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Image Based Validation of Dynamical Models
for Cell Reorientation

Robert Lockley,1 Graham Ladds,2 Till Bretschneider1*

! Abstract
A key feature of directed cell movement is the ability of cells to reorient quickly in
response to changes in the direction of an extracellular stimulus. Mathematical models
have suggested quite different regulatory mechanisms to explain reorientation, raising
the question of how we can validate these models in a rigorous way. In this study, we fit
three reaction–diffusion models to experimental data of Dictyostelium amoebae reorient-
ing in response to alternating gradients of mechanical shear flow. The experimental read-
outs we use to fit are spatio-temporal distributions of a fluorescent reporter for cortical
F-actin labeling the cell front. Experiments performed under different conditions are fit-
ted simultaneously to challenge the models with different types of cellular dynamics.
Although the model proposed by Otsuji is unable to provide a satisfactory fit, those sug-
gested by Meinhardt and Levchenko fit equally well. Further, we show that reduction of
the three-variable Meinhardt model to a two-variable model also provides an excellent
fit, but has the advantage of all parameters being uniquely identifiable. Our work demon-
strates that model selection and identifiability analysis, commonly applied to temporal
dynamics problems in systems biology, can be a powerful tool when extended to spatio-
temporal imaging data. VC 2014 The Authors. Published by Wiley Periodicals, Inc.
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cell reorientation; Dictyostelium; actin; image based model fitting; spatio-temporal
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DIRECTED cell motion is based on three functional modules (i) the formation of
cellular protrusions driven by polymerization of actin, (ii) a mechanism to sense
extracellular signals, for example, a gradient of chemoattractant, and direct protru-
sions to the cell front, and (iii) polarization, which is the establishment of a front-
rear axis, whereby myosin-II mediates retraction of the cell rear (1–3). The modular
design of cell motility has resulted in it becoming a paradigm of systems biology. In
particular, how these modules are integrated to allow cells to navigate in rapidly
changing environments has become a focus of theoretical and computational
research.

Most models employ a Turing-like (4) local-excitation global-inhibition mecha-
nism, whereby the stronger stimulation of the up-gradient cell end results in local
autocatalytic activation of the cell front. At the same time, a fast propagating inhibi-
tory mechanism renders the cell rear unresponsive to stimulation. The theory of
reaction–diffusion models is well established and Meinhardt first implemented a
model for cell reorientation on a circular domain to study how cells could regain sen-
sitivity at the rear and thus are able to respond to changes in direction of a signaling
gradient (5). Most recently, several groups have coupled the Meinhardt model with
biophysical models of deformable contours to simulate the deformation and move-
ment of cells in response to a signal gradient (6–8). Other models have been pro-
posed to address specific questions of signal amplification, sensitivity, and
adaptation (9–13).
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Here, we want to compare three representative models
for cell reorientation, each of which employs a different regu-
latory mechanism. The original model by Meinhardt (5), a
model by Levchenko and Iglesias (13), and one by Otsuji et al.
(12). We are more focused on the problem of model selection,
so for their internal workings and their derivation, we refer
the reader to an excellent review by Jilkine and Edlestein-
Keshet which discusses, among others, all three models in
detail (11).

In brief, the Levchenko model has been engineered to
achieve perfect adaptation to spatially uniform stimuli, which
result in a transient response only, before a new steady-state is
achieved. In a gradient, persistent stimulation of a cell front is
possible, without the need to temporarily break-down the pat-
tern as in the Meinhardt model. The rationale behind the
model by Otsuji et al. (12) is that many signaling components
involved in gradient sensing, such as small GTPases of the
Rho family are known to exist in an either active or inactive
state. Whereas in the models by Meinhardt and Levchenko an
increase in signal always causes a stronger response, mass con-
servation in the Otsuji model takes into account that the total
amount of signaling molecules is limited. Specific features of
this model are the formation of a strong unique axis of cell
polarization and an increased sensitivity at the cell front. The
motivation for selecting these models was simply to investi-
gate how more modern models compare to their ancestor, the
Meinhardt model. As we wanted to use the same fitting
approach for each model we limited ourselves to continuum
reaction–diffusion equations, all of which, however, display
quite distinct features in their behavior.

