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Abstract 

 

Polycrystalline boron-doped diamond (pBDD) has acquired great interest as a electrode material 

exhibiting low background currents, wide potential windows and a host of extreme physical properties 

such as mechanical hardness, chemical inertness and a high resistance to harsh environments. pBDD’s 

exceptional electrochemical characteristics have made its application as a material for high 

performance electrochemical sensors the basis of a hugh amount of research over the last decade. 

Work in this thesis describes the fabrication and application of pBDD sensors in both stationary and 

fluid flow environments where conventional electrode materials would be unsuitable or problematic. 

pBDD electrodes functionalised with catalytic metal nano-particles are demonstrated as a means of 

detecting hydrazine, a genotoxic impurity of interest in pharmaceutical analysis, even in the presence 

of potentially interfering pharmaceutical matrix. This same sensor is then employed as a means of 

detecting the presence of non-polar oils on an electrode surface in dual-phase, aqueous/oil systems. 

An investigation of electrochemical techniques for detecting and characterising phase changes in the 

form of microdroplets moving under flow in microfluidic systems is detailed. Limitations to the use of 

conventional materials used to fabricate such microfluidic devices are discussed. In an effort to 

address these issues as well as those expected in extreme environments, with aggressive media, a 

fabrication route for realising all-diamond microfluidic devices with integrated, high-quality pBDD 

electrodes is outlined.  
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Chapter 1: Introduction 

The application of an electrochemical sensor for the purpose of multiphase flow profiling has yet to 

be realized and could represent a cost-effective alternative. Specifically, the main advantages of 

utilizing an electrochemical sensor are the ability to perform measurements quickly, and relatively 

cheaply, and the inherent low costs of maintenance. For these reasons electrochemical sensors have 

found a range of applications in medical,1 environmental,2, 3 and food analyses.4 

In the case of long term use in harsh environments, conventional electrode materials such as platinum, 

gold and glassy carbon are impractical due to degradation over time. The application of conducting 

diamond addresses this issue. Diamond is one of the four allotropes of carbon. Its structure comprises 

sp3 bonded carbon where each carbon atom is bound to another four carbon atoms. Intrinsic diamond 

is highly electrically insulating5, however, when doped with nitrogen or boron, n-type or p-type 

semiconductors are produced respectively. In the case of boron doping, it is possible to achieve 

doping at such a high level that the material shows semi-metallic behaviour. 

1.1 Electrochemistry as a method for analysis in stationary and under flow 

regimes 

At its simplest, electrochemistry can be described as charge transfer across an interface for example, 

the oxidation or reduction of a redox species in solution at a metal surface, due to electron transfer. 

Other examples include adsorption and desorption processes as well as corrosion or the 

electrodeposition of material onto an electrode surface.  

The study of electrochemical processes has given rise to applications in sensor technology which 

range from chemical sensors in solutions,6, 7 gas phase sensors8 through to biosensors.9, 10 The 

advantages of electrochemical sensors include low cost, high performance with the possibility of in-

situ measurements and the ability to miniaturise into micro-scale systems.11, 12 
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1.1.1 Introduction to electrochemistry: Electrochemical cells 

Electrochemistry can be defined as either thermodynamic or dynamic. In an electrochemical cell 

system, as shown in Figure 0.1 it is possible to either (1) measure the resulting cell potential 

(thermodynamic) or (2) apply a potential or current to drive a redox reaction at the working electrode 

(dynamic), with respect to a reference electrode. All experiments described in this thesis are carried 

out under dynamic conditions. 

 

Figure 0.1: An electrochemical cell consisting of two electrodes immersed in an aqueous solution containing a 

redox active species “O” and electrolyte. The cell is capable of (1) measuring potential via a voltmeter or (2) 

applying current/potential and measuring potential/current via a potentiostat. 
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1.1.2 Dynamic electrochemistry 

Dynamic electrochemistry can be defined as the study of reactions involving the transfer of electrons 

between an electrode and a reactant species under non-equilibrium conditions.
13

 This can be in a 

solution phase or even a plasma.14 

A simple redox reaction is as follows: 

)()( aq

k

k

aq RneO

ox

red




   

0.1 

Where n is the number of electrons involved in the reaction; kred and kox are the first-order 

heterogeneous rate constants for the reductive and oxidative reactions, respectively.  

Electrochemical cells can be used to drive otherwise non-spontaneous reactions at an electrode via the 

application of a potential or current. This is known as electrolysis and can only occur at an electrode 

surface if a second, opposing process occurs at a second electrode in order to balance the overall 

charge of the cell. In an electrochemical cell the first electrode is typically referred to as the working 

electrode with the second electrode termed the reference (see section 1.1.2.1). For example, an 

oxidation at one electrode (the anode) must be accompanied by a reduction at the opposing electrode 

(the cathode). For a spontaneous reaction to occur the free energy change for the net cell reaction of 

interest must be negative. Hence an input of energy, ΔGin is required, via the application of a potential 

difference, E between the two electrodes, to drive non-spontaneous reactions. E must therefore be 

greater than the difference in reversible potentials of the cathode, Ee
C and anode, Ee

A so that 

 A

e

C

e EEE   

0.2 

This applied potential difference, E provides the thermodynamic driving force to initiate electrolysis 

but the rate will be dictated by the kinetics of the electrode reaction.  

The total cell potential, Ecell represents the energy per unit charge needed by the electrochemical cell 

to induce a chemical change via electrolysis, which includes not only the required reaction driving 
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potential E, but also the excess energy required i.e. an overpotential, η in order to overcome any 

kinetic limitations, to drive the movement of ions in solution and overcome any resistance in the cell: 

iREEE CA

A

e

C

ecell  )(  

0.3 

Where ηA and ηC are the overpotentials for the anodic and cathodic reactions, respectively; iR is the 

potential drop term which accounts for resistance in the electrochemical cell. It is common practice to 

design the cell in order to minimise iR, for example adding a supporting electrolyte to solution  to 

reduce the solution resistance and keeping the electrodes close together15. 

Factors that govern electrode dynamics are summarised by the schematic in Figure 0.2, and can be 

divided into two regimes (1) electron transfer kinetics i.e. the rate at which electrons are transferred 

between the species of interest and the electrode surface; and (2) mass transport of species to and 

from the electrode surface. 

 

Figure 0.2: schematic representing factors that govern electrode dynamics in a heterogeneous 

reaction 
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1.1.2.1 Reference electrodes 

The integration of an electrode with a well-defined and constant potential is of critical importance if 

the overall potential of a cell is to be measured or potential control of a system is to be achieved. Such 

an electrode is referred to as the reference electrode. As the name suggests, it provides a reference 

potential by which the rest of the system is compared.  

A typical reference electrode is the silver/silver chloride electrode (Ag|AgCl) described by the 

following cell notation: 



)(aqClAgClAg  

0.4 

where | represents a phase boundary. In this case, a silver wire is coated with a layer of the insoluble 

solid silver halide salt, silver chloride (so that no silver wire is exposed to solution) and immersed in a 

solution containing a constant concentration of chloride ions (3 M). This solution is contained within 

a glass vial and connected to the rest of the electrochemical cell via a porous ceramic frit that allows 

the slow passage of ions while maintaining an electrical contact through a liquid junction; see Figure 

0.3.  

The potential determining equilibrium established at the Ag|AgCl electrode can be described by 

 



 )()()( aqss ClAgeAgCl  

0.5 

The containment and separation of the chloride ion solution from the bulk solution of the 

electrochemical cell ensures that the concentration of chloride ions remains constant and  the 

reference electrode maintains a stable potential, as described by the Nernst equation16: 





Cl

o

e
anF

RT
EE

1
ln  

0.6 
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where Ee is the equilibrium potential and Eo is the standard electrode potential, F is Faraday’s constant 

(C mol-1) and aCl
- is the activity of chloride ions in solution.  

Since the activity of a species is defined by as follows: 

 Oa   

0.7 

where , is the activity coefficient of a species and [O] is the concentration of a dilute species, 

equation 0.6 can be rewritten as 

][

1
ln'0





ClnF

RT
EE

Cl


 

0.8 

where E0’ is the formal potential. 

If a solution contains an excess of supporting electrolyte i.e. an inert salt, which takes no part in any 

reaction in solution or at the electrode/solution interface, it can be assumed that  is equal to 1 and so 

 Oa   

0.9 

and 

0'0 EE   

0.10 

For non-aqueous systems frit-based reference electrodes are not suitable, as typically the, silver halide 

salts are soluble17 in non-aqueous solvents, changing the composition of the electrode/solution 

interface and so destabilising the reference electrode. Moreover, leaking of aqueous solvent into the 

non-aqueous solution restricts use to short measurements only and the liquid-liquid junction formed at 

the frit can lead to precipitation of salts inside the frit.18 
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Figure 0.3: A schematic of a typical self-contained Ag|AgCl reference electrode. 

 

For systems that require the use of a reference electrode in a non-aqueous media, it is typical to use a 

bare silver wire as a “quasi-reference” electrode, the potential of which is dependent on the solution 

environment it is placed into. Quasi references are still very usable in electrochemical systems as long 

their potential can be defined for that system using a reference redox mediator i.e. a mediator whose 

redox potential is known verses a standard hydrogen electrode (SHE).18 

1.1.2.2 Three-electrode measurements  

In order to study electrode dynamics, it is often necessary to adopt a three-electrode set-up whereby 

an auxiliary electrode, commonly referred to as a counter electrode is added to the system. This is 

shown schematically in Figure 0.4. Under potential control, the counter electrode enables the passage 

of current between itself and the working electrode while the cell potential is applied between just the 

working and the reference electrode. This prevents any significant currents from being passed through 

the reference electrode that would otherwise change the interfacial composition of the electrode and 

so affect the potential of the electrode/solution interface. Thus, any changes in potential can be 

attributed to the working electrode. The counter electrode also acts to reduce Ohmic drop that results 

from attempts to pass large currents through the reference electrode. As a rule of thumb for currents< 

1 A two-electrodes can be used instead of three.16 The counter electrode is often made of an inert 

metal with a high density of states e.g. platinum, shaped to have a large surface area relative to the 
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working electrode. These features ensure that any electrical resistance in the electrochemical cell 

resulting from the counter electrode are minimised, restricting any current limiting processes to the 

working electrode. 

 

Figure 0.4: schematic of a 3-electrode set-up consisting of a working electrode, AgAgCl reference 

electrode and a Platinum gauze counter electrode 

 

1.1.2.3 Electron transfer kinetics 

The rate of the electrochemical reaction is referred to as the flux, j (mol cm-2 s-1). This can either be 

mass transport or kinetically controlled. The current, i passed at an electrode of area, A (cm2) is related 

to j via: 

nAFji   

0.11 

 

The extent of a reaction, i.e. the amount of species turned over at the electrode can be deduced from 

the amount of charge, Q passed by the electrochemical cell during the experiment as per 
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mnFidtQ
t

 0  

0.12 

where t is time (s) and m is the number of moles used in the reaction. 

The flux is a measure of the rate limiting process in Figure 1.2. Under kinetic limitations i.e. where 

the rate of mass transport is significantly higher than the rate of electron transfer: 

 0Okj   

0.13 

where k (cm s-1) is the rate constant for a first order heterogeneous reaction and [O]0 is the 

concentration of reactant O at the electrode surface (mol cm-3). 

For reaction 0.1, the rate law for the overall net process can be written as 

   00 OkRkj redox   

0.14 

Substituting equation 0.11 with equation 0.13 for reaction 0.1 provides 

0][OnFAki redred   

0.15 

0][RnFAki oxox   

0.16 

And so 

)][][( 00 OkRknFAi redox   

0.17 

The kinetics of a reaction can be expressed by the standard rate constant k0 which is the rate constant 

when the system is at equilibrium and the Nernst equation, equation 0.6, can be applied i.e. 
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e

o EEE  '  

0.18 

The net current flow is given by 

oxred iii   

0.19 

where ired and iox are the cathodic and anodic contributions to the current, respectively. Under 

equilibrium conditions, the overall net current flow at the electrode surface is zero. 

It follows then that flux, kred[O]0 and kox[R]0 are in balance so that 

00 ][][ RkOk oxred   

0.20 

From transition state theory, the free energy plot for the simple one electron reaction in 0.1 can be 

described as in Figure 0.5. The free energy of activation for passing between reactant and the 

transition state, ΔG‡
red is the difference in free energy between the transition state and the reactant 

state whilst the free energy associated for passing between product and transition state, ΔG‡
ox is equal 

to the difference in free energy between the product and transition state. 

 

Figure 0.5: Free energy plot for a transition state model of a one electron reduction of a species 

O(aq) to species R(aq) via a transition state ‡. 
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From this transition state model, kred can be described by the following Arrhenius equation: 













 


RT
exp'

‡

red

red

G
Ak  

0.21 

where A’ is a pre-factor relating to the frequency of molecular collisions between species O and the 

electrode surface. Here in 0.21, the dependency of kred on the activation energy and temperature can 

be seen. From 0.21 and the relationship between free energy and potential: 

nFEG   

0.22 

the rate constants kox and kred will change with variations in the applied electrode potential as per the 

following Arrhenius-type equations: 









 E

RT

nF
kk ox

ox


exp0  

0.23 









 E

RT

nF
kk red

red


exp0  

0.24 

where, the constants ox and red are the transfer coefficients for the oxidative and reductive reactions 

respectively. ox and red can take values between 0 and 1 but commonly hold a value of 0.5. For 

simple electron transfer reactions,  

1 redox   

0.25 

The transfer coefficient can be thought as the symmetry of the energy barrier for the reaction. 

The application of a potential, E, different to Ee may make electrolysis thermodynamically favourable; 

however, it is the kinetics of the electrode reaction that dictate whether current will flow. The 

difference in potential between E and Ee is referred to as η, where: 
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eEE   

0.26 

Substituting equations 0.23 and 0.24 into 0.17 produces the Butler-Volmer equation
16

 


























 






RT

nF

RT

nF
ii redox expexp0  

0.27 

where i0 is the exchange current, a scaling factor dependent on the standard rate constant and 

concentration of reactants. The value of i0 provides a good indication of whether an electrode reaction 

is reversible or irreversible. Large values of i0 mean a very low overpotential is needed in order to 

drive a reaction whereas small values of i0 will require a high overpotential in order to overcome the 

activation barrier. 

1.1.2.3.1 Interfacial electron transfer and the electrode/solution interface 

1.1.2.3.1.1 The electrical double layer region 

Since heterogeneous electron transfer (HET) occurs at the electrode/electrolyte interface, it is also 

important to consider the region close to the electrode surface i.e. the double layer region. Under an 

applied potential where no HET occurs, the charge density that builds up on an electrode surface, m 

as a result of the applied potential is counteracted by an equal charge density in solution, s so that 

sm    

0.28 

and charge neutrality is maintained in the system. The charge density in the solution is attributed to 

the electrolyte ions and reorientation of dipoles in the solvent molecules as they adsorb to the 

electrode surface. The electrostatic attraction induced by the electric field drives the build-up of 

charged species at the interfacial region until any excess charge on the electrode surface is neutralised. 

In an aqueous solution containing charged species, the electrode surface can be considered as shown 

in Figure 0.6. The schematic describes the simplest model of the double layer as proposed by 

Helmholtz19 where the potential drop occurs linearly in the region between the electrode surface and 
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the “outer Helmholtz plane” OHP; the distance of closest approach for a solvated ion. This model is 

analogous with a parallel plate capacitor where the stored charge density or surface charge,  (C m-2) 

is expressed as 


id

0
  

0.29 

where  is the dielectric constant of the medium, 0 is the permittivity of free space, di is the 

interpolate spacing (m) and  is the electric surface potential or potential drop between the plates16. 

The ability of a surface to store charge with changing potential is described by the differential 

capacitance, Cd so that 

i

d
d

C 0





 

0.30 

Since Cd would be a constant if equation 0.30 were to hold, a new model needs to be considered 

where Cd varies with both potential and concentration of electrolyte as observed in real systems.16 

 

Figure 0.6: schematic of the electrical double layer as proposed by Helmholtz where x represents the 

distance extending from the electrode surface into the bulk solution 
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The Helmholtz model was expanded on by Gouy and Chapman20 who found that s was distributed 

over an area extending further than the OHP. They proposed that the electrostatic forces concentrating 

the ions in solution would be counteracted by Brownian motion which would disperse the ions. Their 

new model describes ions as point charges that occupy a “diffuse layer” that extends from the 

electrode surface out a short distance past the OHP into the bulk solution where the potential gradient 

is distributed so that it is high close to the electrode surface and decreases with increasing distance.  

The thickness of the diffuse layer replaces di in equation 0.30, which now allows the dependency of 

Cd with potential and electrolyte concentration to be understood as follows: (1) a rise in the surface 

potential increases the charge density which in turn increases electrostatic forces, compressing the 

diffuse layer thus leading to a higher value of Cd; (2) higher concentrations of electrolyte result in the 

compression of the diffuse layer, again leading to a higher value of Cd. 

Unfortunately, the treatment of ions as point charges without restriction on location is impractical as it 

ignores the restrictions placed on the minimum distance of approach for an ion of finite size to a 

solvated electrode surface when the ion itself possesses a solvation shell. In order to address this, the 

double layer model was further expanded on by Stern21 who proposed a combination of the Helmholtz 

and Gouy-Chapman descriptions so that the potential gradient is split into two regions: a sharp 

potential drop between the electrode surface and the OHP followed by a gradual decay to the potential 

of the bulk solution over a “diffuse layer” extending from the OHP out into the solution.22 

This improved model was then improved by Grahame23, 24 so that unsolvated species (charged or non-

charged) could adsorb at the electrode surface “specifically adsorbed”. The consequence of specific 

adsorption is a reduction in the charge density required to neutralise the charge density on the 

electrode. With species adsorbing onto the electrode surface, a new distance of minimum approach is 

described by the “inner Helmholtz plane” (IHP), defined as the mean position of an adsorbed species 

on the electrode surface. Bockris, Devanthan and Müller25 made further developments to  account for 
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the solvent interactions with the electric field at the electrode, assigning orientations to dipoles of the 

solvent molecules which are dependent on the relative charge, as shown in Figure 0.7. 

 

Figure 0.7: schematic of the Bockris-Devanthan-Müller model for the electronic double layer at an 

electrode/electrolyte interface. 

 

The current observed at an electrode can thus be divided into contributions from both faradaic and 

non-faradaic processes. The current flowing as a result of double layer charging can be referred to as 

non-faradaic. The capacitance of the electrode surface, C is calculated using equation 0.31.  

C
E

Q
  

0.31 

With an applied potential E, Q accumulates at the electrode/solution interface until equation 0.31 is 

satisfied during which time a current will flow as a result of charging. If a system is considered where 

no HET takes place at the electrode, only the development of the double layer contributes to any 

measured current, the magnitude of the current will be: 
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











dss CR

t

R

E
i exp  

0.32 

where Rs is the resistance in the system.16 

 

For trace level electroanalysis experiments significant non-faradaic processes are undesirable. A 

number of electrochemical techniques exist to minimise the contributions of non-faradaic current 

which will be described later in chapter 2. 

1.1.2.3.1.2 Inner sphere versus outer sphere reactions at electrodes 

Until now, there has been no consideration of how HET kinetics are affected by the molecular 

structure and environment of a redox species and the chemical nature of the electrode surface. The 

Marcus microscopic model for charge transfer26 allows the prediction of structural and environmental 

effects on HET kinetics and introduces the terms “outer-sphere” and “inner-sphere”. These terms  are 

analogous with HET reactions in coordination compound chemistry16.  

Outer-sphere electrode reactions (Figure 0.8a) involve no interaction between reactant, intermediates 

or products and the electrode surface, with a species coming no closer to the electrode surface than the 

OHP i.e. electron tunnelling distance. By contrast, inner-sphere reactions (Figure 0.8b) involve strong 

interaction between reactant species, or reaction intermediates and the electrode surface. For example, 

a species may need to specifically adsorb to the electrode surface forming e.g. a ligand bridge in order 

for the HET process to proceed in a facile manner16. 
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Figure 0.8: Schematic of (a) an outer-sphere electrode reaction and (b) an inner-sphere electrode 

reaction. 

 

1.1.2.4 Mass transport 

Movement of species towards and from the electrode surface is referred to by the term “mass 

transport” which can be attributed to one or more of three modes: diffusion, migration and convection. 

Quantification and control of mass transport in any system is important for several reasons e.g. (1) 

quantifying HET for a redox couple of interest; (2) being able to deliver solution to an electrode 

surface in a controlled and reproducible fashion. 

1.1.2.4.1 Diffusion 

Diffusion can be defined as the movement of species along a concentration gradient, driven by 

entropy. The rate of diffusion is defined by Fick’s first law for a 1D system: 

x

O
Dj Oo






][
 

0.33 

where jO is the flux of species O, DO is the diffusion coefficient of species O (cm2 s-1), and [O]/x is 

the concentration gradient in the x-direction.  

The change in concentration with t as a result of diffusion can be described by Fick’s second law in 

1D: 
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2

2

x

c
D

t

c









 

0.34 

Diffusion in a three-dimensional system can be defined according to electrode geometry so that for 

any coordinate system 

cDj   

0.35 

and 

cD
t

c 2



 

0.36 

where  is the del-operator corresponding to the geometry so that for a Cartesian coordinate system 

zyx 












  

0.37 

and, for example  

xrr 
















1
 

0.38 

for a cylindrical coordinate system, where r is the radial coordinate and  is the rotational coordinate. 

If we take a simple electrode reaction where O is reduced to R at a large, planar electrode upon 

application of a sufficient potential, with diffusion as the only mass transport term, the transport can 

be simplified to 1D with the corresponding current given by   

 

0















x

O
x

O
nFADi  

0.39 
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The concentration profile generated during this reaction (i.e. during a potential step experiment) with 

the evolution of time can be seen in Figure 0.9. At short times (t1), the concentration gradient between 

the electrode and bulk is steep as the perturbation in concentration is close to the electrode surface. 

 

Figure 0.9: The evolution of concentration profiles with time, t for a diffusion controlled process 

involving the reduction of O; where x is the distance into bulk solution from the electrode surface(x = 

0). 

 

With increasing time, the concentration gradient, also referred to as the diffusion layer, extends 

further out from the electrode surface into the bulk so that the gradient becomes less and less steep as 

shown in Figure 0.10 and described by the Cottrell equation16  

 

  2/1

2/1

t

OnAFD
i

bulkO


  

0.40 
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Figure 0.10: i-t transient for a diffusion limited process 

 

The region over which the concentration gradient evolves i.e. the region between the electrode surface 

and bulk solution is known as the diffusion layer and can be defined by 

    


0

0

][ OO
D

x

O
D bulk

O

x

O


















 

0.41 

where  is the diffusion layer thickness, a measure of how far the evolving diffusion field extends out 

into the bulk solution. From equation 0.40, an expression for the diffusion layer thickness can be 

derived: 

 2

1

Dt   

0.42 

The diffusion profile of species to and from an electrode e.g. planar versus radial depends on 

electrode geometry, as shown in Figure 0.11. For a hemispherical or disc shaped microelectrode, i.e. 

at least one dimension in the micrometre range, access to the surface is no longer equivalent across 

the surface, radial diffusion is prevalent and diffusion to the electrode is therefore non-uniform.  
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For a microelectrode, the presence of both radial and linear diffusion means that for a potential step 

experiment, equation 0.40 becomes16 

 
 

 
a

OnFAD

t

OnFAD
i bulkObulkO

2/1

2/1

2/1




 

0.43 

where a is the electrode radius. 

At short times, the first part of this expression dominates, however, as  grows with time so that  >a, 

the second part of the expression dominates, enabling the system to achieve a steady-state. The 

deployment of microelectrodes allows the study of electrode reaction kinetics, decoupled from mass 

transport in the system.16  

 

Figure 0.11: Diffusion profiles of (a) uniform diffusion to a planar electrode, (b) diffusion to a 

hemispherical electrode and (c) non-uniform diffusion to a microelectrode. 

 

The mass transfer coefficient kt (cm s-1) describes the rate of transport in a heterogeneous 

electrode/electrolyte reaction and can be related to the current by: 

bulkt OnAFki ][  

0.44 

therefore,  
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bulk

t
OnAF

i
k

][
  

0.45 

The observed rate of an electrode reaction is governed by both mass transport and electron transfer 

kinetics, the rates of both expressed by kt and k0 respectively. Whether a reaction is limited by either kt 

or k0 dictates whether the reaction is reversible or non-reversible. In a reversible reaction, k0 > kt so 

that the overall rate of reaction is limited by the mass transport. For a non-reversible reaction, k0 < kt 

and so the kinetics of HET are limiting. 

 

1.1.2.4.2 Convection 

Convection is the transport of species via the action of a mechanical force. Such forces can include 

stirring of a solution, pressure induced flow and thermal gradients. Natural convection acts on a 

solution via a mixture of thermal and density gradients. Usually, these effects are seen in stationary 

electrochemical systems after a time period of around 20 seconds or greater16. 

The expression for convection in one dimension is comparable to that for diffusion 

   
x

O
v

t

O
x








 

0.46 

where vx is the velocity in the x-direction. 

In practice, enhanced mass transport via induced convection is achieved using either mechanical 

rotation of the solution i.e. stirring or rotation disc electrodes (RDE),27 or alternatively pressure driven 

flow within a channel28 or a jet.29-31 Schematics of convective flow profiles are shown in Figure 0.12 
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Figure 0.12: Schematic of convective flow regimes often adopted in electrochemical experiments: (a) 

a rotating disc (RDE), (b) flow in a channel and (c) an impinging jet. 

 

A common theme with these electrodes is the establishment of laminar flow profiles. Laminar flow 

can be defined as flow where layers of fluid move in parallel, maintaining their relationship 

throughout the flow profile, characterised by a low Reynolds number (Re). 

Re is a ratio between the inertial and viscous forces acting in a system, defined as 



UL
Re  

0.47 

where  is the fluid density (kg m-3), U is the mean velocity of a fluid (m s-1), L is the characteristic 

length (m) and  is the dynamic viscosity (kg m.s-1). For high values of Re, inertial forces dominate 

and the system becomes turbulent. For low Re, viscous forces dominate and the system is laminar, as 

shown in Figure 0.13 for a channel flow system 



24 
 

 

Figure 0.13: Schematic of a laminar flow regime in a channel with width, L. The arrow size in the 

parabolic flow represent the velocities of the fluid layers. 

 

1.1.2.4.3 Convection-diffusion systems 

Systems employing electrodes under convective-diffusive transport control are referred to as 

hydrodynamic electrodes. Such systems require a description of mass transport that includes both 

convection and diffusion so that 

     
z

O
v

z

O
D

t

O
zO













2

2

 

0.48 

It is assumed that the region close to the electrode surface, within a distance   is subject to diffusion 

only and is void of convection. Convection acts outside of this diffusion-only region within a second 

region known as the hydrodynamic layer, with a thickness of H. The relationship between these two 

regions is described in the schematic in Figure 0.14. 

 

Figure 0.14:Schematic showing the relationship between the diffusion layer and hydrodynamic layer 

for a hydrodynamic electrode where x extends out from the electrode surface into solution. 
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1.1.2.4.4 Migration 

Migration is the transport of charged species driven via the application of an electric field. The 

electrostatic force generated by the potential drop at an electrode/solution interface can drive the 

movement of charged species in the interfacial region close to the electrode. The migration 

contribution to flux of a species O can be described as 

 
x

Ou
z

z
j O

O

O

O






 

0.49 

where jO is the flux of species O, zO is the charge of species O, uO is the mobility of species O so that 

RT

FDz
u

OO

O   

0.50 

and /x describes a linear electric field where 

l

E

x







 

0.51 

where l is the length over which a potential difference, E is applied. 

From equations 0.11 and 0.49, the current resulting from the flux of an electroactive species O can be 

expressed as 

 
x

OFAuzi OOO






 

0.52 

In order to simplify the description of mass transport within a system, migration can be eliminated via 

the addition of excess electrolyte to the solution. The presence of inert ions in solution maintains 

electroneutrality through the solution, preventing the build-up of electric fields except in the region 

close to the electrode i.e. the double layer where there is an electric field created as a result of the 

potential drop at the electrode/solution interface. The double layer region is compressed by the 
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presence of high levels of electrolyte ions, confining the area over which the interfacial potential drop 

occurs to within 10-20 Å16 i.e. within electron tunnelling distance.  

 

1.1.2.5 Cyclic  Voltammetry  

By far the most widely used electrochemical techniques belong to a class known as voltammetry. In 

conventional voltammetry, the potential applied to an electrochemical cell is swept linearly (1) from 

an initial value, E1 to a second, E2: referred to as linear sweep voltammetry (LSV); or (2) from E1 to 

E2 followed by a reverse sweep to a final value E3 (E3 may be equal to E1 but can also hold a different 

value): referred to as cyclic voltammetry (CV). The speed at which the potential is swept is indicated 

by the scan rate,  (V s-1) with typical experiments ranging from 0.01 – 1 V s-1. The waveform of a 

typical CV experiment is presented in Figure 0.15a along with the resulting i-E plot or 

voltammogram: Figure 0.15b. 

 

Figure 0.15: (a) E-t plot for a cyclic voltammogram, scanning the potential from E1 to E2 and then in 

reverse; (b) A typical voltammogram for a simple redox mediator undergoing reduction and then 

oxidation where ip
C and Ep

C are the cathodic peak current and potential, respectively and ip
A and Ep

A 

are the anodic peak current and potential, respectively. 

 

When applying a CV approach to investigate an electrochemical reaction such as that described in 

reaction Error! Reference source not found. on a macroelectrode, the value of E1 is chosen to be in 

a region where no appreciable reaction occurs and the applied potential is scanned to E2. At some 

point between E1 and E2, reduction of O to R will occur resulting in a faradaic current (cathodic). As 
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the potential is scanned towards E2 the current observed reaches a maximum (peak), ip
C at a peak 

potential, Ep
C before falling off, as described by equation 0.56, under diffusion limited conditions with 

continued scanning towards E2. Upon reaching E2 the potential is scanned in the reverse direction 

towards E3 resulting in a current flow (anodic) and a current peak, ip
A at Ep

A. The difference in peak 

potential, Ep where 

A

p

C

pp EEE   

0.53 

should be equal to 59/n mV for a reversible (diffusion-limited) reaction (at 298 K) as dictated by the 

Nernst equation. The value of ip on the first sweep of a voltammogram can also be described by the 

Randles-Sevcik equation:16, 32 

    2/12/12/351069.2 bulkOp OADni   

0.54 

for a reversible HET process at room temperature (298K).  

From equation 0.54, the dependence of ip on  is described as 

2/1pi  

0.55 

This is indicative of a diffusion controlled system. For reversible systems Ep is independent of .  

During the first sweep of a reversible CV, at potentials beyond Ep, the drop-off in current observed 

should follow  

2/1 ti  

0.56 

as is observed for a system under planar diffusional control described in 1.1.2.4.1. 

In the case where the CV is under kinetic control, Ep increases above 59/n mV. For systems which 

display much higher diffusional fluxes e.g. a UME or convective-diffusive transport systems, the CV 

response is very different, as the current can now attain a steady-state.  
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A typical UME CV is shown in Figure 0.16. The steady state or limiting current, ilim observed at a co-

planar disc shaped microelectrode can be described by:16 

 bulkOnFaDi 4lim   

0.57 

The condition of reversibility here is E3/4 – E1/4 = 59/n mV (E3/4 and E1/4 correspond to the 

potentials at current values equal to ¾ and ¼ of ilim respectively). 

