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Isostatic mounts are used in applications like telescopes and robotics to move and hold part of a structure
in a desired pose relative to the rest, by driving some controls rather than driving the subsystem directly.
To achieve this successfully requires an understanding of the structure of the coupled space of config-
urations and controls, and of the singularities of the mapping from the coupled space to the space of
controls. It is crucial to avoid such singularities because generically they lead to large constraint forces
and internal stresses which can cause distortion. In this paper we outline design principles for isostatic
mount systems for dynamic structures, with particular emphasis on robots.
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1. Outline

Our aim is to characterise how to hold and move a linkage consisting of rigid components (e.g. rods)
connected by joints in a unique and smoothly controllable configuration without high constraint forces or
internal stresses, via coupling to a set of control variables. This problem came to our attention through
a TSB-supported 1 collaboration with Metris UK (now Nikon Metrology) who asked us to assist in
improving the design of a coordinate measurement robot they were developing, consisting of a seven-
axis arm within a six-axis exoskeleton as described by Crampton (2008) and illustrated in Figure 5.
Nikon Metrology call such mechanisms “isostatic mounts”. The term seems to be used in the literature
mainly for vibration isolation (e.g. to hold mirrors on spacecraft or telescopes for astronomy), but we
consider the constraints to be stiff, leaving to the end some questions about the effects of compliance.
Our paper is a mix of pedagogy aimed at non-specialists in mathematical engineering and original results
obtained for the real world problem.

Systems in the general class under consideration can be described by:

• a “configuration space” X for the subsystem to be moved and held; if considered to be discon-

1TSB is the Technology Strategy Board, the UK’s innovation agency which was recently renamed as “Innovate UK”.

c© The author 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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nected from the controlling constraints we suppose X to be a smooth 2 manifold (in simple terms,
this means that for every configuration the set of all nearby configurations can be described by
some number of local Cartesian coordinates, called the dimension of X , denoted dimX); the case
of manifold with boundary is also valid, but to avoid technicalities it is easier to ignore the bound-
aries.

• a “control space” Y for the variables under immediate control; we take Y to be a manifold too.

• a system of constraints that couple the subsystem to the controls; these limit the full system to a
“coupled space” Z, which is a subspace of the producy X×Y .

There are natural maps πX : Z→ X and πY : Z→ Y , which take a configuration of the coupled system
to the configuration of the subsystem and the state of the controls, respectively.

FIG. 1. Sketch of the relations between the coupled space Z, control space Y and subsystem configuration space X , also indicating
a singular point z† of the coupled space (where the two branches of Z cross) and a singularity zs of the map πY (where infinitesimal
changes to z ∈ Z do not explore as many dimensions when projected to Y ).

Here are some examples, cf. Craig (2004), Choset (2005) and Angeles (2007):

1. End effector on a six-axis arm, Pieper (1969). The configuration space X is R3× SO(3), repre-
senting the position in 3-space R3 of a marked point on the end effector and the rotation 3 about
the marked point required to bring the end effector into its orientation from a reference orienta-
tion. The control space Y is T6, a 6-dimensional torus representing the joint angles of the six-axis
arm, or a subset of T6 to take into account limits on some of the joint angles or combinations of
them. The coupled space Z is the subset of X ×Y corresponding to the forward kinematics from
Y to X given by assuming the end of the first axis is fixed to a reference frame. Z is a 6-torus,
because each y ∈ Y determines a unique x ∈ X which varies smoothly with y.

2. Stewart platform, in which the pose of a hexagonal platform is controlled by the lengths of 6 legs
to its corners from the corners of a hexagonal base plate, with universal joints at both ends of

2C1-smoothness suffices for many aspects of this paper, but analysis of singularities generally requires more derivatives.
3SO(3) denotes the set of rotations in 3D.
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FIG. 2. A two-rod linkage in a vertical plane controlled by its free end, pivoted about a fixed point O (Example 3).

each leg. It has X = R3×SO(3) again, Y = ∏i=1...6(`i,Li) corresponding to the allowed range of
lengths of the legs, and Z is the subset of X ×Y corresponding to the leg-length constraints of Y
on X . For further details, the reader is referred to the original work by Stewart (1965) and a more
recent review, Dasgupta & Mruthyunjaya (2000).

3. Two-rod linkage in a vertical plane with one end pivoted about a fixed point, the other end con-
trolled to move in the vertical plane; see Figure 2. The configuration space X is the set of angles
(x1,x2) (forming a 2-torus) and the control space Y is the set of positions (y1,y2) in the vertical
plane.