In all three models, some of the regulatory mechanisms can
be loosely mapped to known biochemical signaling pathways,
but all employ a minimal set of regulatory feedback loops, and
therefore have a comparatively small number of parameters. This
is an important requirement in terms of quantitative modeling
that prevents over-fitting and enables selection of structurally
identifiable models with unique solutions (14).

Here, we build on our previous work on quantifying
actin dynamics in the cortex of moving cells using active con-
tour based methods for cell segmentation and tracking
(15–17). Using fluorescent reporters for polymerized actin as
a proxy for cell front activation, we ask: (i) Can we validate
different reaction–diffusion models by directly fitting models
to time series image data of moving cells? (ii) Will we be able
to identify unique sets of parameters?

MATERIALS AND METHODS

General Laboratory Reagents
HL5 growth media containing 75 mM glucose was

obtained from ForMediumTM (Hunstanton, UK). All other
general reagents were purchased from Sigma-Aldrich (St
Louis, MO) unless stated.

Experimental Data. The experimental data are fluorescence
distributions of a reporter for F-actin (LimED-GFP) in the
cortex of Dictyostelium (JH10) cells reorienting in alternating

gradients of shear flow as described in (18). Previously, we
have shown that the response to shear stress is very similar to
that toward a chemoattractant with cells producing a front
against the flow. Cells were segmented and tracked using
QuimP software [http://go.warwick.ac.uk] (15,19) and fluo-
rescence sampled at 20 equidistant points along the cell cor-
tex. All fluorescence data presented are normalized by
dividing through the mean fluorescence in the cell body to
account for differences in expression levels, fluctuations in
laser intensity and bleaching. Details on microscopy are
described in Dalous et al. (18).

Random Motility Experiments. Wild-type Dictyostelium
(AX2) cells expressing LimED-RFP were cultured at room
temperature in HL5 media containing 75 mM glucose with
appropriate antibiotics. Cells were washed twice with KK2
buffer and transferred to glass-bottomed imaging culture
plates (Fisher Scientific UK, Loughborough, UK). Actin was
visualized using a Personal DeltaVision microscope (Applied
Precision, Issaquah, WA) comprising an Olympus UPlanSApo
1003, NA 1.4, oil immersion objective and a Photometric
CoolSNAP HQ camera (Roper Scientific, Martinsried, Ger-
many). Captured images were processed by iterative con-
strained deconvolution using SoftWoRx (Applied Precession)
and analyzed using ImageJ (20).

Long Duration Flow Experiments
Wild-type Dictyostelium (AX2) cells expressing ABP120-

GFP as a marker for F-actin were cultured in HL5 media con-
taining 75 mM glucose. Cells were washed with KK2 and after
1 h in shaking culture seeded into flow chambers (L 3 W 3 H
50 3 5 3 0.2 mm3), with flow of buffer driven by an air pres-
sure pump system (IB-10902, Ibidi, Martinsried, Germany). A
1 Pa shear flow was applied for 600 s, followed by a 120 s
period of no flow. This cycle was repeated once. ABP120-GFP
was imaged using a True Confocal Scanner Leica TCS SP5
microscope (Leica Microsystems, Milton Keynes, UK).

Model Fitting
Model fitting and analysis were performed in Potters-

Wheel (21), a Matlab toolbox that offers advanced tools for
identifiability analyses. The spatial reaction–diffusion models
under investigation are systems of coupled, partial differential
equations (PDE) with two or three variables. Using a finite
difference approximation of the diffusion operator
@2C=@x2 # ðCi2122Ci1Ci11Þ=ðDxÞ2, where Ci , Ci21 and
Ci11 denote fluorescence intensities at point i and to the left
and right of it, with 1 & i & N , and N520 being the number
of grid points, Dx the physical spacing between them, the sys-
tem of PDEs can be transformed into a system of N3V
coupled ordinary differential equations (ODEs), V being the
number of variables. The problem is solved on a circular 1D
domain with periodic boundary conditions by letting C05CN

and CN115C1.
When exposed to shear flow cells are aligned with the

flow and do not exhibit much variation in shape. We therefore
use, for simplicity, an equidistant spacing of fluorescence sam-
ples so that Dx is constant. In principle, our approach could
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be adapted to sampling at arbitrary positions, then requiring
interpolation between intensity values at previous time points.

