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Abstract

This thesis considers two separate problems in the field of Ricci flow on surfaces.
Firstly, we examine the situation of the Ricci flow on Alexandrov surfaces, which
are a class of metric spaces equipped with a notion of curvature. We extend the
existence and uniqueness results of Thomas Richard in the closed case to the setting
of non-compact Alexandrov surfaces that are uniformly non-collapsed. We comple-
ment these results with an extensive survey that collects together, for the first time,
the essential topics in the metric geometry of Alexandrov spaces due to a variety of
authors.

Secondly, we consider a problem in the well-posedness theory of the Ricci flow on
surfaces. We show that given an appropriate initial Riemannian surface, we may
construct a smooth, complete, immortal Ricci flow that takes on the initial surface in
a geometric sense, in contrast to the traditional analytic notions of initial condition.
In this way, we challenge the contemporary understanding of well-posedness for
geometric equations.
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Chapter 1

Introduction

A very popular and successful approach to tackling geometric and topological prob-

lems is the study of parabolic flows, pioneered by Eells and Sampson with their

introduction of the harmonic map heat flow in [15]. Following from this work,

Hamilton introduced the central object of study in this thesis, the Ricci flow, in

the ground-breaking article [18]. This is, heuristically-speaking, an analogue for the

usual heat equation posed on the space �
�
Sym2

+

T ⇤M�
of positive-definite, symmet-

ric two-tensor fields on a smooth manifold M, given by the equation

@g

@t
= �2Ricg(t)

where Ricg(t) denotes the Ricci curvature tensor of a solution (g(t))t2[a,b]. Hamil-

ton set about constructing a programme to use Ricci flow to prove the Thurston

Geometrisation Conjecture (see [41]), which classifies three-manifolds, and contains

the famous Poincaré Conjecture as a special case. Building upon the foundations

laid by Hamilton, the goal of this programme was ultimately realised through the

revolutionary work of Perelman in his seminal papers [29], [30] and [31].

A key concern in the development of the theory of Ricci flow is the problem of

well-posedness. This encompasses three important questions:

• In what class should we look for solutions to the Ricci flow equation?

• In what class should initial data lie?

• What does it mean for a Ricci flow to take on its initial data?

In Hamilton’s introductory article [18], it was shown that given any closed Rieman-

nian manifold (M, g
0

), there exists a smooth Ricci flow solution (g(t))t2[0,T )

on M,
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for some T > 0, with g(0) = g
0

. Some years later, Shi proved the corresponding

existence result in the case that g
0

is complete and of bounded curvature in [38],

with uniqueness in this case not following until nearly two decades later through the

work of Chen and Zhu in [12]. In recent years, Giesen and Topping have provided

(see [16] and [46]) an exhaustive theory of so-called instantaneously complete Ricci

flows on arbitrary Riemannian surfaces, giving the most natural description of well-

posedness in this dimension to date.

On a similar theme, various authors have considered the pressing question of ex-

tending Ricci flow initial data to wider classes of metric spaces. Most notably, Miles

Simon proved in [39] the existence (in dimensions two and three) of Ricci flows

starting at metric spaces which themselves arise as limits of smooth Riemannian

manifolds in the Gromov–Hausdor↵ topology (see §3.2). In [36] and [37], Thomas

Richard proved the uniqueness of such flows in dimension two, when the initial data

is a compact Alexandrov space with curvature bounded below.

1.1 Outline of the thesis

This thesis consists of two principal components: an examination of Ricci flow on

Alexandrov surfaces, making up Chapters 3 and 4, and considerations involving

well-posedness of the Ricci flow in dimension two, which form Chapter 5.

Chapter 2 fixes notation in what follows, and includes introductory material and a

small collection of foundational results in Ricci flow theory and di↵erential geometry

more generally. It may be skipped by the experienced reader.

Chapter 3 consists of an extensive survey of Alexandrov spaces with lower curvature

bounds, ranging from fundamental concepts in metric geometry to more advanced

material concerning dimension and the Riemannian structure of such spaces. To our

knowledge, this is the first time such a comprehensive survey of this material has

been assembled. We point out that there are several other well-known texts survey-

ing material related to metric geometry and Alexandrov spaces, such as the standard

reference [5], which also includes results concerning Alexandrov spaces with upper

curvature bounds. It does not include the study of the Riemannian structure of

Alexandrov surfaces, which we present in §3.5.

We then turn our attention to Ricci flow on Alexandrov surfaces (see Definition

2



3.5.1) in Chapter 4, beginning with a review of the compact case due to Miles

Simon and Thomas Richard. We begin by considering what it means for a Ricci

flow to take a metric space as initial condition, and restate the following definition,

first suggested by Miles Simon:

Definition 4.1.2. We say that a smooth Ricci flow (Mn, g(t))t2(0,T )

takes the

metric space (X, d) as initial condition if the Riemannian distances dg(t) converge

uniformly on compact subsets of M⇥M to a metric d̃ on M such that
⇣
M, d̃

⌘
and

(X, d) are isometric.

We then restate one of the main results of Richard’s thesis [37], which shows that

the problem of flowing compact Alexandrov surfaces, taking Definition 4.1.2 as our

notion of ‘initial condition’, is well-posed:

Theorem 4.2.1. Let (X, d) be a compact Alexandrov surface with curvature bounded

below by �1. Then there exist a T > 0 and a smooth Ricci flow (M2, g(t))t2(0,T )

such that

• Kg(t) � �1 for all t 2 (0, T ) and

• (M, g(t)) takes (X, d) as initial condition.

Moreover, (M, g(t)) is the unique Ricci flow satisfying these conditions up to dif-

feomorphism.

The strategy for proving the existence part of this result is as follows: first, it is

shown that (X, d) can be approximated in the Gromov–Hausdor↵ topology by a

sequence of smooth, closed Riemannian surfaces (Mi, gi), such that Kgi � �1 for

each i. This allows us to use classical existence theory for the Ricci flow, as dis-

cussed above, to generate a sequence of Ricci flows (Mi, gi(t)) that converges in the

Cheeger–Gromov sense to a Ricci flow (M, g(t)) as a consequence of a compactness

argument. A straightforward application of the definitions of these modes of con-

vergence then shows that this flow takes (X, d) as initial condition, in the sense of

Definition 4.1.2.

These considerations lead naturally to the question of extending such an existence

and uniqueness result to the setting of non-compact initial data. We observe at the

outset that this is not a trivial matter. There are two immediate stumbling blocks in

adapting such an approach to the non-compact case. Whilst we can find an approx-

imating sequence (Mi, gi) without much trouble (see Lemma 4.3.7), flowing such

surfaces (which may have no upper bound on curvature) was only recently made
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possible through the work of Giesen and Topping, which we summarise in Theorem

2.2.4. This allows us to find flows (Mi, gi(t)) with gi(0) = gi, and we show that

these flows necessary exist for all positive time.

Then, in order to apply Hamilton-style compactness arguments to this sequence of

flows, we need that, for some T > 0,

sup
i

sup
x2Mi
t2(0,T )

��Kgi(t)

��(x) < 1.

Such an estimate is provided by the recent pseudolocality results of Miles Simon:

Theorem 2.4.6. Let (M2, g(t))t2[0,T )

be a smooth, complete Ricci flow and let

x
0

2 M. Let � < 1 and v
0

, r > 0, N > 1 be given. Suppose that

• volg(0)
⇣
B

g(0)
r (x

0

)
⌘
� v

0

r2 and

• Rg(0) � �N
r2

on B
g(0)
r (x

0

).

Then there exist ṽ
0

= ṽ
0

(v
0

,�, N) > 0 and �
0

= �
0

(v
0

,�, N) > 0 such that

• volg(t)
⇣
B

g(t)
r(1��)(x0)

⌘
� ṽ

0

r2

• |Rg(t)|  1

r2�20t
on B

g(t)
r(1��)(x0)

as long as t  �2
0

r2.

Such pseudolocality estimates were only known (in the complete, non-compact case)

for solutions of bounded curvature before this recent work of Miles Simon, a property

which we certainly do not have a priori. Consequently, our extension of Theorem

4.2.1 to the non-compact case depends critically upon contemporary improvements

in the understanding of Ricci flow on smooth surfaces.

With these considerations in hand, we prove the following:

Theorem 4.3.9. Let (X, d) be a non-compact Alexandrov surface with curvature

bounded below by �1. Suppose there exists v
0

> 0 such that

inf
x2X

H 2(B
1

(x)) � v
0

.

Then there exists T = T (v
0

) > 0 and a smooth Ricci flow (M2, g(t))t2(0,T )

such

that:
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1. g(t) is complete for all t 2 (0, T ),

2.
��Kg(t)

��  A
t for some A = A(v

0

) � 0 and all t 2 (0, T ),

3. (M, g(t)) takes (X, d) as its initial condition (in the sense of Definition 4.1.2).

We also show that this flow is unique up to conformal equivalence (in Theorem

4.3.12), which again relies on a recent result of Topping.

In Chapter 5, we turn our attention towards well-posedness of the Ricci flow equa-

tion on smooth surfaces. As we discuss, the recent existence and uniqueness re-

sults of Giesen and Topping for instantaneously complete Ricci flows beginning with

smooth Riemannian surfaces that may be incomplete or of unbounded curvature

represent the fullest picture of well-posedness in this dimension to date. Neverthe-

less, our principal concern is the long-accepted notion of ‘initial condition’ for a Ricci

flow, namely that a Ricci flow (g(t))t2[0,T )

takes the metric g
0

as initial condition

if g(0) = g
0

, i.e. if g(t) ! g
0

smoothly, locally as tensors as t ! 0. We point out

that such a notion does not necessary imply natural geometric expectations, such as

Gromov–Hausdor↵ convergence of the flow to the initial data (consider, for example,

instantaneously complete flows starting at incomplete metrics).

In light of this observation, we propose an alternative notion based on Gromov–

Hausdor↵ convergence (which is introduced in §3.2). The central message of Chap-

ter 5 is that given a suitable Riemannian surface, it is possible to construct two

distinct, complete Ricci flows that take this surface as initial condition, in di↵erent

ways, both of which can be claimed to be natural.

We restrict our attention to a particular class of Riemann surfaces, namely those

surfaces ⌦ that can be conformally embedded into a closed Riemann surface M of

genus at least two, such that the image of the embedding is a compactly contained

subset of M, and is not equal to M. Within this framework, we make precise the

notion of Riemannian metrics on ⌦ that tend to zero as we approach @⌦. We then

prove the following result, which says that given such appropriate initial data, we

may find a complete Ricci flow, existing for all positive time, that takes on the initial

data in a geometric sense:

Theorem 5.2.3. Given appropriate initial data (⌦, ĝ), let g
0

be the degenerate
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metric on M defined by

g
0

(p) :=

(
ĝ(p) if p 2 ⌦

0 if p 2 M\ ⌦.

Then there exists a smooth Ricci flow (g(t))t2(0,1)

on M such that:

• g(t) ! g
0

in C0(M) as t # 0;

• �M, dg(t)
� ! (⌦, dĝ) in the Gromov–Hausdor↵ sense as t # 0 (as in Definition

5.1.5).

The aim of this result is to challenge the contemporary understanding of well-

posedness: we demonstrate that, given a new, geometric definition of what it means

for a smooth Ricci flow to take on its initial data, we can construct a complete

flow that does so, provided our initial data belongs to a particular class. We point

out that the flow starting from (⌦, ĝ) given by the work of Giesen and Topping

(Theorem 2.2.4) does not satisfy the conclusion of Theorem 5.2.3, yet a case can be

argued that this flow is a natural one to consider. Therefore, our result invites the

question of just which framework is the ‘correct’ one to work in, given that both

seem natural from di↵erent perspectives.

We go on to provide a conjecture for the uniqueness of such a flow, and consider the

scope for improvement of such a result.

Finally, we provide three appendices in which we collect a number of complementary

results and expand on some arguments presented in the main text.
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Chapter 2

Ricci flow fundamentals

In this introductory chapter, we begin by fixing notation and clarifying the basic

definitions we use in what follows. We also record a number of ‘classical’ results in

the theory of the Ricci flow, all of which we depend upon in later chapters.

Throughout this thesis, all manifolds and metric spaces are assumed to be connected,

unless otherwise stated.

2.1 Notation

Given a smooth manifold M, we denote the sections of a vector bundle E ! M by

�(E). We write T (⇤)M for the (co)tangent bundle of M. Consequently, the space

of vector fields on M is denoted �(TM). We write Sym2

(+)

T ⇤M for the bundle of

(positive-definite) symmetric bilinear forms on M so that, given g 2 �
�
Sym2

+

T ⇤M�
and p 2 M, we get a symmetric, positive-definite bilinear map

gp : TpM⇥ TpM ! R,

also denoted by h , igp .

Given a Riemannian metric g 2 �
�
Sym2

+

T ⇤M�
, its Levi-Civita connection will be

denoted rg, or just r if there is no confusion, and we use the same notation to

denote the generalisation of this connection to arbitrary tensor fields, i.e.

r : �
⇣Op

T ⇤M⌦
Oq

TM
⌘
! �

⇣Op+1

T ⇤M⌦
Oq

TM
⌘
.

Associated to this connection, we have the Riemannian curvature tensor Rmg 2
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�
⇣V

2T ⇤M⌦ T ⇤M⌦ TM
⌘
, where we adopt the sign convention

Rmg(X,Y )Z := �rXrY Z +rY rXZ +r
[X,Y ]

Z

for X,Y, Z 2 �(TM), and where [ , ] is the Lie bracket. We also have the Ricci

curvature tensor, Ricg 2 �(Sym2T ⇤M), defined by

Ricg(X,Y ) := tr{Z 7! Rmg(X,Z)Y },

and the scalar curvature Rg := trgRicg. The sectional curvature is denoted Secg. In

the case (M, g) is a Riemannian surface, the Gauß curvature is Kg = 1

2

Rg.

Given a tensor field T 2 � (
NpT ⇤M⌦NqTM), we define its Ck-norm by

||T ||Ck
(M;g) :=

kX
j=0

sup
M

|rjT |g.

If (g(t))t2[0,T ]

is a smooth family of metrics on M, and T (t) is a smooth family of

tensor fields on M, we write |T (t)| to mean |T (t)|g(t).

The volume form associated to the metric g will be written dµg. The volume mea-

sured with g is volg, and the geodesic ball of radius r > 0 centred at p 2 M is Bg
r (p).

The Laplace–Beltrami operator associated to g is �g := trgrg � d. Given a smooth

curve � in M, we denote its length measured with respect to g by Lg(�).

We will largely be working with Riemannian surfaces (M2, g). In this setting, given

p 2 M, we may find an open set U ⇢ M, a non-negative function v 2 C1(U), and a

complex coordinate z = x+ iy on U such that g = v|dz|2, where |dz|2 := dx2+dy2.

We call v the conformal factor of g with respect to these so-called isothermal coor-

dinates. We sometimes define a function u 2 C1(U) by the relation v = e2u. This

function u is also often referred to in the literature as the conformal factor of g.

We will make frequent use of the following well-known theorem:

Theorem 2.1.1 (Uniformisation Theorem). Every Riemannian surface (M2, g) is

conformally equivalent to the quotient of either

• the unit sphere S2 with the round metric g̊ of Gauß curvature +1, or

• the complex plane C with the flat metric |dz|2, or

8



• the unit disc D ⇢ C with the Poincaré metric gH of constant Gauß curvature

�1

by a discrete group of isometries which is isomorphic to the fundamental group

⇡
1

(M). In particular, M admits a conformally equivalent, complete metric of con-

stant Gauß curvature.

2.2 Ricci flow

Given a smooth Riemannian manifold (Mn, g
0

), by a Ricci flow on M with initial

condition g
0

, we mean a family (g(t))t2[0,T )

of Riemannian metrics on M, for some

T > 0, which is a classical solution to the equation(
@g
@t = �2Ricg(t) on M⇥ (0, T )

g(0) = g
0

.

In arbitrary dimension, the existence and uniqueness theory for this equation is

encompassed by the following:

Theorem 2.2.1 ([12, 14, 18, 38]). Let (Mn, g
0

) be a complete Riemannian manifold

with bounded curvature |Rmg0 |  K. Then there exists a T = T (n,K) > 0 and

a complete Ricci flow (g(t))t2[0,T ]

with g(0) = g
0

, which is of bounded curvature.

Moreover, any other complete Ricci flow of bounded curvature taking g
0

as initial

condition agrees with (g(t)) for as long as both flows exist.

It is worth observing that this theorem, collecting together numerous contributions

of individuals, is such an achievement because, in dimension higher than two, the

Ricci flow equation is not parabolic, and so the standard theory of quasilinear equa-

tions cannot be applied. This di�culty arises from the di↵eomorphism invariance of

the equation, and is overcome in a particularly elegant way in [14], by adjusting the

equation in an appropriate way to make it parabolic, applying the standard theory

(as found in, for instance, [24]), and then drawing conclusions about the original

problem. This is the so-called DeTurck trick.

2.2.1 Surfaces and the Logarithmic Fast Di↵usion Equation

Restricting once again to the setting of a Riemannian surface (M2, g), where Ricg =

Kg · g, the Ricci flow equation now reads

@g

@t
= �2Kg(t) · g(t)

9



and so, in dimension two, we see that the Ricci flow is a conformal flow, i.e. the

metrics g(t) are conformally equivalent at each t for which the flow exists. Appealing

to Theorem 2.1.1, we may hence write any Ricci flow as g(t) = v(t)h for some fixed

metric h on M (which we can take to be of constant curvature), and for some

smooth family of functions v(t) 2 C1(M). It is then easy to verify the following:

Proposition 2.2.2. Let (g(t))t2(0,T )

be a smooth Ricci flow on a smooth surface

M2. Write g(t) = v(t)h, where h is a fixed metric on M of constant curvature and

v 2 C1(M⇥ (0, T )) is non-negative. Then v solves the equation

@v

@t
= �h log v � 2Kh, (2.1)

where �h is the Laplace-Beltrami operator associated to h.

We note that this equation is then genuinely parabolic, in contrast to the higher-

dimensional case. If we define a function u by v(t) = e2u(t), the equation then

reads
@u

@t
= e�2u(t)(�hu�Kh),

which greater exposes the Ricci flow as a damped heat equation (particularly in the

case that M is conformally flat).

Indeed, when M is conformally flat and we choose h to be the flat metric, equation

(2.1) is called the Logarithmic Fast Di↵usion Equation (LFDE), which is of inde-

pendent interest. The equation has been well-studied in the physics literature as a

model for various physical phenomena. For instance, [26] deduces that the equation

models the expansion of an electron cloud in a vacuum.

The LFDE has also been given as a model for thin-film dynamics. When a very thin

(approximately 10-100nm) film of fluid is spread on a surface, a structural instability

begins to occur, driven by molecular van der Waals attractions. This instability is

only present when the film is su�ciently thin. In this context, Williams and Davis

(see [49, Equation 38a]) derive the equation

@h

@t
+� log h+ div[h2r�h] = 0,

where h is the distance between the surface and the interface between the film and

the air. When the van der Waals forces are instead repulsive, the sign of the � log h

term changes, and we arrive at the LFDE with an extra fourth-order term. Numer-

ical methods show that with appropriate initial conditions, h becomes zero in finite
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time, corresponding to a rupture of the film and exposure of the underlying surface.

It was later shown (see [7, Equation 7.9]) that under certain physical assumptions

(namely, that surface tension is negligible), the fourth-order term can be disregarded.

Returning to the mathematical theory in the context of surfaces, a much more

satisfactory existence and uniqueness theory than Theorem 2.2.1 has been developed

in recent years by Giesen and Topping, which requires neither that the initial metric

is complete, nor that it is of bounded curvature. Before recording this result, we

first need a definition:

Definition 2.2.3. We call a family (g(t))t2[0,T ]

of Riemannian metrics instanta-

neously complete if g(t) is complete for all t 2 (0, T ].

Theorem 2.2.4 (Flowing possibly incomplete surfaces, [16, 46]). Let (M2, g
0

) be

a smooth Riemannian surface that need not be complete, and which could have un-

bounded curvature. Depending on the conformal type, we define T 2 (0,1] by

T :=

(
volg0M
4⇡�(M)

if (M, g
0

) ⇠= S2, RP2 or C,
1 otherwise.

Then there exists a unique smooth Ricci flow (g(t))t2[0,T )

such that

• g(0) = g
0

• g(t) is instantaneously complete.

Moreover, (g(t)) is maximally stretched, in the sense that if (h(t))t2[0, ˜T) is any other

Ricci flow on M with h(0)  g
0

, then we must have h(t)  g(t) as long as both flows

exist.

Inspection of the proof of this theorem reveals that the only way in which the flow

(g(t)) stops is if the area of the surface (i.e. volg(t)M) becomes zero in finite time.

In particular, provided that area has not become zero, this flow continues to exist

even if curvature blows up, which is not the case for the flow provided by Theorem

2.2.1.

An example to consider is to take as initial condition the flat disc D ⇢ C. Clearly,

the constant family g(t) = |dz|2 is a solution to the Ricci flow equation, which is of

course incomplete. However, Theorem 2.2.4 provides a solution which is instanta-

neously complete and exists for all time. This solution immediately ‘lifts o↵’ from
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the boundary of the disc in order to ensure this completeness at all positive times.

An important result used in the proof of Theorem 2.2.4, and which we rely on later,

provides us with C0 estimates for flows on hyperbolic surfaces (i.e. surfaces that

admit a metric of constant curvature �1):

Theorem 2.2.5 ([16, Lemma 2.1]). Let (M2, h) be a complete hyperbolic surface

and let (g(t))t2[0,T ]

be a Ricci flow on M that is conformally equivalent to h.

• If (g(t)) is instantaneously complete, then

2th  g(t)

for all t 2 (0, T ].

