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Abstract. We study curves of fixed points for certain diffeomorphisms of R3 that are
induced by automorphisms of a trace algebra. We classify these curves. There is a function
E which is invariant under all such trace maps and the level surfaces Et : E = t are
invariant; a point of Et will be said to have level t . The surface E1 is significant. Then
most fixed points on E1 are actually on a curve γ of fixed points interior to E1. We describe
the possibilities for the other end of γ on E1.

0. Introduction
An element A ∈ PSL(2, Z) with |trace(A)| > 2 determines a hyperbolic automorphism,
A say, of the 2-torus T2, which is structurally stable and has infinitely many periodic
points; see §§1.8 and 2.6 of [KH]. Identifying a point (θ1, θ2)

T ∈ T2 with (−θ1,−θ2)
T

gives a surface T2/∼ homeomorphic to the 2-sphere and A induces a pseudo-Anosov
diffeomorphism of this surface [FLP, CB]. This diffeomorphism is not structurally stable,
and its stable and unstable foliations are not orientable. Note that (in contrast to the usual
situation where the pseudo-Anosov map of a smooth surface is not differentiable at the
singularities) this pseudo-Anosov map is a diffeomorphism but of a surface that is not
differentiable at the singularities.

The Fricke character [FK, Go, RB1]

E(x, y, z) := x2 + y2 + z2 − 2xyz (0.1)

determines level surfaces in R3 that are all smooth except for the special case of E−1(1),
which meets the cube [−1, 1]3 in a ‘curvilinear tetrahedron’ that can be given the
structure of T2/∼. The braid group B3 acts on R3 by diffeomorphisms called trace
maps that preserve E. This action factors through PSL(2, Z), and the restriction to
E−1(1) ∩ [−1, 1]3 ∼= T2/∼ is given by the pseudo-Anosov diffeomorphisms described
above.
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Such trace maps have been studied at higher levels E−1(t), t > 1, in [C, R], where
horseshoes appear in a way reminiscent of a ‘double DA’ bifurcation [W, PM p. 165,
Ro p. 335]. We shall study them at the lower levels E−1(t) ∩ [−1, 1]3, 0 < t < 1;
each such surface is diffeomorphic to a sphere and they each enclose the origin, E−1(0).
By the implicit function theorem each hyperbolic fixed point of such a pseudo-Anosov
diffeomorphism of our tetrahedron (except the singular points, which we call vertices)
lies on a smooth curve of fixed points that descends to lower levels and may become
elliptic. The diffeomorphisms of these level sets preserve a measure equivalent to the
area. Thus we have a concrete situation in which to study bifurcations of area-preserving
diffeomorphisms. (In contrast to the usual situation of a smooth family of diffeomorphisms
of a single surface, this is a case of restricting a diffeomorphism to a smooth family of
surfaces.)

Does such a curve of fixed points continue to the origin or come up again to the
tetrahedron and, if so, where does it return to E−1(1)? This is the question we study
for a family of such maps (whose dynamics exhibit a certain symmetry) given by(

1 n

−n 1 − n2

)
∈ PSL(2, Z), n even.

We shall identify these curves, which might be thought of as forming a supporting
framework for the tetrahedron. That framework is present for each hyperbolic element
of PSL(2, Z) but it is only at the level of the tetrahedron that the curves for different maps
come together (at points with rational torus coordinates). While those fixed points have
coordinates involving cos(2πk/n), the expressions for the curves will involve Chebyshev
polynomials.

1. Prerequisites and statement of results
Let F2 = 〈x1, x2〉 be a free group of rank two and let σi ∈ Aut(F2), i = 1, 2, be defined
(as an action on the left) by

σ1(x1) = x1x2, σ1(x2) = x2,

σ2(x1) = x1, σ2(x2) = x−1
1 x2.

One can show that σ1, σ2 satisfy the braid relation σ1σ2σ1 = σ2σ1σ2. We thus have a
representation of the braid group B3, which can be presented as B3 = 〈σ1, σ2 | σ1σ2σ1 =
σ2σ1σ2〉 (see [Bi]). In fact, this representation factors through PSL(2, Z) ∼= B3/〈(σ1σ2)

3〉.
However we prefer to think of the representation as a representation of B3 since there
is a generalization of the above action to an action of the n-strand braid group Bn

(see [Hu2]).
Note [MKS, Theorem 3.9] that any element of Aut(F2) fixes the conjugacy class of the

commutator x1x2x
−1
1 x−1

2 .
Now suppose that the xi are represented by elements of SL(2, C) (a result of Epstein [E]

tells us that, generically, any two such matrices generate a free group of rank two). Let

t1 = trace(x1), t2 = trace(x2), t12 = trace(x1x2).
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Let x = t1/2, y = t2/2, z = t12/2. Recall the standard trace identities for such 2 × 2
matrices:

trace(A−1) = trace(A), trace(I2) = 2, trace(AB) = trace(A)trace(B) − trace(AB−1).

Using these we obtain the following induced action of σ1, σ2 on Z[x, y, z] (which we also
write as an action on the left): for example, since σ1(x1) = x1x2 we have σ1(t1) = t12 and
so σ1(x) = z. We similarly see that

σ1(x) = z, σ1(y) = y, σ1(z) = 2yz − x;
σ2(x) = x, σ2(y) = 2xy − z, σ2(z) = y. (1.1)

Now because this action is obtained using the action on traces one should expect that this
only guarantees an action of B3 if we consider the action on the trace ring [Ma], this being
the quotient of Q[x, y, z] by all generic trace relations. In terms of the generators x, y, z

this is the quotient of Q[x, y, z] by the ideal generated by the element E − 1, the element
E − 1 being the trace of the Aut(F2)-invariant (up to conjugacy) element x1x2x

−1
1 x−1

2 .
However this turns out to be unnecessary as the action of σ1, σ2 on Q[x, y, z] is actually a
representation of B3 in Aut(Q[x, y, z]). This result is related to the fact that for any n > 1
the braid group Bn (see [Bi]) acts on a polynomial algebra with kernel the centre of Bn

(see [Ma, Hu1, Hu2, LPW]).
In general any automorphism or homomorphism φ : F2 → F2 will give rise to

a homomorphism of the trace ring and so determine a map R3 → R3. Such maps
are called trace maps and have been studied by various authors [ABG, BGJ, BR, Ig,
LW, R, RB1, RB2, P, PWW, WW]. For example in [RB1] the Fibonacci trace map,
(x, y, z) �→ (y, z, 2yz − x), is studied. Information is given about curves of fixed points
and period doubling.

The action (1.1) of B3 on the polynomial ring Q[x, y, z] gives rise to an action of B3

on R3 if we think of x, y, z as being the usual coordinate functions for R3. We will write
this action of α ∈ B3 on (a, b, c)T ∈ R3 on the right: (a, b, c)Tα; this action is also the
corresponding action by Nielsen transformations [MKS, p. 130], where one uses the same
conventions of left and right actions.

One checks that the action of B3 fixes the function E = E(x, y, z) of (0.1) and so each
level set

Et = {(a, b, c)T ∈ R3 | E(a, b, c) = t}
is invariant under the action. The level set E1 is distinguished and has been drawn by
various authors [Go, RB1]. There are four points

V = {(1, 1, 1)T, (−1,−1, 1)T, (−1, 1,−1)T, (1,−1,−1)T}
in E1 which are the only singular points of E1. In fact, they are the only singular points
of any Et , t > 0. Further, the six line segments joining these points are contained in E1

and there is a unique component of E1 \ V whose closure is compact. In fact, this closure
is a topological 2-sphere that separates R3 into two components, the closure of one of
these components is a 3-ball T that we call a ‘curvilinear tetrahedron’. One can check that
T ⊂ [−1, 1]3 and that T ∩ ∂[−1, 1]3 is the above-mentioned set of six line segments.
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The aim of this paper is to study the fixed points of the diffeomorphisms

αn = σn
1 σn

2 : R3 → R3, n > 2.

We are especially interested in those fixed points which lie on ∂T . For n even these fixed
points include the points V . If we ignore the points of V for the moment, then, as pointed
out in [RB1, p. 839], a consequence of the implicit function theorem is that the fixed points
of αn on ∂T will belong to smooth curves of fixed points. Part of what we do is to describe
all of the fixed points on ∂T \V ; we then describe the curves of fixed points which contain
them and indicate which pairs of fixed points on ∂T \ V are joined by such smooth curves
of fixed points. We say that such a pair of fixed points is αn-dual.

Let T2 = R2/Z2 denote the 2-torus. If M is a matrix, then MT will denote its transpose.
Define the map

� : T2 → ∂T , (θ1, θ2)
T �→ (cos(2πθ1), cos(2πθ2), cos(2π(θ1 + θ2)))

T.

Note that �(θ1, θ2)
T = �(−(θ1, θ2)

T). The map � is a branched double cover, branched
over the four points V ′ = {(0, 0)T, (0, 1/2)T, (1/2, 0)T, (1/2, 1/2)T} ⊂ T2.

The action of B3 on ∂T actually comes from an action of B3 on T2, the action being
determined by the homomorphism

	 : B3 → SL(2, Z), σ1 �→
(

1 1
0 1

)
, σ2 �→

(
1 0

−1 1

)
.

For

α ∈ B3, θ =
(

θ1

θ2

)
∈ T2

the maps �,	 are related as follows (see Lemma 2.9):

(�θ)α = �(	(α)(θ)). (1.2)

The condition n > 2 guarantees that 	(αn) is a hyperbolic map of the torus.
The fixed points of α on ∂T \V are of two types. First note that if �(θ) ∈ ∂T \V ⊂ R3

is fixed by α, then by (1.2) we must have 	(α)(θ) = ±θ . A fixed point �(θ) is called
α-preserving, or just preserving if α is understood, if we have 	(α)(θ) = θ; otherwise it
is called reversing.

The fixed points on ∂T and the fixed curves that contain them will be put in four
families:
(F1) straight line curves;
(F2) curves in the planes x = ±y;
(F3) curves not meeting the planes x = ±y.

For convenience we define a type (F4) curve, which will be a curve not of type (F2) but
which bifurcates at points on the planes x = ±y. We will initially show (in fact it should
already be clear) that any fixed point on ∂T \ V belongs to a curve of fixed points of the
types (F1), (F2), (F3), or (F4); however we will also show that there are no curves of fixed
points of type (F4).

In fact it will follow from what we do that any fixed point for αn is on one of the curves
of the types (F1), (F2) or (F3).
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We now say a little about each of the cases (F1)–(F4), leaving most of the details and
proofs to later sections.