We simulate a spatial profile of shear flow input (source
term) using s5ðdycosð2pðn21Þ=NÞÞ where dy is initially
treated as a free parameter which describes the strength of the
signal. Later, dy is replaced by an explicit polynomial function
dyðPÞ in terms of the absolute shear stress P. Node i5n
denotes the up-gradient position on the cell cortex. In the
absence of a signal dy is set to zero.

Parameters are fitted by nonlinear least-square minimiza-
tion using PottersWheel’s built-in Trust Region optimization,
fitting in logarithmic parameter space (22,23). To avoid get-
ting caught in local minima, models were fitted 10–25 times
from different starting points. Where indicated, we fitted to
different experimental conditions simultaneously, obtaining a
combined v2 value.

Parameter Profile Likelihood Estimation
To determine the sensitivity and identifiability of param-

eters, we used PottersWheel’s parameter profile likelihood
estimation (PLE) tool (24). By iteratively varying a parameter
pi about its optimum value and refitting the remaining
parameters a v2 profile of the likelihood for pi can be gener-
ated. Where this profile crosses a threshold, v2ða; df Þ, lower
or upper limits for the confidence interval of pi can be found,
here at level a568%. If both limits exist, the parameter is con-
sidered identifiable. A value of df 51 yields point-wise confi-
dence intervals, whereas for simultaneous confidence
intervals, df equals the number of parameters. The latter is
used to determine identifiability.

RESULTS

Our goal is to validate commonly used reaction–diffusion
models for cell reorientation by fitting them to time-series
image data of cells under well-controlled experimental condi-
tions. The reaction networks of the different models under
investigation are depicted in Figure 1A with S denoting the
extracellular signal (experimentally we use a gradient of shear
flow (18)). Meinhardt’s model is based on one autocatalytic
activator, A, that produces two inhibitors, B and C (5). The
second inhibitor, C, was proposed as an extension to a two-
variable model, consisting of only A and B, in order to achieve
permanent sensitivity. In the Levchenko model, S promotes
simultaneous production of activator A and inhibitor I, which
act on a response element R (13). The Otsuji model considers
mass conservation of a signaling component, which can be
either in an activated form, U, or inactivated, V, whereby S
promotes formation of U (12).

Ultimately, activation of a cell front in response to an
extracellular stimulus results in formation of a F-actin rich
protrusion, which is why we consider F-actin as a reliable
readout for front activation. The Dictyostelium cell shown in
Figure 1B responds toward shear flow of 2.1 Pa, with the F-
actin label clearly marking the front facing the flow. Shear
flow as signal input can be easily reversed, and the cell can be
seen to reorient after changing the flow direction at t 5 0 s.

The old front is rapidly degraded, while the new front facing
the flow appears at '40 s after flow reversal.

Space-time plots of the cortical fluorescence sampled at 20
nodes allow capturing the entire dynamics in one plot (Fig.
1C). Normalizing the data with respect to the cell circumference
has the advantage that data of multiple cells can be averaged,
after synchronizing sequences with respect to the time of flow
reversal. As illustrated in Figure 1D the population mean of N
5 14 cells responding to 18 flow reversals, provides a clearer
indication of F-actin disassembly and reassembly when com-
pared to noisy single cell data. Later, we show that it is possible
to fit single cell data, but for our initial model fitting we pro-
ceed with population averages. Fitting to single cell data can
become computationally demanding when fitting to many cells
simultaneously. Figure 1E gives an example of how the fluores-
cence profile of the averaged cell data along the normalized cell
outline is fitted for selected time points using Meinhardt’s
model. The fitting procedure starts with the flow reversal at t 5
0 s (For details on fitting see Materials and Methods).

