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Abstract

This thesis explores, by means of modelling and physical experiments, variant designs for triskelion
devices, a type of planar flexure mechanism widely considered for use in micro-probe suspensions
and, more recently, force transfer artefacts. The accurate measurement of low force is challenging
problem that has wide range of force related applications. A lot of attention has been paid worldwide
during last decade within and beyond the National Metrology Institutes (NMIs) to measuring low
forces. A major concern is how to provide traceability for micro- to nanonewton level forces that
is highly reliable and could be used for real machine calibration. The current consensus is that
this process requires special secondary standards and novel artefacts to transfer such standards to
working systems. The latter provides the motivation for this thesis, which makes the following main

contributions.

A published linear elastic model has been considerably enhanced and generalised to enable the
study of a wide range of variants from the one widely-used design of triskelion device. Triskelion
and tetraskelion software programs implement this new model, providing a new tool for comput-
ing forces, moments, stress, strain, axial stiffness and torsional stiffness for devices before their
fabrication. It has been used to explore widely the sensitivity of the devices to changes in design

parameters such as suspension leg geometry and ’elbow’ angles.

To provide essential physical verification of the practicality of a linear model, a low-cost
technique has been developed for making small triskelion test samples. This was used with a new
test-rig configuration to measure polymeric triskelion devices under loads in the 1 mN to 1N region
with deflections up to around 1 mm. Experiments have determined the onset and characteristics
of non-linear spring behaviour in typical devices and have verified the general predictions from the

new model.

The overall conclusion to be drawn is that at large deflection the spring characteristics follow a
cubic law (stiffening). However, during the initial stages of the deflection the linear term dominates
over a range that is quite sufficiently wide for practical use as force test artefacts. The polymeric
test devices performed well, behaving reasonably closely to predicted values in the linear (model)

region. The promising results indicate its prospects for use in low force technology in the future.
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Symbols used in numerical experiments

b beam length [m]
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Chapter 1

Introduction

This chapter introduces the needs and ideas for low force measurement and the subsequent
need for low force artefacts. It then identifies limitations in the current understanding of

low force technology leading to the aims, objectives, and scope of this thesis.

1.1 Background: General need in force metrology

The past two decades have seen many advancements in micro and nano technology. New
devices are being produced which can create very small forces in the micro to nano-newton
scale and require new calibration methods. The growing interest in nanomechanics is
greatly demanding the accurate measurement for determining the mechanical property
micro- and nano-devices down to nanonewton level [29], [30], [3I]. These types of appli-
cation have great importance in metrology and are becoming essential for micro to nano
level for small force calibration. The biophysicists have also been seen to characterising
small forces down to subpiconewton that are associated with cells and molecules to study

the role of forces and mechanical properties that can effect biological processes [32], [33], [34].

Nowadays the atomic microscope (AFM) is an important tool for investigating the
surface property with atomic resolutions. The AFM may detect a small force by measuring
deflection of an AFM cantilever with a laser to determine topological an information such
as height, length, and shape [35]. AFM plays an important role in studying the surf
topography of material and measuring intermolecular forces [35], [36], [37]. Instrumentated

indentation techniques are very common, and are used to determine both hardness and the
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elastic modulus of bulk materials [38]. This technique is also referred to as nanoindentation
when used at small forces and depths. The interaction forces between biological molecules

and Casimir force is also measured by an AFM [39], [40].

Dynamic atomic microscopy (DAFM) is also a most important and powerful tool in
nanotechnology, used to measure topography and physio-chemical properties of organic
and inorganic material at nano length scale, manipulation and fabrication of functional
nanostructures. An example of a vibrating micro cantilever with a nanoscale tip when
interacts with a sample via long and short range force that has several distinct eigenmodes
and tip sample forces that are non-linear. Further improvement in imaging contract
or reduction in imaging forces are afforded by the modes are worthy testament to the

importance of cantilever dynamic in DAFM [41], [42].

The role of contact probes in metrology is essential for dimensional and other measure-
ments. Force metrology is crucial in many industries that have increasing concern with
smaller and ultimately these are relying only on AFM etc. Force measurements are most
essential in micro- and nano-technology,atomic force microscope (AFM), coordinate mea-
suring machine (CMM), material testing aerospace, aviation industry, car industry, safety
engineering, energy production process, power plants, medicine, biomedicine, chemical
industry micro-CMM which are creating great demand for tracing micro- to nano-newton

forces [43] [44].

The most intuitive method for force calibration is by deadweight. This is still used for
maintaining traceability within the millinewton to meganewton range( [45]). However, for
smaller forces at the end of the low force balance scale, handling difficulties and independent
testing issues lead to a high relative uncertainties in deadweight measurement. Hence,
dead-weights are impractical for low force calibration. A new route required to calibrate

the low force that will be discussed in chapter 2.

Researchers at National Institute of Standards and Technology (NIST), National

Physical Laboratory (NPL), Korean Research Institute of standard and science (KRISS),



Physikalich-Technische Bundesanstalt (PTB), centre for measurement standards-industrial
technology research institute (CMS-ITRI) and other institutions are attempting to de-
velop technology and implement it in the working range 1 nN to 10 uN to measure
low forces. They have also developed low force facilities [46], [47], [48], [49], [50],

[, [510, 521, [53], [54], [55], [56] which will be reviewed in the second chapter.

1.2 Scope of the thesis

Section 1.1 has highlighted some of the many physical principles that could be applied to
small-scale force sensing. It has also made it evident that very few are mature enough and
technologically sufficiently controllable to have practical relevance in force transfer artefacts
within the next few years. This is especially the case for upper parts of the ranges of the
low- force secondary standards being implemented by National Measurement Institutions
(NMIs) in the 2000-2020 period. Given also the perception that the upper range is one
of most pressing industrial needs, NPL appear fully justified in declaring that the other
programs from 2005 would follow only an elastic device as a force transfer artefact for use

with their low force balance (LFB).

Moreover, NPL is committed to a generation of designs based on their already demon-
strated triskelion micro-probe suspension (figures [50], [57]. There are inevitable down-
sides to any such decision. The triskelion geometry (as will be discussed later) is mechan-
ically suspect because it is a compromise to allow convenient micro fabrication. It will
possibly show an undesirably high levels of non-linearity in its spring constant and fairly
poor constraint of some parasitic motion modes. Very likely, such effects will be sensitive
to various geometrical parameters. There appears to be virtually no discussion of design
variants and optimization in the open literature. Even if a computer model were to be used
for such optimization, there is a pressing need for experimental data with which to verify
them. This thesis provides a first step in addressing the needs of institutions and the overall

aim of the study.



fixed support bédam hub elbow angle 60° arm

Figure 1.1: The classical triskelion suspension for a micro probe, layout with elbow angle
60°.

1.3 Aims and objectives of the research work

The overall aim of this study is to improve the understanding and practice of micro calibra-
tion by means of triskelion force artefacts and the measurement of small forces that could
interact between a secondary standard and working instruments. It is concerned first with
calibration at a national level, and later with a low-cost effective, robust design for direct
industrial use.

In order to achieve the above aims, the following major research objectives have been

identified:
e Studying and reporting on of force sensing methods.
e Development of enhanced linear clastic model for variant design of triskelion artefacts.
e Development of triskelion and tetraskelion software programs.

e Exploring a low-cost approach for fabrication of triskelion and tetraskelion force arte-

facts.



e Development of test-rig method to measurement of low forces in the range up to

around 1 Newton and displacements of up to of 1mm.

1.4 Layout of the thesis

Chapter 2: Needs and capabilities in low-force technology

This chapter reviews the measurement of small forces in the micro- to nano-newton range
that is becoming a very important field of research within in micro- and nanotechnology,
nanoindenters, AFM, micro-CMMSs and so on. The generation and measurement of small
forces have many applications in the various fields of technology. This chapter specifically
presents force sensing methods and the capability for small force metrology in the NMIs

and other institutions.

Chapter 3: Linear Elastic Model for triskelion suspension

This chapter starts with a brief overview of some fundamental elastic beam theory. Follow-
ing this, a novel contribution of this chapter is the development of an enhanced linear elastic
model for triskelion suspension in order to predict the stiffness of triskelion force artefacts.
Unlike published examples, it has capability to set independently all potential significant
design parameters, such as elbow angles and can allow any number and distribution of n
suspension beams around the centre of the hub of force artefacts. The new linear elastic
model for triskelion force artefacts will be used to investigate changes in the elbow angles

of the triskelion force artefacts, the stabilities and stiffness of platform centre (hub).

Chapter 4:- Implementation of linear elastic model; Numerical experiments and

data analysis

This chapter presents the development of the triskelion software program to implement the
enhanced linear model. However, the computed results of the triskelion software program
could be compared to some published data from another study (indirect validation) before
proceeding to simulate results from geometries of trial designs. It specifically explores the

variation in the angle at the elbow of the suspension beams. It is clear that artefacts of



these types must become non-linear with increasing deflection, so the validity of the simple

model under different parameters needs full investigation.

Chapter 5:- Triskelion polymeric force artefacts; Specification and design

This chapter describes the use of polymeric triskelion force artefacts for the first time. The
use of polymeric force artefacts has the commercial capability to exploit polymers in a mass
production scale for triskelion force artefacts and the possibility to offer a low-cost approach
that is highly useful for industries. The low-cost approach could bring a revolution in the use
of polymers in the design of triskelion force artefacts, just like precision injection moulding

in the commercial market.

Chapter 6:- Experimental analysis of stiffness; Classic triskelion force artefacts

This chapter covers the specification, design and use of the best bespoke method for testing
the stiffness of triskelion force artefacts. The validation testing results of classical triskelion
force artefacts were carried out using the triskelion software program. The results of classic
triskelion force artefacts force artefacts were also presented in this chapter. A non-linearity
is deducted from whole range of experiments of classic triskelion force artefacts and angle-
beam triskelion force artefacts that follows a best cubic fit. This allows analysis for the range
of validity of the enhanced linear elastic model for triskelion force artefacts. The concept
of non-linearity was detected for the first time from the experimental result of classic and
angle-beam triskelion force artefacts and was not seen in any scientific published research

papers.

Chapter 7:- Experimental analysis of stiffness; Angle-beam triskelion force arte-

facts

This chapter presents specification, design and fabrication using a low-cost approach for
measurements of planar angle-beam suspensions that are introduced for the first time for
force artefacts. Experimental results of angle-beam are compared with validated results of
the triskelion software program. Like classic triskelion force artefacts, non-linearity was also
detected for the angle-beam force artefacts that also follows best cubic fit and allows better

range of performance as compared to the classic force artefacts.



Chapter 8:- Tetraskelion force artefacts; specification, design, experimental

analysis of stiffness and numerical investigations

This chapter describes the extended research work for the design of tetraskelion force arte-
facts. Two type of polymeric tetraskelion force artefacts (four legs) for classic and angle-
beam tetraskelion force artefacts were fabricated. It was observed in the experimental
research work that all the tetraskelion force artefacts belong to the triskelion force artefacts
family and become significantly stiffer because they were kinematically constrained. This
new idea is slightly counter-intuitive, being a trade-off between individual stiffness and a
number of additional support legs which leads to better practical performance compared to
three legs. The new polymeric tetraskelion force artefacts models and experimental tech-
nique was developed and used for the preliminary investigation of these points. The poly-
meric tetraskelion force artefacts were developed for the first time for practical testing and
have never been published in any scientific research papers. Moreover, a new tetraskelion
software program was developed by upgrading the triskelion software program to predict

the stiffness of tetraskelion force artefacts before their fabrication and validation.

Chapter 9:- Best choices of triskelion and tetraskelion force artefacts for indus-

trial applications

This chapter discusses the potential use of triskelion and tetraskelion force artefacts for
commercial use. Their performance and working ranges in the linear region of the graphs
plotted from the experimental data are described. The numerical experiments are also
extended to explore the best variant design of triskelion and tetraskelion force artefacts or

micro probe suspensions.

Chapter 10:- Conclusion and future recommendations

This chapter presents the conclusions for future research drawn from the research work
presented in this thesis. The importance of a low-cost approach for commercial production
and the best variant design for triskelion and tetraskelion micro probe suspension or force

artefacts are also highlighted in this chapter.



Chapter 2

Needs and capabilities in low-force

metrology

2.1 Introduction

This chapter highlight the essential standard capabilities for low force metrology developed
in various NMIs in the world. The current challenges are the base units (kg, m, s) of SI
systems. The NMIs are motivated by the needs for small force standards and have started
to explore new methods and techniques of calibration for SI-traceable force. The primary

standards of force are derived from the unit of the Newton using base units of SI systems.

The realisation of an SI unit, ‘newton’ (or a fraction of it) in terms of base unit will
involve complex and delicate instrumentation (often called a ‘secondary standards’). Such
systems are impractical for almost any direct calibration, necessitating the development
of intermediate (interfacing) devices: force transfer artefacts. Hence, the exploration of
various methods and modelling techniques are carried out in this chapter for new design
of “force transfer artefacts”. This is the starting point for the development of the research

work presented in this thesis.

Furthermore, this chapter discusses force-sensing methods, which could be used for low

force technology in the future.



2.2 Scope of low force measurement

Advances in research have made possible the traceability of force at the macro to nano
level. The twentieth century has seen a rapid increase in the demands of scientific study
and a jump in the sensitivity of instruments to measure very small forces. For example,
in bioscience the detachment force using a bio-membrane probe is measured in the ranges
10~2pN and 100pN [58]. Also the mechanical force realization based on flux quantization
in the pico-Newton range is proposed by [59], [60]. More generally, the use of soft materials
(polymers and cells etc.) in research or industry situation risks distortion or damage unless
probe forces are carefully controlled. The twentieth century has also seen major growth
in highly miniature systems and true micro electro mechanical systems (MEMS) involving
a wider range of materials and manufacturing procedures, e.g., the need to monitor and
control forces on gripper of micro-robots and other micro-mechanical processes). The sur-
face characterisation tools needed for such applications and for high precision macroscopic
products (optics and bearings, etc) therefore often involve smaller and smaller forces in
order to deliver necessary performance; consider for example, the stylus profilometer, and
micro CMM, micro and nano-hardness testers, micro- and nano-tribometers as well as
probe microscopy mentioned in chapter 1. It might further be noted that pharmaceutical
and some other sectors often rely on weighing very small doses of powder, with a need to

control to below a milligram mass (~ 10 uN weight).

The scientific and technical situations just discussed to cover, perhaps, forces from a
large fraction of a newton to nano-newton, with likely growth in the use of even smaller
ones where at least pico-newton resolution is needed. This is clearly to wide to cover by
one method and a series of techniques with overlapping ranges will be required. There then

arise a major challenges over how traceable force metrology can be archived for them.

The newton derives in the SI system from the kilogram, which is extremely difficult to
realise even in a best standards laboratories to precision much better than (1x107%). 1uN
relates to 0.1 mg (1x10~7 kg) which on interpolation would, therefore, only be traceable
to at best 1%. Fortunately, nano-science and ultra-precision technology are providing
plausible solution routes and several National Metrology Institutes (NMIs) are working

9



actively on them. Generally there are at least two stages involved. First, a high-specialised
traceable secondary standard is needed, which focuses directly on small forces. Following
this, there needs to be adequate means of transferring information from secondary stan-

dards to working devices within laboratories and factories.

This thesis takes the assumption that one of the most important ranges of low-force
measurement for the next few years covers broadly from 1 N to around 100 mN. It is chosen
for several reasons. First, it is highly relevant to mechanical characterisation and micro-
manipulation for already established, economically important industries. Second there is
good evidence that NMIs will be able to provide reasonable traceable reference instruments
for this vision. There is likely to be a stable market for simpler small instruments and
transfer artefacts that at low cost can either fully calibrate or at least diagnose out-of-
specification conditions on user instruments. Before proceeding to consider the latter, it
is helpful to review the capabilities of typical NMIs and to consider the range of sensing

principles that might be applied.

2.2.1 Traceability and fundamental force concepts in metrology
Traceability

“Traceability is defined as the property of a measurement result whereby the result can
be related to a reference through a documented unbroken chain of calibrations, each
contributing to the measurement uncertainty” [61], [45].

or
“Traceability may also be defined as an unbroken record of documentation (documentation
traceability) or an unbroken chain of measurements and associated uncertainties (metro-

logical traceability)“ [I].

Measurements are made everywhere in the world, in houses, schools, colleges, universi-
ties, industries and international laboratories. It is very difficult to find the exact relation-
ship between the actual and measured value if the observations vary with time, since this
may perturb the reference scale. The variation in the measurement processes are controlled

by repeating the observations made during precision measurements of any parameter, but
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rare changes exist that were found to be identical under the same conditions. The vari-
ation in the measurement process occurs, which may be caused by many factors, such as
standards, work pieces, instruments, persons and procedures and environment [62]. The
methods to estimate the uncertainty in measurement should be need rigorously. The ap-
proach to uncertainty of fundamental concept of traceability described in [63], [64], [65] is
highly encouraged and considered to be essential in the engineering experiments. As an
example figure [2.1] considered here deliberately from outside our immediate context that
shows a common path for a calibrated thermometer [I]. The other example is measurement
of the surface profile using stylus instrument. The stylus instruments are commonly used
for a measurement of topography by measuring the displacement of stylus as it traverses

the surface [45].

Fundamental force concept in conventional metrology

Force is a derived unit in the SI, which means that primary standards of the force are
derived from the fundamental definition of force by using three basic units kilogram (kg),
mass (m), and second (s). One newton is defined as the force required to accelerate a mass
of one kg at a rate of one meter-(sec) 2. 1kg is defined as the mass of primary kilogram,
a platinum-iridium cylinder stored in Paris. The weight of a body is a gravitational force
acting on a body and measured in kg as mass [66]. Conventionally, the force is measured
by using strain gauges, load cells, resonance structured, electric balances, force transducers,
piezoelectric crystal and pressure. For a known acceleration due to a gravity, the downward
force generated by the earth field can be calculated. This is the basic principle that works

behind the deadweight standards machines [67], [68].

The forces on the micro and nanotechnology scale are measured by using different prin-
ciples as compared to measurement of macro scale forces. The uncertainty increases of the
scale of masses are reduced for deadweight methods. A mass of 1kg may be measured with

a standard uncertainty of 1 ug (1 part in 10%) [45]. Small masses (0.5mg) are calibrated at
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NIST. The handling of such small masses becomes difficult and their relative uncertainties

increases inversely proportional to the decrease in mass [69].

2.2.2 Low force traceability in metrology

The low force measurement is becoming essential in the national metrology institutes
(NMI). In order to meet the demand of traceable micro to nano-newton force, NMIs
worldwide are working together to extend the range of traceable force measurement further
down to the nano-Newton level [70], [71], [72], [29], [73], [74], [47] . These NMIs have
developed their own small force facilities based own designs and operating principles. Each
NMI has realised diverse paths of calibration for small force facilities for primary realisation

and dissemination routes. A variety of artefacts and methods have been developed by them.

Traceability
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1o NIST for calibration against a
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The digital thear
is shipped. Approximately every y
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recaommended interva “
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nufacturer
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Figure 2.1: A common traceability path(from [I])
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The small force standards are still in a nascent stage. First an informal study pi-
lot comparison program was organized by the NMIs, who have small force facility and
standards. The comparison study program among four NMIs, KRISS, NIST, NPL and
PTB [75]. The primary realisation of a small force in the pilot study program is di-
vided into two types: electrical force-based and mass-based methods. Both NPL and
NIST facilities realise traceable forces based on electrostatic methods through electro-
static balance principle and traceability is derived from international system of units
SI (i.e. meter, capacitance & voltage, while KRISS and PTB primary standards are
realised based on deadweight principles by using high-precision mass comparators. The
calibration procedures employed by them are not standardised yet and deviate from those

used in the macro-force metrology such as standardised procedure described in ISO 376 [76].

In this pilot study comparison programm, it was decided by consensus of the participants
not to adhere to the existing macro-force protocols. They agreed that comparison would be
performed for the measurement of spring constant and force sensitivity for each of a set of
five piezoelectric cantilevers. The pilot study comparison programm was conducted among
NMIs from February 2008 to February 2010. The results of calibration capability are in
agreement, suggesting that their small force facility are equivalent within their reported
uncertainties. The detail of the reported uncertainties may be seen [77]. It was concluded
by the authors that for future comparison a more rigorous technical protocol should be

developed and adopted.

2.3 Standards and capabilities for small force metrology

Rapid scientific progress the during the 1990 in fields such as micro-systems, computing,
low- noise electronics and other precision technologies meant that by around 2000 major
national laboratories could seriously contemplate the design and implementation of trace-
able secondary standards targeted specially at small force calibration. Notably, and briefly
as summarized below, the NMIs in the UK (NPL), the USA (NIST), Germany (PTB),
(KTISS) and Taiwan (CMS-ITRI) have been contributing in this field [78], [48], [79], [80],
[81], 821, [83], [10], [53], [?].
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2.3.1 Low force measurement at NPL

The United Kingdom NPL, an internationally leading NMI, is playing active role to de-
velop a facility for low force measurement. The low force balance was designed and de-
veloped at NPL with the collaboration of University Warwick and Technical University
Eindhoven (2002-2005) [84], [85]. At NPL, and commonly elsewhere, small-force metrology
(nanometrology) is considered the retain of facilities that inform it are, therefore, tex-
ture measuring instruments, such as NPL’s Nanosurf 4 (primary profile measuring instru-
ment) [86], topography measuring instruments [49], the development of primary balance
in 1930 [87], micro-Newton thrust balance [88], nanoidentation instruments [89], micro-
coordinate metrology probe based on a patented noncontact vibrating sensor [50], [90] novel
comb drive for calibration of AFM cantilever [91] and micro-electromechanical device for

lateral force calibration [3].

Low force Balance

The NPL has developed an instrument (figures and to provide force traceability in
the micro to nano Newton range 1nN to uN. The low force balance(LFB) [48], [78] uses elec-
trostatic forces, which tend to be small and so more easily controlled in this context. The
NPL system, designed in collaboration with Eindhoven University of Technology, Nether-
lands and University of Warwick, has superficial similarity to precision electronic balance.
A dielectric plate is suspended between pairs of electrodes by a very soft linear translation
flexure mechanism. This motion is measured by a traceable multi-path laser interferometer.

The basic principle of low force balance is summarised by

F = ;VQ{SZ} (2.1)

where F is force exerted, V is the applied voltage and % the rate of change of capacitance
per unit distance in the direction of motion.

When an external force is applied to the flexure system via small platen, it deflects and
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Figure 2.2: Schematic of NPL low force balance components: (1) platen and strut, (2) leaf
spring, (3) parallelogram body, (4) dielectric, (5) capacitor plate, (6) spacer, (7) reference
mirror, (8) moving mirror, (9) cantilever, (10) counterweight, and (11) laser beams

(from [84]).

Figure 2.3: Picture of NPL low force balance (from [2]).

displaces both flexure and dielectric, this defection is measured by the interferometer, and
used to modify the voltage in the capacitors to create a defection nulling back force. Thus
the exerted force is calculated from the value of V and %. The measurement is traceable

to the metre and ampere.
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2.3.2 Electrical Nanobalnce

A novel comb-drive device was developed at NPL to calibrate the AFM cantilever spring
constant. Omne example, the nanobalance device is shown in figure that requires it
operation in vacuum [9I]. A vertical asymmetric in the fields is produced in the pairs
of comb device that levitates a landing stage against an internal electric field. The spring
constant value traceable to SI unit is calculated from the measurement of the driving electric
signal and resultant deflection. Then for end-users, the device becomes a passive, calibrated,
elastic device without requiring any more connections or possible disturbance by interacting
fields. The authors reported a value of landing stage centre-point spring constant, 0.195
Nm~'£0.01 Nm~!, that can provide calibration of AFM in the range 0.03Nm ™! to 1 Nm™".
The other example of a similar technique is seen at NPL, the Lateral Electrical Nanobalance

(LEN) that was designed to measure the lateral forces such friction in AFM [3].

Comb-grives
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AFM tip, and mirror for
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Figure 2.4: (Three-dimensional computer model of the electrical nanobalance device. The
area shown is 980 yum 560 pm. Dimensions perpendicular to the plane have been expanded
by a factor of 20 for clarity (from [3]).

2.3.3 Low force measurement at NIST

The researchers at NIST are actively playing a role for SI traceability of low force measure-

ment and testing of forces in the range below 1073N. The block diagram of SI traceability
16



in the NIST small force laboratory is show in figures [2.5] The hierarchy in NIST for small
force metrology is based on a combination of length, capacitance and voltage below than
1075N [47]. The NIST has realised traceable force standards below 20uN (electrostatic force
balance (EFB)) [47]. The EFB is derived from electrical units to provide force tracebility
to the AFM and instrumented indentation [92]. A piezoresistive cantilever is calibrated by
using EFB at NIST. This type of cantilever acts as a force transfer artefact when assessing

the thermal calibration method by comparison [25].
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Figure 2.5: SI traceability in the NIST small force metrology laboratory (from [4]).
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Electrostatic force balance

The NIST has developed a electrostatic force balance after a series of design iterations
[79], [80], [93], [94], [4].The current version is shown in the figure The figure shows that
electrostatic force balance has been assembled on an optical table, which is designed free
standing vacuum chamber. The electric force balance is mounted on an optical table with
three legs that are protrude from the chamber floor through flexible bellows that terminate
in blank flanges. The electric force balance operates in the air, or with another inert gas
and the vacuum chamber operation eliminates air currents that could perturb compliant
suspension. Both index of refraction in the interferometer and die electric constant gap in
the capacitance are eliminated by the operation of vacuum a chamber. The electric force
balance consists of an electrostatic force generator that acts along a vertical z-axis (aligned

with local gravity) [79].

Forces are produced when a voltage is applied to the pairs of nested coaxial cylinders.
The high voltage cylinder is fixed and inner ground cylinder is free to translate along z-axis,
which can vary the degree of overlap between the cylinders. The electric force F is generated

along the vertical z-axis for a given applied voltage.

1 (dc
E, = 2{dz (Vf —VE4 V(i — Vg))} (2.2)

where F'is force, % is capacitance gradient, V7 is the voltage applied to the outer electrode
before loading, Vs is the voltage applied to the outer electrode after loading and Vj is the

potential difference between the electrodes.

The source of uncertainty from the potential difference between electrodes is diminished

by the procedure of reversing the direct voltage across the plates [93].

As reported at IMEKO World Conference in 2006, the agreement between electrostatic
and deadweight force measurements in the range 200 uN is to within 13.3 nN that is greater
than k=1 and less than k=2 uncertainty bounds on each measurements [94]. Later, on the

spring constants of the array of cantilevers made from single crystal silicon (1 0 0) were
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Figure 2.6: Schematic of NIST EFB components: (1) parallelogram balance, (2) differential
plane mirror interferometer, (3) main inner electrode (cross-section), (4) main outer elec-
trode (cross-section), (5) vacuum chamber, (6) optical table, (7) granite foundation block,
(8) heterodyne laser light source, (9) mass lift and (10) counterweight (from [4]).
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estimated through an electrostatic force balance in the range 0.02 Nm~! to 0.1 Nm~! and
uncertainty of better than 2% reported. The agreement was confirmed between measured

stiffness values and estimated stiffness from using resonance frequency measurements [25].

2.3.4 The low force measurement at PTB

The PTB has developed different weighing and mass comparators with an automatic weight
exchange facility. The weighing principle of mass comparators used at PTB for realisation

of mass scale and high-precision determination are summarised in table 34 [81].

The PTB developed devices are categorised into three types of device. The first
type is for force calibration that covers that ranges from 10mN to 10N. The force
calibration device mimics the operation of a conventional dead weight machine using
electromagnetic compensation balances, which have a range of either 1200g (~ 12N) [82],
or 210g(~2N) [95], [96], [97] in order to calibrate the transducers in accordance with ISO
376. The incorporated feedback controls the mechanical forces of balance and is able to

stabilise the force down to £ 1 uN level.

The second type of devices coveres the mid range from 50uN to 500mN forces, for
which the PTB has developed micro-force measuring device (MFMD), which uses a mass
comparator of 41g (= 800mN) capacity with 0.2mg (= 0.2uN) resolution. It is used for
determining the stiffness and force sensitivity of AFM cantilever, such as vibration sensor

and cantilever type sensor [95], [98].

The third type are called nano-force calibration devices and have in the range 1 to 180uN

with approximately 1nN resolution.

Force compensation balance

The PTB developed a compensation balance (1mN to 5N), which is consists of a piezoelectric
adjustment unit and precision compensation balance shown in figure 2.7 The force The
force transducer under calibration is hold from above by an adjuster comprised of a screw

for coarse positioning and piezoelectric actuator for fine motion. As the fine adjustment
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Figure 2.7: Measuring Facility with rotary table (from [5]).
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Figure 2.8: Facility for dynamic force calibration (from [0]).

device moves downwards then the force transducers push the load receptor of balance
downward. The movement of the lever arm is recorded by the position sensor and balance

automatically changes the current through a coil connected to the lever arm. A force is
22



produced by the action of the current carrying coil in a magnetic field and the position
sensor resettled to its initial position. Due to the variation of piezoelectrically produced
translation and force balance could be loaded in compression with different forces that
are recorded by the balance. The piezoelectrical adjustment device allows a maximum
displacement of 100 um with a resolution of 1 nm and linearity deviations below 20 nm.This

procedure enables the balance calibration at regular intervals against a weight of 10N [5].

The second type of compensation balance developed in 2006 was more reliable and can
be used for force standard machine having range of few newtons and resolution of single
micro-newton [97], [96]. The above mentioned types of force machine, which use electro-
magnetic balances with a range of 2 or 12N respectively for reaction force compensation of
force transducers to facilitate the calibration and measurements of force transducer with

range from 1mN to 10N.

Later another a new device was developed at PTB called the electromagnetic compen-
sated balance [99], which has a highly stable and linear scale for the force and can be used

for a force standard machine.

Moreover, to measure the forces in the range below 10™°N with resolution of 10712N,
PTB developed another method [7], [100], which uses a mechanical system, thus reducing

stiffness.

Facility based on electrodynamic shaker system

A new calibration facility based on an electrodynamic shaker system was developed at PTB
in 2003 for calibrating forces up to 10kN shown in figure and used to determine to
dynamic properties of measuring instruments. The dynamics force measuring instruments
cover static and dynamic measurements. Static procedures are used to study the effects
such as linearity, hysteresis, creep, repeatability and rotation etc. Dynamic measurements
are performed to fix the differences between static and dynamic characteristics. This ap-

proach appear to be scalable to the needs of sub-newton measurements. It was not possible
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to calibrate the force transducer beyond the 1 kN loads that are used in the automobile

industry, robotic, material testing and force transducer [6] [81].

Electrostatic system for measuring micro- and nano-forces

Another high precision facility was developed at PTB for micro- and nano-force measure-
ment. A disc-pendulum with electrostatic stiffness reduction allows a force measurement in
the range less than 10N with a force resolution of 10712N [7], [100]. Figures[2.9/and
show a conductive disc-pendulum (2) suspended between two parallel plates (3, 4) on the
frame (9), which act as parallel plate capacitors. The stiffness of the pendulum could be
adjusted by applying a voltage on the capacitors. Both plates (3, 4) and frame (9) are
jointed to the base plate (1). The voltage u; and ug are applied on the disc-pendulum(2)
& plate (3) and disc-pendulum (2) & plate (4).

The details of the mathematical model of electrostatic system for stiffness compensation
method, principle, description of measuring set-up, thermal noise and seismic noises are well
demonstrated by the author. In brief micro- to nano-forces in the range 10~° with a resolu-
tion of 10~'2 are presented. The theoretical model analysis predicts forces F, ~107'°N and
relative uncertainty 0.8%, which corresponds to a force resolution of §F,, = 8x10~'3N. Fur-
ther, when the Josephson effect is used for voltage realisation with %“ ~1078, this resolution

could be improved to 6F, = 1.5x10~N.

Force standard machine for measuring forces from 100uN to200mN

The new force standard machine (FSM) developed at PTB for the range 100uN to 100mN
is shown in figure and Basically this machine is based on the comparison of
a force transducer with the indication of an electromagnetic compensated balance (ECB).
One core component of the FSM is the nano-positioning table(NPT) [I01], [§]. The ECB
stands on a table platform, which has advantage for the balance change that could adjust
the force range. The NPT is capable of ensuring a wide positioning range of 7 mm along
with an absolute position of 4nm. A suitable controller is used for interaction between the
servomotors and piezoelectric actuators. The table also facilitates an internal incremental

linear encoder for measuring position and the sensor has a resolution 2 nm.
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Figure 2.9: Electrostatic system for stiffness reductionl: base plate; 2: conductive disc-
pendulum; 3, 4: external conductive plates; 5: suspension by a thin conductive wire)
(¢ ~0.3 m) (from [7]).
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Figure 2.10: Lateral view of the electrostatic system for stiffness reductionl: base plate;
2: conductive disc-pendulum; 3, 4: external conductive plates; 5: suspension by a thin
conductive wire; 6, 7: voltage sources; 8: electric insulation layer; 9: frame fastened to base
plate (d1 =~ d2 ~ 10~*m) (from [7]).
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-nano-positioning table

Figure 2.11: Construction principle of the new FSM. The ECB is located on a platform
mounted on a NPT and can thus be driven against the force transducer. The transducer
itself hangs on a rotational and tilting table for precise adjustment. The tilt table can be
changed in x and y direction, whereby the tilt angle is measured by two appropriate tilt
sensors. The rotational table allows a rotation of 360 degree. All hanging components are
mounted on a vertical moveable traverse. (from [§]).

Figure 2.12: Photograph of the new FSM. In the lower part one can see the NPT and
the balance, surrounded by a foil to reduce thermal influences. Above the balance, the
transducer, with the adapter mounted on the rotational and tilt table (from [g]).
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The two positioning concepts enable the movement of the table with wide velocity

range i.e. (positioning range of 7 mm could be drive in 70s).

For designing the force range 100 p to 100 mN, an EBC with a nominal range is used
and has has a readability of 1 pug and standard deviation of 3 pg. The data data filters
are switched internally and the balance can read with frequencies between 50 to 100 Hz
The pressing of transducer causes its lever to move down figure The position sensor
located on the opposite side of the lever detect the position change cause by the transducer.
The current though a coil mounted below the lever also increases through the internal
controller of the balance, because the coil is also surrounded by the magnet which causes
the coil to produce a magnetic field that is repelled from the static field of a permanent
magnet. The produced deflection is compensated for by lowering the balance lever. Thus
for high mass/force, the higher current and Lorentz force produced by the coil. Due to this
effective result, the weighing pan is always kept at the same position. The coil current is
controlled by balancing a wheatstone bridge arrangement for the transducer. A wheatstone
bridge receives a current of coil through a resistor. Finally, the voltage signals are tuned
and transferred to the balanced. Furthermore, the transducer may be adjusted by using a
rotational and tilt table to set it perpendicular to weighing pan. The new FSM is capable

of producing forces in the range 0.1 to 200 nN in accordance with ISO 376 standard.

2.3.5 The low force measurement at KRISS

The force standards, applications and traceability from the macro and micro level have been
developed at KRISS. The KRISS has developed a small force facility that focuses on smaller
force ranges of 500 nN to 100 uN. KRISS has also developed various device such as nano-
force calibrator (NFC) using a precision comparator of 5g (~ 50mN) capacity with 0.1ug
(=1 mN resolution for providing traceable calibrations to determining the spring constants
and force sensitivities of various AFM cantilevers and micro-force sensors in the range
0.01 Nm~! to 100 Nm~'. KRISS has also claimed that the relative uncertainty of such a
calibration is better than 1%. They have used several calibration methods for the compar-

ison of the spring constants of various AFM cantilevers including the NFC method [83], [10].
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An extensive study of calibration using various AFM cantilevers with spring constants
in the range 0.06 to 42 Nm~! was made using NFC. KRISS handcrafted a set of weights
(0.05,0.1,0.2, and 0.5mg) from thin gold wire and made an uncertainty analysis. They
claimed that NFC can calibrate AFM cantilevers traceable to SI with an uncertainty of
better than 1%. The relative standard uncertainty of the smallest mass artifact, 0.05mg,
reaches up to 0.4% (0.2 pg), which is the largest component of uncertainty in the calibration

[10].

Conventional weighing balance

The low force measurement standards established at KRISS are of the deadweight type
traceable from the mass standard. They cannot examine a standard below 1mg [9]. The
mechanical modelling, micro-weighting device and the principle of force sensing using
null balance are explained in [9]. The industrial experts prefer to use null balance for
forces of high precision in order to overcome the limitations of real loadcells. Their force
calibrator (NFC) consists of a micro-balance and nano-stage [9]. The schematic diagram
of micro-weighing system is shown in the figure [2.13} it uses a high-precision comparator

5g(~ 0.1 pg) capacity with 0.1ug(~ 1nN)n resolution.

The device consists of a parallel spring and mechanism for amplifying displacement.
When an object is placed on the weighing pan, the vertical force pushes the spring down
and displacement of the spring is transferred by the flexible link, which rotates the lever
arm about a flexure hinge. The rotation of the lever arm causes the coil to move. An
optical position sensor is used to detect the displacement. The position sensor controls
the electromagnetic transducer and increases the force until the position errors becomes
zero. At this stage the applied force equals that from the current fed though the coil
(electromagnetic force compensation). The device was designed for resolution of 1.0 mg

and range over 100 g. Settling time was less than 1s figure [2.1

Nono-force calibrator

The NFC consists of a commercial electromagnetic balance. For accurately tracing the

spring constant, a nano-stage with integrated displacement sensor is used. Figure is
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Figure 2.13: A conventional micro-weighing device: the electro-mechanical sys-
tem. (from [9]).
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Figure 2.14: A photo of the nano force calibrator (NFC) consisting of a commercial mi-
crobalance, a three-axis stage, a nanostage and so on. The cantilever pressing the load
button is shown in the inset(from [10]).

for calibration and figure shows schematic setup for the calibration of spring con-

stant. The NFC could perform well for characterising the levers even for a small force (=
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500 nN). The relative uncertainty of spring constant calibration in this method is better

than 1% based on calibration results and uncertainty analysis [10].

Quantum-base mechanical force realistion

The KRISS researchers have introduced a new concept of controllable ultra-low force reali-
sation that is based on macro-scopic phenomenon as shown in figure [11], [102], [103]. A
ten micron sized annulus is mounted on a micro cantilever with ultra-small spring constant
(k = 107* to 107> Nm~!). An external magnetic field Bext is applied perpendicular to the
annulus. The magnetic flux ¢ through the annulus below a super conducting temperature
is quantised in the units of flux quantum that is equal 2% (h is Planck constant and e is

elementary charge).

The resultant magnetic moment m is an integral multiple of magnetic momentum for a
single flux quanta m,, which has component depending on the number n of the trapped flux
quanta. A step force is exerted on the cantilever through interaction between the quantised
magnetic flux and calibrated magnetic field gradient %. The discrete forces steps are

measured by monitoring the displacement of the cantilever using an optical interferometer.

The minimum step force Fy is

dB
F, = —_— 2.3
q Mg dz (2.3)
The step force was estimated of 184fN for a 50nm thick Nj annulus which has inter and

outer radii 5um and 10um respectively for the gradient of 10Tm ™!,

2.3.6 The low force measurement at CMS-ITRI

Only a few publications have been seen about the activities of researchers in CMS-ITRI in
Taiwan. But the authors Sheng, J.C. et al. claimed that their research team has developed
micro-force measurement facility below 10uN during an IMEKO conference session. They
drew attention to the practical applications of their established techniques, such as a Nano
universal testing machine for force measurement below 1 N (force range < 500 mN, extension
range < 150 mm and test material used: spider slik, polymer materials & thin film),

calibration of nano-indention system (force range < 500um, cantilever stiffness
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measurement 0.5 Nm~! ~ 10 m~! & uncertainty 20% (k=2), microbalance (Mettler
Toledo UMT5) and electrostatic force balance. Their established facilities also include a
torsion pendulum balance to measure what they called the horizontal gravitation force below
50 nN that contain integrated radiation pressure base on damping for force measurement
and flexure stage with electrostatic sensing and actuating (vertical force range below 200uN,

with monolithic flexure stage and compensation electrostatic force) [53], [104], [55], [56].

2.4 Current challenges for the base units of SI

The measurement of micro to nanonewton forces is becoming essential in research, industry,
worldwide national intuitions and academic intuitions at this time of flourishing biotech-
nology because wide ranges of forces are required and there is great demand for them to be
related to their applications. The biophysicists are also characterising small force further
to subpiconewton, associated with molecules and cells, to investigate mechanical to prop-
erties and role of forces that could influence biological processes. These measurements are
becoming more and more precise and current levels of measurement uncertainty will be a
problem in the near future. Therefore, preparations are being made to redefine the kg in

ST system [105], [32], [34], [33].

Weighing problem of small masses in metrology

Dead weights are usually used for maintaining the force traceability in the millinewton
to meganewton range [48]. The lowest traceable force realised by a deadweight standard
machine is around 1N. Researchers and metrologists are exploring new facilities for force
calibration from millinewton even to a micronewton, e.g. by placing calibrated mass
artefacts on sensors to calibrate them or by using the down-slope component of gravity
acting on an object that placed is on an inclined plane to generate small force [106].
This approach has some restrictions if the sensor is small and it becomes difficult to
load a weight directly on to the sensor. Hence uncertainty of calibration depends how
a weight is placed accurately at right position onto sensor. The other restriction is that
the lowest mass available commercially is lmg (~ 10uN) and all world NMIs provide
a calibration facility only for a mass above 1mg. But below 10uN handling difficulties

and contamination produce higher relative uncertainties in weight measurement, e.g., 2mg
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(=~ 20uN) could be made practically from a length of fine gauge wire of length ~ 10mm [107]

Another approach currently being developed at PTB and KRISS is to use primary
standards in combination with based on dead weights mass comparators (mass balances)

discussed already in the previous section. [96], [97], [10], [108].

New challenge for base unit (kg) of SI system

The classical methods of calibrating forces derived from the kg standard do not apply to
the sub-millinewton regime. The newton derives in SI system from kilogram, which is
extremely difficult to realise, even in a best standards laboratories, to precision of the nano
traceable metrology of level. A lot of scope is seen for micro- to nano-newton level forces,

which are highly reliable and may be used for real machine calibration.

The apparatus required to make such measurements must have metrology traceability
to realise the SI unit of force. The low force measurement makes huge demands and a
relevant system must be traceable to tiny masses smaller than a milligram for realisation
of SI unit of force. The instability of small masses means that the artefact range scaling
down from kilogram (kg) to nano force presents challenging targets in terms of instability

and traceability [109].

During the 24" meeting in 2011, the General Conference on Weights and Measures
CGPM and the International Committee for Weights and Measures (CIPM) agreed to
revise the units of SI with a view to it continuing to meet the needs of science, technology,

and commerce in the 215 century [12].

2.4.1 Conventional definition of kg in SI System

The kg is still defined in terms of a material artefact, namely the international prototype
of kilogram (IPK) kept at the Bureau International des Poids et Mesures (BIPM) [I10].
The third verification of national prototypes of the kilogram (NPK) against the IPK in the

period 1989 to 1991 confirm the relative mass changes being in the order of 50ug during
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a period of about 100 years [I2]. The unknown changes in the mass unit also influence
the base unit, because the definition of ampere is related to the kg. Similarly, the other

definition of mole and candela also depend on the kg (figure [2.17)).

2.4.2 Proposed changes to base unit of SI system

The proposed changes by CGPM and CIPM to the SI can be summarised as fol-
lows [12], [111].

e Define all existing base units of SI in terms of well-recognized fundamental or atomic

constants, such as the Planck constant h, see figure [2.18

e The values of all these constants are fixed to an exact significant number (with zero
uncertainty), such as for the speed of light in vacuum, ¢ = 299 792 458 metre per

second.
e Formulate and define all seven base units of SI in a uniform manner.

e Prepare specific sets of instructions (i.e. “mise en pratique”) and explain how each

base units can be practically realised based on recommended top-level procedure.

Planck’s constant h, the ampere in terms of the electronic charge e, the kelvin in terms of
Boltzmanns constant k, and the mole in terms of the Avogadro constant NA would be used

for a new definition of the kilogram.

2.4.3 Redefinition of base units of SI system

The Consultative Committee for Mass is (CCM) is currently working to redefine the kg.
Several methods are under the consideration that could be realised in the future by differ-

¢

ent primary methods, e.g. the Avogadro method (also know as “ crystal density method”),
“watt balance” using primary mass standards and how NPK or other secondary mass stan-

dards of NMI can be linked to the primary mass standards via Planck constant “h” fig-

ures and [12], [112].

2.4.4 Proposed new definition of base units of SI system

The new definition of the kilogram as currently proposed has its magnitude is set by fixing
the numerical value of the Planck constant h = (6.62606Dx 10734 m?) s~'kg, or in derived
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Figure 2.17: The seven base units and their relationship in the current SI (from [12]).
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Figure 2.18: Figure 2. Definition of and relationship between the seven base units in the
proposed new SI. In the new SI all base units will be defined in terms of fundamental or
atomic constants. The changes to the current SI, and the new relationships, are marked in
red. The black arrows denote relationships that remain unchanged in the new SI (from [12]).

units J s. D stands for digits that are added to the numerical value at the time when

the definition of the kg will be adopted. The value of the Planck constant is decided by
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nature, and its numerical value is set by this definition and other units, second and the
metre are defined separately. Therefore, the effect of this equation is used to define the

new unit of kg [12].

