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Abstract

Cell migration is of crucial importance for many physiological processes, including
embryonic development, wound healing and immune response. Defects in cell migra-
tion are the cause of chronic inflammatory diseases, mental retardation and cancer
metastasis. Cell movement is driven by actin-mediated cell protrusion, substrate
adhesion and contraction of the cell body.
The emergent behaviour of the intracellular processes described above is a change
in the morphology of the cell. This inspires the main hypothesis of this work which
is that there is a measurable relationship between cell morphology dynamics and
migratory behaviour, and that quantitative models of this relationship can create
useful tools for investigating the mechanisms by which a cell regulates its own motil-
ity.
Here we analyse cell shapes of migrating human retinal pigment epithelial cells with
the aim to map cell shape changes to cellular behaviour. We develop a non-linear
model for learning the intrinsic low-dimensional structure of cell shape space and
use the resultant shape representation to analyse quantitative relationships between
shape and migration behaviour. The biggest algorithmic challenge overcome in
this thesis was developing a method for efficiently and appropriately measuring the
shape difference between pairs of cells that may have come from independent image
scenes. This difference measure must be capable of coping with the widely vary-
ing morphologies exhibited by migrating epithelial cells. We present a new, rapid,
landmark-free, shape difference measure called the Best Alignment Metric (BAM).
We show that BAM performs highly within our framework, generating a shape space
representation of a very large dataset without any prior information on the impor-
tance of any given shape feature.
We demonstrate quantitative evidence for a model of cell turning based on repolari-
sation and discuss the impact our proposed framework could have on the continued
study of migratory mechanisms.
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Chapter 1

Introduction

1.1 Cell Migration

1.1.1 Background to Cell Migration

Cell migration is of fundamental importance for embryonic development, immune

response and wound healing [Keller, 2005; Theveneau and Mayor, 2011; Tarbashe-

vich and Raz, 2010; Marelli-Berg et al., 2010; Abreu-Blanco et al., 2012]. Equally

importantly, defective cell migration is a primary cause of disease: it enables tissue

invasion and metastasis by cancer cells, chronic inflammation and mental retarda-

tion [Hanahan et al., 2000; Ridley et al., 2003; Roussos et al., 2011]. Cell migration

is achieved through dynamic control of the cytoskeleton and regulated through the

integration of many complex signalling pathways [Ridley et al., 2003]. The most

common mode of cell migration is a crawling process that can be conceptualised as

a cyclic process with four steps [Mitchison and Cramer, 1996; Horwitz and Webb,

2003; Lauffenburger and Horwitz, 1996]. Firstly, the front edge of the cell protrudes

forward, secondly adhesions are formed that anchor the cell membrane to the sub-

strate or neighbouring cells. Thirdly, the adhesions in the rear of the cell disassemble

and finally, contraction of the cytoplasm results in the forward translocation of the

cell body. The mechanical power for the crawling process comes from a treadmilling

process of the actin network [Pollard and Borisy, 2003], where filaments polymerise

and branch at the leading edge and depolymerise at the rear of the network and

from myosin-mediated actin filament sliding that cause contractions.

Blebbing is another way that eukaryotic cells can move. This happens when hydro-

static forces in a local region of the cell are high enough to cause the membrane

of the cell to detach from the cytoskeleton and to bulge outwards [Charras et al.,

2005]. The subsequent reparations to the ruptured cytoskeleton (specifically the
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actin cortex) can either stabilise or retract the bulbous protrusion [Charras and

Paluch, 2008]. Global regulation of these local decisions results in net movement of

the cell. The hydrostatic forces are largely generated by myosin-mediated contrac-

tility [Charras et al., 2005].

While the underlying motile mechanisms are believed to be well preserved across

differing cell types, the outward dynamic behaviour can vary greatly. Dictyostelium

discoideum is a species of unicellular organism able to perform both crawling and

blebbing and known to adapt its motile behaviour to the environment they find

themselves in [Charras and Paluch, 2008]. Fish keratocytes, which have a constant

canoe-like shape [Goodrich, 1924], have a large actin network across the leading re-

gion (lamellipodium) that barely changes configuration as it migrates [Mogilner and

Edelstein-Keshet, 2002]. This constancy means that fish keratocytes are some of

the fastest and most directionally persistent moving cells [Keren et al., 2009]. Other

cells, such as fibroblasts and neuronal growth cones, more dynamically turn protru-

sions on and off in localised regions to allow more adaptive and sensitive motility, but

at the cost of speed and persistence. These differences are reflected in the morphol-

ogy of the cells, fish keratocytes have one large lamellipodium that changes very little

while fibroblasts exhibit highly fluctuating morphologies, stochastically protruding

smaller lamellipodia and filopodia in response to their surroundings [Abercrombie

et al., 1970].

The ability for a cell to change between different styles of motile behaviour is very

important in a number of physiological processes. Transitions between non-motile

and motile states such as in Epithelial-Mesenchymal transition [Yang and Weinberg,

2008] have been linked to embryogenesis, wound healing and cancer metastasis. The

ability for a cell to transition between mechanisms of migration has been linked to

cancer cell metastasis; it is believed that a metastatic cancer cell will need to pass

through different environments and may need to use different migratory mechanisms

for each [Wang et al., 2005; Friedl and Wolf, 2003].

1.1.2 Hierarchical Reductionism

A recent review of cytoskeletal models discusses the difficulties faced when exploring

a physical understanding of cellular mechanics [Huber et al., 2013]. It describes how

the challenge for physicists is the range of physical scales over which the components

of the cytoskeleton interact. Creating a model which explicitly links monomers to

polymers to networks to cells to tissue is an intractable task. The proposed solution

is a scheme of hierarchical reductionism. This is the process of examining each level

of complexity only in terms of the level below it (or perhaps the nearest two), in
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order to build a full model inductively, while each individual model remains man-

ageable. An example of this may be seen from an investigation of cell protrusions

in terms of net growth rate of local actin networks. The actin network growth rate

is an emergent property of the polymerisation process of individual actin filaments.

It would be a much more complex task to model a protrusion in terms of the in-

dividual filaments, considering that their orientations and polymerisation rates are

not independent. In turn, one can look at the way that cell morphology, a cellu-

lar phenomenon, governs its motile behaviour, which is how the cell explores its

surroundings. It is this scopic level that we shall be focussing on in this thesis.

1.1.3 Using Morphology to Study Migration

Much work is being carried out to study the dynamics of various cytoskeletal com-

ponents at the molecular level. There are indeed mathematical models for each

step of cell migration: actin-mediated protrusion, adhesion, contraction. However

an integrated model that describes cell migration as a whole requires much more

knowledge about how these subprocesses integrate and how this integration is af-

fected by environmental cues [Danuser et al., 2013]. We hypothesise that morphology

can efficiently represent the emergent behaviour of the intracellular system, in the

sense that, in order to induce migration, the intracellular mechanisms must cause a

structural change. We explore quantitative models for aspects of morphology and

motility, and ultimately the dependence between the two. With knowledge of the

common morphological behaviour patterns that accompany any cellular event, we

believe it will be possible to infer information about the internal structural dynamics

involved with that event.

1.2 Cell Shape Modelling

1.2.1 Qualitative Shape Analysis in Literature

The earliest papers on fish keratocytes [Goodrich, 1924] observed their distinctive

shapes and described them qualitatively as canoe-like with a large fan section. The

authors even commented on the relation between the geometric orientation of the

fan and the direction of motion, although this relationship was not quantitatively

modelled until later [Lee et al., 1993; Keren et al., 2008].

In many cases in literature, morphological change is observed with little substan-

tiation. Cooper and Schliwa [Cooper and Schliwa, 1986] observed that applying a

current to fish epidermal cells in culture causes them to flock to the cathode. It was
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claimed that the cells have unchanged morphology in this process, to substantiate

this claim the reader is encouraged to assess the figures subjectively. Wang et al.

[Wang et al., 2003] claimed that cell shape (as well as polarity), in human embry-

onic kidney tumour cells, is regulated by RhoGTPase-dependent regulation of the

actin cytoskeleton. This claim was substantiated by the qualitative judgement of

the presence or lack of protrusions or lamellipodia-like structures.

1.2.2 Quantitative Shape Modelling in Literature

Here, as with all areas of science, a quantitative understanding has many advan-

tages. A quantitative model of shape and shape dynamics allows for objectivity

and statistical validation. It also confers the ability to make graded commentary, in

other words we become able to quantify a claim such as shape A is more irregular

than shape B. One does not naturally think of shape as a quantitative concept, how-

ever there are many ways to create such a representation and the rest of this section

will look at different methods that have been used to achieve this in literature.

Shape Features

Simple shape features include basic scalar properties of shape, such as length, area,

perimeter, concavity, circularity and symmetry to name just a few1. The simplest

way to create a quantitative model for shape analysis of a given biological object

is to measure one of these simple shape features. This technique has been applied

to many varying biological settings. For example, cell length has been found to be

an informative feature in the life and function of S. pombe [Martin and Berthelot-

Grosjean, 2009; Moseley et al., 2009]. Measures of symmetry in breast lesions have

shown the ability to distinguish between benign and malignant tumours [Yang et al.,

2009; Liney et al., 2006].

Simple features can also be brought into dynamic models. For example, in human

epithelial cells, although maximum cell tail length remains unchanged, the lifetime

of individual tails decreases dramatically after epigenetic treatment [Theisen et al.,

2012].

It is possible to select the examined features to be precisely relevant to the investi-

gation. Rangayyan and Nguyen [Rangayyan and Nguyen, 2007] focus on measures

of self similarity for categorising contours of breast masses to assist in breast cancer

diagnosis; they find that the combination of fractal dimension and fractional con-

cavity yields the best results.

1While these features all have some degree of obvious intuitive definition, an explicit formulation
would always be given in an application.
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Tweedy et al. examine the Fourier power spectrum of curves, which is a set of fea-

tures that look at the various levels of periodicity that exist in each curve, and

the authors show successful use of these features to discover the modes of shape

variation in chemotaxing D. discoideum [Tweedy et al., 2013]. Note that, although

this analysis is based on feature descriptors and not explicit descriptors (explained

later), the representation carries a lot of information that is not readily accessible.

This is tackled through use of machine learning, which is a common approach for

handling high-dimensional and other difficult data, described below.

Machine Learning

The concept of shape has many different aspects and hence it can be considered as

high dimensional. The difficulty is that any quantitative modelling of patterns of

shape behaviour will run into difficulty if the shape representation has too many

dimensions. This is because of what is known as the curse of dimensionality, which

refers to the fact than many analytical difficulties scale exponentially as the dimen-

sionality of the data increases. In this case it is a problem of sampling; a high

dimensional space needs a far higher sample size to adequately populate the data

space. So it is necessary to perform dimensionality reduction and one field that

allows this is Machine Learning.

Machine learning, much like organic learning, involves exposing the ‘learner’ to a

large number of examples of the objects of interest, in such a way that the ‘learner’

can develop an ‘understanding’ of the allowed variation within the example set.

When used for dimensionality reduction, the algorithm will simplify the input by

mapping it into low-dimensional space, attempting to maximise the amount of in-

formation preserved in each consecutive new dimension. Often the data is repre-

sented to high accuracy with a small number of new dimensions. Tweedy et al.

[Tweedy et al., 2013] make use of Principal Component Analysis (PCA) [Pearson,

1901], a well known linear dimensionality reduction technique, to convert their 64-

dimensional Fourier descriptors into 3 modes of variation, which account for over

90% of the shape variability.

PCA is a tried and tested technique, however it can only be relied upon if the high-

dimensional structure is (at least approximately) linear. However, PCA will fail to

describe the data if the high-dimensional geometry of the dataset is more compli-

cated than linear. Bakal et al. [Bakal et al., 2007] use neural networks to determine

the important aspects of cell morphology as controlled by certain gene networks in

Drosophila. A neural network model is a machine learning technique inspired by a

model for the learning mechanisms of the brain, which has layers of ‘neurons’ which
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activate each other and pick up on regular patterns. They use neural networks in a

bag of features approach, whereby they measure a large number of features (in many

cases with overlapping information) and simply let the machine learning algorithm

find the structure therein. They use 145 morphological features and 249 genetic

treatment conditions, and then search for joint clusters as a data-mining approach

to finding gene networks that control morphological change.

Explicit Shape Descriptors

Measuring a specified feature or property can be very useful in answering specific

questions about those features. Given a hypothesis or some a priori information

about the involvement of a specific feature within a larger system, then measure-

ment of that feature becomes important. However, with a more open-ended enquiry

it is possible that leading the analysis with specific feature based analysis may cause

one to miss information about the intrinsic underlying mechanisms.

In other imaging tasks, such as image retrieval and object classification, feature-

based measurements have other problems relating to the fact that objects can have

similar features whilst being visually very different.

This motivates the use of explicit shape descriptors. An explicit shape descriptor

is any shape representation that is reversible, i.e. the original shape data is re-

coverable. The requirement for a representation to be reversible guarantees that

the representation contains all of the information about the object it is trying to

represent. For the most part, explicit shape descriptors will be very high dimen-

sional, which means dimensionality reduction is necessary. Unless there is empirical

evidence or a theoretical justification that the structure of the data space is linear,

PCA will not be sufficient to characterise the geometry. Sparks and Madabhusi

[Sparks and Madabhushi, 2013] use a non-linear dimensionality reduction (NLDR)

technique, called Graph Embedding, to create an explicit shape descriptor to rep-

resent prostate gland lumina, whose shape is used by pathologists to grade prostate

tumour malignancy. The authors demonstrate that classification in their shape rep-

resentation space is effective in this grading task.

1.3 Retinal Pigment Epithelial Cells

We choose human retinal pigment epithelial (RPE) cells as a model system as they

show a high variability in shape while undergoing extensive directionally persistent

migration, showing all characteristics of primary human cells while being amenable
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Figure 1.1: Example migrating epithelial cells. Representative frames of mi-
grating RPE cells expressing mGFP-LifeAct to mark actin. Scale bars are 20µm
and relative time is indicated in minutes. Figure reproduced from [Jefferyes et al.,
2013].

to genetic modification.

The retinal pigment epithelium is a monolayer that separates the photosensitive

retina from the choroid in the eye. These cells perform many functions to maintain

the visual performance of the photoreceptors [Strauss, 2005]. Since the epithelium

exists as a monolayer in vivo, the cells readily take to a uniform 2D substrate in

vitro. Importantly, RPE cells move freely in culture, without requiring stimulus to

turn. This internally motivated behaviour is in contrast to the stimulated behaviour

seen in chemoattraction experiments.

A high variability in cell shape is commonly found in images of cancer cell migration

in vivo [Friedl and Wolf, 2003]. Although we simplify the system by looking at a 2D

model, the complexity displayed in our dataset required the development of a novel

shape comparison algorithm, tools that will be undoubtedly useful for tackling a

three-dimensional model in the future.

1.4 Our Approach

The main research aim of the work presented in this thesis is to develop a framework

for generating a quantitative representation of shape that is useful for modelling mi-

grational behaviour in epithelial cells. A relatively straightforward way to achieve
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that aim would be to use shape features that are known to be related to cell migra-

tion. However, we want to do this in such a way as to assume no prior knowledge

of the importance of any individual shape features. This choice has several benefits.

Firstly, it is immediately transferrable to other systems, and can provide informa-

tion about which are the important features in systems where they are not known.

Secondly, we do not limit our analysis to features that are known to be relevant, as

it may be that other features are similarly important and their inclusion yields a

richer analysis. Instead, we opt for a machine learning approach, which, as discussed

earlier, generates a new description of the data that represents the prevalent modes

of variation (or degrees of freedom) within the dataset. This approach will feed a

descriptive model for the data that will present the shape distribution of our cells in

a way that can be explored both subjectively, through visualisation techniques (see

Chapter 4), and objectively as a quantitative representation of the cells that can be

used to feed further models of dynamic behaviour (see Chapter 5).

Our framework follows on from work done by Rajpoot and Arif [Rajpoot and Arif,

2008], who use unsupervised learning to map the shape space of simple image out-

lines and successfully distinguish shapes such as guitars, apples, teddies, cars and

carriages. They make use of the Diffusion Maps technique [Coifman and Lafon,

2006a], which seeks to learn the local structure of the data but attempts to ignore

larger-scale geometry in the space of the descriptor. A crucial component in their

framework is the shape similarity measure, since this measure of similarity is pre-

served in the final representation. A major task for this project was developing a

similarity measure that appropriately and efficiently captures shape information and

ignores extraneous information present in the image. Chapter 3 describes our work

for this task, we discuss the requirements we perceived to be in place then show our

own developments to solve this problem.

Figure 1.2 gives an overview of the generalised framework that is presented in this

thesis. It shows that the cell contours are first segmented from the images, then

converted into a descriptor representation. The dataset is then assimilated into a

large shape similarity matrix, and from this matrix a low-dimensional, quantitative

representation of the dataset is created.

We published this generalised framework, in the context of migrating human retinal

pigment epithelial (RPE) cells, at the IEEE Engineering in Medicine and Biology

Society conference in July 2013 [Jefferyes et al., 2013] using the Square-Root Ve-

locity shape metric [Srivastava et al., 2011]. We have since then developed a novel

shape comparison algorithm we term BAM: the Best Alignment Metric. This uses

circular convolution to rapidly compute pairwise alignments and solve issues of in-
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Figure 1.2: Algorithm flow diagram. A flow diagram illustrating the algorithm
developed for generation of a low dimensional representation of cell shape. We
make repeated use of this algorithm for quantitative cell shape analysis on images
of migrating cells.
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variance.

