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Abstract 
This paper considers how context-independent data (content data) and context-

dependent data (metadata) about consumer choices can capture brand loyalty and 

affect the creation of new business models. We find that metadata can provide more 

precise account of consumer preferences and more accurately predict future user 

choices by increasing the visibility of user context. This implies that metadata should 

be preferred to content data to achieve more efficient business model innovation. 

 

Keywords: Big Data, content data, metadata, business models, case study 

JEL classification: M10, M31  
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Big Data, Brand Loyalty, and Business Models: Accounting for 

Imprecision and Noise in Consumer Preferences 

 
 

 1. Introduction 

On a daily basis, consumers (henceforth, users) generate large amounts of individual 

as well as household consumption data. According to IBM, in 2012 more than 2.5 

exabytes (2.5 billion gigabytes) of data was generated daily.
1
 By 2015 this number 

has grown and, according to forecasts, will continue to grow. For example, Gantz and 

Reinsel (2012) estimate that data created annually will increase from 1,200 exabytes 

in 2010 to 40,000 exabytes by 2020. Under these circumstances, businesses 

(henceforth, product and service providers) develop innovative techniques to extract 

and analyse data “on the fly” in order to create quick value propositions for the 

consumers. The availability of large masses of data catalyses the rise of the domain 

of data-driven business models (DDBM) which looks at how the data can be used in 

order to develop new and improve existing business modelling mechanisms (e.g., 

Hartmann et al. 2014). 

 

Yet, the creation of meaningful analytical tools for DDBM is complicated not only 

because of the volume of the data but also because of the complexity of human 

decision processes and the way these processes are reflected in the data. 

Particularly, household consumption data shows that users tend to make different 

choices from the same closed set of products and services (e.g., Simon, 2013). For 

example, when making grocery purchases, users tend to alternate brands of 

products they choose. This is one of the reasons why current online systems 

developed by some providers such as, e.g., Amazon, which suggest products and 

services to users and which are intended to nudge users to purchase suggested 

services and goods, have not gained much popularity (e.g., Thaler, R. H., & Sunstein, 

2008). One of the main disadvantages of the currently available purchasing data is 

that even though it allows analysts to observe consumer choices as well as provides 

them with useful demographic information about consumers; it is hard to tell 

whether observed choices are a result of consumer true preferences or merely a 

product of noise in these preferences. Analytics is particularly complicated for cases 

when users opt for products and services from different brands in different 

environments. Under these circumstances, it is important to not only pay attention 

to the models which help us analyse the data generated by consumer choices, but 

also to the types of data used for the analysis. 

 

Recent literature on servitization and business models makes a distinction between 

content data and metadata (e.g., Ng, 2013). In application to user choice, content 

data provides an account of decisions made by the users with regard to purchasing 

products or services. However, this data does not provide information about the 

context in which these decisions were made. Content data includes Big Data and 

Connected Internet-of-Things (henceforth, IoT) Data as we know it. At the same 

time, metadata refers to the data which contains specific references to the context 

                                                 
1
 See http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html for more details. 
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and gives an opportunity to understand how decision architecture (features of the 

decision environment) affects choices made by users (e.g., Hastie and Dawes, 2010). 

While content data is used to create technology-based servitization mechanisms, 

metadata places an individual user in the centre of the servitization system. A recent 

study by Parry et al. (2015) shows how a servitization system which is based on 

human-oriented approach (e.g., Sundbo and Toivonen, 2011) can function through 

metadata and finds that visibility of consumer context through metadata can 

improve reverse supply mechanisms and create more efficient supply chains. 

 

This paper considers whether and to what extent brand loyalty can be analysed and 

predicted through content data versus metadata and considers implications of 

obtained predictions for business models. We propose a simple framework which 

allows us to analyse consumer preferences in the context of daily household 

consumption and consider predictions which can be generated within this 

framework using content data and metadata from a case study. Our analysis reveals 

that user preferences can be better understood and predicted using metadata rather 

than content data which has significant impact on creating efficient DDBM. 

 

The remainder of this paper is organized as follows. Section 2 describes research 

methodology which is based on the interdisciplinary approach incorporating 

literature from decision science, service systems, and marketing. Section 3 

summarizes data and results obtained from the household case study. Section 4 

analyses how obtained case study results can influence business models. Finally, 

Section 5 concludes with the general discussion about theoretical and practical 

implications of this research as well as with an account of possible limitations and 

future directions for the research on DDBM. 

