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Abstract

Acoustic cavitation plays an important role in a broad range of biomedical,

chemical and engineering applications, because of its magnificent

mechanical and chemical effects. Particularly, the irradiation of the

multi-frequency acoustic wave could be favouritely employed to promote

these effects, such as enhancing the intensity of sonoluminescence,

increasing the efficiency of sonochemical reaction, and improving the

accuracy of ultrasound imaging and tissue ablation. Therefore, a thorough

understanding of the bubble dynamics under the multi-frequency acoustic

irradiation is essential for promoting these effects in the practical

applications. The objective of this PhD programme is to investigate the

bubble dynamics under dual-frequency excitation systematically with

respect to bubble oscillations, the acoustical scattering cross section and

the secondary Bjerknes force (a mutual interaction force between two

oscillating bubbles). Spherical gas bubbles in water are considered. Both

analytical analysis based on perturbation method and numerical

simulations have been performed in this thesis.

The analytical solutions of the acoustical scattering cross section and the

secondary Bjerknes force under dual-frequency excitation have been



xxv

obtained and validated. The value of the secondary Bjerknes force can be

considered as the linear combination of the forces derived under the

single-frequency approaches. The predictions of those analytical solutions

will be impaired for the cases with large acoustic pressure amplitudes.

The numerical simulations reveal some unique features of the bubble

dynamics under dual-frequency excitation, e.g., the combination

resonances (i.e., their corresponding frequencies corresponding to the

linear combinations of the two component frequencies) and the

simultaneous resonances (i.e., the simultaneous occurrence of two

resonances in certain conditions). The influence of a number of paramount

parameters (e.g., the pressure amplitude, the equilibrium bubble radii, the

power allocation between the component waves, the phase difference and

the driving frequency) on the bubble dynamics under dual-frequency

excitation is also investigated with demonstrating examples. Based on that,

the parameters for optimizing the dual-frequency approach are proposed.

In addition, the effects of thermal effects and mass transfer on the bubble

dynamics have also been discussed.

Keywords: cavitation, bubble dynamics, dual-frequency excitation,

acoustical scattering cross section, Bjerknes force
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Chapter 1 Introduction

1.1 Research background

When stimulated by acoustic waves, bubbles in a liquid will oscillate,

termed as “acoustic cavitation” (Plesset and Prosperetti, 1977; Brennen,

1995). Acoustic cavitation has attracted much attention for many years

because of its unique physical complexity (Lauterborn and Kurz, 2010),

chemical applications (Ashokkumar, 2011) and biomedical significance

(Coussios and Roy, 2008). In particular, a considerable body of work has

been produced with multiple-frequency acoustic wave irradiation, i.e., two

or more acoustic waves with the same or different frequencies acting on

the cavitation bubbles simultaneously (as shown in Figure 1.1).

Researchers have found that the use of the multi-frequency ultrasound

field could lower the cavitation thresholds (Ciuti et al., 2000), generate

more new cavitation nuclei (Dezhkunov, 2003), increase the active

cavitational volume (Servant et al., 2003) and improve energy efficiency

(Sivakumar et al., 2002). So multi-frequency approaches have been

employed to enhance the intensity of sonoluminescence (Hargreaves and
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Matula, 2000; Holzfuss et al., 1998; Kanthale et al., 2008; Krefting et al.,

2002), to increase the efficiency of sonochemical reactions (Kanthale et al.,

2007; Moholkar, 2009; Brotchie et al., 2007; Feng et al., 2002; Tatake and

Pandit, 2002), to improve the accuracy of ultrasound imaging (Zheng et al.,

2005; Barati et al., 2007; Wyczalkowski and Szeri, 2003) and tissue

ablation (Guo et al., 2013). The efficiency of a wide range of engineering

applications could be significantly promoted by the multiple frequency

ultrasound systems.

Figure 1.1 A brief demonstration of bubbles under multi-frequency

acoustic excitation. This figure was adapted from Fig. 3 of Newhouse and

Shankar (1984).

1.1.1 Sonoluminescence under multi-frequency excitation

Marinesco and Trillat (1933) found a photographic plate exposed in an
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ultrasound field, which illustrated the phenomenon of multi-bubble

sonoluminescence (MBSL). Single-bubble sonoluminescence (SBSL) was

firstly fulfiled by Gaitan et al. (1992). The light emitted by the bubble

could even be seen by naked eyes. This emission has been attributed to the

focus of high energy released during bubble collapse (Brenner et al., 2002).

For resent reviews of sonoluminescence, readers are referred to Suslick

and Flannigan (2008), Putterman and Weninger (2000). Many papers have

reported that the use of multi-frequency acoustical excitation is an

efficient way to boost sonoluminescence.

Holzfuss et al. (1998) employed acoustic waves with a combination of the

fundamental frequency and its first harmonic with a wide range of

amplitudes and relative phases to increase the light emission during bubble

oscillations. They reported that the addition of the acoustic wave with the

frequency corresponding to the first harmonic can increase the emission of

sonoluminescence up to 300%, compared with that emitted by the system

with the fundamental frequency alone. It was also found that the relative

phase between the two acoustic components plays an important role on the

intensity of sonoluminescence. The position of the sonoluminescence

bubble was also numerically predicted based on the calculation of the

Bjerknes force and the stability criterion, which showed a good agreement
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with experimental data.

Krefting et al. (2002) investigated the influential parameters on the SBSL

under dual-frequency excitation more systematically. They also added the

first harmonic component sound wave into a sinusoidally driven system.

Through experimental measurements and numerical simulations, the

region of light emission was mapped into the parameter space spanned by

the two driving pressure amplitudes and their relative phase. Their results

showed that the addition of the second sound wave is able to amplify

SBSL in particular parameter zones.

Ciuti et al. (2000; 2003) studied the influential factors of the enhancement

of MBSL in acoustic fields with highly different frequencies. In most of

the cases, the addition of a low-frequency acoustic wave into the

high-frequency field lead to stronger light emission, except the case in

which the intensities of both component waves were much higher than the

corresponding cavitation thresholds. For resent researches of

sonoluminescence under multi-frequency excitation, readers are referred

to Hargreaves and Matula (2000), Kanthale et al. (2008), Brotchie et al.

(2008), Dezhkunov (2003), and Brotchie et al. (2007).
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1.1.2 Sonochemistry

The high temperature and pressure created by the bubble collapse can also

promote chemical activities within or near the bubbles, a process termed

as “sonochemistry” (Storey and Szeri, 2000). During such processes, the

formation of free radicals (e.g., OH , H  ) could induce new reactions or

accelerate existing chemical reactions, such as redox process, degradation

of macromolecules and decomposition of organic liquids (Henglein, 1987).

The applications of sonochemistry were reviewed recently in a number of

works (Adewuyi, 2001; Einhorn et al., 1989; Mason, 1999; Nikitenko et

al., 2010).

Like sonoluminescence, the efficiency of sonochemical reactions could be

enhanced by multi-frequency ultrasound approaches. Feng et al. (2002)

employed both continuous and pulsed dual-frequency systems by

combining two ultrasonic transducers: one with frequency of the kilohertz

order and the other one with frequency of the megahertz order. A

three-frequency system was also involved. They detected the release of

iodine, the change of electroconductivity, and the fluorescence formation

under different acoustical excitation conditions. The experiments

illustrated that a combination of the two sound sources can enhance the

yield of chemical products and the addition of the third sound wave could
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further increase the efficiency of sonochemistry. Furthermore, they studied

the influence of the frequency in the low megahertz range. The lower the

frequency was used, the higher cavitation yield was obtained.

The optimization of the cavitation effects in chemical reactors is also an

issue concerned in the applications of sonochemistry. Moholkar et al.

(2000 and 2009) revealed that the mode and spatial distribution of the

cavitation in the reactor could be controlled by adjusting the parameters of

the dual-frequency field. For instance, the phase difference between the

two ultrasound waves has greater influence on the production of radicals

than the frequency ratio does. They demonstrated that it was possible to

overcome the directional sensitivity of the cavitation events and the

erosion of the sonicator surface by adding extra ultrasound waves.

Kanthale et al. (2007) investigated the effects of the intensity and the

frequencies of dual-frequency system numerically and compared the

results with experimental data in the literature. Their work indicated that

there exists an optimum value of the ultrasound intensity in sonochemical

processes. And it is more efficient to use lower operating frequencies.

In the last decade, the application of multi-frequency systems in the field

of sonochemistry has been studied widely by researchers, such as Tatake
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and Pandit (2002), Servant et al. (2003), Sivakumar et al. (2002), Yasuda

et al. (2007), and Brotchie et al. (2009).

1.1.3 Biomedical applications

Acoustic cavitation has been applied widely in the field of biomedical

engineering. It can enhance the accuracy of ultrasound imaging with the

help of the micro-bubbles (Wu et al., 2003; Barati et al., 2007), promote

drug and gene transfer into tissue and cells (Song et al., 2007; Hernot and

Klibanov, 2008; Newman and Bettinger, 2007), and treat tumours and

ablate tissues (Xu et al., 2004; Maxwell et al., 2011). Multi-frequency

approach can advance these biomedical applications.

He et al. (2006) developed a high intensity focused ultrasound (HIFU)

device which could work both in a single-frequency mode and in a

dual-frequency mode. The experimental results showed that the

dual-frequency HIFU induced larger tissue lesion than under

single-frequency mode within the same time duration, which means that

dual-frequency could improve the efficiency of tumour ablation.

Meanwhile, this improvement also suggests that the main mechanism of

HIFU lesion is cavitation.
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Guo et al. (2013) placed tissues at the focus of HIFU transducers under

single-frequency, dual-frequency and tri-frequency modes respectively.

The multi-frequency mode could yield higher temperatures and a higher

growth rate of the temperature during tissue ablation. Their numerical

simulation agreed well with the experimental results.

1.2 Physical mechanisms

The underlying mechanisms of the effects of multi-frequency acoustical

excitation are still not clear. This section introduces some of the possible

candidates briefly.

1.2.1 Dissociation Hypothesis

Ketterling and Apfel (2000) explained the multi-frequency

sonoluminescence using phase space diagrams based on the dissociation

hypothesis (DH) initially proposed by Lohse and Hilgenfeldt (1997).

Because of the high temperature produced during SBSL, the nitrogen and

oxygen in air bubbles may dissociate to O and N which will

compose water soluble chemicals (e.g., 3NO and 4NH  ) in subsequent

reactions (Lohse and Hilgenfeldt, 1997; Lohse et al., 1997). Meanwhile,

the inert gas can accumulate in bubbles under strongly driven acoustic
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waves (Lohse et al., 1997; Hilgenfeldt et al., 1996). Therefore, the mass

transfer through chemical reaction and rectified diffusion should be

considered in SBSL. And the multi-frequency approach could enhance

these effects.

Ketterling and Apfel (2000) constructed a phase diagram based on

calculations of the equations of bubble motion, diffusive equilibrium and

the Mach criterion (assuming that the ratio of the bubble wall velocity and

the speed of the gas is larger than one), which separates the response of the

bubbles into four regions i.e. stable SL, unstable SL, stable non-SL and

unstable non-SL. Comparing their results with the experimental data of

Holzfuss et al. (1998), an excellent quantitative agreement is found.

1.2.2 Nucleation

For multiple bubble cavitation, Cuiti et al. (2000 and 2003) proposed that

when the liquids are irradiated by the ultrasound field consisting of two

highly different frequencies, a large amount of the new nuclei could be

generated by the added low-frequency (LF) acoustic wave, leading to the

enhancement of sonoluminescence.

According to Figure 1.2, at the moment of switching the LF field off, the
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sonoluminescence intensity did not fall down immediately. On the

contrary, it increased and then decreased smoothly. This phenomenon

suggests that the bubble fragments induced by bubble collapse became

new nuclei with smaller radii than the initial equilibrium radius, which

were likely to collapse in the high-frequency (HF) field. This mechanism

could explain the enhancement of sonoluminescence in the cases of

switching-on the LF and HF fields successively with a certain time

interval (as shown in Figure 1.3). The new nuclei generated by the LF

field could live for at least several seconds so that their oscillation and

collapse could strengthen the intensity of sonoluminescence in the HF

field.

Feng et al. (2002) investigated the cavitation yield from the aspect of

sonochemistry. They also pointed out that the production of new bubbles

by the LF field is one of possible mechanisms for the enhancement of

cavitation effects.
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Figure 1.2 Time history of the hydrophone output (upper record) and of

the photomultiplier (lower record). The black bars above the image

indicate switching-on of the LF field (lower bar) and the HF field (the

higher bar). High-frequency (HF) field parameters: pulse period 100 ms;

pulse duration 2 ms. This figure was adapted from Fig. 3 of Cuiti et al.

(2003).

Figure 1.3 Time history of the hydrophone output (upper record) and of

the photomultiplier (lower record) for different time intervals t

between the LF field off and the HF field on: 2t s  (a), 5s (b), 22.5s (c).

Other parameters are the same as in Figure 1.2. This figure was adapted

from Fig. 3 of Cuiti et al. (2003).
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1.2.3 Other mechanisms

1. Periodic decrease in the total quasi-static pressure in the LF field. 

The LF field is quasi-static in relation to the HF field when the frequency 

of the LF field is lower (ten times or more) than that of the HF field. The 

total pressure (the sum of the hydrostatic pressure and the pressure of the

LF field) decreases during the negative pressure amplitude half-period of

the LF field, leading to the increase of bubble size and bubble quantity. As 

a result, in the compression half-period, the increase of the LF-field 

quasi-static pressure may increase the efficiency of the bubble collapse in

the HF-field (Carpendo et al., 1987; Wolfrum et al., 2001; Iernettia et al.,

1997).

2. Suppression of the formation of stable bubble clusters.

The bubbles in clusters are close to each other so that they interact

strongly with shock waves and the Bjerknes forces (Leighton, 1994).

Therefore, bubbles deform under these interactions in the early stage of

collapse. The non-spherical collapse is less efficient from the aspect of the

energy concentration, which is considered to be one of the reasons

decreasing the intensity of MBSL by bubble cluster (Evans, 1996). The

addition of the LF acoustic wave can induce large bubbles. The shock

waves and liquid microjets produced by the collapse of these large bubbles
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could prevent the formation of bubble cluster. Hence, the overall

efficiency of the energy concentrated by cavitation bubbles may raise.

3. Optimization of sonochemical reactor.

The modelling and experimental investigation of Tatake and Pandit (2002)

revealed that the introduction of the second sound wave results in better

distribution of the cavitational activity in the reactor, because the

dual-frequency approach uniforms the yields of cavitation, minimises the

formation of standing waves and leads to an effective utilization of the

reactant volume.

1.3 Bubble dynamics under acoustic excitation

In the above sections, one can find that bubble dynamics play an essential

role in the aforementioned cavitation effects and related applications. In

this section, the basic features of bubble oscillations are introduced and

research in the fields of acoustical scattering cross section, the Bjerknes

force and chaos is reviewed.

1.3.1 Oscillations of bubbles

To solve the radial oscillations of gas bubbles in liquids, various models
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have been developed and reviewed by Plesset and Prosperetti (1977),

Prosperetti (1984a; 1984b), Feng and Leal (1997), Brenner et al. (2002)

and Lauterborn and Kurz (2010).

Lauterborn (1976) gave a thorough investigation of the basic properties of

nonlinear oscillations of gas bubbles in liquids numerically. The response

of a bubble to a single-frequency excitation was calculated and displayed

in the form of frequency response curves, i.e., the maximum bubble radius

in steady-state oscillation (non-dimensionalized by the equilibrium bubble

radius) versus driving frequency. Figure 1.4 shows typical response curves

with special features of nonlinear oscillations. The expression n m (here,

m and n are two integers) above the peaks represents the order of the

resonance. Cases with m=1 and n=2, 3… correspond to harmonics; cases

with m=2, 3… and n=1 correspond to subharmonics; cases with m=2, 3…

and n=2, 3… correspond to ultraharmonics. There exist thresholds for

subharmonics and ultraharmonics. Figure 1.5 illustrates the threshold for

the subharmonic of the order 1 2 varying with bubble radii. For detailed

definition and the descriptions of the resonances and nonlinear phenomena

(e.g., jump phenomenon, hysteresis) mentioned above, readers are referred

to Lauterborn (1976).
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Figure 1.4 Frequency response curves for a bubble in water with a radius

at rest of 10nR   μm for different sound pressure amplitudes AP of (a)

0.4, (b) 0.5, (c) 0.6, (d) 0.7, and (e) 0.8 bar.  is the frequency of the

driving sound field. 0 is the natural frequency of the bubble oscillation.

maxR is the maximum radius of the bubble during its steady-state

oscillation. The numbers marked above the peaks are the orders of the

resonances, represented as n m . The dots and the arrows belong to curve

(e). The arrows indicate that the corresponding stationary solution is out of

the range of the diagram or that no stationary solution could be found. In

this case the values of the amplitudes were also very high oscillating

around some value outside the diagram. This figure was adapted from Fig.

3 of Lauterborn (1976).
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Figure 1.5 Threshold for the occurrence of the first subharmonic

oscillation (of order 1 2 at 0 2   ) versus the equilibrium bubble

radius (solid line).  is the frequency of the driving sound field. 0 is

the natural frequency of the bubble oscillation. AP is the amplitude of

sound pressure. This figure was adapted from Fig. 13 of Lauterborn

(1976).

The power spectrum can be used to describe the property of bubble

oscillators. By solving the bubble motion equations, the variations of

bubble radius with time could be obtained (as shown in Figure 1.6). Then

through the Fourier transform, the “time domain” diagram could be

transformed to the “frequency domain” diagram, i.e., the power spectrum

[as shown in Figure 1.7(a)], the corresponding frequencies of the bands

are the driving frequency  and its integer multiples, i.e., the main
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resonance and its harmonics. In particular conditions, as shown in Figure

1.7(b), there are bands at 2 , 3 2 and 5 2 which represent

subharmonic and ultraharmonics respectively. These lines are also typical

bands which usually appear in the scattered signals (i.e., acoustical echo of

bubble oscillations) in experiments.

Figure 1.6 Non-dimensionized bubble radius versus time. Equilibrium

bubble radius nR  is 10 μm. Sound pressure amplitude is 90 kPa. Driving 

frequency v is 207 kHz for upper diagram and 197 kHz for lower diagram.

This figure was adapted from Fig. 13 of Lauterborn (1988).
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So far as we know, most published papers mainly focused on the

application of the sum and difference of the driving frequencies in

multi-frequency systems (Wyczalkowski and Szeri, 2003; Phelps and

Leighton, 1994; Wu et al., 2005). The fundamental properties of bubble

dynamics (for instance, the special bands marked by ◆ shown in Figure

1.8) under multi-frequency acoustical excitation have not been studied

systematically. However, these features are essential for understanding the

bubble behaviour under multi-frequency excitation as well as expanding

their applications.

1.3.2 Acoustical scattering cross section

During the oscillations of bubbles, a diverging spherical wave can be

emitted and radiation pressure can be generated within the liquid

surrounding the bubbles. The acoustical scattering cross section, defined

as the square of the ratio between the amplitude of the radiated wave by

bubbles and the amplitude of the incident acoustic wave (Medwin, 1977),

is usually employed as a criterion of the scattering ability of the bubbles.

