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Abstract

In the thesis, we apply the methods from the recently emerged theory of limits of
discrete structures to problems in extremal combinatorics. The main tool we use is
the framework of flag algebras developed by Razborov.

We determine the minimum threshold d that guarantees a 3-uniform hyper-
graph to contain four vertices which span at least three edges, if every linear-size
subhypergraph of the hypergraph has density more than d. We prove that the
threshold value d is equal to 1/4. The extremal configuration corresponds to the set
of cyclically oriented triangles in a random orientation of a complete graph. This
answers a question raised by Erdos.

We also use the flag algebra framework to answer two questions from the
extremal theory of permutations. We show that the minimum density of monotone
subsequences of length five in any permutation is asymptotically equal to 1/256, and
that the minimum density of monotone subsequences of length six is asymptotically
equal to 1/3125. Furthermore, we characterize the set of (sufficiently large) extremal
configurations for these two problems. Both the values and the characterizations of
extremal configurations were conjectured by Myers.

Flag algebras are also closely related to the theory of dense graph limits,
where the main objects of study are convergent sequences of graphs. Such a sequence
can be assigned an analytic object called a graphon. In this thesis, we focus on
finitely forcible graphons. Those are graphons determined by finitely many subgraph
densities. We construct a finitely forcible graphon such that the topological space
of its typical vertices is not compact. In our construction, the space even fails to be

locally compact. This disproves a conjecture of Lovasz and Szegedy.



Résumé

Dans cette these, nous appliquons a des problemes de combinatoire extrémale les
méthodes de la théorie des limites de structures discretes, qui a été récemment
développée. L’outil principal utilisé est celui des algebres de drapeaux, développé
par Razborov.

Nous déterminons le seuil minimum, d, garantissant que tout hypergraphe
3-uniforme contient quatre sommets induisant au moins trois arétes, si tout sous-
hypergraphe d’ordre linéaire en l'ordre de I'hypergraphe a une densité strictement
plus grande que d. Nous prouvons que cette valeur seuil d est égale a 1/4. La
configuration extrémale correspond a un ensemble de triangles orientés de fagon
cyclique dans une orientation aléatoire d’un graphe complet. Ceci répond a une
question posée par Erdés.

Nous utilisons également la théorie des algebres de drapeaux pour répondre
a deux questions de théorie extrémale des permutations. Nous montrons que la den-
sité minimum d’une sous-suite monotone de longueur cinq dans toute permutation
est asymptotiquement égale a 1/256, et que la densité minimum d’une sous-suite
monotone de longueur six est asymptotiquement égale & 1/3125. Par ailleurs, nous
caractérisons ’ensemble des configurations extrémales (suffisamment grandes) pour
ces deux problemes. Les deux valeurs ainsi que les caractérisations de configurations
extrémales avaient été conjecturées par Myers.

Les algebres de drapeaux sont également étroitement liées a la théorie des
limites de graphes denses, dont les objets d’étude principaux sont les suites de
graphes convergentes. On peut associer a une telle suite un objet analytique appelé
graphon. Nous nous intéressons aux graphons forgables de facon finie. Il s’agit
des graphons déterminés par un ensemble fini de densités de sous-graphes. Nous
construisons un graphon forcable de facon finie tel que I'espace topologique de ses
sommets typiques n’est pas compact. Dans notre construction, cet espace n’est

méme pas localement compact. Ceci réfute une conjecture de Lovasz et Szegedy.
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Notation and preliminaries

We follow the basic graph theory notation from the book of Bondy and Murty [10].
For a graph G, we denote the set of vertices of G by V(G) and the set of edges of G
by E(G) C (V(QG)). Analogously, for every integer r and every r-uniform hypergraph
H, or an r-graph for short, we again let V(H) to be the set of vertices of H and
E(H) C (V(TH)) to be the set of (hyper)edges of H. Note that the definition of a
2-graph coincide with the one for a graph. We call the cardinality of V/(H) the order
of H and denote it by v(H), and the cardinality of E(H) the size of H and denote
it by e(H).

For a vertex v in an graph H, we define Ny (v) :={u € V(H) : uwv € E(H) to
be the neighborhood of v, and Ng[v] := Ng(v) U {v} to be the closed neighborhood
of v. If the graph H is clear from the context, we omit the H from the subscript
and write only N(v) or Nv]. We refer to the size of N(v) as to the degree of v. If
H is a 3-graph and u and v are two of its vertices, we define the co-degree of u and
v to be the size of the set Ny (u,v) :={w € V(H) :wvw € E(H)}.

For an r-graph H, we denote by H the complement of H, i.e., the r-graph
with the vertex-set V(H) and the edge-set (V(TH )) \ E(H). For a subset of vertices
S C V(H), we denote by H|[S] the induced subhypergraph (or simply subgraph if
r = 2), i.e., the r-graph with the vertex-set S and the edge-set {e € E(H) :e C S}.

An independent set of an r-graph H is a subset of I C V(H) such that
e(H[I]) = 0. The chromatic number of H, which we denote by x(H ), is the smallest
integer k such that V(H) can be partitioned into k independent sets.

We say that an r-graph H is linear if every two edges intersect in at most
one vertex. Note that every 2-graph, i.e., every graph, is linear.

One of the basic questions in extremal combinatorics is to determine the
maximum possible number of edges in an n-vertex r-graph that does not contain a
copy of some fixed r-graph F. For an r-graph F', we define the extremal number of
F as

ex(n, F') := max{e(H) : H is an r-graph on n vertices with no copy of F'},



and the Turdn density of F, which is denoted by m(F), as lim,—oex(n, F)/ (7).

T

Note that for a fixed r-graph F, the function ex(n, F)/() is non-increasing, the
hence limit always exists.

For two graphs G and H, we define the composition GoH (which is sometimes
called the lexicographical product of G and H) to be the graph on the vertex set
V(G) x V(H) in which a vertex (u,v) is adjacent to a vertex (u/,v') if and only
if either uv’ € E(G), or u = v/ and vv' € E(H). In other words, we replace each
vertex of G by a copy of H, and linking these copies by complete bipartite graphs
according to the edges of G. This notion has a naturally generalizes to r-graphs. The
composition-closure of a family F of r-graphs is the smallest family of r-graphs F’
that contains F as a subfamily and which satisfies G o H € F' for every G, H € F'.

For an r-graph H and an integer ¢, the £-th blow-up of H is the r-graph on
¢ -v(H) vertices which is constructed from H by replacing each vertex v of H with
an independent set of ¢ vertices I,, and each edge of H with a complete r-partite
r-graph, where each part has size £. Analogously, for an r-graph H and an integer
k, the k-th iterated blow-up of H is the r-graph on the vertex-set V(H)¥ isomorphic
to

HoHo---oH.
k-times
In other words, we first take an /-th blow-up of H for ¢ being v(H)*~!, and then
we place a copy of the (k — 1)-th iterated blow-up of H inside I, for every vertex
veV(H).



Chapter 1

Flag Algebras

The main tool used in the thesis is the framework of flag algebras. It was introduced
by Razborov [59] as a general tool to approach problems from extremal combina-
torics. The work of Razborov was inspired by the theory of dense graph limits,
which is discussed in Section 4.1.

The flag algebra method have been successfully applied to various prob-
lems in extremal combinatorics. To name some of the applications, they were used
for attacking the Caccetta-Héaggkvist conjecture [43, 63], Turdn-type problems in
graphs [60, 54, 57, 64, 19, 38, 40, 58, 70, 42] 3-graphs [61, 56, 5, 29, 28, 34] and
hypercubes [4, 7], extremal problems in a colored setting [41, 44, 6, 18], or in ge-
ometry [45]. More details on these applications can be found in a recent survey of
Razborov [62].

In this chapter, we follow the approach of Razborov [59] and introduce the
framework of flag algebras for the graphs. Exactly the same scheme can also be
used to setup flag algebras for the oriented graphs, the ¢-uniform hypergraphs (¢-
graphs), the permutations, and many others. In fact, Razborov introduced in [59]
the framework for an arbitrary universal first-order logic theory without constants
or function symbols. We decided to present in this section the flag algebra setup for
the particular instance of graphs rather than in the general setting, since it might

be easier to understand the ideas of the framework in this way.

1.1 Flag algebra setting for graphs

The central notions we are going to introduce are an algebra A and algebras A7,
where o is a fixed graph with a fixed labelling of its vertex set. In order to precisely
describe the algebras A and A° on formal linear combinations of graphs, we first

need to introduce some additional notation. Let F be the set of all finite non-



.—<'.'+'f'+\/+\—/> I—(éx’f’+§x\/+v>

Figure 1.1: Two examples of linear combinations used in generating K.

isomorphic graphs. Next, for every ¢ € N, let F; C F be the set of all graphs of
order ¢. For convenience, we fix an arbitrary ordering on the elements the set F;
for every £ € N, i.e., we always assume that F, = {F1, Fy, ..., Fiz,}.

For H € F; and H' € Fy, we define p(H, H') to be the probability that
a randomly chosen subset of ¢ vertices in H' induces a subgraph isomorphic to H.
Note that p(H, H') = 0 if ¢/ < £. Let RF be the set of all formal linear combinations
of elements of F with real coefficients. Furthermore, let IC be the linear subspace of

RF generated by all the linear combinations of the form

H- > pHH) H.
H'€Fy(m)+1

Two examples of such linear combinations are depicted in Figure 1.1. Finally, we
set A to be the space RF factored by K, and the element corresponding to K in A
to be the zero element of A.

The space A comes with a natural definition of an addition and a multipli-
cation by a real number. We now introduce the notion of a product of two elements
from A. We start with the definition for the elements of . For Hy, Hy € F, and
H € Fy(H,)+vo(Hs), We define p(Hy, Ho; H) to be the probability that a randomly
chosen subset of V(H) of size v(H;) and its complement induce in H subgraphs

isomorphic to H; and Hy, respectively. We set

Hy x Hy := > p(Hy,Hy; H) - H.
HEF (1) +v(Hg)

See Figure 1.2 for an example of a product with H; = and Hy = I The mul-
tiplication on F has a unique linear extension to RJF, which yields a well-defined
multiplication also in the factor algebra A. A formal proof of this is given in [59,
Lemma 2.4]. Observe that the one-vertex graph e € F is, modulo K, the neutral
element of the product in A.

Let us now move to the definition of the algebra A%, where o is a fixed finite

graph with a fixed labelling of its vertices. The labelled graph o is usually called
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Figure 1.2: An example of a product in the algebra A.
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Figure 1.3: Two examples of linear combinations used in generating K7, where o is
the one-vertex type.

a type. We follow the same lines as in the definition of A. Let F7 be the set of all
finite graphs H with a fixed embedding of o, i.e., an injective mapping 6 from V(o)
to V/(H) such that 6 is an isomorphism between o and H[Im(f)]. The elements of
F7 are usually called o-flags, the subgraph induced by Im(0) is called the root of
a o-flag, and the vertices Im(f) are called the rooted or the labelled vertices. The
vertices that are not rooted are called the non-rooted or the non-labelled vertices.
For every £ € N, we define 7 C F7 to be the set of all {-vertex o-flags from F°.
Also, for each type o and each integer ¢, we fix an arbitrary ordering on the elements
of the set Fy.

In the analogy to the case of A, for two o-flags H € F? and H' € F? with the
embeddings of o given by 6 and ', respectively, we set p(H, H') to be the probability
that a randomly chosen subset of v(H) — v(o) vertices in V(H')\ 0'(V (o)) together
with (V' (o)) induces a subgraph that is isomorphic to H through an isomorphism
f that preserves the embedding of . In other words, the isomorphism f has to
satisfy f(6) = 0. Let RF7 be the set of all formal linear combinations of elements
of F7 with real coeflicients, and let K be the linear subspace of RF? generated by

all the linear combinations of the form

H- Y pHH) H.

H'EF )11

See Figure 1.3 for two examples of such linear combinations in the case o is the one-
vertex type. We define A% to be RF? factored by K% and, analogously to the case
for the algebra A, we let the element corresponding to K¢ to be the zero element of

A“.
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Figure 1.4: Two examples of a product in the algebra A?, where o is the one-vertex
type.

We now define the product of two elements from F°. Let Hy,Hs € F°
and H € fg(Hle(HQ)fv(U) be o-flags, and 0 be the fixed embedding of ¢ in H.
Similarly to the definition of the multiplication for A, we define p(H;, Ho; H) to be
the probability that a randomly chosen subset of V(H)\0(V (o)) of size v(H;y)—v(0o)
and its complement in V(H )\ 8(V (o)) of size v(Hz) —v(0o), extend §(V (o)) in H to
subgraphs isomorphic to H; and Hs, respectively. Again, by isomorphic we mean

that there is an isomorphism that preserves the fixed embedding of o. We set

Hy x Hy := > p(Hy,Hy; H) - H.

HEF T 1)) to(Hy)—v(0)

Two examples of a product in A% for o being the one-vertex type are depicted in
Figure 1.4. The definition of the product for the elements of F7 naturally extends
to A?. Tt follows that the unique o-flag of size v(o) represents, modulo K7, the
neutral element of the product in A°.

Now consider an infinite sequence (G, )nen of graphs with increasing orders.
We say that the sequence (Gy)nen is convergent if the probabilities p(H, G,,) con-
verge for every H € F. A standard compactness argument (e.g., using Tychonoff’s
theorem [73]) yields that every such infinite sequence has a convergent subsequence.

Fix a convergent sequence (Gp)nen of graphs with increasing orders. For
every H € F, we set ¢(H) = limy,,o0 p(H, Gy), and we then linearly extend ¢ to
A. We usually refer to the mapping ¢ as to the limit of the sequence. The obtained
mapping ¢ is a homomorphism from A to R, see [59, Theorem 3.3a]. Moreover,
for every H € F, it holds ¢(H) > 0. Let Hom™'(A,R) be the set of all such
homomorphisms, i.e., the set of all homomorphisms 1 from the algebra A to R such
that ¢(H) > 0 for every H € F. It is interesting to see that this set is exactly the
set of all the limits of convergent sequences of graphs [59, Theorem 3.3b].

Let (Gp)nen be a convergent sequence of graphs and ¢ € Hom™ (A, R) its
limit. For a type o and an embedding @ of o in G,,, we define G to be the graph
rooted on the copy of o that corresponds to #. For every n € N and H? € F°,
we define p! (H?) = p(H?,G9). Picking 6 at random gives rise to a probability
distribution P on mappings from A to R, for every n € N. Since p(H,G),) con-



Figure 1.5: Three examples of applying the averaging operator [-],, where o denotes
the one-vertex type.

verges (as n tends to infinity) for every H € F, the sequence of these probability
distributions on mappings from A to R weakly converges to a Borel probability
measure on Hom™ (A%, R), see [59, Theorems 3.12 and 3.13]. We denote the limit
probability distribution by P?. In fact, for any o such that ¢(o) > 0, the homomor-
phism ¢ itself fully determines the probability distribution P? [59, Theorem 3.5].
Furthermore, any mapping ¢° from the support of the distribution P? is in fact a
homomorphism from A? to R such that ¢?(H?) > 0 for all H? € F? [59, Proof of
Theorem 3.5].

The last notion we introduce is the averaging (or downward) operator [-], :
A% — A. It is the linear operator defined on the elements of H € F° by

[H], := p% - H,

where H? is the (unlabelled) graph from F corresponding to H after unlabelling
all its vertices, and p%; is the probability that a random injective mapping from
V(o) to V(H@) is an embedding of o in H? yielding a o-flag isomorphic to H. See
Figure 1.5 for three examples of applying the averaging operator [-],, where o is
the one-vertex type.

The key relation between ¢ and ¢ is the following

VH? € A7, ([H°T,) = ¢ ([o],) - / ¢ (H°), (1.1)

where the integration is with respect to the probability measure given by the random
distribution P? on ¢“. Note that

5ol = 22 (o).

v (09)!

Vaguely speaking, the relation 1.1 corresponds to the conditional probability formula
IP’[A N B] = IP’[B] ~IP’[A ‘ B], where B is the event that a random injective mapping
0 is an embedding of o, and A is the event that a random subset of v(H) — v(o)

vertices extends 6 to the o-flag H?. A formal proof is given in [59, Lemma 3.11].



The relation (1.1) implies that if ¢7(A%) > 0 almost surely for some A% € A7, then
¢ ([A7],) > 0. In particular, for every homomorphism ¢ € Hom™ (A, R) and every

linear combination A% € A¢ it holds

¢ ([[(AU)Q]D > 0. (1.2)

We note that a stronger variant of (1.2) can be proven using Cauchy-Schwarz’s

inequality. Specifically, [59, Theorem 3.14] states that
V6 € Hom™* (A,R), VA%, B” € A%, 6 ([(a?] x [(B7)] ) = o(147 x B7],)?.
Let o be a type, A € A%, and m the minimum integer such that

AU = E Qo - Fio-.
FocFg,

We say that ¢ := 2m — v(0) is the order of the expression [[(AC’)Q]] . It follows that
la?] = ar-p
7 FeFy

Since the operator [-], is linear, it immediately follows that for every ¢ €

Hom™ (A, R), A7, AJ,... A% € A?, and non-negative reals aq, as,...,ax we have
6 ([or- (A9 + a0 (49 + -+ axc - (4%°] ) 0.

Hence for every finite set S C F? and every real symmetric positive semidefinite
matrix M of size |S| x |S| it holds that

¢ ([¢5Mzs],) >0,

where zg is the |S|-dimensional vector from whose i-th coordinate is equal to the
i-th element of S. Note that we used the fact that every real symmetric positive
semidefinite matrix M of size s X s can be written as a sum of squares. In other

words, there exists an integer d < s such that
T
M= Aoy x ()
J€ld]

where vectors v;, for i € [d], form an orthonormal eigen-basis of M and \; are the

corresponding (always non-negative) eigenvalues. On the other hand, for every set



of d’ non-negative reals A’ and vectors v; € R?, the matrix

M= 3" N x (v)"
jeld’]

is a symmetric positive semidefinite matrix of size s X s.

1.2 Semidefinite method

The heart of the semidefinite method are inequalities of the form (1.2). These
inequalities turned out to be very useful while dealing with problems from extremal
combinatorics. Before moving to the description of the method itself, let us illustrate

this on a small example. Consider the following inequality, where o is the one-vertex

type:
. 2
3><<I—‘> >0. (1.3)
1 1

The definition of the product on A% implies that the left-hand side of (1.3) is equal to

1\. 1?0 [ ] [ ] *——o
3 % \/—i—v —6 % 3 —1—5 + 3 % e T W ,
1 1 1 1

1 1
o

and an application of the averaging operator yields that
° 2 [ ] (] *—o
3><<I—.> =3x . +3x 1;— . —\/.
Therefore, every ¢ € Hom™ (A, R) satisfies
p13x +3><v— . —\/ >0,

and hence also

N A e A



Since the right-hand side of the last inequality is equal to one, we conclude that

¢ +v Zi (1.4)

for every ¢ € Hom™* (A, R). This is a well-known inequality due to Goodman [37].
Note that the inequality (1.4) is best possible. This can be seen, for example, by
considering the limit of the sequence of Erdds-Renyi random graphs G,, 1o with
increasing orders (the sequence is convergent with probability 1). Another example
where the inequality (1.4) is tight is the sequence of complete balanced bipartite
graphs with increasing orders (it is straightforward to check that this sequence is
convergent).

Now consider a general linear combination A € A. One of the fundamental
problems in extremal combinatorics is to determine the smallest value of ¢(A) over
all $ € Hom™(A,R). The semidefinite method is a tool from the flag algebra

framework that systematically searches for inequalities of the form (1.2), like the

inequality (1.3) in the case when A = "y v, in order to find a lower bound on

min  ¢(A). (1.5)
pcHom™ (AR)
Note that since Hom™ (A, R) is compact, such a minimum exists for every A € A.
The semidefinite method works as follows. First, fix an upper bound ¢ on
the order of flags in all the terms of linear inequalities we are going to consider,
including also the terms of the objective function A. Without loss of generality,

A= Z ap - F. Next, fix an arbitrary list of types o1,...,0x of order at most /.

FeFy
Recall our aim is to find a lower bound on (1.5). The semidefinite method finds a

way how to express A in the algebra A as follows:

A=Y Zb?-[[(A}”f)ZH% (S e P S R, (6

k‘e[K]je[Jk] FG.F[ FE.F@

-

R S T

where

e Ji,...Jx are non-negative integers,

2
e A7' € A% so that the order of [[(A;”) ﬂ is at most ¢ for every j € [J1],
a1

10



2
AK€ A7K so that the order of H(A;’K> H is at most ¢ for every j € [Jk],

oK

b? > 0 for every k € [K] and j € [Ji],

Br > 0 for every F' € Fy, and
e ccR.

Since ¢ (R) >0, ¢(S) > 0, and ¢ (T') = c for all ¢ € Hom™ (A, R), we conclude that
¢(A) > c. Note that R is a positive linear combination of inequalities (1.2) of order
at most £, hence R =) Fer, TF " F' for some choice of reals rp.

For a fixed choice of the parameters £ and o1, ..., 0k, finding such an expres-
sion of A can be formulated as a semidefinite program. Note that all the expressions
A,R,S and T can be written as linear combinations of the elements from F, i.e.,
they can be viewed as vectors in R¢/. Furthermore, the bound obtained by the
semidefinite method is “best possible” in the following sense. Let ¢y be the obtained
bound. For every expression of A as a linear combination of the form (1.6), the
coefficient ¢ in this combination is at most ¢yp. Note that there might be (and often
there are) different combinations that yield the bound cg.