 

Figure 0.16: A typical voltammogram for the reduction of a simple redox mediator on a 

microelectrode where ilim is the steady state current resulting from the reduction of the mediator 

 

1.2 Synthetic diamond as an electrode material 

1.2.1 Introduction to synthetic diamond 

Diamond is conventionally thought of as a rare gemstone of considerable value but is also recognised 

for a multitude of extraordinary properties including a broad wavelength transparency, high thermal 

conductivity (2200 Wm-1K-1)33 as well as being the hardest known material (85-100 GPa).33 The 

artificial synthesis of diamond has allowed the development of diamond as an extreme material for 

fabricating a range of devices such as heavy-ion34 and radiation detectors,35 high performance 

windows,36 and high power lasers.37 Advances in diamond synthesis methods such as chemical vapour 

deposition (CVD) enable the growth of large wafers of high quality material, the composition of 

which can be carefully controlled.38 
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 An important aspect of diamond growth is the incorporation of impurities such as boron, nitrogen or 

lattice defects. Often these impurities are undesirable; however, in the case of producing conducting 

diamond, boron is deliberately incorporated into the diamond lattice. The adoption of conducting 

polycrystalline boron-doped diamond (pBDD) as an electrode material has been rapidly expanding in 

the last 20 years39-41 in light of properties such as wide solvent windows,40 low background 

capacitance42 and reduced fouling compared to other electrode surfaces.39 

1.2.2 Growth of synthetic diamond 

The extreme conditions necessary for diamond growth are naturally found deep within the planet43 but 

diamonds were successfully synthesised in 1955 by Tracey Hall’s team at General Electric.44 This 

process produced the thermodynamically stable conditions of high pressure, high temperature (HPHT) 

in which graphitic carbon is compressed (5 GPa) at temperatures between 1800-2300 K with a 

metallic solvent, to thermodynamically drive the formation of diamond45. Growth under these 

conditions yields single-crystal diamonds of dimensions ranging from microns to a millimetre and 

have been used to grow industrial grade diamonds since the 1960s, with HPHT diamonds 

predominately used as abrasives for tools.  

Since CVD was first reported as a viable method for low pressure diamond growth,46-48 it has formed 

the basis for over 30 years of research49 with the development of a wide variety of CVD techniques to 

produce high-quality polycrystalline diamond films with properties matching those of natural 

diamonds. The process of CVD involves the reaction of chemicals in a gas-phase adjacent to a solid 

surface resulting in the deposition of material. Such a reaction is induced via the activation of gas-

phase reactants (generating a plasma) by either thermal energy e.g. hot filament (HFCVD), or 

microwaves (MWCVD) to create reactive radical species which then react with the adjacent solid 

substrate surface. The temperature of the reaction is usually maintained in excess of 1000 K and the 

gas-phase consists of a carbon-containing precursor e.g. methane (0.5-5%) with a large excess of 

hydrogen. To grow BDD, a boron-containing gas e.g. B2H6 is added to the gas-phase feedstock.  
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The excess hydrogen present in the gas-phase is critical for diamond growth in CVD systems serving 

to stabilise the diamond lattice, preventing rearrangement to the more thermodynamically stable 

graphitic sp
2
 carbon form. Hydrogen atoms generated during gas-phase activation react with both 

carbon containing molecules in the gas-phase and C-H bonds on the substrate, producing reactive 

carbon-containing radicals in both the gas-phase (CH3
) and on the substrate surface. Surface radical 

sites are then able to react with carbon-containing radicals, adding to the diamond lattice. The massive 

excess of hydrogen atoms means these sites are more likely to recombine with hydrogen stabilising 

the diamond lattice. In this way CVD diamond growth is kinetically rather than thermodynamically 

driven, in contrast to HPHT. The reactive atomic hydrogen also serves to convert any non-carbon sp 

or sp2 bonded carbon to diamond sp3 bonded carbon. The constant “turn-over” at the diamond surface 

means that growth is fairly slow i.e. 0.1 – 10 µm hr-1 but the resulting diamond film is of a high 

quality with very little incorporation of non-diamond-carbon (NDC: sp2 carbon). More in-depth 

reviews of CVD diamond growth can be found in the literature.49-52 

1.2.3 Properties of diamond 

1.2.3.1 Structure of diamond 

Diamond is formed from tetrahedral, sp3 bonded carbon atoms creating a face centred cubic (fcc) 

lattice; as shown in Figure 0.17. All bonds between atoms are single  bonds with no  bonding as 

seen in other allotropes of carbon such as graphite. This covalent, sp3 structure gives diamond its 

rigidity along with many other fundamental properties, which are listed in Table 0.1. 
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Figure 0.17: The tetrahedral lattice structure of diamond. Red atoms highlight a tetrahedral unit 

within the lattice structure. 

Diamond can be grown in two forms: (1) single crystal where the diamond lattice is homogeneous as 

one crystallite and (2) polycrystalline where the diamond is formed from multiple crystallites with 

different crystal orientations. CVD growth of single crystal diamonds is achieved using single-crystal 

diamond as the growth substrate.53-55 Carbon atoms deposited onto the single crystal substrate adopt 

the orientation of the parent substrate and simply add to the lattice. Polycrystalline diamond is 

commonly formed in CVD growth when the substrate used is not diamond i.e. tungsten, titanium, 

silicon,33 or where a substrate is seeded with diamond particles before growth.51  

Property Value 

Extreme Hardness 85-102 GPa33 

Spectral Transparency 226 nm – 500 µm33  

Thermal Conductivity 2200 Wm-1K-1 (300 K)33 

Resistance to Thermal Shock 1000 MWm-1 56 

Thermal Expansion Coefficient 0.9 ppmK-1 33 

Electrical Insulator 1015-1016  cm 5 

Low Dielectric Constant 5.68 ± 0.15 (35 GHz) 56 

Low Dielectric loss 8-20 ×10-6 (145 GHz) 56 

Wide Electronic Band-gap 5.47 eV 33 

High Electronic Mobility 4500 cm2V-1s-1 (electron), 3800 cm2V-1s-1 (hole)33 

Table 0.1: Properties of diamond 
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Under these conditions, crystallites of diamond nucleate or continue to grow from seed particles, and 

grow in all directions to form a thin film across the substrate with crystallites forming “grains” within 

the film.57 The growth rates of the different grains are dependent on the preferential facets and crystal 

orientations, with some orientations growing at faster rates than others.57 Once a film is formed, the 

grains continue to grow, increasing in size as the film grows thicker. A cross-section of a 

polycrystalline film is shown in Figure 0.18 where the grain size is seen to increase between the 

nucleation face and the growth face. 

 

Figure 0.18: Schematic of differential grain growth in polycrystalline diamond films grown via CVD 
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1.2.3.2 Doping of diamond 

Un-doped or intrinsic diamond is by virtue of its sp3 structure, where all available electrons are used 

in bonding, a wide band gap semiconductor with a 5.47 eV
33

 energy difference separating the valence 

band from the conduction band; see Figure 0.19a. This leads to two properties of intrinsic diamond: 

firstly, it has a wide spectral transmission range (226 nm – 500 µm)33 making it visually colourless; 

secondly, it has extremely high electrical resistivity (1016  cm).5 

Doping diamond replaces a small number of carbon atoms in the lattice with the dopant. For example, 

there are around 3 × 1023 C atoms cm-3 in a diamond lattice with doping typically replacing anywhere 

(but controlled) between 1016 -1021 C atoms cm-3 with dopant. The doping density of a material is 

typically measured using secondary ion mass spectrometry (SIMS).58 

When doped with boron, an electron hole is introduced into the lattice resulting in an acceptor level, 

Ea at 0.37 eV above the valence band; see Figure 0.19a. In the case of a very lowly doped lattice i.e. 

<1017 B atoms cm-3, the activation energy for excitation of electrons from the valence band to the 

acceptor level is still quite high and so large resistances are seen in this material. At medium doping 

concentrations in the range 1018 – 1019 B atoms cm-3, the boron atom-atom spacing becomes small 

enough that wavefunction overlap between boron atoms induces the formation of an impurity band 

and thus a lowering of the activation energy;59, 60 see Figure 0.19b. Materials of this doping range 

exhibit resistivities of 2 × 103  cm and are considered semiconducting. As boron concentrations 

approach 1.5 × 1019 B atoms cm-3, hopping conduction is thought to occur and the resistivity of the 

material falls sharply. Once boron concentrations reach  1020 B atoms cm-3 (1 in 1000 carbon atoms 

replaced with boron), the activation energy for electron excitation from the valence band to the 

acceptor band reaches zero and the transition to metallic conductivity occurs.61 The resulting material 

is considered semi-metallic i.e. the number of charge carriers (holes) is high enough to see metal-like 

electrical conduction behaviour i.e. resistivities of  0.1  cm. Such high doping densities cause an 

overlap of wavefunctions in acceptor atoms creating a continuum of states between the acceptor level 

at 0.37 eV and the valence band62 as shown in Figure 0.19c. 
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The relationship between electrical resistivity and boron concentration in synthetic single-crystal 

diamonds is shown in Figure 0.20.63 Here the transition between conduction modes with varying 

boron doping density can be clearly seen. 

 

Figure 0.19: Schematic of electronic density of states and band structures for (a) insulating, intrinsic 

diamond, (b) boron-doped diamond and (c) highly boron-doped diamond; where µf is the Fermi level, 

Ea and Ed are the energy associated with acceptor and donor levels respectively. 
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Figure 0.20: Electrical resistivity (at room temperature) as a function of boron doping density in 

single-crystal boron-doped diamond samples grown by Lagrange et al.63 

The concentration of boron taken up into the diamond lattice has a near linear dependency on the 

boron concentration of the gas mixture of the reactor58, 64 and is very much dependent on the crystal 

face undergoing growth. For example, boron up-take into the crystal face (111) is 10 times higher 

than for a (100) crystal surface.46, 65 pBDD can thus be considered a heterogeneously doped electrode. 

Electrochemical studies have shown for pBDD electrodes doped above the metallic threshold, ko for 

two different outer sphere redox couples  scales with boron content in the electrode.66 As an electrode 

material, pBDD will exhibit an average behaviour with contributions from all the differently doped 

grains. 

1.2.4 Electrochemistry on boron-doped diamond electrodes 

The first reported use of a diamond based material as an electrode was made in 1983 where natural 

intrinsic diamond was implanted with zinc ions.67 This report first highlighted the wide potential 

windows and low background currents commonly associated with diamond electrochemistry. In the 

1990s, Swain and co-workers documented the characteristic low capacitance and wide, featureless 

solvent windows of high quality thin-film pBDD which they applied to electroanalysis.68, 69 
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1.2.4.1 Electrochemical characteristics of boron-doped diamond 

Although highly doped, pBDD is referred to as metal-like, it still does not possess the same high 

density of states (DOS) attributed to metal electrodes. In lowly doped material i.e. 10
19

 B atoms cm
-3 

the limitations of such low DOS are apparent when applying potentials negative of the flat band 

potential resulting in a depletion of charge carriers. The resulting electrochemistry is resistive which 

can make any interpretation of electrode kinetics ambiguous. To avoid resistive effects, highly doped 

pBDD i.e. >1020 B atoms cm-3 must be used. A good electrochemical test of electrode doping levels is  

electrochemical characterisation with a redox mediator possessing a redox potential lower than the flat 

band potential of semi-conducting diamond (e.g. ruthenium hexamine).70 For metallic BDD the CV 

will appear reversible, whilst for semi-conducting BDD, the CV will appear drawn out i.e. resistive. 

BDD also represents a catalytically inert electrode surface, with a low DOS, which does not 

encourage inner sphere processes; this means that large overpotentials are required to drive the 

electrolysis of water. As a result, BDD shows the widest solvent window of any carbon material, or 

indeed classical electrode, and displaying low background currents and resistance to electrochemical 

fouling. 

The incorporation of sp2 carbon into the diamond lattice reduces the quality of the resulting electrode 

material. sp2 addition  increases the DOS and provides surface sites for adsorption thus reducing the 

overpotential required for the onset of water electrolysis.42 In aqueous solutions this results in a 

narrowing of the solvent window and an increase in the background capacitance.  

1.2.4.2 The effect of surface termination 

The two most common diamond surface terminations are hydrogen and oxygen. The surface 

properties of diamond are highly dependent on the surface termination, particularly the wetting of the 

material with solvents such as water; see Figure 0.21a & b, Figure 0.21c and Figure 0.21d show 

schematics of hydrogen and oxygen surface terminations respectively, on polycrystalline intrinsic 

diamond. Hydrogen termination is usually present directly after CVD growth as it is this termination 

that stabilises the diamond lattice as it grows. Contact angles of hydrogen terminated diamond with 
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water in air are typically around 90°.71 Although stable in air, hydrogen terminated surfaces are 

believed to oxidise with time to a more stable oxygen terminated surface72 particularly when subjected 

to electrochemically oxidising conditions.
73-75

 

Due to the greater stability oxygen-terminated surfaces are preferred for electrochemical applications. 

Oxygen-terminated diamond surfaces are easily achieved via treatment in oxygen plasmas,76, 77 

oxidative acid76 and anodic polarisation.75 The oxygen containing groups present on oxygen 

termination surfaces have been determined via x-ray photoelectron spectroscopy (XPS); groups such 

as hydroxyl C-OH, ether C-O-C as well as carbonyl groups such as ketones > C=O and carboxylic 

groups.78, 79 

 

Figure 0.21: Comparison of hydrogen and oxygen terminated polycrystalline intrinsic diamond with 

(a) the contact angle of a water droplet on a hydrogen terminated surface in air, (b) the contact angle 

of a water droplet on an oxygen-terminated surface in air, (c) a schematic of a hydrogen-terminated 

surface; (d) schematic of an oxygen terminated surface. 

 

As well as doping, the surface termination of diamond can have a dramatic effect on the 

electrochemistry observed. In the presence of a thin water film on an intrinsic diamond surface, 
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hydrogen termination impacts the electronic structure of diamond by generating an accumulation of 

electron holes at the diamond surface80 coupled with a migration of electrons to the water. This 

electron exchange creates a charge separation between the diamond and water resulting in a surface 

conductivity of around 10-5 -1 at room temperature.81 

1.2.5 Applications of boron-doped diamond 

The applications of BDD electrodes are extensive82, 83 and have been the subject of a considerable 

body of research with particular focus in areas such as waste water treatment,84, 85 electroanalysis of 

neurotransmitters,86 metal ions87, 88 and organic species.89-91 BDD’s resistance to chemical and 

mechanical wear make it highly suitability to applications requiring operation in aggressive 

environments. 

1.3 Multiphase flow 

1.3.1 Introduction to multiphase flow 

Multiphase flow can be defined as the simultaneous flow of two or more immiscible substances. This 

can describe mixtures of aggregate states: solid, liquid and gas, or immiscible mixtures of one 

aggregate state e.g. oil/water mixtures. Due to the dynamic nature of the phase interfaces, the 

distribution of phases within a flow can take on many different shapes. These different distributions 

can be described using flow patterns such as those shown in Figure 0.22. Here a number of common 

flow patterns are presented for a two phase, gas-liquid system in both horizontal and vertical flow 

directions. 

1. Slug flow (plug flow): Figure 0.22(a)i, Figure 0.22(b)ii the Continuous phase 1 is 

interspersed with “slugs” of phase 2 which vary in length and cross-section. 

2. Stratified flow: Figure 0.22(a)ii the flow is split into a two regions consisting of just one 

phase with a single interface between the two phases, resulting from the action of 

gravitational separation. 

3. Wavy-stratified flow: Figure 0.22(a)iii as with stratified flow but with a wavy interface 

between the two phases as a result of increased flow velocity of phase 2. 



39 
 

4. Bubbly flow: Figure 0.22(a)iv, Figure 0.22(b)i, a continuous phase 1 with dispersed bubbles 

of phase 2. Due to buoyancy differences in the two phases, bubbles of phase 2 tend to migrate 

to the top of the pipe. 

5. Churn flow: Figure 0.22(b)iii, at higher velocities, slug/plug flow begins to break down into a 

an unstable “churn” flow regime where liquid phases exhibit an induced oscillatory motion. 

6. Annular flow: Figure 0.22(b)iv, The gaseous phase 2 flows rapidly through the centre of the 

pipe, surrounded by a thin film of liquid phase 1 which flows between the gas and the pipe 

wall. An amount of phase 1 may also be carried in the centre of the pipe by the gas phase. 

The parameters governing the flow patterns include the flow rates of the different phases, fluid 

properties of each phase, operating pressure and temperature, the direction of flow and the geometry 

of the pipe in which flow takes place.  

 

Figure 0.22: Schematic of multiphase flow patterns for a system consisting of two immiscible phases 1 

and 2 in (a) horizontal flow: (i) plug flow, (ii)stratified flow, (iii) wavy-stratified flow, (iv) bubbly 

flow; (b) vertical flow: (i) bubbly flow, (ii) plug flow, (iii) churn flow, (iv) annular flow; where the 

density of phase 1 > phase 2. 
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In the case of immiscible liquid-liquid systems, flow patterns are similar to those described for gas-

liquid systems; however, liquid-liquid patterns can be more complex and are strongly influenced by 

the relative densities of the different phases. 

The transition between flow patterns is often indicated by a flow pattern map which plots the flow rate 

of one phase as a function of the other. Visual observations of flow patterns then allow the assignment 

of boundary lines, marking the transition points between flow pattern regions. 

Techniques for quantitative measurement of multiphase flow are of great interest both in research and 

in industry. 

1.3.2 Applications in industry 

Multiphase flow metering (MFM) is the measurement of the flow rates of individual phases within a 

mixed component flow without the need for separation of individual phases. From these 

measurements, a multiphase flow profile can be derived along with the phase fraction of the flow. 

MFM has been identified by the oil and gas industries as an important tool for monitoring and testing 

multiphase fluids removed from oil wells.92 Conventional oil well-testing requires the separation of 

the individual phases that constitute a multiphase flow. Separators and additional test lines for 

individual phases increase the cost and space required to perform measurements. These issues are 

particularly significant for off-shore operations where space is limited and maintenance costs are 

much higher. The adoption of MFM eliminates the need for expensive separators and unlike 

conventional oil well-testing techniques, MFM devices do not require stabilized flow conditions and 

are capable of continuous real-time flow monitoring, which is principle for optimizing an oil fields 

performance.92  

Current approaches for probing multiphase flow include Venturi meters,93 ECT/ERT,94 Gamma95 and 

X-ray densitometers.96 Each approach is based on a different measurement principle to extract 

information from multiphase flow such as velocity (Venturi meter) and phase composition 

(ECT/ERT, X-ray densitometers). Typically, a MFM device will employ two or more of these 

approaches making it more versatile.97 
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1.4 Microfluidics: Lab on a chip 

1.4.1 Introduction to microfluidics 

Microfluidics deals with the manipulation of volumes of fluid ranging from nanolitres to attolitres 

within channels where the characteristic length is between 10-1000 µm. It is through this that 

microfluidics offer the capacity to work with very small reagent volumes, induce rapid mixing, 

yielding shorter reaction times and allow the detection of analytes with high sensitivity, with reduced 

analysis time, high reproducibility and is highly suited to running multiple, parallel processes on one 

device. All of these advantages make microfluidics a compelling medium for areas such as chemical 

synthesis and analysis, particularly for the massive reduction in material requirements, enabling high 

throughput at reduced cost.98 

Microfluidics as a field is considered young and in the early stages of development.98 Interest in 

microfluidic systems for chemical analysis grew dramatically in the 1990’s with the introduction of 

miniaturised total chemical analysis systems (TAS) or micro-TAS (TAS).99 Around this time, the 

field saw the application of photolithographic techniques, used in the fabrication of micro 

electromechanical systems (MEMS), to the fabrication of microfluidic devices.100 Until the year 2000, 

the majority of microfluidic devices were fabricated from silicon or glass using lithography and 

micromachining techniques,101 however, with the introduction of “soft-lithography”, polymeric 

elastomers such as PDMS gained popularity on account of massively reduced production times and 

costs compared with glass or silicon.102, 103 The adoption of PDMS also allowed the fabrication of 

actuators far smaller than that possible with traditional, stiff micromachining materials104 which 

cannot produce the required forces to function on the microscale. This soft-lithography “revolution” 

resulted in a rapid growth of work in microfluidic technologies with biological and chemical 

applications.105, 106 

1.4.1.1 Physical factors in microfluidics 

When considering systems on the micro-scale, forces that would otherwise be comparatively minor on 

a macroscopic scale suddenly become dominant. These forces can result in enhancements in heat 
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transfer, transport of species as well as providing a well-defined, reproducible system. As a result, 

microfluidic devices are designed to take advantage of these enhancements. 

1.4.1.1.1 Laminar flow 

In microfluidic systems, the channel dimensions are small enough that flow is almost always laminar. 

This is advantageous in terms of modelling a microfluidic system as the equations describing the flow 

are much simpler compared with non-laminar, turbulent flow. As described in 1.1.2.4.2, a flow regime 

can be characterised by Re.  

As a result of laminar flow, two streams of miscible fluid can flow in contact with each other without 

convective mixing occurring. Under a laminar regime, transport of species between the two streams is 

limited to diffusion and migration only. 

1.4.1.1.2 Mass transport 

Being constructed from layers of fluid flowing in parallel, laminar flow does not support convective-

type mixing as found in turbulent flow. As such, any species contained within different layers of flow 

can only move to adjacent layers via diffusional transport. A schematic of diffusional mixing between 

two parallel streams of miscible fluid in a microfluidic channel, under laminar flow is shown in 

Figure 0.23a. The velocity profile along the cross-section, in the rectangular channel can be described 

as uniaxial Poiseuille-like (Figure 0.23b) with the highest velocities seen at the centre of the channel. 

With the action of diffusion, the interfacial region between the two streams is seen to change with 

time. However, with the application of a uniaxial Poiseuille-like velocity field, inequalities in the 

interfacial region thickness are observed along the cross-section of the channel (x,y); see Figure 0.23c. 

At points close to the channel walls, the velocity of flow varies linearly as a function of distance from 

the channel wall i.e. flow is slower close to the wall and faster moving out into the channel. By 

contrast, points around the centre of the channel experience a more uniform velocity profile. This 

means diffusion will have a greater effect in the regions around the channel walls where the velocity 

is much slower. This diffusional mixing profile has been studied by researchers using confocal 

microscopy.107 
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When a plug of material is introduced to a channel under pressure driven flow, the formation of a 

Poiseuille velocity field in the direction of flow induces convective radial diffusion or dispersion of 

the plug material with time/movement along the channel; see Figure 0.23d. This dispersion is referred 

to as Taylor dispersion.108 In analytical applications, it is often desirable to reduce the amount of 

dispersion in a channel as to maximise the concentration of an analyte under investigation and 

perform detection processes before dilution via dispersion can occur.109 A strategy for reducing 

dispersion in microfluidic channels is to encapsulate an analyte within an immiscible droplet.110 This 

will be discussed further in Chapter 5. 
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Figure 0.23: (a) Schematic of diffusional mixing of two miscible fluid streams in a rectangular 

microfluidic channel; (b) an illustration of the uniaxial Poiseuille-like velocity field seen in a 

rectangular channel with flow in the z direction; (c) schematic showing the non-uniform interfacial 

region generated under uniaxial Poiseuille-like flow; (d) Schematic of the action of Taylor dispersion 

on a plug of material flowing through a channel under a laminar regime, with time. 
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Although considered slow on a macroscopic scale, diffusional transport on the micron-scale becomes 

more significant as diffusional times will be much shorter. However, fast mixing in microchannels via 

diffusion alone requires large interfaces between components. 

Convective mixing can be induced in microfluidic channels using novel geometries. Figure 0.24 

describes a geometry where the flow of two miscible fluids is split and then recombined creating 

eddies at the point of recombination. This principle is known as the Coanda effect111 and is an 

example of a passive mixer, using the channel geometry to induce mixing rather than an external force 

i.e. as with an active mixer. 

 

Figure 0.24: Schematic of a microfluidic geometry designed to induce convective mixing between two 

miscible fluids via the Coanda effect. 
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1.4.1.1.3 Surface area to volume ratio  

When going from macro-scale to micro-scale devices, the surface area to volume ratio (SAVR) 

becomes an important factor with major enhancements in SAVR seen in micro-scale devices 

compared with their macro-scale counterparts, often by a few orders of magnitude.101 This has an 

impact on the thermal properties of micro-scale devices which through large interfaces, allows the 

rapid transfer of heat. This property is particularly advantageous in electrophoresis where excess heat 

can be removed quickly.112 

1.4.1.2 Fabrication methods  

Common methods for fabricating microfluidic devices include micromachining,113 soft lithography,102 

injection molding,114-116 embossing,117-119 and laser ablation.120 More detailed information on 

microfluidic fabrication techniques can be found in Chapter 5. 

1.5 Aims and Objectives 

Work in this thesis is based around the application of pBDD as a sensor material in both stationary 

and fluid flow environments, ultimately for investigation of challenging environments where 

traditional electrodes would be unsuitable. Emphasis is on both single phase and multiphase (liquid-

liquid) systems under both stationary and flow regimes. Proposed applications are presented which 

could show eventual use in both pharmaceutical analysis and MFM.  

Work in Chapter 3, initially focuses on developing an understanding of pBDD as an electrochemical 

sensing material in both aqueous and non-aqueous solutions, by investigating the use of pBDD as an 

electrode material for the electrochemical detection of the genotoxic impurity, hydrazine (and 

associated derivatives) in pharmaceutical products. The aim is to resolve electrochemical signals for 

the toxic reagent hydrazine from those of electroactive ingredients present in excess.   

The system is then developed by considering, in Chapter 4, electrochemical sensing at the 

electrode/non polar oil/water interface using an electroactive species as a probe, which is not soluble 

in the oil phase, whereas its electrolysis product is. Double potential step chronoamperometry in 



47 
 

combination with finite element simulations are used to explore the relationship between droplet size 

and generation/collection responses for the electroactive probe species.  

Chapter 5 then moves onto describing immiscible oil-water droplet generation in a microfluidic 

device incorporating electrochemical sensors. Initial work focuses on the use of PDMS in 

combination with platinum microband electrochemical sensors for the detection of droplets of water, 

containing a redox active species, in a channel flow of oil. The electrochemical response as a function 

of droplet size and velocity is discussed. The limitations of PDMS microfluidic devices for the 

investigation of non-aqueous, volatile solvents are examined.  

In Chapter 6, the fabrication of an all-diamond microfluidic device with integrated pBDD sensing 

electrodes is outlined and characterised in both aqueous and non-aqueous solvents. Design 

considerations are examined and the application of such a device to the investigation of harsh and 

challenging environments is considered. 

Finally, Chapter 7 discusses the conclusions of the thesis and further work relating to the potential 

applications of the all-diamond fabricated devices described in Chapter 6. 
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Chapter 2: Experimental, materials, instrumentation and techniques 

2.1 Materials 

2.1.1 CVD diamond 

 

All polycrystalline diamond samples used throughout this work were grown and prepared by Element 

Six Ltd., Ascot, UK, via a commercial MWCVD process described in 1.2.2 which has been developed 

in-house.  

Code Type [B] (atom cm
-3

) Wafer 

thickness (µm) 

Surface 

roughness (nm) 

MR14 pBDD (EA) 5 × 1020 630 ± 2 1-3 

MR8 pBDD  5 × 1020 500 ± 2 1-3 

DR3 Optical polycrystalline 

intrinsic 

n/a 1000 ± 2 1-3 

TG1 Thermal grade intrinsic n/a 500 ± 2 1-3 

     

 

2.1 Chemicals 
 

All aqueous solutions were prepared from triply distilled, Milli-Q water (Millipore Corp.) with a 

resistivity of 18.2 M upon dispensing at 25°C. All chemicals were weighed using a four figure 

analytical balance (Sartorius A2008). Chemicals and materials used in this work are listed in Table 

0.1. 
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Chemicals Formula Details Supplier 

Solvents    

Acetone (CH3)2CO 99% Fisher Scientific UK Ltd.,UK 

Acetonitrile C2H3N 99.9% Fisher Scientific UK Ltd.,UK 

Dodecane CH3(CH2)10CH3 99% Merck, Germany 

Ethanol C2H6O 99.8% VWR, France 

Hexane C6H14 98% VWR, France 

Propan-2-ol  99.99% Fisher Scientific UK Ltd.,UK 

    

Chemicals for electroanalysis    

Ferrocene Fc 98% Fluka, Sigma Aldrich, USA 

Ferrocenyltrimethylammonium 

Hexafluorophosphate, 

(FcTMA.PF6) 

FcN(CH3)3.PF6  Made in house 

Hydrochloric acid HCl 38% Fisher Scientific UK Ltd.,UK 

Potassium Bromide KBr 99.5% Fison Scientific, UK 

Potassium Chloride KCl 99-100% Sigma Aldrich, USA 

Potassium Nitrate KNO3 99% Sigma Aldrich, USA 

Sulphuric Acid  H2SO4  95% Fluka, Sigma Aldrich, USA 

Tetrabutylammonium 

Hexafluorophosphate 

C16H36F6NP 99% Fluka, Sigma Aldrich, USA 

    

Substrate materials    

Silicon wafer Si <100> n-type IDB Technologies Ltd., UK 

    

Photoresists and developers    

S1818 positive photoresist   MicroChem Corp., USA 

Microposit MF-319   DOW, USA 

SU-8 (2100)   MicroChem Corp., USA 

Microposit EC solvent   Rohm and Hass, Denmark 

    

    

    

    

Table 0.1: Chemicals and materials used in this thesis including purity and supplier 

2.2 Electrochemical instrumentation:  

In order to maintain control over the applied potential of an electrochemical experiment, an electrical 

instrument known as a potentiostat is used. A schematic of the basic principle of a 3-electrode 

potentiostat is shown in Figure 0.1. At the heart of the potentiostat is an Operational Amplifier (OA) 

which maintains an output voltage, eo based on the difference in voltage, es between an input, e+ and a 

second input, e-.
1 During operation of the OA, eo will be such that  

  eAeAeAe ggsgo  

0.1 
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where Ag is the open-loop gain (amplification factor).  

 

 

Figure 0.1: Schematic of a simple potentiostat consisting of an operational amplifier (OA) and a 3-

electrode electrochemical cell with working electrode (WE), reference electrode (RE) and counter 

electrode (CE).1  

In order to maintain a potential difference between the working electrode (WE) and reference 

electrode (RE) of value ei, the OA applies a current through the Counter electrode (CE) which is 

measured over a series resistor Rm, and controlled by the amplifier so that the potential of the RE is 

maintained at -ei versus ground and therefore the potential of the WE, ewk versus RE must be 

iwk eREvse ).(  

0.2 

Instrumentation for electrochemical analysis will typically consist of a potentiostat for potential 

control, a function generator to create the desired changes in potential with time (often described by a 

waveform E-t) and a recording system to measure the results1.  

Electrochemical measurements made in this work were carried out using a model 1040A Multi-

potentiostat (CH Instruments Inc., USA).  
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2.3 Electrochemical techniques 

2.3.1 Chronoamperometry 

Chronoamperometry (CA)
2, 3

 is an electrochemical technique whereby a potential, E1 is applied to the 

working electrode for a defined time width,   and the resulting current, i, recorded as a function of 

time, t. The E-t plot and resulting current transient are shown in Figure 0.2a and Figure 0.2b 

respectively. 