This scattering force of cavitation bubbles is essential for facilitating the

reaction of chemical processes (Shah et al., 1999; Gogate et al., 2001;

Vichare et al., 2000; Yoo and Han, 1982), measuring bubble size

distributions (Newhouse and Shankar, 1984; Sutin et al, 1998; Czerski,
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2012), de-agglomerating particle clusters (Wagterveld et al., 2011; Sauter

et al., 2008; Marković et al., 2008), refining grain structures of metals 

(Eskin and Eskin, 2003; Eskin, 1994; Komarov et al., 2013), explaining

unusual bubbles in stranding marine mammals caused by anthropogenic

sounds (e.g., sonar) (Jepson et al., 2003; Cox et al., 2006; Crum et al.,

2005), and performing non-invasive therapy and drug delivery (Coussios

et al., 2008; ter Haar and Daniels, 1981; Dollet et al., 2008).

The acoustical scattering cross section of gas bubbles has been studied by

many researchers over several decades. The most widely cited formula for

acoustical scattering cross section of gas bubbles was mainly developed by

Wildt (1946) and Medwin (1977). A near-resonance correction based on

the Wildt-Medwin formula was initially proposed by Weston (1967) and

recently generalized by Zhang (2013a). d’Agostino and Brennen (1988)

studied the acoustical absorption and scattering cross sections of spherical

bubble clouds. Leroy et al. (2009) studied the scattering behaviour of a

monodisperse layer of bubbles. Hilgenfeldt et al. (1998) proposed a

unified theory for the scattering phenomenon of bubbles for diagnostic

ultrasound. Clarke and Leighton (2000) investigated the effects of the

transient state on the scattering cross section of bubbles. However, in the

literature, the acoustical cross section of bubble under dual-frequency
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excitation has not yet been studied.

1.3.3 Bjerknes forces

When gas bubbles are driven by a sound field in a liquid, the radiation

force induced by the acoustic pressure gradient could cause mutual

interaction between bubbles, this phenomenon was firstly reported by

Bjerknes (Bjerknes, 1906). The force due to the direct effect of the sound

field is named as “primary Bjerknes force”. The force generated by other

oscillating bubbles which causes the mutual attraction or repulsion

between bubbles is named as “secondary Bjerknes force” (Crum, 1975;

Leighton, 1994).

The Bjerknes forces are widely present in bubble systems. In a chemical

reactor, such as a bubble column, the acoustic waves can enhance the mass

transfer rate and the liquid-phase turbulence significantly through the

Bjerknes forces (Fan and Cui, 2005; Ellenbergur et al., 2005; Waghmare et

al., 2007). The Bjerknes forces will also affect the intensity and the active

volume of cavitation of the chemical reactor (Kanthale et al., 2003). In

medical practices, the Bjerknes forces can be employed to manipulate

micro bubbles filled with drugs (Shortencarier et al., 2004; Rychak et al.,

2005; Yoshida et al., 2011).
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As a basic phenomenon of acoustic cavitation, the mutual interaction

between bubbles induced by the secondary Bjerknes force has been

investigated theoretically and experimentally by many researchers.

According to the linear theory (Bjerknes, 1906; Mettin et al., 1997;

Doinikov, 1999), the direction of the secondary Bjerknes force between

two bubbles depends on the relationships between the frequency of the

driving acoustic wave and the linear resonance frequencies of the two

bubbles. If the driving frequency lies between the linear resonance

frequencies of the two bubbles, the interaction force between the two

bubbles is repulsive. Otherwise, they will attract each other. However, this

theory is based on the assumptions of the small pressure amplitude of the

acoustic field and the large distance between bubbles. There are many

experimental results which could not explained by this theory. For

instance, the bubbles in a strong sound field will accumulate and form

ribbon-like structures termed as “streamers” (Akhatov et al., 1994;

Lauterborn and Ohl, 1997; Mettin et al., 1999). The direction of the

secondary Bjerknes force reverses at a specific distance (Yoshida et al.,

2011). And periodic motion pattern appears when the bubbles of equal

sizes are forced near their resonance frequency (Barbat et al., 1999).
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In the past decades, many efforts have been made on the development of

the theory propose by Bjerknes (1906). The nonlinearity of the bubble

oscillators is one of the primary factors leading to sign reversals of the

Bjerknes force. Oguz and Prosperetti (1990) reported that the repulsion

also exists in the case of the driving frequency below the linear resonance

frequencies of the two bubbles, even there is slightly nonlinear oscillation

when the driving pressure amplitude is below 0.5 bar. Mettin et al. (1997)

found the same phenomenon in the cases of the oscillating bubbles with

strong collapse under the acoustic field with a high pressure amplitude.

Doinikov (1999) and Pelekasis et al. (2004) investigated the effects of the

harmonics of bubble oscillations on the secondary Bjerknes force. The

secondary Bjerknes force is also related to the distance between the

bubbles. The sign of the secondary Bjerknes force changes during the

bubbles getting close to each other (Harkin et al., 2001; Doinikov and

Zavtrak, 1995; Ida, 2003). The viscosity (Doinikov, 2002) and the

compressibility (Doinikov and Zavtrak, 1997) of the liquid also influence

the mutual interactions between bubbles. For other recent studies of the

secondary Bjerknes force, readers are referred to Doinikov et al. (2005),

Pelekasis and Tsamopoulos (1993a and 1993b) and Ida (2005 and 2009).

However, as far as the author is aware, no researcher has systematically
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studied the secondary Bjerknes force under the multi-frequency excitation,

which is an important topic for the further application of multi-frequency

approaches.

1.3.4 Bifurcation and Chaotic oscillations

For a bubble oscillator forced by a sound wave with period T, the period

of its radial oscillation should be equal to T according to the linear theory.

If the pressure amplitude is higher than the threshold, the subharmonic

oscillation appears where the corresponding driven frequency is 02 ( 0

is the natural frequency of bubble oscillations), as shown in Figure 1.4.

Meanwhile, the period of bubble oscillation becomes 2T. This change of

the oscillation state is called “period-doubling” (Lauterborn and Parlitz,

1988). Not only the change of pressure amplitude but also the variation of

driven frequency could induce period-doubling, as shown in Figure 1.7.

Figure 1.9 demonstrates period-doubling by adjusting one particular

parameter of the oscillating system. The trajectory shown at the beginning

is a typical phase space diagram (see “Jordan and Smith, 2007” for the

details of the phase diagram) of a bubble oscillating with the period of the

driving sound wave, named as “limit cycle”. When the parameter of the

system,  , becomes 1 , the period doubles to 2T. If the parameter further
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changes to 2 , the period reaches 4T. Then after infinitely successive

doubling, there is no certain period for bubble oscillating and it turns into

chaotic oscillation. The changing parameter is called the control

parameter. The changes of the state of the bubble at particular values of

the parameter are called bifurcations. If the limit sets (named “attractors”)

of the bubble oscillator are plotted versus the control parameter, a

bifurcation diagram can be obtained.

Figure 1.9 Period-doubling route to chaos via an infinite cascade of

period-doubling bifurcations. This figure was adapted from Fig. 8 of

Lauterborn and Parlitz (1988).

As shown in Figure 1.9, the local bifurcations could lead to a route to

chaos. There are three basic routes to chaos, i.e., via Hopf bifurcations, via

saddle-node bifurcations and via period-doubling bifurcations respectively

(Eckmann, 1981). Parlitz et al. (1990) studied the bifurcation structures

and resonances of a gas bubble oscillator driven by an ultrasound wave in

water. The frequency bifurcation diagram shown in Figure 1.10 illustrates
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how the attractors vary with the driven frequency. The arrows indicate the

saddle-node bifurcation points, and the “bubble” like structure near the

resonance 1,2R (i.e., subharmonic) indicates period-doubling bifurcation

points. Figure 1.11 further illustrates the sequences of the period-doubling

bifurcation structure of resonance 1,2R , leading to chaos. All these results

reveal the evolution of bifurcation structures along with the frequency and

the pressure amplitude of the external excitation.

Figure 1.10 Frequency bifurcation diagram for 40sP  kPa.  is the

frequency of the driving sound field. sP is the pressure of driving sound.

nR is the equilibrium radius of the bubble. The arrows indicate transitions

at saddle-node bifurcation points. This figure was adapted from Fig. 8 of

Parlitz et al. (1990).

Behnia et al. (2009a) calculated the sets of bifurcation diagrams of single

bubble oscillation under ultrasound waves with several different control

parameters, such as sound pressure, driving frequency, bubble radius,
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surface tension and viscosity. The results illustrated rich patterns of

bifurcation and chaotic phenomenon. Behnia et al. (2009b) proposed that

0R is the initial bubble radius and  is the wavelength

of the sound wave) could be a criterion to classify the patterns of the

nonlinear bubble behaviour. For other recent works on chaotic behaviour

of bubble oscillations, readers are referred to Lauterborn

); Lauterborn, et al. (1994, 2008), Simon et al. (2002),

Cabeza et al. (1998), and Behnia et al. (2013a, 2013b).
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for increasing sound pressure. This figure was adapted from Fig 15 of
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unpredictable behaviour owing to the sensitivity to initial conditions (Ott,

2002; Giordano and Nakanishi, 2006). Chaos widely exists in dynamical

systems. Because of its unpredictability, chaotic oscillation should be

avoided in the practices of sonochemistry, ultrasound enhanced drug

delivery and surgery. The addition of the second forcing term is one

method to control chaos, which has been successively applied in a

pendulum system (Braiman and Goldhirsch, 1991), Duffing-Holmes

oscillator (Chacón and Bejarano, 1993; Jing and Wang, 2005) and electric

circuit (Tamura et al., 1999). Behnia et al. (2009c) found that the addition

of the second sound wave, i.e., the usage of the dual-frequency system,

could also reduce the chaotic oscillations of the bubbles to the regular ones.

They discussed the influence of the frequency of the second wave and the

phase difference between two waves. And numerical simulations were

performed on the progress of HIFU tumour ablation.

However, the studies of Behnia et al. (2009c) were performed in a very

narrow range of parameter zones, i.e., the pressure amplitude was from

1.55 MPa to 1.7 MPa. Actually, multi-frequency excitation may lower the

critical pressure amplitude corresponding to the appearance of chaotic

oscillation (Szeri and Leal, 1991), which means that the addition of the

second sound wave may induce chaos. Therefore, for a deeper
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understanding of bubble behaviour under multi-frequency excitation and

better applications of multi-frequency systems in the fields mentioned

before, a systematic investigation of the chaotic oscillation of bubbles

under multi-frequency excitation is necessary.

1.4 Objectives of thesis

In this thesis, the bubble dynamics under dual-frequency excitation have

been investigated systematically in respects of the basic properties of

bubble oscillations, the acoustical scattering cross section, and the

secondary Bjerknes force. The whole thesis is organized as follows:

Chapter 2 focuses on the fundamental properties of bubble oscillations

under dual-frequency excitation. By employing the power spectrum and

the response curves, the unique features (termed as “combination

resonance” and “simultaneous resonance”) of bubble oscillations under

dual-frequency excitation are revealed and investigated quantitatively. The

influence of several paramount parameters, such as the pressure amplitude,

the equilibrium bubble radius, the power allocation between the

component waves, the phase difference and the driving frequency, on the

bubble dynamics is discussed.
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In Chapter 3, both the analytical solutions and the numerical simulations

for the acoustical scattering cross section of gas bubbles under

dual-frequency excitation are obtained. And the validity of the analytical

solution is verified. The nonlinear characteristics (e.g., the combination

resonances) as well as the enhancement of the scattering cross section in

dual-frequency approach are revealed. Furthermore, the influential

parameters (e.g., the pressure amplitude, the energy allocation between

two component acoustic waves and the driving frequencies) on scattering

cross section are also investigated with demonstrating examples.

In Chapter 4, the analytical solution for the secondary Bjerknes force

under dual-frequency excitation is obtained and validated. The values of

the secondary Bjerknes force under dual-frequency excitation are

investigated numerically in a wide range of equilibrium bubble radii. And

the parameter zone is classified into different regions according to the sign

of the secondary Bjerknes force. The unique characteristics (i.e., the

combination resonances and the complicated patterns of the parameter

zone for sign change) of the secondary Bjerknes force under

dual-frequency excitation are revealed. Moreover, the influence of

pressure amplitude on the secondary Bjerknes force is also revealed.
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In Chapter 5, the contributions obtained from this PhD work to the further

understanding of the bubble dynamics under dual-frequency excitation are

summarized and the possible future works on this subject are proposed.
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Chapter 2 Fundamentals of

Bubble Dynamics under

Dual-Frequency Excitation

In this chapter, the basic properties of gas bubbles oscillating in liquid

under dual-frequency acoustical excitation are investigated numerically.

The whole chapter is organized as below: in Sec. 2.1, the basic equations

related to bubble motion and the numerical methods for solving those

equations are briefly introduced; in Sec. 2.2, the fundamentals of bubble

oscillations under dual-frequency excitation are studied; in Sec. 2.3, the

influential parameters on bubble oscillations (e.g., pressure amplitude,

energy allocation and driving frequencies) are discussed. The primary

assumptions employed in this chapter (and following chapters) are:

1. The gas and liquids are both Newtonian fluids.

2. The bubble oscillates spherically symmetrically: The bubbles studied in

this thesis are smaller than 100 µm under acoustic excitation with low

pressure amplitude, so due to surface tension, they will keep spherical.

For very strong excitation, the shape stability will be an important issue

(Eller and Crum, 1970; Shaw, 2006).

3. Only radial motion of bubble is considered: this thesis focuses on
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revealing the new features of the dual-frequency excitation so that the

influence of translational motion on the radial oscillation is not taken

into consideration to make the analysis simpler. Therefore, the effects

of gravity and buoyancy, leading to position moving, are also omitted.

For the studies in which the translational motion is coupled with the

radial oscillation, readers are referred to Doinikov (2001 and 2004).

4. Vapour pressure is negligible: the saturated vapour pressure in air is

only 2300 Pa at 20℃, which is far less than the gas pressure inside

bubble [i.e.,  
3

, 0 0in gasP P R R


 ].

2.1 Basic equations and solutions

The equation of bubble motion can be written as (Keller and Miksis, 1980)

2 ( , ) ( )3
1 1 1

2 3
ext s

l l l l

p R t p tR R R
RR R

c c c 

      
         

     

  
 

[ ( , ) ( )]ext s

l l

d p R t p tR

c dt


 , (2.1)

where

 
 3

0 0

0

42 2
( , ) / l th

extp R t P R R R
R R R

    
    
 

 , (2.2)

with

 0( ) 1 cos( )s s s sp t P t     (2.3)

for single-frequency excitation,
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or with

 0 1 1 1 2 2 2( ) 1 cos( ) cos( )sp t P t t          (2.4)

for dual-frequency excitation.

Here, R is the instantaneous bubble radius; the overdot denotes the time

derivative; lc is the speed of sound in the liquid; l is the density of the

liquid; t is the time; 0P is the ambient pressure;  is the surface tension

coefficient; 0R is the equilibrium bubble radius;  is the polytropic

exponent; l is the viscosity of the liquid; th is the effective thermal

viscosity; s , 1 and 2 are the non-dimensional amplitude of the

external acoustic excitation; s , 1 and 2 are the angular frequencies

of the external acoustic excitation; s , 1 and 2 are the phases of the

external acoustic waves. The natural frequency of the bubble oscillator is

referenced to (Brennen, 1995; Leighton, 1994):

2
0 02

0 0 0

1 2 2
3

l

P
R R R

 
 



  
    

  
. (2.5)

For numerical simulations, Eqs. (2.1)-(2.4) are solved by the fourth order

Runge-Kutta Mehtod (Dormand and Prince, 1980) with fixed step size of

time ( t ). Then the time domain solution  R t is transformed to a

frequency domain function  Y f by the Fast Fourier Transform (FFT).

Here, the numerical solution of  R t is a vector composed by discrete
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values. The total number of the elements is J. Its Fourier transform is

 
1

2 /

0

J
i jk J

k
j

Y R j t e 






  (2.6)

Where kY is corresponding to the discrete frequency  kf k J t  .

The power of the corresponding frequency is given by

   k kP f Y f (2.7)

Thus, the power spectrum of bubble oscillations is obtained by plotting the

function  kP f . For convenience, the radial oscillations of air bubbles in

water are considered. And the effects of damping caused by the heat

transfer across bubble interfaces are ignored (i.e., 0th  ). In this chapter,

discussions focus on cases with small and moderate acoustic pressure

amplitudes.

The constants employed in numerical method are listed in Appendix A. In

the following figures and discussions, non-dimensional values are used,

such as 0/  ,  ,  0 0X R R R  and  max max 0 0X R R R  . Here,

maxR is the maximum radius of the bubble during steady-state oscillations.

The ratio of the pressure amplitudes of the two component acoustic waves

is defined as 2 1A AN P P , which reflects the power allocation between

the high-frequency component and the low-frequency component. For

comparison, the total input power,  
1 22 2

1 2e A AP P P  , remains constant

during the simulations of the cases with different N. In the following
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sections, all the discussions are based on the results of numerical

solutions.

2.2 Response of bubbles under dual-frequency

acoustic excitation

In this section, the basic properties of bubble oscillation under

dual-frequency acoustic excitation are investigated. In this section, for

simplicity, we assume 1 2  . For more general cases (e.g., two acoustic

waves with unequal amplitudes), readers are referred to Sec. 2.3.

2.2.1 Basic structures

To avoid the effects of resonance (e.g., the strong nonlinear property near

the natural frequency of the bubble oscillator), the sound frequencies

employed in this section are far below the resonant frequency of bubbles.

Hence, 1 00.03  and 2 1 01.9 0.057    . The equilibrium bubble

radius 0R  is 10 μm. The non-dimensional pressure amplitude of the 

sound wave, 0eP P , is 0.0707 (i.e., 1 2 0.05   ).

Figures 2.1 and 2.2 show the variations of the non-dimensional bubble

radius X [  0 0X R R R  ] versus time under single- and dual-frequency

excitation respectively. As shown in Figure 2.1, for single-frequency
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acoustic excitation, gas bubbles show steady oscillations with their

amplitude and frequency unchanged, while for dual-frequency acoustic

excitation (as shown in Figure 2.2), the oscillations of gas bubbles are

much more complicated with the significant oscillations of the frequency

and amplitude. The corresponding FFT analysis of the variations of the

instantaneous bubble radius under single- and dual-frequency acoustic

excitation are shown in Figures 2.3 and 2.4. For the case under

single-frequency excitation (as shown in Figure 2.3), the power spectrum

is quite simple, including a main band corresponding to the driving

frequency of the acoustic excitation ( 0 0.03   ) and its first

( 0 0.06   ) and the second harmonics ( 0 0.09   ).

Figure 2.1 Variations of the non-dimensional bubble radius during its

oscillation under single-frequency acoustic excitation versus time.

 0 0X R R R  . 0 10R   μm. 00.03s  . 0.05  .



Figure 2.2 Variations of the non

oscillation under

 0 0X R R R  .

1 2 0.05   .

Figure 2.3 Power spectrum of bubble

acoustic excitation.

39

Variations of the non-dimensional bubble radius

dual-frequency acoustic excitation versus

X R R R 0 10R   μm. 1 00.03  . 2 1 01.9 0.057   

2.3 Power spectrum of bubble oscillations under single-

0 10R   μm. 00.03s  . 0.05  .

during its

versus time.

2 1 01.9 0.057    .

-frequency



Figure 2.4 Power spectrum of bubble

acoustic excitation.

1 2 0.05   . The

corresponding to the

the text for the details.

