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Abstract

This thesis considers optimal intertemporal consumption and investment problems in

which the transaction costs on purchases of the risky asset are infinite. Equivalently, the

problems can be classified as (infinitely divisible) asset sale problems with the restriction

that the asset cannot be (re)-purchased.

We will first present the classical Merton [41] model which comprises an agent

with constant relative risk aversion (CRRA) who wishes to maximise the expected utility

of consumption over an infinite horizon. Further, we introduce the extension of the single-

asset Merton model with proportional transaction costs by Davis and Norman [13].

After discussing two preliminary optimal consumption and asset sale problems, we

consider the special case of the Davis and Norman model, in which the transaction costs

on purchase are infinite. Effectively, the asset cannot be purchased but only be sold. We

manage to provide a complete and thorough analysis of the problem with rigorous proofs

by a new solution technique, which reduces the problem into a first crossing problem.

Based on the new solution technique, we conduct the comparative statics to anal-

yse the optimal strategies and the indifference price, especially their dependance on model

parameters. Some surprising results are found and are further discussed.

We then consider the optimal consumption and investment problem with mul-

tiple risky assets and with infinite transaction costs. We manage to make significant

progress towards an analytical solution and completely characterise the different possible

behaviours of the agent by understanding the existence and finiteness of a first crossing

problem. The monotonicity of the indifference price in model parameters is proved and

a comparative statics is conducted.

xi



Chapter 1

Introduction

1.1 Introduction

The majority of this thesis is concerned with optimal consumption and investment prob-
lems with transaction costs. In our model the transaction costs take a special form in
that transaction costs on purchases of the endowed asset are infinite. Expressed differ-
ently, the endowed asset is assumed to not be available for dynamic trading, either to the
market as a whole, or to the agent. It may be because of legal reasons, or simply because
it is difficult for individuals to trade particular stocks actively. Instead the assumption
is that this asset can only be sold: (re)-purchases are not allowed.

Since trading in the endowed asset is not allowed, the agent faces an incomplete
financial market as the risk arising from fluctuations in the value of the asset cannot be
fully hedged. Even the agent is allowed to have access to the market and can invest in a
riskless bond and trade in multiple risky assets, whose prices are correlated with that of
the endowed asset, she still faces the unhedgeable or idiosyncratic part of the risk. For
this reason, there is a potential trade-off to consider: selling the endowed asset mitigates
the idiosyncratic risk, but holding the asset longer may increase its value. The main
objective of this thesis is to consider such a problem in the single-asset and multi-asset
settings.

Our agent is assumed to have a power utility function with constant relative
risk aversion (CRRA) and is endowed with an initial quantity of a risky asset, whose
price follows a geometric Brownian motion. The costs to purchase the endowed asset
are infinite. In the single-asset setting, the objective of the agent is to choose optimal
consumption and sale strategies (C,⇥), including when and how many to sell units of
the infinitely divisible asset over time, so as to maximise the expected discounted utility

1



over an infinite horizon as measured by the quantity

E
"ˆ 1

0

e��t
C1�R

t

1�R
dt

#

. (1.1)

Here � is a positive discount factor and R 2 (0, 1) [ (1,1) is the risk aversion of the
agent. In the multi-asset setting, the agent can trade freely in other risky assets whose
prices are correlated with the price of the endowed asset. Apart from consumption and
sale strategies, the agent seeks optimal investment strategy ⇧ so as to maximise (1.1).

Our model is an extension of the Merton model and is closely related to the Davis
and Norman model. We will introduce these two models further in the following sections.

1.2 Merton’s investment-consumption model with multiple
assets

The classical portfolio optimisation problem dates back to Merton [41] who considered
portfolio optimisation and consumption in a continuous-time stochastic model, with an
investment opportunity set comprising a risk-free bond and a risky asset with constant
return and volatility. Merton chose to study these issues by first understanding the
behaviour of a single agent acting as a price-taker. Under an assumption of constant
relative risk aversion (CRRA) he obtained a closed form solution to the problem and
the optimal strategy in his model consists of trading continuously in order to keep the
fraction of wealth invested in the risky security equal to a constant. As we shall see in the
following chapters, Merton’s investment-consumption problem is essential to understand
the fundamentals of dynamic asset allocation and stochastic control problems. It is also
remarkable that this is one of the few nonlinear stochastic control problems that can be
solved with an explicit solution.

In this section, we present the Merton’s investment-consumption model in a multi-
asset financial market and introduce further the Merton line and the Merton proportion.

Let
⇣

⌦,F ,P,F = (F
t

)

t�0

⌘

be a filtered probability space, such that the filtration
satisfies the usual conditions and is generated by a N -dimensional standard, uncorre-
lated Brownian motion B =

⇣

B(1)

t

, B(2)

t

, B(3)

t

, · · · , B(N)

t

⌘

T

t�0

. , Here the superscript T

represents transposition.
The financial market comprises one risk-free and N risky assets available for

investment. The risk-free bond continuously pays a constant rate of interest r. The price

2



of the bond R satisfies R
t

= ertR
0

or in the differential form,

dR
t

= rR
t

dt. (1.2)

Suppose the price processes of N risky assets satisfy

dP (i)

t

P (i)

t

= µ(i)dt+
N

X

j=1

�(ij)dB(j)

t

, (1.3)

for i = 1, 2, 3, · · · , N . Denote by µ(i) and �(ij) the constant mean rate of return
and volatility. The price processes are correlated through the diffusion terms. Let
µ =

⇥

µ(1), µ(2), µ(3), · · · , µ(N)

⇤

, � = (�(ij))
1i,jN

be the matrix of volatilities, which
is assumed to be invertible, and � = ��1

(µ� re
N

) be the Sharpe ratio matrix, where e
N

is a N -dimensional vector with every component equal to 1.

Definition 1.2.1 (Consumption Process). A consumption process is an {F
t

}-progressively
measurable, nonnegative process C satisfying

´
t

0

C
s

ds < 1 almost surely for every t 2
[0,1).

Definition 1.2.2 (Portfolio Process). A portfolio process is an {F
t

}-progressively mea-
surable, RN valued process ⇧ =

�

⇧

(1),⇧(2),⇧(3), · · · ,⇧(N)

�

T such that
´
t

0

�

�

�

�

⇧

s

�

�

�

�

2

ds < 1
almost surely for every t 2 [0,1).

Let C = (C
t

)

t�0

be the consumption process of the individual and ⇧ be the cash

amount invested in the risky assets P , where ⇧ =

⇣

⇧

(1)

t

,⇧(2)

t

,⇧(3)

t

, · · · ,⇧(N)

t

⌘

T

t�0

. We

denote by X = (X
t

)

t�0

the wealth process of the agent, and suppose that the initial
wealth is x. Provided the changes to agent’s wealth occur from either consumption or
investment, X evolves according to

dX
t

=

N

X

i,j=1

⇧

(i)

t

�(ij)
⇣

dB(j)

t

+ �(j)dt
⌘

+ rX
t

dt� C
t

dt,

which can be written in a more compact notation, dX
t

= ⇧

T

t

(µ�re
N

)dt+rX
t

dt�C
t

dt+

⇧

T

t

�dB
t

. In particular, X is a process given by

X
t

= x+

ˆ
t

0

⇥

⇧

T

s

(µ� re
N

) + rX
s

� C
s

⇤

ds+

ˆ
t

0

⇧

T

s

�dB
s

. (1.4)

Remark 1.2.3. It follows from Karatzas and Shreve [35, p373] that the definitions of

3



portfolio and consumption processes ensure the stochastic differential equation of the
associated wealth process has a unique strong solution.

Definition 1.2.4 (Admissible Strategies). A consumption and portfolio process pair
(C,⇧) is admissible at x, and write (C,⇧) 2 A(x), if the corresponding wealth pro-
cess Xx,C,⇧ corresponding to x, C, ⇧, satisfies Xx,C,⇧

t

� 0 for x � 0 and t 2 [0,1),
almost surely. For x < 0, we have A(x) = ;.

The objective of the agent is to maximise over admissible strategies the discounted
expected utility of consumption over an infinite horizon. Here, the utility function is an
increasing concave function of the rate of consumption, in the form

U(C
t

) =

C1�R

t

1�R
, (1.5)

where R is a constant in (0, 1)[ (1,1). This utility function is equivalent to the CRRA
(constant relative risk aversion) class, since �xU 00

(x)/U 0
(x) = R. In particular, the goal

is to find

sup

(C,⇧)2A(x)

E
"ˆ 1

0

e��t
C1�R

t

1�R
dt

#

.

Here � is a positive discount factor, also known as the ‘impatience factor’, which measures
the ‘satisfaction’ of the utility function and describes the willingness of the agent to
consume now rather than later.

The following theorem characterises the optimal consumption, investment strate-
gies and the corresponding value function of the Merton problem. It will be proved in
the following section by a verification theorem.

Theorem 1.2.5. Suppose the following condition holds

� > r(1�R) +

1�R

2R

�

�

�

��
�

�

�

�

2

.

Then the value function V is given by

V (x, t) = e��t
x1�R

1�R

⇢

1

R



� � r(1�R)� 1�R

2R

�

�

�

��
�

�

�

�

2

���R

.

The optimal portfolio process ⇧⇤
t

, the optimal consumption process C⇤
t

and the resulting
wealth process are given by

⇧

⇤
t

=

1

R
(��T )�1

(µ� re
N

)X⇤
t

, C⇤
t

=

1

R



� � r(1�R)� 1�R

2R

�

�

�

��
�

�

�

�

2

�

X⇤
t

, (1.6)
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X⇤
t

= x exp

( 

� �

R
+

r

R
+

�

�

�

��
�

�

�

�

2

2R

!

t+
�T

R
B

t

)

.

Remark 1.2.6. In the case where there is only one risky asset (that is, N = 1), it follows
from Theorem 1.2.5 that ⇧⇤

t

=

�

�R

X⇤
t

. Define ⇡⇤ as the ratio of the money amount
invested in the risky asset and total wealth. We then have ⇡⇤ = ⇧

⇤
t

/X⇤
t

=

�

�R

and this
is the Merton proportion. Denote by (X⇤

t

� ⇧⇤
t

,⇧⇤
t

) the optimal amount of money that
the agent invests in the bond and the risky asset, respectively. Since ⇡⇤ does not depend
on time, the stochastic process (X⇤

t

�⇧⇤
t

,⇧⇤
t

) lies in the straight line through the origin
with slope ⇡⇤/(1� ⇡⇤) for any instant in time, which is the Merton line.

Further, it follows immediately that ⇡⇤ increases as mean rate of return µ increases
and decreases as volatility � increases or risk aversion R increases. A higher mean rate
of return makes the asset more valuable and therefore the asset is worth more investment
in. Similarly, a larger � implies that a long position in the asset involves additional risk
and less investment should be made to mitigate such risk. Finally, as risk aversion of the
investor increases, she is less tolerant of the risk of the asset and hence more inclined to
hold a smaller position in the asset.

For ⇡⇤ 2 (0, 1), we have r < µ < r + �2R. This implies hedging is optimal by
investing in both risky asset and bond so as to mitigate risk. If µ > r+�2R then ⇡⇤ > 1

and money are borrowed from bank to invest in the risky asset, implying that leverage
is optimal. Similarly, when µ < r then ⇡⇤ < 0 and short selling is optimal. Finally if
µ = r, we have ⇡⇤ = 0 and the optimal strategy is to consume the initial wealth x in the
bond without any investment.

1.3 A verification theorem to the Merton problem

In this section, we provide the verification argument for Theorem 1.2.5. The key idea is to
construct a candidate value function from the HJB (Hamilton-Jacobi-Bellman) equation
and prove that this candidate value function is indeed the value function.

The verification theorem is essential in the following chapters, by which we prove
the optimality of the proposed strategies and the validity of the candidate value function.
Understanding the verification theorem in the fundamental Merton problem provides an
insight into the proofs in the following chapters.
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Let V (x, t) be the forward starting value function such that

V (x, t) = sup

(C,⇧)2A(x,t)

E
ˆ 1

t

e��tU(C
t

)dt
�

�

�

X
t

= x

�

. (1.7)

Define the candidate value function G by

G(x, t) = e��t
x1�R

1�R

⇢

1

R



� � r(1�R)� 1�R

2R

�

�

�

��
�

�

�

�

2

���R

. (1.8)

For F = F (x, t) 2 C2,1 define operator L by

LF = F
t

+ sup

(c>0,⇡2RN

)

⇢

e��tU(c) + [rx� c+ ⇡T (µ� re
N

)]F
x

+

1

2

⇡T��T⇡F
xx

�

=

R

1�R
e�

�

R

tF
R�1
R

x

+ rxF
x

+ F
t

� 1

2

�

�

�

��
�

�

�

�

2

F 2

x

F
xx

.

Lemma 1.3.1. Suppose the following condition holds

� > r(1�R) +

1�R

2R

�

�

�

��
�

�

�

�

2

. (1.9)

Then for x � 0 we have LG = 0.

Proof. Given the form of the candidate value function in (1.8), we define constant K by

K =

1

R



� � r(1�R)� 1�R

2R

�

�

�

��
�

�

�

�

2

�

. (1.10)

The definition of K then implies

LG = e��t
x1�R

1�R
K�R

⇢

RK + r(1�R)� � +

1�R

2R

�

�

�

��
�

�

�

�

2

�

= 0.

We now prove Theorem 1.2.5 by the following verification argument.

Proof. (the verification argument for Theorem 1.2.5) Under the proposed strategies in
(1.6), the corresponding wealth process (X⇤

t

)

t�0

evolves as dX⇤
t

= ⇧

⇤T
t

(µ � re
N

)dt +

rX⇤
t

dt� C⇤
t

dt+⇧⇤T
t

�dB
t

. This gives

X⇤
t

= x exp

( 

� �

R
+

r

R
+

�

�

�

��
�

�

�

�

2

2R

!

t+
�T

R
B

t

)

.
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The value function under the strategies proposed in (1.6) is

E
ˆ 1

0

e��tU(C⇤
t

)dt

�

=

K1�Rx1�R

1�R

ˆ 1

0

exp

⇢

��(1�R)

R
+

r(1�R)

R
+

1�R

2R

�

�

�

��
�

�

�

�

2

+

(1�R)

2

2R2

�

�

�

��
�

�

�

�

2 � �

�

t

�

dt

=

K1�Rx1�R

1�R

ˆ 1

0

exp {�Kt} dt

= K�R

x1�R

1�R
= G(x, 0),

where K is defined in (1.10). Hence we have V (x, 0) � G(x, 0).
Now, consider general admissible strategies. Suppose first R < 1. Define the

process M = (M
t

)

t�0

by

M
t

=

ˆ
t

0

e��s
C1�R

s

1�R
ds+G (X

t

, t) . (1.11)

Applying Itô’s formula to M
t

leads to

M
t

�M
0

=

ˆ
t

0

⇢

e��sU (C
s

) +

⇥

rX
s

� C
s

+⇧

s

T

(µ� re
N

)

⇤

G
x

+G
s

+

1

2

⇧

s

T��T⇧
s

G
xx

�

dt

+

ˆ
t

0

⇧

s

T�G
x

dB
s

=: N1

t

+N2

t

. (1.12)

Lemma 1.3.1 shows that LG = 0, which implies N1

t

 0. Provided the assumption R < 1,
we have 0  M

t

 M
0

+N2

t

and N2

t

is a local martingale bounded from below and hence
a supermartingale. By taking expectations we find E(M

t

)  M
0

= G(x, 0), which gives

G(x, 0) � E
ˆ

t

0

e��sU(C
s

)ds+ E[G(X
t

, t)] � E
ˆ

t

0

e��sU(C
s

)ds,

where the last inequality follows since G(X
t

, t) � 0 for R 2 (0, 1). Letting t ! 1, we
have

G(x, 0) � E
✓ˆ 1

0

e��tU(C
t

)dt

◆

,

and taking a supremum over admissible strategies leads to G(x, 0) � V (x, 0).
Now consider R > 1. We take the idea of the proof from Davis and Norman [13]

and show that the candidate value function is an upper bound on the value function.
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For the candidate value function defined in (1.8), consider for " > 0,

˜V
"

(x, t) = ˜V (x, t) = G(x+ ", t) (1.13)

and ˜M
t

=

˜M
t

(C,⇧) given by

˜M
t

=

ˆ
t

0

e��sU(C
s

)ds+ ˜V (X
t

, t) .

Then we have by Itô’s formula

˜M
t

� ˜M
0

=

ˆ
t

0

⇢

e��sU (C
s

) +

⇥

rX
s

� C
s

+⇧

s

T

(µ� re
N

)

⇤

˜V
x

+

˜V
s

+

1

2

⇧

s

T��T⇧
s

˜V
xx

�

dt

+

ˆ
t

0

⇧

s

T� ˜V
x

dB
s

=:

˜N1

t

+

˜N2

t

.

Lemma 1.3.1 implies ˜N1

t

 0. Now define stopping times ⌧
n

= inf

⇢

t � 0 :

´
t

0

⇣

⇧

s

T� ˜V
x

⌘

2

ds � n

�

.

It follows immediately from (1.6) and (1.13) that ⇧
s

T� ˜V
x

is bounded and hence ⌧
n

" 1.
Then the local martingale (

˜N2

t^⌧
n

)

t�0

is a martingale and taking expectations we have
E
⇣

˜M
t^⌧

n

⌘

 ˜M
0

, and hence

E
✓ˆ

t^⌧
n

0

e��sU(C
s

)ds+ eV (X
t^⌧

n

, t ^ ⌧
n

)

◆

 ˜V (x, 0) .

It then follows from (1.8) and (1.13) that

˜V (x, t) = e��t
(x+ ")1�R

1�R

⇢

1

R



� � r(1�R)� 1�R

2R

�

�

�

��
�

�

�

�

2

���R

� "1�R

1�R

⇢

1

R



� � r(1�R)� 1�R

2R

�

�

�

��
�

�

�

�

2

���R

.

Thus ˜V is bounded, lim
n!1 E ˜V (X

t^⌧
n

, t ^ ⌧
n

) = E
h

˜V (X
t

, t)
i

, and

˜V (x
0

, 0) � E
✓ˆ

t

0

e��sU(C
s

)ds

◆

+ E
h

˜V (X
t

, t)
i

.

Similarly,

˜V (x, t) � e��t
"1�R

1�R

⇢

1

R



� � r(1�R)� 1�R

2R

�

�

�

��
�

�

�

�

2

���R

8



and hence lim

t!1 E
h

˜V (X
t

, t)
i

! 0. Then letting t ! 1 and applying the monotone
convergence theorem, we have

˜V
"

(x, 0) = ˜V (x, 0) � E
✓ˆ 1

0

e��sU(C
s

)ds

◆

.

Finally let "! 0. Then V  lim

"#0 eV = G. Hence, we have V (x, 0)  G(x, 0).

Remark 1.3.2. The condition (1.9) is a necessary and sufficient condition to ensure the
finiteness of the value function. It implies that the discount factor cannot be sufficiently
large, otherwise an infinite value function can be obtained by prolonged investment fol-
lowed by massive consumption. We will prove this remark in Section 3.2.2.

Remark 1.3.3. In this section, the Merton problem is solved via a dynamic programming
approach. Since the set-up has a Markovian structure, we expect the value function to be
function of current wealth as defined in (1.7). We also expect the process M defined in
(1.11) to be a martingale under optimal strategies and a supermartingale under general
strategies. Applying Itô’s formula to M , we expect the finite variation part to be zero
thanks to its martingale nature. This gives the following HJB (Hamilton-Jacobi-Bellman)
equation

sup

(c�0,⇡2RN

)

⇢

e��tU(c) + [rx� c+ ⇡T (µ� re
N

)]G
x

+G
t

+

1

2

⇡T��T⇡G
xx

�

= 0.

First order conditions then imply the supremum is attained when

c = e�
�

R

tG
� 1

R

x

⇡ = �(��T )�1

(µ� re
N

)

G
x

G
xx

. (1.14)

By substituting (1.14) into the HJB equation, we can solve for the candidate value
function G. Given the construction of the candidate value function G, the final step is
to prove that G is indeed the value function by a verification theorem. In particular,
we need to prove that M is a martingale given the candidate optimal strategies and a
supermartingale under general strategies.

Apart from the dynamic programming approach, stochastic control problems can
also be solved via a dual approach [36, chapter 3], which utilises a Lagrange multiplier so
that the constrained objective function with the budget constraint is converted into an
unconstrained problem. By Legendre-Frenchel transformation, the maximisation prob-
lem in terms of consumption and portfolio processes converts into a minimisation problem
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in terms of a Lagrange multiplier.

Remark 1.3.4. Another variation of the Merton model is to consider the problem with
income. Merton [41] firstly considers an agent endowed with a constant rate of income I

and the wealth process (1.4) evolves as

dX
t

=

N

X

i,j=1

⇧

(i)

t

�(ij)
⇣

dB(j)

t

+ �(j)dt
⌘

+ rX
t

dt� C
t

dt+ Idt.

Merton solves this problem under the assumption that the agent can borrow from future
income, so that the admissible set (C,⇧) allows wealth to be negative. In this sense, all
future income can be discounted into an initial amount

´1
0

e�rtIdt = I/r, and this is
identical to the one-dimensional problem in Section 1.2 by letting X

0

= x+ I/r. Merton
shows that V

I

(x) = V (x+ I/r), where V
I

and V represent the value functions with and
without income.

1.4 The Davis and Norman model with proportional trans-
action costs

In the absence of transaction costs, Section 1.2 shows that it is optimal for the agent to
continuously rebalance portfolio in the risky asset so as to keep the fraction of the money
amount invested in the risky asset to wealth to be the Merton proportion. However,
any attempt to apply such optimal strategy in the presence of transaction costs would
result in ruin, since incessant trading would be necessary to hold the portfolio on the
Merton line. Therefore, it is necessary to consider a different strategy in the presence of
transaction costs.

Davis and Norman [13] firstly incorporated proportional transaction costs in the
one-dimensional Merton model with a precise mathematical formulation. They showed
that under optimal behaviour the no transaction region is of a wedge shape and that the
optimal buying and selling strategies are local times at boundaries chosen to keep the
process inside the wedge. In the transaction region, transactions take place at infinite
speed and except for the initial transaction, all transactions take place at the boundaries.
They obtained their results by writing down the non-linear, second order Hamilton-
Jacobi-Bellman (HJB) equation with free boundary conditions and then reduced the
problem to a non-linear second order ordinary differential equations with free boundary
conditions.

In this section, we introduce the model and the key result taken from Davis and
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Norman [13]. Our work in the following chapters are motivated by the results here.

1.4.1 The model

Consider a financial market with one bond and one risky asset with prices modelled by
(1.2) and (1.3) in Section 1.2 with N = 1. The transaction costs are assumed to be
proportional to the amount invested. In particular, the investor pays fractions  and ⌫ of
the amount either on purchase or sell the risky asset respectively. The transaction costs
and the consumption are assumed to be deducted from the bond holdings.

We denote by X and Y the holdings in bond and stock respectively. Then the
stochastic processes of the holdings solve

dX
t

= (rX
t

� C
t

)dt� (1 + )dL
t

+ (1� ⌫)dU
t

, (1.15)

dY
t

= µY
t

dt+ �Y
t

dB
t

+ dL
t

� dU
t

, (1.16)

where the initial holdings are X
0

= x and Y
0

= y. The cumulative purchase and sale
of the risky asset are represented by L and U . We can see that purchase of dL units of
the risky asset requires a payment of (1+ )dL units of bond whence sale of dU units of
stock generates only (1� ⌫)dU units of bond.

Now consider the solvency region where selling of all units of the risky asset or
closing of the short position in the risky asset leads to non-negative holdings after paying
transaction costs. Define the solvency region by

J =

�

(x, y) 2 R2

: x+ (1� ⌫)y � 0, x+ (1 + )y � 0

 

.

Remark 1.4.1. Doléans-Dade [14] prove that (1.15) and (1.16) have a unique strong
solution at least up the first time ⌧ when the processes X, Y leave the region J , i.e.
the bankruptcy time, where ⌧ = inf {t � 0 : (X

t

, Y
t

) /2 J }.
The objective of the investor is to find admissible optimal strategies (C⇤, L⇤, U⇤

) 2
A (x, y) so as to maximise the expected utility of consumption over an infinite horizon.
The investor’s risk preference is measured by the power utility function (1.5) and the
value function is defined by

V (x, y) = sup

(C,L,U)2A(x,y)

E
ˆ 1

0

e��tU(C
t

)dt

�

.

In this problem C is a classical stochastic control as seen in Section 1.2, and L and
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U are singular stochastic controls [19, chapter 8]. Davis and Norman use a dynamic
programming approach and obtain the following main result.

Prior to the main theorem, we define the auxiliary constants �
1

, �
2

and �
3

by

�
1

= �1

2

�2R(1�R) + µ(1�R)� �,

�
2

= �2R+ r � µ,

�
3

=

1

2

�2.

1.4.2 A main theorem

Theorem 1.4.2. [Davis and Norman(1990)] Suppose the following condition is satisfied.

� > r(1�R) +

(1�R)(µ� r)2

2R�2
. (1.17)

Suppose that there exist constants K
1

, K
2

, s
min

, s
max

, and a function  2 C2

: [�(1 �
⌫),1) ! R such that

(i) s
min

, s
max

satisfy
0 < s

min

< s
max

< 1. (1.18)

(ii)  is increasing for s 2 (�(1� ⌫),1). For s  s
min

,  has the following expression

 (s) =
1

1�R
K

1

(s+ 1� ⌫)1�R. (1.19)

(iii) For s
min

 s  s
max

,  is a solution to the following ordinary differential equation

�
3

s2 00
(s) + �

2

s 0
(s) + �

1

 (s) +
R

1�R
[ 0

(s)]
R�1
R

= 0. (1.20)

(iv) For s � s
max

,  has the following expression

 (s) =
1

1�R
K

2

(s+ 1 + )1�R. (1.21)

Now define the buying region, selling region and no-transaction region by

BR = {(x, y) 2 J : y  s�1

max

x},
SR = {(x, y) 2 J : y � s�1

min

x},
NT = {(x, y) 2 J : s�1

max

x  y  s�1

min

x}.
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Then for every (x, y) 2 NT \{(0, 0)} the optimal consumption process is given in feedback
form via

C⇤
(x, y) = y



 0
✓

x

y

◆�� 1
R

.

Define ˆC
t

= C⇤
(X

t

, Y
t

). Then the corresponding processes ˆX, ˆY , ˆL, ˆU given by

d ˆX
t

= [r ˆX
t

� C⇤
(X

t

, Y
t

)]dt� (1 + )dˆL
t

+ (1� ⌫)d ˆU
t

,

d ˆY
t

= µ ˆY
t

dt+ � ˆY
t

dB
t

+ dˆL
t

� d ˆU
t

,

ˆL
t

=

ˆ
t

0

1{( ˆ

X

r

,

ˆ

Y

r

)2@BR}dˆLr

,

ˆU
t

=

ˆ
t

0

1{( ˆ

X

r

,

ˆ

Y

r

)2@SR}d ˆUr

,

exist and (

ˆC, ˆL, ˆU) is optimal. Here 1 stands for the indicator function and @BR repre-
sents the boundary of the buying region. Finally, the value function is given by

V (x, y) = y1�R 

✓

x

y

◆

.

Remark 1.4.3. Note that condition (1.17) is the same as the condition (1.9) in Section 1.2,
which requires the discount factor to be large enough so that the value function in the
Merton model is finite.

Remark 1.4.4. Theorem 1.4.2 implies that the solvency region J is divided into three
regions, the buying region BR, the selling region SR and the no-transaction region NT ,
and each region is a wedge. See Figure 1.1. If the pair (X

t

, Y
t

) is in either BR or SR
at t = 0, then the investor should make an instantaneous transaction to the boundary of
NT . While (X

t

, Y
t

) 2 NT , the investor consumes but does not make any transactions.
As long as the pair (X

t

, Y
t

) reaches the boundary between BR and NT , the investor
purchases the risky asset so as to keep the pair (X

t

, Y
t

) inside NT . Similarly, when the
pair (X

t

, Y
t

) reaches the boundary between SR and NT , the investor sells certain units
of the risky asset in order to keep (X

t

, Y
t

) inside NT . Except for the initial transaction,
all further transactions take place at the boundaries and the transaction strategies are of
‘local time’ type, which is to do minimal trading to keep the fraction of wealth invested in
the risky asset ⇡̂

t

= Y
t

/(X
t

+Y
t

) in the no transaction interval [(1+s
max

)

�1, (1+s
min

)

�1

].

Remark 1.4.5. Davis and Norman [13] use a traditional dynamic programming approach
as introduced in Remark 1.3.3 in Section 1.2. There are also different approaches in the
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0

0

x

y

x + (1 − ν)y
= 0

x + (1 + κ)y
= 0

SR NT

BR

Figure 1.1: Stylised plot of the solvency region J and its divisions BR, SR and NT .
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existing literature to tackle the Merton problem with proportional transaction costs, for
instance, a viscosity solution approach [52] whose key idea is to prove that the value
function is a viscosity solution to the HJB equation by maximum principle. Under the
assumption of small transaction costs, a perturbation approach [57] is available whose key
idea is to take an asymptotic expansion of the value function in terms of small transaction
costs.

Remark 1.4.6. Solving the equations (1.19), (1.20) and (1.21) reduced from the HJB
equation is a free boundary problem. Here, the C2 function  is governed by simple
functions for s 2 [�(1� ⌫), s

min

] and s 2 [s
max

,1) with unknown constants s
min

, s
max

,
K

1

and K
2

whence  solves a second order ODE for s 2 [s
min

, s
max

]. Since  2 C2,
we expect smooth fit conditions to be satisfied at boundaries if such function  exists.
In particular, we expect  ,  0,  00 are continuous at s

min

and s
max

. At any given point
s
min

2 [�(1 � ⌫),1), equations (1.19) and (1.20) give two different expressions for  00.
We then have f(K

1

, s
min

) = 0 by equating these two equations for some function f .
Similarly, equating (1.20) and (1.21) gives g(K

2

, s
max

) = 0 for some function g. Hence
we observe that K

1

and K
2

can be determined by solving f and g once s
min

and s
max

are determined.

Apart from their main result presented in Theorem 1.4.2, Davis and Norman
also provide a rigorous proof of the verification theorem in [13] in order to show the
candidate value function is indeed the value function. In order to ensure the conditions
in Theorem 1.4.2 are satisfied so that there exists a solution to the free boundary problem
(1.19), (1.20) and (1.21), they posed an additional sufficient condition. Although they
cannot provide a mathematical proof of the necessity of this condition and Theorem 1.4.2
under this condition, their numerical results convince them of the result. Finally, they
provide a numerical algorithm to solve the free boundary problem (1.19), (1.20) and
(1.21). In particular, they search s

min

and s
max

when there is a value matching. They
provide a numerical example in which the no-transaction interval [(1 + s

max

)

�1, (1 +

s
min

)

�1

] contains the Merton proportion ⇡̂⇤.
Despite the pioneering work by Davis and Norman, there remain some challenges.

For instance, the additional condition posed cannot be proved and it is also hard to follow
the derivation of this condition in [13]. Further, Theorem 1.4.2 shows that the optimal
strategies and the value function are characterised by a free boundary problem. In both
BR and SR, there are undetermined coefficients K

1

and K
2

, while in NT there is a non-
linear second order differential equation on an unknown interval [s

min

, s
max

]. This implies
that lots of hard work is required in order to understand the problem in a more detailed
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fashion, i.e. the dependence of optimal strategies on market parameters, and it is even
harder to apply their methodology into a multi-asset problem. Finally, it is complicated
to conduct comparative statics of quantities of interest based on the numerical algorithm
in [13], which requires a search for s

min

and s
max

iteratively until the solution to a system
of first order differential equations crosses the boundary of some region.

1.5 Literature review

There is a vast literature on the extensions of the Merton model. As introduced in
Section 1.4, Davis and Norman [13] extend the Merton model into an incomplete financial
market with proportional transaction costs. Apart from that, the Merton model is also
extended into other two mainstream directions, namely, non-traded assets and asset
liquidation.

1.5.1 Non-traded assets

Whilst active trading in financial assets are allowed in the Merton problem, in other
contexts dynamic trading is not possible. Svensson and Werner [54] were the first to
consider the problem of pricing non-traded assets in the Merton model. In their model,
an agent endowed with units of an asset can sell the asset, but may not make purchases.
In the simplest case the agent is endowed with a single unit of an indivisible asset which
cannot be traded and the problem reduces to an optimal sale problem for an asset. Evans
et al [16], see also Henderson and Hobson [28, 30], consider an agent with power utility
function who owns an indivisible, non-traded asset and wishes to choose the optimal time
to sell the asset in order to maximise the expected utility of terminal wealth

sup

⌧

sup

⇡2A
⌧

EU(X
⌧

, ⌧),

where ⌧ is a stopping time. Their results show that the optimal criterion for the sale
of the asset is to sell the first time the value of the non-traded asset exceeds a certain
proportion of the agent’s trading wealth and this critical threshold is governed by a
transcendental equation. Henderson and Hobson [26] also study the problem in the
context of real options, where the investor with power utility function, has a claim on
units of non-traded assets correlated with the risky asset and wishes to find

sup

⇡

t

,0tT

EU(X
T

),
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in a finite horizon. Monoyios [44] considers a similar problem in which the investor has
an exponential utility function and the non-traded asset is the underlying of an European
option. An explicit solution is obtained for put option by perturbation techniques. Miao
and Wang [42] consider a risk averse entrepreneur with exponential utility function who
is endowed with a non-traded investment project and has access to another correlated
risky asset. The project generates cash flow governed by an arithmetic Brownian motion
and the price of the risky asset follows a geometric Brownian motion. By a similar
approach in [26], they show that risk aversion delays investment and lowers the value of
the project.

1.5.2 Asset liquidation

In a separate strand of literature, Merton’s model is generalised into the context of asset
liquidation. Rogers and Singh [49] model illiquidity of a portfolio in the way that investors
with large trading volumes have to pay an inflated price. In contrast, Bank and Baum [6]
consider a large trader whose trading behaviour impacts the market price, governed
by a family of semi-martingales. Under the assumption that there exists a universal
martingale measure for all price processes, they prove the no arbitrage condition in the
financial market comprising such a large trader. Henderson and Hobson [29] consider the
problem of a risk averse investor who wishes to liquidate a portfolio of infinitely divisible
American style options. Longstaff [40] models the illiquidity of portfolio by constraining
trading strategies to be of bounded variation so that a trader cannot extricate himself
from a position immediately. Schied and Schöneborn [50] introduce two price impacts in
order to model illiquidity, one permanent price impact which accumulates over time and
one temporary impact which is only affected by the instantaneous change in the number
of shares.

1.5.3 Incomplete financial market with transaction costs

Another extension of the Merton’s model involves incomplete financial market setting
where perfect hedging is no longer possible. Constantinides and Magill [12] (see also
Constantinides [11]) were the first to introduce proportional transaction costs to the
Merton model and considered an investor whose aim is to maximise the expected utility of
consumption over an infinite horizon under power utility. They conjectured the existence
of a ‘no-transaction’ region, and that it is optimal to keep the proportion of wealth
invested in the risky asset within some interval.

Subsequently Davis and Norman [13] gave a precise formulation of the problem in
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[12] and their work is a landmark in the study of proportional transaction cost problems.
Motivated by Davis and Norman’s work, Shreve and Soner [52] studied the same problem
but with an approach via viscosity solutions. They recover the results from Davis and
Norman [13] without imposing all of the conditions of [13]. These approaches remain
the main methods for solving portfolio optimisation problems with transaction costs,
although recently a different technique based on shadow prices has been proposed, see
Guasoni and Muhle-Karbe [22] for a users’ guide.

In related work, Duffie and Sun [15], Liu [39] and Korn [38] study the problem
when there are fixed (as opposed to proportional) transaction costs. Liu modelled the
fixed transaction cost by a constant brokerage fee F > 0 and the holdings in stock evolves
as

dX
t

= (rX
t

� C
t

)dt� F
�

1
(dL

t

>0)

+ 1
(dU

t

>0)

�

,

Liu used a dynamic programming approach, deriving an ordinary differential equation to
characterise the value function and solving it numerically. He found that if there is only a
fixed transaction cost, the optimal trading strategy is to trade to a certain target amount
as soon as the fraction of wealth in stock goes outside a certain range. Korn [38] solved
a similar problem by an impulse control and optimal stopping approach. He proved the
Bellman principle and solved for the reward function by an iteration procedure under
the assumption that the value function is finite.

In the literature of multi-asset problems with transaction costs, however, there
are relatively limited results. In the multi-asset case, and on the computational side,
Muthuraman and Kumar [45] use a process of policy improvement to construct a numer-
ical solution for the value function and the associated no-transaction region, and Collings
and Haussman [10] derive a numerical solution via a Markov chain approximation, for
which they prove the convergence. On the theoretical front Akian et al [2] show that the
value function is the unique viscosity solution of the HJB equation (and provide some
numerical results in the two-asset case) under the assumption that the price processes
of the risky assets are uncorrelated. Chen and Dai [8] identify and prove the shape of
the no-transaction region in the two-asset case. Explicit solutions of the general problem
remain very rare. One situation when an explicit solution is possible is the rather special
case of uncorrelated risky assets, and an agent with constant absolute risk aversion. In
that case the problem decouples into a family of optimisation problems, one for each risky
asset, see Liu [39]. Another setting for which some progress has been made is the problem
with small transaction costs, see Atkinson et al [3], Whalley and Willmott [57], and for
a more recent analysis Soner and Touzi [53]. Whalley and Willmott use an expansion
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method to provide asymptotic formulae for the optimal strategy.

