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Abstract

This thesis focuses on the development of a real-time and cost effective

marker-less computer vision method for significant body point or part detection

(i.e., the head, arm, shoulder, knee, and feet), labelling and tracking, and its ap-

plication to activity recognition. This work comprises of three parts: significant

body point detection and labelling, significant body point tracking, and activity

recognition. Implicit body models are proposed based on human anthropometry,

kinesiology, and human vision inspired criteria to detect and label significant body

points. The key idea of the proposed method is to fit the knowledge from the im-

plicit body models rather than fitting the predefined models in order to detect and

label significant body points. The advantages of this method are that it does not

require manual annotation, an explicit fitting procedure, and a training (learning)

phase, and it is applicable to humans with different anthropometric proportions.

The experimental results show that the proposed method robustly detects and la-

bels significant body points in various activities of two different (low and high)

resolution data sets. Furthermore, a Particle Filter with memory and feedback is

proposed that combines temporal information of the previous observation and esti-

mation with feedback to track significant body points in occlusion. In addition, in

order to overcome the problem presented by the most occluded body part, i.e., the

arm, a Motion Flow method is proposed. This method considers the human arm as

a pendulum attached to the shoulder joint and defines conjectures to track the arm
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since it is the most occluded body part. The former method is invoked as default

and the latter is used as per a user’s choice. The experimental results show that

the two proposed methods, i.e., Particle Filter and Motion Flow methods, robustly

track significant body points in various activities of the above-mentioned two data

sets and also enhance the performance of significant body point detection. A hierar-

chical relaxed partitioning system is then proposed that employs features extracted

from the significant body points for activity recognition when multiple overlaps ex-

ist in the feature space. The working principle of the proposed method is based

on the relaxed hierarchy (postpone uncertain decisions) and hierarchical strategy

(group similar or confusing classes) while partitioning each class at different levels

of the hierarchy. The advantages of the proposed method lie in its real-time speed,

ease of implementation and extension, and non-intensive training. The experimental

results show that it acquires valuable features and outperforms relevant state-of-the-

art methods while comparable to other methods, i.e., the holistic and local feature

approaches. In this context, the contribution of this thesis is three-fold:

• Pioneering a method for automated human body part detection and labelling.

• Developing methods for tracking human body parts in occlusion.

• Designing a method for robust and efficient human action recognition.
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Chapter 1

Introduction

Videos are cheaply available and open up opportunities for developing computer

vision based applications. Among so many potential applications my work will focus

on the recognition of human activities because this can enable applications such

as unusual activity detection, surveillance, home-based rehabilitation, behaviour

recognition, location estimation, etc. The fact that humans are the most captured

objects in the majority of the videos provides a strong motivation for automated

analysis and interpretation of human activities. Therefore, this thesis focuses on

developing computer vision methods for detecting, labelling and tracking significant

body points or parts (i.e., the head, arm, shoulder, knee, and feet), and recognizing

human activities.

1.1 Justification for the research

Computer vision methods provide automated, low cost, efficient and effective solu-

tions to detect, label, and track human significant body parts, and recognize human

activities [1–3]. These methods do not require subject cooperation, large experi-

mental set-up time, specialized environment, etc., and thus can be used for various

applications.

A real-time, accurate, fully automated, universal (applicable to different age,

gender, ethnicity, etc.), and complete method that is able to detect, label and track

human significant body points, and then utilize them for the task of human activity

recognition does not exist. This is because most of the previous computer vision

methods to detect, label and track human significant body points are either compu-

tationally expensive or require an intensive training phase. Also, the methods that
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are computationally inexpensive or do not require training are not accurate. In addi-

tion, these methods are not always fully automated and often require some manual

initialization. Moreover, the methods that use arbitrary predefined body models

might not be applicable to humans with different anthropometric proportions.

In this context, this research thesis aims to fill the above-mentioned gap in

the literature by investigating novel computer vision methods in order to develop

a real-time, accurate, fully automated, universal, and complete human body part

detection, labelling and tracking framework for human activity recognition.

1.2 Research problem and objectives

Computer vision methods use marker-less techniques to detect and label signifi-

cant human body points. The previous research work on marker-less significant

body point detection can be broadly divided into the model-based (prior model)

or model-free (no prior model) approaches [3, 4]. The former approach requires a

fitting procedure, manual annotation, and numerous predefined models which are

time consuming processes, while the latter tends to be less accurate. The arbitrary

predefined models might not always be a proper fit for the human subjects as the

human body proportions vary with respect to age, ethnicity, gender, etc. However,

the empirical studies on the human anthropometry [5,6] allow definition of more ac-

curate human body proportions that can cover the majority of the world population.

So far, anthropometry has only been used in a semi-automated manner to detect

and label human body parts for merely stand postures [7,8] since its application in

complex activities is not an easy task.

In order to address the above-mentioned drawbacks of the previous marker-

less methods, the objectives of the first part of this thesis, i.e., Human Body Part

Detection and Labelling, are as follows:

• To investigate the application of the human anthropometry (measurement of

human body proportions) and kinesiology (study of human movement) in order

to define more accurate human body models.

• To explore a novel, efficient, robust, and fully automated marker-less method

that does not require explicit model fitting and manual annotation to detect

and label human significant body points in various activities observed from a

profile view.
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1.2 Research problem and objectives

(a) (b)

Figure 1.1: (a) Profile view and (b) Front view.

When observed from the profile view, the human activities such as Walk,

Run, Bend, etc., might contain considerable rapid motion and self-occlusion of the

human body parts e.g., arms and legs. Also, the human body can attain various

postures and perform numerous activities due to its high dimensionality, i.e., degrees

of freedom of its motion. Hence, the foreground segmentation of human body is

affected and might contain artefacts that will result in false detection of significant

body points. Therefore, the profile view in Fig. 1.1 (a) is chosen over the front view in

Fig. 1.1 (b) since it presents a more challenging scenario to label and track significant

body points and human activity recognition. A robust method for significant body

point detection and labelling should be able to recover the positions of the body parts

during occlusion. Thus, it is imperative to incorporate a tracking method that deals

with occlusion, variation of illumination, rapid motion, etc. The non-Gaussian, i.e.,

multimodal distribution, and non-linear, i.e., the system is a function of polynomial

degree higher than one, assumption of the Particle Filter method [9,10] make them

suitable for visual tracking.

The Particle Filter draws samples/particles from the uniform distribution

and assigns them equal weights. It then uses a model that represents the current

system to predict the new state. Finally, the new state is updated based on the

measurement, i.e., observation, to re-assign weights to the particles. However, the

standard Particle Filter struggles to predict accurately when there are no measure-

ments, i.e., observation of significant body points, in the image.

In order to address the above-mentioned challenges and the inability of the

standard Particle Filter method to track in occlusion, the objectives of the second

part of this thesis, i.e., Human Body Parts Tracking, are as follows:
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• To examine new ways to enhance the capability of the standard Particle Filter

to track during occlusion.

• To apply the pendulum physics in order to develop a new tracker for predicting

the arm which is the most occluded significant body point and thus most

challenging body part to track.

• To analyze whether the significant body point detection and labelling is im-

proved by using a tracking method.

Significant body points can be utilized for various tasks such as activity recog-

nition, motion analysis of sit-stand for elderly people, realistic animation of human

body models, surveillance, etc. Human activity recognition methods can be broadly

divided [1, 3, 11] into: holistic (a), local feature (b), and model-based (c) or model-

free (d). The holistic method uses shape or optical flow information, while the local

feature method uses descriptors of local regions to define an activity. The extraction

of shape and optical information from each frame of video sequence is a computa-

tionally expensive procedure. The learning of local descriptors require intensive

training phase in order to perform accurate recognition. In contrast, the model-

based approach fits a predefined model to human silhouette while the model-free

uses body characteristics such as orientation, proportion, motion etc., to recognize

activities. They are computationally inexpensive in comparison to holistic and local

feature methods but lack accuracy. Also, many human activity recognition meth-

ods [12–17], cannot accurately discern, without intensive training, similar activities

such as walk, run, jump, etc. This is due the fact that the feature space for very

similar activities includes considerable overlaps. Previous methods such as relaxed

hierarchy [18], only deal with a two overlap class separation problem in the spatial

domain and hence are not applicable to multiple overlaps in the spatio-temporal

domain.

In order to address these above-mentioned drawbacks of the previous activity

recognition methods, the objectives of the third part of this thesis, i.e., Human

Activity Recognition, are as follows:

• To explore the use of the significant body points in order to build innovative

feature descriptors that enable to discern human activities.

• To investigate a novel relaxed hierarchy based method which tackles the mul-

tiple overlaps problem in the feature space for efficient and robust human
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activity recognition.

1.3 Major contributions

The main contributions of this work are as follows.

• This is the first work to provide both quantitative and qualitative evaluation

of significant body point detection. The quantitative evaluation of significant

body point detection, labelling and tracking has not been done in most of the

relevant previous works [19–22].

• This is also the first work to perform the ground truth mark-up of significant

body points on both the Weizmann and MuHAVi data sets for quantitative

evaluation. There was no state-of-the-art data set available that contained

ground truth significant body points.

• The novel proposition of the Implicit Body Models (IBMs) that are derived

by combining the science from Anthropometry, Kinesiology, and Biomechanics

studies. IBMs contain the knowledge of the body part positioning, range

of motion of human body parts and understanding of type of motion. The

knowledge from the Implicit Body Models are utilized to robustly detect and

label significant body points and to achieve real-time efficiency. In contrast to

previous works, it does not require an explicit fitting procedure and a manual

annotation.

• An innovative Particle Filter method based on the temporal Markov chain

framework to perform prediction during occlusion. The proposed Particle

Filter utilizes the temporal information of the previous observation and es-

timation (kept in memory) via a feedback to predict human body parts in

occlusion. It predicts more accurately in occlusion than the standard Particle

Filter.

• A new motion flow prediction method specifically designed for arm since it is

the most occluded limb. It considers the human arm as a pendulum attached

to the shoulder joint producing curvilinear motion and derives linear equations

from the pendulum physics to predict arm in occlusion.

• The significant body point detection, labelling and tracking proposed in this

work is a low cost solution to VICON motion capture technology and does
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not require subject cooperation. It automatically determines significant body

points, create a 2D stick body model and extracts motion of the limbs.

• This significant body point detection, labelling and tracking proposed in this

work is also an alternative to KINECT and has been shown to work on both

low and high resolution videos without any depth information.

• The method in [21] is extended by introducing two features, i.e., the leg power

and torso power, in addition to the leg angle and torso angle to create a robust

feature descriptor for recognizing very similar activities.

• A hierarchical relaxed partitioning system method that combines relaxed hi-

erarchy and hierarchical strategy methods and uses an innovative majority

voting scheme to discern easily confused activities with real-time speed and

without intensive training. Most of the previous methods [13, 15, 16, 22, 23]

confuse very similar activities and require either computationally expensive

feature extraction or intensive training to overcome this issue.

1.4 Outline of the thesis

The outline of the entire thesis is as follows.

Chapter 2 covers the detailed literature review on human motion analysis

and tracking approaches. It also described the general approaches to human activity

recognition. In addition, it explains and illustrates the experimental data sets used

in this thesis.

Chapter 3 describes the use of the anthropometry and kinesiology informa-

tion to develop novel implicit body models. It explains the proposed marker-less

approach which uses computer vision methods based on implicit body models to

detect and label human significant body points, i.e., the head, arm, shoulder, knee,

and feet in various human activities. Next, it presents the procedure to construct 2D

stick figures from the detected and labelled significant body points. The accuracy

of the proposed method is established by evaluating its ability to detect and label

significant body points in various activities of two different resolution data sets, i.e.

low (180 x 144) and high (720 x 576).

Chapter 4 details the improvements made in the standard Particle Filter

method for visual tracking and presents two tracking methods, i.e., the Particle

Filter with memory and feedback, and motion flow, to predict significant body
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points during occlusion. It describes how the proposed Particle Filter addresses

the limitations of the standard Particle Filter to track in occlusion. In addition, it

introduces the concept of using a pendulum for the human arm prediction based on

the motion flow. The accuracy of the proposed methods is established by evaluating

their ability to robustly predict the significant body points in occlusion or in missed

detections. The impact of the tracking methods on the performance of the significant

body point detection and labelling is also demonstrated in this chapter.

Chapter 5 presents the proposed hierarchical relaxed partitioning system

solution for human activity recognition. It explains the process of building feature

descriptors by using the human significant body points. In addition, it details

a hierarchical relaxed partitioning system method for human activity recognition.

The discerning ability of the feature descriptors is shown on the training data set.

The accuracy of this proposed method is authenticated by evaluating its ability to

discern various very similar human activities that have significant multiple overlaps

in the feature space.

Chapter 6 concludes the entire thesis by highlighting the efficiency of the

proposed computer vision methods for human activity recognition. It suggests the

implications of the research undertaken and its various applications. It also specu-

lates on the future directions and developments.
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Chapter 2

Related Work and Datasets

2.1 Human body part detection

Human body part detection involves estimation of the location and orientation of

joints of a human body. This section focuses as to why out of the two broad ap-

proaches to human body part detection, i.e., marker-based, and marker-less; the

latter is preferred over the former and builds up a discussion of pros and cons of the

two approaches. This section also explains the model-based technique of the marker-

less human motion analysis approach and why this technique has been chosen in lieu

of the model-free based approach.

2.1.1 Marker-based approach

The marker-based approach estimates human body motion by determining coordi-

nates of a set of markers attached on particular points of the human body, as shown

in Fig. 2.1 (a) and (b) [1–3]. The coordinates of a set of active or passive markers at-

tached on the anatomical landmarks of human body whose spatial trajectories are to

be estimated and computed by a stereo-photogrammetric method [1,24]. The joint

kinematics is estimated by reconstructing the 3D position of the attached markers

and conjecturing the fundamental human body model, as shown in Fig. 2.1 (c) [2]. In

the recent years, the marker-based human motion capture approach has been used

commercially for biometrics (gait recognition), special effects in motion pictures,

clinical and rehabilitative fields, etc. [1]. The growing significance of healthcare for

elderly and disabled persons could be seen in the enormous concentration of Eu-

ropean Commission research on the area of ambient assisted living for the ageing
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2.1 Human body part detection

(a) (b) (c)

Figure 2.1: Marker-based approach. (a) An actor wearing a suit with reflective
infra-red markers, i.e., the small white balls in the middle of the black patches. The
motion of the actor is recorded by several cameras, (b) HumanEva data set subject
performing an activity, and (c) the corresponding model fitting that detects body
parts such as head, torso, arms, legs, etc. [2].

society [25,26]. Every year the number of casualties and injuries amongst the ageing

and disabled is increasing especially in household incidents while performing rou-

tine but difficult activities. Thus, applications such as surveillance, animation, and

assisted living bring new challenges to the marker-based approach [4, 20,25,26].

2.1.1.1 Pros and Cons

The commercially available marker-based approaches are accurate with a root mean

square error below 6mm for 3D reconstruction of the position of markers [4]. The

existing technologies use sensors to prevent injuries to persons [25] or to generate an

alarm to a surveillance team in case of suspicious/ abnormal beaviour. In order to

achieve this, the subject needs to wear an electronic sensor that keeps record of his

or her movement. The difficulty with using sensors is that they are required to be

worn at all times which is not possible for any outdoor applications e.g., surveillance,

sports etc. An elderly person may forget to wear the sensor due to his or her age when

going outside [25], while sensor fitting is unsuited for surveillance because it requires

subject cooperation. Moreover, attaching markers is not only a time consuming

exercise, but it also restricts the movement of the subject. In addition, it is not easy

to use equipment for people of all ages and this requires inter-session repeatability of

measurement. The marker based approach requires expensive specialized hardware,

environment and is intrusive for the subject. Furthermore, the sensors may be

affected by the environment and may generate false alarms [4, 20,25].
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2.1 Human body part detection

Figure 2.2: Marker-less approach. Cameras are used to relay information about the
subjects, i.e., humans, cars, etc., and servers store the videos. The video analysis
software provides real-time alerts [28].

2.1.2 Marker-less approach

Marker-less approaches are employed by several researchers to make up for the

limitations of the marker based approaches [1,3]. These are also available commer-

cially for private and public offices, defence installations, as well as domestic usage;

therefore they are deemed preferable for this type of research. In the marker-less

approach, cameras are used to relay information about the movements and where-

abouts of the subjects, as shown in Fig. 2.2. A video analysis system is used in such

systems to recognize human behaviours, anomalies, etc. [27]. Recently, smart cam-

era based systems have been proposed for surveillance, assisted living, behaviour

recognition, etc. [28]. These systems comprise of cameras, video storage servers,

and a command centre. The video from a camera is converted into internet pro-

tocol stream by video encoders and accumulated on a server by a video managing

framework for controlling video storage. The event videos are stored in database

with appropriate indexing with respect to the camera and event attributes for rapid

retrieval. The video analysis mechanism executes on the server and provides real-

time alerts for user defined incidents and allows swift search of specified events, as

shown in Fig. 2.2 [28].

The deployment of smart camera based systems requires sophisticated tech-

nology, configuration and tuned alarm systems, and privacy protection mecha-

nisms [28, 29]. The current sophisticated smart camera based systems comprise of

the following methods: plug-and-play analysis, object recognition and tracking, ob-

ject and colour categorization, alert description and identification, database incident

indexing, and seek and retrieval [29]. At the core of the smart camera node, statisti-
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Figure 2.3: Smart camera node architecture (reprinted from [29]).

cal methods are utilized to differentiate foreground moving objects from background,

tracking methods link the motion of the objects over time to generate a trajectory,

and features are extracted from the region of interest to recognize activities by using

a classifier engine as shown in Fig. 2.3 [29].

The commercially available smart camera based systems come with a monitor

along with features such as a text message on a personal digital assistant, an email,

and alarm generation [29]. A graphical user interface allows the user to set specified

criteria, boundaries, and define regions of interest, etc. The video data storage is

managed in these systems by recording video in case of an alarm generation due to

an abnormal activity. The basic paradigm of these systems is to hunt for relevant

video from a huge video data, correlate events of multiple cameras, and correlate

events to other information [3]. Thus, a smart surveillance system provides efficient

location of video of required incidents, fast tracking of perpetrator with multiple

cameras, and explores scouting activities of perpetrators prior to the incident. The

highly advanced systems also provide geo-coded mapping tools to allow the person
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(a) (b)

Figure 2.4: Marker-less model approach applications. (a) Sit to stand motion anal-
ysis between young and elderly person [4], (b) Stick figure generation for stand to
sit activity and (c) Stick figure construction for sport activities [30].

in charge to pin-point the location of the activity [3, 27,29].

2.1.2.1 Pros and Cons

In the marker-less approach, the usage of cameras is to provide information on

multiple events occurring concurrently. It alleviates the inconvenience of wearing

and remembering to wear a sensor [3]. The marker-less approaches present several

advantages such as cost effectiveness, use of conventional cameras, no requirement of

particular attire and ease of application to numerous fields, e.g., surveillance, sports,

animation, and assisted living etc. The biggest advantage in using cameras, as a

means of monitoring and providing information, is the production of richer semantic

information. The approaches using cameras for monitoring subjects can be easily

extended for several users. The only limitation of camera based monitoring is that it

requires sophisticated computer vision algorithms to track and identify the scenario

occurring in a video. This makes the algorithms complex and computationally

expensive. However, the current hardware advancements have made it possible to

implement sophisticated computer vision algorithms that are efficient. It is harder

to generate a stick figure for joint estimation and tracking, etc., using cameras as

shown in Fig. 2.4 [27, 31]. The cameras used for monitoring have limited view and

require good resolution to apply computer vision algorithms. Also, a single camera

is not enough to keep track of persons for example in public spaces and private

houses. Thus, multiple cameras are needed for complete monitoring [3, 29]. This

makes the task of monitoring subjects more complex because the computer vision
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algorithms need to perform inter-camera communication and coordination. Despite

the complexity of the task, researchers have used camera based systems which use

marker-less approach as a tool for analysing human subjects. The prime task is to

provide an alert in case of an anomaly such as intruder, restricted access to an area,

and in case of fall/injury [4, 29].

2.1.2.2 Classification of Marker-less approach

The marker-less approaches can broadly be classified into the model-free and model

based approaches [3, 4]. The model-free approach does not require a prior model

while the model based approach uses prior models. The model-free approaches use

low level features on human silhouette such as contour, convex hull, edges, etc.,

to locate region of interest. In [20, 21, 32, 33], the local maximum of the distance

curve of human contour is used to construct a star shape. The star shape yields the

extremities, i.e., body parts, of the human contour. The method in [34] and [22]

extends the method in [21] by creating two star and variable star, respectively. The

method in [35] applies heuristic rules to the human contour in order to detect body

parts. In [20], skin colour is combined with multiple contour and convex hull based

cues to detect human body parts. The model-free approach is computationally

inexpensive because it does not require any fitting of predefined models on the

human body. However, it does not accurately locate the human body parts.

The model-based approaches use two major methods, i.e, Top-down and

Bottom-up, for model-based estimation, as shown in Fig. 2.5 [36]. The Top-down

method in Fig. 2.5 (a) is an analysis-by-synthesis approach that compares a pre-

stored human body model with the image observation. It is prone to self occlusions,

computationally bulky, and requires manual initialization. The Bottom-up method

in Fig. 2.5 (b) locates and assembles individual body parts onto a human body. The

manual initialization is not required but these methods are not accurate enough.

An amalgamation of these two model based estimation methods is proposed by re-

searchers for robustness. The model-based method in [32] creates 2D stick figures

by using a Poisson equation solution and negative minimum curvature to locate

the torso, head, hand and feet. The Poisson equation solution considers silhouette

contour as a boundary and computes the random walk of all the points that are

inside the silhouette till they hit the boundary [58]. In [37], pre-stored labelled

body models are matched to the outline of human subjects to detect body parts.

A predefined skeleton model in [38] is connected to dominant points along the con-
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(a) (b)

Figure 2.5: Marker-less model based approach. (a) Top-down method, and (b)
Bottom-up methods [36].

vex hull of a silhouette contour to detect human body parts. The method in [19]

also uses a model-based method to detect and label human body parts by using

dominant convex hull points. In [4], Gauss-Laguerre transform based method is

proposed to analyse Sit to Stand motion between young and old by manually se-

lecting shoulder, hip, knee and ankle joint as shown in Fig. 2.4 (a). A predefined

model is matched to the selected joints in order to examine their trajectories. It

uses monocular vision and is extendible to stereo vision marker-less configurations.

In [39], a 2D torso model detects the torso and skin colour is used to detect hands.

The method in [40] computes silhouette skeleton and decomposes it into segments

that represents human body parts. A graph that captures the topology of these

segments is created and matched with a pre-stored 3D model of human skeleton to

label human body parts. In [30], the given joint locations (based on a predefined

model) in the training videos are matched to a test video based on anthropometric

constraints (e.g., joint locations and linkage) in order to detect and track human

body parts, as shown in Fig. 2.4 (b) and (c). This research work shows the poten-

tial of human anthropometry to detect body parts in same activities observed from

different viewpoints. The model-based approach has been considered for human

body part detection by most of the researchers due to its accuracy. For this very

reason, the present research is intended to be based on model based human body

part detection and labelling [3, 36].
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(a) (b) (c) (d)

Figure 2.6: Models for tracking human body parts. (a) Stick figure model, (b) 2-D
model, (c) 3D volumetric model, and (d) 3D surface model [3].

2.2 Human body part tracking

The model-based approaches use one of the following: a stick figure model, 2-D

model (rectangle or contour), 3D volumetric model, and 3D surface model, as shown

in Fig. 2.6 [3], to track body parts by fitting them to a 2D or 3D data of the subject.

The articulated human body model such as stick figure provides rich information on

human motion analysis as shown in Fig. 2.6 (a). It is an effective way of representing

the physical human body structure and constraining its motion. The effectiveness

of the articulated models for tracking has been shown both in 2D space and 3D

space. In some methods, a 3D model is fitted onto a 2D image for 3D joint angle

estimation [3, 41]. The volumetric 3D models represent the human body parts via

cylinders and super-quadratics, as shown in Fig. 2.6 (c) [41]. A distance metric that

minimizes the error between the observed body parts and the 2D or 3D model is

used to determine the best fit. The 3D articulated model based tracking approaches

are widely used because of the 3D nature of the human body. The 3D articulated

models in Fig. 2.6 (c) and (d) provide richer information and are more suitable to

track the human body. However, they also require specialized environment and ac-

curate data from calibrated cameras [42]. The 3D model based tracking approach

is also computationally expensive and hence not suitable for real-time applications.

Thus, many researchers use 2D models instead of 3D models for tracking as shown

in Fig. 2.6 (b). However, they are vulnerable to artefacts, occlusions, etc. There-

fore, 2D models present a challenge to develop a robust human body part tracking

method.

The human body is represented using a state vector that represents the model
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(2D or 3D) parameters. This state vector is estimated by fitting and tracking the

articulated body model on the human silhouette. Each state parameter represents

one degree of freedom, e.g., joint angle of the human model [43]. The dimensionality

of the state vector increases with the number of parameters used to define the

model. A more complex model contains more parameters which in turn increase

the computational complexity. Thus, several methods such as principal component

analysis based dimensional reduction have been proposed to reduce the state vector

by adding constraints [44]. However, these approaches limit the posture space and

are not appropriate for universal motion analysis system [43].

Human body tracking is an estimation process which is performed from one

frame to another by using a single or multiple hypotheses. In the following section,

the Kalman Filter which is based on single hypothesis (system being modelled has

one object, i.e., unimodal distribution) and the Particle Filter method which uses

multiple hypotheses (multiple objects of the system can be modelled concurrently,

multimodal distribution) is described.

2.2.1 Single hypothesis tracking

The single hypothesis tracking methods comprise of the Kalman filtering, and local-

optimization (an iterative procedure to minimize a distance function e.g., how far

a sample is from the mean of all samples). The Kalman Filter which was first

introduced in 1960 has been applied to various applications [9]. It is based on three

underlying assumptions: (a) the system being modelled is linear, i.e., the state

parameters have unimodal distribution, (b) measurements contain white noise, and

(c) noise is Gaussian in nature [9,45]. Given a history of measurements of a system,

the Kalman Filter is used to build a model for the state of the system that maximizes

the a posteriori probability of those previous measurements. This means that the

newly constructed model is based on the previous model with its uncertainty and

the new measurements with its uncertainty has the highest probability of being

accurate. In general, the Kalman Filter uses the following state description.

xk = Fxk−1 + Buk + wk (2.1)

Here, xk is an n-dimensional vector of state components and F is an n−by−n

transfer matrix, uk is a vector of control inputs, B relates the control inputs to the

state change, and wk is random noise represented as a Gaussian distribution N with
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2.2 Human body part tracking

Figure 2.7: Combining prior knowledge N(xk−1, σk−1) with the measurement ob-
servation N(zk, σk) to estimate the result N(x̂k, σ̂k) [9].

zero mean. In general, the measurement (e.g., speed of a car) of the state variable

xk is computed using

zk = Hxk + vk. (2.2)

Here, H is a matrix of measurements and vk is the measurement error represented

as a Gaussian distribution. Finally, the Kalman gain K = σ2
k/(σ2

k + σ2
k+1), with

measurement error σ, is used to predict the updated value for xk as follows.

xk = x−k + K(z−k −Hx−k ) (2.3)

In order to achieve correct estimation N(x̂k, σ̂k), the Kalman Filter starts

with what is known N(xk−1, σk−1), then obtains the new information about it

N(zk, σk), and finally, decides to change what is known based on how certain it

is about the old and new information by using a weighted combination of the old

and the new as shown in Fig. 2.7 [9]. The first assumption, i.e., system being mod-

elled is linear, of the Kalman Filter restricts its applicability to non-linear systems.

Thus, an extended Kalman Filter was proposed to cope with this limitation of the

standard Kalman Filter [9, 45]. It is a non-linear version of the standard Kalman

Filter that attempts to handle non-linearities by linearising the relevant processes.

The extended Kalman Filter fails when the initial estimate is incorrect or the sys-
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2.2 Human body part tracking

(a) (b)

Figure 2.8: (a) The unimodal (Gaussian) distribution that can be represented by
the Kalman Filter and (b) multimodal (non-Gaussian) distribution that cannot be
represented by Kalman Filter but can be represented by a set of particles whose
density approximates the represented distribution [9].

tem is incorrectly modelled. The Kalman Filter works well when the system being

modelled has a unimodel (Gaussian) probability distribution, i.e., single hypothe-

sis. However, in most real world applications this assumption does not hold true

due to the presence of occlusions or cluttered background that yield multimodal

(non-Gaussian) distribution [9, 45].

2.2.2 Multiple hypotheses tracking

The Kalman Filter cannot represent multiple hypotheses simultaneously due to the

underlying assumption that the probability distribution of the system being mod-

elled is unimodal Gaussian as shown in Fig. 2.8 [9]. Although, a set of Kalman filters

can be used to propagate multiple hypotheses, they are suitable only for linear mo-

tion and, hence, are not effective for human motion which is nonlinear due to joint

acceleration. Thus, a more advanced method known as the Particle Filter [9, 10]

addresses these limitations of the Kalman Filter and extended Kalman Filter. The

Particle Filter introduces a new parameter, i.e., the number of hypotheses (parti-

cles), that the Filter maintain at any given time. The collection of these individual

hypothesis (particles) represent parametrized Gaussian probability distributions of

the Kalman Filter.

The main idea in the Particle Filter is to approximate the posterior dis-

tribution p(xt|zt) of target state at time t by a weighted sample (particle) set

S = {(s
(n)
t , π

(n)
t )}Nn=1. Each of N particles has the state s

(n)
t (which represent the

hypothetical state of the object being tracked) and its associated weight or sampling

probability π
(n)
t . The weights are normalized such that

∑N
n π

(n)
t = 1. The posterior
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density p(xt|zt) and the observation density p(zt|xt) are often non-Gaussian.

Algorithm 2.2.1: Particle Filter Algorithm(x, z, s, π)

Construct a new weighted particle set S = {(s
(n)
t , π

(n)
t )}Nn=1 for time t

from the old weighted particle set S = {(s
(n)
t−1, π

(n)
t−1)}Nn=1 at time t− 1.

Select N particles from the set S = {(s
(n)
t−1, π

(n)
t−1)}Nn=1 to give

S = {(s
′(n)
t−1 , 1/N)}Nn=1.

Predict each particle using the dynamic model p(xt|xt−1) = s
′(n)
t−1 to give

{(s
′(n)
t−1 , 1/N)}Nn=1.

Measure and weight the particles as π
(n)
t ∝ p(zt|xt = s

′(n)
t ) to give

S = {(s
(n)
t , π

(n)
t )}Nn=1. Normalize π

(n)
t so that

∑N
n π

(n)
t = 1.

Estimate the tracking result for time t as E[xt] =
∑N

n=1 π
(n)
t s

(n)
t .

Particle filtering has three operational steps: sampling (selection), prediction,

and observation. In the sampling step, N particles are selected from the prior

probability according to the set S = {(s
(n)
t , π

(n)
t )}Nn=1. In the prediction step the

dynamic model p(xt|xt−1) is used to predict the state of the selected particles. In

the observation step, the weights of predicted particles are recomputed using the

observation model p(zt|xt). The new state is estimated based on the newly weighted

particle set. PFs can cope with non-linear dynamics and non-linear observations,

by maintaining multiple hypotheses. Managing a multi-modal density allows PFs

to handle clutter and recover from failures in visual tracking. The standard particle

filtering algorithm is described in Algorithm. 2.2.1.

The number of particles required for robust tracking is relatively large (e.g.,

50 or 100) depending on the complexity of the system being modelled [9,10]. Thus,

various improvements have been proposed to enhance the standard Particle Filter

to deal with increased complexity and reduce computational burden. The method

in [46] uses sample importance re-sampling in which the particles are drawn from

prior and assigned importance weights. Next, the particles are drawn from this im-

portance weighted particles set. In [47–50], the standard Particle Filter is enhanced

to reduce the search space (for detailed explanation see Chapter 4). In [51], the

uncertainty in the state model of the Particle Filter is adapted and balanced for

visual tracking. The method in [42] combines the Kalman and Particle Filter to

tracking lower body parts, i.e., the leg, by using a predefined 2D articulated model.
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The methods in [29,43,52] incorporate colour information to enhance the standard

Particle Filter to achieve robust tracking. In [53], mean shift method [54] which

computes local maximum is embedded with Particle Filter for tracking. A contin-

uously adaptive mean shift method in [55] has been proposed to guide the Particle

Filter for robust and efficient tracking (see Chapter 4 for further explanation).

In [56], a gravity optimised Particle Filter method was proposed which is

based on Newton’s law of universal gravitation. It uses the concept of gravity

along with weighted particles to attract nearby particles that are close to the local

maximum of the current observation. The new set of particles are replicated at

the location nearer to where the particles are supposed to move. This process

results in increased sampling efficiency and a reduction in the number of particles

required for tracking. This method was applied to track the fingers of human hand

while performing a linear motion, i.e., up and down bending of the finger. Thus,

its ability to track non-linear motion and high dimensional articulated models are

further research issues.

2.3 Activity recognition

This section reviews the state-of-the-art methods for human activity recognition. To

this aim, the existing research work on human activity recognition is categorised into

the holistic, local feature, and human model-based (prior model) or model-free (no

prior model) approach [1,3,4,11]. The holistic approach localises humans in videos

and subsequently learns activity models that capture local and global characteristics

without any notion of body parts. The local feature approach extracts descriptors

from local regions in a video to learn activity models, without any knowledge about

human positioning and human body parts. The human model-based approach fits a

2D or 3D model to locate human body parts and consequently extract information

such as body part positioning, trajectory, etc., for activity recognition.

2.3.1 Holistic approach

The holistic approach uses shape (silhouette) and optical flow information to recog-

nize activities. In [57], the human actions are represented by motion energy images

and motion history images, as shown in Fig. 2.9 (a). The motion energy images are

binary mask that signify regions of motion, and the motion history images are their

corresponding weighted representations with respect to the point in time when they
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(a) (b) (c)

Figure 2.9: Holistic approach. (a) Motion energy images and motion history images
[57], (b) Actions as space-time shape (from left to right) for Two Hand Wave, Walk,
and Run activities [58] and (c) 3D shape context descriptor (from left to right) for
Bend and Skip activities [59].

(a) (b) (c) (d) (e)

Figure 2.10: Holistic approach. (a) Bounding box, (b) Scaled and aligned bounding
boxes, (c) Optical flow, (d) Accumulation Regions and (e) Action descriptor.

occurred. The more recent images are given higher weight. In [58], human actions

are considered as three dimensional (3D) silhouettes in the space-time volume, as

shown in Fig. 2.9 (b). The space-time shapes are computed from the video scene

by utilizing background subtraction. The properties of the solution to the Poisson

equation are used to extract features such as local space-time saliency, action dy-

namics, shape structure and orientation. A similar method in [59] determines the

3D shape context, as shown in Fig. 2.9 (c), for action recognition.

Some of the other similar shape and optical flow based methods include

[12–14, 60]. In [12], an action descriptor is proposed based on aggregated local

motion estimates for human action recognition as shown in Fig. 2.10. First, the

bounding boxes are extracted to localise the subject performing human actions.

