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Abstract Maximal couplings are (probabilistic) couplings of Markov processes such
that the tail probabilities of the coupling time attain the total variation lower bound
(Aldous bound) uniformly for all time. Markovian (or immersion) couplings are cou-
plings defined by strategies where neither process is allowed to look into the future
of the other before making the next transition. Markovian couplings are typically eas-
ier to construct and analyze than general couplings, and play an important role in
many branches of probability and analysis. Hsu and Sturm, in a preprint circulating
in 2007, but later published in 2013, proved that the reflection-coupling of Brown-
ian motion is the unique Markovian maximal coupling (MMC) of Brownian motions
starting from two different points. Later, Kuwada (Electron J Probab 14(25), 633–662,
2009) proved that the existence of a MMC for Brownian motions on a Riemannian
manifold enforces existence of a reflection structure on the manifold. In this work,
we investigate suitably regular elliptic diffusions on manifolds, and show how con-
sideration of the diffusion geometry (including dimension of the isometry group and
flows of isometries) is fundamental in classification of the space and the generator of
the diffusion for which an MMC exists, especially when the MMC also holds under
local perturbations of the starting points for the coupled diffusions. We also describe
such diffusions in terms of Killing vectorfields (generators of isometry groups) and
dilation vectorfields (generators of scaling symmetry groups). This permits a complete
characterization of those possible manifolds and their diffusions for which there exists
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a MMC under local perturbations of the starting points of the coupled diffusions. For
example, in the time-homogeneous case it is shown that the only possible manifolds
that may arise are Euclidean space, hyperbolic space and the hypersphere. Moreover
the permissible drifts can then derive only from rotation isometries of these spaces
(and dilations, in the Euclidean case). In this sense, a geometric rigidity phenomenon
holds good.

Keywords Characteristic operator · Coupling · Diffusion-geodesic completeness ·
Diffusion geometry · Diffusion matrix · Elliptic diffusion · Global isometry group ·
Homogeneous space · Immersion coupling · Infinitesimal generator · Involutive
isometry · Killing vectorfield · Laplace–Beltrami operator · Large deviations ·
Local perturbation condition · Markovian coupling · Maximal coupling · Maximally
symmetric space · Orthonormal frame bundle · Riemannian manifold · Reflection
coupling · Rigidity · Stochastic completeness · Stochastic differential equation ·
Stochastic parallel transport · Stratonovich differential · Strong maximum principle ·
Topogonov comparison theorem · Totally geodesic submanifold

Mathematics Subject Classification 60G05 · 58J65 · 60J60

1 Introduction

Let (�1,F1, μ1) and (�2,F2, μ2) be two probability spaces. A (probabilistic) cou-
pling ofμ1 andμ2 is ameasureμ on the productmeasurable space (�1×�2,F1×F2)

with marginals μ1 and μ2. This paper considers the question of coupling of (the laws
of) two realizations X and Y of a Markov process on some state space S. We distin-
guish two important classes. The first class (thematic for the foundational theory of
probabilistic coupling) consists of couplings where, with positive probability, X and
Y can stick together and move as a single process after some random time

τ = inf{s > 0 : Xt = Yt for all t > s};

here τ is called the coupling time. The other class consists of couplings (ShyCouplings)
where the two processes X and Y remain separated by at least a fixed positive distance
ε for all time. Recent investigations of the second class of couplings can be found in
[1] and [2,3]; in this article, we concentrate on the first class.

Probabilistic coupling is a central technique of modern probability theory [27,38].
Attention naturally focusses on a fundamental question: how fast can we make X and
Y meet? This has direct relevance, for example to the study of probabilistic algorithms
and to gradient estimates for harmonic functions, and is also very valuable in eliciting
the range of possibilities for coupling constructions. Mathematically, this amounts
to constructing couplings where P [τ > t] is minimised for all time t . The Aldous
inequality states that, for any t > 0,

P [τ > t] ≥ ‖μ1,t − μ2,t‖T V , (1)

123



Rigidity for Markovian maximal couplings of elliptic diffusions

where μ1,t and μ2,t are the distributions of Xt and Yt respectively, while

‖ν‖T V = sup{|ν(A)| : measurable A}

denotes the total variation norm on signed measures ν. Thus a maximally efficient
possible coupling (aMaximal Coupling) would attain equality in the Aldous inequal-
ity (1) for all times t > 0, thus solving a multi-objective optimization problem. The
remarkable construction of [16], later simplified in a most elegant way by [33], shows
that maximal couplings always exist for discrete Markov chains. [15] generalized the
construction to the case of non-Markovian processes; [37] generalized it to continuous-
time càdlàg processes. Here is a summary of the Pitman approach, which is a model
for the construction below (in Sect. 1.1) of maximal couplings of diffusions. A deter-
ministic time-varying interface is constructed using the transition probabilities of the
diffusions which are to be coupled. The distribution of the coupling time is elicited
using the deficits of the transition probability masses integrated on each side of the
interface (at any particular time, these deficits are equal and correspond to the proba-
bility of one, equivalently both, of the coupled processes hitting the interface at this
time). Now, the coupling time is sampled from this distribution, and the coupling
location corresponds to a point on the interface at this time. Finally, the coupling
is realized by constructing a single process forward in time and time-reversed time-
inhomogeneous diffusions connecting starting locations to the location and moment
of coupling, conditioning to avoid hitting the interface prematurely.

The major drawback of all these constructions is they are typically very implicit;
in most cases, it is extremely hard, if not impossible, to make detailed calculations
for such couplings. This is a strong motivation for considering Markovian couplings,
which we now describe.

Let X and Y be Markov processes starting from x0 and y0 respectively. Let Fs =
σ {(Xs′ ,Ys′) : s′ ≤ s} denote the joint filtration generated by X and Y together up to
time s. A coupling of X and Y is called Markovian if the joint process

{(Xt+s,Yt+s) : t ≥ 0} conditioned on Fs

is again a coupling of the laws of X and Y , but now starting from (Xs,Ys). (An
alternative martingale-based characterization makes a succinct connection to the the-
ory of immersions of filtrations. For this reason Markovian couplings are also called
immersion couplings: [22])

A natural and immediate question is, when can a maximal coupling of two dif-
fusions be Markovian? The standard (and elegant) example in the literature is the
reflection-coupling of Euclidean Brownian motions starting from two different points:
the second Brownian path is obtained from the first by reflecting the first path on the
hyperplane bisecting the line joining the starting points until the first path (equiva-
lently, the second, reflected, path) hits this hyperplane. Both paths then evolve together
(“synchronously”) as a single Brownian path. Straightforward calculations, based on
the reflection principle, show that this construction is in fact a Markovian maximal
coupling (MMC). Furthermore, [18] proved that this is the unique such coupling for
Euclidean Brownian motion. A few other examples are discussed in the literature:
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Ornstein Uhlenbeck processes [9], also Brownian motion on manifolds which possess
certain reflection symmetries. The reflection coupling idea manifests itself throughout
the area of probabilistic coupling: for example it has a natural generalization to Brown-
ian motion on Riemannian manifolds [10,19], involving stochastic parallel transport
and development, and not requiring any symmetries of themanifold. However it seems
unlikely that such generalizations will normally provide maximal couplings. Kuwada
[25] investigated this question for Brownian motion on manifolds (and their gener-
alisations to metric spaces). Under suitable mild regularity assumptions he showed
that a reflection symmetry of the space is necessary for the existence of a Markovian
maximal coupling of two Brownian motions started from a specified pair of points.
Working under some further assumptions, he proved that the fixed point set of the
symmetry (the “mirror”, characterizing this isometry) does not change with time; the
maximal coupling is given simply by reflecting one process onto the other using the
reflection symmetry defined by this mirror.

The aim of this paper is to develop the results of Kuwada to the case of general
regular elliptic diffusions with smooth coefficients. It will be shown that Markovian
maximal couplings are rare, in the sense that a stable local existence result enforces
extreme global symmetry on the manifold: a kind of rigidity result. Section 2 con-
siders implications of existence of Markovian maximal couplings for d-dimensional
Euclidean diffusions (“Euclidean” here meaning that the diffusion matrix is the
identity matrix), under rather general regularity assumptions on the (possibly time-
inhomogeneous) drift. Extending Kuwada’s argument, the existence of an MMC
implies there is a mirror symmetry between the coupled processes at any given time.
However the influence of the non-zero drift now means that the mirror can vary deter-
ministically with time, making the coupled dynamics considerably more complicated.
We study the evolution of the mirror in time using stochastic calculus and we obtain
a functional equation that the drift must satisfy for a Markovian maximal coupling
to exist. This equation can be used to characterise all time-inhomogeneous diffusions
which admit such couplings.

In the time-homogeneous case the characterization can be refined under the addi-
tional hypothesis that there is also a Markovian maximal coupling under local
perturbation of the starting points, which is to say, Markovian maximal couplings
exist locally in a stable sense:

Definition 1 (Local Perturbation Condition (LPC)) There is r > 0, and initial points
x0 and y0, such that there exists a Markovian maximal coupling of the diffusion
processes X and Y starting from x and y for every x ∈ B(x0, r) and y ∈ B(y0, r),
where B(x0, r) is the open metric ball centred at x0 and of radius r .

Wewill show that, for any dimension d ≥ 1,LPC holds for a suitably regular Euclidean
diffusionwith time-homogenous drift if and only if the drift takes the formb(x) = λx+
T x+ c, where λ is a scalar, T is a skew-symmetric matrix and c is a fixed vector. This
implies that Brownian motion with constant drift andOrnstein–Uhlenbeck process are
the only one-dimensional examples of time-homogeneous diffusions for which there
are successful Markovian maximal couplings from arbitrary pairs of starting points. In
higher dimensions, for regular Euclidean diffusions under LPC, essentially the same
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is true except that the drift may also include a rotational component. In one dimension,
even without LPC, it turns out that a Markovian maximal coupling exists between two
copies of a regular diffusion started from x0 and y0 if and only if the drift is either
affine or an odd function around the midpoint of the starting points.

Section 3 considers Markovian maximal couplings of Brownian motion with time-
homogeneous drift on a complete Riemannian manifold M under LPC. This is the
natural generalization of the context of Sect. 2, since a regular elliptic diffusion on
Euclidean space furnishes the space with a Riemannian metric by means of inverting
the diffusion matrix, and then the diffusion is converted into a Brownian motion with
drift on the resulting Riemannian manifold, so that the Riemannian geometry serves to
classify a variety of diffusions (compare the rather similar role of Fisher information in
theoretical statistics). We assume that the elliptic diffusion is stochastically complete,
and also diffusion-geodesically complete, in the sense that the diffusion Riemannian
geometry is geodesically complete. Strikingly, LPCthen produces a geometric rigidity
phenomenon, namely a complete classification of the space M as one of the three
model spacesRd (Euclidean space),Sd (Sphere) andHd (Hyperbolic space) depending
upon the sign of the (necessarily constant) curvature K (see Theorem 38 in Sect. 3).
The Euclidean case is fully covered in Sect. 2, and delivers the necessary ideas and
techniques which we generalise to the manifold setup in Sect. 3 to study Markovian
maximal couplings on the other two spaces. It turns out that the only drifts which
can yield Markovian maximal couplings are given by the Killing vectorfields, defined
as infinitesimal generators for the rigid motion group (namely, generators of one-
parameter subgroups of isometries).

In this paper we confine our considerations to the case of elliptic diffusions, where
there is a strong connection to Riemannian geometry, and path-continuity permits the
formation of interfaces of co-dimension 1 separating pairs of initial points. Possible
extensions to hypoelliptic diffusions or to general Markov chains are potentially of
great interest, but we leave these questions as topics for future work.

1.1 Markovian maximal couplings: general properties

We complete this introduction by defining some general notation and by describing
some basic general properties of Markovian maximal couplings for general Markov
processes on a metric space (M, dist). Kuwada [25] derived results similar to Lemmas
2 and 3 below. For the sake of clearer exposition, and as we are primarily interested in
diffusion processes, we will state the results for continuous-time Markov processes.
Denote the Markov process under consideration by X .

We assume that the metric space supports a positive Borel measure m with 0 <

m(B) < ∞ for any metric ball B of finite radius. Consequently, the closed support
of m is the whole of M . We further assume that for any t > s ≥ 0, the conditional
distribution law L (Xt | Xs = x) is absolutely continuous with respect to m and has a
probability kernel density given by p(s, x; t, z) for x, z ∈ M and 0 ≤ s < t .

Let μ denote the law of a Markovian maximal coupling (X,Y ) of two copies of
our Markov process started from (x0, y0), which can be thought of as a measure on
the coupled path-space C[0,∞)2, and let
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τ = inf{s > 0 : Xt = Yt for all t > s}

denote the coupling time of X and Y .
Motivated by Pitman’s construction for finite Markov chains, we write

α(s, x, y, t, z) = p(s, x; t, z) − p(s, y; t, z),

and set α+(s, x, y, t, z) = max(α(s, x, y, t, z), 0) and α−(s, x, y, t, z) =
max(−α(s, x, y, t, z), 0). If s = 0 (and thus x = x0 and y = y0), then we abbre-
viate α(t, z) for α(s, x0, y0, t, z) and similarly for other quantities.

Wewill be dealingwithMarkov processeswhich are possibly time-inhomogeneous,
so we say a Markov process starts from (t, x) if we are looking at the distribution law
L (θt X | Xt = x), where θ denotes the time-shift operator given by (θt X)s = Xt+s .

Define the interface between p(0, x0; ·, ·) and p(0, y0; ·, ·) at time t to be the region
where the corresponding heat kernels agree:

I (x0, y0, t) = {z ∈ M : p(0, x0; t, z) = p(0, y0; t, z)}. (2)

Also write

I−(x0, y0, t) = {z ∈ M : p(0, x0; t, z) > p(0, y0; t, z)},
I+(x0, y0, t) = {z ∈ M : p(0, x0; t, z) < p(0, y0; t, z)}. (3)

Finally, define the perpendicularly bisecting set (or “hyperplane”) and the associated
“half-spaces” (note that these are indeed a hyperplane and half-spaces in the Euclidean
case):

H(x, y) = {z ∈ M : dist(x, z) = dist(y, z)},
H−(x, y) = {z ∈ M : dist(x, z) < dist(y, z)},
H+(x, y) = {z ∈ M : dist(x, z) > dist(y, z)}. (4)

Lemma 2 Any joint maximal coupling law can be related to differences of the tran-
sition probability kernel densities as follows: for any Borel subset A of M, and s > 0,

μ(Xs ∈ A, τ > s) =
∫
A

α+(s, x)m(d x),

μ(Ys ∈ A, τ > s) =
∫
A

α−(s, x)m(d x).

Proof It is immediate that μ(Xs ∈ A, τ ≤ s) ≤ μ(Xs ∈ A). If p(0, x0; s, ·) ≤
p(0, y0; s, ·) on A then
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μ(Xs = Ys ∈ A, τ ≤ s) = μ(Xs ∈ A, τ ≤ s) ≤ μ(Xs ∈ A)

=
∫
A
p(0, x0; s, x)m(d x)

=
∫
A
p(0, x0; s, x) ∧ p(0, y0; s, x)m(d x).

Interchanging the rôles of X andY , a corresponding argument applies if p(0, x0; s, ·) ≥
p(0, y0; s, ·) on A. Hence additivity shows that for all A the coupling must satisfy

μ(Xs = Ys ∈ A, τ ≤ s) ≤
∫
A
p(0, x0; s, x) ∧ p(0, y0; s, x)m(d x). (5)

Finally, Aldous’ inequality (1) is by definition an equality for a maximal coupling, so

μ(τ ≤ s) =
∫
Rd

p(0, x0; s, x) ∧ p(0, y0; s, x)m(d x). (6)

It follows that the inequality (5) must in fact be an equality. This proves the lemma.
	


Only maximality was required for Lemma 2. If in additionμ is Markovian, then the
conditional law L (θs X, θsY | Fs) describes a Markovian coupling of two copies of
ourMarkov process starting from ((s, Xs), (s,Ys)). Such a coupling therefore satisfies
the following flow property:

Lemma 3 If μ is a Markovian maximal coupling and μs = L (Xs,Ys) then, for μs -
almost every (x, y) with x �= y the conditional law L (θs X, θsY | Xs = x,Ys = y)
gives a Markovian maximal coupling of (X,Y ) starting from ((s, x), (s, y)).

Proof This follows immediately from the maximality of μ and the fact that μ is
Markovian. 	


We now introduce notation to describe the set of pairs of initial points in the closed
support of μs for which the forward processes (θs X, θsY ) do indeed generate a max-
imal coupling:

M(μs) = {(x, y) ∈ Support(μs) : x �= y and L (θs X, θsY | Xs = x,Ys = y)

yields a maximal coupling of (X,Y ) starting from ((s, x), (s, y))}.

We conclude this introduction by noting an elementary observation about couplings
of Markov processes.

Lemma 4 For each t ≥ 0, let Ft : (�1,F1) → (�2,F2) be a bijective mapping
between two measurable spaces such that Ft , F

−1
t are measurable. Then, for any

Markov process {Xt : t ≥ 0} on �1, {Ft (Xt ) : t ≥ 0} defines a Markov process on
�2. Furthermore {(Xt ,Yt ) : t ≥ 0} is a (Markovian) maximal coupling of Markov
processes on �1 if and only if {(Ft (Xt ), Ft (Yt )) : t ≥ 0} is a (Markovian) maximal
coupling on �2.
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Proof Thefirst assertion is a direct consequence of the general definition of conditional
expectation. The second assertion follows from the definition of maximality. 	


2 Markovian maximal couplings on Euclidean spaces

We consider diffusions on Euclidean space Rd with infinitesimal generator

L = 1

2

d∑
i=1

∂2i +
d∑

i=1

bi (t, x)∂i , (7)

where ∂i = ∂

∂xi
. In the following, X will be used to denote a diffusion with the above

generator. We will refer below to such a diffusion as a Euclidean diffusion, because
diffusions with general diffusion coefficients are covered in Sect. 3 as instances of
‘Brownian motion plus drift on a manifold’. We make the following very general
regularity assumptions (not necessary for all of our results, but imposed globally to
streamline the exposition):

(A1) The drift vectorfield b : [0,∞) × R
d → R is continuously differentiable in

the second (space) variable, moreover b and all its first-order spatial partial
derivatives ∂ib are bounded on compact subsets of [0,∞) × R

d .
(A2) For every t > s ≥ 0, and x, z ∈ R

d , the conditional distribution law
L (Xt | Xs = x) is the law of a diffusion with transition probability density
kernel p(s, x; t, z) (density with respect to Lebesgue measure), which is jointly
continuous in all its arguments. Moreover, p(s, ·; ·, ·) is positive everywhere
when s > 0. Finally, the density p(s, x; ·, ·) : R

+ × R
d → R is continu-

ously differentiable in the time variable (first unspecified variable) and twice
continuously differentiable in the space variable (second unspecified variable).

Remark 5 Note that Assumption (A2) implies that the diffusion does not explode
in finite time (otherwise p(s, x; t, ·) would determine a sub-probability density). A
sufficient condition for non-explosion is to require that b is locally Lipschitz in the
space variable x (which follows fromAssumption (A1)) andmoreover that there exists
a constant C such that |b(t, x)| ≤ C(1 + |t | + |x|) for all (t, x) ∈ [0,∞) × R

d [17,
Proposition 1.1.11]. Furthermore, the fact that b is locally Lipschitz in x implies the
existence of a unique strong solution to the SDE corresponding to (7) for any given
driving Brownian motion B [17, Theorem 1.1.8].

