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Abstract
Inspirations from nature have contributed fundamentally to the development of evo-
lutionary computation. Learning from the natural ripple-spreading phenomenon, this
article proposes a novel ripple-spreading algorithm (RSA) for the path optimization
problem (POP). In nature, a ripple spreads at a constant speed in all directions, and the
node closest to the source is the first to be reached. This very simple principle forms the
foundation of the proposed RSA. In contrast to most deterministic top-down central-
ized path optimization methods, such as Dijkstra’s algorithm, the RSA is a bottom-up
decentralized agent-based simulation model. Moreover, it is distinguished from other
agent-based algorithms, such as genetic algorithms and ant colony optimization, by
being a deterministic method that can always guarantee the global optimal solution
with very good scalability. Here, the RSA is specifically applied to four different POPs.
The comparative simulation results illustrate the advantages of the RSA in terms of
effectiveness and efficiency. Thanks to the agent-based and deterministic features, the
RSA opens new opportunities to attack some problems, such as calculating the exact
complete Pareto front in multiobjective optimization and determining the kth shortest
project time in project management, which are very difficult, if not impossible, for
existing methods to resolve. The ripple-spreading optimization principle and the new
distinguishing features and capacities of the RSA enrich the theoretical foundations of
evolutionary computation.
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Path Optimization by Ripple-Spreading Algorithm

1 Introduction

Learning from nature is a foundation of evolutionary computation (EC) because many
successful EC methods are actually inspired by certain natural systems or phenomena
(Holland, 1975; Russell and Norvig, 2010; Bäck et al., 1997). For instance, genetic al-
gorithms (GAs) are inspired by natural selection and evolutionary processes, artificial
neural networks by the animal brain, particle swarm optimization (PSO) by the learning
behavior within a population, and ant colony optimization (ACO) by the foraging be-
havior of ants. This paper aims to investigate the optimization principle reflected by the
natural ripple-spreading phenomenon, which may add fundamentally new elements
to the study of EC.

We have reported on ripple-spreading models and algorithms for a wide range of
problems and applications (Hu et al., 2011; Liao et al., 2013; Hu and Di Paolo, 2011;
Hu et al., 2010). The motivation of these has been to take inspiration from the natural
ripple-spreading phenomenon to study and resolve a variety of optimization problems
in daily life. The basic hypothesis behind the ripple-spreading models and algorithms
is the following. Ripple spreading reflects certain fundamental organizing principles
in nature, and such principles are to be found in many systems and problems around
us. Taking this inspiration when developing models and algorithms in the study of
such scenarios, we are likely to better match or reflect the embedded organizing system
principles, and therefore generate more effective solutions.

For instance, a theoretical ripple-spreading model for complex networks was pro-
posed to study the spreading influence of local events in many real-world complex
systems (Hu et al., 2011). The model was then successfully applied to simulate epi-
demic dynamics (Liao et al., 2013). The natural ripple-spreading phenomenon can also
help to design algorithms to solve complex optimization problems, such as aircraft
sequencing and network coding problems (Hu et al., 2011; Hu and Di Paolo, 2011). In
these algorithms, a problem-dependent ripple-spreading process is integrated with a
GA, in order to improve the overall optimization performance.

This paper is particularly concerned with a fundamental question for the study
of ripple-spreading models and algorithms: Does the natural ripple-spreading phe-
nomenon also reflect certain optimization principles? Put another way, can we develop
an optimization algorithm that has nothing to do with GAs or any other optimization
algorithm but is purely based on mimicking the natural ripple-spreading phenomenon?
So far the optimization aspect of ripple-spreading models and algorithms has been pro-
vided by a GA (Hu et al., 2011; Liao et al., 2013; Hu and Di Paolo, 2011; Hu et al., 2010).
This paper shows that the ripple-spreading phenomenon itself reflects an optimization
principle. A ripple spreads out at the same speed in all directions, and therefore it al-
ways reaches spatial points in order according to the distance from the ripple epicenter,
i.e., it always reaches the closest point first.

This very simple optimization principle can be particularly used to design a new
EC method, named the ripple-spreading algorithm (RSA), to resolve the path optimization
problem (POP) or any problem that can be converted to a POP. Actually, the POP has long
been studied, and many mature methods have already been developed (Fu et al., 2006).
Behind these successful methods for the POP is the Bellman optimization principle,
which forms the foundation of all dynamic programming methods (Sniedovich, 1986).
Therefore, we must elucidate the relations and differences between the proposed RSA
and existing methods, and between the ripple-spreading optimization principle and
the Bellman optimization principle. Does the RSA concept introduce anything new or
valuable to optimization theories? This paper answers these questions in detail. In short,
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the introduction of the ripple-spreading process in the RSA makes all the difference.
In fact, the RSA resembles a bottom-up decentralized agent-based simulation model
rather than a top-down centralized optimization algorithm, and therefore belongs to
the family of EC, but the output of the model is deterministically the optimal solution
thanks to the natural optimization principle simulated. Because of the agent-based and
deterministic features, the RSA opens new opportunities to address some problems,
such as the calculation of the exact complete Pareto front and the determination of
the kth shortest project times, which are very difficult, if not impossible, for existing
methods to resolve.

The remainder of this paper is organized as follows. Section 2 explains the POP
and reviews existing methods. Section 3 describes the proposed RSA. Section 4 gives
theoretical analyses of some important properties of the new method, and Section 5
gives some simulation results. The paper ends with conclusions and discussion of
future work.

2 Path Optimization Problem and Existing Algorithms

2.1 Problem Description of POPs

The POP is a classical optimization problem and has a very wide set of realistic appli-
cations such as in transportation systems, communication systems, Internet protocols,
logistic optimization, process planning, and job scheduling (Fu et al., 2006). This study
investigates four POPs: one-to-one POP, one-to-all POP, many-to-many POP, and the k
shortest paths problem (k-SPP). A general mathematical description of a POP is given
here. The POP aims to find the best route through a given route network, so as to travel
from source to destination or connect them most efficiently in terms of some specific
considerations. Let us assume that a route network G(V,E) is composed of node set V
and connection set E. V has NN different nodes, including the source and the destination,
and then this route network can be recorded as an NN × NN adjacency matrix A. The
matrix entry A(i, j ) > 0, i = 1, . . . , NN and j = 1, . . . , NN , means there is a connection,
i.e., a direct route from node i to node j. Otherwise, A(i, j ) = 0 means no direct route,
and it is assumed that A(i, i) = 0, i.e., no self-connecting route is allowed. The nonzero
value of matrix entry A(i,j) usually has a particular meaning. For instance, in the tradi-
tional POP, A(i,j) is the physical route length, but actually it can be defined as anything,
such as traveling time or fuel consumption. Therefore, for the sake of generality, here
we define the meaning of the nonzero entry value as route cost rather than route length.

First we consider the one-to-one POP, where two different nodes in the route net-
work are specified as source and destination, respectively. A feasible route connecting
the source and destination can be denoted as an integer vector R. The value of each
vector entry R(i) is the serial number of the associated node, where i = 1, . . . , NL, and
NL ≥ 2 indicate how many nodes are included in this route. R(1) is the source and R(NL)
is the destination, and the cost of route R is

f (R) =
NL−1∑
i=1

A(R(i), R(i + 1)). (1)

Now we can mathematically describe the one-to-one POP as the following mini-
mization problem:

min
R∈�R

f (R), (2)

where �R is the set of all feasible routes connecting the source and destination. In this
study, a feasible route must observe (1) no node will be visited twice, i.e., R(i) �= R(j ),
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if i �= j , i = 1, . . . , NL, and j = 1, . . . , NL; and (2) two successive nodes in a route must
have a connection between them, i.e., A(R(i), R(i + 1)) > 0.