1.5 Thesis Organisation

Chapter 2 outlines all experimental techniques used to collect the data for this the-

sis. It will also give detail of the analytic techniques available in literature that I

employed in various algorithms.

Chapter 3 gives a description of the decisions and development made to create a

robust and efficient cell shape representation framework. We also present an alterna-

tive framework to independently investigate the performance of the Best Alignment

Metric, a novel shape dissimilarity metric.

In chapter 4 we make use of the BAM dissimilarity metric within our cell shape

representation framework for the purpose of morphological phenotyping on a large

dataset of RPE cells. As shape is a quality commonly assessed subjectively, this

chapter contains a number of figures that visualise the output of the shape repre-

sentation framework. We also investigate the correlation between the distribution

created by our framework and a number of common shape features, many of which

are often linked to cell dynamics, in order to determine which of them are best rep-

resented by our framework, and therefore which are most dominant in the dynamics

of RPE cells.

Chapter 5 presents an investigation into the motile behaviour of RPE cells, making

use of our cell shape representation. We demonstrate that it is possible to reason-

ably accurately determine the location of a turn in a cell’s path (through one turn

mechanism at least) by examining the morphological information of the cell alone.

This chapter demonstrates a successful application of the cell shape representation

framework and provides evidence for a measurable relationship between cell mor-

phology and migratory behaviour.

Chapter 6 concludes the thesis with a discussion of successes and limitations of the

work within the context of current literature, and suggests possible directions for

future work.
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Chapter 2

Materials and Methods

2.1 Cell Culture and Imaging

2.1.1 Cell Culture

Human retinal pigment epithelial (RPE1) cells immortalised with hTERT (Clon-

tech) were grown in RPE medium (DMEM/F-12 medium containing 10% FCS, 2.3

g/l sodium bicarbonate, 2mM L-Glutamine, 100 U/ml penicillin and 100 µg/ml

streptomycin) at 37◦C, 5% CO2 in a humidified incubator. The RPE1 GLA6

cell line was generated by transfecting hTERT RPE1 cells (Clontech) with mGFP-

LifeAct [Riedl et al., 2008] followed by selection with 500 µg/ml Geneticin (Invit-

rogen). For depletion experiments, small interfering RNA oligonucleotides targeted

against Kif1C (5-CCCAUGCCGUCUUUACCAU-[dC]-[dG]-3) or a scrambled con-

trol (5-GGACCUGGAGGUCUGCUGU-[dT]-[dT]-3) were transfected using Oligo-

fectamine (Invitrogen) following manufacturer’s instructions. Cells were analysed

48 hours after transfection. Depletion efficiency and specificity was validated using

immunofluorescence and Western blotting [Theisen et al., 2012].

2.1.2 Imaging

For live cell imaging, 35mm glass-bottom dishes (Fluorodish) or 2-well chambered

coverglass chambers were coated with 10 µg/ml fibronectin (Sigma). The fibronectin

solution was allowed to incubate for 2-12 hours, and was washed twice with ddH2O

before equilibrating the chamber with RPE medium. 6000 RPE1 GLA6 cells were

seeded into each dish/well and allowed to spread for 4-6 hours. Cell migration

experiments were carried out in RPE growth medium in a microscope stage top

incubator (Tokai Hit) heated to 37◦C and providing 5%CO2. In each experiment,

numerous fields of migrating cells were imaged every 5 min for 12 hr using a 10x
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objective on an Olympus personal Deltavision microscope (Applied Precision, LLC)

using a GFP filter set (Chroma) and a Coolsnap HQ camera, controlled by Softworx

(Applied Precision, LLC). Frame rate was set at imaging every 5 minutes because

this was adequate for tracking purposes, since the cells neither moved nor changed

shape suddenly over this time period, and with any faster imaging we would begin to

see the cells negatively affected due to photodamage. The resulting images acquired

at every time point were 1024x1024 pixels with 645nm/pixel resolution.

2.2 Cell Segmentation

To capture cell shape, we extract the outline of cells from image sequences of mGFP-

LifeAct-labelled cells. Only those cell outlines were included in the analysis that

did not touch the borders or any other cell in the images. The minimal number of

consecutive frames needed for inclusion in the dataset was 5 frames. To find the cell

boundary, we used a mean shift algorithm embedded into a graphical user interface.

We used the Edison Matlab interface for mean shift using the following parameters:

SpatialBandWidth = 5, RangeBandWidth = 3, Colour Space = LUV. Segmentation

errors that resulted in the fragmentation of long cell extensions were manually fused

to prevent bias in the dataset for compact cell shapes that segment more easily.

2.3 Diffusion Maps

The Diffusion Maps (DM) framework is a non-linear dimensionality reduction tech-

nique that generates a low-dimensional coordinate representation of data. Similar

data points in the high-dimensional space are represented by new low-dimensional

points that are close; dissimilar data points are represented by new low-dimensional

points that are far apart.

To perform a DM based low-dimensional embedding of n contours, {fi} where

1 ≤ i ≤ n, one constructs an n × n matrix P with its (j, k)th entry given as fol-

lows,

pjk =
w(fj , fk)
n∑

i=1

w(fj , fi)

, (2.1)

where w(·, ·) is the chosen shape similarity measure. This matrix P can be thought

of as a Markov transition matrix (where similarity is analogous to diffusion dis-

tance). Then we perform eigen-decomposition upon P, and we know from the

Perron-Frobenius theorem that P has exactly one eigenvalue equal to 1 and all
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other eigenvalues have a strictly smaller magnitude. So (by reordering if neces-

sary) let 1 = λ0 > |λ1| ≥ |λ2| ≥ . . . ≥ |λn−1| be the set of eigenvalues, and

{ψi|i = 0, . . . , n− 1} be the set of corresponding n-dimensional eigenvectors. Then,

if ψ
(j)
i is the jth component of the eigenvector ψi, we construct a lower dimensional

representation of contour fj as

ϕj = (λt1ψ
(j)
1 , λt2ψ

(j)
2 , . . . , λtρψ

(j)
ρ ), (2.2)

where ρ � n is our choice of dimension for the embedding, and t denotes time in

the Markovian sense (we chose t = 1 in our analysis, as we are interested in local

geometric properties of shape space). Note that ρ is chosen to be much lower than

the dimensionality of the original data, and hence ϕj is a low dimensional embedding

of the contours. In a similar fashion to other dimensionality reduction techniques,

|λi| reflects the proportion of the overall variance of the dataset that is accounted

for in eigenvector ψi. Hence ρ can be chosen to be large enough to give the desired

accuracy.

2.3.1 Laplace-Beltrami Normalisation

In order to deal with data that is sampled with non-uniform density it is possible to

incorporate Laplace-Beltrami Normalisation within the Diffusion Maps framework

[Lafon and Lee, 2006]. This is done by replacing both instances of the similarity

measure w(., .) of equation 2.1 with the normalised measure w̃(., .) defined to be

w̃(fj , fk) =
w(fj , fk)

n∑

i=1

w(fj , fi)

n∑

i=1

w(fk, fi)

. (2.3)

2.4 Square-Root Elastic (SRE) distance

Joshi et al [Joshi et al., 2007] have presented a framework for consideration of

shapes that is suitable for our analysis. While their framework is well defined for

all absolutely continuous curves in Rn, we will restrict our use to unit path-length

closed curves in the plane. Given a closed curve in the plane, α : S1 → R2 we look

at its Square-Root Velocity representation, q : S1 → R2, defined as

q(t) =
α̇(t)√
||α̇(t)||

. (2.4)
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The space of all such curves is defined as preshape space (C). Hence, the construction

of C is as follows:

C =

{
q ∈ L2(S1,Rn)

∣∣∣
∫

S1

||q(t)||2 dt = 1,

∫

S1

q(t)||q(t)|| dt = 0,

}
, (2.5)

where
∫
S1 ||q(t)||2 dt = 1 provides the restriction to unit length and

∫
S1 q(t)||q(t)|| dt =

0 provides the restriction that the curves are closed. Then, to tackle the issue of

appropriate invariances (see section 3.2.1), the authors introduce shape space (S)

as the quotient of preshape space by the groups of reparameterisations (Γ) and ro-

tations in the plane (SO(2)) i.e. S = C/(Γ× SO(2)).

They present an algorithm [Srivastava et al., 2011] for determining geodesics in

preshape space (C) that minimise path length according to the Elastic metric [Mio

et al., 2007]. So the distance between any two curves q0 and q1 can be defined as

dc(q0, q1) = inf
{κ:[0,1]→C|κ(0)=q0,κ(1)=q1}

L(κ), (2.6)

where L(κ) =
∫ 1

0

√
〈κ̇(t), κ̇(t)〉dt is the length of κ (a path on C), according to the

Elastic metric, 〈·, ·〉, as defined in [Mio et al., 2007].

This is used in a second algorithm which finds the geodesic distance in shape space

(S). The geodesic distance in shape space between shapes [q0] and [q1] is defined as

dS([q0], [q1]) = inf
{(γ,O)∈Γ×SO(2)}

dc
(
q0,O(q1 ◦ γ)

√
γ̇
)
. (2.7)

This we refer to as the Square-Root Elastic (SRE) distance.

2.5 Affinity Propagation

Affinity Propagation [Frey and Dueck, 2007] is a clustering algorithm that selects a

subset of the data to be “exemplars”; all elements are then assigned to exactly one

exemplar. Hence, each exemplar forms a cluster with the points that are assigned to

it. The algorithm seeks to find the cluster/exemplar configuration that maximises

the total sum of exemplar preferences and the similarities between points and their

exemplars. This is achieved rapidly by a message passing process that iteratively

passes information between nodes and updates the system.

To perform AP clustering on a dataset of size K, the algorithm requires a similarity

matrix {sij} and a set of preferences ck, for all i, j, k = 1, . . . ,K. We set ck to be

constant over k, and equal to the median of {sij}. The choice of similarity measure
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is application specific, we discuss our choice for shape clustering in section 3.4.3.

The following messages are computed iteratively:

αij =





cj +
∑

k 6=j
max(0, ρkj) i = j,

min[0, cj + ρjj +
∑

k 6∈i,j
max(0, ρkj)] i 6= j,

(2.8)

ρij = sij −max
k 6=j

(αik + sik), (2.9)

where αij = 0 initially. The value of ρij can be thought of as a measure of how well

suited j is as an exemplar for i, taking into account other potential exemplars for i.

The value of αij can be thought of as a measure of how available j is to serve as the

exemplar for i, taking into consideration other points for which j is an exemplar.

2.6 Seriation Algorithm

This is an algorithm designed for a package for cluster analysis [Wishart, 1999],

and it deals with the reordering of branches of a dendrogram in order to optimise

the rank order of the corresponding similarity matrix. A dendrogram is a way of

illustrating the results of hierarchical clustering [Ward, 1963], but the displayed or-

der of the branches is not considered. In fact there are 2n−2 ways of rearranging a

dendrogram of n elements.

The seriation algorithm chooses an order that optimises the rank order of the sim-

ilarity matrix, which is a matrix with elements sij equal to the similarity between

elements i and j. We construct a matrix A, corresponding to the rank of each el-

ement in a row, i.e. in row i let aii = 0 and aik = 1 where k 6= i is the index of

the element most similar to element i, and aim = 2 where m 6= i is the index of the

element next most similar to i and so on. The goal is then to rearrange the rows

and columns (symmetrically) to make this rank matrix as close as possible to the

perfect rank matrix:

0 1 2 3 . . .

1 0 1 2 . . .

2 1 0 1 . . .

3 2 1 0 . . .
...

...
...

...
. . .

. (2.10)
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Specifically the algorithm tries to minimise the value of

ρ = 1−
∑

i

∑
j(aij − pij)2

(n3 − n)
, (2.11)

where aij are the row-wise rank elements as before and pij are the corresponding

perfect rank matrix elements. Full details of the optimisation procedure can be

found in [Wishart, 1999].

2.7 Hidden Markov Models

In Chapter 5 we use Hidden Markov Models to predict cell behaviour from cell

shape information [Baum and Petrie, 1966]. We considered four hidden states of

cell morphology: a depolarised state, a polarised state and the two transition states:

depolarising and repolarising.

Hidden Markov Models are used to represent a situation involving hidden states

that govern some observable variables. Normally one hidden state will be considered

active at a given time. The state will have an emission distribution governing the

observables, and transition probabilities that determine the probability that each of

the hidden states will be active at the next time step.

If the emission distributions and transition probabilities are known for each state,

and we are given a sequence of observed variables, often the challenge is to find

the most likely sequence of states to have produced these emissions. To implement

the Hidden Markov Model, we used the Probabilistic Modelling Toolkit version 3

[Murphy and Dunham]. This toolbox uses of the Viterbi algorithm [Viterbi, 1967]

(summarised below) to find the most likely states for our data sequences.

Assume we have an observed data sequence x1, x2, ..., xT , transition probabilities

τi,j from state i to state j in state space S, initial probabilities πi of being in state

i at time 0. Then define the following values:

V1,k = P (x1|k) · πk, (2.12)

Vt,k = P (xt|k) · argmax
s∈S

(τs,k · Vt−1,k). (2.13)

Here Vt,k represent the probability of being in state k given the observed variables

up until time t. Then the most likely states for each time are determined in reverse
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order as follows

qT = argmax
k∈S

VT,k (2.14)

qt = argmax
k∈S

(τk,qt+1 · Vt,k), for t = 1, . . . , T − 1. (2.15)

We trained the model using 19 manually selected image sequences that were deemed

typical examples of a turn through depolarisation/repolarisation. The four states

were classified manually and the distribution of the shapes in our shape matrix de-

termined.

2.8 Cell Track Data

In chapter 5 we investigate the migrational behaviour of RPE cells. In order to

separate analysis of the migration from analysis of the shape of the cells we define

a cell’s track to be the path of the centroid of the cell over the course of the image

sequences. The centroid is simply computed as the mean of all pixel positions

contained within the cell segmentation. This is computed through the use of the

MATLAB function ‘regionprops’.
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Chapter 3

The Best Alignment Metric

3.1 Introduction

Our proposed framework for shape analysis makes use of the Diffusion Maps algo-

rithm for manifold learning. Applying this algorithm to a given dataset requires

the selection of a suitable similarity measure. We make use of the simple Gaussian

kernel for data points x and y,

w(x, y) = exp

(−d(x, y)2

2σ2

)
, (3.1)

where d(x, y) corresponds to a chosen distance metric (for us this will be a difference

measure between shapes x and y) and σ corresponds to a chosen kernel bandwidth.

The main focus of this chapter is the development of the Best Alignment Metric

(BAM), which is our chosen shape distance metric. We will also touch on the choice

of kernel bandwidth.

3.2 Shape Difference Metric

3.2.1 Understanding the data

Section 2.2 describes our protocol for extracting a cell’s outline from a cell image.

We choose to use cell outlines to represent cell shape to remove other information

about the cell’s intracellular activity and just focus on shape. But there are still

pieces of extraneous information in this representation that our analysis needs to be

invariant to; namely the cell’s position, its angular orientation, and the parameteri-

sation of the cell outline. However the term invariant is somewhat of a red herring,

since some methods of introducing invariance also introduce significant errors in our
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framework. To understand this issue, it is important to note that we are comparing

a pair of shapes, and that some information is extraneous to the individual cells,

but significant in a relative sense. Specifically, the position and orientation of a

cell in a frame does not matter, but to compare two cells we must be careful to

control their mutual alignment. One big pitfall here is that many of the common

solutions to invariance do not do this. One common style of rotationally invariant

shape representation, we call it the standard form, will consistently represent shapes

as if they were in a particular orientation, and so will be rotationally invariant but

will give no consideration to whether any pair of represented shapes is appropriately

mutually aligned. This problem is obvious when presented in figures such as figure

3.1, but the same problem is less clear (but still present) in methods using chain

code or Fourier representation, for example.

A B C D

Figure 3.1: Cell shape misalignment. This figure illustrates the difficulties faced
when mutually aligning complex shapes along intrinsic axes. The curves labelled A
& B show cell contours and their best-fit ellipses with thick major axes. C shows
the result of aligning the two major axes (a common approach). D shows a more
suitable alignment of the two shapes. Figure reproduced from [Jefferyes et al., 2013].

The simplest solution is to remove this information entirely, for example if we sim-

ply compare the length of each cell we would not need to worry about their mutual

alignment, however we obviously want to include a lot more information than this.

The difficulties in selecting a representation that truly does not carry our identified

extraneous information but does, however, carry all other information and addition-

ally creating a similarity measure that appropriately reflects shape similarity seemed

vast, so we opted for another strategy. The strategy that we decided would be most

reliable was to mutually align each pair of shapes.

In section 2.4 we outline the Square Root Velocity representation [Srivastava et al.,

2011] and their shape distance framework involving an Elastic Metric (first intro-

duced in [Younes, 1998]). This framework is free of the requirements for shape

landmarks, provides an invariant representation, and is also highly regarded as an

intuitive representation of the structure of shape space. As such it fulfils our cri-
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teria for appropriate handling of the data. We made extensive use of this metric

in our preliminary work and employed its use in our publication [Jefferyes et al.,

2013]. We found in our early experiments that the datasets were too limited and

did not reflect the full dynamic range of cellular behaviour. We needed to increase

the size of our dataset and required an algorithm that could handle larger datasets,

however the complexity of the SRV algorithm means it was prohibitively slow for

these requirements.

