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Abstract

The paper examines the random preference model, which can explain inherent variability of

preferences in managerial and individual decision-making, and provides axiomatizations for

the utility components of two such models di¤erentiated by the structure of core preferences:

expected utility and betweenness-like preferences. We then examine the possibility of vio-

lations of weak stochastic transitivity for these models and for a model with core dual-EU

preferences. Such violations correspond to the existence of Condorcet cycles and, therefore,

the analysis has implications for managerial decision-making and for majority rule voting.

The paper also investigates implications of its �ndings for two popular experimental settings.



1 Introduction

Transitivity of preferences is at the core of most models of decision-making. It is also

frequently cast in normative light on the grounds that decision-makers with transitive pref-

erences, whether they are individuals or organizations, are immune to money pumps (Danan

2010). Yet it is common to encounter a pattern of choices that may suggest intransitive

behavior (Tversky 1969). For example, three pairwise choices may exhibit a pattern where

alternative x is chosen over alternative y once, alternative y is chosen over alternative z once,

yet alternative z is chosen over alternative x once. Groups of individuals, such as manage-

ment teams and boards of directors, that use majority voting to choose between pairs of

alternatives, may also be prone to making intransitive choices (Condorcet, 1785).

At the same time, both individual and group choices exhibit substantial degree of vari-

ability. On the individual level, there exists an abundant experimental evidence of decision-

makers who choose a given lottery A over a certain sum x while, not much later, choose to

accept a smaller sum y over the same lottery A. Moreover, in retrospect, decision-makers are

often not bothered by these seemingly contradicting choices. The observation that decision-

makers frequently act di¤erently on similar occasions of choices, even when faced with con-

ditions that are deliberately crafted to be identical, has focused some of the economics and

psychology literature on �nding explanations for this �within-subject�variability of choices

(Hey, 1995, Otter et al., 2008). Such variability naturally arises when the decision-making

entity is comprised of several individuals, as in the case of decision-making by management

teams and social choice problems (see the illustrative example in Section 2). This suggests

that in order to accommodate the observed variability that is exhibited by decision-makers

over time, contexts, and occasions, the assumption that choices are deterministic must be

relaxed.

Several competing theories have been proposed to explain non-deterministic behavior.

In this paper we focus on the random preference model (Luce and Suppes 1965; see also

Loomes and Sugden 1995) because it frequently outperforms the other models and because it

is considered to be one of the most promising among them (see, e.g., Regenwetter, Dana and

1



Davis-Stober 2011, Cavagnaro and Davis-Stober 2013).1 In the random preference model, a

decision-maker has a set of deterministic transitive preference orders, called core preferences,

and on each choice occasion the selection of an alternative is based on a preference order

that may seem to be drawn according to some probability distribution over the set of core

preferences. For management teams, the deterministic preference relations represent the

various team members. For individual decision-makers, they may correspond to di¤erent

states of mind or re�ect various parameters that are hidden from an outside observer. When

a decision-maker weighs up various attributes of a choice problem, it may seem as if her

decision-making pendulum swings in one direction on one occasion and in the other direction

on another occasion.2 Thus, the random preference approach allows for certain variation in a

decision-maker�s evaluation of di¤erent alternatives. These variations may entail seemingly

intransitive behavior even though all of the core preferences are transitive.

The existing literature provides very little axiomatic footing for the random preference

model. This limits the practical exports of the model by hindering hypothesis generation and

further development of theory. We �ll this gap in the literature by providing axiomatizations

for the utility components of two classes of models with multiple core preferences. The two

classes are di¤erentiated by the structure of core preferences. The �rst class of models entails

core preferences that have an expected utility form. These models are the most common ones

in this literature. The second class entails a more general set of core preferences satisfying

the betweenness property (Chew 1989 and Dekel 1986). The need for this extension arises

from consistently observed violations of the independence axiom, which is the corner stone

of all expected utility models. In addition to these two classes of preference structures, we

analyze random preference models where core preferences have dual expected utility form

(see Quiggin 1982 and Yaari 1987), which is particularly useful for analyzing portfolio choice

problems.

The framework developed here is directly applicable to the model of Csaszar and Eggers

(2013) which compares three decision-making mechanisms frequently used by management

1Regenwetter et al. (2011) utilize the term mixture model instead of the random preference model.
2There are several alternative interpretations of random choice models including limited cognitive ability

and limited attention.
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teams. They study the performance of majority voting, delegation, and averaging of opinions

in a dynamic model with di¤erential �ows of information across team members. All of the

team members in their model have the same preferences but di¤erent knowledge base. In

our framework, the reverse holds but the tools developed here can be easily implemented in

their framework. Furthermore, the delegation procedure in Csaszar and Eggers (2013) is in

exact correspondence to the model developed in the present paper.

To empirically isolate systematic violations of transitivity and, at the same time, to ac-

count for the intrinsic variability in choice behavior, the literature has put forth several

probabilistic analogues of transitivity. In this paper we study weak stochastic transitivity

(WST) (Vail 1953, Davidson and Marschak 1959), which has a prominent role among these

analogues. Assume there exists a probability distribution  over the set of core prefer-

ences and let  (X � Y ) denote the probability that the preference chosen ranks X over

Y (see Section 4). Then WST requires that, if  (X � Y ) � 0:5 and  (Y � Z) � 0:5,

then  (X � Z) � 0:5. Thus, this condition characterizes preferences that are transitive in

probabilistic sense.

While it is widely acknowledged that the random preference model can violate WST

(see, e.g., Fishburn 1999, Regenwetter et al. 2011), very little is known about the domain

restrictions for choice alternatives and core preferences that lead to satisfaction of WST. We

contribute to this literature by relating potential violations of WST to the �commonality�of

core preferences and �dimensionality�of the choice problem. We show that WST is always

satis�ed when the set of possible outcomes does not exceed three and all core preferences

rank the basic outcomes similarly or share the same risk attitude. When the outcomes are

real numbers, this occurs when all core preferences are monotonic with respect to �rst-order

stochastic dominance or are either all risk averse or all risk loving. We also demonstrate

that when the set of possible outcomes is greater than three, violations of WST are possible

even if one assumes both types of commonality of core preferences.

Although this dimensionality restriction may seem overly restrictive, it is pertinent for

a number of popular experiments. We demonstrate it by examining an experiment that

consists of a sequence of 2-alternative forced choices where for each element of the sequence

a decision-maker chooses between a �xed binary lottery and some certain amount of money
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(Cohen, Ja¤ray and Said 1987, Holt and Laury 2002). Although on surface this environment

may seem not to meet our dimensionality restriction, it is e¤ectively two-dimensional and,

hence, WST is satis�ed by the random preference model because one of our commonality

conditions is satis�ed.

In contrast, experiments used to elicit the preference reversal phenomenon (Lichtenstein

and Slovic 1971, Lindman 1971, Grether and Plott 1979) violate the dimensionality restric-

tion. We �nd that in this environment the decision-maker modeled in this paper can violate

WST which is consistent with the preference reversals frequently observed in this type of

experiments. We should note, however, that violations of WST are rare in some other ex-

perimental settings (see, e.g., the discussion in Rieskamp et al. 2006) which was one of the

reasons we set out to explore forces that may lead to satisfaction of WST.

There is another practical bene�t from identifying conditions under which WST is ex-

pected to hold for the random preference model. Violations of WST are problematic for

elicitation of net bene�ts to inform various organizational policies because they may lead to

systematic cyclic choices. If cycles are likely, then policy prescriptions may be sensitive to

the speci�cs of an elicitation procedure including the sequence of choices made during the

procedure and whether di¤erent policies are compared directly or indirectly, e.g. through

their elicited certainty equivalents.

Our interest in WST also stems from its central role in collective choice. When a group of

individuals uses Condorcet�s procedure, i.e., a sequential choice between pairs of alternatives

via majority voting, WST is equivalent to the absence of Condorcet cycles.3 If a cycle exists

then, for example, the member of a management team that sets the agenda for sequentially

discarding alternatives via majority voting will be able to induce any alternative in the

cycle as the overall winner of Condorcet�s procedure. Our dimensionality and commonality

conditions illuminate when such agenda setting can be avoided. These conditions are di¤erent

from the existing conditions, such as single-peakedness, value restriction, and net value

restriction, that ensure transitivity of collective choice using Condorcet�s procedure (see,

e.g., Gehrlein, 1981, 1997, 2002; Gehrlein and Fishburn, 1980; Gehrlein and Lepelley, 1997;

3A Condorcet cycle materializes when a majority of the voters choose alternative A over B, B over C,

but C over A.
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Mueller, 2003; Riker, 1982; Sen, 1969, 1970, 1999; Tangian, 2000).

We structure the paper as follows. We begin by presenting an illustrative example which is

used to motivate our modeling approach and to demonstrate our �ndings in a later section of

the paper. Then, we introduce the framework and present the two representation theorems.