 

Figure 0.2: (a) E-t plot for a typical CA experiment and (b) the resulting i-t plot 

 

2.3.2 Double potential step chronoamperometry 

Double potential step chronoamperometry (DPSC), as with CA, applies a potential, E1 to the working 

electrode for a time width,  after which, a second potential, E2 is applied, typically, for an equal time. 

Each applied potential is referred to as a potential step (PS). In DPSC, the first PS is applied in order 

to generate a species while the second PS collects back what was generated with the resulting current 

transient being recorded for a time period equal to 2. Figure 0.3 shows plots of (a) E-t and (b) i-t for 

a typical DPSC experiment. Examples of such experiments are common place in the literature.4, 5  
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Figure 0.3: (a) E-t plot for a typical DPSC experiment and (b) the resulting i-t plot 

 

2.3.3 Differential pulse voltammetry 

Differential pulse voltammetry (DPV) is a voltammetric technique designed to reduce contributions of 

non-faradaic processes i.e. background capacitance, to the observed current response via a pulsing 

method1. The charging current as a result of an applied potential, decays exponentially towards zero 

with time. This occurs at a much faster rate than the decay of the faradaic current which instead is 

proportional to t-1/2 (Section 1.1.2.4.1); as shown in Figure 0.4a. DPV uses a series of pulses whereby 

the potential applied is stepped initially by an amplitude  and held for  (ms) before dropping to a 

base potential for a width b which itself is stepped by b relative to the previous base potential. The 

current is measured at the point before the potential pulse is applied i.e.’ and again at the end of the 

pulse i.e. . The current recorded is the difference between i(’)  and i()1. The wave form (Figure 

0.4b) and i-t plot for a typical DPV experiment is shown in Figure 0.4: (a) Schematic showing the 

time dependence of non-faradaic, double layer charging current (dotted line), faradaic current (solid 

line) and the total observed current as a result of the previous two components (dashed line); (b) the 
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waveform for a DPV experiment; (c) i-t plot for a typical DPV (solid line) compared with the 

equivalent LSV (dotted line).Figure 0.4c. 

 

Figure 0.4: (a) Schematic showing the time dependence of non-faradaic, double layer charging 

current (dotted line), faradaic current (solid line) and the total observed current as a result of the 

previous two components (dashed line); (b) the waveform for a DPV experiment; (c) i-t plot for a 

typical DPV (solid line) compared with the equivalent LSV (dotted line). 

 

2.4 Fabrication techniques 

2.4.1 Laser micromachining 

Laser micromachining was performed using an Oxford Lasers Ltd. E-355H-3-ATHI-O system 

equipped with a Q-switched fully diode-pumped solid state Nd:YAG laser medium with a primary 

output wavelength of 355 nm. The average output power of the system is 6 W (at 10 kHz) with a 

pulse frequency range between 1 Hz – 250 kHz and pulse duration of 34 ns (nominal at 10 kHz). The 

laser optics cabinet is shown in Figure 0.5 
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Figure 0.5: The layout of the beam (blue line) delivery optics contained in the optics cabinet of the 

Oxford Lasers system: (A) laser cavity, (B) safety shutter, (C) alignment iris, (D) 1st telescopic lens, 

(E) 50 µm spatial filter, (F) 2nd telescopic lens, (G) turning mirror, (H) attenuator, (I) polariser, (J) 

beam dump, (K) turning mirror, (L) alignment iris, (M) ¼  plate and (N) laser trepan optics module. 

 

The laser uses a Nd:YAG gain medium pumped by diodes based on direct coupled pump (DCP) 

technology 6. Pump diode emission is between 800-815 nm. The output infra-red light (1064 nm) is 

converted to the harmonic frequency via frequency doubling and then tripling to 355 nm light using a 

set of non-linear optic (NLO) crystals6. The loss from the laser cavity is regulated by an acoustic-optic 

Q-switch driven by a low-voltage radio-frequency (RF) operating at 40.68 MHz.   

Residual light of frequencies 1064 nm, 532 nm and 800 nm are present in the output, however, these 

wavelengths typically constitute 1% of the output beam and are further reduced by a factor 104 

travelling through the beam delivery system. For example, 355 nm output is horizontally polarised 
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while 1064 nm output is vertically polarised and so passage through beam delivery mirrors that are 

reflective of horizontally polarised light but transmit vertically polarised light, filters out the unwanted 

residual 1064 nm light from the beam. The laser micromachining system is equipped with a laser 

trepanning module which utilises a set of rotating, wedge optics: trepan A and trepan B to offset the 

beam relative to its central axis as shown in Figure 0.6. 

 

Figure 0.6: Schematic of a laser trepan optics set up consisting of two wedge optics: Trepan A and 

Trepan B, focusing lens and the resulting beam path on the machined substrate. 

 

In order to create laser machined cuts in thick materials, a technique referred to in this work as 

“Benching” was used. This technique requires that the laser makes multiple passes along the axis of 

the desired cut with an offset with each pass. The laser focus is then stepped down in the z-axis and a 

second set of passes performed as described in Figure 0.7 for a benched cut along the x-axis. 

Benching results in a “V”-shaped cut due to the excess material removed either side of the central axis 

of the cut. Adoption of a benched cut is advantageous for cutting through thick materials as it 

overcomes the limitations of a narrow single-beam-diameter cut whereby the effectiveness of laser 

cutting is reduced with increasing depth. Widening of the cut geometry with a bench cut promotes 

effective laser cutting by comparison to single beam cuts. 
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Figure 0.7: Schematic of a benching cut along the x-axis with a laser beam to create a “V”-shaped 

cut.  

 

2.4.2 Metallisation of surfaces 

Metal films were deposited using a Moorfields MiniLab 060 platform sputter/evaporator system 

comprising of two flexi-hood magnetron sources for 2”and 3” targets with quartz crystal microbalance 

controllers for process control. Samples were mounted onto a plate and positioned inside the 

deposition chamber which was then placed under a vacuum (1 × 10-6 Torr). Once under vacuum, 

argon gas was introduced into the chamber so that a process pressure of around 5 mbar was achieved. 

A plasma was struck using a DC electric field with a power of between 30-40 W over the target 

material resulting in the deposition of material onto samples suspended directly about the plasma. 

Once a film of adequate thickness was deposited, as indicated by an internal, calibrated quartz crystal 

microbalance, the chamber was vented under nitrogen gas before removing the samples. 

2.4.3 Reactive Ion Etching: RIE 

Reactive Ion Etching (RIE) is a common micromachining technique particularly for the processing of 

silicon for the fabrication of MEMs devices.7, 8 It is a useful technique for fabricating silicon moulds 

for elastomer based microfluidic devices. In conventional RIE, a reactive species is generated in a 

plasma above a substrate of interest via the excitation of a source gas (CF4) by an applied 
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radiofrequency (rf) power supply.9 The substrate to be etched is placed on a high-frequency driven 

and dc-biased, capacitatively coupled electrode. Alternatively, the plasma can be generated via an 

inductively coupled plasma (ICP) where a time-varying electric current is applied to a metal coil 

creating a magnetic field which is then powered by RF. ICP systems generate very high plasma 

densities and are often coupled with a parallel plate bias (as shown in Figure 0.8) to achieve fast 

etching with high anisotropy.10 

Upon ignition of the plasma, the electrode acquires a negative charge, causing the substrate surface to 

be bombarded by positive ions generated in the adjacent plasma.11 Neutral chemical species generated 

in the plasma diffuse8 from the bulk plasma to the substrate surface whereas positive ions are subject 

to forced convection towards the negatively charged electrode/substrate.11 Chemical reactions 

between plasma generated species and the substrate material occur at the substrate surface resulting in 

etching of the surface material. Positive species are accelerated towards the substrate surface and 

collide removing material via sputtering12 resulting in higher material removal rates in the vertical as 

opposed to the lateral direction,13 leading to etching with high aspect ratios.8 Features are defined on a 

substrate using a patterned mask of a material such as SiO2 or Al2O3
13 which etches at a significantly 

slower rate than the substrate material under the conditions of the etch. This is referred to as a 

selective mask. 
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Figure 0.8: Schematic of a simple RIE system 

 

In this work silicon moulds for PDMS microfluidic channel creation were fabricated using a Corial 

200 IL RIE-ICP system (Corial, France) system with SiF6-based chemistry. Aluminium and 

Nickel/Vanadium masks were deposited via sputtering and patterned using an underlying S1818 

positive photomask as follows: 

(1) A 4” silicon wafer was first cleaned with deionised water, then propan-2-ol and then again 

with water. The wafer was then dried under a stream of nitrogen. A 1 µm thick film of S1818 

positive photoresist was spincoated (G3-8 spin coater, Specialty Coating Systems Inc., USA) 

3000 rpm for 45 s and then baked at 115 °C for 1 min. Coated wafers were exposed to ultra-

violet (UV) radiation (MJB4, Süss MicroTec lithography, Germany) through a mask and 

developed in MF-319 developer solution, removing regions of photoresist exposed to UV 

radiation. 

(2) Thin films of Al or Ni (400 nm) were sputter deposited onto the patterned silicon wafers as 

described in 2.4.2. Lift-off of unwanted metal film was performed in acetone, dissolving the 
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underlying S1818 photoresist resulting in a pattern of microfluidic channels on the silicon 

wafer. The patterned wafer was washed with deionised water and dried under a stream of 

nitrogen. 

(3) The patterned silicon wafers were placed into the RIE chamber and evacuated to 1 × 10-3 

Torr. A mixture of gases: C2H4, SF6, He (1:2:1) and O2 (5%) were then pumped into the 

chamber and a plasma ignited via an applied RF. Etch conditions were typically maintained 

for 2-3 hours to achieve feature depths of between 35-50 µm. 

(4) After removal from the RIE chamber, the etched wafers were cleaned in deionised water and 

dried under nitrogen. Micro-features were characterised using a stylo-profiler (Ambios 

Technology Inc., USA) and interferometry (ContourGT, Bruker Nano Inc., USA). 

2.5 Boron-doped diamond electrode fabrication 

2.5.1 Laser machining of pBDD 

1 mm diameter pBDD cylinders were laser machined from a MR14 wafer using a benching technique 

with the following laser machining parameters: 100% power, 20 kHz, machining traverse speed of 1 

mm s-1. 

2.5.2 Acid cleaning 

During laser machining, graphitic carbon is formed on regions of diamond subjected to irradiation. 

The amount of this amorphous carbon is greatly reduced with a treatment of concentrated H2SO4 

(95% Sigma-Aldrich) supersaturated with KNO3 and heated to 300 °C on a hotplate stirrer. The 

acid mixture is contained in a Pyrex beaker and capped with a watch glass to prevent evaporation. 

During heating, brown/orange fumes of NO2 are given off until all KNO3 is exhausted. Diamond 

samples are then treated to a further treatment of just concentrated H2SO4 ( 95% Sigma-Aldrich) to 

remove any remaining salt crystals. This oxidative acid cleaning procedure serves to both remove 

amorphous carbon deposits and generate a highly reproducible oxygen-terminated diamond surface.14 
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2.5.3 Metallisation and formation of an Ohmic contact 

A 10 nm layer of Ti followed by a 300 nm layer of Au or Pt was sputter-deposited on the pBDD using 

a Moorfields MiniLab 060 platform sputter/evaporator system. Annealing of the deposited metal film 

was performed in a tube furnace (MTF 12/25/400, Carbolite, UK) at 500°C for 4 hours. The annealing 

procedure leads to the formation of a titanium-carbide layer at the Ti-diamond interface which acts as 

a robust ohmic contact.15  

2.5.4 Glass-sealed macroelectrodes 

pBDD macroelectrodes were fabricated in house from 1 mm diameter pBDD columns prepared as 

described in sections 2.5.1, 2.5.2 and 2.5.3. These pBDD columns were mounted and sealed into a 

borosilicate glass capillary (i.d. 1.16 mm, o.d. 2 mm, Harvard Apparatus Ltd, UK) by heating the 

capillary using the heating coil of a capillary puller under vacuum. Silver-loaded epoxy (RS 

Components Ltd, Northants, UK) was packed into the capillary and set with a copper wire (1 mm 

diameter) for 24 hrs. The pBDD column containing end of the capillary was polished back using 

carbimet grit paper of gradually decreasing grades in order to expose the pBDD column surface. 

Figure 0.9 shows (a) top and (b) side views of a typical 1 mm diameter pBDD macroelectrode 

prepared in this way. 

 

Figure 0.9: Photographs of a 1 mm diameter glass-sealed pBDD macroelectrode: (a) top view; (b) 

side view. 
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2.6 Characterisation techniques 

2.6.1 Optical Microscopy 

Optical microscopy and measurements were made through an Olympus BH2 light microscope 

(Olympus Corporation, Japan) with magnification capabilities in the range ×50 - ×1000. Digital 

images were captured using a 2 MP CMOS camera (Olympus Corporation, Japan) interfaced with a 

computer. 

2.6.2 Raman spectroscopy 

A molecule positioned in an electric field  will generate an electrical dipole moment p (C m).16 The 

induced dipole moment can be considered directly proportional to the applied electric field so that  

Ep  p  

0.3 

where p is the polarisability (C  V-1  m2), a tensor dependent on the shape and dimensions of 

chemical bonds. Since chemical bonds change during vibrations,  is dependent on the molecular 

vibrations. E is supplied by the electromagnetic radiation, often a monochromatic light source such as 

a laser, providing an oscillating electrical field: 

 tt 00 2cos EE  

0.4 

where 0 is the vibrational frequency of the electromagnetic radiation and tt is the moment. 

With the application of E, p undergoes a harmonic oscillation equal to the vibrational frequency of 

the normal coordinate of the molecule, v.
16 The resulting dipole moment can be considered as a 

function of v and 0, and be described as a combination of three different frequency-dependent 

components16: 
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     vv   000 pppp  

0.5 

The first of these components (modes) corresponds to elastic scattering (Rayleigh scattering) of 

photons where the induced dipole moment is of the same frequency, thus energy as the incident 

radiation. The second term corresponds to Anti-Stokes scattering where the scattered radiation is of a 

higher energy than that of the incident radiation. The final term corresponds to Stokes scattering 

where the scattered radiation is of a lower energy than that of the incident radiation. The different 

modes of photon scattering are shown schematically in Figure 0.10. During Raman spectroscopy, a 

sample material is irradiated with a laser and the intensity of scattered, re-emitted radiation is 

measured as a function of its wavelength. 

 

Figure 0.10: Schematic of the different photon scattering modes and their associated transitions. 

 

The Raman spectrum is a plot of the measured intensity of re-emitted light as a function of the Raman 

wavenumber  (cm-1) related to the difference in frequency between scattered light m and 0, so that 
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where c is the speed of light. Whether values of  are positive or negative is indicative of the different 

Raman scattering modes with positive wave numbers corresponding to Stokes scattering and negative 

wavenumbers corresponding to anti-Stokes scattering. Elastic, Rayleigh scattering appears on a 

Raman spectrum at  = 0 but the intensity of this line is suppressed by a holographic filter in the 

spectrometer16. 

Raman spectroscopy provides a powerful tool for the characterisation of diamond and other carbon 

materials.17 In diamond, the face-centered cubic lattice of sp3 hybridised carbon yields a characteristic 

sharp Raman line at 1332 cm-1 indicative of a first order phonon mode.17 Disordered, amorphous sp2 

carbon is also Raman active with characteristic broad peaks appearing at 1357, 1580, 2700 and 2735 

cm -1.17 The sensitivity of Raman for graphitic sp2 carbon is significantly greater than that for sp3 

hybridised carbon with scattering efficiencies of 500 × 10-7 and 9 × 10-7 cm-1/sr for sp2 and sp3 

structures respectively.17 This leads to Raman lines of 50 times greater intensity for sp2 materials 

compared with that of sp3 materials.17 This makes Raman an effective tool for characterising the 

quality of diamond materials with a high sensitivity for trace levels of sp2 impurities within the 

diamond structure. 

Raman spectroscopy can also be used as an indication of the boron doping concentration in pBDD 

with a characteristic asymmetry in the 1332 cm-1 line or Fano line appearing at boron concentrations 

above 1 × 1020 B atoms cm-3.18 This Fano interference is thought to be induced by an interaction 

between valence band states and the continuum formed from mixtures of excited acceptor levels at 

high boron concentrations in the diamond lattice.18 At lower boron concentrations, this asymmetry in 

the 1332 cm-1 line is less apparent. 
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Micro-Raman was performed at room temperature using a Renishaw inVia Raman microscope with 

an excitation wavelength of 514.5 nm generated from an Ar+ laser (10 mW). The average spot size 

used was around 3 µm with detection performed via a CCD detector for vis-nrIR. 

2.6.3 White Light Interferometry (WLI) 

White Light Interferometry, WLI is an optical technique for measuring topography through the 

application of optical interference. The interferometry is equipped with a broad spectrum light source 

which is collimated and split into two beams: one is reflected off the target surface while the second is 

reflected off a reference mirror.19 The two reflected beams are recombined resulting in an interference 

pattern. Differences in the path length between the reference mirror and the target surface directly 

impact the interference pattern created which is measured by a CCD camera as the optics are scanned 

in the z-axis. This allows information on the topography of the surface with sub-nanometric resolution 

to be collected and analysed.19 In this work WLI was carried out using a Bruker ContourGT (Bruker 

Nano Inc., USA).  

2.6.4 Atomic force microscopy 

Atomic force microscopy (AFM) is an imaging technique capable of providing topographical 

information with nanometer resolution.20 The principle is based on a very sharp tip or probe being 

scanned across a surface with the feedback from interaction forces between the tip and the surface 

being recorded in order to provide the topography of the surface. This is achieved by mounting the tip 

on a force sensitive cantilever which is deflected by attractive and repulsive forces generated between 

the tip and surface. Movement in the cantilever is detected with a laser focused onto the cantilever 

which then reflects the beam onto a photodiode detector. Movement in the cantilever is detected by 

the photodiode and used to provide a feedback mechanism whereby the sample is repositioned during 

scanning as to maintain a constant force between tip and sample. A schematic of an AFM system is 

shown in Figure 0.11. 



69 
 

 

Figure 0.11: Schematic of an AFM system: (1) the probe is scan while (2) a laser beam is directed 

onto the cantilever (3), reflecting onto the (4) photodiode detector. 

 

An AFM is commonly operated in one of two modes: (1) contact or (2) TappingModeTM (Veeco 

Instruments). The first mode simply maintains contact (at constant cantilever deflection) between tip 

and surface, dragging the probe over the sample as the surface is raster-scanned.
20

 The movement of 

the probe is controlled by a piezoelectric scanner. In order to maintain contact with the sample 

surface, a feedback mechanism is used whereby the height of the tip relative to the sample surface is 

adjusted so that the force between the scanning tip and the sample is maintained constant. Under 

contact mode, the tip-sample distance is small enough that the net force seen between tip and sample 

is repulsive i.e. the sample pushing the tip away. The short-range decay of such repulsive forces gives 

contact mode a high level of sensitivity and so resolution, however, forces in lateral directions can be 

large which can distort soft samples and even damage the probe tips. 

 In the second mode, the tip is oscillated at the resonant frequency of the cantilever while being 

scanned across the surface. The oscillation amplitude of the cantilever is high enough that the tip 

makes an intermittent contact with the surface to sample short-range repulsive forces, allowing high 

resolution imaging of surface topography. Contact with the surface generates a dampening in the 

oscillation amplitude. This damping amplitude is used as a feedback mechanism whereby the 
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damping amplitude is kept constant in order to track the surface. Since the tip is in intermittent contact 

with the surface, there is little lateral tip-sample force which reduces deformation in soft samples. 

The lateral resolution of an AFM is limited to the radius of curvature (Ra) of the tip apex and scan 

sizes are limited to the range of the lateral piezos positioning the sample, usually around 100 µm2. 

Despite this, AFM offers highly accurate vertical measurements (< nm). AFM performed in this work 

was done on a Veeco EnviroScope AFM with a NanoScope IV controller using RFESP (Veeco) 

tapping mode tips (Ra = 8 nm). AFM performed was limited to tapping mode only due to the sensitive 

nature of samples imaged i.e. nanoparticles. 
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Chapter 3: Detection of hydrazine using metal-nanoparticle functionalised 

pBDD electrodes 
 

Electrochemical detection of the genotoxic impurity hydrazine (HZ) is demonstrated, in the presence 

of two important electrochemically active pharmaceutical ingredients (APIs), acetaminophen and 

promazine, present in excess. Importantly, it is shown that by using metal nanoparticle (NP) 

functionalised polycrystalline boron-doped diamond (BDD) electrodes it is possible to selectively 

screen out different API electrochemical interferants simply by changing the chemical identity of the 

metal NPs on the BDD electrode. HZ detection limits of 11.1 M and 3.3 M HZ in the presence of 

excess acetaminophen and promazine, respectively, were determined in quiescent solutions. 

3.1 Introduction 

Genotoxic impurities (GI) are compounds which modify DNA and are therefore harmful to human 

health1. A variety of chemicals exhibit genotoxic activity and are classified according to key 

functional groups, resulting in a list of structural alerts2. In a pharmaceutical process GIs can be 

starting materials, intermediates, reaction bi-products or degradation products from the active 

pharmaceutical ingredient (API). The threshold of toxicological concern3 represents the safe exposure 

level to GIs, stipulating an intake limit of 1.5 µg/day, equating to low parts per million relative to the 

API. 

An important GI in the pharmaceutical industry is the carcinogenic and mutagenic4 compound HZ.5 

HZ is also of great interest due to its use in fuel cells,6 and as a chemical reducing agent 7. 

Industrially, a variety of techniques are employed to detect HZ in the presence of the API.8, 9 For 

example, gas chromatography-mass spectrometry,10 ion chromatography11 and high pressure liquid 

chromatography.12 Derivatization is also often used to enhance the detection sensitivity of HZ.13 

Unfortunately, most of these techniques are time consuming and labour intensive, resulting in 

significant drug development costs in terms of staff resource and instrument utilization.3 Hence new 

approaches are required that are simple and robust and do not require high levels of expertise. 
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Electrochemical techniques fall into this category and simply require the GI of interest to possess an 

electrochemical signature. However, the situation is complicated if the API is also electrochemically 

active in the same potential region as the GI. HZ has previously been detected in the presence of 

pharmaceutical substances via capillary electrophoresis.14 HZ can be electrochemically oxidised in 

solution and shows an electrochemical signature strongly dependant on the chemical identity and 

crystallographic orientation of the metal electrode, given its inner sphere nature.15, 16 Typically gold 

(Au) or platinum (Pt) electrodes have been used to detect HZ in aqueous solutions. HZ has also been 

detected electrochemically in non-aqueous solvents, although this is much less common.17-19. The rate 

determining step for oxidation of HZ on Au and Pt electrodes is thought to differ due to the different 

HZ-metal bond overlap and d-orbital filling between the two metals.20, 21 

As a way to increase detection limits and reduce material costs, metal nanoparticle (NP) 

functionalised electrodes are often employed.22-24 The ideal support electrode is one that serves only to 

provide electrical contact to the metal NP and is itself electrochemically inactive towards the species 

of interest. Boron doped diamond (BDD) is ideal for this purpose given its electrocatalytically 

inactive sp3 terminated surface, wide potential window, low background currents and high resistance 

to fouling.25 HZ detection has been previously demonstrated on both bare BDD26, 27 and NP 

functionalised BDD,28, 29 although electron transfer is kinetically hindered on the bare electrode. Work 

here describes the use of highly-doped “metal-like” polycrystalline BDD macrodisk electrodes 

(pBDD), functionalised with different metal electrodeposited NPs for the detection of HZ in aqueous 

solution (pH 7.2) in the presence of two important APIs (in excess); acetaminophen (ACM, 

paracetemol) and promazine (PZ, sparine), which both show interfering electrochemical signatures. 

ACM is a common analgesic drug electrochemically oxidised in aqueous solution (pH ~7) via a two-

electron transfer mechanism.30 Electrochemical detection of ACM has also been demonstrated in 

pharmaceutical mixtures via differential pulse voltammetry (DPV) 31 and square-wave voltammetry 

on a pBDD electrode.32 PZ is an antipsychotic drug used to treat schizophrenia or to induce spinal 

anaesthesia.33 Whilst PZ has been studied by cyclic voltammetry,34 potentiometric titration35 and 

differential-pulse polarography,36 its electrochemical oxidation mechanism is still not fully 

understood. 
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The electrooxidation of HZ in aqueous solution is described in equation 0.1.37 It is a 4-electron 

transfer process which can be further split into a two-step 2-electron mechanism where the first step is 

rate determining. This is followed by dimerisation of N2H2 and decomposition of dimer at the 

electrode surface.38 

      eOHNOHHN 444 2242  

0.1 

3.2 Experimental 

3.2.1 Reagents & materials 

Chemical vapour deposited, high quality, free-standing pBDD 39, polished to ~ nm surface roughness 

was supplied by Element Six (DIAFILM EA grade, E6 Ltd., Oxford, UK), with an average boron 

density of 3 × 1020 atoms cm-3. Potassium hexachloroplatinate(IV), potassium gold (III) chloride, 

sodium perchlorate monohydrate, phosphate buffer solution (PBS), hydrazine sulphate, promazine 

hydrochloride and acetaminophen were purchased from Sigma-Aldrich (USA). All analytical 

solutions were prepared in pH 7.2 PBS, unless otherwise stated, using distilled water (Milli-Q, 

Millipore, 18.2 MΩ resistivity). 

3.2.2 Apparatus 

All voltammetric measurements were conducted in a three electrode setup, with a Pt counter electrode 

and a saturated calomel reference electrode (SCE). All peak potentials are reported versus SCE. A 

potentiostat (CHI730A, CH Instruments Inc., TX.) connected to a desktop PC was used to run all 

experiments. 

3.2.3 Preparation and characterisation of electrodes 

1 mm diameter macro disk pBDD electrodes were fabricated using a procedure described by Hutton et 

al. 
25

 Pt NPs were electrodeposited on pBDD by holding the electrode at – 1 V for 5 s, in a solution 

containing 1 mM potassium hexachloroplatinate(IV) in 0.1 M HCl, as previously described25. Au NPs 

were electrodeposited from a solution of 1 mM potassium gold (III) chloride and 0.2 M sodium 
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perchlorate monohydrate by holding the pBDD electrode at -0.9 V for 2 s. Deposition conditions were 

chosen to ensure a high density of small NPs. NP electrodeposition was characterised via tapping-

mode atomic force microscopy (AFM), as shown in Figure 0.1. The heights of the NPs are in the 

range 10 - 40 nm for Au and 10 - 30 nm for Pt. The diffusion coefficients of all species were 

determined from the steady-state current recorded at a 25 μm diameter Pt disk ultramicroelectrode. 

 

Figure 0.1: Tapping mode AFM images of (a) bare pBDD; (b) electrodeposited Au NP-pBDD and (c) 

electrodeposited Pt NP-pBDD electrodes with cross sectional height analysis of the three different 

surfaces in the zones indicated by the white lines 

 

Linear sweep voltammetry (LSV) was typically conducted at a scan rate of 0.1 Vs-1. DPV was 

executed with the following settings; 5 mV incremental potential, 50 mV amplitude, 0.2 s pulse width 

and 0.4 s pulse period. 

3.3 Results and Discussion 

3.3.1 Hydrazine Voltammetry 

Initial studies focused on investigating HZ oxidation on different electrodes. Figure 0.2 shows the 

LSV characteristics of HZ on bare pBDD (▬), Pt NP-pBDD (---) and Au NP-pBDD (....) macrodisk 
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electrodes in 0.1 M PBS. The HZ oxidation peak occurs at significantly lower overpotentials on the 

metal NP functionalised pBDD (Pt -0.36 V, Au +0.29 V) electrodes than on bare pBDD (+1.5 V) due 

to the metal NPs catalysing HZ electro-oxidation.
40

  

 

Figure 0.2: LSVs of 1 mM HZ oxidation on (- - -) Pt NP-pBDD, (…) Au NP-pBDD and (▬) bare 

pBDD, in 0.1 M PBS, recorded at a potential scan rate of 0.1 V s-1. 

 

The difference in HZ peak position for Au and Pt can be attributed to the different oxidation 

mechanisms on the two metals. 40, 41 HZ detection was further investigated using both LSV and DPV 

over the concentration range 10 – 1000 M at an Au NP-pBDD electrode, as shown in Figure 0.3a 

and Figure 0.3b respectively. The peak current in (LSV) and peak area (DPV) both scale with HZ 

concentration in a linear fashion, as shown in Figure 0.3c and d respectively. In LSV over the 

concentration range 10 - 1000 μM, the gradient was 8.3 × 10-3 (± 0.13 × 10-3) μA μM-1 with an R2 of 

0.999 (n = 5). For DPV, over the same concentration range, the gradient was 2.63 × 10-2 (± 0.086 × 

10-2) μC μM-1 with an R2 of 0.997 (n = 5).  
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Figure 0.3: HZ oxidation on an Au NP-pBDD electrode using (a) LSV and (b) DPV, with the 

corresponding graphs of peak current (LSV, c) or peak area (DPV, d) versus concentration. HZ 

concentrations 0, 10, 100, 250, 500, 750 and 1000 μM HZ (n = 5). 

 

The limit of detection (LOD) is the concentration at which a signal is significantly different from the 

background response, it is often expressed as:42 

     bbLOD  3  

0.2 

where μb and σb are the mean and standard deviation of the background response. The mean 

background response and the standard deviation are taken from the current at the peak potential over 

several LSVs in the absence of HZ (n = 5). This results in an LOD value for LSV detection of HZ at 

an Au NP-pBDD electrode of 1.32 ± 0.02 μM. In the case of DPV, the mean background response is 

taken as the y-intercept of the LOD plot (Figure 0.3d) and the standard deviation is calculated from 
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the variation in the area of several DPVs in the absence of HZ. This results in an LOD for DPV 

detection of HZ at an Au NP-pBDD electrode of 0.67 ± 0.03 μM. The lower LOD for DPV is 

attributed to the subtraction of background capacitive current contributions present in LSV, during the 

differential pulse. Thus we focus further quantitative detection studies on DPV because it also 

provides the best method to both distinguish between two or more mediators and aid quantitative 

analysis of mixtures.43 

3.3.2 Acetaminophen voltammetry 

Figure 0.4 shows the (a) LSV and (b) DPV response of the API, ACM, in PBS solution at an Au NP-

pBDD electrode. The LSV and DPV peak positions for ACM oxidation are +0.51 V and +0.42 V, 

respectively. This data indicates that resolution of both ACM (API) and HZ (GI) (Figure 0.3b) DPV 

peaks should be possible using an AuNP-pBDD electrode, when both are present in solution. Note the 

area under the DPV peak for 1 mM ACM (18.8 μC) is lower than that for HZ (28.4 μC), by a factor of 

~ 1.5. This is due to ACM oxidation being a two electron process 30 compared to a four electron 

process for HZ 37. The diffusion coefficients, D, for HZ and ACM were measured to be 1.19 × 10-5 

cm2 s-1 and 4.12 × 10-6 cm2s-1 respectively, comparing favourably to literature values. 41, 44  

 

Figure 0.4: ACM oxidation on an Au NP-pBDD electrode in a solution containing 1 mM ACM in 0.1 

M PBS, using (a) LSV and (b) DPV. 