1.6 Overview of thesis

Two main extensions from the Merton model, as introduced in Section 1.5, are non-traded
asset sale problems and investment-consumption problems with transaction costs. For
a non-traded asset sale problem, the primary challenge is to find the optimal timing for
sale, and optimal quantities for sale if the asset is infinitely divisible. Apart from that,
it is also crucial to understand the optimal investment and consumption strategies and
provide an indifference price for the non-traded asset.

For an investment-consumption problem with transaction costs, as stated in Sec-
tion 1.4, the challenges are to find new solution techniques to be able to understand the
one-dimensional problem in a more detailed fashion and to further generalise to a multi-
dimensional problem with transaction costs. Additionally, a more reliable numerical
algorithm is also a challenge so that comparative statics can be conducted.

This thesis is concerned with above challenges in the literature of both non-traded
asset sale problems and investment-consumption problems with transaction costs. In
Chapter 2, we consider two motivation examples of the optimal consumption problem.
On example is formulated in a discrete two-period setting, in which explicit solutions
of the optimal consumption and sale strategies are obtained. Subsequently, we consider
another problem in a continuous-time setting, in which we discover some key features of
the optimal consumption process and the utility indifference price.

Chapter 3 considers an (infinitely divisible) asset sale problem under the Merton
model, in which we assume the endowed asset can only be sold but not bought and the
agent does not have other investment opportunities. This problem can also be considered
as a special case of Davis and Norman model in which the cost of purchases of the endowed
asset is infinite. In this special setting new solution techniques are available, and we are
able to completely classify the different types of optimal strategies and the parameter
ranges over which they apply. Further, we can simplify the problem of solving for the
value function, especially when compared with direct approaches for solving the HJB
equation as a free boundary problem via smooth fit.

Chapter 4 is concerned with the comparative statics of the single-asset problem in
Chapter 3. In the comparative statics, we analyse the dependence of the optimal thresh-
old, optimal strategies, the value function and indifference price on market parameters
and arrive at some surprising results.

In Chapter 5, we consider an optimal consumption and investment problem with
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multiple risky assets, and with infinite transaction costs on purchases of one of the
risky assets, the endowed asset. Equivalently, the endowed asset can only be sold. For
an agent with CRRA utility function we completely characterise the different possible
behaviours of the agent and classify different regimes under market parameters. Further,
we prove the monotonicity of the optimal exercise ratio and the indifference price in
market parameters.

The comparative statics of Chapter 5 is presented in Chapter 6. Apart from
recovering the results in the single-asset case in Chapter 4, we also find that under
certain combination of parameters, it is never optimal to cease investment in the risky
assets even if liquid wealth hits zero.
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Chapter 2

Two preliminary asset sale and
consumption problems

In this chapter, we consider two consumption optimisation problems in simple settings.
The simplicity of the problems makes the explicit solutions of optimal strategies available
so that the key features of consumption optimisation problems are illustrated.

An asset sale problem in a two-period (t 2 {0, 1}) consumption model is consid-
ered in Section 2.1, in which an agent endowed with an infinitely divisible asset wishes
to choose the optimal consumption and sale strategy in order to maximise the expected
utility over two time steps, today and tomorrow. We find explicit solutions of the opti-
mal strategies in a binomial model. Further, we are able to understand different possible
behaviours of the agent, which includes always selling the entire holdings of the endowed
asset initially, selling a fraction of the entire holdings initially, and never selling the asset
till terminal time t = 1.

In Section 2.2, we consider a consumption optimisation problem in an infinite
horizon. Instead of introducing an endowed asset, we suppose that the agent receives an
one-off payment at a specific time during her life time with probability q. The problem
is discussed in different scenarios, depending on whether or not the payment is received.
Explicit solutions are obtained in each scenario and we show that the optimal consump-
tion process is not necessarily continuous over time and the utility indifference price is
not necessarily monotone in risk aversion.

The reason to include these two problems in the thesis is to build intuition for the
full problems in the following chapters. By understanding the key features in Section 2.1
and Section 2.2, we find it helpful to better understand and analyse the problems in more
complicated settings.
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2.1 A two-period divisible asset sale problem

In this section we consider an asset sale problem in a two-period consumption model. An
agent with CRRA utility function is endowed with an infinitely divisible asset and her
objective is to: (1) find the optimal quantities of the endowed asset to sell in order to
better finance consumption; (2) find the optimal consumption strategy which maximises
the expected utility of consumption over t = 0 and t = 1, representing ‘today’ and
‘tomorrow’.

We find that explicit solutions of the optimal strategies are difficult to obtain
under the assumption that the price of the endowed asset satisfies a general continu-
ous distribution function. Instead we consider the problem in a binomial model, which
simplifies the problem and brings explicit solutions.

2.1.1 The general setting

We consider an agent who is endowed with an initial quantity of ✓
0

units of asset Y

and the endowed asset is assumed to be only allowed for sale. The price of Y satisfies
Y
0

= y
0

and Y
1

= Z, where Z is some non-negative continuous random variable with a
distribution function F (z).

Denote by C = (C
0

, C
1

) the consumption rate of the the agent at t = 0 and t = 1

respectively, and � the holding of asset Y over time period (0, 1) such that 0  �  ✓
0

.
In particular, � = ✓

0

means no units of Y are sold at t = 0, instead all ✓
0

units of Y
are sold at t = 1. Let x

0

be the initial wealth of the agent and X be the wealth at time
t = 1 such that

X = x
0

� C
0

+ y
0

(✓
0

� �) + �Z.

Here we have x
0

, y
0

, ✓
0

are all constants.
The investor is assumed to have CRRA utility function,

U(C) =

C1�R

1�R
, (2.1)

where the relative risk aversion R 2 (0,1) \ 1.
The objective of the agent is to determine the quantities of Y to be sold at t = 0

and t = 1, represented by (✓
0

� �) and �, and the optimal consumption C in order to
find

max

(C,�)

n

E
h

U(C
0

) + e��U(C
1

)

io

, (2.2)
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subject to 0  C
0

 x
0

+ (✓
0

� �)y
0

,

C
1

= X = x
0

� C
0

+ y
0

(✓
0

� �) + �Z, (2.3)

and 0  �  ✓
0

. Here e�� is the discount factor at t = 1 and � is a positive constant.
Note that � > 0 satisfies the condition (1.9) given that r = 0 and � = 0 in this case.

Note that the right hand side of (2.3) is the remaining wealth before t = 1. Here
y
0

(✓
0

��) is the money amount generated by the sale of (✓
0

��) units of Y , and �Z is
the money amount generated by the sale of remaining � units of Y . (Any remaining Y

after t = 0 will be sold at t = 1 to finance consumption C
1

.)
Provided the constraint (2.3), the objective function in (2.2) can be rewritten into

E
h

U(C
0

) + e��U(C
1

)

i

= E(U(C
0

)) + e��E [U (x
0

� C
0

+ y
0

(✓
0

� �) + �Z)]

=

C1�R

0

1�R
+ e��

ˆ 1

0

[x
0

� C
0

+ y
0

(✓
0

� �) + �z]1�R

1�R
F (dz). (2.4)

Applying first order conditions to (2.4) gives the optimal consumption and sale strategy,
c⇤ and �⇤, if exist, should solve

c⇤�R � e��
ˆ 1

0

[x
0

� c⇤ + y
0

(✓
0

� �⇤) + �⇤z]�RF (dz) = 0, (2.5)

e��
ˆ 1

0

(z � y
0

)[x
0

� c⇤ + y
0

(✓
0

� �⇤) + �⇤z]�RF (dz) = 0, (2.6)

which are equivalent to U 0
(C⇤

0

) = E[U 0
1

(C⇤
1

)] and y
0

U 0
1

(C⇤
0

) = E[Y
1

U 0
1

(C⇤
0

)]. Here U
1

corresponds to the discounted utility function at t = 1, e.g. U
1

(·) = e��U(·).
Note that the optimal consumption and sale strategies c⇤ and �⇤ should satisfy

both (2.5) and (2.6), which gives
ˆ 1

0

z[x
0

� c⇤ + y
0

(✓
0

� �⇤) + �⇤z]�RF (dz) = e�y
0

c⇤�R. (2.7)

The next step is to find expressions for c⇤ and �⇤ by solving (2.5) and (2.6).

Remark 2.1.1. We are unable to obtain explicit solutions of c⇤ and �⇤ by solving (2.5)
and (2.6) given a general function F (·) satisfying

´1
0

F (dz) = 1. Even if we assume a
specific distribution function F (z), i.e. Z follows a log-normal distribution, it is difficult
to calculate the integrals in (2.5) and (2.6).

One possible way is to rely on numerical method. Define functions g
1

(·, ·), g
2

(·, ·)
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where

g
1

(c,�) = c�R � e��
ˆ 1

0

[x
0

� c+ y
0

(✓
0

� �) + �z]�RF (dz),

g
2

(c,�) = e��
ˆ 1

0

(z � y
0

)[x
0

� c+ y
0

(✓
0

� �) + �z]�RF (dz).

The optimal pair (c⇤,�⇤) can be determined by looking for the intersection/intersections
between the trajectories in the c� � plane by setting g

1

= 0 and g
2

= 0.

In the following section, we consider the problem in a binomial model so that
(2.5) and (2.6) are simplified and we are able to obtain explicit solutions of c⇤ and �⇤.

2.1.2 An explicit solution in a binomial model

Recall the model setting in Section 2.1.1. Now suppose Z, representing the price of Y
at t = 1, satisfies P(Z = y) = p and P(Z = y) = 1� p. Here y and y are constants such
that y < y

0

< y. Then equation (2.4) becomes

E
h

U(C
0

) + e��U(C
1

)

i

= U(C
0

) + pe��U(x
0

+ (✓
0

� �)y
0

� C
0

+ �y)

+(1� p)e��U(x
0

+ (✓
0

� �)y
0

� C
0

+ �y) (2.8)

Applying first order conditions to (2.8) gives the optimal consumption and sale strategy,
c⇤ and �⇤, if exist, should solve

c⇤�R�pe�� [x
0

+(✓
0

��)y
0

�c⇤+�y]�R�(1�p)e�� [x
0

+(✓
0

��)y
0

�c⇤+�y]�R

= 0, (2.9)

p(y�y
0

)e�� [x
0

+(✓
0

��⇤)y
0

�c+�⇤y]�R�(1�p)(y
0

�y)e�� [x
0

+(✓
0

��⇤)y
0

�c+�⇤y]�R

= 0,

(2.10)
which are equivalent to U 0

(C⇤
0

) = E[U 0
1

(C⇤
1

)] and y
0

U 0
1

(C⇤
0

) = E[Y
1

U 0
1

(C⇤
0

)]. Note that
(2.9) and (2.10) can be rewritten into



c⇤

x
0

+ (✓
0

� �)y
0

� c⇤ + �y

��R

= pe��


x
0

+ (✓
0

� �)y
0

� c⇤ + �y

x
0

+ (✓
0

� �)y
0

� c⇤ + �y

��R

+ (1� p)e�� ,

(2.11)


x
0

+ (✓
0

� �⇤)y
0

� c+ �⇤y

x
0

+ (✓
0

� �⇤)y
0

� c+ �⇤y

��R

=

(1� p)(y
0

� y)

p(y � y
0

)

. (2.12)
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Since the optimal c⇤ and �⇤ should satisfy both (2.11) and (2.12), we substitute (2.12)
into (2.11) and have the following equation for c⇤ and �⇤

c⇤ =

n

e��(1� p)
y�y

y�y0

o� 1
R

1 +

n

e��(1� p)
y�y

y�y0

o� 1
R

(x
0

+y
0

✓
0

)�
n

e��(1� p)
y�y

y�y0

o� 1
R

1 +

n

e��(1� p)
y�y

y�y0

o� 1
R

(y
0

�y)�⇤. (2.13)

Then, substituting (2.13) into (2.11) and (2.12) respectively gives the following expres-
sions for c⇤ and �⇤

c⇤ = K
1

(x
0

+ y
0

✓
0

)

y � y

(1 +K
1

)(y � y) +K
2

(y
0

� y)
, (2.14)

�⇤ = K
2

(x
0

+ y
0

✓
0

)

1

(1 +K
1

)(y � y) +K
2

(y
0

� y)
, (2.15)

where K
1

and K
2

are defined as

K
1

=



e��(1� p)
y � y

y � y
0

�� 1
R

, K
2

=



(1� p)(y
0

� y)

p(y � y
0

)

�� 1
R

� 1. (2.16)

Substituting (2.14) and (2.15) into (2.8) gives the maximum of the expected utility in
(2.4),

max

(C,�)

n

E
h

U(C
0

) + e��U(C
1

)

io

=

x1�R

0

1�R

2

4

(y � y)
⇣

1 +

y0✓0
x0

⌘

(1 +K
1

)(y � y +K
2

(y
0

� y))

3

5

1�R

n

K1�R

1

+ e��p(1 +K
2

)

1�R

+ e��(1� p)
o

.

Now we consider some key features of this asset sale problem given the explicit
expressions of c⇤ and �⇤. In particular, we want to understand different possible be-
haviours of the agent by analysing the different possible values of �⇤. It is sufficient to
discuss the following two special scenarios.

1. Consider the case �⇤ = 0. This implies the agent always sells all units of the
endowed asset Y initially. From (2.15) and the monotonicity of (2.8) in � if the
feasibility constraint � � 0 is violated, we have �⇤ = 0 if and only if

K
2

=



(1� p)(y
0

� y)

p(y � y
0

)

�� 1
R

� 1  0,
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Figure 2.1: Plot of �⇤ as a function of p. Here parameters are y = 0, y = 100, x
0

= y
0

= ✓
0

= 1, � = 1, R = 0.5 and p⇤ = 0.28. From the graph, �⇤ is increasing in p. For p � p⇤,
we have �⇤ = ✓

0

= 1.

which gives py + (1� p)y  y
0

, or equivalently, E[Y
1

]  y
0

.

This implies the following feature of the asset sale problem. If the endowed asset
is depreciating over time, then the optimal strategy is to sell the entire asset im-
mediately. Since the endowed asset has a non-positive return but additional risk,
the agent always sells immediately so as to remove such risk.

This feature of the asset sale problem will appear again as one of the scenarios in
the full problems in the following chapters.

2. Consider the case �⇤ = ✓
0

. This implies the agent always keeps the entire asset
Y initially and sells at terminal time t = 1. From (2.15) and the monotonicity of
(2.8) in � if the feasibility constraint �  ✓

0

is violated, we have �⇤ = ✓
0

if and
only if (1+K

1

)(y�y)✓
0

 K
2

(x
0

+y✓
0

). This expression, even back to the original
parameters, is hard to interpret in an expectation-variance framework. However, if
we consider �⇤ as a function of probability p by fixing other parameters, it follows
that @�⇤/@p > 0 after some lengthy algebra with

lim

p!0

�⇤(p) = � x
0

+ y
0

✓
0

K
1

(y � y) + y � y
0

< 0, lim

p!1

�⇤(p) =
x
0

+ y
0

✓
0

y
0

� y
> ✓

0

.
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Since �⇤ is continuous in p from (2.15), there exists some critical value p⇤ 2 (0, 1)

such that �⇤(p⇤) = ✓
0

. For p < p⇤, we have �⇤ < ✓
0

whence �⇤ = ✓
0

for p � p⇤.
In particular, p⇤ is a solution to (1 + K

1

(p))(y � y)✓
0

= K
2

(p)(x
0

+ y✓
0

). See
Figure 2.1.

Provided that y > y
0

, a higher probability p implies a better return on Y (This
is equivalent if we fix p and consider �⇤ as a function of y). This implies another
feature of the asset sale problem. The more valuable the endowed asset will be,
the more holdings should the agent keep for a better return. Further, when the
expected return of the endowed asset reaches certain value, the agent should always
hold the asset. The optimal sale strategy �⇤ is governed by a complicated equation.
We will observe these features again in the full problems in the following chapters,
in which the optimal sale threshold solves a stochastic differential equation.

In the following chapters, we consider this asset sale problem over an infinite
horizon under the Merton model. We manage to classify all types of behaviours of the
agent, including the ones introduced here, and rigorous proofs are provided in a singular
stochastic control framework. Further, the features we find in this simple example are
explored further both analytically and numerically.

2.2 Indifference pricing in an optimal consumption problem

In this section we consider an agent with CRRA utility function who wishes to maximise
the expected utility of consumption over an infinite horizon. Apart from initial wealth,
the agent receives a one-off payment � with probability q at a specific time during her
life time. Given the randomness of the payment, the agent is not allowed to borrow from
future income. The problem is to find the optimal consumption strategy and the value
of the uncertain payment.

We classify the problem into three scenarios, (1) q = 0 so that the agent does not
receive �, (2) q = 1 so that the agent receives �, (3) 0 < q < 1 so that the agent receives
� with probability q. By the Lagrangian method, the original problem with constraints
is converted into an unconstrained problem. Provided the explicit solutions, we show
that the optimal consumption process is not necessarily continuous over time.

Further, we price the value of the uncertain payment � via a utility indifference
approach. Hodges and Neuberger [34] were the first to adapt the static certainty equiva-
lence concept to a dynamic setting. See Henderson and Hobson [27], and Monoyios [43]
for a more detailed introduction. The utility indifference price is the price at which the
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agent is indifferent between receiving the payment � at a specific time in the future and
not having �, but receiving some cash amount p now. Our numerical results reveal a
surprising feature: the utility indifference price is not necessarily monotone decreasing
in risk aversion.

2.2.1 The model setting

Let C = (C
t

)

t�0

and X = (X
t

)

t�0

be the consumption and wealth process of the agent.
Denote by X

0

= x
0

the initial wealth of the agent with x
0

� 0.
Suppose the agent receives cash amount � with probability q at time t = 1. Then

the wealth process is

X
t

= x
0

�
ˆ

t

0

C
s

ds+ �1
(t�1)

1
(Z1q)

, (2.17)

where the random variable Z
1

2 F
1

and follows a uniform distribution on [0, 1]. Given
there is no interest rate in the model, we do not take into account the discount factor of
�.

The agent is assumed to have CRRA utility function in (2.1) and the objective of
the agent is to choose consumption process C 2 A(x

0

) in order to find

max

C2A(x0)
E
ˆ 1

0

e�s

C1�R

s

1�R
ds

�

, (2.18)

and the indifference price p for �.
Depending on the different values of q, the problem can be classified into three

different scenarios. Under each scenario, the agent has a different type of behaviour and
the indifference price of � has a different feature.

2.2.2 Three scenarios

We classify the problem with different values of q which determine whether or not the
agent receives �. In particular, we consider three cases with q = 0, q = 1 and 0 < q < 1.

(1) Suppose q = 0.
In this scenario we have 1

(Z1q)

= 0, implying that the agent will not receive �
at time 1. Then the problem becomes deterministic and the wealth process in (2.17)
becomes X

t

= x
0

� ´ t
0

C
s

ds. This is the Merton problem without any risky assets and
we know from Theorem 1.2.5 in Section 1.2 that the optimal consumption process, the
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value function, and the indifference price are

C⇤
t

= e�
1
R

t

x
0

R
, V (x

0

) =

x1�R

0

1�R
RR, p(x

0

) = 0.

Provided that the agent does not receive � and consumption is financed only by
initial wealth, the optimal strategy is to consume averagely over time and the indifference
price of � is zero.

(2) Suppose q = 1.
In this scenario we have 1

(Z1q)

= 1, implying that the agent will receive � at
time 1. Then the problem is deterministic and the wealth process in (2.17) becomes
X

t

= x
0

� ´ t
0

C
s

ds+ �1
(t�1)

. The goal is to find (2.18) subject to the constraints,

ˆ
1

0

C
s

ds  x
0

, and
ˆ 1

0

C
s

ds  x
0

+ �. (2.19)

Consider first the maximisation problem (2.18) with the second constraint in
(2.19). Equivalently, we assume that consumption is continuous over time. Introducing
the Lagrange multiplier � > 0 for the constraint, then the Lagrangian for the optimisation
problem (2.18) is

L(C;�) =

ˆ 1

0

e�t

C1�R

t

1�R
dt+�

⇢

x
0

+ ��
ˆ 1

0

C
t

dt

�

=

ˆ 1

0

"

e�t

C1�R

t

1�R
� �C

t

#

dt+�x
0

+��,

and the Euler-Lagrange equation gives c⇤ =

�

et�⇤
��1/R. Substituting c⇤ in terms of �⇤

into the second constraint in (2.19) gives �⇤, the optimal consumption C⇤ and the value
function as

�⇤ =

✓

x
0

+ �

R

◆�R

, C⇤
t

= e�
1
R

t

x
0

+ �

R
, V (x

0

) =

(x
0

+ �)

1�R

1�R
RR. (2.20)

We know from the first scenario that the value function without receiving � is
V (x

0

, 0) = RRx1�R

0

/(1�R). Denote by the value function in (2.20) V (x
0

,�) to emphasise
that the agent receives �. The indifference price p is then a solution to

V (x
0

+ p, 0) = V (x
0

,�),

which gives p(x
0

) = �.
Now we check the first constraint in (2.19) given the expression of C⇤ in (2.20).
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This gives ˆ
1

0

C⇤
s

ds =
x
0

+ �

R

ˆ
1

0

e�
1
R

tdt = (x
0

+ �)(1� e�
1
R

).

Note that the first constraint holds if and only if (x
0

+�)(1�e�1/R

)  x
0

, or equivalently
R � [ln(1 + x

0

/�)]�1. However, for R < [ln(1 + x
0

/�)]�1, the optimal consumption
expressed in (2.20) is not feasible.

Now suppose R < [ln(1 + x
0

/�)]�1. Followed by the argument above, we define
different consumption rates C(1)

t

and C(2)

t

for t 2 [0, 1] and [1,1),

C
t

=

8

<

:

C(1)

t

, if t 2 [0, 1];

C(2)

t

, if t 2 [1,1).

Surely it is now clear that

ˆ
1

0

C(1)

t

dt = x
0

, and
ˆ 1

1

C(2)

t

dt = �.

Introducing Lagrange multipliers � > 0 and µ > 0 for the two constraints, the Lagrangian
for the maximisation problem (2.18) is then

L(C;�, µ)

=

ˆ 1

0

e�tU(C
t

)dt+ �

✓

x
0

�
ˆ

1

0

C(1)

t

dt

◆

+ µ

✓

x
0

+ ��
ˆ

1

0

C(1)

t

dt�
ˆ 1

1

C(2)

t

dt

◆

=

ˆ
1

0

h

e�tU(C(1)

)

t

� �C(1)

t

� µC(1)

t

i

dt+

ˆ 1

1

h

e�tU(C(2)

t

)� µC(2)

t

i

dt

+�x
0

+ µ(x
0

+ �).

Maximising over c(1) and c(2) gives c(1)
⇤
= e�

1
R

t

(�⇤ + µ⇤
)

� 1
R and c(2)

⇤
= e�

1
R

tµ⇤� 1
R ,

whence minimising the two constrains gives (�⇤ + µ⇤
)

� 1
R

= (1� e�
1
R

)

�1

x0
R

and µ⇤� 1
R

=

e
1
R

�

R

. By solving �⇤ and µ⇤, we have the optimal consumption process C⇤,

C(1)

t

⇤
= e�

1
R

t

⇣

1� e�
1
R

⌘�1 x
0

R
, C(2)

t

⇤
= e�

1
R

(t�1)

�

R
.

The corresponding wealth process for t 2 [0, 1] is

X⇤
t

= x
0

�
ˆ

t

0

C(1)

s

⇤
ds = 1�

⇣

1� e�
1
R

t

⌘⇣

1� e�
1
R

⌘�1

,
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Figure 2.2: Plot of the optimal consumption process C⇤ and the corresponding wealth
process X⇤ for R < [ln(1 + x

0

/�)]�1. Here parameters are x
0

= � = 1, q = 1, R = 2.
Both C⇤ and X⇤ are discontinuous at t = 1. In particular, X⇤

1� = 0 and X⇤
1+

= �.
Further, C⇤ and X⇤ are decreasing for t 2 [0, 1] and t 2 [1,1) respectively.

which implies X
1� = 0. Given X

1+

= X
1�+� = �, the wealth process, for t 2 [1,1), is

X⇤
t

= X
1+

�
ˆ

t

1

C(2)

s

⇤
ds = �� e

1
R

�

R

ˆ
t

1

e�
1
R

sds = e�
1
R

(t�1)

�.

Note that the optimal consumption and the corresponding wealth process are discontin-
uous at t = 1 due to the payment �. See Figure 2.2.

Finally, the value function is

V (x
0

) =

ˆ
1

0

e�tU
⇣

C(1)

t

⌘

dt+

ˆ 1

1

e�tU
⇣

C(2)

t

⌘

dt

= RR

x1�R

0

1�R

"

⇣

1� e�
1
R

⌘

R

+ e�1

✓

�

x
0

◆

1�R

#

. (2.21)

Denote by V (x
0

,�) the value function in (2.21). Then the indifference price is a solution
to V (x

0

+ p, 0) = V (x
0

,�), or equivalently

RR

(x
0

+ p)1�R

1�R
= RR

x1�R

0

1�R

"

⇣

1� e�
1
R

⌘

R

+ e�1

✓

�

x
0

◆

1�R

#

,
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Figure 2.3: Plot of the indifference price p as a function of R. Here parameters are
x
0

= � = q = 1. The indifference price p is continuous and increasing in R with
p(0) = e�1

� and lim

R!1 p(R) = �.

which gives,

p(x
0

) = x
0

8

<

:

"

⇣

1� e�
1
R

⌘

R

+ e�1

✓

�

x
0

◆

1�R

#

1
1�R

� 1

9

=

;

.

Therefore the indifference price for q = 1 is

p(x
0

) =

8

>

>

<

>

>

:

�, if R � [ln(1 + x
0

/�)]�1,

x
0

(



⇣

1� e�
1
R

⌘

R

+ e�1

⇣

�

x0

⌘

1�R

�

1
1�R

� 1

)

, if R < [ln(1 + x
0

/�)]�1.

(2.22)

Remark 2.2.1. Consider the indifference price p as a function of x
0

and R. From (2.22),
we have p(x

0

, 0) = e�1

�, which is the discounted payment of �. Define the critical value
R⇤

= [ln(1 + x
0

/�)]�1. Then we have lim

R!R

⇤� p(x
0

, R) = lim

R!R

⇤
+

p(x
0

, R) = �,
implying p is continuous at R⇤. See Figure 2.3.

For R < R⇤ and t 2 [0, 1], the consumption is financed by initial wealth x
0

and
the agent consumes in such a way that X

1� = 0. For t 2 [1,1), the consumption is
then financed by the payment � received. For R � R⇤ and t 2 [0,1), the consumption
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is financed by all future cash flows, (x
0

+ �).

Remark 2.2.2. If the agent is allowed to borrow from future income, then wealth can be
negative. Effectively, the first constraint in (2.19) no longer exists. Simple calculations
give that the indifference price p(x

0

) = �.

(3) Suppose 0 < q < 1.
In this scenario, the agent receives cash amount � with probability q at t = 1.

The objective in (2.18) can be rewritten as

max

C2A(x0)
E
ˆ 1

0

e�sU(C
s

)ds

�

= max

C2A(x0)
E
⇢ˆ

1

0

e�sU(C
s

)ds+

ˆ 1

1

e�sU(C
s

)ds

�

.

Define functions H and G by

H(x) = max

C2A(x0)
E
ˆ 1

1

e�sU(C
s

)ds

�

, (2.23)

G(x) = max

C2A(x0)
E
ˆ 1

1

e�sU(C
s

)ds
�

�X
1� = x,X

1+

= x+

˜

�

�

, (2.24)

where the random variable ˜

� satisfies P(˜� = 0) = 1� q and P(˜� = �) = q. Then we have

G(x) = E[H(x+

˜

�)] = qH(x+ �) + (1� q)H(x).

Consider first the maximisation problem (2.23) subject to
´1
1

C
t

dt  x. Intro-
ducing the multiplier � > 0, the Lagrangian for (2.23) is then

ˆ 1

1

e�s

C1�R

s

1�R
ds+ �

✓

x�
ˆ 1

1

C
s

ds

◆

.

By the same approach in the last two scenarios, we have C⇤
t

= e�(t�1)/Rx/R, which is
the same as the optimal consumption process in scenario (1), where the agent does not
receive cash amount �. The corresponding wealth process is X⇤

t

= e�(t�1)/Rx and

H(x) =

ˆ 1

1

e�s

C⇤
s

1�R

1�R
ds = e�1

x1�R

1�R
RR. (2.25)

Now consider H(x+�). Followed by the same argument, we have C⇤
t

= e�(t�1)/R

(x+

�)/R, which is the same as the optimal consumption process in scenario (2) for R �
[ln(1 + x

0

/�)]�1, where the agent receives cash amount �. The corresponding wealth
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process is X⇤
t

= e�(t�1)/R

(x+ �), and

H(x+ �) = e�1

(x+ �)

1�R

1�R
RR. (2.26)

Provided H(x) and H(x+ �) in (2.25) and (2.26), we have

G(x) = qH(x+ �) + (1� q)H(x) = e�1

RR

1�R

⇥

q(x+ �)

1�R

+ (1� q)x1�R

⇤

.

Then from (2.24), the objective in (2.18) becomes

max

C2A(x0)

⇢ˆ
1

0

e�s

C1�R

s

1�R
ds+G(X

1

)

�

, (2.27)

subject to X
1

= x
0

� ´ 1
0

C
s

ds.
Introducing the multiplier � > 0, the Lagrangian for the maximisation problem

(2.27) is

L(C,X
1

;�) =

ˆ
1

0



e�s

C1�R

s

1�R
� �C

s

�

ds+G(X
1

)� �X
1

+ �x
0

.

Maximising over c and x
1

, we have G0
(x⇤

1

) = �⇤ which gives

G0
(x⇤

1

) = e�1RR

n

q(x⇤
1

+ �)

�R

+ (1� q)x⇤
1

�R

o

= �⇤, (2.28)

and c⇤ = e�t/R�⇤�1/R which gives, by substituting into the constraint,

x
0

� x⇤
1

= �⇤�
1
RR(1� e�

1
R

). (2.29)

The next step is to find x⇤
1

and �⇤ by solving (2.28) and (2.29), and the optimal C⇤ can
be represented via �⇤. Let �⇤ = �⇤1/R. Substituting (2.29) into (2.28), we then have �⇤

is a solution to

q



e
1
R �

x
0

+ �

R
� (e

1
R � 1)

��R

+ (1� q)
h

e
1
R �

x
0

R
� (e

1
R � 1)

i�R

= 1. (2.30)
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Figure 2.4: Plot of functions f , g and their intersection �⇤. Here parameters are x
0

=

� = 1, q = 0.5, R = 0.5. From the graph, f is decreasing and g is increasing on
[R/(x

0

+ �), R/x
0

] with boundary conditions f(R/(x
0

+ �)) = g(R/x
0

) = q.

Define functions f and g such that

f(u) = q

"

e
1
R

(x
0

+ �)

R
u� (e

1
R � 1)

#�R

,

g(u) = 1� (1� q)
h

e
1
R

x
0

R
u� (e

1
R � 1)

i�R

.

Then �⇤ is the intersection between f(u) and g(u). Recall that �⇤ = �⇤1/R = e�t/R/c⇤

and c⇤ 2 [e�t/Rx
0

/R, e�t/R

(x
0

+ �)/R], where the upper and lower bounds correspond
to the optimal consumptions in the scenarios with and without income �. This implies
that �⇤ 2 [R/(x

0

+ �), R/x
0

].
Since f is decreasing in u and g is increasing in u with the following boundary

conditions

f

✓

R

x
0

+ �

◆

= q, g

✓

R

x
0

+ �

◆

< q, f

✓

R

x
0

◆

< q, g

✓

R

x
0

◆

= q,

we then have f and g always intersects, or equivalently there always exists some �⇤ as a
solution to (2.30) on [R/(x

0

+ �), R/x
0

]. See Figure 2.4.
Hence for t 2 [0, 1], the optimal consumption process is C⇤

t

= e�t/R/�⇤ and the
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corresponding wealth process is X⇤
t

= x
0

� (1� e�t/R

)R/�⇤. The value function is

ˆ
1

0

e�s

C⇤
s

1�R

1�R
ds+G(X⇤

1

) =

R�⇤R�1

1�R

⇢

1� e�
1
R

+ qe�1



x
0

+ �

R
�⇤ �

⇣

1� e�
1
R

⌘

�

1�R

+e�1

(1� q)
hx

0

R
�⇤ �

⇣

1� e�
1
R

⌘i

1�R

�

.

Denote by V (x
0

,�) the value function above. Equating the value functions V (x
0

+

p, 0) and V (x
0

,�), we have the indifference price p solve,

(x
0

+ p)1�R

1�R
RR

=

R�⇤R�1

1�R

⇢

1� e�
1
R

+ qe�1



x
0

+ �

R
�⇤ �

⇣

1� e�
1
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⌘
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1�R

+e�1

(1� q)
hx

0

R
�⇤ �

⇣

1� e�
1
R

⌘i

1�R

�

,

which gives the expression of the indifference price p

p(x
0

) =

R

�⇤

⇢

1� e�
1
R

+ qe�1



x
0

+ �

R
�⇤ �

⇣

1� e�
1
R

⌘

�

1�R

+e�1

(1� q)
hx

0

R
�⇤ �

⇣

1� e�
1
R

⌘i

1�R

�

1
1�R

� x
0

. (2.31)

Note that (2.31) is the same formula of the indifference price (2.22) in the case
q = 1. For q = 1, we have �⇤ = R/(x

0

+ �) simply by solving (2.30) with q = 1. Then
the indifference price by (2.31) gives p(x

0

) = �. Further, if borrowing is allowed, then
wealth is allowed to be negative. The indifference price by (2.31) also gives p(x

0

) = �.
The optimal consumption process and the corresponding wealth process are

C⇤
t

=

8

>

>

>

<

>

>

>
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e�
1
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1

�
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1
R

(t�1)

x0�R(1�e

� 1
R

)�

⇤�1

R
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e�
1
R

(t�1)

x0+��R(1�e

� 1
R

)�

⇤�1

R
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X⇤
t

=

8

>

>

>

<

>

>
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(t�1)

n

x
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⇣

1� e�
1
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⌘
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o
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Figure 2.5: Plot of the optimal consumption process C⇤ and the corresponding wealth
process X⇤ for 0 < q < 1. Here parameters are x

0

= � = 1, q = 0.5, R = 0.5. From the
graph, if the payment � is not received then X⇤ is continuous at t = 1. Otherwise, both
C⇤ and X⇤ are discontinuous at t = 1. Further, C⇤ and X⇤ are decreasing on [0, 1] and
[1,1) respectively.
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Figure 2.6: Plot of the indifference price p as a function of R. Here parameters are
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= � = 1. By fixing q, the indifference price p is initially increasing, but then decreasing
in R with p(0, q) = e�1q�. By fixing R, the indifference price p is increasing in q.
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2.2.3 Interpretations of the results

Similar to the deterministic case when q = 1 and R < [ln(1 + x
0

/�)]�1 in scenario 2, we
have the optimal consumption and the corresponding wealth process are not necessarily
continuous for 0 < q < 1 in scenario 3. See Figure 2.2 and 2.5. In particular, there is a
jump in the sale time t = 1. This is resulted from the uncertainty for t 2 [0, 1) brought
about by the one-off payment �. The corresponding wealth process varies depending on
whether or not � is received, and hence the optimal consumption financed by wealth is
not necessarily continuous. Further, since there is no income process in the model except
for a possible � cash amount at t = 1, the wealth process is decreasing for t 2 [0, 1] and
t 2 [1,1) respectively.

The results in scenario 2 and scenario 3 are an example to show that even in the
deterministic case (q = 1 in scenario 2), the optimal consumption and the corresponding
wealth processes are not necessarily continuous and can have a jump in the sale time.
However, for models in the following chapters, there is no such uncertainty as the setting
for � here and the optimal consumption and the resulting wealth processes are continuous
over time.

The indifference price p is plotted in Figure 2.3 and 2.6 as a function of R with
q = 1 and 0 < q < 1. Naively we might expect the price to be monotone decreasing in
risk aversion, since a more risk averse agent will assign a lower value to a risky asset.
However, the results show that this is not the case. In the deterministic case (q = 1 in
scenario 2) as plotted in Figure 2.3, the indifference price is increasing in risk aversion.
By fixing q 2 (0, 1), as plotted in Figure 2.6, the indifference price is increasing in R for
small risk aversions and decreasing for large risk aversions.

Here is an explanation of the non-monotonicity illustrated in Figure 2.3. Recall
the optimal strategy in scenario 1 (q = 0), in which the agent does not receive � at t = 1.
The optimal consumption rate of the agent is C⇤

= x
0

/R; in particular, as the parameter
R increases, the agent consumes more slowly. If R = 0, the utility function is a linear
function of consumption and the discount factor dominates risk aversion, which makes the
agent consume all wealth immediately. The indifference price of the payment � is then the
expected discounted amount from time t = 1, which is e�1

�. As R increases, the agent
postpones consumption to mitigate risk and hence the value of the payment � increases
due to the discount factor. A similar argument explains the phenomenon in Figure 2.6.
For R = 0, the indifference price of � is the expected discounted amount e�1q�. If R ⌧ 0,
the agent consumes now and there is no opportunity to make consumption depend on
whether or not the agent receives � or not. As R increases, the agent worries about
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the worst case - the payment � is not received at t = 1. Hence, the agent postpones
consumption in order to mitigate this risk and the discount factor makes the value of �
increase. As R becomes large (R � 1), risk aversion dominates the discount factor and
an agent with a large risk aversion worries about the worst situation only and hence the
value of the payment � decreases.

Figure 2.6 also shows that p is monotone increasing in q. As q increases, the agent
is more likely to receive the payment and hence � is more valuable.