The Meinhardt and Levchenko Model Both Fit the
Shear-Flow Reorientation Data Well

Having demonstrated how we extract experimental data
in form of spatio-temporal maps of F-actin fluorescence and
fit them to dynamical models we proceed to compare how
each of the three different models could fit to three experi-
mental conditions: reorientation of cells in response to high
shear stress of 2.1 Pa; to low shear stress (0.9 Pa); and flow/
no-flow experiments where cells were first oriented under 2.1
Pa, with the flow subsequently being switched off resulting in
slow depolarization of cells. These values were chosen since
below 0.9 Pa cells respond by making U-turns instead of
reversing their orientation and above 2.1 Pa they have difficul-
ties remaining attached to the substratum. We fitted the data
using the entire spatial fluorescence profile as shown in Figure
1E, but we summarize the data (Fig. 2) by only plotting the
mean fluorescence of the two cell halves (up-gradient and
down-gradient). Parameter values and initial conditions are
given in Supporting Information Tables S1 and S2. It is appa-
rent that disassembly of F-actin at the old front follows a sim-
ple exponential decay under 2.1 and 0.9 Pa with half-lives of
T1/2 5 38 s and 59 s, respectively; assembly of F-actin at the
new front is faster under low shear stress of 0.9 Pa where it
plateaus after 60 s (Fig. 2). Under the shear stress of 2.1 Pa
there is a marked delay of about 30 s before actin polymeriza-
tion begins leveling around 3 min. The flow/no-flow experi-
ments show slow loss of orientation on the timescale of
minutes, but initially there is a slight increase in F-actin after
removal of the stimulus. Thus shear flow clearly promotes F-
actin assembly, but interestingly, at the same time, a higher
shear stress slows F-actin assembly. This could be either due
to increased mechanical load on the F-actin network at higher
shear stresses, or negative feedback in the biochemical signal
transduction pathway.

Shear flow affects the time-scales of loss and gain of fluo-
rescence in intricate ways. Initially, we avoided dealing with
absolute values of shear stresses as signal input, and let the
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Figure 1. Molecular and computational analysis of actin relocalization in Dictyostelium cells: (A) schematic diagrams with equations for
three alternative models proposed for cell polarity (5,12,13). Each model incorporates a stimulus term, s, that provides directionality to
the external signal as defined in (5); (B) representative sequence of images showing actin relocalization in a single Dictyostelium cell after
rapid flow reversal (18). Filamentous actin was visualized in JH10 cells expressing LimED-GFP (green) with phase contrast in red. Arrow
indicates direction of the high hydrodynamic shear stress (P 5 2.1 Pa). The outer cell contour (white line) as determined using QuimP 11b
(19, http://go.warwick.ac.uk/quimp) where the blue crosses are evenly spaced nodes labelled 1–20. Scale bar, 10 lm; (C) time-space plots
of the cell from (B) as determined using QuimP 11b. Cell circumference as defined from the nodes shown in (B) with the dashed white
lines indicating the time for each image. Black dashed line indicates the time the flow was reversed; (D) time-space plot, as determined in
(C), for mean data of 18 responses from 14 cells (18); and (E) mean cortex fluorescence (black) for the indicated times points from (D). Red
indicates example model fit using the Meinhardt model as defined in (A). [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]

