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�Moment-rotation behaviour of pinned joints in pultruded frames is characterised.
� Joint stiffness is more variable than moment resistance.
� Both initial stiffness and moment classify the joints as nominally pinned.
� A single specimen measurement of stiffness is unsuitable for use in frame analysis.
� FRP web cleats can crack before the mid-span deflection of a beam exceeds span/340.
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a b s t r a c t

This paper presents the test results to characterise the moment-rotation response of nominally pinned
joints in frames of pultruded shapes. Mimicking conventional steel construction the major-axis beam-
to-column joints are formed using pultruded FRP web cleats having steel bolting. There are two joint con-
figurations with either a single row of three or two bolts per cleat leg. Testing is conducted on nominally
identical specimens to statistically quantify the key joint properties. The average stiffness of all joints at
damage onset is found to be 50% more variable than the average moment resistance. The presence of 70%
difference between the minimum and maximum initial stiffness measured makes a single specimen mea-
surement for stiffness unsuitable for frame analysis. The initial stiffness of the two joint configurations
classifies them to be nominally pinned. No appreciable difference in characteristics for the three and
two bolt configurations is found; the middle-bolt is unnecessary as two bolts give same results. The most
important finding is that delamination cracks, at the top of the FRP cleats, could initiate before the mid-
span vertical deflection of a simply supported beam with uniformly distributed load exceeds span/340.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Fibre reinforced polymer (FRP) materials have seen significant
growth over two decades in structural engineering applications,
such as in building and bridge projects [1]. These construction
materials have properties that make them attractive in engineering
structures [2]; they are relatively strong, lightweight, and offer
electromagnetic transparency, and durability and corrosion resis-
tance [1–5]. A factor preventing the construction industry from
using pultruded construction more widely has been lack of agreed
design guidelines, and less knowledge and less confidence with
using FRPs instead of traditional construction materials [1].

Standard pultruded shapes mimic their counterparts in struc-
tural steelwork and are made by the pultrusion process [1]. They
consist of E-glass fibre reinforcement (layers of unidirectional rov-
ings and continuous mats) in a thermoset (e.g. polyester or viny-
lester) resin based matrix. Pultruded FRP has a density about one
quarter of steel [3–5]. Longitudinal tensile strength can be over
200 N/mm2 and this is comparable with structural steel. The longi-
tudinal modulus of elasticity, at 20 to 30 kN/mm2, is up to 10 times
lower, whereas the modulus of elasticity perpendicular to the
direction of pultrusion is one-quarter to one-third of the longitudi-
nal value [3–5]. Due to low modulus the role of a deflection limit is
the key to the design of beams.

This paper relates to simple braced frames with simple shear
connections between beams and columns, and columns and bases.
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Fig. 2. Location of instrumentation in nominally pinned beam-to-column joint tests
(all dimensions are in mm).
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To transfer lateral loading to the ground vertical bracing is
required. Joint detailing in Figs. 1–5 uses steel bolting and corre-
sponds to the engineering drawings in [4]. Justification for not per-
mitting adhesive bonding as a method of connection is lack of
understanding of its behaviour [5], its unsuitability for connecting
steel-shaped FRP components [6–8], and a desire to offer design
guidelines for frames that are demountable for reuse and recycling.

The traditional approach in steel construction is to assume
frame joint behaviour as either nominally pinned or fully-rigid.
In reality, all joints have a moment-rotation (M-/) characteristic
that lies between these two ‘theoretical’ extremes, and this intro-
duces semi-rigid action into the structural engineering consider-
ations [9]. In the absence of numerical and theoretical methods,
a joint’s M-/ curve is determined by full-size laboratory testing
[10–14]. Turvey and Cooper [6] reviewed the results of 59 individ-
ual tests to determine the M-/ characteristics of details for pinned
and semi-rigid joint properties. They [6] found that only two pairs
of the 59 joints were nominally identical. These authors suggested
more testing on nominally identical specimens using identical test
set-ups. This issue is addressed by evaluating the results presented
later.