The one-to-all POP can be viewed as a set of (NN − 1) one-to-one POPs. In the
one-to-all POP, a source node is specified, and then for every other node in the route
network, we need to find the shortest path to the source. Let node nS be the specified
source node, and node nD be the current destination node. Then the one-to-all POP can
be formulated as ∑

nD=1,...,NN ,nD �=ns

min
R∈�R

f (R). (3)

The many-to-many POP has a set of source nodes as well as a set of destination
nodes, and its goal is, for every source node, to find the associated shortest path con-
necting to one node, it does not matter which one, in the destination set (Drezner et al.,
2002; Gastner and Newman, 2006; Yan et al., 2011). Let �SN and �DN be the sets of
source nodes and destination nodes, respectively. If node n ∈ �SN , then n /∈ �DN . The
mathematical formulation of many-to-many POP is as follows:∑

nS∈�SN

min
R∈�R,nD∈�DN

f (R). (4)

In the k shortest paths problem (k-SPP) (Yen, 1971; Eppstein, 1998; Aljazzar and
Leue, 2011), for a given pair of source node nS and destination node nD, we need to find
k routes R∗

1 , . . . , R
∗
k , such that

f (R∗
i ) ≤ f (R), for anyR ∈ �R − {R∗

1 , . . . , R
∗
i }, i ∈ {1, . . . , k}. (5)

2.2 Review of Existing Algorithms for POPs

Existing methods for the POP can be classified into two categories: stochastic and de-
terministic. The former, such as EC, are often confronted with optimality and scalability
problems (Holland, 1975; Russell and Norvig, 2010) and therefore are not practicably
popular in real-world POP applications (the goal of proposing the RSA in this article as
a new EC method is to change this situation). Since the RSA can always guarantee opti-
mality and has a very good scalability, we compare it with other methods that can also
guarantee optimality with good scalability. Therefore in this study we ignore stochastic
search methods and only compare it with deterministic search methods, which ex-
hibit much better performance in terms of both optimality and scalability, and therefore
dominate real-world POP applications. Simply speaking, a deterministic search method
organizes its search operations according to a certain specific rule, and as a result, for
a given route network, the method outputs a unique repeatable solution (the solution
given by a stochastic search method is rarely repeatable). The three most popular rules
adopted in a deterministic search method are breadth-first search, depth-first search,
and best-first search.

A breadth-first search method is an uninformed search method, and it begins at the
root node and explores all the neighboring nodes; then for each of those nearest nodes, it
explores their unexplored neighbor nodes, and so on, until it finds the goal (Russell and
Norvig, 2010; Fu et al., 2006). Depth-first search is another uninformed search method
that progresses by expanding the first child node of the search tree that appears and
thence goes deeper and deeper until the destination node is found, or until it hits a
node that has no children (Russell and Norvig, 2010; Cormen et al., 2001; Goodrich and
Tamassia, 2006; Sniedovich, 2010; Korf, 1985). The search then backtracks, returning
to the most recent node that it has not finished exploring. Best-first search explores a
graph by expanding the most promising node chosen according to a specified heuristic
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evaluation rule or function that attempts to predict how close the end of a route is to
the destination (Russell and Norvig, 2010; Pearl, 1984). Both breadth-first search and
depth-first search are complete but often with a poor scalability. Therefore, limits on
search depth or width may be introduced and may then cause optimality to be lost.
Best-first search cannot guarantee optimality if the heuristic evaluation rule/function
is not properly chosen.

One of the most acknowledged best-first search methods is the A∗ algorithm, be-
cause it is optimally efficient for any heuristic evaluation function, meaning that no
algorithm employing the same heuristic function will expand fewer nodes than A∗

(Hart et al., 1968; Dechter and Pearl, 1985; Hart et al., 1972; Korf et al., 2001). If the
heuristic function is admissible, meaning that it never overestimates the actual minimal
cost of reaching the destination, then A∗ is itself optimal if we do not use a closed set. If
a closed set is used, then the heuristic function must also be monotonic (or consistent)
for A∗ to be optimal (Dechter and Pearl, 1985). However, sometimes it is difficult to
find an admissible heuristic function to guarantee optimality, for example, in the case
of randomly weighted route networks.

To search general weighted route networks, uniform-cost search is probably the best
method to date. Typically, the search algorithm involves expanding nodes by adding
all unexpanded neighboring nodes that are connected by direct connection to the set of
visited nodes. The uniform-cost search is complete and optimal if the cost of each step
exceeds some positive bound (Russell and Norvig, 2010). Dijkstra’s algorithm, which
is perhaps better known, can be regarded as a variant of uniform-cost search, where
there is no goal state and processing continues until all nodes have been removed from
the priority queue, i.e., until shortest paths to all nodes (not just a goal node) have
been determined (Dijkstra, 1959; Misa and Frana, 2010; Sniedovich, 2006). Dijkstra’s
algorithm does not use any heuristic function and can be viewed as a special case of A∗

where the heuristic function is the constant zero.
These deterministic search methods were originally proposed predominantly for

the one-to-one POP and then were widely extended to resolve all kinds of POPs. For
instance, Dijkstra’s algorithm can apply to the one-to-all POP and many-to-many POP
in an almost straightforward manner. For the k-SPP, as reviewed by Mohanta and Pod-
dar (2012), the most popular methodology is to find the first shortest route and let
i = 1; remove from the original route network each combination of those connections
that appear in the first i shortest routes, and find the first shortest route in the recon-
structed route network; the shortest one in all such new first shortest routes is the
(i + 1)th shortest route; increment i = i + 1, and repeat reconstructing the route net-
work and calculating the associated first shortest route, until i = k. Any method that
can resolve the one-to-one POP can be employed in the k-SPP, and the focus often shifts
to reconstructing route networks (Yen, 1971; Eppstein, 1998; Aljazzar and Leue, 2011).

3 Ripple-Spreading Algorithm

3.1 Optimization Principle of the RSA

The optimization principle in the natural ripple-spreading phenomenon is very simple.
A ripple spreads out on a liquid surface at the same speed in all directions, and therefore
it reaches spatial points in order according to their distance from the ripple epicenter, i.e.,
it always reaches the closest point first. Intuitively, one might conclude that this principle
could be used to find the closest interesting points (e.g., to find the closest gas station), or
more generally, to find the shortest route. However, the problem is that a natural ripple
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Figure 1: Basic idea of the RSA.

travels along a straight line in all directions, while there are always zigzag routes in a
route network, so how can a straight-line-based ripple travel along such routes in order
to find the shortest route? Now we illustrate how this is achievable. First, we assume
that when a ripple reaches a new node in the route network, it triggers a new ripple at
the node. Then the new ripple travels along the new straight-line connection that starts
from the node. In this way, independently of whether the connections along which the
old and the new ripples travel form a straight-line route or a zigzag route, the traveling
time for the new ripple to reach the next new node is always the same. For instance, in
Figure 1a the new ripple reaches node 3 at time instant t = 4, and the same for the new
ripple in Figure 1b. Therefore, zigzag routes will be no obstacle to the implementation
of a straight-line-based ripple-spreading process. Comparing Figures 1b and 1c, one
can easily see that the spreading and activation process is actually equivalent to the
spreading process of a single ripple because the single ripple in Figure 1c also reaches
node 3 at time instant t = 4. Note that the simulation of the ripple-spreading process
is based on a discrete time framework with a specific time unit, and the time instant t
means that t time units have lapsed.
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Figure 2: Ripple spreading is a very natural process to find the shortest route.

Now we examine why a ripple can find the shortest route through a network. For
the sake of simplicity, we assume there is a route network as shown in Figure 2a, with
source node 1 and destination node 4. As shown in Figure 2b, there are four possible
zigzag routes to travel from node 1 to node 4. From the ripple’s view point, a zigzag
route is no different from a straight-line route, as long as they are of the same length.
Therefore, the four possible zigzag routes in Figure 2b are actually equivalent to four
straight-line routes that radiate out from node 1 in four different directions, as shown in
Figure 2c. The four straight-line routes in Figure 2c end at four different spatial points,
which actually stand for the same node in the route network, i.e., node 4. Now, one
can see that the problem of searching for the shortest zigzag route in the route network
Figure 2a becomes a new problem of finding the straight-line route in Figure 2c so
that a ripple reaches the end at the earliest time. Because of the optimization principle
in the natural ripple-spreading phenomenon, we know that such a straight-line route
corresponds to the shortest zigzag route in the original route network.

It must be emphasized that in the realization of the RSA for the POP, we never
need to transform a route network like the one in Figure 2a to a set of radiating straight
line routes like those in Figure 2c. Nor do we need to transform any single zigzag
route (Fig. 1a) to a straight-line route (Fig. 1b). Figures 1 and 2 are just used to help
readers understand the optimization principle of the ripple-spreading process. From
the ripple’s viewpoint, there is no zigzag route at all, i.e., all routes are equivalently
straight-line routes. Therefore, in the realization of the RSA, we simply apply ripples
to travel along zigzag routes, but the searching effect is exactly the same as traveling
along equivalent straight-line routes.
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Figure 3: Two different RSAs.

