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DEFORMATIONS OF FUNCTIONS AND F-MANIFOLDS

IGNACIO DE GREGORIO

ABSTRACT

We study deformations of functions on isolated singularities. A unified proof of the equality of
Milnor and Tjurina numbers for functions on isolated complete intersections singularities and space
curves is given. As a consequence, the base space of their miniversal deformations is endowed with
the structure of an F-manifold, and we can prove a conjecture of V. Goryunov, stating that the
critical values of the miniversal unfolding of a function on a space curve are generically local
coordinates on the base space of the deformation.

1. Introduction

The theory of Frobenius manifolds plays a central role in mirror symmetry, after
the construction by Givental and Barannikov [2] of an isomorphism between the
quantum cohomology of CP™ and the base space of the miniversal deformation of
the linear function f = x1 + ... + x,41 on the divisor D := {x1... 2,41 = 1}.
There are now a number of conjectures stating similar isomorphisms between
quantum cohomology rings of algebraic varieties and unfoldings of functions on
affine varieties. In this paper we propose a singularity theory framework in which
at least one of the ingredients making up the definition of Frobenius manifolds,
namely the multiplication, can be naturally defined. This structure is known as an
F-manifold [10, 11].

A seemingly inescapable feature of this construction is that the multiplication
is not defined on the whole tangent sheaf of the base space, but only on a
certain subsheaf, that of logarithmic vector fields to the discriminant. Contrary
to those Frobenius manifolds constructed from unfoldings of isolated hypersurface
singularities, our construction does contain some promising candidates for mirrors
of algebraic varieties.

The main result of this paper can be stated as follows.

THEOREM 1.1. Let f: (X,z) — (C,0) be a function-germ with an isolated
singularity on an isolated complete intersection or a space curve. Then the sheaf
©(—log A) of logarithmic vector fields of the discriminant of its miniversal deforma-
tion is in a natural manner a (logarithmic) F-manifold. Moreover, each stratum of
the logarithmic stratification of the base space inherits this structure.

The content of the paper is as follows. First we provide a construction of the
miniversal deformation of a function on a singular variety. We define a morphism
closely related to the Kodaira—Spencer map that will be used to define the
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multiplication. Secondly, we state a condition that ensures the equality of the
dimension of the miniversal base space (Tjurina number) and the number of critical
points of an unfolding of f in the smooth fibre of the deformation. We then show
that the condition holds for functions on isolated complete intersection singularities
and (reduced) space curves. This provides a unified treatment to the (u = 7)-type
results of V. Goryunov [7] in the case of functions on isolated complete intersection
singularities, and of D. van Straten and D. Mond in the case of functions on space
curves [15]. Our methods are closer to those of [15]. To finish, we prove that the
multiplication satisfies an integrability condition, making it into a logarithmic F-
manifold.

Before going into the technical details, we would like to work out a relatively
simple example in which a full Frobenius structure can be constructed, namely
that of the function f = 2P + y? on the ordinary double point X: zy = 0 — C2.
This case is closely related to the construction of Frobenius manifolds on Hurwitz
spaces by B. Dubrovin [5, 17], although as we are also collapsing the curve, a new
structure on the discriminant is made apparent. The aim of this example is firstly
to guide the reader through the rest of the paper and secondly to show how indeed
our construction contains some interesting examples in mirror symmetry. It appears
to be known among specialists that the resulting Frobenius manifold is the mirror
of the orbifold CP(p, q).

Functions on the double point. Let us consider a function germ f = xP + y9
on the Aj-singularity X : xy = 0. The miniversal deformation of f is given by the
function F = ¢+ 37" a;z’ 4+ 2 + 397 biy’ + y¢ on the fibration 7(z,y, a, b, ¢) =
(zy,a,b,c), where a = (ap—1,...,a1) and b = (by_1,...,b1) (see Corollary 2.3 and
the paragraph below). We take the coordinates (g,a, b, ¢) on the base space B of
this deformation so that A: {e = 0} C B is the (smooth) discriminant of 7.

The result of the calculation that we are going to carry out is encapsulated in
the following theorem. We remark that certain aspects of the proof, particularly
the multiplication and the potentiality, will be evident only after the results given

in the main body of this paper have been applied.