4. Two-axis arm with a rod attached to the second axis whose intersection with a sphere v2
1 + v2

2 +
v2

3 = R2 centred near the top of the first axis can be moved over the sphere minus a neighbourhood
of the downward axis 1. Then X = T1× (x−2 ,x

+
2 ) where T1 is a circle representing the angle

x1 of joint 1 and x±2 denote the minimum and maximum angles for joint 2, measured from the
upward vertical. Y is the sphere S2 of radius R, minus a neighbourhood of its lowest point; it
can be coordinatised by stereographic projection from the lowest point onto a plane tangent to the
highest point, or perhaps preferably by (y1,y2) in the unit disk via v j = 2Ry j

√
1−|y|2 for j = 1,2

and v3 = (1−2|y|2)R. Z is the subset of X×Y satisfying the constraint that the rod passes through
the chosen point of the sphere; see Fig 3.

5. Two-axis arm contained inside a hollow two-axis arm, coupled by a ring fixed in a tube from the
second outer axis through which a tight-fitting rod from the inner second axis is constrained to
pass. Then X = T1× (x−2 ,x

+
2 ) representing the joint angles of the inner arm, Y = T1× (y−2 ,y

+
2 )

representing the joint angles of the outer arm, and Z is the subset of X×Y satisfying the constraint.
See Figure 4. This is a simplified example of the lower third of a six-axis arm with exoskeleton,
similar to that under development by Nikon Metrology (formerly Metris), a summary of which
is provided by Thornby et al. (2009). The motivation for such a construction is that Nikon are
designing a robot-mounted laser measurement arm and it is desirable to decouple the measuring
device from the system which drives it, explained in Crampton (2008). The calculations and
principles that follow are more easily applied to this simplified system, but may be generalised to
the complete system – illustrated in Example 6.
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FIG. 3. A two-axis arm controlled by the intersection of a rod from axis 2 with a sphere, showing the use of stereographic
projection to coordinatise the sphere minus the lowest point (Example 4).

6. A seven-axis arm within a six-axis exoskeleton. This is an extension of the previous example,
repeating the basic plan twice more. The seventh joint of the inner arm simply controls articulation
of the “wrist” (and hence the orientation of the end effector) and so the structure can, for all intents
and purposes, be considered as a six-axis arm for fixed J7 (the seventh joint angle).

We consider only holonomic constraints, meaning conditions on configurations, not just on veloci-
ties. Thus we exclude examples like controlling a track ball by rolling a plane over it.

The design problems to be solved are:

• to achieve a given configuration of the subsystem repeatably by moving the controls,

• to make the configuration depend smoothly on the controls, and

• to ensure that the stresses resulting from the constraints and external fields like gravity are not
excessive.

The projection operator πY is, in general, many-to-one, but, mathematically, we would like πY to
be a local diffeomorphism, so that π

−1
Y is a locally defined smooth map, and we would like πX to be

smooth, so that the composition πX ◦π
−1
Y : Y → X from controls to subsystem configurations (locally)

is smooth. Two obstructions to the desired behaviour are:

• “singular points” of the coupled space Z: these are the points of Z which do not have a neigh-
bourhood diffeomorphic to a ball (e.g. z† in Figure 1). Let Z∗ be the set of non-singular points of
Z; then each connected component of Z∗ is a manifold, typically each of the same dimension. A
recent paper on singular points for linkages is Blanc & Shvalb (2012).

• “singularities” of the map πY : these are the points of Z∗ at which the rank of the derivative DπY is
less than full, meaning min(dimZ∗,dimY ) (e.g. zs in Figure 1). We denote the set of singularities
of πY by Σ , and its image by πY (Σ).
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FIG. 4. A two-axis arm inside a two-axis exoskeleton, coupled by a rod from the inner arm passing through a ring in a tube from
the outer arm (Example 5). Inner arm axes are shown in red (dot-dash), with joint angles (x1,x2); outer arm axes are shown in
green (dotted), with joint angles (y1,y2).

FIG. 5. The Metris (Nikon Metrology) RCA: a seven-axis arm inside a six-axis exoskeleton for coordinate-measuring purposes,
using a laser line scanner. Joint angles of the exoskeleton are conventionally labelled Jn, counting upwards from the base.
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It is important to distinguish these two types of singular behaviour; to aid in this, we use the term
“singular point” for the first and “singularity” for the second. The robotics literature contains a variety
of terminology, some of which is reviewed by Ider (2005) for example, but it is not used consistently
and the case of singular points is often overlooked. They should also be distinguished from “coordi-
nate singularities”, points where a coordinate system is not locally Cartesian, like latitude-longitude
coordinates at the poles. There is a large literature on singularities of mechanisms; see for example the
database Donelan & Azzato (2014) and the survey by Donelan (2010) for the case of manipulators.

The main content of our paper is five design principles for isostatic mount systems for dynamic
structures. In the process of demonstrating them, we notably solve the configuration space of Example 6
in § 2.3. This is followed by sections addressing the questions of how to live with singularities if they
can not be avoided, how vibration frequencies behave near singularities, and some concluding remarks.