This led us to the formulation of the Best Alignment Metric (discussed in section

3.2.2). Beneath this metric is a very simple notion of curve distance. However rather

than only considering curves, we consider equivalence classes of curves, i.e. the set

of all curves that only vary through operations we would consider irrelevant. We

make use of circular convolution in Fourier space to rapidly find the optimum choice

amongst all possible pairwise matchings between equivalence classes. We performed

some experiments to show that results are comparable to the SRV framework, but

computation time is dramatically lower, and so we brought the BAM algorithm for-

ward to incorporate into the Diffusion Maps framework for shape representation.

3.2.2 Introducing the Best Alignment Metric

In this section we give an overview of the theory and motivation behind the Best

Alignment Metric; for a full brute force proof, see appendix A. At its heart, BAM

is based simply on the L2-norm between curves;

||u− v||2L2 =

∫
||u(s)− v(s)||2ds (3.2)

where u, v ∈ C∞([0, 1],R2) are curves in the plane. In our case these are simple

closed curves (u(0) = u(1), u(a) 6= u(b) for a, b ∈ (0, 1), a 6= b, equivalently for v).

Here, the word curve is used in reference to an explicit curve in the plane. It is im-

portant to distinguish a curve drawn in the plane from a shape that is independent

from a coordinate system. This notion of shape is formally defined as an equiva-

lence class of curves over the standard operations of translation, rotation and cyclic

reparameterisation.

The BAM distance is defined over these equivalence classes. For a given curve, u,

we denote the equivalence class as [u] and define the BAM distance as

dBAM
(
[u], [v]

)2
= min

(r,θ)

∫
||vt(s)− rotθ(ut(s+ r))||2ds (3.3)

20



where the argument (s + r) is taken modulo 1, the minimum is taken over [0, 1) ×
[0, 2π), rotθ represents a planar rotation of angle θ centred at the origin, and ut

(resp. vt) represents the curve u (resp. v) translated so that the mean of the curve

lies on the origin. In future, we will omit this subscript and all curves can be as-

sumed to lie with their mean at the origin. In the appendix A.2, we provide proof

that this translation to the origin minimises the L2-norm over all other possible

translations.

The above definition is presented for continuous curves. However, in practise of

course, the boundaries of cells are observed and represented as discrete approxima-

tions. We therefore redefine BAM for discrete curves u = {uj ∈ C : j = 0, . . . , N−1}
(note that the number, N, of points used to represent each curve must be fixed across

the dataset and points must be evenly spaced around the curve). BAM for discretely

represented curves is defined as

dBAM
(
[u], [v]

)2
=

1

N
min
(r,θ)

N−1∑

j=0

|vj − eiθ(uj+r)|2. (3.4)

Here (as later) the index (j+ r) is taken modulo N, and the minimum is taken over

{0, . . . , N − 1} × [0, 2π). As discussed earlier, this is a very simple and intuitive

measure of shape difference. Its power comes from its ability to be reformulated to

the following expression, which admits a very rapid implementation

NdBAM
(
[u], [v]

)2
=

N−1∑

j=0

|vj |2 +
N−1∑

j=0

|uj |2 − 2 max
r

N−1∑

j=0

|vjuj+r|. (3.5)

The reasons that this admits a rapid implementation are threefold. Firstly, many of

the terms depend only on one curve and so can be computed only once per curve, not

per pair of curves. Secondly, θ is removed, as this formulation explicitly computes

the appropriate quantity over all rotations. Thirdly, the last term in the expression

can be rapidly computed through use of circular convolution. For a brute-force style

formulation and proof of BAM and the claims above, see the appendix A.

Algorithm 1 presents the pseudocode for measuring BAM over a large dataset of

curves. It highlights the fact that many of the terms can be calculated once for each

curve, rather than each pair of curves, which saves a large calculation cost.
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Algorithm 1 Computing the Best Alignment Metric between pairs of curves in

a large dataset.

Input: U , a set of M planar curves. Each curve is represented by a cyclic

sequence, u = (u0, u2, . . . , uN−1), of N equally spaced complex numbers

with mean equal to zero.

Output: D, an N ×N dissimilarity matrix.

for-loop over u ∈ U

1. Compute s(u) =

N−1∑

i=0

|ui|2.

2. Compute (cu,j)
N−1
j=0 , the fast Fourier transform of (uj)

N−1
j=0 .

3. Compute (fu,j)
N−1
j=0 , the fast Fourier transform of (u(N−j−1))

N−1
j=0 .

end

for-loop over u ∈ U
for-loop over v ∈ U

1. Compute (Xj)
N−1
j=0 , the inverse fast Fourier transform of (cu,jfv,j)

N−1
j=0 .

2. Compute A = maxj |Xj |.
3. Compute D(u, v) =

√
s(u) + s(v)− 2A.

end

end

3.2.3 Discussion of the Best Alignment Metric

Designing an efficient and effective difference metric is a common challenge in com-

puter science. The Best Alignment Metric (BAM) is extremely fast and we believe

it will be useful to others working in shape comparison. However BAM has been

designed with our application in mind and it may not be suitable for all applica-

tions. In this section we discuss certain features of BAM that potential users need

to consider.

The first issue to consider is that when comparing two shapes that are the mirror

images of each other, BAM will produce a non-zero score (unless obviously, the

shapes are identical because they are symmetric). This is suitable for our work

because we consider it an interesting difference in cells, for example, it maybe useful

in distinguishing a cell turning left from a cell turning right. For this reason, in an

application where shape similarity ought to be invariant to reflection, BAM would

not be appropriate without alteration.

Another issue involves whether or not to standardise the scale of the shapes being

analysed. In many applications of shape analysis, scale invariance is included be-

cause the shape of an object can be considered independent to its scale. In our case
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there is an argument that cells of different sizes may undergo similar morphological

changes, e.g. bending or protruding, and so standardising the scale of the shapes

allows us to more accurately measure their similarity. Another argument is that in

our context, since the microscope is always at a fixed distance from the cells and

we standardise the magnification, any difference in the size of the cells is a genuine

biological difference between the cells and this may be significant. We opted to make

our analysis scale invariant by standardising the perimeter of our shapes. However

this turned out to be relatively inconsequential; when we investigated how simple

shape features distributed across our low-dimensional representation (as discussed

later in section 4.2.3) scale related features such as area and perimeter seemed re-

markably ordered in the low-d space as compared to orientation (compare figures

4.3 and 4.11 to figure 4.7). This suggests that size is relatively conserved in our cells

and changes in size only occur with other morphological changes.

3.2.4 BAM comparisons

In this section we discuss the performance of BAM, comparing it to other ap-

proaches. We measure the speed of some shape distance measures. To do this,

we measured the total time taken to compute the distances of 100 pairs, dividing

that number by 100 to give a measure of the time to compute the BAM distance

once. We ran this process 100 times to create a mean and standard deviation. We

calculated that the average time to compute one BAM measurement is 35± 1.6 µs

(microseconds). Below we compare BAM to two other methods (Symmetric Differ-

ence and Fourier Descriptors) and discuss the use of Shape Features.

Symmetric Difference

A mathematical interpretation of the value of BAM is the integral of the symmet-

ric difference of the two shapes minimised over rotation and translation. We can

attempt to compute this value more literally by calculating the size of the sym-

metric difference (using the XOR logical operation over matrices) between binary

images. We calculate this difference between one target image and a range of rotated

images and take the minimum value. The speed and accuracy of this calculation

will obviously depend on your choices for the resolution of the binary images and

the number of angle options calculated. At a resolution of 128×128 pixels and 10

rotation options, we calculated that the average time to compute one symmetric

difference measurement is 53 ± 9.2 ms (milliseconds). Even at this low resolution,

computation time is already 1500 times slower than BAM. The result of the com-
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putation cost difference is that for a dataset with 10,000 samples computing the

pairwise distances with Symmetric Difference would take over a month, whereas

with BAM this process would take under an hour. In our analysis of RPE cells we

examine a dataset of nearly 38000 cell shapes so this cost is significant.

Comparative performance can be seen in figure 3.2. Subjectively, it seems that there

is similar performance between BAM and Symmetric Difference, there is certainly

no grounds to justify the extra computation cost.

Fourier Descriptors

A feature set that is commonly used for shape description is Fourier Descriptors.

Fourier Descriptors can be generated from the cell outline by performing a Fourier

transform, rotation invariance can then be gained by taking the absolute value

of the Fourier transform (commonly known as the power spectrum). With the

curve represented by a discrete sequence {xn}, we can make use of the fast Fourier

transform

Xk =
N−1∑

n=0

xne
−2πikn/N , (3.6)

from which we can rapidly compute the power spectrum:

Pk = Xk ·X∗k . (3.7)

These features represent the levels of auto-correlation at different frequencies around

the cell’s edge. Simply taking the Euclidean distance in this feature space gives us a

shape similarity measure. Time experiments reported an average time to compute

one FD distance measurement as 7.8 ± 5.4 µs, making it approximately 4.5 times

faster than BAM. Figure 3.2 shows the performance of this as a shape similarity

measure. For the most part, Fourier Descriptors give perceptually very similar to the

performance of BAM. However BAM can be seen (albeit subjectively) to outperform

Fourier in rows 5, 8 and 10, at least. This emphasises the fact that aspects of shape

information are lost when the phase information is removed, and the power spectrum

alone is not enough to faithfully represent shape.

BAM has another advantage, in that it is defined directly on shape space. One goal

for our framework is that it could be extended to allow for generation of synthetic

contours from arbitrary points in our low-dimensional representation. BAM allows

this, since any reversal of an embedding based on BAM maps back into shape space,

whereas reversing an embedding based on Fourier Descriptors maps into the space
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Best Alignment Metric Symmetric Difference Fourier Descriptors
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Figure 3.2: Comparative performance of shape distance measures. Each
row above shows a randomly selected target RPE cell outline, followed by 5 outlines
identified as closest to the target outline (excluding outlines of the same cell as the
target) according to 3 different shape distance measures. The difference metrics are
the Best Alignment Metric (as defined in section 3.2.2), the Symmetric Difference
and Fourier Descriptors (as described in Section 3.2.4).

of power spectra and since the power spectra are missing the phase information, any

map back into shape space is not unique.
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Earth Mover’s Distance

The Earth Mover’s Distance [Rubner et al., 1998] is an approach used by many in

shape analysis. This distance measure computes the difference between two images

by calculating the amount of work required to change one image into the other.

The analogy goes that one image can be seen as piles of dirt (where the height of

a pile corresponds to the pixel intensity), the other as holes in the ground (depth

corresponding to pixel intensity). Then if the dirt were laid on top of the holes

and the images were identical the holes would fill up perfectly, otherwise, the work

required to move the dirt into the holes measures the difference. This method is

seen as intuitive and is popular in shape analysis. However, it is not immediately

rotation invariant, this invariance must be introduced.

One method for introducing rotation invariance is to convert the images first into

a rotation invariant representation, e.g. Fourier Descriptors or Shape Context [Be-

longie et al., 2002; Grauman and Darrell, 2004]. Here we run into the same diffi-

culties that we discussed for Fourier Descriptors above, in that to generate these

representations we must lose some information.

Another way to introduce invariance would be to pre-align the cell images. We

propose that the best method for pre-aligning the images would be to actually use

BAM (a discussion of alignment of contours is given in section 3.2.1).

Shape Features

A common approach to biological analysis is to focus investigation on features that

are known to be particularly important in a given situation. In shape analysis it is no

different and with sufficient knowledge and understanding of the system it would be

possible to design an incredibly efficient and effective way of differentiating shapes

for any given task. However, as we discussed in section 1.4 we wish to develop a

framework that can be applied to a situation without any a priori information.

3.3 Kernel Bandwidth

The selection of kernel bandwidth (σ in equation 3.1) is a very important choice

in this context and appears in many other contexts in computer science, in fact

optimal selection of this parameter is an active area of research. The interpretation

of this parameter is contextual scale, i.e. at what distance would one say something

was close and what would one call far away. Humans are very good at naturally

estimating this parameter and can easily describe things as big or small, many or
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few, high or low etc. even with a minimal familiarity with the distribution, but in

machine vision, becoming context aware takes a lot more effort. Throughout the

project we looked at a number of methods for tuning this parameter.

One method we looked at is called Reverse Soft K-Nearest Neighbour Density Esti-

mation (RSKNNDE) [Kursun, 2010]. This was designed with spectral clustering in

mind, as spectral clustering is sensitive to outliers. The method seeks to mitigate

the impact of outliers by weighting each point’s contribution to the kernel estima-

tion relative to it’s own density amongst its K-nearest neighbours. The weighted

average of the density estimations is then used to create a kernel estimation.

Another method we looked at using involved a self-tuning kernel [Zelnik-Manor and

Perona, 2005]. This method chooses a unique half-kernel for each datapoint, that

is simply its distance from its Kth nearest neighbour, then σ2 is set to the product

of these two. The advantage here is that each distance is considered in the context

that it’s in.

The method we eventually chose to use was very simple; just the median of all

pairwise distances, as recommended in [Schclar, 2008]. This has been shown to be

robust to outliers.

To compare the options for kernel bandwidth we can examine the performance of

the downstream analysis. As a reminder, we are using this similarity kernel as part

of a framework for low dimensional shape representation. The main requirements

for this shape space representation are 1) similar shapes are represented by points

that are close together and different shapes are represented by points far apart and

2) the important morphological features (i.e. those features that are responsible for

the most variation within the dataset) are well-organised in relation to the inter-

nal structure of the point cloud in the representation space. The first requirement

is mostly dependent on the choice of distance measure, and BAM performs very

well in this regard. The choice of kernel bandwidth is most likely to impact on

the second requirement. The ideal scenario for the second requirement is when the

internal structure of the point cloud is linear and the internal axes align with the

Cartesian axes of the representation space. One way in which the representation can

under-perform is by the internal axes of the point cloud being curved rather than

linear, in the extreme, the point cloud can be so curved that the extremities are too

close in Euclidean distance. The bottom plot of figure 1.2 shows a early embedding

result using the RSKNNDE method for selecting the kernel bandwidth where this

phenomenon is clearly visible. For some time we thought that this curved structure

might reflect some truth about the structure of shape space, however we now believe

that it is an effect of the kernel bandwidth selection.
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We found that selecting the kernel bandwidth using the median or using the self-

tuning kernel method will both produce a point cloud with linear structure in the

first two new dimensions. In the third dimension, the point cloud using the me-

dian is still linear whereas the point cloud generated using the self-tuning method

is curved, so, although we do not make use of the third dimension we decided to

move forward using the median method.

Our final distribution proved to be quite robust to the choice of kernel, probably

because of the size of the dataset. When analysing smaller datasets we recommend

careful consideration of this parameter.

3.4 Examining the Performance of the Best Alignment

Metric

3.4.1 Affinity Propagation for Independent Validation

Our intention for this chapter is to find a shape metric to use within the Diffusion

Maps framework as outlined in section 1.4. This framework will create a shape

representation that we will later use for exploratory analysis, so it is important at

this stage to attempt to validate our shape metric within a more restricted frame-

work. To this end, we make use of Affinity Propagation clustering (see section 2.5

or [Frey and Dueck, 2007]). This algorithm is well suited for testing our metric since

it’s required inputs are only a similarity matrix and a set of preferences (which we

compute from the similarity scores), then we can assess the validity of the cluster

assignments.

In section 3.4.2 we look at the comparative performance between the Best Alignment

Metric (BAM) and the Square-Root Elastic (SRE) distance (see section 2.4 or [Joshi

et al., 2007]). Due to the speed restrictions of the SRE computation, this analysis

looks only at relatively small datasets. In section 3.4.3 we apply BAM based AP to

a much larger dataset and develop an extension to AP to cope with the difficulties

of the larger dataset. We will also discuss how this framework may be used as an

alternative framework for shape representation in its own right, and also (as seen in

section 4.1) as a useful tool for visualising the structure captured by DM.

3.4.2 SRE versus BAM

The motivation behind development of BAM was to create a rapidly computable

metric that allows for analysis of enormous datasets. Comparison of computation

time will be presented later in this section. But it is of paramount importance that
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Figure 3.3: Absolute relative error from curve sub-sampling. A plot of the
mean absolute relative error (%) of SRE (blue) and BAM (red) as functions of N ,
the number of points taken around the curve. Error bars show standard deviation.

the results that are computed using BAM are of high quality. The SRE distance is

highly regarded as a sensible measure of shape distance. This section presents results

to show that measurements produced by BAM are comparable to measurements

produced in the SRE framework.

Number of Points Around the Curve (N)

When computing distances between these shapes, something that affects both ac-

curacy and speed is the choice of number of points around the curve (N). An

experiment was performed to examine this effect, and inform our sampling choice

for later experiments. Five pairs of curves were chosen from our bank of RPE1

cell curves and the BAM and SRE distances were computed between each pair at

N = 64, 128, 256, 512, 1024 and 2048. For each pair of shapes (fi, gi) for i = 1, . . . , 5
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N Average BAM time (seconds) Average SRE time (seconds)

64 5.0× 10−3 1.2× 100

128 8.6× 10−5 2.9× 100

256 9.1× 10−5 1.7× 101

512 1.3× 10−4 1.2× 102

1024 1.8× 10−4 9.3× 102

2048 3.0× 10−4 7.4× 103

Table 3.1: A table displaying the average time taken to compute SRE and BAM
measurements of pairs of shapes, for a range of values for N , which is the number
of points sampled from around each curve. Each result is the average measurement
computed over 5 distinct pairs of shapes.

an absolute relative error was computed. We define absolute relative error as

AREi(N) =

∣∣∣∣
(Di(N)−Di(2048))

Di(2048)

∣∣∣∣, (3.8)

where Di(N) is either the BAM or SRE distance measured between shapes fi and

gi at curve sample rate N . The motivation behind equation 3.8 is that accuracy will

increase as N is increased, so Di(2048) is the most accurate of our measurements.

