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state) 

Berkeley-Madonna Mathematical modelling software [1] 

BFGS algorithm Broyden-Fletcher-Goldfarb-Shanno algorithm; 

used to solve ordinary differential equations 

Bioavailability Amount of drug or substance entering systemic 

circulation 

Biomarker Indicator of a biological state 
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C57BL/6J mice Standard mouse used in scientific research, see 

section 4.3.4 

CAC Citric acid cycle (also known as Krebs cycle or 

tricarboxylic acid cycle) 

CGM Continuous glucose monitoring 

Clearance Rate at which a substance is removed 

Cleaving Process by which C-peptide is removed from 

proinsulin, causing insulin to be released 

CNS Central nervous system 

Compartmental model Mathematical model which uses compartments to 

represent aspects of the system 

Control system state space 

form 

Standard form for mathematical model equations 

given in section 2.3.2 

C-peptide By-product of insulin secretion 

Critically damped (system) System which returns to its steady state as quickly 

as possible 

CVGI Cardiovascular gastro-intestinal (department at 

AstraZeneca) 

Deconvolution Process whereby system input is determined from 

its output and knowledge of the system 

Deterministic System whose response is uniquely determined 

by the input and parameters, with no random 

component 
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ELISA assay Enzyme-linked immunosorbent assay; biological 

test used to measure insulin and C-peptide levels 

Enzyme Biological catalyst 

Euglycaemic-

hyperinsulinaemic clamp 

An experiment where glucose is maintained at a 

normal concentration and insulin is maintained at 

a high concentration for a period of time 

First order ODE Ordinary differential equation containing only first 

derivative terms 

First pass effect Amount of drug or substance removed before 

being measured 

First phase response Initial reaction of a system to an impulse 

Gear’s stiff algorithm Algorithm for solving ordinary differential 

equations, see section 2.5 

GIM Glucose insulin model; software tool developed 

from the Cobelli model, see section 5.7 

GLS Generalised least squares 

Globally identifiable Parameter with a unique value or a system whose 

parameters all have unique values 

Glucagon Hormone which raises blood glucose levels and 

stimulates conversion of glycogen into glucose 

Gluconeogenesis Process for synthesis of glucose from non-

carbohydrates 
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Glucose effectiveness Removal of glucose based only on glucose 

concentration 

Glucose-insulin homeostatic 

system 

System responsible for blood sugar regulation in 

the body 

GLUT Group of glucose transporters 

Glycogen Polymer of glucose used to store glucose in the 

liver 

Glycogenesis Process for creating glycogen 

GSIS Glucose-stimulated insulin secretion 

Haemacel Compound used to maintain constant volume of 

distribution 

Han Wistar rats Standard rat used in scientific research, see 

section 4.3.1 

Hepatic artery Main source of oxygenated blood into the liver 

Hepatic portal vein Main source of blood to the liver, via the 

gastrointestinal tract and spleen 

HOMA model Homeostatic model assessment model, see 

section 5.3 

Hyperglycaemic Having an elevated level of glucose 

Hyperglycaemic clamp Experiment where glucose is maintained at a high 

concentration for a period of time 

Hyperinsulinaemic Having an elevated level of insulin 
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Hypoglycaemic Having a lowered level of glucose 

IDDM Insulin dependent diabetes mellitus 

Impulse response Output of a system when presented with a brief 

input signal (an impulse) 

Incretins Hormones which stimulate the release of insulin 

Insulin action Effect of insulin on a system 

Insulin resistance Level of insensitivity to insulin 

Insulin sensitivity Level of effect insulin has on glucose 

Islets of Langerhans Groups of cells in the pancreas where β-cells 

reside 

Interstitial insulin Insulin which is not in the blood 

IVGTT Intravenous glucose tolerance test 

Krebs cycle Part of the process for converting ADP into ATP in 

mitochondria (also known as citric acid cycle or 

tricarboxylic acid cycle) 

Leptin Hormone responsible for limiting appetite 

Lipids Group of molecules which allow energy to be 

stored; includes fats and fatty acids 

Locally identifiable Parameter with only a finite number of possible 

values or system whose parameters have only a 

finite number of possible values 

Maple Symbolic mathematical modelling software [2]  
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Mathematica Symbolic mathematical modelling software [3] 

Mathematical model Model using mathematical equations to describe 

a system 

MATLAB Numerical mathematical modelling software [4] 

Maximum entropy method Method for deconvolution 

Michaelis-Menten kinetics Standard model for enzyme kinetics 

Minimal Model Model of the glucose-insulin system, see Chapter 

6 

Nelder-Mead algorithm Optimisation algorithm 

NHS National Health Service 

NIDDM Non-insulin dependent diabetes mellitus 

Observable System (or part of a system) whose state can be 

reconstructed from observation of its outputs 

ODE Ordinary differential equation 

OGTT Oral glucose tolerance test 

OLS Ordinary least squares 

ORC Observability rank criterion 

Parameter Variable within a mathematical model 

Parameter estimation Process of determining values of variables within 

a mathematical model 

Pharmacodynamics Study of action which drugs have on a system 
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Pharmacokinetics Study of the profile of drugs within a system 

PID (controller) Proportional-Integral-Derivative (controller) 

PKPD Pharmacokinetic pharmacodynamic 

Plasma glucose Glucose measurement taken from blood plasma 

Plasma insulin Insulin measurement taken from blood plasma 

Proinsulin Form in which insulin is stored, attached to C-

peptide 

p value Probability of an event occurring due to random 

chance (usually based on Student’s t distribution) 

Quasi-Newton algorithm Optimisation algorithm 

Residual Output from objective function (e.g. generalised 

least squares) when fitting a mathematical model 

RRP Readily releasable pool (of insulin) 

Runge-Kutta algorithm Algorithm for solving ordinary differential 

equations 

Sensitivity analysis Method for determining a system’s response to a 

change in parameter values 

SF Stiffness factor 

Steady state State to which a system will return after 

perturbation; equivalent to basal level in 

biological terms 
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Stiffness Measure for how dynamic (or otherwise) a system 

is 

Stochastic System whose response is not uniquely 

determined by the input and parameters as it has 

a random component 

Structural identifiability Analytical test to determine whether, given 

perfect, noise-free, continuous observations from 

an experiment, model parameters can be 

meaningfully determined 

Substrate Substance on which an enzyme acts 

TCA cycle Tricarboxylic acid cycle (also known as Krebs cycle 

or citric acid cycle) 

Type 1 diabetes Diabetes characterised by an auto-immune 

disorder causing loss of β-cells 

Type 2 diabetes Diabetes characterised by impaired β-cell function 

(though not due to an autoimmune disease as in 

type 1 diabetes) and reduced insulin sensitivity 

UN United Nations 

Unidentifiable Parameter with an infinite number of possible 

values or a system with at least one parameter 

with infinite possible values 

Uppsala model Model of the glucose-insulin system developed by 

a group based in Uppsala, see section 5.8 

Volume of distribution Size of a compartment in a compartmental model 
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WHO World Health Organisation 

WinNonLin Numerical mathematical modelling software [5] 

WLS Weighted least squares 

ZDF rat Zucker diabetic fatty rat; model for subjects 

entering type 2 diabetes, see section 4.3.3 

Zucker rat Rat deficient in leptin receptors which is a good 

model for type 2 diabetes, see section 4.3.2 
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Chapter 1: Introduction 

1.1 Aims 

The primary aim of this work is to develop, using data obtained from rat models, 

an integrated mathematical model of glycaemic control that predicts both short-

term and long-term glucose regulation [6]. It is an additional aim of this thesis 

that it should be understandable by non-specialists. This will ensure that any 

person with an interest, regardless of scientific background, can understand the 

work. 

1.2 Objectives 

 To review and evaluate the different mathematical models of 

glycaemic control. 

 To modify/develop existing mathematical models and determine 

how existing glucose and insulin data from animal (rat and mouse) 

studies fit. 

 To apply the new model to the evaluation of glucose stimulated 

insulin secretion using new data. 

 To develop an integrated desktop utility for modelling and 

analysing glycaemic control and insulin secretion in animal models of 

diabetes. 

 To develop methods for determining pancreatic degeneration and 

function from measurable, but indirect, parameters such as glucose, C-

peptide and insulin levels. 
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 To include in the model physiological control parameters that 

address counter-regulatory systems, such as lipid levels and β-cell 

mass. 

 To apply the model to the design of future studies evaluating 

pancreatic changes and effects on glycaemic control [6]. 

1.3 Justification 

Diabetes is a huge and growing problem throughout the world. 171 million 

people suffer from it worldwide; this is estimated to double by 2030 [7]. In 2008, 

2.3 million people in the UK had diabetes, and it is expected to rise to 4 million 

by 2025. Diabetes in the UK costs an estimated 10% of total NHS costs [8]. 

Mathematical modelling can be used to help understand glucose regulation in 

health and diabetes. Drug development speed can be increased by identifying 

key pathways that will have the greatest effect on improving glucose control. 

Robust and well-validated models can potentially predict experimental outcomes 

without the need for further experiments to be performed, making processes 

cheaper and faster. They can also be used to analyse experimental data in order 

to gain more benefit from the experiments as well as helping to improve the 

design of future experiments. Thus modelling can also help in replacing, reducing 

and refining animal testing. 

Mathematical modelling involves equations that can reproduce and predict how 

a system will behave. To model the complex glucose and insulin system, 
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including feedback and non-linearities, with few data points is a challenging task. 

The glucose and insulin system can be looked at both in the long term (days, 

weeks and months) and the short term (hours and minutes); to combine these in 

one model and create a complete model of the glucose and insulin system is 

clearly a complicated and non-trivial task. 

1.4 Thesis layout 

Background information on mathematical modelling is provided in Chapter 2 and 

the biology of the glucose-insulin system is detailed in Chapter 3. Methods 

employed for data collection and the data used to create and validate the 

models created by the author of this thesis are introduced in Chapter 4. A 

selection of existing models of the glucose and insulin system is presented and 

critiqued in Chapter 5 to give an overview of the field as it stands. Chapter 6 : 

Minimal Model contains details of the most widely-used model in the field and 

new analysis of the Minimal Model performed by the author of this thesis. 

Chapter 7 presents the author's deconvolution of C-peptide concentrations to 

obtain insulin concentrations which were used to help design the model 

presented in Chapter 8, which is for short-term modelling of the glucose-insulin 

system. It is developed in Chapter 9 to additionally model long-term aspects of 

the glucose-insulin system. The software tool produced by the author is 

explained in Chapter 10. Figure 1.1 shows the relationship between chapters. 
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Figure 1.1 - Overview of chapters
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Chapter 2: Modelling 

This chapter introduces all the basic concepts of mathematical modelling and 

approaches to modelling that will be used and examined in the rest of this thesis. 

These include strategies for building models, structural identifiability analysis, 

model simulation, parameter estimation and sensitivity analysis. 
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2.1 Introduction 

A mathematical model is a representation of a system. Mathematical models are 

invariably simplified versions of the actual physical processes modelled and thus are 

approximations of the systems they represent. Mathematical models are useful 

because they make systems easier to study. For example they may allow situations 

which cannot be created in reality to be studied, outcomes to be predicted without 

experiments being carried out and situations to be analysed more clearly as 

mathematical variables can be controlled more easily. 

This thesis considers mathematical models of biological systems, specifically the 

glucose-insulin homeostatic system and other closely related systems. Two types of 

models are discussed in this thesis, animal models and mathematical models. A few 

are animal/biological models, where one animal (commonly the rat) is used as a 

substitute for a human. Most are mathematical models, that is mathematical 

descriptions of the system. The models which the author has developed and 

presented in this thesis are mathematical models.[9-11] 

2.2 Modelling approach 

In order to create a mechanistic mathematical model, the system must be 

represented by a set of equations. There are different ways in which this may be 

approached, though all tend to follow a similar approach which involves gathering 

information about the system, generating a model (or models) and validation. 

The approach adopted in this thesis is based on approaches from several sources [9-

11].   
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Figure 2.1 is a flowchart giving an overview of this approach; each stage is explained 

below. 

Experiment &

Observations

Physiological System

Model Formulation

Structural 

identifiability

Parameter 

Estimation

Parameter Validation

Interpretation

Sensitivity Analysis

Purpose/Aims & 

Objectives

Reparameterisation

Model Analysis

V
a

lid
a

ti
o

n

  
Figure 2.1: Flowchart of modelling approach adopted in this thesis 
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2.2.1 Physiological System 

In creating a mathematical model, it is necessary to consider what is being 

modelled: data or the physical system itself [10]? In the first case, equations are 

based purely on inputs and outputs with no consideration for the mechanisms 

involved in the system, a numeric/descriptive model, and are essentially a curve-

fitting exercise. In the second case, equations are based on information about how 

the system works (i.e. physical, chemical or biological laws), which ensures that all 

parts of the model are relevant and justifiable and is necessary to make the model 

robust and applicable across a variety of situations. 

The models developed by the author of this thesis aim to be system, rather than 

data-driven, models. The biology of the glucose-insulin system is discussed at length 

in Chapter 3 and is used to help design the models in later chapters. 

2.2.2 Purpose/Aims & Objectives 

A large number of factors influence the way that a model is designed. It is important 

at the outset to ensure that the purpose of the model is clearly defined and that the 

desired outputs from the model are specified. The specific demands on this model 

are discussed in Chapter 5, Chapter 8 and Chapter 9. 

2.2.3 Experiments & Observations 

Knowing the limitations of the experimental environment helps to ensure that a 

model is appropriate for its purpose. For example, a model with a large number of 

parameters will possibly require more data and other types of measurements than 

can be gathered from available experiments. It may therefore be necessary to limit 
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the number of parameters in a model based on the potentially available 

experimental data. This is discussed further in the section on Structural 

Identifiability below. 

2.2.4 Model Formulation 

Once information about the system has been gathered, a model can be formulated. 

Where physical or biological laws related to the system are known, well accepted 

equations can be used; for example, laws governing enzyme kinetics are described 

by the Michaelis-Menten equation described in the Michaelis-Menten kinetics 

section below. For parts of the system where laws are unknown, numerically-

derived equations based on data can be used. 

This is the stage where decisions must be made about the form of the model; 

further detail about some of these decisions is given in the Model form section 

below. 

2.2.5 Model Analysis 

Depending on the model and the system being modelled, it is important to check 

that the model's behaviour matches the underlying system as well as passes 

mathematical tests to ensure the resulting parameters are valid. An example of this 

is that if the system returns to a steady state the model should also return to that 

steady state. It is good practice therefore to analyse the model's properties, in 

particular steady state analysis, to ensure that the model accurately represents the 

system and is stable [12-14]. Further tests, such as structural and sensitivity 

analyses, can be performed. 
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2.2.6 Structural Identifiability Analysis 

Structural identifiability analysis plays an important role in testing whether a model 

is appropriate, in a parametric sense, for a given experiment. It is a test to 

investigate whether, given perfect, noise-free, continuous observations from an 

experiment, model parameters can be meaningfully determined. This is important 

because an unidentifiable parameter has an infinite number of possible values 

which will all produce the same model output, rendering it meaningless. If any 

model parameters are unidentifiable, action to resolve this is needed; whether 

through obtaining the parameter value from another source (e.g. via the literature 

on separate, external experiments), re-parameterising the model such that it is 

“lumped” into a reduced set of identifiable parameters or redesigning the 

experiment to provide more observations from other parts of the system. Methods 

of determining structural identifiability are described in Structural identifiability 

techniques below [14-19]. 

2.2.7 Parameter Estimation 

Structural identifiability is a necessary precursor to parameter estimation (or 

parameter fitting) to ensure that any unidentifiable parameters have been 

appropriately reworked. Parameter estimation is the process of taking the 

postulated model and the experimental data and determining unknown model 

parameter values. Some parameters can be determined via alternative methods to 

parameter estimation; for example in a model of friction on a car wheel, 

gravitational acceleration need not be found from experimental data. In biological 

systems the majority of parameters are not documented in the literature or easily 
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obtainable from other experiments so most, or all, will need to be determined via 

parameter estimation. A method of parameter estimation is described in the 

Parameter estimation section below [10, 11, 18, 20-22]. 

2.2.8 Parameter Validation 

As part of parameter estimation, it is important to assess the confidence in the 

fitted parameter values as structural identifiability only tests the structure of the 

model, rather than the measurements given to the fitting process. If there is low 

confidence in the parameter values estimated, then it is necessary to redesign 

either the experiment or the model. This topic is explained in detail in Chapter 10, 

as it is important for users of the tool to understand how reliant they can be on the 

parameter values generated. 

2.2.9 Sensitivity Analysis 

Sensitivity analysis involves measuring how sensitive the model output is to changes 

in parameter values. This is useful in helping redesign experiments and models 

when there is low confidence in the parameter values as it can locate dynamic 

phases of the model which are key in obtaining higher confidence. This is described 

in detail later in this chapter [11, 20, 23, 24]. 

2.2.10 Interpretation 

Analysis and prediction are strongly linked to the model purpose as they are the 

primary reason for the development of a mechanistic model. In this case, the model 

has been designed largely to enable examination of the glucose-insulin system 

which allows for analysis of experiments, such as an IVGTT(Intravenous Glucose 
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Tolerance Test), and prediction of future experimental outcomes to this and other 

forms of intervention. 

2.3 Model form 

2.3.1 Linear and non-linear models 

A linear model is one where the output is directly proportional to the input, 

whereas a non-linear model does not have output directly proportional to the 

input. A linear model, such as the model of C-peptide kinetics in this thesis (see 

Chapter 7), will be structurally simple in a mathematical sense but may not contain 

adequate dynamics to model some systems. A non-linear model, such as the model 

of glucose and insulin kinetics in this thesis Chapter 8, may provide a more accurate 

representation of a system, but will be more complex in structure. 

2.3.2 General model form for equations 

The standard control system state space form for representing mathematical 

models is as follows in equation 2.1: 

 
 

                                    
                   
             

2.1 

where      is time, p  is a vector of the model parameters     (a real number 

vector of size p), x  is the state vector    , y  is the vector of observations     

and u  is the input to the system. In a non-linear model f  is the co-ordinate function 

that represents the dynamics of the system, g  is a function applied to states that 

affects the inputs and h  is a function of the states; in a linear model, f, g  and h  are 

a matrix of scalars multiplied by the states [25]. 
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Linear models have an exact analytical solution whereas very few non-linear models 

have known analytical solutions. Therefore when solving non-linear models 

numerical methods are often required. This is explained in section 2.5, Simulation. 

2.3.3 Compartmental modelling 

Compartmental models are used extensively in the modelling of biological systems 

[14]. In this type of model systems are represented by a finite set of subsystems, or 

"compartments", with flows linking those parts of the system which interact (see 

Figure 2.2). How the system is divided into compartments depends on factors such 

as the scale of the system and purpose of the model; for example a simple model 

could use a single compartment to represent all of the blood in the human body, 

whereas a more complex model might use one compartment per organ (such as the 

PBPK model in [26]). 

x1

k1e

x2

k21

k12

bu(t)    

 
Figure 2.2: Example compartmental model 
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The equations defining the compartmental model shown in Figure 2.2 are given in 

equation 2.2. 

 
 

         
            

      
  

   
  

   
 
 
      

            
  

  
  

             

2.2 

where x1 and x2 are state variables representing concentration in compartments 1 

and 2 respectively, x1 is the only observable state (shown by the matrix in the 

equation for y), y is the output function, k12 is the flow rate from compartment 1 to 

compartment 2, k21 is the flow rate from compartment 2 to compartment 1, k1e is 

the extraction rate from compartment 1, b is the input gain (bioavailability/volume 

of distribution) and u is the input to compartment 1 [14]. 

In biological system modelling, it is often the case that each compartment 

represents a concentration of a substance or quantity of a substance; this is the 

case in the models developed by the author and presented in this thesis as most of 

the data available are in the form of concentrations (e.g. glucose concentration in 

blood) or quantities (e.g. quantity of glucose in the subject). The substance in each 

compartment is assumed to be evenly distributed within the compartment, 

meaning that the concentration at any location in the compartment is assumed to 

be the same as at the sampling site (i.e. sample concentrations are representative 

of concentrations throughout the compartment). With this assumption in mind, the 

volume of distribution of a compartment is the volume in the compartment over 

which a substance is (evenly) distributed, i.e. the size of the compartment [9, 14]. 
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2.3.3.1 Michaelis-Menten kinetics 

Michaelis-Menten kinetics are an approximation for substrate-only enzyme kinetics, 

describing the reaction rate as substrate and enzyme interact. The Michaelis-

Menten equation is given by equation 2.3, below: 

 
 

     
        

       
 2.3 

where v  is reaction rate, vmax  is the maximum theoretical reaction rate, S is 

substrate concentration and KM  is the Michaelis-Menten constant, i.e. the 

substrate concentration at which v  is at 50% of vmax. 

A key feature of this equation is that it reaches a saturation level which 

asymptotically approaches vmax, as shown in Figure 2.3. 

 

Figure 2.3: Michaelis-Menten equation plotted with concentration of substrate along x-axis 

and reaction rate along y-axis 

The Michaelis-Menten equation is more widely applicable in situations where 

processes saturate, for example certain predator-prey relationships where the 

number of species saturate [27]. It is used in this thesis for clearance rates of 

glucose and C-peptide, as explained in Chapter 7. 
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2.4 Structural identifiability techniques 

A mathematical model is said to be “structurally identifiable” if, given a perfect, 

noise-free, continuous set of observations, all the parameters in the system can be 

uniquely determined [15, 17, 19]. If a model is unidentifiable there will be an 

infinite number of possible combinations of values for unidentifiable parameters 

that will produce the same output, making these parameter values meaningless in a 

practical context. 

In biological systems the data is far from noise-free, so a structurally identifiable 

model does not guarantee that these parameters will be meaningful. Identifiability 

ensures that the model has structurally meaningful parameters and, with the right 

conditions, uniquely identifiable parameters. This test should be seen as a precursor 

to having a sound mathematical model. If the model is not structurally identifiable, 

the unidentifiable parameters are meaningless. 

Mathematically, structural identifiability can be defined as follows. Given the 

model, from equation 2.1, and a parameter value     where   is an open set, 

    , of feasible values, find all parameter values      and the corresponding 

models of the form: 

 
 

                                            

                       

                 

2.4 

such that: 
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                      2.5 

Individual parameters can be classed as unidentifiable, locally identifiable or 

globally identifiable. A parameter is globally identifiable if it has a unique value; it is 

locally identifiable if it can take its value from only a finite set of possible values. For 

an entire model to be globally identifiable, all parameters must be globally 

identifiable. For a model to be locally identifiable, all parameters must be either 

globally or locally identifiable with at least one parameter locally identifiable. If one 

or more parameters are unidentifiable then the entire model is unidentifiable. 

There are several methods of determining the structural identifiability of a model. 

The Laplace transform approach, which involves considering the Laplace transform 

of the model equations, can only be applied to linear models and is explained in 

section 2.4.1 below. The Taylor series approach involves calculating the Taylor 

series coefficients of the model observations; this can be applied to both linear and 

non-linear models and is explained in further detail in section 2.4.2 below. The 

similarity transformation approach has two methods: one for linear models and one 

for non-linear models which is detailed further in section 2.4.3 below. The Lie-

symmetry approach involves a similar mathematical approach to the similarity 

transformation approach, but has the advantage that it can be implemented easily . 

It is discussed further in section 2.4.4 below. 

2.4.1 Laplace transform approach 

The Laplace transform approach is simple, but appropriate only for linear systems 

[28]. It involves obtaining Laplace transforms of the model equations which are 
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then rearranged to find the system transfer function, i.e. the relationship between 

the input and output of the system. The coefficient of each term in the transfer 

function is theoretically measurable, meaning that if a single solution can be 

obtained for the parameters from these coefficients the parameters are measurable 

and unique [9, 14]. 

2.4.1.1 Method 

 Ensure the model equations are in the standard control system state space form 

given in equation 2.1; as the system must be linear, f, g  and h  will be matrices 

multiplied by the states. 

 Obtain Laplace transforms of the model equations, such that : 

 
 

                         
              

2.6 

 Rearrange and combine the Laplace transforms to obtain a relationship 

between the input and output: 

 
 

                            
  

         2.7 

 Use equation 2.7 to identify the transfer function, T(s): 

where 
 

              

                   
  

     

2.8 

 Assume that coefficients of the powers of s in the transfer function, T(s), are 

known. Any coefficients which consist only of a single parameter are identifiable 

however any coefficients which consist of a combination of two or more 
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parameters are unidentifiable on their own. The analysis then entails 

determining the solution set for the parameters from these coefficients. 

2.4.2 Taylor series approach 

The Taylor series approach is appropriate for both linear and non-linear systems. It 

involves successive differentiation of the output function with respect to time to 

obtain a Taylor series expansion of the model output, of the form in equation 2.9, 

about a known time point (generally t  = 0). 

 
                              

        
  

  
    2.9 

where   
           

   

    
   

  [22]. 

The coefficient of each term in the expansion is theoretically measurable, meaning 

that if a single solution can be obtained for the parameters from these coefficients 

the parameters are measurable and unique  [19]. 

For linear systems with n parameters and no input (or a single impulse input) at 

most 2n -1 successive differentiations are needed [9]. For general non-linear 

systems, such as the ones in this thesis, there is no strict upper bound for the 

number of successive differentiations. This means that this approach can only prove 

a system is identifiable, not that it is unidentifiable. 

2.4.2.1 Method 

 Ensure the model equations are in the standard control system state space form 

given in equation 2.1. 
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 Repeat the following steps until all parameters have been uniquely determined 

or solving to find parameters becomes intractable: 

 Successively differentiate y(t,p) to obtain higher derivative than the  

previous iteration (i.e. y'(t,p) in the first iteration, then y''(t,p), etc.). 

 Evaluate this result at a known time point (e.g. t  = 0) by substituting 

identifiable parameters already known from previous iterations. 

 Solve for p in                 , where       ,        , ...,        . 

If the system of equations is solvable for a parameter, pi, then the parameter is 

globally structurally identifiable. If pi cannot be solved for then the parameter may 

or may not be unidentifiable; this means that the Taylor series approach cannot be 

used as a test for unidentifiability. 

2.4.3 Similarity transformation approach 

The similarity transformation approach essentially involves using a smooth, 

infinitely differentiated mapping to connect the state trajectories (the input/output 

behaviour) of two identical models. This is done by creating a smooth mapping, λ 

defined in equation 2.16, between the two models using terms obtained from the 

observable function y, see equation 2.4  This mapping is a link between the state 

trajectories of each model and, hence, the parameters in the models [17]. 

 All of the models examined in this thesis using this method are uncontrolled, i.e. 

have no inputs or the inputs do not affect the output, therefore this technique is 

applicable in all of these cases [17]. 
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In order for this method to be valid the model must satisfy the Observability Rank 

Criterion (ORC), described below.  

2.4.3.1 Observability Rank Criterion 

A system is said to be observable if all the possible initial states of the system can be 

observed, i.e. reconstructed from the observation. Systems that do not meet this 

criterion are said to be unobservable [19, 25]. 

The Observability Rank Criterion (ORC) is a test for observability. Consider a linear 

model of the form: 

  
 

         
     

         
2.10 

The observability matrix, Q0, for this model is defined in equation 2.11. The model is 

observable if and only if the rank of Q0  is n, i.e. the number of states. 

 
 

   

 
 
 
 
 

 
  
   

 
      

 
 
 
 

  2.11 

For non-linear models, the ORC is defined slightly differently [17]. Consider a non-

linear model of the form given in equation 2.1. The definition of Lie derivatives for 

the function h is (Lie derivatives are the change in h along the vector field of f): 

 
 

   
       

       

  
        2.12 

then successive Lie derivatives are found: 
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The observability matrix, Q0, is then defined as: 

 
 

   

 
 
 
 
 
 

       
   

       

   
       

 
   

        
 
 
 
 
 

 2.14 

The model is again observable if and only if the rank of Q0  is n [29]. 

2.4.3.2 Method 

Consider the following theorem from [25]: 

Assume that the model of equation 2.4 is locally reduced at       for all    . 

Consider the parameter values       p an open neighbourhood             in  , 

and any analytical mapping        defined on      such that: 

 

 

(i) 

(ii) 

(iii) 
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  λ         
  

   
             

  λ                  
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for all     . Then there exists        such that equation 2.4 is globally identifiable 

at   in the experiments                   if and only if conditions (i), (ii), and (iii) 

imply     .  
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 Ensure that the model equations are in the standard control system 

state form given in equation 2.1. 

 Check the model fulfils the Observability Rank Criterion (ORC), 

detailed in the Observability Rank Criterion section above; if it does not, 

this technique will not be applicable. 

 Select a candidate matrix, H, of smooth functions, µ. 

 A good starting point will be Q0 from the ORC, however it may be 

possible to select other µ to simplify computation, as long as the 

resulting matrix H has rank n. 

 Determine the smooth mapping, λ, by considering: 

                 
2.16 

Where        is the candidate matrix with       ,       , ...,       . 

 Solve for λ to find p in terms of   : 

 
 

                
  

  
              2.17 

If, from this system of equations, a parameter, pi, can be directly equated to     then 

the parameter is globally structurally identifiable.  

2.4.4 Lie-symmetry approach 

The Lie-symmetry approach uses a similar mathematical approach to the non-linear 

similarity transformation approach described above, as it uses Lie algebra. It has the 

advantage over other algorithms in that it is more procedural in nature and 

therefore can be implemented easily without full understanding of the deep 
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mathematical theory behind it, so for a full explanation of the mathematics see 

[15]. It is important to note however that this method proves only local structural 

identifiability - it cannot prove whether a model is globally structurally identifiable 

or unidentifiable. This method is employed in Chapter 8 and the analysis of the 

short-term model with this approach is included in Appendix 4. 

2.4.4.1 Method 

 Ensure the model equations are in the standard control system state space form 

given in equation 2.1. 

 Check the model fulfils the Observability Rank Criterion, detailed in the 

Observability Rank Criterion section above; if it does not, this technique will not 

be applicable. 

 Find the determining equations for the model; this can be done easily using the 

Lie symmetries package in Mathematica. 

 Solve the determining equations to obtain equations for the symmetries of the 

differential equations, representing perturbations in time, the states and the 

parameters. 

 If it can be seen, from these equations, that there are no non-trivial 

transformations that are time-invariant and preserve the initial conditions, then 

the model is at least locally identifiable. 
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2.5 Simulation 

Solving Ordinary Differential Equations (ODEs) is essential for mathematical 

modelling as it allows model equations to be solved using parameter values to 

produce an output that can be compared to real output of the system being 

studied, i.e. it allows the system to be simulated. In the case of linear systems, there 

are exact analytical solutions to the ODEs, which make simulation relatively simple 

and generally computationally inexpensive. As most models presented in this thesis 

are non-linear, however it is not useful to cover solving linear ODEs here. Very few 

non-linear differential equations have known analytical solutions, and this is also 

true for all of the models presented in this thesis. This means that the only way to 

solve these models is by employing numerical methods. 

There are many different methods for solving a model numerically. The main factors 

in selecting an appropriate algorithm are speed of computation, accuracy and ability 

to deal with stiff systems. A stiff system is a system where there is a large range of 

timescales; see the Stiffness section below. The algorithms used in this thesis are 

Runge-Kutta and Gear’s Stiff. 

An explicit fourth/fifth order Runge-Kutta method is implemented in MATLAB under 

ode45. This was used when the problem was non-stiff (i.e. for short-term 

modelling) and was useful as it had short computation time. When the problems 

were stiffer, a modified second/third order Runge-Kutta algorithm – ode23tb – 

was used as, although it was slower, it performed simulations in an acceptable time 

frame, usually less than a second [4]. 
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The Gear’s Stiff algorithm is implemented in acslX and is appropriate for stiff 

systems – as well as non-stiff systems [30, 31]. From experimental runs on the 

model presented in Chapter 8 it was seen to execute more quickly than MATLAB's 

ODE solvers. 

The algorithms have an acceptable level of accuracy for this purpose with a 

tolerance of 0.1% [4] which is at least an order of magnitude lower than the 

experimental error in the data sets (see Chapter 4). 

2.5.1 Stiffness 

In general, the stiffness of a system is a measure of the range of time scales the 

whole system operates on. This usually means that some parts of the model may 

change over a period of seconds or minutes (fast variables) while others change 

over a period of hours or days (slow variables). The wider the range of these 

timescales, the stiffer the system. The stiffness of a system is important when 

making choices such as selection of an appropriate numerical ODE solver [30, 31]. 

A measure of the stiffness of a system is given by the stiffness factor. To find the 

stiffness factor of a non-linear system, it is necessary to linearise the system at a 

given time point (often t  = 0, to see starting conditions of the model) by creating a 

Jacobian matrix: 
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The eigenvalues, λ, of this matrix can then be found by solving: 
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            . 2.19 

The stiffness factor is then defined as: 
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    λ   
 2.20 

Stiffness factors are normally provided as orders of magnitude, e.g. O(106). Models 

where the stiffness is greater than O(102) are normally considered "stiff" [9, 32]. 

2.6 Parameter estimation methods 

In order to obtain estimates for model parameters from real data it is necessary to 

“fit” the model to the data. This is performed using a technique called parameter 

estimation [10, 11, 18, 20-22]. The stages in this process are: 

1. An initial estimate for each of the unknown parameters is taken; these may be 

taken from known physiological values, graph peeling or from knowledge of the 

expected order of magnitude for the parameter. The importance of how close 

the initial guess is to the real value is dependent on the model and the real 

parameter (i.e. the actual physiological parameter). 

2. The model is simulated with the chosen parameter estimates. 

3. The residuals are calculated. These are a measure of the error between the 

simulated model output and the real data which are explained in the Least 

squares residual method section, the method of determining residuals used in 

this thesis, below. 

4. Then an optimisation algorithm is used to calculate the next attempted value. 
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5. Steps 2-4 are repeated until the optimisation algorithm considers the residuals 

to have reached a minimum (or maximum depending on the method used). 

2.6.1 Least squares residual method 

Residuals are the error between the real data and model output, as shown 

graphically in Figure 2.4. 

 
Figure 2.4: Non-linear residuals  [33] 

The least squares residual method involves taking the difference between the real 

and simulated data at each time point, squaring the difference to remove any 

negative values then summing the values across all time points and dividing by the 

number of time points to normalise the value. This assumes the data are normally 

distributed with the model predicting the mean. This is known as Ordinary Least 

Squares (OLS) and is given by: 

  
          

 

 

   

 2.21 
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where E  is the residual,             are the real data points and            

are the simulated data points. 

If all the data are of a similar order of magnitude, OLS will generally provide 

acceptable results. However with data of different magnitudes (e.g. glucose and 

insulin) it is undesirable for any data set to have an unfair bias on the parameter fit 

due to the larger magnitude of its values as variance is likely to change with the 

magnitude of the data. Therefore a Weighted Least Squares (WLS) method may be 

used instead. There are two options for weighting each time point: based on the 

real data value or the simulated data value; in either case, the change is then 

relative rather than absolute. To weight a given time point, the chosen value can be 

squared to provide a greater penalty for moving further away from it. For most of 

the modelling in this thesis, it is assumed that the model output is correct and the 

real data are noisy and have other influencing factors. Therefore a Generalised 

Least Squares (GLS) method, with the weighting based on the simulated data values 

as shown in equation 2.22, is used [11].  