3.2 RSA for One-to-One POP

In this section we only consider the one-to-one POP. We develop the first RSA by
implementing both ripple spreading from nodes and ripple activation between nodes.
Simply speaking, this resembles a relay race between ripples of nodes, as illustrated in
Figure 3a. The first ripple starts from the source, i.e., node 1. When a ripple reaches a
directly connected but unvisited node, that new node is activated to generate its own
ripple. When all of those nodes that are directly connected to the epicenter node of
a ripple are visited (not necessarily by the same ripple), that ripple then stops and is
eliminated. When the destination node, i.e., node NN, is visited for the first time, the
relay race is done. During the entire process, all ripples always travel at the same preset
constant speed. This basic RSA can be mathematically described as follows. For the
sake of simplicity but without losing generality, we assume hereafter that in a one-to-
one POP, the source and the destination are always node 1 and node NN, respectively.
In the relay race, each node has a ripple, and the ripple of node i is called ripple i.
Let FR(i) = j > 0 mean that ripple i has been activated by ripple j. Let rR(i) denote
the current radius of ripple i. Let �IAR and �AR denote the sets of inactive and active
ripples, respectively.

Step 1 Choose a constant ripple-spreading speed s. Initialize FR(i) = 0, and rR(i) =
0, i = 1, . . . , NN . Initialize �IAR = {1, . . . , NN }, and �AR = ∅. Let the current
time be t = 0.

Step 2 Set FR(1) = 1. Let �IAR = �IAR − {1}, and �AR = �AR + {1}.
Step 3 If FR(NN ) = 0, do:

Step 3.1 Let t = t + 1.
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Step 3.2 For any i ∈ �AR , let rR(i) = rR(i) + s. If (A(i, j ) > 0) and (j ∈ �IAR)
and (rR(i) ≥ A(i, j )) and

(rR(j ) ≤ rR(i) − A(i, j )), (6)

then let rR(j ) = rR(i) − A(i, j ), and FR(j ) = i.
Step 3.3 For any ripple j that has just had its radius updated in step 3.2

during the current time t, let �AR = �AR + {j}, and �IAR = �IAR −
{j}.

Step 3.4 For any i ∈ �AR , if FR(j ) > 0 for every j with A(i, j ) > 0, then let
�AR = �AR − {i}.

Step 4 The best route is determined by tracking back from FR(NN ), as

R(i) =
{

NN, if i = NL

FR(R(i + 1)), if i < NL

, (7)

and the associated total route cost is

CR =
NL−1∑
i=1

A(R(i), R(i + 1)). (8)

For the sake of optimality, the speed in step 1 must satisfy

0 < s ≤ amin, (9)

where amin is the minimal cost associated with the connections (see Section 4). Step 2
starts the first ripple from the source, and this is a self-generated ripple as FR(1) = 1. The
loop of step 3 repeats until the destination, i.e., node NN, has been reached by a ripple.
Step 3.1 lets time elapse for one time unit. Step 3.2 first increases the radius of each
active ripple i by the ripple-spreading speed s. Then, step 3.2 checks whether ripples
i arrive at those nodes, represented by j, that connect to node i and whose ripples are
currently inactive. If node j is reached by ripple i, then step 3.2 updates the radius of
ripple j, and records that ripple j has been activated by ripple i. It should be noted that,
assuming node j has not been reached by time t − 1, then node j could be reached by
several ripples during the current time t. In such a case, Eq. (6) in step 3.2 guarantees
that the ripple that arrives at node j first eventually is used to set rR(j ) and FR(j ). After
all currently active ripples have been processed in step 3.2, step 3.3 updates the sets of
active and inactive ripples according to newly activated ripples in step 3.2, and step 3.4
removes any active ripple whose connected nodes have all been reached.

Note that if s � amin, then step 3 may be repeated many times without any new
node being reached, which will diminish the computational efficiency of the basic RSA.
Therefore, the best way is to simply set s = amin. However, even with an s = amin, if
amin is far smaller than route costs of most connections, it is still likely that the step 3
will be repeated many times before reaching a new node. Therefore, to improve the
computational efficiency of the basic RSA, we can adopt a variable ripple-spreading
speed and get an improved RSA, as follows.

Step 1 Initialize FR(i), rR(i), �IAR , �AR , and t, as in the basic RSA.

Step 2 Set the current ripple-spreading speed as s = min(A(1, j )) for any A(1, j ) >

0. Let FR(1) = 1. Update �IAR and �AR accordingly, as in the basic RSA.

Step 3 If FR(NN ) = 0, do:

Evolutionary Computation Volume 24, Number 2 327



Path Optimization by Ripple-Spreading Algorithm

Step 3.1 Let t = t + 1. Set a temporary speed sT = ∞.
Step 3.2 For any i ∈ �AR , let rR(i) = rR(i) + s, and update rR(j ) and FR(j )

as per the basic RSA. Also, in order to guarantee that at least one
unvisited node will be reached by a ripple during next time instant
t + 1, update the temporary speed sT as follows. If (A(i, j ) > 0) and
(rR(i) < A(i, j )) and (sT > A(i, j ) − rR(i)), let sT = A(i, j ) − rR(i).
Otherwise, if (A(i, j ) > 0) and (rR(i) = A(i, j )) and (sT > min(A(j, k))
for any A(j, k) > 0 and k �= i), let sT = min(A(j, k)).

Step 3.3 As per the basic RSA, update �IAR and �AR based on the result of
step 3.2.

Step 3.4 Update the speed for next time instant: s = sT .

Step 4 Determine the best route according to Eqs.(7) and (8).

In this improved RSA, one can see that the ripple-spreading speed s changes from
time to time, so that at every time instant, at least one unvisited node is reached by a
ripple. The improved RSA is illustrated in Figure 3b. Compared to Figure 3a, the basic
RSA takes 4 time units to reach the destination, while the improved RSA takes only 3
time units. At the time instant t = 3 in Figure 3a, no new node is reached by either ripple,
which means this is purely a ripple-spreading step and no actual searching work is done.
Obviously, this purely ripple-spreading step diminishes the computational efficiency of
the basic RSA. Thanks to variable speed, there is no purely ripple-spreading step in the
improved RSA. As a result, the improved RSA may gain some computational efficiency
versus the basic RSA with constant ripple-spreading speed.

From step 3.2 one can see that although the ripple speed varies from time to time,
all ripples spread at the same speed s during a time instant. This fact guarantees the op-
timality of the improved RSA, i.e., the best route is always determined by backtracking
from the ripple that reaches the destination first.

In the basic RSA and the improved RSA, each node can be viewed as an agent. We
only need to define how a node should behave in terms of generating and spreading its
own ripple, and do not need to do any route search (e.g., calculating the current route
length from the source to an intermediate node, or comparing and sorting intermediate
nodes according to their current route lengths), and the optimal route will automatically
emerge as the result of the ripple relay race between nodes. This is exactly what an agent-
based model does: agents behave independently of the model’s purpose, and then the
collective effect of all of their behaviors rather surprisingly assists the specific purpose.

3.3 Extending RSA to Other POPs

First we apply the RSA concept to the one-to-all POP. Actually, we do not need to
make any modification to the two RSAs in Section 3.2, except changing the termination
criterion of step 3 to the following.

Step 3 If there is at least one node that has not been reached by any ripple, then
perform step 3.1 to step 3.4.

The new termination criterion means that all nodes other than the source are des-
tinations and therefore need to be reached by a ripple. Once step 3 stops, we can get
the best route from the source to any node i by tracking back from the ripple that has
reached node i in the first place, as explained in step 4 of Section 3.2. Figure 3 clearly il-
lustrates that the RSA in Section 3.2 can actually resolve the one-to-all POP. We consider
Figure 3a as an example. At time t = 2, node 2 has been reached by the initial ripple,
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Figure 4: RSA for the many-to-many POP.

which reveals that the shortest route from node 1 to node 2 is the direct connection
between them. Node 3 has been reached at time t = 3, which implies that the shortest
route from node 1 to node 3 is the associated direct connection. At time t = 4, the ripple
of node 3 has reached node 4, which determines that shortest route from node 1 to node
4 is 1 → 3 → 4. Now it is clear that the shortest routes from node 1 to all other nodes
have been identified by simulating a ripple-spreading process.

In both the one-to-one POP and the one-to-all POP, there is only one source. There-
fore, at the beginning of the ripple relay race, i.e., in step 2, only one initial ripple is
activated at the source. To extend to the many-to-many POP, we simply need to activate
initial ripples at all sources simultaneously to start the ripple relay race. Actually, for
the sake of convenience from the viewpoint of algorithm design, in the RSA for the
many-to-many POP, we reverse destinations and sources. In other words, we start the
ripple relay race from destination nodes, and stop the simulation once every source has
been reached by at least one ripple. In the many-to-many POP, every source must travel
to at least one destination, whilst a destination may connect to no source through the
shortest routes. Therefore, reversing destinations and sources makes it much easier and
more efficient to check whether the termination criterion is satisfied.

