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Abstract	
Within this thesis we explore the synthesis and modification of hierarchical 

composite particles and responsive microgels. Initially in Chapter 2 we describe the 

encapsulation of calcium carbonate particles within a polymeric shell, wherein the 

inorganic core is kinetically trapped within a cross-linked polymer network. Once 

primed in this shell we illustrate control of polymer shell thickness through a 

secondary polymerization. We also begin to investigate the possibility of preparing 

nano-rattles, using the calcium carbonate core as a sacrificial template. In Chapter 3 

we expand on the work presented in Chapter 2, by incorporating pendant vinyl 

groups into the polymer shell of the composite particles from which we use thiol-ene 

Michael addition to modify their surface. In Chapter 4 perform the encapsulating 

polymerization from Chapter 2 and 3, but in the absence of the calcium carbonate 

core. The stable particles formed were found to be pH responsive microgel particles. 

We illustrate the gelling behaviour of these particles and use as Pickering stabilizers 

for oil-in-water emulsions which show reversible flocculation on adjustment of the 

pH. In investigating these microgel particles we also begin to elucidate unanswered 

questions from Chapters 2 and 3. Finally in Chapter 5 we go back to encapsulation, 

this time to synthesize multi-layered particles by encapsulation of Laponite armoured 

soft latexes. We infer how alterations to particle morphology affect the bulk 

properties of polymer films by mechanical and thermal analysis. 
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Chapter	1:	Introduction	
In this body of work we investigate encapsulation of sub-micron particles, 

synthesis of microgels and particle surface modification with thiol ω-functionalized 

polymers. In order to discuss these particles we must understand heterogeneous 

polymerization techniques, particle stability and RAFT polymerization. 

1.1.	Heterogeneous	Polymerization	Techniques	

Radical heterogeneous polymerization techniques can be divided into several 

categories, each exhibiting different features including type of particle nucleation, 

size range of respective particles (Figure 1.1) and types of monomers used.1 

 

Figure 1.1 Illustration of particle size ranges achievable by various heterogeneous polymerization 
techniques. 

These heterogeneous polymerization methods are often more complicated 

than their homogeneous counterparts, as multi-phase polymerization kinetics and the 

kinetics of particle nucleation and growth must be considered. 
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1.1.1.	Emulsion	polymerization	

Emulsion polymerization is a heterogeneous polymerization method where 

particles of 50-600 nm in diameter are formed. The term emulsion polymerization is 

in fact a misnomer; polymerization does not occur in monomer droplets as the name 

suggests, but in monomer swollen particles. Emulsion polymerization is split into 

three intervals describing the main characteristics (Figure 1.2).2-7 Interval I; the 

nucleation period describes the formation of all particles, assuming secondary 

nucleation (the formation of a secondary crop of particles) does not occur. In this 

interval particle number and particle size is increasing and monomer droplets are 

present. The nucleation stage is typically short and occurs in 0-10 % conversion, 

short nucleation periods yield a monomodal size distribution. Initiation occurs in the 

aqueous phase where the water soluble initiator species undergoes homolysis and 

reacts with the finitely water-soluble monomer; this oligomer propagates until it 

reaches a critical chain length (jcr), at this point particle nucleation proceeds in one of 

two ways, through micellar or homogeneous nucleation. 
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Figure 1.2 Scheme of the three intervals in emulsion polymerization.8 

1.1.1.1.	Homogeneous	nucleation	

Once the oligoradicals have reached jcr in the aqueous phase, the hydrophobic 

attributes outweigh the hydrophilic, and the polymer collapses to form a primary 

particle. Once a sufficient number of particles exist, capture of surface active 

oligoradicals (z-mers) occurs and overtakes new particle formation. Brownian 

motion, the random movement of particles, leads to particle collision; if the surface 

charge, obtained from ionic initiator species or surfactant, is not great enough these 

collisions result in the particles coagulating and fusing together. This coagulation 

occurs until enough particles have fused to result in a high enough surface charge 

density to warrant stable particles.9-11 This was first described in the Fitch-Tsai 

theory: 

 
 

(1.1) 
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where N is the number of particles dm-3, b is the compensation of radical 

loss, Riw is the rate of appearance of primary radicals, Rc is the rate of radical capture 

and Rf is the rate of particle coagulation.12  

1.1.1.2.	Micellar	nucleation13	

Where there is surfactant present at a concentration greater than the critical 

micelle concentration (CMC), micellar nucleation occurs. Surface active 

oligoradicals, formed in the aqueous phase, enter monomer swollen micelles to 

produce primary particles. At a constant rate of initiation it was found that the 

concentration of surfactant affects the number of particles with a dependence on 

monomer hydrophobicity. This led to the theory of particle formation based on 

radical capture by surfactant micelles described by the Smith-Ewart-Roe equation: 

 
 

(1.2) 

where N is the number of particles, K is a constant with the value of 0.53 for 

purely micellar capture and 0.37 if capture by new particles is taken into account, µ 

is the rate of particle volume growth which is assumed to be constant, αs is the area 

covered by the surfactant molecule and S is the total number of surfactant 

molecules.14, 15 In this case coagulation was not considered due to the high 

concentration of surfactant. Roe showed that this also applied for systems without 

micelles. They suggested that particle nucleation stops once the polymer-water 

interfacial area stabilized by surfactant equals the area which can be covered by the 

amount of surfactant. 
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Figure 1.3 Scheme of kinetic processes taking place in a typical emulsion polymerization.16 

Once particles have formed, reversible entry of z-mers occurs until they reach 

jcr, at which point they are irreversibly trapped (Figure 1.3). Entry into monomer 

droplets, and thus monomer droplet nucleation, is unlikely due to their comparatively 

small surface area. Interval I ends and interval II begins when particle nucleation has 

stopped; the number of particles are now approximately constant. The particles swell 

with monomer, which has diffused from the still present reservoirs of monomer 

droplets. During this stage the rate of polymerization is considered constant, due to a 

constant concentration of monomer with respect to polymer in the particles. Particle 

size is increasing throughout this interval. 

In Interval I and II the small latex particles cannot accommodate more than 

one radical, on entry of a second radical instantaneous termination occurs resulting 

in no radicals in the particle, hence zero-one kinetics is observed. In this case (Smith-

Ewart case 2, Figure 1.4 a) the average number of radicals per particle ( n ) is 

considered to be ½. If there is significant chain transfer to small molecules the 
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resulting radical, typically smaller than jcr, can exit the particle further reducing the 

probability of the presence of a radical in the particle, in this case (Smith-Ewart case 

1, Figure 1.4 b) n  < ½.14 Interval III begins when there are no monomer droplets 

remaining, all monomer is now found in the polymer particles; monomer 

concentration in the particles is now decreasing and correspondingly the viscosity 

within the particles is increasing. This increased viscosity slows the rate of 

termination; more than one radical can be present in a particle at one time, n  >> ½ 

(Smith-Ewart case 3, Figure 1.4 c), the kinetics at this stage resembles that of 

solution polymerization. Due to the reduced termination, an increased rate in 

reaction is observed, a phenomena known as the Trommsdorff-Norrish or gel effect. 

 

Figure 1.4 Scheme illustrating (a) Smith-Ewart case 2, (b) Smith Ewart case 1 and (c) Smith-Ewart 
case 3. 
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Rate of polymerization is faster for emulsion polymerization than for the 

corresponding bulk polymerization due to the compartmentalization effect, as 

radicals are isolated in separate particles. Compartmentalization yields fast 

polymerization rates and high molecular weights.16 

1.1.2.	Miniemulsion	polymerization	

Miniemulsion polymerization is effectively the polymerization of small 

monomer emulsion droplets; it was first reported by Ugelstad when investigating the 

possibility of initiating polymerization within monomer droplets.17, 18 Droplet 

nucleation with a water soluble initiator was achieved by significantly increasing 

monomer droplet surface area; reducing droplet size using surfactants thus allowed 

for radical capture. As polymerization occurs in the monomer droplets there are no 

reservoirs of monomer as in emulsion polymerization, as a result of this interval II 

effectively does not exist in miniemulsion polymerization. 

 

Figure 1.5 Schematic of the effect of sonication on droplet size.19 

Early work demonstrated the significance of emulsification methods and 

surfactants in forming stable droplets; to achieve small enough droplets high shear, 

typically from a mechanical homogenizer or sonicator (Figure 1.5), along with 
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surfactants is required.20 Co-surfactants or hydrophobes, such as hexadecane, have 

an important role in miniemulsion polymerization; being more hydrophobic than the 

monomer the co-surfactant becomes irreversibly trapped in the monomer droplet due 

to hydrophobic interactions, thus preventing Ostwald ripening of the monomer 

droplets (Figure 1.6).21, 22  

 

Figure 1.6 Photomicrographs illustrating Ostwald ripening of a 1,2-dichloroethane emulsion by a 
double exposure on the same frame; time from the start of experiment: 0 s (image shifted on the left) 
and 300 s (shifted to the right).23 

A significant difference between miniemulsion and emulsion polymerization 

is that particle nucleation occurs in the very small monomer droplets, resulting in the 

polymer particles often being a 1:1 copy of the initial monomer droplets.24 However, 

it must be noted that radical capture is slow and not all droplets are necessarily 

nucleated, complicating the reaction kinetics.25, 26 The use of hydrophobes has 

contributed to faster rates of polymerization and an increase in the number of final 

particles in miniemulsion polymerizations, with the final system being representative 

of the initial miniemulsion.27-29 

1.1.3.	Suspension	polymerization	

Suspension is possibly the simplest of the heterogeneous polymerization 

methods; similar to an emulsion polymerization in that the monomer is insoluble in 
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the continuous phase and surfactant is present, it differs in that the initiator is oil-

soluble and thus polymerization takes place in the pre-existing monomer droplets. 

As initiation occurs in the monomer droplets, the mechanism of particle nucleation is 

termed droplet nucleation. As the monomer droplets are large, the resulting polymer 

particles formed are greater than 1 µm and particle size distribution is broad. Particle 

size can be controlled to a small degree by the rate of stirring and surfactant 

concentration.30, 31 The kinetics of polymerization is thought to be similar to that of 

bulk polymerizations, with the monomer droplets behaving as micro-reactors.32, 33 

1.1.4.	Dispersion	polymerization	

Dispersion polymerization can be described as an initially homogeneous 

mixture of monomer, initiator and stabilizer often in an organic solvent. Upon 

initiation, polymerization occurs in the continuous phase until the polymer chain 

reaches a critical chain length and precipitates out of solution to form a particle. 

Particle formation is very rapid and typically all particles are formed under 1 % 

conversion (Figure 1.7). The primary particle adsorbs stabilizer from the continuous 

phase and coagulates until a stable particle is formed. Once formed, the insoluble 

particle swells with its own monomer and the particle now becomes the locus of 

polymerization.34-36 The coagulation of young, small, unstable particles in dispersion 

polymerizations was studied by DLS at the formation stage for the case of methyl 

methacrylate in methanol; rapid aggregation of small unstable particles, in the size 

region of 15-20 nm, to form larger stable particles was found.37 Particles are 

typically large and in the range of 1-15 µm in diameter. 
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Figure 1.7 Scheme of proposed particle formation mechanism in dispersion polymerization: (A) a 
homogeneous mixture of monomer, stabilizer, initiator and solvent, (B) primary particles generated 
through precipitation of polymer chains equal or longer than the critical chain length, (C) formation of 
mature particles through aggregation of unstable primary particles, (D) no new particles formed, 
particles are the locus of polymerization, (E) only mature particles observed at the end of the 
reaction.37 

1.1.5.	Precipitation		

Precipitation polymerization is similar to dispersion polymerization in that 

the monomer and initiator are soluble in the continuous phase and the polymer is not 

soluble in the continuous phase. It differs in that the formed polymer does not swell 

with its monomer either due to unfavourable interactions (described as enthalpic 

precipitation; an example of which is the polymerization of acrylonitrile in water) or 

due to heavy cross-linking which prevents mixing (described as entropic 

precipitation; an example of which is the polymerization of divinylbenzene in 

acetonitrile).38 The polymer precipitates out of the continuous phase and since it 

cannot swell with monomer the locus of polymerization is at the particle-continuous 

phase interface. The polymerization kinetics can be understood in terms of emulsion 

polymerization.38, 39 Particle sizes are typically in the order of a few microns, and can 

be produced without the need of surfactant. 
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1.1.6.	Pickering	emulsion	polymerization	

The stabilization of biphasic interfaces by solid particles was first mentioned 

by Ramsden in 1903 and then shortly after by Pickering, after whom the phenomena 

has since been named, in 1907.40, 41 Both had independently found that solid 

particulates could stabilize emulsions in the absence of soluble surfactants and even 

displayed superior properties; unlike with soluble surfactants, de-emulsification was 

not observed with solid particulates. It was later suggested by Finkle that the solid 

particulates are partially wettable by both the phases involved.42 

Pieranski described how the solid particles acted like a surfactant using a 2-D 

model of the interactions of a polystyrene sphere of uniform surface tension trapped 

at an air/water interface, in the absence of any imposed external force.43 It was found 

that the cause of particle adhesion to the interface was due to energy minimization, 

as a result of the removal of an area of the water-air interface. Pieranski observed 

that the polystyrene spheres at the water-air interface seemed to be trapped in a 

surface energy well greater than kBT. 

 

Figure 1.8 Schematic representation of a sphere of radius r at the interface of φ1 and φ2 at a distance 
of Z from the centre, C. γP-1, γP-2 and γ1-2 are the surface/interfacial tensions between the particle and 
φ1, the particle and φ2 and the two phases respectively and θ is the three phase angle. 
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There are three contributions to the surface energy; the energy of the 

particle/φ1 interface, the energy of the particle/φ2 interface and the negative energy 

of the missing φ1/φ2 interface (shown in Figure 1.8 and equations (1.3), (1.4) and 

(1.5) respectively). 

  (1.3) 

  (1.4) 

  (1.5) 

Where γ’s are the corresponding surface tensions and z~ =Z/r. The total 

energy, E, in other words the summation of equations (1.3), (1.4) and (1.5), is scaled 

by Eunit (equation (1.6)) to give E
~

 (equation (1.7)). 

  (1.6) 

 
 

(1.7) 

E
~

 can be rewritten to give the following quadratic function: 

  (1.8) 

Where a = γP-1/γ1-2 and b = γP-2/γ1-2. From this a parabola of energy profile 

versus particle displacement (z) from the interface can be plotted where the 

minimum, E
~

min, at a particular z value can be used to calculate the energy barrier for 

the particle to escape into either phase 1 or 2 (Figure 1.9 and equations (1.9) and 

(1.10)). 
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Figure 1.9 Potential energy profile of a solid particle leaving the φ1/φ2 interface and moving into 

either φ1 ( E
~

1) or φ2 ( E
~

2). Where z~ min is the vertical coordinate of the centre of the particle, C. 

  (1.9) 

  (1.10) 

Where Δ E
~

1 and Δ E
~

2 are the energies required to move the particle from the 

interface and into phase 1 and 2 respectively. In the case of a polystyrene sphere of a 

given size at the water/air interface, the energy required to remove it is of the order 

of 106 kBT. 

Using Young’s equation for equilibrium at the three phase contact line 

(equation (1.11)) it has been possible to calculate the energy required to remove the 

particle from the interface. 

  (1.11) 

Where θ is the three phase contact angle which describes where the particle 

sits at the interface. The energy to remove the particle from the interface is given by: 

  (1.12) 

Where the sign in the bracket is negative if θ < 90° and the particle is 

removed into φ2 and positive if θ > 90° and the particle is removed into φ1.
44-48 The 
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three phase contact angle also provides information similar to that of the hydrophilic-

lipophilic balance (HLB) for soluble surfactants in that it can be used to determine 

the type of solid stabilized emulsion gained (such as oil/water or water/oil). For 

θ < 90° solids stabilized oil-in-water emulsions may form and for θ > 90° solids 

stabilized water-in-oil emulsions may form. It is important to note that here oil may 

be replaced by air to produce the corresponding solids stabilized foam or aerosol. 

Pickering stabilization has proven to be a useful tool in the preparation of 

hierarchical colloidal structures (Figure 1.10), such as armoured polymer 

particles,49-52 responsive microgel capsules53 and multi-layered particles.54-56 

 

Figure 1.10 Particles prepared utilizing Pickering stabilization: (left) Laponite armoured poly(Sty-co-
BA) prepared by Pickering emulsion polymerization,49 (middle) responsive capsule prepared by 
cross-linking a microgel stabilized Pickering emulsion of a sacrificial solvent (propyl acetate)57 and 
(right) silica armoured poly(MMA) particles prepared by Pickering emulsion polymerization and said 
particles after encapsulation in (1b) poly(acrylonitrile) and (1c) poly(BA).54 

1.2.	Film	Formation	

Film formation of “soft” polymer colloids is of great importance for the 

coatings and adhesive industries as there is an environmental drive to greatly reduce 

volatile organic content (VOC) by using water-borne systems.58-60 The ultimate aim 

is to produce homogeneous films; if weak points are present (i.e. the film is not 

homogeneous) the overall barrier properties of the film are reduced, resulting in a 

film which is vulnerable to chemical breakdown. 

One consideration in film formation is the minimum film formation 

temperature (MFFT); the MFFT is related to the Tg of the latex polymer and crudely 
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determines the deformability of particles during the drying process. If film formation 

is conducted above the MFFT then transparent, homogenous films can be formed, if 

below the MFFT the films are likely to be cracked or turbid (this can be overcome by 

the addition of coalescing agent such as volatile organic solvents). Water from the 

continuous phase can have a plastifying effect, lowering the MFFT to below the Tg 

of the dry polymer.61 The film formation from water-borne latexes consists of three 

stages (Figure 1.11). 

Stage 1 is water evaporation; as the water evaporates the particle 

concentration increases and the particles become close in proximity. Water 

evaporation occurs largely from the edges of the dispersion creating a transition zone 

separating the dry regions from the wet. The water evaporates at a constant rate as it 

takes place preferentially at the dry/wet boundary. 

Stage 2 is particle deformation; spherical particles are deformed into 

polyhedral cells, if deformation is isotropic then the cells are formed in to a face-

centred cubic or hexagonally close packed array. In some cases particle deformation 

can precede contact, in these cases the capillary and osmotic pressures overcome the 

internal stresses in the latex causing the deformation.61, 62 In either case void-free 

transparent films can be formed. If the particles are hard rather than soft, particle 

deformation does not occur and colloidal crystals are formed, which often display 

excellent optical properties due to Bragg diffraction if monodisperse and below an 

micron in size.63, 64 

Stage 3 is polymer inter-diffusion; this is the final stage of film formation, 

polymer chains diffuse between the particle boundaries, resulting in a homogenous 

film.65 To achieve a homogenous film the inter-diffusion distance of the polymer 

chains should be comparable to the radius of gyration of the latex particle.66 It should 
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be noted that in cases where surfactants have been used, the surfactant may remain at 

the original particle boundary even after polymer inter-diffusion, resulting in 

interstitial weak points in the film.67 

 

Figure 1.11 Schematic of water-borne polymer film formation from colloidal particle latexes, where 
1 is water evaporation, 2 is particle deformation and 3 is polymer inter-diffusion. 

1.3.	Stabilization	of	Colloids	

Colloids can be divided into two categories, lyophilic and lyophobic, where 

lyo denotes the continuous phase the colloids exist in. Lyophilic colloids, such as 

microgels, are thermodynamically stable and thus there is no driving force for 

aggregation. On the other hand lyophobic colloids, such as poly(styrene) in water, 

are thermodynamically unstable, though they can be made metastable for long 

periods of time by erecting an energy barrier of sufficient height to prevent 

aggregation. Aggregation occurs from a combination of particle-particle collisions 

driven by Brownian motion (also known as thermal motion) and attractive (van der 

Waals) forces between the particles. Here we discuss how lyophobic colloids can be 

made metastable through electrostatic and steric stabilization. 
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1.3.1.	Electrostatic	stabilization	

Particles can be stabilized by introducing a surface charge from bound ionic 

groups such as sulphate groups from an initiator or adsorbed ionic surfactants. The 

surface charge can be anionic or cationic, for simplicity we shall use anionic charge 

in this discussion, though cationic charge works in the same manner. The 

stabilization is more complex, however, than the simple repulsion of similarly 

charged species. An electrical double layer surrounds the particles, with an equal 

number of counter-ions (e.g. Na+, K+ or NH4
+) located in the vicinity of the surface 

ions and a diffuse layer of moving ions outside that layer. 

A model to characterize the repulsive free energy between electrostatically 

stabilized lyophobic particles was developed by two groups independently Derjaguin 

and Landau68 and, Verwey and Overbeek;69-71 the theory was named after each by 

taking their last initial to give “DLVO”. DLVO theory combines van der Waals 

attractions and double layer repulsion. When two charged particles approach each 

other as a result of Brownian motion, their diffuse electrical layers overlap resulting 

in a higher ionic concentration between the particles than elsewhere. As a result, the 

free energy of the system is increased, either in terms of electrochemical potential or 

the increase in osmotic pressure bringing in solvent, leading to the particles being 

pushed apart. Figure 1.12 illustrates the combination of the van der Waals attraction 

with the electric double layer and Born repulsion potentials as a function of distance 

between the two particles. Two minima are present and Vmax is the energy barrier; 

the primary minimum is a result of van der Waals attraction, which is very strong at 

short distances and Born repulsion, this minima is so deep that the reverse process of 

separating the particles is considered to be infinite. In some cases a shallow 

secondary minimum is present, it describing reversible flocculation. 
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Figure 1.12 Scheme representing the total potential energy () from adding the van der Waals 
attraction potential (Va) and the electrostatic and Born repulsion potentials (Vr) as a function of 
distance between two spherical particles.  

1.3.2.	Steric	stabilization	

Steric stabilization of carbon black particles was first reported by van der 

Waarden72 in 1950, and was later fully established for colloidal systems by 

Napper.73-77 Steric stabilization is often achieved by the adsorption of non-ionic, 

normally hydrophilic or amphiphilic macromolecules, to the particle surface. 

Interaction only occurs when the outermost segment of the adsorbed layers begin to 

overlap. As the particles are brought closer together, the concentration of polymer 

units increases, resulting in entropic compression of polymer chains and an increase 

in osmotic pressure which drive particle separation. Steric stabilization of colloids is 

commonly used in industry, where the polymeric stabilizer acts as an anti-

caking/suspending agent and can, in some instances, provide favourable properties 

on film formation. It is an effective stabilization mechanism for non-aqueous 

systems or in aqueous systems where the electric double layer is suppressed. 
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1.4.	RAFT	Polymerization	

Reversible addition-fragmentation chain transfer (RAFT) polymerization was 

first reported by Moad and co-workers in 1998.78 RAFT polymerization uses a thio-

carbonylthio chain transfer agent of the formula RSC(Z)=S to facilitate the 

polymerization, where C=S is a reactive double bond, R is a leaving group that can 

reinitiate polymerization and Z alters the electronics of the RAFT agent (Figure 

1.13). The Z group can be chosen to activate or deactivate the C=S bond of the 

RAFT agent and modify the stability of the intermediate radicals. 

 

Figure 1.13 Structural features of thiocarbonylthio RAFT agent and the intermediate formed on 
radical addition. Recreated from 79. 

The mechanism of RAFT is thought to proceed as follows (Figure 1.14).80 A 

radical formed from an initiator species reacts with monomer to yield a propagating 

radical Pn
•, addition of Pn

• to the thiocarbonylthio compound (RSC(Z)=S) creates an 

intermediate species PnSC•(Z)SR. Fragmentation of the intermediate provides a new 

polymeric thiocarbonylthio compound (PnSC(Z)=S) and a new radical R•; reaction of 

R• with monomer forms a new propagating radical Pm
•. Rapid equilibrium of 

propagating radicals Pn
• and Pm

• and dormant thiocarbonylthio compounds provides 

equal opportunity for all chains to grow, yielding narrow dispersity polymers. On 

completion of the polymerization most of the chains retain their thiocarbonylthio end 

group, which often be modified to yield ω-functionalized polymers.81, 82 
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Figure 1.14 Mechanism of RAFT polymerization. 

RAFT agents can be tuned to polymerize a variety of monomers. There are 

four main types of RAFT agents: dithioesters, trithiocarbonate, dithiocarbamates and 

xanthates (Figure 1.15). Each type of RAFT agent is used for polymerizing different 

monomers due to differing Z groups. The choice of RAFT agents based on 

experimental data has been summarized within review articles.79, 80, 83 

 

Figure 1.15 Types of RAFT agent and monomers they are suitable to polymerize. 
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Figure 1.16 Selection guidelines of RAFT agents for various monomers. For Z, from left to right; 
addition rates decrease and fragmentation rates increase. For R, from left to right; fragmentation rates 
decrease. Dashed lines illustrate partial control (i.e. control of molecular weight but not dispersity or 
retardation for VAc).80 

1.5.	Scope	and	Outline	of	Thesis	

In chapter 2 we discuss the encapsulation of sub-micron calcium carbonate 

particles by starved-feed emulsion polymerization. We approach particle 

encapsulation in two steps; (1) formation of an initial cross-linked shell to kinetically 

trap the core and (2) shell thickness. We further demonstrate the potential to use 

calcium carbonate as a sacrificial template for micron-sized rattle-like structures. 

In chapter 3 we synthesize encapsulated sub-micron calcium carbonate 

particles with pendant vinyl groups from which we discuss modification by thiol-ene 

Michael addition. On demonstration of Michael addition we synthesize poly(styrene) 

by RAFT polymerization to yield thiol ω-functionalized polymers which can be 

clicked to these particles to illustrate the ability to tune surface properties. 

In chapter 4 we prepare microgels from the monomers used in Chapter 2 and 

3 in the absence of the calcium carbonate core. We discuss their responsive 

behaviour and ability to form gels and act as responsive Pickering stabilizers. We 

also use these microgels as models to further investigate the encapsulation method 

described in Chapter 2 and issues arisen concerning pendant vinyl groups in Chapter 

3. 



Chapter 1: Introduction 

 

  
22 

 
  

In Chapter 5, continuing with the encapsulation theme, we discuss the 

synthesis of multi-layered particles templated on Laponite armoured soft particles. 

We investigate how the film properties are affected by the morphology of these sub-

micron particles. 
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Chapter	2:	Particle	Encapsulation	by	
Starved‐Feed	Emulsion	Polymerization	

2.1.	Abstract	

We demonstrate a versatile method to encapsulate calcium carbonate 

particles with a shell of polymer by means of a conventional free radical emulsion 

polymerization process. Our strategy relies on the encapsulation of the pigment 

particles with a thin primer layer of cross-linked poly(acrylate). Starved-fed addition 

and emulsion polymerization of di(ethylene glycol) diacrylate and methacrylic acid, 

allows the uniform decoration of the pigment particles with the polymer primer shell. 

We demonstrate efficient encapsulation of calcium carbonate, from which we 

produce hollow particles. The thickness of the polymer shell can easily be controlled, 

which we demonstrate with sequential seeded polymerization of methyl methacrylate 

under starved fed conditions. 
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2.2.	Introduction	

When small pigment particles are dispersed into a polymer matrix to form a 

nanocomposite material, synergistic properties are often achieved. For these 

combined properties in materials the encapsulation of particles has been of great 

interest, particularly in the coatings industry. Waterborne coatings have multiple 

constituents, the most important being the binder (soft latex particles) and the 

pigment. Typical inorganic pigments include titanium dioxide and calcium 

carbonate, organic pigments such as phthalocyanine blue and carbon black are also 

used. In the area of waterborne decorative coatings pigments are required to achieve 

high opacity and hiding power in order to conceal the underlying surface. An even 

distribution of pigment particles throughout the polymer latex based film is desired 

to maximize scattering efficacy. A considerable problem, however, is that particles 

such as titanium dioxide and calcium carbonate tend to aggregate upon film 

formation. One underlying reason is the high Hamaker constant resulting in a strong 

attractive interaction between the colloids.1 The clustering of pigment dramatically 

reduces the quality of the coating, with detrimental effects on mechanical robustness, 

water uptake resistance, an increase in film roughness and marked reduction in 

opacity as a result of pigment clusters similar light scattering ability to one pigment 

particle.2, 3 One method to overcome agglomeration of pigments is to coat individual 

particles with a shell of polymer, providing a steric spatial exclusion zone (Scheme 

2.1). This prevents the particles from forming “tight” clusters, whilst concurrently 

providing the ability to tune the compatibility/wettability with the polymer matrix. 

Encapsulating pigment particles in a water based systems remains a challenge.4-7 

Herein we describe the numerous strategies which have been employed. 
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Scheme 2.1 Illustration of (a) the clustering of pigment particles on film formation and (b) the 
prevention of pigment clustering on film formation by the spatial exclusion zone provided by polymer 
shell around the pigment. 

2.2.1.	Layer‐by‐layer	deposition	of	oppositely	charged	electrolytes	

One approach to encapsulate particles in a polymer shell demonstrated by 

Caruso et al. is the sequential layer-by-layer (LbL) deposition of oppositely charged 

polyelectrolytes, such as negatively charged poly(styrene sulfonate) and positively 

charged poly(allylamine hydrochloride).8, 9 A thin polymer shell is slowly built up 

around the particles and is stable enough to form hollow structures; this method has 

been used to encapsulate sacrificial calcium carbonate particles for drug delivery 

applications.10-13 The requirement of several cleaning cycles between each deposition 

step makes this a laborious technique. Caruso and co-workers modified this approach 

to eliminate the cleaning cycles, by using electrophoretic polymer assembly; 

immobilised particles in an electrophoretic cell were coated by sequential addition of 

polyelectrolytes.14 In sequential steps anionic polyelectrolytes flow from wells 

adjacent to the cathode to the anode and cationic polyelectrolytes flow from wells 

adjacent to the anode to the cathode. Immobilization of the particles removes the 

necessity of centrifugation cycles, though heating is required to recover the particles. 

Although efficient in that the method of LbL coats all particles, the drawbacks 

include; dilute concentrations, the slow increase in polymer shell thickness intrinsic 

to the LbL approach, and the laborious cleaning cycles required. 
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2.2.2.	Heterocoagulation	of	oppositely	charged	particles	

 

Figure 2.1 TFFDSEM (thin-film freeze-drying scanning electron microscope) images of various 
anionic small polymer latexes of different sizes adsorbed onto larger particles. Poly(vinyl chloride) 
latex of (a) 116 nm, and polystyrene particles (b) 180 nm, (c) 320 nm and (d) 696 nm assembled onto 
a large cationic polystyrene latex of 2170 nm by heterocoagulation in 0.5 mM KCl background 
electrolyte.15 

Similar to the layer-by-layer approach, heterocoagulation of oppositely 

charged particles can be used to achieve hierarchical structures. Typically, smaller 

particles are adsorbed onto larger particles to create a raspberry like morphology. 

Hogg, Healy and Fuerstenau developed the HHF theory16 that describes the 

interaction of two particles of different sizes; this was later found to provide good 

results for systems of dissimilar particles with particles of opposite charges and the 

same charge.17 Vincent and co-workers produced raspberry-like structures with 

beautiful symmetry by heterocoagulating small anionic latex particles onto larger 

cationic latex particles (Figure 2.1).15, 18 Particle encapsulation can be achieved 

through the heterocoagulation of latex particles onto inorganic particles; this has 

been demonstrated for the encapsulation of silica19, 20 and gibbsite clay.21 Controlled 

heterocoagulation provides a simple and thorough encapsulation method, however 

low concentrations must be used, cleaning cycles by centrifugation are required to 

remove excess non-coagulated latex particles and there is little control over shell 

thickness as it is dependent on the latex size. 

  



Chapter 2: Particle Encapsulation 

 

  
32 

 
  

2.2.3.	Particle	encapsulation	by	emulsion	polymerization	

A more efficient process would be to encapsulate by an in situ approach such 

as emulsion polymerization; this allows for higher solids content than the LbL and 

heterocoagulation techniques and it is easier to scale. Conceptually this method 

seems straightforward, in practice however, it is more complex. Haga et al. 

demonstrated, in the encapsulation of titanium dioxide particles, that initiator, 

pigment surface, monomer concentrations and pH have a profound influence on the 

encapsulation process, thus rendering it a sensitive method.22 

Maintaining particle dispersion throughout the polymerization is also a 

problem; the use of surfactants to disperse particles and prime their surface to 

enhance affinity for polymer deposition is common.23 Templeton-Knight and co-

workers combined non-ionic surfactants with agitation provided by a sonic bath to 

encapsulate titanium dioxide particles in poly(methyl methacrylate-co-methacrylic 

acid-co-ethylene glycol dimethacrylate).24 A thin polymeric shell was produced, 

though TEM analysis suggests that particle dispersion remained an issue. However, 

these additives often lead to deteriorative properties in the final nanocomposite 

material, for example through surfactant migration. One strategy that restricts the 

latter is the use of polymerizable surfactants; use of surfmers to achieve 

encapsulation has been illustrated by Tian and co-workers in the encapsulation 

phthalocyanine blue.25, 26 Closely related and achieving similar results is the 

adsorption of initiator molecules (coined inisurfs) onto the surface of the target 

pigment particles to aid the build-up of a polymer shell, illustrated by Bourgeat-Lami 

and co-workers in the encapsulation of silica nanoparticles.27, 28 An alternative 

approach is to adjust the wettability of the pigment surface to promote polymer 

deposition by pre-modifying its surface. Dos Santos and co-workers encapsulated 
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titanium dioxide particles by emulsion polymerization of methyl methacrylate by 

initially chemically modifying the surface of the titanium dioxide particles 

hydrophobically with a stearate functionalised titanate.29 However, encapsulation 

efficiency defined as amount of pigment encapsulated was found to be below 10 %. 

Similar results were achieved by Wang et al. by adsorbing monomer functionalized 

titanates to titanium dioxide particles prior to encapsulation.30 Strategies using 

surfactants and dispersants are of great concern due to reduced efficiency; the term 

efficiency means covering all pigment particles with a shell of polymer, and 

preventing the occurrence of secondary nucleation, that is the formation of ordinary 

polymer latex particles alongside the encapsulated pigments. 

2.2.4.	Particle	encapsulation	by	miniemulsion	polymerization	

Miniemulsion polymerization has also proven a popular tool in encapsulation 

of particles. Bourgeat-Lami and co-workers demonstrated that encapsulation of the 

hydrophobic pigments such as phthalocyanine blue (Figure 2.2 1), are relatively 

simple by miniemulsion polymerization; the hydrophobic nature of the pigment 

drives the particle into the monomer droplets which, upon initiation, are 

polymerized.31, 32 However, monomer compatibility with the particle was an issue; 

encapsulation in styrene was successful, whereas attempts to encapsulate 

phthalocyanine blue in methyl methacrylate, butyl acrylate and vinyl acetate 

polymers proved fruitless. Landfester et al. further illustrated the effectiveness of 

miniemulsion polymerization as a tool to encapsulate hydrophobic pigments, 

demonstrated in the encapsulation of azo pigment yellow and quinacridone pigment 

violet (Figure 2.2 2 and 3 respectively) in poly(styrene). 
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Figure 2.2 (1) Phthalocyanine blue, (2) azo pigment yellow and (3) quinacridone pigment violet. 

Contrastingly, encapsulation of hydrophilic particles by miniemulsion 

polymerization has proven to be more difficult; surface modification prior to 

polymerization is required. El-Aasser et al. encapsulated titanium dioxide particles in 

poly(styrene) by modifying the titania surface with hydrophobic amine 

functionalized polymers.33-36 Encapsulation efficiency was found to be strongly 

dependent on the concentration of the stabilizer and on TiO2 particle size; higher 

concentrations of stabilizer and smaller particle sizes (below 50 nm) lead to higher 

encapsulation content of titanium dioxide particles. Where larger titania particles or 

lower concentrations of stabilizer were used, bare titanium dioxide particles were 

found. Bourgeat-Lami and co-workers showed that surface modification of silica 

particles with monomer functionalized silanes yielded encapsulated particles on 

miniemulsion polymerization of methyl methacrylate, however TEM analysis 

highlighted that many secondary particles without a silica core were also produced 

(Figure 2.3).37 Encapsulation of calcium carbonate particles modified by stearic acid 

by Antonietti and co-workers, again illustrated the requirement to hydrophobically 

modify the surface of the inorganic particle, however once again empty polymer 

particles were also formed.38 Encapsulation by miniemulsion polymerization suffers 
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from similar problems to emulsion polymerization; not all pigment particles have a 

shell of polymer, and secondary nucleation is common. 

 

Figure 2.3 Cryo-TEM images of silica particles encapsulated in poly(MMA-co-BA) with (a) 3.5, (b 
and c) 20 wt.% silica content.37 

2.2.5.	Particle	encapsulation	by	dispersion	polymerization	

Particle encapsulation has also been achieved by dispersion polymerization. 

Bourgeat-Lami et al. demonstrated encapsulation of silica beads by dispersion 

polymerization of styrene in an ethanol-water (95:5 wt.%) medium.39 The silica was 

modified with a monomer functionalized silane to promote encapsulation over 

surface stabilization. Bourgeat-Lami and co-workers also found that particle size 

effected the encapsulation; for the encapsulation of silica in poly(styrene), silica 

particles smaller than 200 nm in diameter yielded multiple encapsulations, whereas 

above 200 nm polymer particles containing 1 or 0 silica particles were found.40 An 

and co-workers encapsulated titanium dioxide particles in a poly(styrene-co-

divinylbenzene) by dispersion polymerization in a methanol medium containing 

PVP, however, low wt.% (1-2 %) of titanium dioxide were required for a successful 

encapsulation, rendering this method unfeasible for scaling up.41, 42 Huang and co-

workers demonstrated the encapsulation of calcium carbonate nano-particles by the 

dispersion polymerization of styrene maleic anhydride in a methanol-water mixture; 

incorporation of maleic anhydride increased encapsulation of the particles through 

interactions of C=O groups of maleic anhydride on the CaCO3 surface.43 Dispersion 
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polymerizations typically produce particles greater than a micron,44 therefore it is an 

unsuitable method for the encapsulation of single particles in the sub-micron region. 

 

Figure 2.4 TEM image of encapsulated silica particles of sizes (a) 72, (b) 120, (c) 352 and (d) 629 nm 
in diameter in poly(styrene).40 

2.2.6.	Particle	encapsulation	by	precipitation	polymerization	

Encapsulation of particles by precipitation polymerization has also been 

shown. Bon et al. selectively decorated Lycopodium spores by precipitation 

polymerization of divinylbenzene in acetonitrile (Figure 2.5).45 Magnetic Fe3O4 

particles were encapsulated by precipitation polymerization by initially grafting 

methacrylate functionalized silanes to the surface then encapsulating in 

poly(methacrylic acid) and N,N’-methylenebisacrylamide in acetonitrile.46 This 

method is very successful as no secondary latex particles are formed and all particles 

are encapsulated. This has not been demonstrated in water-based systems, which 

would be preferable. 

 

Figure 2.5 SEM images of (a) bare Lycopodium spores, (b) and (c) spores selectively decorated with 
poly(DVB) (scale bar: 10μm).45 
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2.2.7.	Particle	encapsulation	by	emulsion	polymerization	using	macro‐

RAFT	agents	

 

Figure 2.6 Schematic representation of pigment dispersion and encapsulation by emulsion 
polymerization using a macro-RAFT agent.47 

A key development, by Hawkett and co-workers, solved the two concerns of 

secondary nucleation and coverage of all pigment particles by using macro-RAFT 

agents. Macro-RAFT agents have been shown to be effective pigment dispersants,48-

50 this has been expanded on, to facilitate encapsulation through RAFT emulsion 

polymerization.47 Macro-RAFT agents with acrylic acid moieties were initially 

employed to adhere to the surface of the pigment and aid dispersion in water-based 

systems. RAFT emulsion polymerization process was carried out under monomer 

starved-fed conditions and resulted in an efficient encapsulation (Figure 2.6). This 

approach has proven to be very versatile, with the ability to encapsulate a range of 

pigments including titanium dioxide,47 phthalocyanine blue,47 clay platelets,51 cerium 

oxide,52 calcium carbonate,53 alumina and copper oxide54 (Figure 2.7). The RAFT 

polymerization process, however, has a number of downsides; cost, colour and sulfur 

content being but a few. 
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Figure 2.7 TEM images of particles encapsulated by emulsion polymerization using macro-RAFT 
agents; (a) titanium dioxide,47 (b) phthalocyanine blue,47 (c) gibbsite platelets51 and (d) cerium 
oxide.52 

Our mission was to go back to the core question; could we devise an 

encapsulation method based on conventional free radical emulsion polymerization 

technology without the need to pre-treat the pigment particles or use surfactants? 

Here we show a method which achieves exactly that. The key step in our approach is 

that the surface of the pigment is primed with an initial layer of cross-linked 

polymer. This thin shell would then promote deposition of additional polymer 

material using free radical emulsion polymerization conditions. To fully cover the 

surface of the pigments with the primer: (1) its compatibility and thus wettability 

with the pigment surface needs to be tuned, (2) the primer layer is cross-linked to 

avoid potential dewetting in sequential reaction or modification steps, or in the end 

application (for example if the encapsulated pigments were to be used in polymer 

melt injection moulding or paper manufacturing). Note that in our studies we focus 

on the encapsulation of pigments of submicron size. 
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2.3.	Results	and	Discussion	

Herein we describe the encapsulation of sub-micron precipitated calcium 

carbonate particles in a polymeric shell. A protocol was devised to provide the 

dispersed pigment particles with a thin primer shell of heavily cross-linked polymer. 

