (6.23)

The heavy-tailedness of the distribution is a salient detail, we have chosen the pareto

distribution here for convenience. Some properties of the distribution are

〈w〉 =
θ

θ − 1
, (6.24a)

Var(w) =
θ

(θ − 1)2(θ − 2)
. (6.24b)

It is simple to show that for θ < 1 the mean does not exist and for θ < 2 the second

moment and hence the variance does not exist. To calculate the moment properties

of λ then, proceed using the substiution w = 〈w〉 − z. Using a geometric expansion

1

w
=

1

〈w〉 − z
,

=
1

〈w〉
1

1− z/〈w〉
,

=
1

〈w〉

(
1 +

z

〈w〉
+

(
z

〈w〉

)2

+O

((
z

〈w〉

)3
))

.

Hence the mean of the inverse can be approximated by

〈λ〉 = 〈w−1〉 =
1

〈w〉
+O(Var(w)/〈w〉3), (6.25)

123



hence 〈λ〉 ≥ 1/〈w〉, which may be obtained from Jensen’s inequality. Similarly the

variance is approximated by

Var(λ) ≈ Var(w)/〈w〉4 =
(θ − 1)2

(θ − 2)θ3
. (6.26)

An environmental gradient was also considered for the model described in Eq. 6.22.

This is achieved by assuming the fecundity rate λ(x) has the form

λ(x) = γ(1− x) + ξ
γ

2
ζ(x, y), (6.27)

where γ is the gradient of the environment, ξ controls the strength of the noise term

and ζ(x, y) is an i.i.d random variable drawn from the standard normal distribution.

The γ/2 factor is used as it is the mean of λ in the presence of no noise. The master

equation representing the probability of observing a state Ω at time t.

dP (Ω, t)

dt
=
∑
x′∈Ω

[r(S(x′)→ I(x′))P (Ω(S(x′)), t) + r(I(x′)→ R(x′))P (Ω(I(x′), t)

+ r(R(x′)→ S(x′))P (Ω(R(x′)), t)]−

−
∑
x′∈Ω

[r(S(x)→ I(x))P (Ω(S(x)), t) + r(I(x)→ R(x))P (Ω(I(x), t)

+ r(R(x)→ S(x))P (Ω(R(x)), t)].

Rate equation

From the three rates the expected change in density of occupied sites is for a given

density ρ may be calculated. This is done by first considering what the expected

rate of change is for an individual site x.

∂

∂t
E[I(x)] = (−1)× r(I → R) + (+1)× r(S → I)

= −µ2 + λ(x)
∑
y∈n(x)

I(y).

The expected rate of change is locally correlated by the number of neighbours that

are infected. In order to proceed analytically the mean field assumption is applied.

First note that since all λ(x) are independent, the expectations with the sum of the

infected neighbourhoods can be separated and the expectation of the sum is simply
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four times the population density. Adding this together produces

∂

∂t
E[ρI ] =

1

N2

∑
x∈Ω

∂

∂t
E[I(x)]

=
N2∑
x=0

−µ2 + E[λ(x)](4ρ)

= −ρµ2 + 4λρS .

If the rate of going from recovered to susceptible is high i.e. µ2 >> µ1 then the

density of the recovereds can be ignored and ρS = (1− ρI) and hence,

∂

∂t
E[ρI ] = ρI(λ− (µ2 + λ)ρI). (6.28)

This forms a binomial function in terms of the density. By setting the rate of change

to zero, the positive equilibrium density ρ∗I is then calculated as

ρ∗I =
λ

µ2 + λ
. (6.29)

The gradient at this point then gives the return rate

∂

∂t
E[ρ∗I ] = λ− 2(µ2 + λ)ρ∗I

= λ− 2λ

= −λ.

Under the mean field assumption the expectation of the environmentally-determined

growth rate λ completely determines the return rate and there is no dependency on

the variance or higher-order moments of the environmental variable. This approxi-

mation shall be compared to simulation in order to determine its accuracy.

6.4 Method

6.4.1 Calculation of fractal dimensions

Boundary dimension

The boundary dimension of a growing cluster was calculated as follows. Firstly

a flood-fill algorithm is performed from the base of the growing cluster in order to

determine the connected lattice sites (this ignores small islands that may be growing
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away from the main growing cluster). Flood-fill was used again in order to fill in

the gaps of the main cluster. This leaves a distinct edge between the cluster and

the unoccupied sites. From this a boundary can be traced out as the lattice sites

that border both an occupied and unoccupied site.

Box-counting was then performed on this boundary object. A series of convolu-

tions with unit matrices of varying size l× l were run over the lattice. All non-zero

entries of the convolution were summed together in order to calculate N(l) the num-

ber of occupied boxes of length l. Linear regression can then be performed on the

graph (log(1/l), logN(l)). The gradient of this linear regression is then used as the

estimator for the boundary dimension db.

Korcak dimension

For a given lattice configuration Ω in one of two states 0 or 1 for each site the Korcak

dimension is calculated as follows. Firstly a flood-fill algorithm is performed over

the lattice to determine the size of each of the clusters. This produces the sample

x = {x1 . . . xn}. The strategy is to fit a Pareto distribution of the form

P (X = x) =

{
αxαm
xα+1 if x ≥ xm
0 if x < xm

(6.30)

α represents the scaling exponent and is the Korcak exponent in this context. Hence

the distribution is fitted to the data x such that the estimated value α̂ is found. A

maximum likelihood estimator approach was implemented [Clauset et al., 2009] by

first estimating x̂m to be min{x1, . . . , xN}. The maximum likelihood can then be

calculated by setting the partial derivative of the likelihood with respect to α to

zero. This then produces the estimate for α as

α̂ =
N∑N

i=1(logxi − logx̂m)
. (6.31)

The Korcak dimension was then estimated to be twice this. i.e.

K = 2α̂. (6.32)
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6.4.2 Calculation of the return rate

Introduction

A concept of a return rate on a lattice system can be defined in a number of ways.

Two methods were explored for measuring the rate by measuring the time to return

to equilibrium following a perturbation or by measuring the fluctuations around

equilibrium. A naive method was developed based on the time to return to an equi-

librium population number following a disturbance. This method was extended by

considering the stochastic fluctuations of density around the population equilibrium.

Return rate following perturbation

A lattice simulation is initialised with a random distribution of a certain population

density ρ0. The system then evolves until equilibrium is reached. The equilibrium

point is measured as the first point where the averaged population derivative be-

comes negative. The system is allowed to evolve for another 1000 time-steps. It is

then hit with a disturbance where 20% of the population is randomly killed. The

system will then evolve back to equilibrium again and the time taken for it to reach

within 1% of the equilibrium population is recorded as τe. the return rate following

a disturbance rrd is then defined as

rrd =
1

τe
. (6.33)

There are a number of issues with this method. If the population is low then a

disturbance of 20% will affect a small number of sites. This also means that the

return time will be much shorter than a system with an equilibrium at a much higher

population count. This can be a problem for any definition of return rate. For a

population with a small but stable equilibrium, the population density is bounded

from below and hence its fluctuations around equilibrium will encompass more of

the viable population space than a system at a higher equilibrium.

Return rate at equilibrium

The return rate for a lattice system at equilibrium is defined to be the expected

change in density around the equilibrium density. Suppose there is a fixed spatial

pattern at time t, denoted Ωt. A single realisation of the system one step ahead is

denoted as the configuration Ω′t+1. The dash here is used to denote the fact that

this is only one of multiple possible configurations that would result from the the

dynamics being run on the same configuration Ωt. A simple method of measuring

127



0 1000 2000
0

0.2

0.4

0.6

0.8

1

time

de
ns

ity

 

 

suscepticle
recovered
infected

(a) Population time series for susceptible,
infected and recovered

0.755 0.765

−4

−2

0

2

4

x 10
−3

ρ

Δ
ρ

T
im

e

500

1000

1500

2000

2500

3000

3500

(b) Estimated log expected change in
population against population density of
infected sites

Figure 6.2: Example output simulation of three-state lattice model with σ = 1, µ1 =
0.1, µ2 = 0.1 over a lattice of size N = 100. The system reaches statistical equilib-
rium shortly after 1000 time-steps. However as can be seen in Fig. 6.2b there is still
large variation in the expected change in population around the equilibrium level.
The return rate at equilibrium is estimated to be rr = 0.006.

the change in density would be to calculate the difference in density between two

consecutive time-steps ∆ρt+1 = ρt+1 − ρt. The stochastic nature of the system,

however, implies that ∆ρt+1 is itself a random variable of unknown variance. For

time-series data, this is the best estimator we can use to determine the return rate,

as there is only one realisation of the process (Fig. 6.2). For simulation data there

are methods that can reduce the variance of this estimate. One method would be

to simulate multiple Ω′t+1 from a fixed configuration Ωt in order to determine the

expected change in density E[∆ρt+1], however this would be computationally costly

as the configuration Ω′t+1 would have to be drawn many times to achieve a good

quality estimate.

E[∆ρ|Ωt] can be determined directly from the simulation for a given configuration

Ωt. The probability of a birth event at lattice site (i, j) is Pij(EB|{Ωt}) and a death

event is Pij(ED|{Ωt}), the expected change in density can be calculated exactly as

E[∆ρ|Ωt] =
n−1∑
i=0

n−1∑
j=0

[
Pij(EB|{Ωt})− Pij(ED|{Ωt})

]
. (6.34)
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For a fixed density ρ there are a number of corresponding configurations Ω with this

density. In particular for a two-state system on an m by n lattice, the number of

states would be given by (
mn

mnρ

)
. (6.35)

In general it would be computationally intractable to calculate the appropriate event

probabilities for every configuration of a given ρ. Instead it is assumed that around

the equilibrium point ρ∗, the function E[∆ρ|ρ] is assumed to be approximately linear.

A simulation given an initial configuration Ω0 is then run until it reaches statistical

equilibrium. Once it has, the datum (ρ(Ωt),E[∆ρ|Ωt]) is recorded for a given number

of generations N . Linear regression is then performed on the data set and the

gradient of regression is taken to be the return rate.

Example of return rate calculation on two-state non-spatial model

In order to determine the accuracy of the return rate calculation discussed in sec-

tion (6.4.2) the method is performed on a non-spatial birth-death model where the

return rate can be calculated exactly and compared with the return rate calculated

from the simulation.

A population of N sites is taken. A site has a probability of a birth event occurring

b and a probability of a death event d. A birth event can only occur at a site if it

is unoccupied and a death event can only occur if the site is occupied. Hence the

model is interpreted as N Bernoulli processes running synchronously. The density ρ

is defined to be the proportion of sites occupied i.e. Nρ is the number of occupied

sites. Hence the probability of n births is

P (B = n) =

(
N(1− ρ)

n

)
bn(1− b)N(1−ρ)−n, (6.36)

and the probability of m deaths is

P (D = m) =

(
Nρ

m

)
dm(1− d)Nρ−m. (6.37)
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The expected number of births is then derived as E[B] = N(1−ρ)b and the expected

number of deaths is E[D] = Nρd. The expected change in density is therefore

E[∆ρ] = E[B −D],

= E[B]− E[D],

= b(1− ρ)− dρ. (6.38)

This function shows that the expected rate of change in linearly dependent on density

for this model. Setting the expected rate of change to zero determines the expected

density at equilibrium to be

ρ∗ =
b

b+ d
. (6.39)

The expected change in density can be differentiated with respect to the density in

order to determine the return rate

∂

∂ρ
E[∆ρ] = −(b+ d). (6.40)

The expected change in density can also be calculated at ρ = 0, here the change

in density is always positive and is equal to the birth probability b, since at this

density the dynamics reduces to a pure birth process. The return rate is dependent

purely on the magnitude of both birth and death at equilibrium. Hence a system can

have the same equilibrium value but two different return rate values. For example

if (b1, d1) = (0.2, 0.1) and (b2, d2) = (1, 0.5) then ρ∗1 = ρ∗2 = 0.3. However, r1 = −0.3

and r2 = −1.5.

A birth-death process was simulated in order to determine the accuracy of the

calculated return rate. This was done by initialising the simulation with a random

configuration of occupied sites. the model dynamics were then run forward until the

equilibrium density had been established and the density was fluctuating around the

equilibrium. The expected rate of change in the density as calculated from Eq. 6.38

along with the density was recorded for 2000 time-steps. The theoretical expected

change in density was then compared to the change in density as calculated from the

formula ∆ρt+1 = ρt+1 − ρt. These two estimates of ∆ρ were then used to calculate

the return rate via linear regression. There was found to be a close agreement

between the two calculated return rates for this example (Fig. 6.3)
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Figure 6.3: The change in density ∆ρ
is plotted against the density ρ for 2000
time-points after equilibrium is estab-
lished. The theoretical relationship be-
tween the expected ∆ρ is plotted in green
and the calculated expected ∆ρ (in red)
is calculated using linear regression on
the data points. There is a close agree-
ment between the calculated and theoret-
ical values, indeed the calculated return
rate for this example was −1.0225, close to
the theoretical value of −1. (Here param-
eters are b = 0.8,d = 0.2, hence ρ∗ = 0.8).

The next step would be to look at

a three state non-spatial model with

density-dependence. This would be sim-

ilar to the final model, with the main

difference being that the rate of infec-

tion is not spatial and as such simply de-

pends upon the global density of infect-

eds. The infection kernel clearly intro-

duces local correlations that would need

to be corrected for should a full analyt-

ical treatment of the model take place.

For now we shall ignore this dilemma

and return to calculating the general dy-

namics of the non-spatial model in simi-

lar fashion as was done at the beginning

of this chapter.

Example of return rate calculation

on three-state non-spatial model

Similarly to section (6.4.2), the re-

turn rate for a three-state birth-death-

recovery model with no spatial interaction was calculated analytically. This is equiv-

alent to a mean field of the SIR model introduced in section (6.3.3).

A population of N sites is considered. Each site can be in one of three states

{S, I,R}. For a site that is in the susceptible S state, there is a probability of a

birth event b at the next time-step. Equivalently, for an occupied site there is a

probability of a death event d. For the dead state R, there is a probability of a

recovery event r. there are then N Bernoulli processes at each time-step each with

a probability that is dependent upon the current state of the individual site. The

density is now defined to be the density of the the occupied sites i.e. ρI , similarly

the density for dead sites is ρR and empty sites as ρS . The number of occupied,dead

and empty are are NρI , NρR, NρS respectively. In the next time step the birth,
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death and recovery events are all independent and thus can be written as

P (B = k) =

(
NρS
k

)
bk(1− b)NρS−k, (6.41a)

P (D = l) =

(
NρI
l

)
bl(1− b)NρI−l, (6.41b)

P (R = m) =

(
NρR
m

)
bm(1− b)NρR−m. (6.41c)

There are three occupation states and hence there are three expected changes in

density that can be calculated

E[∆ρI ] = E[B]− E[D] = bρS − dρI ,

E[∆ρR] = E[D]− E[R] = dρI − rρR,

E[∆ρS ] = E[R]− E[B] = rρR − bρS .

By setting the expected change in density of each state to zero, the equilibrium

point can be calculated as

ρ∗I =
rd

bd+ r(b+ d)
, (6.42a)

ρ∗R =
br

bd+ r(b+ d)
, (6.42b)

ρ∗S =
bd

bd+ r(b+ d)
. (6.42c)

For this system the rate of change around the equilibrium value of the occupied

density ρI can then be calculated. In the three-state system this is now a multi-

valued function dependent on both ρI and ρS . Again, this function can be assumed

to be approximately linear around the fixed point and so find its gradient in the

ρI co-ordinate. ρS can be rewritten as ρS = 1 − ρR − ρI . ρR can also be found at

equilibrium in terms of ρI . Hence the return rate is calculated as

∂E[∆ρI ]

∂ρI
, =

∂

∂ρI
(b(1− ρR − ρI)− dρI),

=
∂

∂ρI
(b(1− ρI −

d

r
ρI)− dρI),

= −
(
b+ d+

bd

r

)
.
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Compare this with the return rate in Eq. 6.40 derived for the non-spatial birth-death

model. There is now an extra factor bd/r, strictly greater than 0 implying that a

three-state model has a higher return rate than the equivalent two-state model. Note

that for a small recovery rate, the return rate is unbounded and decreasing. We may

interpret this as a system entirely populated by dead sites is a quasi-absorbing state

of the system i.e. as r decreases to zero the probability of exiting the quasi-absorbing

state also decreases to zero.

In order to measure the equilibrium return rate for a simulation there needs to

be an estimate for when the simulation first reaches statistical stationarity. This is

estimated by recording the density at a number of time-steps as

R = {ρt : t ∈ {0 . . . N}}.

The time at which the maximum occurs for this set is tmax and the value ρmin is

defined as

ρmin := min{ρt ∈ R : ρt ≥ ρtmax}.

The corresponding time at which the value ρmin is first achieved is denoted as tmin.

The set of points that are assumed to be at stationarity from which inference can

be performed are then defined as all points in the set R that are at time greater

than tmin.

6.4.3 Comparison to data

In order to compare the derived static and scaling properties derived from the models

the eelgrass dataset from the Isles of Scilly, UK (IoS) as discussed in chapter 3 is

used. The time-series data consists of five surveyed sites, whilst the spatial data

consists of a single snapshot for the whole of the Isles of Scilly. In order to be able

to make a direct comparison of both of the time-series and spatial data, the spatial

data was sub-sampled where a 500m× 500m bounding box was placed over each of

the five sites centred on the 2008 survey for each location.

Time series modelling

Initially, a series of autoregressive (AR) models to were fitted time series of both

mean quadrat shoot densities and patch occupancy (proportion of occupied quadrats),

in order to explore long-term trends in density and extent, as well as evidence of

dependence. Based on this preliminary analysis, it was found that it was sufficient

133



to fit a relatively simple population dynamic model to the time series, allowing us

the main temporal processes to be quantified for comparison with our spatial data

modelling. The population dynamics of shoot density, X, for year t, were modelled

using a discrete time model:

Xt+1 = Xt exp (r − b ln(Xt)),

where r is the intrinsic growth rate and population growth is regulated by a density-

dependent process governed by the parameter, b.

Zostera marina leaves typically survive for less than 100 days over the sum-

mer months [Larkum et al., 2006]; however, rhizomes under the sand are some-

thing of an unknown but presumably persist for longer. The statistical population

model was fitted to spatially replicated time series data in a mixed-effects frame-

work[Pinheiro and Bates, 2000]. Spatial heterogeneity (within survey heteroscedac-

ity and between survey correlation) was modelled with an empirical variance-covariance

matrix. Multiplicative (log-scale) Gaussian noise was assumed, as this has been

shown to be an appropriate descriptor of stochastic processes in spatially explicit

systems [Bonsall and Hastings, 2004]. The fitted models for each survey area were

used to calculate return rates from perturbations around the equilibrium point; b

provides an estimate for the return rate and are associated with persistence, per-

turbations in a system with high b quickly decay. This calculation of the return

rate along with estimation of the boundary dimension and Korcak exponent as dis-

cussed in chapter 4 can be compared to the values obtained through simulation of

the vegetation models.

6.4.4 Simulations

Introduction

Simulations were carried out as a probabilistic cellular autonoma on an N×N lattice

denoted Ω. The simulations were synchronously updated, such that at each time-

step each site has a probability of changing state depending on the model specifics.

Any number of states can change at each time-step. Random numbers are generated

from the Matlab R2013a rand function for each possible event at each time-step. A

proposed event for each site was then accepted if the random number was below the

probability for that site. The specific probabilities for each of the models shall be

outlined in the following sections.
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Two-state model

For a given lattice configuration Ω, The probabilities of a switch for each state are

calculated according to Eq. (6.21a) and Eq. (6.21b). Each site is then assigned a

uniformly distributed random number on the unit interval and flipped if this number

falls below the probability at the site. The probabilities are multiplied by a factor

ε, which was taken to be 0.01. This was used to slow down the rate at which

state transitions occur and hence prevent pathological dynamics, such as complete

extinction at all sites for a large population.

Three-state model

A configuration Ω now contains one of three states at each site denoted {0, 1, 2}.
The state tansitions flow according to the following schematic diagram

0→ 1→ 2→ 0. (6.43)

Hence for each site, there is one of two possibilities for the next time step: transi-

tioning to the next state or remaining in the state in the previous time-step. This

then allows the simulation to be carried out in the same procedure as the two-state

model. Now the probabilities are calculated according to Eq. (6.22a), Eq. (6.22b)

and Eq. (6.22c) for states 0,1 and 2 respectively. Again a factor ε was multiplied by

the probabilities to slow the speed of the simulation down and prevent pathological

dynamics.

6.5 Results

The simulation results are divided into three main sections. The initial numerical

investigation was concerned with the relationship between the fractal statistics and

the time to equilibrate following a disturbance. The second numerical investiga-

tion is concerned with an invading cluster along an environment with no gradient,

but with a noise term characterised by its variance. The third numerical investi-

gation is concerned with studying the boundary of a vegetation cluster along an

environmental gradient.

6.5.1 Disturbance & recovery in a homogeneous environment

The first numerical investigation is concerned with how the observed fractal statistics

are related to the ability of a vegetative system to recover following a disturbance.
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This was applied to the two-state model with Gaussian and power law competition

kernels. The persistence following a disturbance was measured by first allowing the

system to equilibrate and then randomly removing 25% of the occupied sites. The

time taken for the density to return to within 1% of the equilibrium density was then

recorded. At the final distribution both the Korcak exponent and the box-counting

dimension of the mass cluster(as opposed to the boundary) were recorded.

A binary toroidal lattice Ω is initiated with a uniform random density. Birth

events occur stochastically with rate

k1 ∗ Ω(1− k2 ∗ Ω/K), (6.44)

where ∗ represents a two-dimensional discrete convolution, k1, k2 are the kernels for

growth and competition respectively and K is the carrying capacity. Death occurs

uniformly at rate µ. For the growth kernel a Gaussian centred at zero with variance

l1 was used while for the competition kernel both a power law distribution was used

with power law exponent α and a Gaussian kernel with variance l2 was used. Hence

the parameters of the model are µ, k, α/l2, l1.

In order to measure persistence the simulation was initialised with randomly with

a density of 0.2 lattice sites occupied. The simulation was then allowed to equi-

librate at which point the temporal variance and skewness were measured. After

100 time-steps a shock is introduced to the system by randomly removing 20% of

the population. The number of time-steps between the shock and the time it takes

to return to within 0.01 standard deviations from the equilibrium density is taken.

