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Abstract

The price of anarchy is a game-theoretical concept and it measures
system degradation caused by players’ selfish behaviours. This thesis extends
models of congestion games to take stochastic demands into account and stud-
ies the price of anarchy on the basis of generalised models developed in this
research. In the presence of stochastic demands, the models developed in this
study better reflect the reality of a transportation network. The study would
help provide a theoretical foundation and insights into mechanism design of
transportation games and traffic control in practice.

This thesis is concerned with both non-atomic and atomic congestion
games, which involve an infinite and finite number of travellers respectively.
We introduce the notions of user equilibrium and system optimum under
stochastic demands and investigate the behaviours of travellers and central
coordinators in a stochastic environment. At a user equilibrium, travellers
choose routes independently and aim to minimise their own expected travel
costs, while at a system optimum, traffic is fully coordinated to minimise the
expected total cost over the whole network.

We extend two existing methods of bounding the price of anarchy
and compute the quality upper bounds for polynomial cost functions and
very general settings of demand distributions. More specifically, we consider
positive-valued distributions and normal distributions for non-atomic conges-
tion games, and positive-valued discrete distributions for atomic congestion
games. Our results show that the price of anarchy depends on the class of
cost functions, demand distributions and, to some extent, network topologies.
All the upper bounds are tight in some special cases, including the case of
deterministic demands. The two bounding methods are also compared.
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Chapter 1

Introduction

1.1 Introduction

Congestion games are a class of games in game theory, first proposed by Rosen-

thal [1973], which illustrate non-cooperative situations involving players com-

peting for a finite set of resources. In a congestion game, each player chooses

a combination of resources, and the payoff associated with each resource de-

pends on how many players involve that resource in their choices. Congestion

games have applications in various fields, for example transportation science,

telecommunications [Roughgarden and Tardos, 2002] and ecology [Milinski,

1979].

Routing problem in transportation networks [Wardrop, 1952; Beck-

mann et al., 1956] is a very important application of congestion games. Al-

though each traveller cares only about his/her own travel cost (time) and

chooses his/her respective cheapest path selfishly, the cost required to travel

along a given path depends not only on his/her own choice but also on the

amount of traffic congestion. The more congested the path, the longer it takes

to pass through it. This congestion effect generates interdependencies between

travellers’ decisions: we may expect to see a steady state in which no traveller
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can improve his/her own cost by switching unilaterally to other paths. In other

words, all travellers in a the same origin-destination pair experience the same

and cheapest travel cost. Such an assignment is actually a Nash equilibrium

of the congestion game. We use the standard terminology of traffic networks

and call this a user equilibrium (UE).

Inefficiency is a well-known characteristic of a Nash equilibrium. For

example, the unique Nash equilibrium in the famous Prisoner’s Dilemma is

Pareto inefficient. The disadvantage of the UE is obvious in real applications:

scarce traffic resources (street and road capacity) may be used in an inefficient

way [Koutsoupias and Papadimitriou, 1999; Helbing et al., 2005]. Another

classic model, the system optimum (SO), describes the most efficient assign-

ment of traffic by assuming that all traffic is perfectly coordinated by a central

authority. Although the SO overcomes the shortcoming of system inefficiency,

it introduces the problem of unfairness, as some travellers have to take longer

detours to contribute to system efficiency. It is hard to implement the SO in

the real world without forcing travellers to submit to the coordination of a

central authority. It is based on the rather unrealistic behavioural assumption

that travellers will sacrifice their own benefits and cooperate with each other

to meet the system objective [Moreno-Quintero, 2006]. Hence the SO is only

an ideal model, and the UE is more realistic for practical applications.

There is an apparent bottleneck preventing improvements in the effi-

ciency of traffic networks under these two classic models. Ideally, users would

be allowed to make their own decisions in the hope that the outcomes would

approximate to the system objective. From this arises an interesting prob-

lem: how bad is the UE, and how much can system efficiency be improved by

implementing traffic coordination?

Quantifying the inefficiency of UE has emerged as a major line of re-

search in algorithmic game theory. Quantitative methods reveal factors in-
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fluencing the inefficiency of UE and thus provide directions and guidelines

to improve the efficiency of traffic networks. This issue is especially crucial

when UEs are unacceptably inefficient and where directly imposing an optimal

solution is impractical.

Quantifying the inefficiency of UE enables us to deem certain outcomes

of a game optimal or approximately optimal. This also makes it possible

to identify conditions that may make equilibria in routing games optimal or

approximately optimal, meaning that the benefit of imposing a controlling au-

thority is relatively small. In addition, quantifying the inefficiency of UE may

contribute to the design of mechanism design of routing games, namely de-

signing a new game or modifying an existing game to minimise the inefficiency

of their equilibria.

The price of anarchy (PoA), first introduced by Koutsoupias and Pa-

padimitriou [1999] on a load-balancing game, is the most popular measure

of system degradation due to lack of coordination. It is defined as the ra-

tio between the worst objective function value of a user equilibrium and that

of a system optimum. Successful attempts to bound the PoA for congestion

games have been described in the literature. According to whether or not the

amount of traffic controlled by each traveller is negligible, congestion games

can be categorised into non-atomic and atomic. The next section provides a

review of the literature on PoA for these two streams.

1.2 Literature Review

1.2.1 Non-atomic Congestion Games

A non-atomic congestion game refers to the assumption of a large number of

travellers, each controlling a negligible fraction of the overall traffic. Thus, the

congestion effect caused by a single traveller can be ignored.
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Roughgarden and Tardos [2002] initiated the study of bounding the

PoA for non-atomic congestion games. They bounded the PoA when the link

cost functions are separable, semi-convex and differentiable [Roughgarden and

Tardos, 2002, 2004] and proved that the PoA is dependent only on the class

of the cost functions, and independent of the network topology [Roughgarden,

2003]. In particular, the PoA with affine cost functions is tightly bounded by

4/3.

The main developments in PoA research have been extensions to net-

works with a broader range of cost functions. Chau and Sim [2003] generalised

Roughgarden and Tardos’ results to cases with symmetric cost functions. Cor-

rea et al. [2004, 2008] provided a geometric proof of the upper bound of the

PoA with cost functions that are non-convex, non-differentiable, and even

discontinuous. Perakis [2007] extended the work to asymmetric cost func-

tions and bounded the PoA by two parameters of asymmetry and nonlinearity.

Sheffi [1985] introduced the notion of stochastic user equilibrium (SUE), which

describes travellers’ selfish routing decisions based on subjectively perceived

travel costs by involving stochastic cost functions. The PoA on logit-based

SUE was bounded by Guo et al. [2010] on the basis of Sheffi’s model.

Another line of development in the study of PoA is to improve the

setting of the traffic demand to better reflect reality. Chau and Sim [2003]

presented a weaker upper bound on the PoA with elastic demands. Although

the study of the PoA with stochastic demands is still quite new, efforts have

been made to model UE and SO involving demand uncertainty. It has been

assumed that the objective of selfish travellers is to choose a path that min-

imises the mean travel cost [Sumalee and Xu, 2011] or weighted sum of the

mean and the variance of the travel cost [Sumalee and Xu, 2011; Bell and Cas-

sir, 2002], with risk-neutral and risk-averse travellers respectively. A travel

time budget has also been considered in the equilibrium condition on the basis
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of reliability [Lo et al., 2006; Shao et al., 2006]. However, in order to deduce

the distributions of the path and link flows, all of these studies have relied

on some assumptions, such as that all the path flows follow the same type of

distribution as the demand and have the same ratio of variance (or standard

deviation) to mean [Sumalee and Xu, 2011; Shao et al., 2006; Zhou and Chen,

2008], and that all the path flows are independent [Clark and Watling, 2005;

Sumalee and Xu, 2011; Shao et al., 2006; Zhou and Chen, 2008]. These as-

sumptions are open to question regarding the relationship between path flows

and demands, not only because of a lack of supporting empirical data but also

because they violate the demand feasibility constraint even in simple networks.

In order to produce a more reliable result for the PoA, we need to relax the

aforementioned assumptions and establish a new equilibrium condition.

1.2.2 Atomic Congestion Games

Although congestion games were first introduced in an atomic setting, the

PoA was studied later for atomic congestion games than that for non-atomic

ones. In an atomic congestion game, there is a finite number of travellers,

each of whom must consider the congestion effect of his/her own traffic when

making a routing decision. Owing to the discreteness of the atomic model,

bounding the PoA is more difficult than in a non-atomic model. The PoA for

atomic congestion games was first studied in networks with a simple structure,

for example parallel link networks [Koutsoupias and Papadimitriou, 1999] and

ring networks [Chen et al., 2010]. In a general network, the upper bounds

of the PoA have been obtained by Awerbuch et al. [2005] and Christodoulou

and Koutsoupias [2005] independently. In particular, the PoA with affine

cost functions is bounded by 2.5 precisely for unweighted demand and 2.618

for weighted demand, which are both proved to be tight. The PoA with

polynomial cost functions of degree m is bounded by mΘ(m). These results
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hold for both pure strategies and mixed strategies.

Aland et al. [2011] have improved the work of Awerbuch et al. [2005] and

Christodoulou and Koutsoupias [2005], giving exact bounds of the PoA with

polynomial cost functions. For the weighted case, the PoA with polynomial

cost functions with degree at most m is bounded by Φm+1
m , where Φm is defined

as the unique non-negative real solution to (x+1)m = xm+1 (which is the golden

ratio when m = 1). For the unweighted case, the worst case PoA is

(r + 1)2m+1 − rm+1(r + 2)m

(r + 1)m+1 − (r + 2)m + (r + 1)m − rm+1
,

where r = bΦmc.

Roughgarden [2009] has integrated preceding works on the PoA (includ-

ing studies by Awerbuch et al. [2005]; Christodoulou and Koutsoupias [2005];

Aland et al. [2011]) and has given a canonical sufficient condition to bound

the PoA with pure equilibrium, known as the ”smoothness argument”. It has

been found that the upper bounds of the PoA obtained via a smoothness ar-

gument can be extended automatically to mixed equilibrium and correlated

equilibrium with no quantitative degradation [Roughgarden, 2009]. The upper

bounds in [Aland et al., 2011] also hold for coarse correlated equilibrium.

To the best of our knowledge, uncertainty is still new in the study of

PoA for atomic congestion games. In this thesis, we will consider stochastic

demand as the source of uncertainty, as traffic demand varies day-to-day in

the real world.

1.3 Outline and Main Contributions

This section presents an outline of this study and an overview of its main

contributions. This thesis focuses on modelling congestion games theoretically

in more complex situations of stochastic demand, which are thus closer to
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reality, and on proving the upper bounds of the PoA. We shall consider both

non-atomic settings (Chapters 3 and 4) and atomic settings (Chapters 5 and 6).

For each of these, we shall extend the literature by theoretically investigating

how travellers make routing choices, at what point they reach a steady state

of equilibrium, how bad their selfish routing decisions are, and what affects

network inefficiency in stochastic environments. We explicitly address these

research questions and their relationships in a chapter-by-chapter discussion

as follows.

Chapter 2: Preliminaries

Chapter 2 provides a review of deterministic work on congestion games. We

first introduce a basic traffic model in a general network, and then present

fundamental concepts such as the user equilibrium, the system optimum, and

the PoA of non-atomic and atomic congestion games. We also review classic

results for the upper bounds of the PoA and discuss some simple examples to

show the tightness of the upper bounds. The central concepts and bounding

methods reviewed in this chapter will be extended in later chapters. In this

respect, Chapter 2 is a foundation for all subsequent chapters.

Chapter 3: Non-atomic Model

It is well known that traffic demand varies from day to day. In order to

reflect demand fluctuation in the real world, in Chapter 3 we consider networks

with stochastic demands. We assume that the traffic demands are publicly

known in probabilities, as travellers are able to draw on historical data from

their own experiences. The actual demand level is assumed to be known in a

deterministic model, enabling travellers easily to find the cheapest (shortest)

paths. However this is no longer true in networks with demand uncertainty;

thus, we must find new ways to model travellers’ routing behaviours and to
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define the user equilibrium and the system optimum.

This becomes more difficult and complex in the case of stochastic de-

mands because path and link flows and travel costs will all be random. Chapter

3 presents an analytical method to compute path and link flows under given

demand distributions and, from a practical perspective, to describe travellers’

behaviours by path choice probabilities. We generalise the deterministic UE

condition to a stochastic version with risk-neutral travellers. A user equilib-

rium with stochastic demand (UE-SD) is defined as a steady state in which no

traveller can improve his/her own expected travel cost by unilateral derivation.

In contrast to the deterministic non-atomic model, the model with stochastic

demands may have multiple equilibria. We also present system optimum with

stochastic demand (SO-SD), in which the expected total cost in the network

is minimised.

Bibliographic Information: This chapter is based on a research article by

Wang et al. [2014a].

Chapter 4: PoA for Non-atomic Congestion Games

Chapter 4 defines the PoA on the basis of the UE-SD and SO-SD models in

Chapter 3, and bounds the PoA with stochastic demands. Roughgarden and

Tardos [2002, 2004] use the convexity of the total cost functions and bound

the deterministic PoA, while Correa et al. [2008] provide a geometric proof

of the upper bound of the PoA. We extend both the methods to bound the

PoA in our stochastic model. For convenience, we refer to the methods from

[Roughgarden and Tardos, 2002, 2004] and [Correa et al., 2008] as the convexity

method and the geometry method.

We first prove the convexity and geometry bounds of the PoA with

stochastic demands with general cost functions and general demand distribu-

tions. As stated in the deterministic literature, with no restriction on link cost
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functions the PoA is unbounded, and polynomial cost functions are usually

considered in bounding the PoA. We also focus on polynomial cost functions

and compute exact upper bounds for the PoA with stochastic demands. As

traffic demand is positive in the real world and normal distributions are also

widely used in the literature to simulate traffic demands, we discuss the PoA

when demands follow positive-valued distributions and normal distributions

in Sections 4.3.1 and 4.3.2 respectively.

In deterministic work, the PoA depends only on the class of the cost

functions [Roughgarden, 2003], while in the presence of stochastic demand, as

we shall show in Chapter 4, the PoA depends on the class of cost functions,

distributions of traffic demands and, to some extent, network topologies. More-

over, all the upper bounds discussed in Chapter 4 are tight in some special

cases, including deterministic demands. Thus Chapter 4 generally extends the

work of [Roughgarden and Tardos, 2002, 2004] and [Correa et al., 2008] by

investigating stochastic traffic demands.

We also compare the geometry bound and convexity bound. From nu-

merical comparison, we find that the former is generally tighter than the latter.

However, in special cases of affine cost functions and single commodity net-

works, the convexity bound is tighter.

Bibliographic Information: This chapter is based on a research article by

Wang et al. [2014a].

Chapter 5: Atomic Model

Chapters 3 and 4 will consider non-atomic congestion games with an infinite

number of travellers, in which the amount of traffic controlled by a single

traveller can be ignored. In Chapter 5, we focus on a different setting of atomic

games, which assumes a finite number of travellers. In an atomic game, the

traffic controlled by each traveller is non-negligible and has a significant effect

9



on traffic congestion. It is known from the literature that atomic problems are

more complex and difficult due to their discreteness.

Chapter 5 extends the literature on unweighted atomic congestion games

by considering stochastic demands. Similarly to Chapter 4 for non-atomic

games, we also assume that the traffic demand distributions are publicly

known, and that all travellers will make routing decisions on the basis of the

whole distribution of traffic demands to minimise their own expected travel

costs. As each traveller controls one unit of traffic in the unweighted setting,

the atomic congestion game with stochastic demands described in this thesis

is actually a game with random players.

Chapter 5 is organised in a similar way to Chapter 3. We first use mixed

strategies to model travellers’ routing behaviours and show how to derive ran-

dom path and link flows. Then we establish models of user equilibrium and

system optimum with stochastic demands (UE-SD and SO-SD). The existence

and uniqueness of the UE-SD will also be discussed.

Bibliographic Information: This chapter is based on a research article by

Wang et al. [2014b].

Chapter 6: PoA for Atomic Congestion Games

Chapter 6 defines and analyses the PoA with stochastic demands on the basis

of the models of UE-SD and SO-SD described in Chapter 5. It is interesting

that in the case of stochastic demands, the discreteness of the atomic games

in our study vanishes. Motivated by the work discussed in Chapter 4 on

non-atomic work, we extend Roughgarden and Tardos’ (2002; 2004) convexity

method and Correa et al.’s (2008) geometry method to bound the PoA for

atomic congestion games with stochastic demands.

As mentioned in Chapter 5, the traffic demand in atomic congestion

games represents the number of travellers, which should be a positive integer

10



in the real world. Thus, we focus on positive-valued discrete demand distri-

butions in bounding the PoA. In Chapter 6, we first present both convexity

and geometry upper bounds with general cost functions and general positive-

valued demand distributions, and then compute exact upper bounds for affine

and polynomial cost functions. For affine cost functions, we present both con-

vexity and geometry upper bounds with general positive-valued demand dis-

tributions in general networks. For polynomial cost functions, we compute the

two upper bounds with general positive-valued demand distributions in single

commodity networks. All the upper bounds in this chapter are asymptotically

tight when the demands approach infinity. From numerical comparisons, we

find that the convexity upper bound is tighter than the geometry one.

Bibliographic Information: This chapter is based on a research article by

Wang et al. [2014b].
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Chapter 2

Preliminaries

In this chapter we lay the ground work and introduce the notation that will

be used throughout the thesis. Sections 2.2 and 2.3 introduce non-atomic

and atomic work in deterministic models respectively. In each section, we

present the definition of user equilibrium and system optimum, and illustrate

the main results on bounding the PoA. The models we shall discuss in the

following chapters are generalisations of the basic models in this chapter.

2.1 Basic Traffic Model

Consider a general networkG = (N,E), whereN and E denote the set of nodes

and links, respectively. To each link e ∈ E, we associate a (link) cost function

ce(·) : R+ → R+, which is assumed to be non-decreasing in its argument,

the link flow. Costs have concrete interpretations in terms of money or the

delay incurred in a network, A subset of nodes form a set of origin-destination

(O-D) pairs, denoted by I. We call an O-D pair i ∈ I a commodity. Every

O-D pair, i ∈ I, is associated with a traffic demand, di > 0. We use vector

d = (di : i ∈ I) to denote the demands in the whole network. Parallel links

are allowed and a node can be in multiple O-D pairs. Denote Pi as the set of
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all possible paths connecting an O-D pair i ∈ I. Each traveller from O-D pair

i ∈ I has to choose a path from Pi. After all s make their routing choices, the

output in the network is the resulting traffic flows, denoted as follows:

f ik: traffic flow on path k ∈ Pi, i ∈ I;

f : vector of path flows, i.e., f = (f ik : k ∈ Pi, i ∈ I);

ve: traffic flow on link e ∈ E;

v: vector of link flows, i.e., v = (ve : e ∈ E).

Given demands vector d, flow f is said to be feasible if

∑
k∈Pi

f ik = di, ∀ i ∈ I. (2.1)

It is clear that the flow on each link is the sum of flows on all the paths

that include the link:

ve =
∑
i∈I

∑
k∈Pi

δik,ef
i
k, e ∈ E,

where δik,e is the link-path indicator, which is 1 when link e is included in path

k ∈ Pi and 0 otherwise. The path cost is simply the sum of the cost of those

links that constitute the path, i.e.,

cik(f) =
∑
e∈E

δik,ece(ve), ∀ k ∈ Pi, ∀ i ∈ I.

Given the link costs, we can also compute the total (social) cost as follows:

C(f) =
∑
e∈E

ce(ve).

We denote any instance of a congestion game by a triple (G,d, c), where

G is the underlying network, d and c are the vectors of demands and cost func-

tions, respectively. For notational simplicity, we do not specify the dimension
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of vector c with paths or links. We use c(f) and c(v) to distinguish vectors of

path costs and link costs.

2.2 Deterministic Non-atomic Model

2.2.1 User Equilibrium

Recall that we assume that an infinite number of players participate in the

non-atomic congestion games, and traffic controlled by a single player is negli-

gible. Every traveller wants to minimise his/her own travel cost selfishly, and

would deviate if he/she finds a cheaper path. With the non-atomic setting, we

usually only consider that travellers play pure strategies. As any flow assign-

ment induced by mixed strategies can also be attained by assigning travellers

to different paths, according to corresponding proportions. The travel costs

depend only on the flow assignment in the network. Thus, from the perspec-

tive of traffic flow assignment, also called action distribution [Roughgarden

and Tardos, 2002], pure strategies and mixed strategies are the same thing in

a non-atomic congestion game.