 

 2. Research Methodology 

In order to consider how content and metadata can capture brand loyalty, we 

propose a simple approach which stems from decision-theoretic literature on 

preferences, marketing literature on brand loyalty, as well as human-based 

servitization models. Decision science literature makes a conceptual distinction 

between precise, noisy, and imprecise preferences. Precise (or deterministic) 

preferences lie at the core of the majority of economic and decision-theoretic 

models. If an individual is choosing between option A and option B, such models 

predict which of the two options will be chosen by an individual. This individual 

would either prefer A to B (A≽B) or B to A (B≽A) and this precise (deterministic) 

preference will not change irrespective of the features of the decision environment 

(e.g., Kahneman and Tversky, 1979). 

 

Experimental literature from decision science reports that when making a decision 

between A and B on multiple occasions people are likely to choose different options 

(e.g., Hey and Orme, 1994), i.e., in some cases revealing a preference for A over B 

(A≽B) and in others for B over A (B≽A). This finding provides evidence against 

precise (deterministic) preferences suggesting that preferences have a stochastic 

component. To explain these choices, two approaches to stochastic preferences are 

introduced. According to one, individuals have precise preferences over options but 
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these preferences are distorted by noise or errors. For example, an individual prefers 

A to B (A≽B) but due to noise or by mistake chooses B over A (e.g., Fechner, 1966). A 

different approach suggests that individuals make different choices in different 

circumstances because they do not have precise preferences (e.g., Loomes and 

Sugden, 1995). In other words, if we sometimes observe A≽B and sometimes B≽A, 

this means that people do not have precise preferences between A and B and in 

different contexts these imprecise preferences will have different realizations. 

 

Using decision-theoretic topology of preferences, we can apply concepts of precise, 

noisy and imprecise preferences to brand choice and propose a simple mechanism 

which establishes the link between the preference type and brand loyalty (see Figure 

1). According to this mechanism, various offerings (products and services) can be 

partitioned into three categories: Green items; Yellow items and Red items. Red 

items include offerings for which an individual has strong precise preference: if these 

offering are available, an individual would always prefer these offerings to any other 

offerings. This means that for these offerings an individual would have high brand 

loyalty. Yellow items include offerings for which an individual has strong preference 

but this preference may be in some contexts distorted by noise: an individual would 

have chosen these offerings over others every time they were available, but, due to 

fatigue, tremble error or more sophisticated mistakes, this individual may choose 

other options over the offerings he or she prefers. This means that an individual 

would often choose the same brand but choice of other brands may also be 

observed. Finally, Green items are a product of imprecise preferences: an individual 

will purchase offerings from different suppliers and the brand loyalty will be low. 
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Figure 1 Preference-Brand Loyalty Mechanism 

 

Notice that this simple approach may be very valuable for creating new business 

models because by accurately predicting the product or service category in user 

preferences (Green, Yellow, Red) it is possible to anticipate with large degree of 

precision which brands will be purchased in the future by the users. This mechanism 

is much different from the existing approaches proposed in the marketing literature. 

According to one of such approaches, market strength of the brand is a good 

predictor of brand loyalty for online purchases (e.g., Danaher et al., 2003). Another 

approach argues that brand loyalty can be established by carefully analysing 

different types of consumer satisfaction and the driving factors of satisfaction 

(Oliver, 1999). Villas-Boas (2004) proposes another way of predicting brand loyalty 

through understanding how users learn more about the product or service through 

experiencing it after purchase. While some of these approaches start with the brand 

and others start with the user, they seem to rely heavily on the data which providers 

have about user understanding of the brand market strength, satisfaction and 

experience which may be (i) difficult to collect and (ii) difficult to explain to the 

average user. In contrast, the proposed mechanism starts with the user and employs 

simple categories to identify characteristics of user preferences. Via a case study, we 

show how the Preference-Brand Loyalty Mechanism depicted on Figure 1 can be 

applied in practice using content and metadata and analyse how item categories 

generated from content and metadata can affect business models. 