Original Article

4 Fitting Models for Cell Reorientation

http://go.warwick.ac.uk/quimp
http://wileyonlinelibrary.com


external signal strength dy be an unknown function of P,
determining dy(P) for P 5 0.9 Pa and P 5 2.1 Pa when data
fitting. All models were fitted to the three different experi-
ments simultaneously to increase the selective pressure on
each model. Both the Meinhardt and Levchenko models were
able to capture the loss of fluorescence at the old cell front but
both provided better fits for the large shear stress (T1/2 5 36 s
for P 5 2.1 Pa, T1/2 5 45 s for P 5 0.9 Pa), with the Otsuji
model having problems to capture the fast decrease (T1/2 5
83 s for P 5 2.1 Pa, T1/2 5 110 s for P 5 0.9 Pa). The same
was true for the gain of fluorescence at the newly activated
front, where the Meinhardt and Levchenko models outper-
formed the Otsuji model. A similar trend was also observed
when analysing the flow/no-flow experiments. The overall
goodness of fit was summarized by v2 values of 178, 156, and
361 for the Meinhardt, Levchenko, and Otsuji models, respec-
tively. Given the deficiencies of the Otsuji model to fit the
reorientation data our further investigations concentrate only
on the Meinhardt and Levchenko model.

Identifiability Analysis
The model fitting described previously provides parame-

ters that maximize the goodness of fit, however, it is important
to consider if these are the only combination of parameters that
can explain the data. To address this, we have used profile likeli-
hood estimations, where values for one particular parameter
are changed over a defined region and the model is repeatedly
refitted to compute how changing the parameter affects the
goodness of fit. Identifiable parameters are characterized by a
parabolic v2 profile which indicates a unique, optimal parame-
ter value (Fig. 3A). Unidentifiable parameters do not affect the
quality of the fit, and consequently have a flat profile; they
might however be constrained by an upper or a lower limit.
Unidentifiability can be linked either to the structure of a
model, requiring changes to the model itself or a lack of quality
experimental data causing practical unidentifiabilities. The pro-
file likelihoods for the Meinhardt model show that all but one
parameter were identifiable with rb practically non identifiable.
In the Levchenko model four out of ten parameters were practi-
cally unidentifiable.

A Simplified Two-Variable Version of the Meinhardt
Model is Uniquely Identifiable

As shown previously, both, the models by Meinhardt and
Levchenko were not fully identifiable. Different approaches exist
to make models identifiable, changing either the model or the
experimental design (24). In the Meinhardt model, we observed
that the first inhibitor, B, remained close to 1, thus we first con-
sidered reducing the model to two variables, setting @B=@t to
zero. Ideally, it would still capture the same dynamics of A but
become identifiable as the previously unidentifiable parameter rb

was dropped. However, we were unable to find a single value for
B around 1, nor a simple linear expression in terms of the exter-
nal shear stress P, which fitted all three experimental conditions
simultaneously. We, therefore, determined optimum values of B
for each condition and fitted a quadratic, BðPÞ511
b0ðP21b1PÞ, in terms of P, which made it possible to simplify dy
to dy(0) 5 0, and dyðPÞ5const50:0128. Contrary to the origi-
nal three-variable Meinhardt model, the reduced model has the
advantage that it depends explicitly on the external shear stress.
In principle, the exact nature of B(P) could be tested through fit-
ting additional experiments with different shear stresses P, which
however is beyond the scope of the current study.

We next performed profile likelihood estimations (Fig.
4A) for multi-experiment fits of the two-variable model to the
same three experimental conditions as in Figure 2. The two-
variable model generated a similar good fit (v25184 com-
pared to v25178 for the three-variable model, half-lives for
the loss of F-actin at the old front are almost identical). More-
over the parameter sets obtained when fitting were also similar
between the two and three-variable model (Supporting Infor-
mation Table S1 and Fig. 4B).

Using the Models to Make Predictions About the
Persistence of Front Activation

Both, the Meinhardt and the Levchenko models fitted
shear flow reversals reasonably well. We wanted to test whether
we would be able to predict the outcome of a new experiment