2.3.1.	Characterization	of	calcium	carbonate	particles	

SOCAL P3, a cheap, commercially available precipitated calcium carbonate 

of ellipsoidal morphology, was chosen to encapsulate as it is currently used as an 

extender in paint formulations and is thus industrially relevant. TEM and SEM 

analysis of the particles confirmed that the particles indeed had a “cigar shape” or 

ellipsoidal morphology and were sub-micron in size, with approximate width of a 

few hundred nm and a maximum length of 1 µm, though it is clear that they are 

polydisperse (Figure 2.8 and Figure 2.9 respectively). TEM images show that the 

calcium carbonate particles have varying electron density and in some cases rings, 

this is due to the diffraction of the beam by a crystalline material producing artefacts 

in the image which change as the focus is adjusted. 

 

Figure 2.8 TEM images of calcium carbonate (SOCAL P3) (scale bar: 200 nm). 
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Figure 2.9 SEM images of calcium carbonate (SOCAL P3) (scale bar: 200 nm). 

Four polymorphs of calcium carbonate exist, calcite, aragonite, vaterite and 

amorphous, where calcite is the most abundant and stable. The polymorphs of 

calcium carbonate exhibit different surface structures which may affect the 

encapsulation approach.55 Powder X-ray diffraction was used to determine the 

polymorph of the precipitated calcium carbonate, SOCAL P3. The analysis 

determined that SOCAL P3 is of the polymorph calcite (Figure 2.10), which has a 

rhombohedral crystal structure (Figure 2.11). Further analysis is required to 

determine the surface of the particles and thus the direction of the encapsulation 

approach. 
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Figure 2.10 X-ray diffraction spectra of SOCAL P3, the  represents the diffraction pattern of calcite 
and the  represent the diffraction of the aluminium holder, demonstrating that SOCAL P3 
precipitated calcite. 

 

Figure 2.11 Crystal structure of calcite.56 

Surface area is a very important factor when considering encapsulating a 

particle, whether it be an in-situ polymerization or heterocoagulation; too low a 

surface area and the polymerization/heterocoagulation will not occur at the surface, 

too high and uneven coating and coagulation becomes a factor. Nitrogen porosimetry 

can be used to determine the surface area. Using BET analysis the surface area and 

BET constant can be found from the BET plot (Figure 2.12), 1/[Va(P0/P-1)] versus 

P/P0; where P is the absolute pressure of bulk gas above the sample, P0 is the 
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saturation pressure of the adsorptive (in this case nitrogen) and Va is the volume of 

gas adsorbed by the sample. The intercept of the straight line gives 1/VmC and the 

slope gives (C-1)/VmC where C is the BET constant and Vm is the volume of gas 

adsorbed when the entire surface is covered with a monomolecular layer, from which 

the surface area can be calculated by knowing the area one unit of gas takes up on 

the surface.57 The surface area of calcium carbonate was determined by this method, 

giving a surface area of 8.92 ± 0.05 m2 g-1 (Figure 2.12). The BET constant, should 

be in the range of 0 < C < 300, for SOCAL P3 it was determined to be 336 which is 

slightly above the desired range, it is possible that this is due to the presence of 

micropores.57 The value is only slightly out of range and the correlation coefficient 

(0.9999) is suitably close to unity that the value for the surface area can be 

considered acceptable. 

 

Figure 2.12 BET transform plot of calcium carbonate (SOCAL P3) obtained by nitrogen porosimetry; 
quantity of gas adsorbed as a function of relative pressure. SOCAL P3 has a BET surface area of 8.92 
± 0.05 m2 g-1 and a C value of 336. 
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The nitrogen adsorption isotherm of the particles, which is the volume of gas 

adsorbed (cm3 g-1) onto the surface as a function of relative pressure (P/P0), shows 

that SOCAL P3 has a type II isotherm, meaning that the material is essentially non-

porous (Figure 2.13). At low-mid relative pressure the quantity of gas absorbed is 

low and corresponds to a monolayer of gas, the sharp increase at higher relative 

pressure corresponds to the gas condensing as a liquid on the surface. The small 

increase in gas adsorbed at the low relative pressure range of 0-0.2 indicates there 

are hardly any micropores (< 2 nm), the slight hysteresis at the high relative pressure 

range of 0.7-1.00 is indicative of the presence of some macropores (50-1000 nm). 

Total pore volume measurements corroborate with this, showing that the calcium 

carbonate particles have a low pore volume of only 0.03 cm3 g-1. 

 

Figure 2.13 Nitrogen adsorption isotherm of calcium carbonate (SOCAL P3); it has a type II 
isotherm meaning that is essentially non-porous. 

The stability and surface charge are also important factors when 

encapsulating materials; surface functionality and charge can help determine what 

will stick to the surface and stability is important as the particles need to be fully 
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dispersed to encapsulate individual particles, however contrastingly if too stable it 

becomes difficult to wrap within a polymeric layer. Zeta potential is a 

characterization tool with which the magnitude of the zeta potential infers the 

stability of a particle and the sign describes the surface charge. Colloidal dispersions 

with zeta potentials greater than ± 30 mV are considered to be stable.58 Zeta potential 

measurements of SOCAL P3 calcium carbonate particles were conducted at 25 °C 

and pH 9.3 at different salt concentrations (Figure 2.14). Salt affects the zeta 

potential as increasing the ionic strength of the medium decreases the thickness of 

the electric double layer, thus at very high salt concentrations, particles can become 

unstable and a zeta potential of 0 mV will be reached. The zeta potential for SOCAL 

P3 was determined to be positive, suggesting that in water the surface largely 

consists of Ca2+ or CaOH+ ions. 

 

Figure 2.14 Zeta potential of calcium carbonate (SOCAL P3) as a function of salt (NaCl) 
concentration. The zeta potentials were measured at pH 9.33, and an average of 6 measurements were 
recorded. 
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Changes in pH strongly affect the zeta potential of particles; typically at low 

pH positive charge builds up on the particles, resulting in a positive zeta potential. If 

the pH is increased, i.e. an alkali is added, the zeta potential will decrease (or 

become more negative) and surface charge will get to a point where it is neutralised. 

On the addition of more alkali the negative charge on the surface will increase 

resulting in a higher negative value. The point at which the zeta potential is equal to 

0 mV is known as the isoelectric point (IEP) and is the pH at which the particles are 

least stable. The point of zero-charge (PZC) is defined as the point when the surface 

charge of the particle is equal to zero, often but not always this is the same as the 

isoelectric point; they differ when specific ion adsorption occurs, changing the IEP. 

Zeta potential measurements of calcium carbonate were also conducted at different 

pHs varying from 8.5 - 12.5, measurements at pH below 8.5 were not conducted as 

the calcium carbonate begins to dissolve at lower pH. As the pH was increased the 

zeta potential reduced, passing through the isoelectric point at pH 11.2. This falls 

within the range of reported isoelectric points for calcite, 8.2 – 11.5, the range being 

attributed to the variety of calcite surfaces, measurement techniques or presence of 

solubilised CO2 and Ca2+ ions.56, 59-65 
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Figure 2.15 Zeta potential as a function of pH of calcium carbonate (SOCAL P3). An average of 6 
measurements were recorded. 

2.3.2.	Encapsulation	of	calcium	carbonate	particles	

 

Figure 2.16 Di(ethylene glycol) diacrylate. 

Di(ethylene glycol) diacrylate (DEGDA) (Figure 2.16) was chosen as the 

primary encapsulating monomer. A di-functional monomer was desired to produce a 

fully cross-linked system so that the calcium carbonate core is kinetically trapped 

within the polymer shell and so that the composite material could potentially be 

processed since particles encapsulated in a non-cross-linked polymer shell exhibit 

dewetting when heated above the Tg of said polymer.66 The monomer also needed to 

have slight water solubility so that it could be used in emulsion polymerization 

conditions. The solubility of DEGDA in water was of further interest as ethylene 

glycol based polymers have exhibited LCST behaviour.67, 68 The solubility of 

DEGDA in water at various temperatures was measured by 1H NMR. 1.0 g DEGDA 

was added to 10.0 g D2O and heated in an oil bath to the desired temperatures, the 
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mixture was left to stir for an hour to allow it to equilibrate, after which a known 

mass of the supernatant was extracted and diluted with a known mass of D2O 

containing an internal NMR standard sodium acetate trihydrate. The dilution was 

necessary to prevent any solubilised DEGDA crashing out of solution on cooling, 

and the NMR standard was added after solubilisation to prevent partitioning into the 

DEGDA phase. On increasing temperature, DEGDA exhibited a decreasing 

solubility, suggesting that it has an LCST (Figure 2.17). At reaction temperature of 

70 °C it was found that DEGDA has a water solubility of 21 g L-1. 

 

Figure 2.17 Water solubility of DEGDA in D2O at varying temperatures, measured by 1H NMR. 

The initial encapsulation method proceeded as follows (HM-201). Typically, 

60.0 g of 16 wt.% water-based slurries of the pigment was used as a starting point in 

a conventional free-radical seeded emulsion polymerization set up. To the calcium 

carbonate slurry, 1 mL DEGDA was fed at a rate of 0.5 mL h-1, the polymerization 

was initiated with APS simultaneously with the start of the feed and the 

polymerization was conducted at 70 °C. The emulsion polymerization was continued 

for an additional 30 minutes, after which the final product was obtained. Through 
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TEM analysis it was clear that the poly(DEGDA) did not wet the surface of the 

calcium carbonate: coagulated polymer (Figure 2.18a) is clearly observed, as are 

bare calcium carbonate particles (Figure 2.18b). It appears that where the polymer 

has interacted with the surface, only large blobs are observed suggesting that 

dewetting has occurred. To overcome this wetting dilemma methacrylic acid (MAA) 

was chosen as a secondary monomer to encourage wetting of the polymer to the 

calcite surface. 

 

Figure 2.18 TEM images of DEGDA polymerized in the presence of calcium carbonate. (a) 
poly(DEGDA) is unstable and coagulates, (b) calcium carbonate remains uncoated (HM-201) (scale 
bar: 100 nm). 

In order to determine whether the methacrylic acid would adsorb onto the 

positively charged surface of the calcium carbonate particles, we calculated whether 

the methacrylic acid is deprotonated in the 17 wt.% solids calcium carbonate slurry 

using the Henderson-Hasselbalch equation (1.1). The pKa of methacrylic acid is 

4.66,69 and the pH of the calcium carbonate slurry containing methacrylic acid is 

7.10. Rearranging the Henderson-Hasselbalch equation to give [A-]/[HA] (1.2) we 

can determine the extent to which the methacrylic acid is deprotonated. Under these 

conditions [A-]/[HA] is equal to 275, thus the methacrylic acid is > 99.5 % 

deprotonated, and consequently adsorbs onto the positively charged surface of 
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calcium carbonate by means of electrostatic interactions (Figure 2.19). It is important 

to note that we are not only considering methacrylic acid monomer units adsorbing 

to the calcium carbonate surface but also polymeric (MAA-co-DEGDA) chains and 

primary particles. 

 
 

(1.1) 

 
 

(1.2) 

 

 

Figure 2.19 Scheme depicting the adsorption of deprotonated methacrylic acid onto the positively 
charged surface of the calcium carbonate particles, where R is the poly(MAA-co-DEGDA) 
chains/particles. 

The second encapsulation method proceeded as follows (HM-202). 

Typically, 60.0 g of 16 wt.% water-based slurries of the pigment was used as a 

starting point in a conventional free-radical seeded emulsion polymerization set up. 

To the calcium carbonate slurry, 1 mL of a 14:86 wt.% mixture of MAA and 

DEGDA was fed in at a rate of 0.5 mL h-1, the polymerization was initiated with 

APS and the polymerization was conducted at 70 °C. The emulsion polymerization 

was continued for an additional 30 minutes, after which the final product was 

obtained. Through TEM analysis it was clear that the wettability of the polymer to 

the calcium carbonate has substantially improved, however some dewetting is clearly 

observable (Figure 2.20). To overcome this apparent wetting problem the monomer 

feed was split into two; (1) 0.5 mL of a 30:70 wt.% mixture of MAA and DEGDA 
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and (2) 0.5 mL of pure DEGDA. This was chosen in order to maximise the effect of 

MAA improving the wettability of the polymer to the calcium carbonate surface 

without increasing total MAA content in the polymer composition. 

 

Figure 2.20 TEM images of a 14:86 wt.% mixture of MAA and DEGDA polymerized in the presence 
of calcium carbonate (HM-202). The wettability of the polymer to the calcium carbonate surface has 
improved though dewetting is still observable (scale bar: 100 nm). 

The encapsulation proceeded as follows (HM-203 - 206). Typically, 60.0 g of 

16 wt.% water-based slurries of the pigment was used as a starting point in a 

conventional free-radical seeded emulsion polymerization set up. To the calcium 

carbonate slurry, monomer was starved-fed and polymerized in two steps at 70 °C. 

Firstly, 0.5 mL of 30:70 wt.% mixture of methacrylic acid (MAA) and di(ethylene 

glycol) diacrylate (DEGDA) was fed in using a syringe pump at a rate of 0.5 mL h-1. 

This was immediately followed by a second addition of 0.5 mL of pure DEGDA at 

the same feed rate (0.5 mL h-1). The emulsion polymerization was continued for an 

additional 30 minutes, after which the final product was obtained. 

The slow monomer feed rate was chosen so that the reaction was under 

starved conditions, thus keeping the monomer concentration low, meaning that there 

are no monomer droplets present for the majority of the emulsion polymerization 

process. Monomer conversion measurements as function of time show indeed that 
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near starved-fed conditions have been achieved (Figure 2.21 and Appendix II Figure 

II.1). 

 

Figure 2.21 Overall monomer conversion Xm vs. time of encapsulation of calcium carbonate (HM-
204). Feed 1 represents the feed of MAA and DEGDA mixture and feed 2 represents the DEGDA 
feed. Monomer was fed at a rate of 0.5 mL h-1. 

Once the encapsulation was complete it was essential to determine the 

location of the polymer, to ensure the calcium carbonate particles were indeed 

encapsulated. Zeta potential measurements can be used to identify the surface charge 

of particles. This can be a useful tool in identifying whether particles have been 

encapsulated. The zeta potential measurements of the new composite particles 

indicate that the surface has in fact changed. The original calcium carbonate particles 

exhibited a low positive zeta potential of ~ 12 mV, after the encapsulation process 

the new particles have a zeta potential of ~ -30 mV. The change to negative surface 

charge is logical as an anionic initiator, ammonium persulfate, was used and acts as a 

surface charge stabilizer, also some MAA may exhibit itself on the surface. The 

increased stabilization is also promising, in that aggregation of the particles is likely 

to be much reduced. 
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Figure 2.22 Zeta potential of calcium carbonate (SOCAL P3) () and calcium carbonate 
encapsulated in poly(MAA-co-DEGDA) (HM-203) () as a function of salt (NaCl) concentration. 
Zeta potential measurements were performed at pH 9.3 and an average of 6 measurements were 
recorded. 

To determine whether the particles were encapsulated in a polymeric shell, 

the morphology was analyzed by TEM; TEM is a very powerful tool in determining 

whether a surface is coated in a different species, as differences in electron density of 

materials can clearly be observed. TEM analysis showed that the calcium carbonate 

particles were indeed encapsulated in a polymeric shell with an approximate 

thickness of 10 nm, the polymer being clearly identifiable by its lower electron 

density and thus lighter in contrast to the calcium carbonate core (Figure 2.23). 
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Figure 2.23 TEM image of bare and encapsulated calcium carbonate. (a) Bare calcium carbonate 
particles. (b), (c) and (d) Calcium carbonate encapsulated in poly(MAA-co-DEGDA) (HM-203). 
(Images (a) (b) and (c) scale bar: 200 nm, image (d) scale bar: 100 nm). 

On close inspection of the TEM images it is apparent that the shell is not 

smooth, but bumpy, whereas the underlying surface of the calcite does not have this 

rough texture (Figure 2.24). We postulate that the roughness of the coating is a result 

of the polymer not completely wetting the surface of calcium carbonate particles, 

however as they are completely coated in polymer, the cross-linking of the diacrylate 

has ensured that the calcium carbonate core is kinetically trapped in the polymeric 

cage. 
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Figure 2.24 TEM images of (a) calcium carbonate encapsulated in poly(MAA-co-DEGDA), (b) an 
increased magnification of image (a) (HM-203), (c) bare calcium carbonate and (d) an increased 
magnification of image (c) illustrating the bumpy surface of the encapsulated calcium carbonate 
compared to the relatively smooth surface of the bare calcium carbonate (scale bar: 100 nm). 

SEM provides surface morphology information; typically this is of no use in 

analyzing encapsulated materials if the surface is smooth, though as the surface of 

the particles appears to have a rough texture SEM is now a valuable tool. SEM 

analysis of the particles supports that of the TEM, confirming that the surface of the 

particles are no longer smooth like that of the original calcium carbonate particles 

but is now bumpy (Figure 2.25). 
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Figure 2.25 SEM images of (a) bare calcium carbonate, (b) and (c) calcium carbonate encapsulated in 
poly(MAA-co-DEGDA) (HM-206) (scale bar (a): 500 nm, scale bar (b) and (c): 200 nm). 
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In lower magnification SEM images it is clear that some small non-spherical 

particles are present (Figure 2.26a). These particles are calcium carbonate fragments 

and are distinguishable from potential secondary polymer particles, as such 

secondary particles would be spherical. On closer inspection it is clear that these 

fragments are also coated in a polymer shell, in the same manner as the much larger, 

complete SOCAL particles (Figure 2.26b). 

 

Figure 2.26 SEM images of calcium carbonate encapsulated in poly(MAA-co-DEGDA) (HM-206) 
(a) broad overview of particles, showing small fragmented calcium carbonate particles and (b) small 
calcium carbonate fragment coated in a polymeric shell (scale bar (a): 2µm, scale bar (b): 100 nm) 

We have discussed that the bumpy surface is due to the polymer not 

completely wetting the surface of the calcium carbonate, but that this does not impair 

the encapsulation as the core is kinetically trapped in a cross-linked shell. Removal 

of the core to yield a hollow polymeric particle helps to determine whether the 

particles are in fact completely encapsulated and thus kinetically trapped. It is well 

known that calcium carbonate reacts with acid to form carbon dioxide, calcium salts 

and water: 

  (2.1) 

The calcium carbonate was etched out of the composite particles by adding 

1 M HCl drop-wise, it was imperative that the acid was added slowly to prevent a 

sudden release of carbon dioxide blowing the comparatively delicate polymer shell 

apart (HM-207). The particles were subsequently cleaned by several centrifugation 
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cycles. The resulting hollow polymeric particles were analyzed by cryo-TEM so as 

to clearly observe them in aqueous conditions, as once dried it would become 

difficult to characterize the shape and determine whether the particles were truly 

hollow. The hollow polymer particles retained the original morphology of the 

ellipsoidal calcium carbonate, further corroborating that the location of the polymer 

is certainly around the calcium carbonate particles. Though it appears that the 

surface could be covered in individual polymeric particles due to the rough texture, 

the retention of the ellipsoidal morphology confirms that the entire surface is in fact 

cross-linked and trapped in that shape, otherwise a spherical morphology would 

likely be observed (Figure 2.27). Here we have shown that we can produce non-

spherical hollow particles, such morphology is of great interest as they have been 

shown to have an increased cell-uptake compared to their spherical counterparts70-72 

and another for their increased opacity properties.73, 74 

 

Figure 2.27 Cryo-TEM images of calcium carbonate encapsulated in poly(MAA-co-DEGDA), with 
the calcium carbonate etched out with HCl (HM-207) (scale bar: 200 nm). 

Energy dispersive X-ray (EDX) analysis on STEM was used to gain 

elemental analysis on the nanometre scale of the encapsulated particles. EDX 

analysis works by bombarding a sample with high energy electrons and the X-ray 
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spectrum emitted is unique to each element.75 Line scans across the particles (Figure 

2.28 a) produced micrographs illustrating the location of the elements (Figure 2.28 

b). It is clear that the carbon based polymer shell extends past the core inorganic 

particle as seen by the extension of the carbon past that of the calcium in the line 

scans. The count rate for the lighter elements, carbon and oxygen were lower than 

that of the heavier calcium, which is logical as they produced lower energy x-rays. 

Despite this, the obvious enrichment of approximately 10 nm of carbon at the edges 

corroborates with the polymeric shell observed by TEM analysis (Figure 2.23). 

 

Figure 2.28 STEM images of (a) calcium carbonate encapsulated in poly (MAA-co-DEGDA) (scale 
bar: 20 nm) where (b) is the corresponding EDX linescans ( calcium,  oxygen and  carbon). 
The yellow line across particles indicates place of linescan (HM-205). 

2.3.2.1.	Encapsulation	Mechanism	

We believe the encapsulation mechanism is as follows. The monomer 

concentration is kept low as a result of the starved-fed conditions, meaning that there 

are no monomer droplets present. A sulfate radical, which originates from the 

decomposition of the ammonium persulfate initiator, reacts with monomer in the 

water phase. Upon further propagation of this radical, the oligomer, becomes surface 

active and can adhere in this case to the pigment. It is also plausible that a fraction 

can propagate further in the water phase, becoming insoluble and thereby collapsing 
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initially on itself and then subsequently heterocoagulate onto the pigment particle 

where they become cross-linked with the surrounding polymer. This results in a thin 

cross-linked polymeric shell around individual calcium carbonate particles. 

2.3.3.	Control	of	shell	thickness	

Now that this seeded emulsion polymerization strategy is able to encapsulate 

pigment with a thin shell of cross-linked polymer primer, we were interested to see if 

we could increase the polymer shell thickness. 

In order to investigate this we extended the encapsulation protocol with an 

additional step in which we starve-fed methyl methacrylate (MMA) after the initial 

DEGDA feeds. The presence of the primer layer facilitates efficient encapsulation in 

that it locally enhances the monomer concentration in the existing shell through 

swelling, which promotes polymerization upon radical entry from the water phase. 

Typically, 6.0 mL methyl methacrylate (with respect to 10 g calcium carbonate) was 

fed into the reaction mixture under starved conditions (HM-208). The starved-fed 

conditions were verified by following conversion by gravimetry, the plot shows that 

the conversion of MMA is close to 100 % throughout the feed (Figure 2.29). 
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Figure 2.29 Overall monomer conversion; Xm vs. time of encapsulation of calcium carbonate (HM-
208). Feed 1 represents the feed of methacrylic acid and di(ethylene glycol) diacrylate mixture, feed 2 
represents the di(ethylene glycol) diacrylate feed and feed 3 represents the MMA feed. In the first two 
feeds were fed at a rate of 0.5 mL h-1 and MMA was fed at a rate of 1 mL h-1. 

Zeta potential measurements after the shell extension with MMA show that 

the particles have a zeta potential of ~ -30 mV at pH 9.3 and 10-3 M NaCl. The 

particles with a poly(MMA) shell extension exhibit very similar zeta potential to that 

of those encapsulated in poly(DEGDA-co-MAA); this is logical as the monomers are 

similar and the same initiator, ammonium persulfate, that acts as a charge stabilizer 

was used. 
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Figure 2.30 Zeta potential of calcium carbonate (SOCAL P3) (), calcium carbonate encapsulated in 
poly(MAA-co-DEGDA) (HM-203) () and calcium carbonate encapsulated in poly(MAA-co-
DEGDA) primer with poly(MMA) shell extension () (HM-208)as a function of salt (NaCl) 
concentration. Zeta potential measurements were performed at pH 9.3 and an average of 6 
measurements were recorded. 

Particle size was monitored by laser diffraction. The particle size distribution 

was measured for the growth of the polymer shell around calcium carbonate after 2, 

3, 4, 5, and 6 mL of MMA was added, it is clear that the particle size is increasing on 

increasing amount of monomer fed in (Figure 2.31). For particles with less than 2 

mL MMA no change was observed by laser diffraction. Particles smaller than the 

calcium carbonate were not observed, indicating that there was no secondary 

nucleation. Note that the shift toward higher particle sizes is only indicative as the 

particles are not spherical, the pigment size distribution is not monodisperse, and 

upon polymer shell growth the overall refractive index changes. Hence laser 

diffraction can only demonstrate the increasing trend in particle size rather than an 

accurate shell thickness. 
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Figure 2.31 Particle size analysis by laser diffraction of bare calcium carbonate (), and 
encapsulated calcium carbonate; at 2 mL (), 3 mL (), 4 mL (), 5 mL () and 6 mL () methyl 
methacrylate (HM-208). 

Cryo-TEM analysis showed that the shell thickness had indeed substantially 

increased and that the surface remained bumpy, as was in the case of encapsulation 

with the primer (Figure 2.32). This is due to a combination of reasons, one of which 

is that the locus of polymerization is on the cross-linked poly(DEGDA)-based shell. 

This is combined with the fact that the polymerization is conducted below the Tg of 

poly(MMA) and is under starved conditions meaning that there is little monomer 

swelling, resulting in the polymer retaining the structure formed on initial 

polymerization. Under normal TEM conditions however the polymer surface appears 

smooth, this is likely a cause of capillary action on drying (Figure 2.33).76 This is 

also observed when analyzed by SEM; although the surface is not completely 

smooth it is clearly much smoother than that seen in the wet-state of cryo-TEM, 

underlining that this is capillary pressure on drying smoothing out the polymer shell 

(Figure 2.34). 
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Figure 2.32 (a) TEM image of calcium carbonate encapsulated in initial poly(MAA-co-DEGDA) (M-
203), and (b), (c) and (d) corresponding cryo-TEM image of said encapsulated particles with shell 
extended with poly(MMA) (HM-208) (scale bar: 200 nm). 

 

Figure 2.33 TEM images of calcium carbonate encapsulated in initial poly(MAA-co-DEGDA) 
followed by shell extension with poly(MMA) (HM-208) (scale bar: 200 nm). 
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Figure 2.34 (a) SEM image of calcium carbonate encapsulated in initial poly(MAA-co-DEGDA) 
(HM-206), and (b) and (c) the corresponding SEM image of said encapsulated particles with shell 
extended with poly(MMA) (HM-208) (scale bar: 200 nm). 
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2.3.4.	CaCO3	as	a	sacrificial	template	for	nano‐rattles	

Now that we have illustrated encapsulation of calcium carbonate particles, 

we intend to use this method to create nano-rattles using the calcium carbonate as a 

sacrificial template. Amorphous calcium carbonate particles have been used as a 

sacrificial template in the preparation of loaded hollow polymer particles for 

applications in drug delivery.11, 13, 77 Herein we load amorphous calcium carbonate 

with silica nanoparticles and encapsulate them in a polymeric shell. 

2.3.4.1.	Synthesis	of	amorphous	calcium	carbonate	particles	

Amorphous calcium carbonate particles (HM-210) were synthesized in 

accordance with the method illustrated by Sukhorukov and co-workers;13 a solution 

of calcium chloride (250 mL, 0.33 M) was added rapidly to a vigorously stirred 

solution of sodium carbonate (250 mL, 0.33 M), the mixture was stirred vigorously 

for 30 seconds, after which the particles were collected by Büchner filtration. 

Particles were cleaned by rinsing with water and then dried under vacuum. Spherical 

calcium carbonate particles which appeared porous were produced (Figure 2.35). 

Particles were also synthesized in the presence of silica nano-particles (Ludox TM-

40), which had a diameter of 20 nm (HM-211). SEM analysis of HM-211 shows a 

different surface topology, however on cracking open the particles it was not 

possible to differentiate the silica nano-particles from the porous calcium carbonate 

(Figure 2.36). 
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Figure 2.35 SEM images of amorphous calcium carbonate particles; (a) whole particles and (b) 
broken particle (HM-210) (scale bar: 1 μm) 
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Figure 2.36 SEM images of amorphous calcium carbonate particles formed in the presence of silica 
particles (Ludox); (a) whole particles and (b) broken particle (HM-211) (scale bar: 1 μm). 

Though the presence of silica nanoparticles was not discernible by SEM for 

HM-211, EDAX analysis on the SEM indicated that silica was indeed present in the 

particles by the presence of the silicon peak (Figure 2.37). Silicon was not present in 

the EDAX of plain amorphous CaCO3 particles. Particles were loaded directly onto 

the aluminium stub, rather than on a silicon wafer as is typical, and EDAX 

measurements were taken from the centre of the particles. EDAX also provides 

quantitative data of the elemental analysis (Table 2.1). 
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Figure 2.37 EDAX spectrum of (a) amorphous calcium carbonate (HM-210) and (b) amorphous 
calcium carbonate formed in the presence of silica particles (Ludox) (HM-211). An average of 8 
samples were taken. 

TGA was performed on both samples to elucidate silica content (Figure 

2.38). At ~650 °C calcium carbonate combusts, releasing 44.0 % of its mass as CO2, 

leaving a CaO pellet; TGA shows that the amorphous calcium carbonate completely 

combusts, leaving no carbon residue. As the mass loss at 650 °C provides 

information on how much of the particle is CaCO3, silica content can be deduced 

(Table 2.1). The silica content was also determined by an average of 8 EDAX 

measurements to be 4.5 wt.%, this is not in keeping with silica determined by TGA, 

6.4 wt.%. This is because the shape of the volume of sample that is measured by 

EDAX is a tear drop (Figure 2.39), thus if the silica is not evenly distributed over the 

sample the quantitative EDAX data will not be accurate. 
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Figure 2.38 TGA of amorphous calcium carbonate (HM-210) () and amorphous calcium carbonate 
formed in the presence of silica (Ludox) (HM-211) (). 

Table 2.1 Table showing SiO2 content determined by EDAX and TGA for amorphous calcium 
carbonate-silica particles. 

Particles 
SiO2 content (%) determined by: 

EDAX TGA 

HM-211 4.5 6.4 

 

 

Figure 2.39 Scheme illustrating the area (yellow outline) from which EDAX data is gained. 
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Zeta potential measurements show that the calcium carbonate based particles 

exhibit different surface potentials, indicating that when formed in the presence of 

silica nanoparticles the amorphous calcium carbonate particles potentially have some 

of the Ludox adsorbed to the surface (Figure 2.40). 

 

Figure 2.40 Zeta potential as a function of pH of amorphous calcium carbonate particles (HM-210) 
() and amorphous calcium carbonate particles formed in the presence of silica nanoparticles (HM-
211) (). An average of 6 measurements were recorded. 

The silica loaded calcium carbonate particles were etched with acetic acid 

(0.25 M fed at 0.3 mL h-1) to determine whether the silica had formed internal or 

external structures. SEM analysis suggests that small fractals of silica were formed 

during the precipitation of calcium carbonate (Figure 2.41). This explains why the 

EDAX analysis provided a lower value of silica wt.% than TGA; the presence of 

silica fractals of various sizes indicate that the silica is not evenly distributed through 

the calcium carbonate particles. 
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Figure 2.41 SEM images of silica after the CaCO3 has been etched out using acetic acid ((a) scale 
bar: 200nm, (b) scale bar: 100 nm). 

2.3.4.2.	Encapsulation	of	amorphous	calcium	carbonate	particles	

The amorphous calcium carbonate particles were encapsulated in a 

poly(DEGDA-co-MAA) shell as described in section 2.3.2. SEM analysis of 

encapsulated amorphous calcium carbonate particles indicate that they have indeed 

been encapsulated in a polymeric shell (HM-212) (Figure 2.42). 
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Figure 2.42 SEM images of (a) amorphous calcium carbonate particle (HM-210), (b) and (c) 
amorphous calcium carbonate encapsulated in poly(DEGDA-co-MAA) (HM-212) (scale bar: 1 μm). 
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SEM samples of the encapsulated amorphous calcium carbonate particles 

(HM-212) prepared immediately after the 2.5 hour polymerization illustrate that the 

particles have maintained their spherical morphology. However, SEM samples of the 

same particles (HM-212) prepared three days later indicate that the calcium 

carbonate core is not stable (Figure 2.43). Calcium carbonate cubes and hollowed 

polymer particles with calcium carbonate crystals on their surface can be observed, 

indicating that the calcium carbonate is being etched from the core and re-

precipitating elsewhere. This illustrates that these particles must be immediately 

removed from aqueous conditions if the core-shell morphology is to be maintained. 

Also, in the case of producing a hollow capsule, the core should be gently etched 

immediately to preserve the integrity of the polymer shell. 
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Figure 2.43 SEM images of amorphous calcium carbonate encapsulated in poly(DEGDA-co-MAA) 
after 3 days in aqueous conditions ((a) scale bar: 10 μm. (b-c) scale bar: 2 µm). It appears as though 
the calcium carbonate has been etched from the core and re-precipitated outside the polymer shell. 
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Silica loaded calcium carbonate particles were also encapsulated; SEM 

analysis indicated that the particles were coated in a polymer layer (Figure 2.44). 

 

Figure 2.44 SEM images of (a) amorphous calcium carbonate particle formed in the presence of silica 
(HM-211), (b) and (c) amorphous calcium carbonate formed in the presences of silica encapsulated in 
poly(DEGDA-co-MAA) (HM-213) (scale bar: 1 μm). 
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2.3.4.3.	Hollow	particles	template	on	amorphous	calcium	carbonate	

The calcium carbonate core was etched out of the composite particles (1.0 g) 

by feeding 100 mL of 0.25 M acetic acid at 0.3 mL h-1. SEM analysis showed the 

collapsed polymer shell, indicating that the calcium carbonate had been removed 

(Figure 2.45 and Figure 2.46). Here we have touched upon the potential our 

encapsulation method has in preparation of nano-rattles by loading a sacrificial 

calcium carbonate core prior to encapsulation. 

 

Figure 2.45 SEM image of hollow poly(DEGDA-co-MAA) templated on amorphous calcium 
carbonate particles (HM-214) (scale bar: 1 µm). 

 

Figure 2.46 SEM image of hollow poly(DEGDA-co-MAA) templated on amorphous calcium 
carbonate particles formed in the presence of silica (HM-215) (scale bar: 1 µm). 
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2.4.	Conclusion	

In conclusion, we have demonstrated a strategy to encapsulate calcium 

carbonate particles and provide them with a polymer shell in waterborne dispersions, 

without the need of pre-modification of pigment surfaces, or the necessity to use 

surfactants. We have shown the ability to produce non-spherical hollow polymer 

particles using ellipsoidal calcium carbonate particles as a template. We have also 

touched upon the potential to prepare nano-rattle structures by precipitating calcium 

carbonate in the presence of the “rattle” material, in this case silica nano-particles, 

prior to encapsulation. Having illustrated the encapsulation of calcium carbonate, we 

are interested in exploring the encapsulation of other pigments such as titanium 

dioxide or phthalocyanine blue. We believe that our method can be used to fabricate 

a wide range of hybrid core-shell pigment-polymer colloids, opening up interesting 

materials for photonic applications, such as opacifying agents in waterborne coating 

formulation. 

  



Chapter 2: Particle Encapsulation 

 

  
78 

 
  

2.5.	Experimental	

2.5.1.	Materials	

Di(ethylene glycol) dimethacrylate (75 %), methacrylic acid, methyl 

methacrylate (99 %), hydrochloric acid (37 %) and ammonium persulfate (≥ 98.0 %) 

were purchased from Sigma-Aldrich and were used as received. Calcium chloride 

(granular) and sodium carbonate (anhydrous) were purchased from Fischer 

Scientific. Calcium carbonate (SOCAL P3) was kindly donated by AkzoNobel. 

Carbon film 200 copper mesh, lacey carbon film 300 copper mesh TEM grids and 

SEM specimen stubs were purchased from Agar Scientific. 

2.5.2.	Equipment	

Monomer was fed into the reaction mixture with a Harvard Instrument PHD 

2000 Infusion syringe pump. Transmission electron microscopy (TEM) and Cryo-

TEM was performed on a Jeol 2010F TEM fitted with a Gatan Ultrascan 4000 

camera; samples were prepared by adding a drop of diluted latex to a suspended 

carbon grid, wicking the excess liquid away with filter paper. Scanning transmission 

electron microscopy (STEM) was performed on a Jeol 2100 STEM fitted with an 80 

mm2 Oxford Instruments X-Max silicon drift detector; samples were prepared by 

adding a drop of diluted latex to a suspended lacey carbon grid, wicking the excess 

liquid away with filter paper. SEM was performed on a Zeiss SUPRA 55-VP 

FEGSEM fitted with an EDAX Genesis analytical system; samples were prepared by 

adding an aqueous drop of diluted sample to a silicon wafer and drying at room 

temperature for 12 hours, the sample was subsequently carbon coated with a carbon 

evaporator for 4 seconds. Particle size was measured with; a Malvern Mastersizer 

2000 fitted with a hydro 2000 µp wet dispersion unit and a Malvern Zetasizer Nano 

ZS. All 1H and spectra were recorded on a Bruker DPX-400 spectrometer as 
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solutions in deuterated NMR solvents. Chemical shifts are cited as parts per million 

(ppm). The following abbreviations are used to abbreviate multiplicities; s = singlet, 

d = doublet, t = triplet, q = quartet, m = multiplet. 

2.5.3.	Encapsulation	of	calcium	carbonate	with	polymer	primer	

2.5.3.1.	Encapsulation	with	DEGDA	(HM‐201)	

Calcium carbonate (SOCAL P3) (10.00 g) was dispersed in water (50.00 g) 

and degassed by purging with nitrogen for 20 minutes. The reaction mixture was 

heated to 70 °C and initiated with ammonium persulfate (0.0203 g, 0.089 mmol) 

dissolved in water (1.0 g). Degassed di(ethylene glycol) diacrylate (1.12 g, 1.00 mL, 

5.22 mmol) was fed into the reaction at 0.5 mL h-1. The reaction stopped 30 minutes 

after the monomer feed finished. 

2.5.3.2.	Encapsulation	with	MAA	and	DEGDA	(single	feed)	(HM‐202)	

Calcium carbonate (SOCAL P3) (10.00 g) was dispersed in water (49.98 g) 

and degassed by purging with nitrogen for 20 minutes. The reaction mixture was 

heated to 70 °C and initiated with ammonium persulfate (0.0204 g, 0.089 mmol) 

dissolved in water (1.00 g). A degassed mixture of di(ethylene glycol) diacrylate 

(0.94 g, 0.84 mL, 4.40 mmol) and methacrylic acid (0.16 g, 0.16 mL, 1.84 mmol) 

was fed into the reaction at 0.5 mL h-1. The reaction stopped 30 minutes after the 

monomer feed finished. 

2.5.3.3.	Encapsulation	with	MAA	and	DEGDA	(Two	feeds)	

Calcium carbonate (SOCAL P3) (10.00 g) was dispersed in water (50.30 g) 

and degassed by purging with nitrogen for 20 minutes. The reaction mixture was 

heated to 70 °C and initiated with ammonium persulfate (0.0204 g, 0.089 mmol) 

dissolved in water (1.00 g). A degassed mixture of di(ethylene glycol) diacrylate 

(0.38 g, 0.34 mL, 1.79 mmol) and methacrylic acid (0.16 g, 0.16 mL, 1.84 mmol) 
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was fed into the reaction at 0.5 mL h-1, followed by di(ethylene glycol) diacrylate 

(0.56 g, 0.50 mL, 2.61 mmol) fed at 0.5 mL h-1. The reaction stopped 30 minutes 

after the monomer feed finished. Conversion was determined by gravimetry. 

Table 2.2 Table of repeated reactions of the encapsulation of calcium carbonate in poly(DEGDA-co-
MAA). 

Exp. 
MAA 

(g) 

DEGDA 1 

(g) 

DEGDA 2 

(g) 

CaCO3 

(g) 

APS 

(g) 

HM-203 0.16 0.38 0.56 10.00 0.020 

HM-204 0.16 0.38 0.56 10.00 0.020 

HM-205 0.16 0.38 0.56 10.00 0.020 

HM-206 0.16 0.39 0.56 10.00 0.021 

 

2.5.4.	Etching	of	calcium	carbonate	core	to	yield	hollow	particles	(HM‐

207)	

To the encapsulated calcium carbonate particles (HM-204) (1.00 g) in water 

(5.00 g) an excess of 1 M HCl solution (20 mL) was added drop-wise with a 

dropping funnel. The particles were cleaned by 5 centrifugation cycles into water. 

2.5.5.	Shell	Growth	(HM‐208)	

To increase shell thickness the initial encapsulation reactions for all pigments 

were repeated but with a total of 120.00 g water and after the di(ethylene glycol) 

diacrylate based feed degassed methyl methacrylate (5.62 g, 6.0 mL, 56.09 mmol) 

was fed at a rate of 1 mL h-1. The reaction stopped 30 minutes after the monomer 

feed finished. 

2.5.6.	Water	solubility	of	DEGDA	(HM‐209)	

Water solubility of di(ethylene glycol) diacrylate was calculated by NMR. 

Mixtures of DEGDA (1.00 g) in D2O (7 g) were heated to 25, 30, 40, 50, 60 and     
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70 °C and stirred for one hour, after which stirring was stopped and the mixture was 

left to separate. A sample of the D2O phase (0.40 g) was taken with an appropriately 

heated glass pipette and diluted with a solution of sodium acetate trihydrate in D2O 

(0.326 mol dm-3). Concentration of DEGDA was calculated from the resultant 1H 

NMR (Figure 2.46 and Table 2.3). 

1H NMR (D2O), δ (PPM): 6.37 (d, 4H, HCHCHCO); 6.13 (q, 2H, 

2xCH2CHCOOC); 5.92 (d, 4H, HCHCHCO); 4.28 (t, 4H, COOCH2CH2O); 3.78 (t, 

4H, 2xCOOCH2CH2O). 

 

Figure 2.47 Di(ethylene glycol) diacrylate (DEGDA). 

Table 2.3 Table of 1H NMR data for the solubility of DEGDA in D2O 

Temp 

(°C) 

1H Integrals Std. Conc. 

