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Abstract. We recall the problem posed by Peres and Solomyak in Problems on self-similar
and self-affine sets; an update. Progr. Prob. 46 (2000), 95–106: can one find examples
of self-similar sets with positive Lebesgue measure, but with no interior? The method in
Properties of measures supported on fat Sierpinski carpets, this issue, leads to families of
examples of such sets.

In [1] the existence of self-affine sets with positive Lebesgue measure but empty interior
was shown. In this appendix we demonstrate that an adjustment of this argument can
show the existence of self-similar sets with positive Lebesgue measure but empty interior
answering a question from [2].

The construction. Let t = (t1, t2) ∈ [0, 1]2 ⊂ R
2. We consider ten similarities (with the

same contraction rate 1
3 ) given by

T0(x, y) = ( 1
3x, 1

3y), T5(x, y) = ( 1
3 + 1

3x, 1
3y + 1)

T1(x, y) = ( 1
3x, 1

3y + t1), T6(x, y) = ( 2
3 + 1

3x, 1
3y)

T2(x, y) = ( 1
3x, 1

3y + t2), T7(x, y) = ( 2
3 + 1

3x, 1
3y + t1)

T3(x, y) = ( 1
3x, 1

3y + 1), T8(x, y) = ( 2
3 + 1

3x, 1
3y + t2)

T4(x, y) = ( 1
3 + 1

3x, 1
3y), T9(x, y) = ( 2

3 + 1
3x, 1

3y + 1).

This construction is similar in spirit to those in [3]. To see that the associated limit set
�t has empty interior, observe that the intersection of �t with each of vertical lines
{(k + 1

2 )3−n} × R, with n ≥ 0 and 0 ≤ k ≤ 3n − 1 has zero measure. It remains to
show that typically �t has positive measure.
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FIGURE 1. A typical limit set �t .

Let �10 = {0, 1, . . . , 9}Z+
denote the full shift on 10 symbols and let �t : �10 → �t

be the usual projection map. Let µ = ( 1
12 , 1

12 , 1
12 , 1

12 , 1
6 , 1

6 , 1
12 , 1

12 , 1
12 , 1

12 )Z
+

be a
Bernoulli measure on �10. To show that �t has non-zero Lebesgue measure it suffices
to show that ν := �tµ is absolutely continuous. By construction, ν projects to Lebesgue
measure on the unit interval in the x-axis; thus it suffices to show the conditional measure
νt,x on Lebesgue almost every vertical line {x} × R is absolutely continuous.

Let �3 = {0, 1, 2}Z+
be the full shift on 3 symbols coding the horizontal coordinate.

In particular, there is a natural semi-conjugacy p : �10 → �3 given by p(ω)n = i(ωn)

where i|{0,1,2,3} ≡ 0; i|{4,5} ≡ 1; and i|{6,7,8,9} ≡ 2. Then pµ = µ = ( 1
3 , 1

3 , 1
3 )Z

+

is the Bernoulli measure on �3. Given ξ ∈ �3 let µξ denote the induced measure on
p−1(ξ). Clearly, if �t,ξ : p−1(ξ) → {x} × R is the restriction of �t , then by construction
�t,ξµξ = νt,x . We also let π : �3 → [0, 1] be the natural projection from �3 to the x-axis
given by π(ξ) = ∑∞

n=0 ξn(
1
3 )n+1. The analogue of transversality is that there exists C > 0

such that

�ξ(r; ω, τ) := leb{t ∈ [0, 1]2 : |�t,ξ (ω) − �t,ξ (τ )| ≤ r} ≤ C3|ω∧τ |r, for r > 0. (1)

This can be seen by a simple adjustment of the arguments in [3, Lemma 3.1] and [4,
Proposition 3.1 Part (i)]. However, in our special case it can be easily verified directly, as
follows.