2. Five design principles

2.1 Equality constraints

The first design principle is that the constraints should be equality constraints, not one-sided inequal-
ity constraints. Else πY is typically locally many-to-one and the motion of the subsystem is typically
non-smooth and non-repeatable. Thus constraints with backlash, for example, are not a good idea.
One-sided constraints might be used in addition to equality constraints, as safety measures to prevent
undesired outcomes which in principle ought not to happen, but they should not be expected to achieve
reproducible let alone smooth control if they are ever invoked.

2.2 Matching the numbers of constraints and degrees of freedom

The second design principle is that the number N of constraints should equal the number of degrees of
freedom of the subsystem (dimX). If there are n fewer constraints than degrees of freedom (i.e. N =
dimX − n) then in general the set of compatible configurations for fixed control state is a manifold of
dimension n, so the configuration is not locally uniquely determined by the controls. If there are n
more constraints than degrees of freedom (i.e. N = dimX + n) then in general there are no compatible
configurations, except on a submanifold of the control space of codimension n, which means that the
span of n directions of control can not be used; in reality compatible configurations may also be attained
outside this subset but at the expense of imposing strains, deforming components which are in principle
rigid; the space of deformation modes generated has dimension n and to such strains will correspond
large stresses and large constraint forces.

The way to count constraints may require some elaboration. When counted correctly, the number N
of constraints governs dimZ∗ by dimZ∗ = max(dimX +dimY −N,0) (recall Z∗ is the non-singular part
of Z). Some constraints are two-dimensional, e.g. that an axis pass through a given point in 3-space, or
three-dimensional, e.g. that a point on an axis be a given point in 3-space. It might also be that some
constraints are not independent of others, so they should not be counted. For example, a ring that makes
an axis pass through a given point adds nothing to the count if the axis is clamped to a fixed base and
the given point is on the axis; but if the given point fails to be exactly on the axis then the effect of the
ring has to be added to the count. Clamping an axis to a fixed base can itself be regarded as a constraint
(of dimension 5 since a point on the axis is fixed in 3-space and the direction of the axis is fixed on a
2-sphere) and this view would allow one to compute the forces on the clamp, but for simplicity we will
treat it as fixed.

One might also wish to match the number of constraints to the number of controls. This is not
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crucial, however. If there are more controls than constraints then one can typically realise a given
configuration of the subsystem by a manifold of control states; there is some redundancy, e.g. if a 7-axis
arm is used to control the (6-dimensional) pose of an end effector. If there are n more constraints than
controls then the set of configurations of the subsystem that can be realised is typically a submanifold
of X of codimension n, which would be bad if one wanted to explore all directions in X , but such a
restriction might have a valid purpose, so we do not rule it out.

2.3 Coupled space a manifold

The third design principle is that the coupled space Z for the whole system should be a manifold. Equiv-
alently, it should have no singular points. Examples of manifolds include spheres and tori. Examples
of topological spaces that are not manifolds include figure of eight curves, the union of two intersecting
planes, and cones. For theory of manifolds, see Spivak (1965). The problems with a coupled space that
is not a manifold are that:

• from a singular point there may be more than one direction the subsystem can move for a given
direction of controls, and

• the coupled space is likely to undergo qualitative changes for arbitrarily small changes in design
parameters, e.g. a figure of eight curve can deform into a closed loop or two closed loops, if
thought of as a level curve of a height function above two dimensions; it is not robust to design a
coupled space with singular points.

In contrast, if the coupled space is defined by a level set of N smooth functions from X ×Y to R whose
derivatives are linearly independent on the whole level set, then it is a manifold and any C1-small 4

change in the functions makes no qualitative change to it.
One might think that singular points would arise in only pathological examples of coupled spaces,

but they occur for Example 5 if no offsets are introduced. Denoting the joint angles of the inner arm by
(x1,x2) and of the outer arm by (y1,y2), the coupled space Z is defined by {x1 = y1,x2 = y2}∪{x1 =
y1 +π,x2 =−y2}∪{x2 = y2 = 0} (we assume −π < x−2 < 0 < x+2 < π and −π < y−2 < 0 < y+2 < π and
so leave out the unphysical possibility {x2 = y2 = π} because it represents the arms folding back along
themselves; we also assume x2 is not far from y2, to exclude the unphysical possibility that x2 ≈ y2 +π ,
in which it is the backward extension of the rod that passes through the ring). Each of these pieces is a
manifold but the third intersects the first along a circle, and the second along another circle. These two
circles form the set of singular points of Z. Adding typical offsets, however, makes the coupled space
into a manifold. Examples for some choices of offsets are shown in Figure 6, where δ1 = x1− y1.

It can be seen that as the controls (y1,y2) are varied, x1 tracks y1 quite well (i.e. δ1 is close to 0)
except near y2 = 0, which is where the ideal case (free from offsets) has a curve of singular points. Near
y2 = 0, large excursions of δ1 from 0 occur, except for paths near two special choices of y1 in the first
figure.