As shown in Figure

1 2 0.05   ), the oscillations of gas bubbles

excitation are already very complex.

the main resonance

much more bands.

bands can be expressed

two component sound waves

integers). In Figure

40

Power spectrum of bubble oscillations under dual-

acoustic excitation. 0 10R   μm. 1 00.03  . 2 1 01.9 0.057   

. The integers with brackets above the peaks stand for (

to the frequency 1 2p n m    . Readers are referred to

details.

ure 2.4, even for a relatively low pressure amplitude

the oscillations of gas bubbles under dual-

are already very complex. Besides the bands corresponding to

resonances and the harmonics, the power spectrum illustrates

much more bands. Furthermore, the corresponding frequencies of the

expressed by the linear combination of the frequencies of the

sound waves, i.e., 1 2p n m    (n and m

ure 2.4, the integers with brackets above the peaks stand

-frequency

2 1 01.9 0.057    .

with brackets above the peaks stand for (n,m),

Readers are referred to

a relatively low pressure amplitude (e.g.,

-frequency

corresponding to

, the power spectrum illustrates

he corresponding frequencies of these

linear combination of the frequencies of the

m are two

he integers with brackets above the peaks stand
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for  ,n m .

According to the values of n and m, the bands in the power spectrum can

be classified into the following categories:

a) Bands corresponding to the main resonances, e.g., the bands marked

with (1,0) and (0,1).

b) Bands corresponding to the harmonics, e.g., the bands marked with

(n,0) and (0,m), where n =1-3 and m =1-4.

c) Bands corresponding to the combination resonances, e.g., the bands

marked with  ,n m , where both n and m are not equal to zero.

The categories of the bands and the value of their power are shown in

Table 2.1.



42

Table 2.1 The categories of the bands in Figure 2.4 and their power.

1 00.03  . 2 1 01.9 0.057    . 0 10R   μm. 1 2 0.05   .

n m ω/ω0 Power

Main bands
1 0 0.030 8.57×10-3

0 1 0.057 9.09×10-3

Harmonics

2 0 0.060 1.16×10-4

3 0 0.090 9.53×10-6

0 2 0.114 1.42×10-4

0 3 0.171 2.88×10-6

0 4 0.228 1.83×10-6

Combination bands

-1 1 0.027 2.76×10-4

-1 2 0.084 1.46×10-5

-1 3 0.141 3.58×10-6

1 1 0.087 2.93×10-4

1 2 0.144 5.62×10-6

1 3 0.201 2.24×10-6

2 -1 0.003 2.17×10-5

2 1 0.117 6.85×10-6

2 2 0.174 2.72×10-6

3 1 0.147 3.32×10-6

3 2 0.204 2.06×10-6
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To investigate the properties of these bands, the power of the bands in

Figure 2.4 are plotted versus n and m in Figure 2.5. The size of the circle

reflects the amplitude of the power of the band shown in Figure 2.4. From

Figure 2.5, one can conclude that the power of the band decreases with the

increase of n m . Table 2.2 summarizes the relationship between

n m and the band power. Basically, for the same value of n m , the

power of the bands is of the same order. In this section, for the purpose of

simplification, we assume that 1 2  . For more general cases, readers

are referred to Sec. 2.3.

Figure 2.5 The power of various resonances shown in Figure 2.4 plotted

versus n and m. 0 10R   μm. 1 00.03  . 2 1 01.9 0.057    .

1 2 0.05   . The size and the greyscale of the circles in the figure

represent the power of the bands.
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Table 2.2 The power of the bands in Figure 2.4, as a function of n, m and

n m .

n m n m Power

1 0
1

8.57×10-3

0 1 9.09×10-3

1 1

2

2.93×10-4

-1 1 2.76×10-4

0 2 1.42×10-4

2 0 1.16×10-4

2 -1

3

2.17×10-5

-1 2 1.46×10-5

3 0 9.53×10-6

2 1 6.85×10-6

1 2 5.62×10-6

0 3 2.88×10-6

-1 3

4

3.58×10-6

3 1 3.32×10-6

2 2 2.72×10-6

1 3 2.24×10-6

0 4 1.83×10-6

3 2 5 2.06×10-6
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2.2.2 Combination resonances

By comparing Figures 2.3 and 2.4, one can find that the combination

resonance is one of the unique features of the bubble oscillations under

dual-frequency excitation. In this section, the combination resonance at

1 2p    , i.e., band (1,1), is taken as an example to illustrate the

characteristics of the combination resonance.

To investigate the influence of the driving frequencies on combination

resonances, four cases with the fixed 1 (equal to 00.35 ) and different

2 (equal to 00.65 , 00.45 , 00.25 and 00.85 respectively) are

studied. Figure 2.6 shows a comparison of the power spectra between the

four cases, and the value of 1 2 0    increases from image (a) to (d).

The powers of the main band (1,0) and the combination band (1,1)

[represented as P(1,0) and P(1,1) respectively] are listed in Table 2.3. For

comparison between different cases, the power of band (1,1) is

non-dimensionalized using the power of band (1,0). Figure 2.6 and Table

2.3 both reveal that P(1,1) reaches a maximum value when 1 2 0   

(i.e., 2 00.65  ), which is even higher than the power of main band

P(1,0). Moreover, the value of P(1,1) decreases with the increase of the

value of 1 2 0    .
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Figure 2.6 Power spectra of bubble oscillations under dual-frequency

acoustic excitation. 1 00.35  . (a) 2 00.65  ; (b) 2 00.45  ; (c)

2 00.25  ; (d) 2 00.85  . 0 10R   μm. 1 2 0.05   .

Table 2.3 The power of bands (1,0) and (1,1) for different cases shown in

Figure 2.6.

2

0.65 0 0.45 0 0.25 0 0.85 0

P(1,0) 0.0105 0.0107 0.0106 0.0104

P(1,1) 0.0128 0.0012 0.0007 0.0038

P(1,1)/P(1,0) 1.22 0.11 0.07 0.37
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For a more direct investigation, frequency response curves of bubble

oscillation amplitudes [represented by  max max 0 0X R R R  ] are

calculated by fixing the frequency of one component of the driving sound

waves while changing the other. Figures 2.7 and 2.8 compare the response

curves of gas bubble oscillations under single- and dual-frequency

excitation with 0eP P equalling to 0.0707 and 0.424 respectively. One of

the component frequencies ( 1 ) remains as 00.35 . The integers with

brackets above the peaks stand for (n,m). Same as the definition in Sec.

2.2.1, the peaks can be classified into:

a) Main resonance, i.e., (0,1).

b) Harmonics, e.g., (0,m). m=1,2,….

c) Subharmonics, e.g.,
1

0,
2

 
 
 

as shown in Figure 2.8.

d) Combination resonances, e.g.,  ,n m with both n and m not equal

to zero.

Both curves in Figure 2.7 show harmonics (0,2), but only the curve

corresponding to the dual-frequency excitation shows combination

resonances, i.e., peaks marked by (1,1) and (-1,1). In the regions below

and above the main resonance, the oscillation amplitudes of the bubble

under dual-frequency excitation are higher than those under

single-frequency excitation. In contrast, in the region near the main
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resonance, the oscillation amplitudes under dual-frequency excitation are

smaller than those under single-frequency excitation. Therefore, in the

regions below and above the main resonance, the addition of the second

acoustic wave can strengthen the bubble oscillations while in the region

near the main resonance, the addition of the second acoustic wave would

not enhance the bubble oscillation. In Figure 2.8, the combination

resonances of higher orders, e.g., peaks marked with (2,1), (1,2), (-3,1),

are present in the case with a relatively high pressure amplitude

( 0 0.424eP P  ). The appearance of these combination resonances

strengthens the bubble oscillations under dual-frequency excitation

significantly. However, the subharmonic resonance marked as
1

0,
2

 
 
 

is

suppressed under the dual-frequency excitation.



Figure 2.7 Response curves of gas bubble oscillation

single-frequency excitation (dashed line) and the dual

excitation (solid line). The hori

oscillation amplitude of bubbles under single

frequency 1 .  

 max max 0 0X R R R 
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Figure 2.7 Response curves of gas bubble oscillations

frequency excitation (dashed line) and the dual-

excitation (solid line). The horizontal line (dotted line) indicates the

oscillation amplitude of bubbles under single-frequency excitation with

1 00.35  . 0 10R   μm. N =1. 0eP P

max max 0 0X R R R .

under the

-frequency

) indicates the

frequency excitation with

0 0.0707P P  .



Figure 2.8 Response curves of gas bubble oscillation

single-frequency excitation (dashed line) and the dual

excitation (solid line). The horizontal line (dotted

oscillation amplitude of bubbles under the single

with frequency 1

 max max 0 0X R R R 
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Figure 2.8 Response curves of gas bubble oscillations

frequency excitation (dashed line) and the dual-

excitation (solid line). The horizontal line (dotted line) indicates the

oscillation amplitude of bubbles under the single-frequency excitation

1 . 1 00.35  . 0 10R   μm. N =1. eP P

max max 0 0X R R R .

under the

-frequency

) indicates the

frequency excitation

0 0.424eP P  .
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2.2.3 Simultaneous resonances

For oscillators under multi-frequency excitation, more than one resonance

might occur simultaneously (Nayfeh and Mook, 1979). For instance,

simultaneous resonances may occur: when 1 0(2 3)  and

2 0(1 3)  (i.e., 1 2 0    ), harmonic (0,3) and combination

resonance (1,1) happen together; when 1 0(1 2)  and 2 02  (i.e.,

2 1 02    ), harmonic (2,0), subharmonic
1

0,
2

 
 
 

and combination

resonance (-2,1) happen together.

Figure 2.9 demonstrates typical simultaneous resonances. When 2 0 

varies between 0.35 and 0.65, the response curves of bubble oscillation for

the cases with different 1 (equal to 1.4 0 , 1.45 0 , 1.5 0 , and 1.6 0

respectively) are compared. As shown in Figure 2.9, there are two peaks in

the range of 2 , i.e., the combination resonance (1,-1) and the harmonic

(0,2), for the cases with 1 equalling to 1.4 0 , 1.45 0 , and 1.6 0 . And

with the value of 1 approaching to 1.5 0 , the combination resonance

(1,-1) is getting close to the harmonic resonance (0,2). When 1 01.5  ,

the two peaks merge into one peak at 2 00.5  , which means that the

combination resonance and the first harmonic occur simultaneously in this

situation.
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Figure 2.9 Response curves of bubble oscillation under dual-frequency

excitation when 2 0 0.35 0.65    with: 1 01.4  (dashed line);

1.45 0 (dotted line); 1.5 0 (solid line); 1.6 0 (dash-dotted line)

respectively. 0 10R   μm. N =1. 0 0.141eP P  .  max max 0 0X R R R  .

2.3 Influential parameters on bubble dynamics

under dual-frequency excitation

In this section, the influence of several essential parameters of the

dual-frequency approach is numerically investigated, including the

acoustic pressure amplitude ( 0eP P ), the equilibrium radius of bubble

( 0R ), the energy allocation between two component frequencies (N), the

frequency of the acoustic wave ( 1 ) and the phase difference between two

component acoustic waves ( 2 1     ).
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2.3.1 Influence of the amplitude of sound pressure and the

bubble size

Figures 2.10-2.12 show the response curves of bubble oscillations under

dual-frequency excitation with different pressure amplitude. The

equilibrium radii of bubbles are 1 µm, 10 µm, and 50 µm respectively.

Similar with the characteristics of the response curves under

single-frequency excitation (as shown in Figure 1.4), the amplitudes of the

main resonances, the harmonics and the subharmonics increase with the

increase of the acoustic pressure amplitude. And they lean over towards

smaller bubble radii at higher acoustic pressure amplitudes, as shown in

Figures 2.11 and 2.12. The amplitudes of the combination resonances also

increase with increasing pressure amplitude. The amplitudes of the

combination resonances of higher orders (i.e., large values of n m ) are

smaller than those of lower orders (i.e., small values of n m ), but may

grow faster with the increase of the pressure amplitude. As shown in

Figure 2.12, there exist thresholds for subharmonics. The width of all the

resonances grows with the increase of pressure amplitude.



Figure 2.10 Response curves of bubble oscillation under dual

excitation with different pressure amplitude

line), 0.1 (dashed line), 0.2 (dotted line), 0.3 (solid line).

1 00.35  . max max 0 0X R R R
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Response curves of bubble oscillation under dual-

excitation with different pressure amplitudes: 1 2   0.05 (dash

line), 0.1 (dashed line), 0.2 (dotted line), 0.3 (solid line).

 max max 0 0X R R R  .

radii of bubbles can also affect the bubble oscillations

For small bubbles ( 0R =1 µm, shown in Figure 2.10), the bubble

oscillation is damped, leading to a strong suppression of the

combination resonances. In contrast, under the same pressure

amplitude, the harmonics and the combination resonances of high orders

are more obvious in the cases with bigger bubble radii ( 0 10R 

, shown in Figures 2.11 and 2.12). Furthermore, in Figure

response curves of bubble with equilibrium radius of 50 µm show several

-frequency

0.05 (dash-dotted

0 1R  μm. 

oscillations.

), the bubble

the harmonics

In contrast, under the same pressure

amplitude, the harmonics and the combination resonances of high orders
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will lower the thresholds of

Figure 2.11 Response curves of bubble oscillation under

excitation with different pressure amplitude

line), 0.1 (dashed line), 0.2 (dotted line), 0.3 (solid line).
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subharmonics or a combination of subharmonics, such as

1
,1

2

 
 
 

, which reveals that the increase of the bubble size

lower the thresholds of the subharmonics.

Figure 2.11 Response curves of bubble oscillation under dual-

excitation with different pressure amplitudes: 1 2   0.05 (dash

line), 0.1 (dashed line), 0.2 (dotted line), 0.3 (solid line). 0R

 max max 0 0X R R R  .

as
1

0,
2

 
 
 

,

bubble size

-frequency

0.05 (dash-dotted

0 10R   μm. 



Figure 2.12 Response curves of bubble oscillation under dual

excitation with different pressure amplitude

line), 0.1 (dashed line), 0.2 (dotted line), 0.3 (solid line).

1 00.35  . max max 0 0X R R R
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Figure 2.12 Response curves of bubble oscillation under dual-

excitation with different pressure amplitudes: 1 2   0.05 (dash

line), 0.1 (dashed line), 0.2 (dotted line), 0.3 (solid line). 0R

 max max 0 0X R R R  .

-frequency

0.05 (dash-dotted

0 50R   μm. 
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2.3.2 Influence of the energy allocation between two

component sound waves

The energy allocated between the two component sound waves, indicated

by N ( 2 1A AN P P ), can affect the power spectrum of bubble oscillations.

Figure 2.13 shows the power spectra of bubble oscillations under

dual-frequency excitation with different N. The frequencies of the external

acoustic waves employed here are far below the natural resonance, i.e.,

1 00.03  and 2 1 01.9 0.057    . 0R  is 10 μm. As shown in 

Figure 2.13, when the pressure amplitude of one component wave rises,

the power of the bands corresponding to its main resonance and harmonics

[i.e., the peaks of (n,0) or (0,m)] will increase. On the contrary, with the

decrease of the pressure amplitude of this component wave, the power of

the corresponding bands decreases, even possibly disappears. For instance,

the peaks of (0,3), (1,3), (0,4) vanish when N<1. Compared to the case

with 1N  , the change of N suppresses the power of combination

resonances (1,1) and (-1,1).
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Figure 2.13 Power spectra of bubble oscillations under dual-frequency

excitation with N = 0.1, 0.2, 1, 5, and 10 respectively. 0 10R   μm. 

1 00.03  . 2 1 01.9 0.057    . 0 0.0707eP P  .
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The response curves under the dual-frequency excitation with different N

are compared with the response curve under the single-frequency

excitation in Figures 2.14 and 2.15. For the dual-frequency excitation, one

of the component frequencies is fixed at 1 00.35  and the other

frequency 2 varies from 00.01 to 02.5 . The total power input

0eP P remains as constant 0.0707 in Figure 2.14 and 0.424 in Figure 2.15.

N=0.2, 0.5, 1, 2, and 5 respectively. When 2 is above the main

resonance, with decreasing N, the oscillation amplitudes increase except

for the subharmonics [e.g., resonance at
1

0,
2

 
 
 

] which are suppressed

when 1N  . In contrast, when 2 is near the main resonance, with

increasing N, the oscillation amplitudes increase. When 2 is below the

main resonance, the influence of N on bubble oscillations is much more

complicated. For N<1, the oscillation amplitudes near the harmonics [i.e.,

(0,2)] decrease with decreasing N while they do not differ much when

1N  . However, for combination resonances (1,1) and (-1,1), the

maximum values of oscillation amplitude are obtained in the case with

N=1. The combination resonances of higher order are illustrated in Figure

2.15(b). The combination resonances (2,1), (1,2), (1,3), (2,2) reach their

maximum values when 1N  . Figure 2.16 shows the influence of N on

the amplitudes of combination resonances (1,1), (-1,1), (2,1) and (1,2) in

details. ▲ indicates the maximum value of the amplitude of bubble 
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oscillations. One can find that the value of N corresponding to the

maximum values of the combination resonances approximates to 1 and

varies slightly with the order of the resonances.

Figure 2.14 The response curves of bubble oscillation under

single-frequency (dashed line) and dual-frequency acoustic excitation

(with different N). The horizontal line indicates the oscillation amplitude

of bubbles under single-frequency excitation with frequency 1 . 0 10R 

μm. 1 00.35  . 0 0.0707eP P  . N= 0.2, 0.5, 1, 2, 5 respectively.

 max max 0 0X R R R  .
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Figure 2.15 The response curves of bubble oscillation under

single-frequency (dotted line) and dual-frequency acoustic excitation (with

different N). The horizontal line indicates the oscillation amplitude of

bubbles under single-frequency excitation with frequency 1 . 0 10R 

μm. 1 00.35  . 0 0.424eP P  . N = 0.2, 0.5, 1, 2, 5 respectively. The

two numbers with brackets above the peaks stand for (n,m).

 max max 0 0X R R R  .



Figure 2.16 Amplitude of bubble oscillation

different combination resonances: (1,1) solid line, (

dotted line, (1,2) dash

maxX . 0 10R 

 max max 0 0X R R R 
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2.16 Amplitude of bubble oscillations versus power allocation

different combination resonances: (1,1) solid line, (-1,1) dashed line, (2,1)

dotted line, (1,2) dash-dotted line. ▲ indicates the maximum value of

10R   μm. 1 00.35  . 0eP P 

max max 0 0X R R R .

power allocation N at

1,1) dashed line, (2,1)

the maximum value of

0 0.424P P  .
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2.3.3 Influence of phase difference

Figure 2.17 shows the bubble oscillations (steady oscillation) under

dual-frequency excitation with the phase difference between the

component acoustic waves equal to zero, 2 ,  , and 3 2

respectively. As shown in Figure 2.17, the waveforms of the bubble

motion for different cases are quite different. For further investigation, the

corresponding response curves for different phase difference are shown in

Figure 2.18. The response curves overlap, which means that the amplitude

of bubble oscillations is not influenced by the phase difference between

the component acoustic waves.

Figure 2.17 Variations of the non-dimensional bubble radius during its

oscillation under dual-frequency acoustic excitation versus time.

2 1     = 0 (a), π/2 (b), π (c), 3π/2 (d) respectively. 1 00.35  .

2 00.7  . 1 2   0.05. 0 10R   μm.  0 0X R R R  .



Figure 2.18 Response curves of bubble oscillation

excitation with different phase difference:

π/2 (dashed line),

 max max 0 0X R R R 

0 10R   μm. 