This was then repeated for 104 separate simulation runs for lattice sizes 100 × 100

and 200× 200 (See Fig. 6.4 for the main results of these simulations). The average

time to equilibrium relates well to the box-counting dimension, however the variance

of the dimension at a given resilience value is high. The relationship also displays

heteroscedasticity, where lower values of resilience have a far larger variance in the

mass fractal dimension than at higher values of persistence. The relationship is

however, expected from theory as a ”rougher”, more point-like spatial pattern is

indicative of a system with lower resilience, at least from the perspective of this

heuristic.

The Korcak dimension as calculated from the patch size distribution also has a

positive relationship with the persistence heuristic. The variance of the dimension is

lower than the equivalent with the mass fractal dimension. However, the relationship
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is more convex, thus the higher values of persistence make the dimension more

indistinguishable.
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Figure 6.5: Measuring rates of growth
from the three-state model with no envi-
ronmental gradient and a simple environ-
mental variation noise term characterised
by the variance σ. Growth rate was cal-
culated as the inverse of the time to reach
the halfway point of the total population
of sites.

The measure of persistence was

also compared against known statis-

tics of criticality and disturbance

from time-series statistics, Guttal and

Jayaprakash [2009]; Scheffer et al.

[2009], namely the variance and skew-

ness of the population density. Both

follow a convex relationship similar to

the Korcak dimension and have small

variance. It was found that there were

no strong differences between Gaussian

and power law competition kernels as

both gave very similar relationships to

the ones expected from theory.

6.5.2 Invading cluster with en-

vironmental noise

The second numerical experiment fo-

cuses on the impact of environmental

noise on both the growth rate of an invading cluster and the dimension of the

boundary. According to the theory of fractional diffusion, a waiting time distri-

bution characterised by an exponent θ leads to a functional relationship with the

static properties of the boundary as well as the dynamic properties characterising

the width of the growth front. As time is discrete, in place of the waiting time the

constant growth rate λ in Eq. (6.22a) is replaced with λ(x), where λ(x) is a random

variable for each site that is drawn from an inverse Pareto distribution of the form

λ(x) =
1

w(x)
, where w(x) ∼ Pareto(σ,w0 = 1), (6.45)

λ(x) is defined as the probability of growth and hence its inverse is the expected

number of time-steps until a site becomes occupied in the absence of other growth

factors, such as competition.
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In order to ascertain how the parameter σ affects the invasion rate of vegetation

in an unoccupied landscape numerical simulation is performed. The system was

initialised with an empty 100 × 100 lattice. The boundary of the lattice were held

constant as unoccupied sites. A line of occupied was started at one end of a N ×N
lattice and the time until reaching half the distance of the lattice N/2 was taken.

The growth rate was then calculated as the inverse of this time. The results are

shown along with the fractal dimension of the boundary in Fig. 6.5

The exponent of the waiting time σ is varied for constant probability of death and

recovery of the sites µ1 and µ2, where recovery is high and death is low (µ1 = 0.2,

µ2 = 0.8). The boundary dimension is monotonically decreasing (Hurst exponent in-

creasing) in σ. The growth rate is also monotonically increasing, however is convex,

whereas the Hurst exponent relationship is concave.

6.5.3 Properties of a vegetation boundary along an environmental

gradient

The relationship between the boundary dimension of a growing cluster in the pres-

ence of an environmental gradient imposed on the birth rate has been explored.

There was found to be a strong relationship between the boundary dimension and

the return rate, where from theory we would expect an inverse relationship between

the boundary dimension and the return rate. There were however, certain regions of

parameter space where this relationship does not hold, moreover the data obtained

from remote sensing and survey work conducted in Scilly, UK did not seem to match

up. This lead to the idea of exploring the Korcak dimension. The Korcak dimension

is defined as twice the exponent obtained by fitting a power law distribution to the

patch size distribution. Mandelbrot hypothesised a simple relationship between the

Korcak dimension and the boundary dimension for fracturing process, but this has

since been overturned by recent studies [Imre et al., 2012].

Parameter space results

The hypothesis explored is that the Korcak and boundary dimension form a com-

plete set of summary statistics for phase space. i.e. if we ascertained the Korcak and

the boundary dimension we would be able to determine the return rate regardless

of other parameters. Parameter space for Eq. 6.22 was divided up into four regions:

1. µ1 = 0.3, µ2 = 0.8;

2. µ1 = 0.8, µ2 = 0.8;
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3. µ1 = 0.3, µ2 = 0.3;

4. µ1 = 0.8, µ2 = 0.3.

For each region, the environmental gradient described in Eq. 6.27 was used. Simu-

lations were run over a range of environmental gradient γ and noise term ξ. As with

previous results the environmental gradient γ gave a larger variance of boundary,

Korcak dimension and return rate than the noise term ξ. Density also varies across

both µ values and environmental values. The relationship between the Korcak di-

mension and the boundary dimension is distinct for each region in parameter space

(Fig. 6.7). All regions do not obey the relationship proposed by Mandelbrot and

in fact, there is broadly a negative relationship between the boundary and Korcak

dimension. The seagrass data also violates this prediction, with a broad negative

relationship structure.

Fig. 6.6 displays the relationship between the boundary dimension and the return

rate. In each region there is a separate distinct relationship produced. For low

disturbance rate µ1, an inverse relationship is produced, whilst when disturbance is

high, either a positive (µ2 = 0.3) or flat relationship (µ2 = 0.8) occurs.

Finally the Korcak dimension was compared to the return rate (Fig. 6.8). The

relationship here is less clear than for the boundary dimension. All regions have

distinct relationships, with either broadly constant Korcak dimension, or positively

or negatively correlated with the return rate.

Two state model

To elucidate the previous relationships discussed the two-state vegetation model is

also considered in the presence of an environmental gradient. Initially, dynamic

and spatial parameters of the model were fixed and the environmental parameters

were varied (ξ and γ) on the unit interval. The death probability was kept constant

at η = 0.2, the spatial growth and competition scales were kept constant at σ1 =

0.5, σ2 = 1 (where the total length of the system is 20). High and low competition

factor k were investigated (k = 0.2 and k = 0.8). The Korcak exponent gives a

strong linear trend with the return rate; there is also a high likelihood indicating a

good fit of the exponent (See Fig. 6.10a and Fig. 6.10a). The same relationship does

not hold when the environmental parameters are held constant and the demographic

parameters are altered (Fig. 6.11), instead there is no strong correlation between

the either the return rate and Korcak or boundary dimension.
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Figure 6.9: Korcak return rate relation-
ship for surveyed and simulated vegeta-
tion. Empirical seagrass data for the five
sites surveyed is shown as labelled points
with +/- SE error bars. The diagonal
solid band describes the inverse relation-
ship reproduced by the two-state PCA
model over a range of environmental pa-
rameters. The simulation rate is set using
known parameters of death and recruit-
ment for Zostera marina [Larkum et al.,
2006]

Fig. (6.9) gives a comparison between

simulations in the two-state model and

the empirical seagrass data for the five

sites between the Korcak Dimension

and the return rate for the two-state

model. With the assumption that the

demographic parameters remain con-

stant between sites, but the environ-

mental parameters vary the resulting in-

verse relationship between the return

rate and the Korcak dimension is re-

produced. The simulation results were

fitted to the data by using known val-

ues of the recruitment and death rate in

Zostera marina [Larkum et al., 2006].

The resulting confidence intervals for

the simulations fit within the bounds of

all five sites, with la being marginal.

6.6 Conclusion

A variety of spatial lattice-based models

with varying environmental and demographic parameters were constructed in order

to determine the relationship between the return rate of a system at equilibrium or

following a disturbance and the dimensionality of a cluster boundary (Minkowski-

Bouligand), mass fractal and the patch-size distribution (Korcak dimension).

For a spatially homogeneous environment the two-state model was implemented

with a variety of spatial kernels to determine a relationship between the mass fractal

dimension and the time to equilibrium following a disturbance. The Korcak and the

mass dimension both had a positive relationship with the average time to equilib-

rium, however the variation in the Korcak dimension for a particular equilibrium

time was lower than that of the mass dimension. This suggests that the Korcak

dimension of the entire vegetative spatial pattern provides a more accurate estimate

of the equilibrium time than that of the mass fractal. As the Isles of Scilly, UK data

was taken when each of the five sites were at statistical stationarity no comparison

can be made.
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For a growing cluster out of equilibrium there was found to be a good correspon-

dence between the growth rate and the boundary dimension of the invading cluster

over a range of environmental noise parameters. These values were taken as ensem-

ble averages and hence would provide a useful link between growth rate and spatial

properties if the system could be observed for a number of time-steps (assuming

ergodicity).

For a growth front at equilibrium that is being constrained by an environmental

gradient, the return rate and Boundary Dimension as well as the Korcak Dimension

were compared for both the two-state and the three-state model. It was found

that for the two-state model both the boundary and Korcak dimension correlate

well with the return rate at equilibrium for both high and low competition. This

relationship is also hinted at by the Isles of Scilly data. Here the environmental

variables representing the noise and slope of the gradient were varied and found

to reproduce the negative dimension-return rate relationship well. However, if the

environmental parameters were held constant and the dynamic parameters (namely

the death rate and the competition factor) were varied (see Fig. 6.11), then this

produced no strong dimension-return rate relationship. This shows the limitations

of this method, where comparing between sites that may have strong demographic

differences would be difficult. This also demonstrates that comparisons between

spatial patterns of different species in order to elucidate the return rate of each

would not be possible given this method.

For the three-state model the inverse relationship holds for a high recovery prob-

ability. However, when the probability of site recovery is low the relationship is

inverted and boundary dimension is positively correlated with return rate. The

region of parameter space where the return rate-dimension relationship is most pro-

nounced is in the low death-high recovery region. This state corresponds most with

the previous model as a recovery probability of one leads to an infinite recovery rate

and hence the time spent in the third state for each site is negligible compared with

the other two states.

For a probability of low recovery the recovered state (R) begins to play a non-

negligible role in the dynamics. As it is assumed this state cannot be directly

observed and hence the dimensionality statistics are calculated just from the oc-

cupied states. This can lead to a situation where the relative return rate is high,

(in the case of no recovery the return rate is infinite), however the roughness of
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the boundary as well as the patchiness would increase due to the recovered state

blocking the invasion of the occupied state. This leads to the inverse relationship

that is observed as the environmental statistics are varied, but can also explain why

there is no strong relationship as the demographic parameters µ1 and µ2 are varied

and the environmental parameters are held constant.

The purpose of this chapter was to elucidate the relationship between the spa-

tial scaling parameters that could be ascertained from a single spatial snapshot of

vegetation and the dynamics that underpin the spatial distribution. The theory

behind fractal growth phenomena has focused on situations where there is a cer-

tain amount of experimental control over the growth, such as initialising from a flat

surface or single seed as well as taking regular spatial snapshots of the growth over

time in order to calculate the scaling exponents of the system. In the context of

spatial ecological modelling often this form of data does not exist and the initial

stages of growth are not observed. It is necessary therefore to be able to assess

vegetation spatial pattern that is well-established, although it may be in a constant

state of flux. This work then demonstrates the conditions under which dynamics

can be interpreted from the spatial snapshots alone and when this cannot be done.

It also highlights that the particular mechanisms of the model, such as the inclusion

of a recovering state or not can rapidly change the type of static-dynamic scaling

relationships observed.
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Figure 6.4: Comparison between dynamic heuristics and average time to equilibrium
in the two-state model. There is a linear relationship between the Hurst Exponent
and the measure of persistence. The lower the value of H the longer the system
takes on average to return to equilibrium and the higher the value of H the quicker
it takes
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Figure 6.6: Comparison of boundary dimension and return rate for four regions
of phase space in the three-state model. Shading represents total density of final
simulation size. µ1 = 0.3,µ2 = 0.8 gives the strongest relationship in concordance
with the original hypothesis and also has notably higher density than the other
regions. µ1 = 0.3, µ2 = 0.3 also follows a similar relationship, although for low
densities this does not hold. µ1 = 0.8,µ2 = 0.8 gives a less clear pattern as there is
a positive correlation between return rate and boundary dimension for return rate
less than 4× 10−3
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Figure 6.7: Comparison between the Korcak and boundary dimension for the four
regions in parameter space in the three-state model. The Mandelbrot hypothesis
is shown as the red dotted line on each of the plots. Also displayed on each of
the plots are the five sites obtained from Scilly, UK. There appears to be a general
negative correlation between the Korcak and Boundary dimension. However, the
relationship to the return rate is less clear. For µ1 = 0.3, µ2 = 0.3 and µ1 = 0.3,
µ2 = 0.8 a high boundary dimension and a low Korcak dimension corresponds to
a low return rate. however for µ1 = 0.8, µ2 = 0.8 the relationship is reversed and
a high boundary and low Korcak dimension correspond to a high return rate. For
low death rate mu1 the boundary dimension acts as a predictor of the return rate,
as an increasing boundary leads to a decreasing return rate. From fractal growth
models with a pure birth process this would be expected. For a high death rate, the
boundary dimension relationship is reversed and the Korcak dimension now becomes
an indicator of return rate, which would be expected from models of fracture cluster
formation.
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Figure 6.8: Comparison of the Korcak Dimension and the Return rate for for four
regions of phase space in the three-state model. Points are shaded according to their
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is the low death high recovery rate model indicative of a simple birth-death process.
When the death rate is high the likelihood is lowest. Interestingly this seems to
oppose the idea that a high death rate leads to a more fractured boundary and thus
a larger distribution of patch-sizes.
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Figure 6.10: Relationship between return rate and boundary dimension and Korcak
dimension for high and low competition in two-state model. Other parameters were
kept constant at σ1 = 0.5, σ2 = 1, η = 0.2

147



0.02 0.04 0.06 0.08 0.1
2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

K
or

ca
k 

D
im

en
si

on

Return Rate

 

 

Li
ke

lih
oo

d

−250

−200

−150

−100

−50

(a) Korcak dimension.

0.03 0.04 0.05 0.06 0.07 0.08
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

B
ou

nd
ar

y 
D

im
en

si
on

Return Rate

 

 

D
en

si
ty

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Boundary dimension.

Figure 6.11: Varying the dynamic parameters k and η for fixed spatial and environ-
ment parameters σ1 = 0.5, σ2 = 1, γ = 0.5, ξ = 0.1 in two-state model. There is a
lack of strong correlation between both the Korcak Dimension and the Boundary
Dimension compared to the return rate.
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Chapter 7

Parameter estimation from a

snapshot of regular vegetation

spatial patterns

Data do not give up their secrets easily.

They must be tortured to confess.

(Jeffrey Hooper - Bell Labs)
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7.1 Introduction

For a particular vegetation ecosystem we wish to estimate parameters that affect

the dynamic persistence of the ecosystem such as strength of competition and extent

of local positive and negative spatial interactions. For time series data, this type of

analysis is well-established and often a full Bayesian likelihood methodology is used

to fit a stochastic model to spatio-temporal data [Gibson and Austin, 1996; Wikle,

2003]. Methodology is less well-established when only a single spatial snapshot is

present, this can occur due to the large costs of measuring vegetation distributions on

a regular basis or if rapid inference is required, such as when a vegetation community

is threatened. Keeling et al. [2004] uses the conservation of certain spatial statistics

to produce an error function that can be minimised in order to estimate parameters

for an epidemiological model. The procedure is to calculate the expected rate of

change of spatial correlation functions given a certain parameter set. This can then

be considered as a cost function, which can be minimised over several variables.

Previous analyses of vegetation spatial snapshots have used windowed Fourier

transform Penny et al. [2013] or Wavelet analysis Rosenberg [2004], however these

techniques are based purely on spatial statistics alone without using prior knowledge

of vegetation growth dynamics. The advantage of model inference over these tech-

niques is that they directly obtain biological mechanisms that underpin the pattern

formation.

In this chapter we explore several methods of model fitting to single snapshots

of vegetation. Throughout, the model of banding formation developed in chapter 5

shall be used to fit to both generated data and real data obtained from aerial photo-

graphic surveys such as the one outlined in chapter 3 as well as from other ecosystems

where banding is present such as mussel beds and semi-arid ecosystems [Rietkerk

and Van de Koppel, 2008]. The first section explores using the expected change in

density of a spatial pattern as a cost function in order to fit single model parameters

to data when other parameters are known. The limitations of this method shall

then be discussed. In the next section we develop the methodology of Keeling et al.

[2004] into a Bayesian framework. A Likelihood is developed that can be then used

in order to calculate the posterior distribution over the parameters in the model.

This methodology is the tested using simulated data and then applied to a variety

of real datasets.
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7.2 Density as an observable

7.2.1 Method

For a particular site where strong banding occurs, it is desirable to estimate certain

parameters from the model from a single spatial snapshot. To recap, the model is

as follows. There is an N × N lattice of states that can either be occupied (1) or

unoccupied (0) i.e. S = {0, 1}N×N . At each time step there is a probability of a

birth event and a death event at each lattice site. The probabilities are computed

as follows

PB = k1 ∗ S × (1− kk2 ∗ S), (7.1a)

PD = ηS, (7.1b)

the ∗ operator represents a convolution of the discrete lattice space. k1 and k2 are a

Gaussian and offset Gaussian representing clonal growth and long range competition,

k1 = exp

(
1

2σ2
1

[x2 + y2]

)
, (7.2a)

k2 = exp

(
1

2σ2
2

[(x− o)2 + y2]

)
. (7.2b)

In order to perform inference, the usual method is to calculate the posterior distri-

bution of the model and estimate the maximum a posteriori to find the parameter

set that closely fits the data. For a single spatial snapshot this may be an intractable

problem due to the large amount of unobserved data. However, we may consider the

rate of change of leaving the state d
dtP (Ω). Again, this would be dependent upon

other probabilities of state that we do not have access to. We can then consider

the density observable ρ, which maps the set of states onto the closed unit interval

[0, 1] and then use probability of observing a density ρ conditioned on the current

spatial pattern to calculate the expected value E[ρ]. Hence the rate of change of the

expected value of the density can be defined d
dtE[ρ], this can then be calculated di-

rectly from the observed state. The Expected change in density (EDD) for a spatial

pattern Ω is
d

dt
E[ρ] =

∫
Ω
PB(ω)− PD(ω)dω. (7.3)

This then means that in order for the rate of change of density to be zero, the

probability of birth events summed over all sites must be equal to the probability

of death events summed over all sites.
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It is assumed that transient dynamics of the system are short-lived and hence the

fluctuations of observables such as density and spatial correlations are around an

equilibrium value. More rigorously, we assume at equilibrium that

d

dt
E[ρ] = 0. (7.4)

Since d
dtE[ρ] can be calculated from a single spatial snapshot, the procedure is to

minimise this quantity subject to the parameters of the model. In order to test this

procedure we begin by minimising one parameter over synthetic data whilst keeping

all other parameters fixed.

7.2.2 Minimising for one parameter

(a) A spatial snapshot of seagrass banding
used in inference.
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(b) Varying the offset parameter whilst
keeping other parameters constant at σ1 =
1, σ2 = 20, k = 0.8, η = 0.8, λ = 1

Figure 7.1: The expected change in density of an example spatial snapshot of band-
ing over a range of a single parameter. Two local minima are observed, one at
o = 0.05 and another at o = 0.1. o is measured in the total length of the bounding
box of the data, hence an offset o = 1 would represent an offset of the total system
size.

Any deviation from Eq. 7.4 is assumed to be a small fluctuation around an

equilibrium. The strategy then is to minimise the function on the left-hand side

over parameter space. For an initial investigation most of the state parameters shall

be kept constant and a single variable will be varied, to see where the local minima
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(if any) exist. Inference was performed on a spatial snapshot of real data of seagrass

banding. In Fig. 7.1b the offset parameter is varied whilst other parameters are

kept fixed. Two local minima exist, one at o = 0.05 and the other o = 0.1. The

development of two local minima may be due to the intrinsic periodicity of the

system. If there is a strong wavelength at λ then one would also expect due to

the periodic nature of the system a peak at λ/2, albeit a weaker one than the

primary wavelength. Interestingly here, there appears to be no distinction between

the minima of either, possibly suggesting that two wavelengths are observed for this

data, or else the inference procedure cannot properly distinguish between the two o

for this region of parameter space.

7.2.3 Minimising for two parameters
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(a) absolute expected change in density.
There appears to be a symmetry where the
minimum is achieved for a continuous range
of parameters σ1 and σ2
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(b) Logarithm of absolute expected change
in density for varying the variance of the
growth and competition kernel.

Figure 7.2: Expected change in density over a range of of parameter space for σ1 and
σ2. Other parameters were kept fixed for k = 0.8,o = 0.1,η = 0.8,λ = 1. The linear
scale reveals a broad range of parameters where the expected change in density is
minimum. There is an apparent symmetry between the two parameters conferring
positive feedback and negative feedback

An exhaustive search over parameter space for two parameters may also be

performed with relatively little computation. As an example the parameters σ1

and σ2 were varied whilst the other parameters were kept constant (See Fig. 7.2).

On a linear scale a minima valley is revealed, representing a range of σ1 and σ2
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minimise the expected change in density. There appears to be a symmetry between

the two parameters, however on a log scale an asymmetry is revealed and there are

local minima isolated in certain regions. This apparent asymmetry however may

just be due to the sampling performed over the parameter space. If there is some

functional relationship between σ1 and σ2 over where the expected change in density

is minimised, then the minimisation procedure cannot uniquely identify a plausible

set of parameters for the model.

7.2.4 Searching over parameter space
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Figure 7.3: M-H MCMC to minimise the
expected change in density over the pa-
rameters σ1, σ2 and k for the spatial snap-
shot shown in Fig. 7.1a.

In order to search over all of pa-

rameter space an exhaustive search

would not be applicable due to the

high dimensionality of the problem.

Hence we may implement a search

of parameter space using a Markov

Chain Monte Carlo (MCMC) method

such as the Metropolis-Hastings algo-

rithm (MH-MCMC) [Hastings, 1970;

Metropolis et al., 1953]. The expected

change in density can then be used as

a cost function to be minimised. This

procedure would not be able to de-

termine both the dynamic parameters

(η,λ), since if both parameters are set to zero, the expected change in density is

trivially zero. These could however be estimated from the time-series data or else

approximated and then sensitivity analysis could be conducted to determine if the

”guess” strongly biases the other parameters. We begin by performing a small

Metropolis-Hastings sampler over a small subregion of parameter space to test for

convergence and sensitivity of the expected change in density.