Figure 3.3 shows the mean AREi(N) computed over i at each N , displayed as a

percentage. Here the red line represents the mean absolute relative error of BAM

and the blue line represents the mean absolute relative error of SRE measurements.

Error bars also show the standard deviation for each N . The error of the SRE

measurements are not reliably below 1% until N = 1024, for this reason further

analysis was performed on shapes represent with 1024 points.

The time taken to compute each shape distance was recorded. Table (3.1) presents

the average time to compute BAM and SRE at each of the values used for N . It

can be seen that at N = 128, BAM is 5 orders of magnitude faster than SRE, and

at N = 2048, BAM is 7 orders of magnitude faster.

Metric Comparison

Computing BAM is very fast, but it is very important that the resulting measure of

shape distance is relevant to any given investigation. The SRE distance is a highly

regarded measure of shape distance because of its intuitive theoretical construction.

In this section we present a quantitative and qualitative comparison between SRE

and BAM to show that the results of BAM are comparable to that of SRE. Four

datasets of curves were used in this analysis. Three datasets were drawn from our
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stock dataset of boundaries of migrating epithelial cells. The same experiment was

then performed on data from a dataset used widely in computer vision literature.

The fourth dataset was small subset of the MPEG-7 core experiment (CE) Shape-1

Part-B dataset [Latecki], which comprised of 5 randomly selected members of each

of the following classes: spoon, apple, heart, bat and chicken.

For each of these datasets the SRE and BAM distance between every distinct pair of

shapes was computed. As mentioned above we wished to assess both the quantita-

tive and qualitative comparability of the shape distances. The quantitative analysis

consisted of examining the correlation statistics between the pairwise distances. For

qualitative analysis we felt it was important to assess how similarly the two metrics

worked in application. Hence the distances were used to create a similarity matrix

(using equation 3.1) for each dataset, which was used to perform Affinity Propaga-

tion clustering Frey and Dueck [2007]. Results can be seen in Figure 3.4, and are

discussed below. Figure 3.4 contains four scatter plots showing pairwise SRE and

BAM measurements for each dataset. All plots seem to indicate a positive correla-

tion between the two distance measures.

The Spearman’s rank correlation coefficient between the SRE and BAM measure-

ments was computed on each dataset, this had a mean and standard deviation of

0.71±0.85. High values of this correlation coefficient suggest that there that the two

distance measurements are likely to be related by a monotonic function. There is

clearly a high standard deviation and so we cannot argue that correlation is strong

in a numerical sense. But we can still examine performance to see if the output is

qualitatively similar.

Figure 3.4 contains an array of shapes for each of the four datasets. These shape

arrays present the results of affinity propagation clustering according to both SRE

and BAM for each dataset. In each array, shapes are separated vertically by cluster

assignment according to SRE. That is to say, there is no row that contains shapes

from more than one SRE cluster (although some larger clusters span more than one

row). The black shapes in the first column of each array are the exemplary shapes

according to SRE, these are aligned with the first row of each cluster. To the right

(and sometimes below) each exemplar, the whole cluster (including the exemplar

again) is displayed and coloured according to BAM based cluster assignment. If

the clustering assignments match perfectly, each row is coloured one unique colour.

In discussion, SRE clusters shall be referred to as numbered clusters from top to

bottom, BAM clusters shall be referred to by their colours.

In RPE Set 1 it seems that both clustering assignments successfully separate longer

shapes that have pronounced tails from the smaller rounder shapes. However, these
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Figure 3.4: Metric Comparison. A figure showing quantitative and qualitative
comparisons of the measurements of SRE and BAM on four different datasets. Scat-
ter plots display the SRE and BAM pairwise distances, demonstrating the extent
of the correlation between the distances. The arrays of shapes show the results of
affinity propagation, which was separately performed on the SRE and BAM based
similarity matrices of each dataset. The shapes are separated vertically by cluster
according to SRE. To the left of the first row of each cluster the exemplary shape
of that cluster is repeated in black. The (non-black) shapes are coloured according
to their cluster assignment by BAM. If the clustering assignments match perfectly,
each row is coloured one unique colour. Datasets A, B and C are disjoint sets drawn
randomly from a larger dataset of RPE cell outlines. Dataset D is a set of 25 shapes
drawn from 5 classes of the MPEG-7 (CE) dataset.

longer shapes make up one large cluster in the SRE based assignment (cluster 2),

but are distributed into to three smaller clusters in the BAM assignment (cyan, red

and green). Both clusterings successfully identify the cross shaped cell contour as

an outlier and not part of any other class. Cluster 3 matches the magenta cluster

in all but one shape each. In RPE Set 2 it appears that clusters 4 and 6 match the

red and green clusters (respectively) quite well. Clusters 4 and 6 contain 1 extra

cell each, and the shapes of these extra cells are arguably similar to the other cells

in the clusters. These clusters seem to represent the most dominant phenotypes

in the dataset, long and thin versus short and round. RPE Set 3 has quite good

agreement between the clustering assignments, with cluster correspondence of 1 to

green, 2 to red, 3 to yellow and blue, 4 to cyan and 5 to magenta. The yellow and

blue clusters arguably correspond to subclasses of the phenotype identified in cluster

32



3. Other small discrepancies seem to involve cells that could arguably lie in either

of the identified clusters.

Affinity propagation upon the MPEG-7 (CE) set worked equally well with both

shape measures, in that both measures resulted in perfect clustering.

3.4.3 Affinity Propagation on a Large Dataset

We now examine the performance of BAM alone, on a much larger dataset, and try

to simply visually present the clustering assignment. Figure 3.5 displays the 485

exemplars generated from running AP on a dataset of 37818 RPE cell shapes (see

section 2.1 for experimental information), as well as some randomly chosen elements

from 6 randomly chosen clusters. A perfect clustering algorithm will have low intra-

cluster variation and high inter-cluster variation. It is hopefully apparent1 that the

clusters have good (low) intra-cluster variation, in that the shapes in each cluster

appear to share features. However it is also clear that inter-cluster variation is not

consistently high, i.e. some of the exemplars are very similar to each other. This

could be seen as redundancy in the model, to be tuned away with more appropriate

parameters, however I believe this actually reflects the continuity of the data, i.e.

hard clustering is not an accurate representation of the data. The cluster boundaries

may therefore be an artifact of the algorithm, at some point the training just fits to

the noise because there are no hard boundaries to be found. With that in mind, it

must be remembered that the clusters are not independent from their neighbours,

so we have developed an extension which attempts to incorporate this structure and

gives us options for more quantitative models.

3.4.4 Seriation Extension to Affinity Propagation

In this section we outline an extension to Affinity Propagation that makes use of

hierarchical clustering [Ward, 1963] and Wishart seriation (see 2.6 and [Wishart,

1999]). This is to overcome the issue that the hard clustering produced by Affinity

Propagation is inappropriate for our continuous shape data. The intention is to

measure the inter-cluster similarity and re-order the exemplars to best preserve the

continuity in the data.

The result of Affinity Propagation is an assignment of each datapoint to an exemplar

point. If we call this exemplar list J , and we recall the shape similarity matrix,

{sij : 1 ≤ i, j ≤ K}, we can examine the submatrix constructed by selecting only

1N.b. There is no ground truth with which to judge similarity of cell shapes. We instead ask the
reader to use their visual perception to assess the fidelity of our clusters. While visual perception
is obviously subjective, it is arguably closest to the truth in the case of shape similarity.
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Figure 3.5: Affinity Propagation Exemplars. This figure shows the result of
Affinity Propagation clustering on 37818 RPE1 cell shapes. At the top of the figure
we show the 485 exemplars that result from AP clustering. Ten clusters were ran-
domly chosen, and 21 elements (where available) were randomly chosen from each
cluster to demonstrate the fidelity of the cluster assignment. We highlight the fact
that while intra-cluster variation is low in this cluster model, inter-cluster variation
is also low so the model has redundancy.
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the columns corresponding to exemplars, i.e {sij : 1 ≤ i ≤ K, j ∈ J }. This

K×|J | submatrix, which we will now call Ŝ, can be used to look at the inter-cluster

similarity, since any two exemplars that are themselves similar, should produce

similar similarity scores with respect to any given third shape. We therefore look

at the correlation matrix, C, of Ŝ, with the notion that a high correlation score will

mean two clusters are similar and a low correlation score will mean they’re different.

This correlation matrix can be treated as a similarity matrix for the clusters and

we can apply seriation as described in 2.6. This algorithm is used to reorder the

rows and columns of the correlation matrix to best reflect row-rank order, we can

then put the exemplars into the same order as these rows and columns to create an

ordered exemplar list.

Figure 3.6 shows the exemplars again, this time following the ordered exemplar list

(presented left to right, line by line). It is clear again that the 485-cluster model

has a lot of redundancy, in that many of the exemplars have very similar qualities

and should arguably be grouped into the same cluster. In fact it is even clearer

here since similar exemplars are placed next to each other. However in this figure

it is also possible to see that short sequences of exemplars show gradual progressive

changes, highlighting the continuity of the data.

There are noticeable points of discontinuity, simply because the data here is forced

into a 1-dimensional format in this list and this is the best solution.

The seriation process is designed to reorder the branches of a dendrogram produced

by hierarchical clustering. To produce the new exemplar order, we look at the last

layer of the hierarchy where each exemplar occupies its own cluster. However the

hierarchical clustering offers the ability for a user to reduce the number of clusters,

and therefore limit the redundancy, as may be required. We have coloured the

exemplars in figure 3.6 according to clustering into 7 clusters.

3.5 Application to Breast Cancer Histology Images

3.5.1 Introduction

We show here a potential application of the seriation extension to AP to the problem

of mitotic cell detection in breast cancer histopathology images [Khan et al., 2013].

The algorithmic framework presented by the authors of that work involved using

pixel features to detect potential mitotic nuclear regions, then using a context aware

post-processing (CAPP) to reduce the number of false detections, figure 3.7 shows

some mitotic nuclear regions and some falsely detected regions. The full details

of that work can be found in [Khan et al., 2013]. Here we investigate if shape
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Figure 3.6: Seriation Ordered Exemplars. This figure shows the seriation re-
ordering of exemplars generated by Affinity Propagation clustering on our set of
37818 cell shapes. The difference between this and figure 3.5 is that here, the exem-
plars have been reordered to best preserve shape similarity between near exemplars.
At the top is a dendrogram showing the result of hierarchical clustering on the AP
clusters, this is an intermediate step in reordering the exemplars. We show by colour
the grouping of the exemplars into 7 clusters.
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Figure 3.7: Example Mitotic Cell Candidates. Figure reproduced from [Khan
et al., 2013]. Four examples of 50×50 context patches, cropped around the bounding
box of candidate mitotic nuclear regions (detected using the Gamma-Gaussian Mix-
ture Model proposed in [Khan et al., 2013]). First 2 (from left) are false positives,
last 2 are mitotic cells.

features could potentially help distinguish mitotic nuclear regions from other objects

(eg, apoptotic nuclei, other non-mitotic cell nuclei, cell debris etc) that are falsely

detected.

3.5.2 Applying the Extended Affinity Propagation to Histology

Data

To attempt to find morphological features that distinguish mitotic nuclear regions

from other structures in the tissue that have similar pixel features we applied the

BAM based affinity propagation algorithm with the seriation extension to segmented

candidate regions. This analysis was chosen in order to inspect the morphological

distribution of the candidate regions and determine if there were features that could

distinguish mitotic nuclear regions.

In figure 3.8 we show the 314 AP exemplars displayed from left to right, line by

line, as ordered from the seriation extension. At the bottom of figure 3.8 we show

10 randomly selected exemplars again and 15 randomly selected members of each

corresponding cluster, in order to provide evidence for the cluster integrity of the

AP cluster model, i.e we claim members of each cluster show high shape similarity,

or appear to come from the same morphology phenotype. However, as with the RPE

dataset, we see redundancy in the AP cluster model, i.e. many exemplars represent

similar shapes. As the shape space is continuous without hard cluster limits, it

is impossible to reduce the redundancy without compromising the integrity of the

clusters. The colours represent a coarse clustering using hierarchical clustering into

5 clusters. The value of the framework is that the seriation ordering reflects the idea

that neighbouring clusters are not independent. We expect that any feature related

to shape will be non-randomly structured when viewed against the distribution
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Figure 3.8: Ordered Exemplars for Mitosis Dataset. This figure shows the
seriation reordering of exemplars generated by Affinity Propagation clustering on
a set of potential mitotic nuclear regions. The exemplars have been reordered to
best preserve shape similarity between near exemplars. Ten clusters were randomly
chosen, and 15 elements were randomly chosen from each cluster to demonstrate the
fidelity of the cluster assignment. We show by colour the grouping of the exemplars
into 5 clusters.
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created by the seriation framework.

In figure 3.9 we show a bar chart that illustrates the proportion of mitotic nuclear

regions in each AP cluster. The order of the bars corresponds to the order generated

by seriation. The colours of the bars corresponds to the coarse clustering into 5

clusters. If there were any way to identify mitotic regions based on shape, we would

expect to see the mitotic populations in figure 3.9 to be grouped up in some way.

However, as we can see the mitotic populations are arbitrarily distributed across our

shape clusters, which suggests that shape gives no extra information about whether

the detected regions are in fact mitotic.

3.6 Discussion

Section 3.4.3 was intended to assess the merits of our shape similarity measure,

BAM, independently from the Diffusion Maps framework that we will be using

later. We use Affinity Propagation [Frey and Dueck, 2007] with an extension in-

spired by the seriation algorithm [Wishart, 1999] to generate an ordered list of cell

shape exemplars (see figure 3.6). We believe these exemplars are well structured

by this process, showing similar phenotypes classed together and good separation

of different shapes. Hence, we argue that BAM produces a sensible measure of the

similarity of our cell shapes that at the very least reflects the human perception of

shape similarity. In the next chapter we will look at the performance of BAM within

the Diffusion Framework where we attempt to visualise the morphological features

captured in the embedding process. The best vindication of BAM in this framework

is clearly good performance in a suitable task, and this is what we attempt to do in

chapter 5.

While the methodology presented in section 3.4.3 was primarily designed to be sim-

ply a validation of BAM, it can be viewed as a useful framework in it’s own right.

Firstly we argue that, with a huge dataset, hierarchical clustering performed after

affinity propagation can be an effective method for reducing redundancy in the first

cluster model. The method proposed uses the correlation between each of the exem-

plars’ vectors of similarity scores and generates a hierarchy of cluster assignments,

allowing a user to find an optimal cluster assignment to maximise inter- versus intra-

cluster variation.

Another potentially useful part of the work in section 3.4.3 is the final order of the

exemplars. This order should, in some optimised way, reflect shape similarity, with

short sections of the list showing shapes with progressive values for some important

shape feature(s). This means, if one were to suspect that the value of another vari-
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Figure 3.9: Relative Mitotic Count in Ordered Clusters. The proportion
of true mitotic nuclear regions in each cluster of a set of potential regions. These
clusters were generated using Affinity Propagation and reordered according to the
seriation extension described in section 3.4.4. This cluster reordering is based on
neighbouring clusters having similar shape features (see figure 3.8), hence if shape
were any indication of whether a region is a mitotic nuclear region we would see
some organisation in this figure.
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able (such as the concentration of some molecule within each cell or its environment)

is related to cell shape, one would hope to see structure when the value is plotted

against this list. At least within the short sections.
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Chapter 4

Morphological Phenotyping of

Retinal Pigment Epithelial Cells

4.1 Visualising Shape Space

The result of applying our shape analysis framework (introduced in section 1.4) is a

low dimensional embedding of our dataset of cell shapes where Euclidean distance

reflects shape similarity as determined by our similarity measure, BAM, introduced

in chapter 3. It is always challenging to assess the performance of a shape analysis

algorithm since there is no ground truth when it comes to quantifying shape. In

many investigations a first assessment is done visually and given that shape espe-

cially is often classified subjectively (see section 1.2.1) we wanted to develop some

tools for visually inspecting the distribution created through Diffusion Maps.

What we expect from an embedding that preserves similarity is one where points

are close together if they represent shapes that are similar, and points are far apart

if the shapes are different. This should mean that if we look at local clusters of

points in the embedding, the corresponding group of cell shapes should represent

individual morphological phenotypes. Also if we look at points that lie in a straight

line, such as one parallel to one of the axes, we should see (in the shapes) a progres-

sion of one or more shape features that are significant in the observed variability in

the dataset.

4.1.1 Shape Averaging

The simplest thing we can do to examine whether our embedding has achieved the

properties described above is to look at the average shape of selected groups of cell
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curves. Given a set of curves (scaled to standard path-length and interpolated to

uniform parameterisation) and one chosen reference curve, we can use BAM to align

each curve’s orientation and cyclic parameterisation with the reference curve (see

section 3.2.2 and A). We can then simply find the average shape by computing the

mean of all points of each index in all curves.

Figure 4.1 shows the result of partitioning our dataset according to intervals within

each of the first two diffusion coordinates (separately). In red we can see the parti-

tioning according to the first diffusion coordinate and the resulting average shapes.

Clearly the most dominant shape feature that appears to vary in relation to this

first axis has to do with aspect ratio; shapes with a very low first coordinate are as

wide as they are long whereas shapes with a high first coordinate are much longer.