 
   

      
 

  
 

 

   

 2.22 

where   are the real data,    are the simulated model data at time point  .   
 is 

therefore acting as the weighting. The aim is to get to the global minimum which is 

also the structurally identifiable set of unique parameters. However, due to the 

noisy environment, this is not guaranteed. 
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2.6.2 Optimisation algorithms 

An optimisation algorithm, in this context, is a method of updating parameter 

estimates to try to minimise (or maximise) residuals. There are many different 

optimisation algorithms, however the main ones used in this thesis are the Nelder-

Mead [34] and Quasi-Newton [35] algorithms. The Nelder-Mead algorithm is 

implemented in MATLAB as the routine fminsearch and the Quasi-Newton 

algorithm is the default algorithm for the routine fminunc. The choice of which to 

use depends on several factors, for example the Nelder-Mead algorithm is generally 

more stable than the Quasi-Newton algorithm, however it has the drawback that it 

often settles in local minima/maxima rather than global minima/maxima. When 

using the Nelder-Mead algorithm, it is therefore important to have initial estimates 

which are as close as possible to the global minimum/maximum [36]. 

2.6.3 Statistical analysis 

As a measure of how meaningful a parameter value is, it is useful to have statistical 

confidence values for the parameter estimates. These can be obtained from the 

covariance matrix of the fitted parameters, which can be estimated from the 

optimisation algorithm in MATLAB. To do this it is necessary to obtain the Hessian 

matrix, an estimate of which is optionally produced by fminunc in MATLAB using 

the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm [30]. The covariance 

matrix can then be calculated as: 

 
      

 

    
             2.23 
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where    is the set of parameter estimates, N  is the number of time points, n  is the 

number of parameters fitted, E  is the output from the residual function and H  is 

the Hessian matrix. 

Individual parameter confidence values can then be obtained as: 

 
         

   
 
 
 
     2.24 

for          where      

   
 

 
 
 is a two-tailed Student's t distribution for confidence 

level α  and N-np  degrees of freedom [21]. 

The package acslX, which was used for parameter fitting in part of this thesis, uses a 

similar method for calculating confidence values automatically [31]. 

2.7 Sensitivity analysis 

This is the process of finding out what the most "important" parameters in a model 

are. In this case, “important” refers to the parameters which have the greatest 

effect on the model output, i.e. those to which the model is most sensitive. This is 

not only model-dependent, but also dependent on the parameters, initial 

conditions and system input. When performing a sensitivity analysis nominal/mean 

parameter values are used. In the context of a biological system, an experiment is 

performed and the system is examined over the duration of the experiment [23, 

37]. 

Sensitivity analysis is also useful for determining which parameters are sensitive to 

change and at which time points. Time points where a large number of parameters 
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are particularly sensitive are good choices for increased sampling to ensure a good 

parameter estimate [23, 38]. 

There are several ways of looking at sensitivity. The simplest method is to vary each 

parameter (either independently or as part of a group) to see the effect on the 

resulting model output. 

A more complex method used in this thesis involves examining the sensitivity 

matrix, S(t, p) given in equation 2.25. This is a set of Jacobian matrices of the model 

with respect to the model parameters and time points, i.e. one matrix per model 

state. These matrices contain actual parameter values which can be examined, or 

plotted graphically against time, to show which have the greatest effect at each 

time point. 
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where              is a vector of time points,              is a vector of all 

parameters, and x  is a scalar output of the state. 

If it is not possible to compute S(t,p) analytically, equation 2.26 may be solved to 

compute sensitivity values numerically [23, 37] using: 
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This matrix shows absolute sensitivities, therefore it is useful to normalise the 

sensitivity matrix to form a matrix of relative sensitivities, Sr. This is done by 

multiplying by the parameter vector, p, and dividing by the state,     to give: 

  
       =        

          
 

          
  2.27 

In order to compute this matrix it is necessary to differentiate the model equations. 

This can be a laborious process so it is useful to have a way of producing these 

matrices automatically. This can be achieved through automatic differentiation 

which is explained fully in Chapter 8. Essentially, instead of creating a sensitivity 

matrix which contains parameters and a specific set of time points, as in equation 

2.25, it is possible to create a time-dependent matrix which contains states and 

parameters. This matrix, shown in equation 2.28, is a set of ODEs which can be 

solved alongside the model equations, x(t, p), making it easy to calculate 

sensitivities if a new experiment is presented to the model. 
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where t  is now the current time point (during the model simulation) and is 

therefore a scalar, rather than a vector. 

2.8 Summary 

The process and methods that have been described in this chapter are used 

throughout this thesis to help model the dynamics of the glucose-insulin system. 



Chapter 2: Modelling 

34 

There are many other techniques and methodologies which may be useful; those 

presented here were selected based on the author's engineering background and 

knowledge and understanding of the techniques.
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Chapter 3: Biological Overview 

This chapter discusses the components of the glucose and insulin homeostatic 

system. The aim of this chapter is to provide an introduction to the system as a 

whole in the context of being able to mathematically model the process. There 

are many factors affecting this biological system; these factors and their 

importance are discussed. 
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3.1 Introduction 

The glucose and insulin homeostatic system is complex, involving many organs 

including the liver, pancreas and kidneys. Glucose has critical importance to the 

body, as it is used by every cell and is the primary source of energy for the 

central nervous system (CNS). If the glucose level goes too low (hypoglycaemia) 

it can lead to coma and death, however glucose is also toxic and if it rises too 

high (hyperglycaemia) this can lead to long-term damage. Insulin regulates 

glucose uptake in many different tissues, including the liver, adipose (fat) tissue, 

and skeletal muscle [39-47]. 

3.2 Glucose 

Glucose is a monosaccharide, i.e. it consists of one sugar group (Figure 3.1), and 

is one of the most important molecules in biology [48]. 

 

Figure 3.1: Glucose molecule  [49] 
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Glucose is important for several reasons: 

 it can be used to produce energy very quickly for cells to use [48, 50 ]; 

 it can be mobilised very quickly from glycogen, a polymer of the 

monosaccharide, in the liver [43, 48, 50]; 

 it is created and used by most organisms, therefore is abundant in plants 

and animals and consequently it can be obtained as a food source very 

easily [48, 50 ]; 

 it can be used as an energy source in the absence of oxygen; 

(anaerobically), as well as in the presence of oxygen (aerobically) [48]; 

 it can be built up into other molecules for storage (energy) and structures 

(e.g. starch) [48]. 

3.2.1 Respiration 

Glucose is utilised by the same mechanism in most cells - respiration - therefore 

it is important to understand the basics of this mechanism. 

Energy required in cells is derived from exothermic hydrolysis of adenosine 

triphosphate (ATP) to adenosine diphosphate (ADP) and inorganic phosphate 

(Pi).This means that ATP is the unit of energy in a cell; the more ATP there is (or 

more specifically the higher the ATP/ADP ratio) the more energy is in the cell. 

When ATP is hydrolysed to ADP, heat energy is produced. The reverse process - 

where ADP is converted to ATP to produce stored energy - is known as 

mitochondrial respiration, or in some fields metabolism [48]. 
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The basic inputs for respiration are oxygen (O2) and glucose and the outputs are 

kinetic energy and carbon dioxide (CO2). Transporters drive active uptake of 

glucose into the cell (discussed in Glucose transporters below). Glucose is 

converted to pyruvate via the glycolytic pathway before entering the 

mitochondria and producing two molecules of ATP; mitochondria are organelles 

(cellular subunits) which produce ATP in the process. Pyruvate is converted to 

acetyle coenzyme A which then enters the citric acid cycle (CAC), also known as 

the tricarboxylic acid cycle (TCA cycle) or the Krebs cycle where a further 34 

molecules of  ATP are generated per molecule of glucose [43, 48, 51 ]. This 

process is shown in Figure 3.2 below. 

 

Figure 3.2: Diagram of respiration  [52] 

3.2.2 Uses in humans 

In humans, a critical and main use for glucose is in the CNS as it requires a rapid 

source of energy due to its fluctuating demands. Nerve cells require a large 
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amount of energy to function, so are specially adapted to utilise glucose at a 

greater rate, e.g. increased mitochondrial density[45]. The CNS uses around 45-

60% of glucose in the body, in an overnight fasted state [46]. 

Skeletal muscles are another big user of glucose in the human body. Depending 

on exercise the muscles use approximately 15-20% of the glucose being used at 

that time, in an overnight fasted state[46]. When not contracting, skeletal 

muscles mainly use energy from lipids in the blood. These contain higher 

amounts of energy than glucose but take longer to process as they require more 

oxygen to generate ATP. Fat utilisation hits its peak contribution to muscle ATP 

generation when energy requirement is at 40% of the maximum possible, i.e. 

moderate exercise. When exercise increases, more glucose is used to support 

muscle function[53]. 

Other major users of glucose in the body include the kidneys at 10-15%, blood 

cells at 5-10% and other tissue (including fat) 5-10%, in an overnight fasted 

state[46]. 

3.3 β-cells 

The pancreas contains a group of cells that produce hormones (endocrine cells), 

which are located in the islets of Langerhans. These were found in 1869 by Paul 

Langerhans [54]. They make up about 1-2% of the pancreas and weigh about 1g 

to 1.5g in a normal human. The islets contain several different types of cells, 

including α- and β-cells [46]. 
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3.3.1 Glucagon 

α-cells make about 30% of the islets of Langerhans [55] and produce glucagon. 

The function of glucagon is to raise blood glucose levels [42]. Its main place of 

action is the liver, where it stimulates glycogenolysis which is the process of 

turning glycogen into glucose [53]. 

3.3.2 Insulin 

3.3.2.1 Creation of insulin 

β-cells make up about 60% of the islets of Langerhans and produce insulin, which 

lowers blood glucose levels [42, 55]. Insulin is actually produced as proinsulin, 

which consists of C-peptide attached to insulin. Proinsulin is inactive and does 

not lower blood glucose. 

3.3.2.2 C-peptide 

When proinsulin is activated, C-peptide is cleaved from it using carboxypeptidase 

and a series of prohormone convertases [54, 56]. This causes C-peptide and 

insulin to be released into the hepatic portal vein in equal molar quantities. 

An important feature of C-peptide is that it is cleared by the kidneys and not by 

the liver, like insulin. All secreted C-peptide can therefore be assumed to reach 

systemic circulation  [57-61]. 
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3.3.2.3 Secretion of insulin 

Glucose enters β-cells via transporters passively (see Glucose transporters 

below) and therefore the level of glucose in β-cells is proportional to the blood 

glucose level [42].  

In a β-cell these reactions occur as shown in Figure 3.3 and are explained as 

follows [54, 62]: 

 Glucose enters the β-cell via GLUT2 (see Glucose transporters below). 

 Respiration occurs, converting glucose to ATP. 

 ATP closes KATP gates which allows potassium (K) out of the β-cell. This 

creates a negative charge in the β-cell and depolarises the membrane. 

 Depolarisation of the membrane causes the sodium channel to open, 

allowing calcium ions into the β-cell. 

 Calcium entering the β-cell releases calcium stored in the endoplasmic 

reticulum (small tubes inside cells). 

 Calcium releases the insulin stored in the β-cell. 
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Figure 3.3: Diagram showing how glucose potentiates insulin release  [62]. 

Incretins 

Although insulin release is mainly stimulated by glucose, other mechanisms for 

stimulating insulin release exist. Incretins stimulate insulin release by activating a 

receptor on the β-cell which opens the calcium gates of the β-cell. This allows 

calcium into the β-cell, which triggers the release of insulin [63]. 

One example of an incretin is GLP-1 [63], which is released from the gut and 

activates the GLP-1 receptor on the β-cell [41].  
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3.3.2.4 Storage of insulin 

There are a lot of uncertainties in our knowledge around the storage of insulin, in 

particular concerning the quantity of insulin stored [42, 62, 64]. 

Insulin is stored and transported within β-cells in granules. These granules are 

stored in various places in the β-cell, though where exactly and how they move is 

uncertain. Energy (ATP) is required to move the granules from where proinsulin 

is created to the membrane and then to dock them to the membrane. When the 

insulin is required, energy is also needed to cleave the insulin and C-peptide from 

the pro-insulin molecule and to release the insulin into the blood. 

The Rorsman & Renström review [42] states that there could be four states of 

insulin: 

 undocked (stored in the cytoplasm): ~73%; 

 almost docked: ~20%; 

 docked: ~6%; 

 "Rapid Release Pool" (RRP): ~<1%. 

This means that glucose stimulation can cause different levels of response. The 

RRP consists of a small number of granules attached to the β-cell membrane 

which can be released very quickly. Rorsman & Renström [42] believe that the 

fast release of insulin from the RRP could be what causes a high peak of insulin 

secretion immediately following a glucose stimulus, known as the first-phase 
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response. The second-phase response is thought to be created by mobilisation of 

the undocked and almost docked granules [42, 65, 66]. 

3.4 Disposal of glucose 

3.4.1 Glucose transporters 

There are 4 main passive transporters of glucose, commonly known as GLUTs 

[54, 67, 68]. 

GLUT 1 is responsible for low levels of glucose uptake to maintain respiration in 

all cells. Expression of this transporter is reduced when there are increased levels 

of glucose. It exhibits Michaelis-Menten type kinetics [48, 54]. 

GLUT2 is expressed in the pancreas, liver, hypothalamus, small intestine and 

kidneys. It is a high capacity transporter of glucose and is often referred to as the 

glucose-sensing transporter. In the pancreas, it transports glucose into β-cells 

without requiring insulin to be present, which allows the β-cells to sense the 

level of glucose and respond with a corresponding quantity of insulin. In the liver, 

it allows the flow of glucose in and out of the hepatic cells [48] . 

GLUT3 is expressed mainly in neurons and, like GLUT1 and GLUT2, operates 

independently of insulin [48, 54]. 

GLUT4 is an insulin-dependent transporter and is expressed in adipose tissue and 

skeletal muscle tissue. It is the main controlling mechanism for glucose outside 

the liver. It is very important in modelling the glucose and insulin system because 

of its large role in glucose uptake and insulin-dependence [69, 70]. 
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3.4.2 Insulin sensitivity and resistance 

Insulin sensitivity is the effect of insulin on the disposal of glucose; higher insulin 

sensitivity means that more glucose will be disposed of with the same amount of 

insulin. The main transporter involved in this is GLUT4. Insulin resistance applies 

to the same process, but higher insulin resistance means that less glucose will be 

disposed of with the same amount of insulin. Therefore being less insulin-

sensitive and more insulin-resistant are equivalent; conversely, more insulin-

sensitive is equivalent to less insulin-resistant.[41] 

3.4.3 Liver 

Glucose enters the hepatic cells via GLUT2. Here it is converted into glycogen by 

glycogenesis, which is the largest glucose uptake mechanism dependent on 

insulin. Glycogen can be quickly converted back to glucose when required [43]. 

The portal vein comes from the gut and the pancreas into the liver; this means 

that glucose is absorbed from the gut and then is transported to the liver. As 

most sampling of blood glucose occurs after the liver, there is a "first pass" effect 

on the glucose as some of it is removed by hepatic extraction (approximately 

13% is retained by the liver in rats) as described above [71]. A similar action 

occurs with insulin clearance in the liver  [57]. 

3.4.4 Skeletal muscle 

GLUT4 is the main transporter of glucose into skeletal muscle tissue. It is 

activated by insulin receptors. This means that an increase in insulin will increase 

the amount of glucose entering the cells, causing an increase in glucose 
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utilisation [48, 69]. Glucose is utilised through respiration in skeletal muscle cells 

as well as being stored as glycogen. As there is a large amount of skeletal muscle, 

this is a major mechanism of glucose disposal. 

3.4.5 Adipose 

GLUT4 also transports glucose into adipose tissue. Here it is converted into fatty 

acids which can be stored in the adipose tissue as triglycerides. The storage of 

fatty acids will, in general, mean that the adipose tissues become larger. The 

important thing to note here is that, unlike glycogen, fatty acids cannot later be 

converted back into glucose [48]. Increased triglyceride concentration will 

decrease the insulin sensitivity of the adipose tissue, which means less glucose 

and fatty acids can be taken in by the adipose, thus increasing circulating fatty 

acids [69]. 

3.4.6 Blood flow 

The amount of blood flowing though the gut, that is through the hepatic arteries 

and hepatic portal vein, can vary [72, 73] from 14.60 14.60 ± 0.96 ml/min to 

27.35 ± 1.82 ml/min between fasted and fed rats [74]. It is hypothesised that gut 

blood flow plays an important role in disposal and absorption of glucose and 

clearance of insulin (see Chapter 7 for further details). 

3.5 Lipids 

Lipids are a store of energy and therefore have the same capability as glucose in 

increasing the ATP/ADP ratio. However they have a different rate of utilisation 

and insulin secretion profile to that of glucose [75]. 



Chapter 3: Biological Overview 

47 

3.5.1 Lipid effects on insulin sensitivity 

In the short term, high levels of lipids have the effect of lowering insulin 

sensitivity, which can be seen as an inhibitory effect of lipids on glucose uptake 

via GLUT4 [41, 69]. 

3.5.2 Lipid effects on insulin secretion 

In the long term, high levels of lipids have a toxic effect on β-cells. This causes a 

cycle, as insulin lowers lipid levels and as β-cells become damaged they cannot 

produce enough insulin to lower the lipid levels. This means that the lipid levels 

remain high and cause further damage, and so on [69, 70]. 

3.5.3 Insulin effect on lipids 

It is known that increased insulin levels increase uptake of fatty acids into tissue. 

For more detail, see [69]. 

3.6 Diabetes 

Diabetes mellitus – commonly referred to simply as diabetes – is a huge problem 

worldwide and it is growing. The World Health Organisation states the following: 

"Diabetes is a major threat to global public health that is rapidly getting worse, 

and the biggest impact is on adults of working age in developing countries. At 

least 171 million people worldwide have diabetes. This figure is likely to more 

than double by 2030 to reach 366 million." [7]. 
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This means that it is one of the fastest growing diseases in the world. They also 

note that diabetes is a life-threatening condition and that "worldwide, 3.2 million 

deaths are attributable to diabetes every year" [76]. 

The UN also recognise the impact of diabetes and have a resolution on the 

disease; this includes designating World Diabetes Day (14th November) as a UN 

Day and inviting member states and organisations to observe it each year as well 

as "[encouraging] Member States to develop national policies for the prevention, 

treatment and care of diabetes"  [77]. 

Diabetes is a disease which occurs when a person is unable to control their blood 

glucose level. The WHO defines diabetes – as opposed to the related problems of 

impaired glucose tolerance and impaired fasting glucose – as shown in Table 3.1. 
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Table 3.1: WHO recommendations for diagnostic criteria for diabetes [7]. 

There are 3 main types of diabetes which are distinguished based on cause, not 

severity [7, 54]. 

3.6.1 Type 1 

Type 1 diabetes is thought to be caused by an autoimmune disease which leads 

to destruction of insulin-producing β-cells in the islets of Langerhans [54]. This 

means that the individual cannot produce insulin to regulate their blood glucose 
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levels. It is also known as “Juvenile Diabetes” as the disease usually occurs in 

childhood, and most children with diabetes are Type 1 diabetics. 

3.6.1.1 Treatment 

Type 1 diabetes is most often treated  through regular subcutaneous insulin 

injections, though insulin pumps may also be used, leading to the alternative 

name of IDDM (Insulin-Dependent Diabetes Mellitus), and must be continued 

throughout the person’s life as there is currently no widely-used cure. Pancreas 

or islet cell transplants may be used but there are many limitations, including a 

lack of donors, very serious potential complications (as with any transplant) and 

the need for immunosuppressants post-transplant both to avoid rejection of the 

organ and to prevent a relapse of Type 1 diabetes. For these reasons, transplants 

are rarely used and tend to be reserved for extremely severe cases [78]. 

A CGM (Continuous Glucose Monitor) is a device implanted subcutaneously 

which automatically measures blood glucose levels at regular intervals (e.g. every 

1 or 5 minutes). With this development, trials have commenced to try and link a 

CGM to an insulin pump and other trials including both an insulin pump and a 

glucagon pump to produce an artificial pancreas [79]. The research has fallen 

into two groups: reactive controllers and model-based predictive controllers. The 

leading reactive controller is a PID (proportional-integral-derivative) controller, 

discussed in Chapter 8. The model-based predictive controllers use mathematical 

models to predict future glucose levels, based on current and previous 

measurements, and hence the insulin required at a given future time-point, to 
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control insulin release. There are several groups working on this second type of 

controller using a range of different methods; many of them are funded by the 

JDRF (Juvenile Diabetes Research Foundation) [80, 81]. 

3.6.2 Type 2 

Type 2 diabetes is characterised by impaired β-cell function (though not due to 

an autoimmune disease as in Type 1 diabetes) and reduced insulin sensitivity. 

This means that Type 2 diabetics may produce some insulin, but it will be 

insufficient to regulate blood glucose levels effectively. It is important to note 

that reduced insulin sensitivity alone is not sufficient to cause Type 2 diabetes as, 

in the majority of cases, the pancreas is capable of adapting to changes in insulin 

sensitivity, unless its function is also impaired. It is unclear, however, whether 

the reduction in insulin sensitivity precedes, follows or is concurrent with 

impaired β-cell function or what the causes of either are. Insulin sensitivity is 

linked to free fatty acid levels (see section 3.5 Lipids), however there may be 

other causes. β-cell function is a combination of the number of β-cells (β-cell 

mass) and the secretory capacity of a β-cell; as it is difficult (or not currently 

possible) to determine in a Type 2 diabetic whether the mass or the capacity has 

been reduced, in this thesis the general term “β-cell function” will be used to 

refer to the overall combination of these factors. Reduction in β-cell function is 

often attributed to glycolipid toxicity, i.e. the damaging action of glucose and/or 

lipids on β-cells. This is a major problem in Type 2 diabetics as insulin cannot 

control the level of glucose and lipids, which results in further reductions in 

insulin secretion. 
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3.6.2.1 Treatment 

Treatment ranges from diet and exercise regimes to drug and insulin therapy like 

that for a Type 1 diabetic; however insulin therapy is used in only a small 

minority of cases, leading to the alternative name NIDDM (Non-Insulin-

Dependent Diabetes Mellitus). Type 2 diabetes is generally found in older 

patients (i.e. those over 40 years old) and, as such, is sometimes also known as 

adult-onset diabetes. Recently, there has been a rise in diagnoses of Type 2 

diabetes in children which can be directly related to increasing childhood 

obesity, as obesity is a major risk factor for diabetes. Other risk factors include 

lack of exercise and excessive alcohol consumption; as a result Type 2 diabetes is 

often considered to be “preventable” by adopting a healthy lifestyle [41, 54, 78]. 

3.6.3 Gestational diabetes 

The final recognisable type of diabetes occurs in pregnant women who have not 

been previously diagnosed with diabetes, but who have elevated blood glucose 

levels during their pregnancy. The cause is currently unknown, but it generally 

disappears after the baby’s birth and is usually managed through changes to diet 

and exercise [54]. 

3.6.4 Implications of diabetes 

Glucose being a potentially toxic substance has meant that animals have evolved 

very fine levels of glucose control. This level of control is important firstly due to 

glucose providing the main source of energy to the CNS and secondly to ensure 

non-toxic levels of glucose are maintained [54, 70, 82]. 
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3.6.4.1 Short term 

In the short term, the danger mainly lies with hypoglycaemia (low blood sugar 

levels), which could be classed as below 3 mmol l-1. Glucose is essential for the 

CNS and reductions in the level of glucose can cause drowsiness and confusion. A 

large reduction in the amount of glucose can lead to diabetic coma, which can 

cause prolonged seizures, brain damage and death [54]. 

If a person has other conditions, this can lead to further complications if blood 

sugar becomes low. It can cause heart attacks, strokes and exacerbate cardiac 

problems. If the person is diabetic and has eye problems, it can lead to retinal 

haemorrhaging and subsequent blindness [54]. 

3.6.4.2 Long term 

In the long term, the main problems occur from vascular disease caused by 

chronically high levels of blood glucose, hyperglycaemia. It is thought due to the 

loss of endothelial cell function this can lead to the thickening and weakening of 

the smooth muscle cells of the vascular wall. However the exact mechanisms by 

which this damage occurs are unknown [45, 54]. For this reason, although 

modelling of diabetes could eventually help to allow tighter control of glucose 

levels, the effect this would have on complications is unknown. 
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Microvascular damage 

Microvascular damage – where small blood vessels are damaged – can lead to 

heart disease, poor eyesight or blindness, kidney damage and loss of sensation in 

the affected areas. 

Diabetic cardiomyopathy is a form of heart disease where the heart muscle itself 

begins to fail, potentially leading to arrhythmia or death [41, 54, 70]. 

Diabetic retinopathy (retina damage) occurs when the retinal blood vessels 

become damaged due to sustained hyperglycaemia. Over time this leads to lack 

of blood in the retina, causing new blood vessels to grow in the vitreous humour 

(the clear fluid that fills the eye). These, in turn, burst and bleed into the eye, 

causing further damage to the retina [54, 70]. 

Diabetic nephropathy (kidney damage) occurs when the capillaries in the kidneys 

where blood filtration occurs harden and lose functionality due to high blood 

glucose levels. Additionally, tubular cells in the kidneys are damaged, leading to 

poor reabsorption of amino acids, glucose and albumin which creates water 

balance problems, Diabetes Insipidus. Importantly, this means less glucose is 

reabsorbed into the body, however diabetics at this stage have very poor 

glycaemic control. The risk of diabetic nephropathy is increased with high blood 

pressure and high cholesterol. Over a long period of time (15 years or more) 

diabetics can end up with kidney failure and may require dialysis or kidney 

transplant [54, 70]. 
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Diabetic neuropathy (nerve damage resulting in loss of sensation) may occur in 

the short term and be reversible; however long-term hyperglycaemia leads to 

irreversible neuropathy. The elevated glucose levels result in long nerves dying 

back, causing sensation to be lost in the extremities; feet are at particularly high 

risk. The neuropathy can also cause paralysis and pain [54]. 

Macrovascular damage 

Macrovascular damage is caused when proteins in arterial walls are degraded, 

causing the walls to become thicker. This leads to circulation difficulties and 

cardiovascular disease – including angina, heart attacks and stroke – which is the 

most common cause of death in diabetics. Direct risk factors are not strongly 

established, however there are known mechanisms by which both 

hyperglycaemia and hyperinsulinaemia could cause macrovascular disease [54]. 

Other effects 

Diabetic foot is a combination of microvascular and macrovascular damage, 

including poor circulation and neuropathy. This causes loss of sensation, poor 

motor control, ulceration and callusing. These problems can lead to infection, 

which may result in the need for amputation [54, 70]. 

Another important long-term effect of hyperglycaemia is hypertension (raised 

blood pressure). It is “up to twice as common in diabetes as in the general 

population, and affects some 10-30% of Type 1 and 30-50% of Type 2 diabetic 

patients” [54]. In Type 2 diabetics, it is linked to insulin resistance and 
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hyperinsulinaemia; this is thought to be because insulin stimulates the growth of 

vascular smooth muscle [83]. 

3.7 Discussion 

The biological system for glucose homeostasis is complex with many factors 

involved. It is important to focus on the critical factors that affect the system to 

enable identification of key components for modelling. The glucose homeostatic 

system is very finely controlled due to the necessity for glucose in the body and 

damage that can be caused if glucose is not maintained at the correct level.
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Chapter 4: Data Collection 

4.1 Introduction 

This chapter introduces the tests that were performed at AstraZeneca, Alderley 

Park, Cheshire, UK and elsewhere to collect data on glucose and insulin 

homeostasis. It explains the methods behind the data measurement and 

collection and discusses the limitations of and difficulties with collecting such 

data. 
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4.2 Animal experiments 

All animal experiments in the UK are carried out only when no alternative can be 

found and only when it is essential for scientific understanding, medical progress 

and protecting people, animals and/or the environment [84, 85]. Whenever 

possible, AstraZeneca and other facilities that use animals try to replace, reduce 

and refine animal work. This is known as the “three Rs” of animal work. 

Replacement means finding alternatives where possible; reduction means 

minimising the number of experiments carried out and refinement means 

designing experiments to minimise stress and the number of procedures, to 

improve animal welfare and maximise informative data. Modelling can play an 

important role in all of these by attempting to predict outcomes from 

experiments – thus reducing the need for animal work – and designing better 

experiments. 

AstraZeneca complies with Home Office regulations as well as its own internal 

ethical review procedures  [86-88]. The Animals (Scientific Procedures) Act 1986 

is based on a number of historical acts focusing on animal protection and 

procedures involving animals, including the Cruelty to Animals Act 1876 and 

Protection of Animals Act 1911. It falls under the jurisdiction of Home Office 

Inspectors. It stipulates that animal studies can only be performed by trained 

personnel who hold a Personal Licence, i.e. are endorsed as competent by the 

Home Secretary on the recommendation of a Project Licence Holder. Personal 

Licence holders must work under the guidance of a Project Licence Holder within 
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a specific “project”, which must have a Project Licence. This Project Licence 

includes a 5-year work plan with aims, scientific plans, details of models and 

techniques used and an outline of control measures to maintain animal welfare. 

In addition, the site where the animal work is undertaken must have a Certificate 

of Designation which states that the available facilities are suitable and that it 

meets the recommended guidelines with an infrastructure of veterinary care, 

husbandry and animal welfare trained staff to support the studies. The site or 

project may be inspected by Home Office Inspectors at any time and animal 

usage statistics must be submitted to the Home Office annually [84]. Additionally 

AstraZeneca has rigorous procedures for the prevention, detection and 

monitoring of abnormal occurrences which may affect animal welfare. 

4.3 Species used to gather data for this thesis 

4.3.1 Han Wistar rats 

Han Wistar rats are bred for research and have no complications (i.e. have no 

genetic or other medical problems). As such, they are a standard species used in 

laboratories across the world as models of normal, healthy animals[89]. 

4.3.2 Zucker rats 

Zucker rats are deficient in leptin receptors [90-92]. This anomaly was noticed 

when it was discovered that these rats had an unusually high glucose level. There 

are two types of Zucker rat, the lean Zucker and the obese Zucker. The obese 

gene is recessive. Subsequently colonies were selectively bred to maintain this 

particular phenotype. Leptin is a hormone which is usually released from 
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adipocytes (fat cells) and reduces appetite. This means that these animals 

constantly eat as long as food is available and, as a result, they become 

overweight and both hyperglycaemic and hyperinsulinaemic. The animals are 

hyperinsulinaemic in an attempt to control their high levels of glucose. Due to 

them having high levels of lipids they are insulin resistant therefore insulin has 

little effect. This makes them a good animal model for Type 2 diabetes. 

With a restricted intake of food, their glucose and insulin profile can remain close 

to that of a normal rat. The intake of food can be controlled by having a 

restricted time window in which food is available. Zucker (obese/fatty) rats were 

used in these experiments. 

Leptin receptor deficiency can also affect humans and is very severe, where they 

constantly seek out and consume food [93, 94]. 

4.3.3 ZDF (Zucker Diabetic Fatty) rats 

ZDF rats are from the same strain as Zucker rats [95], but with a more severe 

problem. They are unable to maintain a high level of insulin production and 

release in order to overcome the insulin resistance; the exact cause of the 

inability to produce insulin is unknown. Without intervention, a ZDF rat will 

suffer from β-cell failure and therefore failure to control glucose levels, 

ultimately leading to severe hyperglycaemia and subsequent death. Therefore, 

one of the hypotheses as to why ZDF rats are more severely diabetic is that they 

have faulty β-cells [95]. 
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These animals are used as a model of subjects entering Type 2 diabetes and 

progressing through the disease. Both Zucker and ZDF rats are used in acute and 

chronic studies. 

4.3.4 C57BL/6J Mice 

AstraZeneca uses C57BL/6J mice as it is the most widely-used strain in research 

and can be used for diet-induced obesity experiments [96]. The mice in the 

studies used different diets in order to model, in animals, different diabetic 

conditions. Data was collected over a period of days to show disease 

progression. 

4.4 Tests used to generate data modelled in this thesis 

4.4.1 IntraVenous Glucose Tolerance Test 

The intravenous glucose tolerance test (IVGTT) is a test for β-cell function [97]. It 

involves giving a bolus of glucose and measuring the resulting glucose and insulin 

concentrations in blood samples taken at frequent intervals. The insulin 

concentration measured is considered to be the quantity of insulin produced and 

the amount of glucose in the blood is seen as a measure of how effective the 

insulin is at removing glucose. The standard protocol for performing such a test 

(in both humans and animals) is represented in Figure 4.1 and explained here: 

 A period of fasting before the experiment (at AstraZeneca this is usually 4 

hours, however some studies examined in this thesis involve fasts of up 

to 16 hours); 
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 Animals are weighed and anaesthetised with an intra-peritoneal injection 

of sodium-thiobutabarbitol; 

 Fasting levels of glucose and insulin are measured; 

 Glucose is injected into the subject (at AstraZeneca, this usually ranges 

between 0.2 and 2g/kg of lean body mass of rat); 

 For rats, measurements are taken at 1, 2, 5, 10, 15, 20 and 30 minutes 

after the glucose is injected; in a human, this period is longer – usually up 

to 120 minutes – as insulin and glucose are not cleared as quickly in 

humans due to a slower heart-rate and other factors. 

  

Figure 4.1: Example IVGTT protocol  [86] 

This type of study is very intensive and usually requires one or two scientists 

working constantly on a small number of animals. The number of data points 

which can be obtained is limited by blood sample volumes that can be taken 

following the Home Office guidelines. 

There are many different ways of assessing the results from an IVGTT. 

Sometimes the AUC (Area Under the Curve) from baseline or the whole AUC is 

used as a measure of function. Alternatively AIR (Acute Insulin Response) and 
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disposition index may be used [40, 98] and possibly the Minimal Model, see 

Chapter 6. 

AIR (Acute Insulin Response) – is the area under the curve for the first 8 minutes 

of an insulin profile in humans. In rats it is sometimes taken as either 3, 5 or 10 

minutes [99]. This is a measure of how much of a first-phase response the 

pancreas provides. 