Next we will introduce the definition of user equilibrium (UE) in non-

atomic congestion games. As it was first formally defined by Wardrop [1952]

in his first principle, equilibrium flows are also called Wardrop equilibrium. At

a user equilibrium, all the travellers are travelling along the cheapest path.

Definition 2.1. (Non-atomic UE) [Wardrop, 1952] Let f be a feasible flow

for non-atomic instance (G,d, c). The flow is a UE if, for every commodity

i ∈ I and every pair k, k′ ∈ Pi with f ik > 0

cik(f) ≤ cik′(f)

In non-atomic congestion games with continuous and non-decreasing
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cost functions, a user equilibrium defined above is equivalent to a Nash equi-

librium [Palma and Nesterov, 1998].

The UE condition can be reformulated as a minimization problem,

which helps to illustrate the relationship between the equilibrium flow and

optimal flow.

Proposition 2.1. [Beckmann et al., 1956] Let (G,d, c) be a non-atomic in-

stance. Then f is a UE flow, if and only if it solves the following minimization

problem:

min
f

∑
e∈E

∫ ve

0

ce(x)dx

s.t.
∑
k∈Pi

f ik = di, ∀ i ∈ I

f ik ≥ 0, ∀ k ∈ Pi, ∀ i ∈ I.

More generally, Wardrop conditions are stated as the finite-dimensional

variational inequality(VI) problem.

Proposition 2.2. [Nagurney, 1998] Let (G,d, c) be a non-atomic instance.

Then feasible f∗ is a UE flow, if and only if it solves the following variational

inequality (VI) problem:

c(f∗)T (f − f∗) ≥ 0, for any feasible f ≥ 0,

where we recall that flow is said to be feasible when (2.1) is satisfied.

From the equivalent minimization problem in Proposition 2.1, the exis-

tence and uniqueness conditions of the UE can be easily proved.

Proposition 2.3 (Existence and Uniqueness of UE). [Beckmann et al., 1956]

Let (G,d, c) be a non-atomic instance.

(a)If cost functions c are continuous, instance (G,d, c) admits at least one
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equilibrium flow.

(b) If f and f ′ are both UE flows, then ce(ve) = ce(v
′
e) for every e ∈ E, where

ve and v′e are corresponding link flows on e ∈ E for f and f ′ respectively.

When link cost functions are strictly increasing, the objective function

in Proposition 2.1 is convex, together with the compactness of the feasible

domain of flows, the link flows of the UE can be guaranteed to be unique. But

as one link could be included in multiple paths, the path flows may not be

unique. The same result can also be proved via the VI problem in Proposition

2.2.

2.2.2 System Optimum

System optimum is simply defined as the optimal usage of the social resource.

We adopt the social objective as minimising the total (average) travel cost in

the network.

Definition 2.2 (System optimum). Let (G,d, c) be an non-atomic instance.

Feasible flow f is a system optimum if it solves the following minimization

problem:

min
f

∑
e∈E

ce(ve)ve

s.t.
∑
k∈Pi

f ik = di, ∀ i ∈ I,

f ik ≥ 0, ∀ k ∈ Pi, ∀ i ∈ I.

Recall Proposition 2.1, UE condition can be also formulated as a mini-

mization problem, connection between equilibrium and optimal flows can be es-

tablished as they are optimal solutions for different objective functions. When

ce(ve)·ve, e ∈ E is convex and continuously differentiable, a UE flow is actually

a SO flow for modified link cost functions (see [Nisan et al., 2007] for details).
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2.2.3 Price of Anarchy

As mentioned in Chapter 1, the PoA is the worst-case ratio between the social

welfare at a user equilibrium and at a system optimum [Koutsoupias and

Papadimitriou, 1999]. In this section we introduce the definition of the PoA

based on the model presented in preceding sections.

Definition 2.3. Let (G,d, c) be a non-atomic instance. The PoA is defined

as

PoA(G,d, c) = max

{
C (̄f)

C(f∗)
: f̄ is a UE and f∗ is a SO

}
.

Let I be a set of non-atomic instances. Then the PoA with respect to I is

defined as

PoA(I) = max
(G,d,c)∈I

PoA(G,d, c).

Let us look at a classic example introduced by Pigou [1920] to show

how to compute the PoA

Example 2.1 (Pigou’s example). Consider a two-link network in Figure 2.1.

One unit of traffic wants to travel from s to t, i.e., d = 1. The cost function

on the upper link is a constant 1, and that on the lower link is x. We can

expect that all the travellers will choose the lower link, as it is never worse

than the upper link even when it is fully congested. Thus the total cost at the

UE is 1. If the traffic is controlled by a central authority, the whole demand

will be divided into halves and assigned onto each links, which can be found

by solving the minimization problem in Definition 2.2. The total cost at the

SO is 1
2

+ 1
2
· 1

2
= 3

4
. Hence the PoA can be computed as 4/3.

It is interesting that the simple network shown in Pigou’s example just

gives the worse case of the PoA. Roughgarden and Tardos [2002, 2004] first

prove the result by using the fact that the link cost functions are semi-convex

and differentiable.
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ts

c2(x) = x

c1(x) = 1

Figure 2.1: Pigou’s example

Definition 2.4. If c(·) is a continuous differentiable and semi-convex cost

function, then

γ(c) = inf
x≥0

(µ+ 1− λ),

where λ ∈ [0, 1] solves
d

dx
c(λx)λx = c(x), µ = c(λx)λ/c(x), and 0/0 is defined

to be 1. The anarchy value γ(C) of a set C of cost functions is

γ(C) = inf
06=c∈C

γ(c).

The value of 1/γ(C) is the anarchy value in [Roughgarden and Tardos,

2004], which is actually the tight upper bound of the PoA. The upper bound

can be attained via a simple two-link network as in Example 2.1.

Theorem 2.4. Let (G,d, c) be a instance with cost functions in C. Then

PoA(G,d, c) ≤ 1

γ(C)
.

From the definition of the anarchy value, we can see it only depends

on the class of the functions; thus the PoA is independent of the network

topology [Roughgarden, 2003]. Note that the anarchy value need not be finite.

Without any restriction on the cost functions, the PoA is unbounded. When

link cost functions are affine, the upper bound of the PoA is 4/3, which matches

the lower bound in Example 2.1. When link cost functions are (non-zero)
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polynomials with highest degree at m, the PoA is bounded by (1 − m(m +

1)−(m+1)/m)−1. As the convexity of c(x)x in Definition 2.4 plays an important

role in bounding the PoA, we refer Roughgarden and Tardos’ (2002; 2004)

method as convexity method and the upper bound in Theorem 2.5 as convexity

bound.

Correa et al. [2008] used a geometric method and obtained the same

upper bound of the PoA.

Definition 2.5. [Correa et al., 2004] For cost function c, define

β(c) = sup
x≥0,y≥0

x(c(y)− c(x))

y · c(y)
.

where 0/0 = 0 by convention. For a set of cost functions C, define

β(C) = sup
06=c∈C

β(c).

Correa et al. [2008] removed the assumption of semi-convex and differ-

entiable functions. Next we show the geometric meaning of β(c) in Figure 2.2.

Easy to find, for any non-decreasing function c

β(c) = sup
0≤x≤y

x(c(y)− c(x))

y · c(y)
,

as c(y)−c(x) < 0 when x > y. The shaded rectangle represents x(c(y)−c(x)),

which is within the big rectangle representing yc(y). Thus β(c) is the maximum

ratio of the size of shaded rectangle to that of the big rectangle.

Due to the geometric explanation of β(c), we refer this method as ge-

ometry method and the upper bound in [Correa et al., 2008] as geometry upper

bound.

Theorem 2.5 (Geometry upper bound). Let (G,d, c) be a instance with cost
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c(y)

x y

Figure 2.2: Illustration of β(c)

functions in C. Then

PoA(G,d, c) ≤ (1− β(C))−1.

When cost functions in C are continuous, semi-convex and differentiable,

the geometry bound is equivalent to the convexity bound, namely 1− β(C) =

γ(C).

2.3 Deterministic Atomic Model

In atomic congestion games, the number of travellers is finite and each player

controls a non-negligible amount of traffic. Different from non-atomic games,

every player needs to take the congestion effect of his/her own traffic load

into consideration when making the routing decision. Let Ji denote the set of

players between O-D pair i ∈ I, and wj be the amount of traffic controlled by

player j ∈ Ji. In particular, when each player controls the same amount of

traffic, it is called unweighted demand and usually modelled by wj = 1 for all

j ∈ Ji, i ∈ I [Awerbuch et al., 2005; Christodoulou and Koutsoupias, 2005].
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The general case is called weighted demand. The atomic works are divided

into two streams on the basis that whether a single player is allowed to split

his/her traffic onto different paths, i.e., splittable and unsplittable models. We

focus on unsplittable games in this thesis, namely every traveller has to select

one path to arrive the destination. The demand di is simply the number of

travellers from O-D pair i ∈ I under the atomic setting, i.e., di = |Ji|.

2.3.1 Use Equilibrium

As we have mentioned, the traveller needs to take the congestion effect of his

own traffic into account, thus pure strategy and mixed strategy will make a

difference in atomic congestion games. We will introduce the definitions of

user equilibrium on the basis of both pure strategies and mixed strategies.

Let us first assume all the travellers play pure strategies. Each player

chooses one path and assigns all his weight on it in order to minimise his own

travel cost. Let xj ∈ Pi be a strategy of player j ∈ Ji. Let x be the tuple

of strategy profile of all the players, which describes the outcome of a game.

Let x−j be the tuple of the strategies of all other players except player j. The

cost cj(·) incurred by player j in a game is a function of the strategies chosen

by all the players in the network. For example, we use cj(yj,x−j) to denote

the cost experienced by player j when he adopts strategy yj and all the other

players play according to x−j. The pure Nash equilibrium describes a steady

state that, with all the other players’ strategies fixed, no player can reduce his

own travel cost by a unilateral deviation.

Definition 2.6 (Pure Nash equilibrium). A pure strategy profile x is said to

be a Nash equilibrium if, for any strategy yj ∈ Pi for player j ∈ Ji, i ∈ I,

cj(x) ≤ cj(yj,x−j).
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Let v be the flow formed by players’ strategy profile x. Then the costs

in Definition 2.6 can be written as

cj(x) =
∑
e∈xj

ce(ve),

cj(yj,x−j) =
∑
e∈yj

ce(yj,x−j) =
∑

e∈xj∩yj

ce(ve) +
∑

e∈yj\xj

ce(ve + wj).

For a mixed strategy, player j ∈ Ji selects a probability distribution pj =

(pik,j : k ∈ Pi)T over the set of all pure strategies xj ∈ Pi between O-D pair

i ∈ I. Let p be the tuple of mixed strategies of all the players and p−j be the

tuple of mixed strategies of all other players except player j. We use ECj(·)

to denote the expected travel cost incurred by traveller j, which is a function

of the mixed strategies adopted by all the players. For example, ECj(p) is the

expected travel cost of player j when all the players play according to strategy

profile p, and ECj(xj = k,p−j) is the expected cost for player j when he

chooses path k and all the other players adopt strategies p−j. Then

ECj(p) =
∑
k∈Pi

pik,jECj(xj = k,p−j), j ∈ Ji, i ∈ I. (2.2)

The players reach a mixed Nash equilibrium when no player can reduce

his own expected travel cost by unilaterally changing his strategy. Due to

linearity of mixed strategies, it is equivalent to define with a player’s unilateral

deviation to a pure strategy [Nash, 1951].

Definition 2.7 (Mixed Nash equilibrium). [Roughgarden and Schoppmann,

2011] The mixed strategy profile p is a mixed equilibrium if, for any player

j ∈ Ji, i ∈ I, and any pure strategy yj ∈ Pi,

ECj(p) ≤ ECj(yj,p−j).
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At a mixed equilibrium, no player can decrease his own expected travel

cost by switching to any single path. As every pure strategy is a special mixed

strategy, equation (2.2) implies that no player can improve his expected travel

cost by unilaterally switching to another mixed strategy.

In order to show how to calculate the expected costs in Definition 2.7,

let us introduce some notations first. Let random binary variables {X i
k,j : k ∈

Pi, j ∈ Ji, i ∈ I} indicate whether player j ∈ Ji chooses path k between O-D

pair i ∈ I, i.e., P[X i
k,j = 1] = pik,j and P[X i

k,j = 0] = 1− pik,j. Every player has

to choose one path to allocate his traffic, i.e.,

∑
k∈Pi

X i
k,j = 1, ∀ j ∈ Ji, i ∈ I. (2.3)

Let random variables F i
k indicate the total flow load on path k ∈ Pi, i.e.,

F i
k =

∑
j∈Ji

X i
k,jwj.

As players are assumed to behave independently in the game, the flows on

paths connecting different O-D pairs are independent. But the path flows

from a same O-D pair may be dependent, due to feasible conservation (2.3)

for every single player.

Let Xe,j be a random binary variable indicating whether player j ∈ Ji
chooses link e ∈ E, i.e., Xe,j =

∑
k∈Pi

δik,eX
i
k,j. Define pje =

∑
k∈Pi

δik,ep
i
k,j, then

P[Xe,j = 1] = pje. The link flow is

Ve =
∑
i∈I

∑
j∈Ji

Xe,jwj, ∀ e ∈ E.
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We still have the following conservations between link and path flows:

Ve =
∑
i∈I

∑
k∈Pi

δik,eF
i
k, ∀ e ∈ E. (2.4)

Let F = (F i
k : k ∈ Pi, i ∈ I)T be the corresponding flow of strategy

profile p. Let ce(·) be a function of the link flow to denote the travel cost on

link e ∈ E. Let cik(·) be a function of the flow to denote the travel cost on

path k ∈ Pi, which is the sum of the cost of those links that are included in

path k, i.e.,

cik(F) =
∑
e∈k

ce(Ve), ∀ k ∈ Pi, ∀ i ∈ I.

The expected costs in Definition 2.7 can be calculated as follows:

ECj(yj = l,p−j) = E[cil(F) | X i
l,j = 1], l ∈ Pi, i ∈ I,

ECj(p) =
∑
k∈Pi

pik,jECj(yj = k,p−j) =
∑
k∈Pi

pik,jE[cik(F) | X i
k,j = 1].

At a mixed user equilibrium, every path with positive probability must

yield the same expected cost for every player. Because if it is not true, then

the player’s expected cost can be decreased by switching to the pure strategy

with lower expected cost. Thus for a mixed Nash equilibrium p with pik,j > 0

for path k ∈ Pi, i ∈ I,

ECj(p) = E[cik(F) | X i
k,j = 1]. (2.5)

This is to say, at a mixed Nash equilibrium, each pure strategy involved in it

is a best response itself, and yields the same expected payoff. Then we can

rewrite the mixed equilibrium condition as the following corollary.

Corollary 2.6. [Awerbuch et al., 2005] Strategy profile p is a mixed equilib-
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rium if and only if, for any k, l ∈ Pi, with pik,j > 0,

E[cik(F) | X i
k,j = 1] ≤ E[cil(F) | X i

l,j = 1], ∀ j ∈ Ji, i ∈ I.

A pure Nash equilibrium may not exist in weighted atomic congestion

games [Harks and Klimm, 2010; Libman and Orda, 2001], while it always

exists in unweighted atomic congestion games [Rosenthal, 1973]. Every atomic

congestion game admits at least one mixed Nash equilibrium [Nash, 1951].

2.3.2 System Optimum

System optimum is defined as the optimal usage of the traffic resources in the

whole network, which is understood as a result of the well coordination by a

central authority. Unlike the UE, the traffic is well coordinated by a central

authority, who will assign each traveller to a specific path. Thus the routing

choice of each traveller can be regarded as a pure strategy.

Definition 2.8. In an atomic instance (G,d, c), a pure strategy profile x is a

system optimum if, and only if, it minimises the total cost
∑

i∈I
∑

j∈Ji cj(x)·ωj.

2.3.3 Price of Anarchy

The PoA is the worst-case ratio between the total cost at a UE and at a SO

introduced in Sections 2.3.1 and 2.3.2. We can still look at Definition 2.3 for

the definition of the PoA for atomic congestion games.

As we have reviewed in Section 1.2.2, the PoA with affine cost functions

is bounded by 2.5 for unweighted demand and 2.618 for weighted demand,

which are both proved to be tight. For polynomial cost functions with degree

no more than m, the PoA is bounded by Φm+1
m and

(r + 1)2m+1 − rm+1(r + 2)m

(r + 1)m+1 − (r + 2)m + (r + 1)m − rm+1
,
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respectively, for weighed and unweighted demands, where Φm is defined as the

unique non-negative real solution to (x + 1)m = xm+1 (which is the golden

ratio when m = 1) and r = bΦmc [Aland et al., 2011].

For a more detailed analysis on the PoA, we refer to Awerbuch et al.

[2005], Christodoulou and Koutsoupias [2005] and Aland et al. [2011].
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Chapter 3

Non-atomic Model

This chapter is a generalisation of the deterministic model of non-atomic con-

gestion games in Section 2.2. We consider a more realistic setting of stochastic

demand. We present the routing strategies in the stochastic environment and

generalise notions of user equilibrium and system optimum.

This chapter is based on a research article by Wang et al. [2014a].

3.1 Introduction

Day-to-day variability of traffic demands is considered as the source of un-

certainty. We assume that the demand distributions are given and publicly

known, which is based on the fact that a traveller, especially a commuter,

has knowledge of the probabilities of possible demand levels from his or her

own experiences, although the actual current demand level is unknowable. A

similar assumption can be found in the model with deterministic demands,

which states that travellers have perfect knowledge of the fixed demand in

the network [Wardrop, 1952]. The demands of different O-D pairs are as-

sumed to be independent. We adopt the following notation, where capital and

lower-case letters are used to express random variables and, if applicable, the
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corresponding mean values, respectively.

D: vector of random traffic demands with component Di as the random

demand between O-D pair i ∈ I;

d: vector of mean traffic demands with component di > 0 as the mean

demand between O-D pair i ∈ I;

σ2
i : variance of Di, i ∈ I;

εi: coefficient of demand variation, i.e., εi = σi/di, i ∈ I;

ε: maximum coefficient of demand variation, i.e., ε = maxi∈I{εi};

ε: minimum coefficient of demand variation, i.e., ε = mini∈I{εi};

F i
k: random traffic flow on path k ∈ Pi, i ∈ I;

f ik: mean traffic flow on path k ∈ Pi, i ∈ I;

F: vector of random path flows, i.e., F = (F i
k : k ∈ Pi, i ∈ I);

f : vector of mean path flows, i.e., f = (f ik : k ∈ Pi, i ∈ I);

Ve: random traffic flow on link e ∈ E;

ve: mean traffic flow on link e ∈ E;

V: vector of random link flows, i.e., V = (Ve : e ∈ E);

v: vector of mean link flows, i.e., v = (ve : e ∈ E);

δik,e: link-path incidence indicator, which is 1 if link e is included in path

k ∈ Pi and 0 otherwise, e ∈ E, i ∈ I;

δie: link-commodity incidence indicator, i.e., δie = maxk∈Pi
δik,e, e ∈ E, i ∈ I;

ne: number of O-D pairs that use link e ∈ E in their paths, i.e., ne =
∑

i∈I δ
i
e;

n: n = maxe∈E{ne}. Hence n ≤ |I|.

On parameter n defined above, we note that, if n = 1, then every link

is used by only a single O-D pair, which implies that the whole network can

be separated into |I| single-commodity sub-networks. Therefore, as far as our
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problem is concerned for system stability and optimality (to be defined more

precisely in Sections 3.3 and 3.4), our problem is reduced to the problem with

a single commodity when n = 1.

Similar to deterministic work, we denote any instance of a non-atomic

congestion game by a triple (G,D, c), where G is the underlying network, D

and c are the vectors of random demands and (link) cost functions, respec-

tively.

