
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/67915

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/67811


Topics in Risk-sensitive stochastic control.

by

Amogh Deshpande

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Department of Statistics

September 2014



Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgments iii

Declarations iv

Abstract v

Chapter 1 Introduction. 1

1 Some key concepts in Stochastic Control. . . . . . . . . . . . . . . . 1

2 Risk-sensitive control optimization . . . . . . . . . . . . . . . . . . . 5
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Abstract

This thesis consists of three topics whose over-arching theme is based on risk-

sensitive stochastic control. In the first topic (chapter 2), we study a problem on

benchmark out-performance. We model this as a zero-sum risk-sensitive stochas-

tic game between an investor who as a player wants to maximize the risk-sensitive

criterion while the other player ( a stochastic benchmark) tries to minimize this

maximum risk-sensitive criterion. We obtain an explicit expression for the strate-

gies for both these two players. In the second topic (chapter 3), we consider a finite

horizon risk-sensitive asset management problem. We study it in the context of

a zero-sum stochastic game between an investor and the second player called the

“market world” which provides a probability measure. Via this game, we connect

two (somewhat) disparate areas in stochastics; namely, stochastic stability and risk-

sensitive stochastic control in mathematical finance. The connection is through the

Föllmer-Schweizer minimal martingale measure. We discuss the impact of this mea-

sure on the investor’s optimal strategy. In the third topic (chapter 4), we study

the sufficient stochastic maximum principle of semi-Markov modulated jump dif-

fusion. We study its application in the context of a quadratic loss minimization

problem. We also study the finite-horizon risk-sensitive optimization in relation to

the underlying sufficient stochastic maximum principle of a semi-markov modulated

diffusion.

v



Chapter 1

Introduction.

In this chapter, we first introduce the reader to the concept of sufficient stochastic

maximum principle. Here we provide this principle for a class of diffusion pro-

cess. We also introduce concepts of risk-sensitive stochastic control optimization,

Föllmer-Schweizer minimal martingale measure, stochastic stability, zero-sum two

player stochastic differential game and semi-Markov modulated jump diffusion in

that order. These ideas form key ingredients to the chapters to follow. Towards the

end of this chapter we briefly mention how each subsequent chapter relates to these

concepts.

1 Some key concepts in Stochastic Control.

The basic idea of stochastic control is to consider a family of controlled problems

by varying the initial state values and to derive some relations between the values

of the associated value function. This is called the dynamic programming prin-

ciple. This approach yields a certain nonlinear PDE of second order called the

the Hamilton-Jacobi-Bellman or (HJB) equation. The first fundamental theorem

in stochastic control describes what is known as “necessary” stochastic maximum

principle. Roughly speaking, it states that if there exists an optimal control, then

it is simply associated to the easier problem of finding the maximum of a certain

real function in a particular control space. On the contrary, the sufficient stochastic

maximum states that if a certain real function is maximum for a particular control,

then that control is optimal. This is also termed the sufficient stochastic maximum

principle and constitutes what is called the second fundamental theorem in stochas-

tic control. Thus in short the sufficient stochastic maximum principle validates the

optimality of the candidate solution to the HJB equations. We elaborate on the
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sufficient stochastic maximum principle for a controlled diffusion as follows. We

borrow the following material from Pham [31].

Consider a controlled SDE modeled in Rn as

dXs = b(Xs, us)ds+ σ(Xs, us)dWs, X0 = x; (1.1)

whereW is a d-dimensional Brownian motion defined on a probability space (Ω,F ,F =

(F){t≥0},P). u = (us) is a process (progressively measurable w.r.t to F) taking val-

ues in A ⊂ Rm. The measurable functions b : Rn×A→ Rn and σ : Rn×A→ Rn×d

satisfy a uniform Lipschitz condition in A : i.e. ∃K ≥ 0, ∀x, y ∈ Rn, ∀ a ∈ A,

|b(x, a)− b(y, a)|+ |σ(x, a)− σ(y, a)| ≤ K|x− y|. (1.2)

for 0 ≤ t ≤ T ≤ ∞.

Finite horizon problem.

We fix a finite horizon 0 < T < ∞. We denote by A the set of control processes u

such that

E

∫ T

0
[|b(0, ut)|2 + |σ(0, ut)|

2
]dt <∞. (1.3)

It is known that the conditions given by (1.2) and (1.3) ensure that for u ∈ A and

for any initial conditions (t, x) ∈ [0, T ] × Rn, existence and uniqueness of a strong

solution to the SDE (1.1) (with random coefficients) starting from x at s = t is

guaranteed.

Functional objective Let f : [0, T ]×Rn×A→ R and g : Rn → R be two measurable

functions where g is lower-bounded or g satisfies a quadratic growth condition given

by |g(x)| ≤ C(1 + |x|2) ∀ x ∈ Rn for some constant C independent of x. For

(t, x) ∈ [0, T ] × Rn we denote by A(t, x) the non-empty subset of controls u in A
such that

E[

∫ T

t
|f(s,Xt,x

s , us)|ds] <∞. (1.4)

We can then define the gain function:

J(t, x, u) = E[

∫ T

t
f(s,Xt,x

s , us)ds+ g(Xt,x
T )], (1.5)
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for all (t, x) ∈ [0, T ]×Rn and u ∈ A(t, x). The objective is to maximize over control

processes the gain function J by introducing the associated value function

ν(t, x) = sup
u∈A(t,x)

J(t, x, u). (1.6)

Remarks

1. Given an initial condition (t, x) ∈ [0, T ) × Rn, we say that û ∈ A(t, x) is an

optimal control if ν(t, x) = J(t, x, û)

2. A control process u of the form us = u(s,Xt,x
s ) for some measurable function u

from [0, T ]× Rn into A, is called a Markovian control.

Dynamic programming principle (DPP)

It is an important concept in the theory of stochastic control. It is formulated

in the context of controlled diffusion for the finite time horizon as follows:

Theorem 1. Let (t, x) ∈ [0, T ]× Rn. Then we have

ν(t, x) = sup
u∈A(t,x)

inf
θ∈Tt

E[

∫ θ

t
f(s,Xt,x

s , us)ds+ ν(θ,Xt,x
θ )] (1.7)

where Tt is the set of stopping times valued in [t, T ]. The interpretation of the DPP

is that the optimization problem can now be split in two parts: an optimal control

on the whole time interval [t, T ] may be obtained by first searching for an optimal

control from time θ given the state value Xt,x
θ , i.e compute ν(θ,Xt,x

θ ) and then max-

imizing over controls on [t, θ] the quantity E[
∫ θ
t f(s,Xt,x

s , us)ds+ ν(θ,Xt,x
θ )].

The HJB equation is the infinitesimal version of the dynamic programming

principle: it describes the local behavior of the value function when we send the stop-

ping time θ to t in (1.7). The HJB equation is also called the dynamic programming

equation or DPE and is given by,

−∂ν
∂t

(t, x)−H(t, x,Dxν(t, x), D2
xν(t, x)) = 0 ∀ (t, x) ∈ [0, T )× Rn, (1.8)

where for (t, x, p,M) ∈ [0, T )× Rn × Rn × Sn

H(t, x, p,M) = sup
a∈A

[b(x, a) · p+
1

2
tr(σσ

′
(x, a)M) + f(t, x, a)]

ν(T, x) = g(x) ∀ x ∈ Rn. (1.9)

The function H is called the Hamiltonian of the associated control problem. The

crucial step in the classical approach to dynamic programming consists of proving

that given a smooth solution to the HJB equation, this candidate coincides with
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the value function. As stated earlier, this result is called the verification lemma and

allows us to obtain an optimal Markovian control as a byproduct. Given the diffusion

dynamics presented earlier, the following would be the corresponding verification

lemma.

Let C1,2([0, T )× Rn) be the space of functions of once differentiable in t and twice

differentiable in x while C0([0, T )× Rn) is the space of continuous functions.

Theorem 2. Define La to be the generator of the controlled diffusion process

(1.1). Let w be a C1,2([0, T )×Rn)∩C0([0, T ]×Rn), functions satisfying the growth

condition , i.e. there exist a constant C such that

|w(t, x)| ≤ C(1 + |x|2). ∀ (t, x) ∈ [0, T ]× Rn.

(i) Suppose that

−∂w
∂t

(t, x)− sup
a∈A

[Law(t, x) + f(t, x, a)] ≥ 0, (t, x) ∈ [0, T )× Rn, (1.10)

w(T, x) ≥ g(x) x ∈ Rn. (1.11)

Then w ≥ ν on [0, T ]× Rn.

(ii) Suppose further that w(T, ·) = g(·), and there exists a measurable function

û(t, x) ∈ [0, T )× Rn, valued in A such that

− ∂w

∂t
(t, x)− sup

a∈A
[Law(t, x) + f(t, x, a)]

= −∂w
∂t

(t, x)− Lû(t,x)w(t, x)− f(t, x, û(t, x)) = 0. (1.12)

and the SDE

dXs = b(Xs, û(s,Xs))ds+ σ(Xs, û(s,Xs))dWs

admits a unique solution, denoted by X̂t,x
s , given an initial condition Xt = x, and

the process {û(t, X̂t,x
s ; t ≤ s ≤ T} lies in A(t, x). Then

w = ν on [0, T ]× Rn,

and û is an optimal Markovian control.

Note that when the control space A is reduced to a singleton, the verification

lemma is a version of the Feynman-Kac formula.
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The usual steps to derive the optimal control are the following:

Step 1. Derive the HJB equation.

Step 2. Verfication step: Show that the smooth solution is the value function.

Step 3. As a byproduct, obtain an optimal feedback control.

These steps will be a recurring theme in the chapters to follow.

2 Risk-sensitive control optimization

The risk-sensitive control-optimization or(RSCO) balances an investor’s interest in

maximizing the expected growth rate of wealth against his aversion to risk due to

deviations of the realized rate from the expectation. The subjective notion of in-

vestor’s risk aversion is parameterized by a single variable, say θ. More formally, we

write the finite horizon risk-sensitive optimization criterion as :

max JT,h := −1

θ
logE[e−θF (T,h)], (2.1)

where F (T, h) is the time-T - value reward function corresponding to control h. In

the optimal investment problem we take F (T, h) = log V (T ) where V (t) is the time

t-value of the portfolio corresponding to portfolio asset allocation h.

An asymptotic expansion around θ = 0 for the above criterion with F :=

F (t, h) yields

JT,h = −1

θ
log [1− θE[F ] +

θ2

2
E[F 2] + ....],

= −1

θ
log [1− (θE[F ]− θ2

2
E[F 2]) + ....],

=
1

θ
[(θE[F ] +

θ2

2
E[F 2]) +

1

2
(θE[F ] +

θ2

2
E[F 2])

2

+ ...],

= E[F ]− θ

2
E[F 2] +

θ

2
(E[F ])2,

= E[F (T, h)]− θ

2
V ar(F (T, h)) +O(θ2).

where O(·) as usual denotes the big-O symbol. From this expression it is clear this

criterion compromises between maximizing the portfolio return while penalizing its

riskiness. Values of θ > 0 correspond to a risk-averse investor, θ < 0 to a risk-seeking

investor and θ = 0 to a risk-neutral investor who maximizes

JT,h := E[F (T, h)].
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The optimal expected utility function depends on θ and is a generalization of

the traditional stochastic control approach to utility optimization in the sense that

now the degree of risk aversion of the investor is explicitly parameterized through θ

rather than importing it into the problem via an exogenous utility function. There

has been a substantial amount of research on the infinite-time horizon ergodic prob-

lem:

max J̄∞ where

J̄∞ = lim inf
t→∞

−1

θ
t−1 logE[e−θF (t,h)]. (2.2)

However, in this thesis we will restrict to studying the finite horizon risk sensitive

control-optimization for the case when V is a diffusion process.

3 Föllmer and Schweizer minimal martingale measure

We now discuss in brief the concept of minimal martingale measure. The material

is borrowed from the work of Föllmer and Schweizer [17]. Let X = (Xt)0≤t≤T be

a semi-martingale with continuous paths on some probability space (Ω,F , P ) with

right-continuous filtration (Ft)0≤t≤T . The Doob-Meyer decomposition states that

X = X0 +M +A. (3.1)

where M = (Mt)0≤t≤T is a local martingale and a predictable process A = (At)0≤t≤T
with paths of bounded variation. In particular M is a square integrable martingale

under P . Consider a contingent claim at time T given by a random variable

H ∈ L2(Ω,FT , P ). (3.2)

In order to hedge against this claim, we want to use a portfolio strategy which

involves a stock X and a riskless bond B ≡ 1, which yields a random payment

H at the terminal time T . Let ξt and ηt denote the amounts of stock and bond,

respectively held at time t. The value of the resulting portfolio at time t is given by

Vt = ξtXt + ηt 0 ≤ t ≤ T, (3.3)

and the cost accumulated up to time t by

Ct = Vt −
∫ t

0
ξsdXs 0 ≤ t ≤ T. (3.4)
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We only admit strategies (ξ, η) such that the process V = Vt0≤t≤T and C = Ct(0≤t≤T )

are square -integrable and have right continuous paths and satisfy

VT = H, P − a.s. (3.5)

We also require the integrability condition

E

[ ∫ T

0
ξ2
sd < X >s +(

∫ T

0
|ξs|d|A|s)

2]
<∞, (3.6)

where < X > denotes pathwise-defined quadratic variation of the process X and

|A| the total variation of the process A. This ensures that the stochastic integral

in (3.4) is well-defined. Such strategies are called admissible. For example suppose

our claim H admits the following representation

H = H0 +

∫ T

0
ξHs dXs, P − a.s. (3.7)

Then for the choice of strategy

ξ := ξH ; η := V − ξ ·X;Vt := H0 +

∫ t

0
ξHs dXs 0 ≤ t ≤ T. (3.8)

This strategy is admissible and is self-financing i.e. Ct = CT = H0.

If we suppose that the market is complete then every contingent claim is

attainable. This allows for complete elimination of risk involved in handling an

option. This is no longer possible in an incomplete market and a typical claim

will carry an intrinsic risk, and the problem consists in finding a dynamic portfolio

strategy which reduces the actual risk to that intrinsic component. We discuss this

further.

In the absence of arbitrage there exists an equivalent probability measure P ∗

such that X is P ∗-martingale; which implies that X is a P -semimartingale. First

let us start with the simple case wherein X is a P -martingale i.e P ∗ = P . In that

context Föllmer-Sondermann introduced the following risk-minimization criterion

wherein one looks for an admissible strategy that minimizes at each time t the

remaining risk

Rt(π) := E[(C̃T (π)− C̃t(π))2 | Ft], (3.9)
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for any other admissible strategy π. We say that an admissible strategy π∗ is risk

minimizing if

Rt(π
∗) ≤ Rt(π). (3.10)

H is attainable provided this remaining risk is brought down to 0. However the risk-

minimizing strategy will no longer be self-financing but it will be mean self-financing

in the sense that

E[CT (π)− Ct(π)|Ft] = 0 0 ≤ t ≤ T. (3.11)

i.e. C is a martingale. There exists a unique risk-minimizing strategy and it is tied

down to the existence of the Kunita-Watanabe decomposition given by

H = H0 +

∫ T

0
ξHs dXs + LhT ,

with H0 ∈ L2(Ω,F0, P ), where LH = (LHt )0≤t≤T is a square integrable martingale

orthogonal to X under P .

Let us now consider the general incomplete case where P ≈ P ∗, but where

P itself is no longer a martingale measure. In this situation in general there exist

NO risk-minimizing strategy because unlike the martingale case discussed before,

the issue of determining hedging strategies gets subtle and a locally risk-minimizing

criterion is introduced. Intuitively the reason for the failure is a compatibility issue.

We minimize Rt(π) over all admissible continuations from t to obtain the t-optimal

continuation. But for s < t, the s- optimal continuation for (s,T] ⊃ (t,T] is different

from t-optimal continuation when X is not P -martingale. Hence we must minimize

the residual risk “locally”. This condition may be thought of as an infinitesimal

analogue of condition (3.10). We say a strategy is locally risk-minimizing if for any

t < T , the remaining risk is minimal under all infinitesimal perturbations of the

strategy at time t.

The concept of “Local Risk” minimization is formally defined as follows.

Definition 1. A small perturbation ∆ = {δt, εt} is bounded variation corre-

sponding to semimartingale decomposition of Xt and δT = εT = 0. Let π be an

arbitrary strategy, τ = (ti)(0≤i≤n) be a partition of [0, T ]. We set

rτ (π,∆) =
∑

(ti,ti+1)∈τ

Rti(π + ∆I(ti,ti+1))−Rti(π)

E[
∫ ti+1

ti
σ2X2

t dt|Fi]
I(ti,ti+1)(t). (3.12)

An admissible strategy π is called Locally Risk Minimizing if lim infn→∞ rτn(π,∆) ≥
0 a.e for every increasing 0-convergent sequence (τn) of partitions of [0,T].
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The idea of local risk-minimization is equivalent to the following property

Condition : The cost process C is square-integrable martingale orthogonal to M

under P .

Optimal strategies in the case of market incompleteness can now be defined as

follows

Definition 2. An admissible strategy (η, ξ) is called optimal, if the associated cost

process C satisfies the above condition .

Existence of an optimal strategy is equivalent to the decomposition

H = H0 +

∫ T

0
ξHs dXs + LHT , (3.13)

with H0 ∈ L2(Ω,F0, P ) and LH = (LHt )0≤t≤T being a square-integrable martingale

orthogonal to M

In order to compute locally Risk minimizing hedging strategy, one needs to

determine an EMM, more specifically a minimal EMM P ∗ such that X is a P ∗

-martingale. We define minimal martingale measure as follows.

Definition 3. An EMM P ∗ ≈ P is said to be minimal if P ∗ = P on F0, and if

any square integrable P -martingale which is orthogonal to M under P remains a

martingale under P ∗.

Remarks

(i) Measure P ∗ exist and is unique.

(ii) The MMM preserves orthogonality. In the sense that for any square integrable

P martingale L that is orthogonal to martingale part M under P is also orthogo-

nal to process X under P ∗. Hence the term “minimal” for martingale measure is

motivated by the fact that apart from turning X into a martingale, this measure

disturbs the overall martingale and orthogonality structure as little as possible.

Hence after obtaining an minimal martingale measure, we proceed to deter-

mine an admissible “local” risk minimizing hedging strategy from (3.8)

We now provide an example explaining the minimal martingale measure.

The discounted stock price process is a P semi-martingale given by

dŜ(t) = (µ(t)− r(t))dt+ σ(t)dB(t).

Let Ŝ be 1-dimensional, R-valued and driven by, say, a 1-dimensional Brownian

motions B but with the underlying filtration generated by two possibly independent

brownian motions B and B̃(say). The market is expectedly incomplete, and with

the assumption of no-arbitrage there exists many equivalent martingale measures to

9



choose from for pricing purpose. Let the time horizon T <∞. The unique EMM is

obtained by the following change of measure formula as follows

dQ

dP
|FT , Z(T ), (3.14)

where

dZ(t) = γ(t)Z(t)dB(t). (3.15)

γ(t) is chosen so as to make Ŝ a martingale under Q. (3.14) can be rewritten as

Z(t) = 1 +

∫ t

0
γ(s)Z(s)dB(s), (3.16)

where

γ(s) =
(µ(t)− r(t))

σ(t)
. (3.17)

We now show that the EMM is in fact the MMM.

Lemma 3. The martingale measure given by (3.14) is an MMM.

Proof Under P , Ŝ satisfies,

Ŝ(t) = Ŝ(0) +

∫ t

0
σ(s)Ŝ(s)dB(s) +

∫ t

0
(µ(s)− r(s))Ŝ(s)ds,

= Ŝ(0) +W (t) +A(t) (3.18)

whereW (t) =
∫ t

0 σ(s)Ŝ(s)dB(s) is a P -martingale andA(t) =
∫ t

0 (µ(s)− r(s))Ŝ(s)ds

is a continuous,adapted process. Therefore (3.18) gives a Doob decomposition of Ŝ

under P . Consider now an L2(P )-martingale N which is orthogonal to W so that

< N,W >= 0. Therefore < N,Z >= 0 for Z given by (3.15) i.e N is orthogonal to

Z. This obviously implies that N is a Q-local martingale. Now, since by assump-

tion N,Z ∈ L2(P ), by the Cauchy-Schwartz inequality NZ ∈ L1(P ). Hence by the

result in Proposition 1.23 of Revuz and Yor [32], N is a Q-martingale.

Thus N is an L2(P )-martingale such that < N,W >= 0 ⇒ N is a Q-

martingale as well.
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4 A brief discussion on stochastic stability

Deterministic stability is a branch of the qualitative theory of dynamical systems.

The majority of the presently available work that are described as stability results

pertain to certain qualitative and quantitative (which do not involve the actual com-

putation of a solution) properties of differential equations. Consider the differential

equation dx
dt = f(x, t) with initial condition x0 belonging to a set R. R may vary

but will always be non-empty bounded open set containing the origin. Let P be a

set containing R. A typical stability question is as follows: Let P be given. Is there

any R such that if x0 ∈ R , then xt ∈ P for all finite t?

Stochastic analogies to the deterministic problem can be easily drawn. For

example, let xt be a right-continuous, strong-Markov process such that its initial

value x0 is deterministic and lies in an open set R that contains the origin. Let

R ⊂ P . The analogous question for the finite time horizon would be:

Is there an R such that if Px{xt /∈ P, t < ∞} ≤ ρ < 1 for some given ρ,P and any

x in R?

In an asymptotic sense, we have the following possible candidate criterion

for stochastic stability.

Definition 4. Almost-sure exponential stability

The trivial solution of a stochastic differential equation is almost surely exponen-

tially stable if

lim sup
t→∞

1

t
log |X(t)| < 0 a.s. ∀x ∈ Rr a.s.

5 A brief discussion on two player zero sum stochastic

games

The following treatment closely follows the seminal article of Fleming and Souganidis

[16]. Consider a finite-horizon, stochastic differential game (SDG) with state variable

in Rd and horizon T > 0. The state dynamics are given by,

dXs = f(s,Xs, Ys, Zs)ds+ σ(s,Xs, Ys, Zs)dWs s ∈ (t, T ]

Xt = x x ∈ Rd, (5.1)
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and the pay-off by,

J(x, t, Y·, Z·) = Ext[

∫ T

t
h(s,Xs, Ys, Zs)ds+ g(XT )], (5.2)

where W· is a standard M -dimensional Brownian motion, Y·, Z· are stochastic pro-

cesses taking values in some compact subsets Y and Z.

Assumptions (A1):

The functions f , σ and h are bounded, uniformly continuous and Lipschitiz contin-

uous with respect to (x, t) uniformly in (y, z) ∈ Y × Z. Function g is bounded and

Lipschitz continuous.