Next, these bounding boxes are scaled and aligned, and the optical flow is esti-

mated for every two frames. Finally, the optical flow is accumulated over a fixed

number of regions to create an action descriptor. A nearest neighbour classifier is
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use to recognise human actions. The method in [60] proposes a 3D motion context

descriptor for human action recognition. First, motion images similar to [57,59] are

obtained from the video sequences. Next, a motion context representation is cre-

ated for each human action by using the motion images. Subsequently, a 3D motion

context descriptor is formed for each motion context representation. Finally, all the

3D motion context descriptors are aggregated to generate one 3D motion context

descriptor to represent an action. The human actions are recognised by using proba-

bilistic latent semantic analysis and support vector machine. In [13], a shape-motion

prototype-based method is presened for action recognition. In the training phase, it

extracts shape-motion descriptors to learn action prototypes which are represented

via a binary hierarchical tree. In the testing phase, the shape-motion descriptor

is used to recognize human actions via tree-based prototype matching and look-up

table indexing. In [14], a learning-based method is proposed which uses time se-

ries of optical flow motion features for human action recognition. In the learning

stage, the optical flow motion features extracted from the given action sequences

are concatenated to construct motion curves. Each human action is represented by

a cluster of motion curves which are clustered by using a Gaussian mixture model.

In the recognition stage, the cluster of optical flow motion curves of the probe se-

quence is matched to the learned motion curves using a similarity function which

computes the minimum distance between the motion curves. The shape and optical

flow based methods are computationally expensive.

2.3.2 Local feature approach

The local feature approach uses a feature detector and feature descriptor to extract

unique attributes for human activity recognition. The feature detector determines

interest points such as corners, edges, etc. The feature descriptor encodes shape and

motion information in a local neighbourhood around the interest points. In [61], a

space-time interest point detector is proposed which detects local variations in both

space and time. It has been shown to be able to detect events such as detection

and pose estimation of walking people. In [62], various feature descriptors such as

histogram of optical flow, histogram of 3D gradient, extended Speed-Up Robust

Feature (SURF), etc., are compared.

The Scale Invariant Feature Transform (SIFT) descriptor [63] has been widely

used for recognition tasks. The SIFT descriptor is based on determining the inter-

est points (keypoints) in an image and computing a description about them using
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(a)

(b)

Figure 2.11: (a) Difference-of-Gaussian is convolved with image for each scale space
and (b) Maxima and minima of the difference-of-Gaussian images by comparing a
sample point (pixel) in 3x3 region at a scale above and below [63].

their neighbourhood pixels as shown in Fig. 2.11 and Fig. 2.12. It is computed as

follows. First, the image I(x, y) is convolved with variable-scale Gaussian G(x, y, σ)

to determine a scale space L(x, y, σ) of an image.

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.4)

where ∗ is the convolution operation in x and y, and

G(x, y, σ) =
1

2πσ2
e

−(x2+y2)

2σ2 . (2.5)

To efficiently detect keypoint locations in scale space, the difference-of-Gaussian
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(a)

Figure 2.12: SIFT descriptor computed from 16x16 neighbourhood represented by
using 4x4 quadrants described as 8 orientations, i.e., 4x4x8=128, feature vector [63].

function is convolved with the image as

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(x, y). (2.6)

where k is a constant multiplicative factor of scale. The keypoint is determined

by comparing each sample point of the difference-of-Gaussian images with its eight

neighbours, i.e., in a 3x3 region, in the scale above and below, i.e., 26 neighbours.

A keypoint is selected if it is larger or smaller than all the neighbours. A keypoint

descriptor is created by first computing the gradient m(x, y) and orientation θ(x, y),

m(x, y) =
√

(L(x + 1, y) − L(x− 1, y))2 + (L(x, y + 1) − L(x, y − 1))2 (2.7)

θ(x, y) = arctan
((L(x, y + 1) − L(x, y − 1))

(L(x + 1, y) − L(x− 1, y)))
. (2.8)

of each image sample point (pixel) in a 16x16 neighbourhood of pixels around the

keypoint. The orientations in the 16x16 neighbourhood is accumulated into 4x4

quadrants where each quadrant is represented using a 8 orientation histogram. This

creates the 4x4x8= 128 element feature vector, i.e., SIFT descriptor, for each key-

point as shown in Fig. 2.12.

Recently, researchers focused more on the bag of word or bag of features

methods based on local features for activity recognition [15, 64–67]. This method

involves the following steps: (a) feature extraction, (b) learning a visual vocabulary
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(dictionary), (c) quantifying features using visual vocabulary, and (d) represent

an activity by frequency of visual words. The 3D (SIFT) descriptor is proposed

in [64] for action recognition. The concept is similar to applying multiple 2D SIFT

descriptors [68] to several frames of a video sequence to create one 3D SIFT with

its 3D sub-volumes. A bag of words method using the proposed 3D SIFT is used

to represent each action. A word co-occurrence based criteria is used for human

action recognition. The histograms of gradient and optical flow descriptors are

presented in [65] to determine local motion and appearance. The histograms are

accumulated in the space-time neighbourhood of the interest points [61] by dividing

the local region into a grid of cells. A spatio-temporal bag of features representation

is constructed for human action classification. In [66], two local descriptors, i.e.,

SIFT and cuboids, are used to represent each action by using a bag of words method.

A multi-class support vector machine is used for classifying human actions. In [15],

the kinematic features from the optical flow extracted from videos are converted into

kinematic modes using principal component analysis. These kinematic modes are

then used in a bag of kinematic mode representation for human action recognition.

In [67], a novel method is proposed to learn semantic vocabulary (bag of words) for

efficient and robust human action recognition as shown in Fig. 2.13. In the training

phase, low-level spatio-temporal features are extracted around interest points in

videos. These spatio-temporal features are clustered to obtain traditional video

word vocabulary which is represented as video-word matrix, i.e., mid-level features.

Next, diffusion maps ( see [69] for detail) are used to create semantic words, i.e.,

high-level features. A new action representation is formed by computing histogram

of semantic words, i.e., bag of semantic words. The training videos are used to

learn action models by using support vector machine. In the testing phase, for an

unknown video the same procedure is repeated to generate bag of semantic word

which is compared with the learned action model for human action recognition.

2.3.3 Model-free or Model-based approach

The model-free or model-based approach detects humans and then extracts shape

and motion information from the silhouette contour to recognize human activities.

The model-free approach in [21,22,34] uses star based methods to represent various

human postures, as shown in Fig. 2.14 (a), and subsequently extracts features for

human activity recognition. In [21], a one-star model is created to represent human

posture. A human motion analysis method is proposed to extract two motion cues,
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(a)

Figure 2.13: (a) Bag of semantic words for human action recognition [67].

i.e., the leg frequency and torso angle, for recognising the Walk and Run activity.

This method uses the discrete Fourier transform of the filtered and autocorrelated

leg frequency to discern the Walk and Run activity. The method in [34] proposes

a two-star model to extract five features for detecting fence climbing action, i.e.,

x coordinate of centroid, y coordinate of centroid, y coordinate of centroid above

fence, two or more extreme points above fence and two or less extreme points under

fence. A hidden Markov model (HMM) is trained to recognise fence climbing action

based on these five features. In [22], a variable-star method is proposed to robustly

extract the extremities of the human contour. Subsequently, the human contour

is evenly divided into twelve sectors to compute an shape context descriptor which

is simply a vector indicating if there is an extremity in each sector. Finally, the

feature vectors built from the detected extremities are used by the HMM for human

action recognition. A similar method that combines skin colour information and

various cues from human contour is proposed in [20]. In [70], convex deficiencies,

i.e., the difference between the human contour and its convex hull, are proposed

to represent human actions. The centroids of the convex deficiencies over time is

grouped to extract five features. A human action is recognised by matching the

similarity between two sets of 5D feature vectors. These methods work in real-time,

however, they lack good accuracy.
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(a) (b)

Figure 2.14: (a) Model-free approach that uses extremities as limb points [21,22,34],
(b) Model based approach that uses a pre-defined body model to locate limbs [71].

The model based approach in [19, 33, 38] fits a body model, as shown in

Fig. 2.14 (b), and then extracts features from this fitted model for activity recog-

nition. In [33], a negative minimum curvature, i.e., points of maximally concave

extremities, are used to locate the head. Next, the Poisson equation is used to de-

termine the torso. Finally, a 8D feature descriptor extracted from the body model

is utilized with the hidden Markov model for activity recognition. The method

in [71] uses motion and shape features extracted from the fitted body model with

the continuous hidden Markov model for event based analysis of human activities.

The shape features include area and the ratio of the bounding box containing the

subject.

The holistic methods that extracts shape and optical flow information are

computationally expensive and require intensive training. In addition, both shape

and motion information are required for accurate recognition of very similar ac-

tivities. The local feature methods require intensive training, which makes them

unsuitable for real world applications. Furthermore, they need large number of

image frames to learn enough information to distinguish between very similar activ-

ities. In contrast, the model based or model free approach are more efficient than the

holistic and local feature approaches but are less accurate for human activity recog-

nition. The model-based approach is more accurate as compared to the model-free

approach. However, it requires a fitting procedure and manual initialization which

are computationally expensive. In addition, the highly accurate detection of human

body parts in various activities that contain mild and severe self-occlusion continues

to be a challenging issue. Furthermore, both approaches confuse very similar activ-

ities. Therefore, in this research an efficient and robust human body part detection

is explored to recognise very similar human activities.
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Figure 2.15: Complementary features and different challenges of Weizmann and
MuHAVi datasets.

2.4 Datasets

The Weizmann and MuHAVi data sets are selected for SBP labelling and track-

ing because of their complementary features (e.g., low versus high resolution etc.)

and the different challenges (e.g., rapid movements of limbs versus rapid change

of posture et) as summarized in Fig. 2.15. In the past few years several publicly

available human activity data sets have emerged that provide various challenges

e.g., very similar activities, illumination variation, varying clothing, complex back-

grounds, multiple actors, person-to-person interaction, human object interaction,

multiple views etc. (see [72] for details on datasets). Each of the publicly available

human activity data set contains one or more of the above-mentioned challenges.

In addition, the human activity data sets also varies with respect to application

scenario e.g., industrial setting (overhead camera generating top view), assisted liv-

ing, surveillance etc. Therefore, the state-of-the-art human activity data set varies

with respect to the type of challenge it presents and the application scenario. As

identified in the literature review most of the human activity recognition methods

confuse very similar activities. Both data sets contain easily confused activities and

self occlusion of limbs, background illumination variation, varying clothing and full

body view of subject. The MuHAVi data set also contains different views. These

challenges make both data set suitable for human activity recognition.
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Figure 2.16: Weizmann data set. Jack, Run, Walk and Side from top to bottom
row [58].

2.4.1 Weizmann data set

The Weizmann data set [58] comprises of ninety low-resolution 180×144 video se-

quences of various subjects performing daily activities, i.e., Walk, Run, Side, Jump,

Skip, Pause Jump, Bend, Jack, Two Hand Wave and One Hand Wave. Each video

sequence consist of about 80 to 120 frames. An example of video sequences and

extracted silhouettes from the Weizmann data set is shown in Fig. 2.16. The silhou-

ettes of Weizmann data set are good on average, however, they contain imperfect

silhouettes in many activities.
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Figure 2.17: MuHAVi data set. Walk, Run, Collapse and Kick from top to bottom
row [73].

2.4.2 MuHAVi data set

MuHAVi data set [73] comprises of eight high resolution 720×576 primitive activity

classes, i.e., Collapse, Standup, Walk, Run, Turn, Guard-to-punch, Guard-to-kick,

Punch, and Kick, of two actors with two samples with two different views (camera

3 and camera 4), i.e., a total of eight samples per activity. Each video sequence

consist of 50 to 80 frames. An example of these activities is shown in Fig. 2.17. The

two views, i.e., camera 3 and camera 4, is shown in Fig. 2.18
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Figure 2.18: MuHAVi data set two views, i.e., camera 3 (left column) and camera
4 (right column) [73].
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Chapter 3

Human Body Part Detection

and Labelling

3.1 Introduction

The marker-less approach to human motion analysis uses video-based methods to

detect and track positions of significant body points (SBPs) located at the convex

points, i.e., the local maxima, of the silhouette contour. Applications include track-

ing, stick figure generation, animation for cartoons and virtual reality, imitation

of human action by robots and action recognition for assisted living, surveillance,

etc., [4,20]. The approach offers advantages, e.g., cost effectiveness, no requirement

of particular attire and ease of application [27,31]. The marker-less approach to hu-

man motion analysis can broadly be classified into the model-based and model-free

approaches. The model-based approach employs a prior model. The model-free ap-

proach estimates the motion of regions that enclose relevant anatomical landmarks

without prior information about the subject’s shape [4]. The former requires fit-

ting, manual annotation, and predefined models which are time consuming while

the latter tend to be less accurate.

This chapter presents a marker-less method, which uses Implicit Body Mod-

els (IBMs), that does not require a manual annotation of SBPs, training phase

(learning a classifier), or fitness procedure as illustrated in Fig. 3.1. IBMs pro-

vide anthropometric, geometric, and human vision inspired constraints for labelling

SBPs in activities observed from a profile view and performed by subjects of differing

anthropometric proportions. The whole human body is considered as an inverted
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Figure 3.1: Block diagram of the proposed method versus related approaches.

pendulum model and ellipse fitting is used to compute the global angle in order to

classify the Stand, Sit, and Lie postures. The contour moments are used to find

the angle between the principal and vertical axis to provide cues for selecting the

best IBM. The convex hull [9] of the contour is utilized to determine the locations

of SBPs across time. The versatility of the proposed method is demonstrated in a

number of challenging activities on the low and high resolution video data sets.

3.2 Literature review

3.2.1 Model-free approach

The body segmentation and posture estimation method in [20] is model-free and

locates convex points on the contour at the local maxima of the distance curve of

the silhouette contour pixels. The principal and minor axes of the human body,

their relation with the silhouette contour, relative distance between convex points,

and convex point curvature are used as rules to label convex points as SBPs. This

method uses the head point to determine the location of feet, however, an inaccurate

head point localization may lead to inaccurate feet point. It also ignores the knee

point and does not present quantitative evaluation of labelled SBPs. The Star

skeletonization method [21] is also model-free and recognises Walk and Run from

the frequency of leg and torso angles during motion. It does not label local maxima

as SBPs.
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3.2.2 Model-based approach

A model-based modified Star skeleton method [32] produces stick figures from

monocular video sequences and is extended in Connectivity Based Human body

Modelling (CBHM) [33] by using a modified solution of the Poisson equation to

obtain torso size and angle. It uses negative minimum curvature to locate the head,

and nearest neighbour tracking to find the hand and feet. The local maximum

method used in [20, 21, 32, 33] to identify extremities within the distance curve is

sensitive to silhouette contour and these extremities are not always identified due to

self occlusion. Furthermore, a smooth distance curve and self occlusion may result

in missed local maxima. The method in [38] selects dominant points along the con-

vex hull on a silhouette contour and utilises prior knowledge of body-ratio within

the head, and the upper body and lower body segments to identify SBPs. The body

parts are connected to a predefined skeleton model via its centre to adapt it to the

subject’s posture. However, the criteria for labelling convex points as SBPs are not

clearly presented in [38]. This method is extended in [71] for activity analysis and

3-dimensional (3D) scene reconstruction.

First Sight [37] produces stick body parts of a subject performing complex

gymnastic movements by matching a pre-stored labelled body model with an outline

of a current image of the subject. The method in [74] generates an elaborate stick

figure by a manual selection of anatomical landmarks, body ratios, ratio pruning,

and an initial stick figure.

The W4 system [19] classifies a posture into Stand, Sit, Crawl, or Lie, then

classifies the postures into front/back, and left-side, and right-side perspectives using

vertical and horizontal projection histograms of its silhouette. SBPs are identified

using the vertices of convex and concave hulls on the silhouette contour. A topolog-

ical model is projected onto the contour to label SBPs. The quantitative accuracy

of the labelled SBPs is not presented. This system is computationally expensive.

In [75], the Discrete Fourier Transform (DFT) is applied to the vertical and hori-

zontal histograms of the silhouette. A neural fuzzy network is then used to infer

postures from magnitudes of significant DFT coefficients and length-width body

ratio. SBPs are not labelled in [75]

In [39], a 2D model combined with the Particle Filter is used to detect the

torso, and colour information is used to detect the hands. A posture is recognized

by the nearest mean classifier that assigns to observations the label of the class

whose mean is closest to the observation. However, initial camera calibration and
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use of 500 particles to track only torso and hand limit its application in real time.

The method in [35] uses heuristic rules with contour analysis to locate SBPs, and

employs colour information and the Particle Filter for robust feature tracking. It

has only been applied to subjects in the Stand posture. The segmentation of a

silhouette contour length into portions is inadequate for activities such as Walk,

Crawl, and Bend due to variations in contour lengths. The use of a Particle Filter

with 1000 particles also decreases the speed of computation.

In [76], a part appearance map and an anthropometry-based spatial con-

straint graph cut are used to locate scope of body parts such as torso, head, arms,

and legs. In [77], human body is segmented into parts, and pose is estimated using

a combination of joint pixel-wise and part-wise formulation. Each pixel is assigned

to an articulated model using a histogram of gradients. This model is segmented

into body parts using a given set of joint positions. However the locations of body

parts are not evaluated in these methods.

The pose estimation framework in [78] uses a two layered random forest

classifier to localise joints. The first layer classifies the body parts, and the second

incorporates the body parts and their joint locations to estimate the pose. In [79]

articulated body parts are detected by first finding the torso and then performing a

fitness procedure to locate the remaining body parts. It is computationally expensive

with no occlusion handling ability.

The recent introduction of the low-cost depth camera has motivated re-

searchers to utilise depth images. In [80], the 3D pose is estimated from a single

depth image. The human body is divided into a set of parts and a random forest is

employed to compute the probability of each pixel belonging to each part. The 3D

joint locations are then independently estimated from these probabilities. A similar

method in [81] is applied to video images from multiple views. Random forest is used

to assign every pixel a probability of being either a body part or background. The

results are then back-projected to a 3D volume. Corresponding mirror symmetric

body parts across views are then found by using a latent variable, and a part-based

model is used to find the 3D pose. In [82], a local shape context descriptor is com-

puted from edges obtained from depth images to create a template descriptor of

each body part category, i.e., head, hand, and foot. A multivariate Gaussian model

is employed on the template descriptor to compute the probability of each category.

A greedy algorithm then finds the best match to identify the body parts. The use

of multi-view and depth images are not within the scope of this thesis.
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3.3 Foundation of proposed framework

The human body has no fewer than 244 degrees of freedom [83] and can attain

a variety of postures due to its high dimensionality. Anthropology reveals that

body dynamics are affected by age, ethnicity, class, family custom, sex, talent,

circumstance, and preference [84–86]. However, empirical studies have revealed

that these variations are not arbitrary [86, 87]. Moreover, human actions are also

influenced by psychology, society, and culture. Thus, the sheer range and complexity

of human actions make developing automated SBPs labelling algorithm a daunting

task.

Human body proportion has been widely studied with applications in en-

gineering, ergonomics, and computer vision [86]. By using the 5th-95th percentile

values of body proportion, 90 percent of the world population can be covered [5,6].

Anthropometry has only been used to detect significant body points in the Stand

posture in a semi-automated manner, since its application in complex actions is not

an easy task [7, 8]. Anthropometric transformations do not conform to any known

laws, it is thus not possible to formally define invariant properties. A functional

definition of anthropometric transforms is presented combining anthropometric, ge-

ometric, kinesiology, and human vision (heuristic) inspired constraints, to provide

six IBMs for robust labelling and tracking of SBPs. The six IBMs cover most ac-

tions, activities, and range of motion performed by human from a profile view (see

Section 3.5).

In this chapter, SBPs are labelled as Head (H), Shoulder (S), Arm (A), Knee

(K), Feet (F). Each SBP abbreviation can be considered as a vector which has a 2D

position, i.e., H = (xH , yH), A = (xA, yA) and F = (xF , yF ). Here, the superscripts

represent the abbreviations of SBPs. The current and previous position of a SBP

is denoted as H(t) = (xHt , yHt ) and H(t − 1) = (xHt−1, y
H
t−1) respectively. Subscript

refers to a specific entity, e.g., xc, xcv and xnr represent the x coordinate of a centre,

convex point, and normalised convex point, respectively.

3.3.1 Implicit Body Models (IBMs)

Several anthropometric studies reveal that in the Stand posture the head length is

approximately one-eighth the total length of the human body [85,88,89]. The body

segment length as a fraction of human body height (1Q) is shown in Fig. 3.2 (a),

where 8×0.13Q ≈ 1Q [89]. These ratios are used to provide ranges of eight segments
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(a) (b)

Figure 3.2: (a) Body segment lengths as a fraction of the body height (1Q); (b)
Sitting height measured form head to seated buttocks [88].

to label SBPs in the Stand posture. The human body maintains an approximate

Stand posture in activities such as Walk, Run, Skip, etc. However, these activities

induce motion in the vertical plane of the human body which is compensated for

by selecting a longer range from the eight segments providing accurate labelling

and tracking of SBPs. Thus, the Stand body model is divided into seven segments

(G1-G7) as shown in Fig. 3.3 (a) (see Section 3.4.1.4).

Anthropometric studies show that in the Sit posture the thigh becomes hor-

izontal to the ground and human body height decreases (i.e., head length is not

one-eighth the total length of human body) [6, 88] as shown in Fig. 3.2 (b). As a

result, the Sit posture cannot be divided into eight segments based on empirical

anthropometric studies. Note that the body part positioning, (i.e., Head, Shoulder,

Arms, Knee, and Feet above each other, respectively) is somewhat maintained in the

Sit posture [88]. This problem is resolved by finding the relationship between the

segmentation of the Sit and Stand posture based on anthropometric studies [6,88,89].

According to Fig. 3.2 (a) and (b)

ΓH = 1Q− SH −KH = 1Q− 0.52Q− 0.285Q = 0.195Q (3.1)

where ΓH and KH are respectively the thigh length and knee height in the Stand

posture. SH is the sitting height (i.e., measured from head to buttocks) in the Sit

posture [88].
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(a) (b)

(c)

Figure 3.3: IBMs for Head (H), Arm (A), and Feet (F) SBP labelling and anthro-
pometry based segmentation [G1-G7] (see Section 3.4.1.4 Table 3.3) of silhouette
contour using bounding rectangle minimum (ubr, vbr) and maximum points (wbr, hbr)
for: (a) Stand (α activities in Table 3.1, convex hull in shaded region); (b) Sit; and
(c) Lie.
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The number of segments is

Nseg =
8(1Q− ΓH)

Q
=

8(1Q− 0.195Q)

Q
≈ 6. (3.2)

By substituting (Eq. 3.1) in (Eq. 3.2), for the Sit posture Nseg should be six, hence,

the Sit body model is divided into six horizontal segments (G1-G6) as shown in

Fig. 3.3(b). The Lie body model is considered as the Stand body model rotated by

90◦ based on geometry, thus it is divided into seven vertical segments (G1-G7). The

lie body model is further divided into five horizontal segments (G1-G5) to account

for head leaning [90, 91] in the sagittal plane as shown in Fig. 3.3(c). These three

IBMs can be used to label SBPs in cyclic activities (e.g., Walk, Side, and Skip), and

in the Stand, Sit and Lie postures. In all of these activities, anthropometric body

proportions and part positioning are somewhat maintained. However, in activities

such as Bend, Wave, Punch, and Kick, the anthropometry based positioning of body

parts/points is not maintained, i.e., the hand goes above/near the head (in Wave,

Punch) or below the knee (in Bend), and the feet go above the knee and centre of

contour (in Kick) [5, 90–92].

The IBMs are defined based on a range of motion obtained from anthropo-

metric [5,91,92] and kinesiology studies [90], human geometry and vision constraints.

They are used to label and track SBPs in activities that do not exactly maintain

anthropometry (see Section 3.4.1.4 and Section 3.4.3.4 for details). The Wave IBM

in Fig. 3.4(a) covers a range of motion of shoulder, arm, and elbow. The Kick IBM

in Fig. 3.4(b) covers a range of motion of knee and leg. The Sit body model slightly

overlaps with the bend posture. Finally, the Bend IBM in Fig. 3.4(c) covers a range

of motion of trunk. These models cover a diverse range of motions of the shoulder,

hand, arm, elbow, knee and hip mentioned in kinesiology studies and as shown in

Fig. 3.5 [90].

3.3.2 Inverse pendulum and contour moments

Humans are bipeds and locomote over the ground with the majority of the body

mass located two third of the body height above the ground. Due to this reason the

whole human body can be represented as an inverted pendulum which is capable

of moving in anterior-posterior (forward-back movement) and medial-lateral (side-

to-side movement) directions as shown in Fig. 3.6 (a) and Fig. 3.6 (b) [93–99]. In a

simple pendulum, it is assumed that motion happens only in two dimensions, i.e.,
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(a) (b)

(c)

Figure 3.4: IBMs based on cues in Section 3.4.1.4 with Smart Search Algorithm (see
Section 3.4.3.4) for locating and labelling Head (H), Arm (A), and Feet (F) SBPs
in β activities (see Table 3.1): (a) Wave; (b) Kick and (c) Bend.

(a) (b) (c) (d)

Figure 3.5: Front and Side view: (a) Elbow range of motion, (b)-(c) Arm range
of motion and (d) Leg range of motion based on anthropometric and kinesiology
studies [90–92].
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(a) (b)

Figure 3.6: (a) Body planes and orientation based on anatomy [91, 92] and (b)
Human body inverse pendulum model draws an arc in Walk motion [93].

Figure 3.7: The global angle θ and angle ϕ from the vertical axis of the inverse
pendulum human body model.

the point of mass does not draw an ellipse but an arc. This conjecture allows us to

apply an inertia ellipse (referred in this thesis as 2D ellipse fitting procedure) on the

inverted pendulum human body model as shown in Fig. 3.7.

The global angle θ and angle ϕ of the human body from the vertical, re-

spectively, are computed using ellipse fitting and contour moments. The contour

moment of an image f(x, y) is defined as [100,101]

mpq =

∞∑
−∞

∞∑
−∞

xpyqf(x, y)dxdy (3.3)

where are respectively the x-order and y-order (whereby order means the power to

which the corresponding component is taken in the integral) moment of the contour,

and x and y are coordinates. The centre of the ellipse enclosing the human body is
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an approximation of the centre (xc, yc) the human contour mass, i.e.,

xc =
m10

m00
, yc =

m01

m00
(3.4)

where m10, m01, and m00 are respectively the first and zero order spatial moments.

The centre (xc,yc) is used to calculate the central moment

σ̂pq =

∞∑
−∞

∞∑
−∞

(x− xc)
p(y − yc)

qf(x, y)dxdy. (3.5)

The global angle of the human body is the angle of the axis with the least

moment of inertia in degree or radian as shown in Fig. 3.7, i.e.,

θ =
1

2
tan−1 2σ̂1,1

σ̂2,0 − σ̂0,2
(3.6)

where σ̂1,1 is the first order central moment, and σ̂2,0 and σ̂0,2 are the second order

central moments [100, 101]. The angle of the human body from the vertical using

contour moments is computed as ϕ = |90− θ(180/3.14)|. Both the global angle and

the angle of human body from the vertical vary over time t, i.e., θ(t) and ϕ(t).

3.4 The proposed framework

A split approach is developed to find the best IBM for labelling the convex points

on a silhouette contour as SBPs. Fig. 3.8 shows the main components and work flow

of the proposed framework. A hierarchical categorization of human posture (Stand,

Sit, Lie), movements (Right to left, Left to Right, Stand to Lie, Lie to Stand) and

the human body itself (Upper body and lower body, Right side and left side) is done.

Stand, Sit, and Lie postures are categorized by considering the human as an inverse

pendulum and using contour moments. In the Stand, Sit and Lie postures, Upper

body and Lower body, and Right side and Left side are respectively distinguished

based on the transverse and sagittal planes as shown in Fig. 3.3.

Initially the Stand to Lie or Lie to Stand movement is ascertained (see Sec-

tion 3.4.1). The human posture is categorised in Stand to Lie and Lie to Stand

movements by using the global angle. Right to Left, Left to Right, and no move-

ment are discerned based on the subject’s location in the first frame. In Stand to

Lie, for Stand, the movement is further divided into α and β (see Table 3.1).
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Figure 3.8: The components and work flow of the proposed framework for Significant
Body Point (SBP) labelling.
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Table 3.1: Acronyms for activities.

Type Activities (α)

1 Walk

2 Run

3 Skip

4 Side

5 Jump

6 Turn

Type Activities (β)

7 Jump-in-place-on-Two-Legs/Pause Jump

8 Bend

9 One Hand Wave

10 Two Hand Wave

11 Jack

12 Standup

13 Collapse

14 Kick

15 Punch

16 Guard-to-Kick

17 Guard-to-Punch

α refers to activities with Right to Left or Left to Right movement, e.g., Walk, Run,

Skip, Side, Jump, Turn. β refers to activities in which the subject remains almost

at the same place and has Right side or Left side motion, e.g., Jump-in-place-on-

two-legs, Bend, One Hand Wave, Two Hand Wave, Jack, Standup, Collapse, Kick,

Punch, Guard-to-Kick, Guard-to-Punch.

The global angle and the bounding rectangle are respectively used in α and β

to select the best IBM for labelling anatomical landmarks. β is further categorized

into β̇ and β̈ (see Section 3.4.1.4) to select the appropriate IBM. For any action,

the convex points of a human contour are normalized with respect to the bounding

rectangle and then filtered. The criteria summarized in Section 3.4.3 from the

proposed IBMs are used to label these convex points as SBPs in Stand to Lie, Lie to

Stand, α, and β movements. Particle Filter (or Motion flow) is used for prediction

during occlusion. Finally, the SBPs are connected to generate stick figures for

various actions and activities.

3.4.1 Silhouette feature extraction

As in [102] a contour is traced using the Freeman chain code (using 8-way con-

nectivity) [103] as shown in Fig. 3.9 on the silhouettes of the Weizmann [58] and

Multi-camera Human Action Video (MuHAVi) data sets [73] (see Section 3.5). A
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(a) (b)

Figure 3.9: (a) Freeman Chain Code contour (b) Chain direction.

Figure 3.10: Trunk extension and flexion range based on biomechanical basis [92])
of human movement.

least-squares fitness procedure is used to compute the ellipse global angle θ(t) based

on (Eq. 3.6) that best approximates the contour.

3.4.1.1 Human movement categorization

The maximum flexion and extension range of the trunk in the Stand posture, i.e.,

140◦, as shown in Fig. 3.10 [92], is used to set the initial global angle θstart parameters

such that 255 − 115 = 140◦. This initial global angle is only checked in the first

frame of the input video sequence. It is a metric to ascertain the preliminary state

of the subject’s posture by determining whether the body movement starts from

Stand, i.e., Stand to Lie, or from Lie, i.e., Stand to Lie, according to

γ3 =
{

Stand if 115 ≤ θstart ≤ 255 (3.7)

γ4 =
{

Lie if 115 ̸≤ θstart ̸≤ 255 (3.8)
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Table 3.2: Acronyms for body movement and body side.

Type Body movement (γ)

1 Right to Left

2 Left to Right

3 Stand to Lie

4 Lie to Stand

Type Body side (δ)

1 Upper body

2 Lower body

3 Right side

4 Left side

(a) (b)

Figure 3.11: (a) α significant movement from right to left, and left to right; (b) β
no significant movement .

where body movements γ3 and γ4 are described in Table 3.2.

α and β are respectively determined as shown in Fig. 3.11 using

α =
{

γ1|0.25Iw > xc or γ2|xc > 0.75Iw (3.9)

β =
{

0.25Iw < xc < 0.75Iw. (3.10)

where body movements γ1, and γ2 are described in Table 3.2. Iw and Ih are the

frame width and frame height, respectively.

3.4.1.2 Human posture categorization

Standard deviation of the global angle has been used to discriminate human shapes,

posture based events, and activities [104]. In [20], the difference in angle between the

principal and vertical axes is used to detect SBPs but not for posture classification.

Stand, Sit, and Lie postures are categorized by considering human as an

inverse pendulum and using contour moments. Biomechanical analysis of human
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Figure 3.12: Biomechanical analysis of trunk flexion due to rotation of lumbar
vertebrae and pelvic [92].

(a) (b)

Figure 3.13: Stand, Sit, and Lie posture classification using ellipse global angle θ(t)
(see Section 3.4.1.2) in movements from: (a) Stand to Lie and (b) Lie to Stand.

spine show that a complete flexion of the whole trunk occurs due to a rotation of

the lumber vertebrae and pelvis, when the difference between the vertical and axis

of human body rotation is greater than 50◦ [92] as shown in Fig. 3.12 [92]. A 60◦

variation in global angle is set to differentiate between the Stand and Lie posture

for Stand to Lie.

The reference global angle for Stand is set to 180◦ in Fig. 3.13. A flexion of

more than 60◦ from the reference in clockwise or anti-clockwise direction is consid-

ered as the Lie posture, i.e., Lie = 180 ± 60 = 120◦ or 240◦. The human body can

flex and extend at a range of 110 − 140◦ [92] while maintaining a somewhat Stand

posture as shown in Fig. 3.10. This yields a variation of 40-70◦ from the reference

global angle with an average of 55◦. Thus, the range of angle for the Stand posture

is set to be 215 − 155 = 60◦, i.e., Stand = 180 + 35 = 215◦ or 180 − 25 = 155◦ as
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Figure 3.14: Stand, Sit, and Lie posture orientation and categorization concept.

shown in Fig. 3.13 (a). The disproportionate division of this range is to cater for

the clockwise and anti-clockwise directions leaning ability of the human body while

in the Stand posture. Sit posture is categorised in the remaining range of angle for

clockwise and anti-clockwise directions. It also encompasses intermediate posture

such as Bend, manoeuvre from Sit to Lie, and vice versa.

The range of global angle for Stand in Lie to Stand Fig. 3.13 (b) is kept the

same as Stand to Lie, i.e., 215 − 155 = 60◦. However, in trying to stand from Lie,

the body leans forward and the subject remains in intermediate posture (Sit) for

a longer duration. Thus, a global range of 60◦ is set for the Sit posture in Lie to

Stand, i.e., 155 − 95 = 60◦. The Lie posture is categorized in the remaining range

of global angle for clockwise and anti-clockwise directions. Fig. 3.13 illustrates the

resulting division of ellipse quadrant used to categorise postures for Stand to Lie

and Lie to Stand. A mirror reflection of Fig. 3.13 is used for the opposite direction

of Right side and Left side for Stand to Lie and Lie to Stand. Fig. 3.14 shows the

Stand, Sit, and Lie posture orientation and categorization concept. Thus, the IBM

for α activities is selected based on these ranges of global angle.

3.4.1.3 Human body side categorization

The human body side is categorized into Upper body and Lower body, and Right

side and Left side based on centre location as shown in Fig. 3.15 using

Stand, Sit|δ1 < yc & δ2 > yc & δ3 < xc & δ4 > xc

Lie|δ1 < xc & δ2 > xc & δ3 > Cy & δ4 < yc
(3.11)

where body sides δ1, δ2, δ3 and δ4 are described in Table 3.2.
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(a) (b) (c)

Figure 3.15: Human body side categorization (a) Stand, (b) Sit, and (c) Lie.