We proceed to explore the implications of commonality of core preferences for violations

of WST. We then derive implications of our analysis for two experimental settings. After

providing an analysis of selected cases of core non-EU preferences, we conclude with some

�nal remarks.

2 Illustrative Example

Consider the following choice problem faced by a team of top managers of a company pro-

ducing electronic tablets and mobile phones. The choice problem pertains to an allocation

of a �xed advertising budget between the �rm�s two product lines. Suppose, for concreteness

sake, the team makes this decision on a monthly basis, the monthly advertising budget is

US$30m, and every month the team chooses between two of the following three options.4

Under option A, $20m is spent on advertising the tablets while the rest is spent on phone

ads. Option B is characterized by an equal expenditure on ads for the two product lines.

Finally, under option C, $13m is spent on tablet ads and $17m on phone ads.

Naturally, each of these three options involves a considerable level of uncertainty. It is

hard to envision a scenario where the management team can perfectly forecast whether an ad

will work and, more generally, what the precise e¤ect of di¤erent advertisement expenditures

will be. Thus, the selection process is akin to a choice from a set of lotteries.

To demonstrate, suppose that for each product type there are two possible changes in

that product�s revenue net of all costs except for advertising. The feasible changes in the

revenue for the tablets are $14m and $22m. For the phones, the feasible changes in the

revenue are $12m and $20m. Thus, there are four possible contingencies, y1 =($14m,$12m),

y2 =($14m,$20m), y3 =($22m,$12m) and y4 =($22m,$20m). Which of these four contingen-

4We assume away learning that might take place between di¤erent occasions of the choice problem and

other forms of history dependence.
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cies materializes is uncertain. Each of the three options i = A;B;C results in some distinct

probability distribution pi = (pi1; p
i
2; p

i
3; p

i
4) over these contingencies, when the corresponding

advertising costs are subtracted. Thus, choosing option i = A;B;C is equivalent to choosing

one of the following gambles over the changes in the pro�ts for the two product types:

Option A :
�
(-$6m,$2m) ; pA1 ; (-$6m,$10m) ; p

A
2 ; ($2m,$2m) ; p

A
3 ; ($2m,$10m) ; p

A
4

�
Option B :

�
(-$1m,-$3m) ; pB1 ; (-$1m,$5m) ; p

B
2 ; ($7m,-$3m) ; p

B
3 ; ($7m,$5m) ; p

B
4

�
Option C :

�
($1m,-$5m) ; pC1 ; ($1m,$3m) ; p

C
2 ; ($9m,-$5m) ; p

C
3 ; ($9m,$3m) ; p

C
4

� (1)

where, for example, the �rst element under option B corresponds to y1�($15m,$15m).

The team may have di¤erent rankings of the three alternatives on di¤erent occasions of

the choice problem. A plethora of characteristics unobservable to an outside observer may

contribute to the attractiveness of di¤erent options to the team. In addition to uncertainties

surrounding the team�s deliberation process on each occasion, the unobservable character-

istics may include market conditions, behavior of competitors, and new innovations that

occur over the period of repeated decision-making. For simplicity of interpretation, imagine

a scenario where this information pertains to �exogenous�factors, such as long-run market

share, image, and reputation, rather than probabilities of di¤erent outcomes and associated

net pro�ts. This information may change the ranking of the three options even without

a¤ecting the way they are seen by an outside observer (that is, the representations that

appear in (1)). Suppose that, on certain occasions of binary choice, the team may possess

information that favors spending most of the budget on advertising the tablets. In this case,

which is called core preference ABC; the team strictly prefers option A to B to C. On other

occasions, the team may have information suggesting that equally sharing the budget is the

best option and that spending on phone ads is a strictly better investment than spending on

tablet ads. In this case, which is called core preference BCA; the team strictly prefers option

B to C to A. Note that both preference rankings ABC and BCA are transitive. Suppose

that on each choice occasion the team�s core preference is drawn according to distribution

 (�) whose support is given by the core preferences ABC and BCA:

Consider now the following sequence of pairwise choices by the team. When choosing

between options A and B; core preference ABC is realized and, as a result, the team picks

option A. On a di¤erent occasion, when the team�s choice set is comprised of options B
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and C, the realization of the core preference is again ABC and, consequently, the team

chooses option B. Finally, when the team chooses between options A and C, the realization

of the core preference is BCA and, hence, the team�s choice is C. Formally, this sequence of

decisions exhibits non-transitivity or, in other words, forms a cycle: option A is chosen over

B, B is chosen over C, but C is chosen over A. This is in spite of the fact that the team

chooses according to a transitive preference ranking on each choice occasion.

When the team uses the Condorcet procedure to choose among the three alternatives,

WST is equivalent to the requirement of transitive collective preference of the team. After

we introduce our model and present the results, we return to this section�s example and the

Condorcet procedure, in particular, to elucidate the implications of our formal �ndings.

3 Representation Theorems

We consider a �nite set of n distinct outcomes X = fx1; x2; :::; xng, and the set L = �(X)

of all lotteries over it (with the induced topology of Rn). For a lottery p 2 L we use

the notation pi = p (xi). We consider decision-makers who, when confronted with a choice

between two lotteries, must make up their mind and choose one of the two lotteries. This

assumption re�ects many real life situations and it is in agreement with most experimental

designs. A decision-maker (DM) is represented by a binary relation < over L with the

interpretation that a lottery p is related to a lottery q if there are situations in which p is

chosen over q. As an example consider a DM who, when asked to make a choice between

two lotteries p and q, draws one utility from the set fu1; u2; u3g (de�ned over X) according

to some probability distribution and may choose p if the expected utility of p is not smaller

than that of q for the drawn utility. That is, p < q if there exists j = 1; 2; 3 such thatPn
i=1 u

j (xi) pi �
Pn

i=1 u
j (xi) qi.

The strict asymmetric part � and the symmetric part � are de�ned as usual: p � q if

p < q and : (q < p); p � q if both p < q and q < p. For the DM discussed above, p � q if,

for all uj;
Pn

i=1 u
j (xi) pi >

Pn
i=1 u

j (xi) qi and p � q if there exist two utilities uj; uk (not

necessarily identical) such that both
Pn

i=1 u
j (xi) pi �

Pn
i=1 u

j (xi) qi and
Pn

i=1 u
k (xi) pi �Pn

i=1 u
k (xi) qi hold.
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3.1 Probabilistic DMs with core Expected Utility preferences

We start with assumptions on < that characterize DMs of this type.

(A.1) (Completeness) For all p; q 2 L either p < q or q < p.

Completeness follows from our basic requirement that a choice must always be executed. It

implies the equivalence of the two relations : < and �. Note that transitivity of < is not

assumed.

(A.2) (Continuity) For all q 2 L the sets fp 2 L jp < qg and fp 2 L jq < pg are closed.

(A.3) (Independence) For all p; q; r 2 L and � 2 [0; 1],

p < q () �p+ (1� �) r < �q + (1� �) r :

This is the familiar independence axiom of the Expected Utility (EU) model.

(A.4) (Mixture domination) For all p; q; r 2 L and � 2 [0; 1],

p � q and r � q =) �p+ (1� �) r � q :

This axiom is closely related to the Independence axiom. It requires that if the lotteries p

and r are strictly worse than q, then so is the compound lottery that either yields p with

probability � or r with probability 1 � �. It can be shown that given the other axioms,

Mixture domination is equivalent to the transitivity of �. Our preference for (A.4) stems

from its role in proving our second, and more general, representation theorem. Lehrer and

Teper (2011) use another equivalent assumption to derive a similar representation result in a

di¤erent framework. The role of the set of possible utilities in our paper is played by the set

of probabilities (or beliefs) in their paper. Heller (2012) provides a representation theorem

that is closer to ours. In his framework, behavior is characterized by a choice correspondence.

In contrast, the present paper operates with rankings of two alternatives.

In the following we identify functions u 2 RX with (u (x1) ; u (x2) ; ::::; u (xn)) and, with

slight abuse of notation, use u to denote this vector. The inner product in Rn is denoted by

���. We now state our �rst representation theorem.
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Theorem 1 A binary relation < satis�es (A.1)-(A.4) if and only if there exists a closed

convex cone of utility functions U � Rn such that

p < q () 9u 2 U : u � p � u � q : (2)

Proof: See Appendix

Note that by taking negations of (2), the strict relation � satis�es

p � q () 8u 2 U : u � p > u � q: (3)

To understand the structure of the set U note that if u satis�es the right hand side in-

equality of (2), then so does every function v that is derived from u through multiplication

by a positive scalar (that is, v = au, for some a > 0). This explains why U is a cone.