Let us now describe the corresponding semidefinite program in more detail.
Fix one of the types o € {01,...,0K}. Since the semidefinite method uses inequal-
ities [{(A"k)ﬂ] of order at most ¢, it follows that

(g™
A% = Z (673N Fl

F; E.F,:Lk(k)

for some integer m(k) such that m(k) < Ev(9r)  Without loss of generality, m(k) =

2
L % J . Therefore,

2

R = Z Z bl - Z g Fi :kz[;q [[kaMgkak]]Uk, (1.7)
€

ke[K] je[Jk] Fi ek
ok

where

e cach vector z,, is the |]-';if( k) |-dimensional vector whose i-th coordinate is equal

to the i-th element of f;?k), and

11



e cach matrix M, is equal to

T
2 : k
b] ° (ak,jJ?ak‘,j,Z?"'?ak - ]:O'k ‘) X (ak7j717ak7j72"..7ak‘ / fok ‘) ’
JEl] e R

Note that the matrices My, , ..., My, are symmetric positive semidefinite matrices

with real entries.

Now recall that R = } .7 rF - . The equation (1.7) implies that all

the coefficients rr depends only on the entries of the matrices M, ,..., M,,. For
a given set of matrices My, ,..., My, , we write 7p(My,,..., My, ) to denote the

coefficient in front of F' in R. Using this notation, the semidefinite program for the

objective value A = > ap - F can be written as
FeFy

maximize ¢

ceR
subject to ap > c+rp(My,,...,Ms,) YF € Fy,
MO’1 i 07 (18)
Mg, =0,

where the constraints M,, > 0, for k € [K], denote that the matrices M,, are
positive semidefinite.

Let us now focus on the dual program of the semidefinite program (1.8).
We start with introducing some additional notation. For a homomorphism ¢ €
Hom™ (A, R) and an integer ¢, the local density {-profile of ¢ is the vector

bre = (O(F1), p(Fa), ..., 0(F|x,))) -

We denote the i-th coordinate of ¢ by ¢¢(F;). Furthermore, for A = Z ap - F,

FeFy
where a are arbitrary fixed reals, we define

Se(A) = Y ar - d(F).

FeFy

With a slight abuse of notation, we use this notion also for an arbitrary vector
z € RVl ie., we write z(F}) for the i-th coordinate of z, and we use z(A) to denote

the value of > ap - z(F).
FeFy

12



Let Pr, := {qﬁw : ¢ € Hom™ (A, R)} be the set of all local density ¢-profiles.

Note that Pr, C [0, 1]7¢l. For a combination A = Z ar - F, it follows from the

FeFy
definitions that the value of (1.5) is equal to the minimum value of ¢,(A), where

the minimum is taken over all ¢y € Pg,.
Now fix K types o01,...,0x of order at most £. Let Sr, be the set of vectors
z € R4l that satisfy

e all the linear inequalities of the form z ([[(A"k)Q]] > > 0, where k € [K],
ok

A% € A% and the order of the expression [[(A"k)QH is at most ¢,

Ok

e the non-negative inequalities z(F') > 0 for every F' € Fy, and

e the equation z (ZFE& F) =1.

It immediately follows that Pr, C Sg,. It also follows that the set Sz, is a convex
set.
Recall that the aim of the semidefinite method is to find the minimum of
#(A), where ¢ € Hom™ (A, R), which is the same as the minimum of ¢,(A) for
¢ € Pr,. The duality of semidefinite programing (see, e.g., [39, Theorem 4.1.1])
implies that the dual of (1.8) is the following semidefinite program:
o n
minimize z(A) (1.9)
Therefore, if the semidefinite method finds a proof that for every ¢ € Hom™ (A, R)

it holds that ¢(A) > ¢, where ¢ € R, it also holds that z(A) > ¢ for any z € Sg,.
In particular, if ¢,1 € Hom™'(A,R) and X € (0,1), then

A pe(A) + (1= A) - Yp(A) = c. (1.10)

Note that the |F;|-dimensional vector A - ¢y + (1 — A) - 9y, is usually not a local

density ¢-profile of any convergent sequence of graphs.

13



Chapter 2

Hypergraphs with positive lower density

One of the most well-known results in extremal graph theory is Turdn’s theorem [72],
which determines the largest possible number of edges in an n-vertex graph without
a complete subgraph of a given size. Erdés, Simonovits, and Stone [23, 24] gener-
alized Turdn’s theorem by showing that the extremal number of a fixed graph F' is
asymptotically determined by its chromatic number. Specifically, for every graph F'

with at least one edge,

F)y—2 n
ex(n, F) = <§EF§_1 + 0(1)> (2>

These extremal questions are dual to determining the minimum number of edges
m(F') that guarantees that an n-vertex graph G with at least m(n, F') edges contains
a copy of F, since m(n, F') = ex(n, F') + 1.

For problems studied in this chapter, we impose a stronger density assump-
tion on a (hyper)graph, where we wish to find a copy of some fixed (hyper)graph F'.
Instead of only assuming that the whole graph has a sufficiently large density, we
assume that also every sufficiently large subset of vertices, say of size at least dn,
has large relative density. Formally, we define the §-linear density of a graph G to

be the smallest density induced by a d-fraction of the set of vertices, i.e.,

d(G,5) == min{e(G[AD L ACV(G),|Al =6 U(G)} .

AN =
(')
Note that for any graph G, the function d(G,d) is a non-decreasing function of §
taking values in [0, 1].
However, requiring a positive d-linear density immediately forces large graphs

to contain every given graph as a subgraph.

14



Observation 2.1. For every ¢ > 0 and a fixed graph F, there exist § > 0 and
ng € N such that every graph G on at least ng vertices with d(G,d) > € contains F

as a subgraph.

A proof of this observation follows, e.g., from [65, Theorem 1].
The notion of the §-linear density has a natural generalization to r-graphs.

For an r-graph H, we define

d(H, ) := min {e(zﬂ;ﬂ)

Since in this chapter we mostly deal with sequences of 3-graphs, it is natural to

. AC V(H),|A| > 5.U(H)}.

define the lower density of an increasing sequence of 3-graphs (H,)nen to be the

smallest d-linear density and denote it by A ((Hp)nen). Formally,

A((H)uen) := Jim. {hnrg inf d(H,, 5)} .
It is natural to ask for what r-graphs F' we can generalize Observation 2.1,
i.e., what is the set of r-graphs F' such that that every sufficiently large r-graph H
with a positive d-linear density contains a copy of F. Frankl and Rodl [30] showed
that for every r-graph F' from the composition-closure of the set of all r-partite
r-graphs, there exists a positive constant § such that every large r-graph H with a
positive d-linear density contains a copy of F'. Until now, these are the only r-graphs

F with this property we know.

2.1 Random tournaments construction

In order to simplify the notation in this chapter, we denote by K ig) the complete 3-
graph on 4 vertices, and by K the 3-graph on 4 vertices with 3 edges; see Figure 2.1.
Erdés and Sés [26, Problem 5] asked whether a sufficiently large 3-graph H with a
)

positive d-linear density contains a copy of K f’ , or at least a copy of K, . However,
Fiiredi observed that the following construction of Erdés and Hajnal [22] gives a

negative answer to the above question in a very strong sense.

Construction 2.2. Consider a random tournament T, on n wvertices. Let H, be
the 3-graph on the same vertex set consisting of exactly those triples that span a

cyclically oriented triangle in T,.

For the exact reference to the observation, we refer the reader to [30], where

Frankl and R&dl cite a personal communication with Fiiredi in 1983. Additional

15
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Figure 2.1: The 3-graphs K and Kf’).

W

15 H;

Figure 2.2: An example of the Construction 2.2 for n = 5.

information about this problem and its history can be found in [69, Section 5]. One
can check that in every 3-graph obtained in this way, any four vertices span at most
two edges, i.e., for every n € N the 3-graph H,, does not contain K, . It remains
to show that for every § > 0, the J-linear density of a typical H, tends to 1/4 as n
goes to infinity. In fact, we prove that even (1/logn)-linear density almost surely
tends to 1/4.

We start with the following standard concentration lemma.

Lemma 2.3. Let p € [0,1], r € N such that r > 2, and n € N. In an n-vertex
r-graph H, we associate with every edge e € E(H) a random event E(e) such that

e P[&(e)] =p for every e € E(H), and
e The events E(e) and E(e’) are independent whenever |e Ne’| < 1.

Then the probability that the number of occurred events on some large vertex set is
far from its expectation tends to zero super-exponentially fast in n. More precisely,

16



there exists a positive constant ¢ such that

n

P |3A C V(H),|A] >

[A] en2
o [He € BLAD : £(@)] - pEGHLAD| > fgi] _ o,

Proof. Fix an arbitrary set A C V(H) with |A| > n/logn. We claim that

(&)

P [1 e € BUHA)) : £} —plBHIAD|| > .00

.n2
] = elog?(m) (2.4)
for some ¢ > 0. The statement of the lemma then follows easily by a union bound
over all subsets of V(H) of size at least n/logn, so it remains to prove the claim.
Consider an edge-coloring of H[A] with (;) (";”:22) colors, such that every
color class is a linear r-graph, i.e., any two edges of the same color intersect in at
most one vertex. Since every fixed edge intersects in at least two vertices less than

(T) (lfl:f) other edges, such a coloring can be found in a greedy way. Since

2
P\ (1Al=2y 1Alga -y _ ()
2\ r—2 r4-logn logn’

we infer that the event inside the probability formula in (2.4) implies that in at

least one of the color classes, say C, the size of {e € C' : £(e)} deviates from its
expectation by at least |A|(|4] —1)/(r* - logn).
Fix a color class C. First, observe that |C] < ("3')/(2) = % The

events £(e) and £(¢’) are independent for every e,¢’ € C, hence by Chernoff’s
inequality (see, e.g., [2, Corollary A.1.7]) we obtain

Al(|A] - 1) —2|AP(1A] - 1)’
P : - “idoen | <%
U]{eec 5(6)}] p‘C’ > r4'logn < exXp ’C"?"S'logQTL )

761'77,2

which is equal to elee® for ¢ sufficiently small (recall that |A|] > n/logn and

|C| < |A|(|]A]—1)). The claim now follows by a union bound over all color classes. [

We are ready to show that the lower density in Construction 2.2 is equal to
1/4.

Observation 2.5. Consider a random sequence (Hy), .y from Construction 2.2.
With probability 1, the lower density of (Hy),cy i equal to 1/4.

Proof. Recall that |V(H,)| = n. Let H be the complete 3-graph on n vertices,

and &(e), for e = wvw, be the event that the three arcs on the set {u,v,w} in
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the underlying tournament of H, form an oriented cycle. Lemma 2.3 yields that
2

—c'n

with probability 1 — eles*» | for all subsets A C V(H,,) of size at least n/logn, the
number of edges in H,[A] is between (1/4 — 1/ log n)(l‘g') and (1/4+1/log n)(‘?‘).
Therefore, by Borel-Cantelli Lemma (see, e.g., [2, Lemma 8.6.1]), with probability
one there exists ng € N such that the property above is true for every n > ng. But

this immediately implies that the lower density of (Hy), oy is 1/4. O

The main result of this chapter is that the Construction 2.2 is essentially the
best possible. This answers a question of Erdés from [21], which is based on the ori-

ginal problem of Erd6s and Sos, positively.

2.2 Flag algebra setting

The proof of the main theorem is based on the semidefinite method described in
Section 1.2. Through the whole chapter, we will use F to denote the set of all non-
isomorphic finite K, -free 3-graphs, and F}, to denote the subset of F containing
all k-vertex K, -free 3-graphs. Next, for a fixed K, -free 3-graph o with a given
labelling of its vertices, we define 77 to be the set all finite K, -free 3-graphs with
a fixed embedding of o, and F to be the appropriate subsets. Analogously to the
graph setting presented in Section 1.1, we construct an algebra A, algebras A7,
where o is a fixed labelled K -free 3-graph, and averaging operators [-], : A7 — A.
Finally, we denote by Hom™ (A, R) the set of all algebra homomorphisms ¢ from A
to R such that ¢(F') > 0 for every F' € F.

A sequence of K -free 3-graphs (H,,),en of increasing order is convergent if
the limit lim,,_,~ p(F, Hy,) exists for every F' € F. As in the graph case, there is a
one-to-one correspondence between the set Hom™* (A, R) and the set of all vectors
in [0, 1]]: that represents the limit probabilities of convergent sequences.

We derive now some additional inequalities that are valid for any convergent
sequence of 3-graphs (Hy,)nen with lower density at least 1/4.

Let us first informally explain the main idea behind the inequalities. Consider
an arbitrary type o that has a positive density in the limit, and let F' be a o-flag
with exactly one non-rooted vertex. Furthermore, assume that n is sufficiently large.
Now fix a copy S of ¢ in H,, and consider the set U(S) of all vertices u € V(H,)

that extends S to a copy of F'. The following two outcomes can happen:

e The size of U(S) is small, i.e., o(n). But then, for this choice of S, both the
probability that three random points belongs to U(S), and the probability
that three random points belongs to U(.S) and span an edge, are o(1).
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e The size of U(S) is large, i.e., (n). But then, by the assumption on the
lower density, for this choice of S, the probability that three random points
belong to U(S) and span an edge is asymptotically at least a quarter of the
probability that three random points belongs to U(S).

Analysis of these two outcomes is given in the following lemma.

Lemma 2.6. Let (Hy), oy be a convergent sequence of 3-graphs with lower density
at least 1/4. Let ¢ be its limit, o a type and F € ]-'|‘;|+1 a o-flag. In addition, let

K= F3 = Z ag -G and KT i= Z aE-G,

GEFZ ) 1s GEF(o)+3
where
n ag if the three non-labelled vertices of G span an edge, and
at =
G

0 otherwise.

It holds that
¢ ([4x" = &],) > 0. (2.7)

Note that the values of the coefficients ag are uniquely determined by the choice

of F. Also note that ag € {0,1} for every G € F ) 5.

Proof. First observe that if ¢ (om) = 0, then all the terms in the left-hand side of
(2.7) are equal to zero. For the rest of the proof, we assume ¢ (00) > 0.

Suppose for the contrary that (2.7) is not true, i.e., ¢ ([4sT — k],) = —&,
for some &, > 0. Let g, be the values of the expression [4xT — k], evaluated on
the densities of H,,. Since the sequence (H,)nen is convergent, there exists ng € N
such that ¢, < —&,/2. Moreover, since (H,,) has lower density at least 1/4, we may
assume that d (H,, Be) > 1/4 for B. := /2,/13. Tt follows that one can get S.e,
for free.

Fix an embedding 6 of ¢ in H,,. Let qzo be the value of the expression
(4™ — K) evaluated on the rooted densities of HY . If there are less than B.n
vertices that extend 6 to F, then ¢f is at least —6(B:)* — o(1). On the other
hand, if at least Sen vertices extend 6 to F', then the density of the subhypergraph
induced by those vertices is at least 1/4 and hence 4x™ > k — o(1). In other words,
a4, > —o(1).

Recall that p?, denotes the probability that a random labelling of V (a@)
with labels {1, cey U (a@)} produces the type o, and note that p?, - p (a@, Hno) <1.
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The definition of the conditional probability yields that

ano =0+ (0% oy ) B [, = =6 (8.)° — o(1),

where the average is taken over all possible embeddings 6 of ¢ in H,,. However,
the choice of B, implies that g,, > —6e,/13 — o(1) which contradicts the fact that
qno S _57“/2'

O

We are now ready to present the two inequalities we are going to use in the
next step. Let o be the unique type on 2 vertices; from now on, we also write “2” to
denote this type. We denote the 3-vertex o-flag with no edges by Fp, and the 3-vertex
o-flag with one edge by F;. The first inequality is an instance of (2.7) for o = 2 and
F = F}. Let k1 be the corresponding x and let /if be the corresponding x*. The
first line in Figure 2.3 shows the flag F} and the corresponding linear combinations
k1 and /@f. Since all o-flags in F7 are K, -free, it follows that k1 = L; + Lf and
ki = L{. The o-flags Ly and L] are depicted in Figure 2.4.

Analogously, let k2 be x and let k3 be kT from (2.7) for F = Fy (again, o is
equal to 2). The second line in Figure 2.3 shows the flag Fy, and the combinations
Ko and /ﬁ . It holds that

14 6 6
K}2:ZL1'+ZL7:+ and ”;:ZLj’
i=2 i=2 i=2

where the o-flags Lo, ..., L4 and L;, ... ,Lgf are again depicted in Figure 2.4.
Lemma 2.6 yields that

¢ ([4k] — K1]2) >0, (2.8)

and
¢ ([4k3 — K2l2) > 0. (2.9)

2.3 3-graphs with 4 vertices spanning at most 2 edges

In this section, we present the main result of this chapter. Specifically, we prove the

following theorem.

Theorem 2.10. For every ergm > 0 there exist drum > 0 and nram € N such that
every 3-graph H on at least nrpy vertices with d(H,orav) > 1/4 + etnm contains
a copy of K .
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Figure 2.3: The expressions used in the inequalities (2.8) and (2.9). A solid line
denotes an edge, a dashed line a non-edge, and finally we sum over all the possible
choices edge/non-edge for the triples where there is neither a dashed nor a solid line.

Recall that F7 is the set of all K, -free 3-graphs of size 7. It holds that
|F7| = 8157. Let EXT7 be the set of all 3-graphs from F7 that can possibly appear
as induced subhypergraphs of the 3-graphs from Construction 2.2. It holds that
|EXT7| = 247. We start the proof of Theorem 2.10 with the following lemma.

Lemma 2.11. There exist rational numbers (ac)ger,, where ag = 0 for G €
EXT7, and ag < 0 otherwise, such that the following holds. If ¢ is an element of
Hom™ (A, R) that satisfies (2.8) and (2.9), then

o1 > ac-G| =0
GeFr

Proof. Using the method from Section 1.2, an instance of the SDP was used to
find positive rationals 7; and 2 and 8 symmetric positive semidefinite matrices
My, Ms, ... Mg with rational entries such that the following holds:

o - [[4liir — Iﬁﬂz +v2 - [[4,‘-62+ — K;Q]]z + Z[[SU?MZI‘Z]]UZ =¢ Z ag -G |,
1€[8] GeFr

where

21



5 &) .

ARV fQ 1’
W W W
VAR
WW




e the type o is the type with one vertex,
e the type o9 is the type with three vertices and no edge,
e the type o3 is the type with three vertices and one edge,

e the types oy,...,0g8 are the five specific types on five vertices given in Fig-

ure 2.5,

e the vector 1 € (szl)|f4l‘ is the vector whose j-th coordinate is equal to

the j-th element of the canonical base of RF}*,

o for i = 2,3, the vector z; € (R.ng)|f5i| is the vector whose j-th coordinate is

equal to the j-th element of the canonical base of RF; ",

e for i = 4,5,...,8, each vector z; € (R.ng)‘fm is the vector whose j-th

coordinate is equal to the j-th element of the canonical base of RFy*, and
e o =0if G € EXT7, and ag < 0 otherwise.

The left-hand side of the inequality above is non-negative by (1.2), (2.8), and (2.9).
[

The proof of the previous lemma was found with a computer assistance. We
used semidefinite programming libraries CSDP [11] and SDPA [74] to find an ap-
proximate solution of the corresponding semidefinite program. The approximate
solution was then turned into an exact one by a careful rounding. For the round-
ing part, we used a mathematical software Sage [71]. Also note that the sizes a;
of the sets Fy', Fg2, Fo o, Fo*, Fg o  Foo, Fg ', and F¢°, which coincide with the order
of the matrices M;, are 5,95,47,191, 135,95, 101, and 148, respectively.

The numerical values of 1,72, and the entries of the matrices M, ..., Mg
can be downloaded from http://honza.ucw.cz/phd/. Each matrix M; is not stored

directly but as an appropriate number of vectors v; € Q% and positive rationals wy
such that
i N\T
M; :ng -vf- X (Uf) ,
Jj=1

where r{ = 3,170 = 45,13 = 21,r4 = 63,15 = 60,176 = 43,r7 = 31, and rg = 25.

In order to make an independent verification of our computations easier, we
created a sage script called “lemma_2_13-verify.sage”, which is also available on the
web page mentioned above.

Lemma 2.11 immediately yields the following.
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3 5
[ J 1 2
1 [ J [ J
o1 oy =123 o3 o4 = 123,124
A i
o5 = 123,124,135 o = 123,124, 135,245 o7 = 123,124,135,145 og = 123,124,125

Figure 2.5: The types o1 through og. A solid line denotes an edge, a triple without
a solid line spans a non-edge.

Corollary 2.12. Let F' be a 3-graph of size at most 7 such that its induced density
in the 3-graphs from Construction 2.2 is zero. If ¢ € Hom™ (A, R) satisfies (2.8)
and (2.9), then ¢(F) = 0.

We are now ready to present the proof of Theorem 2.10.

Proof of Theorem 2.10. Suppose to the contrary that there exists d > 1/4 and a se-
quence (Hy), oy of K -free 3-graphs of increasing orders with lower density d. In
other words

AM(Hp)pen) =d > 1/4.

Let us assume, without loss of generality, that (Hy), .y converges and ¢¢ is the
limit; We aim to show that the edge density of ¢¢ is zero, contradicting the fact
that it must be at least the lower density of the sequence.

Let B be the 3-graph depicted in Figure 2.6, which we call the butterfly 3-
graph. Since the 3-graphs from Construction 2.2 are B-free, Corollary 2.12 implies
that ¢(B) = 0 whenever a homomorphism ¢ € Hom™ (A, R) satisfies (2.8) and (2.9).
In particular, for the limit ¢ of any convergent sequence of K, -free 3-graphs with
lower density at least 1/4, we have ¢(B) = 0.