3.4.1.4 Body part segmentation

The ellipse fitting procedure used in [20] provides approximations, i.e., not all the

body contour points are enclosed by the ellipse as illustrated in Fig. 3.7. The bound-

ing rectangle is used to enclose contour, and obtain its minimum and maximum

points, i.e., Pmin = (ubr, vbr) and Pmax = (wbr, hbr). ubr and vbr are respectively the

starting x and y coordinates of the bounding rectangle. wbr and hbr are respectively

the width and height of the bounding rectangle. These points represent the size of

the silhouette contour, and are used to divide the body into segments [G1-G7] using

anthropometric information [85] (see Section 3.4.3) defined for IBMs in each of the

Stand, Sit and Lie postures as illustrated in Fig. 3.3. The difference between two

segments (which depends on the number of segments Nseg) is

Dseg = (Pmax − Pmin)/Nseg (3.12)

where Nseg=7,6,5 and Dseg=30,21,22 pixel for horizontal segmentation of Stand, Sit

and Lie, respectively, and Nseg=7 and Dseg=30 pixel for vertical segmentation of

Lie. hbr and vbr, and wbr and ubr are used in (Eq. 3.12) for horizontal and vertical

segmentation, respectively. The normalised segments G[g] are determined using

G[g + 1] = Dseg × (g + 1)/(Pmax − Pmin), ∀g ∈ 0 : Nseg (3.13)

where g = 0 and g = Nseg respectively correspond to the minimum and maximum

points of the bounding rectangle as shown in Fig. 3.3. Table 3.3 shows the normalised

segmentation values for the Stand, Sit, and Lie posture fixed for all the experiments.

The bounding rectangle along with the angle ϕ(t) from the vertical and global
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Table 3.3: Normalised segment values for Stand, Sit and Lie IBM.

Model G1 G2 G3 G4 G5 G6 G7

Stand 0.147 0.295 0.443 0.591 0.738 0.886 1

Sit 0.164 0.328 0.492 0.656 0.742 1 -

Lie 0.194 0.388 0.582 0.776 1 - -

Figure 3.16: The intermediate human body postures.

angle θ(t) are used to provide cues towards selecting the best IBM for β movements.

β is divided into β̇ and β̈ respectively for 0.7hbr > wbr and 0.7hbr < wbr. Thus,

β =


Wave if β̇ and SSA

Kick if β̈ and 2 ≤ ϕ(t) ≤ 15 and SSA

Bend if β̈ and 170 > θ(t) > 190

and |H − F | < 1.5Dseg and SSA.

(3.14)

The intermediate postures shown in Fig. 3.16 are selected by Wave IBM for

labelling, since the subject has yet to attain any defined posture. The Punch action

is similar to throwing a ball involving late cocking, acceleration, and follow through.

In follow through, the arm moves across the body in a diagonal manner and as a

result the angle ϕ(t) of body from the vertical is quite large [92]. Punch action in

β̈ is labelled using Wave IBM when ϕ(t) > 15. The range of ϕ(t) in Kick IBM is

in between the Stand posture (with tolerance for leaning) and the Punch action.

The global angle θ(t) are 170 and 190, respectively, for Left and Right Bend. The

Bend IBM criteria is formulated based on human vision and kinesiology. The Smart

Search Algorithm (SSA) in Section 3.4.3.4 uses (Eq. 3.14) in labelling SBPs in Wave,

Kick, and Bend IBM.
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3.4.2 Silhouette feature reduction

The convex hull method [105] is used to determine SBPs which are located at convex

points of a contour as shown in Fig. 3.3 (a), where the line surrounding the silhouette

is its convex hull and the shaded regions are its convexity defects. The convexity

defects yield a number of convex points on contour which are marked as Head (H),

Arm (A), Feet (F), etc. using the IBM criteria in Section 3.4.3 and as illustrated in

Fig. 3.3. The convex points (xcv, ycv) are normalised with respect to their bounding

rectangle to increase the computational speed as follows

xnr =
|xcv − ubr|

wbr
, ynr =

|ycv − vbr|
hbr

(3.15)

within [0,1]. The Euclidean distance between convex points is computed as

DTcv (i) =

√
(cxcv − pxcv)2 + (cycv − pycv)2 (3.16)

where (cxcv, cycv) and (pxcv, pycv) respectively denote the current and previous con-

vex points, and i is the number of convex points. Convex points are close to each

other in a high resolution video frame but further apart in a low resolution one.

This is because in high resolution there are more frequent and sharper edges which

will results in more convex points. A threshold Th which is proportional to the

frame width Iw, frame height Ih and resolution factor Υ are used to remove nearby

convex points, where

Th = IwIhΥ (3.17)

and Υ (determined experimentally) is fixed as follows:

Υ =


0.05 if Iw, Ih ≤ 200

0.007 if Iw, Ih ≥ 400

0.01 if 200 < Iw, Ih < 400.

(3.18)

A convex point (xcv, ycv) is selected for labelling by first checking if DTcv > Th,

where Th is determined by using (Eq. 3.17) and (Eq. 3.18).

3.4.3 Significant Body Point (SBP) labelling

The best IBM is used to label normalised convex points (xnr, ynr) as SBP using

Table 3.3 as follows. The following SBPs are labelled: Head (H), Arm/hand (A),
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Knee (K) and Feet (F). Convex points (xcv, ycv) are compared with xc and yc based

on (Eq. 3.11) to determine Upper body, Lower body, Right side and Left side. The

ranges for Sit and Lie have been determined in the MuHAVi data set since it contains

the Collapse and Standup activities. Body sides δ1, δ2, δ3 and δ4 are described in

Table 3.2.

3.4.3.1 Stand

In the Stand posture, Stand to Lie, and Lie to Stand, clockwise and anti-clockwise

directions, Head and Feet are respectively assigned using

H =
{

(xnr, ynr)|ynr < G1 if δ1 (3.19)

F =
{

(xnr, ynr)|ynr > G5 if δ2. (3.20)

Arm in the Stand posture, Stand to Lie, and Lie to Stand for clock and anti-clockwise

directions are respectively assigned using

A =
{

(xnr, ynr)|G2 < ynr ≤ G4 if δ3/δ4 (3.21)

A =

{
(xnr, ynr)|ynr > G4 if δ3/δ4 & δ1/δ2

(xnr, ynr)|G2 < ynr ≤ G4 if δ3/δ4 & δ2.
(3.22)

3.4.3.2 Sit

In the Sit posture, Stand to Lie, and Lie to Stand, clock and anti-clockwise direction,

Head and Feet are respectively assigned using

H =
{

(xnr, ynr)|ynr < G1 if δ3/δ4 & δ1 (3.23)

F =
{

(xnr, ynr)|ynr > G5 if δ3/δ4 & δ2. (3.24)

The Arm is respectively assigned for Stand to Lie, and Lie to Stand for clockwise

and anti-clockwise directions using

A =
{

(xnr, ynr)|G1 < ynr ≤ G2 if δ3/δ4 & δ2 (3.25)

A =
{

(xnr, ynr)|ynr ≥ G5 if δ3/δ4 & δ2. (3.26)
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3.4.3.3 Lie

In the Lie posture, Stand to Lie, and Lie to Stand, clockwise and anti-clockwise

directions, Head and Feet are respectively assigned using

H =


(xnr, ynr)|xnr < G1 if δ1/δ3 & δ4

& ynr < G1 if δ1/δ3 & δ4

(xnr, ynr)|xnr < G1 if δ1/δ3 & δ4

(3.27)

F =
{

(xnr, ynr)|xnr > G5 if δ2. (3.28)

Head is also assigned using

H =


(xnr, ynr)|xnr ≥ G2 & ynr ≥ G4 if δ1

or xnr > G2 & ynr < G5 if δ1

or xnr ≤ G4 &ynr > G4 if δ2.

(3.29)

For Stand to Lie and Lie to Stand, clockwise and anti-clockwise directions, arm and

head are respectively assigned using

A =
{

(xnr, ynr)|G1 < xnr ≤ G2 if δ3/δ4 (3.30)

H =
{

(xnr, ynr)|xnr < 0.5G1 if δ1 & δ3/δ4. (3.31)

In Lie to Stand, as the subject is trying to stand, support of arms is used to

assist in manoeuvring. (Eq. 3.22) for Lie to Stand is utilized for labelling SBPs as

the subject is manoeuvring from Sit to Stand. However, during this manoeuvring

when hbr > 1.7wbr, (Eq. 3.21) is used instead of (Eq. 3.22).

3.4.3.4 Smart Search Algorithm (SSA)

In the β activities, i.e., Wave, Kick, and Bend IBMs, SSA is used to label SBPs.

Based on (Eq. 3.14) SSA is initiated to locate the convex points in the non anthro-

pometric segment ranges. β̇ refers to the subject in the Stand posture who has yet

to attain the posture of models shown in Fig. 3.4 (a)-(c). It is an indication that

the subject is likely to perform Wave. In Fig. 3.4 H(t−1) and H(t) are respectively

the location of previous (xHt−1, y
H
t−1) and current (xHt , yHt ) head points, and ϵ is the

horizontal distance between them. SSA divides the wave model into four horizontal

segments, and as the hand goes near or above the head, the following steps are
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defined for labelling convex points as SBPs in the segment range [G1-G4] as shown

in Fig. 3.4 (a):

Step 1: Locate the arm in the segment range G(1, 2] of shoulder S by

dividing the bounding rectangle width wbr into three equal vertical sections, and

reallocate normalised convex points (xnr, ynr) as arm point A if xnr < wbr/3 or

xnr > 2wbr/3 or |ynr − yH | > 0.7Dseg represented by the shaded region in Fig. 3.4

(a).

Step 2: Verify no arm point was identified using Step 1. Next, every nor-

malised convex point (xnr, ynr) in the head segment range G[1] of Stand to Lie,

clockwise and anti-clockwise directions, is reallocated as A if ϵ > 0.7Dseg, where

ϵ = |xHt − xHt−1| as shown in Fig. 3.4 (a).

Step 3: Check if no arm point has been labelled using the above two steps.

Find two points in the segment range [G1-G4] that are at maximum distance from

the centre and lie to its right and left, respectively, denoted by arrows in Fig. 3.4

(a). These points are then labelled as arm points.

Step 4: If an arm point is labelled using one of the above three criteria

then it implies that a wave IBM best represents the activity, hence the head point is

reallocated as follows: xH = xc, yH = yc − τDseg, where τ = 1, 1.7, 2.5 respectively

for resolution factor Υ = 0.05, 0.007, 0.1. This is based on the fact that the centre

of mass moves upward when the human arms are above the head.

In β̈ based on (Eq. 3.14), for the kick IBM, only Step 1 and 2 of the SSA

are invoked. Steps 1 and 2 are used in the segment range of the arm G(2, 4] and

G[1] to reallocate foot point for right and left Kick as shown in the shaded region

of Fig. 3.4 (b). In β̈ for Bend IBM, the global angle θ(t) is near Sit, and the head

to feet distance reduces (denoted by dashed arrows) in Fig. 3.4 (c). This model

slightly overlaps with the Sit model of Stand to Lie, and Lie to Stand, hence, Sit

criteria Stand to Lie in Section 3.4.3.2 is used to label SBPs. Depending upon the

global angle the proposed framework automatically switches to Lie to Stand using

Fig. 3.13 (b).

3.4.4 2D Stick figure

Researchers mostly use a manual or semi-automated selection of human joints on

images to construct a model and trajectories [7,8,74,86]. The information extracted

from this is then utilized for applications such as trajectory analysis, activity recog-

nition, sit to stand analysis, etc. The proposed framework can be used for the
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animation of the stick figures of a human body formed by joining the SBPs of every

video frame. To form a stick figure, first the maximum distance between shoulder

point (xS , yS) and head point (xH , yH) is computed as

xS = max(xH − xS) , yS = max(yH − yS) (3.32)

for an activity. Noting that a shoulder point is mostly at a constant distance from

the head point, (Eq. 3.32) is used to find a shoulder point (xS , yS) for all activities.

According to human anatomy, the head and feet points are connected to the centre

(xc, yc) of the silhouette contour and the arm points are connected to the shoulder

point (xS , yS) as shown in Fig. 3.19.

3.5 Experimental Results

Most methods in Section 3.2 only provide qualitative evaluation. In W4 system [19],

[20] for Computer Vision based Human body Segmentation and Posture estimation

(CVHSP), [21] for Star skeletonization (STAR), [22] for extremities as posture rep-

resentation, and the fast detection and modelling of human body parts (FDMHP)

method in [38], SBPs are detected but the accuracy of their localization with re-

spect to ground truth coordinates of each SBP is not presented. Thus, it is not

possible to compare the accuracy of SBP localization using the proposed framework

with these methods. Therefore, qualitative results are presented in Section 3.5.1 for

comparison with these methods.

This absence of quantified evaluation in the other reported work makes it

necessary to perform ground truth mark-up in order to obtain quantified evaluation

in this work. Silhouette contours for all activities of the two data sets are skeletonized

using the method in [106]. Manual annotation is performed on the results of the

skeletonized silhouette using mouse cursor to obtain ground truth coordinates of

SBPs as shown in Fig. 3.17 and Fig. 3.18 for the Weizmann [58] and MuHAVi [73]

data sets respectively. Note that the manual annotation of ground truth also involves

some guesses of SBPs in cases where these points are not localized by skeletonization

or not clearly visible to the human eye. The accuracy of SBP localization is presented

in Section 3.5.2 in terms of distance in pixels between the manually annotated (i.e.,

the ground truth) and detected SBPs.
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Figure 3.17: Examples of annotated (blue target) SBPs (green circle) on the Weiz-
mann data set. Side, Run, Bend and Jack from top to bottom row.
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Figure 3.18: Examples of annotated (blue target) SBPs (green circle) on the
MuHAVi data set. Walk, Kick, Punch and Standup from top to bottom row.
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In [33] for Connectivity based human body modelling (CBHM) only 4 SBPs

are evaluated quantitatively and they do not provide their data set for comparison.

Also, First Sight method [37] detects body parts and not SBPs. Section 4.5.2.3

contains the quantitative comparison with these methods after the tracking method

(Chapter 4) is incorporated in the proposed framework.

3.5.1 Qualitative evaluation

In Fig. 3.19 the Freeman chain code contours of subjects enclosed in the bounding

rectangle and the rescaled ellipse, with generated stick figures and labelled SBPs

are shown for qualitative evaluation on the activites of Weizmann data set. The left

column shows the Walk, Side, Skip, Jump, the middle column shows the Jump-in-

place-on-two-legs activities, Run, One Hand Wave, Two Hand Wave and the right

column shows the Jack and Bend activities. It can be observed that the proposed

SBP framework accurately detects and labels Head (H), Arm (A), Shoulder (S),

Knee (K) and Feet (F) on the low resolution videos of the Weizmann data set. It

can be seen that the proposed framework based on IBMs is able to robustly label

SBPs in all the actions. An initial missed or undetected convex point, results in an

incomplete stick figure.

The adaptability and generality of the proposed framework is validated by

applying it with the same parameter settings on the MuHAVi data set. Fig. 3.20

shows the labelled SBPs on the high resolution videos of the MuHAVi data set. It

can be seen that the proposed framework is capable of detecting SBPs in all the

actions. The first row in Fig. 3.20 shows SBPs labelled on the (a)-(b) Walk and (c)-

(d) Run actions. The second row shows identified SBPs on the (e)-(f) Punch, (g)-(h)

Kick actions. The last two rows show labelled SBPs in Collapse and Standup actions

respectively. Fig. 3.19 and Fig. 3.20 show that the proposed framework successfully

labels SBPs and is able to generate stick figures in various activities.

The qualitative results on both the data sets show that the proposed frame-

work is capable of detecting SBPs in both low and high resolution videos of 15

activities that involve rapid movements and posture changes. In the reported

work [19], [20], [21], [22], [33], [37] and [38] only 2-14 activities have been used

for qualitative evaluation on either low or high resolution videos.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) n)

(o) (p)

(q) (r)

(s) (t)

Figure 3.19: Weizmann data set. (a)-(b) Walk, (c)-(d) Side, (e)-(f) Skip, (g)-(h)
Jump, (i)-(j) Jump-in-place-on-two-legs, (k)-(l) Run, (m)-(n) One Hand Wave, (o)-
(p) Two Hand Wave, (q)-(r) Jack and (s)-(t) Bend respectively (Contour, bounding
rectangle, ellipse and stick figure). SBPs labelled as Head (H), Shoulder (S), Arm
(A), Knee (K) and Feet (F) in the corresponding activities. Note that S and K are
displayed in some cases to show that it is possible to determine more than 5 SBPs
using the proposed framework.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

(k) (l)

Figure 3.20: MuHAVi data set. SBPs labelled as Head (H), Shoulder (S), Arm
(A), Knee (K) and Feet (F) in (a)-(b) Walk, (c)-(d) Run, (e)-(f) Punch, (g)-(h)
Kick, (i)-(j) Collapse and (k)-(l) Standup. Note that S and K are displayed in some
cases to show that it is possible to determine more than 5 SBPs using the proposed
framework.
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3.5.2 Quantitative evaluation

3.5.2.1 Accuracy of localization

The location of every SBP obtained using the proposed framework is compared with

the ground truth in each frame of the video sequence. The overall accuracy of the

proposed framework is defined by the average error in pixels in detecting each SBP,

i.e.,

Error(xavg, yavg) =

∑N
n=1 |Gn(x, y) − Ln(x, y)|

N
(3.33)

where Gn(x, y) and Ln(x, y) are respectively the coordinates of each SBP obtained

from the ground truth and the proposed framework, and N is the total number of

frames.

The average error in x and y coordinates of each SBP, i.e., Head (xH , yH),

Front Arm (xFA, yFA), Back Arm (xBA, yBA), Left Foot (xLF , yLF ), and Right

Foot (xRF , yRF ), in various activities (see Table 3.1) performed by all subjects of

both data sets is shown in Table 3.4. For Jump-in-place-on-Two-Legs/Pausejump

(β7), Side (α4), and Walk (α1) of the Weizmann data set (which have less lateral

head movement), the x-coordinate head error is less than other activities whereas

the y-coordinate head error is similar in all activities. The front and back arm

points are occluded more than any other SBPs, hence they have greater errors.

A common average error is obtained for the right and left foot because they are

joined in Jump (α5), Jump-in-place-on-Two-Legs (β7), One Hand Wave (β9), and

Two Hand Wave (β10). The feet have smaller vertical movement than horizontal

movement in consecutive frames in all activities, hence, the average y-coordinate

error is less than the x-coordinate for both feet. For the MuHAVi data set, the

y-coordinate head error is less than the x-coordinate average error in all activities.

The errors in the front and back arm points are also greater due to occlusion. The

highest average error occurs in Collapse and Standup due to severe self occlusion of

front and back arms. The right and left feet have similar average errors. The average

Avg of five SBP errors per activity is presented in the last column of Table 3.4. In

Table 3.4 and Table 3.5 the best results are shown in bold.

Weizmann and MuHAVi data sets have 180 × 144 = 25920 pixels and 720 ×
576 = 414720 pixels per frame, respectively. An overall average error of 5.02 and

7.8 pixels in location of SBPs on all activities for five SBPs (from average of last

column of Table 3.4), respectively, on two diverse data sets show that the proposed

61



3.5 Experimental Results

Table 3.4: Average Error in pixels of SBPs w.r.t Ground Truth. Mean Height is 68
and 200 pixels for Weizmann and MuHAVi data set respectively.

Activity xH yH xFA yFA xBA yBA xLF yLF xRF yRF Average

Weizmann Data set with prediction

Walk 2.3 5.5 5.3 7.5 4.8 10.3 4.6 2.4 4.3 2.3 4.93

Run 3.8 5.6 5.3 3.4 8.7 8 5 3.7 4 3.4 5.09

Skip 4.3 5.4 7 5.9 8.6 6 5 4.1 3.8 2.1 5.22

Side 1.6 5 6.5 6.3 4.5 7.5 3.8 3.1 4 3.5 4.58

Jump 3.6 5.1 7.3 11 6.1 7.1 5.3 3.6 5.3 3.6 5.8

Pausejump 1 4.5 6.5 8.6 3.9 6.5 6.2 2.9 6.2 2.9 4.92

Bend 7.3 6.5 7.2 9.6 5 6.8 4.2 2.5 4.2 2.5 5.58

OneHandWave 9.6 5.4 5.2 6 2.6 5.2 6 1.7 6 1.7 4.94

TwoHandWave 5.7 4 8.5 8.5 8.6 8.7 6 1.6 6 1.6 5.92

Jack 5.3 4 3.3 4.4 2.8 3.3 2.4 2 3.2 2.3 3.3

Average/Mean Height 0.06 0.07 0.09 0.1 0.08 0.1 0.07 0.04 0.07 0.04

MuHAVi Data set with prediction

Walk 11 3.3 5.7 7.2 8.5 12.3 8 4.6 8.3 4.9 7.38

Run 9.65 3.8 6.4 6.7 9.2 16.3 8.3 5.2 9.7 6 8.12

Turn 10.2 3.7 5.7 11.9 5.3 14.2 7.7 4.4 8 4.3 7.54

Standup 9 5.2 32 23.5 11.7 13 12 10.4 11.4 7 13.52

Collapse 8.4 5.5 11.6 11.2 7.7 5.6 9.8 8.4 13.1 8.5 8.98

Kick 10.8 4.9 4.1 5.4 6.5 5.2 11.5 9.5 7.2 6.5 7.2

Punch 8.6 4.9 3.6 6.4 7.5 6.4 4.3 3.3 7.4 4.6 5.7

Guard− to−Kick 7.3 5.6 2.9 4.9 7.9 5.4 3.8 4.3 6.2 8 5.6

Guard− to− Punch 5.5 5.8 3.3 3.2 6.1 10.7 3.7 3.1 10.3 6.3 5.78

Average/Mean Height 0.04 0.02 0.04 0.04 0.04 0.05 0.04 0.03 0.04 0.03
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framework is accurate and adaptable to data sets of different resolution.

The average error in pixels as a proportion of the mean height of subjects

for all the activities of Weizmann and MuHAVi data set are shown in the last rows

of Table 3.4. This can be used to have a picture of how much an error, e.g., 5

pixels, means with respect to the size of the human body. For example, the human

head is one-eighth the human height, i.e., 0.125. Hence, a 5 pixel error equates to

approximately 0.07 that is almost half of the height of the human head. In Table 3.4

the average error as proportion of the mean height is between 0.04 and 0.1 for the

Weizmann data set. It can be seen that the average error in pixels of all the five

SBPs as a proportion of the mean height of subjects for high resolution MuHAVi

data set is consistently lower than Weizmann data set.

3.5.2.2 Accuracy of detected SBPs vs observed

The accuracy of detection is evaluated in terms of precision (PR), recall (RC), and

error (ER), i.e.,

PR =

∑q
1CT∑q
1DT

(3.34)

RC =

∑q
1CT∑q
1OB

(3.35)

ER =

∑q
1DT −

∑q
1CT∑q

1DT
(3.36)

where DT and CT are respectively the number of detected and correctly detected

SBPs. OB is the observed SBPs and q is the number of subjects. The number

of detected SBPs includes misclassified SBPs which are manually counted by visual

inspection on every frame of video sequence. The number of correctly detected SBPs

is obtained by deducting misclassified SBPs from the number of detected SBPs.

The detection accuracy of five SBPs is computed by using the proposed

framework first with no prediction and then with Particle Filter prediction. This

demonstrates the impact of prediction on the performance of the framework. In Ta-

ble 3.5 for SBP detection with no prediction, observed (OB) SBPs are the manually

counted visible SBP only with no guess work involved.

In Table 3.5, for no prediction, smaller recalls are obtained for Run (α2),

Skip (α3), Jump (α5), and Two Hand Wave (β10) that have abrupt human limb

movement as compared to Walk (α1), Side (α4), Jump-in-place-on-Two-Legs (β7),
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Table 3.5: Precision and Recall of SBP detection with no prediction.

Weizmann Data set

Activity CT OB DT RC% PR%

Walk9 2655 2768 2681 95.9 99

Skip9 1566 1664 1585 94.1 98.8

Jump9 1756 1877 1759 93.5 99.8

PauseJump9 2231 2271 2286 98.2 97.6

Run9 1468 1623 1532 90.4 95.8

Side9 1726 1786 1726 96.6 100

Bend9 3067 3195 3278 96 93.6

OneHandWave9 3265 3265 3555 100 91.8

TwoHandWave9 2875 3120 3018 92.1 95.3

Jack9 3157 3370 3201 93.7 98.6

MuHAVi Data set

Activity CT OB DT RC% PR%

Walk4 1188 1231 1191 96.2 99.8

Collapse4 1131 1306 1152 86.6 98.1

Standup4 1431 1471 1505 97.4 95

Turn4 868 1046 868 83 100

Run4 975 1198 985 81.4 99

Guard− to− Punch4 529 533 529 99.2 100

Punch4 729 757 739 96.3 98.6

Guard− to−Kick4 503 512 507 98.2 99.2

Kick4 828 922 865 89.8 95.7
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Bend (β8) and One Hand Wave (β9). The smallest recall and precision respectively

occur in Run (α2) and One Hand Wave (β9). The maximum recall and precision,

respectively, occur in Side (α4) and One Hand Wave (β9). The proposed framework

with no prediction obtains an overall average Avg% recall and precision of 95.3%

and 96.5%, respectively, for all activities of the Weizmann data set. On the MuHAVi

data set it obtains the smallest recall for Run (α2) but is robust in detecting SBPs in

Walk (α1), Standup (β12), Punch (β15), Guard-to-Kick (β16) and Guard-to punch

(β17). In Turn (α6), Collapse (β13), and Kick (β14) it is able to produce SBPs

with reasonable accuracy. It has the least precision for complex movement such as

Standup (β12). It achieves an overall average Avg% recall and precision of 92.01%

and 98.4%, respectively, for all activities of the MuHAVi data set.

Fig. 3.21 (a) and (b) show the error in percentage % in significant body point

labelling on the Weizmann and MuHAVi data sets respectively. In Fig. 3.21 (a) the

error in SBP detection is more for Bend (β8), One Hand Wave (β9) and Two Hand

Wave (β10). This is because in the Bend (β8) the arm goes below the knee and

close to feet which might cause missed arm points while in the One Hand Wave (β9)

and Two Hand Wave (β10) the arm goes above the head that creates a convex hull

with peaks as arm points and a valley at the head point that is not detected as a

convex point. In Fig. 3.21 (b) more error in SBP detection is observed for Collapse

(β13), Standup (β12) and Kick (β14). A possible reason for more error might

be rapid postural changes that affect the SBP detection in these activities. The

average error for all activities of the Weizmann and MuHAVi data sets computed

using (Eq. 3.36) are 3.5% and 1.9%, respectively. This shows that the proposed

framework robustly labels SBPs in both low and high resolution videos containing

several complex activities with rapid limb movement and posture changes.

3.6 Summary

In this chapter, a novel automated marker-less implicit body model-based human

significant body points (SBPs) detection and labelling framework is presented. It

labels anatomical landmarks (e.g. Head, Hand/Arm, and Feet), which are referred

to as significant body points, using six implicit body models innovated from human

anthropometry, kinesiology and biomechanics. By considering the human body as

an inverted pendulum model, ellipse fitting and contour moments are applied to

classify it as being in the Stand, Sit or Lie posture. A convex hull of the silhouette
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(a)

(b)

Figure 3.21: SBP detection error in pixels (%) using (Eq. 3.36) on (a) Weizmann
data set and (b) MuHAVi data set, with no prediction.
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contour is used to determine the locations of SBPs. Stick figures are generated by

connecting SBPs. The results demonstrate that the proposed framework robustly

locates and labels SBPs in several actions on two low and high resolutions data sets.
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Chapter 4

Human Body Part Tracking

4.1 Introduction

In the past decade, marker-less articulated human motion analysis and tracking has

been a prime focus of research in the computer vision research community due to its

numerous applications. Robust tracking requires dealing with occlusion, variance in

illumination, rapid motion, view invariance, structural ambiguity, multiple subjects,

etc. Sequential Monte Carlo methods, also known as the Particle Filters (PFs), have

been extensively used to address such problems [55]. Monte Carlo methods have

applications in many fields of sciences, e.g., medical imaging [107], engineering,

finance etc. The human body has high dimensions, i.e., degree of freedom, and

human motion is non-linear and non-Gaussian in nature. The ability of the Particle

Filter to represent non-Gaussian non-linear assumption and multiple hypothesis

makes it suitable for visual tracking.

A Marker-less implicit body model based (IBM) human motion analysis

framework that is able to detect and label significant body parts or points (SBP)

was presented in Chapter 3. In this Chapter, two methods, i.e., Particle Filter

with memory and feedback (PFMF), and Motion Flow (MFL), based prediction

are presented to track the 2D image coordinates of SBPs. The standard Particle

Filter struggles in prediction when there is no measurement in the image (i.e., in

occlusion). The proposed Particle Filter combines the temporal information of the

previous observations and estimation with a feedback to predict SBPs in occlusion.

The motion flow based method considers the human arm as a pendulum attached

to the shoulder joint. The arm is one of the most occluded body parts or points in
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various activities. Hence, a prediction method specifically designed to predict arms

is useful. MFL considers arm motion like a pendulum swing and defines conjectures

to predict SBPs in occlusion.

4.2 Literature review

Real-time detection and tracking of humans from videos require estimation of the

subject’s states such as location, orientation, size, etc. This is not as simple as it

seems to be because of the missed detection, artefacts, and false detection due to

clutter [108]. Although researchers have proposed various solutions to human body

tracking, a universal human body tracker capable of handling real-time scenarios

does not yet exist. This reveals the complexity of the task. Most of the research is

focused in developing articulated-model based systems to track the human body in

videos. A realistic articulated human body model has at least 25 degree of freedom.

Due to the high dimensionality of the human body model and the exponentially

increasing computational speed, specialized algorithms such as a Particle Filter is

required to perform complete human body tracking in videos [50].

4.2.1 Particle Filter

Estimation is a process by which we infer the value of a quantity of interest, by

processing data that is in some way dependent on it. A Particle Filter is composed

of two words; particle, and filter. Particles are a set of randomly chosen weighted

samples used to approximate a probability density function. A Filter is a procedure

that estimates parameters (state) of a system. State estimation is based on proba-

bility theory. A Particle Filter has three operational steps, i.e., sample, predict and

estimate, as described in Section 2.2.2.

The Particle Filter which is also known as the condensation algorithm was

first introduced for visual tracking by Isard and Blake in 1998 [9, 10]. However, it

lacks the ability to work in real-time since the number of particles is large in or-

der to account for sudden movements of the object being tracked. Due to a large

search space, a large degree of freedom of the human body increases the computa-

tional complexity and cost exponentially. Techniques such as partitioned sampling

by MacCormick [47], layered sampling by Sullivan [48, 49], and annealed Particle

Filtering [50] have been proposed to reduce the search space. The Partitioned sam-

pling is a variation of the Particle Filter that reduces the number of particles required
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to perform multiple object tracking. It was applied to the problem of articulated

tracking of objects by MacCormick and Isard [47]. The use of partitioned sampling

reduces the search space by partitioning it for more efficient Particle Filtering and

thus making the problem in hand more tractable. Nevertheless, this method is not

extendible for complete human body posture recognition. The layered sampling

approach proposed by Sullivan et al. is another variation of the standard Particle

Filter. In [48, 49] the number of particles required to describe the posterior density

is also reduced. It utilizes the concept of importance sampling to reduce the search

space. A better use of a particle set allows the removal of ambiguities arising from

human kinematics. This method has been shown experimentally to suffer when

the tracking complexity increase above 30 degree of freedom [48, 49]. Partitioned

annealed Particle Filtering is an approach proposed by Deutscher to enhance the

efficiency of the annealed Particle Filter [50]. It slowly initiates the influence of nar-

row peaks in the fitness function by utilizing a continuation principle which is based

on annealing. The algorithm is able to recover complete articulated human body

motion swiftly. This method is more effective in reducing the number of particles

required for tracking. It is capable of handling tracking for more than 30 dimen-

sions [50]. In [43], an analytical inference is incorporated into the framework of the

Particle Filter to alleviate the computational burden. It is also useful for automatic

initialization and recovering from tracking failure. The state parameters describing

the human posture are updated using the analytical inference supplied by the body

parts detection. This aids in reducing the number of particle required for tracking

and the extent of randomness. The modified Particle Filter is much more robust

then the standard Particle Filter.

The Particle Filter algorithm suffers from inefficiency in sampling due to de-

generacy (in which the weights of the majority particles become small after a few

iterations) and impoverishment (samples are too concentrated) [55]. Also, a large

number of particles is required to overcome the samples impoverishment problem by

populating some areas of the state-space that may be left empty due to prediction

of the motion model that tends to cluster the particles in a small area due to the

predicted motion. Mean shift is used to trace the local maximum of probability

distribution in the direction of gradient and tracks single hypothesis. This makes it

incapable of handling occlusions and similar objects in the video scene. Keeping in

mind the pros and cons of mean shift and Particle Filter tracker, a novel technique

was proposed by Shan et al. [54] which combines mean shift with the Particle Filter
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to come up with a Mean Shift Embedded Particle Filter (MSEPF). The particles are

herded (grouped) near local modes with large probability by performing mean shift

on every particle in the propagation phase of the Particle Filter. This addresses the

problem of degeneration. The work of Koichiro et al. and Maggio and Cavallaro

also merge mean shift with a Particle Filter [53]. These methods will inevitably

concentrate the particles and would give rise to sample impoverishment. The Con-

tinuously Adaptive Mean Shift (CamShift) is an enhanced version of the mean shift

procedure which was proposed by Bradski et al. in 1998. The concept of the MSEPF

was extended by Zhaowen Wang et al. by incorporating the CamShift procedure

with a Particle Filter to introduce the CamShift Guided Particle Filter (CAMS-

GPF) [55]. In the CAMSGPF, sampling efficiency is improved due to optimization

of the scale and position of each particle by the CamShift procedure. The inclusion

of the CamShift facilitates the use of fewer particles for tracking as compared to

the standard Particle Filter. The multiple hypotheses tracking of the Particle Fil-

ter facilitates the CamShift to regulate scaling factors adaptively. Furthermore in

the CAMSGPF, the CamShift method is modified to increase the efficiency of the

algorithm. CAMSGPF is superior to the standard Particle Filter and mean shift

based tracker in terms of robustness and efficiency [55]. The CAMSGPF has only

been used to track a target in a video sequence enclosed by a rectangular window.

The ability of this approach to efficiently track a complete human body is yet to be

explored.

Several researchers have integrated colour information with the framework

of the Particle Filter to perform robust tracking in complex scenarios. In [52], the

standard Particle Filter has been enhanced to initialize and track multiple objects

with the same colour. It utilizes the principle of an adaptive colour based Particle

Filter. The adaptive colour based Particle Filter method is capable of efficiently

handling variations in target dynamics and shape in complicated backgrounds but

fails to track multiple objects with same colour. This limitation has been removed

in [43] by integrating colour histograms as target object features in the framework

of the Particle Filter. It also keeps a record of the number of targets present in the

video sequence. The tracking mechanism of the smart camera architecture in [29]

uses colour distributions in hue, saturation, and value for robust tracking. Particle

Filters are used to track the region of interest, while a distinct colour-based Particle

Filter is assigned to each new object. The approach is an automated distributed

video surveillance system for tracking and activity recognition with major processing
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embedded in each smart camera node. The information is processed in the sensor

and only the results are transmitted. In order to evaluate the performance of the

proposed system, a complete prototype system comprising of four smart cameras

and one server PC were installed within a home for the elderly in Germany. If the

occurrence of a person falling is detected, the person’s location is marked with a

red warning icon on the visualization node and broadcasted as a text message to

a particular phone by means of the alarm handler [29]. Colour information is not

reliable in scenes with varying illumination.