 

 3. Case Study 

The data for this paper was provided by the research project “Smart Me versus 

Smart Things: The Development of a Personal Resource Planning (PRP) System 

through Human Interactions with Data Enabled by the IoT” which implements the 

Hub of All Things (HAT) technology
2
 using real households. A household consisting of 

two young professional adults (male and female) was asked to monitor consumption 

of shower products using smart shower sensors and a specially designed 

                                                 
2
 See www.hubofallthings.com for more detail. 
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consumption monitoring “Beauty Box” device (Oliver, 2015). For the purposes of this 

case study, the following data was recorded: 

(1) Duration of the shower activity for each study participant in minutes was 

captured using the motion sensor placed in the shower. 

(2) Duration of water usage as a part of the shower activity for each participant 

was recorded using the flood sensor placed on the shower floor. 

(3) Water temperature used in the shower by each study participant. 

(4) Weight of all shower products after each use was recorded using the “Beauty 

Box” device. The “Beauty Box” captured the bar code of the product and 

weight of each product (see Figure 2 for the photograph of the “Beauty Box” 

prototype). All information from the “Beauty Box” was recorded on the HAT 

cloud and could be viewed by the study participants at all times. 

(5) Study participants were also asked to write a detailed diary recording their 

purchasing behavior. 

 

 
 

Figure 2 “Beauty Box” Prototype developed by Helen Oliver for the HAT project 

(Oliver, 2015) 

 

While (1)-(4) provide content data, (5) creates an opportunity to combine datasets 

into metadata. Therefore, in our analysis we will use a combination of (1)-(4) to 

construct content data and a combination of (1)-(5) to construct metadata. For the 

purposes of this case study we will concentrate on the consumption of three 

products: shower gel, toothpaste, and shampoo. These items will allow us to 

illustrate how content data versus metadata can capture choices of shower gel, 

toothpaste and shampoo brands. Shower gel is joint use while each member of the 

household uses his/her own shampoo and toothpaste brands. Since shower activity 

in the household is clustered around morning and evening hours, we simplify the 

dataset and after cleansing obtain 296 use points for toothpaste and 169 use points 

for gel and shampoo each across 74 days of household observation. 

Table 1 provides basic statistics summarizing all variables measured in the case 

study. According to Table 1, person 2 (female member of the household) uses more 

quantity of the shower gel, toothpaste and shampoo compared with person 1 (male 

member of the household). Yet, person 1 on average tends to spend more time in 

the shower and uses more water. 
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Table 1 Basic Statistics 

Person Shower 

gel 

average 

consump-

tion per 

use 

(grams) 

Toothpast

e 

average 

consump-

tion per 

use 

(grams) 

Shampoo 

average 

consump-

tion per 

use 

(grams) 

Duration 

of shower 

activity 

per use 

(minutes) 

Duration 

of water 

usage per 

use 

(minutes) 

Average 

water 

temperatu

re per use 

(degrees 
o
C) 

Person 1 (♂) 12.5 3.7 10.5 21.9 16.9 37.5 

Person 2 (♀) 17.7 7.5 13.9 15.0 8.7 39.7 

Total 15.4 5.6 12.4 18.0 12.3 38.8 

Indeed, these patterns are confirmed by the results of OLS regressions with robust 

standard errors (errors are clustered at the level of the day of the week, i.e., 

Monday-Sunday). Results of these regressions are summarized in Table 2. 

 

 

Table 2 Results of the OLS Regressions with Robust Standard Errors 

Explanator

y variable 

Dependent variable 

Shower 

gel 

average 

consumpti

on per use 

(grams) 

Toothpast

e 

average 

consumpti

on per use 

(grams) 

Shampoo 

average 

consumpti

on per use 

(grams) 

Duration 

of 

shower 

activity 

per use 

(minutes

) 

Duration 

of water 

usage 

per use 

(minutes

) 

Average 

water 

temperat

ure per 

use 

(degrees 
o
C) 

Person (1 

or 2) 

 

 

5.8113*** 

(0.6322) 

3.9611*** 

(0.2974) 

3.7642*** 

(0.6630) 

-1.1149 

(0.7491) 

-

8.2061**

* 

(0.1429) 

2.2068*** 

(0.1176) 

Duration of 

shower per 

use 

(minutes) 

0.0529 

(0.0507) 

-0.0017 

(0.0343) 

0.0366 

(0.0379) 

- - - 

Duration of 

water 

usage per 

use 

(minutes) 

0.0119 

(0.0782) 

0.0077 

(0.0205) 

0.0121 

(0.0544) 

- - - 

Average 

temperatur

e per use 

(degrees 
o
C) 

-0.0965 

(0.0586) 

0.0019 

(0.0271) 

0.0060 

(0.0582) 