• If there exists a constant M > 0 such that g(0)  Mh, then

g(t)  (2t+M)h

for all t 2 [0, T ].

2.3 Compactness of flows and other classical results

In this section, we discuss some classical results in the study of Ricci flow that serve

as a foundation of the subject. Firstly, as is common in analysis, compactness results

are of great importance, and have played a fundamental role in the development of

the theory. In particular, their power can be seen in so-called singularity analysis.

Suppose a Ricci flow (M, g(t)) develops a singularity in finite time (consider, for

instance, a neck-pinch singularity, where two round spheres are connected by a thin

neck, which becomes thinner and thinner over time, eventually ‘pinching o↵’). An

approach to studying this scenario is to zoom in around the singularity (‘blow up’),

and to somehow take a limit to expose the geometry of the singularity. For this, we

need a good notion of ‘convergence of flows’:

Definition 2.3.1 (Cheeger–Gromov convergence for flows). Let (Mi, gi(t)) be a

sequence of smooth families of Riemannian manifolds for t 2 (a, b) where �1 
a < b  1. Let pi 2 Mi for each i. Let (M, g(t)) be a smooth family of Riemannian

manifolds for t 2 (a, b) and let p 2 M. We say that

(Mi, gi(t), pi) ! (M, g(t), p)
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as i ! 1 in the Cheeger–Gromov sense if there exist a nested sequence of compact

⌦i ⇢ M exhausting M with p 2 int(⌦i) for each i, and a sequence of smooth

maps �i : ⌦i ! Mi, di↵eomorphisms onto their images with �i(p) = pi, such that

�⇤i (gi(t)) ! g(t) smoothly locally on M⇥ (a, b) as i ! 1.

Remark 2.3.2. One may question why the above definition is phrased in terms

of pointed spaces, i.e. why we have to choose points pi and p. This becomes clear

upon considering even simple examples. Indeed, consider the cylinder S1 ⇥ [0,1)

capped o↵ with a unit hemisphere, and call this manifold with the obvious metric

(M, g). If we let the points pi 2 M be situated a distance i from the join between

the hemisphere and the cylinder, then the sequence (M, g, pi) will converge in the

Cheeger–Gromov sense to an infinite cylinder. If instead we take pi to be the point

at the ‘tip’ of the hemisphere for each i, then the limit is the same manifold we

started with. Thus, to get a well-defined notion of convergence, we must use pointed

manifolds.

With this in hand, we can state the compactness theorem for flows, due to Hamilton:

Theorem 2.3.3 (Compactness of Ricci flows, [19]). Let (Mn
i , gi(t), pi) be a sequence

of complete, pointed Ricci flows for t 2 (a, b) with �1  a < 0 < b  1. Suppose

that:

1.

sup
i

sup
x2Mi
t2(a,b)

|Rm(gi(t))|(x) < 1;

and

2.

inf
i
inj(Mi, gi(0), pi) > 0,

where inj denotes the injectivity radius.

Then there exist a smooth manifold Mn, a complete Ricci flow (g(t)) on M for

t 2 (a, b), and a point p 2 M such that, after passing to a subsequence in i, we have

(Mi, gi(t), pi) ! (M, g(t), p)

as i ! 1, in the Cheeger–Gromov sense (as in Definition 2.3.1).

Remark 2.3.4. There are many variants of Theorem 2.3.3, some of which are listed

in [23, Appendix E]. For instance, hypothesis (1) above can be relaxed to requiring
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only local curvature bounds over compact time intervals in (a, b). As one relaxes

such restraints however, one must also pay special attention to the conclusion. As

demonstrated in [45], completeness of the limit is not guaranteed.

Remark 2.3.5. We note that conditions (1) and (2) in Theorem 2.3.3 are necessary:

if the sequence (Mi, gi, pi) is not of uniformly bounded curvature, then we could

get convergence of smooth Riemannian manifolds to a Euclidean cone, which is not

even a smooth manifold. This convergence would, however, satisfy the definition

of Gromov–Hausdor↵ convergence, which we discuss later (see Definitions 3.2.2 and

3.2.5). If the sequence does not have uniformly positive injectivity radius at time

t = 0, then we could have ‘collapse’ situations, such as a sequence of cylinders

of decreasing radii converging to a line. Once again, this would be allowed under

Gromov–Hausdor↵ convergence.

We now state another classical result, which gives us a relationship between injec-

tivity radius and volume:

Theorem 2.3.6 ([10, Theorem 4.7]). Let (Mn, g) be a complete Riemannian man-

ifold and let p 2 M. Suppose there exist K, v
0

> 0 such that |Rmg|  K and

volg(B
g
1

(p)) � v
0

. Then there exists ◆
0

= ◆
0

(v
0

,K) such that inj(M, g, p) � ◆
0

.

Finally, we will need the following theorem of Hamilton, which gives estimates on

how distances change under the Ricci flow:

Theorem 2.3.7 ([19, Theorem 17.1 variant]). Let (M2, g(t))t2(0,T )

be a Ricci flow

with

• Kg(t) � �1 for all t 2 (0, T );

• ��Kg(t)

��  A
t for all t 2 (0, T ), for some constant A.

Denote by dt the distance induced by the metric g(t). Then there exists C = C(A)

such that

e�C(t�s)dt  ds  dt + C(
p
t�p

s)

on any compact subset of M⇥M and for any 0 < s < t < T .

2.4 Pseudolocality

An extremely powerful tool introduced by Perelman in the first of his three seminal

Ricci flow papers [29] is the phenomenon of pseudolocality. Pseudolocality is a prop-

erty of solutions that is not shared with the usual heat equation, from which we often
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gain intuition for the Ricci flow. The result tells us that the e↵ect of the Ricci flow is

principally local; in other words, regions of large curvature cannot instantaneously

a↵ect ‘nice enough’ regions elsewhere in the manifold where curvature is controlled.

The proof is very technical, and so we omit it, but a thorough walkthrough of the

theorem can be found in [23, §30-34].

Theorem 2.4.1 (Pseudolocality Theorem, [29, Theorem 10.1]). For every ↵ > 0,

there exist �, " > 0 satisfying the following property. Suppose we have a smooth,

pointed Ricci flow (M, g(t), x
0

), defined for t 2 [0, ("r
0

)2], where M is closed. Sup-

pose further that for x 2 B
g(0)
r0 (x

0

) and any ⌦ ⇢ B
g(0)
r0 (x

0

) we have:

1. Rg(0)(x) � � 1

r20
and

2. volg(0)(@⌦)
n � (1 � �)✓nvolg(0)(⌦)

n�1, where ✓n = nn!n is the Euclidean

isoperimetric constant, with !n the volume of the unit n-ball in Rn+1.

Then we have

|Rmg(t)|(x) <
↵

t
+

1

("r
0

)2

provided that t 2 (0, ("r
0

)2] and d(x, t) := dg(t)(x, x0)  "r
0

.

This theorem was extended to the setting of complete manifolds of bounded curva-

ture in [8].

Remark 2.4.2. We now attempt to get a feel for the ways in which conditions (1)

and (2) are restrictive. In a sense, they ensure that the region in question has not-

too-wild curvature at initial time. Indeed, condition (1) prevents curvature being too

negative, since a manifold of constant negative curvature will automatically satisfy

condition (2). On the other hand, condition (2), which demands that initially the

region is ‘almost isoperimetrically Euclidean’, safeguards against curvature being too

positive, since for instance a manifold of very large constant positive curvature will

not satisfy the condition. Thus, together, the conditions could be said to demand

that the region is ‘almost Euclidean’.

Remark 2.4.3. The requirement that g(t) be complete is necessary. Indeed, as

shown in [17], we can construct a Ricci flow on the unit disc D ⇢ C such that g(0) is

the (incomplete) flat metric, but such that the Gauß curvature blows up as quickly

as we like, which would contradict the conclusion of Theorem 2.4.1, provided we

chose this blow-up time to be earlier than the ("r
0

)2 given by the theorem.

We point out that the conditions of Theorem 2.4.1 are not the only way of ensuring

a region is ‘almost Euclidean’. Indeed, [42, Proposition 3.1] instead assumes the
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Ricci curvature and volume of balls in the initial metric are ‘not too far’ from being

Euclidean, and arrives at a similar conclusion. Yet another version of the same

phenomenon is encapsulated by a result of Chen:

Theorem 2.4.4 ([11, Proposition 3.9]). Let (g(t))t2[0,T ]

be a smooth Ricci flow with

initial metric g
0

on a smooth surface M2. Let x
0

2 M and assume, for some r
0

> 0,

that B
g(t)
r0 (x

0

) is compactly contained in M for any t 2 [0, T ]. Suppose further that

there exists v
0

> 0 such that

• |Rg0 |  1

r20
on Bg0

r0 (x0) and

• volg0(B
g0
r0 (x0)) � v

0

r2
0

.

Then there exists a constant K, depending only on v
0

, such that

|Rg(t)| 
2

r2
0

on B
g(t)
r0
2

(x
0

)

for 0  t  min
n
T,

r20
K

o
.

An immediate corollary of this result is the following, since metric balls in complete

metrics are always compactly contained in the given surface:

Corollary 2.4.5. Let (g(t))t2[0,T ]

be a complete Ricci flow on a surface M2, and

suppose there exist  < 1 and v
0

> 0 such that |Kg(0)|   and volg(0)
⇣
B

g(0)
1

(p)
⌘
�

v
0

for all p 2 M. Then there exists a constant C = C(v
0

,) < 1 such that

|Kg(t)|  C

for t 2 [0,min{T,�1}].

Finally, we provide somewhat of a generalisation of the pseudolocality theorem, due

to Miles Simon:

Theorem 2.4.6 (Local smoothing of Ricci flows on surfaces, [40, Theorem 1.1]).

Let (M2, g(t))t2[0,T )

be a smooth, complete Ricci flow and let x
0

2 M. Let � < 1

and v
0

, r > 0, N > 1 be given. Suppose that

• volg(0)
⇣
B

g(0)
r (x

0

)
⌘
� v

0

r2 and

• Rg(0) � �N
r2

on B
g(0)
r (x

0

).

Then there exist ṽ
0

= ṽ
0

(v
0

,�, N) > 0 and �
0

= �
0

(v
0

,�, N) > 0 such that
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• volg(t)
⇣
B

g(t)
r(1��)(x0)

⌘
� ṽ

0

r2

• |Rg(t)|  1

r2�20t
on B

g(t)
r(1��)(x0)

as long as t  �2
0

r2.

Remark 2.4.7. Notice that Theorem 2.4.6 is still valid if the Ricci flow (g(t)) is

merely instantaneously complete, rather than complete at t = 0.
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Chapter 3

Survey: Alexandrov spaces with

lower curvature bounds

Beginning in earnest in the mid-twentieth century, the study of the geometry of

metric spaces with notions of curvature was undertaken by a school of Russian

mathematicians, led principally by A.D. Alexandrov. Throughout the subsequent

decades, great progress was made in the study of so-called Alexandrov spaces, which

are a particular kind of metric space endowed with upper or lower curvature bounds,

where curvature in this setting is defined entirely through the metric properties of

the space in question. This chapter collects a broad range of spectacular results

pertaining to such spaces. Surprisingly, imposing only a lower curvature bound re-

sults in particularly strong geometric phenomena. For instance, such spaces come

with a well-defined dimension, which is either an integer or infinite, and also ad-

mit the structure of a Riemann surface in dimension two. The results presented in

this chapter have been distributed throughout the literature, and we believe they

are presented in a unified way for the first time in the present work. Important

references for this material are [5], which covers most of the theory presented here

except that appearing in §3.5, and [6], which is a more advanced paper, but which

also omits the results of §3.5.

We begin by discussing the intrinsic geometry of metric spaces, before going on to

consider curvature in this setting.

3.1 Length spaces

We begin by clarifying notation and some definitions:
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Definition 3.1.1. Let (X, d) be a metric space. A path in X is any continuous

map � : [�1, 1] ! X. Let P(X) denote the collection of all paths in X. The length

structure associated to d, L : P(X) ! [0,1], is defined as follows. Given a path

� 2 P(X), let Y = {y
0

, y
1

, . . . , yN} be a partition of [�1, 1], i.e.

�1 = y
0

 y
1

 · · ·  yN = 1,

and let � denote the set of all such partitions. Then

L(�) := sup
Y 2�

NX
i=1

d(�(yi�1

), �(yi)).

If L(�) < 1, we call � a rectifiable path in X.

Proposition 3.1.2 ([5, Proposition 2.3.4]). Let (X, d) be a metric space, and let L

be the length structure associated to d. Then L is a lower semi-continuous functional

on P(X) with respect to the topology of pointwise convergence. That is, if {�i} is

a sequence of rectifiable paths in X such that

lim
i!1

�i(t) = �(t)

for every t 2 [�1, 1], for some rectifiable path � in X, then

lim inf
i!1

L(�i) � L(�).

Proof. Given a partition Y of [�1, 1], define

⌃(Y ) :=
NX
i=1

d(�(yi�1

), �(yi)).

Now fix " > 0 and fix a partition Y of [�1, 1] such that L(�)�⌃(Y ) < ". Let ⌃j(Y )

be the corresponding sums for the paths �j with respect to the same partition Y .

Choose j su�ciently large so that d(�j(yi), �(yi)) < " for all yi 2 Y . Then

L(�)  ⌃(Y ) + "  ⌃j(Y ) + "+ 2N"  L(�j) + (2N + 1)",

from which the result follows.

We will occasionally make use of "-nets, which provide a useful technique for dis-

cussing compactness of metric spaces:
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Definition 3.1.3. Let (X, d) be a metric space, and let " > 0 be given. A subset

S ⇢ X is called an "-net in X if, for any point p 2 X there exists a point q 2 S

such that d(p, q) < ".

We call X totally bounded if there exists a finite "-net in X, for any " > 0.

The following is well-known:

Proposition 3.1.4 ([5, Theorem 1.6.5]). A metric space X is compact if and only

if it is complete and totally bounded.

Consequently, to show that a complete metric space X is compact, a possible ap-

proach is to construct a finite "-net in X for each " > 0.

Definition 3.1.5. Let X be a metric space. We say that X is:

• locally compact if every point p 2 X admits a pre-compact neighbourhood.

That is, given p 2 X, there exists an open set U 3 p such that U is compact;

• boundedly compact if every closed and bounded subset of X is compact.

Definition 3.1.6. Let (X, d) be a metric space. Call the metric d intrinsic if for

any points x,y 2 X, we have

d(x, y) = inf
n
L(�)

��� � : [�1, 1] ! X is a rectifiable path with �(�1) = x and �(1) = y
o
.

We call such a curve � realising this infimum a shortest path between x and y. If

every pair of points can be joined by a shortest path, we call the metric d strictly

intrinsic.

If d is intrinsic, we call the pair (X, d) a length space.

Suppose (X, d) is a length space and let G ⇢ X. The induced intrinsic metric on G

is defined by

dG(x, y) : = inf
n
Ld(�)

��� � is a rectifiable path in G joining x and y
o
,

where Ld is the length structure associated to d. Notice that in general we have

dG(x, y) � d(x, y) for any x, y 2 G.

Call a subset A ⇢ X convex if the restriction of d to A is strictly intrinsic and finite.
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Remark 3.1.7. If � : [�1, 1] ! X is a shortest path, we often also refer to the

image of � as a shortest path.

Remark 3.1.8. If (X, d) is a strictly intrinsic length space, it is readily seen that a

subset A ⇢ X is convex if and only if, given points x, y 2 A, there exists a shortest

path joining x and y that lies in A. In this case, d|A = dA, the induced intrinsic

metric on A as in Definition 3.1.6.

With these definitions in hand, we move now towards some fundamental results that

we rely upon later. In particular, a primary concern for us in what follows is the

existence of shortest paths between two given points of a length space. Shortest

paths need not exist in general - consider, for instance, antipodal points on the

boundary of the punctured disc in the plane. However, the following provides us

with necessary and su�cient conditions for the existence of such paths:

Theorem 3.1.9 ([5, Theorem 2.5.23]). Let (X, d) be a complete, locally compact

length space. Then d is strictly intrinsic.

Example 3.1.10. Both completeness and local compactness are essential in Theo-

rem 3.1.9. Observe that R2 \ {0} is locally compact, but incomplete, and shortest

paths do not exist between all points. Also consider the space

T :=
1[
n=1

⇢✓
x,

1

n
(1� |x|)

◆ ����x 2 [�1, 1]

�
⇢ R2

with distance dT , the induced intrinsic metric from R2. Then (T, dT ) is a complete

length space, but is not locally compact. Notice that dT ((�1, 0), (1, 0)) = 2, but

that all paths in T joining these points have length strictly greater than 2.

In light of Theorem 3.1.9, from now on, we will work exclusively with complete,

locally compact length spaces, as it will be important for us to be able to join any

given pair of points by a shortest path. We approach the proof of Theorem 3.1.9 in

a sequence of steps:

Proposition 3.1.11 ([5, Proposition 2.5.19]). Let (X, d) be a compact metric space,

and let x, y 2 X be two points that can be connected by at least one rectifiable path

in X. Then there exists a shortest path joining x and y.

Proof. Let L denote the infimum of the lengths of rectifiable paths joining x and

y. Let {�i} be a sequence of rectifiable paths joining x and y, such that

L(�i) ! L
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as i ! 1, where L is as defined in Definition 3.1.1. By the Arzelà–Ascoli Theorem

(see Corollary B.2.2) there exists a subsequence {�ij} that converges uniformly to

some path � joining x and y. Then, by the lower semi-continuity of length structures

(Proposition 3.1.2), we have that

L(�)  lim
j!1

L(�ij ) = L ,

and so L(�) = L . Hence � is a shortest path joining x and y.

Remark 3.1.12. We note that shortest paths are not necessarily unique, even in

the compact case. For example, antipodal points on the sphere S2 with the usual

spherical metric can be joined by infinitely many distinct shortest paths.

Corollary 3.1.13. Proposition 3.1.11 holds when X is boundedly compact, instead

of compact.

Proof. Any rectifiable curve joining x and y is contained in a closed metric ball,

which is compact by assumption.

An important result that we will use independently in Theorem 4.3.6 gives a su�-

cient condition for closed metric balls to be compact:

Proposition 3.1.14 ([5, Proposition 2.5.22]). Every complete, locally compact length

space (X, d) is boundedly compact.

Proof. Take x 2 X and define

R := sup
n
r > 0

��� Br(x) is compact
o
.

Since X is locally compact, R > 0. Suppose that R < 1, and let B := BR(x). We

now prove that B is compact. Since B is closed and X is complete, by Proposition

3.1.4 we need only show that for any " > 0, B contains a finite "-net (as in Definition

3.1.3).

We may assume that " < R. Then, by the definition of R,

B0 := BR� "
3
(x)

is compact, and so contains a finite "
3

-net, say S . Now let y 2 B. Then, since X is

a length space, d(y,B0)  "
3

, and so there exists a point y0 2 B0 with d(y, y0) < "
2

.

Now we know that d(y0,S )  "
2

, and thus by the triangle inequality, d(y,S )  ".
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So S is an "-net in B, and hence B is compact.

Now let y 2 B and let Uy be a pre-compact neighbourhood of y, which exists by the

assumption that X is locally compact. Let

U :=
[
y2Y

Uy

be the union of finitely many such neighbourhoods that covers B. Using the com-

pactness of B again, we may find " > 0 such that the "-neighbourhood of B is

contained in U , which is pre-compact. But since X is a length space, this says

that BR+"(x) is contained in a compact set (namely U), and is thus compact itself,

contradicting the maximality of R. So R = 1 and X is boundedly compact.

Combining Corollary 3.1.13 and Proposition 3.1.14, we get Theorem 3.1.9.

3.2 The Gromov–Hausdor↵ topology

A natural question to consider is whether one can define a useful notion of ‘con-

vergence’ of a sequence of metric spaces. This question arises, for example, when

attempting to generalise well-understood properties of Riemannian manifolds to the

setting of metric spaces. An approach to treating this problem is to construct a

sequence of Riemannian manifolds that ‘converges’ to a given metric space, and

prove that certain properties are preserved in the limit. Indeed, this will be a key

technique in later chapters. The natural candidate for such a notion of convergence

is Gromov–Hausdor↵ convergence, which we discuss in this section.

Definition 3.2.1. Let (X, dX), (Y, dY ) be compact metric spaces. We say that a

map f : X ! Y is an "-isometry (or an "-Gromov–Hausdor↵ approximation) if

1. |dY (f(x), f(y))� dX(x, y)|  " for all x, y 2 X

2.
[
x2X

BY (f(x), ") = Y.

Definition 3.2.2 (Gromov–Hausdor↵ distance). The Gromov-Hausdor↵ distance

between (X, dX) and (Y, dY ) is the least " � 0 such that there exist "-isometries

X ! Y and Y ! X, and we denote this distance on the set of compact metric

spaces by dGH .
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We say that a sequence of compact metric spaces (Xi, di) converges to the compact

metric space (X, d) in the Gromov–Hausdor↵ topology as i ! 1 if dGH(Xi, X) ! 0

as i ! 1.

Remark 3.2.3. Compact metric spaces X and Y are isometric if and only if

dGH(X,Y ) = 0.

Remark 3.2.4. We can define an equivalent metric on the family of compact metric

spaces as a generalisation of the usual Hausdor↵ distance (between two subsets of

a given metric space). Indeed, given compact metric spaces (X, dX) and (Y, dY ),

define a distance d̃GH by

d̃GH((X, dX), (Y, dY )) := inf
Z,i,j

dZH (i(X), j(Y )),

where i : X ! Z, j : Y ! Z are isometric embeddings into a compact metric space Z

and dZH is the Hausdor↵ distance in Z. Then d̃GH and dGH are equivalent metrics

(see, for instance, [5, Corollary 7.3.28]). It is clear, however, that attempting to

work with d̃GH would likely be cumbersome, and this is the last time we mention it.