(mol dm-3)

DEGDA Conc. 

a b c d e SA (mol dm-3) (g L-1)

25 2.00 2.04 1.71 3.97 3.89 11.43 0.177 0.114 24.4 

30 2.00 2.04 1.72 3.95 3.74 11.11 0.173 0.109 23.3 

40 2.00 2.01 1.72 3.84 3.75 14.42 0.189 0.105 22.4 

50 2.00 2.08 1.67 4.03 3.85 12.65 0.176 0.103 22.0 

60 2.00 2.03 1.64 3.96 3.85 12.34 0.174 0.099 21.3 

70 2.00 2.05 1.68 4.05 3.92 13.38 0.177 0.098 21.0 

 

2.5.7.	Synthesis	of	amorphous	calcium	carbonate	particles	(HM‐210)	

Amorphous calcium carbonate particles were synthesized as follows. 250 mL 

of 0.33 M calcium chloride was rapidly added to a vigorously stirred beaker 

containing 250 mL of 0.33 M sodium carbonate. The mixture was vigorously stirred 
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for 30 seconds, after which the precipitated amorphous calcium carbonate was 

collected by filtration; the particles were washed with water and left to dry under 

vacuum. 

2.5.8.	Synthesis	of	amorphous	calcium	carbonate	particles	containing	

silica	nanoparticles	(HM‐211)	

250 mL of 0.33 M calcium chloride and 250 mL 0.33 M sodium carbonate 

were simultaneously added to a vigorously stirred beaker containing 13.6 g Ludox 

sol (40 wt.% silica). The mixture was vigorously stirred for 30 seconds, after which 

the precipitated amorphous calcium carbonate was collected by filtration; the 

particles were washed with water and left to dry under vacuum. 

2.5.9.	Encapsulation	of	amorphous	calcium	carbonate	particles	

A typical procedure for the encapsulation of amorphous calcium carbonate 

particles proceeded as follows. 24.0 g of water (adjusted to pH 8) was added to the 

amorphous calcium carbonate particles (5.0 g) (the pH was adjusted to 10.8 for HM-

212 and 10.2 for HM-213 with aqueous NaOH). The mixture was degassed by 

purging with nitrogen for 20 minutes. The reaction mixture was heated to 70 °C and 

initiated with ammonium persulfate (0.02 g, 0.088 mmol) dissolved in water (1.0 g). 

0.5 mL of a degassed mixture of di(ethylene glycol) diacrylate and methacrylic acid 

was fed into the reaction at 0.5 mL h-1, followed by 0.5 mL di(ethylene glycol) 

diacrylate fed at 0.5 mL h-1 (see Table 2.4 for monomer quantities). The reaction was 

left for 30 minutes. 
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Table 2.4 Encapsulated amorphous calcium carbonate particles within a polymeric shell monomer fed 
amounts fed into a mixture of 5.0 g calcium carbonate and 25.0 g water. Monomer feeds 1 and 2 were 
both 0.5 mL and fed at 0.5 mL h-1. 

Exp. Monomers 
Mass (g) mmol 

Feed 1 Feed 2 Feed 1 Feed 2 

HM-212 
MAA 0.16 0 1.86 0 

DEGDA 0.39 0.56 1.82 2.61 

HM-213 
MAA 0.16 0 1.86 0 

DEGDA 0.38 0.56 1.82 2.61 

 

2.5.10.	Hollow	particles	template	on	amorphous	calcium	carbonate	

Hollow particles were synthesized by feeding 100 mL 0.25 M acetic acid into 

a 6.0 g solution containing 1.0 g composite particles at 0.3 mL h-1. Particles were 

cleaned by 5 centrifugation cycles into water. 
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Chapter	3:	Composite	Particle	Surface	
Modification	

3.1.	Abstract	

In Chapter 2 a method was developed to encapsulate calcium carbonate 

particles in a polymeric shell. Herein we develop this technique by incorporating a 

surface modification step utilizing thiol-ene “click” chemistry. Particle dispersion 

affects more than just waterborne systems; by tuning the surface of these composite 

particles we can broaden the applications in which they can be used, such as in 

polymer melts. 
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3.2.	Introduction	

The modification of polymers through “click” chemistry is well established, 

with a variety of reactions having been utilized, including; azide-alkyne 

cycloaddition,1 azide-nitrile cycloaddition,2 Diels-Alder,3 thiol-alkyne4 and thiol-

ene5 reactions. Herein we focus on the chemistry of thiol-ene “click” reactions and 

their applications within colloidal materials. 

3.2.1.	Click	chemistry	

Click chemistry, first reported by Sharpless, is defined as reactions which are 

simple, high yielding, selective, produce inoffensive by-products which are easily 

removed, involve readily available starting materials and use either no solvent, 

benign solvent or solvent that is easily removed.6 The scope of click chemistry is 

wide; herein, we will only discuss the thiol-ene “click” chemistries which are 

relevant to this body of work. For a more detailed discussion on the various types of 

click reactions the reader is directed to the following reviews.6-8  

Thiol-ene chemistry has proven to be a very versatile tool with uses in a wide 

range applications including polymer functionalization,9, 10 dendrimer synthesis,11 

nanoimprinting12, 13 and patterning.14, 15 Herein we discuss in further detail the 

applications of functionalizing polymer particles. The reaction between thiols and 

alkenes can proceed by two manners: radical thiol addition or thiol Michael addition, 

described below. 

3.2.1.1.	Radical	thiol‐ene	click	chemistry	

The first reaction between thiols and alkenes was reported in 1905 by 

Posner,16 the basic mechanism by which the radical reaction proceeds was later 

proposed by Kharasch et al. in 1938;17 the mechanism has been further elucidated in 

more recent years.18-20 The radical thiol-ene click process is described by the 
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alternation between a thiyl radical propagation across the “ene” with an anti-

Markovnikov orientation and chain transfer, abstraction of a hydrogen from another 

thiol on the carbon centred radical, regenerating the thiyl radical (Figure 3.1). The 

reaction can be initiated by thermal or photo-initiator species and can undergo 

polymerization side reactions and termination.  

 

Figure 3.1 Radical thiol-ene mechanism. 

The choice of thiol and ene can greatly alter the kinetics of the reaction, 

specifically the rate limiting step and this is reflected in the concentration of the two 

radical species. Thiols with less abstractable hydrogens (higher pKa) have reduced 

chain transfer rates, thus the rate limiting step becomes the chain transfer, whereas 

less reactive enes will cause slow propagation and thus the rate limiting step 

becomes the propagation step (equations (3.1)-(3.3)).21, 22 

 
 

(3.1) 

 
 

(3.2) 
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(3.3) 

Where kCT is the chain transfer rate constant, kp is the propagation rate 

constant, [R-SH] is the thiol concentration, [R′-C=C] is the ene concentration, [R-S•] 

is the thiyl radical concentration and [R-S-C-C•-C-R′] is the carbon centred radical 

concentration. The reaction is much faster for electron-rich alkenes, compared to 

electron-deficient alkenes.19, 23 In the case of electron-deficient enes, such as 

(meth)acrylates, the intermediate carbon centred radical can react with other alkenes, 

propagating to form oligomer/polymer contaminants. This competing polymerization 

becomes a serious complication, making radical-mediated thiol-ene reactions 

unsuitable for such electron-deficient alkene species. 

3.2.1.2.	Thiol	Michael	addition	

Thiol Michael addition involves the addition of a thiol to an electron-

deficient ene and can proceed by either base or nucleophile catalyzed mechanisms. 

The addition of mercaptans to electron deficient alkenes using a base as a catalyst 

has been studied since the 1940s.24 Base catalyzed thiol Michael addition proceeds 

via the deprotonation of the thiol by a base such as triethylamine, the thiolate anion 

created (a strong nucleophile) attacks the electron-deficient β-carbon of the ene, 

abstraction of a hydrogen from the conjugate acid completes the cycle, regenerating 

the base (Figure 3.2).  

 

Figure 3.2 Base catalysed thiol-Michael addition mechanism. 
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The rate-limiting step is the nucleophilic addition of the thiolate anion across 

the ene, thus the rate of reaction is dependent on the basicity of the catalyst, acidity 

of the thiol and electrophilicity of the vinyl group (equations (3.4) and (3.5)).25 

  
(3.4)  

 
 

(3.5) 

Where Rrxn is the rate of reaction, k is the rate constant, [R-S-] is the 

concentration of the thiolate anion, [C=C] is the concentration of the ene, Keq is the 

equilibrium constant, [B] is the concentration of the base, [B+-H] is the concentration 

of the protonated base and [R-SH] is the concentration of the thiol. In some cases the 

base-mediated method can have significant drawbacks including less than 

quantitative conversion, lengthy reaction times and the requirement of high catalyst 

concentrations; the nucleophilic-mediated thiol Michael addition significantly 

overcomes these issues. 

The use of a nucleophilic catalyst in thiol Michael addition was first reported 

in 1967,26 and was first reported for use in materials in 2003 in an AkzoNobel 

patent.27 In the case of nucleophilic catalyzed thiol Michael addition, a nucleophile 

such as primary amines25 or tertiary phosphines,28 reacts with an electron-deficient 

ene to generate the thiolate anion which undergoes a Michael addition to the ene 

(Figure 3.3).29-31 However, it is important to note that a nucleophile-vinyl adduct is 

formed as a by-product of this mechanism.32 It was found by Bowman  et al. that 

primary amines, specifically hexylamine, did not catalyze the thiol-ene reaction as 

expected.25 The experimental kinetics of the reaction of hexyl acrylate and 

hexanethiol was measured for different amines and phosphines. It was expected that 

reaction rates should follow the order of n-dipropylamine > triethylamine > 
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hexylamine due to decreasing base strength of the amines, however it was found 

experimentally that the order was hexylamine > triethylamine > n-dipropylamine. 

When hexylamine was used, the reaction reached 100 % conversion within 500 

seconds, correspondingly triethylamine only reached 1 % conversion in this time. 

This prompted the understanding that primary amines, such as hexylamine, catalyzed 

the reaction as a nucleophile rather than a base. In the same body of work it was 

determined that trialkyl phosphines, weaker bases than alkylamines though stronger 

nucleophiles, prompted faster reaction times still, with the reactivity following the 

order of P-n-Pr3 > PMe2Ph > PPh3. 

 

Figure 3.3 Nucleophile catalyzed thiol-Michael addition mechanism. 

The nucleophile initiated thiol Michael addition has significant advantages 

over the base catalyzed process, including very low concentrations of catalyst and 

much faster reaction times. It is important to note that unlike traditional Michael 

reactions, the presence of water is not a concern in the thiol-ene case, due to the low 
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pKa of thiols.25 The nucleophilic method is also of particular interest in certain “one-

pot” reactions; phosphine catalysts are distinctly useful when using reagents 

containing disulphide bridges; they can reduce the disulphide bridge and catalyse the 

thiol-Michael addition, similarly primary amines will react with RAFT polymers to 

form thiol ω-end functionalized polymers and then subsequently catalyze the thiol-

Michael addition.33-36 

3.2.2.	Particle	modification	

Much work has been done on the functionalization of polymers using thiol-

ene chemistry.32, 33, 37-39 Herein we focus on the use of such chemistry to modify 

particles. 

Polymerization of difunctional monomer species results in polymers with 

pendant vinyl groups; these can be exploited by thiol-ene click chemistry.40, 41 

Poly(divinylbenzene) particles are a common substrate for such reactions, due to 

their well understood characterization and ease of synthesis via precipitation 

polymerization.42, 43 Radical thiol-ene chemistry has been widely employed for the 

modification of such functionalized particles using both thermal and photo-initiator 

pathways. Hawker and co-workers utilized thiol-ene click chemistry to modify 

multimodal composite poly(divinylbenzene) particles in order to disperse them in 

various organic media.44, 45 Charge stabilized poly(divinylbenzene) particles 

containing MnFe2O4 and Au nanoparticles were synthesized by miniemulsion 

polymerization in water (Figure 3.4 a); on redispersion in THF the particles were 

found to be unstable. By reacting the pendant vinyl groups on the surface of the 

poly(divinyl benzene) particle with thiol functionalized PEG, using a thermal radical 

initiator (V-50), particles were found to be dispersible in a number of solvents 

including water, THF, chloroform and DMF (Figure 3.4 b). 



Chapter 3: Particle Modification 

 

  
96 

 
  

 

Figure 3.4 (a) TEM image of composite multimodal composite poly(divinylbenzene)-inorganic latex 
particles prepared by co-encapsulation of MnFe2O4 and Au nanoparticles and (b) photograph of 
composite latex particles redispersed in THF; (left) before and (right) after attachment of PEG.44 

Aiding particle dispersion is a common goal in the surface modification of 

particles. Mecking et al. post-functionalised poly(butadiene) particles with various 

hydrophilic moieties; including 3-mercaptopropionic acid methyl ester, 3-

mercapatopropanesulfonic acid sodium salt and glutathione (Figure 3.5).46 

Modification was achieved using a thermal radical initiator, in order to produce 

stable nanoparticles which were redispersible in water. Grafting of the more polar 

mercaptans (glutathione and 3-mercapatopropanesulfonic acid sodium salt) resulted 

in modification of the surface pendant vinyl groups on the poly(butadiene) particles. 

Using less polar mercaptans (3-mercaptopropionic acid methyl ester) resulted in 

complete conversion of all vinyl groups, due to permeability of the thiol into the 

polymer particle. 

 

Figure 3.5 (1) 3-mercaptopropionic acid methyl ester, (2) 3-mercapatopropanesulfonic acid sodium 
salt and (3) glutathione. 

The grafting of polymers prepared by RAFT has proven a popular tool as 

highly controlled and well defined polymers can be converted to thiol ω-end 

functional polymers via aminolysis.47 Müller and co-workers modified 
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poly(divinylbenzene) particles, prepared by precipitation polymerization in 

acetonitrile, with poly(NIPAAm) in order to produce particles which were 

dispersible in water and had thermo-responsive behaviour.48 Thiol functionalized 

poly(NIPAAm) was prepared by RAFT polymerization and cleavage of the RAFT 

group to yield a thiol using NaBH4; the subsequent grafting reaction proceeded by 

radical thiol-ene click using AIBN as an initiator. In a similar manner, Kang et al. 

prepared fluorescent hollow particles with temperature responsive brushes.49 

Encapsulation of silica nanoparticles in poly(divinylbenzene-co-n-vinylcarbazole) 

was followed by AIBN initiated click of thiol functionalized poly(NIPAM) to the 

pendant vinyl groups; where poly(NIPAAm) was prepared by RAFT polymerization 

followed by reduction of the RAFT group using NaBH4. The silica core was etched 

out with hydrofluoric acid to yield multifunctional hollow particles. 

Caruso and co-workers prepared hollow particles by layer-by layer assembly, 

where thiol-ene chemistry was used to cross-link polymer layers and to functionalize 

the surface with PEG to achieve anti-fouling properties.50 Silica particles were 

encapsulated by LbL assembly of poly(methacrylic acid) containing either thiol or 

ene functionality with poly(vinylpyrrolidone), using UV-light as an initiator (thiol 

self-initiates forming a radical). Thiol-ene chemistry was used to cross-link the 

poly(methacrylate) layers and the silica was etched out on addition of hydrofluoric 

acid and on increasing the pH to 7 the non-cross-linked layers of 

poly(vinylpyrrolidone) were released. The particles were further reacted with ene 

functionalized PEG, again using UV light, to create the thiyl radical to achieve the 

anti-fouling finish (Figure 3.6). Yogo and co-workers modified Fe3O4 nanoparticles 

expressing vinyl groups on the surface to yield biofunctional magnetic particles by 
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radical click chemistry of cysteine using AIBN, for use in biomedical applications 

such as an MRI contrast agent.51 

 

Figure 3.6 Preparation of (PVP/PMAThiol/PVP/PMAEne)-coated particles, (1-2) PEGylation and 
stabilization using thiol-ene chemistry, (3) removal of silica core and (4) removal of PVP.50 

Though not as widely employed as the radical thiol-ene reaction, the thiol-

ene Michael addition has also been used in polymer synthesis and modification. 

Stenzel and co-workers synthesized ethylene glycol dimethacrylate (EGDMA) 

particles by suspension polymerization and subsequently surface modified them with 

glucothiose to achieve bioactive particles using tris(2-carboxyethyl)phosphine 

(TCEP) as the nucleophilic catalyst.52 Boyer and co-workers used thiol-ene 

chemistry to modify the surface of titanium dioxide nanoparticles with polymeric 

chains to aid dispersibility in biological media and aid cell uptake.53 The TiO2 

nanoparticles were modified to yield surface thiol groups by functionalizing with (3-

mercaptopropyl) trimethoxysilane, thiol Michael addition with poly(oligo(ethylene 

glycol) methyl ether methacrylate) comb polymers with vinyl functionality (prepared 

by catalytic chain transfer) was achieved using hexylamine as a nucleophilic catalyst 

in acetonitrile (Figure 3.7). 
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Figure 3.7 Overall synthetic approach for the surface modification of TiO2 nanoparticles.53 

In this body of work we describe the encapsulation of calcium carbonate 

particles with multi-functional acrylate monomers to achieve particles with pendant 

vinyl groups. Utilizing the pendant vinyl groups to modify the particles with thiol 

“click” chemistry, we demonstrate both hydrophilic and hydrophobic modification 

and the Michael addition of thiol functionalized poly(styrene) synthesized by RAFT 

polymerization. 
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3.3.	Results	and	Discussion	

3.3.1.	Encapsulation	of	calcium	carbonate	particles	with	multi‐acrylate	

monomers	to	afford	pendant	vinyl	groups	

We have previously shown the encapsulation of calcium carbonate particles 

by starved-fed emulsion polymerization; through initially encapsulating in a cross-

linked primer polymeric shell, which on addition of further monomer led to a thick 

polymeric shell. To form the primer shell a diacrylate monomer was used; often such 

divinyl monomers yield pendant vinyl groups on the surface.43 These pendant 

acrylate groups can be used to tune the surface of the particles through thiol Michael 

addition reactions, in doing so we may be able to adjust the dispersibility of the 

particles in various media. We believed that the number of pendant vinyl groups on 

the encapsulated particles could be controlled by introducing monomers with 

multiple acrylate functionality such as pentaerythritol triacrylate (PETA) and 

dipentaerythritol penta-/hexa-acrylate (DPEPHA) (Figure 3.8). 

 

Figure 3.8 Multiple acrylate containing monomers; (1) di(ethylene glycol) diacrylate (DEGDA), (2) 
pentaerythritol triacrylate (PETA), (3) dipentaerythritol penta-/hexa-acrylate (DPEPHA). 

The sub-micron calcium carbonate particles were encapsulated in the same 

manner as described in Chapter 2. In an effort to increase the number of pendant 

vinyl groups, PETA and DPEPHA were incorporated into both feeds (Table 3.1). 
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However, the PETA and DPEPHA monomers were too viscous to feed in alone; they 

were diluted by 50 wt. % with DEGDA to decrease the viscosity. Particles were 

dialysed into water and then collected by freeze-drying. Table 3.2 describes the 

abbreviations for the composite particle which shall be used from here. 

Table 3.1 Encapsulated calcium carbonate particles within a polymeric shell with various multiple 
acrylate containing monomers, monomer feed amounts fed into a mixture of 10.0 g calcium carbonate 
and 50.0 g water. Monomer feeds 1 and 2 were both 0.5 mL and fed at 0.5 mL h-1. 

Exp. Monomers 
Mass (g) mmol 

Feed 1 Feed 2 Feed 1 Feed 2 

HM-301 
MAA 0.16 0 1.84 0 

DEGDA 0.39 0.34 1.80 2.61 

HM-302 

MAA 0.16 0 1.88 0 

DEGDA 0.20 0.29 0.91 1.34 

PETA 0.20 0.29 0.65 0.96 

HM-303 

MAA 0.16 0 1.86 0 

DEGDA 0.20 0.29 0.91 1.33 

DPEPHA 0.19 0.28 0.37 0.54 

 

Table 3.2 Table listing composite particles synthesized and their abbreviations. 

Exp. Abbrev. Name Full Description of Particles 

HM-301 Poly(DEGDA)-C CaCO3 encapsulated in poly(DEGDA-co-MAA) 

HM-302 Poly(PETA)-C 
CaCO3 encapsulated in poly(PETA-co-DEGDA-
co-MAA) 

HM-303 Poly(DPEPHA)-C 
CaCO3 encapsulated in poly(DPEPHA-co-
DEGDA-co-MAA) 
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Particle morphology was characterized by TEM (Figure 3.9-Figure 3.10) and 

SEM (see Appendix III, Figure III.1). TEM and SEM analysis show that the particles 

are encapsulated in a polymeric shell. As illustrated in Chapter 2, etching out the 

CaCO3 core with 0.25 M acetic acid yielded hollow non-spherical polymer particles, 

further illustrating encapsulation of the calcium carbonate core (see Appendix III, 

Figure III.2 for cryo-TEM images). Zeta potential measurements were also 

performed to determine whether the calcium carbonate particles were coated in a 

polymeric shell. The bare calcium carbonate exhibited a low positive zeta potential 

of 12 mV, after encapsulation all particles had a zeta potential of ~ -30 mV, 

suggesting that the surface was coated in a negatively charged polymer, in-line with 

negative charge stabilization of particles by the initiator, APS (see Appendix III, 

Figure III.3). 

 

Figure 3.9 TEM image of poly(DEGDA)-C particles (HM-301) (scale bar: 100 nm). 
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Figure 3.10 TEM images of poly(PETA)-C particles (HM-302) (scale bar: 100 nm). 

 

Figure 3.11 TEM images of poly(DPEPHA)-C particles (HM-303) (scale bar: 100 nm). 

FTIR and Raman spectroscopy were used to determine the presence of 

pendant vinyl groups on the encapsulated particles. Particles were cleaned by 

dialysis to remove any potential residual monomer which may potentially skew the 

data. FTIR analysis proved to be a poor tool for the determination of alkene groups, 

showing only very weak vinylic and α,β unsaturated carbonyl –C-H peaks at         

809 cm-1 and 983 cm-1 respectively, C=C double bonds were not observed at all. 

These weak vinylic and α, β unsaturated carbonyl –C-H peaks were only observed in 

the poly(PETA)-C (HM-302) and poly(DPEPHA)-C (HM-303) particles, the 
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poly(DEGDA)-C particles (HM-301) exhibited no such peaks (Figure 3.12). Raman 

spectroscopy, however, proved far more effective in determining the presence of 

vinyl groups, with strong C=C peaks at 1637 cm-1 and vinylic -C-H peaks at 1409, 

3040, 3075 and 3109 cm-1. Raman analysis showed that the poly(DEGDA)-C 

particles had no pendant vinyl groups, however, on incorporation of PETA and 

DPEPHA monomers the presence of pendant vinyl groups was evident (Figure 3.13). 

It is important to note that the baseline of the Raman spectra is not completely flat, 

this is due to fluorescence of the material at the wavelength of the laser (in this case 

514 nm) causing a strong background and distorting the baseline; this has no impact 

on the peak location.54 The wavelength of 514 nm was chosen as it is the most 

suitable for inorganic materials such as calcium carbonate and produced the best 

resolution of peaks for the vinyl groups of the polymer encapsulated calcium 

carbonate particles. 

 

Figure 3.12 FTIR spectra of bare CaCO3 particles (), poly(DEGDA)-C particles (HM-301) (), 
poly(PETA)-C particles (HM-302) () and poly(DPEPHA)-C particles (HM-303) (). Very weak 
vinyl –CH stretches at 809 and 984 cm-1 are observed in the cases for the poly(PETA)-C and 
poly(DPEPHA)-C particles (illustrated by the black boxes). 
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Figure 3.13 Raman spectra of bare CaCO3 particles (), poly(DEGDA)-C (HM-301) (), 
poly(PETA)-C (HM-302) () and poly(DPEPHA)-C particles (HM-303) (). The presence of C=C 
double bonds in HM-302 and HM-303 are observed with 1637 cm-1 indicating C=C stretch and vinyl 
C-H stretches at 1409, 3040, 3075 and 3109 cm-1 (illustrated by the black boxes). No vinyl groups 
were observed for the poly(DEGDA)-C particles. 

Raman spectroscopy clearly determined the presence of vinyl groups on the 

encapsulated particles; however, it is not a quantitative tool. Pendant vinyl groups 

can be quantified by bromination of alkenes followed by titration to calculate 

bromate consumption and thus the number of alkene groups.55 Bromine formed in-

situ, by reacting potassium bromate with potassium bromide in the presence of acetic 

acid (3.1), reacts with the pendant vinyl groups, permanently removing bromine and 

thus bromate ions from the solution (Figure 3.14). Once the bromination is complete, 

hydrochloric acid and potassium iodide are introduced to the reaction mixture; under 

acidic conditions the iodide reacts with the excess potassium bromate to produce 

iodine (3.2), against which sodium thiosulfate is titrated. The iodine reacts with the 

sodium thiosulfate to produce sodium iodide; starch is used as an indicator to qualify 

the complete consumption of iodine and thus potassium bromate (3.3). For every six 

moles sodium thiosulfate, there is one mole of potassium bromate. The reaction was 
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conducted in the dark to prevent the homolytic fission of Br2 to 2Br• which can in 

turn abstract a hydrogen forming HBr; if formed, HBr will react with the vinyl 

groups and alter the results. Light also catalyzes the reaction of iodide to iodine 

which would increase the amount of sodium thiosulfate required. As the reaction is 

under acidic conditions, the calcium carbonate was etched out of the composite 

particles prior to the bromination. 

  (3.1) 

 

 

Figure 3.14 Mechanism of alkene bromination. 

  (3.2) 

  (3.3) 

Vinyl groups present are then quantified using the Bromine Index (BI): 

 
 

(3.4) 

Where the Bromine Index quantifies the amount of (molecular) bromine (mg) 

consumed by 100 g of composite particles, V1 and V2 denote the volume (mL) of 

Na2S2O3 titrated in the blank and sample solutions respectively, c denotes the 

concentration (mol dm-3) of Na2S2O3, m the mass (g) of particles and 7990 is the 

molecular weight of molecular bromine multiplied by 100. There is a conversion 

factor of 0.1 within the equation that provides the units of mg per 100 g of sample. 

The Bromine Index (mg per 100 g) value can be converted to mmol per 100 g of 

sample by dividing by the molecular weight of dibromine, this mmol of dibromine 

per 100 g of composite particles is equal to the mmol of pendant vinyl groups per 
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100 g of composite particles; from this the percentage of pendant vinyl groups with 

respect to monomer vinyl groups can be calculated. 

To calculate the percentage of vinyl groups remaining with respect to the 

monomer, the moles of vinyl groups on the specific multi-acrylate monomer in 100 g 

of composite particles needs to be known (Table 3.3). In agreement with the Raman 

analysis, the titration determined that the poly(DEGDA)-C particles exhibited no 

pendant vinyl groups (Table 3.4). As DEGDA does not express any pendant vinyl 

groups in the polymer, the moles of pendant vinyl groups calculated from the 

Bromine Index for the poly(PETA)-C and poly(DPEPHA)-C particles pertains to the 

contribution of PETA and DPEPHA monomers only. It is important to note that for 

DPEPHA (dipentaerythritol penta-/hexa-acrylate) the number of vinyl groups used 

for this calculation was chosen as 5 rather than 6 as that corresponds to the molecular 

weight of the monomer. By dividing the mmol per 100 g of vinyl groups in the 

particles by the mmol of vinyl groups in said monomer (i.e. PETA or DPEPHA) 

present in 100 g of particles, a percentage of remaining pendant vinyl groups with 

respect to the initial monomer is given. The poly(PETA)-C and poly(DPEPHA)-C 

particles show that, respectively, 32.6 and 11.9 % of the vinyl groups of said 

monomer remain on the composite particles (Table 3.4). 

Table 3.3 Table of multi-acrylate monomer and multi-acrylate monomer vinyl groups present in the 
composite particles, where MAX is the multi-acrylate in question. 

Particles MAX 
No. Vinyl 

Groups 

MAX in 
Particles 

(wt.%) 

MAX in 
Particle 

(mmol/100 g) 

MAX (C=C) in 
Particle 

(mmol/100 g) 

HM-301 DEGDA 2 8.51 39.7 79.4 

HM-302 PETA 3 4.34 14.6 43.7 

HM-303 DPEPHA 5 4.31 8.22 41.1 
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Table 3.4 Table of Bromine Index values and the % of vinyl groups remaining from the addition of 
multi-acrylate, where monomer vinyl groups is the total possible mmol of vinyl groups in the specific 
monomer in 100 g of particles. 

Exp. Particles 
BI 

(mg/100 g) 

Vinyl Groups 

(mmol/100 g)

MAX (C=C) 

(mmol/100 g) 

% Vinyl 
Remaining 

HM
-307 

Poly(DEGDA)-
C 

0 0 79.4 0 

HM
-308 

Poly(PETA)-C 2280 14.3 43.7 32.6 

HM
-309 

Poly(DPEPHA)-
C 

799 4.88 41.1 11.9 

 

To ensure that the all of the vinyl groups had reacted with the bromine and 

thus the bromine analysis is accurate, FTIR and Raman analysis were performed. For 

accurate comparison, FTIR and Raman analysis were performed on hollowed 

encapsulated particles. To achieve optimum results, the Raman analysis of the 

hollowed particles were performed with a 754 nm wavelength laser, as this ensured 

minimum fluorescence and produced a superior spectra; the 514 nm wavelength 

laser did not produce a clear spectra once the calcium carbonate had been removed. 

The very weak vinyl peaks in the FTIR spectra for the poly(PETA)-C (HM-308) 

(Figure 3.15) and poly(DPEPHA)-C particles (HM-309) (Figure 3.17) disappear 

after the bromination. Raman analysis clearly showed the loss of vinyl groups; C=C 

stretches at 1634 cm-1 and vinyl C-H stretches at 733, 1380, 1408 and 3036 cm-1 

were lost after bromination and C-Br stretch at 758 cm-1 appeared (Figure 3.16 and 

Figure 3.18 for the poly(PETA)-C and poly(DPEPHA)-C particles respectively). 
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Figure 3.15 FTIR spectra of hollowed poly(PETA)-C particles (HM-305) () and said particles after 
bromination (HM-308) (). After the bromination the vinyl –CH shift at 808 cm-1 is lost (illustrated 
by the black boxes). 

 

Figure 3.16 Raman spectra of hollowed poly(PETA)-C particles (HM-305) () and said particles 
after bromination (HM-308) (). After the bromination the vinyl C-H shifts at 733, 1380, 1408 and 
3036 cm-1 and vinyl C=C shift at 1634 cm-1 are lost and a C-Br shift at 758 cm-1 is gained (illustrated 
by the black boxes). 
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Figure 3.17 FTIR spectra of hollowed poly(DPEPHA)-C particles (HM-306) () and said particles 
after bromination (HM-309) (). After the bromination the vinyl shift at 1634 cm-1 and vinyl –CH 
shift at 808 cm-1 is lost (illustrated by the black boxes). 

 

Figure 3.18 Raman spectra of hollowed poly(DPEPHA)-C particles (HM-306) () and said particles 
after bromination (HM-309) (). After the bromination the vinyl C-H shifts at 733, 1380, 1408 and 
3036 cm-1 and vinyl C=C shifts at 1634 cm-1 are lost, C-BR shifts at 635 and 758 cm-1 are gained, 
(illustrated by the black boxes). 

We postulate that the lack of vinyl groups on the DEGDA-c particles is due 

to flexibility of the chain, this flexibility allows looping/backbiting of the polymer 
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chain to occur (Figure 3.19). In starved-fed conditions the likelihood of backbiting 

occurring over addition of a new monomer unit is increased. We believe that the 

looping also results in a lower, though not altogether absent, cross-linking density. 

An issue arises in determining the presence of loops, as the looped DEGDA chain 

and an un-looped chain are chemically the same, making them very difficult to 

differentiate (for further discussion the reader is referred to Chapter 4). 

 

Figure 3.19 Scheme depicting the looping of DEGDA, where R is the rest of the DEGDA unit. 

3.3.2.	Thiol‐Michael	addition	to	pendant	vinyl	groups	

Nucleophilic thiol-Michael addition was chosen for modification of the 

pendant vinyl groups on the composite particles as it has been shown to be 

successful when used in conjunction with acrylates.25, 29, 32 The reaction with 

hexylamine, the chosen catalyst, proceeds via the nucleophile catalyzed mechanism, 

resulting in only needing 1-2 % of the catalyst and much faster reaction times.29, 32 

The reaction proceeded by stirring an aqueous solution containing 0.5 g of 

composite particles, 0.2 mg hexylamine (~3 % with respect to pendant vinyl groups) 

and 1.0 g mercaptoethanol. As the composite particles were added in a dried state, 

the reaction was left for 24 hours; although the thiol-Michael addition is fast, the 

dispersion of the particles (aided by the mercaptoethanol modification) and thus 

access to the pendant vinyl groups is slower. The particles were cleaned by several 

centrifugation cycles and FTIR and Raman spectroscopy were used to determine the 
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loss of vinyl groups. For both poly(PETA)-C and poly(DPEPHA)-C particles FTIR 

showed a loss in the very weak vinylic and α,β unsaturated carbonyl –C-H peaks at 

809 and 984 cm-1 (Figure 3.20 and Figure 3.22 respectively). Raman proved far more 

conclusive with the clear loss of C=C (1409 cm-1) and vinylic -C-H peaks at (1637, 

3040, 3075 and 3109 cm-1) after the thiol-Michael addition (Figure 3.21 for 

poly(PETA)-C and Figure 3.23 for poly(DPEPHA)-C). 

 

Figure 3.20 FTIR spectra of poly(PETA)-C particles (HM-302) () and said particles after the thiol 
Michael addition with 2-mecapto ethanol (HM-310) ().Very weak vinyl –CH stretches at 809 and 
984 cm-1 are lost and thioether stretch at 667 cm-1 gained after the Michael addition. 
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Figure 3.21 Raman spectra of poly(PETA)-C particles (HM-302) () and said particles after the 
thiol Michael addition with 2-mecapto ethanol (HM-310) (). After the thiol Michael addition the 
vinyl C-H shifts at 1409, 3075, 3109 cm-1 and vinyl C=C shifts at 1637 cm-1 are lost (illustrated by the 
black boxes). 

 

Figure 3.22 FTIR spectra of poly(DPEPHA)-C particles (HM-303) () and said particles after the 
thiol Michael addition with 2-mecapto ethanol (HM-311) ().Vinyl –CH stretches at 809 and         
984 cm-1 are lost after the Michael addition. 
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Figure 3.23 Raman spectra of poly(DPEPHA)-C particles (HM-303) () and said particles after the 
thiol Michael addition with 2-mecapto ethanol (HM-311) (). After the thiol Michael addition the 
vinyl C-H shifts at 1409, 3040, 2075 and 3109 cm-1 and vinyl C=C shifts 1637 cm-1 are lost 
(illustrated by the black boxes). 

After the thiol Michael addition the calcium carbonate was etched out of the 

particles with 0.25 M acetic acid to afford hollow polymeric ellipsoids, the resulting 

particles were thoroughly cleaned by several centrifugation cycles to remove all of 

the dissolved calcium ions and excess acid. FTIR and Raman analysis was repeated 

on these hollow particles in an effort to determine the presence of C-S stretches 

which were previously unobserved. In both cases, FTIR only showed the loss of the 

very weak vinyl C-H stretches (see Figure 3.24 and Figure 3.26 for the hollow 

poly(PETA)-C and poly(DPEPHA)-C after thiol Michael addition). Raman once 

again illustrated the loss of the very strong vinyl C=C stretch at 1634 cm-1 and vinyl 

C-H stretches at 733, 1380, 1408 and 3036 cm-1, Raman spectroscopy also indicated 

the presence of C-S stretches at 646 and 748 cm-1 (see Figure 3.25 and Figure 3.27 

for the hollow poly(PETA)-C and poly(DPEPHA)-C after thiol Michael addition), 

clearly indicating that the loss of vinyl groups was due to the thiol Michael addition. 
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Figure 3.24 FTIR spectra of hollowed poly(PETA)-C particles (HM-305) () and said particles after 
the thiol Michael addition with 2-mecapto ethanol (HM-312) (). After the thiol Michael addition, 
the vinyl –CH shift at 808 cm-1 is lost. 

 

Figure 3.25 Raman spectra of hollowed poly(PETA)-C particles (HM-305) () and said particles 
after the thiol Michael addition with 2-mecapto ethanol (HM-312) (). After the thiol Michael 
addition the vinyl C-H shifts at 733, 1380, 1408 and 3036 cm-1 and vinyl C=C shift at 1634 cm-1 are 
lost, C-S shifts at 646 and 748 are gained, (illustrated by the black boxes). 
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Figure 3.26 FTIR spectra of hollowed poly(DPEPHA)-C particles (HM-306) () and said particles 
after the thiol Michael addition with 2-mecapto ethanol (HM-313) (). After the thiol Michael 
addition the vinyl C=C shift at 1634 cm-1 and the vinyl –CH shift at 987 and 808 cm-1 are lost. 

 

Figure 3.27 Raman spectra of hollowed particles of poly(DPEPHA)-C particles (HM-306) () and 
said particles after the thiol Michael addition with 2-mecapto ethanol (HM-313) (). After the thiol 
Michael addition the vinyl C-H shifts at 733, 1380, 1408, and 2036 cm-1 and vinyl C=C shift at 1634 
cm-1 are lost, C-S shifts at 651, and 758 cm-1 are gained, (illustrated by the black boxes). 
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Bromination titrations were repeated to corroborate the findings of the FTIR 

and Raman analysis. As expected, the titrations confirmed that all the vinyl groups 

had been consumed in the thiol Michael addition (Table 3.5). 

Table 3.5 Table of Bromine Index values and the % of vinyl groups remaining after thiol-ene Michael 
of 2-mercapto ethanol. BI of 0 for both particles indicates that the all vinyl groups are consumed in 
the thiol-ene Michael addition. 

Exp. Particles 
BI 

(g / 100 g) 

Vinyl Groups 

(mmol / 100 g) 

HM-314 
Poly(PETA)-C—
mercaptoethanol 

0 0 

HM-315 
Poly(DPEPHA)-C—

mercaptoethanol 
0 0 

 

We found it surprising that all the pendant vinyl groups appeared to 

disappear. It suggests that the thiol Michael addition was not only occurring at the 

surface of the particles, as expected, but throughout, signifying that the polymer shell 

was swollen with water. This is logical as the polymer consists of approximately     

14 wt.% methacrylic acid; considering that the pH of the latex is 7.8, it can be 

determined from the Henderson-Hasselbalch equation (equations (3.6) and (3.7)) that 

greater than 99.9 % of the methacrylic acid is deprotonated. Thus the polymer shell, 

swollen with water, is permeable to the thiol Michael addition reagents allowing the 

reaction to penetrate to all the pendant vinyl groups. 

 
 

(3.6) 

 
 

(3.7) 
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It is apparent that the particles can be modified hydrophilically in water, 

though we also wanted to modify the particles hydrophobically; dodecanethiol was 

chosen as a hydrophobic test. The thiol Michael addition was performed in the same 

manner, as above, but in acetone rather than water.  

FTIR for poly(PETA)-C and poly(DPEPHA)-C showed the loss in the very 

weak vinylic and α,β unsaturated carbonyl –C-H peaks at 809 and 984 cm-1 (Figure 

3.28 for poly(PETA)-C particles and Figure 3.30 for poly(DPEPHA)-C particles). In 

the case of poly(PETA)-C particles a very weak thioester stretch at 667 cm-1 was 

also observed. In both cases, Raman clearly showed the loss of C=C stretch at 1409 

cm-1 and vinylic -C-H peaks at 1637, 3040, 3075 and 3109 cm-1 after the thiol-

Michael addition (Figure 3.29 for poly(PETA)-C particles and Figure 3.31 for 

poly(DPEPHA)-C particles). 

 

Figure 3.28 FTIR spectra of poly(PETA)-C particles (HM-302) () and said particles after the thiol 
Michael addition with dodecanethiol in acetone (HM-316) ().Vinyl –CH stretches at 809 and 984 
cm-1 are lost and thioether stretch at 667 cm-1 gained after the Michael addition. 
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Figure 3.29 Raman spectra of poly(PETA)-C particles (HM-302) () and said particles after the 
thiol Michael addition with dodecane thiol in acetone (HM-316) (). After the thiol Michael addition 
the vinyl shifts at 1409, 1637, 3040, 3075 and 3109 cm-1 are lost (illustrated by the black boxes). 

 

Figure 3.30 FTIR spectra of poly(DPEPHA)-C particles (HM-303) () and said particles after the 
thiol Michael addition with dodecane thiol in acetone (HM-317) ().Vinyl –CH stretches at 809 and 
984 cm-1 are lost after the Michael addition (illustrated by the black boxes). 
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Figure 3.31 Raman Spectra of poly(DPEPHA)-C particles (HM-303) () and said particles after the 
thiol Michael addition with dodecanethiol in acetone (HM-317) (). After the thiol Michael addition 
the vinyl shifts at 1409, 1637, 3040, 3075 and 3109 cm-1 are lost (illustrated by the black boxes). 

Bromination titrations were repeated to corroborate the findings of the FTIR 

and Raman analysis. As expected, the titrations confirmed that all the vinyl groups 

had been consumed in the thiol Michael addition (Table 3.6). In this case, complete 

conversion of pendant vinyl groups is attributed to the particles swelling with 

acetone. 

Table 3.6 Table of Bromine Index values and the % of vinyl groups remaining after thiol-ene Michael 
addition of 1-dodecane thiol. BI of 0 for both particles indicates that the all vinyl groups are 
consumed in the thiol-ene Michael addition. 