Using a measure of insulin sensitivity, which can be a measure from the Minimal 

Model or other means such as a clamp study, it is possible to define the 

disposition index as follows: 

 
 

                                                4.1 

The disposition index is a measure of insulin secretion in relation to insulin 

sensitivity, which indicates how well the subject/animal is maintaining its glucose 

level.  If the disposition index remains the same from one occasion to another it 

means that the insulin secretion of the subject relative to the insulin sensitivity 

remains basically constant and, therefore, the subject is not losing the ability of 

insulin to control blood glucose disposal. This does not necessarily mean that 

insulin sensitivity and insulin secretion have remained constant as, if insulin 

sensitivity decreases and insulin secretion increases, the disposition index will 

remain unchanged and glucose control is maintained [100]. 
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4.4.2 Oral Glucose Tolerance Test 

The Oral Glucose Tolerance Test (OGTT) is used to measure regulation of blood 

glucose and can also be used to test insulin secretion. It can be used as a test for 

diabetes [7]. It is considered to be less artificial than other tests as it mimics 

more normal glucose intake [101]. AstraZeneca use it when a large number of 

animals is required for a study as it is less invasive and time consuming than 

either an IVGTT or a hyperglycaemic clamp experiment. The standard protocol 

for performing such a test (in both humans and animals) is: 

 Fasting for 4 hours before the experiment; 

 Animals were dosed with 2g of glucose per kilogram of body mass (2% 

glucose solution at 10ml/kg); 

 Blood glucose measurements were taken using a Roche Accuchek® 

instrument and 5μl whole blood samples with an ELISA assay for insulin at 

0, 15, 30, 45, 60, 75 and 90 minutes after the glucose was administered. 

The limitations on the number of samples taken are due to the blood volume 

sampling limits and the timing of the blood sampling. A typical situation would 

involve one scientist dosing, then another two scientists involved with sampling 

at each interval. These three scientists would each sample blood from one 

animal every minute. Therefore with three scientists a maximum of thirty 

animals could be studied [102]. 
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4.4.3 Hyperglycaemic clamp 

This experiment is known as the gold standard for testing β-cell function [103] 

and can also be used for insulin sensitivity [104]. The idea of clamping is that the 

glucose and insulin levels are at a steady state and are therefore not affected by 

the dynamics of the system. A hyperglycaemic clamp involves infusing glucose 

into a subject to create a steady state of glucose which is higher than the 

subject's usual basal level. Depending on the experiment, this is either a certain, 

set level of glucose (e.g. 11mmol) or a set amount above that subject’s basal 

level (e.g. 6mmol above a basal level of 5.5mmol, giving 11.5mmol). This glucose 

level is maintained and when the insulin level is thought to have stabilised, 

usually after approximately 60 minutes, the ratio between the insulin level and 

the infused rate of glucose at steady state is said to be the insulin sensitivity. 

The clamping experiment data used in this thesis are from hyperglycaemic 

clamps. This usually involves the following preparation: 

 Animals were fasted at 16:00 the day before the experiment in a clean 

cage with no access to food but with access to water; 

 At 08:00 on the day of the experiment, animals were weighed and 

anaesthetised with an intra-peritoneal injection of sodium-

thiobutabarbitol; 

 Four catheters were placed in the jugular vein for infusions of glucose, 

compound, haemacel (to stabilise the volume of distribution in the 

subject) and top-ups of anaesthetic; 
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 A further catheter was placed in the left carotid artery for blood sampling 

and recording arterial blood pressure; 

 Body temperature was maintained at 37.5˚C and 45 minutes was allowed 

after surgery for stabilisation. 

Two types of glucose measurement are taken in hyperglycaemic clamps - one 

which is quick and provides near-instant feedback and another which is slower 

but more accurate - which will be referred to as blood glucose and plasma 

glucose, respectively. For the data used in this thesis, blood glucose 

measurements were taken by a Roche Accuchek® using 10l of blood and 

obtained in a few seconds. Plasma glucose was measured using 300l of blood 

and took longer to sample as plasma had to be spun off. After each plasma 

glucose sample, insulin and C-peptide measurements are also taken. Figure 4.2 

shows the protocol for the hyperglycaemic clamp. 

Before the clamp is initiated, a plasma sample is taken for basal levels of glucose, 

insulin and C-peptide. At time zero, glucose is usually infused at 375mg kg-1 min-1 

for 1 minute. The infusion rate is then lowered and blood glucose values are used 

to clamp the glucose at the required level. Blood glucose is sampled roughly 

every minute during this initial period. When the clamp has been maintained at a 

constant level of glucose between 70 and 90 minutes of the experiment, this is 

considered to be “steady state”; this is where standard analysis of this 

experiment is performed, such as the disposition index.  Just before the end of 

the experiment 200ug/kg arginine is dosed, in order to release all of the insulin 
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left in the β-cells, as a measure of the total insulin that could be secreted. At the 

end of the experiment the animals are culled. 

Knowledge of this procedure is important for the modelling. For example, at the 

start of the clamp there is as a “375mg kg-1 primer” which could be 

misinterpreted as being a bolus injection rather than an infusion; this has 

implications for how the input function for the model is described. 

It is also important to understand the limitations of such an experiment. So many 

of the data collected in this experiment are dependent on the blood volumes of 

the samples; for example, it is not possible to get as many insulin measurements 

as glucose measurements since  insulin measurements require 300l of blood 

compared to the 10l required for glucose measurements [86]. Hyperglycaemic 

clamps are also very labour intensive and require one or two scientists per 

subject. 

 

Figure 4.2: Protocol for hyperglycaemic clamp experiment 
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4.4.4 C-peptide intravenous experiment 

Unlike the other tests described here, this test was performed specifically for the 

purpose of modelling. This will be described in more detail in Chapter 7. This test 

involved injecting human C-peptide into anaesthetised Han Wistar rats.  Injected 

C-peptide has the same kinetic characteristics as the endogenous C-peptide but 

can be distinguished from the endogenous C-peptide in the assay which 

distinguishes between human and rodent C-peptide. It is important to note here 

that it requires similar sample sizes to insulin and is therefore sampled only 

infrequently [105]. 

4.4.5 Chronic study 

Data for long-term modelling in Chapter 9 were obtained from studies 

performed over an extended period of time, in this case 40 days. These studies 

consist of feeding animals on particular diets and restricting when the animals 

can feed, generally to a 4-hour window, outside which food is removed from the 

cage. On selected days, profiles of glucose and insulin are taken in a similar way 

to OGTTs but with measurements taken over a 24-48 hour period. An example 

protocol is shown in Figure 4.3: 
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Figure 4.3: Example protocol for a chronic C-peptide study [86] 
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4.4.6 Summary 

The following table summarises the main points about each test described above. 

Test Primary Result Secondary Result Limitations 

IVGTT 

 

β-cell function Insulin sensitivity (from 
modelling) 

 Intensive 

 Only practical with small number of subjects 

OGTT Glucose regulation   Small number of data points 

Hyperglycaemic clamp β-cell function Insulin sensitivity  Intensive 

 Only practical with small number of subjects 

C-peptide intravenous 
experiment 

C-peptide kinetics   Intensive 

 Only practical with small number of subjects 

Chronic study Disease progression Any obtained from 
incorporated experiments 
(e.g. OGTT) 

 Extended period of time required 

Table 4.1: Summary of tests described in this chapter
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4.5 Sampling and assays 

As mentioned with the hyperglycaemic clamps, glucose samples can be 

measured in two different ways: either with a small sample with an Accuchek® 

[106] or with a larger sample from blood plasma and a glucose analyser. The 

measurements from the glucose analyser are considered to be more accurate so 

the blood glucose measurements are often corrected or calibrated using the 

plasma glucose measurements. 

C-peptide and insulin are measured using Millipore and Mercodia ELISA (Enzyme-

Linked Immunosorbent Assay) kits [107, 108]. These assays have a non-linear 

response to the substances put in them, therefore when performing these assays 

a known quantity (standard) of the substance is run at the same time as the 

sample to generate standard curves (see example in Figure 4.4). The scientists 

often aim to dilute the unknown plasma samples so that the results will end up 

on the linear part of the standard curve. When this is not possible, a polynomial 

is frequently employed to describe the curve, which is then used to reference the 

measurement from the kit to the corresponding amount of that substance; 

however this may reduce the accuracy of the assay so it is avoided where 

possible. 
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Figure 4.4: Example of a standard curve on a log-log scale 

for an ELISA assay  

[86] 

All these assays have different degrees of accuracy (see Table 4.2). AstraZeneca 

uses a range of assays to perform measurements. The Accuchek® device, used 

for blood glucose measurements, has a higher accuracy at high glucose levels 

than at low glucose levels [106]. Plasma glucose is measured using a Yellow 

Springs Glucose Analyser and insulin and C-peptide are measured using ELISA 

kits. 
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Assay Accuracy 

Accuchek® 58.5% of samples within 5% or 0.28mmol/l 
of reference value 

99.3% of samples within 20% of reference 
value [108, 109] 

Yellow Springs Glucose Analyser To at least 5.8% 

ELISA kits To at least 6.8% for C-peptide 

To at least 3.8% for insulin[108] 

Table 4.2: Assay accuracies 

Although the assays have the stated accuracies, there are other sources of error 

which may result in errors in the final measurements; these include inaccuracies 

in pipetting volumes and a “freeze-thaw” effect (where the sample has been 

frozen and then thawed later which may degrade the sample, which is 

particularly relevant for C-peptide and insulin). However all practical steps are 

taken to minimise these types of errors, such as using mechanical pipetting and 

avoiding freezing samples where possible [86]. 

The standard curve and the level of quantification means that errors may not 

always be proportional to the sample value. It is important to take all these 

issues into consideration when modelling.  

4.6 Data sets 

A variety of data sets from several sources are used in this thesis. A list of data 

sets and sources is provided in Table 4.3 below; the first is also detailed fully in 

Chapter 7. n denotes the number of animals in each group. 
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Name Experiment Type Lead AstraZeneca Scientist 

RuthCPeptide C Peptide Intravenous 
Injection 

Ruth MacDonald 

 Anaesthetised - Han Wistar rats 

6nmol/ml (n=3),3nmol/ml (n=3),0.8nmol/ml (n=2) 

Measurements taken at 0, 1, 2, 5, 10, 15, 20, 25 and 30 
minutes 

C Peptide Measured 

RuthClamp Hyperglycaemic Clamp Ruth MacDonald 

 Anaesthetised - Han Wistar rats 

Fed (n=5), 4 Hour Fast (n=4),8 Hour fast (n=4) 

Measurements detailed  in RuthCPeptide above 

AliceIVGTT IVGTT Alice Yu 

 Anaesthetised - Han Wistar rats 

Fed (n=5), 4 Hour Fast (n=4),8 Hour fast (n=4) 

Measurements detailed in RuthCPeptide above 

AmieIVGTT IVGTT Dr Amie Gyte 

 Anaesthetised - Han Wistar rats 

Fed (n=7) 

0.2 (n=3) 0.5 g/kg(n=3) 1g/kg (n=1) Glucose dose 

Measurement times -10, 0 ,1, 2, 5, 10,15,25 

Plasma Glucose, Plasma Insulin, Plasma C-peptide 

GeorgiaIVGTT IVGTT [102] Dr Georgia Frangiousdakis 

 Conscious - Han Wistar rats 

4 Hour Fast (n=18) 
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Name Experiment Type Lead AstraZeneca Scientist 

0 (n=8) 0.5 g/kg (n=6) 1g/kg (n=4) Glucose dose 

Measurement times -10, 0 ,1, 2, 5, 10,15,25 

Plasma Glucose, Plasma Insulin, Plasma C-peptide 

StevenOGTT OGTT Dr Steven Wang 

 Conscious - C57BL/6J mice 

(n=20) 2g/kg 4 days of profiles for each over 8 days. 

Measurements at 0, 15, 30, 45, 60, 75 and 90 

Blood Glucose, Plasma Insulin 

JoChronic Chronic Jo Teague 

 Conscious - Zucker and ZDF rats 

38 Days - 4 hours Meal Feed Zucker (n=30), Adlib Zucker 

(n=30), Ad lib Obese ZDF (n=10), Meal fed Obese ZDF (n=32) 

Measurements at 0,2,4,6,8,12,16,20,24 hrs on days 
3,13,16,27,37 

Blood Glucose, Plasma Insulin  

Table 4.3: Data Collection – data sets
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Chapter 5: Previous Models 

This chapter is a review of the details of previously developed mathematical 

models of the glucose-insulin system. This provides context for the model 

detailed in this thesis and indicates where some useful ideas for elements of the 

model have originated. The models described are detailed in chronological order, 

beginning in 1961 with a very simple, linear system and continuing, over the last 

45 years, to a recent development from Swedish modellers. 
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5.1 Bolie Model 

In 1961, Bolie created one of the first (if not the first) mathematical models of 

the glucose-insulin system, using dog data [110]. Due to the limited ability at the 

time to simulate complex models, it was necessarily very simple in nature (see 

Figure 5.1 below). 

x

α

β

δ

p

y

γ

q

 
Figure 5.1: Conceptual diagram of the Bolie Model  

It had only two compartments, one for glucose (y) and one for insulin (x). It 

consists of a pair of first-order differential equations which comprise a second-

order system: 

 
 

  

  
         

  

  
         

5.1 
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where x is insulin concentration; y is glucose concentration; α, β, γ and δ are 

"regulatory coefficients" which, when multiplied by volume of distribution, 

represent insulin clearance, glucose-stimulated insulin secretion, insulin 

sensitivity and glucose effectiveness respectively; p is rate of insulin injection 

divided by volume of distribution and q is rate of glucose injection divided by 

volume of distribution (see Chapter 2). 

The model was simulated using an analogue computer (see Figure 5.2 below). 

 

Figure 5.2: Bolie Glucose Insulin Analogue Computer  [110] 

The main drawback of this model was that it was linear, and therefore both 

glucose and insulin levels could become negative - a physiologically impossible 

situation. In developing this model, Bolie noted a key point: that the glucose and 
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insulin system is critically damped and therefore returns to a steady state quickly 

and efficiently [110]. 

5.2 Minimal Model 

The Minimal Model was created in 1979 by Bergman & Cobelli [111, 112] and has 

been referenced in over 900 papers in 2009 to date [40]. It is so-called because it 

was designed to comprise the smallest number of parameters possible while 

adequately representing the glucose-insulin system. It is now widely accepted as 

a three-state model with parameters for insulin sensitivity and glucose 

effectiveness, and a delay compartment for insulin action. In terms of limitations, 

the Minimal Model is only valid for IVGTTs and there are also mechanistic issues - 

for example, no first-phase insulin secretion - and structural issues with the 

model - for example, it does not return correctly to a steady state [113]. 

As the Minimal Model is such an important model in this field it is discussed in 

detail in Chapter 6. 

5.3 HOMA Model 

In 1985, Matthews, et al. developed another model of the glucose-insulin system 

known as the HOMA (Homeostatic Model Assessment) model [114, 115]. This 

takes fasting (i.e. steady-state) values of glucose and insulin and uses them to 

produce output in the form of a graph, from which estimates of β-cell function 

and insulin sensitivity can be obtained. It is a very simple model, consisting of 
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only two simple equations  5.2 which are derived from the underlying physiology 

of the glucose-insulin system shown in Figure 5.3. 

                         

                            

5.2 

where HOMA1IR is insulin resistance, HOMA1%B is β-cell function, FPI is fasting 

plasma insulin and FPG is fasting plasma glucose. 
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The underlying physiological basis of the HOMA model. The feedback loop between the liver and the β-cell is 

central to the model. Plasma glucose concentration in the basal state is regulated by hepatic glucose output, 

which is insulin dependent (B). Insulin concentration is dependent on β-cell response to glucose (A). Insulin 

signals glucose uptake in fat and muscle (C and D). Glucose disposal is modelled in brain (E) and kidney 

(F)as being dependent only on glucose, and in fat and muscle as being dependent on glucose and insulin 

concentrations (C and D). 

Figure 5.3: Physiological basis of the HOMA model [116]  
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The model was updated in 1996 – to produce the HOMA2 model – which uses 

non-linear solutions to produce a more accurate output graph shown in Figure 

5.4, but results in more complex equations [116]. 

 

Figure 5.4: A: HOMA from 1985 B: HOMA2 from 1996 where S is insulin 
sensitivity and B/β is β-Cell function [116] 
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The authors note that both models have been widely misused. For example, the 

models have been validated only against humans, by testing for correlation 

between model output for insulin resistance and euglycaemic clamp data, and 

model output for β-cell function and hyperglycaemic clamp data; however the 

models have been applied to animal data without validation [116]. 

A key limitation of these models is that they do not model the system 

dynamically and provide only insulin sensitivity and β-cell function estimates. 

However, the fact that the models use only steady-state values acknowledges 

that these are an indication of the state of a subject. In turn, the model shows 

that the interplay between insulin secretion and glucose disposal produces 

different steady-state values, which is an important concept in dynamic models. 

5.4 AIDA Model 

The AIDA model was developed in 1992 by Lehmann & Deutsch for the purpose 

of educating Type 1 diabetes patients about how best to manage their condition 

[117, 118]. It has a large number of parameters, including body-weight and meal 

size (see Figure 5.5).  
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Figure 5.5: AIDA Model Diagram [117] 
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Parameters can be adjusted and simulations performed through a web interface, 

and there is also a free downloadable tool which performs basic parameter 

estimation. As there are a large number of parameters, example parameter sets 

which can be adjusted slightly to fit an individual are also provided. The output is 

in the form of graphs showing blood glucose and plasma insulin over the course 

of a day (see Figure 5.6 below). 

Figure 5.6: Screenshot of AIDA model software tool with demo subject 

This model has a large number of different factors which contribute to the 

output, including compartments for insulin, insulin action, different types of 

insulin (short- or long-acting), gut absorption, carbohydrate ingestion rate and 

renal clearance. Most of these factors are based on previously known 
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physiological values. The model is specifically for Type 1 diabetes patients, who 

do not produce insulin, and therefore does not have any insulin secretion terms; 

the only insulin included in the model comes from insulin injections (which are 

used for treatment). 

This model is interesting for two reasons: it includes more complex features of 

the glucose-insulin system which others do not (e.g. renal clearance), and its aim 

as a freely-available modelling tool to help Type 1 diabetes patients is also 

different to other models, which are generally aimed at clinicians and other 

modellers. 

5.5 β-Cell Mass Model 

The β-Cell Mass Model is one of very few attempts to model the glucose-insulin 

system in the longer term [119]. It was created by Topp, et al. in 2000 to help 

predict the aetiology of diabetes, i.e. over weeks and months rather than hours, 

and to explain self-regulation of the glucose-insulin system using β-cell mass. 

Although not validated against real data, the parameters in the model were 

taken from physiological values or the literature on previous models. The model 

sets up the glucose-insulin system in an elegant three state mathematical model. 

There are many aspects of the β-cell mass model which are relevant to the 

model presented in this thesis so it is examined in greater detail in Chapter 9. 
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5.6 Picchini Clamp Model 

This model was created in 2005 by Picchini, et al. to mathematically model the 

response to a euglycaemic-hyperinsulinaemic clamp experiment [120, 121]. The 

model was validated using human data. A stochastic approach to modelling was 

used as it was found that the model itself was unable to explain the apparent 

randomness in the data. The deterministic part of the model contains two state 

variables: glucose and insulin concentrations. The glucose state contains glucose 

effectiveness and insulin sensitivity; the insulin state includes proportional 

secretion of insulin and hepatic glucose output, see Figure 5.7. The stochastic 

element of the system was applied to the insulin-sensitive parts of the model, i.e. 

the hepatic glucose output and insulin sensitivity. It was modelled using a Wiener 

process (also called Brownian motion) which is a continuous-time stochastic 

model describing the random movement of particles. This can be seen in the 

equation 5.3: 

 
        

                  

  
    

    

        

                                

                            ) 

 

5.3 

with                and                               .         

are input state variables,       are volumes of distributions.      varies randomly 
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as          , where     is Gaussian white-noise process. Then the system 

noise is        can be written as        [120]. 

The Picchini et al. model is important because it relatively successfully models 

glucose and insulin concentrations in a subject undergoing a euglycaemic-

hyperinsulinaemic clamp experiment; however it is not applicable in other 

situations. The stochastic approach is also interesting and was chosen by Picchini 

because the subjects were conscious and therefore their utilisation of glucose 

varied somewhat randomly over time. A stochastic approach is useful when 

there is a lot of random variation and it provides a quantification of the 

randomness in the system; however if there is little variation in individual 

subjects a stochastic approach is not applicable. Additionally, stochastic models 

take longer to simulate than deterministic models as they generally require the 

model to be simulated repeatedly with different random seeds. 
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Figure 5.7: Schematic representation of the Picchini clamp model  [121] 
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5.7 Cobelli Model 

Cobelli began work on model-based predictive control in order to create an 

artificial pancreas [122]. In order to do this, a meal simulation model of the 

glucose-insulin system was developed, with first-phase insulin response based on 

Andrea Mari’s work [123] and second-phase insulin response and insulin effect 

compartment from the Minimal Model [111, 112]. The model has two 

compartments for glucose and two for insulin (plasma and periphery), piecewise 

functions simulating insulin secretion (i.e. separate equations for different 

phases of insulin secretion) and non-linear Michaelis-Menten kinetics for glucose 

disposal (see Figure 5.8). It also includes renal extraction of glucose and hepatic 

insulin clearance. 

 
Figure 5.8: Conceptual diagram of the Cobelli 

model 
[122] 
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This model was important in the field of glucose-insulin system modelling 

because it was used to validate, in simulation, a model-based predictive 

controller for the artificial pancreas [80]. It was used to investigate the effects of 

the controller on simulated patients. On the basis of this, approval was granted 

by the FDA (Food and Drug Administration; regulatory authority for drugs in the 

USA) to begin human testing with the artificial pancreas with the caveat that a 

clinician would have to approve the insulin infusion [81]. 

The Cobelli model was developed into a software tool called GIM (Glucose 

Insulin Model) using MATLAB [124].  GIM also shows the effect of a PID 

controller on the glucose-insulin system, which is particularly relevant to this 

thesis. 

A key limitation of the Cobelli model is that it is relatively complex, compared to 

other models described here. It also has set values for parameters including 

basal levels of glucose which define the piecewise function for insulin secretion 

and therefore may not mechanistically truly reflect insulin secretion. 

5.8 Uppsala Model 

This model was developed in Mats Karlsson’s group at Uppsala University, 

primarily by Hanna Silber. It was first published in 2007 [125] and there have 

since been several follow-up papers [126-128]. The authors used a population 

approach to modelling the system and the structure was compartmental. The 

model included two glucose compartments (plasma and periphery) and a single 

insulin compartment. It also had “effect” compartments for glucose 
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effectiveness, glucose effect on insulin secretion, insulin effect on glucose 

disposal and first-phase insulin secretion based on glucose dose, see Figure 5.9. It 

used a fitted forcing function for glucose absorption in an OGTT which was called 

the “flexible input model”; for this, twelve time periods were specified, each of 

which could have a different absorption rate of glucose into the blood plasma. 

The model was validated using human data from OGTTs and IVGTTs. 

This modelling strategy considered the system in a more mechanistic way than 

previous models to take account of the interplay between biological processes 

and to help hypothesis testing [129]. This is an aspect of modelling which has 

been incorporated into the model presented in this thesis in Chapter 7. 

Additionally, as the model is pharmacology-based, mass is not lost through the 

model and it maintains mass balance. However, it is a complex, multi-state 

model which requires more data than most other models to fit certain elements 

and parameters such as glucose absorption in the OGTT setting [129]. As there is 

an abundance of data for human IVGTTs and OGTTs, which are what this model 

was designed for, this is reasonable but for animal models this is not so practical 

and a more minimal model is required. 

The equations are quite lengthy. Figure 5.9 gives an overview of the model for 

the full equations, see papers [125-129].
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Figure 5.9: Schematic representation of the Uppsala model [125] 
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5.9 Summary 

The following table summarises the main points about each model described 

above. 

Model Structure Timescale 
Main positive 
attributes 

Main negative 
attributes 

Bolie Linear 
two-state 

Hours  Simple. 

 Linear. 

 Potential for 
physiologically 
impossible 
outputs. 

Minimal Non-
linear 
three-
state 

Hours  Small number of 
parameters. 

 Well-established. 

 Only valid for 
IVGTT. 

 Mechanistic and 
structural issues. 

 Not 
physiologically-
based. 

HOMA Two non-
dynamic 
equations 

Instantaneous  Simple. 

 Small number of 
measurements 
required. 

 Physiologically-
based. 

 Non-dynamic. 

 Only estimates 
insulin sensitivity 
and β-cell 
function. 

AIDA Non-
linear 
multi-
state 

Hours/days  Includes complex 
features, e.g. 
renal clearance. 

 Physiologically-
based. 

 Only relevant for 
Type 1 diabetes 
patients. 

β-cell 
mass 

Non-
linear 
three-
state 

Weeks/months/ 
years 

 Suitable for long-
term modelling. 

 Physiologically-
based. 

 No short-term 
aspects 
incorporated. 

Picchini 
Clamp 

Stochastic 
non-linear 
two-state 

Hours  May be 
appropriate for 
large variations in 
glucose levels in 
subjects, where 
deterministic 
modelling fails. 

 Physiologically-
based. 

 Inappropriate 
where there is no 
random variation 
in glucose levels. 

 Longer simulation 
time compared to 
deterministic 
models. 
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Model Structure Timescale 
Main positive 
attributes 

Main negative 
attributes 

Cobelli Non-
linear 
multi-
state 

Hours  Includes complex 
features, e.g. 
hepatic insulin 
clearance. 

 Relatively 
complex. 

 Not entirely 
physiologically-
based. 

Uppsala Non-
linear 
multi-
state 

Hours  Physiologically- 
and 
pharmacology-
based. 

 Complex. 

 Requires a large 
amount of data. 

Table 5.1: Summary of models presented in this chapter 

Several of these models are not physiologically-based, meaning that they work 

only in the situation they were specifically designed for - for example, the 

Minimal Model works only for IVGTTs and is invalid for OGTTs and clamp 

experiments. Such models are not true models of the system and model only the 

specific test; it is therefore important that a model of the glucose-insulin system 

should be physiologically-based. Table 5.1 also shows that there is no single 

model which is appropriate for use in both short- and long-term modelling of the 

glucose-insulin system. Finally, especially for animal modelling where data points 

tend to be sparse, a simple, but dynamic, model is required. For these reasons, it 

appears that there is a need for a model of the glucose-insulin system which is 

physiologically-based, incorporates short- and long-term aspects of the system 

and which is both simple and dynamic. The model presented in this thesis in 

Chapter 8 and Chapter 9  aims to fulfil all of these criteria.
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Chapter 6: Minimal Model 

This chapter is concerned with the structural identifiability of the Minimal Model 

and parameter estimates for Han Wistar rats using (AliceIVGTT) data. It shows 

the Minimal Model is structurally identifiable with insulin and glucose as 

observables, as well as with only glucose as an observable under certain 

assumptions. It also shows the results of the parameter fitting performed using 

MATLAB on actual experimental data from IVGTT on fasted and non-fasted 

anaesthetised Han Wistar rats, including consideration of the sensitivity of each 

of the parameters. The results show a reasonable fit using both glucose and 

insulin, however the model fails to produce physiologically relevant insulin 

parameters when using only glucose as an observable. 
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6.1 Introduction 

The Minimal Model was developed by Bergman and Cobelli in 1979 (see [111, 

112]) , however it is still the most widely-used mathematical model in this field; 

this 2007 article states that there have been 900 citations, as of 2009, in the 

literature relating to the Minimal Model [40]. The authors compared seven 

candidates for the glucose part of the system model and attempted parameter 

fitting, selecting the one they considered the most appropriate in terms of 

identifiability (meaning parameter estimation), meaningfulness of parameters 

and "goodness" of fit: the Minimal Model. Its name comes from its minimal 

approach, which the authors define as being "the simplest mathematical 

representation able to account for glucose disappearance kinetics"[112] . 

Two computer programs have been written to perform the modelling and 

simulation automatically [130, 131]. These programs apply a technique whereby 

they use the glucose levels as a forcing function on the insulin and fit only the 

insulin data, then the glucose data are fitted using the insulin as a forcing 

function. This means that the model is never fully coupled, hence insulin and 

glucose never directly interact in the model; this could thus be viewed as the 

application of two separate models. 

6.1.1 Intended Use 

This model is designed to be used in one situation: by an IVGTT, which tests -

cell function (insulin secretion capacity). An injection of glucose stimulates the 
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release of insulin, which is then measured to determine the -cell function. This 

paradigm is sometimes referred to as GSIS (Glucose Stimulated Insulin Secretion) 

[132]. 

Prior to an IVGTT experiment, the subject is normally fasted so they are at basal 

glucose and insulin levels; in humans, this fasting is generally overnight for 12 

hours [112]. When glucose and insulin levels are measured after glucose 

injection, changes will be purely the result of the injection and the endogenous 

levels, not of meals before the experiment. 

6.1.2 Description 

The Minimal Model is a three-compartment model two of which are insulin 

compartments - plasma and interstitial - and the other is a glucose compartment. 

The plasma insulin and glucose compartments are where insulin and glucose 

respectively are measured (i.e. in the periphery). The interstitial insulin 

compartment simulates the delay between insulin secretion and the effect on 

glucose levels.  

Figure 6.1 shows these compartments and how they are connected. 
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Figure 6.1: Minimal Model structure 

The Minimal Model can produce results for insulin sensitivity, glucose 

effectiveness and insulin and glucose clearance. It can also be used to calculate 

the delay of insulin effect. 

6.1.3 Equations 

The Minimal Model is defined with the following equations: 
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6.1 

      

  
                      

6.2 

       

  
  

                   
         

  
6.3 

where: 

( )G t  plasma glucose 

( )I t  plasma insulin 

( )X t   interstitial insulin 

1p  
glucose effectiveness (removal of glucose based on only glucose 

concentration)
 

2p  clearance of interstitial insulin
 

3p  
insulin kinetic into the interstitial insulin compartment from the plasma 

insulin compartment
 

  secretion rate of the second phase of insulin 

n  clearance rate of insulin 

h  threshold value for insulin release. 

Table 6.1: Parameters in the Minimal Model 

The Minimal Model in standard control system state form, as defined in Chapter 

2 , is given in equations 2.1, 6.2 and 6.3. Note that h used in the standard model 
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from  Chapter 2,  has been replaced by a c to avoid confusion with the h  already 

used in equation 6.3 above. 
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6.4 

The bolus glucose injection is the initial state of the glucose compartment 

therefore G0 is the peak of the glucose profile. Io is the first-phase insulin 

secretion, as the Minimal Model does not have a term for this. 

To remove potential problems with symbolic tools and to fit in with the similarity 

transformation approach to structural identifiability, the t  term in equation 6.4 

is replaced by a fourth state, x4, which simulates a ramp function. The "time" 

state is known and therefore seen as being observable. This produces equations 

6.5. 

  

        

 
 
 
 

 
 
 

 

                        

                              

                       
 

     

 

                        

                              

         
 

     

   
6.5 
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6.1.4 Improvements 

Various approaches have been used in attempts to improve the model, which 

have achieved limited success in different situations. One example is the 

alteration of the time term to an integral term [113]. This removes the problem 

of having the insulin level increasing with time if plasma glucose (G) is greater 

than the threshold value for insulin release (h) as it integrates the glucose over a 

set amount of time causing a build-up. 

6.2 Structural identifiability analysis of the Minimal Model 

A full explanation of the methods for determining structural identifiability can be 

seen in Chapter 2 [17, 19]. Here, the Taylor series and similarity transformation 

approaches are applied to the Minimal Model to determine whether or not it is 

structurally identifiable. 

6.2.1 Taylor series approach 

6.2.1.1 Glucose and insulin as observables 

Here we examine the Minimal Model with both glucose and insulin as observable 

functions. The unknown parameters, from equation 6.5, are              and h. 

The known parameters, also from equation 6.5, are Ib, I0, Gb and G0. 
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It can be done by successively differentiating both glucose and insulin then using 

both of these sets of equations as this produces simpler equations than looking 

at each separately. The analysis was initially performed using Mathematica, see 

Appendix 2, to produce the following coefficients of derivatives,    is glucose and 

  is insulin: 

          
  

               
  

                
               

  
                                        

 

                         

6.6 

          
  

          
  

                   
  

                     
               

6.7 

Mathematica solved this system of eight equations: the first four coefficients for 

both observations of glucose and insulin to yield unique solutions for 

                  . This proves the Minimal Model is globally structurally 

identifiable with glucose and insulin as observables and under the assumption 

that Gb  and Ib are both known. 

6.2.1.2 Glucose as the only observable 

Here we consider the Minimal Model with glucose as the only observable 

function, i.e.      which is glucose. To reflect this, c, from equation 6.5, must 

be replaced by: 

    
 
 

 
 

 
 

 
 
  6.8 
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Again the unknown parameters, from equation 6.5, are              and h. The 

assumed known parameters, also from equation 6.5, are Ib, I0, Gb and G0. 

In this case, Mathematica was unable to produce a unique solution for the 

parameters, even when using 10 equations, see Appendix 2. Maple produced 

some solutions after 9 differentiations but not beyond that, also in Appendix 2. 

This suggests that, although both were ultimately unsuccessful, Maple was 

better than Mathematica at dealing with the complexity of differential equations 

in this situation; however this does not necessarily mean that it will be better for 

other problems of similar complexity. 

As neither Mathematica nor Maple were able to obtain full solutions with a 

reasonable number of Taylor series coefficients, the problem was considered to 

be computationally intractable. The lack of solutions meant it was not possible to 

prove the identifiability of the system one way or the other using this technique, 

so a different approach was required to determine if the system was or was not 

structurally identifiable conclusively. For this reason, the similarity 

transformation approach was also applied and is detailed below. 

6.2.2 Similarity transformation approach 

6.2.2.1 Glucose as the only observable 

Here we again consider the Minimal Model with glucose as the only observable 

function. As with the Taylor series approach above, c, from equation 6.5, must be 

replaced by: 
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  6.9 

Again the unknown parameters, from equation 6.5, are              and h. The 

known parameters, also from equation 6.5, are Ib, I0, Gb and G0. 

The method for applying the Similarity Transformation Approach is described in 

Chapter 2. See Appendix 2 for the Mathematica implementation of the method. 

As Ib and Gb are not known from the glucose and insulin observables, it is 

assumed that they will not be identifiable with glucose as the only observable. 

With this in mind, the candidate smooth functions, µ, were chosen as follows to 

ensure simple computation (as described in Chapter 2 ): 

                  

             

   
   

  
       

   
   

  
       

6.10 

After checking the model fulfils the Observability Rank Criterion (ORC) for non-

zero  , the candidate vector, H, is therefore: 

      

  

  

              

                                       

  6.11 

The smooth mapping can be found by using the equation:  
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              6.12 

and rearranging it so it is equal to zero, then solving it. This gives the smooth 

mapping which is quite complex so it would be useful to simplify it. Evaluating at 

t = 0,    and   cannot be zero, therefore there is only one valid solution. See 

Appendix 2 for the analysis for this model and the extraction of coefficients. 

The result is therefore that the model is structurally globally identifiable even 

with glucose as the only observable. This means that unique parameter values 

can be obtained from only glucose measurements, providing basal levels of 

glucose(G(0)) and insulin I(0) are known. In turn, this means it is possible, in 

theory to estimate parameters for the model using only glucose measurements 

and therefore to simulate insulin levels without direct measurements. 

6.3 Stiffness of the Minimal Model 

The idea of the stiffness of a system is introduced in Chapter 2. It is a measure of 

the range of timescales that a system operates in. Here we examine the stiffness 

of the Minimal Model using the method described in Chapter 2. 