There is also a notion of a Gromov–Hausdor↵ topology on the collection of all non-

compact metric spaces. For this, however, we need to consider pointed spaces:

Definition 3.2.5. Let (Xi, di, pi) be a sequence of non-compact pointed metric

spaces, i.e. pi 2 Xi for each i. Given a pointed metric space (X, d, p), we say

(Xi, di, pi) ! (X, d, p) in the Gromov–Hausdor↵ sense as i ! 1 if the following

holds: for every r > 0 and " > 0 there exists n
0

2 N such that, for every i > n
0

there is a (not necessarily continuous) map fi : Bdi(pi, r) ! X with the properties

that:

1. fi(pi) = p for each i;

2.

sup
x,y2Bdi

(pi,r)
|d(fi(x), fi(y))� di(x, y)| < ";

3. the "-neighbourhood of the set fi(Bdi(pi, r)) contains the ball Bd(p, r � ").

Remark 3.2.6. In the case that (X, d) is a length space, it is true (see [5, Exercise

8.1.3]) that the Gromov–Hausdor↵ convergence defined in Definition 3.2.5 implies

that ⇣
Bdi(pi, r), di

⌘
!

⇣
Bd(p, r), d

⌘
in the Gromov–Hausdor↵ sense defined in Definition 3.2.2, for every r > 0.
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Remark 3.2.7. Let (Mn
i , gi, pi) be a sequence of pointed Riemannian manifolds.

There is also a notion of Cheeger–Gromov convergence of such a sequence to another

pointed Riemannian manifold (Mn, g, p), very similar to Definition 2.3.1 (see, for

example, [43, §7.1]). This involves exhaustingM with nested open sets ⌦i containing

p so that we have smooth maps 'i : ⌦i ! Mi, di↵eomorphisms onto their images

with 'i(p) = pi, such that '⇤
i gi ! g smoothly locally on M. We can of course

view the sequence (Mi, gi) as a sequence of metric spaces (Mi, dgi) where dgi is

the Riemannian distance induced by the metric gi. Thus, in this context, we have

two topologies on the collection of (pointed) Riemannian manifolds, namely the

Gromov–Hausdor↵ topology, and the Cheeger–Gromov topology. The former is

much weaker than the latter, since for example we can have collapsing (i.e. loss of

dimension), as demonstrated in the following example:

Example 3.2.8. Consider a sequence of cylinders S1(r)⇥ (0,1), where S1(r) de-

notes the circle of length 2⇡r. Then as r ! 0, the sequence converges in the

Gromov–Hausdor↵ sense to the ray (0,1). This is an example of a sequence of two-

dimensional smooth manifolds converging to a one-dimensional one. The sequence

does not, however, converge in the Cheeger–Gromov sense. For this reason, we can

think of the Gromov–Hausdor↵ topology as the ‘weak’ topology in this setting.

A crucial result relating volume and the Gromov–Hausdor↵ topology is the following:

Theorem 3.2.9 ([13, Theorem 0.1]). Given r > 0, let Br denote the topological space

of all metric balls of radius r in all complete, n-dimensional Riemannian manifolds

with Ricci curvature bounded below by �(n�1), equipped with the Gromov–Hausdor↵

topology. Then the volume function

vol : Br ! R�0

is continuous.

This theorem will be useful to us later in Lemma 4.3.7, where we have control on

the volume of metric balls in a sequence of Riemannian manifolds converging to

a certain metric space in the Gromov–Hausdor↵ sense. As a consequence of the

theorem, we will be able to deduce information about the volume of balls in the

limiting metric space.

3.3 Alexandrov spaces

We now turn towards the central objects of this chapter: Alexandrov spaces with

lower curvature bounds. Roughly speaking, these are length spaces that come with
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a very natural notion of curvature. Instead of defining a curvature function or tensor

on these spaces, as is the case in Riemannian geometry, we instead add just enough

structure to allow us to make sense of a curvature bound. Consider, for example, the

unit sphere S2. When considering this idea of curvature heuristically, we certainly

want to come up with a definition that tells us that the sphere is non-negatively

curved. The approach we take is the following: inspired by our intuition from

Riemannian geometry, we know that increasing curvature makes objects ‘fatter’. A

way of seeing this is to draw a triangle on the sphere, and compare this triangle

with a corresponding triangle on the flat plane, the side lengths of which are equal

to those of the spherical triangle. We will then see that the distance from a vertex

to the midpoint of the opposite side in the spherical triangle is greater than the

corresponding distance in the flat triangle. This is essentially the definition of S2

being an Alexandrov space with curvature bounded below by zero. We now make

sense of the more general definition.

Definition 3.3.1. By a k-plane, we mean8>><>>:
H2(k) if k < 0

R2 if k = 0

S2

⇣
1p
k

⌘
if k > 0.

Here, H2(k) is the hyperbolic plane of constant (Gauß) curvature k, and S2

⇣
1p
k

⌘
is the sphere of constant curvature k.

Definition 3.3.2. Let (X, d) be a length space. By a triangle in X, we mean three

points (the vertices) joined to each other by shortest paths (the sides). Given a

triangle T in X, we write T = 4xyz to identify its vertex points.

Definition 3.3.3 (Admissible triangles). Let (X, d) be a length space and k 2 R.
Denote by Tk(X) the set

Tk(X) :=

( {all triangles in X} if k  0n
all triangles in X with perimeter strictly less than 2⇡p

k

o
if k > 0.

We call a triangle belonging to Tk(X) an admissible triangle.

Definition 3.3.4 (Comparison triangle). Let (X, d) be a length space, let k 2 R
be given, and let 4xyz 2 Tk(X). By the comparison triangle e4xyz we mean the

triangle 4x̄ȳz̄ in the k-plane, where

|x̄ȳ| = |xy|, |x̄z̄| = |xz|, |ȳz̄| = |yz|,
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where we are now abusing the notation |·· | to denote the distances in the appropriate

spaces.

Remark 3.3.5. We defined the set Tk(X) so that, given any triangle in the set, its

comparison triangle exists and is unique up to rigid motions of the k-plane.

With these ideas in hand, we can now define Alexandrov spaces with curvature

bounded below. There are a number of equivalent definitions:

3.3.1 Definition by length

Definition 3.3.6 (Alexandrov space). Let (X, d) be a complete length space and

k 2 R, such that if k > 0, X has diameter not greater than
⇡p
k
. We say that

(X, d) is an Alexandrov space with curvature bounded below by k 2 R if, in some

neighbourhood Uq of each point q 2 X, we have that for every triangle 4xyz 2
Tk(Uq) and every point p on the side of 4xyz joining x and z, the inequality

|py| � |p̄ȳ|

holds, where p̄ is the point on the side of e4xyz joining x̄ and z̄ such that |x̄p̄| = |xp|.

Remark 3.3.7. Notice that if k > 0, we stipulate that the diameter of X is not

greater than
⇡p
k
. As shown in [5, Theorem 10.4.1], this is equivalent to excluding

some exceptional examples that we do not wish to consider as belonging to the class

of Alexandrov spaces with curvature bounded below. Namely, the exceptions are

the real line, the half-line, segments of length greater than
⇡p
k
, and circles of length

greater than
2⇡p
k
.

Remark 3.3.8. Intuitively, Definition 3.3.6 tells us that in an Alexandrov space

with curvature bounded below by k 2 R, triangles are ‘fatter’ than the comparison

triangles drawn in the k-plane.

Remark 3.3.9. Let X be an Alexandrov space of curvature bounded below by

k > 0. As shown in [5, Corollary 10.4.2], when k > 0, no triangle in X has

perimeter greater than
2⇡p
k
. Thus, the definition of Tk(X) only excludes those

triangles of perimeter exactly
2⇡p
k
. Notice that we certainly wish to exclude such

triangles from consideration, since their comparison triangles are not unique.

Remark 3.3.10. As discussed in [6, Definition 2.3], if X is merely locally com-

plete, it is possible to interpret it as an Alexandrov space with curvature bounded
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below. Indeed, even if X is not locally complete, but still satisfies the other require-

ments of Definition 3.3.6, it may be made into an Alexandrov space with curvature

bounded below by local completion. However, we will exclusively consider spaces

that are (globally) complete. This is because, by Theorem 3.1.9, in complete, lo-

cally compact length spaces, any two points can be joined by a shortest path. Later

(Theorem 3.6.2), we will see that all finite-dimensional Alexandrov spaces with cur-

vature bounded below are locally compact, and so working with complete spaces is

su�cient to allow us to join any two points by shortest paths.

Definition 3.3.11. For brevity, given k 2 R, define A (k) to be the class of all

Alexandrov spaces with curvature bounded from below by k.

It is useful to have to hand a selection of examples:

Example 3.3.12 ([6, §2.9], [5, Theorem 6.5.6]). A Riemannian manifold (M, g)

with Secg � k belongs to A (k). Moreover, (M, g) 2 A (0) if and only if Secg � 0.

A good source of non-examples arises by considering spaces with ‘triple junctions’:

Example 3.3.13. Any space containing a ‘triple junction’ will fail to belong to

A (k) for any k 2 R. Consider the example in the following diagram:1

•

•

• •

✏✏

88
xx

ff
&&

OO

1

✏✏

T
• •

•

✏✏

p
3

OO

⌃⌃

2

FF

bT ⇢ R2

Here, it is obvious how to define the intrinsic metric to make the triple junction into

a length space. Call the space T and consider the triangle in T whose vertices are

points on each of the three ‘legs’ of T , each a distance 1 away from the midpoint.

To show that T /2 A (0), we draw the comparison triangle bT in R2, which is an

equilateral triangle of side length 2. Here, the distance from any vertex to the

midpoint of its opposite side is
p
3, but in T itself, the corresponding distance is 1.

Thus T fails to satisfy the requirements of Definition 3.3.6, and so does not belong

to A (0). To show that T does not belong to A (k) for any k, first observe that

this is certainly the case if k > 0, since A (k) ⇢ A (0) for any k > 0. Then, if

1
Figure credit: Sam Derbyshire.
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k < 0, simply make the side lengths of the triangle in T su�ciently small so that

the comparison triangle fits inside a chart on H2(k), in which it looks flat, and the

same argument holds as above.

We now move on to consider alternative definitions of A (k), which can be useful in

practice when working with lengths may be cumbersome.

3.3.2 Definition by angle

An alternative to Definition 3.3.6 is to compare angles in triangles in our given

space with the corresponding angles in comparison triangles. However, the notion

of angle in metric spaces is a delicate topic, and we must take care to ensure that it

is well-defined in our setting.

Definition 3.3.14 (Comparison angle). Let (X, d) be a length space, and let k 2 R
be given. Let 4xyz 2 Tk(X). The comparison angle e\kxyz is the angle at ȳ in the

comparison triangle e4xyz (as in Definition 3.3.4), measured in the k-plane.

An important tool that we will need later on is the following:

Lemma 3.3.15 (Alexandrov’s Lemma, [2, §3.2.1], [5, Lemma 4.3.3]). Let (X, d) be

a length space, let k 2 R, let 4pqr 2 Tk(X) be given, and let z be a point on the

side of 4pqr joining p and r. Then we have

e\kpqr � e\kpqz + e\kzqr,

with equality if and only if e\kqpz = e\kqpr

and e\kqzp+ e\kqzr = ⇡.

We can now give a definition of angle between shortest paths in length spaces:

Definition 3.3.16 (Angle). Let (X, d) be a length space, and let �,� : [0, 1] ! X

be two shortest paths in X emanating from the same point p = �(0) = �(0). The

angle between � and �, denoted \��, is defined by

\�� := lim
t,s!0

e\0�(t)p�(s),

whenever this limit exists.
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We define the upper angle between � and � to be

\�� := lim sup
t,s!0

e\0�(t)p�(s),

and the lower angle between � and � to be

\�� := lim inf
t,s!0

e\0�(t)p�(s).

Given a triangle 4xyz ⇢ X, by the angle \xyz, we mean the angle \��, where
�,� : [0, 1] ! X are parameterisations of the sides of 4xyz joining y to x and y to

z respectively (with �(0) = �(0) = y).

Remark 3.3.17. In the above definition, we used e\0, but we could just as well

have used e\k for any k 2 R, as it is clear that the limit is independent of k (because

for t and s small enough, all points under consideration will lie within a chart in the

k-plane, in which the picture looks Euclidean).

We now state a familiar result that also holds in the setting of length spaces:

Proposition 3.3.18 (Triangle inequality, [2, §3.4.2]). Let (X, d) be a length space

and let �
1

, �
2

, �
3

: [0, 1] ! X be three shortest paths in X emanating from the same

point p = �
1

(0) = �
2

(0) = �
3

(0). If all of the angles ↵ij := \�i�j are defined, then

↵
13

 ↵
12

+ ↵
23

.

As mentioned previously, we must take care as to whether or not angles are well-

defined. As shown in Theorem 3.3.23, angles between shortest paths always exist

in Alexandrov spaces with lower curvature bounds. However, in a more general

setting, this is not the case, even in simple examples:

Example 3.3.19 ([4, §4.1.3]). Consider R2 with the norm ||(x, y)|| := |x| + |y|.
Consider paths

�
1

(t) := (t, t) �
2

(t) := (t, 0) �
3

(t) := (0, t)

for t � 0. Then a quick computation shows that \�
2

�
3

= ⇡. However, \�
1

�
2

does

not exist, since the upper angle

lim sup
t,s!0

e\0�
1

(t)0�
2

(s) =
⇡

2
,
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while the lower angle

lim inf
t,s!0

e\0�
1

(t)0�
2

(s) = 0.

Consequently, when working with angles in general length spaces, authors typically

deal exclusively with upper angles, which always exist.

We can now formulate another definition of Alexandrov space, which is equivalent

to Definition 3.3.6 (see Theorem 3.3.23):

Definition 3.3.20. Let (X, d) be a complete length space and k 2 R, such that

if k > 0, X has diameter not greater than
⇡p
k
. We say (X, d) is an Alexandrov

space with curvature bounded below by k if, in some neighbourhood Uq of each point

q 2 X, we have the following: given any triangle 4xyz 2 Tk(Uq), the angles \xyz,
\yxz and \xzy exist and we have the inequalities

\xyz � e\kxyz \yxz � e\kyxz \xzy � e\kxzy,

and moreover, for any point w on the side of 4xyz joining y and z, and any shortest

path � joining w and x, we have the equality

\xwz + \xwy = ⇡,

where the angles are computed using �.

3.3.3 The quadruple condition and equivalence of definitions

We now introduce one more definition of an Alexandrov space with a lower curvature

bound, which seems somewhat less geometrically motivated than Definitions 3.3.6

and 3.3.20, but which benefits from being rather easy to work with in practice. We

refer to the following as the quadruple condition:

Definition 3.3.21. Let (X, d) be a complete length space and k 2 R, such that

if k > 0, X has diameter not greater than
⇡p
k
. We say (X, d) is an Alexandrov

space with curvature bounded below by k if, in some neighbourhood Uq of each point

q 2 X, we have the following: for any collection of four distinct points a, b, c, d 2 Uq,

we have that either e\kbac+ e\kcad+ e\kdab  2⇡,

or that at least one of these angles is not defined.

Remark 3.3.22. We point out that in the above definition, if k  0, then all of the

stated angles will exist. If k > 0, it is possible that some or all of the stated angles
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do not exist, which would be the case if the triangle with vertices at the given points

were not admissible (see Definition 3.3.3).

The equivalence of Definitions 3.3.6, 3.3.20 and 3.3.21 then follows from the following

theorem:

Theorem 3.3.23 ([2, Theorem 8.2.1, variant]). Let (X, d) be a complete length

space and k 2 R, such that if k > 0, X has diameter not greater than
⇡p
k
. Let

p, x, y 2 X, and let

• � be a shortest path joining x and y;

• ⌘ be a shortest path joining x and p;

• ◆ be a shortest path joining p and y,

such that 4pxy 2 Tk(X), where 4pxy has sides �, ⌘ and ◆. Then the following are

equivalent:

1. For any z 2 X, we have that either

e\kxpz + e\kypz + e\kxpy  2⇡,

or that at least one of these angles is not defined;

2. For any point z on � with x 6= z 6= y, we have the inequality

e\kpzx+ e\kpzy  ⇡;

3. For any point z on � with x 6= z 6= y, we have

|pz| � |p̄z̄|,

where z̄ is determined as in Definition 3.3.6;

4. The angle \pxy is defined, with

\pxy � e\kpxy,

and moreover, for any point z on �, and any shortest path � joining z and p,

we have

\pzy + \pzx = ⇡,

where both angles are computed using �.
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Proof. (1) =) (2): Since z lies on �, we have that e\kxzy = ⇡. Since by (1) we

have e\kxzy + e\kpzx+ e\kpzy  2⇡,

it follows that e\kpzx+ e\kpzy  ⇡.

(2) () (3): This follows immediately from Alexandrov’s Lemma (Lemma 3.3.15),

after observing that (3) is equivalent to having that for any z on � with x 6= z 6= y,e\kpxy  e\kpxz.

(2) + (3) =) (4): As a consequence of the above observation, we have that (3)

implies the following: for any p̂ on ⌘ and any ŷ on �, the map

(|xp̂|, |xŷ|) 7! e\kp̂xŷ

is weakly decreasing in each argument. Thus,

\pxy = sup
p̂,ŷ

e\kp̂xŷ � e\kpxy.

Thus the first part of (4) is proved. For the equality, first notice that the above, (2),

and Alexandrov’s Lemma (Lemma 3.3.15) together imply that

\pzy + \pzx  ⇡

(the full argument appears in [5, Lemma 4.3.7]). Then, by the triangle inequality

(Proposition 3.3.18) and the above, we have

\pzy + \pzx � \yzx � e\kyzx = ⇡,

and so we have the desired equality.

(4) =) (1): Consider a point w on � close to p. From (4), we have that

\xwz + \xwp  ⇡ and \ywz + \ywp  ⇡.

Applying the triangle inequality again, it follows that

\xwz + \ywz + \xwy  2⇡.
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Now applying the inequality in (4), we get

e\kxwz + e\kywz + e\kxwy  2⇡,

and (1) now follows by taking limits as w ! p.

Now that we have shown that all of our definitions of Alexandrov spaces with lower

curvature bounds are equivalent, we have the following immediate corollary of Def-

inition 3.3.20:

Corollary 3.3.24 (Non-branching lemma, [2, §8.5.1]). Let (X, d) be a complete

Alexandrov space with curvature bounded below. Let �,� : [0, 1] ! X be two shortest

paths in X with �(0) = �(0) = p. Then:

• if there exists " > 0 such that �(t) = �(t) for all t 2 [0, "), then either

�([0, 1]) ✓ �([0, 1]) or �([0, 1]) ✓ �([0, 1]);

• if \�� = 0 then either �([0, 1]) ✓ �([0, 1]) or �([0, 1]) ✓ �([0, 1]).

3.3.4 Space of directions

A common theme of what lies ahead is the generalisation of concepts from Rieman-

nian geometry to the setting of Alexandrov spaces with curvature bounded below.

We have now developed enough groundwork to discuss the space of directions at a

point, which is a generalisation of the tangent space to a smooth manifold:

Definition 3.3.25. Let (X, d) be a complete Alexandrov space with curvature

bounded below. Given p 2 X, let Cp(X) denote the collection of all shortest paths

in X emanating from p. Define an equivalence relation ⇠ on Cp(X) by

� ⇠ � () \�� = 0.

Let ⌃?p(X) := Cp(X)/ ⇠, with the metric d? ([�1], [�2]) := \�
1

�
2

. The space of

directions to X at p, denoted ⌃p(X), is the completion of ⌃?p(X) with respect to

the metric d?.

Remark 3.3.26. Notice that in order to define the space of directions, we are

implicitly using that the angle between two shortest paths is defined (which it is in

our setting, by Theorem 3.3.23). In general length spaces, where this is not the case,

a similar construction can be made using the upper angle, as given by Definition

3.3.16.
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3.3.5 Other notions of curvature

In this subsection, we briefly mention alternative ideas of curvature in spaces that are

more general than Riemannian manifolds. Firstly, whilst we have defined Alexan-

drov spaces with curvature bounded below, changing the sign of the inequality in

Definition 3.3.6 gives the definition of an Alexandrov space with curvature bounded

above. Such spaces have also been well-studied and exhibit their own interesting

properties, surveys of which can be found in [5, Chapter 9] and [4]. As we will see

in Theorem 3.6.3, Gromov–Hausdor↵ limits of sequences of Alexandrov spaces with

curvature bounded below are also spaces with curvature bounded below, but the

same is not true for spaces with only an upper curvature bound.

As we discuss in §3.4, Alexandrov spaces with curvature bounded below come with

a well-defined dimension (which is either an integer or infinite), which coincides with

their Hausdor↵ dimension. In dimension two, these spaces are in fact topological

manifolds, possibly with boundary. In the setting of topological surfaces with in-

trinsic metrics, a less restrictive notion of curvature may be formulated, as we now

discuss.

Let (M, g) be a Riemannian surface and let Kg denote the Gauß curvature of the

metric g. It is well-known that for a su�ciently small triangle T bounding a disc in

M, we have that Z
T
Kg dµg = ↵+ � + � � ⇡,

where ↵,� and � are the interior angles of T . We can generalise this idea, but first

we need to restrict our attention to a particular type of triangle:

Definition 3.3.27 (Simple triangle). Let (X, d) be a length space that is topologi-

cally a surface. Let T ⇢ X be a triangle whose sides form a simple curve in X, and

hence bound a region G. Suppose G is homeomorphic to a disc. Suppose further

that no two points on the sides of T can be joined by a curve lying outside of G

that is shorter than the portion of the sides joining those points. Then T is called

a simple triangle in X.