The most important aspect of the redefinition of any unit is its continuity. The new
defined unit would be of the same size as the previous unit to a high degree so that
the results of past measurements remain the same. In order to realise the new unit the
unavoidable discontinuity shall be smaller than or at least comparable to the uncertainty.
Hence, the new definition of the kg requires a measurement of the Planck constant in
the present SI system to determine the numerical value to be used. Another important
aspect considered is whether the future new definition would be practically realized with
a sufficiently small uncertainty. Experts in mass metrology who meet in the Consultative
Committee for Mass and Related Quantities (CCM) estimate that the uncertainty for
the realisation of the kilogram should not be larger than 2 parts in 108, for legal require-
ments in metrology. A “mise en pratique” will be developed by the CCM which will
specify how the new definition could be realized in practice. The existing difficulty has to

be addressed in terms of how to ensure the uniformity of mass calibration in the future [109].

The uncertainty for the determination of the Planck constant is expected to be around
about 2 parts in 10%. It has been already stated above, the Planck constant could be
directly determined with a watt balance or indirectly, via the definition of the Rydberg
constant. Watt balance experiments purely rely on the equivalence of mechanical and
electrical energy and also on the use of two macroscopic quantum effects i.e. (the Josephson
effect and the quantum Hall effect).The watt balance approach has the advantage that it

could be carried out by a single laboratory [105], [113].

It has been reported by other researchers that while the new definition of the kg requires
as reliable evaluation of the Planck constant h, the published values of h are not in agree-
ment within their uncertainties [I14]. To solve this problem METAS has developed a new
watt balance in strong collaboration with specialised partners coming from high technology

industry, universities and research institutions. The preliminary experimental results were
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judged very promising and should allow one in the future to reach the expected relative

uncertainty of a few parts in 10% [115], [116], [117], [109].

2.4.5 Low force artefacts

Transfer artefacts are considered to be one of the most essential elements in the hierar-
chy of SI measurements for disseminating national standards to industrial standards or
instruments at lower levels of the hierarchy. Direct transfer of force standards to the target
instruments is incomplete without transfer artefacts due the immobility of standards or
target instruments. This is why, in most cases, one needs devices or standard reference
materials that are capable of delivering force from the standard to the target. Transfer
artefacts in conventional force metrology are based on a load-cell technology. When they
are loaded, they then act like an elastic spring element. On loading, they can read the
resistance changes that are proportional to the applied load of the strain gauges attached
on the spring element. The deadweight standard machines maintained by NMIs ensure
relative uncertainties of a few parts in 10° of top-grade load-cells, which are known as
“transfer standards”. There are available standards above the newton level. Therefore,
NMIs are seeking to develop new low-force transfer standards along with low-force primary

standards [75].

The first machine that falls into the category commonly called coordinate measuring
machines (CMMs) was developed by Ferranti, LTD., of Dalkeith, Scotland (Ogenden 1970)
shown in figure 2.19] The initial Ferranti development was an inspection machine that has
movement facility along x and y-axis (610 mm & 381 mm) respectively. It was used for

production inspection accuracy 0.025 mm and resolution of 0.012 mm.

While many physical principles might be exploitable for nano force transfer in the long
term (section 2.6), NMIs are also seeking technologies that could be developed rapidly
into relatively robust and wrt-effcetive transfer standards for at least the millinewton to
micronewton range. There is believed to be more urgent commercial need to cover this

range. So far, all published proposals are based upon various types of spring.
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Figure 2.19: Ferranti coordinate measuring machine (from [13]).

One major line of research builds on the probe technology for micro-coordinate mea-

suring machines.

The first development of CMMs was started in 1968 at Mitutoyo with the design of
an x-y measuring instrument. It was used for measuring the cases of household electric
appliances. Thus the probe can perform the measurement that was previously performed
by various devices such as height, gauges, calipers, roundness-measuring equipment, surface
plates and micrometers. Later, in 1973, Carl Zeiss of the Germany introduced the first

CMM with three dimensional measuring probe head and made probing (scanning) possible.

Further advances in CMMs, since 1985 have improved its accuracies and other features
such as programming and data analysis have been expanded [13]. During the 1990s, various
research and commercial groups were observing the growth in micro- and nano-applications
and considering whether small, super-precision versions of the CMM could be devised and
used under practical conditions. But alongside other major challenges it was soon realized
that delicate surfaces need to be addressed via probes offering not just high-precision but

very low contact forces and access into very small recessed features. In this way a new field

38



of research into micro-probes opened up and much of the best, extensive early work was

performed in the Netherlands.

Pril developed one of the first designs for a higher precision mechanical micro probe for a
coordinate measuring machine during his PhD Studies at the University of Eindhoven [14].
In 2008 Bos another PhD student at the University of Eindenhoven [I1§], redesigned Pril’s
Probe as shown in figure and presented new design of gripper [119], [118]. The basic
suspension shown in figure for the probe system consists of three slender rods (acting
of beams) with three effective degree of freedom (3-DOF), translation along the x-axis and
rotations about the x-axis and y-axis. Strain gauges are attached to the slender rods to
measure indirectly the displacement of the tip. Experiments performed with strain gauges

showed hysteresis was often caused by connection of strain gauges to the base material [119].

Pril’s original design for the micro probe was adopted by Bos, IBS and NPL [120], [121],
[118], [122], [123]. NPL renamed it as “Triskelion” (triskelion simple means three legged,
from the Greek) micro probe. The original Pril and Bos designs for the probe always
arranged slender rods in a circular pattern with 120 degree offsets ( the elbow angle between
each arm and slender rods always was 60 degree). NPL versions were made as small metal
fabrications, but they latter introduced a microfabricated version, actually with metallic
beams although produced using typical silicon processing routes. Note that NPL adopted
the geometry with 60 degree elbow, proposed by Prill. IBS has also adapted Pril and Bos
designs with 60 degree elbow. The professional competitive environment for commercial
purposes has been seen between IBS and NPL for advancement for micro probe work such

as Isara 400, and vibrating micro probe, [124], [125].

The extensive research work for triskelion micro probe has been performed at
the University of Eindhoven, NPL, METAS [I4], [118], [126], [127], [128], [129],
[130], [131], [132], [120], [50], [121], [133], [134]. The research work for micro probe was also
carried out at other intuitions [135], [136], [137], [138], [139], [140], [I41], [142], [143], [144], [145],
[146], [147]. While significant to the design and application of micro probes, these sources

contribute nothing original in terms of suspensions relevant to this thesis and are not
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Figure 2.20: The probe tip (T) and the stylus (S) are suspended to the probe house by
three slender rods (R) tangentially touching an intermediate body (I).The free ends of the
rods are to be connected to the probe house (from [14]).

slender rod
to probe house

intermediate body

Figure 2.21: Dimensions of the suspension from [14]).

further discussed.

Jones at the University of Warwick in 2012 [148] also adopted microfabricated triskelion
force artefacts again with 60 degree elbow angle only. These were fabricated at Cranfield

University and demonstrated with some success.

Moreover, micro probes are usually intended as x-y-z sensors of movement at a stylus tip
and all the planar suspensions implement this as at the free end of a stylus rod that is con-
nected to a flexure with a z-translation and two rotations. Triskelion (or even diaphragm)

designs do this pretty well, where roughly equal effective stiffness at the tip in each active
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axis is desirable and, in principle, attainable. However, for a force transfer artefact we
would ideally want (but cannot have by these methods) a pure z-translation having a single
degree of freedom device. The implications of varying this pattern for the detailed design of
triskelion transfer artefacts seem not to have been published or discussed in the literature

available in the public domain.

2.4.6 3D micro probe system

A new tactile 3D micro probe with optical detection was developed and published in 2011
[15]. The system design is shown in figure and The mechanical design of the
probe system was altered to allow exchange of the stylus separately from the flexure ele-
ments. Metal membranes were used in the new system design instead of silicon membranes
that were used in the old system and the function of these membranes was to lock the par-
asitic movements to optimise for isotropic forces. While discussing the membranes/design

(suspension), several key points were identified by the authors:
e Stiffness is controlled by altering the thickness or width of the elements (beams).

e The suspension must provide the tip with a stable resting position and movement

relative to the probe system’s housing.
e The optimisation of the membranes is required for small isotropic probing forces.

e The natural frequency must be higher than few hertz to reduce the free oscillation of

the flexure elements and probe tips.
e The membranes should be stiffened against parasitic movements.
e The equivalent mass should be small because it directly affects the probing forces.

e Elastic flexure hinges should be made from non-creeping material and breaking resis-

tance should be considered.

The authors also presented their overviews of past micro probes shown in figures [2.:24] and
Figure (a) shows the first system design with a silicon membrane [16]. The sensor
elements were removed and deflection was detected from the backside. The anisotropic

stiffness of the membrane was determined to be approximately 200 N m~! in
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Figure 2.22: Functional principle of the 3D microprobe system: (1) fibre coupling, (2) focus
lens, (3) reference mirror, (4) neutral and (5) polarizing beam splitter, (6) probe mount
system and (7) plug. from [15]).

Figure 2.23: New system design for the 3D microprobe system: (1) fibre coupling, (2) focus
lens, (3) reference mirror, (4) probe mount system, (5) plug, (6) overload protection and
(7) weight force compensation and force generating unit from [I5]).
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the z— and y-direction and 5200 N m ™! in the z-deration.

Another design is shown in figure (b) and (c), which clearly indicates the flexure
elements (three beams) are arranged symmetrically with 120 degree angle offset position
with three degree of freedom, rotations about x, & y-axis and translation movement in
z-direction. Measurements were made that this arrangement have nearly equal stiffness for
all probing directions [17], [149].

Further, the flexure element in figure (c) was adapted to minimise parasitic rotations

2 —ﬁ____,_H .
= /@ — &
i H \
ilox s

(a) (b)

Figure 2.24: Designs for the suspension system: (1) stylus, and (2) sensor elements. (a)
Full or cross-shaped boss membranes [16]). (b) IBS Triskelion probe [17]): Invar membrane
with capacitive sensors. (¢) Gannen-XP [I8]): silicon membrane with piezoresistive sensing
elements.

Latytus

b Powa

{a) (b)

Figure 2.25: Assumptions and result of the membrane design. (a) Substituted mechanical
system. (b) Design: (1) stylus, (2) bending area from [15]).

about z-axis figure (b) which could occurs over a few degrees when the flexure element
moved out of the zy-plane. The new microprobe system design possesses great potential for
micro- and nanometrology, with respect to the possibility of exchanging the stylus without
the flexure elements. This distinct feature is introduced in this system, which is capable of

enabling the absolute roundness calibration of the probing sphere. This is main reason that
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concept of new approach is a promising for 3D measurements, which include sphere form

deviation corrections.

2.5 Force sensing methods

Studies of behaviour, as potential force transfer artefacts, of planar flexure mechanisms such
as triskelions is the core topic of this thesis. Further discussion is deferred to chapter 3.
Prior to that, it may be useful to review other force generating principles that might offer

rival solutions for direct ranges of the force transfer.

2.5.1 Dead wight forces production

The earth’s gravitational field acting on an object of finite mass is commonly used method
for force production (a dead weight). The net downward force produced by a weight in the

earth’s gravitation field is given as

F = mg< —5;) (2.4)

where p, is air density, p,, is mass density, m is mass and ¢ is gravitational acceleration.

The force produced in equation [2.4] is in newton. From the outcome of international
comparisons, the relative uncertainty of measurement produced by dead weight standard
machines is stated by National Measuring Institutes as below 1x 107°. Dead weights
are used for maintaining the force traceability in the mN to MN range [150], [I5I]. This
attempt to lead the needs rather than present a series of sperate statements in sperate
sentences. For the force below 10 uN, well within the low force balance scale, there will be
higher relative uncertainty in weight measurement due to difficulties of handling, contamina-

tion etc. Dead weights are not considered suitable for use as low-force transfer artefacts [45].

KRISS handcrafted and calibrated microweights, a set of mass artefacts of masses
0.05 mg, 0.1 mg, 0.2 mg and .5 mg to achieve Sl-traceability in force measurements during
calibration of compliant cantilever. The relative uncertainty of the smallest mass artefact

0.05 mg was reported to be 4% (2ug), that has been seen as the largest component of
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uncertainty in the cantilever calibration [10].

The Laboratorie National d’Essais (LNE) in France has produced a set of artefacts in
the range 0.1 to 0.9 mg with aiming to calibrate the sensitivity of mass comparators [].
LNE reported the standard uncertainty of the smallest mass of 0.1 mg was 0.06 ug [152].
PTB also reported that a high-precision mass comparator are used to calibrate the spring

constant of compliant V-shape cantilevers [108].

Low force standards based on deadweights approach is useful and reliable down to
0.5uN(~ 0.05mg) via extension of mass standards. However, the increased levels of careful
technique required implies that it becomes impractical for routine industrial or shop-floor

use at considerably higher forces (masses).

2.5.2 Resonance method: nanoguitar

Since mechanical resonance is affected by direct stresses in a vibrating system, resonance
frequency modification can be used to sense applied forces. One variant proposed for

calibrating scanning force microscopes is know as nanoguitar [19].

A conventional scanning force microscope was set up operating in vacuum, with its tip
pressed against the platform of the device, a cantilever. A fine wire ‘String’ is attached
to the free end of the beam an held in tension. Changes of tip sample interaction force
lead to proportional changes in the resonance frequency of the string (figure . The
experimental setup of apparatus is show figure Vibration in the wire was excited elec-
tromechanically (Lorentz force) and its frequecy detected by Doppler vibrometry. Optical
sensing must be used to minimise disturbance of wire. It is a major challenge to obtain a
good frequency signal from a wire. An exciting vibration in the wire (done by the Lorentz
force) and detecting the frequency (which must be done optically for minimum disturbance,
with doppler vibrometry being used) is challenging at this scale. The other two serious
drawbacks may be seen in this method: the optical integration of resonant frequency and

Doppler vibrometery and oscillation, which are generated by using the
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Figure 2.26: Schematic setup of the string force sensor- the nanoguitar (from [19]).
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Figure 2.27: Drawing of the prototype force sensor. Example of an actual experimental
set-up showing sheer piezo for tension adjustment and magnetic for actuation of Lorentz

oscillations (from [19]).
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Figure 2.28: Schematic diagram of a double-ended tuning fork resonance force
(from [20]).
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Lorentz force.

The method used add complexity and cost, leading to a large physical system. The
author reported a force of 0.1 nN could be archived. This novel idea is not practical because
the system only generates forces one direction and can’t easily used on the low force balance

or with most target instruments.

2.5.3 Resonance method: tuning fork

The use of a double-ended tuning fork(DETF) as a unique approach for a high sensitive
sensor is presented by [20] and shown in figure When a vertical force is applied
to the cantilever, the resonance frequency of the DETF beam changes due the change in
axial force. DEFT resonators are monolithically fabricated and this process can reduce
clamping loss and improve the force sensitivity. The beams of the DEFT are vibrated by an
external electromagnet and amplitude is measured with laser Doppler Velicometery. The
monolithically fabricated system has experimentally achieved minimum detection limit of
19 uN and amplitude of 1nm, with a theoretical maximum value of 0.45 N. This limit is

rather high for practical with a low force balance.

A simulation of the DETF is presented in [I53]. The finite element method was used
to design the resonator and is applied for detection of two axial angular vibrations as gyro-
sensor. The sensor design presented cannot be adapted for a transfer artefact due to noise

levels, device fabrication and oscillation driving modes.

2.5.4 Casimir forces

A remarkable prediction of quantum electrodynamics made by Casimir in 1948 [154], is that
a small force attractive force exists between two parallel, closely spaced conducting plates
in vacuum. Practical measurement of Casimir forces have been demonstrated, [155], [156].
The Casimir force arises from electromagnetic fluctuations and can be described in terms

of virtual photons. The energy density decreases as the plates are moved closer and the
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Casimir force [I55] in a vacuum is give by

hAm?
N TE 25

where i is Planck constant, c is velocity of light, A is surface area of plate and L is distance
between two mirrors. The magnitude of Casimir force depends on the boundary of in face

geometry.

The practical measurement of Casimir forces was carried out [156] and [40] in pm
range (0.6 to 6 and 0.1 to 0.9um). The interesting diagram in , can exploit serval feature
required for transfer artefact but could not interface to the system. The Casimir forces
suffer the same drawbacks as Van der Waals interaction experiments [I57] (see section
2.5.6). These experiments have several feathers similar to the required for a transfer

artefacts, but they could not interfaced with a low-force balance or typical instruments.

The demonstration made in [I58] for a silicon cantilever ( Cr/Au coating) milled have
better sensitivity for Casimir force detection. Future study could enable the minimum
forces of the order of tens of attonewton for cantilevers with attached metal coated sphere
required for measuring the sensitive Casimir forces. It may be that this type of cantilever
could be used for transfer forces at very low end of range. The issue of roughness mea-
surement, demonstrated in [159], [I60] become insignificant to measurement of the Casimir

forces.

A MEMS-Based Force Sensor was developed [161], which is capable of measuring forces
as small as 107'N. A novel micromachined torsional oscillator with an interferometric
position-sensing mechanism has been used in the force sensor. The sensitivity and unique
features of micromachined torsional oscillators allow measurement that would be extremely
complicated using any other technique, such as the observation of the Casimir effect and
deviation of the Newtonian gravity at distances below 1pm. Experimental results with
device and theoretical analysis led to new constraints on Yukawa modifications of Newto-
nian gravity at short distances. Measurements of the Casimir force between two metallic

surfaces with a resolution two orders of magnitude better than previous experiments were
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reported by the authors.

Another advancement is a force sensing micromechanical beam and an electrostatic
actuator that was integrated on a single chip for demonstrating the Casimir effect between
two silicon components (micromachined ) on the same substrate. This new scheme has
opened the possibility of exploiting the Casimir force using lithographically defined com-

ponents of non-conventional shapes [162].

The possibilities of the Casimir expulsion effect was presented in[I63], which can be
the basis of quantum motors, which can be in the form of a special multilayer thin film
with periodic and complex nanosized structures. These motors could be the base of

transportation, energy and many other systems in the future [163].

Furthermore, KRISS has developed a facility [164] to generate forces in the piconew-
ton range based on flux quantization in superconducting annulus and thence on a micro-
cantilever. The forces generated by this methods are too small for current needs of a transfer
artefact. However, the possibility exits to improve the design of flux quantization in the

superconducting annulus for future force transfer artefacts operating extremely small forces.

2.5.5 Radiation pressure and momentum

The electromagnetic wave carries both energy and momentum. The expression between the
energy AFE and momentum Ap when a plane electromagnetic wave is completely absorbed

or reflected (0 < R < 1) is given as [165]

Ap = %(1—1—]%) (2.6)

For a perfect absorbing surface, R = 0 the equation ([2.6)) reduces to,

ave = () (2.7)

Cc
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For perfect reflecting surface, R = 1 the equation (2.6 becomes,

Ap, = 2(M> (2.8)

c

The general expression of radiation pressure and force for reflectivity ( 0 < R < 1) is given

by
Praa = {HGJR)} (2.9)
Fraa = {21(1:_R)Pmd} (2.10)

For perfectly reflective surface R = 1, therefore, the expression for force from equation [2.9]
is given as,

Frog = 2(P’”“d> (2.11)
C

By way of illustration, a practical experiment using household bulb of 15W can generate a
force of 10 nN. The model presented in equation [2.11] is considered to be the best option
for generation of a nanoNewton force for a low force balance using a high reflectivity mirror

and laser power in the milliwatt region.

The stability of optical levitation by radiation pressure was studied in 1974 [166].
The experimental evidence for passive (or intrinsic) optical cooling of a micromechanical
resonator was reported in 2004 [167]. It used cavity-induced photothermal pressure to
quench the brownian vibrational fluctuations of a gold-coated silicon microlever from room
temperature down to an effective temperature of 18 K. Thus heating effects may be big for

ultra-precision metrology applications.

The practical use of radiation pressure has been shown at PTB for their torsion pendu-

lum facility that is capable of nanoforce generation [16§].
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2.5.6 Van der Waals forces

Van der Waals forces are weak electric forces that attract neutral molecules to one another
in gases, liquids, and solids. An AFM was used study a wide variety of sample (plastics,
gases, metals and biological samples such as walls of cells and bacteria) and exploit the
Van der Waals forces between closely adjacent surfaces [169]. The mathematical mode
predicted Van der Waals forces, F,q, = 114mN & 139nN for silicone rubber (S;02) and

polyester (polydi-methylsiloxane, Dow-corning, HII) [169].

Hence these forces have useful magnitude only for very small separations so it is difficult
task to use Van der Waals forces in a force transfer artefact. The first experimental
evidence for dry adhesion of gecko setae being from Van der Waals forces was demonstrated
by Autumn K. et al. . MEMS technology was used to fabricated a cantilever for adhesion
measurement. The perpendicular forces were measured by using a probe with 1.75 Nm™!
and 390 nms~! retraction speed. Moreover, traceability of Van der Waals interaction
require the determination of the Hamaker constant in ultrahigh vacuum, which varies

depending on the interacting surfaces and level of accuracy available.

The major problem for the AFM base method is determination of a force-distance rela-
tion for the AFM probes. Parametric tip models and force relation for Hamaker constant,

a topic of great interest of AFM force measurement [170].

2.5.7 Step forces in protein unfolding

With the recent advancements in various innovative experimental techniques and equipment
have been developed, which may be used to probe the physical properties of biostructures
from the micro down to the pico-scale [21I]. Some of experimental techniques are shown in
figures [2.29] and used for conducting biomechanical tests in a single molecules and single
cells. The available imaging techniques for such tests are shown in figure The folding
and unfolding of a single protein molecule appears to be a promising technique for generating
low range forces. This topic has been extensively studied using AFMs [I71], [22], [172].
Each unfolding event is characterised by a certain force but that force is not symmetric on

refolding corresponding dispalcement for example one example is “by straching and relaxing
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Figure 2.29: Imaging techniques that can be used to observe physical, biological and bio-

chemical changes occurring in biological structures during biomechanical tests of cells and
biomolecules (from [21]).
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Figure 2.30: Experimental techniques for conducting mechanical tests in single cell and
single molecule biomechanics (from [21]).

tenascin, a large hysteresis is seen i.e. the forward force has a sawtooth pattern, where
as the relaxation trace is featureless (no force peaks). This is because the system is not

at equilibrium during the time scale of the experiment (milliseconds) and refolding is very
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Figure 2.31: (a) The unfolding of protein domains by an external force, (b) The character-
istic saw tooth pattern for extension (from [22]).

slow (seconds); in addition the refolding rate is very sensitive to the applied force” as shown

in figure 2:31}
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Figure 2.32: Force extension curves obtained by stretching titin proteins show periodic
features that are consistent with their modular construction (from [23]). The exlension
curve in the spacer region preceding the saw-tooth is not well defined and would likely
hinder traceability.

An AFM tip was used to investigate the mechanical properties of titin. Individual titin
molecules were repeatedly stretched, and the applied force was recorded as a function of the

elongation. The forces required to unfold individual domains from 150 to 300 piconewtons
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Figure 2.33: Four consecutive force spectra on a single molecule of the protein titin using
a small cantilever. All force spectra were acquired at a pulling rate of 3039 mm/s, which
is an order of magnitude faster than previously performed with conventional cantilevers
(from [24]).

range depended on the pulling speed shown in figure [23]. A small cantilever (10um
long and with spring constant 23 Nm~! was also used at resonant frequency of 23 kHz.
The force versus extension curves for four consecutive “pulls” of a single molecule of titin

showed a consistent force at each cycle that is shown in figure [2.33] [24].

The folding and unfolding technique has been extensively studied, which reveals signif-
icant problems, such as hysteresis, repeatability, and speed rate effects during folding and
unfolding; the process is not uniform [173], [174], [I75], [I76]. Currently these issues do not

provide much promise for using unfolding and folding technique for low force calibration.

2.5.8 Elastic element methods

The most commonly used method for force generation is by using an elastic element
method with know spring constant. For a very small forces this often draws on the concept
of the AFM, and is based on the elastic deflection of a micro-cantilever. Many modern
commercial AFM offer some (non-traceable) force metrology in terms of nano-indentation

and pull-off force capabilities based on their standard cantilevers.
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The elastic element, such as cantilever, is deflected by a test force. This deflection
is measured by a traceable sensor such as an external interferometer. The spring con-
stant can be determined by using a traceable force such as from an electrostatic balance.
The magnitude of other forces can then be determined. AFM cantilevers of appropriate
specification for this purpose can be modelled and designed. Small, very thin ones with
low values of spring constant are manufactured for measurement of forces down to nano
or even piconewton levels. The second stage of operation relies on the internal spring
constant when applied to the target instrument. The cantilever’s spring constant is highly

dependent upon its composition [45].

Given the difficulties of calibration at a very small scale, in most reported work the spring
constants of AFM cantilevers are determined indirectly from geometric properties length,
width, and thickness) and Young’s modulus of the cantilever material. To determine the
spring constant of a cantilever directly, a well known force is required at a known position
along the cantilever and the resultant displacement is measured. The spring constant of
a cantilever depends on the beam theory parameters (length [, width w, and thickness t).
The spring constant of a uniform rectangular beams is relatively easy to model by linear
theory [I77]. On imposing a force F, at its end, the small vertical defection, z, at the end

of cantilever will be,

L3F,
= 2.12
( 3EI ) ( )
where E is Young’s modulus, L, w, &t are length, width and thickness of the cantilever and

I is the second moment of area is given by

w 3
_ (é) (2.13)

Thus, the spring constant at the end of rectangular beam is

- (%)

_ (i;”f) (2.14)
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The spring constant determined by its geometry parameters is potentially inaccurate
due to a combination of uncertainties. Numerous methods are described in [178], [179).
for calculating the spring constant but uncertainties in (especially) thickness and Young’s
modulus can cause great uncertainty in k., often to 10% or (perhaps more under potential

nano force conditions).

Thermal methods for determining the spring constant have been proposed in [I80], [92].
They are based on standard physics but are independent of both the shape and the con-
stituent material of the cantilever. However, the accuracy of the thermal method was
reported as 5% and 5-10% respectively [180], [92]. The three other problems pointed out

in [45] for thermal methods are:
1. The higher vibration modes cannot be neglected.
2. The modes are accessible only within bandwidth limitations of experiments.

3. The method to measure the deflection always involves inclination rather than pure

displacement.

Temperature dependence of factors such as the Johnson noises limit and Young’s modulus
cannot be neglected. The other factor, % noise, becomes dominant in the piezoresistive
cantilevers when applied voltage increases to the bridge. A cause of noise is due to many
sources, such as from contacts or carrier trapping at the surfact defects. When voltage is ap-
plied to the bridge, the out put signal increases and it may be seem to operate with a voltage
as high as possible for better results. However, for given % noise, the signal to noise relation

flattens out after certain voltage. The minimum deflection were seen 10Hz to 1kHz is

lower because the output of the detector increases linearly with bridge supply voltage [18]1].

The resonance frequency of the first eigenmode of the microfabricated silicon cantilever
is dependent on the Young’s modulus, spring constant, and temperature dependance of the
geometric dimensions, which is weak and can be ignored in comparison to the temperature
dependance of the Young’s modulus. The temperature dependence of Young’s modulus is

due to the anharmonic effects of the lattice vibrations [I77].
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2.5.9 Passive type array of cantilevers

It has been proven possible to calibrate AFMs by the use of reference cantilevers. Pro-
totype cantilevers array were designed and developed at NIST [25]. Their design consists
of seven rectangular cantilevers of varying length (figure , microfabricated from single
silicon crystal(1 0 0), covering nominal estimated spring constants in the range 0.2 to 0.2
Nm~!. Variations in resonance frequency of less than 1% were reported, which indicates
an improvement over available reference cantilevers in the commercial market. The spring
constants were verified on the NIST electrostatic balance, which has been found suitable
for calibrating such cantilevers in an SI traceable way. The devices are passive and their
uncertainty is higher than active type cantilevers. Such passive devices are not useful for

primary transfer artefacts, but may well have a role lower down the traceability chain.
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Figure 2.34: Experimental prototype reference cantilever array plan view (SOI device level)
(from [25]).

2.5.10 Active type single cantilever

An active cantilever approach was reported in [181], fabricated using standard micromach-
ing techniques. This device was manufactured on a single piezoresistive strain element with
an on-board simple detection scheme and can be used to calibrate the target instruments.
Vertical resolution of 0.1 A (rms)in a range 10 Hz to 1 kHz bandwidth was claimed by

the author. A research team at PTB created piezoresistive cantilevers of two types, type
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A (length, 13 mm and width, 1 mm) and type B (length, 5 mm and width, 0.2 mm).
The cantilever carries of a probe tip at its free end. A applied force is measured using a
piezoresistive strain gauge at the cantilever suspension. Two-leg and single-leg probes have
been produced. These prototypes were fabricated by using silicon bulk micromachining
technology and their stiffnesses were found in a range of 0.66 Nm~! and 7.7 Nm™'.
The authors claimed a highly linear relationship between gauge output voltage and the
probing force in the u N range. These devices were said to be good for calibration use in

nanoindentation and surface texture work.

Simple supported beam
1.6 mm_leng

Cantilever, 1.6_mm long

Surface
- — —-—— Slits cutin 3 ym
Fdlist e s = e membrane by Deep
- 2 Reactive lon Etching
R (DRIE)
m
F -1
—* eCum }—

Figure 2.35: Optical micrographs of the cantilever microfabricated array of reference
springs (C-MARS). Note the binary length scale formed from 10 pm surface oxide squares

(from [26]).

NPL has also developed artefacts that could be used as reference artefacts for traceable
AFM calibration with a microfabricated array of reference springs (C-MAR) [26]. The
larger cantilevers are marked with fiducial points on a scale that consists of arrows made

of squares 10 x 10um and separated by 60um from the next arrow. The device is shown in

figure 2.35]
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C-MAR devices could be used for calibration of AFM cantilevers to measure nano and
picoNewton forces. The spring constants for C-MARS devices are found in a range 25Nm ™!
to 0.03Nm™!. The spring constants at the end of cantilevers were determined by several
approaches: Sader’s method (ke = 47 Kgader Mf2, Ksader = 0.2427, m, mass of the cantilever

Ebt?

and f, fundamental frequency); Euler-Beroull theory (ke = 375, where L, b, t are length,

width and thickness of the cantilever) and Finite element analysis.

2.5.11 Fluid flow, surface tension and capillary forces

The fluid flow may be considered for generating of small forces. Deflection of fluid stream by
a target requires a change in the fluid momentum and so on generate a force on that target.

This would be possible for low force metrology only if liquid has a low density and flow rate.

A method of actuation for AFM cantilevers in fluids by using acoustic transducer at
radio frequency 100-300MHz has been demonstrated [I82]. The dynamic method used for
actuation of the atomic force microscope cantilever in a fluid is not suitable to use in low

force facility.

Elsewhere, a model system was developed, consisting of two thin glass cylinders of radii
50pumm immersed vertically in a liquid and at a liquid/air interface. The magnitude of the
weak capillary forces experimentally measured by means of a torsion microbalance were
reported in the ranges 4x10~7 tol0~N. However, there are some factors that may be seen
in this model system such as, surface geometry, surface chemistry, and humidity, which

could not easily be controlled for use in a force transfer artefact [183].

2.6 Conclusion

This chapter has established the context for the development of small force standards and
facilities at various NMIs. The extensive study of various methods, approaches, and designs
have highlighted that Pril’s design of micro-probe suspension would be considered a good
starting point for the development of novel linear elastic triskelion force artefacts. Pril
published design is limited, with 60 degree elbow angle, and little information about this

design has been published. A serious question arises of why all subsequent published and

99



commercial designs for triskelion style micro-probe suspensions have focused only a Pril’s
60 degree elbow angle configuration? More recently Jones also adopted the Pril’s design

for force artefacts without indicating that triskelion designs were considered.

Therefore, the next chapter will highlight the novel development of an enhanced linear
elastic model for triskelion force artefacts that fully parameterised and can investigate the
variant designs for triskelion force artefacts and for triskelion micro probe suspensions.
It will be used to explore the best designs for triskelion force artefacts and triskelion
micro-probe suspension. No such such analysis has previously been seen in published

journals or in the public domain.

A general survey of physical principles capable of generating or measuring small forces
reveals several that long-term potential for various ranges of force artefact. However, all
require major technical challenges to overcome before they might be considered for practical
for commercial applications. It seems inevitable that more immediate metrological needs
will depend on using variants of springs as force transfer artefacts. The rest of this thesis

therefore concentrates only on this approach.
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Chapter 3

Linear elastic modelling for

triskelion force artefacts

3.1 Introduction

Flastic defections have been applied in fine instrument mechanisms and precise mechanics
for more than three hundred years. Robert Hooke and Edme Marriott were the first to
recognise the basis of linear elasticity [I184] [I85]. Flexure mechanisms are produced through
successive connections of rigid bodies and flexure elements operating in the linear elastic
ranges. Flexures produce predictable, repeatable motion and provide precise displacement
upon application of an applied force. Today’s flexure mechanisms in various forms are
used at the limit of precision in, for example, devices such as balances, probe microscopes,
coordinate measuring machines, x-ray equipment, optical scanners, optical interferometers

and many types of mechanical measuring instruments.

This chapter consists of three parts. First it covers some basics of beam theory, its
implications for ligament design and pseudo-kinematic analysis of triskelion force artefacts.
The second part describes development of an enhanced linear elastic model for triskelion
force artefacts, which extends previous work by the capability of varying the elbow angles
and following any number n = 3,4,5... of suspension beams around the central platform
(hub). This form, relating to published design, discussed in chapter 2, will here be called

the classical suspension beam model. The third part discusses an analytical triskelion
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angle-beam suspension model that is an alternative approach to the linear elastic model
for triskelion force artefacts. Implications, limitations of linear elastic model, specifics
requirements of triskelion force artefacts and their non-linearity are also included in the

third part of the chapter.

3.2 Basic elasticity and simple beam theory

Micro and nano-force triskelion artefacts need to be designed to be suitable for micro-
fabrication. This implies a planar structure involving elements of relatively simple geometric
forms. The ligaments that act as the flexing elements between a static base and a moving
measuring platform will be thin structures with locally rectangular cross-sections. In fact,
all designs considered here will have flexures that are simple rectangular prisms. They can
therefore can be modelled reasonably well as uniform rectangular beams. Subject to its
usual restrictions underpinning the theory (small deflections and negligible shear), a simple
elastic beam theory provides a good prediction for deflection (e.g. [184], [I86]) and will be

used as the basis for all the models used in this chapter.

The fundamental model element used is a uniform cantilever beam of uniform rectan-
gular section with dimensions ¢, w, and t, as shown in figure The clamped end is fixed
at the origin of a co-ordinate frame with its x-axis along the beam length and its z-axis
being out of the plane of the beam. The ‘free’ end is subject to three orthogonal forces and
three moments corresponding to the six possible independent displacements, rotations and
end-slopes (tilts or twists) of the end. They will model its connection to the other com-
ponents when combined with Newton’s third law of motion. Simple beam theory supplies
the small-amplitude out of plane deflection and slope (i.e.d, and 6,). For example, end

deflection due to an applied moment is

l
- (o) o

where parameters ¢, F, I, = wt3 /12, and M, are the length of the beam, Young’s Modulus,
second moment of area of the beam cross-section, moment generated along y-axis of beam.

There are four possible actions associated with a force F, or moment M,,.
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(3.2)

On, = (E—Iy> M, (3.3)

52

The in plane behaviour with d, and 6, is similar to the equations (3.1f) to (3.4)), except the

roles of breadth and depth are transposed, I, = “1’—3; These equations are not, therefore,
given here in detail.
Behaviour in the x-axis derives from the tension and torsion rather than the bending. Along

the beam

5, = (E) ) (3.6)
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where A = wt is the cross-section area of the beam. Torsion of a rectangular beam is given

by the well-known approximation

w 3 4
M, ~ (%) l1 - <0.63;) (1 - 1;04)] (3.7)

where G is shear modulus.

For small amplitudes, all elementary effects may be combined by linear superpositions.
The z-axis terms remain effectively independent. However equation and may
be added to give the full out of plane displacement , and equation and (3.4) must

be used to give 6,. The same procedure is needed to reveal §, and 6,.

Each of these equations define an elemental stiffness; either linear F'/d, rotational (tor-
sional) stiffness M /0, or a cross-stiffness (either M /6 or F'/6) or the equivalent compliance
as constant of proportionality. These are directly exploited in the matrix formation of de-
vice models. Note that, as done here most texts tend to present the equations in compliance
form (i.e. assuming force is casual) except for beam torsion. Although most designers would
tend to think more intuitively in stiffness terms for a force transfer artefact, the internal

logic of the model equations can be shown more simply in the compliance form.

3.3 Implications for ligament design

We want a flexure mechanism to show a strong perpendicular motion in one axis (or
possibly in a few axes), the intended or design direction. It is commonly desirable to have
quite low stiffness in this axis. In all other axes, unintended parasitic motions arising from
the imperfect geometry, stray forces, etc must be small or (preferably) negligible. Clearly,
sensitivity to parasitic forces and moments is reduced by high stiffness in the corresponding
axis. Hence, relative stiffness can be a useful guide in design. Unfortunately, there are very
many combinations that might occur, so discussion and any consequent design insights for

ligaments commonly focus on two cases.

A bending ligament in a flexure mechanism can be visulised by the kinematic equivalent

shown in figure [3.1] a pinjointed rod with added return springs. One basic case treat J; as
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f

Spring Restoration

Figure 3.2: A rod attached to rigid support (base and platform).

pin Js rigid, so that P both translates and rotates.

One case is cantilever shown figure [3.1]in which are subject to end force, as describe by
equation (3.4). The end slope is fixed with respect to the deflection and, in this sense, its
motion approximates to that of a rod pinned at one end. For example, equation(3.4]) and

(3.5)) show that ép = (2¢/3)0F, which is similar but slightly different to the small angle

motion of the rod, where dg = (0.

The second case is one that occur very regularly in flexure mechanisms [184], [I86]
when the beam ends remain parallel under out of plane deflection. This corresponds to
Jo in figure being a pin-joint, with P also constrained by a prismatic (sliding) joint.
Setting 6, = 0 and solving equation (3.1)) to shows that the moment must be applied

is defined by deriving force with

and then

3
_ (Eitg) F (3.9)

The primary design motion of a ligament is its out of plane deflection and in plane deflections
should be suppressed. The relationship between I, and I, with in equations (3.8) and (3.9)
or equation ([3.4) show that the relative stiffness of these axes is
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£\ 2
_ (w> (3.10)
For a desired z-motion device, we might take a criterion such as that cross-deflection is
< 1% of the demand deflection under the influence of similar force magnitudes. Even this
fairly severe condition only needs w > 10t. Most real parasitically coupled forces (e.g.
from a misaligned drive) might only be a fraction of the drive force and smaller ratio could
suffice. Even with apparently small cross-sections, axial displacement behavior is rarely an

important consideration. From equation (3.6)), , and (3.9) for more severe case of a

parallel motion ligament,

’Z - (f)z (3.11)

Torsion about the x-axis is more difficult to relate, say to a design deflection because it is
a sheer effect and closed form equations only approximate for a thin rectangular section.
A few fairly crude approximations nevertheless provide some guidance. For many common
materials Poisson’s ratio is about 1/3 and so analytically we have G = E/2(1+v) ~ 3E/8.
Provided w > t by a factor of at least a few, the shape correction term in equation Will

not below unity. We might then consider

3E wt? Ewt?
Ao =~ (8€> (3) :( Y, > (3.12)

Thus, comparing with parallel motion case of equation ([3.8)

Az Ewt? Iz 2
B ( Y, )(Ewt3>_<8> (3:.13)

This ratio is not dimensionless and so, while indicating a variable for tuning purposes, it is

not easy to use intuitively for real design. It broadly suggests that any concerns about 6,

parasitics are best met by using a longer ligament with a robust cross-section.
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One possible for this parasitic would be to consider a force driven system in which the
line of application is offset by £, from the ligament axis in the y-direction, i.e. an Abbe
offset. This causes an x-axis torque 1, = F'/, and parasitic z-deflection in the line of the
force of é, = 6,¢,, then using equation (3.18]

Ta€a> k. (867
— ~ 3.14
( Ae ) F 02 ( )

Interestingly, this is independent of material and cross-section, except to the extent that

%
J

they were implicit in the approximations. To keep the excess deflection of this parasitic for

single ligament below 1%, an Abbe offset ¢, must be restricted to around ¢/30.

Complete flexure mechanisms use several ligaments in order to control constrained mo-
tion and this tends to reduce sensitivity to parasitics. Nevertheless, there is some desire,
within the limits imposed by specific design constraints to choose larger values for £ and
w/t. There is considerable scope for tuning design stiffness because different geometric
parameters appear with different power laws. Note, for example, that stress, strain and

maximum elastic deflection are independent of w, but the stiffnesses are not.

3.4 Pseudo-kinematic analysis of triskelion flexure

Although there may not always be a simple, or unique, one-to-one correspondence it is
often helpful to consider how the operation of flexure mechanism might be represented
by a kinematic mechanism (corresponding to a set of rigid bodies coupled by ideal fric-
tionless joints) to which springs have been attached [I84], [I86]. In particular, such
a pseudo-kinematic model allows the idea of kinematic mobility to be used to examine

whether a design is likely to be effective in delivering the design-intended degree of freedom.

The degree of freedom (DoF) of a mechanism indicates how many translations and
rotations of the platform of a mechanism relative to its base can be independently ma-
nipulated. It corresponds to the number of simple actuators required to fully assert the
position and orientation of the platform within its workspace. DOF is also the minimum

number of displacement sensors needed fully to describe a spring-loaded mechanism used
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as part of a sensing system. Generally DoF is a design specification, as are the particular

axes about which those freedoms act. Clearly, 0 < DoF < 6.

The kinematic mobility (M) of a mechanism is simply the net count of the number of
freedoms contributed by all the rigid no of constraints contributed by all the joints con-
necting these members. The mechanism base is assumed fixed, contributing no freedoms.
Mobility is a highly useful parameter for checking design consistency, but it has no power
to prove a design correct. Clearly if M exceeds the intended DOF, there is a problem
because of uncontrolled freedoms (under constraint). If M < DOF (over constraint) the
mechanism may not assemble properly and may tend to seize at certain points in the
workspace. However, over constraint is sometimes used deliberately. Thus, M = DoF
implies a structure but does not guarantee it because there could be a combination of over

and under constrained subsystems. There are many variant ways of computing mobility.

Parallel kinematic mechanisms, which are closed loop systems in which several subsys-
tems or “legs” contribute to the motion of a single platform by direct connection between
it and the base. First consider the i*" leg separately as an open mechanism, which includes
the platform, with V; links and J; joints that individually contributes Cj; constraints: Then

this system has mobility

Ji
M; = 6N; =) Cy (3.15)
=1

Now consider all the legs together. For the whole mechanism, the M; are summed for
the N, legs except that platform becomes a single rigid link, so we must remove its six

freedoms for each leg, and then give back six freedoms for the platform itself. Hence
N;
M = > M;—6(N;—1) (3.16)
i=1

An appropriate kinematic equivalent of a ligament based flexure mechanism can be explored
by considering the likely relative stiffness in different freedoms when a cantilever is used

to connect a platform to a rigid base. The first two columns of table (3.1)) summarize this
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Table 3.1: Equivalent for model in figure

Motion at P | Nature 4+ Source Model as figure
0, Easy, bending J1 revolute along y-axis, Jo rigid
dy Stiff, bending Jp revolute along z-axis, Jy rigid (4 stiff spring)
O Very stiff, axial J1, (J2) rigid (in x-axis)
0, Fairly easy, torsion | Jo(J1) revolute along z-axis, Ji(Jz2) rigid
6, Easy coupled to 0, | Ji(Jz2) revolute along y-axis, Jo(J1) rigid
0. Stiff, coupled to 9, | Ji(J2) revolute along z-axis, Ja(J1) (+ stiff spring)

information for six independent motions of a typical ligament design.

A kinematic equivalent of ligament flexure element can be established by considering
a rigid rod with spring-loaded idealized joints to the base and platform (figure . This
type of joint will depend on the boundary conditions and the intended function. The spring
systems are not important to the present discussion. They can be thought of as within
joints (e.g. a torsion-spring on a revolute axis) or as applied at other points on the rigid
rods. The only requirement is that they hold the design position of the unloaded ligament

(linear characteristics are assumed).

From the relative stiffness in different motion axes, we can summarize the reasoning for
various models of J; and J>. Note here that in combination the condition on d,, d,, and
J, mean that the lengths are fixed there are no prismatic (sliding) joints in the modelling.
They 0, rotation of P is kinematically the same whether J; or Jy is chosen (but not with
both, when free axial rotation of the rod could occur). In physically terms, it feels slightly

preferable to place is at Jo, the active end of the link.

Table takes the platform position and orientation as that of cantilever end. It also
considers displacement as primary with slopes as coupled effects, but it is equally valid to
reverse this relationship. The third column identifies a kinematic joint Ji, that could be
placed between the base and a rigid rod to generate similar behavior. For some rotational
motions it might be equally logical to move the joint to the junction between rod and

platform, identified by Jo.
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In most cases, 9§, is likely to be desired design freedom. The basic kinematic equivalent
is then simply a rod connected to base by a revolute R joint with its axis aligned along the
y-direction. Noting the relative low stiffness in torsion, it will sometimes be more sensible to
model the ligament with an additional revolute along the z-axis, either combining the two
into a universal U joint at the base or placing one at each end (an RR configuration). When
ligaments are built in to a complete close-loop mechanism, there must be joint freedoms
between it and the platform. Again considering the relative stiffness in table (3.1)), it is
most likely that an RR system both parallel to the y-axis or an RU (equivalently UR)

system would be most representative of the conditions.

The use explicit of this technique is deferred until specific devices are being discussed.
However, note here that a triskelion micro-probe is by definition intended as a 3 DoF
(x,y, z) system at the probe tip. With a rigid probe arm this becomes a (z, 8, 6,) system
at the triskelion hub (platform). Using this pseudo-kinematic model the triskelion itself
has four active bodies, the platform and three ligaments treated as UR legs, giving an
overall mobility of -3 (six-over-constraints). Nevertheless it works well over very small

displacements (evidence here).