(F1) The straight line cases. For N ∈ N let KN ⊂ SL(2, Z) denote the
congruence N subgroup of SL(2, Z), namely the kernel of the homomorphism
SL(2, Z) → SL(2, Z/NZ). Note that 	(αn) = 	(σn

1 σn
2 ) ∈ Kn. For k,m ∈ Z and any

β ∈ B3 such that 	(β) ∈ Kn, it follows that any �(k/n,m/n) is a preserving fixed point
of β. In particular, this is the case for αn.

We will show later that for most integer values of k,m, n the vertical line

p(z) = (cos(2πk/n), cos(2πm/n), z)T ⊂ R3

is a line of fixed points for αn which contains �(k/n,m/n)T and is not tangential to
∂T at �(k/n,m/n)T. Thus this line meets ∂T at another point, which happens to be
�(k/n,−m/n)T. Thus �(k/n,m/n)T and �(k/n,−m/n)T are αn-dual.

Let X,Y,Z ⊂ R3 denote the x-axis, the y-axis and the z-axis. Now it is easily checked
that any point p ∈ X ∪ Y ∪ Z is fixed by each σ 4

i , i = 1, 2. Thus if n is a multiple of
4, then each of X,Y,Z is a line of fixed points for αn which intersects ∂T in αn-dual
points {(1, 0, 0)T, (−1, 0, 0)T}, {(0, 1, 0)T, (0,−1, 0)T}, {(0, 0, 1)T, (0, 0,−1)T} ⊂ R3.
This concludes our discussion of the straight line cases.

(F2) The x = ±y cases. We now consider the fixed points p = (a, b, c)T ∈ ∂T where
a = ±b. The two cases are similar and so we only describe the a = b case. First note that
some of the straight line curves of type (F1) are in these planes. The intersection of T and
the plane x = y is a topological disc T+ in the x = y plane bounded by the line z = 1 and
the parabola z = 2x2 − 1. In this case we show that any such fixed point (if it is not on a
vertical line of fixed points as in case (F1)) is on a curve with equation

γ+(x) = (x, x, x(1 + Un−2(x))/Un−1(x))T, (1.3)

where Un(x) is the nth Chebyshev polynomial.
We draw these curves as they lie in T+ (bounded by z = 1 and z = 2x2 − 1) in Figure 1

for the case n = 20 with x horizontal and z vertical; we have shown the components of the
curve γ+(x) in solid and we have also indicated some solid and dashed vertical lines.
The solid vertical lines are at x-values that are poles of the function (1 +
Un−2(x))/Un−1(x). The dashed vertical lines are lines of fixed points for α20. We have
also drawn the parabola z = x2 which indicates the points on the (dashed) vertical lines of
fixed points which are where the function E is minimized (see Lemma 2.8(i)).

(F3) and (F4) remaining cases. We will show that all curves of fixed points which
are not completely contained in the planes x = ±y are determined by a single
polynomial Kn(x, y). Further any such curve can only intersect the planes x = ±y at
fixed points of type (F1) or type (F2) and these are bifurcation points. We define a type (F3)
curve to be such a curve that does not intersect the planes x = ±y at all. Type (F4) curves
are those that do intersect the x = ±y planes (at a bifurcation point). As indicated above
we will actually show that type (F4) curves do not exist (by showing that Kn(x, x) �= 0 for
x ∈ [−1, 1]).
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FIGURE 1. The curves of fixed points of type (F1) and (F2) in the slice x = y.

In §2, we will define and examine the (F1) curves of fixed points. We find there that the
Chebyshev polynomials Un(x) are needed for this investigation and we also give various
properties of the Un. We also prove (1.2) in §1. In §3, we define and study the fixed
curves of type (F2) and show how the situation in the x = y plane is similar to that in the
x = −y plane. In §4, we find the polynomial Kn(x, y) and list some of its properties. We
give a general explanation of αn-duality. We also determine the preserving and reversing
fixed points and show that there are no curves of fixed points of type (F4). In §5, we
consider the more general case where α = σ r

1 σ s
2 , r, s ∈ N. In §6, we describe the αn-dual

pairs of fixed points.

2. The straight line curves: the (F1) case

We first give a relatively simple form for the action of αn. This will involve Chebyshev
polynomials. Define the Chebyshev polynomials Un(x) (see [Ri]) by

U−1(x) = 0, U0(x) = 1, U1(x) = 2x, Un(x) = 2xUn−1(x) − Un−2(x). (2.1)

We have the following properties of Un(x) (see [Ri]):

Un(x) = 2n
n∏

k=1

(
x − cos

kπ

n + 1

)
, Un(cos(θ)) = sin((n + 1)θ)

sin(θ)
. (2.2)
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LEMMA 2.1. If n ∈ Z, then
x

y

z


 σk

1 =

 0 0 1

0 1 0
−1 0 2y




k 
x

y

z


 ,


x

y

z


 σk

2 =

1 0 0

0 2x −1
0 1 0




k 
x

y

z


 .

Denote the above two 3 × 3 matrices by M1 = M1(y) and M2 = M2(x). Then we have

Mk
1 =


−Uk−2(y) 0 Uk−1(y)

0 1 0
−Uk−1(y) 0 Uk(y)


 ,

Mk
2 =


1 0 0

0 Uk(x) −Uk−1(x)

0 Uk−1(x) −Uk−2(x)


 .

Proof. The first statement follows from the action of σi , i = 1, 2, given in (1.1) and the
second follows by induction on k ≥ 1 using the recursion for Un given in (2.1). �

COROLLARY 2.2. For all n ∈ N and (x, y, z)T ∈ R3 we have
x

y

z


αn =


 −xUn−2(y) + zUn−1(y)

Un(x
∗)y − Un−1(x

∗)[−xUn−1(y) + zUn(y)]
Un−1(x

∗)y − Un−2(x
∗)[−xUn−1(y) + zUn(y)]


 .

Here x∗ = −xUn−2(y) + zUn−1(y).
In particular, if (x, y, z)T ∈ R3 is a fixed point of αn and Un−1(y) �= 0, then we must

have
z = x(1 + Un−2(y))/Un−1(y).

Proof. To prove the first statement we put k = n in Lemma 2.1 and then multiply the
matrices Mn

2 (x∗)Mn
1 (y)(x, y, z)T.

The last statement follows from the first by solving −xUn−2(y)+zUn−1(y) = x for z. �

We now consider the straight line cases. Let In represent the n × n identity matrix.

LEMMA 2.3. Let n, j, k ∈ N, j, k �≡ 0 mod n/2, and a = cos(2πj/n).
(i) We have Mn

1 (a) = Mn
2 (a) = I3.

(ii) If α∈〈σn
1 , σ n

2 〉 and v = (cos(2πj/n), cos(2πk/n), z)T, then (v)α = v. In particular,
we have (v)αn = v and the vertical line γ (z) = (cos(2πj/n), cos(2πk/n), z)T is a
curve of fixed points of αn.

(iii) If j ≡ 0 mod n/2 or k ≡ 0 mod n/2, then (cos(2πj/n), cos(2πk/n), z)T is not a
curve of fixed points of αn.

Proof. From Lemma 2.1 we have

Mn
1 (a) =


−Un−2(a) 0 Un−1(a)

0 1 0
−Un−1(a) 0 Un(a)


 ,
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and using (2.2) we have (since j �≡ 0 mod n/2 implies that sin(2πj/n) �= 0)

Un(cos(2πj/n)) = sin((n + 1)2πj/n)/ sin(2πj/n) = 1,

Un−1(cos(2πj/n)) = sin(n2πj/n)/ sin(2πj/n) = 0,

Un−2(cos(2πj/n)) = sin((n − 1)2πj/n)/ sin(2πj/n) = −1,

(2.3)

which gives Mn
1 (a) = I3. The proof that Mn

2 (a) = I3 is similar.
Now from Lemma 2.1 and the above, we have vσn

1 = Mn
1 (cos(2πk/n))v = I3v = v

and vσn
2 = Mn

2 (cos(2πj/n))v = v. It follows that

vαn = (vσn
1 )σn

2 = vσn
2 = v.

This does (i) and (ii).
For (iii) we first do the case k = n/2. Here we have v = (cos(2πj/n),−1, z)T and

from Corollary 2.2 we see that the first coordinate of vαn is

−cos(2πj/n)Un−2(−1) + Un−1(−1)z = −(n − 1) cos(2πj/n) − nz �= cos(2πj/n).

Here we have used the fact that for all r≥1 we have Ur(−1) = (−1)r(r+1), which is easily
proved by induction (see also Proposition 2.6(v)). If k = 0, then v = (cos(2πj/n), 1, z)T

and we similarly see that the first coordinate of vαn is nz − (n − 1) cos(2πj/n) �=
cos(2πj/n). The cases where j ≡ 0, n/2 mod n are similar. �

LEMMA 2.4. Any β ∈ B3 which is in the normal closure of the subgroup 〈σ 4
1 , σ 4

2 〉 (which
has finite index in B3) fixes the axes X,Y,Z pointwise.

In particular, if n ∈ N is a multiple of 4, then αn fixes these axes pointwise.

Proof. The fact that this normal closure has finite index is a consequence of applying the
Reidemeister–Schreier algorithm [BC].

Since σ1 and σ2 are conjugate in B3 it will suffice to show that the action of σ 4
1 fixes

each point of X,Y,Z. If (a, 0, 0)T ∈ X ⊂ R3, then

(a, 0, 0)Tσ 4
1 = (0, 0,−a)Tσ 3

1 = (−a, 0, 0)Tσ 2
1 = (0, 0, a)Tσ1 = (a, 0, 0)T,

as required; this does the x-axis case and the rest are similar. The first result follows and
the second is a direct consequence since αn = σn

1 σn
2 . �

This concludes our discussion of the straight line curves of fixed points for αn.
The similarity between what happens on T+ and T−, where T− is the intersection of T

and the plane x = −y, is indicated in the following result.

PROPOSITION 2.5.
(i) The involutive automorphism

S : Q[x, y, z] → Q[x, y, z], x �→ −x, y �→ y, z �→ −z,

centralizes any α ∈ 〈σ1, σ
2
2 〉, that is αS = Sα. In particular, if n is even, then S

centralizes αn.
(ii) The involutive automorphism

R : Q[x, y, z] → Q[x, y, z], x �→ y, y �→ x, z �→ z,

conjugates σ2 to σ−1
1 . The map R reverse centralizes αn so that αnR = Rα−1

n .
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Proof. (i) We have

σ1S(x, y, z) = σ1(−x, y,−z) = (−z, y,−(2yz − x)),

Sσ1(x, y, z) = S(z, y, 2yz − x) = (−z, y,−2yz + x),

showing that S centralizes σ1. The calculation showing that S centralizes σ 2
2 is similar.