THEOREM 1.2. The sheaf ©(—log A) is naturally endowed with a multiplication
* and a bilinear pairing () satisfying the following conditions.
(i) The pairing (,) is everywhere non-degenerate with respect to O(—logA),
flat and compatible with * in the sense that

(uxv,w) = (u,v*xw) for any u,v,w € ©(—log A).

(ii) The multiplication % is commutative, associative and with unit 9/0c. The
unit is globally defined and flat.

(iii) (Potentiality) At every point p € B\A there exist a germ ® € Op , and flat
coordinates (y1,. .., Ypt+q) Such that

_oe <‘9 L
0y 0y Oy dyi  Oy; Oy
(iv) There exists a globally defined conformal Euler vector field E; that is:

> for alli,j,k=1,...,p+q.

Lieg(x) = * and Lieg({,)) = (,).
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Proof. The multiplication is defined by the following lifting process. Lift a vector
field u € ©(—log A) to @ such that ¢tw (@) = wo m. Differentiating F' with respect to
@, we obtain an element in the ring of germs Ox ¢ = C{z,y, a,b, c}. We denote by
t'F(u) its class in the quotient Ox o/(H), where H is the Jacobian determinant

A(F,m = y) Z - Zb .
—_— = wa;x° + pxt — b;y” — qy.
Iz, y) i=1 ' i=1 l

It will be clear from later constructions (although it can also be checked directly)
that the map t'F so constructed is an isomorphism of Op ¢-free modules of rank
p + g. We use it to pull back the algebra structure on Ox/(H) so defining a
multiplication x in ©(—log A).

To define the metric, we consider the relative dualising form a = dx A dy/dm;
and use it to identify Ox o with wx,p . Hence we have dF' = Ha, and we consider
the Grothendieck residue pairing on wyx/po/Ox0 (dF). We use t'F to define a
multiplicatively invariant non-degenerate bilinear pairing on ©(—log A). For u,v €
O(—log A),, this is explicitly given by

[ ¢F)F(v)
o= | LR,

with X, the boundary of an appropriate representative of the fibre 7—1(b). For
b € B\A, the fibre X, is a smooth rational curve with two points deleted, say coq
and o003, corresponding to x = 0 and y = 0. Hence the pairing can be expressed as

VElF(v) VElF(v)

(u,v) = — Reseo, i — Resoo, i . (1.1)

If we take the free basis of ©(—log A) given by £ 9/0¢ and the rest of the coordinate
vector fields, the decomposition (1.1) allows us to express the matrix of (,) as a
sum, each summand corresponding to the residues at a point. A direct calculation,
necessary for what follows, shows that the matrix is given by

0 0 0 47! 0 0 0 47!
0 0 0 0 0 My, 0 0
0 0 Mo, 0 |T[0o 0 o o (1.2)
41 0 0 0 41 0 0 0
where
%y 3bs 4dby ... (q—Dbe_1 q\
Mo — | 46, 0
o1 b
q 0

and analogously for M, .

To show that the pairing is indeed flat, we compute flat coordinates. Let b =
(e0,a0,b0,c0) € B\A. As F has a pole of order p at ooy, we can find a local
coordinate u at cos such that F' = w™P. On the other hand, the function zu is
holomorphic and not vanishing at cos. Fixing a branch of log, we can expand it as
a power series:

logzu =tg +t1u+...+ tp,lup_1 + O(uP).
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Arguing as above, we find a coordinate v such that F' = v~? around 0os, and a series
logyv = 80 + 810 + ... + 84_107 1+ O(v?).

Write t = (t1,...,tp—1) and s = (s1, ..., S¢—1). The interested reader can check, by
the series expansion of x = u~! exp(Z@O t;u') and analogously for y, the following
claim.

CLAM. The functions (¢ = loge,t,s,c) form a coordinate system. The
functions t and s depend, respectively, only on a and only on b.