This is consistent with the idea that cellular phenomena such as tail growth, are

responsible for most of the morphological variation in the dataset. In green we see

the result of partitioning based on the second diffusion coordinate.

4.1.2 Extended Affinity Propagation to Visualise DM Embedding

In section 3.4.3 we look into using Affinity Propagation clustering on our large

dataset of shapes and introduce an extension to it. This is a completely separate al-

gorithm to the Diffusion Maps embedding algorithm, except for the use of the shape

difference measure, BAM. The extension is necessary because the clustering results

leave redundancy in the cluster model. We can make use of both the extended

cluster model and the initial AP exemplars to evaluate the quality of the Diffusion

framework. Firstly, the extension uses hierarchical clustering and can produce a

coarse cluster assignment. We can apply this coarse clustering to the points gener-

ated through Diffusion Maps and examine the validity of this labelling to see if we

have agreement between the two methods. This can be seen in the top plot of figure

4.2. The figure shows relatively good cluster integrity between the seven clusters,

since the clusters stay mostly confined to their own region of the embedding. There

is, however, some overlap, but we believe this to be inevitable considering that the

data really is a continuum and does not naturally yield cluster boundaries.

The second plot in figure 4.2, looks at where the exemplars lie in the Diffusion em-

bedding which allows us to visually check for good separation according to shape,

and look for clues as to the important shape features controlling the newly generated

Diffusion coordinates. Firstly, let us look at the separation according to shape; we

can see (as before, in 3.6) that each cluster seems, to a certain degree, to represent a

different morphological phenotype, as we see distinguishing properties in each. But

what we see here is more of an idea of the continuity of the data. Firstly, within
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Figure 4.1: Axis phenotypes. This figure provides a coarse look at the shape fea-
tures captured by each of the first two Diffusion coordinates. The underlying plot
shows 37818 points each representing a cell’s curve, arranged in such a way as to re-
flect shape similarity through Euclidean distance (section 2.3 outlines the Diffusion
Maps algorithm, chapter 3 discusses the specifications made for this dataset). The
figure also displays the average shape of subsets of shapes created by partitioning
according to the first two Diffusion coordinates (separately). Red shows the parti-
tioning according to the first coordinate, green shows the partitioning according to
the second coordinate.

each cluster, in that subtle differences can be seen as you look across each cluster.

Secondly, on the boundaries between clusters, we really can appreciate here that

hard boundaries are not appropriate since clear similarities can be seen by many

pairs of shapes that lie close to each other near the boundaries. Thirdly, in the

arrangement of the clusters, we can see overarching progression of different features.

The third point above is what we can use to help us interpret the features captured

by the embedding. For example, as you look from (dark) blue to green to yellow

and to red, there is clearly a shape progression relating to the same features we

noticed in figure 4.1, that of round shapes versus long and thin shapes. Also, if we

look at the yellow and orange clusters, these are both neighbours of the red clus-

ter. Appropriately, we can say that the yellow and orange clusters share similarities
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Figure 4.2: Affinity Propagation Clusters over DM Embedding. The top
figure depicts the correspondence between the Diffusion Maps embedding (the xy-
position) and the cluster assignment by Affinity Propagation (the colour). The
bottom figure displays some of the AP exemplars overlaid onto the corresponding
DM embedded points.
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with the red cluster, but have differences which distinguish them, namely differing

degrees of symmetry and convexity in the shapes. Similar differences can be seen in

the green and purple clusters, and both are similar to the (dark) blue cluster. The

light blue (or cyan) is clearly identified by the Diffusion framework as being removed

from the others in the second coordinate. There is also a clear distinction in the

shapes within this cluster, with many having very irregular shapes and numerous

processes. In the next section we further investigate the features represented by our

newly generated Diffusion coordinates.

4.2 Shape Feature Correlation

4.2.1 Scalar Shape Features

This section investigates the extent to which the Diffusion Maps shape representa-

tion correlates with simple shape features. We weren’t too selective of the features

we examined since we wanted to be very inclusive. Many of the features were com-

puted using MATLAB’s regionprops toolbox. To compute shape features of a given

cell curve we construct a binary image from that curve and its bounding box. We

refer to the part of the image inside the curve as the ‘region’ and define the features

as follows:

• Area: The actual number of pixels in the region.

• Major Axis Length: Scalar specifying the length (in pixels) of the major

axis of the ellipse that has the same normalised second central moments as

the region.

• Minor Axis Length: Scalar specifying the length (in pixels) of the minor

axis of the ellipse that has the same normalised second central moments as

the region.

• Eccentricity: Scalar that specifies the eccentricity of the ellipse that has

the same second-moments as the region. The eccentricity is the ratio of the

distance between the foci of the ellipse and its major axis length. The value is

between 0 and 1. (0 and 1 are degenerate cases; an ellipse whose eccentricity is

0 is actually a circle, while an ellipse whose eccentricity is 1 is a line segment.)

• Orientation: The angle (in degrees ranging from -90 to 90 degrees) between

the x-axis and the major axis of the ellipse that has the same second-moments

as the region.
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• Convex Area: Scalar that specifies the number of pixels in the convex hull.

• Solidity: Scalar specifying the proportion of the pixels in the convex hull that

are also in the region. Computed as Area/Convex Area.

• Extent: Scalar that specifies the ratio of pixels in the region to pixels in the

total bounding box. Computed as the total area divided by the area of the

bounding box.

• Perimeter: The distance around the boundary of the region. Regionprops

computes the perimeter by calculating the distance between each adjoining

pair of pixels around the border of the region.

• Circularity: Measured by computing P/
(
2
√
πA
)

where P is the perimeter

and A is the area.

• Symmetry: Scalar specifying the ratio of pixels bounded by both the cell

curve and its reflection in its major axis to the number of pixels bounded by

the cell curve.

• Max distance from centre: The maximum distance between the centre of

mass (of the region bounded by the cell’s boundary) and any point on the

boundary of the cell.

• Min distance from centre: The minimum distance between the centre of

mass (of the region bounded by the cell’s boundary) and any point on the

boundary of the cell.

• Min/max centre distance ratio: The ratio of the minimum to the maxi-

mum distances between the centre of mass and any point on the boundary of

the cell.

• Irregularity: Also described as non-circularity, irregularity is computed as

1+
√
πmax

i

√
(xi − x̄)2 + (yi − ȳ)2

√
Area

− 1.

• Irregularity 2: This is the irregularity of the negative space of the cell region

within the bounding box.
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Correlation with Diffusion Coordinates
Simple Shape Feature D.C.1 D.C.2 D.C.3 D.C.4 D.C.5

Area 0.1882 0.1888 0.0869 0.0141 0.0063
Major Axis Length 0.7949 -0.0714 0.0411 0.0835 -0.0039
Minor Axis Length -0.3844 -0.5346 -0.1235 -0.0735 0.0130

Eccentricity 0.8303 0.2197 0.0740 0.1650 -0.0369
Orientation -0.0035 -0.0261 -0.0091 0.0111 0.0052

Convex Area 0.4258 -0.4339 -0.0096 0.0349 0.0079
Solidity -0.6427 0.6315 0.1268 -0.0382 0.0024
Extent -0.7858 0.4063 0.1378 0.0071 0.0016

Perimeter 0.6643 -0.4763 0.0498 0.0057 0.0115
Circularity 0.7664 -0.4899 -0.0040 0.0181 -0.0559
Symmetry -0.4144 0.6222 0.2296 -0.1220 0.0090

Max distance from centre 0.8049 -0.2267 -0.0853 -0.0860 0.0063
Min distance from centre -0.5287 0.0220 0.1607 -0.2799 0.0338

Min/max centre distance ratio -0.9053 0.2401 0.1629 -0.0979 0.0343
Irregularity 0.8530 -0.1703 -0.1468 -0.0923 0.0033
Irregularity2 -0.5387 0.3960 0.0363 -0.0811 -0.0157

Table 4.1: This table shows the correlation of simple shape features with the Diffu-
sion Maps representation of our RPE1 dataset. The shape features are described in
section 4.2.1. The Diffusion embedding is described in section 2.3

4.2.2 Shape feature correlation

Table 4.1 displays the correlation between each of our Diffusion coordinates with

the shape features described in section 4.2.1, where correlation is computed as

rx,y =

∑N
t=1(xt − x)(yt − y)√∑N

t=1(xt − x)2 ·∑N
t=1(yt − y)2

, (4.1)

where N=37818, xt, yt represent the relevant Diffusion coordinate or shape feature

value for curve t and x, y represent the respective means. From table 4.1 we see that

many of these features are strongly correlated with our new Diffusion coordinates.

The features that correlate most strongly with the first Diffusion coordinate include

the ratio between the maximum and minimum distances from the border to the

centre of gravity, as well as irregularity and eccentricity. These all seem to have a

similar theme about the cell being longer than it is wide. This corresponds with

what we had noticed about the distribution in inspection in section 4.1. Bearing

in mind that the Diffusion Maps algorithm is designed to find the most important

sources of variability within the dataset, this result closely matches our biological

expectation, which was that a cell being polarised (having a prominent front end
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and tail) or not is the most significant morphological feature.

The features that correlate most strongly with the second diffusion parameter are

solidity and symmetry. Remember that solidity is computed as Area
Convex Hull Area and

symmetry is computed as Reflected Intersection Area
Area . Both of these statistics reflect

(among other irregularities) the presence of side processes or other structures that

give the cell a branched shape. This again fits both our earlier investigation (sec-

tion 4.1) and our biological expectation as being an important feature in the cells’

behaviour.

One interesting utility of this table is in investigating the success of the dimension

reduction process. We can actually use the information in this table to determine

how many new dimensions it is appropriate to use. For example, we can look at top

5 features that correlate with the 2nd Diffusion Coordinate, namely, Solidity, Sym-

metry, Minor Axis Length, Circularity and Perimeter (Note, here, we are ordering

according to the absolute value of the correlation coefficient). The position of these

features in terms of correlation with the first coordinate are respectively 9th, 13th,

14th, 7th and 8th. The fact that these positions are relatively low implies that the

second Diffusion Coordinate can be interpreted as representing very different shape

information to the first Diffusion Coordinate. Whereas, we can look at the top 5

features correlated with the third Diffusion Coordinate and their highest positions

in respect to either of the first two Diffusion Coordinates; i.e Symmetry is 2nd (for

DC2), Min/max centre distance ratio is 1st (for DC1), Minimum centre distance is

11th (for DC1), Irregularity is 2nd (for DC1) and Extent is 6th (DC1). With the

exception of Minimum centre distance, these are all quite high positions which sug-

gests that the shape information captured by the third dimension is largely already

captured by the first two dimensions. The minimum centre distance (the smallest

distance between a curve and its centre) is a feature quite unlike the other features,

and perhaps the third dimension has successfully separated this information from

the rest. However at its low correlation value it is likely that this feature does

not account for much variation within the dataset. Similarly, the top 5 features

correlating with the fourth Diffusion Coordinate achieve positions 3, 3, 1, 1 and

2 amongst the first three Diffusion Coordinates and the top 5 features correlating

with the fifth Diffusion Coordinate achieve positions 4, 2, 1, 1 and 8 amongst the

first four Diffusion Coordinates. These are almost all low positions, suggesting the

information in these coordinates is already captured.

It is reassuring to see that the orientation of the cells has very low correlation with

all of the Diffusion coordinates since our shape similarity measure was designed to

be invariant to orientation. What is surprising is that features relating to scale
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(Perimeter and Area) correlate with the Diffusion coordinates to the extent that

they do. Since (by necessity rather than design) the cell shapes were analysed with

a standardised perimeter. What this implies is that the perimeter is closely related

to another shape feature (or perhaps many), from which it can be inferred.

In section 4.2.3 we attempt to visualise the distribution of these features over the

top two Diffusion coordinates.
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4.2.3 Features distributed over the Diffusion Maps embedding

Figure 4.3: Area distributed over DM embedding. This figure looks at the
distribution of cell shape area over the first two Diffusion Coordinates. Each point of
the plot represents one cell shape, its position corresponds to its embedding through
the Diffusion Maps process, its colour corresponds to its relative area. The colour
map was generated to display the area range, truncated at 3.5 standard deviations
either side of the median. Shown in the figure is a histogram showing the area
distribution over the dataset and a colour bar that corresponds with the area value
bins. The definition and computation of area are explained in section 4.2.1.
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Figure 4.4: Major Axis Length distributed over DM embedding. This figure
looks at the distribution of cell shape major axis length over the first two Diffusion
Coordinates. Each point of the plot represents one cell shape, its position corre-
sponds to its embedding through the Diffusion Maps process, its colour corresponds
to its relative major axis length. The colour map was generated to display the major
axis length range, truncated at 3.5 standard deviations either side of the median.
Shown in the figure is a histogram showing the major axis length distribution over
the dataset and a colour bar that corresponds with the major axis length value bins.
The definition and computation of major axis length are explained in section 4.2.1.

52



Figure 4.5: Minor Axis Length distributed over DM embedding. This figure
looks at the distribution of cell shape minor axis length over the first two Diffusion
Coordinates. Each point of the plot represents one cell shape, its position corre-
sponds to its embedding through the Diffusion Maps process, its colour corresponds
to its relative minor axis length. The colour map was generated to display the minor
axis length range, truncated at 3.5 standard deviations either side of the median.
Shown in the figure is a histogram showing the minor axis length distribution over
the dataset and a colour bar that corresponds with the minor axis length value bins.
The definition and computation of minor axis length are explained in section 4.2.1.
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Figure 4.6: Eccentricity distributed over DM embedding. This figure looks
at the distribution of cell shape eccentricity over the first two Diffusion Coordinates.
Each point of the plot represents one cell shape, its position corresponds to its em-
bedding through the Diffusion Maps process, its colour corresponds to its relative
eccentricity. The colour map was generated to display the eccentricity range, trun-
cated at 3.5 standard deviations either side of the median. Shown in the figure is
a histogram showing the eccentricity distribution over the dataset and a colour bar
that corresponds with the eccentricity value bins. The definition and computation
of eccentricity are explained in section 4.2.1.
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Figure 4.7: Orientation distributed over DM embedding. This figure looks
at the distribution of cell shape orientation over the first two Diffusion Coordinates.
Each point of the plot represents one cell shape, its position corresponds to its em-
bedding through the Diffusion Maps process, its colour corresponds to its relative
orientation. The colour map was generated to display the orientation range, trun-
cated at 3.5 standard deviations either side of the median. Shown in the figure is
a histogram showing the orientation distribution over the dataset and a colour bar
that corresponds with the orientation value bins. The definition and computation
of orientation are explained in section 4.2.1.
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Figure 4.8: Convex Area distributed over DM embedding. This figure looks
at the distribution of cell shape convex area over the first two Diffusion Coordinates.
Each point of the plot represents one cell shape, its position corresponds to its em-
bedding through the Diffusion Maps process, its colour corresponds to its relative
convex area. The colour map was generated to display the convex area range, trun-
cated at 3.5 standard deviations either side of the median. Shown in the figure is
a histogram showing the convex area distribution over the dataset and a colour bar
that corresponds with the convex area value bins. The definition and computation
of convex area are explained in section 4.2.1.
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Figure 4.9: Solidity distributed over DM embedding. This figure looks at
the distribution of cell shape solidity over the first two Diffusion Coordinates. Each
point of the plot represents one cell shape, its position corresponds to its embedding
through the Diffusion Maps process, its colour corresponds to its relative solidity.
The colour map was generated to display the solidity range, truncated at 3.5 stan-
dard deviations either side of the median. Shown in the figure is a histogram showing
the solidity distribution over the dataset and a colour bar that corresponds with the
solidity value bins. The definition and computation of solidity are explained in
section 4.2.1.
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Figure 4.10: Extent distributed over DM embedding. This figure looks at
the distribution of cell shape extent over the first two Diffusion Coordinates. Each
point of the plot represents one cell shape, its position corresponds to its embedding
through the Diffusion Maps process, its colour corresponds to its relative extent. The
colour map was generated to display the extent range, truncated at 3.5 standard
deviations either side of the median. Shown in the figure is a histogram showing
the extent distribution over the dataset and a colour bar that corresponds with the
extent value bins. The definition and computation of extent are explained in section
4.2.1.
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Figure 4.11: Perimeter distributed over DM embedding. This figure looks
at the distribution of cell shape perimeter over the first two Diffusion Coordinates.
Each point of the plot represents one cell shape, its position corresponds to its
embedding through the Diffusion Maps process, its colour corresponds to its relative
perimeter. The colour map was generated to display the perimeter range, truncated
at 3.5 standard deviations either side of the median. Shown in the figure is a
histogram showing the perimeter distribution over the dataset and a colour bar
that corresponds with the perimeter value bins. The definition and computation of
perimeter are explained in section 4.2.1.
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Figure 4.12: Circularity distributed over DM embedding. This figure looks
at the distribution of cell shape circularity over the first two Diffusion Coordinates.
Each point of the plot represents one cell shape, its position corresponds to its
embedding through the Diffusion Maps process, its colour corresponds to its relative
circularity. The colour map was generated to display the circularity range, truncated
at 3.5 standard deviations either side of the median. Shown in the figure is a
histogram showing the circularity distribution over the dataset and a colour bar
that corresponds with the circularity value bins. The definition and computation of
circularity are explained in section 4.2.1.
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Figure 4.13: Symmetry distributed over DM embedding. This figure looks
at the distribution of cell shape symmetry over the first two Diffusion Coordinates.
Each point of the plot represents one cell shape, its position corresponds to its
embedding through the Diffusion Maps process, its colour corresponds to its relative
symmetry. The colour map was generated to display the symmetry range, truncated
at 3.5 standard deviations either side of the median. Shown in the figure is a
histogram showing the symmetry distribution over the dataset and a colour bar
that corresponds with the symmetry value bins. The definition and computation of
symmetry are explained in section 4.2.1.
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Figure 4.14: Max distance from centre distributed over DM embedding.
This figure looks at the distribution of cell shape max distance from centre over the
first two Diffusion Coordinates. Each point of the plot represents one cell shape, its
position corresponds to its embedding through the Diffusion Maps process, its colour
corresponds to its relative max distance from centre. The colour map was generated
to display the max distance from centre range, truncated at 3.5 standard deviations
either side of the median. Shown in the figure is a histogram showing the max
distance from centre distribution over the dataset and a colour bar that corresponds
with the max distance from centre value bins. The definition and computation of
max distance from centre are explained in section 4.2.1.
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Figure 4.15: Min distance from centre distributed over DM embedding.
This figure looks at the distribution of cell shape min distance from centre over the
first two Diffusion Coordinates. Each point of the plot represents one cell shape, its
position corresponds to its embedding through the Diffusion Maps process, its colour
corresponds to its relative min distance from centre. The colour map was generated
to display the min distance from centre range, truncated at 3.5 standard deviations
either side of the median. Shown in the figure is a histogram showing the min
distance from centre distribution over the dataset and a colour bar that corresponds
with the min distance from centre value bins. The definition and computation of
min distance from centre are explained in section 4.2.1.
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Figure 4.16: Min/max centre distance ratio distributed over DM embed-
ding. This figure looks at the distribution of cell shape min/max centre distance
ratio over the first two Diffusion Coordinates. Each point of the plot represents one
cell shape, its position corresponds to its embedding through the Diffusion Maps
process, its colour corresponds to its relative min/max centre distance ratio. The
colour map was generated to display the min/max centre distance ratio range, trun-
cated at 3.5 standard deviations either side of the median. Shown in the figure is a
histogram showing the min/max centre distance ratio distribution over the dataset
and a colour bar that corresponds with the min/max centre distance ratio value bins.
The definition and computation of min/max centre distance ratio are explained in
section 4.2.1.
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Figure 4.17: Irregularity distributed over DM embedding. This figure looks
at the distribution of cell shape irregularity over the first two Diffusion Coordinates.
Each point of the plot represents one cell shape, its position corresponds to its em-
bedding through the Diffusion Maps process, its colour corresponds to its relative
irregularity. The colour map was generated to display the irregularity range, trun-
cated at 3.5 standard deviations either side of the median. Shown in the figure is
a histogram showing the irregularity distribution over the dataset and a colour bar
that corresponds with the irregularity value bins. The definition and computation
of irregularity are explained in section 4.2.1.
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Figure 4.18: Irregularity2 distributed over DM embedding. This figure looks
at the distribution of cell shape irregularity2 over the first two Diffusion Coordinates.
Each point of the plot represents one cell shape, its position corresponds to its
embedding through the Diffusion Maps process, its colour corresponds to its relative
irregularity2. The colour map was generated to display the irregularity2 range,
truncated at 3.5 standard deviations either side of the median. Shown in the figure is
a histogram showing the irregularity2 distribution over the dataset and a colour bar
that corresponds with the irregularity2 value bins. The definition and computation
of irregularity2 are explained in section 4.2.1.
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The figures above clearly reiterate the fact that our newly generated shape repre-