The rotational stiffness of beam end connections can be utilised
to quantify the increase in load carrying capacity of beams. Turvey
[15] developed closed-form equations for vertical deflection, which
are functions of initial rotational stiffness, Si. Values for Si were
determined from the gradients of M-/ curves reported in refer-
ences [8,11–13]. Because none of the tests from the 1990s had
more than one batch of two identical specimens the variability in
joint stiffness was not adequately accounted for. Simple pultruded
joints can be expected to possess a relatively low initial rotational
stiffness that is unlikely to make a major contribution to increasing
load capacity in beams.

It will be instructive to summarise previous experimental stud-
ies with web-cleated joints. Bank et al. [10] reported the first M-/
test results. They used 203 mm deep shapes with 152 mm pultrud-
ed leg-angle cleats. Mottram [8] proposed ten recommendations
based on characterising web-cleated joints with 203 deep shapes
and no gap between beam-end and column flange. The authors
concluded that adhesive bonding alone cannot be used to connect
cleats to frame members, and to increase joint rotation at damage
onset, there should be a gap of 6 to 12 mm between a beam-end
and column face. In another test series, Mottram and Zheng [16]
tested simple joints with 254 mm deep WF shapes and including
the gap of 10 mm. They concluded that the ten recommendations
in [8] were applicable to the joints with 254 mm deep profiles.
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Fig. 1. Cruciform test configuration (all dimensions are in mm).
Additional individual tests with web-cleated joints are reported
by Turvey and Cooper [18,19] and Turvey [20]. None of the joint
details examined had a batch with more than two nominally
identical joints.

The aim of this paper is to characterise the key joint properties
by testing nominally identical joints under identical test condi-
tions. Specimen repetition ensures that variations in the test
results are taken into account. Presented will be data from 16
major-axis joints with web cleats (10 with three bolts per cleat
and six for the two-bolt case). Moment-rotation behaviour, failure
modes and joint properties are obtained and analysed. This
research helps to bridge the gaps in knowledge and understanding
[21] of overall structural response of simple beam-to-column
joints of FRP profiles.
2. Test configuration and test procedure

Figs. 1–5 show a major-axis beam-to-column joint connected to
a central column through a pair of web cleats. The experimental
set-up follows [8,9,16] with end vertical loading applied to two
back-to-back cantilever beams. Each specimen therefore has two
nominally identical joints. The beam and column of 1500 mm
length comprise WF section of size 254 � 254 � 9.53 mm from Pul-
tex� SuperStructural 1525 series of Creative Pultrusions [3]. Web
cleats, of height 192 mm, are cut from an equal leg-angle of size
100 � 100 � 9.53 mm [3]. The cleats have their unidirectional
roving reinforcement parallel to the direction of the shear force.

The longitudinal centreline of the beams is set at a vertical
distance of 1094 mm from the base of the column. This height is
dictated by the dimensions of hydraulic jacks and base fixtures.
The bottom end of the column is placed on a steel rocker base
fixture, which allows ‘free’ in-plane rotation (in the plane of
Fig. 1) to justify the assumption of a pinned base. The reason for
using a pinned column base is to make sure that both Left and
Right beams are subjected to the same load.

2.1. Loading procedure and instrumentation

Load is applied through a hanger assembly and a ball bearing
(12.7 mm) placed in a hemi-spherical socket at the centre of a steel
loading plate illustrated in Fig. 1. This arrangement ensures vertical
alignment of the load with minimal axial force components. Load-
ing is applied at distances of 1016 mm from the column’s centre-
line. The distance of 1016 mm is dictated by the layout of the
anchor points on the strong floor, which are spaced at 406 mm cen-
tres. The applied force is measured by two tension load cells, each



Fig. 3. General test arrangement for beam-to-column joints.
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Fig. 4. Connection details for nominally pinned beam-to-column joint tests (all dimensions are in mm).

Fig. 5. Details of beam-to-column joint test Wmj254_2M16_FC.
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of 9 kN capacity, to a resolution of ±0.01 kN. Each specimen is stat-
ically loaded such that both (Left and Right) joints experience rota-
tion increments of about 2 mrad. This procedure is continued until
a delamination failure is observed at the top of web cleats. After
this damage onset, the rotation increment is increased to 5 mrad
until one of the joints rotates without moment increase.