2.3.4 Influence of

Figure 2.19 compares the response curves of bubble oscillations under

dual-frequency excitation with different driving frequency

variation of 1 would influence the positions of the combinati

resonances, for instance, the position of the peaks (1,1) and (

Secondly, the amplitude of bubble oscillations under single

excitation with different
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2.18 Response curves of bubble oscillations under dual-

excitation with different phase difference: 2 1 0      (solid line),

/2 (dashed line), π (dotted line), 3π/2 (dash-dotted line) respectively.

max max 0 0X R R R . 1 00.35  . 2 00.7  . 1 2  

Influence of driving frequency

Figure 2.19 compares the response curves of bubble oscillations under

frequency excitation with different driving frequency 1 .

 would influence the positions of the combinati

, for instance, the position of the peaks (1,1) and (

the amplitude of bubble oscillations under single-

different driving frequencies (i.e., 1 ) decreases

-frequency

0 (solid line),

dotted line) respectively.

1 2   0.05.

Figure 2.19 compares the response curves of bubble oscillations under

1 . Firstly, the

would influence the positions of the combination

, for instance, the position of the peaks (1,1) and (-1,1).

-frequency

decreases following
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the order 1 equalling to 00.8 , 00.5 , 00.35 , 02.35 (indicated as

the horizontal lines in Figure 2.19). In the regions below and above the

main resonance, the amplitudes of bubble oscillations decrease following

the same order. Particularly, for the case with 1 02.35  , the amplitude

of bubble oscillations under dual-frequency excitation is even smaller than

those under single-frequency excitation. Thirdly, in the region near the

main resonance, the amplitudes of bubble oscillation do not differ much

between cases with different driving frequencies.

Figure 2.19 Response curves of bubble oscillation under dual-frequency

excitation with frequencies: 1  00.8 , 00.5 , 00.35 , 02.35 . The

horizontal line (dashed line) indicates the oscillation amplitude of bubbles

under single-frequency excitation with frequency 1 . 1 2   0.05.

0 10R   μm.  max max 0 0X R R R  .
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2.4 Summary

In this chapter, the bubble motion equation has been solved by the fourth

order Runge-Kutta method. It is assumed that the bubble oscillates

spherically symmetrically in a Newtonian fluid (i.e., water). Only radial

motion of the bubble is considered. And vapour pressure in the bubble is

omitted. Then, FFT and response curves were employed to reveal the

fundamentals of the bubble dynamics under dual-frequency excitation.

Both the power spectrum and the response curve under dual-frequency

excitation show the main, harmonic and subharmonic resonances

corresponding to the two component acoustic waves. Besides these

resonances, for the dual-frequency approach, there exist combination and

simultaneous resonances. The corresponding frequencies of the resonances

can be expressed by a linear combination of the two component

frequencies, i.e., 1 2 0n m    . The power of the bands of the

resonances decreases with the value of n m in the power spectrum.

By comparing the response curves of single- and dual-frequency

excitation, one can conclude that in the regions below and above the main

resonance, the addition of the second acoustic wave could strengthen the

bubble oscillations while in the region near the main resonance, the

addition of the second acoustic wave would not enhance the amplitudes of
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bubble oscillations. For a dual-frequency approach, if the driving

frequencies satisfy particular conditions, several resonances (e.g.,

combination resonances and harmonics, or combination resonances and

subharmonics) may occur simultaneously.

The influential parameters of the dual-frequency approach on bubble

oscillations are also discussed in this chapter, including the pressure

amplitude, the equilibrium bubble radius, the power allocation between

the component waves, the phase difference and the driving frequency.

With increasing pressure amplitude, all the resonances increase and lean

over toward lower frequency. There exist pressure thresholds for

subharmonics and ultraharmonics. For the cases with small equilibrium

bubble radius, the resonances are suppressed. For the cases with large

equilibrium bubble radius, the thresholds of the subharmonics and the

ultraharmonics are reduced.

The power allocation between the two component driving waves

(indicated by N) also affects the bubble dynamics. With decreasing N, the

oscillation amplitude increases in the region above the main resonance and

decreases in the region near the main resonance. For N<1, the oscillation
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amplitudes near the harmonics decrease with the decrease of N while they

do not differ much when 1N  . The oscillation amplitudes near the

combination resonances reach the maximum values when 1N  .

The phase difference between the two driving acoustic waves influences

the waveform of the bubble motion significantly while it leads to little

change of the oscillation amplitudes. The variations of the driving

frequency 1 induce the change of position of the combination

resonances. In the regions below and above the main resonance, the

oscillation amplitudes of bubbles change with 1 . In the region near the

main resonance, the influence of 1 is very limited.
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Chapter 3 Acoustical Scattering

Cross Section of Gas Bubbles

under Dual-Frequency Acoustic

Excitation

In this chapter, the acoustical scattering cross section of gas bubbles in

liquids excited by dual-frequency acoustic waves is theoretically

investigated. Parts of this chapter have been accepted as a journal paper

(Zhang and Li, 2015, in press).

The whole chapter is organized as follows. In Sec. 3.1, equations relating

with the acoustical scattering cross section of gas bubbles are briefly

introduced. In Sec. 3.2, both the analytical solution and the numerical

simulation of the acoustical scattering cross section are given. In Sec. 3.3,

the analytical solution and the numerical simulation are compared,

together with the discussions of the valid region of the analytical solution.

In Sec. 3.4, the nonlinear nature of the acoustical scattering cross section

of gas bubbles under dual-frequency excitation is revealed with examples

demonstrated. In Sec. 3.5, the influence of several paramount parameters
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(e.g., the acoustic pressure amplitude, the energy allocation between two

component waves and the ratio of the two frequencies) on the scattering

cross section is shown. In this chapter, it is assumed that the bubble

oscillates spherically symmetrically in a Newtonian fluid (i.e., water).

Only radial motion of the bubble is considered. And vapour pressure in the

bubble is omitted.

3.1 Basic equations

In this section, basic equations relating to the acoustical cross section are

introduced. The basic equation of bubble motion is the Keller-Miksis

equation [Eqs. (2.1)-(2.4)] (Keller and Miksis, 1980).

The radiation pressure at radial coordinate r from the origin of bubble

centre can be given as1 (Yang and Church, 2005)

 2( , ) 2l
rad

R
P r t R RR

r


   . (3.1)

Here, radP is the radiation pressure; r is the radial coordinate with the

1 This equation can be rewritten as
2

24
l

rad

d v
P

r dt




  , where v is the instantaneous

volume of the bubble. Hence, the radiation pressure is related with the acceleration of the

bubble volume, which, according to Eq. (3.4), has a phase difference with the time

variation of the bubble radius. As a result, in Figures 3.1 and 3.2, when the bubble radius

reaches its maximum, the corresponding radiation pressure reaches its minimum, and vise

versa.
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origin at the bubble centre. Solving Eqs. (2.1)-(2.4), one can obtain the

solution of the bubble motion (e.g., the dynamic oscillations of R, R and

R ). Substituting this solution into Eq. (3.1), the radiation pressure

generated by bubble oscillations can be obtained.

According to Eq. (3.1), one can find that the radiation pressure is a

function of radial coordinate and hence it is not convenient for

comparisons with cases with different parameters (e.g., bubble radius).

Usually, another parameter, e.g., acoustical scattering cross section, which

reflects the square of the ratios between scattered waves and incident

waves, is employed. For convenience, the amplitude of the radiation

pressure can be written as

rad

B
P

r
 .

Here, B/r is the amplitude of the divergent spherical scattered wave

generated by bubble oscillations.

Following the definition proposed by Wildt (Wildt, 1946, Eq. 6), the

acoustical scattering cross section ( s ) of an oscillating gas bubble in a

liquid can be defined as

2
4 /s B A  . (3.2)

Here, A is the amplitude of the incident wave. Hence, s reflects the
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scattering ability of gas bubbles when they are excited by acoustic waves2.

3.2 Solutions

3.2.1 Analytical solution

In this section, the analytical solution for acoustical scattering cross

section under dual-frequency acoustic excitation is obtained. Assume that

the solution of the Keller-Miksis equation under dual-frequency acoustic

excitation [Eqs. (2.1), (2.2) and (2.4)] is

0 11R R x  . (3.3)

Here, 1 1 0AP P  .

The solution of the equation of bubble motion under dual-frequency

excitation [Eqs. (2.1), (2.2) and (2.4)] is (Zhang, 2012a)

   11 1 11 12 2 12cos cosx A t A t       , (3.4)

where

2 For a plane wave, the sound intensity (i.e., the average rate at which sound energy

crosses a unit cross-sectional area of the soundbeam) is

2

0
2 l

A
I

c
 . The intensity of the

wave scattered by the bubble at the distance r is

2 2

22 2

rad

s

l l

P B
I

c cr 
  . Therefore, the

total scattered energy at the distance r from the bubble centre 2
04 s sr I I  . For a

bubble driven by a certain sound field, the bigger s is, the higher the energy scattered

by the bubble is. For more details, readers are referred to Wildt (1946).
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 

 
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2
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l
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M R


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  
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  
 

2 2
1 0 0 1 11

11 2 2 2
0 1 1 0

/ 2
tan

2 /

l tot

tot l

R c

R c

    


   


  
 

   
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 

 

1/2
2

2 00 21
12 22 2 2 2 2

0 0 2 2

1 /

4

l

l tot

R cP
A

M R



    

 
  
   

; (3.7)

  
 

2 2
2 0 0 2 21

12 2 2 2
0 2 2 0

/ 2
tan

2 /

l tot

tot l

R c

R c

    


   


  
 

   

; (3.8)

21 2 1/A AP P  .

with

0
2
0

4
1 l

l l

R
M

c R




  ,

2 2
0 0 02 / / 2tot vis ac l l lR M R c         , (3.9)

2 0 0 0
0 2

0

3 ( 2 / ) 2 /

l

P R R

R M

  




 
 . (3.10)

Here, 0 is the natural frequency of the gas bubbles oscillating in the

liquids; tot , vis and ac are the total, viscous and acoustic damping

constants respectively.

Substituting Eq. (3.3) into Eq. (3.1) and only keep terms up to the first

order of 1 , one can obtain

 
1/23 2 4 2 4

0 1 11 1 12 2lB R A A     . (3.11)

Therefore, acoustical scattering cross section is
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   
22 3 2 4 2 4

0 0 11 1 12 22
21

4
4 /

1
s B A R p A A


    


  


. (3.12)

For dual-frequency acoustic excitation, the amplitude of the incident wave

(A) is the root of the sum of the square of the powers of the amplitudes of

two frequencies eP [  
1 22 2

1 2e A AP P P  ].

For single-frequency acoustic excitation, the generalized analytical

solution of s is (Zhang, 2013a)

2
0

1222
2 20 0

02 2
0

4

4
1

s

l

l l

R
C

R
M M

R c




 


  


  

    
   

, (3.13)

with

 
 

2

0 0

1 2

0

sin(2 / ) / (2 / )

1 2 /

l l

l

R R
C

R

   

 



.

Here, l is the wavelength of acoustic wave in the liquid.

3.2.2 Numerical simulations

For the numerical simulations, Eqs. (2.1)-(2.4) are directly solved using an

explicit Runge-Kutta formula (Dormand and Prince, 1980) for a range of

parameters, including the bubble radius, pressure amplitude and the

frequency of the acoustic excitation. Then Eqs. (3.1) and (3.2) are

employed to obtain the radiation pressure and acoustical scattering cross

section generated by the oscillating bubbles



75

The constants employed in analytical and numerical methods are the same

as those shown in Appendix A. The distance from the origin r is 31 10

m. For simplicity, the values of the acoustical scattering cross section of

individual air bubbles are normalized using their respective geometrical

cross sections (i.e., 2
0R ). The ratio of pressure amplitudes of the two

acoustic waves is defined as 2 1A AN P P . For comparison, the total input

power,  
1 22 2

1 2e A AP P P  , remains as a constant during simulations of

different cases.

In the following paragraphs, examples of the radiation pressure and the

acoustical scattering cross section generated by an oscillating bubble

under dual-frequency acoustic excitation within a wide range of

parameters are shown. For comparison, cases under single-frequency

acoustic excitation are also provided. In Sec. 3.3, the analytical solution in

Sec. 3.2.1 and the numerical simulations in Sec. 3.2.2 are compared to

show the differences between two approaches and hence the validity of the

analytical solution is determined. Then, nonlinear characteristics and

influential parameters (e.g., bubble radii, driving frequencies and power

allocation between two acoustic waves) of the acoustical cross section are

shown in Secs. 3.4 and 3.5.
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Figures 3.1 and 3.2 demonstrate the variations of non-dimensional

instantaneous bubble radius [  0 0R R R ] and the radiation pressure

versus time for a 10 µm bubble oscillating under single-frequency

excitation and dual-frequency excitation respectively. During the expBoth

the bubble oscillations and radiation pressure curves under single- and

dual-frequency approaches clearly show periodical oscillations. However,

the bubble oscillations and the radiation pressure curves under

dual-frequency excitation exhibit much more complicated patterns.

Additionally, the addition of the extra 200 kHz acoustic wave leads to a

great increase of the amplitude of bubble oscillations (about two times)

and radiation pressure (about seven times).
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Figure 3.1 The non-dimensional instantaneous bubble radius under the

single-frequency acoustic excitation (thin line) and corresponding

radiation pressure (thick line) versus time. 100sf  kHz. 0 10R   μm. 

0 0.1eP P  . r =1 mm.
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Figure 3.2 The non-dimensional instantaneous bubble radius under

dual-frequency acoustic excitation (thin line) and corresponding radiation

pressure (thick line) versus time. 1 100f  kHz. 2 200f  kHz. 0 10R 

μm. 0 0.1eP P  . 2 1 1A AN P P  . r =1 mm.

3.3 Comparisons between analytical solution

and numerical simulations

Figures 3.3 and 3.4 show the acoustical scattering cross section curves (i.e.,

curves of 2
0s R  versus equilibrium bubble radius) predicted by the

analytical and numerical approaches under single-frequency excitation

( 100sf  kHz) and dual-frequency excitation ( 1 100f  kHz and

2 200f  kHz). The labels marked in Figures 3.3 and 3.4 reflect the

nonlinear characteristics of the acoustical scattering cross section of gas
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bubbles, which will be discussed in details in Sec. 3.4. When the acoustic

pressure amplitude is small, e.g., 0 0.01eP P  , a good agreement between

the analytical solution and the numerical simulation has been found across

the full range of 0R . According to Eqs. (3.12) and (3.13), the analytical

solution of the acoustical scattering cross section is independent of the

pressure amplitude of acoustic waves. With increasing eP , the curves of

s predicted by numerical simulation show strong nonlinearity. For

instance, harmonics are generated as shown in Figures 3.3 and 3.4. For

0eP P = 0.05 and 0.1, the generation of the first harmonic is significant.

When 0eP P is beyond 0.1, the harmonics of higher orders are shown.

Detailed discussions of those nonlinear features are given in Sec. 3.4. The

analytical solution fails to predict those nonlinear phenomena, although

the analytical solution still agrees well with the numerical prediction in the

region away from resonances 3 . Near resonance, compared to those

predicted by analytical solution, the curves predicted by the numerical

simulations bend to the left, termed as “bending phenomenon”

(Lauterborn and Kurz, 2010). This is also a nonlinear feature of the bubble

3 Harmonics is one of the nonlinear features of the bubble oscillation system, determined

by the nature of Eqs. (2.1)-(2.4). And there is no threshold for harmonics, so they increase

with the growing pressure and becomes more obvious in Figures 3.3 and 3.4 even when

0eP P = 0.05. The prediction of analytical solution may be more accurate in the region of

resonances, if higher order of 1 in Eq. (3.3) is considered. However, the solution will

be very complicated then and it is not necessary in this thesis which focuses on the

special features under dual-frequency excitation. For more details about the solution up to

higher order under single-frequency excitation, readers are referred to Prosperetti (1974).
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motion equation Eqs. (2.1)-(2.4). For a more detailed discussion, readers

are referred to Lauterborn and Kurz (2010). Hence, in the following

sections, only the numerical approach is employed to study the acoustical

scattering cross section generated by bubble oscillations.

Figure 3.3 Predictions of acoustical scattering cross section versus

equilibrium bubble radius under single-frequency acoustic excitation by

analytical solution (solid line) and numerical method with 0 0.01eP P 

(dashed line), 0.05 (dotted line), 0.1 (dash-dotted line) respectively.

100sf  kHz. Readers are referred to Sec. 3.4 for details of the labels

above the peaks.
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Figure 3.4. Predictions of acoustical scattering cross section versus

equilibrium bubble radius under dual-frequency acoustic excitation by the

analytical solution (solid line) and the numerical method with

0 0.01eP P  (dashed line), 0.05 (dotted line), 0.1 (dash-dotted line)

respectively. 1 100f  kHz. 2 200f  kHz. 2 1 1A AN P P  . The two

numbers with brackets above the peaks stand for (a,b). Readers are

referred to Sec. 3.4 for details.
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3.4 Nonlinear characteristics of the scattering

cross section under dual-frequency acoustic

excitation

Figure 3.5 shows the predicted scattering cross section curves under

single-frequency excitation ( 100sf  kHz) with different acoustic

pressure amplitudes. The expressions /n m (here, m and n are two

integers) marked above the peaks of the curves are the orders of the

resonances. For details of the definitions of resonances, readers are

referred to Sec. 1.3.1, Lauterborn (1976) and Lauterborn and Kurz (2010).

For a certain value of eP , the value of the scattering cross section reaches a

maximum when the bubble radius is equal to the resonant bubble radius

corresponding to the driving frequency, i.e., at the main resonance. The

scattering cross section curves show nonlinear features, such as harmonic,

subharmonic (e.g., the cases with 0 0.3eP P  ) and ultraharmonic (e.g.,

the case with 0 0.7eP P  ) resonances. With the increase of eP , both the

harmonic and subharmonic resonances grow significantly, and the peaks

of those resonances bend toward smaller bubble radii. This “bending

phenomenon” is a nonlinear feature determined by Keller-Miksis equation

in Sec. 2.1. In contrast, the values of the scattering cross section in the

regions above resonance do not increase with eP . Unlike harmonics, the

appearances of the subharmonics and ultraharmonics have clear thresholds
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of acoustic pressure amplitude.

Figure 3.5 Acoustical scattering cross section versus equilibrium bubble

radius under single-frequency acoustic excitation with 0 0.1eP P 

(dash-dotted line), 0.3 (dashed line), 0.5 (dotted line) and 0.7 (solid line)

respectively. 100sf  kHz. The numbers above the peaks represent the

orders of the resonances: main resonance (
1

1
), harmonics (

2

1
,

3

1
,…),

subharmonic (
1

2
) and ultraharmonic (

3

2
).
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Figure 3.6 compares the scattering cross section curves under

single-frequency and dual-frequency excitation (N=1) with acoustic

pressure amplitude 0 0.3eP P  . The two numbers within the brackets, i.e.,

(a,b), marked above the peaks, represent the resonance corresponding to

the frequency 1 2f af bf  . According to the values of a and b, the peaks

can be classified into following categories:

a) Main resonance, i.e., (1,0), (0,1).

b) Harmonics, e.g., (a,0), (0,b). a,b=1,2,….

c) Subharmonics, e.g.,
1

,0
2

 
 
 

,
1

0,
2

 
 
 

.

d) Combination resonances, e.g., (1,1), (-1,1) and subharmonic

combination resonance, e.g.,
1 1

,
2 2

 
 
 

as shown in Figure 3.7. The

existence of the combination resonances is one of the unique

features of the dual-frequency approach.
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Figure 3.6 Acoustical scattering cross section under single-frequency

[marked as “ 1f ” (dashed line) and “ 2f ” (dotted line)] and dual-frequency

[marked as “ 1 2f f ” (solid line)] acoustic excitation. 1 180f  kHz.