For brevity, the detailed modifications to extend the RSA to the many-to-many POP
are not presented here, and only an illustration of the associated ripple relay race is
given in Figure 4, where we assume a route network with only seven nodes. There
are two destinations, i.e., node 1 and node 7; three sources, i.e., node 2, node 4, and
node 6; and two normal nodes, i.e., node 3 and node 5. Two initial ripples start from
the destinations. At time instant t = 2, the ripple of node 1 reaches the source node 2
first and therefore determines that node 2 should connect to node 1 through the direct
link between node 1 and node 2. At the same time, two new ripples are triggered at
node 2 and node 5 at time instant t = 2. At time instant t = 3, the ripple of node 7
reaches the source node 6 first, which determines that node 6 should connect to node
7 through the direct link between node 6 and node 7. Another two new ripples are
triggered at node 3 and node 6 at time instant t = 3. At time instant t = 4, the ripples
of node 2 and node 5 both reach the source node 4, but the ripple of node 2 gets
there first. Therefore, the source node 4 should connect to the destination node 1 rather
than to node 7, and the associated shortest route is 4 → 2 → 1. Since all sources have
been reached by ripples at time instant t = 4, indicating that every source has found
a route to connect to at least one destination node, the ripple-spreading process then
stops. Compared with those approaches that search for the closest destination to each
source separately, the proposed algorithm achieves a parallel computing capability, as
all activated ripples spread out simultaneously. As shown by the simulation results
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Figure 5: Ripple relay race to identify the k shortest paths.

(see Section 5), this parallel computing capability gives the proposed RSA significant
computational efficiency.

So far in the simulation of ripple relay races, each node can be triggered to generate
no more than one ripple, which is enough for finding the first shortest route. To extend
the RSA to the k-SPP, i.e., to find the k shortest paths, we need to allow every node to
be able to generate multiple ripples (Hu et al., 2013b). Actually, it is straightforward to
extend the optimization principle in the natural ripple-spreading phenomenon to the
k-SPP. A ripple travels at the same speed in all directions, so it reaches spatial points in
order according to their distances to the ripple epicenter, i.e., the closest spatial point
is the first to be reached by the ripple, and the kth closest spatial point is the kth to be
reached. In the simulation of a ripple relay race where each node may generate multiple
ripples, once a ripple reaches a node (not the destination), no matter whether the node
has already generated any ripples, a new ripple will be generated at the node. Then, in
a similar fashion as in the basic RSA for the one-to-one POP, assuming a ripple of node
i reaches node j, the new ripple will spread along all connections of node j except the
connection between node i and node j. The ripple will die when it has reached all nodes
(except node i) connected to node j. If two ripples arrive at the same node at the same
time, then two new ripples will be triggered at the node with exactly the same radius.

In the ripple relay race illustrated in Figure 5, the ripple in the kth place to reach
the destination has traveled along the kth shortest path, where the solution space has
four different paths from node 1 to node 4: 1 → 2 → 4; 1 → 3 → 4; 1 → 2 → 3 → 4;
1 → 3 → 2 → 4. At time t = 1, only one ripple, i.e., ripple 1, starts from node 1. During
time instant t = 2, ripple 1 reaches node 3 and then node 2, and triggers ripple 2 at
node 3, and ripple 3 at node 2. Ripple 3 reaches the destination first at time t = 3,
identifying the first shortest path 1 → 2 → 4. Ripple 2 reaches the destination at time
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t = 4, identifying the second shortest path 1 → 3 → 4. During time instant t = 4, ripple
2 also triggers ripple 4 at node 2, and ripple 3 triggers ripple 5 at node 3. At time t = 5,
ripple 4 reaches the destination, discovering the third shortest path 1 → 3 → 2 → 4.
At time t = 6, ripple 5 reaches the destination, finding the worst path 1 → 2 → 3 → 4.
From Figure 5, one can see clearly that we do not need to reconstruct any route network,
as we never use the k best routes to calculate the (k + 1)th best route. This feature of the
RSA distinguishes it from most existing methods for the k-SPP.

Although this paper only focuses on the four mentioned POPs, the potential of
the RSA does not stop there. In fact, it opens up new opportunities to attack problems
that existing methods can barely resolve. From the algorithms reported here, one can
see that the key to extending the RSA to a new problem is to define problem-specific
ripple-spreading behavior for agents. Hu et al. (2013b) applied the RSA to find the kth
shortest project time in project management. The kth shortest project time problem is
superficially similar to the k-SPP, but actually existing k-SPP methods are not applicable
because a project activity often has to wait to start until some other relevant project
activities have progressed to certain stage (e.g., 50% completed). This means that a
node may not be accessible even though it is physically connected to the end of the
current path. When a node becomes accessible depends wholly on some other relevant
nodes’ accessibility, and it is very likely that such other relevant nodes are not included
in the current path. Therefore, traditional top-down centralized k-SPP algorithms can
really help little. As a bottom-up decentralized agent-based simulation model, the
RSA can address the node accessibility issue in a very straightforward way, i.e., by
simply modifying the node behavior in the RSA for the k-SPP as follows. A node
cannot generate its own ripples until it has been reached by the first ripple of each of
those relevant nodes. Then the deterministic feature of the RSA guarantees that the kth
shortest project time will be found. The capability to find the general kth best solution
sheds a little light on another problem that used to look impossible: calculating the exact
complete Pareto front for discrete multiobjective problems (MOPs) (Hu et al., 2013a)
rather than just finding an approximation, which still dominates MOP practices (Deb
et al., 2002; Knowles and Corne, 2000).

4 Theoretical Analyses of the RSA

For the sake of simplicity, our discussion in this section focuses mainly on the RSA for
the one-to-one POP, which may serve as a guideline to analyze future developments in
RSA.

4.1 Completeness of the RSA

In the POP, completeness means that a method can guarantee to find a route from the
source to the destination as long as at least one exists. In nature, a spreading ripple will
sooner or later reach any spatial point located in a reachable space. A route network
is a connected graph if at least one route always exists to travel between a pair of
randomly chosen nodes. A connected graph can be likened to the reachable space
where a ripple will spread, and a node in the graph to a spatial point in the reachable
space. As a spreading ripple will eventually sweep through the entire reachable space,
with no spatial point missed, the ripples in the RSA can eventually reach any node
in the connected graph by relay race traveling along the connections between nodes.
Therefore, the RSA is complete in terms of finding a route from the source to the
destination.
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4.2 Optimality of RSA

First, let us examine how the optimization principle of the natural ripple-spreading
phenomenon can guarantee the global optimal solution.

THEOREM 1: In the RSA, the best route is the route traveled by the first ripple that reaches the
destination.

PROOF: Assume Theorem 1 is false, in other words, there exists another route that is
better but takes more time to reach the destination. Now, suppose the first ripple that
reaches the destination takes T1 time units, and the cost of the route it travels along is
f (R1). There is another ripple that reaches the destination at time instant T2 > T1, and
the associated route cost is f (R2) < f (R1).

In the RSA, all ripples travel at the same cost speed during a given time instant. Let
s(t) > 0 be the ripple speed of time instant t, t = 1, . . . , T2. Because each time instant is
a time unit in the RSA, then

f (R1) =
T1∑

t=1

s(t), f (R2) =
T2∑

t=1

s(t). (10)

If Theorem 1 is false, then one has f (R2) < f (R1), i.e., f (R2) − f (R1) < 0, which
means

f (R2) − f (R1) =
T2∑

t=T1+1

s(t) < 0. (11)

However, this is impossible because the ripple speed s(t) is always positive. There-
fore, Theorem 1 must be true.

Clearly, Theorem 1 is also the theoretical statement of the optimization principle of
the natural ripple-spreading phenomenon. As mentioned in Section 3.2, the basic RSA
may lose optimality if the speed does not satisfy Condition (9) due to the overtraveling
problem. Here we give the theoretical analysis. Consider a general scenario as follows.
Suppose that at time instant t, node n and node m are two newly visited nodes, and their
ripples, i.e., ripple n and ripple m, are spreading out. The best route from the source to
node n has a cost CR,n, and to node m has a cost CR,m. Node m has a direct connection
to node h. There is a route from node n, passing K intermediate nodes (node k1 to node
kK), to node h, and the cost associated with this route is

CR = A(n, k1) +
K∑

i=2

A(ki−1, ki) + A(kK, h). (12)

According to the operation process of the basic RSA described in Section 3.2, only
those unvisited nodes that have a direct connection to a current newly visited node are
considered to have the possibility of being visited in the next time instant. This opera-
tional restriction is actually embedded in all RSAs proposed in Section 3. Because of this
operational restriction, only node k1 and node h in this scenario have the possibility to
be visited at time instant t + 1. Now we have the following two propositions to address
the relation between the ripple speed and the optimality of the basic RSA.