The idea behind this game is that there are two players I and II. Player I

controls Y· and wishes to maximize J over all choice of Z·. On the other hand, player

II controls Z· and tries to minimize J over all choices of Y·. Instantaneous switches

of Y· and Z· are possible in continuous time and to avoid this two approximate

games namely, lower and upper games are introduced. In the lower game, player II

is allowed to know Ys before choosing Zs, while the upper game player I chooses Ys

knowing Zs. Now consider the following Hamilton-Jacobi-Isaacs equation given by

ut +H−(D2u,Du, x, t) = 0 Rd × [0, T ],

u = g on Rd × {T}, (5.3)

and

ut +H+(D2u,Du, x, t) = 0 Rd × [0, T ],

u = g on Rd × {T}, (5.4)

where (for A being a symmetric d× d matrix, p, x ∈ Rd and t ∈ [0, T ]),

H−(A, p, x, t) = max
y∈Y

min
z∈Z

[trace(
1

2
a(t, x, y, z) ·A+ f(t, x, y, z) · p+ h(t, x, y, z)],(5.5)

H+(A, p, x, t) = min
z∈Z

max
y∈Y

[trace(
1

2
a(t, x, y, z) ·A+ f(t, x, y, z) · p+ h(t, x, y, z)],(5.6)

with a = σσ
′

. Equations (5.3) and (5.4) corresponds to lower and upper value

of the game and are well-known not to have global smooth solutions in general.

Once the notion of an upper and a lower value function is introduced we pursue the

task of proving that these functions are weak(viscosity) solutions of the associated
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Bellman-Isaacs equations.

We introduce the concepts of admissible controls and admissible strategies.

The sample space for (5.1) is defined as follows. For every t ∈ [0, T ] let

Ωw
t = {w ∈ C([t, T ];Rd) : wt = 0}. (5.7)

Let Fwt,s denote the σ-algebra generated by the paths up to time s in Ωw
t . When,

provided with a Wiener measure Pwt on Fwt,T , Ωw
t becomes canonical sample space

of (5.1). We also define the space

Ωw
t,s = {w ∈ C([t, s];Rd) : wt = 0}, (5.8)

for 0 ≤ t < s ≤ T . Define

w1 = w |[t,τ ],

w2 = w − w |[t,τ ],

πw = (w1, w2). (5.9)

The map π : Ωw
t → Ωw

[t,τ ] ⊗ Ωw
τ ; induces the identification

Ωw
t = Ωw

t,τ ⊗ Ωw
τ . (5.10)

Moreover, w = π−1(w1, w2). As well, Pwt = Pwt,τ ⊗ Pwτ , where Pwt,τ and Pwτ are

Wiener measures on Ωw
t,τ and Ωw

τ respectively. We provide the following definition

for control spaces.

Definition 5. An admissible control Y· (resp.Z·) for player I(resp. II) on [t, T ]

is an Fwt,s-progressively measurable process taking values in Y (resp. Z). The set

of all admissible controls for player I (resp. II) on [t, T ] is denoted by M(t) (resp.

N(t)).

Definition 6. An admissible strategy α (resp. β) for player I (resp. player II)

on [t, T ] is a mapping α : N(t) → M(t) (resp. β : M(t) → N(t)) such that if

Pwt (Z· = Z̃·a.e.in[t, s]) = 1 then Pwt (α(Z·) = α(Z̃·) a.e. in [t, s])=1. (resp. for

Player II) on [t, s] for every s ∈ [t, T ].

The set of admissible strategies of player I (resp. II) on [t, T ] is denoted by

Γ(t) (resp. ∆(t)). In brief, controls should depend on the past of the Brownian

motion and the strategies should only depends on the past of the controls. Note

that for Y· = α[Z·], where Z· ∈ ∆(t) and α ∈ Γ(t), there exists a unique pathwise

solution for X based on assumptions (A1) on f and σ and on controls Y and Z.
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We now define the notions of the lower and upper value for the stochastic

differential game related to objective (5.2). The intuitive idea being, choosing the

controls at time s, the player who moves first (maximizing player for the lower game,

minimizing player for the upper game) is allowed to use the past of the Brownian

motion W· driving X· up to time s, while the player with the advantage (player II

for the lower game, player I for the upper game) is allowed to use the past of both

W· and the other player’s control.

Definition 7. The lower value of SDG (5.1)-(5.2) with initial data (x, t) is given

by,

V (x, t) = inf
β∈∆(t)

sup
Y·∈M(t)

J(x, t;Y·, β). (5.11)

The upper value of the game is given by

U(x, t) = inf
α∈Γ(t)

sup
Z·∈N(t)

J(x, t;α,Z·). (5.12)

We are really interested in coming up with value functions which satisfy the dynamic

programming principle. It turns out that the functions U and V do so for a restricted

class of strategies called r-strategies. For the same we define for t̄ < t < τ and

Y· ∈ M(t̄) and Pwt̄,t-a.e. w1 ∈ Ωw
t̄,t, the map Y (w1) : [t, T ] × Ωw

t → Y given by

Y (w1)(w2)r = Y (w1, w2)r is an admissible control for player I, i.e. Y (w1) ∈ M(t).

Similar observation holds for player II.

Definition 8. An r-strategy β for player II on [t, T ] is an admissible strategy

with the following properties: For every t̄ < t < τ and Y· ∈M(t̄) the map (r, w)→
β[Y (w1)](w2)r is (F0

t,τ ⊗ Fwt̄,τ ,F
0
Z) measurable. The set of r-strategies of player II

on [t, T ] is denoted by ∆1(t). Similarly r-strategies for player I with their collection

denoted by Γ1(t).

Definition 9. The r-lower and the r-upper value of the SDG with initial data

(x, t) are given by,

V1(x, t) = inf
β∈∆1(t)

sup
Y·∈M(t)

J(x, t;Y·, β), (5.13)

and

U1(x, t) = sup
α∈Γ1(t)

inf
Z·∈N(t)

J(x, t;α,Z·). (5.14)
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The r-value functions turn out to satisfy the two following inequalities .

Proposition 4. For t, τ ∈ [0, T ] be such that t < τ . For every x ∈ Rd we have

V1(x, t) ≤ inf
β∈∆1(t)

sup
Y·∈M(t)

Ext[

∫ τ

t
h(s,Xs, Ys, β[Y·]s)ds+ V1(Xτ , τ)]. (5.15)

U1(x, t) ≥ sup
α∈Γ1(t)

inf
Z·∈N(t)

Ext[

∫ τ

t
h(s,Xs, Ys, β[Y·]s)ds+ V1(Xτ , τ)]. (5.16)

We refer to this inequality (5.15) as sub-optimal dynamic programming principle and

to the inequality (5.16) as super-optimal dynamic programming principle. These in-

equalities coupled with a semi-discretization argument developed by Fleming and

Souganidis [16] yield that the lower and upper value functions are the unique vis-

cosity solutions of the game and that they satisfy the principle of dynamic program-

ming. We direct the interested reader to the proofs in this article.

6 Semi-Markov modulated jump diffusions

The finite state semi-Markov process is a generalization of the Markov chain in

which the sojourn time distribution is any general distribution. We consider a semi-

Markov modulated jump-diffusion process in which the drift, diffusion and the jump

kernel of the jump-diffusion process is modulated by a semi-Markov process. We

introduce some notation before we describe the semi-Markov modulated jump dif-

fusion process.

• Let R: be the reals

• r,M : be any positive integers greater than 1.

• X = {1, ...,M}.
• v′ , A′ : the transpose of the vector v and matrix A respectively.

• ||v||: Euclidean norm of a vector v.

• |A|: norm of a matrix A.

• tr(A): trace of a square matrix A.

We assume that the probability space (Ω,F , {F(t)},P) is complete with fil-

tration {F(t)}t≥0 and is right-continuous and F(0) contains all P null sets. Let

{θ(t)}t≥0 be a semi-Markov process adapted to filtration {F(t)}t≥0 taking values in

X with transition probability pij and conditional holding time distribution F h(t|i).
Thus if 0 ≤ t0 ≤ t1 ≤ ... are times when jumps occur, then

P (θ(tn+1) = j, tn+1 − tn ≤ t|θ(tn) = i) = pijF
h(t|i). (6.1)
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Matrix [pij ]{i,j=1,...,M} is irreducible and for each i, F h(·|i) has continuously differ-

entiable and bounded density fh(·|i). For a fixed t, let n(t) , max{n : tn ≤ t} and

Y (t) , t − tn(t). Thus Y (t) represents the amount of time the process θ(t) is at

the current state after the last jump. The process (θ(t), Y (t))defined on (Ω,F ,P) is

jointly Markov and the differential generator L given as follows Chap.2 of [22]

Lφ(i, y) =
d

dy
φ(i, y) +

fh(y|i)
1− F h(y|i)

∑
j 6=i,j∈X

pij [φ(j, 0)− φ(i, y)]. (6.2)

for φ : X × R+ → R a C1 function.

We first represent the semi-Markov process θ(t) as a stochastic integral with

respect to a Poisson random measure. With that perspective in mind, embed X in

RM by identifying i with ei ∈ RM . For y ∈ [0,∞) i, j ∈ X , define

λij(y) = pij
fh(y/i)

1− F h(y/i)
≥ 0 and ∀ i 6= j,

λii(y) = −
M∑

j∈X ,j 6=i
λij(y) ∀ i ∈ X .

For i 6= j ∈ X , y ∈ R+ let Λij(y) be consecutive (with respect to lexico-

graphic ordering on X×X ) left-closed, right-open intervals of the real line, each hav-

ing length λij(y). Define the functions h̄ : X×R+×R→ Rr and ḡ : X×R+×R→ R+

by

h̄(i, y, z) =

{
j − i if z ∈ Λij(y)

0 otherwise

ḡ(i, y, z) =

{
y if z ∈ Λij(y), j 6= i

0 otherwise

LetM(R+×R) be the set of all nonnegative integer-valued σ-finite measures

on Borel σ-field of (R+ × R). The process {θ̃(t), Y (t)} is defined by the following

stochastic integral equations:

θ̃(t) = θ̃(0) +

∫ t

0

∫
R
h̄(θ̃(u−), Y (u−), z)N1(du, dz),

Y (t) = t−
∫ t

0

∫
R
ḡ(θ̃(u−), Y (u−), z)N1(du, dz),

(6.3)

where N1(dt, dz) is an M(R+ × R)-valued Poisson random measure with inten-

sity dtm(dz) independent of the X -valued random variable θ̃(0), where m(·) is a
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Lebesgue measure on R. As usual, by definition Y (t) represents the amount of time

process θ̃(t) is at the current state after the last jump. We define the correspond-

ing compensated or centered one- dimensional Poisson measure as Ñ1(ds, dz) =

N1(ds, dz) − dsm(dz). It was shown in Theorem 2.1 of Ghosh and Goswami [20]

that θ̃(t) is a semi-Markov process with transition probability matrix [pij ]{i,j=1,...,M}

with conditional holding time distributions F h(y|i). Since, by definition θ(t) is also

a semi-Markov process with transition probability matrix [pij ]{i,j=1,...,M} with condi-

tional holding time distributions F h(y|i) defined on the same underlying probability

space, by equivalence, θ̃(t) = θ(t) for t ≥ 0.

Remark The semi-Markov process with conditional density fh(y|i) = λ̃ie
−λ̃iy for

some λ̃i > 0, i = 1, 2...,M , is in fact a Markov chain.

We now formally introduce the semi-Markov modulated jump-diffusion pro-

cess. Let U ⊂ Rr be a closed subset. Let B0 be the family of Borel sets Γ ⊂ Rr

whose closure Γ̄ does not contain 0. For an Borel set B ⊂ Γ, the one-dimensional

Poisson random measure N(t, B) counts the number of jumps on [0, t] with values in

B. For a predictable process u : [0, T ]× Ω→ U with left-continuous, right-limited

paths, consider the controlled process X with given initial condition X(0) = x ∈ Rr

given by

dX(t) = b(t,X(t), u(t), θ(t))dt+ σ(t,X(t), u(t), θ(t))dW (t)

+

∫
Γ
g(t,X(t), u(t), θ(t)), γ)N(dt, dγ), (6.4)

where X(t) ∈ Rr and W (t) = (W1(t), ...,Wr(t)) is r-dimensional standard Brownian

motion. The coefficients b(·, ·, ·, ·) : [0, T ]×Rr×U ×X → Rr,σ(·, ·, ·, ·) : [0, T ]×Rr×
U × X → Rr × Rr and g(·, ·, ·, ·, ·) : [0, T ] × Rr × U × X × Γ → Rr are assumed to

satisfy the usual assumptions that guarantee existence and uniqueness of solution

to (6.4).

7 Our Contribution

The thesis consists of the following three topics.

Q.1 The first chapter is based on an article titled as “Game-theoretic approach to

risk-sensitive benchmarked asset management.” Refer [9].

In this chapter we consider a game theoretic approach to the Risk-Sensitive

Benchmarked Asset Management problem (RSBAM) of Davis and Lleo [8]. In par-

ticular, we consider a stochastic differential game between two players, namely, the

investor who has a power utility while the second player represents the market which
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tries to minimize the expected payoff of the investor. The market does this by mod-

ulating a stochastic benchmark that the investor needs to outperform. We obtain

an explicit expression for the optimal pair of strategies for both the players under

certain conditions.

Q.2 The second chapter is based on an article titled “On the role of Föllmer-

Schweizer minimal martingale measure in Risk Sensitive control Asset Manage-

ment.” Refer [10].

Kuroda and Nagai [26] state that the factor process in risk-sensitive control

asset management (RSCAM) is stable under the Föllmer-Schweizer minimal mar-

tingale measure . Fleming and Sheu [15] and more recently Föllmer and Schweizer

[18] have observed that the role of the minimal martingale measure in this portfolio

optimization is yet to be established. We aim to address this question by explicitly

connecting the optimal wealth allocation to the minimal martingale measure. We

achieve this by using a “trick” of observing this problem in the context of model

uncertainty via a two-person zero-sum stochastic differential game between the in-

vestor and an antagonistic market that provides a probability measure.

Q.3 The third chapter is based on an article titled as “Sufficient stochastic max-

imum principle for the optimal control of semi-Markov modulated jump-diffusion

with application to Financial optimization.” Refer [11].

In this topic we provide a sufficient stochastic maximum principle for the

optimal control of a semi-Markov modulated jump-diffusion process in which the

drift, diffusion and the jump kernel of the jump-diffusion process is modulated by a

semi-Markov process. We also connect the sufficient stochastic maximum principle

with the dynamic programming equation. We apply our results to finite horizon

risk-sensitive control portfolio optimization problem and to a quadratic loss mini-

mization problem.
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Chapter 2

Game-theoretic approach to

risk-sensitive bench marked

asset management.

Abstract

In this chapter we consider a game theoretic approach to the Risk-Sensitive Bench-

marked Asset Management problem (RSBAM) of Davis and Lleo [8]. In particular,

we consider a stochastic differential game between two players, namely, the investor

who has a power utility while the second player represents the market which tries to

minimize the expected payoff of the investor. The market does this by modulating a

stochastic benchmark that the investor needs to outperform. We obtain an explicit

expression for the optimal pair of strategies as for both the players.

1 Introduction

In this chapter we shall develop a game theoretic version of a continuous time

optimization model with risk-sensitive control approach more specifically termed as

Risk-sensitive control portfolio optimization (RSCPO). The RSCPO balances an

investor’s interest in maximizing the expected growth rate of wealth against his

aversion to risk due to deviations of the realized rate from the expectation. The

subjective notion of investor’s risk aversion is parameterized by a single variable,

say θ. More formally,we write the finite horizon risk-sensitive optimization criterion
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as :

max JT,h := −1

θ
logE[e−θF (T,h)],

where F (T, h) is the time-T value reward function corresponding to control h. In

the optimal investment problem we take F (T, h) = log V (T ) where V (t) is the time

t-value of the portfolio corresponding to portfolio asset allocation h. An asymptotic

expansion around θ = 0 for the above criterion yields

JT,h = E[F (T, h)]− θ

2
V ar(F (T, h)) +O(θ2).

From this expression it is clear this criterion compromises between maximizing the

portfolio return while penalizing the riskiness . The optimal expected utility function

depends on θ and is a generalization of the traditional stochastic control approach to

utility optimization in the sense that now the degree of risk aversion of the investor

is explicitly parameterized through θ rather than importing it in the problem via

an exogenous utility function. Values of θ > 0 correspond to a risk-averse investor,

θ < 0 to a risk-seeking investor and θ = 0 to a risk-neutral investor who maximizes

JT,h := E[F (T, h)].

There has been a substantial amount of research on the infinite-time horizon ergodic

problem:

max J̄∞ where,

J̄∞ = lim inf
t→∞

−1

θ
t−1 logE[e−θF (t,h)].

Though these type of problems are interesting in their own right, they are not read-

ily applicable to practical asset management because of non-uniqueness of optimal

controls.

In the past decade, applications of risk-sensitive control to asset manage-

ment have proliferated. Risk-sensitive control was first applied to solve financial

problems by Lefebvre and Montulet [27] in a corporate finance context. Fleming

[14] was the first to show that some investment optimization models could be re-

formulated as risk-sensitive control problems. Bielecki and Pliska [2] considered a

model with n securities and m economic factors with no transaction cost. They

were the first to apply continuous-time risk-sensitive control as a practical tool that

could be used to solve “real-world” portfolio selection problems. They considered
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a long-term asset allocation problem and proposed the logarithm of the investor’s

wealth as a reward function, so that the investor’s objective is to maximize the

risk-sensitive (log) return of his/her portfolio. They derived the optimal control and

solved the associated Hamilton-Jacobi-Bellman (HJB) PDE under the restrictive

assumption that the securities and economic factors have independent noise. In [3],

Bielecki and Pliska went on to study the economic properties of the risk-sensitive

asset management criterion and then extended the asset management model into an

intertemporal CAPM in [4]. Fleming and Sheu [15] analyzed an investment model

similar to that of Bielecki and Pliska [2]. In their model, however, the factor process

and the security price process were assumed correlated. A major contribution was

made by Kuroda and Nagai [26] who introduced an elegant solution method based

on a change of measure argument which transforms the risk sensitive control prob-

lem into a linear exponential of a quadratic regulator. They solved the associated

HJB PDE over a finite time horizon and then studied the properties of the ergodic

HJB PDE related to J̄∞. Recently, Davis and Lleo [8] applied this change of mea-

sure technique to solve, for both the finite and an infinite horizon, a risk-sensitive

benchmark investment problem (RSBAM) in which an investor selects an asset allo-

cation to outperform a given financial benchmark. In the Kuroda and Nagai set-up

θ represents the sensitivity of an investor to total risk, whereas in the RSBAM, θ

represents the investors sensitivity to active risk i.e. additional risk the investor is

willing to take in order to outperform the benchmark.

It is obvious that for outperforming a stochastic benchmark, an investor will have

to modify his or her optimal trading strategy. Then the question of interest to us is:

“What is the investor’s worst case strategy for an opposing stochastic benchmark”?.

In particular, one can even take the jaundiced point of view that the benchmark

will be set retrospective to the worst case. For example, if a portfolio fund manager

outperforms the set benchmark, the principal may remark this out-performance ei-

ther as best achieved or poorly achieved with respect to the underlying worst-case

scenario. So, in this chapter we consider a game-theoretic version of the problem

within the benchmark framework of Davis and Lleo [8]. In it, we consider a stochas-

tic differential game between two players, namely, the investor (who has a power

utility) and a second player, representing the market, who tries to minimize the

expected payoff of the investor. We explicitly characterize the optimal allocation of

assets and the optimal choice of benchmark index.

In this chapter, we consider the benchmark process ex-ante that evolves ac-

cording to a controlled diffusion process. We contrast this approach to the one of

Heath and Platen [23]. In their methodology, they use the growth optimal portfo-
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lio itself as a benchmark which is closer to the concept of the numeraire portfolio.

Although there has been a long history of applying risk-sensitive optimal control to

problems in finance, a game-theoretic version of such problems in finite horizon is

missing from the literature. We intend to elaborate further on this now.

In the next section we briefly describe the framework of the risk-sensitive

zero sum stochastic differential game corresponding to the desired game (P1)( refer

2.8). In the third section we reformulate the objective criterion under evaluation as

a linear exponential of quadratic regulator problem (P2) (refer 3.11). In the fourth

section we provide a verification lemma that will help us solve this game problem.

In the fifth section we derive the optimal controls and obtain an explicit expression

for the associated value of the game. The chapter as usual concludes with remarks

and pointers to future direction of work.

Broadly speaking our aim is to derive the saddle-point equilibrium pair for

the game (P1). To achieve this, we first obtain saddle point strategy for the game

(P2). We then show that the saddle point equilibrium for (P2) is also saddle point

equilibrium for (P1).

2 Risk-sensitive zero sum stochastic differential game

We consider a market consisting of m + 1 ≥ 2 securities with n ≥ 1 factors. We

assume that the set of securities includes one bond whose price is governed by the

ODE

dS0
t = rtS

0
t dt, S0

0 = s0, (2.1)

where rt is a deterministic function of t. The other security prices and factors are

assumed to satisfy the following SDE’s

dSit = Sit{(a+AXt)
idt+

n+m∑
k=1

σikdW
k
t }, Si0 = si, i = 1, ...,m, (2.2)

where the factor process Xt satisfies,

dXt = {(b+BXt)dt+ ΛdWt}, X0 = x ∈ Rn. (2.3)

Here Wt = (Wt)k=1,...,n+m is an n + m dimensional standard Brownian motion de-

fined on a filtered probability space (Ω,F ,P,Ft).
The factor process can represent macro-economic indicators such as GDP,
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inflation and market index data. The stock price dynamics are modulated by the

factor process. Hence one can incorporate the effect of macro-economic indicators

into the investment optimization problem by using the stock price process modu-

lated by the factor process Xt.

The model parameters A,B,Λ are respectively m×n, n×n, n× (m+n) con-

stant matrices and a ∈ Rm, b ∈ Rn. The constant matrix (σik){i=1,2....,m;k=1,2,...,(n+m)}
will be denoted by Σ in what follows.

In Kuroda and Nagai [26] it is assumed that the factor process and the stock

price process do not have independent noise i.e. ΣΛ
′ 6= 0. This assumption is in

sharp contrast to Bielecki and Pliska [2] who conversely assume that ΣΛ
′

= 0. We

will assume that ΣΛ
′ 6= 0.

Let Gt = σ(Wu;u ≤ t) be the sigma-field generated by the standard Brow-

nian motions up to time t. For given h ∈ H(T ), the process Vt = V h
t represents

the investor’s wealth at time t, under the control h, and satisfies the following SDE

dynamics,

dV h
t

V h
t

= (rt + h
′
t((a+AXt)− rt1))dt+ h

′
tΣdWt;V

h
0 = v,

which can be rewritten as,

dV h
t

V h
t

= (rt + h
′
tdt)dt+ h

′
tΣdWt;V

h
0 = v, (2.4)

where dt , a+AXt− rt1. From equation (2.4) it can be seen that if a+AXt = rt1

i.e. dt = 0, then the portfolio wealth process evolves with drift equal to the risk

less interest rate rt. We make an assumption here that the securities price volatility

matrix Σ is a full rank matrix. If it is not full-rank then h
′
Σ = 0 for some h 6= 0.

Hence the market contains redundant asset(s) and the portfolio value process V h
t

will grow at a rate different than the risk-less interest rate rt when h
′
d 6= 0 resulting

in an arbitrage. This is the case if the portfolio contains two or more redundant

assets for example a stock and an option on the same stock. Hence we remove

redundancy till the resultant matrix Σ is of full rank thereby ensuring that there

exist no further possibility of arbitrage by trading in the resultant portfolio.

In our benchmark model we express the objective through a new optimization

criterion corresponding to a reward function F which represents the log excess return
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of the asset portfolio over its benchmark and is given as

F (t;h, γ) = log
V h
t

Lγt
F (0;h, γ) = log f.