2 320f  kHz. 0 0.3eP P  . 2 1 1A AN P P  . The two numbers with

brackets above the peaks stand for (a,b).

Therefore, compared to the single-frequency approach, the dual-frequency

approach can generate more resonance regions involving all the main,

harmonic and subharmonic resonances corresponding to the two

component frequencies respectively and a number of combination

resonances. As shown in Figure 3.6, the signal strengths in terms of the

amplitude of s under dual-frequency excitation are much stronger than

those under single-frequency excitation within a wide range of bubble
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radii.

Sometimes, the bubble radii corresponding to the two resonances are quite

close, leading to the merging of the resonances. For example, the

frequency corresponding to the first harmonic [marked as (2,0) in Figure

3.6] of the acoustic wave 1f is 360 kHz, which is quite close to the main

resonance [marked as (0,1) in Figure 3.6] of the acoustic wave 2f (320

kHz). Hence, the two resonances merge into one peak. Resonances (1,0)

and
1

0,
2

 
 
 

also show the tendency of merging.

3.5 Influential parameters on scattering cross

section

In this section, the influence of several parameters of the dual-frequency

approach, e.g., the acoustic pressure amplitude, the energy allocation

between two frequencies (N) and the ratio of the two frequencies ( 2 1f f ),

on the scattering cross section is numerically investigated.

Figure 3.7 illustrates the scattering cross section curves under

dual-frequency excitation with different acoustic pressure amplitudes ( eP ).

As with the single-frequency approach, the main resonances, the

harmonics and subharmonics all increase with the increase of eP . And
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they lean over towards smaller bubble radii at higher acoustic pressure

amplitudes. Furthermore, the amplitude of the combination resonances

[e.g., resonances marked as (1,1) and (-1,1) in Figure 3.7] increase

significantly with the increase of eP . The width of the resonances is also

growing with the increase of eP , leading to the merging of the resonances.

For instance, in the case with 0 0.4eP P  , resonance
1

0,
2

 
 
 

merges into

resonance (1,0) while resonance (0,1) merges with the resonance (2,0) as

well.

Figure 3.7 Acoustical scattering cross section versus equilibrium bubble

radius under dual-frequency acoustic excitation with 0 0.1eP P 

(dash-dotted line), 0.2 (dash line), 0.3 (dotted line) and 0.4 (solid line)

respectively. 1 180f  kHz. 2 320f  kHz. 2 1 1A AN P P  . The two

numbers with brackets above the peaks stand for (a,b).
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The energy allocation between the two component waves, indicated by N,

can also affect the scattering cross section. Figure 3.8 shows the

predictions of the scattering cross section curves under single-frequency

and dual-frequency acoustic excitation with different N. For N <1, as N

decreases, the peaks of the main resonance (0,1) become much lower and

narrower, while those of main resonance (1,0) almost remain the same as

those under single-frequency excitation with frequency 1f . For N >1, with

the increasing N, the peaks of main resonance (1,0) become much lower

and narrower, while those of main resonance (0,1) almost remain the same

as those under single-frequency excitation with the frequency 2f .

Furthermore, N influences the values of the scattering cross section near

subharmonics in the same way, i.e., the more energy allocated to one of

the component frequencies, the lower the peaks of main resonance and

subharmonics of the other component frequency, and vice versa. However,

for combination resonances [e.g., (1,1) and (-1,1)], the maximum values of

scattering cross section are obtained in the case with 1N  . The influence

of N on harmonics is much more complicated. Nevertheless, for N <1, the

values of scattering cross section near the harmonics [e.g., (0,2), (2,0),

(3,0)] decrease with decreasing N while they do not differ much when

1N  . So generally speaking, 1N  could generate a relatively high

value of scattering cross section within the whole range of 0R .
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Figure 3.8 The predictions of acoustical scattering cross section under

single-frequency [marked as “ 1f ” (dash line) and “ 2f ” (dotted line)] and

dual-frequency [marked as “ 1 2f f ” with different N] acoustic excitation.

1 180f  kHz. 2 320f  kHz. 2 1A AN P P  0.2, 0.5, 1, 2, 5

respectively. The two numbers with brackets above the peaks stand for

(a,b).
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The influence of the ratio of frequencies is indicated in Figure 3.9, in

which 1f is 100 kHz and 2f is 160 kHz, 200 kHz and 300 kHz

respectively. Obviously, 2 1f f would influence the positions of the

resonances. Particularly, the “distance” between the two main resonances

increases with the increase of 2 1f f . Meanwhile, the values of scattering

cross section in the region between the two resonances decreases with the

increase of 2 1f f . With increasing 2 1f f but fixing 1f , the values of

scattering cross section increase in the region below the main resonance of

2f , decrease in the region between two main resonances, and nearly keep

constant above the main resonance of 1f .
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Figure 3.9 Acoustical scattering cross section versus equilibrium bubble

radius under dual-frequency acoustic excitation with 1 100f  kHz and

2 160f  kHz (dashed line), 200 kHz (solid line), 300 kHz (dotted line)

respectively. 0 0.1eP P  . 2 1 1A AN P P  . The two numbers with bracket

above the peaks indicated the main resonances.
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3.6 Summary

In this chapter, both the analytical and numerical solutions of acoustical

scattering cross section of gas bubbles under dual-frequency excitation are

obtained. It is assumed that the bubble oscillates spherically symmetrically

in a Newtonian fluid (i.e., water). Only radial motion of the bubble is

considered. And vapour pressure in the bubble is omitted. The predictions

of the values of scattering cross section by the analytical method agree

well with the numerical simulations at low acoustic pressure amplitudes

for both single-frequency excitation and dual-frequency excitation.

However, the validity of the analytical solution will be violated when the

acoustic pressure amplitude increases because many nonlinear features

(e.g., bending phenomenon, harmonics, subharmonics, and ultraharmonics)

will be present.

The nonlinear characteristics of the scattering cross section curve under

dual-frequency excitation are investigated numerically. Generally, the

scattering cross section curves show typical nonlinear features such as

harmonics, subharmonics and ultraharmonics. Furthermore, the

dual-frequency approach displays more resonances termed as

“combination resonances”. Compared to the single-frequency approach,

the dual-frequency approach could enhance the acoustical scattering cross
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section significantly within a much broader range of bubble sizes due to

the generation of more resonances.

The influence of several essential parameters in the dual-frequency system

on the prediction of scattering cross section has been discussed. With the

increase of the pressure amplitude, all amplitudes of resonances increase

and the peaks of resonances lean over towards smaller bubble radii. The

energy allocated between the two frequencies (i.e., N) and the ratio of the

two component frequencies (i.e., 2 1f f ) can also affect the scattering

cross section. The driving frequency affects the positions of the resonances.

According to these results, for an effective enhancement of scattering

cross section, the energy allocated to the two component frequencies

should be almost equal and the ratio of two frequencies should be

relatively large.
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Chapter 4 The Secondary

Bjerknes Force under

Dual-Frequency Excitation

In this chapter, the characteristics of the secondary Bjerknes force under

dual-frequency excitation are investigated. Parts of this chapter have been

submitted as a journal paper (Zhang and Li, 2015, under review)

The chapter is organized as follows: in Sec. 4.1, the basic equations are

introduced and the corresponding analytical solution is obtained; in Sec.

4.2, the results calculated from the analytical and numerical solutions are

compared, together with the discussions of the valid region of the

analytical solution; in Sec. 4.3, the basic features of the secondary

Bjerknes force under dual-frequency excitation are investigated based on

the numerical simulations; in Sec. 4.4, the influence of pressure amplitude

is discussed. In this chapter, it is assumed that bubbles oscillate spherically

symmetrically in a Newtonian fluid (i.e., water). Only radial motion of

bubbles is considered. For solving the equations of bubble motion, the

translational motion of bubbles is not taken into consideration. And vapour

pressure in the bubble is omitted.
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4.1 Equations and solutions

In this section, the basic equations for calculating the secondary Bjerknes

force under dual-frequency excitation are introduced. Then, the analytical

solution and the numerical simulation for solving these equations are

given.

4.1.1 Basic equations

Here, the mutual interaction force (e.g., the secondary Bjerknes force)

between two oscillating bubbles (numbered as “bubble 1” and “bubble 2”

respectively) in liquids under the dual-frequency acoustic excitation is

considered. According to the literature (e.g., Mettin et al., 1997), the

radiation pressure generated by bubble 2 at the centre of bubble 1 ( 1radp )

or vice versa ( 2radp ) can be expressed as

 2
1 2 2

l
rad

d
p R R

L dt


  , (4.1)

 2
2 1 1

l
rad

d
p R R

L dt


  . (4.2)

Here, 1radp is the radiation pressure generated by the oscillations of

bubble 2 at the centre of bubble 1; 2radp is the radiation pressure

generated by the oscillations of bubble 1 at the centre of bubble 2; l is

the density of the liquid; L is the separation distance between the centres

of the two bubbles; t is the time; 1R and 2R are the instantaneous bubble

radii of bubbles 1 and 2 respectively; overdot denotes the time derivative.



96

Then, with involving the radiation pressure generated by other bubbles,

the equations of bubble motion [i.e., Eqs. (2.1)-(2.4)] for two interacting

bubbles should be (Mettin et al., 1997, Eq. 7)

2 1 11 1 1
1 1 1

( , ) ( )3
1 1 1

2 3
s

l l l l

p R t p tR R R
R R R

c c c 

      
         

     

  
 

 21 11
2 2

[ ( , ) ( )] 1s

l l

d p R t p tR d
R R

c dt L dt


   , (4.3)

2 2 22 2 2
2 2 2

( , ) ( )3
1 1 1

2 3
s

l l l l

p R t p tR R R
R R R

c c c 

      
         

     

  
 

 22 22
1 1

[ ( , ) ( )] 1s

l l

d p R t p tR d
R R

c dt L dt


   , (4.4)

where

 
 3

1 1 0 01 1 1

01 1 1

42 2
( , ) / l thp R t P R R R

R R R

     
    
 

 ; (4.5)

 
 3

2 2 0 02 2 2

02 2 2

42 2
( , ) / l thp R t P R R R

R R R

     
    
 

 ; (4.6)

 1 2

0 1 2( ) 1 i t i t
sp t P e e     . (4.7)

Here, lc is the undisturbed speed of sound in the liquid; 0P is the

ambient pressure; l is the density of the liquid;  is the surface

tension coefficient; 01R and 02R are the equilibrium bubble radii of

bubbles 1 and 2 respectively; κ is the polytropic exponent; l is the

viscosity of the liquid; th is effective thermal viscosity; 1 and 2 are
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the non-dimensional amplitudes of the driving sound wave; 1 and 2

are the angular frequencies of the driving sound waves.

4.1.2 Analytical solutions

In this section, a traditional perturbation method is employed to solve the

equations in Sec. 4.1.1. For details of solving procedure, readers are

referred to Doinikov (1999) and Zhang and Du (2015). The framework of

Zhang and Du (2015) has been extended to investigate the secondary

Bjerknes force under dual-frequency excitation. Here, for convenience,

most of the nomenclatures in Zhang and Du (2015) are adopted.

We assume the solutions of Eqs. (4.3) and (4.4) as

1 01 1(1 )R R x  , (4.8)

2 02 2(1 )R R x  . (4.9)

Then based on Eqs. (4.3) and (4.4), one can obtain

 1 2

2
2 02 1

1 1 1 01 1 2 2 11 1 12 22
01 1

2 i t i tR
x x x x N e N e

R M
 

            , (4.10)

 1 2

2
2 01 2

2 2 2 02 2 1 1 21 1 22 22
02 2

2 i t i tR
x x x x N e N e

R M
 

            , (4.11)

where

2
0 02

0 0 0

1 2 2
3j

j l j j j

P
M R R R

 
 



  
        

, (4.12)
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  0 2
02

0

2

2

jl th
j vj thj acj j

l j j l

R

R M c

 
    




     , (4.13)

0 j

j

R

L
  , (4.14)

0
2
0

j

l j

P

R



 , (4.15)

0

2
0

4
1

j l
j

l l j

R
M

c R




  , (4.16)

01 k j

jk

l

R
N i

c


  . (4.17)

Here, j =1, 2; k =1, 2; 0 j is the natural frequency of the bubble j; j ,

vj , thj and acj are the total, viscous, thermal and acoustic damping

constants of the bubble j respectively. In this section, as only linear

oscillations of bubbles (up to the first order of  ) are considered, the

solution of 1x and 2x can be expressed as

1 2

1 11 12
i t i tx A e A e   , (4.18)

1 2

2 21 22
i t i tx A e A e   . (4.19)

Then with substituting Eqs. (4.18) and (4.19) into Eqs. (4.10) and (4.11),

one can obtain

  1

2
2 2 202 1
01 1 1 1 11 2 1 21 11 12

01 1

2 i tR
i A A N e

R M


           , (4.20)

  1

2
2 2 201 2
02 1 2 1 21 1 1 11 21 12

02 2

2 i tR
i A A N e

R M


           , (4.21)

  2

2
2 2 202 1
01 2 1 2 12 2 2 22 12 22

01 1

2 i tR
i A A N e

R M


           , (4.22)
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  2

2
2 2 201 2
02 2 2 2 22 1 2 12 22 22

02 2

2 i tR
i A A N e

R M


           . (4.23)

By solving Eqs. (4.20)-(4.23), we got

 2 2 21 1 21 11
11 2 1 02 1 2 1

1 2 1

2
N N

A i
X M M

 
     

 
     

 
, (4.24)

 2 2 22 1 11 21
21 1 1 01 1 1 1

1 1 2

2
N N

A i
X M M

 
     

 
     

 
, (4.25)

with

  2 2 2 2 4
1 01 1 1 1 02 1 2 1 1 2 12 2X i i                . (4.26)

and

 2 2 21 2 22 12
12 2 2 02 2 2 2

2 2 1

2
N N

A i
X M M

 
     

 
     

 
, (4.27)

 2 2 22 2 12 22
22 1 2 01 2 1 2

2 1 2

2
N N

A i
X M M

 
     

 
     

 
, (4.28)

with

  2 2 2 2 4
2 01 2 1 2 02 2 2 2 1 2 22 2X i i                . (4.29)

As the secondary Bjerknes force is a mutual interaction between two

interacting bubbles, only the force on bubble 1 needs to be determined [Eqs.

(4.37) and (4.38) prove rigorously that the force on bubble 2 has the same

value and opposite direction in the same coordinate system]. The

secondary Bjerknes force is defined as (Bjerknes, 1906)

1 2BF v p   , (4.30)
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with

3
1 1

4

3
v R , (4.31)

 2
2 2 22

l d
p R R

L dt


  

12e . (4.32)

Here, BF denotes the secondary Bjerknes force; 1v is the instantaneous

volume of the bubble 1; 2p is the pressure gradient generated by bubble

2 at the centre of bubble 1; denotes the time average during one

oscillation period; 12e is the unit vector pointing from bubble 1 to bubble

2. Here, following the framework of Doinikov (1999), one can define

1 1Im( )v V and 2 2Im( )p P   . For linear cases, Eqs. (4.31) and (4.32)

can be represented as

 1 23
1 11 12 01 11 12

4
1 3 3

3
i t i t

CV V V V R A e A e       , (4.33)

 1 23 3 2 2
2 21 22 02 2 12 02 1 21 2 222 2

i t i tl lP P P R x e R A e A e
L L

  
        

12e .(4.34)

In Eq. (4.33), as CV is a constant, 2 0CV P  and this term will not

contribute to the secondary Bjerknes force. Then after time averaging,

12 0i te   and 22 0i te   . The secondary Bjerknes force can be

expressed as

 11 21 12 22

1
Re

2
BF V P V P     . (4.35)

Here, a bar over the symbol denotes the complex conjugate. By

substituting Eqs. (4.33) and (4.34) into Eq. (4.35), the final expression of
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the secondary Bjerknes force under dual-frequency excitation is obtained

as

   2 2 2 2
01 02 1 2 1 11 21 2 12 222 Re ReB lF R R A A A A        . (4.36)

Hence, up to the second order of 1 (or 2 ), based on Eq. (4.36), the

secondary Bjerknes force under dual-frequency approach can be

considered as the linear combination of those under the two component

single-frequency approaches. With the generations of harmonics, the

solution will be very complex, causing problems for physical

interpretation. For details, readers are referred to Doinikov (1999).

4.1.3 Numerical simulations

Substituting Eqs. (4.31) and Eqs. (4.32) into Eq. (4.30), one can obtain

 2
1 2 1 2 22

l
B

d
F v p v R R

L dt


     

12e
2

2
12 24

l d v
v

L dt




  12e . (4.37)

Integrating Eq. (4.37) over a period of the volume oscillations, one can

obtain the formula for the secondary Bjerknes force,

1 224
l

BF v v
L




   

12e , (4.38)

where

2
1 1 14v R R  , (4.39)

2
2 2 24v R R  . (4.40)
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For numerical simulations, Eqs. (4.3) and (4.4) are solved by an explicit

Runge-Kutta formula (Dormond and Prince, 1980). Then Eqs. (4.38)-(4.40)

are employed to obtain the secondary Bjerknes force. Based on Eq. (4.38),

the distance (i.e., L) does not affect the direction of the Bjerknes force, so

the results are represented by the secondary Bjerknes force coefficient

(Mettin et al., 1997)

1 2
4

l
Bf v v




   . (4.41)

Therefore, if 0Bf  , the bubbles attract each other; if 0Bf  , the

bubbles repulse each other.

The corresponding resonant bubble radii of the driving frequencies are

calculated based on Eq. (4.12), and are represented as rsR

(single-frequency approach) and 1rR and 2rR (dual-frequency

approach). The constants employed in analytical and numerical methods

are:  =0.0725 N/m; lc =1486 m/s; 1.4  . And other constants are

listed in Appendix A. The distance between the centres of the bubbles is

31 10L   m. For comparison, the total input power,  
1 22 2

0 1 2eP P    ,

remains constant in both the single-frequency excitation and

dual-frequency excitation cases.
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4.2 Comparison between the analytical

solution and the numerical simulations

In this section, the predictions by the analytical solution [Eq. (4.36)] are

compared with those predicted by the numerical simulation to illustrate the

validity of the analytical solution.

For comparison, the equilibrium radius of bubble 1 is fixed ( 01 10R   μm) 

and the variations of Bf with the change of the radius of bubble 2 are

calculated. Figures 4.1 and 4.2 show the curves of Bf predicted by the

analytical and numerical approaches under the single-frequency excitation

( 100sf  kHz) and the dual-frequency excitation ( 1 100f  kHz and

2 200f  kHz) respectively. The resonance bubble radii corresponding to

the driving frequencies are marked in the figures as rsR , 1rR and 2rR .