Instead of applying the claim directly to ¢, we first construct from (Hy,),, oy
a new sequence (H}), .y such that X ((H},),cy) = 1/4. The new sequence is ob-

tained by a random sparsification of (Hy) i.e., removing each edge of each H,

neN»
at random with the appropriately chosen probability. This is formulated in the
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®

Figure 2.6: The butterfly 3-graph B.

following observation, which is an immediate corollary of Lemma 2.3.

Observation 2.13. Let (H,), .y be a sequence of 3-uniform K -free 3-graphs with
d == XN((Hp)pen) > 1/4. Furthermore, for every n € N, let H}, be a random
subhypergraph of H, obtained by removing every hyperedge of H, independently
with probability 1 — 4—1d. Then

PA((H1),en) = 1/4] = 1.

Let (H,

n)nen be a sequence of 3-graphs obtained from (H,), .y by a random

sparsification with probability 1 — ﬁ. All the following holds with probability one.
Let ¢ be its limit (the sequence (H),), oy must be convergent). Lemma 2.6 implies
that ¢, satisfies both (2.8) and (2.9). Hence, by Corollary 2.12, the induced density
of B in ¢ is equal to zero. But this implies that ¢c(F) = 0 for any F' € F that
contains B as a non-induced subhypergraph. This holds because otherwise there
would be some F' € F that contains a non-induced copy of B and ¢c(F) > 0.
However, a positive proportion of the induced copies of F' from ¢¢ will be then
turned, by a random sparsification, to induced copies of B in ¢p. We conclude
that the non-induced density of the butterfly 3-graph B in ¢¢ is equal to zero. In
particular, any non-negative combination of the elements of F5 that contain the
butterfly as a non-induced subhypergraph must be zero in ¢¢.

We are now ready to conclude that the edge density of ¢¢ is zero. Let p € F3
be the 3-graph on three (non-rooted) vertices that span an edge. Let o be the one-
vertex type and p; € F§ the flag corresponding to p with exactly one rooted vertex.
Observe that all the elements of F¢ with positive coefficients in the expression (p1)?

contain B as a subhypergraph. So, ¢¢ ([(pl)Q]]U) = 0, which implies that

sc ()’ = 60 ([1le)® < d ([(p1)*]o) = 0.
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Theorem 2.10 together with the 3-uniform version of the Hypergraph Re-
moval Lemma (see, e.g., [67, Theorem 3] for the general r-uniform version of the
lemma) immediately implies that if the d-linear density is more than 1/4, we do
not have only one but actually many copies of K, . Let us first precisely state the
version of the removal lemma for 3-graphs, which actually follows already from the

results in [31].

Lemma 2.14 (Hypergraph Removal Lemma, 3-uniform case). For every ery, > 0
and fived k-vertex 3-graph F', there exists yry, > 0 such that every 3-graph H on n
vertices with less than Ry - (Z) copies of F' can be made F-free by removing less

than egy, - () edges.
We are now ready to derive the counting version of Theorem 2.10.

Corollary 2.15. For every ecnt > 0 there exist yonT > 0, dont > 0 and nent € N
such that every 3-graph H on at least nont vertices with d(H,dcnt) > 1/4 + eont
contains YCNT * (”(f)) copies of K .

Proof. Suppose for a contradiction there is €9 > 0 such that for every v > 0,d > 0
and n € N we can find a 3-graph H(n,d,7) on at least n vertices, with J-linear
density at least 1/4 + ¢, and with less than ~ - (Z) copies of K, . Fix such g¢ and
for every 7, ¢ and n, fix one such 3-graph H(n,d,~).

Let nrgm and drpy be the constants from Theorem 2.10 applied for eppy =
€0/2. Fix an integer k so that klogk > nrum and 1/k < draum. Next, let gy, =
YrLL(k) be the constant given by the Hypergraph Removal Lemma for K applied
for ery, := 0/ (3k3). Finally, let

G = H(k ’ logkv 1/ka IYRL(]{;))

This means that every S C V(G) of size at least v(G)/k > logk contains at least
(174 + 50)(|§|) edges. Moreover, G can be transformed to a K, -free 3-graph G’ by
removing less than 0 - (”(g)) edges. Consequently, every S C V(G') of size at
least v(G")/k contains at least (1/4 + 250/3)(|§|) — O(]S)?) edges. Since k is large,

it follows that
1 2g |S] 9 1 9 |S|
<4+3)(3> o(1s?) > (L+2)- (),

Therefore, d(G',1/k) > 1/4+¢(/2 and Theorem 2.10 imply that G’ contains a copy

of K, , a contradiction. O
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Also, exploiting the fact that the semidefinite method seeks for a vector
minimizing a given linear function over a convex superset of the set Hom™ (A, R),
we can replace the d(H,0) > 1/4 4+ ¢ condition by another that controls only the
densities inside subsets that are common neighborhood of two vertices in H and

inside subsets that are common neighborhoods in the complement of H.

Theorem 2.16. For every e > 0 there exist § > 0 and ng € N such that the following
. . V(H
is true. Ewvery 3-graph H on n > ng vertices such that for every {u,v} € ( (2 ))

satisfies the following two conditions:
o if [Ng(u,v)| > dn, then H[Ng(u,v)] has density at least (1/4+ ¢€), and
o if [Ng(u,v)| > dn, then H[Nz(u,v)] has density at least (1/4 + ¢),
contains K, as a subhypergraph.

Proof. Suppose for a contradiction the theorem is false. Hence there exist a positive
g0 and a convergent sequence of K -free 3-graphs (Hy,)nen of increasing orders such
that each H,, satisfies the two conditions from the statement of this theorem. We
denote the limit of this sequence by ¢¢.

First, we claim that the edge density of ¢¢ is positive (in fact, it is strictly
more than 1/32). Fix two arbitrary vertices v and v in H,. Since either uvvw €
E(H,), or vvw € E(H,) for every w € V(H,) \ {u, v}, it follows that there is a set
S C V(H,) with at least v(H,)/2 — 1 vertices such that H,[S] has edge density at
least (1/44¢¢). But this means that H,, has edge density at least 1/32+4¢0/8—o0(1).

Let us now analyze some further properties of ¢c. Let o = 2 be the two-
vertex type. Recall that Fj is the 3-vertex o-flag with no edges, and F7 is the edge
with two rooted vertices. If P[¢F (F1) = 0] = 1, then, by averaging over all pairs
of the vertices, we conclude that the edge density of ¢¢ is zero. However, we know
the edge density is more than 1/32. Analogously, if P [¢F (Fp) = 0] = 1, then the
edge density of ¢o must be one. However, since ¢¢ (K n ) = ¢¢ (K f)) = 0, the
edge density of ¢¢ is trivally at most 1/2, a contradiction. Therefore, there exists a

positive v such that
Plog (F1) 2 9] =7,

and similarly
P ¢z (Fo) =] = 7-

Recall the inequalities (2.8) and (2.9). The reasoning from the previous
paragraph yields that a positive proportion of pairs {u,v} have a large co-degree

of {u,v} in the underlying sequence of ¢c. Analogously, a positive proportion of
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pairs {u, v} have large co-degree in the complement. Since the density on every such
subset is at least 1/4+¢¢ > 1/4, the inequalities (2.8) and (2.9) have some slack for
¢ = ¢c. More precisely, there exists a positive ¢ such that

oc ([4x] — k1]2) > ¢, (2.17)

and
oo ([4k3 — Kal2) > ¢ (2.18)

Now recall the semidefinite program (1.8) and its dual (1.9). In the proof of
Lemma 2.11, we used the semidefinite method to find two positive rationals v; and
~v2 and an expression

n=>23% (ar)]

i=1 j=1

. 2
where b; > 0, A7" € A%, and the order of the expression [[(A;“) H is at most 7
i

for every ¢ € [8] and j € [r;], such that the following is true:

1 - [4mf —Kkil2 + 72 [[4,‘15F — ka2 + R = Z aqg - G,
GeFr

where ag = 0 for every G € EXT7, and ag < 0 for every G € F; \ EXT;. It
holds that ¢(R) > 0 for every ¢ € Hom™' (A, R). Furthermore, the reasoning from
Section 1.2 yields that the bound z(R) > 0 holds also for every vector z € R¥7l that

satisfies the following:

e all the linear inequalities of the form z ([{(A”l)Q]] > > 0, where A%t € A%
o1

and the order of the expression [{(A"l)ﬂ] is at most 7,
o1

e all the linear inequalities of the form z <[{(A"8)2ﬂ > > 0, where A%% ¢ A%

o8
and the order of the expression [{(AUS)QH is at most 7,
s
e the non-negative inequalities z(F') > 0 for every F' € F7, and
e the equation z (ZF€f7 F)=1.

The types o1, ...,08 are the same types as in Lemma 2.11, i.e., the types depicted
in Figure 2.5. We denote the set of all such vectors z € Rl by Sr,.
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Finally, Recall the 3-graph B depicted in Figure 2.6. We slightly abuse the
notation and use B also to denote the linear combination of the elements of 77 that
is equal to B in A. Our aim is to use the homomorphism ¢¢ for constructing a
vector z € Sr, that satisfies the inequalities (2.8), (2.9) and z(B) > 0. This is an

immediate contradiction, because on one hand
2 (71 [467 — #1]2 + 72 - [4k3 — k]2 + R) >0,

but on the other hand every 3-graph G € EXT7; does not contain B as an induced
subhypergraph, and hence

z Z ag-G | <0.
GeFr

Let us emphasize that in the argument we do not need that the vector z € Sz, to
be a 7-local density profile of some convergent sequence of 3-graphs.

Let ¢, € Hom™ (A, R) be the limit corresponding to the sequence of 3-graphs
(Bg)ken, where By is the k-th balanced blow-up of the butterfly 3-graph B. Every
3-graph By, is K -free, and the density of B tends to 24/625, i.e., ¢»(B) = 24/625.
For every ¢ € [0,1], let ¢¢ := & - o + (1 — &) - ¢p. Since the set Sg, is convex, it
follows that (qbg)M € Sz, for every £ € [0,1]. However, since ¢1 = ¢¢ satisfies even
the inequalities (2.17) and (2.18), there exists a point & € (0, 1) such that

e, ([467 — k1ll2) = ¢/2 >0,

and
e, ([4r5 — Kal2) > (/2 > 0.

However, ¢¢,(B) = (1 — &) - ¢(B) > 0, a contradiction. O

2.4 Uniqueness of the tournament construction

In the last section of this chapter, we show that the limit of any convergent sequence
of K -free 3-graphs with lower density 1/4 has to be equal to the limit of the se-
quence of 3-graphs from Construction 2.2. In order to do so, we use the argument
of Falgas-Rarvy, Pikhurko and Vaughan [27], who proved the following closely re-

lated result.

Theorem 2.19 (Falgas-Rarvy, Pikhurko and Vaughan). For everye > 0 there exists
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ng € N such that every 3-graph H on n > ng vertices with the minimum co-degree

at least (1/4+ €) - n contains a copy of K .
The relation between Theorems 2.10 and 2.19 is that the 3-graphs from Con-

struction 2.2 serve as extremal configurations for the corresponding two problems.

The entire section is devoted to a proof of the following theorem.

Theorem 2.20. Let (Hy)nen be a convergent sequence of K -free 3-graphs so that
M(Hy)) = 1/4, and let ¢ € Hom™ (A, R) be its limit. It holds that ¢ is equal to
the homomorphism 1, which is the limit of the sequence of 3-graphs from Construc-

tion 2.2 with increasing orders.

Proof. Without loss of generality, v(H,) = n. Recall that the set EXT7 is the
set of all 7-vertex induced subhypergraphs of the 3-graphs from Construction 2.2.
Corollary 2.12 and the induced version of the Hypergraph Removal Lemma [66,
Theorem 6] implies that there exists a sequence of 3-graphs (H,,)nen such that each
H/ can be obtained from H,, by adding or removing o(n?) edges, and every 7-vertex
induced subhypergraph of H,, is isomorphic to one of the 3-graphs from EXT7. Note
that (H))nen is a convergent sequence of 3-graphs. Also note that the density of any
fixed 3-graph G in (H}),en tends to ¢(G). Since the application of the Hypergraph
Removal Lemma changed only o(n?) edges, it holds that A((H})) = 1/4. Therefore,
it is enough to show that the limit of (H},)nen is equal to 1.

The induced subhypergraph property satisfied by the 3-graphs H}, yields the
following important fact: for every induced subhypergraph Z of any H}, on at most
7 vertices, there exists a tournament Tz such that the edges of Z are in one-to-one
correspondence to the cyclically oriented triangles in T.

We now setup a variant of the flag algebra framework for convergent se-
quences of 3-graphs that satisfy this property on 7-vertex induced subhypergraphs.
Let G be the set of all 3-graphs such that each of their 7-vertex induced subhyper-
graphs is isomorphic to one of the 3-graphs from EXT7. Also, for any type o with
the underlying 3-graph from G, let G° be the corresponding set of all the o-flags
with this property. Finally, let A’ be the corresponding flag algebra defined by G. Tt
follows that there exists a homomorphism ¢’ € Hom™(A’, R) which represents the
limit of the sequence (H,)nen-

Let 0 = 2 be the 2-vertex type and let Fy and F} be the o-flags on 3 vertices
with zero edges and one edge, respectively. Since H), was obtained from H, by
adding or removing o(n?®) edges, the homomorphism ¢’ satisfies the following two

inequalities, which are direct analogues of (2.8) and (2.9) in the algebra A’:
¢ ([[4@r - Ll]]z) >0 and ¢ ([[46r - LQ]]z) >0,
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where

ni=(F)P=> ag-G, = oG,

Gegg Gege
Lo = (Fy)® = Z Ba - G, and L; = Z BE -G.
Gegg Gege

The values of the coefficients ag and g are uniquely determined,

n ag  if the three non-labelled vertices of G span an edge, and

Qg =
0 otherwise,

and

B if the three non-labelled vertices of G span an edge, and

0 otherwise.

Note that all the values of o, ag, Ba and ﬁg are either zero or one for every G € G7.
Let p € G be the 3-graph on 3 vertices with one edge. Using the semidefinite
method, we find four positive definite matrices Mj,..., M such that the following

inequality in the algebra A’ holds:

p= Y ac- Gt Y P Y [ iy - Y (@) M (1],

Fegs Fegs 1€{1,2} i€(4]
(2.21)

where

e ag = ¢(G)/20 for every G € Gg,

e v = 148803/16384 and ~4 = 70943/16384,

e the type o1 = 2 is the two-vertex type,

e the type o9 is the type with four vertices a, b, ¢,d and no edge,

e the type o3 is the type with four vertices a, b, ¢, d and the edge abc,

e the type o4 is the type with four vertices a, b, ¢,d and the edges abc and abd,

e the vector z; € (Rgf[l)|931| is the vector whose j-th coordinate is equal to the

j-th element of the canonical base of ]jofl,

e for i = 2,3,4, the vector z; € (Rggi)‘%i’ is the vector whose j-th coordinate

is equal to the j-th element of the canonical base of RG:*, and
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e the matrices I1,..., I; are some specific matrices of sizes 8 x 7, 38 x 26, 17 x
15 and 17 x 15, respectively. The entries of the matrices I; can be found

in Appendix A.1.

Similarly to the case of Lemma 2.11, the numerical values of the entries of the
matrices M7, ..., M) are available online and they can be downloaded from http:
//honza.ucw.cz/phd/. A sage script called “theorem_2_22-verify.sage”, which is
also available on the web page, can be used to verify the computations.

The equation (2.21) implies that the edge density of ¢’ is at most 1/4. On
the other hand, since A\((H],)) = 1/4, the edge density of ¢’ must be at least 1/4. We
conclude that ¢/'(p) = 1/4. Therefore, all the inequalities that were used in (2.21)
must be in fact equations for the homomorphism ¢'. In particular, for every i € [4]
it holds that

¢ (H(l’ﬂi)T - M- (Iixi)]](,) =0

Since the matrices M/ are positive definite, we conclude that for a random homomor-
phism ¢7* drawn the probability distribution P given by ¢, the vector ¢ (x;1;)
has all the coordinates equal to zero with probability one. By ¢7 (x;1;) we mean
the random vector z} € R7 whose j-th coordinate is equal to ¢ applied to the
j-th coordinate of z;I;, where the values of J, ..., J4 are equal to 7, 26, 15, and 15,
respectively.

Therefore, asymptotically almost surely each coordinate of ¢7¢ (x;1;) is equal
to o(1), where ¢2¢ is drawn from the probability distribution PZ¢ (recall that the
probability distributions PZ¢ arise from picking a copy of o; in H,, at random, and
the sequence (P7%) weakly converges to the distribution P7).

The next step of our proof is to deduce some structural properties of the
3-graphs H/ from the fact that the vectors ¢7 (z;1;) have for most of the choices
of the quadruple a, b, c and d all its coordinates equal to o(1). Before doing so, we
need to introduce some additional notation. We say that a pair of 2-sets of vertices
({a,b},{c,d}) is tightly connected in H), if H, contains (at least) one of the following
12 configurations:

e a vertex e and the edges abc,ace,cde o a vertex e and the edges abc, bee, cde
e a vertex e and the edges abd, ade,cde e a vertex e and the edges abd, bde, cde
e a vertex e and the edges abe, ade,cde o a vertex e and the edges abe, ace, cde

e a vertex e and the edges abe,bde,cde o a vertex e and the edges abe, bece, cde

e the edges abc, acd e the edges abc, bed

the edges abd, bed e the edges abd, acd.
Note that we do allow the subhypergraph induced by the vertices a,b,c,d and e
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to contain also some other edges. Also note that the definition is symmetric, i.e.,
({a,b},{c,d}) is tightly connected if and only if ({c,d},{a,b}) is. In other words,
the pair ({a,b}, {c,d}) is tightly connected if there exists a tight path from {a, b} to
{c,d} on at most 5 vertices. Our aim is to show that most of the pairs ({a, b}, {c,d})
in H), are tightly connected.

Claim 1. For every H), the number of pairs ({a,b},{c,d}) that are not tightly-

connected is o(n?).

Fix one pair ({a,b}, {c,d}) that is not tightly-connected and let o be the
subhypergraph induced by a,b,¢,d in H, labelled with a,b,c and d. Since there is
no tight path of length four between the pairs, we may assume by the symmetry
that o is equal to 09,03 or 4.

First, let us consider the case when o = o4. We know that for all but o(n?)
copies of o4 it holds that ¢74 (z414) is an almost zero-vector. It holds that there are
6 (out of 17) o4-flags of size 5 that contain a tight path from a, b to ¢, d. For brevity,
we let the last 6 coordinates of x4 to be their corresponding densities. Also, we
assume that G7* = {G7*,..., G747} so that the j-th coordinate of z; is equal to the
density of G}”. Taking the sum of the 13th and the 15th column of I, we conclude

that asymptotically almost surely

o7 | >0 age G| =o(1),

Goaegs?

where agos < 0 for G € {GT*,...,G11}, i.e., for those G7*s that do not contain
a tight path from {a,b} to {c,d}, and, additionally also for G* € {G73,G73, G717}
In the other cases, ie., for G € {G73,G7i, G4}, the value of ages is positive.
See Appendix A.1 for the entries of the matrix I, as well as the vector corres-
ponding to the sum of the 13th and the 15th column of I;. However, the numbers
¢4 (GTY), ..., 99*(GT4) form a probability distribution so the fact that ({a, b}, {c, d})
is not tightly-connected implies that a, b, ¢, d must induce one of these exceptional
o(n*) copies of oy.

If 0 = 03, an analogous reasoning with a different linear combination of the
13th and 15th column of I3 yields that

asymptotically almost surely. This time, ages is negative for G € {G7?, ..., G{; }U
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{G73,G13,GT2,GT2}, and positive otherwise. Note that Fy*® also has size 17 and
again, there are 6 os-flags of size 5 that contain the desired tight path. As in the
case 0 = o4, we used G73,...,G72 to denote these o3-flags. See Appendix A.1 for
the additional details.

Finally, if ¢ = o9, then there are exactly 38 oo-flags of size 5. Also in this
case, six of them contain a tight path from {a,b} to {¢,d}. We denote these oo-flags
by G33,...,G33. A particular linear combination of 8 columns of I shows that

asymptotically almost surely

a2

where age: > 0 if and only if G € {G33,...,G53}. Note that this linear combina-
tion was found with an assistance of a software for solving linear programs called
QSopt_ex [3]. Analogously to the previous two cases, the exact computation is given
in Appendix A.1. This finishes the proof of Claim 1.

Our final goal is to establish the following claim:

Claim 2. For every H),, there exists an oriented graph O,, on the same set of vertices
such that its arc density is at least 1 — o(1), and if three vertices u,v,w in O,, span

a transitive triangle, then uvow is a non-edge in H),.

Before proving this claim, let us look at how it implies the theorem. A simple
application of Cauchy-Schwarz’s inequality shows that the density of cyclically ori-
ented triangles in any oriented graph is at most 1/4+0(1). Furthermore, the equality
holds if and only if the oriented graph is an almost balanced almost tournament,
i.e., for all but o(n) vertices v both the out-degree and the in-degree of v are equal to
n/2+o(n). Since every three vertices that span an edge in H), either correspond to
a cyclically oriented triangle in O,,, or contain at least one of the o(n?) pairs that do
not span an arc in O,,, we conclude that the density of cyclically oriented triangles
in Oy, is at least 1/4 — o(1) (hence it must be equal to 1/4 £ o(1)). Therefore, O,, is
an almost balanced almost tournament. Moreover, since \((H})) = 1/4, the same
reasoning can be also applied to every subgraph of O,, of size n/2.