PROPOSITION 1: Suppose CR,n + CR < CR,m + A(m,h) in the relevant scenario. Then if the
constant speed in the basic RSA does not satisfy Condition (9), the optimal route may not be
found.
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PROOF: Let the speed s > A(m,h), which obviously does not satisfy Condition (9). There-
fore at time instant t + 1, node h will become a visited node, but node k2 to node kK

remain unvisited because of the operational restriction. Once a node becomes visited,
it will never be considered again in a future time instant in the RSA. This means, if it is
finalized that FR(h) = m at time instant t + 1, it can never be changed again. Assuming
node h is included in the final route, then obviously this route is not the optimal, be-
cause CR,n + CR < CR,m + A(m,h), in other words, we can replace the direct connection
between node m and node h with the route from node n to node h by passing node k1 to
node kK, and the resulting route is better. �

PROPOSITION 2: Condition (9) can always guarantee the optimality of the basic RSA.

PROOF: Suppose that the actual best route is composed of node n1 to node nL1 in order,
where n1 = 1 and nL1 = NN . The cost of the best route is CR1 . Another route is composed
of node m1 to node mL2 in order, and m1 = 1 and mL2 = NN . This is another route from
the source to the destination, and its cost is CR2 > CR1 .

First, we assume that except for node 1 and node NN, these two routes share no
other nodes. Further, we assume that node nL1−1 and node mL2−1 become or remain
newly visited nodes at time instant t1 and t2, respectively, and their ripples reach node
NN at time instant t1 + 1 and t2 + 1, respectively. Next we need to prove that the case of
t1 > t2 is impossible when Condition (9) is satisfied.

Assume t1 > t2 is the case, then there must be a node nx, 1 ≤ x < L1 − 1, in the actual
best route that becomes or remains as a newly visited node at time instant t2. Suppose
the cost from node 1 to node nx along the actual best route is CR1,t2 , and the cost from
node 1 to node mL2−1 along the second route is CR2,t2 . Then because all ripples travel at
the same speed in the basic RSA, we have at time instant t2

CR1,t2 + rR(nx) = CR2,t2 + rR(mL2−1). (13)

Because

CR1 = CR1,t2 +
L1−1∑
i=x

A(ni, ni+1), CR2 = CR2,t2 + A(mL2−1, NN ), (14)

then,

CR2 − CR1 = (A(mL2−1, NN ) − rR(mL2−1)) −
(

L1−1∑
i=x

A(ni, ni+1) − rR(nx)

)
. (15)

In the basic RSA, we always have rR(i) < A(i, j ) if node j has not been visited yet.
Therefore, for x < L1 − 1, we have

L1−1∑
i=x

A(ni, ni+1) − rR(nx) >

L1−1∑
i=x+1

A(ni, ni+1) ≥ amin. (16)

Because the ripple of node mL2−1 reaches node NN at time instant t2 + 1, we must
have, according to Condition (9),

A(mL2−1, NN ) − rR(mL2−1) ≤ s ≤ amin. (17)

From Eqs. (15)–(17), we have CR2 − CR1 < 0, which is against the assumption that
the route associated with CR1 is the actual best route. Therefore, with Condition (9)
satisfied, the case of t1 > t2 is impossible. Since t1 ≤ t2, one can easily prove that, similar
to the proof of Theorem 1, the ripple of node nL1−1 reaches the destination first. This
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means the basic RSA can find the actual best route when it shares no nodes with other
routes except node 1 and node NN.

In the case where the best route shares nodes besides node 1 and node NN with
other routes, we can divide the two routes into segments at shared nodes, and make
sure each pair of route segments only share their starting node and end node. Then we
know from the first part of this proof that, when Condition (9) is satisfied, the basic RSA
can find the best segment of each pair. Therefore it can eventually find the best route
from node 1 to node NN.

Now we prove the optimality of the improved RSA of Section 3.2. To this end, we
have the following proposition.

PROPOSITION 3: The optimality of the improved RSA is guaranteed if the variable speed satisfies

0 ≤ s(t) ≤ amin(t), (18)

where amin(t) is defined as the minimal remaining cost along a direct connection of every current
newly visited node to its unvisited end node, i.e., amin(t) = min(A(i, j ) − rR(i)), for all i ∈ �AR

that has FR(i) > 0 at time instant t.

PROOF: The proof of this proposition is similar to the proof of Proposition 2, except that
Eqs. (16) and (17) become

L1−1∑
i=x

A(ni, ni+1) − rR(nx) ≥
L1−1∑
i=x+1

A(ni, ni+1) > amin(t2), (19)

A(mL2−1, NN ) − rR(mL2−1) ≤ s(t2) ≤ amin(t2), (20)

respectively. Then from Eq. (15), Eq. (19), and Eq. (20), we can still deduce that the case
of t1 > t2 is impossible. Since in the improved RSA we have s(t) = amin(t) at any time t,
which satisfies Condition (18), then, like the proof of Proposition 2, the algorithm can
guarantee the optimal solution. �

4.3 Time Complexity of the RSA

The basic computational step in the RSA is the spreading of a ripple along a connection
in a time unit. The basic computational step simply includes an addition operation and
a comparison operation: increasing the radius of a ripple by the ripple-spreading speed,
and then comparing the new radius with the length of a connection. Suppose a network
has NN nodes. In the basic RSA, each node can generate no more than one ripple. As-
sume, on average, each node has NAC connections, and it takes NATU time units for a rip-
ple to travel through a connection. Then, in the worst case, the source node needs NAC ×
NAT U basic computational steps, the destination node needs no steps, and for the rest
(NN − 2) nodes, each needs no more than (NAC − 1) × NAT U steps. Therefore, approxi-
mately NAC × NAT U + (NN − 2) × (NAC − 1) × NAT U basic computational steps need to
be conducted before the shortest path can be found. This means the computational com-
plexity of the basic RSA can be assessed as O(NN × NAC × NAT U ). It is well known that
computational complexity of Dijkstra’s algorithm is O(NN × log(NN ) + (NN × NAC)/2).
This time complexity analysis is helpful to estimate whether the RSA is suitable for a
specific network system. For example, if log(NN ) is larger than NAC × NAT U , which is
often the case in large-scale sparse networks such as transportation systems and power
grids, then the RSA could be computationally more efficient than Dijkstra’s algorithm.
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4.4 Relation of the RSA to Other Methods

Compared with the deterministic methods reviewed in Section 2.2, which are all com-
prehensively defined search algorithms, the proposed RSA is actually a simulation
model rather than an algorithm. Basically, a comprehensively defined search algorithm
can be viewed to follow a top-down, centralized methodology of calculation. The top
goal is clearly defined to find the shortest route, and a certain heuristic search rule or
logic (such as breadth-first search, depth-first search, or best-first search) is explicitly
executed to process all necessary nodes. In such methods, nodes are objects to be pro-
cessed in a centralized manner. The RSA is different in that it follows a bottom-up,
decentralized methodology of simulation, and no explicit search rules or logics are em-
ployed. Nodes are not objects to be processed but are actually agents that can behave
independently in a decentralized manner. In other words, we do not define any search
rule or logic in the RSA, but simply define how each node will behave, i.e., under what
circumstances a node will generate a ripple and how the ripple will then spread. As
is well known, in an agent-based simulation model, the behavior of an agent usually
has no obvious link to the collective behavior of the model. This is exactly what hap-
pens in the RSA. The behavior of a node is to generate and spread ripples, while the
collective behavior of the model is to determine the first shortest route via the ripple
that reaches the destination first. In a centralized search algorithm, nodes are processed
one by one serially according to a certain global ranking or sorting mechanism (e.g.,
calculating and sorting path lengths from the source to intermediate nodes). In the
decentralized simulation model of the RSA, nodes behave in parallel or simultaneously
to generate and spread ripples (there is no need to calculate any path length during
the relay race). Therefore, the proposed RSA is much more like well-acknowledged
agent-based evolutionary algorithms, such as ACO and PSO. However, evolutionary
algorithms have a stochastic nature, which means their outputs are not repeatable and
therefore cannot practically guarantee to find global optima every time. The proposed
RSA is completely different, as it is a deterministic method, and its output is unique
for a given route network, and the result is always globally optimal thanks to the opti-
mization principle reflected in the natural ripple-spreading phenomenon. It should be
noted that despite the fundamental decentralized nature of the revised RSA, applying
variable speed is a global measure. Therefore, it is worth further investigation concern-
ing the role and benefits of introducing suitable global measures into the decentralized
RSA.