As shown in Figure 4.1, for single-frequency excitation, the value of Bf

reaches maximum when 02 rsR R . Then the sign of Bf changes from

positive to negative at 02 rsR R , which can also be concluded from the

well-known formula (Bjerknes, 1906; Doinikov, 1999):

2 2
01 02

2 2 2 2 2
01 02

2

( )( )
B

A R R
F

L

 

    


 
. (4.42)

where 01 and 02 are the natural frequencies of bubble 1 and bubble 2

respectively.
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Figure 4.1 Predictions of the secondary Bjerknes force coefficient Bf

versus the equilibrium radius of bubble 2 under single-frequency

excitation by the analytical solution (dashed line) and the numerical

simulations (solid line). (a) 0 0.01eP P  . (b) 0 0.03eP P  . (c)

0 0.05eP P  . (d) 0 0.2eP P  . The subplot in (d) shows the magnification

of Bf for 02R  between 10 μm and 20 μm. 100sf  kHz. 01 10R   μm. 

rsR corresponds to the resonance radius of the driving frequency. The

horizontal line indicates where 0Bf  .

Therefore, according to Eq. (4.42), if the driving frequency lies between

the two linear resonance frequencies (i.e., 01 02rsR R R  or

02 01rsR R R  ), the bubbles repulse each other; otherwise (i.e., “ 01rsR R

and 02rsR R ” or “ 01 rsR R and 02 rsR R ”) they attract each other.
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Figure 4.2 Predictions of the secondary Bjerknes force coefficient Bf

versus the equilibrium radius of bubble 2 under dual-frequency excitation

by the analytical solution (dashed line) and the numerical simulations

(solid line). (a) 0 0.01eP P  . (b) 0 0.03eP P  . (c) 0 0.05eP P  . (d)

0 0.2eP P  . The subplot in (d) shows the magnification of Bf for 02R

between 10 μm and 15 μm. 1 100f  kHz. 2 200f  kHz. 01 10R   μm. 

1rR and 2rR indicate the corresponding resonance radii of the driving

frequencies respectively. The horizontal line indicates 0Bf  .

The curves under the dual-frequency excitation in Figure 4.2 show two

peaks at 02 2rR R and 02 1rR R respectively. The characteristics of the

secondary Bjerknes force under dual-frequency excitation will be

discussed in detail in Sec. 4.3. When the acoustic pressure is low [as
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shown in Figures 4.1(a) and 4.2(a)], e.g., 0 0.01eP P  , the analytical

solution and the numerical simulation agree well under both single- and

dual-frequency excitation. With increasing values of eP , the values of Bf

near resonances increase dramatically. The values of Bf near resonances

predicted by the analytical solution are higher than those predicted by the

numerical simulation and the difference between the two approaches

increases with increasing eP . The positions of the peaks of the curves

predicted by the numerical simulation move towards smaller bubble radii.

The influence of the acoustical pressure will be discussed in Sec. 4.4.

When 0eP P is up to 0.2, as the subplot in Figure 4.1(d) shows, another

peak appears at the resonance radius corresponding to 2 sf (the first

harmonic, see Sec. 4.3 for details) in the numerical approach. Similarly, in

the subplot in Figure 4.2(d), a peak appears at the resonance radius

corresponding to 1 2f f (the combination resonance, see Sec. 4.3 for

details) in the numerical approach. The analytical approach fails to predict

these phenomena. Therefore, the analytical solution is only valid when the

pressure amplitude is low.
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4.3 The basic features of the secondary

Bjerknes force under dual-frequency

excitation

In this section, a numerical approach is employed to study the

characteristics of the secondary Bjerknes force. The basic features of the

secondary Bjerknes force under dual-frequency excitation are investigated.

For comparison, the predictions of the secondary Bjerknes force under

single-frequency excitation are also shown.

Figure 4.3 shows the variation of the secondary Bjerknes force coefficient

Bf in the 01 02R R plane under low sound pressure amplitude

( 0 0.03eP P  ). The repulsive forces (i.e., 0Bf  ) are represented by red

areas while the attractive forces (i.e., 0Bf  ) are represented by grey

scales. The darker the colour is, the higher the absolute value of Bf is.

Figures 4.3(a) and 4.3(b) are the predictions of Bf under

single-frequency excitation ( 100sf  kHz and 200sf  kHz

respectively). As shown in these figures, there are four regions in

01 02R R planes, divided by the “boundaries” corresponding to the

resonance radius of the driving frequency (for a simpler description, the
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equilibrium radius of the bigger bubble is represented as 0maxR and the

equilibrium radius of the smaller bubble is represented as 0minR ):

a) Repulsive regions ( 0Bf  ): 0min 0maxrsR R R  .

b) Attractive regions ( 0Bf  ): 0min 0maxrsR R R  .

Figure 4.3(c) shows the Bf between two bubbles under the

dual-frequency excitation ( 1 100f  kHz and 2 200f  kHz). Divided by

the resonance bubble radii corresponding to the component driving

frequencies, there are nine regions in the 01 02R R plane, which could be

classified into three categories:

a) Repulsive regions ( 0Bf  ): 0min 2 1 0maxr rR R R R   .

b) Attractive regions ( 0Bf  ): 2 1 0min 0maxr rR R R R   ;

2 0min 0max 1r rR R R R   ; 0min 0max 2 1r rR R R R   .

c) Uncertain regions (where Bf could be positive or negative):

0min 2 0max 1r rR R R R   ; 2 0min 1 0maxr rR R R R   .

This classification could also be explained by Eq. (4.36). In regions a) and

b), the values of Bf under the two component single-frequency

excitation have the same sign. According to Eq. (4.36), the values of Bf

under the dual-frequency excitation can be considered as a linear

combination of the values of Bf under the two component

single-frequency excitation if the value of eP is limited. Hence, in
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regions a) and b), the sign of Bf remains unchanged under

dual-frequency excitation. In region c), Bf could be enforced or

suppressed by adding the second acoustic excitation, leading to the sign

change, which depends on the relative values of Bf the secondary

Bjerknes force corresponding to the two component frequencies.



Figure 4.3 The variations of the

in the 01 02R R

200sf  kHz (b)] and dual

kHz (c)] excitation.

corresponding resonance radii of the driving frequencies respectively. The

repulsive forces (i.e.,

attractive forces (i.e.,

bars are located at the bottom right corner. The white points and the

arrows indicate the two

μm. 
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variations of the secondary Bjerknes force coefficient

01 02R R plane under single-frequency [ 100sf 

kHz (b)] and dual-frequency [ 1 100f  kHz and

kHz (c)] excitation. 0 0.03eP P  . 1rR and 2rR indicate the

corresponding resonance radii of the driving frequencies respectively. The

repulsive forces (i.e., 0Bf  ) are represented by red areas while the

attractive forces (i.e., 0Bf  ) are represented by grey scales. The scale

at the bottom right corner. The white points and the

arrows indicate the two-bubble system with 01 16R  μm and 

secondary Bjerknes force coefficient Bf

100 kHz (a),

kHz and 2 200f 

indicate the

corresponding resonance radii of the driving frequencies respectively. The

) are represented by red areas while the

scales. The scale

at the bottom right corner. The white points and the

μm and 02 32R 
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For further illustration, the values of Bf versus the equilibrium radius of

bubble 2 ( 02R ) is shown in Figure 4.4 for three typical cases:

01 2 1r rR R R  ( 01 10R   μm), 2 01 1r rR R R  ( 01 25R   μm) and 

2 1 01r rR R R  ( 01 40R   μm). For the cases under single-frequency 

excitation, the absolute values of Bf rise significantly near the resonance.

Furthermore, the sign of Bf would change near the resonance. For

dual-frequency excitation, there are peaks near both resonance bubble

radii corresponding to the two frequencies, which means that the sign of

Bf may change two or three times in the full range of 02R  (10-50 μm). 

Moreover, in the region away from the resonance radius, the values of Bf

under dual-frequency excitation are between the corresponding values of

Bf under two component single-frequency excitation. However, the

positions of the peaks of dual-frequency approach are slightly different

from the positions of single–frequency approach. Taking the case where

01 10R   μm [Figure 4.4(a)] as an example. When 02 2 1r rR R R  , all the

Bf under single- and dual-frequency excitation are positive,

corresponding to the “attractive regions” in Figure 4.3. When

02 1 2r rR R R  , all the Bf under single and dual-frequency excitation are

negative, corresponding to the “repulsive regions” in Figure 4.3. When

2 02 1r rR R R  , Bf in the low-frequency approach (100 kHz) is positive

while Bf in the high-frequency approach (200 kHz) is negative.
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Therefore, Bf under the dual-frequency excitation varies from negative

to positive, corresponding to the “uncertain regions” in Figure 4.3(c).

Figure 4.4 The variations of the secondary Bjerknes force coefficient Bf

versus equilibrium bubble radius of bubble 2 when the radius of bubble 1

is fixed as: (a) 01 10R   μm, (b) 01 25R   μm, (c) 01 40R  μm. The 

bubbles are driven by single-frequency [ 100sf  kHz (dashed line),

200sf  kHz (dotted line)] and dual-frequency [ 1 100f  kHz and

2 200f  kHz (solid line)] excitation respectively. 0 0.03eP P  . The

horizontal line indicates 0Bf  .

When the pressure amplitude is higher, the influence of the nonlinearity

will be important. Figure 4.5 shows the variations of Bf in the 01 02R R
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plane under a relatively high sound pressure amplitude ( 0 0.3eP P  ).

Here, the driving frequencies are 100 kHz and 150 kHz respectively.

Comparing these results with the cases under the low pressure amplitude,

there are still boundaries near the resonances radii corresponding to the

driving frequencies. Furthermore, new peaks of Bf and new “repulsive

regions” appear in the original “attractive regions”. These phenomena are

marked by white circles in Figure 4.5. They can also be classified as

below:

a) Harmonics (marked by solid lines) occur near the corresponding

resonance radii corresponding to the frequency 1nf or 2mf , where

n=2,3 and m=2 in Figure 4.5.

b) Subharmonics (marked by dashed lines) occur near the resonance

radii corresponding to the frequency 1f n or 2f m . Limited by

the range of the bubble radii, only the subharmonic of the high

frequency component (150 kHz) is shown. In Figure 4.5 (b) and (c),

m = 2.

c) Combination resonances (marked by the dash dotted line) occur near

the resonance radii corresponding to the frequency 1 2nf mf . In

Figure 4.5(c), n=m=1.



Figure 4.5 The variations of the

in the 01 02R R

150sf  kHz (b)] and dual

(c)] excitation. eP P

represented by red

represented by grey scales. The scale bars

corner. The resonances marked with white circles

line), subharmonics (dashed line) and

line).
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variations of the secondary Bjerknes force coefficient

01 02R R plane under single-frequency [ 100sf 

kHz (b)] and dual-frequency [ 1 100f  kHz and 2f 

0 0.3eP P  . The repulsive forces (i.e., Bf

represented by red areas while the attractive forces (i.e., f

represented by grey scales. The scale bars are located at the bottom right

The resonances marked with white circles are harmonics (solid

line), subharmonics (dashed line) and combination resonance (dash

secondary Bjerknes force coefficient Bf

100 kHz (a),

2 150f  kHz

0Bf  ) are

0Bf  ) are

at the bottom right

harmonics (solid

combination resonance (dash-dotted
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Like the main resonances, there are peaks of Bf near the harmonics,

subharmonics and combination resonances. And the sign of Bf changes

when the bubble radius cross over these resonance radii. In particular, for

harmonics of higher order [i.e., the second harmonic in Figure 4.5(a)],

only a peak of Bf appears while the sign of Bf does not change.

Doinikov (Doinikov, 1999) derived an analytical solution of the secondary

Bjerknes force by including the first harmonic of bubble oscillation under

the single-frequency excitation [Doinikov, 1999, Eq. (37)]. If the second

harmonic included, it will be

(1) (2) (3)
1 1 1BF F F F     12e . (4.43)

Here, (1)
1F represents the force induced by the linear component of

bubble oscillation, which is of order 2 . (2)
1F represents the force

induced by the first harmonic component of bubble oscillation, which is of

order 4 . (3)
1F represents the force induced by the second harmonic

component of bubble oscillation, which is of order 6 . Therefore, as

shown in Figure 4.5, when 0 0.3eP P   , the effect of the first

harmonic will become important and can change the value significantly as

well as the sign of Bf . However, under this pressure, the effect of the

second order harmonic is not strong enough, so it can only change the

value of Bf but not the sign, as shown in Figure 4.5(a).
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By comparing Figures 4.5(a) and 4.5(b) with 4.5(c), we can conclude that

the secondary Bjerknes forces in the 01 02R R plane under

dual-frequency excitation involve all the harmonics and subharmonics

corresponding to the two component frequencies. Meanwhile, there are

unique combination resonances in the 01 02R R plane under

dual-frequency excitation. Therefore, the variation of the sign of Bf in

the 01 02R R plane under the dual-frequency excitation shows much

more complicated patterns.

4.4 Influence of the pressure amplitude

Oguz and Prosperetti (1990) investigated the interaction of two oscillating

bubbles under the single-frequency excitation with the pressure amplitude

below 0.5 bar. The nonlinear effects turn the secondary Bjerknes force to

be repulsive in the case of the bubbles both driven below their resonance

frequencies. However, according to the classical theory, the secondary

Bjerknes force should be attractive in this region [referring to Eq. (4.42)].

Mettin et al. (1997) investigated the secondary Bjerknes force in very

strong sound fields (pressure amplitude exceeding 1 bar) in the 01 02R R

plane. The repulsion also appears when the bubbles both driven far below

their resonance frequencies. And the repulsive zone changes with the

pressure amplitude. In this section, the influence of the pressure amplitude
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( 0eP P is up to 0.2) on the secondary Bjerknes force under

dual-frequency excitation is investigated numerically and compared with

those under single-frequency excitation.

Figures 4.6 and 4.7 show the variations of the values of Bf in the

01 02R R planes with the total driving pressure amplitude 0eP P

equalling to 0.1 and 0.2 respectively. The driving frequencies are 100 kHz

and 200 kHz. By comparing Figures 4.3, 4.6 and 4.7, one can conclude

that the total pressure amplitude can influence the signs and the values of

Bf . Obviously, the increasing pressure amplitude will increase the

absolute value of Bf , leading to enforcement of the mutual interactions

between bubbles. With the increase of the pressure amplitude, the

boundaries of the regions move toward the smaller bubble radii, which is

owing to the resonance frequencies of bubbles getting lower induced by

the nonlinearity during bubble oscillation (termed as “bending

phenomenon”). For the dual-frequency approach, the regions covered by

the attractive and repulsive forces in the “uncertain regions” vary with the

pressure amplitude as follows: the attractive region increases in regions

2 02 1 01r rR R R R   and 2 01 1 02r rR R R R   while it decreases in

regions 01 2 02 1r rR R R R   and 02 2 01 1r rR R R R   . Therefore, for the
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bubbles with radii near the resonances, the sign of the forces between the

bubbles will change with the increase of the pressure amplitude.



Figure 4.6 The variations of the

in the 01 02R R

200sf  kHz (b)] and dual

kHz (c)] excitation.

corresponding resonance radii of the driving frequencies respectively. The

repulsive forces (i.e.,

attractive forces (i.e.,

bars are located at the bottom right corner. The white points and the

arrows indicate the two

μm.
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variations of the secondary Bjerknes force coefficient

01 02R R plane under single-frequency [ 100sf 

kHz (b)] and dual-frequency [ 1 100f  kHz and

kHz (c)] excitation. 0 0.1eP P  . 1rR and 2rR indicate the

corresponding resonance radii of the driving frequencies respectively. The

repulsive forces (i.e., 0Bf  ) are represented by red areas while the

attractive forces (i.e., 0Bf  ) are represented by grey scales. The scale

at the bottom right corner. The white points and the

arrows indicate the two-bubble system with 01 16R  μm and 

secondary Bjerknes force coefficient Bf

100 kHz (a),

kHz and 2 200f 

indicate the

corresponding resonance radii of the driving frequencies respectively. The

) are represented by red areas while the

scales. The scale

at the bottom right corner. The white points and the

μm and 02 32R 



Figure 4.7 The variations of the

in the 01 02R R

200sf  kHz (b)] and dual

kHz (c)] excitation.

corresponding resonance radii of the driving frequencies respectively. The

repulsive forces (i.e.,

attractive forces (i.e.,

bars are located at the bottom right corner. The white points and the

arrows indicate the two

μm. 
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variations of the secondary Bjerknes force coefficient

01 02R R plane under single-frequency [ 100sf 

kHz (b)] and dual-frequency [ 1 100f  kHz and

kHz (c)] excitation. 0 0.2eP P  . 1rR and 2rR indicate the

corresponding resonance radii of the driving frequencies respectively. The

repulsive forces (i.e., 0Bf  ) are represented by red areas while the

attractive forces (i.e., 0Bf  ) are represented by grey scales. The scale

at the bottom right corner. The white points and the

arrows indicate the two-bubble system with 01 16R  μm and 

secondary Bjerknes force coefficient Bf

100 kHz (a),

kHz and 2 200f 

indicate the

corresponding resonance radii of the driving frequencies respectively. The

) are represented by red areas while the

) are represented by grey scales. The scale

at the bottom right corner. The white points and the

μm and 02 32R 
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The system with 01 16R   μm and 02 32R   μm is a typical example 

indicated by white points in Figures 4.3, 4.6 and 4.7, which could reveal

the detailed influence of the added frequency in the dual-frequency

approach and the amplitude of the acoustic pressure on the value of Bf .

Figure 4.8 illustrates the variations of the value of Bf with the pressure

amplitude. For the two-bubble system with 01 10R   μm and 02 14R 

μm, which is away from the “boundaries”, Bf is positive under both

single- and dual-frequency excitation and increases with the pressure

monotonically. In contrast, in the system with 01 16R   μm and 02 32R 

μm, which is near the resonances, the sign of Bf changes with the

pressure amplitude. For single-frequency excitation, the sign of Bf

changes once at 0 0.19eP P  for excitation with driving frequency 1f

or at 0 0.08eP P  for excitation with driving frequency 2f . For

dual-frequency excitation, the sign of Bf changes twice at

0 0.065eP P  and 0.18 respectively. In particular parameter zone, the

values of Bf under the dual-frequency excitation are no longer between

the values of the two single-frequency cases. Instead, in the region where

0eP P is between 0.08 to 0.18, the values of Bf for the dual-frequency

approach are negative while the values for the single-frequency

approaches are all positive.
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Figure 4.8 The variations of the secondary Bjerknes force coefficient Bf

with the sound pressure amplitude 0eP P under single-frequency

[ 100sf  kHz (dashed line), 200sf  kHz (dotted line)] and

dual-frequency [ 1 100f  kHz and 2 200f  kHz (solid line)] excitation.

In the upper image, 01 10R   μm and 02 14R   μm. In the lower image, 

01 16R   μm and 02 32R   μm. The horizontal line indicates where 

0Bf  .

The differences between the single-frequency approach and the

dual-frequency approach are illustrated in Figure 4.9. Figure 4.9(a) shows

the variations of the pressure amplitude in one driving period. Figure 4.9(b)

shows the oscillation curves of the bubbles in one driving period. In

Figures 4.9 and 4.10, T equals to the period of the excitation with
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100sf  kHz, i.e., 51 10T   s. Under the single-frequency excitation,

the two bubbles oscillate in phase in most of the time. However, under the

dual-frequency excitation, the two bubbles oscillate out of phase in most

of the time. Therefore, the time average value of 1 2v v  [as shown in Figure

4.9(c)] in one period is positive, leading to positive Bf under

single-frequency excitation while it is negative, leading to negative Bf

under the dual-frequency excitation.