We now formally state the Risk-sensitive Benchmarked Asset management problem

(RSBAM) that we solve.

Problem : Risk-sensitive Benchmarked Asset Management (RS-

BAM)

We first define the objective criterion J as,

J(f, x, h, γ;T ) ,
−2

θ
logE[exp [

−θ
2
F (T, h, γ)]],

=
−2

θ
logE[

(
V h
T

LγT

)−θ/2
],

=
−2

θ
logE[U(

V h
T

LγT
)]. (2.5)

where the utility function U(·) is U : x → x−
θ
2 . The dynamics of the benchmark

process is a diffusion process Lγ modulated by a (Markovian) control γ given by

dLγt
Lγt

= (αt + βtXt)dt+ γ
′
tdWt. (2.6)

where αt ∈ R and β ∈ R1×n. The space of controls Γ(T ) consists of the market

control represented by γ that is Rn+m-valued. Γ(T ) consists of progressively mea-

surable controls measurable w.r.t to {B[0, T ]⊗ Gt}t≥0 and where P (
∫ T

0 |γs|
2ds <

∞) = 1 ∀ T <∞ and E[eθ
2
∫ T
0 γ
′
sγsds]

1
2
<∞ .

By a simple application of Ito’s formula we have:

dF (t, h, γ) = d log(
V h
t

Lγt
)

= {[rt + ht
′(a+AXt − rt1)− (αt + βtXt)−

1

2
h
′
tΣΣ

′
ht +

1

2
γ
′
tγt]dt

+ (h
′
tΣ− γ

′
t)dWt}. (2.7)

We are now in a position to formally state the game-theoretic version of the

game. For a given θ > 0, we consider a stochastic differential game between two

players, namely, the investor (who has a power utility) U and who modulates the

payoff for given γ ∈ Γ(T ) via control h ∈ H(T ). On the other hand the second player,
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say the market, behaves antagonistically to the investor by setting a benchmark

for the investor to outperform by modulating the control γ for a given control h.

This can be conceptualized as a risk-sensitive zero sum stochastic differential game

between the investor on one side and the market on the other and is formalized as

follows

Problem (P1) Obtain ĥ ∈ H(T ) and γ̂ ∈ Γ(T ) such that,

J(f, x, ĥ, γ̂;T ) = sup
h∈H(T )

inf
γ∈Γ(T )

−2

θ
logE[(

V h
T

LγT
)−

θ
2 ] = inf

γ∈Γ(T )
sup

h∈H(T )

−2

θ
logE[(

V h
T

LγT
)−

θ
2 ].

(2.8a)

This can be construed as a game-theoretic version of the RSBAM problem.

Remark 1:

The problem set up (P1) is an extension of Kuroda and Nagai [26] and Davis and

Lleo [8]. However the former does not consider the benchmarked version i.e. the

benchmark index is identically one in [26] while in Davis and Lleo [8] though have

a benchmarked portfolio criterion, they solve the one player optimization problem

and not the two player saddle point problem.

In light of the mathematical preliminaries just discussed, we formally elabo-

rate the plan to solve the zero sum stochastic differential game (P1).

Step 1 We reformulate the original objective criterion as a power utility function

to an exponential of an integral function.

Step 2 Define a new path functional I(f, x, h, γ, t;T ) (refer equation (3.9)) related

to the exponential of the integral function. Define ū(t, x) to be the upper-value

function while u(t, x) be the lower-value function for the game associated with I.

Denote the game related to this objective functional as (P2).

Step 3 Deduce the HJBI PDE corresponding to game (P2)( refer (3.11).

Step 4 Formulate the conditions that a candidate value function should satisfy for

the game with regards to objective function I to have a value. This constitutes the

verification lemma.

Step 5 Solve the HJBI PDE derived in step 3 while obtaining the expression for

optimal controls. This optimal control pair will constitute a saddle point equilib-

rium for (P2). The candidate value function satisfying all the conditions of the

verification lemma is our desired value function for (P2).

Step 6 Reverting back to the original problem (P1), show using facts derived in

Step 4, that the game with objective criterion J now has a value as well, and is in

fact u(0, x).

In the next section we reformulate the objective criterion and formalize our
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game problem.

3 Problem Reformulation

Step 1

We will first transform the utility optimization problem (2.5) into optimizing the

exponential-of-integral performance criterion.

Criterion under the expectation

Our first aim is to write the objective criterion J only in terms of the factor process.

Towards that end we define the function g(x, h, γ, r; θ) as follows:

g(x, h, γ, r; θ) =
1

2
(
θ

2
+ 1)h

′
ΣΣ

′
h− r − h′(a+Ax− r1) + (α+ βx)− 1

2

θ

2
(h
′
Σγ + γ

′
Σ
′
h)

+
1

2
(
θ

2
− 1)γ

′
γ. (3.1)

From (2.7) and (3.1) we therefore have,

d exp(
−θ
2
F (t;h, γ)) =

θ

2

(
g(Xt, ht, γt, rt; θ)− (h

′
tΣ− γ

′
t)ΣdWt

)
− θ2

8
(h
′
tΣ− γ

′
t)ΣΣ

′
(Σ
′
ht − γt)dt. (3.2)

Thus we have,

exp(
−θ
2
F (t;h, γ)) = f−θ/2 exp{θ

2

∫ t

0
g(Xs, hs, γs, r; θ)ds

− θ

2

∫ t

0
(h
′
sΣ− γ

′
s)dWs −

1

2
(
θ

2
)
2 ∫ t

0
(h
′
sΣ− γ

′
s)(h

′
sΣ− γ

′
s)
′
ds},

(3.3)

where V h
0 = v, Lγ0 = l and f =

V h0
Lγ0

= v
l .

Change of measure

Let Ph,γ be the measure on (Ω,F) defined by,

dPh,γ

dP
|Ft = X̄t, (3.4)

where X̄t is given by

X̄t = E(
θ

2

∫
0

(h
′
Σ− γ′)dW )t, (3.5)
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and where E(·) denotes the Doleans-Dade or martingale exponential. From the

assumption made on the space of admissible controls H(T ) and Γ(T ) it is clear that

the Kazamaki condition E[e
∫ t
0 θ

h
′
sΣ−γ

′
s

2
dWs ] < ∞ ∀t ∈ [0, T ] is satisfied so that Ph,γ

to be a probability measure. i.e.

E[E(
θ

2

∫
0

(h
′
Σ− γ′)dW )T ] = 1. (3.6)

We note that,

W h,γ
t ,Wt +

θ

2

∫ t

0
(h
′
sΣ− γ

′
s)ds, (3.7)

by Girsanov’s formula, is a standard Brownian motion under Ph,γ and the factor

process Xt satisfies,

dXt = (b+BXt −
θ

2
(Σ
′
ht − γt))

′
dt+ ΛdW h,γ

t . (3.8)

Step 2

The HJB equation

Taking expectation w.r.t to the physical measure P and multiplying both sides of

equation (3.3) by −2
θ followed by the change of measure argument of (3.4-3.5) one

considers the new path functional I defined as

I(f, x, h, γ, t, T ) = log f − 2

θ
logEh,γ [exp {θ

2

∫ T−t

0
g(Xs, hs, γs, rs+t; θ)ds}], (3.9)

and then the upper-value function and lower-value function ū and u respectively for

the game corresponding to the new path functional I are given by :

ū(t, x) = sup
h∈H(T )

inf
γ∈Γ(T )

I(f, x, h, γ, t, T ), (3.10a)

u(t, x) = inf
γ∈Γ(T )

sup
h∈H(T )

I(f, x, h, γ, t, T ), (3.10b)

u(t, x) = ū(t, x) = u(t, x). (3.10c)

If a pair of controls satisfy (3.10c), then the game corresponding to the new path

functional I has the value u and the pair of controls constitutes saddle point strate-

gies for the game with regards to I. Let the exponentially transformed function Ĩ

be defined as Ĩ = exp(− θ
2I) and ũ(t, x) := exp(− θ

2u(t, x)). We now consider the

problem of determining the saddle-point equilibrium for the game corresponding to
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the new path functional Ĩ. We call this problem (P2) and it is formally stated as

follows:

Problem P2 Obtain ĥ ∈ H(T ) and γ̂ ∈ Γ(T ) such that,

ũ(t, x) = inf
h∈H(T )

sup
γ∈Γ(T )

Ĩ(f, x, h, γ, t, T ),

= sup
γ∈Γ(T )

inf
h∈H(T )

Ĩ(f, x, h, γ, t, T ),

= Eĥ,γ̂ [exp{θ
2

∫ T−t

0
g(Xs, ĥs, γ̂s, rs+t; θ)ds}f−θ/2]. (3.11)

We now provide a verification lemma for this game. Let us first define the process

Y h,γ(t) by

dY h,γ(t) =

(
dt

dXt

)
=

(
dt

(b+BXt − θ
2(h

′
tΣ− γ

′
t))dt+ ΛdW h,γ

t

)
Let y ,(t, x). The control process h(t) = h(t, ω) and γ(t) = γ(t, ω) for ω ∈ Ω can

be assumed to be Markovian. Let O = (0, T ) × Rn. Then the process Y h,γ(t) is a

Markov process whose generator Ãh,γ acting on a function ũ(t, x) ∈ C2
0 ([0, T ]×Rn)

is given by,

Ãh,γ ũ(t, x) =
∂ũ(t, x)

∂t
+ (b+Bx− θ

2
Λ(Σ

′
h− γ))

′
Dũ(t, x) +

1

2
tr(ΛΛ∗D2ũ(t, x)).

(3.12)

in which Dũ(t, x) , (∂ũ(t,x)
∂x1 , ..., ∂ũ(t,x)

∂xn )
′

and D2ũ(t, x) is the matrix defined by

D2ũ(t, x) , [∂
2ũ(t,x)
∂xixj

], i, j = 1, 2, ..., n.

Step 3

By an application of the Feynman-Kac formula, it can be deduced from (3.11)

that the HJBI PDE for ũ(t, x) is given by(
Ãĥ,γ̂ +

θ

2
g(x, ĥ, γ̂, r; θ)

)
ũ(t, x) = 0. (3.13)

Reversing the exponential transformation , dividing by −(θ/2)ũ(t, x), we can deduce

from (3.13) that the HJBI PDE for u(t, x) is given for h ∈ Rm and γ ∈ R(m+n) by

Aĥ,γ̂u(t, x) = 0, (3.14)
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where the operator Ah,γ is given by,

Ah,γu(t, x) =
∂u(t, x)

∂t
+ (b+Bx− θ

2
Λ(Σ

′
h− γ))

′
Du(t, x) +

1

2
tr(ΛΛ

′
D2u(t, x))

− θ

4
(Du(t, x))

′
ΛΛ

′
Du(t, x)− g(x, h, γ, r; θ). (3.15)

In the next section we provide a verification lemma for the game based on the cri-

terion function I.

4 Verification lemma for the game PII

Step 4

We now provide a verification lemma related to the game (PII).

Proposition 1. Suppose w̃ ∈ C1,2(O) ∩ C(Ō) (is the space of twice differentiable

functions on O with respect to x, once continuously differentiable on O with respect

to t and which are continuous on Ō ). Suppose there exists a (Markov) control

h(y), γ(y) that satisfy

1. (Ãh,γ̂(y) + θ
2g(x, h, γ̂(y), r; θ))[(w̃(y))] ≥ 0 ∀ h ∈ Rm;

2. (Ãĥ(y),γ + θ
2g(x, ĥ(y), γ, r; θ))[(w̃(y))] ≤ 0 ∀ γ ∈ Rm+n;

3. (Ãĥ(y),γ̂(y) + θ
2g(x, ĥ(y), γ̂(y), r; θ))[(w̃(y))] = 0 ∀ y ∈ O;

4. (w̃(T,XT )) = f−θ/2.

Define,

Z̃(s) = Z̃(s)(h, γ) =
θ

2

{∫ s

0
g(Xτ , hτ , γτ , rt+τ ; θ)dτ

}
. (4.1)

5. Eh,γ [
∫ T−t

0 Dw̃
′
(t+ s,Xs)Λe

Z̃sdW h,γ
s ] = 0 ∀ h ∈ Rm, ∀ γ ∈ Rm+n

Now, define for each y ∈ O and h ∈ H(T ) and γ ∈ Γ(T ),

Ĩ(f, x, h, γ, t, T ) = exp(−θ
2
I(f, x, h, γ, t, T ))

= Eh,γ [exp{θ
2

∫ T−t

0
g(Xs, hs, γs, rs+t; θ)ds}f−θ/2].
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Then (ĥ(y), γ̂(y)) is an optimal (Markov) control i.e.,

w̃(0, x) = ũ(0, x) = Ĩ(f, x, ĥ, γ, 0, T ) = inf
h∈H(T )

{ sup
γ∈Γ(T )

[Ĩ(f, x, h, γ, 0, T )]}

= sup
γ∈Γ(T )

{ inf
h∈H(T )

[Ĩ(f, x, h, γ, 0, T )]}

= sup
γ∈Γ(T )

Ĩ(f, x, ĥ, γ, 0, T )

= inf
h∈H(T )

Ĩ(f, x, h, γ̂, 0, T ) = Ĩ(f, x, ĥ, γ̂, 0, T ).

Proof Apply Ito’s formula to w̃(s,Xs)e
Z̃s to obtain

d(w̃(t+ s,Xs)e
Z̃s) =

[
eZ̃s(Ãh,γ +

θ

2
g(Xs, hs, γs, rs+t; θ))

]
[(w̃(t+ s,Xs))]ds

+ eZ̃s(Dw̃(t+ s,Xs))dW
h,γ
s

w̃(T,XT−t)e
Z̃T−t = w̃(t, x) +

∫ T−t

0

((Ãh,γ +
θ

2
g(Xs, hs, γs, rs+t; θ))w̃(t+ s,Xs))e

Z̃sds

+

∫ T−t

0

(Dw̃
′
(t+ s,Xs)Λ)eZ̃sdWh,γ

s . (4.2)

From condition(4) of statement of the Proposition 1, we have w̃(T,XT ) = f−θ/2.

Taking expectation with respect to Ph,γ , setting t = 0 and using conditions (1) and

(5) of the Proposition 1 we get

Eh,Γ[w̃(T,XT )eZ̃T ] ≥ w̃(0, x)

Since this inequality is true for all h ∈ H(T ) we have

inf
h∈H(T )

Eh,Γ[f−θ/2eZ̃T ] ≥ w̃(0, x).

Hence we have,

sup
γ∈Γ(T )

inf
h∈H(T )

Eh,γ [f−θ/2eZ̃T ] ≥ inf
h∈H(T )

Eh,Γ[f−θ/2eZ̃T ] ≥ w̃(0, x). (4.3)

Similarly, setting t = 0 we get, using condition (2) of the Proposition 1, we get the

following lower bound,
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Eĥ,γ [w̃(T,XT )eZ̃T ] ≤ w̃(0, x).

Since this inequality is true for all γ ∈ Γ(T ) we have

sup
γ∈Γ(T )

Eĥ,γ [f−θ/2eZ̃T ] ≤ w̃(0, x).

Hence we have,

inf
h∈H(T )

sup
γ∈Γ(T )

Eh,γ [f−θ/2eZ̃T ] ≤ sup
γ∈Γ(T )

Eĥ,γ [f−θ/2eZ̃T ] ≤ w̃(0, x). (4.4)

Also , setting t = 0 and using condition (3) of the Proposition 1 and using the

definition of ũ in (3.11) we get,

Eĥ,γ̂ [w̃(T,XT )eZ̃T ] = w̃(0, x)

= Eĥ,γ̂ [exp{θ
2

∫ T

0
g(Xs, ĥs, γ̂s, rs+t; θ)ds}f−θ/2]. (4.5)

It is automaticaly true that

sup
γ∈Γ(T )

inf
h∈H(T )

Eh,γ [f−θ/2eZ̃T ] ≤ inf
h∈H(T )

sup
γ∈Γ(T )

Eh,γ [f−θ/2eZ̃T ]. (4.6)

Conversely, from (4.3), (4.4) and (4.5) we have,

inf
h∈H(T )

sup
γ∈Γ(T )

Eh,γ [f−θ/2eZ̃T ] ≤ w̃(0, x) ≤ sup
γ∈Γ(T )

inf
h∈H(T )

Eh,γ [f−θ/2eZ̃T ]. (4.7)

Hence from (4.6) and (4.7) we have,

sup
γ∈Γ(T )

inf
h∈H(T )

Eh,γ [f−θ/2eZ̃T ] = inf
h∈H(T )

sup
γ∈Γ(T )

Eh,γ [f−θ/2eZ̃T ]

= w̃(0, x) = Eĥ,γ̂ [f−θ/2eZ̃T ]. (4.8)

This completes the proof.

Corollary 2. Admissible(optimal) strategies for the exponentially transformed prob-
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lem given by (3.11) are also admissible(optimal) for the problem (3.10c). Formally,

u(0, x) = sup
h∈H(T )

{ inf
γ∈Γ(T )

[I(f, x, h, γ, 0, T )]},

= inf
γ∈Γ(T )

{ sup
h∈H(T )

[I(f, x, h, γ, 0, T )]},

= inf
γ∈Γ(T )

I(f, x, ĥ, γ, 0, T ),

= sup
h∈H(T )

I(f, x, h, γ̂, 0, T ) = I(f, x, ĥ, γ̂, 0, T ).

Proof The value function u and ũ are related through the strictly monotone con-

tinuous transformation ũ(t, x) = exp(− θ
2u(t, x)). Thus admissible (optimal) strate-

gies for the exponentially transformed problem are also admissible(optimal) for the

problem (3.10).

5 Solving the risk-sensitive zero sum stochastic differ-

ential game

Step 5

We seek to find the value function u for the game defined in (3.12). We guess

a solution assuming that it belongs to the class C1,2((0, T ) × Rn) and show that

the guess satisfies all the conditions of our verification lemma given by Proposition.

Conditions (1)-(4) of the verification lemma that forms our Proposition 1 can be

written in a compact form as

sup
h∈H(T )

inf
γ∈Γ(T )

Ah,γu(t, x) = 0; u(T, x) = log f. (5.1)

Motivated by the results in Kuroda and Nagai [26], we will look for a u given by

u(t, x) = 1
2x
′
Qtx+ q

′
tx+ kt where Q is an n× n symmetric matrix, q ∈ Rn and k is

a scalar. Substituting this form in (3.15) we get

Ah,γu(t, x) =
1

2
x
′ dQt
dt

x+
dqt
dt

′

x+
dkt
dt

+

(
b+Bx− θ

2
Λ(Σ

′
ht − γ(t))

)′
(Qtx+ qt),

+
1

2
(ΛΛ

′
QtQ

′
tΛ
′
Λ)− θ

4
(Qtx+ kt)

′
ΛΛ

′
(Qtx+ kt),

− 1

2
(
θ

2
+ 1)h

′
tΣΣ

′
ht + rt − (αt + βtx) + h

′
t(a+Ax− rt1)

+
1

2

θ

2
(h
′
tΣγ + γ

′
Σ
′
ht)−

1

2
(
θ

2
− 1)γ

′
tγt. (5.2)
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We now solve the first order condition for γ̂ to minimize Aĥ,γu(t, x) over all γ ∈
Rn+m:

(2− θ)γ̂t − θ(Σ
′
ĥt − γ̂

′
)Du(t, x) = 0. (5.3)

The first order condition for ĥ that maximizes Ah,γ̂(y)ũ(t, x) over all h ∈ Rm in

terms of u(t, x) is,

ĥt =
2

(θ + 2)
(ΣΣ

′
)−1[dt +

θ

2
Σγ̂t −

θ

2
ΣΛ

′
Du(t, x)]. (5.4)

Substituting back ĥ obtained in (5.4) into (5.3) we get

γ̂t =
θ

2− θ
[Σ
′
ĥt − Λ

′
Du(t, x)] (5.5)

Comment on the valid range of θ.

Since the game considered is for the risk-averse investor θ > 0. Moreover based in

the expression for γ̂ in (5.5), θ 6= 2. This leaves for two possibilities: θ ∈ (0, 2) or

θ ∈ (2,∞). For the optimal strategies (ĥ, γ̂) to be a saddle-point equilibrium for the

game, we would desire that the equation with the quadratic term in h be negative

definite while the quadratic term in γ be positive definite. In fact for the choice

θ > 0, the quadratic term in h desirably is negative definite while for θ < 2, the

quadratic term in γ is positive definite . Hence for our case, the valid range of θ is

between 0 and 2.

The optimal control ĥt is a global maximum while γ̂t is a global minimum for

t ≤ [0, T ]. We re-write ĥt and γ̂t only in terms of d and u and are given as,

ĥt =
2− θ
2− θ2

(ΣΣ
′
)
−1
dt −

θ

2− θ2
(ΣΣ

′
)
−1

ΣΛ
′
Du(t, x).

γ̂t =
θ

2− θ2
Σ
′
(ΣΣ

′
)
−1
dt −

θ2

(2− θ)(2− θ2)
Σ
′
(ΣΣ

′
)
−1

ΣΛ
′
Du

− θ

2− θ
Λ
′
Du.

Based on the above expressions of ĥ· and γ̂·, one can say rather explicitly how

strategies compete vis-a-vis when ΣΛ
′

= 0. In that situation, a quick calculation

follows that the investor invests less and less in the stocks when θ → 1 for the

valid range θ ∈ (0, 1). On the contrary investor’s allocation in the risky stocks

increases for the valid range θ ∈ (−2, 0) − {−
√

2} as θ gets more negative. From

the perspective of risk-sensitive optimization, this is expected. Likewise we have the
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following relation between the volatility coefficient of the portfolio wealth process

and the benchmark process namely Σ
′
ĥ and γ̂ respectively which is

Σĥt =
2− θ
θ

γ̂t.

For −2 < θ < 1, volatility of the portfolio wealth process is higher than the bench-

mark process in magnitude. Contrary effect is seen for 1 < θ < 2.

We substitute ĥ from (5.4) and γ̂ from (5.5) in (5.1) to obtain

Aĥ,γ̂u(t, x) = 0; u(T, x) = log f (5.6)

We then group all the resulting quadratic terms in x, linear terms in x and constants

together to conclude that the choice of u(t, x) = 1
2x
′
Qtx + q

′
tx + kt is indeed the

solution to the HJBI PDE (5.1) provided that Q, q and k satisfy the following system

of differential equations:

• a matrix Ricatti equation related to the coefficient of the quadratic term and used

to determine the symmetric non-negative matrix Qt, given as

dQt
dt

= QtK0Qt +K
′
1Qt +QtK1 + 2

2− θ
(2− θ2)2A

′
(ΣΣ−1)

−1
A = 0 0 ≤ t ≤ T,

QT = 0 (5.7)

where

K0 = −θ2

2(2−θ)ΛΛ
′
+ 2θ2

(2−θ)(2−θ2)2 ΛΣ
′
(ΣΣ

′
)
−1

ΣΛ
′

K1 = B − 2θ
(2−θ2)2A

′
(ΣΣ

′
)
−1

ΣΛ
′

• The following linear ordinary differential equation satisfied by the n element

column vector q(t)

dqt
dt

+ (K
′
1 +QtK0)qt +Q

′
tb+ (a− rt1)

′
(ΣΣ

′
)
−1

[
−2θ

(2− θ2)2 ΣΛ
′
Q(t) +

(2− θ)
(2− θ2)2

A]

− βt = 0

qT = 0 (5.8)
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• The following linear ordinary differential equation satisfied by the constant kt

dkt
dt

+
1

2
tr(ΛΛ

′
Qt) + rt − αt −

2θ

(2− θ2)2
(a− rt1)

′
(ΣΣ

′
)
−1

ΣΛ
′
q(t)

+
2− θ

(2− θ2)2
(a− rt1)−1(ΣΣ

′
)
−1

(a− rt1)

+
θ2

(2− θ)(2− θ2)2
q
′
(t)ΛΣ

′
(ΣΣ

′
)
−1

ΣΛ
′
q(t)

− θ2

4(2− θ)
q
′
(t)ΛΛ

′
q(t) = 0

kT = log f (5.9)

Condition 4 of Proposition 1 in terms of u imposes the terminal condition in

(5.9).