Exp. Particles 
BI 

(g / 100 g) 

Vinyl Groups 

(mmol / 100 g) 

HM-318 
Poly(PETA)-C—

dodecane thiol 
0 

0 

HM-319 
Poly(DPEPHA)-C—

dodecane thiol 
0 

0 
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3.3.3.	Synthesis	and	thiol	Michael	addition	of	ω‐thiol	functionalized	

poly(styrene)	to	composite	particles	

RAFT polymers (containing a di/trithiocarbonate) can undergo ω-end 

modification to achieve thiol functionality through reactions with nucleophiles.47, 56-

59 With this in mind we aimed to prepare poly(styrene) by RAFT polymerization, 

with the intention to produce thiol ω-end functionalized poly(styrene) which could 

be used to react with pendant vinyl groups on the composite particles via thiol 

Michael addition. By “clicking” a specific polymer chain to the encapsulated 

calcium carbonate particles, the surface can be tuned for a desired application. For 

example, by attaching poly(styrene) chains to calcium carbonate, one could aid 

dispersion in a poly(styrene) polymer melt. Calcium carbonate is used in polymer 

melts to improve mechanical strength; the strength of the material can be greatly 

improved upon by improving the dispersion of the particles.60-65 

 

Figure 3.32 RAFT agent (Propanoic acid)-2-yl butyl trithiocarbonate (PABTC). 

The choice of RAFT agent is very important; for the polymerization of 

styrene, (propanoic acid)-2-yl butyl trithiocarbonate (PABTC) (Figure 3.32) was 

chosen.66 PABTC was synthesised by deprotonating the thiol, in this case 1-

butanethiol, with sodium hydroxide, following this carbon disulfide was introduced, 

to which the deprotonated mercaptan adds by nucleophilic addition turning the 

colourless solution bright yellow. Once this was complete bromopropionic acid is 

added which adds to the trithiocarbonate by nucleophilic addition (SN2), a bright 

yellow precipitate is formed which was recrystallized from hexane and the product 

was dried under vacuum to give a bright yellow powder (Figure 3.33).67 
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Figure 3.33 Mechanism of RAFT agent synthesis. 

Poly(styrene) was synthesized with a target molecular weight of 10,000 g 

mol-1 at 60 % monomer conversion under the following conditions. A mixture of 

PABTC, VA-088 (10 mol. % w.r.t. PABTC), styrene (8 M w.r.t. solvent) and 1,4-

dioxane was degassed by four freeze-pump-thaw cycles, after which the chamber 

was flooded with nitrogen gas and the polymerization was started by heating to      

90 °C. Monomer conversion was followed by 1H NMR and molecular weight by 

THF SEC from samples taken every hour. 

 

Figure 3.34 Overall monomer conversion, Xm, () and Ln([M]0/[M]) () versus time for the RAFT 
polymerization of styrene where the expected molecular weight at 60 % monomer conversion is 
10,000 (HM-321). R2 for the linear fit of the Ln([M]0/[M]) plot is 0.9979. 

Kinetic plot of ln([M]0/[M]) versus time for the polymerization shows a 

“linear” behaviour, hereby indicating that the radical concentration in the RAFT 

polymerization is constant (Figure 3.34).68, 69 Mn increased linearly with monomer 

conversion (Figure 3.35). The dispersity decreases from 1.21 to 1.10. This follows 
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typical RAFT polymerization kinetics; thus the polymerization of styrene using the 

PABTC RAFT agent is controlled. The molecular weight distributions shift to higher 

average molar masses with no clear broadening (Figure 3.36), that is no marked 

development of a high molar mass shoulder as a result of long-long termination and 

no clear tailing towards lower molar masses as a result of short-short termination or 

transfer to monomer and/or solvent. As the reaction proceeds it is apparent that 

dispersity is reducing as is expected in a RAFT controlled polymerization. 

 

Figure 3.35 Mn versus conversion for poly(styrene) synthesized using PABTC RAFT agent with a 
target molecular weight at 60 % conversion of 10,000 g mol-1 (HM-321); () Mn and () PDI, where 
for Mn R

2=0.995. 
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Figure 3.36 Molecular weight distributions of poly(styrene) synthesized using PABTC RAFT agent 
with a target molecular weight at 60 % conversion of 10,000 g mol-1 (HM-321). Samples taken at 2 
(), 3 (), 5 (), 6 (), 7 (), 8 (), 9 (), 10 (), 11 () 12 (), 13 (), 14 
(), 15 (), 16 () and 17 () hours, before this samples could not be accurately analyzed 
by SEC. As conversion increases so does molecular weight, whilst dispersity decreases. 

The polymerization was repeated and the reaction was stopped at ~60 % 

monomer conversion (16 hours) to limit termination and produce polymers with 

maximum trithiocarbonate functionality. Monomer conversion was determined by 

1H NMR and molecular weight by THF SEC (Table 3.7). The polymer was purified 

by precipitation in methanol and collected by Büchner filtration. 

Table 3.7 Table of monomer conversion (measured by 1H NMR) and molecular weights (measured 
by THF SEC) for poly(styrene) synthesized by RAFT polymerization. 

Exp. Conversion Mn(theory) Mn Mp Mw PD 

HM-322 63 10020 9610 10200 10400 1.08 
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Figure 3.37 Mechanism of aminolysis of the trithiocarbonate to achieve thiol ω-end functionalized 
poly(styrene). 

Thiol ω-end functionalized poly(styrene) was synthesized by aminolysis of 

the precursor trithiocarbonate functionalized poly(styrene), using hexylamine as the 

nucleophile (Figure 3.37).47 A solution of the polymer in THF was degassed by 

purging with nitrogen, after which hexylamine was injected into the polymer 

solution. The yellow solution turned colourless overnight. The polymer was 

precipitated in methanol to yield a white powder. 
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Figure 3.38 1H NMR (a) ω-RAFT functionalized poly(styrene) and (b) ω-thiol functionalized 
poly(styrene) yielded after aminolysis. 

1H NMR analysis indicated that the RAFT group had been cleaved by 

aminolysis, by the loss of butyl peaks associated with the trithiocarbonate (Figure 

3.38). SEC with UV detection, measuring λ = 309 nm, was used to determine the 

loss of the RAFT end group. A chromophore is observed at 15 minutes retention 

time, corresponding to the SEC eluent (THF), for the poly(styrene)-PABTC (HM-

322) (Figure 3.39 a). No chromophore is observed after aminolysis (HM-323), 

indicating that the RAFT group has been cleaved (Figure 3.39 b). 
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Figure 3.39 SEC of (a) RAFT-functionalized poly(styrene) (HM-322) and (b) poly(styrene) after 
aminolysis of trithiocarbonate group and reduction with DTT (HM-324). RI () and UV (λ = 309 
nm) detector response () vs. retention time. After aminolysis the UV trace disappears, suggesting 
that the trithiocarbonate group has been cleaved. 

After aminolysis of the RAFT group, SEC analysis showed a large shoulder 

with an Mp with approximately twice that of the Mp of the main peak; a portion of 

the polymers had coupled to form disulfides (Figure 3.40 and Table 3.8). The peaks 

were deconvoluted using Origin 6 software and the area ratios were used to calculate 

the approximate proportion of coupled polymers, which was found to be ~35 %. 

 

Figure 3.40 SEC chromatogram of poly(styrene) after aminolysis of trithiocarbonate group (HM-323) 
(), deconvolution (Gaussian fit) of bimodal plot () and the sum of the deconvoluted plots (). 
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Table 3.8 Table of molecular weights and % of coupled polymer chains for poly(styrene) after 
aminolysis of trithiocarbonate group (HM-323). Where reported Mn and Mw are of the system. 

Exp. Mn Mw Mp1 Mp2 Dispersity % Coupled 

HM-323 10800 13000 10400 21300 1.20 35 

 

The disulfides were cleaved by reacting with dithiothreitol (DTT) (Figure 

3.41).70-72 SEC analysis showed that the shoulder remained, though deconvolution 

showed that the amount of disulfides had reduced to ~16 % (Figure 3.42 and Table 

3.9). 

 

Figure 3.41 Reaction scheme of disulfide reduction by DTT.73 

 

Figure 3.42 (a) poly(styrene) after aminolysis of trithiocarbonate group (HM-323) and (b) after 
reduction of disulfide bonds with DTT (HM-324); SEC chromatogram (), deconvolution (Gaussian 
fit) of bimodal plot () and the sum of the deconvoluted plots (). 

Table 3.9 Table of molecular weights and % of coupled polymer chains for poly(styrene) after 
aminolysis of trithiocarbonate group (HM-323) and after reduction of disulfide bonds with DTT (HM-
324). Where reported Mn and Mw are of the system. 

Exp. Mn Mw Mp1 Mp2 Dispersity % Coupled 

HM-323 10800 13000 10400 21300 1.20 35 

HM-324 11400 12900 11700 23400 1.13 16 
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Thiol Michael addition proceeded as follows: 40 mL solution of acetone 

containing hexylamine (0.7 mg, 0.007 mmol, ~3 % w.r.t. vinyl groups) was added to 

poly(styrene)-SH (HM-324) (3.4 g, 0.3 mmol) and poly(PETA)-C (HM-302) (1.5g, 

~0.214 mmol of vinyl groups) particles, and heated to 40 °C. After four days the 

reaction was stopped and the particles were cleaned by 6 centrifugation cycles. 

Poly(styrene) of ~10,300 g mol-1 has a UCST and LCST of -2 and 144 °C 

respectively, thus under these reaction conditions the poly(styrene) is completely 

dissolved in the continuous phase.74 Unlike with the relatively small thiols 

(2-mercapto ethanol and 1-dodecanethiol), we expected the poly(styrene)-SH to only 

react with surface vinyl groups, rather than penetrating the polymer. 

FTIR analysis showed the disappearance of the vinylic and α,β unsaturated 

carbonyl –C-H peak at 984 cm-1, however the peak at 809 cm-1 appears to remain, in 

addition to this an aromatic C-H stretch at 698 cm-1 appears after the thiol Michael 

addition, indicating the presence of poly(styrene) chains (Figure 3.43). 
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Figure 3.43 FTIR spectra of poly(PETA)-C particles (HM-302) () and said particles after the thiol 
Michael addition with poly(styrene)-SH (HM-325) ().Very weak vinyl –CH stretch at 984 cm-1 is 
lost, however the very weak vinyl –CH stretch at 809 cm-1 remains and aromatic C-H stretch from 
styrene at 698 cm-1 is gained after the Michael addition. 

After the thiol Michael addition, Raman analysis shows the loss of C=C peak 

at 1409 cm-1 and vinylic -C-H peaks at 1637, 3040, 3075 and 3109 cm-1, which is in 

contrast to the FTIR analysis. Appearance of aromatic C=C peaks at 837 and 1000 

cm-1 suggests that poly(styrene) chains are present. 
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Figure 3.44 Raman spectra of poly(PETA)-C particles (HM-302) () and said particles after the 
thiol Michael addition with poly(styrene)-SH in acetone (HM-316) (). After the thiol Michael 
addition the vinyl shifts at 1409, 1637, 3040, 3075 and 3109 cm-1 diminish and aromatic C-H shifts at 
837 and 1000 cm-1 appear (illustrated by the black boxes); indicating that some polystyrene chains 
have “clicked” to the particles. 

Bromination titrations were performed to determine whether any vinyl 

groups remained after the thiol Michael addition. As expected, the titrations 

confirmed that not all the vinyl groups had been consumed. Comparing vinyl groups 

(mmol / 100 g) calculated from the bromine index of poly(PETA)-C particles (HM-

301) to particles after thiol Michael addition with poly(styrene)-SH (HM-326), 

indicates that approximately 22 % of the vinyl groups were consumed by the thiol 

Michael addition (Table 3.10). 

Table 3.10 Table of Bromine Index of poly(PETA)-C particles and poly(PETA)-C particles after thiol 
Michael addition with poly(styrene)-SH. 

Exp. Particles 
BI 

(mg/100 g) 

Vinyl Groups 

(mmol/100 g) 

HM-308 PETA-c 2280 14.3 

HM-326 PETA-c-p(Sty) 1800 11.2 

  



Chapter 3: Particle Modification 

 

  
132 

 
  

3.4.	Conclusions	

We have developed the encapsulation of calcium carbonate nanoparticles to 

incorporate pendant vinyl groups from which the particles were modified by thiol 

Michael addition. We have illustrated the surface modification of these composite 

particles with various thiols. We determined, by Raman spectroscopy and 

quantitative analysis of pendant vinyl groups by bromination titrations, that small 

hydrophilic (2-mercaptoethanol) and hydrophobic (1-dodecanethiol) molecules were 

found to not only react with the surface vinyl groups but penetrated the polymer shell 

to consume all pendant vinyl groups. However, thiol Michael addition of ω-thiol 

functionalized poly(styrene) with a molecular weight of approximately             

10,000 g mol-1, we found that only 22 % of the vinyl groups were consumed. We 

have yet to test our hypothesis that the surface modification could be used as a tool 

to tune the particle surface for dispersion in various media; this would be achieved 

by preparing poly(styrene) melts with bare calcium carbonate, poly(PETA)-C and 

poly(PETA)-C particles modified with poly(styrene) and determining particle 

dispersion. 
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3.5.	Experimental	

3.5.1.	Materials	

Di(ethylene glycol) diacrylate (75 %), methacrylic acid (99 %), 

pentaerythritol triacrylate. dipentaerythritol penta-/hexa-acrylate, styrene (99.9 %), 

2-mercaptoethanol (≥ 99.0 %), dodecanethiol (≥98.0 %), 2-bromopropionic acid 

(≥99.0%), 1-butanethiol (99 %), carbon disulfide (anhydrous, ≥ 99 %), hydrochloric 

acid (37%), sodium hydroxide pellets (≥ 99 %), hexane (95 %), dithiothreitol (DTT) 

(99.0 %), 1,1’-azobis(cyclohexanecarbonitrile) (VA-088) (98 %) and ammonium 

persulfate (APS) (≥ 98.0 %) were purchased from Sigma-Aldrich and were used as 

received. Calcium carbonate (SOCAL P3) was kindly donated by AkzoNobel. 

Carbon film 200 copper mesh, lacey carbon film 300 copper mesh TEM grids and 

SEM specimen stubs were purchased from Agar Scientific. Silicon wafers for 

mounting SEM samples were kindly donated by Wacker Chemie AG. 

3.5.2.	Equipment	

Monomer was fed into the reaction mixture with a Harvard Instrument PHD 

2000 Infusion syringe pump. TEM was performed on a Jeol 2010F TEM fitted with 

a Gatan Ultrascan 4000 camera; samples were prepared by adding a drop of diluted 

latex to a suspended carbon grid, the excess liquid was wicked away with filter 

paper. SEM was performed on a Zeiss SUPRA 55-VP FEGSEM; samples were 

prepared by adding an aqueous drop of diluted sample to a silicon wafer and drying 

at room temperature for 12 hours, the sample was subsequently carbon coated with a 

carbon evaporator for 4 seconds. Raman Measurements were conducted on a 

Renishaw inVia Raman Microscope fitted with a 514.5 nm Ar+ laser and Renishaw 

CCD detector. FTIR measurements were conducted on a Bruker Alpha Platinum 

ATR FTIR. 1H and 13C NMR spectra were recorded on a Bruker DRX500 and an 
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AV700 spectrometers as solutions in deuterated NMR solvents. Chemical shifts are 

cited as parts per million (ppm). The following abbreviations are used to abbreviate 

multiplicities; s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.  

All SEC experiments were performed on Agilent 390-LC multi-detector 

suites equipped with a PL-AS RT/MT autosampler, fitted with a PLgel 5 μm guard 

column and two PLgel 5 μm Mixed D columns (with an exclusion limit of 2.0 x 106 

g mol-1). All data was collected and analysed using Agilent GPC software. Solvent 

used was THF with 2 % TEA and 0.01 % BHT, with a flow rate of 1 ml min-1 and an 

injection volume of 100 μL. The column sets were maintained at ambient 

temperature and 50 °C. A DRI detector was used for conventional calibration. 

Calibrations were created using poly(styrene) EasiVial standards (162-508,000 g 

mol-1) purchased from Agilent, with a minimum of 9 points fitted with a third order 

calibration curve. Points with an error greater than 10 % were not included in the 

final calibration. Samples were prepared by diluting one drop of aqueous polymer 

solution in 1.5 mL SEC solvent, allowing the solution to equilibrate for 30 minutes 

after which the solution was filtered. 

3.5.3.	Calcium	carbonate	encapsulated	in	a	polymeric	shell	with	pendant	

vinyl	groups	

Typical method for encapsulation of calcium carbonate particles: Calcium 

carbonate (10.00 g) was dispersed in water (49.00 g) and degassed by purging with 

nitrogen for 20 minutes. The reaction mixture was heated to 70 °C and initiated with 

ammonium persulfate (0.0216 g, 0.095 mmol) dissolved in water (1.00 g). 0.5 mL of 

a degassed mixture of DEGDA and MAA was fed into the reaction at 0.5 mL h-1, 

followed by a 0.5 mL DEGDA feed at 0.5 mL h-1 (see Table 3.1 for monomer 

quantities). The polymerization was stopped 30 minutes after the monomer feed had 
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finished. The composite latex was dialysed into water. Particles were collected by 

freeze-drying. 

Table 3.11 Encapsulated calcium carbonate particles within a polymeric shell with various multiple 
acrylate containing monomers, monomer fed amounts fed into a mixture of 10.0 g calcium carbonate 
and 50.0 g water. Monomer feeds 1 and 2 were both 0.5 mL and fed at 0.5 mL h-1. 

Exp. Monomers 
Particle 

Acronym 

Mass (g) mmol 

Feed 1 Feed 2 Feed 1 Feed 2 

HM-301 
MAA Poly(DEGDA)-

C 

0.16 0 1.84 0 

DEGDA 0.38 0.34 1.80 2.61 

HM-302 

MAA 

Poly(PETA)-C 

0.16 0 1.88 0 

DEGDA 0.20 0.29 0.91 1.34 

PETA 0.20 0.29 0.65 0.96 

HM-303 

MAA 

Poly(DPEPHA)-
C 

0.16 0 1.86 0 

DEGDA 0.19 0.28 0.91 1.33 

DPEPHA 0.19 0.28 0.37 0.54 

 

3.5.3.1.	Bare	calcium	carbonate	

Raman data was analysed from literature; calcium carbonate75, 76 and organic 

groups.77, 78 

Raman spectra (cm-1): 155 (T[Ca, CO3]);280 (T[Ca, CO3]); 712 (ν4 [CO3] 

bending vibrations); 1086 (ν1 [CO3] symmetric stretch); 1436 (ν3 [CO3] asymmetric 

stretch); 1749 (ν1 and ν4). 

FTIR spectra (cm-1): 712 (w, ν4 [CO3] symmetric deformation); 871 (s, ν2 

[CO3] asymmetric deformation); 1079 (vw, ν1 [CO3] symmetric stretch); 1402 (vs, ν3 

[CO3] asymmetric stretch); 1793 (vw, ν1 and ν4); 2515 (vw, 2ν2 and ν4). 
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3.5.3.2.	DEGDA‐c	particles	(HM‐301)	

Raman spectra (cm-1): 155 (T[Ca, CO3]); 280 (T[Ca, CO3]); 712 (ν4 [CO3] 

bending vibrations); 841 (-C-O-C- stretch); 1086 (ν1 [CO3] symmetric stretch); 1285 

(C-Caliph stretch); 1452 (ν3 [CO3] asymmetric stretch); 1729 (ν1 and ν4); 2876 (-CH2 

symmetric stretch); 2926 (-CH2 asymmetric stretch); 2960 (-CH2 asymmetric 

stretch). 

FTIR spectra (cm-1): 712 (w, ν4 [CO3] symmetric deformation); 871 (s, ν2 

[CO3] asymmetric deformation); 1079 (vw, ν1 [CO3] symmetric stretch); 1178 (w, C-

O- stretch); 1402 (vs, ν3 [CO3] asymmetric stretch); 1725 (w, -(CO)-O- stretch) 1793 

(vw, ν1 and ν4); 2515 (vw, 2ν2 and ν4). 

3.5.3.3.	PETA‐c	particles	(HM‐302)	

Raman spectra (cm-1): 155 (T[Ca, CO3]); 280 (T[Ca, CO3]); 712 (ν4 [CO3] 

bending vibrations); 1086 (ν1 [CO3] symmetric stretch); 1284 (C-Caliph stretch); 1409 

(C=C-H deformation); 1468 (ν3 [CO3] asymmetric stretch); 1637 (C=C stretch); 1722 

(ν1 and ν4); 2904 (-CH2 symmetric stretch); 2932 (-CH2 asymmetric stretch); 2966 (-

CH2 asymmetric stretch); 2993 (-OH stretch); 3040 (C=C-H stretch); 3075 (C=C-H 

stretch); 3109 (C=C-H stretch). 

FTIR spectra (cm-1): 712 (w, ν4 [CO3] symmetric deformation); 809 (vw, 

vinyl –C-H deformation); 871 (s, ν2 [CO3] asymmetric deformation); 983 (vw, vinyl 

–C-H conjugated to C=O deformation); 1061 (vw, C-O stretch); 1079 (vw, ν1 [CO3] 

symmetric stretch); 1178 (w, -C-O- stretch); 1298 (vw, -O-H stretch); 1402 (vs, ν3 

[CO3] asymmetric stretch); 1725 (w, unsaturated -(CO)-O- stretch); 1793 (vw, ν1 and 

ν4); 2515 (vw, 2ν2 and ν4). 



Chapter 3: Particle Modification 

 

  
137 

 
  

3.5.3.4.	DPEPHA‐c	particles	(HM‐303)	

Raman spectra (cm-1): 155 (T[Ca, CO3]); 280 (T[Ca, CO3]); 712 (ν4[CO3] 

bending vibrations); 1086 (ν1[CO3] symmetric stretch); 1285 (C-Caliph stretch); 1408 

(m, C=C-H deformation); 1435(ν3[CO3] asymmetric stretch); 1637 (C=C stretch); 

1727 (ν1 and ν4); 2963 (-CH2 asymmetric stretch); 3040 (C=C-H stretch); 3075 

(C=C-H stretch); 3109 (C=C-H stretch). 

FTIR spectra (cm-1): 712 (w, ν4 [CO3] symmetric deformation); 809 (vw, 

vinyl –C-H deformation); 871 (s, ν2 [CO3] asymmetric deformation); 983 (vw, vinyl 

–C-H conjugated to C=O deformation); 1061 (vw, C-O stretch); 1079 (vw, ν1 [CO3] 

symmetric stretch); 1178 (w, -C-O- stretch); 1298 (vw, -OH stretch); 1402 (vs, ν3 

[CO3] asymmetric stretch); 1725 (w, -(CO)-O- stretch); 1793 (vw, ν1 and ν4); 2515 

(vw, 2ν2 and ν4). 

3.5.4.	Hollow	particles	

Typical method of preparing hollow polymer particles: To 0.50 g of 

composite particles (HM-301-303) in 2.50 g water, acetic acid (40 mL, 0.25 M) was 

added at a rate of 3 mL h-1 using a syringe pump. The hollow particles were cleaned 

by 5 centrifugation cycles. 

3.5.4.1.	Hollow	DEGDA‐c	particles	(HM‐304)	

Raman spectra (cm-1): 752 (w, CH2 rocking); 802 (w, C-Caliph stretch); 837 

(w, symmetric C-O-C stretch); 860 (m, C-C stretch); 919 (w, C-Caliph stretch); 1016 

(m, ester C-O stretch); 1040 (m, C-O-C stretch); 1085 (m, C-O-C stretch); 1277 (s, 

C-Caliph stretch); 1380 (m, C=O stretch); 1451 (vs, CH2 bending); 1730 (vs, C=O 

asymmetric stretch); 2867 (s, CH2 stretch); 2920 (vs, CH2 asymmetric stretch). 

FTIR spectra (cm-1): 758 (vw, -CH2 rocking); 854 (vw, symmetric –C-O-C- 

stretch); 919 (vw, symmetric C-O-C stretch); 1045 (s, C-O stretch); 1132 (vs, C-O 
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stretch); 1163 (vs, C-O stretch); 1245 (s, C-O stretch); 1355 (m, C=O stretch); 1385 

(m, C=O stretch); 1446 (m –CH2 deformation); 1724 (vs, -(CO)O- stretch); 2869 (s, 

-CH2 stretch); 2953 (s, -CH2 stretch). 

3.5.4.2.	Hollow	PETA‐c	particles	(HM‐305)	

Raman spectra (cm-1): 622 (w, 733 (s, -CH=CH2); 758 (w, CH2 rocking); 807 

(w, C-Caliph stretch); 839 (w, symmetric C-O-C stretch); 860 (m, C-C stretch); 915 

(m, RHC=CH2 deformation); 925 (w, C-Caliph stretch); 1011 (m, ester C-O stretch); 

1031 (m, C-O-C stretch); 1069 (m, C-O-C stretch); 1281 (s, C-Caliph stretch); 1380 

(m, C=C-H deformation); 1408 (m, C=C-H deformation); 1454 (vs, CH2 bending); 

1634 (s, C=C stretch); 1729 (vs, C=O asymmetric stretch); 2928 (vs, CH2 

asymmetric stretch); 3036 (w, C=C-H stretch). 

FTIR spectra (cm-1): 748 (vw, -CH2 rocking); 860 (vw, symmetric –C-O-C- 

stretch); 923 (vw, symmetric C-O-C stretch); 1052 (s, C-O stretch); 1153 (vs, C-O 

stretch); 1208 (s, C-O stretch); 1388 (m, C=O stretch); 1449 (m –CH2 deformation); 

1722 (vs, -(CO)O- stretch); 2885 (s, -CH2 stretch); 2952 (s, -CH2 stretch); 3523 (b, 

O-H stretch). 

3.5.4.3.	Hollow	DPEPHA‐c	particles	(HM‐306)	

Raman spectra (cm-1): 733 (s, -CH=CH2 rocking); 758 (w, CH2 rocking); 807 

(w, C-Caliph stretch); 839 (w, symmetric C-O-C stretch); 861 (m, C-C stretch); 915 

(m, RHC=CH2 deformation); 925 (w, C-Caliph stretch); 1011 (m, ester C-O stretch); 

1034 (m, C-O-C stretch); 1069 (m, C-O-C stretch); 1281 (s, C-Caliph stretch); 1380 

(m, C=C-H deformation); 1408 (m, C=C-H deformation); 1455 (vs, CH2 bending); 

1634 (s, C=C stretch); 1726 (vs, C=O asymmetric stretch); 2927 (vs, CH2 

asymmetric stretch); 3036 (w, C=C-H stretch). 
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FTIR spectra (cm-1): 755 (vw, -CH2 rocking); 808 (w, vinyl –CH 

deformation); 855 (vw, symmetric –C-O-C- stretch); 925 (vw, symmetric C-O-C 

stretch); 987 (w, vinyl –CH conjugated to C=O deformation); 1059 (s, C-O stretch); 

1158 (vs, C-O stretch); 1205 (s, C-O stretch); 1358 (m, C=O stretch); 1406 (m, αβ-

unsaturated C=O); 1449 (m –CH2 deformation); 1634 (m, C=C stretch), 1724 (vs, -

(CO)O- stretch), 2876 (s, -CH2 stretch), 2956 (s, -CH2 stretch), 3521 (b, O-H 

stretch). 

3.5.5.	Quantifying	pendant	vinyl	groups	on	encapsulated	particles	

Typical Bromination reaction proceeded as follows. The calcium carbonate 

of 0.20 g of composite particles was etched out with acetic acid. The now hollow 

particles were added to a 50 mL solution containing KBrO3 (0.139 g, 0.835 mmol) 

and KBr (0.496 g, 4.17 mmol) along with 9 mL water, 0.5 mL methanol and 0.5 mL 

glacial acetic acid. This was left in the dark for 6 hours whilst stirring at room 

temperature. 

Typical titration proceeded as follows. Once the bromination was complete, 

the solution was cooled to 0-3 °C, 2 mL concentrated HCl was added to the solution 

and was left for 30 minutes. Potassium iodide (1.5 g) was added and stirred until 

homogenous. The solution was titrated with 0.1 M sodium thiosulfate solution, 0.5 

mL of 1 % starch solution was added after the solution changed colour from brown 

to yellow, and the end point was when the solution turned from black to colourless. 

Throughout the titration the mixture was kept in the dark. 
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Table 3.12 Table of average titration volumes and corresponding Bromine Index for composite 
particles. V1 and V2 denote the volume of Na2S2O3 titrated in the blank and sample solution 
respectively. 

Exp. Particles 
V1  V2 

(mL) 

BI 

(mg / 100 g) 

HM-307 
Poly(DEGDA)-C 

(HM-301) 
0 0 

HM-308 
Poly(PETA)-C 

(HM-302) 
0.57 2220 

HM-309 
Poly(DPEPHA)-C 

(HM-303) 
0.20 779 

 

3.5.5.1.	Brominated	PETA‐c	particles	(HM‐308)	

Raman spectra (cm-1): 758 (s, C-Br stretch), 839 (w, symmetric C-O-C 

stretch), 861 (m, C-C stretch), 921 (w, C-Caliph stretch), 1018 (m, ester C-O stretch); 

1142 (m, C-O stretch); 1276 (s, C-Caliph stretch); 1356 (m, C=O stretch); 1453 (vs, 

CH2 bending); 1730 (vs, C=O asymmetric stretch); 2873 (s, CH2 asymmetric 

stretch); 2940 (vs, CH2 asymmetric stretch). 

FTIR spectra (cm-1): 748 (vw, -CH2 rocking); 854 (vw, symmetric –C-O-C- 

stretch); 923 (vw, symmetric C-O-C stretch); 1059 (s, C-O stretch); 1166 (vs, C-O 

stretch); 1253 (s, C-O stretch); 1387 (m, C=O stretch); 1447 (m –CH2 deformation); 

1729 (vs, -(CO)O- stretch); 2876 (s, -CH2 stretch); 2944 (s, -CH2 stretch). 

3.5.5.2.	HM‐309	Brominated	DPEPHA‐c	particles	

Raman spectra (cm-1): 635 (m, C-Br stretch); 673 (m, C-Br stretch); 748 (s, 

C-Br stretch); 786 (w, CH2 rocking); 802 (vw, C-Caliph stretch); 837 (w, symmetric 

C-O-C stretch); 860 (m, C-C stretch); 920 (w, C-Caliph stretch); 1028 (m, ester C-O 

stretch); 1085 (m, C-O-C stretch); 1142 (m, C-O stretch); 1281 (s, C-Caliph stretch); 
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1452 (vs, CH2 bending); 1732 (vs, C=O asymmetric stretch); 2878 (s, CH2 

asymmetric stretch); 2931 (vs, vs, CH2 asymmetric stretch). 

FTIR spectra (cm-1): 748 (vw, -CH2 rocking); 854 (vw, symmetric –C-O-C- 

stretch); 923 (vw, symmetric C-O-C stretch); 1059 (s, C-O stretch); 1166 (vs, C-O 

stretch); 1253 (s, C-O stretch); 1387 (m, C=O stretch); 1447 (m –CH2 deformation); 

1729 (vs, -(CO)O- stretch); 2876 (s, -CH2 stretch); 2944 (s, -CH2 stretch). 

3.5.6.	Typical	method	for	thiol	Michael	addition	of	2‐mercapto	ethanol	to	

pendant	vinyl	groups	on	encapsulated	CaCO3	particles	

To the particles (0.50 g) (HM-302-303), 2-mercaptoethanol (0.56 g, 7.17 

mmol) was added, followed by a 10 mL solution of water containing hexylamine 

(0.2 mg, 0.002 mmol), the reaction was left overnight. The particles were cleaned by 

centrifugation cycles. 

3.5.6.1.	HM‐310	Thiol	Michael	addition	of	2‐mercaptoethanol	to	PETA‐c	particles	

Raman spectra (cm-1): 154 (T[Ca, CO3]); 279 (T[Ca, CO3]); 711 (ν4 [CO3] 

bending vibrations); 1085 (ν1 [CO3] symmetric stretch); 1435 (ν3 [CO3] asymmetric 

stretch); 1748 (ν1 and ν4); 2927 (-CH2 asymmetric stretch); 2960 (-CH2 asymmetric 

stretch); 2993 (-OH stretch). 

FTIR spectra (cm-1): 667 (vw -C-S- stretch); 712 (w, ν4 [CO3] symmetric 

deformation); 871 (s, ν2 [CO3] asymmetric deformation); 1061 (vw, C-O stretch); 

1067 (vw, ν1 [CO3] symmetric stretch); 1167 (w, -C-O- stretch); 1298 (vw, -O-H 

stretch); 1398 (vs, ν3 [CO3] asymmetric stretch); 1732 (w, -(CO)-O- stretch); 1794 

(vw, ν1 and ν4); 2510 (vw, 2ν2 and ν4). 
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3.5.6.2.	HM‐312	Hollowed	PETA‐c	particles	after	thiol	Michael	addition	of	2‐

mercaptoethanol	

Raman spectra (cm-1): 646 (w, C-S stretch); 748 (w, C-S stretch); 839 (w, 

symmetric C-O-C stretch); 860 (m, C-C stretch); 925 (w, C-Caliph stretch); 1015 (m, 

ester C-O stretch); 1041 (m, C-O-C stretch); 1247 (m, ester C-O stretch); 1279 (s, C-

Caliph stretch); 1456 (vs, CH2 bending); 1728 (vs, C=O asymmetric stretch); 2927 (vs, 

CH2 asymmetric stretch). 

FTIR spectra (cm-1): 746 (vw, -CH2 rocking); 858 (vw, symmetric –C-O-C- 

stretch); 932 (vw, symmetric C-O-C stretch); 1047 (s, C-O stretch); 1154 (vs, C-O 

stretch); 1245 (s, C-O stretch); 1389 (m, C=O stretch); 1447 (m –CH2 deformation); 

1725 (vs, -(CO)O- stretch); 2876 (s, -CH2 stretch); 2949 (s, -CH2 stretch); 3521 (b, 

O-H stretch). 

3.5.6.3.	HM‐311	Thiol	Michael	addition	of	2‐mercaptoethanol	to	DPEPHA‐c	

particles	

Raman spectra (cm-1): 154 (T[Ca, CO3]); 279 (T[Ca, CO3]); 711 (ν4[CO3] 

bending vibrations); 1085 (ν1[CO3] symmetric stretch); 1435 (ν3[CO3] asymmetric 

stretch); 1748 (ν1 and ν4); 2927 (-CH2 asymmetric stretch); 2963 (-CH2 asymmetric 

stretch). 

FTIR spectra (cm-1): 667 (vw, -C-S- stretch); 712 (w, ν4 [CO3] symmetric 

deformation); 871 (s, ν2 [CO3] asymmetric deformation); 1061 (vw, C-O stretch); 

1067 (vw, ν1 [CO3] symmetric stretch); 1167 (w, -C-O- stretch); 1298 (vw, -O-H 

stretch); 1398 (vs, ν3 [CO3] asymmetric stretch); 1730 (w, -(CO)-O- stretch); 1795 

(vw, ν1 and ν4); 2510 (vw, 2ν2 and ν4). 
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3.5.6.4.	HM‐313	Hollowed	DPEPHA‐c	particles	after	thiol	Michael	addition	of	2‐

mercaptoethanol	

Raman spectra (cm-1): 651 (w, C-S stretch); 758 (w, C-S stretch); 834 (w, 

symmetric C-O-C stretch); 862 (m, C-C stretch); 965 (w, C-Caliph stretch); 1015 (m, 

ester C-O stretch); 1041 (m, C-O-C stretch); 1247 (m, ester C-O stretch); 1279 (s, C-

Caliph stretch); 1456 (vs, CH2 bending); 1731 (vs, C=O asymmetric stretch); 2168 (m, 

-OH stretch); 2923 (vs, CH2 asymmetric stretch). 

FTIR spectra (cm-1): 746 (vw, -CH2 rocking); 858 (vw, symmetric –C-O-C- 

stretch); 932 (vw, symmetric C-O-C stretch); 1047 (s, C-O stretch); 1154 (vs, C-O 

stretch); 1245 (s, C-O stretch); 1389 (m, C=O stretch); 1447 (m –CH2 deformation); 

1725 (vs, -(CO)O- stretch); 2876 (s, -CH2 stretch); 2949 (s, -CH2 stretch); 3521 (b, -

OH stretch). 

3.5.6.5.	Quantifying	pendant	vinyl	groups	by	bromination	after	thiol	Michael	

addition	of	2‐mercapto	ethanol	

See section 3.4.5. for experimental protocol. 

Table 3.13 Table of average titration volumes and corresponding Bromine Index for composite 
particles after thiol Michael addition of 2-mercapto ethanol. V1 and V2 denote the volume of Na2S2O3 
titrated in the blank and sample solution respectively. 

Exp. Particles 
V1  V2 

(mL) 

BI 

(mg / 100 g) 

HM-314 

Poly(PETA)-C—
mercaptoethanol 

(HM-310) 

0 0 

HM-315 

Poly(DPEPHA)-C—
mercaptoethanol 

(HM-311) 

0 0 
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3.5.7.	Typical	method	for	thiol	Michael	addition	of	dodecanethiol	to	

pendant	vinyl	groups	on	encapsulated	CaCO3	

To the particles (0.65 g) (HM-301-303), 1-dodecanethiol (1.54 g, 7.62 mmol) 

was added, followed by a 10 mL solution of acetone containing hexylamine (0.2 mg, 

0.002 mmol), the reaction was left overnight. The particles were cleaned by 

centrifugation cycles. 

3.5.7.1.	HM‐314	Thiol	Michael	addition	of	1‐dodecanethiol	to	PETA‐c	particles	

Raman spectra (cm-1): 155 (T[Ca, CO3]); 280 (T[Ca, CO3]); 712 (ν4 [CO3] 

bending vibrations); 1086 (ν1 [CO3] symmetric stretch); 1435 (ν3 [CO3] asymmetric 

stretch); 1748 (ν1 and ν4); 2927 (-CH2 asymmetric stretch); 2960 (-CH2 asymmetric 

stretch); 2993 (-OH stretch). 

FTIR spectra (cm-1): 667 (vw -C-S- stretch); 712 (w, ν4 [CO3] symmetric 

deformation); 871 (s, ν2 [CO3] asymmetric deformation); 1061 (vw, C-O stretch); 

1079 (vw, ν1 [CO3] symmetric stretch); 1167 (w, -C-O- stretch); 1298 (vw, -O-H 

stretch); 1410 (vs, ν3 [CO3] asymmetric stretch); 1733 (w, -(CO)-O- stretch); 1793 

(vw, ν1 and ν4); 2508 (vw, 2ν2 and ν4); 2873 (m, -CH2 stretch); 2977 (m, -CH2 

stretch); 3521 (b, -OH). 

3.5.7.2.	HM‐315	Thiol	Michael	addition	of	1‐dodecanethiol	to	DPEPHA‐c	particles	

Raman spectra (cm-1): 157 (T[Ca, CO3]); 282 (T[Ca, CO3]); 714 (ν4 [CO3] 

bending vibrations); 1088 (ν1 [CO3] symmetric stretch); 1437 (ν3 [CO3] asymmetric 

stretch); 1751 (ν1 and ν4); 2927 (-CH2 asymmetric stretch); 2960 (-CH2 asymmetric 

stretch). 

FTIR spectra (cm-1): 712 (w, ν4 [CO3] symmetric deformation); 872 (s, ν2 

[CO3] asymmetric deformation); 1061 (vw, C-O stretch); 1086 (vw, ν1 [CO3] 
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symmetric stretch); 1173 (w, -C-O- stretch); 1405 (vs, ν3 [CO3] asymmetric stretch); 

1732 (w, -(CO)-O- stretch); 1796 (vw, ν1 and ν4); 2512 (vw, 2ν2 and ν4). 

3.5.7.3.	Quantifying	pendant	vinyl	groups	by	bromination	after	thiol	Michael	

addition	of	1‐dodecane	thiol	

See section 3.4.5. for experimental protocol. 

Table 3.14 Table of average titration volumes and corresponding Bromine Index for composite 
particles after thiol Michael addition of 1-dodecane thiol. V1 and V2 denote the volume of Na2S2O3 
titrated in the blank and sample solution respectively. 

Exp. Particles 
V1  V2 

(mL) 

BI 

(mg / 100 g) 

HM-318 

Poly(PETA)-C—
dodecane thiol 

(HM-316) 

0 0 

HM-319 

Poly(DPEPHA)-C—
dodecane thiol 

(HM-317) 

0 0 

 

3.5.8.	Synthesis	of	RAFT	agent	(propanoic	acid)‐2‐yl	butyl	trithiocarbonate	

(PABTC)	(HM‐320)	

(Propanoic acid)-2-yl butyl trithiocarbonate (PABTC) was synthesized as 

follows.67 A 50 % NaOH solution (32.06 g, containing 16.03 g, 401 mmol of NaOH) 

was added to a stirred mixture of 1-butanethiol (36.10 g, 400 mmol), water (60 mL) 

and acetone (20 mL), the resulting clear, colourless solution was stirred for 30 

minutes. Carbon disulfide (34.22 g, 449 mmol) was added and the now clear orange 

solution was left to stir for 30 minutes. The solution was cooled to <10 °C, after 

which 2-bromopropionic acid (63.06 g, 412 mmol) was added at a rate so that the 

temperature did not exceed 30 °C, followed by 50 % NaOH (32.83 g containing 

16.42 g, 410 mmol NaOH) at a rate so that the temperature did not exceed 30 °C. 

When the exotherm had stopped the ice bath was removed, water (60 mL) was added 
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and the mixture was left to stir for 24 hours at ambient temperature. Water (100 mL) 

was added to the mixture and it was cooled to <10 °C, after which 10 M HCl (60 

mL) was added at a rate so that the temperature did not exceed 10 °C. A yellow oil 

separated and on further cooling solidified. The yellow solid was collected by 

suction filtration, washed with ice cold water and dried under reduced pressure. The 

lumps were crushed with a spatula and the solid was re-suspended in cold water and 

stirred for 15 minutes. The solid was collected by suction filtration and dried under 

reduced pressure. The powdery yellow solid was recrystallized from hexane (180 

mL) to give bright yellow microcrystals. 