The Metropolis-Hastings Markov chain Monte Carlo scheme to take into account

the fact that the absolute expected change in density is to be minimised (as opposed

to a log posterior, which is maximised in the scheme). The algorithm is as follows,

Parameters λ,η and o were held constant at 1, 0.8, 0.1 respectively (these were chosen

in keeping with the previous results where an offset of 0.1 and competition value k

gave a minima of the EDD ). The other parameters were initialised by drawing from

a uniform distribution. The data is then convoluted with the parametrised kernels
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and from this the EDD was calculated (see Eq. 7.3) for the proposal parameters,

which we denote as τp and the proposal EDD, which we shall denote as EDDp.

The ratio of EDD(t) is compared to the proposal EDDp and the value α is taken

according to the following

α = min

{
1,
EDD(t)

EDDp

}
. (7.5)

If α > 1, the proposal parameters τp are accepted and EDD(t + 1) = EDDp. If

α < 1 then the proposal parameters τp are accepted with probability α, else they are

rejected, so EDD(t + 1) = EDD(t) and the parameters remain unchanged. This

gives a way of sliding down the valleys and troughs of the EDD landscape, but

also gives the possibility of sometimes climbing, thus lowering the chance of ended

up trapped in a local minima. Further, after an adequate number of Markov chain

steps (known as the burn-in time) the current parameters may be recorded for each

time step and hence a histogram of values may be recorded. This gives an estimate

of the robustness of different parameters and can also indicate if there are strong

correlations between certain parameters that would make a minimisation process

difficult.

The results of the three parameter inference procedure with a burn-in time of 100

and an inference time of 103 can be seen in Fig. 7.3. The histogram of values for σ1

and σ2 are very similar, confirming that the scheme cannot identify between the two

parameters. k also has a broad distribution. As the actual underlying parameters

are not known, it would be a better first step to perform this inference procedure

on generated data where the parameters are known. This also shows that certain

parameter sets are inherently unidentifiable with the current procedure.

7.3 Spatial correlations as an observable

Density can only give very basic information on the dynamics of the model for a

single spatial pattern. In order to identify parameters, more informative observables

of the spatial pattern are required. The idea then is to use spatial correlation

functions in place of density to determine parameters by minimising the expected

change of correlations.

Before we consider the calculation of the expected rate of change of this observable,

we shall slightly alter the model. As the transition of states are synchronous, there
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is an issue using the previous method where the rates are directly converted into

probabilities. In particular there is an issue with the logistic growth term P1(1−kP2).

Although P1 and P2 are probabilities, k is a scalar and as such the resulting term

is not a probability as it will not in general sum to one. Instead the following rates

were implemented

P (0→ 1) = k1 ∗ Ω, (7.6a)

P (1→ 0) = (k2 ∗ Ω)k, (7.6b)

where Ω is the current state of the lattice and k1 and k2 are kernels mediating the

growth and death terms. Note that in doing so we have removed the ambient death

parameter, this can be added in later if needed. k is a competition factor, but is

now an exponent of the death term to guarantee the probability of a transition is

bounded by one. k can be interpreted as a mortality factor due to spatial crowding,

as k → ∞ nearly all terms apart from those at unity will go to 0 and hence there

is no death due to spatial factors. As k → 0 all terms go to one except those at 0

and hence competition is spatially very strong. k then acts like an inverse of the

strength of competition.

To generalise the spatial competition death kernel in 2D it is assumed there is

an offset to the kernel due to an environmental factor such as wind or currents.

This is described by a two parameter offset (ox, oy). k1, k2 are Gaussian, and have a

parameter each to measure their variance, σ1, σ2. To summarise there are two spatial

parameters σ1 & σ2, the spatial competition parameter k, and two offset parameters

ox and oy making a total of five parameters that would need to be fitted.

7.3.1 Derivation of the variational correlation for spatial pattern

inference

We wish to derive the full term of the estimator used in the spatial correlation infer-

ence. We begin by assuming the Kolmogorov forward equation for the probability

of a system to be in state S ∈ Ω. Given a rate of moving from state S → S′ as

wΘ(S′|S), where Θ = {θ1, θ2, . . . , θN} are the parameters for the system,

∂

∂t
Pt(S) =

∫
Ω

[
wΘ(S|S′)Pt(S′)− wΘ(S′|S)Pt(S))

]
dS′. (7.7)

We have some observable of the system state φ : Ω→ R. For our particular example

we have used spatial correlation as the observable, however this method is general
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and would apply to any observable of the system. The expectation of an observable

is defined as

E[φ(S)] =

∫
Ω
φ(S)P (S)dS. (7.8)

The rate of change of this expectation can then be calculated using Eq. 7.7

∂

∂t
E[φ(S)] =

∂

∂t

∫
Ω
φ(S)Pt(S)dS (7.9)

=

∫
Ω
φ(S)

∂

∂t
Pt(S)dS (7.10)

=

∫∫
Ω×Ω

φ(S)
[
wΘ(S|S′)Pt(S′)− wΘ(S′|S)Pt(S))

]
dS′dS. (7.11)

Observe that∫∫
Ω×Ω

φ(S)
[
wΘ(S|S′)Pt(S′)− wΘ(S′|S)Pt(S))

]
dS′dS (7.12)

=

∫∫
Ω×Ω

φ(S)wΘ(S|S′)Pt(S′)dS′dS −
∫∫

Ω×Ω

φ(S)wΘ(S′|S)Pt(S)dS′dS (7.13)

=

∫∫
Ω×Ω

φ(S)wΘ(S|S′)Pt(S′)dS′dS −
∫∫

Ω×Ω

φ(S′)wΘ(S|S′)Pt(S′)dS′dS (7.14)

=

∫∫
Ω×Ω

[
φ(S)− φ(S′)

]
wΘ(S|S′)Pt(S′)dS′dS. (7.15)

We define the change in an observable due to the transition to a new state to be

∆φ(S|S′) = [φ(S)− φ(S′)]. Hence we have

∂

∂t
E[φ(S)] =

∫∫
Ω×Ω

∆φ(S|S′)wΘ(S|S′)Pt(S′)dS′dS. (7.16)

We assume that the system is at statistical stationarity and so the expectation of

the observable is time invariant. There is also a single observation of the system at

equilibrium denoted E. The probability function of the state can then be estimated

by a single delta function P̂ (S) = δE(S). With the following assumptions we can
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then apply them to Eq. 7.16

0 =

∫∫
Ω×Ω

∆φ(S|S′)wΘ(S|S′)P̂ (S′)dS′dS (7.17)

=

∫∫
Ω×Ω

∆φ(S|S′)wΘ(S|S′)δE(S′))dS′dS (7.18)

=

∫
Ω

∆φ(S|E)wΘ(S|E)dS. (7.19)

The estimator is therefore defined to be

ζE(Θ) =

∫
Ω

∆φ(S|E)wΘ(S|E)dS. (7.20)

The integral currently goes over all possible states of the lattice S ∈ Ω. For an

N ×N lattice size, this implies there are 2N×N possible combinations to sum over.

In order to reduce the size of the integral to be performed we may approximate it

by assuming that the transition rates of each site are small. It can then be assumed

at each time step that the transitioning states are uncorrelated with one another

and hence each state that E can transition to is E(s) for all lattice sites s. E(s)

denotes the state E with site s switched. The integral now sums over all lattice sites

s instead all all possible states and hence the size of the sum is N ×N as opposed

to 2N×N . Hence, if I is the index set for the lattice S, ζE(Θ) is approximated as

ζE(Θ) =
∑
s∈I

∆φ(E(s)|E)wΘ(E(s)|E). (7.21)

Note that the transition rate wΘ(E(s)|E) is the rate of site s transitioning, hence is

either the rate of a birth at site s or the rate of a death at site s depending on the

current state, hence we may simplify notation by defining wΘ(s) := wΘ(E(s)|E).

Note that the estimator ζE(Θ) has no dependence upon the probability of states

P . ∆φ(S|E) and wΘ(S|E) are calculated by considering all the ways in which the

system can leave the state E. This can be calculated with complete knowledge of

state E for any parameter set Θ. By using the equilibrium assumption there should

be a set of parameters ζE(Θ̂) = 0. Θ̂ is defined to be the point estimator of the

parameters after minimising ζE(Θ).
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The observables being considered are the pair-wise correlations at distance d.

As seen in Eq. 7.21, each site contributes an amount towards the whole expected

change in the observable. for any birth-death system there are three correlations

to consider: 00, 01 and 11. The correlation of 00 therefore is the probability that

given a current site in state 0, a randomly selected site at distance d away is also

in state 0 with probability P00(d). Eq. 7.21 is then used to calculate the expected

rate of change of the observable P00(d). The increase or decrease of the observable

for each site depends on whether that site is occupied, in which case the only way

in which the observable can change is if there is a death event at that site or when

the site is unoccupied, in which case the only way the observable can change is if

there is a birth event at that site. Let I(s) be the indicator function which is 1 if

the site is occupied or 0 if it is unoccupied. The calculation of the rate of change of

the observable P00(d) is therefore

d

dt
E[∆P00(d)] =

∑
s∈I

∆P00(d)(E(s)|E)wΘ(s)

=
∑

s∈I:I(s)=1

∆P00(d)(E(s)|E)wΘ(s) +
∑

s∈I:I(s)=0

∆P00(d)(E(s)|E)wΘ(s)

=
∑

s∈I:I(s)=1

∆P00(d)(E(s)|E)dΘ(s) +
∑

s∈I:I(s)=0

∆P00(d)(E(s)|E)bΘ(s)

=
∑

s∈I:I(s)=1

N s
10(d)dΘ(s)−

∑
s∈I:I(s)=0

N s
00(d)bΘ(s),

where N s
XY (d) represents the number of pairs where site s is in state X and the

sites distance d away are in state Y . As an example, if site s is in state 0 and there

is a birth event at site s then the number of 00 pairs that are destroyed at distance

d apart due to this event is N s
00(d).

The expected rate of change for the pairs 01 and 11 at distance d apart may

similarly be calculated by considering how each event at a site contributes to the

creation or the destruction of a XY pair. The calculation for 01 is

d

dt
E[∆P01(d)] =

∑
s∈I

∆P01(d)(E(s)|E)wΘ(s)

=
∑

s∈I:I(s)=1

∆P01(d)(E(s)|E)dΘ(s) +
∑

s∈I:I(s)=0

∆P01(d)(E(s)|E)bΘ(s)

=
∑

s∈I:I(s)=1

(N s
11(d)−N s

10(d))dΘ(s) +
∑

s∈I:I(s)=0

(N s
00(d)−N s

01(d))bΘ(s).
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Similarly the calculation for the 11 pair is

d

dt
E[∆P11(d)] =

∑
s∈I

∆P11(d)(E(s)|E)wΘ(s)

=
∑

s∈I:I(s)=1

∆P11(d)(E(s)|E)dΘ(s) +
∑

s∈I:I(s)=0

∆P11(d)(E(s)|E)bΘ(s)

= −
∑

s∈I:I(s)=1

N s
11(d)dΘ(s) +

∑
s∈I:I(s)=0

N s
01(d)bΘ(s).

We wish to calculate the total rate of change for a correlation pair XY for all

distances. This is accomplished by constructing a weighted sum over all distances

d, where the weight of each sum corresponds to the inverse of the number of sites

at distance d from the site s. Define

N s(d) = #{k ∈ I : |s− k| = d}. (7.22)

For a toroidal lattice this is the same for all sites s and hence N s(d) = N(d),

however if the boundary conditions are not toroidal, then the number of neighbours

at distance d will vary throughout the lattice. The general calculation of the total

rate of change of a XY with general boundary conditions is therefore

d

dt
E[∆PXY ] =

dmax∑
d=1

∑
s∈I:I(s)=1

∆PXY (d)(E(s)|E)dΘ(s)

N s(d)
+

∑
s∈I:I(s)=0

∆PXY (d)(E(s)|E)bΘ(s)

N s(d)
.

(7.23)

Once each observable has been established an estimator for the total rate of change

for all observables can be constructed. Index the set of observables with j, so that

the set of observables is denoted {φj : j = 1 . . .K}. For each observable φj denote

the corresponding estimator as ζj such that

ζj(Θ, E) =

∫
Ω

∆φj(S|E)wΘ(S|E)dS. (7.24)
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A full estimator that minimises each corresponding estimator ζj can then be con-

structed as

ζΘ(E) =
N∑
j=1

ajζ
2
j (7.25)

=
N∑
j=1

aj

∫
Ω

∆φj(S|E)wΘ(S|E)dS

2

. (7.26)

Note that for any aj > 0 Eq. (7.25) equates to 0 if and only if each estimator ζj is

0. There is hence a choice over how the aj should be constructed.

7.3.2 Non-spatial birth death process

In order to determine the accuracy of the method, a simple birth-death process was

constructed where the correlations could be calculated exactly and hence compared

against the numerical results. For a lattice Ω there N × N sites that can occupy

one of two states: Alive (1) and dead (0). The system can be modelled as a finite

Markov chain where each site has the transition probabilities

π01 = d, (7.27)

π10 = b. (7.28)

Assuming detailed balance we may calculate the equilibrium probabilities of being

in states 1, P1 and 0, P0 at each site,

π01P1 = π10P0, (7.29)

dP1 = bP0. (7.30)

(7.31)

Observing that P0 + P1 = 1,

P0 =
d

b
(1− P0) (7.32)

=⇒ P0 =
d

b+ d
P1 =

b

b+ d
. (7.33)
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The correlation distance functions can be easily calculated owing to the fact that

there is no spatial correlation. Hence for d > 0,

P00(d) = P00 = P0P0 =
d2

(b+ d)2
, (7.34)

P01(d) = P01 = P0P1 =
bd

(b+ d)2
, (7.35)

P11(d) = P11 = P1P1 =
b2

(b+ d)2
. (7.36)

These values were found to match up well to numerical results. The set of observables

is hence defined to be {P00, P01, P11}. Thus the estimator ζΘ(E) is

ζΘ(E) =

(∑
i

∆P00(Ei|E)wΘ(Ei|E)

)2

+

(∑
i

∆P01(Ei|E)wΘ(Ei|E)

)2

+

(∑
i

∆P11(Ei|E)wΘ(Ei|E)

)2

. (7.37)

Where Ei denotes the state E with the ith site swapped. Consider the first term of

the sum. there are two ways in which a 00 pair can change. Either there is a death

in a 01 pair, thus contributing to the creation of a 00 pair or there is a birth in a 00

pair leading to its loss. Hence∑
i

∆P00(Ei|E)wΘ(Ei|E)

=
∑
i

∆P00(0i → 1i|E)wΘ(0i → 1i|E) + ∆P00(1i → 0i|E)wΘ(1i → 0i|E)

=
∑
i

− d

(b+ d)
bδi + d(1− δi)

d

(b+ d)

=
bd

(b+ d)
(1− ρ)− d2

(b+ d)
ρ.
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Denoting the density of state E as ρ and equating to 0 to find estimators of param-

eters b̂ and d̂ we find

− d2

(b+ d)
ρ+

bd

(b+ d)
(1− ρ) = 0,

=⇒ b(1− ρ) = dρ,

=⇒ d

b
=

1− ρ
ρ

.

Thus ρ = b/(b + d) as is expected from the equilibrium distribution. It can also

be shown by similar calculation that the two other squared terms in the estima-

tor corresponding to the the 11 and 01 pairs give the same result when set to 0.
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Figure 7.4: Comparison of the variational
parameter ζ00(E) for a single realisation of
the non-spatial birth-death process. Here
the parameter b is varied whilst d is held
constant at the true value 0.5. The func-
tion calculated numerically is minimised
around 0.52, close to the theoretically cal-
culated value from the density 0.48 and
the true value 0.5. the system was ran for
6000 time-steps on a 50× 50 grid.

This was compared to numerical results

in Fig. (7.4) and was found to be in close

agreement. In particular the difference

in where the respective estimates of ζ2
00

were minimised were in close agreement

with the true value of the parameter.

With the confirmation made for the

simple birth-death model we may ex-

tend to look at numerical solutions

for the spatially-aggregated birth and

spatial-competition death model. A

simulation was initialised randomly on

a 100× 100 grid and ran until reaching

stationarity (approximately 2000 time-

steps). The resultant configuration E

was then used to estimate each param-

eter in turn. The true parameter val-

ues are τ1 = 1, τ2 = 0.5, k = 0.5, ox =

10, oy = 10. Keeping all parameters

fixed and measuring each in turn pro-

duces a convex functional form that has a unique minimum for the precisions τ1,τ2

and the competition factor k. The offset parameters are not convex, however have

global minima that match well with the true parameters of the simulation (Fig. 7.5).
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With the method established for estimation over one parameter, attention can

now turn to varying two parameters. The parameters used for the simulation are

τ1 = 0.8, τ2 = 0.1, k = 0.1, ox = 10, oy = 10. Two parameters were varied whilst all

others were fixed at their true values. Varying the offset parameters ox, oy produces

a complex multi-modal landscape, however the global minimum is close to the true

values of the parameters (Fig. 7.6a) . Varying of the two precision values τ1 and

τ2 produces a smoother cost function landscape where the minima occupy a valley

(Fig. 7.6b). Again, the true value of the parameters is close to the global minima.

Hence for two parameters at least the method is able to identify parameters that fit

well to the spatial pattern. The next step is to consider how to perform inference

when no parameters are known.

7.4 Inference

The expected rate of change of spatial correlations can be used as a cost function in

a minimisation procedure in order to detect the most likely model parameters for a

single spatial snapshot. The procedure can be done using an exhaustive search when

fitting a single parameter or two parameters as was done in Section 7.3. However,

for a high dimensional parameter space, other methods need to be employed due to

an exhaustive search being computationally intractable. Further, the minimisation

procedure only gives a single estimate for the likely parameter and does not indicate

the confidence in the parameter. It is desirable, therefore, to have a fitting proce-

dure that also gives a probability distribution associated with the parameters. We

consider three methods to achieve this: simulated annealing, Approximate Bayesian

Computation and a synthetic-likelihood approach. In this section each method shall

be described in how it relates to the fitting problem and its relative merits shall be

assessed.

7.4.1 Simulated annealing

One approach towards parameter estimation is simulated annealing [Kirkpatrick

et al., 1983]. The main idea of this scheme is to find a global minima of an energy

function by mimicking the physical process of annealing, where a structure is able

to configure to its global minimum energy state through a cooling schedule. First an

energy function is defined with a parameter T , which corresponds to the temperature

of the system. For larger values of T , the energy function appears flat and there is

weak selection among the parameters, for a lower T the energy function is highly

dependent on the function which is being minimised. If temperature is fixed, then
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Figure 7.5: Calculating ζ2 for each parameter of the model whilst holding other
parameters constant. The true parameters of the system are σ1 = 6, σ2 = 0.1, k =
1, ox = 10, oy = 10
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Figure 7.6: Calculating ζ2 over a two parameter subset of parameter space. The true
parameters of the system are τ1 = 0.8, τ2 = 0.1, k = 0.1, ox = 10, oy = 10. There
is close agreement between the predicted and the actual parameters indicating the
method is stable for a single spatial snapshot.
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Figure 7.7: Simulated Annealing for four parameters {τ1, τ2, ox, oy}, with k = 0.2.
true values of the system are displayed as stars and the temperature is lowered every
100 steps. All parameters converge close to their true values, however there is a large
amount of error in each of the final parameters.

for a large temperature no single state is strongly selected for and the scheme would

not converge. If temperature is low then the scheme is likely to get stuck in only local

minima and not find the global minima. The idea then is to vary the temperature,

such that the scheme can move between minima eventually finding the lowest one.

To summarise, a biased random walk is performed over parameter space, where

lower energy values are proportionally selected according to a temperature T . The

system is cooled or annealed, by decreasing the temperature until all the parameters

are fixed and the random walk no longer makes new jumps. This method provides

a way of finding a global minimum in a complex energy landscape that may have

many local minima. Where banding is weak, the ζ2 function can have many local

minima where a simple scheme with no annealing may become stuck (Fig. 7.6a gives

an example of such an energy landscape).

More formally there is a range of temperatures denoted T = {T0, T1, . . .} where

typically T0 is large and limi→∞ Ti = 0. T is known as the cooling schedule and

needs to be defined carefully in order for the random walk to not become stuck in

a local minima. An initial parameter state Θ0 is drawn from a prior distribution.

The probability is then calculated as

π(Θ0) = exp(−ζ2/T0) (7.38)
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This is then fed into a standard Metropolis-Hastings sampler. After a certain number

of steps tinf , the temperature is updated so that Ti → Ti+1 and the calculation of

the probability for the current state is repeated. This process continues until the

chain makes no more updates. An example of this scheme is given in Fig. (7.7) on a

100×100 snapshot that has reached statistical equilibrium. Here the cooling schedule

is {1000, 990, 980, . . . , 1}, with 100 time-steps between each new temperature regime.

The scheme was performed on four parameters: the offsets ox and oy and the variance

parameters τ1 and τ2. Although the scheme was approximately able to find the

offsets to within an accuracy of 5 spatial units, the precisions were not accurately

determined. This is also coupled with the problem that there is no estimate to

the errors of the fitted parameters. For these reasons simulated annealing is not

considered further.

7.4.2 Approximate Bayesian computation

The second method considered was Approximate Bayesian Computation (ABC)

[Beaumont et al., 2002]. In standard Bayesian inference a likelihood is developed

based on a statistical model of the data. For simple statistical models, this may be a

simple analytic function and hence the posterior distribution can be calculated either

directly or through the use of MCMC. For more complex statistical models on the

other hand, there may be no simple way of writing down the likelihood, it can either

be difficult to establish or it becomes computationally very expensive to compute.

When such cases arise, it may be appropriate to approximate the likelihood. Instead

of computing the likelihood directly, data drawn from the statistical model may be

compared to the data being assessed using appropriate summary statistics. The

probability of a set of parameters given that the simulated data and the underlying

data is less than a certain distance according to some metric is then used as an

approximation to the full likelihood. This then approximates the full likelihood i.e.