Thus S centralizes any element of H = 〈σ1, σ
2
2 〉, and if n is even, then αn ∈ H .

For (ii) we have

Rσ2Rσ1(x, y, z) = Rσ2R(z, y, 2yz − x) = Rσ2(z, x, 2xz − y)

= R(y, x, 2xy − (2xy − z)) = (x, y, z),

as required. It follows that

Rσn
1 σn

2 R = σ−n
2 σ−n

1 = (σn
1 σn

2 )−1. �

Throughout this paper we will have need of the following properties of Chebyshev
polynomials. For all n ≥ 0 and a ∈ R we will let U ′

n(a) denote

d

dx
Un(x)|x=a.

PROPOSITION 2.6. For m ∈ N we have the following:
(i) Um(−x) = (−1)mUm(x);
(ii) Um(1) = m + 1;
(iii) U ′

2m(0) = 0;
(iv) U ′

2m+1(0) = (−1)m2(m + 1);
(v) Um(−1) = (−1)m(m + 1);
(vi) U2

m−1 − UmUm−2 = 1;
(vii) Um(x)2 − 2xUm−1(x)Um(x) + Um−1(x)2 = 1;
(viii) U2m(x) = Um(x)2 − Um−1(x)2;
(ix) U2m−1(x) = 2UmUm−1 − 2xU2

m−1;
(x) for all even n > 1 we have gcd(1 + Un−2(x), Un−1(x)) = Un/2−1(x);
(xi) U ′

m(1) = 2
(
m+2

3

)
.

Proof. (i)–(v) These follow easily from the definitions, sometimes by induction.
(vi) This follows from the fact that det M1 = 1 and so det Mm

1 = U2
m−1 −UmUm−2 = 1

(see the representations of M1 and Mm
1 in Lemma 2.1).

(vii) This follows from (vi) after substituting 2xUm−1(x) = Um(x)+Um−2(x) into (vi).
(viii) and (ix) The proof of these is by simultaneous induction, the initial cases being

easy to check. If (viii) and (ix) are true, then (using (2.1)) we have

U2m+1 = 2xU2m − U2m−1

= 2x(U2
m − U2

m−1) − (2UmUm−1 − 2xU2
m−1)

= 2xU2
m − 2UmUm−1

= 2xU2
m − 2Um(2xUm − Um+1)

= 2Um+1Um − 2xU2
m,

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 11 May 2009 IP address: 137.205.202.8

1176 S. Humphries and A. Manning

as required for (ix). Also,

U2(m+1) = 2xU2m+1 − U2m

= 2x(2Um+1Um − 2xU2
m) − U2

m + U2
m−1

= 2x(2Um+1Um − 2xU2
m) − U2

m + (2xUm − Um+1)
2

= U2
m+1 − U2

m.

This does (viii) and (ix).
(x) For this we first note that every root of Un/2−1(x) is a root of Un−1(x) (see (ix)

above). Next, any root of Un/2−1 has the form cos(2πk/(n/2)) and so by (2.2) we get

Un−2(cos(2πk/(n/2))) = sin((n − 1)2πk/(n/2))/sin(2πk/(n/2)) = −1,

which shows that cos(2πk/(n/2)) is a root of 1+Un−2(x). The fact that these are the only
values of x = cos(2πk/n) (the roots of Un−1(x)) that give 1 + Un−2(x) = 0 gives the rest
of (x).

(xi) This is proved by induction on m ≥ 1 using the recursion (2.1). �

We will need to define the T-type Chebyshev polynomials:

T0 = 1, T1(x) = x, Tn(x) = 2xTn−1(x) − Tn−2(x).

LEMMA 2.7. For n ≥ 0 we have

U ′
n =

n∑
k=0, k≡n(2)

2kUk−1.

Proof. First assume that n = 2k is even. Then from [Ri, p. 7, equation (1.23)] we have
T ′

n(x) = nUn−1(x) and from [Ri, p. 8, Exercise 1.2.13] we have U2k = 1 + 2T2 + 2T4 +
2T6 + · · · + 2T2k so that

U ′
2k = 2(T ′

2 + T ′
4 + T ′

6 + · · · + T ′
2k) = 2(2U1 + 4U3 + 6U5 + · · · + 2kU2k−1),

as required for the n even case. The n = 2k + 1 case is similar, only one uses [Ri, p. 9,
Exercise 1.2.15]: U2k+1 = 2(T1 + T3 + T5 + · · · + T2k+1). �

For α ∈ B3, p ∈ R3, we let Jp(α) denote the Jacobian of α at p.

LEMMA 2.8.
(i) For x ∈ R the minimum value of E along the curve p(z) = (x, x, z)T is attained

where z = x2.
(ii) For x, y ∈ R the minimum value of E along the curve p(z) = (x, y, z)T is attained

where z = xy.

Proof. Clearly (i) follows from (ii). For (ii) we differentiate E(x, y, z) with respect to z,
which gives 2z − 2xy and the result follows. �

We next justify the formula (1.2).
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LEMMA 2.9. For all α ∈ B3 there is a matrix 	(α) ∈ SL(2, Z) such that(
�

((
θ1

θ2

)))
α = �

(
	(α)

(
θ1

θ2

))
.

In particular

	(σ1) =
(

1 1
0 1

)
, 	(σ2) =

(
1 0

−1 1

)
.

For α, β ∈ B3 we have (
�

(
θ1

θ2

))
αβ = �

(
	(β)	(α)

(
θ1

θ2

))
.

Lastly, we have

	(αn) =
(

1 n

−n 1 − n2

)
.

Proof. For α = σ±1
1 , σ±1

2 this is a calculation. For example consider σ1: if (x, y, z)T =
�(θ1, θ2)

T, so that x = cos(2πθ1) etc., then we let

m1 =
(

e2πiθ1 0
0 e−2πiθ1

)
, m2 =

(
e2πiθ2 0

0 e−2πiθ2

)
,

so that
x = trace(m1)/2, y = trace(m2)/2, z = trace(m1m2)/2.

Now (x, y, z)Tσ1 = (z, y, 2yz − x)T. But if we let

m′
1 = m1m2 =

(
e2πi(θ1+θ2) 0

0 e−2πi(θ+θ2)

)
, m′

2 = m2 =
(

e2πiθ2 0
0 e−2πiθ2

)
,

m′
3 =

(
e2πi(θ1+2θ2) 0

0 e−2πi(θ1+2θ2)

)
,

then we have

trace(m′
1)/2 = z, trace(m′

2)/2 = y, trace(m′
3)/2 = 2yz − x,

showing that the effect of σ1 on (θ1, θ2)
T is that of the matrix

(
1 1
0 1

)
. The proof for σ2 is

similar.
The result for general α follows by induction on the length of α as a word in these

generators.
Let α, β ∈ B3; then from the above we have(

�

(
θ1

θ2

))
αβ =

(
�	(α)

(
θ1

θ2

))
β = �

(
	(β)	(α)

(
θ1

θ2

))
,

as required.
Lastly

	(αn) = 	(σn
1 σn

2 ) = 	(σn
2 )	(σn

1 ) =
(

1 0
−n 1

) (
1 n

0 1

)
=

(
1 n

−n 1 − n2

)
,

as required. �

We next indicate how fixed points p of αn on ∂T \V give rise to a curve of fixed points
containing p. We use this result throughout this paper.
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LEMMA 2.10. [Ro p. 160, PM p. 55] Let β ∈ B3 where 	(β) is hyperbolic. If
p ∈ ∂T \ V ⊂ E1 is a fixed point for β, then there is a C∞ curve γ : (−1, 1) → R3 such
that:
(i) γ (t) is fixed by β for every t ∈ (−1, 1);
(ii) γ (0) = p;
(iii) there is ε > 0 such that for all t ∈ (−ε, ε) we have γ (t) ∈ E1+t .

After having for the most part ignored the points in V we now describe what happens
near those points.

LEMMA 2.11. Let n be even and put p = (1, 1, 1)T. Then the points of V are fixed by the
normal closure of 〈σ 2

1 , σ 2
2 〉. We have

Jp(σn
1 ) =


1 − n n(n − 1) n

0 1 0
−n n(n + 1) n + 1


 , Jp(σn

2 ) =

 1 0 0

n(n + 1) n + 1 −n

n(n − 1) n 1 − n


 .

We also have trace(Jp(αn)) = 3 + n2(n2 − 4) and Jp(αn) has (1, 1, 2 − n)T as an
eigenvector with eigenvalue 1.

Further, the points (1, 1, 1)T and (−1,−1, 1)T are on a part of the curve γ+(x) =
(x, x, x(1 + Un−2(x))/Un−1(x))T of fixed points which does not intersect the interior of
the disc T+.

The behaviour at the other points q ∈ V is similar, in particular we have
trace(Jq(αn)) = 3 + n2(n2 − 4).

Proof. It is easy to check that qσ 2
k = q for k = 1, 2 and q ∈ V . Since n is even the point

p is fixed by σn
1 and by σn

2 . From Lemma 2.1 we obtain

(x, y, z)Tσn
1 = (−xUn−2(y) + zUn−1(y), y, −xUn−1(y) + zUn(y))T,

so that using Proposition 2.6 we have

Jp(σn
1 ) =


−Un−2 −xU ′

n−2 + zU ′
n−1 Un−1

0 1 0
−Un−1 −xU ′

n−1 + zU ′
n Un




=

1 − n −2

(
n
3

) + 2
(
n+1

3

)
n

0 1 0
−n −2

(
n+1

3

) + 2
(
n+2

3

)
n + 1


 ,

which one can check is what we want. The calculation of Jp(σn
2 ) is similar.

Now since σn
1 and σn

2 both fix p we have

Jp(αn) = Jp(σn
2 )Jp(σn

1 )

=

 1 − n n(n − 1) n

n − n3 + n2 1 + n − 2n2 − n3 + n4 n(n2 − 1)

3n2 − n3 − 2n n4 − 3n3 + n2 + 2n 1 + n2(n − 2)


 .

The trace is now easily calculated, as is the fact that (1, 1, 2 − n)T is an eigenvector for
eigenvalue 1.
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Lastly, when x = 1 we see from Proposition 2.6 that

x(1 + Un−2(x))/Un−1(x) = (1 + (n − 1))/n = 1,

which shows that (1, 1, 1)T is on the curve (x, x, x(1 + Un−2(x))/Un−1(x))T. To see that
this curve does not intersect the interior of T+ near (1, 1, 1)T we just note that the tangent
vector at (1, 1, 1)T to such a curve is the above-mentioned eigenvector (1, 1, 2 − n)T and
in the plane x = y this has negative slope, since n > 2. Thus it does not enter T+ near
(1, 1, 1)T. See Figure 1.