Yield: 75.71 g, 79.34 % 

1H NMR (CDCl3), δ (ppm): 0.95 (t, J=7.3 Hz, 3H, CH3CH2-); 1.44 (sext, 

J=7.5 Hz, 2H, CH3CH2CH2-); 1.64 (d,  J=7.3 Hz, 3H, SCHCH3); 1.70 (quint, J=7.5 

Hz, 2H, CH2CH2S-); 3.38 (t, J=7.5 Hz, 2H, CH2S-);4.88 (q, J=7.5 Hz, 1H, SCH); 

10.6 (b, 1H, CO2H). 

13C NMR (CDCl3), δ (ppm): 13.88 (1C, CH2CH3); 16.89 (1C, SCHCH3); 

22.36 (1C, CH3CH2); 30.18 (1C, CH2CH2S); 37.44 (1C, CH2S); 47.72 (1C, SCH); 

177.14 (1C C=O); 221.89 (1C, C=S). 

FTIR (cm-1): 2953 (s, CH3 stretch); 2926 (s, CH2 stretch); 2865 (s, CH 

stretch); 2712 (m, CHO stretch); 2597 (m, COOH); 1705 (s, C=O stretch); 1450 (m, 

CH2 stretch); 1418 (s, OH bending); 1316 (m, C-O stretch), 1304 (s, CO2H); 1208 (s, 

C=S stretch); 1105 (s, C-O); 1087 (m, S-CS-S); 1065 (m, S-CS-S); 1041 (m, C-O); 

910 (w, C-C stretch); 823 (s, C-C stretch); 647 (w, C-S stretch). 

ESI-MS m/z: Calculated: 237.40 (H+). Found: 237.00. 
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3.5.9.	RAFT	polymerization	of	styrene	using	PABTC	

Typical polymerization of polystyrene using PABTC was conducted as 

follows (see Table 3.15 for values). PABTC (HM-320) and VA-088 (10 mol.% w.r.t. 

PABTC) was dissolved in 1,4-dioxane (0.80 g), to this styrene (8.00 g, 76.8 mmol, 8 

M w.r.t. solvent) was added. The solution was degassed by four freeze-pump-thaw 

cycles, after which the chamber was flooded with nitrogen gas and the 

polymerization was started by heating to 90 °C. Monomer conversion was followed 

by 1H NMR and molecular weight by THF SEC. Polymer was purified by 

precipitation in methanol. 

Table 3.15 Table of polymerization of styrene using PABTC RAFT agent. The number in the 
brackets denotes the molecular weight aim at 60 % monomer conversion. 

Polymer 
PABTC VA-088 Styrene Dioxane

(g) (mmol) (g) (mmol) (g) (mmol) (g) 

HM-321 0.114 0.479 0.0116 0.047 8.04 77.2 0.80 

HM-322 0.114 0.479 0.0113 0.046 8.00 76.8 0.80 

 

1H NMR (CDCl3), δ (ppm): 0.94 (t, 3H, CH3CH2- RAFT agent); 1.25-1.71 

(bm, 1nH, backbone); 1.73-2.30 (bm, 2nH, backbone); 3.29 (t, 2H, CH2S- RAFT 

agent); 6.35-7.20 (bm, 5nH, Ar-H). 

13C NMR (CDCl3), δ (ppm): 13.66 (1C, CH2CH3, RAFT agent); 21.51 (1C, 

SCHCH3, RAFT agent); 22.10 (1C, CH3CH2, RAFT agent); 30.02 (1C, SCH2CH2, 

RAFT agent); 36.48 (1C, CH2S, RAFT agent); 40.39 (1nC, CH2CH, backbone); 

41.52-4.04 (1nC, CH2CH, backbone); 52.90 (1C, SCH, RAFT agent); 125.68 (2nC, 

ortho-Ar); 127.46 (1nC, para-Ar); 129.08 (2nC, meta-Ar); 145.35 (1nC, Ar); 179.64 

(1C, C=O, RAFT agent); 222.33 (1C, C=S, RAFT agent). 
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FTIR (cm-1): 696 (s, aromatic C-H); 752 (s, aromatic C-H); 841 (vw, C-C 

stretch); 907 (w, C-C stretch); 1027 (m, aromatic C=C); 1452 (m, CH2 asymmetrical 

deformation); 1492 (m, aromatic C=C stretch); 1582 (w. aromatic C=C stretch); 

1601 (m, aromatic C=C stretch); 2841 (w, C-H stretch); 2919 (m, C-H stretch); 3003 

(w, aryl C-H); 3024 (m, aryl C-H); 3060 (w, aryl C-H); 3082 (w, aryl C-H). 

3.5.10.	Aminolysis	of	RAFT	functionalized	poly(styrene)	(HM‐323)	

Trithiocarbonate functionalized poly(styrene) (HM-322) (5.00) was dissolved 

in THF (50 mL) and was degassed by purging with nitrogen. Degassed hexylamine 

(0.5 mL) was injected into the poly(styrene) solution, the reaction was left overnight 

to complete during which the yellow solution turned colourless. The polymer was 

purified by precipitating into methanol and was collected by Buchner filtration. 

1H NMR (CDCl3), δ (ppm): 1.22-1.68 (bm, 1nH, CH2CH backbone); 1.70-

2.25 (bm, 2nH, CH2CH backbone); 6.35-7.20 (bm, 5nH, Ar-H). 

13C NMR (CDCl3), δ (ppm): 29.30 (1C, SCHCH3, RAFT agent); 39.49 (1nC, 

CH2CH, backbone); 40.69-43.15 (1nC, CH2CH, backbone); 45.38 (1C, SCH, RAFT 

agent); 124.62 (2nC, ortho-Ar); 126.83 (1nC, para-Ar); 128.97 (2nC, meta-Ar); 

144.66 (1nC, Ar); 178.46 (1C, C=O, RAFT agent). 

FTIR (cm-1): 697 (s, aromatic C-H); 755 (s, aromatic C-H); 841 (vw, C-C 

stretch); 907 (w, C-C stretch); 1028 (m, aromatic C=C); 1452 (m, CH2 asymmetrical 

deformation); 1493 (m, aromatic C=C stretch); 1584 (w. aromatic C=C stretch); 

1601 (m, aromatic C=C stretch); 2849 (w, C-H stretch); 2922 (m, C-H stretch); 3002 

(w, aryl C-H); 3026 (m, aryl C-H); 3060 (w, aryl C-H); 3082 (w, aryl C-H). 
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3.5.11.	Reduction	of	disulfides	with	DTT	(HM‐324)	

Cleavage of disulfides proceeded as follows.72 Poly(styrene) (HM-323) (4.62 

g) and DTT (0.94 g) was dissolved in THF (50 mL) and placed under a nitrogen 

atmosphere by purging for 15 minutes. The solution was heated to 60 °C and stirred 

for 7 days. The polymer was purified by precipitating into methanol and was 

collected by Büchner filtration. 

3.5.12.	Method	for	thiol	Michael	addition	of	ω‐thiol	functionalized	

poly(styrene)	to	pendant	vinyl	groups	on	encapsulated	CaCO3	(HM‐325)	

To a mixture of poly(PETA)-C particles (HM-302) (1.50 g) and poly(styrene) 

(HM-324) (3.44 g, 0.30 mmol) a 40 mL solution of acetone containing hexylamine 

(0.7 mg, 0.007 mmol) was added, the mixture was heated to 40 °C and was left for 

four days. The particles were cleaned by centrifugation cycles. 

Raman spectra (cm-1): 152 (T[Ca, CO3]); 278 (T[Ca, CO3]); 712 (ν4 [CO3] 

bending vibrations); 837 (aromatic C=C); 1000 (aromatic C=C); 1085 (ν1 [CO3] 

symmetric stretch); 1438 (ν3 [CO3] asymmetric stretch); 1746 (ν1 and ν4); 2926 (-

CH2 asymmetric stretch); 2963 (-CH2 asymmetric stretch). 

FTIR spectra (cm-1): 698 (w, aromatic C-H); 712 (w, ν4 [CO3] symmetric 

deformation); 758 (w, aromatic C-H); 805 (vw, vinyl –C-H deformation); 871 (s, ν2 

[CO3] asymmetric deformation); 1021 (vw, C-O stretch); 1087 (vw, ν1 [CO3] 

symmetric stretch); 1170 (w, -C-O- stretch); 1262 (vw, -O-H stretch); 1404 (vs, ν3 

[CO3] asymmetric stretch); 1731 (w, unsaturated -(CO)-O- stretch); 1796 (vw, ν1 and 

ν4); 2510 (vw, 2ν2 and ν4). 
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3.5.12.1.	Quantifying	pendant	vinyl	groups	by	bromination	after	thiol	Michael	

addition	of	poly(styrene)‐SH	

See section 3.4.5. for experimental protocol. 

Table 3.16 Table of average titration volumes and corresponding Bromine Index for poly(PETA)-C 
particles after thiol Michael addition of poly(styrene)-SH. V1 and V2 denote the volume of Na2S2O3 
titrated in the blank and sample solution respectively. 

Exp. Particles 
V1  V2 

(mL) 

BI 

(mg / 100 g) 

HM-326 PETA-c—p(Sty)-SH 0.45 1800 
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Chapter	4:	pH	Responsive	Microgel	
Particles	

4.1.	Abstract	

In Chapters 2 and 3 we have demonstrated encapsulation of calcium 

carbonate particles in a DEGDA and MAA based polymer shell. Polymerization in 

the absence of the calcium carbonate core yielded stable microgel particles. We 

demonstrate the pH responsive behaviour of these particles and their applications in 

gel formation and as Pickering stabilizers for oil-in-water emulsions. Through 

analysing the swelling behaviour of these microgels we elucidate upon the 

encapsulation mechanism discussed in Chapter 2 and why DEGDA yielded no 

pendant vinyl groups in Chapter 3. 
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4.2.	Introduction	

Microgels are cross-linked latex particles that swell in a good solvent and 

were first reported by Staudinger et al. in 1935; where divinylbenzene was 

polymerized at high dilution in a good solvent (Figure 4.1).1 The term “microgel” to 

describe these particles was first reported in 1949 by Baker.2 Microgels have been 

synthesized to not only respond to a good solvent but to changes in temperature,3-5 

pH,6-9 light,10, 11 electric fields12, 13 and biomolecules.14 

 

Figure 4.1 Illustration of a microgel particle in a (a) poor and (b) good solvent.15 

Flory’s theory of swelling of a neutral polymer network has been used to 

describe the swelling of microgels in organic solvents.16 Swelling is a result of a 

balance in osmotic pressure and elastic forces, where cross-links restrict the extent to 

which the microgel can swell. Ionic networks have an additional contribution to 

swelling as a result of a higher concentration of non-associated ions within the 

network as a consequence of the Donnan equilibrium. Thus incorporation of charged 

species within the network results in greater swelling.6, 15, 17 

A combination of sufficient particle swelling, particle concentration and 

particle-particle interaction can lead to gel formation, where colloidal particles form 

a solid network which is interspersed with background fluid. Gel formation is 

attributed to swelling of the particles to the point where a critical jamming volume is 
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exceeded.18 In rheological terms, the particles are described by the storage (elastic) 

modulus (G’) and the background fluid is described by the loss (viscous) modulus 

(G”). Colloidal gels can be identified by their rheological properties; G’ is higher in 

value (Pa) than the G” below a critical frequency. Where G’ > G” the phase angle (δ, 

the lag between applied and measures stress) is less than 45°, this describes solid-

like behaviour; a strong gel can be identified by δ being independent of frequency.19 

Rheological properties are affected by the deformability of the microgel particles. In 

non-gelled systems the rheology of hard spheres is largely affected by long range 

particle interactions and particle volume fraction. Buscall described the rheological 

behaviour of microgel particles to be equivalent to hard spheres with a thin soft 

shell.20 This is in contrast to work by Ballauf et al. and Weitz et al. where they 

describe the particles as hard spheres when contracted but as deformable and “soft” 

when swollen.21, 22 

Saunders and co-workers investigated the parameters that effect gel 

formation of methacrylic acid based microgels.23 Microgels were prepared by batch 

emulsion polymerization with 37 mol% methacrylic acid with the formula 

poly(MAA-co-X-co-Y) where X is either methyl methacrylate (MMA), butyl 

methacrylate (BMA) or ethyl acrylate (EA) and cross-linker Y is ethylene glycol 

dimethacrylate (EGDMA) or butanediol diacrylate (BDDA). Saunders proposed that 

microgels with a higher Tg (where MMA is incorporated when compared to BMA) 

exhibit poorer swelling described through the relation of Tg to polymer chain 

flexibility, where reduced flexibility will limit the particle’s ability to swell. The 

reactivity of the cross-linker was also shown to influence particle swelling when 

microgels are synthesized by batch polymerization; particles cross-linked with 

EGDMA were found to swell more than when BDDA was used. This swelling 
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behaviour was attributed to differences in cross-link density; EGDMA is more 

reactive than BDDA and thus forms a core-shell morphology where the core is more 

highly cross-linked than the shell, whereas particles containing BDDA were evenly 

cross-linked. Tan et al. illustrated the effect of cross-link density in MAA-EA 

microgels where di-allyl phthalate (DAP) was the cross-linker.24 1 wt.% was found 

to be the ideal incorporation of DAP, below 1 wt.% insufficient cross-linked 

junctions were present to achieve stable microgels and above 1 wt.% swelling was 

restricted due to excessive cross-linked junctions. 

Weitz and co-workers synthesized doubly cross-linked microgels by creating 

covalent bonds between microgel particles, yielding permanent gel structures that do 

not redisperse.25 Poly(NIPAAm) microgel particles were synthesized with allyl 

amine to produce temperature responsive microgels with amine functionality; 

microgel clusters were formed on addition of poly(acrylic acid) and the clusters were 

covalently linked on addition of glutaldehyde (Figure 4.2). Saunders and co-workers 

prepared methacrylic acid based microgels doubly cross-linked by polymerizing 

pendant vinyl groups, in order to prepare gels that did not re-disperse on dilution, for 

applications in restoring mechanical strength in damaged intervertebral discs.26 The 

doubly cross-linked gels exhibited higher G’ values than their parent singly cross-

linked gels, this is logical as inter-particle interactions influence gel strength.27, 28 
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Figure 4.2 Scheme of controlled aggregation and colloidal gelation of microgel particles, to prepare 
doubly cross-linked gels.25 

Responsive microgels have been synthesized for a range of applications 

including: mechanical support for degenerated intervertebral discs,29 drug delivery30-

32 and catalysis.33-35 We are interested in their application as responsive Pickering 

stabilizers. Ngai and co-workers prepared octanol-in-water emulsions stabilized by 

poly(NIPAAm) microgels cross-linked with bisacrylamide and containing 5 wt.% 

MAA.36, 37 Destabilization of the emulsions was reported below pH 6, attributed to 

protonation of the carboxylic acid groups resulting in more hydrophobic particles 

which partitioned deeper into the oil phase. Temperature dependant instability was 

also reported; emulsion at pH 6.1 and 9.4 were stable at 25 °C, however, on heating 

to 60 °C emulsions at pH 6.1 coarsened (Figure 4.3). Poly(NIPAAm) undergoes an 

LCST at 32 °C,38 thus on heating the microgels contract, resulting in insufficient 

coverage of the octanol droplets and subsequent ripening. At pH 9.4 the microgels 

were charged enough to inhibit contraction leading to a stable emulsion. Ngai and 

co-workers also prepared high internal phase emulsions (HIPEs) using 

poly(NIPAAm-co-MAA) microgels with a maximum internal phase volume of 

80 %.39 The rheological properties of the HIPE were shown to be tuneable by 

adjusting the pH and temperature; below the LCST of poly(NIPAAm) solid-like 

behaviour was observed independent of frequency, suggesting that the material was a 
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gel, with G’ increasing with pH, however, on heating to 60 °C a gel-fluid transition 

occurred. This transition was attributed to collapse of the microgels leading to 

reduced interfacial coverage. 

 

Figure 4.3 (a) Optical micrographs illustrating temperature dependent stability of poly(NIPAAm-co-
MAA) microgel stabilized emulsion at pH 6.1 and 9.4 (scale bar: 20 µm). (b) Illustration of 
temperature and pH dependent stability of poly(NIPAAm-co-MAA) microgel stabilized emulsion.36 

Armes et al. demonstrated reversible emulsification of dodecane-in-water 

emulsions stabilized by poly(tert-butylaminoethyl methacrylate-co-divinylbenzene) 

microgels, which were sterically stabilized by PEGMA.40 Stable emulsions were 

formed at pH 10, but on addition of acid the microgels swelled with water and 

immediate demulsification occurred, as a result of spontaneous desorption of the 

microgels from the interface. Four successive demulsification/emulsification cycles 

were achieved without loss of performance; however, the fifth cycle could not be 

demulsified on addition of acid due to a build-up of background salt. Stöver and co-

workers used doubly cross-linked microgels poly(divinylbenzene-co-maleic 

anhydride) as a Pickering stabilizer in order to prepare tectocapsules (capsules of 
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cross-linked microgel particles).41 Microgel stabilized propyl acetate-in-water 

emulsions were prepared in the presence of PVA, on addition of polyamines the shell 

was cross-linked. Increasing the molecular weight of the polyamine resulted in 

stronger capsules, up to a critical point; with the highest molecular weight polyamine 

(60,000 g mol-1) flocculation was observed, due to inter-particle bridging. 

In this body of work we prepare pH responsive microgel particles based on 

MAA and DEGDA. In exploring their swelling behaviour as a response to pH 

change, we probe the mechanism of calcium carbonate encapsulation discussed in 

Chapter 2 and the open question left in Chapter 3 regarding the lack of pendant vinyl 

groups in poly(DEGDA-co-MAA) composite particles. We demonstrate the 

performance of colloidal gels by investigating their rheological properties. We also 

demonstrate their feasibility as Pickering stabilizers for dodecane-in-water 

emulsions. 
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4.3.	Results	and	Discussion	

In Chapters 2 and 3 we discussed the encapsulation of calcium carbonate in 

DEGDA and methacrylic acid based polymeric shells. On performing these 

polymerizations in the absence of calcium carbonate, we were surprised to find that 

stable particles were formed. Herein, we abandon the calcium carbonate core and 

synthesize microgels without spacers and investigate their responsive behaviour and 

performance as Pickering stabilizers. 

4.3.1.	Particle	synthesis	

Four particles were synthesized; poly(DEGDA), poly(DEGDA-co-MAA), 

poly(PETA-co-DEGDA-co-MAA) and poly(DPEPHA-co-DEGDA-co-MAA). 

Typical polymerization proceeded as follows: 1 mL of a monomer mixture (see 

Table 4.1 for monomer quantities) was fed at a rate of 0.5 mL h-1 into a degassed 

solution of 0.02 g APS in 50 mL of water, which had been heated to 70 °C. The 

polymerization was stopped 30 minutes after the feed had finished. Monomer 

conversion of poly(DEGDA) (HM-401) and poly(DEGDA-co-MAA) (HM-402) 

were followed by gravimetry. By feeding the monomer into the polymerization 

reaction, an even distribution of monomers throughout each particle is ensured.42 
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Table 4.1 Table of monomer quantities in starved-fed emulsion polymerization. 

Exp. Particles Monomer 
Mass  

(g) 
mmol 

HM-401 Poly(DEGDA) DEGDA 1.118 5.22 

HM-402 
Poly(DEGDA-co-

MAA) 

DEGDA 

MAA 

0.940 

0.162 

4.39 

1.88 

HM-403 
Poly(PETA-co-

DEGDA-co-MAA) 

PETA 

DEGDA 

MAA 

0.491 

0.492 

0.147 

1.64 

2.30 

1.71 

HM-404 
Poly(DPEPHA-co-
DEGDA-co-MAA) 

DPEPHA 

DEGDA 

MAA 

0.493 

0.493 

0.147 

0.94 

2.30 

1.71 

 

Table 4.2 Methacrylic acid content (mol%) in microgels. 

Exp. Particles 
MAA 

(mol%) 

HM-401 Poly(DEGDA) 0 

HM-402 Poly(DEGDA-co-MAA) 30.0 

HM-403 Poly(PETA-co-DEGDA-co-MAA) 30.3 

HM-404 Poly(DPEPHA-co-DEGDA-co-MAA) 34.5 

 

Monomer conversion versus time plots show that the polymerization is under 

starved conditions with an inhibition period during the first 30 minutes. Monomer 

conversion for poly(PETA-co-DEGDA-co-MAA) (HM-403) and poly(DPEPHA-co-

DEGDA-co-MAA) (HM-404) could not be followed as monomer evaporation did 

not occur. 
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Figure 4.4 Overall monomer conversion, Xm, versus time for poly(DEGDA) particles (HM-401) () 
and poly(DEGDA-co-MAA) (HM-402) (). Monomer was fed at a rate of 0.5 mL h-1. 

Particle size was followed by DLS, and measurements were performed at pH 

5.5. The narrow particle size distribution for all polymerizations suggests that 

nucleation period is fast compared to particle growth (Figure 4.5 b).43 Particle size 

varies with monomer composition (Figure 4.5 a), deeper insight can be gained by 

analysing the dz
3 versus monomer fed into the reaction (Figure 4.6). If the number of 

latex particles is constant, we can assume that the plot of dz
3 vs. volume of monomer 

fed into the polymerization will be linear; as particle volume should scale linearly to 

volume of monomer introduced. All four polymerizations show a linear relationship 

between particle volume and monomer fed into the reaction with R2 values of 0.994 

for poly(DEGDA), 0.993 for poly(DEGDA-co-MAA) and 0.992 for both 

poly(PETA-co-DEGDA-co-MAA) and poly(DPEPHA-co-DEGDA-co-MAA). This 

combined with low dispersity throughout the polymerizations suggests that particle 

size is increasing as would be expected and after particle nucleation no secondary 

particles are formed. 
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Figure 4.5 (a) Average particle diameter, dz and dz
3, and (b) dispersity, DI, versus monomer fed into 

the reaction (mL), of poly(DEGDA) (HM-401) (), poly(DEGDA-co-MAA) (HM-402) (), 
poly(PETA-co-DEGDA-co-MAA) (HM-403) () and poly(DPEPHA-co-DEGDA-co-MAA) (HM-
404) (). DLS measurements were performed at pH 5.5. 
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Figure 4.6 dz
3 versus monomer fed into the reaction (mL) of poly(DEGDA) (HM-401) (), 

poly(DEGDA-co-MAA) (HM-402) (), poly(PETA-co-DEGDA-co-MAA) (HM-403) () and 
poly(DPEPHA-co-DEGDA-co-MAA) (HM-404) (). Linear fit of dz

3; R2 = 0.994 for 
poly(DEGDA), R2 = 0.993 for  poly(DEGDA-co-MAA), R2 =0.992 for poly(PETA-co-DEGDA-co-
MAA) and R2 = 0.992 for poly(DPEPHA-co-DEGDA-co-MAA). DLS measurements were performed 
at pH 5.5. 

SEM analysis of particle morphology showed a smaller particle size than was 

measured by DLS (Figure 4.7-Figure 4.10). The particles were also creased, 

suggesting that particles were swollen when dispersed in water; on drying the water 

would be expulsed forming this crinkled morphology. 
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Figure 4.7 SEM images of poly(DEGDA) particles (HM-401) (scale bar: 200 nm). 

 

Figure 4.8 SEM images of poly(DEGDA-co-MAA) particles (HM-402) (scale bar: 100 nm). 
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Figure 4.9 SEM images of poly(PETA-co-DEGDA-co-MAA) (HM-403) (scale bar: 100 nm). 

 

Figure 4.10 SEM images of poly(DPEPHA-co-DEGDA-co-MAA) particles (HM-404) (scale bar: 
100 nm). 
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4.3.2.	Responsive	behaviour	

Particles containing methacrylic acid are known to display a responsive 

behaviour with respect to pH. Alkali soluble emulsions (ASE) irreversibly dissociate 

on addition of base,44 and microgels containing methacrylic acid show reversible 

swelling behaviour.15, 17, 22, 23, 36, 42 Latexes were diluted to 0.05 wt.% and the pH was 

adjusted with aqueous HCl or NaOH (Figure 4.11). All dispersions showed low 

turbidity at pH 2, this was due to observed coagulation. From pH 7.5 poly(DEGDA-

co-MAA) latexes showed a much decreased turbidity, this was also observed for 

poly(DPEPHA-co-DEGDA-co-MAA) from pH 8. This was due to particle swelling 

as methacrylic acid is deprotonated. As expected on increasing the pH 

poly(DEGDA) showed no change in turbidity, however poly(PETA-co-DEGDA-co-

MAA) also showed no change in turbidity on increasing pH. 
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Figure 4.11 Images of (a) poly(DEGDA) (HM-401), (b) poly(MAA-co-DEGDA) (HM-402), (c) 
poly(PETA-co-MAA-co-DEGDA) (HM-403) and (d) poly(DPEPHA-co-MAA-co-DEGDA) (HM-
404) at pH’s from left to right: 2, 3, 4, 5, 6, 7, 7.5, 8, 8.5 and 9.  

DLS measurements were performed without dilution. It is immediately 

apparent that poly(DEGDA) and poly(PETA-co-DEGDA-co-MAA) do not show 

pH-responsive behaviour (Figure 4.12). At this point we postulate poly(PETA-co-

DEGDA-co-MAA) does not swell due to a high degree of cross-linking. Size 

measurements of poly(DEGDA-co-MAA) were not possible above pH 8 due to low 

refractive index. It should be noted that as the particles begin to swell the DLS 

measurements become less reliable. This is due to reduced drag on the swollen 

microgel particles; the swollen particles can be described as polymer nets through 

which some of the continuous phase can flow, resulting in a degree of error in the 

drag factor in the Stokes-Einstein equation used to determine particle size (see 

Appendix I.3.1 for full DLS theory). Above pH 9 particle dispersity increases, this 
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suggests that at 0.05 wt.%, the particles are becoming unstable at high salt 

concentration. Increase in volume from pH 4-8 indicates that the poly(DEGDA-co-

MAA) particles undergo a huge size increase of ~49x its original volume and 

poly(DPEPHA-co-DEGDA-co-MAA) particles swell ~4x their volume (Table 4.3). 

Swelling as a result of pH change is minimal for poly(DEGDA) and poly(PETA-co-

DEGDA-co-MAA) particles. The extensive swelling of poly(DEGDA-co-MAA) 

particles suggests that DEGDA is a poor cross-linker. In Chapter 3 we postulated 

that the lack of pendant vinyl groups poly(DEGDA-co-MAA) composite particles 

were potentially due to DEGDA looping with itself, exacerbated by the starved 

conditions. We suggest that this swelling behaviour and thus low cross-linking 

density is a result of DEGDA units intramolecular looping. As poly(DPEPHA-co-

DEGDA-co-MAA) and particularly poly(PETA-co-DEGDA-co-MAA) show 

substantially less swelling on addition of base we can infer that DPEPHA is a better 

cross-linking monomer than DEGDA, with PETA outperforming both. This also 

links back to Chapter 3, where particles containing PETA exhibited a greater 

proportion of pendant vinyl groups than DPEPHA. 

DLS measurements were also performed in THF; 20 µL of 2 wt.% latex at 

pH 5.5 were dispersed in 1 mL THF (Table 4.4). Particle swelling was exhibited by 

all particles; poly(DEGDA-co-MAA) and poly(DPEPHA-co-DEGDA-co-MAA) 

particles did not swell to the extent observed in water, however, poly(DEGDA) and 

poly(PETA-co-DEGDA-co-MAA) swelled to a greater extent than observed in 

water. 
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Figure 4.12 (a) Average particle diameter, dz, and (b) dispersity, DI, versus pH of poly(DEGDA) 
(HM-401) (), poly(DEGDA-co-MAA) (HM-402) (), poly(PETA-co-DEGDA-co-MAA) (HM-
403) (), poly(DPEPHA-co-DEGDA-co-MAA) (HM-404) (). 

Table 4.3 Table of % change in particle hydrodynamic volume with respect to pH. 

Exp. Particles 
dz at pH 4 

(nm) 

dz at pH 8 

(nm) 

Volume 
Change 

(%) 

HM-401 P(DEGDA) 448.1 468.3 114 

HM-402 P(DEGDA-co-MAA) 240.6 883.0 4940 

HM-403 
P(PETA-co-DEGDA-

co-MAA) 
278.6 286.9 109 

HM-404 
P(DPEPHA-co-

DEGDA-co-MAA) 
200.3 392.3 423 
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Table 4.4 Particle size measurements of microgels in water (at pH 5.5) and after swelling in THF. 

Exp. Particles 

Water (pH 5.5) THF Volume 

Change 

(%) 

dz 

(nm) 

DI 

 

dz 

(nm) 

DI 

 

HM-401 P(DEGDA) 449.8 0.066 515.8 0.053 151 

HM-402 
P(DEGDA-co-

MAA) 
275.2 0.018 507.6 0.028 628 

HM-403 
P(PETA-co-

DEGDA-co-MAA) 
280.1 0.037 313.6 0.035 140 

HM-404 
P(DPEPHA-co-

DEGDA-co-MAA) 
200.3 0.053 244.5 0.027 183 

 

Particle size was measured as a function of temperature at pH 8 (Figure 

4.13). The particles that show no pH responsive behaviour, i.e. poly(DEGDA) and 

poly(PETA-co-DEGDA-co-MAA), also show no change in particle size on heating. 

However, poly(DEGDA-co-MAA) and poly(DPEPHA-co-DEGDA-co-MAA) 

appear to increase in size around 60 °C, a corresponding increase in PDI is also 

observed, indicating that the particles become unstable. When particle size, with 

respect to temperature is measured at a lower pH, an instability in response to 

temperature is not observed (Figure 4.14). In Chapter 2 we suggested that 

monomeric DEGDA may exhibit LCST behaviour, we suggest on heating that the 

particles interaction with water becomes unfavourable; swollen particles expel water 

and coagulate, whereas non-swollen particles have a much lower polymer-water 

interface thus do not exhibit coagulation at low solids content. This behaviour could 

help describe the mechanism by which we observe encapsulation of calcium 

carbonate particles in Chapter 2; the pH of the calcium carbonate in water is 9.3, thus 

the methacrylic acid once fed into the reaction is largely deprotonated, we suggest 
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that swollen polymer fractals of poly(DEGDA-co-MAA) formed in the continuous 

phase are unstable at the reaction temperature, which drives collapse onto the surface 

of calcium carbonate particles resulting in the encapsulation 

 

Figure 4.13 (a) Average particle diameter, dz, and (b) dispersity, DI, versus temperature of 
poly(DEGDA) (HM-401) (), poly(DEGDA-co-MAA) (HM-402) (), poly(PETA-co-DEGDA-co-
MAA) (HM-403) (), poly(DPEPHA-co-DEGDA-co-MAA) (HM-404) () at pH 8. 
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Figure 4.14 (a) Average particle diameter, dz, and (b) dispersity, DI, versus temperature of (1) 
poly(DEGDA-co-MAA) (HM-402) and (2) poly(DPEPHA-co-DEGDA-co-MAA) (HM-404) at pH 
values 4 (), 6 () and 8 (). 

We now focus on the poly(DEGDA-co-MAA) particles as they exhibit the 

greatest swelling response to pH changes. Pycnometry, a method used to measure the 

volume, of poly(DEGDA-co-MAA) determined that that the polymer had a density 

of 1.4252 g cm-3, from this we can determine the polymer volume fractions of 

microgel dispersions. 

Shear rate sweep rheology measurements were performed on 1 wt.% 

(polymer volume fraction of 0.0070) of particles in water which had been adjusted to 

pH 4, 6, 8 and 10, where three sweeps of 1-1000-1 s-1 were performed. Shear 

viscosity is dependent on particle volume fraction and particle-particle interactions 

thus on particle swelling we should expect the viscosity to increase, despite keeping 

particle mass concentration constant.45 On increasing the pH from 4-6-8 an increase 

in viscosity is observed, however the viscosity appears to decrease at pH 10 with 

respect to pH 8 (Figure 4.15 and Figure 4.16). This could be a result of syneresis, 

where an excess of salt in the bulk water causes the expulsion of water and thus 
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potentially contraction of the microgel or it could be a result of dilution as a result of 

increasing the pH.23, 46 

The plot of log shear viscosity vs. log shear rate show shear thinning at low 

shear rate, followed by a plateau which indicates liquid-like behaviour, at high shear 

rate shear thickening is observed as the viscosity increases. We can describe the 

increase in viscosity as shear rate dependent coagulation of particles. The onset of 

shear thickening for the smaller particles (i.e. at pH 4 and 6) occurs at a lower shear 

rate than for the more swollen particles (i.e. at pH 8 and 10) (Figure 4.16). This 

suggests that the swollen particles have less particle-particle interaction than their 

smaller counterparts; the small particles are hard and, due to protonation of the acid 

groups, can hydrogen bond leading to shear thickening at a lower shear rate. The 

more swollen particles (i.e. at higher pH) cannot hydrogen bond and could almost be 

described as sterically stabilized, thus they are stabilized against coagulation until a 

higher shear rate is applied.47, 48 

 

Figure 4.15 Shear viscosity vs. shear rate of 1 wt.% poly(MAA-co-DEGDA) latex at pH values 4 
(), 6 (), 8 () and 10 (). Three cycles of 0-1000-0 s-1 were performed. 
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Figure 4.16 Log plot of shear viscosity vs. shear rate of 1 wt.% poly(MAA-co-DEGDA) latex at pH 
values 4 (), 6 (), 8 () and 10 (). 

The shape of the plot of shear stress vs. shear rate further illuminates whether 

the dispersion is Newtonian or non-Newtonian (Figure 4.17). At 1 wt.% these 

microgels are shear thickening (Figure 4.18). Microgel dispersions are often reported 

as shear thinning,7, 24, 48 however shear thickening behaviour has also been 

reported.47, 49, 50 
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Figure 4.17 Scheme illustrating the relationship between shear stress and shear rate for Newtonian 
and non-Newtonian liquids. 

 

Figure 4.18 Shear stress vs. shear rate of 1 wt.% poly(MAA-co-DEGDA) latex at pH values 4 (), 6 
(), 8 () and 10 (). The plot indicates that the latexes are dilatants or shear thickening. 
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DLS measurements showed that poly(DEGDA-co-MAA) particles increased 

dramatically in size at high pH, thus we were interested in their gelling behaviour. 

Poly(DEGDA-co-MAA) gels were prepared by dispersing freeze-dried particles in 

water (which had been pre-adjusted to pH 13) (Table 4.5) by alternating between a 

vortex mixer and sonic bath. 

Table 4.5 Wt.% of poly(DEGDA-co-MAA) microgels in preparation of gels (HM-407). 

Microgel 

(g) 

Water (pH 13) 

(g) 

Microgel 

(wt.%) 

Microgel 

(Vol. Fraction) 

0.0125 0.4869 2.5 0.0177 

0.0200 0.4811 4 0.0283 

0.0250 0.4746 5 0.0356 

0.0300 0.4709 6 0.0428 

0.0375 0.4618 7.5 0.0539 

0.0500 0.4500 10 0.0723 

 

 

Figure 4.19 Image of poly(DEGDA-co-MAA) particles dispersed in water adjusted to pH 13 (prior to 
addition of particles) at 2.5, 4, 5, 6, 7.5 and 10 wt.% solids (HM-407). From 5 wt.% solids the 
solution gels. 

It was apparent that poly(DEGDA-co-MAA) microgels at 5 wt.% solids 

(polymer volume fraction of 0.0356) content and higher did not flow (Figure 4.19). 

To confirm whether that these dispersions were in fact gels, viscoelastic rheological 

measurements where performed. First the linear viscoelastic region (LVR) was 
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identified by performing an amplitude sweep of strain at a constant frequency of 

1 Hz (Figure 4.20). The LVR is the region, on a log plot of G’ vs. shear-strain, where 

G’ is independent of applied strain; within the LVR the sample is stable.45 All 

samples showed a similar LVR region (up to ~2.5 % shear strain), with G’ increasing 

with increasing microgel content. The magnitude of G’ is dependent on the volume 

fraction of the particles and the attractive energy between particles, thus it is logical 

that as we increase the particle concentration that G’ increases.18 The increasing G’ 

with solids content suggests that the material is getting tougher with increasing 

solids content. As all concentrations of particles exhibit failure at the same shear-

strain, we suggest that the LVR for gelled poly(DEGDA-co-MAA) particles is 

independent of solids content or gel strength. 

 

Figure 4.20 Amplitude sweep of 5 (), 6 (), 7.5 () and 10 () wt.% microgels. 
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A frequency sweep at constant shear-strain identifies whether the material is 

a gel, viscoelastic solid or viscoelastic liquid; a gel is described by G’ > G” 

independent of frequency. Properties can also be described by the phase angle; if the 

phase angle (δ) is 0° at 0 Hz the material is a viscoelastic solid, 90° at 0 Hz the 

material is a viscoelastic liquid and if the phase angle is independent of frequency 

the material is a strong gel. It is important to note that frequency dependent gels have 

been reported.23, 51 Frequency sweeps were performed in the range of 1-100 Hz and 

at 0.05 % shear-strain (within the LVR). The poly(DEGDA-co-MAA) dispersions 

from 5 wt.% solids appear to be gels, which increase in “toughness” (illustrated by 

increasing G’) on increasing solids content (Figure 4.21). At 5 wt.% (0.0356 

polymer volume fraction) the gel appears to deteriorate at higher frequencies, though 

above 5 wt.% the gels become increasingly frequency independent with respect to 

solids content. Saunders et al. prepared a series of methacrylic acid based gels with 

the composition poly(MAA-co-X-co-Y) where X was either MMA, EA or BMA and 

Y was EGDMA or BDDA with 37 mol% MAA.23 All the formed gels showed 

frequency dependent δ indicating that they were weaker than the poly(DEGDA-co-

MAA) (30 mol% MAA); this could be because the microgels prepared by Saunders 

et al. were synthesized by batch polymerization resulting in non-homogenous 

particles, whereas poly(DEGDA-co-MAA) where synthesized under starved 

conditions, ensuring a homogeneous distribution of methacrylic acid and cross-

linking density. The lowest polymer volume fraction Saunders et al. report for gel 

formation was 0.05 for poly(BMA-co-MAA-co-BDDA) microgels; poly(DEGDA-

co-MAA) microgels formed gels at the lower polymer volume fraction of 0.0356. 
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Figure 4.21 Frequency sweeps of (a) 5, (b) 6, (c) 7.5 and (d) 10 wt.% poly(DEGDA-co-MAA) 
microgels; storage modulus, G’, (), loss modulus, G’’, () and phase angle, δ, (). 

In order to determine whether gelation of the microgels was reversible, 

addition of acid and base was repeated until the gels ceased to form (Figure 4.22 and 

Table 4.6). Acid and base were added in 10 μL aliquots until a change was observed. 

After addition of 20 µL 1 M HCl solution the gels at 5 and 6 wt.% did not reform, 

7.5 wt.% gels did not reform after two acid/base cycles and 10 wt.% gels did not 

reform after three acid/base cycles. We suggest that the loss of gel structure was due 

to either dilution or syneresis, where the high salt concentration with respect to 

particles resulted in expulsion of liquid from the microgel particles, decreasing 

volume fraction of the particles. 
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Figure 4.22 Image of poly(DEGDA-co-MAA) particles dispersed in water adjusted to pH 13 (prior to 
addition of particles) showing repeatable destruction and reformation of the gel by adjusting the pH; 
(a) 5, 6,7.5 and 10 wt.% solids after addition of 20 µL 1M HCl, gel is lost; (b) 5, 6,7.5 and 10 wt.% 
solids after addition of 30 µL 1M NaOH, gel reforms for 7.5 and 10 wt.% solids only; (c) 7.5 and 10 
wt.% solids after addition of 20 µL 1M HCl, gel is lost; (d) 7.5 and 10 wt.% solids after addition of 30 
µL 1M NaOH, gel reforms for 10 wt.% solids only; (e) 10 wt.% solids after addition of 10 µL 1M 
HCl, gel is lost; (f) 10 wt.% solids after addition of 50 µL 1M HCl, gel is lost. Acid and base were 
added 10 µL at a time until change was observed. 

Table 4.6 Table of quantities of 1 M HCl and 1 M NaOH added in reversible gel experiment. HCl and 
NaOH were added 10 µL at a time until a response was observed. 

Exp. Wt.% 

1 

HCl 

1 M 

2 

NaOH 

1 M 

3 

HCl 

1 M 

4 

NaOH 

1 M 

5 

HCl 

1 M 

6 

NaOH 

1 M 

HM-408-1 5 20 µL 30 µL - - - - 

HM-408-2 6 20 µL 30 µL - - - - 

HM-408-3 7.5 20 µL 30 µL 20 µL 30 µL - - 

HM-408-4 10 20 µL 30 µL 20 µL 30 µL 10 µL 50 µL 
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4.3.3.	Pickering	emulsions	

We investigated the potential of these microgels as Pickering stabilizers in 

dodecane-in-water emulsions. Emulsions were prepared from 1 wt.% microgels at 

pH 4, 6, 8 and 10. Dodecane (2 mL) was added to the microgel dispersion (10 mL); 

emulsions were prepared by mixing with an Ultra-Turrax at 24,000 rpm for 60 

seconds. It was immediately clear that at low pH the emulsions were unstable 

(Figure 4.23). 

 

Figure 4.23 Image of dodecane emulsions stabilized by poly(DEGDA-co-MAA) microgels. From left 
to right: pH; 4, 6, 8 and 10. At pH 8 and 10 the Pickering emulsions were stable, however, at pH 4 
and 6 they were unstable. 