We can now show that (,) has a constant matrix in these coordinates. Let us
take, for example, 9/0t;. We have

181‘_ i 19y i

x Ot; “ y Ot; -
OF 0z OF dy OF _ OF\ | ., (13)
w0t oyt < o yay>“ =

As the functions ¢ depend only on a, according to (1.2) we need only to look at the
residues at coy. Hence

i J "y
<£l,£> = — Resoo, (Hujqﬂa = —Resq, v Ha

= — ReSoo, U dF = Res,—o pu' 77~ P dy = poiti. (1.4)

A similar calculation, together with the orthogonality relations between a and b
(and hence between ¢ and s) deduced from (1.2), proves that (,) is flat.

To finish, we prove the last claim. The Euler vector field corresponds to the class
of F'in Ox ;. It is given by

() B (e B oot 00

Giving weights 1/p+1/q to the variable ¢, (p—1)/p to a;, (¢ —1)/q to b; and 1 to ¢,
we see that a polynomial h(e,a,b, c) is quasi-homogeneous of degree d if and only
if Lieg(h) = d - h. From (1.2) we see that the entry in the position ij of ML} is (if
not constant) quasi-homogeneous of degree (i + j — p)/p. Likewise, the entry in the
position ij of M3 is (if not constant) quasi-homogeneous of degree (i + j — q)/q.
This proves the claim.

The remaining statements in Theorem 1.2 both follow from Proposition 5.2.
The multiplication x satisfies an integrability condition, and the class of F' in the
Jacobian algebra (that is, the vector field F) is an Euler vector field (see
Definition 5.1 for the precise definition). The integrability condition satisfied
by *, together with the flatness of the identity, also guarantees the existence
of the potential ® with the desired properties (see [10, Theorem 2.15 and
Remark 2.17]). O

2. Versal deformations of functions on isolated singularities

Given a reduced analytic variety (X,z) and a germ f € my ., we will say that
f has an isolated singularity if there exists a representative f: U — S onto the
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complex line S such that U\{z} is smooth and f is submersive at any point of
U\{z}. The deformation problem with which we will be concerned is referred to as
deformations of X over S; that is, we will consider diagrams such as the following.

(X, )C : (%,2)
f F
\(37 i /

{0}¢ (B,0)

7 flat

The notions of induced diagrams, and pull-back or isomorphism of diagrams,
are defined in the customary fashion through maps on the base spaces, keeping
the complex line (5,0) fixed. This deformation theory is sometimes denoted by
Def(X/S) and from a purely algebraic point of view it corresponds to the study of
the deformations of Ox , as an Og algebra.

As in any deformation theory, we have the powerful theory of the cotangent
cohomology modules at our disposal. Given any holomorphic map h: A — B
between analytic spaces, and an O 4-module M, we will denote by TIQ/B (M) the ith
cotangent cohomology group with coefficients in M (see, for example, [12, 13]). In
the absolute case, where B reduces to a point, it is customary to write 7% (M). If M
is just O 4, then the notation is further simplified to Tj‘ /B Another piece of notation
which we will use is the following. The Oth cotangent cohomology Tg (M) is simply
the module of relative vector fields with coefficients in M; that is, © 4 /jp ® 4 M. We
use this notation (and those derived from it, like 73(04) = O(h)), to be in line
with the long-established tradition in singularity theory.

Most of the usefulness of the cotangent modules, as for any cohomology
theory, resides in the long exact sequences derived from short exact sequences of
modules. In the particular case of the cotangent cohomology modules this is, if
possible, even more so. We obtain long exact sequences, not only from short exact
sequences of modules but also from homomorphisms of the base rings (a neat review
of the properties that we will use can be found in [3]). Going back to our function
f:(X,x) — (5,0), there are two sequences of special relevance. The first is
obtained by considering the problem of deforming (X,x) alone. If 7: (X,2) —
(B,0) is a (flat) deformation of (X, z), it is the Zariski-Jacobi long exact sequence
associated to the ring homomorphism C — Op g — Ox ;. It begins

0— T%/B,:c - Tg,r - TJOB’,O(O-%,I) - T%/B,x - T%,z AR (21)

The composite of O ¢ — O(7), with the connecting homomorphism of (2.1) is
the Kodaira—Spencer map of the deformation. Its kernel is the submodule of liftable
vector fields, and we will denote it by L, . In many interesting cases it coincides
with those vector fields tangent to the discriminant of .

