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Abstract 

Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) 

susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS 

study using large scale genotyping and imputation in 25,723 PrCa cases and 26,274 controls of 

European ancestry.  

We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional 

newly identified significant associations. A single signal comprising a spectrum of correlated 

variation was observed at 39 regions; 35 of which are now described by a novel more significantly 

associated lead SNP, whilst the originally reported variant remained as the lead SNP only in 4 

regions. We also confirmed 2 association signals in Europeans that had been previously reported only 

in East-Asian GWAS.  

Based on statistical evidence and LD structure we have curated and narrowed down the list of the 

most likely candidate causal variants for each region. Functional annotation using data from 

ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for 

overlap with bio-features within this set. By incorporating the novel risk variants identified here 

alongside the refined data for existing association signals, we estimate that these loci now explain 

approximately 38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously 

reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may 

have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple 

independent signals within the same region.  
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Introduction 

Prostate cancer (PrCa) is one of the most commonly diagnosed cancers and leading causes of cancer 

related deaths for men in developed countries. An increased incidence of PrCa among first degree 

relatives of patients, together with results from twin studies, provides strong evidence for a heritable 

component to PrCa(1). In recent years, many studies have sought to identify genetic variants that 

predispose towards the development of PrCa. Candidate gene studies have demonstrated that rare 

(MAF < 1%) loss of function variants in DNA repair genes, in particular BRCA2, as well as a 

recurrent missense variant in HOXB13 confer moderately increased disease risks; however these 

explain only a limited fraction of the overall heritability(2, 3). In addition to these rare, higher risk 

mutations, approximately 100 common, low penetrance variants have currently been identified 

through genome wide association studies (GWAS). These variants confer only modest increases in 

risk individually, but appear to combine multiplicatively thereby exerting a more substantial effect 

that is currently estimated to explain 33% of the familial relative risk (FRR) of the disease(4). 

The specific low penetrance variants identified in GWAS are generally unlikely themselves to be 

causative for PrCa, since they are typically correlated with many other variants, one or more of which 

is functionally related to the disease. Fine-mapping studies are therefore performed to enable a more 

thorough evaluation of variation in associated regions, in order to narrow down the number of 

potential causal variants for subsequent evaluation and validation through functional assays. In 

addition, it has become clear that a small number of regions associated with many traits harbour 

multiple independent association signals (a classic example of which is the Chr8q24 region 

centromeric to MYC, which is associated with many forms of cancer including PrCa). However in 

most cases it is unclear whether these independent signals modulate risk through a common or 

separate functional mechanism, since the causal variants themselves remain unresolved. A key first 

step towards identifying the precise causal variants and functional mechanisms that confer risk is to 

comprehensively evaluate the evidence for association for non-genotyped potentially relevant variants 

within the region, to refine the original GWAS signal. In principle, re-sequencing associated regions 

in large case-control series would provide the most thorough data, but this approach is currently 
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prohibitively expensive for routine application. However, since GWAS signals are expected to be 

predominantly driven by relatively common variants, large-scale genotyping together with imputation 

provides a cost-effective approach to evaluate the majority of likely causal variants. To date, only a 

small number of PrCa susceptibility loci have been fine-mapped. In analyses conducted by the 

PRACTICAL Consortium, for which the largest set of PrCa samples and genotype data is available, 

we previously identified for the KLK3 locus at Chr19q13 a more strongly associated missense coding 

variant that has been demonstrated to alter protein function(5), and at two regions, Chr8q24 and TERT 

at Chr5p15, fine-mapping demonstrated the presence of multiple independent risk variants(6, 7). In 

this study we have fine-mapped, functionally annotated and curated a set of the most promising 

candidate susceptibility variants for all PrCa susceptibility regions published by the end of the iCOGS 

genotyping project, aside from the three that we had previously analysed individually.  

 

Results 

We have fine-mapped 64 known PrCa regions through a combination of genotyping and imputation. 

Region boundaries for this analysis were defined as 500kb either side of any known PrCa associated 

GWAS SNPs; where such regions overlapped, they were merged to form a single larger region 

(extended boundaries were employed at regions Chr3p12, Chr4q22, Chr8p21, Chr11q13 and 

Chr17q12). We used genotype data for 25,723 cases and 26,274 controls of European ancestry from 

two UK GWAS studies and from the 32 studies in the PRACTICAL Consortium genotyped using the 

iCOGS array. After imputation to a 1000 Genomes reference panel, data were available for 283,910 

SNPs across these 64 regions. For 23 of the 64 regions the iCOGS array contained a dense panel of 

markers that included almost all variants correlated with the original GWAS hit, thereby facilitating 

particularly high resolution interrogation of these loci. 

In this fine-mapping study, 15 previously reported PrCa susceptibility variants did not replicate at 

genome-wide significance (P <5x10-8). For 4 of these variants, the association with PrCa had 

previously been reported only in East Asian populations (rs1938781, rs2252004 (8) and rs9600079 (9) 
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in Japanese and rs103294 (10) in Chinese individuals). We found no evidence suggestive of 

association with PrCa at any of these regions in individuals of European ancestry (P values >0.4), 

which may indicate that these variants modulate risk through a mechanism predominate among 

individuals with specific genetic backgrounds, or alternatively require further confirmation in 

Europeans through additional larger studies. For another variant that did not replicate at genome-wide 

significance in this study, rs1571801, the previously reported association with PrCa achieved 

statistical significance only in relation to aggressive disease (11). In our data, the most strongly 

associated correlated variant within this region showed some tendency towards association with PrCa 

although remained non-significant (rs200543781, OR=1.36, P =5.1x10-4); this could reflect the fact 

that our sample panel was not enriched for aggressive disease. A further four regions had previously 

been identified in studies by the PRACTICAL Consortium, however in each case a larger sample size 

was available in the original study or consequent replication set than for this fine-mapping analysis. 

For these 4 SNPs (rs6869841, rs2427345, and rs11902236 published in Eeles et al., 2013(12) and 

rs6763931 in Kote-Jarai et al., 2011(13)) P values in this analysis were close to genome-wide 

significance (S1 Table), and the failure to replicate at genome-wide significance most likely reflects 

the smaller sample size. For the remaining six regions where the original index SNP did not reach 

genome-wide significance, our recent meta-analysis that included additional datasets (35,093 cases 

and 34,599 controls, Amin Al Olama et al., 2014(4)) observed associations at genome-wide 

significance, and therefore these regions were included in this analyses. Of the 55 regions in our final 

analysis (after excluding the 4 non-European and 5 European regions which didn’t reach genome-

wide significance in this study or the meta-analysis), after stepwise logistic regression, 39 could be 

categorised as ‘simple regions’ defined by a single association signal (Table 1) and 16 as ‘complex 

regions’, each of which contained more than one independent association signal (Table 2).  

For each of the 75 independent association signals identified across the 55 regions analysed we have 

selected a set of the most promising correlated candidate causal variants. Since a greater density of 

variants are interrogated during fine-mapping than through the ‘tag SNP’ approach used in the 

discovery phase of GWAS, the causal variants responsible for PrCa risk at each region would 
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generally be expected to associate with PrCa at a similar level to the refined lead SNP, as well as 

exhibiting relatively high levels of linkage disequilibrium. Consequently, we selected our “best 

candidate” variants that most warrant further interrogation for functionality and PrCa causality for 

each association signal using an overlap between two criteria: likelihood ratio of ≥1/1000 relative to 

the refined lead SNP (‘1000 worse’ list=6537 SNPs) and correlation with the lead SNP at LD r2 >0.7 

(LD list =2202 SNPs). This best candidate list comprised 1623 SNPs across the 55 regions studied, 

with between 1 and 93 SNPs per association signal and a median of 13 candidate variants (S2 Table). 