Optical microscopy illustrated that at high pH (pH 8 and 10) a stable 

emulsions were formed (Figure 4.24 c and d). At low pH (4 and 6) coalescence was 

observed (Figure 4.24 a and b); the flocculation is a result of hydrogen bonding 

between microgel particles as the acid groups at pH 4 and 6 are partially 

protonated.36, 52 Laser scattering of the emulsions indicate the formation of 

aggregates at low pH, with emulsions formed at pH 4 containing the greatest 

proportion of aggregates by volume % (Figure 4.25). The emulsions formed at pH 8 

and 10, though they do not contain aggregates, are not monomodal. 
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Figure 4.24 Optical microscope image of dodecane emulsions stabilized by poly(DEGDA-co-MAA) 
microgels at (a) pH 4, (b) pH 6, (c) pH 8 and (d) pH 10 ((a-b) scale bar: 50 µm. (c-d) scale bar: 
20µm). At low pH (pH 4 and 6) flocculation occurs, at high pH (pH8 and 10) particles are well 
dispersed. 

 

Figure 4.25 Laser scattering of dodecane emulsions stabilized by poly(DEGDA-co-MAA) microgels 
at pH 4 (), pH 6 (), pH 8 () and pH 10 (). 
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Addition of base (50 µL 1 M NaOH) to the unstable emulsion formed at pH 4 

results in stabilization of the microgel armoured droplets (Figure 4.26). Optical 

microscopy shows that the coagulated droplets are replaced by well dispersed 

droplets (Figure 4.27), indicating that on addition of base the acidic groups of the 

microgel particles become deprotonated, reversing aggregation. Laser scattering 

indicates that the range of particle sizes is unchanged; however, the volume of 

aggregates is much reduced (Figure 4.28). 

 

Figure 4.26 Images of responsive Pickering emulsion (a) emulsion formed with poly(DEGDA-co-
MAA) particles at pH 4, (b) adjusted to pH 10. 

 

Figure 4.27 Optical microscope image of dodecane emulsion (a) formed with poly(DEGDA-co-
MAA) particles at pH 4, (b) adjusted to pH 10. ((a) scale bar: 50 μm. (b) scale bar: 20 μm). 
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Figure 4.28 Laser scattering of responsive Pickering emulsion of dodecane emulsion formed with 
poly(DEGDA-co-MAA) particles at pH 4 () and adjusted to pH 10 (). 

In a similar manner we destabilized and re-stabilized the emulsions formed at 

pH 10 by addition of HCl (50 µL, 1 M) followed by NaOH (100 µL, 1M). It is 

immediately clear that the emulsion is destabilized by addition of acid and re-

stabilized by addition of base (Figure 4.29). Optical microscopy and laser scattering 

shows that on addition of acid aggregates similar to those observed for emulsions 

formed at pH 4 and 6 are produced (Figure 4.30 and Figure 4.31). On addition of 

base and mixing using the vortex-mixer for 30 seconds, the droplets appear to 

become stabilized and the aggregates disappear, however, they appear to have 

coarsened. This is likely due to ripening, as on addition of acid the microgel particles 

stabilizing the dodecane droplets shrink in size, reducing coverage. It is likely that at 

this point coarsening occurs to compensate for the loss of stabilized surface area, on 

addition of base the particles swell, increasing coverage, however higher shear is 

required to form the original size distribution. 
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Figure 4.29 Images of responsive Pickering emulsion of dodecane (a) emulsion formed with 
poly(DEGDA-co-MAA) particles at pH 10, (b) adjusted to pH 4 and (c) adjusted back to pH 10. 

 

Figure 4.30 Optical microscope images of dodecane emulsion (a) formed with poly(DEGDA-co-
MAA) particles at pH 10, (b) adjusted to pH 4 and (c) adjusted back to pH 10 ((a and c) scale bar (a): 
20 μm. (b) scale bar: 50 μm). 
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Figure 4.31 Laser scattering of responsive Pickering emulsion of dodecane emulsion formed with 
poly(DEGDA-co-MAA) particles at pH 10 (), adjusted to pH 4 () and adjusted back to pH 10 
(). 

Concentrated emulsions of poly(DEGDA-co-MAA) stabilized dodecane were 

prepared by adding 1 mL dodecane to 1 mL 2.5 wt.% poly(DEGDA-co-MAA) latex 

which had been adjusted to pH 8, this was followed by mixing with an Ultra-Turrax 

at 11,000 rpm for 60 seconds. The initial emulsion flowed, though on addition of 

acid (4 drops, 1M HCl) the emulsion gelled; gelation was reversible on addition of 

base (4 drops, 1 M NaOH) (Figure 4.32). The carboxylic acid groups were 

protonated on the addition of acid, as a result of this hydrogen bonding between 

microgels occurred resulting in gelation of the emulsion; addition of base 

deprotonated the acid groups resulting in loss of hydrogen bonding and thus gel 

structure. A monolith was created from the gelled emulsion; addition of base (2 

drops, 1 M NaOH) resulted in the collapse of the monolith (Figure 4.33). 
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Figure 4.32 Image of HIPE prepared from concentrated Pickering stabilized emulsions. 

 

Figure 4.33 (a) and (b) monolith of poly(DEGDA-co-MAA) stabilized dodecane concentrated 
emulsion gel and (c) collapse of monolith after addition of base (scale bar: 2 mm). 

Hollow Pickering stabilized particles have been synthesised by 

polymerization of particle stabilized emulsions of monomer, initiator and a non-

solvent in order to prepare capsules.53 Emulsions were prepared from 1 wt.% 

microgels at pH 10. A solution of methyl methacrylate (0.22 g), dodecane (2.01 g) 

and AIBN (3.7 mg) was added to the microgel dispersion (10 mL); emulsions were 

prepared by mixing with an Ultra-Turrax at 24,000 RPM for 60 seconds. The 

resulting emulsion was heated to 60 °C and left overnight. Optical microscopy 

suggested that stable particles had been formed (Figure 4.34). SEM analysis does 

indicate that the particles are hollow (Figure 4.35). However, SEM analysis also 

shows that the resultant polymer particles have a very rough surface and it appears 

that the microgel particles are not on the interface (Figure 4.36). Desorption of the 

microgel particles from the interface could be due to the change in interfacial tension 

on polymerization of MMA or as a result of particle instability on heating. The 
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polymerization is conducted below the Tg of methyl methacrylate, thus it is possible 

that on polymerization and change in interfacial tension that the microgels move 

from the interface to the aqueous phase, leaving behind an imprint on the polymer. 

Swollen microgels can be considered as deformable, this deformability can perhaps 

describe the non-uniform patterning of the hollow particles.45, 54 Another explanation 

for the rough surface could be that it is a result of the immiscibility between 

poly(methyl methacrylate) and dodecane. 

 

Figure 4.34 Optical microscope image of hollow poly(methyl methacrylate) stabilized with 
poly(DEGDA-co-MAA) (HM-414) (scale bar: 20 μm). 

 

Figure 4.35 SEM image of hollow poly poly(methyl methacrylate) prepared from microgel Pickering 
emulsion polymerization with a non-solvent (dodecane), illustrating cavity (HM-414) (scale bar: 1 
μm). 
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Figure 4.36 SEM images of hollow poly(methyl methacrylate) prepared from microgel Pickering 
emulsion polymerization with a non-solvent (dodecane) (HM-414) ((a) scale bar: 10 μm. (b) scale 
bar: 1 μm). 
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4.4.	Conclusions	

In conclusion we have illustrated the surprising pH responsive behaviour of 

poly(DEGDA-co-MAA) microgels with 30 mol% methacrylic acid. In doing so we 

have begun to elucidate upon the mechanism by which the calcium carbonate 

particles were encapsulated in Chapter 2; driven by instability of swollen fractal-like 

poly(DEGDA-co-MAA). We also begin to understand possible reasons for the lack 

of pendant vinyl groups in poly(DEGDA-co-MAA) composite particles, through 

illustrating DEGDAs poor cross-linking capabilities when polymerized under 

starved conditions. We utilized these microgels to form gels, Pickering stabilized 

emulsions and highly concentrated Pickering emulsions from which gels could be 

formed. 
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4.5.	Experimental	

4.5.1.	Materials	

Di(ethylene glycol) diacrylate (DEGDA), methacrylic acid (MAA), 

pentaerythritol triacrylate (PETA), dipentaerythritol penta-/hexa-acrylate 

(DPEPHA), methyl methacrylate (MMA) (99 %), ammonium persulfate (APS), (≥ 

98.0 %), dodecane (> 99 %), HCl (37 %) and NaOH pellets were purchased from 

Aldrich. Azobisisobutyronitrile (AIBN) (97 %) was purchased from VWR. All 

chemicals were used as received unless otherwise stated. Silicon wafers (used as 

sample holders for SEM) were kindly donated by Wacker Chemie AG. 

4.5.2.	Equipment	

Monomer was fed into the reaction mixture with a Harvard Instrument PHD 

2000 Infusion syringe pump. Particle sizes and dispersities were measured by 

dynamic light scattering using a Malvern Zetasizer Nano using a 173° backscattering 

angle, at 25 °C, with an equilibration time of 120 s and an average of 3 

measurements each with a minimum of 12 sub-runs were taken. SEM was performed 

on a Zeiss SUPRA 55-VP FEGSEM; sample were prepared by adding a aqueous 

drop of diluted sample to a silicon wafer and drying at room temperature for 12 

hours, the sample was subsequently carbon coated with a carbon evaporator for 4 

seconds. Rheological measurements were performed on a Malvern Kinexus Ultra 

Rheometer. Viscosity measurements were performed at 25 °C, on 20 mL of 1 wt.% 

latex, shear rate was ramped from 1-1000 s-1 in three cycles, using geometries C25 

BC002 SS and PC25 C0015 SS. Amplitude and frequency sweeps were performed at 

25 °C, using parallel geometries PL40 C00007 SS and PU20SC002 SS with a gap 

size of 1 mm on 0.5 g of sample. Amplitude sweeps were performed with a 

frequency of 1 Hz and shear strain was ranged from 0.1-100 % at 25 °C. Frequency 
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sweeps were in the range of 0.1-10 Hz at 0.05 % strain at 25 °C. A QII Kerry 

Ultrasonics Limited sonic bath was used to disperse particles. A Hook and Tucker 

Instruments Ltd. Rotamixer De Luxe was used to disperse particles and for 

reforming emulsions. Pickering emulsions were formed using an Ultra-Turrax basic 

set at 24,000 RPM. The pH measurements were recorded using a Knick pH meter 

765 Calimetic. Optical microscopy was performed on a Leica DM2500M using a 

Nikon D5100 camera. Particles were collected by freeze-drying on a Thermo 

Scientific Heto PowerDry LL1500 freeze dryer. 

4.5.3.	Microgel	synthesis	

50.0 g of deionised water was placed under a nitrogen atmosphere in a 100 

mL RBF by purging for 20 minutes. The water was heated to 70 °C, polymerization 

was initiated on addition of APS (0.02 g, 0.09 mmol) dissolved in water (0.50 g) as 1 

mL of a degassed mixture of monomer (Table 4.7) was fed into the reaction mixture 

at 0.5 mL h-1. Latexes were dialysed at pH 8 (by adding NaOH to the dialysis water) 

and then dialysed back to water. Particles were collected by freeze-drying. 

  



Chapter 4: pH Responsive Microgels 

 

  
197 

 
  

Table 4.7 Table of monomer quantities for microgel synthesis. 

Exp. Particles Monomer 
Mass 

(g) 
mmol 

HM-401 Poly(DEGDA) DEGDA 1.118 5.22 

HM-402 
Poly(DEGDA-co-

MAA) 

DEGDA 

MAA 

0.940 

0.162 

4.39 

1.88 

HM-403 
Poly(PETA-co-

DEGDA-co-MAA) 

PETA 

DEGDA 

MAA 

0.491 

0.492 

0.147 

1.64 

2.30 

1.71 

HM-404 
Poly(DPEPHA-co-
DEGDA-co-MAA) 

DPEPHA 

DEGDA 

MAA 

0.493 

0.493 

0.147 

0.94 

2.30 

1.71 

HM-405 
Poly(DEGDA-co-

MAA) 

DEGDA 

MAA 

0.9410 

0.1607 

3.39 

1.87 

HM-406 
Poly(DEGDA-co-

MAA) 

DEGDA 

MAA 

0.9409 

0.1608 

4.39 

1.87 

 

4.5.4.	Gels	

Gels were prepared by adding water pre-adjusted to pH 13.0 to freeze-dried 

poly(MAA-co-DEGDA) particles (see table Figure 4.8). Particles were dispersed by 

placing on the vortex mixer for 2 minutes and in the sonic bath for 4 minutes and 

repeating until fully dispersed. 
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Table 4.8 Table of reagent quantities for microgel gels; reversible gel experiment (HM-407). 

Microgel 

(wt.%) 

Microgel 

(g) 

Water (pH 13) 

(g) 

Microgel ratio 

(g g-1) 

Microgel 

(Vol. Fraction) 

2.5 0.0125 0.4869 0.0250 0.0177 

4 0.0200 0.4811 0.0399 0.0283 

5 0.0250 0.4746 0.0500 0.0356 

6 0.0300 0.4709 0.0599 0.0428 

7.5 0.0375 0.4618 0.0751 0.0539 

10 0.0500 0.4500 0.1000 0.0723 

 

Table 4.9 Table of quantities of 1 M HCl and 1 M NaOH added in reversible gel experiment. HCl and 
NaOH were added 10 µL at a time until a response was observed. 

Exp. Wt.% 

1 

HCl 

1 M 

2 

NaOH 

1 M 

3 

HCl 

1 M 

4 

NaOH 

1 M 

5 

HCl 

1 M 

6 

NaOH 

1 M 

HM-408-1 5 20 µL 30 µL - - - - 

HM-408-2 6 20 µL 30 µL - - - - 

HM-408-3 7.5 20 µL 30 µL 20 µL 30 µL - - 

HM-408-4 10 20 µL 30 µL 20 µL 30 µL 10 µL 50 µL 
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Table 4.10 Table of reagent quantities for microgel gels for rheological experiments. 

Exp. 
Microgel 

(wt.%) 

Microgel 

(g) 

Water 
(pH 13) 

(g) 

Microgel 
ratio 

(g g-1) 

Microgel 

Vol. Fraction 

HM-409-1 5 0.0250 0.4726 0.0502 0.0358 

HM-409-2 6 0.0300 0.4700 0.0600 0.0429 

HM-409-3 7.5 0.0375 0.4616 0.0752 0.0539 

HM-409-4 10 0.0500 0.4504 0.0999 0.0723 

HM-410-1 5 0.0250 0.4752 0.0500 0.0356 

HM-410-2 6 0.0300 0.4699 0.0600 0.0429 

HM-410-3 7.5 0.0375 0.4626 0.0750 0.0538 

HM-410-4 10 0.0500 0.4498 0.1000 0.0724 

HM-411-1 5 0.0250 0.4776 0.0497 0.0354 

HM-411-2 6 0.0300 0.4698 0.0600 0.0429 

HM-411-4 7.5 0.0375 0.4620 0.0751 0.0539 

HM-411-5 10 0.0500 0.4501 0.1000 0.0723 

 

4.5.5.	Microgel	Pickering	emulsions	(HM‐412)	

1 wt.% poly(DEGDA-co-MAA) microgel dispersions were adjusted to pH 4, 

6, 8 and 10. Emulsions were prepared by adding 2.0 mL of dodecane to 10.0 mL of 

the microgel dispersion and mixing with an Ultra-Turrax at 24,000 RPM for 60 

seconds. 

4.5.6.	Monoliths	prepared	from	concentrated	microgel	Pickering	

emulsions	(HM‐413)	

A 2.5 wt.% poly(DEGDA-co-MAA) microgel dispersion was adjusted to pH 

8. HIPEs were prepared by adding 1.0 mL of dodecane to 1.0 mL of the microgel 
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dispersion and mixing with an Ultra-Turrax at 11,000 rpm for 60 seconds. The 

emulsion was gelled on addition of 4 drops of 1 M HCl. 

4.5.7.	Microgel	Pickering	emulsion	polymerizations	(HM‐414)	

1 wt.% microgel dispersions were adjusted to pH 10. A solution of methyl 

methacrylate (0.22 g, 2.2 mmol) dodecane (2.01 g) and AIBN (3.7 mg, 0.023 mmol) 

was added to 10.0 mL of the microgel dispersion and mixed with an Ultra-Turrax at 

24,000 RPM for 60 seconds. The resulting emulsion was heated to 60 °C and gently 

stirred with a stirrer bar (300 rpm) overnight. 
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Chapter	5:	Hybrid	Multi‐Layered	
Particles	

5.1.	Abstract	

Herein we describe the synthesis of multi-layered particles by a one-pot 

Pickering emulsion polymerization approach. The aim was to produce particles 

consisting of three layers where the inner-shell is a layer of Laponite clay and the 

core and outer-shell is poly(styrene-co-n-butyl acrylate) in order to form polymer 

films with a controlled structure on the nano-metre scale. Immobilization of the clay 

layer was a pivotal step in achieving the multi-layered morphology and was achieved 

with methacrylate functionalised silanes. Mechanical strength, thermal stability and 

structure of the polymer films were investigated to determine the effect of particle 

morphology. Ultimately we show that through controlling particle morphology of 

Laponite composite nano-particles we can alter and perhaps even tune the thermal 

and mechanical properties of their corresponding films. 
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5.2.	Introduction	

Polymer-clay composite particles are of great interest and are a very 

promising class of materials; they have the potential to offer significant 

improvements to gas barrier,1, 2 thermal stability3-5 and mechanical5-7 properties. To 

achieve and improve upon these properties clay armoured latexes and clay particles 

encapsulated in polymeric shells have been synthesized. Both morphologies have 

shown desirable properties, so we were interested in synthesizing soft multi-layered 

particles, where the inner-shell is a layer of clay, and investigating their properties. 

5.2.1.	Clay	armoured	particles	

One method to produce clay armoured particles is heterocoagulation of large 

cationic latex particles and small anionic clay platelets.8 An alternative one-pot 

approach is Pickering emulsion polymerization; it differs from the heterocoagulation 

method in that the particles become armoured during the polymerization process. 

The term “Pickering” describes the stabilization of an interface by solid particles, it 

was first reported independently by Ramsden in 1903 and then by Pickering in 1907, 

whom it was subsequently named after.9, 10 Pickering stabilization has been used to 

produce armoured droplets and particles with a variety of solid stabilizers including 

SiO2,
11-17 TiO2

18-20
, Fe3O4

21-24 and graphene oxide25-28 nanoparticles (Figure 5.1). 

Laponite clay particles have proven to be excellent Pickering stabilizers, first 

illustrated by Binks and co-workers in the stabilization of oil-in-water emulsions.29 

Later work showed Laponite armoured polymer particles could be prepared by 

Pickering stabilized emulsion,30-34 miniemulsion,35-40 and inverse miniemulsion41, 42 

polymerization methods. 
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Figure 5.1 (a) TEM image of silica armoured poly(MMA) prepared by emulsion polymerization.13 
(b) SEM image of TiO2-stabilized poly(styrene) with hollow core prepared by miniemulsion 
polymerization with a sacrificial solvent (scale bar: 10 μm).18 (c) TEM image of Fe2O3/poly(styrene) 
particles prepared by miniemulsion polymerization (scale bar: 50 nm).24 (d) TEM image of 
GO/poly(styrene) particles prepared by miniemulsion polymerization (scale bar: 100 nm).28 

Bon and co-workers showed that, in the synthesis of Laponite armoured 

particles by Pickering emulsion polymerization, the concentration of Laponite plays 

a crucial role in the particle nucleation step. Increasing the concentration of Laponite 

was shown to reduce particle size, but it also increased the length of the nucleation 

period, resulting in a broader particle size distribution. At low initiator flux a 

disastrous coagulation event was observed within a small window of clay:monomer 

ratios (0.009-0.025); this window of particle instability was not observed at higher 

initiator flux. Bon et al. hypothesized that the instability of the electrostatically 

stabilized particles was due to a combination of low concentration of initiator 

derived sulfonate groups and Laponite resulting in coagulation of unstable 

particles.43 

Films formed from clay armoured soft latex particles have been found to 

have a honey-comb structure of the Pickering stabilizer throughout the film; the 

honey-comb structure has been determined through examining ultrathin cross-

sections using cryo-TEM (Figure 5.2 b).5, 44, 45 When the polymer inter-diffuses in 

step three of film formation, the armour (in this case Laponite clay) boundary 

remains at its original location (from step two of film formation: particle 

deformation). This results in the formation of the honey-comb structure, with the 

excess Laponite moving to the surface of the film.5 This affect is also observed when 
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particles are stabilized by surfactants.46 Bourgeat-Lami and co-workers showed that 

films with a Laponite honey-comb structure showed significantly improved thermal 

and mechanical properties in poly(styrene) films; DSC measurements showed an 

increase in Tg by 12 °C for films formed from the armoured particles when compared 

to corresponding plain latex films and stress-strain analysis illustrated a 50-fold 

increase in Young’s modulus.5 The increase in Tg is attributed to reduced mobility of 

polymer chains in the vicinity of the clay platelets and the increased mechanical 

strength is attributed to the Laponite network throughout the film. 47, 48 

 

Figure 5.2 (a) Cryo-TEM image of Laponite armoured poly(Sty-co-BA) particles (scale bar: 100 
nm).43 (b) Cryo-TEM of a monolayer film of poly(Sty-co-BA) latex particles armoured with Laponite 
clay, illustrating the honey-comb structure of Laponite (dark lines) produced on film formation (scale 
bar: 500 nm).45 

Bon and co-workers have shown that low concentrations of Laponite 

armoured soft particles can improve the mechanical strength of materials. Small 

quantities of Laponite armoured particles were incorporated into pressure sensitive 

adhesives, resulting in increased tack adhesion properties by raising the plateau 

stress and increasing the strain at point of failure. These properties were not observed 

when clay particles were simply mixed into the adhesive formulation. Increased tack 

adhesion on incorporation of armoured particles was attributed to the dissipation of 

energy by slippage of the clay from the interface during deformation.6 
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5.2.2.	Multi‐layered	particles	

Multi-layered particles are defined here as particles consisting of a minimum 

of three layers (a core, inner-shell and outer-shell). Herein, current methods of 

synthesizing multi-layered particles are described. 

Multi-layered core-shell particles with an inorganic core, organic inner-shell 

and inorganic outer-shell have been synthesized by Wakiya et al. for applications in 

cosmetics and construction materials. The particles were made in three steps (1) 

surface modification of silica nanoparticles with MPTMS, (2) surface-seeded 

polymerization of styrene and (3) surface sol-gel reaction of tetraethoxysilane 

(TEOS) to produce a silica shell (Figure 5.3).49 A fourth step of heating to 500 °C to 

calcine the organic layer produced a rattle-like structure. This method produced well-

defined, monodisperse multi-layered particles; however a drawback of this method is 

the requirement of four separate steps to achieve the final product. 

 

Figure 5.3 SEM images of multi-layered particle with silica outer shell, (b) cross-section of multi-
layered particle and (c) microcapsular structure after removal of organic inner-shell by calcinations.49 

The layer-by-layer approach (described in detail in Chapter 2) has been used 

by Caruso and co-workers to prepare multi-layered particles from a range of sub-

micron polystyrene cores (210-640 nm in diameter).50, 51 The multi-layered 

morphology was achieved by alternating layers of oppositely charged polyelectrolyte 

with various inorganic particles; including titania, silica and Laponite clay. The 

multi-layered particles were synthesized in order to produce hollow inorganic 

particles by calcination of the organic core for applications as photonic band gap 
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crystals and as fillers and pigments. The layer-by layer technique offers a simple 

synthesis method with nanometre-scale control over particle diameter and shell 

thickness. However, the need for dilute conditions (0.5 wt.%) and time consuming 

cleaning cycles between each deposition make this method unsuitable to large scale 

production. Anzai and co-workers synthesized magnetic multi-layered composite 

particles for separation of T- and B-cells by a heterocoagulation approach.52 The 

seed particles were produced by heterocoagulation of positively charged magnetic 

nanoparticles (20 nm) to anionic latex particles (180-900 nm). The resultant 

raspberry-like structures were encapsulated in a polymer shell by surface 

modification with sodium oleate, followed by emulsion polymerization of styrene. 

Very low solids content (0.1 wt.%) were used in the encapsulation step and 

desorption of some of the magnetic particles was observed, suggesting that this 

process was not optimal. Kumacheva and co-workers synthesized similar structures 

with metal nanoparticles in the middle phase, to achieve periodic structured 

nanocomposite films (where the periodicity is governed by the thickness of the 

outermost shell) for use as optically responsive materials.53 The multi-layered 

particles were produced by in-situ synthesis of nanoparticles (cadmium sulphide and 

silver) on poly(methyl methacrylate-co-methacrylic acid) latex particles followed by 

polymerization of methyl methacrylate and butyl methacrylate at the surface of the 

composite particles (Figure 5.4).  
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Figure 5.4 Laser confocal fluorescent microscopy image of CdS-polymer nanocomposites, 
illustrating the periodic array of the metal inner-shell, where the spacing is controlled by the thickness 
of the polymer shell (scale bar: 2 µm).53 

A Pickering template approach has been used to form multi-layered capsules 

by Stöver and co-workers. Silica stabilized oil-in-water emulsions were encapsulated 

in a polymer shell by either layer-by-layer assembly54 or interfacial ATRP 

polymerization,55 in order to produce large microcapsules (~30-100 µm). The 

microcapsules were designed for encapsulation of hydrophobic moieties for 

applications in pesticide delivery, food science and self-healing materials by 

changing the contents of the core. The layer-by-layer approach proceeded first by 

adsorbing a negatively charged polyelectrolyte, poly(sodium styrenesulfonate), to the 

positively charged silica particles; these particles were then used to stabilize a 

xylene-in-water emulsion. Once the Pickering emulsion was formed, layer-by-layer 

assembly of alternating polyelectrolytes, poly(diallyldimethylammonium chloride) 

and poly(sodium styrenesulfonate), were used to build up the outer polymeric shell.54 

This method only produces a thin polymeric shell and faces the difficulties 

associated with the layer-by-layer technique mentioned above. The interfacial ATRP 

approach proceeded in a similar manner, however the initial polyelectrolyte for 

modification of the silica particles contained an ATRP initiating group in the 

polymer chain (poly(sodium styrenesulfonate-co-2-(2-bromoisobutryloxy) ethyl 

methacrylate) to localize polymerization at the surface of the microcapsule. Once the 
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Pickering emulsion had been made, a batch surface-initiated ATRP polymerization 

of N,N’-methylene bisacrylamide was used to create the outer-shell. The divinyl 

monomer was used to prevent migration of the silica particles from the core-shell 

boundary, and a hydrophilic ligand (hexamethyltriethylenetetraamine) was used to 

ensure polymerization occurred on the aqueous side of the interface, thus preventing 

any partitioning to the xylene core.55 

Philipse and co-workers prepared multi-layered particles with a Fe2O3 inner-

shell for biomedical applications (Figure 5.5).56 The particles were synthesized by 

gentle stirring of an MPTMS, Fe2O3 and methyl methacrylate solution. The reaction 

yielded Fe2O3 stabilized MPTMS droplets with the methyl methacrylate forming a 

secondary phase floating on the aqueous phase. Addition of KPS and heating to 70 

°C polymerized the core and triggered polymerization of methyl methacrylate at the 

Fe2O3 boundary, with the floating methyl methacrylate acting as a monomer source. 

 

Figure 5.5 TEM images of (a) Fe2O3 nanoparticles, (b) Fe2O3 stabilized MPTMS and (c) multi-
layered particles with a poly(MMA) shell.56 

Bon and co-workers produced multi-layered particles for applications in 

waterborne coatings and adhesives, to improve properties such as scratch 

resistance.57 The multi-layered morphology was achieved by starved-fed seeded 

emulsion polymerization, where the seed was a silica armoured poly(MMA) latex 

synthesized by Pickering emulsion polymerization (Figure 5.6 a). Two different 

morphologies were created by changing the encapsulating monomer; where 

acrylonitrile was used to create the outer-shell, hairy multi-layered particles were 
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formed (Figure 5.6 b) and where n-butyl acrylate was used, an evenly distributed soft 

shell was produced (Figure 5.6 c). Surfactant was required in the starved fed process 

to maintain particle stability; this surfactant can however lead to potentially 

undesirable properties in waterborne coatings. In the case of the soft poly(BA) shell, 

slow migration of the silica particles to the outer surface was observed, illustrating a 

need to lock the inorganic inner-shell in place in soft systems.  

 

Figure 5.6 TEM images of (a) silica armoured poly(MMA) latex, (b) hairy outer-layer of 
poly(acrylonitrile) and (c) a soft shell of poly(BA) (scale bar: 100 nm).57 

5.2.3.	Encapsulation	of	clay	particles	

Once the clay armoured latex core of a multi-layered particle has been 

synthesized, we can describe the armoured particle as a clay surface. From this we 

assume that the encapsulation step to produce a multi-layered morphology is similar 

to the encapsulation of clay particles. It is therefore important to understand the 

difficulties faced by encapsulation of clay particles, so that they can be avoided in 

the synthesis of multi-layered particles. 

One encapsulation method that proved successful was the heterocoagulation 

of oppositely charged particles; small anionic butyl methacrylate latex particles were 

heterocoagulated onto the larger cationic Gibbsite particles at low solids content 

(~0.005 wt. %) resulting in encapsulated clay particles with a raspberry-like 

morphology. A smooth shell was achieved by heating the particles at low 
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concentration to slightly above the Tg of the polymer.58 This method only works for 

relatively large clay particles, as smaller clays will result in armoured latex particles, 

due to their relative sizes. The heterocoagulation technique also requires very low 

solids content to prevent uncontrolled aggregation and several cleaning cycles by 

centrifugation to remove the unwanted excess latex particles. All-in-all it is an un-

scalable and time consuming approach. 

Encapsulation by in-situ polymerization is a more desirable approach as it is 

easier to scale up and a higher solids content is possible (up to 40 wt.% for batch 

emulsion polymerization in the presence of Laponite clay has been reported).30 In an 

attempt to encapsulate Laponite clay platelets by emulsion polymerization, 

Bourgeat-Lami et al. edge modified the platelets prior to polymerization with vinyl 

functionalized tri- and mono-functional silanes: γ-methacryloxy propyl 

trimethoxysilane (MPTMS) (Figure 5.7 1) and γ-methacryloxy propyl dimethyl 

ethoxysilane (MPDES) (Figure 5.7 2) respectively.59 Modification with MPTMS 

resulted in poly-condensates, i.e. flocks of platelets, with a stacked structure which 

was not observed with the MPDES; the stacked structure was attributed to the 

presence of more than one functional silylating group binding the clays together. On 

batch emulsion polymerization with styrene and n-butyl acrylate, the Laponite 

clusters modified with MPTMS showed no interaction with the polymer and those 

modified with MPDES resulted in an armoured structure where the clay was located 

on the surface of the particles, typical of a Pickering emulsion polymerization. Thus, 

batch emulsion polymerization of modified platelets proved an unsuccessful 

approach for encapsulation. 
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Figure 5.7 (1) MPTMS, (2) MPDES, (3) KRTTS and (4) isopropyl triacryl titanate. 

It was shown by van Herk and co-workers that encapsulation of 

montmorillonite can be achieved after modification with titanates with and without 

methacrylate functionality, thus in the latter case the encapsulating polymer was not 

grafted to the surface of the clay.60 The titanates used were isopropyl triisostearoyl 

titanate (KRTTS) (Figure 5.2 3) and isopropyl triacryl titanate (Figure 5.7 4). It is 

important to note that surfactants (a mixture of anionic sodium 

dodecylbenzenesulfonate and non-ionic polyethylene glycol tert-octylphenyl ether) 

were used in these emulsion polymerizations, at concentrations below the CMC. 

Encapsulation attempts were made with various compositions of methyl 

methacrylate and n-butyl acrylate, to illustrate the effect of Tg of the encapsulating 

co-polymer on the encapsulation process. Encapsulation was successful when the 

monomer was fed under starved conditions and the reaction temperature was below 

that of the Tg of the encapsulating co-polymer (i.e. higher methyl methacrylate 

content compared to n-butyl acrylate). When the reaction temperature is above the Tg 

of the encapsulating co-polymer (i.e. higher n-butyl acrylate content compared to 

methyl methacrylate), the clay was found on the surface of polymer particles, 

suggesting migration of the clay through the polymer.60 van Herk and co-workers 
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have also shown Laponite and montmorillonite platelets modified with methacrylate 

containing silanes and titanates can be successfully encapsulated in poly(methyl 

methacrylate) under surfactant-free conditions.61 The polymerization was conducted 

under starved-fed conditions and the temperature was below the Tg of poly(methyl 

methacrylate). In this case, encapsulation of the smaller Laponite clay produced 

spherical particles (Figure 5.8 a) and the encapsulation of the larger montmorillonite 

resulted in dumbbell shaped particles with the clay located between the two spheres 

(Figure 5.8 b). It was noted that though encapsulated particles were observed, it 

could not be determined whether all the polymer particles contained encapsulated 

clay particles due to the thin nature of Laponite and thus the difficulty in visualising 

it face on by TEM.61 

 

Figure 5.8 Cryo-TEM image of poly(MMA) particles containing (a) Laponite (scale bar: 50 nm) and 
(b) montmorillonite (scale bar: 100 nm).61 

5.2.4.	Laponite	clay	

The choice of clay is a very important consideration, as size and dispersibility 

are key factors in Pickering emulsion polymerizations. Various types of natural and 

synthetic clays exist; the clay chosen for this body of work was Laponite XLS as its 

use as a Pickering stabilizer is established.32, 34, 36, 43 Laponite XLS is a synthetic 

hectorite clay of dimensions 25 nm in diameter and 0.92 nm thick. The crystal lattice 

consists of an octahedral sheet of magnesia fused between two tetrahedral silica 
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sheets, where the tip of the oxygen ions of the octahedral sheet also belongs to the 

tetrahedral sheet (Figure 5.9).62 Laponite clay has the formula 

[(Si8Mg5.5Li0.3)O20(OH)4]Na0.7; where some of the divalent magnesium ions are 

substituted with monovalent lithium ions, resulting in the particles having an overall 

negative charge which is quenched by Na+ ions adsorbed to the edges.63 The XLS 

grade has tetrasodium pyrophosphate (Figure 5.10) adsorbed to the δ+ edges in order 

to aid dispersion in water. The edges of the discs also exhibit reactive hydroxyl 

groups in the form of Si-OH, Mg-OH and Li-OH. Full dispersion of the XLS grade 

(also described as exfoliation), where the individual clay platelets are completely 

separated, is achieved through vigorous stirring in water for a minimum of 10 

minutes.64 

 

Figure 5.9 (Left) Single Laponite particle, (right) structure of Laponite.62 

 

Figure 5.10 Tetrasodium pyrophosphate; used to edge modify Laponite clay discs to aid dispersion. 

Herein we describe a one-pot free-radical polymerization synthesis of multi-

layered particles consisting of a soft polymer core, Laponite clay inner-shell and a 

soft polymer outer-shell. We intend to use Pickering emulsion polymerization to 
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synthesize a seed, which on encapsulation will yield multi-layered particles. 

Immobilization of the clay will be a vital step in order to overcome migration of the 

inner-shell through the soft outer-shell medium. The mechanical and thermal 

properties will be studied to investigate the effect of particle morphology in thin 

films. 
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5.3.	Results	and	Discussion	

5.3.1.	Synthesis	of	armoured	and	multi‐layered	particles	

Laponite armoured soft latex particles (HM-502) were synthesized by a 

typical Pickering emulsion polymerization;43 2.0 g of Laponite discs were dispersed 

in 180 g of water by stirring at 250 rpm, the mixture was then degassed for 20 

minutes by purging with nitrogen, 20 g of a styrene and n-butyl acrylate mixture 

(40:60 wt. %) was introduced and the mixture was degassed for a further 5 minutes 

after which it was heated to 70 °C, stirred at 250 rpm and initiated by 0.15 g 

ammonium persulfate dissolved in 1.0 g water. Monomer conversion was followed 

by gravimetry, particle size was determined by DLS and particle morphology was 

determined by cryo-TEM. 

The monomer conversion vs. time plot (Figure 5.11) showed the typical 

sigmoidal curve for an emulsion polymerization, which can be described by splitting 

it into three intervals.65 (1) Nucleation period, the rate of reaction is increasing due to 

increasing particle number; this describes the first (non-linear) section of the plot. (2) 

Rate of reaction is constant, producing the linear section of the plot, as the number of 

particles is constant and monomer droplets behave as reservoirs. (3) Monomer 

droplets have been exhausted; all monomer is found in the latex particles, the 

concentration of monomer decreases with time, explaining the decrease in the rate of 

polymerization. It is important to note however, that an increase in rate in the final 

stage often occurs due to the Trommsdorff-Norrish effect.66 
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Figure 5.11 Overall monomer conversion, Xm, versus time of Laponite armoured poly(Sty-co-BA) 
particles (HM-502). 

When we assume that the number of latex particles stays constant, average 

particle size (dz) vs. monomer conversion should show 3rd order dependence 

(ignoring monomer swelling). This relation occurs because the conversion scales to 

mass, which scales to volume, and volume scales to dz
3. Such behaviour was 

observed here, as the plot of dz
3 vs. monomer conversion shows a linear fit with an 

R2 value of 0.998 (Figure 5.12 a). The narrow particle size distribution suggests that 

nucleation period is fast compared to particle growth (Figure 5.12 b), where the 

initial broad dispersity is a result of the nucleation period, once complete (i.e. 

interval 2 has begun) the dispersity narrows.65 
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Figure 5.12 (a) Average particle diameter, dz () and dz
3 (), and (b) dispersity, DI, versus monomer 

conversion, Xm, of Laponite armoured poly(Sty-co-BA) particles (HM-502). R2 for linear fit of dz
3 is 

0.998. 

Cryo-TEM images clearly show that the morphology is indeed that of 

Laponite armoured latex particles (Figure 5.13); dark lines are observed around the 

edges of the spherical polymer particles, these are Laponite discs. The discs can only 

be observed when their basal plane is parallel to the electron beam, as they are too 

thin to be detected by TEM face on, thus can only be observed around the edges of 

the particles. For clarity, we show that these lines are not observed for the plain 

poly(styrene-co-n-butyl acrylate) latex particles (Figure 5.14). 
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Figure 5.13 Cryo-TEM images of Laponite armoured poly(Sty-co-BA) particles (HM-502) (scale bar: 
50 nm). 
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Figure 5.14 Cryo-TEM images of poly(Sty-co-BA) particles (HM-501) (scale bar: 100 nm). 

It is important to note that there is an excess of Laponite in the continuous 

phase of the Laponite Pickering emulsion polymerization, the amount of which can 

be calculated.36 The total concentration of Laponite is the sum of the concentration 

of Laponite on the surface of the polymer particles and the concentration of the 

excess Laponite in the continuous phase. 

  (5.1) 

Where C0 is the overall concentration of Laponite in water (g g-1, i.e. 

m0/mwater where m is mass), Csurf is the concentration of Laponite on the surface of 

the polymer particles with respect to the water phase (g g-1, i.e. msurf/mwater) and 

Cexcess is the excess concentration of Laponite that remains in the continuous phase  
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(g g-1, i.e. mexcess/mwater). The total concentration of Laponite is known, thus an 

expression defining the concentration of Laponite on the surface of the polymer 

particles (Csurf) is required. In calculating Csurf we need to make some assumptions; 

(1) the total surface of the polymer particles are covered in a monolayer of Laponite 

discs, (2) the polymer particles and Laponite particles are uniform in size, (3) the 

dimensions of the Laponite discs are negligible with respect to the size of the 

polymer particles, i.e. we assume that the surface of the polymer particle is flat, thus 

the Laponite discs will lie flat and (4) a function for the packing of the Laponite 

discs is required, in this case we assume 2D square packing. 

The interfacial area of one polymer particle (αpart) is defined as: 

  
(5.2) 

Where rpart is the radius of the polymer particle. The area covered by one 

Laponite disc (αLap) is defined as: 

  
(5.3) 

Where rLap is the radius of a Laponite disc. The total number of polymer 

particles (Npart) is defined as the total volume of polymer divided by the volume of 

one polymer particle: 

 

 

(5.4) 

Where mpart is the total mass of polymer and ρpart is the density of the 

(co)polymer. The total number of Laponite discs adhered to the water-polymer 

interface (NLap) is defined as the volume of Laponite on the polymer-water interface 

divided by the volume of one Laponite disc: 
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(5.5) 

Where msurf is the mass of Laponite adhered to the polymer particle surface, 

ρLap is the density of Laponite and h is the height of one Laponite disc. If complete 

coverage is assumed then the following relationship applies: 

 
 

(5.6) 

The π/4 term is the packing parameter for 2D square packing of circles, the 

term changes to π/(2√3) if we assume hexagonal packing. Substituting equations 

(5.2) – (5.5) into equation (5.6) and rearranging gives the amount of Laponite 

adhered to the polymer-water interface (msurf): 

 
 

(5.7) 

Equation (5.7) can be inserted into equation (5.1) to give the concentration of 

excess Laponite: 

 
 

(5.8) 

The following values were used to calculate the concentration of excess 

Laponite in HM-502; C0 = 0.0099 g g-1, ρLap = 2570 kg m-3, ρpart = 1050 kg m-3, h = 

0.92 x 10-9 m, rpart = 65.95 x 10-9 m, Cpart = 0.0990 g g-1. The concentration of 

excess Laponite was found to be: 

  
(5.9) 

From this the mass of excess Laponite in the continuous phase is calculated 

to be 0.3910 g which is 19.6 wt.% of the total Laponite content. 
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Figure 5.15 Scheme illustrating multi-layered particle morphology. 

In order to prepare multi-layered particles where the clay forms the inner 

shell (Figure 5.15) the preference of the clay particles to remain at the polymer-water 

interface must be overcome. The platelets must be kinetically trapped between the 

two polymeric regions (the core and outer shell); an obvious method to achieve this 

is to immobilize the clay, thus limiting its movement. If the clay is not immobilized 

migration to the surface will occur.57, 67 

 

Figure 5.16 3-(trimethoxysilyl) propyl methacrylate (MPTMS). 