The 2D models proposed in literature for tracking are constrained to partic-

ular types of motions which are linear and restricted to a pre-set view point [42].

The articulated tracking in [42] is performed by tracking each limb with a dynamic

Markov network and then refining the positions by adding constraints among var-

ious sub-parts with mean field Monte Carlo method. A novel method that utilizes

a set of Particle Filters has been proposed to track the human body parts. It uses

the Kalman and Particle Filters to perform articulated tracking of low human body

parts. A 2D articulated model constrained by human biomechanics has been used

for reducing the complexity of tracking. The 2D articulated model introduced is as

robust as a 3D model in tracking the lower body motion. Tracking is accomplished

by identifying the static foot during motion and storing its trajectory. Subsequently,

human body parts are tracked by means of the proposed 2D articulated model us-

ing a set of Particle Filters. The constrained biomechanical articulated 2D model

of human motion facilitates the analysis of 3D motion patterns. Due to this reason

it is capable of handling variance in orientation, depth, and camera viewpoint. The

scheme utilizes a set of Particle Filters to fit the proposed 2D articulated human

model on every frame of the input video sequence. The tracking process of the artic-

ulated model is refined by instantiating two Particle Filters in parallel to the initial

Particle Filter. This aids in addressing the degradation and potential divergence

issues that arise in tracking while using a single Particle Filter [42].

In [51], a Particle Filter based tracker is proposed that adapts and balances

uncertainty in its static and dynamic components of its state space model for visual

tracking. A histogram based approach is utilized to describe the target. In [109],

a Particle Filter for joint detection and tracking is proposed which uses a single

particle to describe the number of objects in the scene and their surrounding boxes.

This method refines the detections of colour objects instead of tracking them, thus, it

is a time varying estimator rather than a tracker. The state density estimate is used
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to perform tracking by marking corresponding states over time. This technique is

dependent upon constructing an appearance model by segmenting the targets in the

test sequence manually. The method in [109] is modified in [108] by incorporating an

update of the measurement model using foreground detections with a background

model, and labelling the tracks from the state density estimate. The efficiency of

the proposed approach is enhanced by using threshold estimate.

A gravity optimised Particle Filter method was proposed in [56] that consid-

ers particles as masses and uses the Newton’s law of universal gravitation to heard

them locally. At each stage the new set of particles are replicated at the location

nearer to where the particles are supposed to move. It has been shown to be success-

ful for tracking fingers of human hand but with the finger performing a linear up and

down motion. It does not present any procedure to address the sample impoverish-

ment problem created due to concentrating the particles. Also, recent investigation

of sampling laws for Particle Filter algorithms lead to the development of a new

class termed as ‘twisted’ Particle Filters [110] that are validated with asymptotic

analysis. Its ability to track in occlusion and on real data is not known.

The continuous human movement recognition framework in [41] uses forward

smoothing Particle Filters with an optimized search space for tracking. This frame-

work comprises tracking and recognition modules with a feedback from recognition,

to a tracking module to optimize computation of the Particle Filter. If a subject

wears loose clothes, this framework fails to recognize correct movements. The range

of joint angles is restricted by limiting the degree of freedom related with each joint,

thus fine movements are not modelled. Particle Filters used for tracking of thirty-

two degree of freedom are computationally bulky. The method in [111] stores all the

past estimations and observations in a memory module. It combines the standard

Particle Filter with memory module to handle occlusion. It follows the standard

Particle Filter when there is no occlusion and uses memory module when there is

occlusion to perform robust tracking. It requires significant memory for storage and

might produce incorrect prediction. For example, the past might be up movements

and the most recent might be down movement. If all the past movements are taken

into account then it will produce incorrect prediction. Therefore, a memory based

strategy that involve the most recent information is explored in this work for robust

tracking.
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(a)

(b)

Figure 4.1: Concept of the Particle Filter for state prediction (a) No occlusion; and
(b) Occlusion.

4.3 Foundation of proposed methods

4.3.1 Concept of proposed Particle Filter tracking

Let the state vector xt describe the tracked object parameters and the vector zt

denote all the observations z1, ..., zt up to time t. Baye’s estimator or rule, can be

used to estimate the current state xt given all the data available up to and including

zt as

p(xt|zt) =
p(zt|xt)p(xt|zt−1)

p(zt|zt−1)
. (4.1)

Fig. 4.1 shows the conceptualization of standard Particle Filter behaviour

with and without occlusion. When there is no occlusion, the particle weights are

updated with respect to the observation zt−1 known from the last frame to estimate

the state vector xt in the next frame. In occlusion, the last known observation zt is

used by the general Particle Filter to estimate the state vector, i.e., xt+1, xt+2, xt+n−1

for all the upcoming frames till an observation zt+n becomes available.
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Figure 4.2: Concept of proposed Particle Filter for state prediction in occlusion.

If the occlusion is for a small number of frames, then the state predicted using

the last observation is quite close to the ground truth. However, if the occlusion

continues for significant number of frames, then the predicted state diverges from

the ground truth. A Particle Filter adjusts the weights of the particles based on

the most current observation to predict the next state. Hence, the lack of current

observation is a clear reason for error in estimation of the state for frames at time

t + 1, t + 2, t + n − 1. This can be seen using the qualitative results in Section 4.5

on SBP tracking.

In stochastic dynamics a somewhat general assumption is made for the prob-

abilistic framework that the object dynamics form a temporal Markov chain so that

p(xt|Xt−1) = p(xt|xt−1). (4.2)

This means that the new state is conditioned directly only on the immediately

preceding state independent of the earlier history.

In Fig. 4.2 a new Particle Filter strategy or concept is illustrated to estimate

the state in occlusion. During occlusion the last known observation zt is only used

to estimate the state xt+1 at time t + 1. This state xt+1 is used as an observation

to generate the next subsequent state xt+2. Similarly, the state xt+2 is used as an

observation to next state xt+n−1 and so on until an observation zt+n is obtained.

This strategy works because the most recent state is used as an observation to

generate the next state in all time frames during occlusion. The proposed Particle

Filter algorithm is described in Algorithm. 4.3.1 (see Section 4.4.1 for details).
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Algorithm 4.3.1: Proposed Particle Filter Algorithm(x, z, s, π)

Construct a new weighted particle set S = {(s
(n)
t , π

(n)
t )}Nn=1 for time t

from the old weighted particle set S = {(s
(n)
t−1, π

(n)
t−1)}Nn=1 at time t− 1.

Select N particles from the set S = {(s
(n)
t−1, π

(n)
t−1)}Nn=1 to give

S = {(s
′(n)
t−1 , 1/N)}Nn=1.

Predict each particle using the dynamic model p(xt|xt−1) = s
′(n)
t−1 to give

{(s
′(n)
t−1 , 1/N)}Nn=1.

No Occlusion:

Measure and weight the particles as π
(n)
t ∝ p(zt|xt = s

′(n)
t ) to give

S = {(s
(n)
t , π

(n)
t )}Nn=1. Normalize π

(n)
t so that

∑N
n π

(n)
t = 1.

Estimate the tracking result for time t as E[xt] =
∑N

n=1 π
(n)
t s

(n)
t .

Occlusion:

For non-consecutive occlusion, use the last known measurement

S = {(s
(n)
t , π

(n)
t )}Nn=1 to estimate the tracking for next time step.

For consecutive occlusion, use the last estimation E[xt] =
∑N

n=1 π
(n)
t s

(n)
t

as measurement S = {(s
(n)
t , π

(n)
t )}Nn=1 for estimation in next time step.

4.3.2 Concept of Motion Flow (MFL) tracking

The direction of the instantaneous angular velocity (which is measured over an

extremely small time interval [90]) is the basis for motion flow prediction. Consider

the human arm as a pendulum attached at the shoulder joint producing curvilinear

motion (incurring an angular displacement) as shown in Fig. 4.3. As the pendulum

(arm) swings from its equilibrium position (vertical) to its maximum displacement,

the magnitude and direction of angular velocity vector change. Two geometric

constraints are proposed for predicting arm location based on pendulum motion.

For an extremely small time interval in consecutive time frames:

Conjecture 1:

The direction of the instantaneous angular velocity must be the same until

the arm reaches its maximum displacement.

Conjecture 2:

A large instantaneous angular displacement shows that the arm has passed

its maximum displacement.

Based on first conjecture the point to be predicted A(t+1) should be close to

the last arm point and continue in the direction of the previous two arm points, i.e.,
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(a) (b)

Figure 4.3: Motion flow based arm prediction A using previous arm Ap and current
arm Ac during occlusion (see Section 4.3.2).

follows the swing of arm for cyclic activities, as shown in Fig. 4.3 (a). The second

conjecture leads to identify the change in direction of arm swing.

Consider the arm motion as a pendulum swing which draws a small dotted

curve f in each frame as shown in Fig. 4.3 (b). Denote (xAt−1, y
A
t−1) and (xAt , y

A
t ),

respectively, as coordinates of labelled arm points in the previous and current frames.

For every frame, the linear displacement between the current and previous arm

points is

dx = xAt − xAt−1 , dy = yAt − yAt−1. (4.3)

The length L of the entire curve f (i.e., angular displacement) traced by the

arm movement on the interval [P1-P2] can be approximated as a summation of all

the line segments of the entire piecewise linear curve. The ath line segment is the

hypotenuse of a triangle with base dx and height dy, and has length

La =
√

(xAt − xAt−1)
2 + (yAt − yAt−1)

2. (4.4)

By the Mean Value Theorem, there exists x∗ ∈ [xAt−1, x
A
t ] such that

yAt − yAt−1

xAt − xAt−1

= f
′
(x∗). (4.5)

yAt − yAt−1 = f
′
(x∗)dx (4.6)

77



4.4 Overview of proposed SBP tracking

Substituting (Eq. 4.6) in (Eq. 4.4) gives

La =
√

1 + [f ′(x∗)]2dx. (4.7)

Finally, the length of the entire polygon path with k subintervals is

k∑
a=1

La =

k∑
a=1

√
1 + [f ′(x∗)]2dx (4.8)

which has the form of Riemann sum, i.e.,

L = lim
Λ→0

k∑
a=1

√
1 + [f ′(x∗)]2dx =

∫ k

a

√
1 + [f ′(x)]2dx. (4.9)

Increasing the number of subintervals or line segments of a piecewise linear

curve such that Λ = max(dx) → 0 in (Eq. 4.9) proves the approximation that the

length of polygon line segments is equal to the length of the curve, i.e.,
∑k

a=1 La → L.

This mathematical proof and above-mentioned conjectures lead to the proposed

motion flow based prediction (see Section 4.4.2) of arm points.

4.4 Overview of proposed SBP tracking

Depending on the user’s choice, the proposed Particle Filter with memory and feed-

back (PFMF) or the motion flow based prediction is used for tracking SBPs in

occlusion. The ability of PFMF to track any SBPs without any prior information

of activity make it the default choice for SBPs prediction. The arm is the most

occluded SBP, hence, motion flow method is designed to track arm SBP in cyclic

activities.

4.4.1 Particle Filter with memory and feedback for SBP prediction

Particle Filter for visual tracking requires updating a confidence interval by calcu-

lating probability with respect to the newly available information, i.e., observation

(measurement) to predict the state vector at next time step. This confidence de-

creases when there is no measurement available, i.e., the target being tracked is

occluded (no target measurement in the image). It becomes lower as the number of

frames without an observation increases once the target state is lost or occluded. The
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standard Particle Filter will fail under this circumstance. A typical way of avoiding

this problem is to restart the tracking algorithm, however, it might not be the best

solution. Several researchers have proposed solutions to deal with occlusions without

restarting the tracking algorithm [112], [111]. In [112], an adaptive Particle Filter is

presented that uses a Rayleigh probability distribution during occlusion, while the

memory-based Particle Filter in [111] combines the standard Particle Filter with a

memory strategy to handle occlusions.

The proposed Particle Filter has two tracking (operation) modes, i.e., no

occlusion and occlusion as shown in Fig. 4.4. In the no occlusion mode, the proposed

Particle Filter behaves similar to the standard Particle Filter when the SBP is not

occluded or missed by the SBP labelling framework (see Section 3.4.3). In the

occlusion mode, the proposed Particle Filter uses a memory based feedback scheme

when the SBP is occluded or missed by the SBP labelling framework. The proposed

Particle Filter is able to track and predict SBPs in the presence or absence of

occlusion, or missed SBPs, as shown in Fig. 4.4.

Given the current observation location, i.e, P (t−1) = (xcv, ycv), of a SBP at

time step t−1, the Particle Filter predicts the location P (t) = (x′cv, y
′
cv) of a SBP at

time step t. The state vector Xt−1 = [P T V T ], where P is the position of a convex

point at time t− 1 and V = P (t− 2) − P (t− 1). A constant-acceleration dynamic

model Xt is used to update the state vector, where

Xt = MXt−1 = M [P T V T ] (4.10)

M=


1 0 dt 0

0 1 0 dt

0 0 dt 0

0 0 0 dt

 (4.11)

where dt is the time lapse between two frames. The confidence interval is updated

using the new weights, i.e.,

π
(n)
t = exp[−0.05

√√√√ N∑
n=1

(xcv − s
(n)
t )2 + (ycv − s

(n)
t )2]. (4.12)

where (xcv − s
(n)
t ) and (ycv − s

(n)
t ) represent the distance of N particles s

(n)
t from

the observations xcv and ycv respectively.
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Figure 4.4: Block diagram describing the tracking (operation) modes, i.e., no occlu-
sion and occlusion of the proposed Particle Filter with memory and feedback.
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For each SBP, a Particle Filter with 100 particles is instantiated for optimum

accuracy of prediction with particles ≥ 30 producing good results. During occlusion,

the Particle Filter is initialized with the last known observation to predict the next

SBP (x′cv, y
′
cv). This is achieved by keeping the temporal information of every previ-

ous measurement and observation. In the event of occlusion in consecutive frames,

the predicted values in the first frame P (t) and V are fed back as observations to

initialize the Particle Filter for the subsequent frames.

The proposed Particle Filter with memory and feedback differs from the

memory-based Particle Filter in [111] in the following aspects:

1. The memory consists of both past estimations and observations (measure-

ments) while in memory-based Particle Filter only the past estimations are

stored.

2. Only the two most recent past estimations and observations, i.e., at time t−2

and t−1 are stored in the memory, and are used to predict the state at time t,

while in the memory-based Particle Filter past estimations include a complete

history till the current time t.

3. The occlusion condition is established based on the input from SBPs’ labelling

framework in Section 3.4.3, instead of a predefined threshold.

4. A combination of memory and feedback is used to predict the state vector in

occlusion.

4.4.2 Motion flow for SBP prediction

Motion flow employs the direction of linear displacement, prior knowledge of the

activity, temporal information of a SBP, and geometry of the human body to define

criteria for locating, labelling and tracking SBPs, i.e., arm points (xA, yA) during

occlusion, as detailed in Table 4.1. If the displacement dx between current arm

xAt and previous arm xAt−1 point is greater than a threshold ζ = Dseg/6 = 5 (where

Dseg=30, see Section 3.4.1.4), it suggests that the maximum displacement is reached

and direction of the arm swing arm has changed. Only dx is used because the

horizontal displacement of arm (pendulum) from equilibrium position to maximum

displacement is intuitively more than vertical displacement. The direction of the

front arm movement is constrained based on the previously labelled front arm points.

The criteria in Table 4.1 are used to predict front and back arm points during Walk,
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Table 4.1: Parameters and their value for Motion flow based arm prediction.

Activity |dx| xAt yAt xA yA

Walk −, < ζ ≤ xAt−1 ≥ yAt−1 xAt ∓ dx yAt + dy/0.4ζ

Walk > ζ − − xAt − 0.4ζ yAt + dy/0.4ζ

Run < ζ ≤ xAt−1 ≥ yAt−1 xAt ∓ dx yAt + dy/0.4ζ

Run −,≥ ζ − − xAt ∓ 0.8ζ yAt + dy/0.4ζ

Skip ≤ ζ ≤ xAt−1 − xAt ∓ dx/0.4ζ yAt

Skip − − − xH ± 1.4ζ yH + 4ζ

Side < ζ ≤ xAt−1 − xAt ∓ dx yAt

Side > ζ − − xAt ∓ dx/ζ yAt

Jump < ζ ≤ xAt−1 − xAt ∓ dx yAt

Jump > ζ − − xAt ∓ dx/ζ yAt

PauseJump < ζ − ≤ yAt−1 xAt yAt + dy

PauseJump > ζ − − xAt yAt

Side, Jump-in-place-on-Two-Legs , Jump Left to Right, Run Right to Left, and Skip

on the Weizmann data set.

In Table 4.1, xH and yH , and xA and yA, respectively denote the coordinates

of the head and predicted arm points. The upper polarity is used for Right to Left,

and the lower polarity is used for Left to Right. Front arm and Back arm are

distinguished respectively on Right side and Left side based on (Eq. 3.11). For

all actions the arm point is predicted at the centre (xc,yc) when no conditions are

satisfied or when more than three points have been predicted consecutively. In the

first row of Walk, Side, Skip, Pause Jump , and Run in Table 4.1, the relational

operator and polarity of criteria for current arm (xAt , y
A
t ) and predicted arm (xA, yA)

are respectively reversed for front and back arm prediction in Right to Left and Left

to Right. The second row of these actions is used to predict back points when they

are not predicted by the first row. For Walk, dx is not used for front arm point

prediction (which is denoted by a dash) but is used to predict back arm point only.

For Jump, front arm point is predicted at centre (xc, yc) in occlusion, while the back

arm point is predicted using the two rows of jump. However, if dx > 2ζ pixels then
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back arm point is predicted at the centre.

4.5 Experimental Results

4.5.1 Qualitative Evaluation

The first evaluation is performed to establish whether the proposed Particle Filter

with memory and feedback performs better than the standard Particle Filter. The

Fig. 4.5 visually presents the arm significant body points predicted using the stan-

dard Particle Filter on the cyclic activities of the Weizmann data set. It can be seen

that the standard Particle Filter is unable to predict arm point (in blue circle) at the

accurate positions. The large distance of the predicted arm point from the human

body also suggests a decrease in the confidence of the standard Particle Filter due to

lack of observation. In contrast, it can been observed from the results in Fig. 4.6 that

the proposed Particle Filter with memory and feedback is more accurate than the

standard Particle Filter algorithm. This qualitative evaluation is sufficient to prove

the superior performance of the proposed Particle Filter with memory and feedback.

The performance of standard Particle Filter is poor for tracking in occlusion and

does not require quantitative comparison.

In the second evaluation, the reliability of predicted significant body point

using the Particle Filter with memory and feedback is compared with the motion

flow method. Fig. 4.6 and Fig. 4.7 show the detailed results of significant body

point labelling and tracking using the Particle Filter with memory and feedback

instantiated only for arm points in all ten activities of the Weizmann data set.

Significant body points labelling and tracking using motion flow based prediction

for arm points is shown in Fig. 4.8 and Fig. 4.9. The predicted arm significant body

points are shown with a light green circle. It can be observed from these results

that the predicted arm point using the Particle Filter with memory and feedback

and Motion flow are accurately identified and tracked. In Fig. 4.7 and Fig. 4.9, the

overlapping bold head (H) and arm (A) point are the reallocated significant body

points using the Smart Search Algorithm in Section 3.4.3.4. Section 4.5.2 contains

the complete quantitative results on both Weizmann and MuHAVi dataset.
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(a)

(b)

(c)

(d)

(e)

Figure 4.5: Arm SBP predicted using the standard Particle Filter. The predicted
arm is shown in blue circle for (a) Walk, (b) Side, (c) Skip, (d) Jump and (e) Run
activities.
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(a)

(b)

(c)

(d)

(e)

Figure 4.6: Arm SBP tracking using the Particle Filter with memory and feedback
shown in red circle (a) Walk, (b) Side, (c) Skip, (d) Jump and (e) Run.
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(a)

(b)

(c)

(d)

(e)

Figure 4.7: SBP tracking using the Particle Filter with memory and feedback shown
in red circle (a) Jump-in-place-on-Two-Legs, (b) Bend, (c) One hand wave, (d) Two
hand wave and (e) Jack. The reallocated Head (H) and Arm (A) points using Smart
Search Algorithm in Section 3.4.3.4 are superimposed in black bold.
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(a)

(b)

(c)

(d)

(e)

Figure 4.8: SBP tracking using the motion flow prediction shown in green circle (a)
Walk, (b) Side, (c) Skip, (d) Jump and (e) Run.
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(a)

(b)

(c)

(d)

(e)

Figure 4.9: SBP tracking using the motion flow prediction shown in green circle
(a) Jump-in-place-on-Two-Legs, (b) Bend, (c) One hand wave, (d) Two hand wave
and (e) Jack. The reallocated Head (H) and Arm (A) points using Smart Search
Algorithm in Section 3.4.3.4 are superimposed in black bold.
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Table 4.2: Particle Filter with memory and feedback (denoted by p), and Motion
flow (denoted by m) prediction error in pixels unit. Mean height is 68 and 200 pixels
for Weizmann and MuHAVi data set respectively.

Activity xFA
p yFA

p xFA
m yFA

m xBA
p yBA

p xBA
m yBA

m

Walk 7.7 12.9 4.2 3.3 9.23 19.4 3.4 6.4

Run 7.5 8.1 8.3 3.3 9.9 15.4 6.8 8.4

Skip 8.5 9.4 4.8 6.3 13 9.2 4.1 5.7

Side 5.4 8 6.1 5 3.5 11 5 6.6

Jump 8.2 14.2 4.1 6.2 6.9 8.5 5 6.5

PauseJump 4.4 12.2 7 6.1 2.9 10 4.5 6

Average 6.9 10.8 5.8 5 7.1 12.2 4.8 6.6

Average/Mean Height 0.1 0.15 0.08 0.07 0.1 0.18 0.07 0.09

4.5.2 Quantitative Evaluation

The best results in the tables in this section are represented in bold.

4.5.2.1 Localization accuracy of predicted arm SBP

The Particle Filter with memory and feedback, and the motion flow method are

compared for arm prediction on only cyclic activities of both data sets because they

are the most occluded SBP. It is vital to verify the accuracy of location of predicted

arm SBP versus the ground truth. Table 4.2 shows the error in the location using

Particle Filter and motion flow in occlusion, where the average location error of

predicted SBP in pixel units is

ErrorPred(xavg, yavg) =

∑N
n=1 |Gn(x, y) − Predn(x, y)|

N
(4.13)

and Predn(x, y) are the predicted SBP coordinates.

The Particle Filter with memory and feedback, and motion flow method are

compared for the arm prediction in cyclic activities (see Table 4.2), i.e., Walk (α1),

Run (α2), Skip (α3), Side (α4), Jump (α5) and Jump-in-place-on-Two-Legs/Pause

Jump (β7) of both data sets because it is the most occluded SBP. Table 4.2 shows

that the Particle Filter and motion flow accurately predict arm point, i.e., close to
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ground truth location. The y-coordinate error of the front and back arm points using

motion flow prediction are consistently smaller than those obtained using Particle

Filter. The x-coordinate error is also smaller in most activities. Hence, the motion

flow outperforms Particle Filter which is demonstrated by smaller average errors in

all activities in Table 4.2. However, the lack of necessity for prior information makes

the Particle Filter a better choice for prediction. Results on Walk (α1) and Run

(α2) activities of both data sets are collectively shown in Table 4.2.

The average error in pixels as a proportion of the mean height of subjects

for all the activities is shown in the last row of Table 4.2. This can be used to have

a picture of how much an error, e.g., 5 pixels, means with respect to the size of the

human body. For example, the human head is one-eighth the human height, i.e.,

0.125. Hence, a 5 pixel error equates to 0.07 that is almost half of the height of the

human head.

4.5.2.2 Accuracy of detected SBPs with prediction vs observed

In case e.g., occlusion, when the SBP detection method in Chapter 3 cannot identify

a convex point to be labelled as SBP then the tracking method is used to predict the

position of a SBP. This can help SBP detection by using prediction from the track-

ing method. Hence, improving the number of correctly detected SBPs. Table 4.3

presents the accuracy of SBP detection with prediction and compares it with no pre-

diction (see Chapter 3). For SBP detection with prediction in Table 4.3, observed

(OB) SBPs is the manually counted visible SBP with guessed SBPs. (Eq. 3.36) is

used to compute PR, RC and ER. In Table 4.3, for prediction, an overall 2.5% and

2.4% percentage increase in recall and precision, respectively, are obtained in cyclic

actions of the Weizmann data set using the proposed Particle Filter with memory

and feedback prediction. Specifically, the highest percentage increase of 7.3% in

recall is achieved in Run (α2), which has the smallest recall with no prediction. For

the MuHAVi data set, the Particle Filter with memory and feedback prediction is

only used for Walk (α1) and Run (α2) since they are cyclic actions. A percentage

increase of 10.7% in recall is attained in Run (α2). There is a decrease in precision

for both Walk (α1) and Run (α2), which suggests an increase in misclassified arm

SBPs. However, more importantly the Particle Filter with memory and feedback

prediction enhances the recall in all cyclic actions of both data sets. The proposed

framework with prediction obtains an overall average % recall and precision of 97.7%

and 98.8%, respectively, for all activities of the Weizmann data set. It achieves an
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Table 4.3: Precision and Recall of five SBPs detection of proposed framework.

Weizmann Data set
No prediction Prediction No prediction Prediction

Activity CT OB DT CT OB DT RC% PR% RC% PR%

Walk 2655 2768 2681 3134 3195 3160 95.9 99 98.1 99.2

Run 1468 1623 1532 1828 1885 1892 90.4 95.8 97 96.6

Skip 1566 1664 1585 2108 2170 2127 94.1 98.8 97.1 99.1

Side 1726 1786 1726 2183 2220 2183 96.6 100 98.3 100

Jump 1756 1877 1759 2220 2290 2223 93.5 99.8 97 99.9

PauseJump 2231 2271 2286 2654 2690 2709 98.2 97.6 98.7 98

Bend 3067 3195 3278 - - - 96 93.6 - -

OneHandWave 3265 3265 3555 - - - 100 91.8 - -

TwoHandWave 2875 3120 3018 - - - 92.1 95.3 - -

Jack 3157 3370 3201 - - - 93.7 98.6 - -

Average % - - - - - - 95.3 96.5 97.7 98.8

MuHAVi Data set

Walk 1188 1231 1191 1326 1351 1502 96.2 99.8 98.1 88

Run 975 1198 985 1080 1198 1160 81.4 99 90.1 93.1

Turn 868 1046 868 - - - 83 100 - -

Standup 1431 1471 1505 - - - 97.4 95 - -

Collapse 1131 1306 1152 - - - 86.6 98.1 - -

Kick 828 922 865 - - - 89.8 95.7 - -

Punch 729 757 739 - - - 96.3 98.6 - -

Guard− to−Kick 503 512 507 - - - 98.2 99.2 - -

Guard− to− Punch 529 533 529 - - - 99.2 100 - -

Average % - - - - - - 92.01 98.4 94.2 95.7
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overall average % recall and precision of 94.2% and 95.7%, respectively, with pre-

diction for all activities of the MuHAVi data set.

4.5.2.3 Comparative evaluation of SBP labelling and tracking

The performance of the proposed SBP Labelling (Section 3.4.3) and Particle Filter

tracking framework is compared with state of the art approaches, i.e., First Sight

(FS) [37] and CBHM [33], with a similar extent of occlusion and type of activity,

respectively. The accuracy of First Sight to detect five body parts, i.e., Head, Arms,

and Feet, is evaluated in terms of the parts observed by the human eye. Five SBPs

identified by the proposed framework correspond to the five body parts detected by

First Sight. The activities used by First Sight differ in terms of no, mild and severe

self occlusion. In the data sets for this chapter, Walk (α1), Run (α2), Side (α4),

Turn (α6), Jump-in-place-on-Two-Legs/Pause Jump (β7), Punch (β15), Guard-to-

Kick (β16), and Guard-to-Punch (β17) have mild self occlusion, whereas Skip (α3),

Jump (α5), Bend (β8), One hand wave (β9), Two hand wave (β10), Standup (β12),

and Collapse (β13) have severe self occlusion. Table 4.4 shows the performances of

the proposed framework and First Sight (as reported in [37]) on activities with mild

and severe occlusion on all subjects of the Weizmann and MuHAVi data sets. In

Table 4.4, results on Walk (α1) and Run (α2) activity of both data sets are presented

collectively. The average % of the five SBPs error computed using (Eq. 3.36) is

clearly much less than First Sight.

Due to unavailability of the data set used by CBHM, Table 4.4 compares the

average precision and recall of the proposed framework in detecting four SBPs (i.e.,

hands and feet) in similar activities with those of CBHM as reported in [33]. It

shows that the proposed framework obtains better recall and precision than CBHM

in Run (α2), Jump (α5) and Collapse (β13). It also achieves a slightly better recall

for Walk (α1). The recall obtained for Standup (β12) is close to this approach, thus,

overall the proposed framework performs better than CBHM.

4.5.2.4 Comparative evaluation of Stick figure generation

The consistency of the stick figures generated from the SBPs detected by the pro-

posed SBP labelling and tracking framework is compared with those generated using

skeletonized (SKEL) [106] and Computer Vision based Human body Segmentation

and Posture estimation (CVHSP) or Star skeletonization (STAR) [20,21] by evalu-

ating the total number of correctly detected five SBPs in video sequence of various
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Table 4.4: SBP detection: Proposed vs CBHM and FS.

4 SBPs Accuracy 5 SBPs Error

Classification CBHM [33] Proposed Proposed FS [37]

Occlusion Activity RC% PR% RC% PR% ER% Average% Average%

Mild Walk 95.2 100 97.4 99.2 0.6

Mild Run 76.8 90.8 97 97 2.59

Mild Side - - 98.1 100 0

Mild Turn - - 80.2 100 0

Mild PauseJump - - 98.3 97.5 2.4

Mild Kick - - 87.2 94.5 4.2

Mild Punch - - 95.5 98.3 1.35

Mild Guard− to−Kick - - 97.8 99 0.79

Mild Guard− to− Punch - - 99.1 100 0 1.33 15

Severe Jump 88.5 70.4 97 99.8 0.17

Severe Standup 99.7 82.6 95.9 94.4 4.91

Severe Collapse 83.3 83 85.7 97.6 1.82

Severe Bend - - 97.6 92.2 6.43

Severe OneHandWave - - 100 89.6 8.15

Severe TwoHandWave - - 91 94 4.73

Severe Jack - - 92.1 98.3 1.37

Severe Skip - - 94.8 97.1 1.19 3.59 21
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activities. CVHSP and STAR use the same distance curve method to locate convex

points which serve as SBPs. The distance curve method in [20,21] is implemented to

compare its SBP detection accuracy with the proposed framework. Table 4.5 shows

that the proposed framework with prediction consistently obtains more SBPs than

SKEL and CVHSP or STAR (denoted only by CVHSP in the table) across all ac-

tivites except Two hand wave (β10) and Jack (β11) of Weizmann data set. The total

number of SBPs detected by the proposed framework (8425) across all activities of

MuHAVi data set is more than SKEL (8170) and CVHSP/STAR (7591), hence, it

is more consistent in generating stick figures of various activities. It obtains SBPs

consistently more than SKEL and CVHSP in most activities and competes well in

the remaining activities.

Table 4.6 summarises the various components of the most related methods.

It shows the ability of the methods to tackle various activities with respect to the

number of cues, criteria, and pose estimation. It compares the tracking and occlu-

sion handling capability of each method. It also shows whether the methods have

provided quantitative analysis for justifying their robustness and whether they gen-

erate stick figures. It can be seen that the proposed framework deals with the more

number of activities, has tracking and occlusion handling ability, determines the

posture of the human body and generates automated Stick Figures, and provides

quantitative evaluation of the SBP detection and tracking.

4.5.2.5 Computational complexity

The proposed framework runs in real time due to its computational simplicity. The

computational time of the proposed framework implemented in Microsoft Visual

Studio 2010 Express Edition environment with OpenCV 2.4.6 on an Intel (R) Core

(TM) i7 processor working at 2.93 GHz with 4 GB RAM running Windows 7 operat-

ing system is measured using the computer system clock. The proposed framework

labels SBPs in 0.031 seconds per image frame on the Weizmann data set at 20-30

frame per second. It labels SBPs in 0.071 seconds per image frame on the MuHAVi

data set.

The convex hull is computed using the Sklansky’s algorithm [105] which has

a computational complexity of O(N), where N in the number of convex points.

The contour moments algorithm is based on the Green theorem [100] which has

a computational complexity of O(L), where L is the length of the boundary of

the object. The performance of the Particle Filter enhances with the increase in

94



4.5 Experimental Results

Table 4.5: SBP detection: Proposed vs SKEL and CVHSP.

Weizmann Data set

Activity SKEL [106] CVHSP [20] PROPOSED

Walk 2768 2379 3134

Run 1623 1323 1828

Skip 1664 1398 2108

Side 1626 1347 2183

Jump 1455 1244 2220

PauseJump 2271 1210 2654

Bend 2669 1609 3067

OneHandWave 2667 1782 3265

TwoHandWave 2987 2064 2875

Jack 3299 2835 3157

MuHAVi Data set

Walk 1239 1209 1326

Run 1005 899 1080

Turn 901 778 868

Standup 1464 1394 1431

Collapse 1189 958 1131

Kick 770 711 828

Punch 672 695 729

Guard− to−Kick 467 404 503

Guard− to− Punch 463 543 529
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Table 4.6: Proposed approach versus Related approaches.

Method STAR [106]FDMHP [38]CBHM [33]CVHSP [20] Proposed

No. of Cues 2 3 4 6 4

Criteria - - Heuristic Heuristic Anthropometry

Kinesiology

Biomechanics

Human vision

Pose Estimation No No No Yes Yes

Tracking No Yes Yes No Yes

Occlusion No No No Partial Full

No. of Activities 2 5 6 14 15

Quantitative result No No Yes No Yes

Stick Figure Yes Yes Yes No Yes

number of particles. It is formally O(N logN), however, it can be made O(N) with

minor modifications to the sampling procedure. In the proposed framework, the

Particle Filter is initialized with 100 particles with a state vector constituting of

four parameters. As a result its computational speed can be considered to be real

time. This is similar to [10] where a 6-12 degree of freedom model with 100 particles

run in real time.

4.6 Summary

In this chapter two methods for SBP tracking are presented, i.e., Particle Filter

with memory and feedback, and motion flow. The former method does not require

any knowledge of activity and performs better than the standard Particle Filter.

The latter method is more accurate, however, requires prior knowledge of activity.

The proposed Particle Filter with memory and feedback is combined with the SBP

labelling framework which improves SBP identification during occlusion or missed

SBP. The tracking method increases the SBP detection accuracy. Comparative

results demonstrate better SBP detection performance versus state of the art ap-

proaches. In future, the proposed Particle Filter with memory and feedback can be

extended to predict SBPs in more activities.
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Chapter 5

Activity Recognition

5.1 Introduction

Human activity recognition is important due to potential applications in video

surveillance, assisted living, animation etc [113] [114]. In general, a standard ac-

tivity recognition framework consists of the feature extraction, feature selection

(dimension reduction) and pattern classification. The feature extraction can be

broadly categorized into the holistic (shape or optical flow) [12–14, 115], local fea-

ture (descriptors of local regions) [15–17, 116] and model-based (prior model) or

model-free (no prior model) approaches. Techniques such as Principal component

analysis (PCA) [117] or Linear Discriminant Analysis (LDA) [118] are commonly

used to select the most prominent features. Decision tree (DT) [13] or Support

Vector Machines (SVMs) [114] are used for efficient classification.

