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SEXTONIONS AND THE MAGIC SQUARE

BRUCE W. WESTBURY

Abstract

Associated to any complex simple Lie algebra is a non-reductive complex Lie algebra which we
call the intermediate Lie algebra. We propose that these algebras can be included in both the
magic square and the magic triangle to give an additional row and column. The extra row and
column in the magic square correspond to the sextonions. This is a six-dimensional subalgebra of
the split octonions which contains the split quaternions.

1. Introduction

The Freudenthal magic square is a 4 × 4 array of complex semisimple Lie
algebras. The rows and columns are indexed by the real division algebras and
the square is symmetric. This is magic because the row (or column) indexed by the
octonions consists of four of the five exceptional simple Lie algebras. There are three
constructions which give this square, namely the Tits construction, the Vinberg
construction and the triality construction. Each of these constructions can be
extended to give a rectangle of Lie algebras. There is an alternative point of view
which gives a triangle of Lie algebras.

In this paper we introduce the sextonions as a six-dimensional real alternative
algebra intermediate between the split quaternions and the split octonions. Then we
argue that the above magic square, magic rectangle and magic triangle should all be
extended to include an extra row and column. If the rows or columns are indexed by
division algebras then this extra row or column is indexed by the sextonions. In the
following extended magic square we give the derived algebras of the intermediate
algebras.

A1 A2 C3 C3.H14 F4

A2 2A2 A5 A5.H20 E6

C3 A5 D6 D6.H32 E7

C3.H14 A5.H20 D6.H32 D6.H32.H44 E7.H56

F4 E6 E7 E7.H56 E8

(1)

The notation in this table is that G.Hn means that G has a representation V of
dimension n with an invariant symplectic form, ω. Then Hn means the Heisenberg
algebra of (V, ω) and G.Hn means the semidirect product of G and Hn. The entry
at the intersection of the additional row and column is the bigraded algebra (20).

These intermediate algebras are also examples of a more general construction.
For example, the intermediate algebras for the symplectic algebras are the odd
symplectic algebras whose character theory is studied in [19], [20], [21] and [25].
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In Section 5.1 of this paper we also extend the exceptional series of Lie algebras
to include some Lie superalgebras. Also in Section 6 we construct further dual
reductive pairs in the exceptional Lie algebras and hence extend the magic triangle.
These two extensions are distinct but both involve the intermediate algebras.

Our two general references are the survey article [2] on the four real division
algebras and [3] which gives the three constructions of the magic squares of real
Lie algebras and gives isomorphisms between the Lie algebras given by these con-
structions.

This paper is a revised version of the preprint referred to in [18]. There is some
overlap between these two articles.

2. Intermediate Lie algebras

Our discussion of intermediate algebras is based on the grading associated to
extremal elements. The main application of these has been to the study of simple
modular Lie algebras (see, for example, [4]). Another application is in [5].

Definition 2.1. A triple in g is a set of three elements of g, {E,F,H}, such
that

[E,F ] = H, [H,E] = 2E, [H,F ] = −2F.

Definition 2.2. An element e ∈ g is extremal if the one-dimensional space
with basis e is an inner ideal. This means that for all y ∈ g, [e, [e, y]] is a scalar
multiple of e. A triple (E,H, F ) is extremal if E (and therefore F ) is extremal.

Let g be a complex simple Lie algebra. Then extremal triples can be constructed
by choosing a Borel subalgebra and a root α with the same length as the high-
est root. Then there is an extremal triple with E in the root space of α and F in
the root space of −α and H = [E,F ].

Conversely every extremal triple arises this way. Let {E,H, F} be an extremal
triple. Let g be the centraliser of this triple and let h be a Cartan subalgebra of g.
Then a Cartan subalgebra of g is given by taking the direct sum of h with the
vector space spanned by H . Then both E and F span root spaces; the roots are of
the form ±α and have the same length as the highest root.

In particular this shows that extremal triples are unique up to automorphism
of g.

Any triple gives a grading on g by taking the eigenspaces of H . For an extremal
triple this grading has the following form.

−2 −1 0 1 2
C V g ⊕ C V C

(2)

Alternatively we can define g to be the centraliser of the triple. Then we can con-
sider the adjoint representation of g as a representation of the subalgebra
g ⊕ sl(2). This representation decomposes as

(g ⊗ 1) ⊕ (1 ⊗ sl(2)) ⊕ (V ⊗A), (3)
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where A is the two-dimensional fundamental representation of sl(2). This shows
that g and sl(2) are a dual reductive pair.

The intermediate algebra of g is defined to be the non-negative part of the graded
algebra (2). This is denoted by gP . This subalgebra can also be defined as the
centraliser of E in g. The derived subalgebra gP

′ has codimension 1. The degree
two component of these algebras is a one-dimensional ideal. Let the quotient of gP

by this ideal be gR. This gives the following commutative diagram.

gP
′ = g ⊕ V ⊕ C

��

�� gP = (g ⊕ C) ⊕ V ⊕ C

��
gR

′ = g ⊕ V �� gR = (g ⊕ C) ⊕ V

(4)

The horizontal arrows are inclusions of derived subalgebras and the vertical arrows
are surjective with one-dimensional kernel. The homomorphism gP

′ → gR
′ is a

universal central extension of the perfect Lie algebra gR
′. Thus gP is constructed

from gR
′ by first taking a central extension and then adjoining a grading operator.

This is analogous to the construction of the Kac–Moody algebra from the loop
algebra.

The degree zero components of gP and gR are the centraliser of H in g and the
degree zero components of gP

′ and gR
′ are the centraliser of the triple. Hence in all

four cases the degree zero component is reductive. In all four cases the algebra is
graded and so the sum of the components with positive degree is a nilpotent ideal.
The quotient by this ideal is reductive and so this ideal is the nilpotent radical.