One may argue that bottom-up simulation models are often computationally less ef-
ficient than top-down search algorithms; for example, evolutionary algorithms usually
take more time than dynamic programming. Fortunately, as shown in the comparative
simulations in Section 5, this is not true of the RSA. There are a few factors that may con-
tribute to the computational efficiency of the RSA. For example, the RSA never needs to
calculate, compare, or sort path lengths from the source to intermediate nodes. Figure 6
illustrates another factor that explains why the RSA may well be more computationally
efficient than top-down search algorithms. There are five routes from node 1 to node
4 in total in Figure 6, and the shortest route is 1 → 2 → 3 → 4. A brute-force method
has to explore all the five routes in order to guarantee the finding of the shortest route
(Fig. 6a). Dijkstra’s algorithm needs to explore three complete routes and two incom-
plete routes (Fig. 6b). The proposed RSA only needs to explore one complete route and
two incomplete routes (Fig. 6c), because the simulation simply stops when the first
ripple reaches the destination, i.e., node 4, along the shortest route 1 → 2 → 3 → 4, and
by the time of termination, other ripples have only reached node 5 and node 6. Figure 6
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Figure 6: Search efficiency of different methods.

clearly illustrates that because of the ripple-spreading process, the RSA may narrow
down the solution space for search.

It is well established that Bellman’s optimization principle is the theoretical foun-
dation of dynamic programming, which guarantees the optimality of many search
methods such as the A∗ algorithm and Dijkstra’s algorithm (Sniedovich, 1986). Now we
turn to the examination of the relation between Bellman’s optimization principle and
the optimization principle of the ripple-spreading phenomenon. Bellman’s principle is
stated as follows: ”An optimal policy has the property that, whatever the initial state
and initial decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision” (Bellman, 1957). In the context of
route optimization, after starting from the source, no matter which intermediate node
we approach, the remaining route must be the shortest route from that intermediate
node to the destination. Therefore, in dynamic programming, we first calculate the
shortest distances from the destination to all those nodes that have a direct connection
to the destination. Then, based on the results, we progress to calculate the shortest
distances from the destination to all those nodes that have a direct connection to those
already calculated nodes, until the source is reached. Note that in route optimization
the source and the destination are usually reversible. Then both the A∗ algorithm and
Dijkstra’s algorithm exactly follow the dynamic programming practice, and calculate
the shortest distances from the source to intermediate nodes from the nearest to the
farthest, until the destination is reached. We can view the simulation process of the RSA
at the macro level as following coincidentally the centralized strategy described by the
Bellman’s optimization principle. However, at the micro level, the RSA never calculates
any shortest distance from the source to any intermediate node, but the decentralized
behavior of nodes defined according to the ripple-spreading optimization principle
can automatically ensure the realization of optimal remaining decisions in Bellman’s
statement.

Here we use the k-SPP to illustrate that the centralized nature of dynamic pro-
gramming is disadvantageous when compared with the decentralized nature of the
simulation model of the RSA. To apply a dynamic programming method, such as the
A∗ algorithm and Dijkstra’s algorithm, to the k-SPP, we usually have to keep reconstruct-
ing route networks (Yen, 1971; Eppstein, 1998; Aljazzar and Leue, 2011). For example,
first we apply, say, Dijkstra’s algorithm, to find the first shortest path 1 → 2 → 3 → 4
(Figure 7a). Then we proceed to calculate the second shortest path based on the first
shortest path. To this end, we have to reconstruct three new route networks, each of
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Figure 7: Reconstructing route networks for Dijkstra’s algorithm.

which is generated by removing one of the three connections that together compose the
first shortest path 1 → 2 → 3 → 4 (Figures 7b–7d). Then based on each reconstructed
route network, we apply Dijkstra’s algorithm to calculate the associated first shortest
path. The associated first shortest paths in Figures 7b–7d are 1 → 3 → 4, 1 → 3 → 4,
and 1 → 2 → 4, respectively. Among these associated first shortest paths, 1 → 3 → 4 is
the shortest. Therefore, we know the second shortest path in the original route network
of Figure 7a is 1 → 3 → 4. The methods following the practice of dynamic programming
often focus on how to reconstruct route networks efficiently (Yen, 1971; Eppstein, 1998;
Aljazzar and Leue, 2011). The RSA for the k-SPP, discussed in Section 3.3, is completely
different because we never need to reconstruct any route network but simply simulate
micro ripple-activating and spreading behaviors at nodes in the original route network,
and the macro outputs of the simulation process are automatically the k shortest paths
(e.g., see Fig. 5).

Furthermore, the decentralized RSA can achieve what is beyond the capability of
centralized dynamic programming. In the dynamic network of Hu et al. (2014), whether
an unexplored connection is feasible or not depends on which connections have been
explored. Figure 8 gives an example, where the feasibility of unexplored connections
from node 4 to node 7 depends on how node 4 is reached by the current route. If node 4
is reached from node 3, then only long connections are feasible to node 7, while if node
4 is reached from node 2, then some short connections become feasible. This violates the
Bellman’s optimization condition. Therefore, all dynamic programming methods such
as A∗ and Dijkstra’s algorithm will lose the global optimality, and the best path they
find has a cost of 22 in the case of Figure 8. Surprisingly, the RSA for the k-SPP can still
guarantee the global optimality in this dynamic network to find the globally optimal
path with a cost of 16. This is another “impossible becomes possible” example thanks
to the RSA, which also implies that there is a fundamental difference between the RSA
and those methods based on the Bellman optimization principle.

5 Simulation Results

5.1 Simulation Setup

In this section we conduct analysis of the RSA based on four sets of comparative
simulation experiments, i.e., one-to-one, one-to-all, many-to-many and k-SPP. In the one-
to-one set, the two RSAs proposed in Section 3.2, i.e., the basic RSA and the improved
RSA, are compared with the A∗ algorithm and Dijkstra’s algorithm (Cormen et al.,
2001; Sniedovich, 2010). In the basic RSA, the ripple-spreading speed is set as half
of the minimal connection cost in a route network. Since the A∗ algorithm may fail
to find global optima if the heuristic function is not admissible (Dechter and Pearl,
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Figure 8: A dynamic network where the feasibility of unexplored connections depends
on current route.

1985), in the other three sets of experiments, we only use Dijkstra’s algorithm for
comparative purposes. Actually, in the k-SPP set, the RSA is compared with the well-
known Yen’s algorithm (Yen, 1971) and Dijkstra’s algorithm is employed by Yen’s
algorithm to calculate the first shortest paths in reconstructed route networks.

The networks used in the experiments are generated as follows. First, we randomly
disturb the locations of NN nodes, which are originally evenly distributed in a rectangu-
lar area defined by [−1000 1000 − 1000 1000]. We let the minimal distance between any
two of the evenly distributed nodes be dEDN. Then a random disturbance is within the
range [−dEDN/3, dEDN/3]. Then we establish connections between nodes according to
two network models. For some networks (denoted WS), the model in Watts and Strogatz
(1998) is used, in order to get Poisson degree distribution. For other networks (denoted
BA), the model in Barabási and Albert (1999) is used, in order to generate scale-free
topologies with power-law degree distribution. In some WS networks, each node on
average has four connections, i.e., NAC = 4, while in other WS networks, NAC = 8. In
some BA networks, the power coefficient is set as e = 1, while in other BA networks,
e = 2. Basically, a larger e means a more significant power-law degree distribution.
Finally, we calculate the cost of each established connection. There are two different
definitions of route cost: straight-line distance between nodes and random weight. Net-
works with random weights (within the range of [1 10] in this study) as route cost
are especially used to illustrated that the A∗ algorithm may lose optimality, while both
Dijkstra’s algorithm and the proposed RSA can always guarantee finding global optima.

For a given set of experimental parameters (WS model or BA model, NAC, e, NN, and
so on), we randomly generate 100 route networks. Since all algorithms in this study are
deterministic, we apply them to each network only once. Then we compare their average
results based on the 100 networks of the given set of experimental parameters. Note that
in all experiments, a route network is recorded not as an adjacency matrix as described in
Section 2.1, but instead to reduce the memory demand a list of established connections
between nodes is adopted. All methods are coded and all tests are conducted in a
MATLAB

R©
environment on a personal computer with a 2.6 GHz CPU, 2 GB memory

and the Windows XP operating system.
The combined influence of experimental parameters, such as the density of connec-

tions, the topology of network, and the unevenness in connection costs, is complicated.
There is thus a case for further investigation of such influence. This is particularly im-
portant to a specific real-world application study. In this study, we mainly focus on
fundamental differences between the RSA and existing methods.
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Table 1: Test results for the one-to-one POP (straight-line distance, NN = 1,000).

WS Model (Poisson Distribution)
BA Model (Power-Law Distribution,

NAC = 4)

NAC = 4 NAC = 8 e = 1 e = 2

Runtime(s) Runtime(s) Runtime(s) Runtime(s)

Mean SD Obj. Mean SD Obj. Mean SD Obj. Mean SD Obj.