The current state-of-the-art human activity recognition method varies with

respect to application scenario as each method has been designed and verified for

data sets containing different challenges such as similar activities, industrial envi-

ronment, illumination variation, varying clothing, complex backgrounds, multiple

actors, person-to-person interaction, human object interaction, multiple views etc.

(see [72] for details on datasets). Also, it has been noted in literature [119] that

human activity recognition methods have different performances on different data

sets. The apparent reason for this lies in the feature extraction approach, i.e., holis-

tic, local feature and model-based/model-free, and the different characteristics of

the activities in the data sets [119]. The local features approach that extract the

neighbourhood information of the regions or interest points focus more on the lo-
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cal motion than on the figure shape. Hence, it is suitable for activities with more

intra-class dissimilarity in the shape of figures. In contrast, the holistic and model-

based/model-free approach are focused on figure shape characteristics which makes

them suitable for activities with more inter-class similarity in the local motion, i.e.,

similar activities such as Walk, Run etc.

Recognizing similar activities still remains a challenge (see Section 5.2). The

local feature and holistic approaches are computationally expensive and require

intensive training while the model-based/model-free approach is efficient but less

accurate. Therefore, the robust and efficient implicit body model based approach

for significant body point (SBP) detection described in Chapter 3 and Chapter

4 [120] is used for feature extraction. In this context, the work in [21] that extracts

the leg frequency and torso inclination is extended to determine two more features,

i.e., the leg power and torso power. Also, the SBP detection method is augmented

to extract features (similar to [115]) that extract variations in the movement of

different body parts at different directions, i.e., up, down, right, and left, during an

activity. As in [115] PCA or LDA is not used as we extract less than 15 features.

These features are used to create two feature descriptors.

For efficient classification, mostly researchers use off-the-shelve classifier such

as SVM and DT but with a trade-off of performance, e.g., SVM struggles due to the

lack of generalized information, i.e., each test activity is compared with the train-

ing activity of one subject [115]. On the other hand DT imposes hard constraint

that leads to separation problems when the number of categories increases or when

categories are similar, i.e., a lack of clear separation boundary [18]. To achieve high

accuracy while being fast the Relaxed Hierarchy (RH) method in [18] uses relaxed

constraint, i.e., postpone decisions on confusing classes, to tackle the increased num-

ber of categories but still remains prone to accurately discerning similar categories.

The Hierarchical Strategy (HS) method in [121] uses the RH and group together

easily confused classes to improve the classification performance. RH and HS have

only been applied to the spatial domain. Hierarchical methods [122, 123] are also

used at lower levels for feature-wise classification. Note, however, similar to [18] this

work focuses on building high-level class hierarchies and look into the problem of

class-wise partitioning.

In order to recognize similar human activities efficiently and accurately, we

propose a hierarchical relaxed partitioning system (HRPS) (see Section 5.3 for de-

tails). This is a system that classifies and organizes activities in a hierarchical
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manner according to their type, i.e., pure activities (easily separable) and impure

activities (easily confused). Subsequently, it applies relaxed partitioning to all the

easily confused activities by postponing the decisions on them until the last level

of the hierarchy, where they are labelled by using a novel majority voting scheme

(MVS). As opposed to a conventional multi-class classifier as in [121] that can distin-

guish between only two similar activities, i.e., two classes overlap simultaneously, the

proposed MVS is able to discern between three or more similar activities, i.e., three

classes overlap concurrently. Thus, making the HRPS more robust and suitable for

identifying activities in real world scenarios.

The major contributions of this work are as follows: (a) extending [21],

Chapter 3 and Chapter 4 to built two feature descriptors and (b) implementing

HRPS with the majority voting scheme to recognize similar activities.

This Chapter, is organized as follows. Section 5.2 reviews related methods.

Section 5.3 and Section 5.4 present the foundation of HRPS and its application to

activity recognition, respectively. Experiments are shown in Section 5.5.

5.2 Literature review

Several human activity recognition methods, e.g., [13, 15, 16, 22, 23, 119, 124–126]

verified on the benchmark data sets (see [72] for data sets) struggle in correctly

classifying similar activities of the Weizmann data set. The methods [13,14,115,116]

that are able to correctly classify similar activities of the Weizmann data set are

either computationally expensive or require intensive training or need to learn a

large set of features. These methods require tuning of parameters with respect

to the data set. Therefore, they require extensive re-training for new activities.

Some methods [14,15,23] require more number of frames (approximately 100 to 200

frames) for training, thus duplicate or up-sample the training data.

5.2.1 Holistic and local feature approaches

In [13], a binary prototype tree based on shape and motion feature is learned, and a

lookup table is used to match actions. Both shape and motion cues are required to

recognise similar activities accurately. In [14], the clusters of motion curves from the

optical flow of probe video sequences are matched with the clusters of training video

sequences. In [115] the optical flow and random sample consensus methods are used

to localize the subject. Next, it extracts a feature vector that contain variations
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in the movement of different body parts at different directions during an activity.

Euclidean distance or SVM is used with the feature vector for action recognition.

In [116] the locality preserving projection method (that learns a projection onto a

low dimensional space while optimally preserving the neighbourhood structure) is

supervised to recognize similar activities by not ignoring the local information of

the data. These methods are either computationally expensive or require intensive

training or tuning of multiple parameter on a data set.

In [15], the kinematic features from the optical flow extracted from videos

are converted into kinematic modes using principal component analysis. These

kinematic modes are then used in a bag of kinematic mode representation with a

nearest neighbour classifier for human action recognition. It has high computational

cost, requires intensive training and confuses similar activities. In [16], videos are

represented as word × time tables and the extracted temporal patterns are used

with supervised time-sensitive topic models for action recognition. It also confuses

similar activities.

5.2.2 Model-free and model-based approaches

A star is a shape that is formed by connecting the centre of mass of a human sil-

houette contour to the extreme boundary points. The method in [21] creates a

one-star by using a local maximum on the distance curve of the human contour

to locate the SBPs which are at the extremities. It uses two motion features, i.e.,

leg frequencies and torso angles, to recognize only the Walk and Run activities. A

two star method [34] extends [21] by adding the highest contour point as the sec-

ond star. It uses a 5D feature descriptor with a hidden Markov model (HMM) to

detect the fence climbing activity. The method in [22] extends [34] by using the

medial axis [106] to generate the junction points from which variable star models

are constructed. It is compared with [21] and [34] on the fence climbing activity,

and evaluated on the Weizmann data set. In [20], multiple cues such as the skin

colour, principal and minor axes of the human body, the relative distances between

convex points, convex point curvature, etc., are used to enhance the method in [21]

for the task of posture estimation. It does not provide quantitative results, and

uses a non-standard and non-publicly available data set. Thus, it requires extensive

further work to validate and apply it to activity recognition. The method in [23]

assumes that SBPs are given and uses the chaotic invariant for activity recognition

on the Weizmann data set. It uses the trajectories of SBPs to reconstruct a phase
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space, and applies the properties of this phase space such as the Lyapunov expo-

nent, correlation integral and dimension, to construct a feature vector, for activity

recognition. The above-described distance curve based methods are sensitive to the

silhouette contour, occlusion, resolution, etc., which affects their accuracy for ac-

tivity recognition. The method in [22] and [23] confuse similar activities while only

two features of the method in [21] are not sufficient for recognizing more than two

similar activities.

The method in [33] uses the Poisson equation to obtain the torso, and neg-

ative minimum curvature to locate the SBPs. An 8D feature descriptor from the

articulated model is used with the HMM to recognize six activities. In [38], the

dominant points along the convex hull of a silhouette contour are used with the

body ratio, appearance, etc., to fit a predefined model. It is extended in [71] for

activity recognition. These methods are evaluated on non-standard and publically

unavailable data sets. The method in [71] confuses similar activities. The method

in [19] uses the convex hull to identify the SBPs. However, it is designed to be

used for surveillance purposes. In Chapter 3 implicit body models are used with the

convex hull of a human contour to label SBPs. It tracks the SBPs by using a variant

of the Particle Filter described in Chapter 4. This method works in real-time by

fitting the knowledge from the implicit body models. It outperforms most of the

cutting edge methods that use the distance curve method. Thus, we are motivated

to extend and apply it for activity recognition.

5.3 Foundation of proposed method

A DT learns from a data and features the best class separation based on an optimiza-

tion criteria. Let p(m|t) denote the fraction of samples belonging to a class m at a

given node t. Then, for M number of classes, Entropy= −
∑M−1

m=0 p(m|t) log2 p(m|t),
can be used as an optimization criteria to determine the best split at each node by

measuring the class distribution before and after the split. Techniques such as prun-

ing that optimizes tree depth (leafiness) by merging leaves on the same tree branch

can then be used to avoid over-fitting. Random Forest (RDF) is an ensemble learn-

ing method that generates many DT classifiers and aggregate their result to avoid

over-fitting issue of DT and improve classification performance [127]. Methods like

DT and RDF assume that at each node the feature-space can be partitioned into

disjoint subspaces, however as mentioned in [18] this does not hold when there are
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similar classes or when there are large number of classes. In this case finding a

feature-space partitioning that reflects the class-set partitioning is difficult as ob-

served in [18]. Therefore, similar to [18, 121] the goal of this work is to establish

a class hierarchy and then train a classifier such as simple binary classifier at each

node of the class hierarchy to perform efficient and accurate classification. This

allows us to define different set of rules for classifying different types of activities.

This is important as different feature sets are useful for discerning different types of

activities [128].

In this context, a class hierarchy is created and at each node a binary decision

rule is learned that ignores easily confused categories. At the bottom node of the

hierarchy a MVS is used to perform decisions on easily confused categories. Let

us demonstrate the concept of creating a HRPS using a simple example with three

overlapping classes that represent similar categories as shown in Fig. 5.1(a). It can

be seen from Fig. 5.1(a) that it is not possible to clearly distinguish between only

two overlapping classes by using the RH method as it assumes that only two classes

overlap simultaneously. This is because now the overlap is among three classes

concurrently, i,e., the overlap between the two classes A and B also contain some

overlap with the third class C. Similar phenomena occurs for B and C, and A and

C classes. In addition, a combined overlap occurs, i.e, A∩B∩C ̸= ∅. Hence, the RH

method is not capable of tackling the multiple overlaps class separation problem.

The proposed HRPS method addresses this deficiency in the RH method by

splitting the set of classes K = A′ ∪B′ ∪ C ′ ∪X, where X = {XAB ∪XBC ∪XAC}
and XAB = A∩B−A∩B∩C, XBC = B∩C−A∩B∩C, XAC = A∩C−A∩B∩C

and XABC = A∩B ∩C. X contains samples from two or more overlapping classes.

First, at each level of the hierarchy the clearly separable samples of each class are

partitioned into the A′ or B′ or C ′ as shown in Fig. 5.1(b)-(d).

A′ = A−XAB −XAC −XABC (5.1)

B′ = B −XAB −XBC −XABC (5.2)

C ′ = C −XAC −XBC −XABC . (5.3)

Next, the overlapping samples of each class as shown in Fig. 5.1(e) are partitioned

into A or B or C via a majority voting scheme (see Section 5.4.2). The class hierarchy

structure for HRPS method is shown in Fig. 5.1(f). Note that at each level one class

is partitioned from the remaining group of easily confused classes [113] [121].
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(a) (b) (c) (d) (e)

(f)

Figure 5.1: (a) Example of three classes to illustrate multiple overlaps class sepa-
ration problem, (b)-(e) Hierarchical relaxed partitioning system: (b), (c) and (d)
Partition non-overlapping samples from class A, B and C respectively, (e) Remain-
ing overlapping samples of all the three classes discerned using the majority voting
scheme (see Section 5.4.2 for details), and (f) the corresponding class hierarchy
structure.
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Figure 5.2: The main components and work flow of the proposed human activity
recognition.

5.4 HRPS for Activity Recognition

We present HRPS for the Weizmann data set [58] containing multiple similar ac-

tivities such as Walk, Run, Side, Skip, etc. that are easily confused by the activity

recognition methods in the literature. HRPS for the Multi-camera Human Action

Video (MuHAVi) data set [73] containing similar activities e.g., walk , run, turn,

etc., is also described in order to establish its generality, i.e., adaptability to work

on a different data set. The work flow of the proposed activity recognition is shown

in Fig. 5.2.

5.4.1 Feature extraction

Distinguishing between the cyclic and non-cyclic activities is vital for activity recog-

nition [129]. Thus, we augment our earlier work in Chapter 3 and Chapter 4 to build

two feature descriptors Di, i=1,2. The 2D stick figure shown in Fig. 5.3 (a) is used

to describe

D1 = [V1 V2 V3 V4 V5] (5.4)

for cyclic activities, while the 2D stick figure shown in Fig. 5.3 (b) is utilized to

build

D2 = [V6 V7 V8 V9 V10 V11 V12 V13] (5.5)

for non-cyclic activities. The Vi, i=1,2,...12 represents the feature elements of the

descriptors. In Fig. 5.3, the SBPs are labelled as the Head (H), Front Arm (FA),
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(a) (b)

Figure 5.3: Feature extraction. (a) 2D stick figure analysis for cyclic activities and
(b) The upper and lower body analysis based on the arm and feet movement. The
SBPs labelled as Head (H), Front Arm (FA), Back Arm (BA) and Feet (F).

Back Arm (BA) and Feet (F). Each SBP abbreviation can be considered as a vector

which has a 2D position, e.g, FA = (xFA, yFA), F = (xF , yF ). Here, the super-

scripts denote the abbreviations of SBP.

The 2D stick figure motion analysis method in [21] uses two motion based

features, i.e., the leg power and torso inclination angle, to discern between the

Walk and Run activities. This method is suitable for only classifying the cyclic

activities with less inter-class similarity, i.e., the activities are not similar to each

other. Therefore, we propose two more features, i.e., the torso angle and torso

power, to strengthen the method in [21]. Given the global angle from contour

moments V6 = θ(t) at time t, centre (xc, yc), and SBPs from chapter 3 [120], we

extend the method in [21] to acquire D1 which contains four motion based features,

i.e., the leg cyclic frequency (V1) and leg power (V2), and the torso inclination angle

V3 = ϕ(t) = |90 − θ(t)| and torso power V4 for the cyclic activities. The foot point

xF > xc is used for computing

θleg(t) = tan−1(
xF − xc
yF − yc

). (5.6)

Note that this choice does not guarantee the same leg is used for analysis. However,

the cyclic nature of the activities makes it unnecessary to detect the same leg in

every frame of the video sequence because the cyclic nature is discernible from the

motion of this SBP [21].

The computed torso angle V3 = ϕ(t) and leg angle θleg(t) are converted into
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(a) (b)

Figure 5.4: High pass filter. (a) magnitude-frequency response and (b) phase-
frequency response.

Figure 5.5: Process of acquiring D1 feature descriptor for the cyclic activities.

radians. A highpass digital filter Y (ejw) is applied to θleg(t).

Y (ejw) = b(1) − b(2)e−jw (5.7)

Here, b(1) = 1, b(2) = −0.9 as in [21]. The magnitude-frequency response and

phase-frequency response of this filter are shown in Fig. 5.4. The filtered leg angles

θleg(t) are then autocorrelated in order to emphasise the major cyclic components as

shown in Fig. 5.5 middle column. The discrete Fourier transform (DFT) is applied

to the autocorrelated leg angles to quantify the leg frequency V1 and magnitude

expressed as leg power V2 in decibels [21] as shown in Fig. 5.5 right column. It

shows that the for Walk most freuqncies are in the 1-2Hz range with low power.

In this work the high pass digital filter Y (ejw) is also applied to the torso angle V3

(in radians) in order to remove the low frequency components in contrast to [21]

where this filter is only applied to the leg angle θleg(t). Next, the autocorrelation

and DFT steps in Fig. 5.5 are performed on the filtered torso angle to compute a
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new feature, i.e., the torso magnitude expressed as torso power V4 in decibels. This

extension allows us to extract more distinct characteristics from the leg and torso

angle features because the feature descriptor D1 contains four motion based features

as compare to two features used in [21]. Most of the similar cyclic activities can be

easily distinguished due to different cyclic leg frequency and leg power, torso angle

and torso power. The change in direction of movement or position of subject is

incorporated as

V5 = min(xt+1
c − xtc) (5.8)

∀ t ∈ 1, N − 1, where N is the total number of frames, min gives the minimum

value. A positive and negative value of V5 respectively indicate whether subject

moved in the same direction or changed direction (turn around) of movement during

an activity.

The feature descriptor D2 characterises the upper body (torso and arms)

and lower body (legs) movements as a proportion of the mean height µh at different

directions during an activity as shown in Fig. 5.3 (b) for the non-cyclic activities.

The inter-frame displacement (movement) of the front and back arms are described

as

V7 = max(|xFA
t+1 − xFA

t |)/µh, V8 = max(|yFA
t+1 − yFA

t |)/µh (5.9)

V9 = max(|xBA
t+1 − xBA

t |)/µh, V10 = max(|yBA
t+1 − yBA

t |)/µh (5.10)

∀ t ∈ 1, N − 1, max gives the maximum value. The features V7, V8, V9, and V10 do

not contain information with respect to the actual positioning of the front and back

arm SBPs, i,e., where the arm displacement is being taken place. This information

is represented as

V11 = min(yFA
t ), V12 = min(yBA

t ), ∀ t ∈ 1, N (5.11)

which uses the vertical position of the front and back arms to represent their maxi-

mum height (as the minimum y location of the front and back arms). The variation

in the lower body movement due to the leg can be represented by computing the

maximum inter-frame horizontal displacement between the two feet as

V13 = max(|xFt+1 − xFt |)/µh, ∀ t ∈ 1, N − 1. (5.12)
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Figure 5.6: Hierarchical relaxed partitioning system for the Weizmann data set.
∆i, i=1,2,..10 are the decision rules, and Xα and Xα are the unassigned impure cyclic
and non-cyclic activities, respectively, with significant multiple overlaps.

5.4.2 Classification: HRPS for Weizmann data set

The Weizmann data set contain ten activities, i.e., the Walk (α1), Run (α2), Skip

(α3), Side (α4), Jump (α5), Jump-in-place-on-two-legs or Pause Jump (β7), Bend

(β8), One Hand Wave (β9), Two Hand Wave (β10) and Jack (β11). In [130],

a binary decision tree splits the activities into still and moving categories at the

root node in order to obtain better classification. Therefore, an expert knowledge

motivated from [130] is added at the root node level 1 to automatically split the

above-mentioned ten activities in two groups, i.e., significant translation (α) and no

significant translation (β) by using

α = 0.25Iw > xc or xc > 0.75Iw

β = 0.25Iw < xc or xc < 0.75Iw
(5.13)

as shown in level 2 of Fig. 5.6. Iw and Ih are the frame width and frame height,

respectively. Thus, most cyclic activities, i.e., the Walk (α1), Run (α2), Skip (α3),

Side (α4) and Jump (α5), which have significant translation of the subject and

repetitive nature are grouped together under α. The activities, i.e., the Pause Jump

(β7), Bend (β8), One Hand Wave (β9), Two Hand Wave (β10) and Jack (β11),

which have no significant translation of the subject are grouped under β. A HRPS

with 8 levels is created with decision rules ∆i, i=1,2,...10 as shown in Fig. 5.6. The

decision rules ∆i, i=1,2,...6 for cyclic activities are learned by using Algorithm. 5.4.1
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Algorithm 5.4.1: Partition Learning Algorithm(D1)

Input: Training sequences S1, ..., SM

Corresponding labels y1, ..., yM

Feature descriptor D1 = [V1 V2 V3 V4 V5]

Output: Decision rules ∆i, i=1,2,...5

Step 1: For each activity, determine the mean µj and standard deviation σj of

feature elements Vj, j=1,...,5 from K training subjects/samples as

µj =
∑K

k=1 V
k
j /K , σj =

√
1/K

∑K
k=1(V

k
j − µj)2.

Step 2: Learn decision rules as one standard deviation on either side of the mean

∆i, i=1,2,...5 = µj − σj < Vj < µj + σj .

Step 3: Update decision rules by using a variable adjustment κ to separate

clearly separable samples, i.e., pure samples, of one activity from the samples of

all the remaining activities

∆i, i=1,2,...5 = µj − σj + κ < Vj < µj + σj + κ

Step 4: Accumulate impure samples of an activity that are closer to the samples

of all the remaining activities in Xα.

on the training data set that contains the activities performed by eight subjects. The

last subject is used as the testing data set in a leave-one-person-out cross validation

approach to determine the performance of the HRPS for cyclic activities. The

Algorithm. 5.4.1 postpone decisions on those samples of an activity that are closer to

the samples of all the remaining activities by updating the decision rules ∆i, i=1,2,...5

by using variable adjustment κ. In Chapter 3, SBPs were accurately detected by

using implicit body models (IBMs) that are based on the human kinesiology and

anthropometric studies, and observed human body characteristics. This inspired us

to define decision rules ∆i, i=6,7,...10 that are fixed based on the human kinesiology

(torso flexion or extension V6) [90] and anthropometric studies (upper body motion

V7, V8, V9, V10 and leg motion V13) [6], and individual arm location V11 and V12),

observed human body characteristics and experimental cues for non-cyclic activities.

The Pause Jump (β7) is a cyclic activity with no significant translation but has

repetitive nature. Thus, it is first separated using V6 from the non-cyclic activities,

i.e., Bend (β8), One Hand Wave (β9), Two Hand Wave (β10), Jack (β11). This

knowledge will assure an increase in the accuracy and reliability of the activity
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classification.

∆6 =

{
β7 if |90 − V6| < 9

∆7 Otherwise.
(5.14)

A full flexion of the vertebra in the Bend (β8) activity causes a large increase in

the torso angle [90]. Based on the experimental observation in Section 5.5.1 most

training subjects have a torso angle variation greater than 9 degrees, thus,

∆7 =

{
β8 if |90 − V6| > 9

∆8 Otherwise.
(5.15)

The Jack (β11) activity which involves a large upper body and lower body movement

is determined based on large arm and feet displacement by using

∆8 =


β11 if V7 or V8 > 15/µh and V9 or V10 > 15/µh

and V13 > 20/µh

∆9 Otherwise.

(5.16)

where µh = 68 pixels for the Weizmann data set. The human head is one-eighth

the human height, i.e., 0.125. Hence, a 15 pixel movement equates to 15/68 = 0.22

that is almost twice of the height of the human head.

The individual arm motion in the Two Hand Wave (β10) and One Hand Wave

(β9) activities is discerned using the location information. In the Two Hand Wave

(β10) activity there will be significant movement of both arms while in the One Hand

Wave (β9) activity there will be significant movement of only one arm. Therefore,

the Two Hand Wave (β10) and One Hand Wave (β9) activities are described below:

∆9 =


β10 if V13 < 20/µh and V8 ≥ 5/µh and V10 ≥ 5/µh

and V11 ≤ 55 and V12 < 50

∆10 Otherwise.

(5.17)

∆10 =


β9 if V13 < 20/µh and V8 or V10 ≤ 8/µh

and V11 ≤ 55 and V12 > 50

Xβ Otherwise.

(5.18)

5.4.2.1 Majority Voting Scheme (MVS)

The unassigned impure activities Xα and Xβ at the second last level of the HRPS

(see Fig. 5.6) are given a label by using a novel majority voting scheme in Fig. 5.7.
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Figure 5.7: Proposed majority voting scheme for the unassigned impure activities
Xα and Xβ using the mean D̄i, i=1,2.
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This scheme is an integral part of the HRPS and is designed to cater for the increase

complexity of multiple overlaps in the feature space of two or more activities. The

key idea of this scheme is to accumulate votes based on the rank, assigned weight and

frequency (mode) value in order to deduce more accurate decisions at the bottom

level of the HRPS.

Given the mean feature descriptors, i.e., D̄1 = [V̄1 V̄2 V̄3 V̄4 V̄5] and D̄2 =

[V̄5 V̄6 V̄7 V̄8 V̄9 V̄10 V̄11 V̄12], of the known activities of training data set, the goal

is to label an unknown impure activity (which contain significant overlaps in the

feature space) by extracting the feature descriptors, i.e., D1 = [V1 V2 V3 V4 V5]

and D2 = [V6 V7 V8 V9 V10 V11 V12 V13], in order to calculate the rank, weight and

mode as shown in Fig. 5.7. D1 and D2 are used for cyclic and non-cyclic activities,

respectively. V1−V13 represent each feature element of the feature descriptors. The

label for the unknown impure activity is determined as follows.

• Step 1: Compare each feature element of the feature descriptor, i.e., D1 or

D2, of one unknown impure activity with the respective mean feature elements

of the feature descriptor, i.e., D̄1 or D̄2, for each of the known activities in

order to enumerate three closest known activities per mean feature element.

• Step 2: Assign a score (rank) ν = 3, 2, 1 to the three activities enumerated

in Step 1 based on their closeness to each of the mean feature elements of D̄1

or D̄2. Next, arrange them in the descending order of their ranks.

• Step 3: Allocate a weight ω = 3, 2, 1 to the three ranked activities in Step 2

based on their strength of closeness to the mean feature elements of D̄1 or D̄2.

• Step 4: Find the three known activities that occur most frequently (i.e., mode

ϖ) per mean feature element of D̄1 or D̄2.

• Step 5: Calculate the final score to find the label of the unknown activity.

The known activity of the training data set whose rank, weight, and mode

yield the maximum score with respect to the unknown activity is assigned as

the label for the unknown activity, i.e., Label=max(ϖ + ν + ω).

5.4.3 Classification: HRPS for the MuHAVi data set

The robustness of the proposed HRPS method is further validated by applying

it with the same feature descriptors Di, i=1,2 on the MuHAVi dataset [73]. The
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Figure 5.8: Hierarchical relaxed partitioning system for the MuHAVi data set.
∆i, i=11,12,..19 are the decision rules, and Xα and Xβ are the unassigned impure
cyclic and non-cyclic activities, respectively, with significant multiple overlaps.

MuHAVi data set contain eight activities, i.e., the Walk (α1), Run (α2), Turn

(α6), Standup (β12), Collapse (β13), Kick (β14), Punch (β15) and Guard-to-kick

or Guard-to-punch (β16/β17). As in Section 5.4.2 the root node is split into α and

β activities by using (Eq. 5.13). A HRPS with 7 levels is created with decision rules

∆i, i=11,...,19 as shown in Fig. 5.8. Algorithm. 5.4.1 is used on the 7 training samples

of the MuHAVi data set to learn the decision rules ∆i, i=11,12,13 for the Walk (α1),

Run (α2) and Turn (α6) cyclic activities respectively. The last sample is used as

the testing data in a leave-one-out procedure to determine the performance of the

HRPS.

Similar to Section 5.4.2 we define decision rules ∆i, i=14,...,19 that are fixed

based on the human kinesiology [90], anthropometry [6] and body characteristics

for non-cyclic activities. Let the reference global angle V6 = θ(t) in Stand posture

be 90o. Then, based on biomechanical analysis [92] of human spine the maximum

flexion of torso is 60o, i.e., (90−60 = 30 or 90+60 = 150), which causes a significant

change in posture. Thus,

∆14 =

{
∆15 if 30 ≥ V6 ≥ 150

∆17 Otherwise
(5.19)
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is used to determine whether a transition occurred ∀ t ∈ 1, N frames of the activity

video. The transition ∆15 includes Standup (β12) and Collapse (β13) activities

which contain significant change in posture while the non-transition ∆16 contain

Kick (β14), Punch (β15) and Guard-to-kick or Guard-to-punch (β16/β17) which

do not have significant change in posture. The decision rules for the Standup (β12)

and Collapse (β13), i.e., ∆15 and ∆16, respectively are defined as

∆15 =


β12 if 30 ≥ V6 ≥ 150, at t = 1

and 65 ≤ V6 ≤ 125, ∀ t ∈ 2, N

∆16 Otherwise

(5.20)

∆16 =


β13 if 65 ≤ V6 ≤ 125, at t = 1

and 30 ≥ V6 ≥ 150, ∀ t ∈ 2, N

Xβ Otherwise

(5.21)

The range 125 − 65 = 60o [92] is selected as it corresponds to the flexion and

extension range of human body while maintaining a somewhat Stand posture. We

are motivated from Chapter 3 to borrow the definition of the Kick and Punch IBM

as decision rules for the Kick (β14) and Punch (β15) activities. Hence,

∆17 =

{
β14 if 2 ≤ 90 − V6 ≤ 15

∆18 Otherwise.
(5.22)

∆18 =

{
β15 if 90 − V6 > 15

∆19 Otherwise.
(5.23)

Note that in Punch (β15), the arm moves across the body in a diagonal manner and

as a result the angle of body from the vertical is quite large. The Guard-to-punch

and Guard-to-kick are considered as one class because both primarily have a guard

activity with minimal movement of the arms and legs. In Guard-to-kick or Guard-

to-punch (β16/β17), the human remains in Stand posture with least angle of body

from the vertical. Hence,

∆19 =

{
β16/β17 if 90 − V6 < 2

Xβ Otherwise.
(5.24)

The unassigned impure activities Xα and Xβ are given a label by using the MVS

(see Section 5.4.2.1).
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5.5 Experimental results

The Weizmann dataset [58] comprises ninety low-resolution 180 × 144 video se-

quences of nine subjects performing ten daily activities. The MuHAVi dataset [73]

comprises eight high resolution 720 × 576 primitive activity classes of two actors

with two samples with two different views (camera 3 and camera 4), i.e., total eight

samples, per activity. We use a standard leave-one-out cross validation method.

5.5.1 Feature extraction evaluation

The 3D scatter plots of the selected features are shown in Fig. 5.9 and Fig. 5.10

to visualize the distribution of the activities of the input data set. It can be seen

from Fig. 5.9 (a) that the Walk activity has the least leg frequency (most blue

circles between 2-3 Hz) and the Run activity has the maximum leg frequency (green

pentagons lie between 4-6 Hz onwards). Similarly, it can be seen in Fig. 5.9 (b)

that the torso power of the Walk activity is much less than the remaining cyclic

activities. In Fig. 5.9 (c) it can be seen that the torso angle of most of the Run

(green pentagons), Jump (purple diamonds) and Skip (light blue square) activities

is more than the Walk (blue circles) and Side (red stars) activity. It can be observed

from Fig. 5.9 (c) that the Walk activity has the least torso angle (blue circles between

0-0.05 radian) while the torso angle for the Side (red stars) activity is concentrated

between 0.05-0.1 radian.

The Fig. 5.10 (a) shows the 3D scatter plots of the selected features for the

Bend, Jack, One Hand Wave and Two Hand Wave activities of the Weizmann data

set. It can be seen that the Jack activity has the maximum displacement of the feet

as a proportion of the mean height of subject. Also, it can be seen that in the Two

Hand Wave (light blue square) activity both front and back arm have minimum

position in pixels, and is well separate from the One Hand Wave (red star) activity.

The Fig. 5.10 (b) shows the 3D scatter plots of a selected feature for the Guard-

to-Punch or Guard-to-Kick, Kick and Punch activities of the MuHAVi data set. It

can be seen that the Guard-to-Punch or Guard-to-Kick has the least variation in

the angle of body from the vertical and the Punch has the maximum angle of body

from the vertical. The angle of body from the vertical for the Kick activity lies in

between the Guard-to-Punch or Guard-to-Kick and Punch activity.
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Figure 5.9: 3D scatter plots of the selected features that show the distribution of
the cyclic activities for the input Weizmann data set.
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Figure 5.10: 3D scatter plots of the selected features that show the distribution of
the activities for the input Weizmann and MuHAVi data sets.

In Fig. 5.11, we illustrate the ability of some of the features from Di, i=1,2 to

discern various human activities of the Weizmann and MuHAVi data sets. The error

bars show 95% confidence intervals on selected features with two standard deviation

as an error metric. Although the leg frequency, i.e., V1, of the Walk (α1) and Run

(α2) activity is dissimilar based on speed of the leg movement but anomalies like

some subjects walking faster causes misclassification. However, it can be seen from

Fig. 5.11 (a) that the torso angle V3 = ϕ(t) provides a good separation to discern

the Walk (α1) and Run (α2) activities. Similarly, the newly introduced torso
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Significance of the extracted features for discerning activities. Error
bars show 95% confidence intervals on selected features with two standard deviation
as an error metric. (a)-(e) Weizmann data set and (f) MuHAVi data set.
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power feature V4 provides a reasonable distinction between the Side (α4) and Pause

Jump (β7) activities as shown in Fig. 5.11 (b). In Fig. 5.11 (c), the global angle

V6 = θ(t) provides clear separation between the Pause Jump (β7) and Bend (β8)

activity while in Fig. 5.11 (d) the torso angle V3 = ϕ(t) provides sufficient discerning

ability between the Bend (β8) and Jack (β11) activity. It can be observed from

Fig. 5.11 (e) that the distance between the legs, i.e., V13, gives a very good separation

among the Jack (β11), One Hand Wave (β9) and Two Hand Wave (β10) activities.

Finally, in Fig. 5.11 (f) the global angle V6 = θ(t = 1) easily discern the Standup

(β12) and Collapse (β12 = 3) activities. Thus, the Di, i=1,2 acquires meaningful

information. However, there is slight overlap in the confidence intervals of some

of the features, e.g., Fig. 5.11 (a), (b) and (d). This illustrate the importance of

using HRPS to postpone decisions on such samples that lie closer to the samples of

another activity. Also, for these samples the MVS is better suited because it takes

into account multiple criteria based on the average values of all the feature elements

obtained from the training data set to assign a label to an unknown activity. As

stated in [115] the average features provide more generalized information about the

movement pattern of body during an activity.

5.5.2 Classification evaluation

The confusion table for the HRPS method on the Weizmann and MuHAVi data set

are shown in Fig. 5.12 (a) and (b) respectively. We obtained a mean classification

accuracy of 96.7% for ten activities of the Weizmann data set (see Table 5.1 and

details below for significance in comparison to other methods). It shows that our

method robustly recognises activities that have significant multiple overlaps in the

feature space. In particular, our method recognises four activities, i.e., Run (α2),

Side (α4), Jump (α5) and Pause Jump (β7), out of the six cyclic activities with a

mean classification accuracy of 100%. This proves that our method robustly discerns

similar cyclic activities. It obtains a mean classification accuracy of 94.5% for all

the six cyclic activities, i.e, Walk (α1), Run (α2), Side (α4), Jump (α5), Skip (α3)

and Pause Jump (β7). The decomposition of the Walk (α1) into the Run (α2) and

Jump (α5) activities is reasonable due to similar motion. Also, the Skip (α3) and

Jump (α5) activities are similar in the way the subject bounces across the video.

The non-cyclic activities, i.e., Bend (β8), Jack (β11), Two Hand Wave (β10) and

One Hand Wave (β9) are robustly classified with a mean classification accuracy of

100%. This proves that the decision rules based on human kinesiology and body
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(a)

(b)

Figure 5.12: Confusion table. (a) Weizmann data set and (b) MuHAVi data set.
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(a) (b)

Figure 5.13: Classification performance. (a) Weizmann data set and (b) MuHAVi
data set.

characteristics work well. We obtained a mean classification accuracy of 100% for

eight activities of the MuHAVi data set as shown in Fig. 5.12 (b). The results demon-

strate that the proposed HRPS method can robustly distinguish various activities

in two different (low and high) resolution data sets. It also show that our method

perform well under different views, i.e., camera 3 and camera 4, for the MuHAVi

data set. A high accuracy on the Standup (β12), Collapse (β13), Kick (β14), Punch

(β15) and Guard-to-kick or Guard-to-punch (β16/β17) activities demonstrate the

importance of decision rules based on human kinesiology and body characteristics.