These best candidate SNPs were annotated for overlap with functional elements in PrCa cell lines. For 

this analysis, bio-features were annotated according to the methodology used in Hazelett et al., 

2014(14). Of our 1623 best candidate SNPs, 413 (25%) were either coding or within an annotated bio-

feature, with enhancer elements accounting for the largest single class of element represented (S2 

Table). We also analysed the best candidate SNP list  for potential eQTLs using TCGA data available 

for prostate tissue and a much larger set of EuroBATS data for three different tissue types (skin, LCL, 

adipose). To aid in the interpretation of data from this study we developed Locus Explorer, a Shiny R 

application which allows the interactive graphical illustration of all the regions we have fine-mapped 

and which can be accessed at https://github.com/oncogenetics/LocusExplorer (manuscript in 

preparation). In the Locus Explorer plots for this study we have included LD structure, statistical 

association data, functional annotation, gene transcripts and eQTL data; however this application is 

customizable as required.  

For 4 of the 39 simple regions the originally reported SNP remained the most strongly associated 

variant after fine-mapping, whereas in the remaining 35 regions a new lead SNP was identified (Table 

1). The novel lead variants were generally in strong (r2>0.7) or moderate LD (r2=0.3-0.7) with the 

original GWAS tag SNP; however, for 5 regions the new lead SNP was only in weak LD with the 

original signal (r2<0.3). In 10 regions the originally reported variant was excluded from our set of the 

best candidate SNPs to further investigate for possible causal functional effects. A good illustration of 

the refinement of the association signal within simple regions is at ChrXq12 where the original signal, 

rs5919432, was situated 71Kb 3’ of the androgen receptor (AR) gene. This has now been replaced by 
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rs4446868 which is intronic to AR and in strong LD with a number of variants within the coding 

sequence, whilst the original tag SNP did not remain amongst our list of the best candidate functional 

variants (Table 1, Figure 1a, S2 Table). It may also be possible to further prioritise the 46 selected 

candidate SNPs at this region based on statistical and functional evidence; a cluster of 5 variants were 

more strongly associated than the remainder and these flank a known AR binding site within intron 2 

that has been reported to function as an enhancer in LNCaP (15). 

Two of the simple regions had been reported previously as PrCa susceptibility variants only in East 

Asian populations (rs1983891 at Chr6p21 and rs817826 at Chr9q31); in this study we have 

demonstrated for the first time that these loci are also associated with PrCa risk in individuals with 

European ethnicity. The lead SNP describing the association signal for Europeans at Chr6p21, 

rs6458228, is strongly correlated with the Japanese hit (r2=0.92); both are intronic in FOXP4 and in 

LD with variants overlapping a number of bio-features. Our top European hit on Chr9q31 near 

RAD23B, rs1771718, is not correlated (r2=0.03) with the index SNP reported in the Chinese 

population and itself overlaps a DNase1 hypersensitivity site in the LNCaP PrCa cell line. Based on 

TCGA data, this signal is also an eQTL for RAD23B in normal prostate tissue but not tumour (Table 

1, Figure 1b). 

Of particular interest, within the 55 regions included in our final analysis, we identified 16 ‘complex 

regions’ that harbour more than one independent association signal after conditional analysis and 

contained a total of 36 separate risk signals (Table 2). Only 5 of these regions had previously been 

reported to contain independently associated SNPs (CHMP2B at Chr3p12(8, 16), PDLIM5 at 

Chr4q22(17), SLC25A37/NKX3.1 at Chr8p21(17), Chr11q13(16, 18) and HNF1B at Chr17q12(19, 

20)). At both Chr3p12 and Chr8p21, the two originally reported association signals are within 50 kb 

of one another however situated adjacent to different genes. As this proximity fell comfortably within 

the flanking distance we defined in this study for each region they were nonetheless merged into a 

single region for this analysis. Multiple independent risk variants within the same gene had previously 

been identified within PDLIM5 and HNF1B, whilst Chr11q13 is a gene desert previously reported to 

contain 3 independent hits. For all of these 5 regions that were known to be complex prior to our fine-
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mapping, in this study we confirmed each of the previously reported independent associations, have 

refined the spectrum of variation that best describes these association signals, and we have identified a 

novel, third independent signal at HNF1B/Chr17q12. Furthermore, we have discovered additional 

novel signals within 11 regions previously known to contain only a single risk variant. 

To illustrate the utility of fine-mapping in combination with functional annotation for the refinement 

of GWAS signals towards promising candidate causal variants, we present detailed findings for 4 

representative complex regions in this manuscript. In the Chr2q31 region we identified two 

independent signals (Table 2, Figure 1c). The most strongly associated SNP, rs13410475, is intronic 

in ITGA6 and in complete LD with the original index SNP rs12621278 (r2 = 1). This signal represents 

a tight cluster of 4 potentially causative variants. The novel additional independent lead SNP, 

rs12151618, is weakly correlated with this signal (r2 <0.07) and situated 5kb upstream of PDK1 

(Pyruvate dehydrogenase kinase isozyme 1) in the promoter region. PDK1 is believed to be 

upregulated by Myc and HIF-1 to facilitate cell survival and proliferation under hypoxia, and is 

reported to be commonly overexpressed in cancer cells(21, 22).  

Two independent signals were also identified at Chr2q37, where the previously reported hit 

rs3771570 was intronic in FARP2 (Table 2, Figure 1d). In our analysis, the most strongly associated 

novel lead SNP, rs111770284, is not in LD with the original GWAS hit (r2 = 0.03). rs111770284 is 

intronic in ANO7 (also known as NGEP, New Gene Expressed in Prostate), overlaps a DNase1 site in 

LNCaP and implicates a set of 4 correlated variants as putative functional candidates. ANO7 is an 

androgen regulated gene and its expression appears to be prostate specific (23, 24), with reduced 

expression associated with increased PrCa malignancy (25). The second independent signal, 

rs183997311, is intronic in FARP2. This variant is not in LD with either the original GWAS tag SNP 

or rs111770284. rs183997311 is relatively rare (MAF = 1%) and is correlated to two variants that 

overlap regulatory elements in LNCaP. It is also notable that the original hit rs3771570 was excluded 

from our list of best candidate causal SNPs after fine-mapping of this region. 
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At Chr14q24, the original signal rs7141529 remained the most significantly associated variant after 

stepwise logistic regression, however two further additional independent signals described by 

rs2189517 and rs17105852 were identified (Table 2, Figure 1e). These novel variants are both 

situated within the same long intron of RAD51B but are not correlated with each other or with 

rs7141529. This region also harbours two independent risk signals for breast cancer, one of which is 

additionally associated with breast cancer in males; however there is no correlation between these 

variants and any of the three PrCa risk SNPs (26, 27) (S3 Figure).  

The HNF1B locus on Chr17q12 contained two previously reported independent signals for PrCa. We 

identified more strongly associated lead SNPs to describe these signals, whilst the original GWAS 

SNPs were also excluded from the list of best candidate variants. The novel lead SNPs, rs11263763 in 

the first intron and rs718961 in the fourth intron, each overlap with multiple bio-features and therefore 

themselves represent good causal candidates, although both are also correlated to a modest number of 

other promising candidates (Table 2, S2 Table). In addition to these refinements of the original 

signals, we have identified a previously unknown third independent association described by 

rs2229295, which lies within the 3’UTR of HNF1B and may itself represent a strong candidate causal 

variant worthy of further investigation (Figure 1f).  