3.2 Routing Strategies

Under the deterministic setting, i.e., Di = di for all i ∈ I, the continuum of

players of each O-D pair i ∈ I is represented by the interval [0, di] endowed

with the Lebesgue measure. The set of mixed strategies of each player from

O-D pair i ∈ I is

Ωi =
{
pi = (pik ≥ 0 : k ∈ Pi) :

∑
k∈Pi

pik = 1
}
,

where pik is the probability that path k ∈ Pi is chosen. According to [Schmei-

dler, 1973], a strategy profile is a (Lebesgue) measurable function qi from [0, di]

to Ωi, i.e, for each player x ∈ [0, di], q
i(x) ∈ Ωi is his/her mixed strategy. A

strategy profile qi induces the vector f i of path flows, f i = (f ik : k ∈ Pi), which

is called an action distribution in [Roughgarden and Tardos, 2002], as follows:

f ik =

∫ di

0

qik(x)dx, ∀ k ∈ Pi,

where qik(x) is the probability that path k ∈ Pi is chosen by the player x from

O-D pair i ∈ I. Clearly,
∑

k∈Pi
f ik = di since qi(x) ∈ Ωi for all x ∈ [0, di],

i ∈ I. [Roughgarden and Tardos, 2002] focused on flow assignments, i.e.,

action distributions, instead of strategy profiles with the argument that every
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flow assignment can be induced by some strategy profile and the costs depend

only on the flow assignment of a strategy profile. Under the stochastic setting,

realized path flows depend on not only the chosen strategy profile but also the

realized demand. Therefore, it is necessary for us to work with strategy profiles

as primary variables instead of flow assignments. Given that the demands

are stochastic, it is reasonable to assume that all the players of a same O-D

pair play the same strategy at an equilibrium in such an environment with

incomplete information [Myerson, 1998; Ashlagi et al., 2006]. Indeed it is

unrealistic for a player to know the routing choices of all other players or

to distinguish players from a same O-D pair when the demand is uncertain.

According to [Myerson, 1998], players can only form perceptions about how

other players make routing decisions solely depending on the information of

which O-D pairs these players belong to. Mathematically, we assume that for

any two different players x and x′ in the (random) interval [0, Di] of the same

O-D pair i ∈ I,

qik(x) = qik(x
′) = pik, ∀ k ∈ Pi,

where pi is some mixed strategy in Ωi. Under this assumption, each strategy

profile for players from O-D pair i ∈ I is now represented by a single mixed

strategy pi ∈ Ωi. Let Ω =
∏

i∈I Ωi. Then each vector p = (pi : i ∈ I) ∈ Ω

represents a strategy profile of players from all O-D pairs.

Now let us define random path flows and link flows for our stochastic

model. Given a strategy profile represented by p = (pi : i ∈ I) ∈ Ω, the

random path flows can be calculated as follows:

F i
k =

∫ Di

0

qik(x)dx =

∫ Di

0

pikdx = pik ·Di, ∀ k ∈ Pi, i ∈ I. (3.1)
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Since pi ∈ Ωi, we have:

∑
k∈Pi

F i
k = Di, ∀ i ∈ I. (3.2)

It is clear that the flow on each link is the sum of flows on all the paths that

include the link:

Ve =
∑
i∈I

∑
k∈Pi

δik,eF
i
k, ∀ e ∈ E.

Applying (3.1), we obtain the following formulation for random link flows:

Ve =
∑
i∈I

pie ·Di, ∀ e ∈ E, (3.3)

where pie =
∑

k∈Pi
δik,ep

i
k is the (link) choice probability of link e ∈ E for the

players from i ∈ I.

Given the link cost functions, the random path cost is simply the sum

of the costs of those links that constitute the path, i.e.,

cik(F) =
∑
e∈E

δik,ece(Ve), ∀ k ∈ Pi, ∀ i ∈ I. (3.4)

We can also compute the total (social) cost as follows:

C(F) =
∑
e∈E

ce(Ve)Ve. (3.5)

Remark 3.1. It is commonly assumed in the literature [Clark and Watling,

2005; Sumalee and Xu, 2011; Shao et al., 2006; Zhou and Chen, 2008] that all

path flows {F i
k : k ∈ Pi, i ∈ I} are independent, which apparently violates the

flow constraints (3.2). In our study, dependent path flows from a same O-D

pair are considered as they should be according to (3.2) and we only assume

that demands {Di : i ∈ I} are independent. From (3.1) we can see that the
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path flows from different O-D pairs are independent, i.e., for any i, i′ ∈ I, i 6= i′

and any k ∈ Pi, k′ ∈ Pi′ , path flows F i
k and F i′

k′ are independent of each other.

3.3 Equilibrium under Stochastic Demands (UE-

SD)

As discussed in the previous section, under stochastic traffic demands, we

assume that risk-neutral travellers between a same O-D pair will use the same

strategy at a steady state. We define our equilibrium condition such that

travellers cannot improve their expected travel costs by unilaterally changing

their routing choice strategies.

Definition 3.1 (UE-SD condition). Given a transportation game (G,D, c)

with stochastic demands, strategy profile p ∈ Ω is said to be a user equilibrium

(UE-SD) if and only if

E[cik(F)] ≤ E[ci`(F)], ∀ k, ` ∈ Pi, i ∈ I with pik > 0. (3.6)

From the definition we see that, at any UE-SD, all the paths with

positive probabilities for the same O-D pair have the equal and minimum

expected travel cost. When all travellers play mixed strategies according to the

UE-SD condition, the expected travel costs are guaranteed to be at minimum.

To solve the equilibrium problem, let us reformulate the UE-SD condition as

a variational inequality (VI).

Proposition 3.1. Given a transportation game (G,D, c) with stochastic de-

mands, let p̄ ∈ Ω be a strategy profile. Then p̄ is a UE-SD if and only if it

satisfies the following VI condition: for any strategy profile p ∈ Ω,

(f − f̄)TE
[
c(F̄)

]
≥ 0, (3.7)
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where F̄ is the vector of path flows corresponding to p̄, and f̄ and f are, re-

spectively, the vector of the mean path flows corresponding to p̄ and p.

Proof. Taking the expectation in (3.1), we have f ik = pikdi. Since demand

di > 0 for every i ∈ I, we can write the UE-SD condition (3.6) as follows:

E[cik(F)] ≤ E[ci`(F)], ∀ k, ` ∈ Pi, i ∈ I with f ik > 0. (3.8)

Let πi = min`∈Pi
E[ci`(F)] for any i ∈ I, then (3.8) is equivalent to

f
i
k(E[cik(F)]− πi) = 0,

f ik ≥ 0,

∀ k ∈ Pi, ∀ i ∈ I.

Let p̄, F̄ and f̄ be the vectors of path choice probabilities and the

corresponding path flows, mean path flows at a UE-SD, respectively. Then

∑
i∈I

∑
k∈Pi

(f̄ ik)(E[cik(F̄)]− π̄i) = 0,

where π̄i = min`∈Pi
E[ci`(F̄)]. For any f = (f ik ≥ 0 : k ∈ Pi, i ∈ I), we also have

∑
i∈I

∑
k∈Pi

f ik(E[cik(F̄)]− π̄i) ≥ 0.

Thus ∑
i∈I

∑
k∈Pi

(f̄ ik)(E[cik(F̄)]− π̄i) ≤
∑
i∈I

∑
k∈Pi

f ik(E[cik(F̄)]− π̄i). (3.9)

From condition (3.2) we have
∑

k∈Pi
f ik =

∑
k∈Pi

(f̄ ik) = di for every i ∈ I.

Hence ∑
i∈I

∑
k∈Pi

(f̄ ik)π̄i =
∑
i∈I

∑
k∈Pi

f ikπ̄i,
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which together with (3.9) implies (3.7):

∑
i∈I

∑
k∈Pi

(f̄ ik)E[cik(F̄)] ≤
∑
i∈I

∑
k∈Pi

f ikE[cik(F̄)].

On the other hand, observe that as the first order optimality condition,

the solution of VI problem (3.7) also solves the following LP problem:

min fTE[c(F̄)]

s.t.
∑
k∈Pi

f ik = di, i ∈ I,

f ik ≥ 0, k ∈ Pi, i ∈ I,

the duality of which is

max λTd

s.t. λi ≤ E[cik(F̄)], k ∈ Pi, i ∈ I.

Therefore, we have the following complementary slackness conditions:

(E[cik(F̄)]− λi)f ik = 0, k ∈ Pi, i ∈ I,

which imply (3.6).

Remark 3.2. With equations (3.3) and (3.4) we can rewrite the VI condition

(3.7) in terms of link flows: p̄ ∈ Ω is a UE-SD if and only if it satisfies the

condition that, for any vector p ∈ Ω of path choice probabilities,

∑
e∈E

(ve − v̄e)E[ce(V̄e)] ≥ 0, (3.10)

where V̄e is the link flow on link e ∈ E corresponding to p̄, and ve and v̄e are,

respectively, the mean link flows on link e ∈ E corresponding to p and p̄.
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An equivalence between the UE-SD condition and a minimization prob-

lem can also be established if the link cost functions are affine, which is stated

in the following proposition.

Proposition 3.2. Given a transportation game (G,D, c) with stochastic de-

mands and affine cost functions, let p̄ ∈ Ω be a vector of path choice probabil-

ities. Then p̄ is a UE-SD if and only if it solves the following minimization

problem

min
p∈Ω

Z(p) ≡
∑
e∈E

∫ ve

0

ce(x)dx, (3.11)

where, as we recall, ve =
∑

i∈I
∑

k∈Pi
δik,ep

i
kdi.

Proof. We prove this proposition by verifying the equivalence between VI

problem (3.7) and minimization problem (3.11). Note that, since the link

cost function ce(x) is continuously differentiable and non-decreasing, function∫ ve
0
ce(x)dx is convex (with respect to ve) for any e ∈ E. Convexity is in-

variant under affine maps; therefore, the objective function Z(p) in (3.11) is

convex (with respect to p). In addition, feasible region Ω is convex and com-

pact. Thus minimization problem (3.11) is a convex optimization problem.

It is then necessary and sufficient for p̄ to satisfy the first order optimality

condition of (3.11) [Bertsekas, 1999, Proposition 2.1.2]:

(p− p̄)T∇Z(p̄) ≥ 0. (3.12)

We have:

∂Z(p)

∂pik
=
∑
e∈E

ce(ve)
∂ve
∂pik

=
∑
e∈E

ce(ve)(δ
i
k,edi) = cik(f)di.

In addition, we have f̄ ik = p̄ikdi by taking the expectation in (3.1). Thus,
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condition (3.12) is equivalent to

(f − f̄)Tc(̄f) ≥ 0,

which in turn is equivalent to (3.7) when the link cost functions are affine.

Proposition 3.2 establishes that the VI condition for a UE-SD is just a

restatement of the first order necessary and sufficient condition of a minimiza-

tion problem, if the cost functions c are affine. For general link cost functions,

we can rewrite condition (3.7) in the following form by substituting f ik = pikdi

and f̄ ik = p̄ikdi:

(p− p̄)TS(p̄) ≥ 0, p ∈ Ω, (3.13)

where S(p) is a vector with the same dimension as E[c(F)], obtained by replac-

ing element E[cik(F)] in vector E[c(F)] with E[cik(F)]di for every k ∈ Pi, i ∈ I.

When link cost functions are continuous, the game admits at least one UE-SD.

This is due to the fact that existence of a solution p̄ ∈ Ω to VI problem (3.13)

is guaranteed by the continuity of S(p) and the compactness of Ω.

Let us conclude this section with a discussion on non-uniqueness of user

equilibria in transportation games with stochastic demands. In deterministic

models, the user equilibrium is unique with respect to link flows under the

assumption of separable and strictly increasing link cost functions [Beckmann

et al., 1956; Dafermos and Sparrow, 1969]. As one link flow can correspond

to many path flows in general networks, the path flow of a deterministic user

equilibrium is not unique. In our stochastic model, path and link flows are

random and determined by path and link choice probabilities respectively.

The following example shows that multiple UE-SDs may exist even under the

assumption of separable and strictly increasing link cost functions.

Example 3.1. Consider the network in Figure 3.1. There are two O-D pairs

in the network, (s1, t) and (s2, t). Each O-D pair is connected by two paths,
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paths 1 and 2 from s1 to t and paths 3 and 4 from s2 to t, where Path 1

consists of links 1 and 3, Path 2 of links 1 and 4, Path 3 of links 2 and 3, and

Path 4 of links 2 and 4. The cost function on each link is also indicated in the

figure.

t

s1

s2

c4(x) = x2

c3(x) = x2

c2(x) = x

c1(x) = x

Figure 3.1: Network with multiple UE-SDs

The demand D1 from s1 to t follows a distribution with a mean d1 = 1

and variance σ2
1 = 1, while the demand D2 from s2 to t follows a different

distribution with a mean d2 = 1 and variance σ2
2 = 4. Given the definition of

UE-SD, a feasible strategy profile is clearly a UE-SD when both paths from

each O-D pair have the same expected travel cost, i.e., whenE[c1(V1)] + E[c3(V3)] = E[c1(V1)] + E[c4(V4)],

E[c2(V2)] + E[c3(V3)] = E[c2(V2)] + E[c4(V4)],

which are equivalent to

E[c3(V3)] = E[c4(V4)]. (3.14)

Based on condition (3.14), we can find many UE-SDs. Here we present two of

them for comparison: p̄1 = (1, 0, 0.25, 0.75) and p̄2 = (0.5, 0.5, 0.5, 0.5). From

(3.3) we can calculate means and variances of link flows and expected link

costs for each of the two strategy profiles as shown in Table 3.1, from which

satisfaction of condition (3.14) at each strategy profile confirms that they are
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both UE-SDs.

At p̄1 ve Var[Ve] E[ce(Ve)] At p̄2 ve Var[Ve] E[ce(Ve)]

Link 1 1 1 1 Link 1 1 1 1
Link 2 1 4 1 Link 2 1 4 1
Link 3 1.25 1.25 2.8125 Link 3 1 1.25 2.25
Link 4 0.75 2.25 2.8125 Link 4 1 1.25 2.25

Table 3.1: Means and variances of link flows, expected link costs at p̄1 =
(1, 0, 0.25, 0.75) and p̄2 = (0.5, 0.5, 0.5, 0.5)

It is easy to see that at the two UE-SDs the mean link flows on links

3 and 4 are different and the link choice probabilities are also different. For

example, the choice probability of link 3 is 1 for travellers from s1 to t and

0.25 from s2 to t in the first UE-SD, while it becomes 0.5 for both O-D pairs in

the second UE-SD. Furthermore, in terms of the expected total cost E[C(F)]

(see definition (3.5)), they are also different at the two UE-SDs as shown in

the following calculations (assuming that E[D3
i ] is finite for i = 1, 2), where

F̄1 and F̄2 are path flows resulted from p̄1 and p̄2, respectively:

E[C(F̄1)] = E[V 2
1 ] + E[V 2

2 ] + E[V 3
3 ] + E[V 3

4 ]

= E[D2
1] + E[D2

2] + E[(p1D1 + p3D2)3] + E[(p2D1 + p4D2)3]

= 9.4375 + E[D3
1] + 0.4375 E[D3

2],

E[C(F̄2)] = E[V 2
1 ] + E[V 2

2 ] + E[V 3
3 ] + E[V 3

4 ]

= 12.25 + 0.25E[D3
1] + 0.25 E[D3

2].

Clearly, E[C(F̄1)] 6= E[C(F̄2)] when E[D3
1] + 0.25 E[D3

2] 6= 3.75. �

Example 3.1 shows that multiple UE-SDs with different mean link flows,

link choice probabilities, and expected total costs can exist. If cost functions

are further restricted to being affine, as addressed in Proposition 3.2, the UE-

SD condition can be reformulated as a minimization problem, which is actually
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in the same form as deterministic user equilibrium condition [Beckmann et al.,

1956] with respect to mean link flows. Thus under the same condition of

separable and strictly increasing cost functions, the mean link flows of UE-SD

are unique. However, link choice probabilities and expected total cost are still

non-unique in general, which can be shown by modifying Example 3.1 with

all settings remaining the same except that all link cost functions are affine,

ce(x) = x for all e = 1, . . . , 4.

By solving the minimization problem (3.11), a strategy profile is a UE-

SD if and only if v1 = v2 = v3 = v4 = 1, which can be expressed as follows:

p1 + p2 = p3 + p4 = p1 + p3 = p2 + p4 = 1.

We can find multiple UE-SD strategy profiles from this system of equations,

such as (1, 0, 0, 1) and (0.5, 0.5, 0.5, 0.5). The choice probability of link 3 is

1 from s1 to t and 0 from s2 to t in the former UE-SD, while both become

0.5 in the latter UE-SD. The expected total cost in the whole network can be

calculated as 14 and 11.5 for the two UE-SDs respectively.

3.4 System Optimum under Stochastic Demand

(SO-SD)

At a system optimum (SO-SD), traffic is coordinated by a central authority

according to mixed strategies. It should be noted in the case of coordination

that traffic is assigned according to path choice probabilities rather than by

traffic proportions. This is due to the fact that demand is cumulative over the

time period concerned, while traffic allocation needs to be made once a traffic

flow arrives at a route entrance. The central authority has to implement traffic

coordination without full knowledge of the actual demand. The objective of
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the coordinator is to minimise the expectation of the total travel cost at an

SO-SD. This gives rise to our following definition.

Definition 3.2 (SO-SD condition). Given a transportation game (G,D, c)

with stochastic demands, a vector p ∈ Ω of path choice probabilities is said to

be an SO-SD strategy if it solves the following minimization problem:

min
p∈Ω

T (p) ≡ E [C(F)] = E

[∑
e∈E

ce(Ve)Ve

]
, (3.15)

where Ve is computed from p according to (3.3).

Generally, an SO-SD may not be unique as the optimization problem

(3.15) may have more than one optimal solution, all of which, however, must

yield the same expected total cost in the whole network.
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Chapter 4

Price of Anarchy for

Non-atomic Congestion Games

In this chapter we investigate the price of anarchy (PoA) to be defined be-

low based on the model presented in Chapter 3 with the expected total cost

T (·) defined in the network by (3.15) as the social (system) objective function.

Given a transportation game (G,D, c) with stochastic demands, the corre-

sponding PoA is defined as the worst-case ratio between expected total costs

at a UE-SD and at an SO-SD:

PoA(G,D, c) := max

{
T (p)

T (q)
: p,q ∈ Ω,p is a UE-SD and q is an SO-SD

}
.

Here and in the remainder of the thesis, it is understood that the corresponding

ratio is infinity whenever the denominator is zero.

Let I be any given set of instances (G,D, c) of transportation games

with stochastic demands, then the PoA with respect to I is defined as

PoA(I) := max
(G,D,c)∈I

PoA(G,D, c).

Note that even for deterministic demands (i.e., D is particularly deterministic),
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the PoA is already unbounded if the link cost functions c are unrestricted

[Roughgarden and Tardos, 2002]. In this chapter, we will establish upper

bounds on the PoA for a fixed set Cm of link cost functions, the class of

polynomial cost functions with degree at most m. As reviewed in Section 2.2,

the PoA in deterministic models were bounded by two methods, i.e., convexity

method and geometry method. In this chapter, we extend both of them to

our stochastic model. We first establish the convexity and geometry bounds

for general (link) cost functions and general demand distributions in Section

4.1 and then compute both the upper bounds for polynomial cost functions

in Section 4.2. In Section 4.3, we compute the upper bounds for two different

settings of the demand distributions, i.e., positive-valued distributions and

normal distributions. Finally in Section 4.4, we discuss two special cases of

affine cost functions and single commodity networks.

This chapter is based on a research article by Wang et al. [2014a].

4.1 General Upper Bounds

Both convexity and geometry methods we mentioned above for deterministic

models require general bounds on the total cost function
∑

e∈E ce(ve)ve. In

our stochastic model, the expected total cost function is E
[∑

e∈E ce(Ve)Ve
]
,

which in general is not solely a function of the mean link flows ve, e ∈ E. In

order to extend the bounding techniques to our stochastic model, we make

the following general assumption. Denote by C(I) the class of all link cost

functions {ce(·) : e ∈ E} used in game instances (G,D, c) ∈ I.