The main reason for considering the two algebras gP and gP
′ is that they are both

subalgebras of g which contain g. The main reason for considering the two quotient
algebras is that they arise when considering finite dimensional representations.
More precisely, the two vertical arrows in (4) give restriction functors on the cate-
gories of finite dimensional representations. These two functors are isomorphisms.

2.1. Examples

For the special linear algebras this structure can be seen as follows. Let U and
V be any two vector spaces. Then gl(U) ⊕ gl(V ) is a subalgebra of g = gl(U ⊕ V ).
Then the restriction of the adjoint representation of g to this subalgebra decomposes
as

gl(U) ⊕ gl(V ) ⊕ U ⊗ V ∗ ⊕ U∗ ⊗ V.

If we take the special linear group then we get

gl(U) ⊕ sl(V ) ⊕ U ⊗ V ∗ ⊕ U∗ ⊗ V.

If we take V to be two dimensional then V and V ∗ are equivalent representations
and so we see that

sl(n+ 2) = gl(n) (5)

and the symplectic representation is the sum of the vector representation and its
dual.

For the symplectic algebras this structure can be seen as follows. Let U and V
be symplectic vector spaces. Then sp(U)⊕ sp(V ) is a subalgebra of g = sp(U ⊕V ).
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Then the restriction of the adjoint representation of g to this subalgebra decomposes
as

sp(U) ⊕ sp(V ) ⊕ U ⊗ V. (6)

Taking V to be two dimensional we see that

sp(2n+ 2) = sp(2n)

and the symplectic representation is the vector representation. These are the Lie
algebras of Lie groups known as intermediate symplectic groups or odd symplectic
groups. The characters and representations of these groups are studied in [20]
and [25].

For the special orthogonal algebras this structure can be seen as follows.
Let U and V be vector spaces with non-degenerate symmetric inner products.
Then so(U) ⊕ so(V ) is a subalgebra of g = so(U ⊕ V ). Then the restriction of the
adjoint representation of g to this subalgebra decomposes as

so(U) ⊕ so(V ) ⊕ U ⊗ V. (7)

Taking V to be four dimensional and using the isomorphism so(4) ∼= so(3) ⊕ so(3)
we see that

so(n+ 4) = so(3) ⊕ so(n)

and the symplectic representation is the tensor product of the two-dimensional
representation of so(3) with the vector representation of so(n).

For the exceptional simple Lie algebras we have the following table.

g G2 F4 E6 E7 E8

g A1 C3 A5 D6 E7

dim(V ) 4 14 20 32 56

In all these five cases the representation V is irreducible.

2.2. Structure

In this section we make some observations based on the above examples.
The first observation is that g can also be described as the reductive Lie algebra

whose rank is one less than the rank of g and where the Dynkin diagram is
given by removing the support of the highest root from the Dynkin diagram of g.
Also the subalgebra gP is the parabolic subalgebra associated to the same subset
of the simple roots.

Another property that can be observed in these examples is that the representa-
tion V is miniscule. In fact this is given a direct proof in [4, Section 3].

Finally we observe that these Lie algebras have some of the properties of a
Kac–Moody algebra or Borcherds algebra. The basis of these properties is the
observation that gP is the semidirect product of a semisimple Lie algebra and a
Heisenberg algebra. A semisimple Lie algebra is a Kac–Moody algebra. It is shown
in [13, Section 2.8] that a Heisenberg algebra is the Kac–Moody algebra associated
to the zero Cartan matrix.

Next we observe that each of these intermediate algebras has a triangular decom-
position. Let h be a Cartan subalgebra of g. Then a Cartan subalgebra of gP is given
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by taking h⊕C in degree zero, zero in degree one and C in degree two. Note that this
is nilpotent but not abelian. This Cartan subalgebra also has the property that any
non-zero ideal of gP contains a non-zero element of the Cartan subalgebra.

Now consider a triangular decomposition of g,

g = n− ⊕ h ⊕ n+.

Then we decompose V as V = V− ⊕ V+ where each subspace is a Lagrangian
subspace and V− (respectively V+) is invariant under n− (respectively n+). Then we
have the triangular decomposition of gP :

(n− ⊕ V−) ⊕ h ⊕ (n+ ⊕ V+).

In general gP fails to be a Borcherds algebra since there is no non-degenerate
invariant symmetric bilinear form. However such a form does exist for the interme-
diate algebra of g = sl(n + 2). This form is constructed by taking the sum of the
Killing form on g = sl(n) and the form on the complementary Heisenberg algebra
constructed in [13, Section 2.8].

2.3. Superalgebras

This structure can also be extended to the basic Lie superalgebras by choosing an
extremal triple in the even algebra. Our notation for the dimension of a superspace
is (n | m) where n is the dimension of the even subspace and m is the dimension of
the odd subspace.

For the special linear algebras this structure can be seen as follows. Let U and
V be any two superspaces. Then gl(U) ⊕ gl(V ) is a subalgebra of g = gl(U ⊕ V ).
Then the restriction of the adjoint representation of g to this subalgebra decomposes
as

gl(U) ⊕ gl(V ) ⊕ U ⊗ V ∗ ⊕ U∗ ⊗ V.

If we take the special linear group then we get

gl(U) ⊕ sl(V ) ⊕ U ⊗ V ∗ ⊕ U∗ ⊗ V. (8)

If we take V to have dimension (2 | 0) then V and V ∗ are equivalent representations
and so we see that

sl(n+ 2 | m) = gl(n | m)

and the symplectic representation is the sum of the vector representation and its
dual. Alternatively, if we take V to have dimension (0 | 2) then V and V ∗ are
equivalent representations and so we see that

sl(n | m+ 2) = gl(n | m)

and the symplectic representation is the sum of the vector representation and its
dual.