To further interrogate the variants in our best candidate list for potential functional effects, we 

examined TCGA data from 145 prostate tumour and 45 normal prostate tissue samples for differential 

expression of nearby genes associated with these SNPs. We observed significant associations with 

gene expression for 16 of our association signals (Figure 2, Table 1, Table 2, S2 Table). Several of 

these eQTLs have been reported previously (28, 29) and most recently Li et al. described significant 

eQTLs at 31 of 69 PrCa GWAS regions they tested (45%), implementing a mapping strategy for 19 of 

these regions which selected candidate causal variants ranging from 1-33 SNPs (30, 31). Here, we 

report prostate tissue eQTLs at approximately 20% of the loci we analysed; however this is likely to 

be an underestimate due to the relatively small set of prostate samples currently available in TCGA 

(30). We subsequently examined EuroBATS(32, 33) eQTL data for a much larger set of samples from 

lymphoblastoid cell lines (814 samples), skin (716 samples) and adipose (766 samples) tissues in 

 at U
niversity of W

arw
ick on June 8, 2015

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


14 

order to investigate whether any of the eQTLs identified in the TCGA prostate tumour tissue dataset 

act ubiquitously and also whether additional signals are present within these tissues that might also be 

detectable in a larger set of prostate samples. Only one region (Chr10q24 for C10orf32) showed 

evidence for ubiquitous eQTL association in all four tissue types interrogated. There were nine signals 

across seven regions which had at least one concordant eQTL between the TCGA PRAD tumour and 

any tissue type in EuroBATS. Of the eQTL signals which are confirmed in both TCGA and at least 

one EuroBATS tissue, five have been described before using the TCGA dataset, (AS3MT, VPS53, 

MLPH, IRX4 and RGS17)(30). We therefore consider the four novel signals identified here 

(C10orf32, TMEM180, MMP7 and TTLL12) as robust candidates for functional follow-up, especially 

due to the large sample set used in the EuroBATS project (S2 Table). TTLL12 is a particularly 

interesting candidate susceptibility gene as its expression has been shown to increase during cancer 

progression and metastasis (34). In addition to these eQTLs replicated between the two separate 

datasets we also report a strong eQTL for ZNF652 within the TCGA prostate tissue data solely. We 

have also detected eQTLs for RAD51B within the EuroBATS data only and for RAD23B in normal 

prostate TCGA data, but not in prostate tumour. These potentially interesting associations may 

therefore warrant further follow-up within a larger prostate tissue set. In the central portion of our 

circos plot (Figure 2) we have illustrated potentially interesting interaction networks between the 

candidate genes identified through this fine-mapping study. This highlights in particular that a large 

number of these plausible candidate genes are regulated by the androgen receptor (AR), as shown in 

red.  

To evaluate whether the refinement of previously identified PrCa loci that we have achieved in this 

study reflects a greater enrichment towards variants with annotated functionality, we assessed our list 

of 1623 best candidate SNPs for overlap with bio-features and compared this against the full set of 

imputed SNPs within the 55 regions that were significant in this analysis (243,627 SNPs). Using the 

hypergeometric test we observed a significant enrichment in overlap with bio-features for the variants 

in our best candidate SNP list (P=2.01×10-20, S4 Figure). This enrichment was even stronger when 

only enhancer elements were included in the analysis (P=1.67×10-27). 
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In order to estimate the extent to which fine-mapping of these known PrCa susceptibility regions 

could improve understanding of the genetic factors that influence PrCa risk, we compared the familial 

relative risk (FRR) of PrCa explained by the original GWAS tag SNPs with the FRR explained by the 

novel lead SNPs that we have identified in this study. We used estimated variant effect sizes and 

allele frequencies from the samples in the iCOGS study to calculate both estimates to avoid the 

potential for inflation from the UK GWAS study. We accounted for the LD between variants in the 

complex regions containing more than one independent SNP to avoid overestimating FRR. The 

estimated FRR explained when substituting for our refined lead SNPs and introducing the newly 

identified independently associated variants from this study was 38.9%, compared to 30% for the 

originally reported GWAS tag SNPs; an improvement of 8.9% overall, and nearly a third greater than 

had been previously attributed to these known PrCa susceptibility signals. 

 

Discussion 

In this study we used imputation of existing genotype data to fine-map 64 PrCa GWAS regions in 

European ancestry populations comprising 25,723 PrCa cases and 26,274 controls from three studies 

(iCOGS, and UK GWAS stages 1&2). 23 of these regions were fine-mapped at very high resolution 

on the iCOGS chip. Nine previously reported GWAS signals were not replicated at genome-wide 

significance in this study due to either decreased power in comparison with the original studies, or 

having only previously been associated with PrCa susceptibility in a non-European population.  

In 39 out of the remaining 55 regions, we found evidence for a single PrCa association signal only. 

The original GWAS tag SNP remained the most significant association for just 4 of these, whilst at 35 

regions we identified a more significantly associated replacement lead SNP. Importantly, we also 

identified 16 complex regions containing multiple variants independently associated with PrCa. Only 

5 of these had previously been identified as containing multiple independent variants (Chr3p12, 

Chr4q22, Chr8p21, Chr11q13, Chr17q12); however our analysis helped to further refine these 5 

regions and identified one additional previously unknown hit at Chr17q12 within the promoter region 
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of HNFB1. For the remaining 11 complex regions, this study provides the first evidence for the 

presence of multiple independent PrCa susceptibility variants in close genomic proximity to one 

another. An alternative explanation for the observation of multiple apparently independent association 

signals would be that both could in fact be moderately correlated with a single untyped causal variant, 

despite exhibiting limited LD between themselves (35, 36). We believe that this hypothesis is unlikely 

to underpin a substantial proportion of the multiple signals we have observed in this study, since 11 of 

the 16 identified complex regions had been densely genotyped on the iCOGS array, enabling very 

thorough imputation of additional untyped variants within the region. However, this phenomenon 

cannot be completely excluded without deep re-sequencing of each of these loci in a large sample 

panel, which would facilitate the evaluation of all correlated variation within the region and 

subsequently the identification of the precise causal variants. Our functional annotation of the 

statistically most promising correlated candidate causal variants also provides provisional evidence to 

implicate a contribution by several new potential candidate genes in PrCa risk. 

We have annotated our set of statistically significant SNPs in order to prioritise the most likely 

candidate causal variants within each region. We firstly excluded all SNPs that were associated with 

PrCa risk at a conservative threshold of ≤1/1000 compared with the association likelihood of the 

novel lead SNP for each signal. This generated a list of 6537 variants across the 55 significantly 

associated regions in our final analysis. To further prioritise within this list we trimmed based on LD 

structure and selected only those variants that were strongly correlated (LD r2>0.7) with the lead SNP 

based on 1KG EU data. The intersection of these two selection criteria generates a list of 1623 

variants, which we would expect to retain and be enriched for the causal functional variants. However 

we cannot exclude the possibility that in some instances the causal variant(s) may be in lower LD with 

the novel index variants, particularly in the regions that were less densely genotyped. In addition, our 

imputed association data may often be underpowered to detect any instances where rare causal 

variants give rise to the association signal through a ‘synthetic association’ (37). The incorporation of 

functional annotation in addition to statistical data and LD criteria may also help to further prioritise 

our list of the best candidate SNPs for PrCa risk causality towards those with the strongest evidence 
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for biological effect, to facilitate potential laboratory follow-up. For 62 of the 75 independent 

association signals we detected, one or more of the best candidate variants in our list overlaps with 

bio-features in prostate cancer cell lines (413 of the 1623 variants were annotated for functionality in 

total, median of 4 per signal). We furthermore observed eQTLs for differential gene expression in 

TCGA prostate tumour or normal tissue for one or more variants in our best candidate list for 16 of 

these 75 independent association signals; with additional eQTLs at other regions also observed within 

a larger set of EuroBATS data for three additional tissues. 