- - - 

Constant 

 

 

8.9787* 

(2.8247) 

-0.5463 

(1.1894) 

5.5075* 

(2.2894) 

13.8514*

** 

(0.7298) 

25.1386*

** 

(0.2132) 

35.3337*

** 

(0.2020) 
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N 

(observatio

ns) 

169 169 169 296 169 169 

R
2
 0.7835 0.8223 0.7159 0.0057 0.8835 0.4533 

* significant at 0.05 level; *** - significant at 0.001 level 

 

 

Table 2 shows that person 2 indeed uses more shower gel, toothpaste, and shampoo 

than person 1. Person 2 also uses hotter water temperature than person 1. One 

would expect that more product consumption should be positively correlated with 

the duration of the shower activity as well as with the duration of water usage, i.e., 

the longer is the shower activity and the longer is the duration of the water usage, 

the more shower product should be used. However, duration of the shower activity, 

duration of the water usage and temperature are not statistically significantly 

affecting any of the product consumption patterns. Furthermore, surprisingly, 

person 1 uses water for longer time periods than person 2. Based on content data, 

we cannot explain why we observe this result. However, metadata allows us to 

answer this question. From the participants’ diary we can establish that person 1 

combines shower activity with his daily shave which means that person 1, on 

average, uses water for longer time periods than person 2. Yet, the difference 

between explanatory and predictive power of content data versus metadata 

becomes clearer if we consider each product (shower gel, toothpaste, and shampoo) 

and explore how decisions about purchasing different brands are made in the 

household. 

 

Let us first consider shower gel consumption. Figure 3 summarizes consumption 

patterns for 74 days of observation. Since shower gel is a shared item for this 

household, the data from both person 1 and person 2 is plotted on Figure 3. The 

vertical axes shows remaining weight of the shower gel while the horizontal axes 

depicts the day of observation from 0 (first day of observation) to 73 (last day of 

observation). On the horizontal axes the data is arranged by week, where the first 

week of the study runs from 0 to 6 (7 days). 

 

In our case study the information about brand of shower gel was derived from the 

bar codes recorded by the “Beauty Box”. Figure 3 shows that the case study 

household alternated between different brands of shower gel changing 6 brands 

during 74 day (12 weeks) of the study. Using content data, we can derive 3 sets of 

conclusions from looking at these data: (i) a new bottle of shower gel is purchased 

every 12-13 days by the household; (ii) person 2 consumes more shower gel than 

person 1; and (iii) the household alternates brands of shower gel without repetition 

which allows us to put shower gel in the Green items category according to the 

mechanism proposed on Figure 1. 

Metadata provides more information about the household choices of shower gel 

brands. Specifically, analysis of the household purchasing diary reveals that all 

shower gels were bought at different locations. The participants also recorded that 

while Brands A, C, D and E was purchased by person 1, Brands B and F were 

purchased by person 2. Both person 1 and person 2 indicated that they liked to 
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alternate and try out different brands of shower gel. Person 2 recorded that she had 

a preference for red or pink colour of the gel but did not mind about the shower gel 

brand. The analysis of content and metadata on the shower gel consumption from 

the case study household allow us to place shower gel under Green items category. 

 

 

 
Figure 3 Summary of the Shower Gel Consumption 

 

Let us now turn to the analysis of the toothpaste consumption. Toothpaste is not 

shared among the study participants. Therefore, we plot toothpaste consumption 

patterns for each study participant separately (see Figure 4). Brands A, B, C and D 

shown on Figure 4 are not the same as those on Figure 3. Content data reveals that 

in 74 days, person 1 bought toothpaste of Brand A three times and of Brand B once. 

At the same time, person 2 bought Brand C four times and Brand D three times. 

Using content data we can make the following conclusions from the observed 

patterns: (i) person 1 needs to replace toothpaste every 2 weeks if he uses Brand A 

and every 4 weeks if he uses brand B while person 2 needs to replace toothpaste 

every 2 weeks if she uses Brand C and every week if she uses Brand D; (ii) person 2 

uses larger quantities of toothpaste than person 1; and (iii) for both participants, 

toothpaste can be classified as a Yellow item because both participants mostly use 

one brand of toothpaste (A for person 1 and C for person 2). However, they both 

occasionally deviate from their preferred choice in favour of other brands (B for 

person 1 and D for person 2). 
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Person 1 (♂) Person 2 (♀) 