The Jacobian matrix, A as specified in equation 6.13, for the Minimal Model 

evaluated at time t = 0 is: 

 

   

       
        
           
    

  6.13 
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The corresponding eigenvalues are 0, -n, -p1 and -p2. These have average 

absolute values of 0, 0.10, 0.08 and 0.02 respectively, using values from [111]; 

however, for the purposes of stiffness, a zero eigenvalue is treated as O(100) or 

one [9, 32] so the values will be treated as 1, 0.10, 0.08 and 0.02. Therefore the 

stiffness factor, SF as defined in equation 6.14 is: 

 
   

 

    
    6.14 

The stiffness factor is therefore O(101) and hence the model can be considered 

non-stiff. 

As an additional note, the Minimal Model has a discontinuity when G  drops 

below h. As shown in equation 6.3, at this point the term         is not 

included in the model, which gives the Jacobian matrix as: 

 

   

       
        
     
    

  6.15 

As this term does not affect the eigenvalues, the stiffness is therefore not 

affected by the discontinuity. 

6.4 Parameter fitting 

6.4.1 Data 

The data set used for parameter fitting was (AliceIVGTT) in Chapter 4. The data 

were obtained from anaesthetised Han Wistar rats (fed, fasted for 8 hours or 16 
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hours over-night) which were given a bolus injection of glucose (0.5 or 

0.375mg/kg). Readings were taken at 1, 2, 5, 10, 15 and 25 minutes after the 

injection of glucose. 

The data were transferred from the original spreadsheet format to a Microsoft 

Access database format. This made it easier to import into MATLAB and other 

packages as required for analysis. 

6.4.2 Model function 

As the Minimal Model is not stiff (O(101) as shown above there is no requirement 

for an ODE solver that will solve stiff systems. Therefore, MATLAB's ode45 

solver was used (Chapter 2). 

6.4.3 Error function 

The error function is an important component in fitting as it determines how the 

fitting function “sees” the data. Therefore the better the error function is, the 

quicker and more accurate the fit will be. 

The error function used was based on a weighted least squares method (Chapter 

2) and is given in equation 6.16. 

 

 

 

    
     

  
 

 
  

   

   
     

  
 

   

   

 6.16 
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where    is the glucose data,  is glucose simulated,   is insulin data and    is the 

simulated insulin data  As the glucose and insulin values were sometimes 

different in magnitude it was important to consider relative, rather than 

absolute, errors to avoid larger values disproportionately affecting the error 

function and therefore the parameter fit. Therefore, the output from the model 

function was weighted on the real data points in order to give glucose and insulin 

equal weighting in the fitting process. 

6.4.4 Fitting function 

The fitting function used was MATLAB’s standard fminsearch, which is an 

implementation of the Nelder-Mead Simplex method. The function options were 

altered to reduce error tolerance of the results. 

The Minimal Model only works with the initial value set at the peak insulin value 

hence, when fitting the data. With the data used, there is a value at time zero 

which is before the glucose bolus has had chance to affect the system hence it 

was necessary to remove the data point at time zero as the insulin peak had not 

yet been reached.  



Chapter 6: Minimal Model 

110 

 

6.5 Results 

6.5.1 Glucose and insulin as observables 

 
 

 
Figure 6.2: Examples of Minimal Model parameter fits
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Group 
g0 

(mmol/l) 
i0 

(ng/ml) 
p1 

(min-1) 
n 

(min-1) 
p2 

(min-1) 
p3 

(min-1) 
h 

(mmol/l) 
γ 

(min-1) Residual 
Insulin 

sensitivity 

8 Hour Fasted -  0.5g/kg StdDev 0.80 7.87 0.0156 0.0485 0.0233 0.0000076 6.57 0.00202 0.20 1.3819 

8 Hour Fasted -  0.5g/kg Average 14.22 9.90 0.0876 0.0663 0.0154 0.0000194 8.65 0.00522 1.34 0.8010 

Fed - 0.375g/kg StdDev 0.53 4.80 0.0193 0.0373 0.0064 0.0000033 0.00 0.00111 1.88 0.8303 

Fed - 0.375g/kg Average 13.16 19.82 0.0792 0.1673 0.0054 0.0000117 2.00 0.00606 4.60 0.4202 

Fed - 0.5g/kg StdDev 0.27 3.02 0.0278 0.0245 0.0075 0.0000164 1.05 0.00677 0.62 2.2161 

Fed - 0.5g/kg Average 15.76 22.34 0.0959 0.1382 0.0047 0.0000195 3.05 0.01359 2.83 1.2876 

O/N fast - 0.5g/kg StdDev 2.49 2.23 0.0064 0.0468 0.0163 0.0000021 1.66 0.00567 1.51 0.0037 

O/N fast - 0.5g/kg Average 13.80 6.40 0.0925 0.1050 0.0183 0.0000110 4.75 0.00598 1.99 0.0025 

Grand StdDev 1.60 8.08 0.0172 0.0527 0.0142 0.0000084 3.72 0.00515 1.76 1.2023 

Grand Average 14.13 14.40 0.0884 0.1216 0.0110 0.0000148 4.44 0.00747 2.78 0.5683 

Table 6.2: Parameter Fitting Results (Groups) 
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 Group 
g0 

(mmol/l) 
i0 

(ng/ml) 
p1 

(min-1) 
n 

(min-1) 
p2 

(min-1) 
p3 

(min-1) 
h 

(mmol/l) 
γ 

(min-1) 
Residual 

SI - Insulin 
sensitivity 

Fed Average 14.3 20.9 0.0863 0.155 0.0051 0.000015 2.45 0.00929 3.84 0.345 

Fed StdDev 1.45 4.05 0.0229 0.0337 0.0063 1.06E-05 0.83 0.00566 1.67 0.905 

Fasted Average 14.0 7.9 0.0904 0.0884 0.017 1.46E-05 6.42 0.00565 1.71 0.568 

Fasted StdDev 1.84 5.16 0.0104 0.048 0.0178 6.42E-06 4.48 0.0042 1.13 1.2 

Grand Average 14.1 14.4 0.0884 0.122 0.011 1.48E-05 4.44 0.00747 2.78 0.345 

Grand StdDev 1.6 8.08 0.0172 0.0527 0.0142 8.44E-06 3.72 0.00515 1.76 0.905 

T-Test (Two Tailed homoscedastic) 0.748 0.0002 0.676 0.0125 0.134 0.935 0.0582 0.2  0.5 

Table 6.3: Parameter Fitting Results (fasted and fed groups) 
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Recall from the Structural identifiability analysis of the Minimal Model section 

above, the unknown parameters were              and h. See Table 6.2 and 

Table 6.3. 

   (glucose effectiveness). The value obtained across the whole group was 

indeed consistent at 0.088 min-1 (SD 0.017), showing little variation in 

comparison to other  parameters, indicating that other factors created the 

different insulin and glucose profiles. However, the magnitude of this value 

means that it does play a part in the dominant glucose disposal. 

6.5.1.1 Glucose 

G0 (initial glucose concentration). This is fitted to the first data point. A point of 

contention here is that if the peak was missing when sampling the data, this 

value would be incorrect.  

A way to improve this would be to use the quantity of glucose injected with the 

volume of distribution to obtain an estimate for the total quantity of glucose. 

6.5.1.2 Insulin 

I0 (initial insulin concentration). Little variation within groups and this is fitted to 

the first data point. It may have missed the peak due to no instantaneous 

measuring. The same problem arises as it may be missing the peak. The insulin 

secretion in fasted animals is far lower than in fed animals. 
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n (clearance rate of insulin).  This varied between fed and fasted animals, being 

higher in the fed animals than in the fasted animals. This is an interesting 

observation, that will be gone into in more depth in Chapter 7. 

h (threshold level at which insulin is secreted ; i.e. insulin is secreted only if the 

glucose is above this level). Most of the subjects did not reach basal levels so 

they may not have reached this threshold.  h also has a effect on insulin 

secretion, that is the smaller the value of h the greater the insulin secretion. 

  (secretion rate of insulin). This was not statistically different between groups 

(see Table 6.3). 

6.5.1.3 Interstitial insulin dynamics 

p2, p3 (clearance rate of insulin and insulin kinetic into the interstitial  

compartment from the plasma insulin compartment). The lack of data points 

could account for the large variation in values seen for these two parameters. p2 

and p3 are used to create the Insulin Sensitivity, SI, however with the large 

variation in these fitted parameter values it is not possible to achieve a reliable SI 

value.  

This is not as expected as the purpose of insulin is to affect glucose, however this 

was not seen. This may be a problem with applying the model to an IVGTT, a 

problem with the parameter fit (i.e. that the minimum is local and not global) or 
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a problem with the model more generally. It is therefore important to clarify this 

matter by checking a sensitivity analysis (see section 2.7). 

6.5.2 Glucose as the only observable 

To simulate having glucose as the only observable was simply a matter of 

removing insulin from the error function. This effectively means that the 

optimisation technique cannot “see” the insulin, but the model will still produce 

the predicted insulin output for inspection. 

However, this did not predict any realistic insulin results as neither the shape of 

the curve or the values were close, showing that it is necessary to have the 

insulin data in order to achieve a good model fit. The problem lies in the fact that 

the p2 and p3 parameters are sensitive to the number of glucose data points 

available. 

An additional problem is that it may not be possible to obtain an accurate view 

of insulin from this test by looking only at glucose measurements. This is likely to 

be due to the level of insulin in the rats at the start of the experiment making 

very little difference to glucose decay, as it has reached saturation and glucose 

effectiveness is playing the main role in removing glucose.  

Even though the model was structurally identifiable in this situation, this does 

not prove that it is necessarily possible. If the model had been structurally 

unidentifiable, the parameters would not have had a unique solution and, 
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therefore, they would have been meaningless and the insulin output may have 

been incorrect. 

6.6 Sensitivity Analysis  

The sensitivity analysis was performed in Berkley Madonna [1] using a basic 

technique of taking the average of fitted parameters then modelling with 

parameter values an order of magnitude smaller and an order of magnitude 

larger. This should ensure that the whole range of likely values is covered and 

gives an idea of how accurate the parameters will be from visual inspection if 

they change subtly. 

Figure 6.3: Relative sensitivity analysis of glucose with all parameters (time in minutes) 
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Figure 6.4: Relative sensitivity analysis of insulin with all parameters(time in minutes) 

 

 
 

Figure 6.5: Relative sensitivity analysis of glucose with all parameters except p1 & 

p3(time in minutes) 
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Figure 6.6: Relative sensitivity analysis of insulin with all parameters except p1 & p3(time 

in minutes) 

Figure 6.2 – Figure 6.6 show the results from relative sensitivity analysis. The 

parameters have affected the different compartments as follows: 

The glucose compartment is affected by G0 as it has a clear and direct effect on 

the starting level of glucose. The effects are dramatic when the order of 

magnitude is changed. The glucose maintains an exponential decay from its 

starting point, however the insulin response is even more dramatic with the 

second phase response being altered greatly. In addition, p1  has a large effect on 

glucose, though not as much as G0, so it also effects the insulin second phase 

response (see Figure 6.3 and Figure 6.6). 



Chapter 6: Minimal Model 

119 

 

The insulin compartment is largely affected by I0 but only has a limited effect on 

glucose. This is to be expected as the insulin profile in an IVGTT test happens 

rapidly, plus the insulin may be at saturation. Moreover n and h have a great 

effect on insulin, but only a very small effect on glucose. Furthermore   has a 

large effect on insulin secretion, in particular in the second phase insulin curve 

(see Figure 6.4 and Figure 6.6). 

p2 has almost no effect on glucose or insulin, hence its value will not be found 

reliably in the parameter fitting. p3  subtly alters the glucose and, to a lesser 

extent, the insulin response. In order to achieve an accurate result, very accurate 

results from a large number of data points would be needed. 

6.6.1 Conclusions 

Parameters sensitive to change: G0, p1, I0, h, n, . 

Parameters less sensitive to change: p2, p3. 

It is necessary to know the parameters that are sensitive to change as this 

confirms the variation in the parameter fitting results and shows that the 

parameters which are sensitive to change can be picked up by the parameter 

fitting. As small changes in parameters can make a big difference to the results, 

the smaller the range that the sensitive parameters can realistically range over 

the smaller the variation in the results. 
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Changes in the parameters p2 and p3 do not show much change in the glucose or 

insulin responses so obtaining highly accurate values for them is questionable. In 

the case of an IVGTT, the insulin may be having its maximum effect, hence the 

insulin profile will have only a subtle effect on the glucose dynamics. From this 

perspective, it is correct that these parameters are reliant on subtle changes in 

the glucose and insulin profiles. 

This also shows why the glucose-only observations did not work very well. In this 

situation the model was structurally identifiable which meant that there was the 

possibility of finding a unique set of parameter values that would have returned 

the correct insulin. However, it does not guarantee it. As parameter value 

changes in the insulin section of the model do not affect the glucose greatly, 

there is effectively not enough information contained in the glucose 

measurements alone to be able to obtain accurate insulin results. 

All of these comments relate specifically to the Minimal Model; alternative 

models with a different structure may produce different results and it may still 

be possible to obtain insulin values with glucose-only observations. 

6.7 Overall Summary 

6.7.1 Conclusions Between Groups 

Between the fed and fasted groups the only parameters that show statistical 

significance are I0 and n. This means that the first phase insulin secretion and 
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clearance rate of insulin are different between the 2 groups. This issue is 

investigated when we take into account C-peptide as detailed in Chapter 7. 

6.7.2 General Conclusions 

The Minimal Model has been shown to be uniquely structurally identifiable with 

both glucose and insulin measurements. It has also been shown to be uniquely 

structurally identifiable with only glucose measurements. Both of these 

statements have the caveat that basal insulin and glucose levels must be known; 

however, in the experiments where the Minimal Model is used (i.e. IVGTT) this is 

always the case. 

Although the system is structurally identifiable with glucose measurements only, 

the low sensitivity of the effect of insulin on glucose causes a failure to produce 

realistic insulin results. 

In the parameter fits performed here, the main driver for glucose disposal was 

glucose effectiveness. This could be attributed to several causes: 

 the IVGTT may not be a good experiment to measure insulin sensitivity 

due to the fast rate of glucose disposal; 

 the model may have fitted a local minimum where glucose effectiveness 

was dominant, but there could have been other local minima with high 

insulin sensitivity and low glucose effectiveness; 
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 there could be an issue with the model design as it may not be 

physiologically relevant. 
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Chapter 7: C-peptide Deconvolution and Modelling 

As C-peptide and insulin are secreted in equal molar quantities, as explained in 

Chapter 3, insulin secretion can be calculated using deconvolution of C-peptide 

concentrations. Methods of deconvolution used in this thesis, and explained 

here, are the Maximum Entropy method and the technique employed in 

WinNonLin. Whereas 100% of C-peptide is observed when measuring 

peripherally as none is absorbed by the liver, as shown through the work 

deconvolving C-peptide presented in this chapter, less than 100% of insulin 

leaving the pancreas is observed when trying to measure peripherally after the 

liver. Deconvolving data from IVGTTs and hyperglycaemic clamps shows that the 

fraction of insulin leaving the pancreas when measured peripherally after leaving 

the liver can be anywhere between 7% and 58%, depending on the subject and 

the deconvolution method used. For example, the Maximum Entropy method 

produced fractions of 38% for fed animals and 19% for 8-hour fasted (p < 0.05) 

while the WinNonLin method produced values of 36% for fed animals and 16% 

for 8-hour fasted (p < 0.005). The data also show there is a variable clearance 

rate depending on the level of fasting of the animals; it is hypothesised in this 

chapter that this is down to a change in hepatic blood flow. 
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7.1 Introduction 

Insulin is cleared primarily by the liver [133], which is fed by two blood vessels – 

the hepatic artery and the hepatic portal vein [134]. Hepatic blood flow is known 

to change for a variety of reasons, for example exercise and food intake [72]. 

Insulin clearance rates are also known to change, a large variety of factors affect 

this [103, 129, 135, 136] ; as insulin is cleared by the liver, it is hypothesised here 

that there is a connection between hepatic blood flow and insulin clearance rate. 

In order to measure insulin concentration as it appears directly from the 

pancreas it is necessary to sample from the portal vein, into which the pancreas 

feeds [134]. This is an intricate and invasive procedure and it is therefore difficult 

to measure insulin secretion directly, particularly in a clinical setting [137]. 

Additionally, the variable rate of insulin clearance makes it complicated to model 

accurately; other models presented in Chapter 5 do not take into account the 

changes in clearance rate. 

Accurate values of insulin concentration produced by the pancreas are necessary 

to establish insulin sensitivity [133]; without knowing how much insulin was 

originally present in the system, it is not possible to say accurately how much 

glucose is cleared per unit of insulin and therefore to calculate insulin sensitivity. 

Insulin sensitivity is important both for determining how effective a drug is at 

improving glucose uptake and for tracking disease progression in diabetic 

patients. 
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Some studies have found that the insulin clearance rate can be considered to be 

a constant under certain conditions. For example, Bergman found that the 

fraction of insulin cleared as it passes through the liver, known as the hepatic 

extraction ratio, is 33.4% ± 0.1 for an IVGTT and 64.5% ± 3.6 for an OGTT [59]. 

While this may be useful for simplifying calculations, it does not provide an 

explanation for what is happening mechanistically or allow us to predict what 

will happen in other situations. 

Insulin secretion must be determined to establish the relationship between 

glucose concentration and insulin secretion. This has been attempted in several 

previous models, each with their own different approach. The Minimal Model 

only simulates second-phase insulin response and for the first-phase response it 

uses the initially measured insulin level [113]. Cobelli used a combination of the 

Minimal Model’s approach and the derivative of glucose concentration from 

work by Mari to establish a relationship between glucose concentration and 

insulin secretion [80, 123]. 

In order to produce an accurate model of insulin secretion for future use in this 

work, it is important to have an accurate relationship between glucose and 

insulin 

7.2 C-peptide 

As explained in Chapter 3, insulin is synthesised in the ß-cells in the islets of 

Langerhans in the pancreas. It is held in granules as pro-insulin, an inactive form. 
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When pro-insulin is activated, C-peptide is cleaved from it by carboxypeptidase 

and a series of prohormone convertases [54]. This results in C-peptide and 

insulin release into the hepatic portal vein in equal molar quantities. 

An important feature of C-peptide is that it is cleared by the kidneys at a 

constant rate [57, 138]. As C-peptide is produced at the same rate as insulin, it is 

possible to calculate insulin clearance from C-peptide concentration using a 

technique called deconvolution, which is explained in the Deconvolution section 

below. 

7.3 Deconvolution 

Convolution is a mathematical operator on two functions which produces a third, 

often considered to be a modification of one of the original functions. This can 

be viewed as "filtering" one function through another. Convolution is 

mathematically defined as follows: 

 
                             

 

 

 
7.1 

where y is the output of the system, u is the input to the system, f  is the system 

impulse response and   is the convolution operator. 

Deconvolution is the reverse process where, given the output, y, and usually the 

system impulse response, f, the input, u, can be found. This is very useful in 
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mathematical models of biological systems where, given the output (y) and 

system equations (f ), deconvolution can be used to establish the input (u). 

In the case presented here, the output is the measured C-peptide concentration 

which is deconvolved to calculate the original insulin secretion. Two methods of 

deconvolution are used in this thesis and described below: the Maximum 

Entropy technique and the technique employed in the software package 

WinNonLin. These were selected as they have been successfully applied to 

biological systems previously [139, 140] and, as results from different 

deconvolution can vary, using two methods allows for comparison of results. 

7.3.1 Maximum Entropy 

A lot of the original work using maximum entropy was based on applications in 

astrophysics, looking at far away objects and correcting for telescopic lenses and 

gravitational lensing [141, 142], but it also has noted applications in biomedical 

systems [143]. A review of six different deconvolution techniques applied to 

certain well-accepted pharmacokinetic models and data was performed by 

Madden, et al., which noted the advantages of certain types of deconvolution 

approaches over others [144]. 

Entropy in this context is a measure of the amount of information or uncertainty 

in a signal. The Maximum Entropy technique seeks to minimise assumptions 

about a signal, while constraining the result to the observed signal, by 

maximising entropy. 
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7.3.1.1 Method 

The standard continuous measure for entropy, S, is: 

 
            

 

   

 7.2 

where pn is the probability of an event occurring. This can be adapted to form a 

discrete measure of entropy for a piecewise step input function: 

 
          

 

   

 7.3 

where        
                  

          
  which is combined with equation 7.2 to 

produce: 

    
  

   
 

         
  

  
 

 

   

 

7.4 

where xn is the normalised value of the input for the nth sample and rn is the 

base-line value of the input and is calculated using a nearest neighbour average 

(i.e. (xn-1 + xn+1)/2). The inclusion of rn smoothes the function x  to make the signal 

more "natural" by removing any sharp spikes. The input is considered to be 

always positive as a negative input function would be nonsensical biologically. 
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This entropy function is used as the objective function for the optimisation 

algorithm. The input function in 7.3 is convolved with the system equations to 

produce the output function. The output function is then constrained against the 

real data. The constraining function is the χ2 constraining function: 

 
    

       
 

  
 

 

   

 7.5 

where          

and where E is the expected value, N is the number of samples, xi is the 

measurement, hi is the predicted value and    is the weighting, as this can be 

seen as a weighted least squares estimator (see Chapter 2). 

This is fed into a constrained optimisation algorithm, in this case the MATLAB 

fmincon method, which uses a quadratic programming sub-problem coupled 

with calculation of the Hessian of the Lagrangian via the BFGS formula [4, 139, 

145]. 

This Maximum Entropy implementation has been tested and used successfully by 

others [139, 145, 146]. 

7.3.2 WinNonLin 

WinNonLin [5] is a tool widely used in the pharmaceutical industry for the 

modelling of pharmacokinetic processes and systems. It incorporates a method 

of deconvolution that takes a linear system for drug kinetics and calculates the 
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input rate to the system. This is commonly used for estimating gut absorption 

rates and bioavailability of a drug from IV and oral drug dose profiles. The 

software is designed specifically for biological systems and is accepted and 

approved by the FDA (Food and Drug Administration), making it very appropriate 

for this application. 

7.3.2.1 Method 

The WinNonLin method is described in detail in the documentation of 

WinNonLin [5]. The basic concept is explained here. 

The WinNonLin deconvolution technique is an optimisation process, as is the 

Maximum Entropy technique; however unlike Maximum Entropy, which sets up 

data points and interpolates between them, it sets up an input function to the 

system. The input to the system is described as a piecewise linear "precursor" 

function of the following form: 

                     7.6 

where       

 
 
 

 
 

    

       
       

      

         
           

           

 . 

The optimisation is performed by varying the weights, xj. T0 ... Tj+2 are the time 

points at which observations are taken plus one point at time zero and another 

half way to the first point to allow for an initial peak at the start. This allows the 
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system to simulate a rapid absorption rate at the start, which is common in drugs 

being absorbed though the gut. 

This function is then convolved with a “dispersion” function which acts as a 

smoothing function. It is a normalised decaying exponential of the form: 

 

   
 

 
 
 

 
 7.7 

where δ is a smoothing coefficient. 

This effectively creates a smoothed curve function with n+2 points, where n is 

the number of data points. 

The WinNonLin deconvolution method was implemented in MATLAB; this made 

use of MATLAB’s own optimisation and simulation functions, which may be 

different to WinNonLin’s. However, the results from the MATLAB 

implementation were found to be very similar to those from WinNonLin (see 

Deconvolution Results below). The method for finding residuals in WinNonLin is 

not explained in the manual, so least squares was selected as the most 

appropriate. The implementation of this in Appendix 3. 

7.4 Data Collection 

In order to apply these two methods the system model needs to be known. Most 

modellers use one particular C-peptide model [57], which is a linear two-

compartmental model with first order clearance (Figure 7.1). From these models 
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we can assume this system to be linear so the impulse response is required. It is 

also necessary to know the parameter values for the model. This was achieved 

using an intravenous C-peptide injection and fitting the parameters in acslX using 

a PKPD toolkit developed at AstraZeneca.  
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C-Peptide
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(Volume of 

Distribution)

k1e

(C-Peptide 

clearance)

C2(t)
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k12

k21

Pancreas

Kidneys  

Figure 7.1: C-peptide kinetic compartmental model 

Doses of 6nmol/ml (n=3),3nmol/ml (n=3),0.8nmol/ml (n=2) C-peptide  were 

administered and measurements taken at 1, 2, 5, 10, 15, 20, 25 and 30 minutes, 

see (RuthCPeptide) from Chapter 4. The mean of the parameter values were 

used for deconvolution, see Figure 7.2 and Table 7.1. 
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Figure 7.2: Parameter Fits of C-peptide 

 Parameter Final Std.Dev.   %Covariance

  V1 0.0796 0.0038 4.75

  K21 0.2540 0.0095 3.73

  K12 0.3410 0.0101 2.95

  KE 0.3150 0.0089 2.84  

Table 7.1: C-peptide fitted kinetic parameters 

The data used for deconvolution were collected from a series of different 

experiments: conscious and anaesthetised; ad-lib fed, 4-hour fasted and 8-hour 

fasted; and IVGTT and hyperglycaemic clamps. These are contained in the data 

sets (AliceIVGTT), (GeorgiaIVGTT) and (RuthClamp) (see Chapter 4). 
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7.5 Deconvolution Results 

Data from these studies were deconvolved using the two techniques described 

above. Full results are given in Appendix 3. Presented below, in Figure 7.3 and 

Figure 7.4, are typical examples of deconvolution outputs for IVGTT and 

hyperglycaemic clamp experiments respectively.
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Figure 7.3: Deconvolution of IVGTT data from rat 1 in (AliceIVGTT) (fed Han Wistar rat) from the original WinNonLin method, the WinNonLin MATLAB 

method and the Maximum Entropy method 
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Figure 7.4: Deconvolution of hyperglycaemic clamp data from rat 37 in (RuthClamp) (fed Han Wistar rat) from the original WinNonLin method, the 

WinNonLin MATLAB method and the Maximum Entropy method 
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As the fundamental techniques used for both the WinNonLin deconvolution and 

the MATLAB implementation of the WinNonLin deconvolution are the same, 

they produce very similar results; any errors can be explained by differences in 

the ODE solvers and optimisation techniques used. The results from both of 

these are approximately identical and therefore the MATLAB implementation is 

used for the remainder of the data analysis. 

Both the Maximum Entropy and WinNonLin techniques produce similar 

deconvolution outputs and also predict approximately the same level of insulin 

secretion. The data in Appendix 3 show that in 80% of cases WinNonLin 

produced higher values for insulin secretion than the Maximum Entropy 

technique. However, there was a maximum difference of 36% with the average 

difference between the values being only 8%. 

Figure 7.3 and Figure 7.4 also show the glucose levels in each rat and the ratio 

between C-peptide (insulin secretion) and glucose concentrations. This is useful 

as it shows the relationship between the pancreas and glucose levels when 

secreting insulin. From these graphs, it is important to note that the relationship 

is not proportional. It also shows that a large quantity of glucose in an IVGTT 

does not cause saturation in insulin secretion; in fact, a larger than proportional 

secretion occurs. 

It can also be seen, for both the IVGTT and the hyperglycaemic clamp 

experiments, that there is an increase in insulin secretion after sustained high 
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levels of glucose. This is particularly apparent for the hyperglycaemic clamp data, 

where glucose remains roughly constant while the ratio between glucose and 

insulin secretion increases. This information is used later to develop a short-term 

model of the glucose-insulin system. 

Finally, it is clear that from around 90 minutes into the hyperglycaemic clamp 

there is a sudden increase in insulin secretion. This is in fact down to arginine 

being injected, as described in Chapter 4, and therefore has little to do with 

glucose concentrations. 

7.6 Insulin clearance 

As C-peptide is secreted in the same molar quantity as insulin, working out the C-

peptide secretion rate gives the corresponding insulin secretion rate. When the 

IVGTT and hyperglycaemic clamp experiments were performed, plasma insulin 

concentrations were also measured; it is therefore possible to calculate the 

amount of insulin that appears and the clearance rate of insulin. This is done by 

fitting a simple one-compartmental model (Figure 7.5) described by the 

differential equation in equation 7.8. 
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Figure 7.5: Diagram of simple insulin clearance compartmental model 

       

  
                7.8 

where I is plasma insulin, ke is insulin clearance (min-1), b is the fraction of 

secreted insulin that is observed after the liver in the periphery and u is the input 

function obtained from the C-peptide deconvolution. 

This was fitted in MATLAB using MATLAB’s unconstrained fitting algorithm, 

fminunc [36]. The fitting algorithm used transforms of the parameters to 

create upper and lower bounds [147, 148] using the following equations: 

 
      

      

     
     

       
   

   
      

7.9 
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where p is a parameter,    is the transpose parameter used by the optimisation  

algorithm   is the lower bound and   is the upper bound. 

The unconstrained fitting algorithm was selected because MATLAB’s constrained 

fitting algorithm tended to find local minima around the constrained points. The 

model itself was simulated using the numerical algorithm ode45 as this is not a 

stiff system. The error function used was Weighted Least Squares, as detailed in 

Chapter 2, with weighting based on real data. The use of Generalised Least 

Squares, also in Chapter 2, as the error function was attempted, however this 

also tended to lead to local minima; this was due to the fact that parameters a 

long way off from the true minima caused the value of the error function to 

show little difference between different incorrect values of parameters. 
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7.6.1 Results 

Figure 7.6: Insulin clearance (ke) and fraction of insulin observed (b) in all rats using both 

Maximum Entropy and WinNonLin deconvolution techniques, grouped by fasting state 

with standard deviation error bars 

  Maximum Entropy WinNonLin 

Fasting state ke (min-1) b (fraction) ke (min-1) b (fraction) 

Fed 0.34 0.38 0.30 0.36 

4-hour fasted 0.35 0.25 0.40 0.28 

8-hour fasted 0.22 0.20 0.21 0.16 

16-hour fasted 0.20 0.21 0.19 0.16 

Table 7.2: Insulin clearance (ke) and fraction of insulin observed (b) in all rats using both 

Maximum Entropy and WinNonLin deconvolution techniques, grouped by fasting state 
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Figure 7.6 and Table 7.2 summarise the overall insulin clearance and fraction of 

insulin observed results obtained using both Maximum Entropy and WinNonLin 

deconvolution techniques on data from all data sets used here, (AliceIVGTT), 

(GeorgiaIVGTT) and (RuthClamp), as detailed in Chapter 4. 

The full data set was analysed using a two-tailed Student's t-test (see Appendix 

3). This showed that there is a statistically significant difference in the fraction of 

insulin observed (b) between fed and both 8-hour and 16-hour fasted rats for 

both the Maximum Entropy and WinNonLin methods (p < 0.05). There is also a 

statistically significant difference in insulin clearance (ke) between 4-hour fasted 

and both 8-hour and 16-hour fasted rats for both Maximum Entropy (p < 0.05) 

and WinNonLin (p < 0.005). There is no statistically significant difference 

between results from Maximum Entropy and WinNonLin based on the residual 

function. 

7.6.2 Discussion 

The results in Figure 7.6 and Table 7.2 show that the fraction of insulin observed 

(b) is well below 100%, meaning that there is a large proportion of insulin that is 

not observed in the periphery. This is possibly down to the pancreas releasing 

insulin into the portal vein, which goes straight to the liver and is therefore 

cleared before it reaches the periphery where the plasma is sampled. 

It can also be seen that there is a difference in the amount of insulin "lost" and 

the clearance rate of insulin based on the feeding state of the animals. This could 
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be hypothesised to be attributed to the changes in blood flow from fed to fasting 

states. 

7.7 Modelling hepatic blood flow 

7.7.1 Biology 

Blood from the gut is transported to the liver via the portal vein. The circulation 

to the pancreas is directly from the gut so the β-cells can sense glucose levels 

immediately after glucose has been absorbed by the digestive system [134]. The 

insulin from the β-cells is fed into the portal vein. From the liver, blood flows into 

the rest of the body via a complex series of blood vessels and can then 

recirculate into the liver through the hepatic artery and portal vein. The pancreas 

and, therefore, the β-cells are also served by other blood vessels such as 

branches of the splenic artery, independent from the gut. 

The blood flow in the portal vein can vary [72, 149] from 14.60± (0.96) ml/min to 

27.35 (± 1.82) ml/min between fasted and fed rats [74]. This is affected by 

several factors, including exercise (where blood is required in areas such as 

muscles) and digestion (where blood is required in other areas). As described 

earlier, insulin is cleared by the liver; therefore it could be hypothesised that the 

rate of clearance changes with alterations in blood flow. This problem has been 

found in pharmacokinetics where a drug flows in to the liver and is cleared. As 

different species have different rates of blood flow, they have different rates of 

clearance; this has been studied in depth before [150]. With insulin there is a 
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first pass effect which means that the insulin is cleared without it passing into 

the periphery and also a standard clearance rate of insulin. However the liver 

may have only one intrinsic rate of clearance [151]; adding variable blood flow 

into the model may provide a reason for the clearance. 

Knowing this, and knowing the first pass and observed clearance of insulin (from 

deconvolving C-peptide), it may be possible to calculate the hepatic blood flow. 

7.7.2 Model 

This model is a standard set of equations used by pharmacokineticists for hepatic 

blood flow [73, 138], given in equation 7.10; in this case, I is insulin, however it 

could also be a drug: 

   

  
 

       

        

 

 
  

  

        
      

7.10 

 

where Qh is hepatic blood flow, CLint is intrinsic clearance rate, V is volume of 

distribution of insulin and u is insulin secretion rate (i.e. C-peptide secretion 

rate). Note that there is no volume of distribution associated with u, due to the 

fact that the input is already defined as a concentration. 

There is a structural identifiability issue with this model which is apparent when 

looking at the model structure as the volume of distribution of insulin will be a 

ratio that is not determinable from the observables shown. This can be 

determined by inspection of the model or, as this model is linear, by the Laplace 
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transform approach to structural identifiability, see Chapter 2 [14]. Therefore it is 

necessary to find a value for the volume of distribution of insulin from the 

literature, which is known to be 0.08 l/kg [152]; this value is close to (i.e. within 

10% of) the volume of distribution of C-peptide 0.0796 l/kg. 

The average weights of the rats in each of the studies (Appendix 1) were: 

 (AliceIVGTT): 260g 

 (RuthClamp): 282g 

 (GeorgiaIVGTT): 300g. 

This gives an overall average weight of 280g, yielding a volume of distribution of 

insulin (V) of 0.0224l for the rat models used. 

7.7.3 Results 
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Figure 7.7: Conscious IVGTT from (GeorgiaIVGTT) ID65 - 4-hour fasted 0.5g/kg glucose bolus 
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Figure 7.8: Hyperglycaemic clamp from (RuthClamp) ID 42 - 8-hour fasted 
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Figure 7.9: Hepatic blood flow (qh) and intrinsic clearance (CLint) in all rats using both 

Maximum Entropy and WinNonLin deconvolution techniques, grouped by feeding state 

with standard deviation error bars 

  Maxium Entropy WinNonLin 

  qh (L/min) CLint (L/min) qh (L/min) qh (L/min) 

Fed 0.022 0.020 0.015 0.020 

4 Hours 0.012 0.032 0.011 0.033 

8 Hours 0.017 0.030 0.012 0.031 

16 Hours 0.006 0.025 0.005 0.027 

Table 7.3: Hepatic blood flow (qh) and Instinct clearance (CLint) observed in all rats using 

both Maximum Entropy and WinNonLin deconvolution techniques, group by feeding 

state. 