An important aspect of this mapping study is the improvement of the estimated FRR explained by the 

refined and newly identified independently associated variants. This is now substantially higher, at 

approximately 39% compared to 30% estimated for the original GWAS tag SNPs (12). Fine-mapping 

of these 55 known regions has therefore improved our understanding of the genetic basis of PrCa and 

incorporating these novel variants into future risk models should enhance the capability to predict 

individuals at greater risk of PrCa. It is also interesting to note that of the 23 regions analysed in this 

study that were known at the time of design of the iCOGS array and therefore fine-mapped through a 

more dense set of directly genotyped markers; these represent 11 of the 16 complex regions and only 

12 of the 39 simple regions. This might suggest that the presence of multiple independent PrCa 

susceptibility variants within previously identified GWAS regions could be even more widespread 

than we have been able to identify in this fine-mapping study. Consequently, additional susceptibility 

signals could yet reside within the regions that remain to be interrogated through very dense marker 

resolution in a sufficient sample size; an experiment which is currently being undertaken by the 

OncoArray Consortium (38). 

A concurrent PrCa fine-mapping study (Han et al., Human Molecular Genetics, submitted) has 

examined 69 risk regions among a multi-ethnic sample panel comprising European (8,600 cases and 

6,946 controls), African (5,327 cases and 5,136 controls), Asian (2,563 cases and 4,391 controls) and 

Latino (1,034 cases and 1,046 controls) ethnicities. After performing a meta-analysis for marginal 

tests across multiple populations 12 regions were not significant, whilst a single novel, more 

significantly associated lead SNP was identified at 32 of the 57 significant regions (56.1%). In 
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comparison, across the 55 regions that achieved genome-wide significance in our study, the original 

GWAS tag SNP was replaced with a more significantly associated SNP at 47 (85.4%). For the 46 

significant regions that overlapped between these two studies final datasets, 32 of the refined SNPs 

identified by Han et al. were among our list of best candidate SNPs (69.5%). Within these 

overlapping regions, we identified 12 novel independent signals, 9 of which were nominally 

significant in the multi-ethnic fine-mapping but none were included in their top order or putatively 

functional SNPs. Comparing final putative functional candidates for the 46 overlapping regions, 29 

(63.0%) of these regions have at least one overlapping functional candidate SNP. More notably, 11 of 

these 46 regions (23.9%) have a single overlapping functional candidate SNP, which should therefore 

be assigned high priority as potential causal candidates for future experimental follow up. Overall, the 

comparisons between these two approaches highlight the increased power provided by the larger 

sample set available within our study; in particular in respect to the identification of multiple 

independent association signals within already known regions, but also demonstrate that the ability to 

incorporate multiple ethnic populations may further improve the efficiency of fine-mapping. This 

suggests that large meta-analysis based fine-mapping studies comprising individuals of diverse 

ancestries may represent the most robust strategy for imputation based fine-mapping where such data 

are available.  

In conclusion, we have demonstrated the importance of genotyping and imputation based fine-

mapping through the discovery of 12 additional independent PrCa associations within known GWAS 

regions and by refining the vast majority of the previously reported signals. Before fine-mapping 

efforts were employed, potential causal SNPs at each susceptibility locus were selected primarily on 

the basis of high correlation to the reported GWAS tag SNP (14) or overlap with functional elements; 

this strategy can however either introduce substantial noise or a greater likelihood of excluding true 

causal variants, due to the lack of statistical evidence available when retaining or excluding non-

genotyped variants. Through coupling functional annotation and LD information to our imputed 

association dataset, we believe we have been able to enrich for the most likely candidate causal PrCa 

susceptibility variants at each association signal whilst substantially reducing noise within the list. 
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Indeed, this approach selected only a modest number of SNPs per locus, yet these showed evidence 

for modulating differential gene expression and greater overlap with bio-features in prostate datasets. 

Whilst complete re-sequencing of GWAS regions in large sample sets would ultimately be desirable, 

our approach undoubtedly represents the most time and cost effective method available at the present 

time to interrogate and prioritise the most plausible causal variants underpinning GWAS studies. We 

have demonstrated that many of the GWAS regions identified to date for PrCa harboured additional, 

previously hidden independent association signals, with perhaps more yet to be discovered. This 

observation may have important implications towards the deconvolution of the functional mechanisms 

underlying these signals; and in particular could help to facilitate improved risk prediction, since these 

additional independent association signals could account for a significant proportion of the missing 

heritability of PrCa and other complex diseases (39). 

 

Materials and Methods 

Samples 

Analyses were based on data from the iCOGS array, a custom array comprising ~200,000 SNPs 

designed to study susceptibility to prostate (PRACTICAL Consortium), breast and ovarian 

cancers(12), together with data from a UK GWAS study (Stage 1) and subsequent custom array 

designed as a replication stage of the Stage 1 GWAS that was genotyped in studies from the UK and 

Australia (Stage 2). The analyses presented here were restricted to 51,997 men (25,723 cases and 

26,274 controls) of European ancestry, samples with other ethnicity in the iCOGS study were small in 

number and were included in a separate study addressing mapping using multi-ethnic sample sets 

(Han et al, submitted). See Eeles et al., 2013(12) for details of the quality control (QC) procedures. 

After QC, data were available for 11,338 samples (5,504 cases and 5,834 controls) from the GWAS, 

and 40,659 samples (20,219 cases and 20,440 controls) from 32 studies in PRACTICAL genotyped 

using the iCOGS array. The majority of studies were population-based or hospital-based case-control 

studies, or nested case-control studies, but some studies selected samples by age or oversampled for 
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cases with a family history; in the latter instance only one case per family was genotyped (S5 Table). 

Only the 40,659 iCOGS samples were used for the FRR estimation to avoid inflation from the Stage 1 

GWAS.  

Genotyping 

UK GWAS Stage 1 and 2 were genotyped using the Illumina Infinium HumanHap550 and a custom 

Illumina iSELECT array respectively (17, 40). 

iCOGS genotyping was conducted using a custom Illumina Infinium array (iCOGS) in seven centres, 

of which five were utilised for PRACTICAL. Genotypes were called using Illumina’s proprietary 

GenCall algorithm. In addition to SNPs selected for replication of GWAS, the iCOGS array included 

dense sets of SNPs surrounding susceptibility variants known at the time of design. For PrCa, we 

included 23 such regions (ccge.medschl.cam.ac.uk/research/consortia/icogs/). To select markers for 

comprehensive interrogation of these densely genotyped regions we identified all known SNPs from 

the March 2010 release of the 1000 Genomes Project with minor allele frequency >0.02 in Europeans 

and selected all SNPs that were correlated with the published GWAS SNPs (at r2>0.1); together with 

a set of SNPs designed to tag all remaining variants at r2>0.9. Approximately 14,000 SNPs were 

successfully designed across these regions.  