Assumption 4.1. For each link cost function ce(·) ∈ C(I), there exist non-

decreasing functions se(·), se(·), te(·), te(·): R+ → R+, such that se(0) =

se(0) = 0 and te(0) = te(0) = ce(0); and for any random link flows Ve (e ∈ E)
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as defined in (3.3) with ve > 0,

0 < se(ve) ≤ E[ce(Ve)Ve] ≤ se(ve), (4.1)

0 < te(ve) ≤ E[ce(Ve)] ≤ te(ve). (4.2)

Note that when ve = 0, we can derive Ve = 0 from (3.3) and the fact

that di > 0, i ∈ I. Hence with E[ce(Ve)] = ce(0) and E[ce(Ve)Ve] = 0, we

can still use se(·), se(·) te(·) and te(·) to bound E[ce(Ve)Ve] and E[ce(Ve)] when

ve = 0.

The above assumption is satisfied under some mild conditions, which

we will discuss in detail later. Based on Definition 2.5, we make the following

definitions.

Definition 4.1. Under Assumption 4.1, for each link cost function ce(·) ∈

C(I), define

β(ce, I) = sup
x≥0, y>0

x (te(y)− te(x))

y te(y)
,

and

β(I) = sup
c∈C(I)

β(c, I).

Note that the definition above is a generalisation of Definition 2.5 in

deterministic work. When demands are particularly deterministic, we can

choose te(·) = te(·) = ce(·) and obtain

β(ce, I) = sup
x≥0, y>0

x (ce(y)− ce(x))

y ce(y)
= sup

y>x≥0

x (ce(y)− ce(x))

y ce(y)
,

which is proved geometrically to be less than 1 (see Section 2.2.3 for the de-

tails). However with stochastic demands, we can no longer guarantee that

β(I) in Definition 4.1 is always less than 1. The supremum in the definition

of β(ce, I) can be attained under the condition x > y. We demonstrate this

point later in our study of the PoA. We now use Figure 4.1 to show how
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(x (te(y)− te(x)))/(y te(y)) can be interpreted geometrically under both con-

ditions, x ≤ y and x > y. As shown in panel (a), when x ≤ y, the shaded

rectangle of area x (te(y) − te(x)) is within the big rectangle of area y te(y).

However, in panel (b), the shaded rectangle of area x (te(y) − te(x)) is not

completely within the dotted rectangle of area y te(y) due to the possibility

that te(y) > te(x), which implies β(ce, I) could be more than 1. It shows that

the geometric meaning of this ratio is not as clear as its counterpart in the

deterministic setting. However, we still use the word “geometry” to refer to

the bounding technique motivated from [Correa et al., 2008] to indicate the

significance of the motivating work.

0

te(·)

te(·)

te(x)

te(y)

x y

(a) x ≤ y
0

te(·)

te(·)

te(x)

te(y)

y x

(b) x > y

Figure 4.1: Geometric interpretation of
x (te(y)− te(x))

y te(y)
in the definition of

β(ce, I)

Definition 4.2. Under Assumption 4.1, for each link cost function ce(·) ∈

C(I), define for each e ∈ E functions φe(·) and ηe(·) : R+ → R+ as follows:

φe(x) =
x te(x)

se(x)
, ηe(x) =

x te(x)

se(x)
.
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Let

α(ce, I) = inf
x>0

φe(x), α(ce, I) = sup
x>0

ηe(x),

and

α(I) = inf
c∈C(I)

α(c, I), α(I) = sup
c∈C(I)

α(c, I).

Now we are ready to show our first bound by the geometry method.

Proposition 4.1 (General geometry bound). Let (G,D, c) ∈ I be any game

instance. Under Assumption 4.1, if β(I) < 1, then

PoA(G,D, c) ≤ (1− β(I))−1 · α(I)

α(I)
.

Proof. Let p̄ be a UE-SD with V̄, v̄ as the corresponding link flows and mean

link flows. Let p∗ be an SO-SD with V∗,v∗ as the corresponding link flows

and mean link flows. Given that d > 0, we have v̄, v∗ ≥ 0. From UE-SD

condition (3.10), we have

∑
e∈E

v̄eE[ce(V̄e)] ≤
∑
e∈E

v∗eE[ce(V̄e)]

=
∑
e∈E

v∗eE[ce(V
∗
e )] +

∑
e∈E

v∗e
(
E
[
ce(V̄e)

]
− E [ce(V

∗
e )]
)
,

which can be rearranged as

(1−R)
∑
e∈E

v̄eE
[
ce(V̄e)

]
≤
∑
e∈E

v∗eE [ce(V
∗
e )] ,
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where, with {e ∈ E : v̄e > 0} 6= ∅,

R =

∑
e∈E

v∗e
(
E
[
ce(V̄e)

]
− E [ce(V

∗
e )]
)

∑
e∈E

v̄eE
[
ce(V̄e)

]
≤

∑
e∈E:v̄e>0

v∗e
(
E
[
ce(V̄e)

]
− E [ce(V

∗
e )]
)

∑
e∈E:v̄e>0

v̄eE
[
ce(V̄e)

]
≤ max

e∈E:v̄e>0

v∗e
(
E
[
ce(V̄e)

]
− E [ce(V

∗
e )]
)

v̄eE
[
ce(V̄e)

] .

The first inequality above is due to v∗e
(
E
[
ce(V̄e)

]
− E [ce(V

∗
e )]
)
≤ 0 when v̄e =

0 as can be seen from the facts that V̄e = 0 when v̄e = 0 and te(·) is non-

decreasing (Assumption 4.1). Now we have:

R ≤ max
e∈E:v̄e>0

{
v∗e
v̄e
− v∗eE[ce(V

∗
e )]

v̄eE
[
ce(V̄e)

]} ≤ max
e∈E:v̄e>0

{
v∗e
v̄e
− v∗ete(v

∗
e)

v̄ete(v̄e)

}
= max

e∈E:v̄e>0

v∗e
(
te(v̄e)− te(v∗e)

)
v̄ete(v̄e)

≤ β(I).

Hence

(1− β(I))
∑
e∈E

v̄eE
[
ce(V̄e)

]
≤
∑
e∈E

v∗eE [ce(V
∗
e )] . (4.3)

We have

T (p̄)

T (p∗)
=

∑
e∈E

E[ce(V̄e)V̄e]∑
e∈E

E[ce(V ∗e )V ∗e ]
= R1 ·R2

−1 ·R3,

where

R1 =

∑
e∈E

v̄eE
[
ce(V̄e)

]
∑
e∈E

v∗eE [ce(V ∗e )]
≤ (1− β(I))−1 ,

46



according to inequality (4.3), and

R2 =

∑
e∈E

v̄eE[ce(V̄e)]∑
e∈E

E[ce(V̄e)V̄e]
=

∑
e∈E:v̄e>0

v̄eE[ce(V̄e)]∑
e∈E:v̄e>0

E[ce(V̄e)V̄e]

≥ min
e∈E:v̄e>0

v̄eE[ce(V̄e)]

E[ce(V̄e)V̄e]
≥ α(I), (4.4)

R3 =

∑
e∈E

v∗eE[ce(V
∗
e )]∑

e∈E
E[ce(V ∗e )V ∗e ]

=

∑
e∈E:v∗e>0

v∗eE[ce(V
∗
e )]∑

e∈E:v∗e>0

E[ce(V ∗e )V ∗e ]

≤ max
e∈E:v∗e>0

v∗eE[ce(V
∗
e )]

E[ce(V ∗e )V ∗e ]
≤ α(I). (4.5)

The second equations in (4.4) and (4.5) hold because V̄e = 0 and V ∗e = 0 when

v̄e = 0 and v∗e = 0, respectively. Therefore,

T (p̄)

T (p∗)
≤ (1− β(I))−1 · α(I)

α(I)
,

for any pair p̄,p∗ ∈ Ω of a UE-SD and an SO-SD.

In considering polynomial link cost functions, Roughgarden and Tardos

[2004] used the fact that link cost functions are differentiable and semi-convex

in their bounding techniques (or more exactly, the convexity of the function

x ce(x)). In extending their method to our stochastic model, we make the

following assumption, which we will show later is satisfied for polynomial link

cost functions.

Assumption 4.2. For each link cost function ce(·) ∈ C(I), the function se(·)

in Assumption 4.1 is convex and differentiable. In addition, there exists a

function λe(·) : R+ → R+ such that s′e(λe(x)x) = te(x) for all x ≥ 0, where

s′e(·) is the derivative of se(·).

Definition 4.3. Under Assumptions 4.1 and 4.2, for each link cost function
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ce(·) ∈ C(I), define for e ∈ E functions ψe(·) and µe(·) : R+ → R+ as follows:

ψe(x) =
x te(x)

se(x)
, µe(x) =

se(λe(x)x)

se(x)
.

Using φe(·) defined in Definition 4.2 in addition to ψe(·) and µe(·), we define

γ(ce, I) = inf
x>0
{µe(x) + φe(x)− ψe(x)λe(x)} ,

Let

γ(I) = inf
c∈C(I)

γ(c, I).

Now let us present a bound by the convexity method in the following

proposition.

Proposition 4.2 (General convexity bound). Let (G,D, c) ∈ I be any game

instance. Under Assumptions 4.1 and 4.2, if γ(I) > 0, then

PoA(G,D, c) ≤ 1

γ(I)
.

Proof. Let p̄ and p∗ ∈ Ω be respectively a UE-SD and an SO-SD, with v̄,v∗ ≥

0 as the corresponding mean link flows. Then

T (p∗) =
∑
e∈E

E [ce(V
∗
e )V ∗e ] ≥

∑
e∈E

se(v
∗
e)

≥
∑
e∈E

(se(λe(v̄e)v̄e) + (v∗e − λe(v̄e)v̄e)s′e(λe(v̄e)v̄e))

=
∑
e∈E

(
se(λe(v̄e)v̄e) + (v∗e − λe(v̄e)v̄e)te(v̄e)

)
=
∑
e∈E

(
se(λe(v̄e)v̄e) + v∗ete(v̄e)− λe(v̄e)v̄ete(v̄e)

)
,

where the first inequality follows from (4.1), and the second last equation

follows from Assumption 4.2.
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Applying UE-SD condition (3.10) and inequalities (4.2) in the last line

above leads to

T (p∗) ≥
∑
e∈E

(
se(λe(v̄e)v̄e) + v̄ete(v̄e)− λe(v̄e)v̄ete(v̄e)

)
=

∑
e∈E:v̄e>0

(
se(λe(v̄e)v̄e) + v̄ete(v̄e)− λe(v̄e)v̄ete(v̄e)

)
=

∑
e∈E:v̄e>0

(µe(v̄e) + φe(v̄e)− ψe(v̄e)λe(v̄e)) se(v̄e)

≥ γ(I)
∑

e∈E:v̄e>0

se(v̄e) = γ(I)
∑
e∈E

se(v̄e) ≥ γ(I)T (p̄).

where the first equation follows from se(0) = 0 (Assumption 4.1) and the

second equation follows from Definitions 4.2 and 4.3. Given that γ(I) > 0, we

have
T (p̄)

T (p∗)
≤ 1

γ(I)
,

for any pairs p̄,p∗ ∈ Ω of a UE-SD and an SO-SD.

Remark 4.1. When demands are deterministic, Propositions 4.1 and 4.2

yield the PoA bounds in Theorems 2.5 and 2.4, respectively, by choosing

se(ve) = se(ve) = ce(ve)ve and te(ve) = te(ve) = ce(ve) for e ∈ E, which

implies α(ce, I) = α(ce, I) = 1. As we have mentioned before, β(ce, I) < 1 al-

ways holds for nondecreasing cost functions according to Figure 2.2. Similarly,

condition γ(ce, I) > 0 is satisfied since

µe(x) + φe(x)− ψe(x)λe(x) = µe(x) + 1− λe(x) > 0,

due to the fact that µe(x) > 0 and λe(x) ≤ 1 for x > 0 for nonzero cost

functions (see Section 2.2.3 and Roughgarden and Tardos [2004] for details).
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4.2 Polynomial Cost Functions

As mentioned in Section 2.2.3, for deterministic models, both convexity and

geometry methods lead to the same PoA upper bound with polynomial link

cost functions. For our stochastic model, this is no longer true. After estab-

lishing two general PoA upper bounds in this section, we will show respectively

in the next two sections that for polynomial link cost functions, the geometry

bound on the PoA is better (but not tight) in general, while the convexity

bound is better and indeed tight in some special cases.

We consider the set Im of game instances for any fixed m ∈ Z+ (m ≥ 1)

with (non-zero) polynomial link cost functions in the form of

ce(x) =
m∑
j=0

bejx
j, bej ≥ 0, j = 0, 1, . . . ,m and

m∑
j=0

bej > 0; e ∈ E.

In other words, C(Im) = Cm, the set of (non-zero) polynomial functions with

nonnegative coefficients and degree at most m. Let C̃m be the subset of Cm
consisting of only one term, namely C̃m = ∪0≤j≤mC̃jm, where C̃jm = {bxj : b > 0}

for all j = 0, 1, . . . ,m. Let Ĩm be the subset of game instances in Im with link

cost functions in C̃m. The following lemma shows we can focus on the subset

Ĩm when bounding the PoA for instances in Im.

Lemma 4.3. For any instance (G,D, c) ∈ Im, we have

PoA(G,D, c) ≤ PoA(Ĩm).

Proof. Any instance (G,D, c) ∈ Im can be transformed into an equivalent

instance with link cost functions in C̃m by replacing any link e ∈ E of cost

ce(x) =
∑m

j=0 bejx
j with a directed path consisting of no more than m + 1

links of costs c̃e,j(x) = bejx
j (0 ≤ j ≤ m) such that bej > 0. This equivalent

instance clearly belongs to Ĩm. The result then follows immediately.
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A similar lemma can be found in [Roughgarden, 2005] for calculating

the anarchy value of polynomial cost functions in deterministic models.

We now consider monomial link cost functions in C̃m. Given link cost

function ce(·) ∈ C̃jm, i.e., ce(x) = bejx
j with bej > 0 for a fixed j ≤ m, we have:

E [ce(Ve)Ve] = bejE
[
V j+1
e

]
.

If j = 0, then E [ce(Ve)Ve] = bejve, which is a function of the mean link flow ve.

For j ≥ 1, in order to compute E [ce(Ve)Ve], we need the moment E [V j+1
e ] of

Ve to be finite. Given that Ve =
∑

i∈I p
i
e ·Di and {Di : i ∈ I} are independent,

we then need the first j + 1 moments of Di to be finite. In addition, in order

to construct functions se(·), se(·), te(·), and te(·) in Assumption 4.1, we make

the following assumption.

Assumption 4.3. The first m+1 moments of random demands Di (i ∈ I) are

all finite and positive. In addition, for j = 2, . . . ,m+1, there exist 0 < lj ≤ hj

such that

0 ≤ ljv
j
e ≤ E

[
V j
e

]
≤ hjv

j
e, ∀ e ∈ E.

Positivity of moments is satisfied in general if we consider positive-

valued demand distributions, which is reasonable to assume. We also con-

sider normal distributions later since they are widely used in the literature

to simulate traffic demands, especially the ones with large (positive) means

or relatively small variances, although negative tails are contained [Clark and

Watling, 2005; Asakura and Kashiwadani, 1991]. Positivity of higher moments

for normal distributions is again satisfied easily under the assumption of posi-

tive means. With respect to the parameters lj and hj, for consistency we define

l0 = h0 = l1 = h1 = 1 since E [V j
e ] = vje for j = 0, 1. We will show later how

to compute lj and hj for j > 1 for both positive-valued demand distributions

and normal distributions (with positive means).
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Under Assumption 4.3, we can now show that there exist functions

se(·), se(·), te(·), te(·), and λe(·) with which both Assumptions 4.1 and 4.2 are

satisfied for monomial link cost functions.

Definition 4.4. For a fixed j (0 ≤ j ≤ m), let ce(·) ∈ C̃jm. Let te(x) = hjbejx
j,

te(x) = ljbejx
j,

 se(x) = hj+1bejx
j+1,

se(x) = lj+1bejx
j+1,

where hj and lj are taken from Assumption 4.3. In addition, let

λe(x) =


(

hj
(j + 1)lj+1

)1/j

, j > 0,

1, j = 0.

With the functions defined in Definition 4.4, it is easy to show that

Assumption 4.1 is satisfied. As for Assumption 4.2, it is indeed that se(·) is

convex and differentiable. We can also check easily that s′e(λe(x)x) = te(x) for

all x ≥ 0. We are now ready to compute all necessary parameters to provide

specific upper bounds on the PoA.

Lemma 4.4. Under Assumption 4.3, we have

α(Ĩm) = min
0≤j≤m

lj
hj+1

, α(Ĩm) = max
0≤j≤m

hj
lj+1

, (4.6)

β(Ĩm) = max
1≤j≤m

{
j

j + 1
·
(

hj
(j + 1)lj

)1/j
}
, (4.7)

γ(Ĩm) = min
1≤j≤m

{
lj
hj+1

− j

j + 1
· hj
hj+1

·
(

hj
(j + 1)lj+1

)1/j
}
. (4.8)

Proof. We have

φe(x) =
x te(x)

se(x)
=

lj
hj+1

, ηe(x) =
x te(x)

se(x)
=

hj
lj+1

.
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Hence

α(ce, Ĩm) =
lj
hj+1

, α(ce, Ĩm) =
hj
lj+1

.

Since C(Ĩm) = C̃m = ∪0≤j≤mC̃jm, we have

α(Ĩm) = min
0≤j≤m

inf
c∈C̃jm

α(c, Ĩm) = min
0≤j≤m

lj
hj+1

,

α(Ĩm) = max
0≤j≤m

sup
c∈C̃jm

α(c, Ĩm) = max
0≤j≤m

hj
lj+1

.

For parameter β(ce, Ĩm), we have

x (te(y)− te(x))

y te(y)
=
x

y

(
1− lj

hj

(
x

y

)j)
≡ fj(z),

where z = x/y, which implies that

β(Ĩm) = max
0≤j≤m

sup
c∈C̃jm

β(c, Ĩm) = max
0≤j≤m

sup
z>0

fj(z).

For 1 ≤ j ≤ m, elementary calculus gives

sup
z>0

fj(z) =
j

j + 1
·
(

hj
(j + 1)lj

)1/j

,

which together with the fact that f0(·) ≡ 0 implies equation (4.7).

We now consider γ(ce, Ĩm). If j = 0, we have: λe(x) = µe(x) = 1 =

φe(x) = ηe(x). Thus we have γ(ce, Ĩm) = 1 for ce(·) ∈ C̃0
m. When j > 0 we

have

λe(x) =

(
hj

(j + 1)lj+1

)1/j

.

Thus

µe(x) =
se(λe(x)x)

se(x)
=

lj+1

hj+1

(
hj

(j + 1)lj+1

)1/j+1

.

Similar to φe(·) and ηe(·), we have ψe(x) = hj/hj+1. All three functions, λe(·),
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µe(·), and ψe(·) are constants, leading to the following:

γ(ce, Ĩm) = µe(x) + φe(x)− ψe(x)λe(x)

=
lj+1

hj+1

(
hj

(j + 1)lj+1

)1/j+1

+
lj
hj+1

− hj
hj+1

(
hj

(j + 1)lj+1

)1/j

=
lj
hj+1

− j

j + 1
· hj
hj+1

·
(

hj
(j + 1)lj+1

)1/j

.

Since specifically for j = 1, we have l1/h2 = 1/h2 ≤ 1, which implies γ(ce, Ĩm) ≤

1 for ce(·) ∈ C̃1
m, according to the definition of γ(Ĩm), we obtain equation

(4.8).

In the following two theorems we present specific geometry and convex-

ity bounds on the PoA by applying Propositions 4.1 and 4.2 to game instances

in Im.

Theorem 4.5 (Geometry upper bound). Let (G,D, c) ∈ Im. Under Assump-

tion 4.3, if
hj
lj
<

(j + 1)j+1

jj
, ∀ j = 1, . . . ,m, (4.9)

then

PoA(G,D, c) ≤

(
1− max

1≤j≤m

{
j

j + 1
·
(

hj
(j + 1)lj

)1/j
})−1

·
max

0≤j≤m
hj/lj+1

min
0≤j≤m

lj/hj+1

.