If K0 is positive definite then a unique solution to the Riccati equation (5.7),

Qt , exists for all t ≤ T . This property of positive definiteness follows from interpre-

tation of the solution Qt as the covariance matrix of observations from a Kalman

filter used to estimate the state of a dynamical system (see Theorem 4.4.1 in Davis

[7]) for details. The uniqueness property of Qt follows from the standard existence-

uniqueness theorem for first order differential equations (see Proposition 4.4.2 in

Davis [7]).

It remains to be seen if ũ = exp(− θ
2u) for the choice of u satisfies condition (5) of

the Proposition .

Lemma 3. Eh,γ [
∫ T−t

0 eZ̃s(Dũ
′
(t+ s,Xs)Λ)dW h,γ

s ] = 0.

Proof From the definition of ũ in (3.11), for any optimal control belonging to

Γ(T ), the strategy ĥ ≡ 0 is sub-optimal, and hence will provide an upper bound on

ũ. Further for the zero-benchmark case namely, γ̂ ≡ 0, we would obtain now an

upper bound on ũ

ũ(t, x) = inf
h∈H(T )

Eh,γ̂ [exp{θ
2

∫ T−t

0
g(Xs, hs, γ̂s, rs+t; θ)ds}f−θ/2],

≤ E0,γ̂ [exp{θ
2

∫ T−t

0
g(Xs, 0, γ̂s, rs+t; θ)ds}f−θ/2],

∴ ũ(t, x) ≤ E0,0[exp{θ
2

∫ T−t

0
g(Xs, 0, 0, rs+t; θ)ds}f−θ/2],

= exp(−θ
2

∫ T−t

0
rs+tds)f

−θ/2.

Now Q and q are solutions to the system of o.d.e, and hence are integrals of bounded

functions . Hence Q and q are continuous functions of time t ∈ [0, T ] and hence
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bounded on [0, T ]. The matrix Λ is a known constant. From standard existence-

uniqueness result of stochastic differential equation (refer Oksendal ([30])) we have

X ∈ L2(Ω,F ,Ph,γ). Hence from the upper bound on ũ and the fact that Du(t,Xt) =

QtXt + qt is in L2(Ω,F ,Ph,γ), we have that Eh,γ([Dũ ΛeZ , Dũ ΛeZ ]t) < ∞ ∀t ∈
[0, T ]. Hence we have Eh,γ [

∫ T−t
0 Dũ

′
(t+ s,Xs)Λe

Z̃sdW h,γ
s ] = 0. .

It is clear that our guess for ũ = exp(− θ
2u) satisfies conditions (1)-(5) of Proposition

1. Hence our choice of ũ indeed is the value of the game (P2) and controls ĥ, γ̂ are

the saddle point equilibrium of this game.

Corollary 4. For the choice of space of controls H(T ) and Γ(T ), we have

E[E
(
− θ

2

∫
0

[(QtXt + qt)Λ + (h
′
tΣ− γ

′
t)]dWt

)
T

] = 1. (5.10)

Proof: From the Kazamaki condition, refer (Oksendal [30]), (5.10) holds if

E[exp(
∫ t

0 θ(
(QsXs+qs)Λ+(h

′
sΣ−γ

′
s)

2 )dWs)] < ∞ ∀ t ∈ [0, T ]. Hence by application of

Cauchy-Schwartz inequality we have,

E[exp(

∫ t

0
θ(

(QsXs + qs)Λ + (h
′
sΣ− γ

′
s)

2
)dWs)],

≤ (E[e
∫ t
0 θ(QsXs+qs)ΛdWs ])1/2(E[e

∫ t
0 θ(h

′
sΣ−γ

′
s)dWs ])

1/2

.

However for E[e
∫ t
0 θ(QsXs+qs)ΛdWs ] < ∞ to hold , it is enough to show that the

Novikov condition given by E[e
∫ T
0 θ2(QsXs+qs)ΛΛ

′
(QsXs+qs)ds] < ∞ hold; refer (Ok-

sendal [30]). Since X is Gaussian process and Qt and qt are deterministic, (QtXt +

qt)Λ is Gaussian and hence by completion of squares argument detailed in Theorem 4

below we have E[e
∫ T
0 θ2(QsXs+qs)ΛΛ

′
(QsXs+qs)ds] <∞ holds and hence E[e

∫ t
0 θ(QsXs+qs)ΛdWs ] <

∞ ∀t ∈ [0, T ] is validated. (E[e
∫ t
0 θ(h

′
sΣ−γ

′
s)dWs ])

1/2
< ∞ is validated from similar

application of Cauchy-Schwartz inequality followed by the assumption made earlier

in the definition of the space of controls H(T ) and Γ(T ). Thus the Kazamaki con-

dition holds and the conclusion follows.

Theorem 5. If there exist a solution Q to (5.7), then the strategies (ĥ, γ̂) defined

by

ĥt =
2

(θ + 2)
(ΣΣ

′
)−1[dt +

θ

2
Σγt −

θ

2
ΣΛ

′
(QtXt + qt)]. (5.11)

γ̂t =
θ

2− θ
[Σ
′
ĥt − Λ

′
(QtXt + qt)], (5.12)
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where q is a solution of (5.8) are admissible i.e. h ∈ H(T ) and γ ∈ Γ(T ) and are

optimal for the finite horizon game problem (P1), namely,

u(0, x) = sup
h∈H(T )

inf
γ∈Γ(T )

J(f, x, h, γ, T ; θ),

= inf
γ∈Γ(T )

sup
h∈H(T )

J(f, x, h, γ, T ; θ),

= inf
γ∈Γ(T )

J(f, x, ĥ, γ, T ; θ),

= sup
h∈H(T )

J(f, x, h, γ̂, T ; θ),

= J(f, x, ĥ, γ̂, T ; θ),

=
1

2
x
′
Q0x+ q

′
0x+ k0.

Proof The controls derived in section 5, (ĥ, γ̂) forms the saddle point equilibrium

for the (P2) game . We aim to show that these controls are in fact admissible and

optimal for the problem (P1) as well.

Proof of admissibility From the expression for ĥ and γ̂ in (5.4) and (5.5) respectively

we note that − θ
2

(
(QtXt+qt)Λ+(ĥ

′
tΣ−γ̂

′
t)

)
can be written linearly in Xt as X

′
tv

1
t +v2

t

where, constants v1
t and v2

t are given by,

v1
t = −θ

2
Q
′
(t)Λ +

θ(θ − 1)

(2− θ2)
A
′
(ΣΣ

′
)−1ΣΛ

′
+
θ(θ − 1)

2− θ2
Q
′
(t)ΛΣ

′
(ΣΣ

′
)−1(a− r1)

− 2θ2(θ − 1)

(2− θ)(2− θ2)
Q
′
(t)ΛΣ

′
(ΣΣ

′
)−1ΣΛ

′
q(t)− θ2

(2− θ)
Q
′
(t)ΛΛ

′
q(t).

v2
t = −θ

2
q
′
(t)Λ +

θ(θ − 1)

(2− θ2)
(a− r1)

′
(ΣΣ

′
)−1ΣΛ

′
q(t)

− θ2(θ − 1)

(2− θ)(2− θ2)
q
′
(t)ΛΣ

′
(ΣΣ

′
)−1ΣΛ

′
q(t)− θ2

(2− θ)
q
′
(t)ΛΛ

′
q(t)

Since X satisfies the SDE , dXt = (b + BXt)dt + ΛdWt, soE|Xt| ≤ E|X(0)| +

|b|T + |B|
∫ t

0 E|Xs|ds. By Gronwall’s inequality, therefore E|Xt| ≤ (E|X(0)| +

|b|T ) exp(|B|t) and Cov(Xt) = Λ
′
Λt. Let φ(t) , v1

tXt + v2
t . We now explicitly

calculate E[eδ|φt|
2
] for some δ > 0 since from Remark 2 in Lemma 2, of section

12 (Gihman and Skorokhod [22]) would imply that the Novikov’s condition holds

true. Let Rt = e−BtXt + e−bt. Hence dRt = e−BtΛdWt. Therefore Rt is a Gaus-

sian process and hence φt is Gaussian process with drift. Also µt = E[|φt|] ≤
sup0≤t≤T |v1

t |(E|X0|+ |b|T ) exp(|B|t)+sup0≤t≤T |v2
t | and Σ̃t = Cov(φt) ≤ v1

′

tΛ
′
Λv1

t .

Thus mean µt and co-variance Σ̃t are bounded above by t. We use the following com-

pletion of squares argument: 1
2z
′
Az+b

′
z+c = 1

2(z+A−1b)
′
A(z+A−1b)+c− 1

2b
′
A−1b
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.

E[eδ|φt|
2
] =

∫
Rn

1

2πn/2|Σ̃tΣ̃
′
t|1/2

eδ|φ|
2
t e−

1
2

(φ−µt)
′
(Σ̃tΣ̃

′
t)
−1(φ−µt)dx1dx2...dxn ,

=
1

2πn/2|Σ̃tΣ̃
′
t|1/2

∫
Rn
e
−φ
′
(−2δI+(Σ̃tΣ̃

′
t)
−1)
−1

φ+2µ
′
(t)(Σ̃tΣ̃

′
t)
−1φ−µ

′
t(Σ̃tΣ̃

′
t)
−1µt

2 dx1....dxn,

=
|(Σ̃′tΣ̃t)|−1/2

|(−2δI + (Σ̃tΣ̃
′
t)
−1)−1|−1/2

×,

e
−µ
′
t(Σ̃tΣ̃

′
t)
−1µt+4µ

′
t(Σ̃tΣ̃

′
t)
−1(−2δI+(Σ̃tΣ̃

′
t)
−1)
−1

(Σ̃tΣ̃
′
t)
−1µt

2 .

Matrix (Σ̃tΣ̃t)
−1

is symmetric positive definite with lowest eigenvalue say λmin.

Then it is easy to show that for δ < λmin
2 , matrix (−2δI + (Σ̃tΣ̃

′
t)
−1)−1 is positive

definite . Along with the derived fact that µt and Σ̃t is bounded above by t ≤ T

, hence there exists some constant C such that E[eδ|φt|
2
] ≤ C. Hence the optimal

controls ĥ, γ belong to their respective admissible class viz. H(T ) and Γ(T ) respec-

tively.

Proof of optimality Define,

Zs = Zs(h, γ) =
θ

2

{∫ s

0
g(Xτ , hτ , γτ , rt+τ ; θ)dτ − (h

′
τΣ− γ′τ )dWτ ,

− θ

4
(h
′
τΣ− γ′τ )

′

(h
′
τΣ− γ′τ )dτ

}
. (5.13)

Also define, χ(t, x) = − θ
2(u(t, x) − log f) and Lu(t, x) = 1

2 tr(ΛΛ
′
D2u(t, x)) + (b +

Bx)
′
Du(t, x)

Hence, we have

dχ(t+ s,Xs) = −θ
2

(
∂u

∂t
+ Lu)(t+ s,Xs)ds−

θ

2
Du(t+ s,Xs)

′
ΛdWs.

Hence,

d exp{χ(t+ s,Xs)}
exp{χ(t+ s,Xs)}

= −θ
2

(
∂u

∂t
(t, x) + Lu)(t+ s,Xs)−

θ

2
Du(t+ s,Xs)

′
ΛdWs

+
θ2

8
Du

′
ΛΛ

′
Du(t+ s,Xs)ds.
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and so,

d exp{χ(t+ s,Xs)} exp{Z(s)}
exp{χ(t+ s,Xs)} exp{Z(s)}

= −θ
2

(
∂u

∂t
(t, x) + Lu)(t+ s,Xs)−

θ

2
Du(t+ s,Xs)

′
ΛdWs,

+
θ2

8
Du

′
ΛΛ

′
Du(t+ s,Xs)ds+

θ

2
g(Xs, hs, γs, rs + t; θ)ds,

− θ

2
(h
′
(s)Σ− γ

′
(s))dWs +

θ2

4
(h
′
(s)Σ− γ

′
(s))Λ

′
Du(t+ s,Xs)ds.

Hence from (3.15), we have,

exp{χ(T,X(T − t)) + Z(T − t)} = exp(χ(t, x)) exp

[ ∫ T−t

0
−θ

2
(Ah,γu(t+ s,Xs))ds,

−
∫ T−t

0

θ

2
[Du(t+ s,Xs)

′
Λ + (h

′
tΣ− γ

′
t)]dWt,

−
∫ T−t

0

θ2

8
[Du(t+ s,Xs)

′
+ (h

′
tΣ− γ

′
t)][Du(t+ s,Xs)

′
+ (h

′
tΣ− γ

′
t)]
′
ds

]
. (5.14)

We have shown that u satisfies conditions (1)-(5) of Proposition 1. Hence from con-

dition(4) of the Proposition 1, we have χ(T, x) = 0. Now setting t = 0 and taking

condition (1) of the Proposition 1 into account for γ = γ̂, and for any h ∈ Ĥ(T ) we

see from (5.14) that

(
V h
T

LΓ
T

)

−θ/2

≥ e−
θ
2
u(0,x) exp

[
−
∫ T

0

θ

2
[Du(s,Xs)

′
Λ + (h

′
sΣ− Γ

′
s)]dWs

−
∫ T

0

θ2

8
[Du(s,Xs)

′
+ (h

′
sΣ− γ

′
s)][Du(s,Xs)

′
+ (h

′
sΣ− Γ

′
s)]
′
ds

]
.

Now by taking expectations w.r.t to the physical probability measure P on both

sides of above equation and using corollary , we obtain

J(f, x, h, γ, T ) ≤ u(0, x).

This inequality is true for all h ∈ H(T ) so we have,

sup
h∈H(T )

J(f, x, h, γ, T ) ≤ u(0, x).

Hence we have,

inf
γ∈Γ(T )

sup
h∈H(T )

J(f, x, h, γ, T ) ≤ sup
h∈H(T )

J(f, x, h, γ, T ) ≤ u(0, x). (5.15)
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Likewise, setting t = 0 and taking condition (2) of the Proposition 1 into account

for h = ĥ, and for any γ ∈ Γ(T ) we see that

J(f, x, ĥ, γ, T ) ≥ u(0, x).

This inequality is true for all h ∈ H(T ) so:

inf
γ∈Γ(T )

J(f, x, ĥ, γ, T ) ≥ u(0, x).

Hence we have,

sup
h∈H(T )

inf
γ∈Γ(T )

J(f, x, h, γ, T ) ≥ inf
γ∈Γ(T )

J(f, x, ĥ, γ, T ) ≥ u(0, x). (5.16)

Hence from (5.15) and (5.16) we have,

sup
h∈H(T )

inf
γ∈Γ(T )

J(f, x, h, γ, T ) ≥ u(0, x) ≥ inf
γ∈Γ(T )

sup
h∈H(T )

J(f, x, h, γ, T ). (5.17)

Moreover, setting t = 0 and taking condition (3) of the Proposition 1 into account

for h = ĥ, γ = γ̂ (such that ĥ ∈ H(T ) and γ̂ ∈ Γ(T )) we see that

J(f, x, ĥ, γ̂, T ) = u(0, x). (5.18)

It is always true that

sup
h∈H(T )

( inf
γ∈Γ(T )

J(f, x, h, γ, T )) ≤ inf
γ∈Γ(T )

( sup
h∈H(T )

J(f, x, h, γ, T )). (5.19)

Hence combining (5.17) and (5.19) we deduce the final conclusion that the game

(P1) has a value and is u(0, x).

6 Conclusion

In this chapter we provide a two player zero sum stochastic differential game in the

context of the risk-sensitive benchmark asset management problem. We obtain an

explicit expression for the optimal strategies for both the players. Future work could

be directed towards considering a game theoretic benchmark problem with infinite

horizon risk sensitive criterion.
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Chapter 3

On the role of the

Föllmer-Schweizer minimal

martingale measure in risk

sensitive control asset

management.

Abstract

Kuroda and Nagai [26] state that the factor process in the Risk Sensitive control

Asset Management (RSCAM) is stable under the Föllmer and Schweizer minimal

martingale measure (MMM) . Fleming and Sheu [15] and more recently Föllmer

and Schweizer [18] have observed that the role of the minimal martingale measure

in this portfolio optimization is yet to be established. In this note we aim to address

this question by explicitly connecting the optimal wealth allocation to the minimal

martingale measure. We achieve this by using a “trick” of setting this problem in

the context of model uncertainty via a two-person, zero-sum, stochastic differential

game between the investor and an antagonistic market that provides a probability

measure. We obtain some startling insights. Firstly, if short-selling is not permit-

ted and if the factor process evolves under the minimal martingale measure then

the investor’s optimal strategy can only be to invest in the riskless asset (i.e. the

no-regret strategy). Secondly, if the factor process and the stock price process have

independent noise, then even if the market allows short selling, the optimal strategy

for the investor must be the no-regret strategy while the factor process will evolve

under the minimal martingale measure.
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1 Introduction

Risk sensitive control Asset Management (RSCAM) balances the investors

interest in maximizing the expected growth rate of wealth against his aversion to

risk due to deviations of the actually realized rate from the expectation for a finite

time horizon. The subjective notion of investor’s risk aversion is parameterized

by a single variable, say θ. In RSCAM we consider the following criterion to be

maximized. For a given θ > −2, θ 6= 0 and for time horizon T < ∞, with wealth

allocation control denoted by h(t), the risk-sensitive expected growth rate up to

time horizon T criterion J(v, h, T ; θ) defined by,

J(v, h, T ; θ) ,
−2

θ
logE[exp [

−θ
2

log V h(T )]], (1.1)

where V h(T ) is time-T portfolio value. An asymptotic expansion around θ = 0 for

the above criterion yields

J(v, h, T ; θ) = E[V h(T )]− θ

2
V ar(V h(T )) +O(θ2); V h(0) = v.

As is obvious from the preceding equation, θ > 0 corresponds to a risk-averse in-

vestor, θ < 0 to a risk seeking investor and θ = 0 to a risk-neutral investor. Hence

the optimal expected utility function depends on θ and is a generalization of the

traditional stochastic control in the sense that now the degree of risk aversion of

the investor is explicitly parameterized through θ rather than importing it in the

problem via an externally defined utility function. For this reason investment op-

timization models have been popularly reformulated as risk-sensitive control prob-

lems. For a general reference on risk-sensitive control, refer Whittle [33].

Risk-sensitive control was first applied to solve financial problems by Lefebvre

and Montulet [27] in a corporate finance context and by Fleming [14] in a portfolio

selection context. A RSCAM problem with m securities and n (economic) factors

was introduced by Bielecki and Pliska [2]. Their factor model however made a rather

strong assumption that the factor process and the securities price process in their

financial optimization model had independent noise. A generalization to this model,

relaxing this assumption was made by Kuroda and Nagai [26], who introduced an

elegant solution method based on a change of measure argument which transforms

the risk sensitive control problem into a linear exponential of a quadratic regulator.

They solved the associated HJB PDE over a finite time horizon and then studied
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the properties of the ergodic HJB PDE. We go about formally stating the problem

by first describing the factor model for a risk averse investor.

Let (Ω,F , (Ft)t≥0,P) be the filtered probability space. Consider a market of

m+1 ≥ 2 securities and n ≥ 1 factors. We assume that the set of securities includes

one bond whose price is governed by the ODE

dS0(t) = r(t)S0(t)dt, S0(0) = s0, (1.2)

where r(t) is a deterministic function of t. The other security prices are assumed to

satisfy the following SDE’s,

dSi(t) = Si(t){(a+AX(t))idt+

n+m∑
k=1

σikdW
k(t)}, Si(0) = si, i = 1, ...,m., (1.3)

where the component-wise factor process satisfies,

dXi(t) = (b+BX(t))idt+
n+m∑
k=1

λikdW
k(t), Xi(0) = xi, i = 1, ..., n.

X(t) = (X1(t), ..., Xn(t))
′

(where the symbol ′ signifies transpose) satisfies the fol-

lowing dynamics,

dX(t) = (b+BX(t))dt+ ΛdW (t), X(0) = x ∈ Rn. (1.4)

Here, W (t) = (W k(t))k=1,...,n+m is an n + m dimensional standard Brownian mo-

tion defined on the filtered probability space. The model parameters A,B are re-

spectively m × n, n × n, n × (m + n) constant matrices and a ∈ Rm , b ∈ Rn.

The constant matrix [σik] , Σ, i = 1, 2....,m; k = 1, 2, ..., (n + m). Similarly,

[λik] , Λ, i = 1, 2...., n; k = 1, 2, ..., (n + m). We denote the transpose of l by l
′
.

Likewise let |v| be a suitable vector norm for any vector v and let ||M || symbolize

a suitable matrix norm for any matrix M . As discussed earlier, as part of gen-

eralizing the Bielecki and Pliska factor model [2], Kuroda and Nagai [26] assume

that the factor process and the securities price process are correlated i.e. ΣΛ
′ 6= 0.

The investment strategy which represents proportional allocation of total wealth

in the ith security Si(t) is denoted by hi(t) for i = 0, 1, ...,m and we set, S(t) :=

(S1(t), S2(t), ..., Sm(t))
′
, h(t) := (h1(t), ..., hm(t))

′
and let Gt = σ(W (u);u ≤ t) be

the filtration generated by the standard Brownian motions that drives the stock

price process and the factor process. Let H(T ) be a space of Rm valued controls for

the investor meaning we say that h(t) ∈ H(T ) where h(t) is Gt-progressively measur-
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able stochastic processes such that
∑m

i=1 h
i(t) +h0(t) = 1, P (

∫ T
0 |h(t)|2dt <∞) = 1

and E[e
θ2

2

∫ T
0 h
′
tΣΣ

′
htdt] < ∞. For given h(t) ∈ H(T ) the process V (t) = V h(t) is

determined by the SDE,

dV h(t)

V h(t)
= h0(t)r(t)dt+

m∑
i=1

hi(t){(a+AX(t))idt+

m+n∑
k=1

σikdW
k(t)}; V h(0) = v.

which can be written as,

dV h(t)

V h(t)
= (r(t) + h

′
(t)δ(t))dt+ h

′
(t)ΣdW (t); V h(0) = v. (1.5)

where δ(t) , a+AX(t)−r(t)1. From the expression of security/stock price dynam-

ics S(t) (1.3), it is obvious that the market is incomplete (as it has m securities and

n+m Brownian drivers) and hence there exist many equivalent martingale measures

or EMM’s. We refer the reader to Karatzas and Shreve [25] for a general treatment

on market incompleteness. One such candidate equivalent martingale measure is

the Föllmer-Schweizer minimal martingale measure. For the continuous adapted

stock price process S = (S(t))0≤t≤T , the minimal martingale measure P∗ (say) is

the unique equivalent local martingale measure with the property that the local

P-martingale parts of S are also local P∗-martingales. For the Föllmer-Schweizer

minimal martingale measure P∗, the density process is given by the following dy-

namics,

dP∗

dP
= E(−

∫
0
((Σ

′
(ΣΣ

′
)−1) δ)

′
dW )T . (1.6)

Kuroda and Nagai [26] observe that the condition of stability of the matrix

B − ΛΣ
′
(ΣΣ

′
)−1A induces stability on the factor process X = (X(t))0≤t≤T under

the minimal martingale measure. Fleming and Sheu [15] and more recently Föllmer

and Schweizer [18] have observed that this observation and more significantly the

role of the minimal martingale measure in this portfolio asset management prob-

lem is yet to be established. In this chapter we address these questions. We do so

by conceptualizing the RSCAM as a zero-sum, stochastic differential game between

(a market) that provides a probability measure that works antagonistically against

another player (the investor) who otherwise wants to maximize the risk-sensitive

criterion. We call this game (GI)(refer (2.4)). We need to determine the controls

that forms the saddle point equilibrium to this game. This will then illuminate the

explicit dependence between controls h(t) and the probability measure which would
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then lead us to connect the role played by the minimal martingale measure. We

achieve this objective through the following road map:

Key Steps

Step 1: We re-formulate the game (GI) into an auxiliary game characterized by

the exponential of integral criterion that involves just the factor process X. We call

this game (GII)(refer equation (2.11)).