The proof for (−1,−1, 1)T is similar. �

Now �(θ1, θ2)
T = (x, x, z)T if and only if θ1 = ±θ2.

LEMMA 2.12. The αn-fixed points

�(i/n, j/n)T = (cos(2πi/n), cos(2πj/n), cos(2π(i + j)/n))T,

�(i/n,−j/n)T = (cos(2πi/n), cos(−2πj/n), cos(2π(i − j)/n))T,

on ∂T , are either equal or are joined by a vertical line of fixed points in the interior of T
and are αn-dual points.

Proof. By Lemma 2.3 (x, y, z)Tαn = (x, y, z)T if x = cos(2πi/n), y = cos(±2πj/n).
With these values of x, y the values z± = cos(2π(i ± j)/n) are the two solutions (for z)
of the equation x2 + y2 + z2 − 2xyz = 1 and so we get the two indicated points on the
boundary of T . The result follows. �

3. The x = ±y curves of fixed points: the (F2) case
In this section we first show that the curve γ+(x) (see (1.3)) is a curve of fixed points
for αn. We will need the following fact about Chebyshev polynomials.

LEMMA 3.1. For all n ≥ 2 we have

U2
n − 2xUnUn−1 + U2

n−1 = 1.

Proof. This is by induction on n ≥ 2 where we check the first case and then note that,
using the recurrence (2.1), we get

U2
n − 2xUnUn−1 + U2

n−1

= (2xUn−1 − Un−2)
2 − 2x(2xUn−1 − Un−2)Un−1 + U2

n−1

= U2
n−1 − 2xUn−1Un−2 + U2

n−2 = 1,

as required. �

LEMMA 3.2.
(i) For all n ≥ 1 we have

(x, x, x(1 + Un−2(x))/Un−1(x))Tσn
1 = (x, x, 2x2 − x(1 + Un−2(x))/Un−1(x))T.

Further, we also have

(x, x, 2x2 − x(1 + Un−2(x))/Un−1(x))Tσn
2 = (x, x, x(1 + Un−2(x))/Un−1(x))T.
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For all n ∈ N the curve γ+(x) = (x, x, x(1 + Un−2(x))/Un−1(x))T is fixed by
αn = σn

1 σn
2 .

(ii) For all n ∈ 2N the curve γ−(x) = (−x, x,−x(1 + Un−2(x))/Un−1(x))T is fixed
by αn.

Proof. (i) The last statement follows from the first two, which we now prove. By
Lemma 2.1 we have

 x

x

x(1 + Un−2(x))/Un−1(x)


 σn

1

=

−Un−2(x) 0 Un−1(x)

0 1 0
−Un−1(x) 0 Un(x)





 x

x

x(1 + Un−2(x))/Un−1(x)




=

 −xUn−2(x) + x(1 + Un−2(x))

x

−xUn−1(x) + xUn(x)(1 + Un−2(x))/Un−1(x)


 .

Substituting for Un(x) using (2.1) this latter vector is
 x

x

2x2 + [−xU2
n−1(x) + 2x2Un−1(x)Un−2(x) − xUn−2 − xU2

n−2]/Un−1(x)


 .

For the first part of Lemma 3.2(i) it thus suffices to show that

−xU2
n−1(x) + 2x2Un−1(x)Un−2(x) − xUn−2 − xU2

n−2 = −x(1 + Un−2(x)),

and after simplification this reduces to showing that

1 = U2
n−1(x) − 2xUn−1(x)Un−2(x) + U2

n−2(x),

which itself follows from Lemma 3.1.
This proves the first result in Lemma 3.2(i) and the second is similar. The last statement

of (i) follows directly.
(ii) The proof here is similar to that of (i). Let Hn(x) = x(1 + Un−2(x))/Un−1(x).

We first show that (−x, x,−Hn(x))Tσn
1 = (−x, x,−2x2 − Hn(x))T and then that

(−x, x,−2x2 + Hn(x))Tσn
2 = (−x, x,−Hn(x))T. This gives (ii). �

By Proposition 2.5 we see that if (a, a, c)T ∈ T+ is a fixed point of αn, then
(−a, a,−c)T ∈ T− is a fixed point of αn and vice versa. This is why we need only
consider T+. In Lemma 3.6 we will show that the above result determines all fixed points
in T+.

LEMMA 3.3. The action of B3 = 〈σ1, σ2〉 on R3 is volume preserving.

Proof. Let α ∈ B3 and suppose that α has length n as a word in σ±1
1 , σ±1

2 . We prove
Lemma 3.3 by showing that det Jp(α) = 1. We do this by induction on n ≥ 0, the cases
n = 0, 1 being easy to check using Lemma 2.1 and the general result following from the
chain rule. �
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We now investigate the roots and poles of the function (1 + Un−2(x))/Un−1(x).
Define the polynomials

Yn(x) = xUn − Un−1 − x.

LEMMA 3.4. Let n be even. Then the polynomial Yn has degree n + 1. The roots of Yn(x)

are

cos

(
πk

n

)
, k = 0, 2, 4, . . . , n;

cos

(
πk

n + 2

)
, k = 2, 4, 6, . . . , n.

Proof. Since Un(x) has degree n the first statement follows. We thus need to show that the
numbers in the above list are roots of Yn(x), since they are all distinct and there are n + 1
of them.

First note that from Proposition 2.6 we have Um(1) = m + 1 and so when k = 0 we
have cos(πk/n) = 1 and Yn(1) = Un(1) − Un−1(1) − 1 = n + 1 − n − 1 = 0 as required.
Thus we may assume that k > 0.

Similarly when k = n we have x = cos(πn/n) = −1 and we again see using
Proposition 2.6 that Yn(−1) = 0. Thus we assume that k �= n. This then means that
sin(πk/n) �= 0, which we use in what follows.

From (2.2) we see that x = cos θ is a root of Yn if and only if

Yn(x) = cos θ
sin[(n + 1)θ ]

sin θ
− cos θ − sin(nθ)

sin θ

is equal to 0. Now for k even, x = cos θ and θ = πk/n we see that

Yn(x) = cos(πk/n)
sin[(n + 1)πk/n]

sin(πk/n)
− cos(πk/n) − sin(nπk/n)

sin(πk/n)

= cos(πk/n)
sin(πk/n)

sin(πk/n)
− cos(πk/n) − 0

= 0.

For the second case with k even, θ = πk/(n + 2) and x = cos θ we have

Yn(x) = cos θ
sin[(n + 1)πk/(n + 2)]

sin θ
− cos θ − sin[nπk/(n + 2)]

sin θ

= cos θ
sin[−πk/(n + 2)]

sin θ
− cos θ − sin[−2πk/(n + 2)]

sin θ

= −cos θ
sin θ

sin θ
− cos θ − sin (−2θ)

sin θ
= 0.

This proves Lemma 3.4. �

We are now interested in finding those points of the tetrahedron ∂T that are also on the
curve γ+(x) which is fixed by αn = σn

1 σn
2 . This will identify the αn-dual pairs of points

on ∂T for γ+(x).
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PROPOSITION 3.5. Let n be even. Then the function E(γ+(x)) − 1 is equal to

Yn(x)Yn−2(x)/U2
n−1.

The rational function Yn(x)Yn−2(x)/U2
n−1 has roots

cos
πk

n + 2
, k = 0, 2, 4, . . . , n + 2;

cos
πk

n − 2
, k = 0, 2, 4, . . . , n − 2.

Except for ±1 all of these roots have multiplicity one.
It has poles of multiplicity two at cos(πk/n) for k = 1, 3, 5, . . . , n − 1.
Let n = 2m where m is even. Then the following gives the ordered list of roots and

poles (for any such fraction r/s the corresponding root or pole is cos(πr/s)):

1 >
n − 1

n
>

n

n + 2
>

n − 4

n − 2
>

n − 3

n
>

n − 2

n + 2
>

n − 6

n − 2
> · · ·

>
m + 5

n
>

m + 6

n + 2
>

m + 2

n − 2
>

m + 3

n
>

m + 4

n + 2
>

m

n − 2
>

m + 1

n
>

m + 2

n + 2

>
m

n + 2
>

m − 1

n
>

m − 2

n − 2
>

m − 2

n + 2
> · · · >

6

n + 2
>

5

n
>

4

n − 2
>

4

n + 2

>
3

n
>

2

n − 2
>

2

n + 2
>

1

n
> 0. (3.1)

For 0 ≤ k ≤ m − 4 even, the points γ+(x), x = cos[π(n − k)/(n + 2)],
cos[π(n − k − 4)/(n − 2)] are αn-dual points.

For 2 ≤ k ≤ m − 2 even, the points γ+(x), x = cos[πk/(n − 2)], cos[πk/(n + 2)] are
αn-dual points.

Lastly, the points γ+(x), x = cos[πm/(n + 2)], cos[π(m + 2)/(n + 2)] are αn-dual
points.

Proof. The expression E(γ+(x)) − 1 is equal to

x2 + x2 + x2(1 + Un−2)
2/U2

n−1 − 2x3(1 + Un−2)/Un−1 − 1

= (2x2U2
n−1 + x2(1 + 2Un−2 + U2

n−2) − 2x3(1 + Un−2)Un−1 − U2
n−1)/U2

n−1

= −(2x2Un−1 − xUn−2 − x − Un−1)(xUn−2 + x − Un−1)/U2
n−1

= −(xUn − x − Un−1)(xUn−2 + x − 2xUn−2 + Un−3)/U2
n−1

= (xUn − x − Un−1)(xUn−2 − x − Un−3)/U2
n−1

= Yn(x)Yn−2(x)/U2
n−1.

Now from Lemma 3.4 we see that Yn has roots

cos
πk

n
, k = 0, 2, 4, . . . , n; cos

πk

n + 2
, k = 2, 4, . . . , n,

while Yn−2 has roots

cos
πk

n − 2
, k = 0, 2, 4, . . . , n − 2; cos

πk

n
, k = 2, 4, . . . , n − 2.
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From (2.2) we see that U2
n−1 has roots

cos
πk

n
, k = 1, 2, . . . , n − 1,

each with multiplicity two. The roots common to YnYn−2 and U2
n−1 are thus

cos(πk/n), k = 2, 4, . . . , n − 2, each with multiplicity two. This part of the lemma now
follows upon cancelling these roots.

The given ordering of the fractions is now easily checked.
Consider the first case: 0 ≤ k ≤ m − 4 even. From Lemma 2.8 we know that the

vertical line in T+ with x = cos((n − k − 2)π/n) bifurcates with γ+ at a single point. The
vertical lines with x = cos((n − k − 1)π/n), x = cos((n − k − 3)π/n) are poles for the
function γ+. From the above ordering there is a single point of ∂T+ between these two
poles and so they must be on the same component of the intersection of γ+ with T+. (It is
useful to refer to Figure 1.)