For the orthosymplectic algebras this structure can be seen as follows. Let U and
V be superspaces with non-degenerate symmetric inner products. Then osp(U) ⊕
osp(V ) is a subalgebra of g = osp(U ⊕ V ). Then the restriction of the adjoint
representation of g to this subalgebra decomposes as

osp(U) ⊕ osp(V ) ⊕ U ⊗ V. (9)
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This includes (7) and (6) as special cases. Taking V to have dimension (4 | 0) and
using the isomorphism so(4) ∼= so(3) ⊕ so(3) we see that

osp(n+ 4 | m) = so(3) ⊕ osp(n | m)

and the symplectic representation is the tensor product of the two-dimensional
representation of so(3) with the vector representation of so(n). Alternatively, taking
V to have dimension (0 | 2) we see that

osp(n | m+ 2) = osp(n | m)

and the symplectic representation is the vector representation of osp(n | m).
For the exceptional simple Lie superalgebra G(3) the even algebra is A1⊕G2 and

the odd part is the tensor product of the two-dimensional fundamental representa-
tion ofA1 with the seven-dimensional fundamental representation ofG2. This means
we can take G(3) = G2 and the symplectic representation is the superspace (0 | V )
where V is the seven-dimensional fundamental representation of G2.

For the exceptional simple Lie superalgebra F (4) the even algebra is A1 ⊕ B3

and the odd part is the tensor product of the two-dimensional fundamental repre-
sentation of A1 with the eight-dimensional spin representation of B3. This means
we can take F (4) = B3 and the symplectic representation is the superspace (0 | V )
where V is the eight-dimensional spin representation of B3.

3. Sextonions

In this section we construct the sextonions. This is a six-dimensional real
algebra. This is a subalgebra of the split octonions which is closed under con-
jugation. This algebra was explicitly constructed in [15]. This algebra was used
in [12] to study the conjugacy classes in G2 in characteristics other than 2 or 3.
The sextonions were also constructed in [22, Theorem 5] and shown to be a maximal
subalgebra of the split octonions.

The real normed division algebras are the real numbers, the complex numbers,
the quaternions and the octonions. These are denoted by

R,C,H,O.

Each algebra is obtained from the previous one by Cayley–Dickson doubling.
These can be complexified to give complex algebras. These complex algebras are

R ⊗ C = C, C ⊗ C = C ⊕ C, H ⊗ C = M2(C), O ⊗ C.

The three complex algebras other than C have a second real form. These real forms
are denoted C̃, H̃ and Õ. There are isomorphisms C̃ = R ⊕ R and H̃ = M2(R).
The normed division algebras are called the compact forms and this second real
form is called the split real form. These split real forms are composition algebras
but are not division algebras. The sextonions are intermediate between the split
quaternions and the split octonions.

The sextonions can be constructed as follows. The split quaternions are isomor-
phic to the algebra of 2×2 matrices. The norm is given by the determinant and the
conjugate of a matrix is the adjoint matrix. This algebra has a unique alternative
bimodule which is not associative. This is the two-dimensional Cayley module.
This result is given in [11]. This bimodule can be constructed by taking a simple
left module M with action denoted by juxtaposition and defining new left and right
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actions by
q.m = q̄m and m.q = qm

for all q ∈ H̃ and all m ∈M .

Definition 3.1. Let S̃ be the split null extension of H̃ by M . This means that
we put S̃ = H̃ ⊕M and define a multiplication by

(q1,m1)(q2,m2) = (q1q2, q̄1m2 + q2m1)

for all q1, q2 ∈ H̃ and all m1,m2 ∈M . The norm is given by

N(q,m) = det(q)

and if x = (q,m) then x̄ = (q̄,−m).

Next we show that this is a subalgebra of the split octonions. The split octonions
can be constructed from the split quaternions by the Cayley–Dickson doubling
process. Put Õ = H̃ ⊕ H̃ and define a multiplication by

(A1, B1)(A2, B2) = (A1A2 − εB2B1, A1B2 +A2B1) (10)

and define (A,B) = (A,−B) and |(A,B)| = |A| + ε|B|.
If we apply this to H and take ε > 0 then we get the compact octonions and if

ε < 0 then we get the split octonions. If we apply this to the split quaternions then
we get the split octonions for all ε �= 0.

Then we see that if we take B to have zero second column then we obtain the
sextonions as a subalgebra.

Note also that we have two commuting actions of SL2(R). Let X ∈ SL2(R) so
X = X−1. Then these actions are given by

(A,B) �→ (XAX−1, XB) (11)

and
(A,B) �→ (A,BX). (12)

The sextonions are not a division algebra or a composition algebra or a normed
algebra since there is a non-trivial radical given by the Cayley module M and this
is the null space for the inner product. However they are a subalgebra of the split
octonions which is closed under conjugation. There is a multiplication, a conjugation
and an inner product which are given in Definition 3.1. This structure is also given
by restriction on the split octonions so any identities which involve this structure
and which hold in the split octonions also hold in the sextonions.

The octonions have a 3-step Z-grading. The map A �→ (A, 0) is an inclusion of H̃

in Õ and we take the image to be the subspace of degree zero. The subspace of pairs
of the form (0, B) is a left module. This has a decomposition as a left module into a
subspace U− where the second column of B is zero and U+ where the first column of
B is zero. Take U− to be the subspace of degree −1 and U+ to be the subspace of
degree +1. Note that the product of two elements of U− or U+ is zero so this is a
grading.

−1 0 1
U− H̃ U+

(13)
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Since the multiplication is needed for later calculations we give it here explicitly.
This is closely related to the description of the split octonions in [18]:

u1

A1

v1





u2

A2

v2


 =


 A1u2 +A2u1

A1A2 + (u2, v2)(u1, v1)
A1v2 +A2v1


 , (14)

where (u, v) means put the two column vectors u and v side by side to form a
matrix.