Step 2: We then provide a verification lemma for (GII).

Step 3: We then obtain the optimal controls and deduce the connection between

the minimal martingale measure and investor’s optimal strategy.

Step 4: To complete the analysis we end by showing that the controls hence ob-

tained while solving game (GII) in Step 3 in fact also constitute a saddle-point

equilibrium strategy for the original game (GI).

2 Worst-Case risk sensitive zero-sum stochastic differ-

ential game

As discussed in the introduction, the Kuroda and Nagai investment market model is

incomplete. We are interested in understanding the influence the minimal martin-

gale measure has on this portfolio optimization problem. We conjure an approach,

whereby we can explicitly characterize the dependence between the minimal mar-

tingale measure and the control variable h. Formally the way we do this is to define

a “market world”. The market world is a space of probability measures defined as

P , {Pη,ξ : (η, ξ) = (η(t), ξ(t))T≥t≥0 ∈ O(T )},

on (Ω,F), where O(T ) denotes the set of deterministic controls η(t) ∈ Rn×(n+m)

and ξ(t) ∈ R1×(n+m) which are continuous over the compact set [0, T ] and hence

bounded. E(·) is the Doleáns-Dade exponential. For (η(t), ξ(t)) ∈ O(T ), for fixed

time horizon T , the restriction of Pη,ξ to the σ− field FT is given by the Radon-

Nikodym density

Dη,ξ(T ) ,
dPη,ξ

dP
|FT , E

(∫
0

(η(t)
′
X(t) + ξ

′
(t))

′
dW (t)

)
T

. (2.1)

with respect to the reference measure P. We now show that for (η, ξ) ∈ O(T ), Pη,ξ

is a probability measure.

Lemma 1. E[Dη,ξ(T )] = 1 for all (η, ξ) ∈ O(T ).
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Proof The process X(t) in (1.4) is a Gaussian process. From (1.4) and Gronwall’s

inequality we have E|X(t)| ≤ (E|X(0)| + |b|T ) exp(||B||t) and Cov(X(t)) = Λ
′
Λt

where Cov is the covariance function. As η(t), ξ(t) are deterministic controls and

are bounded, φ(t) , X
′
(t)η(t) + ξ(t) is also a Gaussian process with bounded mean

and covariance on a finite time interval [0, T ]. Hence by an application of Novikov’s

condition, the Doleáns-Dade exponential in (2.1) is a P- martingale. A standard

proof of this fact can be seen in Lemma 3.1.1 in Bensoussan [1].

We now re-evaluate the optimization criterion J under the new probability measure

Pη,ξ and call it J̃ which is defined as

J̃(v, h, η, ξ, T ; θ) =
−2

θ
logEη,ξ[exp [

−θ
2

log V h,η,ξ(T )]].

where the portfolio value under the new probability measure Pη,ξ is given by

dV h,η,ξ(t)

V h,η,ξ(t)
=

[
r(t) + h

′
(t)(δ(t)− Σ(η

′
(t)X(t) + ξ

′
(t)))

]
dt+ h

′
(t)ΣdW η,ξ(t),

V h,η,ξ(0) = v. (2.2)

From Lemma 1 we have that Pη,ξ is a probability measure for (η, ξ) ∈ O(T ).

From the standard result in Girsanov [21], under the probability measure Pη,ξ,

W η,ξ(t) ,W (t) +

∫ t

0
(η
′
(s)X(s) + ξ

′
(s))ds,

is a standard Brownian motion process and therefore the factor process X(t), satis-

fies the following SDE

dX(t) = (b+BX(t)− Λ(η
′
(t)X(t) + ξ

′
(t)))dt+ ΛdW η,ξ(t), (2.3)

Remark 1 From equations (1.6) and (2.1) , it is clear that Pη,ξ is a minimal martin-

gale measure for η̂(t) , η(t) = A
′
(ΣΣ

′
)−1Σ and ξ̂(t) , ξ(t) = (a− r(t)1)

′
(ΣΣ

′
)−1Σ.

Kuroda and Nagai [26] have stated that under the condition of stability of

the matrix B − ΛΣ
′
(ΣΣ

′
)−1A, the factor process X(t) is stable under the minimal

martingale measure. In light of our Remark 1, we validate this statement now.

Remark 2 As η(t) = η̂(t) and ξ(t) = ξ̂(t) corresponds to the minimal martin-

gale measure, the dynamics of X(t) under the minimal martingale measure can be

re-written as

dX(t) =

(
b− ΛΣ

′
(ΣΣ

′
)−1(a− r(t)1) + (B − ΛΣ

′
(ΣΣ

′
)−1A)X(t)

)
dt+ ΛdW η̂,ξ̂(t).
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We are interested in finding the behavior of the solution X(t) as t→∞. The coeffi-

cient of the X(t) term in the drift part of the above equation is B −ΛΣ
′
(ΣΣ

′
)−1A.

Since, by assumption, this coefficient term is a stable matrix, X(t) is hence stable

under the minimal martingale measure.

We need to now pin down the influence the minimal martingale measure

has on this portfolio optimization problem to further resolve the inquiry posed by

Fleming and Sheu [15].

To do so, as stated earlier, we conceptualize this problem as a game between a player

termed as the market against the investor. We denote this game as (GI).

Game GI Obtain ĥ ∈ H(T ) and (η̂, ξ̂) ∈ O(T ) such that,

J̃(v, ĥ, η̂, ξ̂, T ; θ) = sup
h∈H(T )

inf
(η,ξ)∈O(T )

−2

θ
logEη,ξ[exp [

−θ
2

log V h,η,ξ(T )]],

= inf
(η,ξ)∈O(T )

sup
h∈H(T )

−2

θ
logEη,ξ[exp [

−θ
2

log V h,η,ξ(T )]]. (2.4)

Our intention is to re-write the objective function J̃ purely in terms of the factor

process X. We set to achieve this by defining,

g(x, h, η, ξ, r; θ) ,
1

2
(
θ

2
+ 1)h

′
ΣΣ

′
h− r − h′

(
δ − Σ(η

′
x+ ξ

′
)

)
.

(2.5)

From (2.5), we have

−θ
2
dlog V h,η,ξ(t) =

(
θ

2
g(X(t), h(t), η(t), ξ(t), r(t); θ)− θ2

8
h
′
(t)ΣΣ

′
h(t)

)
dt

− θ

2
h
′
(t)ΣdW η,ξ(t). (2.6)

We next define the following stochastic exponential and measure:

dPh,η,ξ

dPη,ξ
|FT = E(−θ

2

∫
0
h
′
(t)ΣdW η,ξ(t))T . (2.7)

From the definition of the class of controls H(T ), it is clear from an application of

Novikov’s condition that Ph,η,ξ is a probability measure. Under Ph,η,ξ, the standard

result of Girsanov [21] yields that

W h,η,ξ(t) ,W η,ξ(t) +

∫ t

0

θ

2
Σ
′
h(s)ds,
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is a standard Ph,η,ξ- Brownian motion and the factor process X(t) satisfies the

following dynamics

dX(t) = (b+BX(t)− Λ(η
′
(t)X(t) + ξ

′
(t))− θ

2
ΛΣ

′
h(t))dt+ ΛdW h,η,ξ(t). (2.8)

Now, under the new probability measure Ph,η,ξ, and using (2.4)-(2.6) and (2.8) we

define an auxiliary optimization criterion I(v, x, h, η, ξ, t, T ) given as

I(v, x, h, η, ξ, t, T ; θ) = log v − 2

θ
logEh,η,ξ

[
exp

(
θ

2

∫ T−t

0

g(X(s), h(s), η(s), ξ(s), r(s+ t); θ)ds

)]
.

(2.9)

This will lead us to frame the auxiliary game GII that constitutes our first step in

the road map in the Introduction.

Step 1:

In a worst-case risk-sensitive asset management scenario, the investor chooses a

portfolio process h so as to maximize the expected exponential-of-integral perfor-

mance index I. Then the response of the market to this choice is to select (η, ξ) (and

hence a probability measure)that minimizes the maximum expected exponential-of-

integral performance index. Formally,

The upper value of this game is given by

ū(t, x) = sup
h∈H(T )

inf
(η,ξ)∈O(T )

I(v, x, h, η, ξ, t, T ; θ),

while the lower value of the game is given by

u(t, x) = inf
(η,ξ)∈O(T )

sup
h∈H(T )

I(v, x, h, η, ξ, t, T ; θ),

The game has a value provided,

ū(t, x) = u(t, x) = u(t, x) = I(v, x, ĥ, η̂, ξ̂, t, T ; θ). (2.10)

and hence ĥ, (η̂, ξ̂) is a saddle-point equilibrium. We aim to provide a verifica-

tion lemma for which (2.10) is satisfied. In that spirit, consider the exponentially

transformed criterion which is simply obtained via the transformation ũ(t, x) =

exp(− θ
2u(t, x)). This transformation defines what we call game GII.

Game (GII)
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Obtain ĥ ∈ H(T ) and (η̂, ξ̂) ∈ O(T ) such that,

ũ(t, x) = inf
h∈H(T )

sup
(η,ξ)∈O(T )

Eh,η,ξ[exp{θ
2

∫ T−t

0
g(X(s), h(s), η(s), ξ(s), r(s+ t); θ)ds}v−θ/2],

= sup
(η,ξ)∈O(T )

inf
h∈H(T )

Eh,η,ξ[exp{θ
2

∫ T−t

0
g(X(s), h(s), η(s), ξ(s), r(s+ t); θ)ds}v−θ/2],

= Eĥ,η̂,ξ̂[exp{θ
2

∫ T−t

0
g(X(s), ĥ(s), η̂(s), ξ̂(s), r(s+ t); θ)ds}v−θ/2]. (2.11)

We now deduce the values of (ĥ, (η̂, ξ̂)) for game (GII).

3 An HJBI equation for game GII.

Step 2:

Let us now define a couplet process Y h,(η,ξ)(t) as

dY h,(η,ξ)(s) =

(
dY0(s)

dY1(s)

)
=

(
ds

dX(s)

)
=

(
ds

(b+BX(s)− Λ(η
′
(s)X(s) + ξ

′
(s))− θ

2ΛΣ
′
h(s))dt+ ΛdW h,η,ξ(s)

)
Y0(0) = s ∈ [0, T ], Y1(0) = y = (y1, ...yn). The control process h(s) = h(s, ω) is

assumed to be Markovian. Then the process Y h,(η,ξ)(s) is a Markov process whose

generator acting on a function ũ(y) ∈ C1,2
0 ((0, T ) × Rn) where (C1,2

0 is the space

of functions with compact support on (0, T )× Rn such that it is once continuously

differentiable in time and twice continuously differentiable in space variable x) is

given by,

Ãh,(η,ξ)ũ(y) =
∂ũ(y)

∂s
+ (b+Bx− Λ(η

′
x+ ξ

′
)− θ

2
ΛΣ

′
h)
′
Dũ(y) +

1

2
tr(ΛΛ∗D2ũ(y)).

(3.1)

in which Dũ(y) , (∂ũ(y)
∂y1

1
, ..., ∂ũ(y)

∂yn1
)
′

and D2ũ(y) is the matrix defined as D2ũ(y) ,

[ ∂
2ũ(y)

∂yi1∂y
j
1

], i, j = 1, 2, ..., n.

By an application of the Feynman-Kac formula, it can be deduced that the

HJB PDE for ũ(y) is given by(
Ãĥ,(η̂,ξ̂) +

θ

2
g(x, ĥ(y), η̂, ξ̂, r; θ)

)
ũ(y) = 0.

(3.2)

The following proposition presents a diagnostic to identify a solution to the game

(GII).
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Proposition 2. Define S = (0, T )×Rn. Let there exist a function w̃ ∈ C1,2(S)∩C(S̄)

and a (Markov) control ĥ ∈ H(T ) and (η̂, ξ̂) ∈ O(T ) such that for each y ∈ S satisfy,

1. (Ãh,(η̂,ξ̂) + θ
2g(x, h, η̂, ξ̂, r; θ))[(w̃(y))] ≥ 0 ∀ h ∈ Rm;

2. (Ãĥ(y),(η,ξ) + θ
2g(x, ĥ(y), η, ξ, r; θ))[(w̃(y))] ≤ 0 ∀ η ∈ Rn×(n+m), ξ ∈ R1×(n+m);

3. (Ãĥ(y),(η̂,ξ̂) + θ
2g(x, ĥ(y), η̂, ξ̂, r; θ))[(w̃(y))] = 0;

4. [(w̃(T,XT ))] = v−θ/2.

5. Eh,η,ξ[
∫ T−t

0 Dw̃
′
(t+ s,X(s))ΛeZ̃sdW h,η,ξ

s ] = 0 ∀ h ∈ Rm,∀ η ∈ Rn×(n+m), ξ ∈
R1×(n+m);

where,

Z̃(s) = Z̃s(h, η, ξ) :=
θ

2

{∫ s

0
g(X(τ), h(τ), η(τ), ξ(τ), r(t+ τ); θ)dτ

}
. (3.3)

Define ,

Ĩ(v, x, h, η, ξ, t, T ) = exp(−θ
2
I(v, x, h, η, ξ, t, T )),

= Eh,η,ξ[exp{θ
2

∫ T−t

0
g(X(s), h(s), η(s), ξ(s), r(s+ t); θ)ds}v−θ/2].

Then,

ũ(0, x) = w̃(0, x) = Ĩ(v, x, ĥ, η̂, ξ̂, 0, T ) = inf
h∈H(T )

{ sup
(η,ξ)∈O(T )

[Ĩ(v, x, h, η, ξ, 0, T )]},

= sup
(η,ξ)∈O(T )

{ inf
h∈H(T )

[Ĩ(v, x, h, η, ξ, 0, T )]},

= sup
(η,ξ)∈O(T )

Ĩ(v, x, ĥ, (η, ξ), 0, T ),

= inf
h∈H(T )

Ĩ(v, x, h, η̂, ξ̂, 0, T ) = Ĩ(v, x, ĥ, η̂, ξ̂, 0, T ).

and (ĥ, (η̂, ξ̂)) is a saddle point equilibrium.

Proof Apply Ito’s formula to w̃(s,X(s))eZ̃(s) to obtain

w̃(T,X(T − t))eZ̃(T−t) = w̃(t, x),

+

∫ T−t

0
((Ãh,η,ξ +

θ

2
g(X(s), h(X(s)), η(s), ξ(s), r(s+ t); θ))w̃(t+ s,X(s)))eZ̃s)ds,

+

∫ T−t

0
(Dw̃

′
(t+ s,X(s))Λ)eZ̃(s)dW h,η,ξ(s).

(3.4)
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Taking expectation with respect to Ph,η,ξ , from condition (5) of the Proposition 2

, the stochastic integral in (3.4) vanishes. Now setting t = 0 and further applying

condition (1) and (4) of the proposition 2 again , we get

Eh,η,ξ[w̃(T,XT )eZ̃T ] ≥ w̃(0, x).

Since this inequality is true for all h ∈ H(T ) we have

inf
h∈H(T )

Eh,η,ξ[v−θ/2eZ̃T ] ≥ w̃(0, x).

Hence we have,

sup
(η,ξ)∈O(T )

inf
h∈H(T )

Eh,η,ξ[v−θ/2eZ̃T ] ≥ inf
h∈H(T )

Eh,η,ξ[v−θ/2eZ̃T ] ≥ w̃(0, x). (3.5)

Similarly, setting t = 0 and using conditions (5), (2) and (4) of the proposition 2,

we get the following upper value of the game:

inf
h∈H(T )

sup
(η,ξ)∈O(T )

Eh,η,ξ[v−θ/2eZ̃T ] ≤ sup
(η,ξ)∈O(T )

Eh,η,ξ[v−θ/2eZ̃T ] ≤ w̃(0, x).

(3.6)

Also , setting t = 0 and using conditions (5), (3) and (4) of the proposition 2 we

get:

Eĥ,(η̂,ξ̂)[w̃(T,XT )eZ̃T ] = w̃(0, x)

= Eĥ,(η̂,ξ̂)[exp{θ
2

∫ T

0
g(X(s), ĥ(X(s)), η̂(s), ξ̂(s), r(s); θ)ds}v−θ/2].

(3.7)

From (3.5), (3.6) and (3.7), and the fact that

sup(η,ξ)∈O(T ) infh∈H(T )[v
−θ/2eZ̃T ] ≤ infh∈H(T ) sup(η,ξ)∈O(T )[v

−θ/2eZ̃T ] automatically

holds, the conclusion now follows.

We now return to the game problem involving u as the payoff function.

Corollary 3. u(0, x) = ū(0, x) = u(0, x).

Proof The value functions u and ũ are related through the strictly monotone con-

tinuous transformation ũ(t, x) = exp(− θ
2u(t, x)). Thus admissible (optimal) strate-

gies for the exponentially transformed problem ũ obtained via Proposition 2 are also
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admissible(optimal) for the problem u. In other words,

u(0, x) = sup
h∈H(T )

inf
(η,ξ)∈O(T )

{[I(v, x, h, η, ξ, 0, T )]},

= inf
(η,ξ)∈O(T )

{ sup
h∈H(T )

[I(v, x, h, η, ξ, 0, T )]},

= inf
(η,ξ)∈O(T )

I(v, x, ĥ, η, ξ, 0, T ),

= sup
h∈H(T )

I(v, x, h, η̂, ξ̂, 0, T ) = I(v, x, ĥ, η̂, ξ̂, 0, T ).

Hence u(0, x) = ū(0, x) = u(0, x).

4 Solving game GII.

Step 3 :

We seek to find a function u that would satisfy all the conditions of our

verification lemma given by Proposition 2. Conditions (1)-(4) of the verification

lemma can be written in a compact form in terms of u(t, x) as

Aĥ,η̂,ξ̂u(t, x) = 0,

u(T, x) = log v. (4.1)

where the operator Ah,η,ξu(t, x) for any h ∈ Rm and η ∈ Rn×(n+m), ξ ∈ R1×(n+m)

is given by,

Ah,η,ξu(t, x) =
∂u(t, x)

∂t
+ (b+Bx− Λ(η

′
(s)X(s) + ξ

′
(s)))− θ

2
Λ(Σ

′
h))

′
Du(t, x)

+
1

2
tr(ΛΛ

′
D2u(t, x))

− θ

4
(Du(t, x))

′
ΛΛ

′
Du(t, x)− g(x, h, η, ξ, r; θ). (4.2)

The first order condition for ĥ that maximizes Ah,η̂,ξ̂ over all H(T ) is given by,

ĥ(t) =
2

(θ + 2)
(ΣΣ

′
)−1[δ(t)− Σ(η̂

′
(t)X(t) + ξ̂

′
)− θ

2
ΣΛ

′
Du(t, x)]. (4.3)

Substituting (2.5) in (4.2) we obtain an expression for the operator Ah,η,ξ in η
′
(t)

and ξ
′
(t). We minimize Ah,η,ξ over the set of controls O(T ). As this operator is

linear in η
′
(t) and ξ

′
(t), we guess that the coefficient of the terms η

′
(t) and ξ

′
(t)
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vanish1 leading to

ĥ(t) = −(ΣΣ
′
)−1ΣΛ

′
Du(t, x).

Motivated by Kuroda and Nagai [26], we will try the functional form for u given by

u(t, x) = 1
2x

TQ(t)x + qT (t)x + k(t) where Q is an n × n symmetric matrix, q is a

n-element column vector and k is a scalar. Hence,

ĥ(t) = −(ΣΣ
′
)−1ΣΛ

′
(Q(t)X(t) + q(t)). (4.4)

This when substituted in (4.3) yields,

−ΣΛ
′
(Q(t)X(t) + q(t)) = δ(t)− Σ(η̂

′
(t)X(t) + ξ̂

′
(t)). (4.5)

which further yields,

η̂(t) = (Q
′
(t)ΛΣ

′
+A

′
)(ΣΣ

′
)−1Σ,

ξ̂(t) =

(
(a− r(t)1)

′
+ q

′
(t)ΛΣ

′
)

(ΣΣ
′
)−1Σ.

 (4.6)

Thus ĥ is a local maximizing control and (η̂, ξ̂) is a local minimizer control that

constitutes the saddle-point equilibrium for game (GII).

Remark 3 From Remark 2 and equation (4.6), it can be seen that Pη̂,ξ̂ is a minimal

martingale measure provided Q
′
(t)ΛΣ

′
(ΣΣ

′
)−1Σ = 0 and q

′
(t)ΛΣ

′
(ΣΣ

′
)−1Σ = 0 for

t ≤ T .

Remark 4 From Remark 3, and equation (4.4) it is clear that if the game equi-

librium measure corresponds to the minimal martingale measure then the optimal

investor strategy satisfies ĥ
′
(t)Σ = 0. Hence if the portfolio model does not permit

short selling then the optimal investor strategy at game equilibrium is the no-regret

strategy i.e (ĥ(t)=0).

Remark 5 In the case where the factor process and the security(stock) price pro-

cess has independent noise i.e ΣΛ
′
=0 , then from Remarks 3-4, it is obvious that at

1This is a situation typical in bang-bang type stochastic control problems. The optimal control
value depends on the the sign that their corresponding coefficient take or whether these coefficients
altogether vanish from the expression (4.2). Note that controls ξ, η are bounded and hence cannot
blow-up in finite time. Moreover, from Remark 2 we require that X be stable under the MMM

Pη=η̂,ξ=ξ̂. These insights makes us guess that the optimal controls η̂(t), ξ̂(t) can be chosen such
that their corresponding coefficients in (4.2) vanish. See also [28]. Hence the conditions that

subsequently guarantee that Pη̂,ξ̂ is a MMM also infact, from Remark 3 guarantee that the factor
process X is stable under the MMM. This satisfies our objective of determining η̂, ξ̂ such that X is

stable under Pη̂,ξ̂.
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optimality, the worst case strategy is the no-regret strategy and the factor process

always evolves under the minimal martingale measure since the game equilibrium

measure is the minimal martingale measure.