RSA1-1 0.10 0.02 3415.38 0.12 0.02 3326.15 0.01 0.02 3472.03 0.12 0.03 3586.47
RSA1-2 0.08 0.01 3415.38 0.09 0.02 3326.15 0.08 0.02 3472.03 0.10 0.02 3586.47
A∗1-1 0.06 0.01 3415.38 0.09 0.01 3326.15 0.08 0.01 3472.03 0.10 0.01 3586.47
A∗1-2 0.14 0.02 3415.38 0.17 0.02 3326.15 0.16 0.02 3472.03 0.22 0.03 3586.47
Dijkstra1 0.04 0.01 3415.38 0.06 0.01 3326.15 0.05 0.01 3472.03 0.06 0.01 3586.47

Table 2: Test results for the one-to-one POP (random weight, NN = 1,000).

WS Model (Poisson Distribution)
BA Model (Power-Law Distribution,

NAC = 4)

NAC = 4 NAC = 8 e = 1 e = 2

Runtime(s) Runtime(s) Runtime(s) Runtime(s)

Mean SD Obj. Mean SD Obj. Mean SD Obj. Mean SD Obj.

RSA1-1 1.76 0.27 122.74 2.52 0.33 113.52 1.46 0.17 97.61 1.28 0.14 82.90
RSA1-2 0.68 0.11 122.74 0.89 0.12 113.52 0.47 0.07 97.61 0.35 0.06 82.90
A

∗
1-1 0.10 0.02 181.42 0.13 0.02 173.83 0.09 0.02 134.42 0.11 0.02 112.44

A
∗
1-2 0.14 0.02 122.74 0.20 0.02 113.52 0.13 0.02 97.61 0.14 0.02 82.90

Dijkstra1 0.03 0.01 122.74 0.04 0.01 113.52 0.03 0.01 97.61 0.03 0.01 82.90

5.2 One-to-One POP Experimental Results

First, we consider the set of one-to-one POP experiments by comparing the RSA with
the A∗ algorithm and Dijkstra’s algorithm. In this set, the total number of nodes in a
route network is NN = 1,000. The source is the left bottom node, and the destination is
the right top node. Both RSAs, i.e., the basic RSA and the improved RSA, are tested here,
and they are denoted RSA1-1 and RSA1-2, respectively. There are also two versions of
the A∗ algorithm used in this set: one version, denoted A∗1-1, chooses the heuristic
function to be the straight-line distance from the last node of the current route to
the destination node, and the other version, denoted A∗1-2, always sets the heuristic
function to zero. Dijkstra’s algorithm here is denoted Dijkstra1. The results of runtime
(given as mean value and standard deviation) and average route cost (the value of the
objective function, Obj) are presented in Table 1 (straight-line distance) and Table 2
(random weight), which show the following.

• Since RSA1-1, RSA1-2, A∗1-2, and Dijkstra1 have theoretical proofs of global
optimality for a given network, they should yield the same Obj value.
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Therefore, no matter how many networks are used, the average Obj values
of the four algorithms should be the same. Tables 1 and 2 show that these four
algorithms always have the same average Obj values, which is consistent with
the theoretical analysis. This empirically confirms the optimality of these four
algorithms.

• A∗1-1 can guarantee optimality when the connection cost is defined as the
physical straight-line distance between nodes (Table 1) but often loses opti-
mality in the case of random weights (Table 2). This is because the heuristic
function of A∗1-1 is admissible in the case of Table 1: the straight-line distance
from a node to the destination is always no larger than the actual minimal cost
from that node to the destination. However, in the case of Table 2, the random
weights of connections have nothing to do with straight-line distances. There-
fore, the heuristic function of A∗1-1 is no longer admissible and then cannot
guarantee the optimality of A∗1-1 (Table 2).

• In terms of computational time, on average, Dijkstra1 is the most efficient. In
the case of physical straight-line distance as connection cost, RSA1-1, RSA1-
2, A∗1-1, and A∗1-2, are comparable to each other. In the case of random
weight, the performance of either RSA1-1 or RSA1-2 drops greatly, which can
be explained as follows. Connections between nodes usually have different
costs, and this is described as unevenness in connection costs, which can be
roughly measured by the ratio between the maximal connection cost and the
minimal one in a network. This ratio is about 3 in the experiments of Table 1,
and about 10 in those of Table 2. A large ratio usually means a larger NATU.
As analyzed in Section 4.3, the time complexity of A∗ or Dijkstra’s algorithm is
only determined by NN and NAC, while the time complexity of RSA is directly
influenced by NATU. Therefore, the A∗ and Dijkstra algorithms are quite robust
against the unevenness in connection costs, while the RSA is sensitive.

• As analyzed in Section 3.2, because of using a variable ripple-spreading speed,
RSA1-2 is more computationally efficient than RSA1-1.

• In terms of the absolute value of SD, the RSA in general has the largest SD. This
is also understandable based on the theoretical result in Section 4.3. The time
complexity of RSA is O(NN × NAC × NAT U ). For either A∗ or Dijkstra, the time
complexity is mainly determined by NN and NAC. Therefore, once the pair of
(NN,NAC) is given and fixed, other network parameters such as node locations
and degree distribution have relatively much smaller influence on the runtime.
However, in the case of the RSA, even for a fixed pair of (NN,NAC), different
node locations or degree distribution may lead to rather different NATU and
then cause the runtime to vary more significantly. One might argue that the
RSA has smaller values of SD/mean. However, SD/mean makes little sense
here because the runtimes in this section are too small, which might be largely
biased by computer performance uncertainties.

• For a given definition of connection cost and network models, the values of NAC

and e have similar influences on all algorithms. For example, in WS networks,
no matter which definition of connection cost is employed, all algorithms
have larger runtimes in the NAC = 8 case than in the NAC = 4 case because a
larger NAC generally means a larger search space. However, they have smaller
Obj values for NAC = 8 than for NAC = 4 because more connections between
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Table 3: Runtimes (second) of different algorithms in one-to-all POP (straight-line dis-
tance).

NN = 2,000 NN = 4,000 NN = 6,000 NN = 8,000 NN = 10,000

Mean SD Mean SD Mean SD Mean SD Mean SD

RSA2-1 0.18 0.03 0.38 0.05 0.69 0.06 1.01 0.09 1.29 0.11
RSA2-2 0.14 0.03 0.34 0.04 0.62 0.06 0.85 0.08 1.14 0.09
Dijkstra2 0.05 0.01 0.09 0.02 0.16 0.02 0.25 0.03 0.34 0.03

nodes usually means smaller shortest paths. In BA networks with straight-line
distance as connection cost, all algorithms have larger runtimes and Obj values
for e = 2 than for e = 1 because a larger e implies the shortest path between a
pair of nodes is more likely to go around some hub nodes, and going around
hub nodes usually means a long physical distance. However, in BA networks
with random weight as connection cost, all algorithms have smaller runtimes
and Obj values for e = 2 than for e = 1. This is because going around hub
nodes usually means fewer connections are included in the shortest path, and
because of the random weights and smaller connection numbers, this usually
produces smaller path costs.

• Tables 1 and 2 show that for the one-to-one POP, Dijkstra’s algorithm is better
than the A∗ algorithm; the proposed RSA could be comparable to Dijkstra’s
algorithm; and the performance gap between the RSA and Dijkstra’s algorithm
is the most significant in the case of the WS model with NAC = 4. Therefore,
in the next three sets of experiments, because of limited space, we compare
the RSA with Dijkstra’s algorithm using the WS model with NAC = 4 and
changing NN to form different problem scales, and we only analyze runtimes,
as optimality is always guaranteed.

5.3 One-to-All POP Experimental Results

The second set is one-to-all tests, and the network scale is increased to NN = 2,000, 4,000,
6,000, 8,000 and 10,000, respectively. In each test case, the source is randomly chosen
from the NN nodes. As discussed in Section 3.3, it is very easy to extend the RSA to the
one-to-all POP just by changing their termination criteria, and the extended RSAs are
denoted as RSA2-1 and RSA2-2, respectively. The one-to-one Dijkstra’s algorithm can
also be applied to the one-to-all POP by simply changing the termination criterion, and
the resulting algorithm is labeled Dijkstra2. The main results are given in Table 3, which
shows the following.

• In terms of the mean value of runtime, Dijkstra2 is better than RSA2-2 and than
RSA2-1.

• In terms of the absolute value of SD, Dijkstra2 is also better than RSA2-2.