Wewill sometimes say b satisfies Assumptions (A1) and (A2) if b satisfies (A1) and
the corresponding diffusion (whose law is unique by the above remark) has transition
probability densities satisfying (A2).

Recall that we say a diffusion starts from (t, x) if we are looking at the law
L (θt X | Xt = x), where θ denotes the time-shift operator given by (θt X)s = Xt+s .
The resulting process is a diffusion with the identity diffusion matrix but using time-
shifted drift b(t + ·, ·) and starting from x at time 0.

Let X and Y be two copies of this diffusion starting from x0 and y0 respectively.
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Recall

M(μs) = {(x, y) ∈ Support(μs) : x �= y and L (θs X, θsY | Xs = x,Ys = y)

yields a maximal coupling of (X,Y ) starting from ((s, x), (s, y))}.

Remark 6 The function (s, x) → p(0, x0; t − s, x) satisfies a backward parabolic
equation. Therefore uniqueness theory for such equations yields that there does not
exist any s > 0 such that p(0, x0; s, z) = p(0, y0; s, z) for all z ∈ R

d . This, along
with (6), implies that, for every s > 0, μ(τ > s) > 0 and thus μ(M(μs)) > 0. In
particular, M(μs) is non-empty for each s > 0.

2.1 Coupling and the interface

Here, we show that the existence of a Markovian maximal coupling for X and Y
implies that for each time t , the interface I (x0, y0, t) will be a hyperplane bisecting
the straight line joining Xt and Yt .

We begin with some preparatory lemmas. Note that Brownian motion has fluctu-
ations which are of order O(

√
t) while fluctuations resulting from the drift are of

order O(t). Thus, on small time scales, the Brownian behaviour should dominate. The
following lemma substantiates this intuition.

Lemma 7 Let X be a diffusion given by

Xt = Bt +
∫ t

0
b(s, Xs) d s,

with X0 = x0 (so B0 = x0), and suppose the drift b satisfies Assumption (A1). Denote
by P the underlying measure. Then, for any z ∈ R

d and any δ > 0,

lim
t↓0 t log

P [Xt ∈ B(z, δ)]
P [Bt ∈ B(z, δ)]

= 0. (8)

Proof Let I = sup{|y− x0| : y ∈ B(z, δ)} and choose N > d × I + 1. By continuity
of b, there is a finite M for which |b(t, y)| ≤ M for all (t, y) ∈ [0, 1] × B(x0, N ).

Let τN = inf{t > 0 : Xt /∈ B(x0, N )}. Then, we can write

P [Xt ∈ B(z, δ)] = P [Xt ∈ B(z, δ), τN > t] + P [Xt ∈ B(z, δ), τN ≤ t] . (9)

Now |Xt∧τN − Bt∧τN | ≤ Mt . We pick t ≤ min{ 1
M , δ

M }. Then
P [Xt ∈ B(z, δ)]
P [Bt ∈ B(z, δ)]

≤ P [Bt ∈ B(z, δ + Mt)]

P [Bt ∈ B(z, δ)]
+ P [τN ≤ t]

P [Bt ∈ B(z, δ)]
(10)

and (using t < δ/M)

P [Xt ∈ B(z, δ)]
P [Bt ∈ B(z, δ)]

≥ P [Bt ∈ B(z, δ − Mt)]

P [Bt ∈ B(z, δ)]
− P [τN ≤ t]

P [Bt ∈ B(z, δ)]
. (11)
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Also (using t < 1/M to control the difference between B and X )

P [τN ≤ t] ≤ P

[
sup
s≤t

|Bs − x0| > N − 1

]

≤ 4d2
√
t√

2π(N − 1)
exp

(
− (N − 1)2

2td2

)
.

Thus, there exists some constant C such that,

lim sup
t↓0

t log
P(τN ≤ t)

P(Bt ∈ B(z, δ))
≤ lim sup

t↓0
t log

⎛
⎝C exp

(
− (N−1)2

2td2

)

exp
(
− I 2

2t

)
⎞
⎠ < 0. (12)

By the Large Deviation principle for Brownian motion [40],

lim
t↓0 t log

P [Bt ∈ B(z, δ + Mt)]

P [Bt ∈ B(z, δ)]
= lim

t↓0 t log
P [Bt ∈ B(z, δ − Mt)]

P [Bt ∈ B(z, δ))]
= 0.

This, along with (10), (11) and (12), yields the lemma. 	

Remark 8 The above lemma can be regarded as a weak form of a large deviation prin-
ciple (LDP) for the diffusion X , specialized to a particular set B(z, δ). The general form
of theLDPcan be shown to hold under the additional assumption of linear growth of the
drift vectorfield, which is used to control the moments of the Radon–Nikodym deriv-
ative of the law of X with respect to that of B obtained by the Girsanov Theorem [40].

Note that for each fixed (s, x) the transition density (t, y) → p(s, x; t, y) satisfies
the Kolmogorov forward equation

∂t p = L∗ p (13)

where L∗ is the adjoint of the operator L . Under assumptions (A1) and (A2) the above
equation can be rewritten as

(A + h)p = 0,

whereA is a uniformly parabolic operator [34, p. 173] and h is bounded on compact
subsets of [0,∞) × R

d . We now state the Strong Maximum Principle for uniformly
parabolic equations in the following form (see Theorem 5, Theorem 7 and part (ii) of
the remark following Theorem 7, pp. 173–175 of [34]).

Lemma 9 Let u be a solution of

(A + h)u ≥ 0

on a domain of the form �T = (0, T ]×�, where � is a bounded and connected open
set and the coefficients ofA, and the function h are bounded on closed subsets of �T .
Suppose u ≤ 0 on �T and u(T, x ′) = 0 for some x ′ ∈ �. Then u ≡ 0 on �T .
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It is now possible to state and prove the main result of this section, which can be seen
as a stronger version of [25, Proposition 3.9], although our proof is quite different and
slightly shorter.

Theorem 10 Take any s > 0. For any (x, y) ∈ M(μs), the following equalities hold:

I (x0, y0, s) = H(x, y),

I−(x0, y0, s) = H−(x, y),

I+(x0, y0, s) = H+(x, y).

Proof By continuity of α(s, ·), it suffices to prove that H−(x, y) ⊆ I−(x0, y0, s) and
H+(x, y) ⊆ I+(x0, y0, s).

We will first show that α(s, z∗) ≥ 0 for all z∗ ∈ H−(x, y). Suppose, in contradic-
tion, that α(s, z∗) < 0 for some z∗ ∈ H−(x, y).

Since H−(x, y) is open and α is continuous, we can choose δ > 0 such that
B(z∗, δ) ⊆ H−(x, y) and α(s + s′, z) < 0 for all z ∈ B(z∗, δ) for sufficiently small
s′ > 0. By Lemma 2 this implies that

μ(Xs+s′ ∈ B(z∗, δ), τ > s + s′) = 0

for all sufficiently small s′ > 0. Let B1, B2 be Brownian motions starting from
x and y respectively. Since z∗ ∈ H−(x, y), it follows that P

[
B1,t ∈ B(z∗, δ)

]
>

P
[
B2,t ∈ B(z∗, δ)

]
for all t > 0. By Lemma 7, if s′ > 0 is sufficiently small then it

follows that

μ
(
(θs X)s′ ∈ B(z∗, δ)

∣∣∣ Xs = x
)

> μ
(
(θsY )s′ ∈ B(z∗, δ)

∣∣∣ Ys = y
)

. (14)

By continuity of the transition densities, for all sufficiently small s′ > 0 and for
small enough open sets U1 containing x and U2 containing y, for any (u1,u2) ∈
(U1 ×U2) ∩ M(μs),

μ
(
Xs+s′ ∈ B(z∗, δ), τ > s + s′

∣∣∣ Xs = u1,Ys = u2
)

=
∫
B(z∗,δ)

α+(s,u1,u2, s + s′, z) d z

≥
∫
B(z∗,δ)

α(s,u1,u2, s + s′, z) d z

= μ
(
(θs X)s′ ∈ B(z∗, δ)

∣∣∣ Xs = u1
)

− μ
(
(θsY )s′ ∈ B(z∗, δ)

∣∣∣ Ys = u2
)

> 0. (15)

(Here, the first equality follows from Lemmas 2 and 3.) Since (x, y) ∈ M(μs), it
follows that μ((Xs,Ys) ∈ (U1 × U2) ∩ M(μs)) > 0, yielding (for all sufficiently
small s > 0)

μ(Xs+s′ ∈ B(z∗, δ), τ > s + s′) > 0,
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contradicting our assumption. Hence α(s, z∗) ≥ 0 for all z∗ ∈ H−(x, y). Similarly,
α(s, z∗) ≤ 0 for all z∗ ∈ H+(x, y).

We have thus shown that

H−(x, y) ⊆ I (x0, y0, s) ∪ I−(x0, y0, s),

H+(x, y) ⊆ I (x0, y0, s) ∪ I+(x0, y0, s).

Suppose H−(x, y) ∩ I (x0, y0, s) is non-empty, andpick z∗ ∈ H−(x, y) ∩ I (x0, y0, s).
Since α(s, ·) is nonnegative on the open set H−(x, y), there exists δ > 0 such that
α(s, z) ≥ 0 for all z ∈ B(z∗, δ). Choose open sets U1 containing x and U2 containing
y, and possibly smaller δ > 0, such that |x′ − z| < |y′ − z| for all x′ ∈ U1, y′ ∈ U2
and z ∈ B(z∗, δ). It is given that (x, y) ∈ M(μs); since the process ((Xt ,Yt ) : t ≥
0) has continuous paths there must be η > 0 such that μt (U1 × U2) > 0 for all
t ∈ [s − η, s].

The function (t, z) → α(t, z) solves the Kolmogorov forwards Eq. (13). Thus we
can apply Lemma 9 to −α on �η = (s − η, s] × B(z∗, δ), and deduce that either
α(t, z) = 0 for all s − η < t < s and all z ∈ B(z∗, δ), or there exists s′ ∈ (s − η, s),
0 < ε < s − s′ and an open set U ⊆ B(z∗, δ) such that α(t, z) < 0 for all z ∈ U
and all t ∈ [s′, s′ + ε). In either case (taking U = B(z∗, δ) and any s′ ∈ (s − η, s),
ε ∈ (0, s − s′) in the first case), for all t ∈ [s′, s′ + ε)

μ(Xt ∈ U, τ > t) = 0. (16)

Now choose (x′, y′) ∈ (U1 × U2) ∩ M(μs′) (non-empty, since U1 and U2 are
disjoint and μs′(U1 × U2) > 0) and apply the same argument as the one used in
obtaining (15), but with x′, y′ replacing x, y and s′ replacing s. We obtain

μ
(
Xs′+s′′ ∈ U, τ > s′ + s′′) > 0

for some s′′ ∈ [s′, s′ + ε), contradicting (16). The lemma follows. 	

Remark 11 The above theorem shows that for aMarkovian maximal coupling, for any
time s, the locus I (x0, y0, s) can be viewed as a (possibly time-varying)mirror which
realizes the coupling in a very explicit way, using a (possibly time-varying) reflection
isometry.

The following corollary to the above lemma shows that the coupling time τ is, in fact,
the hitting time of the deterministic space-time set {(s, I (x0, y0, s)) : s > 0} by the
process ((s, Xs) : s ≥ 0) (equivalently, ((s,Ys) : s > 0)). In particular, X and Y will
couple at the first time they meet. Furthermore, the interface representation described
in Theorem 10 will hold almost surely for all time before coupling occurs.

Corollary 12 Consider a Markovian maximal coupling, with coupling time τ . Set
τ ′ = inf{s > 0 : Xs ∈ I (x0, y0, s)}. Almost surely τ = τ ′. Furthermore, μ-almost
surely, for all t < τ ,
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I (x0, y0, t) = H(Xt ,Yt ),

I−(x0, y0, t) = H−(Xt ,Yt ),

I+(x0, y0, t) = H+(Xt ,Yt ). (17)

Proof Note that, by Lemma 2,

μ
(
Yq ∈ I−(x0, y0, q) for some rational q < τ

) = 0.

Since the trajectories of Y are continuous, it follows that almost surely Yt is contained
in the complement of I−(x0, y0, t) for all t < τ . This implies that before time τ ′, X
and Y are supported on disjoint subsets of the state space and hence

μ
(
τ ′ ≤ τ

) = 1. (18)

For any t > 0, we define the event

Et =
[
Either Xt =Yt , or Xt �=Yt and all three equalities I (x0, y0, t) = H(Xt ,Yt ),

I−(x0, y0, t) = H−(Xt ,Yt ), I+(x0, y0, t) = H+(Xt ,Yt ) hold.
]
. (19)

Theorem 10 implies the assertion

μ
(
Eq is true for all rational q

) = 1, (20)

hence almost surely E = ∩q∈QEq holds. Take any t > 0 with Xt �= Yt and let
z ∈ H(Xt ,Yt ). Then it follows from the definition of H(x, y) and the continuity of
sample paths of X and Y that there is a rational sequence tn ↓ t and zn ∈ H(Xtn ,Ytn )
such that zn → z. Thus, on the event E , the continuity of α implies that H(Xt ,Yt ) ⊆
I (x0, y0, t).

Now, take z ∈ H+(Xt ,Yt ) when Xt �= Yt . The continuity of sample paths of
X and Y implies that there exist η, δ > 0 with B(z, η) ⊆ H+(Xs,Ys) for all s ∈
[t − δ, t]. On the event E , the continuity of α implies α(s, z′) ≤ 0 for all s ∈ [t − δ, t]
when z′ ∈ B(z, η). Thus, as α(q, z) < 0 for all rational q ∈ [t − δ, t], Lemma 9
implies α(t, z) < 0. Thus, H+(Xt ,Yt ) ⊆ I+(x0, y0, t). Similarly, H−(Xt ,Yt ) ⊆
I−(x0, y0, t). As μ(E) = 1, it follows that

μ (Et is true for all t) = 1. (21)

Note that, in particular, (18) and (21) imply that if τ ′ < ∞, then Xτ ′ = Yτ ′ almost
surely. For ‖Xt − Yt‖ = 1

2 dist(Xt , H(Xt ,Yt )) = 1
2 dist(Xt , I (x0, y0, t)) (when t <

τ ′), by definition of H(Xt ,Yt ).
The corresponding argument for Y implies that τ ′ also satisfies τ ′ = inf{s >

0 : Ys ∈ I (x0, y0, s)}. Therefore, τ ′ is a stopping time for both X and Y . Since
Xτ ′ = Yτ ′ , we can extend X and Y synchronously beyond time τ ′. Combined with
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(18), this implies τ = τ ′ almost surely, since the maximal coupling time τ must be
stochastically smaller than all other coupling times. Consequently

μ (Xt �= Yt for all t < τ) = 1.

This, together with (21), yields (17) and thus the corollary is proved. 	


2.2 Time evolution of the mirror

We now analyze the time-evolution of the mirror. From Theorem 10, it follows that
the mirror I (x0, y0, t) is a hyperplane for each t > 0. We parametrize this hyperplane
by its signed distance from the origin, say l(t), together with the normal vector to the
hyperplane, say n(t). There is an ambiguity of sign in the choice of n(t); however the
next lemma states that n(t) can be chosen to make this parametrization continuous up
to the coupling time τ .

Lemma 13 Suppose that a Markovian maximal coupling exists for X and Y . Then
there exists a continuous parametrization ((l(t),n(t)) : t ∈ [0, τ )) of I (x0, y0, ·).
Proof Corollary 12, together with the remark following Lemma 3, shows that the
following subset of coupled path-space C[0,∞)2 is non-empty for any S > 0, and
indeed of full μ-measure in the subset corresponding to τ > S:

AS = {ω ∈ C[0,∞)2 : I (x0, y0, t) = H(Xt (ω),Yt (ω)) for all t ≤ S, τ > S}.

Consider any coupled pair of paths ω ∈ AS . Define (l(t),n(t)) on [0, S] by

n(S)(t) = Xt (ω) − Yt (ω)

|Xt (ω) − Yt (ω)| ,

l(S)(t) = n�(t)

(
Xt (ω) + Yt (ω)

2

)
. (22)

This gives a continuous parametrization (l(S),n(S)) on [0, S ∧ τ).
This recipe can be used to define (l(N ),n(N )) on [0, N ∧τ) for each positive integer

N . By continuity of n(N ) and n(N+1) on the (connected) interval [0, N ∧ τ), we see
that either n(N ) ≡ n(N+1) or n(N ) ≡ −n(N+1) on [0, N ∧ τ). But

lim
t↓0 n

(N )(t) = lim
t↓0 n

(N+1)(t) = x0 − y0
|x0 − y0| ,

implying n(N ) ≡ n(N+1) on [0, N ∧ τ). Consequently l(N ) = l(N+1) on
[0, N ∧ τ). So we can consistently and continuously define the parametrization as
((l(t),n(t)) : t ∈ [0, τ )), thus proving the lemma. 	


In fact the parametrization is not simply continuous but is also continuously differ-
entiable:
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Lemma 14 Suppose that a Markovian maximal coupling exists for X and Y . Then
the parametrization (l(t),n(t)) of the mirror I (x0, y0, t) (defined for t ∈ [0, τ )) is
continuously differentiable in t .

Proof We use the fact that the map given by reflection in the hyperplane parametrized
by (l(t),n(t)),

F(t, x) = (I − 2n(t)n�(t))x + 2l(t)n(t),

takes Xt to Yt for t ∈ [0, τ ) (this follows from I (x0, y0, t) = H(Xt ,Yt )). Take any
x ∈ I−(x0, y0, t). Let U be an open ball containing x and contained in I−(x0, y0, t).
Let τU = inf{s > t : Xs /∈ U }. Consider the corresponding stopped processes
XU
s = Xs∧τU and YU

s = Ys∧τU for s ≥ t . We write expectation with respect to μ

using E.
By general properties of diffusions [31, Chapter 11],

b(t, x) = lim
s↓t E

[
XU
s − x
s − t

∣∣∣ XU
t = x

]
,

b(t, F(t, x)) = lim
s↓t E

[
YU
s − F(t, x)

s − t

∣∣∣ YU
t = F(t, x)

]
. (23)

Note that under the coupling μ we may use Corollary 12 to see that YU
s = F(s, XU

s )

for all s ≥ t with probability one. Thus, we can write the last expression above as

b(t, F(t, x)) = lim
s↓t E

[
F(s, XU

s ) − F(t, x)
s − t

∣∣∣ XU
t = x

]

= lim
s↓t E

[
F(s, XU

s ) − F(s, x)
s − t

∣∣∣ XU
t = x

]
+ lim

s↓t
F(s, x) − F(t, x)

s − t
,

in the sense that if the limit of E
[
F(s,XU

s )−F(s,x)
s−t

∣∣∣ XU
t = x

]
exists then also the limit

of F(s,x)−F(t,x)
s−t exists and is defined by the above. By linearity of F in x, we see that

the first summand becomes

lim
s↓t E

[
F(s, XU

s ) − F(s, x)
s − t

∣∣∣ XU
t = x

]

= (I − 2n(t)n�(t)) lim
s↓t E

[
XU
s − x
s − t

∣∣∣ XU
t = x

]

= (I − 2n(t)n�(t))b(t, x).