As in Kuroda and Nagai [26], we can verify that u(t, x) = 1
2x
′
Q(t)x+q

′
(t)x+

k(t) satisfies the HJB PDE i.e conditions (1)-(4) of the Proposition provided

• an n× n symmetric non-negative matrix Q satisfies the following matrix Riccati

equation given as

dQ(t)

dt
−Q(t)K0Q(t) +K

′
1Q(t) +Q(t)K1 = 0 0 ≤ t ≤ T, Q(T ) = 0. (4.7)

where

K0 =
θ

2
Λ

(
I − θ − 2

θ
Σ
′
(ΣΣ

′
)−1Σ

)
Λ
′
,

K1 = B − Λη
′
(t)− ΛΣ

′
(ΣΣ

′
)
−1
A.

• The n element column vector q(t)satisfies the following linear ordinary differential

equation

for 0 ≤ t ≤ T .

dq(t)

dt
+ (K

′
1 −Q(t)K0)q(t) +Q(t)b−Q′(t)ΛΣ

′
(ΣΣ

′
)−1(a− r(t)1)

+ Q
′
(t)ΛΣ

′
(ΣΣ

′
)−1Σ(η

′
(t) + ξ

′
(t))− ξ(t)Λ′Q(t) = 0,

q(T ) = 0. (4.8)

• and the constant k(t) is a solution to

dk(t)

dt
+ b

′
q(t) +

θ − 2

4
q
′
(t)ΛΣ

′
(ΣΣ

′
)−1ΣΛ

′
q(t),

+ r − q′(t)ΛΣ
′
(ΣΣ

′
)−1(a− r(t)1) + q

′
(t)ΛΣ

′
(ΣΣ

′
)−1Σ(η

′
(t) + ξ

′
(t)),

− ξ(t)Λ
′
q(t) +

2− θ
4

q
′
(t)ΛΛ

′
q(t) = 0,

,∀0 ≤ t ≤ T,

k(T ) = log(v). (4.9)

The fourth condition of the proposition is obvious from the terminal conditions of

Q, q and k. To show that condition (5) of the proposition is satisfied by the choice

of our payoff function, we need to show that Eh,(η,ξ)(< Dũ ΛeZ , Dũ ΛeZ >t) < ∞
∀t ∈ [0, T ]. To show this we argue as follows. Processes Q , (Q(t))0≤t≤T and
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q , (q(t))0≤t≤T are bounded since they are continuous on the compact support [0, T ].

By a standard existence-uniqueness argument for stochastic differential equation

(refer Gihman and Skorokhod [22]), X ∈ L2(Ph,(η,ξ)). Since Dũ is linear in X with

controls (η, ξ) assumed bounded, we also have that Dũ ∈ L2(Ph,η,ξ). To complete

the argument it remains to be shown that ũ is bounded. We show this now.

Lemma 4. 0 < ũ < exp(− θ
2

∫ T−t
0 r(s+ t)ds)v−θ/2.

Proof From the definition of ũ in (2.11), for any optimal control O(T ), the strategy

ĥ(t) = 0 for t ≤ T is sub-optimal, and hence will provide an upper bound on ũ.

Formally,

ũ(t, x) = inf
h∈H(T )

Eh,η̂,ξ̂[exp{θ
2

∫ T−t

0
g(X(s), h(s), η̂(s), ξ̂(s), r(s+ t); θ)ds}v−θ/2],

≤ E0,η̂,ξ̂[exp{θ
2

∫ T−t

0
g(X(s), 0, η̂(s), ξ̂(s), r(s+ t); θ)ds}v−θ/2],

≤ E0,0,0[exp{θ
2

∫ T−t

0
g(X(s), 0, 0, 0, r(s+ t); θ)ds}v−θ/2],

= exp(−θ
2

∫ T−t

0
r(s+ t)ds)v−θ/2.

Hence the conclusion follows.

We now formalize the solution to this game (GI).

Step 4:

We first show that the controls belonging to H(T ) and O(T ) satisfy the following

change of measure criterion.

Lemma 5. From the choice of space of controls h ∈ H(T ) and (η, ξ) ∈ O(T ), we

have

E[E
(
− θ

2

∫
0

[(Q(t)X(t) + q(t))Λ + h
′
(t)Σ]dW η,ξ(t)

)
T

] = 1. (4.10)

Proof Above result holds if the following Kazamaki condition,

E[exp(
∫ t

0 θ(
(Q(s)X(s)+q(s))Λ+h

′
(s)Σ

2 )dW η,ξ(s))] < ∞ ∀ t ∈ [0, T ] is satisfied. By an

application of Cauchy-Schwartz inequality we have ∀ t ∈ [0, T ] ,

E[exp(

∫ t

0
θ(

(Q(s)X(s) + q(s))Λ + (h
′
(s)Σ)

2
)dW η,ξ(s))]

≤ (E[e
∫ t
0 θ(Q(s)X(s)+q(s))ΛdW η,ξ(s)])1/2 × (E[e

∫ t
0 θ(h

′
(s)Σ)dW η,ξ(s)])

1/2

Since X is a Gaussian process, mimicking arguments similar to Lemma 1, we have

that
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(E[e
∫ t
0 θ(Q(s)X(s)+q(s))ΛdW η,ξ

s ])1/2 <∞ ∀ t ∈ [0, T ]. From assumption on the space of

controls H(T ), one can conclude that (E[e
∫ t
0 θ(h

′
(s)Σ)dW η,ξ(s)])

1/2
<∞ for t ∈ [0, T ].

Hence the Kazamaki condition holds true and the conclusion follows.

We now show that the saddle-point equilibrium controls obtained by solving

game (GII) is in fact also a saddle-point equilibrium for the original game problem

(GI).

Lemma 6. If there exist a solution Q to the matrix Ricatti equation (4.7) , then

the saddle point equilibrium strategies ĥ and (η̂, ξ̂) obtained from (4.4) and (4.6)

respectively as a result of solving the auxiliary game (GII) where q is a solution to

(4.8) and and k is a solution of (4.9) is in fact also the saddle-point equilibrium for

the finite horizon game (GI), namely,

sup
h∈H(T )

inf
(η,ξ)∈O(T )

J̃(v, h, η, ξ, T ; θ) = inf
(η,ξ)∈O(T )

sup
h∈H(T )

J̃(v, h, η, ξ, T ; θ),

= J̃(v, ĥ, η̂, ξ̂, T ; θ, )

=
1

2
x
′
Q(0)x+ q

′
(0)x+ k(0).

where,

J̃(v, h, η, ξ, T ; θ) ,
−2

θ
logEη,ξ[exp [

−θ
2

log V h,η,ξ(T )]].

Proof

Define,

Z̄s = Z̄s(h, η, ξ) =
θ

2

{∫ s

0
g(X(τ), h(τ), η(τ), ξ(τ), r(t+ τ); θ)dτ − (h

′
(τ)Σ)dW η,ξ(τ)

− θ

4
(h
′
(τ)Σ)

′

(h
′
(τ)Σ)dτ

}
. (4.11)

Also define, χ(t, x) = − θ
2(u(t, x) − log v). From some straightforward calculations

provided in the Appendix we obtain the following relation,

exp{χ(T,X(T − t)) + Z̄(T − t)} = exp(χ(t, x)) exp

[ ∫ T−t

0
−θ

2
(Ah,η,ξu(t+ s,Xs))ds

−
∫ T−t

0

θ

2
[Du(t+ s,Xs)

′
Λ + (h

′
(t)Σ)]dW η,ξ

t

−
∫ T−t

0

θ2

8
[Du(t+ s,Xs)

′
+ (h

′
(t)Σ)][Du(t+ s,Xs)

′
+ h

′
(t)Σ]

′
ds

]
.

(4.12)
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We have shown that the saddle-point equilibrium strategies ĥ and (η̂, ξ̂) deduced by

solving game (GI) with corresponding game payoff function u satisfies conditions

(1)-(5) of the Proposition 2 . Therefore from condition(4) of the Proposition 2 ,

we have χ(T, x) = 0. Moreover (V h,η,ξ(T ))
−θ/2

= v−θ/2eZ̄T . Setting t = 0 and tak-

ing condition (1) of the Proposition 2 into account for η = η̂, ξ = ξ̂, and for any

h ∈ H(T ) we see from (4.11) that

(V h,η,ξ(T ))
−θ/2 ≥ e−

θ
2
u(0,x) exp

[
−
∫ T

0

θ

2
[Du(s,X(s))

′
Λ + h

′
(s)Σ]dW η,ξ(s)

−
∫ T

0

θ2

8
[Du(s,X(s))

′
+ h

′
(s)Σ][Du(s,X(s))

′
+ h

′
(s)Σ]

′
ds

]
.

Now by taking expectations w.r.t to the physical probability measure Pη,ξ on both

sides of above equation and using Lemma 5, we obtain

J̃(v, h, η, ξ, T ) ≤ u(0, x).

This inequality is true for all h ∈ H(T ). Hence we have,

sup
h∈H(T )

J̃(v, h, η, ξ, T ) ≤ u(0, x).

Hence we have,

inf
(η,ξ)∈O(T )

sup
h∈H(T )

J̃(v, h, η, ξ, T ) ≤ sup
h∈H(T )

J̃(v, h, η, ξ, T ) ≤ u(0, x). (4.13)

Likewise, setting t = 0 and taking condition (2) and condition (5) of the Proposition

2 into account we see that

sup
h∈H(T )

inf
(η,ξ)∈O(T )

J̃(v, h, η, ξ, T ) ≥ u(0, x) ≥ inf
(η,ξ)∈O(T )

sup
h∈H(T )

J̃(v, h, η, ξ, T ). (4.14)

Similarly ,setting t = 0 and taking condition (3) and (5) of the Proposition 2 into

account for h = ĥ, γ = γ̂ such that ĥ ∈ H(T ) and (η̂, ξ̂) ∈ O(T ) we see that

J̃(v, ĥ, η̂, ξ̂, T ) = u(0, x). (4.15)

From (4.13)-(4.15) and the fact that

suph∈H(T ) inf(η,ξ)∈O(T ) J̃(v, h, η, ξ, T ) ≤ inf(η,ξ)∈O(T ) suph∈H(T ) J̃(v, h, η, ξ, T ) is au-
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tomatically true, we conclude that the saddle-point equilibrium controls obtained

by solving game (GII) in fact also constitutes saddle-point strategy for the original

game (GI).

APPENDIX

As part of the proof of Lemma 5

Let χ(t, x) = − θ
2(u(t, x) − log v) and Lu(t, x) = 1

2 tr(ΛΛ
′
D2u(t, x)) + (b + Bx −

Λ(η
′
x+ ξ

′
))
′
Du(t, x)

Then we have

dχ(t+ s,X(s)) = −θ
2

(
∂u

∂t
+ Lu)(t+ s,X(s))ds− θ

2
Du(t+ s,X(s))

′
ΛdW η,ξ(s).

d exp{χ(t+ s,X(s))}
exp{χ(t+ s,X(s))}

= −θ
2

(
∂u

∂t
(t, x) + Lu)(t+ s,X(s))− θ

2
Du(t+ s,X(s))

′
ΛdW η,ξ(s)

+
θ2

8
Du

′
ΛΛ

′
Du(t+ s,X(s))ds,

d exp{χ(t+ s,X(s))} exp{Z(s)}
exp{χ(t+ s,X(s))} exp{Z(s)}

= −θ
2

(
∂u

∂t
(t, x) + Lu)(t+ s,X(s))

− θ

2
Du(t+ s,X(s))

′
ΛdW η,ξ(s)

+
θ2

8
Du

′
ΛΛ

′
Du(t+ s,X(s))ds

+
θ

2
g(X(t), h(t), η(t), ξ(t), r(s+ t); θ)ds

− θ

2
h
′
(s)ΣdW η,ξ(s) +

θ2

4
h
′
(s)ΣΛ

′
Du(t+ s,X(s))ds

Integrating the above equation yields (4.12).
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Chapter 4

Sufficient stochastic maximum

principle for the optimal control

of semi-Markov modulated

jump-diffusion with an

application to financial

optimization.

Abstract

The finite state semi-Markov process is a generalization of the Markov chain in which

the sojourn time distribution is any general distribution. In this chapter we provide

a sufficient stochastic maximum principle for the optimal control of a semi-Markov

modulated jump-diffusion process in which the drift, diffusion and the jump kernel

of the jump-diffusion process is modulated by a semi-Markov process. We also con-

nect the sufficient stochastic maximum principle with the dynamic programming

equation. We apply our results to a finite-horizon, risk-sensitive control portfolio

optimization problem and to a quadratic loss-minimization problem.
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1 Introduction

The stochastic maximum principle is a stochastic version of the Pontryagin max-

imum principle which states that the any optimal control must satisfy a system

of forward-backward stochastic differential equations, called the optimality system,

and should maximize a functional, called the Hamiltonian. The converse indeed

is true and gives the sufficient stochastic maximum principle. In this chapter we

will derive sufficient stochastic maximum principle for a class of process called as

the semi-Markov modulated jump-diffusion process. In this process the drift, the

diffusion and the jump kernel term is modulated by an semi-Markov process.

An early investigation of stochastic maximum principle and its application

to finance has been credited to Cadenillas and Karatzas [5]. Framstadt et al. [19]

formulated the stochastic maximum principle for jump-diffusion process and ap-

plied it to a quadratic portfolio optimization problem. Their work has been partly

generalized by Donnelly [13] who considered a Markov chain modulated diffusion

process in which the drift and the diffusion term is modulated by a Markov chain.

Zhang et al. [34] studied sufficient maximum principle of a process similar to that

studied by Donnelly additionally with a jump term whose kernel is also modulated

by a Markov chain. It can be noted that the Markov modulated process has been

quite popular with its recent applications to finance for example options pricing

(Deshpande and Ghosh [12]) and references therein and to portfolio optimization

refer Xhou and Yin [35]. However application of semi-Markov modulated process

to portfolio optimization in which the portfolio wealth process is a semi-Markov

modulated diffusion are not many, see for example Ghosh and Goswami [20]. Even

so it appears that the sufficient maximum principle has not been formulated for

the case of a semi-Markov modulated diffusion process with jumps and studied fur-

ther in the context of quadratic portfolio optimization. Moreover, application of

the sufficient stochastic maximum principle in the context of risk-sensitive control

portfolio optimization with the portfolio wealth process following a semi-Markov

modulated diffusion process has not been studied. This chapter aims to provide

these missing dots and connect them together. For the same reasons, along with

providing a popular application of the sufficient stochastic maximum principle to a

quadratic- loss minimization problem when the portfolio wealth process follows a

semi-Markov modulated jump-diffusion, we also provide an example of risk-sensitive

portfolio optimization for the diffusion part of the said dynamics.

The chapter is organized as follows. In the next section we formally describe

basic terminologies used in the chapter. In section 3 we detail the control problem
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that we are going to study. The sufficient maximum principle is proven in Section

4. This is followed by establishing its connection with the dynamic programming.

We conclude the chapter by illustrating its applications to risk-sensitive control

optimization and to a quadratic loss minimization problem.

2 Mathematical Preliminaries

We adopt the following notations that are valid for the whole paper:

• Let R: be the reals

• r,M : be any positive integers greater than 1.

• X = {1, ...,M}.
• C1,2,1([0, T ]×Rr×X×R+): denote the family of all functions on [0, T ]×Rr×X×R+

which are twice continuously differentiable in x and continuously differentiable in t

and y.

• v′ , A′ : the transpose of the vector v and matrix A respectively.

• ||v||: Euclidean norm of a vector v.

• |A|: norm of a matrix A.

• tr(A): trace of a square matrix A.

• Cmb (Rr): Set of real, m-times continuously-differentiable functions which are

bounded together with their derivatives up to the mth order.

We assume that the probability space (Ω,F , {F(t)},P) is complete with fil-

tration {F(t)}t≥0 and is right-continuous and F(0) contains all P null sets. Let

{θ(t)}t≥0 be a semi-Markov process adapted to the filtration and takes values in X
with transition probability pij with conditional holding time distribution F h(t|i).
Thus if 0 ≤ t0 ≤ t1 ≤ ... are the times when jumps occur, then

P (θ(tn+1) = j, tn+1 − tn ≤ t|θ(tn) = i) = pijF
h(t|i). (2.1)

Further, we assume the matrix [pij ]{i,j=1,...,M} is irreducible and for each i, F h(·|i)
has continuously differentiable and bounded density fh(·|i). For a fixed t, let

n(t) , max{n : tn ≤ t} and Y (t) , t − tn(t). Thus Y (t) represents the amount

of time the proess θ(t) is at the current state after the last jump. The process

(θ(t), Y (t))defined on (Ω,F ,P) is jointly Markov and the differential generator L
given as follows (Chap.2, [22])

Lφ(i, y) =
d

dy
φ(i, y) +

fh(y|i)
1− F h(y|i)

∑
j 6=i,j∈X

pij [φ(j, 0)− φ(i, y)]. (2.2)
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for φ : X × R+ → R a C1 function.

We first represent the semi-Markov process θ(t) as a stochastic integral with

respect to a Poisson random measure. With that aim in mind, embed X in RM by

identifying i with ei ∈ RM . For y ∈ [0,∞) i, j ∈ X , define

λij(y) = pij
fh(y/i)

1− F h(y/i)
≥ 0 and ∀ i 6= j,

λii(y) = −
M∑

j∈X ,j 6=i
λij(y) ∀ i ∈ X .

For i 6= j ∈ X , y ∈ R+ let Λij(y) be consecutive (with respect to lexico-

graphic ordering on X×X ) left-closed, right-open intervals of the real line, each hav-

ing length λij(y). Define the functions h̄ : X×R+×R→ Rr and ḡ : X×R+×R→ R+

by

h̄(i, y, z) =

{
j − i if z ∈ Λij(y)

0 otherwise

ḡ(i, y, z) =

{
y if z ∈ Λij(y), j 6= i

0 otherwise

LetM(R+×R) be the set of all nonnegative integer-valued σ-finite measures

on Borel σ-field of (R+ × R). The process {θ̃(t), Y (t)} is defined by the following

stochastic integral equations:

θ̃(t) = θ̃(0) +

∫ t

0

∫
R
h̄(θ̃(u−), Y (u−), z)N1(du, dz),

Y (t) = t−
∫ t

0

∫
R
ḡ(θ̃(u−), Y (u−), z)N1(du, dz),

(2.3)

where N1(dt, dz) is an M(R+ × R)-valued Poisson random measure with inten-

sity dt m(dz) independent of the X -valued random variable θ̃(0), where m(·) is

Lebesgue measure on R. As usual, by definition, Y (t) represents the amount of time

process θ̃(t) is at the current state after the last jump. We define the correspond-

ing compensated or centered one- dimensional Poisson measure as Ñ1(ds, dz) =

N1(ds, dz) − dsm(dz). It was shown in Theorem 2.1 of Ghosh and Goswami [20]

that θ̃(t) is a semi-Markov process with transition probability matrix [pij ]{i,j=1,...,M}

with conditional holding time distributions F h(y|i). Since by definition, θ(t) is also

a semi-Markov process with transition probability matrix [pij ]{i,j=1,...,M} with condi-

tional holding time distributions F h(y|i) defined on the same underlying probability
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space, by equivalence, θ̃(t) =d θ(t) for t ≥ 0.

Remark 1 The semi-Markov process with conditional density fh(y|i) = λ̃ie
−λ̃iy

for some λ̃i > 0, i = 1, 2...,M , is in fact a Markov chain.

3 The control problem

Let U ⊂ Rr be a closed subset. Let B0 be the family of Borel sets Γ ⊂ Rr whose

closure Γ̄ does not contain 0. For and Borel set B ⊂ Γ, one dimensional poisson

random measure N(t, B) counts the number of jumps on [0, t] with values in B.

For a predictable process u : [0, T ] × Ω → U with left continuous right limit paths,

consider the controlled process X with given initial condition X(0) = x ∈ Rr given

by

dX(t) = b(t,X(t), u(t), θ(t))dt+ σ(t,X(t), u(t), θ(t))dW (t)

+

∫
Γ
g(t,X(t), u(t), θ(t)), γ)N(dt, dγ), (3.1)

where X(t) ∈ Rr and W (t) = (W1(t), ...,Wr(t)) is r-dimensional standard Brow-

nian motion. The coefficients b(·, ·, ·, ·) : [0, T ] × Rr × U × X → Rr,σ(·, ·, ·, ·) :

[0, T ]×Rr ×U ×X → Rr ×Rr and g(·, ·, ·, ·, ·) : [0, T ]×Rr ×U ×X × Γ→ Rr and

satisfy the following conditions,

Assumption (A1)

(At most linear growth) There exists a constant C1 <∞ for any i ∈ X such that

|σ(t, x, u, i)|2 + ||b(t, x, u, i)||2 +
∫
R ||g(t, x, u, i, γ)||2λ(dγ) ≤ C1(1 + ||x||2)

(Lipschitz continuity) There exists a constant C2 <∞ for any i ∈ X such that

|σ(t, x, u, i)− σ(t, y, u, i)|2 + ||b(t, x, u, i)− b(t, y, u, i)||2

+

∫
Γ
||g(t, x, u, i, γ)− g(t, y, u, i, γ)||2λ(dγ) ≤ C2||x− y||2

∀x, y ∈ Rr.
Then X(t) is a unique cadlag adapted solution given by (3.1)[refer Theorem 1.19 of

[30]].

Define a(t, x, u, i) = σ(t, x, u, i)σ′(t, x, u, i) is a Rr×r matrix and akl(t, x, u, i)

is the (k, l)th element of the matrix a while bk(t, x, u, i) is the kth element of the vector

b(t, x, u, i). We assume that N(·, ·), N1(·, ·) and θ0,Wt, X0 defined on (Ω,F ,P) are

independent. For future use we define the compensated Poisson measure Ñ(dt, dγ) =

N(dt, dγ)−λ(dγ)dt, where λ(·) is the jump distribution (so a probability measure)
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and 0 < λ <∞ is the jump rate such that
∫

Γ min(||γ||2, 1)λ(dγ) <∞.

Consider the performance criterion

Ju(x, i, y) = Ex,i,y[

∫ T

0
f1(t,X(t), u(t), θ(t), Y (t))dt+ f2(X(T ), θ(T ), Y (T ))], (3.2)

where f1 : [0, T ]× Rr × U × X × R+ → R is continuous and f2 : Rr ×X × R+ → R
is concave. We say that u ∈ A(T ) is the admissible class of controls, if

Ex,i,y
[ ∫ T

0
|f1(t,X(t), u(t), θ(t), Y (t))|dt+ f2(X(T ), θ(T ), Y (T ))]

]
<∞.

The problem is to maximize Ju over all u ∈ A(T ) so we seek û ∈ A(T ) such that

J û(x, i, y) = sup
u∈A(T )

Ju(x, i, y), (3.3)

where û is an optimal control.