If we now consider an extension F of f to the total space (X, z), we can write
¢ = (m, F). The second sequence is also a Zariski-Jacobi sequence, this time
corresponding to Op o — Ogxp,o — Ox ¢

0— Taoe/SxB,a: - Ta%/B,z - Tng/B,o(OX,z) - T}12/S><B,z - Tale/B,m s

(2.2)
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As before, we will be specially interested in a kernel, this time that of the map
T%/SxB)x — Tale/B,x' We will denote it by M, ;. In fact, this module is readily
described in more familiar terms using the exactness of (2.2). If tF': Ox , — O(F),

denotes the tangent map of F', we have

O(F)a
tF(GI{/B,z)
After all these clarifications, we can state the main lemma of this section. The proof
is so straightforward that it can safely be left to the reader. It neatly separates the

problem of finding a versal deformation of a function on a singular germ into: firstly,
versally deforming (X, z) and, secondly, versally unfolding f.

My, = (2.3)

LEMMA 2.1. There is a commutative diagram

0 Lro OB, Tale/B,z — Ty,

[

0—— Map,:c %T%/SxB,;p %T%/B,m —0

I

where t'F is defined as follows: for u € Ly, let @ € Ox , be a lift of u. Then t' F(u)
is the class of tF (@) in My ;.

REMARK 2.2. The vertical arrow in the middle is the Kodaira—Spencer map
of the map ¢, understood as a deformation of f: (X,z) — (S5,0). It is the
composite of Op g — O(m), with the connecting homomorphism of the Zariski-
Jacobi sequence derived from Ogg — OsxB,0 — Ox,z-

We deduce the following criterion for versality.

COROLLARY 2.3. A deformation ¢ = (F,7) of f: (X,z) — (S,0) is versal if
and only if 7 is versal as a deformation of (X, x) and t'F is surjective.

Versal deformations can now be easily constructed from a versal deformation 7 of
(X,x). We take fi,..., fi generators of the vector space cokert'f/mp o(cokert’ f)
and consider the function F' = f+a f1+...4a;f;, adding new parameters aq, . .., a;.
Requiring that 7 be miniversal and f1, ..., f; be a basis, we will obtain a miniversal
deformation. We will later see examples where this can be explicitly carried out.

3. Milnor and Tjurina numbers

An important feature of unfoldings of isolated singularities on smooth spaces is
the conservation of the Milnor number. This invariant can be defined, among other
ways, as the length of the Jacobian Ocn+1 o/(0f/0x1,...,0f/0xn41). It is therefore
both the number of non-degenerate critical points of a generic unfolding and the
minimal number of parameters needed to versally unfold f. From this latter point
of view, it could also be called the Tjurina number of the deformation problem
defined by right equivalence of functions.

In our situation, even if the singularity (X, z) is smoothable and we can speak of
non-degenerate critical points of an unfolding, we might have a different number of
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those in non-isomorphic Milnor fibres. An example of this phenomenon is provided
by the linear section f=wxq + 1 + 2 + x3 + x4 on the germ (X,0) of the cone
over the rational normal curve of degree 4 (see [16]). On the other hand, we do have
a well-defined Tjurina number as the dimension of the vector space of first-order
infinitesimal deformations, namely the length 7(X/S) of T}( /S, The next propos-
ition tells us of the conditions under which the Tjurina number indeed coincides
with the number of non-degenerate critical points in every generic deformation.

PROPOSITION 3.1. Let ¢ = (F,7): (%X,0) — (S x B,0) be a one-parameter
deformation of f. Assume that the following extendability condition is satisfied.
Any vector field tangent to the fibres of f can be

3.1
extended to a vector field tangent to the fibres of . (3.1)

Then both T315/5xB , and My, are free Opg-modules. Moreover, if T% =0
and the generic fibre of 7 is smooth, their ranks coincide.