4. Elementary series

There are three simple constructions which associate a Lie algebra to the four
normed division algebras. These can all be extended to the sextonions. In this
section we show that for each of these constructions we have that g(Õ) = g(H̃) and
that the intermediate algebra is g(S̃).

4.1. Derivations

The first construction is the derivation algebra. The derivation algebras of the
composition algebras are as follows.

R C H O

0 0 A1 G2

First we look at the derivation algebra of Õ. The model we take for this is the
Cayley–Dickson double of H̃ ∼= M2(R) given in (10).

The grading in (13) induces a 5-step Z-grading on the derivation algebra.
This grading is given by

−2 −1 0 1 2
R V der(H̃) ⊕ R V R

(15)

where V is the four-dimensional irreducible representation of der(H̃) ∼= sl2(R).
Let E and F be the maps

E : (u,A, v) �→ (0, 0, u),
F : (u,A, v) �→ (v, 0, 0).

Then these can be shown to be derivations by direct calculation. Put H = [E,F ];
then {E,H, F} is a triple. Note that the Lie subalgebra given by this triple is the
Lie algebra of the second action of SL2(R) in (12).

Also the grading on Õ in (13) is also the grading by the eigenvalues of H .
This implies that the grading on the derivation algebra induced by the grading
in (13) is also the grading by the eigenvalues of H .

A direct calculation also shows that any derivation of degree two is a scalar
multiple of E. Hence the triple {E,H, F} is an extremal triple.

Now the derivation algebra of O was identified with the Lie algebra G2 by Elie
Cartan in 1915. Take an extremal triple in G2 with E in the highest root space



SEXTONIONS AND THE MAGIC SQUARE 463

and F in the lowest root space. Then by inspecting the root diagram we see that
the associated 5-step Z-grading is given by (15).

Alternatively we can take the construction of the derivation algebra of Õ given
in [27]. This construction shows that the derivation algebra has a grading by the
cyclic group of order three with components W , SL(W ), W ∗ in degrees −1, 0, 1
whereW has dimension three. Then take an extremal triple in SL(W ). The gradings
on W and W ∗ given by the eigenspaces of H are both given by taking one-
dimensional spaces in dimensions −1, 0 and 1. This shows that the dimensions
of the graded components of the derivation algebra are as given in (15).

Next we consider the derivations of the sextonions.

Definition 4.1. Define derS̃(Õ) to be the subalgebra of derivations of Õ which
preserve S̃.

Then the main result of this section is that the restriction homomorphism
derS̃(Õ) → der(S̃) is the homomorphism gP → gR in (4) for g = der(Õ).

It is clear from (15) that we can identify gP with derS̃(Õ). Then this induces a
homomorphism of graded Lie algebras gP

′ → der(S̃). Our aim now is to show that
this is an isomorphism. It is clear that this is an inclusion and that both graded
Lie algebras have non-zero components only in degrees zero and one. The graded Lie
algebra gP

′ has gl(2) in degree zero and a four-dimensional irreducible representa-
tion in degree one.

The derivations of S̃ of degree zero are a subspace of End(H̃) ⊕ End(U).
The derivations in End(H̃) are the derivations of H̃ which give a Lie algebra
isomorphic to sl(2). A calculation shows that a derivation in End(U) is a scalar
multiple of the grading operator H .

The derivations of S̃ of degree one are a subspace of Hom(H̃, U) which has
dimension eight. This space has an action of the degree zero derivations and the
subspace of derivations is invariant under this action.

A derivation of S̃ of degree one is of the form

(A, u) �→ (0, ψ(A)),

where ψ : End(U) → U is a linear map. The condition on ψ for this to be a
derivation is that

ψ(A1A2) = A1.ψ(A2) +A2.ψ(A1)

for all A1, A2 ∈ End(U).
Putting A2 = 1 shows that ψ(1) = 0.
Now assume that A1 and A2 have zero trace. Then

ψ([A1, A2]) = −2A1ψ(A2) + 2A2ψ(A2).

Then if we choose a triple this shows that ψ(E) and ψ(F ) are arbitrary and that
these values then determine ψ(H) and hence ψ.

4.2. Triality

Let A be a composition algebra. Then the triality group Tri(A) consists of triples
(θ1, θ2, θ3) in SO(A) × SO(A) × SO(A) such that

θ1(a)θ2(b) = θ2(ab)
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for all a, b ∈ A. Let tri(A) be the Lie algebra of Tri(A). The triality algebras of the
composition algebras are as follows.

R C H O

0 T2 3A1 D4

The three conditions θi(1) = 1 define three subgroups. These three subgroups
are isomorphic and any one of them can be taken as the intermediate group Int(A).
Let int(A) be the Lie algebra of Int(A). The intersection of any two of these
intermediate subgroups is the automorphism group, whose Lie algebra is der(A).

The intermediate algebras of the composition algebras are as follows.

R C H O

0 T1 2A1 B3

Let O be the orbit of 1 ∈ A under the action of SO(A). Then we have SO(A)/
Int(A) ∼= O and Int(A)/Aut(A) ∼= O. In terms of the Lie algebras we can identify
the tangent space of 1 ∈ O with Im(A) and then we have vector space isomorphisms

tri(A) = int(A) ⊕ Im(A) and int(A) = der(A) ⊕ Im(A). (16)

The definition of Tri(A) uses the norm and multiplication on A. The same
definition makes sense for a degenerate norm and this defines the group Tri(S̃)
and the Lie algebra tri(S̃). We also define TriS̃(Õ) to be the subgroup of Tri(Õ)
consisting of triples (θ1, θ2, θ3) such that each θi preserves S̃ ⊂ Õ. Then there is a
natural restriction triS̃(Õ) → tri(S̃). Then the Lie algebras intS̃(Õ) and int(S̃) are
defined similarly together with a natural restriction intS̃(Õ) → int(S̃).