P (D|θ) ≈ P (ρ(D, D̂) < ε|θ) (7.39)

where ρ is a metric measuring the distance between the simulated data D̂ and

the true data D for some tolerance threshold ε. The simplest way of computing

P (ρ(D, D̂) < ε|θ) is via a rejection scheme [Pritchard et al., 1999; Tavaré et al.,

1997].

For a pre-defined tolerance threshold ε, the rejection scheme begins by drawing

a set of parameters θ from the prior distribution. Simulated data is then produced
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from the model given the current parameter set, which is compared to the true data

using a set of summary statistics and a distance function ρ to compare between the

data. If the distance between the simulated data and the model data is less than ε

then the set of parameters is accepted and recorded, otherwise it is rejected. The

resulting set of parameters is an approximate sample of the posterior distribution.

This sample can then be used to estimate the maximum a posteriori parameters

along with their uncertainty.

For the model of spatial competition in vegetation, the summary statistic to be

chosen would be the spatial correlation function for the pairs 00, 01 and 11. The

distance between the two correlation distributions can then be any that compares

two distributions, for instance the dot product. The tolerance can then be set in

order for the rejection scheme to be performed.

Although theoretically it is possible for the approximate Bayesian computation

scheme to work, there are issues. The greatest issue is that for a model with a

large number of dimensions, such as the spatial banding model the number of sam-

ples that need to be taken in order to well-represent the likelihood space is large.

This combined with the spatial correlation function being costly to calculate makes

this procedure a large computational affair. This approach is therefore also not

considered further.

7.4.3 Synthetic likelihood

The likelihood function P (D|θ) is defined as the probability of seeing the observed

data D given the parameters θ. If instead of considering the full data, we choose

an appropriate function of the data ρ, the resulting synthetic likelihood may be

written as P (ζ(D)|θ) [Wood, 2010]. This synthetic likelihood has several advantages.

Firstly, although a full likelihood of the data may be analytically intractable, the

statistic ζ may have comparatively small dimension and hence an analytic form

of the likelihood may be produced. The likelihood can also be calculated directly

without the need to simulate for each chosen parameter set θ and hence has a

computational advantage over ABC. Although a certain amount of information is

lost with summarising the data using ζ, if ζ is properly specified then the resulting

probability distribution will closely match the full likelihood. For the banding model,

we consider the expected rate of change in the pair-wise correlations as the summary

statistic. This produces a synthetic likelihood with a five-dimensional parameter
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space corresponding to the parameters of the model {r, θ, l1, l2, k} i.e.

P

(
d

dt
E [φ(D)] |{r, θ, l1, l2, k}

)
(7.40)

This likelihood may then be used in a MH-MCMC scheme. In order to proceed, a

functional form of this likelihood needs to be derived.

7.4.4 Derivation of the likelihood

In order for a Likelihood to be determined for the summary statistic ζ, the ex-

act probability distribution of this statistic must be discovered. The likelihood

L(Θ|D) = P (D|Θ) is approximated by P (ζ(D)|θ), where ζ is the sum of squares of

correlation rates, i.e.

ζ =

N−1∑
i=0

ζ2
i . (7.41)

Assuming that each statistic is drawn independently from a uniform distribution

with the same variance ζi ∼ N(0, σ). The distribution for ζ defined in Eq. 7.41

can be calculated using the change of variables formula. Take F is the cumulative

distribution for ζi, then the cumulative distribution for ζ2
i is

G(y) = F (r−1(y)),

where r(y) = y2. Differentiating and substituting in the pdf for ζi we find

d

dy
G(y) =

d

dy
F (r−1(y)),

g(y) = f(r−1(y))
d

dy
r−1(y),

g(y) =
1√

2πσ2
exp

(
−r−1(y)2

2σ2

)
d

dy
r−1(y),

g(y) =
1√

2πσ2
exp

(
−√y2

2σ2

)
d

dy

√
y,

g(y) =
1

2
√

2πσ2
exp

(
−y
2σ2

)
y−1/2.

g is therefore gamma distribution with parameters k = 1/2, θ = 2σ2. It follows

either from the moment-generating function or from the properties of the gamma

function that the resulting distribution for ζ is Gamma(
∑N−1

i=0 1/2, 2σ2). Hence the
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resulting pdf h is

h(ζ) =
1

(2σ2)N/2Γ(N)
exp

(
−y
2σ2

)
yN/2−1. (7.42)

However, for the summary statistic considered in the Metropolis-Hastings inference

scheme, the values for each PXY (d) are summed together for all d and spatial location

and then squared. This means that the actual statistic is ζ = P 2
00 + P 2

01 + P 2
11,

if we assume each statistic is approximately normally distributed then the total

distribution is gamma with k = 3, this is approximately equal to the Exponential

distribution and hence we shall use the Exponential distribution as the Likelihood.

The exponential distribution has a single parameter λ that is the inverse of the

mean of the distribution. In order to calculate this unknown parameter a simulation

with parameter values that produce a spatial pattern qualitatively similar to that

of the data is run to statistical stationarity. The expected rate of change of the

correlations is then calculated and the total error ζ2 is recorded every 100 time-

steps. After sufficient time the mean of these errors at statistical stationarity can

then be used as an estimate for λ. The sensitivity of the estimated λ can then be

assessed by varying the model parameters and re-running the calculation to check

if the resulting λ is significantly different.

Table 7.1 shows the estimated distributions of the values P00, P01 and P11 for

a range of system sizes. For our assumption of the distribution of ζ to work we

would need the distributions of P00, P01 and P11 to all have a normal distribution.

A Kolmogorov-Smirnov test was performed on each sample of PXY for system size

50 × 50, 70 × 70, 90 × 90, 110 × 110, 130 × 130. Each test did not reject the null

hypothesis that the samples were drawn from a normal distribution, with level 0.05

for any of the correlations or system sizes providing evidence that the correlation

rates can be considered normal. This then provides support for the argument that

the appropriate choice of the synthetic likelihood is the exponential distribution.

To test the statistical stationarity assumption, spatial correlations were recorded

for single model runs. Transient dynamics quickly decay (less than 50 time-steps) to

a stationary state that is approximately drawn from a normal distribution (Fig. 7.9a).

The total rate of change across all correlations is also calculated from simulation

runs of various system sizes. It was found that the total expected rate of change in

the correlation structure scales approximately with the system size (Fig. 7.10).
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The issue with using the gamma form

of the likelihood is that it is based on the

sum squared of the observables ζi with-

out considering each observable individ-

ually. This means that if one observable

dominates the sum-squared value, then

it is only this observable that is being se-

lected for in the likelihood and the other

observables are redundant. One way to

overcome this would be to add weights

to each term in the sum in Eq. 7.41,

however it is not clear what values these

weights should take. Another approach

is to assume each statistic ζi has normal

error with variance σi and hence the re-

sulting likelihood would be

l(ζ) =
N−1∏
i=0

1√
2πσ2

i

exp

(
− 1

2σ2
i

ζ2
i

)
, (7.43)

where the log-likelihood function is up to some constant

log l(ζ) = −
N−1∑
i=0

ζ2
i

2σ2
i

. (7.44)

Note the similarity between this form of the likelihood and the exponential of the

sum-squared errors. There is still an issue over the choice of σi for each observable i.

It was found for typical simulation runs that the variance of the rate of change of the

number of pairs scales with the distance as a square (Fig. 7.8). Hence, the functional

form of σi(d) = σN(d)2 for both 00 and 11 pairs, 01 does not obey a simple scaling

relationship however. The functional form of the variance then leaves a single free

parameter σ for the likelihood, which can then be found through simulation. For

example, a 100× 100 lattice gives a variance of σ = 10−6

Both the gamma likelihood and the normal likelihood were used in model fitting,

however most of the analysis uses the gamma form of the likelihood.
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Size (L) Error mean standard deviation p-value

50 P00 -19.6746 373.64 0.14304
P01 5.6085 176.8485 0.09033
P11 14.0662 197.3716 0.25076

70 P00 -21.0737 1211.4098 0.40162
P01 42.3027 497.5222 0.30539
P11 -21.2289 715.431 0.49747

90 P00 -235.2413 2500.6328 0.77123
P01 61.3701 1059.2863 0.61697
P11 173.8711 1444.6568 0.97663

110 P00 -42.1362 4429.6086 0.86911
P01 19.2043 1922.7386 0.97634
P11 22.9318 2512.4194 0.77743

130 P00 31.6279 7355.5629 0.39338
P01 -32.1154 3160.5081 0.21348
P11 0.48749 4199.9252 0.54093

Table 7.1: Measurement of errors for different system sizes and the corresponding
p-value for the corresponding one-sample Kolmogorov-Smirnov test. A p-value of
0.05 or lower would indicate that the distribution is not Gaussian.

7.4.5 Priors

For Bayesian inference we wish to calculate the posterior P (θ|D) from the likelihood.

This is accomplished using Bayes theorem

P (θ|D) =
P (D|θ)P (θ)

P (D)
. (7.45)

The posterior P (θ|D) is the probability of observing the parameters θ given the

data D. This is calculated as the probability of the data given the parameters θ,

which is the likelihood, multiplied by the probability of the parameters, divided by

the normalisation factor P (D). The normalisation factor P (D) can be calculated

using the marginal probabilities

P (D) =
∑
θ

P (D|θ)P (θ), (7.46)

this is however, computationally intractable for all but trivial statistical models and

hence methods such as MCMC are used instead. The other factor that needs to

be determined is P (θ). This is known as the prior and represents the belief in the

parameters before the data [Ellison, 2004]. The banding model has five parameters

representing the displacement and direction of the competition r, θ, the length scales
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Figure 7.9: How the distribution of errors ζ2 grows for increasing system size. Simu-
lations were run for each system size with fixed parameters for a suitable time until
enough values of ζ2 had been calculated from the snapshots in time. The errors
grow almost linearly on a semi-log scale. The bars around the points represent the
lower and upper quartile respectively. Fig. 7.9a shows how the individual errors for
each of the correlation observables change as the system equilibrates.

of the growth and competition l1, l2 and the competition factor k. It is assumed that

the parameters are independent and so the prior has the following multiplicative

structure

P (Θ) = P (θ)P (r)P (l1)P (l2)P (k). (7.47)

Maximum entropy distributions

For a distribution p(x) with support [a, b], the entropy of a distribution is a scalar

defined as

S = −
∫ b

a
p(x) log p(x)dx. (7.48)

This quantity gives a measure of uncertainty in the distribution. The maximum

entropy approach is to then find a distribution p(x) that maximises S with certain

constraints that are known about the distribution, such as the mean or variance

[Jaynes, 2003].
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Assume that the mean of a distribution is known and denote it µ. Using the

calculus of variations a Lagrangian can be constructed

L = S + λ0

(∫ b

a
p(x)dx− 1

)
+ λ1

(∫ b

a
xp(x)dx− µ

)
. (7.49)

The fixed point of L then gives the probability distribution that maximises S for a

fixed mean. Consider the derivative with respect to p(x) for a fixed x.

∂L

∂p(x)
= −1− log p(x) + λ0 + λ1x = 0

=⇒ log p(x) = λ0 + λ1x

=⇒ p(x) = exp (λ0 + λ1x) .

This can be simplified to

p(x) = c exp(λ1x). (7.50)

Differentiating the Lagrangian with respect to the Lagrangian multiplier λ0 then

gives the normalisation condition for the distribution p(x). For our purposes all

parameters of the model exist on the interval [0,∞) (with the exception of the

directional parameter θ. Inputting this into the normalisation condition∫ ∞
0

c exp(λ1x)dx = − c

λ1
= 1

c = −λ1

Differentiating with respect to the second Lagrange multiplier gives∫ ∞
0
−xλ1 exp(λ1x)dx = − 1

λ1
= µ,

λ1 = − 1

µ
.

Hence the probability distribution that maximises entropy on the interval [0,∞)

with a known expectation µ is none other than the exponential distribution. This

technique can also be applied to distributions on other intervals. For instance, we

may know that the distance of a band cannot be over a certain height, and so r

would lie on an interval [0, rmax], this reduces to adding a normalisation factor to

the standard exponential distribution so it integrates to one on the defined interval.
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Directional statistics

The prior for θ also needs to be considered. θ is defined on the wrapped interval

[0, π) i.e.

θ = x mod π, (7.51)

where x is a corresponding linear random variable. If x is defined on the interval

[0,∞) and has the corresponding exponential distribution p(x) = 1
λ exp(−λx) then

the distribution for θ is calculated as

pw(θ) =

∞∑
k=0

p(θ + πk)

=

∞∑
k=0

1

λ
exp(−λ(θ + πk))

=
1

λ
exp(−λθ)

∞∑
k=0

exp(−λπk)

=
exp(−λθ)

λ(1− exp(−λπ))
.

This produces an exponential with an added normalisation factor to take into ac-

count the fact that the distribution is defined on a wrapped interval. It is straight-

forward to show that, on a wrapped interval, a distribution with known expectation

that maximises the entropy is pw(θ), known as the wrapped exponential distribution.

There is an issue however, as slightly more is known about the distribution pw(θ)

than the expectation alone. In particular, if the expectation of θ is close to 0 then all

of the probability density will be concentrated on the positive plane and none near

π. As the interval is wrapped so π is matched up with 0 this is clearly erroneous.

To fix this we need a distribution that is truly circular i.e. will be continuous on the

whole wrapped interval. One such distribution is the von Mises distribution defined

as

p(θ) =
exp(κ cos(θ − µ))

2πI0(κ)
, (7.52)

where κ is analagous to the precision and µ to the expectation in a normal distribu-

tion. The one issue with this distribution is finding a way of estimating the variance

of the prior. This could be done by considering the variation of the spatial pattern

for all θ and taking the variation of this as an estimate for κ.
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The simplest form of a probability distribution defined on C1 such that it is

continuous would be the uniform distribution U [0, 1]. This can be used when there

is an absence of prior knowledge about the direction of the banding. However, where

banding is present, a two-dimensional Fourier transform can be used to detect the

direction and strength of banding. The largest Fourier mode is then used as an

estimate for the direction of the banding. This is taken as the mean of an empirical

circular distribution, where the parameter x = sin θ has a peak at the maximal

direction of the Fourier modes.

The prior distributions of l1 and l2 can be similarly estimated from the spatial

snapshot by measuring the length-scale of the banding. This is again done using the

spatial Fourier transform of the banding snapshot, where the displacement of the

largest Fourier mode is used as the mean for the exponential distribution of l1 and

l2. Finally the exponential distribution for k is also used with mean taken to be the

power of the largest Fourier mode. This completely defines the prior for the model.

7.4.6 Fitting to real data

Fitting to real data is problematic due to the boundary conditions. The simulations

up until now have been performed on a toroidal lattice. However, this does not

apply to a real-world dataset, where the form of the boundary conditions for a

single spatial snapshot are not explicitly known.

If D is the data in the form of a binary image of size n × n, then take E ⊂ D

to be the centered box of length m (hence m < n). The set D − E represents the

border around the inner-box. The rate of change at each point in E is considered,

however when the change in correlation due to an event in E is calculated, the

whole of D is taken into account. As long as n is sufficiently greater than m and

the parameters l2 and r do not get too large, this provides a true description of the

boundary without having to consider occupancy beyond the outer boundary. The

downside to this approach is that the rate of change in the correlation structure for

lattice sites around the edge is not explicitly considered.

7.5 Results

7.5.1 Simulated data

With the machinery in place to perform likelihood-based inference on the banding

model, we first consider a simulated spatial snapshot with toroidal boundary condi-
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tions and model parameters r = 10, θ = π/4, l1 = 0.5, l2 = 1, k = 0.1. The toroidal

boundary conditions are used so that boundary conditions can be ignored while the

method is tested. Visual inspection of the likelihood as well as the sampled param-

eters indicates that the chain after a sufficient burn-in time is well-mixed and the

chain is sufficiently exploring the posterior. The first attempt at inferring param-

eters from the single snapshot was performed on a synthetic likelihood that is the

negative of the total error ζ2. This likelihood was not strongly informative as the

posterior differed only marginally from the prior distribution. There was however

some indication that the method could detect both the competition factor k and

the angle of the competition offset θ. The same inference was performed using the

exponential likelihood function l(ζ2) = exp(−λζ2), where λ was calculated using

the mean total error from a single simulation run at statistical stationarity. The

chain was run for 106 iterations with a burn-in time of 0.5 × 106. The resulting

posterior differed significantly from the prior distribution (Fig. 7.10), with all pa-

rameters correct within the 95% confidence interval. Whilst there is low correlation

between most parameters, there is a significant correlation structure exhibited be-

tween r and θ. The resulting structure represents a pay-off between the angle and

the length between bands. If the angle is perpendicular to the bands, then the offset

of the competition is minimised in order for the centre of the competition kernel to

be in the centre of the gap, as the angle θ changes, r must compensate in order for

the centre of the kernel to remain in the gap. This produces a bent curve where r

achieves its minima approximately by r’s true value. l1 and l2 have similar profiles

for their marginal posterior distributions, although the prior is the same for both,

their posteriors differ, with the mean of the distribution close to the true underling

value. k is the only parameter where the mean of the marginal posterior differs from

the true underlying value.

k represents the strength of competition and is implemented via the death term,

where it is the exponent of the competition kernel convolved with the lattice state

S. a large exponent increases the probability of a death event when the convolution

is greater than one and decreases it when it is less than one, this means that for a

large competition factor, the competition kernel has highly platykurtic. This means

that k is only strongly affecting the tails of the competition kernel. This can be

elucidated by running a simulation of banding with a low competition factor to

statistical stationarity and then observing the expected rate of change for each of

the sites when k is larger (Fig. 7.12a). The sites with the largest rate of death

occur along the borders of the band where the rate of change of sites is already
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highest, thus a change in k may not be detectable from the background stochastic

fluctuation of the system. If the simulation is then continued, this time with a new

competition factor k, then we may measure the change in the correlation structure

are the system evolves using the Kullback-Liebler divergence. For a change in k

from 0.1 to 1, there is little change in the correlation structure over small time-

scales, although there is over larger time-scales although there is significant change

over larger time-scales (Fig. 7.12b). For larger differences in k (0.1 to 20) there

is however an immediate change in the correlation structure of the snapshots at

each time-step even on relatively small time-scales (Fig. 7.12c). The method relies

on there being a change in the correlation in a single time-step, for small changes

in k, this change in correlation occurs slowly and hence k ends up with a broad

distribution in the posterior.

As the competition factor is weakly fitted for simulated data, another form of

the banding model is considered. Instead of k being a competition factor that

exponentiates the competition kernel, a rate of competition (β) is considered instead.

Hence the rate of transition for a site x is

rx(0→ 1) = (k1 ∗ S)x, (7.53a)

rx(1→ 0) = β(k2 ∗ S)x, (7.53b)

where k1, k2 are defined as before in Eq. 7.6. As the model is now in term of

rates, there needs to be a conversion to probabilities. This is achieved by assuming

each individual site is a Poisson process with rates equal to the rate of transitions.

Assuming a small time interval ε, the resulting probability of transitions are

Px(0→ 1) = 1− exp (ε(k1 ∗ S)x) , (7.54a)

Px(1→ 0) = 1− exp (εβ(k2 ∗ S)x) . (7.54b)

The previous exponential form of the likelihood was compared to the normal likeli-

hood defined in Eq. 7.44, with the new form of the model defined in Eq. 7.54. Similar

parameter values were used for the simulation r = 10, θ = π/4, l1 = 1, l2 = 2, β = 2

as for the exponential likelihood case. The resulting posterior distribution matches

closely with the true underlying parameter values (Fig. 7.11). The θ marginal poste-

rior has a bimodal structure indicating the invariance under reflection in the spatial

snapshot. All other marginals are centred on the true parameters, while l1 and l2

have discrete cut-offs due to the discreteness of the lattice. As there is evidence the

normal form of the likelihood provides a better tool for inference on simulated data,
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this form of the likelihood shall be used to perform inference on real data.

7.5.2 Real data

With the validity of the scheme for simulated data established we can now turn our

attention to real data in the form of three different vegetative ecosystems that all

exhibit banding phenomena: seagrass, tiger bush and mussel beds.

The normal form of the likelihood (Eq. 7.44) was applied to two different spatial

snapshots: seagrass and tiger bush. The first snapshot was taken from an area

banding observed in Isles of Scilly seagrass dataset. The binary image was rescaled

so that it fit on a 100 × 100 lattice, with each pixel representing the presence of

vegetation. The resulting marginal posteriors have small variance and are unimodal

(Fig. 7.13). The maximum a posteriori for each parameter was used in a simulation

with random initial conditions and ran for 500 time-steps. The resulting spatial

distribution closely matches the original data, with the direction of the banding,

inter and intra band length correctly reproduced.

A similar procedure was conducted on a snapshot of tiger bush in South West

Niger (13◦30′ N; 2◦40′ E), taken from Thiery et al. [1995]. The posterior distribution

is flat for r, θ and l2 (Fig. 7.14). The marginal posterior for l1 has a maximum at

1 and over 95% of its mass less than 1. β has an extremely sharp distribution at 0.

The poor fit of parameters is reflected in the simulation based on the maximum a

posteriori, where the simulated spatial pattern matches poorly to the original data.

In particular there is no banding present in the simulated spatial pattern as the

low competition rate leads to a low death rate and hence the pattern is uniformly

occupied.

7.6 Conclusion

In this chapter a method for performing Bayesian inference for a model of vegetation

banding has been developed. First the expected rate of change in density was used

as a measure of how a chosen parameter set deviates from the true parameters that

produced a spatial snapshot. This provided a way of fitting single spatial parameters

when other parameters were known, however was unable to differentiate cases with

two or more unknown parameters.
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Figure 7.10: Example of posterior for a 150 × 150 spatial snapshot ran until equi-
librium with parameters r = 10, θ = π/4, l1 = 0.5, l2 = 1, k = 0.1. The exponential
likelihood exp(−λζ2) is was applied, where λ is calculated from the errors of the
simulation run. True parameters are highlighted in green, while the mean of the
posterior is shown in blue. The crescent shape indicates the play-off between r and
θ in a single band.
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Figure 7.12: Change in the Kullback-Liebler Divergence of the P11 distribution. The
evolves at k = 0.1 until there is only small statistical fluctuations in the correla-
tion structure. The system parameter k is then switched and the KL-divergence is
recorded compared against the new correlation distribution P11, with the reference
distribution as P11 at stationarity. For a smaller change in k there is little change in
the P11 distribution for the first few number of time-steps, but increases for longer
time-steps. This provides evidence as to why k is not strongly selected for in the
inference procedure, as the correlation structure only changes dramatically for large
values of k. Fig. 7.12a shows the change in the death rate (1→ 0) from a simulation
with k = 0 switching to k = 1.5 after equilibrium time, where all other parameters
are kept constant. Due to the nature of k, the Gaussian death kernel only strongly
changes at it’s edge for increasing k. At the edge of the kernel there are few sites
in the alive state, hence a change in k does not change the rate of these events to a
huge degree. Indeed, for this case the average change in probability is approximately
0.01.
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The next step was to consider the expected rate of change in pair-wise correla-

tions for a spatial snapshot. It was found that this method was able to resolve all

parameters of the model with other parameters kept fixed. This was then applied to

two unknown parameters on test data, with other parameters fixed. The displace-

ment parameter r and angle parameter θ both minimised the expected change in

correlation close to the true values of the parameters.