Statistical methods 

The primary genotype data was used to impute genotypes for ~17M SNPs/indels using the 1000 

Genomes Project (March 2012 release) as a reference panel and IMPUTE V2(41). Imputation was 

carried out using pre-phasing with 50 iterations and all known prostate cancer regions were imputed 

in an approximately 5 Mb block size. Per-allele odds ratios and standard errors were estimated for 

each SNP by logistic regression. Analysis was stratified by study and, for both the GWAS and 

iCOGS, included eight principal components as covariates. We included imputed data for SNPs with 

quality information scores >0.3. Analyses were performed using SNPTEST(42). Results from the 

iCOGS and GWAS were then combined in a fixed effect meta-analysis using METAL(43). 
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Comparison of Number of Associated Loci among cancer-specific regions 

To establish a suitable significance threshold, we examined 59 known breast cancer regions with no 

known association with PrCa prior to this analysis. Regions were defined as a ±500kb boundary 

around the published breast cancer GWAS SNPs. We interrogated our meta-analysis results (iCOGS 

and stage 1&2 UK GWAS) in order to establish the likelihood that SNPs within these breast cancer 

regions would be associated with prostate cancer by chance at P-value ≤ 10-5 level. Performing this 

comparison revealed that an association P-value=10-5 was sufficiently strict for the avoidance of false 

positive results in the discovery of secondary signals within a region after adjusting for the top signal 

variant. 

 

Identification of Lead SNPs within each region 

To identify independent association signals within a region, we selected all significant SNPs with P-

value ≤10-5 from the fine-mapping dataset (iCOGS, Stage 1 & 2 GWAS) and performed a stepwise 

logistic regression on this set of SNPs for each region. For regions in which the initial analysis 

indicated more than one independent SNP, a second round stepwise logistic regression was performed 

to confirm the presence of additional independent SNPs, after adjusting for the best signal in the 

region. SNPs with P-value ≤10-5 from the adjusted results were included in this analysis, alongside the 

top hit. For regions found to contain multiple independently associated SNPs, haplotype specific odds 

ratios were estimated based on the independent SNPs identified through the stepwise logistic 

regression analysis, using the Haplo.Stats package (http://cran.r-

project.org/web/packages/haplo.stats/index.html) (44). SNPs with a likelihood ratio of ≥1/1000 

relative to the most significant SNP describing each signal  were selected as potential candidate causal 

variants (45). This list was narrowed down further by filtering variants at LD r2 <0.7 with the lead 

SNPs to curate a list of best candidate causal SNPs for each signal. For regions with multiple 

independent SNPs, the lists for the subsequent signals were generated by determining the likelihood 
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ratio relative to the top SNP in that region, adjusted for other signals. We excluded duplicates and 

used a cut-off P-value =6.7x10-5 (P-value for odds of >1/1000 relative to the genome-wide 

significance level of 5x10-8) to trim the list where there was a second signal that did not reach the 

genome-wide significance level (5x10-8). 

 

Contribution to Familial Risk 

The contribution of SNPs to the familial risk of PrCa, under a multiplicative model, was computed 

using the formula 

 

Where 0  is the observed familial risk to first degree relatives of PrCa cases, assumed to be 2 (46, 

47), and k  is the familial relative risk due to locus k. For a single SNP
 k  is given by: 

 

where kp is the frequency of the risk allele for locus k, kk pq 1  and kr is the estimated per-allele 

odds ratio, estimated from the logistic regression model for that SNP. For regions with more than one 

SNP in linkage disequilibrium, we used the extended formula: 

 

Where  is the frequency of haplotype j for the multi-locus region k and  the corresponding risk 

estimate. The haplotype frequencies were estimated using Haplo.Stats, while the haplotype specific 

risk estimates were based on the regression analyses, thus preserving the assumption of a log-additive 

effect of all SNPs. 
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Locus Explorer 

We developed Locus Explorer, a Shiny web application for R, to generate the locus plots shown in 

this manuscript. Locus Explorer can be run locally using R studio with the necessary packages 

installed. The code is available on GitHub. The application is interactive and enables selecting and 

zooming on the locus, selecting annotation tracks, and downloading the resulting plots and the data 

used for plotting. Data for plotting is stored in SQLite database which is accessed using R scripts. 

Plots are displayed mainly using RStudio, ggplot and ggbio(48-51). At the time of submission, the 

application is currently in Beta stage for external users, with most functionality in place and 

performance issues resolved. We are continuously working on additional features and for future 

versions the main focus will be speed of the plotting process. More information is available at GitHub 

(https://github.com/oncogenetics/LocusExplorer). 

Functional Annotation 

We used a number of publicly available prostate epithelia and PrCa ENCODE datasets of chromatin 

features to identify putative regulatory regions at each risk locus(14, 52). The integration of 

chromatin bio-feature annotations with SNP positions was performed using FunciSNP(53). These 

datasets included LNCaP and RWPEI DNase I HS sites (GSE32970) ENCODE; PrEC DNase I HS 

sites (GSE29692) ENCODE; LNCaP CTCF ChIP-seq peaks (GSE33213) ENCODE; LNCaP 

H3K27ac and TCF7L2 (GSE51621)(14), H3K4me3 and H3K4me1 histone modification ChIP-seq 

peaks (GSE27823)(54); FoxA1 ChIP-seq peaks (GSE28264)(55); Androgen Receptor (AR) ChIP-seq 

peaks(56) and AR binding sites (GSE28219)(57); NKX3-1 ChIP-seq peaks (GSE28264)(55). We also 

used the highly conserved set of predicted targets of microRNA targeting (miRcode 11, June 2012 

release)(58). To determine whether any of the putative functional SNPs potentially affect the binding 

of known transcription factors, position-specific frequency matrices were employed from 

Factorbook(14, 59). 
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cis-eQTL analysis 

a/ TCGA PRAD samples  

The genotypes of the variants in the best candidate SNP list in 145 prostate tumour samples and 45 

normal tissue samples were downloaded from TCGA database (Feb 2013). All samples were verified 

as Caucasian descendants. If a variant was not represented in the TCGA data, the genotypes were 

imputed using IMPUTE2. A cis-eQTL analysis was performed for these variants and any transcript 

within a 1 Mb interval (500 kb on either side). The abundance of the transcripts is adjusted for 

somatic copy number changes and CpG methylation changes using method described previously. The 

nominal P values obtained for each risk variant were corrected for the number of transcripts in the 

interval using Benjamini-Hochberg method. Significant associations were defined as a false discovery 

rate (FDR) <0.05. 

b/ EuroBATS samples 

The sample set includes LCLs (N=814), skin (N=716) and adipose tissue (N=766) derived 

simultaneously from a subset of well-phenotyped healthy female twins(32, 33). eQTL discovery is 

described in detail elsewhere(32). In short: 1) we kept the residuals of a mixed model that removed 

the effects of the family structure using the implementation in GenAbel R package. 2) We performed 

a linear regression of those residuals on the SNPs in a 1Mb window around the transcription start site 

for each gene, using MatrixeQTL R package(60). We assessed statistical significance through 2000 

permutations. Prior to the analysis we removed the effects of technical covariates using the factor 

analysis strategy implemented in PEER(61) and transformed the data using a rank normal 

transformation. 
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Legends to Figures  

 

Figure 1 – Locus Explorer plots of 6 complex regions 

a) Region 23_3 at ChrXq12 b) Region 9_1 at Chr9q31 c) Region 2_6 at Chr2q31 d) Region 2_8 at 

Chr2q37 e) Region 14_2 at Chr14q24 f) Region 17_2 at Chr17q12 

Regional association plots detailing regions containing multiple independent association signals. The 

separate lead SNPs are indicated and coloured red, blue, green, orange and purple respectively. 