The extent of permanent deformation and change in joint rota-
tional stiffness (S) are determined by unloading and reloading after
rotation / was above 12.8 mrad. S reported in the paper is for the
secant stiffness. Justification for choosing 12.8 mrad is that it is an
end rotation for a simply supported beam with uniformly distrib-
uted load having a central deflection (wc) of L/250, which is a
deflection limit for general public access flooring given in [17].
Testing continues until either joint resistance reduces or excessive
rotation could endanger specimen stability.

Locations of the instrumentation are shown in Figs. 2 and 3
shows a specimen under test. In the specimen labelling scheme,
L is for Left-side and R for Right-side in a pair of joints. Rotations
and displacements are measured, at each increment and after a
time lapse of five minutes, using clinometers and strain gauge
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based displacement transducers. Rotations are recorded to a reso-
lution of 0.02 mrad (linear to ±1% over a 10� range) and axial dis-
placements to ±0.01 mm. The Left and Right rotation is measured
by, respectively, clinometers C1 and C3. They are placed on the lon-
gitudinal axis of a beam and 130 mm from the end adjacent to the
column flange. The verticality of the column is measured by C2,
which is located at the intersection of the centroidal axes of the
beam and column members. The difference between beam and col-
umn rotations (i.e., C1–C2 and C3–C2) gives /.

Relative slip between a pair of web cleats and the beam is mea-
sured by four displacement transducers, designated in Fig. 2 as LTL,
LBL, LTR and LBR. The first letter, L, in label LTL denotes there is a
vertical separation between the two horizontal transducers, and
second and third letters denote Top bolt on Left-side of the speci-
men. The displacement transducers L1 and L2 measure the vertical
deflection of the beam at the loaded ends. While L3 and L4
measure vertical slip at the joints on the Left and Right sides.

Slip rotation has to be subtracted from the measured rotation,
to obtain / that is due to the prying action. To calculate the slip
rotation, /slip, we used the displacements measured by the two
transducers (e.g. LTL and LBL in Fig. 2) placed on web cleats near
top and bottom bolts (see Fig. 5). To determine /slip the following
geometric relationship is used:

/slip ¼ tan�1 lb� lt
l

� �
� 1000 ðmradÞ ð1Þ

where lt and lb are the horizontal slip measured by the LT and LB
pair of displacement transducers and l is the vertical separation of
128 mm between the centrelines of top and bottom bolts. Slip rota-
tion determined from Eq. (1) is subtracted from the measured rota-
tion to obtain the results reported in Section 3.
2.2. Connection detailing

Fig. 4 shows connection details, prepared in accordance with
drawings in the Strongwell Design Manual [4] and clauses in an
ASCE Pre-Standard [24]. Bolting is standard size steel bolts of
M16 grade 8.8 with standard / 35 mm by 3 mm thick steel wash-
ers. The portion of bolt shaft bearing onto FRP material is
unthreaded. Bolts are tightened to the snug-tight condition,
achieved by tightening the bolt to full effort of a worker using a
hand operated wrench [27]. This level of bolt tightening is achieved
as per guidance for the snug-tight condition in [28–29].

In the test series there is one important deviation from the
detailing in [4,24], the M16 steel bolts make a nearly ‘tight-fit’ with
the pultruded beams. The justification for this change from a
1.6 mm clearance hole size is as follows. In previous work Mottram
and Zheng [16] observed the slip rotation as high as 22 mrad due
having a hole clearance. Clearly, this slip rotation has to be sub-
tracted from the measured / to establish the actual rotation due
to the prying action. In practise the magnitude of the available slip
rotation will depend on how cleat connections are assembled. One
extreme situation can be when the relative displacement between
top and bottom bolt levels and the beam web and the cleat pair is,
in opposite directions, 1.6 mm. Assuming lt equal to �1.6 mm and
lb equal to +1.6 mm Eq. (1) gives a maximum slip rotation of
25 mrad. The other extreme scenario is when bolts are exactly
positioned in the holes such that, before bearing, no horizontal slip
can occur at top and bottom bolt levels (i.e. lt = lb = 0.0 mm). While,
slip rotation has a beneficial effect of increasing / before damage
onset, it cannot be relied upon in design because it might not be
available. The no slip condition has been evaluated in this study
because it poses the worst practical design situation that needs
to be considered when preparing clauses for the simple joints of
pultruded FRP material.
To achieve almost tight-fitting bolting a CNC drilling machine
was used for precision hole positioning and size. In beams the
diameter is 16 mm, while for ease in assembling, holes in column
flanges are 17 mm diameter for a 1 mm clearance. The larger sized
holes in the column did not affect the joint’s M-/ response because
slippage for these connections is in the vertical plane. Despite the
tight-fitting bolts on the beam side there was limited slip rotation
because of the variable diameters in off-the-shelf M16 bolts, which
were measured as 15.6 to 15.9 mm. For the worst case scenario,
when the web cleat displaces in opposite directions, the maximum
/slip could be 6.5 mrad.