The result that the indifference price is not monotone decreasing in risk aversion
is surprising. However, we are able to show that it is not monotone in risk aversion in
scenario 3 as plotted in Figure 2.6 and it can even be increasing in risk aversion in a
deterministic problem (scenario 2) as plotted in Figure 2.3. This surprising result will
appear again in Figure 4.17 and 4.18 in Chapter 4 and Figure 6.9 in Chapter 6, in which
we consider the full problems.
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Chapter 3

Optimal consumption/sale strategies
for a risk averse agent

This chapter considers an individual who is endowed with cash and units of an infinitely
divisible asset, which can be sold but not dynamically traded, and who aims to maximise
the expected discounted utility of consumption over an infinite horizon. The problem
facing the individual is to choose the optimal strategy for the liquidation of the endowed
asset portfolio, and an optimal consumption process chosen to keep cash wealth non-
negative. The price process of the endowed asset is assumed to follow an exponential
Brownian motion and the agent is assumed to have constant relative risk aversion. As
such this problem is a modification of the Merton [41] optimal consumption/optimal
portfolio problem which is discussed in Section 1.2 with one risky asset (N = 1).

The constraint that the asset can be sold but not bought is equivalent to an
assumption of no transaction costs on sales, and an infinite transaction cost on purchases.
The assumption of no transaction cost on sales can easily be relaxed to a proportional
transaction cost on sales by working with a process representing the post-transaction-
cost price rather than the pre-cost price. In this sense the problem we consider can be
interpreted as a special case of the Davis-Norman problem under Merton’s model with
transaction costs in which the transaction cost associated with buying the endowed asset
is infinite.

There are at least three main reasons for considering this special case. Firstly,
there are often situations whereby agents are endowed with units of assets which they
may sell but may not repurchase, whether for legal reasons or because of other trading
restrictions. In this sense the problem is interesting in its own right, and as we show, the
model has some counter-intuitive features. Secondly, several papers provide insights into
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this special case of the Davis-Norman problem (infinite transaction cost to purchase and
zero transaction cost to sell the risky asset) but without formal mathematical results.
Øksendal et al [20] consider this special case as one topic of future research and provide
economic intuitions of the solutions. Shreve and Soner [52] also provide their insights into
this special case in their remark. Thirdly, relative to the Constantanides-Magill-Davis-
Norman model new solution techniques become available which we are able to exploit to
give a more complete solution to the problem. With this more complete solution we can
investigate the comparative statics of the problem.

Our main results are of three types. Firstly we are able to completely classify
the different types of optimal strategies and the parameter ranges over which they apply.
Secondly, we can simplify the problem of solving for the value function, especially when
compared with direct approaches for solving the HJB equation via smooth fit. Thirdly, we
can perform comparative statics on quantities of interest, and uncover some surprising
implications of the model. The comparative statics of this problem will be discussed
separately in the following chapter.

Some of our main results are as follows.

Result 1. If the endowed asset is depreciating over time then the investor should sell
immediately. Conversely, if the mean return is too strong and the coefficient of relative
risk aversion is less than unity, then the problem is ill-posed, and provided the initial
holding of the endowed asset is positive the value function is infinite.

Otherwise, there are two cases. For small and positive mean return there exists
a finite critical ratio and the optimal sale strategy for the endowed asset is to sell just
enough to keep the ratio of wealth held in the endowed asset to cash wealth below this
critical ratio. For larger returns it is optimal to first consume all cash wealth, and once
this cash wealth is exhausted to finance consumption through sales of the endowed asset.

Result 2. In the case where the critical ratio is finite then it is given via the solution of a
first crossing problem for a first-order initial-value ordinary differential equation (ODE).
Other quantities of interest can be expressed in terms of the solution of this ODE. In the
case where the critical ratio is infinite, the value function can again be expressed in terms
of the solution of a first-order ODE.

We work with bond as numéraire (so that interest rate effects can be ignored) and
then the relevant parameters are the discount parameter and the relative risk aversion
of the agent, and the drift and volatility of the price process of the risky asset. In the
non-degenerate parameter cases the agent faces a conflict between the incentive to keep
a large holding in the risky asset (since it has a positive return) and the incentive to sell
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in order to minimise risk exposure. From the homothetic property we expect decisions
to depend on the ratio between the value of the holdings of risky asset and cash wealth.

The HJB equation for our problem is second order, non-linear and subject to
value matching and smooth fit of the first and second derivatives at an unknown free-
boundary. One of our key contributions is to show that the problem can be reduced to
a crossing problem for the solution of a first order ODE. This big simplification is useful
both when considering analytical properties of the solution, and when trying to construct
a solution numerically. We classify the parameter combinations which lead to different
types of solutions and provide a thorough analysis of the existence and finiteness of the
critical ratio, and the corresponding optimal strategies. In particular, there are two types
of degenerate solution (in one case it is always optimal to liquidate all units of the risky
asset immediately, and in the other the value function is infinite and the problem is
ill-posed). In addition there are two different types of non-degenerate behaviour (in one
case the agent sells units of asset in order to keep the proportion of wealth held in the
risky asset below a certain level, and in the other the agent exhausts all her cash reserves
before selling any units of the risky asset.) In the case of a finite and positive critical
ratio we show how the solution to the problem can be characterised by an autonomous
one-dimensional diffusion process with reflection and its local time.

The structure of this chapter is as follows. In Section 3.1, we give a precise
description of the model and then a statement of the main results. In Section 3.2, we
prove the properties of the value functions in different scenarios and the corresponding
verification arguments. Section 3.3 considers the properties of the solution to the first
order ODE and the existence and finiteness of the critical ratio. In Section 3.4 and
Section 3.5 we further consider the martingale properties of the value function and extend
the proofs to the case R > 1.

3.1 The model and main results

We work on a filtered probability space
⇣

⌦,F ,P, (F
t

)

t�0

⌘

such that the filtration satisfies
the usual conditions and is generated by a standard Brownian motion B = (B

t

)

t�0

. The
price process Y = (Y

t

)

t�0

of the endowed asset is assumed to be given by

Y
t

= y
0

exp

✓

↵� ⌘2

2

◆

t+ ⌘B
t

�

, (3.1)

where ↵ and ⌘ > 0 are the constant mean return and volatility of the non-traded asset,
and y

0

is the initial price.
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Let C = (C
t

)

t�0

denote the consumption rate of the individual and let ⇥ =

(⇥

t

)

t�0

denote the number of units of the endowed asset held by the investor. The
process ⇥ is required to be progressively measurable, right-continuous with left limits
(RCLL) and non-increasing to reflect the fact that the non-traded asset is only allowed
for sale. We assume the initial number of shares held by the investor is ✓

0

. Since we
allow for an initial transaction at time 0 we may have ⇥

0

< ✓
0

. We write ⇥
0� = ✓

0

.
This is consistent with our convention that ⇥ is right-continuous.

We denote by X = (X
t

)

t�0

the wealth process of the individual, and suppose that
the initial wealth is x

0

where x
0

� 0. Provided the only changes to wealth occur from
either consumption or from the sale of the endowed asset, X evolves according to

dX
t

= �C
t

dt� Y
t

d⇥
t

, (3.2)

subject to X
0� = x

0

, and X
0

= x
0

+y
0

(✓
0

�⇥
0

). We say a consumption/sale strategy pair
is admissible if the components satisfy the requirements listed above and if the resulting
cash wealth process X is non-negative for all time. Let A (x

0

, y
0

, ✓
0

) denote the set of
admissible strategies for initial setup (X

0� = x
0

, Y
0

= y
0

,⇥
0� = ✓

0

).

Remark 3.1.1. The setup of the problem coincides with the framework by Davis and
Norman introduced in Section 1.4. Denote ˆY = Y⇥ by the wealth in the risky asset.
Then from (1.15) and (3.2), we have dU

t

= �Y
t

d⇥
t

. Further, by Itô’s formula, we have

d ˆY
t

= d(Y
t

⇥

t

)

= ⇥

t

dY
t

+ Y
t

d⇥
t

= ⇥

t

Y
t

dY
t

Y
t

� dU
t

=

ˆY (↵dt+ ⌘dB
t

)� dU
t

,

which coincides with (1.16) in the special case of infinite transaction costs.

The objective of the agent is to maximise over admissible strategies the discounted
expected utility of consumption over the infinite horizon, where the discount factor is �
and the utility function of the agent is assumed to be CRRA with relative risk aversion
R 2 (0,1) \ 1. In particular, the goal is to find

sup

(C,⇥)2A(x0,y0,✓0)

E
"ˆ 1

0

e��t
C1�R

t

1�R
dt

#

. (3.3)

Since the set-up has a Markovian structure, we expect the value function, opti-
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mal consumption and optimal sale strategy to be functions of the current wealth and
endowment of the agent and of the price of the risky asset. Let V = V (x, y, ✓, t) be the
forward starting value function for the problem so that

V (x, y, ✓, t) = sup

(C,⇥)2A(x,y,✓,t)

E
ˆ 1

t

e��s
C1�R

s

1�R
ds

�

�

�

�

X
t� = x, Y

t

= y,⇥
t� = ✓

�

. (3.4)

Here the space of forward starting, admissible strategies A(x, y, ✓, t) is such that C =

(C
s

)

s�t

is a non-negative progressively measurable process, ⇥ = (⇥

s

)

s�t

is a right-
continuous, decreasing and progressively measurable process and satisfies ⇥

t

�(�⇥)

t

= ✓,
and X given by X

s

= x� ´ s
t

C
u

du� ´
[t,s]

Y
u

d⇥
u

is non-negative.
Define the certainty equivalent value p = p(x, y, ✓, t) of the holdings of the risky

asset to be the solution to

V (x+ p, y, 0, t) = V (x, y, ✓, t). (3.5)

In fact, by the scalings of the problem it will turn out that p is independent of time (and
henceforth we write p = p(x, y, ✓)), and depends on the price y of the risky asset and the
quantity ✓ of the holdings in the risky asset, only through the product y✓.

Our goal is to characterise the value function, the optimal consumption and sale
strategies, and the certainty equivalent price p.

The key to the form of the solution to the problem is contained in the following
proposition, which concerns the solution of an ODE on [0, 1) and which is proved in Sec-
tion 3.3. There is a one-to-one correspondence between the four cases in the proposition
and the four types of solution to the optimal sale problem.

Let ✏ = ↵/� and �2 = ⌘2/�.

Proposition 3.1.2. For q 2 [0, 1] define m(q) = 1 � ✏ (1�R) q +

�

2

2

R (1�R) q2 and
`(q) = 1+

⇣

�

2

2

� ✏
⌘

(1�R)q� �

2

2

(1�R)

2q2 = m (q) + q (1� q) �
2

2

(1�R). Let n = n(q)

solve
n0

(q)

n (q)
=

1�R

R (1� q)
� �2

2

(1�R)

2

R

q

` (q)� n (q)
(3.6)

subject to n(0) = 1 and n

0
(0)

1�R

< `

0
(0)

1�R

=

�

2

2

� ✏. Suppose that if n hits zero, then 0 is
absorbing for n. See Figure 3.1.

For R < 1, let q⇤ = inf{q > 0 : n(q)  m(q)}. For R > 1, let q⇤ = inf{q > 0 :

n(q) � m(q)}. For j 2 {`,m, n} let q
j

= inf{q > 0 : j(q) = 0} ^ 1.

1. Suppose ✏  0. Then q⇤ = 0.
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Figure 3.1: Stylised plot of m(q), n(q), `(q) and q⇤. Parameters are chosen to satisfy the
conditions in the second case of Proposition 1 so that q⇤ 2 (0, 1). The left figure is in
the case R < 1 and the right figure R > 1.

2. Suppose 0 < ✏ < �2R and if R < 1, suppose in addition that ✏ < �

2

2

R+

1

1�R

. Then
0 < q⇤ < 1.

3. Suppose ✏ � �2R and if R < 1, ✏ < �

2

2

R+

1

1�R

. Then q⇤ = 1 = q
`

= q
n

= q
m

.

4. Suppose R < 1 and ✏ > �

2

2

R +

1

1�R

. Then q
m

< q
n

= q
`

< 1. If R < 1,
✏ = �

2

2

R+

1

1�R

and ✏ < �2R then q
m

< q
n

= q
`

= 1. If R < 1, ✏ = �

2

2

R+

1

1�R

and
✏ � �2R then q⇤ = 1 = q

`

= q
n

= q
m

.

Remark 3.1.3. Note that the condition ✏ < �2R is equivalent to (1 � R)m0
(1) > 0.

Further, if R < 1, then the condition ✏ < �

2

2

R +

1

1�R

is equivalent to m(1) > 0. Also, n
has a turning point at q⇤ < 1 if and only if n(q⇤) = m(q⇤). See Figure 3.1. In particular, if
m is monotone (and ✏ > 0) then q⇤ = 1. Then, if R < 1, 0 < ✏ < �2R and ✏ < �

2

2

R+

1

1�R

,
we have q

`

= q
n

= 1.

Remark 3.1.4. It is easy to see that (1 � R)n is decreasing in ✏. In fact it can also be
shown that over parameter ranges where 0 < q⇤ < 1 then q⇤ is increasing in ✏.

Theorem 3.1.5 divides the parameter space into the four distinct regions. In
particular, it distinguishes the degenerate cases, and it gives necessary and sufficient
conditions for the two different regimes in the non-degenerate case.
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Theorem 3.1.5. 1. Suppose ✏  0. Then it is always optimal to sell the entire holding
of the endowed asset immediately, so that ⇥

t

= 0 for t � 0. The value function
for the problem is V (x, y, ✓, t) = (R/�)Re��t(x+ y✓)1�R/1�R; and the certainty
equivalent value of the holdings of the asset is p(x, y, ✓) = y✓.

2. Suppose 0 < ✏ < �2R and ✏ < �

2

2

R +

1

1�R

if R < 1. Then there exists a positive
and finite critical ratio z⇤ and the optimal behaviour is to sell the smallest possible
quantity of the risky asset which is sufficient to keep the ratio of wealth in the risky
asset to cash wealth at or below the critical ratio. If ✓ > 0 then p(x, y, ✓) > y✓.

3. Suppose ✏ � �2R and ✏ < �

2

2

R +

1

1�R

if R < 1. Then the optimal consumption
and sale strategy is first to consume liquid (cash) wealth, and then when this liquid
wealth is exhausted, to finance further consumption from sales of the illiquid asset.
If ✓ > 0 then p(x, y, ✓) > y✓.

4. Suppose R < 1 and ✏ � �

2

2

R +

1

1�R

. Then the problem is degenerate, and provided
✓ is positive, the value function V = V (x, y, ✓, t) is infinite. There is no unique
optimal strategy, and the certainty equivalent value p is not defined.

Remark 3.1.6. In light of Proposition 3.1.2 there is one fewer case for R > 1. The fourth
case in the theorem does not happen for R > 1 since the value function is always finite,
as in Merton’s problem introduced in Chapter 1.

Similarly, when R < 1, if �2 � 2/(R(1 � R)) then the third case above does not
happen. In that case, as ✏ increases we move directly from ✏ < �

2

2

R +

1

1�R

and a finite
value function and z⇤ to ✏ � �

2

2

R+

1

1�R

and an infinite value function.

The second and third cases above are non-degenerate and they are further charac-
terised in Theorem 3.1.7 and Theorem 3.1.11. In Theorem 3.1.7 the solution is expressed
in terms of a one-dimensional autonomous reflecting stochastic process J and its local
time at zero L, see (3.13).

For 0  q  q⇤ define N(q) = n(q)�R

(1 � q)R�1 where n is the solution to
(3.6). Assuming that N is monotonic, let W be inverse to N . Let h⇤ = N(q⇤). Then
W (h⇤) = q⇤, and h⇤(1� q⇤)1�R

= m(q⇤)�R.

Theorem 3.1.7. i) Suppose R < 1. Suppose 0 < ✏ < �2R and ✏ < �

2

2

R+

1

1�R

so that
0 < q⇤ < 1. Then N as defined above is increasing, and W is well defined.

Let z⇤ be given by

z⇤ = (1� q⇤)�1 � 1 =

q⇤

1� q⇤
2 (0,1). (3.7)
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On [1, h⇤] let h be the solution of

u⇤ � u =

ˆ
h

⇤

h

1

(1�R)fW (f)
df, (3.8)

where u⇤ = ln z⇤. Let g be given by

g (z) =

8

>

<

>

:

⇣

R

�

⌘

R

m(q⇤)�R

(1 + z)1�R

⇣

R

�

⌘

R

h (ln z)

z 2 [z⇤,1);

z 2 (0, z⇤].
(3.9)

Then, the value function V is given by

V (x, y, ✓, t) = e��t
x1�R

1�R
g

✓

y✓

x

◆

, x > 0, ✓ > 0 (3.10)

and we can extend this to x = 0 and ✓ = 0 by continuity to give

V (x, y, 0, t) = e��t
x1�R

1�R

✓

R

�

◆

R

(3.11)

V (0, y, ✓, t) = e��t
y1�R✓1�R

1�R

✓

R

�

◆

R

m(q⇤)�R (3.12)

Fix z
0

= y
0

✓
0

/x
0

. Let (J, L) = (J
t

, L
t

)

t�0

be the unique pair such that

(a) J is positive,

(b) L is increasing, continuous, L
0

= 0, and dL
t

is carried by the set {t : J
t

= 0},
(c) J solves

J
t

= (z⇤ � z
0

)

+ �
ˆ

t

0

˜

⇤(J
s

)ds�
ˆ

t

0

˜

�(J
s

)dB
s

+ L
t

, (3.13)

where ⇤(z) = ↵z + z
⇣

g(z)� 1

1�R

zg0(z)
⌘�1/R

, �(z) = ⌘z, ˜

⇤(j) = ⇤(z⇤ � j)

and ˜

�(j) = �(z⇤ � j).

For such a pair 0  J
t

 z⇤.

If z
0

 z⇤ then set ⇥⇤
0

= ✓
0

and X⇤
0

= x
0

; else if z
0

> z⇤ then set

⇥

⇤
0

= ✓
0

z⇤

(1 + z⇤)

(1 + z
0

)

z
0

and X⇤
0

= x
0

+y
0

(✓
0

�⇥
0

). This corresponds to the sale of a positive quantity ✓
0

�⇥
0

of units of the endowed asset at time 0.
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Then, the optimal holdings ⇥⇤
t

of the endowed asset, the optimal consumption process
C⇤
t

= C(X⇤
t

, Y
t

,⇥⇤
t

), the resulting wealth process and the certainty equivalent value
are given by

⇥

⇤
t

= ⇥

⇤
0

exp

⇢

� 1

z⇤(1 + z⇤)
L
t

�

; (3.14)

X⇤
t

=

Y
t

⇥

⇤
t

(z⇤ � J
t

)

; (3.15)

C(x, y, ✓) = x



g

✓

y✓

x

◆

� 1

1�R

y✓

x
g0
✓

y✓

x

◆�� 1
R

; (3.16)

p(x, y, ✓) = x

2

4

g
⇣

y✓

x

⌘

g(0)

3

5

1
1�R

� x. (3.17)

ii) Now suppose R > 1 and 0 < ✏ < �2R so that 0 < q⇤ < 1. Let all quantities be
defined as before. Then N is decreasing. On (h⇤, 1) h is defined via

u⇤ � u =

ˆ
h

h

⇤

1

(R� 1)fW (f)
df.

The value function, the optimal holdings ⇥⇤, the optimal consumption process C⇤,
the resulting wealth process X⇤ and the certainty equivalent value p are the same as
before.

Remark 3.1.8. In order to derive functions m and n, we firstly consider the variable
z = y✓/x and construct the value function as V = e��tx1�Rg(z)/(1 � R). It then gets
down to a nonlinear, non-autonomous second-order ordinary differential equation of a
single variable z. By letting u = ln z, we have an autonomous differential equation
of a new function h of u. Further, setting w(h) = dh/du simplifies the second-order
differential equation into a first-order one. Denote Q by the function of smooth fit points
and W (h) = w(h)/((1�R)h). In order to examine the crossings between W and Q, we
look for the crossings between the inverse functions N = W�1 and M = Q�1 thanks to
the monotonicity of W and Q. After eliminating scaling factors, functions m and n are
constructed.

Remark 3.1.9. Recall that n solves the first order differential equation (3.6), and q⇤ 2
(0, 1) is the solution of a first crossing problem for n. Once we have constructed n and
determined q⇤, numerically if appropriate, expressions for all other quantities can be
derived by solving a further integral equation, which can be re-expressed as a first order
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differential equation. This two-stage procedure is significantly simpler than solving the
HJB equation directly, as this equation is second order and non-linear, and subject to
second-order smooth fit at an unknown free boundary.

Remark 3.1.10. In the corresponding Merton problem for the unconstrained agent who
may both buy and sell the risky asset at zero transaction cost, it follows from Theo-
rem 1.2.5 that the optimal behaviour for the agent is to hold a fixed proportion qM =

↵/⌘2R = ✏/�2R of total wealth in the risky asset. This corresponds to keeping Q
t

=

Y
t

⇥

t

/(X
t

+ Y
t

⇥

t

) = qM or equivalently Z
t

= Y
t

⇥

t

/X
t

= zM := qM/(1 � qM ) =

✏/(�2R � ✏). In Lemma 3.3.1 below we show that q⇤ � ✏/�2R = qM so that optimal
behaviour for the agent who cannot buy units of the risky asset is to keep the ratio of
money invested in the risky asset to cash wealth in in interval [0, q⇤] where qM 2 (0, q⇤).

The following theorem characterises the solution to the problem in the second
non-degenerate case (the third case in Theorem 3.1.5). In this case, the optimal strategy
is to first hold the endowed asset and finance consumption with initial wealth. When
liquid wealth is exhausted, consumption is further financed by the sale of endowed asset.
Here, the critical threshold z⇤ = 1.

Theorem 3.1.11. Suppose ✏ � �2R and if R < 1, ✏ < �

2

2

R+

1

1�R

.
Let n solve (3.6) on [0, 1]. Then for the given parameter combinations we have

q⇤ = 1. As in Theorem 3.1.7, let N(q) = n(q)�R

(1� q)R�1. Then N is monotonic.
Let W be inverse to N . For R < 1 define � : (1,1) 7! R by

�(v) =
ln v

1�R
+

R

1�R
lnm(1)� 1

1�R

ˆ 1

v

(1�W (s))

sW (s)
ds. (3.18)

If R > 1 define � : (0, 1) 7! R by

�(v) = � ln v

R� 1

� R

R� 1

lnm(1)� 1

R� 1

ˆ
v

0

(1�W (s))

sW (s)
ds. (3.19)

Let h be inverse to � and let g(z) = (R/�)Rh(ln z).
Then, the value function V is given by

V (x, y, ✓, t) = e��t
x1�R

1�R
g

✓

y✓

x

◆

, x > 0, ✓ > 0 (3.20)
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which can be extended by continuity to give

V (x, y, 0, t) = e��t
x1�R

1�R

✓

R

�

◆

R

, (3.21)

V (0, y, ✓, t) = e��t
y1�R✓1�R

1�R

✓

R

�

◆

R

m(1)

�R. (3.22)

The optimal consumption process C⇤ is given by C⇤
t

= C(X⇤
t

, Y
t

,⇥⇤
t

) where C(x, y, ✓)

is as in (3.16) and the optimal holdings ⇥⇤
t

of the endowed asset and the resulting wealth
process are given by

⇥

⇤
t

=

8

<

:

✓
0

t  ⌧

✓
0

e�
�

R

m(1)(t�⌧) t > ⌧
, X⇤

t

=

8

<

:

x
0

� ´ t
0

C(X⇤
s

, Y
s

, ✓
0

)ds t  ⌧

0 t > ⌧
,

(3.23)
where ⌧ = inf{t � 0 : X⇤

t

= 0}. Finally the certainty equivalent value is given by (3.17).

Remark 3.1.12. Note that lim

z"1
1

z

(g(z) � zg

0
(z)

1�R

)

�1/R

= �m(1)/R and hence by conti-
nuity we may set C(0, y, ✓) = y✓�m(1)/R. Then for t > ⌧ we have that

C⇤
t

= C(0, Y
t

,⇥⇤
t

) =

�

R
m(1)Y

t

⇥

⇤
t

.

3.2 Proofs and verification arguments

For F = F (x, y, ✓, t) 2 C1,2,1,1 such that F
x

> 0 define operators L and M by

LF = sup

c>0

⇢

e��t
c1�R

1�R
� cF

x

�

+ ↵yF
y

+ F
t

+

1

2

⌘2y2F
yy

=

R

1�R
e�

�

R

tF 1�1/R

x

+ ↵yF
y

+ F
t

+

1

2

⌘2y2F
yy

,

MF = F
✓

� yF
x

.

Remark 3.2.1. The state space of (X
t

, Y
t

,⇥
t

, t) is [0,1)⇥ (0,1)⇥ [0,1)⇥ [0,1), and
we want to define L and M on this region including at the boundary. In practice, all the
functions to which we apply the operators are of the form F (x, y, ✓, t) = e��tF (x, y, ✓)

for some function F which is independent of t in which case F
t

= ��F , and this latter
form is well defined at t = 0. Also, we typically need MF only for ✓ > 0. Then, given F

defined for x > 0 we can define F at x = 0 by continuity, and then MF |
x=0

is also well
defined. LF at ✓ = 0 can be defined similarly, by first defining F at ✓ = 0 by continuity.
In order to define LF at x = 0 for ✓ > 0 we extend the domain of F to x > �✓y and
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then show that F
x

and the other derivatives of F are continuous across x = 0 with this
extension.

3.2.1 The Verification Lemma in the case of a depreciating asset

Suppose ✏  0. Our goal is to show that the conclusions of Theorem 3.1.5(1) hold.
From Proposition 3.1.2 we know q⇤ = 0. Define the candidate value function via

G(x, y, ✓, t) = e��t
✓

R

�

◆

R

(x+ y✓)1�R

1�R
x � 0, ✓ � 0. (3.24)

The candidate optimal strategy is to sell all units of the risky asset immediately. The
domain of G can be extended to �✓y < x < 0 for ✓ > 0, using the same functional form
as in (3.24).

Prior to the proof of the theorem, we need the following lemma.

Lemma 3.2.2. Suppose ✏  0. Consider the candidate value function constructed in
(3.24). Then on (x � 0, ✓ > 0) we have MG = 0, and on (x � 0, ✓ � 0) we have LG  0

with equality at ✓ = 0.

Proof. Given the form of the candidate value function in (3.24), we have

MG = e��t
✓

R

�

◆

R

y(x+ y✓)�R � e��t
✓

R

�

◆

R

y(x+ y✓)�R

= 0.

On the other hand, writing z = y✓/x, provided x > 0

LG = �

✓

R

�

◆

R

e��t
(x+ y✓)1�R

1�R

"

✏(1�R)

z

1 + z
� 1

2

�2R(1�R)

✓

z

1 + z

◆

2

#

 0,

with equality at z = 0. If x = 0 then LG = �G(1�R)[✏� �

2
R

2

] < 0.

Theorem 3.2.3. Suppose ✏  0. Then the value function is

V (x, y, ✓, t) = e��t
✓

R

�

◆

R

(x+ y✓)1�R

1�R
, (3.25)

and the optimal holdings ⇥⇤
t

of the endowed asset, the optimal consumption process C⇤
t

and the resulting wealth process are given by

(4⇥⇤
)

t=0

= �✓
0

, C⇤
t

=

�

R
(x

0

+ y
0

✓
0

)e�
�

R

t, X⇤
t

= (x
0

+ y
0

✓
0

)e�
�

R

t. (3.26)
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Proof. Note that candidate optimal strategy given in (3.26) is to sell the entire holding
of the risky asset at time zero (which gives X⇤

0

= x
0

+ y
0

✓
0

) and thereafter to finance
consumption from liquid wealth, whence the wealth process (X⇤

t

)

t�0

is deterministic and
evolves as dX⇤

t

= �C⇤
t

dt. This gives X⇤
t

= (x
0

+y
0

✓
0

)e�
�

R

t. It follows that the candidate
optimal strategy is admissible.

The value function under the strategy proposed in (3.26) is

E
"ˆ 1

0

e��t
C⇤
t

1�R

1�R
dt

#

=

ˆ 1

0

e��t
✓

�

R

◆

1�R

⇣

e�
�

R

t

(x
0

+ y
0

✓
0

)

⌘

1�R

1�R
dt

=

✓

R

�

◆

R

(x
0

+ y
0

✓
0

)

1�R

1�R
= G(x

0

, y
0

, ✓
0

, 0).

Hence V � G.
Now, consider general admissible strategies. Suppose first that R < 1. Define the

process M = (M
t

)

t�0

by

M
t

=

ˆ
t

0

e��s
C1�R

s

1�R
ds+G (X

t

, Y
t

,⇥
t

, t) . (3.27)

Applying the generalised Itô’s formula [23, Section 4.7] to M
t

and suppressing the argu-
ment (X

s�, Ys,⇥s�, s) in derivatives of G, leads to

M
t

�M
0

=

ˆ
t

0



e��s
C1�R

s

1�R
� C

s

G
x

+ ↵Y
s

G
y

+

1

2

⌘2Y 2

s

G
yy

+G
s

�

ds

+

ˆ
t

0

(G
✓

� Y
s

G
x

)d⇥
s

+

X

0st

[G(X
s

, Y
s

,⇥
s

, s)�G(X
s�, Ys�,⇥s�, s)�G

x

(4X)

s

�G
✓

(4⇥)
s

]

+

ˆ
t

0

⌘Y
s

G
y

dB
s

= N1

t

+N2

t

+N3

t

+N4

t

. (3.28)

(Note that in the sum we allow for a portfolio rebalancing at s = 0.)
Lemma 3.2.2 implies that LG  0 and MG = 0, which leads to N1

t

 0 and
N2

t

= 0. Using the fact that (�X)

s

= �Y
s

(�⇥)

s

and writing ✓ = ⇥

s�, x = X
s�,

� = �(�⇥)

s

each non-zero jump in N3 is of the form

(�N3

)

s

= G(x+ y�, y, ✓ � �, s)�G(x, y, ✓, s) + � [G
✓

(x, y, ✓, s)� yG
x

(x, y, ✓, s)] .
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Given the form of the candidate value function in (3.24), it is easy to see that  (�) =
G(x + y�, y, ✓ � �, s) is constant in �, which gives  (�) =  (0) and yG

x

= G
✓

whence
(�N3

) = 0. Then, since R < 1, we have 0  M
t

 M
0

+ N4

t

, and the local martingale
N4

t

is bounded from below and hence a supermartingale. Taking expectations we find
E(M

t

)  M
0

= G(x
0

, y
0

, ✓
0

, 0), which gives

G(x
0

, y
0

, ✓
0

, 0) � E
ˆ

t

0

e��s
C
s

1�R

1�R
ds+ EG(X

t

, Y
t

,⇥
t

, t) � E
ˆ

t

0

e��s
C
s

1�R

1�R
ds, (3.29)

where the last inequality follows since G(X
t

, Y
t

,⇥
t

, t) � 0 for R 2 (0, 1). Letting t ! 1
in (3.29) leads to

G(x
0

, y
0

, ✓
0

, 0) � E
ˆ 1

0

e��t
C
t

1�R

1�R
dt,

and taking a supremum over admissible strategies leads to G � V .
The case R > 1 is considered in the Section 3.5.

3.2.2 Proof in the ill-posed case of Theorem 3.1.5 (scenario 4)

Recall we are in the case where R < 1 and ✏ � �2R/2 + 1/(1�R).
It is sufficient to give an example of an admissible strategy when ✓ > 0 for which

the expected utility of consumption is infinite. Note that V (x, y, 0, t) = e��tx1�RRR��R/(1�
R) so that the value function is not continuous at ✓ = 0.

Consider a consumption and sale strategy pair ((

˜C)

t�0

, ( ˜⇥)
t�0

), given by

˜

⇥

t

=

˜

⇥

t

(�) = e��t✓
0

, ˜C
t

=

˜C
t

(�) = �Y
t

˜

⇥

t

= �y
0

✓
0

exp

n

�(✏� �2/2� �/�)t+ �
p

�B
t

o

,

(3.30)
where � is some positive constant.

Note first that that such strategies are admissible since the corresponding wealth
process satisfies d ˜X

t

= ��Y
t

˜

⇥

t

dt+Y
t

d˜⇥
t

= 0, and hence ( ˜X
t

)

t�0

= x
0

> 0. In particular,
consumption is financed by the sale of the endowed asset only.

The expected discounted utility from consumption ˜G =

˜G(�) corresponding to
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the consumption and sale processes (

˜C, ˜⇥) is given by

˜G = E
"ˆ 1

0

e��t
˜C1�R

t

1�R
dt

#

=

(�y
0

✓
0

)

1�R

1�R
E
ˆ 1

0

exp

⇢

�



(1�R)

✓

✏� �2

2

� �

�

◆

� 1

�

t+ (1�R)�
p

�B
t

�

dt

�

=

(�y
0

✓
0

)

1�R

1�R

ˆ 1

0

exp

⇢

�(1�R)

✓

✏� �2R

2

� 1

1�R

◆

� �

�

�

t

�

dt

Suppose first that ✏ > �2R/2 + 1/(1 � R). Then for � 2 (0, 1) and � = ��(✏ �
�2R/2� 1/(1�R)) we have

✓

✏� �2R

2

� 1

1�R

◆

� �

�
= (1� �)

✓

✏� �2R

2

� 1

1�R

◆

> 0,

and ˜G is infinite.
Now suppose that ✏ = �2R/2 + 1/(1�R). Then

˜G(�) =
(�y

0

✓
0

)

1�R

(1�R)

1

�(1�R)

= ��R

(y
0

✓
0

)

1�R

(1�R)

2

and ˜G(�) " 1 as � # 0.

3.2.3 The Verification Lemma in the first non-degenerate case with

finite critical exercise ratio.

Suppose 0 < ✏ < �2R and if R < 1, ✏ < �

2

2

R +

1

1�R

. From Proposition 3.1.2 we know
0 < q⇤ < 1.

Recall the definition N(q) = n(q)�R

(1 � q)R�1 and that W is inverse to N . We
have h⇤ = N(q⇤).

Proposition 3.2.4. 1. For R < 1, N is increasing on [0, q⇤]. W is increasing and
0 < W (v) < q⇤ on (1, h⇤). For R > 1, N is decreasing on [0, q⇤]. W is decreasing
and 0 < W (v) < q⇤ on (h⇤, 1).

2. Let w(v) = v(1�R)W (v). Then w solves

�2

2

w(v)w0
(v)� v +

✓

✏� �2

2

◆

w(v) +

✓

v � w(v)

1�R

◆

1�1/R

= 0. (3.31)
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3. For R < 1 and 1 < v < h⇤, and for R > 1 and h⇤ < v < 1 we have w0
(v) <

1�Rw(v)/((1�R)v) with w0
(h⇤) = 1�Rw(h⇤)/((1�R)h⇤).

The proof of Proposition 3.2.4 is given in Section 3.3.
Now define h on [1, h⇤) by dh

du

= w(h) = (1 � R)hW (h) subject to h(u⇤) = h⇤.
Then h solves (3.8) and w0

(h)w(h) = d

2
h

du

2 . Let g(z) = (

R

�

)

Rh(ln z). Then g solves (3.9).

Lemma 3.2.5. Let m(q⇤)�R, z⇤ and g be as given in Equations (3.7) and (3.9) of
Theorem 3.1.7. Then, g (z), g0 (z), g00 (z) are continuous at z = z⇤.

Proof. We have

g(z⇤+) =

✓

R

�

◆

R

h⇤(1� q⇤)1�R

(1 + z⇤)1�R

=

✓

R

�

◆

R

h⇤ =

✓

R

�

◆

R

h(u⇤) = g(z⇤�).

For the first derivative we have for z > z⇤,

zg0(z) = (1�R)

✓

zg(z)

1 + z

◆

and then since z

⇤

1+z

⇤ = q⇤, z⇤g0(z⇤) = (1 � R)

⇣

R

�

⌘

R

h⇤q⇤. Meanwhile, for z < z⇤, and
noting that dh

du

= h(1�R)W (h) = w(h),

zg0(z) =

✓

R

�

◆

R

h0(u) =

✓

R

�

◆

R

w(h)

so that z⇤g0(z⇤�) =

⇣

R

�

⌘

R

w(h⇤) and the result follows from the substitution w(h⇤) =

(1�R)h⇤W (h⇤) = (1�R)h⇤q⇤.
Finally, for z > z⇤

z2g00(z) = �R(1�R)

✓

R

�

◆

R

m(q⇤)�R

(1 + z)1�R

✓

z

1 + z

◆

2

= �R(1�R)g(z)

✓

z

1 + z

◆

2

(3.32)
and (z⇤)2g00(z⇤+) = �R(1�R)g(z⇤)(q⇤)2. For z < z⇤,

z2g00(z) =

✓

R

�

◆

R

(h00 � h0) =

✓

R

�

◆

R

(w0
(h)� 1)w(h) (3.33)

and at z⇤, (z⇤)2g00(z⇤�) = �R(1 � R)

⇣

R

�

⌘

R

h⇤(q⇤)2 where we use Proposition 3.2.4
(3).
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Proposition 3.2.6. Suppose g (z) solves (3.9). Then for R < 1, g is an increasing
concave function such that g(0) = (

R

�

)

R. Otherwise, for R > 1, g is a decreasing convex
function such that g(0) = (R/�)R and g(z) � 0. Further, for all values of R we have
that 0 � Rg0(z)2 + (1�R)g(z)g00(z) with equality for z � z⇤.

Proof. Consider first R < 1. Since the statements are immediate in the region z � z⇤,
and since there is second order smooth fit at z⇤ the result will follow if h(�1) = 1, h is
increasing and, using (3.33), w(h)w0

(h)�w(h)  0. The last two properties follow from
Proposition 3.2.4 since w(h) � 0 and w0

(h) < 1.
To evaluate h(�1) note that

u⇤ � u =

ˆ
h

⇤

h(u)

df

(1�R)fW (f)
=

ˆ
q

⇤

W (h(u))

N 0
(q)

(1�R)N(q)q
dq =

ˆ
q

⇤

W (h(u))

�

2

2

(1�R)

`(q)� n(q)
dq.