Figure 6 was computed by noting that the two components of constraint can be written in the form

A+Bsinx2 +C cosx2 = 0 (2.1)
a+bsinx2 + ccosx2 = 0,

4A C1-small function is one whose values and first derivatives are small.
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FIG. 6. Projections onto (δ1,y1,y2) of the coupled space for a two-axis arm inside a two-axis arm (Example 5) for the ideal case
and two choices of offsets, where δ1 = x1−y1 and angles are measured in radians. In the “ideal” case with no offsets the coupled
space consists of two intersecting planes; as offsets are introduced these planes deform and eventually separate.

with the coefficients A,B,C,a,b,c being functions of x1,y1,y2 and various length and offset parameters
– in the manner of Denavit & Hartenberg (1964), illustrated in Figure 7. Putting t = tan(x2/2), they
become quadratic equations in t:

A(1+ t2)+2Bt +C(1− t2) = 0 (2.2)
a(1+ t2)+2bt + c(1− t2) = 0.

One can eliminate t between the two equations, yielding the single equation

(bC−Bc)2 = (bA−Ba)2 +(Ac−aC)2. (2.3)

But this includes unphysical configurations with x2 near y2 +π as well as the desired ones with x2 near
y2. To select only the desired ones, we instead solved the first of Equations 2.1 for the solution t near
tan(y2/2):

t =
−B+

√
B2 +C2−A2

A−C
, (2.4)

and substituted this into the second equation, obtaining

(bA−Ba+Bc−bC)(−B+
√

B2 +C2−A2) = (A−C)(Ca− cA), (2.5)

whose solution surface in the 3D space of (δ1,y1,y2) was plotted using Mathematica’s ContourPlot3D
command.

The same analysis can be used to study Example 6. Indeed, the configuration space for (x1,x2,y1,y2)
is independent of the angles (xk,yk), k > 3. So the configuration space for the first stage of the device is
just that for Example 5. The possibilities for the second stage (x3,x4,y3,y4), however, depends on the
configuration, because the state of the first stage affects the offsets for the second stage. But for a given
position (x1,x2,y1,y2) of the first stage, the configuration space for the second stage is of the same form
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FIG. 7. Paramerisation of offsets considered for the inner arm (left) and outer arm (right). Axes are shown in black, offsets in blue
and joint angles in red and green for the inner and outer arms respectively (in correspondence with the labelling convention used
in Figure 4). Offsets may be described by a combination of linear translations (such that the axes do not pass through a common
point) and rotations (such that successive axes cease to be orthogonal). Additionally, the outer arm may not originate from the
same point as the inner arm (described by the linear offsets f and g) and may be skewed (described by the angle β ).

again. Similarly, the configuration space for the third stage (x5,x6,y5,y6) is of the same form again,
with offsets determined by the second stage configuration.

Coupled spaces with singular points often fall into a class of topological spaces called “stratified
manifolds”. These are topological spaces with a decomposition into manifolds of various dimensions,
called strata, such that the closure of each is its union with some strata of lower dimension. Thus for
Example 5 with no offsets, the coupled space is a stratified manifold, decomposing into 6 annuli and 2
circles, the closure of each annulus including one or both of the circles. If one succeeds in following
design principle 2, however, there is no need to pursue stratified manifolds further. On the other hand,
designs like Example 6 require a deep understanding of the unfolding of stratified manifolds under
generic perturbation.

For this section, we henceforth take Z to be a manifold.

2.4 Avoid singularities of πY

The fourth design principle is that singularities of the map πY from the coupled space to the control
space should be avoided. This is well known, e.g. Long & Paul (1992); Craig (2004); Choset (2005)
and Angeles (2007), but it is important to spell it out.

It is not essential to design systems such that there are no singularities of πY , and in many situations
their presence may be inevitable (e.g. Gottlieb (1986, 1988)), but positioning and even slow motion
control paths should be chosen to avoid any singularities. This may not always be possible, however,
as the singularities typically separate Z into pieces between which one might want to move; how to live
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with singularities will be discussed in section 3.
We begin with the elementary Example 3. Then X is a 2-torus, which can be parametrised by the

angles x1,x2 of the two rods from the vertical. Y is the vertical plane, and can be parametrised by
horizontal coordinate y1 and vertical coordinate y2, relative to the fixed pivot. Z can be considered to be
the same as X because each configuration x∈ X determines a unique y∈Y . Then the map πY : (x1,x2) 7→
(y1,y2) is given by

y1 = `1 sinx1 + `2 sinx2 (2.6)
y2 = `1 cosx1 + `2 cosx2,

where `1, `2 are the lengths of the two rods (between the pivot points). So the derivative DπY is repre-
sented by the matrix [