Define a Hamiltonian H : [0, T ]× Rr × U × X × R+ × Rr × Rr×r × Rr → R by,

H(t, x, u, i, y, p, q, η) := f1(t, x, u, i, y) +

(
b
′
(t, x, u, i)−

∫
Γ
g
′
(t, x, u, i, γ)π(dγ)

)
p

+ tr(σ
′
(t, x, u, i)q) +

(∫
Γ
g
′
(t, x, u, i, γ)π(dγ)

)
η. (3.4)

We assume that the Hamiltonian H is differentiable with respect to x. The adjoint

equation corresponding to u and Xu in the unknown adapted processes p(t) ∈
Rr,q(t) ∈ Rr×r, η : R+ × Rr − {0} → Rr and η̃(t, z) = (η(1)(t, z), ..., η(r)(t, z))

′
,

where η̃(n)(t, z) ∈ Rr×r for each n = 1, 2, ..., r, is the backward stochastic differential

equation (BSDE),

dp(t) = −∇xH(t,X(t), u(t), θ(t), p(t), q(t), η(t, γ))dt+ q
′
(t)dW (t) +

∫
Γ
η(t, γ)Ñ(dt, dγ)

+

∫
R
η̃(t, z)Ñ1(dt, dz),

p(T ) = ∇xf2(X(T ), θ(T ), Y (T )). a.s. (3.5)

We have assumed that H is differentiable with respect to x = X(t) and its derivative

is denoted as ∇xH(t,X(t), u(t), θ(t), p(t), q(t), η(t, γ)).

As per Remark 1, for the special case where the semi-Markov process has

exponential holding time distribution, we would have (3.5) to be a BSDE with

Markov chain switching. For this special case, Cohen and Elliott [6] have provided
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conditions for uniqueness of the solution. However, the corresponding uniqueness

result for the semi-Markov modulated BSDE as in (3.5) seems not available in the

literature. Since this paper concerns sufficient conditions, we will assume ad hoc

that a solution to this BSDE exists and is unique.

Remark 2 Notice that there are jumps in the adjoint equation (3.5) attributed

to jumps in the semi-Markov process θ(t). This is because the drift, the diffusion

and the jump kernel of the process X(t) is modulated by a semi-Markov process.

Also note that the unknown process η̃(t, z) in the adjoint equations (3.5) does not

appear in the Hamiltonian (3.4).

4 Sufficient Stochastic Maximum principle

In this section we state and prove the sufficient stochastic maximum principle.

Theorem 1(Sufficient Maximum principle) Let û ∈ A(T ) with corresponding solu-

tion X̂ , X û. Suppose there exists a solution (p̂(t), q̂(t), η̂(t, γ), ˆ̃η(t, z))of the adjoint

equation (3.5) satisfying

E

∫ T

0
||
(
σ(t, X̂(t), θ(t))− σ(t,Xu(t), θ(t))

)′
p̂(t)||2dt <∞ (4.1)

E

∫ T

0
||q̂′(t)

(
X̂(t)−Xu(t)

)
||2dt <∞ (4.2)

E

∫ T

0
||(X̂(t)−Xu(t))

′
η̂(t, γ)||2π(dγ)dt <∞ (4.3)

E

∫ T

0
|
(
X̂(t)−Xu(t)

)′
ˆ̃η(t, z)|2m(dz)dt <∞. (4.4)

for all admissible controls u ∈ A(T ). If we further suppose that

1.

H(t, X̂(t), û(t), θ(t), Y (t), p̂(t), q̂(t), η̂(t, ·)) = sup
u∈A(T )

H(t, X̂(t), u(t), θ(t), Y (t), p̂(t), q̂(t), η̂(t, ·)).

(4.5)

2. for each fixed (t, i, y) ∈ ([0, T ]×X×R+), Ĥ(x) := supu∈A(T )H(t, x, u, i, y, p̂(t), q̂(t), η̂(t, ·))
exists and is a concave function of x. Then û is an optimal control.

Proof Fix u ∈ A(T ) with corresponding solution X = Xu. For sake of brevity we

will henceforth represent (t, X̂(t−), û(t−), θ(t−), Y (t−)) by

65



(t, X̂(t−)) and (t,X(t−), u(t−), θ(t−), Y (t−)) by (t,X(t−)). Then,

J(û)− J(u) = E

(∫ T

0

(
f1(t, X̂(t))− f1(t,X(t))

)
dt

+ f2(X̂(T ), θ(T ), Y (T ))− f2(X(T ), θ(T ), Y (T ))

)
.

By concavity of f2(·, i, y) we have for each i ∈ X , y ∈ R+ and (3.5) the inequalities,

E

(
f2(X̂(T ), θ(T ), Y (T )) − f2(X(T ), θ(T ), Y (T ))

)
≥ E

(
(X̂(T )−X(T ))

′∇xf2(X̂(T ), θ(T ), Y (T ))

)
≥ E

(
(X̂(T )−X(T ))

′
p̂(T )

)
.

which gives

J(û)− J(u) ≥ E
∫ T

0

(
f1(t, X̂(t))− f1(t,X(t))

)
dt+ E

(
(X̂(T )−X(T ))

′
p̂(T )

)
.

(4.6)

We now expand the above equation (4.6) term by term. For the first term in this

equation we use the definition of H as in (3.4) to obtain

E

∫ T

0

(
f1(t, X̂(t))− f1(t,X(t))

)
dt

= E

∫ T

0

(
H(t, X̂(t), û(t), θ(t), p̂(t), q̂(t), η̂(t, γ))

− H(t,X(t), u(t), θ(t), p(t), q(t), η(t, γ))

)
dt

− E

∫ T

0

[(
b(t, X̂(t))− b(t,X(t))

−
∫

Γ

(
g(t, X̂(t−), û(t−), θ(t−), γ)− g(t,X(t−), u(t−), θ(t−), γ)

)
π(dγ)

)
p̂(t)

+ tr

(
(σ(t, X̂(t))− σ(t,X(t)))

′
q̂(t)

)
+

∫
Γ
(g(t, X̂(t−), û(t−), θ(t−), γ)− g(t,X(t−), u(t−), θ(t−), γ))

′
η(t, γ)π(dγ)

]
dt.

(4.7)
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To expand the second term on the right hand side of (4.6) we begin by applying the

integration by parts formula to get,

(X̂(T )−X(T ))
′
p̂(T ) =

∫ T

0
(X̂(t)−X(t))

′
dp̂(t)

+

∫ T

0
p̂
′
(t)d(X̂(t)−X(t)) + [X̂ −X, p̂](T ).

Substitute for X, X̂ and p̂ from (3.1) and (3.5) respectively to obtain,

(X̂(T )−X(T ))
′
p̂(T )

=

∫ T

0
(X̂(t)−X(t))

′
(
−∇xH(t, X̂(t), û(t), p̂(t), q̂(t), η̂(t, γ))dt+ q̂

′
(t)dW (t)

+

∫
Γ
η̂(t, γ)Ñ(dt, dγ) +

∫
R

ˆ̃η(t, z)Ñ1(dt, dz)

)
+

∫ T

0
p̂
′
(t)

{((
b(t, X̂(t))− b(t,X(t))

)
−
∫

Γ

(
g(t, X̂(t), û(t−), θ(t−), γ)

− g(t,X(t−), u(t−), θ(t−), γ)

)
π(dγ)

)
dt

+

(
σ(t, X̂(t))− σ(t,X(t))

)′
dW (t)

+

∫
Γ

(
g(t, X̂(t−), û(t−), θ(t−), γ)− g(t,X(t−), u(t−), θ(t−), γ)

)
Ñ(dt, dγ)

}
+

∫ T

0

[
tr

(
q̂
′
(t)

(
σ(t, X̂(t))− σ(t,X(t))

))
+

∫
Γ

(
g(t, X̂(t), û(t−), θ(t−), γ)− g(t,X(t), u(t−), θ(t−), γ)

)′
η(t, γ)π(dγ)

]
dt.

Due to integrability conditions (4.1)-(4.4), the integral with respect to the Brownian

motion and the Poisson random measure are square integrable martingales which
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are null at the origin. Thus taking expectations we obtain

E

(
(X̂(T )−X(T ))

′
p̂(T )

)
=

∫ T

0
(X̂(t)−X(t))

′
(
−∇xH(t, X̂(t), û(t), p̂(t), q̂(t), η̂(t, γ))

)
dt

+

∫ T

0

[
p̂
′
(t)

(
b(t, X̂(t))− b(t,X(t))−

∫
Γ

(
g(t, X̂(t−), û(t−), θ(t−), γ)

− g(t,X(t), u(t−), θ(t−), γ)

)
π(dγ)

)
+

∫ T

0
tr

(
q̂
′
(t)(σ(t, X̂(t))− σ(t,X(t)))

)
+

∫
Γ

((
g(t, X̂(t−), θ(t−), u(t−), γ)− g(t,X(t−), θ(t−), u(t−), γ)

)′
η(t, γ))

)
π(dγ)

]
dt.

Substitute the last equation and (4.7) into the inequality (4.6) to find after cancel-

lation that

J(û)− J(u) ≥ E

∫ T

0

(
H(t, X̂(t), û(t), θ(t), p̂(t), q̂(t), η̂(t, γ))

− H(t,X(t), u(t), θ(t), p(t), q(t), η(t, γ))

− (X̂(t)−X(t))
′∇xH(t, X̂(t), û(t), θ(t), p̂(t), q̂(t), η̂(t, γ))

)
dt.

(4.8)

We can show that the integrand on the RHS of (4.8) is non-negative a.s. for each

t ∈ [0, T ] by fixing the state of the semi-Markov process and then using the assumed

concavity of Ĥ(x), we apply the argument in Framstad et al. [19] . This gives

J(û) ≥ J(u) and so û is an optimal control.

5 Connection to dynamic programming

We show the connection between the stochastic maximum principle and dynamic

programming principle for the semi-Markov modulated regime switching jump diffu-

sion. This tantamounts to explicitly showing connection between the value function

V (t, x, i, y) of the control problem and the adjoint processes p(t), q(t) ,η(t, γ) and

η̃(t, z). In order to apply the dynamic programming principle we put the problem

68



into a Markovian framework by defining

Ju(t, x, i, y) , EX(t)=x,θ(t)=i,Y (t)=y[

∫ T

t
f1(t,X(t), u(t), θ(t), Y (t))dt+ f2(X(T ), θ(T ), Y (T ))],

(5.1)

and put

V (t, x, i, y) = sup
u∈A(T )

Ju(t, x, i, y) ∀ (t, x, i, y) ∈ [0, T ]× Rr ×X × R+. (5.2)

Theorem 2 Assume that V (·, ·, i, ·) ∈ C1,3,1([0, T ] × Rr × X × R+) for each i, j ∈
X and that there exists an optimal Markov control û(t, x, i, y) for (5.2), with the

corresponding solution X̂ = X(û). Define

pk(t) ,
∂V

∂xk
(t, X̂(t), θ(t), Y (t)). (5.3)

qkl(t) ,
r∑
i=1

σil(t, X̂(t), û(t), θ(t))
∂2V

∂xi∂xk
(t, X̂(t), θ(t), Y (t)). (5.4)

η(k)(t, γ) ,
∂V

∂xk
(t, X̂(t), j, Y (t))− ∂V

∂xk
(t, X̂(t), i, Y (t)). (5.5)

η̃(k)(t, z) ,
∂V

∂xk
(t, X̂(t−), θ(t−) + h̄(θ(t−), Y (t−), z), Y (t−)− ḡ(θ(t−), Y (t−), z))

− ∂V

∂xk
(t, X̂(t−), θ(t−), Y (t−)). (5.6)

for each (k, l = 1, ..., r). Also we assume that the coefficients b(t, x, u, i), σ(t, x, u, i)

and g(t, x, u, i, γ) belong to C1
b (Rr). Then p(t), q(t), η(t, γ) and η̃(t, z) solves the ad-

joint equation (3.5).

We prove this theorem by using the following Ito’s formula.

Theorem 3 Suppose r dimensional process X(t) = (X1(t), ..., Xr(t)) or {Xo(t)}
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indexed by (o = 1, 2, ..., r) satisfies the following equation,

dXo(t) = bo(t,X(t), u(t), θ(t))dt+
r∑

m=1

σom(t,X(t), u(t), θ(t))dWm(t)

+

∫
Γ
go(t,X(t−), u(t), θ(t−), γ)N(dt, dγ).

for some X(0) = x0 ∈ Rr a.s. . Further let us assume that the coefficients b, σ, g

satisfies the conditions of Assumption (A1).

Let V (·, ·, i, ·) ∈ C1,3,1([0, T ]× Rr × X × R+). Then the generalized Ito’s formula

is given by

V (t,X(t), θ(t), Y (t))− V (t, x, θ, y) =

∫ t

0
GV (s,X(s), θ(s), Y (s))ds

+

∫ t

0
(∇xV (s,X(s), θ(s), Y (s)))′σ(s,X(s), θ(s))dW (s)

+

∫ t

0

∫
Γ
[V (s,X(s−) + g(s,X(s−), u(s), θ(s−), γ), θ(s−), Y (s−))

− V (s,X(s−), θ(s−), Y (s−))]Ñ(ds, dγ)

+

∫ t

0

∫
R

[V (s,X(s−), θ(s−) + h̄(θ(s−), Y (s−), z), Y (s−)− ḡ(θ(s−), Y (s−), z))

− V (s,X(s−), θ(s−), Y (s−))]Ñ1(ds, dz),

where the local martingale terms are explicitly defined as

dM1(t) , (∇xV (t,X(t), θ(t), Y (t)))′σ(t,X(t), u(t), θ(t))dWt,

dM2(t) ,
∫

Γ
[V (t,X(t−) + g(t,X(t−), u(t), θ(t−), γ), θ(t−), Y (t−))

− V (t,X(t−), θ(t−), Y (t−))]Ñ(dt, dγ),

dM3(t) ,
∫
R

[V

(
t,X(t−), θ(t−) + h̄(θ(t−), Y (t−), z), Y (t−)− ḡ(θ(t−), Y (t−), z)

)
− V (t,X(t−), θ(t−), Y (t−))]Ñ1(dt, dz),
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for

GV (t, x, i, y) =
∂V (t, x, i, y)

∂t
+

1

2

r∑
o,l=1

aol(t, x, i)
∂V (t, x, i, y)

∂xo∂xl

+
r∑
o=1

bo(t, x, i)
∂V (t, x, i, y)

∂xo
+
∂V (t, x, i, y)

∂y

+
fh(y|i)

1− F h(y|i)

M∑
j 6=i,j∈X ,i=1

pij [V (t, x, j, 0)− V (t, x, i, y)]

+λ

∫
Γ

(V (t, x+ g(t, x, i, γ), i, y)− V (t, x, i, y))π(dγ), ∀ t ∈ [0, T ] , x ∈ Rr,

(i = 1, ....,M), y ∈ R+.

Proof For details refer to Theorem 5.1 in Ikeda and Watanabe [24].

Proof of Theorem 2 From the standard theory of dynamic programming the fol-

lowing HJB equation holds:

∂V

∂t
(t, x, i, y) + sup

u∈U
{f1(t, x, u, i, y) +AuV (t, x, i, y)} = 0,

V (T, x, i, y) = f2(x, i, y).

where Au is the infinitesimal generator of X and the supremum is attained by

û(t, x, i, y). Define

F (t, x, u, i, y) = f1(t, x, u, i, y) +
∂V

∂t
(t, x, i, y) +AuV (t, x, i, y).

We assume that f1 is differentiable w.r.t to x. We use the Ito’s formula as described

in Theorem 3 to get,

F (t, x, u, i, y) = f1(t, x, u, i, y) +
∂V

∂t
(t, x, i, y)

+
r∑

k=1

∂V

∂xk
(t, x, i, y)bk(t, x, u, i)

+
1

2

r∑
k=1

r∑
l=1

∂2V

∂xk∂xl
(t, x, i, y)

r∑
i=1

σki(t, x, u, i)σli(t, x, u, i)

+

M∑
j 6=i,i=1

pijf
h(y|i)

1− F h(y|i)
(V (t, x, j, 0)− V (t, x, i, y)) +

∂V

∂y
(t, x, i, y)

+ λ

∫
Γ

(V (t, x+ g(t, x, u, i, γ), i, y)− V (t, x, i, y))π(dγ). (5.7)
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Differentiating F (t, x, û(t, x, i, y), i, y) with respect to xo and evaluate at x = X̂(t),

i = θ(t) and y = Y (t), we get,

0 =
∂f1

∂xo
(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t), Y (t))

+
∂2V

∂xo∂t
(t, X̂(t), θ(t), Y (t))

+
r∑

k=1

∂2V

∂xo∂xk
(t, X̂(t), θ(t), Y (t))bk(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))

+
r∑

k=1

∂V

∂xk
(t, X̂(t), θ(t), Y (t))

∂bk
∂xo

(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))

+
1

2

r∑
k=1

r∑
l=1

∂3V

∂xo∂xk∂xl
(t, X̂(t), θ(t), Y (t))

×
r∑
i=1

σk,i(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))σl,i(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))

+
1

2

r∑
k=1

r∑
l=1

∂2V

∂xk∂xl
(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t), Y (t))

× ∂

∂xo

r∑
i=1

σk,i(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))σl,i(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))

+
M∑

j 6=i,j∈X

pijf
h(y|i)

1− F h(y|i)

(
∂V

∂xo
(t, X̂(t), j, 0)− ∂V

∂xo
(t, X̂(t), i, y)

)

+ λ

∫
Γ

(
∂V

∂xo
(t, X̂(t) + g(t, X̂(t), θ(t), γ), θ(t), Y (t))− ∂V

∂xo
(t, X̂(t), θ(t), Y (t))

)
π(dγ).

(5.8)

72



Next define, Yo = ∂V
∂xo

(t, X̂(t), θ(t), Y (t)) for (o = 1, ..., r). By Ito’s formula (Theo-

rem 3) we obtain the dynamics of Yo(t) as follows,

dYo(t) =

{
∂2V

∂xo∂t
(t, X̂(t), θ(t), Y (t))

+
r∑

k=1

∂2V

∂xo∂xk
(t, X̂(t), θ(t), Y (t))bk(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))

+
1

2

r∑
k=1

r∑
l=1

∂3V

∂xo∂xk∂xl
(t, X̂(t), θ(t), Y (t))

×
r∑
i=1

σki(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))× σli(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))

+

M∑
j 6=i,j=1

pijf
h(y|i)

1− F h(y|i)
(
∂V

∂xo
(t, X̂(t), j, 0)− ∂V

∂xo
(t, X̂(t), i, y))

+ λ

∫
Γ

(
∂V

∂xo
(t, X̂(t) + g(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t), γ), θ(t), Y (t))

− ∂V

∂xo
(t, X̂(t), θ(t), Y (t))

)
π(dγ)

}
dt

+

r∑
k=1

∂2V

∂xo∂xk
(t, X̂(t), θ(t), Y (t))

r∑
j=1

σkj(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))dWj(t)

+

∫
Γ

{
∂V

∂xo
(t, X̂(t−) + g(t, X̂(t−), û(t, X̂(t), θ(t), Y (t)), θ(t−), γ), θ(t−), Y (t−))

− ∂V

∂xo
(t, X̂(t−), θ(t−), Y (t−))

}
Ñ(dt, dγ)

+

∫
R

{
∂V

∂xo
((t,X(t−), θ(t−) + h̄(θ(t−), Y (t−), z), Y (t−)− ḡ(θ(t−), Y (t−), z)))

− ∂V

∂xo
(t, X̂(t−), θ(t−), Y (t−))

}
Ñ1(dt, dz).
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We substitute ∂2V
∂xo∂t

from (5.8) to get,

dYo(t) = −∂f1

∂xo
(t, X̂(t), û(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t), Y (t)))

−
r∑

k=1

∂V

∂xk
(t, X̂(t), θ(t), Y (t))

∂bk
∂xo

(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))

− 1

2

r∑
k=1

r∑
l=1

∂2V

∂xk∂xl
(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t), Y (t))

× ∂

∂xo
(
r∑

k=1

σki(t, X̂(t), θ(t))σli(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t)))

+
r∑

k=1

∂2V

∂xo∂xk
(t, X̂(t), θ(t), Y (t))

r∑
j=1

σkj(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))dWj(t)

+

∫
Γ

{
(
∂V

∂xo
(t, X̂(t−) + g(t,X(t−), û(t, X̂(t), θ(t), Y (t)), θ(t−), γ), θ(t−), Y (t−))

− ∂V

∂xo
(t, X̂(t−), θ(t−), Y (t−)))

}
Ñ(dt, dγ)

+

∫
R

{
∂V

∂xo
((t,X(t−), θ(t−) + h̄(θ(t−), Y (t−), z), Y (t−)− ḡ(θ(t−), Y (t−), z)))

− ∂V

∂xo
(t, X̂(t−), θ(t−), Y (t−))

}
Ñ1(dt, dz). (5.9)

We have the following identity,

1

2

r∑
k=1

r∑
l=1

∂2V

∂xk∂xl
(t, X̂(t), θ(t), Y (t))

× ∂

∂xo

( r∑
i=1

σki(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))σli(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))

)

=
r∑

k=1

r∑
l=1

r∑
i=1

σil(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t))
∂2V

∂xi∂xk
(t, X̂(t), θ(t), Y (t))

× ∂σkl
∂xo

(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t)). (5.10)

74



Next, from (3.4) we obtain,

∂H
∂xo

(t,X(t), u(t), θ(t), Y (t), p(t), q(t), η(t, γ))

=
∂f1

∂xo
(t, X̂(t), û(t, X̂(t), θ(t), Y (t)), θ(t), Y (t))

+

r∑
i=1

(
∂bi
∂xo

(t, X̂(t−), û(t, X̂(t), θ(t), Y (t)), θ(t−))

−
∫

Γ

∂gi
∂xo

(t,X(t−), û(t, X̂(t), θ(t), Y (t)), θ(t−), γ)π(dγ)

)
pi(t) + tr(

∂σ
′
(t, x, û, θ(t))

∂xo
q)

+
r∑
i=1

∫
Γ

∂gi
∂xo

(t,X(t−), θ(t−), γ)π(dγ)(η
(o)
i (t, γ)). (5.11)

We also note that

tr(
∂σ
′
(t, x, u, i)

∂xo
q) =

r∑
l=1

[
∂σ
′
(t, x, u, i)

∂xo
q]ll

=
r∑
l=1

r∑
k=1

qk,l
∂σkl
∂xo

(t, x, u, i).

Substituting (5.3)-(5.6) and (5.11) gives,

dYo(t) = − ∂H
∂xo

(t,X(t), u(t), θ(t), Y (t), p(t), q(t), η(t, γ))dt+
r∑
j=1

qoj(t)dWj(t)

+

∫
Γ
η(t, γ)Ñ(dt, dγ) +

∫
R
η̃(t, z)Ñ1(dt, dz). (5.12)

Since Yo(t) = po(t) for each o = 1, ..., r, we have shown that p(t), q(t), η(t, γ) and

η̃(t, z) solve the adjoint equation (3.5).