This shows that lims↓t F(s,x)−F(t,x)
s−t exists for each x and for all t ∈ [0, τ ) and indeed is

continuous in t . This is enough to show that t → F(t, x) is continuously differentiable
for each x [4, Theorem 1.3]. This follows from the facts that t → (I − 2n(t)n�(t))
and t → l(t)n(t) are continuously differentiable, and actually requires these facts to
be true: consider F(t, x) for x varying over an orthonormal basis and also for x = 0.
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Now, take any t0 ∈ [0, τ ). Let ni denote the ith component of n. As |n(t0)| =
1, there is an i such that ni (t) �= 0 in a neighbourhood V of t0. The continuous
differentiability of t → (I − 2n(t)n�(t)) implies nin j is continuously differentiable
in V for all 1 ≤ j ≤ d. This implies n j is continuously differentiable in V for all j .
Differentiability of t → l(t)n(t) then shows that l is continuously differentiable on
V . This proves the lemma. 	


2.3 Structure of the coupling

All the tools having been assembled, it is now possible to present a rather explicit
description of drifts b which permit the existence of a Markovian maximal coupling
of two copies X and Y of a Euclidean diffusion with the required regularity conditions.

We begin with a notational remark. For any x ∈ R
d and any hyperplane h, we

denote by hx the reflection of x in h. We write hk for the hyperplane {xk = 0}.
The first lemma of this subsection concerns an observation concerning rotations

and shifts of these Euclidean diffusions.

Lemma 15 Let X be an Euclidean diffusion satisfying assumptions (A1), (A2). Let
Q : [0,∞) → O(d) be a continuously differentiable function taking values in the
space of orthogonal (d × d) matrices, and let l : [0,∞) → R be a continuously
differentiable real-valued function. Then the new process given by

X̃t = Q(t)Xt − l(t)e1 (24)

satisfies the stochastic differential equation

d X̃t = b̃(t, X̃t ) d t + d B̃t (25)

where

b̃(t, x) = Q̇(t)QT (t)(x + l(t)e1) + Q(t)b(t, QT (t)(x + l(t)e1)) − l̇(t)e1 (26)

and

d B̃t = Q(t) d Bt . (27)

Here, Q̇ and l̇ denote the respective time-derivatives and Q� denotes the matrix
transpose.

Proof The result follows by direct calculation using Itô calculus. 	

Remark 16 Note that the transformed drift given by (26) satisfies the regularity
Assumptions (A1) and (A2). (A1) follows via the explicit form of (26) from the
fact that b satisfies (A1) and Q and l are continuously differentiable. (A2) for the new
process X̃ follows from (24) and the fact that X satisfies (A2).
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The following theorem describes Markovian maximal couplings for the class of time-
nonhomogeneous Euclidean diffusions satisfying suitable regularity conditions. The
intuitive content of the theorem is, given an MMC (X,Y ), applying deterministic
time-varying rotations and translations to the ambient Euclidean space reduces this
MMC to a reflection coupling in a fixed hyperplane. Thus, in a certain sense, reflection
coupling is the only type ofMarkovian coupling that can possibly preservemaximality.

Theorem 17 Let X be an Euclidean diffusion starting from x0 and satisfying assump-
tions (A1), (A2).

(i) Suppose the following holds for every x ∈ R
d , for the fixed hyperplane h1 =

{x1 = 0}.

b(t, h1x) = h1b(t, x) (28)

Then, for τ0 = inf{t ≥ 0 : Xt ∈ h1}, the reflection-coupling

Yt =
{
h1Xt if t < τ0

Xt if t ≥ τ0
(29)

gives a Markovian maximal coupling between two copies of the diffusion starting
from x0 and h1x0 respectively.

(ii) Let Y be a coupled copy of X. Then (X,Y ) is a Markovian maximal coupling up
to the maximal coupling time τ if and only if there exist C1 curves Q : [0, τ ) →
O(d) and l : [0, τ ) → R (compare Lemma 15) with Q(0) x0−y0

|x0−y0| = e1 and

l(0) = |x0|2−|y0|2
2|x0−y0| , such that (X̃ , Ỹ ) obtained from (X,Y ) using the transforma-

tion (24) are reflection-coupled according to the recipe (29). In particular, the
transformed time-varying drift b̃ given by (26) must satisfy

b̃(t, h1x) = h1b̃(t, x). (30)

Proof (i) Equation (28) implies that the process (h1Xt : t ≥ 0) has the same law
as the diffusion starting from h1x0 and thus, the reflection-coupling (29) gives a
valid coupling. Reflection in the hyperplane h1 thus gives a reflection structure in
the sense of [24, Definition 2.1]. Maximality follows from [24, Proposition 2.2].

(ii) First, note that if X̃ and Ỹ are reflection-coupled according to (29), then analysis
of generators of h1 X̃t and Ỹt yields (30). Now, applying part (i) of the theorem,
we deduce that (X̃ , Ỹ ) is a Markovian maximal coupling. Furthermore, as

(t, x) → (t, Q�(t)(x + l(t)e1))

is a bijective, bimeasurable function, so application of Lemma 4 to (t, X̃t ) →
(t, Xt ) and (t, Ỹt ) → (t,Yt ) shows that (X,Y ) is aMarkovian maximal coupling.
Conversely, let (X,Y ) be a Markovian maximal coupling of two copies of the
diffusion starting from x0 and y0. Then the results of Sects. 2.1 and 2.2 show
that there exist continuously differentiable functions l : [0,∞) → R and n :
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[0,∞) → S
d−1 parametrising the mirror I (x0, y0, t). Moreover, these functions

should satisfy n(0) = x0−y0
|x0−y0| and l(0) = |x0|2−|y0|2

|x0−y0| . To see this, take t ↓ 0 in
(22). Furthermore, Theorem 10 and the corollary following it show that X and Y
are coupled on t < τ according to the relationship

Yt = (I − 2n(t)n�(t))Xt + 2l(t)n(t). (31)

The construction of Q follows by applying Gram–Schmidt orthogonalization to
extend n(0) to an orthonormal basis (n(0), v1, . . . , vd−1) of Rd . Note that the
vectors vi lie in the tangent space of Sd−1 based at n(0). The vector function
(n(t) : t ≥ 0) traces out a C1 curve γ on the sphere Sd−1. Parallel transport [14,
p. 75] can be applied along γ to each vector vi ; this produces C1 vectorfields
Xi : [0,∞) → R

d along γ . [14, Proposition 2.74] shows that (n,X1, . . . ,Xd−1)

produces a C1 orthonormal frame along γ , so set

Q�(t) = (n(t),X1(t), . . . ,Xd−1(t)).

We now produce a new pair of diffusions with time-varying drifts, (X̃ , Ỹ ), by
applying the transformation (24) to (X,Y ) with drift b̃ and driving Brownian
motion B̃ as described in Lemma 15. This new pair is also a Markovian maximal
coupling (use Lemma 4), and from Eq. (31) it follows that the coupled pair (X̃ , Ỹ )

is described by the transformation (29). As discussed in part (i) of this proof, the
relationship (30) follows as a direct consequence. 	


Inverting the relationship (26), and using the relationship (30), the above theorem
yields the following characterisation of drifts which permit MMC:

Corollary 18 Under assumptions (A1) and (A2), the Markovian coupling of d-
dimensional Euclidean diffusions (X,Y ) is a Markovian maximal coupling if and
only if there exist function Q : [0, τ ) → O(d) and l : [0, τ ) → R, as prescribed in
Theorem 17, such that

b(t, x) = Q�(t )̃b(t, Q(t)x − l(t)e1) − Q�(t)Q̇(t)x + l̇(t)n(t) (32)

for some b̃ satisfying Assumptions (A1) and (A2) and fulfilling the relationship (30).

2.4 Rigidity theorems for time-homogeneous diffusions

The previous subsection established an implicit classification of all time-
nonhomogeneous diffusions that can be coupled by a Markovian maximal coupling.
But, as noted in the literature, not many examples of such couplings are known for
time-homogeneous diffusions. It is a matter of general belief that the class of such
time-homogeneous diffusions is very small, but little rigorous work appears to have
been done to specify this class.

In this subsection we obtain a constraint equation on the drift, leading to certain
general conditions on the drift and the starting points which are necessary for the
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existence of Markovian maximal couplings. In the case of affine drifts the constraint
equations are explicit enough to classify all affine drifts leading toMarkovianmaximal
couplings. We then state and prove the main theorem of this subsection: if there are
two balls B(x0, r) and B(y0, r) inRd , such that a Markovian maximal coupling exists
from all pairs of points (x, y) ∈ B(x0, r) × B(y0, r), then the drift has to be of a very
simple affine form, verifying the popular belief that Markovian maximal couplings
are indeed very rare.

We conclude by showing a stronger result for one-dimensional diffusions, which
states that for such a coupling to exist for a specific pair of starting points, either the
drift must be an odd function centred at a point, or it must be affine.

The following lemma supplies the constraint equation on the drift. Recall that

F(t, x) = (I − 2n(t)n�(t))x + 2l(t)n(t) (33)

is a linear tranformation sending x ∈ R
d to its reflection in the mirror I (x0, y0, t).

For the sake of concise exposition, in the following two lemmas and their proofs we
suppress the argument t when writing l and n.

Lemma 19 Assume (A1), (A2) hold. A Markovian maximal coupling (X,Y ) exists
from starting points x0 and y0 if and only if there exist continuously differentiable
functions l : [0,∞) → R and n : [0,∞) → S

d−1, with n(0) = x0−y0
|x0−y0| and l(0) =

|x0|2−|y0|2
|x0−y0| , for which the drift vectorfield b satisfies the following equation:

b(x) = 2(ṅn� − nṅ�)x + 2(l̇n − lṅ) + (I − 2nn�)b(F(t, x)). (34)

Proof First, assume that a Markovian maximal coupling (X,Y ) exists. Note from Eq.
(31) that

Yt = F(t, Xt )

for t ∈ [0, τ ), with {(l(t),n(t)) : t ∈ [0, τ )} obtained from Lemmas 13 and 14.
Applying stochastic calculus to the function F for t ∈ [0, τ ), substituting in

Xt = (I − 2nn�)(Yt − 2ln),

and simplifying, we obtain

d Yt =
(
2(ṅn� − nṅ�)Yt + 2(l̇n − lṅ) + (I − 2nn�)b(F(t,Yt ))

)

× d t + (I − 2nn�) d Bt . (35)

The diffusion term is clearly a Brownian motion, as can be verified by the Lévy
criterion. On the other hand, the drift term in the semimartingale decomposition of
Y is given by b(t,Yt ) d t . Equating the two drifts yields the necessity of the drift
constraint condition (34).
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Now, suppose b satisfies (34) for l and n as given in the lemma. Let τ = inf{t >

0 : Xt ∈ I (x0, y0, t)}. Then (35) shows that Yt = F(t, Xt )I(t < τ) + Xt I(t ≥ τ)

gives a valid coupling μ of the two copies (X,Y ) with coupling time τ . To see that
this is indeed the maximal coupling, obtain the C1 curve Q : [0, τ ) → O(d) from n
by the procedure given in the proof of Theorem 17 (ii). Now, (X̃ , Ỹ ) obtained from
(X,Y ) by (24) is reflection-coupled according to the recipe in (29). Theorem 17 (ii)
then implies that (X,Y ) is a Markovian maximal coupling. 	


Equation (34) provides the constraint only in implicit form, and the main task is to
extract as much information from it as possible. In what follows, we decompose the
gradient matrix ∇b into symmetric and skew-symmetric parts via

∇b(x) = S(x) + T (x), (36)

where S(x) = ∇b(x)+(∇b)�(x)
2 and T (x) = ∇b(x)−(∇b)�(x)

2 . The next lemma records
relations for S(x) and T (x) which are direct consequences of (34).

Lemma 20 Under the hypotheses of Lemma 19 and (34), the following hold for all
x ∈ R

d and t > 0:

(i)

S(x) = (I − 2nn�)S(F(t, x))(I − 2nn�), (37)

and

T (x) = 2(ṅn� − nṅ�) + (I − 2nn�)T (F(t, x))(I − 2nn�). (38)

In particular, S(x) and S(F(t, x)) have the same set of eigenvalues.
(ii) There exists a continuous function λ(·, ·) : [0,∞) × R

d → R such that

(
S(x) + S(F(t, x))

2

)
n = λ(t, x)n. (39)

(iii)

(
T (x) + T (F(t, x))

2

)
n = ṅ. (40)

Proof Differentiating both sides of (34), while recalling the reflection form of F(t, x)
as given in (33), we obtain

∇b(x) = 2(ṅn� − nṅ�) + (I − 2nn�)∇b(F(t, x))(I − 2nn�). (41)

This immediately yields part (i). The equality of the set of eigenvalues follows from
the fact that the reflection matrix (I − 2nn�) is symmetric and orthogonal.

Parts (ii) and (iii) follow by post-multiplying the equations of part (i) by n, bearing
in mind that as n is a unit vector therefore n and ṅ must be orthogonal. 	
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Because n(0) = x0−y0
|x0−y0| and l(0) = n(0). x0+y0

2 , we know F(0, ·) explicitly. Even in
the generality of the hypotheses of Lemma 19, one can obtain the following necessary
condition on the drift of a Euclidean diffusion for existence of a Markovian maximal
coupling: use (ii) of the above lemma and take t ↓ 0.

Corollary 21 Under the hypotheses of Lemma 19 and (34), n(0) must be an eigen-
vector of S(x)+S(F(0,x))

2 corresponding to some eigenvalue λ(x), for every x ∈ R
d .

Briefly restrict attention to the case where b(x) is affine in x. The following theorem
completely classifies the set of such drifts which ensureMarkovian maximal coupling.

Theorem 22 Assume (A1), (A2). Let b(x) = Ax + c for some (d × d) matrix A and

some d-dimensional vector c. Denote S = A+A�
2 and T = A−A�

2 . Then a Markovian
maximal coupling (X,Y ) exists from starting points x0 and y0 if and only if there
exists an eigenvalue λ0 of S such that the vectors T k(x0 − y0) (for 0 ≤ k ≤ d − 1) all
lie in the eigenspace of S corresponding to λ0. In this case (using matrix exponentials
exp),

n(t) = exp (T t)
x0 − y0
|x0 − y0| , and (42)

l(t) = eλ0t |x0|2 − |y0|2
2|x0 − y0| + eλ0t

∫ t

0

(x0 − y0)�

|x0 − y0| exp (−(T + λ0I)s) c d s. (43)

Proof Suppose there exists a Markovian maximal coupling (X,Y ) starting from x0
and y0. From (ii) and (iii) of Lemma 20 we get the following:

Sn(t) = λ(t)n(t) (44)

(where we note that λ is a function of t only) and

Tn(t) = ṅ(t). (45)

Solving (45), we get (42). Since T is skew-symmetric, the above formula implies
|n(t)| = 1 for all t .

The finite symmetric matrix S has discrete spectrum; by this, and the continuity
of n(·) and λ(·), it follows immediately from (44) that λ(·) ≡ λ0 for some constant
λ0. Thus n(t), as given by (42), must lie in the eigenspace of S corresponding to λ0,
for all time t . Substituting this formula for n(t) in Eq. (44) and differentiating (42)
k times with respect to t (for k = 0, 1, . . . , d − 1), then setting t = 0, we obtain
that the vectors T k(x0 − y0) for 0 ≤ k ≤ d − 1 must all lie in the eigenspace of
S corresponding to λ0. As T solves its characteristic equation, it is clear that all the
higher powers T k(x0 −y0) for k ≥ d must also lie in this eigenspace. Using the series
representation of exp (T t), this means that n(t) must also lie in this eigenspace for
all t .

To solve for l, note that computation with (33), (34), (41) yields the following
expression for n = n(t) and l = l(t):

2(l̇n − lṅ) + 2l(I − 2nn�)An − 2nn�c = 0. (46)
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On the other hand, (44) and (45) yield

An = λ0n + ṅ.

Substituting into (46) and simplifying,

l̇ = λ0l + n�c. (47)

Solving this equation, using the solution for n = n(t) obtained from (42), we get (43).
Conversely, suppose there exists an eigenvalue λ0 of S such that the vectors T k(x0−

y0) (for 0 ≤ k ≤ d − 1) all lie in the eigenspace of S corresponding to λ0. To prove
the existence of a Markovian maximal coupling (X,Y ) starting from x0 and y0, we
will show that (34) holds with n and l as given in the theorem.

Clearly, for this choice of n and l, (45) and (47) hold. Using these, we obtain

ṅn� − nṅ� = Tnn� + nn�T

and

l̇n − lṅ = λ0ln + nn�c − lTn.

Now, observe that Sn = λ0n and

n�An = n�Sn = λ0.

Using these, we can write

(I − 2nn�)b(F(t, x)) = (I − 2nn�)(A(I − 2nn�)x + 2l An + c)

= (I − 2nn�)A(I − 2nn�)x − 2λ0ln + 2lTn

+ (I − 2nn�)c.

Applying the above relations, the right hand side of (34) becomes

[2(Tnn� + nn�T ) + (I − 2nn�)A(I − 2nn�)]x + c

= (Ax + c) + [−2Snn� − 2nn�S + 4(n�An)nn�]x,

where we used A = S + T . Now, using Sn = λ0n and n�An = λ0 again, we get

−2Snn� − 2nn�S + 4(n�An)nn� = 0,

and thus, (34) holds, proving the theorem. 	

The following corollary is immediate from the above theorem.
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Corollary 23 If d = 2, then under the hypotheses of Theorem 22, A is either a
symmetric matrix or of the form λ0I+T for some real scalar λ0 and a skew-symmetric
matrix T .

Proof If the skew-symmetric part T of A is non-zero, then x0 −y0 and T (x0 −y0) are
non-zero, mutually orthogonal vectors which lie in the eigenspace of S corresponding
to λ0. Thus, this eigenspace is the whole of R2 and S = λ0I. 	


Now, we state and prove the main theorem of this section. Recall the Local Pertur-
bation condition LPCdescribed in the introduction.

Theorem 24 Assume (A1) and (A2) hold for a time-homogeneousEuclidean diffusion.
Then LPC holds if and only if there exist a real scalar λ0, a skew-symmetric matrix T
and a vector c ∈ R

d such that the diffusion drift is given by

b(x) = λ0x + T x + c

for all x ∈ R
d .

Proof We need to show that the set of eigenvalues of S(x) for any x ∈ R
d is the

singleton {λ0} and the skew-symmetric part T (x) is a constant matrix T . Write

H0 = {H(x, y) : x ∈ B(x0, r), y ∈ B(y0, r)}.

Our approach is to choose an appropriate set of mirrorsH ⊆ H0 and then to consider
the orbit of a point z ∈ R

d under repeated reflections in this set of mirrors, defined as

O(z) =
{
w ∈ R

d : there exist h1, . . . , hk ∈ H such that w = hk . . . h1z
}

.

We then use the constraint relations between a point and its reflection obtained in
Lemma 20.

This idea is made more precise in the following internal lemmas.

Lemma 25 Under the hypotheses of Theorem 24, there exists λ0 ∈ R such that
S(x) = λ0I for all x ∈ R

d .