Figure 2. Actin relocalization data enables comparison of three
proposed models of cell polarity: to provide a comparison of
repolarization cells were split into two halves such that the front
(solid line) was determined using the average cortical fluores-
cence obtained from the nodes 6–15 as illustrated in Figure 1B.
The average cortical fluorescence for the back half of the cell (dot-
ted line) was determined from nodes 1–5 and 16–20. Biological
data was obtained as described in (18) for a high shear stress (P 5
2.1 Pa), a low shear stress (P 5 0.9 Pa) and cessation of flow.
Mean data for the high shear stress was obtained from 18
responses from 14 cells, for the low shear stress 10 responses
from 5 cells was analyzed, while 13 responses from 9 cells are
shown in the cessation data set. For all data the shaded area rep-
resents standard error of the mean. Models as defined in Figure 1
were simultaneously fitted to all biological data sets using Pot-
tersWheel (see Methods). All parameters were conserved
between data sets with the exception of dy, the asymmetry of the
external stimulus. The goodness of fit, v2, is 178, 155, and 361 for
the Meinhardt, Levchenko, and Otsuji models, respectively.

Original Article

Cytometry Part A ! 00A: 00"00, 2014 5



using the sets of parameters obtained previously. We exposed a
cell to two cycles of flow-induced (1 Pa) polarization and
observed a persistent migration of the cell toward the flow
source (Fig. 5A). Cessation of the flow for 2 min caused a loss
of polarity. We performed simulations where we first wanted to
qualitatively reproduce the persistent activation of the cell front
as seen by the steady migration of the example cell for 10 min
(Fig. 5B). These were initialized with uniform conditions and
the system equilibrated, before replicating the signal behavior

detailed above. Using the parameter set obtained in Figure 3,
the Levchenko model failed to produce a stable front. To obtain
a stable front a rather drastic change to the model was required,
for example, increasing D1 by four orders of magnitude and
k2A by a factor of 10. (Supporting Information Table S1 and
Fig. 5C). Using the parameter set obtained in Figure 4 for the
modified Meinhardt model, a single front was obtained but it
rapidly split into three. A single persistent front could be
obtained by reducing diffusion of the inhibitor C by 20% (Fig.

Figure 3. Profile likehood estimates for the Meinhardt and Levchenko models of cell polarity: (A) representative plots of profile likelihood
estimation (PLE) analysis for example parameters demonstrating identifiable, unidentifiable and unidentifiable (but constrained) as
defined by (24). PLE (v2 values) together with the point wise (dashed lower horizontal line) and simultaneous confidence levels (dashed
upper horizontal line). The intersection where the PLE crosses the simultaneous confidence levels yields the lower and upper boundary
for the simultaneous confidence intervals. A parameter is identifiable if both confidence intervals are finite as illustrated; (B) PLE analysis
of Meinhardt model as defined in Figure 1. All parameters with the exception of rb are identifiable; and (C) PLE analysis of Levchenko
model demonstrating six identifiable parameters with four constrained but unidentifiable parameters.
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5D). This new constraint does not compromise the goodness of
fit for the original repolarization data of Figure 4 (new v25182
compared to v25184 before).

Fitting Spontaneous Front Activation in Randomly
Migrating Cells

Previously, we aggregated and synchronized data from
multiple cells to obtain averaged data where noise is signifi-
cantly reduced. Next, we attempted to simultaneously fit sin-
gle cell data of randomly migrating Dictyostelium cells to
determine how the models performed on more complex and
noisy data (Figs. 6A and 6B). We fitted our biological data
using both the Meinhardt and Levchenko models. Whereas
the models are deterministic, the observed random patterns
are clearly driven by noise. By treating the initial activator
concentrations as free parameters, we only account for noise
at the start of the time series.

We observed that for the Meinhardt model four parame-
ters were an order of magnitude lower when compared to
parameters obtained in Figure 5 (Supporting Information
Table S1), three were of the same order and DC could essen-
tially be set to zero. Parameters in the Levchenko model also
vary greatly between reorientation and random motility
experiments (Supporting Information Table S1).

Both models captured some of the intrinsic dynamics
surprisingly well (Figs. 6A, and 6B): (i) a front which abruptly

disappears, (ii) a front which splits into two, and (iii) a
broader low intensity F-actin crescent at the cell rear. Regions
IV and VI of a second cell (Fig. 6B) again resemble front split-
ting, while region V denotes the merger of two fronts. Fitting
reaction-diffusion models to image data has been successfully
applied in image enhancement in many areas (25), Our exam-
ple shows that the same concepts, usually applied to single
images, can be extended in a straight-forward manner to fil-
tering time series image data, thus aiding the model-based
analysis of complex stochastic time-series data.