The case 2 ≤ k ≤ m − 2 even is similar.
The centre of the above order list (3.1) is (m+2)/(n+2) > m/(n+2) which corresponds

to the component of γ+(x) which has both of its end points near z = −1; see Figure 1. �

The above result indicates the places where the curve γ+(x) meets T+ and also indicates
the poles of x(1 + Un−2(x))/Un−1(x), which occur at x = cos(πk/n) where k is odd (in
Figure 1 these were indicated by a solid vertical line). But there are also such lines of fixed
points vertical at x = cos(πk/n) with k even (in Figure 1 these were indicated by a dashed
vertical line). The fractions k/n with k even fit in the (left side of the) ordered list (3.1) as
follows:

n − 2k

n + 2
>

n − 2k − 2

n
>

n − 2k − 4

n − 2
.

All of this can be seen in Figure 1.
We have indicated the existence of various curves of fixed points of αn that lie in T+.

They either have
(i) x = cos(2πk/n), k = 1, . . . , n/2 − 1,
or satisfy
(ii) z = x(1 + Un−2(x))/Un−1(x).

LEMMA 3.6. Let n ∈ 4N.
(a) Any fixed point of αn in T+ \ V is of the form (i) or (ii) above.
(b) The reversing fixed points for αn on ∂T are of the form

�

(
(−2i − nj)/(4 − n2)

(ni + 2j)/(4 − n2)

)
,

for integers i, j . The reversing points form a lattice with generators

v1 =
(

1/(n + 2)

1/(n + 2)

)
, v2 =

(
2/(4 − n2)

−n/(4 − n2)

)
.

(c) The preserving fixed points on ∂T are of the form

�

(
i/n

j/n

)
, for integers i, j .
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Proof. Suppose that (x, x, z) ∈ ∂T \ V is a fixed point for αn. If x �= cos(2πk/n) for
some k ∈ {1, . . . , n/2−1}, then we have a fixed point of type (i). If not, then Un−1(x) �= 0
and we see that z = (1 + Un−2(x))/Un−1(x) from Corollary 2.2. This does (a).

For (b), we note that from Lemma 2.9 we have

	(αn) =
(

1 n

−n 1 − n2

)
.

Thus we need to solve (
1 n

−n 1 − n2

)
v = −v mod Z2

which is (
2 n

−n 2 − n2

)
v =

(
i

j

)
∈ Z2.

Thus any reversing fixed point v has the form

v =
(

2 n

−n 2 − n2

)−1 (
i

j

)
= 1

4 − n2

(
2 − n2 −n

n 2

) (
i

j

)

=
(

(2 − n2)i/(4 − n2) + (−nj)/(4 − n2)

ni/(4 − n2) + 2j/(4 − n2)

)
=

(
i + (−2i − nj)/(4 − n2)

(ni + 2j)/(4 − n2)

)
,

and any point of this form is a reversing fixed point.
The reversing points clearly form a lattice, which we denote by L−. To see that v1, v2

are a basis for L− we first note that they are both in L−: for v1 put i = 1, j = 1 − n; for
v2 put i = 1, j = −n. Now to see that these generate L− we need only note that

det

(
1/(n + 2) 2/(n2 − 4)

1/(n + 2) −n/(n2 − 4)

)
= 1/(4 − n2),

which is the determinant of (
2 n

−n 2 − n2

)−1

.

(c) We have already seen in Lemma 2.3 that any point of the form �(i/n, j/n)T is a
preserving fixed point. An argument similar to (b) above shows the converse. �

PROPOSITION 3.7. Let n be even, let k be even and let x = cos(kπ/n). Then (x, x, z)T

is a curve of fixed points for αn. The point (x, x, x2)T is also on the curve of fixed points
(x, x, x(1 + Un−2(x))/Un−1(x))T.

Proof. We have noted above that (x, x, z)T is a curve of fixed points for αn. To show
that (x, x, x2)T is on the curve of fixed points (x, x, x(1 + Un−2(x))/Un−1(x))T we need
to show that x(1 + Un−2(x))/Un−1(x) = x2. Since k is even we have 1 + Un−2(x) =
Un−1(x) = 0 and so by L’Hôpital’s rule we need to show that U ′

n−2(x)/U ′
n−1(x) = x or,

equivalently, that U ′
n−2(x) − xU′

n−1(x) = 0.
But differentiating Un−1(x)2 − 2xUn−2(x)Un−1(x) + Un−2(x)2 = 1 from Proposition

2.6(vii) gives −2xUn−2(x)U ′
n−1(x) + 2Un−2(x)U ′

n−2(x) = 0, on putting Un−1(x) = 0, as
required. �

Question. Can a symbolic dynamical system be developed for αn|∂T using αn(T±) that
sheds light on the dynamics of αn|T at different levels? Compare Figure 3 in §6.
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4. The type (F3) and type (F4) cases
We now determine the polynomial Kn(x, y) which defines the curves of fixed points of
types (F3) and (F4).

From Corollary 2.2 we see that if (x, y, z)T is a fixed point for αn where Un−1(y) �= 0,
then z = x(1 + Un−2(y))/Un−1(y). Further, using the terminology of that result, we have
x∗ = x and

Un(x
∗)y − Un−1(x

∗)[−xUn−1(y) + zUn(y)] = y,

Un−1(x
∗)y − Un−2(x

∗)[−xUn−1(y) + zUn(y)] = z.

Substituting for z and clearing the denominators of these equations gives two polynomials
q2(x, y) = q2,n(x, y) and q3(x, y) = q3,n(x, y):

q2(x, y) = Un−1(x)Un−1(y)2x + Un(x)yUn−1(y) − Un−1(x)Un(y)x

− Un−1(x)Un(y)xUn−2(y) − yUn−1(y),

q3(x, y) = Un−2(x)Un−1(y)2x + Un−1(x)yUn−1(y) − Un−2(x)Un(y)x

− Un−2(x)Un(y)xUn−2(y) − x − Un−2(y)x.

Thus in looking for fixed points for αn we are looking for simultaneous solution of
q2(x, y) and q3(x, y). Thus finding gcd(q2, q3) seems necessary.

PROPOSITION 4.1. Let n = 2m > 2. Then the greatest common divisor of q2(x, y) and
q3(x, y) is g = gn(x, y) where

g = −x2Um−1(x)Um−2(y)2 − y2Um−2(y)2xUm−2(x) + x2Um−1(x)yUm−1(y)Um−2(y)

+ Um−1(x)y2Um−2(y)2 − Um−1(x)y2 + 2y3Um−1(y)Um−2(y)xUm−2(x)

− 2Um−1(x)y3Um−1(y)Um−2(y) − 2xyUm−1(y)Um−2(y)Um−2(x) + y2xUm−2(x)

+ x2Um−1(x) + xUm−2(y)2Um−2(x) + yUm−1(x)Um−1(y)Um−2(y) − xUm−2(x).

Further, we have q3(x, y) = −4Um−2(x)g and q2(x, y) = 4Um−1(x)g.

Lastly, g(x, y) is divisible by x2 − y2 and by Um−1(y): gn(x, y) = Um−1(y)

Jn(x, y) where

Jn(x, y) = Um−1(y)Um−2(x)(y2 − 1)x + Um−1(y)Um−1(x)(x2 − y2)

+ Um−1(x)Um−2(y)(1 − x2)y. (4.1)

Proof. First consider the polynomial q3(x, y) which involves Un−2(x) and Un−2(y).

Substitute Un−2(x) = 2xUn−1(x) − Un(x) and Un−2(y) = 2yUn−1(y) − Un(y) so that
now q3(x, y) only involves Un(x),Un(y), Un−1(x) and Un−1(y) (as well as x, y). Now
use Proposition 2.6(viii) and (ix):

Un = U2m = U2
m − U2

m−1, Un−1 = U2m−1 = 2UmUm−1 − 2xU2
m−1

to reduce q3(x, y) to a polynomial in Um(x),Um−1(x), Um(y),Um−1(y) and x, y.
Now substitute Um(x) = 2xUm−1(x) − Um−2(x) and Um(y) = 2yUm−1(y) − Um−2(y)

and use the relation

Um−1(x)2 = 1 + 2xUm−1(x)Um−2(x) − Um−2(x)2
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from Proposition 2.6 to get rid of powers of Um−1(x) of exponent greater than one.
Lastly, use

Um−1(y)2 = 1 + 2yUm−1(y)Um−2(y) − Um−2(y)2

to get rid of powers of Um−1(y) of exponent greater than one. What one now has is
4Um−2(x)g. This does q3(x, y).

For q2(x, y): Substitute Un−2(x) = 2xUn−1(x) − Un(x) and Un−2(y) = 2yUn−1(y) −
Un(y) so that now q2(x, y) only involves Un(x),Un(y), Un−1(x), Un−1(y) and x, y.
Again use Proposition 2.6(viii) and (ix) to reduce q2(x, y) to a polynomial in Um,Um−1

and x, y. Now use

Um−1(x)2 = 1 + 2xUm−1(x)Um−2(x) − Um−2(x)2

(and the corresponding y equation) and we obtain q2(x, y) = −2Um−1(x)g∗. One now
shows that g∗ = −2g by substituting

Um(x) = 2xUm−1(x) − Um−2(x), Um(y) = 2yUm−1(y) − Um−2(y)

and
Um−2(y)2 = 1 + 2yUm−1(y)Um−2(y) − Um−2(y)2

in g∗ + 2g to get 0. This does q2(x, y).
Now if y = x, then Lemma 3.2 shows that (x, x, x(1 +Un−2(x))/Un−1(x))T is a curve

of fixed points. It follows that q2(x, x) = q3(x, x) = 0. Since Um−2(x) and Um−1(x) do
not share a root (see (2.2)) it follows that g(x, x) = 0 and so x − y is a factor of gn(x, y).
Similarly, since n is even, we see that x + y is a factor of gn(x, y). Thus (x − y)(x + y)

divides gn(x, y).
By collecting all terms of gn that contain Um−1(y) we can write

gn(x, y) = Um−1(y)Hn(x, y)

+ (1 − Um−2(y)2)(y2xUm−2(x) + x2Um−1(x) − y2Um−1(x) − xUm−2(x))

for some polynomial Hn(x, y). By adding a suitable multiple of Um−1(y) we can change
Hn(x, y) to a polynomial Jn(x, y) so that

gn(x, y) = Um−1(y)Jn(x, y)

+ (1 − Um−2(y)2 − Um−1(y)2 + 2yUm−1(y)Um−2(y))

× (y2xUm−2(x) + x2Um−1(x) − y2Um−1(x) − xUm−2(x))

= Um−1(y)Jn(x, y),

the last equality coming from Proposition 2.6(vii). Thus Um−1(y) divides g2m(x, y).
Carrying out the calculation indicated in this last part of the proof of Proposition 4.1

gives the expression (4.1) for the polynomial Jn(x, y). �

Proposition 4.1 shows that x2 − y2 divides Jn(x, y) and one easily checks that
Jn(y, x) = −Jn(x, y). Since Uk(0) = 0 for k odd it easily follows (in the case where
m is even) from (4.1) that xy is also a factor of Jn(x, y). We thus define the polynomial
Kn(x, y) by

Kn(x, y) = Jn(x, y)/(xy(x2 − y2)).
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Example 4.2. For n = 8, 12 we have

g8 = 16y2x(2y2 − 1)(x − y)(x + y)(8y2x2 − 6x2 + 5 − 6y2),

K8(x, y) = 8y2x2 − 6x2 + 5 − 6y2

and

g12 = 4y2x(2y − 1)(2y + 1)(4y2 − 3)(x + y)(x − y)

× (256x4y4 − 320x4y2 + 80x4 + 416y2x2 − 112x2 − 320y4x2

+ 80y4 + 35 − 112y2),

K12(x) = 256x4y4 − 320x4y2 + 80x4 + 416y2x2 − 112x2 − 320y4x2

+ 80y4 + 35 − 112y2.