Then the grading on the intermediate algebra int(Õ) is

−2 −1 0 1 2
R V ⊕ U int(H̃) ⊕ R V ⊕ U R

(17)

where V is the four-dimensional vector space in (15).
This shows that the restriction homomorphism intS̃(Õ) → int(S̃) is the homo-

morphism gP → gR in (4) for g = int(Õ).
Then the grading on the triality algebra tri(Õ) is

−2 −1 0 1 2
R V ⊕ 2U tri(H̃) ⊕ R V ⊕ 2U R

(18)

where V is the four-dimensional vector space in (15).
This shows that the restriction homomorphism triS̃(Õ) → tri(S̃) is the homo-

morphism gP → gR in (4) for g = tri(Õ).

4.3. Superalgebras

There are also two constructions of Lie superalgebras. These constructions are
given in [10], [14] and [26]. One construction is to take g(A) to be the superspace
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with even part sl(A)⊕der(A) and odd part A⊗Im(A) where A is a two-dimensional
vector space. This construction gives the following Lie superalgebras.

R C H O

A1 B(0, 1) B(1, 1) G(3)

The grading on g(Õ) is the following.

−2 −1 0 1 2
R (V | U ⊗A) g(H̃) ⊕ R (V | U ⊗A) R

This shows that the Lie superalgebra with even part sl(A) ⊕ derS̃(Õ) and with
odd part A⊗ Im(S̃) where A is a two-dimensional vector space is the intermediate
algebra of g(Õ) = G(3).

A second construction is to take g(A) to be the superspace with even part
sl(A) ⊕ int(A) and odd part A ⊗ A where A is a two-dimensional vector space.
This construction gives the Lie superalgebras as follows.

R C H O

B(0, 1) A(1, 0) D(2, 1;µ) F (4)

The grading on g(Õ) is

−2 −1 0 1 2
R (V ⊕ U | U ⊗A) g(H̃) ⊕ R (V ⊕ U | U ⊗A) R

where we have used the grading (17).
This shows that the Lie superalgebra with even part sl(A) ⊕ intS̃(Õ) and odd

part A⊗ S̃ is the intermediate algebra of g(Õ) = F (4).

5. The magic square

There are three constructions of the magic square. All three constructions take a
pair of composition algebras (A,B) and produce a semisimple Lie algebra L(A,B).
The original construction is due to Freudenthal and Tits. Other constructions are
the Vinberg and the triality constructions. These constructions are shown to give
isomorphic Lie algebras in [3]. In all these cases we can extend the construction to
include the sextonions and all constructions give isomorphic Lie algebras. Again we
find that the intermediate subalgebra of L(A, Õ) is L(A, S̃). This Lie algebra is non-
negatively graded; the sum of the components with positive degree is the nilpotent
radical; the degree zero component is a complement and is the reductive subalgebra
L(A, H̃).

Let A be a composition algebra and J a Jordan algebra. The Tits construction
is

T (A, J) = der(A) ⊕ der(J) ⊕ Im(A) ⊗ Im(J).
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Then the grading on T (Õ, J) is as follows.

−2 −1 0 1 2
R V ⊕ U ⊗ Im(J) T (H̃, J) ⊕ R V ⊕ U ⊗ Im(J) R

For the construction of the magic square we take the Jordan algebra J = J(B) to
be H3(B) which consists of 3× 3 Hermitian matrices with entries in B. We can also
take J = 0 which gives the derivation algebras.

Then for A = S̃ we get a subalgebra of T (Õ, J) by taking

derS̃(Õ) ⊕ der(J) ⊕ Im(S̃) ⊗ Im(J).

It is clear from the grading on T (Õ, J) that this is the intermediate algebra of
T (Õ, J).

The Vinberg construction is

V (A,B) = der(A) ⊕ der(B) ⊕A′
3(A ⊗ B),

where A′
3(A) means trace-free anti-Hermitian 3 × 3 matrices with entries in A.

Then the grading on V (Õ,B) is the following.

−2 −1 0 1 2
R V ⊕A′

3(U ⊗ B) V (H̃,B) ⊕ R V ⊕A′
3(U ⊗ B) R

Since U is imaginary we can identify A′
3(U ⊗ B) with U ⊗ H ′

3(B) where H ′
3(A)

means trace-free Hermitian 3× 3 matrices with entries in A. This is also Im(J) for
J = H3(A).

Then for A = S̃ we get a subalgebra of V (Õ,B) by taking

derS̃(Õ) ⊕ der(B) ⊕A′
3(S̃ ⊗ B).

It is clear from the grading on V (Õ,B) that this is the intermediate algebra of
V (Õ,B).

The triality construction is

A(A,B) = tri(A) ⊕ tri(B) ⊕ 3(A ⊗ B).

Then the grading on A(Õ,B) is

−2 −1 0 1 2
R V ⊕ 2U ⊕ 3U ⊗ B A(H̃,B) ⊕ R V ⊕ 2U ⊕ 3U ⊗ B R

where we have used the grading (18).
Then for A = S̃ we get a subalgebra of A(Õ,B) by taking

triS̃(Õ) ⊕ tri(B) ⊕ 3(S̃ ⊗ B).

It is clear from the grading on A(Õ,B) that this is the intermediate algebra of
A(Õ,B).

Next we describe the algebra given by taking both algebras in the Vinberg or tri-
ality constructions to be the sextonions. Let V56 be the 56-dimensional fundamental
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representation of E7. Then the grading on E8 has the following components.