sentation does indeed represent morphological features present in the data. If a

particular feature is well represented by the diffusion coordinates we expect to see

good spatial separation according to colour in the figures. For reference, figure 4.7

is a good example of the opposite; the analysis is invariant to the orientation of a

cell within the image frame and hence the colours are thoroughly mixed across the

embedding.

Our analysis of correlation in section 4.2.2 we highlight the min/max ratio, irregu-

larity and eccentricity as being the features most strongly correlated with the first

Diffusion coordinate. This is reinforced by figures 4.6, 4.16 and 4.17, which show

very good horizontal separation of colours. Similarly, solidity and symmetry are

noted as being highly correlated with the second diffusion coordinate, and figures

4.9 and 4.13 show good vertical separation of colours.

Figure 4.3 (area) looks far less chaotic than 4.7 (orientation), and so perhaps has

some more structure. Although it is important to note that the area distribution of

is non-uniform. Also, the density of embedded points is not homogeneous. None-

the-less, it appears that cells with smaller area sit in the top left corner.

Figure 4.4 (major axis length) shows very strong spatial separation, and understand-

ably looks similar to 4.14 (max distance from centre). These two distributions, more

so than any of the others, appear to separate colours strictly horizontally, that is the

feature level sets of these distributions would run almost vertically. This means that

the features are strongly represented in the first Diffusion coordinate, which means

that the Diffusion Maps algorithm has determined that these features represent a

significant amount of the morphological variability present within the dataset. Also

the features are independent to the second coordinate.

Figure 4.5 (minor axis length) shows some separation most noticeably in the sec-

ond Diffusion coordinate. The separation is not perfect and there is some mixing,

so while this feature is important it is not the defining characteristic that dictates

arrangement.

There is a noticeable small cluster of points around the point (0, 1) in figure 4.5

(minor axis length), that are red or orange and so have a much higher minor axis

length than the others around them. This distinctive cluster is preserved in fig-

ures 4.3 (area), 4.4 (major axis length), 4.8 (area of convex hull), 4.11 (perimeter),

4.14 (max. distance from the centroid) and 4.15 (min. distance from centroid). The

common thread here is that these features are not normalised by area, and (as is

evident from figure 4.3), these cells clearly have much larger area than the other

cells with similar shapes. The fact that these points are noticeable indicates that,
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in general, cell area is relatively preserved in relation to shape, however these points

are an anomaly for which there may be a biological explanation. These points are

not visible in the plots of features normalised by area in some form, e.g. figures 4.8

(convex area), 4.9 (solidity), 4.10 (extent), 4.12 (circularity), 4.13 (symmetry), 4.16

(min./max. distance ratio), 4.17 (irregularity) and 4.18 (irregularity2).

One of the most visually striking plots in this section is figure 4.12 (circularity). This

figure shows very good separation of colours; there are clear bands across the point

cloud dominated by distinct colours. This suggests that circularity is a feature very

well reflected with our shape analysis framework, and is also a significant feature in

the dataset. Interestingly the level sets of this feature appear to run diagonally, so

the feature is somehow important to both Diffusion coordinates.

It is also interesting that while many of the features are similarly distributed across

the Diffusion coordinates, they are clearly different distributions (for example, try to

guess the angle of the levels in each plot). This emphasises the power that Diffusion

Maps has to coordinate the many features that are all jointly responsible for the

intrinsic variability within a dataset and to present that information succinctly.
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Chapter 5

Turn Prediction

5.1 Introduction

By simply looking at a still image of a person it is possible to guess whether they

are moving or standing still. This is because our familiarity with the mechanisms by

which a human can move allows us to predict the intended movement. In this chap-

ter we investigate the extent to which the same can be said of images of migrating

epithelial cells. The intention is that, with this work, we can begin to identify the

morphological cues corresponding to different mechanisms of migration. The task

we set ourselves is to detect turns in each cell’s track by looking at the morphological

information alone.

In literature, the morphological feature most associated with cell migration is cell

polarity, as the cell needs to be able to establish a distinct front and back. In fish

keratocytes this is a large fan-like lamella at the front and a thicker cell body at the

rear [Abercrombie et al., 1970]. D. discoideum cells become elongated and wedge-

shaped when responding to high chemotactic stimulation [Tweedy et al., 2013].

Directionally persistent migration in RPE cells has been linked to the maintenance

of elongated tails [Theisen et al., 2012].

We start with the following model for RPE cell turning, which assumes a cell main-

tains directional persistence when it has a prominent front and tail, and hence to

achieve a turn the cell must first lose its tail, then choose a new front and new tail

to head in a new direction. We describe this morphological behaviour in terms of

polarisation; i.e. a cell with a prominent front and tail is called polarised, then the

cell depolarises as it loses its tail, then must re-establish a polarity before moving

in a new direction.

Thus, if we can detect these depolarisation-repolarisation sequences in the morpho-
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logical space, we can predict that there will be a turn in the track at the time of

repolarisation. So, if cellular behaviour fits this model consistently we should be

able to predict a turn from morphological features alone.

Our BAM based framework, discussed in chapter 4, readily presents a method for

distinguishing polarised cells from non-polarised cells; figure 4.1 shows that round

cells are most prevalently found at the end of the point cloud with a low 1st Diffu-

sion coordinate, with cells becoming more elongated as this coordinate increases.

A quick look at example RPE1 tracks will suggest that this idea has potential, as,

in many cases, the rounded regions match very neatly with a turn in the cell’s path.

However, it is also clear that RPE cells do not always follow this behaviour mecha-

nism, as they both achieve turns through other mechanisms and repolarise without

directional change.

A full model that describes all possible behaviours would constitute a large amount

of work, and so is beyond the reach of this thesis. So, in this chapter we limit

ourselves to developing a model that describes only this repolarisation-based mech-

anism. We then develop a framework for estimating the prevalence of this behaviour

in our dataset, by checking each cell track against our model.

We continue this section with an outline of the pipeline we have developed for

identifying cells that do turn through the repolarisation mechanism. In section 5.2

we introduce the tools with which we analyse the morphological and migrational

behaviour, and describe how we train those tools to our dataset. In section 5.3

we present our findings, determining how predominantly this mechanism is used in

RPE1 cells, and how accurately we find the location of the turns when this mecha-

nism is used. Finally section 5.4 discusses the successes and limitations of the work

in this chapter and suggests the potential for further work.

5.1.1 Proposed Pipeline

Our goal, when we examine an individual cell track, is to determine the extent to

which the cell’s behaviour fits the depolarisation-repolarisation model for directional

changes in cell migration. We propose the following two-step algorithm (outlined in

figure 5.1).

The first step involves looking at the morphological information for the cell track

and, based on this information, making a prediction about where there are turns in

the track.

The second step involves looking at the migratory information and examining how

well this prediction fits, which means checking the predicted turns to see if they are

in fact turns, and checking the stretches between turns to see if these stretches are
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Figure 5.1: Track analysis pipeline. This diagram illustrates the algorithm devel-
oped in this chapter, for determining how well the repolarisation mediated turning
model fits a given cell’s track. The algorithm first analyses the dynamic morpho-
logical information of the cell and attempts to detect repolarisation events. From
the repolarisation events it then makes a prediction about where the turns in the
migratory track are likely to be. We then assess how well this track fits our model
by testing whether the turn predictions are correct and also testing whether the
path segments between detected turns are straight (i.e. whether or not there are
missed turns in this segment).

straight.

In this way, each track contributes four statistics; the number of correct turn predic-

tions, the number of incorrect turn predictions, the number of straight path segments

and the number of non-straight path segments. The output of this framework will

be the relative sizes of these quantities, which will indicate the prevalence of this

mechanism in our dataset.

5.2 Development

5.2.1 Morphological Analysis

A hidden Markov model (HMM, introduced in section 2.7) is a statistical model for

time series data where each observable data point is treated as an emission from a

distribution dependent on a hidden state. What is important, though, is that the

active state may change after each emission, with a certain transition probability.

Often, the task is to view a data sequence and predict the most likely sequence of

states that would produce such a data sequence, and hence label or classify each

point in the sequence. The benefit in this model is the fact that each data point is

classified in context and not in isolation.
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The simplest HMM we could devise for use in detecting repolarisations from mor-

phological data within our framework would be a two state model, corresponding

to polarised and depolarised. Figure 5.2 (top) shows an example of how one might

create such a two-state HMM within our framework. We selected a number of cell

tracks that followed the repolarisation mechanism closely and labelled each frame as

polarised or depolarised. Then for each labelled set, we fitted a 2D-Gaussian distri-

bution to the Diffusion Maps representation of those shapes (as created in 4.1, only

for the first two coordinates); these became the emission distributions of the HMM.

From this model we can predict turns to be at the time when a cell transitions from

depolarised to polarised.

We also investigated a model with 4 states that correspond to polarised, depolarised

and two intermediate states (depolarising and repolarising), see figure 5.2 (bottom).

Note that the two intermediate states overlap greatly on the shape representation

space, however they have vastly different transition probabilities so they are easily

distinguished in context. To make a prediction about the locations of turns we look

for sequences in the track that are classified as going from green to blue to red, or

depolarised to repolarising to polarised. Then the repolarising (blue) section be-

comes our predicted turn location1. We found that the 4 state model provided a

more robust method for predicting turns, and so made use of this in further analysis.

Note that the distributions in figure 5.2 do not cover the whole shape space. This

reflects our earlier point that many of the cells do not follow the repolarisation

model; sometimes through alternative dynamic behaviour, but also through achiev-

ing alternative shapes. Given a particular data sequence, it is possible to compute

the probability that the data came from this HMM, so we can use this as a tool to

detect when cells are not behaving according to our repolarisation based model.

Figure 5.3 gives an overview of one of the tracks used for training. This track

was identified as being a good example of the repolarisation mechanism for turning.

The figure highlights 8 frames corresponding to important stages of the migratory

process, including the repolarisation stage (in blue) which we intend to use as a

turn predictor. For these 8 selected stages, the figure displays the image fields, the

segmented cell outlines as well as the trajectories of the centre of mass in the image

field and the shape representation of the cell track through the Diffusion Maps em-

bedding.

1In most cases each predicted turn location is one frame. Occasionally, the HMM will label the
track as ‘repolarising’ (blue) for more than one contiguous frame. The prediction can simply be
interpreted as the cell having changed direction over the course of these frames. We don’t think
this devalues the framework over one that strictly places turn predictions at single locations.
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Figure 5.2: Shape representation for Detecting Repolarisation Events.
These plots show the Diffusion Maps embedding of our set of RPE1 cells, as de-
termined in Chapter 4. Figure 4.1 describes the kinds of shapes represented in
different parts of this embedding. Highlighted on each plot are points representing
cell outlines in tracks chosen to train a hidden Markov model for cell repolarisation.
Each labelled set of points trains a 2D Gaussian, displayed in the plots by a diamond
at the mean and an ellipse representing the covariance. Top: In the top figure we are
training a 2-state model corresponding to polarised (red) and depolarised (green)
cells. Bottom: In the bottom figure we are training a 4-state model corresponding to
polarised (red) and depolarised (green) cells and two transition states; depolarising
(yellow) and repolarising (blue).
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Figure 5.3: Example cell track labelled for training. The cell shown in this
figure was chosen as a good example of a cell track going through depolarisation-
repolarisation cycles, each corresponding with a turn in the cell’s path. Eight frames,
chosen from the track, are shown, illustrating key stages of the cycle. Time is given
in minutes, the scale bar corresponds to 50 µm. All 43 frames in the track were
classified into one of four categories representing important stages of the mechanism;
red, green, yellow and blue correspond to polarised, depolarised, depolarising and
repolarising respectively. These were used to train the hidden Markov model for
modelling this mechanism. The bottom left plot shows the path of the ‘centre of
mass’ of the cell through all frames, with enlarged dots and cell outlines on the 8
selected frames. The bottom right figure shows the trajectory of the cell outlines
through the Diffusion Maps based shape representation (see section 4.1). The as-
terisked red dot corresponds to the first frame in the sequence. In our framework,
we are predicting that the cell turns will coincide with repolarisation (blue) events.
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5.2.2 Migrational Analysis

At this stage, for all of our cell tracks, a number of frames may be identified as

being predicted turn locations. This prediction has been made using morphological

information alone so the next task is to examine the accuracy of the prediction

by checking it against the migratory information. The migratory information is

represented by the path of the centroid over time (see section 2.8). Two checks

must be made to examine the prediction. Firstly we perform an angle check to see

if there is a turn where one has been predicted. Secondly we perform a straightness

check to ensure there is no turn in segments where none have been predicted.

Angle Check

We partition the track into predicted turn points and the path segments between

them. To check a given predicted turn location we examine the subsequence of

points in the turn location and the path segments immediately before and after.

Let the track subsequence be denoted as (z1, z2, z3, . . . , zN ), where each zi is a pla-

nar point (xi, yi). Let a and b be the indices within the track subsequence such that

for a ≤ i ≤ b, zi is predicted to be a turn location. Note, in most cases a = b,

however it is not required.

We determined that it was necessary to perform two angle checks for each sub-

sequence, one local check and one distant check, defined as follows. The subse-

quence passes the distant angle check if the angle between the vectors (za − z1)

and (zN − zb) is over 25◦. The subsequence passes the local angle check if the an-

gle between the vectors (za − za) and (zb − zb) is over 40◦, where za is the mean

of the set
{
zi|max(1, a − 10) ≤ i ≤ max(1, a − 6)

}
and zb is the mean of the set{

zi|min(N, b+ 6) ≤ i ≤ min(N, b+ 10)
}

.

Figure 5.4 illustrates why both are necessary, since for some tracks a path segment

will curve significantly, causing the distant check to incorrectly fail, and for other

tracks a delay occurs after repolarisation, causing the local check to incorrectly fail.

So, a turn prediction is marked to be correct if it passes either of these checks.