Now since every (n/2)-vertex subgraph of O,, is an almost balanced almost
tournament, a classical result of Chung and Graham [16] on quasi-random tourna-
ments yields that the sequence (O, ),en must be (after adding o(n?) arcs to each O,,)
a sequence of quasi-random tournaments (see the property P6 in [16, Theorem 1]).

This immediately concludes the theorem, since the density of any subtournament in
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a sequence of quasi-random tournaments is the same as the corresponding density
in the sequence of the tournaments that are truly random [16].

It only remains to prove Claim 2. For every n € N, we use the tightly-
connected property proved in Claim 1 to define an orientation for almost every pair
of vertices u,v € V(H]). For two vertices u and v, we write u — v to denote the
fact that we put to O,, an arc from u to v. Fix two vertices a,b € V(H],) such that
for all but o(n?) subsets {c,d} C V(H}) the pair ({a, b}, {c,d}) is tightly-connected.
Claim 1 implies that there exists such a choice of ¢ and b. First, we orient a — b.
Next for any {c,d} that forms a tightly-connected pair with {a,b}, we use a tight
path P on at most 5 vertices to define the orientation of {c,d} as follows. Consider
the induced subhypergraph H/ [V (P)]. There is always a unique way how to orient
the pairs of the vertices of H/ [V (P)] that are contained in some of the edges of P
so that a — b, and every edge of P corresponds to a cyclically oriented triangle in
this orientation. In particular, there is a unique orientation of {c,d}, which is the
way how we orient {c,d} in O,,.

Let us first show that the orientation of almost all {¢,d} C V(H),) is well-
defined. For any two tight paths Py, Py from {a,b} to {c,d} on at most 5 vertices,
consider the induced subhypergraph H [V (P;) U V(P)]. It follows that the sub-
hypergraph has at most 6 vertices. Recall that for every induced subhypergraph
Z of H], on at most 7 vertices, there must exist an underlying tournament 77 on
V(Z) such that the edges of Z are in one-to-one correspondence with the cyclically
oriented triangles in 1. Therefore, both paths P; and P, must define the same
orientation of {c,d} in O,,.

The last part of Claim 2 we need to establish is that if three vertices u, v, w
span a transitive triangle in O,,, then wvw is a non-edge in H,,. The argument is
very similar to the one used in the last paragraph. Without loss of generality, the
arcs on {u,v} and {u,w} in O,, are u — v and u — w. Let P,, and P, be tight
paths on at most 5 vertices from {a, b} to {u,v} and {u,w}, respectively. Since the
induced subhypergraph Z := H],[V (P, UV (P,)] has at most 7 vertices, there is
an underlying tournament 77 on V(Z) so that the edges of Z correspond to the
cyclically oriented triangles in Tz. Without loss of generality, a — b in Tz. But

then also u — v and © — w in Tz and hence uvw cannot be an edge of Z. O
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Chapter 3

Monotone subsequences in permutations

The problem we study here is inspired by a well-known result of Erdds and Szek-
eres [25] which states that every permutation on [n] = {1,...,n}, where n >
(k —1)% + 1, contains a monotone subsequence of length k. When n is much larger
than k2, one expects that the number of monotone subsequences of length k is
much more than just one. In fact, a simple double-counting argument implies that
the result of Erdés and Szekeres guarantees that there are at least (Z)/ ((kflk)zﬂ)
such subsequences. A natural question to ask is what is the minimum number of
monotone subsequences of length & inside a permutation of length n.

According to Myers [53], this problem was first posed by Atkinson, Albert
and Holton. In this chapter, we use Fj(7) to denote the number of monotone
subsequences of length k in a permutation 7. Note that Fj(7) = Fj (T_l), where
771 is the reverse permutation of 7. The minimum of Fj(7) over all permutations
T € Sy is denoted by Fj(n). For brevity, we also define f(7) to denote the density
of monotone subsequences of length k in 7, i.e., fix(7) := Fi(7)/(}).

Myers [53] described a permutation 7;(n) € S,, which gives an upper bound
on Fy(n) of the form (k — 1)!7% . () + O(n*~!). It consists of k — 1 increasing
sequences Ay, As, ..., Ax_1 whose sizes differ by at most one, and, every monotone
subsequence of length k is entirely contained in A; for some i € [k — 1]. In other

words, with a; = [jn/k], an example of such a permutation is

(n)=( ag—o+1, aro2+2, ..., n—1, n,
ag—3+1, ap-3+2, ..., ap—2—1, a2,
1, 2, Ceey CL1—1, ai )

See Figure 3 for 74(15).
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74(15) 7, H(15) T3(15)

Figure 3.1: Permutation 74(15), its permutation graph 73(15), the reverse of 74(15),
and its permutation graph 73(15).

Let r =n (mod k—1), where 0 < r < k—1. It follows that value of Fj(7x(n))

is equal to

(Gl P G _(zl))kl Lo (w).

Myers [53] proved that F3(n) = F3(73(n)) and he described all permutations 7 € S,
where F3(7) = F3(n). He conjectured that the upper bound given by Fy(7%(n))
actually holds for every k£ € N.

Conjecture 3.1 (Myers [53]). Let n and k be positive integers. In any permutation

T € Sy, there are at least Fy,(1(n)) monotone subsequences of length k.

The main result of this chapter is to show that the conjecture is true for
k =5 and k = 6, when n is sufficiently large. In fact, for these values of k and n,
we also determine a full description of the set of extremal permutations 7 € 5, i.e.,
T € Sy, such that Fi (1) = Fi(n) = Fi(1r(n)).

As we already mentioned, Myers showed the conjecture is true for k = 3,
which is actually a consequence of Goodman’s formula. In [8], the conjecture was
verified for k¥ = 4 and n sufficiently large. In Section 3.2, we present a slightly

[43

different proof of this result as a “warm-up” for the next two cases. Very recently,
Samotij and Sudakov [68] confirmed the conjecture if n < k2 4 ck®/2/ log k for some
absolute positive constant ¢, provided k is sufficiently large.

Subject to the additional constraint that all the monotone subsequences of
length k are either only increasing or only decreasing (and also n > (k—1)(2k — 3)),
Myers proved that every such a permutation contains at least the conjectured num-
ber of monotone subsequences of length k. He also gave the list Wi (n) of all such per-
mutations 7 € S, that satisfy the additional constraint and have Fj(7) = Fy(m(n)).

Every permutation from Wy(n) can be decomposed into k disjoint monotone subse-
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quences A1, ..., Ap_1 that are either all increasing or all decreasing, and their sizes
differ by at most one. Moreover, every monotone subsequence of length k is a sub-
sequence of A; for some i € [k—1]. These permutations look very similar to 74 (n) or
T 1(n) and the only parts where they can vary are at the first / last £ — 1 elements
of each block. It turns out that [Wy(n)| has size 2- (, mf(;(i_l)) -C(k — 1)%=4, where
C(k) is the k" Catalan number. The precise description of the sets Wj(n) can be
found in [53].

Theorem 3.2 ([53, Theorem 9]). Let n > (k — 1)(2k — 3). If a permutation
T € S, contains no increasing subsequence of length k, then Fi(1) > Fi(mx(n)).
Furthermore, there are exactly (nmf(;(i_l)) -C(k — 1)%=4 permutations T such that
Fy(1) = Fi(11(n)). We denote the set of all such extremal permutations by W, (n).

Symmetrically, if a permutation T € S, contains no decreasing subsequence
of length k, then Fy(1) > Fy(1k(n)). Furthermore, there are exactly (nmfd_(llc—l)) .
C(k — 1)2*=% permutations T such that Fy(T) = Fj(1(n)). We denote the set of all

such extremal permutations by W,j (n).

Note that it immediately follows that Wy (n) = W, (n) UW, (n).

3.1 Flag algebra setting

Instead of working directly with permutations, we formulate the problem in the
language of permutation graphs and tweak the flag algebra framework for this par-
ticular setting. The permutation graph of a permutation = € S, is a graph G with
the vertex set [n] and two vertices 7, j € [n] form an edge if and only if the pair {7, j}
is an inversion in 7. For a permutation graph G and an integer k, we define Fj(G)
to denote the number of induced subgraphs of size k& that are either complete, or
empty, and we let f(G) := Fr(G)/(}).

For an integer k, we let K} to be the k-vertex complete graph. Since our
problem is symmetric under taking the graph complement, we apply flag algebras in
the complement-blind setting, i.e., we do not distinguish between a graph G and its
complement. Formally, we say that two graphs G; and G4 are blindly isomorphic,
if 1 is isomorphic either to G, or to the complement of G5. In particular, for a
permutation graph G, the value of Fj(G) is exactly the number of k-vertex subgraphs
blindly isomorphic to Kj.

Let F be the set of all finite permutation graphs up to a blind isomorphism,
and let Fy C F be the set of permutation graphs of order exactly ¢. Note that
F3=2,F4=6,F5 =17, F¢ =71, F7 = 388 and Fg = 2852.
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d d d

a Cc a c a C

Figure 3.2: The possible extensions of the triangle abc such that a < b < ¢ by a
vertex d to a permutation graph that contains the edge bd.

Finally, we want to exploit the fact that the vertex set of a permutation
graph comes with a natural linear order, which gives an additional restriction on
possibilities how to extend a fixed small subgraph in a permutation graph to a larger
one. Therefore, we do a more careful setting of flag algebras compared to the one
in Chapter 1. Let us describe the differences in more detail.

For the first step, we follow the standard approach and construct an algebra
A, which is the set RF factored by the space of all linear combinations of the form
H— ZH,EFv(H)+1 p(H,H')- H'. The space A has naturally defined linear operations
of an addition, and we follow Chapter 1 in order to define also a multiplication on
the elements of A.

Our next task is to define algebras A, where o is a permutation graph with
a fixed labelling of its vertex set. Again, the labelled graph o is called a type, any
supergraph of ¢ that preserves the labelling of the vertices of ¢ is called a o-flag, and
the labelled part of a o-flag is called the root. At this point, we are going to differ
from the Chapter 1 so before proceeding further, let us demonstrate our approach
on a simple example.

Suppose abc is a triangle in an n-vertex permutation graph G, such that
a < b < c. That means, all three pairs {a, b}, {b, c} and {a,c} are inversions in the
permutation 7. Now observe that for every point d € [n] \ {a,b,c}, if {b,d} is an
inversion in 7, then {a, d} or {c, d} has to be an inversion as well. Translated back to
the graph language, there is no vertex d in G, that would extend the triangle abc to
a 4-vertex graph with the edge set {ab, be, ac, bd}, see Figure 3.1. Note that the other
two options of adding a vertex of degree 1 to abe, i.e., the edge sets {ab, bc, ac, ad}
and {ab,bc, ac, cd}, can be realized. On the other hand, if we consider a triangle
abc with b < a < ¢, there might be a vertex d such that the 4-vertex subgraph
induced by {a,b, c,d} has the edge set {ab, be,ac,bd}. The non-realizable extension
for this case is {ab, bc, ac,ad}. Our plan is to construct the algebra A7, for o being

a triangle, in such a way that it will be generated by a set of o-flags F7 that in
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particular contains only two o-flags with 4 vertices and 4 edges.

Let us now move to the general definition of A?. Fix o a type and let
T1,T2, .-, Tt € Sy(s) be all the permutations such that their permutation graph is
blindly isomorphic to o. We denote the set {1,...,7} by T'(¢). For each 7 € T'(0),
we choose a bijection b, from the points of 7 to the vertices of o that maps the
permutation graph of 7 to o with respect to blind isomorphism. For example, if o
is a triangle abc, we have 71 = 321 and ™ = 123. If we set b;, := by, := abc, by
which we mean the function that maps 1 to a, 2 to b and 3 to ¢, then we infer that
in both cases we cannot realize any o-flag that contains a vertex adjacent with b
but not adjacent with a and c.

In general, let B(7) be the set of all blind isomorphisms b : V(G,) — V(o).
Note that B(7) = Aut(c). For every 7 € T(0) and b € B(7), we define F™° as the
set of all finite o-flags that satisfy the following:

a) they can be realized as permutation graphs with the root o,

b) the vertices of the root induce 7 in at least one of the choices of an underlying

permutation, and
c¢) the bijection between the root and the points of 7 is equal to b.

We set F7 := UTGT(U) FTbr. Note that if o has a non-trivial automorphism group,
we had some freedom how to choose the bijections (b;);cr(s). For each o, the
particular choice of (b;) was made (with a computer assistance) in order to make the
sets F? as minimal as possible. Next, for any blind isomorphism b : V/(G,) — V(0),
we define an injective mapping z,; from F™ to F7 as the relabelling function of
the vertices of the root of H € F7b using b~ 0 b,.

Now, we again follow the scheme described in Chapter 1 and construct the
algebras A” by factoring the space RF? with all linear combinations of the form
H — ZH'Efg(H)H p(H,H') - H', and equip A° with a multiplication. Following the
same lines, we also construct algebras A™" for every 7 € T'(c) and b € B(7).

The algebras A% and A™° are closely related. Recall the injective mapping
Zrp Fmb — Fo. We slightly abuse the notation and will use z,;, both for the
mapping from F™ to F? and its unique extension to a linear operator from A" to

A?. The operator z;; has the following property for every Hi, Hy € F 7:b;
HY x Hf = z.p(Hi x Ho)+ Y p(H{,H§;H°)-H?,  (3.3)

Ho¢
F\ers (F7)
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where HY = z,,(H1), H] = 27 3(H2) and { = v(H;) + v(Hz) — v(o). We also define
the “inverse” operator Zr; from A” to AP as the unique linear extension of the

following map of the basis of A“:
o z;;(H”) for H € zp, (F7), and
o 0 for H? € F7\ 20y (F).

Now consider an infinite sequence (7, ),en of permutations of increasing size.
We say that the sequence is convergent if for every fixed permutation 7, the probabil-
ities that a random |7| points in 7, induce the subpermutation equal to 7 has a limit
as n tends to infinity. We denote this limit probability by ¢(7, (7,)). In particular,
for every convergent sequence of permutations (7, )nen, the probabilities p(H, G,)
have a limit for every H € F. As in Chapter 1, we know that every infinite sequence
of permutations has a convergent subsequence. Fix a convergent increasing sequence
(Tn)nen of permutations. For every H € F, we set ¢(H) := lim,,_,oo p(H, Gr,)) and
linearly extend ¢ to A. The obtained mapping ¢ is a homomorphism from A to R
such that ¢(H) > 0 for every H € F. Let Hom™* (A, R) be the set of all homomor-
phisms 1) from the algebra A to R such that ¢(H) > 0 for every H € F.

Fix a convergent sequence of permutations (7, )nen and let ¢ € Hom™ (A, R)
be the corresponding homomorphism from A4 to R. Fix a type o. Recall that T'(o)
is the set of all permutations 7 € S, with the permutation graph G blindly
isomorphic to o, and B(7) is the set of bijections between the vertices of o and
the points of 7 that preserve the blind isomorphism between o and G,. For an
embedding 6 of a permutation T € T(0) in 7, we define G%_to be the permutation
graph of 7, rooted on the copy of o that corresponds to 6. Furthermore, let b € B(7)
be the bijection between the points of # and the vertices of the copy of o. For every
n € N and H™ € F7°, we define pf (H™*) = p(H™,G? ). Picking such 6 with
a fixed bijection b in 7, at random gives rise to a probability distribution PL” on
mappings from A™ to R, and, via the operator Zrp also on mappings from A7 to
R.

Since the sequence (7, )nen is convergent, the sequence of probability distri-
butions P%® on mappings from A™° to R also converge. As in Chapter 1, this follows
from [59, Theorems 3.12 and 3.13]. We denote the limit probability distribution by
P7P. Furthermore, the relation (3.3) implies that for the labelled permutation
graph o of the permutation 7, any mapping ¢™° (Z75(-)), where ¢™° is taken from
the support of the distribution P™P, is a homomorphism from A% to R such that
¢?(H?) > 0 for all H” € F? [59, Proof of Theorem 3.5].
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The remaining bit we need to introduce is the averaging operator -], : A7 —
A. Again, it is an alagoue of the averaging operator from Chapter 1. The operator

is the linear extension of a mapping defined on the elements of H? € F7 by
HHUHU = pg[ ’ Hm?

where H? is the (unlabelled) permutation graph from F corresponding to H?, and
p%; is probability that a random injective mapping from V(o) to V(H 0y is an em-
bedding of o in H 0 yielding a o-flag blindly isomorphic to H?. However, the cor-
responding relation between the homomorphism ¢ and the homomorphisms ¢™?,

where 7 € T'(0) and b € B(7), is slightly different from the analogue in Chapter 1.

Specifically,
o o o (T> (Wn)) b (— o 7,b
VHT € A7, 6 ([H o) = 6([o]s) - > Tt [ 70 (25 (H) dPT.
<1t ¢(0)| B(7)] /

Therefore, if for some fixed A? € A and every 7 € T'(0),b € B(7) we have
¢7 (775 (A7) 2 0

almost surely, then ¢ ([A?],) > 0. In particular, the analogue of the inequality (1.2),

o ([(a?] ) =o.

ie.,

holds for every A € A°.

3.2 Monotone subsequences of length four

In this section, we reprove the main result of [8]. Our proof essentially follows the

same lines as in [8]. There are the following two differences between the proofs:

e We use the flag algebra setup presented in the previous section, which is

a slightly different than the one used in [8].

e Our flag algebra proof provides a somewhat better control on the substructures
appearing in (almost) extremal configurations, which helps to simplify our

stability arguments presented in Section 3.3.

In Section 3.5 and Section 3.6, we use the same approach to resolve also the question

of minimizing monotone subsequences of length 5 and 6.
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Recall we use the flag algebra framework in the complement-blind way. In
particular, ¢(K4) is the sum of the density of K4 and the density of the com-
plement of K4. Let EXT‘% be the set of all 7-vertex subgraphs up to a blind

isomorphism that have a positive density in T5(n), or in T3(n). It follows that
EXT? = {Hy,H,,...,Hg}. The set EXT# is depicted in Figure 3.3. Next, let

e S AN AN AR A6

H, H, H,

Figure 3.3: The set of graphs EXT‘%.

5? = F7\ EXT‘%. We are now ready to present the main theorem of this section.

Theorem 3.4. There exists a positive rational o such that the following is true. If
(7)nen is a convergent sequence of permutations and ¢ € Hom™ (A, R) is its limit,
then

Theorem 3.4 immediately implies the following two corollaries.

Corollary 3.5. For every positive easym there exists nasym € N such that the
following is true. If G is a permutation graph on n > nasym vertices, then fy(G) >
(1/27 —¢).

Corollary 3.6. For every positive econr there exist a positive dconr and NncoNr €
N such that the following is true. If G is a permutation graph onn > nconr vertices
that satisfies f4(G) < (1/27 + dconr), then G contains at most EcONF - (771) mduced
copies of F and at most econF - (’71) induced copies of F, where F € 5?.

Proof of Theorem 3.4. We use the flag algebra framework presented in Section 3.1
in the following way. Let o7 is the 3-vertex type with no edges and o9 is the 3-vertex
type with the edge bc. The types o1 and o2 are depicted in Figure 3.4.

Next, the set T'(01) contains two permutations 7 ; = 123 and 712 = 321.
We set by, , := by, := abc. It follows that |F7'| =54 and |F7'| = 5388.

Analogously, the set T'(02) contains the remaining four permutations from
S3. Specifically, T'(o2) contains the permutations 71 = 132, 72 = 231, T3 = 231
and 794 = 312. We set by, , := br,, := abc and by, , := by, ; := bca. It follows that
|F5?| =71 and |F7?| = 9055.
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Figure 3.4: The types o1 and o2 used in the proof of Theorem 3.4.

Using the method from Section 1.2, an instance of the SDP program was
used to find two symmetric positive semidefinite matrices M7 and M, with rational
entries such that for every ¢ € Hom™ (A, R) we have

1
o ([[951TM1331]]01 + [[$2TM2362]]02) <o | Ks— o Ta Z H],
HeE?

where

e the vector z; € (ngl)|f;1| is the vector whose j-th coordinate is equal to

the j-th element of the canonical base of RF; ",

e the vector x9 € (RF;Q)’]E?‘ is the vector whose j-th coordinate is equal to

the j-th element of the canonical base of RF;?, and
o o =2629661/9106944 ~ 0.28875.
The left-hand side of the inequality above is non-negative by (1.2). O

As in Chapter 2, the proof was found with an assistance of computer pro-
grams CSDP [11], SDPA [74] and SAGE [71]. We also used a software package
nauty [52] for graph isomorphism tests performed while the appropriate sets of flags
were being generated.

The numerical values of the entries of M7 and M, can be downloaded from
the web page http://honza.ucw.cz/phd/. In fact, the 54 x 54 matrix M; is not
stored directly, but as a pair of matrices (D1, M7) such that N; is a 52 x 52 positive
definite matrix and My = Dy - Ny - (Dl)T. Analogously, the 71 x 71 matix My is
stored as a pair of matrices (Dg, My) such that N is a 70 x 70 positive definite
matrix and My = Dy - N - (DQ)T.

44



Similarly to the flag algebra computations presented in Chapter 2, we created
a sage script called “thm_3_4-verify.sage”, which can be used for an independent ver-
ification of the computations in Theorem 3.4. The script is also available on the web

page mentioned above.

3.3 Stability of almost extremal configurations

In this section, we show that the following two properties that are satisfied by (at this
moment only conjectured) extremal graphs — Turdn graph and its complement —
force every almost extremal graph to be close in the edit distance to one of the
conjectured extremal graphs.