5.4 Many-to-Many POP Experimental Results

In one-to-one and one-to-all tests, Dijkstra’s algorithm is faster than the basic RSA
and the improved RSA. Here with the many-to-many POP, we demonstrate that both
RSAs may outperform Dijkstra’s algorithm in terms of computational efficiency. The
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Table 4: Runtimes (second) of different algorithms in many-to-many POP (straight-line
distance).

NN = 20,000 NN = 40,000 NN = 60,000 NN = 80,000 NN = 100,000

Mean SD Mean SD Mean SD Mean SD Mean SD

RSA3-1 1.01 0.09 2.10 0.19 3.89 0.27 8.01 0.53 17.37 0.86
RSA3-2 0.97 0.08 1.96 0.17 3.24 0.24 5.85 0.41 11.69 0.69
Dijkstra3-1 7.13 0.41 25.32 1.38 51.85 2.41 128.32 4.95 276.90 8.47
Dijkstra3-2 6.42 0.37 21.93 1.21 46.69 2.12 98.13 4.02 165.82 5.62

network scale is further increased to NN = 20,000, 40,000, 60,000, 80,000 and 100,000,
respectively. For a given NN, we randomly choose 20% nodes as destinations, and
set the rest as sources. As explained in Section 3.3, the basic RSA and the improved
RSA can be extended to the many-to-many POP by simply starting initial ripples at
all destination nodes simultaneously, and the modified RSAs are denoted RSA3-1 and
RSA3-2, respectively. There are two ways to extend the one-to-one Dijkstra’s algorithm,
i.e., Dijkstra1, to the many-to-many POP. We can run Dijkstra1 for every unvisited
source node, and each run of Dijkstra1 will stop once a destination node is reached (no
matter which one). We denote this Dijkstra’s algorithm as Dijkstra3-1. We can also start
Dijkstra’s algorithm from the set of all destination nodes. In the one-to-one Dijkstra’s
algorithm, there is only one node (either the source or the destination) in the initial
search front. Now we can set the initial search front as the whole set of destinations and
then keep expanding the search front until all sources are visited. The resulting method
is called Dijkstra3-2. In contrast to Dijkstra3-1, we can get the results in only one run
of Dijkstra3-2, just as in RSA3-1 and RSA3-2. The average results are given in Table 4,
which clearly shows the following.

• In terms of computational efficiency, both RSA3-1 and RSA3-2, i.e., the basic
RSA and the improved RSA, are faster than either Dijkstra3-1 or Dijkstra3-2
(the RSA is about ten times faster than Dijkstra’s algorithm). By analyzing the
values of SD/mean, one can see again that Dijkstra’s algorithm has more stable
runtimes.

• In the one-to-one POP and the one-to-all POP, the runtimes of RSA1-1 and
RSA1-2 are both worse than those of Dijkstra’s algorithm. This then poses the
question as to what makes RSA3-1 and RSA3-2 become faster than Dijkstra’s
algorithm in the many-to-many POP. It is partly the search efficiency (see
Figure 6) that makes the difference. In the one-to-one POP, there is only one
destination, and therefore the solution space explored by the RSA may be just
a few routes fewer than with Dijkstra’s algorithm. A one-to-all POP is largely
equivalent to a one-to-one POP where the destination is the farthest node from
the source. In the many-to-many POP, there are tens of thousands of sources
(since RSA3-1, RSA3-2, and Dijkstra2 all progress from destinations to sources),
which means the solution space explored by the RSA could be hundreds of
thousands of routes smaller than that of Dijkstra’s algorithm. Another reason
for the better computational efficiency of the RSA is its parallel computing
capability (see Section 4.4).
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Table 5: Runtimes (second) of different algorithms in the k-SPP (straight-line distance).

k = 2 k = 4 k = 6 k = 8 k = 10

NN Mean SD Mean SD Mean SD Mean SD Mean SD

16 Yen 0.01 0.00 0.01 0.00 0.03 0.01 0.07 0.01 0.16 0.03
RSA4 0.01 0.00 0.02 0.00 0.02 0.01 0.03 0.01 0.03 0.02

25 Yen 0.01 0.00 0.02 0.00 0.05 0.01 0.11 0.02 0.36 0.05
RSA4 0.05 0.02 0.10 0.01 0.13 0.04 0.15 0.04 0.18 0.04

36 Yen 0.02 0.01 0.08 0.02 0.33 0.05 1.79 0.10 7.14 0.38
RSA4 0.15 0.04 0.39 0.06 0.65 0.07 0.93 0.08 1.17 0.12

49 Yen 0.08 0.02 0.38 0.06 1.86 0.11 8.92 0.41 41.33 1.72
RSA4 0.64 0.06 1.19 0.09 3.52 0.22 6.37 0.42 8.87 0.69

64 Yen 0.26 0.04 1.48 0.09 8.49 0.49 49.52 2.07 293.27 10.27
RSA4 2.89 0.21 6.29 0.48 16.25 0.99 27.90 1.83 41.29 2.35

• One may notice that the RSA for a many-to-many POP with NN = 20,000
(Table 4) is faster than the RSA for a one-to-all POP with NN = 10,000 (Table
3). This is because in a one-to-all POP with NN = 10,000, the largest number
of nodes in the shortest routes is easily over 100, while in a many-to-many
POP with NN = 20,000, the largest number of nodes in the shortest routes is
often just a few tens. Therefore, based on the analysis in Section 4.3, the time
complexity of the RSA in a one-to-all POP with NN = 10,000 is greater than
that in a many-to-many POP with NN = 20,000.

5.5 k-SPP Experimental Results

Now we move to the k-SPP. In this set of tests, the network scale is set as NN = 16, 25,
36, 49, and 64, respectively, because the scalability of the algorithms tested still needs to
be improved in future work. The experimental results with these small NN values can
fairly demonstrate the fundamental difference between the RSA and existing methods
for the k-SPP. Another parameter of this set is the number of best paths that need to be
calculated, and it is set as k = 2, 4, 6, 8, and 10, respectively. In each test case, the source
is the left bottom node, and the destination is the right top node. Here for the sake of
simplicity in programming, only the basic RSA is extended for the k-SPP, denoted RSA4.
Yen’s algorithm, denoted Yen, is used for comparative purposes, and the one-to-one
Dijkstra’s algorithm is integrated in Yen to calculate the first shortest path. The results
are given in Table 5, from which one may make the following observations.

• In terms of computational efficiency, RSA4 is clearly better than Yen in those
test cases with a large k, such as k = 10. Basically, Yen’s algorithm is more
sensitive to the change in k because a larger k implies an exponentially heavier
computational load to reconstruct route networks. As discussed in Section 5.2,
the runtimes of RSA4 are relatively more unstable than those of Yen, as shown
by the SD values.

• Both the RSA and Yen’s algorithm have a scalability problem, and therefore
more efforts are still needed to improve them. Table 5 shows that the RSA
may have a better application potential when k is large, which is more likely
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the concern of the k-SPP. For example, in the method of Hu et al. (2013a) to
calculate the complete Pareto front of a multiobjective optimization problem,
it is crucial to have a method capable of finding the k best solutions to each of
the single-objective optimization problems, and the k may vary within a large
range.

6 Conclusions and Future Work

Inspiration from nature often brings surprises, which has been demonstrated repeatedly
by many successful advances in evolutionary computation (EC). This paper focuses on
the natural ripple-spreading phenomenon and attempts to apply its underlying prin-
ciple to design effective algorithms for the path optimization problem (POP). Inspired
by the fact that a ripple travels at the same speed in all directions and therefore al-
ways reaches the closest spatial point first, a deterministic bottom-up decentralized
agent-based simulation model is proposed to search the optimal path through a route
network. The proposed RSA is complete and optimal, and it also has a good scalabil-
ity because of its computational efficiency. Through comparison with some of the best
route optimization algorithms via simulation, the proposed RSA is tested in four kinds
of POPs and demonstrates a very effective performance. This paper shows that from
the ripple-spreading optimization principle, to the combination of agent-based and de-
terministic features, to the new opportunities of tackling some complex problems, the
proposed RSA is largely distinguished from existing methods and therefore enriches
the theoretical foundations of EC.

More theoretical, technical, and implemental efforts are needed in the future to ex-
plore the full potentials of the RSA, for example, studying in depth where the strength of
the RSA comes from, investigating the roles of local node behaviors and global measures
of setting time-varying ripple-spreading speed, improving the computational efficiency
of the RSA for the k-SPP, developing effective purpose-designed RSAs for real-world
POPs as well as other kinds of optimization problems, analyzing the computational
complexity of such purpose-designed RSAs, technically realizing the parallel comput-
ing capability of the RSA, and understanding the influence of experimental parameters
such as the topology of networks, the unevenness of connection costs, and the percent-
age of destination nodes. Basically, the proposed RSA is a promising concept, and many
things can and need to be done.
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