The modification of clay particles by silanes has been well documented, in 

particular multifunctional silanes such as MPTMS (Figure 5.16) where the silane 

reacts with the Si-OH groups on the edges of the clay platelets (Figure 5.17).63, 68, 69 

Silanes have previously been used in this manner to immobilize a monolayer of 

Laponite on the surface of polymer particles, illustrated by removing the core to 

achieve hollow Laponite particles.8 When MPTMS has been used to bind to 

Laponite dispersed in water small aggregates are formed, where the Laponite appears 

to be stacked; illustrating that multi-functional silanes can bind multiple Laponite 

discs together.59 MPTMS was chosen as the agent to immobilize the clay as its 

reaction with Laponite clay is established and the multiple silylating groups could 
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link neighbouring clay platelets together, and potentially even scoop up the excess 

Laponite present in the aqueous phase. 

 

Figure 5.17 Scheme illustrating the reaction of MPTMS and Laponite in water and potential to react 
with more than one Laponite disc. 

On introduction of MPTMS the presence of a small amount of monomer was 

desired, as the MPTMS would not only bind to neighbouring Laponite particles but 

would also have the potential to increase binding through the presence of multiple 

MPTMS units on a poly(styrene-co-n-butyl acrylate) chain, thereby immobilizing 

the Laponite discs on the surface of the polymer particles. The hydrolysis of 

MPTMS is fast, for studies in water in the concentration range of 0.042-0.168 M at 

pH 9 the half-life was found to be in the order milliseconds.70, 71 We intended to 

introduce MPTMS at approximately 95 % monomer conversion; from the monomer 

conversion vs. time plot of the Laponite armoured poly(styrene-co-n-butyl acrylate) 

reaction (Figure 5.11) conversion reaches approximately 95 % at 6 hours (t6). 

We have shown that there is an excess of Laponite in the system (19.6 wt.% 

with respect to total Laponite content), that is Laponite not associated with the 

surface of the particles (equation (5.8)). We believed that MPTMS, with its three 

silylating groups could react with Laponite on the surface of the particles and the 

excess Laponite in the continuous phase to form stacks similar to those observed by 
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Bourgeat-Lami and co-workers when they pre-modified Laponite platelets with 

MPTMS.59 The ability for the Laponite to form stacks could potentially result in a 

second patchy layer of Laponite around the soft core producing a new morphology 

(herein described as core-shell) (Figure 5.18). We define this potential second layer 

of Laponite as patchy as the 19.6 wt.% excess of Laponite is not enough to 

completely cover all particles. 

 

Figure 5.18 Scheme depicting effect of MPTMS on particle morphology of Laponite armoured 
poly(Sty-co-BA) particles. 

At 6 hours (t6) 0.10 g of MPTMS (0.5 wt.% with respect to monomer, 2.83 

mM with respect to water) was introduced to the Pickering emulsion polymerization 

by shot addition. Monomer conversion vs. time plot for HM-503 is comparable to 

that of HM-502; the slight decrease in reaction rate at high conversion for HM-503 is 

likely due to the presence of a small amount of oxygen gained during sampling as it 

is not present early on in the polymerization (Figure 5.19). The conversion plot 

shows that at the time MPTMS was introduced the monomer conversion was ~95 % 

as desired, thus the MPTMS methacrylate group would likely copolymerize with the 

remaining monomer as anticipated.  
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Figure 5.19 Overall monomer conversion, Xm, versus time for Laponite armoured poly(Sty-co-BA) 
particles (HM-502) () and the same polymerization reaction with MPTMS (0.1 g) added at t6 (HM-
503) (). The dashed line indicates the time at which 0.1 g MPTMS was added to the reaction. 

Again a linear fit (R2 = 0.996) was found for the plot of dz
3 vs. monomer 

conversion, suggesting that particle growth occurs with no secondary nucleation 

(Figure 5.20 a). The particle size distribution is narrow, and remains so after the shot 

addition of MPTMS (Figure 5.20 b). The introduction of MPTMS at t6 appears to 

have had very little, if any, effect on the particle size or particle size distribution 

(Figure 5.20). 
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Figure 5.20 (a) Average particle diameter, dz () and dz
3 (), and (b) dispersity, DI, versus monomer 

conversion, Xm, of Laponite armoured poly(Sty-co-BA) where of MPTMS has been added at t6 (HM-
503). The dashed line indicates the time at which 0.1 g MPTMS was shot added to the reaction. R2 for 
linear fit of dz

3 is 0.996. 

Analysis by cryo-TEM shows the particles to have a core-shell morphology, 

where it appears as though there is a shell consisting of a double layer of Laponite 

and poly(MPTMS) around the poly(styrene-co-n-butyl acrylate) core (Figure 5.21). 

Thus it seems that the introduction of MPTMS effectively scoops up the excess 

Laponite, by a heterocoagulation method, forming a patchy second Laponite shell 

which is logical as there is approximately 19.6 wt.% excess of Laponite calculated 

for HM-501. In alkaline solutions (reaction pH at point of introduction of MPTMS is 
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pH 9.4) highly cross-linked inorganic networks of MPTMS are known to be formed 

which are not observed in acidic conditions.72, 73 However, by keeping the 

concentration of MPTMS low (0.5 wt.% with respect to total monomer content) the 

likelihood of MPTMS reacting at the surface of the armoured particles rather than 

with itself in the continuous phase is increased. We previously suggested that 

MPTMS could copolymerize with the remaining monomer and copolymerization of 

MPTMS with styrene and methyl methacrylate have been reported.74-76 However, a 

preference for blocks of MPTMS interrupted with co-monomer units was found; 

random copolymers were only produced by reducing the concentration of MPTMS 

with respect to the copolymer.77-79 At the point of introduction of MPTMS monomer 

conversion is 95%, thus the concentration of MPTMS with respect to remaining 

monomer is ~9%, therefore it is likely the shell is not pure Laponite bound with 

MPTMS, but blocks of poly(MPTMS) partitioned along a poly(styrene-co-n-butyl 

acrylate) chain (Figure 5.19). 

This method proposes an interesting means of removing excess Laponite 

from the continuous phase, which cannot be removed by conventional purifying 

processes such as dialysis or centrifugation. It appears that Laponite is present below 

the surface of the composite particle suggesting that the Laponite has been 

immobilized as desired within this composite shell. 
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Figure 5.21 Cryo-TEM images of Laponite armoured poly(Sty-co-BA) where MPTMS is added at t6 
(scale bar: 50 nm) (BL-067). It appears as though particles have core-shell morphology with a double 
layer of Laponite in the “shell”. 
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A secondary experiment was conducted where MPTMS was introduced on 

initiation (t0) to determine whether this would lead to encapsulated clay platelets. By 

introducing MPTMS on initiation it was thought that the Laponite would not have 

time to form clusters as have been previously observed59 and would become trapped 

within the polymer matrix. A typical Laponite Pickering emulsion polymerization 

was conducted where 0.10 g MPTMS (0.5 wt.% with respect to monomer) was 

added on initiation. Monomer conversion vs. time plot for HM-504 is comparable in 

shape to that of HM-502 and HM-503, however, the rate of polymerization appears 

to be much faster (Figure 5.22). The increased rate could be explained in terms of 

modification of the Laponite discs; on introduction of MPTMS hydrolysis followed 

by condensation with Laponite edges occurs, effectively hydrophobically modifying 

the clay discs, this results in a greater number of polymer particles in order to 

stabilize the modified clay discs, the increased particle number increases the rate of 

polymerization. To investigate further particle size needs to be considered. 

 

Figure 5.22 Overall monomer conversion, Xm, versus time for Laponite armoured poly(Sty-co-BA) 
(HM-502) () and the same polymerization reaction with MPTMS (0.1 g) added at t6 (HM-503) () 
and with the MPTMS added at t0 (HM-504) (). 
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The final particle size for HM-504 is 160.2 nm, this is significantly larger 

than the particle sizes found for HM-502 and HM-503 (131.9 and 126.9 nm 

respectively), thus the hypothesis that there is a greater number of particles doesn’t 

add up (Figure 5.23a). The plot of dz
3 vs. monomer conversion shows a slight 

deviation from linearity with R2=0.986 suggesting that particle size isn’t increasing 

as would be expected (Figure 5.23a). These factors combined with a broader size 

dispersity (DI = 0.059), suggests that further investigation is required into the 

morphology to determine the cause of increased particle size and increased rate of 

reaction. 
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Figure 5.23 (a) Average particle diameter, dz () and dz
3 (), and (b) dispersity, DI, versus monomer 

conversion, Xm, of Laponite armoured poly(Sty-co-BA) particles where MPTMS is added at t0 (HM-
504). R2 for linear fit of dz

3 is 0.986. 

Cryo-TEM analysis shows that the polymer particles are armoured in clay 

discs in the same manner as HM-502 and HM-503, however, the odd Laponite 

particle can be observed within the polymer matrix, resulting in a dumbbell 

morphology (Figure 5.24). The formation of dumbbells explains the larger than 

expected particle size, deviation from linearity of the dz
3 vs. Xm plot and the broad 

particle size distribution. Thus the hypothesis that the increased rate in reaction 

observed could still be attributed to an increased number of particles formed due to 

hydrophobic modification of the Laponite clay. Dumbbell morphologies have 
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previously been reported in the encapsulation of clays and have been attributed to the 

clay preventing uniform growth of the polymer particle.34, 61 As expected stacks of 

Laponite on modification with MPTMS observed by Bourgeat-Lami and co-workers 

were not found in this case, likely due simultaneous initiation of polymerization and 

MPTMS addition resulting in a reduced possibility of clay-clay interaction.68 It is 

difficult to fully qualify the amount of clay encapsulated within the particles as only 

those with their basal plane parallel to the electron beam are visible, nevertheless as 

the particles surface appears to be fully coated in Laponite it is likely that this is the 

location for the bulk of Laponite and thus this method did not work as an 

encapsulating technique as anticipated. 
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Figure 5.24 Cryo-TEM images of Laponite armoured poly(styrene-co-n-butyl acrylate) with MPTMS 
added at t0 (scale bar a-c: 100 nm; scale bar d: 50 nm) (BL-050). Dumbbell shaped particles are 
highlighted by the red arrows. 

As discussed above, it appeared that the introduction of MPTMS at t6 (HM-

503) immobilized the Laponite clay on the surface of the polymer particles, thus an 

attempt was made to form multi-layered particles where a Laponite ring forms the 

inner-shell (Figure 5.25). Multi-layered particles were synthesized as follows; a 

typical Laponite Pickering emulsion polymerization with 40:60 ratio of styrene and 

n-butyl acrylate was performed, at t6 0.10 g MPTMS was introduced by shot 

addition, at t7 20 mL of a 40:60 wt.% mixture of styrene and n-butyl acrylate were 

fed into the reaction mixture at 2.5 mL h-1 without any dilution (HM-505). 
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Figure 5.25 Scheme depicting steps to form multi-layered particles. 

Starved-fed emulsion polymerization is where the polymerization rate is 

controlled by the feed rate of monomer, so that the rate of polymerization equals the 

feed rate.80 The starved condition under which the monomer was introduced was 

required to encourage encapsulation. Monomer conversion vs. time plots show that 

during the feed of the styrene n-butyl acrylate mixture conversion is consistently at 

approximately 90 %, (Figure 5.26), where the blue line represents zero conversion of 

the monomer feed. As the polymerization reaches 100% conversion after being left 

over night (1440 minutes) monomer evaporation is not the cause for the lower than 

expected conversion. The reaction was repeated with a slower monomer feed rate of 

1.5 mL h-1; the same reduced conversion was observed, in this case however the 

reaction coagulated after 9 mL of monomer was fed into the reaction (6 hours), at 

which point samples could not be taken (Figure 5.27). 
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Figure 5.26 Overall monomer conversion, Xm, versus time for Laponite armoured poly(Sty-co-BA) 
(HM-502) (), the same polymerization reaction but where MPTMS (0.1 g) was added at t6 (HM-
503) () and the multi-layered particles (HM-505) (). The dashed line at 360 minutes indicates the 
shot addition of 0.1 g MPTMS, the dashed line at 420 minutes indicates the beginning of 
encapsulating feed of styrene and n-butyl acrylate and the dashed line at 900 minutes indicates the end 
of the monomer feed. The blue line () represents the 0 % conversion line during the monomer feed. 
Monomer was fed at a rate of 2.5 mL h-1. 

 

Figure 5.27 Overall monomer conversion, Xm, versus monomer fed into the reaction mixture for 
multi-layered particles; where monomer was fed at 2.5 mL h-1 (HM-505) () and 1.5 mL h-1 (HM-
507) (). HM-507 coagulated after 9 mL of monomer was fed in. 
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As during the monomer feed conversion is maintained at ~90 % the graph of 

particle size versus conversion could not be plotted, thus particle size and dispersity 

were plotted against time (Figure 5.28). On feeding monomer the average diameter 

increases, whilst the dispersity remains consistently low. The maintained low 

dispersity throughout suggests that no secondary particles are being formed during 

the monomer feed. 

 

Figure 5.28 (a) Average particle diameter, dz, and (b) dispersity, DI, versus monomer conversion, Xm, 
of multi-layered particles (HM-505). The dashed line at 360 minutes indicates the shot addition of 0.1 
g MPTMS, the dashed line at 420 minutes indicates the beginning of encapsulating feed of styrene 
and n-butyl acrylate and the dashed line at 900 minutes indicates the end of the monomer feed. 
Monomer was fed at a rate of 2.5 mL h-1. On feeding monomer particle size increases with little 
change to the dispersity. 
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To more clearly analyze the particle size information the plot was split into 

two parts; before monomer feed (Figure 5.29) and during monomer feed (Figure 

5.30), the former could be plotted against monomer conversion as is conventional, 

the latter however was plotted against monomer fed into the polymerization. The 

plot of dz
3 vs. monomer conversion before the monomer feed showed a linear fit 

(R2=0.994) suggesting that particle growth is occurring with no secondary particles 

being formed (Figure 5.29). The plot of dz
3 vs. volume of monomer fed into the 

polymerization should also be linear as particle volume should scale linearly to 

volume of monomer introduced. Indeed the plot of dz
3 vs. volume of monomer fed 

into the reaction (mL) is linear (R2=0.998) (Figure 5.30), suggesting polymerization 

is occurring around the existing particles and no secondary particles are being 

formed. 

 

Figure 5.29 Average particle diameter, dz () and dz
3 versus monomer conversion, Xm, of multi-

layered particles before the monomer feed (HM-505). R2 for linear fit of dz
3 is 0.994. 
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Figure 5.30 Average particle diameter, dz () and dz
3 versus monomer fed in to the reaction (mL) of 

multi-layered particles during the monomer feed (HM-505). R2 for linear fit of dz
3 is 0.998. 

Another method to check whether final particle size of 171.0 nm after the 

encapsulating feed is logical is to compare measured and theoretical particle size. In 

order to do this we must make a few assumptions; (1) number of particles is 

calculated using the particle size before the start of the monomer feed (taken from 

DLS measurement of particles at 420 minutes) and we assume that at this point 

particles are monodisperse, (2) density of the particle is that of the polymer only, (3) 

thus we only assume the mass of the polymer. 

First we must define the number of particles (N) before the monomer feed: 

 

 

(5.10) 

Where m1 is the mass of polymer in the batch polymerization, ρ is density of 

the polymer and r1 is the radius of the polymer particle before monomer feed has 

started. Next the total volume of monomer (Vtot) is required: 
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 ௧ܸ௢௧ ൌ
݉ଵ ൅ ݉ଶ

ߩ
 (5.11) 

Where m2 is the mass of monomer fed into the polymerization, as monomer 

composition is the same as in the batch polymerization ρ is unchanged. The volume 

of one encapsulated particle (V2) is defined as: 

 ଶܸ ൌ
4
3
 ଶଷ (5.12)ݎߨ

Where r2 is the radius of the multi-layered particle (after encapsulation). The 

volume of one encapsulated particle can also be defined as follows: 

 ଶܸ ൌ
௧ܸ௢௧

ܰ
 (5.13) 

By substituting equations (5.10)-(5.12) into equation (5.13) and rearranging 

we can define r2: 

ଶݎ  ൌ ඨ
ሺ݉ଵ ൅݉ଶሻ

݉ଵ
ൈ ଵଷݎ

య

 (5.14) 

The following values were used to calculate the theoretical value of the 

radius of the final multi-layered; m1 = 20.04 g, m2 = 17.97 g and r1 = 69.75 x 10-9 m. 

ଶݎ  ൌ 86.0 ൈ 10ିଽ݉ (5.15) 

ଶܦ  ൌ 172 ൈ 10ିଽ݉ (5.16) 

Where D2 is the diameter of the multi-layered particle. The theoretical 

diameter of the multi-layered particle (172 nm) is 1 nm off the particle diameter 

measured by DLS (171 nm), from this we can infer that the polymerization is 

occurring around the existing particles and no secondary particles are being formed. 

SEM analysis was performed to determine morphology of the multi-layered 

particles (SEM was used as cryo-TEM was unavailable). Location of the soft outer-

shell with respect to the core illustrates whether the particles are in-fact encapsulated 

or have formed other morphologies such as dumbbells. The SEM image indicates an 

egg-yolk morphology suggesting that the core is in the centre of the particles, in 
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other words it suggests that the particles have been encapsulated in a soft 

poly(styrene-co-n-butyl acrylate) shell (Figure 5.31 and Appendix V Figure V.1). 

But this is not perfect data; these particles are soft and therefore film form, thus 

altering the morphology. Also very low beam energy (keV) was required (below 5.0 

keV) to prevent degradation of the beam-labile polymer, it must be noted that low 

keV is not suitable for imaging very small particles such as these. Thus the 

morphology gained by SEM is only indicative and cryo-TEM analysis is required to 

verify the morphology. However the combination of SEM images and DLS data 

does suggest that the morphology is that of multi-layer particles. 

 

Figure 5.31 SEM image of multi-layered particle (HM-505) (scale: 100 nm). 
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Table 5.1 details how the four types of particles synthesized will be described 

in shorthand from here on in. 

Table 5.1 Table listing all particles synthesized and their abbreviations. 

Exp. Abbrev. Name Full Description of Particles 

HM-501 P(Sty-co-BA) Poly(styrene-co-n-butyl acrylate) particles 

HM-502 
Laponite 
armoured 

Laponite armoured poly(styrene-co-n-butyl 
acrylate) particles 

HM-503 
Laponite core-

shell 
Laponite cross-linked around poly(styrene-co-n-
butyl acrylate) particles with MPTMS 

HM-505 Multi-layered 
Multi-layered particles prepared by encapsulation 
of Laponite core-shell particles 

 

5.3.2.	Thermal	and	mechanical	testing	of	films	prepared	from	multi‐

layered	particles	

Dynamic mechanical thermal analysis (DMTA) was used to determine how 

these different particles affected the mechanical and thermal properties of their 

respective films. The films were formed by casting the latexes in a polypropylene 

dish and evaporating the water at room temperature over 7 days. The films were 

fully transparent and free of any defects indicating the polymer and clay were well 

dispersed (Figure 5.32). It was expected HM-501, HM-502 and HM-505 would film 

form as polymer inter-diffusion is clearly possible, however, HM-503 also film 

formed and did not crack despite the Laponite/MPTMS shell, suggesting that the 

shell was permeable to polymer diffusion, which is most-likely because the shell is 

relatively thin. 
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Figure 5.32 Thin films of (a) poly(styrene-co-n-butyl acrylate) (HM-501), (b) Laponite armoured 
particles (HM-502), (c) Laponite core-shell particles (HM-503) and (d) multi-layered particles of 1% 
cross-linked Laponite armoured poly(styrene-co-n-butyl acrylate) multi-layered particles (HM-505). 
Films were prepared by casting 10.0 g of 10 wt.% latexes in a polypropylene pot. 

Two types of measurements were conducted to determine the mechanical and 

thermal properties of the films; stress-strain and temperature sweep experiments. 

Films for stress-strain measurements were prepared by casting 10.0 g of 10 wt.% 

latex into polypropylene pots (of dimensions 5.5 cm in diameter and 0.5 cm deep). 

Stress-strain measurements were performed in tensile mode on films of approximate 

dimensions of 10 x 2 x 0.3 mm; dimensions were measured using a micrometer, 

where length was determined by apparatus geometry. Measurements were performed 

at 25 °C, with a rate of 0.1 N min-1 and a maximum load of 3 N, with no relaxation. 

Strain, defined as the change in length with respect to the original length (10 mm) 

(equation (5.17)), is applied and the stress, unit of force per area (2 x 0.3 mm2) (Pa) 

required to achieve said strain, is measured. 

ߝ  ൌ
Δ݈
݈

 (5.17) 

Where Ɩ is the initial length of the material and ΔƖ is the change in length. 

The plot of stress vs. strain produces a bell-like curve, the positive gradient 

describing elastic deformation and the negative gradient describing plastic 

deformation of the material. The magnitude of the curve is indicative of the 

toughness of the material, by simply looking at the stress-strain plot (Figure 5.33) it 

is clear that the toughness of each material is in the order of: 

P(Sty-co-BA) < Multi-layered < Laponite armoured < Laponite core-shell 
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This can be described more quantitatively by interpreting specific points of 

the graph. 

 

Figure 5.33 Stress-strain curve of films formed from poly(styrene-co-n-butyl acrylate) particles (HM-
501) (), Laponite armoured particles (HM-502) (), Laponite core-shell particles (HM-503) () 
and multi-layered particles (HM-505) (). 

The positive gradient of the stress strain curve provides Young’s modulus 

(equation (5.18)), this is taken from the linear section; the deviation from linearity at 

low strain is due to the initial load on the sample. The ultimate tensile strength 

(UTS), the stress a material can withstand before failing, is the maximum point on 

the stress-strain curve and the strain at this point, the strain at UTS, also provides 

useful information about the material. 

ܧ  ൌ
ߪ
ߝ

 (5.18) 

Where E is Young’s modulus, σ is stress and ε is strain. 

In comparison to the poly(styrene-co-n-butyl acrylate) film (HM-501), the 

film formed from Laponite armoured particles (HM-502) show a great increase in 

Young’s modulus, UTS and strain at UTS (Figure 5.33 and Table 5.2). In this case 

38-fold increase in Young’s modulus was found, this is comparable to similar stress-
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strain measurements performed by Bourgeat-Lami and co-workers; films formed 

from 9 wt.% Laponite RD (with respect to monomer)) armoured poly(styrene-co-n-

butyl acrylate) particles, prepared by miniemulsion polymerization, showed a 50-

fold increase in Young’s modulus when compared to pure poly(styrene-co-n-butyl 

acrylate) films, the increased mechanical strength was attributed to the percolating 

structure of Laponite throughout the film.5 The different grade of Laponite used and 

different particle synthesis method combined with the unknown temperature at 

which these measurements were conducted, means a direct comparison is not 

possible. The Laponite core-shell particles (HM-503) show a further increase in 

Young’s modulus, UTS and strain at UTS is observed. Young’s modulus for HM-

503 shows a 55-fold increase when compared to HM-501 and a 1.4-fold increase 

when compared to HM-502. In this case the negative gradient is not observed as the 

film has snapped shortly after the UTS, therefore the film is not only tougher but 

now less viscous; where toughness is defined as the ability of a material to absorb 

mechanical energy without fracturing or deforming and viscosity is defined as the 

ability of a material to flow and deform.81 The multi-layered particles exhibited a 

substantial decrease in the Young’s modulus and UTS, though they remain 

somewhat greater than the original poly(styrene-co-n-butyl acrylate) film (7.2-fold 

increase in Young’s modulus). The strain at UTS for the multi-layered particles is, 

however, larger than the previous films, suggesting that it is a more elastic material. 
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Table 5.2 Table of characteristic properties from Stress-Strain DMTA plots, at 25 °C. 

Exp. Film 
UTS 

(MPa) 

Strain at UTS 

(%) 

Young’s 
Modulus 

(MPa) 

HM-501 P(Sty-co-BA) 0.035 2.23 0.863 

HM-502 
Laponite 
armoured 

0.794 5.17 32.8 

HM-503 
Laponite core-

shell 
1.40 5.30 47.5 

HM-505 Multi-layered 0.282 6.33 6.24 

 

The increase in Young’s modulus, UTS and strain at UTS has been attributed 

to the formation of a honey-comb structure on film formation.5 Thus explaining the 

increased mechanical strength when this Laponite layer is cross-linked with 

MPTMS, the excess Laponite is scooped up forming at thicker cross-linked shell 

(Figure 5.34 c); thus further reinforcing the honey-comb structure increasing the 

toughness of the material. This also explains how on encapsulation in poly(styrene-

co-n-butyl acrylate) to form multi-layered particles, mechanical strength is reduced 

due to loss of the honey-comb structure within the film. The cross-linked Laponite 

rings regularly dispersed throughout the film (Figure 5.34 d) provides some 

additional strength to the material in comparison to poly(styrene-co-n-butyl acrylate) 

films, but not to the same extent that the honey-comb structure provides. 
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Figure 5.34 Schematic representation of the multilayer particles and the respective structure of the 
film they form. (a) poly(Sty-co-BA) latex, (b) Laponite armoured poly(Sty-co-BA) latex, (c) cross-
linked Laponite armoured poly(Sty-co-BA) latex and (d) multi-layered particles of encapsulated 
cross-linked Laponite armoured poly(Sty-co-BA) latex. 

Films for Temperature sweep measurements were prepared by casting 50 g of 

10 wt.% latex into a Teflon-lined petri-dish (of dimensions 9 cm in diameter and 

1.4 cm deep) and were left to dry at room temperature for three weeks. Temperature 

sweep measurements were performed in three-point bending mode, within the 

temperature range of -80 to 120 °C with a heating rate of 2 °C min-1 and with a 
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displacement of 0.02 mm. The films had approximate dimensions of 10 x 3 x 1 mm, 

the dimensions were measured using a micrometer, where length was determined by 

apparatus geometry. The data gained from this experiment is dependent on the 

frequency of oscillation, the frequency used for the following temperature sweep 

experiments were at 1 Hz, for the comparative 10 Hz data the reader is referred to V 

Figures V.2-V.4). A sinusoidal deformation is applied to the sample, with a 

displacement of 0.02 mm, this stress is described as: 

ߪ  ൌ ௢ߪ sin߸(5.19) ݐ 

Where σ is the stress at time t, σo is the maximum stress and ϖ	 is	 the	

frequency.	 The	 resulting	 shape	 of	 the	wave	 is	 determined	 by	 the	 viscous	 and	

elastic	properties	of	the	material	measured.	When	the	material	is	subjected	to	a	

sinusoidal	 deformation	 in	 can	 respond	 in	 two	 manners;	 in‐phase	 the	 elastic	

response	 or	 out‐of‐phase	 the	 viscous	 response,	 viscous	 elastic	 materials	 fall	

between	these	two	extremes.	The	in‐phase	response	is	described	as	the	storage	

modulus	 and	 the	 out‐of‐phase	 response	 is	 described	 as	 the	 loss	modulus	 and	

the	sum	of	these	two	components	gives	the	complex	modulus.	

′ܧ  ൌ ௢ߝ sinሺߜሻ (5.20) 

′′ܧ  ൌ ௢ߝ cosሺߜሻ (5.21) 

ܧ  ൌ ᇱܧ ൅  (5.22) ′′ܧ

Where E’ is the storage modulus, E’’ is the loss modulus, E is the complex 

modulus, εo is the strain at maximum stress and δ is the angle of the difference 

between the applied stress and the resultant strain (also described as the phase angle). 

It is important to note that though conceptually similar the storage modulus and 

Young’s modulus are different and will not have the same values, they are therefore 

not comparable.81 Storage modulus vs. temperature plots (Figure 5.35) show a small 

increases in E’ in the glassy region in the order of: 
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P(Sty-co-BA) < Multi-layered < Laponite armoured ~ Laponite core-shell 

A more dramatic difference was observed at the rubber plateau in the same 

order as above (Figure 5.35). The rubber plateau for HM-505 suggests that there is 

still a Laponite network throughout the film. The measurement for the poly(styrene-

co-n-butyl acrylate) film (HM-501) was interrupted at approximately 20 °C as the 

film became too viscous for the DMTA to obtain accurate measurements. Bourgeat-

Lami and co-workers also found a small increase in E’ in the glassy region and a 

large increase in E’ in the rubbery plateau after incorporation of 10 wt.% Laponite 

(with respect to polymer) into a poly(styrene) matrix by means of Pickering 

emulsion polymerization.32 This was also observed in a similar system where 1:1 

ratio of methyl methacrylate and n-butyl acrylate were used instead of styrene.82  

 

Figure 5.35 Storage modulus versus temperature of films formed from poly(styrene-co-n-butyl 
acrylate) particles (HM-501) (), Laponite armoured particles (HM-502) (), Laponite core-shell 
particles (HM-503) () and multi-layered particles (HM-505) (). 
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Figure 5.36 Loss Modulus versus temperature of films formed from poly(styrene-co-n-butyl acrylate) 
particles (HM-501) (), Laponite armoured particles (HM-502) (), Laponite core-shell particles 
(HM-503) () and multi-layered particles (HM-505) (). 

The loss modulus vs. temperature plot shows typical curves47, 82 with a shift 

to higher temperatures in incorporation of Laponite clay. The DMTA results can be 

understood in more detail by interpreting the Tan δ plot. 

Tan δ, also described as damping, is the ratio of loss to storage modulus 

(equation (5.23)), in other words it is the dissipation of energy in a material under a 

cyclic load from which we can gain information such as the Tg from the peak 

maxima and comparative viscous behaviour. 

 ܶܽ݊ ߜ ൌ
′′ܧ
′ܧ

 (5.23) 

Only one peak was observed in the Tan δ plots (Figure 5.37), indicating that 

the films and polymer composition were homogeneous; in cases where a copolymer 

or film is not homogeneous, for example where there is significant composition drift 

in the copolymer, two or more peaks can be observed illustrating the behaviour in 

the different regions. The Tg, taken from the peak maxima, of the poly(styrene-co-n-

butyl acrylate) film (HM-501) measured at 1Hz was found to be 10.91 °C (Figure 
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5.37 and Table 5.3). The Tg appears to increase for the Laponite armoured film (HM-

502) to 17.8 °C, this increases slightly for the core-shell Laponite film (HM-503) to 

18.5 °C. Films formed from the multi-layered particles (HM-505) have a Tg of 

15.5 °C, which is higher than that of the poly(styrene-co-n-butyl acrylate) film and 

lower than the Laponite armoured film (HM-502). In reality the Tg of the polymer 

has not changed, the mobility of polymer chains in the vicinity of the clay platelets 

has reduced, resulting in the higher Tg. 
47, 48, 83 The magnitude of the Tan δ peak is 

indicative of the viscous nature of the material, the greater the magnitude the more 

viscous the material. The film produced from the poly(styrene-co-n-butyl acrylate) 

particles (HM-501) displays the greatest magnitude; this magnitude drops 

dramatically when compared to the multilayer particles (HM-505), it diminishes 

further still for the Laponite armoured film (HM-502) and very slightly more for the 

cross-linked Laponite armoured film (HM-503).Thus the order of films in terms of 

viscous nature are as follows, beginning with the most viscous film: 

P(Sty-co-BA) > Multilayer > Laponite armoured > Laponite core shell 

The change in magnitude corresponds with the observed Tg for the films 

(Figure 5.37 and Table 5.3). These observations are logical when considering the 

structure of the films (Figure 5.34); as the Laponite armoured (HM-502) and cross-

linked Laponite (HM-503) films both have the internal honey-comb Laponite 

structure throughout the film which is not present in the films prepared from 

poly(styrene-co-n-butyl acrylate) (HM-501) particles. The cross-linked Laponite film 

would display a greater rigidity and would thus be less viscous. On encapsulation 

(HM-505), and loss of said structure the viscous nature of the film has increased as 

one might expect (Figure 5.34). 
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Figure 5.37 Tan δ versus temperature of films formed from poly(styrene-co-n-butyl acrylate) 
particles (HM-501) (), Laponite armoured particles (HM-502) (), Laponite core-shell particles 
(HM-503) () and multi-layered particles (HM-505) (). 

Table 5.3 Table of the Tg measured by DMTA, where the Tg is taken as the onset and the maximum 
of the tan δ versus temperature plot (Figure 5.37). 

Exp. Film 
Tg (onset) 

(°C) 

Tg (peak maxima) 

(°C) 

HM-501 P(Sty-co-BA) -3.63 10.91 

HM-502 Laponite armoured -1.28 17.83 

HM-503 Laponite core-shell 2.15 18.45 

HM-505 Multi-layered -0.21 15.53 

 

The Tg of the composite polymer films were also measured by DSC. It must 

be stressed that the Tg values gained from DSC will differ to those gained by DMTA; 

DSC measures the change in heat capacity and is dependent on heating rate and 

DMTA measures the change in mechanical response of a polymer film and is 

dependent on frequency, Tg values gained from DMTA are generally greater than 

those obtained from DSC.81, 84 Three cycles of heating the polymer from -80 to     
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120 °C and cooling back to -80 °C were performed, the two Tg measurements were 

taken, from the onset and the midpoint of the steepest slope. The average of the three 

Tg measurements are cited in Table 5.4 (Appendix V Figure V.5). Although direct 

comparisons of values between Tg data gained from DMTA and DSC are not 

possible, the observed trend is the same. 

Table 5.4 Table of Tg of the polymer films measured by DSC. 

Exp. Film 
Tg (onset) 

(°C) 

Tg (midpoint) 

(°C) 

HM-501 P(Sty-co-BA) -0.34 6.01 

HM-502 Laponite armoured 1.91 7.55 

HM-503 Laponite core-shell 2.35 8.21 

HM-505 Multi-layered 1.89 7.09 

 

Thermogravimetric analysis (TGA) was performed to gain an understanding 

of the thermal properties of the films (Figure 5.38). Films of an approximate mass of 

10 mg were heated from 25.0 °C to 1000 °C at a rate of 10 °C min-1, under a flow of 

air in alumina pans. TGA accurately measures the mass of a sample (g, to 6 d.p.) as a 

function of temperature; by looking at the loss of mass from a sample as it is heated, 

thermal properties of the films can be deduced. The total mass loss measured by 

TGA was found to be within 2 % of the theoretical calculation assuming that 

complete combustion occurs and thus all polymer is removed and mass loss of 

Laponite within the film is comparable to the mass loss in its original state 

(Table 5.7). 
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Figure 5.38 TGA of films formed from poly(styrene-co-n-butyl acrylate) particles (HM-501) (), 
Laponite armoured particles (HM-502) (), Laponite core-shell particles (HM-503) (), multi-
layered particles (HM-505) () and Laponite XLS (). 

In the case of the poly(styrene-co-n-butyl acrylate) (HM-501) all the polymer 

is calcined, the sample reaches a mass of 0.0 mg at 427 °C. TGA of Laponite XLS 

shows that it loses 6.55 % of its mass. Knowing that the polymer loses all its mass 

and the Laponite loses 6.55 % of its mass when heated up to 1000 °C it is possible to 

calculate theoretical values of mass loss, which can be compared to the experimental 

values (Table 5.5 and Table 5.6). 

On incorporation of Laponite as a Pickering stabilizer (HM-502), a shoulder 

after the initial mass loss is observed, where the first drop is at 427 °C and the 

second is at 537 °C (Figure 5.38 and Table 5.8). Comparing the first mass loss at 

427 °C, 85.70 % (Table 5.8), to the theoretical percentage mass loss of polymer in 

the film, 90.96 % (Table 5.6), it is evident that the Laponite is effectively shielding a 

small portion of the polymer shifting complete combustion to higher temperature of 

537 °C where 92.56 % mass of the original film is lost; this total mass loss is 

comparable to the theoretical value. This additional thermal stability has been 
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attributed to the clay hindering diffusion of volatile decomposition materials.5, 41, 85-88 

Similar results are found for the films where the Laponite shell is cross-linked with 

MPTMS (HM-503). The initial mass loss for these core-shell Laponite particles 

(HM-503) is at the same temperature as it was for HM-502, 427 °C, the shoulder 

however is extended by 14 °C to 551 °C (Table 5.8). Again by comparing the first 

percentage mass loss at 427 °C, 84.62 % (Table 5.8), to the theoretical mass loss of 

the polymer, 90.57 % (Table 5.6), a shielding effect is once again observed. A value 

close to the theoretical value is reached at 551 °C where the mass loss is 92.20 %. 

For the film prepared from the multi-layer particles (HM-505) three drops in mass 

are observed the first at 427 °C, the same as the previous examples, the second is a 

small bump at 504 °C and then the final shoulder at 579 °C. The shoulder for the 

multi-layer particles extends to a higher temperature than the previous two films 

suggesting a slight increased thermal stability. 

Table 5.5 Table showing final monomer conversion and composition of polymer films. 

Exp. Film 
Laponite:Monomer 

(g g-1) 

Xm 

(%) 

HM-501 P(Sty-co-BA) 0.00 99.8 

HM-502 Laponite armoured 0.10 100.0 

HM-503 Laponite core-shell 0.10 100.0 

HM-505 Multi-layered 0.05 99.0 
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Table 5.6 Table showing the theoretical mass loss, calculated from relative masses, of the films 
broken down into its substituents; % mass loss of film due to complete polymer calcination and % 
mass loss of film due to Laponite clay. 

Exp. Film 
Mass Loss % 

Polymer  
(Theory) 

Mass Loss % 
Laponite  

(Theory) 

Total Mass 
Loss (%) 

(Theory) 

HM-501 P(Sty-co-BA) 100  100.00 

HM-502 Laponite armoured 90.96 0.60 91.56 

HM-503 Laponite core-shell 90.57 0.62 91.19 

HM-505 Multi-layered 94.78 0.34 95.12 

 

Table 5.7 Table comparing theoretical and experimental mass loss (%) of films when heated to 1000 
°C at a rate of 10 °C min-1, where experimental mass loss is measured by TGA. 

Exp. Film 
Mass Loss (Theory) 

(%) 

Mass Loss (TGA) 

(%) 

HM-501 P(Sty-co-BA) 100 100.00 

HM-502 Laponite armoured 91.56 92.85 

HM-503 Laponite core-shell 91.19 92.20 

HM-505 Multi-layered 95.12 96.01 

 

Table 5.8 Table illustrating temperature at points of mass loss and percentage of mass lost at said 
temperature. 

Exp. Film 
Mass Loss 1 Mass Loss 2 Mass Loss 3 

T (°C) Mass (%) T (°C) Mass (%) T (°C) Mass (%) 

HM-501 
P(Sty-co-

BA) 
427 100.00     

HM-502 
Laponite 
armoured 

427 85.70 537 7.15   

HM-503 
Laponite 
core-shell 

427 84.62 551 7.58   

HM-505 
Multi-
layered 

427 90.28 504 1.65 579 4.08 



Chapter 5: Multi-Layered Particles 

 

  
259 

 
  

The thermal stability of polymer-clay nanocomposite films is thought to 

derive from a decrease in thermal motion of the polymer when in close contact with 

the clay; the polymer in close vicinity to the clay is thermally shielded from 

degradation to a higher temperature.88-91 This explains the difference in the number 

of shoulders present in the TGA; no shoulder, one shoulder and two shoulders could 

be explained by the number of polymer clay interfaces in the sample, ignoring the 

interstitial polymer from the diffusion step of film formation as the amount is very 

small so will not be distinct in the TGA plot and can therefore be deemed negligible 

in comparison (Figure 5.39). In the case where the film is prepared from the 

poly(styrene-co-n-butyl acrylate) particles (HM-501) a homogenous film is produced 

with no polymer-clay interface and no shoulder is observed. In the cases of the 

Laponite armoured particles (HM-502) and core-shell Laponite particles (HM-503) 

one type of polymer-clay interface is found, the internal polymer to the honey-comb 

structured Laponite network, for both these films only one shoulder is observed. For 

the films prepared from the multi-layer particles (HM-505) there are two polymer-

clay interfaces the internal polymer-Laponite and the Laponite-external (interstitial 

in the film) polymer, in this case two shoulders are observed in the TGA. 

Additionally having two interfaces drastically increases the polymer-clay surface 

area, increasing the temperature of complete polymer combustion. 
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Figure 5.39 Scheme illustrating the effect of morphology on thermal stability of polymer. 

From the TGA of the polymer-composite films we know that complete 

degradation occurs above 530 °C, therefore we performed an isothermal TGA at 500 

°C for two hours to calcine the majority of the polymer (Figure 5.41), leaving some 

char so that we could image the remaining porous structure by SEM thus illustrate 

the formation of a the honeycomb structure and obtain structural information on the 

different films (Figure 5.40). The Laponite armoured poly(styrene-co-n-butyl 

acrylate) (HM-502) film shows a clear porous honey-comb structure where the edges 

are a combination of Laponite clay and char. It is important to note that Laponite 

alone cannot be visualised by SEM as it does not have a high enough resolution. The 

core-shell Laponite particles (HM-503) show a similar internal structure to HM-502. 

However, qualitatively speaking the Laponite edges appear much thicker in the case 

of HM-503, this is likely a direct result from the composite Laponite, MPTMS and 

poly(styrene-co-n-butyl acrylate) shell. Comparison of TGA’s performed to 1000 °C 

and the 500 °C isothermal illustrate that this is not an effect of the amount of char 

remaining as this is small, in fact in terms of % mass HM-502 appears to have 

retained a greater amount of char (Table 5.9) The multi-layered particles (HM-505) 

appear to have a less well-defined porous network, this is possibly due to collapse of 
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the distributed Laponite rings as the interstitial polymer (outer-shell of particle) is 

calcined. 