Fig. 5.13 (a) shows classification performance with respect to training sub-

jects of the Weizmann data set. It can be seen that the classification accuracy of

the proposed method is about 70% with only one training subject. However, as the

number of training subjects increase the classification accuracy also improves. The

classification accuracy becomes slightly stable when the number of training subjects

is four, five and six. The best performance is achieved with eight training subjects.

The classification performance with respect to training samples of the MuHAVi

data set is shown in Fig. 5.13 (b). It can be seen that the classification performance

increases steadily till it reaches 100% with seven samples used for training.

Table 5.1 compares the HRPS with relevant state-of-the-art methods (see

Section 5.2) for activity recognition on the Weizmann data set. It shows that the

our method outperforms the methods in [15], [16], [22], [23] in terms of accuracy.

Saad et al. [23] only deals with nine activities. The method in [14], [15], [16], [115]

and [116] are not real-time since they require intensive training for learning. Zhuolin,

et al. [13] required both shape and motion features to achieve 100% accuracy. On
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5.5 Experimental results

Table 5.1: Comparison on the Weizmann data set.

Method Accuracy% Real-time Intensive training Year

Michalis, et al. [14] 100 No Yes 2014

Marlon, et al. [126] 96.7 Yes No 2014

Mahbub, et al. [115] 100 No No 2014

Ma, et al. [116] 100 No Yes 2013

Romain, et al. [16] 82.79 No Yes 2013

Zhuolin, et al. [13] 100 Yes Yes 2012

Saad, et al. [15] 95.75 No Yes 2010

Elden, et al. [22] 93.6 Yes No 2009

Saad, et al. [23] 92.6 - No 2007

Our method 96.7 Yes No 2014

a similar basis, i.e., using motion features, they obtain 88.89% accuracy while our

method obtains 96.7%. Their method is reported to be fast but requires intensive

training and uses optical flow which is usually computationally expensive. Hence,

these methods are not suitable for real-world applications. In contrast, our method

operates in real-time, avoid intensive training, and it is simple to implement and

extend for new activity categories (i.e., for each new category new features can be

added to the HRPS). This makes it more suitable for real world applications. The

model-free method in [21] recognizes only two activities, i.e., the Walk and Run

with 97% accuracy. On similar activities, i.e., Walk (α1), Run (α2), and Jump

(α5), the method in [33] has mean classification accuracy of 82.4% while we obtain

92.7% mean classification accuracy. The method in [131] although real-time and

non-intensive but achieves only 90.32% on the Weizmann data set. In Table 5.2,

our HRPS method is compared with recent methods on the MuHAVi data set. Our

method achieved better recognition rate than most of the methods and works in

real-time with no intensive training. On both data sets our method is comparable

to the method in [126].

On Intel (R) Core (TM) i7 2.93 GHz with 4 GB RAM and Windows 7, the

feature extraction in OpenCV 2.4.6 takes 0.031 and 0.071 seconds per image frame

on the Weizmann and MuHAVi data sets respectively. The classification in MatLab

takes 0.183 seconds for all activities. Marlon, et al. [126] method takes 4.85 and

2859.29 seconds for feature extraction on the Weizmann and MuHAVi data sets
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5.6 Summary

Table 5.2: Comparison on the MuHAVi data set.

Method Accuracy% Real-time Intensive training Year

Alexandros, et al. [132] 100 Yes No 2014

Marlon, et al. [126] 100 Yes No 2014

Alexandros, et al. [131] 97.1 Yes No 2013

Abdalrahman, et al. [133] 98.5 No No 2011

Sanchit, et al. [73] 97.8 Yes No 2010

Martinez, et al. [134] 98.4 No Yes 2009

Our method 100 Yes No 2014

respectively. This demonstrates that the HRPS method works in real-time.

5.6 Summary

We proposed a hierarchical relaxed partitioning system to efficiently and robustly

recognize activities. Our method first discerns the pure activities from the impure

activities, and then tackles the multiple overlaps problem of the impure activities

via an innovative majority voting scheme. The results proved that our method not

only accurately discerns similar activities, but also obtains real-time recognition on

two (low and high) resolution data sets, i.e., Weizmann and MuHAVi respectively.

It also performs well under two different views of the MuHAVi data set. These

attributes make our method more suitable for real-world applications in comparison

to the state-of-the-art methods.
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Chapter 6

Conclusions and Future Work

This Chapter concludes the research work carried out in this thesis, presents the

significance of the proposed methods and their applications, and the limitations of

the proposed methods and future work.

The goal of this thesis is to propose a complete and fully automated system

that uses marker-less approach to detect, label, and track human body parts for

human activity recognition. The marker-less approach provides an accurate and

cost effective solution, which can easily be extended for various applications such

as surveillance, assisted living, animation, etc., as compared to the marker based

approach, which is very expensive and requires user cooperation, specialized envi-

ronment and hardware, calibration and set up time per every new scenario, etc. The

marker-less model-based approach is explored, in particular, due to its high accuracy

over the model-free approach, which is more efficient but lacks good accuracy. In

this context, the first step was to propose a novel marker-less model-based method

that robustly and efficiently detects and labels human body parts. This method

is geared towards human activities observed from the profile view, rather than the

front view, which is a more challenging task due to the limited visible surface area

of the human body from profile, and self-occlusion of body parts. The next step in

the design of a complete system that can perform activity recognition system was to

propose robust methods for tracking human body parts during occlusion. Finally,

due to the fact that human activity recognition is one of the most active research

areas in computer vision and has numerous applications in threat or anomaly de-

tection, incident occurrence, behaviour analysis, etc., the third step in the design of

this system is to integrate the methods used for detection and tracking of human
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body parts towards human activity recognition.

In Chapter 3, a novel marker-less model-based method is proposed which fits

the knowledge from the six implicit body models to detect and label human body

parts, rather than explicitly fitting the predefined body models. This is a novel

concept which utilizes domain knowledge to detect human body parts, and thus

avoids the computationally complex model fitting procedure. The six novel implicit

body models have been constructed based on human anthropometry, kinesiology,

and human vision inspired studies. This makes them applicable to humans with

different anthropometric proportions. The first three implicit body models are de-

signed to detect human body parts in activities in which the human anthropometric

body proportions and part positioning are somewhat maintained, e.g., the Head is

above the Shoulder, the Arms are above the Knee and below the Head, etc. The

remaining three implicit body models are created to detect human body parts in

activities in which anthropometric body proportions and part positioning are not

maintained, i.e., the Arms go above the Head (e.g., Two hand wave), feet go above

the Knee (e.g., Kick). The marker-less model-based human body part detection

and labelling is achieved by considering the human body as an inverted pendulum

model and then applying ellipse fitting and contour moments procedure to classify

it as being in Stand, Sit, or Lie posture. Next, a convex hull method is used on

the silhouette contour to determine the extreme locations which are the possible

significant body points or parts, i.e., Head, Arm, and Feet. Finally, the significant

body points of the human body are labelled by using the six implicit body models.

The significant body points are connected to the centre of the human contour to

generate realistic 2D stick figures. The proposed method is rigorously evaluated on

two different data sets, i.e., Weizmann and MuHAVi, of low (180 × 144) and high

(720 × 576) resolution, respectively. The qualitative and quantitative results show

that the proposed method accurately and reliably detects and labels human body

parts in various activities. In addition, the proposed method works in real-time and

does not require manual initialization.

In Chapter 4, two novel methods are proposed for human body part tracking

during occlusion. The standard Particle Filter struggles to track significant body

points when there is no measurement in the image (i.e., in occlusion). Thus, the first

proposed method, i.e., the Particle Filter with memory and feedback, combines the

temporal information of the previous observation and estimation with a feedback

to predict significant body points in occlusion. The proposed method has two op-
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eration modes, i.e., no occlusion and occlusion. It behaves like a standard Particle

Filter when no occlusion occurs, while it uses memory and feedback when there is

occlusion. This method is based on the concept of the temporal Markov chain, i.e.,

the new state is conditioned directly on the immediately preceding state independent

of the previous history. Therefore, the last known measurement in the memory is

used to predict in occlusion at first frame, and next this prediction is fed back as an

observation for the subsequent occluded frames. This method does not require any

prior information about the activity being performed. The human arm is the most

occluded body part due rapid motion and self-occlusion in activities observed from

the profile view. Thus, the second proposed method, i.e., motion flow, considers

the human arm as a pendulum attached to the shoulder joint and defines conjec-

tures to predict the arm during occlusion. The Particle Filter with memory and

feedback method is used as default with the above-described significant body part

detection method while the motion flow method can be used as per a user’s choice.

The proposed method is rigorously evaluated on the two above-mentioned low and

high resolution data sets. The qualitative and quantitative results show that the

proposed tracking methods robustly tracks human body parts during occlusion. The

quantitative results also demonstrate that the proposed Particle Filter with memory

and feedback enhances the performance of significant body point detection.

In Chapter 5, a novel method, i.e, hierarchical relaxed partitioning system ,

was proposed for human activity recognition with particular emphasis on multiple

overlaps class separation problem in the spatio-temporal domain. The feature space

for very similar activities contains significant multiple overlaps which poses great

difficulty to accurately classify these activities. The holistic and local feature ap-

proaches tackle this problem by intensive training, and extracting computationally

complex shape and optical flow features. Thus, an efficient and robust hierarchical

relaxed partitioning system was proposed. This method is based on the concept of

relaxed hierarchy and hierarchical strategy. The input to the hierarchical relaxed

partitioning system are two feature descriptors which are extracted from the 2D

stick figure generated using the above-described significant body point detection

and tracking method. These two feature descriptors are used to discern the cyclic

and non-cyclic activities. The hierarchical relaxed partitioning system employs these

two feature descriptors to first discerns the pure (no overlaps occurs) and impure

(multiple overlaps occurs) actions, then tackles the multiple overlaps problem of the

impure actions via a novel majority voting scheme. The majority voting scheme is

126



designed to tackle the complex multiple overlaps in the feature space. It uses the two

feature descriptors to compare the rank, weight and frequency of known activities

with the unknown activity. The unknown activity is given the label of the known

activity which has the highest accumulated score of rank, weight and frequency.

The proposed hierarchical relaxed partitioning system is evaluated on the challeng-

ing low resolution Weizmann data set which contain several very similar activities.

It is further verified on high resolution MuHAVi data set to establish its generality.

The results show that the proposed method acquires valuable features and robustly

discern very similar activities while being comparable to holistic and local feature

approaches. The advantage of the proposed method lies in the real-time speed, ease

of implementation and extension, and non-intensive training.

In summary, a marker-less implicit body model-based significant body point

detection and labelling method is strengthened with a tracking method for robust

detection, labelling and tracking of the significant body points or parts. This method

is utilized to build feature descriptors which forms an input to the hierarchical

relaxed partitioning system for robust and efficient activity recognition.

The human body part detection, labelling and tracking methods developed

in this thesis can be employed for various applications such as surveillance, assisted

living, behaviour analysis, anomaly detection, activity monitoring, realistic human

model generation, human-computer interaction, human-robot interaction, etc. The

major advantages of the proposed methods are good accuracy, reliability, high speed,

ease of applicability, ease of extension, non-intensive training, and capability to work

both on low and high resolution videos. This makes the proposed system more

suitable for real world applications.

One of the limitations of the proposed human body part detection and track-

ing method that it may produce inaccurate prediction when the convex hull does

not locate body parts in the first few frames of the video sequence. However, it

recovers quickly after the first few frames. A limitation of the proposed activity

recognition system is that it only uses motion based features. This, however, can

be tackled in future by integrating both shape and motion features to enhance the

performance of human activity recognition. In addition, the human body part la-

belling and tracking can be extended to work for activities observed from multiple

views. This is possible because anthropometric constraints have already been used

in literature for matching the identified human body parts in the Stand posture

with the same posture observed from a different view. It can be an interesting
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and powerful enhancement of the proposed method which will boost its applicabil-

ity to further scenarios. Another future direction is to apply the proposed human

body part labelling method on depth images of human activities. Also, the skin

colour information can be added to detect face and hands which can increase the

performance of hand and head detection. Nevertheless, the proposed method is, as

its stands, a real-time universal fully automated and complete method able to de-

tect, label, and track human significant body points for robust and reliable human

activity recognition.
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Significant Body Point Labeling and Tracking
Faisal Azhar, Student Member, IEEE and Tardi Tjahjadi, Senior Member, IEEE

Abstract—In this paper, a method is presented to label and
track anatomical landmarks (e.g., head, hand/arm, feet), which
are referred to as significant body points (SBPs), using implicit
body models. By considering the human body as an inverted
pendulum model, ellipse fitting and contour moments are applied
to classify it as being in Stand, Sit, or Lie posture. A convex hull
of the silhouette contour is used to determine the locations of
SBPs. The particle filter or a motion flow-based method is used
to predict SBPs in occlusion. Stick figures of various activities
are generated by connecting the SBPs. The qualitative and
quantitative evaluation show that the proposed method robustly
labels and tracks SBPs in various activities of two different (low
and high) resolution data sets.

Index Terms—Anthropometry, convex points, implicit body
model, significant body points, stick figure.

I. Introduction

THE marker-less approach to human motion analysis uses
video-based methods to detect and track positions of sig-

nificant body points (SBPs) located at the convex points, i.e.,
the local maxima, of the silhouette contour. Applications in-
clude tracking, stick figure generation, animation for cartoons,
and virtual reality, imitation of human action by robots and
action recognition for assisted living, surveillance, etc., [1],
[2]. The approach offers advantages, e.g., cost effectiveness, no
requirement of particular attire and ease of application [3], [4].
The approach can broadly be classified into model-based and
model-free approaches. The model-based approach employs a
prior model. The model-free approach estimates the motion
of regions that enclose relevant anatomical landmarks without
prior information about the subject’s shape [2]. The former
requires fitting, manual annotation, and predefined models
which are time consuming while the latter tend to be less
accurate.

This paper presents a marker-less method, which uses
implicit body models (IBMs), that does not require manual
annotation of SBPs, a training phase (learning a classifier), or
fitness procedure. IBMs provide anthropometric, geometric,
and human vision-inspired constraints for labeling SBPs in
activities observed from a profile view and performed by
subjects of differing anthropometric proportions. The human
body is considered as an inverted pendulum model and ellipse
fitting is used to compute the global angle to classify Stand,
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Sit, and Lie postures. The contour moments are used to find the
angle between the principal and vertical axis to provide cues
for selecting best IBM. The convex hull [5] of the contour
is utilized to determine the locations of SBPs across time.
The particle filter method is used to predict SBPs during
occlusion, and is compared with the motion flow-based tracker
for cyclic activities. Realistic stick figures are generated from
the labeled SBPs. The versatility of the proposed method is
demonstrated in a number of challenging activities on low and
high resolution video data sets.

The paper is organized as follows. Section II presents related
methods. The methodology and the proposed framework are
presented in Section III and Section IV, respectively. Section V
discusses the experimental results, and Section VI concludes
the paper.

II. Related Work

The body segmentation and posture estimation method in
[1] is model-free and locates convex points on the contour at
the local maxima of the distance curve of the silhouette con-
tour pixels. The principal and minor axes of the human body,
their relation with the silhouette contour, relative distance
between convex points, and convex point curvature are used as
rules to label convex points as SBPs. This method uses head
point to determine the location of feet, however, an inaccurate
head point localization may lead to inaccurate feet point. It
also ignores the knee point and does not present quantitative
evaluation of labeled SBPs. The Star skeletonization method
[6] is also model free and recognizes walk and run from the
frequency of leg and torso angles during motion. It does not
label local maxima as SBPs.

A model-based modified star skeleton method [7] produces
stick figures from monocular video sequences and is extended
in connectivity-based human body modeling (CBHM) [8] by
using a modified solution of the Poisson equation to obtain
torso size and angle. It uses the negative minimum curvature
to locate the head, and the nearest neighbor tracking to find
the hand and feet. The local maximum method used in [1]
and [6]–[8] to identify extremities within the distance curve
is sensitive to silhouette contour and these extremities are not
always identified due to self occlusion. Furthermore, a smooth
distance curve and self occlusion may result in missed local
maxima. The method in [9] selects dominant points along
the convex hull on a silhouette contour and utilizes prior
knowledge of body-ratio within the head, and the upper body
and lower body segments to identify SBPs. The body parts
are connected to a predefined skeleton model via its center
to adapt it to the subject’s posture. However, the criteria for
labeling convex points as SBPs are not clearly presented in
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[9]. This method is extended in [10] for activity analysis and
3-D scene reconstruction.

The First Sight (FS) [11] produces stick body parts of a
subject performing complex gymnastic movements by match-
ing a prestored labeled body model with an outline of a
current image of the subject. The method in [12] generates
an elaborate stick figure by a manual selection of anatomical
landmarks, body ratios, ratio pruning, and an initial stick
figure.

The W4 system [13] classifies a posture into Stand, Sit,
Crawl, or Lie, then classifies the postures into front/back,
and left-side, and right-side perspectives using vertical and
horizontal projection histograms of its silhouette. SBPs are
identified using the vertices of convex and concave hulls on
the silhouette contour. A topological model is projected onto
the contour to label SBPs. The quantitative accuracy of the
labeled SBPs is not presented. This system is computationally
expensive. In [14], discrete fourier transform (DFT) is applied
to the vertical and horizontal histograms of the silhouette.
A neural fuzzy network is then used to infer postures from
magnitudes of significant DFT coefficients and length-width
body ratio. SBPs are not labeled in [14].

In [15], a 2-D model combined with particle filter is used
to detect the torso, and color information is used to detect the
hands. A posture is recognized by the nearest mean classifier.
However, initial camera calibration and use of 500 particles
to track only torso and hand limit its application in real time.
The method in [16] uses heuristic rules with contour analysis
to locate SBPs, and employs color information and particle
filter for robust feature tracking. It has only been applied to
subjects in Stand. The segmentation of a silhouette contour
length into portions is inadequate for activities such as walk,
crawl, and bend due to variations in contour lengths. The use
of a particle filter with 1000 particles also decreases the speed
of computation.

In [17], a part appearance map and an anthropometry-based
spatial constraint graph cut are used to locate scope of body
parts such as torso, head, arms, and legs. In [18], human body
is segmented into parts, and pose is estimated using a com-
bination of joint pixel-wise and part-wise formulation. Each
pixel is assigned to an articulated model using a histogram
of gradients. This model is segmented into body parts using
a given set of joint positions. However, the locations of body
parts are not evaluated in these methods.

The pose estimation framework in [19] uses a two layered
random forest classifier to localize joints. The first layer
classifies the body parts, and the second incorporates the body
parts and their joint locations to estimate the pose. In [20],
articulated body parts are detected by first finding the torso
and then performing a fitness procedure to locate the remaining
body parts. It is computationally expensive with no occlusion
handling ability.

The recent introduction of the low-cost depth camera has
motivated researchers to utilize depth images. In [21], the 3-D
pose is estimated from a single depth image. The human body
is divided into a set of parts and a random forest is employed
to compute the probability of each pixel belonging to each
part. The 3-D joint locations are then independently estimated

from these probabilities. A similar method in [22] is applied
to video images from multiple views. Random forest is used
to assign every pixel a probability of being either a body part
or background. The results are then back-projected to a 3-D
volume. Corresponding mirror symmetric body parts across
views are then found by using a latent variable, and a part-
based model is used to find the 3-D pose. In [23], a local
shape context descriptor is computed from edges obtained
from depth images to create a template descriptor of each
body part category, i.e., head, hand, and foot. A multivariate
Gaussian model is employed on the template descriptor to
compute the probability of each category. A greedy algorithm
then finds the best match to identify the body parts. The use
of multiview and depth images are not within the scope of
this paper.

III. Methodology

Human body proportion has been widely studied with appli-
cations in engineering, ergonomics, and computer vision [24].
By using the 5th–95th percentile values of body proportion,
90 percent of the world population can be covered [25],
[26]. Anthropometry has only been used for Stand postures
in a semi-automated manner, since its application in com-
plex actions is not an easy task [27], [28]. Anthropometric
transformations do not conform to any known laws, it is
thus not possible to formally define invariant properties. A
functional definition of anthropometric transforms is presented
combining anthropometric, geometric, kinesiology, and human
vision (heuristic) inspired constraints, to provide six IBMs for
robust labeling and tracking of SBPs. The six IBMs cover most
actions, activities and range of motion performed by human
from a profile view (see Section V).

In this paper, SBPs are labeled as head (H), shoulder (S),
arm (A), knee (K), and feet (F). The abbreviations encapsulate
the x-coordinate and y-coordinate of a SBP. The lowercase
x and y are, respectively, the x-coordinate and y-coordinate
locations of a point. The specific x and y coordinates of an
SBP are represented by adding SBP prefixes such as Hx, Hy

Ax, Ay etc. The current and previous locations of a point are
denoted by lowercase c and p, respectively, e.g., cx, px, Acx,
Apx. Subscript refers to a specific entity, e.g., xc, xcv, and
xnr represent the x coordinate of a center, convex point, and
normalized convex point, respectively.

A. Implicit Body Models (IBMs)

Several anthropometric studies reveal that in Stand posture
the head length is approximately one-eighth the total length
of the human body [29]–[31]. The body segment length as
a fraction of human body height (1H) is shown in Fig. 1(a),
where 8×0.13H ≈ 1H [31]. These ratios are used to provide
ranges of eight segments to label SBPs in Stand posture.
The human body maintains an approximate Stand posture in
activities such as walk, run, skip, etc. However, these activities
induce motion in the vertical plane of the human body which
is compensated for by selecting a longer range from the eight
segments providing accurate labeling and tracking of SBPs.
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Fig. 1. (a) Body segment lengths as a fraction of the body height (1H).
(b) and (c) Arm and leg range of motion based on anthropometric [25], [32],
[33] and kinesiology studies [34], respectively.

Thus, the Stand body model is divided into seven segments as
shown in Fig. 2(a) (see Section IV-A2).

Anthropometric studies show that in Sit posture the thigh
becomes horizontal to the ground and human body height
decreases (i.e., head length is not one-eighth the total human
body length) [26], [30]. As a result, the Sit posture cannot
be divided into eight segments based on empirical anthropo-
metric studies. Note that the body part positioning, (i.e., head,
shoulder, arms, knee, and feet above each other, respectively)
is somewhat maintained in Sit posture [30]. This problem is
resolved by finding the relationship between the segmentation
of Sit and Stand postures based on anthropometric studies [26],
[30], [31]. According to Fig. 1(a)

�H = 1H−SH−KH = 1H−0.52H−0.285H = 0.195H (1)

where �H and KH are respectively the thigh length and knee
height in the Stand posture. SH is the sitting height (i.e.,
measured from head to buttocks) in the Sit posture [30].

The number of segments is

Nseg =
8 × (1H − �H)

H
=

8 × (1H − 0.195H)

H
≈ 6. (2)

By substituting (1) in (2), for Sit posture Nseg should be
six, hence, the Sit body model is divided into six horizontal
segments as shown in Fig. 2(b). The lie body model is
considered as the Stand body model rotated by 90◦ based
on geometry, thus it is divided into seven vertical segments.
The Lie body model is further divided into five horizontal
segments to account for head leaning [32], [34] in the sagittal
plane as shown in Fig. 2(c). These three IBMs can be used
to label SBPs in cyclic activities (e.g., walk, side, and skip),
and in Stand, Sit, and Lie postures. In all of these activities,
anthropometric body proportions and part positioning are
somewhat maintained. However, in activities such as bend,
wave, punch, and kick, the anthropometry based positioning
of body parts/points is not maintained, i.e., the hand goes
above/near the head (in wave, punch) or below the knee (in
bend), and the feet go above the knee and center of contour
(in kick) [25], [32]–[34].

The IBMs are defined based on a range of motion obtained
from anthropometric [25], [32], [33] and kinesiology studies
[34], human geometry, and vision constraints. They are used to
label and track SBPs in activities that do not exactly maintain

anthropometry (see Sections IV-A2 and IV-B4 for details).
These models cover a diverse range of motions of the shoulder,
hand, arm, elbow, knee, and hip mentioned in kinesiology
studies and as shown in Fig. 1(b) and (c) [34]. The Wave
IBM in Fig. 3(a) covers a range of motion of shoulder, arm
and elbow. The kick IBM in Fig. 3(b) covers a range of motion
of knee and leg. The Sit body model slightly overlaps with
the bend posture. Finally, the Bend IBM in Fig. 3(b) covers a
range of motion of trunk.

B. Inverse Pendulum and Contour Moments

Humans are bipeds and locomote over the ground with the
majority of the body mass located two third of the body
height above the ground. Due to this reason a human body
can be represented as an inverted pendulum which is capable
of moving in anterior-posterior (forward-back movement) and
medial-lateral (side-to-side movement) directions [35]–[37]. In
a simple pendulum, it is assumed that motion happens only in
2-D, i.e., the point of mass does not draw an ellipse but an arc.
This conjecture allows us to apply a 2-D ellipse fitting on the
inverted pendulum human body model as shown in Fig. 4(a).

The global angle θ and angle of the human body φ from
the vertical are computed, respectively, using ellipse fitting
and contour moments. The contour moments of a continuous
image f (x, y) are defined as [38]

mpq =
∫ ∞

−∞

∫ ∞

−∞
xpyqf (x, y)dxdy (3)

where p and q are, respectively, the x-order and y-order
moment of the contour, and x and y are coordinates. The center
of the ellipse enclosing the human body is an approximation
of the center (xc,yc) the human contour mass, that is

xc =
m10

m00
, yc =

m01

m00
(4)

where m10, m01, and m00 are, respectively, the first and zero
order spatial moments. The center (xc,yc) is used to calculate
the central moment

μpq =
∫ ∞

−∞

∫ ∞

−∞
(x − xc)

p(y − yc)
qf (x, y)dxdy. (5)

The global angle of the human body is the angle of the
axis with the least moment of inertia in degree as shown in
Fig. 4(a), that is

θ =
1

2
tan−1 2μ1,1

μ2,0 − μ0,2
(6)

where μ1,1 is the first order central moment, and μ2,0 and μ0,2

are the second order central moments. The angle of the human
body from the vertical using contour moments is computed as
φ = 90 − θ.

C. Theoretical Basis of Motion Flow Prediction

The direction of the instantaneous angular velocity (which
is measured over an extremely small time interval [34]) is
the basis for motion flow prediction. Consider the human
arm as a pendulum attached at the shoulder joint producing
curvilinear motion (incurring an angular displacement). As the
pendulum (arm) swings from its equilibrium position (vertical)
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Fig. 2. IBMs for Head (H), Arm (A), and Feet (F) SBP labeling and anthropometry based segmentation [G1–G7] (see Table III) of silhouette contour
using bounding rectangle minimum (ubr, vbr) and maximum points (wbr, hbr ) for (a) Stand (α activities in Table I, convex hull in shaded region), (b) Sit,
and (c) Lie.

Fig. 3. IBMs based on cues in Section IV-A2 with Smart Search Algorithm (see Section IV-B4) for locating and labeling head (H), arm (A), and feet
(F) SBPs in β activities (see Table I). (a) Wave. (b) Kick. (c) Bend.

Fig. 4. (a) Inverse pendulum human body model with global angle θ and
angle φ from the vertical. (b) Motion flow-based arm prediction A using
previous arm Ap and current arm Ac during occlusion. (see Section III-C).

to its maximum displacement, the magnitude and direction
of angular velocity vector change. Two geometric constraints
are proposed for predicting arm location based on pendulum
motion. For an extremely small time interval in consecutive
time frames:

1) conjecture 1: the direction of the instantaneous angular
velocity must be the same until the arm reaches its
maximum displacement;

2) conjecture 2: a large instantaneous angular displacement
shows that the arm has reached its maximum displace-
ment.

Based on conjecture 1, the point to be predicted should be
close to the last arm point and continue in the direction of
the previous two arm points, i.e., follow the swing of the arm
for cyclic activities as shown in Fig. 4(b). The conjecture 2
identifies the change in the direction of arm swing.

Consider the arm motion as a pendulum swing which
draws a small dotted curve f in each frame as shown in
Fig. 4(b). Denote (Apx, Apy) and (Acx, Acy), respectively,

as the coordinates of labeled arm points in the previous
and current frames. For every frame, the linear displacement
between the current and previous arm points is

dx = Acx − Apx dy = Acy − Apy. (7)

The length L of the entire curve f (i.e., angular displace-
ment) traced by arm movement on the interval [P1-P2] can be
approximated as a summation of all the line segments of the
entire polygon path. The ath line segment is the hypotenuse
of a triangle with base dx and height dy, and has length

La =
√

(Acxa − Apxa)2 + (Acya − Apya)2. (8)

By the mean value theorem, there exists x∗
a ∈ [Apx, Acx]

such that

Acya − Apya

Acxa − Apxa

= f
′
(x∗

a) (9)

Acya − Apya = f
′
(x∗

a) × dxa. (10)

Substituting (10) in (8) gives

La =
√

1 + [f ′ (x∗
a)]2 × dxa. (11)

Finally, the length of the entire polygon path with k subin-
tervals is

k∑
a=1

La =
k∑

a=1

√
1 + [f ′ (x∗

a)]2 × dxa (12)

which has the form of Riemann sum, that is

L = lim
�→0

k∑
a=1

√
1 + [f ′ (x∗

a)]2 × dxa =
∫ k

a

√
1 + [f ′ (x)]2dx.

(13)
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TABLE I

Acronyms for Activities

Increasing the number of subintervals or line segments of
a polygon such that � = max(dxa) → 0 in (13) proves the
approximation that the length of polygon line segments is
equal to the length of the curve, i.e.,

∑k
a=1 La → L. This

mathematical proof and above-mentioned conjectures lead to
the proposed motion flow-based prediction (see Section IV-C2)
of arm points as shown in Table IV.

IV. Proposed Framework

A split approach is developed to simplify the problem and
to reduce the search space in order to find the best IBM for
labeling the convex points on a silhouette contour as SBPs.
This is done using a hierarchical categorization of human
posture (Stand, Sit, Lie), movements (Right to left, Left to
Right, Stand to Lie, Lie to Stand) and the human body itself
(Upper body and lower body, Right side and left side). Stand,
Sit, and Lie postures are categorized by considering the human
as an inverse pendulum and using contour moments. In Stand,
Sit and Lie postures, Upper body and Lower body, and Right
side and Left side are respectively distinguished based on the
transverse and sagittal planes as shown in Fig. 2 using

Stand, Sit|δ1 < yc & δ2 > yc & δ3 < xc & δ4 > xc

Lie|δ1 < xc & δ2 > xc & δ3 > Cy & δ4 < yc
(14)

where body sides δ1, δ2, δ3, and δ4 are described in Table II.
Initially the Stand to Lie or Lie to Stand movement is

ascertained (see Section IV-A1). Fig. 5(a) and (b) is then
respectively used to categorize postures in Stand to Lie and
Lie to Stand movements according to clockwise and anti-
clockwise rotation. Right to Left, Left to Right, and no
movement are discerned based on the subjects location in the
first frame. In Stand to Lie, for Stand, the movement is further
divided into α and β (see Table I). α refers to activities with
Right to Left or Left to Right movement, e.g., Walk, Run,
Skip, Side, Jump, Turn. β refers to activities in which the
subject remains almost at the same place and has Right side
or Left side motion, e.g., Jump-in-place-on-two-legs, Bend,
One hand wave, Two hand wave, Jack, Standup, Collapse,
Kick, Punch, Guard-to-kick, Guard-to-punch. α and β are,
respectively, determined using

α =
{

γ1|0.25 × FRw > xc or γ2|xc > 0.75 × FRw (15)

TABLE II

Acronyms for Body Movement and Body Side

β =
{

0.25 × FRw < xc < 0.75 × FRw. (16)

where body movements γ1, and γ2 are described in Table II.
FRw and FRh are the frame width and frame height, respec-
tively.

The global angle and the bounding rectangle are respec-
tively used in α and β to select the best IBM for labeling
anatomical landmarks. β is further categorized into β̇ and β̈

(see Section IV-A2) to select the appropriate IBM. For any
action, the convex points of a human contour are normalized
with respect to the bounding rectangle and then filtered. The
criteria summarized in Section IV-B from the proposed IBMs
are used to label these convex points as SBPs in Stand to Lie,
Lie to Stand, α, and β movements. Particle filter (or Motion
flow) is used for prediction during occlusion. Finally, the SBPs
are connected to generate stick figures for various actions and
activities.

A. Silhouette Feature Extraction

1) Posture Classification: As in [39] a contour is traced
using the freeman chain code [40] on the silhouettes of
the Weizmann [41] and multicamera human action video
(MuHAVi) datasets [42] (see Section V). A least-squares
fitness procedure is used to compute the ellipse global angle
θ based on (6) that best approximates the contour.

The maximum flexion and extension range of the trunk in
Stand posture, i.e., 140◦ [33] is used to set the initial global
angle θstart parameters such that 255−115 = 140◦. This initial
global angle is only checked in the first frame of the input
video sequence. It is a metric to ascertain the preliminary
state of the subject’s posture by determining whether the body
movement starts from Stand, i.e., Stand to Lie, or from Lie,
i.e., Stand to Lie, according to

γ3 =
{

Stand if 115 ≤ θstart ≤ 255 (17)

γ4 =
{

Lie if 115 
≤ θstart 
≤ 255 (18)

where body movements γ3 and γ4 are described in Table II.
Standard deviation of the global angle has been used to

discriminate human shapes, posture-based events and activities
[43]. In [1], the difference in angle between the principal and
vertical axes is used to detect SBPs but not for posture classi-
fication. Biomechanical analysis of human spine show that a
complete flexion of the whole trunk occurs due to a rotation of
the lumber vertebrae and pelvis, when the difference between
the vertical and axis of human body rotation is greater than
50◦ [33]. A 60◦ variation in global angle is set to differentiate
between Stand and Lie posture for Stand to Lie.



1678 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 9, SEPTEMBER 2014

Fig. 5. Stand, Sit, and Lie posture classification using ellipse global angle θ

(see Section IV-A1) in movements from (a) Stand to Lie and (b) Lie to Stand.

The reference global angle for Stand is set to 180◦ in
Fig. 5(a). A flexion of more than 60◦ from the reference
in clockwise or anti-clockwise direction is considered as Lie
posture, i.e., Lie = 180±60 = 120◦ or 240◦. The human body
can flex and extend at a range of 110−140◦ while maintaining
a somewhat Stand posture [33]. This yields a variation of
40–70◦ from the reference global angle with an average of
55◦. Thus, the range of angle for Stand posture is set to be
215 − 155 = 60◦, i.e., Stand = 180 + 35 = 215◦ or 180 − 25 =
155◦. The disproportionate division of this range is to cater for
the clockwise and anti-clockwise directions leaning ability of
the human body while in Stand posture as shown in Fig. 5(a).
Sit posture is categorized in the remaining range of angle for
clockwise and anti-clockwise directions. It also encompasses
intermediate posture such as Bend, manoeuver from Sit to Lie
and vice versa.