Suppose that we have a function y = y(x) which satisfies Kn(x, y(x)) = 0. Then we
certainly have q2(x, y(x)) = q3(x, y(x)) = 0. Thus

γ (x) = (x, y(x), x(1 + Un−2(y(x)))/Un−1(y(x))) (4.2)

will give a curve of fixed points for αn. We will say that such a curve is of type (F3) in our
classification scheme if it does not meet the planes x = ±y and will be of type (F4) if it
does.

Example 4.2 (continued). For n = 8 we have K8(x, y) = 8y2x2 − 6x2 + 5 − 6y2 and we
can solve this equation for y to obtain

y(x) = ±
√

6x2 − 5

2(4x2 − 3)
.

For n = 12 we get a degree four equation in y which we solve to give the following
four solutions:

y(x) = ±
√

(16x4 − 20x2 + 5)(40x4 − 52x2 + 14 ±
√

320x8 − 768x6 + 624x4 − 196x2 + 21)

2(16x4 − 20x2 + 5)
.

One can solve Kn(x, y) = 0 for y and solve this using only radicals for n = 4, 8,
12, 16, 20 (when Kn(x, y) is irreducible). Thus the Galois group of the polynomial
Kn(x, y), when considered as an element of the polynomial ring Q(x)[y], is solvable for
n = 4, 8, 12, 16, 20. This is not the case for n = 24 however.

CONJECTURES 4.3.
(i) Let n = 4m. Then Kn(x, y) is irreducible.
(ii) The genus of K4m(x, y) is (2m − 3)2.

Using Magma [BC] we have checked these conjectures for 4m ≤ 40.

PROPOSITION 4.4. Let n = 2m and θ = (θ1, θ2)
T be such that �(θ) = (x, y, z)T is a

fixed point of αn. Then Jn(x, y) = 0.
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Proof. The point �(θ) is either a preserving or a reversing fixed point and so θ is given
by Lemma 3.6(b) and (c). Suppose first that π(θ) is a preserving fixed point. Then by that
same result we may take θ = (i/n, j/n) so that x = cos(2πi/n), y = cos(2πj/n). We
may clearly assume that 0 < i, j ≤ n. From (2.2) we see that Um−1(cos(2πk/n)) = 0
unless k ≡ 0 mod m. Now if {i, j } ∩ {m, 2m} = ∅, then by the above Um−1(x) =
Um−1(y) = 0, which gives Jn(x, y) = 0 + 0 + 0, as required.

So now assume that i ∈ {m, 2m}, j /∈ {m, 2m}. Then x2 = cos(2πi/n)2 = 1 and
Um−1(y) = 0; it follows that Jn(x, y) = 0. The case i /∈ {m, 2m}, j ∈ {m, 2m} is similar.
If i, j ∈ {m, 2m}, then x, y = ±1, so that x2 = y2 = 1 and it follows that Jn(x, y) = 0.
This concludes the preserving case.

So now assume that (x, y, z)T is a reversing fixed point. Here θ is given by
Lemma 3.6(b):

θ =
(

θ1

θ2

)
=

(
(2 − n2)i/(4 − n2) + (−nj)/(4 − n2)

ni/(4 − n2) + 2j/(4 − n2)

)
.

Now x = cos(2πθ1), y = cos(2πθ2) and using (2.2) we see that

Um−2(x) = sin(2πθ1(m − 1))

sin(2πθ1)
= sin(2πθ1m) cos(2πθ1) − cos(2πθ1m) sin(2πθ1)

sin(2πθ1)
,

with a similar expression for Um−2(y). Substituting these expressions into (4.1) we obtain
an expression whose numerator is

Jn(x, y) = −sin(2πθ2m) cos(2πθ1) cos(2πθ1m) sin(2πθ1)

+ sin(2πθ2m) cos(2πθ1) cos2(2πθ2) cos(2πθ1m) sin(2πθ1)

+ sin(2πθ1m) cos(2πθ2) cos(2πθ2m) sin(2πθ2)

− sin(2πθ1m) cos(2πθ2) cos2(2πθ1) cos(2πθ2m) sin(2πθ2).

Now using cos2(2πθk) = 1 − sin2(2πθk), k = 1, 2, we substitute for cos2(2πθk) and find
that this expression factors:

sin(2πθ1) sin(2πθ2) × (−sin(2πθ2m) sin(2πθ2) cos(2πθ1) cos(2πθ1m)

+ sin(2πθ1m) sin(2πθ1) cos(2πθ2) cos(2πθ2m)). (4.3)

We will show that the last factor of (4.3) is zero for integral i, j,m.
Now use the fact that

cos(2πθk(m + 1)) = cos(2πθkm) cos(2πθk) − sin(2πθkm) sin(2πθk)

to substitute for the sines in the last factor of the expression (4.3). There is cancelling and
we obtain

cos(2πθ1) cos(2πθ1m) cos(2πθ2(m + 1)) − cos(2πθ2) cos(2πθ2m) cos(2πθ1(m + 1)).

We now note that 2πθ2m = πi − 2πθ1, 2πθ1m = (2mi + j)π − 2πθ2. Substituting,
and noting that we can ignore integral multiples of 2π , we obtain

cos(2πθ1) cos(jπ − 2πθ2) cos(2πθ2 + πi − 2πθ1)

− cos(2πθ2) cos(πi − 2πθ1) cos(2πθ1 + jπ − 2πθ2). (4.4)
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Now one checks that for integral i, j this expression is always 0, there being four cases
depending on the parity of i, j . For example, if i, j are both even, then (4.4) is

cos(2πθ1) cos(2πθ2) cos(2πθ2 − 2πθ1) − cos(2πθ2) cos(−2πθ1) cos(2πθ1 − 2πθ2) = 0.

This concludes the proof. �

LEMMA 4.5. There are no points and curves of type (F4) if Kn(x, x) has no real solutions.

Proof. If we have a curve of type (F4), then there is a point (x0, x0, z0)
T ∈ T+ which is a

limit point of fixed points (xi, yi, zi )
T, i ∈ N, where xi �= yi so that the points (xi, yi)

T are
solutions to the equation Kn(x, y) = 0. We thus have Kn(x0, x0) = 0 where x0 ∈ R. �

We now give another expression for K4m(x, y).

PROPOSITION 4.6.
(i) For all m ∈ N we have

J4m+4(x, y) − J4m(x, y) = 2(x2 − y2)T2m+1(x)T2m+1(y).

(ii) For all m ∈ N and x, y ∈ R, we have

xyK4m(x, y) = 2
m∑

i=1

T2i−1(x)T2i−1(y). (4.5)

(iii) For all m ∈ N the polynomial K4m(x, y) has degree 4m − 4. As a polynomial in x

(or y) K4m(x, y) has degree 2m − 2.
(iv) For all m ∈ N we have K4m(x, y) = K4m(y, x) = K4m(−x, y) = K4m(x,−y).

Proof. (i) J4m(x, y) is given in (4.1), from which we also obtain an expression for
J4m+4(x, y):

J4m(x, y) = U2m−1(y)U2m−2(x)(y2 − 1)x + U2m−1(y)U2m−1(x)(x2 − y2)

+ U2m−1(x)U2m−2(y)(1 − x2)y, (4.6)

J4m+4(x, y) = U2m+1(y)U2m(x)(y2 − 1)x + U2m+1(y)U2m+1(x)(x2 − y2)

+ U2m+1(x)U2m(y)(1 − x2)y. (4.7)

Now U2m−2(x) and U2m−2(y) occur in (4.6) and we substitute 2xU2m−1(x) − U2m(x)

for U2m−2(x) (and similarly for U2m−2(y)) to give an expression which we denote by
j4m(x, y). Similarly U2m+1(x) and U2m+1(y) occur in (4.7) and we substitute 2xU2m(x)−
U2m−1(x) for these (and similarly for U2m+1(y)) to give an expression j4m+4(x, y). Thus
j4m+4(x, y) and j4m(x, y) are both polynomials in x, y,U2m(x),U2m(y),U2m−1(x) and
U2m−1(y). Examining j4m+4(x, y) − j4m(x, y) one sees that it factors as

2(x2−y2)(xU2m(x)−U2m−1(x))(yU2m(y)−U2m−1(y)) = 2(x2−y2)T2m+1(x)T2m+1(y),

as required. Here we have used the fact [Ri, p. 9] that for any n ≥ 1 we have
Tn(x) = Un(x) − xUn−1(x) = xUn−1(x) − Un−2(x).

(ii) Let x �= ±y. We note that (i) gives

J4m(x, y) = 2(x2 − y2)

m∑
i=1

T2i−1(x)T2i−1(y).
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But we also have the definition J4m = (x2 − y2)xyK4m(x, y); thus if x �= ±y, then (ii)
follows immediately since we can divide by x2 − y2. But any point (x, x) or (x,−x) is
a limit point of the complement of the x = ±y planes and so (4.5) is true for all x, y by
continuity.

(iii) It is easy to see that Tk(x) has degree k and that T2i−1(x)/x and T2i−1(y)/y have
degree 2i − 2. Thus (iii) follows from (4.5).