`1 cosx1 `2 cosx2
−`1 sinx1 −`2 sinx2

]
, (2.7)

the determinant of which is `1`2 sin(x1− x2), and is zero if and only if x1− x2 ∈ {0,π} modulo 2π .
Thus the set Σ of singularities of πY consists of two circles Σ0 = {x1 = x2} and Σπ = {x1 = x2 +π} on
Z, corresponding respectively to the fully extended configurations and the doubled-back configurations.
Σ separates Z into two parts where x1 − x2 ∈ (0,π) or (π,2π). The image of Σ under πY consists
of two circles in Y bounding an annulus A of accessible control states. To each interior point of A
correspond two compatible configurations in Z, which merge as the controls go to either boundary of A.
See Figure 8.

Next we explain what goes wrong near singularities. A consequence of the second design principle is
that dimZ = dimY , so the derivative DπY is represented by a square matrix, and we will restrict attention
to this case. A square matrix has full rank if and only if it is invertible. Equivalent formulations are that
it has non-zero determinant or its kernel is zero. Thus singularities of πY are the places where DπY is not
invertible. Away from singularities, DπY is invertible and by the implicit function theorem this implies
that the controls y determine a locally unique configuration z(y) of the coupled system. Furthermore, it
depends smoothly on y, and using the chain rule, the velocity ż of response of the system to a velocity ẏ
of controls is given by5

ż = Dπ
−1
Y ẏ. (2.8)

We deduce also that the controls y determine a locally unique configuration x = πX z(y) of the sub-
system, depending smoothly on y and with velocity

ẋ = DπX Dπ
−1
Y ẏ. (2.9)

In contrast, at a singularity of πY the possible velocities of control are limited to a subspace of lower
dimension than dimY , because ẏ = DπY ż and DπY does not have full rank. Thus there is certainly not a
smooth local map from controls to configuration.

5Note that Dπ
−1
Y can be interpreted as either (DπY (z))−1 or D(π−1

Y )(y), since they are equal.
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FIG. 8. The singularities of the map πY from the coupled space Z to the control space Y for the two-link Example 3: (a) the set of
singularities form two circles Σ0, Σπ in Z, (b) the image of Z in Y is an annulus A bounded by the images of Σ0 and Σπ ; the circle
γ is the track of (y1,y2) as x2 makes one revolution at fixed x1 = π/2 (case `2 < `1).

The typical 6 situation, known as a “fold singularity”, is that in suitable local coordinate systems for
Z and Y centred on the singularity and its image, πY takes the form

y1 = z2
1 (2.10)

y j = z j, j > 1.

Thus locally, only a half-space {y1 > 0} of controls is accessible, and as y1 approaches 0, two com-
patible configurations with z1 = ±√y1 merge. For constant ẏ1 = −v < 0, the velocities of these two
configurations go to infinity like ∓v/(2

√
y1), until y1 hits zero, when it has to stop or else deform com-

ponents of the system. Note that the whole set {z1 = 0} in these coordinates consists of singularities of

6C2-stable.
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the same form. It is called a “fold curve”, thinking of the case where Y and Z have two dimensions, but
the same term is used in higher dimensions too.

In control spaces of dimension greater than 1 one is likely to come across more complicated types
of singularity than just folds. These are typically singularities at which several fold curves meet in a
non-trivial way. The simplest example is a “cusp singularity”, around which coordinates can be chosen
so that

y1 = z3
1− z2z1 (2.11)

y j = z j, j > 1.

Then two fold curves z2 = 3z2
1 for z1 6= 0 join in such a way that their images in Y form a semi-cubic cusp

y1 =−2z3
1,y2 = 3z2

1 (parametrised by z1) or 27y2
1 = 4y3

2. For controls in the region between the images
of the two fold curves there are locally three compatible configurations; two of these merge at the fold
curve and annihilate each other, leaving just one on the other side; all three configurations merge as the
controls approach the cusp point. For an introduction to singularity theory, see Bruce & Giblin (1992)
and for a definitive survey, see Arnol’d et al. (1998).

A second problem with singularities of πY is that static forces are typically infinite there. Let us
start by considering just the control forces. These are the forces F conjugate to the control variables y,
required to maintain the system in equilibrium against all other forces G, like gravity and static friction.
The forces F are measured in units such that the work they do by an infinitesimal displacement δy in the
controls is the scalar product FT δy (where superscript T denotes transpose). Thus conjugate to a linear
displacement is a linear force, conjugate to an angular displacement is a torque, and so on. Similarly for
G with respect to changes in configuration δ z. Then d’Alembert’s principle of virtual work leads to the
force balance equation:

GT =−FT DπY . (2.12)

It follows that away from singularities of πY , bounded forces G can be balanced by bounded control
forces F . At singularities of πY , however, there are directions of forces G which cannot be balanced by
any finite control force F , and as one approaches a singularity, typically F goes to infinity.