 

Figure 0.5a shows the resulting DPV response, recorded at an Au NP-pBDD electrode in a pH 7.2 

PBS solution, containing 1 mM ACM and varying concentrations of HZ (10 - 1000 μM). DPV is able 



78 
 

to clearly resolve both the ACM peak and the concentration-varying HZ peaks. Although the DPV 

peak for the fixed concentration of ACM shifts slightly in peak potential (+0.38 to +0.41 V) with HZ 

concentration, the area of the peak remains approximately constant (20.2 ± 0.6 μC). Importantly, for a 

fixed excess concentration of ACM, the area under the HZ DPV peaks varies in a linear fashion with 

concentration, making electrochemical quantification possible. Over the concentration range 10 - 

1000 μM, the slope of the graph is 3.40 × 10-2 μC mM-1, with an R2 value of 0.998 (n = 5). In the 

presence of 1 mM ACM, the LOD for HZ is determined as 11.10 ±0.02 μM. This value is larger than 

that obtained for HZ in the absence of ACM, possibly due to the increased background signal as a 

result of having the electroactive API present in solution. 

 

Figure 0.5: (a) DPV of varying concentrations of HZ in the presence of 1 mM ACM at an AuNP-

pBDD electrode with 0, 10, 100, 250, 500, 750 and 1000 μM HZ. (b) Plot of HZ DPV peak areas 

versus concentration (n = 5). 

 

3.3.3 Promazine voltammetry 

PZ is another important electrochemically active API. Figure 0.6 shows the (a) LSV and (b) DPV 

signatures for the oxidation of 1 mM PZ at both a bare pBDD (▬) and an Au NP-pBDD electrode (- - 

-). A slightly higher peak current is observed via LSV on Au NP-pBDD than bare pBDD, likely due 

to the greater background capacitive currents resulting from the presence of the Au NPs. Reduction of 

the background contributions via DPV results in the DPV response for both the bare pBDD and Au 
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NP functionalised pBDD being similar, peaking in current at 0.5 V. As this value is more positive 

than that of ACM it suggests both species should be resolvable using an AuNP-pBDD electrode.  

 

Figure 0.6: PZ oxidation in a solution containing 1 mM PZ in 0.1 M PBS, at a bare pBDD (▬) and 

an Au NP-pBDD electrode (- - -) using (a) LSV and (b) DPV 

 

Moreover, the fact that the PZ DPV peak position does not change with the chemical identity of the 

electrode, in stark contrast to that observed for HZ (Figure 0.2) on pBDD and Au, suggests that PZ 

oxidation occurs through an outer sphere ET process, which is surface insensitive. 

The DPV response for 1 mM PZ in the presence of varying concentrations of HZ (10 – 1000 μM) is 

shown in Figure 0.7.  

 

Figure 0.7: DPV of varying concentrations of HZ in the presence of 1 mM PZ, at an AuNP-pBDD 

electrode with 0, 10, 100, 250, 500, 750 and 1000 μM HZ. 
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In contrast to HZ detection in the presence of ACM (Figure 0.5), it is no longer possible to resolve 

two distinct DPV peaks associated with the API and HZ. Instead there is one dominant peak (+0.5 V), 

occurring in the same position as expected for PZ, with a small shoulder at a less positive potential 

(+0.2 V). With increasing HZ concentration, both the dominant peak and small shoulder only increase 

slightly in magnitude. This suggests that in the presence of PZ, at an Au NP-pBDD electrode, HZ 

oxidation is either being retarded, or becoming less kinetically facile, and shifting to more positive 

potentials, such that the HZ oxidation peak overlaps with that for PZ. However, even if the latter were 

true, the increase in current would be expected to be much greater than observed. A full explanation 

of this phenomenon is beyond the scope of this study and work is currently on-going to investigate the 

mechanistic interaction of PZ with HZ, in the presence of Au. Clearly, HZ and PZ cannot be 

independently resolved via this approach and quantification of HZ concentrations is thus not possible. 

As shown in Figure 0.2, HZ oxidation occurs at a significantly more negative potential on Pt than on 

Au. Thus switching metal NP identity may offer a route to separating out the electrochemical 

signatures of HZ and PZ oxidation. Figure 0.8a shows the DPV response for the detection of HZ in 

the concentration range 10 – 1000 μM, in the presence of 1 mM PZ at a PtNP-pBDD electrode. 

Two peaks are now clearly identifiable. The PZ DPV peak position is at ~ 0.5 V in accordance with 

the observation that PZ electron transfer is occurring independently of the chemical identity of the 

surface.  
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Figure 0.8: (a) DPV of varying concentrations of HZ in the presence of 1 mM PZ, at a PtNP-pBDD 

electrode with 0, 10, 100, 250, 500, 750 and 1000 μM HZ. (b) Plot of HZ DPV peak areas versus HZ 

concentration (n = 5). 

 

The DPV peak corresponding to HZ oxidation is now seen at -0.25 V, which represents a positive 

shift of ca. +0.25 V, compared to a HZ only solution, again indicating possible interactions between 

the PZ and HZ. The area of the 1 mM PZ peak (~21.7 μC) is smaller than that of the HZ peak (56.4 

μC) by a factor of 2.6, which is reasonable given literature assumes a two electron transfer process. 45, 

46 A D for PZ was determined to be 2.65 × 10-6 cm2 s-1 assuming a two electron process, which is 

similar to reported values. 47 However, as with HZ detection, importantly in the presence of ACM the 

area of the HZ DPV peak (ca – 0.25 V) scales linearly with concentration in the presence of PZ, as 

shown in Figure 0.8b, with a sensitivity of 4.61 × 10-2 μC mM-1 and R2 of 0.991 (n = 5). In the 

presence of 1 mM PZ, the LOD for HZ is calculated as 3.27 ± 0.04 μM. Work is currently on-going to 

significantly lower these reported LODs, in the presence of the API, by moving from quiescent 

solutions to convective diffusion hydrodynamic flow systems. 48 

3.3.4 Detection of hydrazine with AuNP-p-BDD macroelectrodes in non-aqueous solvents 

The aim of the study is to establish a proof-of-concept with the intention of future application of the 

sensor technology to real-life situations e.g. PGI analysis in pharmaceutical products. Since many 
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pharmaceutical products are sparingly if at all soluble in aqueous solvents, it is important to also 

demonstrate the detection of HZ in non-aqueous medium. 

Two organic solvents routinely used in industry for the preparation and analysis of pharmaceutical 

products were chosen for investigation. These include acetonitrile (MeCN) and dimethyl sulfoxide 

(DMSO). Tetrabutylammonium hexafluorophosphate (TBAHFP), an inert salt was chosen as 

electrolyte for both of these solvents. 

 

3.3.4.1 Detection of hydrazine in acetonitrile 

The CV of HZ oxidation at an AuNP-p-BDD macroelectrode in MeCN is shown in Figure 0.9a. The 

oxidation peak appears at a similar potential in MeCN as it does in aqueous solution i.e. ~ +0.1 V to 

+0.4.V vs. SCE. Detection limits for HZ in MeCN with AuNP-p-BDD were calculated using the 

method outlined in section 3.3.1 from the plot in Figure 0.9b. For HZ detection in MeCN LOD = 2 ± 

0.02 μM (R
2
 = 0.993) was determined. 

 

Figure 0.9: (a) CV response for (red) 1 mM HZ in MeCN with 0.1 M TBAHFP and (black) 0.1 M 

TBAHFP in MeCNm, scan rate of 0.1 V s-1; (b) plot of ip vs. HZ concentration for a concentration 

range of 0.5 – 10 µM HZ (n = 5). 

 

The HZ oxidation mechanism in MeCN has been reported as follows:49, 50 
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  eHNNHHNHN 22 5242  

0.3 

Here HZ undergoes a 2-electron oxidation. This incomplete oxidation (compared with in aqueous 

where just N2 and H2O are produced; see equation 0.1) is a result of the stability of HN=NH in non-

aqueous solutions. Furthermore, only one third of the available HZ is oxidised in this way at the 

electrode surface. The oxidation mechanism requires a proton acceptor species (in this case N2H4) to 

form two equivalence of N2H5
+ ions (which cannot be oxidised) for every molecule of HZ oxidised. 

As a result, the number of electrons in the overall process per HZ molecule is just a third of two.49 

3.3.4.2 Detection of hydrazine in DMSO 

An oxidative peak corresponding to that of HZ was observed ca. +0.31 V at an AuNP-p-BDD 

electrode with DMSO as the solvent (see Figure 0.10a). The detection limits of HZ on an AuNP-p-

BDD electrode in DMSO were calculated using the ilim vs. HZ concentration plot shown in Figure 

0.10b. LOD = 2 ± 0.06 µM (R2 = 0.999) was determined.  

 

Figure 0.10: (a) CV response for (black) 10 mM HZ in DMSO with 0.1 M TBAHFP and (pink) a 

solution of just 0.1 M TBAHFP, scan rate of 0.1 V s-1; (b) plot of ip vs. HZ concentration for solutions 

of concentrations ranging from 0.01 – 20 mM HZ (n = 5). 

 

Work investigating the oxidation mechanism of HZ in aprotic solvents such as DMSO, suggest that 

HZ undergoes a one-electron oxidation process:51 
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  eNHNHN 4242

2

1
 

0.4 

This same mechanism has also been suggested for the oxidation of HZ in aqueous solutions.52 

Michlmayr et al51 described a break-down of this proposed mechanism (equations 0.6-0.9) based on 

the rate determining step being a one-electron transfer process producing a HZ radical ion (equation 

0.6). Formation of a HZ radical ion during HZ oxidation is supported by the study of the reaction with 

electron paramagnetic resonance spectroscopy.53 

  eHNHN 4242  

0.5 

  
 HNNHHNNHH 222  

0.6 

2222 NNHNHNHHNNHH   

0.7 

2322 2 NNHNNHNHNHH   

0.8 

  43 NHHNH  

0.9 

 

3.3.5 Detection of hydrazine derivatives in acetonitrile with an AuNP-p-BDD macroelectrode 

Using an AuNP-pBDD electrode, the possibility of electrochemically detecting derivatives of HZ was 

also explored. 1 mM solutions of three HZ derivatives: 4-(trifluoromethyl)-phenylhydrazine, 2-

hydroxyethylhydrazine and phenylhydrazine, were prepared in MeCN solvent and 0.1 M TBAHFP as 

electrolyte; molecular structures of the three derivatives are shown in Figure 0.11. 
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Figure 0.11: Molecular structures of (a) 2-hydroxyethylhydrazine, (b) phenylhydrazine, (c) 4-

(trifluoromethyl)-phenylhydrazine. 

 

The oxidation response for each derivative is shown in Figure 0.12a, with oxidation potentials of ca. 

0.1 V, 0.3 V and 0.55 V vs. SCE observed for 2-hydroxyethylhydrazine (black line), phenylhydrazine 

(blue line) and 4-(trifluoromethyl)-phenylhydrazine (red dotted) respectively. 

 

Figure 0.12: (a) CVs of acetonitrile solutions containing 1 mM: 2-hydroxyethylhydrazine (black), 

phenylhydrazine (blue) and 4-(trifluoromethyl)-phenylhydrazine (red dotted), all with TBAHFP as 

supporting electrolyte; (b) CV of acetonitrile solutions containing all three HZ derivatives at 1 mM 

concentrations of each. 

 

The mechanism for the oxidation of HZ derivatives in acetonitrile is analogous to that described in 

equation 0.3, as follows:54 



86 
 

  










 eNHHNRNHNRNHNHR 2'2''3 222  

0.10 

where R’ represents the derivative group e.g. hydroxyethly (-CH2CH2OH). 

 

The difference in oxidation potential observed between the different HZ derivatives represents a 

difference in energy required to drive the oxidation. From the CVs in Figure 0.12a, the order of 

oxidation potential, lowest to highest is 2-hydroxyethylhydrazine, phenylhydrazine and 4-

(trifluoromethyl)-phenylhydrazine. This difference in oxidation energy may be a product of the ability 

of the HZ derivatives to act as proton acceptors i.e. their basicity. The electron withdrawing groups 

found in phenylhydrazine and 4-(trifluoromethyl)-phenylhydrazine make these compounds less 

basic55 than 2-hydroxyethylhydrazine and so do not undergo protonation as readily. This would 

increase the energy barrier for oxidation as the protonation of two molarities of derivative are required 

in the electro-oxidation mechanism; see equation 0.10. 

A single solution containing all three HZ derivatives at 1 mM concentration with 0.1 M TBAHFP was 

prepared. The response of this solution is shown in Figure 0.12b, again showing distinct oxidation 

peaks for each of the three derivatives. The current responses for the 2-hydroxyethylhydrazine and 

phenylhydrazine derivatives are comparable with that seen for the same concentration in solution not 

including the other two derivatives. At potentials more positive of 0.4 V, where oxidation peak for 4-

(trifluoromethyl)-phenylhydrazine is expected, the current response wave begins in a diffusion 

controlled manner but is distorted by the appearance of a sharp secondary peak at ca. 0.6 V. This 

second, sharp peak is of a current magnitude far higher than that expected for a 1 mM concentration 

of 4-(trifluoromethyl)-phenylhydrazine (as observed in Figure 0.12a), and could indicate a more 

complex reaction with possible interactions between the generated species and reactant species/the 

electrode. Further work is required to establish whether this is the case. 
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3.3.6 Detection of hydrazine in polymer degredation 

Methacryloyl hydrazide (MH) is a hydrazide functional monomer (see Figure 0.13a) that can be 

incorporated into copolymers as a method of controlling the solubility of microgel dispersions in 

water.56 It is known that hydrazides undergo hydrolysis in aqueous solution, releasing HZ.57 The 

polymerised MH (Figure 0.13b) was suspected to undergo hydrolysis in much the same way, as 

shown by the schematic in Figure 0.13c.  

 

Figure 0.13: Molecular structures of (a) Methacryloyl Hydrazide monomer and (b) poly(methacryloyl 

hydrazide); (c) schematic of the hydrolysis of poly(methacryloyl hydrazide, producing HZ.  

 

MH monomer synthesis and polymerisation were conducted by Y.Chen et al.56 

In order to track the release of HZ in a solution of dissolved poly-(MH) in 0.1 M PBS over time, a 

PtNP-pBDD electrode was employed to electrochemically detect HZ. The electroactivity of the MH 

monomer and polymer were assessed using CVs shown in Figure 0.14a. Here CV responses are 

shown for solutions of 0.015 % (w/w) MH polymer with 1 mM MH monomer and 0.3 mM HZ 

(black); 1 mM MH monomer (red); 0.015 % (w/w) MH polymer with 0.85 mM HZ (blue); 0.015 % 

(w/w) MH polymer (pink), all solutions in 0.1 M PBS. It is clear from electroanalysis that the polymer 

is not electroactive. However, the MH monomer is, showing an oxidation peak at ca. 0.5 V vs. SCE. 

The oxidation peak for the monomer is sufficiently higher in potential than that of HZ, making it 

possible to simultaneously detect both MH and HZ in the presence of the polymer. A solution of 0.15 

% (w/w) MH polymer was filtered using dialysis to remove the MH monomer from solution. The 

resulting solution was diluted by a factor of 10 in 0.1 M PBS and kept away from exposure to light. A 
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series of CVs were run using a PtNP-pBDD electrode over a time period of 408 hrs (Figure 0.14b), 

with recordings being made at 24 hrs (black line), 168 hrs (red line), 336 hrs (blue line) and 408 hrs 

(pink line). A plot of ip vs. time is presented in Figure 0.14c with a linear fit found (R
2
 = 0.999) 

indicating the release of HZ with time. 

 

 

 

Figure 0.14: (a) CV responses for solutions of 0.015 % (w/w) MH polymer with 1 mM MH monomer 

and 0.3 mM HZ (black); 1 mM MH monomer (red); 0.015 % (w/w) MH polymer with 0.85 mM HZ 

(blue); back ground response of 0.015 % (w/w) MH polymer (pink), all solutions in 0.1 M PBS, scan 

rate of 0.1 V s-1. (b) CVs for PtNP=pBDD electrode in solution of 0.015 % (w/w) MH polymer with 24 

hrs (black), 168 hrs (red), 336 hrs (blue) and 408 hrs (pink scan rate of 0.1 V s-1). (c) plot of ip vs. 

time for HZ detection in polymer solution with time (n = 5). 

 

Using a calibration plot of ip as a function of HZ concentration, the concentration of HZ released by 

the gradual hydrolysis of the MH polymer was calculated to be 0.8 ± 0.096 mM with the release rate 

of HZ being determined as 0.0012 mM per hour. 

3.4 Conclusions  

This work has demonstrated electrochemical detection of the GI, HZ, in the presence of two 

electrochemically active APIs. For the case of HZ detection in the presence of excess ACM (1 mM), 

Au NP-pBDD macrodisk electrodes were found to be suitable enabling a LOD for HZ of 11.10 ± 0.02 

μM using DPV in stationary solution. However, in the presence of PZ the Au NP-pBDD electrode 

was not able to sufficiently resolve the DPV peaks for both the GI and the API. As HZ oxidation is 
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surface sensitive, this problem was solved by changing the chemical identity of the metal catalyst 

from Au to Pt, the latter which oxidises HZ at more negative potentials. Under these conditions, a 

LOD of 3.27 ± 0.04 μM for HZ in the presence of excess PZ (1 mM) was obtained. 

HZ detection in non-aqueous solvents, relevant to pharmaceutical synthesis has also been 

demonstrated with LOD = 2 ± 0.02 μM and 2 ± 0.06 µM determined for acetonitrile and DMSO, 

respectively, comparable to those found for aqueous systems.  

The electrochemical detection of HZ derivatives 4-(trifluoromethyl)-phenylhydrazine, 2-

hydroxyethylhydrazine and phenylhydrazine at an AuNP-pBDD electrode in acetonitrile solution are 

also presented. This data demonstrates the potential for electrochemical analyses as a means of 

distinguishing similar electroactive species, by virtue of their characteristic oxidation potentials. 

However, potential interaction problems were highlighted with all three species in the same solution. 

Lastly, the release of HZ by the natural hydrolysis of hydrazide-based microgels in aqueous solutions 

has been monitored using a PtNP-pBDD electrode and a simple CV technique. From analysis of this 

data, the amount of HZ released by the polymer solution could be determined. This simple 

electrochemical technique is highly advantageous compared with conventional methods such as 

HPLC which would require pre-treatment of the analyte solution, for example, derivatisation of HZ 

with benzaldehyde is necessary as HZ does not have a useful UV-visible absorption spectrum for 

conventional UV-Visible detection.58 This derivatisation step may require the removal of the polymer 

in solution as this could also undergo derivatisation.  

Compared to conventional techniques for HZ detection in both pharmaceutical and polymer synthesis 

analysis, this electrochemical approach is inexpensive, fast and also requires no synthetic 

derivatization of the GI. By combining this measurement with hydrodynamic flow systems it will be 

possible to significantly improve detection limits. 

3.5 References 

1. D. I. Robinson, Org. Process Res. Dev., 2010, 14, 946-959. 



90 
 

2. R. Alzaga, R. W. Ryan, K. Taylor-Worth, A. M. Lipczynski, R. Szucs and P. Sandra, J. 

Pharm. Biomed. Anal., 2007, 45, 472-479. 

3. L. Müller, R. J. Mauthe, C. M. Riley, M. M. Andino, D. D. Antonis, C. Beels, J. DeGeorge, 

A. G. M. De Knaep, D. Ellison, J. A. Fagerland, R. Frank, B. Fritschel, S. Galloway, E. 

Harpur, C. D. N. Humfrey, A. S. Jacks, N. Jagota, J. Mackinnon, G. Mohan, D. K. Ness, M. 

R. O’Donovan, M. D. Smith, G. Vudathala and L. Yotti, Regul. Toxicol. Pharmacol., 2006, 

44, 198-211. 

4. A. Poso, A. Vonwright and J. Gynther, Mutat. Res., Fundam. Mol. Mech. Mutagen., 1995, 

332, 63-71. 

5. X. Yu and J. Zhang, Chem. Eur. J., 2012, 18, 12945 – 12949. 

6. J. Sanabria-Chinchilla, K. Asazawa, T. Sakamoto, K. Yamada, H. Tanaka and P. Strasser, J. 

Am. Chem. Soc., 2011, 133, 5425-5431. 

7. H. Chen, J. M. Wang, X. C. Hong, H. B. Zhou and C. N. Dong, Can. J. Chem., 2012, 90, 758-

761. 

8. T. Kean, J. H. M. Miller, G. C. Skellern and D. Snodin, Pharmeuopa scientific notes, 2006, 2, 

23-33. 

9. D. P. Elder, D. Snodin and A. Teasdale, J. Pharm. Biomed. Anal., 2011, 54, 900-910. 

10. M. J. Sun, L. Bai and D. Q. Liu, J. Pharm. Biomed. Anal., 2009, 49, 529-533. 

11. N. K. Jagota, A. J. Chetram and J. B. Nair, J. Pharm. Biomed. Anal., 1998, 16, 1083-1087. 

12. H. Bhutani, S. Singh, S. Vir, K. K. Bhutani, R. Kumar, A. K. Chakraborti and K. C. Jindal, J. 

Pharm. Biomed. Anal., 2007, 43, 1213-1220. 

13. A. Carlin, N. Gregory and J. Simmons, J. Pharm. Biomed. Anal., 1998, 17, 885-890. 

14. M. Khan, S. Kumar, K. Jayasree, K. V. S. R. Krishna Reddy and P. K. Dubey, 

Chromatographia, 2013, 76, 801-809. 

15. G. Kokkinidis and P. D. Jannakoudakis, J. Electroanal. Chem. Interfacial Electrochem., 

1981, 130, 153-162. 

16. M. D. G. Azorero, M. L. Marcos and J. G. Velasco, Electrochim. Acta, 1994, 39, 1909-1914. 

17. M. Michlmayr and D. T. Sawyer, J. Electroanal. Chem., 1969, 23, 375-385. 

18. X. Q. Cao, B. C. Wang and Q. Su, J. Electroanal. Chem., 1993, 361, 211-214. 

19. S. Antoniadou, A. D. Jannakoudakis and E. Theodoridou, Synth. Met., 1989, 30, 295-304. 

20. B. Hammer and J. K. Norskov, Nature, 1995, 376, 238-240. 

21. B. Álvarez-Ruiz, R. Gómez, J. M. Orts and J. M. Feliu, J. Electrochem. Soc., 2002, 149, D35-

D45. 

22. V. Kondratiev, T. Babkova and E. Tolstopjatova, J. Solid State Electrochem., 2013, 17, 1621-

1630. 

23. D. Oukil, L. Benhaddad, L. Makhloufi, R. Aitout and B. Saidani, Sens. Lett., 2013, 11, 395-

404. 

24. P. V. Dudin, M. E. Snowden, J. V. Macpherson and P. R. Unwin, ACS Nano, 2011, 5, 10017-

10025. 

25. L. Hutton, M. E. Newton, P. R. Unwin and J. V. Macpherson, Anal. Chem., 2009, 81, 1023-

1032. 

26. H. Sun, L. Dong, H. Yu and M. Huo, Russ. J. Electrochem., 2013, 1-5. 

27. J. S. Xu, M. C. Granger, J. Wang, Q. Y. Chen, M. A. Witek, M. L. Hupert, A. Hanks, G. M. 

Swain, I. Sakaguchi, M. Nishitani-Gamo and T. Ando, Structure-reactivity studies at boron-

doped single and polycrystalline diamond thin-film electrodes: Relationship to applications in 

electroanalysis, Electrochemical Society Inc, Pennington, 2000. 

28. D. Wakerley, A. G. Guell, L. A. Hutton, T. S. Miller, A. J. Bard and J. V. Macpherson, Chem. 

Commun., 2013, 49, 5657-5659. 

29. C. Batchelor-McAuley, C. E. Banks, A. O. Simm, T. G. J. Jones and R. G. Compton, Analyst, 

2006, 131, 106-110. 

30. Y. Li and S. M. Chen, Int. J. Electrochem. Sci., 2012, 7, 2175-2187. 

31. A. R. Khaskheli, J. Fischer, J. Barek, V. Vyskocil, Sirajuddin and M. I. Bhanger, Electrochim. 

Acta, 2013, 101, 238-242. 

32. A. P. P. Eisele, D. N. Clausen, C. R. T. Tarley, L. H. Dall'Antonia and E. R. Sartori, 

Electroanalysis, 2013, DOI: 10.1002/elan.201300137. 



91 
 

33. Y. W. Chen, C. C. Chu, Y. C. Chen, C. D. Kan and J. J. Wang, Neurosci. Lett., 2012, 521, 

115-118. 

34. C. Petit, K. Murakami, A. Erdem, E. Kilinc, G. O. Borondo, J. F. Liegeois and J. M. 

Kauffmann, Electroanalysis, 1998, 10, 1241-1248. 

35. M. M. Ayad, A. Shalaby, H. E. Abdellatef and H. M. Elsaid, Microchim. Acta, 2002, 140, 93-

96. 

36. F. Belal, S. M. El-Ashry, I. M. Shehata, M. A. El-Sherbeny and D. T. El-Sherbeny, 

Microchim. Acta, 2000, 135, 147-154. 

37. S. Karp and L. Meites, Journal of the American Chemical Society, 1962, 84, 906-912. 

38. A. J. Bard, Analytical Chemistry, 1963, 35, 1602-1607. 

39. L. A. Hutton, J. G. Iacobini, E. Bitziou, R. B. Channon, M. E. Newton and J. V. Macpherson, 

Anal. Chem., 2013, 85, 7230-7240. 

40. M. D. Garcia, M. L. Marcos and J. G. Velasco, Electroanalysis, 1996, 8, 267-273. 

41. J. Li, H. Q. Xie and L. F. Chen, Sens. Actuators, B, 2011, 153, 239-245. 

42. J. N. Miller and J. C. Miller, Statistics and Chemometrics for Analytical Chemistry, 5th edn., 

Pearson Education Limited, London, 2005. 

43. E. Laborda, A. Molina, F. Martinez-Ortiz and R. G. Compton, Electrochim. Acta, 2012, 73, 3-

9. 

44. A. C. F. Ribeiro, M. C. F. Barros, L. M. P. Veríssimo, C. I. A. V. Santos, A. M. T. D. P. V. 

Cabral, G. D. Gaspar and M. A. Esteso, J. Chem. Thermodyn., 2012, 54, 97-99. 

45. J. Wiśniewska, P. Kita and G. Wrzeszcz, Transition Met. Chem., 2007, 32, 857-863. 

46. J. Wiśniewska, P. Rześnicki and A. Topolski, Transition Met. Chem., 2011, 36, 767-774. 

47. E. K. Kazakova, V. V. Syakaev, J. E. Morozova, N. A. Makarova, L. A. Muslinkina, G. A. 

Evtugyn and A. I. Konovalov, J. Inclusion Phenom. Macrocyclic Chem., 2007, 59, 143-154. 

48. S. Sansuk, E. Bitziou, M. B. Joseph, J. A. Covington, M. G. Boutelle, P. R. Unwin and J. V. 

Macpherson, Anal. Chem., 2012, 85, 163-169. 

49. X. Cao, B. Wang and Q. Su, Journal of Electroanalytical Chemistry, 1993, 361, 211-214. 

50. A. D. Jannakoudakis, E. Theodoridou and D. Jannakoudakis, Synthetic Metals, 1984, 10, 131-

140. 

51. M. Michlmayr and D. T. Sawyer, Journal of Electroanalytical Chemistry and Interfacial 

Electrochemistry, 1969, 23, 375-385. 

52. W. C. E. Higginson, D. Sutton and P. Wright, Journal of the Chemical Society (Resumed), 

1953, 1380-1386. 

53. J. Q. Adams and J. R. Thomas, The Journal of Chemical Physics, 1963, 39, 1904-1906. 

54. A. D. Jannakoudakis and G. Kokkinidis, Journal of Electroanalytical Chemistry and 

Interfacial Electrochemistry, 1982, 134, 311-324. 

55. J. Clayden, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, Oxford University 

Press, 2006. 

56. Y. Chen, N. Ballard, O. D. Coleman, I. J. Hands-Portman and S. A. F. Bon, Journal of 

Polymer Science Part A: Polymer Chemistry, 2014, 52, 1745-1754. 

57. L. B. Colvin, Journal of Pharmaceutical Sciences, 1969, 58, 1433-1443. 

58. G. Elias and W. F. Bauer, Journal of Separation Science, 2006, 29, 460-464. 

 

 



92 
 

Chapter 4: An electrochemical technique for probing the partition of 

electro-active bromine between aqueous and non-aqueous phases 

 

Double potential step chronoamperometry (DPSC) is demonstrated as a technique for investigating 

partitioning between a solute in aqueous solution and non-polar oil droplet(s) immobilised at an 

electrode. Here a species in aqueous solution which does not partition into the oil phase is converted 

at the electrode surface into another species which either does not or does partition into the oil drop. 

The first case is investigated experimentally by considering generation of the ionic redox species, 

FcTMA2+ from FcTMA+, while the second case is exemplified by studies of Br2 generation from Br-. 

The case of molecular partitioning at the three phase interface has received little attention hitherto. To 

maintain oil droplet stability a boron-doped diamond electrode is employed functionalised with Pt 

nanoparticles to impart electrocatalytic activity on the electrode towards Br2 production. An 

arrangement is utilised where the droplet(s) sit(s) on (but does not cover) the electrode surface. It is 

shown both experimentally and through finite element simulation how the charge-time profile for the 

generation and collection of electroactive species can be used to obtain information the extent of 

partitioning and how this is affected by factors such as the number and size of droplets. Finally, the 

suitability of this approach for investigating partitioning species induced reactions which take place 

within the droplet is highlighted. 

4.1 Introduction 

The interface between two immiscible (liquid/liquid) interfaces is of fundamental interest to a range 

of chemical processes1, 2. Such an interface also serves as a simple model for biological membranes, 

allowing pharmacokinetic properties of drug/organic molecules, such as lipophilicity, to be 

determined.3-5 Liquid/liquid interfaces play a critical role in many classes of chemical reactions, for 

example, phase transfer catalysis,6-8 polymerization,9 and substitution reactions, involving interfacial 

ion transfer (IT), electron transfer (ET) and/or molecular transfer.10,11 As such, the electrochemical 
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and phase transfer properties of liquid/liquid interfaces have been the subject of extensive study.12 

Significant research has focused on ion transfer between aqueous and organic phases,13-17 with 

kinetics and mechanisms of two phase reactions determined via voltammetry
18

 or microscale 

techniques such as scanning electrochemical microscopy (SECM)19 and microelectrochemical 

measurements at expanding droplets (MEMED). 20, 21 The study of ET between two species at the 

interface of an oil droplet and an aqueous solution using laser trapping techniques has also been 

reported.22 

Oil droplet modified electrodes represent an attractive format for the study of liquid/liquid interfaces, 

and also enable the study of ion transfer and photo-electrochemistry at three-phase junctions (solid-

oil-water).23-25 To date the vast majority of electrochemical studies with oil droplets have employed 

polar oils or oils that are redox active.26 Non-polar oils have received less attention, partly due to the 

difficulty of incorporating a suitable electrolyte within them. Among a fairly limited body of work, 

uniformly-sized non-polar oil droplets decorating an electrode surface,27 have been sized using single 

step potential-step chronoamperometry; an approach which can also be used to size other blocking 

materials28.  