Proof Suppse that X and Y start at x ∈ B(x0, r) and y ∈ B(y0, r) respectively.
It follows from letting t ↓ 0 in part (i) of Lemma 20 that, for all z ∈ R

d , S(z)
and S(H(x, y)z) have the same set of eigenvalues. (Recall that H(x, y)z represents
reflection of z in the hyperplane H(x, y).)

Denote x∗ = (x0+y0)/2 and let v1 = x0−x∗. Extend v1 to a basis {v1, . . . , vd}. If ε
is sufficiently small then the linearly independent vectors ni = v1 + εvi , i = 1, . . . d
are such that {x∗ + ni : i = 1, . . . d} ⊂ B(x0, r) and {x∗ − ni : i = 1, . . . d} ⊂
B(y0, r). Defining xi = x∗ + ni and yi = x∗ − ni , it follows that x∗ ∈ H(xi , yi ) for
all i . For each i , consider maximally coupled diffusions begun at (xi , yi ): applying
part (ii) of Lemma 20 and letting t ↓ 0, it follows that ni is an eigenvector of S(x∗).
By construction, no ni is orthogonal to any other n j . Since S(x∗) is symmetric, it
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follows that {ni : i = 1, . . . , d} correspond to the same eigenvalue, say λ0 and thus,
S(x∗) = λ0I.

Choosing the set of mirrors H = H0, consider the orbit O(x∗) of x∗ in H. If
O(x∗) = R

d , then the lemma follows from the previous observation that for any
z ∈ O(x∗), the set of eigenvalues of S(z) agrees with that of S(x∗).

To see this, let L be the line that passes through x0 and y0. Let v0 = x0−y0
|x0−y0| . Write

xδ = x0+δv0 and yδ = y+δv0 for all δ ∈ (−r, r). Thus themirrors hδ = H(xδ, yδ) ∈
H for all such δ, and the orbit of x∗ under reflection in {hδ : δ ∈ (−r, r)} is the whole
of L . Thus L ⊆ O(x∗).

Now, for any z ∈ R
d , let H be a plane (dimension of H is two) containing the

line L and the point z. For sufficiently small ε > 0, for all δ ∈ (−ε, ε) the mirror
h′

δ containing x∗ and having normal vector vδ ∈ H and making an angle δ with v0
lies inH. Denote by C the circle centred at x∗, lying in H and passing through z. Let
Oz ∈ L ∩ C . Then the orbit ofOz under reflection in {h′

δ : δ ∈ (−ε, ε)} is the whole of
C . In particular, z ∈ O(x∗). This shows that O(x∗) = R

d and the lemma follows. 	

Before proceeding further with the proof of Theorem 24, we record a general fact

about real skew-symmetric matrices which follows by spectral decomposition [13].

Lemma 26 If N is the null space of a (d × d) real skew-symmetric matrix T , then
d − dim(N ) is even.

We now show that the skew-symmetric part T (x) is a constant matrix T .

Lemma 27 Under the hypotheses of Theorem 24, T (x) ≡ T for all x ∈ R
d .

Proof The proof breaks into three steps.

Step 1. If x ∈ B(x0, r) and y ∈ B(y0, r), then for all z, z′ ∈ H(x, y), T (z) = T (z′).
Set z∗ = z+z′

2 , v1 = z−z′
|z−z′| and v2 = x−y

|x−y| . Extend v1, v2 to an orthonormal

basis v1, . . . , vd ofRd . Using themethod of the proof of Lemma 25, construct
independent vectorsni = v2+εvi , i = 2, . . . d, choosing ε > 0 small enough
so that

H(z∗ + ni , z∗ − ni )x ∈ B(y0, r)

for all i = 2, . . . , d. Writing xi = z∗ + ni and yi = z∗ − ni , and with a
possibly smaller choice of ε > 0, the hyperplane H(xi , yi ) lies in H0 and
the line joining z and z′ is contained in H(xi , yi ) for all i = 2, . . . , d. Thus,
H(xi , yi )z = z and H(xi , yi )z′ = z′ for all i = 2, . . . , d. Taking t ↓ 0 in
part (iii) of Lemma 20, it follows that

(T (z) − T (z′))ni = 0

for all i = 2, . . . , d, implying d − N (T (z) − T (z′)) ≤ 1. Together with
Lemma 26, this establishes Step 1.
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Step 2. There is ε > 0 such that T (z) = T (z′) for all z, z′ ∈ {w ∈ R
d :

dist(w, H(x0, y0)) < ε}, where dist(w, A) denotes the distance of w from
the set A.
Choose x ∈ B(x0, r) such that the vector x − y0 is not parallel to x0 − y0. It
follows from Step 1 that T (z) = T (z′) for all z, z′ ∈ H(x, y). Choose ε > 0
such that yδ = y0 + δ

x0−y0
|x0−y0| ∈ B(y0, r) for all δ ∈ (−2ε, 2ε). Note that the

vector x − yδ is not parallel to x0 − y0 for any δ ∈ (−2ε, 2ε). Using Step
1 again, T (z) = T (z′) for all z, z′ ∈ H(x0, yδ). The assertion now follows
from Step 1 and the fact that H(x0, yδ) ∩ H(x, y) is non-empty for each
δ ∈ (−2ε, 2ε).

Step 3. Now we work with the set of mirrors

H = {H(x0, yδ) : δ ∈ (−2ε, 2ε)} ,

where ε is chosen as in Step 2. For notational convenience, we write hδ =
H(x0, yδ). The yδ = y0 + δ

x0−y0
|x0−y0| all lie on the same line through x0, and

therefore all these mirrors have a common normal vector, which we write
n∗. Let (lδ,nδ) parametrize the interface I (x0, yδ, ·) corresponding to the
starting points x0 and yδ of the diffusions X and Y respectively. For each δ,
nδ(0) = n∗. Furthermore, by letting t ↓ 0 in part (iii) of Lemma 20,

ṅδ(0) = T
(
x0+yδ

2

)
n∗.

Given δ ∈ (−2ε, 2ε), the distance of the point x0+yδ

2 from the hyperplane
H(x0, y0) is less than ε. Consequently Step 2 implies that ṅδ(0) = ṅ0(0) = n′
(say) for all δ ∈ (−2ε, 2ε).
Choose any z, z′ ∈ R

d such that z′ = z + δ
x0−y0
|x0−y0| for some δ ∈ (−2ε, 2ε).

Set z∗ = h0z so that z = h0z∗. Noting that z, z∗, z′ lie on the same line per-
pendicular to H(x0, y0), it follows from an argument about one-dimensional
reflections that z′ = hδz∗.
Then, by part (i) of Lemma 20, we get

T (z∗) = 2(n′n∗� − n∗n′�) + (I − 2n∗n∗�)T (z)(I − 2n∗n∗�)

= 2(n′n∗� − n∗n′�) + (I − 2n∗n∗�)T (z′)(I − 2n∗n∗�) (48)

from which we get

(I − 2n∗n∗�)(T (z) − T (z′))(I − 2n∗n∗�) = 0

which gives T (z) = T (z′). Hence the lemma follows. 	

Lemmas 25 and 27 together are sufficient to prove Theorem 24. 	

Theorem 24 can be strengthened if ṅ(t) = 0 for all t , i.e., the interface translates

but does not rotate in time. We state this in the following theorem. Since there is no
rotation, the driving Brownianmotions in the stochastic differential equation for X and
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Y are constant reflections of each other. So we can assume without loss of generality
that l(0) = 0 and n(t) ≡ e1.

Theorem 28 Assume (A1) and (A2) hold for a time-homogeneousEuclidean diffusion.
Suppose there exists aMarkovianmaximal coupling of X and Y starting from x0 and y0
respectively, such that the interface I (x0, y0, t) is parametrized by ((l(t), e1) : t ≥ 0)
with l(0) = 0. Then there are only two possibilities:

(i) l(t) = 0 for all t ≥ 0, in which case the drift vectorfield b must satisfy

b(h1x) = h1b(x)

for all x ∈ R
d .

(ii) l(t) �= 0 for some t > 0, in which case the drift vectorfield b must satisfy

b(x1, x(1)) =
(
c1x1 + c2, f(x(1))

)�

for all x = (x1, x(1)) ∈ R
d , where c1, c2 are constants and f : Rd−1 → R

d−1 is
continuously differentiable.

Proof Part (i) follows from the fact that the generators of Y and h1X are the same.
To prove part (ii), note that by part (i) of Lemma 20:

∇b(x1, x(1)) =
[
∂1b1(x1, x(1)) 0

0 ∇(1)b(1)(x1, x(1))

]
. (49)

for all x = (x1, x(1)) ∈ R
d , where b(1) = (b2, . . . , bd)� and ∇(1) denotes par-

tial derivatives with respect to the variables of x(1). From (49), we deduce that
b1(x1, x(1)) = f1(x1) and b(1)(x1, x(1)) = f(x(1)) for continuously differentiable
functions f1 : Rd−1 → R and f : Rd−1 → R

d−1.
Wemay assume that (without loss of generality) (0, ε) ⊂ Range(l) for some ε > 0.

Choose the set of mirrors

H = {H(x0, yδ) : δ ∈ (0, ε)}

where, as before, yδ = x0 + δ
x0−y0
|x0−y0| . Now, iterated reflections inH as in the proof of

Theorem 24 yield f ′
1(x1 + a) = f ′

1(x1) for all x1, a ∈ R. Hence, f ′
1(x1) = c1 for all

x1 ∈ R, for some constant c1. Thus, b has to be of the required form. 	

The case of one-dimensional diffusions is a trivial consequence of the above theo-

rem, as noted in the next corollary.

Corollary 29 Assume (A1) and (A2) hold for a one-dimensional time-homogeneous
Euclidean diffusion. Then there exists a Markovian maximal coupling of X and Y
starting from x0 and y0 respectively if and only if either the drift vectorfield b is affine
or it obeys the reflection symmetry b(x) = −b(x0 + y0 − x) for all x ∈ R.
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Remark 30 Corollary 29 completely characterises all one-dimensional time-
homogeneous diffusions subject to the regularity conditions (A1) and (A2) and
permitting Markovian maximal couplings, even with a varying twice-continuously-
differentiable diffusion coefficient σ(·) : R → [c,∞) for some c > 0. Let X be given
by

d Xt = b(Xt ) d t + σ(Xt ) d Bt (50)

and similarly for Y . Define the function

F(x) =
∫ x

0

1

σ(z)
d z,

and set Ut = F(Xt ). Then, it follows from Itô calculus that

dUt = d Bt +
(
b ◦ F−1(Ut )

σ ◦ F−1(Ut )
− σ ′ ◦ F−1(Ut )

2

)
d t. (51)

Thus, the conditions on b derived in the case σ ≡ 1 readily carry over to conditions
on the drift term of (51) for general σ .

3 Markovian maximal couplings for manifolds

In this section, we analyse rigidity phenomena for Markovian maximal couplings
(MMC) for smooth elliptic diffusions, and demonstrate that there are powerful geomet-
ric consequences arising from a natural connection to the theory of diffusion processes
onmanifolds (specifically, the notion of Riemannian Brownianmotionwith drift). The
main task of this section is to understand how the Euclidean arguments of Sect. 2 carry
over to themanifold case. In particular, the existence ofMarkovianmaximal couplings
(together with LPC) has profound rigidity consequences for the geometry of the man-
ifold.

We commence by summarizing the Riemannian geometry required to establish
these consequences. LetM be a connected smoothmanifold of dimension d (the results
which follow are actually significant even in the case when M = R

d ). Following [11],
a strong Markov process X on M is said to be a diffusion process if each C2 function
f belongs to the domain of definition of the characteristic operator L given by

L f (x) = lim
N↓x

Ex
[
f (XτN )

]− f (x)

Ex[τN ] (52)

where N denotes a system of neighbourhoods shrinking to x, τN denotes the first exit
time from N and E denotes expectation with respect to the measure induced by the
Markov process. In any local system of coordinates (x1, . . . , xd), the operator L takes
the form
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L f (x) =
d∑

i, j=1

ai j (x)
∂2 f

∂xi∂x j
+

d∑
i=1

vi (x)
∂ f

∂xi
(53)

where the diffusion matrix A = {ai j } is non-negative definite and {vi } denotes the drift
vectorfield.Wewill assume ai j and vi are smooth functions. Note that the general form
of the operator does not depend on the specific choice of coordinates. We call X an
elliptic diffusion if L is an elliptic operator (in other words, if A is positive-definite).
As in the previous section, we deal only with elliptic diffusions.

Following [29], if we furnish M with the Riemannian metric g which is given in
local coordinates by gi j = (A−1)i j then the operator L can be rewritten in the form

L = 1

2
�M + b (54)

where �M is the Laplace–Beltrami operator for the Riemannian metric, and b is the
(intrinsic) drift vectorfield. When b = 0, the corresponding Markov process is called
Brownian motion on M . Thus, we see that any diffusion process on M can be written
as ‘Brownian motion plus drift’ if M is given a suitable metric. Henceforth, we will
assume that M is endowed with this metric g, so that we can view M as a smooth
Riemannian manifold (M, g).

Note Throughout this section, we will make the following assumptions:

(i) The Riemannian manifold (M, g) obtained above is complete (we say that the dif-
fusion X isdiffusion-geodesic complete). This is a purely technical assumption and
the completeness is usually not too hard to check as we know the diffusion coef-
ficients explicitly. In particular, diffusion-geodesic completeness trivially holds
on compact manifolds. Diffusion-geodesic completeness is not a necessary con-
dition for the existence of Markovian maximal couplings, as can be seen for
dimension d ≥ 2 by considering reflection couplings of Brownian motions on the
d-dimensional punctured sphere Sd −{P} obtained by deleting a point P from the
sphere Sd (and the corresponding couplings of diffusions obtained on the plane
by stereographic projection). In this example, the existence of a rich supply of
MMC follows from the fact that this space has a completion Sd on which we can
construct MMC of Brownian motions started from any two points (see [25]), and
from the fact that if d ≥ 2 then the Brownian motion started in S

d − {P} almost
surely does not hit P . It is an interesting question whether this is the ‘generic’
example for instances where diffusion-geodesic completeness fails but Markov-
ian maximal couplings exist, raising issues which seem somewhat reminiscent of
the topic of resolution of singularities in algebraic geometry. We hope to address
this in a future article.

(ii) Our diffusion process X is defined for all time. This is to ensure that we are dealing
with probability densities which is essential for the arguments in Sect. 1.1 to go
through. For Brownian motion on M , this can be resolved by ensuring that M is
stochastically complete. There are a number of intrinsic geometric properties of
M that ensure stochastic completeness, such as the existence of a constant lower
bound on the Ricci curvature. See [17], for example, for more details.
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Let G = Iso(M) denote the groupof (global)isometries ofM . This can be shown
to be a Lie group [30], and it plays an important rôle in the following arguments. As
M is complete and connected, any pair of points in M are connected by a geodesic.
Furthermore, there are no branching geodesics inRiemannianmanifolds. (More details
on these geometric notions can be found in [5,7].)

3.1 Brownian motion with drift on the manifold

Not only can any smooth elliptic diffusion on M be written as Brownian motion with
drift on (M, g), but also this permits a rather explicit geometric construction of the
diffusion which facilitates the discussion of probabilistic coupling techniques, namely
the Eells–Elworthy–Malliavin construction [12].

Using terminology expounded (for example) in [17], let Ox (M) denote the set of
orthonormal frames of the tangent space TxM . The orthonormal frame bundle

O(M) =
⋃
x∈M

Ox (M)

possesses a natural smoothmanifold structure of dimension d(d+1)
2 . Denote the canon-

ical projection map by π : O(M) → M .
A curve u inO(M) is said to be horizontal if ut is the parallel transport (associated

with the Levi–Civita connection) of the frame u0 along the curve πut . For each u ∈
O(M), the tangent space TuO(M) can be expressed as a direct sum

TuO(M) = VuO(M)
⊕

HuO(M),

where VuO(M) is a d(d−1)
2 -dimensional vector space corresponding to the isotropy

group (frame rotations) at πu, and the d-dimensional vector space HuO(M) is the
space of tangent vectors of horizontal curves passing through u.

For eachu ∈ O(M), let Hi (u)denote the unique horizontal vector lying in HuO(M)

such that

π∗Hi (u) = uei ,

where uei denotes the i th unit vector of the orthonormal frame u.
This framework provides an expressive way to define smooth elliptic diffusions

(and other semimartingale processes) on M , as follows.
Let b be a smooth vectorfield on M . This yields a natural vectorfield B on O(M)

given by

B(u) =
∑
i

bi (u)Hi (u), (55)

where bi (u) = 〈b(πu), uei 〉πu (here 〈·, ·〉 denotes the Riemannian inner product). We
will call this the lifted drift. Consider the following Stratonovich differential equation
on O(M):
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dUt =
∑
i

Hi (Ut ) ◦ dWi
t + B(Ut ) d t. (56)

where W is a d-dimensional Euclidean Brownian motion. The diffusion on M with
drift b is obtained simply as the projection Xt = πUt . The pivotal fact justifying
this construction is that we can define a second order operator on O(M) (Bochner’s
horizontal Laplacian) given by

�O(M) =
d∑

i=1

H2
i

such that the Laplace-Beltrami operator �M on M satisfies

�M f (x) = �O(M) f ◦ π(u)

for any u ∈ O(M) such that πu = x. The generator L of the diffusion X defined at
the start of Sect. 3 satisfies

L f (x) = 1

2
�M f (x) + b f (x) (57)

for any u ∈ O(M) such that πu = x, and any C2 test function f on M .
Note that, when b = 0, the above construction reduces to the classical Eells-

Elworthy-Malliavin construction of Brownian motion on M .

3.2 Couplings of diffusions on manifolds

Once we have the above construction, a natural question to ask is: when is there a
Markovian maximal coupling (MMC) for two copies of the diffusion starting from x0
and y0? In the Euclidean case there is a complete characterization of the class of time-
homogeneous diffusions under LPC, which is to say, when two copies of the diffusion
can bemaximally coupledwhenever they start from x ∈ B(x0, r) and y ∈ B(y0, r) (for
B(x0, r) and B(x0, r) chosen to be two arbitrary disjoint open balls in R

d ). Theorem
24 shows that the class of such diffusions is actually very small.

The proof of Theorem 24 depends strongly on a wealth of isometries of Euclid-
ean space arising via iterated reflections. Very few other d-dimensional Riemannian
manifolds have many isometries, and so we may expect an even stronger rigidity phe-
nomenon to hold for the geometry of (non-Euclidean) manifolds on which there is a
good supply of MMC. The work of this section substantiates this expectation.

We begin by recalling briefly some notions from the Euclidean case (Sect. 2). We
have noted that the Local Perturbation Condition LPC (Definition 1) makes sense
for any metric space, including the Riemannian manifold case. Let X and Y be two
copies of the elliptic diffusion derived from the stochastic differential equation (56),
and starting from x0 and y0 respectively. Note that the assumptions of ellipticity and
smoothness of the coefficients of L together ensure that the law of X (equivalently Y )
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has a smooth positive density with respect to the Riemannian volume measure m for
every positive time t > 0, which we write as p(x0; t, z), p(y0; t, z) for t > 0, z ∈ M .

We suppose that the standing assumptions of diffusion-geodesic completeness and
stochastic completeness both hold for the regular elliptic diffusion X , so that the
resulting Riemannian manifold M is geodesically complete and so that X stays on M
for all time. Thus from here on we are considering the case of Brownian motion with
non-explosive drift on a complete Riemannian manifold.