Similarly, convexity of U is a consequence of the weak inequality on the right hand side of

(2). Finally, it is easy to verify that any positive a¢ ne transformation of u (v = au + t,

a > 0 and t arbitrary) would also satisfy the right hand side of (2). This illustrates why,

following Dubra, Maccheroni and Ok (2004), two cones U and U 0 satisfy (2) if and only if the

closure of the set fu+ teju 2 U ; t 2 Rg is equal to that of the set fu0 + teju0 2 U 0; t 2 Rg

(where e =(1; :::; 1)). This property generalizes the uniqueness property (up to positive a¢ ne

transformation) of the classical expected utility theorem.

Few special cases of the structure of the set U are worth mentioning. At one extreme is

the case U = Rn; so that the cone U consists of all real functions de�ned on X. Under this

scenario, < is trivial in the sense that p � q for all p; q 2 L (for every p and q it is possible

to �nd u satisfying u � p > u � q and u0 satisfying the converse inequality) and, moreover,

< is transitive. Another extreme case materializes when the cone U is a ray. This is the

only situation in which < is transitive while � is non-trivial and is, in fact, the standard,

transitive, EU preference (in which case there is no real randomness over U). Two other

interesting cases emerge when the set of alternatives satis�es X � R (i.e., all xi�s are sums

of money). If U consists of all strictly increasing functions then, by (3), � is equal to the

strong �rst-order stochastic dominance partial relation >1 de�ned by

p >1 q if

jX
i=1

pi <

jX
i=1

qi for all j=1; :::; n� 1;
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where we assume, without loss of generality, that x1 < x2 < � � � < xn. Similarly, if U consists

of all concave functions then � is equal to a strong version of the second-order stochastic

dominance partial relation.

We will call a DM who acts as if she draws a utility function from a given set of utilities

a Probabilistic DM (denoted PDM). To re�ect the fact that PDMs who are characterized

by Theorem 1 satisfy the Independence axiom, we refer to them as PDMs with core EU

preferences. The set U is called the PDM�s core utilities. In Sections 4 and 5 we supplement

the preference structure with an additional component, a probability distribution  over

U such that the PDM draws a utility function from U according to  and subsequently

makes her decision based on the drawn utility. Our modeling of the probability distribution

function  may seem rather ad hoc in the sense that it is not generated by some behavioral

axioms similar to those presented above. However, our results in Sections 4 and 5 hold for

all probability distribution functions  .

The existing literature does o¤er some representation results along these lines but in

di¤erent, and often more complex, frameworks. This literature was originated by Kreps

(1979) who, in the context of preferences over menus, derived a subjective (non-unique)

mental state space that is analogous to our set of core utilities U . Dekel, Lipman and

Rustichini (2001; see also Dekel et al., 2007) axiomatized the existence and uniqueness

of Kreps� subjective state space but their model did not pin down a unique probability

distribution function (the analogue of  ) over this space. Gul and Pesendorfer (2006) took

a di¤erent approach and gave necessary and su¢ cient conditions for a random choice rule to

maximize a random utility function. Subsequently, Ahn and Sarver (2013) synthesized the

menu choice model of Dekel, Lipman and Rustichini (2001) and the random choice model

of Gul and Pesendorfer (2006) to obtain a representation of a two-stage decision process in

which, in the �rst stage, decision-makers choose among menus according to the former model

and, in the second stage, they make a stochastic choice from the chosen menu according to

the latter representation. The probability distribution function  is assumed to be equal to

the empirical distribution observed by the experimenter in the second stage. Finally, Karni

and Safra (2014) derived a unique distribution function  by adding a layer of hypothetical
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lotteries over the mental state space.

Note that each u 2 U characterizes an EU functional V u de�ned by V u (p) = u�p and that

for such PDMs p < q if and only if there exists u 2 U such that V u (p) � V u (q). Similarly,

p � q if and only if, for all u 2 U , V u (p) > V u (q). Clearly, PDMs satisfying (A.1)-(A.4)

become the usual EU decision-makers when the transitivity of < is also required.
Our framework in this section is also related to recent models of incomplete preferences

(Dubra, Maccheroni and Ok 2004, Ok, Ortoleva and Riella 2012, Galaabaatar and Karni

2013) where decision-makers are represented by sets of EU preferences but choose an alter-

native if and only if all of these preferences agree that the alternative is preferred to all of the

other feasible alternatives. Although there are similarities at a formal level, the behavioral

content of our model is very di¤erent.

3.2 Probabilistic DMs with core Betweenness-like preferences

Similarly to the deterministic EU model, the model of a PDM with core EU preferences

cannot be reconciled with a number of violations of the independence axiom observed in the

lab. For example, let X = f0; 3000; 4000g and consider a PDM with core EU preferences

who is �rst asked to choose between p = (0; 1; 0) (3000 for certain) and q = (0:2; 0; 0:8) (a

lottery with a 0:8 chance of winning 4000) and then, independent of her �rst choice, between

�p = (0:75; 0:25; 0) (0:25 chance of winning 3000) and �q = (0:8; 0; 0:2) (0:2 chance of winning

4000). Let  be the PDM distribution over U and let � =  (u 2 U : u � p > u � q) be the

probability of drawing a utility u that ranks lottery p strictly higher than lottery q. Since

u�p > u�q if and only if u��p > u��q, the probability  (u 2 U : u � �p > u � �q) is, by construction,

also equal to �. Hence, for this PDM and irrespective of the probability distribution  , the

probability that p is chosen from the �rst pair and �q is chosen from the second pair must be

equal to the probability that �p is chosen from the second pair and q is chosen from the �rst

pair, since both are equal to � (1� �) : However, this contradicts persistent experimental

evidence showing that the frequency of the choices p and �q is statistically signi�cantly greater

than the frequency of the choices �p and q; which is immediately recognized as the famous

common-ratio e¤ect.

To address such violations of the EU model, we turn to a more general representation
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theorem in which the utility set U still exists but depends on the lotteries at which choice is

made. To accomplish this we replace the Independence axiom (A.3) with a weaker between-

ness assumption:

(B.3) (Betweenness) For all p; q 2 L, r = p; q and � 2 [0; 1],

p < q () �p+ (1� �) r < �q + (1� �) r:

To see that this assumption is essentially identical to the Betweenness axiom used in gener-

alized EU models (see Chew 1989 and Dekel 1986), note that, assuming transitivity, (B.3)

holds if and only if for all p; q 2 L, � 2 [0; 1] and � 2 (0; 1)

p < q =) p < �p+ (1� �) r < q;

p � q =) p � �p+ (1� �) r � q:

The statement in (B.3) was chosen because it emphasizes its relation to (A.3).

Theorem 2 A binary relation < satis�es (A.1), (A.2), (B.3) and (A.4) if and only if for

each q 2 L there exists a closed convex cone of utility functions U q such that for all p and q

p < q () 9u 2 U q : u � p � u � q () 9v 2 Up : v � p � v � q (4)

Proof: See Appendix

The main di¤erence between this theorem and Theorem 1 is that here the cones U q can

vary with the lottery q (see the example below). In addition, and similarly to Theorem 1,

the cones U q are unique up to the a¢ ne operator described above. Finally, the strict relation

� satis�es

p � q () 8u 2 U q u � p > u � q () 8v 2 Up : v � p > v � q: (5)

Example Let X = fx1; x2; x3g = f0; 1; 2g and let pi denote the probability of outcome

xi: Also, let w (x1) = w (x3) = 0:5 and w (x2) = 1: Consider the binary relation satisfying

betweenness and de�ned by

p < q () Vj (p) > Vj (q) for some j = 1; 2;

12



where

V1 (p) =

3P
i=1

piw (xi)xi

3P
i=1

piw (xi)

is a weighted utility function and

V2 (p) =
3P
i=1

pixi

is a function that ranks lotteries according to the expected value of the outcome. Both

functions rank outcome 2 at the top and outcome 0 at the bottom. As can be seen in Figure

1, drawn in the (p1; p3) plane (where p2 = 1 � p1 � p3 is omitted), the cones U q vary with

the lottery q. At q0 = (0:25; 0:25), the cone U q0 satis�es

U q0 =
�
�

�
�1
8
; 0;
1

8

�
j � > 0

�
:

The cone U 0 in Figure 1; with a vertex at q0 and spanned by the utility vector u0 =
�
�1
8
; 1
8

�
,

is the projection of U q0 into the (p1; p3) plane: At q00 = (0:1; 0:7), the cone U q
00
satis�es

U q00 =
�
�1

�
�1
8
; 0;
1

8

�
+ �2

��
� 1
15
; 0;
1

5

�
� 2

45
e

�
j �1; �2 > 0

�
;

while its projection U 00 emanates from q00 and it is spanned by u0 =
�
�1
8
; 1
8

�
and u00 =�

� 1
15
; 1
5

�
. Finally, at q000 = (0:7; 0:1), the cone U q000 satis�es

U q000 =
�
�1

�
�1
8
; 0;
1

8

�
+ �2

��
�1
5
; 0;

1

15

�
+
2

45
e

�
j �1; �2 > 0

�
:

Its projection U 000 is spanned by the utility vectors u0 =
�
�1
8
; 1
8

�
and u000 =

�
�1
5
; 1
15

�
and is

depicted as the cone with a vertex at q000.