In this work, we demonstrate how double potential step chronoamperometry (DPSC) can be employed 

to probe the partitioning of an electrogenerated molecular species across the non-polar oil (o) droplet/ 

aqueous solution (w) interface. Previous work has seen the use of SECM to directly measure 

molecular transport across this interface,29 by using an ultramicroelectrode (UME), positioned in the 

aqueous phase (for example) to generate a molecular species, which is able to partition into the non-

polar organic phase, during an initial potential step. Collection of the molecular species in a second 

step provides information on physicochemical parameters such as transfer kinetics and diffusion 

coefficient.30 

Herein, we adapt this DPSC method for an arrangement where a droplet (or multiple droplets) sit(s) 

on, but does not completely cover, an electrode surface, immersed in electrolyte solution. We show 

how the current-time profile for the collection of the partitioning species - electrogenerated Br2 (from 
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Br-) - depends not only on the size and number of droplet(s) on the electrode surface, but also on the 

time period of the generation step. The DPSC responses are also compared to those for a system 

where no partitioning occurs at the o/w interface, i.e. for an ionic redox couple. The potential 

advantage of this approach compared to SECM is a greatly simplified experimental arrangement, 

negating, for example, the need for tip positioning. 

4.2 Experimental 

4.2.1 Chemicals 

Potassium bromide, 99.5% (Fisons Scientific Equipment, UK), 0.5 M sulfuric acid solutions diluted 

from 18 M sulfuric acid (VWR international Ltd. UK), ferrocene tetramethylammonium (FcTMA+) 

hexafluorophosphate (produced in house via the metathesis of the corresponding iodide salt (99%, 

Strem) with ammonium hexafluorophosphate (99.5%, Strem)31) and dodecane (Sigma Aldrich, UK) 

were used herein. All aqueous solutions were made using 18.2 MΩ cm (25 ºC) Milli-Q filtered water 

(Millipore Corporation). 

4.2.2 Instrumentation and protocols 

Negligible sp
2 

content, polycrystalline boron doped diamond (pBDD) 1 mm diameter, 

macrodisc electrodes
32

 were prepared in house using a reported procedure,
33

 from DIAFILM 

EA grade pBDD (supplied in wafer form by Element Six, Harwell; average boron dopant 

density ~ 3 × 10
20 

B atoms cm
-3 

and lapped to produce a surface roughness ~ nm
34

).
 
pBDD 

was employed as the electrode material to circumvent possible problems due to the reported 

instability of organic droplets on some metal electrodes under potential control.
35

 As the Br
-

/Br2 heterogeneous redox process is sluggish on bare pBDD (vide infra) functionalisation of 

the pBDD substrate with Pt nanoparticles (NPs) was necessary. Pt NPs, 20-40 nm in size, 

were formed at the pBDD surface by electrodeposition from a solution containing 1 mM 

K2PtCl6 and 0.1 M HCl. The pBDD electrode was held at a potential of -1.0 V vs. a saturated 

calomel electrode (SCE) for 5 s, using a reported procedure
33

. Prior to oil droplet deposition, 



95 
 

any Pt oxide present on the surface of the NPs was electrochemically reduced by holding the 

electrode at -1 V in a solution of 0.5 M sulfuric acid, for 40 s. This optimized the Pt NP-

pBDD electrode towards the Br
-
/Br2 couple 

The Pt NP-pBDD electrode was mounted vertically, facing upwards, in a 4 cm diameter 

Teflon cell base and secured in place with paraffin wax. The cell was completed by placing a 

glass cell body, containing a 2 cm diameter quartz window (for microscopy visualization), 

over the cell base, held in place with a rubber O-ring. The cell was filled with the solution of 

interest and electrochemical analysis was carried out using a CH Instruments Electrochemical 

Analyzer, model CHI 1105A (CH instruments, Austin, Texas, USA), in a 3-electrode mode, 

with a Pt wire counter electrode. All potentials are quoted versus SCE, which was employed 

as the reference electrode (BAS Inc., Tokyo, Japan). Measurements were made at room 

temperature (22 ± 1 ºC). 

Dodecane oil droplets, typically in the size range 100 – 1450 m diameter, were deposited on 

the surface of the Pt NP – pBDD electrode using 30-40 µm o.d. tapered borosilicate pipettes, 

pulled from 2 mm o.d, 1.16 mm i.d borosilicate tubes (Harvard Apparatus) using a pipette 

puller. The pipette was mounted on a manual micro-positioner (M433 series, Newport) which 

was capable of movement in the x, y and z directions, with micron resolution. Oil droplets 

were dispensed by applying pressure to the oil filled pipette using a 5 mL syringe (BD 

Plastipak) with the size controlled by the period of time for which the pressure was applied. 

The sizes of the oil droplets were determined optically, in-situ, using two PixeLINK (Ottawa, 

Canada), 3-megapixel cameras, one positioned above the electrode (top view), and the other 

to the side facing the quartz window (side view). The top camera was fitted with a 4× 

telecentric lens (Edmund optics, model 62763) or 2× telecentric lens (Infinistix), while the 

side camera was fitted with a 2× telecentric lens (Infinistix). Illumination was provided by a 

Fiber-Lite DC-950 regulated illuminator (Dolan-Jenner Industries).   
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The partition coefficient (K) of Br2 between dodecane and water, at room temperature, was 

determined by recording the UV-Visible absorption (Cary 50 Bio UV-Visible 

spectrophotometer) spectrum (peak maximum for Br2, Amax, at 393 nm) of aqueous 20 mM 

Br2 (Fisher Scientific), before and after mixing thoroughly with an equal volume of 

dodecane, for 30 s. Longer mixing times were found to have no difference on the absorbance 

spectra recorded. We found K = 10.6 ± 0.7 (1σ) at room temperature (22 ± 1 
o
C). For 

comparison, K was also determined using voltammetry on a 2 mm diameter Pt macrodisc 

electrode where the potential was swept from +1 V to +0.5 V (vs. SCE), scan rate 0.1 Vs
-1

, in 

a solution of 20 mM Br2 (aq) before and after shaking with an equal volume of dodecane. We 

obtained K = 9.3 ± 1.1 (1σ) at room temperature, consistent with absorbance measurements. 

4.2.3 Simulations 

Simulations were performed on a Dell Optiplex 755, Intel Core 2 Quad 2.49 GHz computer equipped 

with 8 GB RAM running windows XP 64 bit edition. Comsol Multiphysics 4.2 (Comsol AB, Sweden) 

was used for finite element modeling. Simulations employed a minimum of 64,000 triangular mesh 

elements. The highest mesh resolution was focused around the electrode surface and o/w interfaces.  

 

We consider a macroelectrode immersed in an aqueous electrolyte solution (phase w) supporting a 

droplet of dodecane (phase o) centered on the electrode surface, shown in Figure 0.1 (a). During a 

typical DPSC experiment, in the forward step a potential is applied for a fixed amount of time, , 

sufficient to generate B via the electrooxidation of A in solution, at a diffusion-controlled rate, i.e.; 

      
 neBmA  

0.1 

where n is the number of electrons transferred per mole of reactant, m is the stoichiometry of A. In the 

reverse step a potential is applied, for a further time,  (total duration of experiment 2), sufficient to 

collect B via electroreduction to A in accordance with; 
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      mAneB  

 

0.2 

at a diffusion-controlled rate.  

We consider two situations: (1) Where neither A nor B interacts with or partitions across the o/w 

interface, and (2) where A does not partition, but B does according to:36 
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 The diffusion of species A and B is described by the following time-dependent diffusion equation 

and solved for the simulated axisymmetric cylindrical geometry formed from a 2D domain, shown in 

Figure 0.1a. 
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where cj is the concentration of species A or B (mol cm-3), Dj is the diffusion coefficient of a species 

A or B (cm2 s-1), z is the coordinate normal to the electrode surface (cm), r is the radial coordinate 

(cm) and t is time (s).  

 

Figure 0.1: Simulation geometry for (a) single oil droplets on the electrode surface and (b) oil droplet 

arrays: boundary conditions defined in tables 4.1 and 4.2 respectively 
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The boundary conditions listed in Table 0.1 were applied to create a model of the DPSC system. 

During the forward step (electrogeneration of redox species B from A), the concentration of A at the 

electrode boundary was set to c = 0. The outward flux of B at the electrode boundary was dependent 

on the inward flux of A and was set with mA → B, where m is 1 for FcTMA+/FcTMA2+ and 2 for Br-

/Br2.  
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Edge Number Physical representation Boundary Conditions 

1 Axial symmetry -n.NBo = 0 

2 Blocked electrode -n.NAw = 0 

-n.NBo = 0 

 

3 Axial symmetry -n.NAw = 0 

-n.NBw = 0 

 

4 Electrode surface 0 ≤ t ≤ , cAw
 = 0 

0 ≤ t ≤  , -n.NBw
 = 

1

n
(DAw∇CAw) 

 

t > , -n.NAw
 = n(𝐷𝐵𝑤∇𝐶𝐵𝑤) 

t > , cBw
 = 0 

 

n = 1 (FcTMA+/2+) 

n = 2 (Br-/Br2) 

 

5 Glass insulation -n.NAw = 0 

-n.NBw = 0 

 

6/8 Bulk solution c = c* 

 

7/9 Oil/water interface -n.NAw
 = 0 

-n.NBw
 = 0 (FcTMA+/2+) 

 

-n.NBw
 = -k1cBw 

-n.NBw
 = (k-1)cBo 

 

-n.NBo
 = -(k-1)cBo 

-n.NBo
 = k1cBw 

 

Table 0.1: Boundary conditions for the finite element model where n is the inward-pointing unit 

normal vector; N is the normal flux of species; species Aw is A in the aqueous phase, species Bw is B in 

the aqueous phase and Bw is B in the oil phase (Br-/Br2 system only), with the subscript denoting the 

phase occupied by the species; k1 and k-1 are the mass transfer coefficients equal to 0.5 cms-1 and 0.05 

cm-1 respectively, Dj is the diffusion coefficient of a given species j where j = A or B. When 

considering the Br-/Br2 system, for species Aw, D = 1.85 × 10-5 cm2 s-1; species Bw and Bo, D = 9.4 × 

10-6 cm2s-1. For the FcTMA+/2+ system, for both species Aw and Bw, D = 7.6 × 10-6 cm2 s-1. 

 

The model considered oil droplets of various sizes supported on the electrode surface. The droplet 

shape was approximated from contact angle measurements and using optical images of droplets on the 

electrode surface. 
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The diffusion coefficients for Br2 and the Br- ion in aqueous solution used in the model were taken 

from previous studies;25 DBr- (aq) = 1.85 × 10-5 cm2 s-1 and DBr2 (aq) = 9.4 × 10-6 cm2 s-1. For Br2 transport 

across the w/o interface, a fast mass transfer coefficient, k1 of 0.5 cm s-1 is assumed, which 

corresponds to a diffusion-controlled situation under the experimental conditions. A mass transfer 

coefficient, k-1 of 0.05 cm s-1 is implied for the reverse movement of Br2 across the o/w interface, 

given K = 10. For the concentration of Br- employed (and Br2 produced) we can reasonably ignore the 

formation of Br3
-.37 The diffusion coefficient for both FcTMA+ and FcTMA2+ was 7.6 × 10-6 cm2 s-1.38  

To investigate how the DPSC response for the Br-/Br2 system varied when employing arrays of oil 

microdroplets, simulations of homogeneously sized arrays, of spacing d = 100 µm, were performed 

with a time pulse, τ, of 2 s. Array simulations utilized a diffusion domain approach, with an axial 

symmetric domain representing the electrode surface and bulk solution23, (see Figure 0.1b) using the 

boundary conditions described in Table 0.2. The macroelectrode current is calculated from the flux of 

A1 at the electrode surface. 
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Edge Number Physical representation Boundary Conditions 

1 Axial symmetry -n.NBo = 0 

2 Axial symmetry -n.NAw = 0 

-n.NBw = 0 

 

3 Blocked electrode -n.NAw = 0 

-n.NBo = 0 

 

4 Electrode surface 0 ≤ t ≤ , cAw
 = 0 

0 ≤ t ≤  , -n.NBw
 = 

1

2
(DAw∇cAw) 

 

t > , -n.NAw
 = 2(𝐷𝐵𝑤∇𝑐𝐵𝑤) 

t > , cBw
 = 0 

 

5 Reflective boundary -n.NAw = 0 

-n.NBw = 0 

 

6 Bulk solution c = c* 

7/8 Oil/water interface -n.NAw
 = 0 

-n.NBw
 = -k1cBw 

-n.NBw
 = (k-1)cBo 

 

-n.NBo
 = -(k-1)cBo 

-n.NBo
 = k1cBw 

 

Table 0.2: Boundary conditions for droplet array finite element model where n is the inward-pointing 

unit normal vector; N is the normal flux of species; species Aw is A in the aqueous phase, species Bw is 

B in the aqueous phase and Bo, B in the oil phase (Br-/Br2 system only), with the subscript denoting 

the phase occupied by the species; k1 and k-1 are the mass transfer coefficients equal to 0.5 cm s-1 and 

0.05 cm s-1 respectively, Dj is the diffusion coefficient of a given species (A or B). When considering 

the Br-/Br2 system, for species Aw, D = 1.85 × 10-5 cm2 s-1; species Bw and Bo, D = 9.4 × 10-6 cm2 s-1. 

 

4.2.4 DPSC Experiments 

Two systems are considered herein: the fast ET, outer sphere redox species, FcTMA
+/2+

 

where A = FcTMA
+
, B = FcTMA

2+
, n = 1, and Br

-
/Br2 where A = Br

-
, B = Br2, n = 2. For 

DPSC with FcTMA
+/2+

 in the forward step a potential of +0.6 V was applied of pulse width , 

whilst a potential of +0.15 V was applied, during the reverse step, for equal . 

For the Br-/Br2 redox couple, DPSC experiments were performed by applying an open circuit 

potential to the electrode for 120 s (allowing the system to stabilize between experiments) before 
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holding at +1.2 V versus SCE (the forward step) for time, . The potential was then switched to +0.7 

V (reverse step). 

4.3 Results and Discussion 

As shown in Figure 0.2a, the use of Pt NPs makes Br-/Br2
 electrolysis more kinetically facile39 (red 

dotted line), compared to pBDD alone (black line), while retaining the inherent low background 

currents of pBDD electrodes.40 The density of Pt NPs is also sufficient that on the timescale of the 

cyclic voltammogram (CV) there is complete diffusional overlap and the response is comparable to 

that of a Pt macroelectrode (black dotted line). Importantly, the presence of Pt NPs on the electrode 

surface (see Figure 0.2b) does not lead to any destabilization of oil droplets on the electrode surface 

over the potential range applied in DPSC. 

 

Figure 0.2: (a) CVs of 10 mM KBr in 0.5 M H
2
SO

4
, scan rate 100 mV s-1 at a bare 1 mm diameter disc 

pBDD electrode (black line), 2 mm diameter disc Pt macroelectrode (red dashed line) and a Pt NP-

pBDD electrode (blue line). The currents have been normalized with respective to electrode area. (b) 

Tapping mode AFM image of electrodeposited Pt NPs on the pBDD electrode surface. 

 

4.3.1 Effect of droplet size 

Charge-time (Q-t) responses of the FcTMA+/2+ system were investigated experimentally for the Pt NP-

pBDD electrode in the absence (black line) and presence of a single dodecane oil droplet, in the size 

range d = 100 µm (■), 200 µm (▲) and 400 µm (▼), as shown in Figure 0.3a. When comparing the 

DPSC responses, the presence of an oil droplet can be seen to diminish the current, and hence charge 
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(Q) response, for the generation step. In general the larger the droplet, the lower the Q passed (Figure 

0.3a). This is clearly because the droplet blocks part of the electrode and hinders diffusion to part of 

the electrode near the droplet. By normalizing Q with respect to the maximum Q i.e. Q/Qmax (at  = 2 

s), the amount of species collected back can be compared to the total amount generated during the 

forward step (Figure 0.3b).  

 

Figure 0.3: (a) Q-t plots generated from integrating the DPSC i-t response for 1 mM FcTMA+ 

generation-collection at a bare Pt NP-pBDD electrode (-) and one containing a single dodecane 

droplet of diameter 100 µm (■), 200 µm (▲) and 400 µm (▼). (b) Plot of normalized charge 

(Q/Q
max

) vs. t for the last 0.5 s of the collection step. (c) FEM-simulated diffusion profiles of  

FcTMA+/2+ generation/collection in the presence of dodecane droplets of diameter (i) 100 µm and (ii) 

400 µm diameter at times t = 2 s and t = 4 s. (d) Optical images of dodecane droplets (of diameter 

100-400 µm) on a Pt NP-pBDD electrode. 

 

Close inspection of the plot of Q/Qmax vs. t at long times reveals that in the presence of the oil drop the 

amount of charge collected back, relative to the amount of charge generated in the forward step is 

always greater than that at a bare electrode surface (i.e. lower Q/Qmax; the current passed during 

generation is in the opposite direction to that passed during collection).  Second, this effect is 

exacerbated the larger the oil drop as diffusion of the electrogenerated species, FcTMA2+, away from 
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the electrode is hindered compared to the bare electrode case, due to the presence of the oil drop. This 

is shown clearly by the FEM-generated concentration profiles for FcTMA+/2+ generation/collection for 

droplets of 100 µm diameter (Figure 0.3ci) and 400 µm diameter (Figure 0.3cii) at  = 2 s and 2. As 

the droplet size increases a greater proportion of FcTMA2+ is "trapped" by the inert droplet, so that 

more is available locally for collection during the reverse potential step.  

Figure 0.4a shows Q-t transients ( = 2 s), for the Br-/Br2 system, for a bare electrode surface (black 

line) and a surface covered with a single dodecane oil droplet, with d in the range 100 µm (■), 200 µm 

(▲), 400 µm (▼) 1000 µm (◄) and 1450 µm (♦). Optical images of the dodecane droplets are shown 

in Figure 0.3d and Figure 0.4b. As for FcTMA2+ generation, during the forward step as the size of the 

droplet increases, blocking the electrode, the amount of Br2
 generated (i.e. Q) decreases. In contrast to 

Figure 0.3b, however, the amount of Br2 collected back, relative to the amount initially generated, is 

less than for a bare electrode surface (i.e. higher Q/Qmax values are seen at all times) and decreases 

with increasing droplet size (Figure 0.4c). This effect can be attributed to partitioning of the 

electrogenerated Br2 from the aqueous phase into the non-polar oil droplet, thereby removing Br2 

from the electrochemically accessible region of the electrode during the collection step. For the largest 

droplet studied (d = 1450 m) the Q/Qmax response tends towards 1, where 1 denotes no Br2 collected 

back.  
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Figure 0.4: (a) Q-t plots for 1 mM Br-/Br2 generation-collection at a bare PtNP-pBDD electrode (-) 

and one containing a single dodecane droplet of diameter 100 µm (■), 200 µm (▲), 400 µm (▼), 

1000 µm (◄) and 1450 µm (♦). (b) Optical images of dodecane droplets (of diameter 1000 and 1450 

µm) on the PtNP-pBDD electrode. (c) Plot of normalized charge (Q/Q
max

) vs. t for the collection step. 

 

To explain the trend seen experimentally, Figure 0.5 shows simulated Br2 concentration profiles at  

(t = 2 s) and 2 for single (a) 100 μm and (b) 400 μm diameter droplets on an electrode. At the end of 

the forward potential step, the diffusion of electrogenerated Br2 away from the electrode surface and 

into the oil phase can clearly be seen. For the case of the 100 µm diameter droplet and  = 2 s, the 

relatively higher interfacial area to volume ratio results in the oil droplet containing a significantly 

higher concentration of Br2 than the 400 µm diameter droplet.  

During the collection step, Br2 is depleted at the electrode surface in the aqueous solution, resulting in 

oil-phase partitioned Br2 being released into the aqueous solution for subsequent collection. For the 

small drop, the efficient trapping of Br2 results in a high Br2 collection efficiency. For larger droplets, 

the droplet actually provides an escape route away from the electrode with some Br2 diffusing out of 

the drop into solution regions where collection cannot occur resulting in less Br2 collected back and 

thus higher Q/Qmax values, at t > .  
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Figure 0.5: Diffusion profiles generated from FEM simulation of Br-/Br2 generation/collection in the 

presence of  dodecane droplets (a) 100 µm and (b) 400 µm diameter at times t = 2 s and t = 4 s. Note 

the different scale bars for Br2 concentration inside the oil droplet for both (a) and (b). 

 

Figure 0.6 presents the simulated DPSC response (Figure 0.6a), plotted as Q/Qmax vs. t for the 

collection step, alongside that observed experimentally (Figure 0.6b) for droplets of 100 µm, 200 µm 

and 400 µm diameter. Qualitatively, the simulated and experimental data show the same trend of 

decreasing Br2 collection with increasing droplet size. There is a discrepancy between experiment and 

simulation, which could be due to subtle differences in the droplet shape in the model and 

experiments and/or natural convection effects, particularly in the larger droplets, which is not taken 

into account in the simple diffusion simulations. 
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Figure 0.6: Plot of normalized charge (Q/Qmax) vs. t for the collection step i.e. collection of 

electrogenerated Br2 at a bare electrode (
____

) and one containing a single dodecane droplet of 

diameter 100 µm (■), 200 µm (▲), 400 µm (▼): (a) simulated data and (b) experimental data. 

 

4.3.2 Effect of  

The effect of  on the Q/Qmax - t response for Br-/Br2 was investigated experimentally over the   range 

200 ms - 20 s. We focused on analysis of the reverse step as this informs on the partitioning process, 

i.e. we analyse data at t ≥ . Relatively small droplets were employed. Figure 0.7 shows Q/Qmax - t 

responses for both the bare electrode and one containing a single oil drop of d = 100 m (●) and 200 

µm (▲). In general, as  increases, more of the o/w interface becomes accessible to the expanding 

diffusion field of electrogenerated Br2, resulting in a decrease in the amount of Br2 collected back 

(higher Q/Qmax value) for the reasons outlined above. Interestingly, for the shortest pulse times 

investigated ( = 200 ms and 1 s) (Figure 0.7a,b), very little difference was seen in the normalised Br2 

collection responses for droplets that were 100 and 200 µm in diameter. However, as  increased, the 
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impact of Br2 partitioning could be more easily differentiated (e.g. Figure 0.7c for  = 10 s). As  

increased further, this differentiation increased (Figure 0.7d). 

 

Figure 0.7: Normalized experimental Q-t plots for the DPSC Br2 collection step with bare Pt NP-

pBDD (-) and 100 µm (●) and 200 µm (▲) oil droplets present on the electrode for  = (a) 200 ms, 

(b) 1 s, (c) 10 s and (d) 20 s. 

 

4.3.3 Effect of electrode size 

To complement the studies above, we carried out further simulations keeping the droplet size constant 

at 100 µm (red symbols) and 200 µm (blue symbols) diameters but with different support electrode 

diameters of 100 µm (●), 200 µm (▲), 300 µm (▼) and 500 µm (■). These data are shown in Figure 

0.8, (Q/Qmax versus t) for  = 200 ms along with the bare electrode response (black line). It can be seen 

that as the electrode size approaches that of the oil droplet the difference between the collection 

responses for 100 m and 200 µm diameter droplets increases enabling differentiation and sizing. 

These data further illustrate that one can tune the relative sizes of electrode and droplet, as well as the 
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pulse time in DPSC to maximise the sensitivity with which the droplet can be sized and/or 

partitioning probed. 

 

Figure 0.8: Plot of normalized charge (Q/Qmax) vs. t for the simulated collection step i.e. Br2 

collection for a PtNP - pBDD electrode of diameter 500 µm (■), 300 µm (▼), 200 µm (▲) and 100 

µm (●) containing a single oil droplet of diameter 100 µm (red) and 200 µm (blue). 

 

4.3.4 Non-spherical droplets 

The contact area of an oil droplet with the surface of an electrode can have a pronounced effect on the 

collection response. In Figure 0.9a, two oil droplets, d ~ 1000 µm (i ■) and 1700 µm (ii ●), where d is 

measured across the center of the droplet, have similar contact areas with the electrode surface but 

different droplet geometries. This is emphasized by optical images (Figure 0.9a) taken from above the 

electrode surface with a side light to define areas where contact between the dodecane oil and 

modified-diamond surface occurs (right hand side images). These larger droplets were deposited by 

addition of dodecane oil to the top of droplets pre-deposited on the electrode surface. 

The generation and collection responses for  = 2 s for these two droplets (Figure 0.9b) are very 

similar, making it difficult to distinguish between them, even though the geometries are very different. 

In contrast, for two larger droplets of d ~ 2500 µm (iii ▲) and 3000 µm (iv ▼), which again have 

similar contact areas with the electrode, there is now a clear difference in the current collection 

response. For the bigger droplet more Br2 is collected back compared to the smaller droplet, in 

contrast to the trend observed for spherical droplets in Figure 0.4c. This is due to the significantly 
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distorted shape of the d ~ 3000 µm droplet a product of the buoyancy of the dodecane oil resulting in 

a “balloon” like construct, effectively pulling the oil droplet away from the electrode surface. As the 

o/w interface is pulled away from the electrode surface, Br2 partitioning into the oil droplet is less 

efficient and as a result, more Br2 is collected back in the reverse potential step. This brief analysis 

highlights the care that needs to be taken in analyzing the charge (current) response if DPSC is to be 

used for accurate oil droplet sizing. 

 

Figure 0.9: (a) Optical images of droplets of effective diameter (i) 1000 µm, (ii) 1700 µm, (iii) 2500 

µm and (iv) 3000 µm taken side on (left hand side) and top down (right hand side). The dashed circles 

show the contact area of the droplet with the electrode. (b) Normalized Q-t plots for droplets of 

effective diameter 1000 µm (■), 1700 µm (●), 2500 µm (▲) and 3000 µm (▼). 

 

4.3.5 Droplet arrays 

Finally, the impact of multiple droplets on an electrode surface is considered. An array of twenty-one 

dodecane oil microdroplets (d  ~  100 µm) were created on the surface of a Pt NP-pBDD electrode 

and submerged in a solution of 10 mM KBr, 0.5 M H2SO4; Figure 0.10a. DPSC was performed on the 

droplet array ( = 2 s). Normalized Q/Qmax -t plots are shown in Figure 0.10b for the bare electrode 

surface (black line), a single droplet (d = 100 µm: ■) and the array of droplets (d = 100 µm:▲) with 
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an approximate spacing of ~ 170 µm (centre to centre). Crucially, compared to the bare electrode and 

the electrode functionalized with one oil droplet, significantly less Br2 is collected back, because of 

the enhanced trapping of Br2 by multiple droplets. Figure 0.10c shows the FEM-simulated Br2 

concentration profile for a small section of the droplet array, at  = 2 s (Br2 generation step) created by 

stitching together multiple concentration profiles generated from the diffusion domain in Figure 0.1b. 

It can be seen that the majority of the o/w interface of each droplet sits well within the 

electrogenerated Br2 diffusion field. 

 

Figure 0.10: (a) Optical image of the oil microdroplet array on the Pt NP-pBDD electrode surface 

from above. (b) Normalized Q-t plots comparing the DPSC response of a single ~100 µm diameter 

droplet with a ~100 µm diameter microdroplet array (21 droplets in total). ▬ Bare electrode, ▲ 

~100 µm droplet array, ■ ~100 µm droplet. (c) Diffusion profile along vector “s” generated by an 

array simulation at t = 2 s, multiple repeats of modelled diffusion domain stitched together. 

 

4.4 Conclusions  

DPSC has demonstrated sensitivity towards the sizing of non-polar oil droplets on an electrode 

surface, in aqueous solution. The importance of the interaction between the electrogenerated species 

and the oil droplet has been highlighted by DPSC responses on different sized dodecane droplets with 

both a partitioning electrogenerated species, i.e. Br2, and a non-partitioning electrogenerated species, 

i.e. FcTMA2+. The amount of charge collected back, relative to the amount of charge generated in the 

forward step, is always greater than that at a bare electrode surface for the non-partitioning species 



112 
 

and less than that at a bare electrode for the partitioning species. DPSC can thus provide a facile 

approach to examining the extent of partitioning of an electrogenerated species. 

Focusing on the partitioning species, key factors which influence the Q-t response and cause it to vary 

from that at a bare electrode have been identified. First, the oil droplet size and o/w interface/volume 

ratio is important. DPSC analysis of dodecane oil microdroplets combined with simulation data has 

emphasized how the size of the diffusion field (normal to the electrode) during the generation step in 

relation to the size of the oil droplet impacts the Q-t response. Droplets sitting within the generated 

diffusion field trap Br2 which can be collected back at the electrode surface. In contrast, droplets 

which have significant portions lying outside the field provide a route by which Br2 can escape 

detection in the collection step. For most efficient collection, the diffusion field should be of similar 

size or smaller than that of the oil droplet. The diffusion field size is controlled by. Second, the size 

of the electrode relative to that of the oil droplet is significant. As the size of the electrode approaches 

that of droplet, the amount of Br2 collected back becomes significantly lower than that for a bare 

electrode alone. Finally, microdroplet arrays enhance the sensitivity of the overall approach. For 

future work, we envisage the use of DPSC to monitor reactions taking place within a droplet and also 

for probing partitioning at modified o/w interfaces. 
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5 Electrochemical detection of phase changes in microfluidic systems 
 

Chapter 5 describes the fabrication of microfluidic devices using traditional soft lithography 

techniques for producing oil/water two-phase flows in the form of droplets inhabiting a continuous 

phase. A simple device geometry is described for producing both “plug”-like droplets where the 

droplet phase occupies the entire width of the channel, and bubble-like droplets which occupy the 

centre of the flow profile without coming into contact with the channel walls. The direction of flow 

through the device geometry at different orientations dictates whether the two-phase flow profile is of 

the plug or bubble type. Thin-film metallic electrodes were integrated into the flow devices to detect 

electroactive mediators present in the aqueous droplet phase under plug flow conditions. The effect of 

volume flow rate and droplet size on current-time signals generated during chronoamperometric 

experiments at these electrodes was investigated. These measurements highlight the ability of an 

electrochemical sensor to determine both the phase and the velocity of a plug flow profile. 

Applications of such a sensor to processes requiring the assessment of multiphase flow such as those 

in the pharmaceutical and oil industries are highlighted. 