−2 −1 0 1 2
C V56 E7 ⊕ C V56 C

Then take an extremal triple in E7. Then this triple commutes with the extremal
triple in E8 and so we have a bigrading on E8 with components

C

V12 S32 V12

C S32 D6 ⊕ C ⊕ C S32 C

V12 S32 V12

C

(19)

where S32 is a spin representation of D6 of dimension 32 and V12 is the vector
representation of dimension 12. This constructs the Lie algebra E8 as

(D6 ⊕ sl(A) ⊕ sl(B)) ⊕ (V ⊗A⊗B) ⊕ S ⊗A⊕ S ⊗B,

where A and B are two-dimensional vector spaces.
Using the Vinberg construction we get the following subalgebra of E8:

derS̃(Õ) ⊕ derS̃(Õ) ⊕A′
3(S̃ ⊗ S̃).

Using the triality construction we get the following subalgebra of E8:

triS̃(Õ) ⊕ triS̃(Õ) ⊕ 3(S̃ ⊗ S̃).

Both of these constructions give the following bigraded Lie algebra which is the
positive and zero part of the bigrading (19):

D6 ⊕ C ⊕ C S32 C

S32 V12

C

(20)

Note that if we take the total grading in (19) we get the grading with components

−2 −1 0 1 2
V14 S64 D7 ⊕ C S64 V14

where S64 is a spin representation of D7 of dimension 64 and V14 is the vector
representation of dimension 14. The non-negative part of this grading gives a second
maximal parabolic subgroup of E8. The even part of this grading is isomorphic
to D8. The odd part is a spin representation of D8. This is used in [1] to construct
the Lie algebra E8.

5.1. Exceptional series

In this section we consider the exceptional series introduced in [8] and the
subexceptional series. These are a finite series of reductive algebraic groups.
Here we consider the corresponding series of Lie algebras. This series includes all five
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exceptional simple Lie algebras. Here we take these Lie algebras to be parametrised
by m. Different authors have used other parameters such as the dual Coxeter
number. All of these parameters are related to m by Mobius transformations.

For the Lie algebras in the magic square we get L(O,A) in the exceptional series
with m = dim(A) and L(H,A) in the subexceptional series again with m = dim(A).
This gives the last three rows of (1) with columns labelled by m = 1, 2, 4, 6, 8.
The exceptional series also includes further columns. Four of these columns are
given below:

m −4/3 −1 −2/3 0

g 0 T A1 3A1

gP
′ 0 T.H2 A1.H4 (3A1).H8

g A1 A2 G2 D4

The column with m = 0 contains the triality algebras and the column with m =
−2/3 contains the derivation algebras.

In this section we extend the exceptional series to include some simple Lie
superalgebras. Let g(H) be a Lie algebra in the subexceptional series and g(O) the
corresponding Lie algebra in the exceptional series. Then g(H) has a distinguished
representation V of dimension 6m+ 8 which has a g(H)-invariant symplectic form.
This is the representation V in (3).

This is consistent with the dimension formulae:

dim(g(H)) = 3
(2m+ 3)(3m+ 4)

(m+ 4)
, dim(g(O)) = 2

(3m+ 7)(5m+ 8)
(m+ 4)

.

In these notes we show that this construction also makes sense for some values
of m for which 6m + 8 is a negative integer. In this case we take V to be an odd
superspace and apply the same construction to obtain a Lie superalgebra.

m −3 −8/3 −5/2 −7/3 −2 −3/2

6m+ 8 −10 −8 −7 −6 −4 −1

g(H) D5 B3 G2 A2 + T A1 0
so(10) so(7) G2 gl(3) sl(2) 0

g(O) D(5, 1) F (4) G(3) A(2, 1) A(1, 1) B(1, 1)
osp(10 | 2) F (4) G(3) sl(3 | 2) sl(2 | 2) osp(1 | 2)

There is a distinguished representation V of g(H) dimension −6m−8. The struc-
ture that these representations have in common is that

S2(V ) = 1 ⊕ V 2 and Λ2(V ) = g ⊕ V2.

The representation V2 is somewhat degenerate.
(1) For m = −3, g(H) = so(10), V is the vector representation and V2 = 0.
(2) For m = −8/3, g(H) = so(7), V is the spin representation and V2 is the

vector representation.
(3) For m = −5/2, g(H) = G2 and V and V2 are both the seven-dimensional

fundamental representation.
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(4) For m = −7/3, g(H) = gl(3), V is the sum of the vector representation and
its dual and V2 is the adjoint representation.

(5) For m = −3/2, g(H) = 0, V has dimension one and V2 = 0.
Note that in some cases we can replace g(H) by a Lie superalgebra and still keep

this structure.

m −3 −7/3 −2

6m+ 8 −10 −6 −4

g(H) D(n+ 5, n) A(n+ 2, n) + T A(n+ 1, n)
osp(2n+ 10 | 2n) gl(n+ 3 | n) sl(n+ 2 | n)

g(O) D(n+ 5, n+ 1) A(n+ 2, n+ 1) A(n+ 1, n+ 1)
osp(2n+ 10 | 2n+ 2) sl(n+ 3 | n+ 2) sl(n+ 2 | n+ 2)

m −3/2 −4/3 −1

6m+ 8 −1 0 2

g(H) B(n+ 1, n) A(n, n) + T A(n+ 1, 1) + T
osp(2n+ 1 | 2n) gl(n | n) gl(n+ 1 | 1)

g(O) B(n+ 1, n+ 1) A(n+ 1, n) A(n+ 2, 2)
osp(2n+ 1 | 2n+ 2) sl(n+ 2 | n) sl(n+ 3 | n)

These follow from the general decompositions in (8) and (9).
The pointm = −8/5 on the exceptional line corresponds to the trivial Lie algebra.

However there is no corresponding Lie algebra on the subexceptional line.

5.2. Magic triangle

There is another approach to the magic square based on dual reductive
pairs. This constructs a magic triangle. This magic triangle is given in [7], [9]
and [24]. This is also implicit in [6].