We have that `(q) � n(q) is bounded away from zero when q is bounded away from
zero. Further, near q = 0 we have `(q) � n(q) ⇠ Cq for some positive constant C =

`0(0)� n0
(0+). Hence W (h(�1)) = 0 and h(�1) = 1, since W (1) = 0.

For R > 1, and z � z⇤, the statement holds immediately. For z  z⇤, Proposi-
tion 3.2.4 implies that h is decreasing and w(h)  0, w0

(h) < 1. Together with (3.33),
we have g is a decreasing convex function and g(z) � 0 given that h 2 [0, 1].

For the final statement of the proposition, for z � z⇤ the result follows immedi-
ately, whereas for z < z⇤

(1�R)gg00z2 +R(zg0)2 =

✓

R

�

◆

2R

⇥

(1�R)hw(h)[w0
(h)� 1] +Rw(h)2

⇤  0

where the final inequality follows from Proposition 3.2.4(3), noting that (1�R)w(h) � 0.

Define the candidate value function via

G(x, y, ✓, t) = e��t
x1�R

1�R
g

✓

y✓

x

◆

x > 0, ✓ > 0; (3.34)

and extend to x  0 and ✓ = 0 using the formulae

G(x, y, ✓, t) = e��t
(x+ y✓)1�R

1�R
m(q⇤)�R � ✓y < x  0, ✓ > 0; (3.35)

G(x, y, 0, t) = e��t
x1�R

1�R

✓

R

�

◆

R

x � 0, ✓ = 0. (3.36)

56



Lemma 3.2.7. Fix y and t. Then G = G(x, ✓) is concave in x and ✓ on [0,1)⇥ [0,1).
In particular, if  (�) = G(x� �y�, y, ✓ + ��, t), then  is concave in �.

Proof. Consider first R < 1. In order to show the concavity of the candidate value
function it is sufficient to show that G(x, 0) is concave in x, G(0, ✓) is concave in ✓ and
that the Hessian matrix given by

H
G

=

 

G
xx

G
x✓

G
x✓

G
✓✓

!

.

has a positive determinant, and that one of the diagonal entries is non-positive. The
conditions on G(x, 0) and G(0, ✓) are trivial to verify.

Direct computation leads to

G
xx

(x, y, ✓, y) = e��tx�R�1



�Rg (z) +
2R

1�R
zg0 (z) +

1

1�R
z2g00 (z)

�

,

G
x✓

(x, y, ✓, t) = �e��tx�R�1

y

1�R

⇥

Rg0 (z) + zg00 (z)
⇤

,

G
✓✓

(x, y, ✓, t) = e��tx�R�1

y2

1�R
g00 (z) ,

and the determinant of the Hessian matrix is

G
xx

G
✓✓

� (G
x✓

)

2

= �e�2�tx�2R✓�2

R

(1�R)

2

h

(1�R)g (z) z2g00 (z) +R
�

zg0 (z)
�

2

i

(3.37)
which is non-negative by Proposition 3.2.6. Further, since g is concave we have that
G
✓✓

 0.
In order to show the concavity of  in �, it is equivalent to examine the sign of

d

2
 

d�

2 . But

d2 

d�2

= �2
⇥

y2G
xx

+G
✓✓

� 2yG
x✓

⇤

= �2(y, 1) det(H
G

)(y, 1)T  0.

For R > 1 the argument is similar, except that G
✓✓

 0 is now implied by the
convexity of g.

Lemma 3.2.8. Consider the candidate value function constructed in (3.34).
(a) For ✓ > 0 and 0  x  y✓/z⇤, MG = 0 and LG  0.
(b) For ✓ > 0 and x � y✓/z⇤, MG � 0. For ✓ � 0 and x � y✓/z⇤, LG = 0.
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Proof. (a) For z � z⇤, MG = 0 is immediate from the definition of G. For 0 < x  y✓/z⇤

LG we have that G(x, y, ✓, t) =
⇣

R

�

⌘

R

m(q⇤)�Re��t x
1�R

1�R

(1 + z)1�R and then

LG = �G



m(q⇤)� 1 + ✏ (1�R)

z

1 + z
� 1

2

�2R (1�R)

z2

(1 + z)2

�

,

= �G



m(q⇤)�m

✓

z

1 + z

◆�

.

The required inequality follows from Part (5) of Lemma 3.3.1 in Section 3.3 and the fact
that m(q)/(1�R) is increasing on (q⇤, 1). At x = 0 using both (3.34) and (3.35) we have
LG|

x=0+

= LG|
x=0��G[m(q⇤)�m(1)] < 0.

(b) In order to prove LG = 0 for ✓ > 0 we calculate

LG(x, y, ✓, t) = e��t
x1�R

1�R

"

R

✓

g � zg0(z)

1�R

◆

1�1/R

� �g + ↵zg0(z) +
⌘2

2

z2g00(z)

#

= �e��t
x1�R

1�R



h1�1/R

✓

1� w(h)

(1�R)h

◆

� h+

✓

✏� �2

2

◆

w(h) +
�2

2

w0
(h)w(h)

�

and the result follows from Proposition 3.2.4. For ✓ = 0, LG = 0 is a simple calculation.
Now consider MG. We have

MG = e��tx�Ry



(1 + z)

1�R
g0 (z)� g (z)

�

. (3.38)

Hence for R < 1, it is sufficient to show that  (z) � 0 on (0, z⇤] where

 (z) =
1 + z

1�R
� g (z)

g0 (z)
.

By value matching and smooth fit g(z⇤) = m(q⇤)�R

(1 + z⇤)1�R and z⇤g0(z⇤) = m(q⇤)�R

(1�
R) (1 + z⇤)�R. Hence  (z⇤) = 0 and it is sufficient to show that  is decreasing. But

 0
(z) =

R

1�R
+

g (z) g00 (z)

g0 (z)2

=

R

1�R
+

h [w (h)w0
(h)� w (h)]

w (h)2

 0 (3.39)

where the last inequality follows from Proposition 3.2.4. Similarly, for R > 1, provided
that g is decreasing by Proposition 3.2.6, it is sufficient to show that  is increasing. But
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Proposition 3.2.4 gives

 0
(z) =

R

1�R
+

g (z) g00 (z)

g0 (z)2
=

R

1�R
+

h [w (h)w0
(h)� w (h)]

w (h)2
� 0.

Proposition 3.2.9. Let X⇤, ⇥⇤ and C⇤ be as defined in Theorem 3.1.7. Then they
correspond to an admissible wealth process. Moreover Z⇤

t

= Y
t

⇥

⇤/X⇤
t

satisfies 0  Z⇤
t


z⇤.

Proof. Note that if y
0

✓
0

/x
0

> z⇤ then the optimal strategy includes a sale of the endowed
asset at time zero, and the effect of the sale is to move to new state variables (X⇤

0

, y
0

,⇥⇤
0

, 0)

with the property that Z⇤
0

= y
0

⇥

⇤
0

/X⇤
0

= z⇤.
Recall the definitions of ˜

⇤ and ˜

� and set ⌃(z) = z(1 + z) and ˜

⌃(j) = ⌃(z⇤ � j).
Consider the equation

ˆJ
t

=

ˆJ
0

�
ˆ

t

0

˜

⇤

⇣

ˆJ
s

⌘

ds�
ˆ

t

0

˜

�

⇣

ˆJ
s

⌘

dB
s

+

ˆL
t

(3.40)

with initial condition ˆJ
0

= (z⇤ � z
0

)

+. This equation is associated with a stochastic
differential equation with reflection (Revuz and Yor [48, p385]) and has a unique solution
(J, L) for which (J, L) is adapted, J � 0, L

0

= 0 and L only increases when J is zero.
Note that ˜

⇤(z⇤) = ⇤(0) = 0 = �(0) =

˜

�(z⇤) and hence J is bounded above by z⇤.
Recall that ⇥⇤

t

= ⇥

⇤
0

exp(�L
t

/˜⌃(0)). Then ⇥⇤
t

is adapted, continuous and hence
progressively measurable (Karatzas and Shreve [35, p5]). ⇥

⇤
t

is also decreasing and
d⇥⇤

t

= �⇥⇤
t

dL
t

/˜⌃(0) = �⇥⇤
t

dL
t

/˜⌃(J
t

) since L only grows when J = 0.
Then let Z⇤

t

= z⇤ � J
t

, X⇤
t

= ⇥

⇤
t

Y
t

/Z⇤
t

and C⇤
t

= X⇤
t

(g(Z⇤
t

) � Z⇤
t

g0(Z⇤
t

)/(1 �
R))

�1/R. Then X⇤ and C⇤ are positive and progressively measurable. It remains to show
that X is the wealth process arising from the consumption and sale strategy (C⇤,⇥⇤

).
But, from (3.40) and using, for example ˜

⇤(J
t

) = ⇤(Z⇤
t

),

dZ⇤
t

= ⇤ (Z⇤
t

) dt+ � (Z⇤
t

) dB
t

+ ⌃ (Z⇤
t

)

d⇥⇤
t

⇥

⇤
t

.
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and then

dX⇤
t

=

⇥

⇤
t

Y
t

Z⇤
t

"

d⇥⇤
t

⇥

⇤
t

+

dY
t

Y
t

� dZ⇤
t

Z⇤
t

+

✓

dZ⇤
t

Z⇤
t

◆

2

� dY
t

Y
t

dZ⇤
t

Z⇤
t

#

= X⇤
t

✓

⌘ � �(Z⇤
t

)

Z⇤
t

◆

dB
t

+

✓

↵� ⇤(Z⇤
t

)

Z⇤
t

+

�(Z⇤
t

)

2

(Z⇤
t

)

2

� ⌘
�(Z⇤

t

)

Z⇤
t

◆

dt

�

+

✓

Y
t

Z⇤
t

� Y
t

Z⇤
t

⌃(Z⇤
t

)

Z⇤
t

◆

d⇥⇤
t

= �C⇤
t

dt� Y
t

d⇥⇤
t

as required, where we use the definitions of ⇤, � and ⌃ for the final equality.

Proof of Theorem 3.1.7. First we show that there is a strategy such that the candidate
value function is attained, and hence that V � G.

Observe first that if y
0

✓
0

/x
0

> z⇤ then

✓
0

�⇥⇤
0

= ✓
0

✓

1� z⇤

1 + z⇤
1 + z

0

z
0

◆

and
X⇤

0

= x
0

+ y
0

(✓
0

�⇥⇤
0

) = x
0

(1 + z
0

)

(1 + z⇤)

Then, since g(z⇤)/g(z
0

) = (1 + z⇤)1�R/(1 + z
0

)

1�R for z
0

> z⇤,

G(X⇤
0

, y
0

,⇥⇤
0

, 0) =
(X⇤

0

)

1�R

1�R
g(z⇤) =

x1�R

0

1�R
g(z

0

) = G(x
0

, y
0

, ✓
0

, 0).

For a general admissible strategy define the process M = (M
t

)

t�0

by

M
t

=

ˆ
t

0

e��s
C1�R

s

1�R
ds+G (X

t

, Y
t

,⇥
t

, t) . (3.41)

Write M⇤ for the corresponding process under the proposed optimal strategy. Then
M⇤

0

= G(X⇤
0

, y
0

,⇥⇤
0

, 0) = G(x
0

, y
0

, ✓
0

, 0) so there is no jump of M⇤ at t = 0. Further,
although the optimal strategy may include the sale of a positive quantity of the risky
asset at time zero, it follows from Proposition 3.2.9 that thereafter the process ⇥⇤ is
continuous and such that Z⇤

t

= Y
t

⇥

⇤
t

/X⇤
t

 z⇤.
From the form of the candidate value function and the definition of g given in

(3.9), we know that G is C1,2,1,1. Then applying Itô’s formula to M
t

, using the continuity
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of X⇤ and ⇥⇤ for t > 0, and writing G· as shorthand for G·(X⇤
s

, Y
s

,⇥⇤
s

, s) we have

M⇤
t

�M
0

=

ˆ
t

0



e��s
(C⇤

s

)

1�R

1�R
� C⇤

s

G
x

+ ↵Y
s

G
y

+

1

2

⌘2Y 2

s

G
yy

+G
t

�

ds

+

ˆ
(0,t]

(G
✓

� Y
s

G
x

) d⇥⇤
s

(3.42)

+

ˆ
t

0

⌘Y
s

G
y

dB
s

=: N1

t

+N2

t

+N3

t

Since Z⇤
t

 z⇤, and since C⇤
t

= e��s/RG�1/R

x

and LG = 0 for z  z⇤ we have N1

t

= 0.
Further, d⇥

s

6= 0 if and only if Z⇤
t

= z⇤ and then MG = 0, so that N2

t

= 0.
To complete the proof of the theorem we need the following lemma which is proved

in Section 3.4.

Lemma 3.2.10. 1. N3 given by N3

t

=

´
t

0

⌘Y
s

G
y

(X⇤
s

, Y
s

,⇥⇤
s

, s)dB
s

is a martingale.

2. lim

t"1 E[G(X⇤
t

, Y
t

,⇥⇤
t

, t)] = 0.

Returning to the proof of the theorem, and taking expectations on both sides of
(3.42), we have E [M⇤

t

] = M
0

, which leads to

G (x
0

, y
0

, ✓
0

, 0) = E
✓ˆ

t

0

e��s
(C⇤

s

)

⇤1�R

1�R
ds

◆

+ E [G (X⇤
t

, y,⇥⇤
t

, t)] .

Using the second part of Lemma 3.2.10 and applying the monotone convergence theorem,
we have

G (x
0

, y
0

, ✓
0

, 0) = E
✓ˆ 1

0

e��s
C⇤1�R

s

1�R
ds

◆

and hence V � G.
Now we consider general admissible strategies. Applying the generalised Itô’s

formula [23, Section 4.7] to M
t

leads to the same expression as in (3.28). Lemma 3.2.8
implies that under general admissible strategies, N1

t

 0, N2

t

 0. Consider the jump
term,

N3

t

=

X

0st

[G (X
s

, Y
s

,⇥
s

, s)�G (X
s�, Ys,⇥s�, s)�G

x

(�X)

s

�G
✓

(�⇥)

s

] . (3.43)

Using the fact that (�X)

s

= �Y
s

(�⇥)

s

and writing ✓ = ⇥

s�, x = X
s�, � = �(�⇥)

s
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each non-zero jump in N3 is of the form

(�N3

)

s

= G(x+ y�, y, ✓ � �, s)�G(x, y, ✓, s) + � [G
✓

(x, y, ✓, s)� yG
x

(x, y, ✓, s)] .

But, by Lemma 3.2.7, G(x+ y�, y, ✓ � �, s) is concave in � and hence (�N3

)  0.
For R < 1 the rest of the proof is exactly as in Theorem 3.2.3. The case of R > 1

is covered in Section 3.5.

3.2.4 The Verification Lemma in the second non-degenerate case with

no finite critical exercise ratio.

Throughout this section we suppose that ✏ � �2R and that if R < 1 then 0 < ✏ <
�

2

2

R+

1

1�R

. It follows that q⇤ = 1 and z⇤ = 1, and that n(1) = m(1) > 0.
Recall the definition of n in (3.6) and the subsequent definitions of N by N(q) =

n(q)�R

(1� q)R�1 and W = N�1. Suppose R < 1 and define � as in (5.12) by

�(v) =
1

1�R
ln v +

R

1�R
lnm(1)� 1

1�R

ˆ 1

v

1�W (s)

sW (s)
ds.

In the case R > 1 define � via (5.16) so that

�(v) = � 1

R� 1

ln v � R

R� 1

lnm(1)� 1

R� 1

ˆ
v

0

1�W (s)

sW (s)
ds.

For all R define also �̃ by

�̃(v) =
ln v

1�R
� �(v).

Let h be inverse to � and set g(z) = (R/�)Rh(ln z).

Lemma 3.2.11. 1. Suppose R < 1. Then � : (1,1) 7! (�1,1) is well defined,
increasing, continuous and onto. Furthermore,

lim

v"1
�̃(v) =

�R

1�R
lnm(1) and lim

v"1
(1�W (v))e�(v) = 1.

Suppose R > 1. Then � : (0, 1) 7! (�1,1) is well defined, decreasing, continuous
and onto. Furthermore,

lim

v#0
�̃(v) =

R

R� 1

lnm(1) and lim

v#0
(1�W (v))e�(v) = 1.
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2. h solves h0 = (1�R)hW (h), and h(�1) = 1.

Proof. Suppose R < 1, the proof for R > 1 being similar. First we want to show that
ˆ 1

1�W (s)

sW (s)
ds < 1, and

ˆ
1+

1�W (s)

sW (s)
ds = 1,

which, given lim

s"1W (s) = 1 and lim

s#1W (s) = 0 is equivalent to

ˆ 1
1�W (s)

s
ds < 1;

ˆ
1+

1

W (s)
ds = 1.

But (1�q)N(q)1/(1�R)

q"1�! n(1)�R/(1�R) and so (1�W (s)) ⇠ n(1)�R/(1�R)s�1/(1�R) for
large s and the first integral is finite. Conversely, since N 0

(0+) =  for some  2 (0,1)

we have W 0
(1+) = �1 and W (s) ⇠ (s � 1)�1 for s near 1. Since 1/(s � 1) is not

integrable near 1, the second integral explodes.
It follows that � is onto; the fact that � is increasing follows on differentiation.

Indeed �0(v) = 1/((1 � R)vW (v)) and hence h0 = (1 � R)hW (h). Also h(�1) :=

lim

u#�1 h(u) = 1.
The first limit result for �̃ follows immediately from the definition. For the second,

lim

v"1
e�(v)(1�W (v)) = lim

v"1
e��̃(v)v1/(1�R)

(1�W (v)) = lim

v"1
e��̃(v) lim

q"1
N(q)1/(1�R)

(1� q)

= m(1)

R/(1�R)

lim

q"1
n(q)�R/(1�R)

= 1.

Define the candidate value function via

G(x, y, ✓, t) = e��t
x1�R

1�R
g

✓

y✓

x

◆

, x > 0, ✓ > 0 (3.44)

and extend the definition to ✓ = 0 and �✓y < x  0 by

G(x, y, ✓, t) = e��t
(x+ y✓)1�R

1�R

✓

R

�

◆

R

m(1)

�R � ✓y < x  0, ✓ > 0;(3.45)

G(x, y, 0, t) = e��t
x1�R

1�R

✓

R

�

◆

R

x � 0, ✓ = 0. (3.46)
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Here continuity of G at x = 0 follows from the identity

lim

z"1
zR�1g(z) = lim

u"1
e�(1�R)uh(u) = lim

v

e�(1�R)�(v)v = lim

v

e�(1�R)�̃(v)

= m(1)

�R.

(3.47)

Lemma 3.2.12. Fix y and t. Then G = G(x, ✓) is concave in x and ✓ on [0,1)⇥ [0,1).
In particular, if  (�) = G(x� �y, y, ✓ + �, t), then  is concave in �.

Proof. The proof follows similarly to the proof of Lemma 3.2.7, and makes use of the
fact dh/du = (1�R)hW (h) proved in Lemma 3.2.11.

Lemma 3.2.13. Consider the candidate function constructed in (3.44)–(3.46). Then for
x > 0, ✓ > 0, LG = 0, and MG � 0. Further, MG = 0 at (x = 0, ✓ > 0) and LG = 0 at
x = 0 and at ✓ = 0.

Proof. The majority of the lemma follows exactly as in Lemma 3.2.8.
For MG|

x=0

, note that G
✓

|
x=0

= yG(1� R)/(x+ y✓)|
x=0

= (1� R)G/✓. Then,
yG

x

|
x=0� = yG(1�R)/(x+ y✓)|

x=0� = (1�R)G/✓, whereas for x > 0,

yG
x

=

y(1�R)G

x
� g0

g

y2✓

x2
G =

(1�R)G

✓



z � z2g0(z)

(1�R)g(z)

�

,

and then for fixed (y, ✓)

lim

x#0



z � z2g0(z)

(1�R)g(z)

�

= lim

u"1
eu
✓

1� h0(u)

(1�R)h(u)

◆

= lim

v

e�(v) (1�W (v)) = 1.

Proof of Theorem 3.1.11. For an admissible strategy (C,⇥) = (C
t

,⇥
t

)

t�0

define the pro-
cess M(C,⇥) = (M

t

)

t�0

via

M
t

=

ˆ
t

0

e��s
C1�R

s

1�R
ds+G (X

t

, Y
t

, 0, t) . (3.48)

where G is as given in (3.44)—(3.46).
Case 1: ✓

0

= 0 and x
0

> 0: we show V = G. For these initial values the agent does
not own any units of asset for sale and consumption can only be financed from liquid
(cash) wealth. Then (⇥

t

)

t�0

= 0, dX
t

= �C
t

dt and the problem is non-stochastic.
The candidate optimal consumption function is C(x, y, 0) = �x/R and the associated
consumption process is C⇤

t

=

�

R

x
0

e�
�

R

t with resulting wealth process X⇤
t

= x
0

e�
�

R

t.
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Then the value function is

E
"ˆ 1

0

e��t
C⇤
t

1�R

1�R
dt

#

=

ˆ 1

0

e��t
✓

�

R

◆

1�R

⇣

e�
�

R

tx
0

⌘

1�R

1�R
dt

=

✓

R

�

◆

R x1�R

0

1�R
= G(x

0

, y
0

, 0, 0),

where the last equality follows from (3.46). Hence, we have V � G.
Now consider general admissible strategies. Let M0 be given by M0

t

= M
t

(C
t

, 0).
Applying Itô’s formula to M0, we get

M0

t

�M0

0

=

ˆ
t

0



e��s
C1�R

s

1�R
� C

s

G
x

+ ↵Y
s

G
y

+

1

2

⌘2Y 2

s

G
yy

+G
s

�

ds

+

ˆ
t

0

⌘Y
s

G
y

dB
s

= N1

t

+N3

t

.

Lemma 3.2.13 implies that LG = 0 and hence N1

t

= 0.
Suppose R < 1. Then we have 0  M0

t

 M0

0

+ N3

t

, and the local martingale
N3

t

is now bounded from below and hence a supermartingale. Taking expectations we
conclude E(M0

t

)  M0

0

= G(x
0

, y
0

, 0, 0), and hence

G(x
0

, y
0

, 0, 0) � E
ˆ

t

0

e��s
C
s

1�R

1�R
ds+ EG(X

t

, Y
t

, 0, t) � E
ˆ

t

0

e��s
C
s

1�R

1�R
ds, (3.49)

Letting t ! 1, (3.49) we conclude

G(x
0

, y
0

, 0, 0) � E
ˆ 1

0

e��t
C
t

1�R

1�R
dt.

and taking a supremum over admissible strategies we have G � V , and hence G = V .
For R > 1, a modification of the proof of Theorem 3.2.3 applies here also and

G = V .
Case 2: x

0

= 0 and ✓
0

> 0: we show V � G. Under the candidate optimal strategy
defined in Theorem 3.1.11 the consumption and sale processes evolve according to C

t

dt =

�Y
t

d⇥
t

, meaning that the investor finances consumption only from the sales of the
endowed asset and wealth stays constant and identically zero. In this case, the proposed
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strategies in (3.23) become

⇥

⇤
t

= ✓
0

e�
�

R

�t, C⇤
t

=

�

R
�Y

t

⇥

⇤
t

=

�

R
�y

0

✓
0

exp

n

�(✏� �2/2� �/R)t+ �
p

�B
t

o

.

where temporarily we write � = m(1) = �2R(1�R)/2� ✏(1�R) + 1 > 0.
The corresponding value function is

G⇤
= E

"ˆ 1

0

e��t
C⇤
t

1�R

1�R
dt

#

=

✓

�

R

◆

1�R

(�y
0

✓
0

)

1�R

1�R
E
ˆ 1

0

e��te(1�R)�(✏� �

2

2 � �

R

)t+�

p
�(1�R)B

tdt

�

=

✓

�

R

◆

1�R

(�y
0

✓
0

)

1�R

1�R

ˆ 1

0

e{(✏(1�R)� �

2

2 R(1�R)�1)� (1�R)
R

�}�tdt

=

✓

R

�

◆

1�R

(�y
0

✓
0

)

1�R

1�R

ˆ 1

0

e�(��/R)tdt =

✓

R

�

◆

R

(y
0

✓
0

)

1�R

1�R
��R

= G(0, y
0

, ✓
0

, 0).

Then, under the candidate optimal strategy,

G(0, y
0

, ✓
0

, 0) = E
ˆ 1

0

e��t
(C⇤

t

)

1�R

1�R
dt

�

,

and we have G(0, y
0

, ✓
0

, 0)  V (0, y
0

, ✓
0

, 0).
Case 3: x

0

> 0 and ✓
0

> 0: we show V � G. Let M⇤
= M(C⇤,⇥⇤

) for the candidate
optimal strategies in Theorem 3.1.11.

From the form of the candidate value function we know that G is C1,2,1,1. Then
applying Itô’s formula to M⇤, we have

M⇤
t

�M⇤
0

=

ˆ
t

0



e��s
(C⇤

s

)

1�R

1�R
� C⇤

s

G
x

+ ↵Y
s

G
y

+

1

2

⌘2Y 2

s

G
yy

+G
t

�

ds

+

ˆ
(0,t]

(G
✓

� Y
s

G
x

) d⇥
s

(3.50)

+

ˆ
t

0

⌘Y
s

G
y

dB
s

=: N1

t

+N2

t

+N3

t

.

Since C⇤
s

= G�1/R

x

e�s/R is optimal and, by Lemma 3.2.13, LG = 0, we have N1

t

= 0.
Further, under the proposed strategies in (3.23), d⇥

t

6= 0 if and only if X
t

= 0. Then,
by Lemma 3.2.13, MG|

x=0

= 0 and N2

t

= 0.
The following Lemma is proved in the Section 3.4.
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Lemma 3.2.14. (1) N3 given by N3

t

=

´
t

0

⌘Y
s

G
y

(X⇤
s

, Y
s

,⇥⇤
s

, s)dB
s

is a martingale.
(2) lim

t"1 E[G(X⇤
t

, Y
t

,⇥⇤
t

, t)] = 0

The conclusion that V � G now follows exactly as in the proof of Theorem 3.1.7
but using Lemma 3.2.14 in place of Lemma 3.2.10.
Case 4: x

0

� 0 and ✓
0

> 0: V  G. To complete the proof of the theorem, it re-
mains to show for ✓

0

> 0 and general admissible strategies, we have V (x
0

, y
0

, ✓
0

, 0) 
G(x

0

, y
0

, ✓
0

, 0). Recall the definition of M in (3.48).
Applying the generalised Itô’s formula [23, Section 4.7] to M

t

leads to the expres-
sion in (3.28) and

M
t

�M
0

= N1

t

+N2

t

+N3

t

+N4

t

.

Lemma 3.2.13 implies that under general admissible strategies, N1

t

 0, and N2

t

 0

with equality at x = 0. Consider the jump term,

N3

t

=

X

0st

[G (X
s

, Y
s

,⇥
s

, s)�G (X
s�, Ys,⇥s�, s)�G

x

(�X)

s

�G
✓

(�⇥)

s

] (3.51)

Using the fact that (�X)

s

= �Y
s

(�⇥)

s

and writing ✓ = ⇥

s�, x = X
s�, � = �(�⇥)

s

each non-zero jump in N3 is of the form

(�N3

)

s

= G(x+ y�, y, ✓ � �, s)�G(x, y, ✓, s) + � [G
✓

(x, y, ✓, s)� yG
x

(x, y, ✓, s)] .

Note that by Lemma 3.2.12, G(x+ y�, y, ✓��, s) is concave in � and hence (�N3

)  0.
For the case R < 1 the remainder of the proof follows as in the proof of Theo-

rem 3.2.3. The case R > 1 for general admissible strategies is covered in Section 3.5.

3.3 Properties of n

Recall the definitions of m and ` and the differential equation (3.6) for n, and also the
definitions of q

`

, q
m

, q
n

and q⇤. Define q̃ = inf{q > 0 : (1 � R)n(q) � (1 � R)`(q)} ^ 1.
Note that m (0) = 1 = ` (0) and m (1) = 1 � ✏(1 � R) + �2R (1�R) /2 = ` (1). The
concave function ` is positive on (0, 1) if `(1) = 1� ✏(1�R) + �2R (1�R) /2 � 0.

Lemma 3.3.1. 1. Define � via

�(�) = �2 � (1�R)

✓

�2

2

� ✏+
1

R

◆

�� ✏
(1�R)

2

R
.
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Then for R 2 (0, 1), n0
(0) is the smaller root of �(�) = 0 and for R 2 (1,1), n0

(0)

is the larger root.

2. For q 2 (0, q
n

^ q̃), n0
(q) > 0 if and only if n(q) < m(q), similarly n0

(q) = 0 if and
only if n(q) = m(q).

3. If `(1) � 0 then q̃ = q
n

= q
`

= 1.

4. If `(1) < 0 then q̃ = q
n

= q
`

< q⇤.

5. If 0  q⇤ < 1 then q⇤ > ✏/�2R and (1�R)m is increasing on (q⇤, 1).

Proof. (1) From the expression (3.6) and l’Hôpital’s rule, n0
(0) = � solves

� =

1�R

R
� �2

2

(1�R)

2

R

1

(1�R)(

�

2

2

� ✏)� �
,

or equivalently �(�) = 0. Further `0(0) = (1�R)

⇣

�

2

2

� ✏
⌘

and

�

✓

(1�R)

✓

�2

2

� ✏

◆◆

= ��
2

2

(1�R)

2

R
< 0.

For R < 1, we have n0
(0) < `0(0) by hypothesis, so that n0

(0) is the smaller root of �.
For R > 1, we have n0

(0) > `0(0) by hypothesis and n0
(0) is the larger root of �.

(2) This follows immediately from the expression for n0
(q).

(3) Suppose R < 1. Since n0
(0) < `0(0) we have q̃ > 0. Notice that if 0 < n(q) <

`(q) and `(q) � n(q) is sufficiently small, then n0
(q) < `0(q). Hence q̃ � q

n

. Further,
if n (q) < ` (q) � � for some � > 0 on some interval

⇥

q, q
⇤ ⇢ (0, 1), then n0

(q) /n (q)

is bounded below by a constant on that interval and provided n
�

q
�

> 0 it follows that
n (q) > 0 also. Hence, if ` is positive on [0, 1) then so is n and q

n

= 1. For R > 1, we
have n0

(0) > `0(0) and the result follows via a similar argument.
(4) Suppose R < 1. The same argument as above gives that q̃ = q

n

= q
`

and now
these quantities are less than one. Clearly q

m

< q
`

, and m is decreasing on (0, q
m

). We
cannot have q⇤  q

m

for then n0
(q⇤) �m0

(q⇤) > 0 and n(q⇤) �m(q⇤) = 0 contradicting
the minimality of q⇤, nor can we have q

m

< q⇤  q
`

for on this region m < 0  n.
(5) We can only have q⇤ < 1 if m(1) > 0 and (1 � R)m0

(1) > 0. For R < 1

we must have n0
(q⇤) = 0 < m0

(q⇤). But m has a minimum at ✏/�2R, so q⇤ > ✏/�2R.
For R > 1, we must have n0

(q⇤) = 0 > m0
(q⇤). But m has a maximum at ✏/�2R, so

q⇤ > ✏/�2R.
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Proof of Proposition 3.1.2. (1) Note that �(m0
(0)) = (1 � R)

2�2✏/2. Then, if ✏ < 0 we
have n0

(0) < m0
(0) for R < 1 and q⇤ = 0. Otherwise, for R > 1, we have n0

(0) > m0
(0)

and q⇤ = 0. If ✏ = 0 then n0
(0) = m0

(0) and more care is needed.
Consider R < 1. Since ✏  0, m is increasing. Suppose n (q̂) > m (q̂) for some q̂

in [0, 1] . Let q = sup {q < q̂ : n (q) = m (q)}. Then on
�

q, q̂
�

we have n0
(q) < 0 < m0

(q)

and m (q̂)� n (q̂) = m
�

q
�� n

�

q
�

+

´
q̂

q

[m0
(y)� n0

(y)]dy > 0, a contradiction.
For R > 1, the only difference is that m is decreasing given ✏  0 and n0

(0) >

m0
(0).

(2) Consider first R < 1 and suppose that 0 < ✏ < min{�2R, �
2

2

R +

1

1�R

}. Then
m0

(1) > 0 and m(1) > 0. Since ✏ > 0 we have n0
(0) > m0

(0) and n � m is positive
at least initially. Write n (q) = m (q) + �2 (1�R) qb (q) /2. Then n (q)  ` (q) implies
b (q)  1� q.

Suppose b (q) > 0 for all q 2 (0, 1). Then n (q) � m (q) and n0
(q) < 0 so that

n (q) � n (1) = m (1) and

m (1) = m (q)� (1� q) (1�R)

�

✏� �2R
�� (1� q)2 �2R (1�R) /2

> m (q) + � (1� q) �2 (1�R) q/2,

for q > ✏/�2R and � < (�2R� ✏)min{ 2

�

2 ,
R

✏

}. For such q, b (q) > � (1� q). Hence

n0
(q)

n (q)
= �1�R

R

b (q)

(1� q) (1� q � b (q))
 �1�R

R

�

(1� q) (1� �)

and we must have n0
(1�) = �1 contradicting the fact that n (q)  ` (q). It follows that

we must have b (q) = 0 for some q 2 (0, 1). At this point n crosses m. Note that this
crossing point is unique: at any crossing point m0

(q) > 0 = n0
(q), so that all crossings

of 0 in (0, 1) by n�m are from above to below.
For R > 1, we have m0

(1) < 0 and m(1) > 0. Since ✏ > 0, we have n0
(0) < m0

(0)

and n �m is negative initially. Let n(q) = m(q) + �2(1 � R)qb(q)/2. Then n(q) � `(q)

implies b(q)  1 � q. Suppose b(q) > 0 for all q 2 (0, 1), then it leads to the same
contradiction for R < 1. It follows that b(q) = 0 for some q 2 (0, 1), where n crosses m.
At any crossing point m0

(q) < 0 = n0
(q), so that n crosses m from below.

(3) ✏ � �2R and if R < 1, ✏ < �

2

2

R+

1

1�R

.
Consider first R < 1. Since ✏ > 0 we have that n0

(0) > m0
(0) and n > m in a

neighbourhood to the right of zero. Further, m is decreasing and there are no solutions
of n = m since at any solution we must have that 0 = n0 < m0 < 0.

For R > 1, we have m is increasing and n0
(0) < m0

(0). There are no solutions of
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n = m in that at any solution we should have 0 = n0 > m0 > 0.
(4) R < 1 and ✏ � �

2

2

R+

1

1�R

Then m (1)  0. Since m is decreasing at least until it hits zero, and since n0
= 0

at a crossing point we cannot have that n crosses m before it hits zero.

Proof of Proposition 3.2.4. (1) N solves

N 0
(q) =

1

2

�2 (1�R)

2 qN (q)

` (q)�N (q)�1/R

(1� q)1�1/R

and N is strictly increasing for R < 1. Otherwise, it is decreasing for R > 1. W solves

W 0
(v) =

` (W (v))� v�1/R

(1�W (v))1�1/R

1

2

�2 (1�R)

2 vW (v)
(3.52)

(2) Follows from (3.8) and (3.52).
(3) Consider first R < 1. On (0, q⇤) we have n(q) > m(q) and then `(q)� n(q) <

`(q)�m(q) = q(1� q)�2(1�R)/2. Then v�1/R

(1�W (v))1�1/R

= n(W (v)) and

v(1�R)W 0
(v) =

`(W (v))� n(W (v))
�

2

2

(1�R)W (v)
< 1�W (v)

It follows that w0
(v) = (1�R)W (v)+v(1�R)W 0

(v) < 1�RW (v). At q⇤, n(q⇤) = m(q⇤)

and the inequality becomes an equality throughout.
For R > 1, we have n(q) < m(q) on (0, q⇤) and `(q) � n(q) > `(q) � m(q) =

q(1 � q)�2(1 � R)/2. Then again v(1 � R)W 0
(v) < 1 � W (v) and w0

(v) < 1 � RW (v)

with equality at h⇤.
Note that since W is non-negative, 1�RW (h)  1.

3.4 The martingale property of the value function

Proof of Lemma 3.2.10. First we want to show the the local martingale

N3

t

=

ˆ
t

0

⌘Y
s

G
y

(X⇤
s

, Y
s

,⇥⇤
s

, s)dB
s

is a martingale. This will follow if, for example,

E
ˆ

t

0

(Y
s

G
y

(X⇤
s

, Y
s

,⇥⇤
s

, s))2 ds < 1 (3.53)
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for each t > 0. From the form of the value function (3.34), we have

yG
y

(x, y, ✓, s) = e��t
x1�R

1�R
zg0 (z) = G (x, y, ✓, t)

zg0 (z)

g (z)
 (1�R)G (x, y, ✓, t) (3.54)

where we use that zg

0
(z)

g(z)

=

w(h)

h

= (1�R)W (h) and 0  W (h)  1.
Define a process (D

t

)

t�0

by D
t

= lnG (X⇤
t

, Y
t

,⇥⇤
t

, t). Then D solves

D
t

�D
0

=

ˆ
t

0

1

G

✓

G
t

� C⇤
s

G
x

+ ↵Y
s

G
y

+

1

2

⌘2Y 2

s

G
yy

◆

ds

+

ˆ
t

0

1

G
(G

✓

� Y
s

G
x

) d⇥
s

+

ˆ
t

0

1

G
⌘Y

s

G
y

dB
s

�
ˆ

t

0

1

2G2

⌘2Y 2

s

G2

y

ds

= �
ˆ

t

0

e�
�

R

s

1�R

1

G
G

R�1
R

x

ds+

ˆ
t

0

1

G
⌘Y

s

G
y

dB
s

�
ˆ

t

0

1

2G2

⌘2Y 2

s

G2

y

ds.