Place Figure 1 here

We say that PDMs characterized by Theorem 2 have core Betweenness-like preferences.

This re�ects the role the Betweenness axiom plays in deriving the representation. It is imme-

diate to verify that the PDMs of this section become the usual Betweenness decision-makers

when the transitivity requirement on < is added to (A.1), (A,2), (B.3) and (A.4). Note how-
ever that, unlike the EU case, a PDM characterized by Theorem 2 may not necessarily be

represented by a set of usual transitive Betweenness preferences. In fact, such representation

cannot be achieved if transitivity of the strict relation is not assumed (see Safra, 2014).
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4 WST with core EU preferences

4.1 Preliminaries

In this section we consider PDMs who are characterized by Theorem 1. That is, a typical

PDM has core EU preferences given by a set of utilities U : To examine WST, we supplement

the preference structure of the preceding section with an additional component, a probability

distribution  over U . The PDM draws a utility function from U according to  before she

makes her decision.5

We denote the probability that lottery p 2 L is preferred to lottery q 2 L by  (p � q) =

 (u 2 U : u � p > u � q) : That is, the binary choice probability  (p � q) is the measure of

the set of utilities for which the expected utility of p is strictly greater than the expected

utility of q: In incomplete expected utility models, lottery p is chosen over lottery q if and

only if the expected utility of p is strictly greater than the expected utility of q for all EU

functions in U , i.e.  (p � q) = 1: In contrast, in the models of probabilistic choice p may

be chosen over q even if  (p � q) is strictly less than one. In the latter models, the nature

of the function  (p � q) is of key interest. WST (see Davidson and Marschak 1959 and

Tversky 1969) has received speci�c attention of the existing literature on random choice.

Formally:

De�nition 3 A PDM with a distribution function  satis�es weak stochastic transitivity

(WST) with respect to the set of lotteries P � L if 8p; q; r 2 P

 (p � q) > 0:5 and  (q � r) > 0:5 =)  (p � r) � 0:5:

Thus, WST requires that a PDM whose probability of choosing p over q is greater than

0:5 and probability of choosing q over r is greater than 0:5 will have a probability of choosing

p over r that weakly exceeds 0:5:6 WST has been one of the most prominent approaches as

a probabilistic analogue for a deterministic choice model.7

5In what follows, it is assumed, without any loss of generality, that the support of  is equal to U .
6A typical de�nition of WST involves only weak inequalities. Our strict version is used to avoid non-

generic boundary cases.
7Many studies in this strand su¤er from inappropriate statistical analysis and erroneous conclusions that

14



In our framework, WST can be violated unless a combination of restrictions is imposed

on the probability distribution  and on the set of feasible lotteries P : That is, absent

such restrictions there exists a family of EU preferences, a probability distribution over that

family, and a collection of three distinct lotteries that will lead to a violation of WST.

To illustrate, consider a Condorcet-like situation with the set of utilities

u1 = (3; 2; 1) ; u2 = (1; 3; 2) ; u3 = (2; 1; 3)

and the set P of degenerate lotteries feig3i=1 � L, where ei is the ith unit vector of R3

(hence a vertex of L). It is easy to verify that a uniform probability distribution over fuig3i=1
violates WST with respect to P. Under the uniform distribution, the probability that the

PDM will choose lottery e1 over lottery e2 is equal to 2
3

�
 (e1 � e2) = 2

3

�
; the probabil-

ity that the PDM will choose lottery e2 over lottery e3 is equal to 2
3

�
 (e2 � e3) = 2

3

�
;

while the probability that the PDM will choose lottery e3 over lottery e1 is also equal to 2
3�

 (e3 � e1) = 2
3

�
:8

It should be noted, however, that not all violations of WST need to involve the vertices

of L. Moreover, a PDM with a given probability distribution over preferences can violate

WST without exhibiting such a violation with respect to the vertices of L. For example,

let the four possible outcomes be given by (x1; x2; x3; x4) = (10; 19; 25; 40) and consider

the utility set U = fu1; u2; u3g where u1 = (0; 160; 210; 240), u2 = (0; 114; 186; 240) and

u3 = (0; 114; 168; 240). As all utilities agree on the order of the outcomes xi, all PDMs with

these utilities will satisfy WST with respect to the vertices P = fe1; e2; e3; e4g, irrespective

of the probability distribution  . However, as the following calculations demonstrate, a

PDM with a uniform probability distribution over fu1; u2; u3g violates WST with respect to

violations of WST imply intransitive preferences. See Regenwetter et al. (2011) for an illuminating discussion

of these points.
8Note that the uniform distribution is not the only one that violates WST. There is a continuum of other

distributions over
�
u1; u2; u3

	
that don�t satisfy WST. On the other hand, if, for example,  (�) places almost

all of the weight on one of the core preferences of the PDM, WST will be satis�ed.
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the set of lotteries P� =
�
p1 =

�
1
2
; 1
2
; 0; 0

�
; p2 =

�
2
3
; 0; 1

3
; 0
�
; p3 =

�
3
4
; 0; 0; 1

4

�	
:

u1 � p1 = 80 > u1 � p2 = 70 > u1 � p3 = 60;

u2 � p2 = 62 > u2 � p3 = 60 > u2 � p1 = 57;

u3 � p3 = 60 > u3 � p1 = 57 > u3 � p2 = 56:

Thus, two out of the three core preferences rank p1 over p2; two rank p2 over p3; and two

rank p3 over p1. Note that the example demonstrates that single peakedness of preferences

over the set of deterministic outcomes X does not preclude the possibility of encountering

violations of WST in the much richer lottery space L.

Both of the above examples feature a �nite number of core preferences for the PDM.

Appendix contains an example with a continuum of core preferences that violates WST.

The literature on transitivity sometimes uses a di¤erent, geometric, approach to analyze

WST.9 To illustrate consider a (�xed) choice set consisting of three distinct lotteries p; q; r 2

L and assume, for simplicity, that only strict core preferences (over this set) are allowed.

Consider a PDM with a probability distribution  over a set of core preferences U . Out of

the 8 feasible complete core preferences over the set fp; q; rg, 6 correspond to the transitive

(linear) orders10 and 2 represent the Condorcet cycles ([p is preferred to q, q is preferred to

r; but r is preferred to p] and [q is preferred to p, p is preferred to r; but r is preferred to

q]). For any `; `0 2 fp; q; rg let P``0 denote the binary choice probability that ` is preferred

to `0: Following Iverson and Falmagne (1985) and Regenwetter et al. (2014), we consider

the unit cube of the 3-dimensional space where the axes are spanned by the probabilities

Ppq (which spans the �rst axis), Ppr (the second axis) and Pqr (the third axis); see Figure 2

panel (a). Each vertex of this cube corresponds to one of the 8 feasible core preferences. For

example, the origin (0; 0; 0) corresponds to the transitive linear order for which r is preferred

to both q and p, and q is preferred to p. The two Condorcet cycles correspond to the vertices

(1; 0; 1) and (0; 1; 0). Next, denote � pq =  (p � q), � qr =  (q � r) ; � pr =  (p � r) ; and

9We are grateful to one of the reviewers for referring us to this analysis and for inducing us to clarify the

relationship between this approach and the propositions of Section 4.2.
10An example of a transitve linear order is a preference ranking such that p is preferred to both q and r,

and q is preferred to r.
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� =
�
� pq;

� pr;
� qr
�
. It can be veri�ed that a PDM with a probability distribution  satis�es

WST if and only if the vector � belongs to the unshaded area in Figure 2 panel (a), that is,

to the complement of the union of the two shaded half-cubes.

Place Figure 2 here

To see why WST is violated in the �rst example, consider the set of lotteries fe1; e2; e3g

and note that the �rst core utility u1 = (3; 2; 1) of the PDM corresponds to the vertex (1; 1; 1)

in the space of vectors (Pe1e2 ; Pe1e3 ; Pe2e3), the second core utility u2 = (1; 3; 2) corresponds

to the vertex (0; 0; 1) and the third utility u3 = (2; 1; 3) corresponds to (1; 0; 0) (see Figure 2

panel (b)). Next observe that the uniform probability distribution  0 over these core utilities

corresponds to the point � 0 =
�
2
3
; 1
3
; 2
3

�
; the mid point of the triangle formed by the vertices

(1; 1; 1) ; (0; 0; 1) ; and (1; 0; 0) in Figure 2 panel (b), and WST is violated because this point

belongs to the upper shaded half-cube.