Although fitting to the hepatic blood flow model [73] produced similar fits to the 

simple insulin clearance model, see Figure 7.7 and Figure 7.8, the results for the 
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parameter estimates, see Table 7.3, showed considerably more variation, as seen 

by the standard deviation error bars in Figure 7.6 and Figure 7.9. There were 

fewer C-peptide results collected in the experiment than insulin ones due to the 

greater amount of blood needed to take C-peptide measurements. More C-

peptide results may reduce variability. The hepatic blood flow model does, 

however, produce realistic results for the hepatic blood flow [153]. Figure 7.10 

shows the hepatic blood flow for the animals at different states; the units were 

converted using the average weight of the animals in these studies, which was 

previously calculated as 280g (in section 7.7.2 above). The full results for this can 

be seen in Appendix 3. 

Ideally, CLint should remain constant as this is the liver clearance rate which 

should not be affected by blood flow or feeding state. However, there is a 

statistically significant difference in CLint between fed and 4-hour fasted rats. 



Chapter 7: C-Peptide Deconvolution and Modelling 

150 

 

 

Figure 7.10: Hepatic blood flow with normalised units 

7.7.4 Discussion 

It is shown that there are statistically significant differences between groups of 

rats for hepatic blood flow. Hepatic blood flow is near the expected value, 

however there is a statistically significant difference between the intrinsic 

clearance of insulin in the 4-hour fasted animals compared to the other groups. 

This could be due to either of two reasons: a factor which is unaccounted for in 

the model or a different mechanism from that hypothesised here for hepatic 

clearance of insulin. It is not possible to conclude which of these it is without 

testing different candidate models or doing further experiments to measure 

insulin levels or blood flow. 

0 

50 

100 

150 

200 

250 

Fed 4 Hours 8 Hours 16 Hours 

H
e

p
at

ic
 B

lo
o

d
 F

lo
w

 (
m

l/
kg

/m
in

) 

Groups 

Maxium Entropy qh 
(ml/kg/min) 

WinNonLin CLint 
(ml/kg/min) 

Literature  Value 



Chapter 7: C-Peptide Deconvolution and Modelling 

151 

 

In order to estimate the hepatic blood flow, deconvolution has been used to 

calculate a “best guess” of insulin secretion based on a small number of data 

points from a limited number of animal experiments. The deconvolution results 

had little variation across animals, however the modelled hepatic blood flow and 

clearance showed large variation. Pushing the data to this point is interesting, 

however without further experiments to actually measure blood flow – such as 

using the Doppler ultrasound method [73, 149] – it is not possible to fully 

validate this process. 

From the point of view of using this approach as a tool to analyse data in the 

context of this thesis, being able to calculate hepatic blood flow is not as 

important as obtaining an accurate estimate for changes in insulin clearance.  

This is because other factors, such as the activity rate and drugs, may affect the 

blood flow.  Hence hepatic blood flow is not calculated in the software tool 

described in Chapter 10. 

7.8 Maximum Entropy vs. WinNonLin 

As noted in sections 7.6.1 and 7.7.3 above, the results from the residual 

functions for both the hepatic blood flow and insulin clearance models are 

comparable for each deconvolution technique and there is no statistically 

significant difference between the values each technique produces from the 

residual function. However there is a noticeable difference in the visual 
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appearance of the two sets of graphs produced; this is particularly apparent with 

a bolus injection of C-peptide as shown in Figure 7.11. 

 

Figure 7.11: Deconvolutions of C-Peptide 

As commented before, the WinNonLin technique is more prone to producing 

initial peaks than the Maximum Entropy technique, which employs a smoothing 

technique. 

The WinNonLin technique is known to be correct in situations such as a bolus 

input of C-peptide when the data were deconvolved back to the C-peptide; 
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however this does not mean that the WinNonLin results correct in other 

situations. 

The MATLAB implementations of both the WinNonLin and Maximum Entropy 

deconvolution techniques execute in comparable times: around 20 seconds for 

an individual rat on a AMD 6000+ processor. However, the WinNonLin 

implementation is much faster, taking only a few seconds per rat on the same 

processor. 

7.9 Overall Summary 

In this chapter, the important issue of variable insulin secretion was considered. 

Two methods of deconvolution were used to calculate insulin secretion; both 

provided reasonable predictions of insulin secretion. Both the Maximum Entropy 

and WinNonLin methods produced the same cumulative output of insulin, i.e. 

there was no statistically significant difference between the two. 

The fraction of insulin observed in ad-lib fed animals was statistically significantly 

higher (p < 0.05) than the 8-hour and 16-hour fasted rats (for both the Maximum 

Entropy and WinNonLin methods) which shows that the state of the animal is 

important when considering the measurement of plasma insulin alone.  

This confirms that using C-peptide as a biomarker of insulin secretion is evidently 

better than measuring insulin itself. 
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The hepatic blood flow hypothesis was partly successful as it returned realistic 

values for hepatic blood flow. However factors other than blood flow may be 

involved in insulin clearance. This process also pushed the data set to an extreme 

where it tried to obtain more information than is realistically possible given the 

limited number of data points available. 
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Chapter 8: Short Term Modelling 

This chapter’s aim is to produce a model which can simulate the glucose and 

insulin system accurately and is not confined to a diseased state or experiment. 

The attempted model will relate to the underlying biology and will fit existing 

data as well as predict the outcome of future experiments. In this chapter the 

model is produced then minimised into a simpler form and  successfully fitted to 

OGTT (Oral Glucose Tolerance Test), IVGTT (Intra-Venous Glucose Tolerance 

Test) and hyperglycaemic clamp data. Sensitivity analysis is also performed on 

the model.  
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8.1 Introduction 

This chapter develops a model for the regulation of glucose and insulin kinetics 

for short time-scales. It looks into the importance of a well-validated and robust 

model for short-term kinetics. 

8.1.1 Purpose of the modelling 

This short term modelling work is designed to achieve the following: 

 To derive a mechanistically appropriate mathematical model of short-term 

glucose and insulin kinetics, generically applicable across experimental 

protocols. 

 To perform parameter fits to experimental data to parameterise key aspects 

of the system. 

o The aim of this is to see the effect of external influences (such as 

drugs or disease) on the glucose-insulin system. 

 To allow potential experimental outcomes to be predicted. 

o For example, knowing that a drug has an effect on a particular model 

parameter, it is possible to see the effect of perturbing that 

parameter on the system before the experiment is done (i.e. to assess 

parameter sensitivity). 

 To test a new potential experiment to see the expected output and aiding 

experimental design. 
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o For example, by selecting appropriate time points for sampling and 

measurement of glucose and insulin and experiment duration for 

robust and accurate parameter estimation. 

8.1.2 Requirements of the model 

In order to create a model which improves upon existing models and create a 

unique new model, this model will aim to meet a list of desirable features: 

 The model should be universal, rather than designed for use with a 

specific test or for particular situations. 

o This will mean that the model is closer (mechanistically) to the 

underlying physical process it is trying to mimic. 

 The model does not have explicit parameters for steady state conditions 

(glucose and insulin basal levels are not “fixed” by a parameter). 

o This is to provide physiological reasons to explain why glucose and 

insulin basal levels may change, for example due to insulin 

sensitivity. 

 The model should be stable, robust and provide realistic model outputs. 

o This includes returning to a valid steady state at the end of the 

experiment and producing only outputs which are physiologically 

possible. 

 The model should be minimal in mathematical form and structure whilst 

incorporating all necessary components. 
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8.2 Model Minimisation 

The Minimal Model was introduced in Chapter 6. The concept behind the 

Minimal Model was that it was the simplest model that could adequately explain 

the experimental data[113]. The Minimal Model was designed by taking a set of 

possible candidate models and seeing which model fitted the data best, and 

produced a simple model with a good fit to the available experimental data, but 

which was not mechanistically valid and therefore would not necessarily 

adequately describe new experimental data. The model is therefore not 

necessarily applicable to experiments other than those used for the original 

modelling. 

Although this approach led to a model which was not mechanistically valid, it is 

desirable to have a model which is structurally minimal because this ensures that 

all parameters in the model are mathematically meaningful. This means that, 

when a parameter fit is performed, there will be a finite set of parameter values 

which will be at least mathematically valid and meaningful, even if they are not 

physiologically meaningful. Structural identifiability, described in Chapter 2, is a 

useful test for the meaningfulness of parameter values. 

The challenge is therefore to create a model that has sufficient dynamics that it 

can reflect a large range of scenarios and situations, but which is still as minimal 

as possible in structure. 
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8.3 Model Concept 

As mentioned above, it is important to keep the model minimal yet to be 

sufficiently dynamic to adequately explain the data and to be physiologically 

relevant in order for it to work under many practical situations. 

Humans have defined very fine levels of system control for systems like chemical 

plants. The human body requires a very fine level of control over the glucose-

insulin system, as described in Chapter 3. It is therefore logical to assume that 

the methods humans have created for obtaining fine levels of control of physical 

and engineering processes may be similar to those methods that have evolved in 

the human body. One specific type of controller produces outputs very similar to 

those of the pancreas, namely a PID (Proportional-Integral-Derivative) controller 

[12], see Figure 8.1. 

 

Figure 8.1: PID (Proportional-Integral-Derivative) controller 

Each part of this controller can be explained as follows: 
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8.3.1.1 Proportional: 

 In mathematical terms, this means that for every unit of plasma glucose, 

a fixed amount of insulin is released by the pancreas. 

 This element of the controller simulates the secretion of insulin in basal 

conditions. The proportional aspect maintains a basal level of glucose in 

the system and a basal level of insulin to match it. 

 In biological terms, this means that glucose enters the β-cells which, via 

glycolysis and oxidative phosphorylation, increases the level of ATP 

shown by [62]. In the proportional controller analogy, the ATP 

predominantly promotes granules of pro-insulin towards the membrane 

as described in Chapter 3. 

8.3.1.2 Integral: 

 In mathematical terms, this is the area under the curve (AUC) of the 

glucose concentration. 

 This element simulates the second phase insulin response: the shoulder 

of insulin observed after an IVGTT[42]. 

 In biological terms, this is similar to the proportional control and means 

that an accumulation of glucose causes the β-cells to secrete an 

additional quantity of insulin, possibly from the readily releasable pool in 

β-cells [65]. This represents the amount of insulin required to remove the 

glucose after a meal, sugar intake or clinical challenge. 
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8.3.1.3 Derivative: 

 In mathematical terms, this is the rate of change of glucose level. 

 This element represents the first phase insulin response: the relatively 

high amount of insulin that is seen initially in experiments such as IVGTT. 

 In biological terms, this could mean that the docked insulin granules on 

the cell membrane are predominantly released in a rapid response to a 

large increase in the amount of glucose present. It gives a measured 

response to sudden, large changes in concentration of glucose but has 

little effect when levels rise slowly [42, 66]. 

8.4 Model Structure and Equations 

The model presented here is a three-state compartmental model. A 

diagrammatic representation is shown in Figure 8.2. 
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Figure 8.2: Schematic diagram of the PID model of the glucose and insulin system. 

The model equations are as follows: 
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The model states and parameters are explained in Table 8.1 below. 

Parameter Description Units 

gr Glucose effectiveness min−1 

gp Glucose production rate mmol l−1 min−1 

ksi Insulin sensitivity, insulin-dependent glucose 
removal 

ml ng−1 

kp Proportional parameter for PID model μg mmol−1 min−1 

ki Integral parameter for PID model μg mmol−1 min−2 

kd Differential parameter for PID model μg mmol−1 

kir Insulin clearance min−1 

kiir Integral clearance rate, to simulate integral 
function 

min−1 

kiar Insulin action increase rate, to delay insulin 
action 

min−1 

G(t) Glucose concentration mmol l−1 

I(t) Insulin concentration μg l−1 

Ia(t) Insulin action mmol l−1 min 

Ii(t) Insulin integral/delay μg l−1 min 

Table 8.1: Model State Variables and Parameter Descriptions 
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8.4.1 Insulin Secretion 

The basal levels of glucose and insulin are not fixed points in the biological 

mechanism. Instead, they are determined by the effect they have on each other 

in their steady states. The β-cell Mass Model by Topp, et al. has been developed 

in this way [119]; the basal levels of each are not defined, but are determined by 

the combination of parameters used. The model shows what can happen in the 

system if a reduction of insulin sensitivity occurs over a period of days or months. 

This is a central point for model design as it is vital in ensuring that the 

parameters have relevance to the underlying biology. A classic PID controller 

could be related to a biological system by considering the set point as the basal 

glucose level and the error signal as the basal level minus the current level. 

Although having a set point for basal levels of glucose would produce similar 

results, it would not be a mechanistic representation of the underlying biology. 

In reality, this is not quite a valid analogy as a biological system does not have a 

defined set point, so the challenge is to design a model with similar terms to 

those present in a PID Controller, but without a set point. 

The terms in the PID controller relate to the biological process as follows: 

Proportional:  kp G(t) 

This term simply creates the basal level under static conditions. 

The proportional secretion rate is produced by taking the level present in the 

glucose compartment, shown in Figure 8.2. 
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Integral: ki Ii(t) 

This is non-trivial as the area under the glucose curve will increase over time, 

causing the system to become unstable. Hence the integral function must decay 

over time. 

It is created by taking the concentration in the glucose compartment as the rate 

of change of a virtual compartment Ii(t), as shown in equation 8.1.  

Derivative:   
     

  
  

This is a rate of change, so the absolute value of the glucose does not matter. 

This is simply taken as the rate of change of glucose, and is incorporated in 

equation 8.2. 

8.4.2 Delayed and Sustained Insulin Action 

As is evident from IVGTT experiments, a large initial amount of insulin action has 

little effect on the initial decrease of glucose. This can be explained in a number 

of ways, for example it may take the insulin time to bind to the receptor site 

[154]. 

Alternatively, consider a euglycaemic clamp experiment, where glucose is 

clamped by measuring the basal glucose level then infusing insulin at a constant 

rate and glucose at a variable, measured rate until the measured glucose level in 

the patient once more reaches a steady-state at the basal level, or in the case of 

a hyperglycaemic clamp, the set point. These experiments show a long delay 
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before insulin has affected the glucose level.  It is therefore necessary to take 

into account the delay in insulin action and the fact that the insulin level must be 

sustained for a period of time before having an effect. Using a previously well-

validated delay in [111] and [125], the insulin action compartment Ia(t) for this 

model will be the same as the interstitial compartment in the Minimal Model 

and is incorporated in equation 8.3 

8.4.3 Net Difference in Glucose 

The glucose compartment has a number of inputs and a number of outputs. The 

relative rates of supply and disposal of glucose in this compartment determine 

the basal level. This is modelled in a clear manner in the β-cell Mass Model [119]. 

It has an appearance rate that is made up of all unknown appearance rates and 

all the disposal rates that can be calculated. The appearance rate cannot be 

established without tracer experiments [154], however as appearance rate is 

related to the amount of glucose present, obtaining an absolute value is 

unimportant. 

Insulin has an effect on both the production rate of glucose and its disposal rate. 

However it is impossible to distinguish and quantify the effect on each when only 

peripheral glucose and insulin concentrations are measured as the end result, in 

terms of peripheral glucose concentration, is the same. 
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8.5 Model Analysis 

8.5.1 Structural Identifiability 

The problem with using a simplistic model, such as a 2-compartment model, is 

that it does not capture all the dynamics of the system - such as the variable 

insulin dynamics created by rapid changes in glucose [155] - and hence is not an 

accurate representation of the true physical process. On the other hand, a 

systems biology model would require a larger number of parameters which may 

allow different combinations of values to produce the same system output. In 

certain cases a variety of different parameter combinations could be used to fit 

the same data, making it impossible to tell which was actually correct. This would 

also make it impossible to validate the model especially with regards to 

determining a drugs mechanism of action and therefore render it practically 

useless. The solution is to create a model which is a balance between these two 

approaches, by using not only parameters that can be uniquely identified, but 

also incorporating a mechanistic structure that adequately describes the physical 

process and dynamics that are observed. This creates a need for a test on the 

postulated model to ensure that all parameters can be uniquely identified. 

Such a test exists in the form of structural identifiability analysis, see Chapter 2. A 

system is said to be structurally globally identifiable if, with infinite, noise-free 

observations, there is only one possible set of parameters that can produce the 

output. Although real data will be neither infinite nor noise-free, structural 
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identifiability in this form is a theoretical step on the way to approaching 

numerical identifiability or parameter estimation with greater confidence. 

8.5.2 Structural Identifiability Analysis of the Postulated Model 

Glucose and insulin measurements can be taken for this model. The insulin 

integral compartment is just a representation of an integral function. The model 

can be treated as an uncontrolled non-linear system. All the model parameters, 

(equations: 8.5 - 8.9 below) including initial conditions, were considered 

unknown. The system equations are given by: 

      

  
             

     

  
                  

     

  
      

      

  
             

     

  
                      

                                    
 

8.5 

8.6 

8.7 

8.8 

8.9 

There are various techniques for performing structural identifiability analysis 

[19]. The Lie-symmetry approach by Yates et al. [15], also described in Chapter 2, 

has been applied to the model introduced here as other techniques such as the 

Taylor series approach could not yield a solution due to the computational 

complexity of solving the parameters from the Taylor coefficients. The analysis is 

presented in Appendix 4 and was performed using Mathematica 7 [3]. 

Mathematica was selected for the analysis as it is excellent for complex symbolic 
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manipulation and performing the analysis by hand would be highly time-

consuming and error-prone, even for the relatively low state-space dimension of 

this model. 

System Observability is a prerequisite for the Lie-symmetry technique, so the 

Observability Rank Criterion (see Chapter 2) was applied to the model (see 

Appendix 4) with individual observations of G(t) and I(t), which showed it to be 

observable. 

Application of this approach concluded that the model is at least locally 

identifiable (as global identifiability cannot be established with the Lie-symmetry 

approach) when two specific parameters were known a priori: gp which 

represents glucose production, and kp, the proportional insulin secretion 

parameter. 

This leads to issues with the following parameters: 

gp - This represents the amount of glucose entering the system, which is typically 

unknown. It can be estimated, for example from a tracer experiment, as the 

clearance is fractional so an exact value is not necessary. The value used here is 

taken from [119]. 

kp - The proportional insulin secretion parameter is more difficult to estimate. 

However assuming that the integral component is negligible at steady state a 

rough estimate for kp can be obtained using the known insulin clearance in 

equation 8.10, which has been derived from the steady state. 
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8.10 

8.5.3 Steady States 

As mentioned in the previous section, unlike some previous models this system 

does not have steady states dependent on parameters such as glucose and 

insulin basal levels. The system should tend to steady states based on the system 

parameters and the feedback components present. 

At steady state, nothing is changing hence the derivative term,   
     

  
, is zero. 

With a classic PID controller, there is an error signal entering the controller; 

however this is not the case with this system as there is no “set point" to derive 

an error signal from. The integral control is therefore required to introduce 

decay. This makes the calculations slightly complex as the steady state for this 

parameter is non-zero. 

From the system equations (equations 8.1 to 8.4) the steady states can be 

calculated algebraically, for example from equation 8.1 we have: 

  
     

   

    
 

8.11 

Adding in the proportional control, the steady state for insulin becomes: 

  
    

            

   
 

8.12 
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From equation 8.3  the steady state for insulin action is given by: 

  
     

   
    

 
8.13 

and the resulting steady state for glucose is given by: 

      
  

          
 8.14 

8.5.4 Parameter Estimation & Simulations 

Parameter estimation was performed on IVGTT data from the data set 

(AliceIVGTT) as well as clamp data from (RuthClamp), both in Chapter 4, and 

human data from Bergman et al. in Chapter 6. The model was fitted using a PKPD 

tool developed in acslX [31] by James Yates and colleagues [15], which performs 

simulation and parameter fitting using a standardised modelling language and 

data input format. Outputs from this tool are shown in  Table 8.2, Figure 8.3, 

Figure 8.4 and Figure 8.5. The Quasi-Newton approach was selected for its 

optimisation algorithm and Gear’s stiff for its ODE solver Chapter 2. 
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Figure 8.3: PID model insulin and glucose parameter fit on human IVGTT 

 

Figure 8.4: PID model insulin and glucose parameter fit on rat hyperglycaemic clamp 
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Figure 8.5: PID model insulin and glucose parameter fit on rat IVGTT 
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Parameter 
Human 

IVGTT 

Han Wistar 

IVGTT 

Han Wistar 

Hyperglycaem
ic Clamp 

Units 

gr 0.00159 0.0438 0.0413 min−1 

gp  [119] 0.033 0.033 0.033 mmol l−1 min−1 

ksi 0.00231 0.00105 0.00107 ml ng−1 

kp (Equation 
8.10) 

0.0275 0.009274 0.00896 μg mmol−1 min−1 

ki 0.00000158 0.000872 0.000256 μg mmol−1 min−2 

kd 0.268 0.450 0.455 μg mmol−1 

kir 0.169 0.351 0.118 min−1 

kiir 1.38E-19 1.38E-19 1.38E-19 min−1 

kiar 0.114 0.0296 0.258 min−1 

G0 5.11 5.8 6.7 mmol l−1 

I0 0.379 0.879 0.348 μg l−1 

Ia0 0 0 0 mmol l−1 min 

Ii0 0 0 0 μg l−1 min 

Table 8.2: PID model parameter fit results 

The parameter kd is not well determined with respect to the hyperglycaemic 

clamp experiment, which could be due to the lack of data at the start of the 

clamp. According to the acslX tool, which automatically calculates confidence 

values for parameter estimates as described in Chapter 2 and  [21], all other 

parameter estimates, shown in Table 8.2 are within 20% with 95% confidence. 
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8.5.5 Discussion 

This model can produce a useful tool as it splits insulin secretion down to four 

parameters from the PID controller (kp, ki, kd and kir). However the structural 

identifiability analysis shows that there are two unidentifiable parameters which 

had to be fixed from previously known data or steady-state conditions, meaning 

there is scope for improvement in the model if these could be removed. 

As mentioned in Chapter 7, insulin clearance is affected by fed and fasted 

conditions and this is not taken into account in this model. Therefore, it would be 

useful to incorporate C-peptide kinetics into the model. 

OGTTs were not addressed here; as this model attempts to be universal, it 

should be open to many different experimental scenarios so it would also be 

useful to test it against OGTT data. As other refinements to the model were 

identified at this stage, it was decided that these should be made before the 

model was validated with OGTT data. 

8.6 Refinements 

No model designed is a perfect representation of the original system, and 

therefore modelling is an iterative process. The model described above was not 

globally structurally identifiable; this was solved by fixing one parameter to 

steady state and another to known physiological values. However, under the 

definition of structural identifiability, these parameters or a combination of 

parameters could have an infinite number of possible values and would 
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therefore be meaningless. This is therefore a good point to consider whether 

these parameters are necessary for the model to be meaningful physiologically. 

Consider first gr, the parameter representing glucose effectiveness, which is the 

amount of glucose removed from the system independent of insulin in a resting 

state. Looking back at Chapter 3, we think about where this can actually occur. 

GLUT1 and GLUT2 will do this uptake, however uptake will be low and possibly 

also linear, therefore it can be seen that this would not appear in the model as gp 

is the net glucose input to the system from the body. GLUT2 is a possible place 

for this uptake to occur; it appears in the pancreas and transports in small 

amounts of glucose for glucose sensing. However it is also expressed in large 

amounts to the liver and is the main input of glucose to the liver. This would be 

the obvious place where glucose effectiveness exists. However the glucose 

uptake in the liver is processed by an insulin-dependent pathway: glycogenesis. It 

may therefore be possible to say that there is no actual glucose effectiveness at 

rest.  Structural identifiability tells us that we cannot work out the difference 

between glucose effectiveness and other parameters; therefore it can be 

considered a redundant parameter. 

In a normal PID controller there is a set-point: the value to which a system seeks 

to return. It is therefore important that the controller always contains a term 

pushing it in the right direction. However in this model, no set-point exists but a 

constant level of insulin from the controller/pancreas must be maintained. 

Glucose is maintained above zero, therefore the integral term of the PID 
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controller maintains a secretion of insulin. This comes out in the 

reparameterisation of the kp parameter    
        

      
 as it ends up as a fraction of 

the integral parameter. Again, the structural identifiability shows that the 

parameters will have an infinite set of possible values if kp or ki is left in; ki shows 

useful second-phase responses to the glucose stimulus therefore kp can be 

removed from the model. This makes the model simpler and more minimal and, 

as shown below, more robust. 

This reduces the model equations as follows: 

        

  
             

      

  
             

     

  
           

     

  
      

     

  
                       

8.15 

 

The parameters are explained in Table 8.3 below. 

Parameter Description Units 

gp Glucose production rate mmol l−1 min−1 

ksi Insulin sensitivity, insulin-dependent glucose 
removal 

ml ng−1 

ki Integral parameter for PID model μg mmol−1 min−2 

kd Differential parameter for PID model μg mmol−1 
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Parameter Description Units 

kir Insulin clearance min−1 

kiir Integral clearance rate, to simulate integral 
function 

min−1 

kiar Insulin action increase rate, to delay insulin 
action 

min−1 

F Input Gain (Bioavailability and Volume of 
Distribution) 

ml-1 

Table 8.3: Refined model parameter descriptions 

8.7 Simulation and Parameter Fitting 

As this model is meant to help biologists analyse the data they produce and 

predict future experimental outcomes, it is necessary for the model to be in a 

form where they can access and understand it easily. Therefore, a software tool 

was developed to do this. This will be discussed in greater depth in Chapter 10. 

This tool was used to model the following data sets: (AliceIVGTT), 

(GeorgiaIVGTT), (RuthClamp), (AmieIVGTT) and (StevenOGTT) (see Chapter 4). 

The algorithms and methods used are detailed in Chapter 10. 

8.8 Model Results 

Figure 8.6 to Figure 8.8 and Table 8.4 to Table 8.8 are the parameter fits for 

(AliceIVGTT), (GeorgiaIVGTT) and (AmieIVGTT). 



Chapter 8: Short Term Modelling 

179 

8.8.1 IVGTT Results 

 

Figure 8.6: IVGTT parameter fit of a single subject 
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Figure 8.7: IVGTT parameter fit of glucose for all subjects 

 

Figure 8.8: IVGTT parameter fit of insulin for all subjects 
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Data-
base 

ID 

Subject 
Ref 

kd 
(μg mmol

−1
) 

ksi  

(ml ng
−1

) 

ki 

(μg mmol
−1

  
min

−2
) 

kiir 

(min
−1

) 
kir 

(min
−1

) 
kiar 

(min
−1

) 

gp 

(mmol 
l
−1

 min
−1

) 

F 
(ml

-1
) 

Residual 

62 9 0.829  
± 0.0676 

0.0416  
± 0.0808 

1.07  
± 0.0289 

12.1  
± 0.000685 

0.334  
± 0.00543 

2.39  
± 0.0911 

0.000197  
± 5.68 

0.0283  
± 0.0533 

0.065 

63 18 0.802  
± 0.0715 

0.00962  
± 0.141 

0.237  
± 1.05 

4.29  
± 1.06 

0.463  
± 0.0692 

0.311  
± 0.132 

0.000127  
± 3.91 

0.0262  
± 0.0417 

0.0283 

64 23 1.46  
± 0.132 

0.0339  
± 0.138 

1.75  
± 0.18 

7.21  
± 0.00749 

0.75  
± 0.16 

3.15  
± 0.0783 

0.0002  
± 0.000186 

0.0174  
± 0.0777 

0.0744 

65 26 1.28  
± 0.1 

0.049  
± 0.639 

1.28  
± 0.232 

9.31  
± 0.224 

0.557  
± 0.00158 

3.44  
± 0.588 

0.0002  
± 4.06 

0.0264  
± 0.0818 

0.0422 

66 35 1.56  
± 0.0665 

0.0358  
± 0.668 

0.886  
± 1.66 

14.5  
± 1.66 

0.294  
± 0.0403 

3.38  
± 0.643 

0.000215  
± 5.69 

0.0323  
± 0.0474 

0.0546 

67 42 0.492  
± 0.06 

0.0721  
± 0.489 

0.519  
± 0.638 

23.8  
± 0.628 

0.256  
± 0.0408 

2.06  
± 0.467 

0.000201  
± 5.32 

0.0353  
± 0.045 

0.0674 

68 49 1.31  
± 0.0397 

0.0231  
± 0.000332 

0.582  
± 2.75 

8.04  
± 2.74 

0.357  
± 0.00019 

1.76  
± 0.00882 

0.000228  
± 3.51 

0.0283  
± 0.032 

0.0702 

69 57 0.611  
± 0.0451 

0.0291  
± 0.352 

0.448  
± 0.527 

18  
± 0.534 

0.258  
± 0.0369 

1.1  
± 0.333 

0.000103  
± 3.34 

0.0342  
± 0.0355 

0.0501 

70 45 0.608  
± 0.157 

0.00934  
± 1.77 

0.13  
± 1.78 

3.6  
± 1.81 

0.142  
± 0.0974 

1.04  
± 1.73 

0.000244  
± 3.71 

0.0221  
± 0.13 

0.063 

71 46 0.509  
± 0.023 

0.00317  
± 0.163 

8.73  
± 3.4 

89.6  
± 3.09 

0.295  
± 0.424 

0.238  
± 0.249 

0.0802  
± 0.267 

0.0209  
± 0.0313 

0.0435 
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Data-
base 

ID 

Subject 
Ref 

kd 
(μg mmol

−1
) 

ksi  

(ml ng
−1

) 

ki 

(μg mmol
−1

  
min

−2
) 

kiir 

(min
−1

) 
kir 

(min
−1

) 
kiar 

(min
−1

) 

gp 

(mmol 
l
−1

 min
−1

) 

F 
(ml

-1
) 

Residual 

72 50 0.518  
± 0.0738 

0.00642  
± 0.276 

2.15  
± 4.81 

64.2  
± 4.82 

0.163  
± 0.0676 

0.482  
± 0.268 

0.000202  
± 4.37 

0.0206  
± 0.0542 

0.0489 

73 53 0.506  
± 0.0561 

0.00546  
± 0.235 

0.77  
± 0.0422 

26  
± 0.0492 

0.181  
± 0.049 

0.403  
± 0.232 

0.000599  
± 2.28 

0.0218  
± 0.0406 

0.0256 

74 54 1.66  
± 0.151 

0.0144  
± 0.616 

3.78  
± 4.97 

48.4  
± 4.97 

0.651  
± 0.0953 

0.922  
± 0.574 

0.000185  
± 5.71 

0.00481  
± 0.108 

0.0738 

75 55 7.76  
± 0.00413 

0.00345  
± 0.217 

0.0471  
± 0.117 

0.411  
± 0.171 

0.698  
± 0.0371 

0.26  
± 0.455 

0.16  
± 0.3 

0.00205  
± 0.041 

0.0687 

76 14 1.8  
± 1.71E+20 

0.0227  
± 0.242 

1.11  
± 0.995 

10.6  
± 0.0222 

0.413  
± 0.959 

8.2  
± 0.108 

0.000193  
± 7.75E-8 

0.024  
± 6.39E+20 

0.0338 

77 30 1.84  
± 0.0117 

7.46E-18  
± 18900000 

0.52  
± 0.0138 

23.6  
± 0.0125 

0.0935  
± 0.0224 

245E+16  
± 0.279 

0.000277  
± 0.0788 

0.024  
± 1790000 

0.03 

78 31 1.8  
± 23E+10 

0.0155  
± 0.0298 

1.34  
± 8.43 

8.95  
± 0.33 

0.636  
± 8.07 

11.7  
± 1.29 

0.000201  
± 0.0941 

0.024  
± 859E+10 

0.0143 

79 43 1.8  
± 142E+10 

0.051  
± 0.8 

0.778  
± 0.134 

15.2  
± 0.0897 

0.813  
± 0.000265 

3.66  
± 0.461 

0.000197  
± 0.00161 

0.024  
± 528E+10 

0.0866 

Table 8.4: IVGTT Four hour fasted 
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Data-
base 

ID 

Subject 
Ref 

kd 
(μg mmol

−1
) 

ksi 

(ml ng
−1

) 

ki 

(μg mmol
−1

  
min

−2
) 

kiir 

(min
−1

) 
kir 

(min
−1

) 
kiar 

(min
−1

) 

gp 

(mmol 
l
−1

 min
−1

) 

F 
(ml

-1
) 

Residual 

12 2.6 0.51  
± 0.0788 

0.0338  
± 1.8 

1.94  
± 0.467 

6.31  
± 0.00672 

0.595  
± 0.449 

5.41  
± 1.79 

0.0002  
± 0.0312 

0.0187  
± 0.0308 

0.0211 

13 2.8 1.63  
± 0.0428 

0.029  
± 0.0396 

1.58  
± 0.0848 

7.7  
± 0.0235 

0.289  
± 0.0927 

6.03  
± 0.0382 

0.000202  
± 2.66 

0.023  
± 0.0312 

0.0161 

14 3.13 0.0000000378  
± 0.163 

0.0546  
± 0.00952 

2190000000  
± 0.0157 

412  
± 0.0333 

15400000  
± 0.0211 

5.96  
± 0.00469 

0.000209  
± 0.112 

0.0196  
± 0.013 

0.024 

Table 8.5: IVGTT eight hour fasted 
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Data-
base 

ID 

Subject 
Ref 

kd 
(μg mmol

−1
) 

ksi 

(ml ng
−1

) 

ki 

(μg mmol
−1

  
min

−2
) 

kiir 

(min
−1

) 
kir 

(min
−1

) 
kiar 

(min
−1

) 

gp 

(mmol 
l
−1

 min
−1

) 

F 
(ml

-1
) Residual 

1 1.1 1.89  
± 0.0803 

0.026  
± 9.17 

1.95  
± 1.65 

6.13  
± 1.64 

0.326  
± 0.205 

7.01  
± 9.09 

0.0002  
± 8.68 

0.0241  
± 0.111 

0.028 

2 2.7 2.46  
± 0.000708 

0.0208  
± 0.0269 

2.54  
± 0.00735 

5.35  
± 0.017 

0.479  
± 0.00382 

7.99  
± 0.0159 

0.000201  
± 4.04 

0.022  
± 0.0222 

0.0119 

3 2.1 1.61  
± 0.0737 

0.021  
± 1.11 

1.28  
± 5.66 

9.22  
± 5.7 

0.208  
± 0.111 

5.09  
± 1.09 

0.000206  
± 4.28 

0.0205  
± 0.0367 

0.0161 

4 1.2 3.94  
± 0.0404 

0.0155  
± 0.0442 

3.69  
± 0.000805 

6.01  
± 0.00673 

1.05  
± 0.00104 

3.3  
± 0.0125 

0.000209  
± 0.0000514 

0.0195  
± 0.0272 

0.00886 

5 1.5 4.06  
± 0.155 

0.0228  
± 1.49 

3.37  
± 3.22 

4.16  
± 3.2 

0.879  
± 0.102 

5.44  
± 1.47 

0.000193  
± 5.61 

0.0291  
± 0.0158 

0.0191 

6 2.9 3.15  
± 0.0757 

0.025  
± 0.0879 

2.58  
± 0.0993 

3.7  
± 0.0296 

0.877  
± 0.11 

5.17  
± 0.0769 

0.000212  
± 3.9 

0.0241  
± 0.0331 

0.0109 

7 2.11 3.95  
± 0.0733 

0.0267  
± 1.19 

2.28  
± 0.835 

5.19  
± 0.834 

0.622  
± 0.0789 

6.06  
± 1.17 

0.000201  
± 3.55 

0.0287  
± 0.0339 

0.0255 

22 3 0.562  
± 0.0989 

0.037  
± 1.67 

1.17  
± 5.25 

9.52  
± 5.46 

0.235  
± 0.227 

4.72  
± 1.66 

0.000201  
± 6.1 

0.025  
± 0.0322 

0.00133 

26 8 1.18  
± 0.0687 

0.0236  
± 3.18 

0.679  
± 4.25 

22.9  
± 4.17 

0.071  
± 0.3 

7.68  
± 3.17 

0.000203  
± 3.74 

0.029  
± 0.0505 

0.0238 
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Data-
base 

ID 

Subject 
Ref 

kd 
(μg mmol

−1
) 

ksi 

(ml ng
−1

) 

ki 

(μg mmol
−1

  
min

−2
) 

kiir 

(min
−1

) 
kir 

(min
−1

) 
kiar 

(min
−1

) 

gp 

(mmol 
l
−1

 min
−1

) 

F 
(ml

-1
) Residual 

28 9 0.583  
± 0.0174 

0.0262  
± 0.00786 

0.61  
± 0.0451 

22  
± 0.13 

0.0517  
± 0.0538 

8.9  
± 0.0184 

0.000213  
± 2.69 

0.0226  
± 0.0103 

0.00262 

30 11 1.73  
± 0.0451 

0.0202  
± 4.17 

0.0609  
± 55.1 

229  
± 55.1 

0.0158  
± 0.0547 

8.86  
± 4.16 

0.000202  
± 5.14 

0.0218  
± 0.0439 

0.00884 

Table 8.6: IVGTT fed 
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Data-
base 

ID 

Subject 
Ref 

kd 
(μg mmol

−1
) 

ksi 

(ml ng
−1

) 

ki 

(μg mmol
−1

  
min

−2
) 

kiir 

(min
−1

) 
kir 

(min
−1

) 
kiar 

(min
−1

) 

gp 

(mmol 
l
−1

 min
−1

) 

F 
(ml

-1
) Residual 

15 SS1 1.8  
± 1.09E+10 

0.00886  
± 0.446 

1.57  
± 0.395 

7.65  
± 0.00374 

0.411  
± 0.395 

20.6  
± 0.287 

0.000201  
± 0.000365 

0.024  
± 4.08E+10 

0.0182 

16 SS2 1.8  
± 16.2 

9.44E-10  
± 23200 

1.58  
± 5.03 

7.65  
± 0.0964 

0.406  
± 5.03 

193000000  
± 23600 

0.000234  
± 0.265 

0.024  
± 1240 

0.014 

Table 8.7: IVGTT saline infused, saline bolus 



Chapter 8: Short Term Modelling 

187 

Data-
base 

ID 

Subject 
Ref 

kd 
(μg mmol

−1
) 

ksi 

(ml ng
−1

) 

ki 

(μg mmol
−1

  
min

−2
) 

kiir 

(min
−1

) 
kir 

(min
−1

) 
kiar 

(min
−1

) 

gp 

(mmol 
l
−1

 min
−1

) 

F 
(ml

-1
) Residual 

8 1.3 92.1  
± 0.0159 

0.017  
± 0.359 

16.5  
± 0.25 

3.08  
± 0.249 

9.17  
± 0.00137 

3.72  
± 0.328 

0.00022  
± 3.17 

0.0399  
± 0.00385 

0.0292 

9 1.4 1.25  
± 1.8 

0.0248  
± 99.4 

2.68  
± 0.489 

6.16  
± 2.54 

0.729  
± 1.41 

4.16  
± 98.4 

0.000335  
± 2.07 

0.017  
± 1.18 

0.0297 

10 2.12 0.945  
± 0.127 

0.0476  
± 0.115 

2.56  
± 0.000339 

5.03  
± 0.0676 

1.45  
± 0.0376 

3.84  
± 0.0508 

0.000204  
± 3.28 

0.0178  
± 0.0446 

0.0563 

11 3.14 0.235  
± 0.0883 

0.0489  
± 0.083 

1.85  
± 0.476 

9.92  
± 0.00682 

0.638  
± 0.477 

3.94  
± 0.0378 

0.000214  
± 3.16 

0.0262  
± 0.0287 

0.0295 

Table 8.8: IVGTT overnight fasted
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8.8.2 Discussion of IVGTT 

The main differences are between the eight hour fasted and the other groups, 

especially  the four hour fasted and fed. There are statistically significant 

differences (p<0.05)  between: 

 the eight hour fasted and the four hour fasted in ki, kiir and kir 

 and the eight hour and fed animals in ksi, ki and kir. 