We note here that all the results in Sect. 1.1 carry over to the manifold setting
with (M, dist) being the Riemannian manifold (with the distance dist induced by the
Riemannian metric) and m taken to be the volume measure.

3.3 The interface

Varadhan small-time asymptotics and Lemma 3 can be used to show the following: that
the existence of anMMC implies that, for each time t , there is a deterministic involutive
isometry Ft which exchanges Xt with Yt and fixes the set of points equidistant from
both Xt and Yt . This generalizes the time-varying reflection isometry of Euclidean
space which is mentioned in Remark 11; the fixed-point set of Ft corresponds to the
‘evolving mirror’ of the Euclidean case.

The rôle of Varadhan’s small-time asymptotics in the following is analogous to the
rôle of Lemma 7 in the Euclidean case. This powerful technique gives the logarithmic
asymptotics of the density of Xt when t ↓ 0, as stated in the following lemma.

Lemma 31 Suppose that X satisfies the assumptions of both diffusion-geodesic com-
pleteness and stochastic completeness. Let M1 and M2 be compact subsets of M. Then
the density p of Xt satisfies the following:

lim
t↓0 2t log p(x; t, y) = − dist2(x, y) (58)

uniformly for all x, y ∈ M1×M2, where dist(x, y) is the Riemannian distance between
x and y.

This theoremwas proven by [39] for diffusion processes onEuclidean space. Later [29]
noticed that Varadhan’s arguments carry over to diffusions on closed manifolds whose
generators are of the form L = 1

2�M+b.Molchanov also showed that this result could
be extended to general smooth completemanifolds by introducing a reflected diffusion
in a suitably large domain U ⊂ M containing x and y, with the same generator L
inside, and using this process to define a natural diffusion on the ‘double’ U . He then
showed that smoothing techniques allowed the approximation of the ‘double’ U by
a smooth closed manifold, such that the diffusion thus defined has a density that is
sufficiently close to that of the original one [29, p. 18 and further references].

We can now restate the pivotal Theorem 10 from Sect. 2.1 in the new context of
manifolds. The proof of the manifold case follows that of the Euclidean case, but uses
Lemma 31 in place of Lemma 7, and uses the strong maximum principle (Lemma 9)
in local coordinates; we omit details.
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Theorem 32 Suppose that the standing assumptions of diffusion-geodesic complete-
ness and stochastic completeness both hold. For any (x, y) ∈ M(μs), and any s > 0,
the following equalities hold:

I (x0, y0, s) = H(x, y),

I−(x0, y0, s) = H−(x, y),

I+(x0, y0, s) = H+(x, y).

Let τ ′ = inf{s > 0 : Xs ∈ I (x0, y0, s)} be the first time that X hits the interface.
Then the following holds.

Corollary 33 Almost surely τ ′ = τ , so coupling occurs when X first hits the interface.
Furthermore, μ-almost surely, for all t < τ ,

I (x0, y0, t) = H(Xt ,Yt ), I−(x0, y0, t) = H−(Xt ,Yt ),

I+(x0, y0, t) = H+(Xt ,Yt ). (59)

Proof The proof follows the lines of the proof of Corollary 12. The only additional
detail that we have to check here (which was immediate in the Euclidean case) is that,
for any t > 0 with Xt �= Yt , any z ∈ H(Xt ,Yt ) and any rational sequence tn ↓ t ,
there is zn ∈ H(Xtn ,Ytn ) such that zn → z. This was used in Corollary 12 to show
H(Xt ,Yt ) ⊆ I (x0, y0, t)).

Recall the event E = ∩q∈QEq , where Eq was defined in (19). Assume
E holds. For notational convenience, denote H(Xt ,Yt ), Xt ,Yt by H, x, y and
H(Xtn ,Ytn ), Xtn ,Ytn by Hn, xn, yn respectively. Let γ : [0, 2 dist(x, z)] → M
denote the continuous curve such that γ |[0,dist(x,z)] is a minimal geodesic join-
ing x and z and γ |[dist(x,z),2 dist(x,z)] is a minimal geodesic joining z and y. As
M has no branching geodesics, it follows that dist(x, γ (s)) < dist(y, γ (s)) for
any s ∈ [0, dist(x, z)). Consequently for any δ > 0, by the compactness of
{γ (s) : s ∈ [0, dist(x, z) − δ]}, mins∈[0,dist(x,z)−δ](dist(y, γ (s)) − dist(x, γ (s))) > 0
and hence, mins∈[0,dist(x,z)−δ](dist(yn, γ (s)) − dist(xn, γ (s))) > 0 for sufficiently
large n. Thus, for sufficiently large n, γ (s) ∈ H−(xn, yn) = I−(x0, y0, tn) for all
s ∈ [0, dist(x, z)−δ] and consequently, mins∈[0,dist(x,z)−δ] α(tn, γ (s)) > 0. Similarly,
mins∈[dist(x,z)+δ,2 dist(x,z)] α(tn, γ (s)) < 0 for sufficiently large n. Thus, as E holds,
the continuity of α(tn, ·), implies that for sufficiently large n, there is zn ∈ γ ∩ Hn

such that zn → z. Asμ(E) = 1, this implies H(Xt ,Yt ) ⊆ I (x0, y0, t)) almost surely.
The rest of the proof carries over verbatim from that of Corollary 12. 	

The striking fact that emerges from the above is that, almost surely under the

coupling μ, for each s > 0, H(Xt ,Yt ) is a non-random set which depends only
on s and not on the specific location of (Xt ,Yt ). We will call this set Ht henceforth.
Similarly, denote H+

t = H+(Xt ,Yt ) and H−
t = H−(Xt ,Yt ). The family {Ht : t ≥ 0}

corresponds to the family of moving mirrors from Sect. 2.
We now follow [25]’s construction to define a deterministic global involutive isom-

etry Fs which fixes Hs and maps Xs to Ys under the coupling. The argument of [25,
Lemma 4.6] applies directly to our case: we therefore omit proof.
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Lemma 34 Suppose that the standing assumptions of diffusion-geodesic complete-
ness and stochastic completeness both hold. Take s ≥ 0. If x, y ∈ M, with x �= y,
satisfies

dist(x, z) = dist(y, z) (60)

for all z ∈ Hs, then (x, y) ∈ H+
s × H−

s ∪ H−
s × H+

s (so x and y lie in opposite
“half-manifolds”). Furthermore, for any x ∈ M, a point y ∈ M\{x} satisfying (60) is
unique if it exists.

Whenever such a y exists, we will call y the mirror image of x at time s. With the aid
of the above lemma, the isometry Fs is constructed using a procedure which is similar
to [25, Theorem 4.5], but is subject to some modification as described in the following
lemma and its proof.

Lemma 35 Suppose that the standing assumptions of diffusion-geodesic complete-
ness and stochastic completeness both hold. Assume (X,Y ) is a Markovian maximal
coupling with starting points x0 and y0. Then, for each s ∈ [0, τ ), there is a determin-
istic involutive isometry Fs with fixed point set Hs such that Ys = Fs(Xs), furthermore
Fs(H−

s ) = H+
s .

Proof Define the set

As = {x ∈ M : there exists y ∈ M\{x} such that (60) holds} .

For x ∈ As , define Fs(x) to be the unique y for which (60) holds. For x ∈ Hs , define
Fs(x) = x. Following the proof of [25, Theorem 4.5], the set Âs = As ∪ Hs is closed.
Furthermore, by Theorem 32 and Lemma 2, on the event [0 < s < τ ] the support of
Xs (equivalently Ys) is the whole of H−

s (respectively H+
s ). This, by Lemma 3 and

Theorem 32, implies Âs = M for all s > 0.
A little more argument is required for s = 0. By Theorem 32, Lemmas 31 and 2,

for any x ∈ H−
0 , there is a sequence tn ↓ 0 and xn → x such that xn ∈ Atn with

yn ∈ M being its mirror image at time tn , for all n. Take any z0 ∈ H0. Following the
proof of Corollary 33, for sufficiently large n, there is zn ∈ Htn such that zn → z0.
As dist(xn, zn) = dist(yn, zn), it follows that the set of distances {dist(z0, yn)}n≥1 is
bounded. Consequently the properness of M implies that there is a subsequence {nk}
such that ynk → y for some y ∈ M . Now, for any z ∈ H0, take z′

n ∈ Htn such that
z′
n → z. Thus,

dist(y, z) = lim
k→∞ dist(ynk , z

′
nk )

= lim
k→∞ dist(xnk , z

′
nk ) = dist(x, z).

This implies Â0 = M . Note that, by Lemma 34, the limit y is uniquely determined by
x and H0, and thus, does not depend on the subsequence chosen. This implies yn → y.
Define F0(x) = y.
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Thus Fs is defined on the whole of M for every s ≥ 0. Continuity of Fs for
s ≥ 0 follows exactly along the lines of the proof of continuity of the map R in [25,
Theorem 4.5]. Further, by definition, Fs is involutive. Thus, in particular, Fs is an open
map.

To prove that Fs is, in fact, an isometry, we have to modify the proof of [25,
Lemma 5.3] appropriately, as we outline in the following.

First, consider s > 0. If x, y ∈ Hs or x ∈ H−
s , y ∈ H+

s , then dist(x, y) =
dist(Fs(x), Fs(y)) follows from the definition of Fs . So, assume x, y ∈ H−

s . Take
δ > 0 small enough such that

B(x, δ) ⊂ H−
s , B(y, δ) ⊂ H−

s , B(Fs(x), δ) ⊂ H+
s , B(Fs(y), δ) ⊂ H+

s .

Let

V1 = B(x, δ) ∩ Fs(B(Fs(x), δ)), V2 = B(y, δ) ∩ Fs(B(Fs(y), δ)), U2 = B(y, δ/2)

∩ Fs(B(Fs(y), δ/2)).

For t > 0, by the strong Markov property, Corollary 33 and Lemma 2, we have

μ(Xs+t ∈ U2, Xs ∈ V1, τ > s + t)

=
∫
V1

α+(s, z)
{∫

U2

(p(z; t,w) − p(Fs(z); t,w))m(dw)

}
m(dz). (61)

Similarly,

μ(Ys+t ∈ Fs+t (U2),Ys ∈ Fs(V1), τ > s + t)

=
∫
Fs (V1)

α−(s, z)
{∫

Fs+t (U2)

(p(z; t,w) − p(Fs(z); t,w))m(dw)

}
m(dz). (62)

Observe that if z,w ∈ H−
s or z,w ∈ H+

s , then dist(z,w) < dist(Fs(z),w). To see
this, let γ be the minimal geodesic joining w and Fs(z) and let z0 ∈ γ ∩ Hs . Then

dist(z,w) ≤ dist(z, z0)+dist(z0,w)=dist(Fs(z), z0)+dist(z0,w)=dist(Fs(z),w).

If equality holds in the first inequality above, then we can take a minimal geodesic
joining z and w that branches from γ at z0 which gives a contradiction.

Next, we claim that there is ε > 0 such that for t ∈ [0, ε], Ft+s(U2) ⊆ Fs(V2).
Suppose not. Then there is a sequence tn ↓ 0 and xn ∈ U2 such that yn = Fs+tn (xn) ∈
Fs(V c

2 ). As U2 is bounded, we obtain a subsequence nk such that xnk → xo ∈ U2 as
k → ∞. Take any zo ∈ Hs . Following the proof of Corollary 33, for sufficiently large
n, there is zon ∈ Hs+tn such that zon → zo. As dist(xnk , z

o
nk ) = dist(ynk , z

o
nk ),

dist(ynk , z
o) ≤ dist(ynk , z

o
nk ) + dist(zonk , z

o) = dist(xnk , z
o
nk ) + dist(zonk , z

o)

≤ dist(xnk , x
o) + dist(xo, zo) + 2 dist(zonk , z

o).
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Thus, ynk is bounded and we can extract a further subsequence nkl such that ynkl → yo

as l → ∞. As Fs is a bijective open map, Fs(V c
2 ) is closed and hence, yo ∈ Fs(V c

2 ).
Now, take any z ∈ Hs . Taking a sequence znkl ∈ Hs+tnkl

such that znkl → z, we
observe

dist(xo, z) = lim
l→∞ dist(xnkl , znkl ) = lim

l→∞ dist(ynkl , znkl ) = dist(yo, z).

By Lemma 34, yo = Fs(xo), which gives a contradiction as xo ∈ U2 ⊆ V2 but
yo ∈ Fs(V c

2 ). The claim follows from this.
The above two observations along with Lemma 31 applied to (61) and (62) yield

lim
t↓0 2t log

[
μ(Xs+t ∈ U2, Xs ∈ V1, τ > s + t)

]

= − inf
z∈V1,w∈U2

dist2(z,w),

lim sup
t↓0

2t log
[
μ(Ys+t ∈ Fs+t (U2), Xs ∈ Fs(V1), τ > s + t)

]

≤ − inf
z∈V1,w∈V2

dist2(Fs(z), Fs(w)).

Since the left hand side of (61) is the same as that of (62), we take δ ↓ 0 above to get

dist(x, y) ≥ dist(Fs(x), Fs(y)).

As Fs is involutive, applying a symmetric argument with x, y replaced by Fs(x), Fs(y)
yield the opposite inequality. Hence, dist(x, y) = dist(Fs(x), Fs(y)) for all x, y ∈ M .
Thus, Fs is an isometry for every s > 0.

Finally, consider the case s = 0. Again, for x, y ∈ H0 or x ∈ H−
0 , y ∈ H+

0 ,
dist(x, y) = dist(F0(x), F0(y)) follows from the definition of F0. For x, y ∈ H−

0 ,
by the same procedure used to define F0 earlier in the proof, we obtain sequences
tn ↓ 0 and xn ∈ H−

tn and yn ∈ H+
tn such that xn → x, yn → y, Ftn (xn) → F0(x) and

Ftn (yn) → F0(y). Thus,

dist(F0(x), F0(y)) = lim
n→∞ dist(Ftn (xn), Ftn (yn)) = lim

n→∞ dist(xn, yn) = dist(x, y),

which proves that F0 is an isometry.
Now, Fs(H−

s ) = H+
s follows from Lemma 34. This completes the proof of the

lemma. 	

Following [32, Chapter 10, Proposition 24], as Hs is the fixed point set of an isom-

etry therefore each connected component of Hs is a totally geodesic submanifold (in
particular, a smooth submanifold). Furthermore, as Hs partitions M into two disjoint
open subsets, it can be verified (for example by referring to normal coordinates based
around a point in Hs) that Hs must be of codimension 1. Furthermore, this discussion
also implies that for any x, y ∈ M there is at most one isometry whose set of fixed
points is the set H(x, y). We will refer to this isometry, if it exists, as fx,y. In fact
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Lemmas 34 and 35 together imply that for any s ≥ 0 there does indeed exist such a
fx,y for each (x, y) ∈ M(μs), given by

fx,y = Fs .

To get an intuitive picture of how Fs acts locally around a point x∗ ∈ Hs (hence, fixed
by Fs), recall that

d Fs : Tx∗M → Tx∗M

is a linear isometry. We can form an orthonormal basis e1, . . . ed of Tx∗M such that
e1, . . . , ed−1 form a basis of the tangent space Tx∗ Hs viewed as a subspace of Tx∗M .
Because Hs is totally geodesic, these vectors correspond to geodesics through x∗ that
stay in Hs . As Hs is the fixed point set of Fs , the basis vectors e1, . . . , ed−1 must be
fixed by d Fs , while ed is mapped by d Fs to −ed . Thus, locally, one geodesic passing
through x∗ is inverted by Fs , while geodesics starting in directions orthogonal to the
inverted geodesic are fixed by Fs .

3.4 Structure of the manifold M

In this section,wewill use the isometries fx,y constructed above for every pair of points
x ∈ B(x0, r) and y ∈ B(y0, r) to show that the underlying complete Riemannian
manifold M is homogeneous (i.e. the isometry group acts transitively) and isotropic
about a chosen point x∗ (i.e. there are d(d−1)

2 independent rotations about x∗). This will
imply that M is a maximally symmetric space, i.e. the isometry group G of M has the
maximal dimension possible (namely, d(d+1)

2 ) for any d-dimensional manifold. It is
an almost immediate consequence that the space M can be classified (up to scaling) as
one of the three model space forms of constant curvatures respectively −1, 0, and +1.

Lemma 36 Suppose that the standing assumptions of diffusion-geodesic complete-
ness and stochastic completeness both hold. Under LPC, (M, g) is a homogeneous
space.

Proof We want to show that G acts transitively on M . Together with LPC, the work
of the previous subsection shows that for each x ∈ B(x0, r) and y ∈ B(y0, r), there
exists an involutive isometry fx,y. This implies that, for any x ∈ B(x0, r), there is an
isometry Gx0,x = fy0,x ◦ fx0,y0 which takes x0 to x. Consider the set of isometries

I = {Gx0,x : x ∈ B(x0, r)}.

LetH be the closure of the subgroup generated by I, soH is a closed subgroup of G.
Denote byO(x0), the orbit or set of equivalent points of x0 underH. By construction,
B(x0, r) ⊆ O(x0). In order to prove that M is homogeneous, we need to prove
O(x0) = M , which we will show by proving thatO(x0) is both open and closed in M .
Let z be a limit point of O(x0). Then, there is a sequence of isometries Gn ∈ H such
that Gn(x0) → z. By [30, p. 7], there exists an isometry G ∈ H and a subsequence
Gnk ∈ H such that Gnk → G in the topology of isometries (i.e. Gnk (x) → G(x)
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for all x ∈ M), and consequently, G(x0) = z. This shows that O(x0) is closed. On
the other hand, if y ∈ O(x0), then there is an isometry G ∈ H such that y = G(x0).
Therefore, B(y, r) = G (B(x0, r)) ⊆ O(x0) (as B(x0, r) ⊆ O(x0)) implying O(x0)
is open. Thus, O(x0) = M , proving the lemma. 	


In the following lemma, we will write x∗ for the midpoint of a minimal geodesic
γx0,y0 connecting x0 and y0. If two vectors u, v belong to the same tangent space then
we denote the angle between them by � (u, v).

Lemma 37 Suppose that the standing assumptions of diffusion-geodesic complete-
ness and stochastic completeness both hold. Under LPC, M is isotropic at x∗.

Proof Let γ (v) denote the geodesic issuing from x∗ in direction v. Suppose γ (v0) =
γx0,y0 , thus defining a unit vector v0. The proof proceeds in three steps as follows.

Step 1. First, we want to show that there is ε > 0 such that, for any v ∈ Tx∗M with
� (v, v0) < ε, there is an isometry gv leaving x∗ fixed and d gv(v0) = v.

By continuity of geodesics in the starting direction, we can choose ε > 0 suffi-
ciently small so that γ (v′) intersectsB(x0, r) and γ (−v′) intersectsB(y0, r)whenever
� (v′, v0) < ε. By [32, Proposition 20, p. 141], with a possibly smaller choice of ε > 0,
we can take xv′ ∈ γ (v′) ∩ B(x0, r) and yv′ ∈ γ (−v′) ∩ B(y0, r) such that γ (v′)
realises the distance dist(x∗, xv′) and γ (−v′) realises the distance dist(x∗, yv′). Fur-
thermore, by continuity of the metric, when ε > 0 is small enough, we can take such
xv′ , yv′ satisfying dist(xv′ , x∗) = dist(yv′ , x∗) whenever � (v′, v0) < ε. Thus, from
the developments of the previous subsection, there is an involutive isometry fxv′ ,yv′
which fixes x∗, inverts the geodesic passing through x∗ in direction v′, and fixes all
the geodesics which pass through x∗ in directions orthogonal to v′.