Proof. Let y be a parameter in (B,0). The exact sequence
0— O%,w _y> O%,w I OX@ —0
induces a long exact sequence:

0 — Ox/sxB.x 2 Ox/5xBx — Ox/52 (3.2)

1 Yl 1
—— dx/sxBa — 1x/SxBae T AX/Sa T -
The condition (3.1) implies that the map Ox/gx . — Ox/s,. is surjective, and
hence
1 Yl
Tx/5x3,x — 1lx/sxBx

is injective. Therefore T%/SxB , and M, are flat over C{y}, and hence free.
For the second statement, we first show that the condition T)Q(,x = 0 also implies
that T)2(/S,z = 0. Associated to C — Og,9 — Ox , we have a long exact sequence:

As (S,0) is smooth, T§(Ox,z) = 0 for i > 1, so that Ty g, = T, for i > 2.
Finally, if the generic fibre of 7 is a smooth, then T; /SxBa is annihilated by a
power of the maximal ideal mp o, and hence it is Artinian. The exact sequence
(3.2) then contains the following short exact sequence:

1 Y 1 1
0 T%/SXB,:c TX/SXB,I TX/S,x 0.

It follows that rkTale/SxB,z = dim¢ T)l(/s,x' To see that this is also the rank of

M, ., we write one more exact sequence:
0— My, — Tale/5xB,x - Tale/B,x — 0,
and we notice that Tale/B,x is supported at z. a
REMARK 3.2. For a smooth fibre X, = 7!(b), the module (m,M,), is the
sum of local Jacobian algebras at the critical points of f;, := F|x,. Its rank is

the sum of the local Milnor numbers p; at each of the critical points. Therefore,
under the hypothesis of Proposition 3.1, the same remains true: the rank of M, ,
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coincides with the number of non-degenerate critical points in a generic deformation
of fr X — S.

From now on, we restrict ourselves to situations in which all the conditions of
the above theorem are satisfied, namely, functions on smoothable and unobstructed
singularities for which the condition (3.1) holds for any one-parameter deformation.
We now show that this family of functions includes some interesting examples. First,
note that it follows from the above proposition that not only does 7(X/S) coincide
with the number of Morse critical points in the generic deformation, but also that
for the miniversal deformation of f, the map

t'F: Lrog— My (3.3)

extends to an isomorphism of free sheaves. In particular, the sheaf of liftable vector
fields is necessarily free.

We will now take a close look at two situations for which we can prove the
extendability condition: the case described in the previous remark, and that of
isolated complete intersection singularities. Let us first introduce a piece of notation.
The module M, , is not independent of the given deformation ¢. Even its length
is not a well-defined invariant of the function f. To avoid such a dependence, we
consider the miniversal deformation of (X, z) alone, say 7: (¥X,0) — (B,0), and
we take any extension F' to the total space. We define

Mf = 7M%w .
mB,OMLp,:E
Note that this module is well defined, as any two extensions of f differ by an element
of the maximal ideal mp .
The reason for introducing this module is that if the conditions of Proposition
3.1 are fulfilled, its length will be equal to 7(X/S5).

4. Functions on space curves and complete intersections

As remarked previously, the case of functions on smoothable and unobstructed
curves falls trivially into our area of interest. The equality between the Milnor
number and the Tjurina number for these is the main result of [15].

The authors of [15] define the Milnor number of a function on a space curve
in terms of the dualising module wx ,. Using the class map [1], or equivalently,
Rosenlicht’s description of wx , as certain meromorphic forms [4], the module O x df
can be seen as a submodule of wx. They define the Milnor number of f as

WX x

OX,zdf.

They also show the following interesting formula: the class map cl: Qx ; — wx ¢
can be dualised to obtain a submodule w¥ , of ©x ;. Then py is also the length of

O(f)e/tf (W 2)-

Hf = dim(c

ProprosSITION 4.1. For a function f on a space curve,

O(f)«

M= i)
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Proof. A space curve is a Cohen—Macaulay variety of codimension 2, and as such
is defined by the maximal minors A; of a (m X (m+ 1))-matrix M with coefficients
in Ocs ;. Their deformations are well understood [19]; they are also defined by the
maximal minors A; of a perturbation M of M.