Original GWAS tag SNPs that were replaced during fine-mapping are marked in grey on the plot. 

Clusters of correlated variants for each signal are distinguished using different colours in the plot and 

on the panel below, including for the original GWAS SNPs. Stronger shading indicates greater 

correlation with the lead SNP, with variants not correlated at r2 ≥ 0.5 with any lead SNP uncoloured. 

Directly genotyped variants are denoted as triangles and imputed variants as circles. Log10 P values 

are shown on the Y axis of the plot. Coloured arrows within the plot mark SNPs that overlap with 

regulatory elements in ENCODE; red for 3’UTRs, blue for coding variants, purple for promoters and 

orange for miRNA sites. 

The position of genes within the region and the genomic coordinates of the plot are shown on the 

lower panel, with genes on the positive strand in green and the negative strand in purple. The LNCaP 

track shows the density of annotated bio-features within the LNCaP cell-line (data from ENCODE). 

The eQTL track indicates genes for which variants in the region are significantly associated with 

expression in prostate tumour or normal tissue. The direction above or below the dashed line denotes 

up and down regulation of expression respectively by the minor allele, whilst a darker box reflects 

stronger association. The positions of the SNPs associated with the eQTL are indicated as coloured 

circles. 
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Figure 2 – Circos Plot overview of functional annotation and eQTL data for fine-mapped PrCa 

risk loci 

The outer ring is a circular ideogram of the human genome annotated with chromosome number. The 

positions of the novel index SNPs for PrCa susceptibility identified through fine-mapping are 

indicated adjacent to this and are colour coded for overlap with enhancer elements in LNCaP in 

orange, promoter regions in green, coding SNPs in red, variants within UTR regions in purple and 

variants with no annotated functionality in black. The inner ring denotes potential candidate genes for 

the refined PrCa regions. Genes for which a SNP in the best candidate list is a significant eQTL in 

prostate tissue in TCGA data are indicated in red, eQTLs in skin tissue from EuroBATS data are 

marked in brown, eQTLs for both prostate and skin in green, and for regions with no significant eQTL 

in either tissue the closest flanking gene is indicated in black. Gene interaction networks between 

potential candidate genes are shown as links in the central portion of the plot. The genes annotated on 

the inner ring were used to construct a network using the BioGRID interaction database filtered to 

exclude ubiquitin and interactions with more than a single intervening gene between the candidate 

genes. Red links indicate an interaction network with the AR gene, other examples of interaction 

highlighted in colour:  blue - RAD23B, green- BMPR1B, orange -PDK1, all other interactions are 

marked in grey. 
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Table 1 – Simple regions: Fine-mapped regions where a single signal remained following 

stepwise logistic regression. 

Fine-mapping identified a single, more strongly associated variant at 39 regions. Imputation quality 

and correlation (LD) between these and the original GWAS signal are indicated. We confirmed 

association with PrCa in populations of European ancestry for 3 variants originally identified in 

#Japanese and 1 variant reported for &Chinese individuals, 2 of which had not been reported for 

Europeans previously. 4 variants previously reported for Japanese or Chinese ancestry populations 

showed no evidence for replication in Europeans in this analysis (see S1 Table). The KLK region at 

Chr19 was not included here as this region had previously been fine-mapped individually (5). Best 

Candidate SNPs are variants correlated at r2 > 0.7 with the lead variant describing an association, and 

with odds of association ≥1/1000 relative to the lead variant for the region. 

eQTL data indicates statistically significant correlation between the new index SNP and gene 

expression in 145 prostate tumour samples from the TCGA dataset. 

* These regions were densely genotyped on the iCOGS chip to fine-map PrCa associations known at 

the time of design.  

** The top SNP in these 6 regions did not achieve genome-wide significance in iCOGS/UKGWAS 

but was significant in a larger meta-analysis study (4). 
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Chr 

(Region) 

Previous hit 

Region Boundary 

(Hg19) 

New Index  

SNP 

(P-value) 

Alleles (ref/alt) - 

OR (95% CI) 

Imputation Quality 

r2 -LD r2 with 

previous hit 

Number of Best Candidate 

SNPs (Number Overlapping 

Bio-features) [eQTLs] 

1q21  

(1_1) 

rs1218582  154334253-155332994 

rs4845695  

(2.7×10-8) 

A/G – 

0.93(0.90-0.95) 

0.97 - 0.5 

78 (26) 

- 

1q32  

(1_2) 

rs4245739  203997926-204997638 

rs199774366 

(5.4×10-11) 

A/AAC - 0.91(0.88-0.94) 0.96 - 0.91 

78 (22) 

- 

2p24  

(2_2) 

rs13385191# 

 

20388443-21388224 

rs9306895  

(6.5×10-10) 

T/C - 0.92(0.90-0.95) 0.92 - 0.58 

5 (1) 

- 

2p21*  

(2_3) 

rs1465618  42985311-43984987 

rs7591218 

(3.8×10-10) 

A/G - 1.09(1.06-1.12) 0.99 - 0.34 

8 (5) 

- 

2p11  

(2_5) 

rs10187424  85294918-86293829 

rs2028900  

(3.1×10-16) 

T/C - 0.90(0.87-0.92) 0.90 - 0.83 

42 (16) 

- 

2q37 

(2_7) 

rs2292884   237943293-238943056 

rs11891348 

 (2.1×10-8) 

T/G - 0.92(0.89-0.95) 0.94 - 0.40 

36 (3) 

MLPH 

3q13  

(3_2) 

rs7611694  112775825-113775563 

rs6769767 

(1.3×10-15) 

A/G - 0.90(0.87-0.93) 0.94 - 0.83 

14 (3) 

- 

4q13  

(4_1) 

rs1894292   73692431-74691942 

rs1894292 

(1.4×10-11) 

A/G - 0.92(0.89-0.94) 1 - n/a 

11 (1) 

- 

4q24*  

(4_3) 

rs7679673   105561718-106561058 

rs34480284 

(8.0×10-29) 

T/TA - 1.16(1.13-1.18) 0.99 - 0. 98 

13 (2) 
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5p15  

(5_2) 

rs12653946# 1396112-2395482 

rs10866527  

(1.1×10-8) 

T/C - 1.08(1.06-1.11) 0.76 - 0.75 

6 (3) 

IRX4 

5p12  

(5_3) 

rs2121875   43687710-44686471 

rs1482679  

(2.7×10-9) 

A/G - 0.92(0.89-0.95) 0.81 - 0.91 

91 (0) 

- 

6p21  

(6_1) 

rs130067&  30548676-31548176 

rs2596546  

(1.0×10-9) 

A/G - 1.09(1.06-1.12) 0.97 - 0.02 

1 (0) 

- 

6p21  

(6_2) 

rs3096702   31711572-32711433 

rs115306967** 

(6.4×10-7) 

C/G - 0.93(0.90-0.96) 0.97 - 0.06 

42 (9) 

- 

6p21  

(6_3) 

rs1983891#  41036770-42036395 

rs6458228  

(4.7×10-8) 

A/C - 1.08(1.05-1.11) 0.92 - 0.90 

33 (12) 

- 

6p21  

(6_4) 

rs2273669  108785991-109784474 

rs12209480**  

(8.9×10-7) 