We say that a graph G satisfies Property A(k), if for every k-vertex subgraph
H of G that is either complete or empty, and every vertex v € V(G') \ V(H), we
have either V(H) C N(v), or V(H) N N(v) = (). See Figure 3.5 for an illustration
of Property A(5). Next, we say that a graph G satisfies Property B, if G does not

4

U (% ¢ ¢ U v

¢ o

Figure 3.5: The possible extensions of H in Property A(5).

contain a copy of the graph E, and E,, where Ej is the paw graph, i.e., the 4-vertex
graph containing a triangle and one pendant edge. The graph FE, is depicted in
Figure 3.6.

Figure 3.6: The graph F4 from Property B.

We start with the following lemma that helps us to describe the global struc-
ture of almost extremal configurations from the two (local) properties described in

the previous paragraph.
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Lemma 3.7. For a fized integer k > 3, let G be a graph and H a k-vertex subgraph
of G that is a clique or an independent set. If G satisfies Property A (k) and Property
B, then G is either a disjoint union of at most k — 1 cliques, or the complement,

i.e, a complete r-partite graph for some r < k.

Proof. Without loss of generality, the graph H is a clique on k vertices. Let
hi,ha, ..., hi be the vertices of H. Property A(k) implies that every vertex u €
N(h1)\V(H) extends H to a clique on k + 1 vertices. Therefore, N[h;] = Nh;] for
every 1 < i,7 < k. Furthermore, any two neighbors u,v € N(h;) are connected by
an edge, otherwise the graph induced by (V(H) \ {hi}) U {u,v} violates Property
A(k). Therefore, the vertices N[h1] form a clique and every vertex z € V(G)\ N[hi]
has its neighborhood N(z) disjoint from N[h].

If N[h1] = V(G), we are done. Otherwise, we claim that the graph G[V(G)\
N[hy]] is a disjoint union of cliques. Indeed, suppose there exist distinct vertices
z,y,z € V(G) \ N[hi] such that {z,y} C N(z) and zy ¢ E(G). However, the
subgraph {hi,x,vy, 2z} is isomorphic to the graph E4, a contradiction.

So the whole graph G is a disjoint collection of cliques and we only need to
show that the number of components must be less than k. Suppose for a contra-
diction the number of components of G is at least k. However, any independent
set of size k containing h; is extended by the vertex ho to a subgraph that violates
Property A(k). O

Our next tool is the Infinite Removal Lemma of Alon and Shapira [1].

Lemma 3.8 (Infinite Removal Lemma [1]). For any (possibly infinite) family of
graphs H and err, > 0, there exists orr, > 0 such that if a graph G on n vertices
contains at most OR, - (U(T;I)) induced copies of H for every graph H in H, then it is
possible to make G induced H-free by adding and/or deleting at most egy, - (g) edges.

We are ready to present the stability result for the function Fy(G).

Theorem 3.9. For every esta > 0 there exist dsta > 0 and ngTap such that
the following is true. If G is a permutation graph on ngtap > ng vertices with
fa(G) < 2—17 + dsTAB, then G is isomorphic to either Ts(n) or T3(n) after adding

and/or deleting at most esTAB - (g) edges.

Note that we do not optimize the proof for the best possible values of dsTan

and ngTap but rather try to keep our computations as simple as possible.

Proof. Without loss of generality, esrap < 1/2. Fix C a sufficiently large constant
(C > 25 x 3% = 675 will suffice).
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Let X be the set of all non-permutation graphs, i.e.,
X :={G : G is a graph such that G ¢ F and G ¢ F},

and gy, the value from Infinite Removal Lemma applied for egry, := (ESTAB)2 /C
and the family X U$§l . Next, let dconr and nconr be the values from Corollary 3.6
applied for econr := Orp. Finally, let nagym be the value from Corollary 3.5 for
easyM = (estap)’/C. We set dstap := min{(estan)’ /C,dconr} and nsrap :=
max{C/esTAB, N"CONF, 2 - DASYM }-

Let G be a given graph on n vertices satisfying the assumptions of the the-
orem. Corollary 3.6 and Infinite Removal Lemma imply that we can change at
most egr, - (3) < 3 - estas - (5) edges and obtain a permutation graph G’ that
does not contain neither a copy of a graph E, nor a copy of a graph E, where
E € &. In particular, G’ satisfies Property A(4) and Property B. Furthermore,
f4(G") <1/27 + ésTaB + err- Lemma 3.7 implies we can partition G’ into at most
3 parts such that either every part is a clique and there are no edges between the
parts, or every part is an independent set and all pairs of vertices from different
parts are connected by an edge.

Without loss of generality, G’ is a disjoint union of at most 3 cliques. We
claim that every clique has size at most (1/3 + esta/5) - n. This immediately
concludes the theorem since the number of cliques must be 3, and in order to balance
the sizes of the cliques we need to add/remove edges incident to at most % -ESTAB "N
vertices, which means changing at most % -ESTAB * (g) edges. Therefore, it is enough
to show the claim.

Let v := egTap/5. Suppose for a contradiction G’ contains a clique of size
more than (1/3 + ) - n. Let Hy := G'. For each i € [y-n/3], let v; be an
arbitrary vertex from a maximum clique inside H; 1, and let H; := H; 1 — v;. Let
Z = {v1,v2,...,0y.p3}. It follows that every vertex v € Z is contained in at least
((1/27+§7/3)'n) copies of Ky that are disjoint from Z \ {v}. Since ngrap > 12/ =

60/esTAB, We have

(R (o3) 2 () 5

Furthermore,
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Our aim is to show that fi(H;) — fa(Hi+1) > v/(3-n). Indeed, we have

fa(H;) — fa(Hip1) > (5 +3) % + falHipr) - (U(H}'L)_l) — fa(His1) - (v(Hz-))

()
() = Sl (5TY) 4 (5 + § - i)
S ;
4
LA (v 2P\ 4 (v
n 6 27 n 6 27
e
>

Since n — v -n/3 > n/2 > nasym, Corollary 3.5 implies that f4 (H,Y,n/g) >
1/27 — (estaB)?/C. However,

1 (estaB)? / v 1  (estaB)? | (estaB)?
— — > = - > —
st g 2l = falHo) > falHymys) + o0z = 5 C  2x9

which contradicts the choice of C. O

3.4 Extremal configurations

For a fixed integer k, we say a permutation 7 € S,, is k-extremal if F(1) = Fi(n).
Analogously, we say an n-vertex permutation graph G is k-extremal if Fi(G) =
Fj(n). In this section, we present a method for obtaining the exact description of
k-extremal permutations for k£ > 4. Using the stability result from the previous
section and the asymptotic result given by Theorem 3.4, we apply this method to
the case k = 4. The same analysis will be then used for the cases k =5 and k =6
in Section 3.5 and Section 3.6, respectively.

We start with the following definition. We call u € V(G) a clone of v € V(G)
if N(u) = N(v). In particular, uv is not an edge of G. The next simple proposition
shows that if we add a clone of a vertex x in a permutation graph G, then the new

graph G’ is still a permutation graph.

Proposition 3.10. Let G be a permutation graph of order n. If we add a clone x’
of some x € V(Q) to form a new graph G' of order n + 1, i.e., Ngv(2') = Ng(x),

then G’ is still a permutation graph.

Proof. The graph G comes from some permutation 7 € S,,. Let k& be the number in

[n] that corresponds to x, then we can construct a new permutation 7 € S, as
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follows:

7(7) if i <k and 7(i) < 7(k)

T(i)+1 if i <k and 7(i) > 7(k)
(@) =< 1(k)+1 ifi=k+1

(i —1) if i >kand 7(i — 1) < 7(k)

T(i—1)+1 ifi>kand 7(: — 1) > 7(k).

The permutation graph of 7/ is G’ with k+1 corresponding to the new vertex x’. [J

For an integer k, a graph G and a vertex v € V(G), let I}}(G) be the number
of independent sets of size k that contain u. Analogously, let J;!(G) be the number
of cliques of size k that contain u. We let F}*(G) := I[}'(G) + J}/(G) and f(G) =
FAHG)/ (Zj) An immediate corollary of the previous proposition is that in a k-
extremal graph G, every two vertices contributes to Fj(G) by roughly the same

amount.

Corollary 3.11. Fiz an integer k and let G be a k-extremal graph of order n. For

every two vertices u and v, we have |F}*(G) — F(G)| < (Z:g) Therefore,

fu(G) = & < F1(G) < @) +

3|

for every u € V(G).

Proof. Without loss of generality, F{!(G) > FY(G). Let G’ be the n-vertex permu-
tation graph obtained from G by removing v and adding a clone of v. It follows
that

0< FE) - F(G) < @) - @) + ().

O]

Let E7 be the 7-vertex graph obtained by gluing three paths = — y; — 2,
1 =1,2,3, at the common vertex x, see Figure 3.7. We continue our exposition by
observing that there is no permutation 7 € Sy such that the permutation graph of

7 would be isomorphic to E7.
Observation 3.12. The graph E7 is not a permutation graph.

Proof. Suppose there is a permutation 7p € S7 such that its permutation graph is
isomorphic to E7. Without loss of generality, y; < y2 < ys3. Since the only neighbor
of z9 is yg, it follows that y; < 22 < y3 and 7(y1) < 7(22) < 7(y3). However,
the points {y1,y2,ys} form an independent set in E7 and they are all connected
to the point z, hence either x > y; and 7(x) < 7(y;) for every i € [3], or z < y;
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Y1 z1

z3

Figure 3.7: The graph E7.

and 7(x) > 7(y;) for every i € [3]. In the first case, we conclude that x > z3 and
T(z) < 7(22). In the latter case < z9 and 7(x) > 7(22), a contradiction.
Alternatively, it is possible to check all the permutation graphs on 7 vertices,
i.e., the set F7, and conclude that it does not contain neither Er, nor the complement
of F. ]

Now let us state a simple auxiliary statement.

Observation 3.13. Fix an integer k > 4. The minimum value of the polynomial
p(z,y) = 2"yl (k—1)1-(1—2)-(1—y) on [0,1]? is equal to 1, and p(zq,yo) = 1
if and only if {xo,yo} = {0,1}. Furthermore, if the value of p(x1,y1) is close to 1,
then {x1,y1} is close {0,1}.

Proof. If © € {0,1} is fixed, then p(x,y) is clearly minimized when y = 1 — =z,
and symmetrically for y € {0,1}. Now suppose there are zg,yp € (0,1) such that
%(wo,yo) =0 and %(xo, yo) = 0. It follows that

(k=1)- (+"2 = y*2) = (@ = y) - (= D)},

and hence

E
w

b oyF T = (k= 2)) .

ﬂ.
[e=]

However, since both x and y are less than one and k > 4, the sum on the left-hand
side is equal to (k — 2) summands, each of them less than one; a contradiction.
Since p(z,y) is continuous, the second part of the statement follows from the

compactness of [0, 1]2. O

The main result of this section is the following theorem.
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Theorem 3.14. For every integer k > 4 there exist a positive € and an integer ng
such that the following is true. If G is a k-extremal permutation graph on n > ng
vertices that can be transformed to Ty_1(n) or Tp_1(n) by adding and/or remov-
g at most e(g) edges, then the vertices of G can be partitioned into either k — 1

independent sets, or k — 1 cliques.

Note that combining Theorems 3.9 and 3.14 yields that every extremal per-
mutation 7 € Sy, where n is sufficiently large, does not contain either any increasing
subsequence of length 4, or any decreasing subsequence of length 4. Therefore, using
Theorem 3.2 we conclude that 7 € Wa(n).

Proof of Theorem 3.14. Let v := 1/(100 - k*) be an auxiliary constant and fix the

choice of & small enough so that any solution (x,y) of the polynomial
pla,y) ="y T (k=) (1 2) - (1-y)

that has value at most 1 4+ 20k?¥ - £1/0 satisfy either z € [0,] and y € [1 —~, 1],
orz € [l —~,1] and y € [0,7]. Such a choice of € > 0 exists by Observation 3.13.
Furthermore, we also assume that ¢ < 1/k'%% Finally, let ng := k2 /e.

Without loss of generality, we can modify s(g) pairs in (V(QG)) to obtain

Ti—1(n). Our aim is to show that G can be partitioned into k — 1 cliques. Since G
is close to T_1(n), it follows that
1 k2 1 k?

Ve R R AT TR B

and, by Corollary 3.11,

1

m—k2-6<f,§(G)<

T =Rl (3.15)
for every v € V(G).

Let C' be a graph on n vertices that is a union of k£ — 1 disjoint cliques
A1, Ay, ..., Ak_1 such that the size of the symmetric difference E(C)AE(G) is as
small as possible. In particular, |E(C)AE(G)| < e(3). Furthermore, every clique
A;, where i € [k — 1], has to have size between <ﬁ - 25) -n and (ﬁ + 26) ‘M.

Fix a vertex v € V(G). We claim that there are at most v - n edges e in
E(C)AE(G) such that v is one of the endpoints of e. We call such edges v-wrong.

Consider the partition of the set V(G) into parts Py, Ps, ..., Py_1 according
to the cliques Ay, Ag,..., A1 of C, and let d} := e(v, P;)/|P;|. Furthermore, let

v =10 - EF*1. /6. By our choice of ¢, it follows that v > ~'. First, suppose for
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a contradiction there exist 3 distinct numbers 7,¢',4” € [k — 1] such that for every

j € {i,i',i"}, we have % <dj<1-— %, That means there are at least

’Y’6 1 0 6 ’Y’G 1 6 6
R o . > (L o . >c.
(3) G-%) 2 (3) (e ) oz

choices of y;,z; € P;, yir,zy € Py, and y,zy» € Py such that vy; € E(G) and
vz; ¢ E(G) for every j € {i,i,i"}. However, at most ¢ - (3) (”;2) < ¢ -nb such
choices of y;, yir, yir, i, 2i7, zi can contain an edge from E(C)AE(G). Therefore, G
contains a copy of E7, which contradicts Observation 3.12.

Without loss of generality, let df € [0, 1]\ (%, 1— %’) for every i € [k —3]. If
there is an ¢ € [k — 3] such that df > 1 — % , then dj <+ for every j € [k —1]\ {i}.
Indeed, otherwise fy(G) is at least

'7/ / 1 1 2
(1_54‘7)’ m_2k‘5 _SZW‘F/{? g,

which contradicts (3.15). Therefore, we conclude that v € P; (otherwise moving v
to A; would decrease |E(G)AE(C)|), and hence the number of v-wrong edges is at
most v -n <y -n.

Now suppose d} < ~'/2 for every i € [k — 3]. It follows that f{(G) is at least

(k—1)!-<U€_11)H—2k-g>.(1—’;/>k_3-(1— b)) (L—dj )+

((k_ll)k—l —2k- 5) - ( %—2)k_1 + ((k:—ll)’f—l — 9%k . 5) ( %_1)'“‘1 e
(3.16)

where the first summand corresponds to the independent sets of size k that contain
v and one other vertex from each P;, the next two summands correspond to the
cliques of size k with all the other k£ — 1 vertices inside the part Py_o or Pr_1, and
finally the summand —e comes from an upper bound for the (k—1)-sets that contain
at least one of the edges from E(G)AE(C). It follows that (3.16) is at least

Py i) (=3 (k=1 p(d i)

(=1 Sl > e (TR,

However, f{(G) — m < 2Kk? -, so our choice of the parameters imply that
either dj_, € [0,7] and d}_, € [1 —~,1], or d}_, € [1 —~,1] and d}_, € [0,7].
In the first case, v must be in P;_; (otherwise moving v to Ai_; would decrease

|E(G)AE(C)|), symmetrically in the other case v € P;_o. Furthermore, the number
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of v-wrong edges is at most v - n.
Suppose there are two vertices u € P; and v € P; for some i € [k — 1] so that
uv ¢ E(G). The number of independent sets of size k in G that contain both u and

v is then at least

((1 —29) - 1k__21€ -n>k2 _ (kﬁ2> > ((k—ll)k—? - 5k-’y> R (3.17)

On the other hand, the number of cliques of size k in G + uv that contain both u

and v is at most

(/?—2152) i (;Z —n2) - ((k — 11):? (/i ot 7) -t (3.18)

By the choice of «, the value of (3.17) - (3.18) is positive. But that means Fj(G +
wv) < Fi(G), a contradiction. We conclude that for every i € [k — 1], the set of

vertices P; form a clique in G. O

3.5 Monotone subsequences of length five

e A AN AN AR A6

H, , H,

AR,

H9 HIO Hll

Figure 3.8: The set of graphs EXT‘;’.

In this section, we follow the approach presented in Sections 3.2, 3.3 and 3.4 in order
to fully characterize all sufficiently large 5-extremal permutations.

Let EXT? be the set of all 7-vertex subgraphs up to a blind isomorphism
that have a positive density in the conjectured extremal construction. It follows that
EXTS = {Hy, Hy, ..., Hy1} = EXT3 U {Hyg, Hig, H1}. The set EXT? is depicted in
Figure 3.8. Let £2 := F;\ EXT2. The main theorem of this section is the following.

Theorem 3.19. There exists a positive rational o such that the following is true.

If () nen is a convergent sequence of permutations and ¢ € Hom™ (A, R) is its limit,
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then

¢|Ks—a- > H|> 2;—6.

Hegs
Proof. As in the proof of Theorem 3.4, we let o1 to be the 3-vertex type with no
edges and o9 the 3-vertex type with the edge be. Additionally, let o3 and o4 be two

specific types of order 5 given in Figure 3.9.
Again, we set b, | := by, := abe, br,, = br,, 1= abc, and b, , = by, ; =
bea. The set T'(03) contains 16 permutations 73 ;. For each j € [16], we define by, ;

in the following way:
o for 731 = 13542, set b, , := abcde,

for 739 = 34251, set by, , = cdbea,

o for 739 = 14352, set b, , := acdbe, for 7310 = 41325, set by, ,, = ebdca,

o for 733 = 15243, set by, , := aebdc, for 7311 = 42135, set by, ,, = edcba,

e for 734 = 15324, set b, , := aedcb,

for 7312 = 42351, set by, ,, = bedea,

o for 735 = 24315, set b, ; := bedea,

for 7313 = 51342, set br;,, = aedc,
o for 735 = 24531, set b, o := edcba, e for 7314 = 51423, set b, ,, = aebdc,
o for 737 = 25341, set b, , := ebdca, e for 7315 = 52314, set b, ,; = acdbe,

o for 735 = 32415, set b, 4 := cdbea, o for 7316 = 53124, set b, = abcde.
It holds that |F¢*| = 26 and |F7*| = 574. Similarly, the set T'(c4) has size 12. For

each j € [12], we set by, ; as follows:
o for 741 = 14532, set b, , := abcde, o for 747 = 34215, set b, , := cbdea,

for 742 = 15342, set b, , := adbce,

for 74 8 = 42315, set by, , := dcbea,

for 74 3 = 15423, set by, ; := aedbc, for 749 = 43125, set b, , := edcba,

for 74 4 = 23541, set by, , := edcba, e for 7410 = 51243, set by, ,, := aedbc,

for 745 = 24351, set by, := dcbea, e for 7411 = 51324, set by, ,, := adbee,

o for 746 = 32451, set by,  := cbdea, o for 7419 = 52134, set b, ,, := abcde.
In this case, |F¢*| = 28 and |F7*| = 624.
Based on the semidefinite method presented in Section 1.2, an instance
of the SDP was used to find 4 symmetric positive semidefinite matrices My, My, M3
and M, with rational entries such that for every ¢ € Hom™ (A, R) we have

4
1
¢<i§;[[x?Mixi]]m>s¢ Ky— gz —a- y_ HJ.

He&l

where
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a b a b
L 2 *
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. 2
L 2 L 2 > —
b ¢ b ¢ ¢ d ¢ d
01 02 03 (o]

Figure 3.9: The types o1 through o4 used in the proof of Theorem 3.19.

e the vector z; € (Rf§1)|f;1| is the vector whose j-th coordinate is equal to

the j-th element of the canonical base of RF¢ !,

e the vector zo € (RF§2)|f52‘ is the vector whose j-th coordinate is equal to
the j-th element of the canonical base of RFy?,

e the vector x3 € (R]:g3)|fg3‘ is the vector whose j-th coordinate is equal to

the j-th element of the canonical base of RFg?,

e the vector z4 € (RFg 4)|]E 5"l is the vector whose j-th coordinate is equal to

the j-th element of the canonical base of RFZ*, and
e o =22961176619/6306641510400 ~ 0.00364.
The left-hand side of the inequality above is non-negative by (1.2). O

As in the case of Theorem 3.4, the numerical values of the entries of the ma-
trices My, Mo, M3 and M, can be downloaded from the web page http://honza.
ucw.cz/phd/. We also created a sage script called “thm_3_19-verify.sage”, which
can be used to verify the computations.

The methods presented in Section 3.3 can be straightforwardly adopted also
to the case of monotone subsequences of length 5. Specifically, they yield the fol-

lowing stability result, which is an analogue of Theorem 3.9.

Theorem 3.20. For every estap > 0 there exist 0stap > 0 and ngrTap such that
the following is true. If G is a permutation graph on ngtap > ng vertices with
f5(G) < ﬁ + dsTAB, then G is isomorphic to either Ty(n) or m after adding
and/or deleting at most egTAB - (g) edges.
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The reasoning is essentially the same as for Theorem 3.9. For the sake of complete-
ness, we give a proof in Appendix B.1.
The stability result together with Theorem 3.14 and Theorem 3.2 gives a

complete characterization of 5-extremal permutations.