5.1 Introduction 

Microfluidic systems offer a number of attractive properties as described in chapter 1, however, they 

also come with limitations which are of critical importance to some applications, especially those 

involving two different solutions. Firstly, at such small length scales, pressure driven microfluidic 

systems are often characterised by parabolic velocity profiles.1 In a flow injection analysis (FIA) type 

experiment, where the analyte of interest is injected into the mobile phase flow stream, the parabolic 

velocity profile results in axial dispersion of the analyte “plug” traversing along the channel2, 3 (as 

shown in figure 1.23d). This feature is of critical importance to sensory applications where dispersion 

of analytes results in reduced signal intensity and reduces the frequency with which samples can be 

analysed.4 However, dispersion within microfluidic channels can be reduced through careful 

optimisation of channel geometry3, 4 or the use of electrokinetic flows3. A second limitation is found 
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as a result of the low Reynolds numbers that characterise laminar microfluidic flows. Under laminar 

conditions, mixing of components within a continuous (single phase) flow, or between two parallel 

flows proceeds by diffusion only (see Figure 1.23a), which is comparatively slow to that of 

microfluidic timescales.5 This presents a problem for applications such as microfluidic reactors where 

efficient mixing of fluids in channels is required to reduce reaction times. In some applications 

laminar flow is advantageous such as in the patterning of microfluidic channels with metal films, 

microstructures,6 cell cultures7 or the alignment of nanotubes.8 

Limited mixing in microfluidic channels has been addressed by the clever design of channel 

geometries to induce convective mixing under continuous flow conditions.5 However, both issues of 

analyte dispersion and poor mixing in microfluidic channels can be addressed by the implementation 

of a two-phase, segmented flow9, 10 either in the form of gas bubbles that segment the flow or droplets 

of an immiscible fluid flowing in a continuous fluid.11 Dispersion of an analyte in flow can be 

hindered via the inclusion of gas bubble “breakers” that act to segment the continuous flow.12 The 

encapsulation of an analyte within a droplet (assuming the analyte is insoluble in the continuous 

phase) is an effective strategy for reducing the dispersion within microfluidic flows.9 Droplets have 

proven effective for the encapsulation and analysis of biologically relevant molecules,13, 14 cells,15, 16 

biological assays on bacteria17 and for microdialysis18, 19. By comparison to continuous flow of two 

parallel streams, rapid mixing of the two components within the droplet phase; see figure Figure 5.1a, 

is observed in segmented flow due to convective flow induced inside droplets.9, 11, 20, 21 The same 

convective profile is seen in the surrounding flow between droplets;11 see Figure 5.1b. 

 

Figure 5.1: Schematic of the convective flow profile induced in (a) droplets and (b) in a continuous 

flow between droplets. 
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Droplets generated under microfluidic flows can be precisely controlled20 to provide a simple method 

for encapsulating materials without dispersion or cross contamination between droplets.
10

 Such 

properties make droplets highly attractive for applications in biology,15, 22 pharmaceuticals,23 chemical 

synthesis24, 25 and materials science.11, 26, 27  

Reproducibility of microdroplets generated via microfluidic devices greatly surpasses that of 

microdroplets produced in bulk media9, 28 using a homogeniser in an oil-surfactant mixture, which can 

see a high level of size polydispersity with size distributions of  >100% reported.28 Such 

polydispersity can be reduced using higher stirring frequencies, however, size distributions are still 

difficult to control29 and for applications where enzymes are to be encapsulated, shear-forces 

generated by high frequency stirring can result in reduced enzyme activity.30  

Microdroplets can be formed in microfluidic channels passively i.e. without the application of an 

external force, using a range of geometries that rely on the induced flow field to deform the interface 

between two immiscible phases, a continuous phase (CP) and a droplet phase (DP), so that one phase 

i.e. the DP, breaks up into droplets. A number of channel geometries can be utilised, examples of 

which are shown in Figure 5.2: (a) Co-flow geometry31: parallel flow of the two phases causes them 

to meet so the DP forms into a “jet” which extends until interfacial instabilities cause the break-down 

of the jet into droplets. (b) A simple T-junction geometry32: the DP flows perpendicular to the CP 

flow and is introduced to the CP flow via a “T”-shaped junction. The DP moves out into the CP 

stream, expanding out until it blocks the channel, causing an increase in pressure, up-stream from the 

droplet which in turn causes the droplet to be squeezed until it is “pinched” off to form a droplet. In 

microfluidic systems, at flow rates between 0.01 – 1 µL/s and channel dimensions of the order of 100 

µm, the size of droplets formed in T-junction devices is dependent entirely upon the ratio of volume 

flow rates, Vf, of DP and CP, as described by the following:33 
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where DL is the droplet length, dc is the channel width and g is a geometry dependent constant. (c) 

The flow focus geometry34 uses the coaxial flow of the two immiscible phases where the CP flows 

either side of the DP to deform the DP via elongation towards a constriction in the channel geometry. 

This forces the DP to form a thin neck which then breaks down into monodisperse droplets. 

 

Figure 5.2: Schematics of common microfluidic droplet generating geometries: (a) Co-flow; (b) 

Restricted T-junction; and (c) Flow-focussing.  

 

The dynamics of droplet break up in microfluidic channels greatly depend on the geometry of the 

channel as well as both viscous and interfacial forces. The formation of a droplet is governed by the 

viscous stresses and the dynamic pressure field surrounding an emerging droplet.35  A measure of the 

interplay between viscous and interfacial forces is known as the Capillary number, Ca defined as33 
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where µ is the viscosity, and U is the mean velocity of the CP, and i is the interfacial tension. For 

typical microfluidic systems, Ca is small (i.e. < 0.01)33 which means the shear forces acting on the 

forming droplet are too weak to deform the droplet sufficiently to cause “pinch off”. Instead, the 

droplet is allowed to extend out into the channel, blocking the channel and forcing the CP flow 

through thin films on the channel wall inducing a pressure increase ahead of the forming droplet. The 

increasing pressure acts to squeeze the droplet so that the stream running between droplet and the 

channel introducing the DP into the main channel begins to thin. Eventually, this stream is broken and 

a droplet is formed. The time taken for the droplet to break off is dependent on Vf of the CP. The rate 

of growth during this time is dependent on Vf of the DP.33 This is described in equation 5.1. 

It is often common to add a surfactant to the CP in order to allow the formation and stabilisation of 

interfaces during droplet generation by lowering the interfacial energy.10 This prevents droplets from 

coalescing inside the channel. Surfactants were not used in this work as it was expected to interfere 

with electrochemistry at the droplet/electrode interface. 

5.2 Results and Discussion 

In this work, the design and fabrication of microfluidic devices for generating droplets of immiscible 

fluid in a continuous flow are described. A number of geometries are presented for producing both 

“plug”-like droplets that occupy the entire channel diameter as well as “bubble”-like droplets that 

have diameters smaller than that of the channel and do not touch the channel walls. Work then 

describes the integration of thin-film metal electrodes in the microfluidics channel in order to analyse 

droplet generation in terms of droplet size and velocity.  
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5.2.1 Fabrication of PDMS microfluidic devices  

5.2.1.1 Mould fabrication from SU-8 photoresist 

SU8-2100 photoresist (1 mL per 25 mm2) was spin-coated onto a 4" silicon wafer at a rotation speed 

of 3000 rpm for 30 s. This procedure produced a resist film approximately 100 µm thick. The wafer 

was then placed onto a leveled plate, lightly sprayed with EC solvent and left for 24 hrs heated to 25 

oC, until the majority of  solvent had evaporated. The wafer was then subjected to a soft bake program 

of 10 min at 65 oC followed by 30 mins at 95 oC on a levelled hotplate with temperature steps of 10°C 

every 10 mins. After cooling to room temperature, photolithography was applied to transfer a 

microfluidic channel design onto the SU8 photoresist using a UV-mask aligner (SUSS MicroTec). 

Microfluidic channel designs were incorporated into photofilm-emulsion acetate masks (JD Photo-

tools, UK), aligned over the SU8 coated wafer and exposed to an Hg, 365 nm UV lamp for a 20 s. The 

wafer was then placed on a hot plate at 65 oC for 10 mins followed by 95 oC for 30 mins. After 

cooling to room temperature, the wafer was developed in EC solvent for 17 mins with mild agitation, 

removing all but the exposed SU-8 resist. The wafer was then washed with EC solvent followed by 

isopropyl alcohol, rinsed with deionised water and then dried with N2.  

Initial work fabricating SU-8 moulds presented a series of issues originating from the spin-coating of 

the SU-8 photoresist and photolithography. The SU-8 is first deposited onto a clean Si wafer; however 

this process results in a circular "puddle" in the center of the wafer. During the spin-coating process, 

centrifugal forces cause the SU-8 to spread out across from the center to the edge of the wafer. The 

SU-8 at the very edge of the wafer and on the leading edge of the spreading material experiences a 

higher degree of solvent evaporation resulting in a drop in the mobility of the SU-8 material making 

up the leading edge. Material behind the leading edge is then forced up and over this slower moving 

material resulting in the formation of an edge-bead: see Figure 5.3. 
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Figure 5.3: Photo of a 4” silicon wafer after spincoating with SU-8 photoresist. Edge-bead and air 

bubles are present in photoresist. 

 

The formation of the edge bead and air bubbles results in a heterogeneous resist thickness. This is 

particularly problematic during the photolithography process as the mask will not be in contact with 

the surface of the resist in the center of the wafer where the channel designs are patterned, during the 

UV exposure. The further away from the surface the mask is, the greater diffraction will occur during 

UV exposure causing the channel dimensions to become wider than intended. 

 

Spraying the resist coated wafer post-spincoating with Microposit EC solvent and leaving on a leveled 

plate at 25 oC for 24 hours was found to remove both edge bead and air bubbles from the resist; see 

Figure 5.4. The literature also states that edge beads formed during spin coating can be removed by 

wiping the wafer edge with a solvent such as acetone.36 Upon spraying the resist with EC solvent, the 

viscosity of the SU-8 is reduced allowing greater mobility of the resist. Areas such as edge bead and 

air bubbles are then eliminated. 
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Figure 5.4: Photo of a 4” silicon wafer spincoated with SU-8, sprayed with EC solvent and left 24 hrs 

on a levelled hotplate at 25° C. 

 

Although the dimensions of the patterned channels were improved with the EC solvent spray 

procedure, the SU-8 patterned wafers were not robust with some wafers not even surviving a single 

moulding with PDMS. Much of the SU-8 patterned features on the surface of the Si wafer would 

"pull-off" with the separation of the PDMS from the wafer; see Figure 5.5. 

 

Figure 5.5: Photo of SU-8 patterned features on a 4” silicon wafer, broken after PDMS moulding. 
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SU-8 moulds of greater durability were achieved by ensuring the silicon substrate was clean of any 

grease or other contaminants. Submersion of the silicon wafer in a dilute solution of 4-5 % HF (VWR, 

France) for 10 s followed by rinsing in deionised water and drying under N2 ensured the wafer was 

clean before spin coating. Slowly raising the temperature of the freshly spun wafer by 5 °C every 10 

mins during the soft baking step resulted in fewer bubbles and distortions in the SU-8 layer. During 

heating of the SU-8 coated wafer, the mobilising solvent in the SU-8 layer (cyclopentanone)37 must 

move through the resist from the surface of the wafer to the top surface of the SU-8 layer. If the resin 

layer is heated too quickly, the evaporating solvent creates bubbles in the resist as it becomes trapped 

at the SU-8/air interface. The mobilising solvent passes through the resin at a slower rate under 

shallower heating ramps which results in fewer bubbles forming under the resist and aids a smooth 

surface finish.  

Development of SU-8 features in EC solvent post hard bake was performed so that exposure to the EC 

solvent was kept to a minimum. Greater agitation of the developer over the SU-8 features was 

performed in order to reduce the solvent exposure time. Although UV exposed photoresist exhibits 

greater resistance to the EC solvent, it was found that SU-8 features exposed to the EC solvent for the 

minimum amount of time showed greatest durability after development and during PDMS moulding.  

5.2.1.2 Mould fabrication from RIE-ICP Si etching 

Figure 5.6 shows a schematic for the fabrication of PDMS moulds using reactive ion etching 

inductively coupled plasma, (RIE-ICP): (a) clean silicon wafer is treated with primer, (b) PMGISF6 

photoresist (Microchem, Newton, MA) is spin-coated (3000 rpm for 30 s) onto the wafer, baked at 

170 oC for 10 mins, then flood exposed for 1 min under a 230-290 nm UV lamp. S1818 photoresist 

(Rohm and Haas, Denmark) is then spin-coated (3000 rpm for 4 s) onto the wafer, baked at 115 oC for 

1 min. (c) The wafer is exposed to UV for 5 s using a mask aligner, then developed in MF-319 

microposit developer (Rohm and Haas) for 1 min. (d) 250 nm of aluminum or nickel was sputtered 

onto the developed wafer using an automated sputtering system (Equipment Support Co. Ltd, 

England). (e) The wafer is then submerged in acetone to remove the S1818 photoresist and lift off any 

Al/Ni not forming the channel pattern. The PMGISF6 is then removed using MF-319. (f) After 
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inspection under a microscope, the patterned Si wafer is inserted into the Corial 200 IL RIE-ICP 

system (Corial, France). RIE-ICP system is run using 50 sccm SF6 and 3 sccm O2 at 10 mTorr, 5 oC 

producing an etch rate of around 500 nm/min. Si wafers were etched for 2 hrs producing a channel 

height of approximately 60 µm. Moulds such as both this and SU-8 are capable of containing multiple 

chip designs reducing the amount of fabrication necessary for an investigation of channel design. 

 

Figure 5.6: Schematic of silicon mould fabrication using RIE-ICP: (a) Silicon substrate is cleaned; 

(b) PMGISF6 deep UV resist and S1818 photoresists are spincoated onto the Si wafer; (c) Resists are 

exposed to UV through a patterned UV mask, and developed in MF-319 developer; (d) a thin film of 

metal e.g. aluminium is sputter deposited onto the patterned wafer; (e) metal “lift-off” is performed in 

acetone, dissolving the underlying photoresist; (f) silicon not protected by the metal film is etched by 

the RIE plasma to produce microfeatures in the silicon wafer. 

 

The development of the Si etching process using RIE-ICP offered an alternative to the SU-8 

patterning method for producing microfluidic chip moulds (see Figure 5.7) with a much higher 

success rate and increased robustness. The depth of the RIE-ICP etch process was found to be limited 
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by the metal mask used for the patterning. Al metal masks were initially tried but the etch depth was 

limited to approximately 30 µm due to the etch rate of the Al being too high for the metal mask to 

survive beyond 2 hours. With the etch rate being approximately 30 µm per hour, a new mask was 

necessary to achieve greater etching depths. Ni has been reported in the literature to etch at a rate 

around 3 times slower than Al.38 Etches using Ni as a mask were used to achieve etch depths between 

50 – 60 µm. 

 

Figure 5.7: Silicon microfeatures created by RIE-ICP etching: (a) 3-armed T-junction device; (b) 

focus flow device 

 

5.2.1.3 PDMS moulding 

Scotch tape was first wrapped around a patterned Si wafer mould (both SU-8 and RIE etched moulds 

were used throughout this work) creating a wall around the wafer. PDMS Sylgard 184 silicon 

elastomer (Dow Corning, US) was added to the setting agent in a 10:1 ratio (elastomer: setting agent) 

then mixed thoroughly and degassed using a vacuum desiccator. The mixture was poured onto the 

mould wafer and degassed as before. Once bubble free the PDMS and mould were placed in an oven 

at 70 oC for 3 hours to set. Once set, the PDMS was cut into individual chips, the inlets punched 

through using a 1 mm and 2 mm diameter Harris Uni-core (Sigma Aldrich, UK). A glass microscope 

slide was placed in the oxygen (O2)-plasma asher along with a corresponding PDMS chip, ensuring 

the patterned side of the PDMS chip faced towards the plasma. Both components were exposed to an 

O2 plasma for 40 s at 100 W. This process oxygen-functionalises both the glass and PDMS surface 

with Si-O groups39. Lightly pressing these two surfaces together allows an irreversible bond39 to form 

between the PDMS and glass through the Si-O-Si functionalities. After combining the two faces, the 
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PDMS/glass chip was left for 5 min. In order to preserve the O2 functionalisation, i.e. hydrophilic 

surfaces inside the microfluidic channels, the channels were filled with water and capped with 5 min 

epoxy (RS components, UK) to prevent evaporation. If hydrophobic surfaces are desired, the 

PDMS/Glass chips were left in air for > 24 hrs. Leaving the PDMS channels in air after O2 plasma 

treatment allows low-molecular-weight polymer chains to migrate to the channel surface, creating a 

hydrophobic surface.40 

5.2.2 Droplet generation geometries 

Three microfluidic droplet generators have been investigated, as shown in Figure 5.8, (a) 3-armed T-

junction device, (b) simple T-junction and (c) flow focus device.  

 

Figure 5.8: Microscope images of (a) 3-armed T-junction device; (b) a simple T-junction device; and 

(c) a focus flow device, all created from SU-8 moulds, with no flow. 

 

Initial work with these devices used dodecane (oil). However, it was found that PDMS devices 

swelled after period of around 15 minutes upon exposure to dodecane causing the channels to distort 

producing uncontrollable flow and droplet formation; see Figure 5.9. The same effect was observed to 

a far greater extent when using hexane with PDMS. Swelling occurred immediately upon exposure to 

the solvent; see Figure 5.10. In light of this, octanol and mineral oil were adopted as the oil phase as 

they caused little or no swelling of the PDMS chips. The use of PDMS as a material for microfluidic 

chips is unfortunately limited to aqueous and certain organic polar solvents41 due to this inherent 

swelling problem and dissolution of the PDMS polymer. Alternative materials to PDMS include 
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polymethyl methacrylate (PMMA)42 and glass43. Glass is a particularly attractive alternative as it 

remains unaffected by polar or non-polar solvents. Synthetic diamond can also be considered for the 

same reasons as glass, see Chapter 6, but with the added benefits of chemical resistance and ability to 

incorporate co-planar boron doped diamond electrodes into an all diamond device44. 

 

Figure 5.9: (a) Microscope images of a PDMS device under a flow of dodecane and aqueous solution 

containing blue dye. Images show the extent of PDMS swelling due to dodecane over the space of an 

hour; (b) T-junction geometry after an hour of flow with dodecane 

 

 

Figure 5.10: (a) 3-armed T-junction device under a flow of aqueous solution containing blue dye; (b) 

device after introduction of hexane. 

 

All three devices in Figure 5.8 were fabricated using a SU-8 patterned wafer mould. Figure 5.11 and 

Figure 5.12 show both the 3-armed T-junction devices and simple T-junction respectively, generating 

droplets of octanol (non-polar oil) into (in both cases) a 200 µm wide, 150 µm high channel with a 

continuous water phase containing a blue food colouring dye (Dr. Oetker, Germany). Droplets 
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produced by the 3-armed T-junction (Figure 5.11) appear smaller by comparison to the droplets 

produced by the simple T-junction device shown in Figure 5.12 which is unexpected given that the 

ratio of Vf for CP vs. DP is the same in both devices. One would expect that the produced droplets 

would be of a similar size. This observation may be a product of the flow focussing action seen at the 

3-armed T-junction device as the DP is surrounded by CP at the point before entering the T-junction 

geometry, the amount of DP reaching the T-junction geometry for droplet “pinch-off” is smaller than 

that for the simple T-junction where only the DP is in the channel perpendicular to the CP flow. Also, 

the entrance channel for the DP into the main CP channel is smaller in the 3-armed T-junction device 

compared with the simple T-junction i.e. 100 µm wide compared to 200 µm wide. This undoubtedly 

plays a role in determining the droplet size. 

 

Figure 5.11: Microscope images of a 3-armed T-junction generating droplets of octanol (DP) in a 

200 µm wide, 150 µm high channel with a continuous aqueous phase containing a blue dye (CP). Vf = 

0.1 and 1 µL/min for DP and CP respectively. 

 

 

Figure 5.12: Microscope images of a simple T-junction generating droplets of octanol (DP) in a 200 

µm wide, 150 µm high channel with a continuous aqueous phase containing a blue dye (CP). Vf = 0.1 

and 1 µL/min for DP and CP respectively. 

 

A fourth microfluidic geometry was fabricated consisting of an asymmetric rectangular cross-junction 

focus-flow arrangement with a narrowed channel adjacent to two unequal-width channels; as shown 



128 
 

in Figure 5.13. The orientation of the device was reversed so that the DP flowed in different 

directions: towards the channel restriction after meeting the CP (Figure 5.14a) or passing through the 

channel restriction before meeting the CP (Figure 5.14b). The orientation of this focus-flow device 

had a drastic effect on the resulting droplet flow; see Figure 5.15.  

 

Figure 5.13: A three-dimensional schematic of a focus-flow geometry with a 40 µm restriction at the 

intersection point between a 150 µm wide channel and a 200 µm wide channel. The height of the 

channels is 150 µm.  

 

Figure 5.14: Droplet geometry orientations for producing: (a) “bubble”-like droplets; (b) “plug”-

like droplets. 

 

In the orientation where the DP reaches the channel restriction after meeting the CP, “pinch-off” of 

the droplet occurs soon after the DP contacts the edges of the restricted channel upon expansion of the 

DP into the focus-flow geometry. This leads to the formation of highly reproducible “bubble”-like 

droplets with diameters smaller than the channel width, where the droplets do not touch the channel 
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walls. The size and frequency of droplets generated were found to be dependent on Vf ratio of DP to 

CP as shown in Figure 5.16 where DP is water and CP is mineral oil. The plot in Figure 5.16e shows 

the relationship between the “bubble”-like droplet diameter (measured via optical microscopy ± 2 

µm) as a function of Vf (DP) / Vf (CP). It suggests a non-linear increase in droplet diameter with 

increasing Vf (DP) / Vf (CP). It is expected that maintaining the ratio of Vf (DP): Vf (CP) while 

increasing the total Vf in the channel will result in a constant droplet size but an increasing frequency 

of droplet generation. This has been found in work on droplet analysis.45 As shown in equation 5.1, 

for “plug”-like droplets formed by T-junction devices, the size of droplets is also determined by the 

ratio of Vf (DP) / Vf (CP).33 The frequency of droplets generated also appears to increase with 

increasing Vf (DP) / Vf (CP). However, limitations in the capture rate of the digital camera used to 

record droplet generation, made it difficult to obtain information on droplet frequency at Vf faster 

than 2 µL/min.  

 

Figure 5.15: Microscope images of focus flow geometry producing (a) “bubble”-like droplets, Vf 

(DP:CP) = 0.02 µL/min: 1.3 µL/min and (b) “plug”-like droplets, Vf (DP:CP) = 1 µL/min: 2 µL/min 
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Figure 5.16: “bubble”-like water droplet generation, in mineral oil CP, within a focus flow geometry 

under different relative Vf (DP:CP): (a) 0.05 µL/min: 2 µL/min, (b) 0.2 µL/min: 1.3 µL/min, (c) 0.05 

µL/min: 1 µL/min, (d) 1 µL/min: 1 µL/min; (e)Plot of droplet diameter as measured via microscopy(N 

= 15) as a function of Vf  (DP)/ Vf (CP). 

 

Under the alternative orientation (Figure 5.14b), the DP expands out from the restricted channel into 

the focus-flow geometry with droplet “pinch-off” occurring after the DP has fully expanded into the 

adjacent channel. This results in “plug”-like droplets that have a diameter equal to that of the channel 

width; see Figure 5.17. The dependence of plug droplet size with Vf (DP) / Vf (CP) is explored later 

with an electrochemical sensor. 

 

Figure 5.17: “plug”-like water droplet generation in mineral oil CP, within a focus flow geometry Vf  

(DP): Vf (CP) = 1 µL/min: 2 µL/min. 
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5.2.3 Integration of thin-film metal electrodes in microfluidic devices 

Electrochemistry as an analysis method provides a great deal of information on chemical processes 

such as mass transfer and kinetics of reactions but also presents a simple, low cost alternative to 

techniques already employed in microfluidic platforms such as mass spectrometry,46 Raman 

spectroscopy47 and fluorescence spectroscopy.48 Electrochemical systems have found applications on 

microfluidic chips49 as a means to drive microfluidic flow,50 as a sensor49 and in microdroplet 

detection using electrolysis,51 capacitive sensors52 and electrical impedance.53 

5.2.3.1 Fabrication 

Glass microscope slides were spin-coated with S1818 and masked using photolithography. Each slide 

contained three sets of four electrodes. An adhesion layer of 10 nm titanium followed by a 200 nm 

layer of platinum or gold was sputtered onto the slides before lift-off with acetone. Each glass slide 

was O2 bonded to a PDMS chip as described previously, each chip consisting of three sets of 4 

electrodes positioned at equal distance (18 mm) along a 200 µm wide, 100 µm high channel. Of the 

four thin-film electrodes fabricated as a set, only three were used and were configured as reference 

electrode (80 µm width), working electrode (40 µm width) and counter electrode (400 µm width) 

where the separations between electrodes was 80 µm (reference to working) and 40 µm (working to 

counter); as shown in Figure 5.18. 
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Figure 5.18: (a)Schematic of channel electrodes consisting of reference electrode (RE: 80 µm width), 

working electrode (WE: 40 µm width) and counter electrode (CE: 400 µm width); (b) optical image 

of Pt channel electrodes integrated into a PDMS microfluidic channel (200 ×100 µm, w × h) 

 

The ordering of the electrodes relative to the flow direction as well as the inter-electrode distance is of 

critical importance. Firstly, the proximity of the electrodes must be sufficient to avoid effects from 

uncompensated resistance, namely the inter-electrode distance between the working and reference 

electrode should be minimised.54 Uncompensated resistance can also occur as a result of inadequate 

conductance of the cell solution or inherent resistance in the electrode material, and so these should 

also be addressed. Under flow, any species generated at an upstream electrode is carried downstream 

to neighbouring electrodes. The order of electrodes relative to the flow direction is of particular 

importance for electrodes that are sensitive to solution changes which may impact on how they 

function; as is the case for the reference electrode. Hence this electrode is the first electrode placed 

upstream. Equally, placement of the working electrode should be chosen to avoid reactions at the 

counter electrode. This latter electrode is thus placed the furthest downstream.  

5.2.3.2 Electrochemical characterisation 

A single channel (200 µm width, 100 µm height) device with integrated electrodes was set up on an 

inverted microscope with inlets for DP, CP and outlets, connected using Teflon tubing (Cole Parmer 

Ltd., UK) push fitted into 1-10 µl Finn pipette tips (Cole Parmer Ltd., UK) which were then pressed 
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into the inlet holes punched into the PDMS chip as described previously. Electrode contacts were 

made via a pin attached to a set of micropositioners (Newport, UK), and connected to a potentiostat 

(CH Instruments, USA). A schematic of the set-up is shown in Figure 5.19.  

 

Figure 5.19: A schematic of a single channel microfluidic device (200 µm width, 150 µm height, 50 

mm long) shown in red with integrated electrodes shown in yellow supported on a glass slide. PDMS 

has been omitted for clarity.  

 

In order to verify mass transport to the working electrode within the single 200 µm wide, 150 µm high 

microfluidic channel (see Figure 5.19) electrochemical measurements on Au band electrodes (Figure 

5.18) were carried out using a simple one electron, outer-sphere mediator couple, FcTMA+/2+ (Eo = 

0.37 V vs. SCE). LSV responses (Figure 5.20a) for Vf (where Vf = Vf (CP) + Vf (DP)) in the range 0 – 

100 µl/min were recorded using 1 mM FcTMA+ in 0.1 M KNO3. Under laminar flow conditions and 

with the application of the Lévêque approximation55, the limiting current on a band electrode in a 

channel can be described by the Levich equation:56  

  3/23/13/13/2

lim 165.1 eO wxhUDOnFi   

5.3 
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where [O] is the bulk concentration of the mediator (mol/cm3), DO is the diffusion coefficient 

(DFcTMA+ = 8 × 10-6 cm/s), h is the height of the microfluidic channel, dc is the width of the 

microfluidic channel (cm), w and xe are the width (cm) and length (cm) of the band electrode 

respectively. U is the mean fluid velocity (cm/s), which is related to Vf (cm3/s) via57: 

c

f

hd

V
U

2
  

5.4 

Under stationary conditions i.e. no flow, the LSV response shows a current peak for FcTMA+ 

oxidation around 0.4 V vs. the Au quasi-reference electrode. This is a similar potential position to that 

expected for a system using a traditional reference electrode such as AgCl.44 As Vf is increased from 0 

to 100 µL/min, the LSV attains a steady-state (ilim) current Figure 5.20a, and increases in magnitude. 

The ilim data is linear with respect to Vf
1/3 (R2 = 0.9998) as shown in Figure 5.20b ( experimental). 

In this plot a comparison with Levich (equation 5.3) behaviour was also made ( Levich).  

 

Figure 5.20: (a) LSV responses of microfluidic channel electrodes for 1 mM FcTMA+ with 0.1 M 

KNO3 under various flow rates; (b) Plot of Ilim vs. Vf
1/3 for LSV responses at various flow rates: 

comparing experimental (red triangle) to Levich fitted to experimental (black square) with h = 75 µm 

and both d and w = 290 µm. 

 

Here the height and width of the microfluidic channel were adjusted from the values measured in air 

using a stylus-profiler in order to obtain good agreement with the experimental data. The Levich 
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theory plot used values of h = 75 µm with both dc and w = 290 µm to fit experimental data. This fit 

suggests the microfluidic channel was distorted during fabrication, reducing the channel height while 

broadening the channel width. This is quite possible as the PDMS is pressed against the glass slide 

immediately after O2 plasma treatment. If the channel was squashed during this fabrication step, the 

channel dimensions can be expected to have changed since measuring the SU-8 mould with the 

stylus-profiler. The entrance length of the flow is around 25 mm, as such, laminar flow most certainly 

would have been established in the channel, suggesting the device should fit Levich. Confirmation of 

the actual channel geometry could be made using interferometry through the glass slide supporting the 

PDMS channel, however, this would be challenging due to the refractive interference of the glass on 

the measurement.58 

At a Vf of 30 µl/min the half wave potential, E1/2, shifts slightly more positive by 40 mV, which is 

most likely due to the use of a non-conventional reference electrode (Au), the potential of which will 

depend on the solution composition and surface charge. This shift in wave potential can be seen in 

Table 5.1 which shows E1/2 as a function of Vf.. This shift may have been caused by surface fouling, 

which was then removed during the subsequent increase in Vf.  

Vf 

(µL/min) 

1 5 10 20 30 40 50 60 70 80 90 100 

E1/2 (V) 

± 1 mV 

0.32 0.31 0.30 0.31 0.35 0.32 0.30 0.30 0.30 0.29 0.29 0.29 

Table 5.1: E1/2 of LSV waves recorded on channel electrodes in a single channel (200 µm width, 100 

µm height) microfluidic device as a function of Vf.  

 

Reference electrode instability can be combated using a stable classical reference such as AgAgCl, 

placed in the outlet of the microfluidic device. However, this can result in increased electrical 

resistance as the distance between the working and reference is increased.54 The discontinuous nature 

of segmented, droplet flow also makes the adoption of a reference electrode in the outlet impractical 

for droplet flow experiments as the solution connection between the reference and working electrodes 
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would be blocked by the insulating oil phase. Another strategy to provide a more stable reference 

electrode in-chip is to electrodeposit a film of Ag onto the reference band electrode, the Ag coated 

band acting as a quasi-reference electrode
45, 59

 or chloridising the Ag to turn into AgCl.
59, 60

 Other 

reports of an AgCl reference electrode with a liquid junction, integrated in a microfluidic chip have 

been made.61 

 

5.2.4 Electrochemical detection of water droplets containing an electroactive mediator 

Before introducing electroactive mediator, flow experiments were carried out with just electrolyte (0.1 

M KNO3) present in the DP. A focus flow device described in Figure 5.13 was orientated to generate 

“plug”-like droplets and fabricated with integrated gold band electrodes described in Figure 5.18. A 

schematic of this device is shown in Figure 5.21.  

 

Figure 5.21: Schematic of focus-flow device for generating “plug”-like droplets of electrolyte 

solution (green) in a continuous flow of mineral oil (red) with integrated electrodes shown in yellow. 