Definition 3.3.28. We say that a length space (X, d) is a space of bounded integral

curvature if:

1. X is topologically a surface;

2. Given p 2 X, there exists a neighbourhood U 3 p such that the following

holds: for any finite collection T of non-overlapping simple triangles in U ,
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there exists a C = C(U) such thatX
T2T

�(T )  C < 1,

where �(T ) is the excess of the triangle T , given by �(T ) := ↵ + � + � � ⇡,

where ↵,� and � are the interior upper angles of T (see Definition 3.3.16).

We note here that Alexandrov surfaces (see Definition 3.5.1) are also spaces of

bounded integral curvature, proof of which can be found in [37, Proposition 3.2.2]

or [27, Theorem 1.8].

Now let (X, d) be a space of bounded integral curvature. Given an open set G ⇢ X,

define

!+(G) := sup
T

X
T2T

�+(T ),

where the supremum is taken over all finite collections of non-overlapping simple

triangles in G, and �+ is the positive part of �. Similarly, define

!�(G) := sup
T

X
T2T

��(T ),

where �� � 0 is the negative part of �.

For an arbitrary set M ⇢ X, put

!+(M) := inf
G open

G�M

!+(G) and !�(M) := inf
G open

G�M

!�(G).

Definition 3.3.29 ([1]). The curvature measure of X is the signed measure ! :=

!+ � !�.

We will give examples of this measure in §3.5, but for now we note that in the case

of a Riemannian manifold (M, g), we have that ! = Kg dµg. For Alexandrov spaces

with lower curvature bounds, ! need not be absolutely continuous with respect to

volume.

3.4 Dimension

Whilst Alexandrov spaces can have many singular points (for example, points with

neighbourhoods homeomorphic to neighbourhoods of the vertex of a Euclidean
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cone), those with curvature bounded below exhibit the stunning property of having

a well-defined dimension, which is either an integer or infinite, and coincides with

their Hausdor↵ dimension dimH . In this section, we give the main results leading to

this fact, following [6]. In the process, it is shown that any Alexandrov space with

curvature bounded below contains a dense subset that is a topological manifold,

and in particular that, in dimension two, such an Alexandrov space must itself be

a topological manifold, possibly with boundary. As a consequence, it makes sense

to discuss ‘Alexandrov surfaces’, by which we mean Alexandrov spaces with curva-

ture bounded below that are homeomorphic to a surface without boundary. These

objects are the main focus of study in Chapter 4, where we show the existence and

uniqueness of a Ricci flow taking such a surface as initial condition in a particular

sense.

Remark 3.4.1. The results contained in this subsection are valid for all Alexan-

drov spaces with curvature bounded below by some k 2 R. However, we will only

consider the case where k = 0, as it vastly simplifies the exposition. Also, without

explicitly saying so, all local arguments take place within some open set in which

the requirements of the definitions of Alexandrov spaces are met.

The first step towards proving the dimensionality result is the idea of a burst point

and their corresponding explosions, which are an attempt to adorn a given Alexan-

drov space with coordinate axes:

Definition 3.4.2 (Burst points). Let X be a complete Alexandrov space with

curvature bounded below. A point p 2 X is called an (n, �)-burst point if there are

n pairs of points {(ai, bi)} distinct from p such that the following inequalities hold:

e\aipbi > ⇡ � � e\aipaj > ⇡

2
� �

e\aipbj > ⇡

2
� � e\bipbj > ⇡

2
� �,

where i 6= j and e\ = e\0, as defined in Definition 3.3.14. The collection of these

points ai, bi is called an explosion at p.

Remark 3.4.3. In our exposition, recall that we are always working with spaces

that are complete (and hence locally compact by Theorem 3.6.2). Consequently,

that p 2 X is an (n, �)-burst point is equivalent to the existence of 2n shortest

paths �i (joining p to ai) and �i (joining p to bi), the angles between which satisfy

analogous inequalities to those in Definition 3.4.2. Notice that this means that if p

is such a burst point, we can choose the explosion points to be arbitrarily close to

p.
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We now use burst points to find ‘coordinate charts’ on X:

Theorem 3.4.4 ([6, Theorem 5.4]). Let X be a complete Alexandrov space with

curvature bounded below. Suppose p 2 X is an (n, �)-burst point with explosion

{(ai, bi)}, with � < 1

2n , and such that there exists a neighbourhood U 3 p that

contains no (n+1, 4�)-burst points. Then there exists a neighbourhood V 3 p and a

domain ⌦ ⇢ Rn such that the map ' : V ! ⌦ defined by

'(q) := (|a
1

q|, . . . , |anq|)

is a bi-Lipschitz homeomorphism. We call ' an explosion map.

To prove that the Hausdor↵ dimension of X, dimH (X), is an integer or infinite, we

need the notion of a burst index, which will coincide with this dimension:

Definition 3.4.5 (Burst index). LetX be a complete Alexandrov space of curvature

bounded below. The burst index of X near p 2 X, denoted Burstp(X), is defined

to be the largest n 2 N such that every neighbourhood of p contains (n, �)-burst

points for any � > 0, but such that no neighbourhood of p contains (n+ 1, �)-burst

points. If no such n exists, we say Burstp(X) = 1.

In what follows, we will show that the burst index Burstp(X) is constant as we vary

p. The first step towards this is to consider the so-called rough dimension of a space:

Definition 3.4.6 (Rough volume and dimension). Let X be a metric space and let

U ⇢ X be a bounded subset. The rough a-dimensional volume of U is

V ra(U) := lim sup
"!0

"a�U ("),

where �U (") is the largest possible number of points in U that are at least " pairwise-

distant from each other (which could be infinite).

The rough dimension of U is then

dimr(U) := inf{a | V ra(U) = 0}.

Clearly we have dimr(U) � dimH (U). We note another obvious fact about rough

and Hausdor↵ dimensions:

Proposition 3.4.7. Let X and Y be metric spaces, and suppose f : X ! Y is

bi-Lipschitz. Then

dimr(X) = dimr(Y )
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and

dimH (X) = dimH (Y ).

Lemma 3.4.8 ([6, Lemma 6.3]). Let (X, d) be a complete Alexandrov space with

curvature bounded below. Let u, v 2 X be two points, and let U 3 u, V 3 v be

neighbourhoods. Then for U and V su�ciently small, dimr(U) = dimr(V ).

Proof. The ‘su�ciently small’ requirement is to ensure that we are working in do-

mains for which the conditions of Definition 3.3.6 hold. Let dimr(V ) > a � 0. Then

by definition,

lim sup
"!0

"a�V (") = 1,

and so there exists a sequence {"i} ! 0 and a constant c > 0 such that "ai �V ("i) � c

for each i. Consequently, for each i we may find a set of points c
1

, . . . , cNi 2 V that

are at least "i pairwise distant from each other, and such that "aiNi � c.

Now fix a ball B := BR(u) in U , and consider shortest paths �j joining u to the

points cj . Choose points bj on �j such that

|ubj | = R

D
|ucj |,

where D = sup{|ux| | x 2 V }. Clearly this condition ensures that bj 2 B for each

j, and by Definition 3.3.6, the points bj are at least "0i :=
"iR

D
distant from each

other. We hence have that

("0i)
a�U ("

0
i) �

✓
R

D

◆a

"aiNi � c

✓
R

D

◆a

,

and so V ra(U) > 0 and dimr(U) � dimr(V ). Exchanging U and V and re-running

the argument completes the proof.

The following lemma pieces together the notions of burst index (Definition 3.4.5),

rough dimension, and Hausdor↵ dimension:

Lemma 3.4.9 ([6, Lemma 6.4]). Let (X, d) be a complete Alexandrov space with

curvature bounded below, and let p 2 X. Then for a su�ciently small neighbourhood

U 3 p, we have

Burstp(U) = dimr(U) = dimH (U).

Proof. Suppose Burstp(X) = n 2 N and let U 3 p be su�ciently small. Then by

the definition of burst index, there are no (n+1, 1
8

(n+1))-burst points in U . Thus
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Theorem 3.4.4 gives a bi-Lipschitz homeomorphism ' : U
1

⇢ U ! V ⇢ Rn. This

immediately implies that

dimr(U1

) = dimH (U
1

)

by Proposition 3.4.7. By Lemma 3.4.8, it then follows that dimr(U) = dimr(U1

) = n.

Finally, dimH (U) = n since

n = dimH (U
1

)  dimH (U)  dimr(U) = n.

The argument for Burstp(X) = 1 is deduced similarly.

We hence arrive at the main result of this section, which tells us that Alexandrov

spaces with lower curvature bounds have a well-defined dimension:

Theorem 3.4.10 (Dimension Theorem, [6, Corollary 6.5]). Let (X, d) be a complete

Alexandrov space with curvature bounded below. The burst indices Burstp(X) are

independent of p. They coincide with the Hausdor↵ dimension of the space. If

Burstp(X) < 1, they coincide with the topological dimension of the space.

Proof. The first two assertions follow from Lemmata 3.4.8 and 3.4.9. The third

follows from Theorem 3.4.4, and from the fact that the Hausdor↵ dimension of a

space does not exceed its topological dimension.

We can now make the following definition:

Definition 3.4.11 (Dimension). Let (X, d) be a complete Alexandrov space with

curvature bounded below. The dimension of X is

dim(X) := Burstp(X) 2 N [ {1},

for any choice of p 2 X.

Remark 3.4.12. Notice that if p 2 X is not a burst point with the properties

required by Theorem 3.4.4, we are not guaranteed to find a homeomorphism from

a neighbourhood of p onto a domain in Rn. Consequently, it is not true that all

Alexandrov spaces with curvature bounded below are topological manifolds - merely

that they contain a dense subset that is such a manifold (the set of (n, �)-burst points

are dense in X for any � > 0 when X is n-dimensional by [6, Corollary 6.7]). An

example of an Alexandrov space that is not a topological manifold is R3/Z
2

, where

Z
2

acts by symmetries.
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Whilst it is possible to provide examples of Alexandrov spaces with lower curvature

bounds that are not topological manifolds, the two-dimensional case is simpler, more

discussion of which can be found following Theorem 3.6.7.

Theorem 3.4.13 ([5, Corollary 10.10.3]). Let X be a complete Alexandrov space

with curvature bounded below of dimension two. Then X is a topological manifold,

possibly with boundary.

Remark 3.4.14. An alternative exposition of the above results on dimension can

be found in [5, §10.8], which uses slightly di↵erent nomenclature (notably referring

to burst points as ‘strained points’).

3.5 Reshetnyak metrics

In this section, we provide theorems that show that Alexandrov spaces of dimension

two with curvature bounded below are in fact ‘almost Riemannian’, in the sense

that they admit a Riemannian metric which, whilst not smooth, is nevertheless very

useful. The results in this section were originally provided in [21], [33] and [34], none

of which are in English. A summary of the main results, which we closely follow,

is to be found in English in [35]. The motivation comes directly from Riemannian

geometry. First, we give a definition:

Definition 3.5.1. A complete Alexandrov space (X, d) with curvature bounded

below of dimension 2 (as in Definition 3.4.11) that is topologically a surface without

boundary is called an Alexandrov surface.

Now let (M, g) be a smooth Riemannian surface, and suppose that g may be written

as

g = �(x, y)|dz|2

with respect to a local complex coordinate z = x+ iy on an open set G ⇢ C (i.e. in

some chart). That this is always possible is a well-known result. A standard formula

gives the Gauß curvature of g as

Kg = � 1

2�
� log �,

where � is the Laplacian with respect to the coordinates x and y. Solving by means

of the standard formula for the solution to the Poisson equation, we arrive at the

formula

log �(z) =
1

⇡

Z
G
log

1

|z � ⇠|Kg(⇠)�(⇠) d⇠ + h(z),
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where h is some harmonic function. Recall that for a Riemannian manifold, the

curvature measure (see Definition 3.3.29) is ! = Kg dµg, and we hence have

log �(z) =
1

⇡

Z
G
log

1

|z � ⇠| d!(⇠) + h(z).

The idea now is that on Alexandrov surfaces, we also have Riemannian metrics

taking this form, but with ! a signed measure that is not necessarily absolutely

continuous with respect to area (and which is, in fact, the curvature measure de-

fined in Definition 3.3.29).

From now on, given an open set G ⇢ C, a signed measure ! on the Borel �-algebra

B(G), and a harmonic function h on G, set

�(z) ⌘ �(z,!, h) := exp

✓
1

⇡

Z
G
log

1

|z � ⇠| d!(⇠) + h(z)

◆
.

As discussed in [35], � is defined and finite !-almost everywhere in G.

Remark 3.5.2. We can say a little more about the regularity of such functions �.

Indeed, by [20, Theorem 3.9], a function u on G is subharmonic if and only if it

takes the form

u(z) ⌘ u(z, µ, h) =
1

⇡

Z
G
log |z � ⇠| dµ(⇠) + h(z)

for some (non-negative) measure µ and some harmonic function h. In this notation,

log �(z,!, h) = u
1

(z,!+, h)� u
2

(z,!�, 0)

for some subharmonic functions u
1

and u
2

, and where ! = !+ � !� is the Jordan

decomposition of the signed measure !. In other words, log � arises as the di↵erence

of subharmonic functions on G.

Definition 3.5.3. Given � and G ⇢ C as above, we call g� := �|dz|2 a Reshetnyak

metric on G.

As is the case in Riemannian geometry, given a path � in G, we can use g� to

measure its length:

Definition 3.5.4. Let � : [0, `] ! G be a rectifiable curve in G ⇢ C parameterised
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by arc-length, and let � be as above. The length of � with respect to g� is

L�(�) :=

Z `

0

p
�(�(s)) ds.

We then define the distance induced by g� by

d�(x, y) := inf
�2�

L�(�),

where � is the collection of all rectifiable paths joining x and y parameterised by

arc-length.

Clearly this is precisely the same approach taken in the definition of an intrinsic

metric on a metric space (see Definition 3.1.6). However, a possible issue of concern

here is that the function � is defined only almost-everywhere, and since a path has

two-dimensional Hausdor↵ measure zero, it is possible that �(�(s)) could only be

defined on a null set. This concern is avoided by the following lemma:

Lemma 3.5.5 ([33, 34]). Let u be a subharmonic function on an open set G ⇢ C.
Then �1  u(z) < 1. Moreover, let E be the set of those z for which u(z) = �1.

Then for any " > 0 and any ↵ > 0, there exists a sequence of open discs Bm :=

Brm(cm) such that

E ⇢
1[

m=1

Bm

and
1X

m=1

r↵m < ".

In our setting, we can use this lemma as follows: for �(z) to be undefined, we would

need that u
1

(z) = �1, or that both u
1

(z) and u
2

(z) are �1, where u
1

and u
2

are

subharmonic functions as in Remark 3.5.2. But by Lemma 3.5.5, given " > 0, these

points can be covered by a sequence of discs, the sum of whose radii is less than ".

Consequently, the length L�(�) is well-defined.

Remark 3.5.6. The following results were originally stated for spaces of bounded

integral curvature, as in Definition 3.3.28. However, as we have already noted,

Alexandrov surfaces satisfy this definition.

We are now ready to provide the main theorem of this section, which tells us that

Alexandrov surfaces come equipped with Reshetnyak metrics:

Theorem 3.5.7 ([35, Theorem 7.1.2]). Let (X, d) be an Alexandrov surface, and let

p 2 X. Then there exist
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• an open set U 3 p;

• an open set G ⇢ C, a signed measure ! on the Borel �-algebra B(G), and a

harmonic function h on G;

• an isometry I : (U, dU ) ! (G, d�),

where �(z) = �(z,!, h), dU is the induced intrinsic metric on U (Definition 3.1.6),

and d� is the distance induced by the Reshetnyak metric g� (Definitions 3.5.3 and

3.5.4).

Definition 3.5.8. The isometry I in Theorem 3.5.7 is called an isothermal coor-

dinate chart for X.

An alternative phrasing of this theorem, and an accompanying exposition, can be

found in French in [47]. In that paper, all discussion takes place on the Alexandrov

surface itself, rather than working in a chart as we have done, and the corresponding

theorem is as follows:

Definition 3.5.9. Given a Riemannian surface (S, g), let V (S, g) denote the collec-

tion of all functions u 2 L1

loc

(S, dµg) such that �gu defines a signed measure, where

the Laplacian is computed in the sense of distributions.

Given u 2 V (S, h), define

dg,u(x, y) := inf

⇢Z
1

0

eu(�(t))|�0(t)|g dt
�
,

where the infimum is taken over all C1 paths � : [0, 1] ! S joining x and y.

Theorem 3.5.10 ([47, Theorem 7.1 variant]). Let (X, d) be an Alexandrov surface.

Then there exists a Riemannian metric g and a function u 2 V (X, g) such that

d = dg,u.

One can easily reconcile Theorems 3.5.7 and 3.5.10. Indeed, write the Reshetnyak

metric as g� = e⇢eh|dz|2, where

⇢(z) :=
1

⇡

Z
G
log

1

|z � ⇠| d!(⇠).

A quick computation shows that �⇢ = �!. In Theorem 3.5.10, the metric g comes

from pulling back the metric eh|dz|2 using the chart in which we have been working,

and the function u corresponds to ⇢ in the same way. Another quick computation
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shows that !̃ = Kg dµg +�gu, where !̃ is the measure ! after pulling back by the

chart (i.e. !̃(A) = !('(A)), where ' is the chart and A is a Borel set in X).

In the language of Theorem 3.5.10, we state another useful result:

Theorem 3.5.11 ([47, Theorem 6.4]). Let (M, g) and (N , h) be two smooth Rie-

mannian surfaces, and let u 2 V (M, g) and w 2 V (N , h). If

f : (M, dg,u) ! (N , dh,w)

is an isometry, then f is also a conformal di↵eomorphism (M, g) ! (N , h).

We also state the following technical result that we use in Chapter 4:

Theorem 3.5.12 ([47, Theorem 6.2], [33, Theorem III]). Let (S, g) be a smooth

Riemannian surface. Let {µ+

n } and {µ�
n } be two sequences of Radon measures on S,

which converge weakly to measures µ+ and µ� respectively. Suppose that µ+({p}) <
2⇡ for all p 2 S. Define functions un and u on S by the relations �gun = µn :=

µ+

n � µ�
n and �gu = µ := µ+ � µ�, where the Laplacian is meant in the sense of

distributions. Then

dg,un ! dg,u

uniformly on M⇥M, where the distances are as defined in Definition 3.5.9.

Remark 3.5.13. Let (X, d) be an Alexandrov surface with curvature bounded

below, and let g and u be as in Theorem 3.5.10. Let µ := !d � Kgdµg, where

!d is the curvature measure of d as given in Definition 3.3.29. We then have that

�gu = µ in the sense of distributions. As pointed out by Richard in [37, Remark

3.2.11], we necessarily have that µ+({x}) < 2⇡ for all x 2 X. Indeed, at points

where µ+({x}) � 2⇡, the space of directions ⌃x(X) at x (see Definition 3.3.25)

is a point, corresponding geometrically to so-called ‘cusp points’ on X. However,

by [22, Theorem 1.3], all Alexandrov surfaces with curvature bounded below that

can be approximated in the Gromov–Hausdor↵ topology by a sequence of smooth

Riemannian surfaces have the property that ⌃x(X) ⇠= S1 for all x 2 X. Later, we

prove Lemma 4.3.7, which shows that Alexandrov surfaces can be approximated in

this way. Consequently we must have that µ+({x}) < 2⇡ for all x 2 X.

The final theorem we give in this section tells us that an Alexandrov surface admits

the structure of a Riemann surface:

Theorem 3.5.14 (Conformal structure of Alexandrov surfaces, [35, Theorem 7.1.3],

[21]). Let (X, d) be an Alexandrov surface. Let ' : U ! C and  : V ! C be
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isothermal coordinate charts on X, with U \ V 6= ?. Let G := '(U \ V ) and let

H :=  (U \ V ). Then G and H are open sets in C, and the map ✓ : z 7!  �'�1(z)

is conformal.

Moreover, if �(z)|dz|2 and µ(w)|dw|2 are the Reshetnyak metrics associated to '

and  respectively, then for all z 2 G,

�(z) = µ(✓(z))|✓0(z)|2.

Corollary 3.5.15. Let (X, d) be an Alexandrov surface. Then taking all possible

isothermal coordinate charts on X as an atlas, X is a Riemann surface.

Example 3.5.16. An easy example that demonstrates the preceding theorems is the

Euclidean cone with cone angle ✓. This space is isometric to C with the Reshetnyak

metric

g = |z|2� |dz|2,

where � = ✓
2⇡ � 1. The curvature measure of this cone is ! = �2⇡��

0

, where �
0

denotes the Dirac mass at the origin. Indeed:

1

⇡

Z
C
log

1

|z � ⇠| d!(⇠) = 2�

Z
C
log |z � ⇠| d�

0

= 2� log |z|,

and so, in the language of the previous results, log � = 2� log |z|, as expected.

3.5.1 Technique: smoothing Reshetnyak metrics

We take a brief detour to discuss a useful technique we appeal to later. When at-

tempting to approximate Alexandrov surfaces in the Gromov–Hausdor↵ topology,

for example, a possible line of attack would be to ‘smooth out’ a Reshetnyak metric

on the space. Here, we present a method for doing this for the Euclidean cone,

which also carries over to other situations.

Returning to Example 3.5.16, it is useful to change notation and let ↵ := 2⇡ � ✓,

where ✓ is again the cone angle of a Euclidean cone. The Reshetnyak metric of this

cone is then given by g := |z|�↵
⇡ |dz|2. We now smooth out this metric by spreading

the curvature in a neighbourhood of the vertex, i.e. the origin.