3.5 Linear elastic model for triskelion force artefacts

Previously, published all research papers are focussed on Pril’s design [14] that is limited to

the fixed geometry with elbow angle 60 °. Implications of Pril’s design were not published.

3.5.1 Motivation: The need for new models

The literature survey in the chapter 2 has revealed that triskelion probe suspensions
of Pril design [14] could be used for the development of linear elastic model for force
artefacts. Indeed, exactly this approach was followed by Jones [148]. The force transfer
artefacts would for the near future rely on elastic systems based on a conventional planar
triskelion flexures. These were first time used by [148] for nano-force transfer artefacts.
All published analysis of triskelion suspensions has been based on system for co-ordinate
measuring micro probe that employ micro-fabrication for triskelion springs. It is based

on simple linear elastic analytical model for triskelion micro probe [14]. The basic kine-
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matic model is shown in figures and is limited by considering a mostly fix
geometry (with only a few actively variable design parameters). It has later been used
in [120], [118], [123], [122], [187], [12I] although changes of notation have confused rather

than clarified its proper use.

The basic triskelion suspension figures and study by Pril consists of a hub with
rigid three arms that are joined by thin beams (leaf springs) to an outer fixed frame. Both
arms and beams have uniform rectangular section. When the displacement is imposed on
the hub of the micro-probe, it results in deformations in the outer beams. To maintain
static equilibrium, the sum of forces and sum of moments required the beams must balance
those applied extremely at the hub. Pril’s analytical model was based on beam theory
and also provides a means to estimate the spring constant of the force artefact for design

purposes.

Previous models have encompassed only a single compact maximally symmetric con-
figuration with three identical legs and an internal elbow angle between the arm and the

beams of 60°. Such features are directly encoded within the published models.

We are interested here in the potential use of triskelion-like flexures as reference springs,
which differ from micro-probe by not including a ball tip stylus and having a different ideal
degree of freedom. The redesigned triskelion-like flexure is not limited to elbow angle 60 °,

such as shown in figures and

3.5.2 Critique for triskelion suspensions
The critique has identified the following concerns:

1. All published research work seems to addresses only the specific geometric config-
uration limited to 60° [I18], [188], [I89], [121], [57], [I87] and has been based on
co-ordinate measuring micro-probe. It is all been derived from a simple linear elastic

analytical model of the triskelion micro-probe suspension design [14].

2. The triskelion suspensions for micro probes are generally treated as approximating

3-DoF mechanisms but applications such as reference springs would prefer 1-DoF
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Figure 3.4: The classic triskelion suspension: (b) further model simplification.
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operation (although these are the theoretical reasons for not closely achieving 1-DoF

in a triskelion suspension).

3. The standard 60° elbow angle triskelion suspension is clearly practically useful for

the design of triskelion force artefacts .

4. Hence, investigation is required to explore a range of variant conditions to establish
applicability of currently used design values and seek potential superior geometries to
enhance modelling for the design in optimization in industrial applications of triskelion

and similar flexure systems. A new more general model based is therefore needed.

5. The approach adopted here preserves most of the ideas introduced by Pril [14], signif-
icantly enhancing the model to encompass all potential design parameters explicitly,
especially allowing different elbow angles and non symmetrical leg distribution for
wider investigation of artefact designs. It is set up to be immediately applicable for
versions od suspension with more than three legs. It therefore directly uses transfor-
mation matrices to build the system from vector descriptions designed in convenient

local co-ordinates frames.

6. The research work presented in this thesis pay considerable attention to redesigns at
other than 60° elbow angles for triskelion force artefacts. However, the implemen-
tation of enhanced linear elastic model for variant designs triskelion suspensions has
been carried out in chapter 4 by developing triskelion and tetraskelion software pro-
grams. Hence the secret of elbow angle was disclosed for the first time by performing

numerical experiments that are also discussed in chapter 4, 8 and 9 in this thesis.

3.6 Enhanced Linear elastic model for variant triskelion sus-

pensions designs

The development of enhanced linear elastic model for the variant designs of triskelion sus-

pensions is presented in this section.
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3.6.1 Hub motion and displacement at the arm

The approach for the enhanced linear elastic model for variant designs of triskelion suspen-
sion has drawn upon Pril’s design for probe suspension [I4]. Considering first the basic
geometrical layout, and referring figure [3.5] we initially take an arm of the length a project-
ing from the hub centre to be aligned to the x—axis of the reference frame; i.e. its tip is at
a=(a 0 0)7. A fully formal, and so adaptable, method for locating the position where
suspension beam meets any general platform arm is to use matrix transformation. The real
device has three arms disposed around the platform at angles «; to a reference direction.
The arms remain in the plane of the device, so a simple rotation matrix transformation

expresses the position vector for the tip of any arm relative to original z-axis as

cos(a;) —sin(a;) 0
a; = sin(a;) cos(e;) 0 | @ (3.17)
0 0 1
Assuming all arms are of equal length,
a; = < acos(a;) asin(a;) 0 ) (3.18)

Here all arms are assumed to be in the zy-plane of the platform, but this approach
allows extension into z-axis. This approach might be thought overly complicated and
distracting for some present applications. Hence Pril’s original model built in all such
geometry implicitly, causing potential confusion by over-simplicity. It dealt only with the
symmetrical case where a; = —7/6,—57/6 and 7/2. The present formulation allows to
be added by specifying additional «; for use in the rotation matrix at equation [3.17] To
provide a working platform (or target area) and to allow mechanical clearance, real devices
will have a hub region (usually circular) from which the arms project before meeting the

beam elements of the main flexure, figure [3.5

For computational convenience, the model is constructed such that a specified rigid-
body motion is applied to the hub with force and moment vectors required to cause it then

being reported. A global reference frame is established at the centre of the un-deflected
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hub, with its z-axis normal to the plane of the hub representing the expected direction for
action as force transfer artefact. The radius of the hub is h, and the rigid arm projected
by ag, giving an effective rigid lever of length a = (r, + a¢) from the centre. The beam
has length ¢, width w and thickness & ¢ that is jointed with arm. Young’s modulus, £,and
modulus of direct shear, G are required parameters assumed constant to compute spring

constant

(;r .

Figure 3.5: Geometric parameters of a typical suspension system (a), and the classic triske-
lion suspension layout (b).
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k and stiffness. The desired model outputs are in terms of moment, M = (M, My, M,)T,

force, P = (P, Py, P,)T, normal stress o, and normal strain &,,.

Several assumptions are built into the basic model.

1. Platform and arms are rigid bodies.

2. Suspension ligaments ideal elastic beams rigidly coupled to the base and to the ends

of the arms.

Displacement at the platform center, edge and arm are represented by Do, Dy, and Dpa1,2,3
respectively.

The second input vector is

T
D,, = (x y z Oy 0, 93) (3.19)

Ideally, the force would be exactly along z and only the displacement would be in the z-axis.
Inputs on the 6, and 6, element reflect hub tilt that might occur through misalignment of
the test forces. The other three elements are usually force to zero, assuming plausible mis-
alignment could have negligible affect on the most stiffly constrained axes of the triskelion.
An intermediate approach allows us to define explicitly any set of i arm at angle c;. Then

the displacements at the tip are

100 0 0 0 x
0 1 0 0 0 y
001 ay, —as 0 2
Dpa, = (3.20)
000 1 0 0 0,
000 0 1 0 0,
000 0 0 1 0.

where a;; and a,; are the components of a;.

The arm tips experience the same direct translations and rotations as the hub plus
extra transformations arising from lever effects with the rotations (equivalent to vector

cross-products). Thus, for the current design, ideally x = y = 6, = 0 and the model
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equations can force three zeros because they have only second order effects that linear
models can’t handle. Hence elements 1, 2, 6 of Dp,, are now overwritten with zeros in

practical implementation of the model.

3.6.2 Transformations to beam co-ordinates

The local frame for each ligament is set with its z-axis parallel to that of the global frame
and its z-axis along the long axis of the beam. The i*" beam has its z;-axis oriented at
angle 5; to the x-axis in the global frame. Computing the forces for suspension beams from
basic elastic theory is easiest in this body-fixed frame. The arm deflection can easily be
transformed to an end deflection of the beam expressed in the local frame figure [3.6] These

transformations are purely rotations about z-axis giving

Dpy, = Rg Dpa, (3.21)

or

cos(f;) +sin(f;) 0 0 0 0
—sin(5;)  cos(B;) 0 0 0 0
Dy 0 o 1 0 .0 0 ( - ) 22
0 0 cos(B;) +sin(B; 0
0 0 0 —sin(B;) cos(Bi) O
0 0 0 0 0 1
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where §; is the orientation of the local x-axis in the reference frame for the i* beam and

Rg, is rotational matrix (6 x 6), transforming translation and rotations simultaneously.

3.6.3 Forces and moments

We assume all suspension beams are the same. This is the case in all published designs
extremely likely to remain as ideal in all envisaged applications, for which the symmetry
is design requirement. The assumption significantly simplifies the notation and derivation,
while the extension to the fully general case follows a similar path is fairly obvious fashion.
Each is represented as a uniform cantilever subject to loads and moments applied to its
free end so as to cause specified end deflections end slopes there. The generalised end force
P, = (F;M;) with F; = (Fm,Fy,Fz)T and M; = (mx,My,MZ)T can be obtained by using

the stiffness matrix give

P, = (K.)Dp, (3.23)

For a cantilever, the suspension beam element stiffness matrix, K4, collects together ele-

mentary components discussed in appendix A.1 and simplifies to

10 0 0 0 0
2 2
0% o o0 0 ¥
2
Ewt| 0 0 (B2 0o & o0
Ky = Tw W 2 (3.24)
0 0 0 ku 0 0
2 2
00 -5 0 % 0
0% o o0 0 ¥

where kg = GE0[L —0.21L (1 — L)

From Newton’s third law, there will be an equal and opposite force on the end of the
platform arm. It needs to be re-transformed into the reference co-ordinate frame in order

to relate it to the ‘input’ platform displacements to give
Py, = —-R;'P, =-R;'P 3.25
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Observed from the centre of the hub, P,,, will appear with simply translated force compo-
nents while the moment components will involve the moments of force components about
the centre as well as the directly imposed ones. Formally and generally, this can be done by
a translation matrix encoding vector cross-perpendicular with a;. However, the practical
constraints already imposed mean that only three components P,,, are active in the model;
these for F,, M,, and M,,. These are easily expressed as individually and summed at the
centre. The overall effects of the ligaments observed at the centre are Hence summing over

all the arms, taking the moments at the platform centre gives

F,, = Zg:(in), (3.26)

=1

3

M., = Y (M,+F.sina), (3.27)
=1

and

3

My, = > (My, + F,sina;) (3.28)
=1

Equations|3.26|3.27, and [3.28|are collected into vector form as Py = (0, 0, F,,, M,,, M, , 0)

The generalised force that must be imposed on the platform to cause the specified

displacements is, by Newton third law Fp_, = (PT, MT> or simply
F, = -PF (3.29)

3.6.4 Stress and strain on the suspension beam

The axial stress at the on lower surface commonly dominates consideration of the safe loads
for beams applications. In the triskelion suspension there could significant contributions
from other stress components, e.g. shear from torsion or any tensile/compressive force along
the beam which would add or subtract directly. Nevertheless, using o,, for the simple form
remains a useful indicator for design. It is also a dominant effect in generating surface

strain that might be measured by applying strain gauges to the suspension beams for use
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in micro-probe or force sensors applications. The direct stress along x-axis at the beam

surface is [184], [I86] and [190],

on(z) = {[M;W} (3.30)

where [BM](x) is the bending moment at distance about x. For the end loaded cantilever
approximation used here for the suspensions, the dominate bending moment can be ex-

pressed in terms of the reactions at the base, F' ~ F, and M ~ —M,, as
[BM|(z) = (xF — M) (3.31)

where x is measured from the base. The expression for strain at the same point is

Een = (U"E(x)) (3.32)

where E is Young’s modulus of the beam. Clearly, the maximum stress and strain are
computed as an indicator of reliable operation, but values at other x might be relevant to

sensing because of limitations M where strain gauges can be placed in practice.

3.7 Pseudo-kinematic consideration of the suspension beams

The triskelion platform hub displaces through bending of the suspension beams perpen-
dicular to the plane of the beams, but is effectively constrained from translation in the
plane of the beams. The platform will be able to rotate slightly under a combination of
axial twisting and bending action in the beams. The end slopes in the cantilever model of
suspension might be totally constrained to map to the end deflections, but in most practical
situations they will have some degree of independence. The third platform rotation about
z is heavily constrained. To this extent, the small displacement behavior of the triskelion

flexure shows three degree of freedom.

In pseudo-kinematic terms, a triskelion flexure with ‘rigid’ platform and mounting arms
is closely a parallel kinematic device based on three identical subsystems. It will have four

active links (three suspension beams, and one platform). As discussed in section 2.1, the
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most obvious rigid and ideal joint equivalence to the ligament suspension will provide it
with 3 U-joints about z; and y; axes and 3 R-joints about y; axes (figure [3.7). Hence, the

mobility is

M = (6N —5J1 —5J2) = ((6 x 4) — (5% 3) — (4% 3)) = —3 (3.33)

Base

#——==Jniversal Joint

| 1:

J
== &£——Revolute Joint

——  d———Rigid Joint

L

Platform

Figure 3.7: Pseudo-kinematic ‘map’ for one suspension leg of a classic triskelion design.

The negative value indicates that system is overconstrained, implying that, generally, it
would not be possible to assemble this device from kinematic components without internal
strains and that any device assembled is unlikely to run smoothly in the manner envisaged.
Of course, monolithic devices automatically have all their elements geometrically compat-
ible, making it easy to produce overconstrined designs. As demonstrated by successful
micro-probe design, elastic (monolithic) triskelion suspensions can be constructed readily
and they can show (experimentally) reasonably developed degrees of freedom. The mobility
model suggests that six over constraints are unaccounted for. One explanation might be
that the joint modelling is inadequate. For instance, assuming spherical joints at the
platform gives three 1S, 1U sub-systems and M = 3. However, it is hard to reconcile the
behavior of an S-joint with how the suspension beam attaches to either base or platform. In

any case, this configuration allows a trivial axial rotation: effectively an artificial freedom
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has been generated mathematically in an attempt to reconcile the mobility. It seems more
likely that the degree of over constraint is about right but other physical factors compen-
sate. The planar construction means that (ideally) the initial motion introduces strain
into the over-constrained axes at a rate governed by small changes in cosine of an angle
nominally zero. Even the slight elasticity in the heavily constrained axes might be enough
to accommodate such small initial effects without obvious signs of poor behavior. However,

a substantial stiffening spring action would then be expected as deflection increases.

If we take a definition of triskelion flexure to include that it has the platform and three
identical legs, because the net freedom/constraint in each leg must be the same, its overall
mobility must be a multiple of three (equation . The ideally designed 1 DOF triskelion
for a force transfer artefact can’t be archived in a planar device without breaking the
symmetry and arguably not at all since even if an M =1 set of constraints is created their
direction of action will not be truly independent. We might consider a triskelion-like design
with different numbers of legs in an attempt to achieve different, favorable force responses.
For example the four-legged tetraskelion might be considered intuitively to offer better
protection against undesirable platform tilt; in pseudo-kinematic terms simply adds another
suspension beam to the triskelion. If this is contained within the single plane of the device,
its stiff axes coincide with the pervious existing ones and it is not clear that it sensibly

offers more than the three pseudo-kinematic freedoms seen with each of the suspension legs.

Perhaps, once it starts to move, there is more scope for different smaller deflections to
accommodate the motion over constraints and so a model might be proposed is which arms
extending from the hub also act or beam elements. Now, pseudo-kinematic equivalent for
each suspension limb treats the two beams in series as having two links with 2U, 1R joints

(figure , there are now seven active links and so overall mobility becomes

M = (6x7)—(5x3)—(4x6))=3 (3.34)

which matches the observed degrees of freedom. (Recall, though that mobility agreement

is never a ‘proof’ of a proper design!).
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Triskelion-like devices might also use more complex individual suspension elements to
change the effective mobility. Of particular interest here, because it matches this analysis
and easy to make in planar form, is a design in which the whole limb from base to hub
has the same thickness, for convenience, this design will be called an “angle-beam” flexure
throughout this thesis. This is equivalent to introducing a small rigid secondary platform

to isolate two suspension cantilevers.

Base

l

== €———Universal Joint

A

Revolute Joint

Rigid Joint

P 0\.%,

\ = Platform MJ /

Figure 3.8: Pseudo-kinematic equivalence for ‘angle-beam’ triskelion flexure.

3.8 Analytical model for triskelion angled-beam suspension

As identified in section 3.7, there is significant potential in investigating angled suspension
beams for use within triskelion-like devices. Therefore, the linear model discussed in section
3.2 should be expended to cover this more general situation: the simple beam is clearly a
special case where one side of the angled suspension beam has zero length ( or equivalently,
that the elbow angle goes to 180°). The approach adopted here will follow an unpublished

strategy of Chetwynd, by creating an alterative stiffness matrix that can be used within

83



the framework of the analytical model already discussed.

It has already been established that, for the small deflections relevant to elastic deflec-
tions of the transfer artefacts, the constraints on three degrees of freedom are so stiff that
their motion can be neglected in a first order model. For compact treatment, these terms
have been omitted from the sparse vectors matrix equations developed in appendix A.1,
and the stiffness matrix given at equation 2.24 to give a reduced 3 x 3 formulations that

captures all the major features.

The small-amplitude behaviour is described by simple linear beam theory using the
primitive equation for individual terms, equations (3.1)) to ([3.8]).
Consider a first a cantilever modelled for the three significant deflection/stiffness modes

(other deflections negligible). Each beam has length ¢, width w, thickness ¢, a constant cross-

A
¢ t M0y

Figure 3.9: Basic cantilever model.

section A = wt and moment of area I = (wt3/12) shown in figure Then superposing

the significant displacement axes in the compliance configuration, we have

0, AMYooo0 M,
0, | = | 0 NS N || M (3.35)
d. 0 A7 k7t F,
where the stiffness are
3E1
k, = <€3> , (3.36)
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Ayy = (LZI)v (3.37)

2FT
Ayz = (52 ) (3.38)

and

e ~ [420 <1 - 0.63;)] (3.39)

This is the essential structure that underlies the linear triskelion models that derive

from [14] and [I87]. The matrix in equation(3.35) is readily identified as a partition of
that in equation(|3.24))

The angled planar suspension can be modelled by treating it as two free bodies with
a built-in connection between them at the elbow figure [3.10] The same approach can be
applied for any elbow angle, 8. For design purposes (and in earlier discussion) the elbow
angle is conveniently taken as the “internal” one, whereas to be consistent in the use of

right-hand frames analysis and model building better uses ¢ as shown in figure |3.11

Appropriate geometrical and Newton 3rd Law compatibilities are applied at the elbow
to represent the connection. Then the behavior of BE (figure is that of a simple
uniform beam subject to effective end-loading at E. While having different stiffness from
the (possibly) different length, EP also under goes simple beam bending subject to the end
loading at P. However, its bending deflections are superimposed on a rigid body motion
defined by the z-motion and slope/twist at E. For an actual force system imposed at P,
the force system active at E is just the reaction when EP is treated as an independent
cantilever. Equation ( neglects the small higher-order term and is adequate providing

w is just a few times larger than .

Each section, BE and EP, is treated in its own body-fixed frame as a beam acting under
the conditions described by equation ( ; these frames both have z-axis along their

sections, while their z axes are parallel. For notational convenience, compliance matrix in
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Figure 3.10: Two separated bodies of the suspension beam (shown for a angle 90 °).

Platform

Base[—>=>» ¥ _l e

Base |

Figure 3.11: Relationship between 8 and ¢, illustrated for ‘internal’ angles of around 120°
and 60°.
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each of these frame will here be expressed in the several form

AP 000

-1 _ _ _

[A ]_ 0 A7l AZ! (3.40)
0 A k7!

The model manipulations required to describe and combine the behaviour of these beams

all reduce to rotations on the z-axis or to cross-product-like operation related to moments.

Expressing all the terms in the BE-frame, the end E of beam BE is subject to the same
generalised forces as are applied to the platform, via a series of Newton’s 3" law interactions
(i.e. it supplies all the reactions needed to treat EP as a cantilever with it fixed end at E).
Additionally, the angled lever arm EP causes Newton 3¢ law moments from the end-force
at P in both the z-axis and y-axes. Thus, deflection at E founded by equation for

this augmented load,

0:E M, + F, sin(¢)
QyE = [)\_1] BE My — F, COS(¢) (341)
0B F,
or
0.5 1 0 ssin(9) M,
OyE = [Afl}BE 0 1 —scos(p) M, (3.42)
0. 0 0 1 F,

where s length of section EP. Measuring the displacement of P in the body frame for BE, the
rotations at E are merely transmitted by the rigid-body motion of EP, but the angled lever
arm contributes additional displacements from both twists, 8,gssin(¢) and —6,gs cos(¢).

Then the overall deflection of P from rigid body displacement of EP is, in the BE-frame,

Oy = 0,5 (3.43)
0z 0.5 + Ozpssin(¢) — 0, ps cos(¢)

P,RB
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or

0, 1 0 0) 0.k
0, = 0 1 0 Oy (3.44)
0 . ssin(¢) —scos(¢) 1 0.E

Note that o and y-axis translations at P will have 2 /2 relationships with s and the twists,
so remaining negligible for the small € conditions already implicit in these models.

Considering the independent bending behavior of EP in its local (axial) frame, We have at

P
9A M4
or | = | Mr (3.45)
dpp Fgp

It is clear by observation that these forces and deflections can be expressed in the body

frame for BE as

M, M cos(¢) — My sin(¢)
M, | = | Musin(¢) + My cos(¢) (3.46)
F, Fgp
0z 04 cos(¢) — b7 sin(¢)
0y = 04 sin(¢) + O cos(¢) (3.47)
0z dpp

Noting that these expressions are governed by the same simple rotation matrix transforma-
tion and that for such orthogonal transformations the inverse is equal to the transpose, we

obtain directly

0 M,
6, | = Rl [A7] LIRA" | M, (3.48)
5, F;
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where

cos(¢) —sin(¢p) 0
[Ry] = | sin(¢) cos(¢) 0 (3.49)
0 0 1

95,; MCC
o, | =[]\, 007 + 1R [N L [RT] | g (3.50)
(Sz Fz
where
1 0 0
[07] = 0 1 0 (3.51)

ssin(¢) —scos(¢) 1

The equation defines a singe enhanced compliance matrix that can be evaluated a
priori from the design parameters. It is expressed in the BE-frame, a body-fixed frame of
the suspension limb aligned axially at the junction with the base. The compliance matrix
developed in section 3.3 is also in a body-fixed frame of this type. Thus the new compliance
matrix can be expanded into full (6x6) format by adding rows and substituted directly in

place of the simpler matrix used within the previous model.

3.9 Implications and limitations of the linear model

3.9.1 General needs for small force transfer artefacts

The triskelion design has been adopted for the first practical micro-fabricated nano-force
artefacts partly because the previous modelling of designs for micro-probes gave added
confidence that useful performance can be achieved. However, these linear models are
clearly incomplete and can be expected, at best, to predict performance over only a limited

range of applicability. This chapter section explores a source of non-linearity that may
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become significant in the real artefacts.

The microprobe requirements are significantly different to those for a high-quality force
transfer artefact. Most obviously, a microprobe is required to respond to three orthogonal
displacements at the attached tip, each having a similar range (maybe 10 pm). These
displacements are then manifest (via the probe arm lever) as a z—translation and two
orthogonal rotations of the planar triskelion platform. The effective linear stiffness at
the probe tip should be approximately equal in all three axes, hence specifying platform
torsional stiffness for the x— and y-axes. The system is intended to have three degrees
of freedom (DoF). In contrast, the force transfer artefact should respond primarily to a
force (not a displacement) applied directly to the platform. An ideal artefact would exhibit
a design-specified stiffness in one translational axis (say, z-axis) while having very high

stiffness in all others. It would be a 1 DoF system.

A more functionally specific way to consider the artefact stiffness is that the inherent
sensors (whatever sensing principle happens to be used) should show sufficiently low sensi-
tivity to any reasonable level of misalignment of the applied force. If the force is nominally
applied along z and centrally on the platform, we might define maximum shifts in x and y
and tilts about the x— and y—axes for which there is no metrologically significant change
in the output signal. As the device, and its target instruments are small and confined,
fairly large relative alignment errors should be tolerated, perhaps up to, say, 250 pum
and 50 mrad (i.e. visually detectable region of 0.5 mm diameter or a misalignment of 1
mm over a 20 mm length). If costs and sensor technology allow multiple sensing points
(e.g. strain gauges as used on the micro-probes, where a minimum of three is essential
to function), then it may be plausible and sensible to compute and correct for parasitic
platform motions. Nevertheless, it is still good practice to select a mechanical design to

reduce the degree of correction that would be needed.

There is urgent need to specify the operational limits on the z—stiffness of force artefacts
for given applications. This requires for example considering whether low values might

upset the stability of some target instruments (specially if they have finite stiffness within
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a tip positioning control loop). High stiffness would be unsuited to operation in which the
artefact is deliberately displaced bodily to impose a force on the target a mode considered
by NPL for the low force balance [48]; it would place excessive demand on practical control

and stability.

Consider first asserting force by bulk movement of the artefact when operating on
the LFB. We do not require extreme accuracy in the applied displacement because the
target system and artefact themselves report on the actual setting. However, we do
need smooth motion at very high resolution. Expensive manipulators such as Digital
Piezo-Translator(DPTs) [191], [192], [193], [194], [195] can readily control to 1 nm. Even
some lower cost manual systems can be smoothly adjusted by skilled operators to maybe
10 nm equivalent positioning. The most sensitive artefacts that might be calibrated using
the current LFB should presumably be stepped at something like 1 nN intervals for good
testing of linearity. This implies stiffness of below 1 N/m even for the high-performance
manipulators. It would well be argued that such fine calibration justifies the high manip-
ulator cost and 10 nN nominal stepping will suffice on most occasions, suggesting that 1
N/m z—stiffness would be acceptable. Even at the upper end of the LFB capability, when
an artefact might have target range of, say, 100 uN to 20 mN, it may be difficult to use

this mode at a stiffness above about 100 N/m.

Now consider calibrating an AFM. Many AFMs have a z-range restricted to the order
of 10 pm or less. The elastic displacement of the artefact caused by tip contact (which
must be accommodated by the AFM z—axis) should be limited to, say, 1 um. A tip force
of 1 ulN would be regarded as ‘heavy’, but it is not implausible. Again, an artefact stiffness
of around 1 N/m is implied, but could probably be increased somewhat. Finally, consider
indenter instruments [191], [196], [I97]. Nano-indenters might impose up to 100 mN with
nN resolution, or perhaps be set for five times those values. A micro-indenter is likely to
have resolutions in the tenths of mN and is outside the realistic scope of microfabricated
artefacts but nevertheless needs some form of calibration device. The effective stiffness of
the force control loop for such instrument is not generally published, but is probably at

least of the order of 1 kN/m. If the artefact is significantly less stiff than this, then its
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deflection might not be accommodated by the indenter without compromising the latter’s
own force assertion. A whole family of different scaled transfer artefacts will be needed to

cover even this brief collection of applications.

Viewed simply, increasing the platform arm length of a triskelion increases the dis-
placement and hence, the cantilever reaction force for a given platform rotation, i.e. it
increases the torsional stiffness seen at the platform. This is favourable for the artefact
application. However, other cantilever deflections are also induced. For example, if the
beam were perpendicular to the arm (a 90° elbow angle), the dominant effects of a tilt
directly along that arm would be from a combination of the normal beam bending and
axial torsion through the angle of platform tilt. In this particular geometry ( not that
adopted in micro-probe or proposed force artefacts) arm length tends to be beneficial to
tilt stiffness and might also reduce the onset of non-linearity under tilt errors by making
the normal beam beading term more dominant. However, other elbow angles can lead

to more complicated combinations at the end of beam, with more potential for non-linearity.

The restoring moment from thin leg arises principally from the axial torsion and suspen-

sion end force. Then, from equation (3.24) and (3.35)) and approximating at equation(3.12)

for pure tilt condition when 6, = 6 and §, = af,

Mtotal Ewt3 1 CL2
Total - _ N\~ -+ 2 52
0 l 8 + 2 (3.52)

where £ is length of beam and a is length of arm. Thus we don’t expect a major contribution
from arm length of the beam. It starts to dominate once a > 1.5¢, but this implies less
compact devices that might have other disadvantages. Derivation of equation (3.52)) is

given in appendix A.2.

Dynamic performance could also be of concern. For example, taking an artefact platform
of around 2 mm square and 100 pm thick, made of a silicon-like material (density ~ 3
mg/mm?, we have a typical lumped mass of around 1 mg. Even for a 1 N/m vertical
stiffness, the first mode resonance (which will be in the measurement axis) will be around

1000 rad/s or 170 Hz. This should be high enough to avoid dynamic operational problems
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with the majority of target systems, but might be within the control bandwidth of some
AFMs, etc.

3.10 Kinematics and parasitic motion

It is argued in section 3.4 that the approximate pseudo-kinematic model for the classic
triskelion design treats the suspension beams as UR links. The overall device mobility
would then be M = —3, which is notably over-constrained. It is further argued that
introducing angled-beam cantilevers in place of the ’rigid’ platform extension arms would
bring the system closer to a kinematically 'correct’ device. Its mechanically stability is,
however, of potential concern, because all the links of the equivalent kinematic system lie
in one place, both variants of the triskelion represent what a robot designer or mechanism
analyst would call a ‘singular condition’, something to be avoided because it tends to lead
to either a locked-up or an uncontrollable state. ‘Singularity’ is used in this context because
the Jacobian matrices describing the variations of drives and outputs become singular or

zero at such positions.

Despite these criticisms, there is plenty of evidence from micro-probe applications that
triskelion flexures can function well as precision devices. One reason is that elasticity can
add short-range pseudo-freedoms in ‘constrained’ axes, so reducing the equivalent kinematic
over-constraint and preventing lock-up. Also, the spring forces inherent to flexures can
add stability at ‘uncontrolled’ joints. Broadly, the argument for the present geometry is as
follows. The projection of the suspension arms into the platform plane varies as cosine of
their rotation, and so for small deflections there is little in-plane induced change of length
to generate the constraining forces. This suggests, however, that fairly severe non-linear
elastic behaviors could build up at quite modest platform displacements. Normally, the
over-constraint of a flexure would lead us to expect that its actual stiffness would be higher
than that predicted by basic linear models and that it would act as a stiffening spring.
The evidence from micro-probes suggests there might not be too much over-stiffening over

practically useful ranges.
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In common with all published versions of triskelion models, the analysis in this thesis
contains inherent assumptions because it is based on simple (linear elastic) beam theory.
These assumptions are well known and need not be examined in detail here. In almost
all examples of structural engineering deflections are restricted for practical reasons to
levels that make the approximations extremely effective. However ligament flexures are
an exception by regularly breaking the guidance that z—deflection should be less than
the beam thickness. This introduces new concerns, not well documented, that, while
still working fully and respectably in the elastic region, this change in geometry from the
starting ideal might provide another source of non-linearity in the spring rate of flexure.

This will be discussed further in the next section.

The previously published versions of the triskelion model also has (probably, in part,
by passing through several hands) absorbed a fairly complex notation accompanied by a
tendency to lay out the mathematical terms in different ways at different places. Some
of the complexity arises from extracting simplified forms of general formulae, where it
may tend to hide that specific restrictions have been applied. Associated with this,
the co-ordinate frames used appear at first somewhat arbitrary, but some are actually
chosen to simplify (implicitly) the algebraic expressions for the specific triskelion geometry.
They are not always ones that have an immediate resonance with readers or users of the
model. For example, the body-fixed frame for the cantilever has, unusually, its y-axis
along the beam. There is inconsistency in the text and figures of the [I87], which may
be just typographical, including the appearance of a left-handed frame. For the bene-
fit of future applications, it was judged well worth the modest extra effort required to
completely redraft the algebraic description in a simpler consistent notation when intro-

ducing new features here and to provide an implementation closely aligned to that notation.

The linear-elastic matrix stiffness model is inherently incapable of expressing any effects
of interaction between deflections along or about different body-frame axes or higher-order
effects on any single axis. Some such effects could, in principle, be captured by matrix-
based quadratic forms, but there are questionable levels of cost-benefit. First, if second-

order effects are significant it becomes increasingly likely that some of the assumptions of
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simple beam theory will be violated (e.g., neglecting shear, small deflections relative to
overall size). Second, matrix elements concerned with deflection interactions are not known
a priori and so either a closed-form geometric approximation or an iterative scheme must
be used, both adding new uncertainty sources. There appears to be no justification for
pressing for perusing such approaches unless there is clear experimental evidence of need

for them in dealing with real applications. Currently there is no such evidence.

3.11 Spring non-linearity in force artefacts

Consider a perfect kinematic version of the triskelion in which the suspension arms are
rigid rods carrying a revolute and a universal joint. Any ’vertical’ motion of their ends (i.e.,
of the platform support points) shortens the projection of their length into the original
plane, implying that the platform must move laterally to accommodate it. But, the three
arms require platform motions in different directions. Thus, the system would ideally
lock (through kinematic over-constraint) in its null position. (Of course, real devices
could not be perfectly rigid and some motion is likely to occur). For a beam, the axial
effect equivalent to shorting length of the rods projection into its original plan is know as
curvature of shorting [198]. For a beam truly fixed at both ends, any transverse deflection
must be associated with the build up of axial (tensile) forces, so stretching it to a length
that fits the curved shape into the required space. Note that such axial forces will tend to
pull the beam into a straighter shape, so an alternative reading is that complete constraint

increases the lateral stiffness beyond the predicted value.

The axial shortening of the curved beam is calculated formally by integrating the
projection of the local slope along the beam. It is completely ignored in basic texts,
but is covered briefly in advanced textbooks on structures or strength of materials [198].
For a pinned rod of length ¢ having an end deflection §, the effective displacement along
the original axial direction is (¢ — (¢2 — §2)), which for small § reduces to (62/2L). For
a transversely-loaded cantilever and closely-related forms such as the double-built-in
shallow-S leaf-spring, the equivalent axial shift - sometimes known as curvature shortening

is (0.60/¢). The linear model ignores such effects.
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If the triskelion platform moves in a z-translation without any externally imposed tilts,
then the symmetry means that ideally it will have no in-plane translations. However, the
movement causes each suspension arm to bend, resulting in them having equal curvature
shortening. Maintaining a continuous physical path from the base to the platform z-axis
then requires a combination of other relative motions. The elbow angle between the
platform arm and the beam axis could expand through a small degree of (elastic) rotary
freedom or, effectively a variant, the beam could bend in-plane to open the projected
angle. A z-rotation of the platform will generate a displacement at the end of its arms that
directly compensates for a component of the axial shortening; this would still require slight

rotary freedom at the arm-beam joint.

If tilt is imposed on the platform, with no overall z-motion, the arm ends will not
necessarily displace the same amount and the component of the twist accommodated by
end y-rotation of each of the beams will generally differ, as, therefore, will their in-plane
curvature shortening. Since any bending causes a shortening from the default (’zero’) posi-
tion, there will still be a tendency for platform rotation. The overall effect is considerably
more complex than for simple z-motion and is likely to lead to small in-plane shifts of the
platform centre from the z-axis. On at least some of the suspension beams a component of
the platform twist must be matched by both an end-slope in the design bending axis and a
twist about the longitudinal axis. The latter is relatively compliant in typical designs , but
generally the overall stiffness will vary according to the relative orientation of the beam
to the imposed twist. Under tilt, the in-plane projections of the arms will also shorten,
generally requiring additional bending of the suspension beams in their stiff planes, and
so increasing overall device stiffness. Recall here that, unlike the microprobe, the force
artefact will ideally respond only to a z-stimulus: this point might be an indicator of need

for divergent design strategies.

A simple way to visualize to how the second-order shortening effects will influence things
is to consider the xy-projection of the path through the beam and platform arm. It forms
a triangle with the straight line from the beam base to the z-axis. The length of the latter

is fixed. The arm-projection will vary if there is platform twist, but remains at its original
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length for pure translation. The beam-projection shortens always for any deflection. For
any specific initial case, the triangle is solved for the fixed ‘pseudo-hypotenuse’ by the
cosine rule, using some combination of the fix base-line,the arm and beam lengths and their
included angle. As the beam shortens, we need small changes in this and other angles to

maintain the triangle.

An unpublished design study by Chetwynd (2009) included an exploration of this pro-
jection triangle by use of spreadsheet calculations. It suggested that there is a slow-moving
minimum in the need for the angle to change, dependent on the ratio, a/¢, of arm length.
Hence it tentatively suggested that a ratio of around 2 is best for the 60° elbow used
traditionally in a triskelion. However, most published designs have a ratio around 0.5. This
raised, but could not adequately answer, the question of whether different elbow angles

might give more linear stiffness characteristics in physically compact devices.

In terms of accommodating beam shortening by platform rotation, at least for platform
translation, the beams should clearly be tangential, i.e., the included elbow angle, should
be 90°. Also, longer platform arms reduce the rotation needed for a specific shortening.
Smaller rotation leads to less need for lateral deflection of the suspension beam in order to
maintain continuity (a square law relationship so valid even if the arm length is increased).
Longer suspension beams suffer less curvature shortening for a given end deflection, again

leading to less platform rotation.

If inherent platform rotations are likely to occur at magnitudes broadly similar to other
second-order deflections (as is the case for dimensions and geometries being considered
here), a criterion based on stabilizing the included angle is not necessarily best. While
the cosine model effectively treats the projected lengths as rigid rods, a real device will
presumably relax elastically to an intermediate value between all deflections, governed by
the relative local stiffness. Over-constraint stiffening caused by platform rotation will arise
from work done in a combination of expanding this angle and laterally deflecting (slope

and linear) the suspension beam.
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Depending upon the exact form of the arms projecting from the central platform,
the best simple model for the junction to the suspension beam is probably the slightly
conservative one that the arm and connection are locally rigid. Then there can be no
local change to the included angle and all accommodation must be by in-plane bending
of the suspension beam. For this model, we would impose in the plane of the device an
end-slope equal to the platform in-plane rotation and an end-deflection equal to the change

in projected radial length of the arm caused by that rotation.

From the reasons discussed earlier, there is no point in perusing these ideas further unless
they are shown experimentally to be of practical importance. This emphasizes further need
for experimental investigations of non-linear stiffness region of a variety of triskelion design;

no such data exist in the public domain at the time of writing.

3.12 Conclusion

A novel contribution has been presented in this chapter for the development of analyt-
ical linear elastic model for triskelion force artefacts. The previously published linear
models for micro-probe have some inconsistencies in notation, but build in some common
approximations and force the use of highly pre-ordained design geometries. The new
approach retains good features of earlier ones while introducing consistent, systematic use
of conventions generally used in mechanism analysis. More importantly, it makes direct
use of direct vector-matrix tools so that the model can deal with all potential design
parameters; most important here are variation in ‘elbow angle’ and the number and or
distribution of suspension legs. Extensive use of pseudo-kinematic concepts highlights the
like types of non-linear stiffness behaviour, which is of great importance for applications to
force transfer artefacts than to micro-probe. This leads to the proposal for ‘angle-beam’
design and second linear model is developed to analysis this family. Considerable discussion
of the general needs for force transfer artefacts includes exploration of like patterns for
non-linearity and some of outline strategies for modelling it. However, it is conclude that
detailed work is not justified in the absence of practical data on the behaviour of real device

(triskelion force artefacts). Hence this chapter provides means for imposed modelling of
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designs and highlights the importance of gaining experimental data.

The implementation of an enhanced linear elastic model has been discussed in the next

chapter for development of triskelion software program.
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Chapter 4

Implementation of enhanced linear
elastic model: Numerical

experiments and data analysis

4.1 Introduction

This chapter presents the development of a triskelion software program that is purely
dependant on the mathematical equations of the analytical linear model for a triskelion
force artefacts. The newly developed program is not limited, as previous ones have
been to studying the fixed geometry of the planar flexure artefact with a 60° elbow
angle [120], [14], [118], [188], [148]. Because force artefacts have different requirements
from and so many benefit from different designs, to micro-probe suspensions, research with
new system is intended. The new search work is intended to explore the relative sizes,
orientation of angles, etc. it is an important first stage, in combination with experimental
studies in chapter 6, 7, and 8 towards discovering ‘best designs’ and minimizing the
non-linearity of the triskelion force artefacts and micro-probe artefacts. The new concept of
variable elbow angle has been incorporated into an enhanced linear elastic model to provide
a flexible for triskelion software program for computing the behaviour of the suspension
beams, forces F,, moments M, & M,, stress oy, strain e,, stiffness constant k., and

torsional stiffness A, of triskelion force artefact and the micro probe suspension artefact of
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any elbow angle prior to their fabrication processes.

This approach has never previously been seen in the public domain or any scientific
published paper for predicting the stiffness k. and torsional stiffens A, or A, of triskelion

force artefact or micro probe suspension artefact.

4.2 Implementation of enhanced linear elastic model

A robust program could be developed by using programming languages such as C, C++,
fortran 95 and Java, but the MATLAB is a high-level language and provides an interactive
environment for programming extensive computation tasks faster than other languages such
as C, C++ and Fortran. The MATLAB is best for developing new complex mathematical
algorithms and is very popular in machine learning. It is well-suited and widely used for
prototyping before later commitment of a final procedure to a non-efficient language. Hence,

it has been decided to use the MATLAB for developing a robust program.

4.3 Design variables of the triskelion software program

The design parameters used for the development of software program are divided into three

categories.
1. Platform parameters. item Elbow angle 3;
2. Suspension beams parameters.

3. Material constant parameters.

4.3.1 Platform parameters

The platform consists of a hub radius h,, which is assumed to be rigid, joined with three
symmetrically designed arms, see figure The centre of the hub is coincident with the
centre of the zyz-co-ordinate frame for the whole device. The end-point of each arm is
initially defined by a vector a; = (a, 0,0)7 aligned to the z-axis, which is then rotated
about z-axis by (a;,i = 1, 2, 3). Note that a = r 4+ £. Each arm has length ¢,, width w,

and thickness t,. The end-points of three identical arms are joined with three suspension
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beams (b;,i = 1, 2, 3). These beams behave as a cantilever that is clamped at the
supporting ring and subject to the imposed forces and moments at free end. The «; angles
expressed in radians, used for triskelion force artefacts with various elbow angles are given
in the table . These angles are consistent with those used in Pril’s model (figure m
and figure in which one arm is aligned along the y-axis [14].

Figure 4.1: (a) The simplified classic triskelion suspension with elbow angle 120° and (b)
dimensions of the outer three uniform beams.

4.3.2 Elbow angle j;

The elbow angle, ey is defined as the non-reflex angle between the arm of the rigid platform

and the relevant beam. The elbow angles e, for each artefact satisfy the follow relation.

ey = |(vi—05)| (4.1)

Elbow angles ; angles are calculated from «; angles in radians. These angles for various

triskelion force artefacts are given in table (4.1)).

4.3.3 Beam parameters

Three rectangular beams b; of uniform cross-sectional area are attached to the rigid platform.
Each beam has length ¢, width w, thickness ¢ and orientation angle (3;,¢ = 1, 2, 3) with

respect to the reference x-axis.
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Table 4.1: Angles «; and f; for triskelion force artefacts

Triskelion force artefact ID o1 o9 o3 51 Bo B3
w0° IG5 () | ()| 5()
%0° () [G) [ 5 [ 251 0 [ 23
120° —(5) [ (5) | -5(F) | =5(F) | —(F) | ()
150° —(§) | (5) | =5(f) | =(m) | =(5) | =5(5)
i0° OO0 5@ -0 @

Table 4.2: Input parameters for the new model, with typical values.

S.No. Parameter Values & Unit
1 z 5x107% m
2 O 1 x 1073 rad
3 0, 1 x 1073 rad
4 | a=(h+ap) 0.002 m
o 4 0.004 m
6 w 0.001 m
7 t 0.0002 m
8 E 2.5¢” pascal
9 G 1 x 10°
10 ay,03,& ag Table (4.1
11 | B1,B3,& B3 | Table (4.2

4.3.4 Material constant parameters

The other two parameters, Modulus of direct shear G, and Young’s Modulus E are taken
to be constant. They are used in the input specification of the triskelion software program,

with typical values given in table (4.2]).

4.4 'Triskelion software program

The triskelion software program has been developed by using the analytical elastic model.
The MATLAB environment is a flexible means for developing complex algorithms and
functions. The MATLAB workspace is also very useful for the type of modelling research
work being presented in this thesis. The nomenclature of the input parameters to execute

the program is given in table (4.2)).

The whole program was written as a collection of functions, each with aim, pre-condition
and post-condition to reflect one sequential step in the enhanced linear elastic model in

chapter 3. The dependance diagram for triskelion program is shown in figure The
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Main Function

Model Input(dz,dthetax, dthetay, a, I,w,t,E,alpha and beta angles)

Function to computer arms deflection
In a body fix frame of co-ordinate

Function to computer stiffness matix

7~

Function to computer orientation of beta
beta angle for three beams

v

Function to compute beams deflection in
) a body fix-frame of co-ordinate

v

4 Y
Function to compute beams forces and

Moments in a body fix-frame of

co-ordinates
A\ 4

v

4 Y
Function to compute beams forces and

% moments in a global-frame of co-ordinates

L J
[ Function to compute the sum of forces in D
global frame of reference
L J

A Y
Function to computer stress and strain
in a gobal co-ordinates
L J

v

Function to compute to stiffness k, and

4, and 4,, in global co-ordinates

Figure 4.2: Dependency diagram for triskelion program
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detail of the computational schema and codes for triskelion software program, have been

described in the appendix C.