Proof. The proof of the theorem is straightforward by applying Proposition 4.1

for Ĩm combined with Lemma 4.4. Note that Assumption 4.1 is satisfied for

functions defined in Definition 4.4 under Assumption 4.3. Lemma 4.3 is then

used to bound the PoA for game instances in Im.

Theorem 4.6 (Convexity upper bound). Let (G,D, c) ∈ Im. Under Assump-

tion 4.3, if
hj
lj+1

(
hj
lj

)j
<

(j + 1)j+1

jj
, ∀ j = 1, . . . ,m, (4.10)
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then

PoA(G,D, c) ≤ max
1≤j≤m

(
lj
hj+1

− j

j + 1
· hj
hj+1

·
(

hj
(j + 1)lj+1

)1/j
)−1

.

Remark 4.2. Theorems 4.5 and 4.6 both generalise the PoA bounds pro-

vided by Roughgarden and Tardos [2002, 2004] and Correa et al. [2008] for

deterministic models.

When the traffic demands return to being deterministic, we can choose

lj = hj = 1 for all integer j ≤ m+ 1, so that Assumption 4.3 is satisfied. Both

conditions (4.9) and (4.10) clearly hold since (j + 1)j+1/jj > 1 for 1 ≤ j ≤ m.

Both the geometry and convexity bounds become
(
1−m(m+ 1)−(m+1)/m

)−1
,

which matches the tight upper bound of the PoA in deterministic models.

On the other hand, unlike in deterministic models, conditions (4.9) and

(4.10) are necessary for our stochastic model. It is due to the fact that pa-

rameters we use to bound the PoA in our stochastic model now depend on

not only the cost functions but also demand distributions and to some extent,

the network structure. Both conditions are constructed based on functional

approximations of E [ce(Ve)] and E [ce(Ve)Ve]. In general it is difficult to deter-

mine what set I of instances of transportation games with stochastic demands

for which these conditions are always satisfied. However, we will derive these

two conditions in the next section with specific demand distributions.

4.3 Specific Demand Distributions

4.3.1 General Positive-valued Distributions

It is natural to consider general positive-valued distributions for demands {Di :

i ∈ I}. It was clear that we need to assume the finiteness of the first m + 1

moments of Di (i ∈ I) when considering game instances in Im. These moments
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are non-negative when demands follow positive-valued distributions. Let

θ
(j)
i =

E[Dj
i ]

dji
> 0, ∀ i ∈ I, ∀ j = 0, 1, . . . ,m+ 1. (4.11)

Lemma 4.7. For any s, t ∈ Z+ and any i ∈ I,

θ
(s+t)
i ≥ θ

(s)
i · θ

(t)
i . (4.12)

Proof. We have

E[Ds+t
i ] = E[Ds

iD
t
i ] = E[Ds

i ] · E[Dt
i ] + Cov(Ds

i , D
t
i), i ∈ I.

Since Di is a positive random variable, Cov(Ds
i , D

t
i) ≥ 0 (see, e.g., Schmidt

[2014]). Thus

E[Ds+t
i ] ≥ E[Ds

i ] · E[Dt
i ], ∀ i ∈ I,

which leads to
E
[
Ds+t
i

]
E[Di]s+t

≥ E[Ds
i ]

E[Di]s
· E[Dt

i ]

E[Di]t
, ∀ i ∈ I.

We then have θ
(s+t)
i ≥ θ

(s)
i · θ

(t)
i for all i ∈ I.

We will need Minkowski’s inequality, which is stated in the following

lemma.

Lemma 4.8 (Minkowski’s Inequality). Let X and Y be random variables.

Then for 1 ≤ q <∞,

(E[|X + Y |q])1/q ≤ (E[|X|q])1/q + (E[|Y |q])1/q .

Denote θ
(j)

= maxi∈I{θ(j)
i } for j = 0, 1, . . . ,m. The following lemma

shows positive-valued distributions do satisfy Assumption 4.3 with hj = θ
(j)

and lj = 1 for j = 2, . . . ,m+ 1. Note that for j = 0, 1, we also have lj = hj =
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θ
(j)

= 1.

Lemma 4.9. For any transportation game (G,D, c) in which random demands

{Di : i ∈ I} follow positive-valued distributions, the moments of link flows can

be bounded as follows:

0 ≤ vje ≤ E[V j
e ] ≤ θ

(j)
vje, ∀ j = 2, . . . ,m+ 1, e ∈ E.

Proof. According to (3.3), Ve is a non-negative random variable since {Di : i ∈

I} follow positive-valued distributions. Due to the convexity of xj on [0,∞)

for j ≥ 2, the middle inequality follows directly from Jensen’s inequality. For

the last inequality in the lemma, we have

(
E[V j

e ]
)1/j

=

E

(∑
i∈I

δiep
i
eDi

)j
1/j

≤
∑
i∈I

δie

(
E
[(
pieDi

)j])1/j

=
∑
i∈I

δiep
i
e

(
E[Dj

i ]
)1/j

=
∑
i∈I

δiep
i
edi

(
θ

(j)
i

)1/j

≤
(
θ

(j)
)1/j

ve,

where the first inequality follows Minkowski’s inequality. We then have

E[V j
e ] ≤ θ

(j)
vje, ∀ e ∈ E,

which completes our proof.

Substituting hj = θ
(j)

and lj = 1 for j = 0, 1, . . . ,m in Theorem 4.5, we

obtain the following specific geometry bound on the PoA.

Proposition 4.10. Let (G,D, c) ∈ Im. If {Di : i ∈ I} follow positive-valued

distributions with finite first m+ 1 moments and

θ
(j)
<

(j + 1)j+1

jj
, ∀ j = 1, . . .m, (4.13)
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then

PoA(G,D, c) ≤ max
1≤j≤m

1− j

j + 1
·

(
θ

(j)

j + 1

)1/j
−1

· θ(m)
θ

(m+1)
.

Proof. We only need to show that α(Ĩm) = 1/θ
(m+1)

and α(Ĩm) = θ
(m)

. By

setting s = t + 1 in (4.12), it is easy to prove that θ
(j)

is nondecreasing in j.

Then

α(Ĩm) = min
0≤j≤m

1

θ
(j+1)

=
1

θ
(m+1)

,

α(Ĩm) = max
0≤j≤m

θ
(j)

= θ
(m)
.

Similarly, we can substitute hj = θ
(j)

and lj = 1 for j = 0, 1, . . . ,m in

Theorem 4.6 to obtain the following specific convexity bound on the PoA.

Proposition 4.11. Let (G,D, c) ∈ Im. If {Di : i ∈ I} follow positive-valued

distributions with finite first m+ 1 moments and

θ
(m)

<
m+ 1

mm/(m+1)
, (4.14)

then

PoA(G,D, c) ≤ max
1≤j≤m

 1

θ
(j+1)

− j

j + 1
· θ

(j)

θ
(j+1)

·

(
θ

(j)

j + 1

)1/j
−1

.

Remark 4.3. Since (j + 1)/jj/(j+1) is decreasing in j, condition (4.14) implies

condition (4.13) for m ≥ 1. When m = 1 both conditions are always satisfied

and we will discuss this special case in Section 4.4. So let us consider the

two conditions for m = 2, 3, 4, as the highest power of a link cost function
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is seldom greater than 4 in practice [Clark and Watling, 2005; Sumalee and

Xu, 2011]. Table 4.1 shows applicable ranges of moments up to degree 4 for

two conditions (4.13) and (4.14). The results indicate that condition (4.14)

for the specific convexity bound in Proposition 4.11 is much less applicable for

polynomial cost functions with higher degrees.

Degree j = 2 j = 3 j = 4

Geometry condition (4.13): θ
(2)
< 6.75 θ

(3)
< 9.48 θ

(4)
< 12.21

Convexity condition (4.14): θ
(2)
< 1.89 θ

(3)
< 1.75 θ

(4)
< 1.65

Table 4.1: Applicable ranges of moments for the two PoA bounds

Example 4.1. We provide an example with log-normal distributions for the

comparison in the above remark. Assume for i ∈ I that Di ∼ lnN(µi, ωi),

i.e., Di follows a log-normal distribution with mean di = eµi+ω
2
i /2 and variance

σ2
i = (eω

2
i − 1)d2

i , which means that the coefficient of demand variation εi =

σi/di = (eω
2
i − 1)1/2. The moments of Di are E

[
Dj
i

]
= ejµi+j

2ω2
i /2. Thus

θ
(j)
i =

E
[
Dj
i

]
dji

= ej(j−1)ω2
i /2 = (ε2i + 1)j(j−1)/2, ∀ i ∈ I, j ∈ Z+.

We then have θ
(j)

= (ε̄2 + 1)j(j−1)/2 for all j ∈ Z+. Conditions (4.13) and

(4.14) can now be expressed in terms of applicable ranges of the maximum

coefficient of variation ε for different classes of polynomial link cost functions.

Table 4.2 shows maximum values of ε for Cm with m = 2, 3, and 4.

Class of cost functions C2 C3 C4

Geometry condition (4.13): 2.40 1.06 0.72
Convexity condition (4.14): 0.94 0.45 0.29

Table 4.2: Maximum values of coefficient of variation ε of log-normal distribu-
tions for the two upper bounds
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Figure 4.2: The two PoA upper bounds with quadratic cost functions (m = 2)
and log-normal distributions

In Figure 4.2 we also plot the two specific PoA bounds presented in

Propositions 4.10 and 4.11 when demands follow log-normal distributions for

quadratic cost functions (m = 2).

As can be seen, the geometry bound is better and applicable for a wider

range of game instances. The vertical dotted (asymptotical) lines help to show

that the convexity and geometry bound approach infinity when ε̄→ 0.94 and

2.40 respectively. Note that when the demand variation is very small (ε̄ ≤ 0.54

in this case), the convexity bound can be slightly better than the geometry

bound although the overall improvement is insignificant. Similar results can

be obtained for m = 3 and m = 4. �

4.3.2 Normal Distributions

As previously mentioned, normal distributions can be used to approximate

traffic demands, especially those with large positive means or relatively small

variances. As the second class of specific demand distributions, let us consider

Di ∼ N(di, σ
2
i ) for i ∈ I, i.e., Di follows a normal distribution with mean
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di and variance σ2
i for i ∈ I. We assume di > 0 for i ∈ I. Note that this

assumption guarantees the non-negativity of mean link flows, which is needed

to derive general upper bounds on the PoA in Propositions 4.1 and 4.2.

Given that demands {Di : i ∈ I} are independent, clearly Ve also follows

a normal distribution for e ∈ E. The mean ve and variance σ2
e of Ve can be

derived from (3.3) as follows, which is applicable for any independent demand

distributions:

ve =
∑
i∈I

∑
k∈Pi

δik,ep
i
kdi,

and

σ2
e = Var

[ ∑
i∈I, k∈Pi

δik,ep
i
kDi

]
= Var

[∑
i∈I

δiep
i
eDi

]
=
∑
i∈I

δie(p
i
e)

2σ2
i .

Since Ve ∼ N(ve, σ
2
e), the jth moment of the link flow Ve can be written as

follows:

E[V j
e ] =

j∑
r=0, r=even

(
j

r

)
(σe)

r(ve)
j−r(r − 1)!!, ∀ e ∈ E, (4.15)

where j ∈ N is the power degree, (r − 1)!! is the double factorial of r − 1,

i.e., (r − 1)!! = (r − 1)(r − 3) · · · 1 (if r is even) with the understanding that

(−1)!! = 1, and

(
j

r

)
= j!/((j − r)!r!) is a binomial coefficient. (Note that

moment formula (4.15) for the normal distribution can be found in standard

texts, e.g., in [Patel and Read, 1996; Ross, 2002, p. 396 (47)].)

In order to bound moments of Ve, we first bound its variance σ2
e using

the following lemma.

Lemma 4.12. The mean ve and variance σ2
e of random link flow Ve (e ∈ E)

satisfy the following inequalities:

ε2

n
v2
e ≤ σ2

e ≤ ε2v2
e ,
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where n, ε, and ε are defined in Section 3.1.

Proof. By definition εi = σi/di, we can bound σ2
e from above:

σ2
e =

∑
i∈I

δie(p
i
e)

2ε2i d
2
i ≤

(
max
i∈I
{εi}

)2∑
i∈I

δie(p
i
edi)

2

≤ ε2

( ∑
i∈I, k∈Pi

δik,ep
i
kdi

)2

= ε2v2
e ,

and bound σ2
e from below:

σ2
e ≥

(
min
i∈I
{εi}

)2∑
i∈I

δie(p
i
edi)

2 ≥ ε2

ne

(∑
i∈I

δiep
i
edi

)2

=
ε2

ne

( ∑
i∈I, k∈Pi

δik,ep
i
kdi

)2

≥ ε2

n
v2
e ,

where the second inequality follows from Cauchy-Schwarz inequality with ne =∑
i∈I δ

i
e as defined in Section 3.1.

We are now ready to bound moments of link flows and show that As-

sumption 4.3 is satisfied.

Lemma 4.13. For any transportation game (G,D, c) in which {Di : i ∈ I}

follow normal distributions with positive mean demands, Assumption 4.3 is

satisfied with

lj =

j∑
r=0, r=even

(
j

r

)(
ε2

n

)r/2
(r−1)!!, hj = θ

(j)
, ∀ j = 2, . . . ,m+1. (4.16)

Proof. Since Di ∼ N(di, σ
2
i ) with di > 0 and finite σi for all i ∈ I, it is clear

that all moments of Di are finite and positive according to (4.15). We need to

show that

ljv
j
e ≤ E[V j

e ] ≤ hjv
j
e, ∀ j = 2, . . . ,m+ 1, e ∈ E,
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where lj and hj are defined in (4.16). Applying Lemma 4.12 in (4.15), we

obtain

E[V j
e ] ≥

j∑
r=0, r=even

(
j

r

)(
ε2

n

)r/2
(ve)

j(r − 1)!!, e ∈ E.

On the other hand, observe that

θ
(j)
i =

j∑
r=0, r=even

(
j

r

)
(εi)

r(r − 1)!!, ∀ i ∈ I,

which implies

θ
(j)

=

j∑
r=0, r=even

(
j

r

)
(ε)r(r − 1)!!,

which together with Lemma 4.12 implies the upper bound.

Lemma 4.13 indicates that we can apply Theorems 4.5 and 4.6 for trans-

portation games (G,D, c) in which {Di : i ∈ I} follow normal distributions

with positive means by using values of lj and hj in (4.16). Since lj depends

on ε and ε → 0 implies lj → 1, without any restriction on ε (i.e., no positive

lower bound), we would have the same PoA upper bounds as with any positive-

valued distributions (with the same moments as those of normal distributions).

This is due to the fact that hj = θ
(j)

in both settings.

Additionally lj depends also on n = maxe∈E ne, where ne as defined

in Section 3.1 is the number of O-D pairs that use link e. Clearly, n is a

network-related parameter, which means for normal distributions, the two up-

per bounds (and conditions of their applicability) are not network independent

as in deterministic models in general. However the effect of n is limited, as

we can also derive upper bounds independent of n by setting n → ∞. From

(4.16), n → ∞ also implies lj → 1. Thus in such an extreme case, the PoA

upper bounds (and conditions of their applicability) for normal distributions

would return to the same as those for positive-valued distributions (with the
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Figure 4.3: Maximum values of coefficient of variation, ε, of normal distribu-
tions for the two PoA upper bounds with quadratic cost functions (m = 2)

same moments as those of normal distributions). Then from Table 4.1 we

can derive maximum applicable ε of normal distributions for both geometry

and convexity upper bound, as shown in Table 4.3. For polynomial cost func-

tions with degree no more than 4, we can bound the PoA using the geometry

method for arbitrary network as long as ε < 1.08. This condition is actually

not restrictive, as only normal distributions with relatively small variance are

usually used in practice to simulate traffic demands.

Class of cost functions C2 C3 C4

Geometry Condition (4.9): 2.40 1.68 1.08
Convexity Condition (4.10): 0.94 0.50 0.32

Table 4.3: Maximum applicable ε of normal distributions for the two upper
bounds when n→∞

In order to demonstrate the effect of small n, we use the case of ε = ε = ε

for simplicity. Figure 4.3 shows the maximum applicable values of ε when m =

2 for our geometry and convexity bounds. We can see that condition (4.9) is

always satisfied for n < 7 and so is condition (4.10) for n < 3. When n is large
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Figure 4.4: The two PoA upper bounds with quadratic cost functions (m = 2)
and normal distributions and n = 5

enough, the applicable ranges of ε remain almost constant and as discussed

above, the upper bounds of these ranges converge to the corresponding values

reported in Table 4.3. Similar results can be found for m = 3 and m = 4.

As noted in Section 3.1, the case of n = 1 is equivalent to the case of single

commodity, which we will treat as a special simple case later in Section 4.4,

as we will do for the case of m = 1.

We also compare the two upper bounds for different values of ε, which

is illustrated in Figure 4.4 for m = 2 and n = 5 with clearly better a quality

of the geometry bound.

4.4 Two Special Cases

We have provided two general upper bounds on the PoA for transportation

games with general networks and general polynomial cost functions under

two specific classes of demand distributions, namely, general positive-valued

distributions and normal distributions. With these settings, the geometry

method leads to a better upper bound under less stringent conditions. In this
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section we will investigate two special cases in which the convexity method

will lead to a better (and in fact tight) upper bound.

The first special case is with single-commodity networks (|I| = 1), or

equivalently n = 1 as noted before, while the second special case is of affine

cost functions. Interestingly, both conditions (4.9) and (4.10) in these two

special cases are satisfied automatically as in deterministic models.

4.4.1 Single Commodity Networks

Consider any transportation game (G,D, c) ∈ Im such that G has a single O-D

pair. Since |I| = 1, we will drop the subscript i in writing relevant parameters,

such as writing D instead of Di. In order to satisfy Assumption 4.3, we assume

the first m+ 1 moments of D are finite and positive. Then Ve = pe ·D. Thus

E [V j
e ] = θ(j)vje, where θ(j) = E [Dj] /dj. We can then select lj = hj = θ(j) for

all j = 0, 1, . . . ,m+ 1 and hence Assumption 4.3 is satisfied.

Condition (4.9) is satisfied since hj/lj = 1 for all j = 1, . . . ,m. The

geometry bound in Theorem 4.5 can be calculated as follows:

PoA(G,D, c) ≤ (1− max
1≤j≤m

j(j + 1)−(j+1)/j)−1 ·
max

0≤j≤m
θ(j)/θ(j+1)

min
0≤j≤m

θ(j)/θ(j+1)

= (1−m(m+ 1)−(m+1)/m)−1 ·
max

0≤j≤m
θ(j)/θ(j+1)

min
0≤j≤m

θ(j)/θ(j+1)
.

We claim that θ(j+1) ≥ θ(j) ≥ 1 for all j in both settings for the demand dis-

tributions, general positive-valued distributions and normal distributions. For

positive-valued distributions, it follows directly from (4.12). For normal dis-

tributions, we can use (4.15) to derive the result. Thus max0≤j≤m θ
(j)/θ(j+1) =
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θ(0)/θ(1) = 1. The geometry bound can then be simplified further as follows:

PoA(G,D, c) ≤ (1−m(m+ 1)−(m+1)/m)−1 · max
0≤j≤m

θ(j+1)

θ(j)
. (4.17)

Condition (4.10) becomes

θ(j)

θ(j+1)
<

(j + 1)j+1

jj
, ∀ j = 1, . . . ,m,

which is also satisfied given that θ(j+1) ≥ θ(j) ≥ 1 for all j. The convexity

bound in Theorem 4.6 becomes:

PoA(G,D, c) ≤ max
1≤j≤m


(

1− j

j + 1

(
θ(j)

(j + 1)θ(j+1)

)1/j
)−1

θ(j+1)

θ(j)

 . (4.18)

We claim that the convexity bound in (4.18) is better than the geometry

bound in (4.17). In fact,

max
1≤j≤m


(

1− j

j + 1
·
(

θ(j)

(j + 1)θ(j+1)

)1/j
)−1

· θ
(j+1)

θ(j)


≤ max

1≤j≤m

(
1− j

j + 1
·
(

θ(j)

(j + 1)θ(j+1)

)1/j
)−1

· max
1≤j≤m

θ(j+1)

θ(j)

≤ max
1≤j≤m

(
1− j

j + 1

(
1

j + 1

)1/j
)−1

· max
0≤j≤m

θ(j+1)

θ(j)

= (1−m(m+ 1)−(1+m)/m)−1 · max
0≤j≤m

θ(j+1)

θ(j)
,

where the second inequality is due to θ(j+1)/θ(j) ≥ 1 and θ(0) = θ(1) = 1.