A/G - 1.12(1.07-1.16) 0.88 - 0.39 

4 (0) 

- 

6q22  

(6_5) 

rs339331# 116827662-117827493 

rs200820108 

(2.0×10-10) 

A/ATT - 0.90(0.87-0.94) 0.91 - 0.64 

34 (4) 

- 

6q21* 

(6_6) 

rs1933488    152941182-153941032 

rs3968480**  

(8.9×10-7) 

A/G - 0.90(0.87-0.92) 0.97 - 0.92 

54 (4) 

RGS17 

7p15  

(7_1) 

rs12155172 20529474-21529302 

rs10713532  

(4.1×10-14) 

T/TG - 0.89(0.86-0.92) 0.99 - 0.99 

3 (1) 

- 

7q21* 

(7_3) 

rs6465657  97316451-98316171 

rs6965016  

(1.5×10-20) 

A/C - 0.89(0.86-0.91) 1 - 0.99 

54 (15) 

- 

8p21  rs11135910   25392758-26391862 rs6984769**  T/C - 1.10(1.06-1.13) 0.88 - 0.88 30 (5) 
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(8_2) (1.9×10-7) EBF2 

9q31  

(9_1) 

rs817826&  109656878-110656064 

rs1771718  

(1.6×10-8) 

T/C - 0.92(0.89-0.95) 0.83 - 0.03 

47 (31) 

- 

10q11*  

(10_1) 

rs10993994   51049548-52049482 

rs10993994  

(6.2×10-72) 

T/C - 1.26(1.24-1.29) 1 - n/a 

1 (1) 

- 

10q24  

(10_2) 

rs3850699  103914882-104913940 

rs34032774  

(1.4×10-8) 

CT/C - 1.09(1.06-1.11) 0.91 - 0.94 

33 (10) 

C10orf32/TMEM180/AS3MT 

10q26* 

(10_4) 

rs4962416  126447545-127446195 

rs67609008**  

(6.0×10-5) 

T/C - 0.94(0.91-0.97) 0.97 - 0.42 

10 (4) 

CTBP2 

11p15*  

(11_1) 

rs7127900 1733857-2733077 

rs11043143  

(2.3×10-42) 

T/C - 1.24(1.21-1.27) 1 - 0.97 

26 (16) 

ASCL2 

11q22  

(11_4) 

rs11568818  101902241-102901389 

rs11568818  

(2.0×10-10) 

T/C - 1.09(1.06-1.12) 1 - n/a 

2 (2) 

MMP7 

12q13  

(12_1) 

rs10875943  49176582-50175686 

rs10875943  

(4.2×10-12) 

T/C - 0.91(0.88-0.93) 1 - n/a 

6 (3) 

- 

12q13*  

(12_2) 

rs902774 

 

52774067-53773299 

rs73110471  

(7.4×10-19) 

A/G - 1.18(1.14-1.22) 0.98 - 0.49 

28 (6) 

- 

14q22  

(14_1) 

rs8008270  52872457-53872104 

rs62003539 

 (4.5×10-13) 

T/C - 1.15(1.11-1.19) 0.97 - 0.66 

6 (1) 

- 

17p13  

(17_1) 

rs684232   119162-1118931 

rs461251 

(6.2×10-15) 

A/G - 0.90(0.88-0.93) 1 - 0.90 

13 (5) 

VS53/FAM57A 
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17q24* 

(17_4) 

rs1859962 68609232-69608508 

rs8072735  

(2.4×10-50) 

T/C - 1.21(1.19-1.24) 0.99 - 0.76 

19 (9) 

- 

18q23  

(18_1) 

rs7241993  76177342-77176537 

rs9959454  

(3.9×10-9) 

A/G - 1.09(1.06-1.12) 1 - 0.81 

12 (3) 

- 

19q13*  

(19_1) 

rs8102476 38235839-39235539 

rs12610267 

(3.7×10-13) 

A/G - 1.10(1.07-1.12) 0.95 - 0.81 

15 (6) 

CATSPERG 

19q13* 

(19_2) 

rs11672691 41485821-42485578 

rs74738513 

(2.5×10-12) 

A/T - 0.90(0.87-0.93) 0.85 - 0.98 

8 (4) 

- 

20q13  

(20_2) 

rs6062509  61863226-62862439 

rs1058319  

(1.4×10-14) 

T/C - 0.84(0.80-0.88) 0.85 - 0.22 

1 (1) 

- 

22q13  

(22_1) 

rs9623117  39952275-40952051 

rs11704314**  

(1.7×10-6) 

A/G - 0.92(0.88-0.95) 0.86 - 0.06 

2 (2) 

- 

Xp22  

(23_1) 

rs2405942  9314154-10314083 

rs2405943  

(3.1×10-11) 

T/C - 0.93(0.91-0.95) 1 - 0.90 

10 (0) 

- 

Xp11*  

(23_2) 

rs5945619  50742323-51741595 

rs1541241  

(8.0×10-33) 

T/G - 1.12(1.10-1.14) 1 - 0.95 

93 (0) 

- 

Xq12  

(23_3) 

rs5919432 66522881-67520014 

rs4446868  

(3.6×10-8) 

T/G - 0.93(0.90-0.96) 0.77 - 0.55 

46 (0) 

- 
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Table 2 – Complex regions: Multiple independent associations were identified in 16 regions 

following stepwise logistic regression. 

Following multiple stepwise logistic regression analyses, multiple independent association signals 

were identified in 16 regions. The TERT at Chr5p15 and Chr8q24 regions which are also known to 

harbour multiple independent PrCa susceptibility loci were not included in this analysis as they had 

previously been fine-mapped individually (6, 7). Imputation quality and correlation (LD) between the 

novel lead SNPs and the original GWAS signal(s) are indicated, as are the correlations between the 

most strongly associated variant in this analysis and the additional independent hits within the region.  

Best Candidate SNPs are variants correlated at r2 > 0.7 with the lead variant describing an association, 

and with odds of association ≥1/1000 relative to the lead variant for the region. eQTL data indicates 

statistically significant correlation between the new index SNP and gene expression in 145 prostate 

tumour samples from the TCGA dataset.  

* These regions were densely genotyped on the iCOGS chip to fine-map PrCa associations known at 

the time of design. 
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Chr 

(Region) 

Previous hit(s) 

Region Boundaries 

(Hg19) 

Best Signal in 

Meta-analysis 

(P-value) 

Independent 

Lead SNPs 

Alleles (ref/alt) - 

OR (95%) in the final 

model  

Imputation Quality r2: LD (r2) 

with original index SNP 

(first/second original SNP) : 

LD (r2) with new best signal 

Number of Best 

Candidate SNPs (Number 

Overlapping Bio-features)  

[eQTLs] 

2p15* 

(2_4) 

rs721048 62631731-63631731 

rs58235267 

(3.9×10-26) 

rs58235267 

(3.1×10-21) 

C/G - 0.88(0.85-0.90) 0.88 : 0.12 : n/a 

1 (1) 

- 

rs901532  

(3.5×10-6) 

T/C - 1.10(1.06-1.14) 0.99 : 0.07 : 0.03 

3 (1) 

EHBP1 

2q31* 

(2_6) 

rs12621278 

172811553-

173811553 

rs13410475 

(8.3×10-26) 

rs13410475 

(2.1×10-15) 

A/C - 0.78(0.72-0.84) 0.97 : 1 : n/a 

74 (18) 

- 

rs12151618 

(3.36×10-7) 