Now, take any unit vector v ∈ Tx∗M with � (v, v0) < 2ε. Let v′ = v+v0|v+v0| . By
the properties of rhombuses, � (v′, v0) = 1

2
� (v, v0) < ε, and thus fxv′ ,yv′ exists as

specified in the preceding paragraph. Now, consider the isometry gv = fxv′ ,yv′ ◦ fx0,y0 .
Note that gv fixes x∗ and a straightforward calculation reveals d gv(v0) = v. This gv

is our required isometry.

Step 2. Take any unit vector w ∈ Tx∗M such that w and v0 are linearly independent.
Let � be the two-dimensional subspace of Tx∗M generated by v0 and w and denote
by S(v0, w) the circle in Tx∗M centred at the origin of Tx∗M and running through v0
and w. LetU be a normal neighbourhood around x∗. Let S� = expx∗(�) ∩ U denote
the two-dimensional fragment of M corresponding to � and lying in U .

Denote by H(v0, w) the closed subgroup of isometries generated by {gv : v ∈
S(v0, w),

� (v, v0) < ε}, where gv are the isometries constructed in Step 1. Note that the set
{gv : v ∈ S(v0, w),

� (v, v0) < ε}, and henceH(v0, w), fixes x∗ and keeps vectors orthogonal to {v0, w}
fixed. Let

O(v0) = {dg(v0) : g ∈ H(v0, w)}.

We want to show that O(v0) = S(v0, w).
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Note that, if vn = d gn(v0) such that vn → v, then, by the fact that gn(x∗) = x∗
for all n, we can choose a subsequence gnk and a g ∈ H(v0, w) such that gnk → g
in the topology of isometries [30, p. 7]. Thus, by [30, Lemma 4], dgnk (v0) → dg(v0)
implying O(v0) is closed. Furthermore, if g ∈ H(v0, w) then dg is a linear isometry
on Tx∗M . So the same argument as in the previous lemma shows that O(v0) is open.
Thus, O(v0) = S(v0, w).

Thus, in particular, the subgroup of isometries Gx∗ which fix x∗ (the isotropy group
at x∗) generates all the rotations of Tx∗M based at x∗ in 2-planes containing v0. We
describe the isometries in H(v0, w) as rotations in S(v0, w).

Step 3.Wewill now show that, given two ordered orthonormal frames based at Tx∗M ,
there is a sequence of isometries in Gx∗ that take one to the other. In particular this
implies that M is isotropic at x∗. Let (e1, . . . , ed) and (e′

1, . . . , e
′
d) be ordered ortho-

normal frames in Tx∗M . We can apply rotations in S(v0, e1) (respectively S(v0, e′
d)) to

align e1 with v0 (respectively e′
d with v0). Thus, without loss of generality, we consider

frames of the form (v0, e2, . . . , ed) and (e′
1, . . . , e

′
d−1, v0).

Now, apply a rotation in S(v0, e′
1) to transform (v0, e2, . . . , ed) to (e′

1, e
(1)
2 . . . , e(1)

d )

for some unit vectors e(1)
2 , . . . , e(1)

d in Tx∗M . If v0 and e(1)
2 are linearly independent,

then apply a rotation in S(v0, e
(1)
2 ), to bring (e′

1, e
(1)
2 , . . . , e(1)

d ) to (e′
1, v0, e

(2)
3 , . . . ,

e(2)
d ). If e(1)

2 = −v0, then achieve the same result using the reflection fx0,y0 . Note that

these operations both keep e′
1 fixed as it is orthogonal to {v0, e(1)

2 }.
The same procedure is applied inductively to (e′

1, v0, e
(2)
3 , . . . , e(2)

d ) to obtain

(e′
1, e

′
2, v0, e

(4)
4 , . . . , e(4)

d ) (note that these operations leave e′
1 fixed), and so on. Finally

we obtain (e′
1, . . . , e

′
d−1, v0), which proves the lemma. 	


The above two lemmas imply the following rigidity theorem which completely
classifies the space M .

Theorem 38 Suppose that the complete, connected Riemannianmanifold M supports
Brownian motion with drift for which there is a Markovian maximal coupling and
moreover LPC holds. Then M has constant sectional curvature. Moreover M must
be simply connected and therefore (up to scaling) M must be one of the three model
spaces Rd , Sd and H

d .

Proof By Lemmas 36 and 37, we see that M is a maximally symmetric space, i.e.,
the dimension of Iso(M) is d(d+1)

2 [36, p. 195]. In particular, this implies that M
has constant sectional curvature [32, p. 190]. For the second part of the corollary,
the argument of [32, p. 190] shows that a complete, connected maximally symmetric
Riemannian manifold must be one of the three model spaces above, or RPd . But, as
observed in [25, Example 6.4], there is no involutive isometry of RPd of the form
described in Lemma 35. This proves the theorem. 	

Remark 39 For the three model spaces described above, for every x, y ∈ M , the
reflection isometry fx,y, and hence the set of its fixed points H(x, y), can be explicitly
described (see, for example, [24, Example 4.6]). It follows from this explicit descrip-
tion that the submanifold H(x, y) with the induced metric is again one of the three
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model spaces with the same curvature as the ambient manifold M and having codi-
mension one.

3.5 Evolution of the mirror isometries

Having classified the space M , we must now classify the set of drift vectorfields
b which permit MMC with LPC. This necessitates analysis of the evolution of the
isometries Fs as s varies. As noted above, [30] proved that the set of isometries G has
the structure of a Lie group. The first objective is to prove that the curve of isometries
(Fs : s ≥ 0) is a C1 curve in this Lie group.

Lemma 40 Suppose that the standing assumptions of diffusion-geodesic complete-
ness and stochastic completeness both hold. The curve s → Fs is a C1 curve in the
Lie group G.

Proof Recall that any point in M has a neighbourhood, called a σ -neighbourhood,
such that any point in this neighbourhood is in a normal coordinate ball of any other
point in the same neighbourhood.We study continuity and continuous differentiability
of (Fs : s ≥ 0) at s = t . As we are investigating a local property, we work in two
separate sets of normal coordinates; one set describing a σ -neighbourhood U around
x and the other set describing another σ -neighbourhood V around Ft (x) such that
Ft (U ) ⊂ V .

The first step is to prove that s → Fs is continuous in G at s = t < τ . To show
this, it suffices to show that any set of d + 1 points xi ∈ M , all of which lie in a
σ -neighbourhood and are linearly independent (i.e. do not belong in the same (d−1)-
dimensional geodesic hypersurface), produces continuous curves s → Fs(xi ) in M
[30]. We note here that we can obtain such a set of d + 1 points in any dense subset of
any open set in M . To show the continuity of these curves, we will use the continuity
of the diffusion paths and the fact that, by Corollary 33, Ys = Fs(Xs) when s < τ .

Define the new distance

dist(x, y) = dist(x, y)
1 + dist(x, y)

for x, y ∈ M . Note that dist(·, ·) is bounded and it defines a distance that produces
the same topology on M as dist(·, ·) does. Now, take any sequence {sn}n≥1 with
limn→∞ sn = t . Then,

lim sup
n→∞

E
[
dist(Fsn (Xt ), Ft (Xt ))I(τ > t)

]

≤ lim sup
n→∞

E
[
dist(Fsn (Xt ), Fsn (Xsn ))I(τ > t)

]

+ lim sup
n→∞

E
[
dist(Fsn (Xsn ), Ft (Xt ))I(τ > t)

]

= lim sup
n→∞

E
[
dist(Xt , Xsn )I(τ > t)

]+ lim sup
n→∞

E
[
dist(Ysn ,Yt )I(τ > t)

] = 0.
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Here, the equality in the second step follows from the fact that Fsn is an isometry,
Ys = Fs(Xs) when s < τ , and the dominated convergence theorem. The last equality
follows from the path continuity of X and Y and another application of the dominated
convergence theorem. Thus, dist(Fsn (x), Ft (x)) converges to zero in L1 with respect
to the law of Xt restricted on {τ > t}. Hence, we can extract a subsequence nk such
that Fsnk converges to Ft almost everywhere with respect to the same measure. As the

law of Xt restricted on {τ > t} has full support on H−
t , therefore the set of x ∈ H−

t for
which Fsnk (x) → Ft (x) is a dense subset of H

−
t . Hence, by the previous discussion,

Fsnk → Ft in G. As the limit does not depend on the chosen subsequence nk , we
conclude that Fsn → Ft in G, proving continuity of s → Fs .

It is necessary to address the question of right-continuity at t = 0. Take x ∈ H−
0

and consider the case when tn ↓ 0. Take a sequence xn → x such that xn ∈ H−
tn .

An argument following the treatment of the case s = 0 in the proof of Lemma 35
shows that Ftn (xn) → F0(x). As Ftn is an isometry for each n, we can deduce that
Ftn (x) → F0(x), thus proving right-continuity.

The next step is to prove differentiability at t > 0. With σ -neighbourhoods U , V
of x, Ft (x) as described above, let τU = inf{s ≥ t : Xs /∈ U }. Because the coupling is
Markovian, τU is a stopping timewith respect to the filtration generated by the coupling
process (X,Y ). Consider the stopped processes XU

s = Xs∧τU and YU
s = Ys∧τU . In a

slight abuse of notation, we use the same notation XU
s for the coordinate representation

for this stopped process in U , and similarly for YU
s . Also we continue to write Fs for

the coordinate representation of Fs : U → V .
By Lemma 8 of [30] it suffices to prove differentiability at t of the continuous

curve s → Fs(x) for x ∈ H−
t such that (x, Ft (x)) ∈ M(μt ). Take U , V and normal

coordinate systems for x and Ft (x) as above. Using these coordinates, we may write
the stochastic differential equation for XU as

d XU,i
s = bi

(
XU
s

)
d s +

d∑
j=1

σ i, j
(
XU
s

)
dW j

s

for some Brownian motion W in U . A similar expression holds for YU with biF and

σ
i, j
F representing the corresponding quantities. General properties of diffusions [31,

Chapter 11] yield the following expressions in coordinate form:

bi (x) = lim
s↓t E

[
XU,i
s − xi

s − t

∣∣∣∣ XU
t = x

]
,

σ i, j (x) = lim
s↓t E

⎡
⎣
(
XU,i
s − xi

) (
XU, j
s − x j

)

s − t

∣∣∣∣ XU
t = x

⎤
⎦ ,

biF (Ft (x)) = lim
s↓t E

[
YU,i
s − Fi

t (x)
s − t

∣∣∣∣ YU
t = Ft (x)

]
. (63)
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By Corollary 33, Ys = Fs(Xs) when s < τ . Thus, we can write

E

[
Fi
s

(
XU
s

)− Fi
t (x)

s − t

∣∣∣∣ YU
t = Ft (x)

]

= E

[
Fi
s

(
XU
s

)− Fi
s (x)

s − t

∣∣∣∣ XU
t = x

]
+ Fi

s (x) − Fi
t (x)

s − t
. (64)

The third expression in (63) gives

lim
s↓t E

[
Fi
s

(
XU
s

)− Fi
t (x)

s − t

∣∣∣∣ YU
t = Ft (x)

]
= biF (Ft (x)) .

As s → Fs is a continuous curve in G, we may deduce by [30, Lemma 7] that the
(space) derivatives of Fs are continuous in s. By a Taylor expansion of Fs in U based
at x and (63),

lim
s↓t E

[
Fi
s

(
XU
s

)− Fi
s (x)

s − t

∣∣∣∣ XU
t = x

]

= lim
s↓t

⎛
⎝ d∑

j=1

∂ j F
i
s (x)E

[
XU, j
s − x j

s − t

∣∣∣∣ XU
t = x

]

+ 1

2

d∑
j=1

d∑
k=1

∂ j,k F
i
s (x)E

⎡
⎣
(
XU, j
s − x j

) (
XU,k
s − xk

)

s − t

∣∣∣∣ XU
t = x

⎤
⎦+ o(1)

⎞
⎠

=
d∑
j=1

∂ j F
i
t (x)b

j (x) + 1

2

d∑
j=1

d∑
k=1

∂ j,k F
i
t (x)σ

j,k(x).

Thus, from (64), we deduce that the curve s → Fs(x) has a continuous right-derivative
given by

lim
s↓t

Fi
s (x) − Fi

t (x)
s − t

= biF (Ft (x)) −
d∑
j=1

∂ j F
i
t (x)b

j (x)

− 1

2

d∑
j=1

d∑
k=1

∂ j,k F
i
t (x)σ

j,k(x). (65)

This, together with [4, Theorem 1.3], implies uniformly continuous differentiability
of s → Fs(x) at t > 0. Note that the Mean Value Theorem and right-continuity of the
right hand side of (65) now gives us right-differentiability at t = 0. This proves the
lemma. 	
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Corollary 41 All the partial derivatives with respect to x of (s, x) → Fs(x) are
continuously differentiable in s. Furthermore, d

d s

∣∣
s=t Fs(x) is smooth in x.

Proof Using the argument of [30, Section 8], we can deduce the following represen-
tation in local coordinates (xi ):

Ft (x
1, . . . , xd) = �(x1, . . . , xd , Ft (x0), . . . , Ft (xd)),

where � is a smooth function and x0, . . . , xd are fixed points in M . The corollary
follows from this representation and the previous lemma. 	


The derivative vectorfield κ defined on M by

κ(x) = d

d s

∣∣∣∣
s=0

Fs(F0(x))

possesses a special significance. This is theKilling vectorfield corresponding to theC1

curve s → Gs in G given by Gs(x) = Fs(F0(x)) for x ∈ M . Vectorfields of this form
correspond to the natural action of elements in the Lie algebra of G on the manifold
M (recall that F0 ◦ F0 is the identity map, and the Lie algebra of G corresponds to the
tangent space of G at the identity). Killing vectorfields will play a crucial rôle in the
following subsections.

3.6 Structure of the coupling

The processes X and Y can be constructed as projections Xt = πUt and Yt = πŨt ,
where U and Ũ are solutions to Stratonovich stochastic differential equations which
are defined on the orthonormal frame bundle O(M) by

dUt =
∑
i

Hi (Ut ) ◦ dWi
t + B(Ut ) d t,

d Ũt =
∑
i

Hi (Ũt ) ◦ d W̃ i
t + B(Ũt ) d t, (66)

for d-dimensional Euclidean Brownian motions W and W̃ and the vectorfield and the
lifted drift vectorfield B given by (55).

Any isometry F on M has a natural lift to a smooth mapping F̂ : O(M) → O(M),
given by

F̂(πu, ue1, . . . , ued) = (F(πu), d F(ue1), . . . , d F(ued)). (67)

The following lemma shows that F̂ respects the structure of horizontal vectorfields on
O(M).
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Lemma 42 Let F be an isometry on M and let F̂ be the lift toO(M) as defined above.
For 1 ≤ i ≤ d and u ∈ O(M),

d F̂(Hi (u)) = Hi (F̂(u)).

Proof Let γ be the unit speed geodesic in M starting from πu in direction uei , defined
on some interval [0, ε] for some ε > 0. For each 1 ≤ j ≤ d, let u j

t denote the parallel
transport of ue j along γ . Define the curve γ u in O(M) given by

γ u(t) = (γt , u
1
t , . . . , u

d
t )

for t ∈ [0, ε]. As the covariant derivative commutes with the push-forward of vector
fields by isometries [26, Proposition 5.6], for each 1 ≤ j ≤ d, d F(u j

t ) provides a
parallel transport of d F(ue j ) along F ◦ γt . Hence,

γ F̂(u)(t) = F̂ ◦ γ u(t) =
(
F ◦ γt , d F

(
u1t
)

, . . . , d F
(
udt
))

.

Now (γ u)′(0) = Hi (u). Thus

d F̂(Hi (u)) = d F̂((γ u)′(0)) = (F̂ ◦ γ u)′(0) = (γ F̂(u))′(0)
= Hi (F̂(u)),

proving the lemma. 	

The stochastic differential equation (66) for U delivers a diffusion V on O(M)

given by

Vt = F̂t (Ut ),

where Ft is the time-varying deterministic involutive isometry constructed in previous
subsections. Note that this automatically implies Yt = Ft (Xt ) = πVt on t < τ . Thus,
V lifts Y up to the orthonormal frame bundle O(M). We now derive the stochastic
differential equation for V .

From [20, Equation (2.3)] it follows that

d Vt =
∑
i

(d F̂t (Hi (Ut ))) ◦ dWi
t + d F̂t (B(Ut )) d t + χ̂t (Ut ) d t, (68)

where

χ̂t (u) = d

d s

∣∣∣∣
s=t

F̂s(u)

exists by Lemma 40 and Corollary 41.
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Lemma 42 implies that

d F̂t (Hi (Ut )) = Hi (F̂t (Ut )) = Hi (Vt ),

and

d F̂t (B(Ut )) =
∑
i

bi (Ut ) d F̂t (Hi (Ut )) =
∑
i

bi (F̂t (Vt ))Hi (Vt )

where we have used Lemma 42 and the fact that F̂t
2 = Id in the last step.

Thus, the stochastic differential equation for V takes the form

d Vt =
∑
i

Hi (Vt ) ◦ dWi
t +

∑
i

bi (F̂t (Vt ))Hi (Vt ) d t + χ̂t (F̂t (Vt )) d t. (69)

Considering differentiation along the curve γ u introduced in the proof of Lemma 42,
it can be seen that

dπ(Hi (u)) = uei .

Also, as Ft is an involutive isometry,

bi (F̂t (Vt )) = 〈b(Ft (Yt )), d Ft (Vtei )〉Ft (Yt ) = 〈d Ft (b(Ft (Yt )), Vtei 〉Yt
= 〈Ft∗b(Yt ), Vtei 〉Yt ,

where Ft∗b is the pushforward of the vectorfield b on M by the isometry Ft .
Finally, writing

χt (x) = d

d s

∣∣∣∣
s=t

Fs(x)

for x ∈ M , note that, for u ∈ O(M) and a smooth function f : M → R,

d π(χ̂t (u))( f ) = d

d s

∣∣∣∣
s=t

( f ◦ π ◦ F̂s)(u) = d

d s

∣∣∣∣
s=t

f (Fs(π(u)))

= χt (πu)( f ).

Thus, writing

κt (x) = χt (Ft (x)) (70)

for x ∈ M , we obtain

d π(χ̂t (F̂t (u))) = κt (πu).
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Note that κt is the Killing vectorfield corresponding to the C1 curve of isometries
(Fs ◦ Ft : s ≥ t), as introduced at the end of Sect. 3.5.

Using the above relations, we can project down the stochastic differential equation
(69) for V onto M as follows.

d Yt =
∑
i

d π(Hi (Vt )) ◦ dWi
t +

∑
i

bi (F̂t (Vt )) d π(Hi (Vt )) d t

+ d π(χ̂t (F̂t (Vt ))) d t

=
∑
i

Vt ei ◦ dWi
t +

∑
i

〈Ft∗b(Yt ), Vtei 〉Yt Vt ei d t + κt (Yt ) d t

=
∑
i

Vt ei ◦ dWi
t + Ft∗b(Yt ) d t + κt (Yt ) d t.