These points are extremely interesting and show that there is a change in the 

insulin system due to changes in the fasting states. Changes in the insulin 

sensitivity (ksi) could be down to changes in lipid levels. High levels of lipids have 

been known to cause decreases in insulin sensitivity because they have an 

inhibitory effect on glucose uptake (see section 3.5). For changes of insulin 

sensitivity over time, see Chapter 8. Lipid levels were not measured in this 

experiment. Changes in insulin parameters could be due to blood flow changes 

(Chapter 7). 

Parameters that have got a good fit are kd, ki, kiir and kir. This means that the 

combination of this model and this test can produce an accurate measure for the 

first and second phases of insulin secretion. ksi and kiar have low confidences 

suggesting that measuring insulin sensitivity in this combination is not reliable. 

This is expected as glucose clearance may be saturated. F and gp also show low 

confidence. This may be due to an ambiguity in the system about where  the 

glucose is entering the system.  
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Subjects 15 and 16 have many parameters with very low confidences. This is 

expected as the system has not been challenged with an IVGTT. From the data, 

subjects 76 and 77 appear to have responded incorrectly to the glucose stimulus. 

This may be due to the glucose not entering the system correctly so the subjects 

appear similar to subjects 15 and 16 and, therefore, have low parameter 

confidences. 

8.8.3 Hyperglycaemic Clamp Results 

Table 8.9  to Table 8.11 and Figure 8.9 to Figure 8.11 are parameter fits using 

(RuthClamp) in Chapter 4. 

 

Figure 8.9: Hyperglycaemic clamp parameter fit of a single subject 
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Figure 8.10: Hyperglycaemic clamp parameter fit of glucose for all subjects 

 

Figure 8.11: Hyperglycaemic clamp parameter fit of insulin for all subjects
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Data-
base 

ID 

Subject 
Ref 

kd 
(μg mmol

−1
) 

ksi 

(ml ng
−1

) 

ki 

(μg mmol
−1

  
min

−2
) 

kiir 

(min
−1

) 
kir 

(min
−1

) 
kiar 

(min
−1

) 

gp 

(mmol 
l
−1

 min
−1

) 

F 
(ml

-1
) 

Residual 

48 3 0.618  
± 0.349 

0.0257  
± 0.212 

2.42  
± 0.0257 

4.77  
± 0.00176 

0.159  
± 0.0471 

7.36  
± 0.115 

0.000198  
± 0.000051 

0.0043  
± 0.0729 

0.0771 

49 1 4.26  
± 0.101 

0.0326  
± 3 

0.461  
± 2.59 

45.3  
± 2.59 

1.04E-07 
± 17.5 

7.29  
± 3.01 

0.000209  
± 1.17 

0.00538  
± 0.0178 

0.0271 

50 2 4.09  
± 0.0489 

0.0381  
± 0.0983 

1.21  
± 0.00899 

7.56  
± 0.00608 

0.077  
± 0.0202 

4.37  
± 0.0446 

0.000224  
± 0.00225 

0.00724  
± 0.0491 

0.0232 

52 4 0.406  
± 0.471 

0.0381  
± 0.0531 

4.42  
± 0.0517 

4.45  
± 0.00315 

0.311  
± 0.0409 

4.51  
± 0.0244 

0.000223  
± 0.908 

0.00675  
± 0.0266 

0.0459 

53 5 1.41  
± 0.326 

0.0307  
± 0.0919 

4.41  
± 0.00288 

4.21  
± 4.56E-05 

0.217  
± 0.000297 

5.16  
± 0.0442 

0.000213  
± 1.78 

0.00672  
± 0.0427 

0.101 

54 6 1.76  
± 0.00332 

0.029  
± 0.0391 

0.945  
± 0.162 

38.8  
± 0.12 

0.0045  
± 0.0609 

5.78  
± 0.0312 

0.000371  
± 1.28 

0.00489  
± 0.0188 

0.0209 

55 7 1.22  
± 0.273 

0.0253  
± 0.000268 

2.76  
± 6.95E-05 

4.44  
± 0.0016 

0.143  
± 3.72E-05 

7.48  
± 5.39E-05 

0.0002  
± 0.000353 

0.00518  
± 0.024 

0.137 

Table 8.9: Hyperglycaemic clamp four hour fasted 
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Data-
base 

ID 

Subject 
Ref 

kd 
(μg mmol

−1
) 

ksi 

(ml ng
−1

) 

ki 

(μg mmol
−1 

 min
−2

) 

kiir 

(min
−1

) 
kir 

(min
−1

) 
kiar 

(min
−1

) 

gp 

(mmol 
l
−1

 min
−1

) 

F 
(ml

-1
) 

Residual 

42 14 

 

1.26  
± 0.118 

0.0337  
± 2.18 

2.77  
± 1.74 

4.41  
± 1.91 

0.327  
± 0.688 

5.43  
± 2.18 

0.000198  
± 1.3 

0.0028  
± 0.102 

0.376 

43 15 1.48  
± 0.102 

0.0459  
± 0.995 

2.49  
± 0.0612 

4.84  
± 0.00202 

0.245  
± 0.0861 

4.06  
± 0.983 

0.0002  
± 3.79 

0.00426  
± 0.0678 

0.146 

44 16 1.55  
± 0.0633 

0.0401  
± 2.78 

1.53  
± 0.656 

8.33  
± 0.628 

0.0883  
± 0.336 

4.53  
± 2.77 

0.000138  
± 0.251 

0.0032  
± 0.083 

0.369 

45 17 1.34  
± 0.182 

0.0291  
± 0.138 

3.36  
± 0.0487 

3.56  
± 0.00174 

0.124  
± 0.084 

6.37  
± 0.0722 

0.000201  
± 0.000051 

0.00479  
± 0.0599 

0.19 

47 18 27.9  
± 0.108 

0.017  
± 3.39 

1.7  
± 8.11 

35.8  
± 8.11 

0.0318  
± 0.136 

21.3  
± 3.39 

0.00269  
± 0.078 

0.000996  
± 0.0597 

0.111 

Table 8.10: Hyperglycaemic clamp eight hour fasted 



Chapter 8: Short Term Modelling 

193 

Data-
base 

ID 

Subject 
Ref 

kd 
(μg mmol

−1
) 

ksi 

(ml ng
−1

) 

ki 

(μg mmol
−1

  
min

−2
) 

kiir 

(min
−1

) 
kir 

(min
−1

) 
kiar 

(min
−1

) 

gp 

(mmol 
l
−1

 min
−1

) 

F 
(ml

-1
) 

Residual 

36 9 2.84  
± 0.182 

0.024  
± 0.000594 

3.42  
± 0.00018 

4.19  
± 0.00201 

0.123  
± 0.000133 

7.73  
± 0.000144 

0.000206  
± 0.00119 

0.0049  
± 0.0183 

0.112 

37 10 1.28  
± 0.513 

0.0000914  
± 65 

1.17  
± 13.2 

12.1  
± 13.2 

0.00126  
± 0.513 

2190  
± 61 

0.00536  
± 0.104 

0.0000501  
± 0.564 

0.155 

39 12 1.91  
± 0.0841 

0.035  
± 1.06 

1.05  
± 3.41 

19.8  
± 3.42 

0.000816  
± 0.393 

7.39  
± 1.06 

0.000235  
± 0.618 

0.00288  
± 0.0525 

0.103 

40 13 50.3  
± 0.0672 

0.00139  
± 13.4 

1.16  
± 8.78 

15.4  
± 8.87 

0.0648  
± 0.0532 

135  
± 13.5 

0.000243  
± 1.87 

0.000737  
± 0.0592 

0.108 

Table 8.11: Hyperglycaemic clamp fed 
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8.8.4 Discussion of hyperglycaemic clamp 

There is a statistically significant difference (p<0.05) for the results of the fed and 

eight hour fasted animals against the four hour fasted subjects for F (input gain 

of glucose – bioavailability/volume of distribution). This shows that the input 

gain of glucose has changed between different fasting states. In the eight hour 

fasted animals it has a greater input gain (0.0057 ml-1), see Table 8.10. In the four 

hour fasted animals a smaller input gain was recorded (0.00411 ml-1), see Table 

8.9. This could be explained by there being missing glucose compartments in the 

model, in the case of the eight hour fasted animals all the glucose in extra 

compartments has been utilised whereas in the four hour case this has not 

happened.  

There is a statistically significant difference (p<0.05) for the results of the fed 

against the other animals for kiar (insulin action clearance rate). This shows that 

the insulin action clearance rate has changed between different fasting states. In 

the fed animals, the insulin action rate is highest which means that insulin acts 

for a shorter time. 

The parameter fitting of the hyperglycaemic clamps worked well as the fits were 

close to the observed data. In some cases the fits did not match as closely as they 

could. This may have been because animal systems were under a lot of stress, 

therefore some animals might have acted erratically. Towards the end of the 

experiment, at 90 minutes, there is a large peak for most animals. This was due 

to an injection of Streptozotocin. This was done to release all the insulin from the 
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β-cells in order to measure how much insulin was left in the cells. This data point 

was left in as, in most cases, it was indistinguishable from the other data. 

The residuals were low for most subjects and the confidences in the parameters 

were also high, except for ksi. This could be due to insulin dependent glucose 

clearance being saturated. The confidence in ki for fed animals was low but also, 

in general, the parameters were more erratic than other animal states, for 

example database ID 40 had a large kd. Looking at the graph, it can be seen that 

insulin secretion was increasing dramatically throughout the experiment while 

glucose infusion was relatively constant.  

This study was also used with the C-peptide model, below, and the results are 

given in Chapter 7. 

8.8.5 OGTT Results 

In an OGTT experiment, the glucose is given orally and therefore takes a period 

of time to enter the system post absorption. It was therefore necessary to add 

this time delay into the model. Two attempts were made at modelling this delay. 

It is standard [13] to use a string of compartments to model the gut. One and 

two compartments were trialled on the data, however when parameter fitting 

was performed, the second compartment’s parameters were fitted so that they 

had no impact on the resulting model output, i.e. the flow rate between 

compartments was set very low. As shown below, a one-compartment model for 

the gut is enough to adequately fit the data with the given data set. The data 

used is from (StevenOGTT); day 8 was used because it was at the end of the 
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experiment and would show the greatest difference between the animals used. 

The insulin secretion rates were taken from IVGTT data as the time points taken 

in these experiments were not taken at short enough intervals to be able to 

capture those parameters. 

Glucose

Gut

Food Intake

gp gabs

 

Figure 8.12: Gut Glucose Model for Short Term Model 

The model is shown in Figure 8.12 and the system equations are given by: 

       

  
                             

       

  
                     

8.16 
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Parameter Description Units 

gabs Glucose absorption from gut min-1 

F Volume of distribution / bioavailability of 
glucose (Input gain of glucose) 

ml-1 

u(t) Input of glucose to the gut mmol min-1 

Table 8.12: Gut Parameters for Short Term  

8.8.6 Fitting OGTT  

Figure 8.13 to Figure 8.15 and Table 8.13 to Table 8.16 are the results from 

parameter fitting (StevenOGTT). 

 

Figure 8.13: OGTT parameter fit for a single subject 



Chapter 8: Short Term Modelling 

198 

 

Figure 8.14: OGTT parameter fit of glucose for all subjects 

 

Figure 8.15: OGTT parameter fit of insulin for all subjects 
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Subject 
ref 

ksi 
(ml ng−1) 

kir 
(min−1) 

kiar 
(min−1) 

gp 
(mmol l−1 min−1) 

kabs 
(min-1) 

Residual 

4 0.148 ± 1.22 3.82 ± 0.0393 1.51 ± 1.18 0.138 ± 0.132 0.222 ± 0.154 0.0875 

7 0.0828 ± 0.0968 1.92 ± 0.0698 1.69 ± 0.0921 0.0887 ± 0.222 0.143 ± 0.183 0.155 

9 0.222 ± 1.34 2.08 ± 0.0621 2.01 ± 0.605 0.412 ± 0.69 0.419 ± 1.05 0.203 

13 0.027 ± 1.74 1.79 ± 0.0223 1.22 ± 1.62 0.0608 ± 0.205 211 ± 30.7 0.0293 

20 0.0914 ± 0.855 1.71 ± 0.0755 1.73 ± 0.532 0.26 ± 0.36 0.611 ± 0.979 0.263 

22 0.0265 ± 0.686 0.534 ± 0.123 4.72 ± 0.668 0.0373 ± 0.395 4040 ± 2.02 0.57 

28 0.0212 ± 0.044 2.45 ± 0.193 0.562 ± 0.00604 0.115 ± 0.543 0.427 ± 0.0979 0.187 

30 0.14 ± 0.299 14.1 ± 0.0241 1.72 ± 0.301 0.112 ± 0.298 0.297 ± 0.345 0.509 

34 0.103 ± 0.49 2.12 ± 0.0341 1.61 ± 0.477 0.183 ± 0.108 0.218 ± 0.125 0.0741 

39 0.0657 ± 0.188 2.64 ± 0.046 1.22 ± 0.0575 0.131 ± 0.0976 0.379 ± 0.183 0.115 

Table 8.13:  OGTT Research Methods Diet 1 Glucose Tolerance Test 
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Subject 
ref 

ksi 
(ml ng−1) 

kir 
(min−1) 

kiar 
(min−1) 

gp 
(mmol l−1 min−1) 

kabs 
(min-1) 

Residual 

2 0.072 ± 0.406 1.1 ± 0.0699 2.2 ± 0.434 0.151 ± 0.26 0.255 ± 0.225 0.215 

8 0.0679 ± 0.00262 1.76 ± 0.0277 2.71 ± 0.0339 0.113 ± 0.0755 0.298 ± 0.0994 0.376 

10 0.122 ± 1.08 2.83 ± 0.0321 1.08 ± 0.979 0.351 ± 0.193 0.251 ± 0.209 0.0547 

17 0.408 ± 0.0593 3.57 ± 0.000121 3.95 ± 0.145 0.12 ± 0.126 0.231 ± 0.155 0.0592 

16 0.0695 ± 2.85 1.56 ± 0.0448 1.32 ± 2.76 0.212 ± 0.146 0.238 ± 0.173 0.11 

21 0.102 ± 0.207 1.73 ± 0.0953 1.71 ± 0.176 0.529 ± 0.1 0.341 ± 0.132 0.319 

25 0.145 ± 2.67 3.74 ± 0.0481 0.77 ± 2.44 0.186 ± 0.215 0.224 ± 0.0692 0.119 

35 0.00701 ± 0.192 4.24 ± 0.0567 0.212 ± 0.177 0.0153 ± 0.394 1070 ± 0.274 0.156 

32 0.145 ± 8.44 2.9 ± 0.0476 2.27 ± 8.45 0.136 ± 0.199 0.255 ± 0.541 0.0892 

37 0.078 ± 0.826 3.34 ± 0.128 3.11 ± 0.597 0.0853 ± 0.417 0.258 ± 0.294 0.545 

Table 8.14: OGTT Research Methods Diet 1 Meal Tolerance Test 
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Subject 
ref 

ksi 
(ml ng−1) 

kir 
(min−1) 

kiar 
(min−1) 

gp 
(mmol l−1 min−1) 

kabs 
(min-1) 

Residual 

1 0.0471 ± 0.00379 1.01 ± 0.000032 3.6 ± 0.00159 0.101 ± 0.0651 0.255 ± 0.039 0.0767 

6 0.0719 ± 0.0317 1.65 ± 0.0239 3.32 ± 0.0713 0.187 ± 0.102 0.189 ± 0.161 0.0376 

11 0.0246 ± 0.155 0.637 ± 0.0338 3.3 ± 0.0779 0.108 ± 0.0972 0.507 ± 0.338 0.0587 

14 0.0441 ± 0.294 0.992 ± 0.0524 3.03 ± 0.184 0.113 ± 0.133 0.232 ± 0.136 0.19 

18 0.061 ± 1.64 1.42 ± 0.0642 2.68 ± 1.64 0.167 ± 0.211 0.232 ± 0.188 0.203 

24 0.03 ± 0.629 0.7 ± 0.167 5.8 ± 0.356 0.0335 ± 0.889 0.1 ± 0.58 0.462 

26 0.0341 ± 2.13 0.357 ± 0.107 4.24 ± 2.12 0.0661 ± 1.18 0.0247 ± 0.134 0.388 

31 0.042 ± 0.592 0.913 ± 0.0881 4.16 ± 0.386 0.0598 ± 0.753 0.271 ± 0.242 0.199 

33 0.0391 ± 1.14 2.66 ± 0.0517 1.44 ± 1.11 0.119 ± 0.215 0.286 ± 0.184 0.154 

38 0.0251 ± 0.0342 0.278 ± 0.0272 7.13 ± 0.0803 0.0939 ± 0.121 0.206 ± 0.121 0.0467 

Table 8.15: OGTT High Fat Diet Glucose Tolerance Test 
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Subject 
ref 

ksi 
(ml ng−1) 

kir 
(min−1) 

kiar 
(min−1) 

gp 
(mmol l−1 min−1) 

kabs 
(min-1) 

Residual 

3 0.0612 ± 0.206 1.04 ± 0.151 4.69 ± 0.0886 0.0864 ± 0.163 0.497 ± 0.988 0.203 

5 0.051 ± 0.0901 1.49 ± 0.00591 3.37 ± 0.118 0.117 ± 0.0558 0.206 ± 0.245 0.172 

12 0.0491 ± 4.49 1.23 ± 0.0374 3.54 ± 4.43 0.0463 ± 0.294 0.389 ± 0.322 0.061 

15 0.0538 ± 0.0912 1.07 ± 0.0715 2.84 ± 0.092 0.168 ± 0.111 0.278 ± 0.209 0.219 

19 0.0373 ± 0.367 0.619 ± 0.0423 4.56 ± 0.306 0.0636 ± 0.243 0.24 ± 0.328 0.081 

23 0.116 ± 0.164 2.46 ± 0.0526 1.28 ± 0.196 0.412 ± 0.255 0.0416 ± 0.197 0.123 

27 0.0658 ± 0.0678 1.53 ± 0.0279 2.59 ± 0.0773 0.15 ± 0.13 0.445 ± 0.127 0.0505 

29 0.0307 ± 0.68 0.409 ± 0.0589 4.95 ± 0.551 0.14 ± 0.208 0.00234 ± 0.475 0.3 

36 0.0624 ± 0.124 1.24 ± 0.0523 4.45 ± 0.0177 0.109 ± 0.205 0.734 ± 0.146 0.11 

40 0.0269 ± 0.637 0.207 ± 0.0422 8.45 ± 0.532 0.0848 ± 0.192 0.382 ± 0.464 0.0932 

Table 8.16: OGTT High Fat Diet Meal Tolerance Test 
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8.8.7 Discussion of OGTT 

The main differences are between the high fat diet and the non-high fat diet. 

There is a significant difference (p<0.05) on the parameter insulin sensitivity (ksi). 

This shows that a high fat diet has a measurable effect on insulin sensitivity. This 

is exactly what would be expected (see Chapter 3). 

Insulin clearance (kir) and insulin action clearance (kiar) are significant differently 

(p<0.05) lower in the high fat diet (except for RM1GTT with kir; this could be 

because subject 30 was an outlier).  

Glucose production (gp) is significantly different (p<0.05) between RM1GTT and 

the high fat diet (HDGTT and HFDMTT).  

Glucose absorption (kabs) is not statistically significantly different between groups 

showing that diet does not seem to affect glucose absorption rate. 

Very few data points were taken in this test so, from the model stand point, 

there is uncertainty in how fast the glucose could enter the system. This could 

explain why there is variable confidence in the kabs parameter. The ksi parameter 

also shows signs of uncertainty for similar reasons. The rest of the parameters 

show a reasonable level of confidence. 

From the graphs, Figure 8.13 to Figure 8.15, it can be seen that there is a large 

peak of insulin within the first 15 minutes. This has been simulated to be the case 

as the parameters have been taken from the IVGTT. Due to limitations in the 
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experiment, it was not possible to take readings so close to the dose being given. 

This would be interesting for future study.  

8.9 C-peptide 

As seen in previous chapters, Chapter 5 and Chapter 7, there has been a well-

defined model developed for C-peptide kinetics [57]. It is a simple step to 

combine this C-peptide model into the model presented above. To do this, we 

state that the insulin secretion seen previously is the real insulin secretion before 

the insulin is cleared by the liver; so the GSIS terms from the model above are 

the terms for C-peptide secretion. This assumes that the output seen in the 

periphery is a fraction of that seen in the portal vein. In this model the term S(t) 

is the secretion of insulin and C-peptide in molar quantities because, as stated 

previously, insulin and C-peptide are secreted in equal molar quantities. The 

system model is shown in Figure 8.16 and S(t) is given by: 

  
               

     

  
 

8.17 
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Figure 8.16: Full C-peptide Short Term Model 
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In Chapter 7, hepatic blood flow changes were used to model changes in insulin 

clearance. In this situation, it was decided not to include this model because, if 

another factor alters insulin appearance in the periphery and insulin clearance, 

this will produce misleading results in the model. Therefore, it is more relevant 

to show the fraction of insulin appearance in the periphery and clearance. 

Parameter estimation was performed in the same way with the C-peptide part of 

the model on data sets (AliceIVGTT), and (RuthClamp). The results can be seen in 

Figure 8.17 to Figure 8.20. The parameters are in Table 8.17 and the system 

equations are given by: 

        

  
             

      

  
             

     

  
           

     

  
                 

      

  
 

 
    

                          

           

      

  
                        

8.18 
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Parameter Description Units 

     Fraction of C-peptide observed compared to 
insulin 

min 

      Flow of C-peptide from compartment 2 to 
compartment 1 

min−1 

      Flow of C-peptide from compartment 1 to 
compartment 2 

min−1 

     Clearance rate of C-peptide min−1 

Table 8.17: C-Peptide Parameters for Short Term Model 

 

Figure 8.17 IVGTT parameter fit of a single subject 
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Figure 8.18 IVGTT parameter of glucose for all subjects 

 

Figure 8.19 IVGTT parameter fit of all subjects with insulin and C-peptide 
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Figure 8.20 Clamp individual fit of a single subject 

All the data for hyperglycaemic clamp fitting are given in Appendix 4. 

8.9.1 Conclusions 

It can be seen there are good fits with all the above experiments (IVGTT, 

hyperglycaemic clamp and OGTT) both with and without C-peptide present. 

Being able to predict exactly where to take measurements to get the best 

confidence with the parameters allows scientists to optimise the readings taken 

and therefore to get the most out of the experiments performed. Taking fewer 

readings on animals also reduces the animals’ stress, which is good from the 

point of view of both animal welfare and reliability of data. The way to work out 

the optimal point to take readings is through sensitivity analysis. 



Chapter 8: Short Term Modelling 

210 

8.10 Sensitivity analysis 

The concept of sensitivity analysis was introduced in Chapter 2. This model is 

designed primarily for use with acute/short-term experiments. These 

experiments are usually quite intense, however due to limitations such as blood 

sample volumes, the logistics of working with many animals and other 

constraints mentioned in Chapter 4. large numbers of time points are not always 

available. Therefore it is important to know when are the most informative times 

to sample. 

Sensitivity analysis was performed on this model using automatic differentiation. 

In this context, automatic differentiation involves differentiating the model with 

respect to the parameters at the same time as simulating the model. This has 

several advantages over differentiation: it is less tedious and error-prone than 

manual differentiation and allows alterations to the model to be reflected in the 

differentiation immediately. 

The automatic differentiation method used here is performed by a piece of 

MATLAB code written by [24] which uses substitution of functions and operators 

to perform successive differentiations using the chain rule. As this method is 

analytical it therefore provides an exact solution, not an approximation. As it is 

done with parameter substitution, it is fast. This creates a set of differential 

equations, defined in equation 2.27 from section 2.7, which can be simulated at 

the same time as the model differential equations. There is little or no noticeable 

difference in performance when simulating these ODEs alongside the model 
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ODEs. The MATLAB code used to generate this matrix has been included in 

Appendix 6. 

This produces results that show the effect that each parameter has on each 

state. These can be shown as either absolute effects on the state by the 

parameter or as relative effects of changing the parameter on the state. As the 

parameters in this model have a large range of magnitudes, showing relative 

parameter effects is more relevant. These can then be summed for each state to 

view a combined sensitivity of state against time. This is useful for seeing which 

time points are most beneficial for sampling. 

 

Figure 8.21 Relative sensitivity analysis of insulin on an IVGTT 
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Figure 8.22 Relative sensitivity analysis of glucose on an IVGTT 

 

Figure 8.23 Sum of relative sensitivities of all parameters on insulin on an IVGTT 
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Figure 8.24: Sum of relative sensitivities of all parameters on glucose on an IVGTT 

 

Figure 8.25 Relative sensitivity analysis of glucose on a hyperglycaemic clamp 
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Figure 8.26: Relative sensitivity analysis of insulin on a hyperglycaemic clamp 

 

Figure 8.27 Sum of relative sensitivities of all parameters of insulin on a hyperglycaemic 

clamp  
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Figure 8.28 Sum of relative sensitivities of all parameters of glucose on a hyperglycaemic 

clamp 

Overall from the sensitivity analysis (Figure 8.21 to Figure 8.28) it is evident that, 

for most parameters, it is best to measure in the early stages of the experiment, 

i.e. within the first 20 minutes. It also shows, however, that there is merit in 

measuring the system when it has reached a steady state, especially for the 

hyperglycaemic clamp. In all experiments, gp is the least influential parameter 

and F is the most influential parameter.  

It is valuable to note that the relative sensitivities  of all parameters except for gp  

have similar magnitudes and, therefore, from these experiments the parameter 

confidence should be high. 
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8.11 Conclusions 

The aim of this chapter was to design a mathematical model for the glucose 

homeostatic system that was mechanistic, had key parameters that could 

identify disease, could predict future experiments and help with experimental 

design. The model should also be universal, i.e. not confined to a specific test 

such as an IVGTT; not have an explicit parameter for steady state values; it 

should be stable and minimal in form.  

The model presented is mechanistic as it contains parameters, such as kd which 

represents docked insulin granules in the cell. A reduction in such a parameter 

could represent a failure in the β-cells to produce insulin. Other disease states 

can be seen mechanistically in other parameters such as ksi, changes in insulin 

sensitivity; ki, changes in gradual insulin secretion; and gp, changes in normal 

constant glucose production. When the model is run on fasted and unfasted 

animals, key parameters change which match the biological system. These 

factors will be discussed further in Chapter 9.  

That this model can predict other experiments was shown above by using 

parameters from the IVGTT which gave a reasonable fit to the OGTT. This model 

is, therefore, not restricted to a single test. 

The model does not have any parameters for steady state but reaches a steady 

state naturally.  
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The model went through a  process of model minimisation to refine the key 

parameters.  

The model can help with experimental design through sensitivity analysis, 

allowing key time points to be picked for measurements. 
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Chapter 9: Long Term Modelling 

This chapter is concerned with the simulation of disease progression over the 

longer term (i.e. days and months). The model used is based on the β-cell Mass 

Model [119]. It incorporates the short-term model previously discussed in 

Chapter 8 to show how it is possible to have a complete model that can 

represent both short-term and long-term aspects of the glucose-insulin system. 

The model output is compared to (not fitted to using an optimisation algorithm) 

Zucker and ZDF data collected at AstraZeneca, Alderley Park, Cheshire. 
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9.1 β-cell Mass Model 

This model is based on a model created in 2000 by Topp et al.[119]. These 

authors set up a three compartment model, with the compartments 

representing insulin, glucose and β-cell mass (see  

Figure 9.1). 
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Figure 9.1: β-cell mass model diagram 

The model and analysis concentrated primarily on long-term, rather than short-

term, aspects of the system, i.e. changes which occur over days rather than 

minutes or hours. Therefore the glucose and insulin concentrations in this model 

could be considered as the basal levels of glucose and insulin. The differential 

equation describing rate of change of glucose in the model includes terms 
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representing the rate of appearance of glucose minus glucose effectiveness and 

insulin sensitivity, and is given by: 

      

  
                     

9.1 

 

where G(t) is glucose concentration, R0 is the net rate of production at zero 

glucose,    is the total glucose effectiveness at zero insulin and    is the total 

insulin sensitivity. 

The differential equation describing rate of change of insulin has terms 

representing insulin secretion, based on glucose and β-cell mass in a Hill 

function, and a clearance function, and is given by: 

      

  
 

       

         
       

9.2 

 

The differential equation describing rate of change of β-cell mass comprises 

terms representing the natural death rate of β-cells, a rate of growth of β-cells 

based on the level of glucose, and a decrease in β-cells which is also based on 

glucose, and is given by: 

      

  
                          

9.3 

The combination of the parameters d0, r1 and r2 create a system which can adapt 

to changing levels of glucose. For example, if the glucose level is below 
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100mg/dl, the β-cell mass will decrease which will in turn lower insulin and 

return glucose to an acceptable level (i.e. 100mg/dl); if the glucose level lies 

between 100 and 250mg/dl, β-cell mass will increase, meaning insulin will 

increase and glucose levels will decrease towards 100mg/dl. With glucose below 

250mg/dl the system adapts, based on glucose levels; with glucose levels over 

250mg/dl, glucose toxicity comes into play and reduces β-cell mass, which leads 

to decreased insulin levels and results in ever-increasing glucose levels in a 

runaway situation, see Figure 9.2. 

 

Figure 9.2: β-cell growth and death rates due to glucose 

9.2 Data 

ZDF and Zucker data were taken from (JoChronic) and glucose and insulin profiles 

were taken on several days over a 40 day study. As the model was in 
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concentration units of mg dl-1 for glucose and µU ml-1 for insulin, all data have 

been converted to these units from the mM and ng ml-1 that were originally 

used. 

9.3 Modifications 

9.3.1 Incorporating Short-Term Model 

The short-term model presented in Chapter 8 was incorporated into this long-

term model, with a few modifications. The first is insulin secretion: as it is related 

to β-cell mass, integral and derivative terms have been incorporated in the long-

term model for β-cell mass. The second is insulin action, which was removed as 

time points in the long-term model are hours apart (as opposed to minutes in the 

short-term model) so the fast dynamics of the insulin action are not present in 

the data in Chapter 8 (see equation 9.4). The third modification involved 

removing glucose effectiveness, as discussed earlier in Chapter 8. 