(iv) It is clear from (4.5) that K4m(x, y) = K4m(y, x). Now T2i−1(x)/x and
T2i−1(y)/y) are polynomials in x2 and y2 respectively, and so K4m(−x, y) =
K4m(x, y) = K4m(x,−y) as required. �

PROPOSITION 4.7. Let n = 4m,m ∈ N. Then there are no type (F4) curves of fixed points
in T for αn.

We use the following result.

LEMMA 4.8.
(i) For all m ∈ N we have x2K4m(x, x) = 2

∑m
i=1 T 2

2i−1(x).
(ii) For all m ∈ N we have K4m(0, 0) = 2

∑m
i=1(2i − 1)2.

Proof. (i) This is immediate from (4.5).
For (ii) we note that T2i+1(x) is divisible by x and by induction we see that the

coefficient of x in T2i+1(x) is ±(2i +1). Thus the coefficient of x2 in T 2
2i+1(x) is (2i +1)2

and (ii) follows from (i). �

Proof of Proposition 4.7. By Lemma 4.5 it will suffice to show that K4m(x, x) �= 0 for
all −1 ≤ x ≤ 1. But from Lemma 4.8(i) we see that, if Kn(x, x) = 0 with x �= 0,
then x has to be a root of each of T1(x)/x, T3(x)/x, . . . , T2m−1(x)/x. But each pair
T2k+1(x)/x, T2k−1(x)/x of polynomials is coprime (this follows from the fact [Ri, p. 1]
that Tn(x) = cos(n arccos(x))) and so no such x �= 0 is possible, leaving us to consider
the case x = 0.

Now Lemma 4.8(ii) clearly shows that K4m(0, 0) �= 0 and so Proposition 4.7 follows. �

We now discuss the following consequences of (4.5) and the results of this section.
Now in [−1, 1]2 the sequence of polynomials K4m(x, x) has the property that

K4r (a, a) ≥ K4s(a, a) if and only if r ≥ s, and the graphs of K4r (x, x) and K4s(x, x)

only meet when r = s + 1, where they meet tangentially in the x = y plane since
K4s+4(x, x) − K4s(x, x) = 2T2s−1(x)2. We draw the slice through the x = y plane
of the set of graphs K4m(x, y) in Figure 2, where x ∈ [0.5, 1].

5. Elements of the type σ r
1 σ s

2 and their associated polynomials
Here we show how some of the above techniques apply to slightly more general elements
of B3.

Fix r, s ∈ N where |2 − rs| > 2, and consider αr,s = σ r
1 σ s

2 . Then using Lemma 2.1 we
see that 

x

y

z


 αr,s =


 −xUs−2(y) + zUs−1(y)

Ur(x
∗)y − Ur−1(x

∗)[−xUs−1(y) + zUs(y)]
Ur−1(x

∗)y − Ur−2(x
∗)[−xUs−1(y) + zUs (y)]


 .
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FIGURE 2. Graphs of some functions Fm(x, x) for the study of curves of type (F4).

Here x∗ = −xUs−2(y) + zUs−1(y). As usual we are interested in the fixed points and
curves of fixed points of αr,s and so in particular we must have x∗ = x. We can solve
this for z: z = x(1 + Us−2(y))/Us−1(y). As in the discussion at the beginning of §4
we also obtain (from equating the y and z expressions) two polynomials q2,r,s(x, y) and
q3,r,s(x, y):

q2,r,s(x, y) = Us−1(y)Ur(x)y + xUr−1(x)U2
s−1(y)

− xUr−1(x)(1 + Us−2(y))Us(y) − yUs−1(y),

q3,r,s(x, y) = yUr−1(x)Us−1(y) + xU2
s−1(y)Ur−2(x)

− xUs (y)Ur−2(x)(1 + Us−2(y)) − x(1 + Us−2(y)).

The polynomials q2,r,s and q3,r,s have degree at most 2s + r − 2 and they have the
property that if (a, b, c) is a fixed point of αr,s , then q2,r,s(a, b) = 0, q3,r,s(a, b) = 0. Let
gr,s(x, y) = gcd(q2,r,s(x, y), q3,r,s(x, y)).

Now note that the condition |2 − rs| > 2 guarantees that |trace(	(αr,s))| > 2, so that
	(αr,s) is a hyperbolic matrix. Thus if p = (a, b, c)T ∈ ∂T \ V is a fixed point, then
there is a curve of fixed points γ (t) = (γ1(t), γ2(t), γ3(t))

T through p and we must have
gr,s(γ1(t), γ2(t)) = 0. In particular we have gr,s(a, b) = 0.

Now note that the fixed points of αr,s come in the reversing and preserving types, each
of which gives a lattice in the torus T2. Let

M = 	(αr,s) =
(

1 s

−r 1 − rs

)
.
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Then the lattice L+ of preserving fixed points for M is (M−I2)
−1(Z2), while the lattice

L− of reversing fixed points is (M + I2)
−1(Z2). Here

(M − I2)
−1 =

(−1 −1/r

1/s 0

)
(M + I2)

−1 =
(

(2 − rs)/(4 − rs) −s/(4 − rs)
r/(4 − rs) 2/(4 − rs)

)
.

The fixed points on ∂T for αr,s are thus �(L+ ∪ L−). We also have

|L+| = |det (M − I2)| = rs and |L−| = |det (M + I2)| = rs − 4.

This discussion gives the following result.

THEOREM 5.1.
(i) Let r, s ∈ N, |2 − rs| > 2. Then there is a polynomial gr,s(x, y) of degree at most

2s + r − 2 such that for any p = (a, b, c)T ∈ �(L+ ∪ L−) we have gr,s(a, b) = 0.
(ii) If γ (t) = (γ1(t), γ2(t), γ3(t))

T is a curve of fixed points through p, then
gr,s(γ1(t), γ2(t)) = 0.

6. Dual sets of points for αn

We study the curves Jn(x, y) = 0 introduced in §4, considered as a subset of the (x, y)-
plane R2 ×{0} ⊂ R3. These curves contain the projections to the (x, y)-plane of all curves
of fixed points of αn. Consider the intersection of the Jn(x, y) = 0 curves with the lines
x = cos(2πi/n) or y = cos(2πj/n) in the (x, y)-plane. See Figure 3 where we have
drawn these curves for n = 20; the intersections of these horizontal and vertical lines
determine a vertical line in R3 containing the preserving fixed points as in Lemma 2.12.

The curves of Jn(x, y) = 0 include the four lines x = 0, y = 0, x = ±y; see Figure 3
again. In Figure 3 we have also indicated as small circles the images of the points of L−.

Let πz : R3 → R2 × {0} ⊂ R3 be the projection onto the (x, y)-plane and let
�z = πz� : T2 → R2 × {0} ⊂ R3.

PROPOSITION 6.1. Fix m,n ∈ N with n = 2m and 4|n, and consider i, j ∈ {0, . . . , n}.
(1) For i ∈ {1, . . . , n − 1} even we have Un−1(cos(πi/n)) = Um−1(cos(πi/n)) = 0.

For i ∈ {1, . . . , n − 1} odd we have Un−1(cos(πi/n)) = 0 �= Um−1(cos(πi/n)).
(2) If i, j ∈ {0, . . . , n} are both even, then Jn(cos(πi/n), cos(πj/n)) = 0.
(3) If i, j ∈ {0, . . . , n} are both odd, then Jn(cos(πi/n), cos(πj/n)) = 0.
(4) If i ∈ {0, . . . , n} \ {m} is even and Jn(cos(πi/n), y) = 0, then y = cos(πj/n) for

some even j ∈ {0, . . . , n}. If j ∈ {0, . . . , n}\{m} is even and Jn(x, cos(πj/n)) = 0,
then x = cos(πi/n) for some even i ∈ {0, . . . , n}.

(5) If i ∈ {0, . . . , n} is odd and Jn(cos(πi/n), y) = 0, then y = 0 or cos(πj/n) for
some odd j ∈ {0, . . . , n}. If j ∈ {0, . . . , n} is odd and Jn(x, cos(πj/n)) = 0, then
x = 0 or cos(πi/n) for some odd i ∈ {0, . . . , n}.

Proof. (1) These statements come from (2.2).
(2) Since Um−1(cos(πi/n)) = 0 or Um−1(cos(πj/n)) = 0 occurs in each of the terms

of Jn(cos(πi/n), cos(πj/n)) in (4.1), this follows from (1) unless {i, j } ∩ {0, n} �= ∅. If
i ∈ {0, n} then 1 − x2 = 0 and Jn(x, y) = Um−1(y)(y2 − 1)(Um−2(x)x − Um−1(x)) = 0
for even j .
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FIGURE 3. The projection to the (x, y) plane of curves of fixed points of type (F2) an (F3).

(3) Using Un−1(cos(πi/n)) = Un−1(cos(πj/n)) = 0 we see that q2(cos(πi/n),

cos(πj/n)) = 0. Also

q3(cos(πi/n), cos(πj/n))

= −x(Un−2(cos(πi/n))Un(cos(πj/n)) + 1)(1 + Un−2(cos(πj/n))) = 0,

since Un−1(cos(πi/n)) = 1 by Proposition 2.6(x) and Un(cos(πj/n))=−1 by Proposition
2.6(vi). Thus gn(cos(πi/n), cos(πj/n)) = 0 and, since Um−1(cos(πj/n)) �= 0, we have
Jn(cos(πi/n), cos(πj/n)) = 0. Since, from (4.1), Jn(y, x) = −Jn(x, y), the second
statement follows from the first; this is also true for the other parts of this proposition.

(4) For i ∈ {1, . . . , n − 1} even, Um−1(cos(πi/n)) = 0 and Um−2(cos(πi/n)) �= 0 so
Jn(cos(πi/n), y) = 0 implies that Um−1(y)(y2 − 1)x = 0 and then either x = 0 (which
is excluded by i �= m) or y = ±1 or y = cos(πj/n) (0 < j < n, j even).

(5) For i odd, x = cos(πi/n) satisfies U2m−1(x) = 0 �= Um−1(x), so by
Proposition 2.6(ix) we have Um(x) = xUm−1(x) and, from Proposition 2.6(vii) we have
Um−1(x)2−Um(x)2 = 1. Substituting this in Proposition 2.6(vi) gives Um−2(x) = Um(x).
Now substituting Um−2(x) = xUm−1(x) in (4.1) gives

Jn(x, y) = Um−1(x)Um−1(y)[(y2 − 1)x2 + (x2 − y2)] + Um−1(x)Um−2(y)(1 − x2)y.