DISCUSSION

A number of sophisticated mathematical models that cou-
ple models for cell orientation to cell deformation have recently
been published (6–8). Interestingly, they all employ the original
model for cell orientation by Meinhardt (5), which as we have
shown demonstrates good agreement with experimental data of
Dictyostelium cells responding to three different experimental
conditions (18). Significantly, the model is able to make reason-
able predictions of cortical F-actin dynamics during cell reor-
ientation for up to 2 min, which is remarkable given that the
turnover of the entire F-actin system in Dictyostelium is on the
timescale of seconds (26,27).

Chemotactic receptors have been very well characterized
but only recently has light been shed on putative mechanosen-
sors, in particular PKD2 Ca21 channels (28). Previously we

Figure 4. A fully identifiable reduced Meinhardt model replicates actin repolarization behavior: (A) fitting of a reduced Meinhardt model
to the biological data described in Figure 2. Model has been reduced as described in the text and was simultaneously fitted to all biological
data sets using PottersWheel (v25184) and (B) PLE analysis of the reduced Meinhardt model from (A). PLE analysis was performed as
described in Figure 3 where solid lines represents the PLE and the thresholds are marked by dashed lines. Shown in gray are the con-
served parameters between the reduced Meinhardt model and the one analyzed in Figure 3. Values from Figure 3 have been modified
through the addition of Dv255:833 to facilitate a direct comparison.
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have shown that in Dictyostelium cells reversal of cell polarity in
response to a shear flow reversal is very similar to the response
seen when reversing a chemotactic gradient. This suggests that
both sensor systems might be linked to one common pathway
regulating actin polymerization and cell polarization (18). It is
interesting to note that the models originally developed to
investigate chemotaxis are equally applicable to mechanotaxis.

The estimation of model parameters from image data and
identifiability analysis in the context of diffusion processes is
an emerging area of research (29). We have reduced the Mein-
hardt model to a two-variable model, which is uniquely identi-
fiable. Although there is no direct correspondence with known

biochemical pathways, the activator variable in the model cap-
tures, remarkably well, the dynamics of F-actin assembly. The
parameters we determined yield biochemically realistic time-
scales of cell front activation and repolarization, which will be
appreciated by modelers trying to build more complex models
that integrate actin dynamics and protrusive behavior.

The behavior of the reduced two-variable Meinhardt
model is almost identical to the three-variable model.
Although the second inhibitor in the Meinhardt model is
often regarded as an improved extension of a model with only
one inhibitor, adding permanent sensitivity, its local action
can completely replace the first global inhibitor. In line with

Figure 5. Simulated responses to long duration stimulation: (A) image sequence of wild-type (AX2) cells expressing ABP120-GFP (green).
Cells were imaged for a total period of 1,560 s. Following an initial rest period (120 s) cells were exposed to a continuous flow for a dura-
tion of 600 s. The cycle was then repeated for a further 720 s. Arrows indicate presence and the direction of a shear stress P 5 1 Pa; (B)
Position of the cell front (relative to the bottom of the image) throughout the time course. Asterisks denote times of the five individual
images shown. Scale bar, 10 lm; (C) simulations of the biological data in (A) using the Levechenko model. The arrow denotes the position
where the external signal is the strongest. Adjustment of model parameters DI and k–A in the Levchenko model allows a persistent front to
be obtained; (D) simulations of the biological data in (A) using the reduced Meinhardt model as described in Figure 4 results in breaking
up of a single front; and (E) decreasing the diffusion constant for inhibitor C from 9.768 3 1022 to 7.064 3 1022 produces a persistent front.
All models were started with uniform conditions and simulated in the absence of signal for 5,000 s before the signal input from experi-
ment was replicated. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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that we found that the first inhibitor remained constant over
time, justifying its removal as an independent variable. Simi-
larly the Levchenko model achieves the same behavior using
only one inhibitor, and also captures many aspects of F-actin
dynamics during reorientation and random motility.