It follows that the candidate value function along the optimal trajectory has the repre-
sentation

G (X⇤
t

, Y
t

,⇥⇤
t

, t) = G (X⇤
0

, y
0

,⇥⇤
0

, 0) exp

(

�
ˆ

t

0

e�
1
R

�s

1�R

1

G
G

R�1
R

x

ds

)

H
t

(3.55)

where H = (H
t

)

t�0

is the exponential martingale

H
t

= E
✓

⌘Y
s

G
y

G
�B

◆

t

:= exp

⇢ˆ
t

0

1

G
⌘Y

s

G
y

dB
s

�
ˆ

t

0

1

2G2

⌘2Y 2

s

G2

y

ds

�

.

Note that (3.54) implies 1

G

⌘yG
y

 ⌘(1 � R), so that H is indeed a martingale, and not
merely a local martingale.

From (3.54) and (3.55), we have

(yG
y

)

2

= G (X
0

, y
0

,⇥
0

, 0)2
✓

zg0 (z)

g (z)

◆

2

⇥ exp

(

�2

ˆ
t

0

e�
1
R

�s

(1�R)

1

G
G

R�1
R

x

ds

)

H2

t

 G (X
0

, y
0

,⇥
0

, 0)2 (1�R)

2H2

t

.

But

H2

t

= E
✓

2

G
⌘Y

s

G
y

�B
◆

t

exp

⇢ˆ
t

0

1

G2

⌘2Y 2

s

G2

y

ds

�

 E
✓

2

G
⌘Y

s

G
y

�B
◆

t

e(1�R)

2
⌘

2
t.

Hence E[H2

t

]  e(1�R)

2
⌘

2
t and it follows that (3.53) holds for every t, and hence that the
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local martingale N3

t

=

´
t

0

⌘yG
y

dB
s

is a martingale under the optimal strategy.

(ii) Consider
´
t

0

e

� 1
R

�s

1�R

1

G

G
R�1
R

x

ds. To date we have merely argued that this function
is increasing in t. Now we want to argue that it grows to infinity at least linearly. By
(3.34), we have

e�
1
R

�t

1�R

1

G
G

R�1
R

x

=

h

g (z)� 1

1�R

zg0 (z)
i

R�1
R

g (z)
=

h

h� 1

1�R

w (h)
i

R�1
R

h

= (1�W (h))1�1/Rh�1/R

= n(W (h)) � min{1, n(W (h⇤))} > 0.

Hence from (3.55) there exists a constant k > 0 such that

0  (1�R)G(X⇤
t

, Y
t

,⇥⇤
t

, t)  (1�R)G(x
0

, y
0

, ✓
0

, 0)e�ktH
t

! 0

and then G ! 0 in L1, as required.

Proof of Lemma 3.2.14. This follows exactly as in the proof of Lemma 3.2.10.

3.5 Extension to R > 1

Verification Lemmas for the case R > 1. It remains to extend the proofs of the verifica-
tion lemmas to the case R > 1. In particular we need to show that the candidate value
function is an upper bound on the value function. The main idea is taken from Davis
and Norman [13].

Suppose G (x, y, ✓, t) is the candidate value function. Consider for " > 0,

eV
"

(x, y, ✓, t) = eV (x, y, ✓, t) = G (x+ ", y, ✓, t) (3.56)

and fM
t

=

fM
t

(C,⇥) given by

fM
t

=

ˆ
t

0

e��s
C1�R

s

1�R
ds+ eV (X

t

, Y
t

,⇥
t

, t) ,
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Then,

fM
t

� fM
0

=

ˆ
t

0



e��s
C1�R

s

1�R
� C

s

eV
x

+ ↵Y
s

eV
y

+

1

2

⌘2Y 2

s

eV
yy

+

eV
t

�

ds

+

ˆ
t

0

⇣

eV
✓

� Y
s

eV
x

⌘

d⇥
s

+

X

0st

h

eV (X
s

, Y
s

,⇥
s

, s)� eV (X
s�, Ys�,⇥s�, s�)� eV

x

(4X)

s

� eV
✓

(4⇥)
s

i

+

ˆ
t

0

⌘Y
s

eV
y

dB
s

=

eN1

t

+

eN2

t

+

eN3

t

+

eN4

t

.

Lemma 3.2.2 (in the case ✏  0 and otherwise Lemma 3.2.8 or Lemma 3.2.13) implies
eN1

t

 0 and eN2

t

 0. The concavity of eV (x+ y�, y, ✓��, s) in � (either directly if ✏  0,
or using Lemma 3.2.7 or Lemma 3.2.12) implies (�

eN3

)  0.
Now define stopping times ⌧

n

= inf

n

t � 0 :

´
t

0

⌘2Y 2

s

eV 2

y

ds � n
o

. It follows from

(3.54) that yeV
y

is bounded and hence ⌧
n

" 1. Then the local martingale (

eN4

t^⌧
n

)

t�0

is a
martingale and taking expectations we have E

⇣

fM
t^⌧

n

⌘

 fM
0

, and hence

E
✓ˆ

t^⌧
n

0

e��s
C1�R

s

1�R
ds+ eV (X

t^⌧
n

, Y
t^⌧

n

,⇥
t^⌧

n

, t ^ ⌧
n

)

◆

 eV (x
0

, y
0

, ✓
0

, 0) .

In the case ✏  0, (3.24) and (3.56) imply

eV (x, y, ✓, t) = e��t
(x+ ")1�R

1�R

✓

1 +

y✓

x+ "

◆

1�R

✓

R

�

◆
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� e��t
(x+ ")1�R

1�R

✓

R

�

◆
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� "1�R

1�R

✓

R

�

◆

R
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Thus eV is bounded, lim

n!1
EeV (X

t^⌧
n
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t^⌧

n

,⇥
t^⌧

n

, t ^ ⌧
n

) = E
h

eV (X
t

, Y
t

, ✓
t

, t)
i

, and

eV (x
0

, y
0

, ✓
0

, 0) � E
✓ˆ

t

0

e��s
C1�R

s

1�R
ds

◆

+ E
h

eV (X
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, Y
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,⇥
t

, t)
i

.

Similarly,

eV (x, y, ✓, t) � e��t
"1�R

1�R

✓

R

�

◆

R

and hence E
h

eV (X
t

, Y
t

,⇥
t

, t)
i

! 0. Then letting t ! 1 and applying the monotone
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convergence theorem, we have

eV
"

(x
0

, y
0

, ✓
0

, 0) = eV (x
0

, y
0

, ✓
0

, 0) � E
✓ˆ 1

0

e��s
C1�R

s

1�R
ds

◆

Finally let "! 0. Then V  lim

"#0 eV = G. Hence, we have V  G.
The two non-degenerate cases are very similar, except that now from (3.34) and

(3.56),

eV (x, y, ✓, t) = e��t
(x+ ")1�R

1�R
g

✓

y✓

x+ "

◆

� e��t
"1�R

1�R

✓

R

�

◆

R

.

where we use that for R > 1, g is decreasing with g (0) = (

R

�

)

R > 0. Hence eV is bounded,
and the argument proceeds as before.
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Chapter 4

Comparative statics of the
single-asset problem

In this chapter, we provide comparative statics describing how the outputs of the model
depend on market parameters based on the analysis in Chapter 3. Some of the surprising
implications are uncovered in this chapter. In particular, we give three sample conclusions
from the comparative statics:

Result 3. 1. The optimal consumption process is not monotone in the drift of the
endowed asset. Although we might expect that the higher the drift, the more the
agent would consume, sometimes the agent’s consumption is a decreasing function
of the drift.

2. The certainty equivalent value of the holdings of the risky asset is not monotone in
risk aversion. For small quantities of endowed asset, the certainty equivalent value
is increasing in risk aversion, while for larger quantities, it is decreasing.

3. The cost of illiquidity (see Definition 4.5.1 below), representing the loss in welfare
of the agent when compared with an otherwise identical agent who can buy and sell
the risky asset with zero transaction costs, is a U-shaped function of the size of the
endowment in the risky asset.

This chapter consists of five sections, analysis of the optimal threshold z⇤, the
value function g, the optimal consumption C(x, y, ✓), the utility indifference price p(x, y, ✓),
and the cost of illiquidity p⇤(x, y, ✓). The cost of illiquidity, defined in (4.3) below repre-
sents the loss in cash terms faced by our agent when compared with an otherwise identical
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Figure 4.1: Transformations from m,n, ` to W (v) to �(v) to h(u) and g(z) in the second
non-degenerate scenario in the case R < 1. Parameters are ✏ = 1 � = 1, � = 0.1 and
R = 0.5. For these parameters m is monotonic decreasing.

agent with the same initial portfolio who is able to adjust her portfolio of the risky asset
in either direction at zero cost.

The equations describing the function n and the first crossing of m are simple
to implement in MATLAB, and then it also proved straightforward to calculate h or
� and thence the value function in the non-degenerate cases. Figures 4.1 and 4.2 are
generic plots of the various functions used in the construction of the value function. The
parameter values are such that we are in the second non-degenerate case (✏ � �2R and
✏ < �

2
R

2

+

1

1�R

if R < 1), but the figures would be similar for the first non-degenerate
case (0 < ✏ < �2R and ✏ < �

2
R

2

+

1

1�R

if R < 1). The two figures cover the cases R < 1

and R > 1 respectively. For R < 1, as plotted in Figure 4.1, m and n are monotone
decreasing and W is increasing on [1,1) with lim

v!1

W (v) = 0 and lim

v!1W (v) = 1.
Further, we have �(v) is increasing on [1,1) and g is concave and increasing. For R > 1,
as plotted in Figure 4.2, m and n are monotone increasing and W is decreasing on (0, 1]

with lim

v!0

W (v) = 1 and lim

v!1

W (v) = 0. Finally, we have �(v) is decreasing on
(0, 1] and g is convex decreasing and convergent to zero as z tends to infinity.
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Figure 4.2: Transformations from m,n, ` to W (v) to �(v) to h(u) and g(z) in the second
non-degenerate scenario in the case R > 1. Parameters are ✏ = 3 � = 1, � = 0.1 and
R = 2.

4.1 Dependence of the critical threshold z⇤ on model pa-
rameters

Figures 4.3 and 4.4 show that z⇤ increases as mean return ✏ increases and decreases as
volatility � increases or risk aversion R increases. As ✏ increases, the non-traded asset Y
becomes more valuable and it is optimal for the investor to wait longer to sell Y for a
higher return. For ✏ = 0, when the endowed asset has zero return but with additional risk,
the optimal strategy is to sell immediately to remove the risk. Similarly, as � increases,
the level of z⇤ decreases as holding Y involves additional risk. Hence, it is optimal for
the investor to sell units of Y sooner in order to mitigate this risk. As the risk aversion
of the investor increases, she is less tolerant to the risk of the endowed asset and hence
more inclined to sell Y earlier. As R ! 0, (provided ✏ > 0) we have z⇤ ! 1, which
implies the optimal strategy is never to sell the asset. In the limit the investor is not
concerned about the risk of holding the risky asset. Conversely, as R ! 1, we have
z⇤ ! 0. In this case, the investor cannot tolerate any risks and it is therefore optimal to
sell the asset immediately to arrive at a safe position.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R

z
*

 

 

 ε = 0.3

 ε = 0.2

 ε = 0.1

Figure 4.4: z⇤ decreases as R increases or as ✏ decreases. Here � = 3 and � = 0.1.

78



0 1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

11

z

g
(z

)

Figure 4.5: g(z) with different ✏ in the first and second non-degenerate scenarios. Dotted
line: z � z⇤, solid line: z  z⇤ and dots represent z⇤. ✏ varies from top to bottom as 2,
1.5, 1, 0.5, with fixed parameters � = 2, � = 0.1 and R = 0.5. The top line is the value
function g in the second non-degenerate scenario given ✏ = �2R = 2 and z⇤ is infinite.

4.2 Dependence of the value function g on model parame-
ters

The value function as expressed via g in non-degenerate cases is plotted in Figures 4.5,
4.6 and 4.7 under different drifts, volatilities and risk aversions. These figures show
that g is increasing in drift and decreasing in volatility, while g has no monotonicity in
risk aversion. As the non-traded asset becomes more valuable, the investor can choose
optimal sale and consumption strategies which lead to a larger value function. Further,
as the asset becomes more risky, the additional risk makes the value function smaller.
Meanwhile, as ✏ increases, z⇤ in Figure 4.5 is decreasing and as � increases, z⇤ in Figure 4.6
is increasing. (These results are consistent with the results in described in the previous
paragraph.) At z = z⇤, smooth fit conditions are satisfied. Observe also that for different
values of drift and volatilities, we have g starts at the same point. This corresponds to
the value function when ✓

0

= 0 whereby consumption is only financed by initial wealth
and this deterministic problem is the Merton model without any risky assets. In this
case, Theorem 1.2.5 implies g(0) = (R/�)R.
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Figure 4.6: g(z) with different � in the first and second non-degenerate scenarios. Dotted
line: z � z⇤, solid line: z  z⇤ and dots represent z⇤. � varies from top to bottom as 2.1,
2.5, 3, 3.5 with fixed parameters ✏ = 3, � = 0.1 and R = 0.5. The top line is the value
function g in the second non-degenerate scenario given � = 2.1 <

p

✏/R = 2.45 and z⇤

is infinite.
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Figure 4.7: g(z) with different risk aversion R in the first and second non-degenerate
scenarios. In the left graph, R takes values in 0.7, 0.8 and 0.9. The rest of the parameters
are ✏ = 3, � = 2, � = 0.1. The critical risk aversion is R = ✏/�2 = 0.75. The dots
represent finite z⇤ and the solid line is the value function g in the second non-degenerate
scenario with infinite z⇤. In the right graph, R takes values in 1.3, 1.4 and 1.5 and the
rest of the parameters are ✏ = 6, � = 2 and � = 0.1.
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Figure 4.8: Optimal consumption C(1, 1, ✓) as R varies. R takes values in 0.6, 0.75, 0.9,
1.05 with parameters ✏ = 3, � = 2, � = 0.1 and ✓ 2 [0, 1]. The critical risk aversion
is R = ✏/�2 = 0.75. The top two lines correspond to the optimal consumption in the
second non-degenerate scenario where z⇤ is infinite under the condition that ✏ � �2R.
The bottom two lines correspond to the first non-degenerate case with finite z⇤.

4.3 Dependence of the optimal consumption C⇤ on model
parameters

Optimal consumption C(x, y, ✓) is considered in Figures 4.8—4.12. Figure 4.8 plots the
optimal consumption C(1, 1, ✓) as a function of endowed units ✓ and shows that the
optimal consumption increases in ✓: as the size of the holdings of the non-traded asset
Y increases, the agent feels richer and hence consumes at a faster rate. For ✓ = 0,
Theorem 1.2.5 implies the optimal consumption is C(x, y, 0) = xg(0)�

1
R

=

�

R

x, which
is strictly positive and is financed from cash wealth. Figure 4.8 also suggests that the
optimal consumption C(1, 1, ✓) decreases in risk aversion. Given the set of parameters
the critical risk aversion (i.e. the boundary between the two non-degenerate cases) is
at R = ✏/�2 = 0.75. For the bottom two lines in Figure 4.8 with R > 0.75, we have
✏ < �2R and this falls into the first non-degenerate case with finite z⇤. For R  0.75,
we have ✏ � �2R, which is the second non-degenerate case with infinite z⇤. As we see,
there is no discontinuity in consumption with respect to risk aversion at either R = 0.75

or R = 1. The optimal consumptions for different risk aversions differ primarily in the
levels, and the dominant factor is the optimal consumption for ✓ = 0. As argued above
C(x, y, 0) = �x/R is decreasing in R.
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Figure 4.9: Optimal consumption C(x, 1, 1) and C(x, 1, 1)/x as R varies. R takes values
in 0.6, 0.75, 0.9 and 1.05 with parameters ✏ = 3, � = 2, y

0

= 1 and ✓
0

= 1. The dots
represent x⇤ = 1/z⇤ and the critical risk aversion is R = ✏/�2 = 0.75. In both graphs,
the top two lines correspond to the optimal consumptions in the second non-degenerate
case with x⇤ = 0. The bottom two lines are the optimal consumptions in the first
non-degenerate case with finite z⇤, or equivalently, x⇤ > 0.

Figure 4.9 plots both consumption as a function of wealth C(x, 1, 1) and the ratio
of consumption to wealth C(x, 1, 1)/x as a function of x with different risk aversions.
Note that this can only be shown for x > y✓/z⇤ = 1/z⇤ since if x < 1/z⇤ the agent
makes an immediate sale of units of risky asset. The critical value of the risk aversion is
R = ✏/�2 = 0.75. For R > 0.75, we have z⇤ < 1 and x⇤ = 1/z⇤ > 0 while for R  0.75,
z⇤ = 1 and x⇤ = 1/z⇤ = 0. The results show that the optimal rate of consumption is
an increasing function of wealth but that consumption per unit wealth is a decreasing
function of wealth. (In the standard Merton problem, consumption is proportional to
wealth.) As the agent becomes richer, she consumes more, but the fraction of wealth
that she consumes becomes smaller. The explanation is that her endowed wealth is being
held constant. By scaling we have that if both x and ✓ are increased by the same factor,
then consumption would also rise by the same factor, but here x is increasing, but ✓ (and
y) are held constant, and hence consumption increases more slowly than wealth. In the
limit x ! 1 we have lim

x!1C(x, 1, 1) = 1 and lim

x!1C(x, y, ✓)/x = g(0)�
1
R

= �/R.
Figures 4.10 and 4.11 plot the optimal consumption C(1, 1, ✓) as a function of

✓, ✏ and ✓, �. Here we find a first surprising result: we might expect the optimal
consumption C(x, y, ✓) to be increasing in the drift, but this is not the case for large
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Figure 4.10: Optimal consumption C(1, 1, ✓) as ✏ varies. ✏ takes values in 0.5, 1, 1.5 and
2 with parameters � = 2, � = 0.1, R = 0.5, x

0

= 1 and y
0

= 1. The critical mean return
is ✏ = �2R = 2. When ✏ = 2 we are in the second non-degenerate case.

✓. For an explanation of this phenomena, recall that the optimal exercise ratio z⇤ is
increasing in the drift. As the drift increases, the asset has a more promising return on
average which makes the agent feel richer and consume at a higher rate. However, a
larger drift also implies a larger z⇤, indicating that the agent should postpone the sale of
the risky asset. Hence, a larger drift involves more risk, and in order to mitigate this risk,
the agent consumes less in the short term. Hence, the optimal consumption decreases
in the drift for large ✓. For a similar reason, optimal consumption is not necessarily
decreasing in volatility and optimal consumption as a function of x is not necessarily
increasing in the drift either as shown in Figure 4.12.

4.4 Dependence of the indifference price p on model param-
eters

Figures 4.13—4.19 plot the utility indifference price or certainty equivalence value p(x, y, ✓).
Recall that in the second and third cases of Theorem 3.1.5 the certainty equivalent value
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Figure 4.11: Optimal consumption C(1, 1, ✓) as � varies. � takes values in 2, 2.5, 3 and
3.5 with parameters ✏ = 3, � = 0.1, R = 0.5, x

0

= 1 and y
0

= 1. The critical volatility is
� =

p

✏/R = 2.45. The solid line corresponds to the optimal consumption in the second
non-degenerate case.
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Figure 4.12: Optimal consumption C(x, 1, 1) as ✏ varies. ✏ takes values in 1, 1.5, 2.1 and
2.5 with parameters � = 2, � = 0.1, R = 0.5, y

0

= 1 and ✓
0

= 1. The dots represent
x⇤ = 1/z⇤ and the critical mean return is ✏ = �2R = 2. The lines with x⇤ = 0 corresponds
to the optimal consumption in the second non-degenerate case and the lines with x⇤ > 0

corresponds to the first non-degenerate case.
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of the non-traded asset is given

p(x, y, ✓) = x

2

4

g
⇣

y✓

x

⌘

g(0)

3

5

1
1�R

� x

Figures 4.13 and 4.14 consider the indifference price as a function of wealth. Dots in
figures represent the optimal exercise ratio z⇤ = y✓/x. In each of the figures we choose
a range of parameter values such that sometimes we are in the first non-degenerate
case, and sometimes in the second non-degenerate case. In Figure 4.13, for ✏ < 2, we
have z⇤ < 1 and x⇤ = 1/z⇤ > 0, and for ✏ � 2, we have z⇤ = 1 and x⇤ = 0.
We can see p(x, 1, 1) is concave and increasing in x. It follows from Theorem 3.1.7
that g(z) = (R/�)Rm(q⇤)�R

(1 + z)1�R for z � z⇤. Further, under the condition that
0 < ✏ < �2R and ✏ < �

2

2

R+

1

1�R

, which ensures a finite exercise ratio,

lim

x!0

p(x, y, ✓) = lim

x!0

x

8

>

<

>

:

2

4

g
⇣

y✓

x

⌘

g(0)

3

5

1
1�R

� 1

9

>

=

>

;

= lim

x!0

n

m(q⇤)
R

R�1
(x+ y✓)� x

o

= m(q⇤)
R

R�1 y✓ > y✓.

In that case, for x = 0, where no initial wealth is available to finance consumption, it
is optimal for the investor to sell some units of the endowed asset Y immediately so as
to keep the ratio of the wealth invested in the endowed asset to liquid wealth below z⇤,
i.e. from the initial portfolio (x = 0, ✓ = ⇥

0�) the agent moves to (x = X
0+

, ✓ = ⇥
0+

),
where ⇥

0+

=

z

⇤

1+z

⇤⇥
0� and X

0+

=

1

1+z

⇤ y⇥
0�. The monotonicity of p(x, 1, 1) in ✏ and

� is also illustrated in Figures 4.13 and 4.14: a higher mean return adds value to the
asset, while the increasing volatility makes Y more risky and reduces value. Also observe
that for the drift larger than the critical value, the change in drift does not move the
dot while for the drift smaller than the critical value, the dot (representing the critical
ratio) moves rightwards as drift increases. To the left of the dot, the agent should sell
the endowed asset initially, while to the right of the dot, the agent should wait. As drift
increases, the agent should wait longer for a higher return when selling the asset.

Figure 4.15 considers the indifference price p(1, 1, ✓) and unit indifference price
p(1, 1, ✓)/✓ as a function of ✓. We see that p(1, 1, ✓) is increasing in ✓ and for ✓ = 0,
p(1, 1, 0) = 0, reflecting the fact that a null holding is worth nothing. We also have
the unit price p(1, 1, ✓)/✓ is decreasing in the units of asset ✓. For small holdings, the
marginal price lim

✓!0

p(1, 1, ✓)/✓ is infinite. As ✓ ! 1, the figures imply that the unit
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Figure 4.13: Indifference price p(x, 1, 1) as ✏ varies. ✏ varies from top to bottom as 2.5,
2.1, 1.5, 1 with fixed parameters � = 2, � = 0.1, R = 0.5, ✓

0

= 1 and y
0

= 1. The dots
represent x⇤ = 1/z⇤ and the critical mean return is ✏ = �2R = 2.
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Figure 4.14: Indifference price p(x, 1, 1). � varies from top to bottom as 2.1, 2.4, 2.8 and
3.2 with fixed parameters ✏ = 3, � = 0.1, R = 0.5, ✓

0

= 1 and y
0

= 1. The dots represent
x⇤ = 1/z⇤ and the critical volatility is � =

p

✏/R = 2.45. The top two lines correspond
to the indifference prices in the second non-degenerate case with x⇤ = 0. The bottom
two lines are indifference prices in the first non-degenerate case with x⇤ > 0.
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Figure 4.15: Indifference price p(1, 1, ✓) and unit price p(1, 1, ✓)/✓. ✏ varies from top to
bottom as 2, 1.5, 1, 0.5 with fixed parameters � = 2, � = 0.1, R = 0.5, x

0

= 1 and
y
0

= 1. The dots represent ✓⇤ = z⇤ and the critical mean return is ✏ = �2R = 2. The top
line corresponds to the indifference price in the second non-degenerate case with infinite
z⇤.

price p(1, 1, ✓)/✓ tends to some constant larger than the unit price y of Y :

lim

✓!1

p(x, y, ✓)

✓
= lim

✓!1

x



g

(

y✓

x

)

g(0)

�

1
1�R

� x

✓
= lim

✓!1

m(q⇤)
R

R�1
(x+ y✓)� x

✓
= m(q⇤)

R

R�1 y > y,

where the second equality follows since for z � z⇤, we have

g(z) = (R/�)Rm(q⇤)�R

(1 + z)1�R.

Figure 4.15 also illustrates the monotonicity of p in the drift parameter ✏ and we
have p(1, 1, ✓) and p(1, 1, ✓)/✓ both increase in the drift. Similarly, it can be shown that
p is decreasing in � as shown in Figure 4.16, reflecting the increased riskiness of positions
as volatility increases.

Figure 4.17 plots the indifference price as a function of cash wealth for different
risk aversions. The results show that the indifference price is not monotone decreasing in
risk aversion, and for large wealths the utility indifference price is increasing in R. (If we
fix wealth x and consider the certainty equivalent value as a function of quantity ✓ then
we find a similar reversal, and the certainty equivalent value is increasing in R for small
✓.) This recovers the results in Figure 2.3 and 2.6 in Section 2.2.2 in which we consider
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Figure 4.16: Indifference price p(1, 1, ✓) and unit price p(1, 1, ✓)/✓. � varies from top to
bottom as 2.3, 3, 3.5, 4 with fixed parameters ✏ = 3, � = 0.1, R = 0.5, x
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= 1 and
y
0

= 1. The critical volatility is � =
p

✏/R = 2.45.

a much simpler problem.
Here is an explanation of this phenomena followed by a similar argument in Sec-

tion 2.2.3. Consider an agent with positive cash wealth and zero endowment of the risky
asset. This agent consumes at rate �x/R; in particular, as the parameter R increases,
the agent consumes more slowly. The introduction of a small endowment will not change
this result, and in general, an increase in the parameter R postpones the time at which
the critical ratio reaches z⇤. (Although z⇤ depends on R also, this is a secondary effect.)
Since the endowed asset is appreciating, on average, by the time the agent chooses to
start selling the asset, it will be worth more. The total effect is to make the indifference
price increasing in R. Similarly, the indifference price p(1, 1, ✓) and the unit indifference
price p(1, 1, ✓)/✓ as functions of ✓ are not necessarily monotone in risk aversion as shown
in Figures 4.18 and 4.19.

4.5 The cost of illiquidity

Finally, we consider the impact of the illiquidity assumption. We do this by considering
the value function of our agent who cannot buy the endowed asset and comparing it with
the value function of an otherwise identical agent, but who can both buy and sell the
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Figure 4.17: Indifference price p(x, 1, 1). R takes values in 0.5, 0.75, 0.9 and 1.2 with fixed
parameters ✏ = 3, � = 2, � = 0.1, y
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= 1 and ✓
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= 1. The dots represent x⇤ = 1/z⇤ and
the critical risk aversion is R = ✏/�2 = 0.75. The top two lines for x 2 [0, 1] correspond
to the indifference prices in the second non-degenerate case with x⇤ = 0. The bottom
two lines are indifference prices in the first non-degenerate case with x⇤ > 0.
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Figure 4.18: Indifference price p(1, 1, ✓) for ✓ 2 [0, 1](left picture) and an enlarged picture
near ✓ = 0. R takes values in 0.5, 0.7 and 1.2 with fixed parameters ✏ = 1 and � = 2.
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Figure 4.19: Unit price p(1, 1, ✓)/✓. R takes values in 0.5, 0.7 and 1.2 with fixed param-
eters ✏ = 1 and � = 2. Here, number of holdings ✓ 2 [0, 1].

endowed asset with zero transaction costs. Suppose parameters are such that we are in
the second case of Theorem 3.1.5. In the illiquid market, where Y is only allowed for
sale, Theorem 3.1.7 proves the value function is

V
I

(x, y, ✓, 0) =
x1�R

1�R
g

✓

y✓

x

◆

= sup

(C,⇥)

E
"ˆ 1

0

e��t
C1�R

t

1�R
dt

#

, (4.1)

where the newly introduced subscript I stands for the value function in the illiquid
market, in which the asset can only be sold.

In a liquid market such that Y can be dynamically traded, wealth evolves as
dX

t

= �C
t

dt+⇧
t

dY
t

/Y
t

. Here (⇧)

t�0

represents the portfolio process. We suppose the
agent is endowed with ⇥

0

units of Y initially and is constrained to keep X positive. This
is the Merton model and we know from Theorem 1.2.5 that the optimal strategy is to
keep a constant fraction of wealth in the risky asset. The initial endowment therefore
only changes initial wealth and the value function is

V
L

(x, y, ✓, 0) = sup

(C,⇧)

E
"ˆ 1

0

e��t
C1�R

t

1�R
dt

#

=

(x+ y✓)1�R

1�R



�

R
� ↵2

(1�R)

2�2R2

��R

, (4.2)

where the subscript L stands for the value function in the liquid market.
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Now we consider the cost of illiquidity.

Definition 4.5.1. The cost of illiquidity, denoted p⇤ = p⇤(x, y, ✓) is the solution to

V
L

(x� P ⇤, y, ✓, t) = V
I

(x, y, ✓, t). (4.3)

and represents the amount of cash wealth the agent who can only sell the risky asset would
be prepared to forgo, in order to be able to trade the risky asset with zero transaction costs.

Equating (4.1) and (4.2), we can solve for p⇤ to obtain

p⇤(x, y, ✓) = x

"

1 +

y✓

x
� g

✓

y✓

x

◆

1
1�R

✓

�

R
� ↵2

(1�R)

2�2R2

◆

R

1�R

#

. (4.4)

Consider (4.4) when ✓ = 0, where the investor is not endowed any units of Y initially,
we have

p⇤(x, y, 0) = x

"

1�
✓

�

R
� ↵2

(1�R)

2�2R2

◆

R

1�R

g(0)
1

1�R

#

= x

"

1�
✓

1� ✏2(1�R)

2�2R

◆

R

1�R

#

> 0.

Suppose R < 1, 0 < ✏ < �

2

2

R+

1

1�R

and ✏ < �2R, so that z⇤ is finite. Figure 4.20
plots p⇤(1, 1, ✓) for ✓ 2 [0, 10]. Notice that p⇤ decreases initially, has a strictly positive
minimum near 0.95 and then increases, before becoming linear beyond ✓ = z⇤. Clearly,
whatever the initial endowment of the agent, she has a smaller set of admissible strategies
than an agent who can trade dynamically, and the cost of liquidity is strictly positive. For
small initial endowments the agent would like to increase the size of her portfolio of the
risky asset, and the smaller her initial endowment the more she would like to purchase
at time zero. Hence the cost of illiquidity is decreasing in ✓ for small ✓. However, for
large ✓, the agent would like to make an initial transaction (to reduce the ratio of wealth
held in the risky asset to cash wealth to below z⇤), and indeed since she is free to do so,
her optimal strategy involves such a transaction at time zero. Hence for large wealth the
cost of liquidity is proportional to (x+ y✓), and hence is increasing in ✓. For this reason,
the cost of illiquidity is a U-shaped function of ✓.
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Figure 4.20: Cost of illiquidity p⇤(1, 1, ✓) as ✓ varies. Parameters are ✏ = 1, � = 2
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= 1 and ✓ 2 [0, 1]. From the graph, we have
z⇤ > zM > z

min

and p⇤ is a U-shaped function of ✓.
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Chapter 5

Multi-asset consumption-investment
problems with infinite transaction
costs

This chapter considers an optimal consumption and portfolio selection problem with
transaction costs and with multiple correlated risky assets. In our model the transaction
costs take a special form in that transaction costs on purchases of one of the risky assets,
the endowed asset, are infinite, and transaction costs involving the other risky assets
are zero. Expressed differently, one of the risky assets is assumed to not be available
for dynamic trading. Instead the assumption is that this asset can only be sold: (re)-
purchases are not allowed. Our agent is endowed with an initial quantity of this asset,
and her strategies include when and how many to sell units of this infinitely divisible
asset over time. The assumption that there are infinite transaction costs on purchases of
endowed asset is complemented by an assumption that sales and purchases of the other
risky assets are permissible, and incur zero transaction costs.

In general, multi-asset optimal consumption/portfolio problems are very challeng-
ing and there is relatively limited literature on the multiple risky asset case. Recall that
the Davis-Norman approach is limited to a single risky asset as introduced in Section 1.5.
It is then of great interest to understand how these results generalise to multiple risky
assets. For example, in his survey article on consumption/investment problems with
transaction costs Cadenillas [7, page 65] says that ‘most results in this survey are limited
to the case of only one bond and only one stock. It is then important to see if these
results can be extended to cover a realistic number of stocks’. Although there has been
some progress since that paper was published, similar sentiments are echoed in recent
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papers by Chen and Dai [8, page 2]: ‘most of the existing theoretical characterisations of
the optimal strategy are for the single risky-asset case. In contrast there is a relatively
limited literature on the multiple risky-asset case’ and Guasoni and Muhle-Karbe [22,
page 194]: ‘In sharp contrast to frictionless models, passing from one to several risky
assets is far from trivial with transaction costs . . . multiple assets introduce novel effects,
which defy the one-dimensional intuition.’ In summary therefore, there is great interest
in both theoretical and numerical results on the multi-asset case, and this paper can be
considered as a contribution to that literature.

The set-up of our problem in which one asset is identified as a non-traded asset
is similar to that in the real options literature (Miao and Wang [42], Henderson [25],
Henderson and Hobson [26]) in which an agent with the option to invest in a project (or
sell an asset) chooses the optimal sale time. The difference with respect to that literature
is that we assume that the non-traded asset is infinitely divisible, whereas in the real
options literature it is typically assumed to be indivisible.

Our model then consists of an agent who is endowed with units of an infinitely
divisible risky asset which may be sold, but not bought, and whose opportunity set
includes investment in a risk-free bond, and investment in other risky assets, to which
a zero transaction cost applies. The risky assets follow correlated exponential Brownian
motions and the objective of the agent is to choose a consumption rate and an investment
strategy (including a sale strategy for the endowed asset) so as to maximise the discounted
expected utility of consumption.

This chapter is an extension of Chapter 3 which considers a similar problem with
an endowed asset but with no other risky assets. Many of the techniques in Chapter 3
carry over to the wider setting of the problem in this chapter, however, since there are
fewer parameters when there are no investments beyond the endowed asset, the problem
in Chapter 3 is significantly simpler and much more amenable to a comparative statics
analysis. In contrast, this chapter treats the multi-asset problem which has proved so
difficult to analyse in full generality, albeit in a rather special case. The multi-asset
setting brings new challenges and complicates the analysis.

For an agent with CRRA utility we completely characterise the different possible
behaviours. These include always selling the entire holdings of the endowed asset imme-
diately, selling the endowed asset whenever the ratio of the value of the holdings of the
endowed asset to other wealth gets above a critical ratio, and selling the endowed asset
only when other wealth is zero. This characterisation is in terms of solutions of a bound-
ary crossing problem for a first order ODE, which has four types of solution (‘crossing’ at
zero, crossing in (0, 1), no crossing in [0, 1] and hits zero before crossing). Each different
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type of solution is identified with a different type of solution to the optimisation problem;
for example the first type of solution corresponds to a strategy of immediately selling
all units of the endowed asset. It is relatively straightforward to identify the parameter
combinations which lead to different types of solution, even if explicit solutions of the
first order ODE are not available. Then we can relate the optimal wealth process, con-
sumption strategy, sale strategy and investment strategy of the agent path-wise to the
solution of a Skorokhod-type problem.

The technical contribution is to show that the problem of solving the HJB equa-
tion, which is a second order, non-linear PDE subject to smooth fit at an unknown free
boundary, can be reduced to this much simpler problem involving an explicit first order
ODE. This technical contribution is at the heart of our analytical and numerical results,
and allows us to prove monotonicity of the critical exercise threshold and the certainty
equivalent value in the model parameters.

The remainder of this chapter is constructed as follows. In Section 5.1, we give a
precise description of the model and then a statement of the main results. Section 5.2
considers the degenerate cases, in which we prove the properties of the value functions
and the verification theorems. In Section 5.3 and Section 5.4, we consider different
characterisations of the first order ODE and prove the existence and finiteness of the
critical ratio. Further, we prove the monotonicity of the critical ratio and the indifference
price in model parameters. Section 5.5 and Section 5.6 prove the verification arguments in
the two non-degenerate cases which has a finite/infinite critical exercise ratio. We further
consider the martingale properties of the value function in Section 5.7 and extend the
proofs to the case R > 1 in Section 5.8. Finally, the limiting case when the assets are
completely correlated is considered in Section 5.9.

5.1 The model and main results

5.1.1 Problem Formulation

Let (⌦,F ,P,F = (F
t

)

t�0

) be a filtered probability space, such that the filtration satisfies
the usual conditions and is generated by a two-dimensional standard Brownian motion
�

B1

t

, B?
t

�

t�0

. Set B2

t

= ⇢B1

t

+ ⇢?B?
t

, where (⇢?)2 = 1� ⇢2.
The financial market is modelled with three stochastic processes on this space, a

bond paying a constant rate of interest r, a financial (or hedging) asset with price process
P = (P

t

)

t�0

and a non-traded (or endowed) asset with price process Y = (Y
t

)

t�0

. Assume
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the price processes of the risky assets satisfy

P
t

= p
0

exp

⇢✓

µ� �2

2

◆

t+ �B1

t

�

,

where µ and � > 0 are the constant mean return and volatility of the financial asset, and
p
0

is the initial price, and

Y
t

= y
0

exp

⇢✓

↵� ⌘2

2

◆

t+ ⌘B2

t

�

,

where ↵ and ⌘ > 0 are the constant mean return and volatility of the non-traded asset,
and y

0

is the initial price. Let � = (µ� r)/� and let ⇣ = (↵� r)/⌘ be the Sharpe ratios
of the hedging and endowed assets respectively.