An identical calculation to that of [15], but using the relative class map for
the miniversal family instead of that of (X, z), shows that its dual in ©x/p , is
generated by the vector fields

0 0 0
Oz Ory  Oxs
0N,  9A;  OA;
31'1 31'2 8x3
OA;  OA;  9A,
81‘1 6$2 61‘3

On the other hand, the relative class map

. 1<i<j<l

clx/Be: Qx/Bx — Wx/Ba

(or rather, a representative of it) is an isomorphism whenever the fibre is smooth.
As the generic fibre is indeed smooth, the set where it fails to be bijective is of
codimension at least 2. Hence its dual is an isomorphism everywhere, and if F' is
any extension of f to (X, z) then we have

O(F)«

T O OO T -

EXAMPLE 4.2. We can use the above calculation to compute versal deforma-
tions of functions on space curves. For example, the union of the three coordinate
axes in (C?,0) is defined by the (2 x 3)-minors of M= (g S) The miniversal
deformation of a function f = P 4+ y? + 2" is therefore obtained by
considering the miniversal deformation of the curve together with the unfolding
F=axP + Ef:_ll a;xP~t + yP + 23;11 biy?™t + 2" + Z:ll ¢;z"~" 4+ d. In [9], where
simple functions on curves are classified, this singularity is referred to as Cy, 4,

o, Of)a

We now go on to study the case of functions on complete intersections. Let
f: (X,2) — (S,0) be a germ with an isolated singularity on a n-dimensional
complete intersection. Let gi,...,gx be elements defining the ideal of (X,z) in
(Cntk ).

If n > 2, a submodule of © x ,, whose members are clearly tangent to all the fibres
of f is generated by the maximal minors of the following matrix.

0 0
67371 o axn—&-k
of of
R e
991 991 (4.1)
Ory " Orpik
% g

3%1 o a[L'n+k
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LeEmMMA 4.3. For n > 2, the vector fields in (4.1) generate ©x /.

Proof. Let ¢ = (f,91,...,9%). The module ©x/,g, is the kernel of

Ocn+k 5 @ Ox tegl, Oci+r o ® Ox - (4.2)
As f has an isolated singularity and (X, z) is Cohen—-Macaulay, the depth of the
ideal in Ox , generated by the maximal minors of (4.2) is n; that is, it is the greatest
possible. It follows that the Eagon—Northcott complex is exact [6], and the kernel
is generated by the above vector fields. |

COROLLARY 4.4. For a germ f: (X,z) — (S,0) with an isolated singularity
on a complete intersection of dimensionn > 1, 7(X/S) coincides with the number of
non-degenerate critical points of a generic deformation. If n denotes the dimension
of (X, z), then

WXz
My ~ df/\Q?{ml' (4.3)

Proof. If n =1, then X is a curve, the fibres of f are just points, and there are
no tangent vector fields to the fibres of f. For n > 2, we see from Lemma 4.3 that
the extendability condition holds. In both cases, Lemma 4.3 is also telling us which
vector fields are tangent to all the fibres of a deformation of a complete intersection.
We simply take (X,z) to be the ambient space (C"** z) and change (S,0) by
(C*,0). We see that Ox,p , is generated by the maximal minors of (4.1) with the
row involving f deleted. The equality (4.3) is now made evident by differentiating
J with respect to this set of generators of Ox/p - |

REMARK 4.5. The equality between Tjurina and Milnor numbers for functions
on complete intersections is proved, using unrelated methods, in [7].

REMARK 4.6. Using (4.3) and a well-known result [20], we can interpret the

rank of My, and hence 7(X/S), as the rank of a certain vanishing homology, namely
H, (X, Ys) for Milnor fibres of (X, z) and f.

5. Multiplication on the sheaf of liftable vector fields

Whenever the map ¢'F of (3.3) extends to an isomorphism of sheaves, we can use
it to define a multiplication on £, by pulling back the algebra structure on M. If
(X, z) is also smoothable, then this defines a multiplication on the tangent bundle
of the complement B\A of the discriminant of the fibration. We begin recalling the
definition of an F-manifold from [10, Chapter 1].

DEFINITION 5.1. A complex manifold with an associative and commutative
multiplication * on the tangent bundle is called an F-manifold if:
(i) (unity) there exists a global vector field e such that exu = u for any u € O,
and
(i) (integrability) Liey, (x) = ux Lie,(x) + Lie, (x) x v for any u,v € O .
An Euler vector field E (of weight 1) for M is defined by the condition

Lieg () = *.



976 IGNACIO DE GREGORIO

The main consequence of this definition is the integrability of multiplicative
subbundles of T'M; in other words, if in a neighbourhood U of a point p € M
we can decompose TU as a sum of unitary subalgebras A @ B such that Ax B = 0,
then A and B are integrable.