For further study of the influence of the pressure amplitude on the bubbles

with radii near the resonances, Figure 4.10 compares the bubble

oscillations under dual-frequency excitation with different driving

pressure amplitudes. As shown in Figure 4.10(a), when the pressure

amplitude is low (e.g., 0 0.03eP P  ), the two bubbles oscillate in phase

for the most of the time. As shown in Figure 4.10(b), the time average of

1 2v v  yields positive Bf . With 0eP P rising to 0.1, the oscillation phase

of the bigger bubble ( 02 32R   μm) shifts while the oscillation phase of 

the smaller bubble ( 01 16R   μm) remains so that the two bubbles 

oscillate out of phase. When 0eP P rises to 0.2, the phase of the bigger

bubble remains the same while those of the smaller bubble shifts so that

the two bubbles oscillate in phase again. Therefore, as shown in Figure



4.10(b), the time average

Bf when 0 0.1eP P 

Figure 4.9 (a) Normalized driving pressure

t T . (b) The instantaneous bubble radii

line) versus normalized time

versus normalized time.

1 100f  kHz and
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4.10(b), the time average value of 1 2v v  is negative, leading to negative

0.1P P  and returns to positive Bf when 0eP P

4.9 (a) Normalized driving pressure 0sP P versus normalized time

. (b) The instantaneous bubble radii 1R (black line) and

normalized time t T during one driving period

normalized time. 0 0.1eP P  . 01 16R   μm. 02R

kHz and 2 200f  kHz. 11T f .

to negative

0 0.2P P  .

versus normalized time

(black line) and 2R (blue

during one driving period. (c) 1 2v v 

02 32R   μm. 



Figure 4.10 The

( 1 100f  kHz and

The instantaneous bubble radii

normalized time

normalized time. P P

02 32R   μm. T f
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bubble oscillations under dual-frequency excitation

kHz and 2 200f  kHz) with different pressure amplitudes

The instantaneous bubble radii 1R (black line) and 2R (blue line)

normalized time t T during one driving period. (b) 1 2v v 

0eP P = 0.03, 0.1, and 0.2 respectively. 01R

11T f .

frequency excitation

pressure amplitudes. (a)

(blue line) versus

1 2v v  versus

01 16R   μm. 
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4.5 Summary

In this chapter, both the analytical and numerical solutions of the

secondary Bjerknes force between two gas bubbles under dual-frequency

excitation are obtained. The primary assumptions are: the bubble oscillates

spherically symmetrically in a Newtonian fluid (i.e., water); only radial

motion of the bubble is considered; vapour pressure in the bubble is

omitted. According to the analytical solution, when the amplitudes of the

acoustic excitation are low ( ௘ܲ ଴ܲ⁄ ≪ 1), the secondary Bjerknes force

under dual-frequency excitation can be considered as the linear

combination of those under the two component single-frequency

approaches. The analytical solution and the numerical simulation results

agree well when the pressure amplitude is quite low, e.g., 0 0.01eP P  .

The basic features of the secondary Bjerknes force under dual-frequency

excitation are investigated numerically. There are peaks and change of the

sign of the secondary Bjerknes force near the resonance bubble radii

corresponding to the driving frequencies. For single-frequency excitation,

the predicted values of Bf in the 01 02R R plane could be divided into

four regions by the resonance radius corresponding to the driving

frequency and the values of Bf can be categorized into two groups (i.e.,

attractive and repulsive regions). For dual-frequency excitation, the Bf in
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the 01 02R R plane can be divided into nine regions by the resonance

radii corresponding to the two component frequencies and the values of

Bf can be categorized into three groups (i.e., attractive, repulsive and

uncertain regions). When the pressure amplitude is relatively high, the

harmonics and subharmonics become prominent in the 01 02R R plane

under both single- and dual-frequency excitation. There are combination

resonances in the 01 02R R plane under the dual-frequency excitation.

All these resonances could lead to the change of the sign of the secondary

Bjerknes force.

The pressure amplitude will influence the positions of boundaries of the

regions in the 01 02R R plane. With the increase of the pressure

amplitude, the boundaries lean over toward smaller bubble radii. And it

will also affect both the values and the sign of the secondary Bjerknes

force, especially for the cases with bubble radii close to the resonance

radii. Under particular conditions, the secondary Bjerknes force under

dual-frequency excitation is repulsive while the secondary Bjerknes forces

under the two component single-frequency excitation are both attractive.
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Chapter 5 Conclusions

5.1 Achievements

The dynamics of gas bubbles in liquids under dual-frequency acoustic

excitation have been investigated with respect to the fundamental

characteristics of bubble oscillations, acoustical scattering cross section

and the secondary Bjerknes force. In the numerical study, it is assumed

that the bubble oscillates spherically symmetrically in a Newtonian fluid

(i.e., water). Only radial motion of bubbles is considered. And the vapour

pressure in the bubble is omitted.

The results from this PhD research programme show that under

dual-frequency excitation, the traditional resonances (e.g., the main,

harmonic, subharmonic, and ultraharmonic resonances corresponding to

the two component sound waves) observed under single-frequency

excitation are all present. Besides these resonances, there are some new

resonances (named as “combination resonances” and “simultaneous

resonances”) observed in the bubble dynamics under dual-frequency

excitation, leading to much complex phenomena. The frequencies

corresponding to the combination resonances can be expressed by the
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linear combination of the two component frequencies. Compared with the

single-frequency excitation, the oscillation amplitude of bubbles and the

acoustical scattering cross section are enhanced by the addition of the

second sound wave in particular parameter zones, owing to the existence

of more resonances (e.g., a lot of combination resonances) under the

dual-frequency excitation.

The analytical solutions of acoustical scattering cross section of gas

bubbles and the secondary Bjerknes force between two interacting gas

bubbles under dual-frequency excitation are obtained. The predictions of

the values of scattering cross section and the secondary Bjerknes force by

the analytical method agree well with the numerical simulations for the

cases with low acoustic pressure amplitudes ( ௘ܲ ଴ܲ⁄ ≪ 1). According to

the analytical solution, the secondary Bjerknes force under dual-frequency

excitation can be considered as the linear combination of those under the

two component single-frequency approaches.

The values of the secondary Bjerknes force under dual-frequency

excitation are evaluated and plotted in the 01 02R R plane numerically.

The secondary Bjerknes force in the 01 02R R plane can be divided into

nine regions by the resonance radii corresponding to the two component
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frequencies and the nature of the secondary Bjerknes force can be thus

categorized into three groups (i.e., attractive, repulsive and uncertain

zones). Compared with the single-frequency excitation, the sign of the

secondary Bjerknes force in the 01 02R R plane varies in a more

complicated pattern under dual-frequency excitation.

It has also been shown from this PhD programme that a number of

parameters (e.g., the pressure amplitude, the equilibrium bubble radii, the

power allocation between the component waves, the phase difference and

the driving frequency) can influence the bubble dynamics under

dual-frequency excitation, which has been fully discussed in this thesis

with demonstrating examples.

5.2 Future work

1. In this thesis, the polytropic exponent in Eq. (2.2) was assumed as a

constant (i.e., κ =1.4 or 1.33). Furthermore, we also assumed that the

thermal damping can be ignored (i.e., 0th  ). These assumptions

were adopted because no rigorous model is available in the literature

by now for the predictions of the polytropic exponent and thermal

damping of oscillations of the bubbles excited by dual-frequency

acoustic excitation. For these thermal effects, under single-frequency
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excitation, the theoretical model for predicting κ and th is

well-known. According to theoretical works (Devin, 1959; Prosperetti,

1977; Zhang and Li, 2010; Zhang, 2013b) and experimental data

(Crum, 1983), the values of polytropic exponent (κ) and effective

thermal viscosity ( th ) depends on many physical parameters (e.g.,

frequency of acoustic wave and bubble radius).

In Appendix B, influence of the thermal effects (i.e., the predictions of

κ and th ) on the nonlinear oscillations of gas bubbles (e.g., the main,

harmonic, subharmonic and ultraharmonic resonances) under

single-frequency excitation are investigated based on the framework of

Propseretti (1977). And the predictions of simplified model with a

constant value of κ and 0th  are also given for comparison. It can

be concluded that the basic findings obtained in this thesis will not be

impaired by employing the simplified models of thermal effects.

Furthermore, a more advanced model of thermal effects (if available in

the future) can be easily incorporated into the present work.

2. In this thesis, most of the investigations are focused on the bubble

oscillations excited by small or medium acoustical pressure amplitude,

termed as “stable cavitation” (Neppiras, 1980). During this process,

mass transfer through rectified diffusion across bubble interfaces plays
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a key role on the bubble behaviour (Plesset and Prosperetti, 1977;

Neppiras, 1980; Crum, 1984; Zhang and Li, 2014b), which may affect

the acoustical cross section and the values of the Bjerknes force

through changing the equilibrium bubble radius. In Appendix C, the

characteristics of the mass transfer across bubble interfaces under

dual-frequency excitation have been investigated. A criterion based on

bubble growth regions for optimizing the parameters of dual-frequency

approach is proposed. In particular, the influence of the power

allocation and the frequency ratio between two component acoustic

waves on the bubble growth is discussed. In the future, more effort

will be made on the topic of the mass transfer across bubble interfaces

under dual-frequency excitation, for instance, the rate and the time of

the bubble growth under the dual-frequency excitation, which are the

primary parameters concerned in the sonochemistry and ultrasound

enhanced biomedical techniques.

3. In this thesis, only Newtonian fluid (i.e., water) is considered. When

cavitation is applied in the field of biomedicine (e.g., ultrasound

enhanced drug delivery, tissue ablation, and ultrasound diagnosis),

bubbles are usually surrounded by tissue or body fluid, which are

viscoelastic liquids (Mollica et al., 2007). Acoustic cavitation is also
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an effective way to degas the alloy, by accumulating gas in the melt

(Eskin, 2001). Multi-frequency acoustic approach could also promote

the effects of cavitation in these fields (Zheng et al., 2005; Barati et al.,

2007; Guo et al., 2013). The property of the liquid will affect bubble

behaviour significantly. For example, the amplitude of bubble

oscillation could be enhanced by a viscoelastic liquid, compared to the

Newtonian liquid (Allen and Roy, 2000). For recent reviews of the

bubble dynamics in the non-Newtonian liquid, readers are referred to

Brujan (2010) and Allen and Roy (1998). Therefore, in future, the

effects of the non-Newtonian fluid on the bubble dynamics under

dual-frequency excitation should be considered, which are

indispensable for deepening the theoretical understanding and

improving the practical applications of dual-frequency approach.
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Appendix A: Constants used for

calculations

If not specified, the following values for air and water are used for

calculations in Chapters 2-4 and Appendix B and C: density of the liquid

l =998.20 kg/m3; viscosity of the liquid l =1.0 mPa s; effective thermal

viscosity 0th  ; surface tension coefficient  =0.0728 N/m; speed of

sound in the liquid lc =1486 m/s; ambient pressure 0P =101300 Pa;

polytrophic exponent 1.33  .
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Appendix B: Influence of

Thermal Effects on the Nonlinear

Radial Oscillations of Gas

Bubbles in Liquids under

Single-Frequency Acoustic

Excitation

This Appendix focuses on the influence of the values of the polytropic

exponent and the effective thermal viscosity on the nonlinear oscillations

(e.g., harmonics, subharmonics and ultraharmonics) of gas bubbles in

liquids under single-frequency acoustic excitation. Parts of this Appendix

have been published as a journal paper (Zhang and Li, 2014a).

In the literature, the polytropic exponent (κ) is usually assumed to be a

constant, such as 1.0 (Eller, 1969), 1.33 (Lauterborn, 1976) and 1.4 (Eller,

1972; Yang and Church, 2005; Collin and Coussios, 2011; Webb et al.,

2011). Additionally, the thermal damping is usually ignored (i.e., 0th  ).

However, according to a more advanced model (Prosperetti, 1977), the
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polytropic exponent varies significantly with the bubble radii and acoustic

driving frequencies. Hence, in this appendix, Prosperetti’s model

(Prosperetti, 1977) is employed to calculate the polytropic exponent and

the effective thermal viscosity. Then their effects on the nonlinear

oscillations of bubbles are discussed. For comparison, the predictions of

the bubble behaviour based on the approaches employing a constant

polytropic exponent (i.e., κ 1.0 and 1.4, respectively) and ignoring

thermal dissipation (i.e., 0th  ) are also shown. Thus, the influence of

thermal effects (i.e., values of the polytropic exponent and the effective

thermal viscosity) on the nonlinear radial oscillations of gas bubbles under

single-frequency excitation in the liquids is quantitatively evaluated.

The equation of bubble motion is the equation developed by Keller and

Miksis (1980) [Eqs. (2.1)-(2.3)]. To close the model, th and κ in Eq.

(2.2) can be solved following the framework of Prosperetti (1977). The

formulas of th and κ are (Prosperetti, 1977; Zhang, 2013b):

2
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2
2 0 ,/ g vG R D . (B10)

Here, g is the density of the gas; gR is the universal gas constant;

gM is the molecular weight of the gas in the bubble; ,g vD is the thermal

diffusivity of the gas defined at constant volume; T is the ambient

temperature. A correction up to second order of 1G [e.g., the second term

in the bracket of Eq. (B7)] has been proposed by Zhang (2013b). The

natural frequency 0 of bubble oscillation under single-frequency

excitation is calculated by Eq. (2.5).

The equation of bubble motion [Eqs. (2.1)-(2.3)] is directly solved by an

explicit Runge-Kutta formula (Dormand and Prince, 1980) for a wide

range of parameters, such as bubble radius, pressure amplitude and

frequency of acoustic excitation. The physical parameters employed in the

simulations are: ,g vD =2.90×10-5 m2/s; gR =8.314 J/(mol K); gM =28.88
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g; g =1.204 kg/m3; T =293.15 K;  varies between 0.05 and 1.2; and

0R =2, 10 and 50 μm respectively. Other constants are listed in Appendix 

A. In the following figures and discussions, non-dimensional values are

used, such as 0/  ,  and  max 0 0R R R (Here, maxR is the

maximum radius of the bubble during steady-state oscillations); “Present”

refers to the predictions using values of  and th predicted by Eqs.

(B1)-(B10); “ =1.0, th =0” and “ =1.4, th =0” refer to the predictions

using 1.0 and 1.4 as the values of polytropic exponent respectively without

energy dissipation through heat transfer.

Figures B1-B3 show the frequency response curves predicted by three

approaches for equilibrium bubble radii of 2, 10 and 50 μm respectively 

for a wide range of parameters (e.g., 0.05 1.2  ; 00.1 / 3   ). In

order to show the differences clearly, comparisons of the frequency

response curves by three approaches are demonstrated in Figures B4-B6.

The expressions /n m (Here, m and n are two integers) marked above the

peaks of the curves in Figures B1-B3 are the orders of the resonances

(referring to Sec. 1.3.1 and Lauterborn 1976 for detailed definition). Cases

with m =1 and n =2, 3… correspond to harmonics; cases with m =2, 3…

and n =1 correspond to subharmonics; cases with m =2, 3… and n =2, 3…

correspond to ultraharmonics. Figure B7 shows an example of the onset
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curve [i.e., curve of  max 0 0R R R versus  ] of gas bubbles with radius

0R =10 μm at the subharmonic region ( 0/   2). Figure B8 shows the

comparisons of the threshold pressure of the subharmonics of the order

/n m =
1

2
versus the equilibrium bubble radius. Figures B1-B8 reveal

typical characteristics of nonlinear oscillations of gas bubbles in the

liquids, such as main resonances, harmonics, subharmonics and

ultraharmonics. Furthermore, near resonances, the frequency response

curves lean over towards low frequencies (corresponding to small values

of 0/  ) at higher acoustic pressure amplitudes (corresponding to large

 ) as shown in Figures B1-B6. Those nonlinear features observed in this

Appendix agree well with the well-known results given by Lauterborn

(1976), confirming the validities of our simulations. In the following

discussions, our efforts are mainly focused on the influence of thermal

effects (e.g., values of  and th ) on the bubble responses to the

acoustic excitation.
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Figure B1 Frequency response curves predicted by three approaches (a)

“ =1.4, th =0”, (b) “ =1.0, th =0”, and (c) “Present” for bubbles with

equilibrium radius R0=2 μm. Non-dimensional amplitudes of acoustic 

excitation (ε) are (A) 0.05, (B) 0.2, (C) 0.4, (D) 0.6, (E) 0.8, (F) 0.9, (G)

1.1, and (H) 1.2 respectively. The numbers above the peaks of the curves

are the orders of the resonances. The values of  (solid line) and th

(dashed line) employed in the approach “Present” [calculated by Eqs.

(B1)-(B10)] are shown in (d).
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Figure B2 Frequency response curves predicted by three approaches (a)

“ =1.4, th =0”, (b) “ =1.0, th =0”, and (c) “Present” for bubbles with

equilibrium radius R0=10 μm. Non-dimensional amplitudes of acoustic 

excitation (ε) are (A) 0.05, (B) 0.1, (C) 0.2, (D) 0.3, (E) 0.4, (F) 0.5, and

(G) 0.6 respectively. The numbers above the peaks of the curves are the

orders of the resonances. The values of  (solid line) and th (dashed

line) employed in the approach “Present” [calculated by Eqs. (B1)-(B10)]

are shown in (d).
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Figure B3 Frequency response curves predicted by three approaches (a)

“ =1.4, th =0”, (b) “ =1.0, th =0”, and (c) “Present” for bubbles with

equilibrium radius R0=50 μm. Non-dimensional amplitudes of acoustic 

excitation (ε) are (A) 0.05, (B) 0.1, (C) 0.2, (D) 0.3, (E) 0.4, (F) 0.5, and

(G) 0.6 respectively. The numbers above the peaks of the curves are the

orders of the resonances. The values of  (solid line) and th (dashed

line) employed in the approach “Present” [calculated by Eqs. (B1)-(B10)]

are shown in (d).



Figure B4 Frequency response curves

=1.4, th =0” (dotted line),

(solid line) for bubbles with equilibrium radius

Figure B5 Frequency response curves

=1.4, th =0” (dotted line),

(solid line) for bubbles with equilibrium radius
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Frequency response curves predicted by three approaches

(dotted line), “ =1.0, th =0” (dashed line), and

for bubbles with equilibrium radius R0=2 μm.  =1.2.

Frequency response curves predicted by three approaches

(dotted line), “ =1.0, th =0” (dashed line), and

for bubbles with equilibrium radius R0=10 μm.  =0.6

predicted by three approaches “

and “Present”

=1.2.

predicted by three approaches “

and “Present”

 =0.6.



Figure B6 Frequency response curves

=1.4, th =0” (dotted line),

(solid line) for bubbles with equilibrium radius

From Figures B1-B

three approaches are

follows. The location

subharmonic resonances predicted by “Present” are quite different

those predicted by other two approaches

th =0” respectively)

strongly dependent on

0 predicted by “

=0” and “Present”,

th =0” shifting to the right (i.e., larger values of

Figures B1-B6. Energy dissipation through heat transfer across interfaces
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Frequency response curves predicted by three approaches

(dotted line), “ =1.0, th =0” (dashed line), and

for bubbles with equilibrium radius R0=50 μm.  =0.6

B8, it can be seen clearly that the predictions

three approaches are significantly different, which can be summarized

locations and amplitudes of the main, harmonic and

subharmonic resonances predicted by “Present” are quite different

by other two approaches (“ =1.4, th =0” and

respectively). As shown by Eq. (2.5), natural frequency (

strongly dependent on the polytropic exponent ( ). Therefore, values of

 =1.4, th =0” are larger than those by “

, resulting in the locations of the resonances by

to the right (i.e., larger values of 0/  ) as shown in

6. Energy dissipation through heat transfer across interfaces

predicted by three approaches “

and “Present”

 =0.6.

that the predictions by the

summarized as

of the main, harmonic and

subharmonic resonances predicted by “Present” are quite different from

and “ =1.0,

), natural frequency ( 0 ) is

). Therefore, values of

 =1.0, th

the locations of the resonances by “ =1.4,

) as shown in

6. Energy dissipation through heat transfer across interfaces



of gas bubbles (represented by

mechanisms during oscillations of gas bubbles in the liquids.

accounting for the energy dissipation through heat transfer, the oscillation

amplitudes (especiall

to Figures B1-B6.