 

In order to generate an electrochemical signal from the channel electrodes, all three electrodes must 

be in contact with electrolyte solution in order to  create an electrochemical cell (Figure 5.22a). This 

places limitations on the types of droplets detectable by this electrode system as droplets need to be 

large enough to bridge all three electrodes i.e. have a length of > 160 µm (Figure 5.22b). However, 
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this is only the case for “plug”-like droplets since “bubble”-like droplets, by comparison, do not make 

contact with the channel walls and so do not contact the electrodes at all (Figure 5.22c) Strategies for 

addressing “bubble”-like droplets are discussed later. 

 

Figure 5.22: Schematic of aqueous droplet (green) interaction with channel electrodes as flowing 

through a channel with velocity Vf: (a) “plug”-like droplet bridging all three channel electrodes 

creating an electrical contact; (b) “plug”-like droplet smaller than the bridging distance to contact 

all three electrodes resulting in no electrical contact; (c) “bubble”-like droplet does not contact 

electrodes at all. 

 

While under flow, the gold working band electrode was held at +0.5 V versus the gold reference band 

to access the capacitive region of the CV shown in Figure 5.23. Here the background current as a 

result of capacitive charging of the electrode/solution interface can be seen followed by the onset of 

gold oxidation at more positive potentials i.e. E > +0.5 V. On the reverse scan, the reduction of the 

gold oxide is seen at +0.25 V. Electrochemical signals for electrolyte droplets in the device described 

in Figure 5.21 are displayed in Figure 5.24. Electroanalysis was carried out over 300 s with a data 

acquisition rate of 5 ms-1. The resulting i-t plot for a period of 4 s, typical of that recorded over a 300 s 

period is shown in Figure 5.24a.  
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Figure 5.23: CV response for 0.1 M KNO3 solution on Au channel electrodes (scan rate = 100 mV/s) 

showing the capacitance region between 0 – 0.5 V.   

 

Figure 5.24: (a) Current-time response of electrolyte (0.1 M KNO3) containing water droplets flowing 

in a mineral oil continuous phase (DP = 8 µL/min, CP = 10 µL/min) on microfluidic channel 

electrodes held at 0.5 V versus Au quasi-reference electrode; (b) a single electrolyte droplet event on 

the channel electrodes where (i) dictates the onset of a droplet event and (ii) signifies the end of a 

droplet event. 

 

During flow, when the non-polar oil CP passes over the electrode, no current is observed, however, 

when electrolyte solution, which forms the droplet arrives at the electrode surface, a charging current 

is observed (Figure 5.24b), followed by a discharging event upon the droplet’s departure. The 
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currents observed for charging and discharging are of opposite polarity, analogous with a DPSC 

experiment as described in Chapter 1. 

The i-t plot in Figure 5.24a shows reproducible droplet events with the time separation between 

charging and discharging events and frequency of events remaining fairly consistent; as shown in 

Figure 5.25. 

 

Figure 5.25: Histogram of the time separation between 54 droplet charging/discharging events over a 

period of 30 s. 

 

Inconsistencies in charging current magnitude are likely to be an artefact of the low sampling rate 

used by the potentiostat. As a simple technique, the charging and discharging of electrolyte/electrode 

interfaces as a method for detecting plug droplets of aqueous electrolyte is of potential interest. 

Knowing Vf inside the measurement channel, which is the combined Vf of the DP and CP, enables the 

size (length) of the droplet to be calculated from the residence time of the droplet over the electrodes 

i.e. the time between charging and discharging. To determine the  length of a droplet passing over the 

electrodes, U is calculated using equation 5.4 and the residence time of the droplet on the electrodes, 

tres, where tres = tii - ti, determined from the i-t plot in Figure 5.24b, so that: 
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 reseL tUSD   

5.5 

where Se is the separation between the reference and counter band electrodes i.e. Se = 160 µm. Figure 

5.26 shows a schematic of a droplet event (a) and the corresponding position of the droplet over the 

electrodes (b). Upon contact of the droplet with all three electrodes (bi) a charging current is observed 

in the i-t plot (aii). As the droplet continues to pass over the electrodes (bii) the charging current 

decays to zero. Once contact between the droplet and the first electrode is broken (biii), a discharging 

current peak is seen in the i-t plot (a)iii.  

 

Figure 5.26: (a) i-t plot of an electrolyte droplet event on Au band electrodes under flow with labels 

corresponding to subsections in (b): Schematics of droplets of water moving through a microfluidic 

channel containing Au band electrodes with a separation of Se between the first and final electrodes: 

(i) droplet makes contact with all three electrodes; (ii) droplet moves over electrodes following the 

direction of flow, maintaining contact with all three electrodes; (iii) droplet breaks contact with first 

electrode. 

 

Using equation 5.5, the average length of droplets seen in Figure 5.24 were calculated to be 380 µm ± 

15 µm. Unfortunately, at the time of running these experiments, optical measurements were not 

possible due to the limited frame-rate performance of the cameras used and the speed of the droplets 

moving through the channel. Limitations to the minimum size (length) of droplets detectable with 

such a system will be placed on the minimum electrode dimensions i.e. a resolution of 5 µm for 

lithographic techniques used in the fabrication of electrodes yielding a minimum droplet length of >15 
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µm. In order for the generated droplet to be “plug”-like, it must extend the full width of the 

microfluidic channel it occupies with the smallest producible droplet being greatly dependent on the 

focus-flow geometry which in turn determines the minimum volume of DP able to form a droplet 

before “pinch-off” occurs. 

The device described is a capacitive sensor, detecting the charging current as a result of the capacitive 

charging of the electrolyte/electrode interface at contact points between droplet and electrode. As 

shown here, such a sensor can be used to detect water droplets in an oil CP and, knowing the total Vf 

in the measurement channel, the length/size of the droplet can be determined. Equally, if the droplet 

size could be determined independently e.g. optically, the sensor could be used to determine the mean 

velocity of the droplet. In order to measure both the mean velocity and size of the droplet, a sensor 

could incorporate two sets of electrodes i.e. 2 × 3 electrodes, each set positioned with a well-defined 

separation. The time take for a droplet to pass between the two sets of electrode could be used to 

determine the droplet velocity. This information could then be used to determine the droplet size 

using the time separation between charging and discharging currents seen in the droplet events on 

either set of electrodes. A similar arrangement has been implemented in an electrochemical droplet 

detector using an electroactive mediator in an organic CP to determine the presence of water droplets 

in flow.51 Here, the electrochemical signal generated in the CP is disrupted by droplets moving 

through the channel. Both “plug”-like droplets and “bubble”-like droplets were detected in this way 

via the disruption of mass transport at the electrode. Successful as this sensor is at detecting droplets, 

it does so indirectly and as a result is not selective for the droplet phase rather it detects a restriction in 

the transport of electroactive material at the electrode. For example, a bubble of air travelling through 

the channel could generate a similar signal as a water droplet passing over the electrode.  

Under well controlled hydrodynamic conditions, the introduction of an electroactive mediator into the 

DP allows the possibility of measuring both the size of a “plug”-like droplet i.e. from the time 

resolution of the droplet signal event, as well as U, while at the same time, droplet detection would be 

phase selective. In order to test such a system, a microfluidic device such as the one described 

previously for the analysis of electrolyte droplets was constructed and the experimental parameters 
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repeated but with the inclusion of 1 mM FcTMA+ in the DP. The Vf of the DP was kept constant at 1 

µL/min while Vf of the CP (mineral oil) was varied between 1 – 4 µL/min. The working electrode was 

held at 0.6 V vs. the reference electrode, sufficient to oxidise FcTMA
+
 at a diffusion-controlled rate 

The i-t plots for droplet flows over 60 s are displayed in Figure 5.27 for CP flow rates of (a) 1 

µL/min, (b) 2 µL/min and (c) 4 µL/min.  

Since Vf of a channel flow can be correlated to a limiting current observed at a channel electrode, as 

per equations 5.3 and 5.4, it is interesting to compare the limiting currents observed for the droplet 

flow with that of the expected Levich current given the deformed channel geometry determined 

earlier. This comparison is made in Table 5.2 with a plot displaying the signals corresponding to a 

single droplet event seen at the channel electrodes in Figure 5.28. 

 

Figure 5.27: Current-time responses for two-phase flows of DP = 1 µL/min with (a) CP = 1 µL/min; 

(b) CP = 2 µL/min; and (c) CP = 4 µL/min. Electrodes held at 0.6 V vs. reference with the DP 

containing 1 mM FcTMA+ in 0.1 M KNO3. 

 

The observed currents for droplets under flow are not comparable with those expected via Levich for 

a mediator in continuous flow with the limiting current observed for a droplet passing over the 
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electrode being, to some degree, inversely proportional to Vf. It may be that the wetting of the 

electrodes is less effective at higher flow rates with the droplet residence time being shorter, the area 

over which oxidation of the mediator can occur is reduced and so the corresponding current is also 

reduced. 

The charging current observed at the start of a droplet event (Figure 5.27) should scale with the area 

of the working electrode as is the case with faradaic current (see section 1.1.2.3). Considering the 

band electrodes in the microfluidic channel remain the same size, the reduction in current with 

increasing Vf of CP suggests the area of the electrodes exposed to the droplets is decreasing possibly 

as a result of electrode fouling by the CP. At slower flow rates, the water droplets may be able to clear 

more of the electrode area of oil as a result of extended residence times. With increasing flow rate, the 

water droplets spend less time over the electrodes and so may be less effective at clearing the fouling 

oil. 

Flow rate (µL/min) Calibrated (Levich) 

current (µA) 

Average droplet 

current (µA) 

Approximate droplet 

length (µm) 

2 0.075 0.083 (N = 21) 4000 

3 0.084 0.074 (N = 18) 1783 

5 0.096 0.0189 (N = 36) 1083 

Table 5.2: Comparison of current signals from aqueous droplets and calibrated Levich currents for 

flow under various flow rates. Approximate droplet lengths are determined optically. 

 

The convective regime inside droplets in microfluidic flows (Figure 5.1) may not be completely 

compatible with the assumptions of the Levich equation as towards the ends of the droplet, the 

transport will be enhanced compared with a continuous laminar flow. 
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Figure 5.28: (a) Comparison of single droplet events for current-time responses of droplets described 

in Table 5.2 with droplet event times indicated by the coloured arrows corresponding to the relevant 

volume flow rate; Histograms of droplets events for two-phase flows of DP = 1 µL/min with (b) CP = 

1 µL/min; (c) CP = 2 µL/min; and (d) CP = 4 µL/min. 

 

Crooks et al45 used a narrow channel geometry to squash microdroplets of water containing an 

electroactive mediator while the droplets passed over a set of band electrodes. In these experiments, 

the authors were able to fit the resulting current signals to Levich theory. There are two key 

differences in this work compared with that presented in this thesis. (i) Silanisation of the microfluidic 

channels with 1H,1H,2H,2H-perfluorooctyl-trichlorosilane: This ensures the wetting properties of the 

microfluidic channels are consistent, which was not the case here  where the glass substrate 

supporting the electrodes and PDMS channels were not treated. In these untreated devices, the glass 

slide base was hydrophilic while the PDMS channel walls were hydrophobic and (ii) the Vf adopted in 

the devices. Crooks et al used Vf of the order of nanolitres per min rather than microliters per min, 

corresponding to a U of 0.24 cm/s compared with 0.19 cm/s for this work. These mean velocities are 
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not that dissimilar and yet the device described by Crooks conforms to Levich. Therefore the Vf 

adopted in this thesis cannot be the reason for the deviation from Levich for plug flow. The effect of a 

uniformly wetting channel on the characteristics of channel electrodes in microfluidic channels 

requires further investigation. It may be that deviation from Levich can be avoided with a uniformly 

wetting channel. 

5.3 Conclusions 

Electrochemistry has been demonstrated as an effective tool for detecting phase changes in 

microfluidic flows of two immiscible solvents, under a droplet/segmented flow regime where one 

phase contains electrolyte. As a simple analytical tool, band electrodes configured to directly detect 

and characterise the movement of droplets in flow may present applications in multiphase flow 

metering or in pharmaceutical reactors, where the ability to detect phase changes in-situ, cheaply, 

consistently and with low maintenance is desired.62  

Electrochemical signals generated from flows of aqueous droplets containing electroactive mediators 

can be used to characterise the frequency and size of droplets passing over band electrodes 

incorporated into a microfluidic channel. Work by other authors has shown the application of such 

systems45 as a means of detecting droplets/contents of droplets. It is clear then that electrochemical 

devices can be used in multiphase flow situations to detect both phase changes in flow and the 

presence of mediator species but also monitor the frequency of phase changes and infer the velocity of 

flow. 

Further work, would be focussed on assessing the application of electroactive redox mediators as a 

means to monitor flow velocity without the need for invasive flow manipulation seen in other work.45 

The unexplained results observed for electrochemical oxidation of FcTMA+ in aqueous droplets in a 

continuous oil flow need to be further examined with investigations into the effects of channel wetting 

and electrowetting effects on the observed electrochemistry made clear. The major deviation from 

Levich for droplet flows described in this work is in stark contrast to that achieved by others using 

similar volume flow rates. It would be of great interest to determine the cause of such deviations 
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particularly if the direct electrochemical detection of droplets, at common flow rates (i.e. microliters 

per min), is to find applications as a sensor in microfluidic flows. With better understanding of 

electrochemistry in such systems, the adoption of generation/collection regimes like that described in 

chapter 4 for droplet detection under flow conditions could be investigated. The application of a 

generation/collection regime (see Figure 5.29) could provide a method for detecting the “bubble’-like 

droplets which, as shown in Figure 5.22c, would otherwise not interact with any channel electrode. 

For this work, the continuous phase would need to contain an electroactive, reversible mediator 

capable of operating under a generation/collection regime. Reports of electrochemical sensors 

incorporated into microfluidic channels for detecting “bubble”-like droplets via the distortion of a 

diffusion field generated at a channel electrode exist.51 These systems would not be able to distinguish 

between different droplet phase compositions i.e. whether the droplet was an air bubble, oil or a solid 

material. Any droplet/particle moving over the electrode would distort/interfere with the electrode 

diffusion field in the same way; see Figure 5.29ai-iv. However, applying the partitioning probe 

system described in chapter 4, a generation/collection regime operating under flow could allow one to 

distinguish between droplets of air or oil from solid particles in flow by differences in the up-take of 

the generated species through partitioning. Collection of the generated species in a droplet under flow 

would potentially reduce the subsequent collection current at the down-stream electrode. The size of 

the droplet could be inferred by the magnitude of current drop seen at the generation electrode while 

consideration of the respective collection current could be used to infer the extent of partitioning and 

so the phase composition of the droplet. In order to maximise the interaction between the diffusion 

field generated at the up-stream electrode and the DP/CP interface, a configuration whereby the 

electrodes surround the channel, as with a cylindrical channel containing ring electrode, could be 

implemented; see Figure 5.29bi-ii. This would ensure the droplet is surrounded by electro-generated 

species, maximising partitioning. Devices that generate “bubble”-like droplets in cylindrical, capillary 

channels using a co-flow configuration (see Figure 5.2a) have been described.63, 64 However, the 

fabrication of individually addressable electrodes in cylindrical, capillary channels would present a 

potential challenge, although, a similar device has been realised in synthetic diamond.44  
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Figure 5.29: Schematic of (a) microfluidic channel electrodes configured for a generation/collection 

regime where an (i) electroactive species is generated at the first electrode in flow and subsequently 

collected at an electrode further down-stream; (ii) introduction of a droplet/particle flowing over the 

electrode distorts the diffusion field at the generation electrode reducing the observed current at both 

electrodes; (iii) the droplet/particle moves off the first electrode and onto the second, restoring the 

diffusion field profile and increasing the generation current while reducing the collection current due 

to the presence of the droplet; (iv) droplet/particle moves off collection electrode restoring the 

diffusion field generated and subsequently increasing the current. (b) 3D schematics of 

generation/collection regime with droplet/particles under flow through a cylindrical channel with 

ring electrodes (arrow indicates direction of flow) (i) droplet/particle before passing over generation 

electrode; (ii) droplet/particle after passing over collection electrode. 
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6 All-Diamond Microfluidic Devices for Solution Analysis 

 

Synthetic diamond is unique as a microfluidic material in that it is highly resistant to chemical attack, 

fouling and harsh environments and enables the incorporation of equally resilient co-planar pBDD 

electrodes, which can withstand aggressive cleaning procedures. In this chapter a microfluidic device 

fabricated from polycrystalline intrinsic diamond with laser machined microchannels and integrated 

polycrystalline pBDD band electrodes for electrochemical analysis of single and multiple phase fluid 

flows is described. 

 

6.1 Introduction 

6.1.1 Micro-scale devices fabricated from synthetic diamond 

Microfluidics provide a versitile platform for chemical analysis, and as such have received much 

attention in recent years
1
 with applications in biology

2
, pharmaceuticals

3
 and materials science

4
. 

Traditionally, microfluidic devices are fabricated from polydimethylsiloxane (PDMS) which although 

it is advantageous for rapid fabrication, is limited to use with aqueous media due to incompatibility 

with non-polar, volatile solvents. This limitation is often overcome by fabricating microfluidic 

devices from glass or solvent resistant polymers.
5
  

Synthetic diamond exhibits a range of properties: optically transparent in the wavelength range 2.5 

µm to 225 nm,
6
 high thermal conductivity (25 W/cm.K)

6
 with low thermal expansion coefficient, high 

mechanical hardness and chemical inertness,
7
 as well as biological compatibility, making it an ideal 

material for electronic and microfluidic applications.  

Integration of electrochemical sensors into microfluidic devices is of growing interest for chemical 

detection and microreactors
8
. Gold-band thin film electrodes are typically used due to the ease of 

fabrication; however, they are prone to disintegration with time due to corrosion of the adhesion layer 

(typically chromium) between the gold and the substrate.
9, 10

 Thin film metal electrodes are also prone 
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to dissolving with repeated application of anodic potentials.
9
 This problem could be eradicated 

through the use of conducting diamond electrodes.  

The electrical properties of diamond range from insulating (intrinsic) through to semi-metallic 

conductors (boron doped), the latter being particularly advantageous in electrochemistry. Boron doped 

diamond (BDD) electrodes exhibit wide potential windows of around 4 V in aqueous solutions 

(defined as the region between the potentials at which solvent electrolysis takes place where a current 

of ± 0.4 mA cm
-2

 is not exceeded)
11

 with low capacitance (6 µF cm
-2

)
11

 making them ideal for high-

performance trace level analysis sensors of a wide range of electroactive analytes. Examples of BDD 

sensors are described in section 6.2.2.  

Diamond can be machined using Reactive-Ion etching (RIE)
12-14

 or laser micromachining.
15, 16

 

Examples of devices fabricated from diamond materials can be found in the literature where authors 

use overgrowth/ sacrificial layer technology
17, 18

 to create microfluidic channels. The use of 

femtosecond lasers has also been reported for producing shallow (< 1 µm) trenches in single-crystal 

diamond substrates.
19

 

For microfluidic applications, it is often important to control the wettability of a channel surface to 

better suit the composition of flow. Typically this is achieved by chemical modification of the channel 

surface using oxygen plasma,
20

 corona discharge,
21

 UV/ozone modification
22

 and UV-initiated graft 

polymerisation.
23

 An advantage of diamond is the versatility of surface functionalization. A relatively 

short treatment in either a hydrogen plasma or an acid cleaning procedure can yield a diamond 

substrate with hydrophobic or hydrophilic surfaces respectively.
24

  

 

6.1.2 Laser machining of diamond 

The mechanical machining of diamond presents a challenge due to diamond’s extreme hardness.
25

 As 

such laser machining is typically used for cutting diamond
26

 while mechanical methods are widely 

used for polishing.
27

 Laser machining of diamond has applications in jewellery as a method for 

removing trapped inclusions, thus enhancing the clarity grade of a diamond.
28
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Upon application of a laser pulse on a diamond film surface, atomic bonds of the diamond are 

disintegrated as a result of high energy fluence (energy delivered per unit area) transferred from the 

laser pulse. This interaction typically takes place over a period of nanoseconds
29

 but results in the 

formation of a plasma composed of the disintegrated material released from the surface. The surface 

around the laser beam is then heated by the formation of the high-temperature plasma inducing 

thermal reactions and oxidation of the surface.
30

  

The output wavelength of the laser beam used for diamond machining is of critical importance to the 

effectiveness of the laser-diamond interaction and thus the thermal load on the diamond surface. The 

laser power requirements for laser machining are greatly influenced by the optical properties and thus 

the absorptivity of a material but also the thermal properties of the material.
31

 Hard materials that 

display low thermal conductivity are the most suited to laser machining.
31

 Diamond is more 

transparent to lasers with wavelengths in the IR range, as is typical for Nd:YAG (1064 nm). As a 

result, there is less efficient coupling of the laser photons (1.2 eV) with the diamond and so a higher 

energy dose is required to induce material removal via a thermally driven mechanism instead of  

physical ablation of C-C bonds 
32

. This thermally driven process causes graphitisation of the diamond 

surface
33

 through the thermal decomposition of C-C bonds. Coupling of the lasers 1.2 eV photons is 

more efficient between the generated non-diamond carbon resulting in further sublimation of the 

surface.
32

 The increased kinetic energy of these interactions causes a greater deal of structural damage 

to the surface in areas around the laser beam.  

Lasers with an output frequency in the UV-range such as ArF (193 nm, 6.4 eV) couple more 

effectively with the diamond surface (Band gap 5.45 eV) compared with IR lasers. As a result laser 

machining proceeds via an ablation mechanism.
32

 The Nd:YAG system used in this work has a 

wavelength of 355 nm. This is energetically lower (3.5 eV) than needed for effective coupling to the 

diamond. However, the energy dose required to induce thermal decomposition of the diamond 

material is lower than that for a 1064 nm system and so is more efficient at machining diamond. 
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The etching rate induced by laser ablation is dependent on the pulse duration and beam spot size for 

nanosecond lasers but independent of spot size for lasers with pulse durations of femtoseconds or 

less.
30

 In the case of nanosecond lasers, the plasma plume produced by material ablation around the 

laser beam is well established during the laser pulse. This is a result of the velocity of disintegrated 

material ejected from the surface, typically  1-10 µm/ns
30

 and serves to attenuate the laser radiation 

reducing the rate of ablation. Lasers of sufficiently shorter pulse durations allow the ablation of 

material before a plasma plume is able to expand over the beam spot area. This serves to maximise the 

ablation rate and also reduces the amount of thermal damage incurred at a surface by the formation of 

high-energy plasma.
30

 This has important implications for laser machining thermally sensitive 

materials such as polymers and glass where femtosecond lasers are often employed to reduce the heat-

affected zone (HAZ) and avoid thermally induced damage.
29, 34, 35

 

 

6.2 Results and Discussion 

6.2.1 The fabrication of microfluidic channels in synthetic, intrinsic diamond using laser 

micromachining. 

In order to fabricate channel structures in diamond, a triple-Nd:YAG (355 nm) laser equipped with a 

computerised numerical control (CNC) stage cable of traversing motion in the X, Y and Z axis with  

0.1 µm resolution was utilised. According to the manufacturers, the theoretical laser spot size upon 

focussing the beam for this system is  6 µm however, in practice, it was found that the minimum 

resolution of lasered features is between 20-30 µm depending on the power output and other laser 

parameters, which affect the power density distribution across the focussed beam. Photographs of 

polycrystalline intrinsic diamond with laser machined features are shown in Figure 6.1.  

The output power of the laser beam was controlled using a motorised attenuator consisting of a 

polariser and a half-wave plate. The attenuator sets the energy of the beam by controlling the ratio of 

transmitted and reflected light as the beam passes through the attenuator module.
36

 Typical power 

output from the Nd:YAG system was around 6.5 W at a laser pulse frequency of 10 kHz. The 
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attenuator power is reported as a percentage of the maximum power output at a given laser pulse 

frequency. 

 

Figure 6.1: Photographs of (a) 4 × 4 mm square and (b) microfluidic channels with inlets/outlets, 

laser micromachined into polycrystalline intrinsic wafers. 

 

In order to calibrate the machining depth achieved per laser pass, a series of tests were conducted 

whereby 100-500 µm squares were machined into thermal grade (TG1 see table 2.1, chapter 2) 

polycrystalline, intrinsic diamond wafers. These square structures were created by moving the CNC 

stage supporting the diamond substrate according to the hatch pattern shown in Figure 6.2. The speed 

of the stage movement along with the pulse frequency and attenuated power of the laser were 

controlled and varied in order to investigate not only the depth of feature achievable but also the 

surface roughness after laser machining. Control of the pulse frequency allows the inter-pulse distance 

during stage traversing to be maintained. An inter-pulse distance of half the focussed laser beam 

width (3 µm) was chosen to ensure sufficient overlap between pulses to irradiate the entire diamond 

surface to be machined; see Figure 6.3ai. For a CNC stage speed of 0.3 mm/s, a pulse frequency of 

100 Hz is required to maintain an inter-pulse distance of 3 µm. 



155 
 

 

Figure 6.2: schematic of the “hatch” pattern used for laser machining of features 

 

A series of thirty 100 µm squares were machined using the hatch pattern described in Figure 6.2. Of 

these thirty squares, half were machined with two passes of the laser whilst the other where machined 

with a single pass. Five 100 µm squares (with 3 repeats of each) were machined with an attenuator 

power ranging from 30-70 %. Depth profiles and surfaces roughness (RMS and Ra) achieved under 

these conditions were measured using analysis of topography recorded by white light interferometry 

(WLI) and are shown in Figure 6.3.  

 

 

Figure 6.3: Machining of a 100 µm square with (a) one pass and (b) two passes of the laser beam set 

to a laser pulse frequency of 100 Hz and stage traversing speed of 0.3 mm/s: (i) a schematic of the 

beam path and separation between laser pulses (red) achieved; (ii) machined surface roughness 

measured via WLI for 100 µm squares machined at attenuator power ranging from 30-70 %; (iii) 

depth profiles measured by WLI for 100 µm squares machined with attenuator powers of 30-70 %. 
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Surface roughness of the machined diamond is seen to rise with increasing attenuator power for both 

single and double passes; see Figure 6.3aii and bii. The depth of the machined feature is also seen to 

increase with higher attenuator powers (Figure 6.3aiii and biii). This trend is expected as the increase 

in energy provided by higher attenuator powers results in a higher etch rate of the diamond material 

under the laser beam and so a greater penetration depth. This also results in an increased surface 

roughness. Increased laser power generates a plasma of higher energy during the ablation process, 

causing greater damage to the material surrounding the laser beam, and so a greater surface 

roughness. There will also be some contribution to the surface roughness from the different laser 

ablation efficiencies of different grains composing the polycrystalline diamond material. 

These tests were repeated but with faster machining speeds i.e. increasing the CNC stage movement 

speed and increasing the laser pulse frequency so that a pulse separation of 3 µm was maintained 

during machining. The WLI data of these tests are displayed in Figure 6.4. The surface roughness 

achieved at these higher machining speeds is greater than for the slower speed, particularly at higher 

attenuator powers (Figure 6.4ai and bi) where there is a significant difference i.e. an RMS of 14.58 

µm at 70 % for a machining speed of 0.9 mm/s compared to an RMS of just 6.3 µm for a machining 

speed of 0.3 mm/s. The depths achieved at these higher machining speeds are noticeably greater than 

seen at 0.3 mm/s. This increased etch rate of diamond material at the higher machining speeds is a 

result of the higher laser pulse frequencies used.  
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Figure 6.4: Machining of a 100 µm square with one pass of the laser beam set to a laser pulse 

frequency and stage traversing speed of (a) 200 Hz, 0.6 mm/s and (b) 300 Hz, 0.9 mm/s: (i) machined 

surface roughness measured via WLI for 100 µm squares machined at attenuator power ranging from 

30-70 %; (ii) depth profiles measured by WLI for 100 µm squares machined with attenuator powers 

of 30-70 %. 

 

The output power of the laser depends on the pulse frequency with the power per pulse increasing 

with higher pulse frequency, until reaching a maximum power per pulse at a pulse frequency of 9-10 

kHz; see Figure 6.5. By raising the laser pulse frequency with increasing machining speed, the power 

output of the laser beam is higher and so a greater penetration through the diamond material is 

possible.  
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Figure 6.5: Plot of laser output power as a function of laser pulse frequency and corresponding 

power per pulse for the 355 nm Nd:YAG laser system used. 

 

A heterogeneous machining depth is achieved at these higher machining speeds as evident in Figure 

6.4aii and bii. The machined square trench appears to be shallower at the centre of the trench while 

deeper at the edges. This appears most pronounced at the fastest machining speed and also at the 

higher attenuator powers at both machining speeds. This feature is a result of an acceleration effect 

caused by the CNC stage. At higher traversing speeds, the software controlling the stage is unable to 

regulate the speed of the stage correctly. At the start of a traversing motion, the stage begins to move 

at a slower speed than stipulated by the programmed instructions. The CNC controllers respond to this 

by accelerating the stage to compensate. This acceleration results in the stage moving faster than the 

stipulated traversing speed which the CNC controllers once again compensate for by decelerating the 

stage. This results in a traversing motion whereby the stage is moving fastest in the middle of the 

motion and slowest at the start and end. Since the etch rate of the laser is dependent on the dwell time 

the beam spends over an area of material, the laser machining is more effective at the edges of the 

machined trench and least effective in the centre. This acceleration issue with the CNC stage is 

commonly rectified using more advanced software; however, this was not available. Therefore, 

diamond machining was carried out at a speed not exceeding 0.3 mm/s to avoid any acceleration 

issues with the CNC stage which might result in uneven laser machining. To further reduce possible 
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acceleration effects laser machining was conducted in the direction of the longest geometric 

dimension i.e. for channels or electrode band structures laser machining was performed along the 

length rather than the width of the feature. In the case of microfluidic channels the ends of the 

channels were removed during the machining of inlet holes in order to remove any laser machining 

artefacts. 

6.2.2 Boron-doped diamond electrodes 

As an electrode material for electrochemical sensing, pBDD has a number of attractive properties 

such as a wide potential window (see Figure 6.8), low background currents, a high resistance to 

fouling, robustness and as discussed in chapter 1, high quality pBDD material can be grown using the 

CVD process consistently and cheaply. It is unsurprising then that there is interest in pBDD as a 

material for constructing electrode devices on the micro-scale. For example, microelectrode arrays  

comprised of a series of 10 – 50 µm diameter pBDD UMEs, equally spaced in a hexagonal pattern 

have been fabricated; as shown in Figure 6.6.
37

  

 

Figure 6.6: Schematic of a hexagonal 15 µm diameter pBDD microelectrode array fabricated in 

intrinsic diamond as reported by Compton et al
37

 

Laser ablation was employed on a CVD grown pBDD wafer surface, leaving a series of 10-25 µm 

diameter, 25 µm high, tapered columns of pBDD in a hexagonal configuration. Overgrowth with a 

layer of intrinsic diamond via CVD, and polishing back, revealed the final device structure. However, 

the UMEs in the produced array were not individually addressable. For many applications, the ability 

to address electrodes individually is of critical importance, especially if such devices are to 

incorporate classical two or three-electrode configurations.  



160 
 

 

Another method for fabricating diamond electrodes has been reported using boron-doped 

nanocrystalline diamond (BNCD) deposited on silicon wafers; see Figure 6.7.
38

 The authors present a 

series of individually addressable band electrodes formed from a 500 nm thick layer of BNCD 

deposited onto a silicon oxide coated wafer.  