For fitting all five parameters to a spatial snapshot an exhaustive approach would

be too computationally costly. Therefore the approach was adapted into the frame-

work of Bayesian inference. This was achieved by deriving a synthetic likelihood

that is based upon the sum squared errors of the correlation functions. The result-

ing likelihood was then combined with empirical priors based on spatial estimates

using a two-dimensional Fourier transform. Further discussion of the likelihood

lead to considering each correlation term individually, where each correlation was

assumed to have normal error with an individual variance.

The method with sum of squares likelihood, was first tested on simulated data

where it was found to be able to recover all parameters within 95% error margins

except for the competition factor k. k was found to be only weakly resolved, as a

change in k relates mainly to the boundaries of the competition kernel, for a spatial

pattern at statistical equilibrium this would only strongly affect occupied sites at

the edge of bands. These sites are naturally subject to higher death rate, due to

fluctuations in the banding and hence do not contribute a significant amount to the

correlation structure. This was further investigated by observing how the correlation

structure changes in time as a simulation is equilibrated at a small value of k and

then observing the changing correlation structure when k is altered to a large value.

For significant changes in k little change in the correlation structure is observed on

small time-scales, although on larger time-scales this is observed.

Due to the problematic nature of resolving the k parameter the model was al-

tered such that k was replaced by β, which represents the competition rate and

the transition probabilities were calculated by assuming each site in the lattice is a

Poisson process. This was combined with the normal form of the likelihood and the

method was again tested on simulated data. It was found that the method was able

to identify all five parameters of the model within 95% confidence intervals of the

posterior and hence this form of the likelihood and model was applied to real data.
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The method was then applied to a variety of spatial patterns from various ecosys-

tems that exhibit banding: tiger bush and seagrass. The method was able to resolve

the direction and distance of the banding for the seagrass snapshot, however was

unable to for the tiger bush snapshot. There are many reasons as to why the method

failed to capture appropriate parameters. In order to represent the data on a bi-

nary lattice, several image processing steps were performed. These methods include

having a cut-off for when a site is occupied. These cut-off implies sites near the

boundary of banding would be subject to noise and hence may not be properly cat-

egorised. An extension would be to consider instead the probability of a site being

occupied by using a greyscale image of the vegetation. The method can then be

adapted to consider probabilities of a site’s occupation. The particular form of the

competition kernel may also be misspecified for the tiger bush system.

Banding is but one of a plethora of spatial patterns observed in vegetation ecosys-

tems. These patterns include spots, labyrinths and barren patches known as “fairy

circles” [Van Rooyen et al., 2004]. Models have been proposed to explain the mecha-

nisms of these patterns, but none have been explicitly fitted to spatial data [Barbier

et al., 2008; Fernandez-Oto et al., 2013; Tlidi et al., 2008]. The method proposed

in this chapter gives a way of fitting parameters to data for a general probabilis-

tic cellular automata model. An extension would then be to apply this method to

other models of vegetation pattern formation in order to fit to more general spatial

patterns.

The main spatial observable used has been the pair-wise spatial correlation func-

tion. A further extension would be to not only consider pairs of sites, but also

triples of sites. This would produce a significant increase in the computation of the

expected change in the observable, but may be able to more accurately distinguish

between spatial patterns, especially where more than one direction to the pattern is

observed. An alternative approach could be to split the spatial data into overlap-

ping boxes of a certain length and fit the model to each of these boxes. The results

would then indicate how local anisotropy and competition effects vary throughout

the space.
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Figure 7.13: Top-right: Banding pattern observed in seagrass. Top-left: An exam-
ple simulation with maximum a posteriori parameters using the normal likelihood
(Eq. 7.44) and the rate model (Eq. 7.54). Bottom: marginal probability distribution
for each parameter.
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Thiery et al. [1995]). Top-left: An example simulation with maximum a posteriori
parameters using the normal likelihood (Eq. 7.44) and the rate model (Eq. 7.54).
Bottom: marginal probability distribution for each parameter using the normal
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Chapter 8

Aggregation

In this house, we obey the laws of thermodynamics!

(Homer J. Simpson )
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8.1 Introduction

In Chapter 6 a variety of spatially explicit models were explored to elucidate the re-

lationship between the scaling of the patch-size distribution and the dynamic persis-

tence of the vegetation system. It was found that a power-law distribution provides

a good fit to the patch-size distribution under a variety of conditions, however there

are marginal cases to this. Kéfi et al. [2007] analysed patch-size distributions in

semi-arid vegetation in the Kalahari and found that there was not only a power-law

distribution evident in the patch-size distribution, but also a truncated exponential

term, when the system was under increased grazing pressure. Similar phenomena

have also been detected in a number of other ecosystems including mussel beds

[Guichard et al., 2003] and marine benthic diatoms [Weerman et al., 2012].

The leading explanation of this power-law pattern formation is due to local in-

teractions driving the large-scale behaviour [Scanlon et al., 2007b]. This has been

supported through the use of numerical simulation of spatially-explicit models of

vegetation growth combined with a global effect on the population density inter-

preted as the amount of rainfall or other global processes. This explanation does

not answer how a power-law should form on a more fundamental level, whether it

is due to an aggregation of smaller clusters or a competition effect between larger

clusters dominating the landscape.

In this chapter spatially implicit models of vegetation clusters are investigated by

considering how patches form and aggregate, instead of modelling vegetation as a

probabilistic cellular automata as was done in chapter 5 and 6. The general con-

ditions under which a power-law distribution is expected to emerge are explored as

well as when there is a meltdown of the power law distribution due to an exponential

truncation.

Models of aggregation and fragmentation have been considered in other areas in

ecology such as the size of fish schools [Niwa, 1998] and marine diatoms [Jackson,

1990]. Aggregation phenomena has been more generally studied in the Physical

sciences [Aldous, 1999]. This chapter gives an overview of these models and their

solutions as well as using these solutions to give insight into vegetation ecosystems.

Further, the connection between the power-law exponent and the persistence of

the distribution in this model is explored. We begin with defining a novel model

of aggregation with linear death and then deriving an asymptotic solution when
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the death rate is small. A more general model of aggregation with death is then

derived and applied to the Isles of Scilly, UK patch-size data. The conclusion is that

the power-law clustering observed in many vegetation ecosystems may simply be an

aggregation effect and the exponential truncation observed when there is increased

stress is due to an increase in the linear death rate of single units connected to a

cluster.

8.2 Introduction to equations

My initial approach was to explicitly model the whole environment and species via

a probabilistic cellular automata and use the subsequent patch-size distribution to

make inferences about its relationship to the return rate. However, this does not

model either the patch-size distribution or the return rate explicitly and does not

give a theoretical understanding of how the power-law distribution emerges and

under what conditions it should be observed.

The idea developed here is to model the patches themselves as opposed to individ-

ual sites. We denote ck(t) as the density of patches of size k at time t, where time is

taken to be continuous i.e. t ∈ [0, T ] ⊂ R. A continuous model of patch-sizes can be

studied, however for the present k shall take positive integer values only, k ∈ N/{0}.
A kernel of aggregation gives the rate at which patches of size i and j aggregate

together to form a patch of size i + j, this kernel is denoted K(i, j). Finally it is

assumed there is a constant rate at which patches of size 1 or monomers enter the

system. The governing master equation, also known as the Smoluchowski equation

[Von Smoluchowski, 1916] is then

d

dt
ck =

1

2

∑
i+j=k

K(i, j)cicj −
∑
j≥1

K(j, k)cjck + δk,1. (8.1)

Various properties are desirable for the kernel. Firstly commutativity, where the

rate at which patches of size i and j aggregate does not depend on the ordering of

the patches i.e. K(i, j) = K(j, i). Secondly, scaling homogeneity, where the rate at

which patches of a certain size aggregate scales by some factor K(ai, aj) = aλK(i, j).

The simplest kernel that satisfies these conditions is the constant kernel K(i, j) = 1.

When this is the case the tail-solution (for large k) has the simple form [Hayakawa,

1987]

ck ∼
1√
4π

1

k3/2
. (8.2)

197



The tail of the patch-size distribution is a power law with exponent −3/2, where

the power law nature of the solution is a consequence of the injection term (where

births of patch size one enter the system) and the non-linear aggregation function.

The equation can be solved analytically for more general kernels of the type

K(i, j) = i−a + j−a. (8.3)

This generalisation needs an interpretation in the context of growing fixed vegetative

clusters, which shall be discussed in section 8.3. This type of kernel also admits an

analytic solution in the large patch-size limit [Krapivsky et al., 1999; Krapivsky

et al., 2010] with a steady state distribution of the form ck ∼ Ck−τ where

τ =
3− a

2
, (8.4)

C =

√
1− a2

4π
cos
(πa

2

)
. (8.5)

For a steady state to exist there must be the condition −1 < a < 1 and hence

the scaling exponent can be found on the interval τ ∈ (1, 2). The dynamics of the

equation can be probed by defining the cross-over time, which is the time taken for a

density of patches of a certain size to reach its asymptotic value. The cross-over time

for a patch of size k∗ to the steady state solution ck∗ can also be calculated giving

t = (k∗)
z where z = (1 + a)/2. The scaling of the cross-over time and the patch-size

exponent can be related by the simple linear equation τ = 2− z. This gives a linear

relationship between the static exponent at stationarity and its dynamic exponent,

which may be associated with the return rate. Hence the conclusion is the power-law

patch size and relationship between return rate and the resulting distribution can

be explained by an aggregation process.

A real vegetation system is not purely defined by an aggregation process however.

In particular in the previous example there is no death either of single vegetation

units or patch clusters. Death may lead the fracturing of clusters and to changes

in the exponent of the stationary distribution and so it is important to include in

any model of vegetation clustering. In order to produce a model that is analytically

tractable, it is assumed that the death rate is constant across all individual units

and the death of individual units comes from the boundary of the cluster i.e. a

death event in a cluster does not fragment the cluster into two or more clusters. A
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modified Smoluchowski equation with a linear death term can then be produced as

d

dt
ck =

1

2

∑
i+j=k

K(i, j)cicj −
∑
j≥1

K(j, k)cjck + µck+1 − µck, (8.6a)

d

dt
c1 = −

∑
j≥1

K(j, 1)cjc1 + 1 + µc2 − µc1. (8.6b)

8.3 An ecological interpretation of the aggregation ker-

nel

The general additive aggregation kernel is of the form K(i, j) = i−a + j−a, where

a represents the scaling parameter of the rate at which aggregates of a certain size

join. If it is equally likely for a cluster of a certain size to aggregate with a cluster

of any other size then the scale parameter a = 0. For a pure aggregation system

with no fragmentation, this leads to a cluster scaling of 3/2.

It is instructive to imagine a single unit or monomer coming into contact with

a cluster and calculating the rate at which this occurs for larger as opposed to

smaller clusters. If a > 0 then, assuming the size of the monomer is negligible, the

monomer rate equation is K(i) = i−a. This means smaller clusters are favoured and

the growth rate reduces as clusters grow larger in size.

An ecological explanation of this could be due to the self-limitation through

competition a larger cluster experiences with itself, thus reducing its potential for

growth. Smaller clusters have more space and thus can grow at a quicker rate.

When a < 0, larger clusters are favoured for growth compared with smaller clusters,

this can be seen as a form of the Allee effect [Stephens and Sutherland, 1999]. Small

clusters are more susceptible to environmental perturbation and as such, have a

lower propensity for growth. Larger clusters of vegetation are able to regulate their

environment more and thus have greater resources for growth (An example species

where this holds is ribbed mussels [Bertness and Grosholz, 1985], where larger clus-

ters provide protection and shelter for new mussels). A value for a then can give

an indication of whether there is strong small cluster growth at the expense of large

clusters forming or if the converse holds.

An alternative explanation of the aggregation exponent a is due to the edge effects

of a cluster. A single individual vegetation unit aggregates to a cluster proportional

to the edge of that cluster. If all cluster are non-fractal then it would be expected
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that a vegetation unit aggregates at rate i1/2, since the length of a non-fractal object

scales as a square root with its area. For a general fractal cluster with boundary

dimension d, it would be expected that an individual unit scales as i1/d.

8.4 An analogue for the return rate

General aggregation-fragmentation systems do not have analytical solutions and

only in a few special cases can exact solutions be found. Hence, some alternative

way of describing the return rate of the aggregation system that is not dependent

on the steady-state solution being known must be sought. One potential strategy to

probe the dynamics is to consider the crossover time for a system. This can easily

be computed if it is assumed the patch distribution has the asymptotic solution

ck ≈ Ck−τ (note τ is the Korcak exponent for this system). If the injection of new

patches of size 1 occurs at rate 1 and the aggregation process preserves the total

mass of the system, then total mass is the time t with the rate at which mass is

added to the system 1. Applying this gives

t =

∞∑
k=1

kck =

∞∑
k=1

k1−τ . (8.7)

When the system is evolving, there will necessarily be some maximum patch size k×,

where there are no patches larger than this size (i.e. ck = 0 for k > k×). This can

then be used to approximately solve the above summation using the approximate

integral rule to find the leading order exponent.

t =

k×∑
k=1

k1−τ ∼ k2−τ
× . (8.8)

The cross-over time t× = k2−τ
× then gives the leading order time to which the density

of patches of size k take to reach its limiting distribution. In order to acquire a rate

from this the cross-over time assume that initially there are no patches of size k.

The time taken for patches of size k to go from 0 to their asymptotic value is tx. The

asymptotic density of patches of size k is given by the tail solution k1−τ . Therefore

the rate of change in the density of patches of size k, rk can be found approximately

as

rk ≈
∆ck
∆t

=
k−τ − 0

k2−τ − 0
= k−2 (8.9)

The rate of change in the density of patches of size k therefore depends only upon

this size of patches and not the power-law tail of the distribution. This analysis
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applicable to a pure aggregation system with no loss of mass due to death indicates

that there would be no relationship between the Korcak exponent and the return

rate in the density. This therefore shows a limitation in studying a vegetation system

as a pure aggregation process.
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Figure 8.1: Plausible Korcak-return rate
relationship.

One of the issues with this approach

is that there is no direct correspondence

between the return rate in terms of the

density of a population at or close to

equilibrium and a rate of change in den-

sity for an aggregation process, which

is far from equilibrium. For a system

that has a heavier tale (i.e. the Korcak

exponent τ is lower/ approaching one)

the corresponding spatial pattern would

have more large patches and fewer small

patches and hence would look persistent

from a spatial perspective. This is not

the same as the type of persistence when

only a single patch size is considered.

A simpler system without a monomer injection term has been solved an-

alytically [Von Smoluchowski, 1916]. This solution can then be used to look at how

the asymptotic solution decays with respect to the new dynamics. The leading order

exponent of these dynamics then sets the rate of the system. For initial data of the

form ck(0) = Ck−τ and an constant kernel aggregation equation with no input of

the form
d

dt
ck(t) =

∑
i+j=k

cicj − 2ck

∞∑
i=1

ci. (8.10)

Then the solution for large k is of the form

ck ≈ −
1

Γ(1− α)
t−1(Dt)−1/(τ−1)w−τ , w = k/(Dt)1/(τ−1). (8.11)

The leading order term for t has exponent 2τ/(τ − 1). Plotting this against the

Korcak exponent τ gives a good close relationship to the one observed in the data

(See Fig. (8.1)).
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8.5 Constant aggregation with linear death

In this section we derive a new result for a more realistic model of vegetation ag-

gregation with a death term that is linear in patch size. The strategy for deriving a

solution is similar to the strategy in Krapivsky et al. [2010]. For a constant kernel

K(i, j) = 2, Eq. (8.6) is rewritten as

d

dt
ck =

∑
i+j=k

cicj − 2ck
∑
j≥1

cj + µck+1 − µck, (8.12a)

d

dt
c1 = −2c1

∑
j≥1

cj + 1 + µc2. (8.12b)

The asymptotic tail of the resulting patch-size distribution is then sought in order

to gain an understanding of how the linear death rate affects the stationary distribu-

tion. A moment-generating function is used to find the steady state solution to this

equation in a similar fashion to the one described in Krapivsky et al. [2010]. Firstly

define the total number of all patches as N =
∑

k≥1 ck and then sum Eq. (8.12) in

order to obtain

dN

dt
=
∑
k≥1

∑
i+j=k

cicj − 2
∑
k≥1

ck
∑
j≥1

cj +
∑
k≥1

δk,1 +
∑
k≥1

µck+1 −
∑
k≥2

µck, (8.13)

dN

dt
= N2 − 2N2 + 1− µc1, (8.14)

dN

dt
= −N2 + 1− µc1. (8.15)

Dynamically, consider when N is at equilibrium. If µ = 0 then the stationary

solution is N = 1. If µ > 0 then the equilibrium solution is necessarily bounded

between one and zero as N and c1 are always positive.

The moment-generating function C(z, t) =
∑∞

k=1 ckz
k is now considered. Multi-

plying Eq. (8.12) by zk and summing over all k gives the following

d

dt
C = C2 − 2NC + z + µ

∑
k≥1

zkck+1 − µ
∑
k≥2

zkck

= C2 − 2NC + z +
µ

z
C − µC − µc1. (8.16)
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The new moment generating function defined as A(z, t) = C(z, t) − N(z, t) is con-

sidered. The time derivative is calculated by combining Eq. 8.16 with Eq. 8.15

d

dt
A(z, t) =

d

dt
C(z, t) +

d

dt
N(t)

= C2 − 2NC +
µ

z
C + z − µC − µc1 − 1 +N2 + µc1

= A2 +
µ

z
C − µC + z − 1

= A2 + µ
1− z
z

A+ µ
1− z
z

N + z − 1. (8.17)

Note that the right-hand side is quadratic in terms of A. Setting the time-derivative

to zero gives the steady-state solution of the moment-generating function as

A = µ
z − 1

z
+

√
µ2

(1− z)2

z2
− 4

(
µ

1− z
z

N + z − 1

)
. (8.18)

In order to proceed it is assumed that the death rate µ is small and only the leading

order term is kept. Hence

A ≈ 2

√
1− z − µ1− z

z
N. (8.19)

The strategy is to find A in terms of the power series
∑∞

k=1 ck(z
k−1). The expansion

of
√

1− x is used to obtain

Aapprox = 2
∞∑
k=0

Γ(3/2)

Γ(3/2− k)Γ(k + 1)
(1 + µN)1/2−k (−z − µN/z)k . (8.20)

Using the relationship Γ(z)Γ(1 − z) = π
Γ(z) sin(πz) , cancelling the (−1)k terms and

absorbing all constants into a constant c term

Aapprox = c

∞∑
k=0

Γ(k − 1/2)

Γ(k + 1)
(1 + µN)1/2−k (z + µN/z)k . (8.21)

Using the binomial expansion, this becomes

Aapprox = c

∞∑
k=0

k∑
i=0

Γ(k − 1/2)

Γ(k + 1)

Γ(k + 1)

Γ(i+ 1)Γ(k − i+ 1)
(1 + µN)1/2−k(µN)k−iz2i−k.

(8.22)
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In order to find the k-th coefficient as k >> 1 the leading order of the binomial is

considered, hence only the terms where i = k are kept in the expansion.

Aapprox ≈ c
∞∑
k=0

Γ(k − 1/2)

Γ(k + 1)
(1 + µN)1/2−kzk. (8.23)

By using the asymptotic approximation Γ(n+a)/Γ(n) ∼ na and assuming k is large,

the k-th coefficient in this expansion and hence the density of patches of size k is

ck = k−3/2 exp(−Λk), (8.24)

where Λ = log(1 + µN). The solution is therefore a power law with an exponential

truncation with a factor Γ. When the death rate is 0, Λ = 0 and hence the patch-

size distribution is a pure power law as is expected. A large death rate will lead

to a solution that is dominated by an exponential decay term, hence the patch-

size distribution is expected to have a smooth transition from a pure power law to

an exponential distribution. A dimensionality argument of Eq. 8.12 [Connaughton

et al., 2004] also leads to a power law exponent of the form 3/2. We derived a more

general version of Eq. 8.12 by considering a kernel of the form K(i, j) = i−α + j−α

and a general linear death rate of the form µ(k) = kβ, which leads to the new general

aggregation-fragmentation of the form

d

dt
ck =

1

2

∑
i+j=k

(i−α+j−α)cicj−
∑
j≥1

(j−α+k−α)cjck+δk,1+(k+1)βck+1−kβck. (8.25)

A general solution of this equation cannot be found analytically, instead the rate

equation is applied to the patch-size distribution data as described in Chapter 3.

This analysis is discussed in Section 8.7, but for now there is a deviation into an

alternative strategy to derive a solution to Eq. 8.12 when the continuous patch-size

limit is taken.

8.6 Comparison to explicit spatial modelling of vegeta-

tion growth

In order to compare the model predictions of patch formation in an aggregation

system with a constant death rate the prediction of the patch-size distribution ob-

tained in Eq. 8.24 is compared to a simple probabilistic cellular automata model

of vegetation growth. The cellular model is in a similar vein to the one discussed

in Scanlon et al. [2007b], the model is defined on a toroidal lattice where each site
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can exist in one of two states: alive (1) and dead (0). The alive state propagates

through nearest neighbour growth at rate β, as well as through a background con-

stant birth probability γ. The alive sites transition to a dead site with a constant

death probability µ. Hence if nx is the number of alive sites in the neighbourhood

of site x, the transitions can be summarised as

Px(0→ 1) = min{1, γ + βnx/4}, (8.26a)

Px(1→ 0) = µ. (8.26b)

where the minimum function is used to guarantee the probability of transitioning to

an alive state is one in the rare case when the sum of the two probabilities increases

above one.