During the development phase, the execution of a function was tested by manually
placing appropriate input parameters into the MATLAB interpretive workplace and then
calling it, standing alone, from the workplace. The computed results were compared with
the hand calculated results. The same procedure was adopted for every function of the

triskelion software program.

At the last stage of the development, when all codes for all required functions were
completed, the codes for the main function was written by defining all input parameters
(02, Oz, Oy, a, I, w, t, E, a1, oo,as3, Bi, P2, & P3). Each function in the main program

is called in the right order shown in the dependance diagram, figure [4.2

The first three input parameters (dz, 6, & 6, ) represent displacements externally
imposed upon three degree of freedom of the platform; they are respectively a translation
along the z-axis and small angle rotations about the x— and y-axes. Note that for a force
transfer artefact expects §z to be the desire input, with the rotations being parasitic motions.
However, in the case of a microprobe, x —y — z motions at the probe tip correspond directly
to these inputs at the platform, since the model is linear, the actual choice of value for these
parameters is of little consequence, but here value representative of typical applications are
always used. The remaining set of input parameters define geometries of the platform, beam
and material constant parameters, which are necessary for the execution of all functions that
compute the enhanced linear elastic model. The triskelion software is considered to be a
good tool for predicting the stiffness of force artefacts and micro probe suspension artefact

over short deflection range prior to their fabrication processes.

4.4.1 Triskelion software program verification

Before starting the numerical experiments, the consistency and robustness of the triskelion
software program was tested using a simple input values at the platform that can compared

to physical arguments about the patterns of behaviour. The five trials were
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1. The fist consistency trial was carried out by using input parameters dz = 1 x 107°
and 0, & 0, = 0, and values of other parameters as given in table The program
was computed for triskelion force artefacts with 60° elbow angle. Subsequently, this
experiment was repeated for all other triskelion force artefacts and input specifications
given in table The same value of stiffness k, was computed by the program in all
cases by forcing 0, = 0, = 0, the platform undergoes pure z-translations and each of
its arm moves the same distance. Thus the end of each suspension beam is subject
only to, in its body-fixed frame, z-shift and y-rotation and these are identical for each
beam. If the beam geometries and material remain the same, so does the associated
stiffness matrix, consequently the end-force and end-moment. Hence the value of k,
remains same for all triskelion force artefacts, having different elbow angles if the

design parameters are unchanged.

2. The second trial was carried out by having 6, = 1 x 107,62 & 6, = 0 by keeping the
same input values as above and a 60 ° elbow angle. The program responds M, as finite
and positive and F, = 0. Similarly, trial was repeated for all triskelion force artefacts
and input specifications given in Table and the same result was found i.e. positive
M, and F, = 0. This follows the physical expectation that pure rotation of the
platform about the z-axis should require purely as z-axis moment (other than possible
parasitic effects not accessible to a linear elastic model). However, the moment is not
necessarily independent of the elbow angle because the tilting platform can induce

torsional effects in the beams.

3. The third numerical experiment was carried out by using 6, =1 x 1072,z & 6, = 0
while other being the same as trial 2. The program reports M, as finite and positive,
M, = 0 and F, = 0 in all cases tested. This meet the physical expectation that by
symmetry, the simple torsional behaviour of the platform should be the same on any

axis.

4. The fourth numerical experiment was carried out by using 6, or 6, = 1 x 1072 and
6z = 0 for all triskelion force artefacts by keeping the same value of parameters given

in table The program computes M, = M, and F, = 0 for all triskelion force
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artefacts, which have different elbow angles. This test confirms that no unintended

cross-axis twist effects have been introduced into the program

5. The final trial was carried out by using 6z = 1 x 107> & 6, = 172 and 6, = 0 but was
otherwise the same as trial 4. The program computed the same value of F, for all
triskelion force artefacts, but with different values of M, and M, = 0 . The parameter
0, generates rotation about the x-axis in the plane of platform and hence the program
predicts the different values of M, for all triskelion force artefacts with different elbow
angles. this test confirms there is no unexpected cross-talk between translational and

rotational inputs.

All the above testing experiments confirm the robustness of the triskelion software program

4.5 Stiffness of triskelion force artefacts

Before using the new software to explore the effects of different choices for design parame-
ters, it is useful to draw some general intuitive conclusions about their effects. The model
treats each suspension beam as a cantilever subjected at its free end to three displacements,
being in its body-fix frame translation along z-axis and rotations about z-and y-axes.
These displacements depend, of course on the motion of the triskelion platform. For certain
artefact geometries and some single platform motion, it is fairly easy to visualize the beam
and the defection and draw conclusion about the parameters sensitivity more from one
dominating term in the local stiffness matrix for the beam. Mostly, though, the defections
combine in ways not easy to compare so directly and it is then that computer model adds

value.

The ideal triskelion suspension has three torsional stiffness about any axis in its xy-
plane that passes through the centre of the platform. We can, then, gain some insight by
considering only the 2D behaviour of a cross-section. In the case of a force transfer artefact,
the platform motion would ideally be a pure z-translation. We can then expect that the
suspension beams will be dominated by displacements, expressed in their body-frame, of
0z finite and 660, = 66, = 0. For such conditions the present model can be reduced to a 2D

rigid platform with a simple spring at each side, as shown in figure [£.3]
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Even if there is a small amount of platform tilt, the some stiffness term is likely to dominate.

Figure 4.3: Simplified 2D model of platform and suspension, (a) concept, (b) effect of central
load, (c) effect of offset load.
So both cases can be considered:

e (Case-a, when a load is applied on the centre at the hub of the triskelion micro-probe.

e Case-b, when a load is applied at off set position at the hub of the triskelion micro-

probe.
For note, however, that here is a potential ambiguity in the definition of “stiffness” for the
force transfer artefact. Its operation stiffness is in the vertical axis, i.e.

(4.2)

but d, could rationally be defined as either the displacement at the centre of the hub or the
displacement in the line of action of the force. Experimental evaluation with, say, micro-
indenter tends to favour the later, but the model developed in this thesis use the former. the
definition can diverge if the platform tilt is added to its z-translation. As seem in figure

the spring in this simplified model simply act in parallel for which we have in general

ke = > ki (4.3)
=1
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where k., is the stiffness of the " beam, which will here be close to the well known
“shallow-S” deflection seen in simple ligament flexure mechanisms. We assume the beams

identical and so far the simplified 2D model we have simply k, = 2k,,.

4.5.1 Case-a: When a load is applied at the centre of the hub

When a load is applied at the centre of the hub (figure , the platform moves in pure
translation, with, by symmetry, both springs taking half of the force and equal defections.

expressing this more formally in term of forces and moments for static equisetum, we require

3
(Myi + Fyi X rzi) = 0 (4.4)
=1
3
Z (My=i — Fyi xrg;) = 0 (4.5)
i=1

Fz = Fz1+Fz2+Fz3

= 23: F; (4.6)
=1

4.5.2 Case-b: When a load is applied at off set position at the hub

If a load is applied at off set position at the hub of the triskelion force artefact, then

expression for the moment is given as
M = Fq (4.7)

and where q is the magnitude of off set vector q of the line of action of the load from the
centre, figure (c). Because the platform acts as a rigid body, the vertical displacement

at the line of the action of the force is found by and

e —0o = qb (4.8)
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where J, is the vertical displacement at the centre-line and 6 is the angle of platform
tilt. Expressing the off-set force of a central force plus a moment, at static equisetum i.e.

we have

, (4.9)

o = (4.10)

M  Fq
AA
where k, is the effective linear stiffness observed at the platform centre and A is the torsional
stiffness. These are functional specifications usually considered by the designer. Substitut-
ing equation into equation defines the displacement and effective stiffness along the line of

force,

F ¢ 1
A A . 4.11
e ke ()\ * k) (411)
koA
ke = pT——Y (4.12)

Physically, this simply indicates that translational effects of the two stiffness act in series
(i.e. their compliances are additive). It also formalizes the intuition design that for a force
artefact of specifical k, torsional stiffness should be as practicable; it quantifies this deriver

as dependent on ¢? (given a maximum allowed, or tolerated, offset).

The expression above can be compared to the results of the equilibrium force balance
for the 2D platform in figure A, taking it to be of length 2a subject to end reaction forces
F4 and Fj, associated with support springs of stiffness k4 = kp = k. Resolving vertically

and taking moments about end A gives

F = Fa+Fg=(a+q)F (4.13)
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Hence,

1 /a—q
oa = — F 4.14
« = 2 (BYE (414)
1 /a+gq
= - F 4.1
52 = (") (4.15)
since the platform is rigid,
oA+ 9B F
5, = AT _ 4.16
2 2k ( )
dp+0a  qF
0 = = 4.1
2a 2ka? (4-17)

So, direct comparison to equation & shown that k, = 2k and \ = 2ka? and from

CL2 CL2

A general interpretation of equation is that measuring deflection solely in the line of

equation |4.12] we have

action of the applied force cannot reveal the two stiffness uniquely if ¢ is known. However,
equation |4.18| shows that with this further assumption, which is not grossly unreasonable,

a sensible estimate for k, might be attained from a measured k..

For a force transfer artefact, we want k. to be vary as little as passible from k, because
uncertainty in the stiffness reflects directly as uncertainty in the transfer calibration. For
the small-scale systems that are the main concerns here, a might be only a few millimetres at
most and it will probably be difficult to control ¢ to better than around 0.5 mm in practice.
Taking, for example, a as 2 mm and ¢ as 0.5 mm, k. deviates from k, by about 6 %, but
this rises rapidly as a reduces. Even allowing for the limitations of the modeling, there
is clear motivation to design for relatively large a. Moving to 3D behaviour of triskelion,

there is also motivation for seeking designs in which the interactions of different stiffness
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terms (ignored here) lead to an increase in A without (much)effect k,. One open question

is wether the choice of elbow angle has significant bearing on this aspect.

4.6 Numerical experiments for the triskelion force artefacts

Simply for convenience in the modelling process, the software program for the triskelion
force artefact operates by imposing platform displacements and computing the forces and
moments necessary to cause them; from this it relates the stiffness of the individual sus-
pension elements to the over all stiffness of the device. The input parameter dz forces a
translational motions along the z-axis and the other two parameters 6, & 0, cause rota-
tional motion along the x-axis & y-axis respectively. The beam parameters length ¢, width
w, and thickness ¢, lead to controlling the stiffness k,. If z-deflection of the suspension

beams completely dominate the overall stiffness we have

E 3
k, o < Zf) (4.19)

The torsional stiffness for a uniform rectangular cantilever is defined as

- (=)

where

K = “;j <1 —0.63 <;)> (4.21)

and G is Poisson’s ratio of the material used. or

N w;g (1 _0.63 (;)) (4.22)

If ¢ < w in equation . Indeed, given the broad approximations already invoked typical
value of ¢ and w in typical applications, it is not unreasonable to take the torsional stiffness
as approximately to wt?/£. Both k, and ), rise rapidly by increasing the value of ¢ and ratio
k./Az becomes maximum as w — t. Increasing the length of beam reduces the stiffness

k. more rapidly than it does the torsional stiffness so radically increases k,/A,. The new
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research work is intended to explore the relative sizes, orientation of angles, etc. to seek
better performance of the triskelion as force transfer artefact. For which we ideally want
one degree of freedom (1-DOF). We will focus our attention on the parameters a, ¢, w, & t
in the numerical experiments and observe how changes in these parameters can effect the
computed values of spring constant k., and A,. The extent to which results for different
geometries match the predictions of the argument above, and simple beam theory, will
provide same indication of which, if any, stiffness made dominates the triskelion behaviour.
A five input specification of the triskelion software program polymer is given in table (4.2

The triskelion force artefacts with elbow angles 60°,90°,120°,150° & 180° are shown in
figurdd.4]

4.6.1 Numerical experiments phase 1: Investigation of arm length a,

Five numerical experiments were carried out for all the triskelion force artefacts by using

input specification given in table (4.2)).

Relationship between a, and k,

Five numerical experiments were carried out with displacement z = 1 x 1079 m for input
specification given in table of the triskelion force artefacts with different elbow angles
(table (4.1))). The only exception to these tabulated values was experimental independent
variable, the arm length. It was set to 0.00lm for the first test run and incremented by
0.001 m for the remaining numerical test run 2 to 5. The computed values of stiffness k.

at each elbow angle are shown in figure [£.5] All have same the value of stiffness k..

It is clear from this figure that the stiffness k, of all triskelion force artefacts is inde-
pendent of arm length for pure §z translational motion along z-axis effects the stiffness k,.
This is expected because arm-length interacts with platform tilt, not translation.

Relationship between a;, and A,

Five numerical experiments were carried out with displacement only 6, = 1 x 1073 for each

input specification of triskelion force artefact given in table (4.2). These experiments have
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both translational and rotational motion. The arm length was incremented by 0.001m for

the remaining numerical run tests 2 to 5, as above.

(a) TSFA-60 (b) TSFA-90

(¢) TSFA-120

(d) TSFA-150 (e) TSFA-180

Figure 4.4: The triskelion force artefacts with elbow angles, (a) 60°, (b) 90°, (c¢) 120°, (d)
150° and (e) 180°.

Relationship between a, and )\,

Five numerical experiments were carried out with displacement only 6, = 1 x 1073 for each

input specification of triskelion force artefact given in table (4.2)). These experiments have
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both translational and rotational motion. The arm length a, was incremented by 0.001m

for the remaining numerical run tests 2 to 5, as above.

Il TSFA-60, Kz Stiffness
I TSFA-90, Kz Stiffness
TSFA-120, Kz Stiffness
[ TSFA-150, Kz Stiffness
I TSFA-180, Kz Stiffness

1000

800

600

400+

Kz Stiffness (N/m)

200

0.001 0.002 0.003 0.004 0.005
Arm length (m)

Figure 4.5: Graph for variable arm’s length a, verses computed results for stiffness k., of
triskelion force artefacts with elbow angles 60°,90°,120°,150° & 180°.

Il TSFA-60, Torsional stiffness

Il TSFA-90, Torsional stiffness
0.07+ |l TSFA-120, Torsional stiffness
[ TSFA-150, Torsional stiffness
0064 |l TSFA-180, Torsional stiffness

0.05

0.04

0.03

Torsional stiffness (Nm/rad)

0.001 0.002 0.003 0.004 0.005

Arm length (m)

Figure 4.6: Graph for variable arm’s length ay verses computed results for stiffness A, of
triskelion force artefacts with elbow angles 60°,90°,120°,150° & 180°.

The computed stiffness A\, for all the triskelion force artefacts are shown in figure [4.6]
It is clear from figure that the torsional stiffness A\, depends on beam length and the

elbow angle of triskelion force artefacts. All the arm lengths, the triskelion force artefact
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with elbow 60 ° has a lower value of torsional stiffness A\, and the triskelion force artefacts
with the elbow angle of 180° being highest value of A,. As we increase the length of the
arm ay, the values of torsional stiffness A\, also increases for all triskelion force artefacts and

other effects are sumarised as follows:

e For a given tilt the vertical motion at the end of arms increases linearly with arm

length (for small 0).
e Assuming, say, that vertical beam motion totally dominates the motion.

e Since the beam parameters are unchanged, the force at the end beam will also increase

linearly with arm length a,.

e The the moment applied to the platform to generate these forces will depend on a.

Hence, the torsional stiffness should increase with the square of the arm length ay.

4.6.2 Numerical experiments phase 2: Investigation of stiffness £k, and

beam parameters

In phase 2, the relationship between the beam parameters (¢, w & t) and stiffness k. are
investigated by carrying out experiments for each triskelion force artefacts with elbow angles

60°,90°,120°,150° & 180° for the translational motion of the platform only.

Relationship between ¢ and k,

The computed stiffness k, for all triskelion force artefacts are shown in figure All
triskelion force artefacts have same value of stiffness k., independent of the elbow angle if
the beam parameters are unchanged. This is also expected of the linear model, because
pure translation of the platform does not impose twists to the beam (see also section 4.6.1).
The stiffness k, also decreases for all triskelion force artefacts with the increase of beam
length, closely following the inverse cube law of individual suspension beam subjected only

to z-displacement.

Relationship between w and k,

The computed stiffness k, for all triskelion force artefacts is shown in figure This

stiffness k, is independent on the elbow angle, as expected. It is clear from figure [4.8
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that the value of stiffness k. is increased by increasing the beam width, closely linearly as

expected of an individual suspension under simple deflection.
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Figure 4.7: Graph for variable beam’s length ¢ verses computed results for stiffness k, of
triskelion force artefacts with elbow angles 60°,90°,120°,150° & 180°.
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Figure 4.8: Graph for variable beam’s width w verses computed results for stiffness k, of
triskelion force artefacts with elbow angles 60°,90°,120°,150° & 180°.
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Relationship between ¢t and k,

The computed stiffness &, for all triskelion force artefacts is shown in figure[4.9] All triskelion
force artefacts have same and very low value stiffness k. . It is clear from figure that

the value stiffness k. also increases by increasing the value of beam thickness.
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Figure 4.9: Graph for variable beam’s thickness ¢ verses computed results for stiffness k, of
triskelion force artefacts with elbow angles 60°,90°,120°,150° & 180°.

4.6.3 Numerical experiments phase 3: Investigation of torsional stiffness

Az

In phase 3, the relationship between the beam parameters (¢, w & t) and torsional stiffness
Az are investigated by carrying out experiments for each triskelion force artefacts with
elbow angles of 60°,90°,120°,150° & 180 ° for both translational motion along z-axis and

rotational motion x-axis of the platform.

Relationship between ¢ and X,

The computed torsional stiffness A, for all triskelion force artefacts are shown in figure [4.10
It is clear from figure that the triskelion force artefact with elbow angle 60° has a
lower value of torsional stiffness A\, and as we increase the elbow angle, the torsional stiffness

Az also increases steadily but not linear. The value of torsional stiffness A\, decreases if we
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increase the beam length as expected. The sensitivity to the elbow angle is greater with

shorter beams.

Relationship between w and )\,

The computed torsional stiffness A, for all triskelion force artefacts is shown in figure
The torsional stiffness A, again varies slightly with elbow angles; it is consistently lowest
for triskelion force artefacts with elbow angle 60° and highest for those with elbow angle
180°. The torsional stiffness A, of all the triskeions also increases linearly with increasing

the beam width as expected for both bending and torsion of suspension beams.

Relationship between ¢t and ),

The computed stiffness A\, for all triskelion force artefacts is shown in figure The
torsional stiffness ), increases rapidly by increasing the thickness of the beam and also
increases sightly with the elbow angle of triskelion force artefacts. The relationship with
thickness approaches the cube law expected for both bending and the torsion of an individual

suspension beam.

Il TSFA-60, Torsional stiffness
I TSFA-90, Torsional stiffness
Il TSFA-120, Torsional stiffness
[ TSFA-150, Torsional stiffness
Il TSFA-180, Torsional stiffness

0.05

0.04

Torsional stiffness (Nm/rad)

0.004 0.006 0.008 0.010 0.012
Beam length (m)

Figure 4.10: Graph for variable beam’s length ¢ verses computed results for stiffness A, of
triskelion force artefacts with elbow angles 60°,90°,120°,150° & 180°.
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Figure 4.11: Graph for variable beam’s width w verses computed results for stiffness A\, of
triskelion force artefacts with elbow angles 60°,90°,120°,150° & 180°.
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Figure 4.12: Graph for variable beam’s thickness ¢ verses computed results for stiffness A,
of triskelion force artefacts with elbow angles 60°,90°,120°,150° & 180 °.
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4.7 Discussion of computed results

The computed values of stiffness k, and A\, the input specifications given in the tables (4.1))
and (4.2) for force artefacts with elbow angles 60°,90°,120°,150° & 180 ° are conveniently

be summarised as follows:

1. As expected of a linear model, the computed values of stiffness k, will not be affected
by increasing the arm length ay of the platform or changing the elbow angle, for any
triskelion force artefact with otherwise the same input specifications. The computed

value of k, is 937 N/m may be seen from figure

2. The torsional stiffness A, ( by symmetry representative of any tilt direction) increases
gently with increase in the platform length, on top of a relatively large constant value
figure 4.6. It also increases with a little elbow angle at all lengths tested. This value
is more sensitive to the elbow angle at large arm lengths a,. The rate of increase with
arm length ay follows closely a square law. A square law dependence on a would be
expected if the behaviour from physical arguments was dominated by z-axial stiffness
at the end of the arms. This compensations indicate that torsional effects in the
suspension beams (which are expected to be largely independent of ay) dominate over

translational ones for the geometries tested.

3. The computed values of stiffness k, indicate that when increasing the length ¢ of the
suspension beam, the stiffness decrease with a factor (£ + Af¢)3 and is independent of
the elbow angle, see in figure [L.7] The bending stiffness of an individual suspension
beam will ideally vary as the inverse cube of its length, so seen this behaviour at the

platform confirms that simple bending controls purely translational motions.

4. The computed stiffness A\, also indicate that by increasing the length ¢ of the suspen-
sion beam, the A, values decrease by a factor (£ + Af). This variation in the value of

stiffness A\, may be seen in figure

5. The computed axial stiffness k, increases linearly with the suspension beam width w,
and is independent of the elbow angle for all triskelion force artefacts, as shown in
figure This is expected physically from the behaviour of individual suspension
beams in simple bending.
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6. The torsional stiffness A, also increases largely with the width of the suspension beam
in all numerical testing experiments and is shown in figure for all triskelion force
artefacts. This is expected physically because both bending and torsional stiffness of
the suspension beams depend (almost) lineally on this width. A, increases slightly
with the elbow angle in all cases tested; this effect, the direct sharing between bending

and torsional modes of the deflection.

7. The computed axial stiffness k, indicates that by increasing the beam thickness ¢,
the stiffness increases by a factor (¢t + At)3, where At is the increment in the beam
thickness. As shown in [£.9] the axial stiffness is independent of the elbow angle.
These results are consistent with physical behaviour in which only bending modes are
present in the suspension beams; the linear model discounts possible cross-coupling

of modes.

8. The computed torsional stiffness A, also increases with roughly by a factor (¢t + At)
as shown in figure There is a small increase in stiffness with elbow angle in all
cases. This near-cube relationship would be expected from both bending and torsion
in the suspension beams, with sharing between those modes obviously varying with

the elbow angles.

4.8 Conclusion

A new more flexible and a robust software program for modelling triskelion force artefacts
has been presented in this chapter. It provides a critical new tool for predicting force,
moments, stresses, strains, stiffness k, and torsional stiffness for triskelion force artefacts
and micro probes. Even with the simplest designs it can become difficult for designers to
understand in detail how changes in geometry affect performance (e.g. the combined effects

of bending and torsion at different elbow angles).

The results of all numerical experiments are in agreement with the beam theory and are

precisely stated as follows:

ok, Ny x wtd

ok, o 1/
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e )\, ox 1/0?

Comparing these relationships to those for bending and torsion in the single beam, it
appears that bending modes in the suspension beams dominate quite strongly the torsional
one for the range of geometries considered. This makes it rather easier for the designer to
make intuitions about the effects of changing the geometry. These results will be compared
to ‘linear’ and ‘non-linear’ of a range of physical (polymeric) triskelion in later chapter 6,

7 and 8.

The new program uses an enhanced linear elastic model to investigate arbitrary dimen-
sions, arm positions for investigation of elbow angles of triskelion force artefacts based on

the stabilities and the stiffness of the platform.

Numerical experiments have been performed on a range of triskelion designs (all with
three-fold symmetry about the z-axis) covering plat form arm length between 1 mm and
5 mm; suspension beam lengths 4 mm and 12 mm; width between 1 mm to 5 mm and
thickness between 0.1 mm and 0.5 mm; elbow angles between 60 ° and 180 °. There appears

to be no previous study of elbow angle in the public domain.

The restriction of the enhanced linear elastic model mean that it transfer pure z-
translation of the platform only to the bending of the suspension beams ( in the own
xz-planes. Thus there is no dependence on the elbow angle or platform axes length for
the z-translation stiffness. The model reports, as expected, behaviour on other dimensional
parameters consistent with that of the individual beams. Because only axially-symmetric
designs been studied, and it confirmed that the program reports the same stiffness in all
direction of the platform tilt, only torsional stiffness about z-axis, A, is considered in detail.
Consistently across all design, there is tendency for torsional stiffness to increase slightly
with elbow angle. This effect is, perhaps, not strong enough to be a major design consid-
eration, at least at very small platform measurements for which the linear model might be
assured adequate. However, it suggests that a 60 ° elbow, a compact but easily constructed

design, is quite appropriate for micro-probe, where modest torsional stiffness is required.
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there might be a case for using a large elbow angle for force transfer artefacts, where high

torsional stiffness is desirable. The concluded remarks are stated as
e Firstly, the great benefits to the future research and industrial user.

e Secondly, the other things that will show differently in the physical (non-linearity)

test in later chapter 6, 7 and 8.

The validation of the triskelion program will be performed later on in chapter 9.
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Chapter 5

Triskelion polymeric artefacts:

specification and design

5.1 Introduction

This chapter considers methods for the fabrication of samples of triskelion force artefacts
suitable for investigating stiffness behaviour. The linear elastic models of triskelions
presented in chapter 3 requires small batches of varied design for validation experiments.
The use of polymers artefacts increases the commercial capability to exploit polymers in a

mass production scale for micro triskelion force artefacts.

An alternative low-cost approach has been explored for the first time for fabricating
the polymeric triskelion force artefacts. It may be seen that published technologies and
methods are economically unattractive for this purpose. It is proposed, originally, that

polymeric artefacts may offer a good solution here and also have a wider application.

While a purely linear system can be studied at any convenient scale. The anticipated
non-linearities here required that test run samples at least broadly representative of sensible
practical triskelion force artefacts. The triskelion force transfer artefacts will probably most
usefully apply to small instruments (such as micro-indenters) and in ranges where dimen-
sional load cells are not readily available. These typical dimensional scales should be from

a few millimeters downwards and force might range from just a few sub-newtons. Following
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the general principle that handling smaller samples and higher sensitives measurements is
more expensive (in all the senses mentioned above), the first study has been et at the top of
these ranges. An experimental scheme using a special test-rig based on previously proven
concept could then be used; it is descried in the chapter 6. This leaves the question of

making small numbers of different triskelion designs for the test samples.

5.2 Development of triskelion force artefacts

Given the essential need to validate the models and to explore how and what point
inevitable non-linearities become significant, what are the best practical compromises for a

measurement scheme taking account of cost, reliability, etc?

With the measurement scheme chosen, how might a suitable range of representative
samples be produced. The secondary part of the question is whether (or to what extent)
can reflect a current or potential route of applications for the triskelion force artefacts. It
feels preferable, but is by no means essential. This methods has plausibly wider use in

future.

5.2.1 Challenges with sample design

1. The desired test program requires a small number samples for several designs, vary-
ing in just design parameters. Published triskelion suspension for micro-probes are

produced in metal or silicon.

2. Industrial groups involve either MEMS technology (smaller devices or assembly of

components (lager devices).

3. Samples required here are sizes intermediate between these groups, being quite large

for MEMS but rather small for convent reliable assembly.

4. MEMS approaches give good repeatability but setup costs are very high and so they

do not suit current needs.

5. Assembly has high unit cost generally and will require jigs or other tooling for each

variant design.
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6. Plausibly, metallic samples could be machined from solid, at moderate cost using CNC
machines, but the scale is a little small and thin sections will be vulnerable during

producing (any subsequent assembly).

7. Hence, a new question is posed here for first times: is it realistic to use polymers to

make triskelion or similar force artefacts and suspensions?

5.2.2 Brief description manufacturing techniques

Three manufacturing techniques, such as injection moulding, Stereolithography (SL) and

microstereolithography (MSL), and LIGA are briefly discussed in this section.

Injection moulding

The classic plastics technologies are capable of high throughput and precise production. The
injection moulding technique has high setup cost but very low unit cost. This technique
is not suitable for current needs, but fully justifies the possibility of a low-cost, disposable

device.

Stereolithography and microstereolithography

SL and MSL techniques are not cheap at present (wasteful of resins) but are certainly
able to produce one-offs direction from computer aided development (CAD). Commercially
available technology is perhaps a marginal resolution for current needs. Promises are seen

for small-batch bespoke designs for furore applications.

LIGA

LIGA technique is essentially ways of making precise small mould or pressing, rather than

direct fabrication route for present needs.
Hence manufacturing is not an impediment (actually an attraction) to polymer triskelion

and further study of them is justified. But none of these processes readily meets the needs

for the samples here and a special method is preferred.
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5.2.3 Polymeric triskelion force artefacts: Pros and cons

1. The obvious concern is that polymers are rarely used for precision engineering devices.
They have relatively high thermal expansion coefficients and relatively poor long term

material stability, so they seem poor suited to precision structures.

2. However, triskelion force artefacts here are flexures, not structures and the case is less

clear-cut.

3. Long-term stability is not critical for the present research work and might not matter

so much in some applications, e.g., for low-cost “use once” checking pieces (samples).
4. The use of polymers first time open new route to manufacture.

5. The low Young’s modulus leads to physically more robust more triskelion force arte-
facts for given stiffness; in particular, ligament thickness can be larger and more easily

controlled.

6. Hence, there are sufficient positive arguments to make the part of this thesis an

investigation of triskelion force artefacts.

5.3 Basic requirements for triskelion force artefact’s samples

for testing experiments

Two linear elastic models for triskelion force artefacts have been introduced in chapter
3, corresponding to classic design and angle-beam design. these models extend previous
research work by allowing all geometries design parameters to be varied independently, so
for example allowing investigation of the effects of the elbow angle on the force artefact
stiffness. The practical validation of these models requires the production of triskelion force
artefacts in a variety of different geometric configurations; only a small no of each design

are needed, with low unit cost and rapid access to new designs being of some importance.

The test triskelion force artefacts should broadly representative of plausible practical
applications, but it is convenient to make them relatively large for robustness and ease

of handling during tests. Considering the type of the instruments likely to require force
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calibration and for which commercial load-cells do not offer an immediate solution, the
following specifications is proposed. Overall dimensions might be up to about 10 mm, force
might be up to large fraction of a newton and correspond deflections up to several hundred
micrometers. This is a factor of 10-100 times larger than the triskelion devices likely to be
used with the NPL Low Force Balance. Working at this scale has added advantage of al-

lowing the tests to be based on modification of well-proven technique, described in chapter 6.

All the triskelion test samples should have the same over all design scheme. Triskelion
force artefacts are near-planar with a central axis of symmetry (usually regards as z-axis)
normal to their nominal plane. A central hub is regarded as rigid, which is adequately en-
sured by making it of commercially greater depth than the flexible suspension beams. The
hub might conveniently rigid arm (of the same depth as the hub) to facilitate connection to
the suspension beams. The other end of the beams are connected to a deep (‘rigid’) outer
framework that forms the reference mount for the triskelion force artefact; it can easily be
shape but commonly shown as a circularly ring. this description constitute a classic design.
The only essential change for an angle-beam triskelion force artefact is that the arm takes
the same depth as beam rather than that of hub. For the present needs, the hub can be
2-3 mm diameter, while the suspension beams will be several millimeters long, with other

dimensions set accordingly to provide overall stiffness in the z-axis of the order of 1 kN/m.

The published work on triskelion system for either micro-probe suspension or force trans-
fer artefacts has concentrated either on quite large metallic versions assembled from indi-
vidual components or on small metal or silicon triskelion devices ( triskelion force artefacts
or triskelion micro-probe suspension) manufactured by typical MEMS fabrication methods.
none of these is obviously attractive for present needs, so a basic review of established

methods, a relevant materials, for producing millimetre scale components is given.
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5.4 Potential fabrication approaches for 1-10 mm triskelion

force artefacts

Before proceeding further, there is need to examine briefly the range of approaches available
for making triskelion force artefacts (or other suspensions in variety of materials. Routes to
manufacture are important factors in the feasibility of different designs and so in the choices
selected for detailed study in this work. There are three major classes for fabrication that

are categorised as follows:

1. Microelectromechanical systems (MEMS) fabrication using methods devices from sil-

icon processing technologies.
2. Stereolithography (SL) and Microstereolithography (MSL).

3. Injection moulding and Die casting .

5.4.1 MEMS fabrication: silicon micromachining

At the beginning of 1990s MEMS emerged by integrating mechanical elements, actuators,
sensors, and electronics onto a single electronic chip [199]. MEMS technology has been
identified as one of the most promising technologies for the 21%¢ first century. It has great
potential to revolutionise both industrial and customer products with micro-machining

technology looking directly to silicon based micro-electronics [200].

MEMS technology introduces new concepts to the system design, fabrication processes,
materials selection, generated functionality and production methodologies. Functional
devices may be fabricated within a small compact space. MEMS fabrication is a man-
ufacturing technology for developing complex mechanical devices and systems using
batch fabrication techniques. It uses the same techniques that are used for standard
microelectronic technologies, including wafer fabrication, monolithic processing and signal
interconnecting packages [201]. It is dominated at present by the methods of silicon
micromachining. These approaches involve very high set up costs and are suited to large
production runs or very high value-add components. They have been applied to micro-

probe suspension but are not appropriate for the present research work.
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Silicon micromachining refers to using silicon substrate to allow the fabrication of
MEMS in the millimetre to micrometre range. Two technologies bulk and surface mi-
cromachining are major classes of processing. Both are essential planar (or 2%) methods
based on controlled sequence of masking and etching operations ( usually called “pho-
tolithography”). In bulk micromachining, the device is built into the substrate (e.g. a
single system silicon), whereas surface micromachining uses the depositing and pattering of

thin films to produce potentially complex microstructures on the surface of the silicon wafer.

The LIGA process draw on the same idea from micromachining to address the needs
for high aspect-ratio devices. It is developed to produce the molds for the fabrication of
micromachined components that are thick and three dimensional [I99]. LIGA is a German
acronym for Lithographie, Galvanoformung, Abformung (lithography, galvanoforming
and moulding). It was developed in the early 1980s at the Karlsruhe Research Centre
(Forschungszentrum Karlsruhe), and is based on X-ray technique. Detail of LIGA process

and its applications are given in [202].

LIGA uses lithography, electroplating, casting and moulding processes that are capable
of producing microstructure in the range of 1 mm high. One disadvantage of the LIGA
process is that structures fabricated by LIGA are not fully three dimensional (3D). Thus,
to build 3D MEMS devices, another approach was developed: AMANDA (acronym for
abforming, oberflachenmkromechanik und membranubertragung or surface micromachining,
moulding, and diaphragm transfer. AMANDA processes are powerful for polymer MEMS
fabrication [199], [203]. These methods are prohibitively expensive for producing test devices
here, but are relevant in demonstrating a potential route to manufacturing very small

polymeric triskelion suspensions.

5.4.2 Stereolithography (SL) and Microstereolithography (MSL)

Rapid prototyping (RP) was originally conceived as a way of checking whether the designs
of complex 3D parts were fully geometrically compatible with an assembled system prior to
the manufacture of moulds or other expensive and time consuming procedures. RP exists in

many forms, typically called solid free-form [199]. These models are non-functional, being
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made from easy-to-manipulate materials (after of flow strength and stiffness). Technologies
inspired by RP are now becoming of interest for specialist small-batch production for cases

where these materials are functionally adequate.

Additive manufacturing (AM) technology is a group of process for rapid production
of models to provide necessary support for the adoption of simultaneous or concurrent
engineering. Conventional processes are called R formative methods, e.g. casting, injection
moulding, compressive moulding [204]. Thus, AM technology has reduced the cycle of
new products. AM processes mostly use some form of localised energy to modify material
locally, using vector-base or imaging technologies. Most stereolithography (SL) systems
and their micro-versions work through an additive layers process, where each layer or
conventional is cured into a photosensitive resin by light source (UV laser used to trigger a

chain reaction in the monomer) in a process that is called photo-polymerisation [205].

Microstereolithography (MSL) is derived from conventional lithography and was in-
troduced in 1993 to fabricate high-aspect ratio and complex structure [I99]. MSL is also
called photoforming [206], [207]. Nakajima and Takagin were the first to work on micro 3D
structure using vector by vector (scanning method) in 1993 called microstereolithography
(MSL) or micro-photoforming. They achieve a three dimensional structure with a resolution
0.8 pm [207]. Later on Ikuta and Hirowatari claimed that their apparatus was able to

achieve up to 0.25um in XY and 1pym in z-direction [206].

MSL is an additive process, which allows to fabricate high-aspect ratio microstructure.
The MSL process pML is also compatible with silicon process and allow batch fabrica-
tion [208]. The various different MSL systems have been developed. Two basic approaches,
scanning MSL [206], [207], [209], [210], [211] and projection [212], [213], [214] have been
developed. In the scanning method, a well focussed laser beam, spot size (~ 1 micron) is
directed on to the resin surface to initiate plolymerisation and by repeating layer prepara-
tion, a 3D microstructure is formed and the scanning method is called MSL method [199].
Scanning MSL is used to build solid micro-parts point by point and line by line fashion.

Projection MSL is used to build a full layer with one exposure, thus saving a significantly
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amount of time. Functional polymer parts have high flexibility and low density [206].
uML has been used for exploring the electroplating of micro parts [206], [208], [212].
Microceramic structures have also been fabricated by MSL for both structural ceramic and

function ceramic [209], [210], [211], [213], [214], [215).

A large number of MSL methods have been developed, such as IH series processes
(integrated harden polymer sterolithography) Mass IH process, two photon MSL, projec-
tion MSL and integrated MSL [208], [210], [212] [216]. MSL technology is very attractive
for developing 3D MEMS, where it had been not possible by silicon. One of the great
disadvantage of MSL is slow fabrication speed that prevents it from producing large batches
economically. A method such as that of Ikuta in 1996 increased the speed of fabrication
through the use of an array of optical fibers. The projection method developed by Sun et
al. in 2005 also reduced the fabrication time. It forms the part by layer by layer exposure
through a pattern mask instead of laser scanning. The most widely used materials for MSL
are acrylate, epoxy and vinyl ether. There is no doubt that with the advancement of its
technology, MSL is becoming more readily applicable, but it still has limitations in speed
for fabrication of batches and that it require high cost in ultra-precision applications. Most

developed MSL systems are suitable for prototyping rather for batch production.

Microsterolithography is a feasible appearance for making triskelion suspensions. It
could provide small batches or one-off prototype test-pieces at acceptable, but not negligible
cost. However, it is doubtful whether the currently available system has resolution needed

for very small artefacts; the cost of experimental high-resolution system remain prohibitive.

5.4.3 Injection moulding and Die-casting

The third popular class used by industries is discussed in this section.

Injection moulding

The injection moulding process is one of the most common methods used for mass produc-
tion of polymer plastic parts. An essential injection moulding machine melts feedstock the

plastic and then injects it under pressure into the mold, where it cools down and solidifies
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into final shape of required part [217]. With reusable hard metal moulds the process is
extremely useful and used to manufacture a great variety of simple to three dimensional
parts. Thus this technique is highly capable of processing the different type of polymers,
resins, reinforced plastics and elastomers. The injection moulding technique is used for a
large proportion of all plastic products that used daily in our houses [218]. John Wesley
Hyatt was first to inject hot celluloid into mold, thus producing billiard balls in 1968. Later
on, he and his brother patented an injection moulding machine that uses a plunger in 1972.
James Henry built the fist screw injection moulding, brought a revolution in the plastic
industry. All moulding machines (95%) use screws efficiently to heat, mix and plastic into

mold [219], [220].

Precision injunction moulding is an advanced subclass of the conventional process with
new distinct set of design, process-ability and optimisation criteria and further detail may
be seen in [221]. Conventional injection moulding is not capable of producing optical
parts with high accuracy. However, recent advancements have made it possible to produce
optical parts with high accuracy, based on three or four combinations of photolithogra-

phy, etching, electrodeposition and thermal or mechanical process for material removal [222].

Ultra-high precision, injection moulding achieves high precision and a minimisation of
process variation during injection moulding. The process variation can be caused by any
external variable, such as plastic material’s consistency, moulding machine accuracy and
thermodynamic controls of moulds. All these variables are impacted by the environmental

characteristics of mould plant, and are mitigated by new technology [223].

Die casting

Die casting is a process that has been used for several decades. Metal parts are produced
by a casting process in which reusable, hard moulds or dies are injected with the molten
metal under a pressure. Products of many various types sizes and applications are made
by die casting processes. It is able to produce highly detailed and accurate parts and is
suitable for the mass production of products. The die casting process is further divided into

categories [220], [223].
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e Hot chamber die casting.
e Cold chamber die casting.

In hot chamber die casting, the injection system is immersed in a pool of molten metal
and there is also less time exposure of melt to the plunger wall, whereas cold chamber die
casting uses a ladle to transport the molten metal from a holding furnace into the injection
cylinder. As the plunger moves in the inlet part of cylinder, it allows a new change of
molten metal to fill the cavity. This method is used for metals of low melting points and
high fluidity such as zinc and tin. The die casting process started in the mid 1980s. In the
beginning lead and tin alloys were used for die casting process but after 1920s these alloys

were mostly replaced by aluminium and zinc.

The great advantage of the die casting technique is that there is no special restriction
on the type of alloys or metals for the die casting process. It is possible to produce variety
of products with different shape and sizes. Another advantage of die casting is reducing
the production time because commonly no subsequent processes are required. Nowadays
aluminium is one of the most commonly used alloys for die casting process. One main
reason for using aluminium die casting is that it is light weight and has dimensional

stability for thin wall applications and complex shapes.

Die-casting could conceivably make metallic triskelion suspensions at a scale of millime-

tre upwards, but still not attractive for this propose.

5.5 The use of triskelion force artefacts

Section 5.3 has highlighted that polymers are attractive from a material processing point
of view for making triskelion force artefacts such as millimetre-scale triskelions. However,
polymers are not commonly used for precision applications, mainly from concern about
their stability. They have large coefficients of thermal expansion and can absorb moisture
to give some dimensional dependence on humidity. They have much lower stiffness than
metals or ceramics, which can effect the working stability of petrological reference loops,

and son. It is proposed here that these concerns may not be at all severe in many potential
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applications of triskelions. For example, the suspension in a contact micro-probe needs to
have quite well defined stiffness, but it will not affect practical applications if it varies a
little from day to day. The suspension must be very stable if its internal strains are used
directly as the gauging principle, but it much less critical in other designs. It would be
desirable that a force artefact used in a major calibration laboratory maintained highly
repeatable characteristic, but strictly it is sufficient that its stiffness remain unchanged only
over the time to calibrate it on the force balance then move it to the target instruments.
This is not so demanding. if, as is likely, the process is carried out in a laboratory with close
environmental control. For general compliance checking in industrial situations, access to

simple artefacts of modest provenance many will be adequate and preferred.

It is, therefore advocated here for first time that polymeric devices are very plausible
both for current needed test samples and for more general applications. There is, of course,
a need to demonstrate feasibility and this becomes one of threads of this work. Once it is
accepted then polymeric triskelions are worthy of investigation several potential advantages

become apparent:

e Injection moulding allows the possibility of making large number of al most idealized
devices at very low unit cost. This opens up possibility of single-use, disposable
checking pieces, or at least once where the cost of replacement after accidental damage
is low. Commercially it would encourage best practice in using regular instruments

verification (if not full calibration).

e Batches of various size, e.g. for suspensions, could be produced by the most economic
of several methods. Over a wide range sizes the unit cost is likely to be lower than

that from, say, commercial MEMS fabrication.

e Using techniques such as MSL, bespoke, one-off special devices becomes economical

and would be supplied by a suitably set up service organization.

e The low Young’s modulus of polymers means that for a given nominal stiffness and
overall devices size, the (usually quite delicate) suspension beams will be considerably
cheaper than in other classes of material. Hence, we can expect polymeric devices to

be more robust.
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e The overall elastic properties of polymers suggest that triskelion devices will have

quite large operational ranges in comparison to overall sizes.

5.6 Low-cost production of polymer triskelion test specimens

Based on the proceeding arguments, polymers will be used for all experimental studies in
this thesis. As well as the immediate convenience, this allows initial demonstrations of
the performance such system can offer. However, all methods discussed for making them
have disadvantages. MSL can deliver modified design with a rapid turn-around and at
the significant excessive cost. However, there are doubts about the quality of part-to-part
repeatability at the scale reading to be used here (at least for the systems accessible to this

project). Consequently, even more basic casting method has been devised and investigated.

It is quite simple to generate a CNC (computer numerical code) program describing
the shape of a typical triskelion at the scale required for the specimens. Following this,
it is easy to modify the code to reflect small changes to the design for further specimens.
However, although feasible, it is not attractive to use a CNC milling machine to cut the
devices from, say, acrilic sheet. The unsupported beams are still thin enough to be very
vulnerable to fracture during machining. At the same time, milling negative versions into

flat surface of the aluminium block to create simple mould is a very reliable and fast process.

Casting resins is intended to take replicas of the surface texture for subsequent measure-
ment have been commercially available for several decades. Clearly, they have an excellent
ability to occupy and reproduce surface features with high precision and they release easily
from metal surfaces. An almost instant production might therefore be obtained simply by
pouring prepared resin into mould, filling it by gravity, then smoothing off of top surface
(e.g., by sliding a glass microscope slide across it) and allowing it to self-cure. Such a pro-
cess could not be expected to be satisfactory with complex, fully 3D objects, but seems well
suited to near-planar form of triskelion flexure. A few preliminary traits with very simple
moulds showed the techniques to simple execute and effective enough to test fully as a way

of making the triskelion specimens. Typical moulds with elbow angle 60° and 1200° are

illustrated in figures [5.1] and
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Figure 5.1: The triskelion mould with elbow angle 60 °.