 

Figure 6.7: Schematics of BNCD electrode containing microfluidic described by Forsberg et al:
38

 (a) 

Overview, + and − indicate contacts for applying a voltage yielding an external electric field in the 

channel. (b) Cross section view showing the device layers and dimensions (not to scale). (c) Top view 

of the channel and electrodes. 

 

The wafer was patterned using photolithography techniques and the BNCD RIE etched to leave a 

series of 20 µm wide BNCD bands spaced 50 µm apart. Compression of the solvent window in the 

electrochemical characterisation presented for these electrodes suggest a sp
2
 presence in the BNCD 

material. This is not surprising given the use of BNCD which has a high percentage of grain 

boundaries where sp
2
 carbon can accumulate during the growth process. When integrated into a 

microfluidic channel fabricated from PDMS, the electrodes showed good steady-state behaviour 

under flow using one of the BNCD bands as a quasi-reference electrode. Importantly, the electrodes 
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were shown to be highly stable with prolonged use (up to 5 hrs) at high potentials i.e. 1.5 V contrary 

to that of gold band electrodes.
9
 The diamond bands were also capable of surviving very aggressive 

cleaning procedures consisting of (1) a 10 min treatment in a solution of ammonium hydroxide and 

hydrogen peroxide at 75-80 °C; (2) a further 10 min treatment in a solution of hydrochloric acid and 

hydrogen peroxide. Electrochemical characterisation of the bands post-cleaning was consistent with 

pre-cleaning performance. 

 

 

Figure 6.8: (a)A typical solvent window generated by CV on a CVD grown, polished microcrystalline, 

40 µm wide pBDD band electrode in a solution of 0.1 M KNO3.(b) A solvent window of BNCD 

electrodes in 0.5 M KNO3 presented by Forsberg et al.
38

 

 

6.2.2.1 Fabrication of boron-doped diamond electrodes with insulation diamond surrounds 

Individually addressable pBDD electrodes were fabricated in a similar manner to that described by 

Joseph et al
39

 with the electrode geometries patterned into an insulating diamond wafer and pBDD 

grown into the patterned trenches. These trenches were fabricated using laser machining with the 

electrode geometry incorporated into a hatching program using laser parameters given in Table 6.1. 

Laser pulse frequency 

/ Hz 

Stage speed / mm s
-1

 Attenuator power / % Number of passes 

100 0.3 40 7 

Table 6.1: Laser parameters used for electrode structure fabrication in intrinsic diamond 
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The depth of the trenches was determined by the number of laser passes made which was first 

calibrated using WLI. The machined electrode structures were characterised using WLI; see Figure 

6.9. 

 

 

Figure 6.9: A 3D depth profile generated using interferometry of a laser machined trench structure in 

an intrinsic wafer. Such structures are used for pBDD electrode fabrication via an overgrowth 

process. 

 

The geometries of pBDD electrode structures are consistent with that described for metal film 

electrodes in chapter 5. A schematic of a typical pBDD overgrowth structure is shown in Figure 6.10 

with a three electrode configuration of reference electrode (120 µm width), working electrode (80 µm 

width) and counter electrode (400 µm width). All electrodes are separated by 80 µm of intrinsic 

diamond. 
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Figure 6.10: Schematic of overgrown pBDD electrode designs with: reference electrode (blue), width 

120 µm; working electrode (pink), width 80 µm; counter electrode (red) width 400 µm; with a 

separation (green) of 80 µm. 

 

Figure 6.11 shows a schematic for the fabrication of pBDD electrode structures overgrown in intrinsic 

diamond wafers. All CVD growth and wafer polishing was performed using facilities and expertise of 

Element Six Ltd. (a) First, an intrinsic wafer is grown via CVD and polished to a surface roughness of 

3-5 nm (a). (b) The polished wafer is laser machined to create an electrode geometry in the form of a 

trench. During the CVD overgrowth of pBDD, the transport of growth species to the bottom of the 

trenches is crucial if the trench is to be filled before lateral growth closes off the top of the trench 

structure.
39

 This places a limit on the aspect ratio of trench structures if successful pBDD overgrowth 

is to be achieved. The aspect ratio of width/ depth was 1 for all trench structures. Freshly machined 

wafers were acid cleaned using a solution of concentrated sulphuric acid saturated in KNO3 and 

heated to >300 °C, removing sp
2
 carbon generated during laser ablation of diamond (c) The wafer is 

overgrown with pBDD via CVD before being polished back (d) to reveal the pBDD electrode 

structure, co-planar with the surrounding intrinsic diamond. 
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Figure 6.11: Schematic of the overgrowth procedure used to fabricate diamond electrode structures: 

(a) An intrinsic diamond wafer is polished to a roughness of approx. 3 nm; (b) laser micromachining 

is used to create a trench structure in the diamond wafer as per the electrode design; (c) a layer of 

pBDD is overgrown on the machined wafer via MWCVD; (d) the resulting pBDD layer is polished 

back until the electrode design is revealed. 

 

Figure 6.12 shows field-emission scanning electron microscopy (FE-SEM) images of an overgrown 

pBDD electrode structure.  

 

Figure 6.12: Field-emission scanning electron microscopy of pBDD band electrodes overgrown in 

intrinsic diamond via CVD: (a) cross-section view of pBDD bands (outlined in red); (b) top view of 

pBDD bands (outlined in red). 
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Since each electrode is completely isolated from one another in the insulating diamond wafer, the 

electrodes are individually addressable. However, as a result, the electrodes must each be contacted in 

order to create an electrochemical device. This can be done via a top contact (Figure 6.13) placed 

directly onto the exposed pBDD electrode surface, consisting of a Ti/Au film (10 nm and 200 nm 

respectively) deposited (via sputtering) onto a laser-roughened section of the electrode and annealed 

at 500 °C for 4 hrs. 

 

Figure 6.13: (a) A photograph of a diamond electrode device set up with copper contact pins and a 

PDMS microfluidic cahnnel; (b) top-contact pads of deposited Ti/Au film on a laser roughened 

section of pBDD with silver paint added to protect the Ti/Au films.  

 

The top contacts were found to be easily damaged with repeated connection/disconnection. This can 

be seen in Figure 6.13b where the gold contact pad has worn away from the pBDD surface. The 

incorporation of overgrown pBDD electrodes into microfluidic channels requires that any electrical 

contact does not interfere with the formation of the flow cell. For this reason and to increase the 

robustness of electrode contacts, laser machined back-contacting holes (750 µm diameter) were 

fabricated that pass through the electrode structure from the side opposite the exposed electrodes 

through to the back of the encapsulated pBDD electrodes. Typical WLI recorded during the 

fabrication of a back-contact hole is shown in Figure 6.14a with the depth achieved per laser pass 

shown.  
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Figure 6.14: (a) interferometry data for a laser machined back-contact hole made in a diamond wafer 

containing an electrode structure; (b) a photograph of back-contact holes contacting a set of 100 µm 

wide pBDD electrodes in an intrinsic wafer. 

 

Back-contact holes fabricated using laser machining techniques generated a “cone” structure (see 

Figure 6.14b) where the hole is wider at the top and narrower with increased machining depth. During 

the fabrication of a back-contact hole, graphitic carbon is formed inside the hole which provides an 

electrical contact with the underlying pBDD band. To ensure contact with the pBDD band was 

Ohmic, the graphitic carbon was removed from the back-contact holes via acid cleaning and a Ti/Au 

film (10 nm and 200 nm respectively) was deposited into the holes (see Figure 6.15) and annealed for 

4 hours at 500 °C, forming an Ohmic contact.
40

 

 

Figure 6.15: Photograph of a diamond electrode structure with laser machined back-contact holes 

coated with a Ti/Au metal film, deposited via sputtering, providing an Ohmic contact with the pBDD 

bands on the reverse of the structure. 
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6.2.2.2 Characterisation of boron-doped diamond electrode structures 

The insulating and conducting regions of the all diamond electrode device were characterised using 

Raman spectroscopy to assess the quality of the diamond and qualitatively provide information on 

boron content. Raman spectra for a typical electrode structure can be seen in Figure 6.16. Raman 

reveals a characteristic diamond sp
3
 peak present at 1332 cm

-1
. This is seen in both (ai) the intrinsic 

and (aii) BDD. A clear attenuation of the 1332 cm
-1

 peak (Fano resonance) is seen in the spectrum 

corresponding to the BDD region spectrum. This feature in addition to the presence of a peak at 500 

cm
-1

 is associated with the presence of high boron-doping level ( 3 × 10
20

 B atoms cm
-3

). There is no 

sign of sp
2
 impurities i.e. at 1560 cm

-1
 in both spectra reflecting the high quality of the CVD diamond 

material. 

 

Figure 6.16: (a) Raman spectroscopy of (i) intrinsic diamond (blue) and (ii) pBDD regions (green) of 

the electrode structure shown in (b). The characteristic peak corresponding to sp
3
 carbon at 1332 cm

-

1
 is indicated with arrows. 

6.2.3 Fabrication of diamond microfluidic device with integrated diamond electrodes 

6.2.3.1 Construction of microfluidic device 

Microfluidic channels were laser machined into optical quality, polycrystalline intrinsic wafers (DR-3 

– see table 2.1, chapter 2) using the laser parameters described in Table 6.1. Inlets were created by 

laser machining in circular passes, 1 mm diameter and stepping the z-focus of the laser by 100 µm 

with each pass at a pulse frequency of 10 kHz, stage speed of 0.9 mm/s and attenuator power of 

100%. Seven passes were required to machine through a 1 mm thick intrinsic diamond wafer using 
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these parameters. A typical diamond, single-channel microfluidic device is shown in Figure 6.17a 

with the corresponding depth profile of the channel recorded by WLI; see Figure 6.17b. The 

machined channel appears tapered, a feature of the laser machining process
41

 where ablation is less 

effective at the walls of the fabricated trench creating a “kerf” at the edge. Channel dimensions of 200 

µm width by 150 µm depth were intended to replicate device geometries previously described in 

chapter 5 for PDMS channels. It was hoped this would make data collected with diamond devices 

comparable to those fabricated previously in PDMS. Using laser machining a channel 6 mm long, 200 

µm wide (at wafer surface) tapered to 110 µm at channel base, with a depth of 135 µm was achieved.  

 

Figure 6.17: (a) photograph of a 200 µm tapered to 110 µm wide, 135 µm deep microfluidic channel 

laser machined into a polycrystalline intrinsic diamond wafer; (b) depth profile of laser machined 

microfluidic channel recorded by WLI. 

 

Diamond microfluidic devices were constructed by clamping together the two 12 mm diameter, 1 mm 

thick diamond wafers: one containing the electrode structures, the other the microfluidic channels. 

The steel clamp set up used is described in Figure 6.18.  
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Figure 6.18: An exploded view of an all-diamond microfluidic device with components indicated. 

 

Electrical contact was made to the electrodes via a set of copper pins inserted into the back-contact 

holes on the under-side of the electrode containing diamond wafer. Pressing the two diamond wafers 

together in this manner did not create a good enough seal to prevent solution leaking between the two 

wafers when solution was flowed through the device.  

Although the wafers were polished within a nanometre roughness, any bow created in the wafers as a 

result of polishing conditions needed to be assessed, and the low deformation of diamond makes 

creating a seal challenging. Using a Tally-Surf profiler, the upward bow in the channel containing 

wafer was measured to be 2.097 µm (peak to valley) over a 9 mm area. The same measurement of the 

electrode containing wafer is still to be performed however, a similar bow is expected given the 

wafers are polished using the same technique. Had this bow not been present, the clamping of two co-

planar wafers of nanometre roughness would more likely result in a seal. Removal of this bow is 
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possible however; polishing a wafer to be flat and have a nanometre roughness is time consuming and 

could not be achieved at the time of writing this thesis. 

In order to create a seal a 1-3 µm thick gasket of PDMS was spin-coated (3000 rpm, 30 s) onto the 

channel containing wafer (Figure 6.19), cured and then clamped against the electrode containing 

wafer.  

 

Figure 6.19: Photograph of a diamond electrode structure with a spin-coated, 3 µm thick PDMS 

gasket present over the electrodes. 

 

The deformation of the PDMS gasket created a good seal between the two diamond wafers, restricting 

solution flow to the channel when aqueous solution was used in the device. This is particularly 

important for ensuring only electrode surfaces occupying the microfluidic channel are exposed to 

solution.  

6.2.3.2 Electrochemical characterisation of diamond electrodes 

Electrochemical characterisation of the pBDD microfluidic channel electrodes was carried out using 1 

mM FcTMA
+
 with 0.1 M KNO3 electrolyte solution flowed through the microfluidic channel at 

various volume flow rates ranging from 10-100 µl/min. CV responses for the all-diamond device are 

shown in Figure 6.20a. The ilim as a function of Vf
1/3

 for CV responses under flow was plotted (Figure 

6.20b) and compares well with that expected from Levich; see equation 5.3. 
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Figure 6.20: (a) CVs for 1 mM FcTMA
+
 oxidation on pBDD channel electrodes with 0.1 M KNO3 

electrolyte at a range of volume flow rates: 10-100 µl/min; (b) Plot of Ilim vs. Vf
1/3

 for CV responses at 

various flow rates: comparing experimental (Black square) to Levich (red line). 

 

 The Levich fit was made by approximating the channel cross-section (see Figure 6.21a) to a 

rectangular channel of width 155 µm and height 135 µm in order to calculate U (see equation 5.4). A 

value of 200 µm was used for the electrode width, w corresponding to the measured width of the 

channel geometry adjacent to the pBDD electrodes; see Figure 6.21b. 

 

Figure 6.21: Schematics of the channel and electrode geometry as (a) measured and (b) channel 

geometry approximated for calculation of corresponding Levich current. 
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The fit to Levich with experimental data achieved using this approximation (based on the measured 

geometry) suggests that the measured geometry is maintained after device fabrication, unlike the 

PDMS microfluidic device described in chapter 5 that showed evidence of channel deformation. Here, 

the experimental data would only fit Levich with a modification to the measured dimensions of the 

flow device, to account for channel deformation during device fabrication. 

To take full advantage of the chemical resistance of the all-diamond microfluidic device, a flow 

experiment using electroactive ferrocene (Fc) in acetonitrile with tetrabutylammonium 

hexafluorophosphate (TBAHFP) as supporting electrolyte was devised. It was hoped that the PDMS 

gasket would survive under these conditions given the very small area exposed to the incompatible 

acetonitrile in the channel. However, the acetonitrile was almost immediately absorbed into the 

PDMS upon introduction into the device, wetting the entire pBDD electrode geometry with 

electrolyte solution.  

To address the incompatibility of PDMS gasket with volatile solvents such as acetonitrile, attempts 

were made to fabricate a gasket using a spin-coated film of Teflon AF-1600 which has previously 

been reported for fabricating chemically resistant valves in glass microfluidic devices.
42

 Teflon 

gaskets were fabricated from a solution of 6% (by mass) AF-1600 in Fluorinert® FC40 solvent (3M 

Company, USA) spin-coated (3000 rpm, 30 s) onto a 12 mm diameter diamond wafer containing 

microfluidic channels. The coated wafers were then placed on a hot plate at 165 °C to evaporate the 

FC40 solvent. At the time of writing this thesis, a good seal using the spin-coated Teflon gaskets was 

not achieved. It is thought that the deformation in the gasket is not sufficient to seal between the 

diamond wafers. Tests using a temperature induced deformation of the Teflon gaskets combined with 

the application of light pressure have been designed and will form the basis for future work. 

6.2.4 Microdroplet generation in a diamond microfluidic device 

As discussed in chapter 5, microfluidic platforms for generating micro-droplets are of great interest to 

a host of biological and chemical application. The ability to generate droplets under flow in an all-

diamond microfluidic device presents a number of advantages in that diamond is biologically 
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compatible, chemically inert and has a tuneable surface functionality. Applications to electrochemical 

multiphase flow analysis under harsh conditions, where ordinary metallic electrodes would be 

unsuited can be imagined. 

A simple T-junction channel geometry was laser machined into an intrinsic wafer using parameters 

described previously for a single-channel device (Figure 6.22a). The device was designed to create 

plug-droplets of mineral oil containing a Sudan blue II dye in a continuous aqueous flow. The channel 

containing wafer was clamped against another wafer containing pBDD electrodes (not used in this 

study); see Figure 6.22b. No PDMS gasket was used as this would have lined the otherwise 

hydrophilic diamond channel walls making wetting interactions with generated oil droplets possible. 

 

Figure 6.22: Photographs of (a) a microfluidic T-junction geometry laser machined in a 

polycrystalline intrinsic diamond wafer; (b) pBDD electrodes incorporated into a T-junction device 

for electrochemical droplet analysis. 

 

Figure 6.23 shows the generation of mineral oil “plug”-like droplets in an aqueous continuous flow 

within an all-diamond microfluidic device with volume flow rates of 1 µl/min and 3 µl/min for the DP 

and CP respectively.  
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Figure 6.23: Microscope images of a T-junction device (200 × 100 µm, w × h) fabricated from 

diamond without a PDMS gasket generating “plug”-like droplets of mineral oil (coloured with Sudan 

blue II dye and outlined in pink for clarity) in an aqueous continuous phase. 

 

The lack of a gasket allowed the aqueous CP to leak from the microfluidic channels into the gap 

between the diamond wafers (Figure 6.24a) which was observable optically. However, none of the oil 

DP was seen to leak between the two diamond wafers, instead droplets were restricted to the channel; 

as shown schematically in Figure 6.24b. It may be that the Vf applied to the device, did not generate 

sufficient pressure to overcome the unfavourable interactions between the oil phase and the 

hydrophilic diamond. Therefore, these surface interactions prevented the DP from entering the gap 

between the diamond wafers, which instead was filled by the hydrophilic CP only.  

Although this device was successful in creating oil droplets under aqueous flow, such a system would 

not be suitable for electrochemical analysis where the fluid phases would need to be confined to the 

channel and not allowed to expose the entire electrode geometry. Leakage in devices is not ideal as it 

makes it difficult to control flow conditions in the channel and limits the ability to precisely define the 

system. 
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Figure 6.24: Schematic of (a) a diamond microfluidic channel with no gasket present between the 

diamond wafers; (b) An oil droplet occupying a microfluidic channel without interacting with the 

channel walls. 

 

6.3 Conclusions 

In this work a simple method for fabricating microfluidic devices from synthetic polycrystalline 

diamond grown via CVD has been presented. The application of a triple Nd:YAG laser for 

micromachining micro-scale channels in intrinsic diamond material is demonstrated with careful 

control of laser machined geometries achieved by manipulation of laser parameters such as: laser 

pulse frequency stage traversing speed, attenuator power and the number of laser passes over a 

substrate.  

High-quality pBDD electrode structures were successfully fabricated using an overgrowth technique 

and integrated into a diamond microfluidic channel, characterised by electrochemistry with good 

agreement to Levich theory. 

The sealing of a diamond device constructed by pressing two wafers together has proven problematic 

unless a gasket of a compressible material i.e. PDMS is incorporated between the wafers. Although 

this strategy has been demonstrated for aqueous systems, the use of volatile solvents, in this case 

acetonitrile was found to be incompatible with the PDMS material. Limitations on the use of the 
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device by materials such as PDMS defeat the reasoning for utilising diamond in the first place and so 

new strategies for creating a leak-free, all-diamond device need investigation.  

Attempts were made to fabricate a solvent resistant gasket from spin-coated Teflon however; these 

were not successful using the procedure employed. The potential for spin coated Teflon gaskets to 

solve the leakage issue could be realised with improved gasket fabrication procedures. Such 

improvements include the use of a heat-assisted deformation of a Teflon gasket in order to better seal 

the gap between diamond wafers. The initial procedure for inserting a Teflon gasket simply pressed a 

pre-formed Teflon film, approximately 3 µm thick and spin-coated onto the channel containing 

diamond wafer against the pBDD electrode containing wafer. The deformation of the Teflon gasket 

with light force applied by clamping may not be sufficient to create a seal, particularly where the 

recessed pBDD electrodes reside. The Teflon would need to deform into these recessions to prevent 

areas of the electrodes not in the microfluidic channel from being exposed to solution. Initial tests 

have found Teflon deformation/melting to occur at temperatures close to 320 °C by application of a 

soldering iron as a heat source. This is consistent with values found in the literature.
43

 

As mentioned previously, the technique of polishing diamond wafers is vital in creating a wafer that is 

both flat and has a low, nanometre surface roughness. It may be possible to create a good seal 

between two diamond wafers if both wafers are sufficiently flat as well as smooth. At the time of 

writing this thesis, improvements in the polishing (conducted by Element Six) to fabricate wafers that 

are both flat and smooth were in the process of testing. In addition to flatter wafers, thinner wafers 

more tolerant of flexing were under investigation. In this case a set of 60 µm thick, 12 mm diameter 

intrinsic wafers were polished to a nanometre finish. It is thought that pressing thin, flexible diamond 

wafers against flatter, channel containing wafers could create better sealing between diamond wafers. 

This work is ongoing. 

Monolithic diamond microfluidic devices have been reported in the literature.
18, 44

 Both of these utilise 

the growth of CVD diamond around a sacrificial mould material that acts to define the microfluidic 

channel and is then subsequently removed via chemical etching to leave an all-diamond channel. 
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Figure 6.25 shows a schematic of the fabrication process used to create monolithic diamond 

microchannels with a sacrificial silicon mould. First, the silicon mould for the microchannels is 

fabricated using RIE (a). CVD diamond is grown over the mould (b) and the supporting silicon wafer 

is etched away until reaching a silicon dioxide layer. This oxide layer acts as a marker and prevents 

the silicon etch from removing the silicon in the microfluidic channel. This silicon oxide layer is then 

etched away using a different chemistry to the silicon etch, leaving the CVD diamond and sacrificial 

silicon in the channel. CVD diamond is then overgrown on the resulting etched surface (c), after 

which the sacrificial silicon mould in the channel is etched away leaving a hollow microchannel in the 

CVD diamond (d). 

 

 

Figure 6.25: Schematic of the fabrication of a diamond microfluidic channel using a sacrificial 

mould: (a) a silicon wafer mould is fabricated; (b) CVD diamond is grown onto the silicon mould; (c) 

the silicon is etched off stopping just after the silicon dioxide layer is removed and CVD diamond is 

grown over the resulting surface; (d) silicon encapsulated by the diamond is etched out leaving 

behind a hollow channel. 

 

These devices have not incorporated pBDD electrodes which could potentially be achieved using the 

electrode structure overgrowth procedure described in this thesis.
39

 Future work would seek to realise 

an electrode containing monolithic device fabricated using a sacrificial mould material. 

Another strategy for fabricating micro channels in diamond is to use a three-dimensional laser writing 

technique to graphitise subsurface diamond material in the wafer.
16, 45, 46

 This graphitic carbon could 
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then be selectively etched via an oxidative acid clean, creating sub-surface channels. However, the 

incorporation of pBDD band electrodes into such structures would be challenging if not impossible. 

Owing to its high refractive index, diamond has found use as an attenuated total reflection (ATR) 

element in fourier-transform infrared detection (FT-IR). The high mechanical hardness and chemical 

inertness of diamond make it particularly suited to ATR-FTIR when applied to challenging or harsh 

chemical environments and has been demonstrated in high-performance liquid chromatography 

(HPLC) coupled FTIR systems.
47

 Recently, examples of microfluidic channels combined with ATR 

crystals for ATR-FTIR analysis of fluidic flows in microchannels have been reported.
48, 49

 These 

devices have employed channels made from PDMS and combine the advantages of microfluidic 

systems i.e. small sample volumes and high throughput with the highly sensitive material 

characterisation abilities of FTIR.
49, 50

 Electrochemical integration with ATR-FTIR and AFM has also 

been reported where pBDD electrodes were deposited onto an ATR crystal.
51

 The ability to grow 

pBDD electrodes, or diamond channels, directly onto diamond ATR crystals would be attractive for 

combined electrochemical - FTIR analysis, especially when employing aggressive media.  
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7 Conclusions and Further Work 

 

Work in this thesis has demonstrated the use of pBDD as an electrode material for a variety of 

different sensing applications in both aqueous and oil-water environments. Diamond offers reduced 

fouling of surfaces, chemical inertness, mechanical hardness, biological compatibility and a broad 

spectral transparency.
1
 As an electrode material pBDD exhibits very low background currents and a 

broad solvent window making it highly attractive for sensor applications. Importantly, the 

performance of diamond devices will not deteriorate upon exposure to aggressive media, harsh 

environments or strong cleaning procedures, making pBDD highly applicable to studies under 

extreme conditions. Fabrication methods for producing pBDD electrodes in a range of geometries: 

from simple 1 mm diameter macros through to multi-band electrodes encased in insulating diamond 

are described. These devices are then employed to study systems that present challenging 

environments for electrochemical analysis. 

 In Chapter 3, pBDD macroelectrodes, encased in glass, are used as an electrochemically inert 

support for catalytic metal NPs allowing the detection of GIs in pharmaceutically relevant matrixes in 

both aqueous and non-aqueous solutions. Through the appropriate selection of metal catalyst, the 

metal NP functionalised pBDD electrode was optimised to detect micromolar concentrations of 

hydrazine in quiescent solutions. In particular, detection limits of 11.1 µM and 3.3 µM hydrazine in 

the presence of excess electroactive pharmaceutical species acetaminophen and promazine, were 

determined respectively. The inherently low background currents of pBDD make this material a 

suitable support for catalytic metal NPs. Compared to using a pure metal electrode, electrodeposition 

of metal NPs on the BDD surfaces, reduces the overall amount of metal on the electrode surface 

which serves to both reduce the cost of sensor fabrication as well as reducing the overall surface area 

dependent capacitive currents associated with the metal electrodes. At sufficiently high densities, 

mass transport to the electrodeposited NPs, results in diffusional overlap, resulting in a diffusion 

profile equivalent to that for a planar electrode, on the timescale of measurements made. As such, the 
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currents observed on the NP-pBDD electrode are as expected for a metal electrode of the same 

geometric area but with a significant reduction in the background currents.  

The electrochemical detection of hydrazine and a number of hydrazine derivatives in non-aqueous 

solvents was also demonstrated. This initial proof-of-concept demonstrates the potential use of 

electrochemical detection techniques for fast, direct analysis of electroactive GIs present in 

pharmaceutical systems. The same sensor was also demonstrated for monitoring the accumulation of 

hydrazine in a solution containing a dissolved, unstable polymer material that breaks-down to release 

hydrazine over time. Further work, moving to flow regimes in order to enhance detection limits, and 

the use of GI or API extraction systems for enhancing the performance of an electrochemical sensor 

applied in pharmaceutical analysis is discussed. 

 In Chapter 4, metal NP functionalised pBDD electrodes are used to detect the presence of 

non-polar oil droplets on the electrode surface, using electrogenerated bromine (from bromide) as a 

probe. The extent of bromine partitioning into single non-polar oil droplets of various sizes ranging 

from 100 – 3000 µm diameter and arrays of 100 µm diameter droplets was monitored 

electrochemically via DPSC demonstrating sensitivity towards the size and number of oil droplets 

present on the electrode surface. It was determined that arrays of microdroplets enhance the sensitivity 

of the DPSC approach by maximising the electrode surface coverage and by increasing the oil/water 

interface-to-volume ratio, compared to that of a single oil droplet. Carrying this approach forward, 

DPSC could be employed as a method for monitoring reactions taking place within droplets both in 

stationary, or even under flow conditions. The use of DPSC to detect non-polar oil phases, 

particularly under flow, lends itself to applications in multiphase flow profiling. 

 Work in Chapter 5 describes the fabrication of PDMS microfluidic devices with channel 

geometries designed to generate microdroplets under flow. Metal thin-film electrodes in a three-

electrode configuration were integrated into these microfluidic devices to study the effect of droplet 

flow on the electrochemical responses in systems where the droplets contain (i) electrolyte only 

(capacitive detection) and (ii) an electroactive mediator, e.g.. FcTMA
+
. These devices demonstrated 
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the ability to both detect droplets electrochemically and monitor the frequency of droplets moving 

over the electrodes. The observed electrochemical responses for droplet events allow the calculation 

of the speed and size of droplets moving through a microfluidic channel. However, the use of PDMS 

microfluidic devices proved problematic when using volatile, non-polar solvents where the elastomer 

material would swell compromising the microfluidic channel geometry and making the devices 

unusable. Further studies on these systems require a microfluidic device fabricated from a chemically 

inert material, which supports integration of the sensor electrodes.  

Ilim vs. Vf electrochemical data recorded in a single PDMS channel device for the oxidation of 

FcTMA
+
 fitted to Levich theory, however, the dimensions of the channel inputted suggested the 

PDMS channel has been deformed during fabrication. Channel dimensions of 75 µm (height) and 290 

µm (width) were determined via electrochemical characterisation rather than the expected dimensions 

of 100 µm (height) and 200 µm (width) measured in components before fabrication. This highlights 

the importance of careful fabrication and robustness of PDMS devices. 

The different PDMS channel geometries were employed to generate both bubble-like and plug-like 

droplets. For plug-like droplets, the minimum detectable size of droplet was limited by the size of the 

three electrode configuration adopted.  

 In Chapter 6, a method for fabricating microfluidic channels in synthetic, polycrystalline 

intrinsic diamond is described utilising laser micromachining to ablate diamond material, creating 

trenches in a polished 12 mm diameter diamond wafer. This is an alternative to the less robust PDMS 

approach described in Chapter 5. It was shown that laser micromachining combined with CVD 

overgrowth procedures is a successful procedure for the creation of high-quality pBDD electrodes 

encapsulated in insulating diamond, which is then polished to result in a coplanar conducting-

insulating diamond structure. Construction methods for forming a microfluidic device with integrated 

pBDD electrodes are described using a steel clamp that presses two diamond wafers together: one 

containing a microfluidic channel, the other containing the pBDD electrodes. The adoption of a 

PDMS gasket between the diamond wafers was necessary to prevent solution leakage. Although 
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electrochemical characterisation of this device yielded a good fit to that expected by Levich theory for 

a channel electrode (matching the dimensions measured), the progression of the device to systems 

using volatile, non-aqueous solvents was not realised due to the instability of the PDMS gasket under 

such conditions. Work focused on replacing the PDMS gasket with spin-coated Teflon AF-1600. 

However, ultimately a method for fabricating a true “all-diamond” device is of greatest interest. 

Examples of all-diamond microchannel devices have been reported in the literature  using a series of 

lithographic techniques combined with MEMs etching procedures and CVD overgrowth steps to 

fabricate free-standing, hollow diamond channel structures.
2
 These devices do not yet incorporate 

pBDD electrodes.   

 In summary, the fabrication and application of diamond sensors has been demonstrated in 

challenging environments such as non-aqueous solvents, in the presence of non-polar oil phases and 

an excess of electroactive matrix. These sensors have been shown to enhance detection abilities in 

pharmaceutical mediums using electroanalysis and provide a method to detect local solution phase 

changes. The development of electrochemical methods capable of directly detecting phase changes 

under flow conditions have been presented which would be of interests as a proof of concept for 

electrochemical sensors in multiphase flow analysis. Finally, a route for fabricating all-diamond 

microfluidic devices with integrated pBDD electrodes is discussed with further work in developing 

strategies for creating monolithic diamond devices raised. Such devices would present a high 

performance platform for the study of microfluidics in extreme conditions with a robustness that 

allows repeated use without degradation of the device. 
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