The two-link system Example 3 provides a simple illustration. Under gravitational force given by
the negative gradient of the potential

V =
1
2

m1`1gcosx1 +m2g(`1 cosx1 +
1
2
`2 cosx2), (2.13)

the equilibrium control force is readily computed by the principle of virtual work to have horizontal and
vertical components

F1 =
(m1 +m2)gsinx1 sinx2

2sin(x1− x2)
(2.14)

F2 =
( 1

2 m1 +m2)gsinx1 cosx2− 1
2 m2gsinx2 cosx1

sin(x1− x2)
,

for which the radial component goes to infinity as x1− x2 goes to 0 or π (except at x1,x2 ∈ {0,π}).
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The problem with forces going to infinity is not only for control forces but also most internal forces in
the system, in particular the forces on the constraints that couple the controls to the subsystem. A simple
way to extend the analysis to compute the (equal and opposite) internal forces at some location is to
imagine disconnecting the system there, augmenting the control space Y by additional control variables
measuring the displacement between the disconnected parts (which could be a linear displacement in 3D
to find an internal linear force or an angular displacement to find an internal torque or bending force).
Then Z is also augmented by the effect of this displacement, and πY is augmented. The effect on DπY
at undisplaced configurations is to augment its matrix by adding blocks in the following form:

DπY =

[
A A′

0 I

]
, (2.15)

where A is the original matrix for DπY , A′ is a matrix representing how the new displacements affect the
configuration, 0 is a matrix of zeroes, and I the identity matrix of dimension corresponding to the new
displacements. The static force balance equation (2.12) with F,G augmented to (F,F ′),(G,G′) gives
G′T =−FT A′−F ′T and hence

F ′T =−FT A′−G′T . (2.16)

Thus, as F goes to infinity at a singularity, so typically does F ′, the only exception being if A′

happens to give zero in the direction of F .
It follows that most internal forces typically go to infinity at singularities. As an illustration, we

compute the linear force at the joint between rods 1 and 2 of the two-link Example 3. In this case,
disconnecting the joint by a displacement (u1,u2) the matrix A′ is the identity, and the potential energy
is augmented by m2gu2, so G′T = (0,−m2g) and F ′T = −FT +(0,m2g), which goes to infinity at the
singularities in the same way as F .

A standard example of computation of singularities is for the control of a 6-axis arm of “321 struc-
ture” by motion of its end effector, Bruyninckx & De Schutter (1998), a case of Example 1. The first
axis is assumed to be clamped to a fixed base plate. The subsystem configuration space X is a 6-torus
representing the joint angles x j, j = 1 . . .6 of the 6 axes (or that part of the 6-torus that can be achieved
without steric hindrance). The control space Y is the set of accessible poses (positions and attitudes)
of an end effector; it is 6-dimensional (three coordinates for position of a reference point on the end
effector and three coordinates for its attitude) and can be written as R3× SO(3). The coupled space Z
is essentially the same 6-torus as X , because the end effector is attached rigidly to the sixth axis. The
joint angles determine the end effector pose, but not necessarily vice versa. For example, there are end
effector poses for which some of the axes can spin round freely. The mapping πY from the coupled
space to R3× SO(3) has detDπY = −dhl2l3s3s5, where l j are arm lengths, s j are the sines of the joint
angles x j and dh = s2l2 + sin(x2 + x3)l3 is the horizontal distance in the arm plane from axis 1 to the
wrist. Thus the singularities of πY correspond to three situations:

• x3 = 0 “arm-extended singularity” (x3 = π is excluded by steric hindrance)

• x5 = 0 “wrist-extended singularity” (x5 = π is excluded)

• dh = 0 “wrist-above-shoulder singularity”: the wrist centre lies on the first axis

With offsets or other designs, the singularities move and are in general more complicated to com-
pute. Considerable energy and ingenuity has gone into designs with smaller singularity sets. But some
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singularities are inevitable: configurations of maximum reach for a given point on the end effector are
always singularities, so there will always be a corresponding 5-dimensional singularity set. Even if reach
is ignored, there may be inevitable singularities for attitude (e.g. Gottlieb (1986, 1988) for Example 1).

The roles of X and Y are usually inverted in most treatments of this example: the controls Y are taken
to be the 6 joint angles and the end effector is the subsystem X to be controlled (as in Example 1). Then
there are no singularities of πY , because Z is just the same 6-torus as Y with the implied end effector
poses added on. So what has singularities in that interpretation is πX . They do not cause any infinite
velocities or forces, but they do restrict the range of achievable velocities in X , by equation (2.9). A
way they could be construed as giving infinite velocities is if a desired motion of the end effector is
specified (e.g. to scan with a laser measurement head) and πX is singular somewhere along the path then
to attain the desired motion will require infinite control velocity there (and typically the motion will be
unrealisable thereafter).