Figure 4.5 shows these two upper bounds for the log-normal distribu-

tions discussed in Section 4.3.1 for quadratic link cost functions (m = 2), in

which the convexity bound is strictly better than the geometry bound. In what

follows we provide an example to show that the convexity bound in (4.18) is
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Figure 4.5: The two PoA upper bounds for single commodity networks with
log-normal distributions and quadratic cost functions (m = 2)

actually tight.

Example 4.2. Consider a two-link network in Figure 4.6. The cost function

on the upper link is a constant, c1(x) = E[Dj], and that on the lower link is a

polynomial function, c2(x) = xj for a fixed j, 1 ≤ j ≤ m.

ts

c2(x) = xj

c1(x) = E[Dj]

Figure 4.6: Two-link network with polynomial cost functions

As the expected total cost on the lower link is never greater than that

on the upper link, strategy p̄ = (0, 1) is a UE-SD. We have

T (p̄) = E[Dj+1] = θ(j+1)dj+1.

Let p∗ = (p∗1, p
∗
2) be an SO-SD strategy, which minimises the expected total
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cost

T (p) = p1θ
(j)dj+1 + (p2)j+1 θ(j+1)dj+1.

Hence

p∗1 = 1−
(

θ(j)

(j + 1)θ(j+1)

)1/j

and p∗2 =

(
θ(j)

(j + 1)θ(j+1)

)1/j

,

which lead to

T (p∗) =

(
1− j

j + 1
·
(

θ(j)

(j + 1)θ(j+1)

)1/j)
θ(j)dj+1.

Thus, for this instance,

PoA ≥

(
1− j

(j + 1)
·
(

θ(j)

(j + 1)θ(j+1)

)1/j)−1

· θ
(j+1)

θ(j)
, (4.19)

which shows that the convexity bound in (4.18) is tight. �

4.4.2 Affine Cost Functions

We now consider a transportation game (G,D, c) ∈ I1, i.e., all link cost func-

tions belong to C1, the set of all non-zero affine functions with non-negative

coefficients:

ce(x) = aex+ be, where ae, be ≥ 0 and ae + be > 0, ∀ e ∈ E.

Assume that {Di : i ∈ I} have positive means and finite second moments.

From Lemma 4.12, we can choose h2 = 1 + ε2 and l2 = 1 + ε2/n. Hence

Assumption 4.3 is satisfied.

Condition (4.9) is satisfied since h1 = l1 = 1. With the chosen values
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of h2 and l2, the geometry bound in Theorem 4.5 can be simplified:

PoA(G,D, c) ≤ 4

3
(1 + ε2). (4.20)

Condition (4.10) reduces to (1 + ε2/n)
−1
< 4, which is always satisfied.

The convexity bound in Theorem 4.6 is simplified as follows:

PoA(G,D, c) ≤
(

1

1 + ε2
− 1

2
· 1

1 + ε2
· 1

2(1 + ε2/n)

)−1

=
4

3

(
1 + ε2

)( 1 + ε2/n

1 + (4/3) · ε2/n

)
. (4.21)

It is apparent that the convexity bound in (4.21) is better than the geometry

bound in (4.20). In addition, the bound in (4.21) indicates that it is network

dependent in general.

Figure 4.7 shows the two bounds with different values of n for affine

cost functions when ε = ε = ε. We can see that the geometry bound is the

limiting convexity bound when n tends to infinity.

We conclude our consideration of the special case of affine cost functions

by noting that the convexity bound in (4.21) is actually tight when n = 1 as

can be easily verified by direct computation with the special case j = 1 of

Example 4.2.

4.5 Concluding Remarks

In this chapter, we have extended two existing bounding techniques and estab-

lished two different upper bounds on the PoA for our stochastic model, namely,

the convexity bound and geometry bound, respectively. Unlike in the deter-

ministic models, the two upper bounds are applicable in general only under

certain conditions. In our opinion, these conditions are technical limitations

of the bounding techniques we have used. We believe that in general, if these
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Figure 4.7: The two PoA upper bounds with affine cost functions for different
values of n

conditions are not met, the PoA can still be bounded even though we are not

able to prove it at present.

We have derived two specific PoA upper bounds for the class of polyno-

mial link cost functions with positive-valued demand distributions as well as

normal distributions, which are commonly used to approximate demand distri-

butions. Numerical results show that in general the geometry bound is better

and more applicable than the convexity bound. However, for single-commodity

networks, the convexity bound is tight (and hence better than the geometry

bound). Similarly, when only affine link cost functions are considered, the

convexity bound is again better than the geometry one. One possible explana-

tion is that the convexity method relies on convex under-approximation, which

is less effective with highly non-linear (convex) cost functions. On the other

hand, it seems this method is more effective if we have a good approximation

of E [ce(Ve)Ve], which is indeed case when the network is of a single commod-

ity (and hence no approximation is needed) or when the demand variation is
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very small. In general, both upper bounds can be improved if we can have

better approximation of E [ce(Ve)Ve] for some specific types of demand distri-

butions. For the class of polynomial link cost functions, better approximation

of E [ce(Ve)Ve] means larger lj and smaller hj for j ∈ Z+ in Assumption 4.3.

All upper bounds obtained for our stochastic model under various spe-

cific settings generalise the corresponding upper bounds obtained by Rough-

garden and Tardos [2002, 2004] and Correa et al. [2008] for deterministic de-

mands. The stochasticity of demands plays an important role in the formu-

lation of these upper bounds in our model. Unlike in the deterministic mod-

els, these upper bounds can go to infinity when the demand variation tends

to infinity. It shows that travellers’ selfish routing can cause serious system

degradation with stochastic demands. In addition, while the upper bounds

in the deterministic models are network independent, those in our stochastic

model can be network dependent (through the number n of O-D pairs whose

paths share a particular link in the network).
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Chapter 5

Atomic Model

Chapters 3 and 4 have studied non-atomic congestion games with stochastic

demands. This chapter focuses on a different setting of atomic, which considers

a finite number of travellers. Similar to Chapter 3, we consider day-to-day

demand variation as the source of uncertainty and establish new models of

user equilibrium and system optimum to describe travellers’ and coordinators’

behaviours in the stochastic environment. This chapter is a generalisation of

the deterministic model of atomic congestion games in Section 2.3.

This chapter is based on a research article by Wang et al. [2014b].

5.1 Introduction

We follow the notation introduced in Section 3.1 for our study on atomic

games. We denote an instance of an atomic congestion game by a triple

(G,D, c), where G is the underlying network, D and c are the vectors of ran-

dom demands and (link) cost functions, respectively. We focus on unweighted

demand, thus an atomic game with stochastic demands in this thesis is actu-

ally a game with random players. Similar to the non-atomic model in Chapter

3, we also assume that the demand distributions are given and publicly known,
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and the demands of different O-D pairs are assumed to be independent.

5.2 Routing Strategies

In deterministic atomic work, both pure strategy and mixed strategy are con-

sidered to model travellers’ routing choices. In order to find the best pure

strategy, every single player needs to know all the others’ routing choices. But

this assumption does not hold in our stochastic model as the number of players

is random. We adopt mixed strategies in this study, i.e., each player selects a

probability distribution over the set of all paths for his O-D pair.

As mentioned in Section 3.2, players can only form perceptions about

how other players make routing decisions solely depending on the information

of which O-D pairs these players belong to, since there is no way for a player

to know the routing choices of all other players or to distinguish players from

a same O-D pair when the demand is uncertain [Myerson, 1998]. Thus we

assume that under stochastic demands, all the players of a same O-D pair

play the same strategy at an equilibrium [Myerson, 1998; Ashlagi et al., 2006].

Let pik be the probability that path k ∈ Pi is chosen. The set of mixed

strategies of each player from O-D pair i ∈ I is

Ωi =
{
pi = (pik ≥ 0 : k ∈ Pi) :

∑
k∈Pi

pik = 1
}
.

Let Ω =
∏

i∈I Ωi. Then each vector p = (pi : i ∈ I) ∈ Ω represents a

strategy profile of players from all O-D pairs. Let random binary variables

{X i
k,j : 1 ≤ j ≤ Di, k ∈ Pi, i ∈ I} indicate whether player j from O-D pair

i ∈ I chooses path k, i.e., P[X i
k,j = 1] = pik and P[X i

k,j = 0] = 1 − pik. Every
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player has to choose one path for his traffic, i.e.,

∑
k∈Pi

X i
k,j = 1, ∀ 1 ≤ j ≤ Di. (5.1)

The total traffic load on path k can be written as

F i
k =

Di∑
j=1

X i
k,j, k ∈ Pi, i ∈ I, (5.2)

which is a compound random variable [Ross, 2002]. When demand Di is re-

alized at y, the conditional path flow on k ∈ Pi follows binomial distribution

B(y, pik). Then the unconditional path flow F i
k in (5.2) can be identified by

the total probability theorem with a given demand distribution.

Given that demands of different O-D pairs are independent, the flows

on paths connecting different O-D pairs are independent. However, the path

flows from a same O-D pair are dependent due to flow conservation constraint

(5.1).

Let X i
e,j be a random binary variable indicating whether player j (1 ≤

j ≤ Di, i ∈ I) chooses link e ∈ E, i.e., X i
e,j =

∑
k∈Pi

δik,eX
i
k,j. Define pie =∑

k∈Pi
δik,ep

i
k, then P[X i

e,j = 1] = pie for any 1 ≤ j ≤ Di. The link flow Ve is a

result of independent choices of all the players on link e:

Ve =
∑
i∈I

Di∑
j=1

X i
e,j, ∀ e ∈ E. (5.3)

Clearly
∑Di

j=1X
i
e,j is also a compound random variable, which follows Binomial

distribution B(Di, p
i
e) with Di itself a random variable. Thus the distribution

of
∑Di

j=1X
i
e,j can be identified given the distributions of D and the mixed

strategy profile p. The link flow in (5.3) is the sum of independent distributions∑Di

j=1X
i
e,j over all O-D pairs. From (5.2) and (5.3), we have the following
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conservations between link and path flows:

Ve =
∑
i∈I

∑
k∈Pi

δik,eF
i
k, ∀ e ∈ E.

Given the link cost functions, the random path cost is simply the sum

of the costs of those links that constitute the path, i.e.,

cik(F) =
∑
e∈E

δik,ece(Ve), ∀ k ∈ Pi, ∀ i ∈ I. (5.4)

5.3 User Equilibrium with Stochastic Demands

(UE-SD)

At a mixed Nash equilibrium, every path of any given O-D pair with positive

probability must incur the same expected cost for every player from the O-D

pair, since otherwise the expected cost of any of the players from the O-D

pair can be decreased by taking the lower-cost path with a higher probability.

Given strategy profile p with the corresponding path flows F, the expected

cost of taking path k ∈ Pi for a single player j in O-D pair i ∈ I can be

expressed as the following conditional expectation

E[cik(F) | X i
k,j = 1], ∀ 1 ≤ j ≤ Di, i ∈ I. (5.5)

Since at a mixed Nash equilibrium, each pure strategy involved (i.e., with pos-

itive probability) in the mixed strategy is a best response itself and yields the

same expected cost, we arrive at the following definition of a user equilibrium

with stochastic demands.

Definition 5.1 (UE-SD condition). Strategy profile p with the corresponding
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path flows F is a UE-SD if and only if, for any k, l ∈ Pi, with pik > 0,

E[cik(F) | X i
k,j = 1] ≤ E[cil(F) | X i

l,j = 1], (5.6)

for arbitrary traveller j (1 ≤ j ≤ Di, i ∈ I).

Let us calculate the conditional expectation in (5.5). We have

E[cik(F) | X i
k,j = 1] = E

[∑
e∈E

δik,ece(Ve) | X i
k,j = 1

]

=
∑
e∈E

δik,eE

[
ce

(∑
i′∈I

Di′∑
j′=1

X i′

e,j′

)
| X i

k,j = 1

]

=
∑
e∈E

δik,eE

[
ce

(
1 +

Di−1∑
j′=1

X i
e,j′ +

∑
i′ 6=i

Di′∑
j′=1

X i′

e,j′

)]
,

which implies that E[cik(F) | X i
k,j = 1] is independent of the choice of player j

of O-D pair i. Hence we can drop subscript j by denoting tik(p) = E[cik(F) |

X i
k,j = 1]. Let

Ve(D− ei) =

Di−1∑
j′=1

X i
e,j′ +

∑
i′ 6=i

Di′∑
j′=1

X i′

e,j′ , (5.7)

where ei ∈ {0, 1}|I| is a unit vector with 0 for all its components except 1 for

its i-th component. Thus we can write

tik(p) =
∑
e∈k

E[ce(Ve(D− ei) + 1)], ∀ k ∈ Pi, ∀ i ∈ I.

Then we can reformulate the UE-SD condition as a VI program as follows.

Proposition 5.1. A mixed strategy profile p∗ is a UE-SD if and only if it

satisfies the following VI problem:

(f − f∗)T t(p∗) ≥ 0, ∀p ∈ Ω, (5.8)
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where t(p∗) = (tik(p
∗) : k ∈ Pi, i ∈ I), f and f∗ are the mean flows correspond-

ing to strategy profiles p and p∗, respectively.

Proof. From the definition of the UE-SD, ∀ k, l ∈ Pi, ∀ i ∈ I, with (pik)
∗ > 0,

we have

tik(p
∗) ≤ til(p

∗).

Let πi = minl∈Pi
til(p

∗) for i ∈ I. The UE-SD condition is equivalent to

(pil)
∗ (til(p∗)− πi) = 0, ∀ l ∈ Pi, ∀ i ∈ I.

Multiplying both sides of the above by di > 0, we obtain

(f il )
∗ (til(p∗)− πi) = 0, ∀ l ∈ Pi, ∀ i ∈ I.

Summing up the above over all the paths, we get

∑
i∈I

∑
l∈Pi

(f il )
∗ (til(p∗)− πi) = 0. (5.9)

On the other hand, for any feasible strategy profile p, as f il ≥ 0 for any l ∈ PI ,

i ∈ I, ∑
i∈I

∑
l∈Pi

f il
(
til(p

∗)− πi
)
≥ 0,

which together with (5.9) leads to

∑
i∈I

∑
l∈Pi

(
(f il )

∗ − f il
) (
til(p

∗)− πi
)
≤ 0. (5.10)

From the feasibility of the mixed strategies we have

∑
l∈Pi

f il πi =
∑
l∈Pi

(f il )
∗πi = πidi, ∀ i ∈ I.
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Substituting the above into (5.10), we obtain

∑
i∈I

∑
l∈Pi

(
(f il )

∗ − f il
)
til(p

∗) ≤ 0,

which is (5.8).

Next assume p∗ satisfies (5.8). We show that it also satisfies the UE-SD

condition. First with the first order optimality condition we observe that p∗

is an optimal solution to the following linear program (LP):

min fT t(p∗)

s.t.
∑
k∈Pi

f ik = di, ∀ i ∈ I,

f ik ≥ 0, ∀ k ∈ Pi, ∀ i ∈ I.

With LP duality we have

max λTd

s.t. λi ≤ tik(p
∗), ∀ k ∈ Pi, ∀ i ∈ I.

Then the complementary slackness conditions lead us to

f ik(t
i
k(p

∗)− λi) = 0, ∀ k ∈ Pi,∀ i ∈ I,

which implies satisfaction of the UE-SD condition.

Remark 5.1. From the VI formulation in Proposition 5.1, it is interesting

to find that the discreteness of atomic games vanishes, as the UE-SD is de-

termined by the path (link) choice probabilities, and the probabilities can be

arbitrary value in [0, 1]. This is due to the fact that we assume all the trav-

ellers in a same O-D pair adopt an identical mixed strategy in the stochastic

environment. While in the deterministic model, travellers in a same O-D pair

may use different mixed strategies.
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Let us check the existence of UE-SDs from the VI formula. For general

link cost functions, we can rewrite condition (5.8) in the following form by

substituting f ik = pikdi and f̄ ik = p̄ikdi:

(p− p̄)TS(p̄) ≥ 0, p ∈ Ω, (5.11)

where S(p) is a vector with the same dimension as t(p), obtained by replacing

element tik(p) in t(p) with tik(p)di for every k ∈ Pi, i ∈ I. When link cost

functions are continuous, the game admits at least one UE-SD, due to the fact

that existence of a solution p̄ ∈ Ω to VI problem (5.11) is guaranteed by the

continuity of S(p) and the compactness of Ω.

Under deterministic demands, multiple user equilibria can exist even if

each O-D pair consists of a single player. The deterministic model with one

single traveller in each O-D pair is a special case of our stochastic model. Note

that the assumption that all the travellers from each O-D pair adopt the same

strategy is clearly satisfied in this case. Therefore we can use a similar example

as in [Awerbuch et al., 2013] to demonstrate the non-uniqueness of UE-SDs

(see Example 5.1).

Example 5.1. Consider four O-D pairs in Figure 5.1: A-B, A-C, B-C and

C-B, and each of them contains one traveller. Each traveller has two options

to travel to his destination: either the one-hop path or the two-hop path.

When all travellers choose the one-hop paths (i.e., A-B, A-C, B-C and C-B),

they reach a UE-SD. If they all choose the two-hop paths (i.e., A-C-B, A-B-C,

B-A-C and C-A-B), they reach another UE-SD.
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Figure 5.1: Multiple UE-SDs

5.4 System Optimum with Stochastic Demands

(SO-SD)

At a system optimum the traffics are centrally coordinated and assigned so

that the expected total social cost is at minimum. With deterministic de-

mands, the system optimum can always be reached by an assignment with

pure strategies, namely each player is allocated to a certain path. However,

under stochastic demands, such an assignment is no longer possible, as the

central coordinator can only know the demands in probabilities. We assume

the central coordinator treats all the travellers of a same O-D pair equally and

assigns them according to an identical mixed strategy.

Definition 5.2 (SO-SD condition). A strategy profile p is at an SO-SD for

transportation game (G,D, c) if and only if it solves the following minimization

problem:

min
p∈Ω

T (p) ≡ E[
∑
e∈E

ce(Ve)Ve]. (5.12)
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Chapter 6

Price of Anarchy for Atomic

Congestion Games

This chapter investigates the PoA on the basis of the atomic model with

stochastic demands presented in Chapter 5. Given an atomic instance (G,D, c),

the corresponding PoA is defined as:

PoA(G,D, c) := max

{
T (p)

T (q)
: p,q ∈ Ω,p is a UE-SD; q is an SO-SD

}
,

where T (·) is the expected total cost defined in (5.12) as the social (system)

objective function. Given any set I of instances of atomic congestion games,

the PoA with respect to I is defined as

PoA(I) := max
(G,D,c)∈I

PoA(G,D, c).

In this chapter, we extend both the convexity and geometry methods

in non-atomic works and bound the PoA for our atomic model with stochastic

demands. We present analytical bounds for general cost functions and general

demand distributions in Section 6.1 first, and then compute specific upper

bounds for affine cost functions and polynomial cost functions in Sections 6.2
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and 6.3, respectively. In particular, Section 6.2 studies affine cost functions

and general positive-valued demand distributions in general networks. Section

6.3 focuses on polynomial cost functions and general positive-valued demand

distributions in single commodity networks. Comparisons between two bound-

ing methods are also addressed.

This chapter is based on a research article by Wang et al. [2014b].

6.1 General Upper Bounds

As we can see from Proposition 5.1, the UE-SD condition is equivalent to

a path-based VI problem. The following two lemmas provide bounds with

link-based expectations.

Lemma 6.1. Given a transportation game (G,D, c), for any i ∈ I with δie = 1,

the following bounds hold:

E[ce(Ve)] ≤ E[ce(Ve(D− ei) + 1)] ≤ E[ce(Ve + 1)], ∀ e ∈ E.