2.3. Joint configuration

This test series consists of two joint configurations [4] with a
single row of either three or two bolts per cleat leg. To form the
two-bolt configuration the central bolt in Fig. 4 was removed (see
Fig. 5). Joints having three bolts are denoted by Wmj254_3M16_FC
and having two bolts by Wmj254_2M16_FC. Labelling is for a
254 � 254 � 9.53 mm web-cleated beam and major axis column,
with a single row of 3 M16 or 2 M16 bolts in a FRP web cleat. All
other test conditions are the same for the two- and three-bolted
configurations.
3. Results and discussion

The most important feature is that the joint characterisation is
conducted with more than one pair of nominally identical joints.
Previously, similar testing [8,11–13,16,18–20] has been used to
characterise a batch comprising of only a nominally identical pairs
of joints. For Wmj254_3M16_FC five specimens (10 joints) are
characterised and with Wmj254_2M16_FC, after finding that the
test results with two bolts are similar to three bolts, the number
of specimens is three (six joints).

3.1. Joint properties

Measured joint properties are given in Tables 1 and 2, after /slip is
compensated for. For clarity the minimum and maximum batch val-
ues per property are highlighted in bold. In the tables column (1)
gives the specimen labelling. Initial joint properties, when the
M-/ response is linear, are given in columns (2) to (4), and are rep-
resented by initial moment (Mi), initial rotation (/i) and initial stiff-
ness (Si = Mi//i). Similarly, the damage onset properties, when
material failure is first observed, are given by Mj, /j and Sj = (Mj//j)
in columns (5) to (7). Column (8) presents the maximum moment,
Mmax, and corresponding maximum rotation, /max, is reported in
column (9). The Mean and Coefficient of Variation (CV) of each prop-
erty are given in the bottom two rows of the tables.

For all 16 specimens the mean Mj is about 1 kNm, and the
CV < 10%. From column (8) the average Mmax for three- and two-
bolted configuration is 1.86 and 1.76 kNm, with CV < 7%, which
shows that the moment resistance does not vary much within,
and between the two batches. What does have significant variation
is the mean /max with a range of 30 to 69 mrad. CVs in Si are 17%
and 7% for three- and two-bolts. The higher variation in initial stiff-
ness only exists in the linear elastic range of M-/, when damage in
web cleats is absent. To support this finding we observed that the
CVs for Sj are similar, at 11% and 10% for the three- and two-bolt
configurations. One finding from testing more than two joints per
detailing is that stiffness is more variable than moment.

One objective of testing was to establish that joint properties
with three- or two-bolts would be approximately the same.
Because they are, a second key finding is that the third bolt is
not required. The first step in developing good working practise



Table 1
Joint properties for beam-to-column joint tests Wmj254_3M16_FC (compensated for slip).