T/C - 0.92(0.88-0.95) 0.93 : 0.09 : 0.09 

4 (0) 

- 

2q37  

(2_8) 

rs3771570 

241882864-

242882864 

rs111770284 

(1.6×10-13) 

rs111770284 

(3.03×10-12) 

T/C - 1.13(1.10-1.17) 0.85 : 0.03 : n/a 

4 (3) 

- 

rs183997311 

(8.63×10-8) 

A/G - 0.67(0.53-0.82) 0.58 : 0.002 : 0.002 

7 (2) 

- 

3p12* 

(3_1) 

rs2660753 

rs2055109 

 

86610674-87967332 

rs2088396 

(6.5×10-23) 

rs2088396 

(5.75×10-15) 

C/G - 0.90(0.88-0.93) 0.99 : (0.03/0.01) : n/a 

17 (0) 

- 

rs143351723 

(2.88×10-10) 

C/G - 0.85(0.80-0.90) 0.97 : (0.36 : 0.03) : 0.06 

51 (5) 

- 

rs114278123 A/G - 0.86(0.79-0.93) 0.99 : (0/0) : 0.008 7 (2) 
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(1.75×10-5) - 

3q21* 

(3_3) 

rs10934853 

 

127710474-

128284711 

rs2811485 

(1.1×10-15) 

rs2811485   

(4.76×10-15) 

T/G - 1.12(109-1.15) 0.99 : 0.81 : n/a 

78 (10) 

- 

rs56325233 

(2.21×10-6) 

C/G - 1.07(1.04-1.10) 0.94 : 0.003 : 0.0007 

28 (0) 

- 

3q26*  

(3_5) 

rs10936632   

169689793-

170395852 

rs78416326 

(6.4×10-25) 

rs78416326 

(1.8×10-28) 

C/G - 0.83(0.79-0.86) 0.80 : 0.13 : n/a 

2 (0) 

- 

rs11288195  

(7.49×10-9) 

A/AG - 1.12(1.08-1.16) 0.98 : 0.122 : 0.028 

2 (1) 

- 

4q22*  

(4_2) 

rs12500426 

rs17021918 

 

95018784-95600782 

rs7682375 

(4.0×10-19) 

rs7682375 

(1.10×10-6) 

A/T - 1.09(1.05-1.12) 1 : (0.38/0.69) : n/a 

20 (6) 

BMPR1B 

rs6853490 

(4.78×10-6) 

A/G - 0.93(0.90-0.96) 0.95 : (0.76/0.24) : 0.30 

7 (3) 

BMPR1B 

6p25* 

 (6_7) 

rs9364554 

 

160374745-

161323288 

rs4646284 

(3.2×10-47) 

rs4646284 

 (5.40×10-38) 

T/TG - 0.81(0.78-0.84) 0.77 : 0.04 : n/a 

1 (1) 

- 

rs2063347  

(4.58×10-7) 

A/G - 1.07(1.04-1.10) 1 : 0.58 : 0.022 

18 (8) 

- 

7p15* 

(7_2) 

rs10486567 

 

27550633-28102614 

rs10486567 

(7.3×10-22) 

rs10486567 

(2.62×10-15)  

A/G - 0.88(0.85-0.91) 1 : 1 : n/a 

22 (7) 

- 

rs200362064 

(9.04×10-6) 

T/TGATA - 0.94(0.92-

0.97) 

0.97 : 0.034 : 0.034 

15 (6) 

- 
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8p21* 

(8_1) 

rs2928679 

rs1512268  

23100674-23548146 

rs13272392 

(1.3×10-26) 

rs13272392 

(8.7×10-31) 

A/T - 0.86(0.83-0.89) 1 : (0.00003/0.99) : n/a 

15 (3) 

LOXL2 

rs200262583 

(3.22×10-12) 

A/AGTCCTCCTTTTCT

T -  

0.90(0.87-0.93) 

0.88 : (0.374/0.018) : 0.019 

49 (31) 

- 

11q13*  

(11_3) 

rs7931342  

rs10896438 

rs12793759 

68811777-69494148 

rs12275055 

(4.7×10-53) 

rs12275055 

(6.1×10-23) 

A/G - 0.83(0.79-0.87) 1 : 0.19 : n/a 

5 (1) 

- 

rs10792032 

(3.5×10-17) 

A/G - 1.13(1.10-1.16) 0.97 : 0.90 : 0.19 

30 (4) 

- 

rs36225067 

(1.34×10-8) 

A/C - 0.80(0.73-0.88) 0.75 : 0.002 : 0.002 

16 (13) 

- 

12q24  

(12_3) 

rs1270884 

 

114632506-

115103229 

rs1270884 

(6.8×10-9) 

rs1270884  

(1.34×10-8) 

A/G - 1.08(1.05-1.10) 1 : 1 : n/a 

23 (0) 

- 

rs61933115 

(7.58×10-6) 

A/G - 1.09(1.05-1.13) 0.52 : 0.0008 : 0.0008 

1 (0) 

- 

14q24  

(14_2) 

rs7141529 

 

68974508-69135467 

rs7141529 

(6.5×10-11) 

rs7141529  

(5.27×10-12) 

T/C - 0.92(0.89-0.94) 1 : 1 : n/a 

2 (1) 

- 

rs2189517  

(7.80×10-6) 

A/G - 1.06(1.03-1.09) 0.96 : 0.002 : 0.002 

8 (1) 

- 

rs17105852  

(7.16×10-5) 

A/C - 0.86(0.79-0.94) 0.97 : 0.001 : 0.001 

1 (1) 

- 
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17q12* 

(17_2) 

rs11649743 

rs4430796 

 

35740855-36249855 

rs11263763 

(2.1×10-66) 

rs11263763 

(1.0×10-62) 

A/G - 1.25(1.22-1.27) 0.97 : (0.008/0.94) : n/a 

5 (3) 

- 

rs718961  

(5.35×10-12) 

A/G - 0.90(0.87-0.93) 0.98 : (0.76/0.005) : 0.005 

4 (4) 

- 

rs2229295  

(3.75×10-7) 

T/G - 1.10(1.06-0.13) 0.96 : (0/0) : 0.0003 

1 (1) 

- 

17q21 

 (17_3) 

rs11650494 

 

46845186- 47936749 

rs138263737 

(7.0×10-12) 

rs138263737 

(5.7×10-10) 

T/C - 1.93(1.72-2.14) 0.60 : 0.002 : n/a 

1 (0) 

- 

rs11655191 

(1.82×10-7) 

T/C - 1.13(1.09-1.18) 0.96 : 0.76 : 0.0004 

70 (20) 

ZNF652 

22q13 

 (22_2) 

rs5759167 

 

43000212-44000212 

rs5759167 

(1.8×10-29) 

rs5759167  

(6.5×10-24) 

T/G - 0.87(0.85-0.90) 1 : 1 : n/a 

2 (1) 

- 

rs5751435  

(4.55×10-10) 

T/C - 0.88(0.84-0.92) 0.98 : 0.02 : 0.02 

15 (6) 

TTLL12/MCAT 
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Abbreviations 

eQTL - Expression Quantitative Trait Loci 

FRR - Familial Relative Risk 

GWAS - Genome-wide Association Study 

iCOGS - International Collaborative Oncological Gene-environment Study 

PRACTICAL - PRostate cancer AssoCiation group To Investigate Cancer Associated aLterations in 

the genome 

PrCa - Prostate Cancer 

SNP - Single Nucleotide Polymorphism 
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