Proof. Since 0 ≤ X i
e,j ≤ 1, with (5.3) and (5.7) we have

Ve ≤ Ve(D− ei) + 1 ≤ Ve + 1,

which together with that ce(·) is nondecreasing implies the inequalities in the

lemma.

As F i
k follows a compound distribution, we can calculate

Var
[
F i
k

]
= dip

i
k

(
1− pik

)
+ σ2

i

(
pik
)2

= (σ2
i − di)

(
pik
)2

+ dip
i
k.
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Similarly we have

Var

[
Di∑
j=1

X i
e,j

]
=
(
σ2
i − di

) (
pie
)2

+ dip
i
e, ∀ i ∈ I.

Denote VMRi = σ2
i /di as the variance-to-mean ratio for any i ∈ I. Since

demands of different O-D pairs are independent, we have

Var [Ve] =
∑
i∈I

δieVar

[
Di∑
j=1

X i
e,j

]
=
∑
i∈I

δie
(
σ2
i − di

) (
pie
)2

+
∑
i∈I

δiedip
i
e

=
∑
i∈I

δie(VMRi − 1)di
(
pie
)2

+ ve. (6.1)

Lemma 6.2. For any transportation game (G,D, c), we have

l · v2
e + ve ≤ E[V 2

e ] ≤ h · v2
e + ve, ∀ e ∈ E,

where

l =


1

n
min
i∈I

VMRi − 1

di
+ 1, if min

i∈I
VMRi ≥ 1,

min
i∈I

VMRi − 1

di
+ 1, otherwise;

h =


max
i∈I

VMRi − 1

di
+ 1, if max

i∈I
VMRi ≥ 1,

1

n
max
i∈I

VMRi − 1

di
+ 1, otherwise,

and n is defined in Section 3.1.

Proof. From Cauchy-Schwarz inequality and ve =
∑

i∈I p
i
edi, we have

1

n
v2
e ≤

∑
i∈I

δie
(
piedi

)2 ≤ v2
e , ∀ e ∈ E,
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which together with (6.1) implies

Var[Ve] ≤ max
i∈I

{
VMRi − 1

di

}∑
i∈I

(
piedi

)2
+ ve

≤


max
i∈I

{
VMRi − 1

di

}
v2
e + ve, if max

i∈I
VMRi ≥ 1;

1

n
max
i∈I

{
VMRi − 1

di

}
v2
e + ve, otherwise.

Similarly we have

Var[Ve] ≥ min
i∈I

{
VMRi − 1

di

}∑
i∈I

(
piedi

)2
+ ve

≥


1

n
min
i∈I

{
VMRi − 1

di

}
v2
e + ve, if min

i∈I
VMRi ≥ 1;

min
i∈I

{
VMRi − 1

di

}
v2
e + ve, otherwise.

Together with E[V 2
e ] = Var[Ve] + v2

e , the lemma is implied.

Recall C(I) denoting the class of link cost functions {ce(·) : e ∈ E} used

in game instances (G,D, c) ∈ I. In establishing our general upper bounds on

the PoA, we make a few general assumptions about existence of some bounding

functions, which we will identify in computing specific bounds later.

Assumption 6.1. For each link cost function ce(·) ∈ C(I), there exist non-

decreasing functions se(·), se(·), such that se(0) = se(0) = 0, and for any

random link flows Ve (e ∈ E) with ve > 0,

0 < se(ve) ≤ E[ce(Ve)Ve] ≤ se(ve).

There also exist non-decreasing functions te(·), te(·): R+ → R+, such that
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∀ e ∈ E, ∀ i ∈ I with δie = 1,

0 ≤ te(ve) ≤ E[ce(Ve(D− ei) + 1)] ≤ te(ve). (6.2)

With Assumption 6.1, we can derive the following inequality from UE-

SD condition (5.8).

Lemma 6.3. Let p̄ be a strategy profile at the UE-SD, and v̄ be the vector of

the corresponding mean link flows. Let p ∈ Ω be any strategy profile with v as

the vector of the corresponding mean path flows. Then

∑
e∈E

v̄ete(v̄e) ≤
∑
e∈E

vete(v̄e). (6.3)

Proof. From Assumption 6.1, we have

∑
e∈E

δik,et(ve) ≤ tik(p) ≤
∑
e∈E

δik,et(ve),

which together with (5.8) leads to

∑
k∈Pi

f ik

(∑
e∈E

δik,et(v̄e)

)
≥
∑
k∈Pi

f̄ ik

(∑
e∈E

δik,et(v̄e)

)
.

Rearranging the above inequality gives (6.3).

Assumption 6.2. For each link cost function ce(·) ∈ C(I), the function se(·)

in Assumption 6.1 is convex and differentiable. In addition, there exists a

function λe(·) : R+ → R+ such that s′e(λe(x)x) = te(x) for all x ≥ 0, where

s′e(·) is the derivative of se(·).

Definition 6.1. Under Assumptions 6.1 and 6.2, let

γ(ce, I) = inf
x>0

{
se(λ(x)x) + xte(x)− λ(x)xte(x)

se(x)

}
, ce(·) ∈ C(I)
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and

γ(I) = inf
c∈C(I)

γ(c, I).

Now we are ready to present our first general upper bound on the PoA.

We also call it convexity bound, as the bounding method is an adaption and

extension from the convexity method in Chapter 4 for non-atomic models.

Theorem 6.4 (General convexity bound). Let (G,D, c) ∈ I be any trans-

portation game. Under Assumptions 6.1 and 6.2, if γ(I) > 0, then

PoA(G,D, c) ≤ 1

γ(I)
.

Proof. Let p̄ and p∗ ∈ Ω be respectively a UE-SD and an SO-SD, with v̄ and

v∗ as the corresponding mean link flows. Then

T (p∗) =
∑
e∈E

E [ce(V
∗
e )V ∗e ] ≥

∑
e∈E

se(v
∗
e)

≥
∑
e∈E

(se(λe(v̄e)v̄e) + (v∗e − λe(v̄e)v̄e)s′e(λe(v̄e)v̄e))

=
∑
e∈E

(
se(λe(v̄e)v̄e) + (v∗e − λe(v̄e)v̄e)te(v̄e)

)
=
∑
e∈E

(
se(λe(v̄e)v̄e) + v∗ete(v̄e)− λe(v̄e)v̄ete(v̄e)

)
,

where the first inequality follows from Assumption 6.1 and the second inequal-

ity is due to the convexity of se(·), while the the second equality follows from

Assumption 6.2. On the other hand, applying (6.3) for the last line above
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leads to

T (p∗) ≥
∑
e∈E

(
se(λe(v̄e)v̄e) + v̄ete(v̄e)− λe(v̄e)v̄ete(v̄e)

)
=

∑
e∈E:v̄e>0

(
se(λe(v̄e)v̄e) + v̄ete(v̄e)− λe(v̄e)v̄ete(v̄e)

)
≥ γ(I)

∑
e∈E:v̄e>0

se(v̄e) = γ(I)
∑
e∈E

se(v̄e) ≥ γ(I)T (p̄),

where the first equality follows from se(0) = 0 (Assumption 6.1), and the

second equality is according to Definition 6.1. Given that γ(I) > 0, we have

T (p̄)

T (p∗)
≤ 1

γ(I)
.

The above inequality is true for all pairs (p̄,p∗), which implies that 1/γ(I) is

an upper bound of the PoA.

Definition 6.2. Under Assumption 6.1, let

β(ce, I) = sup
x≥0, y>0

{
x(te(y)− te(x))

yte(y)

}
, ce(·) ∈ C(I)

and

β(I) = sup
c∈C(I)

β(c, I).

Let

φe(x) =
xte(x)

se(x)
, ηe(x) =

xte(x)

se(x)
.

Define

α(ce, I) = inf
x>0

φe(x), α(ce, I) = sup
x>0

ηe(x);

and

α(I) = inf
c∈C(I)

α(c, I), α(I) = sup
c∈C(I)

α(c, I).

Assumption 6.3. te(0) = te(0), for any e ∈ E.
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We still call the bound presented below a geometry bound, as it is based

on a bounding method initially of a geometric argument for non-atomic mod-

els, although it has lost its pure geometric base for our atomic models. The

bounding method is an adaption and extension from what is used in Chapter

4 for non-atomic models.

Theorem 6.5 (General geometry bound). Let (G,D, c) ∈ I be any trans-

portation game. Under Assumptions 6.1 and 6.3, if β(I) < 1, then

PoA(G,D, c) ≤ (1− β(I))−1 · α(I)

α(I)
.

Proof. Let p̄ and p∗ ∈ Ω be respectively a UE-SD and an SO-SD, with v̄ and

v∗ as the corresponding mean link flows. From Lemma 6.3, we have

∑
e∈E

v̄ete(v̄e) ≤
∑
e∈E

v∗ete(v̄e)

=
∑
e∈E

v∗ete(v
∗
e) +

∑
e∈E

v∗e
(
te(v̄e)− te(v∗e)

)
,

which can be rearranged as

(1−R)
∑
e∈E

v̄ete(v̄e) ≤
∑
e∈E

v∗ete(v
∗
e),

where with Ē ≡ {e ∈ E : v̄e > 0} 6= ∅,

R ≡
∑

e∈E v
∗
e

(
te(v̄e)− te(v∗e)

)∑
e∈E v̄ete(v̄e)

≤
∑

e∈Ē v
∗
e

(
te(v̄e)− te(v∗e)

)∑
e∈Ē v̄ete(v̄e)

≤ max
e∈Ē

v∗e
(
te(v̄e)− te(v∗e)

)
v̄ete(v̄e)

≤ β(I).

The first inequality above is due to v∗e
(
te(v̄e)− te(v∗e)

)
≤ 0 when v̄e = 0 as can
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be seen from te(v
∗
e) ≥ te(0) = te(0) (Assumptions 6.1 and 6.3). Hence

(1− β(I))
∑
e∈E

v̄ete(v̄e) ≤
∑
e∈E

v∗ete(v
∗
e). (6.4)

We have

T (p̄)

T (p∗)
≡ R1 ·R−1

2 ·R3,

where

R1 ≡
∑

e∈E v̄ete(v̄e)∑
e∈E v

∗
ete(v

∗
e)
≤ (1− β(I))−1,

according to (6.4), and

R2 ≡
∑

e∈E v̄ete(v̄e)

T (p̄)
≥
∑

e∈E v̄ete(v̄e)∑
e∈E se(v̄e)

(Assumption 6.1)

=

∑
e∈Ē v̄ete(v̄e)∑
e∈Ē se(v̄e)

≥ min
e∈Ē

v̄ete(v̄e)

se(v̄e)
≥ α(I),

and with E∗ ≡ {e ∈ E : v∗e > 0} 6= ∅,

R3 ≡
∑

e∈E v
∗
ete(v

∗
e)

T (p∗)
≤
∑

e∈E v
∗
ete(v

∗
e)∑

e∈E se(v
∗
e)

(Assumption 6.1)

=

∑
e∈E∗ v

∗
ete(v

∗
e)∑

e∈E∗ se(v
∗
e)

= max
e∈E∗

v∗ete(v
∗
e)

se(v
∗
e)
≤ α(I).

Therefore
T (p̄)

T (p∗)
≤ (1− β(I))−1α(I)

α(I)
.

for any pair p̄,p∗ ∈ Ω of a UE-SD and an SO-SD.

Remark 6.1. Assumption 6.3 is a technical assumption to achieve finite ge-

ometry bound in Theorem 6.5. In definition 6.2, the value of β(ce, I) is bigger

than that in Definition 4.1 for the non-atomic model, due to the approximate
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link-base inequality (6.3) of the UE-SD condition (5.6).

6.2 Affine Cost Functions

Having established two upper bounds on the PoA for general link cost func-

tions, let us now compute specific upper bounds for affine link cost functions,

i.e.,

ce(x) = aex+ be, ae, be ≥ 0 and ae + be > 0, e ∈ E. (6.5)

Let us choose specific functions of te(·), te(·), se(·) and se(·) satisfying Assump-

tions 6.1 and 6.2 to compute the convexity bound of the PoA in Theorem 6.4.

Definition 6.3. Given affine cost functions in (6.5), for each e ∈ E, let

se(x) = haex
2 + aex+ bex,

se(x) = laex
2 + aex+ bex,

and te(x) = ce(x+ 1) = aex+ ae + be,

te(x) = ce(x) = aex+ be

where l and h are defined in Lemma 6.2. In addition, let λe(x) = 1/(2l).

Remark 6.2. Since di ≥ 1, i ∈ I, we have h ≥ l ≥ 0. With Lemmas 6.1

and 6.2, it is easy to check Assumptions 6.1 and 6.2 are satisfied under Defini-

tion 6.3. We have noted that λe(x) goes to infinity when l = 0. But it will be

only attained when Di = di = 1 and n = 1, namely only one player in a single

commodity network, which is not of interest for the PoA study. Moreover the

special case of l = 0 will be excluded in our later study on both the convexity

and geometry bounds due to the restrictive conditions γ(C) > 0 and β(C) < 1

(see Theorems 6.4 and 6.5).
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Proposition 6.6. Let (G,D, c) be a transportation game with affine cost func-

tions as in (6.5) and l and h as defined in Lemma 6.2. If l > 1/4, then

PoA(G,D, c) ≤ max

{
4hl

4l − 1
, 1 + max

e∈E

ae
be

}
.

Proof. From Definitions 6.1 and 6.3, we have

γ(ce, I) = inf
x>0

L(x) ≡ (1− 1/(4l)) aex+ be
haex+ ae + be

. (6.6)

In order to have γ(ce, I) > 0, we assume 1 − 1/(4l), i.e., l > 1/4. Since the

ratio of any two affine functions achieves its extreme values at the boundary

of its domain, we obtain

γ(ce, I) = min
{

lim
x→∞

L(x), lim
x→0

L(x)
}

= min

{
4l − 1

4hl
,

be
ae + be

}
,

which together with Theorem 6.4 concludes our proof.

Proposition 6.6 involves new parameters ae and be and fails to bound

the PoA for the special case of linear cost functions (be = 0). We overcome

this difficulty in the next proposition by choosing another bounding function

te(·) as follows:

te(x) = aegx+ ae + be, e ∈ E, (6.7)

where

g = 1− 1/d and d = min
i∈I

di. (6.8)

Clearly we have 0 ≤ g < 1 since d ≥ 1. We make sure in the next lemma that

Assumption 6.1 is satisfied with the new choice of functions.

Lemma 6.7. Given transportation game (G,D, c), for any e ∈ E we have

E[Ve(D− ei) + 1] ≥ g · ve + 1, ∀ i ∈ I with δie = 1.
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Proof. Since ve =
∑

i∈I p
i
edi, we have

E[Ve(D− ei) + 1] = E

[
Di−1∑
j=0

X i
e,j

]
+
∑

i′∈I\{i}

δiep
i′

e di′ + 1

= pie(di − 1) +
∑

i′∈I\{i}

δiep
i′

e di′ + 1

≥ ve − pie + 1 ≥ ve −
∑
i∈I

δiep
i
e + 1 ≥ ve −

ve
d

+ 1,

from which the lemma follows.

With te(·) defined in (6.7) and te(·), se(·), se(·), and λe(·) in Defini-

tion 6.3, Assumptions 6.1–6.3 are all satisfied. We have the following alterna-

tive bound on the PoA.

Proposition 6.8. Let (G,D, c) be a transportation game with affine cost func-

tions as in (6.5), l and h as defined in Lemma 6.2, and g in (6.8). If 4gl > 1,

then

PoA(G,D, c) ≤ 4hl

4gl − 1
.

Proof. According to the definitions of l, h and g, we can easily verify h >

g − 1/(4l). Hence we have

γ(ce, I) = inf
x>0

ae (g − 1/(4l))x+ (ae + be)

haex+ ae + be

= lim
x→∞

ae (g − 1/(4l))x+ (ae + be)

haex+ ae + be

=
g − 1/(4l)

h
=

4gl − 1

4hl
> 0,

which together with Theorem 6.4 implies the proposition.

Combining Propositions 6.6 and 6.8, we obtain a convexity upper bound

specific to affine cost functions.
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Theorem 6.9 (Convexity bound). Let (G,D, c) be a transportation game with

affine cost functions as in (6.5), l and h as defined in Lemma 6.2, and g in

(6.8). Then

PoA(G,D, c) ≤


W ≡ max

{
4hl

4l − 1
, 1 + max

e∈E

ae
be

}
, if

1

4
< l ≤ 1

4g
;

min

{
W,

4hl

4gl − 1

}
, if l >

1

4g
.

Remark 6.3. In Theorem 6.9, the applicability condition, l > 1/4, of the

convexity bound is equivalent to that, for any i ∈ I, either di > 4/3 or

(di ≤ 4/3 and σ2
i > di−3d2

i /4). Apparently, they are mild as di represents the

average number of travellers for O-D pair i.

Our geometry upper bound specific to affine cost functions are provided

in the next theorem.

Theorem 6.10 (Geometry bound). Let (G,D, c) be a transportation game

with affine cost functions as in (6.5), l and h as defined in Lemma 6.2, and g

in (6.8). If d > 2, then

PoA(G,D, c) ≤ 4g2

4g2 − 1
· max {1, g/l}

min {1, g/h}
.

Proof. We use te(·), se(·), se(·) in Definition 6.3 and te(·) in (6.7). With

Assumptions 6.1 and 6.3 both satisfied, Theorem 6.5 will be applicable. We

have

β(ce, I) = sup
x≥0, y>0

x((aey + ae + be)− (aegx+ ae + be))

y(aegy + ae + be)

= sup
x≥0, y>0

aex (y − gx)

y(aegy + ae + be)
= sup

y>0

aey

4g(aegy + ae + be)
=

1

4g2
,

where the third equality is obtained by setting x = y/(2g). In order to have
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β(I) < 1, we assume 1/(4g2) < 1, i.e., d > 2. Also we have

α(ce, I) = inf
x>0

x (aegx+ ae + be)

haex2 + aex+ bex
= min {g/h, 1} ,

α(ce, I) = sup
x>0

x(aegx+ ae + be)

laex2 + aex+ bex
= max {1, g/l} .

Substituting the above into Theorem 6.5 completes our proof.

Remark 6.4. When di → ∞ and σ2
i → 0, i ∈ I, we have h = l = g → 1.

Both the convexity and geometry bounds in Theorems 6.9 and 6.10 become

4/3. Example 6.1 shows that our upper bounds are asymptotically tight. It is

interesting that our upper bounds in such an extreme case also match the tight

upper bound on the PoA for non-atomic transportation games of deterministic

demands [Roughgarden and Tardos, 2004], which can be regarded as a limit

of our model when di → ∞ and σ2
i → 0, i ∈ I. On the other hand, when

di is finite and σ2
i = 0, our upper bounds do not match the upper bound

of 5/2 for deterministic atomic models in Awerbuch et al. [2005]. This is

mainly because in the deterministic atomic models, different players can choose

different strategies at an equilibrium even if they are from a same O-D pair,

while in our UE-SD model, all the players from a same O-D pair adopt the

same mixed strategy.

Example 6.1. Consider the two-link network in Figure 6.1. Let D be the

demand from s to t, with E[D] = d and Var[D] = σ2.

ts

c2(x) = ax+ b

c1(x) = a(d+ 1) + b

Figure 6.1: Two-link network
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From the UE-SD condition, strategy pT = (0, 1)T is a UE-SD. The

expected total cost is

T (p) = E[aD2 + bD] = ad2 + aσ2 + bd.

Let p∗ be the SO-SD strategy. Then h = 1 + (σ2 − d)/d2 → 1 when d → ∞

and σ2 = o(d2). We have p∗ = (1− 1/(2h), 1/(2h)) by solving

min
p∈Ω

T (p) ≡ E[(a(d+ 1) + b)V1] + E[(aV2 + b)V2].

Then the expected total cost is

T (p∗) = a

(
1− 1

4h

)
d2 + ad+ bd.

Thus

PoA =
ad2 + aσ2 + bd

a (1− 1/(4h)) d2 + ad+ bd
,

which approaches 4/3 as d→∞ and σ2 = o(d2).

We will conclude this section with a numerical comparison between the

convexity and geometry bounds. We consider two types of demand distribu-

tions, i.e., discrete uniform distributions and zero-truncated Poisson (ZTP)

distributions.