The thresholds were trained using a labelled set of training sequences, each contain-

ing one repolarisation-based turn. Track sequences that were identified as curving

after or before the turn were excluded from the training of the distant check, track

sequences that were identified as delaying after the turn were excluded from the

training of the local check.
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Figure 5.4: Angle check difficulties. This diagram illustrates the necessity for a
two-stage angle check. The figures show the path of the centroid of a cell over time.
The centroid is coloured according to its morphology based HMM classification (see
section 5.2.1). Red and blue lines represent the lines used for angle checks (blue for
local, red for distant, see section 5.2.2), the magenta line represents coincident red
and blue lines. In the left figure the cell turns at the point of a repolarisation, but
then curves back out to its original direction. In the right figure there is a delay
between the repolarisation and the cell moving in it’s new direction.

Straightness Check

We have already partitioned the track into predicted turn points and the path

segments in between them. To check for the absence of turns in each path segment

we perform a straightness check as follows. We first find the linear fit of the path

segment, then compute the perpendicular distance of each point to the fitted line.

Denote these perpendicular distances by (d1, d2, d3, . . . , dN ), where N is the number

of points in the segment. Then we assess the straightness by computing

D =
1

L

√√√√
N∑

i=1

d2
i , (5.1)

where L is the length of perpendicular projection of the whole path segment onto

the fitted line. We then say the segment is straight if D is less than 0.175. This

threshold was optimised to discriminate a labelled training set of straight and non-

straight path segments (all identified as not following a repolarisation mechanism).

5.2.3 Turn Prediction Accuracy

The framework as outlined above is designed to determine how often our RPE cells

follow the repolarisation-based mechanism for turning. Moreover, for the tracks
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identified as following this mechanism, the algorithm produces a prediction for the

location of the turn. We now present our method for assessing the accuracy of the

turn predictions.

To do this, we restrict ourselves to subsequences of cell tracks that contain a turn

prediction which passes the angle check surrounded by path segments which pass

the straightness check. We define the true location of the turn to be the point that

has the highest perpendicular distance to the straight line that connects the end

points of the subsequence2. Then we measure the time delay between the predicted

turn location and the true turn location. For contrast we also measured the time

delay between the predicted turn location and two other landmarks; the midpoint

of the path segment before the true turn location, and the midpoint of the segment

after. We report the results in section 5.3.

5.3 Results

Applying our final algorithm for turn prediction (the development of which is de-

scribed throughout Section 5.2) to a set of 440 cell tracks (disjoint from any tracks

used in training), we get the following results:

• The algorithm detected 460 repolarisation events, of which 339 passed the

angle check and 121 failed.

• Partitioning the tracks by repolarisation events yielded 889 path segments, of

which 500 passes the straightness check and 389 failed.

The first result above suggests that 78% of the repolarisation events corresponded

with an angle change. To look more thoroughly at the distribution, figure 5.5(A)

shows the full range of angles made at the detected repolarisation events (defined

as distant angles as in section 5.2.2), and for comparison figure 5.5(B) shows the

distribution of angles made at mid-points of path segments between detected re-

polarisations events. Although repolarisations do not always correspond with a

significant directional change, we can see that the range of angles is much broader

for directional changes at a repolarisation event than in the middle of other path

segments. So, a repolarisation permits a cell to turn, but does not cause a turn, this

is why the angle variance of a depolarised cell that repolarises is higher than one

that stays polarised.

2This ought to be a robust method for finding the turn location, because we are only looking at
sections comprised of two straight segments.
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If we assume that each non-straight path segment represents a turn through a mech-

anism that is not repolarisation, then we can say that approximately 47% of turns

are through repolarisation. This is a somewhat naive interpretation of the results,

but without a thorough understanding of all possible mechanisms of migration, and

how to identify each of them, this sort of statistic is difficult to generate.

Figure 5.6 shows 6 example tracks that contain a repolarisation event that passes

the angle check, surrounded by paths that pass the straightness check. In each case

the blue point (the predicted turn location) is on or near the apex the of corner.

These are examples of cells seeming to follow the repolarisation model for turning.

Figure 5.7 shows 5 tracks chosen for discussion; in each case one of the checks has

failed. We emphasise that these ‘failures’ do not represent flaws in the algorithm

but rather they represent identification of cell tracks following biological behaviour

different from our repolarisation model. Tracks A, D and E contain paths that fail

the straightness check. Tracks B and C contain turn predictions that fail the angle

check. An interpretation of the mechanisms displayed in these tracks will be given

in section 5.4.

To analyse turn prediction accuracy we investigated 155 ‘straight-corner-straight’

path subsequences from 131 different cells. We computed that in more than 16%

of the cases the repolarisation event was the closest time point to the location of

the turn, in more than 37% of the cases the repolarisation event was in the top

3 closest points and in more than 61% of the cases the repolarisation was in the

top 5 closest points. Figure 5.8 shows (in the centre plot) the distribution of the

Figure 5.5: Angle distributions. The distribution of directional changes measured
at (A) detected repolarisation events and (B) path segment midpoints.
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Figure 5.6: Example repolarising tracks. Six cell tracks (A-F) each demonstrat-
ing a turn using the repolarisation mechanism, and each correctly identified with
our HMM track analysis. For each track, six selected frames are shown, with a scale
bar of 50µm, times shown in minutes and HMM shape classification shown by a
coloured circle. For each track, we also show the cell outlines superimposed with
the path of the ‘centre of mass’.

79



0 10 45 110 165 225

A

0 35 55 80 115 145

0 50 90 130 170 245

0 30 60 95 125 155

0 15 30 45 60 75

250 300 350 400
550

600

650

700

x position (pixels)

y 
po

si
tio

n 
(p

ix
el

s)

100 150 200 250 300

100

150

200

250

x position (pixels)

y 
po

si
tio

n 
(p

ix
el

s)

250 300 350 400 450 500

650

700

750

800

x position (pixels)

y 
po

si
tio

n 
(p

ix
el

s)

650 700 750 800

180

200

220

240

260

280

300

x position (pixels)

y 
po

si
tio

n 
(p

ix
el

s)

250 300 350 400
300

350

400

450

x position (pixels)

y 
po

si
tio

n 
(p

ix
el

s)

A

B

C

D

E

B C

D E

Figure 5.7: Example alternative tracks. Five cell tracks (A-E) each demonstrat-
ing a mechanism unexplained by our simple repolarisation model. For each track,
six selected frames are shown, with a scale bar of 50µm, times shown in minutes
and HMM shape classification shown by a coloured circle. For each track, we also
show the cell outlines superimposed with the path of the ‘centre of mass’.
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Figure 5.8: Turn prediction accuracy. This figure examines the precision of the
morphology based turn prediction in tracks identified as following the repolarisation
mechanism. 155 tracks are examined. For each track the true location of the turn is
identified from the migratory information. Each histogram shows the distribution
of time differences between the predicted location of turn and (left:) the midpoint
of the track before the true turn, (centre:) the true turn or (right:) the midpoint of
the track after the true turn.

time disparity between the location of the turn and predicted turn. For compari-

son we also show the distribution of the time disparity between the predicted turn

and the points closest to the midpoints of the linear fits of the surrounding segments.

5.4 Discussion

This work supports the idea that RPE1 cells can achieve a turn through a repo-

larisation. It has become clear that this is not the only mechanism that these cells

will use to turn, but it is the mechanism that singly explains most turning events.

We have also shown that it is possible to quantitatively model the morphological

behaviour displayed during a repolarisation. We accept that with more time and

work a more complete model could certainly be created, however we believe that

this preliminary work shows that it is possible and confirms that morphological data

does have predictive power over migrational data. This is important since it means

that there is a measurable relationship between shape and movement, as we origi-

nally sought to show. Further study of the intracellular mechanisms involved in cell

dynamics could be aided by a model of this relationship.

We believe that this chapter gives a successful example of using our Diffusion Maps

representation of cell shape to perform a task. This work is our first attempt at

modelling dynamic cell shape data with our Diffusion Maps representation. We be-

lieve it highlights the potential use for this representation in complex applications.
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Figure 5.7 shows some example tracks that do not strictly follow our repolarisation

model. The behaviour seen in tracks A-C of figure 5.7 can be described as a bi-

furcation. A bifurcation is a front-induced process where the leading edge splits,

protruding in both sideways directions, one of which later becomes the tail and the

other the front. This does not necessarily conflict with the repolarisation mechanism

for turning, since it still involves a break-down and re-establishment of polarity, but

it can contribute to behaviour that is unexpected in our model. Most often, the

issue is a delay after depolarisation before the cell moves in its new direction.

In track A the cell goes through the bifurcation process; after repolarising, the cell

spends approximately 100 minutes deciding on the new direction, before moving

away from the location of the turn. This means that the path after the repolarisa-

tion event is not straight. In track B the cell drifts while repolarising, so much so

that the cell soon touches the image field edge; the cell’s track is cut short and we

do not see which direction the cell eventually moves in. The result is that the cell’s

centroid moves in the original direction and the track is identified as not turning

during the repolarisation. Track C shows an example of when a cell grows in its

new directions before retracting its tail; this results in bizarre cell shapes that lie

far from the emission distributions of our HMM. Interestingly the algorithm still

manages to correctly identify the repolarisation, even though the shapes are very

different from the training set. It would be interesting to investigate this behaviour

more closely and try to develop a way to predict (through morphology) whether,

after repolarisation, a cell will bifurcate or move off in another direction.

Tracks D and E of figure 5.7 show other examples of cells not following our simple

mechanism. The cell in track D manages to turn a corner while staying depolarised,

whereas the cell in track E turns a corner remaining polarised. There are certainly

other mechanisms in play beyond repolarisations and bifurcations; we suggest that

the framework presented in this chapter can help in the identification of other mech-

anisms. Automatic detection of cell tracks whose migratory behaviour does not fit

the predicted behaviour based its morphological information will help identify new

mechanisms to investigate.

One perceptual difficulty with the problem statement of ‘turn prediction’ is that

there is no formal definition of a ‘turn’. It would be nice to be able to define a

turn solely based on the path of a mid-point, however, cells will frequently protrude

and deform laterally whilst maintaining a persistent direction, this makes it very

difficult to rigorously distinguish a ‘wiggle’ in a cell’s path from a true turn that

may be shallow. For a human observer to distinguish between these two, he/she

would need to view the original cell image sequence to perceive whether the turn
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was a deliberate, mechanically-induced turn or whether it was indeed a sideways

fluctuation. Therefore it might be useful to actually define a turn as a sequence of

morphological stages. Working towards a morphological definition of turning would

encourage an understanding of the mechanism by which a cell achieves a turn rather

than simply understanding the outward behaviour.

With a full model, an immediate application could be to analyse data from perturba-

tion experiments and automatically identify segments of cell tracks that correspond

to known mechanisms. It would then be possible to quickly look for differences

in the migratory mechanisms on a population wide level. Theisen et al. [Theisen

et al., 2012] identify Kif1C as being important in cell tail stabilisation and report

that silencing this protein reduces the lifetime of each cell tail, resulting in rapid

depolarisations. With our framework we ought to be able to detect these rapid de-

polarisations and quickly measure their frequency on a population-wide level. We

would also be able to examine the morphological data of a cell as it turns and look to

see if there are any other mechanistic differences between the siKif1C and the wild

type cells. If one had a suitably automatic segmentation algorithm, one could run

high-throughput experiments to look to see if there are genes that are particularly

responsible/important for any one of the identified migratory mechanisms.

Other applications for this body of work include cell segmentation. One major chal-

lenge for automatic segmentation for image sequences of migrating cells is occlusion,

as cells will occasionally bump into or climb over one another. With this framework,

one could examine the cell outlines as they are before a suspected occlusion, and

make a prediction about the shapes and locations of the cells during an occlusion.

With translucent cells, where the individual outlines are visible during an occlusion

(but difficult for an algorithm to find), this framework could give an initial estimate

for the segmentation algorithm to work with.

Another application for this work lies in generating synthetic data. If one had

synthetic path data, it would be possible to use a framework similar to the one

presented here to generate shape data to accompany the path data, and so create

full-image scenes. Synthetic data generation is valuable within the image computing

community as it represents unlimited data where the exact ground truth is known.

83



Chapter 6

Discussion and Conclusions

6.1 General Discussion

This project began in a very exploratory fashion. The suggestion was to apply a

machine learning technique, which had seen success in quantifying shape [Rajpoot

and Arif, 2008], to biological images and see what could be learned. RPE cells

presented an interesting case to examine as their widely varying morphologies had

been difficult to model in the past, and clearly their shape dynamics were integral

for their function and migratory behaviour. So we began with the hypothesis that

there would be a quantitatively measurable dependency between morphology and

migration in these cells in a way that would not have been possible with only pre-

vious simple techniques in quantifying shape information.

Preliminary work had shown the potential of the shape space learning framework,

however we needed to improve the algorithm. The crucial component being the

shape similarity measure as this is the piece that most closely interacts with the

dataset. Also it became apparent in many of the preliminary experiments that our

datasets were not large enough. This was clear because we could see ‘bizarre’ shapes

that would appear in only one cell (and remember that this cell will span a number

of frames) per dataset, and these were treated by our learning algorithm as entirely

different clusters, far removed from the other data points. The dataset did not in-

clude the full spectrum of shapes leading to these bizarre shapes because they are

substantially rarer than the simple shapes, however we knew from discussion with

biologists familiar with the data that these weird shapes are legitimate actions of

the cell. So during the project it was necessary to gather a much larger dataset, and

develop an algorithm that could handle it.
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6.2 Shape Analysis

6.2.1 Shape Space Learning with Diffusion Maps

The major contribution of this project is the presentation of a framework for gener-

ating a quantitative representation of shape. The data analysed in this work is a set

of cell outlines of migrating human RPE cells, however the framework can be used

for any set of simple closed planar curves. The framework is designed to learn the

shape properties that are most responsible for the observed variation in the dataset,

and so needs no prompt or supervised labelling, but can be applied to a dataset

where the intrinsic degrees of freedom are not yet fully known or understood. The

framework has been successful in representing a contiguous dataset where the ob-

served variation occurs as a continuous spectrum and not as discrete clusters. The

framework allows for efficient implementation to analyse large datasets, which may

be necessary in cases where subpopulations are a significant minority.

The output of our shape representation framework has mainly been presented as

simply the top two Diffusion coordinates. In many cases this is simply to make

visualisation easier, but later it seemed as though the top two coordinates were suf-

ficient to model the repolarisation-depolarisation behaviour that we were examining

(chapter 5). It is possible that more information is held in the other coordinates

that may aid in other applications including the modelling of other migratory mech-

anisms.

One of the biggest difficulties when developing this framework was validating its

performance. This was because there was no ground truth against which to com-

pare our shape representation, since shape is not intrinsically quantitative. For this

reason we invested a lot of effort into developing ways to visualise the features that

our representation framework captures (see Chapter 4). We believe this is appro-

priate since, in the absence of a deeper truth, human perception provides the most

authoritative assessment of shape. However, while visual inspection can confirm

success in a binary sense, it does not allow comparative performance assessment for

competing algorithms. This means tasks such as parameter optimisation become

very difficult.

Given that shape representation is unlikely to be performed in isolation, but rather

to be incorporated into a model for some downstream analysis, we recommend that

optimisation can be achieved based on performance at a later stage of the analysis.

However, since our downstream analysis (of migratory behaviour) was exploratory

in nature, and again we had little understanding of the underlying truth, we strug-

gled with this optimisation.
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One parameter that fell victim to this difficulty was the similarity kernel bandwidth

(see equation 3.1 or section 3.3). This parameter is responsible for interpreting the

contextual idea of near versus far, it is important in many machine learning contexts

and is still an open problem in the community. In our context this parameter can

have a dramatic affect on the geometry of the generated shape representation. Sec-

tion 3.3 describes the few methods that we used to try to generate this parameter,

but ultimately we found that using the median of measured distances gave a satis-

factory result for our further purposes. We suggest that finding a way to robustly

select an appropriate value for this parameter would be a very worthwhile extension

to this work.

We suggest two more extensions to our shape analysis framework that follow other

efforts in extending the Diffusion Maps framework in literature [Coifman and Lafon,

2006b; Rabin and Coifman, 2012]. That is, the inclusion of out-of-sample data to

a learned distribution and the generation of synthetic data from a learned distribu-

tion. We believe that both of these processes could be readily integrated into the

framework and would yield very worthwhile extensions.

We began work on the out-of-sample extension, but due to time constraints we omit-

ted this work from the thesis. The shape representation framework we presented

here produces a low dimensional representation of a given dataset of shapes; the out

of sample extension takes data from outside of the original dataset and embeds it

into the generated representation space. This can be achieved using a combination

of Geometric Harmonics and Laplacian Pyramids as described in [Coifman and La-

fon, 2006b] and [Rabin and Coifman, 2012]. This is could be useful when examining

data from perturbation experiments or other distinct populations in the context

of the learned wild type distribution. We performed this out-of-sample embedding

with data collected from Kif1C interfered RPE cells. Kif1C interference is known

to inhibit the ability for RPE cells to maintain cell tails [Theisen et al., 2012], and

correspondingly our shape analysis placed these cells predominantly amongst the

shorter cells (low first Diffusion coordinate, see figure 4.1). We omit these results

from this thesis, since this analysis is incomplete, however this would be interesting

to pursue, especially once more is understood about the dynamic behaviour of un-

perturbed cells.

The extension can also be used for back projection, i.e from an arbitrary point in

the low dimensional coordinate system (within the range of the embedded training

points) it is possible to generate a synthetic shape that reflects the relative posi-

tion of the low-d point. This has many applications, in section 5.4 we discuss the

idea of generating synthetic image sequences of migrating cells and the subsequent
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benefits. Another benefit would be that we can create shape data for which there

is a quantitative ground truth already known, which can be used to train, test and

optimise other algorithms.