Specimen label (1) Mi (kN m)
(2)

/i (mrad)
(3)

Si = Mi//i (kN m/rad)
(4)

Mj (kN m)
(5)

/j (mrad)
(6)

Sj = Mj//j (kN m/rad)
(7)

Mmax (kN m)
(8)

/max (mrad)
(9)

Wmj254_3M16_FC1.1 (Left) 0.52 4.8 108 1.02 13.3 76 1.77 69
Wmj254_3M16_FC1.1 (Right) 0.48 5.1 94 1.07 16.2 66 1.83 53
Wmj254_3M16_FC1.2 (Left) 0.49 3.9 126 1.03 12.9 80 1.96 34
Wmj254_3M16_FC1.2 (Right) 0.51 3.2 161 1.04 10.4 100 1.97 40
Wmj254_3M16_FC1.3 (Left) 0.48 3.5 137 1.13 13.5 83 1.92 36
Wmj254_3M16_FC1.3 (Right) 0.49 3.4 142 1.13 12.5 90 1.93 44
Wmj254_3M16_FC1.4 (Left) 0.49 4.8 102 1.06 12.7 84 1.82 31
Wmj254_3M16_FC1.4 (Right) 0.52 4.3 121 1.08 12.7 85 1.84 31
Wmj254_3M16_FC1.5 (Left) 0.45 4.2 107 0.87 9.7 89 1.77 34
Wmj254_3M16_FC1.5 (Right) 0.45 4.1 110 0.91 9.7 94 1.80 32

Mean of 10 0.49 4.1 121 1.03 12.4 85 1.86 40
CV 5.1% 16% 17% 8.2% 16% 11% 4.1% 30%

Table 2
Joint properties for beam-to-column joint tests Wmj254_2M16_FC (compensated for slip).

Specimen label (1) Mi (kN m)
(2)

/i (mrad)
(3)

Si = Mi//i (kN m/rad)
(4)

Mj (kN m)
(5)

/j (mrad)
(6)

Sj = Mj//j (kN m/rad)
(7)

Mmax (kN m)
(8)

/max (mrad)
(9)

Wmj254_2M16_FC1.1 (Left) 0.23 1.7 139 0.97 17.0 57 1.89 48
Wmj254_2M16_FC1.1 (Right) 0.23 1.5 153 1.01 15.1 67 1.91 47
Wmj254_2M16_FC1.2 (Left) 0.27 1.9 142 1.00 13.1 76 1.75 37
Wmj254_2M16_FC1.2 (Right) 0.26 1.9 137 1.03 14.7 70 1.78 61
Wmj254_2M16_FC1.3 (Left) 0.25 2.0 125 0.94 13.7 69 1.60 64
Wmj254_2M16_FC1.3 (Right) 0.25 1.8 143 0.97 12.9 75 1.62 30

Mean of 6 0.25 1.8 140 0.99 14.4 69 1.76 48
CV 6.5% 10% 7% 3.3% 11% 10% 7.3% 27%
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can be for Strongwell [4] to remove drawings for joints requiring
three bolts per cleat leg.
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Fig. 6. Moment-rotation curves for Wmj254_3M16_FC1.5 (with slip rotation).
3.2. Moment-rotation curves

M-/ curves for specimens Wmj254_3M16_FC1.5 and
Wmj254_2M16_FC1.2, with rotation slip, are presented in Figs. 6
and 7. Plotted in Figs. 8 and 9 are the same results after /slip has
been removed. The Left-side is given by the solid line curve and
the Right-side by the dashed line curve. M and / values at damage
onset are represented in the figures by the solid circle symbols.
When two joint values are given in the following discussion the
first is for the Left-side and the second for the Right-side.

For Wmj254_3M16_FC1.5 the slip rotations at damage onset
are 6 and 0.8 mrad. Because this bolt slippage is present, the two
M-/ curves in Fig. 6 are quite different in shape, and /j is 15.7
and 10.5 mrad. This compares with 9.7 mrad (for both joints) in
Fig. 8 when /slip is accounted for. When slippage is involved, the
curves in Fig. 6 give the impression that the Left joint has a nonlin-
ear response from a low M of 0.25 kNm. Because there was no
delamination damage at this moment the nonlinearity is seen to
be solely due to slip rotation. When /slip is removed, the M-/
response of both joint sides is found to be equivalent, until the
onset of FRP failure at /j.