Let ω, τ ∈ p−1(ξ) with |ω ∧ τ | = n; that is, τi = ωi for i < n and τn 
= ωn.
Since ω, τ ∈ p−1(ξ) we have i(ωn) = i(τn) for all n, and �t,ξ (ω) − �t,ξ (τ ) =
(0, φt,ξ (ω, τ )), where

φt,ξ (ω, τ ) = 3−n

(
(tj (ωn) − tj (τn)) +

∞∑
k=1

3−k(tj (ωk+n) − tj (τk+n))

)
.
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Here we let j |{0,4,6} ≡ 0, j |{1,7} ≡ 1, j |{2,8} ≡ 2, j |{3,5,9} ≡ 3, and t0 = 0, t3 = 1 for
convenience. If {j (ωn), j (τn)} = {0, 3}, then

|φt,ξ (ω, τ )| ≥ 3−n

(
1 −

∞∑
k=1

3−k

)
= 3−n/2,

in view of tj ∈ [0, 1] for all j , and (1) follows. Otherwise, let j ∈ {j (ωn), j (τn)} ∩ {1, 2}.
Then ∣∣∣∣∂φt,ξ (ω, τ )

∂tj

∣∣∣∣ ≥ 3−n

(
1 −

∞∑
k=1

3−k

)
= 3−n/2,

which also implies (1).
Now we use (1) to prove that νt,x is absolutely continuous for almost every x. For a

sequence ξ ∈ �3 we define ni(ξ) to be the number of i’s in the first n terms of ξ . By the
strong law of large numbers, given ε, δ > 0 we can use Egorov’s theorem to choose a set
X ⊂ [0, 1] of measure leb(X) > 1 − ε (equivalently µ(π−1X) > 1 − ε) such that there
exists N ∈ N where for n ≥ N , ni(ξ) ≥ ( 1

3 − δ)n, for i = 0, 1, 2. We can bound
∫

[0,1]2

∫
X

(∫
{x}×R

D(νt,x)(y) dνt,x(y)

)
d(leb)(x) dt

≤ lim inf
r→0

1

2r

∫
π−1X

(∫
p−1(ξ)

∫
p−1(ξ)

�ξ (r; ω, τ) dµξ(ω) dµξ (τ )

)
dµ(ξ)

≤ C

∫
π−1X

( ∞∑
n=0

∑
τ0,...,τn−1

µξ [τ0, . . . , τn−1]23n

)
dµ(ξ)

≤ C

∫
π−1X

( ∞∑
n=0

4−n0(ξ)2−n1(ξ)4−n2(ξ)3n

)
dµ(ξ)

≤ CC1 + C

∞∑
n=N

(
4−(2/3−2δ)2−(1/3−δ)3

)n

,

for some C1 > 0 bounding the first N terms of the series, and observe that the series is
finite for δ sufficiently small. This implies the desired (typical) absolute continuity, as in
the main article.

We have proved the following.

THEOREM A. For almost every t ∈ [0, 1]2 the limit set �t has positive Lebesgue measure
and empty interior.

Remark. We can also construct examples with fewer similarities using different
contraction rates. Let 0 < λ < 1

2 and t = (t1, t2, t3) ∈ [0, 1]3. Consider the six similarities
of R

2 defined by

T0(x, y) = (λx, λy), T3(x, y) = (λ + λx, λy)

T1(x, y) = (λx, λy + t1), T4(x, y) = (λ + λx, λy + t1)

T2(x, y) = (λx, λy + t2), T5(x, y) = (2λ + (1 − 2λ)x, (1 − 2λ)y + t3).
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Let �t again denote the self-similar set. Let µ = ( λ
3 , λ

3 , λ
3 , λ

2 , λ
2 , (1 − 2λ))Z

+
be the

Bernoulli measure on �6. Let µ = (λ, λ, (1 − 2λ))Z
+

denote the induced measure on �3.
The proof of Theorem A can be adapted to this setting provided

−(h(µ) − h(µ)) = −λ log 2 − λ log 3 ≤ 2λ log λ + (1 − 2λ) log(1 − 2λ),

which is true provided λ is sufficiently close to 1
2 . More precisely, we have the following

result.

THEOREM B. If λ ∈ (0.4759, 1
2 ) then for almost every t ∈ [0, 1]3 the limit set �t has

positive Lebesgue measure and empty interior.
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