We have shown that care is needed when trying to make
predictions as initially we were unable to achieve long-term
persistence of front activation. Both the Meinhardt and Lev-
chenko models required changes in their parameters. Signifi-
cantly, this helped to constrain the models further; indeed the
Meinhardt model was still able to fit our original set of data
under the new constraint.

Randomly migrating cells display several competing fronts,
which aids the probing of their environment by increasing the
sampling frequency. The presence of a strongly orientating
stimulus such as a chemotactic agent or shear flow requires cells
to enter a different state where only a single front survives.
Thus, it is expected that this new state is reflected by changes in
parameters. In theory, going from several fronts to a single one
is equivalent to increasing the wavelength of the pattern, which
can be achieved by increasing activator diffusion. Here we con-
firm, for the Meinhardt model, that the diffusion of the activa-
tor in randomly migrating cells is by a factor of 20 lower, when
compared to the shear flow experiments. The rate of inhibitor

Figure 6. Comparison of the reduced Meinhardt and Levchenko models in simulating actin localization of unstimulated cells: two image
sequences of representative cells (A and B) in the absence of an external signal. Filamentous actin was visualized in wild-type (AX2) cells
expressing LimED-RFP (green). QuimP 11b analysis performed as described in Figure 1 was used to generate cell cortex fluorescence data
(central time–space plot) that was used for fitting both the reduced Meinhardt (v251485) and Levchenko (v251399) models. Regions of
interest, highlighted by roman numerals, illustrate the ability of each model to capture biological phenomena. Scale bar, 10 lm. [Color fig-
ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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diffusion becomes essentially negligible, suggesting a qualitative
change in the model such that there is no lateral inhibition of
activated peaks any more. This lack of lateral inhibition results
in patterns of activation which are not evenly spaced, which is
in fact a notable feature of random migration. Therefore, the
changes in fitted diffusion rates are in agreement with the
experimental observations. At the same time, fronts in ran-
domly migrating cells are less stable, which explains why some
of the kinetic parameters are also required to change. Interpre-
tation of the exact changes is however difficult. Although the
rates of production and decay of the local inhibitor C are, for
example, reduced by a factor of 4, its local concentration can
still increase rapidly, because it does not diffuse. This might
contribute to the observed shorter lifetime of activated fronts
in randomly migrating cells. Recently, membrane tension has
been discussed as an inhibitory mechanism restricting the
growth of protruding fronts, which because of its physical
nature could explain very fast diffusive spreading (30,31).
Therefore, one possibility supported by the change in model
parameters could be that cells globally increase membrane ten-
sion when switching from random migration to a strongly
polarized mode of movement.

Similarly to our example of modeling cell orientation,
inverse modeling of spatio-temporal cellular dynamics has been
employed in the context of photobleaching or photoactivation
experiments to study the mobility, mass transport, or binding of
cellular constituents (32–34). Perturbing the intrinsic dynamics
by photobleaching or activation could nicely complement our
approach, thereby trying to match diffusion in the model with
the mobility of molecular players known to be involved in sig-
naling to the actin cytoskeleton. More detailed biological models
exist for receptor/G-protein networks, and signaling to the
downstream modules controling polarity/myosin-II contractility
and actin reorganization (35). Recently, Skoge et al. (36) have
developed a model for Ras activation in chemotaxing Dictyoste-
lium cells which includes memory effects to explain why cells do
not reverse direction in the wake of a wave of chemoattractant.
The model consists of seven equations with 24 parameters and
has been successfully fitted to activated Ras levels measured at
the front and the back of cells. We believe that our proposed
framework will be a valuable tool to compare this and other
recent models in the future. For example, to learn what degree
of complexity is required to explain particular experimental
findings which cannot be easily explained by the very simple
models discussed in the current paper.
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