Finally, as the animals used here were in a diseased state and hyperinsulinaemic, 

i.e. insulin was saturating glucose disposal compared to a normal, insulin-

sensitive rat, Michaelis-Menten type kinetics were incorporated and applied to 

insulin sensitivity. KM was set to 100mg/dl of insulin, following the same 

assumptions as the β-cell Mass Model that that is the stable equilibrium point, 

therefore Vmax is assumed to be twice the steady-state sensitivity of insulin. 

These adjustments mean that the parameters in the short-term model are not 

exactly equivalent to those in the long-term model. The modified system 

equations are therefore given by: 
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9.4 

 

9.3.2 Meal Feeding 

As with the short-term modelling of OGTT in Chapter 8, this model required the 

addition of a single compartment to represent a delay in the intake of food into 

the system. Unlike an OGTT, however, glucose was taken in differently; instead 

of being given a single dose at a specific time, animals were eating over a four 

hour period. The assumption was made that, as rats had been fasted for an 

extended period of time, the rate of feeding would be high at the start of the 

feeding period and would slow down over the course of the four hour period. A 

trapezoidal function was therefore used for the rate of feeding. This trapezoidal 

function was normalised to have an area of one, with a single parameter for the 

steepness of the slope - see Figure 9.3. This trapezoidal function could then be 

multiplied by the actual amount of glucose ingested to give an input to the gut 

compartment. This is given by: 

         

  

  
                            

            
                

              
  

9.5 
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where 
   

 

              
           

   

 
              

             

              
  

This, together with the gut compartment and an appropriate value for gabs (gut 

absorption), produces glucose concentrations that lie within approximately 10% 

of the mean of the data. Figure 9.3 shows a typical meal feed produced by 

trapezoidal function. 

 

Figure 9.3: Gut glucose concentration as produced by the trapezoidal function 

9.3.3 Renal Clearance 

As explained above, when a subject’s glucose level is above 250mg/dl, the β-cell 

Mass Model shows a runaway reduction in β-cell mass. Some of the animals from 
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which data for this model were obtained are hyperinsulinaemic and 

hyperglycaemic (i.e. with glucose levels above 250mg/dl), and do not see a rapid 

decay in β-cell mass as would be predicted by the β-cell Mass Model, but instead 

see only a small reduction in β-cell mass. 250mg/dl is either coincidentally (or by 

design but unmentioned by the creators of the model) close to renal clearance of 

glucose [156], which is not included in the β-cell Mass Model. In previous 

models, such as the AIDA Model and Cobelli’s Model, detailed in Chapter 5, renal 

clearance has been incorporated; it was therefore also incorporated in the long-

term model here and represented by a piecewise function for renal clearance 

with parameter values taken from the AIDA model, as follows: 

        
              

 
       

              
  

9.6 

 

9.3.4 Disease Progression 

9.3.4.1 Insulin Sensitivity 

It was hypothesised that a way of introducing disease progression into the model 

would be to represent insulin sensitivity by a decaying exponential function 

[119].This hypothesis was adopted for the long-term model presented here. It 

was also noted in the experimental data that the ratio between insulin and 

glucose (i.e. insulin sensitivity) changed over time, reinforcing the need for this 

adaptation. Thus the system equation for insulin sensitivity is given by: 
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9.7 

 

9.3.4.2 First-Phase Insulin Secretion 

It is apparent from the Zucker and ZDF data collected at AstraZeneca that basal 

insulin secretion varies between groups of animals and over time. It is also 

apparent that the first-phase insulin secretion changes and, in the case of the 

meal-fed animals, it decreases in comparison to the basal level of insulin 

secretion. Therefore the model was modified so that the level of first-phase 

insulin secretion changes over time. This was done in a similar way to the 

modification made for insulin sensitivity, i.e. using a decaying exponential 

function. This was not intended to reflect a specific reason behind change in first-

phase insulin secretion, only to quantify the rate of change. Thus the system 

equation for first-phase insulin secretion is given by: 

       

  
           

9.8 

 

9.4 Software Tool 

A simple software tool was created to perform the simulation of this model, see 

Figure 9.4,  the code for which is given in Appendix 5. It was set-up so that the 

experimental data could be visualised and the model simulated. It was written in 

MATLAB using the in-built GUI editor (see Appendix 5). As this model is stiff (see 

Chapter 2), the ODE solver ode23tb was used, which is an implicit Runge-Kutta 
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algorithm. This solver simulates a response representing a 40 day period within a 

few seconds. The software allows parameters to be changed and re-simulated 

easily. It does not have any parameter fitting capabilities and is purely used for 

simulation given realistic parameter values and initial conditions. See Table 9.1 

below. 

 

Figure 9.4: Long term modelling simulation tool 
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Parameter Description Value Units Source 

Initial Conditions 

g0 Starting level of glucose 100 mg dl-1 [119] Data 

i0 Starting level of insulin 500 µU ml-1 Data 

b0 Starting level of β-cell mass 300 mg [119] 

ggut Starting level of gut glucose 0 mg dl-1 Assuming empty gut 

Insulin Kinetics 

kd (kd0) First-phase insulin secretion -differential (starting 
value) 

0.7 µU ml -1mgdl-1 Chapter 8 

ki Second-phase insulin secretion -integral 4000 µU ml -1mgdl-1 
day-2 

Chapter 8 

kiir Second-phase insulin secretion time constant 3600 day-1 Chapter 8 

k Insulin clearance 432 d-1 [119] 

cd First-phase insulin secretion decay  day-1 See above 
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Parameter Description Value Units Source 

Glucose Kinetics 

R0 Net rate of glucose production  mg dl-1 d-1 [119]  

km km of insulin sensitivity  mg dl-1 See above 

SI (SI0) Insulin sensitivity (starting value) 0 ml µU-1 d-1 [119] 

cSI Insulin sensitivity decay 0 day-1 [119] 

β-cell Kinetics 

d0 Natural β-cell death  d-1 [119] 

r1 Rate constant of β-cell growth  mg-1 dl d-1 [119] 

r2 Rate constant of β-cell death  mg-2 dl2 d-1 [119] 
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Parameter Description Value Units Source 

Glucose gut kinetics 

gabs Glucose absorption from the gut 24 day-1 See above [118] 

gslope Slope of trapezoidal function  fraction (unit-less) See above 

tstart Feeding start time  day Data 

tend Feeding end time  day Data 

gfed Glucose ingested  mg Data 

Table 9.1: Parameters in long-term model 
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9.5 Comparison with Experimental Data 

The model was compared with real experimental data to see if it produced 

realistic results. As this model could be considered to be over-parameterised for 

the system modelled, parameter optimisation via an optimisation algorithm is 

unlikely to be successful so was not used. Therefore, changes in parameters are 

educated estimates of changes to biological mechanisms in order to 

demonstrate that this model can produce responses that compare well with real 

data. 

9.5.1 Zucker Chow Fed Rat Experimental Protocol 

In this situation, a Zucker rat is meal fed with a chow diet; 7.42% Fat vs 42% for 

High Fat diet which is low fat but provides the same calorific intake as the high 

fat diet given to animals later in this chapter. In this situation the Zucker rat is 

hyperinsulinaemic, but maintains reasonable glycaemic control, i.e. insulin is 

above the normal level - such as that of a Han Wistar rat - glucose returns to the 

basal level of 80-100mg dl-1 

9.5.1.1 Necessary Changes in Parameters 

As these animals were hyperinsulinaemic, it is reasonable to lower insulin 

sensitivity and alter kd, ki, kiir and k. The parameter values used are given in Table 

9.2. 
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Parameter Value 

kd 0.7 µU ml -1mgdl-1 

ki 4000 µU ml -1mgdl-1 day-2 

kiir 3600 day-1 

k 70 d-1 

Table 9.2: Parameters altered based on Zucker chow fed data 

Note that the values have not changed from Table 9.1 as those values were set in 

this model. The results from this can be seen in Figure 9.5 to Figure 9.7. 

9.5.1.2 Long-term Graphs 

 

Figure 9.5: Zucker chow fed data - whole study simulations with insulin mean values and 

standard errors in black and simulated insulin in red 
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Figure 9.6: Zucker chow fed data - whole study simulations with glucose mean values 

and standard errors in black and simulated glucose in blue 

 

9.5.1.3 Day Graphs 

Day 3 
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Day 14 

 

Day 28 

 

Day 38 

 

Figure 9.7: Zucker chow fed data - day simulations with real data in black, simulated 

insulin in red and simulated glucose in blue 
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The above graphs, Figure 9.5 to Figure 9.7, show that this model can produce 

realistic results for the Zucker chow fed, meaning that it represents animals in a 

non-diseased state.  

9.5.2 Zucker High Fat Fed Rat Experimental Protocol 

The only difference from the previous experimental set-up here is that the diet 

was changed to the 42% fat content diet. The model was set up identically; the 

profiles were initially similar, but changed throughout the study. 

9.5.2.1 Necessary Changes in Parameters 

It was anticipated that insulin sensitivity would decrease over time, however this 

did not take into account the fact that first-phase insulin secretion was also 

decreasing and therefore cd was decreased accordingly. The parameter values 

used are given in Table 9.3. The results from this can be seen in Figure 9.8 to 

Figure 9.10. 

Parameter Value 

SI 0.02 day-1 

cd 0.06 day-1 

Table 9.3: Parameters altered based on Zucker high fat fed data 

9.5.2.2 Long-term Graphs 
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Figure 9.8: Zucker high fat fed data - whole study simulations with insulin mean values 

and standard errors in black and simulated insulin in red 

 
Figure 9.9: Zucker high fat fed data - whole study simulations with glucose mean values 

and standard errors in black and simulated glucose in blue 
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9.5.2.3 Day Graphs 

Day 3 

 

Day 14 

 

Day 28 
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Day 38 

 

Figure 9.10: Zucker high fat fed data - day simulations with real data in black, simulated 

insulin in red and simulated glucose in blue 

Figure 9.8 to Figure 9.10 show that, by altering a few parameters, we can 

simulate a Zucker rat going into a diseased state which means that we can 

experiment with changing certain physiological parameters of a rat to see the 

resulting effect.  

9.5.3 ZDF Chow Fed Rat Experimental Protocol 

In this situation, it was noted that the chow diet seemed to improve the 

condition of the ZDF animals. 

9.5.3.1 Necessary Changes in Parameters 

In this study, both glucose and insulin sensitivity remained constant throughout. 

Insulin, however, decreased but, as the animals were hyperinsulinaemic, insulin 

disposal was saturated so falling levels of insulin had no effect on glucose levels. 

The only aspect which did change throughout the experiment, therefore, was 

first-phase insulin secretion, which decreased. The only change required to the 
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original base set of parameters was first-phase insulin secretion decay, cd, which 

was set at 0.04 day-1. The results can be seen in Figure 9.11 to Figure 9.13. 

9.5.3.2 Long-term Graphs 

 

Figure 9.11: ZDF data - whole study simulations with insulin mean values and standard 

errors in black and simulated insulin in red 
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Figure 9.12: ZDF data - whole study simulations with glucose mean values and standard 

errors in black and simulated glucose in blue 

9.5.3.3 Day Graphs 

Day 16 
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Day 27  

 

Day 38 

  

Figure 9.13: ZDF data - day simulations with real data in black, simulated insulin in red 

and simulated glucose in blue 

Figure 9.11 to Figure 9.13 show that this model can produce reasonable 

predictions of the diseased state. These animals, however, are in a highly 

diseased state and so are metabolically stressed which means that the insulin 

secretion is exacerbated and this is not captured by this model. The insulin levels 

are very high and well above the saturation of insulin sensitivity so this two-

phase insulin secretion has little or no effect on the glucose profile. 



Chapter 9: Long Term Modelling 

242 

9.5.4 Conclusions and Discussion 

Here, the short-term and long-term models have been combined to produce a 

fully-coupled, continuous model of the glucose-insulin system. It has been shown 

that glucose and insulin models can be combined to simulate a reasonable 

representation of the long-term dynamics and disease progression of subjects. 

As this model is over-parameterised and there are only data from two 

compartments, it is difficult to draw any firm biological conclusions because the 

same graphs could be produced from different sets of parameters. However, 

parameters which have been altered to produce the results mechanistically 

make sense in the biological context. This makes the model a potentially useful 

predictive or experimental tool rather than an analytical tool. 

The model does not explain biologically certain aspects of the system, in 

particular insulin sensitivity decreasing in the Zucker high fat fed animal. It does 

not provide a mechanistic reason for this decrease, therefore further modelling 

work should be carried out to link in possible causes such as lipid metabolism; 

the effects of lipids on the glucose-insulin system were mentioned in Chapter 3 

and could be incorporated into this model. The other aspect which is not covered 

is why first-phase insulin secretion decreases whereas second-phase insulin 

secretion seems to remain in-line with basal levels. Again, the model does not 

provide an explanation for the reason behind this. 
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Chapter 10: Software Tool for Modelling Glucose,  

Insulin and C-peptide Dynamics 

10.1 Aim and Purpose 

A software tool to allow the use of modelling in their day-to-day operations is an 

important deliverable for AstraZeneca. It is important to AstraZeneca that non-

mathematical scientists are able to perform modelling and simulation to allow 

them to use the concept of modelling in the same way that they use statistics. 

They can use it as a tool to analyse and predict system outcomes, to give more 

information about the data they have collected, to produce more meaningful 

conclusions and to gain a better understanding of the underlying biology of a 

system. 

There are various requirements to ensure that the software tool is useful to non-

mathematical scientists at AstraZeneca. The software tool must be robust so that 

it does not produce erroneous results. It must be simple to use and present 

results in an appropriate form for non-mathematical scientists to interpret. It 

must be well-integrated into the existing AstraZeneca set-up so that using the 

software will not create additional work and it will be seen as an easily 

accessible, accepted and worthwhile tool. 
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10.2 Specification 

The functions the software tool will perform will be as follows: 

 Simulations of the glucose, insulin and C-peptide system given a set of 

parameters. 

o Be able to select the most appropriate model. 

 It will be able to fit data to a model to produce parameters.  

o The fitted parameters will be given confidence values. 

o Given groups of data, it will be able to calculate statistical 

significance between the groups. 

 It will be able to produce graphs of the results for individual and grouped 

data. 

It will take data from these sources: 

 Toolkits used by the department, e.g. the CVGI toolkit. 

 A plain spreadsheet. 

It will be able to run on a standard build of AstraZeneca computer which is of 

Windows Vista 32-bit with various specifications. 

It will be user-friendly so that a non-mathematician will be able to use it and 

understand the results. 
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10.3 Software Construction 

10.3.1 Overview 

MATLAB [4] was used to construct the software tool as it provides functions and 

features, such as ODE solvers and optimisation algorithms, which are essential 

for modelling and simulation in this context. It also provides a method of 

outputting data graphically for the end user to make results easier to interpret. 

However, MATLAB lacks more advanced programming features, such as object-

orientation, needed for developing a complete modelling tool. In addition, if 

every person that wishes to use the tool had to have a full licence for MATLAB 

with toolkits, this would be very cost-prohibitive. The way round this is to use the 

MATLAB compiler to create a stand-alone application which can be accessed 

from other programming languages. This gives the advantage that the 

functionality of MATLAB can be used alongside the programming features of a 

language such as Java, and also means that the application can be freely 

distributed without the need for a full MATLAB licence for each individual user. 

MATLAB can be compiled to work with a range of programming languages; in this 

case Java was used as it provided all the desired features, such as object-

orientation, and was the language with which the author was most familiar. 

10.3.2 Structure 

The overall structure of the software tool is shown in Figure 10.1, below.



Chapter 10: Software Tool 

246 

Java  (Class Name.java)

Start (Start)

Compile the Models 
(makemodelfunction)

Simulated (simulate)Run Fits (JavaFitting)

Modelling GUI (Modelling)

Select Database and select the 
required data

(SelectDatabases)

Parameter Fit (doFitting/
minGen)

Results (results)

Results per Group 
(resultsgroup)

Results for All (resultsall)

Data Processing (dataProcess)

Plot Data (plotDataFun)

Plot Simulated 
(plotSimulated)

Java  (Class Name.java)

Matlab  (functionname.m)

 
Figure 10.1: General overview of code structure
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10.3.2.1 MATLAB Components 

The MATLAB components primarily perform the arithmetic and data display 

functions. One component performs graphical display for parameters and 

immediate simulations of the model and model simulation. Another performs 

fitting and formats results. 

These components are separate to allow fitting and results formatting to be 

executed on a remote system if required in the future (e.g. if fitting is too 

numerically intensive for the user’s machine). This would be possible as Java can 

be used to control both MATLAB components and the RMI (Remote Method 

Invocation) interface could divide workload between separate machines as 

required. Note that this aspect has not currently been implemented, but the 

structure of the MATLAB components would allow for this in the future. 

10.3.2.2 Java Components 

The Java project is split into five packages. interfaces contains any Java 

interfaces required, including the database connection interface which is 

extended for each standard framework (e.g. the IVGTT toolkit). structures 

contains any nodes used in the database section of the Java components, such as 

objects containing groups, profile and subjects. fitting contains the link 

between the two MATLAB components. gui contains graphical interfaces for 

the user to select certain parts of the databases. Finally, start sets up the 

environment to run MATLAB in Java. 
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10.4 Software Function 

10.4.1 Model Input 

Models are input to the software tool in a standard format developed in XML. 

This format requires a list of states, parameters with initial estimates and 

differential equations which define the model. The data in this format are 

interpreted by MATLAB to create functions called by an integration algorithm 

when the model is simulated. An example of the XML format are given in Figure 

10.2. 
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<model> 
    <name>ID Model</name> 
    <states> 
 
        <state> 
            <name>glucose plasma</name> 
            <symbol>G</symbol> 
            <equation> 
                dGdt =gp -IA*G*si 
            </equation> 
            <observable /> 
            <initial> 
                G0 
            </initial> 
 
            <input>IV</input> 
            <inputequation> 
                F 
            </inputequation> 
 
        </state> 
        <state> 
            <name>Insulin Integral</name> 
            <symbol>II</symbol> 
            <equation> 
                dIIdt = G-II*kiir 
            </equation> 
            <initial> 
                G0/kiir 
            </initial> 
 
        </state> 
        <state> 
            <name>Insulin</name> 
            <symbol>I</symbol> 
            <equation> 
                dIdt = kd*max((dGdt),0) + II*ki - kir*I 
            </equation> 
            <observable/> 
            <initial> 
                I0 
            </initial> 
 
        </state> 
        <state> 
            <name>Insulin Action</name> 
            <symbol>IA</symbol> 
            <equation> 
                dIAdt = I-IA*kiar 
            </equation> 
            <initial> 
                I0/kiar 
            </initial> 
        </state> 
    </states> 
 

 
    <parameters> 
        <parameter> 
            <name>kd</name> 
            <value>1.7968 </value> 
     <description>1st Phase Insulin 
Secretion</description> 
        </parameter> 
        <parameter> 
            <name>si</name> 
            <value>0.026</value> 
<description>Insulin Sensivity</description> 
        </parameter> 
        <parameter> 
            <name>ki</name> 
            <value>1</value> 
<description>2nd Phase Insulin Secretion</description> 
        </parameter> 
        <parameter> 
            <name>kiir</name> 
            <value>12</value> 
<description>2nd Phase Insulin Secretion Delay (time 
constant)</description> 
        </parameter> 
        <parameter> 
            <name>kir</name> 
            <value>0.7</value> 
<description>Insulin Clearance</description> 
        </parameter> 
        <parameter> 
            <name>kiar</name> 
            <value>7.00</value> 
<description>Insulin Action Delay (Time 
Constant)</description> 
        </parameter> 
        <parameter> 
            <name>gp</name> 
            <value>0.0002</value> 
<description>Glucose Production</description> 
        </parameter> 
        <parameter> 
            <name>F</name> 
            <value> 0.024 </value> 
<description>Bioaviabiliy of Glucose</description> 
        </parameter> 
    </parameters> 
 
</model> 
 

Figure 10.2: Example model XML code 
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10.4.2 Data Input 

The vast majority of data at AstraZeneca are stored in spreadsheets, with each 

different user having their own spreadsheet design and layout. There have been 

attempts to standardise the spreadsheet formats. One example is the CVGI 

toolkit which is used for storing data from OGTT experiments, however this does 

not include IVGTT or hyperglycaemic clamp data. It stores data in a Microsoft 

Access database which is easily accessible and data are easy to extract via an 

Excel spreadsheet front-end. There is also an IVGTT toolkit which also stores data 

in a database (Oracle, rather than Microsoft Access), again with an Excel front 

end which produces an easily readable spreadsheet. This toolkit is used with 

IVGTT data, but can also be extended for hyperglycaemic clamp data. 

OGTT, IVGTT and hyperglycaemic clamp data can all be used within the model 

presented in Chapter 8. It is therefore useful, to save data re-entry, to be able to 

extract data from the CVGI and IVGTT toolkits directly. This saves time and 

prevents copying errors entering the data, as well as simplifying use of the 

software tool from the user’s point of view. The software tool therefore imports 

data from these sources and uses Java to transform them to fit in a common 

framework. Different methods are required to import data from different 

sources: for example, the CVGI toolkit imports data via a Microsoft Access ODBC 

(Open Database Connectivity) driver then uses an ODBC-JDBC (Java Database 

Connectivity) bridge which allows the data to be transferred into Java.  
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Data from all the different sources are placed into a standard framework of Java 

objects. This ensures that MATLAB can deal with data from all sources easily and 

consistently. It also allows for easy data manipulation, including selecting data by 

the group of animals and selecting which groups of animals should be compared. 

10.4.2.1 Additional Data Processing 

For most experiments, the data input are sufficient for modelling directly. 

However hyperglycaemic clamp data are unique in that there are two sets of 

data that are recorded for glucose: blood glucose concentration and plasma 

glucose concentration. As explained in Chapter 4, haemacel is used to stabilise 

the volume of distribution in the subject. This can affect blood glucose 

measurements, but plasma glucose measurements remain unaffected. Plasma 

glucose measurements are taken less frequently than blood glucose 

measurements, however at each time point a plasma glucose measurement is 

taken there is also a blood glucose measurement taken. This allows the ratio 

between plasma and blood glucose levels to be calculated at these time points. 

The software tool takes the mean of these ratios over the course of the 

experiment. The mean ratio is then used to correct blood glucose measurements 

– which are taken more frequently and therefore provide more data points – and 

it is these corrected blood glucose measurements which are used for fitting. 
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10.4.3 Interface 

The interface was made as simple as possible to make parameter fitting 

straightforward for the user. The tool has two screens: a main screen, shown in 

Figure 10.3, and a data selection screen, shown in Figure 10.4. 

 

Figure 10.3: Software tool – main display screen shot 
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Figure 10.4: Software tool – select database screen shot 

10.4.4 Parameter Estimation 

The software tool performs parameter estimation by the Quasi-Newton 

algorithm [36]. It goes through each subject in turn performing the parameter fit, 

simulating the model using ode15s algorithm [30] and fitting using GLS 

(Generalised Least Squares, described in Chapter 2). For each subject it produces 

graphs of fits of insulin and glucose data (and C-peptide where applicable) and 

creates an Excel spreadsheet containing fitted parameter values. It also 

calculates parameter confidence values using equations 2.23 and 10.2 via the 

Hessian matrix, H, derived from the unconstrained fit function in MATLAB 

(fminunc) as described further in Chapter 2, given by: 
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             10.1 

where    is the set of parameter estimates, N  is the number of time points, n  is 

the number of parameters fitted, E  is the output from the residual function and 

H  is the Hessian matrix. In addition: 

 
         

   
 
 
 
       10.2 

for          where      

   
 

 
 
 is a two-tailed Student's t distribution for 

confidence level α  and N-np  degrees of freedom. 

10.4.5 Statistical Analysis 

As well as providing parameter estimates for a given model and data set, the 

software tool also performs a two-tailed Student’s t-test on every combination of 

sets of parameter values. This is provided to the user in an Excel spreadsheet so 

they can see if there are any statistically significant differences between groups 

that are reflected in the parameter estimates. 

10.5 Software Use 

The hope is that this software tool will be used by AstraZeneca in their day-to-

day analysis. 

10.6 Conclusions 

This software tool will allow non-mathematical based scientists to access 

complex modelling without the need for vast amounts of expertise in modelling. 
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It will help to improve their decisions about experiments they perform as well as 

enabling them to obtain more detailed  information from previously gathered 

data. 
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Chapter 11: Conclusions and Discussion 
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11.1 Discussion 

The main model in the field of glucose-insulin dynamics has previously been the 

Minimal Model developed by Bergman et al. [111] It can only be used in an 

IVGTT. It is structurally identifiable for insulin and glucose being observable as 

well as just glucose on its own (under certain assumptions). It does not reach a 

steady state value after the experiment has finished. The parameters in the 

model may not have any physiological relevance, such as h, the threshold value 

for insulin release. It was thus necessary to develop or find a new model that 

would cater for more tests. 

There are other models in the field that bring useful insights into the glucose and 

insulin system. However no one model does everything that is required for this 

thesis, therefore it was necessary to develop a new model. 

In developing a new model it was, therefore, necessary to investigate the glucose 

and insulin system with as much data as possible. C-peptide was also collected at 

AstraZeneca. This was useful for working out the level of insulin secretion as it 

was suspected that insulin clearance may not be constant. The fraction of insulin 

observed in the ad-lib fed animals was statistically significantly higher than the 8 

and 16 hour fasted animals. This meant that it was important to include C-

peptide in a mathematical model of the glucose and insulin system. 

It was observed that the insulin response to a glucose stimulus was similar to 

that of a proportional-integral-derivative controller that is found in engineering 

systems. The system equations were changed slightly to fit in better with a 
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biological system as , for example, in this biological system there is no error 

signal. Other elements of the model were taken from the minimal model and 

others. The model then was further reduced by removing the proportional 

control in the model. This model was structurally identifiable. This model was 

successfully applied to IVGTTs and hyperglycaemic clamps. With the addition of a 

compartment for all absorption it was also successfully applied to OGTTs. 

It was also useful to be able to model the progression of long term changes of 

subjects into diabetes. Using a combination of Topp et al [119] and the short 

term model it was possible to simulate (not to parameter fit) the varying 

different factors that could result in diabetes. Therefore it was possible to use 

this as a tool for testing hypotheses to see whether certain parameter changes 

over time would lead to the disease progression as expected. For example, it was 

able to demonstrate what would happen with a gradual decrease in insulin 

sensitivity. 

A software tool was made that allowed AstraZeneca staff to parameter fit their 

data to IVGTTs, hyperglycaemic clamps and OGTTs. It could also be used on other 

experiments not yet thought of. The models that could be fitted were the 

integral derivative model, with and without C-peptide and with or without 

glucose absorption.  

11.2 Conclusion 

The aim of this thesis was to develop an integrated mathematical model of 

glycaemic control that predicts both short-term and long-term glucose 



Conclusions and Discussion 

259 

regulation. This thesis has covered these two requirements in Chapter 8 and 

Chapter 9. 

An additional aim to this thesis was to make it understandable to any person 

with an interest. This has hopefully has been accomplished by a thesis that does 

not require wide knowledge of either biology or mathematics to understand and 

a software tool that can be used by anyone. 

The objectives of this thesis were mostly met as follows: 

Objectives Where/how they were met 

“To review and evaluate the different 

mathematical models of glycaemic 

control.” 

This was met in Chapter 5. 

"To modify/develop existing mathematical 

models and determine how existing 

glucose and insulin data from animal (rat 

and mouse) studies fit.” 

This was done throughout the thesis but 

specifically in Chapter 6, Chapter 8 and 

Chapter 9. 

"To apply the new model to the evaluation 

of glucose stimulated insulin secretion 

using new data.” 

This was done in Chapter 8. 

"To develop an integrated desktop utility 

for modelling and analysing glycaemic 

control and insulin secretion in animal 

This was done in Chapter 10. 
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Objectives Where/how they were met 

models of diabetes.” 

"To develop methods for determining 

pancreatic degeneration and function from 

measurable, but indirect, parameters such 

as glucose, C-peptide and insulin levels.” 

This was done in Chapter 7 and Chapter 9. 

"To include in the model physiological 

control parameters that address counter-

regulatory systems, such as lipid levels and 

β-cell mass.” 

This was done in Chapter 9. Lipid levels 

were not specifically dealt with but they 

can be seen as a factor that affects insulin 

sensitivity. It should be an area of future 

work however, due to lack of time and 

data, it was not done on this occasion. β-

cell mass was covered but not measured 

due to the difficulty in obtaining the data. 

"To apply the model to the design of 

future studies evaluating pancreatic 

changes and effects on glycaemic control.” 

This was mainly done by designing 

experiments to measure C-peptide 

secretion which in turn helps future 

understanding of insulin secretion. The 

software tool allows for future 

experiments that have not yet been 

designed to be used with the model. 
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11.3 Future Work 

Insulin sensitivity has a major role in type-2 diabetes. It is therefore important 

that changes to it are properly understood. Lipids are the main contributing 

factor to changes in insulin sensitivity (see Chapter 9). Therefore for long term 

modelling it will be important to look into them in greater depth to understand 

their relationship with diabetes disease progression.  

The primary aim of this thesis was to design a mathematical model for glucose 

and insulin secretion. The parameter fitting was based on individual subjects. It 

would provide more mathematically robust results if population modelling using 

this model was performed. This work was planned to be done by AstraZeneca (as 

of 2013 some of this work has been done [157]). 
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Appendix 1: Data Collection 

Contents of the CD: 

A database with the data collected for this thesis as well as the original data 

from: 

AliceIVGTT 

AmieIVGTT 

GeorgiaIVGTT 

JoChronic 

RuthClamp 

RuthCPeptide 

StevenOGTT 
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Appendix 2: Minimal Model 

Contents: 

Structural Identifiability Taylor Series 
Approach in Mathematica 4 state model 
with 2 observables 

Page 
275 + 
CD 

Structural Identifiability Taylor Series 
Approach in Maple 4 state model with 2 
observables 

Page 
277 + 
CD 

Structural Identifiability Taylor Series 
Approach in Maple 4 state model with 1 
observable 

Page 
279 + 
CD 

Graphs and results from parameter fitting CD 

MATLAB Code CD 
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SI Taylor Series Approach 

Edmund Watson (E.M.Watson@warwick.ac.uk) 

Setting up the Model 

Minimal Model for Glucose and Insulin 

x'[t_] :=- p2*x[t] + p3*(i[t]-ib) 

g'[t_]:=x[t]*g[t]+p1*(gb-g[t]) 

i'[t_]:=-n*i[t]+Gamma*(g[t]-h)*m[t] 

m'[t_]:=1 

x[0] = 0; 

g[0]=Go; 

i[0]=Io; 

m[0]=0; 

yg[t_] :=  g[t]; 

yi[t_] := i[t]; 

subst = {p1  p1b , p2  p2b, p3  p3b,h hb, n  nb , 
Gamma  Gammab,Io  Iob,Go  Gob};  

Creating the Coefficients 

k is the number of coefficients wanted to be created. 
As there are 2 observable states, there are 2 sets of produced coefficients, ya 
and yb.  

 
k=4; 

ya = {yg[0],D[yg[t],t]}; 

For[j = 2,j<k,ya= Join[ya,{D[ya[[j]],t]} ] ; j++] 

yi[0]; 

yb = {yi[0],D[yi[t],t]}; 

For[l = 2,l<k,yb= Join[yb,{D[yb[[l]],t]} ] ; l++] 

TableForm[Simplify[ya]] 

TableForm[Simplify[yb]] 

coeffs ={ ya,yb} /. t0; 
coeffsPBar = coeffs /. subst; 

eqns = coeffs - coeffsPBar; 

 

{ {Go}, 

{gb p1+g[t] (-p1+x[t])}, 

{gb p1 (-p1+x[t])+g[t] (p1
2
-ib p3+p3 i[t]-(2 p1+p2) 

x[t]+x[t]2)}, 

{Gamma p3 g[t]2 m[t]+gb p1 (p12-2 ib p3+2 p3 i[t]-2 (p1+p2) 

x[t]+x[t]2)-g[t] (p13-3 ib p1 p3-ib p2 p3+Gamma h p3 m[t]+p3 

i[t] (n+3 p1+p2-3 x[t])-3 p12 x[t]-3 p1 p2 x[t]-p22 x[t]+3 

ib p3 x[t]+3 p1 x[t]2+3 p2 x[t]2-x[t]3)}} 

{ {Io}, 

{-n i[t]+Gamma (-h+g[t]) m[t]}, 

{n2 i[t]+Gamma (-h+h n m[t]+gb p1 m[t])+Gamma g[t] (1-m[t] 

(n+p1-x[t]))}, 

{-n3 i[t]-Gamma (-h n-2 gb p1+m[t] (h n2+gb p1 (n+p1)-gb p1 

x[t]))+Gamma g[t] (-n-2 p1+2 x[t]+m[t] (n2+n p1+p12-ib p3+p3 

i[t]-(n+2 p1+p2) x[t]+x[t]2))}} 
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Solving the parameters 

 soln = Simplify 

[Solve[eqns0,{p1b,p2b,p3b,hb,nb,Gammab,Iob, Gob}]] 
 {{hbh,p2bp2,GammabGamma, 

IobIo,nbn,p3bp3,GobGo,p1bp1}}  
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Taylor Series 

Minimal Model 

Setting up the Model 

> 
 

 

 

>  

> Creating the Coefficients  
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> Finding the Result  

> coeffentsb := subs({p1 = p1b, p2 = p2b, p3 = p3b, h = hb, Gamma = Gammab, 

x1o = x1ob, x3o = x3ob, n = nb}, coeffents);  

results := coeffents-coeffentsb; 

 

 

>  

 

>  
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Identifiability Analysis  

Edmund Watson + James Chapman 

x[t_]:={x1[t],x2[t],x3[t],x4[t]} 

 

x1'[t_]:= f[x[t],p][[1]] 

x2'[t_]:= f[x[t],p][[2]] 

x3'[t_]:= f[x[t],p][[3]] 

x4'[t_]:= f[x[t],p][[4]] 

 

x1[0]= 0; 

x2[0]= G0; 

x3[0]= J0; 

x4[0]= 0; 

xbar[t_]:={Xbar[t],Gbar[t],Jbar[t],Kbar[t]} 

Xbar'[t_]:= f[xbar[t],pbar][[1]] 

Gbar'[t_]:= f[xbar[t],pbar][[2]] 

Jbar'[t_]:= f[xbar[t],pbar][[3]] 

Kbar'[t_]:= f[xbar[t],pbar][[4]] 

 

 

Xbar[0]= 0; 

Gbar[0]= Gbar0; 

Jbar[0]=Jbar0; 

Kbar[0]= 0; 

 

p :={p2,p3,p1,n,h,,ib,gb,G0,J0} 
pbar :={p2bar,p3bar,p1bar,nbar,hbar,bar,ib,gb,Gbar0,Jbar0} 
 