Define  2 C1(R) by
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 (t) :=

(
exp(�1

t ) if t > 0

0 if t  0.

Also define H(z) := C 
�
1

4

� |z|2�, for a constant C determined by the relationZ
R2

H(x, y) dµ = 1,

where µ is Lebesgue measure on R2. Notice that H 2 C1(C) and that H(z) = 0

whenever |z| > 1

2

.

Given h > 0, we then define the function �h by

log �h(z) :=
↵

⇡

Z
C
log

1

|z � ⇠| ·
1

h2
H

✓
⇠

h

◆
d⇠.

It is easy to check that �h 2 C1(C) for any h > 0. Moreover, we have that

�h(z) ! |z|�↵
⇡ uniformly, locally as h # 0, which follows from the representation

formula for Reshetnyak metrics and the observation that

↵

h2
H

✓
⇠

h

◆
d⇠ ! ↵�

0

= �2⇡��
0

in the weak-? sense of measures as h # 0, where � is as in Example 3.5.16.

A computation shows that, if we write gh := �h(z)|dz|2, then the Gauß curvature

of gh is

Kgh(z) =
↵

h2
H
⇣ z
h

⌘
· 1

�h(z)
� 0.

In this way, we have found a sequence of smooth Riemannian metrics with curvature

bounded below that converges uniformly, locally to the Reshetnyak metric g, and

hence certainly in the Gromov–Hausdor↵ sense.

Remark 3.5.17. Whilst this example deals with a Euclidean cone, the same tech-

nique can be used to smooth the Reshetnyak metrics of any Alexandrov surface with

curvature bounded below. Indeed, for any space of bounded integral curvature (see

Definition 3.3.28), and hence for any Alexandrov surface, we can perform such a

smoothing by following the discussion in [35, pp. 115–118].
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3.6 Some other big theorems

In this final section, we collect some other key theorems in the study of Alexandrov

spaces with curvature bounded below. Once again, a clear theme is that classical

results of Riemannian geometry carry over, at least in some form, to this setting.

3.6.1 Globalisation

The first result we present here is of a very technical nature, and so we do not discuss

the proof. Recall from §3.3 that our definitions of Alexandrov spaces were always of

a local nature, i.e. for every point in the space, there had to exist a neighbourhood

of that point in which a certain condition involving lengths or angles had to hold.

The following theorem tells us that, in fact, these conditions hold ‘in the large’:

Theorem 3.6.1 (Globalisation Theorem [5, Theorem 10.3.1], [6, Theorem 3.2]).

Let (X, d) be a complete Alexandrov space with curvature bounded below by k. Then

for any four points a, b, c, d 2 X, we have the inequality

e\kbac+ e\kbad+ e\kcad  2⇡.

It is worth pointing out that completeness is necessary here, even if we can make

sense of Alexandrov spaces that are merely locally complete. For example, the plane

with a closed disc removed satisfies the local conditions of Definitions 3.3.6, 3.3.20

and 3.3.21 with k = 0, but clearly the conclusion of the Globalisation Theorem does

not hold.

3.6.2 Local compactness

Now we recall Remark 3.3.10, where we noted that throughout this chapter, we work

with complete Alexandrov spaces, which is a su�cient condition to ensure the metric

is strictly intrinsic, i.e. that every pair of points can be joined by a shortest path.

From Theorem 3.1.9, we recall that both completeness and local compactness are

required for a metric in a length space to be strictly intrinsic. Indeed, the following

result shows that for finite-dimensional Alexandrov spaces, local compactness comes

for free:

Theorem 3.6.2 ([5, Corollary 10.8.20]). All complete, finite-dimensional Alexan-

drov spaces with curvature bounded below are locally compact.

Sketch proof. Let (X, d) be a complete Alexandrov space of dimension n, in the

sense of Definition 3.4.11. Let p 2 X be an (n, �)-burst point, for � su�ciently small
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(the set of such points is dense in X). Then by Theorem 3.4.4, some neighbourhood

U of p is bi-Lipschitz homeomorphic to a domain in Rn. Thus, U is locally compact,

and so we may find r > 0 such that Br(p) is pre-compact.

Now we claim that for any R > 0, BR(p) is pre-compact. If not, there exists an " > 0

and an infinite set S that is an "-net for BR(p). One can construct a homothety

map f : BR(p) ! Br(p) such that

d(f(x), f(y)) >
r

2R
d(x, y)

for any x, y belonging to any finite subset S 0 ⇢ S. Consequently, the ball Br(p)

contains an
r

2R
-net f(S 0) of an arbitrarily large number of points, which contradicts

the pre-compactness of Br(p). So any ball in X is pre-compact, and so X is locally

compact.

We have now justified the assertion of Remark 3.3.10 that in complete Alexandrov

spaces with curvature bounded below, the metric is always strictly intrinsic.

3.6.3 Gromov–Hausdor↵ limits

We mentioned earlier that Gromov–Hausdor↵ limits of sequences of Alexandrov

spaces with lower curvature bounds are themselves Alexandrov spaces with lower

curvature bounds. We discuss this somewhat more in this subsection. Indeed, we

can employ the Globalisation Theorem (Theorem 3.6.1) to this end:

Theorem 3.6.3 ([5, Proposition 10.7.1]). Let (Xi, di) be a sequence of Alexandrov

spaces with curvature bounded below by k. Suppose that there exist points pi 2 Xi,

and a pointed metric space (X, d, p) such that

(Xi, di, pi) ! (X, d, p)

in the Gromov–Hausdor↵ sense (see Definition 3.2.5) as i ! 1. Then (X, d) is

also an Alexandrov space with curvature bounded below by k.

Sketch proof. By Globalisation (Theorem 3.6.1), the quadruple condition holds for

any four points in (Xi, di). Under the stated convergence, if a, b, c, d 2 X, we may

find ai, bi, ci, di 2 Xi such that di(ai, bi) ! d(a, b), and analogously for the other

pairings of points, as i ! 1. The quadruple condition for the points a, b, c, d then

follows from the quadruple condition on the points ai, bi, ci, di and the continuity of

comparison angles.

49



Recall the Gromov Compactness Theorem from Riemannian geometry:

Theorem 3.6.4 (Gromov Compactness Theorem for Riemannian manifolds). The

class of n-dimensional Riemannian manifolds, with Ricci curvature bounded below

by some k 2 R and with diameter bounded above by some D > 0, is pre-compact in

the Gromov–Hausdor↵ topology.

This theorem does not give us information on the structure of the limit space of

such a sequence. The reason for this is exposed in the following result. Loosely

speaking, the above theorem is true because the Bishop–Gromov inequality holds

for lower bounds on the Ricci curvature. If instead we restrict this condition, and

require lower bounds on sectional curvature, we find that the limit space is in fact

an Alexandrov space:

Theorem 3.6.5 (Gromov Compactness for Alexandrov spaces, [5, Theorem 10.7.2]).

Given n 2 N, k > 0 and D > 0, let M(n, k,D) denote the class of all Alexandrov

spaces with curvature bounded below by k, of dimension at most n, and with diam-

eter bounded above by D. Then M(n, k,D) is compact in the Gromov–Hausdor↵

topology.

This theorem is in fact a major motivation for the study of Alexandrov spaces: it

tells us in particular that given a sequence of Riemannian manifolds of bounded

diameter, and with a lower bound on sectional curvature, there exists (passing to

a subsequence if necessary), a Gromov–Hausdor↵ limit space that is an Alexandrov

space. Consequently, the study of Alexandrov spaces with lower curvature bounds

could be viewed as a study of the limit spaces obtained from such sequences of

Riemannian manifolds.

3.6.4 Unpublished results of G. Perelman

Whilst the paper [6] is a fundamental resource to the student of Alexandrov spaces,

Perelman wrote an unpublished sequel [32] that contains some further spectacular

results.

A very useful theorem tells us that Alexandrov spaces with lower curvature bounds

can be ‘stratified’ into topological manifolds:

Definition 3.6.6. A collection of subsets {Xi}Ni=1

of a topological space X is a

stratification of X into topological manifolds if

• The sets Xi are disjoint, and
S

iXi = X;
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• For each i, Xi is a topological manifold without boundary ;

• For each 1  i  N � 1, dim(Xi) > dim(Xi+1

);

• For each 1  k  N , the set
N[
i=k

Xi

is closed in X.

The sets Xi are called strata.

Theorem 3.6.7 (Stratification Theorem, [32]). Every finite-dimensional Alexan-

drov space with curvature bounded below admits a stratification into topological man-

ifolds.

The sets Xi can be described loosely as follows: given an Alexandrov space X with

curvature bounded below of dimension n, X
1

is the set of points that admit a neigh-

bourhood homeomorphic to a domain in Rn. As discussed in §3.4, X
1

will hence

consist of all (n, �)-burst points in X, for � su�ciently small (see Definition 3.4.2).

Next, X
2

will consist of all points in X that admit neighbourhoods homeomorphic

to domains in Rn�1, provided this set is non-empty. Continuing in this way, we

arrive at a stratification into topological manifolds.

An example of such a stratification would be to consider the cone over RP2, which

is stratified into the complement of the origin (which is three-dimensional), and the

origin itself. Another use of this result is to prove Theorem 3.4.13, which says that

a two-dimensional Alexandrov space with curvature bounded below is a topological

manifold, possibly with boundary. In this case, the space is stratified into a two-

dimensional manifold without boundary, together with its boundary.

Another striking result of Perelman gives us some insight into the question of

whether or not an Alexandrov space may be approximated by manifolds of the

same dimension in the Gromov–Hausdor↵ topology. Indeed, the so-called Stability

Theorem tells us (in the compact case) that this is not possible if the Alexandrov

space in question is not itself a manifold:

Theorem 3.6.8 (Stability Theorem, [32]). Let (X, d) be a compact Alexandrov

space of dimension n with curvature bounded below by k 2 R. Then there exists an

" > 0 such that for any other n-dimensional, compact Alexandrov space
⇣
Y, d̃

⌘
with
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curvature bounded below by k, we have that X and Y are homeomorphic whenever

dGH(X,Y ) < ".

Here dGH is the Gromov–Hausdor↵ distance, as in Definition 3.2.2.

Remark 3.6.9. If (X, d) is not topologically a manifold, then we have no hope

of finding a sequence of n-dimensional compact manifolds that converges to X in

the Gromov–Hausdor↵ sense. This observation has important implications for the

study of Ricci flow later on in Chapter 4. There, we prove that Alexandrov surfaces

(with particular properties) can be used as ‘initial conditions’ for the Ricci flow.

The line of attack is to first approximate the surface by smooth Riemannian mani-

folds. Theorem 3.6.8 shows us that this approach will not be possible for arbitrary

Alexandrov spaces of dimension higher than two. In dimension two, however, this

obstacle is not present, thanks to Theorem 3.4.13.

The final result we present in this section is another analogue of a much-celebrated

theorem in Riemannian geometry:

Theorem 3.6.10 (Soul Theorem, [9, Theorem 1.11]). Let (M, g) be a complete,

connected Riemannian manifold with sectional curvature Kg � 0. Then there exists

a submanifold S ⇢ M (the soul) without boundary, which is compact, totally convex,

and totally geodesic, such that M is di↵eomorphic to the normal bundle of S.
This theorem largely simplifies the study of complete Riemannian manifolds of non-

negative sectional curvature to the compact case. It carries over in a similar form

to the setting of Alexandrov spaces, but before stating this version, we recall a

standard topological notion:

Definition 3.6.11. Let X be a topological space and A ⇢ X. By a deformation

retract of X onto A, we mean a continuous map F : X ⇥ [0, 1] ! X such that, given

x 2 X and a 2 A, we have

• F (x, 0) = x;

• F (x, 1) 2 A and

• F (a, t) = a for all t 2 [0, 1].

Theorem 3.6.12 (Soul Theorem for Alexandrov spaces, [32]). Let X be a non-

compact, finite-dimensional Alexandrov space with curvature bounded below by k = 0.

Then there exists a convex, compact subset S ⇢ X without boundary, such that there

exists a deformation retract of X onto S.
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Chapter 4

Ricci flow of Alexandrov

surfaces

Throughout our survey in Chapter 3, a common theme we observed was that several

properties of Riemannian manifolds, which are typically thought of as inherently

Riemannian, in fact carry over (at least in some form) to the setting of Alexan-

drov spaces with lower curvature bounds. We also remarked, in light of Theorem

3.6.5, that such Alexandrov spaces arise naturally as the Gromov–Hausdor↵ limits

of smooth Riemannian manifolds with lower bounds on sectional curvature. Conse-

quently, given our discussion of the Ricci flow in Chapter 2 where initial conditions

are smooth Riemannian manifolds, it is natural to ask if we can make sense of Ricci

flows taking Alexandrov spaces as initial condition. Indeed, this question was first

tackled by Miles Simon in [39], as we discuss in what follows. This result was utilised

by Thomas Richard in [37] to prove the existence and uniquess of Ricci flows taking

compact Alexandrov surfaces as initial condition in a certain sense. In this chapter,

we extend these results to the setting of non-compact Alexandrov surfaces.

4.1 Introductory results

Before examining these results, however, we must consider what it means for a Ricci

flow to take a metric space as initial condition. One possibility that immediately

springs to mind is the following: let (M, g(t), p)t2(0,T )

be a smooth, pointed Ricci

flow, and (X, d, x) a pointed metric space. Say (M, g(t), p) takes (X, d, x) as initial

condition in the Gromov–Hausdor↵ sense if

(M, g(t), p) ! (X, d, x)
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as t # 0, in the Gromov–Hausdor↵ sense of Definition 3.2.5. At first glance, this

may seem like a natural choice. However, upon consideration of relatively simple

examples, we see that it is too weak a definition without further hypotheses, as we

have non-uniqueness:

Example 4.1.1. Consider the torus T 2 and, given p 2 T 2, define T 2

p := T 2 \ {p}.
Let h be the complete hyperbolic metric on T 2

p . A solution to the Ricci flow equation

on T 2

p beginning at h is the standard dilating flow h(t) := (1 + 2t)h. However, in

[44], Topping proves the existence of a unique flow ĥ(t) on the (non-punctured)

torus T 2 such that (T 2, ĥ(t)) ! (T 2

p , h) in the Cheeger–Gromov sense as t # 0 for an

appropriate choice of points. Consequently, we have two distinct flows h(t) and ĥ(t),

both of which take (T 2

p , h) as initial condition in the Gromov–Hausdor↵ topology.

The alternative we use is the following:

Definition 4.1.2. We say that a smooth Ricci flow (Mn, g(t))t2(0,T )

takes the

metric space (X, d) as initial condition if the Riemannian distances dg(t) converge

uniformly on compact subsets of M⇥M to a metric d̃ on M such that
⇣
M, d̃

⌘
and

(X, d) are isometric.

We are now ready to state the following result of Miles Simon, which gives existence

of Ricci flows taking certain metric spaces as initial condition:

Theorem 4.1.3 ([39, Theorem 9.2]). Given k, v
0

> 0, let (X, d) be a compact metric

space such that there exists a sequence of smooth, compact Riemannian manifolds

(Mn
i , gi), with n = 2 or 3, converging to (X, d) in the Gromov–Hausdor↵ sense

(Definition 3.2.2), and such that:

• for each i, Ricgi � �kgi and

• for each x 2 Mi, volgi(B
gi
1

(x)) � v
0

for each i.

Then there exist a T > 0 and a smooth Ricci flow (Mn, g(t))t2(0,T )

taking (X, d) as

initial condition (Definition 4.1.2).

Remark 4.1.4. As discussed in [39], this theorem also holds if the metric space

(X, d) and the approximating sequence (Mi, gi) are non-compact, but we require

the extra assumption that the approximating sequence has controlled geometry at

infinity. For instance, one option would be to require that the metrics gi be of

bounded curvature.

We observe the following immediate corollary that is to date the best result in this

direction in dimension three:
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Corollary 4.1.5. Let (X, d) be a compact Alexandrov space with curvature bounded

below of dimension three, which can be approximated in the Gromov–Hausdor↵

topology by a sequence of smooth, compact Riemannian manifolds satisfying the

conditions in Theorem 4.1.3. Then there exist a T > 0 and a smooth Ricci flow

(M3, g(t))t2(0,T )

taking (X, d) as initial condition.

Remark 4.1.6. It seems unlikely that Corollary 4.1.5 can be improved. A major

issue is that in typical scenarios, three-dimensional Alexandrov spaces cannot be

approximated in the required way - indeed, as a consequence of Theorem 3.6.8, the

Alexandrov space in question would necessarily have to be a topological manifold,

which is not always the case (recall the example of R3/Z
2

). Then, even if the

space were to be a manifold, finding an appropriate approximating sequence in this

dimension appears to be tricky. In [25], it is shown that three-dimensional compact

polyhedral manifolds, which are manifolds that can be triangulated in such a way

that each simplex is isometric to a Euclidean simplex, and which are also Alexandrov

spaces with curvature bounded below by 0 in the sense of Definition 3.3.6, can be

approximated by smooth Riemannian manifolds in the Gromov–Hausdor↵ topology.

4.2 The compact case

In his thesis [37], Thomas Richard considered the problem of finding Ricci flows

taking as initial condition (in the sense of Definition 4.1.2) compact Alexandrov

surfaces. In this section, we sketch the proof of this result, which is also the content

of the article [36].

Theorem 4.2.1 ([36] , [37, Theorem 3.1.1]). Let (X, d) be a compact Alexandrov

surface with curvature bounded below by �1. Then there exist a T > 0 and a smooth

Ricci flow (M2, g(t))t2(0,T )

such that

• Kg(t) � �1 for all t 2 (0, T ) and

• (M, g(t)) takes (X, d) as initial condition.

Moreover, (M, g(t)) is the unique Ricci flow satisfying these conditions up to dif-

feomorphism.

The proof of this theorem marries the results we have discussed in Chapter 3 on

metric geometry of Alexandrov spaces, and the smooth theory of the Ricci flow.

To prove the existence part of the theorem, Richard uses Theorem 4.1.3. Conse-

quently, existence is proved provided a compact Alexandrov surface (X, d) can be
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approximated in the Gromov–Hausdor↵ sense by a sequence of smooth Riemannian

manifolds satisfying the conditions of Theorem 4.1.3. This is indeed the case:

Theorem 4.2.2 (Smoothing of compact Alexandrov surfaces, [37, Theorem 3.2.4]).

Let (X, d) be a compact Alexandrov surface with curvature bounded below by �1.

Then there exists a sequence of smooth, compact Riemannian surfaces (M2

i , gi) such

that

• (Mi, dgi) converges to (X, d) in the Gromov–Hausdor↵ sense (Definition 3.2.2),

• Kgi � �1 for each i 2 N,

• for each i, we have

1

2
Diam(X, d)  Diam(Mi, gi)  2Diam(X, d)

and

• for each i, we have

1

2
H 2(X, d)  volgi(Mi, gi)  2H 2(X, d),

where H 2 is the two-dimensional Hausdor↵ measure.

We prove a similar result in the non-compact case using essentially the same argu-

ments as Richard (see Lemma 4.3.7), and so we do not dwell on the details here.

With this result in hand, the existence portion of Theorem 4.2.1 follows from an

application of Theorem 4.1.3. We now concentrate on the uniqueness claim of The-

orem 4.2.1. The first step towards this is to show uniqueness of the conformal class

of Ricci flows taking a compact Alexandrov surface as initial condition:

Proposition 4.2.3 ([37, Proposition 3.4.1]). Let (X, d) be a compact Alexandrov

surface with curvature bounded below by �1. Suppose that (M2, g(t))t2(0,T )

and

(N 2, h(t))t2(0,T )

are two smooth Ricci flows taking (X, d) as initial condition. Sup-

pose further that there exists C > 0 such that

�1  Kg(t),Kh(t) 
C

t

for all t 2 (0, T ). If we write g(t) = e2u(t)g and h(t) = e2w(t)h for smooth Rie-

mannian metrics g and h on M and N respectively, then there exists a conformal

di↵eomorphism

' : (M, g) ! (N , h).
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Sketch proof. By Definition 4.1.2, there exist distances ⌘ and ⇢ on M and N re-

spectively such that dg(t) ! ⌘ and dh(t) ! ⇢ uniformly as t # 0. The first step in

proving the result is then to show that the functions u(·, t) and w(·, t) converge in

L1(dµg) and L1(dµh) respectively to integrable functions u
0

and w
0

. This follows

almost immediately from the Ricci flow equation, the lower curvature bound of �1,

and an application of Jensen’s Inequality. Next, it is shown that the functions u
0

and w
0

actually belong to the spaces V (M, g) and V (N , h) respectively, as given in

Definition 3.5.9. In other words, these functions are such that e2u0 and e2w0 are of

the correct regularity to define Reshetnyak metrics on M and N respectively (see

Definition 3.5.3). We then show that in fact these functions do define bona-fide

Reshetnyak metrics on their corresponding surfaces. To do this, it is shown that

the distance induced by the metric e2u0g coincides with the distance ⌘, and also the

corresponding statement for the metric e2w0h. Consequently, we have an isometry

I : (M, ⌘) ! (N , ⇢), which is hence a conformal map (M, g) ! (N , h) by Theorem

3.5.11.

We may now, without loss of generality, consider two smooth Ricci flows g
1

(t) =

v
1

(t)h and g
2

(t) = v
2

(t)h for t 2 (0, T ), on a smooth Riemannian surface (M2, h),

which take (X, d), an Alexandrov surface with curvature bounded below by �1, as

initial condition. To prove the uniqueness statement of Theorem 4.2.1, it hence

su�ces to show that v
1

(t) = v
2

(t) for all t 2 (0, T ). The first step towards this is

the following, which is a consequence of Definition 4.1.2:

Lemma 4.2.4 ([37, Lemma 3.5.1]). For v
1

and v
2

as above, there exists a function

v 2 L1(dµh) such that

v = lim
t#0

v
1

(·, t) = lim
t#0

v
2

(·, t)

in L1(dµh).