Figure 5.2: The triskelion mould with elbow angle 120°.
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5.7 Triskelion force artefacts

Triskelion artefact’s type, specification for their samples and fabrication, batches chara-
terisation and uncertainty expression for stiffness of triskelion force artefact’s samples are

disused in this section.

5.7.1 Type of triskelion artefacts

The two types of triskelion analytical models have been described in chapter 3, the triskelion
analytical linear model and triskelion angled-beam model. The first type of artefacts that
follows triskelion analytical linear model and the second type of artefacts follow triskelion

angled-beam model.

Classic triskelion force artefacts

The first type of polymer artefacts have a circular hub and arm that make a rigid platform,
which is thicker as compared to the beam thickness. This type of artefact is called clas-
sic triskelion artefact. The triskelion artefact has three arms disposed symmetrically, but
equivalent systems with more arms are possible e.g we will consider four arms, tetraskelion
artefacts in chapter 8. The arms free ends are jointed with beams that are mounted on a

rigid base. The prepared samples of classic triskelion force artefacts are shown in figures|5.3

B4, 3] and B

Angle-beam triskelion force artefacts

The second type of artefacts have thicker hubs. Both arms and beams have the same
thickness. Each arm and beam is considered to be one part called angled beam. Therefore,
this type of polymer artefact is know as angled-beam triskelion artefact. Three angled-
beams are mounted to a rigid hub symmetrically, and they are fixed to a rigid base. The

prepared samples of classic triskelion force artefacts are shown in figures and

5.7.2 Specification for artefact samples: classic and angle-beam triskelion

It is clear that there are good means for manufacturing in larger number very low-cost
(even disposable) triskelion suspensions polymeric materials. However, injection moulding

cannot really address the relatively small production runs more typical of their current
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applications unless a quite high premium can be charged for each item.

Four batches of the first type of artefacts (classic triskelion) and three batches for second
type (angle-beam triskelion) of artefacts are designed. The built in angles for both type
of artefacts are the same, i.e. 60°, 90° and 120°. Both types of artefact have the same
dimensions for their hub, arm, beam length and width, but differ in thicknesses of these

features. Each bach of artefacts is comprises of two samples. The detailed specification of

each batch of artefact is given in Tables

Table 5.1: Specification for classic triskelion force artefacts with 60°,90°, & 120° elbow

angle.

SNo. | Parameter of TSKFA | Batch 1 | Batch 2 | Batch 3 | Batch 4
1 elbow’s angle e, 60 ° 90° 120° 60 °
2 hub's radius 1y, 1.5mm | 1.5mm | 1.5mm | 1.5 mm
3 hub's thickness ty, 1.0mm | 1.0mm | 1.0mm | 1.0 mm
4 arm’s length ¢, 2.0mm | 2.0mm | 2.0 mm | 2.0 mm
5 arm's width w, 1.0mm | 1.0mm | 1.0mm | 1.0 mm
6 arm's thickness t, 1.0mm | 1.0mm | 1.0mm | 1.0 mm
7 beam's length £, 4.0mm | 4.0mm | 4.0mm | 4.0 mm
8 beam’s width wy, 1.0mm | 1.0mm | 1.0mm | 1.0 mm
9 beam’s thickness t, | 0.2mm | 0.2mm | 0.2mm | 0.2 mm

Fabrication of triskelion artefact’s samples

For ease of handling, etc.
triskelion force artefacts a little larger than that those used in a typical micro-probe.

Increased size also eases the demands on sample fabrication. The effect is that the artefacts

Table 5.2: Specification for angle-beam triskelion force artefacts with 60°,90°, & 120°

elbow angle.

it is convenient to run linearity and validation tests using

SNo. | Parameter of TSKFA | Batch 1 | Batch 2 | Batch 3
1 elbow’s angle ey, 60 ° 90 ° 120°
2 hub's radius r, 1.5mm | 1.5mm | 1.5mm
3 hub's thickness ty, 0.2mm | 0.2mm | 0.2 mm
4 arm's length £, 20mm | 2.0mm | 2.0 mm
5 arm's width w, 1.0mm | 1.0mm | 1.0 mm
6 arm's thickness t, 0.1lmm | 0.1 mm | 0.1 mm
7 beam’s length ¢ 4.0mm | 4.0 mm | 4.0 mm
8 beam's width wy 1.0mm | 1.0mm | 1.0 mm
9 beam's thickness t, | 0.2 mm | 0.2 mm | 0.2 mm
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to be used here will cover a range more typically 100 mN and 1 mN likely to be used
with the low force balance for use with low force balance. This scaling does not affect the
basic purpose of validation methods. Polymer resins (acrylics & epoxies) are commonly
available for surface feature replication purposes and they clearly have the ability to adopt
the features of triskelion artefacts of this scale at room temperature and without pressure.
Thus, following some initial trials a method based on using them in open molds has been

adopted.

Acrulite liquid and powder are poured into the mixing vessel or a porcelain bowl (2:1
ratio) and stirred continuously at it dissolves. The surface of the mould should be free from
oil, grease and should be dry. If some intricate surfaces exist then it may help to remove the
cured acrulite if the sample is sprayed with a silicone-based mould release agent. This works
by filling up small cracks and pores on the surface into which the acrulite might otherwise
key itself, which would make removal difficult. The mixture of acrulite is poured carefully
into the mould. If any air bubbles exist that may be dragged to the surface with a small
stick at this time. When the mixture has adequately covered the mould it is left to stand

until it sets and the replicate is removed from the mould after 24 hours.

5.7.3 Measurements of beam parameters of triskelion force artefact’s

samples

The data sets for beam parameters (length ¢ and width w) of half triskelion and tetraskelion
force artefact’s samples were measured by a WYKO NT2000 scanning white light interfer-
ometer (profile). Some difficulty was encountered for thickness t of samples, because of
force artefact’s samples were not found to be totally flat. The thickness of half samples
was measured by using TEZA inductive gauge by tapping between the probe tip and flat
reference plate. The remaining half data sets for beam parameters (length ¢, width w and
thickness t) for samples of triskelion and tetraskelion force artefacts were measured by using
digital Vernier Caliper. The data sets for beams of all samples triskelion and tetraskelion
force artefacts are presented in Tables and The dimensions of two samples, clas-
sic triskelion sample and angle-beam triskelion sample measured by the WYKO Profiling

System are show in figures and and remainder are given in appendix E.
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Figure 5.3: The sample CS1-60 of a classic triskelion force artefact with elbow angle 60 °.

Figure 5.4: The sample CS2-604 of a classic triskelion force artefact with elbow angle 60 °.
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Figure 5.5: The sample CS1-90 of a classic triskelion force artefact with elbow angle 90 °.

Figure 5.6: The sample ABS2-90 of a angle-beam triskelion force artefact with elbow angle
90°.
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Figure 5.7: The sample CS2-120 of a classic triskelion force artefact with elbow angle 120 °.

Figure 5.8: The sample ABS2-120 of a angle-beam triskelion force artefact with elbow angle
120°.

144



Figure 5.9: The sample ABS1-60 of a angle-beam triskelion force artefact with elbow angle
60°.

Figure 5.10: Measured dimensions of classic triskelion sample CS1-60, with elbow angle
60°.
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Figure 5.11: Measured dimensions of angle-beam triskelion sample CS1-60, with elbow angle
60°.

5.7.4 Batches charaterisation

Examples of polymer artefacts produced by using the moulding technique are shown in
figures and The complete set of classic and angle-beam
trsiskelion samples of force artefacts are shown in the appendix C. The accuracy of the
dimensions using this moulding technique is clearly somewhat limited and its consistency
has been investigated. Tables and summerise the dimensions of the first set of
sample. Each of the variant angles was made from a different new mix of the resin. Batches
1 and 2 were made at significantly different times. Nevertheless, the variations in dimension

are encouragingly small.

Young’s modulus plays an important role in the value of artefact stiffness. We cannot
exactly know the value of Young’s modulus for polymer artefacts made of Acrulite (liquid
and powder, 2:1 ratio mixed) and it will vary with each batch. These issues will be discussed

in the next chapter.
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5.8 Conclusion

This chapter describes the novel contribution of low-cost approach for validating of linear
elastic models that were presented in chapter 3. This chapter identifies the possibility of
using polymers. Through a more detailed examination of this idea, it proposes for the first
time that polymeric triskelions could have applications in force artefacts and micro-probe

suspensions. Hence the whole project is broadened to study this feasibility in some detail.

The particular challenge of making one or two samples of slightly varied designs at low
cost and with minimum delays, this chapter investigates very simple, but novel low-cost
approach. The basic sample shapes are machined into the surface of aluminium blocks,
which are used as open moulds for casting pieces in a commercial surface replica resin.
While clearly not a precision technique, this is shown by practical investigation to offer
sufficiently consistent control of dimensions for running the tests for model validation and
investigating stiffness non-linearity. This method is therefore adopted for all work reported

in this thesis.
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Chapter 6

Experimental analysis of stiffness:

Classic triskelion force artefacts

6.1 Introduction

This chapter describes the development of a test-rig method and associate methodology
to measure the stiffness of classic triskelion force artefacts. The classic triskelion force
artefacts were manufactured for the validation of a linear elastic model presented in chapter
3. MEMS fabrication methods are used by industry for micro probe with elbow angle
60° and these were also used by Jones [148] for low force measurement, but this approach
is highly expensive and time consuming. Thus, this research work adopts an alternative
low-cost approach discussed in the previous chapter for fabrication of polymeric triskelion
samples. Polymeric triskelion force artefacts have not been seen in any published paper
except our conference paper [224]. Apart from the triskelion force artefact with elbow angle
60 °, new triskelion force artefacts with elbow angle 90° and 120 ° were also manufactured

in the workshop at the School of Engineering, University of Warwick.
In order to investigate both axial and tilt stiffness, readings of z-axis of force and dis-

placements of triskelion force artefacts, using the calibrated apparatus. ORIGIN software

was used for plotting and analysing the graph data [225].
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6.2 Development of new method to measure the stiffness

The basic requirement for testing triskelion specimens (samples of triskelion force artefacts)
is to apply a know force normal to and at a controlled position in the specimen hub and
measure the resulting (normal) defection at the same point. This would, of course, be
equivalent to imposing a known displacement and measuring the force required to achieved
it. There is here considerable similarity with the concepts of a micro-hardness testing in
instrument, although the required ranges are rather different. It is very difficult at this
scale to apply safely a dead-weight had and obtain an aligned displacement measurement,

so ‘point load’” will applied via a contacting probe and force actuator.

An instrument incorporating these ideas at more relevant ranges has been in use in
the Surface Engineering Laboratories at the University of Warwick some years and from
the basis of the new test-rig. Originally developed by Liu [226] for studying of surface
profilometry under different stylus force conditions, it is modified Talysurf 5 (Taylor Hob-
son). The key feature for the present research work is the incorporation of a magnet-coil
force actuator closely in-line with the stylus, as shown in the schematic of figure [6.1
The profilometer traversing features are not required for the studies of triskelions, but
instrument axes provide very convenient control for positioning the probe correctly on the
specimen hub. The Talysurf sensor has an in-built bias spring, so there will be a small

variation in the tip force as the tip moves.

A very simple preliminary experiment with a specimen placed on worktable of the
Liu instrument demonstrated that the approach was feasible and reasonable easy to use.
However, especially with slightly larger specimens preferred for reasons discussed in chapter
5, the operating ranges were insufficient to investigate non-linearity characteristics and
a larger magnet could not be safely mounted onto the delicate sensor. Therefore, a new
test-rig using the same principle and sharing some subsystem but using more robust long
range sensor was designed and built. Additionally to answer excellent linearity a nulling

technique was added for use in the longer-range measurement.
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Figure 6.1: Experimental arrangement for the variable tracking force using a magnetic force
transducer from [27] and [28].

6.2.1 Operational principle of test-rig method

The test-rig method has been developed, and comprises of a Talysurf 5 system, traversal
unit, motorised stand, standard current source (Knick model), Heindenhain gauge, probe
from roundness instrument (Talor Hobson Talyrond), digital voltmeter, zyz-adjustable
table, and small hallow cylinder for mounting the sample. The important characteristic of
test-rig method is that when a small known force is applied on the hub of the triskelion
sample and it measure the defection. The maximum force that can be applied is 1 N, and

the maximum defection is 1 mm. The scale of the device used requires sub-pm resolution.

The apparatus was set up as shown in the figure [6.2] and [6.3] The force was applied to
triskelion sample vertically along z-axis and deflection occurs in the same vertical direction.
An optical probe (Heindenhain) with 1 u resolution was used to monitor the vertical motion
of the table. The probe from the roundness instrument (Taylor Hobson Talyround) was a
side acting inductive gauge and was mounted on a cradle, which also carried a solenoid
coil. A small clamp is used to carry a magnet on the probe arm, which engages the coil to

provide force actuation and a tiny ball nearly 0.2 mm probe tip (Renishaw). Thus in this
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way, a deflection was measured. For fine vertical control, the whole cradle was bolted to the
traversal unit of a Talysurf 5 (Taylor Hobson) profiling instrument. Further, the internal
electronic setup system of the Talysurf 5 was used to drive the gauge and to provide a wide

range with its own setup conditions.

The Talymin side-acting inductive gauge used on may Talyrond (Taylor Hubson)
roundness measuring instruments is larger and more robust but electronically compatible
with a Talysuf 5 sensor. It is well able to carry the more massive magnet needed to achieve
the forces up to about 1 N without excessive heat generation in the coil. Also, it has
interchangeable probe-arms, making it easy to tune the displacement range to a specific
application. This suggest that a simple swapping of the probe system would suffice. How-
ever, the more robust probe bearing and bias system could lead to a significant but poorly
characterised variation of force with displacement. Also, the displacement measurement
must be highly linear if the test-rig is to be used to detect the onset of non-linearity in the
specimen stiffness. Simple tests of the gauge with an operationally convenient size of the
probe arm indicated that it would be unwise to use it outside of the central £ 200 um of

its operating range.

Most of these disadvantages could be overcome by using a quite basic null-measurement
technique. The specimen is placed horizontally on the table of a stiff z-axis adjuster. As
the downwards force is imposed by the probe increases, the specimen deflects downwards
but the table raised to keep the Talymin gauge output signal as near as possible constant
(i.e. a null condition). A long-range, highly linearity displacement sensor (while could not
be physically loaded directly against the specimen) can report the change in table hight,
which reflects the specimen deflection to the precision of the null. The inductive gauge can
then be used at relatively high gain to get good null sensitively and with almost no reliance
on its inherent linearity. Also, since the probe arm in principle is kept in the same position

there is minimal effect of force variation from the bias springs.

The practical implementation of this system is shown in figures 6.2 and 6.3. The

inductive gauge is mounted on a ’rigid’ cradle, which also carries the solenoid coil for the
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force actuator. A small aluminium structure is clamped by a set-screw to the probe arm
and has a flat top surface to which the magnet can be glued and underside thread for
mounting commercially miniature probe tips. The cradle is mounted by a bracket to the
Talysurf traverse unit so that it sits, in effect, parallel to the normal Talysurf probe. As
well as allowing the Talysurf system (motorized column, horizontal traverse, etc.) to be
used for aligning the probe. This configuration allows rapid switching between two similar

instrument systems of different sensitively, as required.

The new scheme uses 0.2 mm ruby probe (Renishaw) and a nominal 50 mm probe
arm. The magnetic-coil actuator ideal scale with volume so nominal design was taken by
comparison with known characteristics of the small system on this original instrument.
The dimensions of iron-neodymium magnet are 5 mm by 6 mm diameter and the coil
dimensions are 10 x 14.7 mm, 5.9 mm internal diameter and 14.7 mm external diameter,

3776 with number of turns of 0.12 mm gauge copper wire.

The tests are essentially static and they were judged quite adequate and simplest to
use mechanical control of null measurement. The force would be changed step-wise and
restoring adjustment each time. Consequently, a small, stiff zyz adjuster table with fine
thread manual screw was employed. The z- and y-axes are not used in the measurement
but provide further aid when aligning specimen and probe. The z hight of the table was

measured by a 1 pum resolution optical grating probe (Heidenhain HH60).

The inductive gauge was conducted to the Talysurf electronic unit, an output voltage
proportional to displacement. The unit has variable gain, but was usually operated at 125
pum/V for tests reported here. The output was read from a simple digital voltmeter. Force
is directly proportional to the coil current. The latter was set manually at each step using
standard current source (Knick model). With the coil being used, this could be deliver up

to +£140mA with 1 pA resolution.

Note that from this setup, the applied force was adjusted using the weight of the probe.

Thus, generally, force actuator was used to provide an upwards force applying the weight
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and the current was reduced to increase the force on the triskelion samples i.e.

Fspring = Wprobe - Fcoil (61)

6.2.2 Procedure to measure the stiffness

The following steps were performed to measure of the stiffness of triskelion polymeric sample.

e Firstly, the coil current was adjusted so that the probe, which hanging freely, gave
approximately zero voltage (i.e. actuator force approximately balances probe weight).

The current was recorded as i,.

e Secondly, the probe was lowered gently on to the triskelion sample using the Talysurf
z-column, until initial contact caused a voltage change. It was important to keep the
initial deflection and force on the platform of the triskelion sample very low and as

close to zero as possible.

e Thirdly, Haidenhain gauge monitoring the sample table was rest to zero and the value
of voltage V, from the probe gauge was recorded. After performing the third step,

the loop of the experiment was started as follows:

Loop

e Firstly, the xyz-adjustable table was moved upwards by predefined step of Az and read
from the Heidenhain digital displacement. For every measurement, the incremental
step was selected to provide a reasonable but not excessive number of readings across
the total desired range; usually steps were 25 pym or 50 pym. It is also obvious that
as the platform of triskelion sample moves upwards, the voltage V from the inductive

gauge also increases.
e Secondly, the coil current ¢ should be continuously reduced until V' ~ V.

e Since the sample platform is now closely at the same height, as it was originally, it is
also closely dz lower with respect to the sample based and the force required to cause

this relative defection is represented by (i — i,).
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e Thirdly, the loop was started once again moving the xyz-adjustable table upwards.
Hence in this manner all steps are repeated and values of current are recorded for

each step. As an example a recorded reading is presented in the Table.

e Finally, The choice to assert fixed defection steps and asses the required force was
judged to be less likely to lead to accidental damage to the samples then would be

the equally valid alternative method of using preset steps of force.

6.2.3 Calibration of the force transducer

Characterization and calibration of the force-current relationship; for the smaller Talysurf-
based, system used a dead-weight method. With the probe-arm hanging freely, small weights
were suspended from the arm, as close as possible to tip, and balanced by applying current
to actuator coil. The weights were short lengths of wire, cut and size and weighted as an
electronic laboratory balance and bent into hook shapes that would fit around the probe

arm. The steps in the process were to:
e Allow the stylus to hang freely, the gauge output voltage, V,+ will be large.
e Ensure the pen shift on the Talysurf electronic unit is set close to zero.

e Increase the coil current slowly until the output voltage, V,,;: becomes adequately

close (equal) to zero.
e Apply different wire hooks of known weight, the arm defect the downwards.

e Change the current to get input voltage, V,,:, again approximately equal to zero and

reord that current.

The current was recorded for the different wire hooks to the arm of known weight that are
given in the table R.

Table 6.1 shows three trials recording the change in current needed to balance each
hook, while figure 6.3 plots the means from these trials. the actuator calibration constant

is ¢ = 118m uN/A.
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Table 6.1: Recorded current data sets for different hooks of known weight.

’ S-No ‘ Weight mg ‘ Current i1 mA ‘ Current io mA ‘ Current i3 mA ‘ Average current i, mA ‘

1 10 136.06 136.28 136.16 136.16
2 20 136.86 137.20 136.83 133.96
3 50 139.64 139.30 139.77 139.57
4 100 143.85 143.95 143.91 143.90
5 150 147.67 147.98 148.11 147.92
6 200 152.58 152.08 152.28 152.31

152
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Current Slope  0.08484 4.96018
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Figure 6.4: Calibration to determine the constant of the force Talysurf transducer.

6.3 Experimental test requirement

The performance and repeatability of each sample of polymer artefacts were taken into
account while measuring the stiffness. Three readings were taken at the centre of hub and
three at off-set points. These types of artefact will cover a range of forces from 1 to 10 mN.
It is taken to be acceptable for the present test to apply the force mechanically through a
small probe and to measure the deflection of that probe as representing the artefact motive.
Ideal use of the artefacts places the force centrally on the hub. However, off setting the probe
allows for the testing of sensitivity misalignment, and applies a resultant force/moment pair

for validating twisting effects affects within the model.
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6.4 Uncertainty expression for stiffness

The stiffness is the ratio of measured force F' and its displacement § between the force

sensor and probing element according to

F
b=5

(6.2)
The force F and displacement are considered to be independent parameters for determining
the standard uncertainty of stiffness. Following the general processes described in the
G.U.M. system ref, uncertainties from the independent sources by quadrature addition
weighted by coefficients of the partial derivative of equation (6.2)). Thus, taking the positive

square root. Thus, by taking the positive square root,

o= (%) (%) o3

2
Up ~ $ (g;?) + U2 (f;j) (6.4)

The stiffness uncertainty Uy, in equation (6.4]) for test-rig method is calculated by considering

the three factors, which have uncertainty in their values that are given as follows:

e Applied force on the hub of tri-skellion force artecfacts.
e Measurement of displacement J.

e Probe correction for indentation ;4.

The force derives directly from the current in the solenoid coil controlled by the Kinck

current source . Thus uncertainty of the applied force F is given as
Ur = (Ceoit - Ui) (6.5)

where C,.;; has fixed errors and second order effects and U; ~ 1 pA.

The nulling operation uses the inductive gauge voltage output, attempting to return it

to the same value at each step. The actual calibration of this gauge causes only second-
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order uncertainties under these condition. Because of noise, drift and so on, each resetting
to null is in practice limited to above 10 mV. In the configuration usually used the gauge
sensitivity is nominally 125 ym/V, so the uncertainty of resetting the gauge position is +0.7
pm. However, the actual displacement measurement occur between two such re-settings.

They are taken as independent to give an overall
Unutt  ~ \/gUinduct ~ lpum (66)

where Uj,gucet is estimated at 2 pm. The uncertainty in the Heidenhain reading is Uy ~

1pm. The uncertainty for probe correction is calculated from Hertz theory [227] as

1
9F2 3

Thus taking R ~ 1 mm, E~ 2 GPa and F ~ 1 N, we have from above equation (6.7)), dinq

= 0.55x107° m and for F = 0.1N, §;,,4 = 0.28x107° m. If correction for the induction is

applied to the displacement measured by the Heidenhain gauge, we have
6 = (0n — dina) (6.8)

If these tests 6 regularly rises to several hundred micrometres, so generally §;,4 ~ 0.01 §
or even smaller. Its continuation to the uncertainty is therefore second order at most. So,

effectively Us ~ Us More precisely,

meas

Usmeas = ( UIQJJFUguu) (6.9)

Thus taking, as before Uy ~ 1 pm and from equation (6.2)) U,y ~ 1pum, equation ,

yields the value of Us,, .. is 1.4 pm.

The current source delivers a quite reliable 1 pA resolution up to its maximum output
of 200 mA. Uncertainty from this resolution will be negligible compared to the other
effects accumulation around imperfections in the actuator system; these are conservatively

estimated to give Ur ~ 1mN under our operating conditions.
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For mid-range operation, using F' ~ 200 mN and § ~ 200 um, the equation (6.4)), yields
the U = 8.4 N/m. So we may reasonably assume stiffness measurements are really (at the

95 % confidence level) if these are more than about 20 N/m apart.

6.5 Stiffness measurement of classic triskelion force artefacts

The design, specifications and preparation of samples for both types of triskelion artefacts,
classic and angled-beam are discussed in chapter 5. Stiffness measurements for all batches
of samples are measured for both type of triskelion artefacts by using the test-rig method
and procedure just described. Four batches of triskelion polymeric artefacts were prepared
and each batch had two samples. Each batch of triskelion polymeric artefacts differs by

only the built in angle at the elbow of each sample. The sample types are differentiated as
e Batch a: Samples CS1-60 and CS2-60 with elbow angle 60 °.
e Batch b: Samples CS1-90 and CS2-90 with elbow angle 90°.
e Batch c¢: Samples CS1-120 and S2-120 with elbow angle 120 °.

The beam dimensions are 4 x 1 mm in all cases and the arm length is always 1.5 mm to
the centre. The thickness of the suspension beam is 0.2 mm for batches a,b and ¢, but
for batch d, which has an elbow angle 60°, the thickness is 0.4 mm. The experimental
data sets were recorded for all batches of samples, and graphs are plotted for each set of
readings. Investigating the quality of fitting various polynomial, and other functions to
these non-linear curves indicated that a cubic expression regularly provided an excellent
match. The coefficients of the best-fit cubic equation are presented in the form of ta-

bles [D.1] [D.2], [D.3] [D.4], [D.5] and [D.6] in appendix D. Six readings were recorded for each

sample at the centre of a hub (figure [E.1)) and at off-centre points of the triskelion sample

as shown in figure they are normally 1 mm from the centre.
The set of six readings for each sample can indicate the repeatability or errors. Only

two graphs for each batch are shown in this chapter and the remainder are presented in the

Appendiz E.
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Qualitative examination of the measurements revealed a quite gentle stiffening non-
linear characteristic, with quite wide deflection range over while an assumption of linearity
would be reasonable in practice. General investigation of curve fitting to those data sets
revealed that almost all were represented by a cubic characteristic; the only exceptions
were few simples with thicker beams. Consequently, a least squares cubic was computed as

part of the analysis for each measurement.

All graphs were plotted as force vs displacement, so for best cubic we have
F. = Bsa®+ Boa® + Bz + Bo (6.10)

All measurement was relative to an assumed zero deflection at zero force so having an

intercept of zero, so By By will always will zero.
F, = p3x+ Box® + fiz (6.11)
or

F, = (63363 + ﬁza:Q) + iz (6.12)

where j; represents the small-range linear stiffness and (832 + B22?) represents the

deviation from linearity at some x.

We can define some value of displacement ny (¢ for linear) below which the device stiffness
exhibits suitably linear behaviour ; xy is the effective ‘linear range’ of the device. We might,
for example, consider 1% deviation from linearity to be acceptable. From equation (6.12]),

the part of the force associated with non-linearity is

Fo(z) = (/33333+52I2) (6.13)

and for linear contribution

Fi(z) = pi(x) (6.14)
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Hence the limit of the linear range is when x; to satisfies the quality of condition

Fi(xp)

< .
Fo(z1) < 100 (6.15)
or
Bsaf + Bawy = % (6.16)

The S coefficients and maximum linear range x; obtained for equation ([6.16)) for each graph
is given in tables [D.1], [D.2] [D.3] [D.4] [D.5] and [D.6]in Appendix D.

6.5.1 Batch a : Classic triskelion force artefacts with angle 60°

The six tests were executed on samples CS1-60 and CS2-60 with displacement steps of 50
pm until the limit of force actuator was reached. Three independent measurements were
taken on each sample with the probe tip placed as closely as possible to the centre of hub.
A further three independent measurements were taken with the probe tip placed close to
the periphery of the hub, an offset from the centre of approximately 1 mm. The general
pattern and the magnitudes of tests were similar, more closely so on one specimen that
between them. Both figure and show plots of force verses displacement from two
individual measurements on sample CS1-60 as a topical example; a complete set of results
is plotted in appendix E. Figure [6.5| shows a case of central loading and figure and
also shows one of offset loading. Note that in both cases the measurements consider total

displacement along the line of action of applied force.

The graphs show a slight upward curvature indicative of both a stiffening characteristic
and substantial range over which linear behaviour (i.e. constant stiffness) is a reasonable
working assumption. The coefficients of linear fit for all tests are given in tables[D.Iand [D.2]
in the appendix D. It is noted in all tables, the tests 1, 2, and 3 for central loading, whereas
4,5, 6 and 7 are for offset loading. The mean central stiffness is 1459.53 N/m and 1096.47
N/m for sample CS1-60 and CS2-60 respectively. The corresponding mean offset position

stiffness is 1274.41 N/m and 1032.25 N/m. Consistently very high R? values confirm that
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measurements closely follow a cubic pattern. The effective linear region is never less than

550 pm on CS1-60 or CS2-60, (table .

6.5.2 Batch b : Classic triskelion force artefacts with angle 90°

The six tests were executed on samples CS1-90 and CS2-90 with displacement steps of
50 pm until the limit of force actuator was reached. Three independent measurements
were taken on each sample with the probe tip placed as closely as possible to the cen-
tre of hub. A further three independent measurements were taken with the probe tip
placed close to the periphery of the hub, an offset from the centre of approximately 1
mm. The general pattern and the magnitudes of tests were similar, more closely so on
one specimen that between them. Both figure and show plots of force verses
displacement from two individual measurements on sample CS1-90 as topical example; a
complete set of results are plotted that are given in appendix E. Figure [6.7] shows a case
of central loading and figure and also shows one of offset loading. Note that in both

cases the measurements consider total displacement along the line of action of applied force.

The graphs show a slight upward curvature indicative of both a stiffening characteristic
and substantial range over which linear behaviour (i.e. constant stiffness) is a reasonable
working assumption. The coefficients of linear fit for all tests are given in tables[D.3]and [D.4]
in the appendix D. It is noted in all tables, the tests 1, 2, and 3 for central loading, whereas
4, 5, 6 and 7 are for offset loading. The mean central stiffness is 955.29 N/m and 918.18
N/m for sample CS1-60 and CS2-60 respectively. The corresponding mean offset position
stiffness is 814.95 N/m and 772.98 N/m. Consistently very high R? values confirm that
measurements closely follow a cubic pattern. The effective linear region is less than 400 um

on CS1-90 or CS2-90 (table [6.2)).

6.5.3 Batch c : Classic triskelion force artefacts with angle 120°

The six tests were executed on samples CS1-120 and CS2-120 with displacement steps of
50 pm until the limit of force actuator was reached. Three independent measurements
were taken on each sample with the probe tip placed as closely as possible to the cen-

tre of hub. A further three independent measurements were taken with the probe tip
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placed close to the periphery of the hub, an offset from the centre of approximately 1
mm. The general pattern and the magnitudes of tests were similar, more closely so on
one specimen that between them. Both figure and show plots of force verses
displacement from two individual measurements on sample CS1-120 as topical example; a
complete set of results are plotted that are given in appendix E. Figure shows a case
of central loading and figure and also shows one of offset loading. Note that in both

cases the measurements consider total displacement along the line of action of applied force.

The graphs show a slight upward curvature indicative of both a stiffening characteristic
and substantial range over which linear behaviour (i.e. constant stiffness) is a reasonable
working assumption. The coeflicients of linear fit for all tests are given in tables and
in the appendix D. It is noted in all tables, the tests 1, 2, and 3 for central loading,
whereas 4, 5, 6 and 7 are for offset loading. The mean central stiffness is 1179.07 N/m and
1070.01 N/m for sample CS1-60 and CS2-60 respectively. The corresponding mean offset
position stiffness is 1075.65 N/m and 938 N/m. Consistently very high R? values confirm
that measurements closely follow a cubic pattern. The effective linear region is less than

250 pm on CS1-120 or CS2-120 (table [6.2)).

6.5.4 Batch d : Classic triskelion force artefacts (¢ = 4 mm)with angle 60 °

The six tests were executed on samples CS1-604 and CS2-604 with displacement of step 25
pm until the limit of force actuator was reached. Three independent measurements were
taken on each sample with the probe tip placed as closely as possible to the centre of hub.
A further three independent measurements were taken with the probe tip placed close to
the periphery of the hub, an offset from the centre of approximately 1 mm. The general
pattern and the magnitudes of tests were similar, more closely so on one specimen that
between them. Both figure and show plots of force verses displacement from two
individual measurements on sample CS1-604 as topical example; a complete set of results
are plotted that are given in appendix E. Figure shows a case of central loading and
figure and also shows one of offset loading. Note that in both cases the measurements
consider total displacement along the line of action of applied force.

The graphs indicated similar trends with acceptable repeatability. The stiffness were notably
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higher than in the previous tests on the classic triskelion samples and the test-rig could only
supply sufficient force for deflection around 0.25 mm. This was slightly unacceptable, and
this was insufficient to enter a distinct non-linear region and so simple fits were used to
estimate the stiffness. The coefficients of linear fit for all tests are given in tables [D.7] and
in the appendix D. It is noted in all tables that the tests 1, 2, and 3 for central loading,
whereas 4, 5, 6 and 7 are for offset loading. The mean central stiffness is 5288.22 N/m
and 5205.72 N/m for sample CS1-604 and CS2-604 respectively. The corresponding mean
offset position stiffness is 5022.36 N/m and 4980.85 N/m. Consistently very high R? values
confirm that measurements closely follow a linear pattern. The effective linear region is

never less than 200 gm on CS1-604 or CS2-604 (table [6.2)).

6.6 Discussion for stiffness behaviour of classic triskelion

force artefacts

The mean linear stiffness values of classic triskelion samples is summarised in table

taking the data from tables[D.I} [D.2] [D.3} [D.4} [D-5] and [D.6] given in appendix D. Table[6.2]

also include estimations of the useful linear-range, based on the 1 % non-linearity criterion

discussed in section 6.5. Samples CS1-60 & CS1-60 from batch a with elbow angle 60°
have higher value cental stiffness compared to the batches b and ¢. The variation in average
stiffness between two samples of each batch tends to be greater than the variation in
measurement on one sample, but remains small enough for patterns of behaviour to show
clearly. The variation in batch b triskelion samples CS1-90 & CS2-90 is 1.5%, which is small
compared to those of batches a and ¢ (33.1% & 10.18%). This variation is almost certainty
due to the dimensional uncertainties arising from production process. The variation in
stiffness between samples of each batch could possibly be significantly reduced if these were
fabricated by using a MSL technique. All measurements show expected stiffening spring
characteristic but it is quite gentle up to the order of 1 mm deflection. Taken across all
samples, the 1 % linear range is nearer less than — pum. A slightly surprising feature is that
, despite the net curvature being consistent, the signs of the higher order coefficients of the
best cubic fit (83 and [2) are not always constant. There is no pattern to this inconsistency

that might suggest a fundamental physical cause and might well be computational effect
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Table 6.2: Measured stiffness of classic triskelion force artefacts from ta-

bles D1} D2 D3 04 05, D [0 and DY

Sample ID  Linear range | R-Squared Average stiffness at
‘ pm centre of hub N/m | off-centre point N/m
CS1-60 550 0.999 1459.53 1274.41
CS2-60 550 0.999 1096.47 1032.25
CS1-90 400 0.999 0955.29 0814.95
CS2-90 400 0.999 0918.18 0772.98
CS1-120 250 0.999 1179.07 1075.65
CS1-120 250 0.999 1070.01 0938.00
CS1-604 200 0.999 5288.22 5022.36
CS1-604 200 0.999 5205.72 4980.85

from fitting to slightly noisy data over a range that deviates only slightly from linearity.
The R? fitting coefficient is always better than 0.999, and so there are no concerns that real
measurements are being poorly represented. Combining these observations with relatively
high inconsistency on suspension beam thickness in the samples, it would be unwise too
place to much weight on batch b (90° elbow angle) having significantly lower stiffness than
the other designs. However, it is fully valid to compare in detail variations in behaviour

based on different tests on the same sample.

In every sample the off-centre stiffness is less than the central stiffness. This is fully
expected; the offset force generates a moment that, from the torsional stiffness of the plat-
form, superposes a tilt adding extra deflection to the central motion. In basic expression,
if we represent the z-stiffness and torsional stiffness as k and A, then for a offset distance ¢,

we have

F M
Zoe = — +q— (6.17)

M = ¢F (6.18)

The in-line offset z-stiffness is there expressible using equation (6.18)) in equation ((6.17)).
1 ¢ 1
= |—+=—|F=(—)F 6.19
o (k ! A) () (0:19)
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Showing that it is always smaller than k.. The equation allows an estimate for the torsional
stiffness A to be made, assuming that central measurement directly yields a good estimate

for k.. table lists the estimated torsional stiffness for all six samples.

6.7 Conclusion

This chapter has described a development of a novel test-rig method to measure the
stiffness of triskelion or similar planar flexures that might be used as force artefacts. The
main objective of this research was to test the classic triskelion samples for validation
of the linear elastic model that has been presented in the chapter 3 and to characterize
non-linearity of these samples are investigated that has great importance for the indus-
trial application. These samples were manufactured at the University of Warwick by
using a novel low-cost technique. Two samples of each three designs were nominally iden-

tical except for having elbow angles of 60 °, 90 ° and 120 ° were measured on the new test-rig.

A stiffening spring non-linearity was detected for all these classic triskelion samples.
It closely follows a best cubic fit. The linear range dominates for a wide range that is
sufficient for the practical purpose of industrial application. The validation of the classic

triskelion model against the samples will be discussed in chapter 9.

Although the non-linearity is always small in these test, it may be concluded that
triskelion samples CS1-60 & CS2-60 with the elbow angle 60° are slightly more linear
than the other designs. These samples with elbow angle 60 ° have good small displacement

linear behaviour over a under region of 550 pm.

The next chapter follows the new family of angle-beam triskelion force artefacts that

are introduced first time.
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Figure 6.5: Stiffness measured at the centre of hub for classic triskelion sample CS1-60 S.No.
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Figure 6.6: Stiffness measured at off-centre point for classic triskelion sample CS1-60 S.No.
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Figure 6.7: Stiffness measured at the centre of hub for classic triskelion sample CS1-90 S.No.
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Figure 6.8: Stiffness measured at off-centre point for classic triskelion sample CS1-90 S.No.
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Figure 6.9: Stiffness measured at the centre of hub for classic triskelion sample CS1-120

S.No. 3,[D.F|
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Figure 6.10: Stiffness measured at off-centre point of hub for classic triskelion sample CS1-

120 S.No. 4,
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Figure 6.11: Stiffness measured at the centre of hub for classic triskelion sample CS1-120
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Figure 6.12: Stiffness measured at off-centre point of hub for classic triskelion sample CS1-

120 S.No. 4,[D7]
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Chapter 7

Experimental analysis of stiffness:
Angle-beam triskelion force

artefacts

7.1 Introduction

This chapter describes the measurement of angle-beam triskelion planar suspension, as
might be used in force artefacts. Their specification, design and fabrication using a low-cost
technique was discussed in chapter 4. The angle-beam triskelion force artefacts were manu-
factured in order to validate an angle-beam model presented in chapter 3 and measurements
were also intended to cost more light on the potential for using polymeric device in practical
applications. These types of polymeric angle-beam triskelion force artefacts were made in
the school of engineering workshop at the University of Warwick. The non-linearity and

general behaviour of angle-beam triskelion force artefacts will be investigated in this chapter.
The test-rig and method designed in chapter 6 was used to record three readings of the

force-deflection characteristic for each sample of angle-beam triskelion force artefact. All

recorded data for each sample were plotted by using the ORIGIN software [225].
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7.2 Angle-beam triskelionforce artefacts

The design of angle-beam triskelion suspensions are the same as class triskelion one ex-
cept that the arms and suspension beams of the angle-beam force artefacts are of uniform

thickness than that of the hub.

7.2.1 Motivation for angle-beam triskelion force artefacts

As discussed in more detail in chapter 6, the classic triskelion design has quite a high degree
of over-constraints, and is equivalent kinematic representation. This would be expected to
correlate with relatively high stiffness and stiffening spring characteristic. For applications
such as small force transfer artefacts, there is distinct interest in achieving low stiffness in
physical compact devices and obtaining a large working range of practical linearity. The
angle-beam triskelion designs reduce the number of equivalent kinematic constraints by
allowing bending and torsion in the (now thinner) arm projecting from the hub in the
main suspension beams. They might therefore offer an attractive, improved solution for
some applications. However, the reduced level of constraint might also seriously effect their
mechanical stability and so further investigation is needed. A linear model was developed in
chapter 3, which requires general physical validation. Tests here, notably involving various
elbow angles, address this issue and more generally examine the practicality of polymeric

angle-beam triskelion suspensions

7.2.2 Stiffness measurement of angle-beam triskelion force artefacts

The design, specifications and preparation of samples for the angled-beam triskelion force
artefacts are discussed in chapter 5. Stiffness measurements for all batches of angle-beam
triskelion samples are measured by using the test-rig, a new method and procedure described
in chapter 6. Three batches of triskelion polymeric artefacts were prepared and each batch
had two samples. Each batch of triskelion polymeric artefacts differs by only the built in

angle at the elbow of each sample. The sample types are differentiated as
e Batch e: Samples ABS1-60 and ABS2-60 with elbow angle 60 °.
e Batch f: Samples ABS1-90 and ABS2-90 with elbow angle 90 °.

e Batch g: Samples ABS1-120 and ABS2-120 with elbow angle 120 °.
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The beam dimensions are 4 x 1 mm in all cases and the arm length is always 1.5 mm to
the centre. The thickness of the suspension beam and arm is 0.1 mm for batches e, f and
g. The experimental data sets were recorded for all batches of samples, and graphs were
plotted for each set of readings. The experimental data sets have been recorded for all
batches of samples and graphs are plotted for each set of reading. For best fit equation, the
coefficients are presented in form of tables [F.4] and in Appendix F.
Six readings were recorded for each sample at the centre of a hub (see one figure for
and at off-centre points of the angle-beam triskelion sample as shown in figure [7.2] they

are normally 1 mm from the centre.

The set of six readings for each sample can indicate the repeatability or errors. Only
two graphs for each batch are shown in this chapter and the remainder are presented in

the Appendix G. A very good cubic best fit curve can be seen for all graphs.

Qualitative examination of the measurements revealed a less gentle stiffening non-
linear characteristic as compared to classic triskelion samples, with quite wide deflection
range over while an assumption of linearity would be reasonable in practice. A general
investigation of curve fitting to those data sets revealed that almost all were repre-
sented by a cubic characteristic; the only exceptions were few simples with thicker beams.

Consequently, a least squares cubic was computed as part of analysis for each measurement.

7.2.3 Batch a :Angle-beam triskelion force artefacts with angle 60°

The six tests were executed on samples ABS1-60 and ABS2-60 with displacement of
step 50 pm until the limit of force actuator was reached. Three independent measure-
ments were taken on each sample with probe tip placed as closely as possible to the
centre of hub. A further three independent measurements were taken with the probe
tip placed close to the periphery of the hub, an offset from the centre of approximately
1 mm. The general pattern and the magnitudes of tests were similar, more closely on
one specimen that between them. Both figure and show plots of force verses

displacement from two individual measurements on sample CS1-60 as topical example; a
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complete set of results are plotted that are given in appendix G. Figure [7.1] shows a case
of central loading and figure and also shows one of offset loading. Note that in both

cases, the measurements consider total displacement along the line of action of applied force.

The graphs show a slight upward curvature indicative of both a stiffening characteristic
and substantial range over which linear behaviour (i.e. constant stiffness) is a reasonable
working assumption. The coefficients of linear fit for all tests are given in tables and
in the appendix F. It is noted in all tables, the tests 1, 2, and 3 for central loading, whereas 4,
5, 6 and 7 are for offset loading. The mean central stiffness is 536.97 N/m and 478.97 N/m
for sample ABS1-60 and ABS2-60 respectively. The corresponding mean offset position
stiffness is 503.38 N/m and 443.90 N/m. Consistently very high R? values confirm that
measurements closely follow a cubic pattern. The effective linear region is never less than

on 600 pm on CS1-60 or CS2-60 [7.1]

7.2.4 Batch b :Angle-beam triskelion force artefacts with angle 90°

The six tests were executed on samples ABS1-90 and ABS2-90 with displacement of step
50 pm until the limit of force actuator was reached. Three independent measurements
were taken on each sample with probe tip placed as closely as possible to the centre of
hub. A further three independent measurements were taken with the probe tip placed
close to the periphery of the hub, an offset from the centre of approximately 1 mm.
The general pattern and the magnitudes of tests were similar, more closely so on one
specimen that between them. Both figure [7.3] and [7.4] show plots of force verses dis-
placement from two individual measurements on sample ABS1-90 as topical example; a
complete set of results are plotted that are given in appendix G. Figure shows a case
of central loading and figure [7.4] and also shows one of offset loading. Note that in both

cases the measurements consider total displacement along the line of action of applied force.

The graphs show a slight upward curvature indicative of both a stiffening characteristic
and substantial range over which linear behaviour (i.e. constant stiffness) is a reasonable
working assumption. The coefficients of linear fit for all tests are given in tables[F.3]and

in the appendix F. It is noted in all tables that the tests 1, 2, and 3 are central loading,
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whereas 4, 5, 6 and 7 are for offset loading. The mean central stiffness is 873.62 N/m and
1213.50 N/m for sample ABS1-60 and ABS2-60 respectively. The corresponding mean offset
position stiffness is 838.05 N/m and 1009.03 N/m. Consistently very high R? values confirm
that measurements closely follow a cubic pattern. The effective linear region is never less

than 500 pm on ABS1-90 or ABS2-90

7.2.5 Batch c :Angle-beam triskelion force artefacts with angle 120°

The six tests were executed on samples ABS1-120 and ABS2-120 with displacement of
step 50 pum until the limit of force actuator was reached. Three independent measure-
ments were taken on each sample with probe tip placed as closely as possible to the
centre of hub. A further three independent measurements were taken with the probe
tip placed close to the periphery of the hub, an offset from the centre of approximately
1 mm. The general pattern and the magnitudes of tests were similar, more closely on
one specimen that between them. Both figure and show plots of force verses
displacement from two individual measurements on sample ABS1-120 as topical example;
a complete set of results are plotted that are given in appendix G. figure shows a case
of central loading and figure and also shows one of offset loading. Note that in both

cases the measurements consider total displacement along the line of action of applied force.