The existence of /slip in Wmj254_2M16_FC1.2. (Fig. 7) increases
/j to 15.2 and 18 mrad. Following slip compensation, the pair of /js
are lower at 13.1 and 14.7 mrad (Fig. 9). This behaviour might lead
the misinformed to misinterpret /j that can be used when
establishing a design limit for central deflection (wc) of a simply
supported beam with a uniformly distributed load. The saw-tooth
shape of the curves in Figs. 6–9 is due to M-/ readings being
taken immediately after load application and after a lapse of
five minutes. The drop in M indicates that the web cleats experi-
enced creep relaxation and, later, also progressive damage.

In Fig. 8 the response for the three-bolt configuration remains,
approximately, linear elastic until the cleats start to delaminate.
The M-/ curves become non-linear for moment >0.5 kNm and
the damage started when /j is 9.7 mrad. To assess the extent of
stiffness reduction, specimen Wmj254_3M16_FC1.5 was unloaded
and reloaded after there was material damage. The results of these
stages in testing are shown in Fig. 8.

Tables 1 and 2 indicate that M-/ characteristics for two- and
three-bolts are (very) similar. The discussion to follow is for the
two-bolted configuration. The moment-rotation curves for
Wmj254_2M16_FC1.2 in Fig. 9 show both linear elastic and non-
linear responses. Linearity is found for M to only 0.27 kNm, which
is half of what is observed with three bolts. Most importantly, Mj

at 1 kNm is the same for both three- and two-bolted cleats.
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Fig. 7. Moment-rotation curves for Wmj254_2M16_FC1.2 (with slip rotation).
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Fig. 8. Moment-rotation curves for Wmj254_3M16_FC1.5 (compensated for slip).
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Fig. 9. Moment-rotation curves for Wmj254_2M16_FC1.2 (compensated for slip).
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Fig. 10. Close-up of damage onset near the fillet radius of a pair of web cleats in
specimen Wmj254_3M16_FC1.5 (viewed from above).
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Fig. 11. Ultimate failure of a joint in specimen Wmj254_3M16_FC1.5 (viewed from
above).
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3.3. Failure modes

All 16 joints (for eight (Left and Right) specimens) ultimately
failed due to extensive delamination damage at the top of web
cleats and near the fillet radius, as shown in Figs. 10 and 11. Audi-
ble acoustic emission provided the first evidence of the hairline
(delamination) cracks seen in Fig. 10. These cracks are found to
run along an interface between a layer of mat and unidirectional
roving reinforcement. Fig. 10 shows that, through the leg-angle
thickness, these layers are not at constant positions, and this test
variability partially explains the variation in the rotation results
(/i, /j and /max) reported in Tables 1 and 2. After hairline cracks
appeared, application of further deformation widens and lengthens
them, and created new visible surface cracks. Because extensive
damage reduced the moment capacity, one joint side would rotate
more than the other, as seen in Fig. 12.
3.4. Serviceability rotation limit

Eurocode 3 for design of steel structures [22] specifies service-
ability limits for deflections of beams. In the UK [22] the limit in
steel buildings for vertical deflection (wc) for beams carrying plas-
ter or other brittle finish is L/360 and for other beams it is L/200.
From the Eurocode 5 [23] these limits for timber beams are
L/250 and L/150, respectively. Creative Pultrusions Inc. [3] and
Strongwell [4] have tabulated load tables for 8 m span beams with
a maximum wc of L/180 and L/100, respectively. These Design
Manual values [3–4] are not specified by the two pultruders to
be used as serviceability limit state deflection limits.

The required (serviceability) rotation, for a simply supported
beam subjected to a uniformly distributed load, is 12.8, 21 or
32 mrad for a wc of L/250, L/150 or L/100, respectively. Comparing
these ‘theoretical’ rotations with the measured /js in Tables 1 and
2 shows that the cleat connections will have delamination cracks
before wc reaches L/150. Combining the 16 test /js the mean /j

at damage onset is 13.1 mrad, and this rotation limit would suggest
that the L/250 limit is acceptable. Annex D in Eurocode 0 [25] is
used to compute a characteristic damage rotation as 9.4 mrad
(from Mean – 1.82 � Standard deviation, with the CV unknown).
This /j value corresponds to a relatively low wc of L/340 when
web-cleated joints might experience delamination failure. For
applications of pultruded FRP frames in chemically aggressive
environments, a deflection limit of L/250 could be too liberal.