With this in hand, uniqueness is then a consequence of the following result, bearing

in mind the equation solved by conformal factors of Ricci flows on smooth surfaces

(Proposition 2.2.2):

Proposition 4.2.5 ([37, Proposition 3.5.2]). Let (M2, h) be a smooth, closed Rie-

mannian surface. Let v
1

, v
2

: M⇥ (0, T ) ! R>0

be two solutions to the equation

@�

@t
= �h log �� 2Kh.
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Suppose further that

lim
t#0

Z
M

|v
1

(x, t)� v
2

(x, t)| dµh(x) = 0.

Then v
1

= v
2

on M⇥ (0, T ).

Proof. It su�ces to show that for every smooth, positive function % : M ! R and

for every t
0

2 (0, T ), we haveZ
M
(v

1

(x, t
0

)� v
2

(x, t
0

))%(x) dµh(x) = 0.

To this end, define a function A 2 C1(M⇥ (0, T )) by

A(x, t) :=

(
log v1(x,t)�log v2(x,t)

v1(x,t)�v2(x,t)
if v

1

(x, t) 6= v
2

(x, t)
1

v1(x,t)
otherwise.

Now let  be the unique, positive, smooth solution to the backwards heat equation(
@ (x,t)
@t = �A(x, t)�h (x, t) for (x, t) 2 M⇥ (0, t

0

)

 (x, t
0

) = %(x) for x 2 M.

Then, multiplying by  the equation satisfied by v
1

� v
2

and integrating by parts,

we arrive at the equalityZ
M
(v

1

(x, t
0

)� v
2

(x, t
0

))%(x) dµh(x) =

Z
M
(v

1

(x, ⌧)� v
2

(x, ⌧)) (x, ⌧) dµh(x),

for any ⌧ 2 (0, t
0

).

Now observe that by the maximum principle,

sup
x2M

 (x, t)  sup
x2M

%(x),

for any t 2 (0, t
0

), i.e.  is bounded above independently of t. Combining this

with Lemma 4.2.4 and taking the limit as ⌧ # 0, we find that v
1

(x, t
0

) = v
2

(x, t
0

)

for all x 2 M. Since t
0

was arbitrary, it follows that v
1

= v
2

on M ⇥ (0, T ), as

required.

Remark 4.2.6. Let X be a compact Kähler manifold (of any finite dimension), let

↵
0

2 H1,1(X;R) be a Kähler class, and let T
0

be a closed, positive (1, 1)-current

in the class ↵
0

. In [28], it is shown that the Kähler–Ricci flow starting from T
0

is
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unique, and smooth outside a particular analytic subset of X. This result serves as

a complement to Theorem 4.2.1 in the Kähler case.

4.3 The non-compact case

In this section, we extend Theorem 4.2.1 to the setting of non-compact Alexandrov

surfaces with curvature bounded below by �1, with the extra assumption of non-

collapsedness, i.e. that the volume of unit balls is controlled uniformly from below.

Before doing this, however, we must take a pause to consider triangulations of such

spaces:

4.3.1 Triangulation of Alexandrov surfaces

A common theme in what follows is the approximation of Alexandrov surfaces by

polyhedral surfaces. To do this, we need some more definitions, and some results

of Alexandrov collected in [3]. Alexandrov’s results were originally written in the

context of topological surfaces endowed with an intrinsic metric, and the results

stated here also require that shortest paths do not branch, in other words that if

two shortest paths have common points, then either they are continuations of their

intersection, or the common points are the ends of both shortest paths. By Corol-

lary 3.3.24, Alexandrov spaces with curvature bounded below exhibit this property.

Consequently, we reformulate these results in our context in what follows.

Definition 4.3.1. Let n � 3. Given a strictly intrinsic length space (X, d), an

Alexandrov polygon with n sides in X is a map t : D ! X that is a homeomorphism

onto its image, such that t(@D) is the union of n shortest paths in X, and such that

the image of t is convex. We call the image t
�
D
�
a convex polygon in X. The sides

of t
�
D
�
are the shortest paths making up t(@D), and the vertices of t

�
D
�
are the

endpoints of these shortest paths. An Alexandrov triangle is an Alexandrov polygon

with 3 sides, and a convex triangle is its image.

Definition 4.3.2. Let (X, d) be an Alexandrov surface. A triangulation of X is a

locally-finite collection T of convex triangles that covers X, and such that no two

triangles in T have common interior points.

Lemma 4.3.3 ([3, Chapter 2, §4, Theorem 2]). Let (X, d) be an Alexandrov surface.

Then given p 2 X and " > 0, there exists a convex polygon Pp in X, containing p,

with diameter at most ".
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Lemma 4.3.4 ([3, Chapter 2, §6, Lemma 4]). Let (X, d) be an Alexandrov surface.

Let P
1

, . . . , PN be convex polygons in X. Then the {Pi} can be divided into convex

polygons Q
1

, . . . , QM without common interior points.

Lemma 4.3.5 ([3, Chapter 2, §6, Theorem]). Let (X, d) be an Alexandrov surface.

Let P ⇢ X be a convex polygon. Then, given " > 0, P can be divided into finitely

many convex triangles of diameter at most ".

With these foundational results in hand, we are ready to prove that Alexandrov

surfaces can be triangulated with convex triangles in the sense of Definition 4.3.2:

Lemma 4.3.6. Let (X, d) be a non-compact Alexandrov surface with curvature

bounded below by �1. Then there exists a triangulation of (X, d) by convex tri-

angles of arbitrarily small diameter.

Proof. Fix " > 0. By Lemma 4.3.3, given p 2 X we can find a convex polygon Pp

containing p in its interior, of diameter at most ". In this way, cover X by convex

polygons of diameter at most ", and call the cover P. By Proposition 3.1.14, X is

boundedly compact, and so P may be chosen to be locally finite. Fix a point x 2 X

and r > 0. Define the set Fr by

Fr :=
n
Pp 2 P

���Pp ✓ Bd(x, r)
o
.

In other words, Fr is the set of convex polygons obtained by taking those covering

Bd(x, r) and excluding those that pass across the boundary of the ball.

Write the elements of Fr as P
1

, . . . , PJ , and perform the following procedure: use

Lemma 4.3.4 to divide the {Pi} into convex polygons Q
1

, . . . , QK that have pairwise

disjoint interiors. Then apply Lemma 4.3.5 to divide each polygon Qi into finitely

many convex triangles T
1

, . . . , TL of diameter at most ". Denote by T the collection

of these triangles.

For s > r, let Gs be the set Fs with the polygons covered by elements of T removed.

Perform the same procedure as above on the convex polygons in Gs. Taking s ! 1
gives the required triangulation.

4.3.2 Ricci flow of non-compact Alexandrov surfaces

In this subsection, we tackle the problem of extending Theorem 4.2.1 to the non-

compact setting. The arguments presented here are in the same spirit as those
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of Richard in the compact case (see [37]), but we must employ new technology to

overcome di�culties posed by the lack of compactness. Indeed, this is not a trivial

extension of the compact situation. For one thing, in order to use a compactness

argument, we will need estimates of the form
��Kgi(t)

��  C uniformly on compact

time intervals, where (gi(t)) are Ricci flows starting from smooth approximations of

the initial data’s distance, in the same vein as Theorem 4.2.2. For this, we utilise

the recent estimates of Miles Simon, given in Theorem 2.4.6. We also point out that

the recent existence results of Giesen and Topping (see Theorem 2.2.4) are required

to flow the smooth approximating sequence, which may not have bounded curvature.

We now state a comparable result to Theorem 4.2.2 for non-compact Alexandrov

surfaces:

Lemma 4.3.7. Let (X, d) be a non-compact Alexandrov surface with curvature

bounded below by �1 that is non-collapsed, i.e. suppose there exists ⌧ > 0 such

that H 2(B
1

(x)) � 2⌧ for any x 2 X. Then there exists a sequence (Mi, gi) of

complete, non-compact, smooth Riemannian surfaces and points p 2 X, pi 2 Mi

such that:

1. (Mi, gi, pi) ! (X, d, p) in the Gromov-Hausdor↵ topology as i ! 1 (in the

sense of Definition 3.2.5),

2. Kgi � �1 for each i,

3. We have that

inf
x2Mi

volgi (B
gi
2

(x)) � ⌧

for each i su�ciently large.

Proof. For each i 2 N, let T = T (i) be a triangulation of X by convex triangles

of diameter at most 1

i as given by Lemma 4.3.6. It is possible to choose a point

p 2 X so that p is a vertex point in T for any i (since, by construction, decreas-

ing the diameter of triangles in the triangulation only adds more vertices through

subdivision of already-existing convex triangles into smaller ones). Now construct

a polyhedral surface Mi as follows: given a convex triangle T 2 T , let bT be the

comparison triangle of T in the hyperbolic plane H2. Let bT = bT (i) denote the

collection of these comparison triangles. Glue together the elements of bT in the

same configuration as the original triangles appear in X. Denote the length space
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so-obtained by (Mi, di), where di is the intrinsic metric of Mi
1. Moreover, let pi be

the point in Mi corresponding to the point p 2 X chosen earlier. By utilising the

same arguments as in [37, Lemma A.2.1], which we provide in Proposition A.1, it

is easy to see thatMi is an Alexandrov surface with curvature bounded below by �1.

Now notice that the vertex points of T and bT form 1

i -nets of X and Mi respectively

(in the sense of Definition 3.1.3). As such, to show that (Mi, di, pi) ! (X, d, p) in

the Gromov–Hausdor↵ sense (as in Definition 3.2.5) as i ! 1, it su�ces to show

that given vertex points v, w of the triangulation T (i) and their corresponding points

v̂, ŵ in bT (i), we have that

|d(v, w)� di(v̂, ŵ)|  %(i),

where %(i) # 0 as i ! 1. Thus we are in precisely the same scenario as the local

arguments of Richard in [37, §A.2], which we reproduce in Proposition A.2, from

which we deduce the convergence claimed above.

We may now smooth the rough Reshetnyak metrics (see Theorem 3.5.7) locally on

the Alexandrov surfaces (Mi, di) to obtain smooth, non-compact, pointed Rieman-

nian surfaces (Mi, gi, pi) that converge to (X, d, p) in the Gromov–Hausdor↵ sense

as i ! 1, and such that Kgi � �1. We do this using precisely the same techniques

presented in §3.5.1. It now remains to establish the uniform volume bounds of point

(3.).

Indeed, notice that the choice of points p and pi above was not forced upon us. In

fact, we could have chosen any vertex point of the triangulation T and the corre-

sponding vertex points of bT (this observation is expanded upon in Remark 4.3.8).

Thus, construct a sequence {xji} as follows: fix i = 2 and let {xj
2

}1j=1

be the vertex

points of the triangulation used to construct M
2

. Then, for i > 2, let {xji}1j=1

be

the same sequence of points, viewed as points in Mi (notice that this sequence will

no longer contain all the vertex points of Mi, but this does not matter).

1
The metric di is the unique maximal intrinsic metric on Mi such that, given any

b
T 2 bT and

any x, y 2 b
T , we have that

di(x, y)  d bT (x, y),

where d bT is the intrinsic metric induced on

b
T by the hyperbolic metric of H2

, as in Definition 3.1.6.

See [5, Corollary 3.1.24] for proof of the existence of such a metric.
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Now let xj 2 X be the vertex point in the triangulation of X corresponding to the

points xji . Then by precisely the same arguments as above, (Mi, gi, x
j
i ) ! (X, d, xj)

in the Gromov–Hausdor↵ sense (Definition 3.2.5), as i ! 1, for each j.

Now notice that the points {xji}j form a 1

2

-net of Mi for each i � 2, and so the

balls
n
Bgi

1

(xji )
o
j
cover Mi for each i � 2. By the Gromov–Hausdor↵ convergence,

we have that ⇣
Bgi

1

(xji ), dgi

⌘
!

⇣
Bd(xj , 1), d

⌘
in the sense of compact spaces (see Definition 3.2.2 and Remark 3.2.6) as i ! 1,

for each j. Hence, by Theorem 3.2.9, we have that

volgi(B
gi
1

(xji )) ! H 2(Bd(x
j , 1)) � 2⌧

as i ! 1, and for each j, by the non-collapsed hypothesis on X. Hence, for

su�ciently large i (independent of j), we have

volgi(B
gi
1

(xji )) � ⌧

for all j.

Then, given x 2 Mi, for i su�ciently large, Bgi
2

(x) contains Bgi
1

(xji ) for some j, and

so

volgi(B
gi
2

(x)) � ⌧,

as required.

Remark 4.3.8. It is possible to overestimate the importance of the choice of points

p and pi in the above discussion. They are, in fact, somewhat of a red-herring. The

point p corresponds to the point pi in such a way that pi is the same point in Mi for

each i 2 N. So p serves as an ‘anchor’, preventing the sequence {pi} from diverging

to infinity as i ! 1, which would prevent the Gromov–Hausdor↵ convergence from

taking place. Thus, whilst choosing a completely arbitrary sequence {pi} would not

work in the above proof, carefully choosing a sequence of vertex points presents us

with infinitely many options for the point p and the sequence {pi}.

With this in hand, we are now ready to prove the following:

Theorem 4.3.9 (Ricci flow of non-compact Alexandrov surfaces). Let (X, d) be a

non-compact Alexandrov surface with curvature bounded below by �1. Suppose there
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exists v
0

> 0 such that

inf
x2X

H 2(B
1

(x)) � v
0

.

Then there exists T = T (v
0

) > 0 and a smooth Ricci flow (M2, g(t))t2(0,T )

such

that:

1. g(t) is complete for all t 2 (0, T ),

2.
��Kg(t)

��  A
t for some A = A(v

0

) � 0 and all t 2 (0, T ),

3. (M, g(t)) takes (X, d) as its initial condition (in the sense of Definition 4.1.2).

Proof. Let (Mi, gi, pi) be a sequence of smooth, pointed Riemannian manifolds

approximating (X, d, p) in the Gromov–Hausdor↵ topology, where the sequence

(Mi, gi) and the points pi 2 Mi, p 2 X are as given by Lemma 4.3.7. Appeal-

ing to Theorem 2.2.4, we can flow each element of the sequence to get a unique

Ricci flow (Mi, gi(t), pi)t2[0,Si)
, for some maximal time Si, with gi(0) = gi and with

the property that gi(t) is instantaneously complete, i.e. complete for each t > 0.

We claim that Si = 1 for each i. Indeed, if this were not the case, we would have

(for some i) that (Mi, gi) ⇠= (C, g) where g is some complete, finite-area metric.

Now notice that we can find a sequence {zj} ⇢ C such that dg(zj , zk) > 5 for all

j 6= k. If this were not possible, all points of C would lie within a ball Bg
r (0) for

some 0 < r < 1, contradicting our assumption of non-compactness. Now we have

volg(C) �
1X
j=1

volg(B
g
2

(zj)) = 1

where we have used the non-collapsed property of the smooth approximations (Mi, gi)

(point (3.) of Lemma 4.3.7). But this contradicts that g is a finite-volume metric

on C, and thus Si = 1 for each i.

By construction, we have that

• Kgi � �1 for each i and

• inf
x2Mi

volgi(B
gi
2

(x)) � v
0

2
for all i su�ciently large.

Consequently, employing Theorem 2.4.6, we can find T > 0 such that

��Kgi(t)

��  A

t
(4.1)
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on Mi ⇥ (0, T ), where both A and T depend only on v
0

thanks to the uniform esti-

mates above. In other words, on any compact time interval [a, b] ⇢ (0, T ), we have

a global i-independent bound on the curvature of the metric gi(t), provided that i

is su�ciently large.

Moreover, again by Theorem 2.4.6, there exists an ⌘̃ > 0, independent of i, such

that

inf
x2Mi

volgi(t0)
⇣
B

gi(t0)
2

(x)
⌘
� ⌘̃

for some t
0

> 0 su�ciently small, provided that i is su�ciently large. Together with

the above global curvature bounds, this volume estimate guarantees us positive,

uniform, global, lower injectivity radius bounds at time t
0

using Theorem 2.3.6.

Thus, appealing to Theorem 2.3.3, we may find a smooth, complete, pointed Ricci

flow (M, g(t), p̄)t2(0,T )

such that, passing to a subsequence if necessary,

(Mi, gi(t), pi) ! (M, g(t), p̄)

in the Cheeger–Gromov sense (see Definition 2.3.1) as i ! 1.

It remains to show that (M, g(t)) takes (X, d) as its initial condition, the proof of

which mimics the argument in [39, Theorem 9.2]. Indeed, define dt := dg(t). Since

the curvature bound (4.1) survives in the limit as i ! 1, we may use Theorem 2.3.7

to obtain the estimate

e�C(t�s)dt  ds  dt + C(
p
t�p

s)

on compact subsets of M⇥M, for 0 < s < t < T , where C is a constant depending

only on A. Thus the family {dt}t2(0,T )

is uniformly Cauchy on every compact subset

of M ⇥ M as t # 0, and consequently we have that dt ! d̃ uniformly, locally on

M ⇥M as t # 0, where d̃ is some continuous function M ⇥M ! R. It is easy to

see that in fact d̃ is a distance on M.

Finally, we show that
⇣
M, d̃

⌘
and (X, d) are isometric, for which it su�ces that for

each r > 0, we have

dGH

⇣⇣
Bd(p, r), d

⌘
,
⇣
B

˜d(p̄, r), d̃
⌘⌘

= 0.

Let di,t denote the distance induced by the metric gi(t) above. Using Theorem 2.3.7
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once more, we obtain the similar estimate

e�C(t�s)di,t  di,s  di,t + C(
p
t�p

s)

for each i and 0 < s < t < T , where C again depends only on A. Thus, taking s # 0,

we may find a function µ such that

dGH

⇣⇣
Bdi,t(pi, r), di,t

⌘
,
⇣
Bdi,0(pi, r), di,0

⌘⌘
 µ(t),

where µ(t) # 0 as t # 0.

Now given " > 0, find t" > 0 such that µ(t)  " whenever t  t". Recall that by

Lemma 4.3.7, (Mi, gi(0), pi) ! (X, d, p) in the Gromov–Hausdor↵ sense as i ! 1,

and so we can find i" such that

i � i" =) dGH

⇣⇣
Bd(p, r), d

⌘
,
⇣
Bdi,0(pi, r), di,0

⌘⌘
 ".

Now apply the triangle inequality to find that

dGH

⇣⇣
Bd(p, r), d

⌘
,
⇣
Bdi,t(pi, r), di,t

⌘⌘
 2" (4.2)

whenever i � i" and t  t".

From earlier in the proof, we have that dt ! d̃ uniformly, locally as t # 0, and so we

may find t0" such that if t  t0" then

dGH

⇣⇣
B

˜d(p̄, r), d̃
⌘
,
⇣
Bdt(p̄, r), dt

⌘⌘
 ".

Also, since (Mi, gi(t0"), pi) ! (M, g(t0"), p̄) in the Cheeger–Gromov sense as i ! 1,

the convergence also takes place in the Gromov–Hausdor↵ sense, and so we can find

an i0" > 0 such that

dGH

⇣⇣
Bdi,t(pi, r), di,t

⌘
,
⇣
Bdt(p̄, r), dt

⌘⌘
 "

whenever t  t0" and i � i0". Thus, applying the triangle inequality again, we get

that

dGH

⇣⇣
Bdi,t(pi, r), di,t

⌘
,
⇣
B

˜d(p̄, r), d̃
⌘⌘

 2" (4.3)

whenever t  t0" and i � i0".
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Combining (4.2) with (4.3), we have that

dGH

⇣⇣
Bd(p, r), d

⌘
,
⇣
B

˜d(p̄, r), d̃
⌘⌘

 4"

and hence
⇣
M, d̃

⌘ ⇠= (X, d) as required, since " > 0 was arbitrary.

We also have uniqueness statements, which depend on the following recent result:

Theorem 4.3.10 ([46, Theorem 5.2]). Suppose that g(t) and ĝ(t) are two confor-

mally equivalent, complete Ricci flows on a surface M, defined for t 2 (0, T ], both

with curvature uniformly bounded from below, and with

lim
t#0

volg(t)(⌦) = lim
t#0

volĝ(t)(⌦) < 1

for all ⌦ ⇢⇢ M. Then g(t) = ĝ(t) for all t 2 (0, T ].

Theorem 4.3.11. Let (X, d) be a non-compact Alexandrov surface with curvature

bounded below by �1. Let M2 be a smooth surface, let T > 0, and suppose that g(t)

and ĝ(t) are two smooth, conformally equivalent, complete Ricci flows defined on M
for t 2 (0, T ), both of which take (X, d) as initial condition (see Definition 4.1.2).

Suppose further that

Kg(t),Kĝ(t) � �1

for all t 2 (0, T ). Then g(t) = ĝ(t) for all t 2 (0, T ).

Proof. Since uniform local convergence of the induced distances dg(t) and dĝ(t) im-

plies Gromov–Hausdor↵ convergence for a suitable choice of points, we may apply

Theorem 3.2.9 to see that given any ⌦ ⇢⇢ M we have

lim
t#0

volg(t)(⌦) = lim
t#0

volĝ(t)(⌦).

This puts us precisely in the scenario of Theorem 4.3.10 above, and thus the result

follows.