Let us start with discrete uniform distributions. For simplicity we con-

sider demands all following identical uniform distribution U [1, z] with z ≥ 7.

The mean and variance are

di =
1 + z

2
, and σ2

i =
z2 − 1

12
, ∀ i ∈ I.

We have

l = 1 +
z − 7

3(z + 1)n
, h =

4(z − 1)

3(z + 1)
, g =

z − 1

z + 1
.
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Figure 6.2: The two PoA upper bounds with with affine cost functions, discrete
uniform distributions U [1, z] and n = 5

Note that condition l > 1/(4g) (see Theorem 6.9) is always satisfied. Thus the

convexity bound is no more than

4hl

4gl − 1
. (6.9)

Figure 6.2 compares (6.9) with the geometry bound in Theorem 6.10

when n = 5. It shows that the convexity bound in this case even with the

value (6.9) is tighter than the geometry bound. Similar results can be found

for different values of n.

Next let us consider zero-truncated Poisson (ZTP) distributions. For

simplicity, we take demands all following identical distribution ZTP(λ), where

λ is the mean of the original Poisson distribution. From [Johnson et al., 2005],

the expectation and variance of Di, i ∈ I, are

di =
λeλ

eλ − 1
, σ2

i =
λeλ

eλ − 1

(
1− λ

eλ − 1

)
,
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Figure 6.3: The two PoA upper bounds with affine cost functions, ZTP distri-
butions and n = 5

which implies
σ2
i − di
d2
i

= −e−λ.

Thus we have

h = 1− e−λ

n
, l = 1− e−λ, g =

e−x − 1

x
+ 1.

Condition l > 1/(4g) in Theorem 6.9 reduces to λ > 1.06. Similar to Figure 6.2

for uniform distributions, we look at (6.9) for the convexity bound. Figure 6.3

compares (6.9) with the geometry bound in Theorem 6.10 when n = 5. It

shows that the convexity bound is tighter than the geometry bound. Similar

results can be found for different values of n.

In both numerical comparisons of the two bounds above, we have found

the convexity bound is tighter. Note that, the convexity bound is applicable

for a wide range of demand distributions, since condition l > 1/4 is always

satisfied when d ≥ 4/3 (Remark 6.3).
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6.3 Polynomial Cost Functions

In this section, we consider single commodity networks and compute the upper

bounds in Theorems 6.4 and 6.5 for general positive-valued demand distribu-

tions and (non-zero) polynomial link cost functions in the form of

ce(x) =
m∑
j=0

bejx
j, bej ≥ 0, j = 0, 1, . . . ,m and

m∑
j=0

bej > 0; e ∈ E. (6.10)

In a single commodity network, all the links are used in only one O-D

pair, thus we can drop superscript i ∈ I in this section for simplicity. The link

flow can be written as

Ve =
D∑
j=0

Xe,j, ∀ e ∈ E,

where D is the random demand and Xe,j is a random binary variable indicating

whether player j (1 ≤ j ≤ D) chooses link e ∈ E. As introduced in Section

5.2, Ve here is a compound random variable, for which the m-th moment can

be expressed as [Grubbstrom and Tang, 2006]:

E[V m
e ] =

m∑
i=0

E
[(
D

i

)]{ i∑
r=0

(
i

r

)
(−1)i−rE

[(
r∑
j=1

Xe,j

)m]}
. (6.11)

We can see that E[V m
e ] are functions of moments of D and Xe,j. Actually

from [Grubbstrom and Tang, 2006], we can express E[V m
e ] as functions of ve

for any m ∈ Z+. But we will focus on polynomial cost functions with degree

no more than 4, as we have done in Section 4.2 for the non-atomic model.

As E[ce(Ve)Ve] is required for computing the expected total cost, we need to

consider the first five moments of Ve when m ≤ 4. Following from [Grubbstrom

and Tang, 2006], we have, for any e ∈ E:
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E[V 2
e ] = E[D]pe + (E[D2]− E[D])p2

e,

E[V 3
e ] = E[D]pe + 3(E[D2]− E[D])p2

e + (E[D3]− 3E[D2] + 2E[D])p3
e,

E[V 4
e ] = E[D]pe + 7(E[D2]− E[D])p2

e + 6(E[D3]− 3E[D2] + 2E[D])p3
e

+ (E[D4]− 6E[D3] + 11E[D2]− 6E[D])p4
e,

E[v5
e ] = E[D]pe + 15(E[D2]− E[D])p2

e + 25(E[D3]− 3E[D2] + 2E[D])p3
e,

+ 10(E[D4]− 6E[D3] + 11E[D2]− 6E[D])p4
e

+ (E[D5]− 10E[D4] + 35E[D3]− 50E[D2] + 24E[D])p5
e,

which can be simplified as

E[V 2
e ] = µ1ve + µ2v

2
e ,

E[V 3
e ] = µ1ve + 3µ2v

2
e + µ3v

3
e ,

E[V 4
e ] = µ1ve + 7µ2v

2
e + 6µ3v

3
e + µ4v

4
e ,

E[V 5
e ] = µ1ve + 15µ2v

2
e + 25µ3v

3
e + 10µ4v

4
e + µ5v

5
e ,

where

µ1 = 1

µ2 = (E[D2]− E[D])/d2 ≥ 0,

µ3 = (E[D3]− 3E[D2] + 2E[D])/d3,

µ4 = (E[D4]− 6E[D3] + 11E[D2]− 6E[D])/d4,

µ5 = (E[D5]− 10E[D4] + 35E[D3]− 50E[D2] + 24E[D])/d5.

(6.12)
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Given D ≥ 1, we can also compute E
[(∑D−1

j=0 Xe,j + 1
)m]

. Denote

E [(Ve(D − 1) + 1)] = E

[(
D−1∑
j=0

Xe,j + 1

)m]
.

Then we have

E[Ve(D − 1) + 1] = ω0 + ω1ve,

E[(Ve(D − 1) + 1)2] = ω0 + 3ω1ve + ω2v
2
e ,

E[(Ve(D − 1) + 1)3] = ω0 + 7ω1ve + 6ω2v
2
e + ω3v

3
e ,

E[(Ve(D − 1) + 1)4] = ω0 + 15ω1ve + 25ω2v
2
e + 10ω3v

3
e + ω4v

4
e ,

where

ω0 = 1

ω1 = (d− 1)/d,

ω2 = (E[D2]− 3d+ 2)/d2,

ω3 = (E[D3]− 6E[D2] + 11d− 6)/d3,

ω4 = (E[D4]− 10E[D3] + 35E[D2]− 50d+ 24)/d4.

(6.13)

From the above computation, we have, for any j = 0, 1, . . . , 4,

E(Ve(D − 1) + 1)j] =

j∑
r=0

ajrωrv
r
e ,

E[V j+1
e ] =

j∑
r=0

ajrµr+1v
r+1
e ,

in which ajr is defined in Table 6.3.

Now we are ready to define specific functions of te(·), te(·), se(·) and

se(·) satisfying Assumptions 6.1–6.3. As mentioned in the non-atomic part, we
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j r

0 1 2 3 4

0 1
1 1 1
2 1 3 1
3 1 7 6 1
4 1 15 25 10 1

Table 6.1: Coefficient ajr for r ≤ j ≤ 4

only need to consider monomial cost functions to bound the PoA for general

polynomial cost functions (see Lemma 4.3).

Definition 6.4. For any monomial cost function ce(x) = bejx
j, e ∈ E with

bej > 0, j = 0, 1, . . . ,m (m ≤ 4) we define:

te(x) = te(x) =

j∑
r=0

bejajrωrv
r
e ,

se(x) = se(x) =

j∑
r=0

bejajrµr+1v
r+1
e .

For notational simplicity, let te(x) = te(x) = te(x) and se(x) = se(x) =

se(x).

Recall Section 4.2, Ĩm is a set of game instances for any fixed m ∈ Z+

(m ≥ 1) with (non-zero) monomial link cost functions in the form of bxj with

b > 0 and j = 0, 1, · · · ,m. Following Definition 6.2, we can compute

β(ce, Ĩm) = sup
x>0,y>0

x(te(y)− te(x))

yte(y)
,

which is actually the same thing as that in the deterministic model (see Defi-

nition 2.5), thus

β(Ĩm) =
m

(m+ 1)1+1/m
.
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We can also compute

α(ce, Ĩm) = inf
x>0

xte(x)

se(x)
= inf

x>0

∑j
r=0 bejajrωrx

r+1∑j
r=0 bejajrµr+1xr+1

≥ min
0≤r≤j

ωr
µr+1

,

α(Ĩm) ≥ min
0≤r≤m

ωr
µr+1

.

Similarly, we have

α(Ĩm) ≤ max
0≤r≤m

ωr
µr+1

.

Substituting the above into Theorem 6.5, we arrive the following geom-

etry bound of the PoA.

Proposition 6.11 (Geometry upper bound). Let (G,D, c) be an atomic in-

stance, in which G is a single commodity network, D is a positive-valued dis-

tribution, and ce(·) ∈ C for any e ∈ E. If µr, ωr ≥ 0 for any r = 0, 1, · · · ,m,

then

PoA(G,D, c) ≤ (m+ 1)1+1/m

(m+ 1)1+1/m −m
· max0≤r≤m {ωr/µr+1}

min0≤r≤m {ωr/µr+1}
.

Next we compute the convexity upper bound of the PoA. From Defini-

tion 6.4, we can derive

s′e(x) =

j∑
r=0

(r + 1)aebjrµr+1v
r
e .

As addressed in Section 6.1, we need to find λ(x) which solves s′e(λ(x)x) =

te(x). Although such a function exists, it is much more complicated than

that in non-atomic work because both te(x) and s′e(x) are non-homogeneous

polynomial functions even when ce(x) is simply a monomial function. This will

increase the difficulty of computing the convexity upper bound in Theorem 6.4

significantly. Observe that if we split te(x) and s′e(x) into monomial functions,

103



each term of them only differ in coefficients. Next we introduce a modified

method to bound the PoA.

Let te,jr(x) = aebjrωrx
r and se,jr(x) = aebjrµr+1x

r+1. Then te(x) =∑j
r=0 te,jr(x) and se(x) =

∑j
r=0 se,jr(x). Observe that

λr =

(
ωr

(r + 1)µr+1

)1/r

, r = 0, 1, . . . , j,

solves s′e,jr(λrx) = te,jr(x), in which s′e,jr(x) is the derivative of se,jr(x) on x.

Next we use constant λr to derive a simplified convexity upper bound.

Proposition 6.12 (Convexity upper bound). Let (G,D, c) be an atomic in-

stance, in which G is a single commodity network, D is a positive-valued dis-

tribution, and c are polynomial functions in the form of (6.10). If µr, ωr ≥ 0

for any r = 0, 1, · · · ,m, and

min
0≤r≤m

{
µr+1λ

r+1
r + ωr − ωrλr

}
≥ 0,

Then

PoA(G,D, c) ≤ max
0≤r≤m

µr+1

ωr

(
1− r

r + 1

(
ωr

(r + 1)µr+1

)1/r
)−1

.

Proof. Let v̄ and v∗ be mean link flows at a UE-SD and at an SO-SD, respec-

tively. From the convexity of se,jr(·),

se,jr(v
∗
e) ≥ se,jr(λrv̄e) + (v∗e − λrv̄e)s′e,jr(λrv̄e)

= se,jr(λrv̄e) + (v∗e − λrv̄e)te,jr(v̄e).
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Summing over r = 0, 1, . . . , j leads to

se(v
∗
e) ≥

j∑
r=0

se,jr(λrv̄e) + v∗ete(v̄e)−
j∑
r=0

λrv̄ete,jr(v̄e).

Thus, we have

T (p∗) =
∑
e∈E

se(v
∗
e)

≥
∑
e∈E

j∑
r=0

se,jr(λrv̄e) +
∑
e∈E

v∗ete(v̄e)−
∑
e∈E

j∑
r=0

λrv̄ete,jr(v̄e)

≥
∑
e∈E

j∑
r=0

se,jr(λrv̄e) +
∑
e∈E

v̄ete(v̄e)−
∑
e∈E

j∑
r=0

λrv̄ete,jr(v̄e),

where the last inequality follows from Lemma 6.3.

Then

T (p∗) ≥
∑
e∈E

j∑
r=0

(se,jr(λrv̄e) + v̄ete,jr(v̄e)− λrv̄ete,jr(v̄e))

=≥
∑
e∈E

j∑
r=0

aebjr(µr+1λ
r+1
r + ωr − ωrλr)v̄r+1

e .

If µr+1λ
r+1
r + ωr − ωrλr ≥ 0, for any r = 0, 1, . . . ,m, we have

T (p̄)

T (p∗)
≤

∑
e∈E se(v̄e)∑

e∈E
∑j

r=0 aebjr(µr+1λr+1
r + ωr − ωrλr)v̄r+1

e

=

∑
e∈E
∑j

r=0 aebjrµr+1v̄
r+1
e∑

e∈E
∑j

r=0 aebjr(µr+1λr+1
r + ωr − ωrλr)v̄r+1

e

≤ max
0≤r≤m

µr+1

µr+1λr+1
r + ωr − ωrλr

= max
0≤r≤m

µr+1

ωr

(
1− r

r + 1

(
ωr

(r + 1)µr+1

)1/r
)−1

.
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Remark 6.5. When demand returns to deterministic and approaches infinity,

we have µr+1 = ωr = 1 for any 0 ≤ r ≤ m. Thus both the convexity and

geometry upper bound will match the tight upper bound of the PoA in the

deterministic non-atomic work:

(m+ 1)1+1/m

(m+ 1)1+1/m −m
.

This is to say that the upper bounds in Propositions 6.11 and 6.12 are asymp-

totically tight.

Remark 6.6. Specially when m = 1, the upper bounds in Propositions 6.11

and 6.12 do not match those in Theorems 6.9 and 6.10 for affine cost functions

with n = 1. This is because the upper bounds are obtained via different

definitions of te(·) and te(·). Clearly te(·) in this section is tighter than that in

Section 6.2, which thus provides tighter upper bounds.

We will conclude this section with a numerical comparison between the

geometry bound in Proposition 6.11 and the convexity bound in Proposition

6.12. Similar to Section 6.2, we consider two types of demand distributions,

i.e., discrete uniform distributions and zero-truncated Poisson (ZTP) distribu-

tions.

Let D follow discrete uniform distribution U [1, z], where z ∈ Z+. We

can compute

d =
1 + z

2
, E[D2] =

1

6
(z + 1)(2z + 1), E[D3] =

1

4
z(z + 1)2,

from which we can derive

µ2 =
4(z − 1)

3(z + 1)
, µ3 =

2(z − 1)(z − 2)

(z + 1)2
,

ω1 =
z − 1

z + 1
, ω2 =

4(z − 1)(z − 2)

3(z + 1)2
.
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Figure 6.4: The two PoA upper bounds for single commodity networks with
quadratic cost functions (m = 2) and ZTP distributions

From Propositions 6.11 and 6.12, we can compute both the geometry and con-

vexity bounds when z ≥ 2. The geometry and convexity bounds are 2.44 and

2.19 for quadratic cost functions (m=2), respectively. Clearly the convexity

bound is tighter than the geometry bound.

Next we consider demand D following ZTP distribution. Let λ be the

mean of the original Poisson distribution. We have

d =
eλ

eλ − 1
λ, E[D2] =

eλ

eλ − 1
(λ2 + λ),

E[D3] =
eλ

eλ − 1
(λ3 + 3λ2 + λ).

Thus the values of µr and ωr can be computed from (6.12) and (6.13). Both

the convexity and geometry bounds are applicable when λ ≥ 1.48. Figure

6.4 shows the convexity bound is also tighter than the geometry bound when

demands following ZTP distributions and cost functions are quadratic.
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6.4 Concluding Remarks

Based on our reformulation of the user equilibrium condition as a variational

inequality problem, we have extended two bounding techniques for models

of non-atomic traffic, to establish two general PoA bounds for our models of

atomic traffic. As is expected, our bounds depend not only on the class of cost

functions, but also demand distributions. We have also found that the bounds

are related, although weakly, to the network topology (via parameter n in the

definitions of h and l).

We have computed our two bounds particularly for affine cost functions

in general networks and polynomial cost functions in single commodity net-

works. All the upper bounds in this chapter are asymptotically tight with the

increase of the number of travellers. Given the definitions of h, l and g, it

is difficult to compare these two upper bounds in general. From our numeri-

cal experiments on discrete uniform distributions and zero-truncated Poisson

distributions, the convexity bound is tighter than the geometry one. This

is consistent with our finding in the two special cases (affine cost functions

and single commodity networks) in Non-atomic work (see Section 4.4 for the

details).

As we have derived in Chapter 5, in a general multi-commodity net-

work, the link flow in our atomic model with stochastic demands is a sum of

independent compound random variables, which is much more complex than

that in the non-atomic model in Chapter 3. This increases the difficulty of

computing higher moments of link flows, and in consequence makes it very

complicated to compute the two upper bounds for polynomial cost functions.

It is a challenge to find proper functional approximation satisfying Assump-

tions 6.1–6.3 for our general setting of positive-valued demand distributions,

although we believe such functions exist. Possible work may be done for a

narrowed set of distributions, or a specific distribution.
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Chapter 7

Conclusion

In a transportation network, people choose the shortest (cheapest) route self-

ishly. This is beneficial to individual travel but may cause system inefficiency

due to lack of coordination. Central coordination is impractical, since trav-

ellers have the final say in routing choice and may not follow coordinators’

suggestions at the expense of their own interests. The PoA is defined to

measure the system inefficiency caused by travellers’ selfish behaviours. In a

perfect case the PoA is just one, which means people will reach the system

optimality automatically, without traffic coordination. Unfortunately, this is

not true of most cases in practice. Studying the PoA determines how far the

system is from optimality if no central coordinator is imposed. This question

has been answered for non-atomic and atomic models with deterministic de-

mands, which deal with infinite and finite numbers of travellers respectively.

This thesis contributes to extending the literature to a more general setting

of stochastic demand and produces models and results which better reflect

reality.

We have presented general models for both non-atomic and atomic con-

gestion games with stochastic demands. We have provided analytical upper

bounds by two methods developed from deterministic non-atomic work, and
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have also computed the specific upper bounds for very general settings of link

cost functions and demand distributions. All the upper bounds are proved to

be (asymptotically) tight in some special cases.

Our study of PoA with stochastic demands is a general extension of

that in the existing deterministic literature, and provides some new insights

into network problems. It is well known that deterministic PoA depends only

on the class of cost functions. In contrast, our analysis shows that the PoA

depends also on demand distributions and, to some extent, network topologies.

In particular, the upper bound of the PoA goes up when the degree of cost

functions increases, which is consistent with the findings of deterministic work

[Roughgarden and Tardos, 2004] . When the demand variation increases, our

PoA upper bounds also rise. In the extreme case of infinite demand variation,

the PoA will be unbounded, while in deterministic work it has been proved

that the PoA is always bounded for polynomial cost functions. Thus, system

inefficiency has been somewhat underestimated in deterministic studies. In

addition, there is a network-related parameter n in our PoA results; thus,

network topology may also affect system gradation.

We conclude this thesis with open questions for future research. Firstly,

unlike deterministic work, for each upper bound in our study we have a re-

strictive condition for applicable demand variations, which is caused by the

technical limitations of our bounding methods. When the conditions are not

satisfied, we believe that the PoA is still finite, but our method is unable

to bound it. Thus, a new method must be sought to bound the PoA for

more general demand distributions. Secondly, functional approximations of

the expected travel cost (see Assumptions in Sections 4.1 and 6.1) play a sig-

nificant role in bounding the PoA for both non-atomic and atomic congestion

games. Different approximations may lead to different values of the upper

bounds of the PoA. The functions in our study were established on the basis
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of very general settings of demand distributions, i.e. positive-valued (discrete)

distributions. We might find better functional approximation satisfying the

assumptions in Section 4.1 or 6.1 after applying more specific distributions,

which would consequently improve the PoA upper bounds. Finally, all upper

bounds obtained in this study can be reached under the assumption of sepa-

rable cost functions. Extension of this study to non-separable cost functions

is a potential future research direction. In addition, it would be interesting to

determine whether novel methods might be found to bound the PoA, when

the necessary conditions proposed in this study are relaxed.
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