The graphs show a slight upward curvature indicative of both a stiffening characteristic
and substantial range over which linear behaviour (i.e. constant stiffness) is a reasonable
working assumption. The coefficients of linear fit for all tests are given in tables and
in the appendix F. It is noted in all tables, the tests 1, 2, and 3 are central loading,
whereas 4, 5, 6 and 7 are for offset loading. The mean central stiffness is 734.61 N/m and
602.99 N/m for sample ABS1-120 and ABS2-120 respectively. The corresponding mean
offset position stiffness is 613.85 N/m and 579.82 N/m. Consistently very high R? values
confirm that measurements closely follow a cubic pattern. The effective linear region is

never less than 300 ym on ABS1-120 or ABS2-120
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7.3 Discussion and stiffness analysis of angle-beam triskelion

force artefacts

The mean linear stiffness values of classic triskelion samples is summarised in table (7.1]
using the tables and given in appendix F. Table [7.1] also include
estimations of the useful linear-range, based on the 1 % non-linearity criterion discussed in
section 6.5. The 1 % linear range reduces notably with increasing the elbow angle. With
one just exception (sample ABS1-90), the angle beam triskelion samples are less stiff than
equivalent classic design. For the sizes trend in these experiments, the difference are not all
great, perhaps just by enough to be potentially useful. For samples ABS1-60 and ABS1-
60, the linear seems to be better than for classic designs, suggestive of a lower degree of
over-constraints as predicted. The effective stiffness is consistently lower for all angle-beam
triskelion samples, but the differences are often small indicating relatively high platform
torsional stiffness compared to its axial stiffness. The variation in stiffness of batch e angle-
beam samples ABS1-90 & ABS2-90 are seen higher as compared to the triskelion samples
of batches d and f. The variation in stiffness between triskelion samples of each batch could

be reduced if these triskelion samples are fabricated by using the MSL technique.

Table 7.1: Measured stiffness of angle-beam triskelion force artefacts from tables

F3 4 F35 and [

Sample ID | Linear range | R-Squared Average stiffness at
pm centre of hub N/m ‘ off-centre point N/m

ABS1-60 600 0.999 536.95 503.38
ABS2-60 600 0.999 478.57 443.90
ABS1-90 500 0.999 873.02 838.05
ABS2-90 500 0.999 1213.50 1009.30
ABS1-120 300 0.999 734.61 613.85
ABS1-120 300 0.999 602.99 579.92

7.4 Conclusion

The novel contribution of polymeric angle-beam triskelion force artefacts that was first
time introduced by using the low-cost techniques at the University of Warwick for the
validation of analytical angle-beam model presented in the chapter 3. The experimental
results of these batches d, e and f of angle-beam triskelion force artefacts show that the
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angle-beam triskelion samples of all batches are more sensitive when compared to classic

triskelion force artefacts.

It has been concluded from the results summarised in the table for all samples of
angle-beam triskelion force artefacts that angle-beam triskelion samples ABS1-6- and
ABS2-60 with elbow angle 60 ° have a wider range than the other samples of batches e and
f. The angle-beam samples of batches d and e are seen less stiffer than samples of batches
e. These angle-beam samples with elbow angle 60°, 90° and 120° have linear behaviour
in a small displacement under region of 600, 500 & 300 pum as compared to the batches a,
b, and c. The stiffness variation has been seen between two samples in each batch. The
variation in stiffness of batch e angle-beam samples ABS1-90 & ABS2-90 is seen as higher
compared to the batches d and f of angle-beam samples of triskelion force artefacts. This

variation is due to the dimensional uncertainties of triskelion samples of each batch.

As with the classic triskelion force artefacts, the non-linearity of angle-beam triskelion
force artefacts also follows the best cubic fit. The angle-beam triskelion samples also
be used for industrial instruments that require micro force calibration when commercial
load-cell fail. The linear range dominated for the batches d and e with elbow angle 60 ° and

90° have a wider range for a purpose of industrial application of micro force measurement.

The validation of angle-beam triskelion force artefacts will be discussed later in chap-

ter 9. The next chapter will describe the new family of triskelion force artefacts called

tetraskelion force artefacts that were initially fabricated.
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Figure 7.1: Stiffness measured at the centre of hub for angle-beam triskelion samples ABS1-

60 S.No. 1, Table
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Figure 7.2: Stiffness measured at off-centre point for angle-beam triskelion samples ABS1-60

S.No. 4, Table
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Figure 7.3: Stiffness measured at the centre of hub for angle-beam triskelion samples ABS2-

90 S.No. 1, Table
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Figure 7.4: Stiffness measured at off-centre point for angle-beam triskelion samples ABS1-90

S.No. 4, Table
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Figure 7.5: Stiffness measured at the centre of hub for angle-beam triskelion samples ABS1-

120 S.No. 1, Table
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Figure 7.6: Stiffness measured at off-centre point for angle-beam triskelion samples ABS1-

120 S.No. 4, Table [F.5]
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Chapter 8

Tetraskelion force artefacts:
specification, design, experimental
analysis of stiffness and numerical

investigations

8.1 Introduction

This chapter describes the measurement of stiffness of tetraskelion force artefacts. Their
design is an extension of triskelion force artefacts with an extra leg. Polymeric samples of
tetraskelion force artefacts were fabricated using the low-cost technique in chapter 5. Both
classic and angle-beam samples of tetraskelion force artefacts are introduced and polymeric

test samples were made in the School of Engineering workshop, at the University of Warwick.

The new implementation of linear elastic models discussed in chapter 3 provide great
flexibility to vary parameters around the basic concept triskelion-like planar flexures. The
triskelion in several minor variants are easily accommodated by it and so have a short-range
linear behaviour of such devices is also investigated in simulation and with compared to

the expected results.
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8.2 Motivation for tetraskelion force artefacts

As was explored in earlier chapters, the triskelion suspension behaves essentially as an
over constrained, three degree of freedom device. Ideally applications, such as force transfer
artefacts could have a simple freedom, an ideal that is theoretically denied to planar flexures.
This raises the question whether increasing the degree of over constraint might in a purely
practical sense moves us closer to this ideal. The expected disadvantages would be one
of greater stiffness and more serve non-linearity. However, the evidence gathered here
shows polymeric triskelion more than adequate ‘linear’ ranged. These observations therefore
motivate a brief experimental study of a few tetraskelion designs, based on the method used

earlier.

8.3 Types and design tetraskelion force artefacts

Two types of tetraskelion called (in keeping with previous nomenclature) the classic and
angle-beam tetraskelion force artefacts were fabricated for the general study and the prac-
tical validation of linear elastic models is presented in chapters 6, 7 and 8. The tetraskelion
shares many features with the triskelion with also having important differences, most no-
tably four-fold symmetry about the z-axis. Figures & and [8.3] & show basic
geometries of classical tetrakelion suspension and further model simplification. Two layouts
are of immediate interest here: the arms can be centrally disposed such that all four of
their centre-lines intersect at the centre of the hub; alternatively the centre lines of opposite
pair of arm could be parallel but offset to pass equally to either side of the hub centre.
Clearly, providing it is sufficiently rigid, the shape of the hub is unimportant but circular
or square shapes are natural choices. Both of these layouts allow two types of devices. The
first type, the classic polymeric tetraskelion suspension has a hub and projecting arms that
make a rigid platform, which is thicker as compared to the beam thickness. The second
type, the angle-beam tetraskelion suspension but has thicker hubs and but both arms and
beams have the same smaller thickness. Each arm and beam is considered to be one part
called an angled-beam. The four arms in each type are disposed symmetrically. The arms

connected to the hub and to the beams that are mounted on an outer rigid base structure,
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as shown in figure [8.1] and All these joints are notionally built-in and fully constrained

types, although clearly having some compliances in practice.

8.3.1 Specification, fabrication and dimensions measurement for classic

& angle-beam tetraskelion samples

Samples were designed for both classic and angle-beam tetraskelions in each case with centre
symmetric (CS) and diagonal symmetric (DS). All used 90° elbow angles, which are most
readily compatible with four fold symmetry. In all cases, dimensions were made same as
for some of the triskelion samples already studied. The detailed dimensional specifications

are given in Table . The fabrication of polymeric triskelion samples were discussed in

Table 8.1: Specification for classic tetraskelion, CS & DS and angle-beam tetraskelion, CS
& DS force artefacts with 90°, elbow angle.

Parameters Classic, CS & DS | Angle-beam, CS & DS
hub's radius 7y, 1.5 mm 1.5 mm
hub's thickness ty 1.0 mm 1.0 mm
arm's length £, 2.0 mm 2.0 mm
arm's width w, 1.0 mm 1.0 mm
arm's thickness t, 2.0 mm 2.0 mm
beam's length {, 4.0 mm 4.0 mm
beam's width wy 1.0 mm 1.0 mm
beam's thickness t 0.2 mm 0.2 mm

chapter 5 and same procedure was used for tetraskelion samples. The basic casting method
has also been devised and investigated for tetraskelion force artefacts. The data sets for
beams parameters of all tetraskelion force artefacts are presented in tables|8.2]and The
dimensions of two samples, classic tetraskelion samples and angle-beam triskelion samples
measured by the WYKO NT2000 Profiling System are show in figures and and the

remainder are given in appendix E.

8.4 Stiffness measurement for classic tetraskelion and angle-

beam samples

The same test-rig configuration and procedure used to evaluate the triskelion samples and
discussed in chapter 6 was used to measure the stiffness of all tetraskelion samples. Four

moulds were made corresponding to classic and angle-beam variations for centre symmetric
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fixed spport hub arm beam elbow angle90°

Figure 8.1: The classic tetraskelion suspension with centre symmetric (CS) and a layout
with elbow angle 90 °

fized support Hub  drm  beam elbow angle 90

Figure 8.2: The classical tetraskelion suspension with centre symmetric and further model
simplification with elbow angle 90 °
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arm hub beam elbow angle 90°

fixed spport

Figure 8.3: The classic tetraskelion suspension with diagonal symmetric (DS) and a layout
with elbow angle 90 °

fxgd stpport arm  hub  beam elbow angle 90°

Figure 8.4: The classical tetraskelion suspension with diagonal symmetric (DS) and further
model simplification with elbow angle 90 °
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Figure 8.5: Measured dimensions of classic triskelion sample CS1-CS-90, with elbow angle
90°.

Figure 8.6: Measured dimensions of angle-beam triskelion sample ABS1-CS-90, with elbow
angle 60 °.

188



€41 80T ¥6°C VeI 60T ¥8'¢ 45! 60T 96°'¢ 961 10T P8¢ | 06-SA-TSLLO
0v1 96°0 10°€ 9¢€T1 60T 86°C VET 66°0 G8'C 8€T 66°0 06'¢ | 06-SO-ISLLD
ww g [ wwm | ww g [ wwg [ ww e [ wwg | g [ wwo | oo | oo g | oo | oo
¥ "ON weog ¢ "ON weog Z "ON weog] T ‘ON ueag 1 ordureg
$30vJo1IR 010§ JO sojdures UOIOYSLIe) Weaq-o[8uy €] O[],
981 00T 06'¢ P8I 0T 96°¢ 881 00T G6'C 061 10°T ¥6'¢ | ADCSLLD
881 [ 76°C 08T 00T 96°C €81 0T 66°C G81 00T L6'C | SOCGSLLD
281 €0'T 86°C 06T 10T 68°C 981 €0'T c0'€ 68T 60°T 68°¢ | ADTSLLD
V81 10T 88°C 6L1 10°T 88'C 08T 10°T 96°'¢ ¢8I 10°T €6'¢ | SOTISLLD
ww g [ wwm [ wwy | wwg [ wwe | ww g | wwg | ww e | ww g | g | oo | oo

¥ "ON weog ¢'ON Weog Z'ON weog] I ‘ON weog 1 ordureg

sjorJalle 20.10] JO mwﬁgaﬁm UOI[ayselI}o} JISSe[) ('8 9[qe],

189



(CS) and diagonal symmetric (DS) types. The four fold symmetry for classic and angle-
beam tetraskelions is shown in figure The hub is square shape and each side of square
has length h mm. For CS case s = 0 mm (the perpendicular distance from centre of the
hub) and s = (& — %) mm. Two samples for each (batches i & j) were made for the
classic designs, but only one each of the angle-beam designs (but still referred to as k & ¢,

for consistency. All samples had elbow angles 90°. To summarise, the identification of the

tetraskelion sample is:
e Batch i: Classic samples CS1-CS-90 and CS2-CS-90 with elbow angle 90 °.
e Batch j: Angle-beam samples CS1-DS-90 and CS2-DS-90 with elbow angle 90 °.
e Batch I: Angle-beam samples ABS1-CS-90 and ABS2-DS-90 with elbow angle 90 °.

The experimental data sets were recorded for all sample of batches i, j, k, & 1 and graphs were
plotted for each set of readings. For each sample seven readings were recorded at the centre
of the hub and at off-centre points at the edge of the hub of tetraskelion. For each batch the
set of seven readings plotted clearly indicate repeatability or errors. Two graphs for each
batch are shown in this chapter and the remainder are graphs are given in the appendix I.

The coefficients of linear fit for all tests are given in tables [[1.1], [F.2], [H.3] [.4] [[1.5], and [H.6]

in appendix H.

8.4.1 Batch i: Classic tetraskelion force artefacts, centre symmetric with

elbow angle 90°

The seven tests on samples CS1-CS-90 and CS2-CS-90 were executed with displacement of
step 25 pm until the limit of force actuator was reached. On each sample three independent
measurements were taken with the probe tip placed as closely as possible to the centre of
hub. A further four independent measurements were taken with the probe tip placed close
to the periphery of the hub, an offset from the centre of approximately 1 mm. The general
pattern and the magnitudes of tests were similar and more closely so on one specimen
than between them. Figures 8.8 and show plots of force against displacement form two
individual measurements that were executed on sample CS1-CS-90 & CS2-CS-90 as topical
example; a complete set of results are plotted that are presented in appendix I. Figure

shows a case of central loading and figure and also shows one of offset loading. Note
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that in both cases the measurement is of the total displacement along the line of action of

applied force.

The graphs show a straight line that follows a linear fit or best fit of polynomial of order
1. The graphs curve indicated similar trends with acceptable repeatability. the stiffness was
notably higher than in previous tests on triskelion samples and test-rig could only supply
sufficient force for defection around 0.2 mm. Slightly unexpectedly, this was insufficient
to enter in a distinct non-linear region and so simple linear fits were used to estimate the
stiffness. The coefficients of linear fit for CS1-CS-90 and CS2-CS-90 are given in tables
and in appendix H. Note that in all tables, the tests 1, 2, and 3 are for central loading,
whereas 4, 5, 6 and 7 are for offset loading. The mean central stiffness is 2781.40 N/m and
2867.80N/m for sample CS1-CS-90 and CS2-CS-90 respectively. The corresponding mean
offset position stiffness is 2741.20 N/m and 2569.60 N/m. The R-squared value is closer
to 1, showing that the straight line can predict well the value of next step linear spring

behaviour.

8.4.2 Batch j : Classic tetraskelion force artefacts, diagonal symmetric

with angle 90°

The seven tests were executed on samples CS1-DS-90 and CS2-DS-90 with displacement of
step 25 pum until the limit of force actuator was reached. Three independent measurements
were taken on each sample with the probe tip placed as closely as possible to the centre of
hub. A further four independent measurements were taken with the probe tip placed close
to the periphery of the hub, an offset from the centre of approximately 1 mm. The general
pattern and the magnitudes of tests were similar, more closely so on one specimen that
between them. Both figure and show plots of force verses displacement form two
individual measurements that were executed on sample CS1-DS-90 & CS2-DS-90 as topical
example; a complete set of results are plotted that are given in appendix I. Figure [8.10
shows a case of central loading and figure [8.11] and also shows one of offset loading. Note
that in both cases the measurements consider total displacement along the line of action of

applied force.
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The graphs in figures figure and show a straight line that follows a linear
fit or best fit of polynomial of order 1. The graphs curve indicated similar trends with
acceptable repeatability. The stiffness was notably higher than in previous tests on triskelion
samples and test-rig could only supply sufficient force for defection around 0.2 mm. Slightly
unexpectedly, this was insufficient to enter a distinct non-linear region and so simple linear
fits were used to estimate the stiffness. The coeflicients of linear fit for samples CS1-DS-90
and CS2-DS-90 are given in table§H.3] and in appendix H. It is noted in all tables, the
tests 1, 2, and 3 for central loading, whereas 4, 5, 6 and 7 are for offset loading. The mean
central stiffness is 4617.30 N/m and 4322.80 N/m for sample CS1-CS-90 and CS2-CS-90
respectively. The corresponding mean offset position stiffness is 4521.60 N/m and 4304.70
N/m. The value of R-squared is closer to 1, showing that the straight line can predict well

the linear spring behaviour.

8.4.3 Batch k & ¢ : Angle-beam tetraskelion force artefacts, centre &

diagonal symmetric with angle 90°

Similar to batches i and j, seven tests on samples ABS1-CS-90 and ABS2-DS-90 were
executed with displacement of step 25 pm until the limit of force actuator was reached.
For both samples three independent measurements were taken with the probe tip placed as
closely as possible to the centre of hub. A further three independent measurements were
taken with the probe tip placed close to the periphery of the hub, an offset from the centre
of approximately 1 mm. The general pattern and the magnitudes of tests were similar,
more closely on one specimen that between them. Figure and show plots of force
against displacement form two individual measurements that were executed on sample
ABS1-CS-90 & ABS2-CS-90 as topical example; a complete set of results are plotted that
are presented in appendix I. Figure shows a case of central loading and figure [8.13
also shows one of offset loading. Note that in both cases the measurements consider total

displacement along the line of action of applied force.

The graphs in figures and also show a straight line that follows a linear fit or
best fit of polynomial of order 1. The stiffness was notably higher than in previous tests

on triskelion samples and test-rig could only supply sufficient force for defection around 0.2
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mm. Slightly unexpectedly, this was insufficient to enter in a distinct non-linear region and
so simple linear fits were used to estimate the stiffness. The coefficients of linear fit for
ABS1-CS-90 and ABS2-DS-90 are given in tables and in appendix H. Note that
in all tables, the tests 1,2, and 3 for central loading, whereas 4, 5, 6 and 7 are for offset
loading. The mean central stiffness is 1211.88 N/m and 1746.64 N/m for sample CS1-CS-90
and CS2-CS-90 respectively. The corresponding mean offset position stiffness is 1129.65
N/m and 1660.82 N/m. The R-squared value is closer to 1, and this shows that the straight
line can predict the value of next step using the linear equation of line which consequently

results in having linear behaviour.

> K-8

(a) CS platform of TTSKFA (b) DS platform of - TTSKFA

Figure 8.7: Symmetry of the platform for tetraskelion (CS & DS), d is length of square
type hub ~ diameter of the hub, s is perpendicular distance from the platform centre to
the arm-cental-line. s = 0 for CS case and s = % for DS case.
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Figure 8.8: Stiffness measured at the centre for classic tetraskelion samples CS1-CS-90.No.

1, Table
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Figure 8.9: Stiffness measured at off-point for classic tetraskelion samples CS1-CS-90.No.

4, Table
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Figure 8.10: Stiffness measured at the centre of hub for classic tetraskelion samples CS1-
DS-90 S.No. 3, Table
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Figure 8.11: Stiffness measured at off-point for classic tetraskelion samples CS2-DS-90 S.No.

4, Table
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Figure 8.12: Stiffness measured at the centre of hub for classic triskelion samples CS1-CS-90

S.No. 3, Table
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Figure 8.13: Stiffness measured at off-centre point of hub for classic tetraskelion samples

CS1-DS-90 S.No. 6, Table
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8.5 Stiffness behaviour of tetraskelion force artefacts

The mean linear stiffness values of tetraskelion samples are summarised in table

taking that data from tables [FL.1], [1.2] [H.3] [T.4] [H.5, and given in appendix H. Both

classic diagonal symmetric samples CS1-DS-90 & CS2-DS-90 have very high value stiffness

compared to batches from i and k of tetraskelion force artefacts. There is some variation
in average stiffness seen between two samples of each batch but much less between the
batches. The classic diagonal symmetric sample CS1-DS-90 has higher stiffness (66% at
hub centre and 76% at off-centre points on hub) relative to the classic centre symmetric
sample CS1-CS-90. The angle-beam sample ABS1-DS-90 also has a higher value of stiffness
as compared to the classic centre symmetric sample ABS1-CS-90, which is (44% & 47%
at centre and off-centre points). This variation is due to the dimensional uncertainties
of the tetraskelion samples of each batch. Some of the variation is due to dimensional
uncertainties, but systematic difference are clear. The lower stiffness on the angle-beam
sample compared to an otherwise similar classic design is fully expected because the former
contains more flexing elements in series. The difference between otherwise similar diagonal
and centre symmetric version is more interesting. It relates to on superficial consideration,
it might be assumed that the position of the arms would not be critical in cases where
there is purely z-axis translation of the hub, but this is not so. If the long axes of the arms
do not pass through the hub centre, then a central force will impose a moment on those
axes. For a symmetrical devices a pair of arms will experience equal and opposite moments,
maintaining zero net moment on the hub. However, these moments individually affect
different sections of the whole suspension, with the 90° elbow angles investigated here an
effective torsional term on the arm will become a moment the main bending direction of
the suspension beams. It can, therefore, considerably increase the total work that must be
done to defect the hub; that is, z-axis stiffness increases. For the scale of devices studied
here this effect is highly significant; perhaps to a surprising level. Experimentally, there is
approaching a 2 : 1 increase for an arm offset of only 1 mm. The distance from the hub
centre to the joint with the first flexing element is some what greater in diagonal symmetric
devices compared to otherwise similar centre symmetric one. Thus, a small increase in the

platform tilt stiffness also occurs as a sperate, additive effect.
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The variation in stiffness between samples of each batch could be significantly reduced

if these samples are fabricated by using an MSL technique.

Table 8.4: Measured stiffness of classic and angle-beam tetraskelion force artefacts from

Tables [T} 12} [T} (3 [T, and [T

Sample ID | Linear range | R-Squared Average stiffness at
pum centre of hub N/m ‘ off-centre point N/m

CS1-CS-90 200 0.999 2781.40 2741.20
CS2-CS-90 200 0.999 2867.80 2569.60
CS1-DS-90 200 0.999 4617.30 4521.60
CS1-DS-90 200 0.999 4322.80 4304.70
ABS1-CS-90 200 0.999 1211.88 1129.65
ABS1-DS-90 200 0.999 1746.64 1660.82

8.6 Tetraskelion software program

An analytical linear model for tetraskelion suspensions has been derived in chapter 3.
The modelled tetraskelion polymeric system have four arms and four beams as shown in
figures & The design variables of tetraskelion program (platform, suspension
beams and material constant parameters) are same to the triskelion software program
already discussed in the chapter 4. All the basic equations used in the of enhanced linear
model designed in chapter are valid for linear model for the tetraskelion. A new program
has been developed to compute, forces, moments, stress, stiffness for tetraskelion polymeric
artefacts. The linear model for the tetraskelion is flexible, allowing for changes over its
subscript ¢ = 4 for the dimensional parameters for arms a;, beams b;, orientation angles
(i & Bi), forces Py = (Fi, M;)T with F, = (F,, Fy, F;)T and M; = (Mg, My, M,)T. Tt

provides a valid linear model for tetraskelion suspensions or tetraskelion micro-probes.

The dependency diagram for the tetraskelion program is shown in figure The
design of the tetraskelion program is similar to the triskelion program that is given in
appendix B. The codes for the tetraskelion program are also given in appendix E. The new
tetraskelion program works in the same fashion as discussed for the software program for
triskelion in chapter 3. The input specification of triskelion software program is given in
tables and The new computed results from the tetraskelion program are discussed

in the next section.
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Main Function for Tetraskeion Program
Model Input(z, 6,, 0,,a,1,w,t,E, a; and B; angles)

Function to compute arms deflection Function to compute stiffness matrix of
in the global frame of co-ordinate beams in the body-fixed co-ordinate
frames
e

Function to computer orientation of
B angle for four beams

v

) Function to compute beams deflection in
the body fix-frame of co-ordinate

v

Function to compute beams forces and 6——
moments in the body fix-frame of
co-ordinates

v

a N
Function to compute beams forces and

=3 moments in the global-frame of co-ordinates

N

g

\, y

v

[ Function to compute the sum of forces in
the global frame of reference

v

Function to computer stress and strain
in global co-ordinates

N

v

Function to compute to stiffness k, and

Ay and 4, in global co-ordinates

Figure 8.14: Dependency Diagram for Tetraskelion Program
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Table 8.5: «; and ; for tetraskelion model

Tetraskelion force artefact ID | a1 | as Q3 oy 51 5o B3 B4
TTSFA-CS-90 0 1B ™ [3® |-G o | & ]|
TTSFA-CS-135 0 | (5) | (m) | 3(5) | =3(%) | (%) | (%) | 3(%)
TTSFA-CS-180 0 | (3)| (m) | 3(5) | —=(m) | -(5) 0 (5)
TTSFA-DS-90 BIICIEGIE QI EOIEGIIONEE
TTSFA-DS-135 (7 1 (D) [3(3) [ 3(F) | -(m) | -(5) | 0 |-3(3)
TTSFA-DS-180 -(7) | (3) 13(3) | -3(3) | -5(3) | -3(3) | -(3) | -7(3)

Table 8.6: Input parameters specification for TSFAs with 60°,90°,120°,150° & 180 °.

S.No. Parameter Values & Unit
1 z 5x 107%m
2 0 1 x 107 3rad
3 0y 1 x 10~ 3rad
4 | a=(h+ap) | (1.5+0.002)m
0 14 0.004m
6 w 0.001m
7 t 0.0002m
8 Es 2.5 x 107pascal
9 ay,a3,& az table(8.5
10 | B1,B3,& B3 table(8.5

8.7 Numerical experiments for tetraskelion force artefacts

Numerical experiments were carried out for centre symmetric and diagonal symmetric
tetraskelion force artefacts TTSFA-CS-90, TTSFA-DS-90, TTSFA-CS-135, TTSFA-DS-135,
TTSFA-CS-180, & TTSFA-DS-180 with elbow angles 90°, 135° and 180° as shown in fig-
ure to by using the procedure just discussed. Some of the tests cover changes in
parameters where the effects in linear model can be strongly intuited from the basic beam
theory, where the other such a variations in elbow angles are new. The whole set there-
fore acts simultaneously to check the software implementation and to provide new data for

designers.

8.7.1 Numerical experiments phase 4: Investigation of arm length a,

The numerical experiments for triskelion force artefacts are already discussed in the chapter
4. The same strategy has been adopted for these experiments. The numerical experiments
for all tetraskelion force artefacts were performed with displacement only of z=5x 107 um

using the input specification given in tables [8.5 and tables
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Figure 8.15: The simplified model for tetraskelion force artefacts, centre symmetric
(TTSFA-CS-90) with elbow angle 90°.

Figure 8.16: The simplified model for tetraskelion force artefacts, centre symmetric
(TTSFA-CS-135) with elbow angle 135°.
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Figure 8.17: The simplified model for tetraskelion force artefacts, centre symmetric
(TTSFA-CS-180) with elbow angle 180°.

Figure 8.18: The simplified model for tetraskelion force artefacts, diagonal symmetric
(TTSFA-DS-90) with elbow angle 90 °.
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Figure 8.19: The simplified model for tetraskelion force artefacts, diagonal symmetric
(TTSFA-DS-135) with elbow angle 135 °.

Figure 8.20: The simplified model for tetraskelion force artefacts, diagonal symmetric
(TTSFA-DS-180) with elbow angle 180 °.
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Relationship between a; and k,

The computed value of stiffness at each elbow angle are shown in figure It is evident
from the figure that all tetraskelion force artefacts have same value of stiffness i.e. k, is
independent of the arm length. This result was expected from general experience because

the arm length interacts with the platform tilt, but not interaction.

Relationship between a, and A\,

The values of torsional stiffness A, computed by the tetraskelion software program are
shown in figure It is evident from the figure that A, depends upon the arm length and
elbow angle of the tetraskelion artefacts. At all arm lengths, the tetraskelion force artefacts
with elbow angle 90° has a lower value of torsional stiffness A; and it rises steadily with
increasing elbow angle. Figure clearly shows that by increasing the length of arm, the
value of A\, also increases for tetraskelion force artefacts. The tetraskelion force artefacts
TTSFA-CS-90 and TTSFA-DS-90 with elbow angle 90° have a lower value of torsional

stiffness \,.

8.7.2 Numerical experiments phase 5: Investigation of stiffness k£, and

beam parameters (¢, w, & t)

Similar to the numerical experiments that have been discussed in chapter 4 (section 4.6),
further numerical experiments are carried out for tetraskelion force artefacts TTSFA-CS-
90, TTSFA-DS-90, TTSFA-CS-135, TTSFA-DS-135, TTSFA-CS-180, & TTSFA-DS-180
for the translational motion of the platform only using the same strategy to investigate the

relationship between k, and beam parameters( ¢, w,t).

Relationship between ¢ and k.

The computed value of stiffness k, as beam length is changed for all tetraskelion force
artefacts are shown in figure [8.23] It is evident from figure 8.23] that all tetraskelion force
artefacts have the same value of stiffness k,. As we increase the length of the beam,
the stiffness k., also decreases and thus closely follows the inverse cubic law of individual
suspension subject of the z-displacement only. The stiffness k. is independent of the elbow

angle of the tetraskelion force artefacts if the beam parameters are unchanged. This was
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expected by the linear elastic model that pure translation of the platform does net impose
twist. The actual stiffness value for the beam length of 4mm and 8mm are 1250.00 N/m

and 156.25 N/m (for E = 2.5 GPa), with a ratio 8 that is expected by the cubic law.

Relationship between w and k&,

The computed values of stiffness k, as beam width changes of all tetraskelion force artefacts,
as shown in figure Their stiffness is independent of the elbow angle, as expected. It is
evident from the figure that the value of the stiffness k, is increased by increasing the
beam width, closely linearly as expected of an individual beam under simple defection. The
actual stiffness values for the beam width of Imm and 2mm are 1250.00 N/m and 2500.00

N/m (for E = 2.5 GPa), with a ratio 2 that is expected.

Relationship between ¢t and k,

The computed values of stiffness k. as beam thickness is varied for all tetraskelion force
artefacts are shown in figure It is evident that the value of the stiffness k., for all
tetraskelion force artefacts also increases by increasing the beam thickness. The actual
stiffness value for the beam thickness of 0.2 mm and 0.4 mm are 1250.00 N/m and 156.25

N/m (for E = 2.5 GPa), with a ratio 8 that is expected by the cubic law.

8.7.3 Numerical experiments phase 6: Investigation of torsional stiffness

A; and beam parameters (¢, w, & t)

Similar to the experiments in phase 3 of chapter 4, further numerical experiments to inves-
tigate the relationship between the beam parameters (¢, w, & t) and the torsional stiffness
Az are carried out for tetraskelion force artefacts TTSFA-CS-90, TTSFA-DS-90, TTSFA-
CS-135, TTSFA-DS-135, TTSFA-CS-180, & TTSFA-DS-180 with elbow angles 90°, 135°

and 180° for pure rotation motion x-axis of the platform.

Relationship between ¢ and )\,

The computed values of torsional stiffness A, as beam length varies for all tetraskelion
force artefacts are shown in figure It is evident from the figure that for any

length the tetraskelion force artefact, centre symmetric with elbow angle 90 ° has the lower
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value of torsional stiffness A, and as we increase the elbow angle, the value of torsional
stiffness also increases steadily but not linear. If we increase the beam length, the value of
torsional stiffness A, decreases. As the platform tilts, the suspension beams are subject to
a combination of end-force, end-moments (bending) and end moments (axial torsion); the
exact combination will differ with parameters such as elbow angle and for the individual
beams according to the orientation compared to the tilt direction. All of these effect will
be expected to reduce the over all stiffness as the length is increased; for a simple the
relationship is inverse linear for torsion, inverse square for other moments and inverse cubic
for the direct force. Linear and cubic laws therefore limit the range of actual behaviour.
For the geometries studied the net effect is quite close to an inverse square law. Thus, the
relationship with length approaches the inverse square law expected for both torsion and
bending modes of a individual suspension beam. The actual stiffness value for the beam
length of 0.4 mm and 0.8 mm are 0.0070.00 N/rad and 0.00256 N/rad (for E = 2.5 GPa),

with a ratio 2.7.

Relationship between w and )\,

The computed torsional stiffness A, for all tetraskelion force artefacts are shown in fig-
ure [8:27] These results show the torsional stiffness A, again varies slightly with the elbow
angle; it is consistently lowest for the tetraskelion force artefacts with the elbow angle 90 °.
The proportional change with the elbow angle is the same for all widths. The torsional
stiffness A, for all tetraskelion force artefacts increases linearly with increasing the beam
width as expected for both torsion and bending modes of a suspension beam. The actual
stiffness value for the beam width of 0.1mm and 0.2mm are 0.01417 N/rad and 0.0070.00
N/rad (for E = 2.5 GPa), with a ratio 2 that is expected.

Relationship between t and )\,

The computed torsional stiffness ), increases as beam thickness varies for all tetraske-
lion force artefacts is shown in figure [8:28] The torsional stiffness increases A, rapidly by
increasing the thickness of the beam and also increases slightly with the elbow angle of
the tetraskelion force artefacts. The relationship with thickness approaches the cubic law

expected for both torsion and bending modes of an individual suspension beam. The ac-
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tual stiffness value for the beam thickness of 0.2 mm and 0.4 mm are 0.0070 N/rad and

8.85x107* N/rad, with a ratio 7.8 that is close to 8 expected by cubic law.
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[l TTSFA-DS-90
[l TTSFA-CS-135
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Figure 8.21: Graph for variable arm’s length verses computed results for stiffness k, of
tetraskelion force artefacts TTSFA-CS-90, TTSFA-DS-90, TTSFA-CS-135, TTSFA-DS-135,
TTSFA-CS-180, & TTSFA-DS-180 with elbow angles 90°, 135° and 180°
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Figure 8.22: Graph for variable arm’s length verses computed results for torsional stiffness
Az of tetraskelion force artefacts TTSFA-CS-90, TTSFA-DS-90, TTSFA-CS-135, TTSFA-
DS-135, TTSFA-CS-180, & TTSFA-DS-180 with elbow angles 90°, 135° and 180 °.
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Figure 8.23: Graph for beam’s length verses computed results for stiffness k. of tetraskelion
force artefacts TTSFA-CS-90, TTSFA-DS-90, TTSFA-CS-135, TTSFA-DS-135, TTSFA-
CS-180, & TTSFA-DS-180 with elbow angles 90°, 135° and 180 °
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Figure 8.24: Graph for variable beam’s length verses computed results for stiffness k., of
tetraskelion force artefacts TTSFA-CS-90, TTSFA-DS-90, TTSFA-CS-135, TTSFA-DS-135,
TTSFA-CS-180, & TTSFA-DS-180 with elbow angles 90°, 135° and 180 °.
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Figure 8.25: Graph for beam’s thickness verses computed results for stiffness k, of
tetraskelion force artefacts TTSFA-CS-90, TTSFA-DS-90, TTSFA-CS-135, TTSFA-DS-135,
TTSFA-CS-180, & TTSFA-DS-180 with elbow angles 90°, 135° and 180°
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Figure 8.26: Graph for variable beam’s length verses computed results for torsional stiffness
Az of tetraskelion force artefacts TTSFA-CS-90, TTSFA-DS-90, TTSFA-CS-135, TTSFA-
DS-135, TTSFA-CS-180, & TTSFA-DS-180 with elbow angles 90°, 135° and 180 °.
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Figure 8.27: Graph for beam’s width verses computed results for torsional stiffness A, of
tetraskelion force artefacts TTSFA-CS-90, TTSFA-DS-90, TTSFA-CS-135, TTSFA-DS-135,
TTSFA-CS-180, & TTSFA-DS-180 with elbow angles 90°, 135° and 180°
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Figure 8.28: Graph for variable beam’s thickness verses computed results for torsional
stiffness A\, of tetraskelion force artefacts TTSFA-CS-90, TTSFA-DS-90, TTSFA-CS-135,
TTSFA-DS-135, TTSFA-CS-180, & TTSFA-DS-180 with elbow angles 90°, 135° and 180 °.
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8.8 Discussion of computed results

The computed values of stiffness k, and A, for input specifications given in table for
tetraskelion force artefacts TTSFA-CS-90, TTSFA-DS-90, TTSFA-CS-135, TTSFA-DS-135,
TTSFA-CS-180, & TTSFA-DS-180 with elbow angles of 90°, 135° and 180 ° have been crit-

ically analysed and may be summarised as follows:

1. As is expected by the linear elastic model, when we increase the arm length of the
platform or change in the elbow angle of any tetraskelion force artefacts with the same

input specifications. The value of k, is found to be 1250 N/m. This true for all cases

(see figure [8.21)).

2. Beam bending stiffness indicates that when we increase the ¢ of the suspension beam,
the stiffness decreases with (¢4 A¢)3, where A/ is the increment in the beam length.
Moreover, a z-translating platform effectively places only force-displacements related
loads on the ends of the idealised suspension beams, so the stiffness k, is independent

of the elbow angle. Both these features are confirmed in figure [8.21]

3. The computed axial bending stiffness k, increases linearly with suspension beam
width, and independent of the elbow angle of all tetraskelion force artefacts as shown
in figure This is expected physically from the behaviour individual beams in a

simple bending.

4. The computed axial stiffness k, indicates that when we increase the beam thickness
t, the stiffness increases by a factor (¢t + At)3, where At is the increment in the beam
thickness as shown in the figure [8.25] It is clear that axial stiffness is independent of
the elbow angle of all tetraskelion force artefacts. These results are consistent with
the physical behaviour in which bending nodes are present in the suspension beams;

the linear elastic model discounts possible cross-coupling of nodes.

5. The computed torsional stiffness A, for all tetraskelion force artefacts are shown in the

figure [8.22] [8.26] [8.27] and [8.28] These results show that the torsional stiffness )\,

is dependent of both arm length and elbow angles of the tetraskelion force artefacts.
Figure clearly indicates the torsional stiffness increases gently with increases in
the platform arm length on the elbow angle and also increases a little with elbow
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angle at all length tested. The value is more sensitive to the elbow angle at larger

arm lengths. The increase in the arm length follows closely a square law.

8.9 Conclusion

The significantly enhanced functionality of new implementation of the enhanced linear
elastic model for triskelion planar suspensions has been demonstrated successfully by
setting up a model for four-fold symmetric tetraskelion. The model has generally been
validated by comparison of its prediction for pattern of behaviour to those of physical
samples. The experimental results summarised in table 8.4 for all samples of tetraskelion
force artefacts show that angle-beam tetraskelion samples (ABS1-CS-90 and ABS1-DS-90
with elbow angle 90°) that follow the classic (rigid arm) design. All samples have linear
behaviour for small displacements up to at least 200 pm region (table . The linear
range of tetraskelion force artefacts could be increased by using an actuator of bigger size.
These devices were tested on the system designed for lower-stiffness triskelion samples
and it would not reliably drive them into a clear non-linear region. General physical
arguments imply that the more over-constrained tetraskelion would have proper linearity
than comparable sizes of triskelion. Clearly, though, a useful ‘linear’ region is available in

practice.

For suspension elements of the same physical size, adding a fourth arm would be
expected to increase device stiffness, and this is confirmed. Angle-beam triskelion are, as
expected, less stiff than otherwise similar classic tetraskelions (i.e. that having rigid arms).
For the scale of devices studied, the angle-beam triskelions typically have stiffness quite
similar to those of classic triskelions. It has been shown that the stiffness of a device of
given size can be substantially increased by offsetting the axes of the arms relative to the

centre of hub.

The numerical experiments have been performed for classic tetraskelion force artefacts
(CS and DS) having platform arm length 1 mm and 5 mm; suspension beam length
between 4 mm and 12 mm, width between 1 mm and 5 mm and thickness between 0.1

and 0.5 mm and elbow angles, 90°, 135° and 180°. These type of results have not been
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seen in any public domain documents. The tetraskelion software program predict the same
stiffness values CS and DS force artefacts ( TTSFA-CS-90, TTSFA-DS-90, TTSFA-CS-135,
TTSFA-DS-135, TTSFA-CS-180, & TTSFA-DS-180 with elbow angles 90°, 135° and 180 °)
with the same choices of beam dimensions. The physical experiments have shown a pretty
big difference in stiffness values for CS and DS force artefacts that are given in table
If the model is implemented properly, this suggests the more heavily over-constrained

tetraskelions is not satisfactorily modelled by these methods.

The computed axial stiffness of the platform k, in these numerical experiment is inde-
pendent of the elbow angle and arms length. The linear elastic model imposes restrictions
(relating to idealised connections for transmission of forces between the elements) that
allow only z-translation of the platform only couple to the bending modes of the suspension
beams of tetraskelion models (in the own xz planes). The linear elastic model works as
expected on the other dimensional parameters, consistent with linear elastic theory for the
individual beams. These results will be compared to the linear and non-linear behaviour of

a range of physical polymeric tetraskelion force artefacts in the next chapter.

The numerical experiments only studied axially-symmetric designs. It is confirmed
by the new tetraskelion program that all direction of the platform tilt provide the same
torsional stiffness A,. Looking consistently across all the designs, there is a tendency for
torsional stiffness A, to increase slightly with the elbow angle. This effect is probably not
strong enough to be a major design consideration, at least for the very small moments for
which the linear elastic model might be assumed adequate. However, it suggests that centre
symmetric or diagonal symmetric tetraskelion force artefacts might allow a compact design
useful for micro probes, where modest torsional stiffness is required. There might also be
other cases for using a large elbow angle for force transfer artefacts, where highest torsional

stiffness is desirable.
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Chapter 9

Best Choices of triskelion and
tetraskelion force artefacts for

industrial applications

9.1 Introduction

This chapter describes the validation of triskelion and tetraskelion samples by using the two
software programs (triskelion and tetraskelion software simulations). Both Triskelion and
tetraskelion software programs are based on enhanced linear elastic models for the variant
design of triskelion force artefacts. The enhanced linear elastic model has the ability to set
independently all potential design parameters such as the elbow angles of triskelion force

artefacts (which appear not to be have been studied perviously).

Linearity is extracted from the whole range of experiments on the classic and angle
beams triskelion and tetraskelion force artefact samples. The performance and linear ranges
were investigated for both triskelion and tetraskelion force artefact samples, both to deter-

mine valid ranges for the models and to established convenient ranges for practical artefacts.

Moreover, the numerical experiments are extended to explore the effects of the elbow
angles for the best designs of micro probe suspension and force artefacts for industrial

applications.
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9.2 Measurements of beam parameters of triskelion and

tetraskelion force artefact’s samples

The characterization of all the physical samples was discussed in detail in chapter 5. The
simple manufacturing method used could lead to relatively large sample-to-sample and
batch-to-batch variations in beam parameters that are important when comparing model
results. The length (¢) and width (w) of the beam were measured with good precision
and repeatability by either microscope (using a WYKO NT2000 Profiling System) or
digital Vernier Calipers. Measurement of thickness (¢) has higher uncertainty because
the dimension is smaller and the beams are, in practice, neither uniform nor flat. Again,
different methods were used on different samples. The particular significance here is that
beam stiffness depends on the cube of thickness and so this measurement uncertainty
reflects strongly into how closely it is reasonable to expect model to compare to physical
tests; the dependency on width and inversely on length cubed will likely have smaller
significance. The measured values are reported in tables and and the
relevant ones repeated within the Tables [0.1] to [9.4] of this chapter.

The other critical parameter is Young’s modulus, which is poorly defined for the hand-
mixed resins used in this work. It was impractical to measure it on the thin beams of the
actual samples. However, device stiffness is in principle proportional to Young’s modulus.
This allows it, subject to maintaining physically sensible values, to be used rather like an
empirical scaling factor in the models.The general literature suggests that it is likely to
be in the region of 2 GPa to 3 GPa for tests on bulk material (polymer) of this type. A
preliminary study of the model prediction indicated that taking E =~ 2.9 GPa tended to
give a better match to the test results than did lower values. Unless otherwise stated, it is

used in all the comparisons discussed in this work.

9.3 Validation of classic and angle-beam triskelion force arte-

facts with elbow angle 60°

The classic triskelion micro probe suspension design with elbow angle 60 ° is very popular

in industries. For example, IBS and NPL have a used classic triskelion micro probe
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suspension design with 60° elbow angle. Jones [I148] has also adapted a classic triskelion
micro probe suspension design with 60° for force aretfacts. The first example for linear
model prediction is considered for classic triskelion force artefact’s sample CTS2-60 with
elbow angle 60° having nominal beam parameters (¢ = 0.00412 m , w = 0.00103 m and
t = 0.000190 m table & or repeated table and Young’s modulus = 2.9x10° Pa
(The exact value of Young’s modulus for triskelion and tetraskelion polymeric samples is

not know, but for polymer the Young’s modulus value lies between 2-3x* Pascals.