The involution which sends g to the centraliser in E8 corresponds to the involution

m �→ −2m
m+ 2

.

If we include the Lie algebra E7.H56 with m = 6 then this suggests that we should
also include a Lie algebra for m = −3/2. This Lie algebra is given as the Lie
superalgebra osp(1 | 2). Taken literally this suggests that osp(1 | 2) and E7.H56 are
a dual reductive pair in E8. However osp(1 | 2) is not a subalgebra and E7.H56 is
not reductive.

More generally the decomposition (3) shows that A1 and g are a dual reductive
pair in g. Here we do a formal calculation which shows that as characters of g⊕sl(2)
we have

g = gP
′ ⊗ 1 ⊕ 1 ⊗ osp(1 | 2) ⊕ (V ⊕ 1) ⊗A, (21)

where A is the vector representation of dimension (2 | 1).
Then we write a super vector space as V+ − V− where V+ is the even part and

V− is the odd part. We write [n] for the irreducible highest weight representation
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of sp(1) with highest weight n (and dimension n + 1) and we regard a represen-
tation of osp(1 | 2) as a super representation of sp(1). In particular, the adjoint
representation of osp(1 | 2) is written as [2]− [1] and the representation A is written
as [1] − [0]. Then the right hand side of (21) is

(g + V + 1) ⊗ [0] ⊕ 1 ⊗ ([2] − [1]) ⊕ (V + 1) ⊗ ([1] − [0]).

Expanding this and cancelling equal terms with opposite signs leaves

g ⊗ [0] + 1 ⊗ [2] + V ⊗ [1],

which is (3).
If we apply this to the Lie algebras in the exceptional series then this formal

calculation is our justification for including an extra row and column in the magic
triangle.

6. Adams series

The triality construction constructs the Lie algebra L(A,B) with a Z2 × Z2-
grading. If we take any one of the three Z2-gradings then in degree zero we get the
Lie algebra

t(A,B) = tri(A) ⊕ tri(B) ⊕ A ⊗ B

and in degree one we get the spin representation (A ⊗ B) ⊕ (A ⊗ B). The table for
these Lie algebras is given in [17]. Note that t(A,B) is a subalgebra of equal rank
in L(A,B). The corresponding subgroups are studied in [16].

Comparing this construction and (7) we observe that there is a variation on these
two constructions. Let V be a vector space with a non-degenerate symmetric inner
product. Then there is a Lie algebra whose underlying vector space is

tri(A) ⊕ so(V ) ⊕ A ⊗ V. (22)

The Lie bracket is defined so that t(A) ⊕ so(V ) is a subalgebra and A ⊗ V is the
obvious representation. The Lie bracket of two elements of A ⊗ V is the usual Lie
bracket so that so(A ⊕ V ) is a subalgebra.

This construction can then be modified to give the following.

Definition 6.1. Let V be a vector space with a non-degenerate symmetric
inner product. Then we define the Lie algebra a(A, V ) by

a(A, V ) = int(A) ⊕ so(V ) ⊕ Im(A) ⊗ V.

These Lie algebras have the property that if V andW both have a non-degenerate
symmetric inner product then there is a natural isomorphism of Lie algebras

a(A, V ⊕W ) ∼= a(A, V ) ⊕ so(W ) ⊕ (Im(A) ⊕ V ) ⊗W. (23)

Then using this, we can identify a(A,R) with tri(A); and more generally we can
identify the Lie algebra in (22) with a(A, V ⊕ R).

Note that we have inclusions so(Im(A) ⊕W ) ⊂ a(A,W ).
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The grading on a(Õ,W ) is

−2 −1 0 1 2
R V ⊕ U ⊕ U ⊗W a(H̃,W ) ⊕ R V ⊕ U ⊕ U ⊗W R

where V is the four-dimensional vector space in (15) where we have used the
grading (17).

If we include the sextonions by taking the Lie algebra

intS̃(Õ) ⊕ so(V ) ⊕ S̃ ⊗ V

then we get the intermediate algebra of a(Õ, V ).
The grading on t(Õ,B) is

−2 −1 0 1 2
R V ⊕ 2U ⊕ U ⊗ B t(H̃,B) ⊕ R V ⊕ 2U ⊕ U ⊗ B R

where we have used the grading (18).
If we include the sextonions by taking the Lie algebra

triS̃(Õ) ⊕ tri(B) ⊕ S̃ ⊗ B

then we get the intermediate algebra of t(Õ,B).
The important representations of a(A,W ) are the vector representation whose

restriction to int(A) ⊕ so(W ) is the representation Im(A) ⊕ V and the spin
representations whose restrictions to int(A) ⊕ so(W ) are A ⊗ ∆ where ∆ is a
spin representation of so(W ). These can be defined by considering the following
push-forward diagram.

so(W )

��

�� so(Im(A) ⊕W )

��
int(A) ⊕ so(W ) �� a(A,W )

These definitions also apply to the sextonions since Im(S̃)⊕W is the non-negative
part of Im(Õ) ⊕W and S̃ ⊗ ∆ is the non-negative part of Õ ⊗ ∆.

6.1. Bigradings

Here we generalise (19). Take an extremal triple in L(A,O) with centraliser
L(A,H) and then take an extremal triple in L(A,H). These two triples commute
and so we get a bigrading on L(A,O). Put m = dim(A) then this bigrading is given
by

C

Vm+4 S4m Vm+4

C S4m a(A,W5) ⊕ C ⊕ C S4m C

Vm+4 S4m Vm+4

C

(24)
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where S4m is a spin representation of a(A,W5) of dimension 4m and Vm+4 is the
vector representation of dimension m+ 4. This constructs the Lie algebra L(A,O)
as

(a(A,W5) ⊕ sl(A) ⊕ sl(B)) ⊕ (Vm+4 ⊗A⊗B) ⊕ S4m ⊗A⊕ S4m ⊗B,

where A and B are two-dimensional vector spaces.
Also if we take the total grading in (24) we get the grading with components

−2 −1 0 1 2
Vm+6 S8m a(A,W7) ⊕ C S8m Vm+6

where S8m is a spin representation of a(A,W7) of dimension 8m and Vm+6 is the
vector representation of dimension m + 6. The non-negative part of this grading
gives a second maximal parabolic subgroup of L(A,O). The even part of this
grading is isomorphic to a(A,W9) ∼= t(A,O). The odd part is a spin representation
of dimension 16m. This is used in [1] to construct the Lie algebra L(A,O).