From the above expression, we see that the generator of Y at (t, x) is

L = 1

2
�M + Ft∗b(x) + κt (x).

Comparing this with (57), we deduce the following important relation:

Theorem 43 Suppose that the standing assumptions of diffusion-geodesic complete-
ness and stochastic completeness both hold. For aMarkovianmaximal coupling (X,Y )

to exist from starting points (x0, y0), the following relation must hold:

b(x) = Ft∗b(x) + κt (x) (71)

for all x ∈ M and t ≥ 0, where (Fs : s ≥ 0) is the C1 curve of isometries introduced
in Lemma 35.

Remark 44 If b = 0 in the above theorem, we get κt (x) = 0 for all x ∈ M and all
t ≥ 0. In particular, κt (Ft (x)) = 0, which by (70) gives

d

d s

∣∣∣∣
s=t

Fs(x) = 0

for all x ∈ M and all t ≥ 0. Thus, Ft ≡ F0 for all t ≥ 0. As Ht is precisely the set of
fixed points of Ft , we deduce that the mirror Ht does not depend on time t . This was
also proved in [25, Proposition 4.2].

3.7 Classification of the drift

Finally it is possible to produce a complete characterization of the drift b under LPC.
Recall that M can only be a scaled version of one of the model spaces Sd , Hd or Rd

corresponding to the curvature K being constant and equal to +1, −1, or 0.
For this section, special attention is paid to the Eq. (71) at time 0. When the context

makes it plain there is no ambiguity, we will write F for F0 and κ for κ0.
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Let ∇ represent the covariant derivative with respect to the Riemannian connection
compatible with the metric g. We will need the following useful fact about Killing
vectorfields [32, Prop. 27].

Lemma 45 If κ is a Killing vectorfield, then for any x ∈ M and any u ∈ TxM,

〈∇uκ(x), u〉 = 0 (72)

Isometries take geodesics to geodesics, so any Killing vectorfield is a Jacobi field,
i.e. the variation field of a variation through geodesics. Thus, Killing vectorfields
satisfy the Jacobi equation, as given by the following lemma [26, Theorem 10.2].

Lemma 46 Let κ be a Killing vectorfield. Then κ satisfies the Jacobi equation along
any (unit speed) geodesic γ :

∇γ̇ ∇γ̇ κ + R(κ, γ̇ )γ̇ = 0. (73)

Because of Theorem 38, we can confine attention to the case when M is of constant
curvature K , in which case there is a simple representation for the curvature tensor R
[26, Lemma 8.10]:

R(X,Y )Z = K (〈Y, Z〉X − 〈X, Z〉Y ). (74)

We now define the symmetric 2-form associated with the drift vectorfield b: for
u, v ∈ TxM ,

Sx(u, v) = 1

2
(〈∇ub, v〉 + 〈∇vb, u〉) . (75)

The following lemma describes this symmetric 2-form Sx under LPC.

Lemma 47 Suppose that the standing assumptions of diffusion-geodesic complete-
ness and stochastic completeness both hold. Under LPC, there is a scalar λ such that,
for all x ∈ M and all u, v ∈ TxM,

Sx(u, v) = λ〈u, v〉.

Proof Recall that x∗ is the midpoint of a minimal geodesic connecting x0 and y0.
Let {e1, . . . , ed} denote the canonical orthonormal frame of Tx∗M . From previous
discussions, F ‘inverts’ one geodesic through x∗ (the minimal geodesic joining x0
and y0) and keeps all geodesics orthogonal to this one fixed. Let n ∈ Tx∗M denote the
direction of the inverted geodesic.

Now, consider any isometry G that satisfies

b(x) = G∗b(x) + κ(x) (76)

for some Killing vectorfield κ , for all x ∈ M . Then, it follows that for any x ∈ M and
u, v ∈ TxM ,
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〈∇ub(x), v〉 = 〈∇u(G∗b)(x), v〉 + 〈∇uκ(x), v〉
= 〈∇dG−1(u)b(G−1(x)), dG−1(v)〉 + 〈∇uκ(x), v〉

which, along with Lemma 45, yields

Sx(u, v) = SG−1(x)(dG
−1(u), dG−1(v)). (77)

In particular, Eq. (71) at time t = 0 gives

Sx∗(u, v) = Sx∗(d F(u), d F(v)). (78)

where (78) follows from (77) by noting that F fixes x∗ and F−1 = F . Let S(x∗)
denote the matrix

(S(x∗))i j = Sx∗(ei , e j ).

Using the description above of F as ’inverting’ the geodesic with tangent vector n at
x∗, and leaving orthogonal geodesics at x∗ fixed, (78) yields

S(x∗) = (I − 2nn�)S(x∗)(I − 2nn�). (79)

By LPC, we can choose d pairs of starting points {(xi , yi ) : xi ∈ B(x0, r), yi ∈
B(y0, r), 1 ≤ i ≤ d} such that the directions of the inverted geodesics ni (for
1 ≤ i ≤ d) based at x∗ form d linearly independent vectors in Tx∗M and ni is not
orthogonal to n j for any i �= j . Now, noting from Eq. (79) that ni are eigenvectors of
S(x∗), we find

S(x∗) = λ(x∗)I (80)

for some scalar λ(x∗). In coordinate-free terms, this is the assertion of the lemma at
point x∗.

Now, we want to show that the assertion of the lemma holds at any x ∈ M . Denote

Z = {G ∈ G : G satisfies (76) for some Killing vectorfield κ and all x ∈ M}.

Recall that (77) holds for all G ∈ Z . Thus, by (80), we get

SG−1(x∗)(u, v) = λ(x∗)〈u, v〉

for all u, v ∈ TG−1(x∗)M .
By continuity of the map

G → SG−1(x∗)(dG
−1(u), dG−1(v))

in the topology of isometries [30, Lemma 4], (77) holds for all G ∈ Z , where Z
denotes the closed subgroup generated by Z .
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Now, from the developments in Sect. 3.3, observe that, under LPC, for any x ∈
B(x0, r) and y ∈ B(y0, r), there exists a unique involutive isometry fx,y whose fixed
point set is exactly the set H(x, y). These isometries satisfy (76) as this equation
corresponds to (71) at time t = 0 when the starting points of X and Y are taken to
be x and y respectively. Furthermore, exactly along the lines of the proof of Lemma
36, we see that the orbit of x∗ under the closed subgroup of isometries generated by
{ fx,y : x ∈ B(x0, r), y ∈ B(y0, r)} is the whole of M . In particular, the orbit of x∗
under Z is M . Thus, for all x ∈ M ,

Sx(u, v) = λ(x∗)〈u, v〉

for all u, v ∈ TxM , proving the lemma. 	

Nowwe describe the drift vectorfield along geodesics issuing from x∗, the midpoint

of a minimal geodesic joining x0 and y0. In the following, we will denote the canonical
orthonormal basis of Tx∗M by {e1, . . . , ed}. Also, for any vector u ∈ Tx∗M and any
d × d matrix T , Tu will denote the vector obtained by matrix multiplication when we
identify Tx∗M with Rd .

Lemma 48 Suppose that the standing assumptions of diffusion-geodesic complete-
ness and stochastic completeness both hold. If the drift vectorfield b permits MMC
with LPC, then it must satisfy the following. Let x∗ ∈ M be the midpoint of a minimal
geodesic connecting x0 and y0 and u, v ∈ Tx∗M be unit vectors with u ⊥ v. Let γ

represent the geodesic issuing from x∗ in direction u and let Vt represent the parallel
transport of v along γ . Then the following holds.

〈b(γ (t)), γ̇t 〉 = λt + 〈b(x∗), u〉 (81)

where λ is as in Lemma 47, and

〈b(γ (t)), Vt 〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈b(x∗), v〉 cos√
Kt + 〈Tu, v〉 sin

√
Kt√
K

if K > 0,

〈b(x∗), v〉 + 〈Tu, v〉t if K = 0,

〈b(x∗), v〉 cosh√−Kt + 〈Tu, v〉 sinh
√−Kt√−K

if K < 0.

(82)

where the matrix T given by Ti j = 〈∇eib(x∗), e j 〉 − λ〈ei , e j 〉 is a skew-symmetric
matrix.

Proof To see (81), note that

d

d t
〈b(γ (t)), γ̇t 〉 = 〈∇γ̇tb(γ (t)), γ̇t 〉 = S(γ̇t , γ̇t ) = λ.

Take any x ∈ B(x0, r) and y ∈ B(y0, r) such that x∗ ∈ H(x, y). Since H(x, y) is
the fixed point set of the isometry fx,y, it is therefore a totally geodesic submanifold
of M . Let κ denote the Killing vectorfield for which (71) holds at time t = 0 with
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F0 = fx,y. Take any unit speed geodesic γ passing through x∗ and lying in H(x, y).
(Note that, if a geodesic lies in H(x, y) for a short time, it should lie in H(x, y) for all
time. See, for example, the proof of Proposition 24 of [32], p. 145.)

Let (nt : t ≥ 0) be the parallel transport of the vector normal to the hypersurface
H(x, y) at x∗ along the geodesic γ . Note that, as H(x, y) is totally geodesic, the
second fundamental form vanishes identically on H(x, y) [26, Exercise 8.4]. This
fact implies that parallel transportation of a vector v ∈ Tx∗ H(x, y) with respect to
the induced metric on H(x, y) agrees with parallel transportation of v in the ambient
manifold M [26, Lemma 8.5]. Thus, nt is precisely the direction that is reversed at
γ (t) by fx,y.

Equation (71) gives us

〈b(γ (t)), nt 〉 = 1

2
〈κ(γ (t)), nt 〉. (83)

Differentiating the above twice with respect to t along the geodesic γ , and using the
fact that ∇γ̇ (t)nt = 0 because nt was defined using parallel transport along γ , we
obtain

〈D2
t b(γ (t)), nt 〉 = 1

2
〈D2

t κ(γ (t)), nt 〉

(using Dt as shorthand for covariant differentiation ∇γ̇ along the geodesic γ ) which,
along with (73) and (74), gives

d2

d t2
〈b(γ (t)), nt 〉 + K

2
〈κ(γ (t)), nt 〉 = 0. (84)

Consequently Eq. (83) shows that the function t → 〈b(γ (t)), nt 〉 satisfies the follow-
ing differential equation

d2

d t2
〈b(γ (t)), nt 〉 + K 〈b(γ (t)), nt 〉 = 0. (85)

For any geodesic γ passing through x∗, not necessarily lying in H(x, y), and for any
parallel vectorfield Vt along γ orthogonal to γ̇t , a similar technique uses (71), (73)
and (74) to give us

d2

d t2
〈b(γ (t)), Vt 〉 + K 〈b(γ (t)), Vt 〉

= d2

d t2
〈b( fx,y ◦ γ (t)), d fx,y(Vt )〉 + K 〈b( fx,y ◦ γ (t)), d fx,y(Vt )〉. (86)

Now, following the lines of the proof of Lemma 37, we can iteratively compose the
isometries in
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S =
{
fx,y ∈ G : x ∈ B(x0, r), y ∈ B(y0, r), dist(x, x∗) = dist(y, x∗)

= 1

2
dist(x, y)

}

to deduce that the closed subgroup of isometries G∗ generated by S is the whole
isotropy group of x∗ in G. Further, from Step 1 and Step 2 in the proof of Lemma 37, it
can be seen that for any pair of linearly independent unit vectors u, v ∈ Tx∗M , there is
a sequence of isometries {Fk}k≥1 such that for each k, Fk is a composition of isometries
in S, d Fk fixes vectors in Tx∗M that are orthogonal to {u, v}, and d Fk(u) → v as
k → ∞.

Take any geodesic γ issuing from x∗ and lying in H(x, y) for some x ∈ B(x0, r),
y ∈ B(y0, r) and let nt denote the parallel vectorfield along γ that is inverted by fx,y.
LetG ∈ G be a composition of isometries inS which fix γ and let v = dG(n0). Let V v

t
denote the parallel transport of v along γ . AsG is an isometry, [26, Proposition 5.6 (b)]
implies G∗nt = V v

t . Applying (86) at each composition corresponding to G, we get

d2

d t2
〈b(γ (t)), nt 〉 + K 〈b(γ (t)), nt 〉 = d2

d t2
〈b(γ (t)), V v

t 〉 + K 〈b(γ (t)), V v
t 〉.

(87)

By (85), the left hand side of the above is zero. Thus, the right hand side should vanish
too. Solving this gives (82) with V v in place of V and the given matrix T .

Now, consider any parallel vectorfield Vt along γ which is orthogonal to γ̇t . By the
discussion following the definition of S, there exists a sequence of isometries {Fk}k≥1
such that each Fk is a composition of isometries in S, Fk fixes γ , and d Fk(n0) → V0
as k → ∞. As Fk fixes x∗ for each k, by [30, p. 7], we can choose a subsequence kl
such that Fkl → F in G as l → ∞. Write V (k)

t = Fk∗nt . By [30, Lemma 4], for each

t ≥ 0, V (kl )
t → d F(nt ) in Tγ (t)M as l → ∞. In particular, d F(n0) = V0, and as F is

an isometry fixing γ , d F(nt ) = Vt for all t ≥ 0. Thus, we have V (kl )
t → Vt in Tγ (t)M

for each t ≥ 0. From the discussion in the previous paragraph, (82) holds with V (kl )

in place of V for each l ≥ 1. Taking l → ∞, we obtain (82) for the vectorfield V .
Finally, take any pair of unit vectors u, v ∈ Tx∗M satisfying u ⊥ v. Let σ be the

geodesic issuing from x∗ such that σ̇ (0) = u. We can obtain a sequence of isometries
{Gk}k≥1 such that each Gk is a composition of isometries in S and dGk(γ̇ (0)) → u
as k → ∞. Write uk = dGk(γ̇ (0)) and let σk be the geodesic issuing from x∗ in
the direction uk . Denote by V v,k

t and V v
t the parallel transport of v along σk and σ

respectively. By the previous discussion, we know that (82) holds with V v,k in place
of V and σk in place of γ for each k ≥ 1. Observe that for each fixed t ≥ 0, both
sides of (82) depend continuously on u and v (this observation for the left hand side
follows from the fact that the solution to the geodesic and parallel transport equations
depends continuously on the initial data). Thus, we can take k → ∞ to get (82) with
V v in place of V and σ in place of γ .
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The fact that T is skew-symmetric follows from the observation that Sx∗(ei , e j ) =
λ〈ei , e j 〉 (by Lemma 47) and therefore

〈∇eib(x∗), e j 〉 − λ〈ei , e j 〉 = 1

2

(〈∇eib(x∗), e j 〉 − 〈∇e jb(x∗), ei 〉
)
.

	

Since M is a maximally symmetric space (by Theorem 38), the dimension of its

set of Killing vectorfields is d(d+1)
2 . Thus, for any vector w ∈ Tx∗M and any skew-

symmetric matrix T , there exists a unique Killing vectorfield K with K(x∗) = w

and 〈∇eiK(x∗), e j 〉 = Ti j . Moreover, as every Killing vectorfield is a Jacobi field
(i.e. satisfies (73)), it follows thatK satisfies the following equation analogous to (82),
for unit vectors u, v ∈ Tx∗M with u ⊥ v.

〈K(γ (t)), Vt 〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈w, v〉 cos√
Kt + 〈Tu, v〉 sin

√
Kt√
K

if K > 0,

〈w, v〉 + 〈Tu, v〉t if K = 0,

〈w, v〉 cosh√−Kt + 〈Tu, v〉 sinh
√−Kt√−K

if K < 0.

(88)

Thus, if we setKx∗ as theKilling vectorfield uniquely determined byw = b(x∗) and
Ti j = 〈∇eib(x∗), e j 〉 − λ〈ei , e j 〉, we see from Lemmas 47 and 48 that the vectorfield
b can be written as

b = Dλ
x∗ + Kx∗ (89)

where Dλ
x∗ is the dilation vectorfield about x∗ with dilation coefficient λ defined as

Dλ
x∗(γ (t)) = λt γ̇ (t) (90)

for any geodesic γ issuing from x∗. Now, we claim that dilation vectorfields do not
arise in the case of non-zero-curvature.

Lemma 49 K �= 0 implies λ = 0.

Proof Under LPC, the description of b given in Lemma 48 holds for x∗ replaced by
x̂ ∈ B(x∗, ρ) for some ρ > 0. Take any two points x1, x2 ∈ B(x∗, ρ) with x1 �= x2.
Lemmas 47 and 48, applied at x1 and x2, show that b satisfies

b = Dλ
1 + K1 = Dλ

2 + K2 (91)

whereK1 andK2 are Killing vectorfields and Dλ
1 and Dλ

2 are dilation vectorfields with
the same coefficient λ about x1 and x2 respectively.

Denote by σ the geodesic issuing from x2 and passing through x1, and set γ to be
a geodesic issuing from x2 in a direction orthogonal to σ . Locate z = γ (dist(x1, x2)).
Taking ρ sufficiently small, we can ensure that γ restricted to [0, dist(x1, x2)] is a
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minimal geodesic from x2 to z. Finally, denote the geodesic issuing from x1 and
passing through z by η. Consider the geodesic triangle � formed by x1, x2 and z.
Thus, the sides of � are formed by the geodesics σ , γ and η.

Now, recall that the curvature K can also be interpreted in terms of the rate at
which geodesics diverge when they issue from a point in different directions. Thus
[28, Proposition 2.6] we see that if x1 is taken sufficiently close to x2, then

dist(x1, z) <
√
2 dist(x1, x2) if K > 0,

dist(x1, z) >
√
2 dist(x1, x2) if K < 0. (92)

Applying the triangle version of the Toponogov comparison theorem [32, Theo-
rem 79, p. 339], we see that the interior angle θ formed at the vertex z of � satisfies
θ ≥ π/4 if K > 0 and θ ≤ π/4 if K < 0. But (90) implies

〈Dλ
1 (z), γ̇ (dist(x1, x2))〉 = 〈Dλ

1 (z), η̇(dist(x1, z))〉 cos θ

= λ dist(x1, z) cos θ.

Thus, if λ > 0, we get

〈Dλ
1 (z), γ̇ (dist(x1, x2))〉 < λ dist(x1, x2) if K > 0,

〈Dλ
1 (z), γ̇ (dist(x1, x2))〉 > λ dist(x1, x2) if K < 0. (93)

and the inequalities are reversed if λ < 0.
From (91)

〈Dλ
2 (z), γ̇ (dist(x1, x2))〉 = 〈Dλ

1 (z), γ̇ (dist(x1, x2))〉
+ 〈(K1 − K2)(z), γ̇ (dist(x1, x2))〉. (94)

Lemma 45 implies that the inner product of a Killing vectorfield with the velocity
vector of a geodesic is conserved along the geodesic, yielding

〈(K1 − K2)(z), γ̇ (dist(x1, x2))〉 = 〈(K1 − K2)(x2), γ̇ (0)〉.

From (90) it follows that Dλ
2 (x2) = 0 and also

〈Dλ
1 (x2), γ̇ (0)〉 = λ dist(x1, x2) 〈σ̇ (0), γ̇ (0)〉 = 0.

Combining this with (91),

〈(K1 − K2)(x2), γ̇ (0)〉 = 0.