The triskelion software program predicts the stiffness k., as 918 N/m for sample
CTS2-60 of force artefact with elbow angle 60°. The experimental value of stiffness ..,
for sample CTS2-60 was measured by the bestspoke test-rig method presented in chapter
6 in table is 1100 N/m at the centre of hub and 1032 N/m at off-centre point of the
hub. Thus the ratio k., /k., for both experimental values at centre of hub & off-centre
point and validated value is found 1.19 and 1.12 respectively. The validated value is closer

to experimental values at the centre of hub and off-centre point, indicating errors 178 and

113 N/m respectively.

The second example for linear model prediction considered here is for the sample
ABTS] of angle-beam triskelion force artefact have beam parameter (¢ = 0.00410 m, w =
0.00101 m and ¢t = 0.000159 m table or repeated table . The triskelion software
program predicts the stiffness k., equal 512.48 N/m for sample ABTS1-60 of force artefact

with elbow angle 60°. The experimental value of stiffness k for sample ABTS2-60 was

Zexp
measured and presented in chapter 7 in table is 536 N/m at the centre of hub and 503
N/m at off-centre point of the hub. Thus the ratio k.,,,/k., of experimental values at
centre of hub & off-centre point and validated value is found 1.04 and 0.98 respectively. The
validated value is closer to experimental values at the centre of hub and off-centre point,
indicating errors 24.47 and -9.1 N/m respectively. The validation experiment predicts the

stiffness value that was closer to the experimental values at their centre of the hub and the

off-centre point of the hub of sample ABTS1-60 with elbow angle 60 °.
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The third example for linear model prediction considered here also relates to the sam-
ple of classic triskelion force artefact CSTS1-604 with elbow angle 60° that have beam
parameters (¢ = 0.00420 m, w = 0.001 m and ¢t = 0.000350 m table or repeated ta-
ble . The thickness of sample CSTS1-60 was doubled as compared to sample CTS1-60
and CTS2-60. The triskelion software program predicts the stiffness k., equal 5034 N/m for

sample CSTS1-604 of the force artefact. The experimental value of stiffness k for sample

Zexp
ABTS2-60 was measured 5288 N/m at the centre of the hub and 5022.37 N/m at off-centre
point presented in chapter 6 in table The ratio k.,,/k., of experimental values at
centre of hub & off-centre point and validated value is found 1.05 and -0.99 respectively.

The validated value is closer to experimental values at centre of hub and off-centre point

indicating errors 253.52 and -0.0025 N/m respectively.

9.4 Effects of elbow angle on classic and angle-beam triske-

lion force artefacts

The results of various physical and computational experiments on classic and angle-beam
triskelion force artefact designs having elbow angle of 60°, 90° and 120 ° are presented and
discussed in chapters 6 & 7 and 4 & 8. The main values are also summarized within in
tables and The predicted and measured values of stiffness are at similar
numerical levels and show some patterns of variation with geometrical patterns. In a few
cases the divergence between predicted and actual stiffness is usually large, but there is no

evidence that it is fundamentally associated with a particular design.

Taking account of inevitable uncertainties, the novelty and validity of an enhanced linear
elastic model is confirmed from the validation experiments of classic and angle-beam sample
of triskelion force artefacts. The validation results also confirm the validity of the triskelion
software program. The triskelion software program discussed in chapter 4 is considered
a powerful tool for predicting the stiffness of classic and angle-beam samples of triskelion

force artefacts.
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9.5 Performance and linear ranges for triskelion for artefacts

The performance of classic and angle-beam samples of triskelion force artefacts are shown
in figures and for their linear region. The angle-beam samples of force
artefacts are more sensitive as compared to classic samples of triskelion force artefacts.
The performance of classic samples of force artefacts are shown in figures 0.1 and [9.2] It
is important that force transfer artefacts present a clearly force-displacement curve (i.e.
constant stiffness) over a useful working range of displacement. This was explored in
section 6.5. The ‘linear’ range was defined as coefficient 1 in cubic equation [6.10} The
actual characteristics of a selection of classic and angle-beam triskelion force artefacts are
summarized within their linear ranges in figure [9.1] to The classic samples with elbow
angle 60° have a higher range of 500 yum as compared with having elbow angle 90° and

120°, which have a working linear region of 400 um and 250 pm respectively.

The angle-beam samples have working linear region a little higher than those of the
otherwise similar classic designs: 600 pm, 400 pym and 300 pum for elbow angles 60°, 90°
and 120 ° respectively. The performance of angle-beam force artefacts is show in figures
and

9.6 Effects of elbow angle on classic and angle-beam tetraske-

lion force artefacts

The experimental and predicted results of classic and angle-beam tetraskelion samples of

force artefacts are presented in tables [9.9] 0.10[0.-11] and [9.12] It was expected that the

addition of an extra leg in triskelion suspension will also increase the stiffness of the device.
Both predicted and experimental results confirmed that tetraskelion samples of force arte-
facts have higher values of stiffness as compared to triskelion samples of either type of force
artefacts. Angle-beam samples of tetraskelion force artefacts have a lower value of stiffness
that is closer to that of triskelion samples of force artefacts. The validated values of stiffness
are closer to the experimental values of stiffness. The ratio k..,,/k., experimental values
at centre of hub & off-centre point and predicted values for tetraskelion and angle beam

samples of force artefacts CTTS1-CS-90, CTTS2-CS-90°, CTTS1-CD-90, CTTS2-CD-90,
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ABTTS2-90-CS & ABTTS1-CD-90 with elbow angles 90 © are given in Tables[9.9]
and The experimental values of stiffness at off-centre points of the hub are also seen
to be closer to the predicted value of stiffness. The predicted results presented in tables
and confirm the novelty and stability of enhanced linear elastic model. The accuracy of
the tetraskelion software program is confirmed by the predicted values of stiffness for those
novel designs, within the valid range of linear elastic model. Thus, the enhanced linear

model may also be used to predict the stiffness of any “n” legs suspension design for micro

probe or force artefacts by the relatively trivial adaptation of the current software program.

9.7 Performance and linear ranges for tetraskelion for arte-

facts

The working performances of classic and angle-beam samples of force artefacts are seen
as being similar to classic and angle-beam triskelion samples of force artefacts. The linear
range for classic and angle-beam tetraskelion force artefacts samples are around 200pm. The
classic and angle-beam tetraskelion samples of force artefacts have more strongly stiffening
spring characteristics as compared to classic and angle-beam triskelion samples of force

artefacts.

9.8 Enhanced numerical experiments for triskelion and

tetraskelion force artefacts

The numerical results have been presented for triskelion and tetraskelion force artefacts in
chapter 4 and 8. These results have motivated the author to explore the best triskelion
and tetraskelion designs for the micro probe suspension and force artefacts. The enhanced
numerical experiments for triskelion and tetraskelion force artefacts are investigated in this
section. The approach and methodology are the same as used previously, as does the style
of presentation. Triskelion design are briefly, considered in the subsection 1.9.1 in figures[9.5]
to Then, tetraskelion designs are reviewed in subsection 1.9.2 and figures to
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9.8.1 Enhanced numerical experiments for triskelion artefacts with elbow

angle 60°, 45°, 30°, and 15°

1. It is evident from figure that stiffness k, is independent of the arm length ay, and

of elbow angle.

2. Figure shows that the value of torsional )\, stiffness steadily increases by increasing

the elbow angle of the force artefacts. It increases with arm length a, as expected.

3. Figures and confirm that stiffness k. is independent of the elbow angle.
The relationship of k, to the beam length ¢, width w and thickness t are as expected,

respectively inverse cubic, linear and cubic.

4. Figure shows that increasing the elbow angle, the increase of torsional stiffness
Az steadily but not linearly. Increasing the beam length decreases torsional stiffness
Az- The relationship with length approaches the inverse square law expected for
both the torsion and bending of an individual suspension beam. Figure [9.11] confirms
that the torsional stiffness A, for all triskelion force artefacts increases linearly with
increasing the beam width as expected for both torsion and bending of suspension
beam. Figure shows that relationship with thickness approaches the cubic law

expected for both torsion and bending of an individual suspension beam.

9.8.2 Enhanced numerical experiments for tetraskelion artefacts with el-

bow angle 60°,45°, 30°,and 15°

1. The relation between arm a, and stiffness k, for all triskelion force artefacts with
elbow angles 60°,45°, 30°,and 15° is same i.e 1250.00 N/m. It is evident from the
figure that stiffness k, is independent of the arm length a.

2. The relationship between arm length a, and axial torsional stiffness A, for all triskelion
force artefacts is shown in figure It is evident from the figure that the value of
torsional A, stiffness steadily increases by increasing the elbow angle of the force

artefacts. The force artefacts with elbow angle 15° have a low value of A;.

3. The relationship beam length ¢ & stiffness k., beam width w & stiffness k., and beam
thickness ¢ & stiffness k. in figures [0.15] [0.16] and [0.17] clearly indicate that stiffness
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k. is independent of the elbow angle for all force artefacts with elbow angles 60 °,45°,

30° and 15°.

. The actual stiffness in figure for the beam length of 4 mm and 8 mm are
1250.00 N/m and 156 N/m (for E= 2.5x10%) with the ratio 8 that is expected by

cubic law.

. The actual stiffness in figure [0.16] for the beam width of 2 mm and 1 mm are

2500.00 N/m and 1250 N/m (for E= 2.5x10°) with the ratio 2 that is expected

. The actual stiffness in figure for the beam thickness of 0.8 mm and 0.4 mm are
10000.00 N/m and 1250 N/m (for E= 2.5x10%) with the ratio 8 that is expected by

cubic law.

. Figure[9.18|clearly shows as we increase the elbow angle, the value of torsional stiffness
Az also increases steadily but not linear. If we increase the beam length, the value of
torsional stiffness A\, decreases. The relationship with length approaches the inverse
square law expected for both torsion and bending of an individual suspension beam.
The actual stiffness values for the beam length of 0.8 mm and 0.4 mm are 22.5 N/m

and 95.0 N/m, with a ratio 0.236.

. Figure [9.18| clearly shows the torsional stiffness A\, for all tetraskelion force artefacts
increases linearly with increasing the beam width as expected for both torsion and
bending of suspension beam. The actual stiffness value for the beam width of 0.2 mm

and 0.1 mm are 192.00 N/m and 95.00 N/m, with a ratio 2 expected.

. Figure [9.18] clearly shows, the torsional stiffness increases A, rapidly by increasing
the thickness of the beam and also increases slightly with the elbow angle of the
tetraskelion force artefacts. The relationship with thickness approaches the cubic
law expected for both torsion and bending of an individual suspension beam. The
relationship with thickness approaches the cubic law expected for both torsion and
bending of an individual suspension beam. The actual stiffness value for the beam
thickness of 0.4 mm and 0.2 mm are 747.00 N/m and 95.00 N/m, with a ratio 7.86

that is close to the 8 expected by cubic law.
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9.9 Major Applications of triskelion and tetraskelion force

artefacts

This thesis has presented a systematic study, by means of computational and physical
testing, of the effects of varying the elbow angle in both classical and angle-beam devices.
It has also similarly explored tetraskelion designs. The following, general trends may become

important future application:

1. All current (2014) commercial IBS and NPL triskelion suspension designs have an
elbow angle of 60°. The recent work presented in this thesis indicates that classic
triskelion suspension designs with elbow angles 15°, 30 °, 45 ° could be considered to be
the best designs for some probe system because they have lower torsional stiffness A, as
compared to triskelion with elbow angle 60 °. A more robust low-stiffness device might
be achieved using smaller elbow angles. The triskelion suspension design with elbow
angle 15° shown in figure may encounter technical problems in its fabrication.
Two other classic triskelion and angle-beam suspension designs shown in figure [9.23
and [9.22| with elbow angles 30° & 45 °. These triskelion suspension designs with elbow
angles 30° & 45° are confirmed by the numerical experiments, and might become
improved designs for some micro probe suspensions. These designs might be popular
in the future for industrial applications, where they will have lower sensitivity to slight

misalignment of the applied test force.

2. The other applications of triskelion suspension designs are for force transfer artefacts,
which require a more stiff characteristic. Therefore, classic triskelion suspension de-
signs with bigger elbow angles 180°, 150°, 120°, and 90° (discussed in chapter 4)
should be considered. They have a higher value of torsion stiffness A, as compared
to classic and angle-beam triskelion suspension designs with elbow angles of 60° or
less (45° 30°, ,15°). The classic and angle beam triskelion designs with higher rela-
tive value of torsional stiffness A\, have great potential for industrial applications of

triskelion force artefacts.

3. Current commercial triskelion designs exploit the classic architecture. However, both
numerical physical experiments here indicate that angle-beam design can be very

effective. They present lower stiffness than the classic designs of the same overall size
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while using thicker, potentially more robust flexure beams. They behave similarly to
classic design in term of elbow angle. Despite having relatively low levels of quasi-

kinematic constraint, they do not exhibit instabilities at the scales tested.

4. Tetraskelion designs have been shown to be effective and potential alternative to
triskelions. They offer a different torsional range relative to linear stiffness that might

justify addition complexity in some force artefact applications.

5. Although originally introduced in this work as an experimental convenience, polymeric
triskelions have proved to be very effective. They offer a combination of stiffness and
robustness not available in the other materials and open up the possibility of low-cast
mass production. On the evidence in this thesis, they have considerable practical

promise and are clearly worthy of further extensive investigations.

9.10 Best triskelion and tetraskelion suspensions designs

A complete picture of axial stiffness k, and torsional stiffness A, for triskelion and tetraske-
lion force artefacts force artefacts with elbow angles 15°, 30°, 45°, 60°, 90°, 120°, 150°
and 180° have been shown in figure and This figure clearly shows that
all triskelion force artefacts have the same value of axial stiffness 938 N/m. Researchers
and industrial experts could not decide about the best triskelion suspension design for
microprobe on the basis of axial stiffness. The curve of torsional stiffness values clearly
shows the triskelion force artefacts with elbow angles 15°, 30°, 45° have low values of
torsional stiffness as compared to triskelion force artefacts with elbow angle 60°. The
triskelion suspension for the micro probe is very papular in industries. Researchers and
industrial experts (NPL and IBS) have continued to use triskelion suspension design
since 2000. The extensive study of numerical experiments have confirmed that triskelion
suspensions are designed with elbow angles 15°, 30° and 45° can generate better results

for the triskelion micro probe .

Similarly in figure the force artefacts with elbow angles 15°, 30°, 45°, 60°, 90°,
120°, 150° and 180° have also have same values of axial stiffness k, 1250 N/m. Not all

of these force artefacts were able to give indication about the best design tetraskelion
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suspension designs for micro probe and transfer force artefacts. The tetraskelion force
artefacts with elbow angles 15°, 30° and 45° also have low value of stiffness compared to
tetraskelion force artefacts with elbow angle 60°. Numerical experiments confirm tetraske-
lion suspension design for transfer force artefacts with beam parameters (¢ = 4.5 mm, w=
1.1 mm, t= 0.2 mm), Young’s modulus = 2.5 x10° Pascal for pure z-displacement =
5x107%m, & 6,= 1x1073 rad for tetraskelion force artefacts have values axial stiffness k.
965 & torsional stiffness A\, = 4150 Nm/rad, k, 965 & torsional stiffness A\, = 3114 Nm/rad
and k, 965 & torsional stiffness A\, = 2462 Nm/rad for elbow angle 45°, 30° and 15° as
compared to triskelion design with elbow angle 60° and beam parameters (¢ = 4 mm, w=
1.1 mm, t= 0.2 mm), Young’s modulus = 2.5 x10? Pascal for pure z-displacement =
5x107%m, & 6,= 1x1073 rad have k, 1031 N/m & torsional stiffness \,= 5270 Nm/rad.
The tetraskelion suspension design with elbow angles 15°, 30° and 45° may also generate
better results if they are used for a micro probe as compared to triskelion suspension with
elbow angle 60°, which has higher torsion stiffness. However, tetraskelion suspensions
designs with elbow angles 90°, 120°, 150° and 180° are considered best designs for force

artefacts for industrial applications.

The arm length a, was made double 4 mm in figures and as it was 2 mm
in figures and while the beam parameters were kept same in these figures. The
general pattern of behaviour in figures to [9.15] is monotonic. The consistency in the

shape of the curves between different styles is remarkable.

9.11 Conclusion

Comparisons of the results of the physical tests on triskelion and tetraskelion force artefacts
have confirmed the validity of the enhanced linear elastic models of design tools. Triskelion
and tetraskelion software programs are based on newly enhanced linear elastic models that
are powerful tools for predicting the short-range stiffness k., and axial torsional stiffness A,
for classic triskelion, angle-beam triskelion, and tetraskelion micro probe suspensions and
force transfer artefacts. Moreover it is confirmed that, although the real devices of these

types have stiffening spring characteristics, an assumption of (adequately) linear behaviour
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holds over a very usefully larger range of displacement.

Further numerical investigations have confirmed that trends observed and reported in
earlier chapter continue: very similar patterns of torsional stiffness increasing non-linearity
with elbow angle were seen for all designs studied. The classic and angle-beam suspensions
for micro probe with elbow angles 30° or 45° might provide an alternative choice for
triskelion micro probe suspension designs that offer better performance for some industrial

and research purposes.

This work also indicates that triskelion and tetraskelion suspension designs with
larger elbow angles such as 120°, 150° or even 180° might be considered to be the best
designs for some types of the force artefacts. Of particular interest in this regard is the po-

tential to increase torsional stiffness for a given z-stiffness within relatively compact designs.

While it is no surprise to confirm that angle-beam designs offer lower stiffness than
otherwise similar classic designs, the research work indicates that they remain mechanically
stable and predictable. They can, therefore, offer the promise of a more robust, compact

device with low stiffness, which might be advantageous to some industrial applications.

The comparison studies have shown that making triskelion and tetraskelion suspensions
from polymer leads to devices that are predictable and repeatable. This potentially opens

up a whole new range of cost-sensitive applications.

Further numerical investigations have confirmed that trends observed and reported
in earlier chapters continue: a very similar patterns of torsional stiffness increasing non-

linearity with elbow angle were seen in all designs studied.

Finally, enhanced numerical experiments of triskelions indicate that classic triskelion
suspension designs with elbow angles 30°, 45° could be considered to be the best designs
for some probing. The new family of triskelion ‘tetraskelion, designs may also have great

potential for industrial applications of force artefacts.
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Figure 9.1: Classic triskelion force artefacts ((a), (b), (¢), & (d) with elbow angle 60° and
(e) & (f) with elbow angle 90 °) indicate their performances in the linear region
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Figure 9.2: Classic triskelion force artefacts ((g) & (h)with elbow angle 90° and (i), (j), (k)
& (1) with elbow angle 120 °) indicate their performances in the linear region
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Figure 9.3: Angle-beam triskelion force artefacts ((a), (b), (c), & (d) with elbow angle 60 °
and (e) & (f) with elbow angle 90°) indicate their performances in the linear region
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Figure 9.4: Angle-beam force artefacts ((g) & (h)with elbow angle 90° and (i), (j), (k) &
(1) with elbow angle 120 °) indicate their performances in the linear region
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Figure 9.5: Graph for arm length versus computed results for axial stiffness k. of triskelion
force artefacts CTSFA-60, CTSFA-45, CTSFA-30, & CTSFA-15 with elbow angles 60°,
45°,30°, and 15°
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Figure 9.6: Graph for arm length versus computed results for torsional stiffness k, of
triskelion force artefacts CTSFA-60, CTSFA-45, CTSFA-30, & CTSFA-15 with elbow angles
60°, 45°, 30°, and 15°.
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Figure 9.7: Graph for beam length versus computed results for axial stiffness k. of triskelion

force artefacts CTSFA-60, CTSFA-45, CTSFA-30, & CTSFA-15 with elbow angles 60 °, 45°,
30°, and 15°
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Figure 9.8: Graph for variable beam length versus computed results for axial stiffness k,

of triskelion force artefacts CTSFA-60, CTSFA-45, CTSFA-30, & CTSFA-15 with elbow
angles 60°, 45°, 30°, and 15°.
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Figure 9.9: Graph for beam thickness verses computed results for axial stiffness k, of
triskelion force artefacts CTSFA-60, CTSFA-45, CTSFA-30, & CTSFA-15 with elbow angles
60°, 45°,30°, and 15°
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Figure 9.10: Graph for variable beam length versus computed results for torsional stiffness
Az of triskelion force artefacts CTSFA-60, CTSFA-45, CTSFA-30, & CTSFA-15 with elbow
angles 60°, 45°, 30°, and 15°.
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Figure 9.11: Graph for beam width versus computed results for torsional stiffness A, of
triskelion force artefacts CTSFA-60, CTSFA-45, CTSFA-30, & CTSFA-15 with elbow angles
60°, 45°, 30°, and 15°.
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Figure 9.12: Graph for variable beam thickness versus computed results for torsional stiff-
ness A, of triskelion force artefacts CTSFA-60, CTSFA-45, CTSFA-30, & CTSFA-15 with
elbow angles 60°, 45°, 30°, and 15°.
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Figure 9.13: Graph for variable arm length verses computed results for axial stiffness k,
of tetraskelion force artefacts CTTSFA-60, CTTSFA-45, CTTSFA-30, & CTTSFA-15 with
elbow angles 60°, 45°, 30°, and 15°
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Figure 9.14: Graph for variable arm length versus computed results for torsional stiffness

k, of tetraskelion force artefacts CTTSFA-60, CTTSFA-45, CTTSFA-30, & CTTSFA-15
with elbow angles 60°, 45°, 30°, and 15°.
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Figure 9.15: Graph for beam length versus computed results for axial stiffness k. of tetraske-
lion force artefacts CTTSFA-60, CTTSFA-45, CTTSFA-30, & CTTSFA-15 with elbow an-
gles 60°, 45°, 30°, and 15°
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Figure 9.16: Graph for variable beam length versus computed results for axial stiffness k,

of tetraskelion force artefacts CTTSFA-60, CTTSFA-45, CTTSFA-30, & CTTSFA-15 with
elbow angles 60°, 45°, 30°, and 15°.
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Figure 9.17: Graph for beam thickness versus computed results for stiffness axial k., of
tetraskelion force artefacts CTTSFA-60, CTTSFA-45, CTTSFA-30, & CTTSFA-15 with
elbow angles 60°, 45°, 30°, and 15°
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Figure 9.18: Graph for variable beam length versus computed results for torsional stiffness
Az of tetraskelion force artefacts CTTSFA-60, CTTSFA-45, CTTSFA-30, & CTTSFA-15
with elbow angles 60°, 45°, 30°, and 15°.
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Figure 9.19: Graph for beam width verses computed results for torsional stiffness A, of
tetraskelion force artefacts CTTSFA-60, CTTSFA-45, CTTSFA-30, & CTTSFA-15 with
elbow angles 60°, 45°, 30°, and 15°.
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Figure 9.20: Graph for variable beam thickness verses computed results for torsional stiffness

Az of tetraskelion force artefacts CTTSFA-60, CTTSFA-45, CTTSFA-30, & CTTSFA-15
with elbow angles 60°, 45°, 30°, and 15°.
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Figure 9.21: The simplified model for triskelion force artefacts with elbow angle 60 °.

Figure 9.22: The simplified model for triskelion force artefacts with elbow angle 45 °.
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Figure 9.23: The simplified model for triskelion force artefacts with elbow angle 60 °.

Figure 9.24: The simplified model for triskelion force artefacts with elbow angle 45°.
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Figure 9.25: The simplified model for tetraskelion force artefacts with elbow angle 60 °.

Figure 9.26: The simplified model for tetrakelion force artefacts with elbow angle 45 °.
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Figure 9.27: The simplified model for tetraskelion force artefacts with elbow angle 60 °.

Figure 9.28: The simplified model for tetraskelion force artefacts with elbow angle 45 °.
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Table 9.13: Performance of classic and angle-beam triskelion samples of force artefacts.

Sample ID | Linear region m | Sample No. | Linear region m
CTS1 500 ABTS1-60 600
CTS2 500 ABTS2-60 600
CTS1 400 ABTS1-60 500
CTS2 400 ABTS2-60 500
CTS1 250 ABTS1-120 300
CTS2 250 ABTS2-120 300
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Chapter 10

Conclusion

Low force and formal metrology measurement has been a demanding research area since
around the year 2000 and has great importance in biophysics, biotechnology and other
areas of research in the sciences. This thesis presents novel contributions for traceability
of low force for industrial applications. The aims, objectives and specifications for this
program of research work were set out in chapter 1. These aims and objectives were
successfully achieved. The contributions of the research work performed that highlights to
improved understanding, design and application of the triskelion-like planar flexures some
time used as micro-probe suspension and potentially as source of physical artefacts for

traceable low force calibration in industrial applications. The scope of thesis is summarised

in figure [10.1}

This thesis contains six key areas of novel contributions for low force traceability that
have great importance in metrology and nanotechnology. The first area describes extensive
review confirmed/revealed that all published research work on triskelion style devices
(triskelion force artefacts or triskelion micro-probe suspension) concentrated for no clearly
explained reasons on a very narrow range of possible design variants. The major thrust of

this is to examine whether other designs have pointed benefits further applications.

The second area is based on an extended version of the published linear elastic model
of triskelion suspension that has been devised and implemented, giving user control over of

geometric parameters. In particular the model systematically handle arbitrary number of
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Enhanced Linear Elastic Model for
Triskelion and Tetraskelion Suspensions
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Analytical Model for Angle-beam Triskelion
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Triskelion Software Program
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Tetraskelion Software Program

Numerical Experiments for Triskelion Force Artefacts

Numerical Experiments for Tetraskelion Force Artefacts
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|

@ / Development of Test-Rig Method and Measurement of stiffness

Classic Tetraskelion and Angle-heam force artefacts

I[ Classi Triskelion and Angle-beam force artefacts

Validation of Classic and Angle-beam Triskelion Force Artefacts

Validation of Classic and Angle-beam Tetraskelion Force Artefacts

Extended Numerical Experiments for Triskelion and
Tetraskelion Force Artefacts

Improved Best Trisskeion and Tetraskelion
Suspension Designs

Figure 10.1: The scope of the research work performed in this thesis.
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suspension limbs and arbitrary ‘elbow angle’ in those limbs.

The third area covers a spacial test-rig method that has been developed for physically
evaluating devices under loads in the 1 mN to IN region and deflection up to around 1
mm. Tests with it have verified the reasonableness of new models for describing small
defection behaviour of triskelion and tetraskelion devices. Further tests have established
that the expected stiffening spring characteristic of these devices is present and tends to
follow closely a cubic force-displacement relationship. It is shown that these devices have
an effectively linear range quite adequate for many applications as micro-probe suspensions

or force transfer artefacts.

The fourth area focuses on the results that clearly confirm the novelty and stability of
enhanced linear elastic model and capability to predict the stiffness for variant designs of
triskelion and tetraskelion suspensions or distribution of “n” suspension beams around the
centre of platform (hub) with elbow angle from 15° to 180°. Polymeric devices have been
made using a very simple technique, readily made more consistent for low-cost production.
They performed even better than expected, leading to further exploration being one of the
main recommendation for this research work. They offer the designer new options in terms

of combination of overall size, robustness and stiffness.

The fifth area discuses physical and computational experiments that controlling the
elbow angle provides alternative means for adjusting the overall values and ratio between
linear and angular stiffness in these type of devices. Torsional stiffness increases monoton-
ically but non-linearity with angle. Controls of this stiffness ratio is (to different targets)

important for both micro-probe suspension and force artefacts.

The sixth area describes the classic triskelion suspension, and uses a relatively rigid
inner arm section for its limbs. Physical and computational experiments confirm the intu-
ition that alternative “angle-beam” design offer lower stiffness and so offer further options.

Moreover it is shown that the reducing levels of elastic (quasi-kinematic) constraints do
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not lead to low mechanical stability.

Finally, compact triskelion devices can offer different linear and torsional stiffness to

triskelion in ranges that might be advantageous for some force transfer artefact applications.

10.1 Recommendation for the future production of triskelion

and tetraskelion devices

The experiments performed in this thesis suggest that small polymeric devices perform
very well, even with very simple methods used. This opens up new, attractive options for

low-stiffness, robust suspensions and further study is strongly recommended.

For industrial applications, the injection molding technique is also recommended for
the mass production of triskelion and tetraskelion suspension designs for micro probe and

force artefacts.

Furthermore, the following suggestion is also recommended for the future research work.

e The casting technique has inevitably a limited dimensional precision but can still
produce quite reasonable consistency that has been seen from device to device. The
promising results indicate its good prospects for low force technology. The accuracy in
the practical stiffness of force artefacts may also be achieved by using stereolithography

technique.
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Appendix A

Basic stiffness, compliance
matrices and triskelion arm

A.1 Basic stiffness and compliance matrices

For simpler illustration of the derivation of the stiffness matrices from the elemental equa-
tions, a reduced version involving only x and z axis is used.

Elemental equations for a cantilever:

LS
L2
= ——M A2
L2
0, = Yo (A.3)
L
0 = —pMy (A.4)
and
L
0p = —F, A5
iE (A.5)
L
0, ~ —DM, A
%G (A.6)
with
w
A = % (A.8)
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and

w
(For thin section). Ignoring the y-axis (to save space !) in compliance form we have
A = [K]|F (A.10)
or
5n £ 0 0 0 F,
412 6L
T T IR - S £ (A.11)
0 wt | 0 0 &gz O M,
0, 0 -2 0 5 M,

Rather than fully inverting [C], solve the elemental equations directly, assessing linear

superposition.
El L 1
—0, = —F,— =M, A.12
L? 3 277 (A.12)
El L
Tey —§FZ + M, (A.13)
—
EI (6, 69 L L
—(Z24+=) = (Z-Z)F, A.14
r(z+3) - G-9) (a1
and
12ET (6, 06,
y = — | =+ = Al
= (2+3) (a15
—
EI /36, 204 3
— — ) = [—=+2| M A.16
D (T 7)) = (arem (4.16)
and
2E1 (36,
Hence the ‘compared’ stiffness matrix is
F = [K]A (A.18)
or
F, E 0 0 0 Oy
t|o & o -ZZ
K rro 0, Tar || (A.19)
M, L |0 0 = 0 0.
M, 0 _%f 0 %752 0y
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A.2 Triskelion arm: beam length ratio and stiffness

Consider one leg from a triskelion with a 90° elbow angle, that being a single, simple case
to model. The rigid arm length is a and beam has dimension (¢ x w x t).

Platform tilt will be better constrained by longer arms, accordingly to the intuition that as
a increases the z-deflection of the beam increases for a given tilt and the moment induced
by the reaction force that deflection also increases.

Assume, a pure tilt 0 directly towards the beam. The beam experience a an end displace-
ment af but no end rotation on the §, beam axis (in the first approximation). However, it
does experience a rotation in its ;. Extracting from the stiffness equations given by [14]

and equation ([3.24))

2 2

F, Euwt %2 g 57 0z

M, = |0 £ 0 O (A.20)
t? 3

My bYi O 3 Y

Then substituting 0, = 0,0, = 0,6z = af, we have

Mtotal _ (CLFZ +Mx> _ Ewt <a2t2 3]52> _ EDLUt3 <1 a2> (A21)

0 0 ¢ w3 ¢ \ste

The direct torsion is less important, when a > ¢/2, but starts to dominate as a approaches
¢/4. Only as a approaches ¢ is length does there become a significant effect from the lever
arm. Other second-order displacements will tend to add further stiffening, but this simple
guideline remains of retains illustrative.
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Appendix B

Computation schema and codes for
triskelion program,

B.1 Computation schema for triskelion Program

A. Input a forced displacement of the platform (6-vector), function (dpl.m)

e Force 0, 6y, 0, to zero.

e Model uses linear beam theory and small-angle approximations for moments effects.
therefore, restrict input to 0, < ¢ (beam thickness); d6,, 46, < 0.01 rad.

B. Compute overall displacement at the extremities of the platform, function
(dbp.m)

e Length to anchor points on a platform resolved to give lever lengths for additional
z-deflections (660, a sina, §0; a cosa).

e Rotation simply resolved as their unit vectors (cosa, sina,0)”

e For global frame, rotations preserved, so encode operation in (6 x 6) matrix that
modifies only z-term of the 6-vector.

C. Input dimensions and elastic constants for the suspension beams (assume all
equal), function (csa.m)

e Set,local body, fixed frames with x-axes along the individual beams and z—axes .
Calculate (6 x 6) stiffness matrix in the body frame, for the end case.

e Note in this frame a 60, rotation gives a z—deflection.
D. Use given arm orientations («) to establish to establish orientations (f) in
the global fram for the x-axes of the beams, by hand as ‘input’.

E. Transform the global frame (or anchor point) displacements to the body
frame of the relevant suspension beam, function (ctm.m)

e Translations and rotations transform independent in this case which always involves
only rotation about the (common) z—axes.
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e Remember, global — local is the form:

cos(a;) sin(a;) 0O
—sin(a;) cos(ay) 0 (B.1)
0 0 1

F. Compute, in the body frames, the forces and moments needed to cause the
end displacements of the suspension beams, function (psb.m)

e F = [K]x, 6-vectors.
e By Definition, these represent the reaction forces at the end of the hub arms (Newton’s
third law), but are expressed in different frames.
G. Transform the individual force vectors (6) into the global frame using the
relevant value for S, function (gtbc.m)

e Local — global, so transpose of the transformation used at E.

e Strictly, force on platform is -ve of that on beam.
H. Now in global frame (but also in body frames since z-rotation!) Sum F, at
each arm to establish the z-stiffness, functions (plstif.m + cfmg.m)

e Force ‘imposed’ on platform is is -ve of forces at the hub anchor points (i.e., same
signs as those on beams).

o K, =3(F,/d,), where §, originally is imposed.
J. For each, in turn, of the global z— and y—axes, take moment about the
platform centre for all the arms reactions and sum to give the imposed moments

needed. Hence compute the tilt stiffness about each axis, function (plstif.m +
cfmg.m)

e ‘Imposed’ forces and moments are -ve of those at hub anchor points.

e Serval terms are involved.

M,
Ay = & B.2
- (B.2)
and
M,
Ny = & (B.3)
Oy

o —Y(F,a cosa;) about y—axis.

e Y (F,,a sina;) about r—axis.

276



Then

and
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B.2 Triskelion program: MATLAB codes

% Aim: Function to generate single column matrix from six input vector.

#Pre-Condition:The total inputs are six but three of them
% (dx=dy=dthetaz =0)are set zero locally and remaining three vlaueses
%(dz,dthetax, dthetay) user has to enter for executing the function.

%Post-Condtion: Six values are displayed dx,dy,dz, dthetay,
%dthetax, and detheta z.

function Dp= dpl(dz,dthetax,dthetay)
dpl = [ 0; 0; dz; dthetax; dthetay; 0;];
Dp = dpl;

% Aim: Function to compute at Arm and Defection of the Platform.
%Pre-Condition:

% 7 input values are required for executing this function. Three of them

% are locally set equal to zero and remaining 4 values, wuser has to enter

% for execution the function.

%Post-Condtion:Execution of this function generates defection of three
%beams (matric 6x1) in Plat-Coordinates

function Ds= dbp(dz, dthetax, dthetay,a, alphal, alpha2, alpha3)

disp = dpl(dz, dthetax, dthetay);

angl = [alphal, alpha2, alpha3];
hangl = [ -pi/6, pi/2, -5*pi/6];
doa=zeros(6,6,length(angl));

for i = 1:length(angl)

doa(:,:,i) = [ 1, O, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0;
0, O, 1, (a*sin(angl(i))), - (axcos(angl(i))),0;
0, O, 0, 1, 0, 0;
0, O, 0, 0, 1, 0;
0, O, 0, 0, 0, 1; 1;

end
dbpl = doa(:,:,1)*disp;
dbp2 = doa(:,:,2)*disp;
dbp3 = doa(:,:,3)*disp;

dbp = [dbpl, dbp2, dbp3l;
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Ds = dbp;

% Aim:Function to generate stiffness matrix from requirement specification
% for suspension beams.

%Pre-Condition: 4 input values are required for this function. i.e. length 1
%width w,thickness t and E for three beams.

%Post-Condition: Execution of this function generates a matrix (6x6) for
ieach beam.

function C=csa(l,w,t,E)
%G = double(50e+9);
G = double(le+9);
%E = double(120e+9);
k = ((Gx(t"2)/E)*(1/3 - (((0.21%t)/w)*(1 - (t~4)/(12%xw"4)))));
csa = [1, 0, 0, 0,0,0; O,(w/1)"2,0,0,0, (-(w~2)/(2%1));
0, 0, (¢/1)72, 0, ((t"2)/(2%1)), O;
0,0,0,k,0, 0; 0, 0, ((t72)/(2%1)), 0, ((t~2)/3),0;
0, (-(w~2)/(2%1)),0,0,0, ((w~2)/3)];
C= ((Ext*w)/1l)*csa;

%Aim: Function to Compute, Transformation to the Plate form Coordinates.

%Pre-Condition: 3 input values of angles(betal, beta2,betal) are required for
%function ctm.

%Post-Condition: Execution of this function generates three matrices (6x1)
%for end defections of three beams.

function tm = ctm(betal, beta2,betal)

ang2 = [ betal, beta2, beta3];

tpc=zeros(6,6,length(ang2));

for j = 1:length(ang2)

tpc(:,:,j) = [ cos(ang2(j)), sin(ang2(j)), O, 0, 0, 0;
- sin(ang2(j)), cos(ang2(j)), O, 0, 0, 0;
0, o, 1, 0, 0, 0;
0, 0, 0, cos(ang2(j)),sin(ang2(j)), O;
0, 0, 0,-sin(ang2(j)),cos(ang2(j)), O;
0, 0, 0, 0, o, 1;1;
end
ctml = tpc(:,:,1);
ctm2 = tpc(:,:,2);
ctm3 = tpc(:,:,3);
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ctmp= [ctml,ctm2, ctm3];
tm = ctmp;

% Aim: Function to compute at Arm and Defection of the Platform.
%Pre-Condition:

% 7 input values are required for executing this function. Three of them

% are locally set equal to zero and remaining 4 values, user has to enter

% for execution the function.

#Post-Condtion:Execution of this function generates defection of three
Jbeams (matric 6x1) in Plat-Coordinates

function Ds= dbp(dz, dthetax, dthetay,a, alphal, alpha2, alpha3)

disp = dpl(dz, dthetax, dthetay);

angl = [alphal, alpha2, alpha3];
%hangl = [ -pi/6, pi/2, -5*pi/6];
doa=zeros(6,6,length(angl));

for i = 1:length(angl)

doa(:,:,i) = [ 1, O, 0, 0, 0, 0;
o, 1, 0, 0, 0, 0;
0, O, 1, (axsin(angl(i))), - (a*cos(angl(i))),0;
0, O, 0, 1, 0, 0;
o, O, o, 0, 1, 0;
0, O, 0, o, 0, 1; 1;
end

dbpl = doa(:,:,1)*disp;

dbp2 = doa(:,:,2)*disp;

dbp3 = doa(:,:,3)*disp;

dbp = [dbpl, dbp2, dbp3];

Ds = dbp;

% Aim: Function to compute Computation for Force(F_x,F_y,F_z) and
#Moment M_x,M_y and M_x.

%Pre-Condition: 14 input values dz, dthetax, dthetay,a,l,w, and t required
%by the user and two functions, csa & dsb are called.

#Post-Condtion: Execution of this function genrates the values of force and
Jmoment for three beams in form of three matrices (6x1)

function p =psb(dz, dthetax, dthetay, a,l,w, t, E, alphal, alpha2, alpha3,
betal, beta2, beta3)
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sm = csa(l,w,t,E);
q = dsb(dz, dthetax, dthetay, a, alphal, alpha2, alpha3,
betal, beta2, beta3);

psbl = smxq(:,1);
psb2 = smx*xq(:,2);
psb3 = sm*q(:,3);

p = [psbl, psb2, psb3];
%Aim: Function to Compute, Force back to Global Coordinates.

%Pre-Condition: 14 input values are required, the function dbp is also
hicalled.

#Post-Condtion: Execution of this function generates three matrices (6x1)
Jfor end defections of three beams.

function cbg = tgbc(dz, dthetax, dthetay,a,l,w,t, E, alphal, alpha2, alpha3,
betal, beta2, beta3)
psb(dz, dthetax, dthetay, a, 1,w, t, E, alphal, alpha2, alpha3,
betal, beta2, beta3);

1bf

tgc = ctm(betal, beta2, beta3l);

gdsbl = (tgc(:, 1:6)’ )*1bf(:,1);
gdsb2 = (tge(:, 7:12))*1bf(:,2);
gdsb3 = (tgc(:,13:18)?)*1bf(:,3);

sfgc = (gdsbl + gdsb2 + gdsb3);

sumtgc = [gdsbl,gdsb2,gdsb3,sfgcl;
cbg= sumtgc;

%Aim: Function to Compute, Force back to Global Coordinates.

%Pre-Condition: 14 input values are required, the function dbp is also
%hcalled.

%Post-Condition: Execution of this function generates three matrices (6x1)
%for end defections of three beams.

function sfm = cfmg(dz, dthetax, dthetay,a,l,w,t, E, alphal, alpha2, alpha3,
betal, beta2, beta3)
radius = a;

alphall = alphal;
alpha22 = alpha2;
alpha33 = alpha3;

csfm = tgbc(dz, dthetax, dthetay,a,l,w,t, E, alphal, alpha2, alpha3,
betal, beta2, beta3);

fbl= csfm(:,1);

fb2= csfm(:,2);

fb3= csfm(:,3);
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sigfzs = ((-fb1(3)) + (-fb2(3))+ (-£fb3(3)));

sigmxs = ((-fb1(4)) + (-fb2(4))+ (-fb3(4)) + ((-fb1(3)*radius)*sin(alphall)) +
((-fb2(3)*radius)*sin(alpha22)) + ((-fb3(3)*radius)*sin(alpha33)));

sigmys = ((-fb1(5)) + (-fb2(5))+ (-fb3(5)) - ((-fb1(3)*radius)*cos(alphall)) -

((-fb2(3)*radius)*cos(alpha22)) ((-£b3(3) *radius)*cos(alpha33)));
fms = [sigfzs, sigmxs, sigmys];
sfm= fms;

% Aim: Function to computate, Stress and Strain.

%Pre-Condition: To execute this function, 14 input values, dz, dthetax,
%dthetay,a,l, and w. Function psb is also called here.

#Post-Condtion: Execution of this function genrates matrix (2x3). The first
/line indicates values of stress and second for strain of three beams.

function S=sigma(dz, dthetax, dthetay, a, 1, w, t, E, alphal, alpha2, alpha3,
betal, beta2, beta3)

pg = tgbc(dz, dthetax, dthetay, a, 1, w, t, E, alphal, alpha2, alpha3,
betal, beta2, beta3);

sigmal = (6%((((pg(3)*1) - pg(5)))/(wx(t"2))));
sigma2 = (6x((((pg(9)*1) - pg(11)))/(wx(t"2))));
sigma3 = (6% ((((pg(15)*1) - pg(17)))/(wx(t~2))));

sigma = [sigmal, sigma2, sigma3; sigmal/E, sigma2/E, sigma3/E; ];
S = sigma;
%Aim: function to compute values of stiffness.

%Pre-Condition: 14 input valuesdz,dthetax,dthetay,a,l,w, and t are reqired
»to execute this function and two function psb and sigma are called here.

#Post-Condition: Execution of this function generates matrix (3x8)i.e.
% (the value of Spring constant K, F_z, Stress/F_z, Strains/F_z, and
%Lamda_x = M_x/delta_x, Lamda_y = M_y/delta_y, Strain/M_x and Strain/M_y).

function pls = plstiff(dz, dthetax, dthetay, a, 1, w, t, E,
alphal, alpha2, alpha3, betal, beta2, beta3)

psg = tgbc(dz, dthetax, dthetay, a, 1, w, t, E,
alphal, alpha2, alpha3,betal, beta2, beta3);

ssg= sigma(dz, dthetax, dthetay, a, 1, w, t, E,
alphal, alpha2, alpha3,betal, beta2, beta3);

K1
K2

3xpsg(3)/dz;
3*psg(9)/dz;
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K3 = 3*psg(15)/dz;

LM1 = psg(4)/dthetax;
LM2 = psg(5)/dthetay;
LM3 = psg(10)/dthetax;
LM4 = psg(11)/dthetay;
LM5 = psg(16)/dthetax;
LM6 = psg(17)/dthetay;

K11 = [K1, psg(3), LM1, LM2];
K12 = [K2, psg(9), LM3, LM4];
K13 = [K3, psg(15), LM5, LM6];

plstiff = [K11;K12;K13;];
pls = plstiff;

% Main function to compute Analytical Model of Tri-Skellion Micro Probe
% all results.

%Pre-Condition: 14 input valuesdz,dthetax,dthetay,a,l,w,t, E, are required
%alphal, alpha2, alpha3, betal, beta2, and beta3 are reqired to execute this
%function.