The range of global angle for Stand in Lie to Stand Fig. 5(b)
is kept the same as Stand to Lie, i.e., 215 − 155 = 60◦.
However, in trying to Stand from Lie, the body leans forward
and the subject remains in intermediate posture (sit) for a
longer duration. Thus, a global range of 60◦ is set for Sit
posture in Lie to Stand, i.e., 155 − 95 = 60◦. The Lie
posture is categorized in the remaining range of global angle
for clockwise and anti-clockwise directions. Fig. 5 illustrates
the resulting division of ellipse quadrant used to categorize
postures for Stand to Lie and Lie to Stand. A mirror reflection
of Fig. 5 is used for the opposite direction of Right side and
Left side for Stand to Lie and Lie to Stand. IBM for α activities
is selected based on these ranges of global angle.

2) Posture Segmentation: The ellipse fitting procedure
used in [1] provides approximations, i.e., not body contour
points are enclosed by the ellipse as illustrated in Fig. 4(a).
The bounding rectangle is used to enclose contour, and obtain
its minimum and maximum points, i.e., Pmin = (ubr, vbr) and
Pmax = (wbr, hbr). ubr and vbr are respectively the starting x

and y coordinates of the bounding rectangle. wbr and hbr are
respectively the width and height of the bounding rectangle.

TABLE III

Normalized Segment Values for Stand, Sit and Lie IBM

These points represent the size of the silhouette contour, and
are used to divide the body into segments [G1-G7] using
anthropometric information [29] (see Section IV-B) defined for
IBMs in each of the Stand, Sit and Lie postures as illustrated in
Fig. 2. The difference between two segments (which depends
on the number of segments Nseg) is

Dseg = (Pmax − Pmin)/Nseg (19)

where Nseg = 7, 6, 5 and Dseg = 30, 21, 22 pixel for horizontal
segmentation of Stand, Sit, and Lie, respectively, and Nseg =
7 and Dseg = 30 pixel for vertical segmentation of Lie. hbr

and vbr, and wbr and ubr are used in (19) for horizontal and
vertical segmentation, respectively. The normalized segments
G[g] are determined using

G[g + 1] = Dseg × (g + 1)/(Pmax − Pmin), ∀g ∈ 0 : Nseg (20)

where g = 0 and g = Nseg respectively correspond to the
minimum and maximum points of the bounding rectangle as
shown in Fig. 4(b). Table III shows the normalized segmen-
tation values for Stand, Sit, and Lie posture fixed for all the
experiments.

The bounding rectangle along with the angle φ from the
vertical and global angle θ are used to provide cues to
the Smart Search Algorithm (SSA) (see Section IV-B4) for
selecting the best IBM for β movements. β is divided into β̇

and β̈, respectively, for 0.7 × hbr > wbr and 0.7 × hbr < wbr.
Thus

β =

⎧⎪⎪⎨
⎪⎪⎩

Wave if β̇ and SSA
Kick if β̈ and 2 ≤ φ ≤ 15 and SSA
Bend if β̈ and 170 > θ > 190

and |H − F | < 1.5 × Dseg and SSA.

(21)

The intermediate postures are selected by wave IBM for
labeling, since the subject has yet to attain any defined posture.
The Punch action is similar to throwing a ball involving late
cocking, acceleration, and follow through. In follow through,
the arm moves across the body in a diagonal manner and as
a result the angle φ of body from the vertical is quite large
[33]. Punch action in β̈ is labeled using Wave IBM when
φ > 15. The range of φ in Kick IBM is in between the Stand
posture (with tolerance for leaning) and the Punch action. The
global angle θ is 170 and 190, respectively, for left and right
bend. The bend IBM criteria is formulated based on human
vision and kinesiology. The SSA in Section IV-B4 uses (21)
in labeling SBPs in Wave, Kick, and Bend IBM.

3) Convexity Points: The convex hull method [44] is used
to determine SBPs which are located at convex points of a
contour, where the line surrounding the silhouette is its convex
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hull and the shaded regions are its convexity defects. The
convexity defects yield a number of convex points on contour
which are marked as head (H), arm (A), feet (F), etc. using
the IBM criteria in Section IV-B and as illustrated in Fig. 2(a).

The convex points (xcv, ycv) are normalized with respect to
its bounding rectangle to increase the computational speed as
follows:

xnr =
|xcv − ubr|

wbr

, ynr =
|ycv − vbr|

hbr

(22)

within [0,1]. The Euclidean distance between convex points is
computed as

DTcv (i) =
√

(cxcv − pxcv)2 + (cycv − pycv)2 (23)

where (cxcv, cycv) and (pxcv, pycv), respectively, denote the
current and previous convex points, and i is the number of
convex points. Convex points are close to each other in a high
resolution video frame but further apart in a low resolution
one. This is because in high resolution there are more frequent
and sharper edges which will result in more convex points. A
threshold Th which is proportional to the frame width FRw,
frame height FRh and resolution factor ϒ are used to remove
nearby convex points, where

Th = FRw × FRh × ϒ (24)

and ϒ (determined experimentally) is fixed as follows:

ϒ =

⎧⎨
⎩

0.05 if FRw, FRh ≤ 200
0.007 if FRw, FRh ≥ 400
0.01 if 200 < FRw, FRh < 400.

(25)

A convex point (xcv, ycv) is selected for labeling by first
checking if CVDT > Th, where Th is determined by using
(24) and (25).

B. SBP Labelling and Tracking

The best IBM is used to label normalized convex points
(xnr, ynr) as SBP using Table III as follows. The following
SBPs are labeled: head (H), arm/hand (A), knee (K), and feet
(F). In the case where multiple criteria are used to label convex
points, the abbreviation of a SBP is followed by a numeral,
e.g., H1, A1, A2, A3. Convex points (xcv, ycv) upper body,
lower body, right side and left side. The ranges for sit and lie
have been determined in the MuHAVi dataset since it contains
the collapse and Standup activity. Body sides δ1, δ2, δ3, and
δ4 are described in Table II.

1) Stand: In Stand posture, Stand to Lie and Lie to Stand,
clockwise and anti-clockwise directions, Head and Feet are
respectively assigned using

H =
{

(xnr, ynr)|ynr < G1 if δ1 (26)

F =
{

(xnr, ynr)|ynr > G5 if δ2. (27)

Arm in Stand posture, Stand to Lie, and Lie to Stand for clock
and anti-clockwise directions are respectively assigned using

A =
{

(xnr, ynr)|G2 < ynr ≤ G4 if δ3/δ4 (28)

A =

{
(xnr, ynr)|ynr > G4 if δ3/δ4 & δ1/δ2
(xnr, ynr)|G2 < ynr ≤ G4 if δ3/δ4 & δ2.

(29)

2) Sit: In Sit posture, Stand to Lie and Lie to Stand, clock
and anti-clockwise direction, Head and Feet are respectively
assigned using

H =
{

(xnr, ynr)|ynr < G1 if δ3/δ4 & δ1 (30)

F =
{

(xnr, ynr)|ynr > G5 if δ3/δ4 & δ2. (31)

The arm is respectively assigned for Stand to Lie, and Lie to
Stand for clockwise and anti-clockwise directions using

A =
{

(xnr, ynr)|G1 < ynr ≤ G2 if δ3/δ4 & δ2 (32)

A =
{

(xnr, ynr)|ynr ≥ G5 if δ3/δ4 & δ2. (33)

3) Lie: In Lie posture, Stand to Lie and Lie to Stand,
clockwise and anti-clockwise directions, Head and Feet are
respectively assigned using

H =

⎧⎨
⎩

(xnr, ynr)|xnr < G1 if δ1/δ3 & δ4
& ynr < G1 if δ1/δ3 & δ4

(xnr, ynr)|xnr < G1 if δ1/δ3 & δ4
(34)

F =
{

(xnr, ynr)|xnr > G5 if δ2. (35)

Head is also assigned using

H =

⎧⎨
⎩

(xnr, ynr)|xnr ≥ G2 & ynr ≥ G4 if δ1
or xnr > G2 & ynr < G5 if δ1
or xnr ≤ G4 &ynr > G4 if δ2.

(36)

For Stand to Lie and Lie to Stand, clockwise and anti-
clockwise directions, Arm and Head are respectively assigned
using

A =
{

(xnr, ynr)|G1 < xnr ≤ G2 if δ3/δ4 (37)

H =
{

(xnr, ynr)|xnr < 0.5 × G1 if δ1 & δ3/δ4. (38)

In Lie to Stand, as the subject is trying to stand, support of
arms is used to assist in manoeuvring. (29) for Lie to Stand
is utilized for labeling SBPs as the subject is manoeuvring
from Sit to Stand. However, during this manoeuvring when
hbr > 1.7 × wbr, (28) is used instead of (29).

4) Smart Search Algorithm (SSA): In the β activities, i.e.,
Wave, Kick and Bend IBMs, SSA is used to label SBPs. Based
on (21), SSA is initiated by locating the convex points in the
nonanthropometric segment ranges. β̇ refers to the subject in
Stand posture who has yet to attain the posture of models
shown in Fig. 3(a)–(c). It is an indication that the subject is
likely to perform Wave. In Fig. 3, Hp and Hc are respectively
the location of previous (Hpx, Hpy) and current (Hcx, Hcy)
head points, and ε is the horizontal distance between them.
Hx and Hy are respectively the x and y coordinates of head
H SBP. SSA divides the wave model into four horizontal
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segments, and as the hand goes near or above the head, the
following steps are defined for labeling convex points as SBPs
in the segment range [G1-G4] as shown in Fig. 3(a).

Step 1: Locate the arm in the segment range G(1, 2] of
shoulder S by dividing the bounding rectangle width wbr into
three equal vertical sections, and reallocate normalized convex
points (xnr, ynr) as arm point A if xnr < wbr/3 or xnr >

2 × wbr/3 or |ynr − Hy| > 0.7 × Dseg represented by the
shaded region in Fig. 3(a).

Step 2: Verify no arm point was identified using Step 1.
Next, every normalized convex point (xnr, ynr) in the head
segment range G[1] of Stand to Lie, clockwise and anti-
clockwise directions, is reallocated as A if ε > 0.7 × Dseg,
where ε = |Hcx − Hpx| as shown in Fig. 3(a).

Step 3: Check if no arm point has been labeled using the
above two steps. Find two points in the segment range [G1-G4]
that are at maximum distance from the center and lie to its
right and left, respectively denoted by arrows in Fig. 3(a).
These points are then labeled as arm points.

Step 4: If an arm point is labeled using one of the above
three criteria then it implies that a wave IBM best represents
the activity; hence, the head point is reallocated as follows:
Hx = xc, Hy = yc − τDseg, where τ = 1, 1.7, 2.5 respectively
for resolution factor ϒ = 0.05, 0.007, 0.1. This is based on the
fact that the center of mass moves upward when the human
arms are above the head.

In β̈ based on (21), for the kick IBM, only Steps 1 and 2 of
the SSA are invoked. Steps 1 and 2 are used in the segment
range of the arm G(2, 4] and G[1] to reallocate foot point for
right and left kick as shown in the shaded region of Fig. 3(b),
respectively. In β̈ for Bend IBM, the global angle θ is near
sit, and the head to feet distance reduces (denoted by dashed
arrows) in Fig. 3(c). This model slightly overlaps with the
Sit model of Stand to Lie and Lie to Stand, hence, sit criteria
stand to lie in Section IV-B2 is used to label SBPs. Depending
upon the global angle the proposed framework automatically
switches to Lie to Stand using Fig. 5(b).

C. SBP Prediction During Occlusion

1) Particle Filter-Based Prediction: A particle filter [5],
[45] is able to track and predict SBPs in the presence or
absence of occlusion, or missed convex points. Given the
current observation of location, i.e, (xcv, ycv), of a SBP at time
step t−1, the particle filter predicts the location (x′

cv, y
′
cv) of a

SBP at time step t. The state vector Xt−1 = (xcv, ycv, Vx, Vy)
is initialized, where (Vx, Vy) are, respectively, the distance
between the current and previous SBPs along the x and y

directions. A constant-acceleration dynamic model Xt is used
to update the state vector, where

Xt = M ∗ Xt−1 (39)

M=

⎡
⎢⎢⎣

1 0 dt 0
0 1 0 dt

0 0 dt 0
0 0 0 dt

⎤
⎥⎥⎦ (40)

dt is the time lapse between two frames. For each SBP,
particle filter with 100 particles is instantiated for optimum
accuracy of prediction with particles ≥ 30 producing good

TABLE IV

Parameters and Their Value for Motion Flow-Based Arm

Prediction (α and β Are Described in Table I)

results. During occlusion, the particle filter is initialized with
the last known observation to predict the next SBP (x′

cv, y
′
cv).

This is achieved by keeping the temporal information of
every previous measurement and observation. In the event of
occlusion in consecutive frames, the predicted values in the
first frame (x′

cv, y
′
cv), V ′x = x′

cv − xcv, and V ′y = y′
cv − ycv

are fed back as observations to initialize particle filter for the
subsequent frames.

2) Motion Flow-Based Prediction: Motion flow employs
the direction of linear displacement, prior knowledge of the
activity, temporal information of an SBP, and geometry of
the human body to define criteria for locating, labeling, and
tracking SBP, i.e., arm points (Ax, Ay) during occlusion as
detailed in Table IV. If the displacement dx between current
arm Acx and previous arm Apx point is greater than a
threshold ζ = Dseg/6 = 5 (where Dseg=30, see Section IV-A2),
it suggests that the maximum displacement is reached and
direction of the arm swing arm has changed. Only dx is used
because the horizontal displacement of arm (pendulum) from
equilibrium position to maximum displacement is intuitively
more than vertical displacement. The direction of the front
arm movement is constrained based on the previously labeled
front arm points. The criteria in Table IV are used to predict
front and back arm points during walk, side, jump-in-place-
on-two-legs, jump Left to Right, run Right to Left and skip
on the Weizmann dataset.

In Table IV, Hx and Hy, and Ax and Ay, respectively,
denote the coordinates of the head and predicted arm points,
and Act represents activities (see Table I). The upper polarity
is used for Right to Left, and the lower polarity is used for
Left to Right. Front arm and Back arm are distinguished,
respectively, on Right side and Left side based on (14). For all
actions, the arm point is predicted at the center (xc, yc) when
no conditions are satisfied or when more than three points
have been predicted consecutively. In the first row of walk,
side, skip, jump-in-place-on-two-legs and run in Table IV,
the relational operator and polarity of criteria for current
arm (Acx, Acy) and predicted arm (Ax, Ay) are, respectively,
reversed for front and back arm prediction in Right to Left



AZHAR AND TJAHJADI: SIGNIFICANT BODY POINT LABELING AND TRACKING 1681

Fig. 6. Weizmann dataset. (a)–(j) Walk, Side, Skip, Jump, Jump-in-place-on-
two-legs, Run, Bend, One hand wave, Two hand wave and Jack respectively
(contour, bounding rectangle, ellipse, and stick figure). (k)–(t) SBPs labeled
as Head (H), Shoulder (S), Arm (A), Knee (K), and Feet (F) in these
corresponding actions.

and Left to Right. The second row of these actions is used to
predict back points when they are not predicted by the first
row. For walk, dx is not used for front arm point prediction
(which is denoted by a dash) but is used to predict back arm
point only. For jump, front arm point is predicted at center
(xc, yc) in occlusion, while the back arm point is predicted
using the two rows of jump. However, if dx > 2ζ pixels then
back arm point is predicted at the center.

D. Stick Figure

The proposed framework can be used for the animation
of the stick figures of a human body formed by joining the
SBPs of every video frame. To form a stick figure, first the
maximum distance between shoulder point (Sx, Sy) and head
point (Hx, Hy) is computed as

Sx = max(Hx − Sx), Sy = max(Hy − Sy) (41)

for an activity. Noting that a shoulder point is mostly at
a constant distance from the head point, (41) is used to
find a shoulder point (Sx, Sy) for all activities. According to
human anatomy, the head and feet points are connected to the
center (xc, yc) of the silhouette contour and the arm points are
connected to the shoulder point (Sx, Sy).

V. Experimental Results

The Weizmann dataset [41] comprises ninety low-resolution
180×144 video sequences of nine subjects performing ten
daily activities as shown in Table I. The MuHAVi dataset
[42] comprises nine high resolution 720×576 primitive action
classes of two actors with two samples per activity.

A. Qualitative Evaluation

The freeman chain code contours of various subjects en-
closed in the bounding rectangle and the rescaled ellipse, with

Fig. 7. MuHAVi dataset. SBPs labeled as Head (H), Shoulder (S), Arm
(A), Knee (K), and Feet (F) in (a)–(d) Collapse; (d)–(g) Standup; (h) and
(i) Walk; (j) and (k) Run; (l) and (m) Turn; (n) and (o) Guard-to-punch;
(p) and (q) Guard-to-kick; (r) and (s) Punch; and (t) and (u) Kick.

generated stick figures from SBP obtained using the proposed
framework on Walk, Side, Skip, Jump, Jump-in-place-on-two-
legs, Run, Bend, One hand wave, Two hand wave, and Jack
activities are shown in Fig. 6(a)–(j), respectively. Fig. 6(k)–(t)
shows the detected SBPs on the corresponding actions. An
initial missed or undetected convex point, results in an incom-
plete stick figure. This is because the proposed framework
requires temporal information (at least two convex points)
for initialization of prediction using particle filter or motion
flow.

The adaptability and generality of the proposed framework
is validated by applying it with the same parameter settings
on the MuHAVi dataset. Fig. 7(a)–(d) and (e)–(g) respectively
show collapse and standup actions with identified SBPs in
Stand, Sit, and Lie postures. Fig. 7(h)–(u) illustrate the SBPs
identified during Walk, Run, Turn, Guard-to-punch, Guard-to-
kick, Punch and Kick, respectively. Figs. 6 and 7 show that
the proposed framework successfully labels SBPs and is able
to generate stick figures in various actions.

B. Quantitative Evaluation

Most methods in Section II only provide qualitative eval-
uation. In [1] for computer vision-based human body seg-
mentation and posture estimation (CVHSP), [8] for CBHM,
the method in [6] and [9] for star skeletonization, SBPs are
detected but the accuracy of their localization with respect to
ground truth coordinates of each SBP is not presented. Also,
the First Sight [11] detects body parts and not SBPs. Thus, it is
not possible to compare the accuracy of SBP localization using
the proposed framework with these methods. In Tables V–VIII,
the best results are shown in bold.

1) Accuracy of Localization: The accuracy of SBP local-
ization is presented in terms of distance in pixels between the
manually annotated (i.e., the ground truth) and detected SBPs.
Silhouette contours for all activities of the two data sets are
skeletonized using the method in [46]. Manual annotation is



1682 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 9, SEPTEMBER 2014

TABLE V

Average Error in Pixels of SBPs With Respect to Ground Truth

performed on the results of the skeletonized silhouette using
mouse cursor to obtain ground truth coordinates of SBPs.
Note that the manual annotation of ground truth also involves
some guesses of SBPs in cases where these points are not
localized by skeletonization or not clearly visible to the human
eye.

The location of every SBP obtained using the proposed
framework with particle filter is compared with the ground
truth in each frame of the video sequence. The overall accuracy
of the proposed framework is defined by the average error in
detecting each SBP, that is

Error(xavg, yavg) =

N∑
n=1

|Gn(x, y) − Ln(x, y)|

N
(42)

where Gn(x, y) and Ln(x, y) are respectively the coordinates
of each SBP obtained from the ground truth and the proposed
framework, and N is the total number of frames.

The average error in x and y coordinates of each SBP,
i.e., Head (Hx, Hy), Front arm (FAx, FAy), Back arm (BAx,
BAy), Left foot (LFx, LFy), and Right goot (RFx, RFy), in
various activities Act (see Table I) performed by all subjects of
both datasets is shown in Table V. For Jump-in-place-on-two-
legs (β7), Side (α4) and Walk (α1) of the Weizmann dataset
(which have less lateral head movement), the x-coordinate
head error is less than other activities whereas the y-coordinate
head error is similar in all activities. The front and back
arm points are occluded more than any other SBPs, hence
they have greater errors. A common average error is obtained
for the right and left foot because they are joined in Jump
(α5), Jump-in-place-on-two-legs (β7), One hand wave (β9)
and Two hand wave (β10). The feet have smaller vertical

TABLE VI

Particle Filter and Motion Flow Prediction Error,

Respectively, Denoted By p and m

movement than horizontal movement in consecutive frames
in all activities, hence, the average y-coordinate error is less
than the x-coordinate for both feet. For the MuHAVi dataset,
the y-coordinate head error is less than the x-coordinate
average error in all activities. The errors in the front and
back arm points are also greater due to occlusion. The highest
average error occurs in Collapse and Standup due to severe
self occlusion of front and back arms. The right and left
feet have similar average errors. The average Avg of five
SBP errors per activity is presented in the last column of
Table V.

Weizmann and MuHAVi datasets have 180 × 144 = 25920
pixels and 720 × 576 = 414720 pixels per frame, respectively.
An overall average error of 5.02 and 7.8 pixels in location
of SBPs on all activities for five SBPs, respectively, on two
diverse datasets show that the proposed framework with arm
prediction using particle filter is accurate and adaptable to data
sets of different resolution.

2) Localization Accuracy of Predicted Arm SBP: It is vital
to verify the accuracy of location of predicted arm SBP versus
the ground truth. Table VI shows the error in the location using
particle filter and motion flow in occlusion, where the average
location error of predicted SBP is

ErrorPred(xavg, yavg) =

N∑
n=1

|Gn(x, y) − Predn(x, y)|

N
(43)

and Predn(x, y) are the predicted SBP coordinates.
The particle filter and motion flow are compared for the

arm prediction cyclic activities (see Table I), i.e., Walk (α1),
Run (α2), Skip (α3), Side (α4), Jump (α5), and Jump-in-
place-on-two-legs (β7) of both datasets because it is the most
occluded SBP. Table VI shows that particle filter and motion
flow accurately predict arm point, i.e., close to ground truth
location. The y-coordinate error of the front and back arm
points using motion flow prediction are consistently smaller
than those obtained using particle filter. The x-coordinate
error is also smaller in most activities. Hence, motion flow
outperforms particle filter which is demonstrated by smaller
average Avg errors in all activities in Table VI. However,
the lack of necessity for prior information makes parti-
cle filter the better choice for prediction. Results on Walk
(α1) and Run (α2) activity of both data sets are shown in
Table VI.
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3) Accuracy of Detected SBPs Versus Observed: The
accuracy of detection is evaluated in terms of precision (PR),
recall (RC) and error (ER), that is

PR =

q∑
1

CT

q∑
1

DT

, RC =

q∑
1

CT

q∑
1

OB

(44)

ER =

q∑
1

DT −
q∑
1

CT

q∑
1

DT

(45)

where DT and CT are respectively the number of detected and
correctly detected SBPs. OB is the observed SBPs and q is
the number of subjects. The number of detected SBPs includes
misclassified SBPs which are manually counted by visual
inspection on every frame of video sequence. The number of
correctly detected SBPs is obtained by deducting misclassified
SBPs from the number of detected SBPs.

The detection accuracy of five SBPs is computed by using
the proposed framework first with no prediction and then
with particle filter prediction. This demonstrates the impact of
prediction on the performance of the framework. In Table VII
for SBP detection with no prediction, observed (OB) SBPs
are the manually counted visible SBP only with no guess
work involved. For SBP detection with prediction in Table VII,
observed (OB) SBPs is the manually counted visible SBP with
guessed SBPs.

In Table VII, for no prediction, smaller recalls are obtained
for Run (α2), Skip (α3), Jump (α5), and Two hand wave (β10)
that have abrupt human limb movement as compared to Walk
(α1), Side (α4), Jump-in-place-on-two-legs (β7), Bend (β8),
and One hand wave (β9). The smallest recall and precision
respectively occur in Run (α2) and One hand wave (β9).
The maximum recall and precision respectively occur in Side
(α4) and One hand wave (β9). The proposed framework with
no prediction obtains an overall average Avg% recall and
precision of 95.3% and 96.5%, respectively, for all activities
of the Weizmann dataset. On the MuHAVi data set it obtains
the smallest recall for Run (α2) but is robust in detecting SBPs
in Walk (α1), Standup (β12), Punch (β15), Guard-to-kick
(β16), and Guard-to punch (β17). In turn (α6), Collapse (β13),
and Kick (β14) it is able to produce SBPs with reasonable
accuracy. It has the least precision for complex movement
such as Standup (β12). It achieves an overall average Avg%
recall and precision of 92.01% and 98.4%, respectively, for
all activities of the MuHAVi dataset. The average error for all
activities of the Weizmann and MuHAVi datasets computed
using (45) are 3.5% and 1.9%, respectively.

In Table VII, for prediction, an overall 2.5% and 2.4%
percentage increase in recall and precision, respectively, are
obtained in cyclic actions of the Weizmann dataset using
particle filter prediction. Specifically, the highest percentage
increase of 7.3% in recall is achieved in Run (α2), which
has the smallest recall with no prediction. For the MuHAVi

TABLE VII

Precision and Recall of Five SBPs Detection of Proposed

Framework

dataset, particle filter prediction is only used for Walk (α1)
and Run (α2) since they are cyclic actions. A percentage
increase of 10.7% in recall is attained in Run (α2). There is a
decrease in precision for both Walk (α1) and Run (α2), which
suggests an increase in misclassified arm SBPs. However,
more importantly particle filter prediction enhances the recall
in all cyclic actions of both datasets. The proposed framework
with prediction obtains an overall average Avg% recall and
precision of 97.7% and 98.8%, respectively, for all activities
of the Weizmann dataset. It achieves an overall average Avg%
recall and precision of 94.2% and 95.7%, respectively, with
prediction for all activities of MuHAVi dataset.

The distance curve method in [1] and [6] is implemented
to compare its SBP detection accuracy with the proposed
framework. Based on Table VII, the total number of SBPs
detected across all activities by the proposed framework is
more than the skeletonized and CVHSP or star skeletonization.
Hence, it is more consistent in generating stick figures of
various activities.

4) Comparative Evaluation of SBP Detection: The perfor-
mance of the proposed framework is compared with state of
the art approaches, i.e., FS [11] and CBHM [8], with respect to
a similar extent of occlusion and type of activity, respectively.
The accuracy of FS to detect five body parts, i.e., head, arms,
and feet, is evaluated in terms of the parts observed by the
human eye. Five SBPs identified by the proposed framework
correspond to the five body parts detected by First Sight. The
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TABLE VIII

SBP Detection: Proposed Versus CBHM and FS

activities used by First Sight differ with respect to no, mild,
and severe self occlusion. In the data sets for this paper, Walk
(α1), Run (α2), Side (α4), Turn (α6), Jump-in-place-on-two-
legs (β7), Punch (β15), Guard-to-kick (β16), and Guard-to-
punch (β17) have mild self occlusion, whereas Skip (α3),
Jump (α5), Bend (β8), One hand wave (β9), Two hand wave
(β10), Standup (β12), and Collapse (β13) have severe self
occlusion. Table VIII shows the performances of the proposed
framework and FS (as reported in [11]) on activities with mild
and severe occlusion on all subjects of the Weizmann and
MuHAVi datasets. In Table VIII, results on Walk (α1) and
Run (α2) activity of both datasets are presented collectively.
The average Avg% five SBPs error computed using (45) is
clearly much less than FS.

Due to unavailability of the data set used by CBHM,
Table VIII compares the average precision and recall of the
proposed framework in detecting four SBPs (i.e., hands and
feets) in similar activities with those of CBHM as reported
in [8]. It shows that the proposed framework obtains better
recall and precision than CBHM in Run (α2), Jump (α5), and
Collapse (β13). It also achieves a slightly better recall for
Walk (α1). The recall obtained for Standup (β12) is close to
this approach, thus, overall the proposed framework performs
better than CBHM.

C. Computational Complexity

The proposed framework runs in real time due to its com-
putational simplicity. The computational time of the proposed
framework implemented in Microsoft Visual Studio 2010
Express Edition environment with OpenCV 2.4.6 on an Intel
(R) Core (TM) i7 processor working at 2.93 GHz with 4 GB
RAM running Windows 7 operating system is measured using
the computer system clock. The proposed framework labels
SBPs in 0.031 s per image frame on the Weizmann dataset

at 20–30 frames/s. It labels SBPs in 0.071 seconds per image
frame on the MuHAVi dataset.

The convex hulll is computed using the Sklansky’s algo-
rithm [44] which has a computational complexity of O(N),
where N in the number of convex points. The contour mo-
ments algorithm is based on the Green theorem [38] which has
a computational complexity of O(L), where L is the length of
the boundary of the object. The performance of the particle
filter enhances with the increase in number of particles.
It is formally O(N log N), however, it can be made O(N)
with minor modifications to the sampling procedure. In the
proposed framework, the particle filter is initialized with 100
particles with a state vector constituting of four parameters. As
a result its computational speed can be considered to be real
time. This is similar to [45] where a 6–12 degree of freedom
model with 100 particles run in real time.

VI. Conclusion

In this paper, an automated video-based human SBP label-
ing and tracking framework is presented. It employs IBMs
based on anthropometry, kinesiology, and human vision in-
spired criteria to label SBPs. The classification of postures
based on global angle is combined with the convexity hull and
bounding rectangle to select the best IBM for labeling convex
points as SBPs. Particle filter and motion flow are proposed
for prediction in occlusion. Stick figures are generated by
connecting SBPs. The results demonstrate that the proposed
framework robustly locates, labels, and tracks SBPs in several
actions on two datasets of low and high resolution. The results
also show better it achieves better detection performance than
the state of the art approaches. In future, manual counting of
misclassified points can be automated and particle filter can
be extended to predict SBPs for more actions.
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Hierarchical relaxed partitioning system for Activity
Recognition

Faisal Azhar, Student Member, IEEE and Chang-Tsun Li, Senior Member, IEEE

Abstract—A hierarchical relaxed partitioning system (HRPS)
method is proposed for recognizing similar activities which have
a feature space with multiple overlaps. Two feature descriptors
are built from the human motion analysis of a 2D stick figure
to represent cyclic and non-cyclic activities. The HRPS first
discerns the pure and impure activities, i.e., with no overlaps
and multiple overlaps in the feature space respectively, then
tackles the multiple overlaps problem of the impure activities
via an innovative majority voting scheme. The results show that
the proposed method robustly recognizes various activities of two
different resolution, i.e., low and high (with different views), data
sets. The advantage of HRPS lies in the real-time speed, ease of
implementation and extension, and non-intensive training.

Index Terms—Hierarchical Relaxed Partition, Decision Tree,
Model, Activity Recognition

I. INTRODUCTION

Human activity recognition is important due to potential ap-
plications in video surveillance, assisted living, animation etc
[1] [2]. In general, a standard activity recognition framework
consists of the feature extraction, feature selection (dimension
reduction) and pattern classification. The feature extraction
can be broadly categorized into the holistic (shape or optical
flow) [3]–[6], local feature (descriptors of local regions) [7]–
[10] and model-based (prior model) or model-free (no prior
model) approaches. Techniques such as Principal component
analysis (PCA) [11] or Linear Discriminant Analysis (LDA)
[12] are commonly used to select the most prominent features.
Decision tree (DT) [3] or Support Vector Machines (SVMs)
[2] are used for efficient classification.

The current state-of-the-art human activity recognition
method varies with respect to application scenario as each
method has been designed and verified for data sets containing
different challenges such as similar activities, industrial en-
vironment, illumination variation, varying clothing, complex
backgrounds, multiple actors, person-to-person interaction,
human object interaction, multiple views etc. (see [13] for
details on datasets). Also, it has been noted in literature
[14] that human activity recognition methods have different
performances on different data sets. The apparent reason
for this lies in the feature extraction approach, i.e., holistic,
local feature and model-based/model-free, and the different
characteristics of the activities in the data sets [14]. The local
features approach that extract the neighbourhood information
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of the regions or interest points focus more on the local motion
than on the figure shape. Hence, it is suitable for activities
with more intra-class dissimilarity in the shape of figures.
In contrast, the holistic and model-based/model-free approach
are focused on figure shape characteristics which makes them
suitable for activities with more inter-class similarity in the
local motion, i.e., similar activities such as Walk, Run etc.

Recognizing similar activities still remains a challenge (see
Section II). The local feature and holistic approaches are com-
putationally expensive and require intensive training while the
model-based/model-free approach is efficient but less accurate.
Therefore, the robust and efficient implicit body model based
approach for significant body point (SBP) detection described
in [15] is used for feature extraction. In this context, the work
in [16] that extracts the leg frequency and torso inclination is
extended to determine two more features, i.e., the leg power
and torso power. Also, the SBP detection method is augmented
to extract features (similar to [6]) that extract variations in the
movement of different body parts at different directions, i.e.,
up, down, right, and left, during an activity. As in [6] PCA
or LDA is not used as we extract less than 15 features. These
features are used to create two feature descriptors.

For efficient classification, mostly researchers use off-the-
shelve classifier such as SVM and DT but with a trade-
off of performance, e.g., SVM struggles due to the lack of
generalized information, i.e., each test activity is compared
with the training activity of one subject [6]. On the other hand
DT imposes hard constraint that lead to separation problems
when the number of categories increases or when categories
are similar, i.e., a lack of clear separation boundary [17]. To
achieve high accuracy while being fast the Relaxed Hierarchy
(RH) method in [17] uses relaxed constraint, i.e., postpone
decisions on confusing classes, to tackle the increased number
of categories but still remains prone to accurately discerning
similar categories. The Hierarchical Strategy (HS) method
in [18] uses the RH and group together easily confused
classes to improve the classification performance. RH and
HS has only been applied to the spatial domain. Hierarchical
methods [19], [20] are also used at lower levels for feature-
wise classification. Note, however, similar to [17] this work
focuses on building high-level class hierarchies and look into
the problem of class-wise partitioning.

In order to recognize similar human activities efficiently
and accurately, we propose a hierarchical relaxed partitioning
system (HRPS) (see Section III for details). This is a system
that classifies and organizes activities in a hierarchical manner
according to their type, i.e., pure activities (easily separable)
and impure activities (easily confused). Subsequently, it ap-
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plies relaxed partitioning to all the easily confused activities
by postponing the decisions on them until the last level of the
hierarchy, where they are labelled by using a novel majority
voting scheme (MVS). As opposed to a conventional multi-
class classifier as in [18] that can distinguish between only
two similar activities, i.e., two classes overlap simultaneously,
the proposed MVS is able to discern between three or more
similar activities, i.e., three classes overlap concurrently. Thus,
making the HRPS more robust and suitable for identifying
activities in real world scenarios.

The proposed method is distinguished from our work in
[15], for significant body point labelling and tracking, in the
following respects: (a) activity recognition is addressed in this
paper, (b) the work in [15] and [16] is augmented to built
two feature descriptors, (c) the HRPS with the majority voting
scheme is proposed to recognize similar activities.

This paper is organized as follows. Section II reviews related
methods. Section III and Section IV present the foundation of
HRPS and its application to activity recognition, respectively.
Experiments are shown in Section V.

II. LITERATURE REVIEW

Several human activity recognition methods, e.g., [3], [7],
[8], [14], [21]–[25] verified on the benchmark data sets (see
[13] for data sets) struggle in correctly classifying similar
activities of the Weizmann data set. The methods [3], [5],
[6], [10] that are able to correctly classify similar activities of
the Weizmann data set are either computationally expensive
or require intensive training or need to learn a large set of
features. These methods require tuning of parameters with
respect to the data set. Therefore, they require extensive re-
training for new activities. Some methods [5], [7], [25] require
more number of frames (approximately 100 to 200 frames) for
training, thus duplicate or up-sample the training data.