6.2. Dual reductive pairs

Here we show how the Lie algebras in Definition 6.1 give rise to dual reductive
pairs in the exceptional Lie algebras. Adams [1] constructs the exceptional Lie
algebras L(A,O) as

L(A,O) ∼= a(A,W9) ⊕ ∆16m, (25)

where m = dim A and ∆16m is a spin representation of dimension 16m.
For 0 � n � 4 this representation of a(A,W9) can be restricted to a(A,W2n) ⊕

so(Z9−2n). Using (23) this gives the following decomposition of L(A,O):

a(A,W2n) ⊕ so(Z9−2n) ⊕ ((Im(A) ⊕W2n) ⊗ Z9−2n) ⊕ (∆m2n ⊗ ∆24−n).

Here ∆m2n is a spin representation of a(A,W2n) of dimension m2n. The restriction
of this representation to a representation of tri(A) ⊕ so(W2n−1) is A ⊗ ∆2n .

In particular, for n = 0, this gives the following construction of the exceptional
series of Lie algebras from the intermediate algebras:

L(A,O) ∼= int(A) ⊕ so(W9) ⊕ (Im(A) ⊗W9) ⊕ (A ⊗ ∆16).

The Adams construction (25) and the decomposition (23) also give, for 0 � n � 3,
the following decomposition of L(A,O):

a(A,W2n+1) ⊕ so(Z8−2n) ⊕ (Im(A) ⊕W2n+1) ⊗ Z8−2n

⊕ (∆+
m2n ⊗ ∆+

23−n) ⊕ (∆−
m2n ⊗ ∆−

23−n),

where ∆±
m2n are the spin representations of a(A,W2n+1). The restriction of these

representations to tri(A) ⊕ so(W2n) are A ⊗ ∆±
2n . For n = 0 this gives the triality

construction.
These two constructions show that, for 0 � p � 8, a(A,Wp) and so(Z9−p) are a

dual reductive pair in L(A,O). Some of these dual reductive pairs are constructed
in [23]. Since these Lie algebras also form a sequence of subalgebras this gives a
second magic triangle. We will not consider this second magic triangle. Instead we
note that two of these can be inserted in the sequence of subalgebras giving the
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original magic triangle as follows:

G2 → B3 → D4 → B4 → F4.

In particular this suggests that from the point of view of the magic triangle the
exceptional series should be further extended to include B3 and B4. These two cases
are not consistent with the numerology of the exceptional series.

From this point of view the magic triangle should be extended to include the
inclusions

der(A) → int(A) → tri(A) → a(A,R2) → L(A,R).

This sequence makes for A = S̃ and gives the Lie algebras intermediate between
the sequence for A = S̃ and the sequence for A = H̃.
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8. P. Deligne, ‘La série exceptionnelle de groupes de Lie’, C. R. Acad. Sci. Paris, Sér. I Math.

322 (1996) 321–326.
9. P. Deligne and B. H. Gross, ‘On the exceptional series, and its descendants’, C. R. Acad.

Sci. Paris, Sér I Math. 335 (2002) 877–881.
10. A. Elduque, ‘Quaternions, octonions and the forms of the exceptional simple classical Lie

superalgebras’, Comment. Math. Helv. 79 (2004) 208–228.
11. N. Jacobson, ‘Structure of alternative and Jordan bimodules’, Osaka Math. J. 6 (1954) 1–71.
12. R. H. Jeurissen, ‘The automorphism groups of octave algebras’, Doctoral dissertation,

Rijksuniversiteit te Utrecht, 1970.
13. V. G. Kac, Infinite-dimensional Lie algebras, 2nd edn (Cambridge University Press,

Cambridge, 1985).
14. N. Kamiya and S. Okubo, ‘Construction of Lie superalgebras D(2, 1; α), G(3) and F (4) from

some triple systems’, Proc. Edinb. Math. Soc. (2) 46 (2003) 87–98.
15. E. Kleinfeld, ‘On extensions of quaternions’, Indian J. Math. 9 (1968) 443–446.
16. B. Kostant, ‘A cubic Dirac operator and the emergence of Euler number multiplets of

representations for equal rank subgroups’, Duke Math. J. 100 (1999) 447–501.
17. J. M. Landsberg and L. Manivel, ‘Triality, exceptional Lie algebras and Deligne dimension

formulas’, Adv. Math. 171 (2002) 59–85.
18. J. M. Landsberg and L. Manivel, ‘The sextonions and E7 1

2
’, Adv. Math., to appear.

19. M. Maliakas, ‘On odd symplectic Schur functions’, J. Algebra 211 (1999) 640–646.
20. R. A. Proctor, ‘Odd symplectic groups’, Invent. Math. 92 (1988) 307–332.
21. R. A. Proctor, ‘A generalized Berele–Schensted algorithm and conjectured Young tableaux

for intermediate symplectic groups’, Trans. Amer. Math. Soc. 324 (1991) 655–692.
22. M. L. Racine, ‘On maximal subalgebras’, J. Algebra 30 (1974) 155–180.
23. H. Rubenthaler, ‘Les paires duales dans les algèbres de Lie réductives’, Astérisque 219
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