Since in our framework the lottery set L is not �nite, the case of three �xed lotteries

does not provide a su¢ ciently good visual representation of our analysis. To visualize an

approximation to the in�nite case, consider a large number n of distinct lotteries. The

dimension of the choice probabilities space is
�
n
2

�
; the number of vertices is 2(

n
2), while the

number of the transitive linear orders is just n!. Therefore, there are 2(
n
2) � n! many shaded

half-unit hypercubes and hence the shaded volume converges to 1 as n tends to in�nity.

Thus, WST becomes exceedingly restrictive as n becomes arbitrarily large.11 We elaborate

on this in the next section.

A number of primitives can lead to the satisfaction of WST. One approach entails supple-

menting a transitive deterministic preference relation with an error structure. The models in

this strand include the tremble model (Harless and Camerer, 1994) and the Fechner model

(Fechner, 1860, Luce and Suppes, 1965, Hey and Orme, 1994). Another approach is to con-

sider a probability measure over a set of core preferences and de�ne an aggregate preference

using the Condorcet procedure; alternative p is preferred to q; denoted by
�
�, if and only if

11We thank an anonymous reviewer for emphasizing this point.
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the measure of the set of core preferences for which p is preferred to q exceeds 0:5. Transitiv-

ity of the preference order
�
� is equivalent to WST except for boundary cases. A restriction

on core preferences, such as single-peakedness or net value restriction, will ensure that WST

holds. Our approach falls into this category of models. According to our knowledge, the

domain restrictions studied in the present paper have not been identi�ed before. There are

primitives leading to WST in addition to the formulations above. We omit their discussion

due to space considerations.

As we have argued above, WST cannot be guaranteed without imposing restrictions on

the probability distribution  and/or the set of feasible lotteries P. Our main focus in the

following subsection is in characterizing such conditions.

4.2 Commonality of preferences

Here we maintain the assumption that PDMs have core EU preferences but we restrict them

to satisfy a certain property. First, we examine the case where all preferences in U agree

with a certain linear order of the basic outcomes. Then, we suppose that all have similar

risk attitudes (in the sense that will be de�ned below). Finally, we consider the implications

of imposing both of these domain restrictions (agreement on common directions and similar

risk attitudes).

4.2.1 Comonotonic preferences

Denote the EU preference relation for the utility function u 2 U by<u, where the asymmetric
part is denoted by �u : Suppose that all preference relations in U agree on the order of the

basic outcomes. That is, there exists a permutation fijgnj=1 of f1; :::; ng such that xi1 �u

xi2 �u � � � �u xin for all u 2 U . PDMs who satisfy this condition are called comonotonic. A

special case of comonotonic PDMs occurs when all xi�s are monetary outcomes and money

is desired. The main result here is that WST is satis�ed as long as the PDM is comonotonic

and the set of available lotteries P is a subset of the set of all lotteries over three outcomes.
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Proposition 4 Suppose there are no more than three outcomes. For all probability distrib-

utions  ; comonotonic PDMs with core EU preferences and distribution function  satisfy

WST with respect to all sets P � L.

Proof: See Appendix

It can be easily veri�ed that WST is satis�ed when P is a two-dimensional polygon and

the PDM is comonotonic with respect to its vertices. Note also that the condition that there

are no more than three outcomes is necessary. See the second example of Section 4.1 for a

discrete U and Appendix for a continuous U .

Next we relate Proposition 4 to the geometric analysis presented in the previous section.

Fix n distinct lotteries in the feasible set L = �(x1; x2; x3) and assume, without loss of

generality, that x1 �u x2 �u x3 for all u 2 U . By construction, the set of strict and transitive

linear core preferences over the n lotteries that belong to U corresponds to a proper subset of

the n! vertices which represent all possible transitive linear orders. Allowing for all possible

probability distributions  over the set of core preferences yields a convex polygon that is

equal to the convex hull of these vertices. In order for Proposition 4 to hold, this convex

polygon should have an empty intersection with the shaded subset of the hypercube that

violates WST. However, as was explained in Section 4.1, for very large n the volume of the

shaded subset becomes arbitrarily close to 1 while the volume of the subset that satis�es

WST becomes arbitrarily close to 0. Since the latter set is not convex, it is not immediately

clear how the convex polygon can be completely nested in it.

To grasp the intuition behind Proposition 4, consider �rst the case n = 3 and assume,

for simplicity, that the three lotteries are given by p = e2; q = �1e
1 + (1� �1) e

3; r =

�2e
1 + (1� �2) e

3, where 1 > �1 > �2 > 0.12 By comonotonicity, all core preferences rank q

over r and hence, for every possible probability distribution  , we have  qr = 1. Hence,

in the space spanned by Ppq; Ppr and Pqr; the analysis is restricted to a 2-dimensional face

of the cube. Indeed, all three feasible transitive linear orders lie in this face: for the �rst

transitive linear order, which corresponds to the vertex (1; 1; 1) in Figure 3 panel (a), p is

12Note that every EU preference is uniquely determined by the lottery of the form �1e
1+(1� �1) e3 that

is indi¤erent to e2.
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preferred to both q and r; for the second, which corresponds to the vertex (0; 0; 1) ; both

q and r are preferred to p; and for the third, which corresponds to the vertex (0; 1; 1) ; p

is ranked between q and r. The polygon representing all possible probability distributions

that satisfy the requirements of Proposition 4 is given by the triangle with vertices (0; 0; 1) ;

(0; 1; 1) and (1; 1; 1) in Figure 3 panel (a) and, as can be seen in the �gure, it is nested in

the subset of the cube that satis�es WST.

Place Figure 3 here

Next let n = 4 and, as above, consider four lotteries given by p = e2; q = �1e
1 +

(1� �1) e
3; r = �2e

1+(1� �2) e
3 and s = �3e

1+(1� �3) e
3, where 1 > �1 > �2 > �3 > 0.

Again by comonotonicity, every possible probability distribution  satis�es  qr = 1,  rs = 1

and  qs = 1. Therefore, although in the space of binary choice probabilities the hypercube

is of dimension
�
4
2

�
= 6, the relevant analysis is restricted to the 3-dimensional cube that is

spanned by the choice probabilities Ppq (�rst axis in Figure 3 panel (b)), Ppr (second axis)

and Pps (third axis). There are four feasible transitive linear orders: for the �rst order, p is

preferred to q, r and s (this preference corresponds to the vertex (1; 1; 1) in Figure 3 panel

(b)); for the second, both q; r and s are preferred to p (the vertex (0; 0; 0)); for the third,

q is preferred to p while p is preferred to r and s (the vertex (0; 1; 1)); and, for the forth,

q and r are preferred to p while p is preferred to s (the vertex (0; 0; 1)). As can be seen in

the �gure, the 3-dimensional polygon created by these vertices is nested in the subset that

satis�es WST.

For an arbitrary n and lotteries of the form p = e2 and qi = �ie
1 + (1� �i) e

3, i =

1; :::; n�1 and 1 > �1 > � � � > �n�1 > 0, the relevant sub-hypercube is of dimension n�1 and,

out of its 2n�1 vertices, only n correspond to the feasible linear orders. Intuitively speaking,

since these vertices are not �spread out�over all faces of the relevant sub-hypercube (again,

see Figure 3 panel (b)), the relevant n-dimensional polygon �manages to avoid�intersecting

with the shaded non-WST subset. For a more precise argument, note that a non-empty

intersection of the polygon with the interior of the non-WST subset implies the existence

of a probability distribution  and three distinct lotteries p0; q0; r0 2
�
p; fqign�11

	
satisfying
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 (p0 � q0) > 0:5;  (q0 � r0) > 0:5 and  (r0 � p0) > 0:5. Therefore, there must exist three

utilities u; v; w 2 U satisfying u�p0 > u�q0 > u�r0, v �q0 > v �r0 > v �p0 and w �r0 > w �p0 > w �q0.

But this cannot hold: at least two of the lotteries p0; q0; r0 are of the form qi and qj, i < j

and, by comonotonicity, all utilities must rank qi higher than qj.

4.2.2 Common risk attitude

In this subsection all xi�s are taken to be monetary outcomes and we use the common

notion of risk aversion: a preference relation exhibits risk aversion (or, risk seeking) if the

expected value of every non-degenerate lottery is strictly preferred (less preferred) to that

lottery. This is equivalent to the strict concavity (convexity) of the corresponding utility

function as well as to the PDM preference being strictly decreasing (increasing) with respect

to mean-preserving spreads. PDMs for whom all core EU preferences display risk aversion

(risk seeking) are called risk averse PDMs (risk seeking PDMs).

We use the structure imposed by common risk attitude to prove that, when the set P is

a subset of the set of all lotteries over three outcomes, risk averse and risk seeking PDMs

always satisfy WST.