 

System  f (x(t, p), p) 

 
f[x_,p_]:={-p[[1]] x[[1]]+ p[[2]](x[[3]] - p[[7]]),-x[[1]] x[[2]] 

+ p[[3]](p[[8]] -x[[2]]),-p[[4]] x[[3]]+ p[[6]](x[[2]]-

p[[5]])x[[4]],1} 

 

h[x_]:={0,1,0,1}  x 

 u1[x_] := h[x][[2]]; 

u1bar[x_] :=h[x][[2]]; 

 

 

u2[x_] := h[x][[4]]; 

u2bar[x_] :=h[x][[4]]; 

 

 

mu3 = Map[D[u1[x[t]],#]&,x[t]].f[x[t],p]; 

mu3bar = Map[D[u1bar[x[t]],#]&,x[t]].f[x[t],pbar]; 

u3[x_]:=mu3 /. {x1[t] 
x[[1]],x2[t]x[[2]],x3[t]x[[3]],x4[t]x[[4]]} 
u3bar[x_]:=mu3bar /. {x1[t] 
x[[1]],x2[t]x[[2]],x3[t]x[[3]],x4[t]->x[[4]]} 
 

mu4 = Map[D[u3[x[t]],#]&,x[t]].f[x[t],p]; 

mu4bar = Map[D[u3bar[x[t]],#]&,x[t]].f[x[t],pbar]; 
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u4[x_]:=mu4 /. {x1[t] 
x[[1]],x2[t]x[[2]],x3[t]x[[3]],x4[t]x[[4]]} 
u4bar[x_]:=mu4bar /. {x1[t] 
x[[1]],x2[t]x[[2]],x3[t]x[[3]],x4[t]->x[[4]]} 
 

H[x_] := {u1[x],u2[x],u3[x],u4[x]} 

Hbar[x_] := {u1bar[x],u2bar[x],u3bar[x],u4bar[x]} 

 

Jacob :=  Transpose[Map[D[H[x[t]],#]&,x[t]]] 

MatrixForm[Jacob] 

MatrixForm[Jacob /. t0] 
 

 (_{ 

  {0, 1, 0, 0}, 

  {0, 0, 0, 1}, 

  {-x2[t], -p1-x1[t], 0, 0}, 

  {-p1 (gb-x2[t])+p2 x2[t]-(-p1-x1[t]) x2[t]+x1[t] x2[t], (-p1-

x1[t])2+p2 x1[t]-p3 (-ib+x3[t]), -p3 x2[t], 0} 

 }_) 

 (_{ 

  {0, 1, 0, 0}, 

  {0, 0, 0, 1}, 

  {-G0, -p1, 0, 0}, 

  {G0 p1-(-G0+gb) p1+G0 p2, p12-(-ib+J0) p3, -G0 p3, 0} 

 }_) 

MatrixRank[Jacob/. t0] 
4 

[x_] := {1,2,3,4} 
 

eqns = Simplify[H[[x[t]]]-Hbar[x[t]]] 
Simplify[ Solve[eqns0, {1,2,3,4}]]; 
 

{2-x2[t],4-x4[t],gb (p1-p1bar)-(p1+1) 2+(p1bar+x1[t]) x2[t],-
(p1+1) (gb p1-(p1+1) 2)+2 (ib p3+p2 1-p3 3)+(p1bar+x1[t]) 
(gb p1bar-(p1bar+x1[t]) x2[t])-x2[t] (p2bar x1[t]+p3bar (ib-

x3[t]))} 

[x_] := {1,2,3,4}/. Solve[eqns0, {1,2,3,4}][[1]] /. 
{x1[t] x[[1]],x2[t]x[[2]],x3[t]x[[3]],x4[t]->x[[4]]} 
eqnzero = (x[t]  /. {t0}) -( [xbar[t]] /. {t0}) 
resultszero = Simplify[Solve[eqnzero0 , p]] 
{-((gb p1-Gbar0 p1-gb p1bar+Gbar0 p1bar)/Gbar0),G0-Gbar0,J0-

1/(Gbar0 p3) (-((gb p1bar (gb p1-Gbar0 p1-gb p1bar+Gbar0 

p1bar))/Gbar0)+gb p1 p2-Gbar0 p1 p2-gb p1bar p2+Gbar0 p1bar 

p2+Gbar0 ib p3-Gbar0 ib p3bar+Gbar0 Jbar0 p3bar),0} 

 

 

{{G0Gbar0,J0(ib p3-ib p3bar+Jbar0 
p3bar)/p3,gbGbar0},{G0Gbar0,J0(ib p3-ib p3bar+Jbar0 
p3bar)/p3,p1p1bar}} 
 equation[n_] :=Simplify[f[[x[t]],p][[n]] -
Total[Map[D[[x[t]][[n]],#]&,x[t]]]f[x[t],pbar][[n]]] 

 equation[1] 

 -((gb (p1-p1bar) (gb p1bar+ib p3bar+x1[t] (p2bar-x2[t])-p1bar 

x2[t]-p3bar x3[t]))/x2[t]2) 
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 equan =Simplify[f[[x[t]],p] -
Transpose[Map[D[[x[t]],#]&,x[t]]].f[x[t],pbar]]; 

 equan[[3]] 

 1/(p3 x2[t]3) (2 gb3 p1bar2 (-p1+p1bar)+gb2 (p1-p1bar) p1bar (n+3 

p1bar+p2+3 x1[t]) x2[t]-gb (p1-p1bar) x2[t]2 (n p1bar+p1bar2+n 

p2+p1bar p2-ib p3bar+(n+2 p1bar+p2-p2bar) x1[t]+x1[t]2+p3bar 

x3[t])+(p3 -p3bar bar) x2[t]4 x4[t]+x2[t]3 (n p1 p2-n p1bar p2-
ib n p3+ib n p3bar+ib p2 p3bar-ib p2bar p3bar+(n-p2bar) (-

p2+p2bar) x1[t]+(-n+nbar-p2+p2bar) p3bar x3[t]-h p3  x4[t]+hbar 
p3bar bar x4[t])) 

Simplify[equation[3]-equan[[3]]] 

1/(p3 x2[t]3) ((-p2+p2bar) bar x2[t]4 x4[t]+2 gb2 (p1-p1bar) p1bar 
(gb p1bar+nbar x3[t]+hbar bar x4[t])+x2[t]3 (-ib p2 p3bar+ib 
p2bar p3bar+p2bar (-p2+p2bar) x1[t]+(p2-p2bar) (nbar+p3bar) x3[t]-

gb p1 bar x4[t]+gb p1bar bar x4[t]+hbar p2 bar x4[t]-hbar p2bar 
bar x4[t])+gb (p1-p1bar) x2[t]2 (p1bar2+p1bar p2-ib 
p3bar+x1[t]2+(nbar+p3bar) x3[t]+hbar bar x4[t]+p1bar bar 
x4[t]+p2 bar x4[t]+x1[t] (2 p1bar+p2-p2bar+bar x4[t]))-gb (p1-
p1bar) x2[t] (3 gb p1bar2+gb p1bar p2+nbar (p1bar+p2) x3[t]+2 gb 

p1bar bar x4[t]+hbar p1bar bar x4[t]+hbar p2 bar x4[t]+x1[t] (3 
gb p1bar+nbar x3[t]+hbar bar x4[t]))) 

 equationt[1]  

 -((gb (p1-p1bar) (gb p1bar+ib p3bar+x1[t] (p2bar-x2[t])-p1bar 

x2[t]-p3bar x3[t]))/x2[t]2) 

  

 1/p3 (-ib n p3+ib n p3bar+n (-p2+p2bar) x1[t]+(-n p3bar+nbar (p2-

p2bar+p3bar)) x3[t]-h p3  x4[t]+hbar p2 bar x4[t]-hbar p2bar 
bar x4[t]+hbar p3bar bar x4[t]+p3  x2[t] x4[t]-p2 bar x2[t] 
x4[t]+p2bar bar x2[t] x4[t]-p3bar bar x2[t] x4[t]) 
  

cf3a1 = Simplify[Coefficient[equation3a, {x1[t]}]/.{x2[t] 
0,x3[t]0 , x4[t]0}]; 
cf3a2 = Simplify[Coefficient[equation3a, {x2[t] x4[t]}]/.{x1[t] 
0,x3[t]0 }]; 
cf3a3= Simplify[Coefficient[equation3a, { x3[t]}]/.{x2[t] 
0,x1[t]0 , x4[t]0}]; 
cf3a4= Simplify[Coefficient[equation3a, {x4[t] }]/.{x2[t] 
0,x1[t] 0,x3[t]0 }]; 
cf3a5= Simplify[equation3a/.{x2[t] 0,x1[t] 0,x3[t]0 
,x4[t]0}]; 
Simplify[equation3a -(x1[t]*cf3a1+x2[t] x4[t] 

*cf3a2+x3[t]*cf3a3+x4[t]*cf3a4 + cf3a5)] 

 

 {0} 

 cf2 = Simplify[Coefficient[equation[1], 

{x1[t]/x2[t]^2}]/.{x3[t]0 , x4[t]0}]; 
cf3 = Simplify[Coefficient[equation[1], 

{x3[t]/x2[t]^2}]/.{x1[t]0 , x4[t]0}]; 
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cf1= Simplify[Coefficient[equation[1], {x1[t]/x2[t]}]/.{x3[t]0 , 
x4[t]0}]; 
cf4= Simplify[Coefficient[equation[1], 

{1/x2[t]}]/.{x1[t]0,x3[t]0 , x4[t]0}]; 
cf5= Simplify[Coefficient[equation[1], 

{1/x2[t]^2}]/.{x1[t]0,x3[t]0 , x4[t]0}]; 
Simplify[equation[1] - ( 

cf2*x1[t]/x2[t]^2+cf3*x3[t]/x2[t]^2+cf1*x1[t]/x2[t]+ 

cf4/x2[t]+cf5/x2[t]^2 )] 

 

 {0} 

 solutions = {cf1,cf2,cf3,cf4,cf5,cf3a1,cf3a2,cf3a3,cf3a4,cf3a5} 

 {{gb (p1-p1bar)},{gb (-p1+p1bar) p2bar},{gb (p1-p1bar) p3bar},{gb 

(p1-p1bar) p1bar},{-gb (p1-p1bar) (gb p1bar+ib p3bar)},{(n (-

p2+p2bar))/p3},{(p3 -(p2-p2bar+p3bar) bar)/p3},{(-n p3bar+nbar 
(p2-p2bar+p3bar))/p3},{(-h p3 +hbar (p2-p2bar+p3bar) 
bar)/p3},(ib n (-p3+p3bar))/p3} 
 results = Simplify[Solve[solutions0 , p]] 
 Solve::svars: Equations may not give solutions for all "solve" 

variables. More… 

 {{gb0,n0,0,p2p2bar-
p3bar,p3p3bar},{p1p1bar,n0,0,p2p2bar-
p3bar,p3p3bar},{gb0,n0,0,p2p2bar-
p3bar},{p1p1bar,n0,0,p2p2bar-
p3bar},{gb0,nnbar,hhbar,bar,p2p2bar,p3p3bar},{p1p1bar,n
nbar,hhbar,bar,p2p2bar,p3p3bar},{ib0,gb0,nnbar,hhbar,
(p3bar bar)/p3,p2p2bar},{nnbar,ib0,gb0,hhbar,(p3bar 
bar)/p3,p2p2bar},{p1p1bar,ib0,nnbar,hhbar,(p3bar 
bar)/p3,p2p2bar}} 

 MatrixForm[results] 

 (_{ 

  {{gb0,n0,0,p2p2bar-p3bar,p3p3bar}}, 
  {{p1p1bar,n0,0,p2p2bar-p3bar,p3p3bar}}, 
  {{gb0,n0,0,p2p2bar-p3bar}}, 
  {{p1p1bar,n0,0,p2p2bar-p3bar}}, 
  {{gb0,nnbar,hhbar,bar,p2p2bar,p3p3bar}}, 
  {{p1p1bar,nnbar,hhbar,bar,p2p2bar,p3p3bar}}, 
  {{ib0,gb0,nnbar,hhbar,(p3bar bar)/p3,p2p2bar}}, 
  {{nnbar,ib0,gb0,hhbar,(p3bar bar)/p3,p2p2bar}}, 
  {{p1p1bar,ib0,nnbar,hhbar,(p3bar bar)/p3,p2p2bar}} 
 }_) 
 test1 = gf2*x1[t]/x2[t]^2+gf3*x3[t]/x2[t]^2+gf1*x1[t]/x2[t]+ 

gf4/x2[t]+gf5/x2[t]^2 

test2 = Simplify[D[test1,t]]; 

test3 = Simplify[D[test2,t]]; 

test4 = Simplify[D[test3,t]]; 

test5 = Simplify[D[test4,t]]; 

 

syseqn = {test1,test2,test3,test4,test5}; 

 

 gf5/x2[t]2+(gf2 x1[t])/x2[t]2+gf4/x2[t]+(gf1 x1[t])/x2[t]+(gf3 

x3[t])/x2[t]2 

 Solve[syseqn  0,{gf1,gf2,gf3,gf4,gf5}] 
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 {{gf10,gf20,gf30,gf40,gf50}} 
 test31 =x1*gf31+x2 x4 *gf32+x3*gf33+x4*gf34 + gf35 /.{ x1  
x1[t],x2x2[t],x3x3[t],x4x4[t]} 
test32 = Simplify[D[test31,t]]; 

test33 = Simplify[D[test32,t]]; 

test34 = Simplify[D[test33,t]]; 

test35 = Simplify[D[test34,t]]; 

syseqn3a = {test31,test32,test33,test34,test35}; 

 

gf35+gf31 x1[t]+gf33 x3[t]+gf34 x4[t]+gf32 x2[t] x4[t] 

 

Solve[syseqn3a  0,{gf31,gf32,gf33,gf34,gf35}] 
{{gf350,gf340,gf310,gf320,gf330}} 
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Appendix 3: C-peptide 

Contents of the CD: 

MATLAB code 

Results 
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Appendix 4: Short Term Modelling 

Contents: 

Observability Rank Criterion Page 286 
+ CD 

Lie Symmetries PID Page 288 
+ CD 

Minimised ID – Similarity 4 state Page 291 
+ CD 

Minimised ID – Similarity 6 state Page 293 
+ CD 

Failed Structural Identifiability CD 

Results CD 
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Observability Rank Criterion 

Minimal Model 

Model Definition 

 x[t] := {x1[t],x2[t],x3[t]} 

p :={x10,x20,x30,Ro,Ego,Si,kp,ki,kd,n,intn} 

f[x_,p_]:={p[[4]]- (p[[5]] +(p[[6]] *x[[2]]))*x[[1]], 

p[[7]]*x[[1]]  -p[[10]]*x[[2]] + x[[3]]*p[[8]]+ p[[9]]*x[[1]]', 

x[[1]]- p[[11]]*x[[3]]} 

 

h[x_] := {1,0,0,0} 

Observability Rank Criterion 

Lie derivation  

 c =Map[D[h[x[t]] .x[t],#]&,x[t]] 

{{0,0,0,0}.{x1[t],x2[t],x3[t]}+{1,0,0,0}.{1,0,0},{0,0,0,0}.{x1[t],

x2[t],x3[t]}+{1,0,0,0}.{0,1,0},{0,0,0,0}.{x1[t],x2[t],x3[t]}+{1,0,

0,0}.{0,0,1}} 

 ca = c.f[x[t],p] 

 c.{Ro-x1[t] (Ego+Si x2[t]),kp x1[t]-n x2[t]+ki x3[t]+kd 

x1[t]
,x1[t]-intn x3[t]} 

 ob1 =  Map[D[ca[[1]],#]&,x[t]]; 

 MatrixForm[ob1] 

 (_{ 

  {-x2[t]}, 

  {-p1-x1[t]}, 

  {0}, 

  {0} 

 }_) 
 ob1a = ob1.f[x[t]] 

{(-p1-x1[t]) (p1 (gb-x2[t])-x1[t] x2[t])-x2[t] (-p2 x1[t]+p3 (-

ib+x3[t]))} 

 ob2  =   Map[D[ob1a[[1]],#]&,x[t]]; 

 MatrixForm[ob2] 

 (_{ 
  {-p1 (gb-x2[t])+p2 x2[t]-(-p1-x1[t]) x2[t]+x1[t] x2[t]}, 

  {(-p1-x1[t])2+p2 x1[t]-p3 (-ib+x3[t])}, 

  {-p3 x2[t]}, 

  {0} 

 }_) 
 ob2a = ob2.f[x[t]] 

{(p1 (gb-x2[t])-x1[t] x2[t]) ((-p1-x1[t])2+p2 x1[t]-p3 (-

ib+x3[t]))+(-p1 (gb-x2[t])+p2 x2[t]-(-p1-x1[t]) x2[t]+x1[t] x2[t]) 

(-p2 x1[t]+p3 (-ib+x3[t]))-p3 x2[t] (-n x3[t]+ (-h+x2[t]) x4[t])} 
 ob3  =   Map[D[ob2a[[1]],#]&,x[t]]; 

 MatrixForm[ob3] 

 (_{ 

  {(p2-2 (-p1-x1[t])) (p1 (gb-x2[t])-x1[t] x2[t])-p2 (-p1 (gb-

x2[t])+p2 x2[t]-(-p1-x1[t]) x2[t]+x1[t] x2[t])-x2[t] ((-p1-

x1[t])2+p2 x1[t]-p3 (-ib+x3[t]))+2 x2[t] (-p2 x1[t]+p3 (-

ib+x3[t]))}, 

  {(-p1-x1[t]) ((-p1-x1[t])2+p2 x1[t]-p3 (-ib+x3[t]))+(2 p1+p2+2 

x1[t]) (-p2 x1[t]+p3 (-ib+x3[t]))-p3  x2[t] x4[t]-p3 (-n x3[t]+ 
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(-h+x2[t]) x4[t])}, 

  {n p3 x2[t]-p3 (p1 (gb-x2[t])-x1[t] x2[t])+p3 (-p1 (gb-x2[t])+p2 

x2[t]-(-p1-x1[t]) x2[t]+x1[t] x2[t])}, 

  {-p3  x2[t] (-h+x2[t])} 
 }_) 
 H := {c,ob1,ob2,ob3} 

 MatrixForm[H] 

 (_{ 

  {0, 1, 0, 0}, 

  {-x2[t], -p1-x1[t], 0, 0}, 

  {-p1 (gb-x2[t])+p2 x2[t]-(-p1-x1[t]) x2[t]+x1[t] x2[t], (-p1-

x1[t])2+p2 x1[t]-p3 (-ib+x3[t]), -p3 x2[t], 0}, 

  {(p2-2 (-p1-x1[t])) (p1 (gb-x2[t])-x1[t] x2[t])-p2 (-p1 (gb-

x2[t])+p2 x2[t]-(-p1-x1[t]) x2[t]+x1[t] x2[t])-x2[t] ((-p1-

x1[t])2+p2 x1[t]-p3 (-ib+x3[t]))+2 x2[t] (-p2 x1[t]+p3 (-

ib+x3[t])), (-p1-x1[t]) ((-p1-x1[t])2+p2 x1[t]-p3 (-ib+x3[t]))+(2 

p1+p2+2 x1[t]) (-p2 x1[t]+p3 (-ib+x3[t]))-p3  x2[t] x4[t]-p3 (-n 
x3[t]+ (-h+x2[t]) x4[t]), n p3 x2[t]-p3 (p1 (gb-x2[t])-x1[t] 
x2[t])+p3 (-p1 (gb-x2[t])+p2 x2[t]-(-p1-x1[t]) x2[t]+x1[t] x2[t]), 

-p3  x2[t] (-h+x2[t])} 
 }_) 

 MatrixForm[H0 = H /. {x1[t]  0,x2[t]g0,x3[t]i0,x4[t]0}] 

 (_{ 

  {0, 1, 0, 0}, 

  {-g0, -p1, 0, 0}, 

  {g0 p1-(-g0+gb) p1+g0 p2, p12-(i0-ib) p3, -g0 p3, 0}, 

  {(-g0+gb) p1 (2 p1+p2)-p2 (g0 p1-(-g0+gb) p1+g0 p2)+2 g0 (i0-ib) 

p3-g0 (p12-(i0-ib) p3), i0 n p3+(i0-ib) (2 p1+p2) p3-p1 (p12-(i0-

ib) p3), g0 n p3-(-g0+gb) p1 p3+(g0 p1-(-g0+gb) p1+g0 p2) p3, -g0 

(g0-h) p3 } 
 }_) 
 Dimensions[H0] 

 {4,4} 

 MatrixRank[H0] 

 4 

  



Appendices  

288 

 

Lie Symmetries PID 

 
SetDirectory["C:/Documents and Settings/Edmund Watson/My 

Documents/Subversion/Documents/PhD/Mathematica/Symmetry/IntroToSym

metry"]; 

Needs["SymmetryAnalysis`IntroToSymmetry`"]; 

 inputequation1="D[x1[t],t]-p[4]+ (p5[t] +(p6[t] *x4[t]))*x1[t]"; 

inputequation2="D[x2[t],t] -p[7]*x1[t]  +p10[t]*x2[t] - 

x3[t]*p8[t]- p9[t]*D[x1[t],t]"; 

inputequation3="D[x3[t],t]-x1[t]+ p11[t]*x3[t]"; 

inputequation4="D[x4[t],t]-x2[t]+p12[t]*x4[t]"; 

inputequation5="D[p4[t],t]"; 

inputequation6="D[p5[t],t]"; 

inputequation7="D[p6[t],t]"; 

inputequation8="D[p7[t],t]"; 

inputequation9="D[p8[t],t]"; 

inputequation10="D[p9[t],t]"; 

inputequation11="D[p10[t],t]"; 

inputequation12="D[p11[t],t]"; 

inputequation13="D[p12[t],t]"; 

 rulesarray={"D[x1[t],t]->-(-p4[t]+ (p5[t] +(p6[t] 

*x4[t]))*x1[t])", 

   "D[x2[t],t] ->-(-p7[t]*x1[t]  +p10[t]*x2[t] - x3[t]*p8[t]- 

p9[t]*x1[t])", 

   "D[x3[t],t]->-(-x1[t]+ p11[t]*x3[t])", 

   "D[x4[t],t]->x2[t]-p12[t]*x4[t]","D[p4[t],t]->0", 

   "D[p5[t],t]->0","D[p6[t],t]->0","D[p7[t],t]->0","D[p8[t],t]-

>0","D[p9[t],t]->0","D[p10[t],t]->0","D[p11[t],t]-

>0","D[p12[t],t]->0"}; 

 independentvariables={"t"}; 

dependentvariables={"x1","x2","x3","x4","p4","p5","p6","p7" 

,"p8","p9","p10","p11","p12"}; 

 frozennames={""}; 

p=1; 

r=0; 

xseon=1; 

internalrules=1; 

 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation1,rulesarray,internalrules]; 

zdeterminingequations1=zdeterminingequations; 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation2,rulesarray,internalrules]; 

zdeterminingequations2=zdeterminingequations; 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation3,rulesarray,internalrules]; 

zdeterminingequations3=zdeterminingequations; 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation4,rulesarray,internalrules]; 

zdeterminingequations4=zdeterminingequations; 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation5,rulesarray,internalrules]; 

zdeterminingequations5=zdeterminingequations; 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation6,rulesarray,internalrules]; 
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zdeterminingequations6=zdeterminingequations; 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation7,rulesarray,internalrules]; 

zdeterminingequations7=zdeterminingequations; 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation8,rulesarray,internalrules]; 

zdeterminingequations8=zdeterminingequations; 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation9,rulesarray,internalrules]; 

zdeterminingequations9=zdeterminingequations; 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation10,rulesarray,internalrules]; 

zdeterminingequations10=zdeterminingequations; 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation11,rulesarray,internalrules]; 

zdeterminingequations11=zdeterminingequations; 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation12,rulesarray,internalrules]; 

zdeterminingequations12=zdeterminingequations; 

FindDeterminingEquations[independentvariables,dependentvariables,f

rozennames,p,r,xseon,inputequation13,rulesarray,internalrules]; 

zdeterminingequations13=zdeterminingequations; 

zdeterminingequations=Join[zdeterminingequations1,zdeterminingequa

tions2,zdeterminingequations3,zdeterminingequations4,zdetermininge

quations5,zdeterminingequations6,zdeterminingequations7,zdetermini

ngequations8,zdeterminingequations9,zdeterminingequations10,zdeter

miningequations11,zdeterminingequations12,zdeterminingequations13]

; 

 

SolveDeterminingEquations[independentvariables,dependentvariables,

r,xseon,zdeterminingequations,1] 

TableForm[xsefunctions] 

TableForm[etafunctions] 

 { 

 {xse1[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=a10 + a12*z10 + a13*z11 + a14*z12 + a15*z13 + 

a16*z14 + a111*z6 + a112*z7 + a113*z8 + a114*z9} 

} 

 { 

 {eta1[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=0}, 

 {eta2[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=0}, 

 {eta3[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=0}, 

 {eta4[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=0}, 

 {eta5[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=b50 + b52*z10 + b53*z11 + b54*z12 + b55*z13 + 

b56*z14 + b511*z6 + b512*z7 + b513*z8 + b514*z9}, 

 {eta6[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=0}, 

 {eta7[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=0}, 

 {eta8[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=b80 + b82*z10 + b83*z11 + b84*z12 + b85*z13 + 

b86*z14 + b811*z6 + b812*z7 + b813*z8 + b814*z9}, 
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 {eta9[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=0}, 

 {eta10[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=0}, 

 {eta11[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=0}, 

 {eta12[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=0}, 

 {eta13[z1_, z2_, z3_, z4_, z5_, z6_, z7_, z8_, z9_, z10_, z11_, 

z12_, z13_, z14_]=0} 

} 
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Minimised ID – Similarity 4 state 

 
g'[t_]:=-ia[t]*g[t]*si+gp  

j'[t_]:=-n*j[t]+ii[t]*ki+kd*g'[t] 

ii'[t_]:=g[t]-ii[t]*kiir 

ia'[t_] := j[t] - kair*ia[t] 

x1[0] = x1o; 

x2[0] = 0; 

x3[0] = x3o; 

y1 = j[t]; 

y = g[t];   

p ={si,gp,n,ki,kd,kiir,kair}; 

 G=Append[{},Map[D[y /. t->0,#]&,p]]; 

calrow:=Module[{},y = D[y,t]; r = Map[D[y /. t->0,#]&,p]; G = 

Append[G,r]] 

For[i=1,i<7,i++,calrow] 

 

H=Append[{},Map[D[y1 /. t->0,#]&,p]]; 

calrow:=Module[{},y = D[y,t]; r = Map[D[y /. t->0,#]&,p]; G = 

Append[G,r]] 

For[i=1,i<7,i++,calrow] 

 

 

 $Aborted 

 MatrixForm[G] 

Dimensions[G] 

G = Append[G,H] 

Dimensions[G] 

  

 {7,7} 

 MatrixRank[G] 

 6 

 gr = RowReduce[G] 

gs = Simplify[gr] 

 

 

{{1,0,0,0,0,0,0},{0,1,0,0,0,0,0},{0,0,1,0,0,0,0},{0,0,0,1,0,0,0},{

0,0,0,0,1,0,0},{0,0,0,0,0,1,0},{0,0,0,0,0,0,1},{0,0,0,0,0,0,0}} 

 

{{1,0,0,0,0,0,0},{0,1,0,0,0,0,0},{0,0,1,0,0,0,0},{0,0,0,1,0,0,0},{

0,0,0,0,1,0,0},{0,0,0,0,0,1,0},{0,0,0,0,0,0,1},{0,0,0,0,0,0,0}} 

 MatrixForm[ns = NullSpace[G]] 

 {} 

 z = {z1[t],z2[t],z3[t],z4[t],z5[t],z6[t]}; 

 DSolve[{z1'[t]ns[[1]][[1]], z1[0]==1},{z1[t]},t] 
 {{z1[t]1}} 
 z1 = 1;z2 = 2;z3 = 3;z4 = 4;z5 = 5;z6 = 6;z7 = 7 + t; z8 = 
8;z9 = 9;z10 = 10; 
 

psi1[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]],z[[7]]+t,z

[[8]],z[[9]],z[[10]]} 

psi2[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]]+t,z[[7]],z

[[8]],z[[9]],z[[10]]} 

psi3[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]],z[[5]]+t,z[[6]],z[[7]],z

[[8]],z[[9]],z[[10]]} 
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psi4[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]]+t,z[[5]],z[[6]],z[[7]],z

[[8]],z[[9]],z[[10]]} 

psi5[t_,z_]:={z[[1]]+t,z[[2]],z[[3]],z[[4]],z[[5]],z[[6]],z[[7]],z

[[8]],z[[9]],z[[10]]} 

psi6[t_,z_]:={z[[1]],z[[2]]+t,z[[3]],z[[4]],z[[5]],z[[6]],z[[7]],z

[[8]],z[[9]],z[[10]]} 

psi7[t_,z_]:={z[[1]],z[[2]],z[[3]]+t,z[[4]],z[[5]],z[[6]],z[[7]],z

[[8]],z[[9]],z[[10]]} 

psi8[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]],z[[7]],z[[

8]]+t,z[[9]],z[[10]]} 

psi9[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]],z[[7]],z[[

8]],z[[9]]+t,z[[10]]} 

psi10[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]],z[[7]],z[

[8]],z[[9]],z[[10]]+t} 

 

  = 
psi1[1,psi2[2,psi3[3,psi4[4,psi5[5,psi6[6,psi7[7,psi8[8,ps
i9[9,psi10[10,{1,2,3,4,5,6,7,8,9,10}]]]]]]]]]] 
{1+5,2+6,3+7,4+4,5+3,6+2,7+1,8+8,9+9,10+10} 
 inv = Simplify[Solve[p==,{1,2,3,4,5,6,7,8,9,10}]] 
 {{5p1-1,6p2-2,7p3-3,4h-4,3n-5,2Gamma-6,1Io-
7,8Go-8,9gb-9,10ib-10}} 
  inv= inv  /. {1  0,2 0,3 0,4 0,5 0,6 0,7 0,8 
0,9 0,10 0} 
{{5p1,6p2,7p3,4h,3n,2Gamma,1Io,8Go,9gb,10ib}
} 

   

  



Appendices  

293 

 

Minimised ID – Similarity 6 state 

g'[t_]:=-ia[t]*g[t]*si+gp  

j'[t_]:=-n*j[t]+fac*(ii[t]*ki+kd*g'[t]) 

ii'[t_]:=g[t]-ii[t]*kiir 

ia'[t_] := j[t] - kair*ia[t] 

cp1'[t_]:= -cr*cp1[t] -k12*cp1[t]+k21*cp2[t] + ii[t]*ki+kd*g'[t] 

cp2'[t_] := +k12*cp1[t]-k21*cp2[t] 

g[0] = go; 

j[0] = io; 

ii[0] = iio; 

ia[0] =iao; 

cp1[0] = cp1o; 

cp2[0] =cp2o; 

y = j[t]; 

y1 = g[t]; 

y2 = cp1[t]; 

p ={si,gp,n,ki,kd,kiir,kair,fac,cr,k12,k21}; 

 G=Append[{},Map[D[y /. t->0,#]&,p]]; 

calrow:=Module[{},y = D[y,t]; r = Map[D[y /. t->0,#]&,p]; G = 

Append[G,r]] 

For[i=1,i<12,i++,calrow] 

 

  

MatrixForm[G] 

  

 MatrixRank[G] 

 7 

 gr = RowReduce[G] 

gs = Simplify[gr] 

 

 

{{1,0,0,0,0,0,0},{0,1,0,0,0,0,0},{0,0,1,0,0,0,0},{0,0,0,1,0,0,0},{

0,0,0,0,1,0,0},{0,0,0,0,0,1,0},{0,0,0,0,0,0,1},{0,0,0,0,0,0,0}} 

 

{{1,0,0,0,0,0,0},{0,1,0,0,0,0,0},{0,0,1,0,0,0,0},{0,0,0,1,0,0,0},{

0,0,0,0,1,0,0},{0,0,0,0,0,1,0},{0,0,0,0,0,0,1},{0,0,0,0,0,0,0}} 

 MatrixForm[ns = NullSpace[G]] 

 {} 

 z = {z1[t],z2[t],z3[t],z4[t],z5[t],z6[t]}; 

 DSolve[{z1'[t]ns[[1]][[1]], z1[0]==1},{z1[t]},t] 
 {{z1[t]1}} 
 z1 = 1;z2 = 2;z3 = 3;z4 = 4;z5 = 5;z6 = 6;z7 = 7 + t; z8 = 
8;z9 = 9;z10 = 10; 
 

psi1[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]],z[[7]]+t,z

[[8]],z[[9]],z[[10]]} 

psi2[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]]+t,z[[7]],z

[[8]],z[[9]],z[[10]]} 

psi3[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]],z[[5]]+t,z[[6]],z[[7]],z

[[8]],z[[9]],z[[10]]} 

psi4[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]]+t,z[[5]],z[[6]],z[[7]],z

[[8]],z[[9]],z[[10]]} 

psi5[t_,z_]:={z[[1]]+t,z[[2]],z[[3]],z[[4]],z[[5]],z[[6]],z[[7]],z

[[8]],z[[9]],z[[10]]} 

psi6[t_,z_]:={z[[1]],z[[2]]+t,z[[3]],z[[4]],z[[5]],z[[6]],z[[7]],z

[[8]],z[[9]],z[[10]]} 
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psi7[t_,z_]:={z[[1]],z[[2]],z[[3]]+t,z[[4]],z[[5]],z[[6]],z[[7]],z

[[8]],z[[9]],z[[10]]} 

psi8[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]],z[[7]],z[[

8]]+t,z[[9]],z[[10]]} 

psi9[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]],z[[7]],z[[

8]],z[[9]]+t,z[[10]]} 

psi10[t_,z_]:={z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]],z[[7]],z[

[8]],z[[9]],z[[10]]+t} 

 

  = 
psi1[1,psi2[2,psi3[3,psi4[4,psi5[5,psi6[6,psi7[7,psi8[8,ps
i9[9,psi10[10,{1,2,3,4,5,6,7,8,9,10}]]]]]]]]]] 
{1+5,2+6,3+7,4+4,5+3,6+2,7+1,8+8,9+9,10+10} 
 inv = Simplify[Solve[p==,{1,2,3,4,5,6,7,8,9,10}]] 
 {{5p1-1,6p2-2,7p3-3,4h-4,3n-5,2Gamma-6,1Io-
7,8Go-8,9gb-9,10ib-10}} 
  inv= inv  /. {1  0,2 0,3 0,4 0,5 0,6 0,7 0,8 
0,9 0,10 0} 
{{5p1,6p2,7p3,4h,3n,2Gamma,1Io,8Go,9gb,10ib}
} 
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Appendix 5: Long Term Modelling 

 

The CD contains the GUI for long term modelling.
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Appendix 6: Software Tool for Modelling Glucose, 

Insulin and C­peptide Dynamics 

 

Software tool is on the CD. 
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