6.2.2 Best Alignment Metric

In this thesis we present development of a novel shape distance measure specifically

designed for the comparison of independent simple closed planar curves. This will

find the pairwise distance between corresponding pairs of points on the curves after

the curves have been mutually aligned, reparameterised and interpolated so as to

best emphasise the similarities between the curves. This means it satisfies the spe-

cific requirements we have for a shape metric, as outlined in section 3.2.1.

The formulation employs the Fourier transforms of the curves. This allows for ex-

plicit computation of the optimum solution to the mutual angle of the curves and

circular convolution which accelerates finding the overall optimum solution, result-

ing in fast computation of this metric.

Understanding the requirements for this metric took a surprisingly large amount of

time, and only became clear after significant effort in the wrong directions. Most

shape similarity metrics in literature rely on some internal coordinate system to find

mutual alignment. Sometimes this internal coordinate system relates to landmarks

in the shape curve, e.g. when comparing the shapes of a person, one should align

heads with heads and feet with feet (see [Cootes et al., 1995] for a classic example

of landmark alignment with resistors). Other times, the alignment comes from an

extrinsic coordinate system, for example in the analysis of local membrane defor-

mation one can look at sequential images of a cell and the frames will be inherently

aligned. In our analysis we look for preserved morphological phenotypes across in-

dependent cells that have no reliable landmarks, hence we were required to mutually

align pairs of cells.

In literature, much of the work allows mutual alignment for shape comparison

is based on the elastic distance [Younes, 1998]. This achieves mutual alignment

through the consideration of equivalence classes under group actions on the curves.

While this theory is elegant and satisfies our requirements, in our experiments we

found implementations of this framework (using [Joshi et al., 2007]) to be pro-

hibitively slow. This led to the development of BAM which similarly considers

equivalence classes, but can be computed rapidly due to the simple nature of the

underlying metric, the L2-norm. While the metric may not be as sophisticated as

the elastic distance, we believe the output is sufficient for our application, since we

are looking for emergent properties of a large dataset.
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One potential extension for the use of BAM could be to prealign the shapes before

using a more sophisticasted metric to help alleviate the computational burden that

these approaches require.

6.3 Mechanisms of migration

6.3.1 Turn Prediction

One of the major goals for this body of work was to show that a quantitative in-

terpretation of shape can be useful in seeking an understanding of the mechanisms

of migration. In chapter 5 we describe an algorithm that makes predictions about

the occurrence of track turns looking only at the dynamic shape information of a

cell. We restrict our investigation to a particular turning mechanism, but show rea-

sonable success. This shows that cell shape does have a quantitatively measurable

relationship with migration, and that our framework has the potential to investigate

it.

Our work in the investigation of cell migration is limited to the repolarisation mecha-

nism for turning, purely due to time constraints. We believe that continued effort in

this direction could yield many interesting findings. Firstly there are other identified

turning mechanisms that one could model with the same strategy as used in chapter

5. Secondly with an established quantitative model of cell dynamics at this level, it

would be very interesting to investigate the effects that genetic perturbations had

on the system at the cell behaviour level. A significant benefit of our framework

is that our shape analysis is quantitative, this means we can measure statistical

significance of any observations and even run high-throughput experiments. These

were not previously possible with subjective interpretations of cell shape.

6.3.2 Our Migration Analysis in Context

It is widely agreed in the literature that for a cell to migrate with directional persis-

tence it must establish and maintain polarity (a distinct front and rear) [Ridley et al.,

2003]. Most examples in literature attempt to model the mechanisms through which

a cell achieves this regulation of cell polarity during periods of persistent migration.

Our examination of track turns can perhaps be regarded as the contrapositive; in

order for a cell to turn (to cease directional persistence) it must first disengage

whichever mechanism is maintaining polarity.

One idea is that protrusion elsewhere than at the front of the cell is suppressed
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by an inhibitor, which in only overcome at the front of the cell. Such an inhibitor

could be a soluble chemical substance or a mechanical signal. Recently, tension

has been suggested to function as a global inhibitor that can only be overcome at

the front. Houk et al. apply tension artificially and release tension using ablation

experiments to advocate the role of membrane tension as the long-range inhibitor

of lateral protrusion in migrating neutrophils [Houk et al., 2012]. Mogilner and Zhu

conclude from the work of Houk et al. that tension is both necessary and sufficient

to polarise the cell [Mogilner and Zhu, 2012]. An alternative view suggests that

mechanical force from contacts to other cells or the substrate promotes polarization

and protrusion in the opposite direction to the initial force. Therefore, cells gen-

erating drag forces at their tail move with higher directional persistence than cells

with perturbed tail dynamics [Theisen et al., 2012]. Likewise, mesendodermal cells

that migrate in vivo as a collective tissue integrate the forces from neighbouring

cells through cell-cell contacts [Weber et al., 2012]. When these cells are dissociated

from one another and plated onto fibronectin in vitro they lose their unidirectional-

ity and become multipolar. Polarisation and directional migration can be induced

by applying forces through C-cadherin-coated beads. Cell protrusion occurs in the

opposite direction to the tension applied, supporting the idea that tension at the

rear stimulates front-protrusion [Weber et al., 2012].

Our observation that many cells depolarise ahead of a turn fits well with these mod-

els, since it is clear that a rear retraction will reduce the tension throughout the cell

and consequently end the inhibition of lateral protrusion and/or the promotion of

front or back protrusion. Further evidence for the importance of the tail and the

rear of the cell being a driving component in the mechanisms of symmetry breaking

and migration comes from the careful analysis of the timing of events at the front

and rear of the cell during the initiation of cell migration or during repolarisation

[Rid et al., 2005; Yam et al., 2007; Cramer, 2010]. This again fits with our obser-

vations, since we often see the retraction of the tail before any other morphological

change.

Much of the literature on cellular motility focuses on chemotaxis which is often

explained purely through front-lead mechanisms [Weiner, 2002; Andrew and Insall,

2007]. Two alternative models explain the directional change of cells subjected to

a change of a chemotactic gradient. The compass model suggests that a change

in the gradient induces a new protrusion in the direction of the gradient from the

site where chemotactic receptors are stimulated the strongest. The informed choice

model proposed by Andrew and Insall suggests that the cell makes a number of

protrusions and the one that happens to move up the gradient more, is reinforced
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[Andrew and Insall, 2007]. We also observe alternative modes of cell turning that

do not involve substantial depolarisation. These can either take the form of a front

diverting gradually and dragging the cell body behind, the front splitting into two or

more protrusions with one becoming the new front and the other the new tail. Both

these mechanisms appear to be front-led. Thus the freely migrating cells we observe

use a number of mechanisms for cell turning and we expect that the frequency with

which each of these mechanisms in its repertoire are used will change depending on

the environment. The dynamic shape analysis routines developed in this work will

enable the objective analysis of turning mechanisms in perturbation experiments to

unravel the molecular mechanisms involved.

6.4 Plan for Publication

Our plan for publication of this work is to develop a user-friendly, open-source tool-

box for quantitative cell shape representation that allows a user to perform much of

the analysis presented in this thesis. The software will take most microscope image

formats and take the user through the processes of segmentation, low-dimensional

representation, clustering and visualisation. These dataset representations will all

be exportable for further quantitative analysis.

We aim to present a biological methods paper that describes our algorithms and

introduces our toolbox with examples from our RPE set. We aim to reinforce this

work with successful embeddings of other cell lines. We will also discuss our investi-

gation into turning prediction for RPE cells as an example application to dynamic

behaviour modelling. The shape representation toolbox will have some basic dy-

namic behaviour tools, however the toolbox ought to be applicable to many cell

lines and varied experiments, so we would encourage dynamic models to be de-

signed to each situation.
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Appendix A

Best Alignment Metric

A.1 Best Alignment Metric Formulation

We want to define a distance measure between pairs of shapes (closed curves) that

accommodates alignment and cyclic reparameterisation variation, this is not simply

a matter of invariance to these things, the metric must find an “appropriate” pairwise

alignment. As “appropriate” we are using the pairwise alignment that minimises

L2 (or `2) distance. Translation invariance is included by translating each curve so

that the mean of the points lies on the origin, appendix section A.2 shows that this

translation choice minimises the relevant measurement. This chapter will deal with

a finite element approximation to curves in the plane, one can (I’m sure) restate the

following work with continuous curves.

Approximate a closed curve by a sequence of N complex numbers whose mean

lies at zero. We then define the shape metric between u = (u1, u2, . . . , uN ) and

v = (v1, v2, . . . , vN ) to be:

d(u, v) := min
r,φ

√∑

j

|uj+reiφ − vj |2. (A.1)

Indices are taken mod N. Here, φ represents rotation of the plane, and r is a cyclic

shift of the indices (the finite element equivalent of cyclic reparameterisation). We

now wish to simplify expression (A.1) to allow for rapid computation.

Lemma 1.

|a− b|2 = |a|2 + |b|2 − (āb+ ab̄). (A.2)
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Proof of Lemma 1. First we look at

āb = (Re(a)− iIm(a))(Re(b) + iIm(b))

= Re(a)Re(b) + Im(a)Im(b)− i(Im(a)Re(b)− Im(b)Re(a)),

and equivalently

ab̄ = (Re(a) + iIm(a))(Re(b)− iIm(b))

= Re(a)Re(b) + Im(a)Im(b)− i(Im(b)Re(a)− Im(a)Re(b)).

This gives us

āb+ ab̄ = 2(Re(a)Re(b) + Im(a)Im(b)),

so we can now compute

|a− b|2 = (Re(a)−Re(b))2 + (Im(a)− Im(b))2

= Re(a)2 − 2Re(a)Re(b) +Re(b)2 + Im(a)2 − 2Im(a)Im(b) + Im(b)2

= Re(a)2 + Im(a)2 +Re(b)2 + Im(b)2 − 2(Re(a)Re(b) + Im(a)Im(b))

= |a|2 + |b|2 − (āb+ ab̄).

Now, using Lemma 1 we can reduce our metric to

d(u, v) =

√∑

i

|ui|2 +
∑

i

|vi|2 −max
r,φ

(
∑

j

uj+rvje
−iφ +

∑

k

uk+rvke
iφ). (A.3)

A.1.1 Dealing with φ

To simplify the expression (
∑

j uj+rvje
−iφ +

∑
k uk+rvke

iφ), we first note that the

terms e−iφ
∑

j uj+rvj and eiφ
∑

k uk+rvk are complex conjugates. If we fix r and

vary φ we rotate each of the terms in opposition and their sum will always lie on

the real line (in fact this is a necessary condition for us to take a maximum as we

do in (A.3)). Clearly the maximum of the sum occurs when both terms are real and

positive (and hence equal), so for fixed r

max
φ

(
∑

j

uj+rvje
−iφ +

∑

k

uk+rvke
iφ) = 2|

∑

j

uj+rvj |.
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So now we can reduce the distance metric to

d(u, v) =

√∑

i

|ui|2 +
∑

i

|vi|2 − 2 max
r
|
∑

j

uj+rvj |. (A.4)

A.1.2 Dealing with r

Next we deal with rapid computation of the term max
r
|
∑

j

uj+rvj |. We want to

show that through use of fast Fourier transform we can create a vector, X, with

elements X(r) =
∑

j

uj+rvj .

Lemma 2. With A,B ∈ CN and ρ = −2πi
N , for N ∈ N, let

XA,B(r) :=
1

N

N−1∑

j=0

(
N−1∑

k=0

Ake
ρkj

N−1∑

l=0

Ble
ρlj

)
e−ρjr

for r ∈ {0, . . . , N − 1}. Then

XA,B(r) =
∑

k+l=r

AkBl. (A.5)

Note that the definition of XA,B(r) corresponds to the (r + 1)th element

of the output from running the code ifft(fft(A).*fft(B)), where fft is the fast

Fourier transform and ifft is the inverse fast Fourier transform.

Proof of Lemma 2.

XA,B(r) :=
1

N

N−1∑

j=0

(
N−1∑

k=0

Ake
ρkj

N−1∑

l=0

Ble
ρlj

)
e−ρjr

=
1

N

N−1∑

j=0

N−1∑

k=0

N−1∑

l=0

AkBle
ρj(k+l−r).

=
1

N


 ∑

k+l=r

(
N−1∑

j=0

AkBl) +
∑

k+l 6=r
(
N−1∑

j=0

AkBle
ρj(k+l−r))


 .

Now, if we fix k + l − r =: α 6= 0 and expand ρ, then we have

N−1∑

j=0

AkBle
ρj(k+l−r) = AkBl

N−1∑

j=0

eα
−2πi
N

j .
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Now note that

N−1∑

j=0

eα
−2πi
N

j is (a multiple of) the sum of all N
gcd(α,N)th roots of unity.

Since α 6= 0 we have that N
gcd(α,N) > 1 (remember that α, like all indices here, is

taken mod N). For any integer m > 1 the sum of all mth roots of unity is known to

be zero, hence we have

XA,B(r) =
1

N


 ∑

k+l=r

(
N−1∑

j=0

AkBl),




and since AkBl does not depend on j.

XA,B(r) =
∑

k+l=r

AkBl. (A.6)

Next we wish to show that, with vector←−v such that←−v l = v−l (again indices

are taken mod N), we can use the computation ifft(fft(conj(u)).*fft(←−v )) to give

the desired vector, where conj represents taking the complex conjugate of elements

in u.

Proof.

Xu,←−v (r) =
∑

k+l=r

uk
←−vl

=
∑

k+l=r

ukv−l

=
∑

k−j=r
ukvj

=
∑

j

uj+rvj

This means we can rapidly compute a vector containing all possible values

for |∑j uj+rvj | and then it is simply a matter of choosing the maximum value to

give us d(u, v) as in (A.4).
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A.2 Planar translation to minimise pairwise distances

between two sets

Let a1, . . . , aN , b1, . . . , bN ∈ C be points in the complex plane. Holding {bi}, we

want to find the planar translation of {ai} that minimises the `2 distance between

the sets, i.e. we want to find the vector c ∈ C that minimises the expression

d2 =
N∑

j=1

|aj + c− bj |2. (A.7)

This expression can be expanded as

d2 =
N∑

j=1

|aj + c− bj |2 (A.8)

=

N∑

j=1

(
(aj − bj)R + cR

)2
+
(

(aj − bj)I + cI

)2
, (A.9)

where subscripts R and I indicate real and imaginary components respectively.

Hence

d2 = Nc2
R + 2cR

N∑

j=1

(aj − bj)R +

N∑

j=1

(aj − bj)2
R . . .

+Nc2
I + 2cI

N∑

j=1

(aj − bj)I +
N∑

j=1

(aj − bj)2
I .

(A.10)

Thus, d2(c) is a paraboloid with positive leading coefficients and we can find it’s

minimum by looking at

∂d2

∂cR
= 2NcR + 2

N∑

j=1

(aj − bj)R (A.11)

and

∂d2

∂cI
= 2NcI + 2

N∑

j=1

(aj − bj)I . (A.12)
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Setting both partial derivatives to zero yields the solution,

cR + icI =
1

N

N∑

j=1

(
(bj − aj)R + i(bj − aj)I

)
(A.13)

c =
1

N

N∑

j=1

(bj − aj) =
1

N

N∑

j=1

(bj)−
1

N

N∑

j=1

(aj). (A.14)

Hence, the translation that minimises the distance between pairs of points is that

which aligns the means of the two sets.
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J. Käs. Emergent complexity of the cytoskeleton: from single filaments to tis-

sue. Advances in Physics, 62(1):1–112, February 2013. ISSN 0001-8732. doi:

10.1080/00018732.2013.771509.

Samuel D R Jefferyes, David B A Epstein, Anne Straube, and Nasir M Rajpoot. A

novel framework for exploratory analysis of highly variable morphology of migrat-

ing epithelial cells. Conference proceedings : ... Annual International Conference

of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering

in Medicine and Biology Society. Conference, 2013:3463–6, January 2013. ISSN

1557-170X. doi: 10.1109/EMBC.2013.6610287.

Shantanu H Joshi, Eric Klassen, Anuj Srivastava, and Ian Jermyn. Removing Shape-

Preserving Transformations in Square-Root Elastic (SRE) Framework for Shape

Analysis of Curves. Proceedings / CVPR, IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 4679:387–398, January 2007. ISSN

1063-6919. doi: 10.1007/978-3-540-74198-5 30.

R Keller. Cell migration during gastrulation. Current opinion in cell biology, 2005.

Kinneret Keren, Zachary Pincus, Greg M Allen, Erin L Barnhart, Gerard Marriott,

Alex Mogilner, and Julie A Theriot. Mechanism of shape determination in motile

cells. Nature, 453(7194):475–480, 2008.

Kinneret Keren, Patricia T Yam, Anika Kinkhabwala, Alex Mogilner, and Julie A

Theriot. Intracellular fluid flow in rapidly moving cells. Nature cell biology, 11

(10):1219–24, October 2009. ISSN 1476-4679. doi: 10.1038/ncb1965.

99



Adnan Mujahid Khan, Hesham Eldaly, and Nasir M Rajpoot. A gamma-gaussian

mixture model for detection of mitotic cells in breast cancer histopathology im-

ages. Journal of pathology informatics, 4:11, January 2013. ISSN 2229-5089. doi:

10.4103/2153-3539.112696.

Olcay Kursun. Spectral Clustering with Reverse Soft K-Nearest Neighbor Den-

sity Estimation. The 2010 International Joint Conference on Neural Networks

(IJCNN), pages 1–8, July 2010. doi: 10.1109/IJCNN.2010.5596620.
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