Proposition 5 Suppose there are no more than three outcomes. For all probability distribu-

tions  ; risk averse (risk seeking) PDMs with core EU preferences and distribution function

 satisfy WST with respect to all sets P � L.

Proof: See Appendix

Finally, since separately requiring either comonotonicity or risk aversion (seeking) of

core preferences ensures WST for any two-dimensional set P, a natural question to ask is

whether requiring both warrants WST for sets of lotteries that are of dimension higher than

2. However, as the second example of Section 4.1 demonstrates, this is not the case (note

that a PDM with the utilities of this example is comonotonic and risk averse). Thus, even if

the dimension of P is as low as 3, a combination of comonotonicity and common risk attitude

can not ensure that, for any probability distribution  ; WST with distribution function  

will hold.
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4.3 Experimental violations of WST

The empirical literature on possible violations of WST in experimental settings is rather

vast.13 However, a considerable share of this research is either purely descriptive with respect

to violations of transitivity (e.g., Brandstätter, Gigerenzer and Hertwig 2006) or based on

�awed statistical techniques. The shortcomings of many statistical analyses of WST stem

from the fact that the asymptotic distribution of the log-likelihood ratio statistic is a weighted

sum of Chi-Squared distributions rather than a Chi-Squared distribution, as postulated in

these studies. Iverson and Falmagne (1985) derived an order-constrained inference method

to test for WST and demonstrated that the data reported in Tversky (1969) provides very

little evidence for systematic WST violations. Regenwetter, Dana and Davis-Stober (2010,

2011) built on Davis-Stober (2009) to characterize a complete order-constrained test of WST

and didn�t �nd systematic violations either. In contrast, Myung, Karabatsos and Iverson

(2005) developed a Bayesian model selection framework whose results in large part agree

with Tversky�s (1969) �ndings.14

The random preference model allows for violations of WST. Sceptics of the empirical vio-

lations of WST, guided by concerns for a model�s predictive power, might favor a framework

that always satis�es WST.15 If WST is indeed satis�ed, then such a model could potentially

be more e¤ective in terms of making theoretical and empirical predictions. As we demon-

strate in this section, such concerns are not fully warranted because (by Propositions 4 and

13A related literature tests WST in collective choice problems (e.g., Felsenthal, Maoz, and Rapoport, 1990,

1993; Regenwetter and Grofman, 1998; Regenwetter et al., 2006, 2009, Regenwetter, 2009). These studies

typically use election data to test for presence of Condorcet cycles.
14For more on the di¤erence between Myung, Karabatsos and Iverson (2005) and Regenwetter, Dana and

Davis-Stober (2010, 2011), see the discussion in Regenwetter, Dana and Davis-Stober (2011).
15A number of models preclude violations of WST. For example, most simple �xed utility models (Becker,

Degroot, and Marschak, 1963 and Luce and Suppes, 1965) always satisfy WST. However, these models may

su¤er from violations of �rst-order stochastic dominance. Recently, Blavatskyy (2011) introduced a model

derived from a set of axioms, which include WST and monotonicity with respect to �rst-order stochastic

dominance. However, Loomes, Rodríguez-Puerta, Pinto-Prades (2014) argue that Blavatskyy�s (2011) model

cannot explain the common consequence e¤ect and certain common ratio e¤ects. In contrast, the random

preference model with core betweenness-like preferences, axiomatized in Section 3.2 of the present paper,

allows for all such behavioral phenomena.
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5), when there are fewer than three outcomes, WST is satis�ed by any comonotonic or risk

averse PDM with EU preferences. It turns out that for many popular experimental settings,

the choice problems are e¤ectively two-dimensional.

In the following subsection, we present such an example: an experiment to elicit certainty

equivalents of binary lotteries. We then relate violations of WST to the preference reversal

phenomenon. In this section we maintain the assumptions that the outcomes are monetary,

the PDM�s core preferences are EU, and all their utility functions are increasing in income.

4.3.1 Experiments with binary choice lists

Consider a choice problem where a PDM chooses between a sure income of y and a non-

degenerate lottery, denoted by B = (x; q; z; 1� q) paying x with probability q 2 (0; 1) and

z with (1� q), where x; y; z 2
�
y; �y
�
� R. Assume, as in many actual experiments, that y

varies in
�
y; �y
�
while B is �xed when the PDM chooses between y�s and B. It is also assumed

that the PDM has core EU preferences that are continuous on the interval
�
y; �y
�
. That is, we

consider a popular experimental design with binary choice lists (Cohen et al. 1987, Holt and

Laury 2002). Typically the objective of the experiment is to �nd the certainty equivalent of

lottery B:

For this experimental setup, the overall space is the Cartesian product of the interval�
y; �y
�
and the probability interval [0; 1], which is a 2-dimensional set. Since an element

(y; p) 2
�
y; �y
�
� [0; 1] represents the compound lottery (B; p; y; 1� p), the set of pairs (y; p)

can be identi�ed with the probability simplex over the alternatives y; �y; and B. Denote

this set by �
�
y;B; �y

�
and note that, as in the case of 3-outcome lotteries, the set is 2-

dimensional. Also note that, for any increasing vNM utility u 2 U , �rst-order stochastic

dominance implies u
�
y
�
< u (B) < u (�y) (where u (B) stands for the expected utility of B).

Hence, assuming that more money is better, all core EU preferences over �
�
y;B; �y

�
are

comonotonic.

Finally, to be able to use Proposition 4 we need to demonstrate that, for every u 2 U ,

indi¤erence curves of the derived expected utility preference are parallel straight lines. This,

however, is implied by the Independence axiom (as it enables us to replace the lotteryB by its

certainty equivalent u�1 (u (B)); the formal development of this claim is omitted due to space
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considerations). Hence, Proposition 4 implies that WST over �
�
y;B; �y

�
must be satis�ed

and, therefore, violations of WST may be rarely observed in this popular experimental

setting.

More precisely, even when WST is satis�ed, a sample of pairwise choices by a PDM

characterized in the proposition may contain cycles and may even violate the following

condition:

8p; q; r 2 L; � (p � q) > 0:5 and � (q � r) > 0:5 =) � (p � r) � 0:5;

where � (p � q) denotes the observed proportion of choices of p over q for some sample of

pairwise choices (and similarly for the other pairs). Thus, satisfaction of WST, expressed

in terms of the theoretical probability  (�), is not su¢ cient for an analogous condition

where  (�) is replaced by the proportion function � (�) : However, if WST is satis�ed and

the observed data form an independent and identically distributed random sample, then the

WST condition for the proportion function � (�) will be satis�ed asymptotically.

4.3.2 $-bet versus P-bet type experiments

In this section we examine the implications of our analysis for an experiment that exhibits

the �preference reversal phenomenon�(Lichtenstein and Slovic 1971, Lindman 1971, Grether

and Plott 1979). Two lotteries are presented to experimental subjects. A �$-bet�o¤ers a

relatively high payo¤, denoted by x1; with a relatively small probability, denoted by p1: In

a typical experiment, p1 is well below 0.5. A �P-bet�o¤ers a relatively small payo¤, denoted

by x2; with a relatively high probability, denoted by p2. The probability of winning for the

P-bet is higher than the probability of winning for the $-bet: p2 > p1: In the experiment,

certainty equivalents (CEs) of the $-bet and P-bet are elicited from the subjects. We denote

these certainty equivalents by CE$ and CEP ; respectively. Most experimental subjects

choose the P-bet over the S-bet while revealing a strictly higher certainty equivalent for the

$-bet than for the P-bet. Thus, a typical ordering of the certain outcomes is as follows;

x1 > x2 > CE$ > CEP > 0:

For this setting, the overall space can be identi�ed with the space �(0; x1; x2)� [0; x1] ;

where �(0; x1; x2) denotes the probability simplex over alternatives 0; x1; and x2; and [0; x1]
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is the range of possible certainty equivalents: But this implies that lotteries are drawn from

a space that is at least three dimensional. It then follows from the results in the preceding

sections and the example in the Appendix that our model does not preclude violations of

WST in this case.

Our �ndings are in concert with the relatively high frequency of cycles reported for

a variety of $-bet versus P-bet type experiments (see, e.g., Loomes Starmer and Sugden

1991). Note, however, that most studies of the preference reversal phenomenon do not

involve repeated choices or have too few repetitions. This makes it often impossible to assess

whether individual subjects satisfy WST.

5 WST with core non-EU preferences

In this section we provide further results for lottery sets that are two dimensional (n = 3) but

where PDMs have certain types of non-EU core preferences. Some of the results we obtain

here are for a framework with three outcomes where L is the two dimensional unit simplex.