Simulations were conducted for constant aggregation and birth rate β = 0.2, γ =

0.01 and over a range of death rates. Simulations were ran for 600 time-steps and

for lattice length L = 500. The final patch-size distribution was recorded for each

simulation run and the following power-law with exponential truncation was fitted

to the distribution using a maximum likelihood method

f(K = k) = Ck−α exp(−Λk), (8.27)

for some normalising factor C. The resulting maximum likelihood estimators were

found using a downhill simplex method implemented in Matlab R2014a [Lagarias

et al., 1998]. The approximate solution to the aggregation equation predicts a

constant power-law exponent α of 3/2. This is close to the inferred value from

simulation when the death rate is low (Fig. 8.2a), however for µ > 0.3 the power-law

exponent deviates from the theoretical value. The exponential factor Λ is non-zero

when the death rate is zero (Fig. 8.2b), where the mean field solution predicts a zero

exponential term. This deviation can be explained due to a finite-size effect, where

the finite system size induces an exponential tail in the patch-size distribution. For

increasing death rate, Λ does scale with the mean field prediction, although there

are large deviations from this. Overall there is an increase in the exponential factor

for increasing death rate as is predicted, however the functional form of the increase

is not captured by the mean field approximation.
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Figure 8.2: Exponents of patch-size distribution compared to simulations. The
theoretical values for the power-law exponent α and the exponential factor Λ are
derived in Eq. 8.24. As predicted for small values of the death rate the power-law
component of the patch-size distribution is constant whilst there is an increase in
the exponential component for increasing death rate. The likelihood of the fit (in
grey) indicates that for intermediate values of µ there is a poor fit of the distribution
to the simulation data

8.7 Empirical analysis of patch-size distribution using

the aggregation-fragmentation equation

Comparing the Korcak exponent with empirical data is one way of relating empirical

data to the general aggregation equation. However, in general the exact form of the

aggregation equation is unknown. Furthermore, the type and effects of the fragmen-

tation process can also be unknown and it is desirable to tease out these aspects from

the data. Work has been done on the inverse problem, whereby an aggregation ker-

nel is inferred from an empirical distribution. Recent work Jones et al. [2013], uses a

least-squares method to fit a general kernel of the form K(i, j) = g0
2 h(x)(iαjβ+jαiβ),

where the exponents give the small and large asymptotic of the aggregation and h(x)

is a term of O(1), where x = i/j. In order to preserve symmetry there is also the

requirement that h(x) = h(x−1).

Here I develop Bayesian approach in order to infer the parameters of the
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aggregation-fragmentation equation

d

dt
ck = g

∑
i+j=k

(iαjβ+jαiβ)cicj−g
N∑
i=1

(iαkβ+kαiβ)cick+µ(k+1)ck+1−µ(k)ck+τδk,1,

(8.28)

for the empirical patch-size distributions of the five sites from the Isles of Scilly,

UK dataset. Model comparison for the different patches and different forms of the

aggregation-fragmentation equation were then performed. This is done by com-

paring whether the fragmentation term has a linear death rate µ or one that is

dependent on the current patch size µ(i). Three models of aggregation with a death

rate linear in patch-size are considered. The first model assumes death is a constant

for all patch sizes µ(i) = µ, the second assumes a square root form of the death rate

µ(i) = µi1/2 and the third assumes a linear form of the death rate µ(i) = µi. Finally,

the inferred parameters are compared to the resulting dynamics of the system, in

particular the relaxation time, as a way of understanding the persistence.

8.7.1 Developing the likelihood

The general patch-evolution equation for a patch-size distribution C = (c1, . . . , ci, . . . , cN )

will evolve according to some functional form fi representing aggregation and frag-

mentation (and also possibly birth and death) for each of the patch sizes. It is

assumed there is some additive noise in the form of an i.i.d. random variable εt that

is distributed as εt ∼ N(0, σ2)

d

dt
ci = fi(C) + εt. (8.29)

At stationarity the resulting likelihood has the form L =
∏N
i=1N(fi(C), σ2).

8.7.2 Results

The MCMC chain was run for all three models and all five sites. A burn-in time

on 106 was found to be sufficient for convergence and the chain show good mixing

properties. The converged chain was run for a further 106 time steps and thinning

was performed on the resulting sample to produce uncorrelated samples from the

posterior. These samples were then used to construct the posterior and infer the

five parameters for each of the models.

As there are a total of fifteen separate posteriors constructed using the MCMC

method the full results of each posterior are not shown. Instead the mean of the
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marginal posteriors are given for each parameter as well as the 95% confidence in-

tervals for each parameter are displayed in Table 8.2 and the relative log Likelihoods

for each model is given in Table 8.1. The form of the aggregation parameters α and

β are close to 0 across all sites and for all three models although the confidence

intervals for each are large compared with the size of the support and hence is not

being strongly selected for. The values of the aggregation exponent fit well with the

estimated power-law exponent values for the seagrass meadows, where all values are

close to 1.5 although there is variation between them. The marginal probabilities

indicate that α, β < 0 is more favoured than for α, β > 0. Hypothesis testing for

the three models was conducted using a Bayes factor for all of the sites where the

relative log Bayes factor was calculated for site j from patch data Dj and model Mi

as

B = log

(
P (Dj |Mi)

P (Dj |Mmin)

)
, (8.30)

where Mmin is the model with the lowest maximum a posteriori relative to the other

models for that site. For all five meadows the constant death rate model µ(i) = µ

scores the highest relative log Bayes factor. Taking model one as the most likely,

the aggregation exponents for all sites are within the same 95% confidence intervals,

however site ogh has noticeably more negative aggregation exponents than the other

sites. All other sites have similar parameters and overlapping confidence intervals.

BLT OGH WBL HTB LA

Model 1 10.4181 9.1689 7.3466 10.424 7.4235

Model 2 7.89 0.83567 4.7453 7.3647 5.7792

Model 3 0 0 0 0 0

Table 8.1: Bayes factor comparison for all three models over the five sites. The
relative Bayes factor log ratio was calculated by taking the maximum a posteriori
(MAP) for each model and site respectively and dividing through by the lowest MAP.
The Bayes factor indicates that the first model, where death is constant across all
patches, has the strongest evidence.

8.8 Conclusion

Changing the focus away from explicit spatial modelling of vegetation patch forma-

tion and instead focusing on the dynamics of patch-size themselves gives a unique

insight into the underlying aggregation-fragmentation processes. This chapter has

primarily focused on solutions to equations where the aggregation kernel that gov-
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erns that rate at which patches of two sizes will aggregate by either a constant or

power law kernel. For a system where there is aggregation only the resulting patch-

size distribution is that of a pure power law, with exponent that is dependent on the

exponent of the power law aggregation kernel. The introduction of a linear death

term, where an individual is lost from a patch at rate µ gives rise to a power law

with exponential tail distribution of the form ck ∼ k−α exp(−Λk). This solution

holds generally when there is a linear death term and power-law aggregation kernel,

even when the kernel is composed of a sum of two power-laws. Further, α is depen-

dent on the specifics of the aggregation term alone and Λ is dependent on the death

rate alone. This separation of the aggregation and fragmentation term implies, in

principle, the ability to infer aggregation and death processes through observing the

converged patch-size distribution alone, hence this is applicable to inferring process

from a single spatial snapshot.

Scanlon et al. [2007a] predicts that there is a meltdown of a power-law distribu-

tion near a critical point in the system dynamics for a patch-size distribution of

vegetation. The model used is a spatially-explicit one with a local growth term and

a background death rate. The aggregation with constant death rate is one that is

analogous as a mean field model to the one proposed. Hence through the derived

solution in this chapter it is observed that there should always be an exponential tail

to the distribution if the death rate is non-zero. Similar arguments have also been

made recently [Pueyo, 2011], but notably none have explained the origin of a power

law with exponential tail observed in vegetation systems. The derived model then,

provides a theoretical origin to the observed spatial patterns in vegetation ecosys-

tems that are under pressure that can be considered constant throughout space

(rainfall, grazing etc.). This approach would be able to provide further insights into

the nature of the patch-size distribution for other systems where disturbance may

be spatially distributed.

The model also gives insight into how there can be a continuous array of power-law

exponent observed in nature. The aggregation with no death model predicts that

power-laws exponents in the range (1, 2) are physically possible, which is what has

been observed in the Isles of Scilly data as well as in semi-arid systems and mussel

beds. The model therefore predicts that a change in the exponent of a patch-size

distribution is related to a change in the structure of the aggregation kernel. A sim-

ple dimensionality argument can be used to show that in the aggregation and death

model with a kernel that has a general power law scaling, the resulting stationary
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distribution will have the same exponent as that in the model with no death. The

drawback to this approach in our context is that there is no explicit way of defin-

ing the return rate of the system, although the relaxation time for a characteristic

patch-size provides an ad-hoc way of assessing how the system would evolve fol-

lowing a perturbation. The conclusion of how to relate the patch-size distribution

to the system dynamics is that both the power-law exponent and the presence of

an exponential cut-off does give an indication of the underlying dynamics. More

complex fragmentation processes than the one discussed would alter these conclu-

sions however, as a non-linear fragmentation process will also lead to self-similar

solutions and thus the two processes are confounded when only the stationary state

is observed [Ernst and Van Dongen, 1987], such processes include storms and other

strong weather events that could split a single cluster of vegetation into multiple

clusters.
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Chapter 9

Vegetation disease on spatial

pattern formation

The sun comes up just about as often as it goes down, in the long run,

but this doesn’t make its motion random

(Donald Knuth )
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9.1 Introduction

The work outlined in the previous chapters has concentrated on the formation of

spatial order in sessile communities due to the short and long-range interactions

between the organism and its environment. This has included how spatial pattern

can be informative about the underlying dynamics and how the distribution of patch

sizes can arise due to an underlying aggregation process. This chapter concerns the

effects of processes on the these resulting patterns. Spatial pattern is an important

factor in both species and disease spread [Fridley et al., 2007; Real and McElhany,

1996]. On short time-scales, biological invasion is dependent on the connectivity of

appropriate habitat, whereas on longer time-scales there is an interaction between

the invading species and its host, leading to dynamics which are not separable.

There are therefore two regimes of study, where biological invasion is fast on the

time-scale of the host dynamics and where the time-scales are not separated and

host-species dynamics must also be explicitly taken into account.

Further consideration can be made in the context of a host-parasite system, where

either the host or parasite is evolving. An example is in how a disease responds to the

fragmentation of its host, whereby the dominant trait of the disease varies depending

on the spatial properties of the host. Prudence is a term used to describe a parasite

or disease that evolves in a way that it limits its own spread, the consequence of

which is that the host population has time to recover and the parasite remains

endemic in the population [Lion and Boots, 2010]. Local clustering can lead to

parasites or disease with low virulence, while a co-evolution of both parasite and

host leads to hosts with high resistance as well as parasites with low virulence [Best

et al., 2011].

Once again the case study of seagrass is used as an example of a vegetation sys-

tem where there a spatial processes occurring on the system. Seagrass is primarily a

clonal spreading vegetation where its entire life-cycle is sub-tidal. A wasting disease,

caused by a slime-mould protist L. zosterae [Muehlstein et al., 1991], lead to a large

Atlantic-wide epidemic that severely reduced its numbers in the 1930s [Muehlstein,

1989; Orth et al., 2006]. Currently wasting disease is endemic in most Atlantic

seagrass communities and there are several open questions related to the epidemic

dynamics[Bull et al., 2012]. Primarily, it is not clear how the same disease could

cause such a catastrophic decline in seagrass numbers previously, yet remains at en-

demic levels more recently. This question provides the motivation for understanding

how the geometry of a vegetation distribution affects its ability to regulate disease
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spread.

The chapter begins with an investigation of how a biological species spreads when

the environment (i.e. the vegetation population) can be considered static. In particu-

lar the role of heterogeneity and a fractal structure in the distribution of vegetation

shall be investigated to elucidate the relationship between environmental hetero-

geneity and species diffusion. The second half of the chapter shall be concerned

with the impact of spatial pattern on the dynamics of a pathogen, where the rate

of the dynamics of the pathogen and the rate of the dynamics of the vegetation

are comparable. In particular, the focus is on the role of banding in vegetation in

limiting the spread and impact of a virulent disease. The final section of the chapter

focuses on the origins of banding in the presence of a pathogen from an evolutionary

viewpoint. The main hypothesis of this section is whether banding in vegetation can

be viewed as an evolved trait in the sessile host species in the presence of a disease.

In which case, under what conditions would such an evolved trait be expected to rise

and how generally does banding impact the spread and distribution of the disease.

9.1.1 Modelling the spread of a species in a disordered environment

Normal diffusion is characterised by Fick’s law where the mean squared displacement

of a diffusing species scales as the square of the time i.e. if X(t) is a random variable

representing the position of a diffusing particle then Fick’s law states that

E[X2(t)] ∼ t2. (9.1)

Anomalous diffusion in contrast is where correlation functions disobey Fick’s law

and has been well studied in the past 30 years [Andow et al., 1990; Bouchaud and

Georges, 1990; Cohen and Murray, 1981]. To begin with, how the probability distri-

bution of a concentration evolves in time in a disordered media was studied, where

there is some intrinsic noise that is static on the time-scale of the diffusion process.

In order to understand the diffusion properties and how the rate of growth is affected

by a disordered environment a model of long-range diffusion with logistic growth

was developed. This is achieved using an integro- reaction-diffusion equation, where

the diffusion term is replaced with a convolution of a Gaussian. For a concentration

of some species u, the evolution equation is

∂u

∂t
= r(x)u(1− u) +D

∫ ∞
−∞

∫ ∞
−∞

u(x− p, y − q)k(p, q)− u(x, y)k(p, q)dqdp. (9.2)
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Figure 9.1: An equilibrium distribution
for a disordered r(x) drawn from a Pois-
son point process with probability ρ = 0.3.
The pattern has long-range structure in-
duced by areas where the density of occu-
pied lattices is higher than the average,
this leads to a diffusion pattern that is
highly heterogeneous even when r(x) is
drawn from a homogeneous distribution.

It is assumed that the spread of a bi-

ological species is Gaussian with some

constant variance σ, hence k(x, y) ∝
exp(− 1

2σ2 (x2 + y2)). Note that if σ → 0

and r is a constant then Eq. 9.2 reduces

to the Fisher’s equation i.e.

∂u

∂t
= ru(1− u) +D∇2u, (9.3)

of which travelling wave fronts u(z) are

a solution for wave speed c > 2 with

z = x− ct. It is clear that if r(x) is not

homogeneous across space then this will

alter the wave properties of the equa-

tion. It would be expected that in the

case where space is discretised and r(x)

is an i.i.d. Bernoulli random trial across

space then a retardation of the growth

velocity is expected. In one spatial di-

mension, the probability of having a gap

of size k where the growth rate is zero

would be P(gap k) = (1− p)kp2. In this

gap r is zero and hence the governing evolution is a pure diffusion process. Smaller

p implies that the probability of larger gaps exist, until in the limit as p→ 0, where

there is a single gap of infinite size and the evolution is governed by a pure diffusion

process.

9.1.2 The Multiplicative cascade model

The focus of the generalised Fisher model is to understand how different environmen-

tal properties, such as environmental heterogeneity affects the diffusion and general

fecundity of a biological species being introduced to an environment. In order to

explore the consequences of environmental heterogeneity we desire a neutral model

of the environment where properties such as density can be controlled and others

such as heterogeneity can be varied.

The Multiplicative cascade model [Meakin, 1987; Meneveau and Sreenivasan,

1987] has been used to study a wide-range of spatial heterogeneities in physical sys-
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tems such as rainfall [Schertzer and Lovejoy, 1987] and in the distribution of galaxies

[Mart́ınez et al., 1993]. Its construction is relatively straightforward: begin with a

discrete lattice of a certain size (N × N) and four parameters q1, q2, q3, q4 ∈ [0, 1],

where each q is a general quantity used to as a measure for how the mass of a

system is distributed through the spatial hierarchies. The lattice is split into four

equal quadrants and a q is randomly assigned to each without replacement. Each

quadrant is then split into four further quadrants and the the process continues

down to the m-th level, where m = log2N . A probability is assigned to a cell i by

multiplying together all the preceding probabilities in the cell’s hierarchy. Hence,

the probability at cell i is

pi =

∏j=m
j=1 qij

(q1 + q2 + q3 + q4)m
, (9.4)

where ij indexes the sequence of q that were chosen at each hierarchy that i is

contained in. If the difference between the qi is large then this leads to a highly

heterogeneous measure over the lattice. Correspondingly, if q1 = q2 = q3 = q4 then

each pi has the same value and hence the measure is completely homogeneous.

A measure can be defined on the lattice by taking a set C that is a sub-set of

the lattice with ci lattice sites and defining the measure as µ(C) =
∏n
i=0 pci . This

gives the total probability of an arbitrary point landing in C. Notice this measure

is a complete description of the model and the model could have easily been defined

with µ as a starting point. The properties of µ can be analysed by considering the

generalised moments

Mr(q) =
∑
Mr

µ(C)q, (9.5)

where Mr is the set of r-mesh squares C for which µ(C) > 0. As the model is

defined constructively by splitting the lattice into four quadrants at each point, we

can consider how the generalised moments change as the r-mesh squares halve, i.e.

take r to be equal to N2−n for increasing values of n up to m. For the n-th level,

denote li as the number of times the parameter pi has been picked. This leads to

the relationship l1 + l2 + l3 + l4 = n; furthermore, the number of ways this sequence

can be chosen is n!
l1!l2!l3!l4! . As such we may now write down an explicit formula for

the moments

MN2−n(q) =
∑

l1+l2+l3+l4=n

n!

l1!l2!l3!l4!
pql11 pql22 pql33 pql44 = (pq1 + pq2 + pq3 + pq4)n. (9.6)
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It is clear from this equation that the moments scale as a power law for decreasing

r. Define the exponent β(q) as the following limit

β(q) = lim
r→0

logMr(q)

log r
. (9.7)

Hence, for the Multiplicative cascade model β(q) = log(pq1 + pq2 + pq3 + pq4)/ log(2).

β(q) contains an entire description of the multifractality of the measure µ. The

Rényi dimensions, which are also used to characterise the multifractal nature of

a measure through box-counting can be related by the fomula Dq = β(q)/(1 − q)
[Falconer, 2013]. D0 is the standard box-counting dimension, when p1, p2, p3, p4 > 0

D0 = log(4)/ log(2) = 2. Hence the box-counting dimension of the multiplicative

cascade model as has been defined here will almost always be 2. This may seem

surprising considering these can include some quite heterogeneous situations where

parts of the lattice are very sparse, however the measure will always be strictly

positive (µ > 0) everywhere and as such the cascade will always have non-empty

boxes of arbitrary size assuming an infinite lattice. For a finite lattice finite size

effects come into play, which would lower the box-counting dimension to a value

less than 2. If pi = 0 for a single i ∈ {1, 2, 3, 4} then the box-counting dimension

D0 = log(3)/ log(2) ≈ 1.59. This is due to parts of the measure being 0 at every

box size r. Similarly if pi = 0 for two i ∈ {1, 2, 3, 4} then D0 = log(2)/ log(2) = 1.

The measure’s support is therefore geometrically similar to a line.

For purposes here it is more elucidating to consider the multifractal spectrum,

which gives a measure of the heterogeneity of the measure [Stanley and Meakin,

1988]. We can relate this quantity to the coarse-grained multifractal spectrum f(α)

via a Legendre transform

f(α) = inf
−∞<q<∞

{β(q) + αq}. (9.8)

As β(q) is continuously differentiable we can calculate f(α) by differentiating the

term inside the infinum of the Legendre transform and setting to zero. This gives

the form of α as

α = −p
q
1 log p1 + pq2 log p2 + pq3 log p3 + pq4 log p4

(pq1 + pq2 + pq3 + pq4) log 2
. (9.9)
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Inputting this into the definition of f(α) we derive the parametric form of the

multifractal spectrum

f(α) =
log(pq1 + pq2 + pq3 + pq4)

log 2
− q(pq1 log p1 + pq2 log p2 + pq3 log p3 + pq4 log p4)

(pq1 + pq2 + pq3 + pq4) log 2
.

(9.10)

Observe that if p1 = p2 = p3 = p4 then f(α) = c and α = c for all −∞ < q <

∞. As the pi deviate from each other α occupies are larger range implying an

increasing heterogeneity of the measure µ. We can characterise this heterogeneity

by calculating −1/|f ′′(α)| around its maximal point (when q = 0).

f ′(α) =
df(α(q))

dq

dq

dα(q)

=
−α(q)− qα′(q) + α(q)

α′(q)
= −q,

=⇒ f ′′(α) =
df ′(α(q))

dq

dq

dα(q)

= − 1

α′(q)

=
(
∑

i p
q
i )

2 log 2

(
∑

i p
q
i )(
∑

i p
q
i (log pi)2)− (

∑
i p
q
i log pi)2

.

The heterogeneity index is thus

− 1/|f ′′(α(0))| =
4
∑

i(log pi)
2 − (

∑
i log pi)

2

16 log 2
. (9.11)

Note that when p1 = p2 = p3 = p4 we should have −1/|f ′′(α(0))| = 0 as the measure

is entirely monofractal. As an example take p1 = p2 = p and p3 = p4 = q. The

heterogeneity index in this case is

− 1/|f ′′(α(0))| = (log p− log q)2

log 16
, (9.12)

we can see that in the case where p = q then −1/|f ′′(α(0))| = 0, as we would expect

since the measure is entirely monofractal and the multifractal spectrum collapses

on a single point with width 0. As the probabilities are normalised p + q = 1
2 and

as such as p → 0 then q → 1
2 . As p → 0, −1/|f ′′(α(0))| → ∞, hence the larger the

difference between the probabilities p and q the more heterogeneous the measure

and the corresponding realisations of the model will be.
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9.1.3 Methods

The simulations were intialised by drawing r(x) from a multiplicative cascade model

with parameters (q1, q2, q3, q4) = (1, 1, p, q) where p and q are in the range 0 <

p, q ≤ 1. The first step is to normalise the parameters, pi → qi/
∑
qi. r(x) is then

generated by producing the matrix P where each row is a random permutation of

(p1, p2, p3, p4). A fixed number of points is selected and for each a row vector is

produced with indexes randomly drawn based on the probabilities of each column.