Theorem 3.21. There exists an integer ng such that for every permutation T € Sy,
where n > ng, we have F5(1) > F5(75(n)). Furthermore, if F5(7) = F5(15(n)), then
T € Ws(n).

3.6 Monotone subsequences of length six

SRR S S

[ ] [ ] [ ]
H Hy f : Hy
. . A A =y
[ ] [ ] [ [ ] [ ] [ ]
H, Hy Hy Hi, ", Hi,
JOR W 7 ) @} % W
Hi, Hi, His Hi Hi, Hi

Figure 3.10: The set of graphs EXTg.

In the last section of this chapter, we use our methods to characterize also all large
6-extremal permutations. Analogously to the previous cases, we let EXTg to be
the set of all non-blindly-isomorphic 8-vertex graphs that have a positive density
in the conjectured extremal example. It holds that ‘EXT g‘ = 18 and the graphs
H{,..., H}s are depicted in Figure 3.10. We also define £ to be the complement of
the set EXTY, i.e., £ := Fg \ EXTE.

We start with the main theorem of this section.

Theorem 3.22. There exists a positive rational o such that the following is true.

If (T)nen is a convergent sequence of permutations and ¢ € Hom™ (A, R) is its limit,
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then

1
K¢ — o - P
6 Igﬁ > o

Proof. Let o1,...,031 be the types depicted in Figure 3.11. Note that the type o1
is the only type (up to a blind isomorphism) of order 2, the types o9,...,07 are all
6 the types of order 4, and the remaining types og,...,03; are 24 types of order 6.
Note we do not use all the possible types of order 6 (there are 71 non-isomorphic
types of order 6 in total) and the particular choice was suggested by a computer.

Going through the lists of all the permutations of sizes 2, 4, and 6 and
their corresponding permutation graphs yields that the sets T'(o1),...,T(031) have
the following sizes: 2, 2, 6, 8, 4, 2, 2, 2,8, 8,8, 8,8, 8,8,8,8,4, 8, 8,4, 8, 4,8, 4,
8, 8, 8, 8, 4, and 2, respectively. Note that

7 31
Y IT(o) =154 =24 and > [T(03)] = 160.
=2 1=8

The second sum is less than |Ss| = 720, since we do not use all the types of size six.
Now we need to choose the bijections by, ., where i € [31] and 7;; € T'(0;).
The choice of b, ; has been made with a computer assistance and they bijections

are given in Appendix B.3. It follows that
e the set 7' has size 119, the set Fg' has size 99440,

e the sets Fg', where i € {2,...,7}, have sizes 122,243,191, 170,191, and 220,

respectively,

e the sets Fg' have sizes 22361, 66186, 44698, 39286, 44698, and 51540, respec-
tively,

e the sets F-', where i € {8,...,31}, have sizes 22, 29, 34, 34, 32, 31, 31, 32,
34, 33, 33, 34, 33, 35, 34, 34, 32, 35, 35, 35, 35, 34, 34, and 35, respectively,

e the sets Fg' have sizes 436, 719, 904, 904, 822, 791, 791, 837, 904, 871, 871,
904, 871, 938, 904, 904, 837, 938, 938, 938, 938, 904, 904, 938, respectively.

We use the semidefinite method to find 31 symmetric positive semidefinite
matrices Mq, ..., M3y such that the following is true. If ¢ € Hom™ (A, R), then

31
1
¢ (Z} [[xiTMimi]]m) <o\ Ko—gs—ar ) HY,

He&s
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where

e the vector z; € (Rf§1)|fgl| is the vector whose j-th coordinate is equal to

the j-th element of the canonical base of RFZ!,

o fori e {2,...,7}, the vector x; € (ngi)|fgi‘ is the vector whose j-th coordi-

nate is equal to the j-th element of the canonical base of RF¢",

e for i € {8,...,31}, the vector z; € (R]-"?")|f;i| is the vector whose j-th coor-

dinate is equal to the j-th element of the canonical base of RF7?, and

o a = 13271039154489448354112691216559213024258505962804294581188506
459918162170123555247126730999930944964217368483473139842841482551
112122065075838596697425682443380032858294928639014516332583745304
406174382777990388793236389 / 2068666133260833193020736966223634816
713964175096859278237533746755570020517472993373482674882607444989
153783350542609132600136129827503488843545087803632723102183361388
90262647318509494337222405421715841786157274759168000000 ~ 6 - 1075.

O]

The numerical values of the entries of the matrices My, ..., M3; can be downloaded
from the web page http://honza.ucw.cz/phd/. A sage script called “thm_3_22-
verify.sage”, which is also available on the web page, can be used to verify our
computations.

Analogously to the case of monotone subsequences of length 4 and 5, the

methods from Section 3.3 yield the following stability result.

Theorem 3.23. For every estap > 0 there exist dstap > 0 and ngrap such that
the following s true. If G is a permutation graph on ngrtap > ng vertices with

fo(G) < ﬁ + dsTAB, then G is isomorphic to either Ts(n) or Ts(n) after adding
and/or deleting at most esTAB - (g) edges.

The proof of Theorem 3.23 is given in Appendix B.2.
As in the case of 5-extremal permutations, the stability result together with
Theorem 3.14 and Theorem 3.2 immediately gives a complete characterization of

sufficiently large 6-extremal permutations.

Theorem 3.24. There exists an integer ng such that for every permutation T € Sy,
where n > ng, we have Fg(1) > Fg(16(n)). Furthermore, if Fs(7) = Fs(16(n)), then
T € We(n).
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Figure 3.11: The types o1 through o3 used in the proof of Theorem 3.22.
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Chapter 4

Finitely forcible graphons

Recently, a theory of limits of combinatorial structures emerged and attracted sub-
stantial attention. In this chapter, we address limits of dense graphs, which is the
most studied case. Its study was initiated in a series of papers by Borgs, Chayes,
Lovész, So6s, Szegedy and Vesztergombi [12, 13, 14, 47, 49]. Dense graph limits
are also closely related to the framework of flag algebras, which we discussed in
Chapter 1.

As in Section 1.1, our object of study are convergent sequences of graphs,
i.e., sequences, where the induced densities of every fixed graph as a subgraph in the
graphs from the sequence converge. In Section 1.1, such a convergent sequence of
graphs was assigned an algebra homomorphism from the set of all graphs to reals.
The homomorphism naturally represents the limit subgraph densities. A convergent
sequence of graphs can also be associated with an analytic object (graphon), which
is a symmetric measurable function from the unit square [0, 1] to [0, 1]. Note that
a graphon also contains the information about the limit subgraph densities in the
sequence.

In this chapter, we are concerned with finitely forcible graphons, i.e., those
graphons that are uniquely determined (up to a natural notion of equivalence) by
finitely many subgraph densities. Such graphons are related to uniqueness of ex-

tremal configurations in extremal graph theory as well as to other problems.

4.1 Dense graph limits

In this section, we introduce basic notions from the theory of dense graph limits.

We follow a recent monograph on the topic by Lovész [46].

60



4.1.1 Graphons

Recall from Section 1.1 that p(H,G;) denotes the probability that random subset
of V(G;) of size v(H) induces a copy of H. Also recall a sequence of graphs (G;)en
is convergent if the subgraph density of every graph in G; converges, i.e., the limit
lim; oo p(H, G;) exists for every graph H € F. As we discussed in Chapter 1, such
a sequence naturally defines a limit object — a homomorphism ¢ € Hom™ (A, R). In
the whole chapter, we study a different (and more analytical) representation of the
limit object of a convergent sequence of graphs.

A graphon W is a symmetric measurable function from [0, 1]? to [0, 1]. Here,
symmetric stands for the property that W(z,y) = W(y,x) for every z,y € [0,1].
Given a graphon W, we define a W-random graph of order k in the following way.
First, we sample k& random points vy, vs,...,vr € [0,1] uniformly and indepen-
dently, and then we join the i-th and the j-th vertex by an edge with probability
W (v;,vj) (again independently of the other edges and on the sampling of the ver-
tices v, v2,...,vx). Since the points of [0,1] play the role of vertices, we refer to
them as to the wvertices of W.

The density p(H, W) of a graph H in a graphon W is equal to the probability
that a W-random graph of order v(H) is isomorphic to H. Clearly, the following
holds:

p(H, W) = Avlgﬁz)’ / IT Wei,v) JI =W v) dhm,
[0,1]()) EE(H) ij¢E(H)

where Aut(H) is the automorphism group of H and A,g) is the uniform Borel
measure on [0, 1]V(1),

One of the key results of the theory of dense graph limits asserts that for
every convergent sequence (G;);en of graphs with the limit ¢ € Hom™ (A, R), there
exists a graphon W such that

p(H,W) = ¢(H) = lim p(H, G;)
for every graph H € F. For a proof, see, e.g., [46, Theorem 11.21]. Conversely,
if W is a graphon, then the sequence of W-random graphs with increasing orders
converges with probability one and its limit is W [46, Corollary 11.15].

An example of a graphon corresponding to the sequence of complete balanced
bipartite graphs K, ,, is depicted in Figure 4.1. Through of this chapter, we use the
following convention when drawing graphons. The point (0,0) is always in the top-

left corner of the square [0,1]%, black points represent the value one, gray points,
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Figure 4.1: A complete balanced bipartite graph K, ,, its adjacency matrix, and a
graphon representing the sequence (K, »)nen-

L

Figure 4.2: Two graphons weakly isopmorphic to each other. They both represent
the limit of a sequence of complete balanced tripartite graphs.

depending on their shade, represent values between zero and one, and white points
represent the value zero.

Two graphons Wi and Wy are weakly isomorphic if p(H, W1) = p(H, Ws) for
every graph H. If ¢ : [0,1] — [0, 1] is a measure preserving map, then the graphon
We(x,y) := W(p(z),e(y)) is always weakly isomorphic to W. The opposite is
true in the following sense [15]: if two graphons W and W are weakly isomorphic,
then there exist measure preserving maps ¢ : [0,1] — [0,1] and @9 : [0,1] — [0, 1]
such that W' = W5? almost everywhere. An example of two different graphons,
both representing the limit of the sequence of complete balanced tripartite graphs

of increasing order, is depicted in Figure 4.2.

4.1.2 Finite forcibility

A graphon W is finitely forcible if there exist finitely many graphs Hy, ..., Hg such
that every graphon W' satisfying p(H;, W) = p(H;, W’) for every i € [k] is weakly
isomorphic to W. Such graphons are related to uniqueness of extremal configu-
rations in extremal graph theory as well as to other problems. For example, the
classical result of Chung, Graham and Wilson [17] asserting that a large graph is

pseudorandom if and only if the non-induced densities of Ko and C4 are the same

62



as in the Erddés-Rényi random graph G,, 1,2 can be cast in the language of graphons
as follows: the graphon identically equal to 1/2 is uniquely determined by the non-
induced densities of Ko and Cy. In other words, it is finitely forcible. Another
example that can be cast in the language of finite forcibility is the asymptotic ver-
sion of the theorem of Turdn [72]: there exists a unique graphon with edge density
=1 and zero density of K, 1, namely the graphon corresponding to the sequence
of Turén graphs 7,.(n).

A systematic study of finitely forcible graphons, which was started by Lovéasz
and Szegedy in [50], was motivated by a possibility of a better understanding of
extremal configurations for problems in extremal graph theory. For every finitely
forcible graphon W, there exists an extremal graph theory problem such that W
is its (unique) solution. Perhaps the most important open problem in the area of

finite forcibility is whether there exists also a certain converse of this statement.

Specifically, Lovasz and Szegedy asked the following question:

Conjecture 4.1 ([50, Conjecture 7]). Let k be an integer, let Fy,...Fy be k fized
graphs and let a1, ...,a be k fixed reals. If a finite set of constraints of the form
p(F;, W) = a; is satisfied by some graphon, then it is satisfied by a finitely forcible
graphon.

If an extremal problem has a unique solution then clearly the graphon corre-
sponding to the solution is a finitely forcible graphon. However, the conjecture for
a general extremal graph theory problem remains open.

Let us now describe some other known examples of finitely forcible graphons.
A stepfunction is a graphon W such that its vertex-set [0, 1] can be partitioned into
finitely many measurable sets (also called parts) Aj, Ag,... Ay in such a way that
for every i,j € [k] if u,u' € A; and v,v" € Aj, then W (u,v) = W(«/,v"). Note that
a stepfunction with one part is a graphon of a sequence of Erdés-Renyi graphs G,
for a fixed p € [0, 1], and vice versa. An example of a stepfunction with four parts is
depicted in Figure 4.3. The result of Chung, Graham, and Wilson was generalized
by Lovéasz and Sés [51] who proved that any graphon that is a stepfunction is finitely
forcible.

Next, a result of Diaconis, Homes, and Janson [20] asserts that the half
graphon Wa(x,y) defined as Wa(z,y) =1 if z +y > 1, and Wa = 0, otherwise, is
finitely forcible; see Figure 4.4. This was probably the the first example of a finitely
forcible graphon that is not a stepfunction. Further examples of finitely forcible
graphons were found by Lovasz and Szegedy in [50].

When dealing with finitely forcible graphons, we usually give a set of equal-

ity constraints that uniquely determines W instead of specifying the finitely many
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Figure 4.3: A stepfunction with four parts.

Figure 4.4: The half graphon Wa.

subgraphs that uniquely determine W. A constraint is an equality between two
density expressions, where a density expression is recursively defined as follows: a
real number or a graph F' € F are density expressions, and if Dy and Ds are two
density expression, then the sum D; 4+ Do and the product Dy x Dy are also density
expressions. The value of a density expression is the value obtained by substituting
for every subgraph F' its density in the graphon. Observe that if W is a unique (up
to weak isomorphism) graphon that satisfies a finite set C of constraints, then it is
finitely forcible. In particular, W is the unique (up to weak isomorphism) graphon
with densities of subgraphs appearing in C equal to their densities in W. This holds
since any graphon with these densities satisfies all constraints in C and thus it must
be weakly isomorphic to W.

Following [48], each graphon W can be assigned a topological space of so-
called typical vertices of W. To simplify our notation, if A C [0, 1] is measurable,
we use |A| to denote its measure. For € [0, 1], we define the neighborhood func-
tion of z as fV(y) :== W(z,y). For an open set A C L1]0,1], we write AW for
{z €10,1], fIV € A}. Let T(W) be the set formed by the functions f € L[0,1]
such that (U W{ > ( for every neighborhood U of f. The set T'(W) inherits topology
from L1]0,1]. The vertices = € [0, 1] with £V € T(W) are called typical vertices of
a graphon W. Almost every vertex of a graphon is typical [48].
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4.1.3 Finite forcibility and non-compactness

If W is a finitely forcible graphon, how complicated can the space of its typical
vertices T'(W) be? If the structure of the space T'(W) would be somewhat “simple”,
we might hope that together with a positive answer to Conjecture 4.1 we will be
able to establish a general machinery for solving problems in extremal graph theory.
Unfortunately, it turned out that there are finitely forcible graphons W where the
structure of the space T'(W) is rather complicated.

The known examples of finitely forcible graphons led Lovasz and Szegedy to

make the following two conjectures.

Conjecture 4.2 ([50, Conjecture 9]). If W is a finitely forcible graphon, then T (W)

18 a compact space.

They noted that they could not even prove that 7T'(W) had to be locally
compact. The main result of this chapter is a construction of a finitely forcible
graphon Wpg, which we call Rademacher graphon, such that T'(Wg) fails to be

locally compact. In particular, T'(W) is not compact.

Theorem 4.3. There exists a finitely forcible graphon Wgr such that the topological
space T(WR) is not locally compact.

The other conjecture of Lovasz and Szegedy asks whether the dimension of

T(W) of a finitely forcible graphon W is always finite.

Conjecture 4.4 ([50, Conjecture 10]). If W is a finitely forcible graphon, then
T(W) is finite dimensional.

Note that Lovasz and Szegedy stated in their paper that they intentionally
did not specify the notion of dimension they had in mind. This conjecture has
been recently disproved by Glebov, Klimosovd and Kral [32]. Specifically, they
constructed a finitely forcible graphon W such that the space T'(W) contains a

subset A which is homeomorphic to [0, 1]*°.

4.2 Partitioned graphons

In this section, we introduce the notion of partitioned graphons. Some of the meth-
ods presented in this section are analogous to those used by Lovasz and Sés in [51],
and by Norin in [55]. In particular, they used similar types of arguments to specialize

their constraints to parts of graphons they were forcing as we do in this section.
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We adapt the notion of rooted densities from the flag algebra framework to
graphons in order to extend the notion of density expressions to the rooted case.
Recall from Chapter 1 that a type o is a graph with a fixed labelling of its vertex-set
and a o-flag F? € F7 is a graph containing a fixed labelled embedding of ¢. The
subgraph induced by the labelled vertices is called the root of F'? and the labelled
vertices are also referred to as the rooted vertices of F°.

Fix a type o, a o-flag F' € F?, and let m = v(0). Recall o is the unlabelled
graph from F that corresponds to o. For a graphon W with p(ch, W) > 0, we let
the auxiliary function ¢, : [0,1]™ — [0,1] denote the probability that an m-tuple
(z1,...,om) € [0,1]™ induces a copy of o in W respecting the labeling of vertices

of o:

col@r, . am) = [ Wz |- [] O-Wizy)
)

ijeEE(o ij¢E (o)

We next define a probability measure p, on [0,1]™. If A C [0,1]™ is a Borel set,
then

(X1, ..., Tm) Ay
ol tm) Do ) dA
Co(T1, oy xm) ANy |Aut (0?)| p(a?, W)

Note that the probability measure pu, is an analogue of the probability distribution
P? on Hom™" (A%, R) from Section 1.1.

When z1,...,2, € [0,1] are fixed, then the density of F' with the rooted
vertices being x1,...,x,, is the probability that a random sample of the non-roots
yields a copy of F' conditioned on the event that the roots induce o. Noticing that
an automorphism of a o-flag has all the rooted vertices as fixed points, we obtain

that this is equal to

@Ot [ W) TT 0 W)

| Aut(F)] y
[0,1]p(F)—m ij€E(F)\E(0) ij%E(F)U(Vg"))

Two flags Fy and Fy are compatible if the their types are isomorphic, i.e.,
both Fy € F° and Fy, € F7 for some type 0. A rooted density expression D is
a density expression such that all flags that appear in it are mutually compatible
rooted graphs. Note we will also speak about compatible rooted density expres-
sions to emphasize that the flags in all of them are mutually compatible. First let

Z1,...,Tm € [0,1] be fixed. Analogously to the non-rooted case we use the notion
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Figure 4.5: A partitioned graphon with two two parts A; and Ay. The measure of
A is 1/3 and the degree of each of its vertices is 2/3, and the measure of Az is 2/3
and the degree of each of its vertices is 1/3.

of density of F' € F? from the previous paragraph to determine the value of D with
the rooted vertices being x1, ..., Z,,. For different choices of x1,...,z,, we obtain
different values. Finally, the rooted density of D is then a random variable deter-
mined by the choice of the rooted vertices according to the probability measure (.

We now consider a constraint such that both the left and the right hand sides
D and D’ are compatible rooted density expressions. Let o be the corresponding
type of all the flags in D and D’. Such a constraint should be interpreted to mean
that it holds that D — D’ = 0 with probability one, where the randomness comes
from picking the root according to p,. It follows from (1.1) that the expected value
of a rooted density expression D with the root o is equal to [D], /p(c?, W), where
[D], is an ordinary density expression (in particular, it does not dependent of W).
Observe that if D and D’ are compatible rooted density expressions, both with the
roots o, then a graphon satisfies D = D’ if and only if it satisfies the (ordinary) con-
straint [(D — D’) x (D — D')],, = 0. This allows us to express constraints involving
rooted density expressions as ordinary constraints, hence we will not distinguish
between the two types of constraints in what follows.

A degree of a vertex x € [0,1] of a graphon W is equal to

W(z,y)dy= | £ (y)dy.
[0,1] [0,1]
Note that the degree is well-defined for almost every vertex of W. A graphon W is
partitioned if there exist k € N, positive reals ay, ..., a; with )", a; = 1 and distinct
reals dy, ..., dy € [0,1] such that the set of vertices of W with degree d; has measure
a;. An example of a partitioned graphon with two parts is depicted in Figure 4.5.

We will often speak about partitioned graphons when having in mind fixed values
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of k, a1,...,ax, and dy,...,d;. Being a partitioned graphon can be finitely forced

as shown in the next lemma.

Lemma 4.5. Let k be an integer, a1, ..., a; positive real numbers summing to one,
and dy,...,d; distinct reals between zero and one. There exists a finite set of con-

straints C such that any graphon W satisfying C also satisfies the following:
The set of vertices of W with degree d; has measure a;.

In other words, such W must be a partitioned graphon with parts of sizes aq,...,a

and degrees dy, ..., dy.

Proof. The desired property of being a partitioned graphon with the given choice

of parameters is forced by the following set of constraints:

k
H(€1 —d;) =0, and
i=1
k k
H (el —d)|| =ay H (dj — d;) for every j, 1 <j <k,
i=1,i#j . i=1,ij

where “1” denotes the l-vertex type and e' is an edge with one rooted and one
non-rooted vertex. The first constraint says that the degree of almost every vertex
is equal to one of the numbers di,...,dr. For j < k, the left hand side of the

second constraint before applying the [-]-operator is non-zero only if the degree of

the rooted vertex is d;, assuming the degree is one of dy,...,d;. Hence, the left
hand side is equal to
k
11 @ —d)
i=1,i#]

in that case. Therefore, the measure of vertices of degree d; is forced to be a;. [

Assume that W is a partitioned graphon. We write A; for the set of vertices
of degree d; for i, 1 < i < k and identify A; with the interval [0,a;) (note that the
measure of A; is a;). This will be convenient when defining partitioned graphons.
For example, we can use the following when defining a graphon W: W(z,y) = 1 if
r€ A, y€e Ay and x > y.