6 Applications

We illustrate the theory developed by applying it to some key financial wealth op-

timization problems. For an early motivation on applying sufficient maximum prin-

ciple, we first consider wealth dynamics to follow semi-Markov modulated diffusion

(no jumps case) and apply it towards the risk-sensitive control portfolio optimization

problem. We follow it up by illustrating an application of semi-Markov modulated

jump-diffusion wealth dynamics to a quadratic loss minimization problem. Unless

otherwise stated, all the processes defined in this section are one dimensional.
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Risk-sensitive control portfolio optimization Let us consider a financial mar-

ket consisting of two continuously traded securities; namely the risk-less bond and

a stock. The dynamics of the riskless bond are:

dS0(t) = r(t, θ(t−))S0(t)dt S0(0) = 1.

where r(t, θ(t)) is the risk-free interest rate at time t and is modulated by an un-

derlying semi-Markov process as described earlier. The dynamics of the stock price

are

dS1(t) = S1(t)[(µ(t, θ(t−)))dt+ σ(t, θ(t−))dW (t)],

where (µ(t, θ(t−))) is the instantaneous expected rate of return and as usual σ(t, θ(t−))

is the instantaneous volatility rate. The stock price process is thus driven by a 1-d

Brownian motion. We denote the wealth of the investor to be X(t) ∈ R at time t.

He holds θ1(t) proportional units of stock and θ0(t) = 1− θ1(t) proportional units is

held in the riskless bond market. From the self-financing principle (refer Karatzas

and Shreve [25]), the wealth process follows the dynamics given as,

dX(t) = (r(t, θ(t−))X(t) + h(t)σ(t, θ(t−))m̄(t, θ(t−)))dt+ h(t)σ(t, θ(t−))dW (t)

X(0) = x,

where h(t) = θ1(t)S1(t), m̄(t, i) = µ(t,i)−r(t,i)
σ(t,i) ≥ 0 and the variables r(t, i), b(t, i)

and σ(t, i), and σ−1(t, i) for each i ∈ X are measurable and uniformly bounded in

t ∈ [0, T ]. Also h(·) occuring in the drift and diffusion term in the above dynamics

satisfies the following conditions

1. E[
∫ T

0 h2(t)dt] <∞
2. E[

∫ T
0 |r(t, θ(t−))X(t) + h(t)σ(t, θ(t−))m̄(t, θ(t−))|dt +

∫ T
0 h2(t)σ2(t, θ(t−))dt] <

∞
3. The SDE for X has a unique strong solution.

In a classical risk-sensitive control optimization problem, the investor aims

to maximize over some admissible class of portfolio A(T ) the following risk-sensitive

criterion given by

J(ĥ(·), x) = max
h∈A(T )

1

γ
E[X(T )γ |X(0) = x, θ(0) = i, Y (0) = y], γ ∈ (1,∞)

= − min
h∈A(T )

1

γ
E[X(T )γ |X(0) = x, θ(0) = i, Y (0) = y],
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where the exogenous parameter γ is the usual risk-sensitive criterion that describes

the risk attitude of an investor. Thus the optimal expected utility function depends

on γ and is a generalization of the traditional stochastic control approach to utility

optimization in the sense that now the degree of risk aversion of the investor is

explicitly parameterized through γ rather than importing it in the problem via an

exogeneous utility function. See Whittle [33] for a general overview on risk-sensitive

control optimization. We now use the sufficient maximum principle (Theorem 1).

Set the control problem u(t) , h(t).

The corresponding Hamiltonian (for the non-jump case)(3.4) becomes,

H(t, x, u, i, p, q) = (r(t, i)x+ uσ(t, i)m̄(t, i))p+ uσ(t, i)q.

The adjoint process (3.5) is given by

dp(t) = −r(t, θ(t−))p(t)dt+ q(t)dW (t) +

∫
R
η̃(t, z)Ñ1(dt, dz),

p(T ) = X(T )γ−1 a.s.. (6.1)

We need to determine p(t), q(t) and η(t, z) in (6.1). Going by the terminal condition

p(T ) we observe that the adjoint process p is the first derivative of (xγ). Hence we

assume that p(t),

p(t) = (X(t))γ−1eφ(t,θ(t),Y (t)).

where φ(T, θ(T ) = i, Y (T )) = 0 a.s. for each i ∈ {1, ...,M}. Using Ito’s formula

we get,

dp(t)

p(t)
=

M∑
i=1

1θ(t−)=i

(
(γ − 1)

(
r(t, θ(t−)) +

u(t)σ(t, θ(t−))m̄(t, θ(t−))

X(t)

)
+

1

2
(γ − 1)(γ − 2)σ2(t, θ(t−))

u2(t)

X2(t)

+ φt(t, θ(t−), y) + φy(t, θ(t−), y) +
fh(y|θ(t−) = i)

1− Fh(y|θ(t−) = i)

∑
j 6=i

pij(φ(t, j, 0)− φ(t, θ(t−), y))

}
dt

+ (γ − 1)
u(t)

X(t)
σ(t, θ(t−))dW (t)

+

∫
R

(
φ(t,X(t−), θ(t−) + h̄(θ(t−), Y (t−), z), Y (t−)− ḡ(θ(t−), Y (t−), z))

− φ(t, θ(t−), Y (t−))

)
Ñ1(dt, dz).

(6.2)
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Comparing the coefficients of (6.2) with that in (6.1) we get

−r(t, θ(t−)) =

M∑
i=1

1θ(t−)=i

(
(γ − 1)

(
r(t, θ(t−)) +

u(t)σ(t, θ(t−))m̄(t, i)

X(t)

)
+

1

2
(γ − 1)(γ − 2)

u2(t)

X2(t)

+ φt(t, θ(t−), y) + φy(t, θ(t−), y)

+
fh(y|i)

1− F h(y|θ(t−) = i)

∑
j 6=i

pij(φ(t, j, 0)− φ(t, θ(t−), y))

)
.

(6.3)

q(t) = (γ − 1)
u(t)

X(t)
σ(t, θ(t−))p(t). (6.4)

η̃(t, z) =

(
φ(t, θ(t−) + h̄(θ(t−), Y (t−), z), Y (t−)− ḡ(θ(t−), Y (t−), z))

− φ(t, θ(t−), Y (t−))

)
p(t). (6.5)

Let û ∈ A(T ) be a candidate optimal control corresponding to the wealth process

X̂ and the adjoint triplet (p̂, q̂, η̂), then from the Hamiltonian (3.4) for all u ∈ R we

have

H(t, X̂(t), u, θ(t), p̂(t), q̂(t)) =

(
r(t, θ(t))X̂(t) + uσ(t, θ(t))m̄(t, θ(t))

)
p̂(t) + uσ(t, θ(t))q̂(t).

(6.6)

As this is a linear function of u, we guess that the coefficient of u vanishes at

optimality, which results in the equality

m̄(t, θ(t−))p̂(t) + q̂(t) = 0. (6.7)

Substitute equation (6.7) in (6.4) to obtain the expression for the control as

û(t) =
m̄(t, θ(t−))

(1− γ)σ(t, θ(t−))
X̂(t). (6.8)

We now aim to determine the explicit expression for p(t) which is only possible if

we can determine what φ(t, θ(t), Y (t)) is. We substitute û from above and input it
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in equation (6.3) to get

0 = γr(t, θ(t−))− m̄2(t, θ(t−)) +
(2− γ)

(1− γ)

m̄2(t, θ(t−))

2σ2(t, θ(t−))

+ φt(t, θ(t−), y) + φy(t, θ(t−), y) +
fh(y|θ(t−) = i)

1− Fh(y|θ(t−) = i)

M∑
i=1,j 6=i

pij(φ(t, j, 0)− φ(t, θ(t−), y)).

(6.9)

with terminal boundary condition given as φ(T, θ(T ), Y (T )) = 0 a.s. Consider the

process

φ̃(t, θ(t), Y (t)) , E

[
exp

(∫ T
t

{
γr(s, θ(s))− m̄2(s, θ(s)) + (2−γ)

(1−γ)
m̄2(s,θ(s))
2σ2(s,θ(s))

}
ds

)
|θ(t−) = i, Y (t−) = y

]
.

(6.10)

We aim to show that φ = φ̃. For the same we define the following martingale,

R(t) , E

[
exp

(∫ T

0

{
γr(s, θ(s))− m̄2(s, θ(s)) +

(2− γ)

(1− γ)

m̄2(s, θ(s))

2σ2(s, θ(s))

}
ds

)
|Fθ,yt

]
,

(6.11)

where Fθ,yτ , σ{θ(τ), Y (τ), τ ∈ [0, t]} augmented with P null sets is the filtration

generated by the processes θ(t) and Y (t). From the {Fθ,yt }-martingale representation

theorem, there exist {Fθ,yt }-previsible, square integrable process ν(t, i, y) such that

R(t) = R(0) +

∫ t

0

∫
R
ν(τ, θ(τ−), Y (τ−))Ñ1(dτ, dz). (6.12)

By positivity ofR(t) we can define ν̂(τ, θ(τ−), Y (τ−)) , (ν(τ, θ(τ−), Y (τ−)))R−1(τ−)

so that

R(t) = R(0) +

∫ t

0

∫
R
R(τ−)ν̂(τ, θ(τ−), Y (τ−))Ñ1(dτ, dz). (6.13)

From the definition of φ̃ in (6.10) and the definition of R in (6.11) it is easy to see

that we have the following relationship

R(t) = φ̃(t, θ(t), Y (t)) exp

{∫ t

0
(γr(s, θ(s))− m̄2(s, θ(s)) +

(2− γ)

(1− γ)

m̄2(s, θ(s))

2σ2(s, θ(s))
)ds

}
,

∀ t ∈ [0, T ].

(6.14)
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Using Ito’s expansion of φ̃(t, θ(t), Y (t)) to the RHS of (6.14) followed up by compar-

ing it with martingale representation of R(t) in (6.12) we get φ := φ̃. We can thus

substitute q̂ and ˆ̃η in expression (6.4),(6.5) in lieu of q and η̃(t, z) respectively. With

the choice of control û given by (6.8) and boundedness condition on the market

parameters r, µ and σ, the conditions in Theorem 1 are satisfied and hence û(t) is

an optimal control process and the explicit representation of p̂ is given by

p̂(t) = (X(t))γ−1e
E[exp(

∫ T
t γr(s,θ(s))−m̄2(s,θ(s))+

(2−γ)
(1−γ)

m̄2(s,θ(s))

2σ2(s,θ(s))
ds|θ(t−)=i,Y (t−)=y)]

.

Quadratic loss minimization We now provide an example related to quadratic

loss minimization where the portfolio wealth process is given by

dXh(t) =

(
r(t, θ(t))Xh(t) + h(t)σ(t, θ(t))m̄(t, θ(t))− h(t)

∫
Γ
g(t,Xh(t), θ(t), γ)π(dγ)

)
dt

+ h(t)σ(t, θ(t))dW (t) + h(t)

∫
Γ
g(t,Xh(t), θ(t), γ)Ñ(dt, dγ),

Xh(0) = x0 a.s. (6.15)

where the market price of risk is defined as m̄(t, i, y) = σ−1(t, i)(b(t, i)− r(t, i)). As

in the earlier example , we have that m̄(t, i) ≥ 0 and that the variables r(t, i), b(t, i),

σ(t, i) , σ−1(t, i) and g(t, x, i, γ) for each i ∈ X are measurable and uniformly

bounded in t ∈ [0, T ]. We assume that g(t, x, i, γ) > −1 for each i ∈ X and for

a.a. t, x, γ. This insures that Xh(t) > 0 for each t. We further assume the following

conditions for each i ∈ X
1. E[

∫ T
0 h2(t)dt] <∞.

2. E[
∫ T

0 |r(t, i)X(t) + h(t)σ(t, i)m̄(t, i)|dt+
∫ T

0 h2(t)σ2(t, i)dt+
∫ T

0 h2(t)g2(t,X(t), i, γ)dt] <

∞.
3. t→

∫
R h

2(t)g2(t, x, i, γ)π(dγ) is bounded.

4. the SDE for X has a unique strong solution.

The portfolio process h(·) satisfying the above four conditions is said to be admis-

sible and belongs to A(T ) (say). We consider the problem of finding an admissible

portfolio process h ∈ A(T ) such that

inf
h∈A(T )

E[(Xh(T )− d)2],
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over all h ∈ A(T ). Set the control process u(t) , h(t) and X(t) , Xh(t). For this

example the Hamiltonian (3.4) becomes

H(t, x, h, i, y, p, q, η) =

[
r(t, i)x+ uσ(t, i)m̄(t, i)− u

∫
Γ
g(t, x, i, γ)π(dγ)

]
p+ uσ(t, i)q

+

(
u

∫
Γ
g(t, x, i, γ)π(dγ)

)
η, (6.16)

and the adjoint equations are for all time t ∈ [0, T ),

dp(t) = −r(t, θ(t−))p(t)dt+ q(t)dW (t) +

∫
Γ
η(t, γ)Ñ(dt, dγ) +

∫
R
η̃(t, z)Ñ1(dt, dz),

p(T ) = −2X(T ) + 2d a.s. (6.17)

We seek to determine p(t), q(t), η(t, γ) and η̃(t, z) in (6.17). Going by (6.17) we

assume that

p(t) = φ(t, θ(t), Y (t))X(t) + ψ(t, θ(t), Y (t)). (6.18)

with the terminal boundary conditions being

φ(T, i, y) = −2 ψ(T, i, y) = 2d ∀ i ∈ X . (6.19)

For the sake of convenience we again rewrite the following Ito’s formula for a function

f(t, θ(t), y(t)) ∈ C1,2,1 given as

df(t, θ(t), Y (t)) =

(
∂f(t, θ(t), Y (t))

∂t

+
(fh(y/i))

(1− Fh(y/i))

M∑
j 6=i,j=1

pθ(t−)=i,j [f(t, j, 0)− f(t, θ(t−), y)] +
∂f(t, θ(t), Y (t))

∂y

)
dt

+

∫
R

[f(t, θ(t−) + h̄(θ(t−), Y (t−), z), Y (t−)− ḡ(θ(t−), Y (t−), z))− f(t, θ(t−), Y (t−))]Ñ1(dt, dz).

(6.20)
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We apply Ito’s product rule to (6.18) to obtain

dp(t) = X(t−)dφ(t, θ(t−), Y (t)) + φ(t, θ(t−), Y (t))dX(t) + dφ(t, θ(t−), Y (t))dX(t) + dψ(t)

=

M∑
i=1

1θt−=i

{
X(t−)

(
φ(t, θ(t−), y)r(t, θ(t−)) + φt(t, θ(t−), Y (t)) + φy(t, θ(t−), Y (t))

+

M∑
i=1,j 6=i

pij
fh(y/i)

1− Fh(y/i)
(φ(t, j, 0)− φ(t, θ(t−), Y (t)))

)
+ u(t)φ(t, θ(t−), Y (t))σ(t, θ(t−))m̄(t, θ(t−))

− u(t)φ(t, θ(t−), Y (t))

∫
Γ

g(t,X(t), θ(t−), γ)π(dγ) + ψt(t, θ(t−), Y (t)) + ψy(t, θ(t−), Y (t))

+

M∑
i=1,i6=j

pij
fh(y/i)

1− Fh(y/i)
[ψ(t, j, 0)− ψ(t, θ(t−) = i, Y (t))]

}
dt

+ u(t)φ(t, θ(t−), Y (t))σ(t, θ(t−))dW (t)

+ u(t)φ(t, θ(t−), Y (t−))

∫
Γ

g(t,X(t−), θ(t−), γ)Ñ(dt, dγ)

+

∫
R

[
X(t−)(φ(t, θ(t−) + h̄(θ(t−), Y (t−), z), Y (t−)− ḡ(θ(t−), Y (t−), z))

− φ(t, θ(t−), Y (t−)))

+ ψ(t, θ(t−) + h̄(θ(t−), Y (t−), z), Y (t−)− ḡ(θ(t−), Y (t−), z))

− ψ(t, θ(t−), Y (t−))

]
Ñ1(dt, dz).

(6.21)

Comparing coefficients with (6.17) we obtain three equations given as

− r(t, θ(t−))p(t−)

=

M∑
i=1

1{θt− = i, Y (t−) = y}
{
X(t−)

(
φ(t, θ(t−), Y (t))r(t, θ(t−))

+ φt(t, θ(t−), Y (t)) + φy(t, θ(t−), Y (t))

+
M∑

i=1,j 6=i
pij

fh(y/i)

1− F h(y/i)
(φ(t, j, 0)− φ(t, θ(t−), Y (t)))

)
+ u(t)φ(t, θ(t−), Y (t))σ(t, θ(t−))m̄(t, θ(t−))

− u(t)φ(t, θ(t−), Y (t))

∫
Γ
g(t, x, θ(t−), γ)π(dγ) + ψt(t, θ(t−)), Y (t) + ψy(t, θ(t−), Y (t))

+

M∑
i 6=j

pij
fh(y/i)

1− F h(y/i)
[ψ(t, j, 0)− ψ(t, θ(t−), Y (t))]

}
.

(6.22)
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q(t) = u(t)φ(t, θ(t−), Y (t−))σ(t, θ(t−)). (6.23)

η(t, γ) = u(t)φ(t, θ(t−), Y (t−))g(t,X(t−), θ(t−), γ). (6.24)

η̃(t, z) = X(t−)(φ(t, θ(t−) + h̄(θ(t−), Y (t−), z), Y (t−)− ḡ(θ(t−), Y (t−), z))

− φ(t, θ(t−), Y (t−))) + ψ(t, θ(t−) + h̄(θ(t−), Y (t−), z), Y (t−)

− ḡ(θ(t−), Y (t−), z))− ψ(t, θ(t−), Y (t−)).

(6.25)

Let û ∈ A(T ) be a candidate optimal control corresponding to the wealth process

X̂(T ) and the adjoint triplet (p̂, q̂, η̂, ˆ̃η). Then from the Hamiltonian (3.4) for all

u ∈ A(T ) we have

H(t, X̂(t), u, θ(t), p̂(t), q̂(t), η̂(t)) =

(
r(t, θ(t))X̂(t) + uσ(t, θ(t))m̄(t, θ(t))

− u

∫
Γ

g(t, X̂(t−), θ(t−), γ)πd(γ)

)
p̂(t)

+ uσ(t, θ(t))q̂(t) +

(
u

∫
Γ

g(t, X̂(t−), θ(t−), γ)π(dγ)

)
η̂(t, γ).

(6.26)

As this is a linear function of u, we guess that the coefficient of u vanishes at

optimality, which results in the following equality

q̂(t) =

(
− m̄(t, θ(t−)) +

1

σ(t, θ(t−))

∫
Γ
g(t, X̂(t), θ(t), γ)π(dγ)

)
p̂(t)

− 1

σ(t, θ(t−))

∫
Γ

(g
′
(t, X̂(t), θ(t), γ))π(dγ)η̂(t, γ).

(6.27)

Also substituting (6.27) for q̂(t) in (6.23) and using (6.18) and(6.24) we get,

û(t) =
Λ̃(t)

Λ(t)
(X̂(t) + φ−1(t, θ(t−), y)ψ(t, θ(t−), y)), (6.28)
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where

Λ(t) = σ2(t, θ(t−)) + φ(t, θ(t−), Y (t))

∫
Γ
g
′
(t,X(t), θ(t−), γ)g(t,X(t), θ(t−), γ)π(dγ).

Λ̃(t) = −m̄(t, θ(t−))σ(t, θ(t−)) +

∫
Γ
g(t,X(t), θ(t−), γ)π(dγ).

(6.29)

To find the optimal control it remains to find φ and ψ. To do so set X(t) :=

X̂(t), u(t) := û(t) and p(t) := p̂(t) in (6.22) and then substitute for p̂(t) in (6.18)

and û(t) from (6.28) . As this result is linear in X̂(t) we compare the coefficient on

both side of the resulting equation to get following two equations:

0 = 2rφ(t, i, Y (t)) + φt(t, i, Y (t)) + φy(t, i, Y (t)) +

M∑
i 6=j,i=1

pij
fh(y/i)

1− Fh(y/i)
(φ(t, j, 0)− φ(t, i, Y (t)))

+
Λ̃(t)

Λ(t)
σ(t, i)m̄(t, i)φ(t, i, Y (t))− Λ̃(t)

Λ(t)
φ(t, i, Y (t))

∫
Γ

g(t,X(t), i, γ)π(dγ). (6.30)

0 = rψ(t, i, Y (t)) + ψt(t, i, Y (t)) + ψy(t, i, Y (t)) +

M∑
i 6=j,i=1

pij
fh(y/i)

1− Fh(y/i)
(ψ(t, j, 0)− ψ(t, i, Y (t)))

+
Λ̃(t)

Λ(t)
σ(t, i)m̄(t, i)ψ(t, i, Y (t))− Λ̃(t)

Λ(t)
ψ(t, i, y)

∫
Γ

g(t,X(t), i, γ)πd(γ).

(6.31)

with terminal boundary conditions given by (6.19). Consider the following process

φ̃(t, i, y) = −2E

[
exp

{∫ T

t

(
2r(s, θ(s−)) +

Λ̃(s)

Λ(s)
σ(s, θ(s−))m̄(s, θ(s−))

− Λ̃(s)

Λ(s)

∫
Γ
g(s,X(s), θ(s−), γ)π(dγ)

)
ds

}
|(θ(s−) = i, Y (t) = y)

]
.

(6.32)

ψ̃(t, i, y) = 2dE

[
exp

{∫ T

t

(
r(θ(s−), s) +

Λ̃(s)

Λ(s)
σ(s, θ(s−))m̄(s, θ(s−))

− Λ̃(s)

Λ(s)

∫
Γ
g(s,X(s), θ(s−), γ)π(dγ)

)
ds

}∣∣∣∣(θ(s−) = i, Y (s) = y)

]
.

(6.33)

84



We aim to show that φ = φ̃ and ψ = ψ̃. We define the following martingales:

R(t) = E

[
exp

{∫ T
0

(
2r(s, θ(s−)) + Λ̃(s)

Λ(s)σ(s, θ(s−))m̄(s, θ(s−))− Λ̃(s)
Λ(s)

∫
Γ g(s,X(s), θ(s−), γ)π(dγ)

)
ds

}
|Fθ,yt

]
,

(6.34)

S(t) = E

[
exp

{∫ T
0

(
r(s, θ(s−)) + Λ̃(s)

Λ(s)σ(s, θ(s−))m̄(s, θ(s−))− Λ̃(s)
Λ(s)

∫
Γ g(s,X(s), θ(s−), γ)π(dγ)

)
ds

}
|Fθ,yt

]
,

(6.35)

where Fθ,yt is defined as usual. We follow steps similar to that as seen earlier in finite

horizon risk-sensitive optimization example and conclude that φ = φ̃ and ψ = ψ̃ by

using joint-Markov property of (θ(t), Y (t)), to obtain the following expression for

the control û(t) given as

û(t) = Λ̃(t)
Λ(t)

(
X̂(t)−

dE

[
exp

{ ∫ T
t (r(s,θ(s−))+

Λ̃(s)
Λ(s)

σ(s,θ(s−))m̄(s,θ(s−))− Λ̃(s)
Λ(s)

∫
Γ g(s,X(s),θ(s−),γ)π(dγ))ds

}
|(θ(t−)=i,Y (t)=y)

]
E

[
exp

{ ∫ T
t (2r(s,θ(s−))+

Λ̃(s)
Λ(s)

σ(s,θ(s−))m̄(s,θ(s−))− Λ̃(s)
Λ(s)

∫
Γ g(s,X(s),θ(s−),γ)π(dγ))ds

}
|(θ(t)=i,Y (t)=y)

] ).

For the choice of the control parameter and the boundedness conditions on the

market parameters r, b,σ and g, the conditions of Theorem 1 are satisfied and hence

û is the optimal control process.
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