Figure B7 Comparison

with the order of

(dotted line), “ =1.0

R0=10 μm. The values of

with the order of
1

2

In particular, the influence of

behaviours is also strongly dependent on bubble radii. For small bubbles

( 0R =2 μm), the polytropic exponent varies between 1 and 1.

effective thermal viscosity varies between 0.389
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of gas bubbles (represented by th ) is one of the important damping

mechanisms during oscillations of gas bubbles in the liquids.

energy dissipation through heat transfer, the oscillation

especially near resonances) are greatly suppressed

7 Comparisons of the onset curves of subharmonic resonance

with the order of
1

2
predicted by three approaches “ =1.4,

 =1.0, th =0” (dashed line), and “Present” (solid line)

The values of the threshold of the subharmonic resonance

1

2
have been marked in the figure.

, the influence of the values of  and th on bubble

also strongly dependent on bubble radii. For small bubbles

polytropic exponent varies between 1 and 1.

effective thermal viscosity varies between 0.389 mPa s and 0.489 mP

important damping

mechanisms during oscillations of gas bubbles in the liquids. By

energy dissipation through heat transfer, the oscillation

suppressed, referring

of subharmonic resonance

=1.4, th =0”

(solid line).

subharmonic resonances

th on bubble

also strongly dependent on bubble radii. For small bubbles

polytropic exponent varies between 1 and 1.04; the

and 0.489 mPa s as
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shown in Figure B1(d). Noticing that l =1.0 mPa s for water, if assuming

 =1.4 and th =0, it will cause serious errors leading to large differences

between “ =1.4, th =0” and “Present” in Figures B1 and B4. The

locations of resonances can be predicted well by “ =1.0, th =0” but the

oscillation amplitudes near resonances predicted by “ =1.0, th =0” are

much higher than those predicted by “Present” owing to ignoring heat

transfer across bubble interfaces in “  =1.0, th =0”. For the three

approaches, the main resonances, the harmonics of all orders (up to
8

1
)

and the first subharmonics (with the order of
1

2
) have been all revealed in

predictions (referring to Figure B1) for the same parameter zone. However,

the ultraharmonics (e.g., /n m =
3

2
,

5

2
in Figure B1) predicted by “

=1.0, th =0” and “ =1.4, th =0” are not observed in “Present”, indeed

indicating higher values of the threshold for those ultraharmonics. From

Figure B1, it can be seen that the values of the threshold of subharmonics

for the order of
1

2
predicted by “Present” are much higher than those by

“  =1.0, th =0” and “  =1.4, th =0”. For more detailed analysis,

readers are referred to Figures B7 and B8. For fixed bubble radii, onset

curves of subharmonics for the order of
1

2
are obtained by calculating

the values of  max 0 0R R R at 0/  =2 versus variable  as shown in

Figure B7. Based on this onset curve, thresholds of the
1

2
-order

subharmonics (as marked in Figure B7) are obtained. Figure B8



summarizes the values of the threshold of

equilibrium bubble radius. As shown in Fig

of the threshold of the

are higher than those by

differences increase with the increase of bubble radius (

Figure B8 Comparison

the order of
1

2
predicted by three approaches

line), “ =1.0, th

equilibrium bubble radius (

As shown in Figure

( 0R =10 μm and 50

regions [1, 1.19] and [1.03, 1.30] respectively;

viscosity varies in the regions [1.84 m

156.52 mPa s]. For

147

summarizes the values of the threshold of
1

2
-order subharmonics

equilibrium bubble radius. As shown in Figures B1-B3 and B8, the

of the threshold of the
1

2
-order subharmonics predicted by the

are higher than those by “ =1.0, th =0” and “ =1.4, th =0”

differences increase with the increase of bubble radius ( 0R ).

Comparisons of the threshold of subharmonic resonance

predicted by three approaches “ =1.4, th =0

th =0” (dashed line), and “Present” (solid line)

equilibrium bubble radius (R0).

ures B2(d) and B3(d), for intermediate and large bubbles

μm respectively), the polytropic exponent varies in the

regions [1, 1.19] and [1.03, 1.30] respectively; the effective thermal

viscosity varies in the regions [1.84 mPa s, 7.96 mPa s] and [4.98 m

]. For these cases, the polytropic exponent shows strong

order subharmonics versus

8, the values

order subharmonics predicted by the “Present”

th =0”. These

of subharmonic resonance with

th =0” (dotted

(solid line) versus

rge bubbles

polytropic exponent varies in the

effective thermal

] and [4.98 mPa s,

cases, the polytropic exponent shows strong
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variations and the energy dissipation through heat transfer is much more

significant than that through water viscosity. Hence, as shown in Figures

B2, B3, B5 and B6, both “ =1.0, th =0” and “ =1.4, th =0” cannot

predict the bubble behaviours accurately in comparison with “Present” in

terms of their locations and amplitudes for main, harmonic and

subharmonic resonances. Unlike the cases for small bubbles (e.g., 0R =2

μm in Figures B1 and B4), certain harmonics of high orders (e.g., /n m >

5

1
in Figure B2 and /n m >

3

1
in Figure B3) predicted by “ =1.0, th

=0” and “ =1.4, th =0” are not presenting in predictions of “Present”

because the accounted thermal damping mechanism (i.e., th term)

damps the bubble oscillations, leading to a strong suppression of

harmonics. Similarly for the cases of 0R =2 μm (referring to Figures B1 

and B4), ultraharmonics predicted by “ =1.0, th =0” and “ =1.4, th

=0” are also not appearing in predictions of “Present” (as shown in

Figures B2, B3, B5 and B6). Figures B2 and B3 show higher values of the

threshold of subharmonics with order
1

2
predicted by “Present” in

comparison with those by other two approaches.

The effectiveness of the polytropic model has been confirmed by

numerous studies (Prosperetti, 1977; Crum, 1983; Crum and Prosperetti,

1983). Due to its simplicity and comparable accuracy, the polytropic
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model is still prevalent in the current literature not only for exploring the

highly nonlinear bubble phenomenon but also for performing some

advanced simulations of non-spherical bubble dynamics. However, the

polytropic model cannot be used for simulating very strong gas bubble

oscillations because a prominent non-uniformity will form inside gas

bubbles. A complete understanding of those highly nonlinear oscillations

of gas bubbles can be obtained by solving a full set of nonlinear equations

inside and outside the bubbles rather than using a polytropic model. For a

complete discussion of the validity of polytropic model, readers are

referred to Prosperetti et al. (1988).

In summary, the values of  and th would not affect the basic

characteristics of nonlinear bubble oscillations (e.g., the existence of main,

harmonic, subharmonic and ultraharmonic resonances; the “jump

phenomenon” and the “bending phenomenon”). However, they could

influence the responses of the gas bubbles to the single-frequency acoustic

excitation on the aspects of the locations and magnitudes of the resonances,

and the thresholds of subhormonics and ultraharmonics.



150

Appendix C: Mass Transfer across

Interfaces of Gas Bubbles under

Dual-Frequency Acoustic

Excitation

In this Appendix, mass transfer across bubble interfaces under

dual-frequency acoustic excitation is investigated. Parts of this Appendix

have been submitted as a journal paper (Zhang et al., 2015, under review).

Specifically, the influence of two paramount parameters (i.e., the pressure

amplitudes and frequencies of external acoustic excitation) of the

dual-frequency approach on the mass transfer across bubble-liquid

interfaces is studied numerically. The size of the region in which bubbles

grow through the effects of mass transfer during stable cavitation is

proposed as a criterion for the optimization of the multiple-frequency

system.

The equation of bubble motion used is that developed by Keller and

Miksis (1980) [Eqs. (2.1)-(2.4)]. The bubble growth rate can be given as



151

(Crum, 1984),

1/2
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Here, gR is the universal gas constant; T


is the ambient temperature in

the liquid; 0C is the saturation concentration of the gas in the liquid; iC

is the concentration of the gas in the liquid at infinity; D is the diffusion

constant; and denotes time-averaged terms, which can be determined

based on the solution of the equations of bubble motion [i.e., Eqs.

(2.1)-(2.4)]. Up to the second order of 1 0AP P , the three time-averaged

terms can be described as (Zhang, 2012b),

 
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   
24 2 2

0 2 11 12 1 0( / ) 1 4 3 /AR R B A A P P      , (C3)

4 4 3
0 0 0

0 0

2
( / ) ( / ) 1 ( / )inR R P P R R

P R
  

   
 

 
      

1

2
2 2

2 11 12 0

0 0

4 3 3 32
1 1 4 3 /

4
AB A A P P

P R

 


      
        

     
,

(C4)

where
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Hence, the bubble growth or dissolution rate can be obtained by

integration of Eq. (C1). According to Eq. (C1), there exists a threshold of

the pressure amplitude, the value of which corresponds to the balance of

the amount of gas diffused into and out of the bubbles [i.e., 0 0dR dt  in

Eq. (C1)]. The constants employed in the simulations are: D=2.4×10-9

m2/s; gR =8.314 J/mol/K; T =293.15 K; 5 1
1 5 10 s   ;

6 1
2 1.5 10 s   , 6 12.5 10 s and 6 15 10 s respectively (i.e., 2 13  ,

15 and 110 ). Other constants are the same as those listed in Appendix

A. The pressure amplitudes of the component sound waves are 1AP and

2AP respectively. The total pressure amplitude is denoted as

 
1 22 2

1 2e A AP P P  . The power allocation between two component waves is
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indicated by 2 1A AN P P . The total threshold pressure amplitude and

corresponding pressure amplitudes of two acoustic waves under

dual-frequency approach are denoted as TeP , 1TAP and 2TAP respectively.

Thus,  
1 22 2

1 2Te TA TAP P P  . If e TeP P , the bubble will grow while if

e TeP P , the bubble will dissolve.

Figure C1 The predicted threshold of the total acoustic pressure amplitude

of rectified mass diffusion under single-frequency [marked as “ 1 ”

(dotted line) and “ 2 ” (dashed line)] and dual-frequency [marked as “ 1 +

2 ” (solid line), N=2] acoustic excitation. 5 1
1 5 10 s   .

6 1
2 13 1.5 10 s     . 1rR and 2rR are the resonance bubble radii of

gas bubbles under acoustic excitation with frequencies 1 and 2

respectively. SR and ER are the start and the end bubble radii of bubble

growth region respectively. For others, readers are referred to the texts.
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Figure C1 compares the predicted total threshold of acoustic pressure

amplitudes of mass diffusion under single-frequency and dual-frequency

acoustic excitation (N=2). Firstly, some definitions employed in present

analysis are briefly explained. Between two resonance bubble radii ( 1rR

and 2rR respectively), there exists a local maximum of the threshold

value (marked as .maxe LP ), which is a paramount parameter as shown in

the following discussions. The left branches of dual-frequency approach

and single-frequency approach merge at the point corresponding to the

pressure amplitude mP . Hence, the threshold curve can be divided into

three regions using .maxe LP and mP .

Region A: If .maxe e LP P , there are four intersections (denoted as RS and

RE respectively) between the threshold curve and eP (the solid line

marked as 1eP ). Here, RS and RE are the bubble radii corresponding to the

start and the end of the bubble growth regions respectively. According to

the theory of mass diffusion, only the bubble with radius in the region

 ,S ER R can grow under acoustic excitation to the final equilibrium

bubble radius RE. However, because the acoustic pressure amplitude is not

large enough (i.e., .maxe e LP P ), the bubble growth regions do not

significantly increase through the use of dual-frequency excitation.

Region B: If .maxe L e mP P P  , there are only two cross points between the
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threshold curve and eP . Compared with the single-frequency approach,

the bubble growth region under the dual-frequency approach has

significantly increased.

Region C: If e mP P , there are only two cross points between the

threshold curve and eP (the solid line marked as 2eP ). Compared with

the single-frequency approach with frequency 2 , the bubble growth

region under dual-frequency approach increases dramatically though the

comparison with the single-frequency approach with frequency 1

indicates the bubble growth region under dual-frequency approach almost

remains the same.

Figures C2 and C3 show the predictions of the threshold of mass diffusion

under single-frequency and dual-frequency acoustic excitation with

different ratios of the pressure amplitudes (N) for the cases 2 13  and

2 110  respectively. According to Figures C2 and C3, one can find that

all the curves with different N pass a fixed point denoted as  ,,J e JR P ,

which is the intersection of the threshold curves of the two

single-frequency excitation. For this special point, the threshold of the

mass diffusion is independent of N. Figure C4 shows the influence of the

pressure ratio (N) on the local maximum threshold pressure ( .maxe LP ) of

dual-frequency excitation. The minimum of .maxe LP in each curve is
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marked as closed squares in the figure. Table C1 summarises the bubble

growth regions under acoustic excitation with different pressure

amplitudes ( eP ) and N.

Figure C2 The predicted threshold of the total acoustic pressure amplitude

[  
1 2

1/2
2 2

TA TATeP P P  ] of rectified mass diffusion under single-frequency

[marked as “ 1 ” (dotted line) and “ 2 ” (dashed line)] and dual-frequency

(“ 1 2  ” with different N) acoustic excitation. 2 1A AN P P = 0.2, 0.5, 1,

2, 5 respectively. 5 1
1 5 10 s   . 6 1

2 13 1.5 10 s     . 1rR and 2rR

are resonance bubble radii of gas bubbles under acoustic excitation with

frequencies 1 and 2 respectively.  ,,J e JR P is the intersection point

of all the threshold curves.
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Figure C3 The predicted threshold of the total acoustic pressure amplitude

[  
1 2

1/2
2 2

TA TATeP P P  ] of rectified mass diffusion under single-frequency

[marked as “ 1 ” (dotted line) and “ 2 ” (dashed line)] and dual-frequency

(“ 1 2  ” with different N) acoustic excitation. 2 1A AN P P = 0.2, 0.5, 1,

2, 5 respectively. 5 1
1 5 10 s   . 6 1

2 110 5 10 s     . 1rR and 2rR

are resonance bubble radii of gas bubbles under acoustic excitation with

frequencies 1 and 2 respectively.  ,,J e JR P is the intersection point

of all the threshold curves.
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Table C1 Bubble growth regions under single-frequency excitation and

dual-frequency excitation with different N. eP =60000 Pa, 45000 Pa and

38000 Pa respectively. N=0.2, 0.5, 1, 2 and 5 respectively. 2 13  .

N
Bubble growth region (μm)  

(RE, RS)
60000eP Pa

.max, 2e e L NP P 

.max, 5e e L NP P 

Dual-

frequency

0.2 (8.91, 72.87)

0.5 (8.11, 70.68)

1 (7.40, 65.52)

2 (6.98, 57.41)

5 (6.80, 21.23); (32.40, 48.47)

Single-

frequency

ω1 (9.09, 73.54)

ω2 (6.74, 20.98)

45000eP Pa

.max, 1e e L NP P 

.max, 2e e L NP P 

N
Bubble growth region (μm)  

(RE, RS)

Dual-

frequency

0.2 (11.63, 66.47)

0.5 (10.21, 64.58)

1 (9.18, 60.24)

2 (8.60, 20.07); (26.27, 53.64)

5 (8.37, 19.35); (34.62, 46.63)

Single-

frequency

ω1 (14.23, 67.06)

ω2 (8.30, 19.33)

N
Bubble growth region (μm)  

(RE, RS)
38000eP Pa

.max, 0.5e e L NP P 

.max, 0.2e e L NP P 

Dual-

frequency

0.2 (12.58, 15.49); (18.00, 61.07)

0.5 (11.31, 59.88)

1 (10.38, 18.19); (23.23, 56.37)

2 (9.78, 18.16); (29.78, 50.96)

5 (9.54, 18.16); (35.85, 45.15)

Single-

frequency

ω1 (18.00, 63.22)

ω2 (9.44, 18.18)



Figure C4 Predicted local maximum threshold pressure (

the ratio of two excitation acoustic pressure amplitudes

the minimum of P

(solid line), 15 (dashed line),

159

Predicted local maximum threshold pressure ( .e L MaxP

the ratio of two excitation acoustic pressure amplitudes (N). “■” 

.e L MaxP . 2 1A AN P P = 0.1-10. 5 1
1 5 10 s  

(dashed line), 110 (dotted line) respectively.

.e L MaxP ) versus

“■” indicates

5 15 10 s . 2 = 13
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The characteristics of the threshold curves (Figures C2-C4 and Table C1)

can be summarized as follows:

1. N has great influence on the threshold curves of dual-frequency

approach. For N <1, with the decrease of N, the threshold curves

become much narrower near 0 2rR R while those near 0 1rR R

almost remain the same as those under single-frequency excitation

with frequency 1 . For N >1, with the increase of N, the threshold

curves become much narrower near 0 1rR R vary while those near

0 2rR R almost remain the same as those under single-frequency

excitation with frequency 2 .

2. JR is an important parameter dividing the Figures C2 and C3 into

two regions. For 0 JR R , the threshold of acoustic pressure amplitude

decreases with the increase of N. For 0 JR R , the threshold of

acoustic pressure amplitude increases with the increase of N.

3. The ratio of the frequencies ( 2 1  ) has great influence on the

threshold curve. Firstly, the region between two resonance radii ( 1rR

and 2rR respectively) will increase with the increase of the ratio of

frequencies. Secondly, the threshold pressure amplitude will also

increase with the increase of the ratio of frequencies as shown in

Figures C2 and C3. For example, for N=0.2, the minimum threshold

pressure near 0 2rR R is 7415 Pa and 28571 Pa for 2 13  and



161

2 110  respectively. Hence, the difference of threshold pressure

amplitude is significant for the large frequency ratio. Thirdly, the local

maximum threshold pressure amplitude (especially when N >1) also

increases with the increase of the ratio of frequencies. For example, as

shown in Figure C4, when N=10, .maxe LP of 2 1  =5 and 10 are

more than two and four times of those of 2 1  =3. This implies that

for a given pressure amplitude, bubble growth regions will shrink with

the increase of the frequency ratio.

4. For 1N  , the changes of .maxe LP versus N is quite limited while for

1N  , .maxe LP increases significantly with the increase of N. For high

values of N, if the .maxe L mP P , the size of bubble growth region under

dual-frequency excitation is nearly the same as those under

single-frequency excitation. Therefore, for facilitating the effects of

mass transfer, the pressure amplitude of the low-frequency component

( 1 ) should be higher than those of the high-frequency component

( 2 ) (i.e., the ratio of pressure amplitudes 1N  ).

In summary, a criterion based on bubble growth regions for optimizing the

parameters of a dual-frequency approach is proposed. According to the

numerical simulations, it is more effective to facilitate cavitation (e.g., the

growth of bubbles) through allocating the power to the low-frequency
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component of dual-frequency acoustic waves. With the increase of the

frequency ratio, the difference between the size of bubble growth regions

under dual-frequency and single-frequency excitation shrinks.
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