A graph H is decorated if its vertices are labelled with parts Ay, ..., Ag. The
density of a decorated graph H in a partitioned graphon W is the probability that

randomly chosen v(H) vertices induce a subgraph isomorphic to H with its vertices
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Figure 4.6: Examples of decorated constraints.

contained in the parts corresponding to the labels. For example, if H is an edge
with vertices decorated with parts A; and A, then the density of H is the density
of edges between the parts A; and Ao, i.e.,

p(H,W)://W(x,y) dz dy .

Aq Ag

If W is the graphon depicted in Figure 4.5, then p(H, W) = 4/9.

Similarly as in the case of non-decorated graphs, we define rooted decorated
subgraphs. A constraint that uses (rooted or non-rooted) decorated subgraphs is
referred to as decorated. In this chapter, we use the following convention for drawing
graphs in density expressions: edges of graphs are always drawn solid, non-edges
dashed, and if two vertices are not joined, then the picture represents the sum over
both possibilities. If a graph contains some roots, the roots are depicted by square
vertices, and the non-root vertices by circles. If there are more roots from the same
part of a graphon, then the squares are rotated to distinguish the roots. If a graph
is decorated, then the decorations of its vertices are always drawn inside their circles

or squares. See Figure 4.6 for the following five examples of decorated expressions:

e the first expression from the left denotes the edge density between the parts
A1 and Az,

e the next one denotes the edge density inside the part A; multiplied by |A;|?,
e the third one is the non-edge density between the parts Ay and As,

e the fourth one corresponds to the degree of a fixed vertex from A; inside the

part A; multiplied by |A;|, and

e the last expression is equal to the degree of a fixed vertex from A; inside the

entire partitioned graphon (assuming the graphon has k parts).

The next lemma shows that decorated constraints are not more powerful

than non-decorated ones, and therefore they can be used to show that a graphon is
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Figure 4.7: The graphs H; and Hs from the proof of Lemma 4.6 if H is an edge
with roots decorated with A; and As.

finitely forcible. We will always apply this lemma after forcing a graphon W to be

partitioned using Lemma 4.5.

Lemma 4.6. Let k be an integer, a1, ..., a; positive real numbers summing to one,
and di,...,dp distinct reals between zero and one. If W is a partitioned graphon
with k parts formed by vertices of degree d; and measure a; each, then a decorated
(rooted or non-rooted) constraint can be expressed as a non-decorated one. In other
words, W satisfies the decorated constraint if and only if it satisfies the non-decorated

constraint.

Proof. By the argument analogous to the non-decorated case, it is enough to show
that the density of a non-rooted decorated subgraph can be expressed as a combina-
tion of densities of non-decorated subgraphs. Fix a non-rooted decorated subgraph
H with vertices v1,...,v, such that v; is labelled with a part Ay,. Let HY be the
ordinary subgraph corresponding to H after removing the decorations, o the type
corresponding to HY labelled with 1,...,n (the vertex v; has label i), and H; the
sum of all o-flags on n + 1 vertices where the only non-rooted vertex is always ad-
jacent to v; (an example is given in Figure 4.7). We claim that the proportion of
copies of HY that have their vertices inside the parts according to the decoration of

H is equal to

I 11 T

ho = 15=1, j#¢;

hence the density of H is equal to

AW Aut H H . (4.7)

i=1j=1, j#; e JU

Indeed, if the n rooted vertices are chosen on a copy of HY such that the i-th
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rooted vertex is not from Ay,, then the second product of the above expression is
zero. Otherwise, the second product is one. Hence the value of (4.7) is exactly the
probability that randomly chosen n vertices induce a labelled copy of HY such that
the i-th vertex belong to Ay,. O

Since a decorated constraint can be expressed by a non-decorated one, we will
not distinguish between decorated and non-decorated constraints in what follows.

We finish this section with two lemmas that are straightforward corollaries of
Lemma 4.6. The first one says that we can finitely force a copy of a finitely forcible

graphon inside one of the parts of a partitioned graphon.

Lemma 4.8. Let Wy be a finitely forcible graphon. Then for every choice of k € N,
positive reals ai,...,ar summing to one, distinct reals di,...,d; between zero and
one, and ¢ < k, there exists a finite set of constraints C such that the graphon
induced by the £-th part of every graphon W that is a partitioned graphon with
k parts Aq,..., A of measures aq,...,ar and degrees di,...,ds, respectively, and
that satisfies C is weakly isomorphic to Wy. More precisely, there exist measure

preserving maps @ and @' from Ay to itself such that

QD(:U) go(y)) - / /
for almost every x,y € Ay.

Proof. Assume that W) is forced by some m constraints of the form p(H;, W) = d;,
where i € [m] and H; € F. The set C is then formed by constraints of the form

p(HL W) = ap™ - q;

where H/ is the graph H; with all vertices decorated with Aj. O

The second lemma asserts finite forcibility of pseudorandom bipartite graphs

between different parts of a partitioned graphon.

Lemma 4.9. For every choice of k € N, positive reals a1, ...,a; summing to one,
distinct reals dy, . .., dy between zero and one, £, 0' <k, L # V', and p € [0,1], there
erists a finite set of constraints C such that every graphon W that is a partitioned
graphon with k parts Ai,..., A of measures ay,...,a; and degrees dy,...,d, re-
spectively, and that satisfies C also satisfies that W (x,y) = p for almost every x € Ay
and y € Ay .
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Figure 4.8: The constraints used in the proof of Lemma 4.9.

Proof. Let H be a rooted edge with the root decorated with A, and the non-root
decorated with Ay, let Hy be a triangle with two roots such that the roots are
decorated with A, and the non-root with Ay, and let Hy be a cherry (a path on
three vertices) with two roots on its non-edge such that the roots are decorated with
Ay and the non-root with Ay. The set C is formed by three constraints: H = p,
Hy = p?, and Hy = p? (also see Figure 4.8). These constraints imply that

/W(fﬂ,y) dy=ap-p  and /W(:v,y) W(a',y) dy = ap - p?
Ay Ay

for almost every z, 2’ € Ay. Following the reasoning given in [50, proof of Lemma

3.3], the second equation implies that

/WQ(w,y) dy = ap - p*
Ay

for almost every x € Ay. Cauchy-Schwarz’s inequality yields that W (x,y) = p for
almost every z € Ay and y € Ay. O

4.3 Rademacher graphon

In this section, we introduce the graphon Wpg which we refer to as Rademacher
graphon. The name comes from the fact that the adjacencies between its parts A
and C resemble the Rademacher system of functions on the unit interval. Note that
such adjacencies also appear in [46, Example 13.30] as an example of a graphon with
non-compact space of typical vertices.

The graphon Wx has eight parts and we use A, A’, B, B’, B”, C, C' and D
to denote the parts. All the parts except for C' have the same measure a := 1/9;
the measure of C' is 2a = 2/9.

For z € [0, 1), let us denote by () the smallest integer k such that z+27% < 1.
The graphon Wk, is then defined as follows (also see Figure 4.9). Note that whenever

72



B/

B//

Figure 4.9: Rademacher graphon Wg.
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Part A A B B’ B” C c’ D
Degree | 3¢ 3.2a a 12a 1l4a 1.5a 1.8a 1.6a
1/3 16/45 1/9 2/15 7/45 1/6 1/5 8/45

Table 4.1: The degrees of vertices in the nine parts of Rademacher graphon Wg.

we prescribe the value of Wg(x,y) for some pair (z,y) € [0, 1], we implicitly assume
that we also defined the value Wg(y, z) := Wg(z,y). Let x and y be two vertices
of Wg. The value Wgr(z,y) is equal to one in the following cases:

e z,y € Aand (z/a) # (y/a), excA ye Bandz+y<a,

xz,y € A" and (x/a) # (y/a), exc A ye B and y <z,

xe A ye A and (z/a) = (y/a), e x,y€ Bandz+y>a,

re€A yeBandz+y<a, e r,yc B and x +y > q,

ercAyeB andx+y>a, e x,ycC’'and z +y > a,

ze€A yeCand |L- 2<x/“>J is even, and
ezc A, yeC and (1 -2/ _z/a). 2% 4 y/a < 1.

Ifze A, yeCand L% . 2<x/a>J is even, then
WR(CL',y) = (1 — 2_<$/a) — CL’/CL) . 2<$/a>

For z,y € C such that x + y > 2a, the value Wg(x,y) is equal to 3/4. If y € D,

then
02 ifxe A oraxebB,

Wg(z,y) ;=< 04 ifxz € B”, and
0.8 ifxeC.
Finally, Wr(z,y) := 0 if neither (z,y) nor the symmetric pair fall in any of the
described cases.
The degrees of vertices in the eight parts of Rademacher graphon Wg are
routine to compute and they are given in Table 4.1.
We finish this section with establishing that Rademacher graphon, assuming

its finite forcibility, yields Theorem 4.3.
Proposition 4.10. The topological space T(WEg) is not locally compact.

Proof. We understand the interval [0, 1] to be partitioned by the intervals A, A’, B,
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B', B", C,C"and D. Let g:[0,1] — [0,1] be the function defined as follows:

1 ifzeAuB'UC,
g(x) =< 0.2 ifxe D, and

0 otherwise.
Further, let g; 5 : [0,1] — [0,1] for i € N and ¢ € [0,1] be defined as follows:

if x € Aand (z/a) =1,

if v € A" and (z/a) # i,

if v € B'and x < (14 6)-277,
ifreB"andz <1—(1+6)- 277,
if z € C and [2¢ - 2/2a] is even,
ifxeC and z/a <1-19,

0.2 ifzxe D, and

0 otherwise.

gis(x) =

— o R = =

Observe that Wg (2,2/9 — (14 6) - 277/9) = g; 5(x) for every i € N, § € (0,1), and
x € [0,1]. It follows that

(4426)-27" 426
9 )

(2:27"4+2-(1+6)-27"+2:6) =

Nel i

llgis —gll, =

and
5+

for i #£7'.

gi6 — g0 |, = / |gi6(x) — gir g ()| dz >
C

Hence, since g; 5 € T(WEg) for every i € Nand d € (0,1), we obtain that g € T(Wg).

L are at L;-distance

However, for every € > 0, all the functions g; . with ¢ > logy e~
at most € from ¢ and the L;-distance between any pair of them is at least £/9. We

conclude that no neighborhood of g in T'(W) is compact. O

4.4 Forcing the graphon

In this section, we prove that Rademacher graphon Wpg defined in the previous
section is finitely forcible. We first describe the set of constraints Cr we use to force
a graphon to be weakly isomorphic to Wgr. We give names to the different kinds of

the constraints to refer to them in our exposition.

e The partition constraints forcing the existence of eight parts of sizes as in Wg

and with vertex degrees as in Wg (the existence of such constraints follows
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Figure 4.10: The monotonicity constraints.

from Lemma 4.5),

e the zero constraints setting the edge density inside B” and D to zero as well
as setting the edge density between the following pairs of parts to zero: A and
C’', Aand D, A" and B, B and B’, B and B”, B and C, B and C’, B and D,
B" and B”, B’ and C, B’ and C’, B” and C, B” and C’, and C and D,

e the triangular constraints forcing the half graphons on B, B’, C, and C’ with
densities 1, 1, 1 and 3/4 (see Lemma 4.8 and [50, Corollaries 3.15 and 5.2] for

their existence), respectively,

e the pseudorandom constraints forcing the pseudorandom bipartite graph be-
tween D and the parts A, B, B”, and C’ with densities 0.2, 0.2, 0.4, and 0.8,

respectively (see Lemma 4.9 for their existence),
e the monotonicity constraints depicted in Figure 4.10,
e the split constraints depicted in Figure 4.11,
e the infinitary constraints depicted in Figure 4.12, and

e the orthogonality constraints depicted in Figure 4.13.

The existence of the corresponding monotonicity, split, infinitary, and orthogonality
constraints as ordinary constraints follows from Lemma 4.6. Also note that the first
five monotonicity constraints imply that the graphon has values zero and one almost
everywhere between the parts A and B, A and B”, A’ and B’, A’ and B”, and A’
and C’ (see [50, Lemma 3.3| for further details).

Before we proceed to the proof of the main theorem of this section, let us
recall a useful proposition for one-variable measurable functions called Monotone

Reordering Theorem (see, e.g., [46, Proposition A.19]).

76



@@ o0 6o 5 6
+1=3 +1=3 +1=3 +1=3
(a) (b) (e) (d)
@y—a) @y~ © @
_0 ;’:o +ox =5

() )
(e) (f) (

Figure 4.11: The split constraints.
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Figure 4.13: The orthogonality constraints.
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Proposition 4.11 (Monotone Reordering Theorem). For every measurable function
f:]0,1] — [0,00) there exist a monotone decreasing measurable function h : [0,1] —
[0,00) and a measure preserving map ¢ : [0,1] — [0,1] such that f = ¢ o h. The

function h is uniquely determined up to a set of measure zero.
We are now ready to show that Rademacher graphon is finitely forcible.

Theorem 4.12. If W is a graphon satisfying all constraints in Cr, then there exist
measure preserving maps ¢, : [0,1] — [0, 1] such that W¥ and W;ﬁ are equal almost

everywhere.

Proof. Since W satisfies the partition constraints contained in Cr, Lemma 4.5 yields
that the interval [0, 1] can be partitioned into eight parts all but one having measure
1/9 and the remaining one with measure 2/9 such that almost all vertices in the
parts have degrees as those in the corresponding parts of Wg. In particular, there
exists a measure preserving map ¢ : [0,1] — [0, 1] such that the subintervals of [0, 1]
corresponding to the parts of Wg are mapped to the corresponding parts of W.
From now on, we use A, A’, B, B', B”, C, C’, and D for the subintervals of [0, 1]
corresponding to the parts.

We next construct a measure preserving map 1 consisting of measure pre-
serving maps on the intervals A, A, B, B’, B”, C and C’. We choose these maps
such that there exist decreasing functions f4 : A — [0,1] and far : A" — [0,1],
and increasing functions fp : B — [0,1], fpr : B — [0,1], fgr : B — [0,1],
fo : C — [0,1] and for : C" — [0,1] such that the following holds almost every-

where (the existence of such maps and functions follows from Monotone Reordering

Theorem):
VeeA  fa(d(x)) :E{W“D(%y) dy Vee A fa(y(x)) :g: W#(z,y)dy
VeeB  fp(i(z)) Zgw“’(%y) dy Ve e B fp(¥(x)) :Bf/ W#(z,y)dy

Ve € B"  fpr(¢(x)) = Af W#(x, y) dy VeeC  fo(¥(x)) = g W (x,y)dy
Ve el fo(i(x)) :Cj: W (x,y)dy

In the rest of the proof, we establish that W% and W;ﬁ are equal almost everywhere.
The pseudorandom and zero constraints in Cr imply that W% and W;ﬁ agree
almost everywhere on D x [0, 1] and [0, 1] x D. The zero and triangular constraints
and the choice of ¢ on B, B’, C, and C’ yield the same conclusion for (B U B’ U
B"UCUC?, AxB',B'xA, AxC,Cx A, A’ x B, and B x A’ (see Figure 4.14).
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Figure 4.14: The forced structure of W after the first step of the proof of Theo-
rem 4.12. Question marks denote the parts with no forced structure so far.

Let us now introduce some additional notation. If z is a vertex and Y is
one of the parts, let Ny (x) denote the set of y € Y such that W¥(z,y) > 0. If =
and y belong to the same part, then we write z < y iff ¢)(z) < 1(y). Observe that
the monotonicity constraint (a) from Figure 4.10 and the choice of ¢ implies the
existence of a set Z of measure zero such that Np(z') \ Np(z) has measure zero for
x,x’ € A\ Z if and only if x < 2/. Since the degree of every vertex in B is 1/9, this
yields that the graphons W¥ and W;é’ agree almost everywhere on A x B. The same
reasoning applies to A’ and B’. Thus, we conclude that the graphons W% and Wﬁ
agree almost everywhere on (AU A’) x (BUB') and (BUB') x (AU A").

We now apply the same reasoning using the monotonicity constraint (b) and
the split constraints (b) to deduce the existence of a zero measure set Z such that
Npn(z) \ Npr(2') has measure zero if and only if x < 2’ for z,2’ € A\ Z. The
monotonicity constraint also imply that W% has only values zero and one almost
everywhere on A x B”. Since the measure of Ng(z) U Npr(z) is 1/9 for almost all
x € A by the split constraint (b), the choice of ¢ on B” implies that the graphons W%
and W;ﬁ agree almost everywhere on A x B”. The degree regularity in B”, the split
constraint (d), and the monotonicity constraint (d), which yields that W% has values
zero and one almost everywhere on A’ x B”, yield the agreement almost everywhere
on A’ x B”. Symmetrically, they agree almost everywhere on B” x (AU A"). The
forced structure of W forced so far is depicted in Figure 4.15.

We now focus on the graphon W% on A2. Observe first that the measure of
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Figure 4.15: The forced structure of W after the second step of the proof of The-
orem 4.12. Again, question marks denote the parts with no forced structure so
far.

Np(z) is equal to ¢(x) for almost all z € A. The monotonicity constraints (f) and
(h) from Figure 4.10 imply that there exists a set Z of measure zero such that every
point z € A\ Z can be associated with a unique open interval J, C A such that
W¢(x,2") = 0 for almost every 2’ € ¥»~1(.J,), and W¥(z,2') = 1 for almost every
2’ € A\ ¢¥~(J;). The interval J, can be empty for some choice of z. Recall that
|J2| is the measure of the interval J,, and let J be the set of all intervals J,, x € A,
with |J;| > 0. Since the intervals in J are disjoint, the set J is equipped with a
natural linear order.

Let us now focus on the infinitary constraint (b) from Figure 4.12. Fix three
vertices (two from A and one from B) as in the figure and let = be the left vertex from
A. Observe that if z € A is fixed, then the set of choices of the other two vertices
has non-zero measure unless 1(x) = sup J;. The left hand side of the constraint
is equal to the measure of J,, i.e., sup J, — inf J,. The right hand side is equal to
1/9 — sup J,. We conclude that inf J, = 1/9 — 2|J,|. This implies that the set J is
well-ordered and countable.

Let us write Ji for the k-th interval contained in J. Furthermore, for £ > 1,

define )
2(1 = 9inf Jyq1) _ 2[Jp]

1—-9infJ,  |Jx]
and let 8y be equal to 1 — 9inf J;. Note that by the observations made in the last
paragraph and since inf Ji11 > sup Jg, we obtain §; < 1 for every £ > 0. In case

Br =
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that J is finite, we define 5, = 0 for k > |J|. We can now express the density of

non-edges with both end-vertices in A as

0o 1 k—1 2
St (g o) -
eJ k=1 k’=0

Since the sum is forced to be 1/243 by the infinitary constraint (a), we get that

B = 1 for every k. This implies that for every k, Jp = ($,%>- In

particular, the graphons W¥ and Wg agree almost everywhere on A?.

The same reasoning as for A? yields that the graphons W¢ and W;ﬁ agree
almost everywhere on A2, Let J' be the corresponding set of intervals for A’ and
let Ji,J5, ... be their ordering. The split constraints (e) and (f) from Figure 4.11
imply that for almost every x € A with [N/ (z)| > 0, there exists J' € J’ such that
Na(z) Ap~1(J') has measure zero and W¥(x,y) = 1 for almost every y € 1»~1(J).

Let € ¥~'(J,). The split constraint (a) from Figure 4.11 yields that
|INar(z)| = ﬁ. Consequently, N (z) A¢~!(J}) has measure zero for almost every
z € ¢ 1(Jg) and W (x,2") = 1 for almost every x € 1~ 1(Jx) and 2’ € ¢ ~1(J}). We
conclude that the graphons W% and Wg agree almost everywhere on A x A’ and
A x A.

The orthogonality constraints (a) and (b) from Figure 4.13 yield that there
exist measurable subsets I, C C' with || = 1/9 for every k > 1 such that it holds
for almost every = € ¥~1(J;) that N¢(z) differs from I on a set of measure zero
and W®(z,y) = 1 for almost every y € I;. The construction of ¥ and the split
constraint (h) from Figure 4.11 imply that |[Na(x)| = 1/9 —¢(x)/2 for almost every
x € C. Since ¥ ~1(J;) \ Na(z) has measure zero for almost every z € I, we get
that |J1| < |Na(z)| for almost every x € I. This implies that I; and ¢ ~1([0,1/9])
differ on a set of measure zero (also see Figure 4.16). Since ¢ ~!(J3) \ Na(x) has
measure zero for almost every x € I and J; N Jy has measure zero, we get that
|J1| +|J2| < |Na(x)| for almost every x € I) NI and that |J2| < |[Na(z)| for almost
every x € I\ I1. This implies that I and »~1([0,1/18]U[1/9,1/6]) differ on a set of
measure zero. Iterating the argument, we obtain that I differs from the preimage
with respect to ¥ of the set

2k—1 . .
20—2 21—1
U 9.92k=1"9g.9k-1
1

i=

on a set of measure zero for every k € N. This yields that the graphons W% and

W;ﬁ agree almost everywhere on A x C.
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Figure 4.16: Illustration of the argument used in the proof of Theorem 4.12 to
establish that the graphons W% and W;ﬁ agree almost everywhere on A x C.