Thus, (94) gives us

〈Dλ
2 (z), γ̇ (dist(x1, x2))〉 = 〈Dλ

1 (z), γ̇ (dist(x1, x2))〉.
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By (90), 〈Dλ
2 (z), γ̇ (dist(x1, x2))〉 = λ dist(x1, x2). Together with (93), this forces

λ = 0 if the curvature is non-zero, hence proving the lemma. 	

Note When K > 0, observe that

〈b(γ (0)), γ̇0〉 =
〈
b(γ (2π/

√
K )), γ̇2π/

√
K

〉

yields λ = 0. But the above proof works for both positive and negative curvatures,
and is in some sense, the real geometric reason why the dilation part of the vectorfield
b vanishes for non-zero curvature.

Finally we can state and prove the main theorem of this section.

Theorem 50 Suppose that the standing assumptions of diffusion-geodesic complete-
ness and stochastic completeness both hold. The drift vectorfield b permits MMC with
LPC if and only if both of the following hold:

(i) The underlying Riemannian manifold M is one of the three model spaces S
d

(K > 0), Rd (K = 0) or Hd (K < 0), in the sense that the diffusion must be
expressible as Riemannian Brownian motion plus drift vectorfield b for such an
M.

(ii) For K �= 0, the drift b must and can be any Killing vectorfield K on M. For
K = 0, the drift b must and can be described in Euclidean coordinates by
b(x) = λx + T x + c for any scalar λ, any skew-symmetric matrix T and any
vector c, where x → λx is a dilation vectorfield about the origin and x → T x+c
is a Killing vectorfield.

Proof The classification of the space M is essentially the content of Theorem 38.
Lemmas 48 and 49 show that if LPC holds then the drift vectorfield b has to be of
the form described in the theorem. For the case K = 0, Sect. 2 shows the existence
of a Markovian maximal coupling with any pair of starting points x ∈ B(x0, r) and
y ∈ B(y0, r) and fully describes the coupling.

To show existence and to describe the coupling for K �= 0, recall that any Killing
vectorfield K generates a one-parameter subgroup of isometries starting from the
identity, say (ϒt : t ∈ R). Let Z denote a Brownian motion on M , and consider the
law of

Xt = ϒt (Zt ).

Consider the lift U of the Brownian motion Z onto the orthonormal frame bundle
O(M). Recall that the Stratonovich stochastic differential equation for this lifted
process is given by

dUt =
∑
i

Hi (Ut ) ◦ dWi
t (95)

where W = (W 1, . . . ,Wd) is a d-dimensional Euclidean Brownian motion. The
process Z is recovered fromU by Z = π(U ). Recall that the lift of an isometry F on
M to F̂ on O(M) is given by (67). Defining the process V on O(M) by
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Vt = ϒ̂t (Ut ) (96)

the arguments used to derive (69) also show that the Stratonovich stochastic differential
equation for V is given by

d Vt =
∑
i

Hi (Vt ) ◦ dWi
t + K̂t (ϒ̂

−1
t (Vt )) d t (97)

where

K̂t (u) = d

d s

∣∣∣∣
s=t

ϒ̂s(u)

for u ∈ O(M). Note that, for any x ∈ M ,

d

d s

∣∣∣∣
s=t

ϒs(x) = K(ϒt (x)).

Using this, and the fact that π(Vt ) = Xt , we see that

d Xt =
∑
i

(d π(Hi (Vt ))) ◦ dWi
t + (d π(K̂t (ϒ̂

−1
t (Vt )))) d t

=
∑
i

Vt ei ◦ dWi
t + K(Xt ) d t

which demonstrates that X is a Riemannian Brownian motion with drfit vectorfield
given by the Killing vectorfield K.

As discussed in [25, Example 6.1] and references therein, ifM isSd orHd then there
exists a Markovian maximal coupling (Z , Z̃) of Brownian motions starting from any
two distinct points on M . Consider a diffusion representable as Riemannian Brownian
motion with drift given by any Killing vectorfield K on such a manifold M . Thus
Lemma 4 implies that aMarkovian maximal coupling for this diffusion exists between
any pair of starting points, and can be constructed by

(
(ϒt (Zt ), ϒt (Z̃t ) : t ≥ 0

)

where (ϒt : t ∈ R) is the one-parameter subgroup of isometries starting from the
identity which is generated by the Killing vectorfield K. This proves the theorem. 	

Corollary 51 Under the hypothesis of part (ii) of Theorem 50, let (ϒt : t ∈ R) denote
the one-parameter subgroup of isometries corresponding to the Killing vectorfield K.
Then for t ≥ 0, the mirror Ht and the corresponding reflection isometries Ft satisfy
Ht = ϒt (H0) and Ft = ϒt ◦ F0 ◦ ϒ−1

t .

Proof Let Z , Z̃ be maximally coupled Brownian motions on M . For any t ≥ 0, by
Remark 44, H0 = H(Zt , Z̃t ) almost surely. By Theorem 32, Ht = H(ϒ(Zt ), ϒ(Z̃t ))

almost surely. From this, Ht = ϒt (H0) easily follows. Further, as Ft andϒt ◦F0◦ϒ−1
t
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have the same set of fixed points, namely Ht , and neither of them is the identity,
therefore Ft = ϒt ◦ F0 ◦ ϒ−1

t follows from uniqueness of isometry with fixed point
set Ht . 	


In the following theorem, we characterise the class of drifts b and starting points
x0, y0 for which the interface I (x0, y0, t) does not depend on time t .

Theorem 52 Suppose that the standing assumptions of diffusion-geodesic complete-
ness and stochastic completeness both hold. Suppose the drift vectorfield b permits
MMCwith LPC. Let I (x0, y0, t) denote the interface for theMMC (X,Y ) of diffusions
X and Y starting from x0 and y0 respectively. Then I (x0, y0, t) = I (x0, y0, 0) for all
t ≥ 0 if and only if one of the following holds:

(i) K = 0,b(x) = λx+T x+c for some scalarλ, skew-symmetricmatrix T andvector
c, and x0, y0, λ, T, c satisfy T (x0−y0) = 0 and (x0−y0)�(λ(x0+y0)+2c) = 0.

(ii) K �= 0 and b is a Killing vectorfieldK on M which satisfies the following: if x∗ is
the midpoint of a minimal geodesic joining x0 and y0 and n is the vector normal
to the hypersurface H(x0, y0) at x∗, then 〈K(x∗),n〉 = 0 and ∇nK(x∗) = 0.

Proof When K = 0, we observe from (42) that n(t) = n(0) for all t ≥ 0 if and only
if T (x0 − y0) = 0. Using this in (43), we get for λ �= 0,

l(t) = l(0)eλt + n(0)�c
λ

(eλt − 1) = eλt
(
l(0) + n(0)�c

λ

)
− n(0)�c

λ
.

Thus l(t) = l(0) for all t ≥ 0 if and only if l(0) + n(0)�c
λ

= 0. Substituting l(0) =
|x0|2−|y0|2
2|x0−y0| and n(0) = x0−y0

|x0−y0| in this equation, we get (x0−y0)�(λ(x0+y0)+2c) = 0.

When λ = 0, we get l(t) = l(0) + t (n(0)�c). Thus l(t) = l(0) for all t ≥ 0 if and
only if (x0 − y0)�c = 0.

Now, suppose K �= 0 andb is theKilling vectorfieldK onM . As there is atmost one
isometrywhose fixed point set is H(x0, y0), we deduce that I (x0, y0, t) = I (x0, y0, 0)
for all t ≥ 0 if and only if Ft = F for all t ≥ 0.

Suppose Ft = F for all t ≥ 0. Then by (71), K(x) = F∗K(x) for all
x ∈ M . In particular, 〈K(x∗),n〉 = 〈F∗K(x∗),n〉. But, as F is an involu-
tive isometry, 〈F∗K(x∗),n〉 = 〈K(x∗), F∗n〉 = 〈K(x∗),−n〉 from which we get
〈K(x∗),n〉 = 0. Now, observe that as K is a Killing vectorfield, therefore by Lemma
45, 〈∇nK(x∗),n〉 = 0. If u ∈ Tx∗M is orthogonal to n, then

〈∇nK(x∗), u〉 = 〈∇nF∗K(x∗), u〉 = 〈F∗∇−nK(x∗), u〉 = 〈∇−nK(x∗), F∗u〉
= 〈−∇nK(x∗), u〉

which gives 〈∇nK(x∗), u〉 = 0. Hence, 〈∇nK(x∗), u〉 = 0 for all u ∈ Tx∗M , and
therefore, ∇nK(x∗) = 0.

Conversely, suppose 〈K(x∗),n〉 = 0 and∇nK(x∗) = 0 holds. Letγ be anygeodesic
issuing from x∗ and lying in H(x0, y0) and let nt denote the parallel transport of n
along γ . As 〈K(x∗),n〉 = 0 and 〈∇γ̇ (0)K(x∗),n〉 = −〈∇nK(x∗), γ̇ (0)〉 = 0, using
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the representation (88) for K, we see that 〈K(γ (t), nt 〉 = 0 and hence, K(γ (t)) ∈
Tγ (t)H(x0, y0) for all t ≥ 0. As the submanifold H(x0, y0) is a geodesic space, we
conclude that K restricted to H(x0, y0) is a vectorfield tangent to this submanifold.
Thus, ifϒt denotes theflowof isometries generatedbyK, then for each z0 ∈ H(x0, y0),
ϒt (z0) lies in H(x0, y0) at least for a short time. As ϒt is a global flow (because M
is complete), a routine compactness argument implies that ϒt (z0) ∈ H(x0, y0) for all
t ≥ 0. Thus, by Corollary 51, Ht ⊆ H(x0, y0), and hence Ft = F , for all t ≥ 0. 	


4 Conclusion

In this paper we have shown that Markovian maximal couplings of regular elliptic
diffusions with smooth coefficients (and satisfying diffusion-geodesic completeness
and stochastic completeness) have to be reflection couplings tied to involutive isome-
tries of the corresponding Riemannian structure on state space; moreover as soon as
the existence of a Markovian maximal coupling is stable (in the sense of LPC) then
a rigidity result requires the Riemannian structure to be Euclidean, hyperspherical, or
hyperbolic, and the space must be simply connected. In such cases the drift must also
be of a very simple form, corresponding to a rotation with possibly (but only in the
Euclidean case) a dilation component.

Thus Markovian maximal couplings of elliptic diffusions are rare, and their exis-
tence enforces severe geometric constraints.

It is natural to ask whether the assumptions of diffusion-geodesic completeness and
stochastic completeness are required. It seems likely that they are not required, but
(this paper already being long) we save this question for another occasion.

The scarcity of Markovian maximal couplings places a natural premium on ques-
tions of efficiency of Markovian coupling, as discussed for example in [6], for the
case of reflecting Brownian motion in compact regions. One could ask, for example,
when it is possible to construct Markovian couplings (X,Y ) which are optimal in the
sense that the tail probability of the coupling time P [τ > t] is minimized for all t
amongst Markovian couplings if not amongst all possible couplings. (Note that this
notion of optimality differs from the optimality discussed in [8], which is defined rel-
ative to a specified Wasserstein metric.) Little is known as yet about such couplings,
though [22] exhibits a coupling of two copies of scalar Brownian motion and local
timewhich isMarkovian, non-maximal, but optimal amongst allMarkovian couplings.
The question of whether similar geometric rigidity results for existence of such opti-
mal Markovian couplings remains entirely open, and its answer would be of great
interest.

We expect that in fact such optimal Markovian couplings are also rare. Further
refinements are possible (for example, one could consider the existence of Markovian
couplings whichminimize the Laplace transformE

[
exp (−uτ)

]
for some or all values

of u > 0); however the probable rarity of such couplings would focus attention
on developing the notions of efficiency from [6] to apply to non-compact regions.
In particular there is a natural question concerning criteria for existence of efficient
Markovian couplings, where “efficient” here means, the rate of decay of P [τ > t]
with t for the Markovian coupling is comparable to that of the total variation distance
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‖μ1,t − μ2,t‖T V between the one-point distributions μ1,t and μ2,t (the distributions
of Xt and Yt respectively).

Two other natural extensions of these results are:

1. extension of the notion of Markovian maximal coupling to the hypoelliptic case
(in which case in fact the very existence of Markovian couplings is moot: but see
the positive results of [21,23]);

2. examination of the extent to which the ideas of this paper carry over to Markov
processes which are not skip-free (and here a natural first step would be to consider
the case of couplings of Lévy processes, though a potentially significant result in
the random walk case is to be found in [35]).

We hope to consider many of these questions in future work.

Acknowledgments Wewish to thank an anonymous referee whose very careful reading of themanuscript
and detailed comments greatly improved the article.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Benjamini, I., Burdzy, K., Chen, Z.-Q.: Shy couplings. Probab. Theory Related Fields 137(3–4), 345–
377 (2007)

2. Bramson, M., Burdzy, K., Kendall, W.: Shy couplings, CAT(0) spaces, and the Lion and Man. Ann.
Probab. 41(2), 744–784 (2013)

3. Bramson, M., Burdzy, K., Kendall, W.S.: Rubber bands, pursuit games and shy couplings. In: Pro-
ceedings of the London Mathematical Society, p. 48 (2014)

4. Bruckner, A.M.: Differentiation of Real Functions. Lecture Notes in Mathematics. American Mathe-
matical Soc, Providence (1978)

5. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, Graduate Studies in Mathematics,
vol. 33. American Mathematical Society, Providence (2001)

6. Burdzy, K., Kendall, W.S.: Efficient Markovian couplings: examples and counterexamples. Ann. Appl.
Probab. 10(2), 362–409 (2000)

7. Chavel, I.: Riemannian Geometry: A Modern Introduction. Number 108 in Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge (1995)

8. Chen, M.-F.: From Markov Chains to Non-Equilibrium Particle Systems, 2nd edn. World Scientific
Publishing Co., Inc, River Edge (2004)

9. Connor, S.B.: Coupling: Cutoffs, CFTP and Tameness. Phd thesis, University of Warwick (2007)
10. Cranston, M.: Gradient estimates on manifolds using coupling. J. Funct. Anal. 99(1), 110–124 (1991)
11. Dynkin, E.B.: Markov Processes. Number 121/122 in Die Grundlehren der Mathematischen Wis-

senschaften. Springer, New York (1965)
12. Elworthy,K.D.: StochasticDifferential Equations onManifolds. LMSLectureNote Series. CUP (1982)
13. Gallier, J.: Spectral theorems in Euclidean and Hermitian spaces. In: Geometric Methods and Appli-

cations, pp. 343–365. Springer, New York (2011)
14. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry, 3rd edn. Universitext, Springer, Berlin

(2004)
15. Goldstein, S.: Maximal coupling. Probab. Theory Related Fields 46(2), 193–204 (1979)
16. Griffeath,D.:Amaximal coupling forMarkov chains. Z.Wahrscheinlichkeitstheorie undVerw.Gebiete

31, 95–106 (1974/1975)
17. Hsu, E.P.: Stochastic Analysis on Manifolds, Graduate Studies in Mathematics, vol. 38. American

Mathematical Society, Providence (2002)

123

http://creativecommons.org/licenses/by/4.0/


S. Banerjee, W. S. Kendall

18. Hsu, E.P., Sturm, K.-T.: Maximal coupling of Euclidean Brownian motions. Commun. Math. Stat.
1(1), 93–104 (2013)

19. Kendall, W.S.: Nonnegative Ricci curvature and the Brownian coupling property. Stoch. Stoch. Rep.
19(1–2), 111–129 (1986)

20. Kendall, W.S.: Stochastic differential geometry: an introduction. Acta Applicandae Mathematica 9(1–
2), 29–60 (1987)

21. Kendall, W.S.: Coupling all the Lévy stochastic areas of multidimensional Brownian motion. Ann.
Probab. 35(3), 935–953 (2007)

22. Kendall, W.S.: Coupling, local times, immersions. Bernoulli 21(2), 1014–1046 (2015)
23. Kendall, W.S., Price, C.J.: Coupling iterated Kolmogorov diffusions. Electron. J. Probab. 9(Paper 13),

382–410 (2004)
24. Kuwada, K.: On uniqueness of maximal coupling for diffusion processes with a reflection. J. Theor.

Probab. 20(4), 935–957 (2007)
25. Kuwada, K.: Characterization of maximal Markovian couplings for diffusion processes. Electron. J.

Probab. 14(25), 633–662 (2009)
26. Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature, vol. 176. Springer, New York (1997)
27. Lindvall, T.: Lectures on theCouplingMethod.Wiley Series in Probability andMathematical Statistics:

Probability and Mathematical Statistics. Wiley, New York (1992)
28. Maubon, J.: Riemannian symmetric spaces of the non-compact type: differential geometry. Techni-

cal report. Course at Summer School “Géométrie à courbure négative où nulle, groupes discrets et
rigidités”, l’Institut Fourier (2004). http://www-fourier.ujf-grenoble.fr/sites/ifmaquette.ujf-grenoble.
fr/files/Maubon.pdf

29. Molchanov, S.A.: Diffusion processes and Riemannian geometry. Russ. Math. Surv. 30(1), 1 (1975)
30. Myers, S.B., Steenrod, N.: The group of isometries of a Riemannian manifold. Ann. Math. 400–416

(1939)
31. Nelson, E.: Dynamical Theories of Brownian Motion, 2nd edn. Mathematical Notes. Princeton Uni-

versity Press, Princeton (1967)
32. Petersen, P.: Riemannian Geometry (2006. Corr ed.). Graduate Texts in Mathematics. Springer, New

York (2006)
33. Pitman, J.W.: On coupling of Markov chains. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 35(4),

315–322 (1976)
34. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York

(1984). (Corrected reprint of the 1967 original)
35. Rogers, L.C.G.: Fastest coupling of randomwalks. J. Lond.Math. Soc. (Second Series) 60(2), 630–640

(1999)
36. Sharan, P.: Spacetime, Geometry and Gravitation, Progress inMathematical Physics, vol. 56. Springer,

New York (2009)
37. Sverchkov,M.Y., Smirnov, S.N.:Maximal coupling for processes in D[0, ∞]. Dokl. Akad. Nauk SSSR

311(5), 1059–1061 (1990)
38. Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York (2000)
39. Varadhan, S.R.S.: Diffusion processes in a small time interval. Commun. Pure Appl. Math. 20(4),

659–685 (1967)
40. Varadhan, S.R.S.: Large deviations and applications. In: CBMS-NSF Regional Conference Series in

Applied Mathematics. SIAM, Montpelier (1984)

123

http://www-fourier.ujf-grenoble.fr/sites/ifmaquette.ujf-grenoble.fr/files/Maubon.pdf
http://www-fourier.ujf-grenoble.fr/sites/ifmaquette.ujf-grenoble.fr/files/Maubon.pdf

	Rigidity for Markovian maximal couplings of elliptic diffusions
	Abstract
	1 Introduction
	1.1 Markovian maximal couplings: general properties

	2 Markovian maximal couplings on Euclidean spaces
	2.1 Coupling and the interface
	2.2 Time evolution of the mirror
	2.3 Structure of the coupling
	2.4 Rigidity theorems for time-homogeneous diffusions

	3 Markovian maximal couplings for manifolds
	3.1 Brownian motion with drift on the manifold
	3.2 Couplings of diffusions on manifolds
	3.3 The interface
	3.4 Structure of the manifold M
	3.5 Evolution of the mirror isometries
	3.6 Structure of the coupling
	3.7 Classification of the drift

	4 Conclusion
	Acknowledgments
	References