Let C = (C
t

)

t�0

denote the consumption rate of the individual, let ⇥ = (⇥

t

)

t�0

denote the number of units of the endowed asset held by the investor and let ⇧ = (⇧

t

)

t�0

denote the cash amount invested in the hedging asset P . The process ⇥ is required to be
progressively measureable, right-continuous with left limits and non-increasing to reflect
the fact that the non-traded asset is only allowed for sale. We assume the initial number
of shares held by the investor is ✓

0

. Since we allow for an initial transaction at time 0
we may have ⇥

0

< ✓
0

. We write ⇥
0� = ✓

0

. This is consistent with our convention that
⇥ is right-continuous.

We denote by X = (X
t

)

t�0

the wealth process of the individual, and suppose that
the initial wealth is x

0

. Provided the changes to wealth occur from either consumption,
investment or from the sale of the endowed asset, X evolves according to

dX
t

= ⇧

t

dP
t

P
t

+(X
t

�⇧
t

) rdt�C
t

dt�Y
t

d⇥
t

= �⇧
t

dB1

t

+{(µ� r)⇧
t

+ rX
t

� C
t

} dt�Y
t

d⇥
t

,

subject to X
0� = x

0

, and X
0

= x
0

+y
0

(✓
0

�⇥
0

). We say a consumption/investment/sale
strategy triple is admissible if the components satisfy the requirements listed above and
if the resulting cash wealth process X is non-negative for all time. Let A (x, y, ✓) denote
the set of admissible strategies for initial setup (X

0� = x, Y
0

= y,⇥
0� = ✓).

The objective of the agent is to maximise over admissible strategies the discounted
expected utility of consumption over the infinite horizon, where the utility function of the
agent is assumed to have constant relative risk aversion, with parameter R 2 (0,1) \ 1
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and discount factor �. In particular, the goal is to find V = V(x
0

, y
0

, ✓
0

) where

V(x, y, ✓) = sup

(C,⇧,⇥)2A(x,y,✓)

E
"ˆ 1

0

e��t
C1�R

t

1�R
dt

#

. (5.1)

Remark 5.1.1. We can consider the case of n Brownian motions, and (n � 1) financial
assets and a single endowed asset, but the situation reduces to the case considered here.
In particular, the (n� 1) financial assets reduce to a single mutual fund as introduced in
Section 1.2.

Remark 5.1.2. The techniques extend to the case R = 1 and logarithmic utility, but we
will not consider that case here. However, many of the results can be obtained simply
by setting R = 1 in the various formulae.

Since the set-up has a Markovian structure, we expect the optimal consumption,
optimal investment and optimal sale strategy to be of feedback form and to be functions
of the current wealth and endowment of the agent and of the price of the risky asset.

Let V (x, y, ✓, t) be the forward starting value function for the problem so that

V (x, y, ✓, t) = sup

(C,⇧,⇥)2A(x,y,✓,t)

E
ˆ 1

t

e��s
C1�R

s

1�R
ds

�

�

�

�

X
t� = x, Y

t

= y,⇥
t� = ✓

�

. (5.2)

Here the space of admissible strategies A(x, y, ✓, t) is such that C = (C
s

)

s�t

is a non-
negative, progressively measureable process, ⇧ = (⇧

s

)

s�t

is progressively measurable,
⇥ = (⇥

s

)

s�t

is a right-continuous, non-increasing, progressively measureable process
and satisfies ⇥

t

� (�⇥)

t

= ✓, and X = (X
s

)

s�t

is a non-negative process given by

X
s

= x+

ˆ
s

t

(��⇧
u

+ rX
u

� C
u

) du+

ˆ
s

t

�⇧
u

dB1

u

�
ˆ
[t,s]

Y
u

d⇥
u

.

It is clear that V (x, y, ✓, t) = e��tV (x, y, ✓, 0) = e��tV(x, y, ✓). Define V
0

(x, t) =

V (x, y, 0, t) (note V
0

will not depend on y, since the agent has no units of Y ) and
V
0

(x) = V(x, y, 0), and define the certainty equivalent price p = p(x, y, ✓, t) as the solution
to

V
0

(x+ p, t) = V (x, y, ✓, t).

Note that p = p(x, y, ✓) does not depend on t since p solves V
0

(x+ p) = V(x, y, ✓).
The parameters of the problem are r, �, µ, �, ↵, ⌘, ⇢ and R which we assume to

all be constants. We will assume that ⇢ 2 (�1, 1) (the limiting cases ⇢ = ±1 are analysed
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in Section 5.9 by similar techniques). Define auxiliary parameters (b
i

)

1i4

,

b
1

=

2

⌘2(1� ⇢2)



� � r(1�R)� �2(1�R)

2R

�

, b
2

=

�2 � 2R⌘⇢�+ ⌘2R2

⌘2R2

(1� ⇢2)
, b

3

=

2(⇣ � �⇢)

⌘(1� ⇢2)
,

and b
4

=

�

1

2

⌘2(1� ⇢2)
��1. Note that

b
2

= 1 +

1

1� ⇢2

✓

�

⌘R
� ⇢

◆

2

� 1.

It will turn out that the optimal selling and investment problem depends on the original
parameters only through these auxiliary parameters and the risk aversion R.

We will see in later sections that b
1

plays the role of a ‘normalised discount factor’.
The parameter b

3

is the ‘effective Sharpe ratio, per unit of idiosyncratic volatility’ of the
endowed asset. The parameter b

2

is the hardest to interpret: essentially it is a nonlinearity
factor which arises from the multi-dimensional structure of the problem. The case b

2

= 1

is rather special and will be excluded to a certain extent from our analysis. (One scenario
in which we naturally find b

2

= 1 is if � = 0 = ⇢. In this case there is neither a hedging
motive, nor an investment motive for holding the financial asset. Essentially then, the
investor can ignore the presence of the financial asset, reducing the dimensionality of the
problem. This is the problem considered in Chapter 3.

Our goal is to solve for V , and hence for the certainty equivalent price p. As
might be expected, V solves a variational principle, and can be characterised by a second-
order, nonlinear partial differential equation in the four variables (x, y, ✓, t) subject to
value matching and smooth fit (of the first and second derivatives) at an unknown free
boundary. In fact various simplifications can be expected from the inherent scalings
of the problem. Nonetheless, the remarkable fact on which this paper is based is that
expressions for V and a characterisation for the optimal solution all follow from the study
of a boundary crossing problem for a single first order ordinary differential equation.

If R < 1 and b
1

 0 then the value function V
0

(x, t) is infinite for the Merton
problem (in the absence of the endowed asset), and a fortiori the value function with a
positive endowment of the non-traded asset is also infinite. In this case it is not possible
to define a certainty equivalent price. If R > 1 and b

1

 0, then for every admissible
strategy with zero initial endowment of the risky asset the expected discounted utility
of consumption equals �1, and again it is not possible to define a certainty equivalent
price for units of the endowed asset. To exclude these cases we make the following
non-degeneracy assumption:

98



0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

q

m
, 

n
, 

l

 

 

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

q
m

, 
n

, 
l

 

 

 m(q)
 n(q)
 l(q)

 m(q)
 n(q)
 l(q)

q*

Figure 5.1: Stylised plot of m(q), n(q), `(q) and R 2 (0, 1). Parameters are such that
q⇤ 2 (0, 1) (left figure) and q⇤ = 1 (right figure).

Standing Assumption 1. Throughout the chapter we assume that b
1

> 0.

5.1.2 Main results

The key to our analysis are solutions to the first order differential equation (5.3) the
properties of which are stated in Proposition 5.1.3, the proof of which is given in Sec-
tion 5.4.

Proposition 5.1.3. For q 2 [0, 1] define m(q) =

(1�R)R

b1
q2 � b3(1�R)

b1
q + 1 and `(q) =

m(q) + 1�R

b1
q(1� q) + (b2�1)R(1�R)

b1

q

[(1�R)q+R]

. Let n = n(q) solve

n
0
(q)

n(q)
=

1�R

R(1� q)
� (1�R)

2

b
1

R

q

`(q)� n(q)
+

(1�R)q

2b
1

R(1� q)[(1�R)q +R]

�(q, n(q))

`(q)� n(q)
(5.3)

subject to n(0) = 1 and n

0
(0)

1�R

< `

0
(0)

1�R

= (b
2

� b
3

)/b
1

, where

�(q, n) = '(q, n)� sgn(1�R)

p

'(q, n)2 + 4R2

(1�R)

2

(b
2

� 1)(1� q)2,

and '(q, n) = b
1

n+ (1�R)(b
3

� 2R)q + 2R(1�R)� b
1

� b
2

R(1�R).
Suppose that if n hits zero, then 0 is absorbing for n.
For R < 1, let q⇤ = inf{q > 0 : n(q)  m(q)}, see Figure 5.1. For R > 1, let
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Figure 5.2: Stylised plot of m(q), n(q), `(q) and R 2 (1,1). Parameters are such that
q⇤ 2 (0, 1) (left figure) and q⇤ = 1 (right figure).

q⇤ = inf{q > 0 : n(q) � m(q)}, see Figure 5.2. For j 2 {`,m, n} let q
j

= inf{q > 0 :

j(q) = 0} ^ 1.
Set ¯b

3

= 2R if R > 1 and ¯b
3

= min{2R,R +

b1
1�R

} if R < 1. For fixed b
1

, b
2

and
R, there exists some critical value b

3,crit

(b
1

, b
2

, R), with R < b
3,crit

 ¯b
3

, and such that

1. if b
3

 0, then q⇤ = 0;

2. if 0 < b
3

< b
3,crit

then 0 < q⇤ < 1;

3. if R > 1 and b
3

� b
3,crit

(b
1

, b
2

, R) then q⇤ = 1; if R < 1 and b
3,crit

(b
1

, b
2

, R)  b
3

<
b1

1�R

+ b
2

R, then q⇤ = 1;

4. if R < 1, b
2

= 1 and b
3

=

b1
1�R

+ R � 2R, then q
m

= q
n

= q
`

= q⇤ = 1; if R < 1,
b
2

= 1 and b
3

=

b1
1�R

+R < 2R, then q
m

< q
n

= q
`

= q⇤ = 1; if R < 1, b
2

> 1 and
b
3

=

b1
1�R

+ b
2

R, then q
m

< q
n

= q
`

= q⇤ = 1; if R < 1 and b
3

> b1
1�R

+ b
2

R, then
q
m

< q
n

= q
`

< q⇤ = 1.

Remark 5.1.4. The condition b
3

< 2R is equivalent to m0
(1) > 0.

If R < 1, then the condition b
3

 b1
1�R

+ b
2

R is equivalent to `(1) � 0. (Note
that `(1) � 0 is a necessary condition for q

n

= 1.) Then, if R < 1, 0 < b
3

< 2R and
b
3

< b1
1�R

+ b
2

R, we have q
`

= q
n

= 1.
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We will show in Lemma 5.3.3 that n has a turning point at q⇤ 2 (0, 1) if and only
if n(q⇤) = m(q⇤). In particular, if m is monotone, then q⇤ = 1.

Remark 5.1.5. Suppose b
2

= 1. Then `(1) = m(1). Moreover '(q,m) = R(1�R)(1�q)2.
If R < 1, then if n � m we have '(q, n) � '(q,m) > 0 and �(q, n) = 0. Conversely,
if R > 1 then if n  m, '(q, n)  '(q,m) < 0 and �(q, n) = 0. Hence the expression
in (5.3) for n0 simplifies greatly if b

2

= 1, and is seen to reduce to the equation for the
variable of the same name in (3.6).

Remark 5.1.6. We show below in Lemma 5.3.4 that n(q), q⇤ and n(q⇤) are each monotonic
in the parameter b

1

, b
2

and b
3

for q  q⇤. In particular, q⇤ is an increasing function of
b
3

. It follows that there exists a critical parameter b
3,crit

and q⇤ < 1 if and only if
b
3

< b
3,crit

. Although we can conclude that R < b
3,crit

 min{2R, b1
1�R

+ R}, we do not
have an explicit expression for b

3,crit

.

From the scalings of the problem, it is clear that a key variable is the ratio of
wealth in the endowed asset to liquid wealth. (Here we define liquid wealth to be the
sum of cash wealth and wealth invested in the hedging asset.) We denote this ratio by Z

so that Z
t

= Y
t

⇥

t

/X
t

2 [0,1]. Under optimal behaviour, consumption and investment
rates are functions of liquid wealth and Z.

One of the key contributions of this article is to identify the different types of so-
lutions to the optimisation problem with different classes of solutions to the first crossing
problem studied in Proposition 5.1.3.

Theorem 5.1.7. 1. Suppose b
3

 0. Then it is always optimal to sell the entire
holding of the endowed asset immediately, so that ⇥

t

= 0 for t � 0. The value
function for the problem is V (x, y, ✓, t) =

⇣

b1
b4R

⌘�R

e��t(x+y✓)1�R/1�R; and the
certainty equivalent value of the holdings of the asset is p(x

0

, y
0

, ✓
0

, 0) = y
0

✓
0

.

2. Suppose 0 < b
3

< b
3,crit

(b
1

, b
2

, R). Then there exists a positive and finite critical
ratio z⇤ and the optimal behaviour is to sell sufficient units of the risky asset so as
to keep the ratio of wealth in the risky asset to cash wealth below the critical ratio.
If ✓ > 0 then p(x, y, ✓, t) > y✓.

3. Suppose b
3

� b
3,crit

(b
1

, b
2

, R) and b
3

< b1
1�R

+ b
2

R if R < 1. Then the critical ratio
z⇤ is infinite and the optimal behaviour is first to consume liquid wealth and invest
in the risky asset, and then when this liquid wealth is exhausted, to finance further
consumption and investment in the risky asset from sales of the endowed asset.

4. Suppose b
3

� b1
1�R

+ b
2

R if R < 1. Then the problem is degenerate, and provided
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Figure 5.3: Plot of the boundaries of different scenarios as a function of b
2

and b
3

for
R < 1. In the left graph, parameters are b

1

= 1 and R = 0.5. In the right graph,
parameters are b

1

= 0.2 and R = 0.5 so that b
1

< R(1 � R) and there is a crossing
between the solid and dotted lines.

✓
0

is positive, the value function V = V (x, y, ✓, t) is infinite. There is no unique
optimal strategy, and the certainty equivalent value p is not defined.

Remark 5.1.8. This theorem emphasises the role played by the parameter b
3

, the ‘effective
Sharpe ratio’ to distinguish between the different scenarios. When b

3

is negative, the
endowed asset is a bad investment and it is optimal to sell it immediately. For small
and positive b

3

, there exists a finite critical ratio and sales of the nontraded asset occur
to keep the fraction of wealth held in the nontraded asset below a critical value. As b

3

becomes larger, the endowed asset is more valuable and the agent waits longer for a better
return from the endowed asset. For sufficiently large b

3

she does not make any sales of
the endowed asset until cash wealth is exhausted. Finally, if R < 1 and b

3

becomes too
large, the value function is infinite, and the problem with the endowment is ill-posed.

The most interesting cases of Theorem 5.1.7 are the middle two non-degenerate
cases, and these two cases we study in more detail in the next two theorems. Recall
that we suppose we have constructed the solution n to the differential equation in (5.3).
Define N(q) = n(q)�R

(1� q)R�1, and let W be inverse to N . Let h⇤ = N(q⇤).
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R > 1. Parameters are b
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= 1 and R = 2. Note that when R > 1 there is no region
where the problem is ill-defined.

For a twice differentiable function f define  
f

(z) by

 

f

(z) =
(1�R)f(z)� (1 +

⌘⇢R

�

)zf 0
(z)� ⌘⇢

�

z2f 00
(z)

R(1�R)f(z)� 2Rzf 0
(z)� z2f 00

(z)
. (5.4)

Theorem 5.1.9. Suppose R < 1, and suppose 0 < b
3

< b
3,crit

(b
1

, b
2

, R), so that 0 <

q⇤ < 1.
Then N : [0, q⇤] 7! [1, h⇤] is increasing, and W : [1, h⇤] 7! [0, q⇤] is well-defined

and increasing. Moreover n(q⇤)�R

= h⇤(1� q⇤)1�R.
Let z⇤ be given by

z⇤ = (1� q⇤)�1 � 1 =

q⇤

1� q⇤
2 (0,1). (5.5)

and let u⇤ = ez
⇤ . On [1, h⇤] let h be the solution of

u⇤ � u =

ˆ
h

⇤

h

1

(1�R)fW (f)
df. (5.6)

It follows that h(�1) := lim

u#�1 h(u) = 1.
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Let g be given by

g (z) =

8

>

<

>

:

⇣

b1
b4R

⌘�R

n(q⇤)�R

(1 + z)1�R

⇣

b1
b4R

⌘�R

h (ln z)

z 2 (z⇤,1);

z 2 [0, z⇤].
(5.7)

Then, the value function V is given by

V (x, y, ✓, t) = e��t
x1�R

1�R
g

✓

y✓

x

◆

. x > 0, y > 0, ✓ � 0 (5.8)

which by continuity extends to x = 0 via

V (0, y, ✓, t) = e��t
y1�R✓1�R

1�R

✓

b
1

b
4

R

◆�R

n(q⇤)�R.

Let (J, L) = (J
t

, L
t

)

t�0

be the unique pair such that

1. J is positive,

2. L is increasing, continuous, L
0

= 0, and dL
t

is carried by the set {t : J
t

= 0},

3. J solves

J
t

= (z⇤ � z
0

)

+ �
ˆ

t

0

˜

⇤(J
s

)ds�
ˆ

t

0

˜

⌃(J
s

)dB1

s

ˆ
t

0

˜

�(J
s

)dB2

s

+ L
t

,

where ˜

⇤(j) = ⇤(z⇤ � j), ˜

⌃(j) = ⌃(z⇤ � j) and ˜

�(j) = �(z⇤ � j), where in turn

⇤(z) = z

✓

g(z)� 1

1�R
zg0(z)

◆�1/R

� �(�+ ⌘⇢)z 
g

(z) + �2z 
g

(z)2 + ⇣⌘z,

�(z) = ⌘z and ⌃(z) = ��z 
g

(z).

For such a pair 0  J
t

 z⇤.
Let z

0

= y
0

✓
0

/x
0

. If z
0

 z⇤ then set ⇥⇤
0

= ✓
0

and X⇤
0

= x
0

; else z
0

> z⇤ and for
the optimal strategy there is a sale of a positive quantity ✓

0

�⇥
0

of units at time 0 such
that

⇥

⇤
0

= ✓
0

z⇤

(1 + z⇤)

(1 + z
0

)

z
0

 ✓
0

and X⇤
0

= x
0

+ y
0

(✓
0

�⇥
0

).
Then, the optimal holdings ⇥⇤

t

of the endowed asset, and the resulting wealth
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process are given by

⇥

⇤
t

= exp

⇢

� 1

z⇤(1 + z⇤)
L
t

�

;

X⇤
t

=

Y
t

⇥

⇤
t

(z⇤ � J
t

)

;

and the optimal consumption process C⇤
t

= C(X⇤
t

, Y
t

,⇥⇤
t

), the optimal portfolio process
⇧

⇤
t

= ⇧(X⇤
t

, Y
t

,⇥⇤
t

), and the certainty equivalent value p are given in feedback form via

C(x, y, ✓) = x



g

✓

y✓

x

◆

� 1

1�R

y✓

x
g0
✓

y✓

x

◆�� 1
R

(5.9)

⇧(x, y, ✓) =

�

�
x 

g

✓

y✓

x

◆

(5.10)

p(x, y, ✓) = x

2

4

g
⇣

y✓

x

⌘

g(0)

3

5

1
1�R

� x. (5.11)

Now suppose R > 1 and 0 < b
3

< b
3,crit

(b
1

, b
2

, R) so that 0 < q⇤ < 1. Let all
quantities be defined as before. Then N : [0, x⇤] 7! [h⇤, 1] is decreasing and W : (h⇤, 1) 7!
[0, q⇤] is well defined and decreasing. On (h⇤, 1) h is defined via

u⇤ � u =

ˆ
h

h

⇤

1

(R� 1)fW (f)
df.

The value function V , the optimal holdings ⇥⇤, the optimal consumption process C⇤, the
optimal portfolio process ⇧⇤, the resulting wealth process X⇤ and the certainty equivalent
value p are the same as before.

Remark 5.1.10. Given n and the first crossing point q⇤ the construction of N , W , h, g
and hence V and p is immediate and straightforward.

Further, given realisations of the price processes P and Y (or equivalently paths
of the Brownian motions B1 and B2 (or B1 and B?) then J and L arise from a pathwise
solution of a Skorokhod problem [48, Lemma VI.2.1]. The optimal endowed asset holdings
⇥

⇤ and then also the optimal cash wealth process X⇤ are given explicitly in terms of the
the solution of the Skorokhod problem; the optimal consumption and investment are
then given in feedback form as functions of these primary quantities.

Theorem 5.1.11. Suppose R < 1 and suppose b
3,crit

(b
1

, b
2

, R)  b
3

< b1
1�R

+ b
2

R.
Let n solve (5.3) on [0, 1]. Then for the given parameter combinations we have
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q⇤ = 1. Then N is increasing and W is well defined. Define � : (1,1) 7! R by

�(v) =
ln v

1�R
+

R

1�R
lnn(1)� 1

1�R

ˆ 1

v

(1�W (s))

sW (s)
ds. (5.12)

Let h be inverse to � and let g(z) = (b
4

R/b
1

)

Rh(ln z).
Then, the value function V is given by

V (x, y, ✓, t) = e��t
x1�R

1�R
g

✓

y✓

x

◆

, x > 0, y > 0, ✓ � 0 (5.13)

and V (0, y, ✓, t) = e��t y
1�R

✓

1�R

1�R

n(1)�R.
Suppose ✓

0

> 0. Let K
0

= x
0

/(y
0

✓
0

) 2 [0,1). Let (K,L) = (K
t

, L
t

)

t�0

be the
unique pair such that

1. K is positive,

2. L is increasing, continuous, L
0

= 0, and dL
t

is carried by the set {t : K
t

= 0},

3. K solves

K
t

= K
0

+

ˆ
t

0

ˆ

⇤(K
s

)ds+

ˆ
t

0

ˆ

⌃(K
s

)dB1

s

+

ˆ
t

0

ˆ

�(K
s

)dB2

s

+ L
t

,

where

ˆ

⇤(k) = (⌘ � ⇣)⌘k + �(�� ⌘⇢)k 
g

(1/k)� k



g(1/k)� g0(1/k)

k(1�R)

��1/R

,

ˆ

⌃(k) = �k 
g

(1/k) and ˆ

�(k) = �⌘k.

Then, the optimal holdings ⇥⇤
t

of the endowed asset, and the optimal wealth process
are given by

⇥

⇤
t

= ✓
0

exp {�L
t

} , (5.14)

X⇤
t

= Y
t

⇥

⇤
t

K
t

(5.15)

The optimal consumption process C⇤
t

= C(X⇤
t

, Y
t

,⇥⇤
t

), the optimal portfolio process ⇧⇤
t

=

⇧(X⇤
t

, Y
t

,⇥⇤
t

), and the certainty equivalent value p = p(X⇤
t

, Y
t

,⇥⇤
t

) are given in feedback
form by the expressions in (5.9), (5.10) and (5.11).
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Now suppose R > 1 and b
3

� b
3,crit

. Then N is decreasing. Define

�(v) = � ln v

R� 1

� R

R� 1

lnn(1)� 1

R� 1

ˆ
v

0

(1�W (s))

sW (s)
ds. (5.16)

Let h be inverse to � and define g and the value function as in the case R < 1. Then the
optimal holdings, optimal consumption, optimal investment in the financial asset, optimal
wealth process and the certainty equivalent value of the holdings are all as given in the
case R < 1.

Remark 5.1.12. Here is one, perhaps surprising, consequence of Theorem 5.1.11 which
holds for b

2

> 1. Define the stopping time ⌧ = inf{t;X⇤
t

= 0}. Then, for the parameter
combinations studied in Theorem 5.1.11 and under optimal behaviour, the investments in
the risky asset are such that ⇧⇤

⌧

= ⇧

⌧

(0, Y
⌧

,⇥⇤
⌧

) 6= 0. This implies that even when liquid
wealth is zero, it is not optimal to invest zero amount in the financial asset. Adverse
movements in the price of the financial asset have a negative impact on liquid wealth, and
must be financed through sales of the endowed asset. Conversely, beneficial movements
in the price of the financial asset will generate positive liquid wealth for the agent. In
particular, X⇤

= 0 is not an absorbing state.
In contrast, for b

2

= 1 and for the parameter combinations where Theorem 5.1.11
applies, no sales of the endowed asset take place until liquid wealth has been exhausted,
but once liquid wealth is zero, there are no investments in the financial asset, cash wealth
is maintained at zero, and consumption is financed through sales of the endowed asset,
continuously over time.

5.2 Proofs and verification arguments: the degenerate cases

For H = H(x, y, ✓) : [0,1)⇥ (0,1)⇥ [0,1) 7! R with H 2 C2,2,1 and such that H
x

> 0

define operators

LH = sup

(c>0,⇡)

⇢

c1�R

1�R
� cH

x

+ ↵yH
y

+ ��⇡H
x

+ rxH
x

+

1

2

�2⇡2H
xx

+

1

2

⌘2y2H
yy

+ �⌘⇢y⇡H
xy

�

= H1�1/R

x

R

1�R
+ rxH

x

+ ↵yH
y

+

1

2

⌘2y2H
yy

� (⌘⇢yH
xy

+ �H
x

)

2

2H
xx

,

MH = H
✓

� yH
x

.

LH is defined on (0,1)⇥(0,1)⇥[0,1). However we can extend the domain of definition
of L to [0,1)⇥(0,1)⇥[0,1) by extending the definition of H to the region �y✓ < x  0
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in such a way that the derivatives of H are continuous at x = 0. MH is defined on
(0,1) ⇥ (0,1) ⇥ (0,1). Note that we will not need MH at ✓ = 0, but we can extend
the domain of definition of M to x = 0 using the same extension of H to x  0.

5.2.1 The Verification Lemma in the case of a depreciating asset.

Suppose b
3

 0. Our goal is to show that the conclusions of Theorem 5.1.7(1) hold.
From Proposition 5.1.3 we know q⇤ = 0. Define the candidate value function via

G(x, y, ✓, t) = e��tG(x, y, ✓) where

G(x, y, ✓) =
✓

b
1

b
4

R

◆�R

(x+ y✓)1�R

1�R
. (5.17)

The candidate optimal strategy is to sell all units of the risky asset immediately.
Prior to the proof of the theorem, we need the following lemma.

Lemma 5.2.1. Suppose b
3

 0. Consider the candidate value function constructed in
(5.17). Then MG = 0, and LG � �G  0 with equality at ✓ = 0.

Proof. Given the form of the candidate value function in (5.17), we have

MG =

✓

b
1

b
4

R

◆�R

y(x+ y✓)�R �
✓

b
1

b
4

R

◆�R

y(x+ y✓)�R

= 0.

On the other hand, writing z = y✓/x,

LG � �G = x1�RR

✓

b
1

b
4

R

◆

1�R

(1 + z)1�R

"

b
3

b
1

z

1 + z
� R

b
1

✓

z

1 + z

◆

2

#

 0,

with equality at z = 0, which completes the proof.

Theorem 5.2.2. Suppose b
3

 0. Then the value function V is given by

V (x, y, ✓, t) = e��t
✓

b
1

b
4

R

◆�R

(x+ y✓)1�R

1�R
= G(x, y, ✓, t). (5.18)

The optimal holdings ⇥⇤
t

of the endowed asst, the optimal consumption process C⇤
t

and
the resulting wealth process are given by

(4⇥⇤
)

t=0

= �✓
0

, C⇤
t

=

b
1

b
4

R
X⇤

t

, ⇧

⇤
t

=

�

�R
X⇤

t

,
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X⇤
t

= (x
0

+ y
0

✓
0

) exp

⇢✓

�2

R
+ r � b

1

b
4

R
� �2

2R2

◆

t+
�

R
B1

t

�

. (5.19)

The certainty equivalence price is given by p(x, y, ✓, t) = y✓.

Proof. We prove the result at t = 0, ie we show that V(x, y, ✓) = V (x, y, ✓, 0) =

G(x, y, ✓, 0) = G(x, y, ✓); the case of general t follows from the time-homogeneity of
the problem.

Note that under proposed strategies in (5.19), the optimal strategy is to sell
the entire endowed asset holding immediately, which gives X⇤

0+

= x
0

+ y
0

✓
0

and to
finance investment and consumption from liquid wealth thereafter. Hence, the wealth
process (X⇤

t

)

t�0

evolves as dX⇤
t

= (��⇧⇤
t

+ rX⇤
t

� C⇤
t

)dt + �⇧⇤
t

dB1

t

. This gives X⇤
t

=

(x
0

+ y✓
0

) exp

n⇣

�

2

R

+ r � b1
b4R

� �

2

2R

2

⌘

t+ �

R

B1

t

o

.
The value function under strategy proposed in (5.19) is

E
"ˆ 1

0

e��t
C⇤
t

1�R

1�R
dt

#

=

✓

b
1

b
4

R

◆

1�R

(x
0

+ y
0

✓
0

)

1�R

1�R

ˆ 1

0

exp

⇢

�2(1�R)

2R
+ r(1�R)� b

1

(1�R)

b
4

R
� �

�

t

�

dt

=

✓

b
1

b
4

R

◆

1�R

(x
0

+ y
0

✓
0

)

1�R

1�R

ˆ 1

0

exp

⇢✓

� b
1

b
4

R

◆

t

�

dt

=

✓

b
1

b
4

R

◆�R

(x
0

+ y
0

✓
0

)

1�R

1�R
= G(x

0

+ y
0

✓
0

, y
0

, 0).

Hence V (x, y, ✓, 0) � G(x, y, ✓, 0).
Now, consider general admissible strategies. Suppose first that R < 1. Define the

process M = (M
t

)

t�0

by

M
t

=

ˆ
t

0

e��s
C1�R

s

1�R
ds+ e��tG (X

t

, Y
t

,⇥
t

) .
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Applying the generalised Itô’s formula [23, Section 4.7] to M
t

leads to

M
t

�M
0

=

ˆ
t

0

e��s
hC1�R

s

1�R
� C

s

G
x

+ ↵Y
s

G
y

+ ��⇧
s

G
x

+ rX
s

G
x

+

1

2

�2⇧2

s

G
xx

+

1

2

⌘2Y 2

s

G
yy

+ �⌘⇢Y
s

⇧

s

G
xy

� �G
i

ds

+

ˆ
t

0

e��s(G
✓

� Y
s

G
x

)d⇥
s

+

X

0<st

e��s [G(X
s

, Y
s

,⇥
s

)� G(X
s�, Ys�,⇥s�)� G

x

(4X)

s

� G
✓

(4⇥)
s

]

+

ˆ
t

0

e��s�⇧
s

G
x

dB1

s

+

ˆ
t

0

e��s⌘Y
s

G
y

dB2

s

= N1

t

+N2

t

+N3

t

+N4

t

+N5

t

. (5.20)

Note that for a general admissible strategy ⇥ and X do not need to be continuous, so
that here the arguments of G· are (X

s�, Ys,⇥s�).
Lemma 5.2.1 implies that LG � �G  0 and MG = 0, which leads to N1

t

 0

and N2

t

= 0. Using the fact that (�X)

s

= �Y
s

(�⇥)

s

and writing ✓ = ⇥

s�, x = X
s�,

� = �(�⇥)

s

each non-zero jump in N3 is of the form

(�N3

)

s

= e��s {G(x+ y�, y, ✓ � �)� G(x, y, ✓) + � [G
✓

(x, y, ✓)� yG
x

(x, y, ✓)]} .

Given the form of the candidate value function in (5.17), it is easy to see that G(x +

y�, y, ✓ � �) is constant in �, whence yG
x

= G
✓

and (�N3

) = 0. Then, since R < 1, we
have 0  M

t

 M
0

+N4

t

+N5

t

, and (N4

+N5

)

t�0

, as the sum of two local martingales, is
a local martingale and is bounded from below and hence a supermartingale. By taking
expectations we find E(M

t

)  M
0

= G(x
0

, y
0

, ✓
0

, 0), which gives

G(x
0

, y
0

, ✓
0

, 0) � E
ˆ

t

0

e��s
C1�R

s

1�R
ds+ E

h

e��sG(X
t

, Y
t

,⇥
t

)

i

� E
ˆ

t

0

e��s
C1�R

s

1�R
ds,

where the last inequality follows since G(X
t

, Y
t

,⇥
t

) � 0 for R 2 (0, 1). Letting t ! 1,
we have

G(x
0

, y
0

, ✓
0

, 0) � E
 ˆ 1

0

e��t
C1�R

t

1�R
dt

!

,

and taking a supremum over admissible strategies leads to G(x
0

, y
0

, ✓
0

, 0) � V (x
0

, y
0

, ✓
0

, 0).
The case R > 1 will be considered in Section 5.8.
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5.2.2 Proof of the ill-posed case of Theorem 5.1.7 (scenario 4)

In the case R < 1 and b
3

� b1
1�R

+ b
2

R it is sufficient to give an example of an admissible
strategy for which the expected utility of consumption is infinite.

The condition b
3

� b1
1�R

+b
2

R can be rewritten in terms of the original parameters
as

⇣⌘(1�R)� 1

2

⌘2R(1�R) + r(1�R)� � � 0. (5.21)

Consider the following consumption, investment and sale strategies

˜C
t

= �⌘ ˜X
t

, ˜

⇧

t

=

⌘

�
˜X
t

,
d˜⇥

t

˜

⇥

t

= �⇣⌘
˜X
t

Y
t

˜

⇥

t

dt. (5.22)

Note first that ˜

⇥ is a non-increasing process. The corresponding wealth process
˜X satisfies d ˜X

t

= (⇣⌘ + r) ˜X
t

dt+ ⌘ ˜X
t

dB1

t

, which gives

˜X
t

= x
0

exp

⇢✓

⇣⌘ + r � 1

2

⌘2
◆

t+ ⌘B1

t

�

.

Hence ˜X
t

� 0 and the strategies defined in (5.22) are admissible.
The expected utility from consumption ˜G corresponding to the consumption, sale

and investment strategies (

˜C, ˜⇥, ˜⇧) is given by

˜G = E(c̃,

˜

✓,⇡̃)

"ˆ 1

0

e��t
˜C1�R

t

1�R
dt

#

=

(�⌘x
0

)

1�R

1�R

ˆ 1

0

exp

⇢

⇣⌘(1�R)� 1

2

⌘2R(1�R) + r(1�R)� �

�

t

�

dt

= 1,

where the last equality follows from (5.21).

5.3 Some preliminaries on n and q⇤.

Recall the definitions of ' and �:

�(q, n) = '(q, n)� sgn(1�R)

p

'(q, n)2 + E(q)2,

'(q, n) = b
1

(n� 1) + (1�R)(b
3

� 2R)q + (2� b
2

)R(1�R);
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where E(q)2 = 4R2

(1�R)

2

(b
2

� 1)(1� q)2 � 0.
Results not proved in the main body of this section are proved in Section 5.4.

Lemma 5.3.1. For q 2 [0, 1], (1�R)q +R > 0 and

'(q,m(q)) = R(1�R)

�

(1� q)2 � (b
2

� 1)

 

'(q, `(q)) = R(1� q)

⇢

(1�R)q +R� (b
2

� 1)R2

(1�R)q +R

�

�(q,m(q)) = �2R(1�R)(b
2

� 1)

�(q, `(q)) =

�2R2

(1�R)(1� q)(b
2

� 1)

(1�R)q +R

Suppose b
2

> 1. Then, for R < 1, �(q, n) < 0 and for fixed q, �(q, n) is an increasing,
concave function of n. For R > 1, �(q, n) > 0 and for fixed q, �(q, n) is an increasing,
convex function of n.

For b
2

= 1, �(q, n) = 0.

Recall that n solves (5.3). This expression can be written in several ways.

Lemma 5.3.2. n0
(q) = F (q, n(q)) where

F (q, n)

= n

✓

1�R

R(1� q)
� (1�R)

2

b
1

R

q

`(q)� n
+

(1�R)q

2b
1

R(1� q)[(1�R)q +R]

�(q, n)

`(q)� n

◆

(5.23)

=

(1�R)n

R(1� q)
� 2(1�R)

2qn/R

2(1�R)(1� q)[(1�R)q +R]� '(q, n)� sgn(1�R)

p

'(q, n)2 + E(q)2

(5.24)

= �(1�R)n [2b
1

[(1�R)q +R](n�m(q))� q(�(q, n)� �(q,m(q)))]

2R(1� q)((1�R)q +R){S(q)� b
1

(n�m(q))} (5.25)

where S(q) = b
1

(`(q)�m(q)) = (1�R)q(1� q) + (b
2

� 1)R(1�R)q/((1�R)q +R).

Lemma 5.3.3. 1. For R 2 (0, 1), n0
(0) is the smaller root of �(�) = 0 , where

�(�) = b
1

R�2

+R(1�R)(b
3

� b
2

� b
1

R
)�� b

3

(1�R)

2,

For R 2 (1,1), n0
(0) is the larger root.

2. For q 2 (0, q
n

), (1�R)n(q)  (1�R)`(q).