However, there are other cases of interest that fall under the category of two dimensional

lotteries. For example, consider a world that has two possible states of nature s1 and s2

with the corresponding �xed probabilities p1 and p2. Here the probabilities are �xed but the

outcomes zi can vary, and lotteries are given by the pairs (z1; z2). Since there is a one-to-one

correspondence between this space and the set of lotteries L in our basic setup, our results

apply to this case.

5.1 Three monetary outcomes and betweenness preferences

By Propositions 4 and 5, a PDM satis�esWST if all core EU preferences are either comonotonic

or share the same risk attitude. We now extend these results by relaxing the assumption that

core preferences are of the EU type. We say that a PDM has core Betweenness preferences

if there exists a set of transitive Betweenness functionals fV �g�2T such that each satis�es

V � (p) � V � (q), V � (p) � V � (�p+ (1� �) q) � V � (q) for all p; q and � 2 [0; 1] (see Chew

1989 and Dekel 1986) and the PDM may choose p over q if and only if there exists � 2 T
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such that V � (p) � V � (q). Note that these PDMs fall under the category of preferences

characterized by Theorem 2.

As with transitive EU preferences, indi¤erence sets of the Betweenness functionals V �

are given by straight lines in L (not necessarily parallel to each other). Hence, for every

p 2 L there exists a vector u�p 2 Rn, perpendicular to the indi¤erence line through p, that

satis�es

8q 2 L V � (p) � V � (q)() u�p � p � u�p � q:

Following Machina 1982, u�p can be called the local utility of V
� at p. Note that the following

two properties hold for Betweenness functionals: (1) V � is increasing with respect to the

relation of �rst-order stochastic dominance if, and only if, all u�p�s are increasing and (2) V
�

displays risk aversion if, and only if, all u�p�s are concave. We now state our result:

Proposition 6 Suppose there are no more than three outcomes and that X � R. Then, for

all probability distributions  ;

(1) PDMs with core Betweenness preferences, that increase with respect to the relation of

�rst-order stochastic dominance, and a distribution function  satisfy WST with respect to

all sets P � L and

(2) Risk averse (risk seeking) PDMs with core Betweenness preferences and a distribution

function  satisfy WST with respect to all sets P � L.

Proof: See Appendix

5.2 Two states of nature and increasing dual EU preferences

Consider a world with two states of Nature s1 and s2. The probabilities of the two states are

�xed and given by p1 and p2; respectively. The pair (p1; p2) belongs to the one dimensional

unit-simplex but, as probabilities are �xed and only outcomes vary, the relevant elements

are identi�ed with pairs of the form (z1; z2) where zi denotes the outcome received in state

si. We assume that p1 = p2 =
1
2
and that the outcomes belong to the interval [0;M ]. The

relevant space is given by Y = f(z1; z2) 2 R2 : 0 � z2 � z1 �Mg. The preference relations
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we consider belong to the dual EU set (see Yaari 1987 and Quiggin 1982). On the set Y ,

these preferences are represented by a function of the form

V (z1; z2) = f

�
1

2

�
z1 +

�
1� f

�
1

2

��
z2;

where f : [0; 1] ! [0; 1] is increasing, f (0) = 0, and f (1) = 1: Note that f is the dual

analogue of the EU utility function. Similarly to the EU case, a dual EU preference relation

< can be identi�ed with the vector f = (f1; f2) =
�
f
�
1
2

�
; 1� f

�
1
2

��
and hence the following

relationship holds

8z; z0 2 Y; z < z0 () f � z � f � z0:

By construction, all dual EU preferences are increasing with respect to the relation of �rst-

order stochastic dominance. Risk aversion is characterized by the convexity of the function

f , which in our case is equivalent to f
�
1
2

�
< 1

2
(see Yaari 1987 and Chew Karni and Safra

1987). The next result deals with PDMs with core dual EU preferences.16 Its proof is omitted

since it is similar to that of Proposition 4.

Proposition 7 Suppose that the set of alternatives is given by Y . For all probability dis-

tributions  ; PDMs with core dual EU preferences and distribution function  satisfy WST

with respect to all sets P �Y:

6 Illustrative Example Revisited

We now return to the illustrative example of Section 2 to demonstrate the implications of

our �ndings. First, consider a scenario where, for all possible core preferences, attractiveness

of options A; B, and C depends only on the probability distribution over the total pro�ts

from the two product lines. One could expect such a restriction on possible rankings if, for

example, all monetary and non-monetary bene�ts of all team members were tied solely to the

16Note that these PDMs are comonotonic. We do not provide a representation result for these PDMs as it

is an immediate corollary of Theorem 1 (by swapping the roles of outcomes and probabilities; see Maccheroni

2004).
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total pro�tability of the company and, as a result, the team�s preference ranking respected

monotonicity with respect to the total pro�ts on each occasion a decision was made. This,

of course, does not imply that the options A; B, and C will be ranked similarly on all choice

occasions. Feasible core preferences may have di¤erent attitudes to risk and, consequently,

rank the three options di¤erently.

The probability distributions over the total pro�ts for the three options are given by:

Option A :
�
-$4m; pA1 ; $4m; p

A
2 + pA3 ; $12m; p

A
4

�
;

Option B :
�
-$4m; pB1 ; $4m; p

B
2 + pB3 ; $12m; p

B
4

�
;

Option C :
�
-$4m; pC1 ; $4m; p

C
2 + pC3 ; $12m; p

C
4

�
:

Thus, e¤ectively there are three outcomes, -$4m, $4m, $12m, under this scenario and the

three options correspond to di¤erent probability distributions over these three outcomes.

In addition, all of the core preferences are comonotonic. It then follows immediately from

Proposition 4 that WST will be satis�ed.17 The corresponding implication for the example�s

interpretation in terms of the Condorcet procedure is that the procedure will be void of

Condorcet cycles (in the limit) as long as all of the voting members of the team care only

about the total pro�ts.

Suppose now that appeal of di¤erent options does not stem solely from the likelihoods

of the total pro�ts. Rather, some core preferences put more weight on the tablet pro�ts

while others favor the division that produces the phones. Under this scenario and absent

any additional information, one cannot reduce the set of relevant outcomes to three as in

the previous scenario and all twelve outcome pairs should be considered. But then our

arguments and the second example in subsection 4.1 imply that even if all core preferences

were comonotonic and had similar risk attitudes, a violation of WST would be possible.

Correspondingly, the Condorcet procedure may exhibit cycles and there may very well be

room for agenda setting.

17If the team members disagree on the probabilities of the respective outcomes then the chances of violating

WST increase. However, as long as these disagreements are not severe, our commonality and dimensionality

restrictions still apply.
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7 Conclusions

A large body of empirical literature (see, e.g., Hey 1995, Otter et al. 2008) reports that the

same experimental subject may choose di¤erently in exactly the same choice situation on

di¤erent occasions even when the interval between di¤erent decisions is very short. Proba-

bilistic theories of preferential choice account for what seems like an inherent variability of

preferences and can also explain observed variability in managerial decision-making. We ex-

amine a subclass of such theories, random preference models, which fall into the category of

random utility models (see, e.g., Becker DeGroot and Marschak 1963 and Luce and Suppes

1965). In the random preference model considered in the present paper, a decision-maker

(either an individual or a group) is characterized by multiple rational preference structures

and behaves as if her choice is made according to the preference ranking randomly drawn

from the set of core preferences. We axiomatize the utility components of two classes of

models with multiple preference rankings. For the �rst, core preferences have an expected

utility form. The second is the more general preference structure where core preferences

satisfy the betweenness condition.

The paper also examines the possibility of violations of WST for the cases where core

preferences have EU form, betweenness-like form, and dual EU form. Finally, we present

the implications of our results for two popular experimental settings. As violations of WST

are related to existence of Condorcet cycles, the analysis has implications to managerial

decision-making and to the social choice literature dealing with majority rule voting.
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8 Appendix

Proof of Theorem 1: The �if�part is immediate and its proof is omitted. To simplify the

exposition, we normalize the utilities such that they all belong to H = fy 2 Rnj
P
yi = 0g.

If � is empty then (2) trivially holds for U =H. Hence, assume that � is non-empty and

note that, by (A.3), the relation � satis�es the Independence assumption: that is, for all

p; q; r 2 L and � 2 (0; 1],

p � q () �p+ (1� �) r � �q + (1� �) r: (6)

Now �x a lottery q in the interior of L and consider the set

W (q) = f� (p� q) j� > 0; p 2 L; p � qg � H:

Note that for all p 2 L, p � q , p � q 2 W (q). One direction in this equivalence follows

from the de�nition of W (q) by taking � = 1. For the converse, consider p� q 2 W (q). By

construction there exists p0 and � > 0 such that p0 � q and p � q = � (p0 � q). If � 2 (0; 1]

then p = �p0 + (1� �) q and the relation p � q follows from (6) by taking r = q. If � > 1

then p0 = 1
�
p+

�
1� 1

�

�
q and p � q follows from (6) by taking r = q and � = 1

�
.