 

Figure 5.40 SEM images of films of (a) Laponite armoured particles (HM-502), (b) Laponite core-
shell particles (HM-503) and (c) multi-layered particles (HM-505) after being heated to 500 °C for 
two hours. 
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Figure 5.41 TGA of films formed from Laponite armoured particles (HM-502) (), Laponite core-
shell particles (HM-503) () and multi-layered particles (HM-505) (). Samples were heated to 500 
°C at a rate of 10 °C min-1, after which the 500 °C temperature was maintained for two hours. The 
dashed line represents the start of the 500 °C isothermal. 

Table 5.9 Table comparing final mass (%) when sample is heated to 1000 °C and after a two hour 
isothermal at 500 °C. Char remaining is the difference between mass remaining at 1000 °C and 500 
°C. 

Exp. Film 

Mass Remaining 

@ 1000 °C 

(%) 

Mass Remaining 

@ 500 °C 

(%) 

Difference in 
Char Remaining 

(%) 

HM-502 
Laponite 
armoured 

7.147 7.794 0.647 

HM-503 
Laponite 
core-shell 

7.803 8.192 0.389 

HM-505 Multi-layered 3.987 4.447 0.460 
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5.4.	Conclusions	

In conclusion, we have developed a method that we believe produces multi-

layered composite particles, wherein the inner shell is composed of Laponite clay 

platelets. This was achieved by overcoming the desire of the clay platelets to reside 

at the polymer-water interface through immobilization by cross-linking the clay with 

a tri-functional silylating agent. We have shown that the morphology of composite 

particles (bare, armoured, core-shell and multi-layer) greatly affects the thermal and 

mechanical properties of the subsequent films formed. Increasing polymer-clay 

surface area, as in the case of multi-layer particles, significantly contributes to the 

thermal stability of the film. Contrastingly, films formed from these multi-layer 

particles show a severe decrease in mechanical strength when compared to the 

armoured and core-shell particle morphologies due to the lack of an inorganic honey-

comb structure. We propose that through further work in controlling the outer-shell 

thickness it may be possible to tune the mechanical and thermal properties thus 

enabling fine tuning of bulk properties through control of morphology on the 

nanometre scale. 
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5.5.	Experimental	

5.5.1.	Materials	

Styrene and n-butyl acrylate were purchased from Aldrich at purities ≥ 

99.0%. The initiator ammonium persulfate (APS) and 3-methacryloxypropyl 

trimethoxysilane (MPTMS) were purchased from Aldrich. Laponite XLS was kindly 

donated by Rockwood Additives Ltd. All chemicals were used as received unless 

otherwise stated. Lacey carbon film 300 mesh copper TEM grids and SEM specimen 

stubs were purchased prom Agar Scientific. Silicon wafers for mounting SEM 

samples were kindly donated by Wacker Chemie AG. 

5.5.2.	Equipment	

Emulsion polymerizations were carried out in 250 mL Radley Reactor-Ready 

Duo double-walled glass reactors equipped with an external heating bath (Julabo F-

25 unit), a Teflon overhead anchor stirrer fitted approximately 2 cm from the bottom 

of the reactor vessel (Radley) typically running at 250 rpm. Monomer was fed into 

the reaction mixture with a Harvard Instrument PHD 2000 Infusion syringe pump. 

Particle sizes and dispersities were measured by dynamic light scattering using a 

Malvern Zetasizer Nano using a 173° backscattering angle, at 25 °C, with an 

equilibration time of 120 s and an average of 3 measurements each with a minimum 

of 12 sub-runs were taken. Cryo-TEM analysis was performed on a Jeol 2010F TEM 

(200kV FEG) fitted with a Gatan Ultrascan 4000 camera; samples were prepared by 

adding a drop of diluted latex to a suspended lacey carbon grid, wicking the excess 

liquid away with filter paper and plunging into liquid ethane. SEM was performed 

on a Zeiss SUPRA 55-VP FEGSEM; sample were prepared by adding a aqueous 

drop of diluted sample to a silicon wafer and drying at room temperature for 12 

hours, the sample was subsequently carbon coated with a carbon evaporator for 4 
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seconds. DMTA measurements were performed on a Triton Tritec Dynamic 

Mechanical Thermal Analyser. Stress-strain measurements were performed in tensile 

mode on films of approximate dimensions of 10 x 2 x 0.3 mm; dimensions were 

measured using a micrometer, where length was determined by apparatus geometry. 

Measurements were performed at 25 °C, with a rate of 0.1 N min-1 and a maximum 

load of 3 N, with no relaxation, an average of 3 measurements were taken. 

Temperature sweep measurements were performed in three-point bending mode, 

within the temperature range of -80 to 120 °C with a heating rate of 2 °C min-1, at 1 

and 10 Hz and with a displacement of 0.02 mm. The films had approximate 

dimensions of 10 x 3 x 1 mm, the dimensions were measured using a micrometer, 

where length was determined by apparatus geometry. DSC measurements were 

performed on a Mettler Toledo DSC1-400, within the mass range of 10-25 mg, with 

a heating rate of 1 °C min-1. TGA measurements were performed on a Mettler 

Toledo DSC1-Star using 70 μL alumina pans, with a heating rate of 10 °C min-1. 

5.5.3.	Particle	synthesis	

5.5.3.1.	Poly(styrene‐co‐n‐butyl	acrylate)	emulsion	(HM‐501)	

180.0 g of deionised water was placed under a nitrogen atmosphere in a 250 

mL double walled glass reactor by purging for 20 minutes. Styrene (8.00 g) and n-

butyl acrylate (12.00 g) (total monomer, 10.0 wt.%) was added and the mixture was 

degassed for a further 5 minutes and then heated to 70 °C whilst stirring at 250 rpm. 

Emulsion polymerization was initiated upon addition of 0.15 g APS dissolved in 1 g 

of water. Monomer conversion was monitored via gravimetry by taking ~1.5 mL 

samples by syringe. Conversion: 99.8 %. Particle size (dz): 631.3 nm. PDI: 0.002. 
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5.5.3.2.	Typical	Laponite	stabilized	emulsion	(HM‐502)	

2.00 g Laponite clay XLS was dispersed in 179 g of deionized water and 

placed in under a nitrogen atmosphere in a 250 mL double walled glass reactor by 

purging for 20 minutes. Styrene (8.00 g) and n-butyl acrylate (12.00 g) (total 

monomer, 10.0 wt.%) was added and the mixture was degassed for a further 5 

minutes and then heated to 70 °C whilst stirring at 250 rpm. Emulsion 

polymerization was initiated upon addition of 0.15 g APS dissolved in 1 g of water. 

Monomer conversion was monitored via gravimetry by taking ~1.5 mL by syringe. 

Conversion: 100.0 %. Particle size (dz): 131.9 nm. PDI: 0.004. Final pH: 8.41. 

5.5.3.3.	Cross‐linking	of	Laponite	

Typical solids stabilized emulsion procedure was followed (above). At 6 

hours 0.10 g MPTMS (0.5 wt.% with respect to monomer and 2.83 mM with respect 

to water) was shot added to the reaction. Monomer conversion was monitored via 

gravimetry by taking ~1.5 mL by syringe. Final pH: 8.32. 

Table 5.10 Table of reagent quantities. 

Exp. 
Laponite 

(g) 

Sty 

(g) 

BA 

(g) 

MPTMS 

(g) 

Water 

(g) 

(APS) 

(g) 

BL-067 2.00 7.96 11.94 0.10 181.24 0.15 

HM-4-503 2.00 8.00 12.02 0.10 180.21 0.15 

 

Table 5.11 Table showing conversion particle size and dispersity of particles. 

Exp.  
Xm 

(%) 

dz 

(nm) 
DI 

BL-067 End 99.2 127.7 0.06 

HM-503 
Before MPTMS 95.39 124.7 0.049 

End 100.0 126.9 0.025 
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5.5.3.4.	MPTMS	introduced	at	t0	

Typical solids stabilized emulsion procedure was followed (above). At t0 

0.10 g MPTMS (0.5 wt.% with respect to monomer and 2.83 mM with respect to 

water)was shot added to the reaction. Monomer conversion was monitored via 

gravimetry by taking ~1.5 mL by syringe. Final pH: 8.66 

Table 5.12 Table of reagent quantities. 

Exp. 
Laponite 

(g) 

Sty 

(g) 

BA 

(g) 

MPTMS 

(g) 

Water 

(g) 

(APS) 

(g) 

HM-504 2.00 8.01 12.01 0.10 180.20 0.15 

BL-050 2.00 7.97 11.95 0.10 181.41 0.15 

 

Table 5.13 Table showing monomer conversion, particle size and dispersity of particles. 

Exp. 
Xm 

(%) 

dz 

(nm) 
DI 

HM-504 100 160.2 0.059 

BL-050 98.6 157.3 0.055 

 

5.5.3.5.	Multi‐layer	particles	prepared	by	encapsulation	of	Laponite	stabilized	

latex	in	poly(styrene‐co‐n‐butyl	acrylate)	

Typical solids stabilized emulsion procedure was followed (above) at 6 hours 

0.10 g MPTMS was introduced by shot addition to the reaction, at 7 hours 20 mL of 

styrene and n-butyl acrylate (40:60 wt.%) was fed at 2.5 mL h-1. Monomer 

conversion was monitored via gravimetry by taking ~1.5 mL sample by syringe. 

Final pH: 8.10. 
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Table 5.14 Table of encapsulation of Laponite stabilized poly(styrene-co-n-butyl acrylate) latex 
before encapsulating feed. 

Sample 
Sty 

(g) 

BA 

(g) 

Laponite 

(g) 

Water 

(g) 

APS 

(g) 

MPTMS 

(g) 

HM-506 8.00 12.01 2.00 179.8 0.15 0.10 

HM-505 8.02 12.02 2.00 180.0 0.15 0.10 

HM-507 8.01 12.01 2.00 180.0 0.15 0.10 

 

Table 5.15 Table of encapsulation of Laponite stabilized (styrene-co-n-butyl acrylate) latex. Amounts 
of monomer stated are those from the feed. 

Sample 
Sty 

(g) 

BA 

(g) 

Feed 
Rate 

(mL h-1) 

Xm 

(%) 

dz 

(nm) 
DI 

Average Xm 
during feed 

(%) 

HM-506 7.19 10.78 3.33 1.01 171.9 0.091 82.81 

HM-505 7.19 10.78 2.5 0.99 171.0 0.035 90.93 

HM-507 7.19 10.78 1.5 0.91 172.6 0.081 88.47 
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Chapter	6:	Conclusions	and	Outlook	
In this thesis we have explored two areas particle encapsulation and 

modification and responsive microgels. In this Chapter we discuss the conclusions of 

the work presented in this thesis and discuss future work and potential applications. 

Chapter 2 investigated the encapsulation of non-spherical, sub-micron 

calcium carbonate particles, from which we produced hollow non-spherical particles. 

We also touched upon the potential to use this encapsulation method to prepare 

nano-rattles. Further investigation into the versatility of the encapsulating 

polymerization by encapsulating other pigment particles such as titanium dioxide or 

phthalocyanine blue would be of great interest. Further analysis is needed of the 

morphology of the silica-CaCO3 particles (cross-sections prepared by FIB-SEM) 

and nano-rattle structure by TEM and EDX. 

Chapter 3 described modification by thiol-ene Michael addition of the 

polymer encapsulated calcium carbonate particles synthesized in Chapter 2. We 

determined, by Raman spectroscopy and quantitative analysis of pendant vinyl 

groups by bromination titrations, that small hydrophilic (2-mercaptoethanol) and 

hydrophobic (1-dodecanethiol) molecules were found to not only react with the 

surface vinyl groups but penetrated the polymer shell to consume all pendant vinyl 

groups. Contrastingly ω-thiol functionalized poly(styrene) only reacted with 22 % of 

the pendant vinyl groups. Further investigations to determine whether surface 

modification does in-fact alter the dispersibility of these composite particles. This 

could be achieved by dispersing poly(styrene) modified poly(PETA) within a 

poly(styrene) polymer melt followed by investigation of polymer melt rheology and 

mechanical analysis to determine the effect of the modification. 
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Chapter 4 explored the polymerization of DEGDA and MAA in the absence 

of calcium carbonate; it was found that stable microgel particles were formed, which 

exhibited pH responsive behaviour, wherein poly(DEGDA-co-MAA) particles 

swelled to 49 times their volume when the pH was adjusted to 8. We utilized this pH 

responsiveness to investigate gelling of the microgels; gels formed at 0.036 polymer 

volume fraction. We also investigated their performance as Pickering stabilizers for 

dodecane-in-water emulsions, from which highly concentrated emulsions were 

formed which gelled at high pH. Further investigation into gelling behaviour of the 

microgels at various pHs is required. Cryo-SEM analysis of emulsions stabilized 

with these microgel particles would provide invaluable information on their 

structure and would provide insight into their wettability at various pHs. 

Chapter 5 investigated the synthesis and analysis of multi—layered 

composite particles where the inner-shell is composed of a layer of immobilized 

Laponite clay. We explored the effect of particle morphology on the bulk properties 

of films through mechanical and thermal analysis. Cryo-TEM of the multi-layered 

particles is required to determine the particles morphology. Analysis of film 

structure by analysing cross-sections (prepared by FIB-SEM)  using cryo-TEM 

would provide much needed information to fully justify findings from mechanical 

and thermal analysis. 
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Appendix	I:	Characterization	of	Colloids	

I.1.	Gravimetry	

Polymer conversion was measured by gravimetry, where samples were taken 

during and at the end of the reaction. Samples were weighed immediately as they 

were taken from the reaction vessel (MWet), and after drying they were weighed 

again (MDry). During drying we assume that all water and unreacted monomer 

evaporates. Monomer conversion Xm is calculated using the following equation: 

 ܺ௠ ൌ ቆ
஽௥௬ܯ

ௐ௘௧ܯ
െ
଴,ௌ௢௟௜ௗܯ

଴,்௢௧௔௟ܯ
ቇ ൈ ቆ

଴,்௢௧௔௟ܯ

଴,ெ௢௡௢௠௘௥ܯ
ቇ (I.1) 

Where M0,Solid is the mass of any solid added into the reaction, such as 

surfactant or pigment, M0,	 Total is the total mass of the system and M0,Monomer is the 

mass of monomer added to the reaction. 

I.2.	Electrophoretic	Light	Scattering	

Electrophoretic light scattering measures the electrophoretic mobility of 

charged particles relative to the liquid they are suspended in. Electrophoretic 

mobility is the velocity of a particle in a unit electric field; in addition to Brownian 

motion, charged particles in an electric field move to the oppositely charged 

electrode. A liquid layer in two parts around the particle, the Stern (inner) layer 

where ions are strongly bound to the particles surface and the diffuse (outer) layer 

where the ions are more loosely associated; the potential measured at the boundary 

of the diffuse layer (known as the slipping plane) is the zeta potential (Figure I.1). 

The zeta potential (Z) is related to the electrophoretic mobility by the Henry 

equation: 
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 ܷா ൌ
ሻܽߢሺ݂ܼߝ2

ߟ3
 (I.2) 

Where UE is the electrophoretic mobility, ε is the dielectric constant, η is the 

viscosity and f(κa) is Henry’s function where κ is the Debeye length and a is the 

radius of the particle (κa is the ratio of the particles radius to the electrical double 

layer). 

 

Figure I.1 Schematic representation of the slipping plane and the corresponding zeta potential. 

The Smoluchowski approximation is applied, this assumes the thickness of 

the double layer is negligible in comparison to the particle size; f(κa) is taken to be 

1.5. This approximation holds for particles greater than 200 nm in diameter and for 

aqueous media of moderate electrolyte concentration (>10-1 M). 

Electrophoretic mobility is measured using a combination of Laser Doppler 

Velocimetry and phase analysis light scattering. Two laser beams cross in the sample 
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cell to form interference fringes, when the electric field is applied the particles move 

and scatter the light. The intensity of scattered light fluctuates with a frequency 

which is related to the particle velocity, thus electrophoretic mobility. Zeta potential 

is not a measure of surface potential, however, the magnitude of the zeta potential 

provides an indication of the stability of the colloidal system. 

I.3.	Particle	Size	Measurements	

I.3.1.	Dynamic	light	scattering	

Dynamic light scattering (DLS) measures the Brownian motion of particles, 

their random movement as they are bombarded by solvent molecules, and relates this 

to their size; the smaller the particle the faster their Brownian motion. The velocity 

of Brownian motion, known as the translational diffusion coefficient is measures and 

the hydrodynamic diameter calculated using the Stokes-Einstein equation:  

 ݀ሺܪሻ ൌ
݇ܶ
ܦߟߨ3

 (I.3) 

Where d(H) is the hydrodynamic diameter, D the translational diffusion 

coefficient, k the Boltzmann’s constant, T the absolute temperature and η the 

viscosity. Hydrodynamic diameter notes that it is related to the movement through a 

fluid. 

The light of the incident beam is scattered by the dispersed particles. A 

detector at 173° records the scattered light, a speckled pattern, and measures the 

intensity fluctuations over time as this pattern changes due to the movement of 

particles; smaller particles having faster fluctuations than (Figure I.2). 
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Figure I.2 Scheme representing typical intensity fluctuations for large and small particles. 

A correlator compares the signals over time. The correlation function is an 

exponential decay; the smaller the particles the quicker the decay function due to 

faster Brownian motion and thus more rapid fluctuation of light intensity (Figure 

I.3). 

 

Figure I.3 Graph of the correlation function as a function of time for small or large particles in 
dynamic light scattering measurements. 

I.3.2.	Laser	diffraction	

Dispersed colloidal particles will scatter a laser beam with an angle that is 

particle size dependent; the angle increases with decreasing particle size. Particle 

size also affects the intensity of scattered light with smaller particles exhibiting a 

decreased intensity. Mie theory is applied to the scattering pattern. Mie scattering 

takes the following assumptions: the particles are spherical, the sample is dilute and 

the optical properties of the sample and dispersant are known. Although the theory 
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assumes the particles to be spherical non-spherical particles can be measured, in this 

case an equivalent spherical diameter is given. 

I.4.	Electron	Microscopy	

Electron microscopy is similar in principle to optical microscopy, but light is 

replaced by an electron beam. High vacuum is required for propagation of the 

electron beam. The electrons are accelerated by an electrical potential and are 

focussed by a series of electromagnetic lenses. The resolution of the image is 

question is determined by the wavelength of the beam, light has a wavelength of 

approximately 400 nm, the wavelength of an electron beam is proportional to the 

accelerating voltage, for example at 20 keV the equivalent wavelength is 0.01 nm.  

I.4.1.	Scanning	electron	microscopy	

SEM produces topographical images of the sample by detecting the intensity 

of backscattered and escaping secondary electrons. Electron potentials in the range 

of 1-30 keV can be used, higher electron potentials provide greater resolution, 

though can be damaging to softer materials (i.e. low Tg polymers). If not conducting, 

the sample must be coated in a thin layer of conductive material, either carbon by 

carbon evaporation or a metallic layer of Au, AuPd or Pt by sputter coating. The 

conductive surface prevents the accumulation of negative charge and deflection of 

the imaging beam. The conductive layer can cause artefacts in the image. 

I.4.2.	Transmission	electron	microscopy	

TEM uses a higher electron potential than SEM, in the range of 80 kV to 1 

MV, resulting in a much higher resolution. Transmission relays that the electron 

beam passes through the sample, thus only very thin samples can be analysed. 

Contrast is obtained from partial scattering of the electron beam passing through the 
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sample; the higher the electron density of the material the stronger the electron 

scattering resulting in a darker contrast of the image. 

Cryo-TEM is where the water-borne sample is frozen and is used for very 

soft materials (such as polymers with low Tg) or to image in solution; this is 

achieved by plunging the grid with a thin layer of water containing the particles into 

liquid ethane, this rapidly freezes the sample resulting in amorphous ice (crystalline 

ice yields artefacts and reduces resolution, trapped ethane can also produce artefacts 

in the image). 

I.5.	Rheology	

Rheology describes the flow of materials. Viscosity describes the resistance 

or stress (Pa) of a material with respect to an applied force, in this case shear rate    

(s-1). 

ݕݐ݅ݏ݋ܿݏܸ݅ ൌ 	
ݏݏ݁ݎݐܵ	ݎ݄ܽ݁ܵ
݁ݐܴܽ	ݎ݄ܽ݁ܵ

 

The profile of the plot of viscosity vs. shear strain indicates whether the 

material is Newtonian (i.e. viscosity is unaffected by shear rate), shear thinning (i.e. 

on increasing shear rate viscosity decreases) or shear thickening (i.e. on increasing 

shear rate viscosity decreases). The plot of shear stress vs. shear rate also elucidates 

on the type of material (Figure I.4). The majority of colloidal systems are shear 

thinning. Some materials have a yield stress, an increasing viscosity as shear rate 

tends to zero, indicating solid like behaviour when at rest. Alternatively a material 

may exhibit a Newtonian plateau, which describes liquid like behaviour as shear rate 

tends to zero. These are observed in the Log plot of shear viscosity vs. shear rate 

(Figure I.5). 
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Figure I.4 Scheme of shear stress vs. shear rate, illustrating changes in plot for Newtonian and non-
Newtonian materials. 

 

Figure I.5 Scheme illustrating the appearance of a yield stress and zero shear viscosity on a log plot 
of viscosity vs. shear rate. 

We can also define a materials viscoelastic behaviour by probing the 

response to oscillatory deformation and frequency sweep. Oscillatory analysis 

characterizes viscoelastic behaviour by applying a sinusoidal force (shear stress) and 

measuring the displacement (strain) (Figure I.6). The modulus, or stiffness, of the 

material is defined by shear stress divided by shear strain. 
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Figure I.6 Scheme indicating relationship between applied stress and measure strain for viscoelastic 
materials. 

The phase angle is the lag between the applied and measured sinusoidal 

signal and describes the ratio of viscous and elastic properties (Figure I.7). 

 

Figure I.7 Illustration of the phase angle as a result the lag between applied and measured sinusoidal 
signals. 

For a purely elastic material (solid-like behaviour) the sinusoidal curve of 

applied stress and measured strain are in phase as it exhibits instantaneous 

deformation on applied force, thus δ = 0°. For a purely viscous material (liquid-like 

behaviour) the sinusoidal curve of applied stress and measured strain are a quarter of 

a cycle out of phase, thus δ = 90° (Figure I.8). 



Appendix I: Characterization of Colloids 

 

 	
285 

	
	 	

 

Figure I.8 Illustration of the phase angle of purely elastic and purely viscous materials. 

From this we can define the storage (elastic) modulus (G’) and the loss 

(viscous) modulus (G”): 

ᇱܩ ൌ
ݏݏ݁ݎݐܵ
݊݅ܽݎݐܵ

ൈ  ߜ݊݅ܵ

ᇱᇱܩ ൌ
ݏݏ݁ݎݐܵ
݊݅ܽݎݐܵ

ൈ  ߜݏ݋ܥ

If G’ > G”, δ < 45°, thus the material is solid-like. If G’ < G”, δ > 45°, thus 

the material is liquid-like. Amplitude sweep oscillatory measurements illustrate the 

stability of a material; it is used to determine the linear viscoelastic region (LVR), 

ensuring subsequent measurements are under conditions that will not destroy the 

material. A frequency sweep is used to classify a material (Figure I.9). 

 

Figure I.9 Illustration of plots produced from a frequency sweep for viscoelastic solids, viscoelastic 
liquids and gels. 
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Appendix	II:	Complement	to	Chapter	2	

II.1.	Raw	Zeta	Potential	Data	

Table II.1 Raw data for zeta potential measurements as a function of [NaCl] for calcium carbonate 
(SOCAL P3) (Figure 2.14). 

[NaCl] 

(mol dm-3) 

Zeta Potential 

(mV ± S.D.) 

Mobility 

(µmcm/Vs ± S.D.) 

Conductivity 

(mS/cm ± S.D.) 

0 10.7 ± 0.500 0.8402 ± 0.03931 0.0477 ± 0.00182 

0.001 11.7 ± 0.268 0.9167 ± 0.02152 0.164 ± 0.00378 

0.005 10.2 ± 0.750 0.8009 ± 0.05924 0.621 ± 0.0185 

0.01 9.01 ± 0.479 0.7065 ± 0.03755 1.28 ± 0.0622 

0.05 7.42 ± 0.786 0.5816 ± 0.06160 5.49 ± 0.117 

0.1 5.23 ± 0.807 0.4102 ± 0.06322 10.7 ± 0.446 

0.5 3.23 ± 0.907 0.3735 ± 0.07109 45.6 ± 1.56 

1 0.055 ± 0.200 0.04501 ± 0.06288 86.8 ± 1.20 
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Table II.2 Raw data for zeta potential measurements as a function of pH for calcium carbonate 
(SOCAL P3) (Figure 2.15). 

pH 
Zeta Potential 

(mV ± S.D.) 

Mobility 

(µmcm/Vs ± S.D.) 

Conductivity 

(mS/cm ± S.D.) 

8.56 16.03 ± 0.472 1.257 ± 0.03721 0.161 ± 0.00197 

9.10 16.03 ± 0.520 1.256 ± 0.04202 0.0835 ± 0.00132 

9.33 12.25 ± 0.967 0.9612 ± 0.07584 0.0459 ± 0.00127 

9.51 14.37 ± 0.952 1.125 ± 0.07427 0.135 ± 0.00216 

10.00 12.97 ± 0.403 1.016 ± 0.03062 0.0515 ± 0.000774 

10.62 3.07 ± 0.511 0.2404 ± 0.04077 0.106 ± 0.00114 

10.97 1.01 ± 0.530 0.07956 ± 0.04167 0.184 ± 0.00274 

11.27 0.614 ± 0.490 0.04819 ± 0.03852 0.342 ± 0.00515 

11.32 -4.89 ± 0.721 -0.3834 ± 0.05652 0.423 ± 0.00882 

11.75 -5.72 ± 1.08 -0.4482 ± 0.08482 1.04 ± 0.0386 

11.88 -41.22 ± 1.39 -3.230 ± 0.1104 1.35 ± 0.0528 

11.98 -13.00 ± 1.61 -1.023 ± 0.1298 1.84 ± 0.0872 

12.28 -13.28 ± 2.11 -1.039 ± 0.1664 1.04 ± 0.0386 

12.36 -16.7 ± 1.35 -1.311 ± 0.1055 5.11 ± 0.402 
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Table II.3 Raw data for zeta potential measurements as a function of [NaCl] for calcium carbonate 
particles encapsulated in a poly(MAA-co-DEGDA) shell (Figure 2.22). 

[NaCl] 

(mol dm-3) 

Zeta Potential 

(mV ± S.D.) 

Mobility 

(µmcm/Vs ± S.D.) 

Conductivity 

(mS/cm ± S.D.) 

0.001 -29.1 ± 0.542 -2.280 ± 0.04358 0.187 ± 0.00264 

0.005 -34.4 ± 0.953 -2.696 ± 0.07418 0.705 ± 0.0285 

0.01 -35.7 ± 1.59 -2.799 ± 0.1248 1.29 ± 0.0776 

0.05 -28.2 ± 1.07 -2.210 ± 0.08258 5.38 ± 0.127 

0.1 -26.4 ± 1.61 -2.064 ± 0.1265 11.5 ± 0.440 

0.5 -20.8 ± 1.43 -1.628 ± 0.1137 46.6 ± 0.972 

1 -13.8 ±1.50 -1.085 ± 0.115 86.5 ± 2.43 

 

Table II.4 Raw data for zeta potential measurements as a function of [NaCl] for calcium carbonate 
encapsulated in poly(MAA-co-DEGDA) primer followed by a poly(MMA) shell (HM-4-136) (Figure 
2.30). 

[NaCl] 

(mol dm-3) 

Zeta Potential 

(mV ± S.D.) 

Mobility 

(µmcm/Vs ± S.D.) 

Conductivity 

(mS/cm ± S.D.) 

0.001 -29.5 ± 0.378 -2.309 ± 0.03058 0.179 ± 0.00472 

0.005 -33.6 ± 1.14 -2.637 ± 0.08805 0.704 ± 0.0293 

0.01 -34.8 ± 1.65 -2.727 ± 0.1297 1.33 ± 0.0760 

0.05 -28.6 ± 1.56 -2.238 ± 0.1214 5.75 ± 0.137 

0.1 -26.8 ± 1.57 -2.101 ± 0.1252 11.1 ± 0.397 

0.5 -17.6 ± 1.15 -1.382 ± 0.08954 46.8 ± 0.969 

1 -11.7 ± 0.920 -0.9194 ± 0.07290 86.5 ± 2.55 
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Table II.5 Raw data for zeta potential measurements as a function of pH for amorphous calcium 
carbonate (Figure2.40). 

pH 
Zeta Potential 

(mV ± S.D.) 

Mobility 

(µmcm/Vs ± S.D.) 

Conductivity 

(mS/cm ± S.D.) 

7.50 -21.4 ± 1.12 -1.675 ± 0.08710 0.224 ± 0.00273 

8.04 -15.3 ± 1.65 -1.201 ± 0.1304 0.167 ± 0.00240 

8.43 -12.5 ± 1.47 -0.9837 ± 0.1144 0.201 ± 0.0033 

8.51 -6.18 ± 1.82 -0.4841 ± 0.1427 0.174 ± 0.00179 

9.02 -2.04 ± 1.64 -0.1596 ± 0.1282 0.117 ± 0.000894 

9.49 -0.0353 ± 0.149 -0.002762 ± 0.0165 0.00444 ± 0.0062 

10.08 -12.9 ± 0.737 -1.016 ± 0.05752 0.109 ± 0.0012 

10.95 -16.0 ± 1.11 -1.255 ± 0.08709 0.309 ± 0.00417 

 

Table II.6 Raw data for zeta potential measurements as a function of pH for amorphous calcium 
carbonate-silica composite particles (Figure2.40). 

pH 
Zeta Potential 

(mV ± S.D.) 

Mobility 

(µmcm/Vs ± S.D.) 

Conductivity 

(mS/cm ± S.D.) 

7.65 -19.1 ± 0.924 -1.498 ± 0.07157 0.662 ± 0.0243 

8.14 -22.8 ± 0.869 -1.782 ± 0.06888 0.550 ± 0.0177 

8.47 -23.5 ± 1.07 -1.839 ± 0.08290 0.343 ± 0.00824 

8.97 -25.6 ± 0.599 -2.003 ± 0.04646 0.204 ± 0.00378 

9.54 -27.5 ± 0.717 -2.003 ± 0.04646 0.123 ± 0.00216 

9.88 -32.3 ± 0.483 -2.535 ± 0.03835 0.0814 ± 0.00133 

10.00 -32.5 ± 0.522 -2.547 ± 0.04182 0.0876 ± 0.00129 

10.59 -43.3 ± 1.01 -3.398 ± 0.8005 0.221 ± 0.0048 

10.91 -46.6 ± 0.607 -3.651 ± 0.04741 0.288 ± 0.00565 
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II.2.	Repeated	Conversion	Plots	for	CaCO3	Encapsulation	

 

Figure II.1 Overall monomer conversion, Xm, versus time for the encapsulation of calcium carbonate 
(HM-4-120, repeat of HM-3-014). Feed 1; MAA and DEGDA mixture. Feed 2; DEGDA. Monomer 
was fed at a rate of 0.5 mL h-1. 

 

Figure II.2 Overall monomer conversion; Xm vs. time of encapsulation of calcium carbonate (HM-4-
136, repeat of HM-3-006). Feed 1; MAA and DEGDA mixture. Feed 2; DEGDA. Feed 3; MMA feed. 
Fhe first two feeds were fed at a rate of 0.5 mL h-1 and MMA was fed at a rate of 1 mL h-1. 
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II.3.	EDAX	Analysis	of	Calcium	Carbonate‐Silica	

Composite	Particles	

Table II.7 Table of wt.% of silica in amorphous CaCO3 particles formed in the presence of Ludox 
calculated from EDAX measurements. 

Number Wt.% Silica 

1 4.595 

2 4.920 

3 4.915 

4 4.055 

5 4.491 

6 3.762 

Average 4.456 
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Appendix	III:	Complement	to	Chapter	3	

III.1.	Additional	Images	of	Composite	Particles	

 

Figure III.1 SEM images of (a) poly(DEGDA)-C particles (HM-301), (b) poly(PETA)-C and (c) 
poly(DPEPHA)-C particles ((a) scale bar: 200 nm. (b-c) scale bar: 100 nm). 

 

Figure III.2 Cryo-TEM images of (a) hollowed poly(DEGDA)-C particles (HM-304) and (b) 
hollowed poly(DPEPHA)-C particles (scale bar: 200 nm). 



Appendix III: Complement to Chapter 3 

 

 	
293 

	
	 	

III.2.	Zeta	Potential	Data	

 

Figure III.3 Graph of zeta potential of bare CaCO3 particles (Socal P3) (), poly(DEGDA)-C 
particles (HM-301) (), poly(PETA)-C particles () (HM-302) and poly(DPEPHA)-C particles () 
(HM-303) as a function of salt (NaCl) concentration. Zeta potential measurements were performed at 
pH 9.3 and an average of 6 measurements was recorded. 

Table III.1 Raw data for zeta potential measurements as a function of [NaCl] for calcium carbonate 
(SOCAL P3). 

[NaCl] 

(mol dm-3) 

Zeta Potential 

(mV ± S.D.) 

Mobility 

(µmcm/Vs ± S.D.) 

Conductivity 

(mS/cm ± S.D.) 

0 10.7 ± 0.500 0.8402 ± 0.03931 0.0477 ± 0.00182 

0.001 11.7 ± 0.268 0.9167 ± 0.02152 0.164 ± 0.00378 

0.005 10.2 ± 0.750 0.8009 ± 0.05924 0.621 ± 0.0185 

0.01 9.01 ± 0.479 0.7065 ± 0.03755 1.28 ± 0.0622 

0.05 7.42 ± 0.786 0.5816 ± 0.06160 5.49 ± 0.117 

0.1 5.23 ± 0.807 0.4102 ± 0.06322 10.7 ± 0.446 

0.5 3.23 ± 0.907 0.3735 ± 0.07109 45.6 ± 1.56 

1 0.055 ± 0.200 0.04501 ± 0.06288 86.8 ± 1.20 
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Table III.2 Raw data for zeta potential measurements as a function of [NaCl] for calcium carbonate 
encapsulated in poly(MAA-co-DEGDA). 

[NaCl] 

(mol dm-3) 

Zeta Potential 

(mV ± S.D.) 

Mobility 

(µmcm/Vs ± S.D.) 

Conductivity 

(mS/cm ± S.D.) 

0.001 -29.1 ± 0.542 -2.280 ± 0.04358 0.187 ± 0.00264 

0.005 -34.4 ± 0.953 -2.696 ± 0.07418 0.705 ± 0.0285 

0.01 -35.7 ± 1.59 -2.799 ± 0.1248 1.29 ± 0.0776 

0.05 -28.2 ± 1.07 -2.21 ± 0.08258 5.38 ± 0.127 

0.1 -26.4 ± 1.61 -2.064 ± 0.1265 11.5 ± 0.440 

0.5 -20.8 ± 1.43 -1.628 ± 0.1137 46.6 ± 0.972 

1 -13.8 ±1.50 -1.085 ± 0.115 86.5 ± 2.43 

 

Table III.3 Raw data for zeta potential measurements as a function of [NaCl] for calcium carbonate 
encapsulated in poly(MAA-co-DEGDA-co-PETA). 

[NaCl] 

(mol dm-3) 

Zeta Potential 

(mV ± S.D.) 

Mobility 

(µmcm/Vs ± S.D.) 

Conductivity 

(mS/cm ± S.D.) 

0.001 -29.3 ± 0.537 -2.297 ± 0.4116 0.178 ± 0.00147 

0.005 -33.5 ± 0.0961 -2.624 ± 0.07578 0.666 ± 0.0241 

0.01 -35.5 ± 0.0961 -2.781 ± 0.1518 1.28 ± 0.0740 

0.05 -28.5 ± 0.909 -2.237 ± 0.06950 5.46 ± 0.120 

0.1 -27.9 ± 1.50 -2.189 ± 0.1180 11.1 ± 0.306 

0.5 -20.1 ± 1.88 -1.584 ± 0.1488 48.0 ± 1.22 

1 -15.8 ± 1.54 -1.242 ± 0.1215 87.9 ± 2.06 
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Table III.4 Raw data for zeta potential measurements as a function of [NaCl] for calcium carbonate 
encapsulated in poly(MAA-co-DEGDA-co-DPEPHA). 

[NaCl] 

(mol dm-3) 

Zeta Potential 

(mV ± S.D.) 

Mobility 

(µmcm/Vs ± S.D.) 

Conductivity 

(mS/cm ± S.D.) 

0.001 -30.4 ± 0.167 -2.382 ± 0.01127 0.173 ±0.00351 

0.005 -36.7 ± 1.21 -2.874 ± 0.09410 0.699 ± 0.0284 

0.01 -37.5 ± 1.53 -2.937 ± 0.1185 1.37 ± 0.0826 

0.05 -29.9 ± 0.985 -2.342 ± 0.07564 5.64 ± 0.137 

0.1 -29.1 ± 0.945 -2.280 ± 0.07432 11.1 ± 0.423 

0.5 -20.7 ± 1.25 -1.625 ± 0.09847 46.9 ± 0.920 

1 -12.4 ± 1.71 -0.9762 ± 0.1340 87.5 ± 2.51 
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Appendix	IV:	Complement	to	Chapter	4	

IV.1.	Pycnometry	Data	

Table IV.1 Pycnometry of poly(DEGDA-co-MAA); sample weight was 0.3226 g and experiment 
was performed at 28.6 °C. 

Run 
Volume 

(cm3 ± S.D.) 

Density 

(g cm-3 ± S.D.) 

1 0.2268 ± 0.0004 1.4227 ± 0.0025 

2 0.2267 ± 0.0003 1.4232 ± 0.0021 

3 0.2260 ± 0.0003 1.4272 ± 0.0020 

4 0.2261 ± 0.0002 1.4265 ± 0.0013 

5 0.2261 ± 0.0002 1.4267 ± 0.0014 

Average 0.2263 ± 0.0003 1.4252 ± 0.0021 
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IV.2.	Rheology	of	Gels	

 

Figure IV.1 Frequency sweeps of (a) 5, (b) 6, (c) 7.5 and (d) 10 wt.% poly(DEGDA-co-MAA) 
microgels; storage modulus, G’, (), loss modulus, G’’, () and phase angle, δ, (). Each frequency 
sweep was repeated for three different microgels represented by a different shaped symbol; HM-409 
(), HM-410 () and HM-411 (). 
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Appendix	V:	Complement	to	Chapter	5	

V.1.	Additional	SEM	Images	

 

Figure V.1 Additional SEM images of 1 % cross-linked Laponite Pickering poly(styrene-co-n-butyl 
acrylate) encapsulated in film poly(styrene-co-n-butyl acrylate) (HM-504) (scale: 100 nm). Where a 
and b are different particles and 1 denotes the original SEM image and 2 and 3 are the image with 
increased contrast to elucidate the film formed polymer shell. The apparent hole in the images is from 
sublimed polymer as a result of high magnification (required to accurately focus the image). 
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V.2.	Temperature	Sweep	Plots	

 

Figure V.2 Storage modulus vs. temperature for (a) poly(Sty-co-BA) (HM-501), (b) Laponite 
armoured poly(Sty-co-BA) (HM-502), (c) Laponite core-shell (HM-503) and (d) multi-layered 
particles (HM-505), conducted at frequencies of 1 Hz () and 10 Hz (). 
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Figure V.3 Loss modulus vs. temperature for (a) poly(Sty-co-BA) (HM-501), (b) Laponite armoured 
poly(Sty-co-BA) (HM-502), (c) Laponite core-shell (HM-503) and (d) multi-layered particles (HM-
505), conducted at frequencies of 1 Hz () and 10 Hz (). 
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Figure V.4 Tanδ vs. temperature for (a) poly(Sty-co-BA) (HM-501), (b) Laponite armoured poly(Sty-
co-BA) (HM-502), (c) Laponite core-shell (HM-503) and (d) multi-layered particles (HM-505), 
conducted at frequencies of 1 Hz () and 10 Hz (). 
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V.3.	Additional	DSC	Data	

 

Figure V.5 DSC of poly(styrene-co-n-butyl acrylate) film (HM-4-085) (), 1% Laponite Pickering 
poly(styrene-co-n-butyl acrylate) film (HM-4-074) (), 1% cross-linked Laponite Pickering 
poly(styrene-co-n-butyl acrylate) () and 1 % cross-linked Laponite Pickering poly(styrene-co-n-
butyl acrylate)encapsulated in film poly(styrene-co-n-butyl acrylate) (HM-4-095) (). 
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Table V.1 Table of Tg of the polymer films measured by DSC. 

Exp. Film Cycle 
Tg (onset) 

(°C) 

Tg (midpoint) 

(°C) 

Average 

Tg (onset) 

(°C) 

Average 

Tg (midpoint) 

(°C) 

HM-4-085 P(Sty-co-BA)

1 -0.34 6.03 

-0.34 6.01 2 -0.37 6.02 

3 -0.32 5.99 

HM-4-074 
Laponite 
armoured 

1 1.91 7.55 

1.91 7.55 2 1.90 7.56 

3 1.91 7.55 

HM-4-113 
Laponite 
core-shell 

1 2.38 8.23 

2.35 8.21 2 2.32 8.19 

3 2.35 8.20 

HM-4-095 Multi-layered 

1 1.82 7.10 

1.89 7.09 2 1.98 7.10 

3 1.88 7.07 
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V.4.	TGA	vs.	Heatflow	Plots	

 

Figure V.6 TGA of (a) poly(Sty-co-BA) film (HM-501), Laponite armoured poly(Sty-co-BA) film 
(HM-502), (c) Laponite core-shell particles (HM-503), (d) multi-layered particles (HM-505) and (e) 
Laponite XLS; mass loss () and heatflow (). 
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