For example if the number of hierarchies is 3 then a randomly drawn matrix P

would have the form 
p2 p4 p4

p1 p2 p3

p3 p1 p2

p4 p3 p1

 .

A random vector based on this matrix could then be (1, 2, 2) (based on the relative

probabilities). This vector defines the co-ordinates for this point. In this case the

point is in the second quadrant of the second quadrant of the first quadrant of the

lattice. There is the possibility that due to the hierarchy being terminated for some

finite m that some points may overlap.

Once r(x) has been drawn, the integro-differential equation described in Eq. 9.2

was solved numerically using a Runge-Kutta 4th order method in the interval [0, T ]

with an initial condition u0, where u0(x) = 1 when x is the central co-ordinate and

0 everywhere else.

9.1.4 Observables

Certain observables are taken from the numerical solution to Eq. 9.2 to ascertain how

the multifractal features of r(x) affect the dynamic properties of the species spread.

The mean and variance of the population over space was recorded for the final time

point T . Additionally, as we are interested in how r(x) alters the diffusion properties

we record the exponent of the average displacement for early time 〈(x(t)− x0)2〉 ∼
t2/dw . This was done by weighting the squared distances from the centre of the

lattice by the density and then averaging at each time point. An exponent was then

fitted to these quantities on a log-log plot using linear regression. This produces an

estimate for the dynamic exponent dw, which measures the deviation from Fickian

diffusion.
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Figure 9.2: Summary of r(x) for a Poisson point process with density ρ. Fig. 9.2b
gives the relationship between dw as the probability of lattice site occupation param-
eter ρ increases. There is an approximately linear relationship as diffusion moves
from the sub-diffusive regime (ρ < 0.4) into the super-diffusive regime (ρ > 0.5).
There is a non-linear relationship between the mean and variance of the population
against the density parameter ρ.

9.1.5 Results

As a model of comparison, Eq. 9.2 was numerically solved for a r(x) drawn from

a Poisson point process with a cut-off at the smallest lattice size. This produces

a homogeneous, but patchy landscape that can be controlled using the density pa-

rameter ρ that is the probability of a randomly chosen lattice site being occupied.

dw has an approximately linear relationship with ρ (Fig. 9.2a) i.e. as occupancy

increases the rate of diffusion also increases.

Fig. 9.2b shows the mean population after some time T . The equilibrium density

would be expected to scale as a linear function of ρ. The relationship is in fact

super-linear due to the population at time T still being in a transient state and

hence the super-linear growth is due to the propagation of the species wave-front.

This is also reflected in the relationship between population variance and probability

of occupancy ρ. The increase in variance is due to the super-diffusive transient

dynamics, where there is a high degree of variability along the wave front.
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A summary of when the growth rate r(x) is drawn from the multiplicative cascade

model with parameters (1, 1, p, q) is given in Fig. 9.3. Each point (p, q) is averaged

over 100 realisations of the multiplicative cascade model for those parameters. dw

is in the sub-diffusive regime when p and q are low, which corresponds to a high

heterogeneity index (as indicated in Fig. 9.3c ). As (p, q)→ (1, 1) the species spread

becomes super-diffusive and r(x) is drawn from an increasingly homogeneous distri-

bution. The variance of dw (Fig. 9.3c) is maximised at (1, 0) and (0, 1). In this region

the box-counting dimension is log(3)/ log(2), which is less than the other regions in

parameter space excluding (0, 0). Although the regions excluding (0, 0), (1, 0), (0, 1)

have box-counting dimension 2 for an infinite lattice size, finite size effects reduce the

box-counting dimension and cause it to vary continuously between 2, log(3)/ log(2)

and 1.
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Figure 9.3: Summary of when growth rate r(x) drawn from a multiplicative cascade
model with parameters (1, 1, p, q) where (p, q) are taken from the unit interval. Each
point (p, q) is averaged over 100 realisations of the Multiplicative Cascade model
for those parameters. dw is in the sub-diffusive regime when p and q are low,
which corresponds to a high Heterogeneity index (as indicated in Fig. 9.3c ). As
(p, q)→ (1, 1) the species spread becomes super-diffusive and r(x) is drawn from an
increasingly homogeneous distribution. The variance of dw ( Fig. 9.3c) is maximised
at (1, 0) and (0, 1), in this region the box-counting dimension is log(3)/ log(2), which
is less than the other regions in parameter space excluding (0, 0). Although the
regions excluding (0, 0), (1, 0), (0, 1) have box-counting dimension 2 for an infinite
lattice size, finite size effects reduce the box-counting dimension and cause it to vary
continuously between 2,log(3)/ log(2) and 1.
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9.1.6 Discussion

Although both the monofractal form of r(x) and the multifractal form of r(x) both

have a box-counting dimension in the large lattice limit of 2, they both exhibit

different dynamic scaling properties. The variance of the dw exponent is narrower

than in the case where r(x) is a homogeneous Poisson point process. Comparison

may be difficult however as when r(x) is varied in the multifractal case, the density

of points is kept at a constant, whereas it varies continuously between 0 and the N

lattice points.

For the density chosen in the multifractal model (ρ = 0.3) the regime is entirely

sub-diffusive (dw > 2). The heterogeneity index gives a measure of the diffusive

exponent dw in this regime for a fixed density. The variance of dw also depends on

the heterogeneity index, but rather has a non-linear relationship with a peak followed

by a linear decay. The variation in the diffusive exponent is thus maximised when

the heterogeneity index is low. This is perhaps a surprising result as an increase

in the heterogeneity index increases the variation of local scaling within r, which

in turn would lead to an increasing variance in the scaling of the diffusion rate.

dw is however a global property of the lattice and hence the effect of increasing

heterogeneity may be masked by taking the average over the lattice sites. It would

be interesting to define a local scaling parameter for the species diffusion process

and hence be able to ascertain how the heterogeneity affects the diffusion across the

space.

9.2 Disease diffusion in a changing environment

The previous section examined the relationship between scaling and disease dynam-

ics on a static environment where the rate of the disease dynamics is at a much faster

rate than the rate of the vegetation process. Often the rate at which the disease

propagates is on a similar length-scale to the rate of the vegetation process. We

therefore consider a disease process that has a spatial scale lD and a rate of infec-

tion β proportional to the rate of growth for a vegetation process with competition

as described in Chapter 5. The purpose of the next section shall be to ascertain

the effect of a disease process on the pattern formation and dynamical properties of

the competition offset model. In order to proceed the competition offset model is

modified such that each site can be in a third diseased state.
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9.2.1 Disease model

The model is as follows, the system is a N ×N lattice Ω where each ω ∈ Ω can be in

one of three states: E,O,D. E stands for an empty site; O is a site occupied with

healthy vegetation and D is a site occupied with vegetation in a diseased state. For

convenience, we define an indicator function IX , which is defined as follows

IX(ω) =

{
1 if in state X,

0 else.
(9.13)

Similarly IX(Ω) is the indicator matrix that contains IX(ωij) as its elements. The

disease propagates with a kernel kd which is Gaussian with mean 0 and variance ld.

The dynamics can then be written according to the probability of a site transitioning

from state X to state Y in a time-step as (Fig. 9.4)

P (E → O) = kr ∗ IO(Ω), (9.14a)

P (O → D) = β(kd ∗ ID(Ω)), (9.14b)

P (O → E) = (kc ∗ IO(Ω))k, (9.14c)

P (D → E) = γ, (9.14d)

E O

D
Figure 9.4: Schematic diagram of the dis-
ease model (Eq. 9.14)

where ∗ is the standard two-dimensional

convolution operator. As a brief re-

minder of the previously discussed dy-

namics, the kernel kr represents repro-

duction due to local clonal shooting

and long-range sexual reproduction and

takes the form of a Gaussian with zero

mean and variance lr. The transition

from occupied site to unoccupied is due

to death from competition and is medi-

ated via the competition kernel kc with

an offset that is mediated by a mean with radius r and angle θ and a variance lc.

This represents death due to competition factors such as hydrological scouring and

resource depletion. The offset comes due to environmental factors such as gradient

or prevailing current. There is also a dimensionless parameter k, which represents

the strength of the competition and controls the kurtosis of the competition ker-

nel. For low k the effect of the competition is more uniform and hence represents
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Figure 9.5: mean and variance for the population of vegetation and diseased-
vegetation over a range of k, leaving other demographic parameters fixed at
σ1 = 0.5, σ2 = σ3 = 1, r = 10, θ = π/4, γ = 0.2, β = 2. Decreasing competition
(increasing k) leads to lower density of healthy vegetation and higher disease preva-
lence. This in turn, also leads to a lower variance in the vegetation population.
Vegetation dynamics with strong competition was found to go on longer excursions
than in the low competition regime where clusters quickly grow and are then invaded
and quickly eradicated by disease.

stronger competition. For larger k the competition is weaker going to 0 as k →∞.

9.2.2 Competition in regulating disease spread

As a first investigation of how spatially-distributed competition controls disease

spread we can compare the disease dynamics for a system which has no competi-

tion (k � 0), to a system where there is strong competition with offset such that

banding is exhibited. Here we introduce a constant reservoir of infection by allowing

all susceptible sites to become infected at each time-step with a small probability

(10−4). For a system that has no competition there are regular epidemics that spread

throughout the population leading to a high degree of variability in the vegetation

population and a high level of disease (Fig. 9.6). In contrast where competition is

strong, but all other parameters are the same as the previous example, the vegeta-

tion forms into a banded structure. In this case the diseased state remains endemic

at levels far lower than the healthy vegetation state. This is achieved as diseased

patches are contained due to competition effects, meaning the disease cannot con-

tinue to propagate attacking other healthy patches, thus giving previously diseased

patches time to recover (Fig. 9.7).
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In order to determine how the strength of competition affects the prevalence

of disease a number of simulations were performed over a range of k. For each

k ∈ {0.2, 0.4 . . . , 4}, 100 replicate simulations were carried out for 104 time-steps,

with other parameters held constant such that the disease process occurred on the

same spatial scale as the competition and vegetative growth was primarily local

(σ1 = 0.5, σ2 = σ3 = 1, r = 10, θ = π/4, γ = 0.2, β = 2). There was also a

background disease rate of 10−5, this was to ensure that the disease could never

be completely eradicated, thus clusters of disease emerge spontaneously throughout

the lattice. This rate is biologically reasonable as some long-range infection events

may occur that are not captured by the local spreading term. For example, in

seagrass, diseased shoots can become detached and float on currents where they can

come into contact with susceptible leaves [Moore and Short, 2006]. The vegetation

process has no background birth rate and as such there is a probability of complete

extinction of the vegetation, although this was not observed for the parameter values

and the simulations that were studied. In the presence of low competition (k > 1),

disease is prevalent and higher than where competition is strong (k < 1), competition

therefore helps to regulate the incidence of endemic disease for this particular model

( Fig. 9.5a). The variances (Fig. 9.5b) of the vegetation population are also strongly

affected by the interaction between competition and disease. For high competition

values, bands of vegetation form that are susceptible to infection and death due

to disease, this leads to the population performing large excursions away from the

mean as large bands are infected leaving gaps that recover slowly due to the lower

fecundity of the vegetation compared to the in the case of low competition.
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Figure 9.6: realisation of dynamics for the model described by Eq. 9.14 with param-
eters lr = 0.5, ld = 1, γ = 0.2, β = 2 and where there is no competition i.e. k →∞.
The figure on the left shows a typical snapshot of the spatial distribution of healthy
vegetation (in green), the diseased state (in black and the empty site (in yellow).
The right-hand side shows the time-series for vegetation and disease.
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Figure 9.7: realisation of dynamics for the model described by Eq. 9.14 with param-
eters lr = 0.5, ld = 1, γ = 0.2, β = 2. Here there is strong competition present given
by lc = 1 and k = 0.1.
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9.3 Evolutionary model for pattern formation in reac-

tion to disease

Models where disease evolve into a critical state where cluster sizes are scale-free

have been previously considered [Socolar et al., 2001]. Regular spatial vegetation

patterns in vegetation have often been associated with environmental interaction,

such as the presence or absence of nutrients or ground water or the presence of biotic

interaction [Klausmeier, 1999; Rietkerk and Van de Koppel, 2008]. These spatial

patterns have been shown to provide global benefit to the species, by allowing species

to exist in environments that would otherwise be unfavourable and not permit their

existence. In section 9.2 the effect of disease on spatial pattern was explored. It

was shown that the presence of disease has a large impact on the variability of the

vegetation dynamics, thus making it more vulnerable to extinction. Regular pattern

formation in the form of banding was found to have a large impact on the disease

dynamics. As the amount of spatial competition, and thus banding increases, the

prevalence of disease decreases. This would naturally lead to areas of vegetation with

banding surviving, whilst areas of vegetation with no banding going extinct. This

represents group-level selection, where one group is able to proliferate at the expense

of another group and hence selection is occurring at the large population level. For

a global pattern to form, selection should also act on the level of individuals. The

hypothesis then is that the amount of spatial competition an individual feels is a

heritable trait and as such is selected for in the presence of disease. This leads to

dynamics where, locally if there is no disease a plant is better to switch to have low

mortality due to spatial competition as this will allow its offspring to proliferate at a

higher rate. Where locally there is a strong disease presence, the spatial competition

provides a way of isolating offspring from other patches that are in a diseased state,

thus increasing their reproductive success. There is also a free-loader effect, where

in a patch where all individuals feel strong spatial competition, it is better to switch

to the strategy where spatial competition is low and thus offspring can proliferate

at the expense of neighbouring vegetation.

These ideas will be explored using a modified model of the version outlined in

section 9.2. The changes are with the competition parameter k, which will now be

a spatially explicit variable k(x). This is now modelled as a heritable trait. Here

asexual reproduction is assumed, when there is a birth event at an empty site ω ∈ Ω,

a parent is randomly selected according to the probabilities of a birth event at the

lattice site ω for each individual. We also assume that k can either take high or low
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values (k{H,L} = {0.01, 100} ) and at a birth event there is some small probability

λ that the trait mutates from high to low/low to high value. Thus each lattice site

can be in one of four states: E-empty site; L-occupied with low competition trait;

H- occupied with high competition trait; D-diseased. The transition probabilities

are therefore

P (E → L) = kr ∗ IL(Ω) + λkr ∗ IH(Ω), (9.15a)

P (E → H) = kr ∗ IH(Ω) + λkr ∗ IL(Ω), (9.15b)

P ({H,L} → D) = β(kd ∗ ID(Ω)), (9.15c)

P ({H,L} → E) = [kc ∗ (IL(Ω) + IH(Ω))]k{H,L} , (9.15d)

P (D → E) = γ. (9.15e)

We can explore the model dynamics when disease is not present i.e. when

β = 0. In this region of parameter space L can always out compete H due to

the fact that H feels increased competition than L. This can be studied using a

phenomenological non-spatial mean field model. The density of L is denoted xL

and the density of H is xH . It is assumed that in the small population limit growth

of both populations is exponential. Competition is a second order process that is

asymmetric in the population. Therefore the model dynamics may be written as

ẋL = rLxL(1− aL(xL + xH)), (9.16a)

ẋH = rHxH(1− aH(xL + xH)). (9.16b)

These are the competitive Lotka-Volterra equations in two-dimensions. By per-

forming non-dimensionalisation we may reduce the number of parameters in the

system. Using the substitutions ρ = rH/rL,τ = rLt, uL = aLxL,uH = aHxH ,bL =

aL/aH ,bH = aH/aL we arrive at the non-dimensional form of the equation

u̇L = uL(1− uL − bLuH), (9.17a)

u̇H = ρuH(1− uH − bHuL), (9.17b)

by setting the derivatives to zero, three fixed points of the system can be determined

(0, 0),(0, 1) and (1, 0). The stability properties of these fixed points can then be

calculated via the Jacobian(
1− 2uL − bLuH −bLuL
−ρbHuH ρ(1− 2uH − bHuL)

)
. (9.18)
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Figure 9.8: Realisations of altruistic com-
petition model with no mutation and dis-
ease.

By substituting in the values of the fixed

points and calculating the correspond-

ing eigenvalues, it can be shown that

the origin (0, 0) is always unstable. The

other two fixed points are either sta-

ble or unstable depending on the val-

ues of bL and bH . If we assume that

aH > aL then the fixed point (1, 0) is

globally attractive and (0, 1) is unstable.

A number of realisations of the stochas-

tic process were compared to the Lotka-

Volterra dynamics (Fig. 9.8). Quali-

tatively, the realisations of the process

conform to the mean field dynamics in-

dicating that in the absence of disease, vegetation with low competition out competes

vegetation that experience high competition.

9.3.1 Evolutionary model for competition that is transmitted

When considering the competition parameter as a property of an individual vegeta-

tion, there is now an asymmetry between competition transmitted and competition

felt by surrounding vegetation. The model outlined in Eq. 9.15 is considered for

when competition is felt by surrounding vegetation as opposed to being transmit-

ted. In this sense the strategy of having high competition is altruistic; when local

density is high vegetation with high competition will have a higher probability of

mortality, thus allowing vegetation with low competition to proliferate.

We can also consider the opposite case, when competition is transmitted rather

than received. Consider if each individual has a variable c that is in the unit interval

[0, 1] and represents the strength of the competition that the individual transmits.

The competition felt by an individual is then the weighted sum of all c weighted by

the competition kernel. During a birth event a site becomes occupied and randomly

picks an occupied site in its neighbourhood to be a parent. This site then receives

the competition c from its parent. There is also a probability λ that the competi-

tion parameter mutates and becomes u, where u is a random variable drawn from

the uniform distribution on the unit interval. The model space therefore has two

processes operating on it: the finite-state Markov chain that characterises the dis-

ease and growth process E ↔ O → D → E and the continuous-state Markov chain
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that characterises the heritable trait process c. The state of the vegetation-disease

process is again given by Ω. The state of the heritable trait c is given by C, where

each site has the value cij The dynamics may be summarised as

P (E → O) = (1− rccij)kr ∗ IO(Ω), (9.19a)

P (O → D) = β(kd ∗ ID(Ω)), (9.19b)

P (O → E) = kc ∗ [IO(Ω) ◦ C] , (9.19c)

P (D → E) = γ, (9.19d)

f(cij |E → O) = λ+
(1− λ)

nij

nij∑
k=0

δ
(
cnij;k − cij

)
, (9.19e)

where ◦ is the Hadamard-Schur product defined by (A ◦ B)ij := AijBij ; nij is the

number of sites in state O in the neighbourhood of site ij; nij;k is the kth neighbour

of site ij and δ is the kronecker-delta function. The evolution of c is characterised by

a probability density function f due to the fact that c is a continuous variable. Only

sites where there is a birth event can update the competition parameter c, hence the

probability density function is conditioned on there being a birth event E → O. It is

also assumed that there is some cost associated with the transmission of competition

leading to death. This cost would be due allelopathic interaction such as through

the production of toxins that lead to the death of surrounding vegetation [Gopal and

Goel, 1993]. The energy cost is assumed to be linearly proportional to the amount

of competition transmitted, hence this reduction in reproductive potential is given

by the probability 1− rccij .

We may calculate what the expected value of Ci is given that there is no selection

pressure for c. The expectation of the random variable Cij given a birth event is

given by the following

E[Cij |E → O] =

∫ 1

0
xf(x|E → O) dx

=

∫ 1

0

[
λx+

(1− λ)x

nij

nij∑
k=0

δ
(
cnij;k − x

) ]
dx

=
λ

2
+

∫ 1

0

(1− λ)x

nij

nij∑
k=0

δ
(
cnij;k − x

)
dx.

In order to evaluate this integral, assume that cij are spatially uncorrelated, hence

the summation term disappears. The δ
(
cnij;k − x

)
term can be approximated by
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considering the expectation over all sites. This implies that the δ function can be

approximated by the probability density function g representing the distribution of

c over all alive sites. Since c is not selected for, we may assume that this is uniform

i.e. g(x) = 1. Hence

E[C|E → O] =
λ

2
+

∫ 1

0
(1− λ)xg(x) dx

=
1

2
.

So if the expected value of C deviates strongly from a 1/2 we may reject the hy-

pothesis that c is evolving under no selection pressure. In order to calculate the

variance of c under no selection pressure, we assume that each Ci is independently

drawn from a uniform distribution on the interval [0, 1]. We may then calculate

the variance of the sum of these i.i.d random variables using a moment-generating

function. Define the moment-generating function as

mC(t) := E[etC ]. (9.20)

Also define the random variable Y to be the sum of all Ci in the lattice that are in

the occupied state i.e. if the total number of occupied sites on the lattice is n, then

the moment-generating function for Y is defined as

mY (t) := E[et
∑n−1
i=0 Ci ] =

(
E[etC ]

)n
= mC(t)n. (9.21)

The moment-generating function for C can be easily calculated from the definition

of the expectation for a probability density function.

mC(t) =
et − 1

t
, (9.22)

hence the moment-generating function for the random variable Y is

mY (t) =

(
et − 1

t

)n
. (9.23)

To calculate the variance observe the relationship between the moments of Y and

the derivatives of the moment-generating function

E[Y l] = m
(l)
Y (0). (9.24)
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We may therefore calculate the variance by first calculating the first derivative of

mY

m′y(t) = n
tet − et + 1

t2

(
et − 1

t

)n−1

,

lim
t→0

m′y(t) =
n

2
,

where we have used L’Hôpital’s rule for the indeterminate fractions. The second

derivative at zero may be calculated in a similar fashion

m′′y(t) = n

(
et − 1

t

)n−1(
t3et − 2t2et + 2tet − 1

t4

)n−1

+ n(n− 1)

(
tet − et + 1

t2

)2(
et − 1

t

)n−2

,

lim
t→0

m′′y(t) =
n

3
+
n(n− 1)

4
.

Hence the variance of Y may be calculated using the definition

Var(Y ) = E[Y 2]− E[Y ]2

=
n

3
+
n(n− 1)

4
−
(n

2

)2

=
n

12
.

The average of C for a given configuration is given by c̄ = 1
n

∑n−1
i=0 ci. In order

to find the variance of c̄ divide the random variable Y by n. Using the standard

properties of the variance when multiplying by scalars we have that

Var(c̄) =
1

12n
. (9.25)

We may then compare this value to the value of c̄ in simulations. If the simulated c̄

is not in the range (1
2 −

1
12n ,

1
2 + 1

12n), then we may conclude that c is being selected

for under the vegetation-disease dynamics.