A. Holistic and local feature approaches

In [3], a shape-motion prototype-based method is presented
for action recognition. In the training phase, it extracts shape-
motion descriptors to learn action prototypes which are repre-
sented via a binary hierarchical tree. In the testing phase, the
shape-motion descriptor is used to recognize human actions
via tree-based prototype matching and look-up table index-
ing. Both shape and motion cues are required to recognise
similar activities accurately. In [5], a learning-based method
is proposed which uses time series of optical flow motion
features for human action recognition. In the learning stage,
the optical flow motion features extracted from the given
action sequences are concatenated to construct motion curves.
Each human action is represented by a cluster of motion
curves which are clustered by using a Gaussian mixture model.
In the recognition stage, the cluster of optical flow motion
curves of the probe sequence is matched to the learned motion
curves using a similarity function. In [6] the optical flow
and random sample consensus methods are used to localize
the subject. Next, it extracts a feature vector that contain
variations in the movement of different body parts at different
directions during an activity. Euclidean distance or SVM is

used with the feature vector for action recognition. In [10] the
locality preserving projection method (that learns a projection
onto a low dimensional space while optimally preserving the
neighbourhood structure) is supervised to recognize similar
activities by not ignoring the local information of the data.
These methods are either computationally expensive or require
intensive training or tuning of multiple parameter on a data set.

In [7], the kinematic features from the optical flow extracted
from videos are converted into kinematic modes using prin-
cipal component analysis. These kinematic modes are then
used in a bag of kinematic mode representation with a nearest
neighbour classifier for human action recognition. It has high
computational cost, requires intensive training and confuses
similar activities. In [8], videos are represented as word ×
time tables and the extracted temporal patterns are used with
supervised time-sensitive topic models for action recognition.
It also confuses similar activities.

B. Model-free and Model-based approaches

A star is a shape that is formed by connecting the centre of
mass of a human silhouette contour to the extreme boundary
points. The method in [16] creates a one-star by using a local
maximum on the distance curve of the human contour to locate
the SBPs which are at the extremities. It uses two motion
features, i.e., leg frequencies and torso angles, to recognize
only the Walk and Run activities. A two star method [26]
extends [16] by adding the highest contour point as the second
star. It uses a 5D feature descriptor with a hidden Markov
model (HMM) to detect the fence climbing activity. The
method in [24] extends [26] by using the medial axis [27] to
generate the junction points from which variable star models
are constructed. It is compared with [16] and [26] on the fence
climbing activity, and evaluated on the Weizmann data set. In
[28], multiple cues such as the skin colour, principal and minor
axes of the human body, the relative distances between convex
points, convex point curvature, etc., are used to enhance the
method in [16] for the task of posture estimation. It does
not provide quantitative results, and uses a non-standard and
non-publicly available data set. Thus, it requires extensive
further work to validate and apply it to activity recognition.
The method in [25] assumes that SBPs are given and uses
the chaotic invariant for activity recognition on the Weizmann
data set. It uses the trajectories of SBPs to reconstruct a phase
space, and applies the properties of this phase space such as
the Lyapunov exponent, correlation integral and dimension, to
construct a feature vector, for activity recognition. The above-
described distance curve based methods are sensitive to the
silhouette contour, occlusion, resolution, etc., which affects
their accuracy for activity recognition. The method in [24]
and [25] confuse similar activities while only two features of
the method in [16] are not sufficient for recognizing more than
two similar activities.

The method in [29] uses the Poisson equation to obtain the
torso, and negative minimum curvature to locate the SBPs. An
8D feature descriptor from the articulated model is used with
the HMM to recognize six activities. In [30], the dominant
points along the convex hull of a silhouette contour are used
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with the body ratio, appearance, etc., to fit a predefined model.
It is extended in [31] for activity recognition. These methods
are evaluated on non-standard and publically unavailable data
sets. The method in [32] uses the convex hull to identify the
SBPs. However, it is designed to be used for surveillance
purposes. In [15] implicit body models are used with the
convex hull of a human contour to label SBPs. It tracks the
SBPs by using a variant of the particle filter. This method
works in real-time by fitting the knowledge from the implicit
body models. It outperforms most of the cutting edge methods
that use the distance curve method. Thus, we are motivated to
extend and apply it for activity recognition.

III. FOUNDATION OF PROPOSED METHOD

A DT learns from a data and features the best class
separation based on an optimization criteria. Let p(m|t) denote
the fraction of samples belonging to a class m at a given
node t. Then, for M number of classes, Entropy(t) =
−
∑M−1

m=0 p(i|t) log2 p(m|t), can be used as an optimization
criteria to determine the best split at each node by measuring
the class distribution before and after the split. Techniques
such as pruning that optimizes tree depth (leafiness) by merg-
ing leaves on the same tree branch can then be used to avoid
over-fitting. Random Forest (RDF) is an ensemble learning
method that generates many DT classifiers and aggregate
their result to avoid over-fitting issue of DT and improve
classification performance [33]. Methods like DT and RDF
assume that at each node the feature-space can be partitioned
into disjoint subspaces, however as mentioned in [17] this
does not hold when there are similar classes or when there
are large number of classes. In this case finding a feature-
space partitioning that reflects the class-set partitioning is
difficult as observed in [17]. Therefore, similar to [17], [18]
the goal of this work is to establish a class hierarchy and
then train a classifier such as simple binary classifier at each
node of the class hierarchy to perform efficient and accurate
classification. This allows us to define different set of rules
for classifying different types of activities. This is important
as different feature sets are useful for discerning different types
of activities [34].

In this context, a class hierarchy is created and at each node
a binary decision rule is learned that ignores easily confused
categories. At the bottom node of the hierarchy a MVS is
used to perform decisions on easily confused categories. Let
us demonstrate the concept of creating a HRPS using a simple
example with three overlapping classes that represent similar
categories as shown in Fig. 1(a). It can be seen from Fig. 1(a)
that it is not possible to clearly distinguish between only two
overlapping classes by using the RH method as it assumes
that only two classes overlap simultaneously. This is because
now the overlap is among three classes concurrently, i,e., the
overlap between the two classes A and B also contain some
overlap with the third class C. Similar phenomena occurs for
B and C, and A and C classes. In addition, a combined
overlap occurs, i.e, A∩B ∩C ̸= ∅. Hence, the RH method is
not capable of tackling the multiple overlaps class separation
problem.

(a) (b) (c) (d) (e)

(f)
Fig. 1. (a) Example of three classes to illustrate multiple overlaps class
separation problem, (b)-(e) Hierarchical relaxed partitioning system: (b), (c)
and (d) Partition non-overlapping samples from class A, B and C respectively,
(e) Remaining overlapping samples of all the three classes discerned using
the majority voting scheme (see Section IV-B for details), and (f) the
corresponding class hierarchy structure.

The proposed HRPS method addresses this deficiency in the
RH method by splitting the set of classes K = A′∪B′∪C ′∪X ,
where X = {XAB ∪XBC ∪XAC} and XAB = A∩B−A∩
B∩C, XBC = B∩C−A∩B∩C, XAC = A∩C−A∩B∩C
and XABC = A ∩ B ∩ C. X contains samples from two or
more overlapping classes. First, at each level of the hierarchy
the clearly separable samples of each class are partitioned into
the A′ or B′ or C ′ as shown in Fig. 1(b)-(d).

A′ = A−XAB −XAC −XABC (1)

B′ = B −XAB −XBC −XABC (2)

C ′ = C −XAC −XBC −XABC . (3)

Next, the overlapping samples of each class as shown in
Fig. 1(e) are partitioned into A or B or C via a majority voting
scheme (see Section IV-B). The class hierarchy structure for
HRPS method is shown in Fig. 1(f). Note that at each level
one class is partitioned from the remaining group of easily
confused classes [1] [18].

IV. HRPS FOR ACTIVITY RECOGNITION

We present HRPS for the Weizmann data set [35] containing
multiple similar activities such as Walk, Run, Side, Skip, etc.
that are easily confused by the activity recognition methods
in the literature. HRPS for the Multi-camera Human Action
Video (MuHAVi) data set [36] containing similar activities
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Fig. 2. The main components and work flow of the proposed human activity recognition.

(a) (b) (c)
Fig. 3. Feature extraction. (a) 2D stick figure analysis for cyclic activities,
(b) The upper and lower body analysis based on the arm and feet movement,
and (c) Process of acquiring D1 for the cyclic activities. The SBPs labelled
as Head (H), Front Arm (FA), Back Arm (BA) and Feet (F).

e.g., walk , run, turn, etc., is also described in order to establish
its generality, i.e., adaptability to work on a different data set.
The work flow of the proposed activity recognition is shown
in Fig. 2.

A. Feature extraction

Distinguishing between the cyclic and non-cyclic activities
is vital for activity recognition [37]. Thus, we augment our
earlier work in [15] to build two feature descriptors Di, i=1,2.
The 2D stick figure shown in Fig. 3 (a) is used to describe

D1 = [V1 V2 V3 V4 V5] (4)

for cyclic activities, while the 2D stick figure shown in Fig. 3
(b) is utilized to build

D2 = [V6 V7 V8 V9 V10 V11 V12 V13] (5)

for non-cyclic activities. The Vi, i=1,2,...12 represents the
feature elements of the descriptors. In Fig. 3, the SBPs are
labelled as the Head (H), Front Arm (FA), Back Arm (BA)
and Feet (F). Each SBP abbreviation can be considered as
a vector which has a 2D position, e.g, FA = (xFA, yFA),
F = (xF , yF ). Here, the superscripts denote the abbreviations
of SBP.

The 2D stick figure motion analysis method in [16] uses two
motion based features, i.e., the leg power and torso inclination
angle, to discern between the Walk and Run activities. This
method is suitable for only classifying the cyclic activities with
less inter-class similarity, i.e., the activities are not similar to
each other. Therefore, we propose two more features, i.e., the
torso angle and torso power, to strengthen the method in [16].
Given the global angle from contour moments V6 = θ(t) at
time t, centre (xc, yc), and SBPs from [15], we extend the
method in [16] to acquire D1 which contains four motion
based features, i.e., the leg cyclic frequency (V1) and leg
power (V2), and the torso inclination angle V3 = ϕ(t) =
|90 − (θ(t)3.14/180)| and torso power V4 for the cyclic
activities. The foot point xF > xc is used for computing

θleg(t) = tan−1(
xF − xc

yF − yc
). (6)

The computed torso angle V3 = ϕ(t) and leg angle θ(t)leg
are converted into radians. A highpass digital filter Y (ejw) is
applied to θ(t)leg .

Y (ejw) = b(1)− b(2)e−jw (7)

Here, b(1) = 1, b(2) = −0.9 as in [16]. The filtered leg
angles θ(t)leg are then autocorrelated in order to emphasise
the major cyclic components. The discrete Fourier transform
(DFT) is applied to the autocorrelated leg angles to quantify
the leg frequency V1 and magnitude expressed as leg power
V2 in decibels [16] as shown in Fig. 3(c). The proposed
activity recognition system also applies the high pass digital
filter Y (ejw) to the torso angle V3 (in radians) in order to
remove the low frequency components in contrast to [16]
where this filter is only applied to the leg angle θ(t)leg . Next,
the autocorrelation and DFT steps in Fig. 3(c) are performed
on the filtered torso angle to compute a new feature, i.e., the
torso magnitude expressed as torso power V4 in decibels. The
change in direction of movement or position is incorporated
as

V5 = min(xt+1
c − xt

c) (8)
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Fig. 4. Hierarchical relaxed partitioning system for the Weizmann data set.
∆i, i=1,2,..10 are the decision rules, and Xα and Xβ are the unassigned
impure cyclic and non-cyclic activities, respectively, with significant multiple
overlaps.

∀ t ∈ 1, N − 1, where N is the total number of frames, min
gives the minimum value. A positive and negative value of
V5 respectively indicate whether subject moved in the same
direction or changed direction (turn around) of movement
during an activity.

The feature descriptor D2 characterises the upper body
(torso and arms) and lower body (legs) movements as a
proportion of the mean height µh at different directions during
an activity as shown in Fig. 3 (b) for the non-cyclic activities.
The inter-frame displacement (movement) of the front and
back arms are described as

V7 = max(|xFA
t+1−xFA

t |)/µh, V8 = max(|yFA
t+1−yFA

t |)/µh

(9)
V9 = max(|xBA

t+1−xBA
t |)/µh, V10 = max(|yBA

t+1−yBA
t |)/µh

(10)
∀ t ∈ 1, N − 1,max gives the maximum value. The features
V7, V8, V9, and V10 do not contain information with respect
to the actual positioning of the front and back arm SBPs,
i,e., where the arm displacement is being taken place. This
information is represented as

V11 = min(yFA
t ), V12 = min(yBA

t ), ∀ t ∈ 1, N (11)

which uses the vertical position of the front and back arms to
represent their maximum height (as the minimum y location
of the front and back arms). The variation in the lower body
movement due to the leg can be represented by computing
the maximum inter-frame horizontal displacement between the
two feet as

V13 = max(|xF
t+1 − xF

t |)/µh, ∀ t ∈ 1, N − 1. (12)

B. Classification: HRPS for the Weizmann data set

The Weizmann data set contain ten activities, i.e., the Walk
(α1), Run (α2), Skip (α3), Side (α4), Jump (α5), Jump-
in-place-on-two-legs or Pause Jump (β7), Bend (β8), One
Hand Wave (β9), Two Hand Wave (β10) and Jack (β11). In
[38], a binary decision tree splits the activities into still and
moving categories at the root node in order to obtain better
classification. Therefore, an expert knowledge motivated from
[38] is added at the root node level 1 to automatically split the

TABLE I
ACRONYMS FOR ACTIVITIES.

Type Activities (α)

1 Walk
2 Run
3 Skip
4 Side
5 Jump
6 Turn

Type Activities (β)

7 Jump-in-place-on-Two-Legs/Pause Jump
8 Bend
9 One Hand Wave
10 Two Hand Wave
11 Jack
12 Standup
13 Collapse
14 Kick
15 Punch
16 Guard-to-Kick
17 Guard-to-Punch

above-mentioned ten activities in two groups, i.e., significant
translation (α) and no significant translation (β) by using

α = 0.25Iw > xc or xc > 0.75Iw
β = 0.25Iw < xc or xc < 0.75Iw

(13)

as shown in level 2 of Fig. 4. Iw and Ih are the frame width
and frame height, respectively. Thus, most cyclic activities,
i.e., the Walk (α1), Run (α2), Skip (α3), Side (α4) and Jump
(α5), which have significant translation of the subject and
repetitive nature are grouped together under α. The activities,
i.e., the Pause Jump (β7), Bend (β8), One Hand Wave (β9),
Two Hand Wave (β10) and Jack (β11), which have no signif-
icant translation of the subject are grouped under β. A HRPS
with 8 levels is created with decision rules ∆i, i=1,2,...10 as
shown in Fig. 4. The decision rules ∆i, i=1,2,...5 for cyclic
activities are learned by using Algorithm. IV.1 on the training
data set that contains the activities performed by eight subjects.
The last subject is used as the testing data set in a leave-
one-person-out cross validation approach to determine the
performance of the HRPS for cyclic activities. The Algo-
rithm. IV.1 postpone decisions on those samples of an activity
that are closer to the samples of all the remaining activities
by updating the decision rules ∆i, i=1,2,...5 by using variable
adjustment κ. In [15], SBPs were accurately detected by using
implicit body models (IBMs) that are based on the human
kinesiology and anthropometric studies, and observed human
body characteristics. This inspired us to define decision rules
∆i, i=6,8,...10 that are fixed based on the human kinesiology
(torso flexion or extension V6) [39] and anthropometric studies
(upper body motion V7, V8, V9, V10 and leg motion V13)
[40], and individual arm location V11 and V12), observed
human body characteristics and experimental cues for non-
cyclic activities. The Pause Jump (β7) is a cyclic activity with
no significant translation but has repetitive nature. Thus, it
is first separated using V6 from the non-cyclic activities, i.e.,
Bend (β8), One Hand Wave (β9), Two Hand Wave (β10),
Jack (β11), and then dealt with in a similar manner as the
remaining cyclic activities for classification. This knowledge
will assure an increase in the accuracy and reliability of the
activity classification.

∆6 =

{
β7 if |90− V6| < 9
∆7 Otherwise. (14)
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Algorithm IV.1: PARTITION LEARNING ALGORITHM(D1)

Input: Training sequences S1, ..., SM

Corresponding labels y1, ..., yM
Feature descriptor D1 = [V1 V2 V3 V4 V5]

Output: Decision rules ∆i, i=1,2,...5

For each activity, determine the mean µj and standard
deviation σj of feature elements Vj, j=1,...,5 from K
training subjects/samples as

µj =
∑K

k=1 V
k
j /K , σj =

√
1/K

∑K
k=1(V

k
j − µj)2.

Learn decision rules as one standard deviation on either
side of the mean

∆i, i=1,2,...5 = µj − σj < Vj < µj + σj .
Update decision rules by using a variable adjustment κ to
separate clearly separable samples, i.e., pure samples, of
an activity from the samples of all the remaining activities

∆i, i=1,2,...5 = µj − σj + κ < Vj < µj + σj + κ
Accumulate impure samples of an activity that are closer to
the samples of all the remaining activities in Xα.

A full flexion of the vertebra in the Bend (β8) activity
causes a large increase in the torso angle [39]. Based on the
experimental observation in Section V-A most training subjects
have a torso angle variation greater than 9 degrees, thus,

∆7 =

{
β8 if |90− (V6180/3.14)| > 9
∆8 Otherwise. (15)

The Jack (β11) activity which involves a large upper body and
lower body movement is determined based on large arm and
feet displacement by using

∆8 =

 β11 if V7 or V8 > 15/µh and V9 or V10 > 15/µh

and V13 > 20/µh

∆9 Otherwise.
(16)

where µh = 68 pixels for the Weizmann data set. The human
head is one-eighth the human height, i.e., 0.125. Hence, a 15
pixel movement equates to 15/68 = 0.22 that is almost twice
of the height of the human head.

The individual arm motion in the Two Hand Wave (β10) and
One Hand Wave (β9) activities is discerned using the location
information. In the Two Hand Wave (β10) activity there will
be significant movement of both arms while in the One Hand
Wave (β9) activity there will be significant movement of only
one arm. Therefore, the Two Hand Wave (β10) and One Hand
Wave (β9) activities are described below:

∆9 =

 β10 if V13 < 20/µh and V8 ≥ 5/µh and
V10 ≥ 5/µhand V11 ≤ 55 and V12 < 50

∆10 Otherwise.
(17)

∆10 =

 β9 if V13 < 20/µh and V8 or V10 ≤ 8/µh

and V11 ≤ 55 and V12 > 50
Xβ Otherwise.

(18)

Fig. 5. Proposed majority voting scheme for the unassigned impure activities
Xα and Xβ using the mean D̄i, i=1,2.

1) Majority Voting Scheme: The unassigned impure activ-
ities Xα and Xβ at the second last level of the HRPS (see
Fig. 4) are given a label by using a novel majority voting
scheme in Fig. 5. This scheme is an integral part of the HRPS
and is designed to cater for the increase complexity of multiple
overlaps in the feature space of two or more activities. The
key idea of this scheme is to accumulate votes based on the
rank, assigned weight and frequency (mode) value in order
to deduce more accurate decisions at the bottom level of the
HRPS.

Given the mean feature descriptors, i.e., D̄1 =
[V̄1 V̄2 V̄3 V̄4 V̄5] and D̄2 = [V̄5 V̄6 V̄7 V̄8 V̄9 V̄10 V̄11 V̄12],
of the known activities of training data set, the goal is to
label an unknown impure activity (which contain signifi-
cant overlaps in the feature space) by extracting the feature
descriptors, i.e., D1 = [V1 V2 V3 V4 V5] and D2 =
[V6 V7 V8 V9 V10 V11 V12 V13], in order to calculate the
rank, weight and mode as shown in Fig. 5. D1 and D2 are
used for cyclic and non-cyclic activities, respectively. V1−V13

represent each feature element of the feature descriptors. The
label for the unknown impure activity is determined as follows.

• Step 1: Compare each feature element of the feature
descriptor, i.e., D1 or D2, of one unknown impure activity
with the respective mean feature elements of the feature
descriptor, i.e., D̄1 or D̄2, for each of the ten known
activities in order to enumerate three closest known
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Fig. 6. Hierarchical relaxed partitioning system for the MuHAVi data set.
∆i, i=11,12,..19 are the decision rules, and Xα and Xβ are the unassigned
impure cyclic and non-cyclic activities, respectively, with significant multiple
overlaps.

activities per mean feature element.
• Step 2: Assign a score (rank) ν = 3, 2, 1 to the three

activities enumerated in Step 1 based on their closeness
to each of the mean feature elements of D̄1 or D̄2. Next,
arrange them in the descending order of their ranks.

• Step 3: Allocate a weight ω = 3, 2, 1 to the three ranked
activities in Step 2 based on their strength of closeness
to the mean feature elements of D̄1 or D̄2.

• Step 4: Find the three known activities that occur most
frequently (i.e., mode ϖ) per mean feature element of
D̄1 or D̄2.

• Step 5: Calculate the final score to find the label of the
unknown activity. The known activity of the training data
set whose rank, weight, and mode yield the maximum
score with respect to the unknown activity is assigned as
the label for the unknown activity, i.e., Label=max(ϖ+
ν + ω).

C. Classification: HRPS for the MuHAVi data set
The robustness of the proposed HRPS method is further

validated by applying it with the same feature descriptors
Di, i=1,2 on the MuHAVi dataset [36]. The MuHAVi data
set contain eight activities, i.e., the Walk (α1), Run (α2),
Turn (α6), Standup (β12), Collapse (β13), Kick (β14), Punch
(β15) and Guard-to-kick or Guard-to-punch (β16/β17). As in
Section IV-B the root node is split into α and β activities by
using (13). A HRPS with 7 levels is created with decision rules
∆i, i=11,...,19 as shown in Fig. 6. Algorithm. IV.1 is used on
the 7 training samples of the MuHAVi data set to learn the
decision rules ∆i, i=11,12,13 for the Walk (α1), Run (α2) and
Turn (α6) cyclic activities respectively. The last sample is used
as the testing data in a leave-one-out procedure to determine
the performance of the HRPS.

Similar to Section IV-B we define decision rules
∆i, i=14,...,19 that are fixed based on the human kinesiology
[39], anthropometry [40] and body characteristics for non-
cyclic activities. Let the reference global angle V6 = θ(t) in
Stand posture be 90o. Then, based on biomechanical analysis
[41] of human spine the maximum flexion of torso is 60o, i.e.,
(90− 60 = 30 or 90 + 60 = 150), which causes a significant
change in posture. Thus,

∆14 =

{
∆15 if 30 ≥ V6 ≥ 150
∆17 Otherwise (19)

is used to determine whether a transition occurred ∀ t ∈ 1, N
frames of the activity video. The transition ∆15 includes
Standup (β12) and Collapse (β13) activities which contain
significant change in posture while the non-transition ∆16

contain Kick (β14), Punch (β15) and Guard-to-kick or Guard-
to-punch (β16/β17) which do not have significant change in
posture. The decision rules for the Standup (β12) and Collapse
(β13), i.e., ∆15 and ∆16, respectively are defined as

∆15 =

 β12 if 30 ≥ V6 ≥ 150, at t = 1
and 65 ≤ V6 ≤ 125, ∀ t ∈ 2, N

∆16 Otherwise
(20)

∆16 =

 β13 if 65 ≤ V6 ≤ 125, at t = 1
and 30 ≥ V6 ≥ 150, ∀ t ∈ 2, N

Xβ Otherwise
(21)

The range 125 − 65 = 60o [41] is selected as it corresponds
to the flexion and extension range of human body while
maintaining a somewhat Stand posture. We are motivated from
[15] to borrow the definition of the Kick and Punch IBM as
decision rules for the Kick (β14) and Punch (β15) activities.
Hence,

∆17 =

{
β14 if 2 ≤ 90− V6 ≤ 15
∆18 Otherwise. (22)

∆18 =

{
β15 if 90− V6 > 15
∆19 Otherwise. (23)

Note that in Punch (β15), the arm moves across the body in
a diagonal manner and as a result the angle of body from
the vertical is quite large. The Guard-to-punch and Guard-to-
kick are considered as one class because both primarily have
a guard activity with minimal movement of the arms and legs.
In Guard-to-kick or Guard-to-punch (β16/β17), the human
remains in Stand posture with least angle of body from the
vertical. Hence,

∆19 =

{
β16/β17 if 90− V6 < 2
Xβ Otherwise. (24)

The unassigned impure activities Xα and Xβ are given a label
by using the MVS (see Section IV-B1).

V. EXPERIMENTAL RESULTS

The Weizmann dataset [35] comprises ninety low-resolution
180 × 144 video sequences of nine subjects performing ten
daily activities. The MuHAVi dataset [36] comprises eight
high resolution 720 × 576 primitive activity classes of two
actors with two samples with two different views (camera 3
and camera 4), i.e., total eight samples, per activity. We use a
standard leave-one-out cross validation method. The activities
and their acronyms are shown in Table I.

A. Feature descriptors evaluation

The 3D scatter plots of the selected features are shown in
Fig. 7 and Fig. 8 to visualize the distribution of the activities of
the input data set. It can be seen from Fig. 7 (a) that the Walk
activity has the least leg frequency (most blue circles between
2-3 Hz) and the Run activity has the maximum leg frequency
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Fig. 7. 3D scatter plots of the selected features that show the distribution of the cyclic activities for the input Weizmann data set.
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Fig. 8. 3D scatter plots of the selected features that show the distribution of the activities for the input Weizmann and MuHAVi data sets.

(green pentagons lie between 4-6 Hz onwards). Similarly, it
can be seen in Fig. 7 (b) that the torso power of the Walk
activity is much less than the remaining cyclic activities. In
Fig. 7 (c) it can be seen that the torso angle of most of the Run
(green pentagons), Jump (purple diamonds) and Skip (light
blue square) activities is more than the Walk (blue circles)
and Side (red stars) activity. It can be observed from Fig. 7
(c) that the Walk activity has the least torso angle (blue circles
between 0-0.05 radian) while the torso angle for the Side (red
stars) activity is concentrated between 0.05-0.1 radian.

The Fig. 8 (a) shows the 3D scatter plots of the selected
features for the Bend, Jack, One Hand Wave and Two Hand
Wave activities of the Weizmann data set. It can be seen
that the Jack activity has the maximum displacement of the
feet as a proportion of the mean height of subject. Also, it
can be seen that in the Two Hand Wave (light blue square)
activity both front and back arm have minimum position in
pixels, and is well separate from the One Hand Wave (red
star) activity. The Fig. 8 (b) shows the 3D scatter plots of
a selected feature for the Guard-to-Punch or Guard-to-Kick,
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Significance of the extracted features for discerning activities. Error bars show 95% confidence intervals on selected features with two standard
deviation as an error metric. (a)-(e) Weizmann data set and (f) MuHAVi data set.

Kick and Punch activities of the MuHAVi data set. It can be
seen that the Guard-to-Punch or Guard-to-Kick has the least
variation in the angle of body from the vertical and the Punch
has the maximum angle of body from the vertical. The angle
of body from the vertical for the Kick activity lies in between
the Guard-to-Punch or Guard-to-Kick and Punch activity.

In Fig. 9, we illustrate the ability of some of the features
from Di, i=1,2 to discern various human activities of the
Weizmann and MuHAVi data sets. The error bars show 95%
confidence intervals on selected features with two standard
deviation as an error metric. Although the leg frequency, i.e.,
V1, of the Walk (α1) and Run (α2) activity is dissimilar based
on speed of the leg movement but anomalies like some subjects
walking faster causes misclassification. However, it can be
seen from Fig. 9 (a) that the torso angle V3 = ϕ(t) provides
a good separation to discern the Walk (α1) and Run (α2)
activities. Similarly, the newly introduced torso power feature
V4 provides a reasonable distinction between the Side (α4)
and Pause Jump (β7) activities as shown in Fig. 9 (b). In
Fig. 9 (c), the global angle V6 = θ(t) provides clear separation
between the Pause Jump (β7) and Bend (β8) activity while
in Fig. 9 (d) the torso angle V3 = ϕ(t) provides sufficient
discerning ability between the Bend (β8) and Jack (β11)
activity. It can be observed from Fig. 9 (e) that the distance
between the legs, i.e., V13, gives a very good separation
among the Jack (β11), One Hand Wave (β9) and Two Hand
Wave (β10) activities. Finally, in Fig. 9 (f) the global angle
V6 = θ(t = 1) easily discern the Standup (β12) and Collapse
(β12 = 3) activities. Thus, the Di, i=1,2 acquires meaningful
information. However, there is slight overlap in the confidence
intervals of some of the features, e.g., Fig. 9 (a), (b) and
(d). This illustrate the importance of using HRPS to postpone

decisions on such samples that lie closer to the samples of
another activity. Also, for these samples the MVS is better
suited because it takes into account multiple criteria based on
the average values of all the feature elements obtained from
the training data set to assign a label to an unknown activity.
As stated in [6] the average features provide more generalized
information about the movement pattern of body during an
activity.

B. Classification evaluation

The confusion tables for the HRPS method on the Weiz-
mann and MuHAVi data set are shown in Fig. 10 (a) and (b)
respectively. We obtained a mean classification accuracy of
96.7% for ten activities of the Weizmann data set (see Table II
and details below for significance in comparison to other
methods). This shows that our method robustly recognises
activities that have significant multiple overlaps in the feature
space. In particular, our method recognises four activities, i.e.,
Run (α2), Side (α4), Jump (α5) and Pause Jump (β13), out
of the six cyclic activities with a mean classification accuracy
of 100%. Thus, our method robustly discerns similar cyclic
activities. It obtains a mean classification accuracy of 94.5%
for all the six cyclic activities, i.e, Walk (α1), Run (α2),
Side (α4), Jump (α5), Skip (α3) and Pause Jump (β13). The
decomposition of the Walk (α1) into the Run (α2) and Jump
(α5) activities is reasonable due to similar motion. Also, the
Skip (α3) and Jump (α5) activities are similar in the way the
subject bounces across the video. The non-cyclic activities,
i.e., Bend (β14), Jack (β11), Two Hand Wave (β10) and
One Hand Wave (β15) are robustly classified with a mean
classification accuracy of 100%. This proves that the decision
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(a)

(b)

Fig. 10. Confusion table (see Table I for α and β). (a) Weizmann data set
and (b) MuHAVi data set.

rules based on human kinesiology and body characteristics
work well. We obtained a mean classification accuracy of
100% for eight activities of the MuHAVi data set as shown
in Fig. 10 (b). The results demonstrate that the proposed
HRPS method can robustly distinguish various activities in two
different (low and high) resolution data sets. It also show that
our method perform well under different views, i.e., camera 3
and camera 4, for the MuHAVi data set. A high accuracy on
the Standup (β12), Collapse (β13), Kick (β14), Punch (β15)
and Guard-to-kick or Guard-to-punch (β16/β17) activities
demonstrate the importance of decision rules based on human
kinesiology and body characteristics.

Fig. 11 (a) shows classification performance with respect to
training subjects of the Weizmann data set. It can be seen that
the classification accuracy of the proposed method is about
70% with only one training subject. However, as the number
of training subjects increase the classification accuracy also
improves. The classification accuracy becomes slightly stable
when the number of training subjects is four, five and six. The
best performance is achieved with eight training subjects. The
classification performance with respect to training samples of
the MuHAVi data set is shown in Fig. 11 (b). It can be seen that
the classification performance increases steadily till it reaches
100% with seven samples used for training.

(a) (b)
Fig. 11. Classification performance. (a) Weizmann data set and (b) MuHAVi
data set.

TABLE II
COMPARISON ON THE WEIZMANN DATA SET.

Method Accuracy% Real-time Intensive training Year

Michalis, et al. [5] 100 No Yes 2014
Marlon, et al. [23] 96.7 Yes No 2014
Mahbub, et al. [6] 100 No No 2014
Ma, et al. [10] 100 No Yes 2013
Romain, et al. [8] 82.79 No Yes 2013
Zhuolin, et al. [3] 100 Yes Yes 2012
Saad, et al. [7] 95.75 No Yes 2010
Elden, et al. [24] 93.6 Yes No 2009
Saad, et al. [25] 92.6 - No 2007

Our method 96.7 Yes No 2014

Table II compares the HRPS with relevant state-of-the-
art methods (see Section II) for activity recognition on the
Weizmann data set. It shows that the our method outperforms
the methods in [7], [8], [24], [25] in terms of accuracy. Saad
et al. [25] only deals with nine activities. The method in
[5], [7], [8], [6] and [10] are not real-time since they require
intensive training for learning vocabulary. Zhuolin, et al. [3]
required both shape and motion features to achieve 100%
accuracy. On a similar basis, i.e., using motion features, they
obtain 88.89% accuracy while our method obtains 96.7%.
Their method is reported to be fast but requires intensive
training and uses optical flow which is usually computationally
expensive. Hence, these methods are not suitable for real-
world applications. In contrast, our method operates in real-
time, avoid intensive training, and it is simple to implement
and extend for new activity categories (i.e., for each new
category new features can be added to the HRPS). This makes
it more suitable for real world applications. The model-free
method in [16] recognizes only two activities, i.e., the Walk
and Run with 97% accuracy. On similar activities, i.e., Walk
(α1), Run (α2), and Jump (α5), the method in [29] has mean
classification accuracy of 82.4% while we obtain 92.7% mean
classification accuracy. The method in [43] although real-time
and non-intensive but achieves only 90.32% on the Weizmann
data set.

In Table III, our HRPS method is compared with recent
methods on the MuHAVi data set. Our method achieved better
recognition rate than most of the methods and works in real-
time with no intensive training. On both data sets our method
is comparable to the method in [23]. On Intel (R) Core (TM)
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TABLE III
COMPARISON ON THE MUHAVI DATA SET.

Method Accuracy% Real-time Intensive training Year

Alexandros, et al. [42] 100 Yes No 2014
Marlon, et al. [23] 100 Yes No 2014
Alexandros, et al. [43] 97.1 Yes No 2013
Abdalrahman, et al. [44] 98.5 No No 2011
Sanchit, et al. [36] 97.8 Yes No 2010
Martinez, et al. [45] 98.4 No Yes 2009

Our method 100 Yes No 2014

i7 2.93 GHz with 4 GB RAM and Windows 7, the feature
extraction in OpenCV 2.4.6 takes 0.031 and 0.071 seconds
per image frame on the Weizmann and MuHAVi data sets
respectively. The classification in MatLab takes 0.183 seconds
for all activities. Marlon, et al. [23] method takes 4.85 and
2859.29 seconds for feature extraction on the Weizmann and
MuHAVi data sets respectively. This demonstrates that the
HRPS method works in real-time.

VI. SUMMARY

We proposed a hierarchical relaxed partitioning system to
efficiently and robustly recognize activities. Our method first
discerns the pure activities from the impure activities, and then
tackles the multiple overlaps problem of the impure activities
via an innovative majority voting scheme. The results proved
that our method not only accurately discerns similar activities,
but also obtains real-time recognition on two (low and high)
resolution data sets, i.e., Weizmann and MuHAVi respectively.
It also performs well under two different views of the MuHAVi
data set. These attributes make our method more suitable for
real-world applications in comparison to the state-of-the-art
methods.
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