 

 

Figure 4 Summary of the Toothpaste Consumption 

 

Metadata, however, reveals that the picture is more complex than that depicted by 

the content data. Specifically, the purchasing diary of person 1 reveals that this 

person indeed prefers Brand A to any other brand of toothpaste. Brand B was 

purchased by person 1 because he was shopping in a pharmacy rather than a 

chemist and even though Brand A was available picked Brand B. This story is 

consistent with classifying toothpaste as Yellow item for person 1. However, the 

picture is different for person 2. Specifically, person 2 revealed that she always buys 

toothpaste of Brand C. Yet, Brand D was used for 3 weeks during the observation 

period because it was prescribed to person 2 by the dentist. Therefore, Brand D was 

not purchased because person 2 really preferred to buy Brand D. Instead, it was 

purchased on doctors’ instructions. Therefore, taking into account metadata, we 

should classify toothpaste for person 2 as Red item rather than Yellow item. 

Finally, let us consider shampoo consumption. Similarly to toothpaste consumption 

graphs, we provide separate graphs for person 1 and person 2 (see Figure 5). Brands 

A, B, and C do not coincide with Brands A, B and C on Figures 3 and 4. Content data 

shows that shampoo consumption pattern for person 1 is very straightforward with 

person 1 consistently choosing shampoo of Brand A. For person 2, the pattern is 

more complex with person 2 choosing Brand B twice and Brand C once during the 

observation period. Content data allows us to make the following conclusions: (i) 

person 1 needs to replace shampoo every 6 weeks and person 2 every 8 weeks when 

she uses Brand B and every 2 weeks when she uses Brand C; (ii) person 2 uses large 

quantities of shampoo than person 1; (iii) shampoo should be classified as Red item 

for person 1 and as Yellow item for person 2. 
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Person 1 (♂) Person 2 (♀) 

 
 

Figure 5 Summary of the Shampoo Consumption 

 

Metadata confirms conclusion (iii) for person 1 but reveals additional information 

about person 2. Specifically, person 1 indicated in the diary that he indeed preferred 

shampoo of Brand A and always purchased that brand. At the same time, person 2 

stated that she always bought Brand B. Brand C was purchased because the 

pharmacy where person 2 was shopping for Brand B did not have Brand B in stock. 

Therefore, a much smaller bottle of shampoo of Brand C was purchased in a hope 

that it would soon be replaced by Brand B. Therefore, for person 2, shampoo should 

not be classified as Yellow item. Rather it should be classified as a Red item. 

Comparison between content data and metadata is summarized in Table 3. 

According to this comparison, both content and metadata would predict that person 

1 will continue purchasing the same brand of shampoo; will in the majority of cases 

stick to the same brand of toothpaste occasionally deviating to other brands and is 

likely alternate among different shower gel brands in the future. At the same time, 

according to content data, person 2 will alternate among different shower gel brands 

and will mostly prefer the same brands of shampoo and toothpaste but will 

occasionally purchase different brands of shampoo and toothpaste. Metadata 

reveals that person 2 is likely to buy different brands of shower gel but will stick to 

the same brands of shampoo and toothpaste. This summary reveals that while 

content data and metadata can lead to the same conclusions in more 

straightforward cases (e.g., preferences of person 1), in more complex cases (e.g., 

preferences of person 2) using metadata over content data has obvious advantages 

because it allows to classify user brand preferences for various offerings more 

quickly and accurately. 

 

Table 3 Preference-Brand Loyalty Mechanism Categorization Based on Content 

Data and Metadata 

Person 
Content Data Metadata 

Green Yellow Red Green Yellow Red 

Person 1 

(♂) 

shower 

gel 

toothpaste shampoo shower 
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toothpaste shampoo 
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shower 
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shampoo, 

toothpaste 
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Content data may be able to produce the same results as metadata. However, in 

order to reach the same conclusions content dataset has to include more data and 

over a longer time period to establish robust behavioural patterns. 

 

 4. Analysis of Business Models from Case Study 

In Section 3 we have established that metadata has advantages over content data in 

classifying offerings in terms of user preferences and brand loyalty. In this section, 

we will look at how more accurate classification in terms of Preference-Brand Loyalty 

mechanism can impact business model innovation mechanisms. Content data allows 

to work within the frame of the data-driven business model shown below on Figure 

6(a) (e.g., Hartmann et al., 2014). Businesses tend to use backward induction 

mechanism in their engagement with the users. Specifically, they start with the 

development of the product or service, then they collect data, analyse data or attract 

professional data analysts, create an offering package around the product or service 

(for example with support of advertisement, apps, other nudging mechanisms). After 

that, they provide the offering package to the target customer (user) executing a 

chosen revenue model. In other words, the mechanism is working backwards from 

the product to the user. 