For the altruistic competition model the calculation of the fluctuations in the null

model are simpler. Take ci to be the indicator for occupied site i as to whether the

site is in state L. If we assume there is no selection pressure on ci and that the ci

are independent, then we may assume each ci is drawn from a Bernoulli random

trial with probability 1/2. The random variable Y representing the sum of the ci
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would therefore be binomially distributed with probability mass function

P (Y = k) =

(
n

k

)(
1

2

)n
. (9.26)

The mean and variance are then calculated in a straightforward manner to be

E[Y ] =
n

2
Var[Y ] =

n

4
. (9.27)

The proportion in state L is equal to Y/n and hence the expectation and variance

are

E[L] =
1

2
Var[L] =

1

4n
. (9.28)

hence for simulations where the proportion of occupied sites in state L that are not

in the range (1
2 −

1
4n ,

1
2 + 1

4n) are undergoing strong selection.

9.4 Results

9.4.1 Altruistic competition

Simulations were performed on a 150×150 lattice for 104 time-steps. For each region

in parameter space simulations were repeated 50 times. For the altruistic model, the

lattice was split in two: in the first half a population of vegetation in state L were

placed randomly with probability 0.2. For the right half a population of vegetation

in state H were placed randomly with probability 0.2. The simulations were allowed

to evolve under the dynamics described in Eq. 9.15.

For the altruistic model there is a strong relationship between the proportion

of L in the population and the ambient infection probability. When the ambient

infection probability is large (10−3) the final proportion of H in the population is

low (less than 0.1). However, when the ambient infection probability is low (10−5)

the proportion of L begins to reduce. For increasing infection rate (Fig. 9.9b) the

proportion of L is lowered significantly in the population to around 0.5 for high

infection rate. The other parameters are kept fixed for γ = 0.1, l1 = 0.5, l2 = 2, l3 =

1, µ = 0.01, r = 2. A partial explanation for the large difference in dynamics when

the ambient infection probability is small or large is due to the connectedness of

the population in the L state. If there are many infections occurring then patches

in the L state are disconnected, hence H patches do no better than L patches and

L can invade H. Alternatively, when the ambient infection probability is small,

the L patches have time to recover between outbreaks. This allows H to become a
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(a) Increasing proportion of vegetation ex-
hibiting spatial competition in the presence
of disease. The population of vegetation
with no imposed spatial competition for val-
ues of β < 2 are at the background mu-
tation probability 0.05. With increasing
force of the infectious agent, the proportion
of vegetation with spatial competition in-
creases as a fragmented landscape becomes
the more dominant strategy. Parameters are
γ = 1, l1 = 0.5, l2 = 2, l3 = 1, µ = 0.01, r =
0, rc = 0.25.
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(b) Evolving competition in an altruistic set-
ting. Parameters are γ = 0.1, l1 = 0.5, l2 =
2, l3 = 1, µ = 10−7, r = 2 and ambient prob-
ability of infection 10−7. Note that this re-
lationship does not hold when 10−3 where L
is always the more successful strategy.

Figure 9.9: The effect of changing β on competition in the selfish and altruistic
setting
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single connected component, which is then wiped out when an outbreak does occur,

thus reducing the survival of H patches. Although the proportion of L to H does

approach 0.5 it is still significantly in the selection regime as it is outside of the

range (1/2− 1/(4n), 1/2 + 1/(4n)).

There is a strong interaction between the offset parameter and the persistence

of vegetation in the L state. When the offset parameter r = 10, indicating that

the effects of competition are felt from the existence of vegetation 10 lattice sites

away, vegetation in state L can always out compete vegetation in state H re-

gardless of the force of infection on the disease process. When the offset to the

competition is small, r = 2, the feedback between presence of vegetation and

competition is now more local. Sites in state H are patchy and negatively cor-

related with surrounding vegetation sites, this reduces the local density of vege-

tation below the percolation threshold, thus preventing the disease from spread-

ing. For larger offsets, bands of continuous vegetation form, although these bands

can reduce the impact of disease, they cannot out compete vegetation in state L

due to the feedback between competition and disease being spatially separated.
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Figure 9.10: Realisations of altruistic
competition model showing critical slow-
ing down of relaxation time near critical
force of infection βc.

Varying the infection rate β, the

model displays properties analogous to

a phase transition. For values of the

force of infection that approach a crit-

ical value βc the proportion of vegeta-

tion in state L on the lattice shows a

sharp discontinuity. Below the value βc,

vegetation with the L strategy domi-

nate and out competes the H strategy.

For β > βc, H out competes L, lead-

ing to a population of vegetation purely

in state H (ignoring the transitory ap-

pearance of L vegetation due to muta-

tion). Phenomena analogous to phase

transitions have been observed in other

cellular automata models of epidemics

[Fuentes and Kuperman, 1999], however the disease process driving a transition be-

tween two competing strategies of spatial competition is to our knowledge unique.
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As β approaches the critical point βc, a slowing down in the relaxation time is ob-

served (Fig. 9.10). For values of β far away from the critical point, one strategy

quickly dominates thus the relaxation time is short. Near the critical point, there

is a transient co-existence of the two vegetation types, where periods of transient

co-existence increase as β approaches the critical value. Theoretically, at the critical

point both forms of vegetation should exist for all time, however as the transition

is sharp, the value of β would have to be finely-tuned, which in simulations would

not be possible due to finite precision. Fluctuations of the two vegetation types also

increase sharply around the critical value. Fluctuations in the diseased state are

high when β is lower than the critical point, increases sharply at the critical point

and then reduces to a lower background level when β > βc. Fluctuations in the

density of vegetation also peak around the critical point.

9.4.2 Selfish competition

Simulations were performed on a 150×150 lattice for 104 time-steps. For each region

in parameter space simulations were repeated 50 times. A spatially independent

random starting configuration was chosen with density around 0.2. Each occupied

site had a competition parameter c randomly drawn from the unit interval. The

simulations were allowed to evolve under the dynamics described in Eq. 9.19 with

model parameters γ = 1, l1 = 0.5, l2 = 2, l3 = 1, µ = 0.01, rc = 0.25. The average

competition parameter was measured for repeated simulations over various values

of β (Fig. 9.9a). When disease is not present (β = 0) vegetation with no spatial

competition dominates. For increasing β the proportion of vegetation with a non-

zero competition parameter increases. The distribution of c is exponential with

mean c̄ that increases for increasing β. For larger β, the disease overwhelms the

vegetation leading to extinction (hence these extreme values of β are not shown in

Fig. 9.9a).

9.5 Conclusion

This chapter has explored processes that co-occur and interact with vegetation. The

focus has been in two parts: processes that can be considered fast on the time-scale

of vegetation growth and processes whose rates are comparable to the rates of veg-

etation dynamics. In the first case, where the vegetation pattern can be considered

static, the vegetation patches were modelled using a multifractal measure to charac-

terise its scale-invariance and heterogeneity. This links well with the spatial analysis

work performed in Chapter 4, where the local scaling properties of seagrass mead-
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ows were analysed and found to have varying local scaling throughout the meadows.

How this variation in local scaling affects species distributions is of interest to ap-

plied ecology research [Tokeshi and Arakaki, 2012]. For example, in a distribution

study of Atlantic cod in an eelgrass meadow it was found that the maximum density

of cod occurred where the local scaling of the eelgrass was intermediate between 1

and 2 [Thistle et al., 2010]. It was hypothesised that this density distribution can be

explained due to an increased biodiversity where the fractal measure is on intermedi-

ate scales due to the heterogeneity, which provides more available niches for species

to occupy. The section focused on how a measure of heterogeneity, calculated via

the multifractal spectrum, can be used to asses the ability for species to colonise

the vegetation distribution. If such a measure can be identified then it could be

used to rapidly assess the quality of a vegetation ecosystem by determining how

a species with a known dispersal would colonise. The simulated fragmented land-

scapes was found to have a diffusion exponent in the sub-diffusive regime, where

the dispersal process became more sub-diffuse for a more heterogeneous landscape.

There are however issues with using the multiplicative cascade model as a neutral

model of vegetation heterogeneity. Although in the limit of an infinite lattice the

fractal dimension will always be 2 and the density of points can always be guaran-

teed to be some value, this is not necessarily true of finite lattices. This is due to as

the multiplicative measure becomes more heterogeneous there are regions where the

probability of occupancy are very low. For an infinite lattice these regions would still

contain points, but for a finite lattice this does not necessarily hold. There are also

issues where the measure is close to 1, in these regions multiple points might occupy

the same lattice site, thus reducing the overall density. The model therefore gives

an indication of how heterogeneity decreases the diffusivity of a colonising species,

but does not separate heterogeneity entirely from density, which would be required

in order to establish is the effect is genuinely due to an increase in heterogeneity

and not just due to a decrease of density or the box-counting dimension.

The interaction between disease dynamics and vegetation dynamics was further

explored where the rate of dynamics of the disease and vegetation are comparable.

The importance of the vegetation competition in regulating the spread of disease

was assessed by comparing the prevalence of disease against the strength competi-

tion between vegetation that induces banding. Increased competition was found to

limit the presence of the diseased state, but increase the variance of the population

due to bands of susceptible vegetation becoming infected leading to a collapse of a

significant proportion of the total population. In the limit where there is no compe-
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tition, the model is akin to the forest fire model [Bak et al., 1990] where the system

naturally evolves into a critical state, where the distribution of outbreaks of disease

follows a power law distribution.

The evolutionary underpinning of banding in the presence of disease was explored

by considering a vegetation population with two traits: high and low competition

that is felt by surrounding vegetation. For small infection rates the low competition

trait dominates and the dynamics are akin to Lotka-Volterra competition. There is

a critical infection rate, however, after which the high competition trait dominates

and can be sustained even for relatively large banding.

A selfish competition model was also explored where competition is transmitted

rather than felt. Higher rates of infection lead to an increase in the average compe-

tition in the population. One possible mechanism of this could be where plants are

able to, through toxins or other means, decrease the reproductive success of vegeta-

tion in the surrounding area. An example of auto-allelopathy can be found in white

clover, where its presence has been shown to decrease the density of surrounding

vegetation including itself [Macfarlane et al., 1982] as well as alfalfa [Jennings and

Nelson, 2002]. There has been to date no evidence for the auto-allelopathy effect

in seagrasses and hence the selfish competition model, where competition is trans-

mitted, but not felt may not be appropriate to apply to the ecosystem. There is

however evidence that long-range competition does effect seagrass density and this

competition is dependent on the strength of local currents and wave-action [Van

Der Heide et al., 2010]. There is therefore a hypothesis that this competition may

not necessarily arise only due to the vegetation-environment interaction, but due to

some evolutionary mechanism that arose in the presence of wasting disease.
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Chapter 10

Conclusion

The truth is not always beautiful, nor beautiful words the truth.

(Lao Tzu - Tao te Ching)
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The main thesis explored throughout has been what information on the underlying

dynamics can be garnered from a single spatial snapshot of a vegetation ecosystem.

In recent years there has been an explosion in the technology and accessibility of this

type of data that can be used in the ecological sciences. There are however, gaps in

how this data can be used to supplement or even replace some aspects of traditional

ecological survey techniques. This thesis has tried to close the gap between these two

forms of data by assessing how various spatial statistics can be used and developed

in order to assess certain features of the dynamics.

As a way of testing these hypotheses the developed methods have been applied to

the example ecosystem seagrass. Seagrasses are a primarily clonal form of marine

vegetation that form a number of characteristic spatial patterns including regular

and scale-free. They are thus an ideal testing ground for assessing theories on the

interaction between vegetation and environment and how this impacts the dynamics,

hence throughout there has been a focus on this system although other example

systems such as semi-arid ecosystems and mussel beds have been explored. The

conclusions drawn should be more generally applicable to ecosystems where a single

vegetation or single functioning group dominates.

The exploration of pattern and process has taken a number of avenues of in-

vestigation. Initially, based on previous studies the idea was to use the patch-size

distribution in order to measure the persistence of the system. This took the form

of exploring a number of plausible models of vegetation growth in the presence of

intra-specific competition. The modelling has focused on the use of probabilistic

cellular automata (PCA), which is in the class of Markov chain models and has

been widely used in spatial ecology. There are a number of advantages to this

approach: the rules that govern the dynamics focus on individual sites and hence

plausible mechanisms of plant dynamics can be developed into the model, rather

than aggregating these terms as would be done in a partial differential equation

approach. PCA models are capable of producing both regular spatial patterns as

well as scale-free and fractal patterns. Occupancy data, where an image is divided

up into a regular grid, where each site either indicates it is occupied or not is easily

compared to the resulting distributions from a PCA model and, as the basis of the

model is a Markov chain, the full machinery of Markov chain theory can be used in

the analysis of the resulting model.
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PCA modelling was used to gain traction on the use of spatial heuristics as indica-

tors of the underlying dynamic process. Two main fractal measures were identified

along with several measures of persistence including the return rate and the time

to equilibrium following a disturbance. The boundary dimension was found to be a

good predictor of the growth rate for a growing cluster, however this became a poor

indicator once the cluster had been established. The patch-size distribution was able

to capture the persistence of the system as measured by the return rate under some

circumstances when the demographic parameters were constant. However, if other

parameters were varied then it did not reveal a strong relationship to the return

rate. This provides insight into when a single spatial measure is a good indicator of

persistence or growth and when they are not applicable. Indeed, any heuristic will

necessarily only give some insight into the dynamics of the system, dependent upon

a number of factors. The main conclusion is that the power-law or Korcak expo-

nent of the patch-size distribution is an applicable measure for comparison between

sites only when the environmental parameters differ between simulations. This was

compared to the seagrass data obtained from the Isles of Scilly, UK where a similar

relationship was found to the one observed in the simulations. Although there is

this striking correlation between the simulations and the data, there is no explicit

theoretical relationship established between the two measures beyond an ad-hoc

argument that a more patchy environment would be expected to be less persistent.

The theoretical relationship between the Korcak exponent and the persistence

was explored more by considering the whole vegetation system as an aggregation

process. This method involved producing a mean field model of aggregation, defined

using the kernel k(i, j) which is the rate of aggregation between patches of size i

and patches of size j. The births were modelled as a monomer injection term where

individual patches entered the system at a constant rate. Death of the individual

sites was also modelled at a constant rate. The resulting patch-size distributions

conform well to the patch-size distributions in the seagrass data as well as other

example systems. The aggregation process produces a power-law distribution of the

patch-sizes whilst the death rate induces an exponential tail to the distribution. The

model also predicts that the exponential tail increases for increasing values of the

death rate, which has been observed in real systems such as semi-arid ecosystems,

however until now only comparisons between simulations and data have been used to

gain this insight. The aggregation model provides theoretical justification towards

the relationship between the exponential tail and the death rate. A power-law ag-

gregation kernel leads to a power-law patch-size distribution with varying exponent
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that is linearly dependent on the exponent of the aggregation kernel. This provides

a theoretical link between the dynamics of the system and the resulting exponent

of the patch-size distribution or Korcak exponent. No direct comparison between

the return rate and the exponent can be made for this model as there is no clear

way to define a return rate for the system. The exponent can, however, be related

to the relaxation time, where an increasing kernel exponent leads to a decreasing

patch exponent and an increasing relaxation time.

The probabilistic cellular automata model of vegetation growth with spatial com-

petition was able to reproduce broad spatial patterns found in a variety of spatial

patterns including scale-free and regular spatial patterns. In real-systems both are

present, where on smaller scales regular patterns may dominate, whereas on larger

scales, more scale-free patterns emerge. This discrepancy is difficult to characterise

using a single model of vegetation growth where the variance of the vegetation

growth and the competition are pre-defined. As such, for cases where banding phe-

nomena is being studied there is an offset to the competition term and whereas

when scale-free phenomena is being studied an offset was not considered. In a real

system, the variance of competition would be dependent on a number of factors

such as wave action and current strength, these would naturally vary in space and

time and hence lead to a range of regular and scale-free patterning. In order for the

model to remain parsimonious the parameters of the system were kept constant in

order to probe the various dynamics.

PCA model fitting was considered for vegetation occupancy data. In order to

extract the relevant details of the dynamics, it was assumed that the spatial pattern

had a regular structure in the form of vegetation bands. These spatial patterns

produces strong spatial correlations that can be used in order to conduct inference

on the PCA model. The main idea is to calculate the rate of change of the spatial

correlation structure given a certain spatial snapshot. The novel method was to use

this rate to construct a synthetic likelihood that can be used to perform inference.

The method was shown to be valid when using synthetic data and some cases of

real data, however was not able to capture the necessary parameters for other data

where banding was present.

The final section dealt with the effect of spatial pattern on processes in a vege-

tation community. This took the form of noting certain fractal heuristics that are

related to spatial heterogeneity and using various spatial patterns where this hetero-
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geneity was varied in order to study the effect of the changing diffusion properties

of an invading species or disease. It was hypothesised that a higher heterogeneity of

the spatial pattern leads to a slowing of the diffusion. Although this was partially

observed in the model, as density of the lattice could not be controlled for, the evi-

dence for the hypothesis remains inconclusive. How disease spreads in a vegetation

system where there are strong spatial competition effects between the vegetation

was also explored. Banding was found to reduce the presence of disease by reducing

the average cluster size of susceptible vegetation.

Finally an evolutionary explanation of banding was proposed by assessing the

dynamics of vegetation with a distribution of spatial competition traits. There was

a sharp transition dependent on the virulence of the disease between where the

low competition trait dominated to where the high competition trait dominated.

The ability for a vegetation species to evolve a strategy such as this as opposed

to the apparent competition arising due to the interaction between vegetation and

environment is not established. However, the model does show the plausibility of

such a mechanism in explaining the rise of strong regular spatial structures. Seagrass

is affecting by a wasting disease that lead to a large-scale epidemic in the 1930s where

a large percentage of the North Atlantic seagrass was decimated. Various hypotheses

have been proposed as to how this epidemic came about. There is another question

as to why there have been no new epidemics since. Spatial regulation of seagrass

may therefore go some way to explaining the current endemic state of the disease

although for the evolution model, the force of infection needed for high competition

to dominate is large. Therefore other factors would have to be considered for this

discrepancy to be understood.

10.1 Future work

For regular spatial patterns the natural spatial statistic to use to investigate pat-

terning is the spatial correlation function. For scale-free vegetation patterns, spatial

statistics such as the boundary dimension and the patch-size distribution were used

to investigate these aspects of the spatial pattern. A true vegetation system will

naturally have a combination of both regular and scale-free pattern. The focus has

been on isolating one of these types of spatial pattern and essentially ignoring the

other aspects. This raises the question of being able to use a spatial statistic that

is able to capture the full features of a spatial pattern that includes both regular

and scale-free. One possible way to achieve this is to use the synthetic likelihood in-
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ference method developed by Wood [2010]. The method requires various summary

statistics that capture the full features of the dynamics (in this case the spatial

dynamics) and then producing a likelihood based upon these measurements. The

likelihood can then be used in parameter estimation for spatial data over a range

of scales. There would be certain drawbacks to this method, chiefly among which

is that a single tractable model may not be able to capture the full aspects of both

the regular and scale-free patterning. At a certain range of length-scales and spatial

locations only single factors may dominate, such as current or clonal growth. This

allows certain parameters in the model such as strength of competition to be con-

sidered constant over the spatial and temporal range being considered. For larger

scales, the parameters would vary throughout space as current strength and other

aspects such as aspect vary. This would therefore require either modelling the func-

tional form of this variation in space or else using covariates other than those taken

from a spatial snapshot to inform the model. Another possible method that could

be used to scale-up the inference analysis would be to assume the model parameters

are constant over a certain spatial range. The inference method can then be per-

formed on each of these spatial snapshots and then the parameters can be stitched

together, to give a description of how spatial competition and reproduction varies

through space. The drawback of this method would be that the surrounding sites

do not inform the site under which inference is being performed. It also assumes

that there can be step-changes in the reproduction and competition parameters in

space, which may not be realistic.

Chapter 9 considers how processes occurring with a spatially-distributed vegeta-

tion ecosystem impact the spatial pattern and how the spatial pattern impacts the

process. These ideas were explored by considering how diffusive processes such as

disease and species invasion are impacted by the spatial pattern. This considered

to forms of pattern: scale-free in the form of a multifractal multiplicative cascade

model and regular in the form of banding. The scale-free distribution was consid-

ered static, this then relates to a class of diffusion processes known as quenched

disorder models where the spectral dimension (a dimension that quantifies the dif-

fusion process) can be directly related to the box-counting dimension of the fractal

[Bouchaud and Georges, 1990]. For more general models the characteristics of the

diffusion process do not have a known analytical solution and hence simulation was

used instead. As these solutions do exist for simpler systems, there may exist ana-

lytic solutions for this system. Finally, the evolution of traits such as competition

were used to investigate how evolution may play a role in the formation of pattern
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in the presence of disease. This work is speculative and thus there are many ques-

tions raised that would need either field work, modelling or a combination of both

in order to investigate. For the evolution modelling only competition strength was

considered a heritable trait and the other individual traits such as the reproduction

kernel were assumed to be homogeneous throughout all individuals. Other aspects

of vegetation colonisation and growth may also be heritable and hence a more gen-

eral evolutionary model would need to be constructed in order to explore this type

of phenomena.

10.2 Conclusion

Pattern formation and persistence in vegetation ecosystems has received a large

amount of attention in recent years. Research has focused on exploring plausible

mechanisms that can induce pattern formation as well as other variables associated

with the strength of patterning. The contribution laid out here has focused less

on the plausible mechanisms that lead to pattern formation, but more on what in-

formation the pattern gives to the persistence of the underlying dynamics as well

as what the pattern can say about the parameters that generate it. The original

hypothesis is that certain spatial features of a vegetation system can be used as

heuristics to estimate the dynamical persistence and to ascertain what other infor-

mation the spatial pattern gives about the general dynamics of the system. The

work here has clarified the relationship between pattern and persistence, provided

theoretical insight into the origin of the relationship and developed methods of in-

ference on spatial pattern. This work shows the importance of understanding the

role of spatial pattern in the rapid assessment of ecosystem dynamics and points

towards future work that can assess dynamic properties in a changing landscape.
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