#Post-Condtion: Execution of main function generates the computed results
%for Analytical Model of Tri-Skellion Probe thus saving time to execute
%each function one by one.

function mpl(dz,dthetax,dthetay,a,l,w,t, E, alphal, alpha2, alpha3, betal,
beta2, beta3)

disp(’Input vectors are generated (6x1 matix) as follows:’)
disp(’=== =)
disp(’dx,dy,dz,dthetax,dthetay,dthetaz’)

disp(’ )

disp(dpl(dz,dthetax,dthetay));

disp(’ )

disp(’Computation for Deflection of arms at the Platform,6x3 matrix

for three arms :’)

disp(’===
)
disp(’ arml= arm?2 arm3’)
disp(’ )
disp(dbp(dz,dthetax,dthetay,a, alphal, alpha2, alpha3 ));
disp(’ ?)

disp(’Computation for Deflection of three beams in Platform-Coordinates,
6x3 matrix for each beam :’)

disp(’

dispC )
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disp(ctm(betal, beta2, beta3));
disp(’Computation for Deflection of three beams in Platform-Coordinates,

6x3 matrix for three beams :’)
disp(’ ”)
disp(’=== beaml======== beam?2 ==beam3 ’)
disp(dsb(dz,dthetax,dthetay,a, alphal, alpha2, alpha3,betal, beta2, beta3));
disp(’ )
disp(’Stiffness matrix 6x6 generated from requirement specifications:’)
disp(’Lenth 1, width w, thickness t and Young‘s modulous E:’)

diSp(’ D)
disp(’ )

disp(csa(l,w,t, E));

disp(’ )

disp(’Computation for Force(F_x,F_y,F_z) and Moment M_x,M_y and M_x are’)

disp(’done in form of 6x3 Coulum Matrix:’)

disp(’=== =)

disp(’ beam1 beam2 beam3 )

disp(’ )

disp(psb(dz, dthetax, dthetay, a,l,w, t, E, alphal, alpha2, alpha3,betal,
beta2, betal));

disp(’ )
disp(’Computation for Force(F_x,F_y,F_z), Moment M_x,M_y and M_z (6x1)
matrix for each beam’)
disp(’ and fouth col, their sum in globel-coordinates’)
disp(’ beaml beam?2 beam3 Sum-of-Force-For-3-beams’)
disp(’ )
disp(tgbc(dz, dthetax, dthetay, a,l,w, t, E, alphal, alpha2, alpha3,betal,
beta2, beta3));

disp(’ )
disp(’Computation for sum of Force(F_x,F_y,F_z), Moment M_x,M_y and M_z
in globel-coordinates’)
disp(’ ’)
disp(’ ?)
disp(cfmg(dz, dthetax, dthetay,a,l,w,t, E, alphal, alpha2, alpha3,betal,
beta2, beta3))

disp(’ %)

disp(’Computation for Stress and Strain, 2x3 matrix for three beams:’)

disp(’First Row indicates Stress for three beams:’)

disp(’Second Row indicates Strain for three beams:’)

disp(’=== ”)

disp(sigma(dz, dthetax, dthetay,a,l,w,t,E, alphal, alpha2, alpha3,betal,
beta2, beta3));

disp(’ *)
disp(’Spring constant K, F_z, Lamda_x = M_x/delta_x,Lamda_y = M_y/delta_y:’)
disp(’ )
disp(’ )

disp(plstiff(dz,dthetax,dthetay,a, 1, w, t, E, alphal, alpha2, alpha3,betal,

beta2, beta3));
disp(’=== )
disp(’ A1l computation done.’) )
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end
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Appendix C

Polymeric triskelion samples

Figure C.1: Measured dimensions of classic triskelion sample CS1-60, with elbow angle 60 °.
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Figure C.2: Measured dimensions of angle-beam triskelion sample CS1-90, with elbow angle
60°.

Figure C.3: Measured dimensions of classic triskelion sample CS1-120, with elbow angle
90°.
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Figure C.4: Measured dimensions of angle-beam triskelion sample AS1-60, with elbow angle
60°.
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Figure C.5: Measured dimensions of angle-beam triskelion sample AS1-90, with elbow angle
90°.

Figure C.6: Measured dimensions of angle-beam triskelion sample CS1-120, with elbow
angle 60 °.
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Figure C.7: Measured dimensions of classic tetraskelion sample CS1-CS, with elbow angle
60°.

Figure C.8: Measured dimensions of classic tetraskelion sample CS1-DS, with elbow angle
60°.
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Figure C.9: Measured dimensions of angle-beam tetraskelion sample AS1-CS, with elbow
angle 60 °.

Figure C.10: Measured dimensions of angle-beam tetraskelion sample AS1-DS; with elbow
angle 60 °.
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Appendix D

Tables of cubic coeflicients for
classic triskelion force arefacts

Table D.1: Coefficients analysis of plotted graph for classic triskelion artefact CSS1-60.

S-No | p3 Nm™3 o Nm =2 B1 = keyys Nm~= | By R? Maz range X % mm
1 1.35448E9 | 0788107.13814 1471.62903 0 | 0.99997 0.04
2 1.51784E9 | -839990.80165 1481.76886 0 | 0.99998 0.05
3 1.43866E9 | -874902.60683 1425.22237 0 | 0.99991 0.05
4 5.58730E8 | -107722.01384 1104.93757 0 | 0.99981 0.04
5 1.47482E9 | -852585.30149 1369.78832 0 | 0.99988 0.04
6 1.94447E9 -1.30196E6 1269.21068 0 | 0.99982 0.01

Table D.2: Coefficients analysis of plotted graph for classic triskelion artefact CS2-60.

S-No | p3 Nm™3 o Nm ™2 B1 = keys Nm= | By R? Maz range X % mm
1 1.17658E9 | -591575.21724 1061.88474 0 | 0.99995 0.2
2 1.15926E9 | -677255.42382 1139.06782 0 | 0.99987 0.01
3 9.12878E8 | -439133.99808 1088.47597 0 | 0.99987 0.03
4 1.88852E8 | 0134609.99378 0925.78812 0 | 0.99989 0.04
5 8.17594E8 | -318502.93103 1057.5112 0 | 0.99981 0.04
6 1.0865E9 | -617060.37359 1085.95582 0 | 0.99983 0.04
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Table D.3: Coefficients analysis of plotted graph for classic triskelion artefact CS1-90.

S-No | f3 Nm™3 Bo Nm ™2 B1=kesy Nm=1 | B R? Mazx range X % mm
1 1.73968E9 | -607538.27305 975.29105 0 | 0.99984 0.04
2 2.01654E9 | -787620.98279 985.26632 0 | 0.99990 0.04
3 1.75348E9 | -632511.79010 905.34080 0 | 0.99979 0.04
4 1.19407E9 | -360500.02827 764.72478 0 | 0.99989 0.04
5 1.29126E9 | -347196.10955 839.28305 0 | 0.99978 0.04
6 1.48308E9 | -549307.44727 780.71572 0 | 0.99967 0.04

Table D.4: Coefficients analysis of plotted graph for classic triskelion artefact CS2-90.

S-No | 3 Nm™3 By Nm™2 B1=kesy Nm= 1| B R? Mazx range X % mm
1 2.18852E9 -1.13553E6 960.39724 0 | 0.99974 0.03
2 1.75861E9 | -642827.36132 873.84325 0 | 0.99973 0.04
3 2.49021E9 -1.28234E6 920.31372 0 | 0.99967 0.01
4 1.15237E9 | -595500.95188 721.41393 0 | 0.99957 0.04
5 1.20558E9 | -516782.38742 690.93404 0 | 0.99981 0.01
6 1.63606E9 | -670532.1848 844.39697 0 | 0.99982 0.04

Table D.5: Coefficients analysis of plotted graph for classic triskelion artefact CS1-120.

S-No | B3 Nm™3 Bo Nm ™2 B1 = keys Nm=t | B R? Maz range X % mm
1 -8.42539E7 | 0776162.10205 1143.08049 0 | 0.99995 0.05
2 -4.27739E8 | 0917848.34034 1206.65390 0 | 0.99995 0.06
3 01.37127E9 | -257212.07095 1187.50225 0 | 0.99993 0.04
4 01.98901E9 | -123028.06627 1078.40566 0 | 0.99983 0.08
5 01.80936E9 | -603476.37268 1011.95306 0 | 0.99991 0.04
6 2.17258E9 | -945811.77313 1092.29599 0 | 0.99996 0.01

Table D.6: Coefficients analysis of plotted graph for classic triskelion artefact CS2-120.

S-No | B3 Nm™3 Bo Nm™2 B1 = kesy Nm=t | B R? Maz range X % mm
1 -4.3214E8 01.07782E6 1089.80105 0 | 0.99988 0.04
2 01.14783E9 | -237157.86101 1168.63413 0 | 0.99987 0.05
3 06.65204E8 | 0689343.71289 0951.60670 0 | 0.99982 0.05
4 04.35861E8 | 0893845.02290 0939.88109 0 | 0.99984 0.05
5 08.82127E8 | 0470048.44212 0912.91692 0 | 0.99982 0.09
6 9.84955E8 | 576723.502910 0904.64066 0 | 0.99984 0.05
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Table D.7: Coefficients analysis of plotted graph for classic triskelion polymer artefact CS1-
604.

S-No | B1 = keff Nm™! B0 R?
1 5205.73714 0 | 0.99990
2 5354.08000 0 | 0.99969
3 5304.84571 0 | 0.99977
4 4829.76000 0 | 0.99977
) 5113.09714 0 | 0.99980
6 5124.25143 0 | 0.99995

Table D.8: Coefficients analysis of plotted graph for classic triskelion polymer artefact CS2-
604.

S-No | 51 = k‘eff Nm™! Bo R?
1 5152.41143 0 | 0.9999
2 5388.64000 0 | 0.9994
3 5076.13714 0 | 0.9998
4 4990.05714 0 | 0.99995
) 4936.20571 0 | 0.99976
6 5016.29714 0 | 0.99962

294



Appendix E

Graphs, for classic triskelion
samples
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Figure E.1: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 1, Table
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Figure E.2: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 2, Table
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Figure E.3: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 3, Table

296



0.8

0.6 4

0.4+

Force (N)

0.2

0.0+

T T T T T T T
0.0000 0.0002 0.0004 0.0006
Displacement (m)

Figure E.4: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 4, Table
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Figure E.5: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 5, Table
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Figure E.6: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 6, Table
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Figure E.7: Stiffness measured at the centre of hub for classic triskelion sample CS2-60

S.No. 1, Table
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Figure E.8: Stiffness measured at the centre of hub for classic triskelion sample CS2-60

S.No. 2, Table
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Figure E.9: Stiffness measured at the centre of hub for classic triskelion sample CS2-60

S.No. 3, Table
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Figure E.10: Stiffness measured at the centre of hub for classic triskelion sample CS2-60

S.No. 4, Table

0.6 4

o
a
1

Force (N)

o
[N
1

0.0

T T T T T T T
0.0000 0.0002 0.0004 0.0006
Displacement (m)

Figure E.11: Stiffness measured at the centre of hub for classic triskelion sample CS2-60

S.No. 5, Table
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Figure E.12: Stiffness measured at the centre of hub for classic triskelion sample CS2-60

S.No. 6, Table
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Figure E.13: Stiffness measured at the centre of hub for classic triskelion sample CS1-90
S.No. 1, AppendixAppendix [D.3]
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Figure E.14: Stiffness measured at the centre of hub for classic triskelion sample CS1-90

S.No. 2, Table
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Figure E.15: Stiffness measured at the centre of hub for classic triskelion sample CS1-90

S.No. 3, Table
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Figure E.16: Stiffness measured at the centre of hub for classic triskelion sample CS1-90

S.No. 4, Table
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Figure E.17: Stiffness measured at the centre of hub for classic triskelion sample CS1-90

S.No. 5, Table
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Figure E.18: Stiffness measured at the centre of hub for classic triskelion sample CS1-90

S.No. 6, Table
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Figure E.19: Stiffness measured at the centre of hub for classic triskelion sample CS2-90

S.No. 1, Table
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Figure E.20: Stiffness measured at the centre of hub for classic triskelion sample CS2-90

S.No. 2, Table
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Figure E.21: Stiffness measured at the centre of hub for classic triskelion sample CS2-90

S.No. 3, Table
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Figure E.22: Stiffness measured at the centre of hub for classic triskelion sample CS2-90

S.No. 4, Table
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Figure E.23: Stiffness measured at the centre of hub for classic triskelion sample CS2-90

S.No. 5,

306



0.6 4

0.4

Force (N)

0.2

0.0+

T T T T T T T
0.0000 0.0002 0.0004 0.0006
Displacemnet (m)

Figure E.24: Stiffness measured at the centre of hub for classic triskelion sample CS2-90

S.No. 6, Table
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Figure E.25: Stiffness measured at the centre of hub for classic triskelion sample CS1-120

S.No. 1, Table
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Figure E.26: Stiffness measured at the centre of hub for classic triskelion sample CS1-120

S.No. 2, Table
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Figure E.27: Stiffness measured at the centre of hub for classic triskelion sample CS1-120

S.No. 3, Table
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Figure E.28: Stiffness measured at the centre of hub for classic triskelion sample CS1-120

S.No. 4, Table
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Figure E.29: Stiffness measured at the centre of hub for classic triskelion sample CS1-120

S.No. 5, Table
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Figure E.30: Stiffness measured at the centre of hub for classic triskelion sample CS2-120

S.No. 6, Table
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Figure E.31: Stiffness measured at the centre of hub for classic triskelion sample CS2-120

S.No. 1,

310



0.8

0.6 4

0.4

Force (N)

0.2+

0.0+

T T T T T T T
0.0000 0.0002 0.0004 0.0006
Displacement (m)

Figure E.32: Stiffness measured at the centre of hub for classic triskelion sample CS2-120

S.No. 2, Table
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Figure E.33: Stiffness measured at the centre of hub for classic triskelion sample CS2-120

S.No. 3, Table
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Figure E.34: Stiffness measured at the centre of hub for classic triskelion sample CS2-120

S.No. 4, Table D.6]
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Figure E.35: Stiffness measured at the centre of hub for classic triskelion sample CS2-120

S.No. 5, Table
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Figure E.36: Stiffness measured at the centre of hub for classic triskelion sample CS2-120

S.No. 6, Table
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Figure E.37: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 1,
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Figure E.38: Stiffness measured at the centre of hub for classic triskelion sample CS1-60
S.No. 2, Table@
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Figure E.39: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 3, Table
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Figure E.40: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 4, Table
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Figure E.41: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 5,
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Figure E.42: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 6, Table
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Figure E.43: Stiffness measured at the centre of hub for classic triskelion sample CS1-60
S.No. 1, Table@
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Figure E.44: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 2, Table
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Figure E.45: Stiffness measured at the centre of hub for classic triskelion sample CS1-60
S.No. 3, Table@
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Figure E.46: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 4, Table[D.§
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Figure E.47: Stiffness measured at the centre of hub for classic triskelion sample CS1-60
S.No. 5, Table@
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Figure E.48: Stiffness measured at the centre of hub for classic triskelion sample CS1-60

S.No. 6, Table
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Appendix F

Tables of cubic coefficients for
angle-beam triskelion force arefacts

Table F.1: Coefficients analysis of plotted graph for angle-beam triskelion artefact ABS1-60.

S-No | B3 Nm™3 Bo Nm™?2 B1=kesy Nm=t | By R? Maz range X % mm
1 3.04264E8 | -169329.68918 560.93052 0 | 0.9999 0.06
2 2.17046E8 | -81947.93885 522.25846 0 | 0.9999 0.06
3 2.54232E8 | -93202.19403 527.65616 0 | 0.9998 0.01
4 8.10788E7 | 38180.83803 490.58532 0 | 0.9999 0.04
5 1.35518E8 | -45849.54668 500.51806 0 | 0.9999 0.07
6 2.07642E8 | -95344.50455 506.69317 0 | 0.9999 0.06

Table F.2: Coefficients analysis of plotted graph for classic triskelion artefact ABS2-60.

S-No | B3 Nm™ By Nm ™2 B1=kesy Nm=1 | B R? Mazx range X % mm
1 -2.42748E7 | 164206.51047 475.55183 0 | 0.9999 0.10
2 -1.29213E7 | 117716.39681 462.17939 0 | 0.9998 0.13
3 1.18572E8 | 16710.98713 497.97089 0 | 0.9999 0.08
4 -7.16365E6 | 144250.7681 457.72397 0 | 0.9998 0.13
5 -1.87916E7 | 169448.51375 442.75362 0 | 0.9999 0.11
6 -7.99416E7 | 173819.53895 416.35389 0 | 0.9999 0.07
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Table F.3: Coefficients analysis of plotted graph for angle-beam triskelion artefact ABS1-90

S-No | B3 Nm™3 Bo Nm ™2 Bi=kesr Nm=t | Bo R? Maz range X % mm
1 7.96017E8 | -581083.21867 902.50281 0 | 0.9999 0.05
2 6.04933E8 | -286536.40699 856.7905 0 | 0.9999 0.05
3 7.91481E8 | 342744.65157 859.76599 0 | 0.9999 0.09
4| 7.53794ES | 20036141217 | 843.92754 0 | 0.9998 0.05
5 | 6.00738E8 | -323791.52923 852.28123 0 | 0.9999 0.13
6 | 4.40877ES | -167113.64108 802.97021 0 | 0.9999 0.6

Table F.4: Coefficients analysis of plotted graph for classic triskelion artefact ABAS2-90.

S-No | B3 Nm™3 By Nm™2 B1=kesy Nm=1 | B R? Mazx range X % mm
1 7.74111E8 | -529464.49777 1157.31141 0 | 0.9999 0.05
2 1.05567E9 | -686804.51624 1195.60135 0 | 0.9998 0.05
3 1.15192E9 | -689852.63793 1287.64663 0 | 0.9999 0.05
4 6.84177E8 | -194601.02162 980.86015 0 | 0.9999 0.05
5 2.15375E8 | 131654.15716 965.90122 0 | 0.9998 0.08
6 3.84234E7 | 188410.53286 993.46125 0 | 0.9999 0.13

Table F.5: Coefficients analysis of plotted graph for angle-beam triskelion artefact ABS1-

120.
S-No | f3 Nm™3 Bo Nm ™2 B1=kesy Nm=1 | B R? Mazx range X % mm
1 1.17265E9 | -18905.35879 621.42361 0 | 0.9998 0.04
2 1.79733E9 | -544680.52702 783.00448 0 | 0.9998 0.03
3 1.19607E9 | -181470.90645 799.39845 0 | 0.9997 0.04
4 6.99111E8 | 162633.14044 554.89519 0 | 0.9999 0.09
5 1.28667E9 | -217799.29504 635.48953 0 | 0.9998 0.04
6 1.05704E9 | 62073.92607 599.41941 0 | 0.9999 0.04

Table F.6: Coefficients analysis of plotted graph for classic triskelion artefact ABS2-120.

S-No | f3 Nm™3 Bo Nm ™2 B1 = kegy Nm=t | B R? Mazx range X % mm
1 9.0106E8 | -27639.53028 602.42941 0 | 0.9997 0.04
2 1.11897E9 | 40061.37259 597.00420 0 | 0.9998 0.04
3 7.54334E8 | 229842.76101 609.54333 0 | 0.9998 0.04
4 6.27101E8 | 376377.58468 591.64870 0 | 0.9995 0.04
5 1.21767E9 | -8006.33329 565.17477 0 | 0.9999 0.03
6 1.10045E9 | -10664.80689 573.06067 0 | 0.9998 0.04

321




Appendix G

Graphs for angle-beam Triskelion
Samples
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Figure G.1: Stiffness measured at the centre of hub for angle-beam triskelion samples ABS1-

60 S.No. 1, Table
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Figure G.2: Stiffness measured at the centre of hub for angle-beam triskelion samples ABS1-

60 S.No. 2, Table
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Figure G.3: Stiffness measured at the centre of hub for angle-beam triskelion samples ABS1-

60 S.No. 3, Table
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Figure G.4: Stiffness measured at off-centre point for angle-beam triskelion samples ABS1-

60 S.No. 4, Table
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Figure G.5: Stiffness measured at off-centre point for angle-beam triskelion samples ABS1-

60 S.No. 5, Table
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Figure G.6: Stiffness measured at off-centre point for angle-beam triskelion samples ABS1-

60 S.No. 6, Table
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Figure G.7: Stiffness measured at the centre of hub for angle-beam triskelion samples ABS2-

60 S.No. 1, Table
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Figure G.8: Stiffness measured at the centre of hub for angle-beam triskelion samples ABS2-

60 S.No. 2, Table
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Figure G.9: Stiffness measured at the centre of hub for angle-beam triskelion samples ABS1-
60 S.No. 3, Table
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Figure G.10: Stiffness measured at off-centre point for angle-beam triskelion samples ABS1-

60 S.No. 4, Table
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Figure G.11: Stiffness measured at off-centre point for angle-beam triskelion samples ABS2-
60 S.No. 5, Table
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Figure G.12: Stiffness measured at off-centre point for angle-beam triskelion samples ABS2-

60 S.No. 6, Table
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Figure G.13: Stiffness measured at the centre of hub for angle-beam triskelion samples
ABS2-90 S.No. 1, Table

0.4+

Force (N)

0.0

T T T T T T T
0.0000 0.0002 0.0004 0.0006
Displacement (m)

Figure G.14: Stiffness measured at the centre of hub for angle-beam triskelion samples
ABS2-90 S.No. 2, Table

329



0.6 4

0.4+

Force (N)

0.0

T T T T T T T
0.0000 0.0002 0.0004 0.0006
Displacement (m)

Figure G.15: Stiffness measured at the centre of hub for angle-beam triskelion samples
ABS1-90 S.No. 3, Table
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Figure G.16: Stiffness measured at off-centre point for angle-beam triskelion samples ABS1-

90 S.No. 4, Table
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Figure G.17: Stiffness measured at off-centre point for angle-beam triskelion samples ABS2-
90 S.No. 5, Table
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Figure G.18: Stiffness measured at off-centre point for angle-beam triskelion samples ABS2-

90 S.No. 6, Table
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Figure G.19: Stiffness measured at the centre of hub for angle-beam triskelion samples
ABS2-90 S.No. 1, Table
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Figure G.20: Stiffness measured at the centre of hub for angle-beam triskelion samples
ABS2-90 S.No. 2, Table [[.4]
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Figure G.21: Stiffness measured at the centre of hub for angle-beam triskelion samples
ABS2-90 S.No. 3, TablelFEl
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Figure G.22: Stiffness measured at off-centre point for angle-beam triskelion samples ABS2-
90 S.No. 4, Table
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Figure G.23: Stiffness measured at off-centre point for angle-beam triskelion samples ABS2-
90 S.No. 5, Table [FE]
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Figure G.24: Stiffness measured at off-centre point for angle-beam triskelion samples ABS2-
90 S.No. 6, Table
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Figure G.25: Stiffness measured at the centre of hub for angle-beam triskelion samples
ABS1-120 S.No. 1, Table
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Figure G.26: Stiffness measured at the centre of hub for angle-beam triskelion samples
ABS1-120 S.No. 2, Table
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Figure G.27: Stiffness measured at the centre of hub for angle-beam triskelion samples
ABS1-120 S.No. 3, Table
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Figure G.28: Stiffness measured at off-centre point for angle-beam triskelion samples ABS1-

120 S.No. 4, Table
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Figure G.29: Stiffness measured at off-centre point for angle-beam triskelion samples ABS1-

120 S.No. 5, Table

337



0.6

0.4 4
z
o
o
S
L

0.2 A

./
e
o
0.0 [
T T T T T T T
0.0000 0.0002 0.0004 0.0006

Displacement (m)

Figure G.30: Stiffness measured at off-centre point for angle-beam triskelion samples ABS1-

120 S.No. 6, Table
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Figure G.31: Stiffness measured at the centre of hub for angle-beam triskelion samples
ABS2-120 S.No. 1, Table
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Figure G.32: Stiffness measured at the centre of hub for angle-beam triskelion samples
ABS2-1200 S.No. 2, Table
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Figure G.33: Stiffness measured at the centre of hub for angle-beam triskelion samples
ABS2-120 S.No. 3, Table
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Figure G.34: Stiffness measured at off-centre point for angle-beam triskelion samples ABS2-

120 S.No. 4, Table
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Figure G.35: Stiffness measured at off-centre point for angle-beam triskelion samples ABS2-

120 S.No. 5, Table

340



0.6

0.4
z
[0}
e
o
L 0.2

/r/./
0.0 [
T T T T T T T
0.0000 0.0002 0.0004 0.0006

Displacement (m)

Figure G.36: Stiffness measured at off-centre point for angle-beam triskelion samples ABS2-

120 S.No. 6, Table
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Appendix H

Tables of linear coefficients for
classic tetraskelion force artefacts

Table H.1: Coefficients of the best linear fit to graphs for classic tetraskelion centre sym-
metric sample CS1-CS-90.

S-No | B1 = k‘eff Nm™! Bo R?
1 2911.51 0 | 0.99916
2 2799.84 0 | 0.99934
3 2815.92 0 | 0.99904
4 2728.54 0 | 0.99949
) 2666.03 0 | 0.99962
6 2658.82 0 | 0.99956
7 2728.54 0 | 0.99949

Table H.2: Coefficients of the best linear fit to graphs for classic tetraskelion centre sym-
metric sample CS2-CS-90.

S-No | 51 = keff Nm™! Bo R?
1 2839.92 0 | 0.99969
2 2885.86 0 | 0.99968
3 2877.56 0 | 0.99954
4 2626.50 0 | 0.99935
) 2679.84 0 | 0.99954
6 2315.10 0 | 0.9995
7 2657.10 0 | 0.9996
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Table H.3: Coefficients of the best linear fit to graphs for classic tetraskelion diagonal
symmetric sample CS1-DS-90.

S-No | B1 = k‘eff Nm™! Bo R?
1 4826.11 0 | 0.99981
2 4684.39 0 | 0.99927
3 4623.52 0 | 0.99979
4 4544.00 0 |0.99979
) 4380.78 0 | 0.99992
6 4380.78 0 | 0.99996
6 4498.66 0 | 0.99981

Table H.4: Coefficients of the best linear fit to graphs for classic tetraskelion diagonal
symmetric sample CS2-DS-90.

S-No | Bi=kesf Nm™ | By | R?
1 4513.64 0 | 0.99954
2 4412.15 0 | 0.99992
3 4523.92 0 | 0.99911
4 4028.87 0 | 0.99953
5 4312.62 0 | 0.99977
6 4263.96 0 | 0.99967
7 4131.84 0 | 0.99972

Table H.5: Coefficients of the best linear fit to graphs for angle-beam tetraskelion centre
symmetric sample ABS1-DS-90.

S-No | 81 = k‘eff Nm™1! Bo R?
1 1256.23 0 | 0.99921
2 1181.52 0 | 0.99982
3 1197.90 0 | 0.99967
4 1101.25 0 | 0.99942
5) 1125.37 0 | 0.99956
6 1125.52 0 | 0.99907
7 1166.46 0 | 0.99978

Table H.6: Coefficients of the best linear fit to graphs for angle-beam tetraskelion diagonal
symmetric sample ABS1-DS-90.

S-No | 51 = keff Nm™! 5o R?
1 1713.06 0 | 0.99969
2 1801.88 0 | 0.99985
3 1724.98 0 | 0.99916
4 1702.11 0 | 0.99993
5 1625.94 0 | 0.99927
6 1646.48 0 | 0.99991
7 1668.78 0 | 0.99942
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Appendix I

Graphs for classic and angle-beam
tetraskelion samples
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Figure I.1: Stiffness measured at the centre for classic tetraskelion samples CS1-CS-90.No.

1, Table
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Figure 1.2: Stiffness measured at the centre for classic tetraskelion samples CS1-CS-90.No.

2, Table
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Figure 1.3: Stiffness measured at the centre for classic tetraskelion samples CS1-CS-90.No.

3, Table
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Figure 1.4: Stiffness measured at off-centre point of hub for classic tetraskelion samples

CS1-CS-90.No. 4, Table
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Figure 1.5: Stiffness measured at off-centre point for classic tetraskelion samples CS1-CS-
90.No. 5, Table @
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Figure 1.6: Stiffness measured at off-centre point for classic tetraskelion samples CS1-CS-

90.No. 6, Table
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Figure 1.7: Stiffness measured at off-centre point for classic tetraskelion samples CS1-CS-
90.No. 7, Table @

347



0.8

0.6 4

0.4+

Force (N)

0.2

0.0+

T T T T T
0.0000 0.0001 0.0002
Displacement (m)

Figure 1.8: Stiffness measured at the centre for classic tetraskelion samples CS1-DS-90.No.

1, Table
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Figure 1.9: Stiffness measured at the centre for classic tetraskelion samples CS1-DS-90.No.

2, Table
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Figure 1.10: Stiffness measured at the centre for classic tetraskelion samples CS1-DS-90.No.

3, Table
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Figure I.11: Stiffness measured at off-centre point of hub for classic tetraskelion samples
CS1-DS-90.No. 4, Table @
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Figure 1.12: Stiffness measured at off-centre point for classic tetraskelion samples CS1-DS-

90.No. 5, Table

0.8 -
0.6

0.4

Force (N)

0.2

0.0

T T T j T
0.0000 0.0001 0.0002
Displacement (m)

Figure 1.13: Stiffness measured at off-centre point for classic tetraskelion samples CS1-DS-
90.No. 6, Table @

350



0.8

0.6 4

0.4

Force (N)

0.2+

0.0+

T T T T T
0.0000 0.0001 0.0002
Displacement (m)

Figure 1.14: Stiffness measured at off-centre point for classic tetraskelion samples CS1-DS-

90.No. 7, Table
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Figure 1.15: Stiffness measured at the centre for classic tetraskelion samples CS2-CS-90.No.

1, Table
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Figure 1.16: Stiffness measured at the centre for classic tetraskelion samples CS2-CS-90.No.

2, Table
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Figure 1.17: Stiffness measured at the centre for classic tetraskelion samples CS2-CS-90.No.

3, Table
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Figure 1.18: Stiffness measured at off-centre point of hub for classic tetraskelion samples

CS2-CS-90.No. 4, Table
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Figure 1.19: Stiffness measured at off-centre point for classic tetraskelion samples CS2-CS-
90.No. 5, Table @
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Figure 1.20: Stiffness measured at off-centre point for classic tetraskelion samples CS2-CS-

90.No. 6, Table
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Figure 1.21: Stiffness measured at off-centre point for classic tetraskelion samples CS2-CS-

90.No. 7, Table
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Figure 1.22: Stiffness measured at the centre for classic tetraskelion samples CS2-DS-90.No.

1, Table @
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Figure 1.23: Stiffness measured at the centre for classic tetraskelion samples CS1-DS-90.No.

2, Table [l1.4]
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Figure 1.24: Stiffness measured at the centre for classic tetraskelion samples CS2-DS-90.No.

3, Table @
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Figure 1.25: Stiffness measured at off-centre point of hub for classic tetraskelion samples
CS2-DS-90.No. 4, Table
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Figure 1.26: Stiffness measured at off-centre point for classic tetraskelion samples CS2-DS-

90.No. 5, Table

357



0.8

0.6

0.4+

Force (N)

0.2+

0.0

T T T T T
0.0000 0.0001 0.0002
Displacement (m)

Figure 1.27: Stiffness measured at off-centre point for classic tetraskelion samples CS2-DS-
90.No. 6, Table @
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Figure 1.28: Stiffness measured at off-centre point for classic tetraskelion samples CS2-DS-

90.No. 7, Table
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Figure 1.29: Stiffness measured at the centre for classic tetraskelion samples ABS1-CS-

90.No. 1, Table
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Figure 1.30: Stiffness measured at the centre for classic tetraskelion samples ABS1-CS-

90.No. 2, Table
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Figure 1.31: Stiffness measured at the centre for classic tetraskelion samples ABS1-CS-

90.No. 3, Table
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Figure 1.32: Stiffness measured at off-centre point of hub for classic tetraskelion samples

ABS1-CS-90.No. 4, Table
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Figure 1.33: Stiffness measured at off-centre point for classic tetraskelion samples ABS1-

CS-90.No. 5, Table
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Figure 1.34: Stiffness measured at off-centre point for classic tetraskelion samples ABSI1-

CS-90.No. 6, Table
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Figure 1.35: Stiffness measured at off-centre point for classic tetraskelion samples ABS1-

CS-90.No. 7, Table
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Figure 1.36: Stiffness measured at the centre for classic tetraskelion samples ABS1-DS-

90.No. 1, Table
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Figure 1.37: Stiffness measured at the centre for classic tetraskelion samples ABS1-DS-

90.No. 2, Table
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Figure 1.38: Stiffness measured at the centre for classic tetraskelion samples ABS1-DS-
90.No. 3, Table 77.
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Figure 1.39: Stiffness measured at off-centre point of hub for classic tetraskelion samples
ABS1-DS-90.No. 4, Table
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Figure 1.40: Stiffness measured at off-centre point for classic tetraskelion samples ABS1-

DS-90.No. 5, Table
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Figure 1.41: Stiffness measured at off-centre point for classic tetraskelion samples ABS1-

DS-90.No. 6, Table
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Figure 1.42: Stiffness measured at off-centre point for classic tetraskelion samples ABSI1-

DS-90.No. 6, Table
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Appendix J

Tetraskelion program: MATLAB
codes

% Aim: Function to generate single coulum matrix from six input vector.

%Pre-Condition:The total inputs are six but three of them
% (dx=dy=dthetaz =0)are set zero locally and remaining three values
%(dz,dthetax, dthetay) user has to enter for executing the function.

%Post-Condtion: Six values are displayed dx,dy,dz, dthetay,
%dthetax, and detheta z.

function Dp= dpl(dz,dthetax,dthetay)

dpl = [ 0; 0; dz; dthetax; dthetay; 0;];

Dp = dpl;

% Aim: Function to compute at Arm and Defection of the Platform.

%Pre-Condition:

% 8 input values are required for executing this function. Three of them

% are locally set equal to zero and remaining 4 values, wuser has to enter
% for execution the function.

%Post-Condtion:Execution of this function generates defection of four
%beams (matric 6x1) in Plat-Coordinates

function Ds= dbp(dz, dthetax, dthetay,a, alphal, alpha2, alpha3, alpha4)

disp = dpl(dz, dthetax, dthetay);

angl = [alphal, alpha2, alpha3, alpha4];
%angl = [ -pi/6, pi/2, -5*pi/6];
doa=zeros(6,6,length(angl)) ;

for i = 1:length(angl)

doa(:,:,i) = [ 1, O, 0, 0, 0, 0;
o, 1, 0, 0, 0, 0;



0, 0, 1, (axsin(angl(i))), - (a*cos(angl(i))),0;
0, O, 0, 1, 0, 0;
0, O, 0, 0, 1, 0;
0, O, 0, 0, 0, 1; 1;
end

dbpl = doa(:,:,1)*disp;

dbp2 = doa(:,:,2)*disp;

dbp3 = doa(:,:,3)*disp;

dbp4 = doa(:,:,4)*disp;

dbp = [dbpl, dbp2, dbp3, dbp4l;
Ds = dbp;

% Aim:Function to generate stiffness matrix from reqirement specification
% for suspension beams.

%Pre-Condition: 4 input values are required for this function. i.e. length 1
%width w,thickness t and E for three beams.

%Post-Condition: Execution of this function generates a matrix (6x6) for
%each beam.
function C=csa(l,w,t,E)

%G = double(50e+9);

G = double(le+9);
%E = double(120e+9);

k = ((Gx(t"2)/E)*(1/3 - (((0.21*t)/w)*(1 - (t~4)/(12%xw"4)))));
csa = [1, 0, 0, 0,0,0; 0,w/1)°2,0,0,0, (-(w"2)/(2%1));
0, 0, (¢/1)°2, 0, ((t"2)/(2%1)), 0;
0,0,0,k,0, 0; 0, 0, ((t£°2)/(2%1)), 0, ((t°2)/3),0;
0, (-(w~2)/(2%1)),0,0,0, ((w~2)/3)];
C= ((Ext*w)/1)*csa;

%Aim: Function to Compute, Transformation to the Platform Coordinates.

%Pre-Condition: 4 input values of angles(betal, beta2,beta3, beat4) are required for
%function ctm.

%Post-Condition: Execution of this function generates four matrices (6x6)
%for end defections of three beams.

function tm = ctm(betal, beta2,beta3, betad)

ang?2 = [ betal, beta2, beta3, betad];

tpc=zeros(6,6,length(ang2)) ;
for j = 1:length(ang?2)
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tpc(:,:,j) = [ cos(ang2(j)), sin(ang2(j)), O, 0, 0, 0;

- sin(ang2(j)), cos(ang2(j)), O, 0, 0, 0;

0, 0, 1, 0, 0, 0;

0, 0, 0, cos(ang2(j)),sin(ang2(j)), 0;

0, 0, 0,-sin(ang2(j)),cos(ang2(j)), 0;

0, 0, 0, 0, o, 1;1;

end

ctml =  tpc(:,:,1);
ctm2 =  tpc(:,:,2);
ctm3 =  tpc(:,:,3);
ctmd =  tpc(:,:,4);

ctmp= [ctml,ctm2, ctm3, ctm4d];
tm = ctmp;

Aim: Function to compute Computation for Force(F_x,F_y,F_z) and
JMoment M_x,M_y and M_x.

%Pre-Condition: 16 input values dz, dthetax, dthetay,a,l,w, and t required
%by the user and two functions, csa & dsb are called.

%Post-Conation: Execution of this function generates the values of force and
Jmoment for three beams in form of three matrices (6x1)

function p = psb(dz, dthetax, dthetay, a, 1, w, t, E, alphal, alpha2, alpha3,
alphad, betal, beta2, beta3, betad)

sm = csa(l,w,t,E);

q = dsb(dz, dthetax, dthetay, a, alphal, alpha2, alpha3,alpha4, betal, beta2,
beta3, betad);

psbl = sm*xq(:,1);

psb2 = smxq(:,2);

psb3 = smxq(:,3);

psbd = smx*xq(:,4);

p = [psbl, psb2, psb3, psbd]l;

%Aim: Function to Compute, Force back to Globel Coordintes.

%Pre-Condition: 16 input values are required, two functions psb and tgc are also
%hcalled.

%Post-Condtion: Execution of this function generates four matrices (6x1)
%for end defections of four beams.

function cbg = tgbc(dz, dthetax, dthetay, a, 1, w, t, E, alphal, alpha2,
alpha3, alpha4,betal, beta2, beta3, beta4)

1lbf = psb(dz, dthetax, dthetay, a, 1, w, t, E, alphal, alpha2, alpha3,
alphad,betal, beta2, beta3, betad);
tgc = ctm(betal, beta2, beta3, betad);
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gdsbl = (tgc(:, 1:6)’ )*1bf(:,1);
gdsb2 = (tgc(:, 7:12)’)*1bf(:,2);
gdsb3 = (tgc(:,13:18)?)*1bf(:,3);
gdsb4d = (tgc(:,19:24)°)*1bf(:,4);
sfgc = (gdsbl + gdsb2 + gdsb3 + gdsb4) ;
tgc = [gdsbl,gdsb2,gdsb3,gdsb4,sfgcl;
cbg= tgc;

%Aim: Function to Compute, Force back to Globel Coordintes.

#Pre-Condition: 16 input values are required, the function tgbc is also
%hcalled.

#Post-Condition: Execution of this function generates three matrices (1X3)

%for end defections of three beams.

function sfm = cfmg(dz, dthetax, dthetay, a,l, w, t, E, alphal, alpha?2,
alpha3, alpha4, betal, beta2, beta3, betad)

radius = a;
alphall = alphal;
alpha22 = alpha2;
alpha33 = alpha3;
alpha44 = alpha4;

csfm = tgbc(dz, dthetax, dthetay, a, 1, w, t, E, alphal, alpha2, alpha3,
alpha4, betal, beta2, beta3, betad);

fbl= csfm(:,1);

fb2= csfm(:,2);

fb3= csfm(:,3);

fbd= csfm(:,4);

sigfzs = ((-fb1(3)) + (-fb2(3))+ (-fb3(3)) + (-£fb4(3)));

sigmxs = ((-fb1(4)) + (-fb2(4))+ (-fb3(4)) + (-fbd(4)) +
((-fb1(3)*radius) *sin(alphall)) + ((-£fb2(3)*radius)*sin(alpha22)) +
((-fb3(3)*radius)*sin(alpha33)) + ((-fb4(3)*radius)*sin(alphad4)));

sigmys = ((-fb1(5)) + (-fb2(5))+ (-fb3(5)) + (-fb4(5)) -
((-fb1(3)*radius)*cos(alphall)) - ((-fb2(3)*radius)*cos(alpha22))-
((-fb3(3) *radius) *cos(alpha33))- ((-fb4(3)*radius)*cos(alphad4)));

fms = [sigfzs, sigmxs, sigmys];
sfm= fms;

% Aim: Function to computate, Stress and Strain.

%Pre-Condition: To execute this function, 14 input values, dz, dthetax,
hdthetay,a,l, and w. Function tgbc is also called here.

%Post-Condtion: Execution of this function generates matrix (2x4). The first
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%line indicates values of stress and second for strain of three beams.

function S=sigma(dz, dthetax, dthetay, a, 1, w, t, E, alphal, alpha2,
alpha3,alpha4,betal, beta2, beta3, betad)

pg = tgbc(dz, dthetax, dthetay,a, 1, w, t, E, alphal, alpha2,
alpha3,alphad,betal, beta2, beta3,betad);

sigmal = (6x((((pg(3)*1) - pg(5)))/(wx(t~2))));
sigma2 = (6%((((pg(9)*1) - pg(11)))/(wx(t"2))));
sigma3 = (6*%((((pg(15)*1) - pg(17)))/(wx(t"2))));
sigmad = (6% ((((pg(21)*1) - pg(23)))/(wx(t~2))));

sigma = [sigmal, sigma2, sigma3, sigma4; sigmal/E, sigma2/E,
sigma3/E, sigma4/E; 1;
S = sigma;

%Aim: function to compute values of stiffness.

%Pre-Condition: 16 input valuesdz,dthetax,dthetay,a,l,w, and t are reqired
%»to execute this function and two function psg and tfm are called here.

#Post-Condtion: Execution of this function genrates matrix (3x8)i.e.

% (the value of Spring constant K, F_z, Stress/F_z, Strains/F_z, and
%Lamda_x = M_x/delta_x, Lamda_y = M_y/delta_y, Strain/M_x and Strain/M_y).
function pls = plstiff(dz, dthetax, dthetay, a, 1, w, t, E,

alphal, alpha2, alpha3,alphad4, betal, beta2, beta3, beta4d)

psg = tgbc(dz, dthetax, dthetay, a ,1, w, t, E, alphal, alpha2,
alpha3,alpha4,betal, beta2, beta3, betad);

%ssg= sigma(dz, dthetax, dthetay, a, 1, w, t, E, alphal, alpha2,
alpha3,alpha4,betal, beta2, beta3, betad);

tfm = cfmg(dz, dthetax, dthetay, a, 1, w, t, E, alphal, alpha2,
alpha3, alpha4, betal, beta2, beta3, betad);

tfz = tfm(1)/dz;
tmx = tfm(2)/dthetax;
tmy = tfm(3)/dthetay;

plstiff = [tfz, tmx, tmy];
pls = plstiff;

% Main function to compute Analytical Model of Tri-Skellion Micro Probe
% all results.

% Author: Haroon-Ur-Rashid

371



o
h
o
h
o
h

o
h
o

o
h
o

f

Date: 15-08-2009

Date: 31-05-2011

Date: 14-07-2012

Date: 10-10-2012

Supervisor: Professor Derek Chetwynd
Industrial Supervisor Professor Richard Leach

Pre-Condition: 16 input valuesdz,dthetax,dthetay,a,l,w,t, E, are reqired
alphal, alpha2, alpha3, betal, beta2, and beta3 are reqired to execute this
function.

Post-Condition: Execution of main function genrates the computed results

for Analytical Model of Tri-Skellion Probe thus saving time to execute
each function one by one.

unction mpl(dz,dthetax,dthetay, a, 1, w, t, E, alphal, alpha2, alpha3,
alpha4, betal, beta2, beta3, betad)
disp(’Input vectors are generated (6xl1 matix) as follows:’)

disp(’ )
disp(’dx,dy,dz,dthetax,dthetay,dthetaz’)

disp(’ )

disp(dpl(dz,dthetax,dthetay));

disp(’ ?)

disp(’Computation for Deflection of arms at the Platform,6x4 matrix for four arms :’)
disp(’================================ ========================== )
disp(’ arml arm?2 arm3 armé’)

disp(’ ?)

disp(dbp(dz,dthetax,dthetay,a, alphal, alpha2, alpha3, alphad ));

disp(’ )

disp(’Computation for Deflection of three beams in Platform-Coordinates, 6x1 matrix

for each beam :’)

disp(’ ?)

disp(’ ?)

disp(ctm(betal, beta2, beta3, betad));

disp(’Computation for Deflection of three beams in Platform-Coordinates, 6x1 matrix
for four beams :’)

disp(’ )
disp(’=== beaml======== beam? ==beam3= ==beamd ’)
disp(dsb(dz,dthetax,dthetay,a, alphal, alpha2, alpha3,alphad,betal, beta2, beta3,

betad ));
disp(’ )

disp(’Stiffness matrix 6x6 generted from reqirement specifications:’)
disp(’Lenth 1, width w, thickness t and Young‘s modulous E:’)

disp(’=== ")
disp(’ )

disp(csa(l,w,t, E));

disp(’ )

disp(’Computation for Force(F_x,F_y,F_z) and Moment M_x,M_y and M_x are’)
disp(’done in form of 6x4 Matrix:’)
diSp(’ )
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disp(’ beam1

beam?2

disp(’ )

beamd ’)

disp(psb(dz, dthetax, dthetay, a, 1 ,w, t, E, alphal, alpha2, alpha3, alpha4, betal,

disp(’ )

beta2, beta3, betad));

disp(’Computation for Force(F_x, F_y, F_z), Moment M_x, M_y and M_z (6x1) matrix for

disp(’ and fouth col, their sum in globel-coordinates’)
beam2 beam3

each beam’)

Sum-of-four-column’)

disp(tgbc(dz, dthetax, dthetay, a, 1, w, t, E, alphal, alpha2, alpha3, alpha4, betal,

disp(’ )

beta2, beta3, betad));

disp(’Computation for sum of Force(F_x,F_y,F_z), Moment M_x,M_y and M_z in

global-coordinates’)

disp(’===
disp(’ )

”)

disp(cfmg(dz, dthetax, dthetay, a, 1, w, t, E, alphal, alpha2, alpha3, alpha4, betal,

disp(’ )

beta2, beta3, betad));

disp(’Computation for Stress and Strain, 2x4 matrix for three beams:’)

disp(’First Row indicates Stress for three beams:’)
disp(’Second Row indicates Strain for three beams:’)

disp(’===

?)

disp(sigma(dz, dthetax, dthetay, a, 1, w, t, E, alphal, alpha2, alpha3, alpha4,

betal, beta2, beta3, betad));

’)

disp(’ %)
disp(’Spring constant K, F_z, Lamda_x = M_x/delta_x, Lamda_y = M_y/delta_y:’)
disp(’===
disp(’ )

disp(plstiff(dz,dthetax,dthetay, a, 1, w, t, E, alphal, alpha2, alpha3, alpha4,

betal, beta2, beta3, betad));

disp(’===

disp(’All computation done.’)

end
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