 

(a) DDBM based on Content Data 

(Backward Induction Model) 

 

(b) DDBM based on Metadata 

(Forward-Looking Model) 

 

Figure 6 Data-Driven Business Model Mechanisms for Content Data and Metadata 
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The main advantage of the DDBM which is based on metadata is that backward 

induction model is replaced by forward looking model – from user to product - as 

depicted on Figure 6(b). In DDBM, user is at the centre of the system. User generates 

context-dependent data which then is communicated to the product/service 

provider. This communication can be proprietary (i.e., users can receive monetary 

reward for sharing their data) or users can be motivated to share their data in 

exchange for receiving better (more personalised) product/service propositions. 

Context-dependent data is aggregated and analysed generating identifiable value 

proposition options for the provider. After that, the provider develops customizable 

and yet cost-effective product or service which then is offered to the user via an 

appropriate revenue mechanism. Users experience the product or service and 

generate the new wave of context-dependent data. Such a DDBM is more flexible 

and dynamic because it allows for constant interaction between users, data and 

providers. 

 

For both DDBM mechanisms depicted on Figure 6, information about brand loyalty 

can significantly simplify data analysis and the development of the appropriate 

revenue model. However, as shown in Section 3, metadata can predict brand loyalty 

more accurately and requires fewer data points than content data. Brand loyalty 

predictions can also provide additional benefits in exploring various delivery 

mechanisms for different types of products and services which can be developed 

with different revenue streams. For example, instead of concentrating on retail sales 

of individual items, providers may specialize in the provision of bundles of products 

or services taking into account consumer preferences and their brand loyalty. 

Furthermore, instead of distribution through retail chains or home delivery, 

providers may explore alternative distribution mechanisms such as distributing 

bundles of products at public transportation hubs, bus stops, etc. via designated 

safety boxes areas. 

 

 5. Conclusion 

This paper has considered how content and metadata can predict consumer choices 

using the concepts of precise, noisy and imprecise preferences and their relation to 

brand loyalty. We showed that metadata provides more accurate predictions with 

regard to brand loyalty which have significant implications for data-driven business 

models of the future. 

 

This research has a number of theoretical implications. First, it extends the work on 

reverse supply chain mechanisms (Parry et al., 2015) offering a simple and tractable 

example of how users may be engaged and motivated to interact with their self-

generated data in order to become an integral part of the multi-sided market for 

personal data. Second, resulting DDBMs which are based on metadata are directly 

related to the work on human-data interactions (HDI). HDI domain studies how 

individuals can interact with data as a part of a growing data exchange ecosystem 

(e.g., Mortier et al., 2014). 

 

This paper also has practical relevance: by understanding brand loyalty through user 

preferences, product and service providers can increase profitability through 
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creating more salient and efficient value propositions through increased user context 

visibility and better understanding of stochastic components in revealed user 

preferences. Providers will not only understand which decisions are made by users 

and when but also why they are made. This would allow providers to better 

anticipate user wants and needs and create products and services as well as delivery 

solutions which are more appropriate for their target audiences. 

 

This research has a number of limitations. First, we report results from only one 

household which recorded context data as a proof of concept. As of now context-

recording is not automatized, however, attempts to facilitate the recording of 

metadata are currently being made within the Hub of All Things (HAT) project. 

Second, a number of problems will arise with aggregation of metadata since context-

dependent datasets are a lot richer than their content data counterparts. Therefore, 

metadata would require a new (more comprehensive) set of analytical tools which 

would allow all interested parties to extract, simplify, and work with data more 

efficiently. Third, current study does not address the question of dramatic 

preference change when users switch from one brand to a different brand. These 

questions can be studied using recent advances in social psychology. Finally, 

collecting metadata would require educating individual users and households to 

record their self-generated data. This is probably one of the most difficult practical 

tasks. In this paper we have shown how more accurate brand loyalty predictions can 

improve value propositions from providers to users. Yet, a lot has yet to be done in 

order to motivate users and providers to engage in metadata exchange in practice. 
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