Theorem 4.3.12. Let (X, d) be a non-compact Alexandrov surface with curvature

bounded below by �1. Let (M2, g(t)) and
⇣cM2, ĝ(t)

⌘
be smooth, complete Ricci

flows, defined for t 2 (0, T ), such that

Kg(t),Kĝ(t) � �1
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for all t 2 (0, T ), and which are both uniformly non-collapsed, i.e. such that there

exists ⌘ > 0 such that

inf
p2M

volg(t)
⇣
B

g(t)
1

(p)
⌘
, inf
p̂2cM

volĝ(t)
⇣
B

ĝ(t)
1

(p̂)
⌘
� ⌘

for all t 2 (0, T ). Suppose further that both (M, g(t)) and
⇣cM, ĝ(t)

⌘
take the

Alexandrov surface (X, d) as their initial condition (see Definition 4.1.2). Then both

flows are conformally equivalent, and under this conformal equivalence, g(t) = ĝ(t)

for all t 2 (0, T ).

Proof. By assumption, there exist distances ⇢ and ⇢̂ on M and cM respectively, and

an isometry f : (M, ⇢) !
⇣ cM, ⇢̂

⌘
. Let p 2 M and r > 0 be given, and denote the

restriction of f to the closed ball B⇢(p, r) by

fr :
⇣
B⇢(p, r), ⇢

⌘
!

⇣
B⇢̂(f(p), r), ⇢̂

⌘
.

Since the Ricci flow is a conformal flow in two dimensions, we may write g(t) =

e2u(t)h and ĝ(t) = e2û(t)ĥ where h and ĥ are fixed metrics on M and cM respectively.

To finish the proof, we follow the same arguments as in [37, Lemmata 3.4.2, 3.4.3,

3.4.4], with the aim of showing that the distances ⇢ and ⇢̂ are induced by appropriate

Reshetnyak metrics, in order to apply Theorem 3.5.11. Indeed, observe that by

applying Theorem 2.4.6 again, we may find A = A(⌘) > 0 such that

�1  Kg(t),Kĝ(t) 
A

t
(4.4)

for all t 2 (0, T ). We now claim that there exists a function u
0

2 L1

loc

(M) such that

u(t) ! u
0

in L1

loc

(M) as t # 0. Since

@u

@t
= �Kg(t)  1,

we have, for every x 2 M, that u(x, t) � t increases as t # 0. Consequently, there

exists a pointwise limit

u
0

:= lim
t!0

u(t).

Let K ⇢ M be compact. To show that u(t) ! u
0

in L1

loc

(M), it su�ces by the

Monotone Convergence Theorem to show that u(t)� t is uniformly bounded below

on K, and is bounded in L1(K).

Fix t
0

> 0. Then u(t) � t � u(t
0

) � t
0

for t 2 (0, t
0

). Since u(t
0

) is smooth on M
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and K is compact, u(t)� t is hence uniformly bounded below on K for all t 2 (0, t
0

).

Then notice that by Jensen’s Inequality,

exp

✓Z
K

2u(x, t)

volh(K)
dµh(x)

◆

Z
K

e2u(x,t)

volh(K)
dµh(x) =

volg(t)(K)

volh(K)
.

Since dg(t) converges uniformly, locally as t # 0, the right-hand-side above is bounded

as t # 0. Thus u(t) ! u
0

in L1

loc

(M).

Next, we claim that u
0

2 V (M, h), where the space V (M, h) is as defined in Defini-

tion 3.5.9. We have already shown that u
0

2 L1

loc

(M), and thus it remains to show

that �hu0 defines a signed measure on M. Indeed, notice that

�hu(t) = Kh �Kg(t)e
2u(t).

Let ⌧ 2 C1
c (M). ThenZ
M
⌧(x)�hu(x, t) dµh(x) =

Z
M
⌧(x)

h
Kh �Kg(t)e

2u(x,t)
i
dµh(x)

=

Z
M
⌧(x)Kh dµh(x)�

Z
M
⌧(x) d!g(t),

where !g(t) is the curvature measure of g(t). Since dg(t) ! ⇢ uniformly, locally on

M⇥M as t # 0, it follows by [1, Ch. VII, §4, Theorem 6] that !g(t) ! !⇢ weakly,

locally as measures as t # 0. Thus, integrating the left-hand-side by parts and taking

the limit as t # 0, we find thatZ
M

u
0

(x)�h⌧(x) dµh(x) =

Z
M
⌧(x)Kh dµh(x)�

Z
M
⌧(x) d!⇢(x).

Thus, �hu0 is the signed measure Kh dµh � !⇢, as we wanted to show.

Now let d
0

:= dh,u0 , with notation as in Definition 3.5.9. We claim that d
0

= ⇢.

Recall once again that the curvature measure of g(t) is

!g(t) = Kg(t)e
2u(t) dµh.

Write µt := !g(t) �Kh dµh. Then, using [1, Ch. VII, §4, Theorem 6] again, we find

that

µt ! µ := !⇢ �Kh dµh

weakly, locally as t # 0. Let !+

g(t) := K+

g(t)e
2u(t) dµh and !�

g(t) := K�
g(t)e

2u(t) dµh,
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which are both positive measures. By the curvature bounds (4.4) and the Gauß–

Bonnet formula, the masses of !+

g(t) and !
�
g(t) are uniformly bounded above in t on

any compact subset K ⇢ M.

Let µ+

t := !+

g(t) + K�
h dµh and µ�

t := !�
g(t) + K+

h dµh. Then, by the above obser-

vations, we have that µ+

ti
and µ�

ti
converge weakly, locally to measures µ+ and µ�

respectively, for some sequence {ti} ! 0, where µ = µ+ � µ�.

Since ��hu(ti) = µti and ��hu0 = µ, it follows from Theorem 3.5.12 that dg(ti) !
d
0

uniformly, locally on M ⇥M as i ! 1. Since gg(ti) ! ⇢ uniformly, locally on

M⇥M as i ! 1, we have that d
0

= ⇢, as claimed.

Performing the same arguments with û and ĥ, we can then appeal to Theorem 3.5.11

to conclude that the maps

fr :
⇣
B⇢(p, r), h

⌘
!

⇣
B⇢̂(f(p), r), ĥ

⌘
are conformal for all r > 0. Consequently, (M, h) and

⇣cM, ĥ
⌘

are conformally

equivalent.

Without loss of generality, we may now assume that g(t) and ĝ(t) are both Ricci

flows on the same smooth surface M, and the result then follows from Theorem

4.3.11 above.

70



Chapter 5

A problem in well-posedness

theory for the Ricci flow

A stimulating area of research in recent years has involved considerations of well-

posedness for the Ricci flow initial value problem. In other words, answers to the

question ‘in what class is it most natural to look for solutions to the Ricci flow

equation’? Other aspects of the well-posedness problem are determining in which

class initial data ought to lie, and moreover, what the notion of ‘attaining initial

data’ actually means, which is the problem we focus on in this chapter. In Chapter 4,

we proved that the problem of finding Ricci flows starting at non-compact, uniformly

non-collapsed Alexandrov surfaces is well-posed, where the notion of ‘initial data’ is

provided by Definition 4.1.2. Theorem 2.2.1 tells us that the Ricci flow initial value

problem starting at smooth Riemannian manifolds of bounded curvature is well-

posed in arbitrary dimension in the class of complete solutions of bounded curvature.

Furthermore, in dimension two, the work of Giesen and Topping, culminating in

Theorem 2.2.4, shows that a much broader class of solutions is natural, namely

that of instantaneously complete flows (see Definition 2.2.3). We may hence flow

any smooth metric on any smooth surface, regardless of completeness or curvature

bounds, and find a unique, instantaneously complete solution. Whilst this result is

overwhelmingly positive, there are still questions to answer in this arena.

5.1 Geometric notions of initial data

Traditionally, we say that a Ricci flow (g(t))t2[0,T )

on a smooth manifold M takes

the metric g
0

as initial data if g(0) = g
0

, i.e. if g(t) ! g
0

smoothly, locally as

tensors as t ! 0. Of course, under this scheme, we often have that geometric

71



quantities such as volume and diameter converge as well. However, it seems natural

to ask that a Ricci flow (g(t)) and its initial data are metrically related for small t.

For instance, we could impose that (M, g(t)) ! (M, g
0

) in the Gromov–Hausdor↵

sense as t # 0 (perhaps for a choice of points if M is non-compact). This is certainly

not always the case: consider, for example, instantaneously complete flows starting

from an incomplete metric, which can never satisfy this condition. This observation

prompts us to consider the case where the flow (g(t)) exists on a di↵erent underlying

manifold than the initial data.

Remark 5.1.1. We point out that convergence of tensors is well-known to be at

odds with geometric intuition. Consider, for instance, the Cheeger–Gromov conver-

gence of a sequence of smooth Riemannian manifolds to another smooth Riemannian

manifold. In the definition of this convergence, we adjust by di↵eomorphisms to en-

sure that the notion is di↵eomorphism invariant, which is a natural expectation in

Riemannian geometry. Without doing this, i.e. by simply claiming that the se-

quence (M, gi) ! (M, g
0

) as i ! 1 if gi ! g
0

smoothly, locally as tensors as

i ! 1, we sacrifice the geometric interpretation of convergence: altering the met-

rics gi by i-dependent di↵eomorphisms will produce a di↵erent limiting metric in

general.

In [44], Topping proposed an alternative notion for attaining initial data, namely

that a complete Ricci flow (M, g(t))t2(0,T ]

takes the complete Riemannian manifold

(N , g
0

) as initial data if there exists a smooth map ' : N ! M, which is a di↵eo-

morphism onto its image, such that '⇤(g(t)) ! g
0

smoothly, locally on N as t # 0.

Within this framework, examples such as the following were considered: take the

torus T 2, and let p 2 T 2. Defining T 2

p := T 2 \ {p}, let h be the conformal, complete

hyperbolic metric on T 2

p . It is possible to flow this surface keeping the hyperbolic

cusp in place, namely by taking h(t) := (1 + 2t)h. However, the central idea of [44]

is that we can find a unique flow
⇣
T 2, ĥ(t)

⌘
that takes (T 2

p , h) as initial data as

described above. This is often referred to as the ‘contracting cusp’ flow, as we can

imagine the flow developing a hyperbolic cusp at p as t # 0.

In light of these considerations, we propose another alternative notion of initial data

for the Ricci flow starting from a particular class of Riemannian surfaces, based on

Gromov–Hausdor↵ convergence of the flow to a specified surface. Given an appro-

priate initial surface (⌦, g
0

), we construct a complete Ricci flow (M, g(t)) on some

Riemann surface M, existing for all t 2 (0,1), which can be viewed as taking

(⌦, g
0

) as initial data.
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Before proceeding, we clarify some notions of convergence that we use in what

follows:

Remark 5.1.2. Let (M, h) be a smooth Riemannian surface, and let (g(t))t2(0,T )

be a smooth Ricci flow on M that is conformally equivalent to h for all t 2 (0, T ).

Write g(t) = v(t)h, and let g
0

= v
0

h be another metric on M. Let ⌃ ✓ M be open.

We point out that the statement

g(t) ! g
0

in L1

loc

(⌃) as t ! 0

is equivalent to the statement

lim
t#0

Z
K
|v(t)� v

0

| dµh = 0

for any compact subset K ⇢ ⌃. Likewise, that

g(t) ! g
0

in C0

loc

(⌃) as t ! 0

is equivalent to having that

sup
p2K

|v(t)(p)� v
0

(p)| ! 0 as t ! 0

for any compact subset K ⇢ ⌃.

Definition 5.1.3. Let M be a smooth Riemann surface, and let ⌦ ⇢⇢ M be an

open subset such that ⌦ 6= M. Let g be a smooth Riemannian metric on ⌦ that is

compatible with the conformal structure of M. We say that

g(p) ! 0 as p ! @⌦ within M

if for a (equivalently, any) Riemannian metric h on M, we have that |g(p)|h ! 0 as

p ! @⌦. Denote by O(⌦,M) the collection of all such metrics.

Geometrically, metrics belonging to O(⌦,M) are those for which points near the

boundary of ⌦ are very close together. In the subsequent section, we construct

complete Ricci flows that take such metrics as initial data in a certain, natural,

geometric sense, as outlined below. In this way, we construct complete Ricci flows

that di↵er from those provided by theorems such as Theorem 2.2.4. In other words,

we can demonstrate two complete Ricci flows that take the same Riemannian surface

as initial condition, both in a natural way. Consequently, we have a marked non-
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uniqueness for the Ricci flow starting at a surface belonging to a certain class,

challenging perceptions of what the ‘correct’ notion of initial data should be.

Remark 5.1.4. For simplicity of exposition, we assume in what follows that ⌦ has

only one boundary component. A minor adjustment of the following definitions and

arguments shows that our results are also true when ⌦ has more than one boundary

component.

We point out that metrics belonging to O(⌦,M) naturally extend to pseudometrics

on ⌦ (i.e. metrics for which distinct points can be distance zero apart). Indeed,

given g
0

2 O(⌦,M), let h be any smooth Riemannian metric on M and write

g
0

= v
0

h
��
⌦

, for some v
0

2 C1(⌦). Define

v(p) :=

(
v
0

(p) if p 2 ⌦

0 if p 2 @⌦.

Then, by virtue of the fact that g(p) ! 0 as p ! @⌦ within M, we have that

v 2 C0

�
⌦
�
. It is hence readily seen that

d̄g0(p, q) := inf
�⇢⌦

Z
1

0

p
v(�(t))|�0(t)|h dt,

where the infimum is taken, as usual, over all smooth curves � with �(0) = p and

�(1) = q, defines a pseudometric on ⌦. Moreover, d̄g0 coincides with dg0 when re-

stricted to ⌦. This construction is also clearly independent of the choice of h.

By construction, we have that d̄g0(p, q) = 0 if and only if either p = q or p, q 2 @⌦.

Consequently, defining an equivalence relation ⇠ on ⌦ by

p ⇠ q () p, q 2 @⌦,

we arrive at a compact metric space ⌦? := ⌦/ ⇠, with the quotient metric d?g0 of

d̄g0 .

Definition 5.1.5. LetM be a closed Riemann surface, let ⌦ ⇢⇢ M be an open sub-

set such that ⌦ 6= M, and let g
0

2 O(⌦,M). Let {gi} be a sequence of smooth Rie-

mannian metrics on M. We say that (M, dgi) ! (⌦, dg0) in the Gromov–Hausdor↵

sense if (M, dgi) ! (⌦?, d?g0) in the sense of Definition 3.2.2.
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5.2 Ricci flows taking initial data in a geometric sense

In this section, we prove the existence of Ricci flows taking particular Riemannian

surfaces as initial data in a geometric sense. First, we need the following definition:

Definition 5.2.1. By an initial data triple, we mean a triple (⌦,M, g) where:

• M is a closed Riemann surface of genus at least two;

• ⌦ is a Riemann surface such that there exists a conformal embedding i : ⌦ ,!
M with i(⌦) ⇢⇢ M, i(⌦) 6= M, and such that @ (i(⌦)) is smooth;

• g 2 O(⌦,M).

Remark 5.2.2. Given an initial data triple (⌦,M, g) as above, and a conformal

embedding i : ⌦ ,! M, we will abuse notation and write ⌦ ⌘ i(⌦), viewing ⌦ as a

subset of M.

We can now state the main theorem of this chapter:

Theorem 5.2.3. Let (⌦,M, ĝ) be an initial data triple. Let g
0

be the degenerate

metric on M defined by

g
0

(p) :=

(
ĝ(p) if p 2 ⌦

0 if p 2 M\ ⌦.

Then there exists a smooth Ricci flow (g(t))t2(0,1)

on M such that:

• g(t) ! g
0

in C0(M) as t # 0;

• �M, dg(t)
� ! (⌦, dĝ) in the Gromov–Hausdor↵ sense as t # 0 (as in Definition

5.1.5).

Remark 5.2.4. We point out that ⌦ need not be an especially esoteric surface.

Indeed, even taking ⌦ as a disc that embeds conformally into a suitable surface M,

and taking a metric g 2 O(⌦,M) demonstrates the interesting nature of this prob-

lem: Theorem 2.2.4 will give an instantaneously complete Ricci flow on ⌦ starting

at g. Theorem 5.2.3 will then give an alternative complete flow which can likewise

be claimed to take (⌦, g) as initial data in a natural way.

Before proving Theorem 5.2.3, we prove some technical results we need in what

follows. First, some notation:

Definition 5.2.5. Let (⌦,M, ĝ) be an initial data triple. Given p, q 2 ⌦, define
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• �M(p, q) to be the collection of all smooth curves � : [0, 1] ! M such that

�(0) = p and �(1) = q;

• �
⌦

(p, q) to be the collection of all smooth curves � : [0, 1] ! ⌦ such that

�(0) = p and �(1) = q.

When there is no confusion, we write �M ⌘ �M(p, q) and �
⌦

⌘ �
⌦

(p, q).

Lemma 5.2.6. Let (⌦,M, ĝ) be an initial data triple, and let g
0

be defined as in

Theorem 5.2.3. Then dg0
��
⌦

= dĝ.

Proof. Let p, q 2 ⌦ and let h be a smooth Riemannian metric on M. Since g
0

��
⌦

= ĝ,

it su�ces to show that

inf
�2�M

Lg0(�) = inf
�2�⌦

Lg0(�).

It is clear that

inf
�2�M

Lg0(�)  inf
�2�⌦

Lg0(�),

and so we show the reverse inequality. To this end, fix " > 0 and let �̄ 2 �M be

such that ����Lg0(�̄)� inf
�2�M

Lg0(�)

���� < ".

Since g
0

= 0 on @⌦, we may assume, without loss of generality, that �̄ ⇢ ⌦. Since

ĝ(p) ! 0 as p ! @⌦ within M, we may find � > 0 such that |g
0

(p)|h < " whenever

dh(p, @⌦) < �. Let N� be the tubular neighbourhood of @⌦ of diameter � measured

with respect to h.

We may then find a curve �̂ 2 �
⌦

such that �̂ = �̄ on ⌦ \N�, and such that

Lg0(�̂)  Lg0(�̄) + C("),

where C(") ! 0 as " ! 0. Such a curve can be found since |g
0

(p)|h < " on N� and

@⌦ is smooth, and is hence of finite length.

Then

inf
�2�⌦

Lg0(�)  Lg0(�̂)  Lg0(�̄) + C(")

 inf
�2�M

Lg0(�) + "+ C(").

Taking "! 0 proves the statement.
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We now make an elementary observation:

Lemma 5.2.7. Let M be a closed Riemann surface. Let {gi(t)}t�0

be a sequence

of Ricci flows that are compatible with the conformal structure of M, and define

gi := gi(0). Let ⌦ ⇢⇢ M be an open subset such that ⌦ 6= M. Let g be a smooth,

conformal Riemannian metric on ⌦. Suppose that:

�
gi
��
⌦

 ! g in C1
loc

(⌦) as i ! 1.

Then, given x
0

2 ⌦, we may find v
0

, r
0

> 0 such that:

• Bgi
r0(x0) ⇢⇢ ⌦;

• |Kgi |  2

r20
on Bgi

r0(x0);

• volgi (B
gi
r0(x0)) � v

0

r2
0

for all i su�ciently large.

Proof. Let r̃
0

be such that Bg
r̃0
(x

0

) ⇢⇢ ⌦. Appealing to the smoothness of g on M,

we may reduce r̃
0

if necessary to find 0 < r
0

 r̃
0

and v
0

> 0 such that:

• |Kg|  1

r20
on Bg

r0(x0);

• volg (B
g
r0(x0)) � 2v

0

r2
0

.

Since
�
gi
��
⌦

 ! g in C1
loc

(⌦), we hence have that for i su�ciently large, Bgi
r0 ⇢⇢ ⌦,

and that

• |Kgi |  2

r20
on Bgi

r0(x0);

• volgi (B
gi
r0(x0)) � v

0

r2
0

,

as required.

We will rely on the following pseudolocality result in order to show that the initial

data is attained by the Ricci flow we construct:

Lemma 5.2.8. Let M be a closed Riemann surface. Let {gi(t)}t�0

be a sequence

of Ricci flows that are compatible with the conformal structure of M, and define

gi := gi(0). Let ⌦ ⇢⇢ M be an open subset such that ⌦ 6= M. Let g be a smooth,

conformal Riemannian metric on ⌦. Suppose that:

�
gi
��
⌦

 ! g in C1
loc

(⌦) as i ! 1.
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Given x
0

2 ⌦, let v
0

, r
0

> 0 be given by Lemma 5.2.7 so that

|Kgi | 
2

r2
0

on Bgi
r0(x0) ⇢⇢ ⌦

and

volgi
�
Bgi

r0(x0)
� � v

0

r2
0

for each i 2 N su�ciently large. Then there exists T = T (v
0

, r
0

) and C = 4

r20
such

that

|Kgi(t)|  C

on B
gi(t)
r0
2

(x
0

) for 0 < t  T and i su�ciently large.

Proof. The result follows immediately from an application of Theorem 2.4.4.

Proof of Theorem 5.2.3. By assumption, M is a Riemann surface of genus at least

two, and hence supports a conformal hyperbolic metric, say h. Let gi = vih be a

sequence of smooth metrics on M, decreasing in i, with vi > 0, such that:

• {gi} ! g
0

in C0(M) as i ! 1 and

• �
gi
��
⌦

 ! ĝ in C1
loc

(⌦) as i ! 1.

Such convergence is possible due to the fact that ĝ 2 O(⌦,M), and so g
0

is contin-

uous. We may hence mollify any continuous approximation to g
0

on the interior of

⌦ to arrive at such a sequence {gi}.

Now let gi(t) = vi(t)h be the unique, smooth Ricci flow on M with gi(0) = gi given

by Theorem 2.2.4. Note that since the metrics gi are conformally hyperbolic for

each i, these flows exist for all positive time.