Example 4 provides an illuminating illustration where the effects of offsets can be analysed in some
detail. Recall that it is a two-axis arm with control of the point at which an end effector (which we
call axis 3, though no rotation takes place about it) passes through a sphere. If all is “ideal” (rotational
symmetry of control sphere about axis 1, axes 1 and 3 perpendicular to axis 2, all three axes intersecting
in a common point), then rank of DπY is lost if and only if x2 = 0 or π; let us ignore the latter as
unrealisable. The singularity set Σ is a circle (it can be parametrised by x1) and its image in the control
space is a single point (N pole). For each control point, which we label by longitude ŷ1 and colatitude ŷ2
(i.e. angle from the N pole), other than the N pole, there are two possible configurations: x1 = ŷ1, x2 = ŷ2
and x1 = ŷ1 +π , x2 = −ŷ2. If we resolve the longitude-colatitude coordinate singularity in the control
space by using Cartesian position η1,η2 of axis 3 in the plane tangent to the N pole, then the mapping
from (x1,x2) to (η1,η2) has Jacobian determinant ∆ = r2 sinx2

cos3 x2
(where r is the radius of the sphere),

which passes 0 transversely at x2 = 0 ( ∂∆

∂x2
6= 0). So if one introduces offsets, the circle of singularities

moves a little (by the implicit function theorem), but its image in control space may change qualitatively.
The simplest form of offset, displacing axis 3 by distance ` along axis 2 from axis 1 but keeping right
angles between axis 2 and the other two, preserves rotational symmetry about axis 1 and turns πY (Σ)
into a circle about the N pole; the disc it surrounds has no preimages and points of Y just outside this disc
have two preimages. This is the case also for all choices of offset preserving rotational symmetry about
axis 1 (i.e. for which axis 1 passes through the centre of the sphere), except those special combinations
for which the radius of the circle is zero. Breaking the rotational symmetry a little deforms πY (Σ) from
a round circle but makes no qualitative change. We had thought that breaking rotational symmetry from
cases where the image of Σ was just the N pole might produce more complicated image sets, like the
4-cusped “astroid” of Goryunov (2001) and Chekanov & Pushkar (2005), but we did not find such a
case.

Figure 9 shows the control space (accessible end effector positions) for the “ideal” case with no
offsets and some scenarios involving basic offsets (taken in the same sense as Figure 7) in which axes 2
and 3 are not orthogonal (α2 6= 0) and axes 2 and 3 are not concurrent (r2 6= 0). In the ideal scenario the
end effector explores the surface of a sphere; the image of the singularity set Σ is the N pole (x2 = 0),
at which point all values for x1 yield the same position in control space. The image of Σ in control
space deforms in the presence of certain offsets; in particular, when a “skew” is introduced (α2 6= 0) the
singularity at the N pole deforms to a set of points on a bounded surface, resulting in a set of inaccessible
physical configurations (a hole at the top of the configuration space). When axes cease to be concurrent,
the degeneracy of the control space is broken; the two possible configurations (x1 = ŷ1, x2 = ŷ2 and
x1 = ŷ1 +π , x2 =−ŷ2) no longer map to the same point and the surface divides in two.
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FIG. 9. Control space for a two-axis arm for various choices of offset: the “ideal” case without offsets (left), the case when axes 2
and 3 are not orthogonal (centre) and the case when axes 2 and 3 are not concurrent (right). For the purposes of clarity only half
of the control space is shown, i.e. −π/2 6 x2 6 π/2, with x2 = 0 at the N pole.

2.5 Keep norm of inverse matrix moderate

The fifth principle is that the constraints should act in directions where the effects of configuration
change are significant. More formally, they should be chosen to make Dπ

−1
Y bounded by a not too

large constant (with respect to suitable norms on tangent spaces to the control and coupled spaces), or
operation should be restricted to a domain where this holds. This is because even if singularities of πY
are avoided, many of the undesirable things that happen at singularities also happen when Dπ

−1
Y is large

(large forces and velocities).

3. How to live with singularities

Notwithstanding the above principles, there may be systems for which it is infeasible to avoid singular-
ities.

The set Σ of singularities is typically of codimension one in the coupled space Z, so may separate Z
into more than one component. If applications of the device require it to pass from one component of
Z \Σ (the set of points of Z which are not in Σ ) to another, then one has to cross Σ (we suppose Z is
connected). First we address the question whether one really needs to pass from one component of Z \Σ

to another. Take the two-axis Example 4: Z is a two-torus, generated by angles x1, x2, and Σ consists
of the sets x2 = 0 or π (corresponding to the rod pointing vertically up or down). Thus, if crossing
singularities is forbidden, we are stuck in x2 ∈ (0,π) or (−π,0), and one cannot go from positive
to negative values of x2. An equivalent effect can be achieved, however, by reducing x2 to a small
positive value, rotating x1 by π and then increasing x2 again. So apart from having to program a more
complicated path, nothing is lost here by requiring singularities to be avoided. Similarly for Example 6,
one can achieve the same end effector pose in eight different ways, as illustrated in Figure 10.