Now Um−1(x)(x2 − 1) �= 0, so Jn(x, y) = 0 and y �= 0 hold exactly at the roots
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FIGURE 4. The lattice of reversing fixed points in T2.

of the polynomial yUm−1(y) − Um−2(y) of degree m, and these are cos(πj/n) for odd
j ∈ {0, . . . , n} by (3). �

Recall that L− ⊂ T2 is the lattice of reversing points and that it is generated by the
vectors v1, v2 given in Lemma 3.6. With the convention that we are drawing T2 as a
square with sides identified we have drawn the points of L− in Figure 4, for n = 16, where
these points are indicated by cross-hairs; we have also there indicated the preserving fixed
points as the intersections of the horizontal and vertical lines.

The following result indicates the αn-duality.

THEOREM 6.2. Let n be a multiple of 4, put

v1 =
(

1

n + 2
,

1

n + 2

)T

, v2 =
( −2

n2 − 4
,

n

n2 − 4

)T

and consider the lattice of reversing points spanned by v1, v2 as in Lemma 3.6.
(1) For 0 < k ≤ n/4 − 2 and j = 1, . . . , n/4 − |k| − 1, the two reversing fixed points

�((n/4 + 1 + k)v1 + (n/4 − k ± j)v2) are αn-dual by a curve of fixed points that
meets the straight line of fixed points joining �((1/4 + k/n, 1/2 ± j/n)T).

(2) For 0 < −k ≤ n/4 − 2 and j = 1, . . . , n/4 − |k| − 1, the two reversing fixed points
�((n/4 + 1 + k)v1 + (n/4 − k − 1 ± j)v2) are αn-dual by a curve of fixed points
that meets the straight line of fixed points joining �((1/4 + k/n, 1/2 ± j/n)T).
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(3) For j = 1, . . . , n/4 − 1, the two reversing points �((1/4, 1/2)T ± (j − 1/2)v2) are
αn-dual by a curve of fixed points that meets the straight line of fixed points joining
�((1/4, 1/2)T) and �((1/4, 0)T), which is the y-axis.

(4) For 0 < k ≤ n/4 − 1, the reversing point �((n/4 + 1 + k)v1 + (n/4 − k)v2) is
αn-dual to the preserving fixed point �((1/4 + k/n, 1/2)T). For 0 < −k ≤ n/4 − 1,
the reversing point �((n/4+1+k)v1 +(n/4−k−1)v2) is αn-dual to the preserving
fixed point �((1/4 + k/n, 1/2)T).

(5) All fixed points of αn in −1 ≤ y < −|x| are αn-dual in pairs, as indicated above.
This region, which is �z�{(θ1, θ2) : 0 < θ2 − θ1 < 1/2 < θ1 + θ2 < 1}, is one of
the four components of �z�(∂T \ (T+ ∪ T−)) and αn-duality is determined in the
other three |x| < y ≤ 1,−1 ≤ x < −|y| and |y| < x ≤ 1 from these by symmetry.
Together with x = ±y in §§2 and 3 this accounts for all the fixed points in ∂T .

Proof. A curve of fixed points in T joining two αn-dual fixed points on ∂T cannot,
by Proposition 6.1(5), cross x = cos(πi/n), i odd, except where y = 0 (nor y =
cos(πj/n), j odd, except where x = 0) because z = x(1 +Un−2(y))/Un−1(y) → ±∞ as
(x, y) approaches a point (cos(πi/n), cos(πj/n)) with i, j both odd along Jn(x, y) = 0;
see Proposition 2.6(x). Therefore, we study in T2 which pairs of reversing fixed points
in ∂T are not separated by the planes x = cos(πi/n) or y = cos(πj/n), i, j odd. The
preimages by � of these planes are the lines θ1 or θ2 = (k+ 1

2 )/n, 0 ≤ k < n in T2. (These
lines have not been drawn in Figure 4, and nor have their images by �z in Figure 3.)

The n2 preserving fixed points (i/n, j/n)T, i, j ∈ {0, . . . , n− 1}, by Lemma 3.6, are at
the centre of the squares into which these lines divide T2, one in each component. We
shall exhibit one reversing point in many of these squares. In fact, of the n2 − 4 =
|det (I +	(αn))| reversing points (as in Lemma 3.6), there is exactly one in each of the n2

squares with centre at a preserving point (i/n, j/n)T, 0 ≤ i, j < n, because the others are
accounted for as follows: (a) eight cases like (1/4, 1/2)T where there are none, (b) four
cases like (1/4, 1/4)T where there are two, and (c) four cases like (1/2, 0)T where the
reversing and preserving points are coincident; cases (a) give the points of ∂T on the x-
and y-axes (twice each), cases (b) give the points on the z-axis (see Figure 1) and cases
(c) give the vertices V of T . Where two preserving points are connected by a vertical line
of fixed points (as in Lemma 2.12) the nearby reversing points are αn-dual, as in (1) and (2),
or, in a different way, in (3). Otherwise the preserving point is αn-dual to a reversing point,
as in (4).

(1) In T2 the reversing and preserving points

(n/4 + 1 + k)v1 + (n/4 − k + j)v2 and (1/4 + k/n, 1/2 + j/n)T

differ by
1

n2 − 4
(−2j + 4k/n − 1, n/2 − 2k + 4j/n)T.

In the range k = 1, . . . , n/4−2 and j = 1, . . . , n/4−k −1 the first coordinate is negative
and is at least

(−2(n/4 − 2) + 4/n − 1)/(n2 − 4) = − 1

2n
+ (3 + 2/n)/(n2 − 4),
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so they are not separated by the line θ1 = 1/4 + (k − 1
2 )/n. The second coordinate of

the difference is positive and is at most (n/2 − 2 + 1 − 8/n)/(n2 − 4), which is less than
1/(2n) so the points are not separated by θ2 = 1/2 + (j + 1

2 )/n.
Similarly, the two points

(n/4 + 1 + k)v1 + (n/4 − k − j)v2 and (1/4 + k/n, 1/2 − j/n)T

differ by
1

n2 − 4
(2j + 4k/n − 1, n/2 − 2k − 4j/n)T

and so they are not separated by the line θ1 = 1/4+(k+ 1
2 )/n nor by θ2 = 1/2−(j− 1

2 )/n.
The preserving points (1/4 + k/n, 1/2 ± j/n) are brought together by �z at

�z

(
1/4 + k/n

1/2 ± j/n

)
=

(
cos(2π(k + n/4)/n)

−cos(2πj/n)

)
,

while the two reversing points (n/4 + 1 + k)v1 + (n/4 − k ± j)v2 have their image
in the same one of the components into which (x, y)-space is divided by the lines x =
cos(2π(k + n/4 ± 1

2 )/n) and y = −cos(2π(j ± 1
2 )/n). However, of the four components

into which this component is divided by the lines with x = cos(2π(k + n/4)/n) and
y = cos(2πj/n), they lie in opposite ones. The two preserving points are αn-dual along
the vertical line (cos(2π(k + n/4)/n),−cos(2πj/n), z) of fixed points, and so the two
reversing points are also αn-dual along the curve Jn = 0, which, by Proposition 6.1(4),
must go through (cos(2π(k + n/4)/n),−cos(2πj/n))T. Applying L’Hôpital as in the
proof of Proposition 3.7 to y shows that this curve of fixed points meets that vertical line
on the surface z = xy. (By Lemma 2.8 this is the point on that straight line which is on the
lowest level for the function E; it is also a bifurcation point of the dynamics.)

(2) This corresponds to (1) under (θ1, θ2) �→ (1/2, 1) − (θ1, θ2) and (x, y, z) �→
(−x, y,−z).

(3) This reversing point differs in T2 from the nearest preserving point by((
1/4
1/2

)
± (j − 1/2)v2

)
−

((
1/4
1/2

))
±

((
0

j/n

))
= ± 1

n2 − 4

(
1 − 2j

4j/n − n/2

)
.

For j ∈ {1, . . . , n/4 − 1}, both coordinates are (in the + case) negative and greater than
−1/(2n) so the two points are not separated by any line θ1, θ2 = (k + 1

2 )/n. Now

�z�

((
1/4
1/2

)
± (j − 1/2)v2

)
=

(
cos(π/2 ∓ 2π(2j − 1)/(n2 − 4))

−cos(πn(2j − 1)/(n2 − 4))

)
,

so these two points have the same y-coordinate and their x-coordinates are separated by
x = 0; the curve of fixed points joining them crosses x = 0 (along which Jn = 0)
at (0, y, 0) for some y, by Corollary 2.2, although, in contrast to cases (1) and (2),
Proposition 6.1(4) does not say that this curve meets the vertical line of fixed points
(0,−cos(2πj/n), z). Figure 3 shows that the curve does not meet that vertical line.

(4) This reversing and preserving point differ in T2 by

(n/4 + 1 + k)v1 + (n/4 − k)v2 −
(

1/4 + k/n

1/2

)
= n − 4k

n2 − 4

(−1/n

1/2

)
.
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For k = 1, . . . , n/4 − 1 the scalar (n − 4k)/(n2 − 4) is positive and less than 1/n so that

�((n/4 + 1 + k)v1 + (n/4 − k)v2) and �((1/4 + k/n, 1/2)T)

are not separated by

x = cos(2π(1/4 + (k ± 1
2 )/n)) and y = cos(2π(1/2 + 1

2/n)) = −cos(π/n),

so they are αn-dual. The second statement corresponds to the first under (θ1, θ2) �→
(1/2, 1) − (θ1, θ2) and (x, y, z) �→ (−x, y,−z).

(5) In −1 ≤ y < −|x| we have considered (n/4 − 1)n/2 reversing points on ∂T ,
(n/4−1)(n/4−2) of them in (1), (n/4−1)(n/4−2) in (2), 2(n/4−1) in (3) and 2(n/4−1)

in (4). The involutions S(x, y, z) = (−x, y,−z) and R(x, y, z) = (y, x, z) that commute
with αn (see Proposition 2.5) have compositions R(x, y, z) = (y, x, z), RSR(x, y, z) =
(x,−y,−z) and SR(x, y, z) = (−y, x,−z) that take −1 ≤ y < −|x| to −1 ≤ x <

−|y|, |x| < y ≤ 1 and |y| < x ≤ 1, respectively, commuting with αn and so determine
αn-duality for (n/4 − 1)n/2 reversing points in each of these regions. Not counting the
vertices there are n − 2 reversing points in each of x = y and x = −y (see Figure 1)
giving a total of 2n(n/4 − 1) + (2n − 4) = (n2 − 8)/2 reversing fixed points in ∂T \ V ,
which are each double-covered by one of the n2 − 4 − 4 reversing points of T2 that do
not give vertices. Thus all the reversing points have been included in our description. This
concludes the proof of Theorem 6.2. �
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