3. For q 2 (0, q
n

), n0
(q) < 0 if and only if n(q) > m(q), n0

(q) > 0 if and only if
n(q) < m(q), and n0

(q) = 0 if and only if n(q) = m(q).
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4. If R > 1 then either q
n

= q⇤ = 1 or q
n

> q⇤. If R < 1 and `(1) � 0 then
q
n

= q
`

= 1. If R < 1 and `(1) < 0 then q
n

= q
`

< q⇤.

5. If 0  q⇤ < 1 then q⇤ > b3
2R

and (1�R)m is increasing on (q⇤, 1).

Lemma 5.3.4. (1 � R)n is monotone increasing in b
1

, monotone increasing in b
2

and
monotone decreasing in b

3

for q 2 [0, q⇤]. Moreover q⇤ is decreasing as a function of b
1

,
decreasing as a function of b

2

and increasing as a function of b
3

. Finally (1�R)n(q⇤)�R

is decreasing in b
1

, decreasing in b
2

and increasing in b
3

.

Corollary 5.3.5. The certainty equivalent value p = p(x, y, ✓) is decreasing in b
1

and b
2

and increasing in b
3

.

Lemma 5.3.6. 1. Suppose b
2

= 1. Then b
3,crit

(b
1

, 1, R) =

¯b
3

where recall ¯b
3

=

min{2R,R+

b1
1�R

} if R < 1 and ¯b
3

= 2R if R > 1.

2. Let b
2

! 1. Then lim

b2!1 b
3,crit

(b
1

, b
2

, R) = R.
Hence R < b

3,crit

 ¯b
3

.

Proof of Proposition 5.1.3. Suppose R < 1. (The proof for R > 1 is similar, except that
the final paragraph is not necessary.)

Recall the definition of � in Lemma 5.3.3. Note that �(m0
(0)) = (1�R)

2Rb
2

b
3

.
Then, if b

3

< 0 we have n0
(0) < m0

(0) and q⇤ = 0. If b
3

= 0 then n0
(0) = m0

(0) and
more care is needed. Since b

3

 0, m is increasing. Suppose n (x̂) > m (x̂) for some x̂ in
[0, 1] . Let x = sup {x < x̂ : n (x) = m (x)}. Then on (x, x̂) we have n0

(x) < 0 < m0
(x)

and m (x̂) � n (x̂) = m (x) � n (x) +
´
x̂

x

[m0
(y) � n0

(y)]dy > 0, a contradiction. Hence
q⇤ = 0.

Now suppose b
3

> 0. Then n0
(0) > m0

(0) and at least initially n > m, and q⇤ > 0.
By Lemma 5.3.4, there exists a critical value of b

3

, namely b
3,crit

, such that q⇤(b
3

) < 1 if
b
3

< b
3,crit

, and q⇤ = 1 for b
3

� b
3,crit

.
Note that if b

3

� b1
1�R

+ b
2

R then `(1)  0. The results in (4) now follow from
Lemma 5.3.3(4). Conversly, if b

3

� 2R then m is decreasing and q⇤ � q
m

.

Recall the definition N(q) = n(q)�R

(1 � q)R�1 and that W is inverse to N . We
have h⇤ = N(q⇤). Our aim now is to construct the candidate value function from the
solution for n, which we know as the solution of a first order differential equation.

Proposition 5.3.7. (1) For R < 1, N is increasing on [0, q⇤]. Moreover W is increasing
and such that 0 < W (v) < q⇤ on (1, h⇤). For R > 1, N is decreasing on [0, q⇤]. and W

is decreasing such that 0 < W (v) < q⇤ on (h⇤, 1).
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(2) Let w(s) = (1�R)sW (s). Then w solves

(w(s)w0
(s))2 +

(

b
1



s� 1

1�R
w(s)

�

R�1
R

� [b
1

+ b
2

R(1�R)]s+ (b
3

+ 2R� 2)w(s)

)

w(s)w0
(s)

+[(2R� 1)(b
3

� 1) +R2

(1� b
2

)]w(s)2 + [(1� 2R)b
1

+ b
2

R(1�R)�R(1�R)b
3

]sw(s)

+b
1

R(1�R)h2 + b
1

[(2R� 1)w(s)�R(1�R)s]



s� 1

1�R
w(s)

�

R�1
R

= 0.

(3) For R < 1 and 1 < s < h⇤, and for R > 1 and h⇤ < s < 1 we have
1�R < w0

(s) < 1�Rw(s)/((1�R)s) with w0
(h⇤) = 1�Rw(h⇤)/((1�R)h⇤).

Proof. (1) N solves

N 0
(q)

N(q)
=

2(1�R)

2q(1� q)[(1�R)q +R]� (1�R)q�
⇣

q, (1� q)1�
1
RN(q)�

1
R

⌘

2b
1

(1� q)[(1�R)q +R]

n

`(q)� (1� q)1�
1
RN(q)�

1
R

o

Suppose R < 1. We have �(q, n)  0 (see Lemma 5.3.1) and, for q  q⇤, n(q) = (1 �
q)1�1/RN(q)�1/R  `(q). Hence N is increasing. For R > 1, �(q, (1� q)1�1/RN(q)) � 0

and n(q) = (1� q)1�1/RN(q)�1/R � `(q). Hence, N is decreasing.
(2) Note that if s = N(q) then W 0

(s) = 1/N 0
(q) and so W solves

W 0
(s) =

2b
1

(1�W (s))[(1�R)W (s) +R]

n

`(W (s))� (1�W (s))1�
1
R s�

1
R

o

s
n

2(1�R)

2W (s)(1�W (s))[(1�R)W (s) +R]� (1�R)W (s)�
⇣

W (s), (1�W (s))1�
1
R s�

1
R

⌘o

The expression for w0 follows after some lengthy algebra.
(3) We have that n0

(q) = F (q, n(q)) and then from the representation (5.24) and
the definition of N it follows that

N 0
(q)

N(q)
=

2(1�R)

2q

2(1�R)

2

(1� q)
⇣

q + R

1�R

⌘

� ' (q, n(q))� sgn(1�R)

q

' (q, n(q))2 + E(q)2
,

where n(q) = (1� q)1�
1
RN(q)�1/R. Then an alternative representation for W 0 is

s(1�R)W 0
(s) =

2(1�R)(1�W (s)) ((1�R)W (s) +R)� '̂� sgn(1�R)

p

'̂2

+ E(W (s))2

2(1�R)W (s)
.

where '̂ = '
⇣

W (s), (1�W (s))1�
1
R s
⌘

.

We want to show for s 2 (1, h⇤), 1 � R < w0
(s) < 1 � Rw(s)

(1�R)s

. This is equivalent
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to
(1�R)(1�W (s))

s
< (1�R)W 0

(s) <
1�W (s)

s
. (5.26)

Consider the second of these inequalities. It can be rewritten as either 1

1�R

N

0
(q)

N(q)

> 1

1�q

or (1 � R)

n

0
(q)

n(q)

< 0, the latter of which is immediate since (1 � R)n is decreasing on
(0, q⇤). Now consider the first inequality in (5.26). If R > 1 then it is immediate since
W is decreasing. It only remains to show that n0/n > �1/(1� q) for R < 1.

Suppose R < 1 and let k(q) solve F (q,k)

k

= � 1

1�q

. (Note that F (q,m(q)) = 0,
F (q, `(q)) = �1 and '(q, k) +

p

'(q, k)2 + E(q)2 is increasing in k so that from (5.24),
F (q, k)/k is decreasing in k. In particular, F (q,k)

k

= � 1

1�q

has a unique solution in
(m(q), `(q)).) Then k is the straight line with k(0) = 1 and k(1) = `(1), so that

k(q) = 1 + q
(b

2

R� b
3

)(1�R)

b
1

. (5.27)

To verify this, note that if k is as given in (5.27) then '(q, k(q)) = R(1�R)(2� b
2

)(1�
q) and �(q, k(q)) = �2R(1 � R)(b

2

� 1)(1 � q). The desired conclusion F (q, k(q)) =

�k(q)/(1� q) follows after some lengthy algebra.
We have that �(k0(0)) = R(1 � R)

3b
2

n

b
3

�
⇣

b
2

R+

b1
1�R

⌘o

/b
1

. By assumption
b
3

< b
2

R + b
1

/(1 � R) (else we are in a degenerate case), and then �(k0(0)) < 0 and
n0
(0) < k0(0), so that n < k on some interval (0, q) to the right of zero. Suppose now

that n(q) = k(q) for some q 2 (0, q⇤). Then

n0
(q) = F (q, n(q)) = � k(q)

1� q
= �1 + qk0(q)

1� q
< k0(q).

Let q̃ be the smallest such point, then q̃ is a downcrossing of n over k, contradicting the
fact that n(q) < k(q) on (0, q̃). Hence n(q) < k(q) for any q 2 (0, q⇤). But for n  k(q),
F (q, n) > � n

1�q

. Thus n

0

n

> � 1

1�q

and w0
(s) > 1�R.

5.4 Properties of n: proofs

Proof of Lemma 5.3.1. The values of ' and � at m(q) and `(q) follow on substitution.
If b

2

> 1 then it is immediate from the definition that (1�R)�(q, n) < 0. To see that �
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is increasing in n, note that

@�

@n
=

@'

@n

(

1� sgn(1�R)'
p

'2

+ E(q)2

)

> 0,

where we use that @'/@n = b
1

> 0. Finally to see that (1 � R)� is concave in n, note
that

sgn(1�R)

@2�

@n2

= � b2
1

E(q)2

('2

+ E(q)2)3/2
< 0.

Proof of Lemma 5.3.2. First we prove the equivalence of (5.23) and (5.24).
Consider

b
1

(`(q)� n) + '(q, n)

= R(1�R)q2 � b
3

(1�R)q + b
1

� b
1

n+ (1�R)q(1� q) +
(b

2

� 1)R(1�R)q

(1�R)q +R

+b
1

n� b
1

+ b
3

(1�R)q +R(1�R)[�2q + 2� b
2

]

= R(1�R)



(1� q)2 � (b
2

� 1) +

(b
2

� 1)q

(1�R)q +R

�

+ (1�R)q(1� q)

= (1�R)(1� q)[R(1� q) + q]� (b
2

� 1)R2

(1�R)

(1�R)q +R
(1� q).

Then, noting that (1�R)q +R = R(1� q) + q,

b
1

[(1�R)q+R](`(q)�n) = (1�R)(1�q)[R(1�q)+q]2�R2

(1�R)(b
2

�1)(1�q)�'(q, n)[R(1�q)+q],

and multiplying by 4(1�R)(1� q),

4b
1

(1�R)(1� q)[(1�R)q +R](`(q)� n)

= 4(1�R)

2

(1� q)2[R(1� q) + q]2 � 4'(q, n)(1�R)(1� q)[R(1� q) + q] + '(q, n)2

�{sgn(1�R)}2 �'(q, n)2 + 4R2

(1�R)

2

(b
2

� 1)(1� q)2
�

= {2(1�R)(1� q)[R(1� q) + q]� '(q, n)}2 � {sgn(1�R)}2 �'(q, n)2 + E(q)2
 

.

Writing this last expression as the difference of two squares we find

4b
1

(1�R)(1� q)[(1�R)q +R](`(q)� n)

2(1�R)(1� q)[(1�R)q +R]� '(q, n)� sgn(1�R)

p

'(q, n)2 + E(q)2

= 2(1�R)(1� q)[R(1� q) + q]� �(q, n),
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from which the result follows, on dividing by 2b
1

R(1�q)[(1�R)q+R](`(q)�n)/((1�R)q).
Now consider the equivalence of (5.23) and (5.25). We have, starting with (5.23),

(1�R)n

R(1� q)

⇢

1� (1�R)q(1� q)

b
1

(`(q)� n)
+

q�(q, n)

2b
1

[(1�R)q +R](`(q)� n)

�

=

(1�R)n {2b
1

(`(q)� n)[(1�R)q +R]� 2[(1�R)q +R](1�R)q(1� q) + q�(q, n)}
2b

1

R[(1�R)q +R](1� q)(`(q)� n)

=

(1�R)n
n

2b
1

[(1�R)q +R]

h

(`(q)�m(q))� (n�m(q))� (1�R)q(1�q)

b1

i

+ q�(q, n)
o

2R(1� q)[(1�R)q +R] {S(q)� b
1

(n�m(q))} .

The result then follows since

2b
1

[(1�R)q +R]

⇢

`(q)�m(q)� (1�R)q(1� q)

b
1

�

= 2R(1�R)(b
2

� 1)q = �q�(q,m).

Proof of Lemma 5.3.3. (1) From the expression (5.3) and l’Hôpital’s rule, n0
(0) = �

solves
� =

1�R

R
� (1�R)

2

b
1

R

1

`0(0)� �
+

(1�R)

2b
1

R2

�(0, 1)

`0(0)� �
,

where we have

�(0, 1) = 2R(1�R)� b
2

R(1�R)� sgn(1�R)b
2

R|1�R| = 2R(1�R)(1� b
2

),

and `0(0) = (b
2

� b
3

)(1�R)/b
1

. This gives

� =

1�R

R
� b

2

(1�R)

2

R [(b
2

� b
3

)(1�R)� b
1

�]
,

or equivalently, we have that � solves �(�) = 0. Further,

�

�

`0(0)
�

= �

✓

(b
2

� b
3

)(1�R)

b
1

◆

= �(1�R)

2b
2

< 0.

For R < 1, we have n0
(0) < `0(0) by hypothesis, so that n0

(0) is the smaller root of �.
For R > 1, we have n0

(0) > `0(0) by hypothesis and n0
(0) is the larger root of �.

(2) For R < 1, n0
(0) < `0(0) so that initially n < `. Then, from (5.25),

lim

n"`(q) F (q, n) = �1. Hence n(q) < `(q), at least until q = 1 or ` hits zero. The
argument for R > 1 is similar.

(3) It is clear from (5.25) that F (q,m(q)) = 0. Also, for q  q
n

so that (1�R)(`�

117



n) > 0, the sign of F (q, n(q)) is opposite to the sign of the factor D = D(q,m(q), n(q))

where

D(q,m(q), n) = 2b
1

[(1�R)q +R](n�m(q))� qv(q, n) + qv(q,m(q)).

But @'/@n = b
1

, and so

@D

@n
= 2b

1

[(1�R)q+R]�qb
1

"

1� sgn(1�R)'(q, n)
p

'(q, n)2 + E(q)2

#

> 2b
1

[(1�R)q+R]�2qb
1

= 2R(1�q)b
1

> 0.

Hence, D is increasing in n and D(q,m(q), n) > 0 if and only if n(q) > m(q).
(4) If R > 1 then n(q) is increasing on [0, q⇤]. In particular, q

n

> q⇤ unless q⇤ = 1

whence q
n

= 1 = q⇤. If R < 1, then n(q)  `(q) on (0, 1). But from (5.23) we see that
n cannot hit zero strictly before `. The result follows since ` is concave, so q

`

< 1 if and
only if `(1) < 0.

(5) We can only have q⇤ < 1 if (1 � R)m0
(1) > 0. For R < 1, we must have

n0
(q⇤) = 0 < m0

(q⇤). But m has a minimum at b
3

/2R, so q⇤ > b
3

/2R. For R > 1, we
must have n0

(q⇤) = 0 > m0
(q⇤). But m has a maximum at b

3

/2R, so q⇤ > b
3

/2R.

Proof of Lemma 5.3.4. Consider first the monotonicity of (1�R)n on (0, q⇤) in b
2

.
Suppose b

3

> 0 else there is nothing to prove. For fixed b
1

> 0, b
3

> 0 and
R, write n = n(·; b

2

) to emphasise the dependence of the solution on b
2

, with similar
notation for other functions.

The first step is to consider the monotonicity of �(b
2

) where �(b
2

) = n0
(0; b

2

).
Differentiating � with respect to b

2

we find

0 = 2b
1

�
@�

@b
2

+ (1�R)

✓

b
3

� b
2

� b
1

R

◆

@�

@b
2

� (1�R)�,

and hence
@�

@b
2



�+

1�R

2b
1

✓

b
3

� b
2

� b
1

R

◆�

=

1�R

2b
1

�.

But

�

✓

�1�R

2b
1

✓

b
3

� b
2

� b
1

R

◆◆

= �R(1�R)

2

4b
1

✓

b
3

� b
2

� b
1

R

◆

2

� b
3

(1�R)

2 < 0. (5.28)

Hence, if R < 1, � < � (1�R)

2b1

⇣

b
3

� b
2

� b1
R

⌘

and since � < 0, @�/@b
2

> 0. If R > 1, then
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� > � (1�R)

2b1

⇣

b
3

� b
2

� b1
R

⌘

and since � > 0, @�/@b
2

< 0.
Consider now n0

(q; b
2

) = F (q, n(q; b
2

); b
2

), and use the representation in (5.24).
Fix q < q⇤(b

2

) and n(q), and suppose they take values q̃, ñ. Differentiating (5.24) with
respect to b

2

gives

@

@b
2

F (q, n; b
2

)

�

�

�

�

q=q̃,n=ñ

=

2(1�R)

2q̃ñ

RD(q̃, ñ; b
2

)

2

@

@b
2

D(q̃, ñ; b
2

),

where D(q, n; b
2

) = 2(1�R)(1�q)[(1�R)q+R]�'(q, n; b
2

)�sgn(1�R)

p

'(q, n; b
2

)

2

+ E(q; b
2

)

2.
Then

@D

@b
2

=

sgn(1�R)

p

'(q, n; b
2

)

2

+ E(q; b
2

)

2

⇥
⇢

� @'

@b
2

h

sgn(1�R)

p

'(q, n; b
2

)

2

+ E(q; b
2

)

2

+ '(q, n; b
2

)

i

� 1

2

@

@b
2

�

E(q; b
2

)

2

�

�

,

and using 1

2

@

@b2

�

E(q; b
2

)

2

�

= 2R2

(1 � R)

2

(1 � q)2, @'/@b
2

= �R(1 � R) and the fact
that sgn(1�R)

p

'(q, n; b
2

)

2

+ E(q; b
2

)

2

+'(q, n; b
2

) is increasing in n we conclude that,
for 0 < q < q⇤,

R(1�R)

h

'(q, n) + sgn(1�R)

p

'(q, n)2 + E(q)2
i

� 2R2

(1�R)

2

(1� q)2

> R(1�R)

h

'(q,m) + sgn(1�R)

p

'(q,m)

2

+ E(q)2
i

� 2R2

(1�R)

2

(1� q)2

= 0.

Hence, for R < 1, @D/@b
2

> 0 and it follows that @

@b2
F (q, n; b

2

)|
q=q̃,n=ñ

> 0, whereas for
R > 1, @D/@b

2

< 0 and @F/@b
2

< 0.
Now suppose b

2

> b
2

and let n(q) = n(q; b
2

) and n(q) = n(q; b
2

). Comparing
derivatives at zero we conclude that initially (1�R)n > (1�R)n. Also if n(·) and n(·)
cross at some point (q̃, ñ) with q̃ < q⇤(b

2

) ^ q⇤(b
2

) then it follows from our knowledge of
@

@b2
F (q, n(q; b

2

); b
2

) that (1 � R)n0 > (1 � R)n0. But at a first crossing, (1 � R)n must
cross (1 � R)n from above which is a contradiction. Hence (1 � R)n(·; b

2

) is increasing
in b

2

for q  q⇤ and since m does not depend on b
2

, we conclude q⇤(b
2

) is increasing.
Secondly we consider monotonicity in b

3

. The approach is similar, but slightly
more involved since m depends on b

3

.
For fixed b

1

> 0, b
2

� 1 and R, write n(·) = n(·; b
3

). Consider �(b
3

) = n0
(0; b

3

).
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Then

@�

@b
3

=

(1�R)

⇥

1�R

R

� �
⇤

2b
1

�+ (1�R)

⇣

b
3

� b
2

� b1
R

⌘

= �(1�R)

b
1

8

<

:

⇥

1�R

R

� �
⇤

�

1�R

R

� �
�

+ b
1

⇣

(1�R)(b2�b3)

b1
� �

⌘

9

=

;

.

Suppose R < 1. Then � < 0 and � < `0(0) = (1�R)(b
2

� b
3

)/b
1

, and

0 >
@�

@b
3

> �1�R

b
1

=

@m0
(0)

@b
3

. (5.29)

Now suppose R > 1. Then � > 0 and � > `0(0) = (1 � R)(b
2

� b
3

)/b
1

, and
0 < @�/@b

3

< (R� 1)/b
1

= @m0
(0)/@b

3

.
Differentiating (5.24) with respect to b

3

we find

@

@b
3

F

�

�

�

�

q=q̃,n=ñ

=

2(1�R)

2q̃ñ

RD(q̃, ñ; b
3

)

@

@b
3

D(q̃, ñ; b
3

),

where

@

@b
3

D(q, n; b
3

) = � 1

p

'(q, n; b
3

)

2

+ E(q)2
@'

@b
3

n

p

'(q, n; b
3

)

2

+ E(q)2 + sgn(1�R)'(q, n; b
3

)

o

.

Since @'/@b
3

= (1�R)q, we find @F/@b
3

|
q=q̃,n=ñ

has the opposite sign to 1�R.
By the same argument as in the case for b

2

, it follows that (1�R)n is decreasing
in b

3

. However, this alone is not sufficient to make conclusions about q⇤(b
3

) since m also
depends on b

3

.
Define ⇣(q; b

3

) = n(q; b
3

) �m(q; b
3

), and let m
0

(q) = 1 + R(1 � R)q2/b
1

so that
m(q; b

3

) = m
0

(q)� b
3

(1�R)q/b
1

. Then d⇣/dq = H(q, ⇣; b
3

) where

H(q, ⇣; b
3

) = �(1�R)B
1

(q, ⇣(q; b
3

); b
3

)B
2

(q, ⇣(q; b
3

); b
3

)

2R(1� q)[(1�R)q +R] {S(q)� b
1

⇣} � 2R(1�R)q

b
1

+

b
3

(1�R)

b
1

,

and

B
1

(q, ⇣; b
3

) = ⇣ +m
0

(q)� b
3

(1�R)

b
1

q

B
2

(q, ⇣; b
3

) = 2b
1

[(1�R)q +R]⇣ � q�

✓

q,m
0

(q)� b
3

(1�R)

b
1

+ ⇣

◆

+ q�

✓

q,m
0

(q)� b
3

(1�R)

b
1

◆

.

Suppose R < 1. Fix q and ⇣ > �m(q). Then B
1

is positive and decreasing in b
3

, and
B

2

is positive and decreasing in b
3

, since � is concave in n. Hence the product B
1

B
2

is
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decreasing in b
3

and H is increasing in b
3

. By the result in (5.29), ⇣ 0(0) = � �m0
(0) is

increasing in b
3

, so that at least initially, ⇣ is increasing in b
3

. Then since H is increasing
in b

3

, it follows that solutions of ⇣ 0(q; b
3

) = H(q, ⇣; b
3

) for different b
3

cannot cross, and
hence ⇣(q; b

3

) is increasing in b
3

. Thus q⇤(b
3

) is increasing in b
3

. Similar arguments apply
when R > 1.

Thirdly, consider monotonicity in b
1

. Let �(b
1

) = n0
(0; b

1

). The � solves �(�(b
1

)) =

0 and hence
d�

db
1

= � �
�

�� 1�R

R

�

2b
1

�+ (1�R)

⇣

b
3

� b
2

� b1
R

⌘ .

Note that �(� (1�R)

2b1
(b

3

� b
2

� b1
R

)) < 0 (recall (5.28)). Hence, if R < 1 then � < 0 < 1�R

R

and 2b
1

�+ (1�R)

⇣

b
3

� b
2

� b1
R

⌘

< 0. It follows that d�/db
1

> 0. Conversely, if R > 1

we find d�/db
1

< 0. In either case (1 � R)�(b
1

) is increasing in b
1

and it follows that
(1�R)n is initially increasing in b

1

.
Now consider F (q, n; b

1

). From (5.24) we see that the only dependence on b
1

is via
'+sgn(1�R)

p

'2

+ E2. Then @F/@b
1

has the opposite sign to @'/@b
1

⌘ (n�1). Since
(n � 1) has the opposite sign to (1 � R) on (0, q⇤) we find that sgn(1 � R)@F/@b

1

> 0.
Thus (1�R)n is increasing in b

1

for q  q⇤(b
1

).
As in the case for b

3

this result alone is not sufficient to determine the monotonicity
of q⇤(b

1

). Indeed, to study the dependence of q⇤ on b
1

it is convenient to introduce new
functions. Let m̂(q) = b

1

(m(q) � 1) and similarly n̂(q) = b
1

(n(q) � 1) and ˆ`(q) =

b
1

(`(q)� 1). Note that m̂(q) = R(1�R)q2 � b
3

(1�R)q does not depend on b
1

, and also
that

'(q, n) = n̂+ (1�R)(b
3

� 2R)q + 2R(1�R)� b
2

R(1�R).

Hence, if we consider ' or � as functions of n̂ then they do not depend on b
1

. In particular,
�(q, 1 + m̂/b

1

) and �(q, 1 + n̂/b
1

) do not depend on b
1

. We have, using (5.25)

n̂0
= b

1

F (q, 1 + n̂/b
1

)

= �(1�R)

R
(b

1

+ n̂)
2((1�R)q +R)(n̂� m̂)� q(�(q, 1 + n̂/b

1

)� �(q, 1 + m̂/b
1

))

(1� q)[(1�R)q +R](

ˆ`(q)� n̂)

The only dependence on b
1

is through the term (b
1

+ n̂) and as b
1

increases we find
(1�R)n̂0 decreases.

It follows that (1�R)n̂ is decreasing in b
1

. Since q⇤ = inf{q > 0 : (1�R)n(q) 
(1 � R)m(q)} = inf{q > 0 : (1 � R)n̂(q)  (1 � R)m̂(q)} and since m̂ does not depend
on b

1

we deduce that q⇤ is decreasing in b
1

.
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Finally, for i = 1, 2, 3 consider @

@b

i

n(q⇤(b
i

)) over the interval where q⇤(b
i

) 2 (0, 1).
We have

@

@b
i

n(q⇤(b
i

)) =

@n

@b
i

�

�

�

�

q

⇤
(b

i

)

+ n0
(q⇤(b

i

))

@q⇤

@b
i

.

But n0
(q⇤) = 0 and hence n(q⇤(b

i

)) is increasing or decreasing according as n(q) is
increasing or decreasing.

Proof of Corollary 5.3.5. In the case where 0 < q⇤ < 1 extend the domain of h to
(�1,1) by

h(u) =
(1 + eu)1�R

(1 + eu⇤
)

1�R

h⇤ u > u⇤.

Then g(z) = (b
4

R/b
1

)

Rh(ln z) for all z 2 [0,1). The monotonicity results for p will
follow if (1�R)h is decreasing in b

1

and b
2

and increasing in b
3

.
We focus on monotonicity in b

1

for the case R < 1; the proof of monotonicity in
b
2

and b
3

and for R > 1 follows similarly.
Fix b

2

and b
3

> 0 and suppose b
1

> ((1 � R)b
3

� b
2

R)

+, to ensure that we are
not in the case where the value function is infinite.

Given n(q; b
1

) defined on [0, q⇤(b
1

)] extend the domain of definition to [0, 1] by
setting n(q; b

1

) = n(q⇤(b
1

); b
1

) for q > q⇤(b
1

). Let N(q; b
1

) = (1 � q)�(1�R)n(q; b
1

)

�R

defined on [0, 1] and let W (·; b
1

) be inverse to N(·; b
1

).
Then, for each q 2 (0, 1], n(q; b

1

) is decreasing in b
1

and N(q; b
1

) is increasing in
b
1

. It follows that W (·; b
1

) and w(·; b
1

) are increasing in b
1

.
We know that lim

u"1 e�(1�R)uh(u) = n(1)�R

= n(q⇤)�R is decreasing in b
1

. We
want to argue that h is decreasing in b

1

for all u.
Fix b

1

< b
1

. Suppose there exists u 2 (�1,1) such that h(u; b
1

) = h(u; b
1

) and
let ũ be the largest such u; set h(ũ; b

1

) = h(ũ; b
1

) =

˜h. Then h(u; b
1

) < h(u; b
1

) for all
u > ũ, and we must have dh

du

(ũ; b
1

)  dh

du

(ũ; b
1

), or equivalently w(˜h; b
1

)  w(˜h; b
1

). But
w is increasing in b

1

contradicting the hypothesis that h is not decreasing in b
1

.

Proof of Lemma 5.3.6. If b
3

> 0 and m is monotonic then we must have q⇤ = 1. Hence
b
3,crit

 2R.
If b

3

> 0, R < 1 and `(1)  0 then q⇤ = 1. Hence for R < 1 and `(1)  0 we must
have b

3,crit

 b
2

R+

b1
1�R

.
These arguments show that b

3,crit

(b
1

, 1, R)  ¯b
3

. It remains to show that for
b
2

= 1 and 0 < b
3

< ¯b
3

we have q⇤ = 1.
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If b
2

= 1, then `(1) = m(1), and provided b
3

< ¯b
3

, `(1) > 0. Suppose R < 1, the
case R > 1 being easier. If b

3

 R then m(1) � m(0) = 1 and since n is decreasing we
must have q⇤ < 1.

So suppose R < b
3

< ¯b
3

. By the arguments in Proposition 5.3.7(3) we have
n(q)  k(q) = 1 +

q(R�b3)(1�R)

b1
. Also

(1�q)F (q,m(1)) = m(1)



1�R

R
� (1�R)

2

b
1

R
q

(1� q)

`(q)� `(1)

�

! m(1)

1�R

R



1 +

(1�R)

b
1

1

`0(1)

�

.

But b1`
0
(1)

1�R

= 2R�b
3

�1 = (R�1)+(R�b
3

) 2 (�1, 0). Hence lim

q"1(1�q)F (q,m(1)) =

 2 (�1, 0). Since for n � m(1) we must have n crosses the horizontal line at height
m(1) before q = 1. Then also q⇤ < 1.

(2) Note first that

lim

b2!1

`(q)

b
2

=

R(1�R)

b
1

q

(1�R)q +R
, lim

b2!1

�(q, n)

b
2

= �2R(1�R).

It follows immediately by l’Hôpital’s rule that

lim

b2!1
F (q, n) = n

⇢

1�R

R(1� q)
+

(1�R)q

2b
1

R(1� q)[(1�R)q +R]

lim

b2!1

v(q, n)/b
2

`(q)/b
2

�

= 0.

(5.30)
Then, if n1(q) = lim

b2"1 n(q; b
2

) we have n0
1(q) = 0, which implies n(q) = n(0) = 1.

It is easy to see that n1 crosses m at some q⇤ 2 (0, 1) if and only if (1 � R)m(1) >

(1�R)m(0) = (1�R) which is equivalent to 0 < b
3

< R. Otherwise, we have q⇤ = 1.
The final statement follows from the monotonicity of q⇤ with respect to b

2

and b
3

.

5.5 The verification lemma in the first non-degenerate case
with finite critical exercise ratio

Suppose 0 < b
3

< b
3,crit

(b
1

, b
2

, R), so that 0 < q⇤ < 1. Suppose we have constructed n

and N on [0, q⇤] and W and w on [1, h⇤]. Set z⇤ = q⇤/(1 � q⇤) and u⇤ = ez
⇤ . Define h

via h(u⇤) = h⇤ and for �1 < u < u⇤ set dh

du

= w(h). Then also d

2
h

du

2 = w0
(h)w(h). Then

h solves (5.6). Define g via (5.7).

Lemma 5.5.1. Let z⇤ and g be as given in Equations 5.5 and 5.7 of Theorem 5.1.9.
Then, g (z), g0 (z), g00 (z) are continuous at z = z⇤.
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Proof. We have

g(z⇤+) =

✓

b
1

b
4

R

◆�R

h⇤(1�q⇤)1�R

(1 + z⇤)1�R

=

✓

b
1

b
4

R

◆�R

h⇤ =

✓

b
1

b
4

R

◆�R

h(u⇤) = g(z⇤�).

For the first derivative, with K = n(q⇤)�R, we have for z > z⇤,

zg0(z) =

✓

b
1

b
4

R

◆�R

n(q⇤)�R

(1 + z)�Rz(1�R) = (1�R)

✓

b
1

b
4

R

◆�R

n(q⇤)�R

(1 + z)1�R

z

1 + z

= (1�R)

✓

zg(z)

1 + z

◆

,

and then since z

⇤

1+z

⇤ = q⇤, z⇤g0(z⇤) = (1�R)

⇣

b1
b4R

⌘�R

h⇤q⇤. Meanwhile, for z < z⇤, and
noting that dh

du

= w(h)

zg0(z) =

✓

b
1

b
4

R

◆�R

h0(ln z) =

✓

b
1

b
4

R

◆�R

w(h)

so that z⇤g0(z⇤�) =

⇣

b1
b4R

⌘�R

w(h⇤). The continuity of the first derivative follows from
the identity w(h⇤) = (1�R)h⇤W (h⇤) = (1�R)h⇤q⇤.

Finally, for z > z⇤

z2g00(z) = �R(1�R)

✓

b
1

b
4

R

◆�R

n(q⇤)�R

(1+z)1�R

✓

z

1 + z

◆

2

= �R(1�R)g(z)

✓

z

1 + z

◆

2

(5.31)
and (z⇤)2g00(z⇤+) = �R(1�R)g(z⇤)(q⇤)2. For z < z⇤,

z2g00(z) =

✓

b
1

b
4

R

◆�R

(h00 � h0) =

✓

b
1

b
4

R

◆�R

(w0
(h)� 1)w(h)

and at z⇤, (z⇤)2g00(z⇤�) = �R(1 � R)

⇣

b1
b4R

⌘�R

h⇤(q⇤)2 where we use Proposition 5.3.7
(3).

Proposition 5.5.2. Suppose g solves (5.7). Then for R < 1, g is an increasing concave

function such that g(0) =

⇣

b1
b4R

⌘�R

. Otherwise, for R > 1, g is a decreasing convex
function such that g(z) � 0. Further, for z  z⇤ we have 0 � Rg0(z)2 � (1�R)g(z)g00(z)

with equality at z = z⇤.

Proof. Consider first R < 1. Since the statements are immediate in the region z � z⇤,
and since there is second order smooth fit at z⇤ the result will follow if h(�1) = 1, h is
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increasing and, using (5.31), w(h)w0
(h)�w(h)  0. The last two properties follow from

Proposition 5.3.7 since w(h) � 0 and w0
(h) < 1.

To see that h(�1) = 1 note that w(h) = (1 � R)hW (h) is bounded away from
zero for h bounded away from 1. Then since W 0

(1) is non-zero finite we conclude that
h(�1) = 1.

For R > 1, and z � z⇤, the statement holds immediately. For z  z⇤, Proposi-
tion 5.3.7 implies that h is decreasing and w(h)  0, w0

(h) > 1. Together with (5.31),
we have g is a decreasing convex function and g(z) � 0 given that h 2 [0, 1].

Define the candidate value function at t = 0 by

G(x, y, ✓) = x1�R

1�R
g

✓

y✓

x

◆

. (5.32)

Lemma 5.5.3. Fix y. Then G = G(x, ✓) is concave in x and ✓. In particular, if
 (�) = G(x� �y�, y, ✓ + ��), then  is concave in �.

Proof. In order to show the concavity of the candidate value function it is sufficient to
show that the Hessian matrix given by

HG =

 

G
xx

G
x✓

G
x✓

G
✓✓

!

.

has a positive determinant, and that one of the diagonal entries is non-positive.
Direct computation leads to

G
xx

(x, y, ✓) = x�R�1



�Rg (z) +
2R

1�R
zg0 (z) +

1

1�R
z2g00 (z)

�

,

G
x✓

(x, y, ✓) = �x�R�1

y

1�R

⇥

Rg0 (z) + zg00 (z)
⇤

,

G
✓✓

(x, y, ✓, t) = x�R�1

y2

1�R
g00 (z) ,

and the determinant of Hessian matrix is

G
xx

G
✓✓

� (G
x✓

)

2

= �x�2R✓�2

R

1�R



g (z) z2g00 (z) +
R

1�R

�

zg0 (z)
�

2

�

. (5.33)

If z � z⇤ then the expression on the right-hand-side of (5.33) is zero by Proposition 5.5.2.
For z  z⇤, Proposition 5.3.7 yields

(1�R)g (z) z2g00 (z)+R
�

zg0 (z)
�

2

= (1�R)h
⇥

w (h)w0
(h)� w (h)

⇤

+Rw (h)2  0 (5.34)
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with equality at h = h⇤ by the smooth fit condition. Further, since g is concave we have
that G

✓✓

 0.
In order to show the concavity of  in �, it is equivalent to examine the sign of

d

2
 

d�

2 . But

d2 

d�2

= �2
⇥

y2G
xx

+ G
✓✓

� 2yG
x✓

⇤

= �2(y, 1) det(HG)(y, 1)
T  0

.

Lemma 5.5.4. Consider the candidate function constructed in (5.32). Then
(a) For 0 < x  y✓/z⇤, MG = 0 and LG � �G  0.
(b) For x � y✓/z⇤, LG � �G = 0 and MG � 0.
Note that the derivatives of G are well-defined and continuous at x = 0, so that

the results in (a) hold at x = 0.