The orthogonality constraint (c¢) from Figure 4.13 implies that (C'\ N¢(z))N
Nc¢(z') has measure zero for every k, almost every z € A\¢~1(.J}), and almost every
2’ € ~1(J}). In particular, almost every 2’ € ¢ ~1(J}) satisfies that No(2') \ I has
measure zero, i.e., W#(2/,y) = 0 for almost every 2’ € ¢~1(J) and y & I.

We now interpret the orthogonality constraint (d) from Figure 4.13. Fix an
integer £ > 1 and a typical vertex 2’ € 1~ 1(J}). The left term in the product on

the left hand side of the constraint is equal to the square of

/W“"(w’,y) dy = /W‘”(ﬂf/,y) dy .
C I,

The right term in the product is equal to the square of |J| = 2¥(=)/a) /9. The
term on the right hand side is equal to the probability that randomly chosen z” and
y satisfy 2” € A",y € B, 2” € v 1(J}), and ¢ (2') < ¢ (y) < ¢(2”). This is equal to

, 2
(1 _o—()/a) _ ¢(x/)/a)
2.92 '

We deduce that almost every z’ € 1)~ 1(J}) satisfies

1 —2-WE/a) _y(2)/a
ey —
Jwepay = =2 e (4.13)

Iy,

We apply the same reasoning to the orthogonality constraint (e) from Figure 4.13
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and deduce that almost every pair of vertices 2/, 2" € ~1(.J}) satisfies

2
, 4
Pl fwraoweatpay | - (2o -
Iy,
(1=~ y(ay/a)”  (1-2- W) (e fa)”
2 ' 2 '

This implies (similarly as in the proof of Lemma 4.9) that almost every 2’ € ¢ ~1(J})

satisfies:
1/2
1 —2-WE/a) _ (2 /a
©® / 2 —
[wearay| = (4.14)
Iy,

Using Cauchy-Schwartz Inequality, we deduce from (4.13) and (4.14) (recall that
|I] = 1/9) that the following holds for almost every 2’ € ¥~ 1(J}) and y € I,

1 — Q—W(ﬁ?/)/@ — w(x/)/a
92— (¥(z")/a) '

We(',y) =

In other words, W¥(z',y) is constant almost everywhere on Ij for almost every
e w_l(Jlg) and its value linearly decreases from one to zero almost everywhere
inside w_l(J,’g). Hence, the graphons W¥ and Wﬁ agree almost everywhere on
A" x C and C x A’ (recall that W¥(2,y) = 0 for almost every pair 2’ € ¢~1(J})
and y & I).

The monotonicity constraint (e) from Figure 4.10 yields that at least one of
the sets Nov(z)\ Ner(2') or Nov(2')\ Nov () has measure zero for every k and almost
every pair x, 2’ € A’, and also that the graphon W% has values zero and one almost
everywhere on A’ x C’. This together with the regularity on A’ and C’ imply that
the graphons W% and Wﬁ agree almost everywhere on A’ x C'. We have shown
that the graphons W% and Wg agree almost everywhere on (AU A") x (C'U (")
and (CUC") x (AU A’). Since these were the last subsets of their domains that
remained to be analyzed, we proved that the graphon W¥ is equal to W;ﬁ almost

everywhere. O
Theorem 4.12 immediately yields the following.

Corollary 4.15. The graphon Wg is finitely forcible.
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Appendix A

Supplementary computations for Chapter 2

A.1 Matrices I, 5, I3 and I, from proof of Theorem 2.20

In this appendix, we display the matrices I, I, I3 and I4 that appear in the proof
of Theorem 2.20. For the matrices I, I3 and I4, we also present the appropriate
linear combinations of their rows that were used in the proof of Claim 1.

We start with the matrix I;. It has size 8 x 7 and corresponds to the type

o] = 2.

1 —6

3= 0 0 0 0 0 0 57

19 38 0 0 0 0 0 38

—2 —1 38 —1

T 3 3 0 0 0 0 33

_ -3 —1 —1 39 —1
h=l% %% ©» 0 0 0 3
3 -1 -1 -1 10 g g =l

11 22 22 22 11 22
e e L s |

4 24 24 24 12 12 24

-3 -1 -1 -1 -1 -1 12 -1

13 26 26 26 13 13 13 26

The matrix Is has size 26 x 38. It corresponds to the type o2, which is the
4-vertex type with no edges. Unfortunately, the whole matrix is too large to be fully
displayed here. Therefore, we display its transpose IQT decomposed into 3 block in

the following way:
sz:([2A | I \[2C>,

where Io4,Iop and Iyc are the corresponding blocks of sizes 38 x 10, 38 x 7 and
38 x 9, respectively.

Now let us move to the linear combination of the rows of I5 used in the proof
Claim 1. Let rq1, ..., rs be the first, 7th, 14th, 19th, 20th, 23rd, 24th and the last row
of I, respectively. In other words, r; is the first column and ry is the 7th column

of the matrix Io4, r3 is the 4th column of Isg, and 7y, ..., rg are the second, third,
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6th, 7th and 9th column of Is¢, respectively. Next, let wi,...,ws be the following

8 rationals:

~ 17848347258759844 ~29077073547217221
T T 667105311709433 2 T 100732902068124383
182634053866072 250349838727759
wsg = — Wy = —
3 667105311709433° ! 2001315935128299’
100121758433266968721 561895905711673
Wy 1= — weg = —
> 197509869637811828310° 0 1334210623418866°
e ~216649503358540325 we e 21227849574516
T 695123734801229186 ® T 667105311709433°

Recall that the last six coordinates of the vector z9 are the ones that correspond to
six oo-flags on five vertices containing a tight path from {a,b} to {c,d}. The vector
q = Zie[s} w; - 15 is a 38-dimensional vector with rational entries such that the
last six coordinates of ¢o are positive and all the other ones are negative. Note that
there is no linear combination of (at most) 7 rows from I» with such a property. The
vector ¢ is also generated and then verified in the script “theorem_2_22-verify.sage”.

The next matrix is I3. It has size 15 x 17 and corresponds to the type o3, the
4-vertex type that contains a single edge abc. For brevity, we display the transpose
13T of I3 instead of I3 itself. Let r1 be the 13th and r9 the 15th row of I3, i.e., the
13th and 15th column of I3T. The vector g3 := 679 — 5 - 71 has the desired property
that its first 11 entries are negative. We write the last six coordinates of the vector
g3 in a bold font.

Finally, the last matrix is I4. It corresponds to the type o4, which is the
4-vertex type with the edge-set {abc,abd}. Like the matrix I3, the matrix Iy also
has size 15 x 17 and again, we display rather its transpose I} . The sum of the 13th
and the 15th row of Iy, i.e., the 13th and the 15th column of I], is equal to the
vector ¢4. One more time, since the last six coordinates of the vector x4 correspond
to the o4-flags on five vertices that contain a tight path from {a,b} to {c,d}, we
just need to check that that g4 has positive values only on the last six coordinates.

Note that the last six coordinates of g4 are again written in a bold font.
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TONGE  BE  TRNT TR, wpay G TG
655725 9869 93409 56082871 2009423 264147 8905
683049 = 30280 6922687 =54 52706 127
5027225 9869 1587953 56082871 6028269 264147 1781
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Appendix B

Supplementary computations for Chapter 3

B.1 Proof of Theorem 3.20

Up to a few changes in the choice of the parameters, we follow the lines of the proof
of Theorem 3.9 presented in Section 3.3. As in Section 3.2, Theorem 3.19 has the

following two corollaries.

Corollary B.1. For every positive easym there exists nasym € N such that the
following is true. If G is a permutation graph on n > nasym vertices, then f5(G) >
(1/256 —¢).

Corollary B.2. For every positive econr there exist a positive ScoNF and NCONF €
N such that the following is true. If G is a permutation graph on n > nconr vertices
that satisfies f5(G) < (1/256 +dconr), then G contains at most econr - (7) induced
copies of F' and at most ECONF - (77‘) induced copies of F, where F € 575.

Proof of Theorem 8.20. Let C' := 49 x 140 = 6860. Recall X is the set of all
non-permutation graphs. We do the analogous set-up of the parameters as in Theo-
rem 3.9. Specifically, let dry, be the value from Infinite Removal Lemma applied for
ERL 1= (€STAB)2 /C and the family X U575, let dconr and nconr be the values from
Corollary B.2 applied for econr := Jr1, and let nagym be the value from Corol-
lary B.1 for eagym = (€STAB)2 /C. We set dgTAB = min{(ESTAB)Q /C, 5CONF} and
nsTAB ‘= max{C/esTAB, NCONF 2 - NASYM }-

Let G be a graph on n vertices satisfying the assumptions of the theorem.
Corollary B.2 and Infinite Removal Lemma implies that we can add or remove less
than % - ESTAB (g) edges in G and obtain a permutation graph G’ that satisfies
Property A(5) and Property B. Furthermore, f5(G’) < 1/256 +2-e4pxp/C. Hence,
by Lemma 3.7, we can partition G’ into at most 4 parts such that either each part

is a clique and there are no edges between the parts, or every edge between the
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parts is present and the parts themselves form an independent set. Without loss of
generality, G’ is a disjoint union of at most 4 cliques.

It is enough to show that every clique has size at most (1/4+egpap/7)-n. Let
v := esTaB/7 and suppose for a contradiction G’ contains a clique of size more than
(1/44~)-n. Let Hy := G'. For each i € [y-n/3], let v; be an arbitrary vertex from a
maximum clique inside H; 1, and let H; := H; 1 —v;. Let Z := {v1,v2,...,0y.03}

(1/256+2v/3)n
4

It follows that every vertex v € Z is contained in at least ( ) copies of

K5 that are disjoint from Z \ {v}. Since ngrap > 18/v = 126/esraB, We have

(1/4+2-9/3)-n\ _ (1 3\' ' (1 5\ o

( A “\a72) 207 \%6 " 32) 2
Furthermore,

1 (esTaB)’ 1 e

fs(Hi1) < fs(Hi) < f5(G7) < 55 + c 256 7 140

Our aim is to show that f5(H;) — f5(Hit+1) > v/(12 - n). Indeed, we have

1 7y, v 5(H, v(H;)
f5(H;) — f5(Hig1) > (555 + 52) 24+f5 ”11)152 ) = fs(Higr) - ("57)
(" )
n4 v
L (st ) 5 (i) - ()
(”(é”)
>5.(g16+32 f5(Hit1) _ 5 (7_272>
n - n 32 140
5 (v gl
>ﬁ(§‘%»ﬁ%'

However, Corollary B.1 implies that f5 (H.,.,/3) > 1/256 — (estaB)?/C.
Putting the inequalities together would yield that

1 2(esaB)? v _ 1 (estaB)® | (estaB)?
> H

%6 C > f5(G') = f5(Ho) > f5(Hynps)+ 36 = 256 C  49x36°

a contradiction. O

B.2 Proof of Theorem 3.23

Again, we adapt the proof of Theorem 3.9. Analogously to Theorems 3.4 and 3.19,

Theorem 3.22 has the following two corollaries.

Corollary B.3. For every positive easym there exists nasym € N such that the
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following is true. If G is a permutation graph on n > nasym vertices, then fg(G) >
(1/3125 —¢).

Corollary B.4. For every positive econr there exist a positive conr and ncoNg €
N such that the following is true. If G is a permutation graph on n > nconr vertices
that satisfies fo(G) < (1/3125+8conw), then G contains at most econr - (3) induced
copies of F' and at most ecONF - (g) induced copies of F, where F € &§.

Proof of Theorem 3.23. We let C' := 81 x 900 = 72900 this time. Again, X is the
set of all non-permutation graphs. We do the following set-up of the parameters.
Let g1, be the value from Infinite Removal Lemma applied for gy, := (ESTAB>2 /C
and the family X U Eg, let dconr and nconr be the values from Corollary B.4
applied for econr = OrrL, and let nasym be the value from Corollary B.3 for
easym = (estap)? /C. We set dsrap := min{(estap)® /C,dconr} and ngrap :=
max{C/esTAB, N"CONF, 2 - DASYM }-

Let G be a graph on n vertices satisfying the assumptions of the theorem.
Corollary B.4 and Infinite Removal Lemma implies that G is in edit distance less
than % - ESTAB - (g) to a permutation graph G’ that satisfies Property A(6) and
Property B. Furthermore, fs(G') < 1/3125 + 2 - e2;,5/C. By Lemma 3.7, there
is a partition of G’ into at most 5 parts such that either each part is a clique and
there are no edges between the parts, or every edge between the parts is present
and the parts themselves form an independent set. Without loss of generality, G’ is
a disjoint union of at most 5 cliques.

It is enough to show that every clique has size at most (1/5 + esta/9) - n.
Let v := egTap/9 and suppose for a contradiction G’ contains a clique of size more
than (1/5 + ) - n. Again, let Hy := G'. For each i € [y-n/3], let v; be an
arbitrary vertex from a maximum clique inside H; 1, and let H; := H; 1 — v;. Let
Z = {v1,v2,...,0y.p3}. It follows that every vertex v € Z is contained in at least
((1/3125;:27/3)'") copies of Kg that are disjoint from Z \ {v}. Since ngrap > 24/v =

216/egTAB, We have

(1/5+2-v/3)-n 1 ~4\®> »° 1 y n®
( 5 “\572) 120 " \3125 "250) 120"

Furthermore,

1 (esTAB)? 1 7
Hip) < fo(Hi) < f6(G) < 2. = 2 500"
fo(Hiv1) < fo(Hi) < f6(G) < g5+ C 3125~ 900
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Our aim is to show that fs(H;) — fe(Hi+1) > 7/(100 - n). Indeed, we have

fe(Hi) — fo(Hiy1) > (515 + 255) - % + fo(Hit) - (D(Hé)_l) — Jo(Hit1) - (v([ﬁ{i))

)
6
n® CACE S
. (st + 50) - 155 — fo(Hign) - (Yi7Y)
)
6

S 6 (355 + 325 — fo(Hit1)) >§_ l_ﬁ

n - n 250 900

6 gl ) Y
> n <250 450 > 100n°
Corollary B.1 implies that fg (H,y_n/?)) > 1/3125 — (estaB)?/C. Therefore,

(esTaB)? , 1 (estaB)?  (esTaB)?
- >
3125 +2 C - f6(G )

Z 3195 7 C T 8S1x300

a contradiction.
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B.3

T1,1
T1,2
72,1
72,2
73,1
73,2

73,3

74,2
74,3
T4,4
T4,5
74,6
T4,7

74,8

75,3
75,4
76,1
76,2
77,1
77,2
78,1
78,2
79,1
79,2
79,3
79,4
79,5
79,6
79,7

79,8

The bijections 7; ;

=12: by,
=21: by,
=1234: b
=4321: b
=1243: b
=1324: b
=2134: b
=3421: b
=4231: b
=4312: b
=1342: b
=1423: b
=2314: b
=2431: b
=3124: b
=3241: b
=4132: b
=4213: b
=1432: b
=2341: b
=3214: b
=4123: b
=2143: b
=3412: b
=2413: b
=3142: b
= 123456:
= 654321
= 134562
= 162345:
= 234516:
= 265431
= 512346:
= 543261:
= 615432

= 643215:

,1
,2

2,1 ‘T

73,2 ‘T
73,3 ‘T
73,4 T
73,5 ‘T
73,6 T
74,1 T
T4,2 ¢
74,3 ¢
T4,4 T
T4,5 °
74,6 T
T4,7 T
74,8 T
75,1 ‘T
75,2 ‘T
75,3 ‘T
75,4 T
76,1 ‘T
76,2 ‘T
7,1

T7,2 ¢

brg.q
b"'S,Q :

b"’g,l :

b
b
b
b
b
b

brg g :

79,2 *
79,3 °
79,4 *
79,5 °
79,6 °

79,7 *

:= ab,

:= ab,

abced,

abced,

abed,

acdb,

cdba,

cdba,

acdb,

abed,

abed,

adbce,

cbda,

dcba,

dcba,

cbda,

adbce,

abed,

abed,

beda,

beda,

abed,

abed,

abed,

abed,

abed,

abcdef,
abcdef,
abcdef,
afbede,
edcbfa,
fedcba,
fedcba,
edcbfa,
afbede,

abedef,

T10,1
T10,2
T10,3
T10,4
T10,5
710,6
710,7
710,8
T11,1
T11,2
T11,3
T11,4
T11,5
T11,6
T11,7
T11,8
T12,1
T12,2
T12,3
T12,4
T12,5
T12,6
T12,7
T12,8
T13,1
T13,2
T13,3
T13,4
T13,5
T13,6
T13,7
T13,8
T14,1
T14,2
T14,3

T14,4

from the proof of Theorem 3.22

= 135264:
= 142635:
= 241536:
= 315246:
= 462531:
= 536241:
= 635142:
= 642513:
= 136425:
= 152463:
= 253146:

= 364251:

= 413526:
= 524631:
= 625314:
= 641352:
= 143652:
= 163254:
= 256341:
= 325416:
= 452361:
= 521436:
= 614523:
= 634125
= 214563:
= 216345:
= 234165:
= 365412:
= 412365:
= 543612:
= 561432:
= 563214:
= 231654:
= 312654:
= 321564:

= 321645:

briga :

b
b
b
b
b
b
b

bryy =
bryy g =
briy s :
brig,a
briys
brite

briiz:

b
b
b
b
b
b

brige *
brig7 *
brigg *
brigy ¢
brigs
briz 3+
brigg

brigs

b
b
b
b
b
b

T10,2 *
710,3 *
T10,4 °
710,5 *
710,6 *
710,7 *

710,8 ‘T

T11,8 *
T12,1 ¢
T12,2 ¢
T12,3 *
T12,4 *

T12,5 °

T13,6 °
T13,7 °
T13,8 °
T14,1 °
T14,2 *

T14,3 *

abedef,
adbfce,
ecfbda,
fedcba,
fedcba,
ecfbda,
adbfce,
abedef,
abedef,
aebdfc,
fedcba,
cfdbea,
cfdbea,
fedcba,
aebdfc,
abedef,
abedef,
afcbed,
fedcba,
debcefa,
debcefa,
fedcba,
afcbed,
abedef,
abedef,
ba fede,
edcfab,
fedcba,
fedcba,
edcfab,
bafcde,
abedef,
abedef,
cabfed,

defbac,

b714,4 := fedcba,
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T14,5 = 456132

T14,6 = 456213:

T14,7

T14,8

T15,4

715,

o

T15,

=Y

T15,7
T15,8
T16,1
T16,2
T16,3
T16,4
T16,5
T16,6
T16,7
T16,8
T17,1
T17,2
T17,3
T17,4
T17,5
T17,6
17,7
T17,8
T18,1
T18,2
T18,3
T18,4
T19,1
T19,2
719,3

719,4

465123:
546123:
234615:
261345:
265413:
314562:
463215:
512364:
516432:
543162:
235164:
241563:
316245:
365142:
412635:
461532:
536214:
542613:
235614:
265143:
341562:
361245:
416532:
436215:
512634:
542163:
236145:
365214:
412563:
541632:
236415:
263145:
265314:

364215:

b.,-1415 := fedcba,

b
b
b
b

T14,6 °
T14,7 ¢
T14,8 °

T15,1 °

defbac,
cabfed,
abcdef,
abcdef,
fedcba,

eabefd,

= dfcbae,

df cbae,
eabcfd,
fedcba,
abcdef,
abcdef,
ecfbad,

fedcba,

= dabfce,

= dabfce,

= fedcba,

= ecfbad,

= abcdef,

= abcdef,

= eabfed,

= dcfbae,

fedcba,
fedcba,
dcfbae,
eabfed,
abcdef,

abcdef,

= cfebad,

= cfebad,

= abcdef,

= abcdef,

= fedcba,

= eabdfc,

cfdbae,



T19,5
719,6
T19,7
T19,8
20,1
720,2
720,3
20,4
720,5
720,6
T20,7
720,8
21,1
21,2
721,3
21,4
22,1
22,2
22,3
22,4
22,5
22,6
22,7
T22,8
T23,1

723,2

= 413562:
= 512463:
= 514632:
= 541362:
= 236514:
= 265134:
= 346215:
= 362145:
= 415632:
= 431562:
= 512643:
= 541263:
= 241635:
= 315264:
= 462513:
= 536142:
= 241653:
= 316254:
= 325164:
= 356142:
= 421635:
= 452613:
= 461523:
= 536124:
= 245163:

= 361542:

brigs
brige
brig 7
brigg
brao,1 ¢
brao,2 ¢

bra0,3 ¢

broy
broy 3
broy,
brog1
brog o *
brag,s ¢
brog 4 *

braas ¢

20,4 °
20,5 °
20,6 °
20,7 °
720,8 °

21,1 ¢

22,6 °
22,7 °
22,8 °
23,1 °

T23,2 °

cfdbae,

eabdfc,

= fedcba,

abcdef,
abcdef,
eabfdc,
cdfbae,
fedcba,
fedcba,
cdfbae,
eabfde,
abcdef,
abcdef,
caebfd,
caebfd,
abcdef,
abcedef,
cafbed,
debfac,
fedcba,
fedcba,
debfac,
cafbed,
abcdef,
abcdef,

dafbce,

T26,1
T26,2
726,3
T26,4
726,5
T26,6
26,7
726,8
27,1
T27,2
T27,3

T27,4

= 416235:
= 532614:

= 245613:

= 316542:

= 432615:
= 461235: b
= 516234: b
= 532164: b
= 246135: b
= 362514: b
= 415263: b
= 531642:
= 246153:
= 351642:
= 352614:

= 361524:

= 425163:
= 426135:
= 531624: b
= 246315: b
= 263514: b
= 264135: b

= 362415: b
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bra