By choosing good representatives in the sense of [14] for all the germs involved,
we have the following statement.

PROPOSITION 5.2. The map t'F endows the sheaf of liftable vector fields L
with the structure of a commutative and associative Opg-algebra * such that, for
any u,v € L:

Lieyso (%) = Liey (%) * v 4+ u * Lie, (*). (5.1)

The class of F' in m, M, corresponds to an Euler vector field of weight 1.

Proof. Tt is enough to show that (5.1) holds off A. Let p = rkm,M,. For a
generic point b € B\A, the function F' has p quadratic singularities on the smooth
fibre 771 (b). Hence 7, M,, decomposes into p one-dimensional unitary subalgebras.
In a neighbourhood U C S\A of such a point, the integrability condition is
equivalent to the image L of the map

supp My >z +— d, F € T ) B (5.2)

being a Lagrangian subvariety of T*B (see [10, Theorem 3.2]). If a denotes the
canonical 1-form on T*B and p: T*B — B the projection, it is easy to check that
the diagram

supp My ——— p.Op,
\ /
Op

is commutative. The homomorphism on the right-hand side is given by evaluation,
so that it can also be expressed as a(@t) where @ is a lift of u € Op to Op«p.
Hence «j is the relative differential of F' when thought of as a map on L via
the identification (5.2). It follows that oy, is exact and hence closed, so that L is
Lagrangian.

The statement about the Euler vector is an easy calculation, which we leave to
the reader (see [10, Theorem 3.3]). O

The above proposition establishes the structure of the F-manifold, at least off
A. In the case where L, coincides with the sheaf of tangent vector fields to A,
denoted by O(—log A), we can in fact define the F-manifold structure on each of
the strata of the logarithmic stratification induced by ©(—1log A) (see [18]). First
we need a lemma.

LEMMA 5.3. For any ideal sheaf I C Op, the kernel of the map
,Cﬂ—/IL‘ﬂ— — ®B/I@B
is identified by t'F with an ideal of m, M /Im,M,.

Proof. Choosing a Stein representative of 7, we can interpret the diagram in
Lemma 2.1 as an isomorphism of free resolutions of 7T>.<T31€ /B The vertical arrows
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remain isomorphisms after tensorising the diagram with Op/I. Hence the kernel of
L:]IL, — ©p/IOp

is isomorphic via t'F to the kernel of
T Mo /Im My — mTx 5, 5 /17Ty 55 -
Note now that this latter map is m,Ox-linear, and hence its kernel is a 7, O%-

module; that is, an ideal for M, is (isomorphic to) a quotient of Ox. |

THEOREM 5.4. If L, = O(—log A), then each stratum of the logarithmic strati-
fication has the structure of an F-manifold with an Euler vector field of weight 1.

Proof. Let b € B, and let Sy be the stratum in which b lies. Let V' be an open
neighbourhood of b in which S, NV is an analytic subset of V' defined by the ideal
Ig,. The sheaf O,y can be identified with

im(ﬁﬂ‘v — @BlV)
ISb im(ﬁ‘rrh/ — ®B|V)
Let K denote the sheaf Tor®® (W*Talg/BaOB/ISb)- The map ¢'F descends to the
above quotient, and it yields an isomorphism of Og,~y-modules

T M |v _
T M|y + U F(Kly)

According to the previous lemma, the right-hand side is an Op-algebra. The above
isomorphism defines the multiplication on the tangent bundle of the stratum Sj.
From Proposition 5.2 it follows that it is an F-manifold with Euler vector field of
weight 1 given by the class of F' in the corresponding algebra. U

esbﬁV —
Is

REMARK 5.5. If the stratum .Sp is a massive F-manifold, that is, if there exist
coordinates uq, ..., u; such that

0 0

8ui * 8uj *J 8u1
then the critical values of F' are generically local coordinates on Sp. In particular,
this always holds on the stratum B — A,. In the case of space curves, that the
critical values of F' off the bifurcation diagram are local coordinates is shown for
simple functions by V. Goryunov in [8]. He also conjectured the analogous result
for non-simple functions.

=4 for all 4, j,
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