Providing the working environment is not aggressive, a deflec-
tion limit on wc of L/250 (for /j = 12.8 mrad) should be acceptable
with the (two-bolted) joint configuration illustrated in Fig. 4. Since
pultruded frames are often commissioned because the FRP material
is corrosion resistant [1–5], the test results in Tables 1 and 2 suggest
that the limit on wc should be specified at L/340 (for /j = 9.4 mrad).
With this limit there would be confidence for an absence of hairline
cracks in FRP cleats for simple joints under service loading.



Fig. 12. Excessive joint rotation (/max P 37 mrad) post-test with specimen Wmj254_2M16_FC1.2 (results in Table 2).
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3.5. Classification of joints

It is useful to know if the rotational stiffnesses for /i in Tables 1
and 2 are in the range that classifies the joints as nominally pinned.
Since classification is independent of the construction material the
scheme for steel joints in [26] is acceptable. From Part 1–8 of Euro-
code 3 the initial rotational stiffness Sj,ini, at service loads, is taken
as the index property. Here this stiffness measure is taken to be
Si = (Mi//i) in Tables 1 and 2. If Sj,ini L/EI 6 0.5 [26], with EI/L the
flexural stiffness of the beam member, the joint is classified as
nominally pinned. If we assume the beam has a span-to-depth of
20 the span (L) is 5.08 m for the 254 mm high (WF) section. Taken
from Chapter 3 of [3], the flexural modulus of elasticity (E) of the
SuperStructural section is 27.6 kN/mm2 and the major-axis second
moment of area (I) is 8.34 � 107 mm4. The limit on Sj,ini (Si) for the
joint to be classified as nominally pinned is about 230 kNm/rad.
Note that if the maximum (practical) span is taken to be 8 m, refer
to table for the 254 � 254 � 9.53 mm WF SuperStructural shape in
Chapter 4 of [3], the stiffness limit reduces to about 140 kNm/rad.
The measured range of Si reported in column (4) in Tables 1 and 2
is 94 to 161 kNm/rad. A further finding from this study is that the
joint detailing in Fig. 4 will classify it as nominally pinned.

4. Concluding remarks

A major contribution to the research reported is that more than
one pair of nominally identical joints are used to determine the joint
properties for pultruded frames. Test results are reported for a batch
of ten joints with three bolts per web cleat leg and for a batch of six
joints with two-bolts. Conclusions drawn from analysing the test
results are relevant to preparing design guidelines to have safe and
reliable web-cleated joints in simple frame construction.

The main findings are:

� Joint moments at loss of linear response, onset of material fail-
ure, and ultimate failure do not vary much for the three- and
two-bolted configurations. Joints failed due to extensive delam-
ination damage at the top of web cleats that initiated from the
fillet radius region.
� The non-constant positioning of the E-glass fibre reinforcing

layers thorough the thickness of the leg-angle, especially at
the fillet radius region, is seen to have a significant effect on var-
iability of joint rotation at damage onset. This variability in a
key joint property needs to be accounted for in guidelines for
design standards.
� There is much more batch variation in the secant stiffness with,
at damage onset, a variation of 52% and 33% for the three- and
two-bolted configurations. It is found that rotational stiffness is
more variable than the maximum joint moment (at 23%).
� Because the moment-rotation response for the two-bolt config-

uration is similar to the three bolted configuration the middle
bolt of the three can be removed without any loss or change
in structural performance.
� Although previous testing had shown that the joint rotation at

damage onset is higher when there is slippage in bolt clearance
holes this cannot be relied upon since it depends on where the
bolts are positioned with respect to the centres of their holes.
� Providing the working environment is not aggressive, when

delamination fracturing at top of pultruded FRP cleats can be
tolerated, a serviceability limit state vertical deflection limit of
span/250 is acceptable. For aggressive environments, a limit of
span/340 is found to be suitable.
� Evaluation of the test results using the classification procedure

in Eurocode 3 [26] shows that the joints are classified as nom-
inally pinned.
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