We may find M > 0, independent of i, such that gi  Mh on M for all i. Hence,

appealing to Theorem 2.2.5, we find that

2th  gi(t)  (2t+M)h

on M, for all t > 0 and each i 2 N. Applying standard parabolic regularity the-

ory (see, for example, Theorem B.1.2), we deduce that for each t > 0 and k 2 N,
the quantity ||gi(t)||Ck

(M)

is controlled uniformly in i on compact time intervals in

(0,1). Consequently, by Corollary B.2.3, there exists a Ricci flow (g(t))t>0

on M
such that, passing to a subsequence if necessary, gi(t) ! g(t) smoothly, locally on
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M⇥ (0,1) as i ! 1.

It remains to show that (g(t)) takes g
0

as initial condition in the required sense.

Recall that, by assumption, the sequence {gi} is decreasing in i. Thus, since for

i  j we have gi � gj , the maximal-stretchedness property of the flows given by

Theorem 2.2.4 tells us that gi(t) � gj(t) for any t � 0. So {gi(t)} is decreasing in i

for any t � 0, and hence g(t)  gi(t) for any t > 0 and any i 2 N.

Firstly, we claim that g(t)
��
M\⌦ ! 0 in C0

loc

�M\ ⌦� as t # 0. Indeed, given z 2 M\⌦
and " > 0, let r > 0 be such that Br(z) := Bh

r (z) is compactly contained in M\⌦.
Since {gi} ! 0 in C0

�M\ ⌦� as i ! 1, choose i0 such that

gi0  "hz

on Br(z), where hz denotes the conformal, complete hyperbolic metric on Br(z).

Thus, appealing once again to Theorem 2.2.5, we get that

gi0(t)  (2t+ ")hz

on Br(z) for all t � 0. Consequently,

g(t)  (2t+ ")hz

on Br(z) for all t > 0. Since " > 0 is arbitrary, we hence have that

g(t)  2thz

on Br(z) for all t > 0. Taking t to zero shows that g(t) ! 0 in C0

loc

�M\ ⌦� as t # 0.

Secondly, we claim that g(t)
��
⌦

! ĝ in C0

loc

(⌦) as t # 0. Indeed, let x
0

2 ⌦ and

let v
0

, r
0

> 0 be given by Lemma 5.2.7, so that the conditions of Lemma 5.2.8 are

satisfied for the flows (gi(t)). Then, applying that lemma, we find constants C, T > 0

so that

|Kgi(t)|  C (5.1)

on B
gi(t)
r0
2

(x
0

) for all t 2 (0, T ] and all i su�ciently large. Taking the limit as i ! 1,

we hence also have that

|Kg(t)|  C (5.2)
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on B
g(t)
r0
2

(x
0

) for all t 2 (0, T ]

Write ĝ = v̂h
��
⌦

for some v̂ 2 C1(⌦). For each t > 0, define a positive function v(t)

on M by g(t) = v(t)h. Define u(t) := 1

2

log v(t), ui(t) := 1

2

log vi(t), û := 1

2

log v̂,

ui :=
1

2

log vi, and fix " > 0, assuming without loss of generality that " < T . Observe

that gi(") ! g(") and gi ! ĝ uniformly on ⌦ as i ! 1. Consequently, we may find

j = j(") such that the estimate (5.1) holds for gj(t), and such that

|u(")(x
0

)� uj(")(x0)| < "

and

|uj(x0)� û(x
0

)| < ".

Now we claim that in fact

|u(t)(x
0

)� uj(t)(x0)| < (1 + 2C)"

for all 0 < t  ". Indeed, using that

@uj
@t

= �Kgj(t) and
@u

@t
= �Kg(t),

and applying the estimates (5.1) and (5.2), we have that

|u(t)(x
0

)� uj(t)(x0)|  |u(")(x
0

)� uj(")(x0)|+ 2C("� t)

< (1 + 2C)",

as claimed.

Now we use (for j fixed as above) that gj(0) = gj on M to find T̂ > 0 such that

|uj(t)(x0)� uj(x0)| < "

whenever 0  t  T̂ . Then, for t  T 0 := min{", T̂}, it follows from the triangle

inequality that

|u(t)(x
0

)� û(x
0

)|  |u(t)(x
0

)� uj(t)(x0)|+ |uj(t)(x0)� uj(x0)|+ |uj(x0)� û(x
0

)|
< 2"+ (1 + 2C)" = (3 + 2C)".

Applying Corollary B.2.5, we find that g(t) ! ĝ in C0

loc

(⌦) as t # 0.
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By Corollary B.2.5, to show that g(t) ! g
0

in C0(M) as t # 0, it su�ces to show

that the convergence takes place pointwise. Thus, following from what has already

been shown, we need only prove that g(t)(z) ! 0 as t ! 0 for any z 2 @⌦. Indeed,

let z 2 @⌦ and fix " > 0. Then, using that ĝ 2 O(⌦,M), we may find � > 0 such

that |ĝ(q)|h < "
2

whenever q 2 ⌦ and dh(z, q) < �. Let B := Bh
� (z). Then, using

what we have shown so far, we may find S > 0 such that |g(t)(p)|h < " whenever

t  S and for p such that p 2 B and p 62 @⌦. Since g(t) is continuous on M, it

follows that g(t)(z) ! 0 as t # 0, and we hence conclude that g(t) ! g
0

in C0(M)

as t ! 0.

It remains to show that
�M, dg(t)

� ! (⌦, dĝ) in the Gromov–Hausdor↵ sense as t # 0.

First, we observe that dg(t)
��
⌦

! dĝ uniformly on ⌦ as t # 0. Indeed, by Lemma 5.2.6,

we have that dg0
��
⌦

= dĝ, and consequently it su�ces to show that dg(t) ! dg0 uni-

formly on ⌦ as t # 0. But this follows from the fact that g(t) ! g
0

in C0(M) as t # 0.

We may then construct Gromov–Hausdor↵ approximations as follows: given " > 0,

let f : (⌦, dĝ) ! �M, dg(t)
�
be inclusion, and let g :

�M, dg(t)
� ! (⌦, dĝ) be such

that g
��
⌦

is the identity, and such that g sends any p 2 M \ ⌦ to a fixed point

q 2 ⌦ with d̄ĝ(q, @⌦) < ". Then, by the above observations, both f and g are

"-Gromov–Hausdor↵ approximations for t su�ciently small.

Remark 5.2.9. An alternative in the above would be to construct the approxi-

mating sequence {gi} so that gi = ĝ on ⌦, except for a neighbourhood of @⌦ that

shrinks as i ! 1.

Remark 5.2.10. We point out that obtaining a complete solution (g(t)) on ⌦,

starting from ĝ in the sense of Theorem 5.2.3 is impossible, since (⌦, ĝ) is of finite-

diameter, whereas any complete metric on ⌦ is of infinite diameter. For instance,

the instantaneously complete flow provided by Theorem 2.2.4 does not satisfy the

conclusion of Theorem 5.2.3.

Remark 5.2.11. It may be asked whether the space O(⌦,M) is a natural one to

consider. Indeed, it is the broadest class of metrics for which a result like Theorem

5.2.3 is possible. This is because, as one can observe by inspection of the proof, we

need initial metrics ĝ on ⌦ such that, when embedded in the larger surface M and

surrounded by the ‘zero metric’, curves joining points in ⌦ cannot decrease their

length by going outside of ⌦. In other words, we need that dg0
��
⌦

= dĝ, which is

only possible if ĝ 2 O(⌦,M).
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The preceding remark exposes the key obstacle in the geometric interpretation of

the taking on of initial data: it is possible to construct complete Ricci flows that

take initial conditions in an analytic sense, such as L1

loc

-convergence, but which fail

to realise any geometric notion of convergence. For instance, by using essentially

the same methods, we can prove the following theorem:

Theorem 5.2.12. Let ĝ be a smooth, finite-area metric on D. Let g
0

be the degen-

erate metric on D
2

(the disc of radius 2 in C) defined by

g
0

(z) :=

(
ĝ if z 2 D
0 if z 2 D

2

\ D.

Then there exists a smooth, complete Ricci flow (g(t))t2(0,1)

on D
2

such that

g(t) ! g
0

in L1

loc

(D
2

) as t # 0.

The only extra tools we need in order to prove the above theorem are the local

L1-bounds for solutions to the Ricci flow equation starting from L1

loc

-initial data,

provided by [48, Theorem 8.8]. Nevertheless, whilst we can use the techniques

of Theorem 5.2.3 to construct the flow in Theorem 5.2.12, it is not geometrically

significant (unless the initial metric is zero at @D): curves in D, when measured with

g(t), can reduce their length by leaving D as t gets small. Consequently, for small t,

the metrics g(t) and ĝ are not geometrically close. For instance, consider the points

p = 3

4

and q = �3

4

in D, taking ĝ as the flat metric. Then dĝ(p, q) = 3

2

, whereas

dg(t)(p, q) ! 1

2

as t # 0.

Remark 5.2.13. A possible future avenue of investigation is to consider to what

extent the flow constructed in Theorem 5.2.3 is unique. A conjecture would be that

once the initial data triple (⌦,M, ĝ) and the conformal embedding i : ⌦ ,! M are

specified, the flow given by Theorem 5.2.3 is unique (up to di↵eomorphism). An

open problem is whether Theorem 5.2.3 is true in the case where M has genus zero

or one (and hence does not support a conformal hyperbolic metric). The di�culty

in this instance is showing that the constructed flow (g(t)) is non-degenerate, since

we cannot bound the sequence {gi(t)} from below by the ‘big-bang’ Ricci flow 2th

as in the hyperbolic case.
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Appendix A

Local arguments in Lemma 4.3.7

In the proof of Lemma 4.3.7, we made two claims that we justify in this appendix.

These arguments are a reproduction of elements of [37, Appendix A], modified and

translated from the original French. In essence, they follow the proofs provided

in [3, Chapter VII] and [1, Chapter III, §6] of analogous statements in the case of

non-negative curvature due to Alexandrov and Zalgaller. In our setting, curvature

is bounded below by �1, and consequently there are points in the proofs where the

Euclidean character of the spaces in question arises, which we cannot use verba-

tim. Richard has carefully identified these portions, and has replaced them with

hyperbolic versions of the same statements, so that, all things considered, the same

overall results also apply in our scenario.

Proposition A.1 ([37, Lemma A.2.1]). With all objects as defined in Lemma 4.3.7,

the metric space (Mi, di) is an Alexandrov surface of curvature bounded below by

�1.

Proof. By the Globalisation Theorem (Theorem 3.6.1), it su�ces to show that every

point of Mi admits a neighbourhood of curvature at least �1. If q 2 Mi is not a

vertex point of bT , then it admits a neighbourhood that is isometric to a domain in

H2. Consequently, we need only check that vertex points of bT admit appropriate

neighbourhoods.

Indeed, let p 2 Mi be a vertex point of bT , and let T
1

, T
2

, . . . , Tn be the triangles ofbT containing p (so p is either a vertex point or a point on a side of these triangles).

Let ↵ denote the sum of the angles at p in the triangles Ti, with the convention

that if p is on the side of a triangle, the contribution to ↵ from this triangle is

⇡. It is well-known that a su�ciently small neighbourhood of p is isometric to a

neighbourhood of the vertex of a hyperbolic cone over a circle of diameter ↵. By [5,
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Theorem 10.2.3], for this neighbourhood to be of curvature at least �1, it su�ces

that ↵  2⇡. But this follows immediately from the quadruple condition (given in

Definition 3.3.21).

Now we proceed to consider the following result, which is of a highly technical nature,

and which we used to justify the Gromov–Hausdor↵ convergence of our polyhedral

approximations to the original Alexandrov surface (X, d) in Lemma 4.3.7:

Proposition A.2. For i 2 N, let T and bT be as in Lemma 4.3.7. Given vertex

points v, w 2 T and their corresponding vertex points v̂, ŵ 2 bT , we have that

|d(v, w)� di(v̂, ŵ)|  %(i),

where %(i) ! 0 as i ! 1.

To prove this, we need the following, which is a hyperbolic analogue of the result used

by Alexandrov to prove the corresponding proposition in the case of non-negative

curvature:

Lemma A.3 ([37, Lemma A.2.2], hyperbolic variant of [3, Lemma 1, p. 259]). Let

(X, d) be a complete Alexandrov surface of curvature bounded below by �1. Let T

be a convex triangle in X with vertices a, b, c, let x be a point on the side joining a

and b, and let y be a point on the side joining a and c. Let D := Diam(T ). Let bT be

the comparison triangle of T in H2 (see Definition 3.3.4), with ā denoting the vertex

point of bT corresponding to a, and so on. Then there exists a constant C such that

|x̄ȳ|  |xy|  |x̄ȳ|+ CD(�(T ) + Area(T )),

where �(T ) is the excess of T as in Definition 3.3.28.

With this in hand, we can now show that di(v̂, ŵ)  d(v, w). To this end, let

� : [0, 1] ! X be a shortest path joining v and w. Construct a path in Mi joining

v̂ and ŵ as follows: each time � passes into the interior of a triangle T 2 T , take

note of the points in the comparison triangle bT corresponding to the entry and exit

points of � in T , and join them by the segment of the sides of bT between them.

Since all triangles in T are convex, we may assume this occurs at most once in each

triangle. In this way, we construct a path joining v̂ and ŵ in Mi whose length is

shorter than that of � thanks to Lemma A.3.

It remains to show that d(v, w) cannot be too much larger than di(v̂, ŵ). For this,

we consider a shortest path �̂ joining v̂ and ŵ in Mi. The idea is that to each seg-
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ment of the path passing into the interior of a triangle bT 2 bT we assign a shortest

path joining the corresponding entry and exit points of the corresponding triangle

T 2 T . There is, however, a problem: each time we perform this operation, we make

an error of CD(�(T ) + Area(T )) by Lemma A.3. Since the triangles in bT are not

necessarily convex, we have no way a priori of controlling the number of times we

must perform this operation, and hence have no control over the error. Nevertheless,

the arguments of [1, §3, Lemma 19, p.82] show that by slightly modifying �̂, we can

ensure that the path enters the interior of each triangle in bT at most twice. For this

to work in our case, we rely upon [37, Lemma A.2.4], which is again a hyperbolic

fix for a situation in which the original argument depends upon the non-negatively

curved nature of the space under investigation.

The proof of Proposition A.2 is completed by using the arguments of [1, §3, Theorem
10], where it is concluded (see Remark 3 following that theorem) that every compact

set ofX can be embedded in a convex polygon P ⇢ X such that the induced intrinsic

metric dP on P is the limit of a uniformly converging sequence of polyhedral metrics

of bounded curvature. We may hence deduce that (Mi, di, pi) ! (X, d, p) in the

Gromov–Hausdor↵ sense as i ! 1 in Lemma 4.3.7.
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Appendix B

Analytical preliminaries

In this appendix, we collect a handful of useful results from real analysis that are

employed in the main text.

B.1 Estimates for solutions to parabolic equations

Let ⌦ ✓ Rn be an open set, let I ⇢ [0,1) and let ⌦T := ⌦⇥ I. We define parabolic

Hölder spaces as follows:

Definition B.1.1. Define a distance ⇢ on ⌦T by

⇢((x
1

, t
1

), (x
2

, t
2

)) := |x
1

� x
2

|+ |t
1

� t
2

| 12 .

Fix � 2 (0, 1). Define the parabolic Hölder space C�, �2 (⌦T ) to be the space of

continuous functions on ⌦T such that

[u]
C�, �2

(⌦T )

:= sup
z1 6=z2

z1,z22⌦T

|u(z
1

)� u(z
2

)|
⇢(z

1

, z
2

)�
< 1.

The C�, �2 (⌦T )-norm is then

||u||
C�, �2

(⌦T )

:= ||u||C0
(⌦T )

+ [u]
C�, �2

(⌦T )

.

This norm gives C�, �2 (⌦T ) the structure of a Banach space.

The spaces C2k+�,k+ �
2 (⌦T ) are defined as follows: let ↵ = (↵

1

, . . . ,↵n) be a multi-
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index, and let |↵| := P
i ↵i. Define

@↵ :=
@|↵|

@x↵1
1

· · · @x↵n
n

. (B.1)

Then

u 2 C2k+�,k+ �
2 (⌦T ) () @r

@tr
@↵u 2 C�, �2 (⌦T )

for 2r + |↵|  2k.

We then have the following theorem, which shows that a smooth, bounded solution of

a quasi-linear parabolic partial di↵erential equation has its Hölder norms controlled

by its L1 norm:

Theorem B.1.2 (Simplified version of [24, Theorem IV.10.1]). Let � 2 (0, 1] and

k 2 N [ {0}. Suppose that u 2 C(2k+2)+�,(k+1)+

�
2 (⌦T ) is a solution of the linear

parabolic equation

@

@t
u(t, p) =

⌦
a(t, p),r2u(t, p)

↵
+ b(t, p),

where we make the assumptions that:

• a 2 C2k+�,k+ �
2 (⌦T ; Sym

2Rn),

• b 2 C2k+�,k+ �
2 (⌦T ) and

• there exists � > 0 such that for any pair (p, t) 2 ⌦T , we have the uniform

parabolicity condition

ha(p, t), ⌘ ⌦ ⌘i � �|⌘|2 > 0

for all ⌘ 2 Rn \ {0}.

Then for any ⌃ ⇢⇢ ⌦ with � := d(⌃, @⌦) > 0, there exists C > 0, depending only

on n, k,�, �,�, ||a||
C2k+�,k+ �

2
(⌦T ; Sym

2Rn
)

and ||b||
C2k+�,k+ �

2
(⌦T )

such that

||u||
C(2k+2)+�,(k+1)+ �

2
(⌃⇥I)

 C||u||L1
(⌦T )

.

Remark B.1.3. If instead u solves the quasi -linear equation

@

@t
u(t, p) = hA(t, p, u(t, p),ru(t, p),r2u(t, p)),r2u(t, p)i+B(t, p, u(t, p),ru(t, p)),

(B.2)

87



we may recover the same conclusion as Theorem B.1.2 by defining

a(t, p) := A(t, p, u(t, p),ru(t, p)) and b(t, p) := B(t, p, u(t, p),ru(t, p)).

B.2 The Arzelà–Ascoli Theorem and consequences

We present here the well-known theorem of Arzelà and Ascoli, together with some

of its corollaries.

Theorem B.2.1 (Arzelà–Ascoli). Let {un}n2N be a sequence of continuous func-

tions defined on an open subset ⌦ ✓ Rn. Suppose that

• there exists C > 0 such that

sup
n

||un||C0
(⌦)

 C

and

• the sequence {un} is equicontinuous, i.e. given " > 0, there exists � > 0 such

that

sup
n

|un(x)� un(y)| < "

whenever x, y 2 ⌦ and |x� y| < �.

Then there exists a continuous function u 2 C0(⌦) and a subsequence {unj} such

that

{unj} ! u

as j ! 1, uniformly on compact subsets of ⌦.

We have the following corollary in the context of paths in metric spaces:

Corollary B.2.2 ([5, Theorem 2.5.14]). In a compact metric space, any sequence

of paths {�i} with uniformly bounded lengths admits a uniformly converging sub-

sequence {�ij}, in the sense that the �ij admit parameterisations (with the same

domain) that converge uniformly to a parameterisation of another path �.

Now let {un} ⇢ Ck+1(⌦) and suppose there exists C > 0 such that ||rk+1un||C0
(⌦)


C. Then we observe that

|rkun(x)�rkun(y)|  C|x� y|,

and so the sequence {rkun}n is automatically equicontinuous on ⌦. Consequently,

we have the following:
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Corollary B.2.3. Let {un} ⇢ Ck+1(⌦) be a sequence such that there exists C > 0

with ||rlun||  C for all n 2 N and all 0  l  k + 1. Then there exists a function

u 2 Ck(⌦) and a subsequence {unj} such that

{unj} ! u

in Ck
loc

(⌦) as j ! 1.

Now we give the result that under appropriate conditions, pointwise convergence of

a sequence is actually uniform:

Theorem B.2.4. For ⌦ as above, suppose that {un} ⇢ C0(⌦) is an equicontinuous

sequence. Suppose further that there exists a function u : ⌦ ! R such that {un} ! u

pointwise on ⌦ as n ! 1. Then {un} ! u uniformly on compact subsets of ⌦ as

n ! 1.

Proof. Let K ⇢ ⌦ be compact and fix " > 0. By the definition of equicontinuity,

there exists � > 0 such that

sup
n

|un(x)� un(y)| < "

3

whenever |x � y| < �. Consequently, by the assumption on pointwise convergence,

we have that

|u(x)� u(y)| < "

3

whenever |x� y| < �.

Now since K is compact, we may find finitely many points p
1

, . . . , pk 2 K such that

K ⇢
k[

i=1

B�(pi).

Since un(pj) ! u(pj) for each j = 1, . . . , k, we may find N such that

|un(pj)� u(pj)| < "

3

whenever n � N , for any j 2 {1, . . . , k}.
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Then given x 2 K, we have that x 2 B�(pj) for some j, and so

|un(x)� u(x)|  |un(x)� un(pj)|+ |un(pj)� u(pj)|+ |u(pj)� u(x)|
< "

whenever n � N , as required.

Finally, we have an application to PDEs:

Corollary B.2.5. Let ⌦ be as above, and let u(t)t2(0,T )

be a smooth, bounded so-

lution to a quasi-linear PDE of the form (B.2). Suppose there exists some function

u
0

: ⌦ ! R such that u(t) ! u
0

pointwise on ⌦ as t # 0. Then u(t) ! u
0

uniformly

on compact subsets of ⌦.

Proof. By Theorem B.1.2, given a compact subset K ⇢ ⌦, we have that for any

k 2 N there exists a C > 0 such that ||u(t)||Ck
(K)

 C for all t 2 (0, T ). Thus by

an earlier observation, the sequence {u(t)}t2(0,T )

is equicontinuous on K. The result

then follows from Theorem B.2.4.
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