Nevertheless, in more complicated devices it may indeed be infeasible to avoid singularities, so we
address the question of how to traverse them safely.
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FIG. 10. There are, in general, muliple different “poses” (configurations of joint angles) which yield the same end effector position.

To keep velocities bounded, it suffices to move the controls tangentially to the image of the singu-
larity set whenever it is required to cross a singularity. This strategy requires the controller to have a
good knowledge of the singularity set or some automatic detection system that feels where it is when it
gets close. Unfortunately, this strategy does not solve the problem of infinite forces at singularities.

To solve the problems of infinite forces and velocities simultaneously, a solution is to use inertia to
take the system across singularities. This has the defect that one cannot stop at (or near) a singularity,
but at least allows one to explore all components of Z \Σ . The dynamics of a general system is given
by (e.g. Choset (2005))

Mi j(z)z̈ j +Γ
i
jk ż j żk = Gi, (3.1)

where Mi j is the inertia matrix (in general configuration-dependent) which gives the kinetic energy
by the expression 1

2 żT Mż; Γ i
jk are the Christoffel symbols, expressions in the derivatives of M which

represent generalisations of centripetal acceleration; and G represents all the tangential forces, including
the effects of control forces and frictional forces. The inertia matrix M is assumed to be positive definite
everywhere, corresponding to the physically natural condition of positivity of kinetic energy (else an
additional type of singularity is encountered: configurations at which M loses rank). At singularities
of πY , the contribution of some directions of control force F may go to zero (by the formula GT =
−FT DπY ), but if ż is transverse to Σ and M is non-degenerate then the equation of motion carries the
system from one side of Σ to the other with no untoward effects.

There are two requirements to make this work. One is that the transverse speed be large compared
with the ratio of forces to mass: then the acceleration term dominates the equation of motion up to the
scale of distances from Σ of order the ratio of Γ to M and takes the system across Σ with small change
in velocity. The other is that one must apply control forces, not attempt to control the state directly. This
may be a major change from standard engineering practice, where for example it is hard to find a motor
that produces a desired torque as a function of time but easy to find one that produces a desired angular
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speed as a function of time. A related approach was presented in Ider (2005).
We propose that the first three design principles should still be respected. In contexts, however,

where repeatability is not a requirement one could relax the second principle, to allow some degrees of
freedom in the system for fixed controls. This reduces the singularity set to one of higher co-dimension
and thereby makes it much easier to avoid. In particular, the singularity set no longer separates the the
configuration space.

4. Vibration frequencies

One important further question is how the natural frequencies of vibration of the device vary if its parts
are compliant instead of perfectly rigid. In particular, it is important to keep them above some lower
limit, else all but the slowest motion of the system may excite large vibrations (see the theory of normally
elliptic slow manifolds, e.g. MacKay (2004)). To compute the natural frequencies of vibration about a
given configuration does not require the full dynamics. It is enough (in the frictionless case) to know
the kinetic energy K for all velocities (but now of all flexible degrees of freedom, including compliance
of the controls) and the second variation δ 2V of the potential energy with respect to all infinitesimal
deformations q. Then the square of the minimum frequency ωmin of vibration is given by minimising
δ 2V (q) subject to K(q) = 1. Really friction should be included and then the eigenvalues of the linearised
motion have negative real parts as well.

The aspect we address here is how the frequencies might vary near singularities. In particular, any
lack of stiffness in the controls has an exaggerated effect on the system near singularities. The control
forces F induce an effective tangential force FT A to Z, where A = DπY . We deduce that a stiffness
matrix − ∂Fi

∂y j
= ki j contributes the terms

−Fj
∂ 2y j

∂ zi∂ zk
+ k jmAmkA ji (4.1)

to the stiffness matrix − ∂Gi
∂ zk

for the full tangential forces. So the effect of k, which a priori was large,
is softened in the null direction of A, leaving only a residual stiffness from a constrained version of the
second derivative of the potential, for example. Thus we see yet another reason to avoid singularities of
πY .

5. Conclusion

Five design principles have been formulated for isostatic mounts of dynamic structures, and they have
been illustrated by a range of examples including a real engineering prototype for a robotic coordi-
nate measurement arm. The distinction between singular points of the coupled space and singularities
of the projection to control space has been emphasised. The need to avoid both has been explained.
Consequences for design and motion planning have been elaborated.

Two issues we have not addressed here are existence and uniqueness of configuration for given
control state. There are several directions in which these questions can be studied but we leave them for
future work.
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