Clearly (A.4) yields the convexity of the strictly positive cone W (q). To show that

W (q) is independent of q for interior points of L, consider q; q0; p 2 L such that q; q0 are

interior points and p � q. By construction, there exists q00 2 L and � 2 (0; 1) such that

q0 = �q + (1� �) q00. Denote p0 = �p+ (1� �) q00 and note that, by (6),

p � q ) p0 = �p+ (1� �) q00 � �q + (1� �) q00 = q0:

But as p � q = 1
�
(p0 � q0), W (q) � W (q0) for all such q; q0, which implies W (q) = W (q0).

Note that for a boundary point q (of L) we would still have W (q) � W (q0).

Being a strictly positive convex cone in H, W (q) is equal to the intersection of a family

of open half spaces fr 2 Hju � r < 0gu2U , where U � H is a uniquely de�ned strictly positive

closed convex cone (see Rockafellar 1970). That is,

p� q 2 W (q) () 8u 2 U : u � p < u � q:
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Hence, for all p 2 L,

p � q () 8u 2 U : u � p < u � q

and, by taking negations and using (A.1),

p < q () 9u 2 U : u � p � u � q:

�

Proof of Theorem 2: The �if�part is immediate and its proof is omitted. The proof of the

converse is similar to that of Theorem 1. If � is empty then (4) trivially holds for U q=H,

for all q 2 L. Hence assume that � is non-empty and note that (B.3) is equivalent to the

following: for all p; q 2 L, r = p; q and � 2 (0; 1],

p � q () �p+ (1� �) r � �q + (1� �) r: (7)

As in the former proof, �x a lottery q in the interior of L, consider the set

W (q) = f� (p� q) j� > 0; p 2 L; p � qg � H

and note that, again, for all p 2 L, p � q , p � q 2 W (q). Utilizing (A.4), W (q) is a

strictly positive convex cone and hence is equal to the intersection of a family of open half

spaces fr 2 Hju � r < 0gu2Uq , where U q � H is a uniquely de�ned positive closed convex

cone. Hence, for p 2 L,

p � q () 8u 2 U q : u � p < u � q

or equivalently (using (A.1)),

p < q () 9u 2 U q : u � p � u � q:

To prove the right-hand side equivalence of (4) let p 2 L be an interior point satisfying

p < q and let p0 satisfy p = �p0 + (1� �) q for � 2 (0; 1). By (B.3), p0 < p, p < q and, by

the preceding argument,

p0 < p () 9v 2 Up : v � p0 � v � p:
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Hence, since v � p0 � v � p, v � p � v � q,

p < q () 9v 2 Up : v � p � v � q:

To conclude, note that continuity implies the equivalence for non-interior points. �

Continuous example of necessity of condition n � 3 in Proposition 4 for WST:

Suppose that n = 4 and utility vectors are drawn from a uniform probability distribution

 and the set U is given by a triangle with the following vertices:

uA = (0; 0:370; 0:465; 1) ;

uB = (0; 0:417; 0:805; 1) ;

uC = (0; 0:713; 0:98; 1) :

Note that the utility of the worst outcome is set to 0 while the utility of the best outcome

is set to 1: Given that these preferences respect monotonicity with regard to �rst-order

stochastic dominance, these restrictions are without any loss of generality. Figure 4 depicts

the projection of the support of the probability distribution into the space of intermediate

utility levels (the second and third components of the utility vectors). Since the triangle in

Figure 4 lies entirely above the 450 line, all of the utility vectors in U satisfy monotonicity

with respect to �rst-order stochastic dominance.

Place Figure 4 here

Consider the following set of lotteries:

p1 =
�
p11; p

1
2; p

1
3; p

1
4

�
=

�
1

2
;
1

2
; 0; 0

�
;

p2 =
�
p21; p

2
2; p

2
3; p

2
4

�
=

�
2

3
; 0;
1

3
; 0

�
;

p3 =
�
p31; p

3
2; p

3
3; p

3
4

�
=

�
3

4
; 0; 0;

1

4

�
:

The probability  (pi � pj) that lottery pi is preferred to lottery pj has a simple graphical

representation under monotonicity and four possible outcomes. For our example, the ver-

tical straight line at u2 = 0:5 in Figure 4 represents the set of vectors (u2; u3) for which
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the expected utility of lottery p1 is equal to the expected utility of lottery p3: Moreover,

(0; u2; u3; 1) � p1 � (0; u2; u3; 1) � p3 if and only if u2 � 0:5: Thus, if the area of the triangle to

the left of the vertical line at 0:5 is greater than the area to the right then  (p3 � p1) � 0:5:

Similarly,  (p1 � p2) � 0:5 if and only if the area below the line u3 = 1:5u2 is larger than

the area above it while  (p2 � p3) � 0:5 if and only if the area above the horizontal line

u3 = 0:75 is larger than the area below it. Calculating these areas we obtain

 
�
p1 � p2

�
= 0:556;

 
�
p2 � p3

�
= 0:536;

 
�
p3 � p1

�
= 0:52:

Thus, the probability distribution  violates WST for lotteries p1; p2; and p3: In this ex-

ample, all preference structures in the support of the uniform probability distribution are

comonotonic. However, since there are four possible outcomes we were able to �nd a proba-

bility distribution that led to a violation of WST with respect to P. Similar examples can

be constructed for sets P of higher dimensions.

Proof of Proposition 4: Consider a comonotonic PDM. Without any loss of generality

assume that for all u 2 U , u (x1) > u (x2) > u (x3) and that U � H = fy 2 R3j
P
yi = 0g.

Since all u satisfy u � e1 > u � e3, U is a subset of the half plane fy 2 Hj (e1 � e3) � y � 0g.

Assume, by way of negation, that WST is violated. Then there exist three lotteries

p; q; r 2 L such that  (p � q) > 0:5;  (q � r) > 0:5 and  (r � p) > 0:5. The �rst two

inequalities imply  (p � q � r) > 0 and hence the existence of a utility u 2 U satisfying

u �p > u � q > u � r. Similarly, the last two inequalities imply the existence of v 2 U satisfying

v � q > v � r > v � p and the �rst and last inequalities imply the existence of w 2 U satisfying

w � r > w � p > w � q.

This, however, cannot hold: since all utilities belong to a half plane, without any loss of

generality, there exist �; � > 0 such that w = �u+ �v: This implies

w � q = � (u � q) + � (v � q) > � (u � r) + � (v � r) = w � r:

A contradiction. �
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Proof of Proposition 5: Consider a risk averse PDM. Without loss of generality assume

that U � H = fy 2 R3j
P
yi = 0g and that x1 > x2 > x3. Let t 2 (0; 1) satisfy tx1 +

(1� t)x3 = x2 and consider the lotteries e2 and q = (t; 0; 1 � t) (the lottery that yields

x1 with probability t and x3 with probability (1� t)) in L. By risk aversion, every EU

preference with utility in U prefers to move from q to e2, hence U is a subset of the half

plane fy 2 Hj (e2 � q) � y � 0g. Then, follow the proof of Proposition 4.

The case of a risk seeking PDM is similar. �

Proof of Proposition 6: Assume, by way negation, that WST is violated. Hence there

exists a triplet of Betweenness functionals fV � ig3i=1 and lotteries fp; q; rg that satisfy the

following rankings

V �1 (p) > V �1 (q) > V �1 (r) ;

V �2 (q) > V �2 (r) > V �2 (p) ;

V �3 (r) > V �3 (p) > V �3 (q) :

By betweenness, the corresponding local utilities u�1q ; u
�2
r and u�3p satisfy

u�1q � p > u�1q � q > u�1q � r; (8)

u�2r � q > u�2r � r > u�2r � p;

u�3p � r > u�3p � p > u�3p � q:

Hence, a PDMwith core EU preferences de�ned by u�1q ; u
�2
r and u

�3
p and a uniform probability

distribution  violates WST with respect to the lotteries fp; q; rg.

To see that part (1) holds, note that if all V � is are increasing with respect to the relation

of �rst-order stochastic dominance then u�1q ; u
�2
r and u�3p are increasing functions. Together

with (8), this contradicts Proposition 4. Part (2) holds because if all <� i�s are risk averse
(risk seeking) then u�1q ; u

�2
r and u�3p are concave (convex) functions. Combine this with (8)

to obtain a contradiction to Proposition 5. �
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Figure 1 The utility cones U' , U'' and U''', of the points q', q''

and q''', respectively, are depicted .
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Figure 2. Geometric Representation of WST



���

���

���

1

2

1

2

1

2

0,0,10,1,1

1,1,1

���

��	

���

1

2

1

2

1

2

1,1,1

0,1,1
0,0,1

0,0,0

Panel (a)

Panel (b)

Figure 3. Binary choice probabilities that satisfy WST
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