Proof. (a) For z � z⇤, MG = 0 is immediate from the definition of G. For LG � �G we

have that G(x, y, ✓) =
⇣

b1
b4R

⌘�R

n(q⇤)�R

x

1�R

1�R

(1 + z)1�R and then

LG � �G

=

x1�R

1�R
R

✓

b
1

b
4

R

◆

1�R

n(q⇤)�R

(1 + z)1�R

"

n(q⇤)� 1 +

b
3

b
1

(1�R)

z

1 + z
� R(1�R)

b
1

✓

z

1 + z

◆

2

#

=

x1�R

1�R
R

✓

b
1

b
4

R

◆

1�R

n(q⇤)�R

(1 + z)1�R



m(q⇤)�m

✓

z

1 + z

◆�

,

where we use the fact that n(q⇤) = m(q⇤). The required inequality follows from Lemma 5.3.3
and the fact that m is increasing on (q⇤, 1).
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(b) In order to prove LG � �G = 0 we calculate

LG � �G =

x1�R

1�R

�

(z2g00(z))2

+

"

b
4

R



g � 1

1�R
zg0(z)

�

R�1
R

� [b
1

+ b
2

R(1�R)]g + (b
3

+ 2R)zg0(z)

#

z2g00(z)

+b
4

R[2Rzg0(z)�R(1�R)g]



g � 1

1�R
zg0(z)

�

R�1
R

� [2Rb
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where the last equality follows from Proposition 5.3.7(2). Note that G and LG are well
defined and continuous at ✓ = 0.

Now consider MG. We have

MG = x�Ry



(1 + z)

1�R
g0 (z)� g (z)

�

.

Hence it is sufficient to show that  (z) � 0 on (0, z⇤] where

 (z) =
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� g (z)

g0 (z)
,

By value matching and smooth fit g(z⇤) =
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b4R

⌘�R

n(q⇤)�R
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(1 � R) (1 + z⇤)�R. Hence  (z⇤) = 0 and it is sufficient to show that
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 is decreasing. But

 
0
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where the last inequality follows from the final part of Proposition 5.3.7.

Proposition 5.5.5. Let X⇤, ⇥⇤, C⇤ and ⇧⇤ be as defined in Theorem 5.1.9. Then they
correspond to an admissible wealth process. Moreover Z⇤

t

= Y
t

⇥

⇤/X⇤
t

satisfies 0  Z⇤
t


z⇤.

Proof. Note that if y
0

✓
0

/x
0

> z⇤ then the optimal strategy includes a sale of the endowed
asset at time zero, and the effect of the sale is to move to new state variables (X⇤

0

, y
0

,⇥⇤
0

, 0)

with the property that Z⇤
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= y
0

⇥

⇤
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/X⇤
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= z⇤. Thus we may assume that Z
0
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0

⇥

⇤
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+
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, (5.35)

subject to ˆJ
0

= (z⇤ � z
0

)

+. This equation is associated with a stochastic differential
equation with reflection (Revuz and Yor [48, p385]) and has a unique solution (J, L) for
which (J, L) is adapted, J � 0, and L is increasing and continuous, L

0

= 0 and L only
increases when J is zero. Let (J, L) be the solution to (5.35) with these properties.

Note that ˜
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/(z⇤(1 + z⇤))}, and note that
whenever L is increasing, (equivalently ⇥ is decreasing) we have Z = z⇤. It follows that
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Then X⇤ and C⇤ are positive and adapted and moreover
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,

where we use the definitions of ⇤, ⌃, � and  
g

for the final equality. It follows imme-
diately that X is the wealth process arising from the consumption, portfolio and sale
strategy (C⇤,⇧⇤,⇥⇤

).

Proof of Theorem 5.1.9. First we show that there is a strategy such that the candidate
value function is attained, and hence that V � G.

Observe first that if z
0

= y
0

✓
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/x
0

> z⇤ then
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= z⇤. Then, since g(z⇤)/g(z
0

) = (1 + z⇤)1�R/(1 + z
0

)

1�R, for z
0

> z⇤

we have

G(X⇤
0

, y
0

,⇥⇤
0

, 0) =
(X⇤

0

)

1�R

1�R
g(z⇤) =

x1�R

0

1�R
g(z

0

) = G(x
0

, y
0

, ✓
0

).

Hence, without loss of generality we may assume that z
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0
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transacts from (x
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) at time zero with no change in value function.
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Write M⇤ for the corresponding process under the proposed optimal strategy. Then
M⇤

0

= G(X⇤
0

, y
0

,⇥⇤
0

) = G(x
0

, y
0

, ✓
0

) so there is no jump of M⇤ at t = 0. Further,
although the optimal strategy may include the sale of a positive quantity of the risky
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asset at time zero, it follows from Proposition 5.5.5 that thereafter the process ⇥⇤ is
continuous and such that Z⇤

t

= Y
t

⇥

⇤
t

/X⇤
t

 z⇤.
From the form of the candidate value function and the definition of g given in

(5.7), we know that G is C2,2,1. Then applying Itô’s formula to M
t

, using the continuity
of X⇤ and ⇥⇤ for t > 0, and writing G· as shorthand for G·(X⇤
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) we have
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Since Z⇤
t

 z⇤, and since C⇤
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= G�1/R

x

and LG � �G = 0 for z  z⇤ we have N1

t

= 0.
Further, d⇥

s

6= 0 if and only if Z⇤
t

= z⇤ and then MG = 0, so that N2

t

= 0.
To complete the proof of the theorem we need the following lemma proved in

Section 5.7.
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. (5.37)

Then using Lemma 5.5.6 and applying monotone convergence theorem, we have

G (x
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and hence V � G.
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Now we consider general admissible strategies and show that V  G. Exactly as
in (5.20) and the proof of Theorem 5.2.2 we have

M
t

�M
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+N2

t

+N3

t
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.

Lemma 5.5.4 implies that under general admissible strategies, N1

t
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t

 0.
Consider the jump term,
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Using the fact that (�X)
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s
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each non-zero jump in N3 is of the form

(�N3

)

s

= e��s
n
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(x, y, ✓, s)]
o

.

Note that by Lemma 5.5.3, G(x+ y�, y, ✓ � �) is concave in � and hence (�N3

)  0.
For R < 1 the rest of the proof is exactly as in Theorem 5.2.2. The case of R > 1

will be proved in Section 5.8.

5.6 The Verification Lemma in the second non-degenerate
case (scenario 3) with no finite critical exercise ratio.

Throughout this section we suppose that b
3

� b
3,crit

(b
1

, b
2

, R) and b
3

< b1
1�R

+ b
2

R if
R < 1. It follows that q⇤ = 1 and z⇤ = 1.

Recall the definition of � in (5.12) or (5.16), set h = ��1 and let g be given by
g(z) = (Rb

4

/b
1

)

Rh(ln z).
Define the candidate value function as G(x, y, ✓) = e��tG(x, y, ✓) where

G(x, y, ✓) = x1�R

1�R
g

✓

y✓

x

◆

, x > 0, y > 0, ✓ � 0. (5.38)

We extend the definition to y✓ < x  0 via

g(x, y, ✓) =
(x+ y✓)1�R

1�R

✓

Rb
4

b
1

◆

R

n(1)�R.

Lemma 5.6.1. Fix y. Then for x � 0, G = G(x, ✓) is concave in x and ✓. In particular,
if  (�) = G(x� �y�, y, ✓ + ��), then  is concave in �.
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Proof. The proof follows the proof of Lemma 5.5.3.

Lemma 5.6.2. Consider the candidate value function constructed in (5.32). Then for
x � 0, LG � �G = 0, and MG � 0 with equality at x = 0.

Proof. The proof follows the proof of Lemma 5.5.4.

Proof of Theorem 5.1.11. Consider first the following stochastic differential equation with
reflection

K
t

= K
0

+

ˆ
t

0

ˆ

⇤(K
s

)ds+

ˆ
t

0

ˆ

⌃(K
s

)dB1

s

+

ˆ
t

0

ˆ

�(K
s

)dB2

s

+ L
t

,

for which K
0

= x
0

/(y
0

✓
0

). By the same argument as in Proposition 5.5.5, this equation
has a unique solution (K,L) which is an adapted continuous process for which K is
non-negative, L

0

= 0 and L only increases when K is zero.
Let ⇥⇤

t

= ✓
0

e�L

t , X⇤
t

= Y
t

⇥

⇤
t

K
t

, C⇤
t

= X⇤
t

[g(1/K
t

) � g

0
(1/K

t

)

K

t

(1�R)

]

�1/R and ⇧⇤
t

=

�

�

X⇤
t

 

g

(1/K
t

). Then ⇥⇤ is decreasing and X⇤ � 0. Then with dK
t

=

ˆ

⇤(K
t

)dt +
ˆ

⌃(K
t

)dB1

t

+

ˆ

�(K
t

)dB2

t

� d⇥

⇤
t

⇥

⇤
t

, and, using K
t

dL
t

= 0 and hence K
t

d⇥⇤
t

= 0 also,

dX⇤
t

= d(Y
t

⇥

⇤
t

K
t

) = ⇥

⇤
t

K
t

dY
t

+ Y
t

⇥

⇤
t

dK
t

+⇥

⇤
t

d[Y,K]

t

= X⇤
t

("

↵+

ˆ

⇤(K
t

)

K
t

+

⌘ˆ�(K
t

)

K
t

+

⌘⇢ˆ⌃(K
t

)

K
t

#

dt+
ˆ

⌃(K
t

)

K
t

dB1

t

+

 

⌘ +
ˆ

�(K
t

)

K
t

!

dB2

t

)

� Y
t

d⇥⇤
t

= (��⇧⇤
t

+ rX⇤
t

� C⇤
t

) dt+ �⇧⇤
t

dB1

t

� Y
t

d⇥⇤
t

where we use the definitions of ˆ

⇤, ˆ� and ˆ

⌃ for the final equality. It follows immediately
that X is the wealth process arising from the consumption and sale strategy (C⇤,⇧⇤,⇥⇤

),
and hence that X is admissible.

From the form of the candidate value function, we know that G is C2,2,1. Then
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applying Itô’s formula to M⇤, we have
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Since C⇤
t

= G�1/R

x

is optimal, and by Lemma 5.6.2, LG � �G = 0, we have N1
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= 0.
Further, for the proposed optimal strategies d⇥
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6= 0 if and only if X
t

= 0. Then by
Lemma 5.6.2, MG|

x=0
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The following lemma is proved in Section 5.7.
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Then applying monotone convergence theorem and using the final part of the lemma, we
have
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and hence V � G.
Now we consider general admissible strategies and show that V  G. Applying
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the generalised Itô’s formula [23, Section 4.7] to M
t

leads to
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Note that for a general admissible strategy ⇥ and X do not need to be continuous,
so that here the arguments of G· is (X

s�, Ys,⇥s�).
Lemma 5.6.3 implies that under general admissible strategies, N1

t

 0, N2

t

 0.
Consider the jump term,
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Using the fact that (�X)
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and writing ✓ = ⇥
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s�, � = �(�⇥)

s

each non-zero jump in N3 is of the form (�N3
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Note that by Lemma 5.6.1, G(x+ y�, y, ✓ � �) is concave in � and hence �
s

 0.
For R < 1 the rest of the proof is exactly as in Theorem 5.2.2. The case of R > 1

will be proved in Section 5.8.

5.7 The martingale property of the value function

Proof of Lemma 5.5.6. (i) As a first step of the proof, we show that �⇧⇤G
x

/G is bounded.
From the form of the candidate value function (5.32) and the optimal portfolio process
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in Theorem 5.1.9 we have

�⇧⇤
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G
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= �



(1�R)� zg0(z)

g(z)

�

8

<

:

�(1�R)g(z) +
⇣

1 +

R⌘⇢

�

⌘

zg0(z) + ⌘⇢

�

z2g00(z)

�R(1�R)g(z) + 2Rzg0(z) + z2g00(z)

9

=

;

=

(1�R)

R

✓

1� w(h)

(1�R)h

◆

 

��
�

⌘⇢� �

R

�

w(h)[w0
(h)� (1�R)]

(1�R)h� �

2� 1

R

�

w(h)� 1

R

w(h)w0
(h)

!

=

(1�R)

R
(1�W (h))

 

��
�

⌘⇢� �

R

�

W (h)[w0
(h)� (1�R)]

1� �

2� 1

R

�

W (h)� 1�R
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!

Now use the fact that (1�R) < w0
(h) < 1�RW (h) to conclude that 0 < w0

(h)�(1�R) <

R(1�W (h)) and h(1�R)W 0
(h) < 1�W (h) to conclude that
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G
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 |1�R|
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(1�W (h))
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|�|+ |⌘⇢R� �|W (h)

1�W (h)
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 |1�R|
R

(|�|+|⌘⇢R��|) =: K
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(5.40)
Now we want to show that the local martingale

N5

t

=

ˆ
t

0

e��s⌘Y
s

G
y

(X⇤
s

, Y
s

,⇥⇤
s

)dB2

s

is a martingale. This will follow if, for example,

E
ˆ

t

0

e�2�s

(Y
s

G
y

(X⇤
s

, Y
s

,⇥⇤
s

))

2 ds < 1 (5.41)

for each t > 0. From the form of the value function (5.32), we have

e��syG
y

(x, y, ✓) = e��s
x1�R

1�R
zg

0
(z) = e��sG(x, y, ✓, t)zg

0
(z)

g (z)
 (1�R)e��sG (x, y, ✓)

(5.42)
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where we use that zg

0
(z)

g(z)

=

w(h)

h

= (1�R)W (h) and 0  W (h)  1.
Define a process (D

t

)

t�0

by D
t

= lnG (X⇤
t

, Y
t

,⇥⇤
t

, t) = lnG(X⇤
t

, Y
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,⇥⇤
t

) � �t.
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⇤
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G
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G
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i

ds.

It follows that the candidate value function along the optimal trajectory has the repre-
sentation

G (X⇤
t

, Y
t
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t

, t) = G (X⇤
0
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where H = (H
t

)

t�0

is the exponential martingale

H
t

= E
✓
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x

G �B1

+

⌘Y
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G
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◆
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,

where E(A�B)
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0 A

s

dB
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� 1
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2
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ds. Note that (5.42) implies 0  1

G ⌘yGy

 ⌘|1�R| and
(5.40) implies that | 1G�⇧⇤G

x
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⇡

, so that H is indeed a martingale, and not merely a
local martingale.

From (5.42) and (5.43), we have
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But from (5.40) and (5.42)
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⇡

]t
 

and it follows that (5.41)
holds for every t, and hence that the local martingale N5

t

=

´
t

0

⌘yV
y

dB
s

is a martingale
under the optimal strategy.
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(ii) The same reasoning applies to show that the local martingale

N4

t

=

ˆ
t

0

e��s�⇧⇤
s

G
x

(X⇤
s

, Y
s

,⇥⇤
s

)dB1
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is a martingale. We have |�⇧⇤G
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x

(x, y, ✓, t))2  G(X
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, y
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⇡
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t

which follows from (5.43).

(iii) Consider exp
⇢´

t

0

� 1

1�R

1

GG
R�1
R

x

ds

�

. To date we have merely argued that this

function is decreasing in t. Now we want to argue that it decreases to zero exponentially
quickly. By (5.32), we have
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h� 1

1�R
w (h)

�

R�1
R

= h�1/R

(1�W (h))1�1/R

= N(q)�1/R

(1� q)1�1/R

= n(q).

Then since n is bounded below on (0, q⇤) (by 1 if R > 1 and by n(q⇤) if R < 1) we have
a lower bound on all the expressions in the above equation.

Hence from (5.43) we have

0  (1�R)G(X⇤
t

, Y
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,⇥⇤
t

, t)  (1�R)G(x
0

, y
0

, ✓
0

, 0)e�min{n(q⇤),1}tH
t

! 0

and then G ! 0 in L1 as required.

Proof of Lemma 5.6.3. This follows exactly as in the proof of Lemma 5.5.6, noting that
the bound (5.40) applies in this case also.

5.8 Extension to R > 1

It remains to extend the proofs of the verification lemmas to the case R > 1. In particular
we need to show that the candidate value function is an upper bound on the value
function. The main idea is taken from Davis and Norman[13].

Suppose G (x, y, ✓, t) = e��tG(x, y, ✓) is the candidate value function. Consider
for " > 0,

eV
"

(x, y, ✓, t) = eV (x, y, ✓, t) = G (x+ ", y, ✓, t) (5.44)
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Then,
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Lemma 5.2.1 (in the case b
3

 0 and otherwise Lemma 5.5.4 or Lemma 5.6.2)
implies eN1

t
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t

 0. The concavity of eV (x+ y�, y, ✓� �) in � (either directly if
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Thus eV is bounded, lim
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Finally let "! 0. Then V  lim
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eV = G. Hence, we have V  G.
The two non-degenerate cases are very similar, except that now from (5.32) or

(5.38) and (5.44),
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where we use that for R > 1, g is decreasing with g(0) =

⇣

b1
b4R

⌘�R

> 0. Hence eV is
bounded, and the argument proceeds as before.

5.9 The limiting cases ⇢ 2 {�1, 1}
In this section we consider the special case when ⇢ takes values in {�1, 1} so that the en-
dowed asset Y is completely correlated with the hedging asset P . Under this assumption,
explicit solution to the ordinary differential equation of n in (5.3) is obtained. We shall
only consider the case for ⇢ = 1, such that the two risky assets are positively correlated.
It follows the same argument for ⇢ = �1 except for sign changes.
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Figure 5.5: Stylised plot of `, m and n in the case ⇢ = 1. Here parameters are chosen
to satisfy the condition in the second case of Proposition 5.9.1 so that q⇤ = 1. From the
graph, both m and n are straight lines on [0, 1].

For ⇢ = �1, we have instead

d
2

=

1

d
1

(�
1

+R⌘)2

2R2

, d
3

=

1

d
1

(�
2

+ �
1

)⌘.

Note that all the quantities are rescaled by 1/d
1

which manages to reduce the number
of parameters into two, d

2

and d
3

. We then have the following proposition for ⇢ = 1 in
analog to Proposition 5.1.3.

Proposition 5.9.1. For q 2 [0, 1] define m(q) = 1� d
3

(1�R)q. and

`(q) = 1� d
3

(1�R)q + d
2

R+
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(1� q)

[(1�R)q2 + (2R� 1)q �R]
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(1�R)q +R
.

Let n = n(q) solve
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`(q)� n(q)
(5.45)

subject to n(0) = 1 and n

0
(0)

1�R

< `

0
(0)

1�R

= d
2

� d
3

. Suppose that if n hits zero, then 0 is
absorbing for n. See Figure 5.5.
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For R < 1, let q⇤ = inf{q > 0 : n(q)  m(q)}. For R > 1, let q⇤ = inf{q > 0 :

n(q) � m(q)}. For j 2 {`,m, n} let q
j

= inf{q > 0 : j(q) = 0} ^ 1.
Then, n(q) = [(1 � R)q + R]/R is a unique solution to (5.45) for d

2

= 0. For
d
2

6= 0,

n(q) = �1�R
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9

=

;

q + 1 (5.46)

is a unique solution to (5.45).

1. Suppose d
2

= 0 or d
3

 0. Then q⇤ = 0.

2. Suppose d
3

> 0 and 1� d
3

(1�R) + d
2

R(1�R) > 0 if R < 1. Then q⇤ = 1.

3. Suppose R < 1 and 1� d
3

(1�R) + d
2

R(1�R)  0. Then q
m

< q
n

= q
`

. If R < 1

and 1� d
3

(1�R) + d
2

R(1�R) < 0 then q
`

< 1.

Remark 5.9.2. Similar to the case where |⇢| < 1, the condition 1�d
3

(1�R)+d
2

R(1�R) >

0 is equivalent to `(1) > 0 and we have `(1)�m(1) = d
2

R(1�R) � 0. The key difference
here is that m is a straight line here. Thanks to Proposition 5.9.1 and the expression
of m, there can not be a crossing q⇤ 2 (0, 1). Instead, there are only two possibilities,
q⇤ = 0 or q⇤ = 1, which depends on n0

(0) and m0
(0), and the ‘gap’ between ` and m does

not result in any complications in solving this limiting case.

We have the following theorem in analogy to Theorem 5.1.7. Provided that m

and n are straight lines, it follows immediately that d
3,crit

(d
2

) = 0 and this observation
greatly simplifies the problem.

Theorem 5.9.3. 1. Suppose d
2

= 0 or d
3

 0. Then it is always optimal to sell the
entire holding of the endowed asset immediately, so that and ⇥

t

= 0 for t � 0. The
value function for the problem is V (x, y, ✓, t) = (d

1

/R)

�Re��t(x + y✓)1�R/1 � R;
and the certainty equivalent value of the holdings of the asset is p(x

0

, y
0

, ✓
0

, 0) =

y
0

✓
0

.

2. Suppose d
3

> 0 and 1�d
3

(1�R)+d
2

R(1�R) > 0 if R < 1. Then the optimal con-
sumption and sale strategy is first to consume liquid wealth and invest in the risky
asset, and then when this liquid wealth is exhausted, to finance further consumption
and investment from sales of the illiquid asset. If ✓ > 0 then p(x, y, ✓) > y✓.
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3. Suppose 1� d
3

(1�R)+ d
2

R(1�R)  0 if R < 1. Then the problem is degenerate,
and provided ✓

0

is positive, the value function V = V (x, y, ✓, t) is infinite. There is
no unique optimal strategy, and the certainty equivalent value p is not defined.

Remark 5.9.4. The results above are intuitive. Provided that the endowed asset and
the risky asset are completely correlated, the agent chooses to either hold the endowed
asset until all cash wealth is consumed or sell it immediately. Further, when wealth is
exhausted, it is never optimal to invest zero amount in the correlated risky asset since
the risks of the endowed asset can be fully hedged by the risky asset. The proof of the
theorem above follows the same argument in the proof of Theorem 5.1.7.
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Chapter 6

Comparative statics of the
multiple-asset problem

In this chapter, we consider the comparative statics of the multi-asset consumption opti-
misation problem presented in Chapter 5. The key to our results on comparative statics is
contained in Lemma 5.3.4 and Corollary 5.3.5. In the section on the problem formulation
we showed how the original parameters only affect the solution via four key parameters
b
1

, b
2

, b
3

and b
4

. Here b
3

is the effective Sharpe ratio of the endowed asset and measures
the excess expected return, net of any expected growth from correlation with the market
asset. b

1

is an effective discount parameter, taking account of the investment opportu-
nities in the market. b

4

is a measure of the idiosyncratic risk of the endowed asset, and
only affects the solution via a scaling of the value function — more idiosyncratic risk also
enters the other parameters b

i

. Finally, b
2

is the hardest parameter to interpret, but is
a measure of the extent to which the investment motive and the hedging motive cancel
with each other.

This chapter is arranged as follows. In Section 6.1, we provide numerical methods
to compute the solutions to the differential equations which construct the optimal strate-
gies. Then we analyse the dependence of the critical threshold z⇤, the value function g,
the optimal consumption C⇤ and the optimal portfolio ⇧⇤ on derived constants b

1

, b
2

, b
3

and R. Finally we discuss the results from comparative statics in terms of the original
parameters, µ, ↵, r, �, ⌘, ⇢ and �.
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6.1 Numerical methods

In this section we provide numerical methods to compute n and g, which are introduced
in Chapter 5. Computing n and g numerically is essential to construct the value function
and the optimal strategies from the analysis in the previous chapter and hence to conduct
the comparative statics. Our algorithms and codes are implemented in MATLAB.

Recall the definitions of m, `, � in Proposition 5.1.3 and the non-linear ordinary
differential equation n solves

n
0
(q)

n(q)
=

1�R

R(1� q)
� (1�R)

2

b
1

R

q

`(q)� n(q)
+

(1�R)q

2b
1

R(1� q)[(1�R)q +R]

�(q, n(q))

`(q)� n(q)
, (6.1)

subject to n(0) = 1 and n

0
(0)

1�R

< `

0
(0)

1�R

= (b
2

� b
3

)/b
1

. Solving the initial value problem
(6.1) on [0, 1] is complicated due to the singularity near q = 0. Instead, we consider
(6.1) on [✏, 1] for small ✏ > 0. Lemma 5.3.3 provides an explicit expression for n0

(0)

which by Taylor expansion gives n(✏) = n(0)+n0
(0)✏+O(✏2). Here O(✏2) denotes terms

proportional to ✏2 and to higher powers of ✏.
Then the initial value problem (6.1) is solved by the Runge-Kutta 4th order

method on [✏, 1] with initial condition n(✏) = n(0) + n0
(0)✏+O(✏2), whence the solution

is represented by the Taylor expansion on [0, ✏]. In our algorithm, we choose ✏ = 1⇥10

�5.
By solving the first crossing problem of m and n, we are able to find numerical values of
q⇤ and n(q⇤) given a set of model parameters.

Now we consider the numerical algorithm to solve g with quantities q⇤ and n(q⇤).
Recall from Theorem 5.1.9 that g solves the following non-linear second order differential
equation on [0, z⇤],

g00 =
� 

1

(z, g, g0)� sgn(1�R)

p

 
1

(z, g, g0)2 � 4 
2

(z, g, g0)

2z2
, (6.2)

subject to the conditions at z = 0 and z = z⇤ = q⇤/(1� q⇤),

g(0) =

✓

b
1

b
4

R

◆�R

, (6.3)

g(z⇤) =

✓

b
1

b
4

R

◆�R

m(q⇤)�R

(1 + z⇤)1�R, (6.4)

g0(z⇤) = (1�R)

✓

b
1

b
4

R

◆�R

m(q⇤)�R

(1 + z⇤)�R. (6.5)
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Figure 6.1: Stylised plot of g for R < 1 by MATLAB solver ode23tb. From the figure,
the solution is diverging as it approaches z = 0 and it fails to meet the condition that
g(0) = (b

1

/(b
4

R))

�R < g(z⇤).

Here  
1

and  
2

are functions defined by

 
1

(z, g, g0) = b
4

R



g � 1

1�R
zg0(z)

�

R�1
R

� [b
1

+ b
2

R(1�R)]g + (b
3

+ 2R)zg0(z),

 
2

(z, g, g0) = b
4

R[2Rzg0(z)�R(1�R)g]



g � 1

1�R
zg0(z)

�

R�1
R

� [2Rb
1

+R(1�R)b
3

]gzg0(z)

+

⇥

2Rb
3

�R2b
2

+R2

⇤

(zg0(z))2 + b
1

R(1�R)g2.

Note that the ordinary differential equation (6.2) subject to (6.3), (6.4) and (6.5)
can be solved either as an (backward) initial value problem or a boundary value problem.

However, MATLAB (solvers for stiff ordinary differential equations, including
ode45, ode23, ode23s, ode23tb) fails to provide a convergent solution (with g(0) =

(b
1

/(b
4

R))

�R) by computing (6.2) backwards with initial conditions (6.4) and (6.5).
This is because of the stiffness [47] of (6.2) and the singularity of (6.2) at z = 0. See
Figure 6.1.

We then consider the problem in (6.2) as a boundary value problem on [0, z⇤]

with boundary conditions (6.3) and (6.4). In order to avoid the singularity at z = 0,
we consider the problem on [✏, z⇤] instead of [0, z⇤] for small ✏ > 0. Since numerical
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evidence shows that g(z⇤) is increasing in g0(✏), we implement the following algorithm
which adopts the idea from the shooting method [51].

1. fix ✏ = 1⇥ 10

�7 and let g(✏) = (b
1

/(b
4

R))

�R

2. choose a lower bound and an upper bound for g0(✏), denote as 
l

and 
u

, such that

given g0(✏) = 
l

, the solution of (6.2) gives g(z⇤) <
⇣

b1
b4R

⌘�R

m(q⇤)�R

(1 + z⇤)1�R;

for g0(✏) = 
u

, the solution of (6.2) gives g(z⇤) >
⇣

b1
b4R

⌘�R

m(q⇤)�R

(1 + z⇤)1�R

3. let [
l

,
u

] be our search space and conduct a binary search to find the target
value of g0(✏) such that the solution of (6.2) as an initial value problem with initial
conditions (g(✏), g0(✏)) satisfies

�

�

�

�

�

g(z⇤)�
✓

b
1

b
4

R

◆�R

m(q⇤)�R

(1 + z⇤)1�R

�

�

�

�

�

 1⇥ 10

�3 (6.6)

4. for accepted g0(✏), further examine the following inequality
�

�

�

�

�

g0(z⇤)� (1�R)

✓

b
1

b
4

R

◆�R

m(q⇤)�R

(1 + z⇤)�R

�

�

�

�

�

 1⇥ 10

�3. (6.7)

If the inequality holds, then accept the value of g0(✏). Otherwise, decrease the
threshold in condition (6.6), e.g.

�

�

�

�

�

g(z⇤)�
✓

b
1

b
4

R

◆�R

m(q⇤)�R

(1 + z⇤)1�R

�

�

�

�

�

 1⇥ 10

�5,

and repeat from step (2) to start another binary search for g0(✏) with more accuracy

Numerical evidence shows that once the condition (6.6) is satisfied, the other
condition (6.7) is satisfied as well. The algorithm is implemented by the stiff solver
ode23tb with tolerance 1⇥ 10

�7.

6.2 dependence of critical threshold z⇤ on b
1

, b
2

, b
3

and R

In this section we focus on the critical ratio z⇤ = q⇤/(1 � q⇤) of endowed wealth to
liquid wealth at which sales occur. From Figure 6.2, 6.3 and 6.4, we observe that z⇤

is decreasing in b
1

and b
2

, and increasing in b
3

, which is consistent with the results in
Lemma 5.3.4. The monotonicity in b

3

is straightforward to interpret, and has a clear
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intuition. The greater the effective Sharpe ratio the more valuable the holdings in the
endowed asset, and the longer the agent should hold units of it in her portfolio. The
dependence on b

1

is also as expected. The greater the effective discount parameter, the
greater the incentive to bring forward consumption which needs to be financed by sales
of the risky asset — thus the endowed asset is sold sooner. The dependence on b

2

is less
easy to interpret, but the lemma and its corollary show that there is monotonicity in this
parameter also. Finally, as the risk aversion of the investor increases, she is less tolerant
to the risk of the endowed asset and hence more inclined to sell Y earlier.

6.3 dependence of g and p on b
1

, b
3

and R

The value function as expressed via g in the first non-degenerate case, where there is
a finite exercise ratio, is plotted in Figures 6.5 and 6.6 under different values of b

1

and
b
3

. These figures show that g is concave and increasing in z for R < 1. Further, g

is increasing in b
3

and decreasing in b
1

. As b
3

increases, the non-traded asset becomes
more valuable. Hence, the investor can choose optimal sale and consumption strategies
which lead to a larger value function. Similar arguments explain the monotonicity of g
in b

1

. Observe also that for different values of b
3

, we have g starts at the same point.
This corresponds to the value function when ✓

0

= 0 whereby consumption is financed by
initial wealth and investment in the risky asset, and the problem is the Merton model
with one risky asset. In this case, Theorem 1.2.5 implies g(0) = (b

1

/(b
4

R))

�R.
The certainty equivalent value p = p(x, y, ✓) of the holdings in the endowed asset is

plotted in Figure 6.7, 6.8 and 6.9. From the graphs, the indifference price is increasing in
the number of holdings ✓, decreasing in b

1

and increasing in b
3

which are consistent with
Corollary 5.3.5. The monotonicity in b

3

is as expected. For a larger discount factor b
1

,
it is more incentive to sell the endowed asset sooner so as to bring forward consumption.
Then there is less opportunity for the benefits from the expected growth of the endowed
asset to be enjoyed, thus reducing its value. The non-monotonicity of the indifference
price in risk aversion is also observed here, which follows from a similar argument in
Section 4.4.

6.4 Optimal consumption and portfolio process C⇤ and ⇧⇤

Figure 6.10 and 6.11 plot the optimal consumption process as a function of the endowed
units ✓ and show that the optimal consumption increases in ✓: as the size of the holdings
of the non-traded asset Y increases, the agent feels richer and hence consumes at a
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faster rate. For ✓ = 0, Theorem 1.2.5 implies the optimal consumption is C(x, y, 0) =

xg(0)�
1
R

=

b1
b4R

x, which is strictly positive. The graphs also show that the optimal
consumption C⇤ is increasing in b

1

and not monotone in b
3

. A larger discount factor
makes the agent more incentive to consume quicker rather than slower. As a result, the
consumption rate is increasing in b

1

. The same argument in Section 4.3 explains the
non-monotonicity of the optimal consumption in b

3

here.
Figure 6.12 plots the optimal portfolio ⇧⇤ as a function of wealth x. Since the

optimal portfolio process ⇧⇤ is characterised by the original parameters rather than the
derived constants b

i

, it is hard to analyse the dependence on model parameters. From
the graph, we observe that the optimal portfolio process ⇧⇤ is increasing in wealth x.
The more wealth the agent owns, the more investment she can make into the risky
asset. Here parameters are chosen such that we are in the second non-degenerate sce-
nario (b

3

� b
3,crit

(b
1

, b
2

, R) and b
3

< b1
1�R

+ b
2

R if R < 1). The picture shows that
lim

x!0

⇧

⇤
(x, 1, 1) > 0, which implies even when liquid wealth is zero, it is not optimal

to invest zero amount in the risky asset. Adverse movements in the price of the financial
asset have a negative impact on liquid wealth, and must be financed through sales of the
endowed asset. Conversely, beneficial movements in the price of the financial asset will
generate positive liquid wealth for the agent.
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6.5 Discussion in terms of original parameters

In the preceding sections we have discussed the comparative statics in terms of the derived
parameters. In order to understand the comparative statics with respect to the original
parameters r, �, µ, �, ↵, ⌘ and ⇢ we need to consider how the auxiliary parameters
depend on these original parameters.

The parameters � (discount rate) and ↵ (mean return on the endowed asset)
only affect one of the parameters (b

i

)

i=1,2,3

, and hence the comparative statics for these
parameters are straightforward. However, the parameters r, µ, �, ⌘ and ⇢ each enter
into the definitions of b

1

, b
2

and b
3

. Hence the comparative statics with respect to
these parameters is more complicated, and in general there is no monotonicity of the
critical ratio or the certainty equivalent value with respect to any of these parameters.
For example, an increase in the volatility ⌘ of the endowed asset decreases b

1

and may
increase or decrease the value of b

2

or b
3

depending on the values of other parameters.
Thus, the effects of a change in the volatility of the endowed asset on the critical ratio
or on the certainty equivalent price are generally mixed.

We restrict our comments on the consumption and investment rate to the following
observation about the critical ratio and the Merton line.

Consider an investor who is free to buy and sell units of Y with zero transaction
cost. This is the Merton problem with two risky assets and we know from Theorem 1.2.5
that it is optimal for the agent to invest a constant fraction (⇣��⇢)

R⌘(1�⇢2) =
b3
2R

of their total
wealth in the risky asset.

In contrast, the constrained investor chooses to keep the fraction of his total
wealth invested in the endowed asset below q⇤, i.e. to choose ⇥

t

to ensure that Y

t

⇥

t

X

t


z⇤ =

q

⇤

1�q

⇤ = z⇤, or equivalently Y

t

⇥

t

X

t

+Y

t

⇥

t

 q⇤. But, it follows from Lemma 5.3.3 that
q⇤ > b3

2R

. Hence the ‘no-sale’ region for the constrained investor contains in its interior
the ‘Merton line’ of portfolio positions for the unconstrained investor.
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Chapter 7

Conclusions and future work

7.1 Results achieved

We have studied the optimal consumption and investment problems with infinite trans-
action costs with both a single risky asset and multiple risky assets. These problems
are equivalent to (infinitely divisible) non-traded asset sale problems in which one of the
risky assets cannot be purchased.

We introduce a new solution technique that manages to reduce the problem into
a boundary crossing problem for the solution of a first-order ordinary differential equa-
tion. This first crossing problem has four types of solutions and each type of solution
corresponds to a type of optimisation problem. Further, the optimal strategies, the value
function and the indifference price of the optimisation problem can all be constructed
via the first-order ODE and the solution to the boundary crossing problem.

In the single-asset case, we give a more complete analysis of the problem compared
with the results by Davis and Norman [13] thanks to the special structure and the
solution technique. We also conduct the comparative statics based on the new solution
technique and numerically compute the optimal strategies, indifference price and the
value function from the solution of the ODE and the solution to the boundary crossing
problem. After analysing the dependance of these quantities on model parameters, we
find some surprising results. For instance, the optimal consumption is not monotone in
the drift of the endowed asset and the indifference price is not monotone in risk aversion.

In the multiple-asset case where there are limited results in the literature, we
manage to completely characterise the different possible behaviours of the agent. Though
the multi-dimensional setting brings new challenges, the solution technique allows us to
prove the monotonicity of the critical exercise threshold and the indifference price in
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model parameters. Finally, we conduct the comparative statics to analyse the dependance
on derived constants. The results in the single-asset case are recovered and we also
find that different to the single-asset case, the optimal wealth process at zero is not an
absorbing state for a certain combination of parameters.

7.2 Future work

It is of great interest to extend our work into the following directions.

1. A comparison between the divisible asset sale problem (this thesis) and the indi-
visible asset sale problem by Henderson and Hobson [31].

It would be extremely interesting to compare the conditions (on model parameters)
of different types of behaviours, the optimal strategies and certainty equivalent val-
ues both analytically and numerically to understand the impact of the indivisibility.

2. Formulating and computing the cost of indivisibility.

Recall the definition we make in Section 4.5 about the cost of illiquidity. It is
natural to extend this definition to the cost of indivisibility by comparing the
value functions in the divisible case and the indivisible case. It is also worth efforts
conducting the comparative statics of the cost of indivisibility on model parameters.

3. A different set of admissible strategies

One promising direction of future work is to consider a different set of admissible
strategies, which allows wealth to be negative. We would expect similar types of
optimal behaviours of the agent. One conjecture is that the ‘gap’ between ` and m

in Chapter 5 disappears when borrowing is allowed and we will consider on [0, q̂]

instead of [0, 1], for some q̂ > 1 such that `(q̂) = m(q̂).

4. Another price process for the endowed asset

In our problems, the price of the endowed asset is assumed to follow a geometric
Brownian motion. It would be interesting to work with a different price dynamics of
the endowed asset and compare how the distributions of the endowed asset impact
the types of behaviours and the optimal strategies of the agent. For instance, in
the literature of non-traded asset, Miao and Wang [42] assume the non-traded asset
follows an arithmetic Brownian motion.
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